summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target')
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64.h49
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64.td135
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64AddressTypePromotion.cpp491
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp387
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64AsmPrinter.cpp524
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64BranchRelaxation.cpp510
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.td242
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp147
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64CollectLOH.cpp1117
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp919
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64DeadRegisterDefinitionsPass.cpp134
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp736
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64FastISel.cpp1994
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp892
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.h68
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp3033
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp8095
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.h467
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64InstrAtomics.td364
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64InstrFormats.td8625
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp2089
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.h229
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.td5290
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64LoadStoreOptimizer.cpp951
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.cpp202
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.h52
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64MachineFunctionInfo.h163
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64PerfectShuffle.h6586
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp578
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp404
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.h101
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.td593
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64SchedA53.td291
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64SchedA57.td304
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64SchedA57WriteRes.td512
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64SchedCyclone.td865
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64Schedule.td104
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.cpp60
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.h33
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64StorePairSuppress.cpp168
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64Subtarget.cpp130
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64Subtarget.h132
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.cpp216
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.h87
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.cpp52
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.h40
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp500
-rw-r--r--contrib/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp4213
-rw-r--r--contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp1559
-rw-r--r--contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.h40
-rw-r--r--contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.cpp220
-rw-r--r--contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.h38
-rw-r--r--contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp1316
-rw-r--r--contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h140
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h738
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp566
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFObjectWriter.cpp257
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp160
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.h26
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64FixupKinds.h76
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp101
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h36
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp650
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.cpp145
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.h168
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp225
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h70
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MachObjectWriter.cpp396
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64TargetStreamer.cpp41
-rw-r--r--contrib/llvm/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp31
-rw-r--r--contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp901
-rw-r--r--contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.h1280
-rw-r--r--contrib/llvm/lib/Target/ARM/A15SDOptimizer.cpp710
-rw-r--r--contrib/llvm/lib/Target/ARM/ARM.h57
-rw-r--r--contrib/llvm/lib/Target/ARM/ARM.td440
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMAsmPrinter.cpp1834
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMAsmPrinter.h126
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp4403
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.h441
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.cpp836
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.h202
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMCallingConv.h264
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMCallingConv.td241
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMCodeEmitter.cpp1909
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp2062
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.cpp262
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.h259
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMExpandPseudoInsts.cpp1364
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFPUName.def33
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFPUName.h26
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFastISel.cpp3081
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFeatures.h97
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFrameLowering.cpp2039
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFrameLowering.h78
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.cpp104
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.h49
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp3468
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp10949
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelLowering.h601
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrFormats.td2357
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrInfo.cpp162
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrInfo.h44
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrInfo.td5596
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrNEON.td7626
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrThumb.td1486
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrThumb2.td4643
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrVFP.td1782
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMJITInfo.cpp344
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMJITInfo.h177
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMLoadStoreOptimizer.cpp2220
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMMCInstLower.cpp129
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.cpp24
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.h241
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMOptimizeBarriersPass.cpp101
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMPerfectShuffle.h6586
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMRegisterInfo.cpp21
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMRegisterInfo.h31
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMRegisterInfo.td419
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMRelocations.h62
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMSchedule.td354
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMScheduleA8.td1075
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMScheduleA9.td2529
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMScheduleSwift.td2076
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMScheduleV6.td300
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.cpp199
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.h62
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMSubtarget.cpp440
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMSubtarget.h450
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMTargetMachine.cpp253
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMTargetMachine.h135
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.cpp63
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.h43
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp586
-rw-r--r--contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp9461
-rw-r--r--contrib/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp4992
-rw-r--r--contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.cpp1501
-rw-r--r--contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.h170
-rwxr-xr-xcontrib/llvm/lib/Target/ARM/LICENSE.TXT47
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h668
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.def50
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.h27
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp860
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMBaseInfo.h464
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFObjectWriter.cpp236
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp1362
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMFixupKinds.h110
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.cpp114
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.h51
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCCodeEmitter.cpp1675
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.cpp46
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.h76
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.cpp447
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.h119
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachORelocationInfo.cpp43
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachObjectWriter.cpp493
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMTargetStreamer.cpp73
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.cpp226
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.h93
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMWinCOFFObjectWriter.cpp82
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMWinCOFFStreamer.cpp46
-rw-r--r--contrib/llvm/lib/Target/ARM/MLxExpansionPass.cpp397
-rw-r--r--contrib/llvm/lib/Target/ARM/TargetInfo/ARMTargetInfo.cpp28
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.cpp489
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.h52
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.cpp103
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.h60
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.cpp677
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.h63
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp282
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.cpp630
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.h74
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.cpp53
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.h38
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2SizeReduction.cpp1033
-rw-r--r--contrib/llvm/lib/Target/CppBackend/CPPBackend.cpp2157
-rw-r--r--contrib/llvm/lib/Target/CppBackend/CPPTargetMachine.h44
-rw-r--r--contrib/llvm/lib/Target/CppBackend/TargetInfo/CppBackendTargetInfo.cpp29
-rw-r--r--contrib/llvm/lib/Target/Hexagon/Hexagon.h82
-rw-r--r--contrib/llvm/lib/Target/Hexagon/Hexagon.td213
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.cpp236
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.h55
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonCFGOptimizer.cpp253
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonCallingConv.td35
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.cpp204
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.h187
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonCopyToCombine.cpp676
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonExpandPredSpillCode.cpp201
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonFixupHwLoops.cpp185
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp346
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.h51
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp1548
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp1685
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp1708
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.h177
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrFormats.td401
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrFormatsV4.td67
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp1858
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.h222
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td2853
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV3.td107
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV4.td3397
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV5.td633
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonIntrinsics.td3503
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsDerived.td39
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV3.td50
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV4.td369
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV5.td395
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonMCInstLower.cpp95
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.cpp16
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.h80
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp694
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.h244
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonNewValueJump.cpp656
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonOperands.td858
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonPeephole.cpp347
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.cpp298
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.h86
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.td167
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonRemoveSZExtArgs.cpp89
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSchedule.td18
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonScheduleV4.td203
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSelectCCInfo.td121
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.cpp45
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.h37
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSplitConst32AndConst64.cpp180
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSplitTFRCondSets.cpp237
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp99
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.h105
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp178
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.h67
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.cpp101
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.h40
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp1428
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonVarargsCallingConvention.h141
-rw-r--r--contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.cpp204
-rw-r--r--contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.h87
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h196
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.cpp38
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.h29
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.cpp175
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.h100
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.cpp98
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.h39
-rw-r--r--contrib/llvm/lib/Target/Hexagon/TargetInfo/HexagonTargetInfo.cpp19
-rw-r--r--contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.cpp115
-rw-r--r--contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.h44
-rw-r--r--contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.cpp27
-rw-r--r--contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.h30
-rw-r--r--contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.cpp94
-rw-r--r--contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.h36
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430.h47
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430.td60
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430AsmPrinter.cpp161
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430BranchSelector.cpp181
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430CallingConv.td37
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.cpp297
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.h54
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp493
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.cpp1371
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.h173
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430InstrFormats.td211
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.cpp329
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.h93
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.td1211
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.cpp157
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.h47
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.cpp14
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.h54
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.cpp162
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.h47
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.td81
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.cpp23
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.h31
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430Subtarget.cpp39
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430Subtarget.h65
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.cpp67
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.h61
-rw-r--r--contrib/llvm/lib/Target/MSP430/TargetInfo/MSP430TargetInfo.cpp20
-rw-r--r--contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp3020
-rw-r--r--contrib/llvm/lib/Target/Mips/Disassembler/MipsDisassembler.cpp1328
-rw-r--r--contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.cpp326
-rw-r--r--contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.h113
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.cpp66
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.h238
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.cpp425
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.h93
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsBaseInfo.h125
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFObjectWriter.cpp263
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.cpp43
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.h58
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsFixupKinds.h202
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.cpp46
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.h30
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.cpp662
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.h154
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.cpp89
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.h66
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCNaCl.h33
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.cpp231
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.h76
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsNaClELFStreamer.cpp272
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsOptionRecord.cpp92
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsTargetStreamer.cpp642
-rw-r--r--contrib/llvm/lib/Target/Mips/MSA.txt83
-rw-r--r--contrib/llvm/lib/Target/Mips/MicroMipsInstrFPU.td148
-rw-r--r--contrib/llvm/lib/Target/Mips/MicroMipsInstrFormats.td623
-rw-r--r--contrib/llvm/lib/Target/Mips/MicroMipsInstrInfo.td306
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips.h34
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips.td194
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16FrameLowering.cpp190
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16FrameLowering.h51
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16HardFloat.cpp542
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16HardFloat.h54
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.cpp50
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.h50
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.cpp320
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.h53
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16ISelLowering.cpp792
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16ISelLowering.h81
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16InstrFormats.td640
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16InstrInfo.cpp519
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16InstrInfo.h128
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16InstrInfo.td1917
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.cpp153
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.h48
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips32r6InstrFormats.td543
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips32r6InstrInfo.td824
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips64InstrInfo.td512
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips64r6InstrInfo.td217
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.cpp153
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.h63
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsAsmPrinter.cpp1036
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsAsmPrinter.h144
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsCallingConv.td269
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsCodeEmitter.cpp481
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsCondMov.td265
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp1719
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsDSPInstrFormats.td337
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsDSPInstrInfo.td1417
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsDelaySlotFiller.cpp738
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsFastISel.cpp400
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsFrameLowering.cpp133
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsFrameLowering.h45
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.cpp241
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.h135
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp3715
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsISelLowering.h627
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsInstrFPU.td655
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsInstrFormats.td906
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsInstrInfo.cpp289
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsInstrInfo.h148
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsInstrInfo.td1763
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsJITInfo.cpp286
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsJITInfo.h71
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsLongBranch.cpp519
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsMCInstLower.cpp233
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsMCInstLower.h50
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsMSAInstrFormats.td465
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsMSAInstrInfo.td3807
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsMachineFunction.cpp148
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsMachineFunction.h153
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.cpp36
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.h58
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsOptimizePICCall.cpp301
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsOptionRecord.h80
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsOs16.cpp147
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsOs16.h49
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsRegisterInfo.cpp263
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsRegisterInfo.h83
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsRegisterInfo.td581
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsRelocations.h41
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.cpp705
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.h48
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp878
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.h117
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEISelLowering.cpp3236
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEISelLowering.h116
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.cpp637
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.h119
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.cpp204
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.h41
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSchedule.td311
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.cpp23
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.h31
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSubtarget.cpp219
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSubtarget.h290
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsTargetMachine.cpp198
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsTargetMachine.h105
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.cpp103
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.h38
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsTargetStreamer.h201
-rw-r--r--contrib/llvm/lib/Target/Mips/TargetInfo/MipsTargetInfo.cpp31
-rw-r--r--contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.cpp290
-rw-r--r--contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.h53
-rw-r--r--contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXBaseInfo.h100
-rw-r--r--contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.cpp56
-rw-r--r--contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.h30
-rw-r--r--contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.cpp105
-rw-r--r--contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.h36
-rw-r--r--contrib/llvm/lib/Target/NVPTX/ManagedStringPool.h48
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTX.h194
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTX.td69
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.cpp46
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.h50
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp2292
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.h333
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXAssignValidGlobalNames.cpp84
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXFavorNonGenericAddrSpaces.cpp195
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.cpp81
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.h38
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXGenericToNVVM.cpp433
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp5085
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h94
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp4516
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.h541
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXImageOptimizer.cpp178
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXInstrFormats.td59
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.cpp273
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.h78
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td2741
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXIntrinsics.td7047
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.cpp205
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.h48
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.cpp47
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.h83
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXMachineFunctionInfo.h46
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXPrologEpilogPass.cpp227
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.cpp111
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.h72
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.td69
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXReplaceImageHandles.cpp189
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXSection.h48
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.cpp70
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.h116
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp250
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.h100
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXTargetObjectFile.h105
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.cpp543
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.h96
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXVector.td1481
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXutil.cpp90
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXutil.h25
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVVMReflect.cpp222
-rw-r--r--contrib/llvm/lib/Target/NVPTX/TargetInfo/NVPTXTargetInfo.cpp23
-rw-r--r--contrib/llvm/lib/Target/NVPTX/cl_common_defines.h122
-rw-r--r--contrib/llvm/lib/Target/PowerPC/AsmParser/PPCAsmParser.cpp1658
-rw-r--r--contrib/llvm/lib/Target/PowerPC/Disassembler/CMakeLists.txt3
-rw-r--r--contrib/llvm/lib/Target/PowerPC/Disassembler/LLVMBuild.txt23
-rw-r--r--contrib/llvm/lib/Target/PowerPC/Disassembler/Makefile16
-rw-r--r--contrib/llvm/lib/Target/PowerPC/Disassembler/PPCDisassembler.cpp348
-rw-r--r--contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.cpp365
-rw-r--r--contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.h63
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCAsmBackend.cpp245
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCELFObjectWriter.cpp432
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCFixupKinds.h56
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.cpp82
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.h37
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCCodeEmitter.cpp322
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.cpp133
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.h96
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.cpp307
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.h75
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMachObjectWriter.cpp389
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.cpp86
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.h68
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPC.h105
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPC.td344
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp1397
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCBranchSelector.cpp211
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp663
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCCallingConv.td199
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCCodeEmitter.cpp293
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCFastISel.cpp2282
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp1604
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.h126
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.cpp433
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.h102
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp2205
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp9290
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCISelLowering.h717
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstr64Bit.td1137
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td939
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrBuilder.h43
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrFormats.td1300
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp2246
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.h235
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.td3424
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrVSX.td816
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCJITInfo.cpp482
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCJITInfo.h46
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp216
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.cpp23
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.h191
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCPerfectShuffle.h6586
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp1007
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.h113
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.td314
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCRelocations.h56
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCSchedule.td520
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCSchedule440.td599
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCScheduleA2.td169
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCScheduleE500mc.td314
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCScheduleE5500.td374
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCScheduleG3.td80
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCScheduleG4.td96
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCScheduleG4Plus.td112
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCScheduleG5.td129
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCScheduleP7.td385
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.cpp22
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.h31
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCSubtarget.cpp277
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCSubtarget.h251
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.cpp170
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.h93
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.cpp63
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.h35
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCTargetStreamer.h27
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp420
-rw-r--r--contrib/llvm/lib/Target/PowerPC/TargetInfo/PowerPCTargetInfo.cpp26
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPU.h130
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPU.td173
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.cpp415
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.h85
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUCallingConv.td74
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.cpp113
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.h45
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUISelDAGToDAG.cpp906
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp2325
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUISelLowering.h251
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.cpp346
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.h199
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.td181
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUInstructions.td575
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.cpp77
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.h48
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUIntrinsics.td89
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.cpp159
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.h48
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.cpp25
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.h39
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUPromoteAlloca.cpp387
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.cpp67
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.h65
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.td26
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUSubtarget.cpp89
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUSubtarget.h199
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.cpp221
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.h71
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUTargetTransformInfo.cpp153
-rw-r--r--contrib/llvm/lib/Target/R600/AMDILCFGStructurizer.cpp1911
-rw-r--r--contrib/llvm/lib/Target/R600/CaymanInstructions.td224
-rw-r--r--contrib/llvm/lib/Target/R600/EvergreenInstructions.td609
-rw-r--r--contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.cpp426
-rw-r--r--contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.h68
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUAsmBackend.cpp141
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUELFObjectWriter.cpp39
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUFixupKinds.h34
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.cpp62
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.h28
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.cpp21
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.h50
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.cpp114
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.h58
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/R600MCCodeEmitter.cpp184
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/SIMCCodeEmitter.cpp245
-rw-r--r--contrib/llvm/lib/Target/R600/Processors.td110
-rw-r--r--contrib/llvm/lib/Target/R600/R600ClauseMergePass.cpp205
-rw-r--r--contrib/llvm/lib/Target/R600/R600ControlFlowFinalizer.cpp682
-rw-r--r--contrib/llvm/lib/Target/R600/R600Defines.h171
-rw-r--r--contrib/llvm/lib/Target/R600/R600EmitClauseMarkers.cpp335
-rw-r--r--contrib/llvm/lib/Target/R600/R600ExpandSpecialInstrs.cpp348
-rw-r--r--contrib/llvm/lib/Target/R600/R600ISelLowering.cpp2326
-rw-r--r--contrib/llvm/lib/Target/R600/R600ISelLowering.h77
-rw-r--r--contrib/llvm/lib/Target/R600/R600InstrFormats.td492
-rw-r--r--contrib/llvm/lib/Target/R600/R600InstrInfo.cpp1441
-rw-r--r--contrib/llvm/lib/Target/R600/R600InstrInfo.h301
-rw-r--r--contrib/llvm/lib/Target/R600/R600Instructions.td1728
-rw-r--r--contrib/llvm/lib/Target/R600/R600Intrinsics.td75
-rw-r--r--contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.cpp20
-rw-r--r--contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.h34
-rw-r--r--contrib/llvm/lib/Target/R600/R600MachineScheduler.cpp467
-rw-r--r--contrib/llvm/lib/Target/R600/R600MachineScheduler.h103
-rw-r--r--contrib/llvm/lib/Target/R600/R600OptimizeVectorRegisters.cpp382
-rw-r--r--contrib/llvm/lib/Target/R600/R600Packetizer.cpp409
-rw-r--r--contrib/llvm/lib/Target/R600/R600RegisterInfo.cpp89
-rw-r--r--contrib/llvm/lib/Target/R600/R600RegisterInfo.h49
-rw-r--r--contrib/llvm/lib/Target/R600/R600RegisterInfo.td252
-rw-r--r--contrib/llvm/lib/Target/R600/R600Schedule.td49
-rw-r--r--contrib/llvm/lib/Target/R600/R600TextureIntrinsicsReplacer.cpp303
-rw-r--r--contrib/llvm/lib/Target/R600/R700Instructions.td21
-rw-r--r--contrib/llvm/lib/Target/R600/SIAnnotateControlFlow.cpp329
-rw-r--r--contrib/llvm/lib/Target/R600/SIDefines.h92
-rw-r--r--contrib/llvm/lib/Target/R600/SIFixSGPRCopies.cpp278
-rw-r--r--contrib/llvm/lib/Target/R600/SIFixSGPRLiveRanges.cpp110
-rw-r--r--contrib/llvm/lib/Target/R600/SIISelLowering.cpp1821
-rw-r--r--contrib/llvm/lib/Target/R600/SIISelLowering.h92
-rw-r--r--contrib/llvm/lib/Target/R600/SIInsertWaits.cpp376
-rw-r--r--contrib/llvm/lib/Target/R600/SIInstrFormats.td535
-rw-r--r--contrib/llvm/lib/Target/R600/SIInstrInfo.cpp1654
-rw-r--r--contrib/llvm/lib/Target/R600/SIInstrInfo.h212
-rw-r--r--contrib/llvm/lib/Target/R600/SIInstrInfo.td917
-rw-r--r--contrib/llvm/lib/Target/R600/SIInstructions.td2926
-rw-r--r--contrib/llvm/lib/Target/R600/SIIntrinsics.td199
-rw-r--r--contrib/llvm/lib/Target/R600/SILowerControlFlow.cpp552
-rw-r--r--contrib/llvm/lib/Target/R600/SILowerI1Copies.cpp154
-rw-r--r--contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.cpp97
-rw-r--r--contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.h68
-rw-r--r--contrib/llvm/lib/Target/R600/SIRegisterInfo.cpp188
-rw-r--r--contrib/llvm/lib/Target/R600/SIRegisterInfo.h94
-rw-r--r--contrib/llvm/lib/Target/R600/SIRegisterInfo.td211
-rw-r--r--contrib/llvm/lib/Target/R600/SISchedule.td15
-rw-r--r--contrib/llvm/lib/Target/R600/SIShrinkInstructions.cpp194
-rw-r--r--contrib/llvm/lib/Target/R600/SITypeRewriter.cpp162
-rw-r--r--contrib/llvm/lib/Target/R600/TargetInfo/AMDGPUTargetInfo.cpp26
-rw-r--r--contrib/llvm/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp939
-rw-r--r--contrib/llvm/lib/Target/Sparc/DelaySlotFiller.cpp497
-rw-r--r--contrib/llvm/lib/Target/Sparc/Disassembler/SparcDisassembler.cpp480
-rw-r--r--contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.cpp178
-rw-r--r--contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.h54
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcAsmBackend.cpp261
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp112
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcFixupKinds.h97
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.cpp74
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.h37
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCCodeEmitter.cpp218
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.cpp225
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.h111
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp212
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.h61
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcTargetStreamer.cpp46
-rw-r--r--contrib/llvm/lib/Target/Sparc/Sparc.h136
-rw-r--r--contrib/llvm/lib/Target/Sparc/Sparc.td99
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcAsmPrinter.cpp465
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcCallingConv.td139
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcCodeEmitter.cpp280
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcFrameLowering.cpp262
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcFrameLowering.h60
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcISelDAGToDAG.cpp221
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp3216
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcISelLowering.h178
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstr64Bit.td573
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrAliases.td325
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrFormats.td330
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrInfo.cpp446
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrInfo.h100
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td1227
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrVIS.td263
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcJITInfo.cpp326
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcJITInfo.h67
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcMCInstLower.cpp109
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.cpp14
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.h56
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.cpp211
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.h58
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.td211
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcRelocations.h56
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.cpp24
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.h31
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcSubtarget.cpp109
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcSubtarget.h92
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcTargetMachine.cpp101
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcTargetMachine.h83
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.cpp43
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.h35
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcTargetStreamer.h49
-rw-r--r--contrib/llvm/lib/Target/Sparc/TargetInfo/SparcTargetInfo.cpp23
-rw-r--r--contrib/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp779
-rw-r--r--contrib/llvm/lib/Target/SystemZ/Disassembler/SystemZDisassembler.cpp324
-rw-r--r--contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.cpp165
-rw-r--r--contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h67
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmBackend.cpp117
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp34
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h29
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCCodeEmitter.cpp204
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h31
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCObjectWriter.cpp115
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp231
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h96
-rw-r--r--contrib/llvm/lib/Target/SystemZ/README.txt174
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZ.h116
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZ.td62
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp247
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.h50
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.cpp21
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.h23
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.td71
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.cpp62
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.h55
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZElimCompare.cpp469
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.cpp513
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.h64
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp1144
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp3588
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.h324
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrBuilder.h48
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td411
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrFormats.td1609
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp1247
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.h243
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.td1428
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp460
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.cpp100
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.h44
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.cpp17
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.h68
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZOperands.td475
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZOperators.td385
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZPatterns.td155
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZProcessors.td62
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.cpp139
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.h58
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td190
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.cpp292
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.h77
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZShortenInst.cpp160
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.cpp80
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.h100
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp101
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.h63
-rw-r--r--contrib/llvm/lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp20
-rw-r--r--contrib/llvm/lib/Target/Target.cpp136
-rw-r--r--contrib/llvm/lib/Target/TargetIntrinsicInfo.cpp30
-rw-r--r--contrib/llvm/lib/Target/TargetJITInfo.cpp14
-rw-r--r--contrib/llvm/lib/Target/TargetLibraryInfo.cpp743
-rw-r--r--contrib/llvm/lib/Target/TargetLoweringObjectFile.cpp345
-rw-r--r--contrib/llvm/lib/Target/TargetMachine.cpp198
-rw-r--r--contrib/llvm/lib/Target/TargetMachineC.cpp258
-rw-r--r--contrib/llvm/lib/Target/TargetSubtargetInfo.cpp61
-rw-r--r--contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.cpp507
-rw-r--r--contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.h54
-rw-r--r--contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp2617
-rw-r--r--contrib/llvm/lib/Target/X86/AsmParser/X86AsmParserCommon.h43
-rw-r--r--contrib/llvm/lib/Target/X86/AsmParser/X86Operand.h488
-rw-r--r--contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp816
-rw-r--r--contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h116
-rw-r--r--contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp1842
-rw-r--r--contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h662
-rw-r--r--contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h517
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp281
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h136
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp542
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.h25
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp259
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h158
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp842
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h763
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp272
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFRelocationInfo.cpp135
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86FixupKinds.h34
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp177
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h59
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp1559
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp460
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h133
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachORelocationInfo.cpp116
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp609
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFObjectWriter.cpp95
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFStreamer.cpp51
-rw-r--r--contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp22
-rw-r--r--contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp218
-rw-r--r--contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h72
-rw-r--r--contrib/llvm/lib/Target/X86/X86.h82
-rw-r--r--contrib/llvm/lib/Target/X86/X86.td460
-rw-r--r--contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp748
-rw-r--r--contrib/llvm/lib/Target/X86/X86AsmPrinter.h61
-rw-r--r--contrib/llvm/lib/Target/X86/X86AtomicExpandPass.cpp283
-rw-r--r--contrib/llvm/lib/Target/X86/X86CallingConv.h35
-rw-r--r--contrib/llvm/lib/Target/X86/X86CallingConv.td662
-rw-r--r--contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp1498
-rw-r--r--contrib/llvm/lib/Target/X86/X86FastISel.cpp3304
-rw-r--r--contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp341
-rw-r--r--contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp1773
-rw-r--r--contrib/llvm/lib/Target/X86/X86FrameLowering.cpp1739
-rw-r--r--contrib/llvm/lib/Target/X86/X86FrameLowering.h74
-rw-r--r--contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp2788
-rw-r--r--contrib/llvm/lib/Target/X86/X86ISelLowering.cpp22910
-rw-r--r--contrib/llvm/lib/Target/X86/X86ISelLowering.h1016
-rw-r--r--contrib/llvm/lib/Target/X86/X86Instr3DNow.td103
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrAVX512.td4543
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrArithmetic.td1403
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrBuilder.h184
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrCMovSetCC.td112
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrCompiler.td1776
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrControl.td315
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrExtension.td172
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrFMA.td390
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrFPStack.td700
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrFormats.td876
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td570
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrInfo.cpp5580
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrInfo.h464
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrInfo.td2867
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrMMX.td623
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrSSE.td9061
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrSVM.td62
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td969
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrSystem.td569
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrTSX.td47
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrVMX.td66
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrXOP.td289
-rw-r--r--contrib/llvm/lib/Target/X86/X86JITInfo.cpp588
-rw-r--r--contrib/llvm/lib/Target/X86/X86JITInfo.h79
-rw-r--r--contrib/llvm/lib/Target/X86/X86MCInstLower.cpp926
-rw-r--r--contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.cpp14
-rw-r--r--contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.h145
-rw-r--r--contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp217
-rw-r--r--contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp717
-rw-r--r--contrib/llvm/lib/Target/X86/X86RegisterInfo.h141
-rw-r--r--contrib/llvm/lib/Target/X86/X86RegisterInfo.td481
-rw-r--r--contrib/llvm/lib/Target/X86/X86Relocations.h52
-rw-r--r--contrib/llvm/lib/Target/X86/X86SchedHaswell.td264
-rw-r--r--contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td249
-rw-r--r--contrib/llvm/lib/Target/X86/X86Schedule.td642
-rw-r--r--contrib/llvm/lib/Target/X86/X86ScheduleAtom.td544
-rw-r--r--contrib/llvm/lib/Target/X86/X86ScheduleSLM.td232
-rw-r--r--contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp267
-rw-r--r--contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.h48
-rw-r--r--contrib/llvm/lib/Target/X86/X86Subtarget.cpp364
-rw-r--r--contrib/llvm/lib/Target/X86/X86Subtarget.h478
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetMachine.cpp186
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetMachine.h70
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetObjectFile.cpp171
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetObjectFile.h58
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp1064
-rw-r--r--contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp316
-rw-r--r--contrib/llvm/lib/Target/XCore/Disassembler/XCoreDisassembler.cpp802
-rw-r--r--contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.cpp87
-rw-r--r--contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.h44
-rw-r--r--contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.cpp35
-rw-r--r--contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.h31
-rw-r--r--contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.cpp164
-rw-r--r--contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.h38
-rw-r--r--contrib/llvm/lib/Target/XCore/TargetInfo/XCoreTargetInfo.cpp19
-rw-r--r--contrib/llvm/lib/Target/XCore/XCore.h39
-rw-r--r--contrib/llvm/lib/Target/XCore/XCore.td47
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreAsmPrinter.cpp307
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreCallingConv.td40
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreFrameLowering.cpp582
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreFrameLowering.h62
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreFrameToArgsOffsetElim.cpp62
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreISelDAGToDAG.cpp274
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreISelLowering.cpp1966
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreISelLowering.h218
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreInstrFormats.td277
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreInstrInfo.cpp461
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreInstrInfo.h94
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreInstrInfo.td1319
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreLowerThreadLocal.cpp239
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreMCInstLower.cpp117
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreMCInstLower.h42
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.cpp72
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.h106
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.cpp329
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.h56
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.td59
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.cpp58
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.h40
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreSubtarget.cpp32
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreSubtarget.h62
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetMachine.cpp80
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetMachine.h58
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.cpp179
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.h42
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetStreamer.h27
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetTransformInfo.cpp80
865 files changed, 500102 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64.h b/contrib/llvm/lib/Target/AArch64/AArch64.h
new file mode 100644
index 0000000..1c022aa
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64.h
@@ -0,0 +1,49 @@
+//==-- AArch64.h - Top-level interface for AArch64 --------------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in the LLVM
+// AArch64 back-end.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef TARGET_AArch64_H
+#define TARGET_AArch64_H
+
+#include "Utils/AArch64BaseInfo.h"
+#include "MCTargetDesc/AArch64MCTargetDesc.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+
+class AArch64TargetMachine;
+class FunctionPass;
+class MachineFunctionPass;
+
+FunctionPass *createAArch64DeadRegisterDefinitions();
+FunctionPass *createAArch64ConditionalCompares();
+FunctionPass *createAArch64AdvSIMDScalar();
+FunctionPass *createAArch64BranchRelaxation();
+FunctionPass *createAArch64ISelDag(AArch64TargetMachine &TM,
+ CodeGenOpt::Level OptLevel);
+FunctionPass *createAArch64StorePairSuppressPass();
+FunctionPass *createAArch64ExpandPseudoPass();
+FunctionPass *createAArch64LoadStoreOptimizationPass();
+ModulePass *createAArch64PromoteConstantPass();
+FunctionPass *createAArch64AddressTypePromotionPass();
+/// \brief Creates an ARM-specific Target Transformation Info pass.
+ImmutablePass *
+createAArch64TargetTransformInfoPass(const AArch64TargetMachine *TM);
+
+FunctionPass *createAArch64CleanupLocalDynamicTLSPass();
+
+FunctionPass *createAArch64CollectLOHPass();
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64.td b/contrib/llvm/lib/Target/AArch64/AArch64.td
new file mode 100644
index 0000000..e6a27c3
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64.td
@@ -0,0 +1,135 @@
+//=- AArch64.td - Describe the AArch64 Target Machine --------*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces which we are implementing
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// AArch64 Subtarget features.
+//
+
+def FeatureFPARMv8 : SubtargetFeature<"fp-armv8", "HasFPARMv8", "true",
+ "Enable ARMv8 FP">;
+
+def FeatureNEON : SubtargetFeature<"neon", "HasNEON", "true",
+ "Enable Advanced SIMD instructions", [FeatureFPARMv8]>;
+
+def FeatureCrypto : SubtargetFeature<"crypto", "HasCrypto", "true",
+ "Enable cryptographic instructions">;
+
+def FeatureCRC : SubtargetFeature<"crc", "HasCRC", "true",
+ "Enable ARMv8 CRC-32 checksum instructions">;
+
+/// Cyclone has register move instructions which are "free".
+def FeatureZCRegMove : SubtargetFeature<"zcm", "HasZeroCycleRegMove", "true",
+ "Has zero-cycle register moves">;
+
+/// Cyclone has instructions which zero registers for "free".
+def FeatureZCZeroing : SubtargetFeature<"zcz", "HasZeroCycleZeroing", "true",
+ "Has zero-cycle zeroing instructions">;
+
+//===----------------------------------------------------------------------===//
+// Register File Description
+//===----------------------------------------------------------------------===//
+
+include "AArch64RegisterInfo.td"
+include "AArch64CallingConvention.td"
+
+//===----------------------------------------------------------------------===//
+// Instruction Descriptions
+//===----------------------------------------------------------------------===//
+
+include "AArch64Schedule.td"
+include "AArch64InstrInfo.td"
+
+def AArch64InstrInfo : InstrInfo;
+
+//===----------------------------------------------------------------------===//
+// AArch64 Processors supported.
+//
+include "AArch64SchedA53.td"
+include "AArch64SchedA57.td"
+include "AArch64SchedCyclone.td"
+
+def ProcA53 : SubtargetFeature<"a53", "ARMProcFamily", "CortexA53",
+ "Cortex-A53 ARM processors",
+ [FeatureFPARMv8,
+ FeatureNEON,
+ FeatureCrypto,
+ FeatureCRC]>;
+
+def ProcA57 : SubtargetFeature<"a57", "ARMProcFamily", "CortexA57",
+ "Cortex-A57 ARM processors",
+ [FeatureFPARMv8,
+ FeatureNEON,
+ FeatureCrypto,
+ FeatureCRC]>;
+
+def ProcCyclone : SubtargetFeature<"cyclone", "ARMProcFamily", "Cyclone",
+ "Cyclone",
+ [FeatureFPARMv8,
+ FeatureNEON,
+ FeatureCrypto,
+ FeatureCRC,
+ FeatureZCRegMove, FeatureZCZeroing]>;
+
+def : ProcessorModel<"generic", NoSchedModel, [FeatureFPARMv8,
+ FeatureNEON,
+ FeatureCRC]>;
+
+def : ProcessorModel<"cortex-a53", CortexA53Model, [ProcA53]>;
+def : ProcessorModel<"cortex-a57", CortexA57Model, [ProcA57]>;
+def : ProcessorModel<"cyclone", CycloneModel, [ProcCyclone]>;
+
+//===----------------------------------------------------------------------===//
+// Assembly parser
+//===----------------------------------------------------------------------===//
+
+def GenericAsmParserVariant : AsmParserVariant {
+ int Variant = 0;
+ string Name = "generic";
+}
+
+def AppleAsmParserVariant : AsmParserVariant {
+ int Variant = 1;
+ string Name = "apple-neon";
+}
+
+//===----------------------------------------------------------------------===//
+// Assembly printer
+//===----------------------------------------------------------------------===//
+// AArch64 Uses the MC printer for asm output, so make sure the TableGen
+// AsmWriter bits get associated with the correct class.
+def GenericAsmWriter : AsmWriter {
+ string AsmWriterClassName = "InstPrinter";
+ int Variant = 0;
+ bit isMCAsmWriter = 1;
+}
+
+def AppleAsmWriter : AsmWriter {
+ let AsmWriterClassName = "AppleInstPrinter";
+ int Variant = 1;
+ int isMCAsmWriter = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// Target Declaration
+//===----------------------------------------------------------------------===//
+
+def AArch64 : Target {
+ let InstructionSet = AArch64InstrInfo;
+ let AssemblyParserVariants = [GenericAsmParserVariant, AppleAsmParserVariant];
+ let AssemblyWriters = [GenericAsmWriter, AppleAsmWriter];
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64AddressTypePromotion.cpp b/contrib/llvm/lib/Target/AArch64/AArch64AddressTypePromotion.cpp
new file mode 100644
index 0000000..ab2c4b7
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64AddressTypePromotion.cpp
@@ -0,0 +1,491 @@
+//===-- AArch64AddressTypePromotion.cpp --- Promote type for addr accesses -==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass tries to promote the computations use to obtained a sign extended
+// value used into memory accesses.
+// E.g.
+// a = add nsw i32 b, 3
+// d = sext i32 a to i64
+// e = getelementptr ..., i64 d
+//
+// =>
+// f = sext i32 b to i64
+// a = add nsw i64 f, 3
+// e = getelementptr ..., i64 a
+//
+// This is legal to do so if the computations are markers with either nsw or nuw
+// markers.
+// Moreover, the current heuristic is simple: it does not create new sext
+// operations, i.e., it gives up when a sext would have forked (e.g., if
+// a = add i32 b, c, two sexts are required to promote the computation).
+//
+// FIXME: This pass may be useful for other targets too.
+// ===---------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-type-promotion"
+
+static cl::opt<bool>
+EnableAddressTypePromotion("aarch64-type-promotion", cl::Hidden,
+ cl::desc("Enable the type promotion pass"),
+ cl::init(true));
+static cl::opt<bool>
+EnableMerge("aarch64-type-promotion-merge", cl::Hidden,
+ cl::desc("Enable merging of redundant sexts when one is dominating"
+ " the other."),
+ cl::init(true));
+
+//===----------------------------------------------------------------------===//
+// AArch64AddressTypePromotion
+//===----------------------------------------------------------------------===//
+
+namespace llvm {
+void initializeAArch64AddressTypePromotionPass(PassRegistry &);
+}
+
+namespace {
+class AArch64AddressTypePromotion : public FunctionPass {
+
+public:
+ static char ID;
+ AArch64AddressTypePromotion()
+ : FunctionPass(ID), Func(nullptr), ConsideredSExtType(nullptr) {
+ initializeAArch64AddressTypePromotionPass(*PassRegistry::getPassRegistry());
+ }
+
+ const char *getPassName() const override {
+ return "AArch64 Address Type Promotion";
+ }
+
+ /// Iterate over the functions and promote the computation of interesting
+ // sext instructions.
+ bool runOnFunction(Function &F) override;
+
+private:
+ /// The current function.
+ Function *Func;
+ /// Filter out all sexts that does not have this type.
+ /// Currently initialized with Int64Ty.
+ Type *ConsideredSExtType;
+
+ // This transformation requires dominator info.
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ FunctionPass::getAnalysisUsage(AU);
+ }
+
+ typedef SmallPtrSet<Instruction *, 32> SetOfInstructions;
+ typedef SmallVector<Instruction *, 16> Instructions;
+ typedef DenseMap<Value *, Instructions> ValueToInsts;
+
+ /// Check if it is profitable to move a sext through this instruction.
+ /// Currently, we consider it is profitable if:
+ /// - Inst is used only once (no need to insert truncate).
+ /// - Inst has only one operand that will require a sext operation (we do
+ /// do not create new sext operation).
+ bool shouldGetThrough(const Instruction *Inst);
+
+ /// Check if it is possible and legal to move a sext through this
+ /// instruction.
+ /// Current heuristic considers that we can get through:
+ /// - Arithmetic operation marked with the nsw or nuw flag.
+ /// - Other sext operation.
+ /// - Truncate operation if it was just dropping sign extended bits.
+ bool canGetThrough(const Instruction *Inst);
+
+ /// Move sext operations through safe to sext instructions.
+ bool propagateSignExtension(Instructions &SExtInsts);
+
+ /// Is this sext should be considered for code motion.
+ /// We look for sext with ConsideredSExtType and uses in at least one
+ // GetElementPtrInst.
+ bool shouldConsiderSExt(const Instruction *SExt) const;
+
+ /// Collect all interesting sext operations, i.e., the ones with the right
+ /// type and used in memory accesses.
+ /// More precisely, a sext instruction is considered as interesting if it
+ /// is used in a "complex" getelementptr or it exits at least another
+ /// sext instruction that sign extended the same initial value.
+ /// A getelementptr is considered as "complex" if it has more than 2
+ // operands.
+ void analyzeSExtension(Instructions &SExtInsts);
+
+ /// Merge redundant sign extension operations in common dominator.
+ void mergeSExts(ValueToInsts &ValToSExtendedUses,
+ SetOfInstructions &ToRemove);
+};
+} // end anonymous namespace.
+
+char AArch64AddressTypePromotion::ID = 0;
+
+INITIALIZE_PASS_BEGIN(AArch64AddressTypePromotion, "aarch64-type-promotion",
+ "AArch64 Type Promotion Pass", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(AArch64AddressTypePromotion, "aarch64-type-promotion",
+ "AArch64 Type Promotion Pass", false, false)
+
+FunctionPass *llvm::createAArch64AddressTypePromotionPass() {
+ return new AArch64AddressTypePromotion();
+}
+
+bool AArch64AddressTypePromotion::canGetThrough(const Instruction *Inst) {
+ if (isa<SExtInst>(Inst))
+ return true;
+
+ const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
+ if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
+ (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap()))
+ return true;
+
+ // sext(trunc(sext)) --> sext
+ if (isa<TruncInst>(Inst) && isa<SExtInst>(Inst->getOperand(0))) {
+ const Instruction *Opnd = cast<Instruction>(Inst->getOperand(0));
+ // Check that the truncate just drop sign extended bits.
+ if (Inst->getType()->getIntegerBitWidth() >=
+ Opnd->getOperand(0)->getType()->getIntegerBitWidth() &&
+ Inst->getOperand(0)->getType()->getIntegerBitWidth() <=
+ ConsideredSExtType->getIntegerBitWidth())
+ return true;
+ }
+
+ return false;
+}
+
+bool AArch64AddressTypePromotion::shouldGetThrough(const Instruction *Inst) {
+ // If the type of the sext is the same as the considered one, this sext
+ // will become useless.
+ // Otherwise, we will have to do something to preserve the original value,
+ // unless it is used once.
+ if (isa<SExtInst>(Inst) &&
+ (Inst->getType() == ConsideredSExtType || Inst->hasOneUse()))
+ return true;
+
+ // If the Inst is used more that once, we may need to insert truncate
+ // operations and we don't do that at the moment.
+ if (!Inst->hasOneUse())
+ return false;
+
+ // This truncate is used only once, thus if we can get thourgh, it will become
+ // useless.
+ if (isa<TruncInst>(Inst))
+ return true;
+
+ // If both operands are not constant, a new sext will be created here.
+ // Current heuristic is: each step should be profitable.
+ // Therefore we don't allow to increase the number of sext even if it may
+ // be profitable later on.
+ if (isa<BinaryOperator>(Inst) && isa<ConstantInt>(Inst->getOperand(1)))
+ return true;
+
+ return false;
+}
+
+static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) {
+ if (isa<SelectInst>(Inst) && OpIdx == 0)
+ return false;
+ return true;
+}
+
+bool
+AArch64AddressTypePromotion::shouldConsiderSExt(const Instruction *SExt) const {
+ if (SExt->getType() != ConsideredSExtType)
+ return false;
+
+ for (const User *U : SExt->users()) {
+ if (isa<GetElementPtrInst>(U))
+ return true;
+ }
+
+ return false;
+}
+
+// Input:
+// - SExtInsts contains all the sext instructions that are use direclty in
+// GetElementPtrInst, i.e., access to memory.
+// Algorithm:
+// - For each sext operation in SExtInsts:
+// Let var be the operand of sext.
+// while it is profitable (see shouldGetThrough), legal, and safe
+// (see canGetThrough) to move sext through var's definition:
+// * promote the type of var's definition.
+// * fold var into sext uses.
+// * move sext above var's definition.
+// * update sext operand to use the operand of var that should be sign
+// extended (by construction there is only one).
+//
+// E.g.,
+// a = ... i32 c, 3
+// b = sext i32 a to i64 <- is it legal/safe/profitable to get through 'a'
+// ...
+// = b
+// => Yes, update the code
+// b = sext i32 c to i64
+// a = ... i64 b, 3
+// ...
+// = a
+// Iterate on 'c'.
+bool
+AArch64AddressTypePromotion::propagateSignExtension(Instructions &SExtInsts) {
+ DEBUG(dbgs() << "*** Propagate Sign Extension ***\n");
+
+ bool LocalChange = false;
+ SetOfInstructions ToRemove;
+ ValueToInsts ValToSExtendedUses;
+ while (!SExtInsts.empty()) {
+ // Get through simple chain.
+ Instruction *SExt = SExtInsts.pop_back_val();
+
+ DEBUG(dbgs() << "Consider:\n" << *SExt << '\n');
+
+ // If this SExt has already been merged continue.
+ if (SExt->use_empty() && ToRemove.count(SExt)) {
+ DEBUG(dbgs() << "No uses => marked as delete\n");
+ continue;
+ }
+
+ // Now try to get through the chain of definitions.
+ while (auto *Inst = dyn_cast<Instruction>(SExt->getOperand(0))) {
+ DEBUG(dbgs() << "Try to get through:\n" << *Inst << '\n');
+ if (!canGetThrough(Inst) || !shouldGetThrough(Inst)) {
+ // We cannot get through something that is not an Instruction
+ // or not safe to SExt.
+ DEBUG(dbgs() << "Cannot get through\n");
+ break;
+ }
+
+ LocalChange = true;
+ // If this is a sign extend, it becomes useless.
+ if (isa<SExtInst>(Inst) || isa<TruncInst>(Inst)) {
+ DEBUG(dbgs() << "SExt or trunc, mark it as to remove\n");
+ // We cannot use replaceAllUsesWith here because we may trigger some
+ // assertion on the type as all involved sext operation may have not
+ // been moved yet.
+ while (!Inst->use_empty()) {
+ Use &U = *Inst->use_begin();
+ Instruction *User = dyn_cast<Instruction>(U.getUser());
+ assert(User && "User of sext is not an Instruction!");
+ User->setOperand(U.getOperandNo(), SExt);
+ }
+ ToRemove.insert(Inst);
+ SExt->setOperand(0, Inst->getOperand(0));
+ SExt->moveBefore(Inst);
+ continue;
+ }
+
+ // Get through the Instruction:
+ // 1. Update its type.
+ // 2. Replace the uses of SExt by Inst.
+ // 3. Sign extend each operand that needs to be sign extended.
+
+ // Step #1.
+ Inst->mutateType(SExt->getType());
+ // Step #2.
+ SExt->replaceAllUsesWith(Inst);
+ // Step #3.
+ Instruction *SExtForOpnd = SExt;
+
+ DEBUG(dbgs() << "Propagate SExt to operands\n");
+ for (int OpIdx = 0, EndOpIdx = Inst->getNumOperands(); OpIdx != EndOpIdx;
+ ++OpIdx) {
+ DEBUG(dbgs() << "Operand:\n" << *(Inst->getOperand(OpIdx)) << '\n');
+ if (Inst->getOperand(OpIdx)->getType() == SExt->getType() ||
+ !shouldSExtOperand(Inst, OpIdx)) {
+ DEBUG(dbgs() << "No need to propagate\n");
+ continue;
+ }
+ // Check if we can statically sign extend the operand.
+ Value *Opnd = Inst->getOperand(OpIdx);
+ if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
+ DEBUG(dbgs() << "Statically sign extend\n");
+ Inst->setOperand(OpIdx, ConstantInt::getSigned(SExt->getType(),
+ Cst->getSExtValue()));
+ continue;
+ }
+ // UndefValue are typed, so we have to statically sign extend them.
+ if (isa<UndefValue>(Opnd)) {
+ DEBUG(dbgs() << "Statically sign extend\n");
+ Inst->setOperand(OpIdx, UndefValue::get(SExt->getType()));
+ continue;
+ }
+
+ // Otherwise we have to explicity sign extend it.
+ assert(SExtForOpnd &&
+ "Only one operand should have been sign extended");
+
+ SExtForOpnd->setOperand(0, Opnd);
+
+ DEBUG(dbgs() << "Move before:\n" << *Inst << "\nSign extend\n");
+ // Move the sign extension before the insertion point.
+ SExtForOpnd->moveBefore(Inst);
+ Inst->setOperand(OpIdx, SExtForOpnd);
+ // If more sext are required, new instructions will have to be created.
+ SExtForOpnd = nullptr;
+ }
+ if (SExtForOpnd == SExt) {
+ DEBUG(dbgs() << "Sign extension is useless now\n");
+ ToRemove.insert(SExt);
+ break;
+ }
+ }
+
+ // If the use is already of the right type, connect its uses to its argument
+ // and delete it.
+ // This can happen for an Instruction which all uses are sign extended.
+ if (!ToRemove.count(SExt) &&
+ SExt->getType() == SExt->getOperand(0)->getType()) {
+ DEBUG(dbgs() << "Sign extension is useless, attach its use to "
+ "its argument\n");
+ SExt->replaceAllUsesWith(SExt->getOperand(0));
+ ToRemove.insert(SExt);
+ } else
+ ValToSExtendedUses[SExt->getOperand(0)].push_back(SExt);
+ }
+
+ if (EnableMerge)
+ mergeSExts(ValToSExtendedUses, ToRemove);
+
+ // Remove all instructions marked as ToRemove.
+ for (Instruction *I: ToRemove)
+ I->eraseFromParent();
+ return LocalChange;
+}
+
+void AArch64AddressTypePromotion::mergeSExts(ValueToInsts &ValToSExtendedUses,
+ SetOfInstructions &ToRemove) {
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ for (auto &Entry : ValToSExtendedUses) {
+ Instructions &Insts = Entry.second;
+ Instructions CurPts;
+ for (Instruction *Inst : Insts) {
+ if (ToRemove.count(Inst))
+ continue;
+ bool inserted = false;
+ for (auto &Pt : CurPts) {
+ if (DT.dominates(Inst, Pt)) {
+ DEBUG(dbgs() << "Replace all uses of:\n" << *Pt << "\nwith:\n"
+ << *Inst << '\n');
+ Pt->replaceAllUsesWith(Inst);
+ ToRemove.insert(Pt);
+ Pt = Inst;
+ inserted = true;
+ break;
+ }
+ if (!DT.dominates(Pt, Inst))
+ // Give up if we need to merge in a common dominator as the
+ // expermients show it is not profitable.
+ continue;
+
+ DEBUG(dbgs() << "Replace all uses of:\n" << *Inst << "\nwith:\n"
+ << *Pt << '\n');
+ Inst->replaceAllUsesWith(Pt);
+ ToRemove.insert(Inst);
+ inserted = true;
+ break;
+ }
+ if (!inserted)
+ CurPts.push_back(Inst);
+ }
+ }
+}
+
+void AArch64AddressTypePromotion::analyzeSExtension(Instructions &SExtInsts) {
+ DEBUG(dbgs() << "*** Analyze Sign Extensions ***\n");
+
+ DenseMap<Value *, Instruction *> SeenChains;
+
+ for (auto &BB : *Func) {
+ for (auto &II : BB) {
+ Instruction *SExt = &II;
+
+ // Collect all sext operation per type.
+ if (!isa<SExtInst>(SExt) || !shouldConsiderSExt(SExt))
+ continue;
+
+ DEBUG(dbgs() << "Found:\n" << (*SExt) << '\n');
+
+ // Cases where we actually perform the optimization:
+ // 1. SExt is used in a getelementptr with more than 2 operand =>
+ // likely we can merge some computation if they are done on 64 bits.
+ // 2. The beginning of the SExt chain is SExt several time. =>
+ // code sharing is possible.
+
+ bool insert = false;
+ // #1.
+ for (const User *U : SExt->users()) {
+ const Instruction *Inst = dyn_cast<GetElementPtrInst>(U);
+ if (Inst && Inst->getNumOperands() > 2) {
+ DEBUG(dbgs() << "Interesting use in GetElementPtrInst\n" << *Inst
+ << '\n');
+ insert = true;
+ break;
+ }
+ }
+
+ // #2.
+ // Check the head of the chain.
+ Instruction *Inst = SExt;
+ Value *Last;
+ do {
+ int OpdIdx = 0;
+ const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
+ if (BinOp && isa<ConstantInt>(BinOp->getOperand(0)))
+ OpdIdx = 1;
+ Last = Inst->getOperand(OpdIdx);
+ Inst = dyn_cast<Instruction>(Last);
+ } while (Inst && canGetThrough(Inst) && shouldGetThrough(Inst));
+
+ DEBUG(dbgs() << "Head of the chain:\n" << *Last << '\n');
+ DenseMap<Value *, Instruction *>::iterator AlreadySeen =
+ SeenChains.find(Last);
+ if (insert || AlreadySeen != SeenChains.end()) {
+ DEBUG(dbgs() << "Insert\n");
+ SExtInsts.push_back(SExt);
+ if (AlreadySeen != SeenChains.end() && AlreadySeen->second != nullptr) {
+ DEBUG(dbgs() << "Insert chain member\n");
+ SExtInsts.push_back(AlreadySeen->second);
+ SeenChains[Last] = nullptr;
+ }
+ } else {
+ DEBUG(dbgs() << "Record its chain membership\n");
+ SeenChains[Last] = SExt;
+ }
+ }
+ }
+}
+
+bool AArch64AddressTypePromotion::runOnFunction(Function &F) {
+ if (!EnableAddressTypePromotion || F.isDeclaration())
+ return false;
+ Func = &F;
+ ConsideredSExtType = Type::getInt64Ty(Func->getContext());
+
+ DEBUG(dbgs() << "*** " << getPassName() << ": " << Func->getName() << '\n');
+
+ Instructions SExtInsts;
+ analyzeSExtension(SExtInsts);
+ return propagateSignExtension(SExtInsts);
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp b/contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp
new file mode 100644
index 0000000..734fb21
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp
@@ -0,0 +1,387 @@
+//===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// When profitable, replace GPR targeting i64 instructions with their
+// AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
+// as minimizing the number of cross-class register copies.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// TODO: Graph based predicate heuristics.
+// Walking the instruction list linearly will get many, perhaps most, of
+// the cases, but to do a truly thorough job of this, we need a more
+// wholistic approach.
+//
+// This optimization is very similar in spirit to the register allocator's
+// spill placement, only here we're determining where to place cross-class
+// register copies rather than spills. As such, a similar approach is
+// called for.
+//
+// We want to build up a set of graphs of all instructions which are candidates
+// for transformation along with instructions which generate their inputs and
+// consume their outputs. For each edge in the graph, we assign a weight
+// based on whether there is a copy required there (weight zero if not) and
+// the block frequency of the block containing the defining or using
+// instruction, whichever is less. Our optimization is then a graph problem
+// to minimize the total weight of all the graphs, then transform instructions
+// and add or remove copy instructions as called for to implement the
+// solution.
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64InstrInfo.h"
+#include "AArch64RegisterInfo.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-simd-scalar"
+
+// Allow forcing all i64 operations with equivalent SIMD instructions to use
+// them. For stress-testing the transformation function.
+static cl::opt<bool>
+TransformAll("aarch64-simd-scalar-force-all",
+ cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
+ cl::init(false), cl::Hidden);
+
+STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
+STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
+STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
+
+namespace {
+class AArch64AdvSIMDScalar : public MachineFunctionPass {
+ MachineRegisterInfo *MRI;
+ const AArch64InstrInfo *TII;
+
+private:
+ // isProfitableToTransform - Predicate function to determine whether an
+ // instruction should be transformed to its equivalent AdvSIMD scalar
+ // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
+ bool isProfitableToTransform(const MachineInstr *MI) const;
+
+ // transformInstruction - Perform the transformation of an instruction
+ // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
+ // to be the correct register class, minimizing cross-class copies.
+ void transformInstruction(MachineInstr *MI);
+
+ // processMachineBasicBlock - Main optimzation loop.
+ bool processMachineBasicBlock(MachineBasicBlock *MBB);
+
+public:
+ static char ID; // Pass identification, replacement for typeid.
+ explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+ const char *getPassName() const override {
+ return "AdvSIMD Scalar Operation Optimization";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+char AArch64AdvSIMDScalar::ID = 0;
+} // end anonymous namespace
+
+static bool isGPR64(unsigned Reg, unsigned SubReg,
+ const MachineRegisterInfo *MRI) {
+ if (SubReg)
+ return false;
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
+ return AArch64::GPR64RegClass.contains(Reg);
+}
+
+static bool isFPR64(unsigned Reg, unsigned SubReg,
+ const MachineRegisterInfo *MRI) {
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
+ SubReg == 0) ||
+ (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
+ SubReg == AArch64::dsub);
+ // Physical register references just check the register class directly.
+ return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
+ (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
+}
+
+// getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
+// copy instruction. Return zero_reg if the instruction is not a copy.
+static unsigned getSrcFromCopy(const MachineInstr *MI,
+ const MachineRegisterInfo *MRI,
+ unsigned &SubReg) {
+ SubReg = 0;
+ // The "FMOV Xd, Dn" instruction is the typical form.
+ if (MI->getOpcode() == AArch64::FMOVDXr ||
+ MI->getOpcode() == AArch64::FMOVXDr)
+ return MI->getOperand(1).getReg();
+ // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
+ // these at this stage, but it's easy to check for.
+ if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
+ SubReg = AArch64::dsub;
+ return MI->getOperand(1).getReg();
+ }
+ // Or just a plain COPY instruction. This can be directly to/from FPR64,
+ // or it can be a dsub subreg reference to an FPR128.
+ if (MI->getOpcode() == AArch64::COPY) {
+ if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
+ MRI) &&
+ isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
+ return MI->getOperand(1).getReg();
+ if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
+ MRI) &&
+ isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
+ MRI)) {
+ SubReg = MI->getOperand(1).getSubReg();
+ return MI->getOperand(1).getReg();
+ }
+ }
+
+ // Otherwise, this is some other kind of instruction.
+ return 0;
+}
+
+// getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
+// that we're considering transforming to, return that AdvSIMD opcode. For all
+// others, return the original opcode.
+static int getTransformOpcode(unsigned Opc) {
+ switch (Opc) {
+ default:
+ break;
+ // FIXME: Lots more possibilities.
+ case AArch64::ADDXrr:
+ return AArch64::ADDv1i64;
+ case AArch64::SUBXrr:
+ return AArch64::SUBv1i64;
+ }
+ // No AdvSIMD equivalent, so just return the original opcode.
+ return Opc;
+}
+
+static bool isTransformable(const MachineInstr *MI) {
+ int Opc = MI->getOpcode();
+ return Opc != getTransformOpcode(Opc);
+}
+
+// isProfitableToTransform - Predicate function to determine whether an
+// instruction should be transformed to its equivalent AdvSIMD scalar
+// instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
+bool
+AArch64AdvSIMDScalar::isProfitableToTransform(const MachineInstr *MI) const {
+ // If this instruction isn't eligible to be transformed (no SIMD equivalent),
+ // early exit since that's the common case.
+ if (!isTransformable(MI))
+ return false;
+
+ // Count the number of copies we'll need to add and approximate the number
+ // of copies that a transform will enable us to remove.
+ unsigned NumNewCopies = 3;
+ unsigned NumRemovableCopies = 0;
+
+ unsigned OrigSrc0 = MI->getOperand(1).getReg();
+ unsigned OrigSrc1 = MI->getOperand(2).getReg();
+ unsigned Src0 = 0, SubReg0;
+ unsigned Src1 = 0, SubReg1;
+ if (!MRI->def_empty(OrigSrc0)) {
+ MachineRegisterInfo::def_instr_iterator Def =
+ MRI->def_instr_begin(OrigSrc0);
+ assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
+ Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
+ // If the source was from a copy, we don't need to insert a new copy.
+ if (Src0)
+ --NumNewCopies;
+ // If there are no other users of the original source, we can delete
+ // that instruction.
+ if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0))
+ ++NumRemovableCopies;
+ }
+ if (!MRI->def_empty(OrigSrc1)) {
+ MachineRegisterInfo::def_instr_iterator Def =
+ MRI->def_instr_begin(OrigSrc1);
+ assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
+ Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
+ if (Src1)
+ --NumNewCopies;
+ // If there are no other users of the original source, we can delete
+ // that instruction.
+ if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1))
+ ++NumRemovableCopies;
+ }
+
+ // If any of the uses of the original instructions is a cross class copy,
+ // that's a copy that will be removable if we transform. Likewise, if
+ // any of the uses is a transformable instruction, it's likely the tranforms
+ // will chain, enabling us to save a copy there, too. This is an aggressive
+ // heuristic that approximates the graph based cost analysis described above.
+ unsigned Dst = MI->getOperand(0).getReg();
+ bool AllUsesAreCopies = true;
+ for (MachineRegisterInfo::use_instr_nodbg_iterator
+ Use = MRI->use_instr_nodbg_begin(Dst),
+ E = MRI->use_instr_nodbg_end();
+ Use != E; ++Use) {
+ unsigned SubReg;
+ if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(&*Use))
+ ++NumRemovableCopies;
+ // If the use is an INSERT_SUBREG, that's still something that can
+ // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
+ // preferable to have it use the FPR64 in most cases, as if the source
+ // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
+ // Ditto for a lane insert.
+ else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
+ Use->getOpcode() == AArch64::INSvi64gpr)
+ ;
+ else
+ AllUsesAreCopies = false;
+ }
+ // If all of the uses of the original destination register are copies to
+ // FPR64, then we won't end up having a new copy back to GPR64 either.
+ if (AllUsesAreCopies)
+ --NumNewCopies;
+
+ // If a transform will not increase the number of cross-class copies required,
+ // return true.
+ if (NumNewCopies <= NumRemovableCopies)
+ return true;
+
+ // Finally, even if we otherwise wouldn't transform, check if we're forcing
+ // transformation of everything.
+ return TransformAll;
+}
+
+static MachineInstr *insertCopy(const AArch64InstrInfo *TII, MachineInstr *MI,
+ unsigned Dst, unsigned Src, bool IsKill) {
+ MachineInstrBuilder MIB =
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AArch64::COPY),
+ Dst)
+ .addReg(Src, getKillRegState(IsKill));
+ DEBUG(dbgs() << " adding copy: " << *MIB);
+ ++NumCopiesInserted;
+ return MIB;
+}
+
+// transformInstruction - Perform the transformation of an instruction
+// to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
+// to be the correct register class, minimizing cross-class copies.
+void AArch64AdvSIMDScalar::transformInstruction(MachineInstr *MI) {
+ DEBUG(dbgs() << "Scalar transform: " << *MI);
+
+ MachineBasicBlock *MBB = MI->getParent();
+ int OldOpc = MI->getOpcode();
+ int NewOpc = getTransformOpcode(OldOpc);
+ assert(OldOpc != NewOpc && "transform an instruction to itself?!");
+
+ // Check if we need a copy for the source registers.
+ unsigned OrigSrc0 = MI->getOperand(1).getReg();
+ unsigned OrigSrc1 = MI->getOperand(2).getReg();
+ unsigned Src0 = 0, SubReg0;
+ unsigned Src1 = 0, SubReg1;
+ if (!MRI->def_empty(OrigSrc0)) {
+ MachineRegisterInfo::def_instr_iterator Def =
+ MRI->def_instr_begin(OrigSrc0);
+ assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
+ Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
+ // If there are no other users of the original source, we can delete
+ // that instruction.
+ if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0)) {
+ assert(Src0 && "Can't delete copy w/o a valid original source!");
+ Def->eraseFromParent();
+ ++NumCopiesDeleted;
+ }
+ }
+ if (!MRI->def_empty(OrigSrc1)) {
+ MachineRegisterInfo::def_instr_iterator Def =
+ MRI->def_instr_begin(OrigSrc1);
+ assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
+ Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
+ // If there are no other users of the original source, we can delete
+ // that instruction.
+ if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1)) {
+ assert(Src1 && "Can't delete copy w/o a valid original source!");
+ Def->eraseFromParent();
+ ++NumCopiesDeleted;
+ }
+ }
+ // If we weren't able to reference the original source directly, create a
+ // copy.
+ if (!Src0) {
+ SubReg0 = 0;
+ Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
+ insertCopy(TII, MI, Src0, OrigSrc0, true);
+ }
+ if (!Src1) {
+ SubReg1 = 0;
+ Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
+ insertCopy(TII, MI, Src1, OrigSrc1, true);
+ }
+
+ // Create a vreg for the destination.
+ // FIXME: No need to do this if the ultimate user expects an FPR64.
+ // Check for that and avoid the copy if possible.
+ unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
+
+ // For now, all of the new instructions have the same simple three-register
+ // form, so no need to special case based on what instruction we're
+ // building.
+ BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(NewOpc), Dst)
+ .addReg(Src0, getKillRegState(true), SubReg0)
+ .addReg(Src1, getKillRegState(true), SubReg1);
+
+ // Now copy the result back out to a GPR.
+ // FIXME: Try to avoid this if all uses could actually just use the FPR64
+ // directly.
+ insertCopy(TII, MI, MI->getOperand(0).getReg(), Dst, true);
+
+ // Erase the old instruction.
+ MI->eraseFromParent();
+
+ ++NumScalarInsnsUsed;
+}
+
+// processMachineBasicBlock - Main optimzation loop.
+bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
+ bool Changed = false;
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
+ MachineInstr *MI = I;
+ ++I;
+ if (isProfitableToTransform(MI)) {
+ transformInstruction(MI);
+ Changed = true;
+ }
+ }
+ return Changed;
+}
+
+// runOnMachineFunction - Pass entry point from PassManager.
+bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
+ bool Changed = false;
+ DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
+
+ const TargetMachine &TM = mf.getTarget();
+ MRI = &mf.getRegInfo();
+ TII = static_cast<const AArch64InstrInfo *>(TM.getInstrInfo());
+
+ // Just check things on a one-block-at-a-time basis.
+ for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
+ if (processMachineBasicBlock(I))
+ Changed = true;
+ return Changed;
+}
+
+// createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
+// to add the pass to the PassManager.
+FunctionPass *llvm::createAArch64AdvSIMDScalar() {
+ return new AArch64AdvSIMDScalar();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64AsmPrinter.cpp b/contrib/llvm/lib/Target/AArch64/AArch64AsmPrinter.cpp
new file mode 100644
index 0000000..cd94e24
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64AsmPrinter.cpp
@@ -0,0 +1,524 @@
+//===-- AArch64AsmPrinter.cpp - AArch64 LLVM assembly writer --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to the AArch64 assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64MachineFunctionInfo.h"
+#include "AArch64MCInstLower.h"
+#include "AArch64RegisterInfo.h"
+#include "AArch64Subtarget.h"
+#include "InstPrinter/AArch64InstPrinter.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstBuilder.h"
+#include "llvm/MC/MCLinkerOptimizationHint.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+namespace {
+
+class AArch64AsmPrinter : public AsmPrinter {
+ /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
+ /// make the right decision when printing asm code for different targets.
+ const AArch64Subtarget *Subtarget;
+
+ AArch64MCInstLower MCInstLowering;
+ StackMaps SM;
+
+public:
+ AArch64AsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer),
+ Subtarget(&TM.getSubtarget<AArch64Subtarget>()),
+ MCInstLowering(OutContext, *Mang, *this), SM(*this), AArch64FI(nullptr),
+ LOHLabelCounter(0) {}
+
+ const char *getPassName() const override {
+ return "AArch64 Assembly Printer";
+ }
+
+ /// \brief Wrapper for MCInstLowering.lowerOperand() for the
+ /// tblgen'erated pseudo lowering.
+ bool lowerOperand(const MachineOperand &MO, MCOperand &MCOp) const {
+ return MCInstLowering.lowerOperand(MO, MCOp);
+ }
+
+ void LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM,
+ const MachineInstr &MI);
+ void LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM,
+ const MachineInstr &MI);
+ /// \brief tblgen'erated driver function for lowering simple MI->MC
+ /// pseudo instructions.
+ bool emitPseudoExpansionLowering(MCStreamer &OutStreamer,
+ const MachineInstr *MI);
+
+ void EmitInstruction(const MachineInstr *MI) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AsmPrinter::getAnalysisUsage(AU);
+ AU.setPreservesAll();
+ }
+
+ bool runOnMachineFunction(MachineFunction &F) override {
+ AArch64FI = F.getInfo<AArch64FunctionInfo>();
+ return AsmPrinter::runOnMachineFunction(F);
+ }
+
+private:
+ MachineLocation getDebugValueLocation(const MachineInstr *MI) const;
+ void printOperand(const MachineInstr *MI, unsigned OpNum, raw_ostream &O);
+ bool printAsmMRegister(const MachineOperand &MO, char Mode, raw_ostream &O);
+ bool printAsmRegInClass(const MachineOperand &MO,
+ const TargetRegisterClass *RC, bool isVector,
+ raw_ostream &O);
+
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+
+ void PrintDebugValueComment(const MachineInstr *MI, raw_ostream &OS);
+
+ void EmitFunctionBodyEnd() override;
+
+ MCSymbol *GetCPISymbol(unsigned CPID) const override;
+ void EmitEndOfAsmFile(Module &M) override;
+ AArch64FunctionInfo *AArch64FI;
+
+ /// \brief Emit the LOHs contained in AArch64FI.
+ void EmitLOHs();
+
+ typedef std::map<const MachineInstr *, MCSymbol *> MInstToMCSymbol;
+ MInstToMCSymbol LOHInstToLabel;
+ unsigned LOHLabelCounter;
+};
+
+} // end of anonymous namespace
+
+//===----------------------------------------------------------------------===//
+
+void AArch64AsmPrinter::EmitEndOfAsmFile(Module &M) {
+ if (Subtarget->isTargetMachO()) {
+ // Funny Darwin hack: This flag tells the linker that no global symbols
+ // contain code that falls through to other global symbols (e.g. the obvious
+ // implementation of multiple entry points). If this doesn't occur, the
+ // linker can safely perform dead code stripping. Since LLVM never
+ // generates code that does this, it is always safe to set.
+ OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
+ SM.serializeToStackMapSection();
+ }
+
+ // Emit a .data.rel section containing any stubs that were created.
+ if (Subtarget->isTargetELF()) {
+ const TargetLoweringObjectFileELF &TLOFELF =
+ static_cast<const TargetLoweringObjectFileELF &>(getObjFileLowering());
+
+ MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
+
+ // Output stubs for external and common global variables.
+ MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
+ if (!Stubs.empty()) {
+ OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
+ const DataLayout *TD = TM.getDataLayout();
+
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ OutStreamer.EmitLabel(Stubs[i].first);
+ OutStreamer.EmitSymbolValue(Stubs[i].second.getPointer(),
+ TD->getPointerSize(0));
+ }
+ Stubs.clear();
+ }
+ }
+
+}
+
+MachineLocation
+AArch64AsmPrinter::getDebugValueLocation(const MachineInstr *MI) const {
+ MachineLocation Location;
+ assert(MI->getNumOperands() == 4 && "Invalid no. of machine operands!");
+ // Frame address. Currently handles register +- offset only.
+ if (MI->getOperand(0).isReg() && MI->getOperand(1).isImm())
+ Location.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
+ else {
+ DEBUG(dbgs() << "DBG_VALUE instruction ignored! " << *MI << "\n");
+ }
+ return Location;
+}
+
+void AArch64AsmPrinter::EmitLOHs() {
+ SmallVector<MCSymbol *, 3> MCArgs;
+
+ for (const auto &D : AArch64FI->getLOHContainer()) {
+ for (const MachineInstr *MI : D.getArgs()) {
+ MInstToMCSymbol::iterator LabelIt = LOHInstToLabel.find(MI);
+ assert(LabelIt != LOHInstToLabel.end() &&
+ "Label hasn't been inserted for LOH related instruction");
+ MCArgs.push_back(LabelIt->second);
+ }
+ OutStreamer.EmitLOHDirective(D.getKind(), MCArgs);
+ MCArgs.clear();
+ }
+}
+
+void AArch64AsmPrinter::EmitFunctionBodyEnd() {
+ if (!AArch64FI->getLOHRelated().empty())
+ EmitLOHs();
+}
+
+/// GetCPISymbol - Return the symbol for the specified constant pool entry.
+MCSymbol *AArch64AsmPrinter::GetCPISymbol(unsigned CPID) const {
+ // Darwin uses a linker-private symbol name for constant-pools (to
+ // avoid addends on the relocation?), ELF has no such concept and
+ // uses a normal private symbol.
+ if (getDataLayout().getLinkerPrivateGlobalPrefix()[0])
+ return OutContext.GetOrCreateSymbol(
+ Twine(getDataLayout().getLinkerPrivateGlobalPrefix()) + "CPI" +
+ Twine(getFunctionNumber()) + "_" + Twine(CPID));
+
+ return OutContext.GetOrCreateSymbol(
+ Twine(getDataLayout().getPrivateGlobalPrefix()) + "CPI" +
+ Twine(getFunctionNumber()) + "_" + Twine(CPID));
+}
+
+void AArch64AsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ switch (MO.getType()) {
+ default:
+ llvm_unreachable("<unknown operand type>");
+ case MachineOperand::MO_Register: {
+ unsigned Reg = MO.getReg();
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg));
+ assert(!MO.getSubReg() && "Subregs should be eliminated!");
+ O << AArch64InstPrinter::getRegisterName(Reg);
+ break;
+ }
+ case MachineOperand::MO_Immediate: {
+ int64_t Imm = MO.getImm();
+ O << '#' << Imm;
+ break;
+ }
+ }
+}
+
+bool AArch64AsmPrinter::printAsmMRegister(const MachineOperand &MO, char Mode,
+ raw_ostream &O) {
+ unsigned Reg = MO.getReg();
+ switch (Mode) {
+ default:
+ return true; // Unknown mode.
+ case 'w':
+ Reg = getWRegFromXReg(Reg);
+ break;
+ case 'x':
+ Reg = getXRegFromWReg(Reg);
+ break;
+ }
+
+ O << AArch64InstPrinter::getRegisterName(Reg);
+ return false;
+}
+
+// Prints the register in MO using class RC using the offset in the
+// new register class. This should not be used for cross class
+// printing.
+bool AArch64AsmPrinter::printAsmRegInClass(const MachineOperand &MO,
+ const TargetRegisterClass *RC,
+ bool isVector, raw_ostream &O) {
+ assert(MO.isReg() && "Should only get here with a register!");
+ const AArch64RegisterInfo *RI =
+ static_cast<const AArch64RegisterInfo *>(TM.getRegisterInfo());
+ unsigned Reg = MO.getReg();
+ unsigned RegToPrint = RC->getRegister(RI->getEncodingValue(Reg));
+ assert(RI->regsOverlap(RegToPrint, Reg));
+ O << AArch64InstPrinter::getRegisterName(
+ RegToPrint, isVector ? AArch64::vreg : AArch64::NoRegAltName);
+ return false;
+}
+
+bool AArch64AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
+ unsigned AsmVariant,
+ const char *ExtraCode, raw_ostream &O) {
+ const MachineOperand &MO = MI->getOperand(OpNum);
+
+ // First try the generic code, which knows about modifiers like 'c' and 'n'.
+ if (!AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O))
+ return false;
+
+ // Does this asm operand have a single letter operand modifier?
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0)
+ return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ default:
+ return true; // Unknown modifier.
+ case 'w': // Print W register
+ case 'x': // Print X register
+ if (MO.isReg())
+ return printAsmMRegister(MO, ExtraCode[0], O);
+ if (MO.isImm() && MO.getImm() == 0) {
+ unsigned Reg = ExtraCode[0] == 'w' ? AArch64::WZR : AArch64::XZR;
+ O << AArch64InstPrinter::getRegisterName(Reg);
+ return false;
+ }
+ printOperand(MI, OpNum, O);
+ return false;
+ case 'b': // Print B register.
+ case 'h': // Print H register.
+ case 's': // Print S register.
+ case 'd': // Print D register.
+ case 'q': // Print Q register.
+ if (MO.isReg()) {
+ const TargetRegisterClass *RC;
+ switch (ExtraCode[0]) {
+ case 'b':
+ RC = &AArch64::FPR8RegClass;
+ break;
+ case 'h':
+ RC = &AArch64::FPR16RegClass;
+ break;
+ case 's':
+ RC = &AArch64::FPR32RegClass;
+ break;
+ case 'd':
+ RC = &AArch64::FPR64RegClass;
+ break;
+ case 'q':
+ RC = &AArch64::FPR128RegClass;
+ break;
+ default:
+ return true;
+ }
+ return printAsmRegInClass(MO, RC, false /* vector */, O);
+ }
+ printOperand(MI, OpNum, O);
+ return false;
+ }
+ }
+
+ // According to ARM, we should emit x and v registers unless we have a
+ // modifier.
+ if (MO.isReg()) {
+ unsigned Reg = MO.getReg();
+
+ // If this is a w or x register, print an x register.
+ if (AArch64::GPR32allRegClass.contains(Reg) ||
+ AArch64::GPR64allRegClass.contains(Reg))
+ return printAsmMRegister(MO, 'x', O);
+
+ // If this is a b, h, s, d, or q register, print it as a v register.
+ return printAsmRegInClass(MO, &AArch64::FPR128RegClass, true /* vector */,
+ O);
+ }
+
+ printOperand(MI, OpNum, O);
+ return false;
+}
+
+bool AArch64AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNum,
+ unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &O) {
+ if (ExtraCode && ExtraCode[0])
+ return true; // Unknown modifier.
+
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ assert(MO.isReg() && "unexpected inline asm memory operand");
+ O << "[" << AArch64InstPrinter::getRegisterName(MO.getReg()) << "]";
+ return false;
+}
+
+void AArch64AsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
+ raw_ostream &OS) {
+ unsigned NOps = MI->getNumOperands();
+ assert(NOps == 4);
+ OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
+ // cast away const; DIetc do not take const operands for some reason.
+ DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps - 1).getMetadata()));
+ OS << V.getName();
+ OS << " <- ";
+ // Frame address. Currently handles register +- offset only.
+ assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
+ OS << '[';
+ printOperand(MI, 0, OS);
+ OS << '+';
+ printOperand(MI, 1, OS);
+ OS << ']';
+ OS << "+";
+ printOperand(MI, NOps - 2, OS);
+}
+
+void AArch64AsmPrinter::LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM,
+ const MachineInstr &MI) {
+ unsigned NumNOPBytes = MI.getOperand(1).getImm();
+
+ SM.recordStackMap(MI);
+ // Emit padding.
+ assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
+ for (unsigned i = 0; i < NumNOPBytes; i += 4)
+ EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0));
+}
+
+// Lower a patchpoint of the form:
+// [<def>], <id>, <numBytes>, <target>, <numArgs>
+void AArch64AsmPrinter::LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM,
+ const MachineInstr &MI) {
+ SM.recordPatchPoint(MI);
+
+ PatchPointOpers Opers(&MI);
+
+ int64_t CallTarget = Opers.getMetaOper(PatchPointOpers::TargetPos).getImm();
+ unsigned EncodedBytes = 0;
+ if (CallTarget) {
+ assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
+ "High 16 bits of call target should be zero.");
+ unsigned ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
+ EncodedBytes = 16;
+ // Materialize the jump address:
+ EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVZWi)
+ .addReg(ScratchReg)
+ .addImm((CallTarget >> 32) & 0xFFFF)
+ .addImm(32));
+ EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVKWi)
+ .addReg(ScratchReg)
+ .addReg(ScratchReg)
+ .addImm((CallTarget >> 16) & 0xFFFF)
+ .addImm(16));
+ EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVKWi)
+ .addReg(ScratchReg)
+ .addReg(ScratchReg)
+ .addImm(CallTarget & 0xFFFF)
+ .addImm(0));
+ EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::BLR).addReg(ScratchReg));
+ }
+ // Emit padding.
+ unsigned NumBytes = Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
+ assert(NumBytes >= EncodedBytes &&
+ "Patchpoint can't request size less than the length of a call.");
+ assert((NumBytes - EncodedBytes) % 4 == 0 &&
+ "Invalid number of NOP bytes requested!");
+ for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
+ EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0));
+}
+
+// Simple pseudo-instructions have their lowering (with expansion to real
+// instructions) auto-generated.
+#include "AArch64GenMCPseudoLowering.inc"
+
+void AArch64AsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ // Do any auto-generated pseudo lowerings.
+ if (emitPseudoExpansionLowering(OutStreamer, MI))
+ return;
+
+ if (AArch64FI->getLOHRelated().count(MI)) {
+ // Generate a label for LOH related instruction
+ MCSymbol *LOHLabel = GetTempSymbol("loh", LOHLabelCounter++);
+ // Associate the instruction with the label
+ LOHInstToLabel[MI] = LOHLabel;
+ OutStreamer.EmitLabel(LOHLabel);
+ }
+
+ // Do any manual lowerings.
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::DBG_VALUE: {
+ if (isVerbose() && OutStreamer.hasRawTextSupport()) {
+ SmallString<128> TmpStr;
+ raw_svector_ostream OS(TmpStr);
+ PrintDebugValueComment(MI, OS);
+ OutStreamer.EmitRawText(StringRef(OS.str()));
+ }
+ return;
+ }
+
+ // Tail calls use pseudo instructions so they have the proper code-gen
+ // attributes (isCall, isReturn, etc.). We lower them to the real
+ // instruction here.
+ case AArch64::TCRETURNri: {
+ MCInst TmpInst;
+ TmpInst.setOpcode(AArch64::BR);
+ TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+ case AArch64::TCRETURNdi: {
+ MCOperand Dest;
+ MCInstLowering.lowerOperand(MI->getOperand(0), Dest);
+ MCInst TmpInst;
+ TmpInst.setOpcode(AArch64::B);
+ TmpInst.addOperand(Dest);
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+ case AArch64::TLSDESC_BLR: {
+ MCOperand Callee, Sym;
+ MCInstLowering.lowerOperand(MI->getOperand(0), Callee);
+ MCInstLowering.lowerOperand(MI->getOperand(1), Sym);
+
+ // First emit a relocation-annotation. This expands to no code, but requests
+ // the following instruction gets an R_AARCH64_TLSDESC_CALL.
+ MCInst TLSDescCall;
+ TLSDescCall.setOpcode(AArch64::TLSDESCCALL);
+ TLSDescCall.addOperand(Sym);
+ EmitToStreamer(OutStreamer, TLSDescCall);
+
+ // Other than that it's just a normal indirect call to the function loaded
+ // from the descriptor.
+ MCInst BLR;
+ BLR.setOpcode(AArch64::BLR);
+ BLR.addOperand(Callee);
+ EmitToStreamer(OutStreamer, BLR);
+
+ return;
+ }
+
+ case TargetOpcode::STACKMAP:
+ return LowerSTACKMAP(OutStreamer, SM, *MI);
+
+ case TargetOpcode::PATCHPOINT:
+ return LowerPATCHPOINT(OutStreamer, SM, *MI);
+ }
+
+ // Finally, do the automated lowerings for everything else.
+ MCInst TmpInst;
+ MCInstLowering.Lower(MI, TmpInst);
+ EmitToStreamer(OutStreamer, TmpInst);
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeAArch64AsmPrinter() {
+ RegisterAsmPrinter<AArch64AsmPrinter> X(TheAArch64leTarget);
+ RegisterAsmPrinter<AArch64AsmPrinter> Y(TheAArch64beTarget);
+
+ RegisterAsmPrinter<AArch64AsmPrinter> Z(TheARM64leTarget);
+ RegisterAsmPrinter<AArch64AsmPrinter> W(TheARM64beTarget);
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64BranchRelaxation.cpp b/contrib/llvm/lib/Target/AArch64/AArch64BranchRelaxation.cpp
new file mode 100644
index 0000000..484e7e8
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64BranchRelaxation.cpp
@@ -0,0 +1,510 @@
+//===-- AArch64BranchRelaxation.cpp - AArch64 branch relaxation -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64InstrInfo.h"
+#include "AArch64MachineFunctionInfo.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-branch-relax"
+
+static cl::opt<bool>
+BranchRelaxation("aarch64-branch-relax", cl::Hidden, cl::init(true),
+ cl::desc("Relax out of range conditional branches"));
+
+static cl::opt<unsigned>
+TBZDisplacementBits("aarch64-tbz-offset-bits", cl::Hidden, cl::init(14),
+ cl::desc("Restrict range of TB[N]Z instructions (DEBUG)"));
+
+static cl::opt<unsigned>
+CBZDisplacementBits("aarch64-cbz-offset-bits", cl::Hidden, cl::init(19),
+ cl::desc("Restrict range of CB[N]Z instructions (DEBUG)"));
+
+static cl::opt<unsigned>
+BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden, cl::init(19),
+ cl::desc("Restrict range of Bcc instructions (DEBUG)"));
+
+STATISTIC(NumSplit, "Number of basic blocks split");
+STATISTIC(NumRelaxed, "Number of conditional branches relaxed");
+
+namespace {
+class AArch64BranchRelaxation : public MachineFunctionPass {
+ /// BasicBlockInfo - Information about the offset and size of a single
+ /// basic block.
+ struct BasicBlockInfo {
+ /// Offset - Distance from the beginning of the function to the beginning
+ /// of this basic block.
+ ///
+ /// The offset is always aligned as required by the basic block.
+ unsigned Offset;
+
+ /// Size - Size of the basic block in bytes. If the block contains
+ /// inline assembly, this is a worst case estimate.
+ ///
+ /// The size does not include any alignment padding whether from the
+ /// beginning of the block, or from an aligned jump table at the end.
+ unsigned Size;
+
+ BasicBlockInfo() : Offset(0), Size(0) {}
+
+ /// Compute the offset immediately following this block. If LogAlign is
+ /// specified, return the offset the successor block will get if it has
+ /// this alignment.
+ unsigned postOffset(unsigned LogAlign = 0) const {
+ unsigned PO = Offset + Size;
+ unsigned Align = 1 << LogAlign;
+ return (PO + Align - 1) / Align * Align;
+ }
+ };
+
+ SmallVector<BasicBlockInfo, 16> BlockInfo;
+
+ MachineFunction *MF;
+ const AArch64InstrInfo *TII;
+
+ bool relaxBranchInstructions();
+ void scanFunction();
+ MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
+ void adjustBlockOffsets(MachineBasicBlock &MBB);
+ bool isBlockInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
+ bool fixupConditionalBranch(MachineInstr *MI);
+ void computeBlockSize(const MachineBasicBlock &MBB);
+ unsigned getInstrOffset(MachineInstr *MI) const;
+ void dumpBBs();
+ void verify();
+
+public:
+ static char ID;
+ AArch64BranchRelaxation() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "AArch64 branch relaxation pass";
+ }
+};
+char AArch64BranchRelaxation::ID = 0;
+}
+
+/// verify - check BBOffsets, BBSizes, alignment of islands
+void AArch64BranchRelaxation::verify() {
+#ifndef NDEBUG
+ unsigned PrevNum = MF->begin()->getNumber();
+ for (MachineBasicBlock &MBB : *MF) {
+ unsigned Align = MBB.getAlignment();
+ unsigned Num = MBB.getNumber();
+ assert(BlockInfo[Num].Offset % (1u << Align) == 0);
+ assert(!Num || BlockInfo[PrevNum].postOffset() <= BlockInfo[Num].Offset);
+ PrevNum = Num;
+ }
+#endif
+}
+
+/// print block size and offset information - debugging
+void AArch64BranchRelaxation::dumpBBs() {
+ for (auto &MBB : *MF) {
+ const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()];
+ dbgs() << format("BB#%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset)
+ << format("size=%#x\n", BBI.Size);
+ }
+}
+
+/// BBHasFallthrough - Return true if the specified basic block can fallthrough
+/// into the block immediately after it.
+static bool BBHasFallthrough(MachineBasicBlock *MBB) {
+ // Get the next machine basic block in the function.
+ MachineFunction::iterator MBBI = MBB;
+ // Can't fall off end of function.
+ MachineBasicBlock *NextBB = std::next(MBBI);
+ if (NextBB == MBB->getParent()->end())
+ return false;
+
+ for (MachineBasicBlock *S : MBB->successors())
+ if (S == NextBB)
+ return true;
+
+ return false;
+}
+
+/// scanFunction - Do the initial scan of the function, building up
+/// information about each block.
+void AArch64BranchRelaxation::scanFunction() {
+ BlockInfo.clear();
+ BlockInfo.resize(MF->getNumBlockIDs());
+
+ // First thing, compute the size of all basic blocks, and see if the function
+ // has any inline assembly in it. If so, we have to be conservative about
+ // alignment assumptions, as we don't know for sure the size of any
+ // instructions in the inline assembly.
+ for (MachineBasicBlock &MBB : *MF)
+ computeBlockSize(MBB);
+
+ // Compute block offsets and known bits.
+ adjustBlockOffsets(*MF->begin());
+}
+
+/// computeBlockSize - Compute the size for MBB.
+/// This function updates BlockInfo directly.
+void AArch64BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) {
+ unsigned Size = 0;
+ for (const MachineInstr &MI : MBB)
+ Size += TII->GetInstSizeInBytes(&MI);
+ BlockInfo[MBB.getNumber()].Size = Size;
+}
+
+/// getInstrOffset - Return the current offset of the specified machine
+/// instruction from the start of the function. This offset changes as stuff is
+/// moved around inside the function.
+unsigned AArch64BranchRelaxation::getInstrOffset(MachineInstr *MI) const {
+ MachineBasicBlock *MBB = MI->getParent();
+
+ // The offset is composed of two things: the sum of the sizes of all MBB's
+ // before this instruction's block, and the offset from the start of the block
+ // it is in.
+ unsigned Offset = BlockInfo[MBB->getNumber()].Offset;
+
+ // Sum instructions before MI in MBB.
+ for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
+ assert(I != MBB->end() && "Didn't find MI in its own basic block?");
+ Offset += TII->GetInstSizeInBytes(I);
+ }
+ return Offset;
+}
+
+void AArch64BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) {
+ unsigned PrevNum = Start.getNumber();
+ for (auto &MBB : make_range(MachineFunction::iterator(Start), MF->end())) {
+ unsigned Num = MBB.getNumber();
+ if (!Num) // block zero is never changed from offset zero.
+ continue;
+ // Get the offset and known bits at the end of the layout predecessor.
+ // Include the alignment of the current block.
+ unsigned LogAlign = MBB.getAlignment();
+ BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(LogAlign);
+ PrevNum = Num;
+ }
+}
+
+/// Split the basic block containing MI into two blocks, which are joined by
+/// an unconditional branch. Update data structures and renumber blocks to
+/// account for this change and returns the newly created block.
+/// NOTE: Successor list of the original BB is out of date after this function,
+/// and must be updated by the caller! Other transforms follow using this
+/// utility function, so no point updating now rather than waiting.
+MachineBasicBlock *
+AArch64BranchRelaxation::splitBlockBeforeInstr(MachineInstr *MI) {
+ MachineBasicBlock *OrigBB = MI->getParent();
+
+ // Create a new MBB for the code after the OrigBB.
+ MachineBasicBlock *NewBB =
+ MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
+ MachineFunction::iterator MBBI = OrigBB;
+ ++MBBI;
+ MF->insert(MBBI, NewBB);
+
+ // Splice the instructions starting with MI over to NewBB.
+ NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
+
+ // Add an unconditional branch from OrigBB to NewBB.
+ // Note the new unconditional branch is not being recorded.
+ // There doesn't seem to be meaningful DebugInfo available; this doesn't
+ // correspond to anything in the source.
+ BuildMI(OrigBB, DebugLoc(), TII->get(AArch64::B)).addMBB(NewBB);
+
+ // Insert an entry into BlockInfo to align it properly with the block numbers.
+ BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
+
+ // Figure out how large the OrigBB is. As the first half of the original
+ // block, it cannot contain a tablejump. The size includes
+ // the new jump we added. (It should be possible to do this without
+ // recounting everything, but it's very confusing, and this is rarely
+ // executed.)
+ computeBlockSize(*OrigBB);
+
+ // Figure out how large the NewMBB is. As the second half of the original
+ // block, it may contain a tablejump.
+ computeBlockSize(*NewBB);
+
+ // All BBOffsets following these blocks must be modified.
+ adjustBlockOffsets(*OrigBB);
+
+ ++NumSplit;
+
+ return NewBB;
+}
+
+/// isBlockInRange - Returns true if the distance between specific MI and
+/// specific BB can fit in MI's displacement field.
+bool AArch64BranchRelaxation::isBlockInRange(MachineInstr *MI,
+ MachineBasicBlock *DestBB,
+ unsigned Bits) {
+ unsigned MaxOffs = ((1 << (Bits - 1)) - 1) << 2;
+ unsigned BrOffset = getInstrOffset(MI);
+ unsigned DestOffset = BlockInfo[DestBB->getNumber()].Offset;
+
+ DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
+ << " from BB#" << MI->getParent()->getNumber()
+ << " max delta=" << MaxOffs << " from " << getInstrOffset(MI)
+ << " to " << DestOffset << " offset "
+ << int(DestOffset - BrOffset) << "\t" << *MI);
+
+ // Branch before the Dest.
+ if (BrOffset <= DestOffset)
+ return (DestOffset - BrOffset <= MaxOffs);
+ return (BrOffset - DestOffset <= MaxOffs);
+}
+
+static bool isConditionalBranch(unsigned Opc) {
+ switch (Opc) {
+ default:
+ return false;
+ case AArch64::TBZW:
+ case AArch64::TBNZW:
+ case AArch64::TBZX:
+ case AArch64::TBNZX:
+ case AArch64::CBZW:
+ case AArch64::CBNZW:
+ case AArch64::CBZX:
+ case AArch64::CBNZX:
+ case AArch64::Bcc:
+ return true;
+ }
+}
+
+static MachineBasicBlock *getDestBlock(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default:
+ llvm_unreachable("unexpected opcode!");
+ case AArch64::TBZW:
+ case AArch64::TBNZW:
+ case AArch64::TBZX:
+ case AArch64::TBNZX:
+ return MI->getOperand(2).getMBB();
+ case AArch64::CBZW:
+ case AArch64::CBNZW:
+ case AArch64::CBZX:
+ case AArch64::CBNZX:
+ case AArch64::Bcc:
+ return MI->getOperand(1).getMBB();
+ }
+}
+
+static unsigned getOppositeConditionOpcode(unsigned Opc) {
+ switch (Opc) {
+ default:
+ llvm_unreachable("unexpected opcode!");
+ case AArch64::TBNZW: return AArch64::TBZW;
+ case AArch64::TBNZX: return AArch64::TBZX;
+ case AArch64::TBZW: return AArch64::TBNZW;
+ case AArch64::TBZX: return AArch64::TBNZX;
+ case AArch64::CBNZW: return AArch64::CBZW;
+ case AArch64::CBNZX: return AArch64::CBZX;
+ case AArch64::CBZW: return AArch64::CBNZW;
+ case AArch64::CBZX: return AArch64::CBNZX;
+ case AArch64::Bcc: return AArch64::Bcc; // Condition is an operand for Bcc.
+ }
+}
+
+static unsigned getBranchDisplacementBits(unsigned Opc) {
+ switch (Opc) {
+ default:
+ llvm_unreachable("unexpected opcode!");
+ case AArch64::TBNZW:
+ case AArch64::TBZW:
+ case AArch64::TBNZX:
+ case AArch64::TBZX:
+ return TBZDisplacementBits;
+ case AArch64::CBNZW:
+ case AArch64::CBZW:
+ case AArch64::CBNZX:
+ case AArch64::CBZX:
+ return CBZDisplacementBits;
+ case AArch64::Bcc:
+ return BCCDisplacementBits;
+ }
+}
+
+static inline void invertBccCondition(MachineInstr *MI) {
+ assert(MI->getOpcode() == AArch64::Bcc && "Unexpected opcode!");
+ AArch64CC::CondCode CC = (AArch64CC::CondCode)MI->getOperand(0).getImm();
+ CC = AArch64CC::getInvertedCondCode(CC);
+ MI->getOperand(0).setImm((int64_t)CC);
+}
+
+/// fixupConditionalBranch - Fix up a conditional branch whose destination is
+/// too far away to fit in its displacement field. It is converted to an inverse
+/// conditional branch + an unconditional branch to the destination.
+bool AArch64BranchRelaxation::fixupConditionalBranch(MachineInstr *MI) {
+ MachineBasicBlock *DestBB = getDestBlock(MI);
+
+ // Add an unconditional branch to the destination and invert the branch
+ // condition to jump over it:
+ // tbz L1
+ // =>
+ // tbnz L2
+ // b L1
+ // L2:
+
+ // If the branch is at the end of its MBB and that has a fall-through block,
+ // direct the updated conditional branch to the fall-through block. Otherwise,
+ // split the MBB before the next instruction.
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineInstr *BMI = &MBB->back();
+ bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
+
+ if (BMI != MI) {
+ if (std::next(MachineBasicBlock::iterator(MI)) ==
+ std::prev(MBB->getLastNonDebugInstr()) &&
+ BMI->getOpcode() == AArch64::B) {
+ // Last MI in the BB is an unconditional branch. Can we simply invert the
+ // condition and swap destinations:
+ // beq L1
+ // b L2
+ // =>
+ // bne L2
+ // b L1
+ MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
+ if (isBlockInRange(MI, NewDest,
+ getBranchDisplacementBits(MI->getOpcode()))) {
+ DEBUG(dbgs() << " Invert condition and swap its destination with "
+ << *BMI);
+ BMI->getOperand(0).setMBB(DestBB);
+ unsigned OpNum = (MI->getOpcode() == AArch64::TBZW ||
+ MI->getOpcode() == AArch64::TBNZW ||
+ MI->getOpcode() == AArch64::TBZX ||
+ MI->getOpcode() == AArch64::TBNZX)
+ ? 2
+ : 1;
+ MI->getOperand(OpNum).setMBB(NewDest);
+ MI->setDesc(TII->get(getOppositeConditionOpcode(MI->getOpcode())));
+ if (MI->getOpcode() == AArch64::Bcc)
+ invertBccCondition(MI);
+ return true;
+ }
+ }
+ }
+
+ if (NeedSplit) {
+ // Analyze the branch so we know how to update the successor lists.
+ MachineBasicBlock *TBB, *FBB;
+ SmallVector<MachineOperand, 2> Cond;
+ TII->AnalyzeBranch(*MBB, TBB, FBB, Cond, false);
+
+ MachineBasicBlock *NewBB = splitBlockBeforeInstr(MI);
+ // No need for the branch to the next block. We're adding an unconditional
+ // branch to the destination.
+ int delta = TII->GetInstSizeInBytes(&MBB->back());
+ BlockInfo[MBB->getNumber()].Size -= delta;
+ MBB->back().eraseFromParent();
+ // BlockInfo[SplitBB].Offset is wrong temporarily, fixed below
+
+ // Update the successor lists according to the transformation to follow.
+ // Do it here since if there's no split, no update is needed.
+ MBB->replaceSuccessor(FBB, NewBB);
+ NewBB->addSuccessor(FBB);
+ }
+ MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(MBB));
+
+ DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber()
+ << ", invert condition and change dest. to BB#"
+ << NextBB->getNumber() << "\n");
+
+ // Insert a new conditional branch and a new unconditional branch.
+ MachineInstrBuilder MIB = BuildMI(
+ MBB, DebugLoc(), TII->get(getOppositeConditionOpcode(MI->getOpcode())))
+ .addOperand(MI->getOperand(0));
+ if (MI->getOpcode() == AArch64::TBZW || MI->getOpcode() == AArch64::TBNZW ||
+ MI->getOpcode() == AArch64::TBZX || MI->getOpcode() == AArch64::TBNZX)
+ MIB.addOperand(MI->getOperand(1));
+ if (MI->getOpcode() == AArch64::Bcc)
+ invertBccCondition(MIB);
+ MIB.addMBB(NextBB);
+ BlockInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
+ BuildMI(MBB, DebugLoc(), TII->get(AArch64::B)).addMBB(DestBB);
+ BlockInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
+
+ // Remove the old conditional branch. It may or may not still be in MBB.
+ BlockInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
+ MI->eraseFromParent();
+
+ // Finally, keep the block offsets up to date.
+ adjustBlockOffsets(*MBB);
+ return true;
+}
+
+bool AArch64BranchRelaxation::relaxBranchInstructions() {
+ bool Changed = false;
+ // Relaxing branches involves creating new basic blocks, so re-eval
+ // end() for termination.
+ for (auto &MBB : *MF) {
+ MachineInstr *MI = MBB.getFirstTerminator();
+ if (isConditionalBranch(MI->getOpcode()) &&
+ !isBlockInRange(MI, getDestBlock(MI),
+ getBranchDisplacementBits(MI->getOpcode()))) {
+ fixupConditionalBranch(MI);
+ ++NumRelaxed;
+ Changed = true;
+ }
+ }
+ return Changed;
+}
+
+bool AArch64BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
+ MF = &mf;
+
+ // If the pass is disabled, just bail early.
+ if (!BranchRelaxation)
+ return false;
+
+ DEBUG(dbgs() << "***** AArch64BranchRelaxation *****\n");
+
+ TII = (const AArch64InstrInfo *)MF->getTarget().getInstrInfo();
+
+ // Renumber all of the machine basic blocks in the function, guaranteeing that
+ // the numbers agree with the position of the block in the function.
+ MF->RenumberBlocks();
+
+ // Do the initial scan of the function, building up information about the
+ // sizes of each block.
+ scanFunction();
+
+ DEBUG(dbgs() << " Basic blocks before relaxation\n");
+ DEBUG(dumpBBs());
+
+ bool MadeChange = false;
+ while (relaxBranchInstructions())
+ MadeChange = true;
+
+ // After a while, this might be made debug-only, but it is not expensive.
+ verify();
+
+ DEBUG(dbgs() << " Basic blocks after relaxation\n");
+ DEBUG(dbgs() << '\n'; dumpBBs());
+
+ BlockInfo.clear();
+
+ return MadeChange;
+}
+
+/// createAArch64BranchRelaxation - returns an instance of the constpool
+/// island pass.
+FunctionPass *llvm::createAArch64BranchRelaxation() {
+ return new AArch64BranchRelaxation();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.td b/contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.td
new file mode 100644
index 0000000..1fe5138
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.td
@@ -0,0 +1,242 @@
+//=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This describes the calling conventions for AArch64 architecture.
+//
+//===----------------------------------------------------------------------===//
+
+/// CCIfAlign - Match of the original alignment of the arg
+class CCIfAlign<string Align, CCAction A> :
+ CCIf<!strconcat("ArgFlags.getOrigAlign() == ", Align), A>;
+/// CCIfBigEndian - Match only if we're in big endian mode.
+class CCIfBigEndian<CCAction A> :
+ CCIf<"State.getTarget().getDataLayout()->isBigEndian()", A>;
+
+//===----------------------------------------------------------------------===//
+// ARM AAPCS64 Calling Convention
+//===----------------------------------------------------------------------===//
+
+def CC_AArch64_AAPCS : CallingConv<[
+ CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
+ CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
+
+ // Big endian vectors must be passed as if they were 1-element vectors so that
+ // their lanes are in a consistent order.
+ CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v8i8],
+ CCBitConvertToType<f64>>>,
+ CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v16i8],
+ CCBitConvertToType<f128>>>,
+
+ // An SRet is passed in X8, not X0 like a normal pointer parameter.
+ CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
+
+ // Put ByVal arguments directly on the stack. Minimum size and alignment of a
+ // slot is 64-bit.
+ CCIfByVal<CCPassByVal<8, 8>>,
+
+ // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
+ // up to eight each of GPR and FPR.
+ CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
+ CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
+ [X0, X1, X2, X3, X4, X5, X6, X7]>>,
+ // i128 is split to two i64s, we can't fit half to register X7.
+ CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
+ [X0, X1, X3, X5]>>>,
+
+ // i128 is split to two i64s, and its stack alignment is 16 bytes.
+ CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
+
+ CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
+ [W0, W1, W2, W3, W4, W5, W6, W7]>>,
+ CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32],
+ CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
+ CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+
+ // If more than will fit in registers, pass them on the stack instead.
+ CCIfType<[i1, i8, i16, f16], CCAssignToStack<8, 8>>,
+ CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
+ CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8],
+ CCAssignToStack<8, 8>>,
+ CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
+ CCAssignToStack<16, 16>>
+]>;
+
+def RetCC_AArch64_AAPCS : CallingConv<[
+ CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
+ CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
+
+ // Big endian vectors must be passed as if they were 1-element vectors so that
+ // their lanes are in a consistent order.
+ CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v8i8],
+ CCBitConvertToType<f64>>>,
+ CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v16i8],
+ CCBitConvertToType<f128>>>,
+
+ CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
+ [X0, X1, X2, X3, X4, X5, X6, X7]>>,
+ CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
+ [W0, W1, W2, W3, W4, W5, W6, W7]>>,
+ CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32],
+ CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
+ CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>
+]>;
+
+
+// Darwin uses a calling convention which differs in only two ways
+// from the standard one at this level:
+// + i128s (i.e. split i64s) don't need even registers.
+// + Stack slots are sized as needed rather than being at least 64-bit.
+def CC_AArch64_DarwinPCS : CallingConv<[
+ CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
+ CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
+
+ // An SRet is passed in X8, not X0 like a normal pointer parameter.
+ CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
+
+ // Put ByVal arguments directly on the stack. Minimum size and alignment of a
+ // slot is 64-bit.
+ CCIfByVal<CCPassByVal<8, 8>>,
+
+ // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
+ // up to eight each of GPR and FPR.
+ CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
+ CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
+ [X0, X1, X2, X3, X4, X5, X6, X7]>>,
+ // i128 is split to two i64s, we can't fit half to register X7.
+ CCIfType<[i64],
+ CCIfSplit<CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6],
+ [W0, W1, W2, W3, W4, W5, W6]>>>,
+ // i128 is split to two i64s, and its stack alignment is 16 bytes.
+ CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
+
+ CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
+ [W0, W1, W2, W3, W4, W5, W6, W7]>>,
+ CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32],
+ CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
+ CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+
+ // If more than will fit in registers, pass them on the stack instead.
+ CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
+ CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16", CCAssignToStack<2, 2>>,
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
+ CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8],
+ CCAssignToStack<8, 8>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToStack<16, 16>>
+]>;
+
+def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
+ CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
+ CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
+
+ // Handle all scalar types as either i64 or f64.
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+ CCIfType<[f16, f32], CCPromoteToType<f64>>,
+
+ // Everything is on the stack.
+ // i128 is split to two i64s, and its stack alignment is 16 bytes.
+ CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
+ CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32], CCAssignToStack<8, 8>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToStack<16, 16>>
+]>;
+
+// The WebKit_JS calling convention only passes the first argument (the callee)
+// in register and the remaining arguments on stack. We allow 32bit stack slots,
+// so that WebKit can write partial values in the stack and define the other
+// 32bit quantity as undef.
+def CC_AArch64_WebKit_JS : CallingConv<[
+ // Handle i1, i8, i16, i32, and i64 passing in register X0 (W0).
+ CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
+ CCIfType<[i32], CCAssignToRegWithShadow<[W0], [X0]>>,
+ CCIfType<[i64], CCAssignToRegWithShadow<[X0], [W0]>>,
+
+ // Pass the remaining arguments on the stack instead.
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
+ CCIfType<[i64, f64], CCAssignToStack<8, 8>>
+]>;
+
+def RetCC_AArch64_WebKit_JS : CallingConv<[
+ CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
+ [X0, X1, X2, X3, X4, X5, X6, X7]>>,
+ CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
+ [W0, W1, W2, W3, W4, W5, W6, W7]>>,
+ CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+ CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>
+]>;
+
+// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
+// presumably a callee to someone. External functions may not do so, but this
+// is currently safe since BL has LR as an implicit-def and what happens after a
+// tail call doesn't matter.
+//
+// It would be better to model its preservation semantics properly (create a
+// vreg on entry, use it in RET & tail call generation; make that vreg def if we
+// end up saving LR as part of a call frame). Watch this space...
+def CSR_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
+ X23, X24, X25, X26, X27, X28,
+ D8, D9, D10, D11,
+ D12, D13, D14, D15)>;
+
+// Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
+// 'this' and the pointer return value are both passed in X0 in these cases,
+// this can be partially modelled by treating X0 as a callee-saved register;
+// only the resulting RegMask is used; the SaveList is ignored
+//
+// (For generic ARM 64-bit ABI code, clang will not generate constructors or
+// destructors with 'this' returns, so this RegMask will not be used in that
+// case)
+def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
+
+// The function used by Darwin to obtain the address of a thread-local variable
+// guarantees more than a normal AAPCS function. x16 and x17 are used on the
+// fast path for calculation, but other registers except X0 (argument/return)
+// and LR (it is a call, after all) are preserved.
+def CSR_AArch64_TLS_Darwin
+ : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
+ FP,
+ (sequence "Q%u", 0, 31))>;
+
+// The ELF stub used for TLS-descriptor access saves every feasible
+// register. Only X0 and LR are clobbered.
+def CSR_AArch64_TLS_ELF
+ : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
+ (sequence "Q%u", 0, 31))>;
+
+def CSR_AArch64_AllRegs
+ : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
+ (sequence "X%u", 0, 28), FP, LR, SP,
+ (sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
+ (sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
+ (sequence "Q%u", 0, 31))>;
+
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp b/contrib/llvm/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp
new file mode 100644
index 0000000..4d23dc5
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp
@@ -0,0 +1,147 @@
+//===-- AArch64CleanupLocalDynamicTLSPass.cpp ---------------------*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Local-dynamic access to thread-local variables proceeds in three stages.
+//
+// 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated
+// in much the same way as a general-dynamic TLS-descriptor access against
+// the special symbol _TLS_MODULE_BASE.
+// 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using
+// instructions with "dtprel" modifiers.
+// 3. These two are added, together with TPIDR_EL0, to obtain the variable's
+// true address.
+//
+// This is only better than general-dynamic access to the variable if two or
+// more of the first stage TLS-descriptor calculations can be combined. This
+// pass looks through a function and performs such combinations.
+//
+//===----------------------------------------------------------------------===//
+#include "AArch64.h"
+#include "AArch64InstrInfo.h"
+#include "AArch64MachineFunctionInfo.h"
+#include "AArch64TargetMachine.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+using namespace llvm;
+
+namespace {
+struct LDTLSCleanup : public MachineFunctionPass {
+ static char ID;
+ LDTLSCleanup() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
+ if (AFI->getNumLocalDynamicTLSAccesses() < 2) {
+ // No point folding accesses if there isn't at least two.
+ return false;
+ }
+
+ MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
+ return VisitNode(DT->getRootNode(), 0);
+ }
+
+ // Visit the dominator subtree rooted at Node in pre-order.
+ // If TLSBaseAddrReg is non-null, then use that to replace any
+ // TLS_base_addr instructions. Otherwise, create the register
+ // when the first such instruction is seen, and then use it
+ // as we encounter more instructions.
+ bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
+ MachineBasicBlock *BB = Node->getBlock();
+ bool Changed = false;
+
+ // Traverse the current block.
+ for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
+ ++I) {
+ switch (I->getOpcode()) {
+ case AArch64::TLSDESC_BLR:
+ // Make sure it's a local dynamic access.
+ if (!I->getOperand(1).isSymbol() ||
+ strcmp(I->getOperand(1).getSymbolName(), "_TLS_MODULE_BASE_"))
+ break;
+
+ if (TLSBaseAddrReg)
+ I = replaceTLSBaseAddrCall(I, TLSBaseAddrReg);
+ else
+ I = setRegister(I, &TLSBaseAddrReg);
+ Changed = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ // Visit the children of this block in the dominator tree.
+ for (MachineDomTreeNode *N : *Node) {
+ Changed |= VisitNode(N, TLSBaseAddrReg);
+ }
+
+ return Changed;
+ }
+
+ // Replace the TLS_base_addr instruction I with a copy from
+ // TLSBaseAddrReg, returning the new instruction.
+ MachineInstr *replaceTLSBaseAddrCall(MachineInstr *I,
+ unsigned TLSBaseAddrReg) {
+ MachineFunction *MF = I->getParent()->getParent();
+ const AArch64TargetMachine *TM =
+ static_cast<const AArch64TargetMachine *>(&MF->getTarget());
+ const AArch64InstrInfo *TII = TM->getInstrInfo();
+
+ // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the
+ // code sequence assumes the address will be.
+ MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
+ TII->get(TargetOpcode::COPY),
+ AArch64::X0).addReg(TLSBaseAddrReg);
+
+ // Erase the TLS_base_addr instruction.
+ I->eraseFromParent();
+
+ return Copy;
+ }
+
+ // Create a virtal register in *TLSBaseAddrReg, and populate it by
+ // inserting a copy instruction after I. Returns the new instruction.
+ MachineInstr *setRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
+ MachineFunction *MF = I->getParent()->getParent();
+ const AArch64TargetMachine *TM =
+ static_cast<const AArch64TargetMachine *>(&MF->getTarget());
+ const AArch64InstrInfo *TII = TM->getInstrInfo();
+
+ // Create a virtual register for the TLS base address.
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ *TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass);
+
+ // Insert a copy from X0 to TLSBaseAddrReg for later.
+ MachineInstr *Next = I->getNextNode();
+ MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
+ TII->get(TargetOpcode::COPY),
+ *TLSBaseAddrReg).addReg(AArch64::X0);
+
+ return Copy;
+ }
+
+ const char *getPassName() const override {
+ return "Local Dynamic TLS Access Clean-up";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+}
+
+char LDTLSCleanup::ID = 0;
+FunctionPass *llvm::createAArch64CleanupLocalDynamicTLSPass() {
+ return new LDTLSCleanup();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64CollectLOH.cpp b/contrib/llvm/lib/Target/AArch64/AArch64CollectLOH.cpp
new file mode 100644
index 0000000..6b1f096
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64CollectLOH.cpp
@@ -0,0 +1,1117 @@
+//===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that collect the Linker Optimization Hint (LOH).
+// This pass should be run at the very end of the compilation flow, just before
+// assembly printer.
+// To be useful for the linker, the LOH must be printed into the assembly file.
+//
+// A LOH describes a sequence of instructions that may be optimized by the
+// linker.
+// This same sequence cannot be optimized by the compiler because some of
+// the information will be known at link time.
+// For instance, consider the following sequence:
+// L1: adrp xA, sym@PAGE
+// L2: add xB, xA, sym@PAGEOFF
+// L3: ldr xC, [xB, #imm]
+// This sequence can be turned into:
+// A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
+// L3: ldr xC, sym+#imm
+// It may also be turned into either the following more efficient
+// code sequences:
+// - If sym@PAGEOFF + #imm fits the encoding space of L3.
+// L1: adrp xA, sym@PAGE
+// L3: ldr xC, [xB, sym@PAGEOFF + #imm]
+// - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
+// L1: adr xA, sym
+// L3: ldr xC, [xB, #imm]
+//
+// To be valid a LOH must meet all the requirements needed by all the related
+// possible linker transformations.
+// For instance, using the running example, the constraints to emit
+// ".loh AdrpAddLdr" are:
+// - L1, L2, and L3 instructions are of the expected type, i.e.,
+// respectively ADRP, ADD (immediate), and LD.
+// - The result of L1 is used only by L2.
+// - The register argument (xA) used in the ADD instruction is defined
+// only by L1.
+// - The result of L2 is used only by L3.
+// - The base address (xB) in L3 is defined only L2.
+// - The ADRP in L1 and the ADD in L2 must reference the same symbol using
+// @PAGE/@PAGEOFF with no additional constants
+//
+// Currently supported LOHs are:
+// * So called non-ADRP-related:
+// - .loh AdrpAddLdr L1, L2, L3:
+// L1: adrp xA, sym@PAGE
+// L2: add xB, xA, sym@PAGEOFF
+// L3: ldr xC, [xB, #imm]
+// - .loh AdrpLdrGotLdr L1, L2, L3:
+// L1: adrp xA, sym@GOTPAGE
+// L2: ldr xB, [xA, sym@GOTPAGEOFF]
+// L3: ldr xC, [xB, #imm]
+// - .loh AdrpLdr L1, L3:
+// L1: adrp xA, sym@PAGE
+// L3: ldr xC, [xA, sym@PAGEOFF]
+// - .loh AdrpAddStr L1, L2, L3:
+// L1: adrp xA, sym@PAGE
+// L2: add xB, xA, sym@PAGEOFF
+// L3: str xC, [xB, #imm]
+// - .loh AdrpLdrGotStr L1, L2, L3:
+// L1: adrp xA, sym@GOTPAGE
+// L2: ldr xB, [xA, sym@GOTPAGEOFF]
+// L3: str xC, [xB, #imm]
+// - .loh AdrpAdd L1, L2:
+// L1: adrp xA, sym@PAGE
+// L2: add xB, xA, sym@PAGEOFF
+// For all these LOHs, L1, L2, L3 form a simple chain:
+// L1 result is used only by L2 and L2 result by L3.
+// L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
+// by L1.
+// All these LOHs aim at using more efficient load/store patterns by folding
+// some instructions used to compute the address directly into the load/store.
+//
+// * So called ADRP-related:
+// - .loh AdrpAdrp L2, L1:
+// L2: ADRP xA, sym1@PAGE
+// L1: ADRP xA, sym2@PAGE
+// L2 dominates L1 and xA is not redifined between L2 and L1
+// This LOH aims at getting rid of redundant ADRP instructions.
+//
+// The overall design for emitting the LOHs is:
+// 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
+// 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
+// 1. Associates them a label.
+// 2. Emits them in a MCStreamer (EmitLOHDirective).
+// - The MCMachOStreamer records them into the MCAssembler.
+// - The MCAsmStreamer prints them.
+// - Other MCStreamers ignore them.
+// 3. Closes the MCStreamer:
+// - The MachObjectWriter gets them from the MCAssembler and writes
+// them in the object file.
+// - Other ObjectWriters ignore them.
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64InstrInfo.h"
+#include "AArch64MachineFunctionInfo.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-collect-loh"
+
+static cl::opt<bool>
+PreCollectRegister("aarch64-collect-loh-pre-collect-register", cl::Hidden,
+ cl::desc("Restrict analysis to registers invovled"
+ " in LOHs"),
+ cl::init(true));
+
+static cl::opt<bool>
+BasicBlockScopeOnly("aarch64-collect-loh-bb-only", cl::Hidden,
+ cl::desc("Restrict analysis at basic block scope"),
+ cl::init(true));
+
+STATISTIC(NumADRPSimpleCandidate,
+ "Number of simplifiable ADRP dominate by another");
+STATISTIC(NumADRPComplexCandidate2,
+ "Number of simplifiable ADRP reachable by 2 defs");
+STATISTIC(NumADRPComplexCandidate3,
+ "Number of simplifiable ADRP reachable by 3 defs");
+STATISTIC(NumADRPComplexCandidateOther,
+ "Number of simplifiable ADRP reachable by 4 or more defs");
+STATISTIC(NumADDToSTRWithImm,
+ "Number of simplifiable STR with imm reachable by ADD");
+STATISTIC(NumLDRToSTRWithImm,
+ "Number of simplifiable STR with imm reachable by LDR");
+STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
+STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
+STATISTIC(NumADDToLDRWithImm,
+ "Number of simplifiable LDR with imm reachable by ADD");
+STATISTIC(NumLDRToLDRWithImm,
+ "Number of simplifiable LDR with imm reachable by LDR");
+STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
+STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
+STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
+STATISTIC(NumCplxLvl1, "Number of complex case of level 1");
+STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1");
+STATISTIC(NumCplxLvl2, "Number of complex case of level 2");
+STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2");
+STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
+STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD");
+
+namespace llvm {
+void initializeAArch64CollectLOHPass(PassRegistry &);
+}
+
+namespace {
+struct AArch64CollectLOH : public MachineFunctionPass {
+ static char ID;
+ AArch64CollectLOH() : MachineFunctionPass(ID) {
+ initializeAArch64CollectLOHPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "AArch64 Collect Linker Optimization Hint (LOH)";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<MachineDominatorTree>();
+ }
+
+private:
+};
+
+/// A set of MachineInstruction.
+typedef SetVector<const MachineInstr *> SetOfMachineInstr;
+/// Map a basic block to a set of instructions per register.
+/// This is used to represent the exposed uses of a basic block
+/// per register.
+typedef MapVector<const MachineBasicBlock *, SetOfMachineInstr *>
+BlockToSetOfInstrsPerColor;
+/// Map a basic block to an instruction per register.
+/// This is used to represent the live-out definitions of a basic block
+/// per register.
+typedef MapVector<const MachineBasicBlock *, const MachineInstr **>
+BlockToInstrPerColor;
+/// Map an instruction to a set of instructions. Used to represent the
+/// mapping def to reachable uses or use to definitions.
+typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs;
+/// Map a basic block to a BitVector.
+/// This is used to record the kill registers per basic block.
+typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet;
+
+/// Map a register to a dense id.
+typedef DenseMap<unsigned, unsigned> MapRegToId;
+/// Map a dense id to a register. Used for debug purposes.
+typedef SmallVector<unsigned, 32> MapIdToReg;
+} // end anonymous namespace.
+
+char AArch64CollectLOH::ID = 0;
+
+INITIALIZE_PASS_BEGIN(AArch64CollectLOH, "aarch64-collect-loh",
+ "AArch64 Collect Linker Optimization Hint (LOH)", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_END(AArch64CollectLOH, "aarch64-collect-loh",
+ "AArch64 Collect Linker Optimization Hint (LOH)", false,
+ false)
+
+/// Given a couple (MBB, reg) get the corresponding set of instruction from
+/// the given "sets".
+/// If this couple does not reference any set, an empty set is added to "sets"
+/// for this couple and returned.
+/// \param nbRegs is used internally allocate some memory. It must be consistent
+/// with the way sets is used.
+static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
+ const MachineBasicBlock &MBB, unsigned reg,
+ unsigned nbRegs) {
+ SetOfMachineInstr *result;
+ BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
+ if (it != sets.end())
+ result = it->second;
+ else
+ result = sets[&MBB] = new SetOfMachineInstr[nbRegs];
+
+ return result[reg];
+}
+
+/// Given a couple (reg, MI) get the corresponding set of instructions from the
+/// the given "sets".
+/// This is used to get the uses record in sets of a definition identified by
+/// MI and reg, i.e., MI defines reg.
+/// If the couple does not reference anything, an empty set is added to
+/// "sets[reg]".
+/// \pre set[reg] is valid.
+static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg,
+ const MachineInstr &MI) {
+ return sets[reg][&MI];
+}
+
+/// Same as getUses but does not modify the input map: sets.
+/// \return NULL if the couple (reg, MI) is not in sets.
+static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
+ const MachineInstr &MI) {
+ InstrToInstrs::const_iterator Res = sets[reg].find(&MI);
+ if (Res != sets[reg].end())
+ return &(Res->second);
+ return nullptr;
+}
+
+/// Initialize the reaching definition algorithm:
+/// For each basic block BB in MF, record:
+/// - its kill set.
+/// - its reachable uses (uses that are exposed to BB's predecessors).
+/// - its the generated definitions.
+/// \param DummyOp if not NULL, specifies a Dummy Operation to be added to
+/// the list of uses of exposed defintions.
+/// \param ADRPMode specifies to only consider ADRP instructions for generated
+/// definition. It also consider definitions of ADRP instructions as uses and
+/// ignore other uses. The ADRPMode is used to collect the information for LHO
+/// that involve ADRP operation only.
+static void initReachingDef(MachineFunction &MF,
+ InstrToInstrs *ColorOpToReachedUses,
+ BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
+ BlockToSetOfInstrsPerColor &ReachableUses,
+ const MapRegToId &RegToId,
+ const MachineInstr *DummyOp, bool ADRPMode) {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+
+ unsigned NbReg = RegToId.size();
+
+ for (MachineBasicBlock &MBB : MF) {
+ const MachineInstr **&BBGen = Gen[&MBB];
+ BBGen = new const MachineInstr *[NbReg];
+ memset(BBGen, 0, sizeof(const MachineInstr *) * NbReg);
+
+ BitVector &BBKillSet = Kill[&MBB];
+ BBKillSet.resize(NbReg);
+ for (const MachineInstr &MI : MBB) {
+ bool IsADRP = MI.getOpcode() == AArch64::ADRP;
+
+ // Process uses first.
+ if (IsADRP || !ADRPMode)
+ for (const MachineOperand &MO : MI.operands()) {
+ // Treat ADRP def as use, as the goal of the analysis is to find
+ // ADRP defs reached by other ADRP defs.
+ if (!MO.isReg() || (!ADRPMode && !MO.isUse()) ||
+ (ADRPMode && (!IsADRP || !MO.isDef())))
+ continue;
+ unsigned CurReg = MO.getReg();
+ MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
+ if (ItCurRegId == RegToId.end())
+ continue;
+ CurReg = ItCurRegId->second;
+
+ // if CurReg has not been defined, this use is reachable.
+ if (!BBGen[CurReg] && !BBKillSet.test(CurReg))
+ getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI);
+ // current basic block definition for this color, if any, is in Gen.
+ if (BBGen[CurReg])
+ getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI);
+ }
+
+ // Process clobbers.
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isRegMask())
+ continue;
+ // Clobbers kill the related colors.
+ const uint32_t *PreservedRegs = MO.getRegMask();
+
+ // Set generated regs.
+ for (const auto Entry : RegToId) {
+ unsigned Reg = Entry.second;
+ // Use the global register ID when querying APIs external to this
+ // pass.
+ if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) {
+ // Do not register clobbered definition for no ADRP.
+ // This definition is not used anyway (otherwise register
+ // allocation is wrong).
+ BBGen[Reg] = ADRPMode ? &MI : nullptr;
+ BBKillSet.set(Reg);
+ }
+ }
+ }
+
+ // Process register defs.
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned CurReg = MO.getReg();
+ MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
+ if (ItCurRegId == RegToId.end())
+ continue;
+
+ for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) {
+ MapRegToId::const_iterator ItRegId = RegToId.find(*AI);
+ assert(ItRegId != RegToId.end() &&
+ "Sub-register of an "
+ "involved register, not recorded as involved!");
+ BBKillSet.set(ItRegId->second);
+ BBGen[ItRegId->second] = &MI;
+ }
+ BBGen[ItCurRegId->second] = &MI;
+ }
+ }
+
+ // If we restrict our analysis to basic block scope, conservatively add a
+ // dummy
+ // use for each generated value.
+ if (!ADRPMode && DummyOp && !MBB.succ_empty())
+ for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg)
+ if (BBGen[CurReg])
+ getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp);
+ }
+}
+
+/// Reaching def core algorithm:
+/// while an Out has changed
+/// for each bb
+/// for each color
+/// In[bb][color] = U Out[bb.predecessors][color]
+/// insert reachableUses[bb][color] in each in[bb][color]
+/// op.reachedUses
+///
+/// Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
+static void reachingDefAlgorithm(MachineFunction &MF,
+ InstrToInstrs *ColorOpToReachedUses,
+ BlockToSetOfInstrsPerColor &In,
+ BlockToSetOfInstrsPerColor &Out,
+ BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
+ BlockToSetOfInstrsPerColor &ReachableUses,
+ unsigned NbReg) {
+ bool HasChanged;
+ do {
+ HasChanged = false;
+ for (MachineBasicBlock &MBB : MF) {
+ unsigned CurReg;
+ for (CurReg = 0; CurReg < NbReg; ++CurReg) {
+ SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg);
+ SetOfMachineInstr &BBReachableUses =
+ getSet(ReachableUses, MBB, CurReg, NbReg);
+ SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg);
+ unsigned Size = BBOutSet.size();
+ // In[bb][color] = U Out[bb.predecessors][color]
+ for (MachineBasicBlock *PredMBB : MBB.predecessors()) {
+ SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg);
+ BBInSet.insert(PredOutSet.begin(), PredOutSet.end());
+ }
+ // insert reachableUses[bb][color] in each in[bb][color] op.reachedses
+ for (const MachineInstr *MI : BBInSet) {
+ SetOfMachineInstr &OpReachedUses =
+ getUses(ColorOpToReachedUses, CurReg, *MI);
+ OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end());
+ }
+ // Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
+ if (!Kill[&MBB].test(CurReg))
+ BBOutSet.insert(BBInSet.begin(), BBInSet.end());
+ if (Gen[&MBB][CurReg])
+ BBOutSet.insert(Gen[&MBB][CurReg]);
+ HasChanged |= BBOutSet.size() != Size;
+ }
+ }
+ } while (HasChanged);
+}
+
+/// Release all memory dynamically allocated during the reaching
+/// definition algorithm.
+static void finitReachingDef(BlockToSetOfInstrsPerColor &In,
+ BlockToSetOfInstrsPerColor &Out,
+ BlockToInstrPerColor &Gen,
+ BlockToSetOfInstrsPerColor &ReachableUses) {
+ for (auto &IT : Out)
+ delete[] IT.second;
+ for (auto &IT : In)
+ delete[] IT.second;
+ for (auto &IT : ReachableUses)
+ delete[] IT.second;
+ for (auto &IT : Gen)
+ delete[] IT.second;
+}
+
+/// Reaching definition algorithm.
+/// \param MF function on which the algorithm will operate.
+/// \param[out] ColorOpToReachedUses will contain the result of the reaching
+/// def algorithm.
+/// \param ADRPMode specify whether the reaching def algorithm should be tuned
+/// for ADRP optimization. \see initReachingDef for more details.
+/// \param DummyOp if not NULL, the algorithm will work at
+/// basic block scope and will set for every exposed definition a use to
+/// @p DummyOp.
+/// \pre ColorOpToReachedUses is an array of at least number of registers of
+/// InstrToInstrs.
+static void reachingDef(MachineFunction &MF,
+ InstrToInstrs *ColorOpToReachedUses,
+ const MapRegToId &RegToId, bool ADRPMode = false,
+ const MachineInstr *DummyOp = nullptr) {
+ // structures:
+ // For each basic block.
+ // Out: a set per color of definitions that reach the
+ // out boundary of this block.
+ // In: Same as Out but for in boundary.
+ // Gen: generated color in this block (one operation per color).
+ // Kill: register set of killed color in this block.
+ // ReachableUses: a set per color of uses (operation) reachable
+ // for "In" definitions.
+ BlockToSetOfInstrsPerColor Out, In, ReachableUses;
+ BlockToInstrPerColor Gen;
+ BlockToRegSet Kill;
+
+ // Initialize Gen, kill and reachableUses.
+ initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId,
+ DummyOp, ADRPMode);
+
+ // Algo.
+ if (!DummyOp)
+ reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill,
+ ReachableUses, RegToId.size());
+
+ // finit.
+ finitReachingDef(In, Out, Gen, ReachableUses);
+}
+
+#ifndef NDEBUG
+/// print the result of the reaching definition algorithm.
+static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses,
+ unsigned NbReg, const TargetRegisterInfo *TRI,
+ const MapIdToReg &IdToReg) {
+ unsigned CurReg;
+ for (CurReg = 0; CurReg < NbReg; ++CurReg) {
+ if (ColorOpToReachedUses[CurReg].empty())
+ continue;
+ DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n");
+
+ for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
+ DEBUG(dbgs() << "Def:\n");
+ DEBUG(DefsIt.first->print(dbgs()));
+ DEBUG(dbgs() << "Reachable uses:\n");
+ for (const MachineInstr *MI : DefsIt.second) {
+ DEBUG(MI->print(dbgs()));
+ }
+ }
+ }
+}
+#endif // NDEBUG
+
+/// Answer the following question: Can Def be one of the definition
+/// involved in a part of a LOH?
+static bool canDefBePartOfLOH(const MachineInstr *Def) {
+ unsigned Opc = Def->getOpcode();
+ // Accept ADRP, ADDLow and LOADGot.
+ switch (Opc) {
+ default:
+ return false;
+ case AArch64::ADRP:
+ return true;
+ case AArch64::ADDXri:
+ // Check immediate to see if the immediate is an address.
+ switch (Def->getOperand(2).getType()) {
+ default:
+ return false;
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_JumpTableIndex:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_BlockAddress:
+ return true;
+ }
+ case AArch64::LDRXui:
+ // Check immediate to see if the immediate is an address.
+ switch (Def->getOperand(2).getType()) {
+ default:
+ return false;
+ case MachineOperand::MO_GlobalAddress:
+ return true;
+ }
+ }
+ // Unreachable.
+ return false;
+}
+
+/// Check whether the given instruction can the end of a LOH chain involving a
+/// store.
+static bool isCandidateStore(const MachineInstr *Instr) {
+ switch (Instr->getOpcode()) {
+ default:
+ return false;
+ case AArch64::STRBui:
+ case AArch64::STRHui:
+ case AArch64::STRWui:
+ case AArch64::STRXui:
+ case AArch64::STRSui:
+ case AArch64::STRDui:
+ case AArch64::STRQui:
+ // In case we have str xA, [xA, #imm], this is two different uses
+ // of xA and we cannot fold, otherwise the xA stored may be wrong,
+ // even if #imm == 0.
+ if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg())
+ return true;
+ }
+ return false;
+}
+
+/// Given the result of a reaching definition algorithm in ColorOpToReachedUses,
+/// Build the Use to Defs information and filter out obvious non-LOH candidates.
+/// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions.
+/// In non-ADRPMode, non-LOH candidates are "uses" with several definition,
+/// i.e., no simple chain.
+/// \param ADRPMode -- \see initReachingDef.
+static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs,
+ const InstrToInstrs *ColorOpToReachedUses,
+ const MapRegToId &RegToId,
+ bool ADRPMode = false) {
+
+ SetOfMachineInstr NotCandidate;
+ unsigned NbReg = RegToId.size();
+ MapRegToId::const_iterator EndIt = RegToId.end();
+ for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) {
+ // If this color is never defined, continue.
+ if (ColorOpToReachedUses[CurReg].empty())
+ continue;
+
+ for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
+ for (const MachineInstr *MI : DefsIt.second) {
+ const MachineInstr *Def = DefsIt.first;
+ MapRegToId::const_iterator It;
+ // if all the reaching defs are not adrp, this use will not be
+ // simplifiable.
+ if ((ADRPMode && Def->getOpcode() != AArch64::ADRP) ||
+ (!ADRPMode && !canDefBePartOfLOH(Def)) ||
+ (!ADRPMode && isCandidateStore(MI) &&
+ // store are LOH candidate iff the end of the chain is used as
+ // base.
+ ((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt ||
+ It->second != CurReg))) {
+ NotCandidate.insert(MI);
+ continue;
+ }
+ // Do not consider self reaching as a simplifiable case for ADRP.
+ if (!ADRPMode || MI != DefsIt.first) {
+ UseToReachingDefs[MI].insert(DefsIt.first);
+ // If UsesIt has several reaching definitions, it is not
+ // candidate for simplificaton in non-ADRPMode.
+ if (!ADRPMode && UseToReachingDefs[MI].size() > 1)
+ NotCandidate.insert(MI);
+ }
+ }
+ }
+ }
+ for (const MachineInstr *Elem : NotCandidate) {
+ DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n");
+ // It would have been better if we could just remove the entry
+ // from the map. Because of that, we have to filter the garbage
+ // (second.empty) in the subsequence analysis.
+ UseToReachingDefs[Elem].clear();
+ }
+}
+
+/// Based on the use to defs information (in ADRPMode), compute the
+/// opportunities of LOH ADRP-related.
+static void computeADRP(const InstrToInstrs &UseToDefs,
+ AArch64FunctionInfo &AArch64FI,
+ const MachineDominatorTree *MDT) {
+ DEBUG(dbgs() << "*** Compute LOH for ADRP\n");
+ for (const auto &Entry : UseToDefs) {
+ unsigned Size = Entry.second.size();
+ if (Size == 0)
+ continue;
+ if (Size == 1) {
+ const MachineInstr *L2 = *Entry.second.begin();
+ const MachineInstr *L1 = Entry.first;
+ if (!MDT->dominates(L2, L1)) {
+ DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1
+ << '\n');
+ continue;
+ }
+ DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n');
+ SmallVector<const MachineInstr *, 2> Args;
+ Args.push_back(L2);
+ Args.push_back(L1);
+ AArch64FI.addLOHDirective(MCLOH_AdrpAdrp, Args);
+ ++NumADRPSimpleCandidate;
+ }
+#ifdef DEBUG
+ else if (Size == 2)
+ ++NumADRPComplexCandidate2;
+ else if (Size == 3)
+ ++NumADRPComplexCandidate3;
+ else
+ ++NumADRPComplexCandidateOther;
+#endif
+ // if Size < 1, the use should have been removed from the candidates
+ assert(Size >= 1 && "No reaching defs for that use!");
+ }
+}
+
+/// Check whether the given instruction can be the end of a LOH chain
+/// involving a load.
+static bool isCandidateLoad(const MachineInstr *Instr) {
+ switch (Instr->getOpcode()) {
+ default:
+ return false;
+ case AArch64::LDRSBWui:
+ case AArch64::LDRSBXui:
+ case AArch64::LDRSHWui:
+ case AArch64::LDRSHXui:
+ case AArch64::LDRSWui:
+ case AArch64::LDRBui:
+ case AArch64::LDRHui:
+ case AArch64::LDRWui:
+ case AArch64::LDRXui:
+ case AArch64::LDRSui:
+ case AArch64::LDRDui:
+ case AArch64::LDRQui:
+ if (Instr->getOperand(2).getTargetFlags() & AArch64II::MO_GOT)
+ return false;
+ return true;
+ }
+ // Unreachable.
+ return false;
+}
+
+/// Check whether the given instruction can load a litteral.
+static bool supportLoadFromLiteral(const MachineInstr *Instr) {
+ switch (Instr->getOpcode()) {
+ default:
+ return false;
+ case AArch64::LDRSWui:
+ case AArch64::LDRWui:
+ case AArch64::LDRXui:
+ case AArch64::LDRSui:
+ case AArch64::LDRDui:
+ case AArch64::LDRQui:
+ return true;
+ }
+ // Unreachable.
+ return false;
+}
+
+/// Check whether the given instruction is a LOH candidate.
+/// \param UseToDefs is used to check that Instr is at the end of LOH supported
+/// chain.
+/// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are
+/// already been filtered out.
+static bool isCandidate(const MachineInstr *Instr,
+ const InstrToInstrs &UseToDefs,
+ const MachineDominatorTree *MDT) {
+ if (!isCandidateLoad(Instr) && !isCandidateStore(Instr))
+ return false;
+
+ const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin();
+ if (Def->getOpcode() != AArch64::ADRP) {
+ // At this point, Def is ADDXri or LDRXui of the right type of
+ // symbol, because we filtered out the uses that were not defined
+ // by these kind of instructions (+ ADRP).
+
+ // Check if this forms a simple chain: each intermediate node must
+ // dominates the next one.
+ if (!MDT->dominates(Def, Instr))
+ return false;
+ // Move one node up in the simple chain.
+ if (UseToDefs.find(Def) ==
+ UseToDefs.end()
+ // The map may contain garbage we have to ignore.
+ ||
+ UseToDefs.find(Def)->second.empty())
+ return false;
+ Instr = Def;
+ Def = *UseToDefs.find(Def)->second.begin();
+ }
+ // Check if we reached the top of the simple chain:
+ // - top is ADRP.
+ // - check the simple chain property: each intermediate node must
+ // dominates the next one.
+ if (Def->getOpcode() == AArch64::ADRP)
+ return MDT->dominates(Def, Instr);
+ return false;
+}
+
+static bool registerADRCandidate(const MachineInstr &Use,
+ const InstrToInstrs &UseToDefs,
+ const InstrToInstrs *DefsPerColorToUses,
+ AArch64FunctionInfo &AArch64FI,
+ SetOfMachineInstr *InvolvedInLOHs,
+ const MapRegToId &RegToId) {
+ // Look for opportunities to turn ADRP -> ADD or
+ // ADRP -> LDR GOTPAGEOFF into ADR.
+ // If ADRP has more than one use. Give up.
+ if (Use.getOpcode() != AArch64::ADDXri &&
+ (Use.getOpcode() != AArch64::LDRXui ||
+ !(Use.getOperand(2).getTargetFlags() & AArch64II::MO_GOT)))
+ return false;
+ InstrToInstrs::const_iterator It = UseToDefs.find(&Use);
+ // The map may contain garbage that we need to ignore.
+ if (It == UseToDefs.end() || It->second.empty())
+ return false;
+ const MachineInstr &Def = **It->second.begin();
+ if (Def.getOpcode() != AArch64::ADRP)
+ return false;
+ // Check the number of users of ADRP.
+ const SetOfMachineInstr *Users =
+ getUses(DefsPerColorToUses,
+ RegToId.find(Def.getOperand(0).getReg())->second, Def);
+ if (Users->size() > 1) {
+ ++NumADRComplexCandidate;
+ return false;
+ }
+ ++NumADRSimpleCandidate;
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) &&
+ "ADRP already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) &&
+ "ADD already involved in LOH.");
+ DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n');
+
+ SmallVector<const MachineInstr *, 2> Args;
+ Args.push_back(&Def);
+ Args.push_back(&Use);
+
+ AArch64FI.addLOHDirective(Use.getOpcode() == AArch64::ADDXri ? MCLOH_AdrpAdd
+ : MCLOH_AdrpLdrGot,
+ Args);
+ return true;
+}
+
+/// Based on the use to defs information (in non-ADRPMode), compute the
+/// opportunities of LOH non-ADRP-related
+static void computeOthers(const InstrToInstrs &UseToDefs,
+ const InstrToInstrs *DefsPerColorToUses,
+ AArch64FunctionInfo &AArch64FI, const MapRegToId &RegToId,
+ const MachineDominatorTree *MDT) {
+ SetOfMachineInstr *InvolvedInLOHs = nullptr;
+#ifdef DEBUG
+ SetOfMachineInstr InvolvedInLOHsStorage;
+ InvolvedInLOHs = &InvolvedInLOHsStorage;
+#endif // DEBUG
+ DEBUG(dbgs() << "*** Compute LOH for Others\n");
+ // ADRP -> ADD/LDR -> LDR/STR pattern.
+ // Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern.
+
+ // FIXME: When the statistics are not important,
+ // This initial filtering loop can be merged into the next loop.
+ // Currently, we didn't do it to have the same code for both DEBUG and
+ // NDEBUG builds. Indeed, the iterator of the second loop would need
+ // to be changed.
+ SetOfMachineInstr PotentialCandidates;
+ SetOfMachineInstr PotentialADROpportunities;
+ for (auto &Use : UseToDefs) {
+ // If no definition is available, this is a non candidate.
+ if (Use.second.empty())
+ continue;
+ // Keep only instructions that are load or store and at the end of
+ // a ADRP -> ADD/LDR/Nothing chain.
+ // We already filtered out the no-chain cases.
+ if (!isCandidate(Use.first, UseToDefs, MDT)) {
+ PotentialADROpportunities.insert(Use.first);
+ continue;
+ }
+ PotentialCandidates.insert(Use.first);
+ }
+
+ // Make the following distinctions for statistics as the linker does
+ // know how to decode instructions:
+ // - ADD/LDR/Nothing make there different patterns.
+ // - LDR/STR make two different patterns.
+ // Hence, 6 - 1 base patterns.
+ // (because ADRP-> Nothing -> STR is not simplifiable)
+
+ // The linker is only able to have a simple semantic, i.e., if pattern A
+ // do B.
+ // However, we want to see the opportunity we may miss if we were able to
+ // catch more complex cases.
+
+ // PotentialCandidates are result of a chain ADRP -> ADD/LDR ->
+ // A potential candidate becomes a candidate, if its current immediate
+ // operand is zero and all nodes of the chain have respectively only one user
+#ifdef DEBUG
+ SetOfMachineInstr DefsOfPotentialCandidates;
+#endif
+ for (const MachineInstr *Candidate : PotentialCandidates) {
+ // Get the definition of the candidate i.e., ADD or LDR.
+ const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin();
+ // Record the elements of the chain.
+ const MachineInstr *L1 = Def;
+ const MachineInstr *L2 = nullptr;
+ unsigned ImmediateDefOpc = Def->getOpcode();
+ if (Def->getOpcode() != AArch64::ADRP) {
+ // Check the number of users of this node.
+ const SetOfMachineInstr *Users =
+ getUses(DefsPerColorToUses,
+ RegToId.find(Def->getOperand(0).getReg())->second, *Def);
+ if (Users->size() > 1) {
+#ifdef DEBUG
+ // if all the uses of this def are in potential candidate, this is
+ // a complex candidate of level 2.
+ bool IsLevel2 = true;
+ for (const MachineInstr *MI : *Users) {
+ if (!PotentialCandidates.count(MI)) {
+ ++NumTooCplxLvl2;
+ IsLevel2 = false;
+ break;
+ }
+ }
+ if (IsLevel2)
+ ++NumCplxLvl2;
+#endif // DEBUG
+ PotentialADROpportunities.insert(Def);
+ continue;
+ }
+ L2 = Def;
+ Def = *UseToDefs.find(Def)->second.begin();
+ L1 = Def;
+ } // else the element in the middle of the chain is nothing, thus
+ // Def already contains the first element of the chain.
+
+ // Check the number of users of the first node in the chain, i.e., ADRP
+ const SetOfMachineInstr *Users =
+ getUses(DefsPerColorToUses,
+ RegToId.find(Def->getOperand(0).getReg())->second, *Def);
+ if (Users->size() > 1) {
+#ifdef DEBUG
+ // if all the uses of this def are in the defs of the potential candidate,
+ // this is a complex candidate of level 1
+ if (DefsOfPotentialCandidates.empty()) {
+ // lazy init
+ DefsOfPotentialCandidates = PotentialCandidates;
+ for (const MachineInstr *Candidate : PotentialCandidates) {
+ if (!UseToDefs.find(Candidate)->second.empty())
+ DefsOfPotentialCandidates.insert(
+ *UseToDefs.find(Candidate)->second.begin());
+ }
+ }
+ bool Found = false;
+ for (auto &Use : *Users) {
+ if (!DefsOfPotentialCandidates.count(Use)) {
+ ++NumTooCplxLvl1;
+ Found = true;
+ break;
+ }
+ }
+ if (!Found)
+ ++NumCplxLvl1;
+#endif // DEBUG
+ continue;
+ }
+
+ bool IsL2Add = (ImmediateDefOpc == AArch64::ADDXri);
+ // If the chain is three instructions long and ldr is the second element,
+ // then this ldr must load form GOT, otherwise this is not a correct chain.
+ if (L2 && !IsL2Add && L2->getOperand(2).getTargetFlags() != AArch64II::MO_GOT)
+ continue;
+ SmallVector<const MachineInstr *, 3> Args;
+ MCLOHType Kind;
+ if (isCandidateLoad(Candidate)) {
+ if (!L2) {
+ // At this point, the candidate LOH indicates that the ldr instruction
+ // may use a direct access to the symbol. There is not such encoding
+ // for loads of byte and half.
+ if (!supportLoadFromLiteral(Candidate))
+ continue;
+
+ DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate
+ << '\n');
+ Kind = MCLOH_AdrpLdr;
+ Args.push_back(L1);
+ Args.push_back(Candidate);
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
+ "L1 already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
+ "Candidate already involved in LOH.");
+ ++NumADRPToLDR;
+ } else {
+ DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
+ << "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
+ << '\n');
+
+ Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr;
+ Args.push_back(L1);
+ Args.push_back(L2);
+ Args.push_back(Candidate);
+
+ PotentialADROpportunities.remove(L2);
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
+ "L1 already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
+ "L2 already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
+ "Candidate already involved in LOH.");
+#ifdef DEBUG
+ // get the immediate of the load
+ if (Candidate->getOperand(2).getImm() == 0)
+ if (ImmediateDefOpc == AArch64::ADDXri)
+ ++NumADDToLDR;
+ else
+ ++NumLDRToLDR;
+ else if (ImmediateDefOpc == AArch64::ADDXri)
+ ++NumADDToLDRWithImm;
+ else
+ ++NumLDRToLDRWithImm;
+#endif // DEBUG
+ }
+ } else {
+ if (ImmediateDefOpc == AArch64::ADRP)
+ continue;
+ else {
+
+ DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
+ << "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
+ << '\n');
+
+ Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr;
+ Args.push_back(L1);
+ Args.push_back(L2);
+ Args.push_back(Candidate);
+
+ PotentialADROpportunities.remove(L2);
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
+ "L1 already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
+ "L2 already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
+ "Candidate already involved in LOH.");
+#ifdef DEBUG
+ // get the immediate of the store
+ if (Candidate->getOperand(2).getImm() == 0)
+ if (ImmediateDefOpc == AArch64::ADDXri)
+ ++NumADDToSTR;
+ else
+ ++NumLDRToSTR;
+ else if (ImmediateDefOpc == AArch64::ADDXri)
+ ++NumADDToSTRWithImm;
+ else
+ ++NumLDRToSTRWithImm;
+#endif // DEBUG
+ }
+ }
+ AArch64FI.addLOHDirective(Kind, Args);
+ }
+
+ // Now, we grabbed all the big patterns, check ADR opportunities.
+ for (const MachineInstr *Candidate : PotentialADROpportunities)
+ registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, AArch64FI,
+ InvolvedInLOHs, RegToId);
+}
+
+/// Look for every register defined by potential LOHs candidates.
+/// Map these registers with dense id in @p RegToId and vice-versa in
+/// @p IdToReg. @p IdToReg is populated only in DEBUG mode.
+static void collectInvolvedReg(MachineFunction &MF, MapRegToId &RegToId,
+ MapIdToReg &IdToReg,
+ const TargetRegisterInfo *TRI) {
+ unsigned CurRegId = 0;
+ if (!PreCollectRegister) {
+ unsigned NbReg = TRI->getNumRegs();
+ for (; CurRegId < NbReg; ++CurRegId) {
+ RegToId[CurRegId] = CurRegId;
+ DEBUG(IdToReg.push_back(CurRegId));
+ DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches"));
+ }
+ return;
+ }
+
+ DEBUG(dbgs() << "** Collect Involved Register\n");
+ for (const auto &MBB : MF) {
+ for (const MachineInstr &MI : MBB) {
+ if (!canDefBePartOfLOH(&MI))
+ continue;
+
+ // Process defs
+ for (MachineInstr::const_mop_iterator IO = MI.operands_begin(),
+ IOEnd = MI.operands_end();
+ IO != IOEnd; ++IO) {
+ if (!IO->isReg() || !IO->isDef())
+ continue;
+ unsigned CurReg = IO->getReg();
+ for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI)
+ if (RegToId.find(*AI) == RegToId.end()) {
+ DEBUG(IdToReg.push_back(*AI);
+ assert(IdToReg[CurRegId] == *AI &&
+ "Reg index mismatches insertion index."));
+ RegToId[*AI] = CurRegId++;
+ DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n');
+ }
+ }
+ }
+ }
+}
+
+bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
+
+ MapRegToId RegToId;
+ MapIdToReg IdToReg;
+ AArch64FunctionInfo *AArch64FI = MF.getInfo<AArch64FunctionInfo>();
+ assert(AArch64FI && "No MachineFunctionInfo for this function!");
+
+ DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n');
+
+ collectInvolvedReg(MF, RegToId, IdToReg, TRI);
+ if (RegToId.empty())
+ return false;
+
+ MachineInstr *DummyOp = nullptr;
+ if (BasicBlockScopeOnly) {
+ const AArch64InstrInfo *TII =
+ static_cast<const AArch64InstrInfo *>(TM.getInstrInfo());
+ // For local analysis, create a dummy operation to record uses that are not
+ // local.
+ DummyOp = MF.CreateMachineInstr(TII->get(AArch64::COPY), DebugLoc());
+ }
+
+ unsigned NbReg = RegToId.size();
+ bool Modified = false;
+
+ // Start with ADRP.
+ InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg];
+
+ // Compute the reaching def in ADRP mode, meaning ADRP definitions
+ // are first considered as uses.
+ reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp);
+ DEBUG(dbgs() << "ADRP reaching defs\n");
+ DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
+
+ // Translate the definition to uses map into a use to definitions map to ease
+ // statistic computation.
+ InstrToInstrs ADRPToReachingDefs;
+ reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true);
+
+ // Compute LOH for ADRP.
+ computeADRP(ADRPToReachingDefs, *AArch64FI, MDT);
+ delete[] ColorOpToReachedUses;
+
+ // Continue with general ADRP -> ADD/LDR -> LDR/STR pattern.
+ ColorOpToReachedUses = new InstrToInstrs[NbReg];
+
+ // first perform a regular reaching def analysis.
+ reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp);
+ DEBUG(dbgs() << "All reaching defs\n");
+ DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
+
+ // Turn that into a use to defs to ease statistic computation.
+ InstrToInstrs UsesToReachingDefs;
+ reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false);
+
+ // Compute other than AdrpAdrp LOH.
+ computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *AArch64FI, RegToId,
+ MDT);
+ delete[] ColorOpToReachedUses;
+
+ if (BasicBlockScopeOnly)
+ MF.DeleteMachineInstr(DummyOp);
+
+ return Modified;
+}
+
+/// createAArch64CollectLOHPass - returns an instance of the Statistic for
+/// linker optimization pass.
+FunctionPass *llvm::createAArch64CollectLOHPass() {
+ return new AArch64CollectLOH();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp
new file mode 100644
index 0000000..452cdec
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp
@@ -0,0 +1,919 @@
+//===-- AArch64ConditionalCompares.cpp --- CCMP formation for AArch64 -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AArch64ConditionalCompares pass which reduces
+// branching and code size by using the conditional compare instructions CCMP,
+// CCMN, and FCMP.
+//
+// The CFG transformations for forming conditional compares are very similar to
+// if-conversion, and this pass should run immediately before the early
+// if-conversion pass.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SparseSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineTraceMetrics.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-ccmp"
+
+// Absolute maximum number of instructions allowed per speculated block.
+// This bypasses all other heuristics, so it should be set fairly high.
+static cl::opt<unsigned> BlockInstrLimit(
+ "aarch64-ccmp-limit", cl::init(30), cl::Hidden,
+ cl::desc("Maximum number of instructions per speculated block."));
+
+// Stress testing mode - disable heuristics.
+static cl::opt<bool> Stress("aarch64-stress-ccmp", cl::Hidden,
+ cl::desc("Turn all knobs to 11"));
+
+STATISTIC(NumConsidered, "Number of ccmps considered");
+STATISTIC(NumPhiRejs, "Number of ccmps rejected (PHI)");
+STATISTIC(NumPhysRejs, "Number of ccmps rejected (Physregs)");
+STATISTIC(NumPhi2Rejs, "Number of ccmps rejected (PHI2)");
+STATISTIC(NumHeadBranchRejs, "Number of ccmps rejected (Head branch)");
+STATISTIC(NumCmpBranchRejs, "Number of ccmps rejected (CmpBB branch)");
+STATISTIC(NumCmpTermRejs, "Number of ccmps rejected (CmpBB is cbz...)");
+STATISTIC(NumImmRangeRejs, "Number of ccmps rejected (Imm out of range)");
+STATISTIC(NumLiveDstRejs, "Number of ccmps rejected (Cmp dest live)");
+STATISTIC(NumMultNZCVUses, "Number of ccmps rejected (NZCV used)");
+STATISTIC(NumUnknNZCVDefs, "Number of ccmps rejected (NZCV def unknown)");
+
+STATISTIC(NumSpeculateRejs, "Number of ccmps rejected (Can't speculate)");
+
+STATISTIC(NumConverted, "Number of ccmp instructions created");
+STATISTIC(NumCompBranches, "Number of cbz/cbnz branches converted");
+
+//===----------------------------------------------------------------------===//
+// SSACCmpConv
+//===----------------------------------------------------------------------===//
+//
+// The SSACCmpConv class performs ccmp-conversion on SSA form machine code
+// after determining if it is possible. The class contains no heuristics;
+// external code should be used to determine when ccmp-conversion is a good
+// idea.
+//
+// CCmp-formation works on a CFG representing chained conditions, typically
+// from C's short-circuit || and && operators:
+//
+// From: Head To: Head
+// / | CmpBB
+// / | / |
+// | CmpBB / |
+// | / | Tail |
+// | / | | |
+// Tail | | |
+// | | | |
+// ... ... ... ...
+//
+// The Head block is terminated by a br.cond instruction, and the CmpBB block
+// contains compare + br.cond. Tail must be a successor of both.
+//
+// The cmp-conversion turns the compare instruction in CmpBB into a conditional
+// compare, and merges CmpBB into Head, speculatively executing its
+// instructions. The AArch64 conditional compare instructions have an immediate
+// operand that specifies the NZCV flag values when the condition is false and
+// the compare isn't executed. This makes it possible to chain compares with
+// different condition codes.
+//
+// Example:
+//
+// if (a == 5 || b == 17)
+// foo();
+//
+// Head:
+// cmp w0, #5
+// b.eq Tail
+// CmpBB:
+// cmp w1, #17
+// b.eq Tail
+// ...
+// Tail:
+// bl _foo
+//
+// Becomes:
+//
+// Head:
+// cmp w0, #5
+// ccmp w1, #17, 4, ne ; 4 = nZcv
+// b.eq Tail
+// ...
+// Tail:
+// bl _foo
+//
+// The ccmp condition code is the one that would cause the Head terminator to
+// branch to CmpBB.
+//
+// FIXME: It should also be possible to speculate a block on the critical edge
+// between Head and Tail, just like if-converting a diamond.
+//
+// FIXME: Handle PHIs in Tail by turning them into selects (if-conversion).
+
+namespace {
+class SSACCmpConv {
+ MachineFunction *MF;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MachineRegisterInfo *MRI;
+
+public:
+ /// The first block containing a conditional branch, dominating everything
+ /// else.
+ MachineBasicBlock *Head;
+
+ /// The block containing cmp+br.cond with a successor shared with Head.
+ MachineBasicBlock *CmpBB;
+
+ /// The common successor for Head and CmpBB.
+ MachineBasicBlock *Tail;
+
+ /// The compare instruction in CmpBB that can be converted to a ccmp.
+ MachineInstr *CmpMI;
+
+private:
+ /// The branch condition in Head as determined by AnalyzeBranch.
+ SmallVector<MachineOperand, 4> HeadCond;
+
+ /// The condition code that makes Head branch to CmpBB.
+ AArch64CC::CondCode HeadCmpBBCC;
+
+ /// The branch condition in CmpBB.
+ SmallVector<MachineOperand, 4> CmpBBCond;
+
+ /// The condition code that makes CmpBB branch to Tail.
+ AArch64CC::CondCode CmpBBTailCC;
+
+ /// Check if the Tail PHIs are trivially convertible.
+ bool trivialTailPHIs();
+
+ /// Remove CmpBB from the Tail PHIs.
+ void updateTailPHIs();
+
+ /// Check if an operand defining DstReg is dead.
+ bool isDeadDef(unsigned DstReg);
+
+ /// Find the compare instruction in MBB that controls the conditional branch.
+ /// Return NULL if a convertible instruction can't be found.
+ MachineInstr *findConvertibleCompare(MachineBasicBlock *MBB);
+
+ /// Return true if all non-terminator instructions in MBB can be safely
+ /// speculated.
+ bool canSpeculateInstrs(MachineBasicBlock *MBB, const MachineInstr *CmpMI);
+
+public:
+ /// runOnMachineFunction - Initialize per-function data structures.
+ void runOnMachineFunction(MachineFunction &MF) {
+ this->MF = &MF;
+ TII = MF.getTarget().getInstrInfo();
+ TRI = MF.getTarget().getRegisterInfo();
+ MRI = &MF.getRegInfo();
+ }
+
+ /// If the sub-CFG headed by MBB can be cmp-converted, initialize the
+ /// internal state, and return true.
+ bool canConvert(MachineBasicBlock *MBB);
+
+ /// Cmo-convert the last block passed to canConvertCmp(), assuming
+ /// it is possible. Add any erased blocks to RemovedBlocks.
+ void convert(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks);
+
+ /// Return the expected code size delta if the conversion into a
+ /// conditional compare is performed.
+ int expectedCodeSizeDelta() const;
+};
+} // end anonymous namespace
+
+// Check that all PHIs in Tail are selecting the same value from Head and CmpBB.
+// This means that no if-conversion is required when merging CmpBB into Head.
+bool SSACCmpConv::trivialTailPHIs() {
+ for (auto &I : *Tail) {
+ if (!I.isPHI())
+ break;
+ unsigned HeadReg = 0, CmpBBReg = 0;
+ // PHI operands come in (VReg, MBB) pairs.
+ for (unsigned oi = 1, oe = I.getNumOperands(); oi != oe; oi += 2) {
+ MachineBasicBlock *MBB = I.getOperand(oi + 1).getMBB();
+ unsigned Reg = I.getOperand(oi).getReg();
+ if (MBB == Head) {
+ assert((!HeadReg || HeadReg == Reg) && "Inconsistent PHI operands");
+ HeadReg = Reg;
+ }
+ if (MBB == CmpBB) {
+ assert((!CmpBBReg || CmpBBReg == Reg) && "Inconsistent PHI operands");
+ CmpBBReg = Reg;
+ }
+ }
+ if (HeadReg != CmpBBReg)
+ return false;
+ }
+ return true;
+}
+
+// Assuming that trivialTailPHIs() is true, update the Tail PHIs by simply
+// removing the CmpBB operands. The Head operands will be identical.
+void SSACCmpConv::updateTailPHIs() {
+ for (auto &I : *Tail) {
+ if (!I.isPHI())
+ break;
+ // I is a PHI. It can have multiple entries for CmpBB.
+ for (unsigned oi = I.getNumOperands(); oi > 2; oi -= 2) {
+ // PHI operands are (Reg, MBB) at (oi-2, oi-1).
+ if (I.getOperand(oi - 1).getMBB() == CmpBB) {
+ I.RemoveOperand(oi - 1);
+ I.RemoveOperand(oi - 2);
+ }
+ }
+ }
+}
+
+// This pass runs before the AArch64DeadRegisterDefinitions pass, so compares
+// are still writing virtual registers without any uses.
+bool SSACCmpConv::isDeadDef(unsigned DstReg) {
+ // Writes to the zero register are dead.
+ if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
+ return true;
+ if (!TargetRegisterInfo::isVirtualRegister(DstReg))
+ return false;
+ // A virtual register def without any uses will be marked dead later, and
+ // eventually replaced by the zero register.
+ return MRI->use_nodbg_empty(DstReg);
+}
+
+// Parse a condition code returned by AnalyzeBranch, and compute the CondCode
+// corresponding to TBB.
+// Return
+static bool parseCond(ArrayRef<MachineOperand> Cond, AArch64CC::CondCode &CC) {
+ // A normal br.cond simply has the condition code.
+ if (Cond[0].getImm() != -1) {
+ assert(Cond.size() == 1 && "Unknown Cond array format");
+ CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
+ return true;
+ }
+ // For tbz and cbz instruction, the opcode is next.
+ switch (Cond[1].getImm()) {
+ default:
+ // This includes tbz / tbnz branches which can't be converted to
+ // ccmp + br.cond.
+ return false;
+ case AArch64::CBZW:
+ case AArch64::CBZX:
+ assert(Cond.size() == 3 && "Unknown Cond array format");
+ CC = AArch64CC::EQ;
+ return true;
+ case AArch64::CBNZW:
+ case AArch64::CBNZX:
+ assert(Cond.size() == 3 && "Unknown Cond array format");
+ CC = AArch64CC::NE;
+ return true;
+ }
+}
+
+MachineInstr *SSACCmpConv::findConvertibleCompare(MachineBasicBlock *MBB) {
+ MachineBasicBlock::iterator I = MBB->getFirstTerminator();
+ if (I == MBB->end())
+ return nullptr;
+ // The terminator must be controlled by the flags.
+ if (!I->readsRegister(AArch64::NZCV)) {
+ switch (I->getOpcode()) {
+ case AArch64::CBZW:
+ case AArch64::CBZX:
+ case AArch64::CBNZW:
+ case AArch64::CBNZX:
+ // These can be converted into a ccmp against #0.
+ return I;
+ }
+ ++NumCmpTermRejs;
+ DEBUG(dbgs() << "Flags not used by terminator: " << *I);
+ return nullptr;
+ }
+
+ // Now find the instruction controlling the terminator.
+ for (MachineBasicBlock::iterator B = MBB->begin(); I != B;) {
+ --I;
+ assert(!I->isTerminator() && "Spurious terminator");
+ switch (I->getOpcode()) {
+ // cmp is an alias for subs with a dead destination register.
+ case AArch64::SUBSWri:
+ case AArch64::SUBSXri:
+ // cmn is an alias for adds with a dead destination register.
+ case AArch64::ADDSWri:
+ case AArch64::ADDSXri:
+ // Check that the immediate operand is within range, ccmp wants a uimm5.
+ // Rd = SUBSri Rn, imm, shift
+ if (I->getOperand(3).getImm() || !isUInt<5>(I->getOperand(2).getImm())) {
+ DEBUG(dbgs() << "Immediate out of range for ccmp: " << *I);
+ ++NumImmRangeRejs;
+ return nullptr;
+ }
+ // Fall through.
+ case AArch64::SUBSWrr:
+ case AArch64::SUBSXrr:
+ case AArch64::ADDSWrr:
+ case AArch64::ADDSXrr:
+ if (isDeadDef(I->getOperand(0).getReg()))
+ return I;
+ DEBUG(dbgs() << "Can't convert compare with live destination: " << *I);
+ ++NumLiveDstRejs;
+ return nullptr;
+ case AArch64::FCMPSrr:
+ case AArch64::FCMPDrr:
+ case AArch64::FCMPESrr:
+ case AArch64::FCMPEDrr:
+ return I;
+ }
+
+ // Check for flag reads and clobbers.
+ MIOperands::PhysRegInfo PRI =
+ MIOperands(I).analyzePhysReg(AArch64::NZCV, TRI);
+
+ if (PRI.Reads) {
+ // The ccmp doesn't produce exactly the same flags as the original
+ // compare, so reject the transform if there are uses of the flags
+ // besides the terminators.
+ DEBUG(dbgs() << "Can't create ccmp with multiple uses: " << *I);
+ ++NumMultNZCVUses;
+ return nullptr;
+ }
+
+ if (PRI.Clobbers) {
+ DEBUG(dbgs() << "Not convertible compare: " << *I);
+ ++NumUnknNZCVDefs;
+ return nullptr;
+ }
+ }
+ DEBUG(dbgs() << "Flags not defined in BB#" << MBB->getNumber() << '\n');
+ return nullptr;
+}
+
+/// Determine if all the instructions in MBB can safely
+/// be speculated. The terminators are not considered.
+///
+/// Only CmpMI is allowed to clobber the flags.
+///
+bool SSACCmpConv::canSpeculateInstrs(MachineBasicBlock *MBB,
+ const MachineInstr *CmpMI) {
+ // Reject any live-in physregs. It's probably NZCV/EFLAGS, and very hard to
+ // get right.
+ if (!MBB->livein_empty()) {
+ DEBUG(dbgs() << "BB#" << MBB->getNumber() << " has live-ins.\n");
+ return false;
+ }
+
+ unsigned InstrCount = 0;
+
+ // Check all instructions, except the terminators. It is assumed that
+ // terminators never have side effects or define any used register values.
+ for (auto &I : make_range(MBB->begin(), MBB->getFirstTerminator())) {
+ if (I.isDebugValue())
+ continue;
+
+ if (++InstrCount > BlockInstrLimit && !Stress) {
+ DEBUG(dbgs() << "BB#" << MBB->getNumber() << " has more than "
+ << BlockInstrLimit << " instructions.\n");
+ return false;
+ }
+
+ // There shouldn't normally be any phis in a single-predecessor block.
+ if (I.isPHI()) {
+ DEBUG(dbgs() << "Can't hoist: " << I);
+ return false;
+ }
+
+ // Don't speculate loads. Note that it may be possible and desirable to
+ // speculate GOT or constant pool loads that are guaranteed not to trap,
+ // but we don't support that for now.
+ if (I.mayLoad()) {
+ DEBUG(dbgs() << "Won't speculate load: " << I);
+ return false;
+ }
+
+ // We never speculate stores, so an AA pointer isn't necessary.
+ bool DontMoveAcrossStore = true;
+ if (!I.isSafeToMove(TII, nullptr, DontMoveAcrossStore)) {
+ DEBUG(dbgs() << "Can't speculate: " << I);
+ return false;
+ }
+
+ // Only CmpMI is allowed to clobber the flags.
+ if (&I != CmpMI && I.modifiesRegister(AArch64::NZCV, TRI)) {
+ DEBUG(dbgs() << "Clobbers flags: " << I);
+ return false;
+ }
+ }
+ return true;
+}
+
+/// Analyze the sub-cfg rooted in MBB, and return true if it is a potential
+/// candidate for cmp-conversion. Fill out the internal state.
+///
+bool SSACCmpConv::canConvert(MachineBasicBlock *MBB) {
+ Head = MBB;
+ Tail = CmpBB = nullptr;
+
+ if (Head->succ_size() != 2)
+ return false;
+ MachineBasicBlock *Succ0 = Head->succ_begin()[0];
+ MachineBasicBlock *Succ1 = Head->succ_begin()[1];
+
+ // CmpBB can only have a single predecessor. Tail is allowed many.
+ if (Succ0->pred_size() != 1)
+ std::swap(Succ0, Succ1);
+
+ // Succ0 is our candidate for CmpBB.
+ if (Succ0->pred_size() != 1 || Succ0->succ_size() != 2)
+ return false;
+
+ CmpBB = Succ0;
+ Tail = Succ1;
+
+ if (!CmpBB->isSuccessor(Tail))
+ return false;
+
+ // The CFG topology checks out.
+ DEBUG(dbgs() << "\nTriangle: BB#" << Head->getNumber() << " -> BB#"
+ << CmpBB->getNumber() << " -> BB#" << Tail->getNumber() << '\n');
+ ++NumConsidered;
+
+ // Tail is allowed to have many predecessors, but we can't handle PHIs yet.
+ //
+ // FIXME: Real PHIs could be if-converted as long as the CmpBB values are
+ // defined before The CmpBB cmp clobbers the flags. Alternatively, it should
+ // always be safe to sink the ccmp down to immediately before the CmpBB
+ // terminators.
+ if (!trivialTailPHIs()) {
+ DEBUG(dbgs() << "Can't handle phis in Tail.\n");
+ ++NumPhiRejs;
+ return false;
+ }
+
+ if (!Tail->livein_empty()) {
+ DEBUG(dbgs() << "Can't handle live-in physregs in Tail.\n");
+ ++NumPhysRejs;
+ return false;
+ }
+
+ // CmpBB should never have PHIs since Head is its only predecessor.
+ // FIXME: Clean them up if it happens.
+ if (!CmpBB->empty() && CmpBB->front().isPHI()) {
+ DEBUG(dbgs() << "Can't handle phis in CmpBB.\n");
+ ++NumPhi2Rejs;
+ return false;
+ }
+
+ if (!CmpBB->livein_empty()) {
+ DEBUG(dbgs() << "Can't handle live-in physregs in CmpBB.\n");
+ ++NumPhysRejs;
+ return false;
+ }
+
+ // The branch we're looking to eliminate must be analyzable.
+ HeadCond.clear();
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ if (TII->AnalyzeBranch(*Head, TBB, FBB, HeadCond)) {
+ DEBUG(dbgs() << "Head branch not analyzable.\n");
+ ++NumHeadBranchRejs;
+ return false;
+ }
+
+ // This is weird, probably some sort of degenerate CFG, or an edge to a
+ // landing pad.
+ if (!TBB || HeadCond.empty()) {
+ DEBUG(dbgs() << "AnalyzeBranch didn't find conditional branch in Head.\n");
+ ++NumHeadBranchRejs;
+ return false;
+ }
+
+ if (!parseCond(HeadCond, HeadCmpBBCC)) {
+ DEBUG(dbgs() << "Unsupported branch type on Head\n");
+ ++NumHeadBranchRejs;
+ return false;
+ }
+
+ // Make sure the branch direction is right.
+ if (TBB != CmpBB) {
+ assert(TBB == Tail && "Unexpected TBB");
+ HeadCmpBBCC = AArch64CC::getInvertedCondCode(HeadCmpBBCC);
+ }
+
+ CmpBBCond.clear();
+ TBB = FBB = nullptr;
+ if (TII->AnalyzeBranch(*CmpBB, TBB, FBB, CmpBBCond)) {
+ DEBUG(dbgs() << "CmpBB branch not analyzable.\n");
+ ++NumCmpBranchRejs;
+ return false;
+ }
+
+ if (!TBB || CmpBBCond.empty()) {
+ DEBUG(dbgs() << "AnalyzeBranch didn't find conditional branch in CmpBB.\n");
+ ++NumCmpBranchRejs;
+ return false;
+ }
+
+ if (!parseCond(CmpBBCond, CmpBBTailCC)) {
+ DEBUG(dbgs() << "Unsupported branch type on CmpBB\n");
+ ++NumCmpBranchRejs;
+ return false;
+ }
+
+ if (TBB != Tail)
+ CmpBBTailCC = AArch64CC::getInvertedCondCode(CmpBBTailCC);
+
+ DEBUG(dbgs() << "Head->CmpBB on " << AArch64CC::getCondCodeName(HeadCmpBBCC)
+ << ", CmpBB->Tail on " << AArch64CC::getCondCodeName(CmpBBTailCC)
+ << '\n');
+
+ CmpMI = findConvertibleCompare(CmpBB);
+ if (!CmpMI)
+ return false;
+
+ if (!canSpeculateInstrs(CmpBB, CmpMI)) {
+ ++NumSpeculateRejs;
+ return false;
+ }
+ return true;
+}
+
+void SSACCmpConv::convert(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks) {
+ DEBUG(dbgs() << "Merging BB#" << CmpBB->getNumber() << " into BB#"
+ << Head->getNumber() << ":\n" << *CmpBB);
+
+ // All CmpBB instructions are moved into Head, and CmpBB is deleted.
+ // Update the CFG first.
+ updateTailPHIs();
+ Head->removeSuccessor(CmpBB);
+ CmpBB->removeSuccessor(Tail);
+ Head->transferSuccessorsAndUpdatePHIs(CmpBB);
+ DebugLoc TermDL = Head->getFirstTerminator()->getDebugLoc();
+ TII->RemoveBranch(*Head);
+
+ // If the Head terminator was one of the cbz / tbz branches with built-in
+ // compare, we need to insert an explicit compare instruction in its place.
+ if (HeadCond[0].getImm() == -1) {
+ ++NumCompBranches;
+ unsigned Opc = 0;
+ switch (HeadCond[1].getImm()) {
+ case AArch64::CBZW:
+ case AArch64::CBNZW:
+ Opc = AArch64::SUBSWri;
+ break;
+ case AArch64::CBZX:
+ case AArch64::CBNZX:
+ Opc = AArch64::SUBSXri;
+ break;
+ default:
+ llvm_unreachable("Cannot convert Head branch");
+ }
+ const MCInstrDesc &MCID = TII->get(Opc);
+ // Create a dummy virtual register for the SUBS def.
+ unsigned DestReg =
+ MRI->createVirtualRegister(TII->getRegClass(MCID, 0, TRI, *MF));
+ // Insert a SUBS Rn, #0 instruction instead of the cbz / cbnz.
+ BuildMI(*Head, Head->end(), TermDL, MCID)
+ .addReg(DestReg, RegState::Define | RegState::Dead)
+ .addOperand(HeadCond[2])
+ .addImm(0)
+ .addImm(0);
+ // SUBS uses the GPR*sp register classes.
+ MRI->constrainRegClass(HeadCond[2].getReg(),
+ TII->getRegClass(MCID, 1, TRI, *MF));
+ }
+
+ Head->splice(Head->end(), CmpBB, CmpBB->begin(), CmpBB->end());
+
+ // Now replace CmpMI with a ccmp instruction that also considers the incoming
+ // flags.
+ unsigned Opc = 0;
+ unsigned FirstOp = 1; // First CmpMI operand to copy.
+ bool isZBranch = false; // CmpMI is a cbz/cbnz instruction.
+ switch (CmpMI->getOpcode()) {
+ default:
+ llvm_unreachable("Unknown compare opcode");
+ case AArch64::SUBSWri: Opc = AArch64::CCMPWi; break;
+ case AArch64::SUBSWrr: Opc = AArch64::CCMPWr; break;
+ case AArch64::SUBSXri: Opc = AArch64::CCMPXi; break;
+ case AArch64::SUBSXrr: Opc = AArch64::CCMPXr; break;
+ case AArch64::ADDSWri: Opc = AArch64::CCMNWi; break;
+ case AArch64::ADDSWrr: Opc = AArch64::CCMNWr; break;
+ case AArch64::ADDSXri: Opc = AArch64::CCMNXi; break;
+ case AArch64::ADDSXrr: Opc = AArch64::CCMNXr; break;
+ case AArch64::FCMPSrr: Opc = AArch64::FCCMPSrr; FirstOp = 0; break;
+ case AArch64::FCMPDrr: Opc = AArch64::FCCMPDrr; FirstOp = 0; break;
+ case AArch64::FCMPESrr: Opc = AArch64::FCCMPESrr; FirstOp = 0; break;
+ case AArch64::FCMPEDrr: Opc = AArch64::FCCMPEDrr; FirstOp = 0; break;
+ case AArch64::CBZW:
+ case AArch64::CBNZW:
+ Opc = AArch64::CCMPWi;
+ FirstOp = 0;
+ isZBranch = true;
+ break;
+ case AArch64::CBZX:
+ case AArch64::CBNZX:
+ Opc = AArch64::CCMPXi;
+ FirstOp = 0;
+ isZBranch = true;
+ break;
+ }
+
+ // The ccmp instruction should set the flags according to the comparison when
+ // Head would have branched to CmpBB.
+ // The NZCV immediate operand should provide flags for the case where Head
+ // would have branched to Tail. These flags should cause the new Head
+ // terminator to branch to tail.
+ unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(CmpBBTailCC);
+ const MCInstrDesc &MCID = TII->get(Opc);
+ MRI->constrainRegClass(CmpMI->getOperand(FirstOp).getReg(),
+ TII->getRegClass(MCID, 0, TRI, *MF));
+ if (CmpMI->getOperand(FirstOp + 1).isReg())
+ MRI->constrainRegClass(CmpMI->getOperand(FirstOp + 1).getReg(),
+ TII->getRegClass(MCID, 1, TRI, *MF));
+ MachineInstrBuilder MIB =
+ BuildMI(*Head, CmpMI, CmpMI->getDebugLoc(), MCID)
+ .addOperand(CmpMI->getOperand(FirstOp)); // Register Rn
+ if (isZBranch)
+ MIB.addImm(0); // cbz/cbnz Rn -> ccmp Rn, #0
+ else
+ MIB.addOperand(CmpMI->getOperand(FirstOp + 1)); // Register Rm / Immediate
+ MIB.addImm(NZCV).addImm(HeadCmpBBCC);
+
+ // If CmpMI was a terminator, we need a new conditional branch to replace it.
+ // This now becomes a Head terminator.
+ if (isZBranch) {
+ bool isNZ = CmpMI->getOpcode() == AArch64::CBNZW ||
+ CmpMI->getOpcode() == AArch64::CBNZX;
+ BuildMI(*Head, CmpMI, CmpMI->getDebugLoc(), TII->get(AArch64::Bcc))
+ .addImm(isNZ ? AArch64CC::NE : AArch64CC::EQ)
+ .addOperand(CmpMI->getOperand(1)); // Branch target.
+ }
+ CmpMI->eraseFromParent();
+ Head->updateTerminator();
+
+ RemovedBlocks.push_back(CmpBB);
+ CmpBB->eraseFromParent();
+ DEBUG(dbgs() << "Result:\n" << *Head);
+ ++NumConverted;
+}
+
+int SSACCmpConv::expectedCodeSizeDelta() const {
+ int delta = 0;
+ // If the Head terminator was one of the cbz / tbz branches with built-in
+ // compare, we need to insert an explicit compare instruction in its place
+ // plus a branch instruction.
+ if (HeadCond[0].getImm() == -1) {
+ switch (HeadCond[1].getImm()) {
+ case AArch64::CBZW:
+ case AArch64::CBNZW:
+ case AArch64::CBZX:
+ case AArch64::CBNZX:
+ // Therefore delta += 1
+ delta = 1;
+ break;
+ default:
+ llvm_unreachable("Cannot convert Head branch");
+ }
+ }
+ // If the Cmp terminator was one of the cbz / tbz branches with
+ // built-in compare, it will be turned into a compare instruction
+ // into Head, but we do not save any instruction.
+ // Otherwise, we save the branch instruction.
+ switch (CmpMI->getOpcode()) {
+ default:
+ --delta;
+ break;
+ case AArch64::CBZW:
+ case AArch64::CBNZW:
+ case AArch64::CBZX:
+ case AArch64::CBNZX:
+ break;
+ }
+ return delta;
+}
+
+//===----------------------------------------------------------------------===//
+// AArch64ConditionalCompares Pass
+//===----------------------------------------------------------------------===//
+
+namespace {
+class AArch64ConditionalCompares : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const MCSchedModel *SchedModel;
+ // Does the proceeded function has Oz attribute.
+ bool MinSize;
+ MachineRegisterInfo *MRI;
+ MachineDominatorTree *DomTree;
+ MachineLoopInfo *Loops;
+ MachineTraceMetrics *Traces;
+ MachineTraceMetrics::Ensemble *MinInstr;
+ SSACCmpConv CmpConv;
+
+public:
+ static char ID;
+ AArch64ConditionalCompares() : MachineFunctionPass(ID) {}
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ const char *getPassName() const override {
+ return "AArch64 Conditional Compares";
+ }
+
+private:
+ bool tryConvert(MachineBasicBlock *);
+ void updateDomTree(ArrayRef<MachineBasicBlock *> Removed);
+ void updateLoops(ArrayRef<MachineBasicBlock *> Removed);
+ void invalidateTraces();
+ bool shouldConvert();
+};
+} // end anonymous namespace
+
+char AArch64ConditionalCompares::ID = 0;
+
+namespace llvm {
+void initializeAArch64ConditionalComparesPass(PassRegistry &);
+}
+
+INITIALIZE_PASS_BEGIN(AArch64ConditionalCompares, "aarch64-ccmp",
+ "AArch64 CCMP Pass", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
+INITIALIZE_PASS_END(AArch64ConditionalCompares, "aarch64-ccmp",
+ "AArch64 CCMP Pass", false, false)
+
+FunctionPass *llvm::createAArch64ConditionalCompares() {
+ return new AArch64ConditionalCompares();
+}
+
+void AArch64ConditionalCompares::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addRequired<MachineTraceMetrics>();
+ AU.addPreserved<MachineTraceMetrics>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+/// Update the dominator tree after if-conversion erased some blocks.
+void AArch64ConditionalCompares::updateDomTree(
+ ArrayRef<MachineBasicBlock *> Removed) {
+ // convert() removes CmpBB which was previously dominated by Head.
+ // CmpBB children should be transferred to Head.
+ MachineDomTreeNode *HeadNode = DomTree->getNode(CmpConv.Head);
+ for (unsigned i = 0, e = Removed.size(); i != e; ++i) {
+ MachineDomTreeNode *Node = DomTree->getNode(Removed[i]);
+ assert(Node != HeadNode && "Cannot erase the head node");
+ assert(Node->getIDom() == HeadNode && "CmpBB should be dominated by Head");
+ while (Node->getNumChildren())
+ DomTree->changeImmediateDominator(Node->getChildren().back(), HeadNode);
+ DomTree->eraseNode(Removed[i]);
+ }
+}
+
+/// Update LoopInfo after if-conversion.
+void
+AArch64ConditionalCompares::updateLoops(ArrayRef<MachineBasicBlock *> Removed) {
+ if (!Loops)
+ return;
+ for (unsigned i = 0, e = Removed.size(); i != e; ++i)
+ Loops->removeBlock(Removed[i]);
+}
+
+/// Invalidate MachineTraceMetrics before if-conversion.
+void AArch64ConditionalCompares::invalidateTraces() {
+ Traces->invalidate(CmpConv.Head);
+ Traces->invalidate(CmpConv.CmpBB);
+}
+
+/// Apply cost model and heuristics to the if-conversion in IfConv.
+/// Return true if the conversion is a good idea.
+///
+bool AArch64ConditionalCompares::shouldConvert() {
+ // Stress testing mode disables all cost considerations.
+ if (Stress)
+ return true;
+ if (!MinInstr)
+ MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
+
+ // Head dominates CmpBB, so it is always included in its trace.
+ MachineTraceMetrics::Trace Trace = MinInstr->getTrace(CmpConv.CmpBB);
+
+ // If code size is the main concern
+ if (MinSize) {
+ int CodeSizeDelta = CmpConv.expectedCodeSizeDelta();
+ DEBUG(dbgs() << "Code size delta: " << CodeSizeDelta << '\n');
+ // If we are minimizing the code size, do the conversion whatever
+ // the cost is.
+ if (CodeSizeDelta < 0)
+ return true;
+ if (CodeSizeDelta > 0) {
+ DEBUG(dbgs() << "Code size is increasing, give up on this one.\n");
+ return false;
+ }
+ // CodeSizeDelta == 0, continue with the regular heuristics
+ }
+
+ // Heuristic: The compare conversion delays the execution of the branch
+ // instruction because we must wait for the inputs to the second compare as
+ // well. The branch has no dependent instructions, but delaying it increases
+ // the cost of a misprediction.
+ //
+ // Set a limit on the delay we will accept.
+ unsigned DelayLimit = SchedModel->MispredictPenalty * 3 / 4;
+
+ // Instruction depths can be computed for all trace instructions above CmpBB.
+ unsigned HeadDepth =
+ Trace.getInstrCycles(CmpConv.Head->getFirstTerminator()).Depth;
+ unsigned CmpBBDepth =
+ Trace.getInstrCycles(CmpConv.CmpBB->getFirstTerminator()).Depth;
+ DEBUG(dbgs() << "Head depth: " << HeadDepth
+ << "\nCmpBB depth: " << CmpBBDepth << '\n');
+ if (CmpBBDepth > HeadDepth + DelayLimit) {
+ DEBUG(dbgs() << "Branch delay would be larger than " << DelayLimit
+ << " cycles.\n");
+ return false;
+ }
+
+ // Check the resource depth at the bottom of CmpBB - these instructions will
+ // be speculated.
+ unsigned ResDepth = Trace.getResourceDepth(true);
+ DEBUG(dbgs() << "Resources: " << ResDepth << '\n');
+
+ // Heuristic: The speculatively executed instructions must all be able to
+ // merge into the Head block. The Head critical path should dominate the
+ // resource cost of the speculated instructions.
+ if (ResDepth > HeadDepth) {
+ DEBUG(dbgs() << "Too many instructions to speculate.\n");
+ return false;
+ }
+ return true;
+}
+
+bool AArch64ConditionalCompares::tryConvert(MachineBasicBlock *MBB) {
+ bool Changed = false;
+ while (CmpConv.canConvert(MBB) && shouldConvert()) {
+ invalidateTraces();
+ SmallVector<MachineBasicBlock *, 4> RemovedBlocks;
+ CmpConv.convert(RemovedBlocks);
+ Changed = true;
+ updateDomTree(RemovedBlocks);
+ updateLoops(RemovedBlocks);
+ }
+ return Changed;
+}
+
+bool AArch64ConditionalCompares::runOnMachineFunction(MachineFunction &MF) {
+ DEBUG(dbgs() << "********** AArch64 Conditional Compares **********\n"
+ << "********** Function: " << MF.getName() << '\n');
+ TII = MF.getTarget().getInstrInfo();
+ TRI = MF.getTarget().getRegisterInfo();
+ SchedModel =
+ MF.getTarget().getSubtarget<TargetSubtargetInfo>().getSchedModel();
+ MRI = &MF.getRegInfo();
+ DomTree = &getAnalysis<MachineDominatorTree>();
+ Loops = getAnalysisIfAvailable<MachineLoopInfo>();
+ Traces = &getAnalysis<MachineTraceMetrics>();
+ MinInstr = nullptr;
+ MinSize = MF.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::MinSize);
+
+ bool Changed = false;
+ CmpConv.runOnMachineFunction(MF);
+
+ // Visit blocks in dominator tree pre-order. The pre-order enables multiple
+ // cmp-conversions from the same head block.
+ // Note that updateDomTree() modifies the children of the DomTree node
+ // currently being visited. The df_iterator supports that; it doesn't look at
+ // child_begin() / child_end() until after a node has been visited.
+ for (auto *I : depth_first(DomTree))
+ if (tryConvert(I->getBlock()))
+ Changed = true;
+
+ return Changed;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64DeadRegisterDefinitionsPass.cpp b/contrib/llvm/lib/Target/AArch64/AArch64DeadRegisterDefinitionsPass.cpp
new file mode 100644
index 0000000..a2d853c
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64DeadRegisterDefinitionsPass.cpp
@@ -0,0 +1,134 @@
+//==-- AArch64DeadRegisterDefinitions.cpp - Replace dead defs w/ zero reg --==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// When allowed by the instruction, replace a dead definition of a GPR with
+// the zero register. This makes the code a bit friendlier towards the
+// hardware's register renamer.
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64RegisterInfo.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-dead-defs"
+
+STATISTIC(NumDeadDefsReplaced, "Number of dead definitions replaced");
+
+namespace {
+class AArch64DeadRegisterDefinitions : public MachineFunctionPass {
+private:
+ const TargetRegisterInfo *TRI;
+ bool implicitlyDefinesOverlappingReg(unsigned Reg, const MachineInstr &MI);
+ bool processMachineBasicBlock(MachineBasicBlock &MBB);
+ bool usesFrameIndex(const MachineInstr &MI);
+public:
+ static char ID; // Pass identification, replacement for typeid.
+ explicit AArch64DeadRegisterDefinitions() : MachineFunctionPass(ID) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &F) override;
+
+ const char *getPassName() const override { return "Dead register definitions"; }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+char AArch64DeadRegisterDefinitions::ID = 0;
+} // end anonymous namespace
+
+bool AArch64DeadRegisterDefinitions::implicitlyDefinesOverlappingReg(
+ unsigned Reg, const MachineInstr &MI) {
+ for (const MachineOperand &MO : MI.implicit_operands())
+ if (MO.isReg() && MO.isDef())
+ if (TRI->regsOverlap(Reg, MO.getReg()))
+ return true;
+ return false;
+}
+
+bool AArch64DeadRegisterDefinitions::usesFrameIndex(const MachineInstr &MI) {
+ for (const MachineOperand &Op : MI.uses())
+ if (Op.isFI())
+ return true;
+ return false;
+}
+
+bool AArch64DeadRegisterDefinitions::processMachineBasicBlock(
+ MachineBasicBlock &MBB) {
+ bool Changed = false;
+ for (MachineInstr &MI : MBB) {
+ if (usesFrameIndex(MI)) {
+ // We need to skip this instruction because while it appears to have a
+ // dead def it uses a frame index which might expand into a multi
+ // instruction sequence during EPI.
+ DEBUG(dbgs() << " Ignoring, operand is frame index\n");
+ continue;
+ }
+ for (int i = 0, e = MI.getDesc().getNumDefs(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (MO.isReg() && MO.isDead() && MO.isDef()) {
+ assert(!MO.isImplicit() && "Unexpected implicit def!");
+ DEBUG(dbgs() << " Dead def operand #" << i << " in:\n ";
+ MI.print(dbgs()));
+ // Be careful not to change the register if it's a tied operand.
+ if (MI.isRegTiedToUseOperand(i)) {
+ DEBUG(dbgs() << " Ignoring, def is tied operand.\n");
+ continue;
+ }
+ // Don't change the register if there's an implicit def of a subreg or
+ // supperreg.
+ if (implicitlyDefinesOverlappingReg(MO.getReg(), MI)) {
+ DEBUG(dbgs() << " Ignoring, implicitly defines overlap reg.\n");
+ continue;
+ }
+ // Make sure the instruction take a register class that contains
+ // the zero register and replace it if so.
+ unsigned NewReg;
+ switch (MI.getDesc().OpInfo[i].RegClass) {
+ default:
+ DEBUG(dbgs() << " Ignoring, register is not a GPR.\n");
+ continue;
+ case AArch64::GPR32RegClassID:
+ NewReg = AArch64::WZR;
+ break;
+ case AArch64::GPR64RegClassID:
+ NewReg = AArch64::XZR;
+ break;
+ }
+ DEBUG(dbgs() << " Replacing with zero register. New:\n ");
+ MO.setReg(NewReg);
+ DEBUG(MI.print(dbgs()));
+ ++NumDeadDefsReplaced;
+ }
+ }
+ }
+ return Changed;
+}
+
+// Scan the function for instructions that have a dead definition of a
+// register. Replace that register with the zero register when possible.
+bool AArch64DeadRegisterDefinitions::runOnMachineFunction(MachineFunction &MF) {
+ TRI = MF.getTarget().getRegisterInfo();
+ bool Changed = false;
+ DEBUG(dbgs() << "***** AArch64DeadRegisterDefinitions *****\n");
+
+ for (auto &MBB : MF)
+ if (processMachineBasicBlock(MBB))
+ Changed = true;
+ return Changed;
+}
+
+FunctionPass *llvm::createAArch64DeadRegisterDefinitions() {
+ return new AArch64DeadRegisterDefinitions();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp
new file mode 100644
index 0000000..8839085
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp
@@ -0,0 +1,736 @@
+//==-- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions --*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that expands pseudo instructions into target
+// instructions to allow proper scheduling and other late optimizations. This
+// pass should be run after register allocation but before the post-regalloc
+// scheduling pass.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "AArch64InstrInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Support/MathExtras.h"
+using namespace llvm;
+
+namespace {
+class AArch64ExpandPseudo : public MachineFunctionPass {
+public:
+ static char ID;
+ AArch64ExpandPseudo() : MachineFunctionPass(ID) {}
+
+ const AArch64InstrInfo *TII;
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "AArch64 pseudo instruction expansion pass";
+ }
+
+private:
+ bool expandMBB(MachineBasicBlock &MBB);
+ bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
+ bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ unsigned BitSize);
+};
+char AArch64ExpandPseudo::ID = 0;
+}
+
+/// \brief Transfer implicit operands on the pseudo instruction to the
+/// instructions created from the expansion.
+static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
+ MachineInstrBuilder &DefMI) {
+ const MCInstrDesc &Desc = OldMI.getDesc();
+ for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
+ ++i) {
+ const MachineOperand &MO = OldMI.getOperand(i);
+ assert(MO.isReg() && MO.getReg());
+ if (MO.isUse())
+ UseMI.addOperand(MO);
+ else
+ DefMI.addOperand(MO);
+ }
+}
+
+/// \brief Helper function which extracts the specified 16-bit chunk from a
+/// 64-bit value.
+static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
+ assert(ChunkIdx < 4 && "Out of range chunk index specified!");
+
+ return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
+}
+
+/// \brief Helper function which replicates a 16-bit chunk within a 64-bit
+/// value. Indices correspond to element numbers in a v4i16.
+static uint64_t replicateChunk(uint64_t Imm, unsigned FromIdx, unsigned ToIdx) {
+ assert((FromIdx < 4) && (ToIdx < 4) && "Out of range chunk index specified!");
+ const unsigned ShiftAmt = ToIdx * 16;
+
+ // Replicate the source chunk to the destination position.
+ const uint64_t Chunk = getChunk(Imm, FromIdx) << ShiftAmt;
+ // Clear the destination chunk.
+ Imm &= ~(0xFFFFLL << ShiftAmt);
+ // Insert the replicated chunk.
+ return Imm | Chunk;
+}
+
+/// \brief Helper function which tries to materialize a 64-bit value with an
+/// ORR + MOVK instruction sequence.
+static bool tryOrrMovk(uint64_t UImm, uint64_t OrrImm, MachineInstr &MI,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const AArch64InstrInfo *TII, unsigned ChunkIdx) {
+ assert(ChunkIdx < 4 && "Out of range chunk index specified!");
+ const unsigned ShiftAmt = ChunkIdx * 16;
+
+ uint64_t Encoding;
+ if (AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding)) {
+ // Create the ORR-immediate instruction.
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
+ .addOperand(MI.getOperand(0))
+ .addReg(AArch64::XZR)
+ .addImm(Encoding);
+
+ // Create the MOVK instruction.
+ const unsigned Imm16 = getChunk(UImm, ChunkIdx);
+ const unsigned DstReg = MI.getOperand(0).getReg();
+ const bool DstIsDead = MI.getOperand(0).isDead();
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
+ .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(DstReg)
+ .addImm(Imm16)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
+
+ transferImpOps(MI, MIB, MIB1);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Check whether the given 16-bit chunk replicated to full 64-bit width
+/// can be materialized with an ORR instruction.
+static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
+ Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
+
+ return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
+}
+
+/// \brief Check for identical 16-bit chunks within the constant and if so
+/// materialize them with a single ORR instruction. The remaining one or two
+/// 16-bit chunks will be materialized with MOVK instructions.
+///
+/// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
+/// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
+/// an ORR instruction.
+///
+static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const AArch64InstrInfo *TII) {
+ typedef DenseMap<uint64_t, unsigned> CountMap;
+ CountMap Counts;
+
+ // Scan the constant and count how often every chunk occurs.
+ for (unsigned Idx = 0; Idx < 4; ++Idx)
+ ++Counts[getChunk(UImm, Idx)];
+
+ // Traverse the chunks to find one which occurs more than once.
+ for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
+ Chunk != End; ++Chunk) {
+ const uint64_t ChunkVal = Chunk->first;
+ const unsigned Count = Chunk->second;
+
+ uint64_t Encoding = 0;
+
+ // We are looking for chunks which have two or three instances and can be
+ // materialized with an ORR instruction.
+ if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
+ continue;
+
+ const bool CountThree = Count == 3;
+ // Create the ORR-immediate instruction.
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
+ .addOperand(MI.getOperand(0))
+ .addReg(AArch64::XZR)
+ .addImm(Encoding);
+
+ const unsigned DstReg = MI.getOperand(0).getReg();
+ const bool DstIsDead = MI.getOperand(0).isDead();
+
+ unsigned ShiftAmt = 0;
+ uint64_t Imm16 = 0;
+ // Find the first chunk not materialized with the ORR instruction.
+ for (; ShiftAmt < 64; ShiftAmt += 16) {
+ Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
+
+ if (Imm16 != ChunkVal)
+ break;
+ }
+
+ // Create the first MOVK instruction.
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
+ .addReg(DstReg,
+ RegState::Define | getDeadRegState(DstIsDead && CountThree))
+ .addReg(DstReg)
+ .addImm(Imm16)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
+
+ // In case we have three instances the whole constant is now materialized
+ // and we can exit.
+ if (CountThree) {
+ transferImpOps(MI, MIB, MIB1);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ // Find the remaining chunk which needs to be materialized.
+ for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
+ Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
+
+ if (Imm16 != ChunkVal)
+ break;
+ }
+
+ // Create the second MOVK instruction.
+ MachineInstrBuilder MIB2 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
+ .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(DstReg)
+ .addImm(Imm16)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
+
+ transferImpOps(MI, MIB, MIB2);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Check whether this chunk matches the pattern '1...0...'. This pattern
+/// starts a contiguous sequence of ones if we look at the bits from the LSB
+/// towards the MSB.
+static bool isStartChunk(uint64_t Chunk) {
+ if (Chunk == 0 || Chunk == UINT64_MAX)
+ return false;
+
+ return (CountLeadingOnes_64(Chunk) + countTrailingZeros(Chunk)) == 64;
+}
+
+/// \brief Check whether this chunk matches the pattern '0...1...' This pattern
+/// ends a contiguous sequence of ones if we look at the bits from the LSB
+/// towards the MSB.
+static bool isEndChunk(uint64_t Chunk) {
+ if (Chunk == 0 || Chunk == UINT64_MAX)
+ return false;
+
+ return (countLeadingZeros(Chunk) + CountTrailingOnes_64(Chunk)) == 64;
+}
+
+/// \brief Clear or set all bits in the chunk at the given index.
+static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
+ const uint64_t Mask = 0xFFFF;
+
+ if (Clear)
+ // Clear chunk in the immediate.
+ Imm &= ~(Mask << (Idx * 16));
+ else
+ // Set all bits in the immediate for the particular chunk.
+ Imm |= Mask << (Idx * 16);
+
+ return Imm;
+}
+
+/// \brief Check whether the constant contains a sequence of contiguous ones,
+/// which might be interrupted by one or two chunks. If so, materialize the
+/// sequence of contiguous ones with an ORR instruction.
+/// Materialize the chunks which are either interrupting the sequence or outside
+/// of the sequence with a MOVK instruction.
+///
+/// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
+/// which ends the sequence (0...1...). Then we are looking for constants which
+/// contain at least one S and E chunk.
+/// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
+///
+/// We are also looking for constants like |S|A|B|E| where the contiguous
+/// sequence of ones wraps around the MSB into the LSB.
+///
+static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const AArch64InstrInfo *TII) {
+ const int NotSet = -1;
+ const uint64_t Mask = 0xFFFF;
+
+ int StartIdx = NotSet;
+ int EndIdx = NotSet;
+ // Try to find the chunks which start/end a contiguous sequence of ones.
+ for (int Idx = 0; Idx < 4; ++Idx) {
+ int64_t Chunk = getChunk(UImm, Idx);
+ // Sign extend the 16-bit chunk to 64-bit.
+ Chunk = (Chunk << 48) >> 48;
+
+ if (isStartChunk(Chunk))
+ StartIdx = Idx;
+ else if (isEndChunk(Chunk))
+ EndIdx = Idx;
+ }
+
+ // Early exit in case we can't find a start/end chunk.
+ if (StartIdx == NotSet || EndIdx == NotSet)
+ return false;
+
+ // Outside of the contiguous sequence of ones everything needs to be zero.
+ uint64_t Outside = 0;
+ // Chunks between the start and end chunk need to have all their bits set.
+ uint64_t Inside = Mask;
+
+ // If our contiguous sequence of ones wraps around from the MSB into the LSB,
+ // just swap indices and pretend we are materializing a contiguous sequence
+ // of zeros surrounded by a contiguous sequence of ones.
+ if (StartIdx > EndIdx) {
+ std::swap(StartIdx, EndIdx);
+ std::swap(Outside, Inside);
+ }
+
+ uint64_t OrrImm = UImm;
+ int FirstMovkIdx = NotSet;
+ int SecondMovkIdx = NotSet;
+
+ // Find out which chunks we need to patch up to obtain a contiguous sequence
+ // of ones.
+ for (int Idx = 0; Idx < 4; ++Idx) {
+ const uint64_t Chunk = getChunk(UImm, Idx);
+
+ // Check whether we are looking at a chunk which is not part of the
+ // contiguous sequence of ones.
+ if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
+ OrrImm = updateImm(OrrImm, Idx, Outside == 0);
+
+ // Remember the index we need to patch.
+ if (FirstMovkIdx == NotSet)
+ FirstMovkIdx = Idx;
+ else
+ SecondMovkIdx = Idx;
+
+ // Check whether we are looking a chunk which is part of the contiguous
+ // sequence of ones.
+ } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
+ OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
+
+ // Remember the index we need to patch.
+ if (FirstMovkIdx == NotSet)
+ FirstMovkIdx = Idx;
+ else
+ SecondMovkIdx = Idx;
+ }
+ }
+ assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
+
+ // Create the ORR-immediate instruction.
+ uint64_t Encoding = 0;
+ AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
+ .addOperand(MI.getOperand(0))
+ .addReg(AArch64::XZR)
+ .addImm(Encoding);
+
+ const unsigned DstReg = MI.getOperand(0).getReg();
+ const bool DstIsDead = MI.getOperand(0).isDead();
+
+ const bool SingleMovk = SecondMovkIdx == NotSet;
+ // Create the first MOVK instruction.
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
+ .addReg(DstReg,
+ RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
+ .addReg(DstReg)
+ .addImm(getChunk(UImm, FirstMovkIdx))
+ .addImm(
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
+
+ // Early exit in case we only need to emit a single MOVK instruction.
+ if (SingleMovk) {
+ transferImpOps(MI, MIB, MIB1);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ // Create the second MOVK instruction.
+ MachineInstrBuilder MIB2 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
+ .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(DstReg)
+ .addImm(getChunk(UImm, SecondMovkIdx))
+ .addImm(
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
+
+ transferImpOps(MI, MIB, MIB2);
+ MI.eraseFromParent();
+ return true;
+}
+
+/// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
+/// real move-immediate instructions to synthesize the immediate.
+bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned BitSize) {
+ MachineInstr &MI = *MBBI;
+ uint64_t Imm = MI.getOperand(1).getImm();
+ const unsigned Mask = 0xFFFF;
+
+ // Try a MOVI instruction (aka ORR-immediate with the zero register).
+ uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
+ uint64_t Encoding;
+ if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
+ unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
+ .addOperand(MI.getOperand(0))
+ .addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
+ .addImm(Encoding);
+ transferImpOps(MI, MIB, MIB);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ // Scan the immediate and count the number of 16-bit chunks which are either
+ // all ones or all zeros.
+ unsigned OneChunks = 0;
+ unsigned ZeroChunks = 0;
+ for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
+ const unsigned Chunk = (Imm >> Shift) & Mask;
+ if (Chunk == Mask)
+ OneChunks++;
+ else if (Chunk == 0)
+ ZeroChunks++;
+ }
+
+ // Since we can't materialize the constant with a single ORR instruction,
+ // let's see whether we can materialize 3/4 of the constant with an ORR
+ // instruction and use an additional MOVK instruction to materialize the
+ // remaining 1/4.
+ //
+ // We are looking for constants with a pattern like: |A|X|B|X| or |X|A|X|B|.
+ //
+ // E.g. assuming |A|X|A|X| is a pattern which can be materialized with ORR,
+ // we would create the following instruction sequence:
+ //
+ // ORR x0, xzr, |A|X|A|X|
+ // MOVK x0, |B|, LSL #16
+ //
+ // Only look at 64-bit constants which can't be materialized with a single
+ // instruction e.g. which have less than either three all zero or all one
+ // chunks.
+ //
+ // Ignore 32-bit constants here, they always can be materialized with a
+ // MOVZ/MOVN + MOVK pair. Since the 32-bit constant can't be materialized
+ // with a single ORR, the best sequence we can achieve is a ORR + MOVK pair.
+ // Thus we fall back to the default code below which in the best case creates
+ // a single MOVZ/MOVN instruction (in case one chunk is all zero or all one).
+ //
+ if (BitSize == 64 && OneChunks < 3 && ZeroChunks < 3) {
+ // If we interpret the 64-bit constant as a v4i16, are elements 0 and 2
+ // identical?
+ if (getChunk(UImm, 0) == getChunk(UImm, 2)) {
+ // See if we can come up with a constant which can be materialized with
+ // ORR-immediate by replicating element 3 into element 1.
+ uint64_t OrrImm = replicateChunk(UImm, 3, 1);
+ if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 1))
+ return true;
+
+ // See if we can come up with a constant which can be materialized with
+ // ORR-immediate by replicating element 1 into element 3.
+ OrrImm = replicateChunk(UImm, 1, 3);
+ if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 3))
+ return true;
+
+ // If we interpret the 64-bit constant as a v4i16, are elements 1 and 3
+ // identical?
+ } else if (getChunk(UImm, 1) == getChunk(UImm, 3)) {
+ // See if we can come up with a constant which can be materialized with
+ // ORR-immediate by replicating element 2 into element 0.
+ uint64_t OrrImm = replicateChunk(UImm, 2, 0);
+ if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 0))
+ return true;
+
+ // See if we can come up with a constant which can be materialized with
+ // ORR-immediate by replicating element 1 into element 3.
+ OrrImm = replicateChunk(UImm, 0, 2);
+ if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 2))
+ return true;
+ }
+ }
+
+ // Check for identical 16-bit chunks within the constant and if so materialize
+ // them with a single ORR instruction. The remaining one or two 16-bit chunks
+ // will be materialized with MOVK instructions.
+ if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
+ return true;
+
+ // Check whether the constant contains a sequence of contiguous ones, which
+ // might be interrupted by one or two chunks. If so, materialize the sequence
+ // of contiguous ones with an ORR instruction. Materialize the chunks which
+ // are either interrupting the sequence or outside of the sequence with a
+ // MOVK instruction.
+ if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
+ return true;
+
+ // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
+ // more MOVK instructions to insert additional 16-bit portions into the
+ // lower bits.
+ bool isNeg = false;
+
+ // Use MOVN to materialize the high bits if we have more all one chunks
+ // than all zero chunks.
+ if (OneChunks > ZeroChunks) {
+ isNeg = true;
+ Imm = ~Imm;
+ }
+
+ unsigned FirstOpc;
+ if (BitSize == 32) {
+ Imm &= (1LL << 32) - 1;
+ FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
+ } else {
+ FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
+ }
+ unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN
+ unsigned LastShift = 0; // LSL amount for last MOVK
+ if (Imm != 0) {
+ unsigned LZ = countLeadingZeros(Imm);
+ unsigned TZ = countTrailingZeros(Imm);
+ Shift = ((63 - LZ) / 16) * 16;
+ LastShift = (TZ / 16) * 16;
+ }
+ unsigned Imm16 = (Imm >> Shift) & Mask;
+ unsigned DstReg = MI.getOperand(0).getReg();
+ bool DstIsDead = MI.getOperand(0).isDead();
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
+ .addReg(DstReg, RegState::Define |
+ getDeadRegState(DstIsDead && Shift == LastShift))
+ .addImm(Imm16)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
+
+ // If a MOVN was used for the high bits of a negative value, flip the rest
+ // of the bits back for use with MOVK.
+ if (isNeg)
+ Imm = ~Imm;
+
+ if (Shift == LastShift) {
+ transferImpOps(MI, MIB1, MIB1);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ MachineInstrBuilder MIB2;
+ unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
+ while (Shift != LastShift) {
+ Shift -= 16;
+ Imm16 = (Imm >> Shift) & Mask;
+ if (Imm16 == (isNeg ? Mask : 0))
+ continue; // This 16-bit portion is already set correctly.
+ MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
+ .addReg(DstReg,
+ RegState::Define |
+ getDeadRegState(DstIsDead && Shift == LastShift))
+ .addReg(DstReg)
+ .addImm(Imm16)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
+ }
+
+ transferImpOps(MI, MIB1, MIB2);
+ MI.eraseFromParent();
+ return true;
+}
+
+/// \brief If MBBI references a pseudo instruction that should be expanded here,
+/// do the expansion and return true. Otherwise return false.
+bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI) {
+ MachineInstr &MI = *MBBI;
+ unsigned Opcode = MI.getOpcode();
+ switch (Opcode) {
+ default:
+ break;
+
+ case AArch64::ADDWrr:
+ case AArch64::SUBWrr:
+ case AArch64::ADDXrr:
+ case AArch64::SUBXrr:
+ case AArch64::ADDSWrr:
+ case AArch64::SUBSWrr:
+ case AArch64::ADDSXrr:
+ case AArch64::SUBSXrr:
+ case AArch64::ANDWrr:
+ case AArch64::ANDXrr:
+ case AArch64::BICWrr:
+ case AArch64::BICXrr:
+ case AArch64::ANDSWrr:
+ case AArch64::ANDSXrr:
+ case AArch64::BICSWrr:
+ case AArch64::BICSXrr:
+ case AArch64::EONWrr:
+ case AArch64::EONXrr:
+ case AArch64::EORWrr:
+ case AArch64::EORXrr:
+ case AArch64::ORNWrr:
+ case AArch64::ORNXrr:
+ case AArch64::ORRWrr:
+ case AArch64::ORRXrr: {
+ unsigned Opcode;
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case AArch64::ADDWrr: Opcode = AArch64::ADDWrs; break;
+ case AArch64::SUBWrr: Opcode = AArch64::SUBWrs; break;
+ case AArch64::ADDXrr: Opcode = AArch64::ADDXrs; break;
+ case AArch64::SUBXrr: Opcode = AArch64::SUBXrs; break;
+ case AArch64::ADDSWrr: Opcode = AArch64::ADDSWrs; break;
+ case AArch64::SUBSWrr: Opcode = AArch64::SUBSWrs; break;
+ case AArch64::ADDSXrr: Opcode = AArch64::ADDSXrs; break;
+ case AArch64::SUBSXrr: Opcode = AArch64::SUBSXrs; break;
+ case AArch64::ANDWrr: Opcode = AArch64::ANDWrs; break;
+ case AArch64::ANDXrr: Opcode = AArch64::ANDXrs; break;
+ case AArch64::BICWrr: Opcode = AArch64::BICWrs; break;
+ case AArch64::BICXrr: Opcode = AArch64::BICXrs; break;
+ case AArch64::ANDSWrr: Opcode = AArch64::ANDSWrs; break;
+ case AArch64::ANDSXrr: Opcode = AArch64::ANDSXrs; break;
+ case AArch64::BICSWrr: Opcode = AArch64::BICSWrs; break;
+ case AArch64::BICSXrr: Opcode = AArch64::BICSXrs; break;
+ case AArch64::EONWrr: Opcode = AArch64::EONWrs; break;
+ case AArch64::EONXrr: Opcode = AArch64::EONXrs; break;
+ case AArch64::EORWrr: Opcode = AArch64::EORWrs; break;
+ case AArch64::EORXrr: Opcode = AArch64::EORXrs; break;
+ case AArch64::ORNWrr: Opcode = AArch64::ORNWrs; break;
+ case AArch64::ORNXrr: Opcode = AArch64::ORNXrs; break;
+ case AArch64::ORRWrr: Opcode = AArch64::ORRWrs; break;
+ case AArch64::ORRXrr: Opcode = AArch64::ORRXrs; break;
+ }
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
+ MI.getOperand(0).getReg())
+ .addOperand(MI.getOperand(1))
+ .addOperand(MI.getOperand(2))
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
+ transferImpOps(MI, MIB1, MIB1);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ case AArch64::LOADgot: {
+ // Expand into ADRP + LDR.
+ unsigned DstReg = MI.getOperand(0).getReg();
+ const MachineOperand &MO1 = MI.getOperand(1);
+ unsigned Flags = MO1.getTargetFlags();
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
+ MachineInstrBuilder MIB2 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
+ .addOperand(MI.getOperand(0))
+ .addReg(DstReg);
+
+ if (MO1.isGlobal()) {
+ MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
+ MIB2.addGlobalAddress(MO1.getGlobal(), 0,
+ Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+ } else if (MO1.isSymbol()) {
+ MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
+ MIB2.addExternalSymbol(MO1.getSymbolName(),
+ Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+ } else {
+ assert(MO1.isCPI() &&
+ "Only expect globals, externalsymbols, or constant pools");
+ MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
+ Flags | AArch64II::MO_PAGE);
+ MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
+ Flags | AArch64II::MO_PAGEOFF |
+ AArch64II::MO_NC);
+ }
+
+ transferImpOps(MI, MIB1, MIB2);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ case AArch64::MOVaddr:
+ case AArch64::MOVaddrJT:
+ case AArch64::MOVaddrCP:
+ case AArch64::MOVaddrBA:
+ case AArch64::MOVaddrTLS:
+ case AArch64::MOVaddrEXT: {
+ // Expand into ADRP + ADD.
+ unsigned DstReg = MI.getOperand(0).getReg();
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
+ .addOperand(MI.getOperand(1));
+
+ MachineInstrBuilder MIB2 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
+ .addOperand(MI.getOperand(0))
+ .addReg(DstReg)
+ .addOperand(MI.getOperand(2))
+ .addImm(0);
+
+ transferImpOps(MI, MIB1, MIB2);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ case AArch64::MOVi32imm:
+ return expandMOVImm(MBB, MBBI, 32);
+ case AArch64::MOVi64imm:
+ return expandMOVImm(MBB, MBBI, 64);
+ case AArch64::RET_ReallyLR:
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
+ .addReg(AArch64::LR);
+ MI.eraseFromParent();
+ return true;
+ }
+ return false;
+}
+
+/// \brief Iterate over the instructions in basic block MBB and expand any
+/// pseudo instructions. Return true if anything was modified.
+bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
+ bool Modified = false;
+
+ MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
+ while (MBBI != E) {
+ MachineBasicBlock::iterator NMBBI = std::next(MBBI);
+ Modified |= expandMI(MBB, MBBI);
+ MBBI = NMBBI;
+ }
+
+ return Modified;
+}
+
+bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
+ TII = static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo());
+
+ bool Modified = false;
+ for (auto &MBB : MF)
+ Modified |= expandMBB(MBB);
+ return Modified;
+}
+
+/// \brief Returns an instance of the pseudo instruction expansion pass.
+FunctionPass *llvm::createAArch64ExpandPseudoPass() {
+ return new AArch64ExpandPseudo();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64FastISel.cpp b/contrib/llvm/lib/Target/AArch64/AArch64FastISel.cpp
new file mode 100644
index 0000000..2164d77
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64FastISel.cpp
@@ -0,0 +1,1994 @@
+//===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the AArch64-specific support for the FastISel class. Some
+// of the target-specific code is generated by tablegen in the file
+// AArch64GenFastISel.inc, which is #included here.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64TargetMachine.h"
+#include "AArch64Subtarget.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+namespace {
+
+class AArch64FastISel : public FastISel {
+
+ class Address {
+ public:
+ typedef enum {
+ RegBase,
+ FrameIndexBase
+ } BaseKind;
+
+ private:
+ BaseKind Kind;
+ union {
+ unsigned Reg;
+ int FI;
+ } Base;
+ int64_t Offset;
+
+ public:
+ Address() : Kind(RegBase), Offset(0) { Base.Reg = 0; }
+ void setKind(BaseKind K) { Kind = K; }
+ BaseKind getKind() const { return Kind; }
+ bool isRegBase() const { return Kind == RegBase; }
+ bool isFIBase() const { return Kind == FrameIndexBase; }
+ void setReg(unsigned Reg) {
+ assert(isRegBase() && "Invalid base register access!");
+ Base.Reg = Reg;
+ }
+ unsigned getReg() const {
+ assert(isRegBase() && "Invalid base register access!");
+ return Base.Reg;
+ }
+ void setFI(unsigned FI) {
+ assert(isFIBase() && "Invalid base frame index access!");
+ Base.FI = FI;
+ }
+ unsigned getFI() const {
+ assert(isFIBase() && "Invalid base frame index access!");
+ return Base.FI;
+ }
+ void setOffset(int64_t O) { Offset = O; }
+ int64_t getOffset() { return Offset; }
+
+ bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); }
+ };
+
+ /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const AArch64Subtarget *Subtarget;
+ LLVMContext *Context;
+
+private:
+ // Selection routines.
+ bool SelectLoad(const Instruction *I);
+ bool SelectStore(const Instruction *I);
+ bool SelectBranch(const Instruction *I);
+ bool SelectIndirectBr(const Instruction *I);
+ bool SelectCmp(const Instruction *I);
+ bool SelectSelect(const Instruction *I);
+ bool SelectFPExt(const Instruction *I);
+ bool SelectFPTrunc(const Instruction *I);
+ bool SelectFPToInt(const Instruction *I, bool Signed);
+ bool SelectIntToFP(const Instruction *I, bool Signed);
+ bool SelectRem(const Instruction *I, unsigned ISDOpcode);
+ bool SelectCall(const Instruction *I, const char *IntrMemName);
+ bool SelectIntrinsicCall(const IntrinsicInst &I);
+ bool SelectRet(const Instruction *I);
+ bool SelectTrunc(const Instruction *I);
+ bool SelectIntExt(const Instruction *I);
+ bool SelectMul(const Instruction *I);
+
+ // Utility helper routines.
+ bool isTypeLegal(Type *Ty, MVT &VT);
+ bool isLoadStoreTypeLegal(Type *Ty, MVT &VT);
+ bool ComputeAddress(const Value *Obj, Address &Addr);
+ bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor,
+ bool UseUnscaled);
+ void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
+ unsigned Flags, bool UseUnscaled);
+ bool IsMemCpySmall(uint64_t Len, unsigned Alignment);
+ bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
+ unsigned Alignment);
+ // Emit functions.
+ bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt);
+ bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
+ bool UseUnscaled = false);
+ bool EmitStore(MVT VT, unsigned SrcReg, Address Addr,
+ bool UseUnscaled = false);
+ unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
+ unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
+
+ unsigned AArch64MaterializeFP(const ConstantFP *CFP, MVT VT);
+ unsigned AArch64MaterializeGV(const GlobalValue *GV);
+
+ // Call handling routines.
+private:
+ CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
+ bool ProcessCallArgs(SmallVectorImpl<Value *> &Args,
+ SmallVectorImpl<unsigned> &ArgRegs,
+ SmallVectorImpl<MVT> &ArgVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+ SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
+ unsigned &NumBytes);
+ bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+ const Instruction *I, CallingConv::ID CC, unsigned &NumBytes);
+
+public:
+ // Backend specific FastISel code.
+ unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
+ unsigned TargetMaterializeConstant(const Constant *C) override;
+
+ explicit AArch64FastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo)
+ : FastISel(funcInfo, libInfo) {
+ Subtarget = &TM.getSubtarget<AArch64Subtarget>();
+ Context = &funcInfo.Fn->getContext();
+ }
+
+ bool TargetSelectInstruction(const Instruction *I) override;
+
+#include "AArch64GenFastISel.inc"
+};
+
+} // end anonymous namespace
+
+#include "AArch64GenCallingConv.inc"
+
+CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
+ if (CC == CallingConv::WebKit_JS)
+ return CC_AArch64_WebKit_JS;
+ return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
+}
+
+unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
+ assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
+ "Alloca should always return a pointer.");
+
+ // Don't handle dynamic allocas.
+ if (!FuncInfo.StaticAllocaMap.count(AI))
+ return 0;
+
+ DenseMap<const AllocaInst *, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
+ ResultReg)
+ .addFrameIndex(SI->second)
+ .addImm(0)
+ .addImm(0);
+ return ResultReg;
+ }
+
+ return 0;
+}
+
+unsigned AArch64FastISel::AArch64MaterializeFP(const ConstantFP *CFP, MVT VT) {
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return 0;
+
+ const APFloat Val = CFP->getValueAPF();
+ bool is64bit = (VT == MVT::f64);
+
+ // This checks to see if we can use FMOV instructions to materialize
+ // a constant, otherwise we have to materialize via the constant pool.
+ if (TLI.isFPImmLegal(Val, VT)) {
+ int Imm;
+ unsigned Opc;
+ if (is64bit) {
+ Imm = AArch64_AM::getFP64Imm(Val);
+ Opc = AArch64::FMOVDi;
+ } else {
+ Imm = AArch64_AM::getFP32Imm(Val);
+ Opc = AArch64::FMOVSi;
+ }
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addImm(Imm);
+ return ResultReg;
+ }
+
+ // Materialize via constant pool. MachineConstantPool wants an explicit
+ // alignment.
+ unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
+ if (Align == 0)
+ Align = DL.getTypeAllocSize(CFP->getType());
+
+ unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
+ unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
+ ADRPReg).addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGE);
+
+ unsigned Opc = is64bit ? AArch64::LDRDui : AArch64::LDRSui;
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(ADRPReg)
+ .addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::AArch64MaterializeGV(const GlobalValue *GV) {
+ // We can't handle thread-local variables quickly yet.
+ if (GV->isThreadLocal())
+ return 0;
+
+ // MachO still uses GOT for large code-model accesses, but ELF requires
+ // movz/movk sequences, which FastISel doesn't handle yet.
+ if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO())
+ return 0;
+
+ unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
+
+ EVT DestEVT = TLI.getValueType(GV->getType(), true);
+ if (!DestEVT.isSimple())
+ return 0;
+
+ unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
+ unsigned ResultReg;
+
+ if (OpFlags & AArch64II::MO_GOT) {
+ // ADRP + LDRX
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
+ ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
+
+ ResultReg = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
+ ResultReg)
+ .addReg(ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
+ AArch64II::MO_NC);
+ } else {
+ // ADRP + ADDX
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
+ ADRPReg).addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
+
+ ResultReg = createResultReg(&AArch64::GPR64spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
+ ResultReg)
+ .addReg(ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
+ .addImm(0);
+ }
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::TargetMaterializeConstant(const Constant *C) {
+ EVT CEVT = TLI.getValueType(C->getType(), true);
+
+ // Only handle simple types.
+ if (!CEVT.isSimple())
+ return 0;
+ MVT VT = CEVT.getSimpleVT();
+
+ // FIXME: Handle ConstantInt.
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return AArch64MaterializeFP(CFP, VT);
+ else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return AArch64MaterializeGV(GV);
+
+ return 0;
+}
+
+// Computes the address to get to an object.
+bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
+ const User *U = nullptr;
+ unsigned Opcode = Instruction::UserOp1;
+ if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
+ // Don't walk into other basic blocks unless the object is an alloca from
+ // another block, otherwise it may not have a virtual register assigned.
+ if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
+ FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
+ Opcode = I->getOpcode();
+ U = I;
+ }
+ } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
+ if (Ty->getAddressSpace() > 255)
+ // Fast instruction selection doesn't support the special
+ // address spaces.
+ return false;
+
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::BitCast: {
+ // Look through bitcasts.
+ return ComputeAddress(U->getOperand(0), Addr);
+ }
+ case Instruction::IntToPtr: {
+ // Look past no-op inttoptrs.
+ if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return ComputeAddress(U->getOperand(0), Addr);
+ break;
+ }
+ case Instruction::PtrToInt: {
+ // Look past no-op ptrtoints.
+ if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return ComputeAddress(U->getOperand(0), Addr);
+ break;
+ }
+ case Instruction::GetElementPtr: {
+ Address SavedAddr = Addr;
+ uint64_t TmpOffset = Addr.getOffset();
+
+ // Iterate through the GEP folding the constants into offsets where
+ // we can.
+ gep_type_iterator GTI = gep_type_begin(U);
+ for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
+ ++i, ++GTI) {
+ const Value *Op = *i;
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
+ TmpOffset += SL->getElementOffset(Idx);
+ } else {
+ uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
+ for (;;) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // Constant-offset addressing.
+ TmpOffset += CI->getSExtValue() * S;
+ break;
+ }
+ if (canFoldAddIntoGEP(U, Op)) {
+ // A compatible add with a constant operand. Fold the constant.
+ ConstantInt *CI =
+ cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
+ TmpOffset += CI->getSExtValue() * S;
+ // Iterate on the other operand.
+ Op = cast<AddOperator>(Op)->getOperand(0);
+ continue;
+ }
+ // Unsupported
+ goto unsupported_gep;
+ }
+ }
+ }
+
+ // Try to grab the base operand now.
+ Addr.setOffset(TmpOffset);
+ if (ComputeAddress(U->getOperand(0), Addr))
+ return true;
+
+ // We failed, restore everything and try the other options.
+ Addr = SavedAddr;
+
+ unsupported_gep:
+ break;
+ }
+ case Instruction::Alloca: {
+ const AllocaInst *AI = cast<AllocaInst>(Obj);
+ DenseMap<const AllocaInst *, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ Addr.setKind(Address::FrameIndexBase);
+ Addr.setFI(SI->second);
+ return true;
+ }
+ break;
+ }
+ }
+
+ // Try to get this in a register if nothing else has worked.
+ if (!Addr.isValid())
+ Addr.setReg(getRegForValue(Obj));
+ return Addr.isValid();
+}
+
+bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
+ EVT evt = TLI.getValueType(Ty, true);
+
+ // Only handle simple types.
+ if (evt == MVT::Other || !evt.isSimple())
+ return false;
+ VT = evt.getSimpleVT();
+
+ // This is a legal type, but it's not something we handle in fast-isel.
+ if (VT == MVT::f128)
+ return false;
+
+ // Handle all other legal types, i.e. a register that will directly hold this
+ // value.
+ return TLI.isTypeLegal(VT);
+}
+
+bool AArch64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) {
+ if (isTypeLegal(Ty, VT))
+ return true;
+
+ // If this is a type than can be sign or zero-extended to a basic operation
+ // go ahead and accept it now. For stores, this reflects truncation.
+ if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
+ return true;
+
+ return false;
+}
+
+bool AArch64FastISel::SimplifyAddress(Address &Addr, MVT VT,
+ int64_t ScaleFactor, bool UseUnscaled) {
+ bool needsLowering = false;
+ int64_t Offset = Addr.getOffset();
+ switch (VT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ case MVT::f32:
+ case MVT::f64:
+ if (!UseUnscaled)
+ // Using scaled, 12-bit, unsigned immediate offsets.
+ needsLowering = ((Offset & 0xfff) != Offset);
+ else
+ // Using unscaled, 9-bit, signed immediate offsets.
+ needsLowering = (Offset > 256 || Offset < -256);
+ break;
+ }
+
+ //If this is a stack pointer and the offset needs to be simplified then put
+ // the alloca address into a register, set the base type back to register and
+ // continue. This should almost never happen.
+ if (needsLowering && Addr.getKind() == Address::FrameIndexBase) {
+ unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
+ ResultReg)
+ .addFrameIndex(Addr.getFI())
+ .addImm(0)
+ .addImm(0);
+ Addr.setKind(Address::RegBase);
+ Addr.setReg(ResultReg);
+ }
+
+ // Since the offset is too large for the load/store instruction get the
+ // reg+offset into a register.
+ if (needsLowering) {
+ uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor;
+ unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false,
+ UnscaledOffset, MVT::i64);
+ if (ResultReg == 0)
+ return false;
+ Addr.setReg(ResultReg);
+ Addr.setOffset(0);
+ }
+ return true;
+}
+
+void AArch64FastISel::AddLoadStoreOperands(Address &Addr,
+ const MachineInstrBuilder &MIB,
+ unsigned Flags, bool UseUnscaled) {
+ int64_t Offset = Addr.getOffset();
+ // Frame base works a bit differently. Handle it separately.
+ if (Addr.getKind() == Address::FrameIndexBase) {
+ int FI = Addr.getFI();
+ // FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size
+ // and alignment should be based on the VT.
+ MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(FI, Offset), Flags,
+ MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
+ // Now add the rest of the operands.
+ MIB.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO);
+ } else {
+ // Now add the rest of the operands.
+ MIB.addReg(Addr.getReg());
+ MIB.addImm(Offset);
+ }
+}
+
+bool AArch64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
+ bool UseUnscaled) {
+ // Negative offsets require unscaled, 9-bit, signed immediate offsets.
+ // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
+ if (!UseUnscaled && Addr.getOffset() < 0)
+ UseUnscaled = true;
+
+ unsigned Opc;
+ const TargetRegisterClass *RC;
+ bool VTIsi1 = false;
+ int64_t ScaleFactor = 0;
+ switch (VT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i1:
+ VTIsi1 = true;
+ // Intentional fall-through.
+ case MVT::i8:
+ Opc = UseUnscaled ? AArch64::LDURBBi : AArch64::LDRBBui;
+ RC = &AArch64::GPR32RegClass;
+ ScaleFactor = 1;
+ break;
+ case MVT::i16:
+ Opc = UseUnscaled ? AArch64::LDURHHi : AArch64::LDRHHui;
+ RC = &AArch64::GPR32RegClass;
+ ScaleFactor = 2;
+ break;
+ case MVT::i32:
+ Opc = UseUnscaled ? AArch64::LDURWi : AArch64::LDRWui;
+ RC = &AArch64::GPR32RegClass;
+ ScaleFactor = 4;
+ break;
+ case MVT::i64:
+ Opc = UseUnscaled ? AArch64::LDURXi : AArch64::LDRXui;
+ RC = &AArch64::GPR64RegClass;
+ ScaleFactor = 8;
+ break;
+ case MVT::f32:
+ Opc = UseUnscaled ? AArch64::LDURSi : AArch64::LDRSui;
+ RC = TLI.getRegClassFor(VT);
+ ScaleFactor = 4;
+ break;
+ case MVT::f64:
+ Opc = UseUnscaled ? AArch64::LDURDi : AArch64::LDRDui;
+ RC = TLI.getRegClassFor(VT);
+ ScaleFactor = 8;
+ break;
+ }
+ // Scale the offset.
+ if (!UseUnscaled) {
+ int64_t Offset = Addr.getOffset();
+ if (Offset & (ScaleFactor - 1))
+ // Retry using an unscaled, 9-bit, signed immediate offset.
+ return EmitLoad(VT, ResultReg, Addr, /*UseUnscaled*/ true);
+
+ Addr.setOffset(Offset / ScaleFactor);
+ }
+
+ // Simplify this down to something we can handle.
+ if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
+ return false;
+
+ // Create the base instruction, then add the operands.
+ ResultReg = createResultReg(RC);
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg);
+ AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, UseUnscaled);
+
+ // Loading an i1 requires special handling.
+ if (VTIsi1) {
+ MRI.constrainRegClass(ResultReg, &AArch64::GPR32RegClass);
+ unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
+ ANDReg)
+ .addReg(ResultReg)
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ ResultReg = ANDReg;
+ }
+ return true;
+}
+
+bool AArch64FastISel::SelectLoad(const Instruction *I) {
+ MVT VT;
+ // Verify we have a legal type before going any further. Currently, we handle
+ // simple types that will directly fit in a register (i32/f32/i64/f64) or
+ // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
+ if (!isLoadStoreTypeLegal(I->getType(), VT) || cast<LoadInst>(I)->isAtomic())
+ return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ComputeAddress(I->getOperand(0), Addr))
+ return false;
+
+ unsigned ResultReg;
+ if (!EmitLoad(VT, ResultReg, Addr))
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr,
+ bool UseUnscaled) {
+ // Negative offsets require unscaled, 9-bit, signed immediate offsets.
+ // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
+ if (!UseUnscaled && Addr.getOffset() < 0)
+ UseUnscaled = true;
+
+ unsigned StrOpc;
+ bool VTIsi1 = false;
+ int64_t ScaleFactor = 0;
+ // Using scaled, 12-bit, unsigned immediate offsets.
+ switch (VT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i1:
+ VTIsi1 = true;
+ case MVT::i8:
+ StrOpc = UseUnscaled ? AArch64::STURBBi : AArch64::STRBBui;
+ ScaleFactor = 1;
+ break;
+ case MVT::i16:
+ StrOpc = UseUnscaled ? AArch64::STURHHi : AArch64::STRHHui;
+ ScaleFactor = 2;
+ break;
+ case MVT::i32:
+ StrOpc = UseUnscaled ? AArch64::STURWi : AArch64::STRWui;
+ ScaleFactor = 4;
+ break;
+ case MVT::i64:
+ StrOpc = UseUnscaled ? AArch64::STURXi : AArch64::STRXui;
+ ScaleFactor = 8;
+ break;
+ case MVT::f32:
+ StrOpc = UseUnscaled ? AArch64::STURSi : AArch64::STRSui;
+ ScaleFactor = 4;
+ break;
+ case MVT::f64:
+ StrOpc = UseUnscaled ? AArch64::STURDi : AArch64::STRDui;
+ ScaleFactor = 8;
+ break;
+ }
+ // Scale the offset.
+ if (!UseUnscaled) {
+ int64_t Offset = Addr.getOffset();
+ if (Offset & (ScaleFactor - 1))
+ // Retry using an unscaled, 9-bit, signed immediate offset.
+ return EmitStore(VT, SrcReg, Addr, /*UseUnscaled*/ true);
+
+ Addr.setOffset(Offset / ScaleFactor);
+ }
+
+ // Simplify this down to something we can handle.
+ if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
+ return false;
+
+ // Storing an i1 requires special handling.
+ if (VTIsi1) {
+ MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
+ unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
+ ANDReg)
+ .addReg(SrcReg)
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ SrcReg = ANDReg;
+ }
+ // Create the base instruction, then add the operands.
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(StrOpc)).addReg(SrcReg);
+ AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, UseUnscaled);
+ return true;
+}
+
+bool AArch64FastISel::SelectStore(const Instruction *I) {
+ MVT VT;
+ Value *Op0 = I->getOperand(0);
+ // Verify we have a legal type before going any further. Currently, we handle
+ // simple types that will directly fit in a register (i32/f32/i64/f64) or
+ // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
+ if (!isLoadStoreTypeLegal(Op0->getType(), VT) ||
+ cast<StoreInst>(I)->isAtomic())
+ return false;
+
+ // Get the value to be stored into a register.
+ unsigned SrcReg = getRegForValue(Op0);
+ if (SrcReg == 0)
+ return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ComputeAddress(I->getOperand(1), Addr))
+ return false;
+
+ if (!EmitStore(VT, SrcReg, Addr))
+ return false;
+ return true;
+}
+
+static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
+ switch (Pred) {
+ case CmpInst::FCMP_ONE:
+ case CmpInst::FCMP_UEQ:
+ default:
+ // AL is our "false" for now. The other two need more compares.
+ return AArch64CC::AL;
+ case CmpInst::ICMP_EQ:
+ case CmpInst::FCMP_OEQ:
+ return AArch64CC::EQ;
+ case CmpInst::ICMP_SGT:
+ case CmpInst::FCMP_OGT:
+ return AArch64CC::GT;
+ case CmpInst::ICMP_SGE:
+ case CmpInst::FCMP_OGE:
+ return AArch64CC::GE;
+ case CmpInst::ICMP_UGT:
+ case CmpInst::FCMP_UGT:
+ return AArch64CC::HI;
+ case CmpInst::FCMP_OLT:
+ return AArch64CC::MI;
+ case CmpInst::ICMP_ULE:
+ case CmpInst::FCMP_OLE:
+ return AArch64CC::LS;
+ case CmpInst::FCMP_ORD:
+ return AArch64CC::VC;
+ case CmpInst::FCMP_UNO:
+ return AArch64CC::VS;
+ case CmpInst::FCMP_UGE:
+ return AArch64CC::PL;
+ case CmpInst::ICMP_SLT:
+ case CmpInst::FCMP_ULT:
+ return AArch64CC::LT;
+ case CmpInst::ICMP_SLE:
+ case CmpInst::FCMP_ULE:
+ return AArch64CC::LE;
+ case CmpInst::FCMP_UNE:
+ case CmpInst::ICMP_NE:
+ return AArch64CC::NE;
+ case CmpInst::ICMP_UGE:
+ return AArch64CC::HS;
+ case CmpInst::ICMP_ULT:
+ return AArch64CC::LO;
+ }
+}
+
+bool AArch64FastISel::SelectBranch(const Instruction *I) {
+ const BranchInst *BI = cast<BranchInst>(I);
+ MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+ if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
+ if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
+ // We may not handle every CC for now.
+ AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
+ if (CC == AArch64CC::AL)
+ return false;
+
+ // Emit the cmp.
+ if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+ return false;
+
+ // Emit the branch.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
+ .addImm(CC)
+ .addMBB(TBB);
+ FuncInfo.MBB->addSuccessor(TBB);
+
+ FastEmitBranch(FBB, DbgLoc);
+ return true;
+ }
+ } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
+ MVT SrcVT;
+ if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
+ (isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) {
+ unsigned CondReg = getRegForValue(TI->getOperand(0));
+ if (CondReg == 0)
+ return false;
+
+ // Issue an extract_subreg to get the lower 32-bits.
+ if (SrcVT == MVT::i64)
+ CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true,
+ AArch64::sub_32);
+
+ MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
+ unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::ANDWri), ANDReg)
+ .addReg(CondReg)
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBSWri))
+ .addReg(ANDReg)
+ .addReg(ANDReg)
+ .addImm(0)
+ .addImm(0);
+
+ unsigned CC = AArch64CC::NE;
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ CC = AArch64CC::EQ;
+ }
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
+ .addImm(CC)
+ .addMBB(TBB);
+ FuncInfo.MBB->addSuccessor(TBB);
+ FastEmitBranch(FBB, DbgLoc);
+ return true;
+ }
+ } else if (const ConstantInt *CI =
+ dyn_cast<ConstantInt>(BI->getCondition())) {
+ uint64_t Imm = CI->getZExtValue();
+ MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
+ .addMBB(Target);
+ FuncInfo.MBB->addSuccessor(Target);
+ return true;
+ }
+
+ unsigned CondReg = getRegForValue(BI->getCondition());
+ if (CondReg == 0)
+ return false;
+
+ // We've been divorced from our compare! Our block was split, and
+ // now our compare lives in a predecessor block. We musn't
+ // re-compare here, as the children of the compare aren't guaranteed
+ // live across the block boundary (we *could* check for this).
+ // Regardless, the compare has been done in the predecessor block,
+ // and it left a value for us in a virtual register. Ergo, we test
+ // the one-bit value left in the virtual register.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri),
+ AArch64::WZR)
+ .addReg(CondReg)
+ .addImm(0)
+ .addImm(0);
+
+ unsigned CC = AArch64CC::NE;
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ CC = AArch64CC::EQ;
+ }
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
+ .addImm(CC)
+ .addMBB(TBB);
+ FuncInfo.MBB->addSuccessor(TBB);
+ FastEmitBranch(FBB, DbgLoc);
+ return true;
+}
+
+bool AArch64FastISel::SelectIndirectBr(const Instruction *I) {
+ const IndirectBrInst *BI = cast<IndirectBrInst>(I);
+ unsigned AddrReg = getRegForValue(BI->getOperand(0));
+ if (AddrReg == 0)
+ return false;
+
+ // Emit the indirect branch.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BR))
+ .addReg(AddrReg);
+
+ // Make sure the CFG is up-to-date.
+ for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
+ FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]);
+
+ return true;
+}
+
+bool AArch64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) {
+ Type *Ty = Src1Value->getType();
+ EVT SrcEVT = TLI.getValueType(Ty, true);
+ if (!SrcEVT.isSimple())
+ return false;
+ MVT SrcVT = SrcEVT.getSimpleVT();
+
+ // Check to see if the 2nd operand is a constant that we can encode directly
+ // in the compare.
+ uint64_t Imm;
+ bool UseImm = false;
+ bool isNegativeImm = false;
+ if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
+ if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
+ SrcVT == MVT::i8 || SrcVT == MVT::i1) {
+ const APInt &CIVal = ConstInt->getValue();
+
+ Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue();
+ if (CIVal.isNegative()) {
+ isNegativeImm = true;
+ Imm = -Imm;
+ }
+ // FIXME: We can handle more immediates using shifts.
+ UseImm = ((Imm & 0xfff) == Imm);
+ }
+ } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
+ if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
+ if (ConstFP->isZero() && !ConstFP->isNegative())
+ UseImm = true;
+ }
+
+ unsigned ZReg;
+ unsigned CmpOpc;
+ bool isICmp = true;
+ bool needsExt = false;
+ switch (SrcVT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ needsExt = true;
+ // Intentional fall-through.
+ case MVT::i32:
+ ZReg = AArch64::WZR;
+ if (UseImm)
+ CmpOpc = isNegativeImm ? AArch64::ADDSWri : AArch64::SUBSWri;
+ else
+ CmpOpc = AArch64::SUBSWrr;
+ break;
+ case MVT::i64:
+ ZReg = AArch64::XZR;
+ if (UseImm)
+ CmpOpc = isNegativeImm ? AArch64::ADDSXri : AArch64::SUBSXri;
+ else
+ CmpOpc = AArch64::SUBSXrr;
+ break;
+ case MVT::f32:
+ isICmp = false;
+ CmpOpc = UseImm ? AArch64::FCMPSri : AArch64::FCMPSrr;
+ break;
+ case MVT::f64:
+ isICmp = false;
+ CmpOpc = UseImm ? AArch64::FCMPDri : AArch64::FCMPDrr;
+ break;
+ }
+
+ unsigned SrcReg1 = getRegForValue(Src1Value);
+ if (SrcReg1 == 0)
+ return false;
+
+ unsigned SrcReg2;
+ if (!UseImm) {
+ SrcReg2 = getRegForValue(Src2Value);
+ if (SrcReg2 == 0)
+ return false;
+ }
+
+ // We have i1, i8, or i16, we need to either zero extend or sign extend.
+ if (needsExt) {
+ SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
+ if (SrcReg1 == 0)
+ return false;
+ if (!UseImm) {
+ SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
+ if (SrcReg2 == 0)
+ return false;
+ }
+ }
+
+ if (isICmp) {
+ if (UseImm)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+ .addReg(ZReg)
+ .addReg(SrcReg1)
+ .addImm(Imm)
+ .addImm(0);
+ else
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+ .addReg(ZReg)
+ .addReg(SrcReg1)
+ .addReg(SrcReg2);
+ } else {
+ if (UseImm)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+ .addReg(SrcReg1);
+ else
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+ .addReg(SrcReg1)
+ .addReg(SrcReg2);
+ }
+ return true;
+}
+
+bool AArch64FastISel::SelectCmp(const Instruction *I) {
+ const CmpInst *CI = cast<CmpInst>(I);
+
+ // We may not handle every CC for now.
+ AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
+ if (CC == AArch64CC::AL)
+ return false;
+
+ // Emit the cmp.
+ if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+ return false;
+
+ // Now set a register based on the comparison.
+ AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
+ unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
+ ResultReg)
+ .addReg(AArch64::WZR)
+ .addReg(AArch64::WZR)
+ .addImm(invertedCC);
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectSelect(const Instruction *I) {
+ const SelectInst *SI = cast<SelectInst>(I);
+
+ EVT DestEVT = TLI.getValueType(SI->getType(), true);
+ if (!DestEVT.isSimple())
+ return false;
+
+ MVT DestVT = DestEVT.getSimpleVT();
+ if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 &&
+ DestVT != MVT::f64)
+ return false;
+
+ unsigned CondReg = getRegForValue(SI->getCondition());
+ if (CondReg == 0)
+ return false;
+ unsigned TrueReg = getRegForValue(SI->getTrueValue());
+ if (TrueReg == 0)
+ return false;
+ unsigned FalseReg = getRegForValue(SI->getFalseValue());
+ if (FalseReg == 0)
+ return false;
+
+
+ MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
+ unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
+ ANDReg)
+ .addReg(CondReg)
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri))
+ .addReg(ANDReg)
+ .addReg(ANDReg)
+ .addImm(0)
+ .addImm(0);
+
+ unsigned SelectOpc;
+ switch (DestVT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i32:
+ SelectOpc = AArch64::CSELWr;
+ break;
+ case MVT::i64:
+ SelectOpc = AArch64::CSELXr;
+ break;
+ case MVT::f32:
+ SelectOpc = AArch64::FCSELSrrr;
+ break;
+ case MVT::f64:
+ SelectOpc = AArch64::FCSELDrrr;
+ break;
+ }
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc),
+ ResultReg)
+ .addReg(TrueReg)
+ .addReg(FalseReg)
+ .addImm(AArch64CC::NE);
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectFPExt(const Instruction *I) {
+ Value *V = I->getOperand(0);
+ if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
+ return false;
+
+ unsigned Op = getRegForValue(V);
+ if (Op == 0)
+ return false;
+
+ unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
+ ResultReg).addReg(Op);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectFPTrunc(const Instruction *I) {
+ Value *V = I->getOperand(0);
+ if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
+ return false;
+
+ unsigned Op = getRegForValue(V);
+ if (Op == 0)
+ return false;
+
+ unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
+ ResultReg).addReg(Op);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+// FPToUI and FPToSI
+bool AArch64FastISel::SelectFPToInt(const Instruction *I, bool Signed) {
+ MVT DestVT;
+ if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
+ return false;
+
+ unsigned SrcReg = getRegForValue(I->getOperand(0));
+ if (SrcReg == 0)
+ return false;
+
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
+ if (SrcVT == MVT::f128)
+ return false;
+
+ unsigned Opc;
+ if (SrcVT == MVT::f64) {
+ if (Signed)
+ Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr;
+ else
+ Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr;
+ } else {
+ if (Signed)
+ Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr;
+ else
+ Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr;
+ }
+ unsigned ResultReg = createResultReg(
+ DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(SrcReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
+ MVT DestVT;
+ if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
+ return false;
+ assert ((DestVT == MVT::f32 || DestVT == MVT::f64) &&
+ "Unexpected value type.");
+
+ unsigned SrcReg = getRegForValue(I->getOperand(0));
+ if (SrcReg == 0)
+ return false;
+
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
+
+ // Handle sign-extension.
+ if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
+ SrcReg =
+ EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
+ if (SrcReg == 0)
+ return false;
+ }
+
+ MRI.constrainRegClass(SrcReg, SrcVT == MVT::i64 ? &AArch64::GPR64RegClass
+ : &AArch64::GPR32RegClass);
+
+ unsigned Opc;
+ if (SrcVT == MVT::i64) {
+ if (Signed)
+ Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri;
+ else
+ Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri;
+ } else {
+ if (Signed)
+ Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri;
+ else
+ Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
+ }
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(SrcReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::ProcessCallArgs(
+ SmallVectorImpl<Value *> &Args, SmallVectorImpl<unsigned> &ArgRegs,
+ SmallVectorImpl<MVT> &ArgVTs, SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+ SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
+ unsigned &NumBytes) {
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
+ CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ NumBytes = CCInfo.getNextStackOffset();
+
+ // Issue CALLSEQ_START
+ unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
+ .addImm(NumBytes);
+
+ // Process the args.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ unsigned Arg = ArgRegs[VA.getValNo()];
+ MVT ArgVT = ArgVTs[VA.getValNo()];
+
+ // Handle arg promotion: SExt, ZExt, AExt.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::SExt: {
+ MVT DestVT = VA.getLocVT();
+ MVT SrcVT = ArgVT;
+ Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ false);
+ if (Arg == 0)
+ return false;
+ break;
+ }
+ case CCValAssign::AExt:
+ // Intentional fall-through.
+ case CCValAssign::ZExt: {
+ MVT DestVT = VA.getLocVT();
+ MVT SrcVT = ArgVT;
+ Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ true);
+ if (Arg == 0)
+ return false;
+ break;
+ }
+ default:
+ llvm_unreachable("Unknown arg promotion!");
+ }
+
+ // Now copy/store arg to correct locations.
+ if (VA.isRegLoc() && !VA.needsCustom()) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
+ RegArgs.push_back(VA.getLocReg());
+ } else if (VA.needsCustom()) {
+ // FIXME: Handle custom args.
+ return false;
+ } else {
+ assert(VA.isMemLoc() && "Assuming store on stack.");
+
+ // Need to store on the stack.
+ unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;
+
+ unsigned BEAlign = 0;
+ if (ArgSize < 8 && !Subtarget->isLittleEndian())
+ BEAlign = 8 - ArgSize;
+
+ Address Addr;
+ Addr.setKind(Address::RegBase);
+ Addr.setReg(AArch64::SP);
+ Addr.setOffset(VA.getLocMemOffset() + BEAlign);
+
+ if (!EmitStore(ArgVT, Arg, Addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+bool AArch64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+ const Instruction *I, CallingConv::ID CC,
+ unsigned &NumBytes) {
+ // Issue CALLSEQ_END
+ unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
+ .addImm(NumBytes)
+ .addImm(0);
+
+ // Now the return value.
+ if (RetVT != MVT::isVoid) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
+
+ // Only handle a single return value.
+ if (RVLocs.size() != 1)
+ return false;
+
+ // Copy all of the result registers out of their specified physreg.
+ MVT CopyVT = RVLocs[0].getValVT();
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(RVLocs[0].getLocReg());
+ UsedRegs.push_back(RVLocs[0].getLocReg());
+
+ // Finally update the result.
+ UpdateValueMap(I, ResultReg);
+ }
+
+ return true;
+}
+
+bool AArch64FastISel::SelectCall(const Instruction *I,
+ const char *IntrMemName = nullptr) {
+ const CallInst *CI = cast<CallInst>(I);
+ const Value *Callee = CI->getCalledValue();
+
+ // Don't handle inline asm or intrinsics.
+ if (isa<InlineAsm>(Callee))
+ return false;
+
+ // Only handle global variable Callees.
+ const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
+ if (!GV)
+ return false;
+
+ // Check the calling convention.
+ ImmutableCallSite CS(CI);
+ CallingConv::ID CC = CS.getCallingConv();
+
+ // Let SDISel handle vararg functions.
+ PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+ FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+ if (FTy->isVarArg())
+ return false;
+
+ // Handle *simple* calls for now.
+ MVT RetVT;
+ Type *RetTy = I->getType();
+ if (RetTy->isVoidTy())
+ RetVT = MVT::isVoid;
+ else if (!isTypeLegal(RetTy, RetVT))
+ return false;
+
+ // Set up the argument vectors.
+ SmallVector<Value *, 8> Args;
+ SmallVector<unsigned, 8> ArgRegs;
+ SmallVector<MVT, 8> ArgVTs;
+ SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
+ Args.reserve(CS.arg_size());
+ ArgRegs.reserve(CS.arg_size());
+ ArgVTs.reserve(CS.arg_size());
+ ArgFlags.reserve(CS.arg_size());
+
+ for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+ i != e; ++i) {
+ // If we're lowering a memory intrinsic instead of a regular call, skip the
+ // last two arguments, which shouldn't be passed to the underlying function.
+ if (IntrMemName && e - i <= 2)
+ break;
+
+ unsigned Arg = getRegForValue(*i);
+ if (Arg == 0)
+ return false;
+
+ ISD::ArgFlagsTy Flags;
+ unsigned AttrInd = i - CS.arg_begin() + 1;
+ if (CS.paramHasAttr(AttrInd, Attribute::SExt))
+ Flags.setSExt();
+ if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
+ Flags.setZExt();
+
+ // FIXME: Only handle *easy* calls for now.
+ if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
+ CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
+ CS.paramHasAttr(AttrInd, Attribute::Nest) ||
+ CS.paramHasAttr(AttrInd, Attribute::ByVal))
+ return false;
+
+ MVT ArgVT;
+ Type *ArgTy = (*i)->getType();
+ if (!isTypeLegal(ArgTy, ArgVT) &&
+ !(ArgVT == MVT::i1 || ArgVT == MVT::i8 || ArgVT == MVT::i16))
+ return false;
+
+ // We don't handle vector parameters yet.
+ if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
+ return false;
+
+ unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
+ Flags.setOrigAlign(OriginalAlignment);
+
+ Args.push_back(*i);
+ ArgRegs.push_back(Arg);
+ ArgVTs.push_back(ArgVT);
+ ArgFlags.push_back(Flags);
+ }
+
+ // Handle the arguments now that we've gotten them.
+ SmallVector<unsigned, 4> RegArgs;
+ unsigned NumBytes;
+ if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
+ return false;
+
+ // Issue the call.
+ MachineInstrBuilder MIB;
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BL));
+ if (!IntrMemName)
+ MIB.addGlobalAddress(GV, 0, 0);
+ else
+ MIB.addExternalSymbol(IntrMemName, 0);
+
+ // Add implicit physical register uses to the call.
+ for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
+ MIB.addReg(RegArgs[i], RegState::Implicit);
+
+ // Add a register mask with the call-preserved registers.
+ // Proper defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
+
+ // Finish off the call including any return values.
+ SmallVector<unsigned, 4> UsedRegs;
+ if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes))
+ return false;
+
+ // Set all unused physreg defs as dead.
+ static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+
+ return true;
+}
+
+bool AArch64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) {
+ if (Alignment)
+ return Len / Alignment <= 4;
+ else
+ return Len < 32;
+}
+
+bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src,
+ uint64_t Len, unsigned Alignment) {
+ // Make sure we don't bloat code by inlining very large memcpy's.
+ if (!IsMemCpySmall(Len, Alignment))
+ return false;
+
+ int64_t UnscaledOffset = 0;
+ Address OrigDest = Dest;
+ Address OrigSrc = Src;
+
+ while (Len) {
+ MVT VT;
+ if (!Alignment || Alignment >= 8) {
+ if (Len >= 8)
+ VT = MVT::i64;
+ else if (Len >= 4)
+ VT = MVT::i32;
+ else if (Len >= 2)
+ VT = MVT::i16;
+ else {
+ VT = MVT::i8;
+ }
+ } else {
+ // Bound based on alignment.
+ if (Len >= 4 && Alignment == 4)
+ VT = MVT::i32;
+ else if (Len >= 2 && Alignment == 2)
+ VT = MVT::i16;
+ else {
+ VT = MVT::i8;
+ }
+ }
+
+ bool RV;
+ unsigned ResultReg;
+ RV = EmitLoad(VT, ResultReg, Src);
+ if (!RV)
+ return false;
+
+ RV = EmitStore(VT, ResultReg, Dest);
+ if (!RV)
+ return false;
+
+ int64_t Size = VT.getSizeInBits() / 8;
+ Len -= Size;
+ UnscaledOffset += Size;
+
+ // We need to recompute the unscaled offset for each iteration.
+ Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
+ Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
+ }
+
+ return true;
+}
+
+bool AArch64FastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
+ // FIXME: Handle more intrinsics.
+ switch (I.getIntrinsicID()) {
+ default:
+ return false;
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove: {
+ const MemTransferInst &MTI = cast<MemTransferInst>(I);
+ // Don't handle volatile.
+ if (MTI.isVolatile())
+ return false;
+
+ // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
+ // we would emit dead code because we don't currently handle memmoves.
+ bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
+ if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
+ // Small memcpy's are common enough that we want to do them without a call
+ // if possible.
+ uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
+ unsigned Alignment = MTI.getAlignment();
+ if (IsMemCpySmall(Len, Alignment)) {
+ Address Dest, Src;
+ if (!ComputeAddress(MTI.getRawDest(), Dest) ||
+ !ComputeAddress(MTI.getRawSource(), Src))
+ return false;
+ if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment))
+ return true;
+ }
+ }
+
+ if (!MTI.getLength()->getType()->isIntegerTy(64))
+ return false;
+
+ if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
+ // Fast instruction selection doesn't support the special
+ // address spaces.
+ return false;
+
+ const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
+ return SelectCall(&I, IntrMemName);
+ }
+ case Intrinsic::memset: {
+ const MemSetInst &MSI = cast<MemSetInst>(I);
+ // Don't handle volatile.
+ if (MSI.isVolatile())
+ return false;
+
+ if (!MSI.getLength()->getType()->isIntegerTy(64))
+ return false;
+
+ if (MSI.getDestAddressSpace() > 255)
+ // Fast instruction selection doesn't support the special
+ // address spaces.
+ return false;
+
+ return SelectCall(&I, "memset");
+ }
+ case Intrinsic::trap: {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
+ .addImm(1);
+ return true;
+ }
+ }
+ return false;
+}
+
+bool AArch64FastISel::SelectRet(const Instruction *I) {
+ const ReturnInst *Ret = cast<ReturnInst>(I);
+ const Function &F = *I->getParent()->getParent();
+
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ if (F.isVarArg())
+ return false;
+
+ // Build a list of return value registers.
+ SmallVector<unsigned, 4> RetRegs;
+
+ if (Ret->getNumOperands() > 0) {
+ CallingConv::ID CC = F.getCallingConv();
+ SmallVector<ISD::OutputArg, 4> Outs;
+ GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ValLocs;
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
+ I->getContext());
+ CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
+ : RetCC_AArch64_AAPCS;
+ CCInfo.AnalyzeReturn(Outs, RetCC);
+
+ // Only handle a single return value for now.
+ if (ValLocs.size() != 1)
+ return false;
+
+ CCValAssign &VA = ValLocs[0];
+ const Value *RV = Ret->getOperand(0);
+
+ // Don't bother handling odd stuff for now.
+ if (VA.getLocInfo() != CCValAssign::Full)
+ return false;
+ // Only handle register returns for now.
+ if (!VA.isRegLoc())
+ return false;
+ unsigned Reg = getRegForValue(RV);
+ if (Reg == 0)
+ return false;
+
+ unsigned SrcReg = Reg + VA.getValNo();
+ unsigned DestReg = VA.getLocReg();
+ // Avoid a cross-class copy. This is very unlikely.
+ if (!MRI.getRegClass(SrcReg)->contains(DestReg))
+ return false;
+
+ EVT RVEVT = TLI.getValueType(RV->getType());
+ if (!RVEVT.isSimple())
+ return false;
+
+ // Vectors (of > 1 lane) in big endian need tricky handling.
+ if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1)
+ return false;
+
+ MVT RVVT = RVEVT.getSimpleVT();
+ if (RVVT == MVT::f128)
+ return false;
+ MVT DestVT = VA.getValVT();
+ // Special handling for extended integers.
+ if (RVVT != DestVT) {
+ if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
+ return false;
+
+ if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
+ return false;
+
+ bool isZExt = Outs[0].Flags.isZExt();
+ SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt);
+ if (SrcReg == 0)
+ return false;
+ }
+
+ // Make the copy.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
+
+ // Add register to return instruction.
+ RetRegs.push_back(VA.getLocReg());
+ }
+
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::RET_ReallyLR));
+ for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
+ MIB.addReg(RetRegs[i], RegState::Implicit);
+ return true;
+}
+
+bool AArch64FastISel::SelectTrunc(const Instruction *I) {
+ Type *DestTy = I->getType();
+ Value *Op = I->getOperand(0);
+ Type *SrcTy = Op->getType();
+
+ EVT SrcEVT = TLI.getValueType(SrcTy, true);
+ EVT DestEVT = TLI.getValueType(DestTy, true);
+ if (!SrcEVT.isSimple())
+ return false;
+ if (!DestEVT.isSimple())
+ return false;
+
+ MVT SrcVT = SrcEVT.getSimpleVT();
+ MVT DestVT = DestEVT.getSimpleVT();
+
+ if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
+ SrcVT != MVT::i8)
+ return false;
+ if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
+ DestVT != MVT::i1)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Op);
+ if (!SrcReg)
+ return false;
+
+ // If we're truncating from i64 to a smaller non-legal type then generate an
+ // AND. Otherwise, we know the high bits are undefined and a truncate doesn't
+ // generate any code.
+ if (SrcVT == MVT::i64) {
+ uint64_t Mask = 0;
+ switch (DestVT.SimpleTy) {
+ default:
+ // Trunc i64 to i32 is handled by the target-independent fast-isel.
+ return false;
+ case MVT::i1:
+ Mask = 0x1;
+ break;
+ case MVT::i8:
+ Mask = 0xff;
+ break;
+ case MVT::i16:
+ Mask = 0xffff;
+ break;
+ }
+ // Issue an extract_subreg to get the lower 32-bits.
+ unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true,
+ AArch64::sub_32);
+ MRI.constrainRegClass(Reg32, &AArch64::GPR32RegClass);
+ // Create the AND instruction which performs the actual truncation.
+ unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
+ ANDReg)
+ .addReg(Reg32)
+ .addImm(AArch64_AM::encodeLogicalImmediate(Mask, 32));
+ SrcReg = ANDReg;
+ }
+
+ UpdateValueMap(I, SrcReg);
+ return true;
+}
+
+unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
+ assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
+ DestVT == MVT::i64) &&
+ "Unexpected value type.");
+ // Handle i8 and i16 as i32.
+ if (DestVT == MVT::i8 || DestVT == MVT::i16)
+ DestVT = MVT::i32;
+
+ if (isZExt) {
+ MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
+ unsigned ResultReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
+ ResultReg)
+ .addReg(SrcReg)
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+
+ if (DestVT == MVT::i64) {
+ // We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the
+ // upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd.
+ unsigned Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), Reg64)
+ .addImm(0)
+ .addReg(ResultReg)
+ .addImm(AArch64::sub_32);
+ ResultReg = Reg64;
+ }
+ return ResultReg;
+ } else {
+ if (DestVT == MVT::i64) {
+ // FIXME: We're SExt i1 to i64.
+ return 0;
+ }
+ unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SBFMWri),
+ ResultReg)
+ .addReg(SrcReg)
+ .addImm(0)
+ .addImm(0);
+ return ResultReg;
+ }
+}
+
+unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ bool isZExt) {
+ assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
+
+ // FastISel does not have plumbing to deal with extensions where the SrcVT or
+ // DestVT are odd things, so test to make sure that they are both types we can
+ // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
+ // bail out to SelectionDAG.
+ if (((DestVT != MVT::i8) && (DestVT != MVT::i16) &&
+ (DestVT != MVT::i32) && (DestVT != MVT::i64)) ||
+ ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) &&
+ (SrcVT != MVT::i16) && (SrcVT != MVT::i32)))
+ return 0;
+
+ unsigned Opc;
+ unsigned Imm = 0;
+
+ switch (SrcVT.SimpleTy) {
+ default:
+ return 0;
+ case MVT::i1:
+ return Emiti1Ext(SrcReg, DestVT, isZExt);
+ case MVT::i8:
+ if (DestVT == MVT::i64)
+ Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ else
+ Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
+ Imm = 7;
+ break;
+ case MVT::i16:
+ if (DestVT == MVT::i64)
+ Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ else
+ Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
+ Imm = 15;
+ break;
+ case MVT::i32:
+ assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
+ Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ Imm = 31;
+ break;
+ }
+
+ // Handle i8 and i16 as i32.
+ if (DestVT == MVT::i8 || DestVT == MVT::i16)
+ DestVT = MVT::i32;
+ else if (DestVT == MVT::i64) {
+ unsigned Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), Src64)
+ .addImm(0)
+ .addReg(SrcReg)
+ .addImm(AArch64::sub_32);
+ SrcReg = Src64;
+ }
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(SrcReg)
+ .addImm(0)
+ .addImm(Imm);
+
+ return ResultReg;
+}
+
+bool AArch64FastISel::SelectIntExt(const Instruction *I) {
+ // On ARM, in general, integer casts don't involve legal types; this code
+ // handles promotable integers. The high bits for a type smaller than
+ // the register size are assumed to be undefined.
+ Type *DestTy = I->getType();
+ Value *Src = I->getOperand(0);
+ Type *SrcTy = Src->getType();
+
+ bool isZExt = isa<ZExtInst>(I);
+ unsigned SrcReg = getRegForValue(Src);
+ if (!SrcReg)
+ return false;
+
+ EVT SrcEVT = TLI.getValueType(SrcTy, true);
+ EVT DestEVT = TLI.getValueType(DestTy, true);
+ if (!SrcEVT.isSimple())
+ return false;
+ if (!DestEVT.isSimple())
+ return false;
+
+ MVT SrcVT = SrcEVT.getSimpleVT();
+ MVT DestVT = DestEVT.getSimpleVT();
+ unsigned ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
+ if (ResultReg == 0)
+ return false;
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) {
+ EVT DestEVT = TLI.getValueType(I->getType(), true);
+ if (!DestEVT.isSimple())
+ return false;
+
+ MVT DestVT = DestEVT.getSimpleVT();
+ if (DestVT != MVT::i64 && DestVT != MVT::i32)
+ return false;
+
+ unsigned DivOpc;
+ bool is64bit = (DestVT == MVT::i64);
+ switch (ISDOpcode) {
+ default:
+ return false;
+ case ISD::SREM:
+ DivOpc = is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
+ break;
+ case ISD::UREM:
+ DivOpc = is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
+ break;
+ }
+ unsigned MSubOpc = is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
+ unsigned Src0Reg = getRegForValue(I->getOperand(0));
+ if (!Src0Reg)
+ return false;
+
+ unsigned Src1Reg = getRegForValue(I->getOperand(1));
+ if (!Src1Reg)
+ return false;
+
+ unsigned QuotReg = createResultReg(TLI.getRegClassFor(DestVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), QuotReg)
+ .addReg(Src0Reg)
+ .addReg(Src1Reg);
+ // The remainder is computed as numerator - (quotient * denominator) using the
+ // MSUB instruction.
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg)
+ .addReg(QuotReg)
+ .addReg(Src1Reg)
+ .addReg(Src0Reg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectMul(const Instruction *I) {
+ EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true);
+ if (!SrcEVT.isSimple())
+ return false;
+ MVT SrcVT = SrcEVT.getSimpleVT();
+
+ // Must be simple value type. Don't handle vectors.
+ if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
+ SrcVT != MVT::i8)
+ return false;
+
+ unsigned Opc;
+ unsigned ZReg;
+ switch (SrcVT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ ZReg = AArch64::WZR;
+ Opc = AArch64::MADDWrrr;
+ SrcVT = MVT::i32;
+ break;
+ case MVT::i64:
+ ZReg = AArch64::XZR;
+ Opc = AArch64::MADDXrrr;
+ break;
+ }
+
+ unsigned Src0Reg = getRegForValue(I->getOperand(0));
+ if (!Src0Reg)
+ return false;
+
+ unsigned Src1Reg = getRegForValue(I->getOperand(1));
+ if (!Src1Reg)
+ return false;
+
+ // Create the base instruction, then add the operands.
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(SrcVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(Src0Reg)
+ .addReg(Src1Reg)
+ .addReg(ZReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::TargetSelectInstruction(const Instruction *I) {
+ switch (I->getOpcode()) {
+ default:
+ break;
+ case Instruction::Load:
+ return SelectLoad(I);
+ case Instruction::Store:
+ return SelectStore(I);
+ case Instruction::Br:
+ return SelectBranch(I);
+ case Instruction::IndirectBr:
+ return SelectIndirectBr(I);
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ return SelectCmp(I);
+ case Instruction::Select:
+ return SelectSelect(I);
+ case Instruction::FPExt:
+ return SelectFPExt(I);
+ case Instruction::FPTrunc:
+ return SelectFPTrunc(I);
+ case Instruction::FPToSI:
+ return SelectFPToInt(I, /*Signed=*/true);
+ case Instruction::FPToUI:
+ return SelectFPToInt(I, /*Signed=*/false);
+ case Instruction::SIToFP:
+ return SelectIntToFP(I, /*Signed=*/true);
+ case Instruction::UIToFP:
+ return SelectIntToFP(I, /*Signed=*/false);
+ case Instruction::SRem:
+ return SelectRem(I, ISD::SREM);
+ case Instruction::URem:
+ return SelectRem(I, ISD::UREM);
+ case Instruction::Call:
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ return SelectIntrinsicCall(*II);
+ return SelectCall(I);
+ case Instruction::Ret:
+ return SelectRet(I);
+ case Instruction::Trunc:
+ return SelectTrunc(I);
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ return SelectIntExt(I);
+ case Instruction::Mul:
+ // FIXME: This really should be handled by the target-independent selector.
+ return SelectMul(I);
+ }
+ return false;
+ // Silence warnings.
+ (void)&CC_AArch64_DarwinPCS_VarArg;
+}
+
+namespace llvm {
+llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) {
+ return new AArch64FastISel(funcInfo, libInfo);
+}
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp b/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp
new file mode 100644
index 0000000..9c33717
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp
@@ -0,0 +1,892 @@
+//===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the AArch64 implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64FrameLowering.h"
+#include "AArch64InstrInfo.h"
+#include "AArch64MachineFunctionInfo.h"
+#include "AArch64Subtarget.h"
+#include "AArch64TargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "frame-info"
+
+static cl::opt<bool> EnableRedZone("aarch64-redzone",
+ cl::desc("enable use of redzone on AArch64"),
+ cl::init(false), cl::Hidden);
+
+STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
+
+static unsigned estimateStackSize(MachineFunction &MF) {
+ const MachineFrameInfo *FFI = MF.getFrameInfo();
+ int Offset = 0;
+ for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) {
+ int FixedOff = -FFI->getObjectOffset(i);
+ if (FixedOff > Offset)
+ Offset = FixedOff;
+ }
+ for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) {
+ if (FFI->isDeadObjectIndex(i))
+ continue;
+ Offset += FFI->getObjectSize(i);
+ unsigned Align = FFI->getObjectAlignment(i);
+ // Adjust to alignment boundary
+ Offset = (Offset + Align - 1) / Align * Align;
+ }
+ // This does not include the 16 bytes used for fp and lr.
+ return (unsigned)Offset;
+}
+
+bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
+ if (!EnableRedZone)
+ return false;
+ // Don't use the red zone if the function explicitly asks us not to.
+ // This is typically used for kernel code.
+ if (MF.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::NoRedZone))
+ return false;
+
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
+ unsigned NumBytes = AFI->getLocalStackSize();
+
+ // Note: currently hasFP() is always true for hasCalls(), but that's an
+ // implementation detail of the current code, not a strict requirement,
+ // so stay safe here and check both.
+ if (MFI->hasCalls() || hasFP(MF) || NumBytes > 128)
+ return false;
+ return true;
+}
+
+/// hasFP - Return true if the specified function should have a dedicated frame
+/// pointer register.
+bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+
+#ifndef NDEBUG
+ const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
+ assert(!RegInfo->needsStackRealignment(MF) &&
+ "No stack realignment on AArch64!");
+#endif
+
+ return (MFI->hasCalls() || MFI->hasVarSizedObjects() ||
+ MFI->isFrameAddressTaken());
+}
+
+/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
+/// not required, we reserve argument space for call sites in the function
+/// immediately on entry to the current function. This eliminates the need for
+/// add/sub sp brackets around call sites. Returns true if the call frame is
+/// included as part of the stack frame.
+bool
+AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ return !MF.getFrameInfo()->hasVarSizedObjects();
+}
+
+void AArch64FrameLowering::eliminateCallFramePseudoInstr(
+ MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const AArch64InstrInfo *TII =
+ static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo());
+ DebugLoc DL = I->getDebugLoc();
+ int Opc = I->getOpcode();
+ bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
+ uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
+
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ if (!TFI->hasReservedCallFrame(MF)) {
+ unsigned Align = getStackAlignment();
+
+ int64_t Amount = I->getOperand(0).getImm();
+ Amount = RoundUpToAlignment(Amount, Align);
+ if (!IsDestroy)
+ Amount = -Amount;
+
+ // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
+ // doesn't have to pop anything), then the first operand will be zero too so
+ // this adjustment is a no-op.
+ if (CalleePopAmount == 0) {
+ // FIXME: in-function stack adjustment for calls is limited to 24-bits
+ // because there's no guaranteed temporary register available.
+ //
+ // ADD/SUB (immediate) has only LSL #0 and LSL #12 avaiable.
+ // 1) For offset <= 12-bit, we use LSL #0
+ // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
+ // LSL #0, and the other uses LSL #12.
+ //
+ // Mostly call frames will be allocated at the start of a function so
+ // this is OK, but it is a limitation that needs dealing with.
+ assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
+ emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, Amount, TII);
+ }
+ } else if (CalleePopAmount != 0) {
+ // If the calling convention demands that the callee pops arguments from the
+ // stack, we want to add it back if we have a reserved call frame.
+ assert(CalleePopAmount < 0xffffff && "call frame too large");
+ emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, -CalleePopAmount,
+ TII);
+ }
+ MBB.erase(I);
+}
+
+void AArch64FrameLowering::emitCalleeSavedFrameMoves(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ unsigned FramePtr) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineModuleInfo &MMI = MF.getMMI();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ DebugLoc DL = MBB.findDebugLoc(MBBI);
+
+ // Add callee saved registers to move list.
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ if (CSI.empty())
+ return;
+
+ const DataLayout *TD = MF.getTarget().getDataLayout();
+ bool HasFP = hasFP(MF);
+
+ // Calculate amount of bytes used for return address storing.
+ int stackGrowth = -TD->getPointerSize(0);
+
+ // Calculate offsets.
+ int64_t saveAreaOffset = (HasFP ? 2 : 1) * stackGrowth;
+ unsigned TotalSkipped = 0;
+ for (const auto &Info : CSI) {
+ unsigned Reg = Info.getReg();
+ int64_t Offset = MFI->getObjectOffset(Info.getFrameIdx()) -
+ getOffsetOfLocalArea() + saveAreaOffset;
+
+ // Don't output a new CFI directive if we're re-saving the frame pointer or
+ // link register. This happens when the PrologEpilogInserter has inserted an
+ // extra "STP" of the frame pointer and link register -- the "emitPrologue"
+ // method automatically generates the directives when frame pointers are
+ // used. If we generate CFI directives for the extra "STP"s, the linker will
+ // lose track of the correct values for the frame pointer and link register.
+ if (HasFP && (FramePtr == Reg || Reg == AArch64::LR)) {
+ TotalSkipped += stackGrowth;
+ continue;
+ }
+
+ unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
+ unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, DwarfReg, Offset - TotalSkipped));
+ BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+}
+
+void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const Function *Fn = MF.getFunction();
+ const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
+ MF.getTarget().getRegisterInfo());
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ MachineModuleInfo &MMI = MF.getMMI();
+ AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
+ bool needsFrameMoves = MMI.hasDebugInfo() || Fn->needsUnwindTableEntry();
+ bool HasFP = hasFP(MF);
+ DebugLoc DL = MBB.findDebugLoc(MBBI);
+
+ int NumBytes = (int)MFI->getStackSize();
+ if (!AFI->hasStackFrame()) {
+ assert(!HasFP && "unexpected function without stack frame but with FP");
+
+ // All of the stack allocation is for locals.
+ AFI->setLocalStackSize(NumBytes);
+
+ // Label used to tie together the PROLOG_LABEL and the MachineMoves.
+ MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
+
+ // REDZONE: If the stack size is less than 128 bytes, we don't need
+ // to actually allocate.
+ if (NumBytes && !canUseRedZone(MF)) {
+ emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
+ MachineInstr::FrameSetup);
+
+ // Encode the stack size of the leaf function.
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
+ BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ } else if (NumBytes) {
+ ++NumRedZoneFunctions;
+ }
+
+ return;
+ }
+
+ // Only set up FP if we actually need to.
+ int FPOffset = 0;
+ if (HasFP) {
+ // First instruction must a) allocate the stack and b) have an immediate
+ // that is a multiple of -2.
+ assert((MBBI->getOpcode() == AArch64::STPXpre ||
+ MBBI->getOpcode() == AArch64::STPDpre) &&
+ MBBI->getOperand(3).getReg() == AArch64::SP &&
+ MBBI->getOperand(4).getImm() < 0 &&
+ (MBBI->getOperand(4).getImm() & 1) == 0);
+
+ // Frame pointer is fp = sp - 16. Since the STPXpre subtracts the space
+ // required for the callee saved register area we get the frame pointer
+ // by addding that offset - 16 = -getImm()*8 - 2*8 = -(getImm() + 2) * 8.
+ FPOffset = -(MBBI->getOperand(4).getImm() + 2) * 8;
+ assert(FPOffset >= 0 && "Bad Framepointer Offset");
+ }
+
+ // Move past the saves of the callee-saved registers.
+ while (MBBI->getOpcode() == AArch64::STPXi ||
+ MBBI->getOpcode() == AArch64::STPDi ||
+ MBBI->getOpcode() == AArch64::STPXpre ||
+ MBBI->getOpcode() == AArch64::STPDpre) {
+ ++MBBI;
+ NumBytes -= 16;
+ }
+ assert(NumBytes >= 0 && "Negative stack allocation size!?");
+ if (HasFP) {
+ // Issue sub fp, sp, FPOffset or
+ // mov fp,sp when FPOffset is zero.
+ // Note: All stores of callee-saved registers are marked as "FrameSetup".
+ // This code marks the instruction(s) that set the FP also.
+ emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, FPOffset, TII,
+ MachineInstr::FrameSetup);
+ }
+
+ // All of the remaining stack allocations are for locals.
+ AFI->setLocalStackSize(NumBytes);
+
+ // Allocate space for the rest of the frame.
+ if (NumBytes) {
+ // If we're a leaf function, try using the red zone.
+ if (!canUseRedZone(MF))
+ emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
+ MachineInstr::FrameSetup);
+ }
+
+ // If we need a base pointer, set it up here. It's whatever the value of the
+ // stack pointer is at this point. Any variable size objects will be allocated
+ // after this, so we can still use the base pointer to reference locals.
+ //
+ // FIXME: Clarify FrameSetup flags here.
+ // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
+ // needed.
+ //
+ if (RegInfo->hasBasePointer(MF))
+ TII->copyPhysReg(MBB, MBBI, DL, AArch64::X19, AArch64::SP, false);
+
+ if (needsFrameMoves) {
+ const DataLayout *TD = MF.getTarget().getDataLayout();
+ const int StackGrowth = -TD->getPointerSize(0);
+ unsigned FramePtr = RegInfo->getFrameRegister(MF);
+
+ // An example of the prologue:
+ //
+ // .globl __foo
+ // .align 2
+ // __foo:
+ // Ltmp0:
+ // .cfi_startproc
+ // .cfi_personality 155, ___gxx_personality_v0
+ // Leh_func_begin:
+ // .cfi_lsda 16, Lexception33
+ //
+ // stp xa,bx, [sp, -#offset]!
+ // ...
+ // stp x28, x27, [sp, #offset-32]
+ // stp fp, lr, [sp, #offset-16]
+ // add fp, sp, #offset - 16
+ // sub sp, sp, #1360
+ //
+ // The Stack:
+ // +-------------------------------------------+
+ // 10000 | ........ | ........ | ........ | ........ |
+ // 10004 | ........ | ........ | ........ | ........ |
+ // +-------------------------------------------+
+ // 10008 | ........ | ........ | ........ | ........ |
+ // 1000c | ........ | ........ | ........ | ........ |
+ // +===========================================+
+ // 10010 | X28 Register |
+ // 10014 | X28 Register |
+ // +-------------------------------------------+
+ // 10018 | X27 Register |
+ // 1001c | X27 Register |
+ // +===========================================+
+ // 10020 | Frame Pointer |
+ // 10024 | Frame Pointer |
+ // +-------------------------------------------+
+ // 10028 | Link Register |
+ // 1002c | Link Register |
+ // +===========================================+
+ // 10030 | ........ | ........ | ........ | ........ |
+ // 10034 | ........ | ........ | ........ | ........ |
+ // +-------------------------------------------+
+ // 10038 | ........ | ........ | ........ | ........ |
+ // 1003c | ........ | ........ | ........ | ........ |
+ // +-------------------------------------------+
+ //
+ // [sp] = 10030 :: >>initial value<<
+ // sp = 10020 :: stp fp, lr, [sp, #-16]!
+ // fp = sp == 10020 :: mov fp, sp
+ // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
+ // sp == 10010 :: >>final value<<
+ //
+ // The frame pointer (w29) points to address 10020. If we use an offset of
+ // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
+ // for w27, and -32 for w28:
+ //
+ // Ltmp1:
+ // .cfi_def_cfa w29, 16
+ // Ltmp2:
+ // .cfi_offset w30, -8
+ // Ltmp3:
+ // .cfi_offset w29, -16
+ // Ltmp4:
+ // .cfi_offset w27, -24
+ // Ltmp5:
+ // .cfi_offset w28, -32
+
+ if (HasFP) {
+ // Define the current CFA rule to use the provided FP.
+ unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfa(nullptr, Reg, 2 * StackGrowth));
+ BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // Record the location of the stored LR
+ unsigned LR = RegInfo->getDwarfRegNum(AArch64::LR, true);
+ CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, LR, StackGrowth));
+ BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // Record the location of the stored FP
+ CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg, 2 * StackGrowth));
+ BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ } else {
+ // Encode the stack size of the leaf function.
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, -MFI->getStackSize()));
+ BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ // Now emit the moves for whatever callee saved regs we have.
+ emitCalleeSavedFrameMoves(MBB, MBBI, FramePtr);
+ }
+}
+
+static bool isCalleeSavedRegister(unsigned Reg, const MCPhysReg *CSRegs) {
+ for (unsigned i = 0; CSRegs[i]; ++i)
+ if (Reg == CSRegs[i])
+ return true;
+ return false;
+}
+
+static bool isCSRestore(MachineInstr *MI, const MCPhysReg *CSRegs) {
+ unsigned RtIdx = 0;
+ if (MI->getOpcode() == AArch64::LDPXpost ||
+ MI->getOpcode() == AArch64::LDPDpost)
+ RtIdx = 1;
+
+ if (MI->getOpcode() == AArch64::LDPXpost ||
+ MI->getOpcode() == AArch64::LDPDpost ||
+ MI->getOpcode() == AArch64::LDPXi || MI->getOpcode() == AArch64::LDPDi) {
+ if (!isCalleeSavedRegister(MI->getOperand(RtIdx).getReg(), CSRegs) ||
+ !isCalleeSavedRegister(MI->getOperand(RtIdx + 1).getReg(), CSRegs) ||
+ MI->getOperand(RtIdx + 2).getReg() != AArch64::SP)
+ return false;
+ return true;
+ }
+
+ return false;
+}
+
+void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ assert(MBBI->isReturn() && "Can only insert epilog into returning blocks");
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const AArch64InstrInfo *TII =
+ static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo());
+ const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
+ MF.getTarget().getRegisterInfo());
+ DebugLoc DL = MBBI->getDebugLoc();
+ unsigned RetOpcode = MBBI->getOpcode();
+
+ int NumBytes = MFI->getStackSize();
+ const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
+
+ // Initial and residual are named for consitency with the prologue. Note that
+ // in the epilogue, the residual adjustment is executed first.
+ uint64_t ArgumentPopSize = 0;
+ if (RetOpcode == AArch64::TCRETURNdi || RetOpcode == AArch64::TCRETURNri) {
+ MachineOperand &StackAdjust = MBBI->getOperand(1);
+
+ // For a tail-call in a callee-pops-arguments environment, some or all of
+ // the stack may actually be in use for the call's arguments, this is
+ // calculated during LowerCall and consumed here...
+ ArgumentPopSize = StackAdjust.getImm();
+ } else {
+ // ... otherwise the amount to pop is *all* of the argument space,
+ // conveniently stored in the MachineFunctionInfo by
+ // LowerFormalArguments. This will, of course, be zero for the C calling
+ // convention.
+ ArgumentPopSize = AFI->getArgumentStackToRestore();
+ }
+
+ // The stack frame should be like below,
+ //
+ // ---------------------- ---
+ // | | |
+ // | BytesInStackArgArea| CalleeArgStackSize
+ // | (NumReusableBytes) | (of tail call)
+ // | | ---
+ // | | |
+ // ---------------------| --- |
+ // | | | |
+ // | CalleeSavedReg | | |
+ // | (NumRestores * 16) | | |
+ // | | | |
+ // ---------------------| | NumBytes
+ // | | StackSize (StackAdjustUp)
+ // | LocalStackSize | | |
+ // | (covering callee | | |
+ // | args) | | |
+ // | | | |
+ // ---------------------- --- ---
+ //
+ // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
+ // = StackSize + ArgumentPopSize
+ //
+ // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
+ // it as the 2nd argument of AArch64ISD::TC_RETURN.
+ NumBytes += ArgumentPopSize;
+
+ unsigned NumRestores = 0;
+ // Move past the restores of the callee-saved registers.
+ MachineBasicBlock::iterator LastPopI = MBBI;
+ const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
+ if (LastPopI != MBB.begin()) {
+ do {
+ ++NumRestores;
+ --LastPopI;
+ } while (LastPopI != MBB.begin() && isCSRestore(LastPopI, CSRegs));
+ if (!isCSRestore(LastPopI, CSRegs)) {
+ ++LastPopI;
+ --NumRestores;
+ }
+ }
+ NumBytes -= NumRestores * 16;
+ assert(NumBytes >= 0 && "Negative stack allocation size!?");
+
+ if (!hasFP(MF)) {
+ // If this was a redzone leaf function, we don't need to restore the
+ // stack pointer.
+ if (!canUseRedZone(MF))
+ emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, NumBytes,
+ TII);
+ return;
+ }
+
+ // Restore the original stack pointer.
+ // FIXME: Rather than doing the math here, we should instead just use
+ // non-post-indexed loads for the restores if we aren't actually going to
+ // be able to save any instructions.
+ if (NumBytes || MFI->hasVarSizedObjects())
+ emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
+ -(NumRestores - 1) * 16, TII, MachineInstr::NoFlags);
+}
+
+/// getFrameIndexOffset - Returns the displacement from the frame register to
+/// the stack frame of the specified index.
+int AArch64FrameLowering::getFrameIndexOffset(const MachineFunction &MF,
+ int FI) const {
+ unsigned FrameReg;
+ return getFrameIndexReference(MF, FI, FrameReg);
+}
+
+/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
+/// debug info. It's the same as what we use for resolving the code-gen
+/// references for now. FIXME: This can go wrong when references are
+/// SP-relative and simple call frames aren't used.
+int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
+ int FI,
+ unsigned &FrameReg) const {
+ return resolveFrameIndexReference(MF, FI, FrameReg);
+}
+
+int AArch64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF,
+ int FI, unsigned &FrameReg,
+ bool PreferFP) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
+ MF.getTarget().getRegisterInfo());
+ const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
+ int FPOffset = MFI->getObjectOffset(FI) + 16;
+ int Offset = MFI->getObjectOffset(FI) + MFI->getStackSize();
+ bool isFixed = MFI->isFixedObjectIndex(FI);
+
+ // Use frame pointer to reference fixed objects. Use it for locals if
+ // there are VLAs (and thus the SP isn't reliable as a base).
+ // Make sure useFPForScavengingIndex() does the right thing for the emergency
+ // spill slot.
+ bool UseFP = false;
+ if (AFI->hasStackFrame()) {
+ // Note: Keeping the following as multiple 'if' statements rather than
+ // merging to a single expression for readability.
+ //
+ // Argument access should always use the FP.
+ if (isFixed) {
+ UseFP = hasFP(MF);
+ } else if (hasFP(MF) && !RegInfo->hasBasePointer(MF)) {
+ // Use SP or FP, whichever gives us the best chance of the offset
+ // being in range for direct access. If the FPOffset is positive,
+ // that'll always be best, as the SP will be even further away.
+ // If the FPOffset is negative, we have to keep in mind that the
+ // available offset range for negative offsets is smaller than for
+ // positive ones. If we have variable sized objects, we're stuck with
+ // using the FP regardless, though, as the SP offset is unknown
+ // and we don't have a base pointer available. If an offset is
+ // available via the FP and the SP, use whichever is closest.
+ if (PreferFP || MFI->hasVarSizedObjects() || FPOffset >= 0 ||
+ (FPOffset >= -256 && Offset > -FPOffset))
+ UseFP = true;
+ }
+ }
+
+ if (UseFP) {
+ FrameReg = RegInfo->getFrameRegister(MF);
+ return FPOffset;
+ }
+
+ // Use the base pointer if we have one.
+ if (RegInfo->hasBasePointer(MF))
+ FrameReg = RegInfo->getBaseRegister();
+ else {
+ FrameReg = AArch64::SP;
+ // If we're using the red zone for this function, the SP won't actually
+ // be adjusted, so the offsets will be negative. They're also all
+ // within range of the signed 9-bit immediate instructions.
+ if (canUseRedZone(MF))
+ Offset -= AFI->getLocalStackSize();
+ }
+
+ return Offset;
+}
+
+static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
+ if (Reg != AArch64::LR)
+ return getKillRegState(true);
+
+ // LR maybe referred to later by an @llvm.returnaddress intrinsic.
+ bool LRLiveIn = MF.getRegInfo().isLiveIn(AArch64::LR);
+ bool LRKill = !(LRLiveIn && MF.getFrameInfo()->isReturnAddressTaken());
+ return getKillRegState(LRKill);
+}
+
+bool AArch64FrameLowering::spillCalleeSavedRegisters(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ unsigned Count = CSI.size();
+ DebugLoc DL;
+ assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
+
+ if (MI != MBB.end())
+ DL = MI->getDebugLoc();
+
+ for (unsigned i = 0; i < Count; i += 2) {
+ unsigned idx = Count - i - 2;
+ unsigned Reg1 = CSI[idx].getReg();
+ unsigned Reg2 = CSI[idx + 1].getReg();
+ // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
+ // list to come in sorted by frame index so that we can issue the store
+ // pair instructions directly. Assert if we see anything otherwise.
+ //
+ // The order of the registers in the list is controlled by
+ // getCalleeSavedRegs(), so they will always be in-order, as well.
+ assert(CSI[idx].getFrameIdx() + 1 == CSI[idx + 1].getFrameIdx() &&
+ "Out of order callee saved regs!");
+ unsigned StrOpc;
+ assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
+ assert((i & 1) == 0 && "Odd index for callee-saved reg spill!");
+ // Issue sequence of non-sp increment and pi sp spills for cs regs. The
+ // first spill is a pre-increment that allocates the stack.
+ // For example:
+ // stp x22, x21, [sp, #-48]! // addImm(-6)
+ // stp x20, x19, [sp, #16] // addImm(+2)
+ // stp fp, lr, [sp, #32] // addImm(+4)
+ // Rationale: This sequence saves uop updates compared to a sequence of
+ // pre-increment spills like stp xi,xj,[sp,#-16]!
+ // Note: Similar rational and sequence for restores in epilog.
+ if (AArch64::GPR64RegClass.contains(Reg1)) {
+ assert(AArch64::GPR64RegClass.contains(Reg2) &&
+ "Expected GPR64 callee-saved register pair!");
+ // For first spill use pre-increment store.
+ if (i == 0)
+ StrOpc = AArch64::STPXpre;
+ else
+ StrOpc = AArch64::STPXi;
+ } else if (AArch64::FPR64RegClass.contains(Reg1)) {
+ assert(AArch64::FPR64RegClass.contains(Reg2) &&
+ "Expected FPR64 callee-saved register pair!");
+ // For first spill use pre-increment store.
+ if (i == 0)
+ StrOpc = AArch64::STPDpre;
+ else
+ StrOpc = AArch64::STPDi;
+ } else
+ llvm_unreachable("Unexpected callee saved register!");
+ DEBUG(dbgs() << "CSR spill: (" << TRI->getName(Reg1) << ", "
+ << TRI->getName(Reg2) << ") -> fi#(" << CSI[idx].getFrameIdx()
+ << ", " << CSI[idx + 1].getFrameIdx() << ")\n");
+ // Compute offset: i = 0 => offset = -Count;
+ // i = 2 => offset = -(Count - 2) + Count = 2 = i; etc.
+ const int Offset = (i == 0) ? -Count : i;
+ assert((Offset >= -64 && Offset <= 63) &&
+ "Offset out of bounds for STP immediate");
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
+ if (StrOpc == AArch64::STPDpre || StrOpc == AArch64::STPXpre)
+ MIB.addReg(AArch64::SP, RegState::Define);
+
+ MIB.addReg(Reg2, getPrologueDeath(MF, Reg2))
+ .addReg(Reg1, getPrologueDeath(MF, Reg1))
+ .addReg(AArch64::SP)
+ .addImm(Offset) // [sp, #offset * 8], where factor * 8 is implicit
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ return true;
+}
+
+bool AArch64FrameLowering::restoreCalleeSavedRegisters(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ unsigned Count = CSI.size();
+ DebugLoc DL;
+ assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
+
+ if (MI != MBB.end())
+ DL = MI->getDebugLoc();
+
+ for (unsigned i = 0; i < Count; i += 2) {
+ unsigned Reg1 = CSI[i].getReg();
+ unsigned Reg2 = CSI[i + 1].getReg();
+ // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
+ // list to come in sorted by frame index so that we can issue the store
+ // pair instructions directly. Assert if we see anything otherwise.
+ assert(CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx() &&
+ "Out of order callee saved regs!");
+ // Issue sequence of non-sp increment and sp-pi restores for cs regs. Only
+ // the last load is sp-pi post-increment and de-allocates the stack:
+ // For example:
+ // ldp fp, lr, [sp, #32] // addImm(+4)
+ // ldp x20, x19, [sp, #16] // addImm(+2)
+ // ldp x22, x21, [sp], #48 // addImm(+6)
+ // Note: see comment in spillCalleeSavedRegisters()
+ unsigned LdrOpc;
+
+ assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
+ assert((i & 1) == 0 && "Odd index for callee-saved reg spill!");
+ if (AArch64::GPR64RegClass.contains(Reg1)) {
+ assert(AArch64::GPR64RegClass.contains(Reg2) &&
+ "Expected GPR64 callee-saved register pair!");
+ if (i == Count - 2)
+ LdrOpc = AArch64::LDPXpost;
+ else
+ LdrOpc = AArch64::LDPXi;
+ } else if (AArch64::FPR64RegClass.contains(Reg1)) {
+ assert(AArch64::FPR64RegClass.contains(Reg2) &&
+ "Expected FPR64 callee-saved register pair!");
+ if (i == Count - 2)
+ LdrOpc = AArch64::LDPDpost;
+ else
+ LdrOpc = AArch64::LDPDi;
+ } else
+ llvm_unreachable("Unexpected callee saved register!");
+ DEBUG(dbgs() << "CSR restore: (" << TRI->getName(Reg1) << ", "
+ << TRI->getName(Reg2) << ") -> fi#(" << CSI[i].getFrameIdx()
+ << ", " << CSI[i + 1].getFrameIdx() << ")\n");
+
+ // Compute offset: i = 0 => offset = Count - 2; i = 2 => offset = Count - 4;
+ // etc.
+ const int Offset = (i == Count - 2) ? Count : Count - i - 2;
+ assert((Offset >= -64 && Offset <= 63) &&
+ "Offset out of bounds for LDP immediate");
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
+ if (LdrOpc == AArch64::LDPXpost || LdrOpc == AArch64::LDPDpost)
+ MIB.addReg(AArch64::SP, RegState::Define);
+
+ MIB.addReg(Reg2, getDefRegState(true))
+ .addReg(Reg1, getDefRegState(true))
+ .addReg(AArch64::SP)
+ .addImm(Offset); // [sp], #offset * 8 or [sp, #offset * 8]
+ // where the factor * 8 is implicit
+ }
+ return true;
+}
+
+void AArch64FrameLowering::processFunctionBeforeCalleeSavedScan(
+ MachineFunction &MF, RegScavenger *RS) const {
+ const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
+ MF.getTarget().getRegisterInfo());
+ AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
+ MachineRegisterInfo *MRI = &MF.getRegInfo();
+ SmallVector<unsigned, 4> UnspilledCSGPRs;
+ SmallVector<unsigned, 4> UnspilledCSFPRs;
+
+ // The frame record needs to be created by saving the appropriate registers
+ if (hasFP(MF)) {
+ MRI->setPhysRegUsed(AArch64::FP);
+ MRI->setPhysRegUsed(AArch64::LR);
+ }
+
+ // Spill the BasePtr if it's used. Do this first thing so that the
+ // getCalleeSavedRegs() below will get the right answer.
+ if (RegInfo->hasBasePointer(MF))
+ MRI->setPhysRegUsed(RegInfo->getBaseRegister());
+
+ // If any callee-saved registers are used, the frame cannot be eliminated.
+ unsigned NumGPRSpilled = 0;
+ unsigned NumFPRSpilled = 0;
+ bool ExtraCSSpill = false;
+ bool CanEliminateFrame = true;
+ DEBUG(dbgs() << "*** processFunctionBeforeCalleeSavedScan\nUsed CSRs:");
+ const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
+
+ // Check pairs of consecutive callee-saved registers.
+ for (unsigned i = 0; CSRegs[i]; i += 2) {
+ assert(CSRegs[i + 1] && "Odd number of callee-saved registers!");
+
+ const unsigned OddReg = CSRegs[i];
+ const unsigned EvenReg = CSRegs[i + 1];
+ assert((AArch64::GPR64RegClass.contains(OddReg) &&
+ AArch64::GPR64RegClass.contains(EvenReg)) ^
+ (AArch64::FPR64RegClass.contains(OddReg) &&
+ AArch64::FPR64RegClass.contains(EvenReg)) &&
+ "Register class mismatch!");
+
+ const bool OddRegUsed = MRI->isPhysRegUsed(OddReg);
+ const bool EvenRegUsed = MRI->isPhysRegUsed(EvenReg);
+
+ // Early exit if none of the registers in the register pair is actually
+ // used.
+ if (!OddRegUsed && !EvenRegUsed) {
+ if (AArch64::GPR64RegClass.contains(OddReg)) {
+ UnspilledCSGPRs.push_back(OddReg);
+ UnspilledCSGPRs.push_back(EvenReg);
+ } else {
+ UnspilledCSFPRs.push_back(OddReg);
+ UnspilledCSFPRs.push_back(EvenReg);
+ }
+ continue;
+ }
+
+ unsigned Reg = AArch64::NoRegister;
+ // If only one of the registers of the register pair is used, make sure to
+ // mark the other one as used as well.
+ if (OddRegUsed ^ EvenRegUsed) {
+ // Find out which register is the additional spill.
+ Reg = OddRegUsed ? EvenReg : OddReg;
+ MRI->setPhysRegUsed(Reg);
+ }
+
+ DEBUG(dbgs() << ' ' << PrintReg(OddReg, RegInfo));
+ DEBUG(dbgs() << ' ' << PrintReg(EvenReg, RegInfo));
+
+ assert(((OddReg == AArch64::LR && EvenReg == AArch64::FP) ||
+ (RegInfo->getEncodingValue(OddReg) + 1 ==
+ RegInfo->getEncodingValue(EvenReg))) &&
+ "Register pair of non-adjacent registers!");
+ if (AArch64::GPR64RegClass.contains(OddReg)) {
+ NumGPRSpilled += 2;
+ // If it's not a reserved register, we can use it in lieu of an
+ // emergency spill slot for the register scavenger.
+ // FIXME: It would be better to instead keep looking and choose another
+ // unspilled register that isn't reserved, if there is one.
+ if (Reg != AArch64::NoRegister && !RegInfo->isReservedReg(MF, Reg))
+ ExtraCSSpill = true;
+ } else
+ NumFPRSpilled += 2;
+
+ CanEliminateFrame = false;
+ }
+
+ // FIXME: Set BigStack if any stack slot references may be out of range.
+ // For now, just conservatively guestimate based on unscaled indexing
+ // range. We'll end up allocating an unnecessary spill slot a lot, but
+ // realistically that's not a big deal at this stage of the game.
+ // The CSR spill slots have not been allocated yet, so estimateStackSize
+ // won't include them.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ unsigned CFSize = estimateStackSize(MF) + 8 * (NumGPRSpilled + NumFPRSpilled);
+ DEBUG(dbgs() << "Estimated stack frame size: " << CFSize << " bytes.\n");
+ bool BigStack = (CFSize >= 256);
+ if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
+ AFI->setHasStackFrame(true);
+
+ // Estimate if we might need to scavenge a register at some point in order
+ // to materialize a stack offset. If so, either spill one additional
+ // callee-saved register or reserve a special spill slot to facilitate
+ // register scavenging. If we already spilled an extra callee-saved register
+ // above to keep the number of spills even, we don't need to do anything else
+ // here.
+ if (BigStack && !ExtraCSSpill) {
+
+ // If we're adding a register to spill here, we have to add two of them
+ // to keep the number of regs to spill even.
+ assert(((UnspilledCSGPRs.size() & 1) == 0) && "Odd number of registers!");
+ unsigned Count = 0;
+ while (!UnspilledCSGPRs.empty() && Count < 2) {
+ unsigned Reg = UnspilledCSGPRs.back();
+ UnspilledCSGPRs.pop_back();
+ DEBUG(dbgs() << "Spilling " << PrintReg(Reg, RegInfo)
+ << " to get a scratch register.\n");
+ MRI->setPhysRegUsed(Reg);
+ ExtraCSSpill = true;
+ ++Count;
+ }
+
+ // If we didn't find an extra callee-saved register to spill, create
+ // an emergency spill slot.
+ if (!ExtraCSSpill) {
+ const TargetRegisterClass *RC = &AArch64::GPR64RegClass;
+ int FI = MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), false);
+ RS->addScavengingFrameIndex(FI);
+ DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
+ << " as the emergency spill slot.\n");
+ }
+ }
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.h b/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.h
new file mode 100644
index 0000000..7686e6f
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.h
@@ -0,0 +1,68 @@
+//==-- AArch64FrameLowering.h - TargetFrameLowering for AArch64 --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64_FRAMELOWERING_H
+#define AArch64_FRAMELOWERING_H
+
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+
+class AArch64FrameLowering : public TargetFrameLowering {
+public:
+ explicit AArch64FrameLowering()
+ : TargetFrameLowering(StackGrowsDown, 16, 0, 16,
+ false /*StackRealignable*/) {}
+
+ void emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned FramePtr) const;
+
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const override;
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+
+ int getFrameIndexOffset(const MachineFunction &MF, int FI) const override;
+ int getFrameIndexReference(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const override;
+ int resolveFrameIndexReference(const MachineFunction &MF, int FI,
+ unsigned &FrameReg,
+ bool PreferFP = false) const;
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ /// \brief Can this function use the red zone for local allocations.
+ bool canUseRedZone(const MachineFunction &MF) const;
+
+ bool hasFP(const MachineFunction &MF) const override;
+ bool hasReservedCallFrame(const MachineFunction &MF) const override;
+
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const override;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
new file mode 100644
index 0000000..3f49fab
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
@@ -0,0 +1,3033 @@
+//===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the AArch64 target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64TargetMachine.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Function.h" // To access function attributes.
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-isel"
+
+//===--------------------------------------------------------------------===//
+/// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+
+class AArch64DAGToDAGISel : public SelectionDAGISel {
+ AArch64TargetMachine &TM;
+
+ /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const AArch64Subtarget *Subtarget;
+
+ bool ForCodeSize;
+
+public:
+ explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
+ CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(tm, OptLevel), TM(tm), Subtarget(nullptr),
+ ForCodeSize(false) {}
+
+ const char *getPassName() const override {
+ return "AArch64 Instruction Selection";
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ AttributeSet FnAttrs = MF.getFunction()->getAttributes();
+ ForCodeSize =
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize) ||
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
+ Subtarget = &TM.getSubtarget<AArch64Subtarget>();
+ return SelectionDAGISel::runOnMachineFunction(MF);
+ }
+
+ SDNode *Select(SDNode *Node) override;
+
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions.
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps) override;
+
+ SDNode *SelectMLAV64LaneV128(SDNode *N);
+ SDNode *SelectMULLV64LaneV128(unsigned IntNo, SDNode *N);
+ bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
+ bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
+ bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
+ bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
+ return SelectShiftedRegister(N, false, Reg, Shift);
+ }
+ bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
+ return SelectShiftedRegister(N, true, Reg, Shift);
+ }
+ bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 1, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 2, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 4, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 8, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 16, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 1, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 2, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 4, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 8, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 16, Base, OffImm);
+ }
+
+ template<int Width>
+ bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &SignExtend, SDValue &DoShift) {
+ return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
+ }
+
+ template<int Width>
+ bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &SignExtend, SDValue &DoShift) {
+ return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
+ }
+
+
+ /// Form sequences of consecutive 64/128-bit registers for use in NEON
+ /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
+ /// between 1 and 4 elements. If it contains a single element that is returned
+ /// unchanged; otherwise a REG_SEQUENCE value is returned.
+ SDValue createDTuple(ArrayRef<SDValue> Vecs);
+ SDValue createQTuple(ArrayRef<SDValue> Vecs);
+
+ /// Generic helper for the createDTuple/createQTuple
+ /// functions. Those should almost always be called instead.
+ SDValue createTuple(ArrayRef<SDValue> Vecs, unsigned RegClassIDs[],
+ unsigned SubRegs[]);
+
+ SDNode *SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
+
+ SDNode *SelectIndexedLoad(SDNode *N, bool &Done);
+
+ SDNode *SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
+ unsigned SubRegIdx);
+ SDNode *SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
+ unsigned SubRegIdx);
+ SDNode *SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
+ SDNode *SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
+
+ SDNode *SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
+ SDNode *SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
+ SDNode *SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
+ SDNode *SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
+
+ SDNode *SelectBitfieldExtractOp(SDNode *N);
+ SDNode *SelectBitfieldInsertOp(SDNode *N);
+
+ SDNode *SelectLIBM(SDNode *N);
+
+// Include the pieces autogenerated from the target description.
+#include "AArch64GenDAGISel.inc"
+
+private:
+ bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
+ SDValue &Shift);
+ bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
+ SDValue &Offset, SDValue &SignExtend,
+ SDValue &DoShift);
+ bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
+ SDValue &Offset, SDValue &SignExtend,
+ SDValue &DoShift);
+ bool isWorthFolding(SDValue V) const;
+ bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
+ SDValue &Offset, SDValue &SignExtend);
+
+ template<unsigned RegWidth>
+ bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
+ return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
+ }
+
+ bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
+};
+} // end anonymous namespace
+
+/// isIntImmediate - This method tests to see if the node is a constant
+/// operand. If so Imm will receive the 32-bit value.
+static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
+ if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
+ Imm = C->getZExtValue();
+ return true;
+ }
+ return false;
+}
+
+// isIntImmediate - This method tests to see if a constant operand.
+// If so Imm will receive the value.
+static bool isIntImmediate(SDValue N, uint64_t &Imm) {
+ return isIntImmediate(N.getNode(), Imm);
+}
+
+// isOpcWithIntImmediate - This method tests to see if the node is a specific
+// opcode and that it has a immediate integer right operand.
+// If so Imm will receive the 32 bit value.
+static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
+ uint64_t &Imm) {
+ return N->getOpcode() == Opc &&
+ isIntImmediate(N->getOperand(1).getNode(), Imm);
+}
+
+bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
+ const SDValue &Op, char ConstraintCode, std::vector<SDValue> &OutOps) {
+ assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
+ // Require the address to be in a register. That is safe for all AArch64
+ // variants and it is hard to do anything much smarter without knowing
+ // how the operand is used.
+ OutOps.push_back(Op);
+ return false;
+}
+
+/// SelectArithImmed - Select an immediate value that can be represented as
+/// a 12-bit value shifted left by either 0 or 12. If so, return true with
+/// Val set to the 12-bit value and Shift set to the shifter operand.
+bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
+ SDValue &Shift) {
+ // This function is called from the addsub_shifted_imm ComplexPattern,
+ // which lists [imm] as the list of opcode it's interested in, however
+ // we still need to check whether the operand is actually an immediate
+ // here because the ComplexPattern opcode list is only used in
+ // root-level opcode matching.
+ if (!isa<ConstantSDNode>(N.getNode()))
+ return false;
+
+ uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
+ unsigned ShiftAmt;
+
+ if (Immed >> 12 == 0) {
+ ShiftAmt = 0;
+ } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
+ ShiftAmt = 12;
+ Immed = Immed >> 12;
+ } else
+ return false;
+
+ unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
+ Val = CurDAG->getTargetConstant(Immed, MVT::i32);
+ Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
+ return true;
+}
+
+/// SelectNegArithImmed - As above, but negates the value before trying to
+/// select it.
+bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
+ SDValue &Shift) {
+ // This function is called from the addsub_shifted_imm ComplexPattern,
+ // which lists [imm] as the list of opcode it's interested in, however
+ // we still need to check whether the operand is actually an immediate
+ // here because the ComplexPattern opcode list is only used in
+ // root-level opcode matching.
+ if (!isa<ConstantSDNode>(N.getNode()))
+ return false;
+
+ // The immediate operand must be a 24-bit zero-extended immediate.
+ uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
+
+ // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
+ // have the opposite effect on the C flag, so this pattern mustn't match under
+ // those circumstances.
+ if (Immed == 0)
+ return false;
+
+ if (N.getValueType() == MVT::i32)
+ Immed = ~((uint32_t)Immed) + 1;
+ else
+ Immed = ~Immed + 1ULL;
+ if (Immed & 0xFFFFFFFFFF000000ULL)
+ return false;
+
+ Immed &= 0xFFFFFFULL;
+ return SelectArithImmed(CurDAG->getConstant(Immed, MVT::i32), Val, Shift);
+}
+
+/// getShiftTypeForNode - Translate a shift node to the corresponding
+/// ShiftType value.
+static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
+ switch (N.getOpcode()) {
+ default:
+ return AArch64_AM::InvalidShiftExtend;
+ case ISD::SHL:
+ return AArch64_AM::LSL;
+ case ISD::SRL:
+ return AArch64_AM::LSR;
+ case ISD::SRA:
+ return AArch64_AM::ASR;
+ case ISD::ROTR:
+ return AArch64_AM::ROR;
+ }
+}
+
+/// \brief Determine wether it is worth to fold V into an extended register.
+bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
+ // it hurts if the a value is used at least twice, unless we are optimizing
+ // for code size.
+ if (ForCodeSize || V.hasOneUse())
+ return true;
+ return false;
+}
+
+/// SelectShiftedRegister - Select a "shifted register" operand. If the value
+/// is not shifted, set the Shift operand to default of "LSL 0". The logical
+/// instructions allow the shifted register to be rotated, but the arithmetic
+/// instructions do not. The AllowROR parameter specifies whether ROR is
+/// supported.
+bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
+ SDValue &Reg, SDValue &Shift) {
+ AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
+ if (ShType == AArch64_AM::InvalidShiftExtend)
+ return false;
+ if (!AllowROR && ShType == AArch64_AM::ROR)
+ return false;
+
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ unsigned BitSize = N.getValueType().getSizeInBits();
+ unsigned Val = RHS->getZExtValue() & (BitSize - 1);
+ unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
+
+ Reg = N.getOperand(0);
+ Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
+ return isWorthFolding(N);
+ }
+
+ return false;
+}
+
+/// getExtendTypeForNode - Translate an extend node to the corresponding
+/// ExtendType value.
+static AArch64_AM::ShiftExtendType
+getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
+ if (N.getOpcode() == ISD::SIGN_EXTEND ||
+ N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ EVT SrcVT;
+ if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
+ SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
+ else
+ SrcVT = N.getOperand(0).getValueType();
+
+ if (!IsLoadStore && SrcVT == MVT::i8)
+ return AArch64_AM::SXTB;
+ else if (!IsLoadStore && SrcVT == MVT::i16)
+ return AArch64_AM::SXTH;
+ else if (SrcVT == MVT::i32)
+ return AArch64_AM::SXTW;
+ assert(SrcVT != MVT::i64 && "extend from 64-bits?");
+
+ return AArch64_AM::InvalidShiftExtend;
+ } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
+ N.getOpcode() == ISD::ANY_EXTEND) {
+ EVT SrcVT = N.getOperand(0).getValueType();
+ if (!IsLoadStore && SrcVT == MVT::i8)
+ return AArch64_AM::UXTB;
+ else if (!IsLoadStore && SrcVT == MVT::i16)
+ return AArch64_AM::UXTH;
+ else if (SrcVT == MVT::i32)
+ return AArch64_AM::UXTW;
+ assert(SrcVT != MVT::i64 && "extend from 64-bits?");
+
+ return AArch64_AM::InvalidShiftExtend;
+ } else if (N.getOpcode() == ISD::AND) {
+ ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!CSD)
+ return AArch64_AM::InvalidShiftExtend;
+ uint64_t AndMask = CSD->getZExtValue();
+
+ switch (AndMask) {
+ default:
+ return AArch64_AM::InvalidShiftExtend;
+ case 0xFF:
+ return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
+ case 0xFFFF:
+ return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
+ case 0xFFFFFFFF:
+ return AArch64_AM::UXTW;
+ }
+ }
+
+ return AArch64_AM::InvalidShiftExtend;
+}
+
+// Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
+static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
+ if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
+ DL->getOpcode() != AArch64ISD::DUPLANE32)
+ return false;
+
+ SDValue SV = DL->getOperand(0);
+ if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
+ return false;
+
+ SDValue EV = SV.getOperand(1);
+ if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
+ return false;
+
+ ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
+ ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
+ LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
+ LaneOp = EV.getOperand(0);
+
+ return true;
+}
+
+// Helper for SelectOpcV64LaneV128 - Recogzine operatinos where one operand is a
+// high lane extract.
+static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
+ SDValue &LaneOp, int &LaneIdx) {
+
+ if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
+ std::swap(Op0, Op1);
+ if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
+ return false;
+ }
+ StdOp = Op1;
+ return true;
+}
+
+/// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
+/// is a lane in the upper half of a 128-bit vector. Recognize and select this
+/// so that we don't emit unnecessary lane extracts.
+SDNode *AArch64DAGToDAGISel::SelectMLAV64LaneV128(SDNode *N) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ SDValue MLAOp1; // Will hold ordinary multiplicand for MLA.
+ SDValue MLAOp2; // Will hold lane-accessed multiplicand for MLA.
+ int LaneIdx = -1; // Will hold the lane index.
+
+ if (Op1.getOpcode() != ISD::MUL ||
+ !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
+ LaneIdx)) {
+ std::swap(Op0, Op1);
+ if (Op1.getOpcode() != ISD::MUL ||
+ !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
+ LaneIdx))
+ return nullptr;
+ }
+
+ SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
+
+ SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
+
+ unsigned MLAOpc = ~0U;
+
+ switch (N->getSimpleValueType(0).SimpleTy) {
+ default:
+ llvm_unreachable("Unrecognized MLA.");
+ case MVT::v4i16:
+ MLAOpc = AArch64::MLAv4i16_indexed;
+ break;
+ case MVT::v8i16:
+ MLAOpc = AArch64::MLAv8i16_indexed;
+ break;
+ case MVT::v2i32:
+ MLAOpc = AArch64::MLAv2i32_indexed;
+ break;
+ case MVT::v4i32:
+ MLAOpc = AArch64::MLAv4i32_indexed;
+ break;
+ }
+
+ return CurDAG->getMachineNode(MLAOpc, SDLoc(N), N->getValueType(0), Ops);
+}
+
+SDNode *AArch64DAGToDAGISel::SelectMULLV64LaneV128(unsigned IntNo, SDNode *N) {
+ SDValue SMULLOp0;
+ SDValue SMULLOp1;
+ int LaneIdx;
+
+ if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
+ LaneIdx))
+ return nullptr;
+
+ SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
+
+ SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
+
+ unsigned SMULLOpc = ~0U;
+
+ if (IntNo == Intrinsic::aarch64_neon_smull) {
+ switch (N->getSimpleValueType(0).SimpleTy) {
+ default:
+ llvm_unreachable("Unrecognized SMULL.");
+ case MVT::v4i32:
+ SMULLOpc = AArch64::SMULLv4i16_indexed;
+ break;
+ case MVT::v2i64:
+ SMULLOpc = AArch64::SMULLv2i32_indexed;
+ break;
+ }
+ } else if (IntNo == Intrinsic::aarch64_neon_umull) {
+ switch (N->getSimpleValueType(0).SimpleTy) {
+ default:
+ llvm_unreachable("Unrecognized SMULL.");
+ case MVT::v4i32:
+ SMULLOpc = AArch64::UMULLv4i16_indexed;
+ break;
+ case MVT::v2i64:
+ SMULLOpc = AArch64::UMULLv2i32_indexed;
+ break;
+ }
+ } else
+ llvm_unreachable("Unrecognized intrinsic.");
+
+ return CurDAG->getMachineNode(SMULLOpc, SDLoc(N), N->getValueType(0), Ops);
+}
+
+/// Instructions that accept extend modifiers like UXTW expect the register
+/// being extended to be a GPR32, but the incoming DAG might be acting on a
+/// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
+/// this is the case.
+static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
+ if (N.getValueType() == MVT::i32)
+ return N;
+
+ SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
+ MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ SDLoc(N), MVT::i32, N, SubReg);
+ return SDValue(Node, 0);
+}
+
+
+/// SelectArithExtendedRegister - Select a "extended register" operand. This
+/// operand folds in an extend followed by an optional left shift.
+bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
+ SDValue &Shift) {
+ unsigned ShiftVal = 0;
+ AArch64_AM::ShiftExtendType Ext;
+
+ if (N.getOpcode() == ISD::SHL) {
+ ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!CSD)
+ return false;
+ ShiftVal = CSD->getZExtValue();
+ if (ShiftVal > 4)
+ return false;
+
+ Ext = getExtendTypeForNode(N.getOperand(0));
+ if (Ext == AArch64_AM::InvalidShiftExtend)
+ return false;
+
+ Reg = N.getOperand(0).getOperand(0);
+ } else {
+ Ext = getExtendTypeForNode(N);
+ if (Ext == AArch64_AM::InvalidShiftExtend)
+ return false;
+
+ Reg = N.getOperand(0);
+ }
+
+ // AArch64 mandates that the RHS of the operation must use the smallest
+ // register classs that could contain the size being extended from. Thus,
+ // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
+ // there might not be an actual 32-bit value in the program. We can
+ // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
+ assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
+ Reg = narrowIfNeeded(CurDAG, Reg);
+ Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), MVT::i32);
+ return isWorthFolding(N);
+}
+
+/// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
+/// immediate" address. The "Size" argument is the size in bytes of the memory
+/// reference, which determines the scale.
+bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
+ SDValue &Base, SDValue &OffImm) {
+ const TargetLowering *TLI = getTargetLowering();
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i64);
+ return true;
+ }
+
+ if (N.getOpcode() == AArch64ISD::ADDlow) {
+ GlobalAddressSDNode *GAN =
+ dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
+ Base = N.getOperand(0);
+ OffImm = N.getOperand(1);
+ if (!GAN)
+ return true;
+
+ const GlobalValue *GV = GAN->getGlobal();
+ unsigned Alignment = GV->getAlignment();
+ const DataLayout *DL = TLI->getDataLayout();
+ Type *Ty = GV->getType()->getElementType();
+ if (Alignment == 0 && Ty->isSized() && !Subtarget->isTargetDarwin())
+ Alignment = DL->getABITypeAlignment(Ty);
+
+ if (Alignment >= Size)
+ return true;
+ }
+
+ if (CurDAG->isBaseWithConstantOffset(N)) {
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int64_t RHSC = (int64_t)RHS->getZExtValue();
+ unsigned Scale = Log2_32(Size);
+ if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC >> Scale, MVT::i64);
+ return true;
+ }
+ }
+ }
+
+ // Before falling back to our general case, check if the unscaled
+ // instructions can handle this. If so, that's preferable.
+ if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
+ return false;
+
+ // Base only. The address will be materialized into a register before
+ // the memory is accessed.
+ // add x0, Xbase, #offset
+ // ldr x0, [x0]
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i64);
+ return true;
+}
+
+/// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
+/// immediate" address. This should only match when there is an offset that
+/// is not valid for a scaled immediate addressing mode. The "Size" argument
+/// is the size in bytes of the memory reference, which is needed here to know
+/// what is valid for a scaled immediate.
+bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
+ SDValue &Base,
+ SDValue &OffImm) {
+ if (!CurDAG->isBaseWithConstantOffset(N))
+ return false;
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int64_t RHSC = RHS->getSExtValue();
+ // If the offset is valid as a scaled immediate, don't match here.
+ if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
+ RHSC < (0x1000 << Log2_32(Size)))
+ return false;
+ if (RHSC >= -256 && RHSC < 256) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ const TargetLowering *TLI = getTargetLowering();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i64);
+ return true;
+ }
+ }
+ return false;
+}
+
+static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
+ SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
+ SDValue ImpDef = SDValue(
+ CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SDLoc(N), MVT::i64),
+ 0);
+ MachineSDNode *Node = CurDAG->getMachineNode(
+ TargetOpcode::INSERT_SUBREG, SDLoc(N), MVT::i64, ImpDef, N, SubReg);
+ return SDValue(Node, 0);
+}
+
+/// \brief Check if the given SHL node (\p N), can be used to form an
+/// extended register for an addressing mode.
+bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
+ bool WantExtend, SDValue &Offset,
+ SDValue &SignExtend) {
+ assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
+ ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
+ return false;
+
+ if (WantExtend) {
+ AArch64_AM::ShiftExtendType Ext =
+ getExtendTypeForNode(N.getOperand(0), true);
+ if (Ext == AArch64_AM::InvalidShiftExtend)
+ return false;
+
+ Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
+ SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
+ } else {
+ Offset = N.getOperand(0);
+ SignExtend = CurDAG->getTargetConstant(0, MVT::i32);
+ }
+
+ unsigned LegalShiftVal = Log2_32(Size);
+ unsigned ShiftVal = CSD->getZExtValue();
+
+ if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
+ return false;
+
+ if (isWorthFolding(N))
+ return true;
+
+ return false;
+}
+
+bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
+ SDValue &Base, SDValue &Offset,
+ SDValue &SignExtend,
+ SDValue &DoShift) {
+ if (N.getOpcode() != ISD::ADD)
+ return false;
+ SDValue LHS = N.getOperand(0);
+ SDValue RHS = N.getOperand(1);
+
+ // We don't want to match immediate adds here, because they are better lowered
+ // to the register-immediate addressing modes.
+ if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
+ return false;
+
+ // Check if this particular node is reused in any non-memory related
+ // operation. If yes, do not try to fold this node into the address
+ // computation, since the computation will be kept.
+ const SDNode *Node = N.getNode();
+ for (SDNode *UI : Node->uses()) {
+ if (!isa<MemSDNode>(*UI))
+ return false;
+ }
+
+ // Remember if it is worth folding N when it produces extended register.
+ bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
+
+ // Try to match a shifted extend on the RHS.
+ if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
+ SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
+ Base = LHS;
+ DoShift = CurDAG->getTargetConstant(true, MVT::i32);
+ return true;
+ }
+
+ // Try to match a shifted extend on the LHS.
+ if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
+ SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
+ Base = RHS;
+ DoShift = CurDAG->getTargetConstant(true, MVT::i32);
+ return true;
+ }
+
+ // There was no shift, whatever else we find.
+ DoShift = CurDAG->getTargetConstant(false, MVT::i32);
+
+ AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
+ // Try to match an unshifted extend on the LHS.
+ if (IsExtendedRegisterWorthFolding &&
+ (Ext = getExtendTypeForNode(LHS, true)) !=
+ AArch64_AM::InvalidShiftExtend) {
+ Base = RHS;
+ Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
+ SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
+ if (isWorthFolding(LHS))
+ return true;
+ }
+
+ // Try to match an unshifted extend on the RHS.
+ if (IsExtendedRegisterWorthFolding &&
+ (Ext = getExtendTypeForNode(RHS, true)) !=
+ AArch64_AM::InvalidShiftExtend) {
+ Base = LHS;
+ Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
+ SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
+ if (isWorthFolding(RHS))
+ return true;
+ }
+
+ return false;
+}
+
+bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
+ SDValue &Base, SDValue &Offset,
+ SDValue &SignExtend,
+ SDValue &DoShift) {
+ if (N.getOpcode() != ISD::ADD)
+ return false;
+ SDValue LHS = N.getOperand(0);
+ SDValue RHS = N.getOperand(1);
+
+ // We don't want to match immediate adds here, because they are better lowered
+ // to the register-immediate addressing modes.
+ if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
+ return false;
+
+ // Check if this particular node is reused in any non-memory related
+ // operation. If yes, do not try to fold this node into the address
+ // computation, since the computation will be kept.
+ const SDNode *Node = N.getNode();
+ for (SDNode *UI : Node->uses()) {
+ if (!isa<MemSDNode>(*UI))
+ return false;
+ }
+
+ // Remember if it is worth folding N when it produces extended register.
+ bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
+
+ // Try to match a shifted extend on the RHS.
+ if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
+ SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
+ Base = LHS;
+ DoShift = CurDAG->getTargetConstant(true, MVT::i32);
+ return true;
+ }
+
+ // Try to match a shifted extend on the LHS.
+ if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
+ SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
+ Base = RHS;
+ DoShift = CurDAG->getTargetConstant(true, MVT::i32);
+ return true;
+ }
+
+ // Match any non-shifted, non-extend, non-immediate add expression.
+ Base = LHS;
+ Offset = RHS;
+ SignExtend = CurDAG->getTargetConstant(false, MVT::i32);
+ DoShift = CurDAG->getTargetConstant(false, MVT::i32);
+ // Reg1 + Reg2 is free: no check needed.
+ return true;
+}
+
+SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
+ static unsigned RegClassIDs[] = {
+ AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
+ static unsigned SubRegs[] = { AArch64::dsub0, AArch64::dsub1,
+ AArch64::dsub2, AArch64::dsub3 };
+
+ return createTuple(Regs, RegClassIDs, SubRegs);
+}
+
+SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
+ static unsigned RegClassIDs[] = {
+ AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
+ static unsigned SubRegs[] = { AArch64::qsub0, AArch64::qsub1,
+ AArch64::qsub2, AArch64::qsub3 };
+
+ return createTuple(Regs, RegClassIDs, SubRegs);
+}
+
+SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
+ unsigned RegClassIDs[],
+ unsigned SubRegs[]) {
+ // There's no special register-class for a vector-list of 1 element: it's just
+ // a vector.
+ if (Regs.size() == 1)
+ return Regs[0];
+
+ assert(Regs.size() >= 2 && Regs.size() <= 4);
+
+ SDLoc DL(Regs[0].getNode());
+
+ SmallVector<SDValue, 4> Ops;
+
+ // First operand of REG_SEQUENCE is the desired RegClass.
+ Ops.push_back(
+ CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], MVT::i32));
+
+ // Then we get pairs of source & subregister-position for the components.
+ for (unsigned i = 0; i < Regs.size(); ++i) {
+ Ops.push_back(Regs[i]);
+ Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], MVT::i32));
+ }
+
+ SDNode *N =
+ CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
+ return SDValue(N, 0);
+}
+
+SDNode *AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs,
+ unsigned Opc, bool isExt) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ unsigned ExtOff = isExt;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ unsigned Vec0Off = ExtOff + 1;
+ SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
+ N->op_begin() + Vec0Off + NumVecs);
+ SDValue RegSeq = createQTuple(Regs);
+
+ SmallVector<SDValue, 6> Ops;
+ if (isExt)
+ Ops.push_back(N->getOperand(1));
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
+ return CurDAG->getMachineNode(Opc, dl, VT, Ops);
+}
+
+SDNode *AArch64DAGToDAGISel::SelectIndexedLoad(SDNode *N, bool &Done) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ if (LD->isUnindexed())
+ return nullptr;
+ EVT VT = LD->getMemoryVT();
+ EVT DstVT = N->getValueType(0);
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
+
+ // We're not doing validity checking here. That was done when checking
+ // if we should mark the load as indexed or not. We're just selecting
+ // the right instruction.
+ unsigned Opcode = 0;
+
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ bool InsertTo64 = false;
+ if (VT == MVT::i64)
+ Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
+ else if (VT == MVT::i32) {
+ if (ExtType == ISD::NON_EXTLOAD)
+ Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
+ else if (ExtType == ISD::SEXTLOAD)
+ Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
+ else {
+ Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
+ InsertTo64 = true;
+ // The result of the load is only i32. It's the subreg_to_reg that makes
+ // it into an i64.
+ DstVT = MVT::i32;
+ }
+ } else if (VT == MVT::i16) {
+ if (ExtType == ISD::SEXTLOAD) {
+ if (DstVT == MVT::i64)
+ Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
+ else
+ Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
+ } else {
+ Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
+ InsertTo64 = DstVT == MVT::i64;
+ // The result of the load is only i32. It's the subreg_to_reg that makes
+ // it into an i64.
+ DstVT = MVT::i32;
+ }
+ } else if (VT == MVT::i8) {
+ if (ExtType == ISD::SEXTLOAD) {
+ if (DstVT == MVT::i64)
+ Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
+ else
+ Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
+ } else {
+ Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
+ InsertTo64 = DstVT == MVT::i64;
+ // The result of the load is only i32. It's the subreg_to_reg that makes
+ // it into an i64.
+ DstVT = MVT::i32;
+ }
+ } else if (VT == MVT::f32) {
+ Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
+ } else if (VT == MVT::f64 || VT.is64BitVector()) {
+ Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
+ } else if (VT.is128BitVector()) {
+ Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
+ } else
+ return nullptr;
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
+ int OffsetVal = (int)OffsetOp->getZExtValue();
+ SDValue Offset = CurDAG->getTargetConstant(OffsetVal, MVT::i64);
+ SDValue Ops[] = { Base, Offset, Chain };
+ SDNode *Res = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, DstVT,
+ MVT::Other, Ops);
+ // Either way, we're replacing the node, so tell the caller that.
+ Done = true;
+ SDValue LoadedVal = SDValue(Res, 1);
+ if (InsertTo64) {
+ SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
+ LoadedVal =
+ SDValue(CurDAG->getMachineNode(
+ AArch64::SUBREG_TO_REG, SDLoc(N), MVT::i64,
+ CurDAG->getTargetConstant(0, MVT::i64), LoadedVal, SubReg),
+ 0);
+ }
+
+ ReplaceUses(SDValue(N, 0), LoadedVal);
+ ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
+ ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
+
+ return nullptr;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs,
+ unsigned Opc, unsigned SubRegIdx) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SDValue Chain = N->getOperand(0);
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(N->getOperand(2)); // Mem operand;
+ Ops.push_back(Chain);
+
+ std::vector<EVT> ResTys;
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
+
+ SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ SDValue SuperReg = SDValue(Ld, 0);
+ for (unsigned i = 0; i < NumVecs; ++i)
+ ReplaceUses(SDValue(N, i),
+ CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
+
+ ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
+ return nullptr;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
+ unsigned Opc, unsigned SubRegIdx) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SDValue Chain = N->getOperand(0);
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(N->getOperand(1)); // Mem operand
+ Ops.push_back(N->getOperand(2)); // Incremental
+ Ops.push_back(Chain);
+
+ std::vector<EVT> ResTys;
+ ResTys.push_back(MVT::i64); // Type of the write back register
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
+
+ SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ // Update uses of write back register
+ ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
+
+ // Update uses of vector list
+ SDValue SuperReg = SDValue(Ld, 1);
+ if (NumVecs == 1)
+ ReplaceUses(SDValue(N, 0), SuperReg);
+ else
+ for (unsigned i = 0; i < NumVecs; ++i)
+ ReplaceUses(SDValue(N, i),
+ CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
+
+ // Update the chain
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
+ return nullptr;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getOperand(2)->getValueType(0);
+
+ // Form a REG_SEQUENCE to force register allocation.
+ bool Is128Bit = VT.getSizeInBits() == 128;
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
+ SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(NumVecs + 2));
+ Ops.push_back(N->getOperand(0));
+ SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
+
+ return St;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getOperand(2)->getValueType(0);
+ SmallVector<EVT, 2> ResTys;
+ ResTys.push_back(MVT::i64); // Type of the write back register
+ ResTys.push_back(MVT::Other); // Type for the Chain
+
+ // Form a REG_SEQUENCE to force register allocation.
+ bool Is128Bit = VT.getSizeInBits() == 128;
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
+ SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(NumVecs + 1)); // base register
+ Ops.push_back(N->getOperand(NumVecs + 2)); // Incremental
+ Ops.push_back(N->getOperand(0)); // Chain
+ SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ return St;
+}
+
+/// WidenVector - Given a value in the V64 register class, produce the
+/// equivalent value in the V128 register class.
+class WidenVector {
+ SelectionDAG &DAG;
+
+public:
+ WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
+
+ SDValue operator()(SDValue V64Reg) {
+ EVT VT = V64Reg.getValueType();
+ unsigned NarrowSize = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType().getSimpleVT();
+ MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
+ SDLoc DL(V64Reg);
+
+ SDValue Undef =
+ SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
+ return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
+ }
+};
+
+/// NarrowVector - Given a value in the V128 register class, produce the
+/// equivalent value in the V64 register class.
+static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
+ EVT VT = V128Reg.getValueType();
+ unsigned WideSize = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType().getSimpleVT();
+ MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
+
+ return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
+ V128Reg);
+}
+
+SDNode *AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ bool Narrow = VT.getSizeInBits() == 64;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
+
+ if (Narrow)
+ std::transform(Regs.begin(), Regs.end(), Regs.begin(),
+ WidenVector(*CurDAG));
+
+ SDValue RegSeq = createQTuple(Regs);
+
+ std::vector<EVT> ResTys;
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
+
+ unsigned LaneNo =
+ cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
+ Ops.push_back(N->getOperand(NumVecs + 3));
+ Ops.push_back(N->getOperand(0));
+ SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ SDValue SuperReg = SDValue(Ld, 0);
+
+ EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
+ static unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, AArch64::qsub2,
+ AArch64::qsub3 };
+ for (unsigned i = 0; i < NumVecs; ++i) {
+ SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
+ if (Narrow)
+ NV = NarrowVector(NV, *CurDAG);
+ ReplaceUses(SDValue(N, i), NV);
+ }
+
+ ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
+
+ return Ld;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ bool Narrow = VT.getSizeInBits() == 64;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
+
+ if (Narrow)
+ std::transform(Regs.begin(), Regs.end(), Regs.begin(),
+ WidenVector(*CurDAG));
+
+ SDValue RegSeq = createQTuple(Regs);
+
+ std::vector<EVT> ResTys;
+ ResTys.push_back(MVT::i64); // Type of the write back register
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
+
+ unsigned LaneNo =
+ cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64)); // Lane Number
+ Ops.push_back(N->getOperand(NumVecs + 2)); // Base register
+ Ops.push_back(N->getOperand(NumVecs + 3)); // Incremental
+ Ops.push_back(N->getOperand(0));
+ SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ // Update uses of the write back register
+ ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
+
+ // Update uses of the vector list
+ SDValue SuperReg = SDValue(Ld, 1);
+ if (NumVecs == 1) {
+ ReplaceUses(SDValue(N, 0),
+ Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
+ } else {
+ EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
+ static unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, AArch64::qsub2,
+ AArch64::qsub3 };
+ for (unsigned i = 0; i < NumVecs; ++i) {
+ SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
+ SuperReg);
+ if (Narrow)
+ NV = NarrowVector(NV, *CurDAG);
+ ReplaceUses(SDValue(N, i), NV);
+ }
+ }
+
+ // Update the Chain
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
+
+ return Ld;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getOperand(2)->getValueType(0);
+ bool Narrow = VT.getSizeInBits() == 64;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
+
+ if (Narrow)
+ std::transform(Regs.begin(), Regs.end(), Regs.begin(),
+ WidenVector(*CurDAG));
+
+ SDValue RegSeq = createQTuple(Regs);
+
+ unsigned LaneNo =
+ cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
+ Ops.push_back(N->getOperand(NumVecs + 3));
+ Ops.push_back(N->getOperand(0));
+ SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
+
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
+
+ return St;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getOperand(2)->getValueType(0);
+ bool Narrow = VT.getSizeInBits() == 64;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
+
+ if (Narrow)
+ std::transform(Regs.begin(), Regs.end(), Regs.begin(),
+ WidenVector(*CurDAG));
+
+ SDValue RegSeq = createQTuple(Regs);
+
+ SmallVector<EVT, 2> ResTys;
+ ResTys.push_back(MVT::i64); // Type of the write back register
+ ResTys.push_back(MVT::Other);
+
+ unsigned LaneNo =
+ cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
+ Ops.push_back(N->getOperand(NumVecs + 2)); // Base Register
+ Ops.push_back(N->getOperand(NumVecs + 3)); // Incremental
+ Ops.push_back(N->getOperand(0));
+ SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
+
+ return St;
+}
+
+static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
+ unsigned &Opc, SDValue &Opd0,
+ unsigned &LSB, unsigned &MSB,
+ unsigned NumberOfIgnoredLowBits,
+ bool BiggerPattern) {
+ assert(N->getOpcode() == ISD::AND &&
+ "N must be a AND operation to call this function");
+
+ EVT VT = N->getValueType(0);
+
+ // Here we can test the type of VT and return false when the type does not
+ // match, but since it is done prior to that call in the current context
+ // we turned that into an assert to avoid redundant code.
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "Type checking must have been done before calling this function");
+
+ // FIXME: simplify-demanded-bits in DAGCombine will probably have
+ // changed the AND node to a 32-bit mask operation. We'll have to
+ // undo that as part of the transform here if we want to catch all
+ // the opportunities.
+ // Currently the NumberOfIgnoredLowBits argument helps to recover
+ // form these situations when matching bigger pattern (bitfield insert).
+
+ // For unsigned extracts, check for a shift right and mask
+ uint64_t And_imm = 0;
+ if (!isOpcWithIntImmediate(N, ISD::AND, And_imm))
+ return false;
+
+ const SDNode *Op0 = N->getOperand(0).getNode();
+
+ // Because of simplify-demanded-bits in DAGCombine, the mask may have been
+ // simplified. Try to undo that
+ And_imm |= (1 << NumberOfIgnoredLowBits) - 1;
+
+ // The immediate is a mask of the low bits iff imm & (imm+1) == 0
+ if (And_imm & (And_imm + 1))
+ return false;
+
+ bool ClampMSB = false;
+ uint64_t Srl_imm = 0;
+ // Handle the SRL + ANY_EXTEND case.
+ if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
+ isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, Srl_imm)) {
+ // Extend the incoming operand of the SRL to 64-bit.
+ Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
+ // Make sure to clamp the MSB so that we preserve the semantics of the
+ // original operations.
+ ClampMSB = true;
+ } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
+ isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
+ Srl_imm)) {
+ // If the shift result was truncated, we can still combine them.
+ Opd0 = Op0->getOperand(0).getOperand(0);
+
+ // Use the type of SRL node.
+ VT = Opd0->getValueType(0);
+ } else if (isOpcWithIntImmediate(Op0, ISD::SRL, Srl_imm)) {
+ Opd0 = Op0->getOperand(0);
+ } else if (BiggerPattern) {
+ // Let's pretend a 0 shift right has been performed.
+ // The resulting code will be at least as good as the original one
+ // plus it may expose more opportunities for bitfield insert pattern.
+ // FIXME: Currently we limit this to the bigger pattern, because
+ // some optimizations expect AND and not UBFM
+ Opd0 = N->getOperand(0);
+ } else
+ return false;
+
+ assert((BiggerPattern || (Srl_imm > 0 && Srl_imm < VT.getSizeInBits())) &&
+ "bad amount in shift node!");
+
+ LSB = Srl_imm;
+ MSB = Srl_imm + (VT == MVT::i32 ? CountTrailingOnes_32(And_imm)
+ : CountTrailingOnes_64(And_imm)) -
+ 1;
+ if (ClampMSB)
+ // Since we're moving the extend before the right shift operation, we need
+ // to clamp the MSB to make sure we don't shift in undefined bits instead of
+ // the zeros which would get shifted in with the original right shift
+ // operation.
+ MSB = MSB > 31 ? 31 : MSB;
+
+ Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
+ return true;
+}
+
+static bool isOneBitExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
+ unsigned &LSB, unsigned &MSB) {
+ // We are looking for the following pattern which basically extracts a single
+ // bit from the source value and places it in the LSB of the destination
+ // value, all other bits of the destination value or set to zero:
+ //
+ // Value2 = AND Value, MaskImm
+ // SRL Value2, ShiftImm
+ //
+ // with MaskImm >> ShiftImm == 1.
+ //
+ // This gets selected into a single UBFM:
+ //
+ // UBFM Value, ShiftImm, ShiftImm
+ //
+
+ if (N->getOpcode() != ISD::SRL)
+ return false;
+
+ uint64_t And_mask = 0;
+ if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_mask))
+ return false;
+
+ Opd0 = N->getOperand(0).getOperand(0);
+
+ uint64_t Srl_imm = 0;
+ if (!isIntImmediate(N->getOperand(1), Srl_imm))
+ return false;
+
+ // Check whether we really have a one bit extract here.
+ if (And_mask >> Srl_imm == 0x1) {
+ if (N->getValueType(0) == MVT::i32)
+ Opc = AArch64::UBFMWri;
+ else
+ Opc = AArch64::UBFMXri;
+
+ LSB = MSB = Srl_imm;
+
+ return true;
+ }
+
+ return false;
+}
+
+static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
+ unsigned &LSB, unsigned &MSB,
+ bool BiggerPattern) {
+ assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
+ "N must be a SHR/SRA operation to call this function");
+
+ EVT VT = N->getValueType(0);
+
+ // Here we can test the type of VT and return false when the type does not
+ // match, but since it is done prior to that call in the current context
+ // we turned that into an assert to avoid redundant code.
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "Type checking must have been done before calling this function");
+
+ // Check for AND + SRL doing a one bit extract.
+ if (isOneBitExtractOpFromShr(N, Opc, Opd0, LSB, MSB))
+ return true;
+
+ // we're looking for a shift of a shift
+ uint64_t Shl_imm = 0;
+ uint64_t Trunc_bits = 0;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
+ Opd0 = N->getOperand(0).getOperand(0);
+ } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
+ N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
+ // We are looking for a shift of truncate. Truncate from i64 to i32 could
+ // be considered as setting high 32 bits as zero. Our strategy here is to
+ // always generate 64bit UBFM. This consistency will help the CSE pass
+ // later find more redundancy.
+ Opd0 = N->getOperand(0).getOperand(0);
+ Trunc_bits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
+ VT = Opd0->getValueType(0);
+ assert(VT == MVT::i64 && "the promoted type should be i64");
+ } else if (BiggerPattern) {
+ // Let's pretend a 0 shift left has been performed.
+ // FIXME: Currently we limit this to the bigger pattern case,
+ // because some optimizations expect AND and not UBFM
+ Opd0 = N->getOperand(0);
+ } else
+ return false;
+
+ assert(Shl_imm < VT.getSizeInBits() && "bad amount in shift node!");
+ uint64_t Srl_imm = 0;
+ if (!isIntImmediate(N->getOperand(1), Srl_imm))
+ return false;
+
+ assert(Srl_imm > 0 && Srl_imm < VT.getSizeInBits() &&
+ "bad amount in shift node!");
+ // Note: The width operand is encoded as width-1.
+ unsigned Width = VT.getSizeInBits() - Trunc_bits - Srl_imm - 1;
+ int sLSB = Srl_imm - Shl_imm;
+ if (sLSB < 0)
+ return false;
+ LSB = sLSB;
+ MSB = LSB + Width;
+ // SRA requires a signed extraction
+ if (VT == MVT::i32)
+ Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
+ else
+ Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
+ return true;
+}
+
+static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
+ SDValue &Opd0, unsigned &LSB, unsigned &MSB,
+ unsigned NumberOfIgnoredLowBits = 0,
+ bool BiggerPattern = false) {
+ if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
+ return false;
+
+ switch (N->getOpcode()) {
+ default:
+ if (!N->isMachineOpcode())
+ return false;
+ break;
+ case ISD::AND:
+ return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, LSB, MSB,
+ NumberOfIgnoredLowBits, BiggerPattern);
+ case ISD::SRL:
+ case ISD::SRA:
+ return isBitfieldExtractOpFromShr(N, Opc, Opd0, LSB, MSB, BiggerPattern);
+ }
+
+ unsigned NOpc = N->getMachineOpcode();
+ switch (NOpc) {
+ default:
+ return false;
+ case AArch64::SBFMWri:
+ case AArch64::UBFMWri:
+ case AArch64::SBFMXri:
+ case AArch64::UBFMXri:
+ Opc = NOpc;
+ Opd0 = N->getOperand(0);
+ LSB = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
+ MSB = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
+ return true;
+ }
+ // Unreachable
+ return false;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectBitfieldExtractOp(SDNode *N) {
+ unsigned Opc, LSB, MSB;
+ SDValue Opd0;
+ if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, LSB, MSB))
+ return nullptr;
+
+ EVT VT = N->getValueType(0);
+
+ // If the bit extract operation is 64bit but the original type is 32bit, we
+ // need to add one EXTRACT_SUBREG.
+ if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
+ SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(LSB, MVT::i64),
+ CurDAG->getTargetConstant(MSB, MVT::i64)};
+
+ SDNode *BFM = CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i64, Ops64);
+ SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
+ MachineSDNode *Node =
+ CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SDLoc(N), MVT::i32,
+ SDValue(BFM, 0), SubReg);
+ return Node;
+ }
+
+ SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(LSB, VT),
+ CurDAG->getTargetConstant(MSB, VT)};
+ return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
+}
+
+/// Does DstMask form a complementary pair with the mask provided by
+/// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
+/// this asks whether DstMask zeroes precisely those bits that will be set by
+/// the other half.
+static bool isBitfieldDstMask(uint64_t DstMask, APInt BitsToBeInserted,
+ unsigned NumberOfIgnoredHighBits, EVT VT) {
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "i32 or i64 mask type expected!");
+ unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
+
+ APInt SignificantDstMask = APInt(BitWidth, DstMask);
+ APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
+
+ return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
+ (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
+}
+
+// Look for bits that will be useful for later uses.
+// A bit is consider useless as soon as it is dropped and never used
+// before it as been dropped.
+// E.g., looking for useful bit of x
+// 1. y = x & 0x7
+// 2. z = y >> 2
+// After #1, x useful bits are 0x7, then the useful bits of x, live through
+// y.
+// After #2, the useful bits of x are 0x4.
+// However, if x is used on an unpredicatable instruction, then all its bits
+// are useful.
+// E.g.
+// 1. y = x & 0x7
+// 2. z = y >> 2
+// 3. str x, [@x]
+static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
+
+static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t Imm =
+ cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
+ Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
+ UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
+ getUsefulBits(Op, UsefulBits, Depth + 1);
+}
+
+static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
+ uint64_t Imm, uint64_t MSB,
+ unsigned Depth) {
+ // inherit the bitwidth value
+ APInt OpUsefulBits(UsefulBits);
+ OpUsefulBits = 1;
+
+ if (MSB >= Imm) {
+ OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
+ --OpUsefulBits;
+ // The interesting part will be in the lower part of the result
+ getUsefulBits(Op, OpUsefulBits, Depth + 1);
+ // The interesting part was starting at Imm in the argument
+ OpUsefulBits = OpUsefulBits.shl(Imm);
+ } else {
+ OpUsefulBits = OpUsefulBits.shl(MSB + 1);
+ --OpUsefulBits;
+ // The interesting part will be shifted in the result
+ OpUsefulBits = OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm);
+ getUsefulBits(Op, OpUsefulBits, Depth + 1);
+ // The interesting part was at zero in the argument
+ OpUsefulBits = OpUsefulBits.lshr(OpUsefulBits.getBitWidth() - Imm);
+ }
+
+ UsefulBits &= OpUsefulBits;
+}
+
+static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t Imm =
+ cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
+ uint64_t MSB =
+ cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
+
+ getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
+}
+
+static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t ShiftTypeAndValue =
+ cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
+ APInt Mask(UsefulBits);
+ Mask.clearAllBits();
+ Mask.flipAllBits();
+
+ if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
+ // Shift Left
+ uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
+ Mask = Mask.shl(ShiftAmt);
+ getUsefulBits(Op, Mask, Depth + 1);
+ Mask = Mask.lshr(ShiftAmt);
+ } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
+ // Shift Right
+ // We do not handle AArch64_AM::ASR, because the sign will change the
+ // number of useful bits
+ uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
+ Mask = Mask.lshr(ShiftAmt);
+ getUsefulBits(Op, Mask, Depth + 1);
+ Mask = Mask.shl(ShiftAmt);
+ } else
+ return;
+
+ UsefulBits &= Mask;
+}
+
+static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t Imm =
+ cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
+ uint64_t MSB =
+ cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
+
+ if (Op.getOperand(1) == Orig)
+ return getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
+
+ APInt OpUsefulBits(UsefulBits);
+ OpUsefulBits = 1;
+
+ if (MSB >= Imm) {
+ OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
+ --OpUsefulBits;
+ UsefulBits &= ~OpUsefulBits;
+ getUsefulBits(Op, UsefulBits, Depth + 1);
+ } else {
+ OpUsefulBits = OpUsefulBits.shl(MSB + 1);
+ --OpUsefulBits;
+ UsefulBits = ~(OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm));
+ getUsefulBits(Op, UsefulBits, Depth + 1);
+ }
+}
+
+static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
+ SDValue Orig, unsigned Depth) {
+
+ // Users of this node should have already been instruction selected
+ // FIXME: Can we turn that into an assert?
+ if (!UserNode->isMachineOpcode())
+ return;
+
+ switch (UserNode->getMachineOpcode()) {
+ default:
+ return;
+ case AArch64::ANDSWri:
+ case AArch64::ANDSXri:
+ case AArch64::ANDWri:
+ case AArch64::ANDXri:
+ // We increment Depth only when we call the getUsefulBits
+ return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
+ Depth);
+ case AArch64::UBFMWri:
+ case AArch64::UBFMXri:
+ return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
+
+ case AArch64::ORRWrs:
+ case AArch64::ORRXrs:
+ if (UserNode->getOperand(1) != Orig)
+ return;
+ return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
+ Depth);
+ case AArch64::BFMWri:
+ case AArch64::BFMXri:
+ return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
+ }
+}
+
+static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
+ if (Depth >= 6)
+ return;
+ // Initialize UsefulBits
+ if (!Depth) {
+ unsigned Bitwidth = Op.getValueType().getScalarType().getSizeInBits();
+ // At the beginning, assume every produced bits is useful
+ UsefulBits = APInt(Bitwidth, 0);
+ UsefulBits.flipAllBits();
+ }
+ APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
+
+ for (SDNode *Node : Op.getNode()->uses()) {
+ // A use cannot produce useful bits
+ APInt UsefulBitsForUse = APInt(UsefulBits);
+ getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
+ UsersUsefulBits |= UsefulBitsForUse;
+ }
+ // UsefulBits contains the produced bits that are meaningful for the
+ // current definition, thus a user cannot make a bit meaningful at
+ // this point
+ UsefulBits &= UsersUsefulBits;
+}
+
+/// Create a machine node performing a notional SHL of Op by ShlAmount. If
+/// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
+/// 0, return Op unchanged.
+static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
+ if (ShlAmount == 0)
+ return Op;
+
+ EVT VT = Op.getValueType();
+ unsigned BitWidth = VT.getSizeInBits();
+ unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
+
+ SDNode *ShiftNode;
+ if (ShlAmount > 0) {
+ // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
+ ShiftNode = CurDAG->getMachineNode(
+ UBFMOpc, SDLoc(Op), VT, Op,
+ CurDAG->getTargetConstant(BitWidth - ShlAmount, VT),
+ CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, VT));
+ } else {
+ // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
+ assert(ShlAmount < 0 && "expected right shift");
+ int ShrAmount = -ShlAmount;
+ ShiftNode = CurDAG->getMachineNode(
+ UBFMOpc, SDLoc(Op), VT, Op, CurDAG->getTargetConstant(ShrAmount, VT),
+ CurDAG->getTargetConstant(BitWidth - 1, VT));
+ }
+
+ return SDValue(ShiftNode, 0);
+}
+
+/// Does this tree qualify as an attempt to move a bitfield into position,
+/// essentially "(and (shl VAL, N), Mask)".
+static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
+ SDValue &Src, int &ShiftAmount,
+ int &MaskWidth) {
+ EVT VT = Op.getValueType();
+ unsigned BitWidth = VT.getSizeInBits();
+ (void)BitWidth;
+ assert(BitWidth == 32 || BitWidth == 64);
+
+ APInt KnownZero, KnownOne;
+ CurDAG->computeKnownBits(Op, KnownZero, KnownOne);
+
+ // Non-zero in the sense that they're not provably zero, which is the key
+ // point if we want to use this value
+ uint64_t NonZeroBits = (~KnownZero).getZExtValue();
+
+ // Discard a constant AND mask if present. It's safe because the node will
+ // already have been factored into the computeKnownBits calculation above.
+ uint64_t AndImm;
+ if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
+ assert((~APInt(BitWidth, AndImm) & ~KnownZero) == 0);
+ Op = Op.getOperand(0);
+ }
+
+ uint64_t ShlImm;
+ if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
+ return false;
+ Op = Op.getOperand(0);
+
+ if (!isShiftedMask_64(NonZeroBits))
+ return false;
+
+ ShiftAmount = countTrailingZeros(NonZeroBits);
+ MaskWidth = CountTrailingOnes_64(NonZeroBits >> ShiftAmount);
+
+ // BFI encompasses sufficiently many nodes that it's worth inserting an extra
+ // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
+ // amount.
+ Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
+
+ return true;
+}
+
+// Given a OR operation, check if we have the following pattern
+// ubfm c, b, imm, imm2 (or something that does the same jobs, see
+// isBitfieldExtractOp)
+// d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
+// countTrailingZeros(mask2) == imm2 - imm + 1
+// f = d | c
+// if yes, given reference arguments will be update so that one can replace
+// the OR instruction with:
+// f = Opc Opd0, Opd1, LSB, MSB ; where Opc is a BFM, LSB = imm, and MSB = imm2
+static bool isBitfieldInsertOpFromOr(SDNode *N, unsigned &Opc, SDValue &Dst,
+ SDValue &Src, unsigned &ImmR,
+ unsigned &ImmS, SelectionDAG *CurDAG) {
+ assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
+
+ // Set Opc
+ EVT VT = N->getValueType(0);
+ if (VT == MVT::i32)
+ Opc = AArch64::BFMWri;
+ else if (VT == MVT::i64)
+ Opc = AArch64::BFMXri;
+ else
+ return false;
+
+ // Because of simplify-demanded-bits in DAGCombine, involved masks may not
+ // have the expected shape. Try to undo that.
+ APInt UsefulBits;
+ getUsefulBits(SDValue(N, 0), UsefulBits);
+
+ unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
+ unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
+
+ // OR is commutative, check both possibilities (does llvm provide a
+ // way to do that directely, e.g., via code matcher?)
+ SDValue OrOpd1Val = N->getOperand(1);
+ SDNode *OrOpd0 = N->getOperand(0).getNode();
+ SDNode *OrOpd1 = N->getOperand(1).getNode();
+ for (int i = 0; i < 2;
+ ++i, std::swap(OrOpd0, OrOpd1), OrOpd1Val = N->getOperand(0)) {
+ unsigned BFXOpc;
+ int DstLSB, Width;
+ if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
+ NumberOfIgnoredLowBits, true)) {
+ // Check that the returned opcode is compatible with the pattern,
+ // i.e., same type and zero extended (U and not S)
+ if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
+ (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
+ continue;
+
+ // Compute the width of the bitfield insertion
+ DstLSB = 0;
+ Width = ImmS - ImmR + 1;
+ // FIXME: This constraint is to catch bitfield insertion we may
+ // want to widen the pattern if we want to grab general bitfied
+ // move case
+ if (Width <= 0)
+ continue;
+
+ // If the mask on the insertee is correct, we have a BFXIL operation. We
+ // can share the ImmR and ImmS values from the already-computed UBFM.
+ } else if (isBitfieldPositioningOp(CurDAG, SDValue(OrOpd0, 0), Src,
+ DstLSB, Width)) {
+ ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
+ ImmS = Width - 1;
+ } else
+ continue;
+
+ // Check the second part of the pattern
+ EVT VT = OrOpd1->getValueType(0);
+ assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
+
+ // Compute the Known Zero for the candidate of the first operand.
+ // This allows to catch more general case than just looking for
+ // AND with imm. Indeed, simplify-demanded-bits may have removed
+ // the AND instruction because it proves it was useless.
+ APInt KnownZero, KnownOne;
+ CurDAG->computeKnownBits(OrOpd1Val, KnownZero, KnownOne);
+
+ // Check if there is enough room for the second operand to appear
+ // in the first one
+ APInt BitsToBeInserted =
+ APInt::getBitsSet(KnownZero.getBitWidth(), DstLSB, DstLSB + Width);
+
+ if ((BitsToBeInserted & ~KnownZero) != 0)
+ continue;
+
+ // Set the first operand
+ uint64_t Imm;
+ if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
+ isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
+ // In that case, we can eliminate the AND
+ Dst = OrOpd1->getOperand(0);
+ else
+ // Maybe the AND has been removed by simplify-demanded-bits
+ // or is useful because it discards more bits
+ Dst = OrOpd1Val;
+
+ // both parts match
+ return true;
+ }
+
+ return false;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectBitfieldInsertOp(SDNode *N) {
+ if (N->getOpcode() != ISD::OR)
+ return nullptr;
+
+ unsigned Opc;
+ unsigned LSB, MSB;
+ SDValue Opd0, Opd1;
+
+ if (!isBitfieldInsertOpFromOr(N, Opc, Opd0, Opd1, LSB, MSB, CurDAG))
+ return nullptr;
+
+ EVT VT = N->getValueType(0);
+ SDValue Ops[] = { Opd0,
+ Opd1,
+ CurDAG->getTargetConstant(LSB, VT),
+ CurDAG->getTargetConstant(MSB, VT) };
+ return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
+}
+
+SDNode *AArch64DAGToDAGISel::SelectLIBM(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ unsigned Variant;
+ unsigned Opc;
+ unsigned FRINTXOpcs[] = { AArch64::FRINTXSr, AArch64::FRINTXDr };
+
+ if (VT == MVT::f32) {
+ Variant = 0;
+ } else if (VT == MVT::f64) {
+ Variant = 1;
+ } else
+ return nullptr; // Unrecognized argument type. Fall back on default codegen.
+
+ // Pick the FRINTX variant needed to set the flags.
+ unsigned FRINTXOpc = FRINTXOpcs[Variant];
+
+ switch (N->getOpcode()) {
+ default:
+ return nullptr; // Unrecognized libm ISD node. Fall back on default codegen.
+ case ISD::FCEIL: {
+ unsigned FRINTPOpcs[] = { AArch64::FRINTPSr, AArch64::FRINTPDr };
+ Opc = FRINTPOpcs[Variant];
+ break;
+ }
+ case ISD::FFLOOR: {
+ unsigned FRINTMOpcs[] = { AArch64::FRINTMSr, AArch64::FRINTMDr };
+ Opc = FRINTMOpcs[Variant];
+ break;
+ }
+ case ISD::FTRUNC: {
+ unsigned FRINTZOpcs[] = { AArch64::FRINTZSr, AArch64::FRINTZDr };
+ Opc = FRINTZOpcs[Variant];
+ break;
+ }
+ case ISD::FROUND: {
+ unsigned FRINTAOpcs[] = { AArch64::FRINTASr, AArch64::FRINTADr };
+ Opc = FRINTAOpcs[Variant];
+ break;
+ }
+ }
+
+ SDLoc dl(N);
+ SDValue In = N->getOperand(0);
+ SmallVector<SDValue, 2> Ops;
+ Ops.push_back(In);
+
+ if (!TM.Options.UnsafeFPMath) {
+ SDNode *FRINTX = CurDAG->getMachineNode(FRINTXOpc, dl, VT, MVT::Glue, In);
+ Ops.push_back(SDValue(FRINTX, 1));
+ }
+
+ return CurDAG->getMachineNode(Opc, dl, VT, Ops);
+}
+
+bool
+AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
+ unsigned RegWidth) {
+ APFloat FVal(0.0);
+ if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
+ FVal = CN->getValueAPF();
+ else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
+ // Some otherwise illegal constants are allowed in this case.
+ if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
+ !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
+ return false;
+
+ ConstantPoolSDNode *CN =
+ dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
+ FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
+ } else
+ return false;
+
+ // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
+ // is between 1 and 32 for a destination w-register, or 1 and 64 for an
+ // x-register.
+ //
+ // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
+ // want THIS_NODE to be 2^fbits. This is much easier to deal with using
+ // integers.
+ bool IsExact;
+
+ // fbits is between 1 and 64 in the worst-case, which means the fmul
+ // could have 2^64 as an actual operand. Need 65 bits of precision.
+ APSInt IntVal(65, true);
+ FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
+
+ // N.b. isPowerOf2 also checks for > 0.
+ if (!IsExact || !IntVal.isPowerOf2()) return false;
+ unsigned FBits = IntVal.logBase2();
+
+ // Checks above should have guaranteed that we haven't lost information in
+ // finding FBits, but it must still be in range.
+ if (FBits == 0 || FBits > RegWidth) return false;
+
+ FixedPos = CurDAG->getTargetConstant(FBits, MVT::i32);
+ return true;
+}
+
+SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
+ // Dump information about the Node being selected
+ DEBUG(errs() << "Selecting: ");
+ DEBUG(Node->dump(CurDAG));
+ DEBUG(errs() << "\n");
+
+ // If we have a custom node, we already have selected!
+ if (Node->isMachineOpcode()) {
+ DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
+ Node->setNodeId(-1);
+ return nullptr;
+ }
+
+ // Few custom selection stuff.
+ SDNode *ResNode = nullptr;
+ EVT VT = Node->getValueType(0);
+
+ switch (Node->getOpcode()) {
+ default:
+ break;
+
+ case ISD::ADD:
+ if (SDNode *I = SelectMLAV64LaneV128(Node))
+ return I;
+ break;
+
+ case ISD::LOAD: {
+ // Try to select as an indexed load. Fall through to normal processing
+ // if we can't.
+ bool Done = false;
+ SDNode *I = SelectIndexedLoad(Node, Done);
+ if (Done)
+ return I;
+ break;
+ }
+
+ case ISD::SRL:
+ case ISD::AND:
+ case ISD::SRA:
+ if (SDNode *I = SelectBitfieldExtractOp(Node))
+ return I;
+ break;
+
+ case ISD::OR:
+ if (SDNode *I = SelectBitfieldInsertOp(Node))
+ return I;
+ break;
+
+ case ISD::EXTRACT_VECTOR_ELT: {
+ // Extracting lane zero is a special case where we can just use a plain
+ // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
+ // the rest of the compiler, especially the register allocator and copyi
+ // propagation, to reason about, so is preferred when it's possible to
+ // use it.
+ ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
+ // Bail and use the default Select() for non-zero lanes.
+ if (LaneNode->getZExtValue() != 0)
+ break;
+ // If the element type is not the same as the result type, likewise
+ // bail and use the default Select(), as there's more to do than just
+ // a cross-class COPY. This catches extracts of i8 and i16 elements
+ // since they will need an explicit zext.
+ if (VT != Node->getOperand(0).getValueType().getVectorElementType())
+ break;
+ unsigned SubReg;
+ switch (Node->getOperand(0)
+ .getValueType()
+ .getVectorElementType()
+ .getSizeInBits()) {
+ default:
+ llvm_unreachable("Unexpected vector element type!");
+ case 64:
+ SubReg = AArch64::dsub;
+ break;
+ case 32:
+ SubReg = AArch64::ssub;
+ break;
+ case 16: // FALLTHROUGH
+ case 8:
+ llvm_unreachable("unexpected zext-requiring extract element!");
+ }
+ SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
+ Node->getOperand(0));
+ DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
+ DEBUG(Extract->dumpr(CurDAG));
+ DEBUG(dbgs() << "\n");
+ return Extract.getNode();
+ }
+ case ISD::Constant: {
+ // Materialize zero constants as copies from WZR/XZR. This allows
+ // the coalescer to propagate these into other instructions.
+ ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
+ if (ConstNode->isNullValue()) {
+ if (VT == MVT::i32)
+ return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
+ AArch64::WZR, MVT::i32).getNode();
+ else if (VT == MVT::i64)
+ return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
+ AArch64::XZR, MVT::i64).getNode();
+ }
+ break;
+ }
+
+ case ISD::FrameIndex: {
+ // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
+ int FI = cast<FrameIndexSDNode>(Node)->getIndex();
+ unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
+ const TargetLowering *TLI = getTargetLowering();
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
+ CurDAG->getTargetConstant(Shifter, MVT::i32) };
+ return CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::aarch64_ldaxp:
+ case Intrinsic::aarch64_ldxp: {
+ unsigned Op =
+ IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
+ SDValue MemAddr = Node->getOperand(2);
+ SDLoc DL(Node);
+ SDValue Chain = Node->getOperand(0);
+
+ SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
+ MVT::Other, MemAddr, Chain);
+
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
+ cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
+ return Ld;
+ }
+ case Intrinsic::aarch64_stlxp:
+ case Intrinsic::aarch64_stxp: {
+ unsigned Op =
+ IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
+ SDLoc DL(Node);
+ SDValue Chain = Node->getOperand(0);
+ SDValue ValLo = Node->getOperand(2);
+ SDValue ValHi = Node->getOperand(3);
+ SDValue MemAddr = Node->getOperand(4);
+
+ // Place arguments in the right order.
+ SmallVector<SDValue, 7> Ops;
+ Ops.push_back(ValLo);
+ Ops.push_back(ValHi);
+ Ops.push_back(MemAddr);
+ Ops.push_back(Chain);
+
+ SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
+ cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
+
+ return St;
+ }
+ case Intrinsic::aarch64_neon_ld1x2:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld1x3:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld1x4:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld2:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld3:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld4:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld2r:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld3r:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld4r:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld2lane:
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectLoadLane(Node, 2, AArch64::LD2i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectLoadLane(Node, 2, AArch64::LD2i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectLoadLane(Node, 2, AArch64::LD2i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectLoadLane(Node, 2, AArch64::LD2i64);
+ break;
+ case Intrinsic::aarch64_neon_ld3lane:
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectLoadLane(Node, 3, AArch64::LD3i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectLoadLane(Node, 3, AArch64::LD3i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectLoadLane(Node, 3, AArch64::LD3i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectLoadLane(Node, 3, AArch64::LD3i64);
+ break;
+ case Intrinsic::aarch64_neon_ld4lane:
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectLoadLane(Node, 4, AArch64::LD4i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectLoadLane(Node, 4, AArch64::LD4i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectLoadLane(Node, 4, AArch64::LD4i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectLoadLane(Node, 4, AArch64::LD4i64);
+ break;
+ }
+ } break;
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::aarch64_neon_tbl2:
+ return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBLv8i8Two
+ : AArch64::TBLv16i8Two,
+ false);
+ case Intrinsic::aarch64_neon_tbl3:
+ return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
+ : AArch64::TBLv16i8Three,
+ false);
+ case Intrinsic::aarch64_neon_tbl4:
+ return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
+ : AArch64::TBLv16i8Four,
+ false);
+ case Intrinsic::aarch64_neon_tbx2:
+ return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBXv8i8Two
+ : AArch64::TBXv16i8Two,
+ true);
+ case Intrinsic::aarch64_neon_tbx3:
+ return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
+ : AArch64::TBXv16i8Three,
+ true);
+ case Intrinsic::aarch64_neon_tbx4:
+ return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
+ : AArch64::TBXv16i8Four,
+ true);
+ case Intrinsic::aarch64_neon_smull:
+ case Intrinsic::aarch64_neon_umull:
+ if (SDNode *N = SelectMULLV64LaneV128(IntNo, Node))
+ return N;
+ break;
+ }
+ break;
+ }
+ case ISD::INTRINSIC_VOID: {
+ unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
+ if (Node->getNumOperands() >= 3)
+ VT = Node->getOperand(2)->getValueType(0);
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::aarch64_neon_st1x2: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 2, AArch64::ST1Twov8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 2, AArch64::ST1Twov16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 2, AArch64::ST1Twov4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 2, AArch64::ST1Twov8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 2, AArch64::ST1Twov2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 2, AArch64::ST1Twov4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 2, AArch64::ST1Twov2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 2, AArch64::ST1Twov1d);
+ break;
+ }
+ case Intrinsic::aarch64_neon_st1x3: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 3, AArch64::ST1Threev8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 3, AArch64::ST1Threev16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 3, AArch64::ST1Threev4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 3, AArch64::ST1Threev8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 3, AArch64::ST1Threev2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 3, AArch64::ST1Threev4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 3, AArch64::ST1Threev2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 3, AArch64::ST1Threev1d);
+ break;
+ }
+ case Intrinsic::aarch64_neon_st1x4: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 4, AArch64::ST1Fourv8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 4, AArch64::ST1Fourv16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 4, AArch64::ST1Fourv4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 4, AArch64::ST1Fourv8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 4, AArch64::ST1Fourv2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 4, AArch64::ST1Fourv4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 4, AArch64::ST1Fourv2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 4, AArch64::ST1Fourv1d);
+ break;
+ }
+ case Intrinsic::aarch64_neon_st2: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 2, AArch64::ST2Twov8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 2, AArch64::ST2Twov16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 2, AArch64::ST2Twov4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 2, AArch64::ST2Twov8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 2, AArch64::ST2Twov2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 2, AArch64::ST2Twov4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 2, AArch64::ST2Twov2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 2, AArch64::ST1Twov1d);
+ break;
+ }
+ case Intrinsic::aarch64_neon_st3: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 3, AArch64::ST3Threev8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 3, AArch64::ST3Threev16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 3, AArch64::ST3Threev4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 3, AArch64::ST3Threev8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 3, AArch64::ST3Threev2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 3, AArch64::ST3Threev4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 3, AArch64::ST3Threev2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 3, AArch64::ST1Threev1d);
+ break;
+ }
+ case Intrinsic::aarch64_neon_st4: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 4, AArch64::ST4Fourv8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 4, AArch64::ST4Fourv16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 4, AArch64::ST4Fourv4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 4, AArch64::ST4Fourv8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 4, AArch64::ST4Fourv2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 4, AArch64::ST4Fourv4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 4, AArch64::ST4Fourv2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 4, AArch64::ST1Fourv1d);
+ break;
+ }
+ case Intrinsic::aarch64_neon_st2lane: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectStoreLane(Node, 2, AArch64::ST2i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectStoreLane(Node, 2, AArch64::ST2i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectStoreLane(Node, 2, AArch64::ST2i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectStoreLane(Node, 2, AArch64::ST2i64);
+ break;
+ }
+ case Intrinsic::aarch64_neon_st3lane: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectStoreLane(Node, 3, AArch64::ST3i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectStoreLane(Node, 3, AArch64::ST3i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectStoreLane(Node, 3, AArch64::ST3i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectStoreLane(Node, 3, AArch64::ST3i64);
+ break;
+ }
+ case Intrinsic::aarch64_neon_st4lane: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectStoreLane(Node, 4, AArch64::ST4i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectStoreLane(Node, 4, AArch64::ST4i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectStoreLane(Node, 4, AArch64::ST4i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectStoreLane(Node, 4, AArch64::ST4i64);
+ break;
+ }
+ }
+ }
+ case AArch64ISD::LD2post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD3post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD4post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD1x2post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD1x3post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD1x4post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD1DUPpost: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD2DUPpost: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD3DUPpost: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD4DUPpost: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD1LANEpost: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
+ break;
+ }
+ case AArch64ISD::LD2LANEpost: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
+ break;
+ }
+ case AArch64ISD::LD3LANEpost: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
+ break;
+ }
+ case AArch64ISD::LD4LANEpost: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
+ break;
+ }
+ case AArch64ISD::ST2post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
+ break;
+ }
+ case AArch64ISD::ST3post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
+ break;
+ }
+ case AArch64ISD::ST4post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
+ break;
+ }
+ case AArch64ISD::ST1x2post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
+ break;
+ }
+ case AArch64ISD::ST1x3post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
+ break;
+ }
+ case AArch64ISD::ST1x4post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
+ break;
+ }
+ case AArch64ISD::ST2LANEpost: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
+ break;
+ }
+ case AArch64ISD::ST3LANEpost: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
+ break;
+ }
+ case AArch64ISD::ST4LANEpost: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
+ break;
+ }
+
+ case ISD::FCEIL:
+ case ISD::FFLOOR:
+ case ISD::FTRUNC:
+ case ISD::FROUND:
+ if (SDNode *I = SelectLIBM(Node))
+ return I;
+ break;
+ }
+
+ // Select the default instruction
+ ResNode = SelectCode(Node);
+
+ DEBUG(errs() << "=> ");
+ if (ResNode == nullptr || ResNode == Node)
+ DEBUG(Node->dump(CurDAG));
+ else
+ DEBUG(ResNode->dump(CurDAG));
+ DEBUG(errs() << "\n");
+
+ return ResNode;
+}
+
+/// createAArch64ISelDag - This pass converts a legalized DAG into a
+/// AArch64-specific DAG, ready for instruction scheduling.
+FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new AArch64DAGToDAGISel(TM, OptLevel);
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp
new file mode 100644
index 0000000..f2004ea
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp
@@ -0,0 +1,8095 @@
+//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AArch64TargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64ISelLowering.h"
+#include "AArch64PerfectShuffle.h"
+#include "AArch64Subtarget.h"
+#include "AArch64MachineFunctionInfo.h"
+#include "AArch64TargetMachine.h"
+#include "AArch64TargetObjectFile.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-lower"
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+STATISTIC(NumShiftInserts, "Number of vector shift inserts");
+
+enum AlignMode {
+ StrictAlign,
+ NoStrictAlign
+};
+
+static cl::opt<AlignMode>
+Align(cl::desc("Load/store alignment support"),
+ cl::Hidden, cl::init(NoStrictAlign),
+ cl::values(
+ clEnumValN(StrictAlign, "aarch64-strict-align",
+ "Disallow all unaligned memory accesses"),
+ clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
+ "Allow unaligned memory accesses"),
+ clEnumValEnd));
+
+// Place holder until extr generation is tested fully.
+static cl::opt<bool>
+EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
+ cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
+ cl::init(true));
+
+static cl::opt<bool>
+EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
+ cl::desc("Allow AArch64 SLI/SRI formation"),
+ cl::init(false));
+
+//===----------------------------------------------------------------------===//
+// AArch64 Lowering public interface.
+//===----------------------------------------------------------------------===//
+static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
+ if (TT.isOSBinFormatMachO())
+ return new AArch64_MachoTargetObjectFile();
+
+ return new AArch64_ELFTargetObjectFile();
+}
+
+AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM)
+ : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
+ Subtarget = &TM.getSubtarget<AArch64Subtarget>();
+
+ // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
+ // we have to make something up. Arbitrarily, choose ZeroOrOne.
+ setBooleanContents(ZeroOrOneBooleanContent);
+ // When comparing vectors the result sets the different elements in the
+ // vector to all-one or all-zero.
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
+ addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
+
+ if (Subtarget->hasFPARMv8()) {
+ addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
+ addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
+ addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
+ addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
+ }
+
+ if (Subtarget->hasNEON()) {
+ addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
+ addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
+ // Someone set us up the NEON.
+ addDRTypeForNEON(MVT::v2f32);
+ addDRTypeForNEON(MVT::v8i8);
+ addDRTypeForNEON(MVT::v4i16);
+ addDRTypeForNEON(MVT::v2i32);
+ addDRTypeForNEON(MVT::v1i64);
+ addDRTypeForNEON(MVT::v1f64);
+
+ addQRTypeForNEON(MVT::v4f32);
+ addQRTypeForNEON(MVT::v2f64);
+ addQRTypeForNEON(MVT::v16i8);
+ addQRTypeForNEON(MVT::v8i16);
+ addQRTypeForNEON(MVT::v4i32);
+ addQRTypeForNEON(MVT::v2i64);
+ }
+
+ // Compute derived properties from the register classes
+ computeRegisterProperties();
+
+ // Provide all sorts of operation actions
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
+ setOperationAction(ISD::SETCC, MVT::i32, Custom);
+ setOperationAction(ISD::SETCC, MVT::i64, Custom);
+ setOperationAction(ISD::SETCC, MVT::f32, Custom);
+ setOperationAction(ISD::SETCC, MVT::f64, Custom);
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::i64, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::JumpTable, MVT::i64, Custom);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
+
+ setOperationAction(ISD::FREM, MVT::f32, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f80, Expand);
+
+ // Custom lowering hooks are needed for XOR
+ // to fold it into CSINC/CSINV.
+ setOperationAction(ISD::XOR, MVT::i32, Custom);
+ setOperationAction(ISD::XOR, MVT::i64, Custom);
+
+ // Virtually no operation on f128 is legal, but LLVM can't expand them when
+ // there's a valid register class, so we need custom operations in most cases.
+ setOperationAction(ISD::FABS, MVT::f128, Expand);
+ setOperationAction(ISD::FADD, MVT::f128, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
+ setOperationAction(ISD::FCOS, MVT::f128, Expand);
+ setOperationAction(ISD::FDIV, MVT::f128, Custom);
+ setOperationAction(ISD::FMA, MVT::f128, Expand);
+ setOperationAction(ISD::FMUL, MVT::f128, Custom);
+ setOperationAction(ISD::FNEG, MVT::f128, Expand);
+ setOperationAction(ISD::FPOW, MVT::f128, Expand);
+ setOperationAction(ISD::FREM, MVT::f128, Expand);
+ setOperationAction(ISD::FRINT, MVT::f128, Expand);
+ setOperationAction(ISD::FSIN, MVT::f128, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
+ setOperationAction(ISD::FSQRT, MVT::f128, Expand);
+ setOperationAction(ISD::FSUB, MVT::f128, Custom);
+ setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
+ setOperationAction(ISD::SETCC, MVT::f128, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f128, Custom);
+ setOperationAction(ISD::SELECT, MVT::f128, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
+ setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
+
+ // Lowering for many of the conversions is actually specified by the non-f128
+ // type. The LowerXXX function will be trivial when f128 isn't involved.
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
+
+ // Variable arguments.
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VAARG, MVT::Other, Custom);
+ setOperationAction(ISD::VACOPY, MVT::Other, Custom);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+
+ // Variable-sized objects.
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
+
+ // Exception handling.
+ // FIXME: These are guesses. Has this been defined yet?
+ setExceptionPointerRegister(AArch64::X0);
+ setExceptionSelectorRegister(AArch64::X1);
+
+ // Constant pool entries
+ setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
+
+ // BlockAddress
+ setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
+
+ // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
+ setOperationAction(ISD::ADDC, MVT::i32, Custom);
+ setOperationAction(ISD::ADDE, MVT::i32, Custom);
+ setOperationAction(ISD::SUBC, MVT::i32, Custom);
+ setOperationAction(ISD::SUBE, MVT::i32, Custom);
+ setOperationAction(ISD::ADDC, MVT::i64, Custom);
+ setOperationAction(ISD::ADDE, MVT::i64, Custom);
+ setOperationAction(ISD::SUBC, MVT::i64, Custom);
+ setOperationAction(ISD::SUBE, MVT::i64, Custom);
+
+ // AArch64 lacks both left-rotate and popcount instructions.
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL, MVT::i64, Expand);
+
+ // AArch64 doesn't have {U|S}MUL_LOHI.
+ setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
+
+
+ // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
+ // counterparts, which AArch64 supports directly.
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
+
+ setOperationAction(ISD::CTPOP, MVT::i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::i64, Custom);
+
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+
+ // Custom lower Add/Sub/Mul with overflow.
+ setOperationAction(ISD::SADDO, MVT::i32, Custom);
+ setOperationAction(ISD::SADDO, MVT::i64, Custom);
+ setOperationAction(ISD::UADDO, MVT::i32, Custom);
+ setOperationAction(ISD::UADDO, MVT::i64, Custom);
+ setOperationAction(ISD::SSUBO, MVT::i32, Custom);
+ setOperationAction(ISD::SSUBO, MVT::i64, Custom);
+ setOperationAction(ISD::USUBO, MVT::i32, Custom);
+ setOperationAction(ISD::USUBO, MVT::i64, Custom);
+ setOperationAction(ISD::SMULO, MVT::i32, Custom);
+ setOperationAction(ISD::SMULO, MVT::i64, Custom);
+ setOperationAction(ISD::UMULO, MVT::i32, Custom);
+ setOperationAction(ISD::UMULO, MVT::i64, Custom);
+
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+
+ // AArch64 has implementations of a lot of rounding-like FP operations.
+ static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
+ for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
+ MVT Ty = RoundingTypes[I];
+ setOperationAction(ISD::FFLOOR, Ty, Legal);
+ setOperationAction(ISD::FNEARBYINT, Ty, Legal);
+ setOperationAction(ISD::FCEIL, Ty, Legal);
+ setOperationAction(ISD::FRINT, Ty, Legal);
+ setOperationAction(ISD::FTRUNC, Ty, Legal);
+ setOperationAction(ISD::FROUND, Ty, Legal);
+ }
+
+ setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
+
+ if (Subtarget->isTargetMachO()) {
+ // For iOS, we don't want to the normal expansion of a libcall to
+ // sincos. We want to issue a libcall to __sincos_stret to avoid memory
+ // traffic.
+ setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
+ } else {
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ }
+
+ // AArch64 does not have floating-point extending loads, i1 sign-extending
+ // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
+ setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f80, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f64, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f16, Expand);
+
+ setOperationAction(ISD::BITCAST, MVT::i16, Custom);
+ setOperationAction(ISD::BITCAST, MVT::f16, Custom);
+
+ // Indexed loads and stores are supported.
+ for (unsigned im = (unsigned)ISD::PRE_INC;
+ im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
+ setIndexedLoadAction(im, MVT::i8, Legal);
+ setIndexedLoadAction(im, MVT::i16, Legal);
+ setIndexedLoadAction(im, MVT::i32, Legal);
+ setIndexedLoadAction(im, MVT::i64, Legal);
+ setIndexedLoadAction(im, MVT::f64, Legal);
+ setIndexedLoadAction(im, MVT::f32, Legal);
+ setIndexedStoreAction(im, MVT::i8, Legal);
+ setIndexedStoreAction(im, MVT::i16, Legal);
+ setIndexedStoreAction(im, MVT::i32, Legal);
+ setIndexedStoreAction(im, MVT::i64, Legal);
+ setIndexedStoreAction(im, MVT::f64, Legal);
+ setIndexedStoreAction(im, MVT::f32, Legal);
+ }
+
+ // Trap.
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ // We combine OR nodes for bitfield operations.
+ setTargetDAGCombine(ISD::OR);
+
+ // Vector add and sub nodes may conceal a high-half opportunity.
+ // Also, try to fold ADD into CSINC/CSINV..
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::SUB);
+
+ setTargetDAGCombine(ISD::XOR);
+ setTargetDAGCombine(ISD::SINT_TO_FP);
+ setTargetDAGCombine(ISD::UINT_TO_FP);
+
+ setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
+
+ setTargetDAGCombine(ISD::ANY_EXTEND);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ setTargetDAGCombine(ISD::SIGN_EXTEND);
+ setTargetDAGCombine(ISD::BITCAST);
+ setTargetDAGCombine(ISD::CONCAT_VECTORS);
+ setTargetDAGCombine(ISD::STORE);
+
+ setTargetDAGCombine(ISD::MUL);
+
+ setTargetDAGCombine(ISD::SELECT);
+ setTargetDAGCombine(ISD::VSELECT);
+
+ setTargetDAGCombine(ISD::INTRINSIC_VOID);
+ setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
+ setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
+
+ MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
+ MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
+ MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
+
+ setStackPointerRegisterToSaveRestore(AArch64::SP);
+
+ setSchedulingPreference(Sched::Hybrid);
+
+ // Enable TBZ/TBNZ
+ MaskAndBranchFoldingIsLegal = true;
+
+ setMinFunctionAlignment(2);
+
+ RequireStrictAlign = (Align == StrictAlign);
+
+ setHasExtractBitsInsn(true);
+
+ if (Subtarget->hasNEON()) {
+ // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
+ // silliness like this:
+ setOperationAction(ISD::FABS, MVT::v1f64, Expand);
+ setOperationAction(ISD::FADD, MVT::v1f64, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
+ setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
+ setOperationAction(ISD::FMA, MVT::v1f64, Expand);
+ setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
+ setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
+ setOperationAction(ISD::FREM, MVT::v1f64, Expand);
+ setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
+ setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
+ setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
+ setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
+ setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
+ setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
+ setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
+ setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
+ setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
+
+ setOperationAction(ISD::MUL, MVT::v1i64, Expand);
+
+ // AArch64 doesn't have a direct vector ->f32 conversion instructions for
+ // elements smaller than i32, so promote the input to i32 first.
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
+ // Similarly, there is no direct i32 -> f64 vector conversion instruction.
+ setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
+
+ // AArch64 doesn't have MUL.2d:
+ setOperationAction(ISD::MUL, MVT::v2i64, Expand);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
+ setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
+ // Likewise, narrowing and extending vector loads/stores aren't handled
+ // directly.
+ for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
+ Expand);
+
+ setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
+
+ setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
+
+ for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
+ setTruncStoreAction((MVT::SimpleValueType)VT,
+ (MVT::SimpleValueType)InnerVT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ }
+
+ // AArch64 has implementations of a lot of rounding-like FP operations.
+ static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
+ for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
+ MVT Ty = RoundingVecTypes[I];
+ setOperationAction(ISD::FFLOOR, Ty, Legal);
+ setOperationAction(ISD::FNEARBYINT, Ty, Legal);
+ setOperationAction(ISD::FCEIL, Ty, Legal);
+ setOperationAction(ISD::FRINT, Ty, Legal);
+ setOperationAction(ISD::FTRUNC, Ty, Legal);
+ setOperationAction(ISD::FROUND, Ty, Legal);
+ }
+ }
+}
+
+void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
+ if (VT == MVT::v2f32) {
+ setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
+ AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
+
+ setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
+ AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
+ } else if (VT == MVT::v2f64 || VT == MVT::v4f32) {
+ setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
+ AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
+
+ setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
+ AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
+ }
+
+ // Mark vector float intrinsics as expand.
+ if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
+ setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
+ }
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
+
+ setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
+
+ // CNT supports only B element sizes.
+ if (VT != MVT::v8i8 && VT != MVT::v16i8)
+ setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
+
+ setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
+
+ setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
+
+ if (Subtarget->isLittleEndian()) {
+ for (unsigned im = (unsigned)ISD::PRE_INC;
+ im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
+ setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
+ setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
+ }
+ }
+}
+
+void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
+ addRegisterClass(VT, &AArch64::FPR64RegClass);
+ addTypeForNEON(VT, MVT::v2i32);
+}
+
+void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
+ addRegisterClass(VT, &AArch64::FPR128RegClass);
+ addTypeForNEON(VT, MVT::v4i32);
+}
+
+EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector())
+ return MVT::i32;
+ return VT.changeVectorElementTypeToInteger();
+}
+
+/// computeKnownBitsForTargetNode - Determine which of the bits specified in
+/// Mask are known to be either zero or one and return them in the
+/// KnownZero/KnownOne bitsets.
+void AArch64TargetLowering::computeKnownBitsForTargetNode(
+ const SDValue Op, APInt &KnownZero, APInt &KnownOne,
+ const SelectionDAG &DAG, unsigned Depth) const {
+ switch (Op.getOpcode()) {
+ default:
+ break;
+ case AArch64ISD::CSEL: {
+ APInt KnownZero2, KnownOne2;
+ DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
+ DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
+ KnownZero &= KnownZero2;
+ KnownOne &= KnownOne2;
+ break;
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
+ Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
+ switch (IntID) {
+ default: return;
+ case Intrinsic::aarch64_ldaxr:
+ case Intrinsic::aarch64_ldxr: {
+ unsigned BitWidth = KnownOne.getBitWidth();
+ EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
+ unsigned MemBits = VT.getScalarType().getSizeInBits();
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
+ return;
+ }
+ }
+ break;
+ }
+ case ISD::INTRINSIC_WO_CHAIN:
+ case ISD::INTRINSIC_VOID: {
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::aarch64_neon_umaxv:
+ case Intrinsic::aarch64_neon_uminv: {
+ // Figure out the datatype of the vector operand. The UMINV instruction
+ // will zero extend the result, so we can mark as known zero all the
+ // bits larger than the element datatype. 32-bit or larget doesn't need
+ // this as those are legal types and will be handled by isel directly.
+ MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
+ unsigned BitWidth = KnownZero.getBitWidth();
+ if (VT == MVT::v8i8 || VT == MVT::v16i8) {
+ assert(BitWidth >= 8 && "Unexpected width!");
+ APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
+ KnownZero |= Mask;
+ } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
+ assert(BitWidth >= 16 && "Unexpected width!");
+ APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
+ KnownZero |= Mask;
+ }
+ break;
+ } break;
+ }
+ }
+ }
+}
+
+MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
+ return MVT::i64;
+}
+
+unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
+ // FIXME: On AArch64, this depends on the type.
+ // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
+ // and the offset has to be a multiple of the related size in bytes.
+ return 4095;
+}
+
+FastISel *
+AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const {
+ return AArch64::createFastISel(funcInfo, libInfo);
+}
+
+const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default:
+ return nullptr;
+ case AArch64ISD::CALL: return "AArch64ISD::CALL";
+ case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
+ case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
+ case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
+ case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
+ case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
+ case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
+ case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
+ case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
+ case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
+ case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
+ case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
+ case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL";
+ case AArch64ISD::ADC: return "AArch64ISD::ADC";
+ case AArch64ISD::SBC: return "AArch64ISD::SBC";
+ case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
+ case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
+ case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
+ case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
+ case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
+ case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
+ case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
+ case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
+ case AArch64ISD::DUP: return "AArch64ISD::DUP";
+ case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
+ case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
+ case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
+ case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
+ case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
+ case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
+ case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
+ case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
+ case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
+ case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
+ case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
+ case AArch64ISD::BICi: return "AArch64ISD::BICi";
+ case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
+ case AArch64ISD::BSL: return "AArch64ISD::BSL";
+ case AArch64ISD::NEG: return "AArch64ISD::NEG";
+ case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
+ case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
+ case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
+ case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
+ case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
+ case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
+ case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
+ case AArch64ISD::REV16: return "AArch64ISD::REV16";
+ case AArch64ISD::REV32: return "AArch64ISD::REV32";
+ case AArch64ISD::REV64: return "AArch64ISD::REV64";
+ case AArch64ISD::EXT: return "AArch64ISD::EXT";
+ case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
+ case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
+ case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
+ case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
+ case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
+ case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
+ case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
+ case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
+ case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
+ case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
+ case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
+ case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
+ case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
+ case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
+ case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
+ case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
+ case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
+ case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
+ case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
+ case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
+ case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
+ case AArch64ISD::NOT: return "AArch64ISD::NOT";
+ case AArch64ISD::BIT: return "AArch64ISD::BIT";
+ case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
+ case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
+ case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
+ case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
+ case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
+ case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
+ case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
+ case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
+ case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
+ case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
+ case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
+ case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
+ case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
+ case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
+ case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
+ case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
+ case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
+ case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
+ case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
+ case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
+ case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
+ case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
+ case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
+ case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
+ case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
+ case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
+ case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
+ case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
+ case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
+ case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
+ case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
+ case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
+ case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
+ case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
+ case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
+ case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
+ }
+}
+
+MachineBasicBlock *
+AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ // We materialise the F128CSEL pseudo-instruction as some control flow and a
+ // phi node:
+
+ // OrigBB:
+ // [... previous instrs leading to comparison ...]
+ // b.ne TrueBB
+ // b EndBB
+ // TrueBB:
+ // ; Fallthrough
+ // EndBB:
+ // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
+
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineFunction *MF = MBB->getParent();
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ DebugLoc DL = MI->getDebugLoc();
+ MachineFunction::iterator It = MBB;
+ ++It;
+
+ unsigned DestReg = MI->getOperand(0).getReg();
+ unsigned IfTrueReg = MI->getOperand(1).getReg();
+ unsigned IfFalseReg = MI->getOperand(2).getReg();
+ unsigned CondCode = MI->getOperand(3).getImm();
+ bool NZCVKilled = MI->getOperand(4).isKill();
+
+ MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, TrueBB);
+ MF->insert(It, EndBB);
+
+ // Transfer rest of current basic-block to EndBB
+ EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
+ MBB->end());
+ EndBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
+ BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
+ MBB->addSuccessor(TrueBB);
+ MBB->addSuccessor(EndBB);
+
+ // TrueBB falls through to the end.
+ TrueBB->addSuccessor(EndBB);
+
+ if (!NZCVKilled) {
+ TrueBB->addLiveIn(AArch64::NZCV);
+ EndBB->addLiveIn(AArch64::NZCV);
+ }
+
+ BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
+ .addReg(IfTrueReg)
+ .addMBB(TrueBB)
+ .addReg(IfFalseReg)
+ .addMBB(MBB);
+
+ MI->eraseFromParent();
+ return EndBB;
+}
+
+MachineBasicBlock *
+AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ switch (MI->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ MI->dump();
+#endif
+ llvm_unreachable("Unexpected instruction for custom inserter!");
+
+ case AArch64::F128CSEL:
+ return EmitF128CSEL(MI, BB);
+
+ case TargetOpcode::STACKMAP:
+ case TargetOpcode::PATCHPOINT:
+ return emitPatchPoint(MI, BB);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// AArch64 Lowering private implementation.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Lowering Code
+//===----------------------------------------------------------------------===//
+
+/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
+/// CC
+static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unknown condition code!");
+ case ISD::SETNE:
+ return AArch64CC::NE;
+ case ISD::SETEQ:
+ return AArch64CC::EQ;
+ case ISD::SETGT:
+ return AArch64CC::GT;
+ case ISD::SETGE:
+ return AArch64CC::GE;
+ case ISD::SETLT:
+ return AArch64CC::LT;
+ case ISD::SETLE:
+ return AArch64CC::LE;
+ case ISD::SETUGT:
+ return AArch64CC::HI;
+ case ISD::SETUGE:
+ return AArch64CC::HS;
+ case ISD::SETULT:
+ return AArch64CC::LO;
+ case ISD::SETULE:
+ return AArch64CC::LS;
+ }
+}
+
+/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
+static void changeFPCCToAArch64CC(ISD::CondCode CC,
+ AArch64CC::CondCode &CondCode,
+ AArch64CC::CondCode &CondCode2) {
+ CondCode2 = AArch64CC::AL;
+ switch (CC) {
+ default:
+ llvm_unreachable("Unknown FP condition!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ:
+ CondCode = AArch64CC::EQ;
+ break;
+ case ISD::SETGT:
+ case ISD::SETOGT:
+ CondCode = AArch64CC::GT;
+ break;
+ case ISD::SETGE:
+ case ISD::SETOGE:
+ CondCode = AArch64CC::GE;
+ break;
+ case ISD::SETOLT:
+ CondCode = AArch64CC::MI;
+ break;
+ case ISD::SETOLE:
+ CondCode = AArch64CC::LS;
+ break;
+ case ISD::SETONE:
+ CondCode = AArch64CC::MI;
+ CondCode2 = AArch64CC::GT;
+ break;
+ case ISD::SETO:
+ CondCode = AArch64CC::VC;
+ break;
+ case ISD::SETUO:
+ CondCode = AArch64CC::VS;
+ break;
+ case ISD::SETUEQ:
+ CondCode = AArch64CC::EQ;
+ CondCode2 = AArch64CC::VS;
+ break;
+ case ISD::SETUGT:
+ CondCode = AArch64CC::HI;
+ break;
+ case ISD::SETUGE:
+ CondCode = AArch64CC::PL;
+ break;
+ case ISD::SETLT:
+ case ISD::SETULT:
+ CondCode = AArch64CC::LT;
+ break;
+ case ISD::SETLE:
+ case ISD::SETULE:
+ CondCode = AArch64CC::LE;
+ break;
+ case ISD::SETNE:
+ case ISD::SETUNE:
+ CondCode = AArch64CC::NE;
+ break;
+ }
+}
+
+/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
+/// CC usable with the vector instructions. Fewer operations are available
+/// without a real NZCV register, so we have to use less efficient combinations
+/// to get the same effect.
+static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
+ AArch64CC::CondCode &CondCode,
+ AArch64CC::CondCode &CondCode2,
+ bool &Invert) {
+ Invert = false;
+ switch (CC) {
+ default:
+ // Mostly the scalar mappings work fine.
+ changeFPCCToAArch64CC(CC, CondCode, CondCode2);
+ break;
+ case ISD::SETUO:
+ Invert = true; // Fallthrough
+ case ISD::SETO:
+ CondCode = AArch64CC::MI;
+ CondCode2 = AArch64CC::GE;
+ break;
+ case ISD::SETUEQ:
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ // All of the compare-mask comparisons are ordered, but we can switch
+ // between the two by a double inversion. E.g. ULE == !OGT.
+ Invert = true;
+ changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
+ break;
+ }
+}
+
+static bool isLegalArithImmed(uint64_t C) {
+ // Matches AArch64DAGToDAGISel::SelectArithImmed().
+ return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
+}
+
+static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
+ SDLoc dl, SelectionDAG &DAG) {
+ EVT VT = LHS.getValueType();
+
+ if (VT.isFloatingPoint())
+ return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
+
+ // The CMP instruction is just an alias for SUBS, and representing it as
+ // SUBS means that it's possible to get CSE with subtract operations.
+ // A later phase can perform the optimization of setting the destination
+ // register to WZR/XZR if it ends up being unused.
+ unsigned Opcode = AArch64ISD::SUBS;
+
+ if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
+ cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+ // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
+ // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
+ // can be set differently by this operation. It comes down to whether
+ // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
+ // everything is fine. If not then the optimization is wrong. Thus general
+ // comparisons are only valid if op2 != 0.
+
+ // So, finally, the only LLVM-native comparisons that don't mention C and V
+ // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
+ // the absence of information about op2.
+ Opcode = AArch64ISD::ADDS;
+ RHS = RHS.getOperand(1);
+ } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
+ cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
+ !isUnsignedIntSetCC(CC)) {
+ // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
+ // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
+ // of the signed comparisons.
+ Opcode = AArch64ISD::ANDS;
+ RHS = LHS.getOperand(1);
+ LHS = LHS.getOperand(0);
+ }
+
+ return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
+ .getValue(1);
+}
+
+static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
+ SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
+ EVT VT = RHS.getValueType();
+ uint64_t C = RHSC->getZExtValue();
+ if (!isLegalArithImmed(C)) {
+ // Constant does not fit, try adjusting it by one?
+ switch (CC) {
+ default:
+ break;
+ case ISD::SETLT:
+ case ISD::SETGE:
+ if ((VT == MVT::i32 && C != 0x80000000 &&
+ isLegalArithImmed((uint32_t)(C - 1))) ||
+ (VT == MVT::i64 && C != 0x80000000ULL &&
+ isLegalArithImmed(C - 1ULL))) {
+ CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
+ C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
+ RHS = DAG.getConstant(C, VT);
+ }
+ break;
+ case ISD::SETULT:
+ case ISD::SETUGE:
+ if ((VT == MVT::i32 && C != 0 &&
+ isLegalArithImmed((uint32_t)(C - 1))) ||
+ (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
+ CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
+ C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
+ RHS = DAG.getConstant(C, VT);
+ }
+ break;
+ case ISD::SETLE:
+ case ISD::SETGT:
+ if ((VT == MVT::i32 && C != 0x7fffffff &&
+ isLegalArithImmed((uint32_t)(C + 1))) ||
+ (VT == MVT::i64 && C != 0x7ffffffffffffffULL &&
+ isLegalArithImmed(C + 1ULL))) {
+ CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
+ C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
+ RHS = DAG.getConstant(C, VT);
+ }
+ break;
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ if ((VT == MVT::i32 && C != 0xffffffff &&
+ isLegalArithImmed((uint32_t)(C + 1))) ||
+ (VT == MVT::i64 && C != 0xfffffffffffffffULL &&
+ isLegalArithImmed(C + 1ULL))) {
+ CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+ C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
+ RHS = DAG.getConstant(C, VT);
+ }
+ break;
+ }
+ }
+ }
+
+ SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
+ AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
+ AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
+ return Cmp;
+}
+
+static std::pair<SDValue, SDValue>
+getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
+ assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
+ "Unsupported value type");
+ SDValue Value, Overflow;
+ SDLoc DL(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ unsigned Opc = 0;
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Unknown overflow instruction!");
+ case ISD::SADDO:
+ Opc = AArch64ISD::ADDS;
+ CC = AArch64CC::VS;
+ break;
+ case ISD::UADDO:
+ Opc = AArch64ISD::ADDS;
+ CC = AArch64CC::HS;
+ break;
+ case ISD::SSUBO:
+ Opc = AArch64ISD::SUBS;
+ CC = AArch64CC::VS;
+ break;
+ case ISD::USUBO:
+ Opc = AArch64ISD::SUBS;
+ CC = AArch64CC::LO;
+ break;
+ // Multiply needs a little bit extra work.
+ case ISD::SMULO:
+ case ISD::UMULO: {
+ CC = AArch64CC::NE;
+ bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
+ if (Op.getValueType() == MVT::i32) {
+ unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ // For a 32 bit multiply with overflow check we want the instruction
+ // selector to generate a widening multiply (SMADDL/UMADDL). For that we
+ // need to generate the following pattern:
+ // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
+ LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
+ RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
+ SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
+ SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
+ DAG.getConstant(0, MVT::i64));
+ // On AArch64 the upper 32 bits are always zero extended for a 32 bit
+ // operation. We need to clear out the upper 32 bits, because we used a
+ // widening multiply that wrote all 64 bits. In the end this should be a
+ // noop.
+ Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
+ if (IsSigned) {
+ // The signed overflow check requires more than just a simple check for
+ // any bit set in the upper 32 bits of the result. These bits could be
+ // just the sign bits of a negative number. To perform the overflow
+ // check we have to arithmetic shift right the 32nd bit of the result by
+ // 31 bits. Then we compare the result to the upper 32 bits.
+ SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
+ DAG.getConstant(32, MVT::i64));
+ UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
+ SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
+ DAG.getConstant(31, MVT::i64));
+ // It is important that LowerBits is last, otherwise the arithmetic
+ // shift will not be folded into the compare (SUBS).
+ SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
+ Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
+ .getValue(1);
+ } else {
+ // The overflow check for unsigned multiply is easy. We only need to
+ // check if any of the upper 32 bits are set. This can be done with a
+ // CMP (shifted register). For that we need to generate the following
+ // pattern:
+ // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
+ SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
+ DAG.getConstant(32, MVT::i64));
+ SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
+ Overflow =
+ DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
+ UpperBits).getValue(1);
+ }
+ break;
+ }
+ assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
+ // For the 64 bit multiply
+ Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
+ if (IsSigned) {
+ SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
+ SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
+ DAG.getConstant(63, MVT::i64));
+ // It is important that LowerBits is last, otherwise the arithmetic
+ // shift will not be folded into the compare (SUBS).
+ SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
+ Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
+ .getValue(1);
+ } else {
+ SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
+ SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
+ Overflow =
+ DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
+ UpperBits).getValue(1);
+ }
+ break;
+ }
+ } // switch (...)
+
+ if (Opc) {
+ SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
+
+ // Emit the AArch64 operation with overflow check.
+ Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
+ Overflow = Value.getValue(1);
+ }
+ return std::make_pair(Value, Overflow);
+}
+
+SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
+ RTLIB::Libcall Call) const {
+ SmallVector<SDValue, 2> Ops;
+ for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
+ Ops.push_back(Op.getOperand(i));
+
+ return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
+ SDLoc(Op)).first;
+}
+
+static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
+ SDValue Sel = Op.getOperand(0);
+ SDValue Other = Op.getOperand(1);
+
+ // If neither operand is a SELECT_CC, give up.
+ if (Sel.getOpcode() != ISD::SELECT_CC)
+ std::swap(Sel, Other);
+ if (Sel.getOpcode() != ISD::SELECT_CC)
+ return Op;
+
+ // The folding we want to perform is:
+ // (xor x, (select_cc a, b, cc, 0, -1) )
+ // -->
+ // (csel x, (xor x, -1), cc ...)
+ //
+ // The latter will get matched to a CSINV instruction.
+
+ ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
+ SDValue LHS = Sel.getOperand(0);
+ SDValue RHS = Sel.getOperand(1);
+ SDValue TVal = Sel.getOperand(2);
+ SDValue FVal = Sel.getOperand(3);
+ SDLoc dl(Sel);
+
+ // FIXME: This could be generalized to non-integer comparisons.
+ if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
+ return Op;
+
+ ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
+ ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
+
+ // The the values aren't constants, this isn't the pattern we're looking for.
+ if (!CFVal || !CTVal)
+ return Op;
+
+ // We can commute the SELECT_CC by inverting the condition. This
+ // might be needed to make this fit into a CSINV pattern.
+ if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ }
+
+ // If the constants line up, perform the transform!
+ if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
+ SDValue CCVal;
+ SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
+
+ FVal = Other;
+ TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
+ DAG.getConstant(-1ULL, Other.getValueType()));
+
+ return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
+ CCVal, Cmp);
+ }
+
+ return Op;
+}
+
+static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+
+ unsigned Opc;
+ bool ExtraOp = false;
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Invalid code");
+ case ISD::ADDC:
+ Opc = AArch64ISD::ADDS;
+ break;
+ case ISD::SUBC:
+ Opc = AArch64ISD::SUBS;
+ break;
+ case ISD::ADDE:
+ Opc = AArch64ISD::ADCS;
+ ExtraOp = true;
+ break;
+ case ISD::SUBE:
+ Opc = AArch64ISD::SBCS;
+ ExtraOp = true;
+ break;
+ }
+
+ if (!ExtraOp)
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
+ Op.getOperand(2));
+}
+
+static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
+ return SDValue();
+
+ AArch64CC::CondCode CC;
+ // The actual operation that sets the overflow or carry flag.
+ SDValue Value, Overflow;
+ std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
+
+ // We use 0 and 1 as false and true values.
+ SDValue TVal = DAG.getConstant(1, MVT::i32);
+ SDValue FVal = DAG.getConstant(0, MVT::i32);
+
+ // We use an inverted condition, because the conditional select is inverted
+ // too. This will allow it to be selected to a single instruction:
+ // CSINC Wd, WZR, WZR, invert(cond).
+ SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
+ Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
+ CCVal, Overflow);
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
+}
+
+// Prefetch operands are:
+// 1: Address to prefetch
+// 2: bool isWrite
+// 3: int locality (0 = no locality ... 3 = extreme locality)
+// 4: bool isDataCache
+static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
+ unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
+ // The data thing is not used.
+ // unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
+
+ bool IsStream = !Locality;
+ // When the locality number is set
+ if (Locality) {
+ // The front-end should have filtered out the out-of-range values
+ assert(Locality <= 3 && "Prefetch locality out-of-range");
+ // The locality degree is the opposite of the cache speed.
+ // Put the number the other way around.
+ // The encoding starts at 0 for level 1
+ Locality = 3 - Locality;
+ }
+
+ // built the mask value encoding the expected behavior.
+ unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
+ (Locality << 1) | // Cache level bits
+ (unsigned)IsStream; // Stream bit
+ return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
+}
+
+SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
+
+ RTLIB::Libcall LC;
+ LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ return LowerF128Call(Op, DAG, LC);
+}
+
+SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (Op.getOperand(0).getValueType() != MVT::f128) {
+ // It's legal except when f128 is involved
+ return Op;
+ }
+
+ RTLIB::Libcall LC;
+ LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ // FP_ROUND node has a second operand indicating whether it is known to be
+ // precise. That doesn't take part in the LibCall so we can't directly use
+ // LowerF128Call.
+ SDValue SrcVal = Op.getOperand(0);
+ return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
+ /*isSigned*/ false, SDLoc(Op)).first;
+}
+
+static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
+ // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
+ // Any additional optimization in this function should be recorded
+ // in the cost tables.
+ EVT InVT = Op.getOperand(0).getValueType();
+ EVT VT = Op.getValueType();
+
+ if (VT.getSizeInBits() < InVT.getSizeInBits()) {
+ SDLoc dl(Op);
+ SDValue Cv =
+ DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
+ Op.getOperand(0));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
+ }
+
+ if (VT.getSizeInBits() > InVT.getSizeInBits()) {
+ SDLoc dl(Op);
+ SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Op.getOperand(0));
+ return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
+ }
+
+ // Type changing conversions are illegal.
+ return Op;
+}
+
+SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (Op.getOperand(0).getValueType().isVector())
+ return LowerVectorFP_TO_INT(Op, DAG);
+
+ if (Op.getOperand(0).getValueType() != MVT::f128) {
+ // It's legal except when f128 is involved
+ return Op;
+ }
+
+ RTLIB::Libcall LC;
+ if (Op.getOpcode() == ISD::FP_TO_SINT)
+ LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
+ else
+ LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ SmallVector<SDValue, 2> Ops;
+ for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
+ Ops.push_back(Op.getOperand(i));
+
+ return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
+ SDLoc(Op)).first;
+}
+
+static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
+ // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
+ // Any additional optimization in this function should be recorded
+ // in the cost tables.
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ SDValue In = Op.getOperand(0);
+ EVT InVT = In.getValueType();
+
+ if (VT.getSizeInBits() < InVT.getSizeInBits()) {
+ MVT CastVT =
+ MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
+ InVT.getVectorNumElements());
+ In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
+ return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
+ }
+
+ if (VT.getSizeInBits() > InVT.getSizeInBits()) {
+ unsigned CastOpc =
+ Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ EVT CastVT = VT.changeVectorElementTypeToInteger();
+ In = DAG.getNode(CastOpc, dl, CastVT, In);
+ return DAG.getNode(Op.getOpcode(), dl, VT, In);
+ }
+
+ return Op;
+}
+
+SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (Op.getValueType().isVector())
+ return LowerVectorINT_TO_FP(Op, DAG);
+
+ // i128 conversions are libcalls.
+ if (Op.getOperand(0).getValueType() == MVT::i128)
+ return SDValue();
+
+ // Other conversions are legal, unless it's to the completely software-based
+ // fp128.
+ if (Op.getValueType() != MVT::f128)
+ return Op;
+
+ RTLIB::Libcall LC;
+ if (Op.getOpcode() == ISD::SINT_TO_FP)
+ LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
+ else
+ LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ return LowerF128Call(Op, DAG, LC);
+}
+
+SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
+ SelectionDAG &DAG) const {
+ // For iOS, we want to call an alternative entry point: __sincos_stret,
+ // which returns the values in two S / D registers.
+ SDLoc dl(Op);
+ SDValue Arg = Op.getOperand(0);
+ EVT ArgVT = Arg.getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+
+ ArgListTy Args;
+ ArgListEntry Entry;
+
+ Entry.Node = Arg;
+ Entry.Ty = ArgTy;
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Args.push_back(Entry);
+
+ const char *LibcallName =
+ (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
+ SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
+
+ StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
+ .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
+
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+ return CallResult.first;
+}
+
+static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
+ if (Op.getValueType() != MVT::f16)
+ return SDValue();
+
+ assert(Op.getOperand(0).getValueType() == MVT::i16);
+ SDLoc DL(Op);
+
+ Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
+ Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
+ return SDValue(
+ DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
+ DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
+ 0);
+}
+
+
+SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("unimplemented operand");
+ return SDValue();
+ case ISD::BITCAST:
+ return LowerBITCAST(Op, DAG);
+ case ISD::GlobalAddress:
+ return LowerGlobalAddress(Op, DAG);
+ case ISD::GlobalTLSAddress:
+ return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::SETCC:
+ return LowerSETCC(Op, DAG);
+ case ISD::BR_CC:
+ return LowerBR_CC(Op, DAG);
+ case ISD::SELECT:
+ return LowerSELECT(Op, DAG);
+ case ISD::SELECT_CC:
+ return LowerSELECT_CC(Op, DAG);
+ case ISD::JumpTable:
+ return LowerJumpTable(Op, DAG);
+ case ISD::ConstantPool:
+ return LowerConstantPool(Op, DAG);
+ case ISD::BlockAddress:
+ return LowerBlockAddress(Op, DAG);
+ case ISD::VASTART:
+ return LowerVASTART(Op, DAG);
+ case ISD::VACOPY:
+ return LowerVACOPY(Op, DAG);
+ case ISD::VAARG:
+ return LowerVAARG(Op, DAG);
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUBC:
+ case ISD::SUBE:
+ return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
+ case ISD::SADDO:
+ case ISD::UADDO:
+ case ISD::SSUBO:
+ case ISD::USUBO:
+ case ISD::SMULO:
+ case ISD::UMULO:
+ return LowerXALUO(Op, DAG);
+ case ISD::FADD:
+ return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
+ case ISD::FSUB:
+ return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
+ case ISD::FMUL:
+ return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
+ case ISD::FDIV:
+ return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
+ case ISD::FP_ROUND:
+ return LowerFP_ROUND(Op, DAG);
+ case ISD::FP_EXTEND:
+ return LowerFP_EXTEND(Op, DAG);
+ case ISD::FRAMEADDR:
+ return LowerFRAMEADDR(Op, DAG);
+ case ISD::RETURNADDR:
+ return LowerRETURNADDR(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT:
+ return LowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT:
+ return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::BUILD_VECTOR:
+ return LowerBUILD_VECTOR(Op, DAG);
+ case ISD::VECTOR_SHUFFLE:
+ return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::EXTRACT_SUBVECTOR:
+ return LowerEXTRACT_SUBVECTOR(Op, DAG);
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::SHL:
+ return LowerVectorSRA_SRL_SHL(Op, DAG);
+ case ISD::SHL_PARTS:
+ return LowerShiftLeftParts(Op, DAG);
+ case ISD::SRL_PARTS:
+ case ISD::SRA_PARTS:
+ return LowerShiftRightParts(Op, DAG);
+ case ISD::CTPOP:
+ return LowerCTPOP(Op, DAG);
+ case ISD::FCOPYSIGN:
+ return LowerFCOPYSIGN(Op, DAG);
+ case ISD::AND:
+ return LowerVectorAND(Op, DAG);
+ case ISD::OR:
+ return LowerVectorOR(Op, DAG);
+ case ISD::XOR:
+ return LowerXOR(Op, DAG);
+ case ISD::PREFETCH:
+ return LowerPREFETCH(Op, DAG);
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ return LowerINT_TO_FP(Op, DAG);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ return LowerFP_TO_INT(Op, DAG);
+ case ISD::FSINCOS:
+ return LowerFSINCOS(Op, DAG);
+ }
+}
+
+/// getFunctionAlignment - Return the Log2 alignment of this function.
+unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
+ return 2;
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "AArch64GenCallingConv.inc"
+
+/// Selects the correct CCAssignFn for a the given CallingConvention
+/// value.
+CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
+ bool IsVarArg) const {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported calling convention.");
+ case CallingConv::WebKit_JS:
+ return CC_AArch64_WebKit_JS;
+ case CallingConv::C:
+ case CallingConv::Fast:
+ if (!Subtarget->isTargetDarwin())
+ return CC_AArch64_AAPCS;
+ return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
+ }
+}
+
+SDValue AArch64TargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ // At this point, Ins[].VT may already be promoted to i32. To correctly
+ // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
+ // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
+ // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
+ // we use a special version of AnalyzeFormalArguments to pass in ValVT and
+ // LocVT.
+ unsigned NumArgs = Ins.size();
+ Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
+ unsigned CurArgIdx = 0;
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT ValVT = Ins[i].VT;
+ std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
+ CurArgIdx = Ins[i].OrigArgIndex;
+
+ // Get type of the original argument.
+ EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
+ MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
+ // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
+ if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
+ ValVT = MVT::i8;
+ else if (ActualMVT == MVT::i16)
+ ValVT = MVT::i16;
+
+ CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
+ bool Res =
+ AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
+ assert(!Res && "Call operand has unhandled type");
+ (void)Res;
+ }
+ assert(ArgLocs.size() == Ins.size());
+ SmallVector<SDValue, 16> ArgValues;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+
+ if (Ins[i].Flags.isByVal()) {
+ // Byval is used for HFAs in the PCS, but the system should work in a
+ // non-compliant manner for larger structs.
+ EVT PtrTy = getPointerTy();
+ int Size = Ins[i].Flags.getByValSize();
+ unsigned NumRegs = (Size + 7) / 8;
+
+ // FIXME: This works on big-endian for composite byvals, which are the common
+ // case. It should also work for fundamental types too.
+ unsigned FrameIdx =
+ MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
+ SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
+ InVals.push_back(FrameIdxN);
+
+ continue;
+ }
+
+ if (VA.isRegLoc()) {
+ // Arguments stored in registers.
+ EVT RegVT = VA.getLocVT();
+
+ SDValue ArgValue;
+ const TargetRegisterClass *RC;
+
+ if (RegVT == MVT::i32)
+ RC = &AArch64::GPR32RegClass;
+ else if (RegVT == MVT::i64)
+ RC = &AArch64::GPR64RegClass;
+ else if (RegVT == MVT::f16)
+ RC = &AArch64::FPR16RegClass;
+ else if (RegVT == MVT::f32)
+ RC = &AArch64::FPR32RegClass;
+ else if (RegVT == MVT::f64 || RegVT.is64BitVector())
+ RC = &AArch64::FPR64RegClass;
+ else if (RegVT == MVT::f128 || RegVT.is128BitVector())
+ RC = &AArch64::FPR128RegClass;
+ else
+ llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
+
+ // Transform the arguments in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
+
+ // If this is an 8, 16 or 32-bit value, it is really passed promoted
+ // to 64 bits. Insert an assert[sz]ext to capture this, then
+ // truncate to the right size.
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::AExt:
+ case CCValAssign::SExt:
+ case CCValAssign::ZExt:
+ // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
+ // nodes after our lowering.
+ assert(RegVT == Ins[i].VT && "incorrect register location selected");
+ break;
+ }
+
+ InVals.push_back(ArgValue);
+
+ } else { // VA.isRegLoc()
+ assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
+ unsigned ArgOffset = VA.getLocMemOffset();
+ unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
+
+ uint32_t BEAlign = 0;
+ if (ArgSize < 8 && !Subtarget->isLittleEndian())
+ BEAlign = 8 - ArgSize;
+
+ int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
+
+ // Create load nodes to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ SDValue ArgValue;
+
+ // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
+ ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
+ MVT MemVT = VA.getValVT();
+
+ switch (VA.getLocInfo()) {
+ default:
+ break;
+ case CCValAssign::BCvt:
+ MemVT = VA.getLocVT();
+ break;
+ case CCValAssign::SExt:
+ ExtType = ISD::SEXTLOAD;
+ break;
+ case CCValAssign::ZExt:
+ ExtType = ISD::ZEXTLOAD;
+ break;
+ case CCValAssign::AExt:
+ ExtType = ISD::EXTLOAD;
+ break;
+ }
+
+ ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ MemVT, false, false, false, nullptr);
+
+ InVals.push_back(ArgValue);
+ }
+ }
+
+ // varargs
+ if (isVarArg) {
+ if (!Subtarget->isTargetDarwin()) {
+ // The AAPCS variadic function ABI is identical to the non-variadic
+ // one. As a result there may be more arguments in registers and we should
+ // save them for future reference.
+ saveVarArgRegisters(CCInfo, DAG, DL, Chain);
+ }
+
+ AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
+ // This will point to the next argument passed via stack.
+ unsigned StackOffset = CCInfo.getNextStackOffset();
+ // We currently pass all varargs at 8-byte alignment.
+ StackOffset = ((StackOffset + 7) & ~7);
+ AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
+ }
+
+ AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
+ unsigned StackArgSize = CCInfo.getNextStackOffset();
+ bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
+ if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
+ // This is a non-standard ABI so by fiat I say we're allowed to make full
+ // use of the stack area to be popped, which must be aligned to 16 bytes in
+ // any case:
+ StackArgSize = RoundUpToAlignment(StackArgSize, 16);
+
+ // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
+ // a multiple of 16.
+ FuncInfo->setArgumentStackToRestore(StackArgSize);
+
+ // This realignment carries over to the available bytes below. Our own
+ // callers will guarantee the space is free by giving an aligned value to
+ // CALLSEQ_START.
+ }
+ // Even if we're not expected to free up the space, it's useful to know how
+ // much is there while considering tail calls (because we can reuse it).
+ FuncInfo->setBytesInStackArgArea(StackArgSize);
+
+ return Chain;
+}
+
+void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
+ SelectionDAG &DAG, SDLoc DL,
+ SDValue &Chain) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
+
+ SmallVector<SDValue, 8> MemOps;
+
+ static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
+ AArch64::X3, AArch64::X4, AArch64::X5,
+ AArch64::X6, AArch64::X7 };
+ static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
+ unsigned FirstVariadicGPR =
+ CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
+
+ unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
+ int GPRIdx = 0;
+ if (GPRSaveSize != 0) {
+ GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
+
+ SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
+
+ for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
+ unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), DL, Val, FIN,
+ MachinePointerInfo::getStack(i * 8), false, false, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
+ DAG.getConstant(8, getPointerTy()));
+ }
+ }
+ FuncInfo->setVarArgsGPRIndex(GPRIdx);
+ FuncInfo->setVarArgsGPRSize(GPRSaveSize);
+
+ if (Subtarget->hasFPARMv8()) {
+ static const MCPhysReg FPRArgRegs[] = {
+ AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
+ AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
+ static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
+ unsigned FirstVariadicFPR =
+ CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
+
+ unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
+ int FPRIdx = 0;
+ if (FPRSaveSize != 0) {
+ FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
+
+ SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
+
+ for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
+ unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
+
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), DL, Val, FIN,
+ MachinePointerInfo::getStack(i * 16), false, false, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
+ DAG.getConstant(16, getPointerTy()));
+ }
+ }
+ FuncInfo->setVarArgsFPRIndex(FPRIdx);
+ FuncInfo->setVarArgsFPRSize(FPRSaveSize);
+ }
+
+ if (!MemOps.empty()) {
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
+ }
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue AArch64TargetLowering::LowerCallResult(
+ SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
+ SDValue ThisVal) const {
+ CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
+ ? RetCC_AArch64_WebKit_JS
+ : RetCC_AArch64_AAPCS;
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign VA = RVLocs[i];
+
+ // Pass 'this' value directly from the argument to return value, to avoid
+ // reg unit interference
+ if (i == 0 && isThisReturn) {
+ assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
+ "unexpected return calling convention register assignment");
+ InVals.push_back(ThisVal);
+ continue;
+ }
+
+ SDValue Val =
+ DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
+ break;
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+bool AArch64TargetLowering::isEligibleForTailCallOptimization(
+ SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
+ bool isCalleeStructRet, bool isCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
+ // For CallingConv::C this function knows whether the ABI needs
+ // changing. That's not true for other conventions so they will have to opt in
+ // manually.
+ if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
+ return false;
+
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const Function *CallerF = MF.getFunction();
+ CallingConv::ID CallerCC = CallerF->getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+
+ // Byval parameters hand the function a pointer directly into the stack area
+ // we want to reuse during a tail call. Working around this *is* possible (see
+ // X86) but less efficient and uglier in LowerCall.
+ for (Function::const_arg_iterator i = CallerF->arg_begin(),
+ e = CallerF->arg_end();
+ i != e; ++i)
+ if (i->hasByValAttr())
+ return false;
+
+ if (getTargetMachine().Options.GuaranteedTailCallOpt) {
+ if (IsTailCallConvention(CalleeCC) && CCMatch)
+ return true;
+ return false;
+ }
+
+ // Now we search for cases where we can use a tail call without changing the
+ // ABI. Sibcall is used in some places (particularly gcc) to refer to this
+ // concept.
+
+ // I want anyone implementing a new calling convention to think long and hard
+ // about this assert.
+ assert((!isVarArg || CalleeCC == CallingConv::C) &&
+ "Unexpected variadic calling convention");
+
+ if (isVarArg && !Outs.empty()) {
+ // At least two cases here: if caller is fastcc then we can't have any
+ // memory arguments (we'd be expected to clean up the stack afterwards). If
+ // caller is C then we could potentially use its argument area.
+
+ // FIXME: for now we take the most conservative of these in both cases:
+ // disallow all variadic memory operands.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
+ if (!ArgLocs[i].isRegLoc())
+ return false;
+ }
+
+ // If the calling conventions do not match, then we'd better make sure the
+ // results are returned in the same way as what the caller expects.
+ if (!CCMatch) {
+ SmallVector<CCValAssign, 16> RVLocs1;
+ CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs1, *DAG.getContext());
+ CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
+
+ SmallVector<CCValAssign, 16> RVLocs2;
+ CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs2, *DAG.getContext());
+ CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
+
+ if (RVLocs1.size() != RVLocs2.size())
+ return false;
+ for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
+ if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
+ return false;
+ if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
+ return false;
+ if (RVLocs1[i].isRegLoc()) {
+ if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
+ return false;
+ } else {
+ if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
+ return false;
+ }
+ }
+ }
+
+ // Nothing more to check if the callee is taking no arguments
+ if (Outs.empty())
+ return true;
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
+
+ const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
+
+ // If the stack arguments for this call would fit into our own save area then
+ // the call can be made tail.
+ return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
+}
+
+SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
+ SelectionDAG &DAG,
+ MachineFrameInfo *MFI,
+ int ClobberedFI) const {
+ SmallVector<SDValue, 8> ArgChains;
+ int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
+ int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
+
+ // Include the original chain at the beginning of the list. When this is
+ // used by target LowerCall hooks, this helps legalize find the
+ // CALLSEQ_BEGIN node.
+ ArgChains.push_back(Chain);
+
+ // Add a chain value for each stack argument corresponding
+ for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
+ UE = DAG.getEntryNode().getNode()->use_end();
+ U != UE; ++U)
+ if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
+ if (FI->getIndex() < 0) {
+ int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
+ int64_t InLastByte = InFirstByte;
+ InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
+
+ if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
+ (FirstByte <= InFirstByte && InFirstByte <= LastByte))
+ ArgChains.push_back(SDValue(L, 1));
+ }
+
+ // Build a tokenfactor for all the chains.
+ return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
+}
+
+bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
+ bool TailCallOpt) const {
+ return CallCC == CallingConv::Fast && TailCallOpt;
+}
+
+bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
+ return CallCC == CallingConv::Fast;
+}
+
+/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
+/// and add input and output parameter nodes.
+SDValue
+AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &DL = CLI.DL;
+ SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
+ SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
+ SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &IsTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool IsVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
+ bool IsThisReturn = false;
+
+ AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
+ bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
+ bool IsSibCall = false;
+
+ if (IsTailCall) {
+ // Check if it's really possible to do a tail call.
+ IsTailCall = isEligibleForTailCallOptimization(
+ Callee, CallConv, IsVarArg, IsStructRet,
+ MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
+ if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
+ report_fatal_error("failed to perform tail call elimination on a call "
+ "site marked musttail");
+
+ // A sibling call is one where we're under the usual C ABI and not planning
+ // to change that but can still do a tail call:
+ if (!TailCallOpt && IsTailCall)
+ IsSibCall = true;
+
+ if (IsTailCall)
+ ++NumTailCalls;
+ }
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ if (IsVarArg) {
+ // Handle fixed and variable vector arguments differently.
+ // Variable vector arguments always go into memory.
+ unsigned NumArgs = Outs.size();
+
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT ArgVT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
+ /*IsVarArg=*/ !Outs[i].IsFixed);
+ bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
+ assert(!Res && "Call operand has unhandled type");
+ (void)Res;
+ }
+ } else {
+ // At this point, Outs[].VT may already be promoted to i32. To correctly
+ // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
+ // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
+ // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
+ // we use a special version of AnalyzeCallOperands to pass in ValVT and
+ // LocVT.
+ unsigned NumArgs = Outs.size();
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT ValVT = Outs[i].VT;
+ // Get type of the original argument.
+ EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
+ /*AllowUnknown*/ true);
+ MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
+ if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
+ ValVT = MVT::i8;
+ else if (ActualMVT == MVT::i16)
+ ValVT = MVT::i16;
+
+ CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
+ bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
+ assert(!Res && "Call operand has unhandled type");
+ (void)Res;
+ }
+ }
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ if (IsSibCall) {
+ // Since we're not changing the ABI to make this a tail call, the memory
+ // operands are already available in the caller's incoming argument space.
+ NumBytes = 0;
+ }
+
+ // FPDiff is the byte offset of the call's argument area from the callee's.
+ // Stores to callee stack arguments will be placed in FixedStackSlots offset
+ // by this amount for a tail call. In a sibling call it must be 0 because the
+ // caller will deallocate the entire stack and the callee still expects its
+ // arguments to begin at SP+0. Completely unused for non-tail calls.
+ int FPDiff = 0;
+
+ if (IsTailCall && !IsSibCall) {
+ unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
+
+ // Since callee will pop argument stack as a tail call, we must keep the
+ // popped size 16-byte aligned.
+ NumBytes = RoundUpToAlignment(NumBytes, 16);
+
+ // FPDiff will be negative if this tail call requires more space than we
+ // would automatically have in our incoming argument space. Positive if we
+ // can actually shrink the stack.
+ FPDiff = NumReusableBytes - NumBytes;
+
+ // The stack pointer must be 16-byte aligned at all times it's used for a
+ // memory operation, which in practice means at *all* times and in
+ // particular across call boundaries. Therefore our own arguments started at
+ // a 16-byte aligned SP and the delta applied for the tail call should
+ // satisfy the same constraint.
+ assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
+ }
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ if (!IsSibCall)
+ Chain =
+ DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
+
+ SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[realArgIdx];
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ if (Outs[realArgIdx].ArgVT == MVT::i1) {
+ // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
+ Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
+ }
+ Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::FPExt:
+ Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (VA.isRegLoc()) {
+ if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
+ assert(VA.getLocVT() == MVT::i64 &&
+ "unexpected calling convention register assignment");
+ assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
+ "unexpected use of 'returned'");
+ IsThisReturn = true;
+ }
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ assert(VA.isMemLoc());
+
+ SDValue DstAddr;
+ MachinePointerInfo DstInfo;
+
+ // FIXME: This works on big-endian for composite byvals, which are the
+ // common case. It should also work for fundamental types too.
+ uint32_t BEAlign = 0;
+ unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
+ : VA.getLocVT().getSizeInBits();
+ OpSize = (OpSize + 7) / 8;
+ if (!Subtarget->isLittleEndian() && !Flags.isByVal()) {
+ if (OpSize < 8)
+ BEAlign = 8 - OpSize;
+ }
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ int32_t Offset = LocMemOffset + BEAlign;
+ SDValue PtrOff = DAG.getIntPtrConstant(Offset);
+ PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
+
+ if (IsTailCall) {
+ Offset = Offset + FPDiff;
+ int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
+
+ DstAddr = DAG.getFrameIndex(FI, getPointerTy());
+ DstInfo = MachinePointerInfo::getFixedStack(FI);
+
+ // Make sure any stack arguments overlapping with where we're storing
+ // are loaded before this eventual operation. Otherwise they'll be
+ // clobbered.
+ Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
+ } else {
+ SDValue PtrOff = DAG.getIntPtrConstant(Offset);
+
+ DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
+ DstInfo = MachinePointerInfo::getStack(LocMemOffset);
+ }
+
+ if (Outs[i].Flags.isByVal()) {
+ SDValue SizeNode =
+ DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
+ SDValue Cpy = DAG.getMemcpy(
+ Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
+ /*isVolatile = */ false,
+ /*alwaysInline = */ false, DstInfo, MachinePointerInfo());
+
+ MemOpChains.push_back(Cpy);
+ } else {
+ // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
+ // promoted to a legal register type i32, we should truncate Arg back to
+ // i1/i8/i16.
+ if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
+ VA.getValVT() == MVT::i16)
+ Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
+
+ SDValue Store =
+ DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
+ MemOpChains.push_back(Store);
+ }
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ if (getTargetMachine().getCodeModel() == CodeModel::Large &&
+ Subtarget->isTargetMachO()) {
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ bool InternalLinkage = GV->hasInternalLinkage();
+ if (InternalLinkage)
+ Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
+ else {
+ Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
+ AArch64II::MO_GOT);
+ Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
+ }
+ } else if (ExternalSymbolSDNode *S =
+ dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const char *Sym = S->getSymbol();
+ Callee =
+ DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
+ Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
+ }
+ } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const char *Sym = S->getSymbol();
+ Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
+ }
+
+ // We don't usually want to end the call-sequence here because we would tidy
+ // the frame up *after* the call, however in the ABI-changing tail-call case
+ // we've carefully laid out the parameters so that when sp is reset they'll be
+ // in the correct location.
+ if (IsTailCall && !IsSibCall) {
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(0, true), InFlag, DL);
+ InFlag = Chain.getValue(1);
+ }
+
+ std::vector<SDValue> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ if (IsTailCall) {
+ // Each tail call may have to adjust the stack by a different amount, so
+ // this information must travel along with the operation for eventual
+ // consumption by emitEpilogue.
+ Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
+ }
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const uint32_t *Mask;
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const AArch64RegisterInfo *ARI =
+ static_cast<const AArch64RegisterInfo *>(TRI);
+ if (IsThisReturn) {
+ // For 'this' returns, use the X0-preserving mask if applicable
+ Mask = ARI->getThisReturnPreservedMask(CallConv);
+ if (!Mask) {
+ IsThisReturn = false;
+ Mask = ARI->getCallPreservedMask(CallConv);
+ }
+ } else
+ Mask = ARI->getCallPreservedMask(CallConv);
+
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ // If we're doing a tall call, use a TC_RETURN here rather than an
+ // actual call instruction.
+ if (IsTailCall)
+ return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
+
+ // Returns a chain and a flag for retval copy to use.
+ Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
+ ? RoundUpToAlignment(NumBytes, 16)
+ : 0;
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(CalleePopBytes, true),
+ InFlag, DL);
+ if (!Ins.empty())
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
+ InVals, IsThisReturn,
+ IsThisReturn ? OutVals[0] : SDValue());
+}
+
+bool AArch64TargetLowering::CanLowerReturn(
+ CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
+ CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
+ ? RetCC_AArch64_WebKit_JS
+ : RetCC_AArch64_AAPCS;
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, RetCC);
+}
+
+SDValue
+AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const {
+ CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
+ ? RetCC_AArch64_WebKit_JS
+ : RetCC_AArch64_AAPCS;
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC);
+
+ // Copy the result values into the output registers.
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+ for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
+ ++i, ++realRVLocIdx) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ SDValue Arg = OutVals[realRVLocIdx];
+
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ if (Outs[i].ArgVT == MVT::i1) {
+ // AAPCS requires i1 to be zero-extended to i8 by the producer of the
+ // value. This is strictly redundant on Darwin (which uses "zeroext
+ // i1"), but will be optimised out before ISel.
+ Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
+ }
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
+ break;
+ }
+
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
+}
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Code
+//===----------------------------------------------------------------------===//
+
+SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy();
+ SDLoc DL(Op);
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ unsigned char OpFlags =
+ Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
+
+ assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
+ "unexpected offset in global node");
+
+ // This also catched the large code model case for Darwin.
+ if ((OpFlags & AArch64II::MO_GOT) != 0) {
+ SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into two nodes instead of using a wrapper node.
+ return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
+ }
+
+ if (getTargetMachine().getCodeModel() == CodeModel::Large) {
+ const unsigned char MO_NC = AArch64II::MO_NC;
+ return DAG.getNode(
+ AArch64ISD::WrapperLarge, DL, PtrVT,
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
+ } else {
+ // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
+ // the only correct model on Darwin.
+ SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ OpFlags | AArch64II::MO_PAGE);
+ unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
+ SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
+
+ SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
+ return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
+ }
+}
+
+/// \brief Convert a TLS address reference into the correct sequence of loads
+/// and calls to compute the variable's address (for Darwin, currently) and
+/// return an SDValue containing the final node.
+
+/// Darwin only has one TLS scheme which must be capable of dealing with the
+/// fully general situation, in the worst case. This means:
+/// + "extern __thread" declaration.
+/// + Defined in a possibly unknown dynamic library.
+///
+/// The general system is that each __thread variable has a [3 x i64] descriptor
+/// which contains information used by the runtime to calculate the address. The
+/// only part of this the compiler needs to know about is the first xword, which
+/// contains a function pointer that must be called with the address of the
+/// entire descriptor in "x0".
+///
+/// Since this descriptor may be in a different unit, in general even the
+/// descriptor must be accessed via an indirect load. The "ideal" code sequence
+/// is:
+/// adrp x0, _var@TLVPPAGE
+/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
+/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
+/// ; the function pointer
+/// blr x1 ; Uses descriptor address in x0
+/// ; Address of _var is now in x0.
+///
+/// If the address of _var's descriptor *is* known to the linker, then it can
+/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
+/// a slight efficiency gain.
+SDValue
+AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
+
+ SDLoc DL(Op);
+ MVT PtrVT = getPointerTy();
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+
+ SDValue TLVPAddr =
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
+ SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
+
+ // The first entry in the descriptor is a function pointer that we must call
+ // to obtain the address of the variable.
+ SDValue Chain = DAG.getEntryNode();
+ SDValue FuncTLVGet =
+ DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
+ false, true, true, 8);
+ Chain = FuncTLVGet.getValue(1);
+
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setAdjustsStack(true);
+
+ // TLS calls preserve all registers except those that absolutely must be
+ // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
+ // silly).
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const AArch64RegisterInfo *ARI =
+ static_cast<const AArch64RegisterInfo *>(TRI);
+ const uint32_t *Mask = ARI->getTLSCallPreservedMask();
+
+ // Finally, we can make the call. This is just a degenerate version of a
+ // normal AArch64 call node: x0 takes the address of the descriptor, and
+ // returns the address of the variable in this thread.
+ Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
+ Chain =
+ DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
+ Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
+ DAG.getRegisterMask(Mask), Chain.getValue(1));
+ return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
+}
+
+/// When accessing thread-local variables under either the general-dynamic or
+/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
+/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
+/// is a function pointer to carry out the resolution. This function takes the
+/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
+/// other registers (except LR, NZCV) are preserved.
+///
+/// Thus, the ideal call sequence on AArch64 is:
+///
+/// adrp x0, :tlsdesc:thread_var
+/// ldr x8, [x0, :tlsdesc_lo12:thread_var]
+/// add x0, x0, :tlsdesc_lo12:thread_var
+/// .tlsdesccall thread_var
+/// blr x8
+/// (TPIDR_EL0 offset now in x0).
+///
+/// The ".tlsdesccall" directive instructs the assembler to insert a particular
+/// relocation to help the linker relax this sequence if it turns out to be too
+/// conservative.
+///
+/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
+/// is harmless.
+SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
+ SDValue DescAddr, SDLoc DL,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy();
+
+ // The function we need to call is simply the first entry in the GOT for this
+ // descriptor, load it in preparation.
+ SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
+
+ // TLS calls preserve all registers except those that absolutely must be
+ // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
+ // silly).
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const AArch64RegisterInfo *ARI =
+ static_cast<const AArch64RegisterInfo *>(TRI);
+ const uint32_t *Mask = ARI->getTLSCallPreservedMask();
+
+ // The function takes only one argument: the address of the descriptor itself
+ // in X0.
+ SDValue Glue, Chain;
+ Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
+ Glue = Chain.getValue(1);
+
+ // We're now ready to populate the argument list, as with a normal call:
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Func);
+ Ops.push_back(SymAddr);
+ Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
+ Ops.push_back(DAG.getRegisterMask(Mask));
+ Ops.push_back(Glue);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
+ Glue = Chain.getValue(1);
+
+ return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
+}
+
+SDValue
+AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetELF() && "This function expects an ELF target");
+ assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
+ "ELF TLS only supported in small memory model");
+ const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+
+ TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
+
+ SDValue TPOff;
+ EVT PtrVT = getPointerTy();
+ SDLoc DL(Op);
+ const GlobalValue *GV = GA->getGlobal();
+
+ SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
+
+ if (Model == TLSModel::LocalExec) {
+ SDValue HiVar = DAG.getTargetGlobalAddress(
+ GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
+ SDValue LoVar = DAG.getTargetGlobalAddress(
+ GV, DL, PtrVT, 0,
+ AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
+
+ TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
+ DAG.getTargetConstant(16, MVT::i32)),
+ 0);
+ TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
+ DAG.getTargetConstant(0, MVT::i32)),
+ 0);
+ } else if (Model == TLSModel::InitialExec) {
+ TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
+ TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
+ } else if (Model == TLSModel::LocalDynamic) {
+ // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
+ // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
+ // the beginning of the module's TLS region, followed by a DTPREL offset
+ // calculation.
+
+ // These accesses will need deduplicating if there's more than one.
+ AArch64FunctionInfo *MFI =
+ DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
+ MFI->incNumLocalDynamicTLSAccesses();
+
+ // Accesses used in this sequence go via the TLS descriptor which lives in
+ // the GOT. Prepare an address we can use to handle this.
+ SDValue HiDesc = DAG.getTargetExternalSymbol(
+ "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
+ SDValue LoDesc = DAG.getTargetExternalSymbol(
+ "_TLS_MODULE_BASE_", PtrVT,
+ AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+
+ // First argument to the descriptor call is the address of the descriptor
+ // itself.
+ SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
+ DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
+
+ // The call needs a relocation too for linker relaxation. It doesn't make
+ // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
+ // the address.
+ SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
+ AArch64II::MO_TLS);
+
+ // Now we can calculate the offset from TPIDR_EL0 to this module's
+ // thread-local area.
+ TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
+
+ // Now use :dtprel_whatever: operations to calculate this variable's offset
+ // in its thread-storage area.
+ SDValue HiVar = DAG.getTargetGlobalAddress(
+ GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
+ SDValue LoVar = DAG.getTargetGlobalAddress(
+ GV, DL, MVT::i64, 0,
+ AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
+
+ SDValue DTPOff =
+ SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
+ DAG.getTargetConstant(16, MVT::i32)),
+ 0);
+ DTPOff =
+ SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
+ DAG.getTargetConstant(0, MVT::i32)),
+ 0);
+
+ TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
+ } else if (Model == TLSModel::GeneralDynamic) {
+ // Accesses used in this sequence go via the TLS descriptor which lives in
+ // the GOT. Prepare an address we can use to handle this.
+ SDValue HiDesc = DAG.getTargetGlobalAddress(
+ GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
+ SDValue LoDesc = DAG.getTargetGlobalAddress(
+ GV, DL, PtrVT, 0,
+ AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+
+ // First argument to the descriptor call is the address of the descriptor
+ // itself.
+ SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
+ DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
+
+ // The call needs a relocation too for linker relaxation. It doesn't make
+ // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
+ // the address.
+ SDValue SymAddr =
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
+
+ // Finally we can make a call to calculate the offset from tpidr_el0.
+ TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
+ } else
+ llvm_unreachable("Unsupported ELF TLS access model");
+
+ return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
+}
+
+SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (Subtarget->isTargetDarwin())
+ return LowerDarwinGlobalTLSAddress(Op, DAG);
+ else if (Subtarget->isTargetELF())
+ return LowerELFGlobalTLSAddress(Op, DAG);
+
+ llvm_unreachable("Unexpected platform trying to use TLS");
+}
+SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ SDLoc dl(Op);
+
+ // Handle f128 first, since lowering it will result in comparing the return
+ // value of a libcall against zero, which is just what the rest of LowerBR_CC
+ // is expecting to deal with.
+ if (LHS.getValueType() == MVT::f128) {
+ softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
+
+ // If softenSetCCOperands returned a scalar, we need to compare the result
+ // against zero to select between true and false values.
+ if (!RHS.getNode()) {
+ RHS = DAG.getConstant(0, LHS.getValueType());
+ CC = ISD::SETNE;
+ }
+ }
+
+ // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
+ // instruction.
+ unsigned Opc = LHS.getOpcode();
+ if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
+ cast<ConstantSDNode>(RHS)->isOne() &&
+ (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
+ Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
+ assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
+ "Unexpected condition code.");
+ // Only lower legal XALUO ops.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
+ return SDValue();
+
+ // The actual operation with overflow check.
+ AArch64CC::CondCode OFCC;
+ SDValue Value, Overflow;
+ std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
+
+ if (CC == ISD::SETNE)
+ OFCC = getInvertedCondCode(OFCC);
+ SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
+
+ return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
+ CCVal, Overflow);
+ }
+
+ if (LHS.getValueType().isInteger()) {
+ assert((LHS.getValueType() == RHS.getValueType()) &&
+ (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
+
+ // If the RHS of the comparison is zero, we can potentially fold this
+ // to a specialized branch.
+ const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
+ if (RHSC && RHSC->getZExtValue() == 0) {
+ if (CC == ISD::SETEQ) {
+ // See if we can use a TBZ to fold in an AND as well.
+ // TBZ has a smaller branch displacement than CBZ. If the offset is
+ // out of bounds, a late MI-layer pass rewrites branches.
+ // 403.gcc is an example that hits this case.
+ if (LHS.getOpcode() == ISD::AND &&
+ isa<ConstantSDNode>(LHS.getOperand(1)) &&
+ isPowerOf2_64(LHS.getConstantOperandVal(1))) {
+ SDValue Test = LHS.getOperand(0);
+ uint64_t Mask = LHS.getConstantOperandVal(1);
+
+ // TBZ only operates on i64's, but the ext should be free.
+ if (Test.getValueType() == MVT::i32)
+ Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
+
+ return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
+ DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
+ }
+
+ return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
+ } else if (CC == ISD::SETNE) {
+ // See if we can use a TBZ to fold in an AND as well.
+ // TBZ has a smaller branch displacement than CBZ. If the offset is
+ // out of bounds, a late MI-layer pass rewrites branches.
+ // 403.gcc is an example that hits this case.
+ if (LHS.getOpcode() == ISD::AND &&
+ isa<ConstantSDNode>(LHS.getOperand(1)) &&
+ isPowerOf2_64(LHS.getConstantOperandVal(1))) {
+ SDValue Test = LHS.getOperand(0);
+ uint64_t Mask = LHS.getConstantOperandVal(1);
+
+ // TBNZ only operates on i64's, but the ext should be free.
+ if (Test.getValueType() == MVT::i32)
+ Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
+
+ return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
+ DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
+ }
+
+ return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
+ }
+ }
+
+ SDValue CCVal;
+ SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
+ return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
+ Cmp);
+ }
+
+ assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
+
+ // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
+ // clean. Some of them require two branches to implement.
+ SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
+ AArch64CC::CondCode CC1, CC2;
+ changeFPCCToAArch64CC(CC, CC1, CC2);
+ SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
+ SDValue BR1 =
+ DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
+ if (CC2 != AArch64CC::AL) {
+ SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
+ return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
+ Cmp);
+ }
+
+ return BR1;
+}
+
+SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+
+ SDValue In1 = Op.getOperand(0);
+ SDValue In2 = Op.getOperand(1);
+ EVT SrcVT = In2.getValueType();
+ if (SrcVT != VT) {
+ if (SrcVT == MVT::f32 && VT == MVT::f64)
+ In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
+ else if (SrcVT == MVT::f64 && VT == MVT::f32)
+ In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
+ else
+ // FIXME: Src type is different, bail out for now. Can VT really be a
+ // vector type?
+ return SDValue();
+ }
+
+ EVT VecVT;
+ EVT EltVT;
+ SDValue EltMask, VecVal1, VecVal2;
+ if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
+ EltVT = MVT::i32;
+ VecVT = MVT::v4i32;
+ EltMask = DAG.getConstant(0x80000000ULL, EltVT);
+
+ if (!VT.isVector()) {
+ VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
+ DAG.getUNDEF(VecVT), In1);
+ VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
+ DAG.getUNDEF(VecVT), In2);
+ } else {
+ VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
+ VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
+ }
+ } else if (VT == MVT::f64 || VT == MVT::v2f64) {
+ EltVT = MVT::i64;
+ VecVT = MVT::v2i64;
+
+ // We want to materialize a mask with the the high bit set, but the AdvSIMD
+ // immediate moves cannot materialize that in a single instruction for
+ // 64-bit elements. Instead, materialize zero and then negate it.
+ EltMask = DAG.getConstant(0, EltVT);
+
+ if (!VT.isVector()) {
+ VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
+ DAG.getUNDEF(VecVT), In1);
+ VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
+ DAG.getUNDEF(VecVT), In2);
+ } else {
+ VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
+ VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
+ }
+ } else {
+ llvm_unreachable("Invalid type for copysign!");
+ }
+
+ std::vector<SDValue> BuildVectorOps;
+ for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
+ BuildVectorOps.push_back(EltMask);
+
+ SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
+
+ // If we couldn't materialize the mask above, then the mask vector will be
+ // the zero vector, and we need to negate it here.
+ if (VT == MVT::f64 || VT == MVT::v2f64) {
+ BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
+ BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
+ BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
+ }
+
+ SDValue Sel =
+ DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
+
+ if (VT == MVT::f32)
+ return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
+ else if (VT == MVT::f64)
+ return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
+ else
+ return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
+}
+
+SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
+ if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
+ return SDValue();
+
+ // While there is no integer popcount instruction, it can
+ // be more efficiently lowered to the following sequence that uses
+ // AdvSIMD registers/instructions as long as the copies to/from
+ // the AdvSIMD registers are cheap.
+ // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
+ // CNT V0.8B, V0.8B // 8xbyte pop-counts
+ // ADDV B0, V0.8B // sum 8xbyte pop-counts
+ // UMOV X0, V0.B[0] // copy byte result back to integer reg
+ SDValue Val = Op.getOperand(0);
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
+
+ SDValue VecVal;
+ if (VT == MVT::i32) {
+ VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
+ VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
+ VecVal);
+ } else {
+ VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
+ }
+
+ SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
+ SDValue UaddLV = DAG.getNode(
+ ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
+ DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
+
+ if (VT == MVT::i64)
+ UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
+ return UaddLV;
+}
+
+SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+
+ if (Op.getValueType().isVector())
+ return LowerVSETCC(Op, DAG);
+
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDLoc dl(Op);
+
+ // We chose ZeroOrOneBooleanContents, so use zero and one.
+ EVT VT = Op.getValueType();
+ SDValue TVal = DAG.getConstant(1, VT);
+ SDValue FVal = DAG.getConstant(0, VT);
+
+ // Handle f128 first, since one possible outcome is a normal integer
+ // comparison which gets picked up by the next if statement.
+ if (LHS.getValueType() == MVT::f128) {
+ softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
+
+ // If softenSetCCOperands returned a scalar, use it.
+ if (!RHS.getNode()) {
+ assert(LHS.getValueType() == Op.getValueType() &&
+ "Unexpected setcc expansion!");
+ return LHS;
+ }
+ }
+
+ if (LHS.getValueType().isInteger()) {
+ SDValue CCVal;
+ SDValue Cmp =
+ getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
+
+ // Note that we inverted the condition above, so we reverse the order of
+ // the true and false operands here. This will allow the setcc to be
+ // matched to a single CSINC instruction.
+ return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
+ }
+
+ // Now we know we're dealing with FP values.
+ assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
+
+ // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
+ // and do the comparison.
+ SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
+
+ AArch64CC::CondCode CC1, CC2;
+ changeFPCCToAArch64CC(CC, CC1, CC2);
+ if (CC2 == AArch64CC::AL) {
+ changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
+ SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
+
+ // Note that we inverted the condition above, so we reverse the order of
+ // the true and false operands here. This will allow the setcc to be
+ // matched to a single CSINC instruction.
+ return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
+ } else {
+ // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
+ // totally clean. Some of them require two CSELs to implement. As is in
+ // this case, we emit the first CSEL and then emit a second using the output
+ // of the first as the RHS. We're effectively OR'ing the two CC's together.
+
+ // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
+ SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
+ SDValue CS1 =
+ DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
+
+ SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
+ return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
+ }
+}
+
+/// A SELECT_CC operation is really some kind of max or min if both values being
+/// compared are, in some sense, equal to the results in either case. However,
+/// it is permissible to compare f32 values and produce directly extended f64
+/// values.
+///
+/// Extending the comparison operands would also be allowed, but is less likely
+/// to happen in practice since their use is right here. Note that truncate
+/// operations would *not* be semantically equivalent.
+static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
+ if (Cmp == Result)
+ return true;
+
+ ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
+ ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
+ if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
+ Result.getValueType() == MVT::f64) {
+ bool Lossy;
+ APFloat CmpVal = CCmp->getValueAPF();
+ CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
+ return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
+ }
+
+ return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
+}
+
+SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue CC = Op->getOperand(0);
+ SDValue TVal = Op->getOperand(1);
+ SDValue FVal = Op->getOperand(2);
+ SDLoc DL(Op);
+
+ unsigned Opc = CC.getOpcode();
+ // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
+ // instruction.
+ if (CC.getResNo() == 1 &&
+ (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
+ Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
+ // Only lower legal XALUO ops.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
+ return SDValue();
+
+ AArch64CC::CondCode OFCC;
+ SDValue Value, Overflow;
+ std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
+ SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
+
+ return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
+ CCVal, Overflow);
+ }
+
+ if (CC.getOpcode() == ISD::SETCC)
+ return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
+ cast<CondCodeSDNode>(CC.getOperand(2))->get());
+ else
+ return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
+ FVal, ISD::SETNE);
+}
+
+SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
+ SelectionDAG &DAG) const {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue TVal = Op.getOperand(2);
+ SDValue FVal = Op.getOperand(3);
+ SDLoc dl(Op);
+
+ // Handle f128 first, because it will result in a comparison of some RTLIB
+ // call result against zero.
+ if (LHS.getValueType() == MVT::f128) {
+ softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
+
+ // If softenSetCCOperands returned a scalar, we need to compare the result
+ // against zero to select between true and false values.
+ if (!RHS.getNode()) {
+ RHS = DAG.getConstant(0, LHS.getValueType());
+ CC = ISD::SETNE;
+ }
+ }
+
+ // Handle integers first.
+ if (LHS.getValueType().isInteger()) {
+ assert((LHS.getValueType() == RHS.getValueType()) &&
+ (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
+
+ unsigned Opcode = AArch64ISD::CSEL;
+
+ // If both the TVal and the FVal are constants, see if we can swap them in
+ // order to for a CSINV or CSINC out of them.
+ ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
+ ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
+
+ if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ } else if (TVal.getOpcode() == ISD::XOR) {
+ // If TVal is a NOT we want to swap TVal and FVal so that we can match
+ // with a CSINV rather than a CSEL.
+ ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
+
+ if (CVal && CVal->isAllOnesValue()) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ }
+ } else if (TVal.getOpcode() == ISD::SUB) {
+ // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
+ // that we can match with a CSNEG rather than a CSEL.
+ ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
+
+ if (CVal && CVal->isNullValue()) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ }
+ } else if (CTVal && CFVal) {
+ const int64_t TrueVal = CTVal->getSExtValue();
+ const int64_t FalseVal = CFVal->getSExtValue();
+ bool Swap = false;
+
+ // If both TVal and FVal are constants, see if FVal is the
+ // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
+ // instead of a CSEL in that case.
+ if (TrueVal == ~FalseVal) {
+ Opcode = AArch64ISD::CSINV;
+ } else if (TrueVal == -FalseVal) {
+ Opcode = AArch64ISD::CSNEG;
+ } else if (TVal.getValueType() == MVT::i32) {
+ // If our operands are only 32-bit wide, make sure we use 32-bit
+ // arithmetic for the check whether we can use CSINC. This ensures that
+ // the addition in the check will wrap around properly in case there is
+ // an overflow (which would not be the case if we do the check with
+ // 64-bit arithmetic).
+ const uint32_t TrueVal32 = CTVal->getZExtValue();
+ const uint32_t FalseVal32 = CFVal->getZExtValue();
+
+ if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
+ Opcode = AArch64ISD::CSINC;
+
+ if (TrueVal32 > FalseVal32) {
+ Swap = true;
+ }
+ }
+ // 64-bit check whether we can use CSINC.
+ } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
+ Opcode = AArch64ISD::CSINC;
+
+ if (TrueVal > FalseVal) {
+ Swap = true;
+ }
+ }
+
+ // Swap TVal and FVal if necessary.
+ if (Swap) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ }
+
+ if (Opcode != AArch64ISD::CSEL) {
+ // Drop FVal since we can get its value by simply inverting/negating
+ // TVal.
+ FVal = TVal;
+ }
+ }
+
+ SDValue CCVal;
+ SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
+
+ EVT VT = Op.getValueType();
+ return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
+ }
+
+ // Now we know we're dealing with FP values.
+ assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
+ assert(LHS.getValueType() == RHS.getValueType());
+ EVT VT = Op.getValueType();
+
+ // Try to match this select into a max/min operation, which have dedicated
+ // opcode in the instruction set.
+ // FIXME: This is not correct in the presence of NaNs, so we only enable this
+ // in no-NaNs mode.
+ if (getTargetMachine().Options.NoNaNsFPMath) {
+ SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
+ if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
+ selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
+ CC = ISD::getSetCCSwappedOperands(CC);
+ std::swap(MinMaxLHS, MinMaxRHS);
+ }
+
+ if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
+ selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
+ switch (CC) {
+ default:
+ break;
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETOGT:
+ case ISD::SETOGE:
+ return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
+ break;
+ case ISD::SETLT:
+ case ISD::SETLE:
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
+ break;
+ }
+ }
+ }
+
+ // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
+ // and do the comparison.
+ SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
+
+ // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
+ // clean. Some of them require two CSELs to implement.
+ AArch64CC::CondCode CC1, CC2;
+ changeFPCCToAArch64CC(CC, CC1, CC2);
+ SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
+ SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
+
+ // If we need a second CSEL, emit it, using the output of the first as the
+ // RHS. We're effectively OR'ing the two CC's together.
+ if (CC2 != AArch64CC::AL) {
+ SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
+ return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
+ }
+
+ // Otherwise, return the output of the first CSEL.
+ return CS1;
+}
+
+SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
+ SelectionDAG &DAG) const {
+ // Jump table entries as PC relative offsets. No additional tweaking
+ // is necessary here. Just get the address of the jump table.
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+ EVT PtrVT = getPointerTy();
+ SDLoc DL(Op);
+
+ if (getTargetMachine().getCodeModel() == CodeModel::Large &&
+ !Subtarget->isTargetMachO()) {
+ const unsigned char MO_NC = AArch64II::MO_NC;
+ return DAG.getNode(
+ AArch64ISD::WrapperLarge, DL, PtrVT,
+ DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
+ DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
+ DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
+ DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
+ AArch64II::MO_G0 | MO_NC));
+ }
+
+ SDValue Hi =
+ DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
+ SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
+ AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+ SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
+ return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
+}
+
+SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
+ SelectionDAG &DAG) const {
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ EVT PtrVT = getPointerTy();
+ SDLoc DL(Op);
+
+ if (getTargetMachine().getCodeModel() == CodeModel::Large) {
+ // Use the GOT for the large code model on iOS.
+ if (Subtarget->isTargetMachO()) {
+ SDValue GotAddr = DAG.getTargetConstantPool(
+ CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
+ AArch64II::MO_GOT);
+ return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
+ }
+
+ const unsigned char MO_NC = AArch64II::MO_NC;
+ return DAG.getNode(
+ AArch64ISD::WrapperLarge, DL, PtrVT,
+ DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
+ CP->getOffset(), AArch64II::MO_G3),
+ DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
+ CP->getOffset(), AArch64II::MO_G2 | MO_NC),
+ DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
+ CP->getOffset(), AArch64II::MO_G1 | MO_NC),
+ DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
+ CP->getOffset(), AArch64II::MO_G0 | MO_NC));
+ } else {
+ // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
+ // ELF, the only valid one on Darwin.
+ SDValue Hi =
+ DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
+ CP->getOffset(), AArch64II::MO_PAGE);
+ SDValue Lo = DAG.getTargetConstantPool(
+ CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
+ AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+
+ SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
+ return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
+ }
+}
+
+SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ EVT PtrVT = getPointerTy();
+ SDLoc DL(Op);
+ if (getTargetMachine().getCodeModel() == CodeModel::Large &&
+ !Subtarget->isTargetMachO()) {
+ const unsigned char MO_NC = AArch64II::MO_NC;
+ return DAG.getNode(
+ AArch64ISD::WrapperLarge, DL, PtrVT,
+ DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
+ DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
+ DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
+ DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
+ } else {
+ SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
+ SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
+ AArch64II::MO_NC);
+ SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
+ return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
+ }
+}
+
+SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
+ SelectionDAG &DAG) const {
+ AArch64FunctionInfo *FuncInfo =
+ DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
+
+ SDLoc DL(Op);
+ SDValue FR =
+ DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
+ MachinePointerInfo(SV), false, false, 0);
+}
+
+SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
+ SelectionDAG &DAG) const {
+ // The layout of the va_list struct is specified in the AArch64 Procedure Call
+ // Standard, section B.3.
+ MachineFunction &MF = DAG.getMachineFunction();
+ AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
+ SDLoc DL(Op);
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue VAList = Op.getOperand(1);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ SmallVector<SDValue, 4> MemOps;
+
+ // void *__stack at offset 0
+ SDValue Stack =
+ DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
+ MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
+ MachinePointerInfo(SV), false, false, 8));
+
+ // void *__gr_top at offset 8
+ int GPRSize = FuncInfo->getVarArgsGPRSize();
+ if (GPRSize > 0) {
+ SDValue GRTop, GRTopAddr;
+
+ GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(8, getPointerTy()));
+
+ GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
+ GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
+ DAG.getConstant(GPRSize, getPointerTy()));
+
+ MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
+ MachinePointerInfo(SV, 8), false, false, 8));
+ }
+
+ // void *__vr_top at offset 16
+ int FPRSize = FuncInfo->getVarArgsFPRSize();
+ if (FPRSize > 0) {
+ SDValue VRTop, VRTopAddr;
+ VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(16, getPointerTy()));
+
+ VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
+ VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
+ DAG.getConstant(FPRSize, getPointerTy()));
+
+ MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
+ MachinePointerInfo(SV, 16), false, false, 8));
+ }
+
+ // int __gr_offs at offset 24
+ SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(24, getPointerTy()));
+ MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
+ GROffsAddr, MachinePointerInfo(SV, 24), false,
+ false, 4));
+
+ // int __vr_offs at offset 28
+ SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(28, getPointerTy()));
+ MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
+ VROffsAddr, MachinePointerInfo(SV, 28), false,
+ false, 4));
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
+}
+
+SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
+ SelectionDAG &DAG) const {
+ return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
+ : LowerAAPCS_VASTART(Op, DAG);
+}
+
+SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
+ SelectionDAG &DAG) const {
+ // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
+ // pointer.
+ unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
+ const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
+ const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+
+ return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
+ Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
+ 8, false, false, MachinePointerInfo(DestSV),
+ MachinePointerInfo(SrcSV));
+}
+
+SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetDarwin() &&
+ "automatic va_arg instruction only works on Darwin");
+
+ const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Addr = Op.getOperand(1);
+ unsigned Align = Op.getConstantOperandVal(3);
+
+ SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
+ MachinePointerInfo(V), false, false, false, 0);
+ Chain = VAList.getValue(1);
+
+ if (Align > 8) {
+ assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
+ VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(Align - 1, getPointerTy()));
+ VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
+ DAG.getConstant(-(int64_t)Align, getPointerTy()));
+ }
+
+ Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
+ uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
+
+ // Scalar integer and FP values smaller than 64 bits are implicitly extended
+ // up to 64 bits. At the very least, we have to increase the striding of the
+ // vaargs list to match this, and for FP values we need to introduce
+ // FP_ROUND nodes as well.
+ if (VT.isInteger() && !VT.isVector())
+ ArgSize = 8;
+ bool NeedFPTrunc = false;
+ if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
+ ArgSize = 8;
+ NeedFPTrunc = true;
+ }
+
+ // Increment the pointer, VAList, to the next vaarg
+ SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(ArgSize, getPointerTy()));
+ // Store the incremented VAList to the legalized pointer
+ SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
+ false, false, 0);
+
+ // Load the actual argument out of the pointer VAList
+ if (NeedFPTrunc) {
+ // Load the value as an f64.
+ SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
+ MachinePointerInfo(), false, false, false, 0);
+ // Round the value down to an f32.
+ SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
+ DAG.getIntPtrConstant(1));
+ SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
+ // Merge the rounded value with the chain output of the load.
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
+ false, false, 0);
+}
+
+SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDValue FrameAddr =
+ DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(), false, false, false, 0);
+ return FrameAddr;
+}
+
+// FIXME? Maybe this could be a TableGen attribute on some registers and
+// this table could be generated automatically from RegInfo.
+unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
+ EVT VT) const {
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("sp", AArch64::SP)
+ .Default(0);
+ if (Reg)
+ return Reg;
+ report_fatal_error("Invalid register name global variable");
+}
+
+SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ if (Depth) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset = DAG.getConstant(8, getPointerTy());
+ return DAG.getLoad(VT, DL, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Return LR, which contains the return address. Mark it an implicit live-in.
+ unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
+ return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
+}
+
+/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
+/// i64 values and take a 2 x i64 value to shift plus a shift amount.
+SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMcc;
+ unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
+
+ assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
+
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
+ DAG.getConstant(VTBits, MVT::i64), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
+ DAG.getConstant(VTBits, MVT::i64));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
+
+ SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
+ ISD::SETGE, dl, DAG);
+ SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
+
+ SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
+ SDValue Lo =
+ DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
+
+ // AArch64 shifts larger than the register width are wrapped rather than
+ // clamped, so we can't just emit "hi >> x".
+ SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
+ SDValue TrueValHi = Opc == ISD::SRA
+ ? DAG.getNode(Opc, dl, VT, ShOpHi,
+ DAG.getConstant(VTBits - 1, MVT::i64))
+ : DAG.getConstant(0, VT);
+ SDValue Hi =
+ DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
+/// i64 values and take a 2 x i64 value to shift plus a shift amount.
+SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMcc;
+
+ assert(Op.getOpcode() == ISD::SHL_PARTS);
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
+ DAG.getConstant(VTBits, MVT::i64), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
+ DAG.getConstant(VTBits, MVT::i64));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
+ SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
+
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+
+ SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
+ ISD::SETGE, dl, DAG);
+ SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
+ SDValue Hi =
+ DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
+
+ // AArch64 shifts of larger than register sizes are wrapped rather than
+ // clamped, so we can't just emit "lo << a" if a is too big.
+ SDValue TrueValLo = DAG.getConstant(0, VT);
+ SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
+ SDValue Lo =
+ DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+bool AArch64TargetLowering::isOffsetFoldingLegal(
+ const GlobalAddressSDNode *GA) const {
+ // The AArch64 target doesn't support folding offsets into global addresses.
+ return false;
+}
+
+bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
+ // FIXME: We should be able to handle f128 as well with a clever lowering.
+ if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
+ return true;
+
+ if (VT == MVT::f64)
+ return AArch64_AM::getFP64Imm(Imm) != -1;
+ else if (VT == MVT::f32)
+ return AArch64_AM::getFP32Imm(Imm) != -1;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// AArch64 Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// AArch64 Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+// Table of Constraints
+// TODO: This is the current set of constraints supported by ARM for the
+// compiler, not all of them may make sense, e.g. S may be difficult to support.
+//
+// r - A general register
+// w - An FP/SIMD register of some size in the range v0-v31
+// x - An FP/SIMD register of some size in the range v0-v15
+// I - Constant that can be used with an ADD instruction
+// J - Constant that can be used with a SUB instruction
+// K - Constant that can be used with a 32-bit logical instruction
+// L - Constant that can be used with a 64-bit logical instruction
+// M - Constant that can be used as a 32-bit MOV immediate
+// N - Constant that can be used as a 64-bit MOV immediate
+// Q - A memory reference with base register and no offset
+// S - A symbolic address
+// Y - Floating point constant zero
+// Z - Integer constant zero
+//
+// Note that general register operands will be output using their 64-bit x
+// register name, whatever the size of the variable, unless the asm operand
+// is prefixed by the %w modifier. Floating-point and SIMD register operands
+// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
+// %q modifier.
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+AArch64TargetLowering::ConstraintType
+AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default:
+ break;
+ case 'z':
+ return C_Other;
+ case 'x':
+ case 'w':
+ return C_RegisterClass;
+ // An address with a single base register. Due to the way we
+ // currently handle addresses it is the same as 'r'.
+ case 'Q':
+ return C_Memory;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+AArch64TargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'x':
+ case 'w':
+ if (type->isFloatingPointTy() || type->isVectorTy())
+ weight = CW_Register;
+ break;
+ case 'z':
+ weight = CW_Constant;
+ break;
+ }
+ return weight;
+}
+
+std::pair<unsigned, const TargetRegisterClass *>
+AArch64TargetLowering::getRegForInlineAsmConstraint(
+ const std::string &Constraint, MVT VT) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r':
+ if (VT.getSizeInBits() == 64)
+ return std::make_pair(0U, &AArch64::GPR64commonRegClass);
+ return std::make_pair(0U, &AArch64::GPR32commonRegClass);
+ case 'w':
+ if (VT == MVT::f32)
+ return std::make_pair(0U, &AArch64::FPR32RegClass);
+ if (VT.getSizeInBits() == 64)
+ return std::make_pair(0U, &AArch64::FPR64RegClass);
+ if (VT.getSizeInBits() == 128)
+ return std::make_pair(0U, &AArch64::FPR128RegClass);
+ break;
+ // The instructions that this constraint is designed for can
+ // only take 128-bit registers so just use that regclass.
+ case 'x':
+ if (VT.getSizeInBits() == 128)
+ return std::make_pair(0U, &AArch64::FPR128_loRegClass);
+ break;
+ }
+ }
+ if (StringRef("{cc}").equals_lower(Constraint))
+ return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
+
+ // Use the default implementation in TargetLowering to convert the register
+ // constraint into a member of a register class.
+ std::pair<unsigned, const TargetRegisterClass *> Res;
+ Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+
+ // Not found as a standard register?
+ if (!Res.second) {
+ unsigned Size = Constraint.size();
+ if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
+ tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
+ const std::string Reg =
+ std::string(&Constraint[2], &Constraint[Size - 1]);
+ int RegNo = atoi(Reg.c_str());
+ if (RegNo >= 0 && RegNo <= 31) {
+ // v0 - v31 are aliases of q0 - q31.
+ // By default we'll emit v0-v31 for this unless there's a modifier where
+ // we'll emit the correct register as well.
+ Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
+ Res.second = &AArch64::FPR128RegClass;
+ }
+ }
+ }
+
+ return Res;
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void AArch64TargetLowering::LowerAsmOperandForConstraint(
+ SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result;
+
+ // Currently only support length 1 constraints.
+ if (Constraint.length() != 1)
+ return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default:
+ break;
+
+ // This set of constraints deal with valid constants for various instructions.
+ // Validate and return a target constant for them if we can.
+ case 'z': {
+ // 'z' maps to xzr or wzr so it needs an input of 0.
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C || C->getZExtValue() != 0)
+ return;
+
+ if (Op.getValueType() == MVT::i64)
+ Result = DAG.getRegister(AArch64::XZR, MVT::i64);
+ else
+ Result = DAG.getRegister(AArch64::WZR, MVT::i32);
+ break;
+ }
+
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C)
+ return;
+
+ // Grab the value and do some validation.
+ uint64_t CVal = C->getZExtValue();
+ switch (ConstraintLetter) {
+ // The I constraint applies only to simple ADD or SUB immediate operands:
+ // i.e. 0 to 4095 with optional shift by 12
+ // The J constraint applies only to ADD or SUB immediates that would be
+ // valid when negated, i.e. if [an add pattern] were to be output as a SUB
+ // instruction [or vice versa], in other words -1 to -4095 with optional
+ // left shift by 12.
+ case 'I':
+ if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
+ break;
+ return;
+ case 'J': {
+ uint64_t NVal = -C->getSExtValue();
+ if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal))
+ break;
+ return;
+ }
+ // The K and L constraints apply *only* to logical immediates, including
+ // what used to be the MOVI alias for ORR (though the MOVI alias has now
+ // been removed and MOV should be used). So these constraints have to
+ // distinguish between bit patterns that are valid 32-bit or 64-bit
+ // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
+ // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
+ // versa.
+ case 'K':
+ if (AArch64_AM::isLogicalImmediate(CVal, 32))
+ break;
+ return;
+ case 'L':
+ if (AArch64_AM::isLogicalImmediate(CVal, 64))
+ break;
+ return;
+ // The M and N constraints are a superset of K and L respectively, for use
+ // with the MOV (immediate) alias. As well as the logical immediates they
+ // also match 32 or 64-bit immediates that can be loaded either using a
+ // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
+ // (M) or 64-bit 0x1234000000000000 (N) etc.
+ // As a note some of this code is liberally stolen from the asm parser.
+ case 'M': {
+ if (!isUInt<32>(CVal))
+ return;
+ if (AArch64_AM::isLogicalImmediate(CVal, 32))
+ break;
+ if ((CVal & 0xFFFF) == CVal)
+ break;
+ if ((CVal & 0xFFFF0000ULL) == CVal)
+ break;
+ uint64_t NCVal = ~(uint32_t)CVal;
+ if ((NCVal & 0xFFFFULL) == NCVal)
+ break;
+ if ((NCVal & 0xFFFF0000ULL) == NCVal)
+ break;
+ return;
+ }
+ case 'N': {
+ if (AArch64_AM::isLogicalImmediate(CVal, 64))
+ break;
+ if ((CVal & 0xFFFFULL) == CVal)
+ break;
+ if ((CVal & 0xFFFF0000ULL) == CVal)
+ break;
+ if ((CVal & 0xFFFF00000000ULL) == CVal)
+ break;
+ if ((CVal & 0xFFFF000000000000ULL) == CVal)
+ break;
+ uint64_t NCVal = ~CVal;
+ if ((NCVal & 0xFFFFULL) == NCVal)
+ break;
+ if ((NCVal & 0xFFFF0000ULL) == NCVal)
+ break;
+ if ((NCVal & 0xFFFF00000000ULL) == NCVal)
+ break;
+ if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
+ break;
+ return;
+ }
+ default:
+ return;
+ }
+
+ // All assembler immediates are 64-bit integers.
+ Result = DAG.getTargetConstant(CVal, MVT::i64);
+ break;
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+
+ return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+//===----------------------------------------------------------------------===//
+// AArch64 Advanced SIMD Support
+//===----------------------------------------------------------------------===//
+
+/// WidenVector - Given a value in the V64 register class, produce the
+/// equivalent value in the V128 register class.
+static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
+ EVT VT = V64Reg.getValueType();
+ unsigned NarrowSize = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType().getSimpleVT();
+ MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
+ SDLoc DL(V64Reg);
+
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
+ V64Reg, DAG.getConstant(0, MVT::i32));
+}
+
+/// getExtFactor - Determine the adjustment factor for the position when
+/// generating an "extract from vector registers" instruction.
+static unsigned getExtFactor(SDValue &V) {
+ EVT EltType = V.getValueType().getVectorElementType();
+ return EltType.getSizeInBits() / 8;
+}
+
+/// NarrowVector - Given a value in the V128 register class, produce the
+/// equivalent value in the V64 register class.
+static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
+ EVT VT = V128Reg.getValueType();
+ unsigned WideSize = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType().getSimpleVT();
+ MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
+ SDLoc DL(V128Reg);
+
+ return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
+}
+
+// Gather data to see if the operation can be modelled as a
+// shuffle in combination with VEXTs.
+SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ SmallVector<SDValue, 2> SourceVecs;
+ SmallVector<unsigned, 2> MinElts;
+ SmallVector<unsigned, 2> MaxElts;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
+ // A shuffle can only come from building a vector from various
+ // elements of other vectors.
+ return SDValue();
+ }
+
+ // Record this extraction against the appropriate vector if possible...
+ SDValue SourceVec = V.getOperand(0);
+ unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
+ bool FoundSource = false;
+ for (unsigned j = 0; j < SourceVecs.size(); ++j) {
+ if (SourceVecs[j] == SourceVec) {
+ if (MinElts[j] > EltNo)
+ MinElts[j] = EltNo;
+ if (MaxElts[j] < EltNo)
+ MaxElts[j] = EltNo;
+ FoundSource = true;
+ break;
+ }
+ }
+
+ // Or record a new source if not...
+ if (!FoundSource) {
+ SourceVecs.push_back(SourceVec);
+ MinElts.push_back(EltNo);
+ MaxElts.push_back(EltNo);
+ }
+ }
+
+ // Currently only do something sane when at most two source vectors
+ // involved.
+ if (SourceVecs.size() > 2)
+ return SDValue();
+
+ SDValue ShuffleSrcs[2] = { DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
+ int VEXTOffsets[2] = { 0, 0 };
+ int OffsetMultipliers[2] = { 1, 1 };
+
+ // This loop extracts the usage patterns of the source vectors
+ // and prepares appropriate SDValues for a shuffle if possible.
+ for (unsigned i = 0; i < SourceVecs.size(); ++i) {
+ unsigned NumSrcElts = SourceVecs[i].getValueType().getVectorNumElements();
+ SDValue CurSource = SourceVecs[i];
+ if (SourceVecs[i].getValueType().getVectorElementType() !=
+ VT.getVectorElementType()) {
+ // It may hit this case if SourceVecs[i] is AssertSext/AssertZext.
+ // Then bitcast it to the vector which holds asserted element type,
+ // and record the multiplier of element width between SourceVecs and
+ // Build_vector which is needed to extract the correct lanes later.
+ EVT CastVT =
+ EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
+ SourceVecs[i].getValueSizeInBits() /
+ VT.getVectorElementType().getSizeInBits());
+
+ CurSource = DAG.getNode(ISD::BITCAST, dl, CastVT, SourceVecs[i]);
+ OffsetMultipliers[i] = CastVT.getVectorNumElements() / NumSrcElts;
+ NumSrcElts *= OffsetMultipliers[i];
+ MaxElts[i] *= OffsetMultipliers[i];
+ MinElts[i] *= OffsetMultipliers[i];
+ }
+
+ if (CurSource.getValueType() == VT) {
+ // No VEXT necessary
+ ShuffleSrcs[i] = CurSource;
+ VEXTOffsets[i] = 0;
+ continue;
+ } else if (NumSrcElts < NumElts) {
+ // We can pad out the smaller vector for free, so if it's part of a
+ // shuffle...
+ ShuffleSrcs[i] = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, CurSource,
+ DAG.getUNDEF(CurSource.getValueType()));
+ continue;
+ }
+
+ // Since only 64-bit and 128-bit vectors are legal on ARM and
+ // we've eliminated the other cases...
+ assert(NumSrcElts == 2 * NumElts &&
+ "unexpected vector sizes in ReconstructShuffle");
+
+ if (MaxElts[i] - MinElts[i] >= NumElts) {
+ // Span too large for a VEXT to cope
+ return SDValue();
+ }
+
+ if (MinElts[i] >= NumElts) {
+ // The extraction can just take the second half
+ VEXTOffsets[i] = NumElts;
+ ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
+ DAG.getIntPtrConstant(NumElts));
+ } else if (MaxElts[i] < NumElts) {
+ // The extraction can just take the first half
+ VEXTOffsets[i] = 0;
+ ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
+ DAG.getIntPtrConstant(0));
+ } else {
+ // An actual VEXT is needed
+ VEXTOffsets[i] = MinElts[i];
+ SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
+ DAG.getIntPtrConstant(0));
+ SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
+ DAG.getIntPtrConstant(NumElts));
+ unsigned Imm = VEXTOffsets[i] * getExtFactor(VEXTSrc1);
+ ShuffleSrcs[i] = DAG.getNode(AArch64ISD::EXT, dl, VT, VEXTSrc1, VEXTSrc2,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+ }
+
+ SmallVector<int, 8> Mask;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue Entry = Op.getOperand(i);
+ if (Entry.getOpcode() == ISD::UNDEF) {
+ Mask.push_back(-1);
+ continue;
+ }
+
+ SDValue ExtractVec = Entry.getOperand(0);
+ int ExtractElt =
+ cast<ConstantSDNode>(Op.getOperand(i).getOperand(1))->getSExtValue();
+ if (ExtractVec == SourceVecs[0]) {
+ Mask.push_back(ExtractElt * OffsetMultipliers[0] - VEXTOffsets[0]);
+ } else {
+ Mask.push_back(ExtractElt * OffsetMultipliers[1] + NumElts -
+ VEXTOffsets[1]);
+ }
+ }
+
+ // Final check before we try to produce nonsense...
+ if (isShuffleMaskLegal(Mask, VT))
+ return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
+ &Mask[0]);
+
+ return SDValue();
+}
+
+// check if an EXT instruction can handle the shuffle mask when the
+// vector sources of the shuffle are the same.
+static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ // Assume that the first shuffle index is not UNDEF. Fail if it is.
+ if (M[0] < 0)
+ return false;
+
+ Imm = M[0];
+
+ // If this is a VEXT shuffle, the immediate value is the index of the first
+ // element. The other shuffle indices must be the successive elements after
+ // the first one.
+ unsigned ExpectedElt = Imm;
+ for (unsigned i = 1; i < NumElts; ++i) {
+ // Increment the expected index. If it wraps around, just follow it
+ // back to index zero and keep going.
+ ++ExpectedElt;
+ if (ExpectedElt == NumElts)
+ ExpectedElt = 0;
+
+ if (M[i] < 0)
+ continue; // ignore UNDEF indices
+ if (ExpectedElt != static_cast<unsigned>(M[i]))
+ return false;
+ }
+
+ return true;
+}
+
+// check if an EXT instruction can handle the shuffle mask when the
+// vector sources of the shuffle are different.
+static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
+ unsigned &Imm) {
+ // Look for the first non-undef element.
+ const int *FirstRealElt = std::find_if(M.begin(), M.end(),
+ [](int Elt) {return Elt >= 0;});
+
+ // Benefit form APInt to handle overflow when calculating expected element.
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
+ APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
+ // The following shuffle indices must be the successive elements after the
+ // first real element.
+ const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
+ [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
+ if (FirstWrongElt != M.end())
+ return false;
+
+ // The index of an EXT is the first element if it is not UNDEF.
+ // Watch out for the beginning UNDEFs. The EXT index should be the expected
+ // value of the first element. E.g.
+ // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
+ // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
+ // ExpectedElt is the last mask index plus 1.
+ Imm = ExpectedElt.getZExtValue();
+
+ // There are two difference cases requiring to reverse input vectors.
+ // For example, for vector <4 x i32> we have the following cases,
+ // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
+ // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
+ // For both cases, we finally use mask <5, 6, 7, 0>, which requires
+ // to reverse two input vectors.
+ if (Imm < NumElts)
+ ReverseEXT = true;
+ else
+ Imm -= NumElts;
+
+ return true;
+}
+
+/// isREVMask - Check if a vector shuffle corresponds to a REV
+/// instruction with the specified blocksize. (The order of the elements
+/// within each block of the vector is reversed.)
+static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
+ assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
+ "Only possible block sizes for REV are: 16, 32, 64");
+
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned BlockElts = M[0] + 1;
+ // If the first shuffle index is UNDEF, be optimistic.
+ if (M[0] < 0)
+ BlockElts = BlockSize / EltSz;
+
+ if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
+ return false;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if (M[i] < 0)
+ continue; // ignore UNDEF indices
+ if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
+ return false;
+ }
+
+ return true;
+}
+
+static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
+ (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
+ return false;
+ Idx += 1;
+ }
+
+ return true;
+}
+
+static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (M[i] < 0)
+ continue; // ignore UNDEF indices
+ if ((unsigned)M[i] != 2 * i + WhichResult)
+ return false;
+ }
+
+ return true;
+}
+
+static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
+ (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
+ return false;
+ }
+ return true;
+}
+
+/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
+static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
+ (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
+ return false;
+ Idx += 1;
+ }
+
+ return true;
+}
+
+/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
+static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned Half = VT.getVectorNumElements() / 2;
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned j = 0; j != 2; ++j) {
+ unsigned Idx = WhichResult;
+ for (unsigned i = 0; i != Half; ++i) {
+ int MIdx = M[i + j * Half];
+ if (MIdx >= 0 && (unsigned)MIdx != Idx)
+ return false;
+ Idx += 2;
+ }
+ }
+
+ return true;
+}
+
+/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
+static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
+ (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
+ return false;
+ }
+ return true;
+}
+
+static bool isINSMask(ArrayRef<int> M, int NumInputElements,
+ bool &DstIsLeft, int &Anomaly) {
+ if (M.size() != static_cast<size_t>(NumInputElements))
+ return false;
+
+ int NumLHSMatch = 0, NumRHSMatch = 0;
+ int LastLHSMismatch = -1, LastRHSMismatch = -1;
+
+ for (int i = 0; i < NumInputElements; ++i) {
+ if (M[i] == -1) {
+ ++NumLHSMatch;
+ ++NumRHSMatch;
+ continue;
+ }
+
+ if (M[i] == i)
+ ++NumLHSMatch;
+ else
+ LastLHSMismatch = i;
+
+ if (M[i] == i + NumInputElements)
+ ++NumRHSMatch;
+ else
+ LastRHSMismatch = i;
+ }
+
+ if (NumLHSMatch == NumInputElements - 1) {
+ DstIsLeft = true;
+ Anomaly = LastLHSMismatch;
+ return true;
+ } else if (NumRHSMatch == NumInputElements - 1) {
+ DstIsLeft = false;
+ Anomaly = LastRHSMismatch;
+ return true;
+ }
+
+ return false;
+}
+
+static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
+ if (VT.getSizeInBits() != 128)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+
+ for (int I = 0, E = NumElts / 2; I != E; I++) {
+ if (Mask[I] != I)
+ return false;
+ }
+
+ int Offset = NumElts / 2;
+ for (int I = NumElts / 2, E = NumElts; I != E; I++) {
+ if (Mask[I] != I + SplitLHS * Offset)
+ return false;
+ }
+
+ return true;
+}
+
+static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue V0 = Op.getOperand(0);
+ SDValue V1 = Op.getOperand(1);
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
+
+ if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
+ VT.getVectorElementType() != V1.getValueType().getVectorElementType())
+ return SDValue();
+
+ bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
+
+ if (!isConcatMask(Mask, VT, SplitV0))
+ return SDValue();
+
+ EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
+ VT.getVectorNumElements() / 2);
+ if (SplitV0) {
+ V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
+ DAG.getConstant(0, MVT::i64));
+ }
+ if (V1.getValueType().getSizeInBits() == 128) {
+ V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
+ DAG.getConstant(0, MVT::i64));
+ }
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
+}
+
+/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
+/// the specified operations to build the shuffle.
+static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
+ SDValue RHS, SelectionDAG &DAG,
+ SDLoc dl) {
+ unsigned OpNum = (PFEntry >> 26) & 0x0F;
+ unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
+ unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
+
+ enum {
+ OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
+ OP_VREV,
+ OP_VDUP0,
+ OP_VDUP1,
+ OP_VDUP2,
+ OP_VDUP3,
+ OP_VEXT1,
+ OP_VEXT2,
+ OP_VEXT3,
+ OP_VUZPL, // VUZP, left result
+ OP_VUZPR, // VUZP, right result
+ OP_VZIPL, // VZIP, left result
+ OP_VZIPR, // VZIP, right result
+ OP_VTRNL, // VTRN, left result
+ OP_VTRNR // VTRN, right result
+ };
+
+ if (OpNum == OP_COPY) {
+ if (LHSID == (1 * 9 + 2) * 9 + 3)
+ return LHS;
+ assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
+ return RHS;
+ }
+
+ SDValue OpLHS, OpRHS;
+ OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
+ OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
+ EVT VT = OpLHS.getValueType();
+
+ switch (OpNum) {
+ default:
+ llvm_unreachable("Unknown shuffle opcode!");
+ case OP_VREV:
+ // VREV divides the vector in half and swaps within the half.
+ if (VT.getVectorElementType() == MVT::i32 ||
+ VT.getVectorElementType() == MVT::f32)
+ return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
+ // vrev <4 x i16> -> REV32
+ if (VT.getVectorElementType() == MVT::i16)
+ return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
+ // vrev <4 x i8> -> REV16
+ assert(VT.getVectorElementType() == MVT::i8);
+ return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
+ case OP_VDUP0:
+ case OP_VDUP1:
+ case OP_VDUP2:
+ case OP_VDUP3: {
+ EVT EltTy = VT.getVectorElementType();
+ unsigned Opcode;
+ if (EltTy == MVT::i8)
+ Opcode = AArch64ISD::DUPLANE8;
+ else if (EltTy == MVT::i16)
+ Opcode = AArch64ISD::DUPLANE16;
+ else if (EltTy == MVT::i32 || EltTy == MVT::f32)
+ Opcode = AArch64ISD::DUPLANE32;
+ else if (EltTy == MVT::i64 || EltTy == MVT::f64)
+ Opcode = AArch64ISD::DUPLANE64;
+ else
+ llvm_unreachable("Invalid vector element type?");
+
+ if (VT.getSizeInBits() == 64)
+ OpLHS = WidenVector(OpLHS, DAG);
+ SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
+ return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
+ }
+ case OP_VEXT1:
+ case OP_VEXT2:
+ case OP_VEXT3: {
+ unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
+ return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+ case OP_VUZPL:
+ return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ case OP_VUZPR:
+ return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ case OP_VZIPL:
+ return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ case OP_VZIPR:
+ return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ case OP_VTRNL:
+ return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ case OP_VTRNR:
+ return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ }
+}
+
+static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
+ SelectionDAG &DAG) {
+ // Check to see if we can use the TBL instruction.
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ SDLoc DL(Op);
+
+ EVT EltVT = Op.getValueType().getVectorElementType();
+ unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
+
+ SmallVector<SDValue, 8> TBLMask;
+ for (int Val : ShuffleMask) {
+ for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
+ unsigned Offset = Byte + Val * BytesPerElt;
+ TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
+ }
+ }
+
+ MVT IndexVT = MVT::v8i8;
+ unsigned IndexLen = 8;
+ if (Op.getValueType().getSizeInBits() == 128) {
+ IndexVT = MVT::v16i8;
+ IndexLen = 16;
+ }
+
+ SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
+ SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
+
+ SDValue Shuffle;
+ if (V2.getNode()->getOpcode() == ISD::UNDEF) {
+ if (IndexLen == 8)
+ V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
+ Shuffle = DAG.getNode(
+ ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
+ DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
+ makeArrayRef(TBLMask.data(), IndexLen)));
+ } else {
+ if (IndexLen == 8) {
+ V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
+ Shuffle = DAG.getNode(
+ ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
+ DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
+ makeArrayRef(TBLMask.data(), IndexLen)));
+ } else {
+ // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
+ // cannot currently represent the register constraints on the input
+ // table registers.
+ // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
+ // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
+ // &TBLMask[0], IndexLen));
+ Shuffle = DAG.getNode(
+ ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
+ DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
+ makeArrayRef(TBLMask.data(), IndexLen)));
+ }
+ }
+ return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
+}
+
+static unsigned getDUPLANEOp(EVT EltType) {
+ if (EltType == MVT::i8)
+ return AArch64ISD::DUPLANE8;
+ if (EltType == MVT::i16)
+ return AArch64ISD::DUPLANE16;
+ if (EltType == MVT::i32 || EltType == MVT::f32)
+ return AArch64ISD::DUPLANE32;
+ if (EltType == MVT::i64 || EltType == MVT::f64)
+ return AArch64ISD::DUPLANE64;
+
+ llvm_unreachable("Invalid vector element type?");
+}
+
+SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
+
+ // Convert shuffles that are directly supported on NEON to target-specific
+ // DAG nodes, instead of keeping them as shuffles and matching them again
+ // during code selection. This is more efficient and avoids the possibility
+ // of inconsistencies between legalization and selection.
+ ArrayRef<int> ShuffleMask = SVN->getMask();
+
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+
+ if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
+ V1.getValueType().getSimpleVT())) {
+ int Lane = SVN->getSplatIndex();
+ // If this is undef splat, generate it via "just" vdup, if possible.
+ if (Lane == -1)
+ Lane = 0;
+
+ if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
+ return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
+ V1.getOperand(0));
+ // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
+ // constant. If so, we can just reference the lane's definition directly.
+ if (V1.getOpcode() == ISD::BUILD_VECTOR &&
+ !isa<ConstantSDNode>(V1.getOperand(Lane)))
+ return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
+
+ // Otherwise, duplicate from the lane of the input vector.
+ unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
+
+ // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
+ // to make a vector of the same size as this SHUFFLE. We can ignore the
+ // extract entirely, and canonicalise the concat using WidenVector.
+ if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
+ Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
+ V1 = V1.getOperand(0);
+ } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
+ unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
+ Lane -= Idx * VT.getVectorNumElements() / 2;
+ V1 = WidenVector(V1.getOperand(Idx), DAG);
+ } else if (VT.getSizeInBits() == 64)
+ V1 = WidenVector(V1, DAG);
+
+ return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
+ }
+
+ if (isREVMask(ShuffleMask, VT, 64))
+ return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
+ if (isREVMask(ShuffleMask, VT, 32))
+ return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
+ if (isREVMask(ShuffleMask, VT, 16))
+ return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
+
+ bool ReverseEXT = false;
+ unsigned Imm;
+ if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
+ if (ReverseEXT)
+ std::swap(V1, V2);
+ Imm *= getExtFactor(V1);
+ return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
+ DAG.getConstant(Imm, MVT::i32));
+ } else if (V2->getOpcode() == ISD::UNDEF &&
+ isSingletonEXTMask(ShuffleMask, VT, Imm)) {
+ Imm *= getExtFactor(V1);
+ return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+
+ unsigned WhichResult;
+ if (isZIPMask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
+ }
+ if (isUZPMask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
+ }
+ if (isTRNMask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
+ }
+
+ if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
+ }
+ if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
+ }
+ if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
+ }
+
+ SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
+ if (Concat.getNode())
+ return Concat;
+
+ bool DstIsLeft;
+ int Anomaly;
+ int NumInputElements = V1.getValueType().getVectorNumElements();
+ if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
+ SDValue DstVec = DstIsLeft ? V1 : V2;
+ SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
+
+ SDValue SrcVec = V1;
+ int SrcLane = ShuffleMask[Anomaly];
+ if (SrcLane >= NumInputElements) {
+ SrcVec = V2;
+ SrcLane -= VT.getVectorNumElements();
+ }
+ SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
+
+ EVT ScalarVT = VT.getVectorElementType();
+ if (ScalarVT.getSizeInBits() < 32)
+ ScalarVT = MVT::i32;
+
+ return DAG.getNode(
+ ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
+ DstLaneV);
+ }
+
+ // If the shuffle is not directly supported and it has 4 elements, use
+ // the PerfectShuffle-generated table to synthesize it from other shuffles.
+ unsigned NumElts = VT.getVectorNumElements();
+ if (NumElts == 4) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (ShuffleMask[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = ShuffleMask[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
+ PFIndexes[2] * 9 + PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
+ }
+
+ return GenerateTBL(Op, ShuffleMask, DAG);
+}
+
+static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
+ APInt &UndefBits) {
+ EVT VT = BVN->getValueType(0);
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
+
+ for (unsigned i = 0; i < NumSplats; ++i) {
+ CnstBits <<= SplatBitSize;
+ UndefBits <<= SplatBitSize;
+ CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
+ UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
+ SelectionDAG &DAG) const {
+ BuildVectorSDNode *BVN =
+ dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
+ SDValue LHS = Op.getOperand(0);
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ if (!BVN)
+ return Op;
+
+ APInt CnstBits(VT.getSizeInBits(), 0);
+ APInt UndefBits(VT.getSizeInBits(), 0);
+ if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
+ // We only have BIC vector immediate instruction, which is and-not.
+ CnstBits = ~CnstBits;
+
+ // We make use of a little bit of goto ickiness in order to avoid having to
+ // duplicate the immediate matching logic for the undef toggled case.
+ bool SecondTry = false;
+ AttemptModImm:
+
+ if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
+ CnstBits = CnstBits.zextOrTrunc(64);
+ uint64_t CnstVal = CnstBits.getZExtValue();
+
+ if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(16, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(24, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+ }
+
+ if (SecondTry)
+ goto FailedModImm;
+ SecondTry = true;
+ CnstBits = ~UndefBits;
+ goto AttemptModImm;
+ }
+
+// We can always fall back to a non-immediate AND.
+FailedModImm:
+ return Op;
+}
+
+// Specialized code to quickly find if PotentialBVec is a BuildVector that
+// consists of only the same constant int value, returned in reference arg
+// ConstVal
+static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
+ uint64_t &ConstVal) {
+ BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
+ if (!Bvec)
+ return false;
+ ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
+ if (!FirstElt)
+ return false;
+ EVT VT = Bvec->getValueType(0);
+ unsigned NumElts = VT.getVectorNumElements();
+ for (unsigned i = 1; i < NumElts; ++i)
+ if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
+ return false;
+ ConstVal = FirstElt->getZExtValue();
+ return true;
+}
+
+static unsigned getIntrinsicID(const SDNode *N) {
+ unsigned Opcode = N->getOpcode();
+ switch (Opcode) {
+ default:
+ return Intrinsic::not_intrinsic;
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ if (IID < Intrinsic::num_intrinsics)
+ return IID;
+ return Intrinsic::not_intrinsic;
+ }
+ }
+}
+
+// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
+// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
+// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
+// Also, logical shift right -> sri, with the same structure.
+static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+
+ if (!VT.isVector())
+ return SDValue();
+
+ SDLoc DL(N);
+
+ // Is the first op an AND?
+ const SDValue And = N->getOperand(0);
+ if (And.getOpcode() != ISD::AND)
+ return SDValue();
+
+ // Is the second op an shl or lshr?
+ SDValue Shift = N->getOperand(1);
+ // This will have been turned into: AArch64ISD::VSHL vector, #shift
+ // or AArch64ISD::VLSHR vector, #shift
+ unsigned ShiftOpc = Shift.getOpcode();
+ if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
+ return SDValue();
+ bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
+
+ // Is the shift amount constant?
+ ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
+ if (!C2node)
+ return SDValue();
+
+ // Is the and mask vector all constant?
+ uint64_t C1;
+ if (!isAllConstantBuildVector(And.getOperand(1), C1))
+ return SDValue();
+
+ // Is C1 == ~C2, taking into account how much one can shift elements of a
+ // particular size?
+ uint64_t C2 = C2node->getZExtValue();
+ unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
+ if (C2 > ElemSizeInBits)
+ return SDValue();
+ unsigned ElemMask = (1 << ElemSizeInBits) - 1;
+ if ((C1 & ElemMask) != (~C2 & ElemMask))
+ return SDValue();
+
+ SDValue X = And.getOperand(0);
+ SDValue Y = Shift.getOperand(0);
+
+ unsigned Intrin =
+ IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
+ SDValue ResultSLI =
+ DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
+
+ DEBUG(dbgs() << "aarch64-lower: transformed: \n");
+ DEBUG(N->dump(&DAG));
+ DEBUG(dbgs() << "into: \n");
+ DEBUG(ResultSLI->dump(&DAG));
+
+ ++NumShiftInserts;
+ return ResultSLI;
+}
+
+SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
+ if (EnableAArch64SlrGeneration) {
+ SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
+ if (Res.getNode())
+ return Res;
+ }
+
+ BuildVectorSDNode *BVN =
+ dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
+ SDValue LHS = Op.getOperand(1);
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ // OR commutes, so try swapping the operands.
+ if (!BVN) {
+ LHS = Op.getOperand(0);
+ BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
+ }
+ if (!BVN)
+ return Op;
+
+ APInt CnstBits(VT.getSizeInBits(), 0);
+ APInt UndefBits(VT.getSizeInBits(), 0);
+ if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
+ // We make use of a little bit of goto ickiness in order to avoid having to
+ // duplicate the immediate matching logic for the undef toggled case.
+ bool SecondTry = false;
+ AttemptModImm:
+
+ if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
+ CnstBits = CnstBits.zextOrTrunc(64);
+ uint64_t CnstVal = CnstBits.getZExtValue();
+
+ if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(16, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(24, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+ }
+
+ if (SecondTry)
+ goto FailedModImm;
+ SecondTry = true;
+ CnstBits = UndefBits;
+ goto AttemptModImm;
+ }
+
+// We can always fall back to a non-immediate OR.
+FailedModImm:
+ return Op;
+}
+
+// Normalize the operands of BUILD_VECTOR. The value of constant operands will
+// be truncated to fit element width.
+static SDValue NormalizeBuildVector(SDValue Op,
+ SelectionDAG &DAG) {
+ assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ EVT EltTy= VT.getVectorElementType();
+
+ if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
+ return Op;
+
+ SmallVector<SDValue, 16> Ops;
+ for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
+ SDValue Lane = Op.getOperand(I);
+ if (Lane.getOpcode() == ISD::Constant) {
+ APInt LowBits(EltTy.getSizeInBits(),
+ cast<ConstantSDNode>(Lane)->getZExtValue());
+ Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
+ }
+ Ops.push_back(Lane);
+ }
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+}
+
+SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ Op = NormalizeBuildVector(Op, DAG);
+ BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
+
+ APInt CnstBits(VT.getSizeInBits(), 0);
+ APInt UndefBits(VT.getSizeInBits(), 0);
+ if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
+ // We make use of a little bit of goto ickiness in order to avoid having to
+ // duplicate the immediate matching logic for the undef toggled case.
+ bool SecondTry = false;
+ AttemptModImm:
+
+ if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
+ CnstBits = CnstBits.zextOrTrunc(64);
+ uint64_t CnstVal = CnstBits.getZExtValue();
+
+ // Certain magic vector constants (used to express things like NOT
+ // and NEG) are passed through unmodified. This allows codegen patterns
+ // for these operations to match. Special-purpose patterns will lower
+ // these immediates to MOVIs if it proves necessary.
+ if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
+ return Op;
+
+ // The many faces of MOVI...
+ if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
+ if (VT.getSizeInBits() == 128) {
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
+ DAG.getConstant(CnstVal, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ // Support the V64 version via subregister insertion.
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
+ DAG.getConstant(CnstVal, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(16, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(24, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(264, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(272, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ // The few faces of FMOV...
+ if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
+ SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
+ VT.getSizeInBits() == 128) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
+ SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
+ DAG.getConstant(CnstVal, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ // The many faces of MVNI...
+ CnstVal = ~CnstVal;
+ if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(16, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(24, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(264, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(272, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+ }
+
+ if (SecondTry)
+ goto FailedModImm;
+ SecondTry = true;
+ CnstBits = UndefBits;
+ goto AttemptModImm;
+ }
+FailedModImm:
+
+ // Scan through the operands to find some interesting properties we can
+ // exploit:
+ // 1) If only one value is used, we can use a DUP, or
+ // 2) if only the low element is not undef, we can just insert that, or
+ // 3) if only one constant value is used (w/ some non-constant lanes),
+ // we can splat the constant value into the whole vector then fill
+ // in the non-constant lanes.
+ // 4) FIXME: If different constant values are used, but we can intelligently
+ // select the values we'll be overwriting for the non-constant
+ // lanes such that we can directly materialize the vector
+ // some other way (MOVI, e.g.), we can be sneaky.
+ unsigned NumElts = VT.getVectorNumElements();
+ bool isOnlyLowElement = true;
+ bool usesOnlyOneValue = true;
+ bool usesOnlyOneConstantValue = true;
+ bool isConstant = true;
+ unsigned NumConstantLanes = 0;
+ SDValue Value;
+ SDValue ConstantValue;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ if (i > 0)
+ isOnlyLowElement = false;
+ if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
+ isConstant = false;
+
+ if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
+ ++NumConstantLanes;
+ if (!ConstantValue.getNode())
+ ConstantValue = V;
+ else if (ConstantValue != V)
+ usesOnlyOneConstantValue = false;
+ }
+
+ if (!Value.getNode())
+ Value = V;
+ else if (V != Value)
+ usesOnlyOneValue = false;
+ }
+
+ if (!Value.getNode())
+ return DAG.getUNDEF(VT);
+
+ if (isOnlyLowElement)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
+
+ // Use DUP for non-constant splats. For f32 constant splats, reduce to
+ // i32 and try again.
+ if (usesOnlyOneValue) {
+ if (!isConstant) {
+ if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ Value.getValueType() != VT)
+ return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
+
+ // This is actually a DUPLANExx operation, which keeps everything vectory.
+
+ // DUPLANE works on 128-bit vectors, widen it if necessary.
+ SDValue Lane = Value.getOperand(1);
+ Value = Value.getOperand(0);
+ if (Value.getValueType().getSizeInBits() == 64)
+ Value = WidenVector(Value, DAG);
+
+ unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
+ return DAG.getNode(Opcode, dl, VT, Value, Lane);
+ }
+
+ if (VT.getVectorElementType().isFloatingPoint()) {
+ SmallVector<SDValue, 8> Ops;
+ MVT NewType =
+ (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
+ for (unsigned i = 0; i < NumElts; ++i)
+ Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
+ SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
+ Val = LowerBUILD_VECTOR(Val, DAG);
+ if (Val.getNode())
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
+ }
+ }
+
+ // If there was only one constant value used and for more than one lane,
+ // start by splatting that value, then replace the non-constant lanes. This
+ // is better than the default, which will perform a separate initialization
+ // for each lane.
+ if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
+ SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
+ // Now insert the non-constant lanes.
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
+ if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
+ // Note that type legalization likely mucked about with the VT of the
+ // source operand, so we may have to convert it here before inserting.
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
+ }
+ }
+ return Val;
+ }
+
+ // If all elements are constants and the case above didn't get hit, fall back
+ // to the default expansion, which will generate a load from the constant
+ // pool.
+ if (isConstant)
+ return SDValue();
+
+ // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
+ if (NumElts >= 4) {
+ SDValue shuffle = ReconstructShuffle(Op, DAG);
+ if (shuffle != SDValue())
+ return shuffle;
+ }
+
+ // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
+ // know the default expansion would otherwise fall back on something even
+ // worse. For a vector with one or two non-undef values, that's
+ // scalar_to_vector for the elements followed by a shuffle (provided the
+ // shuffle is valid for the target) and materialization element by element
+ // on the stack followed by a load for everything else.
+ if (!isConstant && !usesOnlyOneValue) {
+ SDValue Vec = DAG.getUNDEF(VT);
+ SDValue Op0 = Op.getOperand(0);
+ unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
+ unsigned i = 0;
+ // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
+ // a) Avoid a RMW dependency on the full vector register, and
+ // b) Allow the register coalescer to fold away the copy if the
+ // value is already in an S or D register.
+ if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
+ unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
+ MachineSDNode *N =
+ DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
+ DAG.getTargetConstant(SubIdx, MVT::i32));
+ Vec = SDValue(N, 0);
+ ++i;
+ }
+ for (; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
+ }
+ return Vec;
+ }
+
+ // Just use the default expansion. We failed to find a better alternative.
+ return SDValue();
+}
+
+SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
+
+ // Check for non-constant or out of range lane.
+ EVT VT = Op.getOperand(0).getValueType();
+ ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
+ return SDValue();
+
+
+ // Insertion/extraction are legal for V128 types.
+ if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
+ VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
+ return Op;
+
+ if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
+ VT != MVT::v1i64 && VT != MVT::v2f32)
+ return SDValue();
+
+ // For V64 types, we perform insertion by expanding the value
+ // to a V128 type and perform the insertion on that.
+ SDLoc DL(Op);
+ SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
+ EVT WideTy = WideVec.getValueType();
+
+ SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
+ Op.getOperand(1), Op.getOperand(2));
+ // Re-narrow the resultant vector.
+ return NarrowVector(Node, DAG);
+}
+
+SDValue
+AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
+
+ // Check for non-constant or out of range lane.
+ EVT VT = Op.getOperand(0).getValueType();
+ ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
+ return SDValue();
+
+
+ // Insertion/extraction are legal for V128 types.
+ if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
+ VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
+ return Op;
+
+ if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
+ VT != MVT::v1i64 && VT != MVT::v2f32)
+ return SDValue();
+
+ // For V64 types, we perform extraction by expanding the value
+ // to a V128 type and perform the extraction on that.
+ SDLoc DL(Op);
+ SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
+ EVT WideTy = WideVec.getValueType();
+
+ EVT ExtrTy = WideTy.getVectorElementType();
+ if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
+ ExtrTy = MVT::i32;
+
+ // For extractions, we just return the result directly.
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
+ Op.getOperand(1));
+}
+
+SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getOperand(0).getValueType();
+ SDLoc dl(Op);
+ // Just in case...
+ if (!VT.isVector())
+ return SDValue();
+
+ ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!Cst)
+ return SDValue();
+ unsigned Val = Cst->getZExtValue();
+
+ unsigned Size = Op.getValueType().getSizeInBits();
+ if (Val == 0) {
+ switch (Size) {
+ case 8:
+ return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
+ Op.getOperand(0));
+ case 16:
+ return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
+ Op.getOperand(0));
+ case 32:
+ return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
+ Op.getOperand(0));
+ case 64:
+ return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
+ Op.getOperand(0));
+ default:
+ llvm_unreachable("Unexpected vector type in extract_subvector!");
+ }
+ }
+ // If this is extracting the upper 64-bits of a 128-bit vector, we match
+ // that directly.
+ if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
+ return Op;
+
+ return SDValue();
+}
+
+bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
+ EVT VT) const {
+ if (VT.getVectorNumElements() == 4 &&
+ (VT.is128BitVector() || VT.is64BitVector())) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (M[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = M[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
+ PFIndexes[2] * 9 + PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return true;
+ }
+
+ bool DummyBool;
+ int DummyInt;
+ unsigned DummyUnsigned;
+
+ return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
+ isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
+ isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
+ // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
+ isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
+ isZIPMask(M, VT, DummyUnsigned) ||
+ isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
+ isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
+ isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
+ isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
+ isConcatMask(M, VT, VT.getSizeInBits() == 128));
+}
+
+/// getVShiftImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift operation, where all the elements of the
+/// build_vector must have the same constant integer value.
+static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
+ // Ignore bit_converts.
+ while (Op.getOpcode() == ISD::BITCAST)
+ Op = Op.getOperand(0);
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
+ HasAnyUndefs, ElementBits) ||
+ SplatBitSize > ElementBits)
+ return false;
+ Cnt = SplatBits.getSExtValue();
+ return true;
+}
+
+/// isVShiftLImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift left operation. That value must be in the range:
+/// 0 <= Value < ElementBits for a left shift; or
+/// 0 <= Value <= ElementBits for a long left shift.
+static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (!getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
+}
+
+/// isVShiftRImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift right operation. For a shift opcode, the value
+/// is positive, but for an intrinsic the value count must be negative. The
+/// absolute value must be in the range:
+/// 1 <= |Value| <= ElementBits for a right shift; or
+/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
+static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
+ int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (!getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ if (isIntrinsic)
+ Cnt = -Cnt;
+ return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
+}
+
+SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ int64_t Cnt;
+
+ if (!Op.getOperand(1).getValueType().isVector())
+ return Op;
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("unexpected shift opcode");
+
+ case ISD::SHL:
+ if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
+ return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
+ DAG.getConstant(Cnt, MVT::i32));
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
+ Op.getOperand(0), Op.getOperand(1));
+ case ISD::SRA:
+ case ISD::SRL:
+ // Right shift immediate
+ if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
+ Cnt < EltSize) {
+ unsigned Opc =
+ (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
+ return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
+ DAG.getConstant(Cnt, MVT::i32));
+ }
+
+ // Right shift register. Note, there is not a shift right register
+ // instruction, but the shift left register instruction takes a signed
+ // value, where negative numbers specify a right shift.
+ unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
+ : Intrinsic::aarch64_neon_ushl;
+ // negate the shift amount
+ SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
+ SDValue NegShiftLeft =
+ DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
+ return NegShiftLeft;
+ }
+
+ return SDValue();
+}
+
+static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
+ AArch64CC::CondCode CC, bool NoNans, EVT VT,
+ SDLoc dl, SelectionDAG &DAG) {
+ EVT SrcVT = LHS.getValueType();
+
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
+ APInt CnstBits(VT.getSizeInBits(), 0);
+ APInt UndefBits(VT.getSizeInBits(), 0);
+ bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
+ bool IsZero = IsCnst && (CnstBits == 0);
+
+ if (SrcVT.getVectorElementType().isFloatingPoint()) {
+ switch (CC) {
+ default:
+ return SDValue();
+ case AArch64CC::NE: {
+ SDValue Fcmeq;
+ if (IsZero)
+ Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
+ else
+ Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
+ return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
+ }
+ case AArch64CC::EQ:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
+ case AArch64CC::GE:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
+ case AArch64CC::GT:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
+ case AArch64CC::LS:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
+ case AArch64CC::LT:
+ if (!NoNans)
+ return SDValue();
+ // If we ignore NaNs then we can use to the MI implementation.
+ // Fallthrough.
+ case AArch64CC::MI:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
+ }
+ }
+
+ switch (CC) {
+ default:
+ return SDValue();
+ case AArch64CC::NE: {
+ SDValue Cmeq;
+ if (IsZero)
+ Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
+ else
+ Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
+ return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
+ }
+ case AArch64CC::EQ:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
+ case AArch64CC::GE:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
+ case AArch64CC::GT:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
+ case AArch64CC::LE:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
+ case AArch64CC::LS:
+ return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
+ case AArch64CC::LO:
+ return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
+ case AArch64CC::LT:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
+ case AArch64CC::HI:
+ return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
+ case AArch64CC::HS:
+ return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
+ }
+}
+
+SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
+ SelectionDAG &DAG) const {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDLoc dl(Op);
+
+ if (LHS.getValueType().getVectorElementType().isInteger()) {
+ assert(LHS.getValueType() == RHS.getValueType());
+ AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
+ return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(),
+ dl, DAG);
+ }
+
+ assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
+ LHS.getValueType().getVectorElementType() == MVT::f64);
+
+ // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
+ // clean. Some of them require two branches to implement.
+ AArch64CC::CondCode CC1, CC2;
+ bool ShouldInvert;
+ changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
+
+ bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
+ SDValue Cmp =
+ EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
+ if (!Cmp.getNode())
+ return SDValue();
+
+ if (CC2 != AArch64CC::AL) {
+ SDValue Cmp2 =
+ EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
+ if (!Cmp2.getNode())
+ return SDValue();
+
+ Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2);
+ }
+
+ if (ShouldInvert)
+ return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
+
+ return Cmp;
+}
+
+/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
+/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
+/// specified in the intrinsic calls.
+bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ unsigned Intrinsic) const {
+ switch (Intrinsic) {
+ case Intrinsic::aarch64_neon_ld2:
+ case Intrinsic::aarch64_neon_ld3:
+ case Intrinsic::aarch64_neon_ld4:
+ case Intrinsic::aarch64_neon_ld1x2:
+ case Intrinsic::aarch64_neon_ld1x3:
+ case Intrinsic::aarch64_neon_ld1x4:
+ case Intrinsic::aarch64_neon_ld2lane:
+ case Intrinsic::aarch64_neon_ld3lane:
+ case Intrinsic::aarch64_neon_ld4lane:
+ case Intrinsic::aarch64_neon_ld2r:
+ case Intrinsic::aarch64_neon_ld3r:
+ case Intrinsic::aarch64_neon_ld4r: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ // Conservatively set memVT to the entire set of vectors loaded.
+ uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.offset = 0;
+ Info.align = 0;
+ Info.vol = false; // volatile loads with NEON intrinsics not supported
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::aarch64_neon_st2:
+ case Intrinsic::aarch64_neon_st3:
+ case Intrinsic::aarch64_neon_st4:
+ case Intrinsic::aarch64_neon_st1x2:
+ case Intrinsic::aarch64_neon_st1x3:
+ case Intrinsic::aarch64_neon_st1x4:
+ case Intrinsic::aarch64_neon_st2lane:
+ case Intrinsic::aarch64_neon_st3lane:
+ case Intrinsic::aarch64_neon_st4lane: {
+ Info.opc = ISD::INTRINSIC_VOID;
+ // Conservatively set memVT to the entire set of vectors stored.
+ unsigned NumElts = 0;
+ for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
+ Type *ArgTy = I.getArgOperand(ArgI)->getType();
+ if (!ArgTy->isVectorTy())
+ break;
+ NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
+ }
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.offset = 0;
+ Info.align = 0;
+ Info.vol = false; // volatile stores with NEON intrinsics not supported
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::aarch64_ldaxr:
+ case Intrinsic::aarch64_ldxr: {
+ PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(PtrTy->getElementType());
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
+ Info.vol = true;
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::aarch64_stlxr:
+ case Intrinsic::aarch64_stxr: {
+ PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(PtrTy->getElementType());
+ Info.ptrVal = I.getArgOperand(1);
+ Info.offset = 0;
+ Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
+ Info.vol = true;
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::aarch64_ldaxp:
+ case Intrinsic::aarch64_ldxp: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i128;
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.align = 16;
+ Info.vol = true;
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::aarch64_stlxp:
+ case Intrinsic::aarch64_stxp: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i128;
+ Info.ptrVal = I.getArgOperand(2);
+ Info.offset = 0;
+ Info.align = 16;
+ Info.vol = true;
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ default:
+ break;
+ }
+
+ return false;
+}
+
+// Truncations from 64-bit GPR to 32-bit GPR is free.
+bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+ unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
+ unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
+ return NumBits1 > NumBits2;
+}
+bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
+ if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
+ return false;
+ unsigned NumBits1 = VT1.getSizeInBits();
+ unsigned NumBits2 = VT2.getSizeInBits();
+ return NumBits1 > NumBits2;
+}
+
+// All 32-bit GPR operations implicitly zero the high-half of the corresponding
+// 64-bit GPR.
+bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+ unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
+ unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
+ return NumBits1 == 32 && NumBits2 == 64;
+}
+bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
+ if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
+ return false;
+ unsigned NumBits1 = VT1.getSizeInBits();
+ unsigned NumBits2 = VT2.getSizeInBits();
+ return NumBits1 == 32 && NumBits2 == 64;
+}
+
+bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ EVT VT1 = Val.getValueType();
+ if (isZExtFree(VT1, VT2)) {
+ return true;
+ }
+
+ if (Val.getOpcode() != ISD::LOAD)
+ return false;
+
+ // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
+ return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
+ VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
+ VT1.getSizeInBits() <= 32);
+}
+
+bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
+ unsigned &RequiredAligment) const {
+ if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
+ return false;
+ // Cyclone supports unaligned accesses.
+ RequiredAligment = 0;
+ unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
+ return NumBits == 32 || NumBits == 64;
+}
+
+bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
+ unsigned &RequiredAligment) const {
+ if (!LoadedType.isSimple() ||
+ (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
+ return false;
+ // Cyclone supports unaligned accesses.
+ RequiredAligment = 0;
+ unsigned NumBits = LoadedType.getSizeInBits();
+ return NumBits == 32 || NumBits == 64;
+}
+
+static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
+ unsigned AlignCheck) {
+ return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
+ (DstAlign == 0 || DstAlign % AlignCheck == 0));
+}
+
+EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
+ unsigned SrcAlign, bool IsMemset,
+ bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
+ // instruction to materialize the v2i64 zero and one store (with restrictive
+ // addressing mode). Just do two i64 store of zero-registers.
+ bool Fast;
+ const Function *F = MF.getFunction();
+ if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
+ !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NoImplicitFloat) &&
+ (memOpAlign(SrcAlign, DstAlign, 16) ||
+ (allowsUnalignedMemoryAccesses(MVT::f128, 0, &Fast) && Fast)))
+ return MVT::f128;
+
+ return Size >= 8 ? MVT::i64 : MVT::i32;
+}
+
+// 12-bit optionally shifted immediates are legal for adds.
+bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
+ if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
+ return true;
+ return false;
+}
+
+// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
+// immediates is the same as for an add or a sub.
+bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
+ if (Immed < 0)
+ Immed *= -1;
+ return isLegalAddImmediate(Immed);
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ // AArch64 has five basic addressing modes:
+ // reg
+ // reg + 9-bit signed offset
+ // reg + SIZE_IN_BYTES * 12-bit unsigned offset
+ // reg1 + reg2
+ // reg + SIZE_IN_BYTES * reg
+
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ // No reg+reg+imm addressing.
+ if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
+ return false;
+
+ // check reg + imm case:
+ // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
+ uint64_t NumBytes = 0;
+ if (Ty->isSized()) {
+ uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
+ NumBytes = NumBits / 8;
+ if (!isPowerOf2_64(NumBits))
+ NumBytes = 0;
+ }
+
+ if (!AM.Scale) {
+ int64_t Offset = AM.BaseOffs;
+
+ // 9-bit signed offset
+ if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
+ return true;
+
+ // 12-bit unsigned offset
+ unsigned shift = Log2_64(NumBytes);
+ if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
+ // Must be a multiple of NumBytes (NumBytes is a power of 2)
+ (Offset >> shift) << shift == Offset)
+ return true;
+ return false;
+ }
+
+ // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
+
+ if (!AM.Scale || AM.Scale == 1 ||
+ (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
+ return true;
+ return false;
+}
+
+int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
+ Type *Ty) const {
+ // Scaling factors are not free at all.
+ // Operands | Rt Latency
+ // -------------------------------------------
+ // Rt, [Xn, Xm] | 4
+ // -------------------------------------------
+ // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
+ // Rt, [Xn, Wm, <extend> #imm] |
+ if (isLegalAddressingMode(AM, Ty))
+ // Scale represents reg2 * scale, thus account for 1 if
+ // it is not equal to 0 or 1.
+ return AM.Scale != 0 && AM.Scale != 1;
+ return -1;
+}
+
+bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ case MVT::f64:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+const MCPhysReg *
+AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
+ // LR is a callee-save register, but we must treat it as clobbered by any call
+ // site. Hence we include LR in the scratch registers, which are in turn added
+ // as implicit-defs for stackmaps and patchpoints.
+ static const MCPhysReg ScratchRegs[] = {
+ AArch64::X16, AArch64::X17, AArch64::LR, 0
+ };
+ return ScratchRegs;
+}
+
+bool
+AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
+ EVT VT = N->getValueType(0);
+ // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
+ // it with shift to let it be lowered to UBFX.
+ if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
+ isa<ConstantSDNode>(N->getOperand(1))) {
+ uint64_t TruncMask = N->getConstantOperandVal(1);
+ if (isMask_64(TruncMask) &&
+ N->getOperand(0).getOpcode() == ISD::SRL &&
+ isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
+ return false;
+ }
+ return true;
+}
+
+bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return false;
+
+ int64_t Val = Imm.getSExtValue();
+ if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
+ return true;
+
+ if ((int64_t)Val < 0)
+ Val = ~Val;
+ if (BitSize == 32)
+ Val &= (1LL << 32) - 1;
+
+ unsigned LZ = countLeadingZeros((uint64_t)Val);
+ unsigned Shift = (63 - LZ) / 16;
+ // MOVZ is free so return true for one or fewer MOVK.
+ return (Shift < 3) ? true : false;
+}
+
+// Generate SUBS and CSEL for integer abs.
+static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDLoc DL(N);
+
+ // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
+ // and change it to SUB and CSEL.
+ if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
+ N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
+ N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
+ if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
+ if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
+ SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
+ N0.getOperand(0));
+ // Generate SUBS & CSEL.
+ SDValue Cmp =
+ DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
+ N0.getOperand(0), DAG.getConstant(0, VT));
+ return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
+ DAG.getConstant(AArch64CC::PL, MVT::i32),
+ SDValue(Cmp.getNode(), 1));
+ }
+ return SDValue();
+}
+
+// performXorCombine - Attempts to handle integer ABS.
+static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ return performIntegerAbsCombine(N, DAG);
+}
+
+static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ // Multiplication of a power of two plus/minus one can be done more
+ // cheaply as as shift+add/sub. For now, this is true unilaterally. If
+ // future CPUs have a cheaper MADD instruction, this may need to be
+ // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
+ // 64-bit is 5 cycles, so this is always a win.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
+ APInt Value = C->getAPIntValue();
+ EVT VT = N->getValueType(0);
+ if (Value.isNonNegative()) {
+ // (mul x, 2^N + 1) => (add (shl x, N), x)
+ APInt VM1 = Value - 1;
+ if (VM1.isPowerOf2()) {
+ SDValue ShiftedVal =
+ DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
+ DAG.getConstant(VM1.logBase2(), MVT::i64));
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
+ N->getOperand(0));
+ }
+ // (mul x, 2^N - 1) => (sub (shl x, N), x)
+ APInt VP1 = Value + 1;
+ if (VP1.isPowerOf2()) {
+ SDValue ShiftedVal =
+ DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
+ DAG.getConstant(VP1.logBase2(), MVT::i64));
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
+ N->getOperand(0));
+ }
+ } else {
+ // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
+ APInt VNM1 = -Value - 1;
+ if (VNM1.isPowerOf2()) {
+ SDValue ShiftedVal =
+ DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
+ DAG.getConstant(VNM1.logBase2(), MVT::i64));
+ SDValue Add =
+ DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
+ }
+ // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
+ APInt VNP1 = -Value + 1;
+ if (VNP1.isPowerOf2()) {
+ SDValue ShiftedVal =
+ DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
+ DAG.getConstant(VNP1.logBase2(), MVT::i64));
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
+ ShiftedVal);
+ }
+ }
+ }
+ return SDValue();
+}
+
+static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
+ SelectionDAG &DAG) {
+ // Take advantage of vector comparisons producing 0 or -1 in each lane to
+ // optimize away operation when it's from a constant.
+ //
+ // The general transformation is:
+ // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
+ // AND(VECTOR_CMP(x,y), constant2)
+ // constant2 = UNARYOP(constant)
+
+ // Early exit if this isn't a vector operation, the operand of the
+ // unary operation isn't a bitwise AND, or if the sizes of the operations
+ // aren't the same.
+ EVT VT = N->getValueType(0);
+ if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
+ N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
+ VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
+ return SDValue();
+
+ // Now check that the other operand of the AND is a constant splat. We could
+ // make the transformation for non-constant splats as well, but it's unclear
+ // that would be a benefit as it would not eliminate any operations, just
+ // perform one more step in scalar code before moving to the vector unit.
+ if (BuildVectorSDNode *BV =
+ dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
+ // Bail out if the vector isn't a constant splat.
+ if (!BV->getConstantSplatNode())
+ return SDValue();
+
+ // Everything checks out. Build up the new and improved node.
+ SDLoc DL(N);
+ EVT IntVT = BV->getValueType(0);
+ // Create a new constant of the appropriate type for the transformed
+ // DAG.
+ SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
+ // The AND node needs bitcasts to/from an integer vector type around it.
+ SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
+ SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
+ N->getOperand(0)->getOperand(0), MaskConst);
+ SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
+ return Res;
+ }
+
+ return SDValue();
+}
+
+static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
+ // First try to optimize away the conversion when it's conditionally from
+ // a constant. Vectors only.
+ SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
+ if (Res != SDValue())
+ return Res;
+
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return SDValue();
+
+ // Only optimize when the source and destination types have the same width.
+ if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
+ return SDValue();
+
+ // If the result of an integer load is only used by an integer-to-float
+ // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
+ // This eliminates an "integer-to-vector-move UOP and improve throughput.
+ SDValue N0 = N->getOperand(0);
+ if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
+ // Do not change the width of a volatile load.
+ !cast<LoadSDNode>(N0)->isVolatile()) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
+ LN0->getPointerInfo(), LN0->isVolatile(),
+ LN0->isNonTemporal(), LN0->isInvariant(),
+ LN0->getAlignment());
+
+ // Make sure successors of the original load stay after it by updating them
+ // to use the new Chain.
+ DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
+
+ unsigned Opcode =
+ (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
+ return DAG.getNode(Opcode, SDLoc(N), VT, Load);
+ }
+
+ return SDValue();
+}
+
+/// An EXTR instruction is made up of two shifts, ORed together. This helper
+/// searches for and classifies those shifts.
+static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
+ bool &FromHi) {
+ if (N.getOpcode() == ISD::SHL)
+ FromHi = false;
+ else if (N.getOpcode() == ISD::SRL)
+ FromHi = true;
+ else
+ return false;
+
+ if (!isa<ConstantSDNode>(N.getOperand(1)))
+ return false;
+
+ ShiftAmount = N->getConstantOperandVal(1);
+ Src = N->getOperand(0);
+ return true;
+}
+
+/// EXTR instruction extracts a contiguous chunk of bits from two existing
+/// registers viewed as a high/low pair. This function looks for the pattern:
+/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
+/// EXTR. Can't quite be done in TableGen because the two immediates aren't
+/// independent.
+static SDValue tryCombineToEXTR(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+
+ assert(N->getOpcode() == ISD::OR && "Unexpected root");
+
+ if (VT != MVT::i32 && VT != MVT::i64)
+ return SDValue();
+
+ SDValue LHS;
+ uint32_t ShiftLHS = 0;
+ bool LHSFromHi = 0;
+ if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
+ return SDValue();
+
+ SDValue RHS;
+ uint32_t ShiftRHS = 0;
+ bool RHSFromHi = 0;
+ if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
+ return SDValue();
+
+ // If they're both trying to come from the high part of the register, they're
+ // not really an EXTR.
+ if (LHSFromHi == RHSFromHi)
+ return SDValue();
+
+ if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
+ return SDValue();
+
+ if (LHSFromHi) {
+ std::swap(LHS, RHS);
+ std::swap(ShiftLHS, ShiftRHS);
+ }
+
+ return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
+ DAG.getConstant(ShiftRHS, MVT::i64));
+}
+
+static SDValue tryCombineToBSL(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ if (!VT.isVector())
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ if (N0.getOpcode() != ISD::AND)
+ return SDValue();
+
+ SDValue N1 = N->getOperand(1);
+ if (N1.getOpcode() != ISD::AND)
+ return SDValue();
+
+ // We only have to look for constant vectors here since the general, variable
+ // case can be handled in TableGen.
+ unsigned Bits = VT.getVectorElementType().getSizeInBits();
+ uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
+ for (int i = 1; i >= 0; --i)
+ for (int j = 1; j >= 0; --j) {
+ BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
+ BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
+ if (!BVN0 || !BVN1)
+ continue;
+
+ bool FoundMatch = true;
+ for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
+ ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
+ ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
+ if (!CN0 || !CN1 ||
+ CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
+ FoundMatch = false;
+ break;
+ }
+ }
+
+ if (FoundMatch)
+ return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
+ N0->getOperand(1 - i), N1->getOperand(1 - j));
+ }
+
+ return SDValue();
+}
+
+static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *Subtarget) {
+ // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
+ if (!EnableAArch64ExtrGeneration)
+ return SDValue();
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ SDValue Res = tryCombineToEXTR(N, DCI);
+ if (Res.getNode())
+ return Res;
+
+ Res = tryCombineToBSL(N, DCI);
+ if (Res.getNode())
+ return Res;
+
+ return SDValue();
+}
+
+static SDValue performBitcastCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ // Wait 'til after everything is legalized to try this. That way we have
+ // legal vector types and such.
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ // Remove extraneous bitcasts around an extract_subvector.
+ // For example,
+ // (v4i16 (bitconvert
+ // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
+ // becomes
+ // (extract_subvector ((v8i16 ...), (i64 4)))
+
+ // Only interested in 64-bit vectors as the ultimate result.
+ EVT VT = N->getValueType(0);
+ if (!VT.isVector())
+ return SDValue();
+ if (VT.getSimpleVT().getSizeInBits() != 64)
+ return SDValue();
+ // Is the operand an extract_subvector starting at the beginning or halfway
+ // point of the vector? A low half may also come through as an
+ // EXTRACT_SUBREG, so look for that, too.
+ SDValue Op0 = N->getOperand(0);
+ if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
+ !(Op0->isMachineOpcode() &&
+ Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
+ return SDValue();
+ uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
+ if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
+ if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
+ return SDValue();
+ } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
+ if (idx != AArch64::dsub)
+ return SDValue();
+ // The dsub reference is equivalent to a lane zero subvector reference.
+ idx = 0;
+ }
+ // Look through the bitcast of the input to the extract.
+ if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
+ return SDValue();
+ SDValue Source = Op0->getOperand(0)->getOperand(0);
+ // If the source type has twice the number of elements as our destination
+ // type, we know this is an extract of the high or low half of the vector.
+ EVT SVT = Source->getValueType(0);
+ if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
+ return SDValue();
+
+ DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
+
+ // Create the simplified form to just extract the low or high half of the
+ // vector directly rather than bothering with the bitcasts.
+ SDLoc dl(N);
+ unsigned NumElements = VT.getVectorNumElements();
+ if (idx) {
+ SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
+ } else {
+ SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
+ return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
+ Source, SubReg),
+ 0);
+ }
+}
+
+static SDValue performConcatVectorsCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ // Wait 'til after everything is legalized to try this. That way we have
+ // legal vector types and such.
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
+ // splat. The indexed instructions are going to be expecting a DUPLANE64, so
+ // canonicalise to that.
+ if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
+ assert(VT.getVectorElementType().getSizeInBits() == 64);
+ return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
+ WidenVector(N->getOperand(0), DAG),
+ DAG.getConstant(0, MVT::i64));
+ }
+
+ // Canonicalise concat_vectors so that the right-hand vector has as few
+ // bit-casts as possible before its real operation. The primary matching
+ // destination for these operations will be the narrowing "2" instructions,
+ // which depend on the operation being performed on this right-hand vector.
+ // For example,
+ // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
+ // becomes
+ // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
+
+ SDValue Op1 = N->getOperand(1);
+ if (Op1->getOpcode() != ISD::BITCAST)
+ return SDValue();
+ SDValue RHS = Op1->getOperand(0);
+ MVT RHSTy = RHS.getValueType().getSimpleVT();
+ // If the RHS is not a vector, this is not the pattern we're looking for.
+ if (!RHSTy.isVector())
+ return SDValue();
+
+ DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
+
+ MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
+ RHSTy.getVectorNumElements() * 2);
+ return DAG.getNode(
+ ISD::BITCAST, dl, VT,
+ DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
+ DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
+}
+
+static SDValue tryCombineFixedPointConvert(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ // Wait 'til after everything is legalized to try this. That way we have
+ // legal vector types and such.
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+ // Transform a scalar conversion of a value from a lane extract into a
+ // lane extract of a vector conversion. E.g., from foo1 to foo2:
+ // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
+ // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
+ //
+ // The second form interacts better with instruction selection and the
+ // register allocator to avoid cross-class register copies that aren't
+ // coalescable due to a lane reference.
+
+ // Check the operand and see if it originates from a lane extract.
+ SDValue Op1 = N->getOperand(1);
+ if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ // Yep, no additional predication needed. Perform the transform.
+ SDValue IID = N->getOperand(0);
+ SDValue Shift = N->getOperand(2);
+ SDValue Vec = Op1.getOperand(0);
+ SDValue Lane = Op1.getOperand(1);
+ EVT ResTy = N->getValueType(0);
+ EVT VecResTy;
+ SDLoc DL(N);
+
+ // The vector width should be 128 bits by the time we get here, even
+ // if it started as 64 bits (the extract_vector handling will have
+ // done so).
+ assert(Vec.getValueType().getSizeInBits() == 128 &&
+ "unexpected vector size on extract_vector_elt!");
+ if (Vec.getValueType() == MVT::v4i32)
+ VecResTy = MVT::v4f32;
+ else if (Vec.getValueType() == MVT::v2i64)
+ VecResTy = MVT::v2f64;
+ else
+ llvm_unreachable("unexpected vector type!");
+
+ SDValue Convert =
+ DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
+ }
+ return SDValue();
+}
+
+// AArch64 high-vector "long" operations are formed by performing the non-high
+// version on an extract_subvector of each operand which gets the high half:
+//
+// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
+//
+// However, there are cases which don't have an extract_high explicitly, but
+// have another operation that can be made compatible with one for free. For
+// example:
+//
+// (dupv64 scalar) --> (extract_high (dup128 scalar))
+//
+// This routine does the actual conversion of such DUPs, once outer routines
+// have determined that everything else is in order.
+static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
+ // We can handle most types of duplicate, but the lane ones have an extra
+ // operand saying *which* lane, so we need to know.
+ bool IsDUPLANE;
+ switch (N.getOpcode()) {
+ case AArch64ISD::DUP:
+ IsDUPLANE = false;
+ break;
+ case AArch64ISD::DUPLANE8:
+ case AArch64ISD::DUPLANE16:
+ case AArch64ISD::DUPLANE32:
+ case AArch64ISD::DUPLANE64:
+ IsDUPLANE = true;
+ break;
+ default:
+ return SDValue();
+ }
+
+ MVT NarrowTy = N.getSimpleValueType();
+ if (!NarrowTy.is64BitVector())
+ return SDValue();
+
+ MVT ElementTy = NarrowTy.getVectorElementType();
+ unsigned NumElems = NarrowTy.getVectorNumElements();
+ MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
+
+ SDValue NewDUP;
+ if (IsDUPLANE)
+ NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
+ N.getOperand(1));
+ else
+ NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
+
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
+ NewDUP, DAG.getConstant(NumElems, MVT::i64));
+}
+
+static bool isEssentiallyExtractSubvector(SDValue N) {
+ if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
+ return true;
+
+ return N.getOpcode() == ISD::BITCAST &&
+ N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
+}
+
+/// \brief Helper structure to keep track of ISD::SET_CC operands.
+struct GenericSetCCInfo {
+ const SDValue *Opnd0;
+ const SDValue *Opnd1;
+ ISD::CondCode CC;
+};
+
+/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
+struct AArch64SetCCInfo {
+ const SDValue *Cmp;
+ AArch64CC::CondCode CC;
+};
+
+/// \brief Helper structure to keep track of SetCC information.
+union SetCCInfo {
+ GenericSetCCInfo Generic;
+ AArch64SetCCInfo AArch64;
+};
+
+/// \brief Helper structure to be able to read SetCC information. If set to
+/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
+/// GenericSetCCInfo.
+struct SetCCInfoAndKind {
+ SetCCInfo Info;
+ bool IsAArch64;
+};
+
+/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
+/// an
+/// AArch64 lowered one.
+/// \p SetCCInfo is filled accordingly.
+/// \post SetCCInfo is meanginfull only when this function returns true.
+/// \return True when Op is a kind of SET_CC operation.
+static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
+ // If this is a setcc, this is straight forward.
+ if (Op.getOpcode() == ISD::SETCC) {
+ SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
+ SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
+ SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SetCCInfo.IsAArch64 = false;
+ return true;
+ }
+ // Otherwise, check if this is a matching csel instruction.
+ // In other words:
+ // - csel 1, 0, cc
+ // - csel 0, 1, !cc
+ if (Op.getOpcode() != AArch64ISD::CSEL)
+ return false;
+ // Set the information about the operands.
+ // TODO: we want the operands of the Cmp not the csel
+ SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
+ SetCCInfo.IsAArch64 = true;
+ SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
+ cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
+
+ // Check that the operands matches the constraints:
+ // (1) Both operands must be constants.
+ // (2) One must be 1 and the other must be 0.
+ ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
+ ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+
+ // Check (1).
+ if (!TValue || !FValue)
+ return false;
+
+ // Check (2).
+ if (!TValue->isOne()) {
+ // Update the comparison when we are interested in !cc.
+ std::swap(TValue, FValue);
+ SetCCInfo.Info.AArch64.CC =
+ AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
+ }
+ return TValue->isOne() && FValue->isNullValue();
+}
+
+// Returns true if Op is setcc or zext of setcc.
+static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
+ if (isSetCC(Op, Info))
+ return true;
+ return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
+ isSetCC(Op->getOperand(0), Info));
+}
+
+// The folding we want to perform is:
+// (add x, [zext] (setcc cc ...) )
+// -->
+// (csel x, (add x, 1), !cc ...)
+//
+// The latter will get matched to a CSINC instruction.
+static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
+ assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
+ SDValue LHS = Op->getOperand(0);
+ SDValue RHS = Op->getOperand(1);
+ SetCCInfoAndKind InfoAndKind;
+
+ // If neither operand is a SET_CC, give up.
+ if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
+ std::swap(LHS, RHS);
+ if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
+ return SDValue();
+ }
+
+ // FIXME: This could be generatized to work for FP comparisons.
+ EVT CmpVT = InfoAndKind.IsAArch64
+ ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
+ : InfoAndKind.Info.Generic.Opnd0->getValueType();
+ if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
+ return SDValue();
+
+ SDValue CCVal;
+ SDValue Cmp;
+ SDLoc dl(Op);
+ if (InfoAndKind.IsAArch64) {
+ CCVal = DAG.getConstant(
+ AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
+ Cmp = *InfoAndKind.Info.AArch64.Cmp;
+ } else
+ Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
+ *InfoAndKind.Info.Generic.Opnd1,
+ ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
+ CCVal, DAG, dl);
+
+ EVT VT = Op->getValueType(0);
+ LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
+ return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
+}
+
+// The basic add/sub long vector instructions have variants with "2" on the end
+// which act on the high-half of their inputs. They are normally matched by
+// patterns like:
+//
+// (add (zeroext (extract_high LHS)),
+// (zeroext (extract_high RHS)))
+// -> uaddl2 vD, vN, vM
+//
+// However, if one of the extracts is something like a duplicate, this
+// instruction can still be used profitably. This function puts the DAG into a
+// more appropriate form for those patterns to trigger.
+static SDValue performAddSubLongCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ MVT VT = N->getSimpleValueType(0);
+ if (!VT.is128BitVector()) {
+ if (N->getOpcode() == ISD::ADD)
+ return performSetccAddFolding(N, DAG);
+ return SDValue();
+ }
+
+ // Make sure both branches are extended in the same way.
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
+ LHS.getOpcode() != ISD::SIGN_EXTEND) ||
+ LHS.getOpcode() != RHS.getOpcode())
+ return SDValue();
+
+ unsigned ExtType = LHS.getOpcode();
+
+ // It's not worth doing if at least one of the inputs isn't already an
+ // extract, but we don't know which it'll be so we have to try both.
+ if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
+ RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
+ if (!RHS.getNode())
+ return SDValue();
+
+ RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
+ } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
+ LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
+ if (!LHS.getNode())
+ return SDValue();
+
+ LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
+ }
+
+ return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
+}
+
+// Massage DAGs which we can use the high-half "long" operations on into
+// something isel will recognize better. E.g.
+//
+// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
+// (aarch64_neon_umull (extract_high (v2i64 vec)))
+// (extract_high (v2i64 (dup128 scalar)))))
+//
+static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+ assert(LHS.getValueType().is64BitVector() &&
+ RHS.getValueType().is64BitVector() &&
+ "unexpected shape for long operation");
+
+ // Either node could be a DUP, but it's not worth doing both of them (you'd
+ // just as well use the non-high version) so look for a corresponding extract
+ // operation on the other "wing".
+ if (isEssentiallyExtractSubvector(LHS)) {
+ RHS = tryExtendDUPToExtractHigh(RHS, DAG);
+ if (!RHS.getNode())
+ return SDValue();
+ } else if (isEssentiallyExtractSubvector(RHS)) {
+ LHS = tryExtendDUPToExtractHigh(LHS, DAG);
+ if (!LHS.getNode())
+ return SDValue();
+ }
+
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
+ N->getOperand(0), LHS, RHS);
+}
+
+static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
+ MVT ElemTy = N->getSimpleValueType(0).getScalarType();
+ unsigned ElemBits = ElemTy.getSizeInBits();
+
+ int64_t ShiftAmount;
+ if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
+ APInt SplatValue, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
+ HasAnyUndefs, ElemBits) ||
+ SplatBitSize != ElemBits)
+ return SDValue();
+
+ ShiftAmount = SplatValue.getSExtValue();
+ } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
+ ShiftAmount = CVN->getSExtValue();
+ } else
+ return SDValue();
+
+ unsigned Opcode;
+ bool IsRightShift;
+ switch (IID) {
+ default:
+ llvm_unreachable("Unknown shift intrinsic");
+ case Intrinsic::aarch64_neon_sqshl:
+ Opcode = AArch64ISD::SQSHL_I;
+ IsRightShift = false;
+ break;
+ case Intrinsic::aarch64_neon_uqshl:
+ Opcode = AArch64ISD::UQSHL_I;
+ IsRightShift = false;
+ break;
+ case Intrinsic::aarch64_neon_srshl:
+ Opcode = AArch64ISD::SRSHR_I;
+ IsRightShift = true;
+ break;
+ case Intrinsic::aarch64_neon_urshl:
+ Opcode = AArch64ISD::URSHR_I;
+ IsRightShift = true;
+ break;
+ case Intrinsic::aarch64_neon_sqshlu:
+ Opcode = AArch64ISD::SQSHLU_I;
+ IsRightShift = false;
+ break;
+ }
+
+ if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
+ return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
+ DAG.getConstant(-ShiftAmount, MVT::i32));
+ else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
+ return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
+ DAG.getConstant(ShiftAmount, MVT::i32));
+
+ return SDValue();
+}
+
+// The CRC32[BH] instructions ignore the high bits of their data operand. Since
+// the intrinsics must be legal and take an i32, this means there's almost
+// certainly going to be a zext in the DAG which we can eliminate.
+static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
+ SDValue AndN = N->getOperand(2);
+ if (AndN.getOpcode() != ISD::AND)
+ return SDValue();
+
+ ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
+ if (!CMask || CMask->getZExtValue() != Mask)
+ return SDValue();
+
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
+ N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
+}
+
+static SDValue performIntrinsicCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+ unsigned IID = getIntrinsicID(N);
+ switch (IID) {
+ default:
+ break;
+ case Intrinsic::aarch64_neon_vcvtfxs2fp:
+ case Intrinsic::aarch64_neon_vcvtfxu2fp:
+ return tryCombineFixedPointConvert(N, DCI, DAG);
+ break;
+ case Intrinsic::aarch64_neon_fmax:
+ return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
+ N->getOperand(1), N->getOperand(2));
+ case Intrinsic::aarch64_neon_fmin:
+ return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
+ N->getOperand(1), N->getOperand(2));
+ case Intrinsic::aarch64_neon_smull:
+ case Intrinsic::aarch64_neon_umull:
+ case Intrinsic::aarch64_neon_pmull:
+ case Intrinsic::aarch64_neon_sqdmull:
+ return tryCombineLongOpWithDup(IID, N, DCI, DAG);
+ case Intrinsic::aarch64_neon_sqshl:
+ case Intrinsic::aarch64_neon_uqshl:
+ case Intrinsic::aarch64_neon_sqshlu:
+ case Intrinsic::aarch64_neon_srshl:
+ case Intrinsic::aarch64_neon_urshl:
+ return tryCombineShiftImm(IID, N, DAG);
+ case Intrinsic::aarch64_crc32b:
+ case Intrinsic::aarch64_crc32cb:
+ return tryCombineCRC32(0xff, N, DAG);
+ case Intrinsic::aarch64_crc32h:
+ case Intrinsic::aarch64_crc32ch:
+ return tryCombineCRC32(0xffff, N, DAG);
+ }
+ return SDValue();
+}
+
+static SDValue performExtendCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
+ // we can convert that DUP into another extract_high (of a bigger DUP), which
+ // helps the backend to decide that an sabdl2 would be useful, saving a real
+ // extract_high operation.
+ if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
+ N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
+ SDNode *ABDNode = N->getOperand(0).getNode();
+ unsigned IID = getIntrinsicID(ABDNode);
+ if (IID == Intrinsic::aarch64_neon_sabd ||
+ IID == Intrinsic::aarch64_neon_uabd) {
+ SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
+ if (!NewABD.getNode())
+ return SDValue();
+
+ return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
+ NewABD);
+ }
+ }
+
+ // This is effectively a custom type legalization for AArch64.
+ //
+ // Type legalization will split an extend of a small, legal, type to a larger
+ // illegal type by first splitting the destination type, often creating
+ // illegal source types, which then get legalized in isel-confusing ways,
+ // leading to really terrible codegen. E.g.,
+ // %result = v8i32 sext v8i8 %value
+ // becomes
+ // %losrc = extract_subreg %value, ...
+ // %hisrc = extract_subreg %value, ...
+ // %lo = v4i32 sext v4i8 %losrc
+ // %hi = v4i32 sext v4i8 %hisrc
+ // Things go rapidly downhill from there.
+ //
+ // For AArch64, the [sz]ext vector instructions can only go up one element
+ // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
+ // take two instructions.
+ //
+ // This implies that the most efficient way to do the extend from v8i8
+ // to two v4i32 values is to first extend the v8i8 to v8i16, then do
+ // the normal splitting to happen for the v8i16->v8i32.
+
+ // This is pre-legalization to catch some cases where the default
+ // type legalization will create ill-tempered code.
+ if (!DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ // We're only interested in cleaning things up for non-legal vector types
+ // here. If both the source and destination are legal, things will just
+ // work naturally without any fiddling.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT ResVT = N->getValueType(0);
+ if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
+ return SDValue();
+ // If the vector type isn't a simple VT, it's beyond the scope of what
+ // we're worried about here. Let legalization do its thing and hope for
+ // the best.
+ if (!ResVT.isSimple())
+ return SDValue();
+
+ SDValue Src = N->getOperand(0);
+ MVT SrcVT = Src->getValueType(0).getSimpleVT();
+ // If the source VT is a 64-bit vector, we can play games and get the
+ // better results we want.
+ if (SrcVT.getSizeInBits() != 64)
+ return SDValue();
+
+ unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
+ unsigned ElementCount = SrcVT.getVectorNumElements();
+ SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
+ SDLoc DL(N);
+ Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
+
+ // Now split the rest of the operation into two halves, each with a 64
+ // bit source.
+ EVT LoVT, HiVT;
+ SDValue Lo, Hi;
+ unsigned NumElements = ResVT.getVectorNumElements();
+ assert(!(NumElements & 1) && "Splitting vector, but not in half!");
+ LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
+ ResVT.getVectorElementType(), NumElements / 2);
+
+ EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
+ LoVT.getVectorNumElements());
+ Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
+ DAG.getIntPtrConstant(0));
+ Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
+ DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
+ Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
+ Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
+
+ // Now combine the parts back together so we still have a single result
+ // like the combiner expects.
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
+}
+
+/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
+/// value. The load store optimizer pass will merge them to store pair stores.
+/// This has better performance than a splat of the scalar followed by a split
+/// vector store. Even if the stores are not merged it is four stores vs a dup,
+/// followed by an ext.b and two stores.
+static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
+ SDValue StVal = St->getValue();
+ EVT VT = StVal.getValueType();
+
+ // Don't replace floating point stores, they possibly won't be transformed to
+ // stp because of the store pair suppress pass.
+ if (VT.isFloatingPoint())
+ return SDValue();
+
+ // Check for insert vector elements.
+ if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
+ return SDValue();
+
+ // We can express a splat as store pair(s) for 2 or 4 elements.
+ unsigned NumVecElts = VT.getVectorNumElements();
+ if (NumVecElts != 4 && NumVecElts != 2)
+ return SDValue();
+ SDValue SplatVal = StVal.getOperand(1);
+ unsigned RemainInsertElts = NumVecElts - 1;
+
+ // Check that this is a splat.
+ while (--RemainInsertElts) {
+ SDValue NextInsertElt = StVal.getOperand(0);
+ if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
+ return SDValue();
+ if (NextInsertElt.getOperand(1) != SplatVal)
+ return SDValue();
+ StVal = NextInsertElt;
+ }
+ unsigned OrigAlignment = St->getAlignment();
+ unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
+ unsigned Alignment = std::min(OrigAlignment, EltOffset);
+
+ // Create scalar stores. This is at least as good as the code sequence for a
+ // split unaligned store wich is a dup.s, ext.b, and two stores.
+ // Most of the time the three stores should be replaced by store pair
+ // instructions (stp).
+ SDLoc DL(St);
+ SDValue BasePtr = St->getBasePtr();
+ SDValue NewST1 =
+ DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
+ St->isVolatile(), St->isNonTemporal(), St->getAlignment());
+
+ unsigned Offset = EltOffset;
+ while (--NumVecElts) {
+ SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
+ DAG.getConstant(Offset, MVT::i64));
+ NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), Alignment);
+ Offset += EltOffset;
+ }
+ return NewST1;
+}
+
+static SDValue performSTORECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG,
+ const AArch64Subtarget *Subtarget) {
+ if (!DCI.isBeforeLegalize())
+ return SDValue();
+
+ StoreSDNode *S = cast<StoreSDNode>(N);
+ if (S->isVolatile())
+ return SDValue();
+
+ // Cyclone has bad performance on unaligned 16B stores when crossing line and
+ // page boundries. We want to split such stores.
+ if (!Subtarget->isCyclone())
+ return SDValue();
+
+ // Don't split at Oz.
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::MinSize);
+ if (IsMinSize)
+ return SDValue();
+
+ SDValue StVal = S->getValue();
+ EVT VT = StVal.getValueType();
+
+ // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
+ // those up regresses performance on micro-benchmarks and olden/bh.
+ if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
+ return SDValue();
+
+ // Split unaligned 16B stores. They are terrible for performance.
+ // Don't split stores with alignment of 1 or 2. Code that uses clang vector
+ // extensions can use this to mark that it does not want splitting to happen
+ // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
+ // eliminating alignment hazards is only 1 in 8 for alignment of 2.
+ if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
+ S->getAlignment() <= 2)
+ return SDValue();
+
+ // If we get a splat of a scalar convert this vector store to a store of
+ // scalars. They will be merged into store pairs thereby removing two
+ // instructions.
+ SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
+ if (ReplacedSplat != SDValue())
+ return ReplacedSplat;
+
+ SDLoc DL(S);
+ unsigned NumElts = VT.getVectorNumElements() / 2;
+ // Split VT into two.
+ EVT HalfVT =
+ EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
+ SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
+ DAG.getIntPtrConstant(0));
+ SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
+ DAG.getIntPtrConstant(NumElts));
+ SDValue BasePtr = S->getBasePtr();
+ SDValue NewST1 =
+ DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
+ S->isVolatile(), S->isNonTemporal(), S->getAlignment());
+ SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
+ DAG.getConstant(8, MVT::i64));
+ return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
+ S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
+ S->getAlignment());
+}
+
+/// Target-specific DAG combine function for post-increment LD1 (lane) and
+/// post-increment LD1R.
+static SDValue performPostLD1Combine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ bool IsLaneOp) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+
+ unsigned LoadIdx = IsLaneOp ? 1 : 0;
+ SDNode *LD = N->getOperand(LoadIdx).getNode();
+ // If it is not LOAD, can not do such combine.
+ if (LD->getOpcode() != ISD::LOAD)
+ return SDValue();
+
+ LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
+ EVT MemVT = LoadSDN->getMemoryVT();
+ // Check if memory operand is the same type as the vector element.
+ if (MemVT != VT.getVectorElementType())
+ return SDValue();
+
+ // Check if there are other uses. If so, do not combine as it will introduce
+ // an extra load.
+ for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
+ ++UI) {
+ if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
+ continue;
+ if (*UI != N)
+ return SDValue();
+ }
+
+ SDValue Addr = LD->getOperand(1);
+ SDValue Vector = N->getOperand(0);
+ // Search for a use of the address operand that is an increment.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
+ Addr.getNode()->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User->getOpcode() != ISD::ADD
+ || UI.getUse().getResNo() != Addr.getResNo())
+ continue;
+
+ // Check that the add is independent of the load. Otherwise, folding it
+ // would create a cycle.
+ if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
+ continue;
+ // Also check that add is not used in the vector operand. This would also
+ // create a cycle.
+ if (User->isPredecessorOf(Vector.getNode()))
+ continue;
+
+ // If the increment is a constant, it must match the memory ref size.
+ SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
+ if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
+ uint32_t IncVal = CInc->getZExtValue();
+ unsigned NumBytes = VT.getScalarSizeInBits() / 8;
+ if (IncVal != NumBytes)
+ continue;
+ Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
+ }
+
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(LD->getOperand(0)); // Chain
+ if (IsLaneOp) {
+ Ops.push_back(Vector); // The vector to be inserted
+ Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
+ }
+ Ops.push_back(Addr);
+ Ops.push_back(Inc);
+
+ EVT Tys[3] = { VT, MVT::i64, MVT::Other };
+ SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, 3));
+ unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
+ SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
+ MemVT,
+ LoadSDN->getMemOperand());
+
+ // Update the uses.
+ std::vector<SDValue> NewResults;
+ NewResults.push_back(SDValue(LD, 0)); // The result of load
+ NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
+ DCI.CombineTo(LD, NewResults);
+ DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
+ DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
+
+ break;
+ }
+ return SDValue();
+}
+
+/// Target-specific DAG combine function for NEON load/store intrinsics
+/// to merge base address updates.
+static SDValue performNEONPostLDSTCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ unsigned AddrOpIdx = N->getNumOperands() - 1;
+ SDValue Addr = N->getOperand(AddrOpIdx);
+
+ // Search for a use of the address operand that is an increment.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User->getOpcode() != ISD::ADD ||
+ UI.getUse().getResNo() != Addr.getResNo())
+ continue;
+
+ // Check that the add is independent of the load/store. Otherwise, folding
+ // it would create a cycle.
+ if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
+ continue;
+
+ // Find the new opcode for the updating load/store.
+ bool IsStore = false;
+ bool IsLaneOp = false;
+ bool IsDupOp = false;
+ unsigned NewOpc = 0;
+ unsigned NumVecs = 0;
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default: llvm_unreachable("unexpected intrinsic for Neon base update");
+ case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
+ NumVecs = 2; break;
+ case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
+ NumVecs = 3; break;
+ case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
+ NumVecs = 4; break;
+ case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
+ NumVecs = 2; IsStore = true; break;
+ case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
+ NumVecs = 3; IsStore = true; break;
+ case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
+ NumVecs = 4; IsStore = true; break;
+ case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
+ NumVecs = 2; break;
+ case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
+ NumVecs = 3; break;
+ case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
+ NumVecs = 4; break;
+ case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
+ NumVecs = 2; IsStore = true; break;
+ case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
+ NumVecs = 3; IsStore = true; break;
+ case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
+ NumVecs = 4; IsStore = true; break;
+ case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
+ NumVecs = 2; IsDupOp = true; break;
+ case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
+ NumVecs = 3; IsDupOp = true; break;
+ case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
+ NumVecs = 4; IsDupOp = true; break;
+ case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
+ NumVecs = 2; IsLaneOp = true; break;
+ case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
+ NumVecs = 3; IsLaneOp = true; break;
+ case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
+ NumVecs = 4; IsLaneOp = true; break;
+ case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
+ NumVecs = 2; IsStore = true; IsLaneOp = true; break;
+ case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
+ NumVecs = 3; IsStore = true; IsLaneOp = true; break;
+ case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
+ NumVecs = 4; IsStore = true; IsLaneOp = true; break;
+ }
+
+ EVT VecTy;
+ if (IsStore)
+ VecTy = N->getOperand(2).getValueType();
+ else
+ VecTy = N->getValueType(0);
+
+ // If the increment is a constant, it must match the memory ref size.
+ SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
+ if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
+ uint32_t IncVal = CInc->getZExtValue();
+ unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
+ if (IsLaneOp || IsDupOp)
+ NumBytes /= VecTy.getVectorNumElements();
+ if (IncVal != NumBytes)
+ continue;
+ Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
+ }
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(N->getOperand(0)); // Incoming chain
+ // Load lane and store have vector list as input.
+ if (IsLaneOp || IsStore)
+ for (unsigned i = 2; i < AddrOpIdx; ++i)
+ Ops.push_back(N->getOperand(i));
+ Ops.push_back(Addr); // Base register
+ Ops.push_back(Inc);
+
+ // Return Types.
+ EVT Tys[6];
+ unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
+ unsigned n;
+ for (n = 0; n < NumResultVecs; ++n)
+ Tys[n] = VecTy;
+ Tys[n++] = MVT::i64; // Type of write back register
+ Tys[n] = MVT::Other; // Type of the chain
+ SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2));
+
+ MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
+ SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
+ MemInt->getMemoryVT(),
+ MemInt->getMemOperand());
+
+ // Update the uses.
+ std::vector<SDValue> NewResults;
+ for (unsigned i = 0; i < NumResultVecs; ++i) {
+ NewResults.push_back(SDValue(UpdN.getNode(), i));
+ }
+ NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
+ DCI.CombineTo(N, NewResults);
+ DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
+
+ break;
+ }
+ return SDValue();
+}
+
+// Optimize compare with zero and branch.
+static SDValue performBRCONDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ SDValue Chain = N->getOperand(0);
+ SDValue Dest = N->getOperand(1);
+ SDValue CCVal = N->getOperand(2);
+ SDValue Cmp = N->getOperand(3);
+
+ assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
+ unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
+ if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
+ return SDValue();
+
+ unsigned CmpOpc = Cmp.getOpcode();
+ if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
+ return SDValue();
+
+ // Only attempt folding if there is only one use of the flag and no use of the
+ // value.
+ if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
+ return SDValue();
+
+ SDValue LHS = Cmp.getOperand(0);
+ SDValue RHS = Cmp.getOperand(1);
+
+ assert(LHS.getValueType() == RHS.getValueType() &&
+ "Expected the value type to be the same for both operands!");
+ if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
+ return SDValue();
+
+ if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
+ std::swap(LHS, RHS);
+
+ if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
+ return SDValue();
+
+ if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
+ LHS.getOpcode() == ISD::SRL)
+ return SDValue();
+
+ // Fold the compare into the branch instruction.
+ SDValue BR;
+ if (CC == AArch64CC::EQ)
+ BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
+ else
+ BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, BR, false);
+
+ return SDValue();
+}
+
+// vselect (v1i1 setcc) ->
+// vselect (v1iXX setcc) (XX is the size of the compared operand type)
+// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
+// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
+// such VSELECT.
+static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ EVT CCVT = N0.getValueType();
+
+ if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
+ CCVT.getVectorElementType() != MVT::i1)
+ return SDValue();
+
+ EVT ResVT = N->getValueType(0);
+ EVT CmpVT = N0.getOperand(0).getValueType();
+ // Only combine when the result type is of the same size as the compared
+ // operands.
+ if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
+ return SDValue();
+
+ SDValue IfTrue = N->getOperand(1);
+ SDValue IfFalse = N->getOperand(2);
+ SDValue SetCC =
+ DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
+ N0.getOperand(0), N0.getOperand(1),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get());
+ return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
+ IfTrue, IfFalse);
+}
+
+/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
+/// the compare-mask instructions rather than going via NZCV, even if LHS and
+/// RHS are really scalar. This replaces any scalar setcc in the above pattern
+/// with a vector one followed by a DUP shuffle on the result.
+static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ EVT ResVT = N->getValueType(0);
+
+ if (!N->getOperand(1).getValueType().isVector())
+ return SDValue();
+
+ if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
+ return SDValue();
+
+ SDLoc DL(N0);
+
+ EVT SrcVT = N0.getOperand(0).getValueType();
+ SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT,
+ ResVT.getSizeInBits() / SrcVT.getSizeInBits());
+ EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
+
+ // First perform a vector comparison, where lane 0 is the one we're interested
+ // in.
+ SDValue LHS =
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
+ SDValue RHS =
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
+ SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
+
+ // Now duplicate the comparison mask we want across all other lanes.
+ SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
+ SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
+ Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(),
+ Mask);
+
+ return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
+}
+
+SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ switch (N->getOpcode()) {
+ default:
+ break;
+ case ISD::ADD:
+ case ISD::SUB:
+ return performAddSubLongCombine(N, DCI, DAG);
+ case ISD::XOR:
+ return performXorCombine(N, DAG, DCI, Subtarget);
+ case ISD::MUL:
+ return performMulCombine(N, DAG, DCI, Subtarget);
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ return performIntToFpCombine(N, DAG);
+ case ISD::OR:
+ return performORCombine(N, DCI, Subtarget);
+ case ISD::INTRINSIC_WO_CHAIN:
+ return performIntrinsicCombine(N, DCI, Subtarget);
+ case ISD::ANY_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::SIGN_EXTEND:
+ return performExtendCombine(N, DCI, DAG);
+ case ISD::BITCAST:
+ return performBitcastCombine(N, DCI, DAG);
+ case ISD::CONCAT_VECTORS:
+ return performConcatVectorsCombine(N, DCI, DAG);
+ case ISD::SELECT:
+ return performSelectCombine(N, DAG);
+ case ISD::VSELECT:
+ return performVSelectCombine(N, DCI.DAG);
+ case ISD::STORE:
+ return performSTORECombine(N, DCI, DAG, Subtarget);
+ case AArch64ISD::BRCOND:
+ return performBRCONDCombine(N, DCI, DAG);
+ case AArch64ISD::DUP:
+ return performPostLD1Combine(N, DCI, false);
+ case ISD::INSERT_VECTOR_ELT:
+ return performPostLD1Combine(N, DCI, true);
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN:
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ case Intrinsic::aarch64_neon_ld2:
+ case Intrinsic::aarch64_neon_ld3:
+ case Intrinsic::aarch64_neon_ld4:
+ case Intrinsic::aarch64_neon_ld1x2:
+ case Intrinsic::aarch64_neon_ld1x3:
+ case Intrinsic::aarch64_neon_ld1x4:
+ case Intrinsic::aarch64_neon_ld2lane:
+ case Intrinsic::aarch64_neon_ld3lane:
+ case Intrinsic::aarch64_neon_ld4lane:
+ case Intrinsic::aarch64_neon_ld2r:
+ case Intrinsic::aarch64_neon_ld3r:
+ case Intrinsic::aarch64_neon_ld4r:
+ case Intrinsic::aarch64_neon_st2:
+ case Intrinsic::aarch64_neon_st3:
+ case Intrinsic::aarch64_neon_st4:
+ case Intrinsic::aarch64_neon_st1x2:
+ case Intrinsic::aarch64_neon_st1x3:
+ case Intrinsic::aarch64_neon_st1x4:
+ case Intrinsic::aarch64_neon_st2lane:
+ case Intrinsic::aarch64_neon_st3lane:
+ case Intrinsic::aarch64_neon_st4lane:
+ return performNEONPostLDSTCombine(N, DCI, DAG);
+ default:
+ break;
+ }
+ }
+ return SDValue();
+}
+
+// Check if the return value is used as only a return value, as otherwise
+// we can't perform a tail-call. In particular, we need to check for
+// target ISD nodes that are returns and any other "odd" constructs
+// that the generic analysis code won't necessarily catch.
+bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
+ SDValue &Chain) const {
+ if (N->getNumValues() != 1)
+ return false;
+ if (!N->hasNUsesOfValue(1, 0))
+ return false;
+
+ SDValue TCChain = Chain;
+ SDNode *Copy = *N->use_begin();
+ if (Copy->getOpcode() == ISD::CopyToReg) {
+ // If the copy has a glue operand, we conservatively assume it isn't safe to
+ // perform a tail call.
+ if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
+ MVT::Glue)
+ return false;
+ TCChain = Copy->getOperand(0);
+ } else if (Copy->getOpcode() != ISD::FP_EXTEND)
+ return false;
+
+ bool HasRet = false;
+ for (SDNode *Node : Copy->uses()) {
+ if (Node->getOpcode() != AArch64ISD::RET_FLAG)
+ return false;
+ HasRet = true;
+ }
+
+ if (!HasRet)
+ return false;
+
+ Chain = TCChain;
+ return true;
+}
+
+// Return whether the an instruction can potentially be optimized to a tail
+// call. This will cause the optimizers to attempt to move, or duplicate,
+// return instructions to help enable tail call optimizations for this
+// instruction.
+bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
+ if (!CI->isTailCall())
+ return false;
+
+ return true;
+}
+
+bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ bool &IsInc,
+ SelectionDAG &DAG) const {
+ if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
+ return false;
+
+ Base = Op->getOperand(0);
+ // All of the indexed addressing mode instructions take a signed
+ // 9 bit immediate offset.
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
+ int64_t RHSC = (int64_t)RHS->getZExtValue();
+ if (RHSC >= 256 || RHSC <= -256)
+ return false;
+ IsInc = (Op->getOpcode() == ISD::ADD);
+ Offset = Op->getOperand(1);
+ return true;
+ }
+ return false;
+}
+
+bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ EVT VT;
+ SDValue Ptr;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ Ptr = LD->getBasePtr();
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ Ptr = ST->getBasePtr();
+ } else
+ return false;
+
+ bool IsInc;
+ if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
+ return false;
+ AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
+ return true;
+}
+
+bool AArch64TargetLowering::getPostIndexedAddressParts(
+ SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
+ ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
+ EVT VT;
+ SDValue Ptr;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ Ptr = LD->getBasePtr();
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ Ptr = ST->getBasePtr();
+ } else
+ return false;
+
+ bool IsInc;
+ if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
+ return false;
+ // Post-indexing updates the base, so it's not a valid transform
+ // if that's not the same as the load's pointer.
+ if (Ptr != Base)
+ return false;
+ AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
+ return true;
+}
+
+static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) {
+ if (N->getValueType(0) != MVT::i16)
+ return;
+
+ SDLoc DL(N);
+ SDValue Op = N->getOperand(0);
+ assert(Op.getValueType() == MVT::f16 &&
+ "Inconsistent bitcast? Only 16-bit types should be i16 or f16");
+ Op = SDValue(
+ DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
+ DAG.getUNDEF(MVT::i32), Op,
+ DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
+ 0);
+ Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
+}
+
+void AArch64TargetLowering::ReplaceNodeResults(
+ SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Don't know how to custom expand this");
+ case ISD::BITCAST:
+ ReplaceBITCASTResults(N, Results, DAG);
+ return;
+ case ISD::FP_TO_UINT:
+ case ISD::FP_TO_SINT:
+ assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
+ // Let normal code take care of it by not adding anything to Results.
+ return;
+ }
+}
+
+bool AArch64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
+ // Loads and stores less than 128-bits are already atomic; ones above that
+ // are doomed anyway, so defer to the default libcall and blame the OS when
+ // things go wrong:
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
+ return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128;
+ else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
+ return LI->getType()->getPrimitiveSizeInBits() == 128;
+
+ // For the real atomic operations, we have ldxr/stxr up to 128 bits.
+ return Inst->getType()->getPrimitiveSizeInBits() <= 128;
+}
+
+TargetLoweringBase::LegalizeTypeAction
+AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
+ MVT SVT = VT.getSimpleVT();
+ // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
+ // v4i16, v2i32 instead of to promote.
+ if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
+ || SVT == MVT::v1f32)
+ return TypeWidenVector;
+
+ return TargetLoweringBase::getPreferredVectorAction(VT);
+}
+
+Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
+ AtomicOrdering Ord) const {
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
+ bool IsAcquire =
+ Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
+
+ // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
+ // intrinsic must return {i64, i64} and we have to recombine them into a
+ // single i128 here.
+ if (ValTy->getPrimitiveSizeInBits() == 128) {
+ Intrinsic::ID Int =
+ IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
+ Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
+
+ Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
+ Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
+
+ Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
+ Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
+ Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
+ Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
+ return Builder.CreateOr(
+ Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
+ }
+
+ Type *Tys[] = { Addr->getType() };
+ Intrinsic::ID Int =
+ IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
+ Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
+
+ return Builder.CreateTruncOrBitCast(
+ Builder.CreateCall(Ldxr, Addr),
+ cast<PointerType>(Addr->getType())->getElementType());
+}
+
+Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
+ Value *Val, Value *Addr,
+ AtomicOrdering Ord) const {
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ bool IsRelease =
+ Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
+
+ // Since the intrinsics must have legal type, the i128 intrinsics take two
+ // parameters: "i64, i64". We must marshal Val into the appropriate form
+ // before the call.
+ if (Val->getType()->getPrimitiveSizeInBits() == 128) {
+ Intrinsic::ID Int =
+ IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
+ Function *Stxr = Intrinsic::getDeclaration(M, Int);
+ Type *Int64Ty = Type::getInt64Ty(M->getContext());
+
+ Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
+ Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
+ Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
+ return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
+ }
+
+ Intrinsic::ID Int =
+ IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
+ Type *Tys[] = { Addr->getType() };
+ Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
+
+ return Builder.CreateCall2(
+ Stxr, Builder.CreateZExtOrBitCast(
+ Val, Stxr->getFunctionType()->getParamType(0)),
+ Addr);
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.h b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.h
new file mode 100644
index 0000000..cb0b9ef
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.h
@@ -0,0 +1,467 @@
+//==-- AArch64ISelLowering.h - AArch64 DAG Lowering Interface ----*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that AArch64 uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_AArch64_ISELLOWERING_H
+#define LLVM_TARGET_AArch64_ISELLOWERING_H
+
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/Target/TargetLowering.h"
+
+namespace llvm {
+
+namespace AArch64ISD {
+
+enum {
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+ WrapperLarge, // 4-instruction MOVZ/MOVK sequence for 64-bit addresses.
+ CALL, // Function call.
+
+ // Almost the same as a normal call node, except that a TLSDesc relocation is
+ // needed so the linker can relax it correctly if possible.
+ TLSDESC_CALL,
+ ADRP, // Page address of a TargetGlobalAddress operand.
+ ADDlow, // Add the low 12 bits of a TargetGlobalAddress operand.
+ LOADgot, // Load from automatically generated descriptor (e.g. Global
+ // Offset Table, TLS record).
+ RET_FLAG, // Return with a flag operand. Operand 0 is the chain operand.
+ BRCOND, // Conditional branch instruction; "b.cond".
+ CSEL,
+ FCSEL, // Conditional move instruction.
+ CSINV, // Conditional select invert.
+ CSNEG, // Conditional select negate.
+ CSINC, // Conditional select increment.
+
+ // Pointer to the thread's local storage area. Materialised from TPIDR_EL0 on
+ // ELF.
+ THREAD_POINTER,
+ ADC,
+ SBC, // adc, sbc instructions
+
+ // Arithmetic instructions which write flags.
+ ADDS,
+ SUBS,
+ ADCS,
+ SBCS,
+ ANDS,
+
+ // Floating point comparison
+ FCMP,
+
+ // Floating point max and min instructions.
+ FMAX,
+ FMIN,
+
+ // Scalar extract
+ EXTR,
+
+ // Scalar-to-vector duplication
+ DUP,
+ DUPLANE8,
+ DUPLANE16,
+ DUPLANE32,
+ DUPLANE64,
+
+ // Vector immedate moves
+ MOVI,
+ MOVIshift,
+ MOVIedit,
+ MOVImsl,
+ FMOV,
+ MVNIshift,
+ MVNImsl,
+
+ // Vector immediate ops
+ BICi,
+ ORRi,
+
+ // Vector bit select: similar to ISD::VSELECT but not all bits within an
+ // element must be identical.
+ BSL,
+
+ // Vector arithmetic negation
+ NEG,
+
+ // Vector shuffles
+ ZIP1,
+ ZIP2,
+ UZP1,
+ UZP2,
+ TRN1,
+ TRN2,
+ REV16,
+ REV32,
+ REV64,
+ EXT,
+
+ // Vector shift by scalar
+ VSHL,
+ VLSHR,
+ VASHR,
+
+ // Vector shift by scalar (again)
+ SQSHL_I,
+ UQSHL_I,
+ SQSHLU_I,
+ SRSHR_I,
+ URSHR_I,
+
+ // Vector comparisons
+ CMEQ,
+ CMGE,
+ CMGT,
+ CMHI,
+ CMHS,
+ FCMEQ,
+ FCMGE,
+ FCMGT,
+
+ // Vector zero comparisons
+ CMEQz,
+ CMGEz,
+ CMGTz,
+ CMLEz,
+ CMLTz,
+ FCMEQz,
+ FCMGEz,
+ FCMGTz,
+ FCMLEz,
+ FCMLTz,
+
+ // Vector bitwise negation
+ NOT,
+
+ // Vector bitwise selection
+ BIT,
+
+ // Compare-and-branch
+ CBZ,
+ CBNZ,
+ TBZ,
+ TBNZ,
+
+ // Tail calls
+ TC_RETURN,
+
+ // Custom prefetch handling
+ PREFETCH,
+
+ // {s|u}int to FP within a FP register.
+ SITOF,
+ UITOF,
+
+ // NEON Load/Store with post-increment base updates
+ LD2post = ISD::FIRST_TARGET_MEMORY_OPCODE,
+ LD3post,
+ LD4post,
+ ST2post,
+ ST3post,
+ ST4post,
+ LD1x2post,
+ LD1x3post,
+ LD1x4post,
+ ST1x2post,
+ ST1x3post,
+ ST1x4post,
+ LD1DUPpost,
+ LD2DUPpost,
+ LD3DUPpost,
+ LD4DUPpost,
+ LD1LANEpost,
+ LD2LANEpost,
+ LD3LANEpost,
+ LD4LANEpost,
+ ST2LANEpost,
+ ST3LANEpost,
+ ST4LANEpost
+};
+
+} // end namespace AArch64ISD
+
+class AArch64Subtarget;
+class AArch64TargetMachine;
+
+class AArch64TargetLowering : public TargetLowering {
+ bool RequireStrictAlign;
+
+public:
+ explicit AArch64TargetLowering(TargetMachine &TM);
+
+ /// Selects the correct CCAssignFn for a the given CallingConvention
+ /// value.
+ CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const;
+
+ /// computeKnownBitsForTargetNode - Determine which of the bits specified in
+ /// Mask are known to be either zero or one and return them in the
+ /// KnownZero/KnownOne bitsets.
+ void computeKnownBitsForTargetNode(const SDValue Op, APInt &KnownZero,
+ APInt &KnownOne, const SelectionDAG &DAG,
+ unsigned Depth = 0) const override;
+
+ MVT getScalarShiftAmountTy(EVT LHSTy) const override;
+
+ /// allowsUnalignedMemoryAccesses - Returns true if the target allows
+ /// unaligned memory accesses. of the specified type.
+ bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AddrSpace = 0,
+ bool *Fast = nullptr) const override {
+ if (RequireStrictAlign)
+ return false;
+ // FIXME: True for Cyclone, but not necessary others.
+ if (Fast)
+ *Fast = true;
+ return true;
+ }
+
+ /// LowerOperation - Provide custom lowering hooks for some operations.
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+
+ const char *getTargetNodeName(unsigned Opcode) const override;
+
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+
+ /// getFunctionAlignment - Return the Log2 alignment of this function.
+ unsigned getFunctionAlignment(const Function *F) const;
+
+ /// getMaximalGlobalOffset - Returns the maximal possible offset which can
+ /// be used for loads / stores from the global.
+ unsigned getMaximalGlobalOffset() const override;
+
+ /// Returns true if a cast between SrcAS and DestAS is a noop.
+ bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override {
+ // Addrspacecasts are always noops.
+ return true;
+ }
+
+ /// createFastISel - This method returns a target specific FastISel object,
+ /// or null if the target does not support "fast" ISel.
+ FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const override;
+
+ bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
+
+ bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
+
+ /// isShuffleMaskLegal - Return true if the given shuffle mask can be
+ /// codegen'd directly, or if it should be stack expanded.
+ bool isShuffleMaskLegal(const SmallVectorImpl<int> &M, EVT VT) const override;
+
+ /// getSetCCResultType - Return the ISD::SETCC ValueType
+ EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
+
+ SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const;
+
+ MachineBasicBlock *EmitF128CSEL(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const override;
+
+ bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
+ unsigned Intrinsic) const override;
+
+ bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
+ bool isTruncateFree(EVT VT1, EVT VT2) const override;
+
+ bool isZExtFree(Type *Ty1, Type *Ty2) const override;
+ bool isZExtFree(EVT VT1, EVT VT2) const override;
+ bool isZExtFree(SDValue Val, EVT VT2) const override;
+
+ bool hasPairedLoad(Type *LoadedType,
+ unsigned &RequiredAligment) const override;
+ bool hasPairedLoad(EVT LoadedType, unsigned &RequiredAligment) const override;
+
+ bool isLegalAddImmediate(int64_t) const override;
+ bool isLegalICmpImmediate(int64_t) const override;
+
+ EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
+ MachineFunction &MF) const override;
+
+ /// isLegalAddressingMode - Return true if the addressing mode represented
+ /// by AM is legal for this target, for a load/store of the specified type.
+ bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
+
+ /// \brief Return the cost of the scaling factor used in the addressing
+ /// mode represented by AM for this target, for a load/store
+ /// of the specified type.
+ /// If the AM is supported, the return value must be >= 0.
+ /// If the AM is not supported, it returns a negative value.
+ int getScalingFactorCost(const AddrMode &AM, Type *Ty) const override;
+
+ /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
+ /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
+ /// expanded to FMAs when this method returns true, otherwise fmuladd is
+ /// expanded to fmul + fadd.
+ bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
+
+ const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
+
+ /// \brief Returns false if N is a bit extraction pattern of (X >> C) & Mask.
+ bool isDesirableToCommuteWithShift(const SDNode *N) const override;
+
+ /// \brief Returns true if it is beneficial to convert a load of a constant
+ /// to just the constant itself.
+ bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const override;
+
+ Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
+ AtomicOrdering Ord) const override;
+ Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
+ Value *Addr, AtomicOrdering Ord) const override;
+
+ bool shouldExpandAtomicInIR(Instruction *Inst) const override;
+
+ TargetLoweringBase::LegalizeTypeAction
+ getPreferredVectorAction(EVT VT) const override;
+
+private:
+ /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const AArch64Subtarget *Subtarget;
+
+ void addTypeForNEON(EVT VT, EVT PromotedBitwiseVT);
+ void addDRTypeForNEON(MVT VT);
+ void addQRTypeForNEON(MVT VT);
+
+ SDValue
+ LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue LowerCall(CallLoweringInfo & /*CLI*/,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
+ bool isThisReturn, SDValue ThisVal) const;
+
+ bool isEligibleForTailCallOptimization(
+ SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
+ bool isCalleeStructRet, bool isCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const;
+
+ /// Finds the incoming stack arguments which overlap the given fixed stack
+ /// object and incorporates their load into the current chain. This prevents
+ /// an upcoming store from clobbering the stack argument before it's used.
+ SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG,
+ MachineFrameInfo *MFI, int ClobberedFI) const;
+
+ bool DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const;
+
+ bool IsTailCallConvention(CallingConv::ID CallCC) const;
+
+ void saveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, SDLoc DL,
+ SDValue &Chain) const;
+
+ bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const override;
+
+ SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals, SDLoc DL,
+ SelectionDAG &DAG) const override;
+
+ SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerDarwinGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerELFGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerELFTLSDescCall(SDValue SymAddr, SDValue DescAddr, SDLoc DL,
+ SelectionDAG &DAG) const;
+ SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerAAPCS_VASTART(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerDarwin_VASTART(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVectorSRA_SRL_SHL(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerF128Call(SDValue Op, SelectionDAG &DAG,
+ RTLIB::Libcall Call) const;
+ SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVectorAND(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVectorOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const;
+
+ ConstraintType
+ getConstraintType(const std::string &Constraint) const override;
+ unsigned getRegisterByName(const char* RegName, EVT VT) const override;
+
+ /// Examine constraint string and operand type and determine a weight value.
+ /// The operand object must already have been set up with the operand type.
+ ConstraintWeight
+ getSingleConstraintMatchWeight(AsmOperandInfo &info,
+ const char *constraint) const override;
+
+ std::pair<unsigned, const TargetRegisterClass *>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const override;
+ void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const override;
+
+ bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
+ bool mayBeEmittedAsTailCall(CallInst *CI) const override;
+ bool getIndexedAddressParts(SDNode *Op, SDValue &Base, SDValue &Offset,
+ ISD::MemIndexedMode &AM, bool &IsInc,
+ SelectionDAG &DAG) const;
+ bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const override;
+ bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base,
+ SDValue &Offset, ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const override;
+
+ void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const override;
+};
+
+namespace AArch64 {
+FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo);
+} // end namespace AArch64
+
+} // end namespace llvm
+
+#endif // LLVM_TARGET_AArch64_ISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64InstrAtomics.td b/contrib/llvm/lib/Target/AArch64/AArch64InstrAtomics.td
new file mode 100644
index 0000000..3b9e3c6
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64InstrAtomics.td
@@ -0,0 +1,364 @@
+//=- AArch64InstrAtomics.td - AArch64 Atomic codegen support -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// AArch64 Atomic operand code-gen constructs.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------
+// Atomic fences
+//===----------------------------------
+def : Pat<(atomic_fence (i64 4), (imm)), (DMB (i32 0x9))>;
+def : Pat<(atomic_fence (imm), (imm)), (DMB (i32 0xb))>;
+
+//===----------------------------------
+// Atomic loads
+//===----------------------------------
+
+// When they're actually atomic, only one addressing mode (GPR64sp) is
+// supported, but when they're relaxed and anything can be used, all the
+// standard modes would be valid and may give efficiency gains.
+
+// A atomic load operation that actually needs acquire semantics.
+class acquiring_load<PatFrag base>
+ : PatFrag<(ops node:$ptr), (base node:$ptr), [{
+ AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
+ assert(Ordering != AcquireRelease && "unexpected load ordering");
+ return Ordering == Acquire || Ordering == SequentiallyConsistent;
+}]>;
+
+// An atomic load operation that does not need either acquire or release
+// semantics.
+class relaxed_load<PatFrag base>
+ : PatFrag<(ops node:$ptr), (base node:$ptr), [{
+ AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
+ return Ordering == Monotonic || Ordering == Unordered;
+}]>;
+
+// 8-bit loads
+def : Pat<(acquiring_load<atomic_load_8> GPR64sp:$ptr), (LDARB GPR64sp:$ptr)>;
+def : Pat<(relaxed_load<atomic_load_8> (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend8:$offset)),
+ (LDRBBroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$offset)>;
+def : Pat<(relaxed_load<atomic_load_8> (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend8:$offset)),
+ (LDRBBroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$offset)>;
+def : Pat<(relaxed_load<atomic_load_8> (am_indexed8 GPR64sp:$Rn,
+ uimm12s1:$offset)),
+ (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
+def : Pat<(relaxed_load<atomic_load_8>
+ (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
+ (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
+
+// 16-bit loads
+def : Pat<(acquiring_load<atomic_load_16> GPR64sp:$ptr), (LDARH GPR64sp:$ptr)>;
+def : Pat<(relaxed_load<atomic_load_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend16:$extend)),
+ (LDRHHroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
+def : Pat<(relaxed_load<atomic_load_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend16:$extend)),
+ (LDRHHroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
+def : Pat<(relaxed_load<atomic_load_16> (am_indexed16 GPR64sp:$Rn,
+ uimm12s2:$offset)),
+ (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
+def : Pat<(relaxed_load<atomic_load_16>
+ (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
+ (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
+
+// 32-bit loads
+def : Pat<(acquiring_load<atomic_load_32> GPR64sp:$ptr), (LDARW GPR64sp:$ptr)>;
+def : Pat<(relaxed_load<atomic_load_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend32:$extend)),
+ (LDRWroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
+def : Pat<(relaxed_load<atomic_load_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend32:$extend)),
+ (LDRWroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
+def : Pat<(relaxed_load<atomic_load_32> (am_indexed32 GPR64sp:$Rn,
+ uimm12s4:$offset)),
+ (LDRWui GPR64sp:$Rn, uimm12s4:$offset)>;
+def : Pat<(relaxed_load<atomic_load_32>
+ (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
+ (LDURWi GPR64sp:$Rn, simm9:$offset)>;
+
+// 64-bit loads
+def : Pat<(acquiring_load<atomic_load_64> GPR64sp:$ptr), (LDARX GPR64sp:$ptr)>;
+def : Pat<(relaxed_load<atomic_load_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend64:$extend)),
+ (LDRXroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
+def : Pat<(relaxed_load<atomic_load_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend64:$extend)),
+ (LDRXroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
+def : Pat<(relaxed_load<atomic_load_64> (am_indexed64 GPR64sp:$Rn,
+ uimm12s8:$offset)),
+ (LDRXui GPR64sp:$Rn, uimm12s8:$offset)>;
+def : Pat<(relaxed_load<atomic_load_64>
+ (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
+ (LDURXi GPR64sp:$Rn, simm9:$offset)>;
+
+//===----------------------------------
+// Atomic stores
+//===----------------------------------
+
+// When they're actually atomic, only one addressing mode (GPR64sp) is
+// supported, but when they're relaxed and anything can be used, all the
+// standard modes would be valid and may give efficiency gains.
+
+// A store operation that actually needs release semantics.
+class releasing_store<PatFrag base>
+ : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
+ AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
+ assert(Ordering != AcquireRelease && "unexpected store ordering");
+ return Ordering == Release || Ordering == SequentiallyConsistent;
+}]>;
+
+// An atomic store operation that doesn't actually need to be atomic on AArch64.
+class relaxed_store<PatFrag base>
+ : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
+ AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
+ return Ordering == Monotonic || Ordering == Unordered;
+}]>;
+
+// 8-bit stores
+def : Pat<(releasing_store<atomic_store_8> GPR64sp:$ptr, GPR32:$val),
+ (STLRB GPR32:$val, GPR64sp:$ptr)>;
+def : Pat<(relaxed_store<atomic_store_8>
+ (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend),
+ GPR32:$val),
+ (STRBBroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend)>;
+def : Pat<(relaxed_store<atomic_store_8>
+ (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend),
+ GPR32:$val),
+ (STRBBroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend)>;
+def : Pat<(relaxed_store<atomic_store_8>
+ (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), GPR32:$val),
+ (STRBBui GPR32:$val, GPR64sp:$Rn, uimm12s1:$offset)>;
+def : Pat<(relaxed_store<atomic_store_8>
+ (am_unscaled8 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
+ (STURBBi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
+
+// 16-bit stores
+def : Pat<(releasing_store<atomic_store_16> GPR64sp:$ptr, GPR32:$val),
+ (STLRH GPR32:$val, GPR64sp:$ptr)>;
+def : Pat<(relaxed_store<atomic_store_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend16:$extend),
+ GPR32:$val),
+ (STRHHroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
+def : Pat<(relaxed_store<atomic_store_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend16:$extend),
+ GPR32:$val),
+ (STRHHroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
+def : Pat<(relaxed_store<atomic_store_16>
+ (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), GPR32:$val),
+ (STRHHui GPR32:$val, GPR64sp:$Rn, uimm12s2:$offset)>;
+def : Pat<(relaxed_store<atomic_store_16>
+ (am_unscaled16 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
+ (STURHHi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
+
+// 32-bit stores
+def : Pat<(releasing_store<atomic_store_32> GPR64sp:$ptr, GPR32:$val),
+ (STLRW GPR32:$val, GPR64sp:$ptr)>;
+def : Pat<(relaxed_store<atomic_store_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend32:$extend),
+ GPR32:$val),
+ (STRWroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
+def : Pat<(relaxed_store<atomic_store_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend32:$extend),
+ GPR32:$val),
+ (STRWroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
+def : Pat<(relaxed_store<atomic_store_32>
+ (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), GPR32:$val),
+ (STRWui GPR32:$val, GPR64sp:$Rn, uimm12s4:$offset)>;
+def : Pat<(relaxed_store<atomic_store_32>
+ (am_unscaled32 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
+ (STURWi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
+
+// 64-bit stores
+def : Pat<(releasing_store<atomic_store_64> GPR64sp:$ptr, GPR64:$val),
+ (STLRX GPR64:$val, GPR64sp:$ptr)>;
+def : Pat<(relaxed_store<atomic_store_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend16:$extend),
+ GPR64:$val),
+ (STRXroW GPR64:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
+def : Pat<(relaxed_store<atomic_store_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend16:$extend),
+ GPR64:$val),
+ (STRXroX GPR64:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
+def : Pat<(relaxed_store<atomic_store_64>
+ (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset), GPR64:$val),
+ (STRXui GPR64:$val, GPR64sp:$Rn, uimm12s8:$offset)>;
+def : Pat<(relaxed_store<atomic_store_64>
+ (am_unscaled64 GPR64sp:$Rn, simm9:$offset), GPR64:$val),
+ (STURXi GPR64:$val, GPR64sp:$Rn, simm9:$offset)>;
+
+//===----------------------------------
+// Low-level exclusive operations
+//===----------------------------------
+
+// Load-exclusives.
+
+def ldxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+
+def ldxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+
+def ldxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+def ldxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
+}]>;
+
+def : Pat<(ldxr_1 GPR64sp:$addr),
+ (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
+def : Pat<(ldxr_2 GPR64sp:$addr),
+ (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
+def : Pat<(ldxr_4 GPR64sp:$addr),
+ (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
+def : Pat<(ldxr_8 GPR64sp:$addr), (LDXRX GPR64sp:$addr)>;
+
+def : Pat<(and (ldxr_1 GPR64sp:$addr), 0xff),
+ (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
+def : Pat<(and (ldxr_2 GPR64sp:$addr), 0xffff),
+ (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
+def : Pat<(and (ldxr_4 GPR64sp:$addr), 0xffffffff),
+ (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
+
+// Load-exclusives.
+
+def ldaxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+
+def ldaxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+
+def ldaxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+def ldaxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
+}]>;
+
+def : Pat<(ldaxr_1 GPR64sp:$addr),
+ (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
+def : Pat<(ldaxr_2 GPR64sp:$addr),
+ (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
+def : Pat<(ldaxr_4 GPR64sp:$addr),
+ (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
+def : Pat<(ldaxr_8 GPR64sp:$addr), (LDAXRX GPR64sp:$addr)>;
+
+def : Pat<(and (ldaxr_1 GPR64sp:$addr), 0xff),
+ (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
+def : Pat<(and (ldaxr_2 GPR64sp:$addr), 0xffff),
+ (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
+def : Pat<(and (ldaxr_4 GPR64sp:$addr), 0xffffffff),
+ (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
+
+// Store-exclusives.
+
+def stxr_1 : PatFrag<(ops node:$val, node:$ptr),
+ (int_aarch64_stxr node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+
+def stxr_2 : PatFrag<(ops node:$val, node:$ptr),
+ (int_aarch64_stxr node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+
+def stxr_4 : PatFrag<(ops node:$val, node:$ptr),
+ (int_aarch64_stxr node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+def stxr_8 : PatFrag<(ops node:$val, node:$ptr),
+ (int_aarch64_stxr node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
+}]>;
+
+
+def : Pat<(stxr_1 GPR64:$val, GPR64sp:$addr),
+ (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+def : Pat<(stxr_2 GPR64:$val, GPR64sp:$addr),
+ (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+def : Pat<(stxr_4 GPR64:$val, GPR64sp:$addr),
+ (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+def : Pat<(stxr_8 GPR64:$val, GPR64sp:$addr),
+ (STXRX GPR64:$val, GPR64sp:$addr)>;
+
+def : Pat<(stxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
+ (STXRB GPR32:$val, GPR64sp:$addr)>;
+def : Pat<(stxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
+ (STXRH GPR32:$val, GPR64sp:$addr)>;
+def : Pat<(stxr_4 (zext GPR32:$val), GPR64sp:$addr),
+ (STXRW GPR32:$val, GPR64sp:$addr)>;
+
+def : Pat<(stxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
+ (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+def : Pat<(stxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
+ (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+def : Pat<(stxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
+ (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+
+// Store-release-exclusives.
+
+def stlxr_1 : PatFrag<(ops node:$val, node:$ptr),
+ (int_aarch64_stlxr node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+
+def stlxr_2 : PatFrag<(ops node:$val, node:$ptr),
+ (int_aarch64_stlxr node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+
+def stlxr_4 : PatFrag<(ops node:$val, node:$ptr),
+ (int_aarch64_stlxr node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+def stlxr_8 : PatFrag<(ops node:$val, node:$ptr),
+ (int_aarch64_stlxr node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
+}]>;
+
+
+def : Pat<(stlxr_1 GPR64:$val, GPR64sp:$addr),
+ (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+def : Pat<(stlxr_2 GPR64:$val, GPR64sp:$addr),
+ (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+def : Pat<(stlxr_4 GPR64:$val, GPR64sp:$addr),
+ (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+def : Pat<(stlxr_8 GPR64:$val, GPR64sp:$addr),
+ (STLXRX GPR64:$val, GPR64sp:$addr)>;
+
+def : Pat<(stlxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
+ (STLXRB GPR32:$val, GPR64sp:$addr)>;
+def : Pat<(stlxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
+ (STLXRH GPR32:$val, GPR64sp:$addr)>;
+def : Pat<(stlxr_4 (zext GPR32:$val), GPR64sp:$addr),
+ (STLXRW GPR32:$val, GPR64sp:$addr)>;
+
+def : Pat<(stlxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
+ (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+def : Pat<(stlxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
+ (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+def : Pat<(stlxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
+ (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
+
+
+// And clear exclusive.
+
+def : Pat<(int_aarch64_clrex), (CLREX 0xf)>;
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64InstrFormats.td b/contrib/llvm/lib/Target/AArch64/AArch64InstrFormats.td
new file mode 100644
index 0000000..e88c0c0
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64InstrFormats.td
@@ -0,0 +1,8625 @@
+//===- AArch64InstrFormats.td - AArch64 Instruction Formats --*- tblgen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Describe AArch64 instructions format here
+//
+
+// Format specifies the encoding used by the instruction. This is part of the
+// ad-hoc solution used to emit machine instruction encodings by our machine
+// code emitter.
+class Format<bits<2> val> {
+ bits<2> Value = val;
+}
+
+def PseudoFrm : Format<0>;
+def NormalFrm : Format<1>; // Do we need any others?
+
+// AArch64 Instruction Format
+class AArch64Inst<Format f, string cstr> : Instruction {
+ field bits<32> Inst; // Instruction encoding.
+ // Mask of bits that cause an encoding to be UNPREDICTABLE.
+ // If a bit is set, then if the corresponding bit in the
+ // target encoding differs from its value in the "Inst" field,
+ // the instruction is UNPREDICTABLE (SoftFail in abstract parlance).
+ field bits<32> Unpredictable = 0;
+ // SoftFail is the generic name for this field, but we alias it so
+ // as to make it more obvious what it means in ARM-land.
+ field bits<32> SoftFail = Unpredictable;
+ let Namespace = "AArch64";
+ Format F = f;
+ bits<2> Form = F.Value;
+ let Pattern = [];
+ let Constraints = cstr;
+}
+
+// Pseudo instructions (don't have encoding information)
+class Pseudo<dag oops, dag iops, list<dag> pattern, string cstr = "">
+ : AArch64Inst<PseudoFrm, cstr> {
+ dag OutOperandList = oops;
+ dag InOperandList = iops;
+ let Pattern = pattern;
+ let isCodeGenOnly = 1;
+}
+
+// Real instructions (have encoding information)
+class EncodedI<string cstr, list<dag> pattern> : AArch64Inst<NormalFrm, cstr> {
+ let Pattern = pattern;
+ let Size = 4;
+}
+
+// Normal instructions
+class I<dag oops, dag iops, string asm, string operands, string cstr,
+ list<dag> pattern>
+ : EncodedI<cstr, pattern> {
+ dag OutOperandList = oops;
+ dag InOperandList = iops;
+ let AsmString = !strconcat(asm, operands);
+}
+
+class TriOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$MHS, node:$RHS), res>;
+class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
+class UnOpFrag<dag res> : PatFrag<(ops node:$LHS), res>;
+
+// Helper fragment for an extract of the high portion of a 128-bit vector.
+def extract_high_v16i8 :
+ UnOpFrag<(extract_subvector (v16i8 node:$LHS), (i64 8))>;
+def extract_high_v8i16 :
+ UnOpFrag<(extract_subvector (v8i16 node:$LHS), (i64 4))>;
+def extract_high_v4i32 :
+ UnOpFrag<(extract_subvector (v4i32 node:$LHS), (i64 2))>;
+def extract_high_v2i64 :
+ UnOpFrag<(extract_subvector (v2i64 node:$LHS), (i64 1))>;
+
+//===----------------------------------------------------------------------===//
+// Asm Operand Classes.
+//
+
+// Shifter operand for arithmetic shifted encodings.
+def ShifterOperand : AsmOperandClass {
+ let Name = "Shifter";
+}
+
+// Shifter operand for mov immediate encodings.
+def MovImm32ShifterOperand : AsmOperandClass {
+ let SuperClasses = [ShifterOperand];
+ let Name = "MovImm32Shifter";
+ let RenderMethod = "addShifterOperands";
+ let DiagnosticType = "InvalidMovImm32Shift";
+}
+def MovImm64ShifterOperand : AsmOperandClass {
+ let SuperClasses = [ShifterOperand];
+ let Name = "MovImm64Shifter";
+ let RenderMethod = "addShifterOperands";
+ let DiagnosticType = "InvalidMovImm64Shift";
+}
+
+// Shifter operand for arithmetic register shifted encodings.
+class ArithmeticShifterOperand<int width> : AsmOperandClass {
+ let SuperClasses = [ShifterOperand];
+ let Name = "ArithmeticShifter" # width;
+ let PredicateMethod = "isArithmeticShifter<" # width # ">";
+ let RenderMethod = "addShifterOperands";
+ let DiagnosticType = "AddSubRegShift" # width;
+}
+
+def ArithmeticShifterOperand32 : ArithmeticShifterOperand<32>;
+def ArithmeticShifterOperand64 : ArithmeticShifterOperand<64>;
+
+// Shifter operand for logical register shifted encodings.
+class LogicalShifterOperand<int width> : AsmOperandClass {
+ let SuperClasses = [ShifterOperand];
+ let Name = "LogicalShifter" # width;
+ let PredicateMethod = "isLogicalShifter<" # width # ">";
+ let RenderMethod = "addShifterOperands";
+ let DiagnosticType = "AddSubRegShift" # width;
+}
+
+def LogicalShifterOperand32 : LogicalShifterOperand<32>;
+def LogicalShifterOperand64 : LogicalShifterOperand<64>;
+
+// Shifter operand for logical vector 128/64-bit shifted encodings.
+def LogicalVecShifterOperand : AsmOperandClass {
+ let SuperClasses = [ShifterOperand];
+ let Name = "LogicalVecShifter";
+ let RenderMethod = "addShifterOperands";
+}
+def LogicalVecHalfWordShifterOperand : AsmOperandClass {
+ let SuperClasses = [LogicalVecShifterOperand];
+ let Name = "LogicalVecHalfWordShifter";
+ let RenderMethod = "addShifterOperands";
+}
+
+// The "MSL" shifter on the vector MOVI instruction.
+def MoveVecShifterOperand : AsmOperandClass {
+ let SuperClasses = [ShifterOperand];
+ let Name = "MoveVecShifter";
+ let RenderMethod = "addShifterOperands";
+}
+
+// Extend operand for arithmetic encodings.
+def ExtendOperand : AsmOperandClass {
+ let Name = "Extend";
+ let DiagnosticType = "AddSubRegExtendLarge";
+}
+def ExtendOperand64 : AsmOperandClass {
+ let SuperClasses = [ExtendOperand];
+ let Name = "Extend64";
+ let DiagnosticType = "AddSubRegExtendSmall";
+}
+// 'extend' that's a lsl of a 64-bit register.
+def ExtendOperandLSL64 : AsmOperandClass {
+ let SuperClasses = [ExtendOperand];
+ let Name = "ExtendLSL64";
+ let RenderMethod = "addExtend64Operands";
+ let DiagnosticType = "AddSubRegExtendLarge";
+}
+
+// 8-bit floating-point immediate encodings.
+def FPImmOperand : AsmOperandClass {
+ let Name = "FPImm";
+ let ParserMethod = "tryParseFPImm";
+ let DiagnosticType = "InvalidFPImm";
+}
+
+def CondCode : AsmOperandClass {
+ let Name = "CondCode";
+ let DiagnosticType = "InvalidCondCode";
+}
+
+// A 32-bit register pasrsed as 64-bit
+def GPR32as64Operand : AsmOperandClass {
+ let Name = "GPR32as64";
+}
+def GPR32as64 : RegisterOperand<GPR32> {
+ let ParserMatchClass = GPR32as64Operand;
+}
+
+// 8-bit immediate for AdvSIMD where 64-bit values of the form:
+// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
+// are encoded as the eight bit value 'abcdefgh'.
+def SIMDImmType10Operand : AsmOperandClass { let Name = "SIMDImmType10"; }
+
+
+//===----------------------------------------------------------------------===//
+// Operand Definitions.
+//
+
+// ADR[P] instruction labels.
+def AdrpOperand : AsmOperandClass {
+ let Name = "AdrpLabel";
+ let ParserMethod = "tryParseAdrpLabel";
+ let DiagnosticType = "InvalidLabel";
+}
+def adrplabel : Operand<i64> {
+ let EncoderMethod = "getAdrLabelOpValue";
+ let PrintMethod = "printAdrpLabel";
+ let ParserMatchClass = AdrpOperand;
+}
+
+def AdrOperand : AsmOperandClass {
+ let Name = "AdrLabel";
+ let ParserMethod = "tryParseAdrLabel";
+ let DiagnosticType = "InvalidLabel";
+}
+def adrlabel : Operand<i64> {
+ let EncoderMethod = "getAdrLabelOpValue";
+ let ParserMatchClass = AdrOperand;
+}
+
+// simm9 predicate - True if the immediate is in the range [-256, 255].
+def SImm9Operand : AsmOperandClass {
+ let Name = "SImm9";
+ let DiagnosticType = "InvalidMemoryIndexedSImm9";
+}
+def simm9 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= -256 && Imm < 256; }]> {
+ let ParserMatchClass = SImm9Operand;
+}
+
+// simm7sN predicate - True if the immediate is a multiple of N in the range
+// [-64 * N, 63 * N].
+class SImm7Scaled<int Scale> : AsmOperandClass {
+ let Name = "SImm7s" # Scale;
+ let DiagnosticType = "InvalidMemoryIndexed" # Scale # "SImm7";
+}
+
+def SImm7s4Operand : SImm7Scaled<4>;
+def SImm7s8Operand : SImm7Scaled<8>;
+def SImm7s16Operand : SImm7Scaled<16>;
+
+def simm7s4 : Operand<i32> {
+ let ParserMatchClass = SImm7s4Operand;
+ let PrintMethod = "printImmScale<4>";
+}
+
+def simm7s8 : Operand<i32> {
+ let ParserMatchClass = SImm7s8Operand;
+ let PrintMethod = "printImmScale<8>";
+}
+
+def simm7s16 : Operand<i32> {
+ let ParserMatchClass = SImm7s16Operand;
+ let PrintMethod = "printImmScale<16>";
+}
+
+class AsmImmRange<int Low, int High> : AsmOperandClass {
+ let Name = "Imm" # Low # "_" # High;
+ let DiagnosticType = "InvalidImm" # Low # "_" # High;
+}
+
+def Imm1_8Operand : AsmImmRange<1, 8>;
+def Imm1_16Operand : AsmImmRange<1, 16>;
+def Imm1_32Operand : AsmImmRange<1, 32>;
+def Imm1_64Operand : AsmImmRange<1, 64>;
+
+def MovZSymbolG3AsmOperand : AsmOperandClass {
+ let Name = "MovZSymbolG3";
+ let RenderMethod = "addImmOperands";
+}
+
+def movz_symbol_g3 : Operand<i32> {
+ let ParserMatchClass = MovZSymbolG3AsmOperand;
+}
+
+def MovZSymbolG2AsmOperand : AsmOperandClass {
+ let Name = "MovZSymbolG2";
+ let RenderMethod = "addImmOperands";
+}
+
+def movz_symbol_g2 : Operand<i32> {
+ let ParserMatchClass = MovZSymbolG2AsmOperand;
+}
+
+def MovZSymbolG1AsmOperand : AsmOperandClass {
+ let Name = "MovZSymbolG1";
+ let RenderMethod = "addImmOperands";
+}
+
+def movz_symbol_g1 : Operand<i32> {
+ let ParserMatchClass = MovZSymbolG1AsmOperand;
+}
+
+def MovZSymbolG0AsmOperand : AsmOperandClass {
+ let Name = "MovZSymbolG0";
+ let RenderMethod = "addImmOperands";
+}
+
+def movz_symbol_g0 : Operand<i32> {
+ let ParserMatchClass = MovZSymbolG0AsmOperand;
+}
+
+def MovKSymbolG3AsmOperand : AsmOperandClass {
+ let Name = "MovKSymbolG3";
+ let RenderMethod = "addImmOperands";
+}
+
+def movk_symbol_g3 : Operand<i32> {
+ let ParserMatchClass = MovKSymbolG3AsmOperand;
+}
+
+def MovKSymbolG2AsmOperand : AsmOperandClass {
+ let Name = "MovKSymbolG2";
+ let RenderMethod = "addImmOperands";
+}
+
+def movk_symbol_g2 : Operand<i32> {
+ let ParserMatchClass = MovKSymbolG2AsmOperand;
+}
+
+def MovKSymbolG1AsmOperand : AsmOperandClass {
+ let Name = "MovKSymbolG1";
+ let RenderMethod = "addImmOperands";
+}
+
+def movk_symbol_g1 : Operand<i32> {
+ let ParserMatchClass = MovKSymbolG1AsmOperand;
+}
+
+def MovKSymbolG0AsmOperand : AsmOperandClass {
+ let Name = "MovKSymbolG0";
+ let RenderMethod = "addImmOperands";
+}
+
+def movk_symbol_g0 : Operand<i32> {
+ let ParserMatchClass = MovKSymbolG0AsmOperand;
+}
+
+class fixedpoint_i32<ValueType FloatVT>
+ : Operand<FloatVT>,
+ ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<32>", [fpimm, ld]> {
+ let EncoderMethod = "getFixedPointScaleOpValue";
+ let DecoderMethod = "DecodeFixedPointScaleImm32";
+ let ParserMatchClass = Imm1_32Operand;
+}
+
+class fixedpoint_i64<ValueType FloatVT>
+ : Operand<FloatVT>,
+ ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<64>", [fpimm, ld]> {
+ let EncoderMethod = "getFixedPointScaleOpValue";
+ let DecoderMethod = "DecodeFixedPointScaleImm64";
+ let ParserMatchClass = Imm1_64Operand;
+}
+
+def fixedpoint_f32_i32 : fixedpoint_i32<f32>;
+def fixedpoint_f64_i32 : fixedpoint_i32<f64>;
+
+def fixedpoint_f32_i64 : fixedpoint_i64<f32>;
+def fixedpoint_f64_i64 : fixedpoint_i64<f64>;
+
+def vecshiftR8 : Operand<i32>, ImmLeaf<i32, [{
+ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 9);
+}]> {
+ let EncoderMethod = "getVecShiftR8OpValue";
+ let DecoderMethod = "DecodeVecShiftR8Imm";
+ let ParserMatchClass = Imm1_8Operand;
+}
+def vecshiftR16 : Operand<i32>, ImmLeaf<i32, [{
+ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 17);
+}]> {
+ let EncoderMethod = "getVecShiftR16OpValue";
+ let DecoderMethod = "DecodeVecShiftR16Imm";
+ let ParserMatchClass = Imm1_16Operand;
+}
+def vecshiftR16Narrow : Operand<i32>, ImmLeaf<i32, [{
+ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 9);
+}]> {
+ let EncoderMethod = "getVecShiftR16OpValue";
+ let DecoderMethod = "DecodeVecShiftR16ImmNarrow";
+ let ParserMatchClass = Imm1_8Operand;
+}
+def vecshiftR32 : Operand<i32>, ImmLeaf<i32, [{
+ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 33);
+}]> {
+ let EncoderMethod = "getVecShiftR32OpValue";
+ let DecoderMethod = "DecodeVecShiftR32Imm";
+ let ParserMatchClass = Imm1_32Operand;
+}
+def vecshiftR32Narrow : Operand<i32>, ImmLeaf<i32, [{
+ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 17);
+}]> {
+ let EncoderMethod = "getVecShiftR32OpValue";
+ let DecoderMethod = "DecodeVecShiftR32ImmNarrow";
+ let ParserMatchClass = Imm1_16Operand;
+}
+def vecshiftR64 : Operand<i32>, ImmLeaf<i32, [{
+ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 65);
+}]> {
+ let EncoderMethod = "getVecShiftR64OpValue";
+ let DecoderMethod = "DecodeVecShiftR64Imm";
+ let ParserMatchClass = Imm1_64Operand;
+}
+def vecshiftR64Narrow : Operand<i32>, ImmLeaf<i32, [{
+ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 33);
+}]> {
+ let EncoderMethod = "getVecShiftR64OpValue";
+ let DecoderMethod = "DecodeVecShiftR64ImmNarrow";
+ let ParserMatchClass = Imm1_32Operand;
+}
+
+def Imm0_7Operand : AsmImmRange<0, 7>;
+def Imm0_15Operand : AsmImmRange<0, 15>;
+def Imm0_31Operand : AsmImmRange<0, 31>;
+def Imm0_63Operand : AsmImmRange<0, 63>;
+
+def vecshiftL8 : Operand<i32>, ImmLeaf<i32, [{
+ return (((uint32_t)Imm) < 8);
+}]> {
+ let EncoderMethod = "getVecShiftL8OpValue";
+ let DecoderMethod = "DecodeVecShiftL8Imm";
+ let ParserMatchClass = Imm0_7Operand;
+}
+def vecshiftL16 : Operand<i32>, ImmLeaf<i32, [{
+ return (((uint32_t)Imm) < 16);
+}]> {
+ let EncoderMethod = "getVecShiftL16OpValue";
+ let DecoderMethod = "DecodeVecShiftL16Imm";
+ let ParserMatchClass = Imm0_15Operand;
+}
+def vecshiftL32 : Operand<i32>, ImmLeaf<i32, [{
+ return (((uint32_t)Imm) < 32);
+}]> {
+ let EncoderMethod = "getVecShiftL32OpValue";
+ let DecoderMethod = "DecodeVecShiftL32Imm";
+ let ParserMatchClass = Imm0_31Operand;
+}
+def vecshiftL64 : Operand<i32>, ImmLeaf<i32, [{
+ return (((uint32_t)Imm) < 64);
+}]> {
+ let EncoderMethod = "getVecShiftL64OpValue";
+ let DecoderMethod = "DecodeVecShiftL64Imm";
+ let ParserMatchClass = Imm0_63Operand;
+}
+
+
+// Crazy immediate formats used by 32-bit and 64-bit logical immediate
+// instructions for splatting repeating bit patterns across the immediate.
+def logical_imm32_XFORM : SDNodeXForm<imm, [{
+ uint64_t enc = AArch64_AM::encodeLogicalImmediate(N->getZExtValue(), 32);
+ return CurDAG->getTargetConstant(enc, MVT::i32);
+}]>;
+def logical_imm64_XFORM : SDNodeXForm<imm, [{
+ uint64_t enc = AArch64_AM::encodeLogicalImmediate(N->getZExtValue(), 64);
+ return CurDAG->getTargetConstant(enc, MVT::i32);
+}]>;
+
+let DiagnosticType = "LogicalSecondSource" in {
+ def LogicalImm32Operand : AsmOperandClass {
+ let Name = "LogicalImm32";
+ }
+ def LogicalImm64Operand : AsmOperandClass {
+ let Name = "LogicalImm64";
+ }
+ def LogicalImm32NotOperand : AsmOperandClass {
+ let Name = "LogicalImm32Not";
+ }
+ def LogicalImm64NotOperand : AsmOperandClass {
+ let Name = "LogicalImm64Not";
+ }
+}
+def logical_imm32 : Operand<i32>, PatLeaf<(imm), [{
+ return AArch64_AM::isLogicalImmediate(N->getZExtValue(), 32);
+}], logical_imm32_XFORM> {
+ let PrintMethod = "printLogicalImm32";
+ let ParserMatchClass = LogicalImm32Operand;
+}
+def logical_imm64 : Operand<i64>, PatLeaf<(imm), [{
+ return AArch64_AM::isLogicalImmediate(N->getZExtValue(), 64);
+}], logical_imm64_XFORM> {
+ let PrintMethod = "printLogicalImm64";
+ let ParserMatchClass = LogicalImm64Operand;
+}
+def logical_imm32_not : Operand<i32> {
+ let ParserMatchClass = LogicalImm32NotOperand;
+}
+def logical_imm64_not : Operand<i64> {
+ let ParserMatchClass = LogicalImm64NotOperand;
+}
+
+// imm0_65535 predicate - True if the immediate is in the range [0,65535].
+def Imm0_65535Operand : AsmImmRange<0, 65535>;
+def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{
+ return ((uint32_t)Imm) < 65536;
+}]> {
+ let ParserMatchClass = Imm0_65535Operand;
+ let PrintMethod = "printHexImm";
+}
+
+// imm0_255 predicate - True if the immediate is in the range [0,255].
+def Imm0_255Operand : AsmOperandClass { let Name = "Imm0_255"; }
+def imm0_255 : Operand<i32>, ImmLeaf<i32, [{
+ return ((uint32_t)Imm) < 256;
+}]> {
+ let ParserMatchClass = Imm0_255Operand;
+ let PrintMethod = "printHexImm";
+}
+
+// imm0_127 predicate - True if the immediate is in the range [0,127]
+def Imm0_127Operand : AsmImmRange<0, 127>;
+def imm0_127 : Operand<i32>, ImmLeaf<i32, [{
+ return ((uint32_t)Imm) < 128;
+}]> {
+ let ParserMatchClass = Imm0_127Operand;
+ let PrintMethod = "printHexImm";
+}
+
+// NOTE: These imm0_N operands have to be of type i64 because i64 is the size
+// for all shift-amounts.
+
+// imm0_63 predicate - True if the immediate is in the range [0,63]
+def imm0_63 : Operand<i64>, ImmLeaf<i64, [{
+ return ((uint64_t)Imm) < 64;
+}]> {
+ let ParserMatchClass = Imm0_63Operand;
+}
+
+// imm0_31 predicate - True if the immediate is in the range [0,31]
+def imm0_31 : Operand<i64>, ImmLeaf<i64, [{
+ return ((uint64_t)Imm) < 32;
+}]> {
+ let ParserMatchClass = Imm0_31Operand;
+}
+
+// imm0_15 predicate - True if the immediate is in the range [0,15]
+def imm0_15 : Operand<i64>, ImmLeaf<i64, [{
+ return ((uint64_t)Imm) < 16;
+}]> {
+ let ParserMatchClass = Imm0_15Operand;
+}
+
+// imm0_7 predicate - True if the immediate is in the range [0,7]
+def imm0_7 : Operand<i64>, ImmLeaf<i64, [{
+ return ((uint64_t)Imm) < 8;
+}]> {
+ let ParserMatchClass = Imm0_7Operand;
+}
+
+// imm32_0_15 predicate - True if the 32-bit immediate is in the range [0,15]
+def imm32_0_15 : Operand<i32>, ImmLeaf<i32, [{
+ return ((uint32_t)Imm) < 16;
+}]>;
+
+// An arithmetic shifter operand:
+// {7-6} - shift type: 00 = lsl, 01 = lsr, 10 = asr
+// {5-0} - imm6
+class arith_shift<ValueType Ty, int width> : Operand<Ty> {
+ let PrintMethod = "printShifter";
+ let ParserMatchClass = !cast<AsmOperandClass>(
+ "ArithmeticShifterOperand" # width);
+}
+
+def arith_shift32 : arith_shift<i32, 32>;
+def arith_shift64 : arith_shift<i64, 64>;
+
+class arith_shifted_reg<ValueType Ty, RegisterClass regclass, int width>
+ : Operand<Ty>,
+ ComplexPattern<Ty, 2, "SelectArithShiftedRegister", []> {
+ let PrintMethod = "printShiftedRegister";
+ let MIOperandInfo = (ops regclass, !cast<Operand>("arith_shift" # width));
+}
+
+def arith_shifted_reg32 : arith_shifted_reg<i32, GPR32, 32>;
+def arith_shifted_reg64 : arith_shifted_reg<i64, GPR64, 64>;
+
+// An arithmetic shifter operand:
+// {7-6} - shift type: 00 = lsl, 01 = lsr, 10 = asr, 11 = ror
+// {5-0} - imm6
+class logical_shift<int width> : Operand<i32> {
+ let PrintMethod = "printShifter";
+ let ParserMatchClass = !cast<AsmOperandClass>(
+ "LogicalShifterOperand" # width);
+}
+
+def logical_shift32 : logical_shift<32>;
+def logical_shift64 : logical_shift<64>;
+
+class logical_shifted_reg<ValueType Ty, RegisterClass regclass, Operand shiftop>
+ : Operand<Ty>,
+ ComplexPattern<Ty, 2, "SelectLogicalShiftedRegister", []> {
+ let PrintMethod = "printShiftedRegister";
+ let MIOperandInfo = (ops regclass, shiftop);
+}
+
+def logical_shifted_reg32 : logical_shifted_reg<i32, GPR32, logical_shift32>;
+def logical_shifted_reg64 : logical_shifted_reg<i64, GPR64, logical_shift64>;
+
+// A logical vector shifter operand:
+// {7-6} - shift type: 00 = lsl
+// {5-0} - imm6: #0, #8, #16, or #24
+def logical_vec_shift : Operand<i32> {
+ let PrintMethod = "printShifter";
+ let EncoderMethod = "getVecShifterOpValue";
+ let ParserMatchClass = LogicalVecShifterOperand;
+}
+
+// A logical vector half-word shifter operand:
+// {7-6} - shift type: 00 = lsl
+// {5-0} - imm6: #0 or #8
+def logical_vec_hw_shift : Operand<i32> {
+ let PrintMethod = "printShifter";
+ let EncoderMethod = "getVecShifterOpValue";
+ let ParserMatchClass = LogicalVecHalfWordShifterOperand;
+}
+
+// A vector move shifter operand:
+// {0} - imm1: #8 or #16
+def move_vec_shift : Operand<i32> {
+ let PrintMethod = "printShifter";
+ let EncoderMethod = "getMoveVecShifterOpValue";
+ let ParserMatchClass = MoveVecShifterOperand;
+}
+
+def AddSubImmOperand : AsmOperandClass {
+ let Name = "AddSubImm";
+ let ParserMethod = "tryParseAddSubImm";
+ let DiagnosticType = "AddSubSecondSource";
+}
+// An ADD/SUB immediate shifter operand:
+// second operand:
+// {7-6} - shift type: 00 = lsl
+// {5-0} - imm6: #0 or #12
+class addsub_shifted_imm<ValueType Ty>
+ : Operand<Ty>, ComplexPattern<Ty, 2, "SelectArithImmed", [imm]> {
+ let PrintMethod = "printAddSubImm";
+ let EncoderMethod = "getAddSubImmOpValue";
+ let ParserMatchClass = AddSubImmOperand;
+ let MIOperandInfo = (ops i32imm, i32imm);
+}
+
+def addsub_shifted_imm32 : addsub_shifted_imm<i32>;
+def addsub_shifted_imm64 : addsub_shifted_imm<i64>;
+
+class neg_addsub_shifted_imm<ValueType Ty>
+ : Operand<Ty>, ComplexPattern<Ty, 2, "SelectNegArithImmed", [imm]> {
+ let PrintMethod = "printAddSubImm";
+ let EncoderMethod = "getAddSubImmOpValue";
+ let ParserMatchClass = AddSubImmOperand;
+ let MIOperandInfo = (ops i32imm, i32imm);
+}
+
+def neg_addsub_shifted_imm32 : neg_addsub_shifted_imm<i32>;
+def neg_addsub_shifted_imm64 : neg_addsub_shifted_imm<i64>;
+
+// An extend operand:
+// {5-3} - extend type
+// {2-0} - imm3
+def arith_extend : Operand<i32> {
+ let PrintMethod = "printArithExtend";
+ let ParserMatchClass = ExtendOperand;
+}
+def arith_extend64 : Operand<i32> {
+ let PrintMethod = "printArithExtend";
+ let ParserMatchClass = ExtendOperand64;
+}
+
+// 'extend' that's a lsl of a 64-bit register.
+def arith_extendlsl64 : Operand<i32> {
+ let PrintMethod = "printArithExtend";
+ let ParserMatchClass = ExtendOperandLSL64;
+}
+
+class arith_extended_reg32<ValueType Ty> : Operand<Ty>,
+ ComplexPattern<Ty, 2, "SelectArithExtendedRegister", []> {
+ let PrintMethod = "printExtendedRegister";
+ let MIOperandInfo = (ops GPR32, arith_extend);
+}
+
+class arith_extended_reg32to64<ValueType Ty> : Operand<Ty>,
+ ComplexPattern<Ty, 2, "SelectArithExtendedRegister", []> {
+ let PrintMethod = "printExtendedRegister";
+ let MIOperandInfo = (ops GPR32, arith_extend64);
+}
+
+// Floating-point immediate.
+def fpimm32 : Operand<f32>,
+ PatLeaf<(f32 fpimm), [{
+ return AArch64_AM::getFP32Imm(N->getValueAPF()) != -1;
+ }], SDNodeXForm<fpimm, [{
+ APFloat InVal = N->getValueAPF();
+ uint32_t enc = AArch64_AM::getFP32Imm(InVal);
+ return CurDAG->getTargetConstant(enc, MVT::i32);
+ }]>> {
+ let ParserMatchClass = FPImmOperand;
+ let PrintMethod = "printFPImmOperand";
+}
+def fpimm64 : Operand<f64>,
+ PatLeaf<(f64 fpimm), [{
+ return AArch64_AM::getFP64Imm(N->getValueAPF()) != -1;
+ }], SDNodeXForm<fpimm, [{
+ APFloat InVal = N->getValueAPF();
+ uint32_t enc = AArch64_AM::getFP64Imm(InVal);
+ return CurDAG->getTargetConstant(enc, MVT::i32);
+ }]>> {
+ let ParserMatchClass = FPImmOperand;
+ let PrintMethod = "printFPImmOperand";
+}
+
+def fpimm8 : Operand<i32> {
+ let ParserMatchClass = FPImmOperand;
+ let PrintMethod = "printFPImmOperand";
+}
+
+def fpimm0 : PatLeaf<(fpimm), [{
+ return N->isExactlyValue(+0.0);
+}]>;
+
+// Vector lane operands
+class AsmVectorIndex<string Suffix> : AsmOperandClass {
+ let Name = "VectorIndex" # Suffix;
+ let DiagnosticType = "InvalidIndex" # Suffix;
+}
+def VectorIndex1Operand : AsmVectorIndex<"1">;
+def VectorIndexBOperand : AsmVectorIndex<"B">;
+def VectorIndexHOperand : AsmVectorIndex<"H">;
+def VectorIndexSOperand : AsmVectorIndex<"S">;
+def VectorIndexDOperand : AsmVectorIndex<"D">;
+
+def VectorIndex1 : Operand<i64>, ImmLeaf<i64, [{
+ return ((uint64_t)Imm) == 1;
+}]> {
+ let ParserMatchClass = VectorIndex1Operand;
+ let PrintMethod = "printVectorIndex";
+ let MIOperandInfo = (ops i64imm);
+}
+def VectorIndexB : Operand<i64>, ImmLeaf<i64, [{
+ return ((uint64_t)Imm) < 16;
+}]> {
+ let ParserMatchClass = VectorIndexBOperand;
+ let PrintMethod = "printVectorIndex";
+ let MIOperandInfo = (ops i64imm);
+}
+def VectorIndexH : Operand<i64>, ImmLeaf<i64, [{
+ return ((uint64_t)Imm) < 8;
+}]> {
+ let ParserMatchClass = VectorIndexHOperand;
+ let PrintMethod = "printVectorIndex";
+ let MIOperandInfo = (ops i64imm);
+}
+def VectorIndexS : Operand<i64>, ImmLeaf<i64, [{
+ return ((uint64_t)Imm) < 4;
+}]> {
+ let ParserMatchClass = VectorIndexSOperand;
+ let PrintMethod = "printVectorIndex";
+ let MIOperandInfo = (ops i64imm);
+}
+def VectorIndexD : Operand<i64>, ImmLeaf<i64, [{
+ return ((uint64_t)Imm) < 2;
+}]> {
+ let ParserMatchClass = VectorIndexDOperand;
+ let PrintMethod = "printVectorIndex";
+ let MIOperandInfo = (ops i64imm);
+}
+
+// 8-bit immediate for AdvSIMD where 64-bit values of the form:
+// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
+// are encoded as the eight bit value 'abcdefgh'.
+def simdimmtype10 : Operand<i32>,
+ PatLeaf<(f64 fpimm), [{
+ return AArch64_AM::isAdvSIMDModImmType10(N->getValueAPF()
+ .bitcastToAPInt()
+ .getZExtValue());
+ }], SDNodeXForm<fpimm, [{
+ APFloat InVal = N->getValueAPF();
+ uint32_t enc = AArch64_AM::encodeAdvSIMDModImmType10(N->getValueAPF()
+ .bitcastToAPInt()
+ .getZExtValue());
+ return CurDAG->getTargetConstant(enc, MVT::i32);
+ }]>> {
+ let ParserMatchClass = SIMDImmType10Operand;
+ let PrintMethod = "printSIMDType10Operand";
+}
+
+
+//---
+// System management
+//---
+
+// Base encoding for system instruction operands.
+let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
+class BaseSystemI<bit L, dag oops, dag iops, string asm, string operands,
+ list<dag> pattern = []>
+ : I<oops, iops, asm, operands, "", pattern> {
+ let Inst{31-22} = 0b1101010100;
+ let Inst{21} = L;
+}
+
+// System instructions which do not have an Rt register.
+class SimpleSystemI<bit L, dag iops, string asm, string operands,
+ list<dag> pattern = []>
+ : BaseSystemI<L, (outs), iops, asm, operands, pattern> {
+ let Inst{4-0} = 0b11111;
+}
+
+// System instructions which have an Rt register.
+class RtSystemI<bit L, dag oops, dag iops, string asm, string operands>
+ : BaseSystemI<L, oops, iops, asm, operands>,
+ Sched<[WriteSys]> {
+ bits<5> Rt;
+ let Inst{4-0} = Rt;
+}
+
+// Hint instructions that take both a CRm and a 3-bit immediate.
+// NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
+// model patterns with sufficiently fine granularity
+let mayStore = 1, mayLoad = 1, hasSideEffects = 1 in
+ class HintI<string mnemonic>
+ : SimpleSystemI<0, (ins imm0_127:$imm), mnemonic#" $imm", "",
+ [(int_aarch64_hint imm0_127:$imm)]>,
+ Sched<[WriteHint]> {
+ bits <7> imm;
+ let Inst{20-12} = 0b000110010;
+ let Inst{11-5} = imm;
+ }
+
+// System instructions taking a single literal operand which encodes into
+// CRm. op2 differentiates the opcodes.
+def BarrierAsmOperand : AsmOperandClass {
+ let Name = "Barrier";
+ let ParserMethod = "tryParseBarrierOperand";
+}
+def barrier_op : Operand<i32> {
+ let PrintMethod = "printBarrierOption";
+ let ParserMatchClass = BarrierAsmOperand;
+}
+class CRmSystemI<Operand crmtype, bits<3> opc, string asm,
+ list<dag> pattern = []>
+ : SimpleSystemI<0, (ins crmtype:$CRm), asm, "\t$CRm", pattern>,
+ Sched<[WriteBarrier]> {
+ bits<4> CRm;
+ let Inst{20-12} = 0b000110011;
+ let Inst{11-8} = CRm;
+ let Inst{7-5} = opc;
+}
+
+// MRS/MSR system instructions. These have different operand classes because
+// a different subset of registers can be accessed through each instruction.
+def MRSSystemRegisterOperand : AsmOperandClass {
+ let Name = "MRSSystemRegister";
+ let ParserMethod = "tryParseSysReg";
+ let DiagnosticType = "MRS";
+}
+// concatenation of 1, op0, op1, CRn, CRm, op2. 16-bit immediate.
+def mrs_sysreg_op : Operand<i32> {
+ let ParserMatchClass = MRSSystemRegisterOperand;
+ let DecoderMethod = "DecodeMRSSystemRegister";
+ let PrintMethod = "printMRSSystemRegister";
+}
+
+def MSRSystemRegisterOperand : AsmOperandClass {
+ let Name = "MSRSystemRegister";
+ let ParserMethod = "tryParseSysReg";
+ let DiagnosticType = "MSR";
+}
+def msr_sysreg_op : Operand<i32> {
+ let ParserMatchClass = MSRSystemRegisterOperand;
+ let DecoderMethod = "DecodeMSRSystemRegister";
+ let PrintMethod = "printMSRSystemRegister";
+}
+
+class MRSI : RtSystemI<1, (outs GPR64:$Rt), (ins mrs_sysreg_op:$systemreg),
+ "mrs", "\t$Rt, $systemreg"> {
+ bits<15> systemreg;
+ let Inst{20} = 1;
+ let Inst{19-5} = systemreg;
+}
+
+// FIXME: Some of these def NZCV, others don't. Best way to model that?
+// Explicitly modeling each of the system register as a register class
+// would do it, but feels like overkill at this point.
+class MSRI : RtSystemI<0, (outs), (ins msr_sysreg_op:$systemreg, GPR64:$Rt),
+ "msr", "\t$systemreg, $Rt"> {
+ bits<15> systemreg;
+ let Inst{20} = 1;
+ let Inst{19-5} = systemreg;
+}
+
+def SystemPStateFieldOperand : AsmOperandClass {
+ let Name = "SystemPStateField";
+ let ParserMethod = "tryParseSysReg";
+}
+def pstatefield_op : Operand<i32> {
+ let ParserMatchClass = SystemPStateFieldOperand;
+ let PrintMethod = "printSystemPStateField";
+}
+
+let Defs = [NZCV] in
+class MSRpstateI
+ : SimpleSystemI<0, (ins pstatefield_op:$pstate_field, imm0_15:$imm),
+ "msr", "\t$pstate_field, $imm">,
+ Sched<[WriteSys]> {
+ bits<6> pstatefield;
+ bits<4> imm;
+ let Inst{20-19} = 0b00;
+ let Inst{18-16} = pstatefield{5-3};
+ let Inst{15-12} = 0b0100;
+ let Inst{11-8} = imm;
+ let Inst{7-5} = pstatefield{2-0};
+
+ let DecoderMethod = "DecodeSystemPStateInstruction";
+}
+
+// SYS and SYSL generic system instructions.
+def SysCRAsmOperand : AsmOperandClass {
+ let Name = "SysCR";
+ let ParserMethod = "tryParseSysCROperand";
+}
+
+def sys_cr_op : Operand<i32> {
+ let PrintMethod = "printSysCROperand";
+ let ParserMatchClass = SysCRAsmOperand;
+}
+
+class SystemXtI<bit L, string asm>
+ : RtSystemI<L, (outs),
+ (ins imm0_7:$op1, sys_cr_op:$Cn, sys_cr_op:$Cm, imm0_7:$op2, GPR64:$Rt),
+ asm, "\t$op1, $Cn, $Cm, $op2, $Rt"> {
+ bits<3> op1;
+ bits<4> Cn;
+ bits<4> Cm;
+ bits<3> op2;
+ let Inst{20-19} = 0b01;
+ let Inst{18-16} = op1;
+ let Inst{15-12} = Cn;
+ let Inst{11-8} = Cm;
+ let Inst{7-5} = op2;
+}
+
+class SystemLXtI<bit L, string asm>
+ : RtSystemI<L, (outs),
+ (ins GPR64:$Rt, imm0_7:$op1, sys_cr_op:$Cn, sys_cr_op:$Cm, imm0_7:$op2),
+ asm, "\t$Rt, $op1, $Cn, $Cm, $op2"> {
+ bits<3> op1;
+ bits<4> Cn;
+ bits<4> Cm;
+ bits<3> op2;
+ let Inst{20-19} = 0b01;
+ let Inst{18-16} = op1;
+ let Inst{15-12} = Cn;
+ let Inst{11-8} = Cm;
+ let Inst{7-5} = op2;
+}
+
+
+// Branch (register) instructions:
+//
+// case opc of
+// 0001 blr
+// 0000 br
+// 0101 dret
+// 0100 eret
+// 0010 ret
+// otherwise UNDEFINED
+class BaseBranchReg<bits<4> opc, dag oops, dag iops, string asm,
+ string operands, list<dag> pattern>
+ : I<oops, iops, asm, operands, "", pattern>, Sched<[WriteBrReg]> {
+ let Inst{31-25} = 0b1101011;
+ let Inst{24-21} = opc;
+ let Inst{20-16} = 0b11111;
+ let Inst{15-10} = 0b000000;
+ let Inst{4-0} = 0b00000;
+}
+
+class BranchReg<bits<4> opc, string asm, list<dag> pattern>
+ : BaseBranchReg<opc, (outs), (ins GPR64:$Rn), asm, "\t$Rn", pattern> {
+ bits<5> Rn;
+ let Inst{9-5} = Rn;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 1, isReturn = 1 in
+class SpecialReturn<bits<4> opc, string asm>
+ : BaseBranchReg<opc, (outs), (ins), asm, "", []> {
+ let Inst{9-5} = 0b11111;
+}
+
+//---
+// Conditional branch instruction.
+//---
+
+// Condition code.
+// 4-bit immediate. Pretty-printed as <cc>
+def ccode : Operand<i32> {
+ let PrintMethod = "printCondCode";
+ let ParserMatchClass = CondCode;
+}
+def inv_ccode : Operand<i32> {
+ // AL and NV are invalid in the aliases which use inv_ccode
+ let PrintMethod = "printInverseCondCode";
+ let ParserMatchClass = CondCode;
+ let MCOperandPredicate = [{
+ return MCOp.isImm() &&
+ MCOp.getImm() != AArch64CC::AL &&
+ MCOp.getImm() != AArch64CC::NV;
+ }];
+}
+
+// Conditional branch target. 19-bit immediate. The low two bits of the target
+// offset are implied zero and so are not part of the immediate.
+def PCRelLabel19Operand : AsmOperandClass {
+ let Name = "PCRelLabel19";
+ let DiagnosticType = "InvalidLabel";
+}
+def am_brcond : Operand<OtherVT> {
+ let EncoderMethod = "getCondBranchTargetOpValue";
+ let DecoderMethod = "DecodePCRelLabel19";
+ let PrintMethod = "printAlignedLabel";
+ let ParserMatchClass = PCRelLabel19Operand;
+}
+
+class BranchCond : I<(outs), (ins ccode:$cond, am_brcond:$target),
+ "b", ".$cond\t$target", "",
+ [(AArch64brcond bb:$target, imm:$cond, NZCV)]>,
+ Sched<[WriteBr]> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let Uses = [NZCV];
+
+ bits<4> cond;
+ bits<19> target;
+ let Inst{31-24} = 0b01010100;
+ let Inst{23-5} = target;
+ let Inst{4} = 0;
+ let Inst{3-0} = cond;
+}
+
+//---
+// Compare-and-branch instructions.
+//---
+class BaseCmpBranch<RegisterClass regtype, bit op, string asm, SDNode node>
+ : I<(outs), (ins regtype:$Rt, am_brcond:$target),
+ asm, "\t$Rt, $target", "",
+ [(node regtype:$Rt, bb:$target)]>,
+ Sched<[WriteBr]> {
+ let isBranch = 1;
+ let isTerminator = 1;
+
+ bits<5> Rt;
+ bits<19> target;
+ let Inst{30-25} = 0b011010;
+ let Inst{24} = op;
+ let Inst{23-5} = target;
+ let Inst{4-0} = Rt;
+}
+
+multiclass CmpBranch<bit op, string asm, SDNode node> {
+ def W : BaseCmpBranch<GPR32, op, asm, node> {
+ let Inst{31} = 0;
+ }
+ def X : BaseCmpBranch<GPR64, op, asm, node> {
+ let Inst{31} = 1;
+ }
+}
+
+//---
+// Test-bit-and-branch instructions.
+//---
+// Test-and-branch target. 14-bit sign-extended immediate. The low two bits of
+// the target offset are implied zero and so are not part of the immediate.
+def BranchTarget14Operand : AsmOperandClass {
+ let Name = "BranchTarget14";
+}
+def am_tbrcond : Operand<OtherVT> {
+ let EncoderMethod = "getTestBranchTargetOpValue";
+ let PrintMethod = "printAlignedLabel";
+ let ParserMatchClass = BranchTarget14Operand;
+}
+
+// AsmOperand classes to emit (or not) special diagnostics
+def TBZImm0_31Operand : AsmOperandClass {
+ let Name = "TBZImm0_31";
+ let PredicateMethod = "isImm0_31";
+ let RenderMethod = "addImm0_31Operands";
+}
+def TBZImm32_63Operand : AsmOperandClass {
+ let Name = "Imm32_63";
+ let DiagnosticType = "InvalidImm0_63";
+}
+
+class tbz_imm0_31<AsmOperandClass matcher> : Operand<i64>, ImmLeaf<i64, [{
+ return (((uint32_t)Imm) < 32);
+}]> {
+ let ParserMatchClass = matcher;
+}
+
+def tbz_imm0_31_diag : tbz_imm0_31<Imm0_31Operand>;
+def tbz_imm0_31_nodiag : tbz_imm0_31<TBZImm0_31Operand>;
+
+def tbz_imm32_63 : Operand<i64>, ImmLeaf<i64, [{
+ return (((uint32_t)Imm) > 31) && (((uint32_t)Imm) < 64);
+}]> {
+ let ParserMatchClass = TBZImm32_63Operand;
+}
+
+class BaseTestBranch<RegisterClass regtype, Operand immtype,
+ bit op, string asm, SDNode node>
+ : I<(outs), (ins regtype:$Rt, immtype:$bit_off, am_tbrcond:$target),
+ asm, "\t$Rt, $bit_off, $target", "",
+ [(node regtype:$Rt, immtype:$bit_off, bb:$target)]>,
+ Sched<[WriteBr]> {
+ let isBranch = 1;
+ let isTerminator = 1;
+
+ bits<5> Rt;
+ bits<6> bit_off;
+ bits<14> target;
+
+ let Inst{30-25} = 0b011011;
+ let Inst{24} = op;
+ let Inst{23-19} = bit_off{4-0};
+ let Inst{18-5} = target;
+ let Inst{4-0} = Rt;
+
+ let DecoderMethod = "DecodeTestAndBranch";
+}
+
+multiclass TestBranch<bit op, string asm, SDNode node> {
+ def W : BaseTestBranch<GPR32, tbz_imm0_31_diag, op, asm, node> {
+ let Inst{31} = 0;
+ }
+
+ def X : BaseTestBranch<GPR64, tbz_imm32_63, op, asm, node> {
+ let Inst{31} = 1;
+ }
+
+ // Alias X-reg with 0-31 imm to W-Reg.
+ def : InstAlias<asm # "\t$Rd, $imm, $target",
+ (!cast<Instruction>(NAME#"W") GPR32as64:$Rd,
+ tbz_imm0_31_nodiag:$imm, am_tbrcond:$target), 0>;
+ def : Pat<(node GPR64:$Rn, tbz_imm0_31_diag:$imm, bb:$target),
+ (!cast<Instruction>(NAME#"W") (EXTRACT_SUBREG GPR64:$Rn, sub_32),
+ tbz_imm0_31_diag:$imm, bb:$target)>;
+}
+
+//---
+// Unconditional branch (immediate) instructions.
+//---
+def BranchTarget26Operand : AsmOperandClass {
+ let Name = "BranchTarget26";
+ let DiagnosticType = "InvalidLabel";
+}
+def am_b_target : Operand<OtherVT> {
+ let EncoderMethod = "getBranchTargetOpValue";
+ let PrintMethod = "printAlignedLabel";
+ let ParserMatchClass = BranchTarget26Operand;
+}
+def am_bl_target : Operand<i64> {
+ let EncoderMethod = "getBranchTargetOpValue";
+ let PrintMethod = "printAlignedLabel";
+ let ParserMatchClass = BranchTarget26Operand;
+}
+
+class BImm<bit op, dag iops, string asm, list<dag> pattern>
+ : I<(outs), iops, asm, "\t$addr", "", pattern>, Sched<[WriteBr]> {
+ bits<26> addr;
+ let Inst{31} = op;
+ let Inst{30-26} = 0b00101;
+ let Inst{25-0} = addr;
+
+ let DecoderMethod = "DecodeUnconditionalBranch";
+}
+
+class BranchImm<bit op, string asm, list<dag> pattern>
+ : BImm<op, (ins am_b_target:$addr), asm, pattern>;
+class CallImm<bit op, string asm, list<dag> pattern>
+ : BImm<op, (ins am_bl_target:$addr), asm, pattern>;
+
+//---
+// Basic one-operand data processing instructions.
+//---
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseOneOperandData<bits<3> opc, RegisterClass regtype, string asm,
+ SDPatternOperator node>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "\t$Rd, $Rn", "",
+ [(set regtype:$Rd, (node regtype:$Rn))]>,
+ Sched<[WriteI, ReadI]> {
+ bits<5> Rd;
+ bits<5> Rn;
+
+ let Inst{30-13} = 0b101101011000000000;
+ let Inst{12-10} = opc;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+multiclass OneOperandData<bits<3> opc, string asm,
+ SDPatternOperator node = null_frag> {
+ def Wr : BaseOneOperandData<opc, GPR32, asm, node> {
+ let Inst{31} = 0;
+ }
+
+ def Xr : BaseOneOperandData<opc, GPR64, asm, node> {
+ let Inst{31} = 1;
+ }
+}
+
+class OneWRegData<bits<3> opc, string asm, SDPatternOperator node>
+ : BaseOneOperandData<opc, GPR32, asm, node> {
+ let Inst{31} = 0;
+}
+
+class OneXRegData<bits<3> opc, string asm, SDPatternOperator node>
+ : BaseOneOperandData<opc, GPR64, asm, node> {
+ let Inst{31} = 1;
+}
+
+//---
+// Basic two-operand data processing instructions.
+//---
+class BaseBaseAddSubCarry<bit isSub, RegisterClass regtype, string asm,
+ list<dag> pattern>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm),
+ asm, "\t$Rd, $Rn, $Rm", "", pattern>,
+ Sched<[WriteI, ReadI, ReadI]> {
+ let Uses = [NZCV];
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{30} = isSub;
+ let Inst{28-21} = 0b11010000;
+ let Inst{20-16} = Rm;
+ let Inst{15-10} = 0;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+class BaseAddSubCarry<bit isSub, RegisterClass regtype, string asm,
+ SDNode OpNode>
+ : BaseBaseAddSubCarry<isSub, regtype, asm,
+ [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm, NZCV))]>;
+
+class BaseAddSubCarrySetFlags<bit isSub, RegisterClass regtype, string asm,
+ SDNode OpNode>
+ : BaseBaseAddSubCarry<isSub, regtype, asm,
+ [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm, NZCV)),
+ (implicit NZCV)]> {
+ let Defs = [NZCV];
+}
+
+multiclass AddSubCarry<bit isSub, string asm, string asm_setflags,
+ SDNode OpNode, SDNode OpNode_setflags> {
+ def Wr : BaseAddSubCarry<isSub, GPR32, asm, OpNode> {
+ let Inst{31} = 0;
+ let Inst{29} = 0;
+ }
+ def Xr : BaseAddSubCarry<isSub, GPR64, asm, OpNode> {
+ let Inst{31} = 1;
+ let Inst{29} = 0;
+ }
+
+ // Sets flags.
+ def SWr : BaseAddSubCarrySetFlags<isSub, GPR32, asm_setflags,
+ OpNode_setflags> {
+ let Inst{31} = 0;
+ let Inst{29} = 1;
+ }
+ def SXr : BaseAddSubCarrySetFlags<isSub, GPR64, asm_setflags,
+ OpNode_setflags> {
+ let Inst{31} = 1;
+ let Inst{29} = 1;
+ }
+}
+
+class BaseTwoOperand<bits<4> opc, RegisterClass regtype, string asm,
+ SDPatternOperator OpNode>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm),
+ asm, "\t$Rd, $Rn, $Rm", "",
+ [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm))]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{30-21} = 0b0011010110;
+ let Inst{20-16} = Rm;
+ let Inst{15-14} = 0b00;
+ let Inst{13-10} = opc;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+class BaseDiv<bit isSigned, RegisterClass regtype, string asm,
+ SDPatternOperator OpNode>
+ : BaseTwoOperand<{0,0,1,?}, regtype, asm, OpNode> {
+ let Inst{10} = isSigned;
+}
+
+multiclass Div<bit isSigned, string asm, SDPatternOperator OpNode> {
+ def Wr : BaseDiv<isSigned, GPR32, asm, OpNode>,
+ Sched<[WriteID32, ReadID, ReadID]> {
+ let Inst{31} = 0;
+ }
+ def Xr : BaseDiv<isSigned, GPR64, asm, OpNode>,
+ Sched<[WriteID64, ReadID, ReadID]> {
+ let Inst{31} = 1;
+ }
+}
+
+class BaseShift<bits<2> shift_type, RegisterClass regtype, string asm,
+ SDPatternOperator OpNode = null_frag>
+ : BaseTwoOperand<{1,0,?,?}, regtype, asm, OpNode>,
+ Sched<[WriteIS, ReadI]> {
+ let Inst{11-10} = shift_type;
+}
+
+multiclass Shift<bits<2> shift_type, string asm, SDNode OpNode> {
+ def Wr : BaseShift<shift_type, GPR32, asm> {
+ let Inst{31} = 0;
+ }
+
+ def Xr : BaseShift<shift_type, GPR64, asm, OpNode> {
+ let Inst{31} = 1;
+ }
+
+ def : Pat<(i32 (OpNode GPR32:$Rn, i64:$Rm)),
+ (!cast<Instruction>(NAME # "Wr") GPR32:$Rn,
+ (EXTRACT_SUBREG i64:$Rm, sub_32))>;
+
+ def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (zext GPR32:$Rm)))),
+ (!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>;
+
+ def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (anyext GPR32:$Rm)))),
+ (!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>;
+
+ def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (sext GPR32:$Rm)))),
+ (!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>;
+}
+
+class ShiftAlias<string asm, Instruction inst, RegisterClass regtype>
+ : InstAlias<asm#" $dst, $src1, $src2",
+ (inst regtype:$dst, regtype:$src1, regtype:$src2), 0>;
+
+class BaseMulAccum<bit isSub, bits<3> opc, RegisterClass multype,
+ RegisterClass addtype, string asm,
+ list<dag> pattern>
+ : I<(outs addtype:$Rd), (ins multype:$Rn, multype:$Rm, addtype:$Ra),
+ asm, "\t$Rd, $Rn, $Rm, $Ra", "", pattern> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<5> Ra;
+ let Inst{30-24} = 0b0011011;
+ let Inst{23-21} = opc;
+ let Inst{20-16} = Rm;
+ let Inst{15} = isSub;
+ let Inst{14-10} = Ra;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass MulAccum<bit isSub, string asm, SDNode AccNode> {
+ def Wrrr : BaseMulAccum<isSub, 0b000, GPR32, GPR32, asm,
+ [(set GPR32:$Rd, (AccNode GPR32:$Ra, (mul GPR32:$Rn, GPR32:$Rm)))]>,
+ Sched<[WriteIM32, ReadIM, ReadIM, ReadIMA]> {
+ let Inst{31} = 0;
+ }
+
+ def Xrrr : BaseMulAccum<isSub, 0b000, GPR64, GPR64, asm,
+ [(set GPR64:$Rd, (AccNode GPR64:$Ra, (mul GPR64:$Rn, GPR64:$Rm)))]>,
+ Sched<[WriteIM64, ReadIM, ReadIM, ReadIMA]> {
+ let Inst{31} = 1;
+ }
+}
+
+class WideMulAccum<bit isSub, bits<3> opc, string asm,
+ SDNode AccNode, SDNode ExtNode>
+ : BaseMulAccum<isSub, opc, GPR32, GPR64, asm,
+ [(set GPR64:$Rd, (AccNode GPR64:$Ra,
+ (mul (ExtNode GPR32:$Rn), (ExtNode GPR32:$Rm))))]>,
+ Sched<[WriteIM32, ReadIM, ReadIM, ReadIMA]> {
+ let Inst{31} = 1;
+}
+
+class MulHi<bits<3> opc, string asm, SDNode OpNode>
+ : I<(outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm),
+ asm, "\t$Rd, $Rn, $Rm", "",
+ [(set GPR64:$Rd, (OpNode GPR64:$Rn, GPR64:$Rm))]>,
+ Sched<[WriteIM64, ReadIM, ReadIM]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{31-24} = 0b10011011;
+ let Inst{23-21} = opc;
+ let Inst{20-16} = Rm;
+ let Inst{15} = 0;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+
+ // The Ra field of SMULH and UMULH is unused: it should be assembled as 31
+ // (i.e. all bits 1) but is ignored by the processor.
+ let PostEncoderMethod = "fixMulHigh";
+}
+
+class MulAccumWAlias<string asm, Instruction inst>
+ : InstAlias<asm#" $dst, $src1, $src2",
+ (inst GPR32:$dst, GPR32:$src1, GPR32:$src2, WZR)>;
+class MulAccumXAlias<string asm, Instruction inst>
+ : InstAlias<asm#" $dst, $src1, $src2",
+ (inst GPR64:$dst, GPR64:$src1, GPR64:$src2, XZR)>;
+class WideMulAccumAlias<string asm, Instruction inst>
+ : InstAlias<asm#" $dst, $src1, $src2",
+ (inst GPR64:$dst, GPR32:$src1, GPR32:$src2, XZR)>;
+
+class BaseCRC32<bit sf, bits<2> sz, bit C, RegisterClass StreamReg,
+ SDPatternOperator OpNode, string asm>
+ : I<(outs GPR32:$Rd), (ins GPR32:$Rn, StreamReg:$Rm),
+ asm, "\t$Rd, $Rn, $Rm", "",
+ [(set GPR32:$Rd, (OpNode GPR32:$Rn, StreamReg:$Rm))]>,
+ Sched<[WriteISReg, ReadI, ReadISReg]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+
+ let Inst{31} = sf;
+ let Inst{30-21} = 0b0011010110;
+ let Inst{20-16} = Rm;
+ let Inst{15-13} = 0b010;
+ let Inst{12} = C;
+ let Inst{11-10} = sz;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+ let Predicates = [HasCRC];
+}
+
+//---
+// Address generation.
+//---
+
+class ADRI<bit page, string asm, Operand adr, list<dag> pattern>
+ : I<(outs GPR64:$Xd), (ins adr:$label), asm, "\t$Xd, $label", "",
+ pattern>,
+ Sched<[WriteI]> {
+ bits<5> Xd;
+ bits<21> label;
+ let Inst{31} = page;
+ let Inst{30-29} = label{1-0};
+ let Inst{28-24} = 0b10000;
+ let Inst{23-5} = label{20-2};
+ let Inst{4-0} = Xd;
+
+ let DecoderMethod = "DecodeAdrInstruction";
+}
+
+//---
+// Move immediate.
+//---
+
+def movimm32_imm : Operand<i32> {
+ let ParserMatchClass = Imm0_65535Operand;
+ let EncoderMethod = "getMoveWideImmOpValue";
+ let PrintMethod = "printHexImm";
+}
+def movimm32_shift : Operand<i32> {
+ let PrintMethod = "printShifter";
+ let ParserMatchClass = MovImm32ShifterOperand;
+}
+def movimm64_shift : Operand<i32> {
+ let PrintMethod = "printShifter";
+ let ParserMatchClass = MovImm64ShifterOperand;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseMoveImmediate<bits<2> opc, RegisterClass regtype, Operand shifter,
+ string asm>
+ : I<(outs regtype:$Rd), (ins movimm32_imm:$imm, shifter:$shift),
+ asm, "\t$Rd, $imm$shift", "", []>,
+ Sched<[WriteImm]> {
+ bits<5> Rd;
+ bits<16> imm;
+ bits<6> shift;
+ let Inst{30-29} = opc;
+ let Inst{28-23} = 0b100101;
+ let Inst{22-21} = shift{5-4};
+ let Inst{20-5} = imm;
+ let Inst{4-0} = Rd;
+
+ let DecoderMethod = "DecodeMoveImmInstruction";
+}
+
+multiclass MoveImmediate<bits<2> opc, string asm> {
+ def Wi : BaseMoveImmediate<opc, GPR32, movimm32_shift, asm> {
+ let Inst{31} = 0;
+ }
+
+ def Xi : BaseMoveImmediate<opc, GPR64, movimm64_shift, asm> {
+ let Inst{31} = 1;
+ }
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseInsertImmediate<bits<2> opc, RegisterClass regtype, Operand shifter,
+ string asm>
+ : I<(outs regtype:$Rd),
+ (ins regtype:$src, movimm32_imm:$imm, shifter:$shift),
+ asm, "\t$Rd, $imm$shift", "$src = $Rd", []>,
+ Sched<[WriteI, ReadI]> {
+ bits<5> Rd;
+ bits<16> imm;
+ bits<6> shift;
+ let Inst{30-29} = opc;
+ let Inst{28-23} = 0b100101;
+ let Inst{22-21} = shift{5-4};
+ let Inst{20-5} = imm;
+ let Inst{4-0} = Rd;
+
+ let DecoderMethod = "DecodeMoveImmInstruction";
+}
+
+multiclass InsertImmediate<bits<2> opc, string asm> {
+ def Wi : BaseInsertImmediate<opc, GPR32, movimm32_shift, asm> {
+ let Inst{31} = 0;
+ }
+
+ def Xi : BaseInsertImmediate<opc, GPR64, movimm64_shift, asm> {
+ let Inst{31} = 1;
+ }
+}
+
+//---
+// Add/Subtract
+//---
+
+class BaseAddSubImm<bit isSub, bit setFlags, RegisterClass dstRegtype,
+ RegisterClass srcRegtype, addsub_shifted_imm immtype,
+ string asm, SDPatternOperator OpNode>
+ : I<(outs dstRegtype:$Rd), (ins srcRegtype:$Rn, immtype:$imm),
+ asm, "\t$Rd, $Rn, $imm", "",
+ [(set dstRegtype:$Rd, (OpNode srcRegtype:$Rn, immtype:$imm))]>,
+ Sched<[WriteI, ReadI]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<14> imm;
+ let Inst{30} = isSub;
+ let Inst{29} = setFlags;
+ let Inst{28-24} = 0b10001;
+ let Inst{23-22} = imm{13-12}; // '00' => lsl #0, '01' => lsl #12
+ let Inst{21-10} = imm{11-0};
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+ let DecoderMethod = "DecodeBaseAddSubImm";
+}
+
+class BaseAddSubRegPseudo<RegisterClass regtype,
+ SDPatternOperator OpNode>
+ : Pseudo<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm),
+ [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm))]>,
+ Sched<[WriteI, ReadI, ReadI]>;
+
+class BaseAddSubSReg<bit isSub, bit setFlags, RegisterClass regtype,
+ arith_shifted_reg shifted_regtype, string asm,
+ SDPatternOperator OpNode>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, shifted_regtype:$Rm),
+ asm, "\t$Rd, $Rn, $Rm", "",
+ [(set regtype:$Rd, (OpNode regtype:$Rn, shifted_regtype:$Rm))]>,
+ Sched<[WriteISReg, ReadI, ReadISReg]> {
+ // The operands are in order to match the 'addr' MI operands, so we
+ // don't need an encoder method and by-name matching. Just use the default
+ // in-order handling. Since we're using by-order, make sure the names
+ // do not match.
+ bits<5> dst;
+ bits<5> src1;
+ bits<5> src2;
+ bits<8> shift;
+ let Inst{30} = isSub;
+ let Inst{29} = setFlags;
+ let Inst{28-24} = 0b01011;
+ let Inst{23-22} = shift{7-6};
+ let Inst{21} = 0;
+ let Inst{20-16} = src2;
+ let Inst{15-10} = shift{5-0};
+ let Inst{9-5} = src1;
+ let Inst{4-0} = dst;
+
+ let DecoderMethod = "DecodeThreeAddrSRegInstruction";
+}
+
+class BaseAddSubEReg<bit isSub, bit setFlags, RegisterClass dstRegtype,
+ RegisterClass src1Regtype, Operand src2Regtype,
+ string asm, SDPatternOperator OpNode>
+ : I<(outs dstRegtype:$R1),
+ (ins src1Regtype:$R2, src2Regtype:$R3),
+ asm, "\t$R1, $R2, $R3", "",
+ [(set dstRegtype:$R1, (OpNode src1Regtype:$R2, src2Regtype:$R3))]>,
+ Sched<[WriteIEReg, ReadI, ReadIEReg]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<6> ext;
+ let Inst{30} = isSub;
+ let Inst{29} = setFlags;
+ let Inst{28-24} = 0b01011;
+ let Inst{23-21} = 0b001;
+ let Inst{20-16} = Rm;
+ let Inst{15-13} = ext{5-3};
+ let Inst{12-10} = ext{2-0};
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+
+ let DecoderMethod = "DecodeAddSubERegInstruction";
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseAddSubEReg64<bit isSub, bit setFlags, RegisterClass dstRegtype,
+ RegisterClass src1Regtype, RegisterClass src2Regtype,
+ Operand ext_op, string asm>
+ : I<(outs dstRegtype:$Rd),
+ (ins src1Regtype:$Rn, src2Regtype:$Rm, ext_op:$ext),
+ asm, "\t$Rd, $Rn, $Rm$ext", "", []>,
+ Sched<[WriteIEReg, ReadI, ReadIEReg]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<6> ext;
+ let Inst{30} = isSub;
+ let Inst{29} = setFlags;
+ let Inst{28-24} = 0b01011;
+ let Inst{23-21} = 0b001;
+ let Inst{20-16} = Rm;
+ let Inst{15} = ext{5};
+ let Inst{12-10} = ext{2-0};
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+
+ let DecoderMethod = "DecodeAddSubERegInstruction";
+}
+
+// Aliases for register+register add/subtract.
+class AddSubRegAlias<string asm, Instruction inst, RegisterClass dstRegtype,
+ RegisterClass src1Regtype, RegisterClass src2Regtype,
+ int shiftExt>
+ : InstAlias<asm#" $dst, $src1, $src2",
+ (inst dstRegtype:$dst, src1Regtype:$src1, src2Regtype:$src2,
+ shiftExt)>;
+
+multiclass AddSub<bit isSub, string mnemonic,
+ SDPatternOperator OpNode = null_frag> {
+ let hasSideEffects = 0 in {
+ // Add/Subtract immediate
+ def Wri : BaseAddSubImm<isSub, 0, GPR32sp, GPR32sp, addsub_shifted_imm32,
+ mnemonic, OpNode> {
+ let Inst{31} = 0;
+ }
+ def Xri : BaseAddSubImm<isSub, 0, GPR64sp, GPR64sp, addsub_shifted_imm64,
+ mnemonic, OpNode> {
+ let Inst{31} = 1;
+ }
+
+ // Add/Subtract register - Only used for CodeGen
+ def Wrr : BaseAddSubRegPseudo<GPR32, OpNode>;
+ def Xrr : BaseAddSubRegPseudo<GPR64, OpNode>;
+
+ // Add/Subtract shifted register
+ def Wrs : BaseAddSubSReg<isSub, 0, GPR32, arith_shifted_reg32, mnemonic,
+ OpNode> {
+ let Inst{31} = 0;
+ }
+ def Xrs : BaseAddSubSReg<isSub, 0, GPR64, arith_shifted_reg64, mnemonic,
+ OpNode> {
+ let Inst{31} = 1;
+ }
+ }
+
+ // Add/Subtract extended register
+ let AddedComplexity = 1, hasSideEffects = 0 in {
+ def Wrx : BaseAddSubEReg<isSub, 0, GPR32sp, GPR32sp,
+ arith_extended_reg32<i32>, mnemonic, OpNode> {
+ let Inst{31} = 0;
+ }
+ def Xrx : BaseAddSubEReg<isSub, 0, GPR64sp, GPR64sp,
+ arith_extended_reg32to64<i64>, mnemonic, OpNode> {
+ let Inst{31} = 1;
+ }
+ }
+
+ def Xrx64 : BaseAddSubEReg64<isSub, 0, GPR64sp, GPR64sp, GPR64,
+ arith_extendlsl64, mnemonic> {
+ // UXTX and SXTX only.
+ let Inst{14-13} = 0b11;
+ let Inst{31} = 1;
+ }
+
+ // Register/register aliases with no shift when SP is not used.
+ def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrs"),
+ GPR32, GPR32, GPR32, 0>;
+ def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Xrs"),
+ GPR64, GPR64, GPR64, 0>;
+
+ // Register/register aliases with no shift when either the destination or
+ // first source register is SP.
+ def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrx"),
+ GPR32sponly, GPR32sp, GPR32, 16>; // UXTW #0
+ def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrx"),
+ GPR32sp, GPR32sponly, GPR32, 16>; // UXTW #0
+ def : AddSubRegAlias<mnemonic,
+ !cast<Instruction>(NAME#"Xrx64"),
+ GPR64sponly, GPR64sp, GPR64, 24>; // UXTX #0
+ def : AddSubRegAlias<mnemonic,
+ !cast<Instruction>(NAME#"Xrx64"),
+ GPR64sp, GPR64sponly, GPR64, 24>; // UXTX #0
+}
+
+multiclass AddSubS<bit isSub, string mnemonic, SDNode OpNode, string cmp> {
+ let isCompare = 1, Defs = [NZCV] in {
+ // Add/Subtract immediate
+ def Wri : BaseAddSubImm<isSub, 1, GPR32, GPR32sp, addsub_shifted_imm32,
+ mnemonic, OpNode> {
+ let Inst{31} = 0;
+ }
+ def Xri : BaseAddSubImm<isSub, 1, GPR64, GPR64sp, addsub_shifted_imm64,
+ mnemonic, OpNode> {
+ let Inst{31} = 1;
+ }
+
+ // Add/Subtract register
+ def Wrr : BaseAddSubRegPseudo<GPR32, OpNode>;
+ def Xrr : BaseAddSubRegPseudo<GPR64, OpNode>;
+
+ // Add/Subtract shifted register
+ def Wrs : BaseAddSubSReg<isSub, 1, GPR32, arith_shifted_reg32, mnemonic,
+ OpNode> {
+ let Inst{31} = 0;
+ }
+ def Xrs : BaseAddSubSReg<isSub, 1, GPR64, arith_shifted_reg64, mnemonic,
+ OpNode> {
+ let Inst{31} = 1;
+ }
+
+ // Add/Subtract extended register
+ let AddedComplexity = 1 in {
+ def Wrx : BaseAddSubEReg<isSub, 1, GPR32, GPR32sp,
+ arith_extended_reg32<i32>, mnemonic, OpNode> {
+ let Inst{31} = 0;
+ }
+ def Xrx : BaseAddSubEReg<isSub, 1, GPR64, GPR64sp,
+ arith_extended_reg32<i64>, mnemonic, OpNode> {
+ let Inst{31} = 1;
+ }
+ }
+
+ def Xrx64 : BaseAddSubEReg64<isSub, 1, GPR64, GPR64sp, GPR64,
+ arith_extendlsl64, mnemonic> {
+ // UXTX and SXTX only.
+ let Inst{14-13} = 0b11;
+ let Inst{31} = 1;
+ }
+ } // Defs = [NZCV]
+
+ // Compare aliases
+ def : InstAlias<cmp#" $src, $imm", (!cast<Instruction>(NAME#"Wri")
+ WZR, GPR32sp:$src, addsub_shifted_imm32:$imm), 5>;
+ def : InstAlias<cmp#" $src, $imm", (!cast<Instruction>(NAME#"Xri")
+ XZR, GPR64sp:$src, addsub_shifted_imm64:$imm), 5>;
+ def : InstAlias<cmp#" $src1, $src2$sh", (!cast<Instruction>(NAME#"Wrx")
+ WZR, GPR32sp:$src1, GPR32:$src2, arith_extend:$sh), 4>;
+ def : InstAlias<cmp#" $src1, $src2$sh", (!cast<Instruction>(NAME#"Xrx")
+ XZR, GPR64sp:$src1, GPR32:$src2, arith_extend:$sh), 4>;
+ def : InstAlias<cmp#" $src1, $src2$sh", (!cast<Instruction>(NAME#"Xrx64")
+ XZR, GPR64sp:$src1, GPR64:$src2, arith_extendlsl64:$sh), 4>;
+ def : InstAlias<cmp#" $src1, $src2$sh", (!cast<Instruction>(NAME#"Wrs")
+ WZR, GPR32:$src1, GPR32:$src2, arith_shift32:$sh), 4>;
+ def : InstAlias<cmp#" $src1, $src2$sh", (!cast<Instruction>(NAME#"Xrs")
+ XZR, GPR64:$src1, GPR64:$src2, arith_shift64:$sh), 4>;
+
+ // Compare shorthands
+ def : InstAlias<cmp#" $src1, $src2", (!cast<Instruction>(NAME#"Wrs")
+ WZR, GPR32:$src1, GPR32:$src2, 0), 5>;
+ def : InstAlias<cmp#" $src1, $src2", (!cast<Instruction>(NAME#"Xrs")
+ XZR, GPR64:$src1, GPR64:$src2, 0), 5>;
+ def : InstAlias<cmp#" $src1, $src2", (!cast<Instruction>(NAME#"Wrx")
+ WZR, GPR32sponly:$src1, GPR32:$src2, 16), 5>;
+ def : InstAlias<cmp#" $src1, $src2", (!cast<Instruction>(NAME#"Xrx64")
+ XZR, GPR64sponly:$src1, GPR64:$src2, 24), 5>;
+
+ // Register/register aliases with no shift when SP is not used.
+ def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrs"),
+ GPR32, GPR32, GPR32, 0>;
+ def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Xrs"),
+ GPR64, GPR64, GPR64, 0>;
+
+ // Register/register aliases with no shift when the first source register
+ // is SP.
+ def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrx"),
+ GPR32, GPR32sponly, GPR32, 16>; // UXTW #0
+ def : AddSubRegAlias<mnemonic,
+ !cast<Instruction>(NAME#"Xrx64"),
+ GPR64, GPR64sponly, GPR64, 24>; // UXTX #0
+}
+
+//---
+// Extract
+//---
+def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
+ SDTCisPtrTy<3>]>;
+def AArch64Extr : SDNode<"AArch64ISD::EXTR", SDTA64EXTR>;
+
+class BaseExtractImm<RegisterClass regtype, Operand imm_type, string asm,
+ list<dag> patterns>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, imm_type:$imm),
+ asm, "\t$Rd, $Rn, $Rm, $imm", "", patterns>,
+ Sched<[WriteExtr, ReadExtrHi]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<6> imm;
+
+ let Inst{30-23} = 0b00100111;
+ let Inst{21} = 0;
+ let Inst{20-16} = Rm;
+ let Inst{15-10} = imm;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass ExtractImm<string asm> {
+ def Wrri : BaseExtractImm<GPR32, imm0_31, asm,
+ [(set GPR32:$Rd,
+ (AArch64Extr GPR32:$Rn, GPR32:$Rm, imm0_31:$imm))]> {
+ let Inst{31} = 0;
+ let Inst{22} = 0;
+ // imm<5> must be zero.
+ let imm{5} = 0;
+ }
+ def Xrri : BaseExtractImm<GPR64, imm0_63, asm,
+ [(set GPR64:$Rd,
+ (AArch64Extr GPR64:$Rn, GPR64:$Rm, imm0_63:$imm))]> {
+
+ let Inst{31} = 1;
+ let Inst{22} = 1;
+ }
+}
+
+//---
+// Bitfield
+//---
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseBitfieldImm<bits<2> opc,
+ RegisterClass regtype, Operand imm_type, string asm>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, imm_type:$immr, imm_type:$imms),
+ asm, "\t$Rd, $Rn, $immr, $imms", "", []>,
+ Sched<[WriteIS, ReadI]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<6> immr;
+ bits<6> imms;
+
+ let Inst{30-29} = opc;
+ let Inst{28-23} = 0b100110;
+ let Inst{21-16} = immr;
+ let Inst{15-10} = imms;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass BitfieldImm<bits<2> opc, string asm> {
+ def Wri : BaseBitfieldImm<opc, GPR32, imm0_31, asm> {
+ let Inst{31} = 0;
+ let Inst{22} = 0;
+ // imms<5> and immr<5> must be zero, else ReservedValue().
+ let Inst{21} = 0;
+ let Inst{15} = 0;
+ }
+ def Xri : BaseBitfieldImm<opc, GPR64, imm0_63, asm> {
+ let Inst{31} = 1;
+ let Inst{22} = 1;
+ }
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseBitfieldImmWith2RegArgs<bits<2> opc,
+ RegisterClass regtype, Operand imm_type, string asm>
+ : I<(outs regtype:$Rd), (ins regtype:$src, regtype:$Rn, imm_type:$immr,
+ imm_type:$imms),
+ asm, "\t$Rd, $Rn, $immr, $imms", "$src = $Rd", []>,
+ Sched<[WriteIS, ReadI]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<6> immr;
+ bits<6> imms;
+
+ let Inst{30-29} = opc;
+ let Inst{28-23} = 0b100110;
+ let Inst{21-16} = immr;
+ let Inst{15-10} = imms;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass BitfieldImmWith2RegArgs<bits<2> opc, string asm> {
+ def Wri : BaseBitfieldImmWith2RegArgs<opc, GPR32, imm0_31, asm> {
+ let Inst{31} = 0;
+ let Inst{22} = 0;
+ // imms<5> and immr<5> must be zero, else ReservedValue().
+ let Inst{21} = 0;
+ let Inst{15} = 0;
+ }
+ def Xri : BaseBitfieldImmWith2RegArgs<opc, GPR64, imm0_63, asm> {
+ let Inst{31} = 1;
+ let Inst{22} = 1;
+ }
+}
+
+//---
+// Logical
+//---
+
+// Logical (immediate)
+class BaseLogicalImm<bits<2> opc, RegisterClass dregtype,
+ RegisterClass sregtype, Operand imm_type, string asm,
+ list<dag> pattern>
+ : I<(outs dregtype:$Rd), (ins sregtype:$Rn, imm_type:$imm),
+ asm, "\t$Rd, $Rn, $imm", "", pattern>,
+ Sched<[WriteI, ReadI]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<13> imm;
+ let Inst{30-29} = opc;
+ let Inst{28-23} = 0b100100;
+ let Inst{22} = imm{12};
+ let Inst{21-16} = imm{11-6};
+ let Inst{15-10} = imm{5-0};
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+
+ let DecoderMethod = "DecodeLogicalImmInstruction";
+}
+
+// Logical (shifted register)
+class BaseLogicalSReg<bits<2> opc, bit N, RegisterClass regtype,
+ logical_shifted_reg shifted_regtype, string asm,
+ list<dag> pattern>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, shifted_regtype:$Rm),
+ asm, "\t$Rd, $Rn, $Rm", "", pattern>,
+ Sched<[WriteISReg, ReadI, ReadISReg]> {
+ // The operands are in order to match the 'addr' MI operands, so we
+ // don't need an encoder method and by-name matching. Just use the default
+ // in-order handling. Since we're using by-order, make sure the names
+ // do not match.
+ bits<5> dst;
+ bits<5> src1;
+ bits<5> src2;
+ bits<8> shift;
+ let Inst{30-29} = opc;
+ let Inst{28-24} = 0b01010;
+ let Inst{23-22} = shift{7-6};
+ let Inst{21} = N;
+ let Inst{20-16} = src2;
+ let Inst{15-10} = shift{5-0};
+ let Inst{9-5} = src1;
+ let Inst{4-0} = dst;
+
+ let DecoderMethod = "DecodeThreeAddrSRegInstruction";
+}
+
+// Aliases for register+register logical instructions.
+class LogicalRegAlias<string asm, Instruction inst, RegisterClass regtype>
+ : InstAlias<asm#" $dst, $src1, $src2",
+ (inst regtype:$dst, regtype:$src1, regtype:$src2, 0)>;
+
+multiclass LogicalImm<bits<2> opc, string mnemonic, SDNode OpNode,
+ string Alias> {
+ let AddedComplexity = 6 in
+ def Wri : BaseLogicalImm<opc, GPR32sp, GPR32, logical_imm32, mnemonic,
+ [(set GPR32sp:$Rd, (OpNode GPR32:$Rn,
+ logical_imm32:$imm))]> {
+ let Inst{31} = 0;
+ let Inst{22} = 0; // 64-bit version has an additional bit of immediate.
+ }
+ let AddedComplexity = 6 in
+ def Xri : BaseLogicalImm<opc, GPR64sp, GPR64, logical_imm64, mnemonic,
+ [(set GPR64sp:$Rd, (OpNode GPR64:$Rn,
+ logical_imm64:$imm))]> {
+ let Inst{31} = 1;
+ }
+
+ def : InstAlias<Alias # " $Rd, $Rn, $imm",
+ (!cast<Instruction>(NAME # "Wri") GPR32sp:$Rd, GPR32:$Rn,
+ logical_imm32_not:$imm), 0>;
+ def : InstAlias<Alias # " $Rd, $Rn, $imm",
+ (!cast<Instruction>(NAME # "Xri") GPR64sp:$Rd, GPR64:$Rn,
+ logical_imm64_not:$imm), 0>;
+}
+
+multiclass LogicalImmS<bits<2> opc, string mnemonic, SDNode OpNode,
+ string Alias> {
+ let isCompare = 1, Defs = [NZCV] in {
+ def Wri : BaseLogicalImm<opc, GPR32, GPR32, logical_imm32, mnemonic,
+ [(set GPR32:$Rd, (OpNode GPR32:$Rn, logical_imm32:$imm))]> {
+ let Inst{31} = 0;
+ let Inst{22} = 0; // 64-bit version has an additional bit of immediate.
+ }
+ def Xri : BaseLogicalImm<opc, GPR64, GPR64, logical_imm64, mnemonic,
+ [(set GPR64:$Rd, (OpNode GPR64:$Rn, logical_imm64:$imm))]> {
+ let Inst{31} = 1;
+ }
+ } // end Defs = [NZCV]
+
+ def : InstAlias<Alias # " $Rd, $Rn, $imm",
+ (!cast<Instruction>(NAME # "Wri") GPR32:$Rd, GPR32:$Rn,
+ logical_imm32_not:$imm), 0>;
+ def : InstAlias<Alias # " $Rd, $Rn, $imm",
+ (!cast<Instruction>(NAME # "Xri") GPR64:$Rd, GPR64:$Rn,
+ logical_imm64_not:$imm), 0>;
+}
+
+class BaseLogicalRegPseudo<RegisterClass regtype, SDPatternOperator OpNode>
+ : Pseudo<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm),
+ [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm))]>,
+ Sched<[WriteI, ReadI, ReadI]>;
+
+// Split from LogicalImm as not all instructions have both.
+multiclass LogicalReg<bits<2> opc, bit N, string mnemonic,
+ SDPatternOperator OpNode> {
+ def Wrr : BaseLogicalRegPseudo<GPR32, OpNode>;
+ def Xrr : BaseLogicalRegPseudo<GPR64, OpNode>;
+
+ def Wrs : BaseLogicalSReg<opc, N, GPR32, logical_shifted_reg32, mnemonic,
+ [(set GPR32:$Rd, (OpNode GPR32:$Rn,
+ logical_shifted_reg32:$Rm))]> {
+ let Inst{31} = 0;
+ }
+ def Xrs : BaseLogicalSReg<opc, N, GPR64, logical_shifted_reg64, mnemonic,
+ [(set GPR64:$Rd, (OpNode GPR64:$Rn,
+ logical_shifted_reg64:$Rm))]> {
+ let Inst{31} = 1;
+ }
+
+ def : LogicalRegAlias<mnemonic,
+ !cast<Instruction>(NAME#"Wrs"), GPR32>;
+ def : LogicalRegAlias<mnemonic,
+ !cast<Instruction>(NAME#"Xrs"), GPR64>;
+}
+
+// Split from LogicalReg to allow setting NZCV Defs
+multiclass LogicalRegS<bits<2> opc, bit N, string mnemonic,
+ SDPatternOperator OpNode = null_frag> {
+ let Defs = [NZCV], mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
+ def Wrr : BaseLogicalRegPseudo<GPR32, OpNode>;
+ def Xrr : BaseLogicalRegPseudo<GPR64, OpNode>;
+
+ def Wrs : BaseLogicalSReg<opc, N, GPR32, logical_shifted_reg32, mnemonic,
+ [(set GPR32:$Rd, (OpNode GPR32:$Rn, logical_shifted_reg32:$Rm))]> {
+ let Inst{31} = 0;
+ }
+ def Xrs : BaseLogicalSReg<opc, N, GPR64, logical_shifted_reg64, mnemonic,
+ [(set GPR64:$Rd, (OpNode GPR64:$Rn, logical_shifted_reg64:$Rm))]> {
+ let Inst{31} = 1;
+ }
+ } // Defs = [NZCV]
+
+ def : LogicalRegAlias<mnemonic,
+ !cast<Instruction>(NAME#"Wrs"), GPR32>;
+ def : LogicalRegAlias<mnemonic,
+ !cast<Instruction>(NAME#"Xrs"), GPR64>;
+}
+
+//---
+// Conditionally set flags
+//---
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseCondSetFlagsImm<bit op, RegisterClass regtype, string asm>
+ : I<(outs), (ins regtype:$Rn, imm0_31:$imm, imm0_15:$nzcv, ccode:$cond),
+ asm, "\t$Rn, $imm, $nzcv, $cond", "", []>,
+ Sched<[WriteI, ReadI]> {
+ let Uses = [NZCV];
+ let Defs = [NZCV];
+
+ bits<5> Rn;
+ bits<5> imm;
+ bits<4> nzcv;
+ bits<4> cond;
+
+ let Inst{30} = op;
+ let Inst{29-21} = 0b111010010;
+ let Inst{20-16} = imm;
+ let Inst{15-12} = cond;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4} = 0b0;
+ let Inst{3-0} = nzcv;
+}
+
+multiclass CondSetFlagsImm<bit op, string asm> {
+ def Wi : BaseCondSetFlagsImm<op, GPR32, asm> {
+ let Inst{31} = 0;
+ }
+ def Xi : BaseCondSetFlagsImm<op, GPR64, asm> {
+ let Inst{31} = 1;
+ }
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseCondSetFlagsReg<bit op, RegisterClass regtype, string asm>
+ : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond),
+ asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>,
+ Sched<[WriteI, ReadI, ReadI]> {
+ let Uses = [NZCV];
+ let Defs = [NZCV];
+
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<4> nzcv;
+ bits<4> cond;
+
+ let Inst{30} = op;
+ let Inst{29-21} = 0b111010010;
+ let Inst{20-16} = Rm;
+ let Inst{15-12} = cond;
+ let Inst{11-10} = 0b00;
+ let Inst{9-5} = Rn;
+ let Inst{4} = 0b0;
+ let Inst{3-0} = nzcv;
+}
+
+multiclass CondSetFlagsReg<bit op, string asm> {
+ def Wr : BaseCondSetFlagsReg<op, GPR32, asm> {
+ let Inst{31} = 0;
+ }
+ def Xr : BaseCondSetFlagsReg<op, GPR64, asm> {
+ let Inst{31} = 1;
+ }
+}
+
+//---
+// Conditional select
+//---
+
+class BaseCondSelect<bit op, bits<2> op2, RegisterClass regtype, string asm>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond),
+ asm, "\t$Rd, $Rn, $Rm, $cond", "",
+ [(set regtype:$Rd,
+ (AArch64csel regtype:$Rn, regtype:$Rm, (i32 imm:$cond), NZCV))]>,
+ Sched<[WriteI, ReadI, ReadI]> {
+ let Uses = [NZCV];
+
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<4> cond;
+
+ let Inst{30} = op;
+ let Inst{29-21} = 0b011010100;
+ let Inst{20-16} = Rm;
+ let Inst{15-12} = cond;
+ let Inst{11-10} = op2;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass CondSelect<bit op, bits<2> op2, string asm> {
+ def Wr : BaseCondSelect<op, op2, GPR32, asm> {
+ let Inst{31} = 0;
+ }
+ def Xr : BaseCondSelect<op, op2, GPR64, asm> {
+ let Inst{31} = 1;
+ }
+}
+
+class BaseCondSelectOp<bit op, bits<2> op2, RegisterClass regtype, string asm,
+ PatFrag frag>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond),
+ asm, "\t$Rd, $Rn, $Rm, $cond", "",
+ [(set regtype:$Rd,
+ (AArch64csel regtype:$Rn, (frag regtype:$Rm),
+ (i32 imm:$cond), NZCV))]>,
+ Sched<[WriteI, ReadI, ReadI]> {
+ let Uses = [NZCV];
+
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<4> cond;
+
+ let Inst{30} = op;
+ let Inst{29-21} = 0b011010100;
+ let Inst{20-16} = Rm;
+ let Inst{15-12} = cond;
+ let Inst{11-10} = op2;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+def inv_cond_XFORM : SDNodeXForm<imm, [{
+ AArch64CC::CondCode CC = static_cast<AArch64CC::CondCode>(N->getZExtValue());
+ return CurDAG->getTargetConstant(AArch64CC::getInvertedCondCode(CC), MVT::i32);
+}]>;
+
+multiclass CondSelectOp<bit op, bits<2> op2, string asm, PatFrag frag> {
+ def Wr : BaseCondSelectOp<op, op2, GPR32, asm, frag> {
+ let Inst{31} = 0;
+ }
+ def Xr : BaseCondSelectOp<op, op2, GPR64, asm, frag> {
+ let Inst{31} = 1;
+ }
+
+ def : Pat<(AArch64csel (frag GPR32:$Rm), GPR32:$Rn, (i32 imm:$cond), NZCV),
+ (!cast<Instruction>(NAME # Wr) GPR32:$Rn, GPR32:$Rm,
+ (inv_cond_XFORM imm:$cond))>;
+
+ def : Pat<(AArch64csel (frag GPR64:$Rm), GPR64:$Rn, (i32 imm:$cond), NZCV),
+ (!cast<Instruction>(NAME # Xr) GPR64:$Rn, GPR64:$Rm,
+ (inv_cond_XFORM imm:$cond))>;
+}
+
+//---
+// Special Mask Value
+//---
+def maski8_or_more : Operand<i32>,
+ ImmLeaf<i32, [{ return (Imm & 0xff) == 0xff; }]> {
+}
+def maski16_or_more : Operand<i32>,
+ ImmLeaf<i32, [{ return (Imm & 0xffff) == 0xffff; }]> {
+}
+
+
+//---
+// Load/store
+//---
+
+// (unsigned immediate)
+// Indexed for 8-bit registers. offset is in range [0,4095].
+def am_indexed8 : ComplexPattern<i64, 2, "SelectAddrModeIndexed8", []>;
+def am_indexed16 : ComplexPattern<i64, 2, "SelectAddrModeIndexed16", []>;
+def am_indexed32 : ComplexPattern<i64, 2, "SelectAddrModeIndexed32", []>;
+def am_indexed64 : ComplexPattern<i64, 2, "SelectAddrModeIndexed64", []>;
+def am_indexed128 : ComplexPattern<i64, 2, "SelectAddrModeIndexed128", []>;
+
+class UImm12OffsetOperand<int Scale> : AsmOperandClass {
+ let Name = "UImm12Offset" # Scale;
+ let RenderMethod = "addUImm12OffsetOperands<" # Scale # ">";
+ let PredicateMethod = "isUImm12Offset<" # Scale # ">";
+ let DiagnosticType = "InvalidMemoryIndexed" # Scale;
+}
+
+def UImm12OffsetScale1Operand : UImm12OffsetOperand<1>;
+def UImm12OffsetScale2Operand : UImm12OffsetOperand<2>;
+def UImm12OffsetScale4Operand : UImm12OffsetOperand<4>;
+def UImm12OffsetScale8Operand : UImm12OffsetOperand<8>;
+def UImm12OffsetScale16Operand : UImm12OffsetOperand<16>;
+
+class uimm12_scaled<int Scale> : Operand<i64> {
+ let ParserMatchClass
+ = !cast<AsmOperandClass>("UImm12OffsetScale" # Scale # "Operand");
+ let EncoderMethod
+ = "getLdStUImm12OpValue<AArch64::fixup_aarch64_ldst_imm12_scale" # Scale # ">";
+ let PrintMethod = "printUImm12Offset<" # Scale # ">";
+}
+
+def uimm12s1 : uimm12_scaled<1>;
+def uimm12s2 : uimm12_scaled<2>;
+def uimm12s4 : uimm12_scaled<4>;
+def uimm12s8 : uimm12_scaled<8>;
+def uimm12s16 : uimm12_scaled<16>;
+
+class BaseLoadStoreUI<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops,
+ string asm, list<dag> pattern>
+ : I<oops, iops, asm, "\t$Rt, [$Rn, $offset]", "", pattern> {
+ bits<5> Rt;
+
+ bits<5> Rn;
+ bits<12> offset;
+
+ let Inst{31-30} = sz;
+ let Inst{29-27} = 0b111;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b01;
+ let Inst{23-22} = opc;
+ let Inst{21-10} = offset;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let DecoderMethod = "DecodeUnsignedLdStInstruction";
+}
+
+multiclass LoadUI<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ Operand indextype, string asm, list<dag> pattern> {
+ let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+ def ui : BaseLoadStoreUI<sz, V, opc, (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, indextype:$offset),
+ asm, pattern>,
+ Sched<[WriteLD]>;
+
+ def : InstAlias<asm # " $Rt, [$Rn]",
+ (!cast<Instruction>(NAME # "ui") regtype:$Rt, GPR64sp:$Rn, 0)>;
+}
+
+multiclass StoreUI<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ Operand indextype, string asm, list<dag> pattern> {
+ let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
+ def ui : BaseLoadStoreUI<sz, V, opc, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, indextype:$offset),
+ asm, pattern>,
+ Sched<[WriteST]>;
+
+ def : InstAlias<asm # " $Rt, [$Rn]",
+ (!cast<Instruction>(NAME # "ui") regtype:$Rt, GPR64sp:$Rn, 0)>;
+}
+
+def PrefetchOperand : AsmOperandClass {
+ let Name = "Prefetch";
+ let ParserMethod = "tryParsePrefetch";
+}
+def prfop : Operand<i32> {
+ let PrintMethod = "printPrefetchOp";
+ let ParserMatchClass = PrefetchOperand;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
+class PrefetchUI<bits<2> sz, bit V, bits<2> opc, string asm, list<dag> pat>
+ : BaseLoadStoreUI<sz, V, opc,
+ (outs), (ins prfop:$Rt, GPR64sp:$Rn, uimm12s8:$offset),
+ asm, pat>,
+ Sched<[WriteLD]>;
+
+//---
+// Load literal
+//---
+
+// Load literal address: 19-bit immediate. The low two bits of the target
+// offset are implied zero and so are not part of the immediate.
+def am_ldrlit : Operand<OtherVT> {
+ let EncoderMethod = "getLoadLiteralOpValue";
+ let DecoderMethod = "DecodePCRelLabel19";
+ let PrintMethod = "printAlignedLabel";
+ let ParserMatchClass = PCRelLabel19Operand;
+}
+
+let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+class LoadLiteral<bits<2> opc, bit V, RegisterClass regtype, string asm>
+ : I<(outs regtype:$Rt), (ins am_ldrlit:$label),
+ asm, "\t$Rt, $label", "", []>,
+ Sched<[WriteLD]> {
+ bits<5> Rt;
+ bits<19> label;
+ let Inst{31-30} = opc;
+ let Inst{29-27} = 0b011;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b00;
+ let Inst{23-5} = label;
+ let Inst{4-0} = Rt;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
+class PrefetchLiteral<bits<2> opc, bit V, string asm, list<dag> pat>
+ : I<(outs), (ins prfop:$Rt, am_ldrlit:$label),
+ asm, "\t$Rt, $label", "", pat>,
+ Sched<[WriteLD]> {
+ bits<5> Rt;
+ bits<19> label;
+ let Inst{31-30} = opc;
+ let Inst{29-27} = 0b011;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b00;
+ let Inst{23-5} = label;
+ let Inst{4-0} = Rt;
+}
+
+//---
+// Load/store register offset
+//---
+
+def ro_Xindexed8 : ComplexPattern<i64, 4, "SelectAddrModeXRO<8>", []>;
+def ro_Xindexed16 : ComplexPattern<i64, 4, "SelectAddrModeXRO<16>", []>;
+def ro_Xindexed32 : ComplexPattern<i64, 4, "SelectAddrModeXRO<32>", []>;
+def ro_Xindexed64 : ComplexPattern<i64, 4, "SelectAddrModeXRO<64>", []>;
+def ro_Xindexed128 : ComplexPattern<i64, 4, "SelectAddrModeXRO<128>", []>;
+
+def ro_Windexed8 : ComplexPattern<i64, 4, "SelectAddrModeWRO<8>", []>;
+def ro_Windexed16 : ComplexPattern<i64, 4, "SelectAddrModeWRO<16>", []>;
+def ro_Windexed32 : ComplexPattern<i64, 4, "SelectAddrModeWRO<32>", []>;
+def ro_Windexed64 : ComplexPattern<i64, 4, "SelectAddrModeWRO<64>", []>;
+def ro_Windexed128 : ComplexPattern<i64, 4, "SelectAddrModeWRO<128>", []>;
+
+class MemExtendOperand<string Reg, int Width> : AsmOperandClass {
+ let Name = "Mem" # Reg # "Extend" # Width;
+ let PredicateMethod = "isMem" # Reg # "Extend<" # Width # ">";
+ let RenderMethod = "addMemExtendOperands";
+ let DiagnosticType = "InvalidMemory" # Reg # "Extend" # Width;
+}
+
+def MemWExtend8Operand : MemExtendOperand<"W", 8> {
+ // The address "[x0, x1, lsl #0]" actually maps to the variant which performs
+ // the trivial shift.
+ let RenderMethod = "addMemExtend8Operands";
+}
+def MemWExtend16Operand : MemExtendOperand<"W", 16>;
+def MemWExtend32Operand : MemExtendOperand<"W", 32>;
+def MemWExtend64Operand : MemExtendOperand<"W", 64>;
+def MemWExtend128Operand : MemExtendOperand<"W", 128>;
+
+def MemXExtend8Operand : MemExtendOperand<"X", 8> {
+ // The address "[x0, x1, lsl #0]" actually maps to the variant which performs
+ // the trivial shift.
+ let RenderMethod = "addMemExtend8Operands";
+}
+def MemXExtend16Operand : MemExtendOperand<"X", 16>;
+def MemXExtend32Operand : MemExtendOperand<"X", 32>;
+def MemXExtend64Operand : MemExtendOperand<"X", 64>;
+def MemXExtend128Operand : MemExtendOperand<"X", 128>;
+
+class ro_extend<AsmOperandClass ParserClass, string Reg, int Width>
+ : Operand<i32> {
+ let ParserMatchClass = ParserClass;
+ let PrintMethod = "printMemExtend<'" # Reg # "', " # Width # ">";
+ let DecoderMethod = "DecodeMemExtend";
+ let EncoderMethod = "getMemExtendOpValue";
+ let MIOperandInfo = (ops i32imm:$signed, i32imm:$doshift);
+}
+
+def ro_Wextend8 : ro_extend<MemWExtend8Operand, "w", 8>;
+def ro_Wextend16 : ro_extend<MemWExtend16Operand, "w", 16>;
+def ro_Wextend32 : ro_extend<MemWExtend32Operand, "w", 32>;
+def ro_Wextend64 : ro_extend<MemWExtend64Operand, "w", 64>;
+def ro_Wextend128 : ro_extend<MemWExtend128Operand, "w", 128>;
+
+def ro_Xextend8 : ro_extend<MemXExtend8Operand, "x", 8>;
+def ro_Xextend16 : ro_extend<MemXExtend16Operand, "x", 16>;
+def ro_Xextend32 : ro_extend<MemXExtend32Operand, "x", 32>;
+def ro_Xextend64 : ro_extend<MemXExtend64Operand, "x", 64>;
+def ro_Xextend128 : ro_extend<MemXExtend128Operand, "x", 128>;
+
+class ROAddrMode<ComplexPattern windex, ComplexPattern xindex,
+ Operand wextend, Operand xextend> {
+ // CodeGen-level pattern covering the entire addressing mode.
+ ComplexPattern Wpat = windex;
+ ComplexPattern Xpat = xindex;
+
+ // Asm-level Operand covering the valid "uxtw #3" style syntax.
+ Operand Wext = wextend;
+ Operand Xext = xextend;
+}
+
+def ro8 : ROAddrMode<ro_Windexed8, ro_Xindexed8, ro_Wextend8, ro_Xextend8>;
+def ro16 : ROAddrMode<ro_Windexed16, ro_Xindexed16, ro_Wextend16, ro_Xextend16>;
+def ro32 : ROAddrMode<ro_Windexed32, ro_Xindexed32, ro_Wextend32, ro_Xextend32>;
+def ro64 : ROAddrMode<ro_Windexed64, ro_Xindexed64, ro_Wextend64, ro_Xextend64>;
+def ro128 : ROAddrMode<ro_Windexed128, ro_Xindexed128, ro_Wextend128,
+ ro_Xextend128>;
+
+class LoadStore8RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, dag ins, dag outs, list<dag> pat>
+ : I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> {
+ bits<5> Rt;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<2> extend;
+ let Inst{31-30} = sz;
+ let Inst{29-27} = 0b111;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b00;
+ let Inst{23-22} = opc;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15} = extend{1}; // sign extend Rm?
+ let Inst{14} = 1;
+ let Inst{12} = extend{0}; // do shift?
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+}
+
+class ROInstAlias<string asm, RegisterClass regtype, Instruction INST>
+ : InstAlias<asm # " $Rt, [$Rn, $Rm]",
+ (INST regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, 0, 0)>;
+
+multiclass Load8RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, ValueType Ty, SDPatternOperator loadop> {
+ let AddedComplexity = 10 in
+ def roW : LoadStore8RO<sz, V, opc, regtype, asm,
+ (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend),
+ [(set (Ty regtype:$Rt),
+ (loadop (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend8:$extend)))]>,
+ Sched<[WriteLDIdx, ReadAdrBase]> {
+ let Inst{13} = 0b0;
+ }
+
+ let AddedComplexity = 10 in
+ def roX : LoadStore8RO<sz, V, opc, regtype, asm,
+ (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend),
+ [(set (Ty regtype:$Rt),
+ (loadop (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend8:$extend)))]>,
+ Sched<[WriteLDIdx, ReadAdrBase]> {
+ let Inst{13} = 0b1;
+ }
+
+ def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
+}
+
+multiclass Store8RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, ValueType Ty, SDPatternOperator storeop> {
+ let AddedComplexity = 10 in
+ def roW : LoadStore8RO<sz, V, opc, regtype, asm, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend),
+ [(storeop (Ty regtype:$Rt),
+ (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend8:$extend))]>,
+ Sched<[WriteSTIdx, ReadAdrBase]> {
+ let Inst{13} = 0b0;
+ }
+
+ let AddedComplexity = 10 in
+ def roX : LoadStore8RO<sz, V, opc, regtype, asm, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend),
+ [(storeop (Ty regtype:$Rt),
+ (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend8:$extend))]>,
+ Sched<[WriteSTIdx, ReadAdrBase]> {
+ let Inst{13} = 0b1;
+ }
+
+ def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
+}
+
+class LoadStore16RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, dag ins, dag outs, list<dag> pat>
+ : I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> {
+ bits<5> Rt;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<2> extend;
+ let Inst{31-30} = sz;
+ let Inst{29-27} = 0b111;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b00;
+ let Inst{23-22} = opc;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15} = extend{1}; // sign extend Rm?
+ let Inst{14} = 1;
+ let Inst{12} = extend{0}; // do shift?
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+}
+
+multiclass Load16RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, ValueType Ty, SDPatternOperator loadop> {
+ let AddedComplexity = 10 in
+ def roW : LoadStore16RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend),
+ [(set (Ty regtype:$Rt),
+ (loadop (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend16:$extend)))]>,
+ Sched<[WriteLDIdx, ReadAdrBase]> {
+ let Inst{13} = 0b0;
+ }
+
+ let AddedComplexity = 10 in
+ def roX : LoadStore16RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend),
+ [(set (Ty regtype:$Rt),
+ (loadop (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend16:$extend)))]>,
+ Sched<[WriteLDIdx, ReadAdrBase]> {
+ let Inst{13} = 0b1;
+ }
+
+ def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
+}
+
+multiclass Store16RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, ValueType Ty, SDPatternOperator storeop> {
+ let AddedComplexity = 10 in
+ def roW : LoadStore16RO<sz, V, opc, regtype, asm, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend),
+ [(storeop (Ty regtype:$Rt),
+ (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend16:$extend))]>,
+ Sched<[WriteSTIdx, ReadAdrBase]> {
+ let Inst{13} = 0b0;
+ }
+
+ let AddedComplexity = 10 in
+ def roX : LoadStore16RO<sz, V, opc, regtype, asm, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend),
+ [(storeop (Ty regtype:$Rt),
+ (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend16:$extend))]>,
+ Sched<[WriteSTIdx, ReadAdrBase]> {
+ let Inst{13} = 0b1;
+ }
+
+ def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
+}
+
+class LoadStore32RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, dag ins, dag outs, list<dag> pat>
+ : I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> {
+ bits<5> Rt;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<2> extend;
+ let Inst{31-30} = sz;
+ let Inst{29-27} = 0b111;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b00;
+ let Inst{23-22} = opc;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15} = extend{1}; // sign extend Rm?
+ let Inst{14} = 1;
+ let Inst{12} = extend{0}; // do shift?
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+}
+
+multiclass Load32RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, ValueType Ty, SDPatternOperator loadop> {
+ let AddedComplexity = 10 in
+ def roW : LoadStore32RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend),
+ [(set (Ty regtype:$Rt),
+ (loadop (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend32:$extend)))]>,
+ Sched<[WriteLDIdx, ReadAdrBase]> {
+ let Inst{13} = 0b0;
+ }
+
+ let AddedComplexity = 10 in
+ def roX : LoadStore32RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend),
+ [(set (Ty regtype:$Rt),
+ (loadop (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend32:$extend)))]>,
+ Sched<[WriteLDIdx, ReadAdrBase]> {
+ let Inst{13} = 0b1;
+ }
+
+ def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
+}
+
+multiclass Store32RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, ValueType Ty, SDPatternOperator storeop> {
+ let AddedComplexity = 10 in
+ def roW : LoadStore32RO<sz, V, opc, regtype, asm, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend),
+ [(storeop (Ty regtype:$Rt),
+ (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend32:$extend))]>,
+ Sched<[WriteSTIdx, ReadAdrBase]> {
+ let Inst{13} = 0b0;
+ }
+
+ let AddedComplexity = 10 in
+ def roX : LoadStore32RO<sz, V, opc, regtype, asm, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend),
+ [(storeop (Ty regtype:$Rt),
+ (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend32:$extend))]>,
+ Sched<[WriteSTIdx, ReadAdrBase]> {
+ let Inst{13} = 0b1;
+ }
+
+ def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
+}
+
+class LoadStore64RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, dag ins, dag outs, list<dag> pat>
+ : I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> {
+ bits<5> Rt;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<2> extend;
+ let Inst{31-30} = sz;
+ let Inst{29-27} = 0b111;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b00;
+ let Inst{23-22} = opc;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15} = extend{1}; // sign extend Rm?
+ let Inst{14} = 1;
+ let Inst{12} = extend{0}; // do shift?
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+}
+
+multiclass Load64RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, ValueType Ty, SDPatternOperator loadop> {
+ let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+ def roW : LoadStore64RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend),
+ [(set (Ty regtype:$Rt),
+ (loadop (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend64:$extend)))]>,
+ Sched<[WriteLDIdx, ReadAdrBase]> {
+ let Inst{13} = 0b0;
+ }
+
+ let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+ def roX : LoadStore64RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend),
+ [(set (Ty regtype:$Rt),
+ (loadop (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend64:$extend)))]>,
+ Sched<[WriteLDIdx, ReadAdrBase]> {
+ let Inst{13} = 0b1;
+ }
+
+ def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
+}
+
+multiclass Store64RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, ValueType Ty, SDPatternOperator storeop> {
+ let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
+ def roW : LoadStore64RO<sz, V, opc, regtype, asm, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend),
+ [(storeop (Ty regtype:$Rt),
+ (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend64:$extend))]>,
+ Sched<[WriteSTIdx, ReadAdrBase]> {
+ let Inst{13} = 0b0;
+ }
+
+ let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
+ def roX : LoadStore64RO<sz, V, opc, regtype, asm, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend),
+ [(storeop (Ty regtype:$Rt),
+ (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend64:$extend))]>,
+ Sched<[WriteSTIdx, ReadAdrBase]> {
+ let Inst{13} = 0b1;
+ }
+
+ def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
+}
+
+class LoadStore128RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, dag ins, dag outs, list<dag> pat>
+ : I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> {
+ bits<5> Rt;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<2> extend;
+ let Inst{31-30} = sz;
+ let Inst{29-27} = 0b111;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b00;
+ let Inst{23-22} = opc;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15} = extend{1}; // sign extend Rm?
+ let Inst{14} = 1;
+ let Inst{12} = extend{0}; // do shift?
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+}
+
+multiclass Load128RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, ValueType Ty, SDPatternOperator loadop> {
+ let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+ def roW : LoadStore128RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend),
+ [(set (Ty regtype:$Rt),
+ (loadop (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend128:$extend)))]>,
+ Sched<[WriteLDIdx, ReadAdrBase]> {
+ let Inst{13} = 0b0;
+ }
+
+ let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+ def roX : LoadStore128RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend128:$extend),
+ [(set (Ty regtype:$Rt),
+ (loadop (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend128:$extend)))]>,
+ Sched<[WriteLDIdx, ReadAdrBase]> {
+ let Inst{13} = 0b1;
+ }
+
+ def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
+}
+
+multiclass Store128RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, ValueType Ty, SDPatternOperator storeop> {
+ let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
+ def roW : LoadStore128RO<sz, V, opc, regtype, asm, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend),
+ [(storeop (Ty regtype:$Rt),
+ (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend128:$extend))]>,
+ Sched<[WriteSTIdx, ReadAdrBase]> {
+ let Inst{13} = 0b0;
+ }
+
+ let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
+ def roX : LoadStore128RO<sz, V, opc, regtype, asm, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend128:$extend),
+ [(storeop (Ty regtype:$Rt),
+ (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend128:$extend))]>,
+ Sched<[WriteSTIdx, ReadAdrBase]> {
+ let Inst{13} = 0b1;
+ }
+
+ def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
+class BasePrefetchRO<bits<2> sz, bit V, bits<2> opc, dag outs, dag ins,
+ string asm, list<dag> pat>
+ : I<outs, ins, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat>,
+ Sched<[WriteLD]> {
+ bits<5> Rt;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<2> extend;
+ let Inst{31-30} = sz;
+ let Inst{29-27} = 0b111;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b00;
+ let Inst{23-22} = opc;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15} = extend{1}; // sign extend Rm?
+ let Inst{14} = 1;
+ let Inst{12} = extend{0}; // do shift?
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+}
+
+multiclass PrefetchRO<bits<2> sz, bit V, bits<2> opc, string asm> {
+ def roW : BasePrefetchRO<sz, V, opc, (outs),
+ (ins prfop:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend),
+ asm, [(AArch64Prefetch imm:$Rt,
+ (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend64:$extend))]> {
+ let Inst{13} = 0b0;
+ }
+
+ def roX : BasePrefetchRO<sz, V, opc, (outs),
+ (ins prfop:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend),
+ asm, [(AArch64Prefetch imm:$Rt,
+ (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend64:$extend))]> {
+ let Inst{13} = 0b1;
+ }
+
+ def : InstAlias<"prfm $Rt, [$Rn, $Rm]",
+ (!cast<Instruction>(NAME # "roX") prfop:$Rt,
+ GPR64sp:$Rn, GPR64:$Rm, 0, 0)>;
+}
+
+//---
+// Load/store unscaled immediate
+//---
+
+def am_unscaled8 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled8", []>;
+def am_unscaled16 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled16", []>;
+def am_unscaled32 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled32", []>;
+def am_unscaled64 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled64", []>;
+def am_unscaled128 :ComplexPattern<i64, 2, "SelectAddrModeUnscaled128", []>;
+
+class BaseLoadStoreUnscale<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops,
+ string asm, list<dag> pattern>
+ : I<oops, iops, asm, "\t$Rt, [$Rn, $offset]", "", pattern> {
+ bits<5> Rt;
+ bits<5> Rn;
+ bits<9> offset;
+ let Inst{31-30} = sz;
+ let Inst{29-27} = 0b111;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b00;
+ let Inst{23-22} = opc;
+ let Inst{21} = 0;
+ let Inst{20-12} = offset;
+ let Inst{11-10} = 0b00;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let DecoderMethod = "DecodeSignedLdStInstruction";
+}
+
+multiclass LoadUnscaled<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, list<dag> pattern> {
+ let AddedComplexity = 1 in // try this before LoadUI
+ def i : BaseLoadStoreUnscale<sz, V, opc, (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, simm9:$offset), asm, pattern>,
+ Sched<[WriteLD]>;
+
+ def : InstAlias<asm # " $Rt, [$Rn]",
+ (!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>;
+}
+
+multiclass StoreUnscaled<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, list<dag> pattern> {
+ let AddedComplexity = 1 in // try this before StoreUI
+ def i : BaseLoadStoreUnscale<sz, V, opc, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset),
+ asm, pattern>,
+ Sched<[WriteST]>;
+
+ def : InstAlias<asm # " $Rt, [$Rn]",
+ (!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>;
+}
+
+multiclass PrefetchUnscaled<bits<2> sz, bit V, bits<2> opc, string asm,
+ list<dag> pat> {
+ let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
+ def i : BaseLoadStoreUnscale<sz, V, opc, (outs),
+ (ins prfop:$Rt, GPR64sp:$Rn, simm9:$offset),
+ asm, pat>,
+ Sched<[WriteLD]>;
+
+ def : InstAlias<asm # " $Rt, [$Rn]",
+ (!cast<Instruction>(NAME # "i") prfop:$Rt, GPR64sp:$Rn, 0)>;
+}
+
+//---
+// Load/store unscaled immediate, unprivileged
+//---
+
+class BaseLoadStoreUnprivileged<bits<2> sz, bit V, bits<2> opc,
+ dag oops, dag iops, string asm>
+ : I<oops, iops, asm, "\t$Rt, [$Rn, $offset]", "", []> {
+ bits<5> Rt;
+ bits<5> Rn;
+ bits<9> offset;
+ let Inst{31-30} = sz;
+ let Inst{29-27} = 0b111;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b00;
+ let Inst{23-22} = opc;
+ let Inst{21} = 0;
+ let Inst{20-12} = offset;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let DecoderMethod = "DecodeSignedLdStInstruction";
+}
+
+multiclass LoadUnprivileged<bits<2> sz, bit V, bits<2> opc,
+ RegisterClass regtype, string asm> {
+ let mayStore = 0, mayLoad = 1, hasSideEffects = 0 in
+ def i : BaseLoadStoreUnprivileged<sz, V, opc, (outs regtype:$Rt),
+ (ins GPR64sp:$Rn, simm9:$offset), asm>,
+ Sched<[WriteLD]>;
+
+ def : InstAlias<asm # " $Rt, [$Rn]",
+ (!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>;
+}
+
+multiclass StoreUnprivileged<bits<2> sz, bit V, bits<2> opc,
+ RegisterClass regtype, string asm> {
+ let mayStore = 1, mayLoad = 0, hasSideEffects = 0 in
+ def i : BaseLoadStoreUnprivileged<sz, V, opc, (outs),
+ (ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset),
+ asm>,
+ Sched<[WriteST]>;
+
+ def : InstAlias<asm # " $Rt, [$Rn]",
+ (!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>;
+}
+
+//---
+// Load/store pre-indexed
+//---
+
+class BaseLoadStorePreIdx<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops,
+ string asm, string cstr, list<dag> pat>
+ : I<oops, iops, asm, "\t$Rt, [$Rn, $offset]!", cstr, pat> {
+ bits<5> Rt;
+ bits<5> Rn;
+ bits<9> offset;
+ let Inst{31-30} = sz;
+ let Inst{29-27} = 0b111;
+ let Inst{26} = V;
+ let Inst{25-24} = 0;
+ let Inst{23-22} = opc;
+ let Inst{21} = 0;
+ let Inst{20-12} = offset;
+ let Inst{11-10} = 0b11;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let DecoderMethod = "DecodeSignedLdStInstruction";
+}
+
+let hasSideEffects = 0 in {
+let mayStore = 0, mayLoad = 1 in
+class LoadPreIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm>
+ : BaseLoadStorePreIdx<sz, V, opc,
+ (outs GPR64sp:$wback, regtype:$Rt),
+ (ins GPR64sp:$Rn, simm9:$offset), asm,
+ "$Rn = $wback", []>,
+ Sched<[WriteLD, WriteAdr]>;
+
+let mayStore = 1, mayLoad = 0 in
+class StorePreIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, SDPatternOperator storeop, ValueType Ty>
+ : BaseLoadStorePreIdx<sz, V, opc,
+ (outs GPR64sp:$wback),
+ (ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset),
+ asm, "$Rn = $wback",
+ [(set GPR64sp:$wback,
+ (storeop (Ty regtype:$Rt), GPR64sp:$Rn, simm9:$offset))]>,
+ Sched<[WriteAdr, WriteST]>;
+} // hasSideEffects = 0
+
+//---
+// Load/store post-indexed
+//---
+
+// (pre-index) load/stores.
+class BaseLoadStorePostIdx<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops,
+ string asm, string cstr, list<dag> pat>
+ : I<oops, iops, asm, "\t$Rt, [$Rn], $offset", cstr, pat> {
+ bits<5> Rt;
+ bits<5> Rn;
+ bits<9> offset;
+ let Inst{31-30} = sz;
+ let Inst{29-27} = 0b111;
+ let Inst{26} = V;
+ let Inst{25-24} = 0b00;
+ let Inst{23-22} = opc;
+ let Inst{21} = 0b0;
+ let Inst{20-12} = offset;
+ let Inst{11-10} = 0b01;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let DecoderMethod = "DecodeSignedLdStInstruction";
+}
+
+let hasSideEffects = 0 in {
+let mayStore = 0, mayLoad = 1 in
+class LoadPostIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm>
+ : BaseLoadStorePostIdx<sz, V, opc,
+ (outs GPR64sp:$wback, regtype:$Rt),
+ (ins GPR64sp:$Rn, simm9:$offset),
+ asm, "$Rn = $wback", []>,
+ Sched<[WriteLD, WriteI]>;
+
+let mayStore = 1, mayLoad = 0 in
+class StorePostIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
+ string asm, SDPatternOperator storeop, ValueType Ty>
+ : BaseLoadStorePostIdx<sz, V, opc,
+ (outs GPR64sp:$wback),
+ (ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset),
+ asm, "$Rn = $wback",
+ [(set GPR64sp:$wback,
+ (storeop (Ty regtype:$Rt), GPR64sp:$Rn, simm9:$offset))]>,
+ Sched<[WriteAdr, WriteST, ReadAdrBase]>;
+} // hasSideEffects = 0
+
+
+//---
+// Load/store pair
+//---
+
+// (indexed, offset)
+
+class BaseLoadStorePairOffset<bits<2> opc, bit V, bit L, dag oops, dag iops,
+ string asm>
+ : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn, $offset]", "", []> {
+ bits<5> Rt;
+ bits<5> Rt2;
+ bits<5> Rn;
+ bits<7> offset;
+ let Inst{31-30} = opc;
+ let Inst{29-27} = 0b101;
+ let Inst{26} = V;
+ let Inst{25-23} = 0b010;
+ let Inst{22} = L;
+ let Inst{21-15} = offset;
+ let Inst{14-10} = Rt2;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let DecoderMethod = "DecodePairLdStInstruction";
+}
+
+multiclass LoadPairOffset<bits<2> opc, bit V, RegisterClass regtype,
+ Operand indextype, string asm> {
+ let hasSideEffects = 0, mayStore = 0, mayLoad = 1 in
+ def i : BaseLoadStorePairOffset<opc, V, 1,
+ (outs regtype:$Rt, regtype:$Rt2),
+ (ins GPR64sp:$Rn, indextype:$offset), asm>,
+ Sched<[WriteLD, WriteLDHi]>;
+
+ def : InstAlias<asm # " $Rt, $Rt2, [$Rn]",
+ (!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2,
+ GPR64sp:$Rn, 0)>;
+}
+
+
+multiclass StorePairOffset<bits<2> opc, bit V, RegisterClass regtype,
+ Operand indextype, string asm> {
+ let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
+ def i : BaseLoadStorePairOffset<opc, V, 0, (outs),
+ (ins regtype:$Rt, regtype:$Rt2,
+ GPR64sp:$Rn, indextype:$offset),
+ asm>,
+ Sched<[WriteSTP]>;
+
+ def : InstAlias<asm # " $Rt, $Rt2, [$Rn]",
+ (!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2,
+ GPR64sp:$Rn, 0)>;
+}
+
+// (pre-indexed)
+class BaseLoadStorePairPreIdx<bits<2> opc, bit V, bit L, dag oops, dag iops,
+ string asm>
+ : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn, $offset]!", "$Rn = $wback", []> {
+ bits<5> Rt;
+ bits<5> Rt2;
+ bits<5> Rn;
+ bits<7> offset;
+ let Inst{31-30} = opc;
+ let Inst{29-27} = 0b101;
+ let Inst{26} = V;
+ let Inst{25-23} = 0b011;
+ let Inst{22} = L;
+ let Inst{21-15} = offset;
+ let Inst{14-10} = Rt2;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let DecoderMethod = "DecodePairLdStInstruction";
+}
+
+let hasSideEffects = 0 in {
+let mayStore = 0, mayLoad = 1 in
+class LoadPairPreIdx<bits<2> opc, bit V, RegisterClass regtype,
+ Operand indextype, string asm>
+ : BaseLoadStorePairPreIdx<opc, V, 1,
+ (outs GPR64sp:$wback, regtype:$Rt, regtype:$Rt2),
+ (ins GPR64sp:$Rn, indextype:$offset), asm>,
+ Sched<[WriteLD, WriteLDHi, WriteAdr]>;
+
+let mayStore = 1, mayLoad = 0 in
+class StorePairPreIdx<bits<2> opc, bit V, RegisterClass regtype,
+ Operand indextype, string asm>
+ : BaseLoadStorePairPreIdx<opc, V, 0, (outs GPR64sp:$wback),
+ (ins regtype:$Rt, regtype:$Rt2,
+ GPR64sp:$Rn, indextype:$offset),
+ asm>,
+ Sched<[WriteAdr, WriteSTP]>;
+} // hasSideEffects = 0
+
+// (post-indexed)
+
+class BaseLoadStorePairPostIdx<bits<2> opc, bit V, bit L, dag oops, dag iops,
+ string asm>
+ : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn], $offset", "$Rn = $wback", []> {
+ bits<5> Rt;
+ bits<5> Rt2;
+ bits<5> Rn;
+ bits<7> offset;
+ let Inst{31-30} = opc;
+ let Inst{29-27} = 0b101;
+ let Inst{26} = V;
+ let Inst{25-23} = 0b001;
+ let Inst{22} = L;
+ let Inst{21-15} = offset;
+ let Inst{14-10} = Rt2;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let DecoderMethod = "DecodePairLdStInstruction";
+}
+
+let hasSideEffects = 0 in {
+let mayStore = 0, mayLoad = 1 in
+class LoadPairPostIdx<bits<2> opc, bit V, RegisterClass regtype,
+ Operand idxtype, string asm>
+ : BaseLoadStorePairPostIdx<opc, V, 1,
+ (outs GPR64sp:$wback, regtype:$Rt, regtype:$Rt2),
+ (ins GPR64sp:$Rn, idxtype:$offset), asm>,
+ Sched<[WriteLD, WriteLDHi, WriteAdr]>;
+
+let mayStore = 1, mayLoad = 0 in
+class StorePairPostIdx<bits<2> opc, bit V, RegisterClass regtype,
+ Operand idxtype, string asm>
+ : BaseLoadStorePairPostIdx<opc, V, 0, (outs),
+ (ins GPR64sp:$wback, regtype:$Rt, regtype:$Rt2,
+ GPR64sp:$Rn, idxtype:$offset),
+ asm>,
+ Sched<[WriteAdr, WriteSTP]>;
+} // hasSideEffects = 0
+
+// (no-allocate)
+
+class BaseLoadStorePairNoAlloc<bits<2> opc, bit V, bit L, dag oops, dag iops,
+ string asm>
+ : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn, $offset]", "", []> {
+ bits<5> Rt;
+ bits<5> Rt2;
+ bits<5> Rn;
+ bits<7> offset;
+ let Inst{31-30} = opc;
+ let Inst{29-27} = 0b101;
+ let Inst{26} = V;
+ let Inst{25-23} = 0b000;
+ let Inst{22} = L;
+ let Inst{21-15} = offset;
+ let Inst{14-10} = Rt2;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let DecoderMethod = "DecodePairLdStInstruction";
+}
+
+multiclass LoadPairNoAlloc<bits<2> opc, bit V, RegisterClass regtype,
+ Operand indextype, string asm> {
+ let hasSideEffects = 0, mayStore = 0, mayLoad = 1 in
+ def i : BaseLoadStorePairNoAlloc<opc, V, 1,
+ (outs regtype:$Rt, regtype:$Rt2),
+ (ins GPR64sp:$Rn, indextype:$offset), asm>,
+ Sched<[WriteLD, WriteLDHi]>;
+
+
+ def : InstAlias<asm # "\t$Rt, $Rt2, [$Rn]",
+ (!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2,
+ GPR64sp:$Rn, 0)>;
+}
+
+multiclass StorePairNoAlloc<bits<2> opc, bit V, RegisterClass regtype,
+ Operand indextype, string asm> {
+ let hasSideEffects = 0, mayStore = 1, mayLoad = 0 in
+ def i : BaseLoadStorePairNoAlloc<opc, V, 0, (outs),
+ (ins regtype:$Rt, regtype:$Rt2,
+ GPR64sp:$Rn, indextype:$offset),
+ asm>,
+ Sched<[WriteSTP]>;
+
+ def : InstAlias<asm # "\t$Rt, $Rt2, [$Rn]",
+ (!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2,
+ GPR64sp:$Rn, 0)>;
+}
+
+//---
+// Load/store exclusive
+//---
+
+// True exclusive operations write to and/or read from the system's exclusive
+// monitors, which as far as a compiler is concerned can be modelled as a
+// random shared memory address. Hence LoadExclusive mayStore.
+//
+// Since these instructions have the undefined register bits set to 1 in
+// their canonical form, we need a post encoder method to set those bits
+// to 1 when encoding these instructions. We do this using the
+// fixLoadStoreExclusive function. This function has template parameters:
+//
+// fixLoadStoreExclusive<int hasRs, int hasRt2>
+//
+// hasRs indicates that the instruction uses the Rs field, so we won't set
+// it to 1 (and the same for Rt2). We don't need template parameters for
+// the other register fields since Rt and Rn are always used.
+//
+let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in
+class BaseLoadStoreExclusive<bits<2> sz, bit o2, bit L, bit o1, bit o0,
+ dag oops, dag iops, string asm, string operands>
+ : I<oops, iops, asm, operands, "", []> {
+ let Inst{31-30} = sz;
+ let Inst{29-24} = 0b001000;
+ let Inst{23} = o2;
+ let Inst{22} = L;
+ let Inst{21} = o1;
+ let Inst{15} = o0;
+
+ let DecoderMethod = "DecodeExclusiveLdStInstruction";
+}
+
+// Neither Rs nor Rt2 operands.
+class LoadStoreExclusiveSimple<bits<2> sz, bit o2, bit L, bit o1, bit o0,
+ dag oops, dag iops, string asm, string operands>
+ : BaseLoadStoreExclusive<sz, o2, L, o1, o0, oops, iops, asm, operands> {
+ bits<5> Rt;
+ bits<5> Rn;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
+}
+
+// Simple load acquires don't set the exclusive monitor
+let mayLoad = 1, mayStore = 0 in
+class LoadAcquire<bits<2> sz, bit o2, bit L, bit o1, bit o0,
+ RegisterClass regtype, string asm>
+ : LoadStoreExclusiveSimple<sz, o2, L, o1, o0, (outs regtype:$Rt),
+ (ins GPR64sp0:$Rn), asm, "\t$Rt, [$Rn]">,
+ Sched<[WriteLD]>;
+
+class LoadExclusive<bits<2> sz, bit o2, bit L, bit o1, bit o0,
+ RegisterClass regtype, string asm>
+ : LoadStoreExclusiveSimple<sz, o2, L, o1, o0, (outs regtype:$Rt),
+ (ins GPR64sp0:$Rn), asm, "\t$Rt, [$Rn]">,
+ Sched<[WriteLD]>;
+
+class LoadExclusivePair<bits<2> sz, bit o2, bit L, bit o1, bit o0,
+ RegisterClass regtype, string asm>
+ : BaseLoadStoreExclusive<sz, o2, L, o1, o0,
+ (outs regtype:$Rt, regtype:$Rt2),
+ (ins GPR64sp0:$Rn), asm,
+ "\t$Rt, $Rt2, [$Rn]">,
+ Sched<[WriteLD, WriteLDHi]> {
+ bits<5> Rt;
+ bits<5> Rt2;
+ bits<5> Rn;
+ let Inst{14-10} = Rt2;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let PostEncoderMethod = "fixLoadStoreExclusive<0,1>";
+}
+
+// Simple store release operations do not check the exclusive monitor.
+let mayLoad = 0, mayStore = 1 in
+class StoreRelease<bits<2> sz, bit o2, bit L, bit o1, bit o0,
+ RegisterClass regtype, string asm>
+ : LoadStoreExclusiveSimple<sz, o2, L, o1, o0, (outs),
+ (ins regtype:$Rt, GPR64sp0:$Rn),
+ asm, "\t$Rt, [$Rn]">,
+ Sched<[WriteST]>;
+
+let mayLoad = 1, mayStore = 1 in
+class StoreExclusive<bits<2> sz, bit o2, bit L, bit o1, bit o0,
+ RegisterClass regtype, string asm>
+ : BaseLoadStoreExclusive<sz, o2, L, o1, o0, (outs GPR32:$Ws),
+ (ins regtype:$Rt, GPR64sp0:$Rn),
+ asm, "\t$Ws, $Rt, [$Rn]">,
+ Sched<[WriteSTX]> {
+ bits<5> Ws;
+ bits<5> Rt;
+ bits<5> Rn;
+ let Inst{20-16} = Ws;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let Constraints = "@earlyclobber $Ws";
+ let PostEncoderMethod = "fixLoadStoreExclusive<1,0>";
+}
+
+class StoreExclusivePair<bits<2> sz, bit o2, bit L, bit o1, bit o0,
+ RegisterClass regtype, string asm>
+ : BaseLoadStoreExclusive<sz, o2, L, o1, o0,
+ (outs GPR32:$Ws),
+ (ins regtype:$Rt, regtype:$Rt2, GPR64sp0:$Rn),
+ asm, "\t$Ws, $Rt, $Rt2, [$Rn]">,
+ Sched<[WriteSTX]> {
+ bits<5> Ws;
+ bits<5> Rt;
+ bits<5> Rt2;
+ bits<5> Rn;
+ let Inst{20-16} = Ws;
+ let Inst{14-10} = Rt2;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rt;
+
+ let Constraints = "@earlyclobber $Ws";
+}
+
+//---
+// Exception generation
+//---
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
+class ExceptionGeneration<bits<3> op1, bits<2> ll, string asm>
+ : I<(outs), (ins imm0_65535:$imm), asm, "\t$imm", "", []>,
+ Sched<[WriteSys]> {
+ bits<16> imm;
+ let Inst{31-24} = 0b11010100;
+ let Inst{23-21} = op1;
+ let Inst{20-5} = imm;
+ let Inst{4-2} = 0b000;
+ let Inst{1-0} = ll;
+}
+
+let Predicates = [HasFPARMv8] in {
+
+//---
+// Floating point to integer conversion
+//---
+
+class BaseFPToIntegerUnscaled<bits<2> type, bits<2> rmode, bits<3> opcode,
+ RegisterClass srcType, RegisterClass dstType,
+ string asm, list<dag> pattern>
+ : I<(outs dstType:$Rd), (ins srcType:$Rn),
+ asm, "\t$Rd, $Rn", "", pattern>,
+ Sched<[WriteFCvt]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{30-29} = 0b00;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = type;
+ let Inst{21} = 1;
+ let Inst{20-19} = rmode;
+ let Inst{18-16} = opcode;
+ let Inst{15-10} = 0;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseFPToInteger<bits<2> type, bits<2> rmode, bits<3> opcode,
+ RegisterClass srcType, RegisterClass dstType,
+ Operand immType, string asm, list<dag> pattern>
+ : I<(outs dstType:$Rd), (ins srcType:$Rn, immType:$scale),
+ asm, "\t$Rd, $Rn, $scale", "", pattern>,
+ Sched<[WriteFCvt]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<6> scale;
+ let Inst{30-29} = 0b00;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = type;
+ let Inst{21} = 0;
+ let Inst{20-19} = rmode;
+ let Inst{18-16} = opcode;
+ let Inst{15-10} = scale;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass FPToIntegerUnscaled<bits<2> rmode, bits<3> opcode, string asm,
+ SDPatternOperator OpN> {
+ // Unscaled single-precision to 32-bit
+ def UWSr : BaseFPToIntegerUnscaled<0b00, rmode, opcode, FPR32, GPR32, asm,
+ [(set GPR32:$Rd, (OpN FPR32:$Rn))]> {
+ let Inst{31} = 0; // 32-bit GPR flag
+ }
+
+ // Unscaled single-precision to 64-bit
+ def UXSr : BaseFPToIntegerUnscaled<0b00, rmode, opcode, FPR32, GPR64, asm,
+ [(set GPR64:$Rd, (OpN FPR32:$Rn))]> {
+ let Inst{31} = 1; // 64-bit GPR flag
+ }
+
+ // Unscaled double-precision to 32-bit
+ def UWDr : BaseFPToIntegerUnscaled<0b01, rmode, opcode, FPR64, GPR32, asm,
+ [(set GPR32:$Rd, (OpN (f64 FPR64:$Rn)))]> {
+ let Inst{31} = 0; // 32-bit GPR flag
+ }
+
+ // Unscaled double-precision to 64-bit
+ def UXDr : BaseFPToIntegerUnscaled<0b01, rmode, opcode, FPR64, GPR64, asm,
+ [(set GPR64:$Rd, (OpN (f64 FPR64:$Rn)))]> {
+ let Inst{31} = 1; // 64-bit GPR flag
+ }
+}
+
+multiclass FPToIntegerScaled<bits<2> rmode, bits<3> opcode, string asm,
+ SDPatternOperator OpN> {
+ // Scaled single-precision to 32-bit
+ def SWSri : BaseFPToInteger<0b00, rmode, opcode, FPR32, GPR32,
+ fixedpoint_f32_i32, asm,
+ [(set GPR32:$Rd, (OpN (fmul FPR32:$Rn,
+ fixedpoint_f32_i32:$scale)))]> {
+ let Inst{31} = 0; // 32-bit GPR flag
+ let scale{5} = 1;
+ }
+
+ // Scaled single-precision to 64-bit
+ def SXSri : BaseFPToInteger<0b00, rmode, opcode, FPR32, GPR64,
+ fixedpoint_f32_i64, asm,
+ [(set GPR64:$Rd, (OpN (fmul FPR32:$Rn,
+ fixedpoint_f32_i64:$scale)))]> {
+ let Inst{31} = 1; // 64-bit GPR flag
+ }
+
+ // Scaled double-precision to 32-bit
+ def SWDri : BaseFPToInteger<0b01, rmode, opcode, FPR64, GPR32,
+ fixedpoint_f64_i32, asm,
+ [(set GPR32:$Rd, (OpN (fmul FPR64:$Rn,
+ fixedpoint_f64_i32:$scale)))]> {
+ let Inst{31} = 0; // 32-bit GPR flag
+ let scale{5} = 1;
+ }
+
+ // Scaled double-precision to 64-bit
+ def SXDri : BaseFPToInteger<0b01, rmode, opcode, FPR64, GPR64,
+ fixedpoint_f64_i64, asm,
+ [(set GPR64:$Rd, (OpN (fmul FPR64:$Rn,
+ fixedpoint_f64_i64:$scale)))]> {
+ let Inst{31} = 1; // 64-bit GPR flag
+ }
+}
+
+//---
+// Integer to floating point conversion
+//---
+
+let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
+class BaseIntegerToFP<bit isUnsigned,
+ RegisterClass srcType, RegisterClass dstType,
+ Operand immType, string asm, list<dag> pattern>
+ : I<(outs dstType:$Rd), (ins srcType:$Rn, immType:$scale),
+ asm, "\t$Rd, $Rn, $scale", "", pattern>,
+ Sched<[WriteFCvt]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<6> scale;
+ let Inst{30-23} = 0b00111100;
+ let Inst{21-17} = 0b00001;
+ let Inst{16} = isUnsigned;
+ let Inst{15-10} = scale;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+class BaseIntegerToFPUnscaled<bit isUnsigned,
+ RegisterClass srcType, RegisterClass dstType,
+ ValueType dvt, string asm, SDNode node>
+ : I<(outs dstType:$Rd), (ins srcType:$Rn),
+ asm, "\t$Rd, $Rn", "", [(set (dvt dstType:$Rd), (node srcType:$Rn))]>,
+ Sched<[WriteFCvt]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<6> scale;
+ let Inst{30-23} = 0b00111100;
+ let Inst{21-17} = 0b10001;
+ let Inst{16} = isUnsigned;
+ let Inst{15-10} = 0b000000;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass IntegerToFP<bit isUnsigned, string asm, SDNode node> {
+ // Unscaled
+ def UWSri: BaseIntegerToFPUnscaled<isUnsigned, GPR32, FPR32, f32, asm, node> {
+ let Inst{31} = 0; // 32-bit GPR flag
+ let Inst{22} = 0; // 32-bit FPR flag
+ }
+
+ def UWDri: BaseIntegerToFPUnscaled<isUnsigned, GPR32, FPR64, f64, asm, node> {
+ let Inst{31} = 0; // 32-bit GPR flag
+ let Inst{22} = 1; // 64-bit FPR flag
+ }
+
+ def UXSri: BaseIntegerToFPUnscaled<isUnsigned, GPR64, FPR32, f32, asm, node> {
+ let Inst{31} = 1; // 64-bit GPR flag
+ let Inst{22} = 0; // 32-bit FPR flag
+ }
+
+ def UXDri: BaseIntegerToFPUnscaled<isUnsigned, GPR64, FPR64, f64, asm, node> {
+ let Inst{31} = 1; // 64-bit GPR flag
+ let Inst{22} = 1; // 64-bit FPR flag
+ }
+
+ // Scaled
+ def SWSri: BaseIntegerToFP<isUnsigned, GPR32, FPR32, fixedpoint_f32_i32, asm,
+ [(set FPR32:$Rd,
+ (fdiv (node GPR32:$Rn),
+ fixedpoint_f32_i32:$scale))]> {
+ let Inst{31} = 0; // 32-bit GPR flag
+ let Inst{22} = 0; // 32-bit FPR flag
+ let scale{5} = 1;
+ }
+
+ def SWDri: BaseIntegerToFP<isUnsigned, GPR32, FPR64, fixedpoint_f64_i32, asm,
+ [(set FPR64:$Rd,
+ (fdiv (node GPR32:$Rn),
+ fixedpoint_f64_i32:$scale))]> {
+ let Inst{31} = 0; // 32-bit GPR flag
+ let Inst{22} = 1; // 64-bit FPR flag
+ let scale{5} = 1;
+ }
+
+ def SXSri: BaseIntegerToFP<isUnsigned, GPR64, FPR32, fixedpoint_f32_i64, asm,
+ [(set FPR32:$Rd,
+ (fdiv (node GPR64:$Rn),
+ fixedpoint_f32_i64:$scale))]> {
+ let Inst{31} = 1; // 64-bit GPR flag
+ let Inst{22} = 0; // 32-bit FPR flag
+ }
+
+ def SXDri: BaseIntegerToFP<isUnsigned, GPR64, FPR64, fixedpoint_f64_i64, asm,
+ [(set FPR64:$Rd,
+ (fdiv (node GPR64:$Rn),
+ fixedpoint_f64_i64:$scale))]> {
+ let Inst{31} = 1; // 64-bit GPR flag
+ let Inst{22} = 1; // 64-bit FPR flag
+ }
+}
+
+//---
+// Unscaled integer <-> floating point conversion (i.e. FMOV)
+//---
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseUnscaledConversion<bits<2> rmode, bits<3> opcode,
+ RegisterClass srcType, RegisterClass dstType,
+ string asm>
+ : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "",
+ // We use COPY_TO_REGCLASS for these bitconvert operations.
+ // copyPhysReg() expands the resultant COPY instructions after
+ // regalloc is done. This gives greater freedom for the allocator
+ // and related passes (coalescing, copy propagation, et. al.) to
+ // be more effective.
+ [/*(set (dvt dstType:$Rd), (bitconvert (svt srcType:$Rn)))*/]>,
+ Sched<[WriteFCopy]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{30-23} = 0b00111100;
+ let Inst{21} = 1;
+ let Inst{20-19} = rmode;
+ let Inst{18-16} = opcode;
+ let Inst{15-10} = 0b000000;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseUnscaledConversionToHigh<bits<2> rmode, bits<3> opcode,
+ RegisterClass srcType, RegisterOperand dstType, string asm,
+ string kind>
+ : I<(outs dstType:$Rd), (ins srcType:$Rn, VectorIndex1:$idx), asm,
+ "{\t$Rd"#kind#"$idx, $Rn|"#kind#"\t$Rd$idx, $Rn}", "", []>,
+ Sched<[WriteFCopy]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{30-23} = 0b00111101;
+ let Inst{21} = 1;
+ let Inst{20-19} = rmode;
+ let Inst{18-16} = opcode;
+ let Inst{15-10} = 0b000000;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+
+ let DecoderMethod = "DecodeFMOVLaneInstruction";
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseUnscaledConversionFromHigh<bits<2> rmode, bits<3> opcode,
+ RegisterOperand srcType, RegisterClass dstType, string asm,
+ string kind>
+ : I<(outs dstType:$Rd), (ins srcType:$Rn, VectorIndex1:$idx), asm,
+ "{\t$Rd, $Rn"#kind#"$idx|"#kind#"\t$Rd, $Rn$idx}", "", []>,
+ Sched<[WriteFCopy]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{30-23} = 0b00111101;
+ let Inst{21} = 1;
+ let Inst{20-19} = rmode;
+ let Inst{18-16} = opcode;
+ let Inst{15-10} = 0b000000;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+
+ let DecoderMethod = "DecodeFMOVLaneInstruction";
+}
+
+
+
+multiclass UnscaledConversion<string asm> {
+ def WSr : BaseUnscaledConversion<0b00, 0b111, GPR32, FPR32, asm> {
+ let Inst{31} = 0; // 32-bit GPR flag
+ let Inst{22} = 0; // 32-bit FPR flag
+ }
+
+ def XDr : BaseUnscaledConversion<0b00, 0b111, GPR64, FPR64, asm> {
+ let Inst{31} = 1; // 64-bit GPR flag
+ let Inst{22} = 1; // 64-bit FPR flag
+ }
+
+ def SWr : BaseUnscaledConversion<0b00, 0b110, FPR32, GPR32, asm> {
+ let Inst{31} = 0; // 32-bit GPR flag
+ let Inst{22} = 0; // 32-bit FPR flag
+ }
+
+ def DXr : BaseUnscaledConversion<0b00, 0b110, FPR64, GPR64, asm> {
+ let Inst{31} = 1; // 64-bit GPR flag
+ let Inst{22} = 1; // 64-bit FPR flag
+ }
+
+ def XDHighr : BaseUnscaledConversionToHigh<0b01, 0b111, GPR64, V128,
+ asm, ".d"> {
+ let Inst{31} = 1;
+ let Inst{22} = 0;
+ }
+
+ def DXHighr : BaseUnscaledConversionFromHigh<0b01, 0b110, V128, GPR64,
+ asm, ".d"> {
+ let Inst{31} = 1;
+ let Inst{22} = 0;
+ }
+}
+
+//---
+// Floating point conversion
+//---
+
+class BaseFPConversion<bits<2> type, bits<2> opcode, RegisterClass dstType,
+ RegisterClass srcType, string asm, list<dag> pattern>
+ : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "", pattern>,
+ Sched<[WriteFCvt]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31-24} = 0b00011110;
+ let Inst{23-22} = type;
+ let Inst{21-17} = 0b10001;
+ let Inst{16-15} = opcode;
+ let Inst{14-10} = 0b10000;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass FPConversion<string asm> {
+ // Double-precision to Half-precision
+ def HDr : BaseFPConversion<0b01, 0b11, FPR16, FPR64, asm,
+ [(set FPR16:$Rd, (fround FPR64:$Rn))]>;
+
+ // Double-precision to Single-precision
+ def SDr : BaseFPConversion<0b01, 0b00, FPR32, FPR64, asm,
+ [(set FPR32:$Rd, (fround FPR64:$Rn))]>;
+
+ // Half-precision to Double-precision
+ def DHr : BaseFPConversion<0b11, 0b01, FPR64, FPR16, asm,
+ [(set FPR64:$Rd, (fextend FPR16:$Rn))]>;
+
+ // Half-precision to Single-precision
+ def SHr : BaseFPConversion<0b11, 0b00, FPR32, FPR16, asm,
+ [(set FPR32:$Rd, (fextend FPR16:$Rn))]>;
+
+ // Single-precision to Double-precision
+ def DSr : BaseFPConversion<0b00, 0b01, FPR64, FPR32, asm,
+ [(set FPR64:$Rd, (fextend FPR32:$Rn))]>;
+
+ // Single-precision to Half-precision
+ def HSr : BaseFPConversion<0b00, 0b11, FPR16, FPR32, asm,
+ [(set FPR16:$Rd, (fround FPR32:$Rn))]>;
+}
+
+//---
+// Single operand floating point data processing
+//---
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSingleOperandFPData<bits<4> opcode, RegisterClass regtype,
+ ValueType vt, string asm, SDPatternOperator node>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "\t$Rd, $Rn", "",
+ [(set (vt regtype:$Rd), (node (vt regtype:$Rn)))]>,
+ Sched<[WriteF]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31-23} = 0b000111100;
+ let Inst{21-19} = 0b100;
+ let Inst{18-15} = opcode;
+ let Inst{14-10} = 0b10000;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass SingleOperandFPData<bits<4> opcode, string asm,
+ SDPatternOperator node = null_frag> {
+ def Sr : BaseSingleOperandFPData<opcode, FPR32, f32, asm, node> {
+ let Inst{22} = 0; // 32-bit size flag
+ }
+
+ def Dr : BaseSingleOperandFPData<opcode, FPR64, f64, asm, node> {
+ let Inst{22} = 1; // 64-bit size flag
+ }
+}
+
+//---
+// Two operand floating point data processing
+//---
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseTwoOperandFPData<bits<4> opcode, RegisterClass regtype,
+ string asm, list<dag> pat>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm),
+ asm, "\t$Rd, $Rn, $Rm", "", pat>,
+ Sched<[WriteF]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{31-23} = 0b000111100;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass TwoOperandFPData<bits<4> opcode, string asm,
+ SDPatternOperator node = null_frag> {
+ def Srr : BaseTwoOperandFPData<opcode, FPR32, asm,
+ [(set (f32 FPR32:$Rd),
+ (node (f32 FPR32:$Rn), (f32 FPR32:$Rm)))]> {
+ let Inst{22} = 0; // 32-bit size flag
+ }
+
+ def Drr : BaseTwoOperandFPData<opcode, FPR64, asm,
+ [(set (f64 FPR64:$Rd),
+ (node (f64 FPR64:$Rn), (f64 FPR64:$Rm)))]> {
+ let Inst{22} = 1; // 64-bit size flag
+ }
+}
+
+multiclass TwoOperandFPDataNeg<bits<4> opcode, string asm, SDNode node> {
+ def Srr : BaseTwoOperandFPData<opcode, FPR32, asm,
+ [(set FPR32:$Rd, (fneg (node FPR32:$Rn, (f32 FPR32:$Rm))))]> {
+ let Inst{22} = 0; // 32-bit size flag
+ }
+
+ def Drr : BaseTwoOperandFPData<opcode, FPR64, asm,
+ [(set FPR64:$Rd, (fneg (node FPR64:$Rn, (f64 FPR64:$Rm))))]> {
+ let Inst{22} = 1; // 64-bit size flag
+ }
+}
+
+
+//---
+// Three operand floating point data processing
+//---
+
+class BaseThreeOperandFPData<bit isNegated, bit isSub,
+ RegisterClass regtype, string asm, list<dag> pat>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, regtype: $Ra),
+ asm, "\t$Rd, $Rn, $Rm, $Ra", "", pat>,
+ Sched<[WriteFMul]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<5> Ra;
+ let Inst{31-23} = 0b000111110;
+ let Inst{21} = isNegated;
+ let Inst{20-16} = Rm;
+ let Inst{15} = isSub;
+ let Inst{14-10} = Ra;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass ThreeOperandFPData<bit isNegated, bit isSub,string asm,
+ SDPatternOperator node> {
+ def Srrr : BaseThreeOperandFPData<isNegated, isSub, FPR32, asm,
+ [(set FPR32:$Rd,
+ (node (f32 FPR32:$Rn), (f32 FPR32:$Rm), (f32 FPR32:$Ra)))]> {
+ let Inst{22} = 0; // 32-bit size flag
+ }
+
+ def Drrr : BaseThreeOperandFPData<isNegated, isSub, FPR64, asm,
+ [(set FPR64:$Rd,
+ (node (f64 FPR64:$Rn), (f64 FPR64:$Rm), (f64 FPR64:$Ra)))]> {
+ let Inst{22} = 1; // 64-bit size flag
+ }
+}
+
+//---
+// Floating point data comparisons
+//---
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseOneOperandFPComparison<bit signalAllNans,
+ RegisterClass regtype, string asm,
+ list<dag> pat>
+ : I<(outs), (ins regtype:$Rn), asm, "\t$Rn, #0.0", "", pat>,
+ Sched<[WriteFCmp]> {
+ bits<5> Rn;
+ let Inst{31-23} = 0b000111100;
+ let Inst{21} = 1;
+
+ let Inst{15-10} = 0b001000;
+ let Inst{9-5} = Rn;
+ let Inst{4} = signalAllNans;
+ let Inst{3-0} = 0b1000;
+
+ // Rm should be 0b00000 canonically, but we need to accept any value.
+ let PostEncoderMethod = "fixOneOperandFPComparison";
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseTwoOperandFPComparison<bit signalAllNans, RegisterClass regtype,
+ string asm, list<dag> pat>
+ : I<(outs), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rn, $Rm", "", pat>,
+ Sched<[WriteFCmp]> {
+ bits<5> Rm;
+ bits<5> Rn;
+ let Inst{31-23} = 0b000111100;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15-10} = 0b001000;
+ let Inst{9-5} = Rn;
+ let Inst{4} = signalAllNans;
+ let Inst{3-0} = 0b0000;
+}
+
+multiclass FPComparison<bit signalAllNans, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ let Defs = [NZCV] in {
+ def Srr : BaseTwoOperandFPComparison<signalAllNans, FPR32, asm,
+ [(OpNode FPR32:$Rn, (f32 FPR32:$Rm)), (implicit NZCV)]> {
+ let Inst{22} = 0;
+ }
+
+ def Sri : BaseOneOperandFPComparison<signalAllNans, FPR32, asm,
+ [(OpNode (f32 FPR32:$Rn), fpimm0), (implicit NZCV)]> {
+ let Inst{22} = 0;
+ }
+
+ def Drr : BaseTwoOperandFPComparison<signalAllNans, FPR64, asm,
+ [(OpNode FPR64:$Rn, (f64 FPR64:$Rm)), (implicit NZCV)]> {
+ let Inst{22} = 1;
+ }
+
+ def Dri : BaseOneOperandFPComparison<signalAllNans, FPR64, asm,
+ [(OpNode (f64 FPR64:$Rn), fpimm0), (implicit NZCV)]> {
+ let Inst{22} = 1;
+ }
+ } // Defs = [NZCV]
+}
+
+//---
+// Floating point conditional comparisons
+//---
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseFPCondComparison<bit signalAllNans,
+ RegisterClass regtype, string asm>
+ : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond),
+ asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>,
+ Sched<[WriteFCmp]> {
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<4> nzcv;
+ bits<4> cond;
+
+ let Inst{31-23} = 0b000111100;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15-12} = cond;
+ let Inst{11-10} = 0b01;
+ let Inst{9-5} = Rn;
+ let Inst{4} = signalAllNans;
+ let Inst{3-0} = nzcv;
+}
+
+multiclass FPCondComparison<bit signalAllNans, string asm> {
+ let Defs = [NZCV], Uses = [NZCV] in {
+ def Srr : BaseFPCondComparison<signalAllNans, FPR32, asm> {
+ let Inst{22} = 0;
+ }
+
+ def Drr : BaseFPCondComparison<signalAllNans, FPR64, asm> {
+ let Inst{22} = 1;
+ }
+ } // Defs = [NZCV], Uses = [NZCV]
+}
+
+//---
+// Floating point conditional select
+//---
+
+class BaseFPCondSelect<RegisterClass regtype, ValueType vt, string asm>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond),
+ asm, "\t$Rd, $Rn, $Rm, $cond", "",
+ [(set regtype:$Rd,
+ (AArch64csel (vt regtype:$Rn), regtype:$Rm,
+ (i32 imm:$cond), NZCV))]>,
+ Sched<[WriteF]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<4> cond;
+
+ let Inst{31-23} = 0b000111100;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15-12} = cond;
+ let Inst{11-10} = 0b11;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass FPCondSelect<string asm> {
+ let Uses = [NZCV] in {
+ def Srrr : BaseFPCondSelect<FPR32, f32, asm> {
+ let Inst{22} = 0;
+ }
+
+ def Drrr : BaseFPCondSelect<FPR64, f64, asm> {
+ let Inst{22} = 1;
+ }
+ } // Uses = [NZCV]
+}
+
+//---
+// Floating move immediate
+//---
+
+class BaseFPMoveImmediate<RegisterClass regtype, Operand fpimmtype, string asm>
+ : I<(outs regtype:$Rd), (ins fpimmtype:$imm), asm, "\t$Rd, $imm", "",
+ [(set regtype:$Rd, fpimmtype:$imm)]>,
+ Sched<[WriteFImm]> {
+ bits<5> Rd;
+ bits<8> imm;
+ let Inst{31-23} = 0b000111100;
+ let Inst{21} = 1;
+ let Inst{20-13} = imm;
+ let Inst{12-5} = 0b10000000;
+ let Inst{4-0} = Rd;
+}
+
+multiclass FPMoveImmediate<string asm> {
+ def Si : BaseFPMoveImmediate<FPR32, fpimm32, asm> {
+ let Inst{22} = 0;
+ }
+
+ def Di : BaseFPMoveImmediate<FPR64, fpimm64, asm> {
+ let Inst{22} = 1;
+ }
+}
+} // end of 'let Predicates = [HasFPARMv8]'
+
+//----------------------------------------------------------------------------
+// AdvSIMD
+//----------------------------------------------------------------------------
+
+let Predicates = [HasNEON] in {
+
+//----------------------------------------------------------------------------
+// AdvSIMD three register vector instructions
+//----------------------------------------------------------------------------
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDThreeSameVector<bit Q, bit U, bits<2> size, bits<5> opcode,
+ RegisterOperand regtype, string asm, string kind,
+ list<dag> pattern>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm,
+ "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind #
+ "|" # kind # "\t$Rd, $Rn, $Rm|}", "", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15-11} = opcode;
+ let Inst{10} = 1;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDThreeSameVectorTied<bit Q, bit U, bits<2> size, bits<5> opcode,
+ RegisterOperand regtype, string asm, string kind,
+ list<dag> pattern>
+ : I<(outs regtype:$dst), (ins regtype:$Rd, regtype:$Rn, regtype:$Rm), asm,
+ "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind #
+ "|" # kind # "\t$Rd, $Rn, $Rm}", "$Rd = $dst", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15-11} = opcode;
+ let Inst{10} = 1;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+// All operand sizes distinguished in the encoding.
+multiclass SIMDThreeSameVector<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8 : BaseSIMDThreeSameVector<0, U, 0b00, opc, V64,
+ asm, ".8b",
+ [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
+ def v16i8 : BaseSIMDThreeSameVector<1, U, 0b00, opc, V128,
+ asm, ".16b",
+ [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>;
+ def v4i16 : BaseSIMDThreeSameVector<0, U, 0b01, opc, V64,
+ asm, ".4h",
+ [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
+ def v8i16 : BaseSIMDThreeSameVector<1, U, 0b01, opc, V128,
+ asm, ".8h",
+ [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>;
+ def v2i32 : BaseSIMDThreeSameVector<0, U, 0b10, opc, V64,
+ asm, ".2s",
+ [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
+ def v4i32 : BaseSIMDThreeSameVector<1, U, 0b10, opc, V128,
+ asm, ".4s",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>;
+ def v2i64 : BaseSIMDThreeSameVector<1, U, 0b11, opc, V128,
+ asm, ".2d",
+ [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (v2i64 V128:$Rm)))]>;
+}
+
+// As above, but D sized elements unsupported.
+multiclass SIMDThreeSameVectorBHS<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8 : BaseSIMDThreeSameVector<0, U, 0b00, opc, V64,
+ asm, ".8b",
+ [(set V64:$Rd, (v8i8 (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm))))]>;
+ def v16i8 : BaseSIMDThreeSameVector<1, U, 0b00, opc, V128,
+ asm, ".16b",
+ [(set V128:$Rd, (v16i8 (OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm))))]>;
+ def v4i16 : BaseSIMDThreeSameVector<0, U, 0b01, opc, V64,
+ asm, ".4h",
+ [(set V64:$Rd, (v4i16 (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm))))]>;
+ def v8i16 : BaseSIMDThreeSameVector<1, U, 0b01, opc, V128,
+ asm, ".8h",
+ [(set V128:$Rd, (v8i16 (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm))))]>;
+ def v2i32 : BaseSIMDThreeSameVector<0, U, 0b10, opc, V64,
+ asm, ".2s",
+ [(set V64:$Rd, (v2i32 (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm))))]>;
+ def v4i32 : BaseSIMDThreeSameVector<1, U, 0b10, opc, V128,
+ asm, ".4s",
+ [(set V128:$Rd, (v4i32 (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm))))]>;
+}
+
+multiclass SIMDThreeSameVectorBHSTied<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8 : BaseSIMDThreeSameVectorTied<0, U, 0b00, opc, V64,
+ asm, ".8b",
+ [(set (v8i8 V64:$dst),
+ (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
+ def v16i8 : BaseSIMDThreeSameVectorTied<1, U, 0b00, opc, V128,
+ asm, ".16b",
+ [(set (v16i8 V128:$dst),
+ (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>;
+ def v4i16 : BaseSIMDThreeSameVectorTied<0, U, 0b01, opc, V64,
+ asm, ".4h",
+ [(set (v4i16 V64:$dst),
+ (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
+ def v8i16 : BaseSIMDThreeSameVectorTied<1, U, 0b01, opc, V128,
+ asm, ".8h",
+ [(set (v8i16 V128:$dst),
+ (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>;
+ def v2i32 : BaseSIMDThreeSameVectorTied<0, U, 0b10, opc, V64,
+ asm, ".2s",
+ [(set (v2i32 V64:$dst),
+ (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
+ def v4i32 : BaseSIMDThreeSameVectorTied<1, U, 0b10, opc, V128,
+ asm, ".4s",
+ [(set (v4i32 V128:$dst),
+ (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>;
+}
+
+// As above, but only B sized elements supported.
+multiclass SIMDThreeSameVectorB<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8 : BaseSIMDThreeSameVector<0, U, 0b00, opc, V64,
+ asm, ".8b",
+ [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
+ def v16i8 : BaseSIMDThreeSameVector<1, U, 0b00, opc, V128,
+ asm, ".16b",
+ [(set (v16i8 V128:$Rd),
+ (OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>;
+}
+
+// As above, but only S and D sized floating point elements supported.
+multiclass SIMDThreeSameVectorFP<bit U, bit S, bits<5> opc,
+ string asm, SDPatternOperator OpNode> {
+ def v2f32 : BaseSIMDThreeSameVector<0, U, {S,0}, opc, V64,
+ asm, ".2s",
+ [(set (v2f32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>;
+ def v4f32 : BaseSIMDThreeSameVector<1, U, {S,0}, opc, V128,
+ asm, ".4s",
+ [(set (v4f32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>;
+ def v2f64 : BaseSIMDThreeSameVector<1, U, {S,1}, opc, V128,
+ asm, ".2d",
+ [(set (v2f64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>;
+}
+
+multiclass SIMDThreeSameVectorFPCmp<bit U, bit S, bits<5> opc,
+ string asm,
+ SDPatternOperator OpNode> {
+ def v2f32 : BaseSIMDThreeSameVector<0, U, {S,0}, opc, V64,
+ asm, ".2s",
+ [(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>;
+ def v4f32 : BaseSIMDThreeSameVector<1, U, {S,0}, opc, V128,
+ asm, ".4s",
+ [(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>;
+ def v2f64 : BaseSIMDThreeSameVector<1, U, {S,1}, opc, V128,
+ asm, ".2d",
+ [(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>;
+}
+
+multiclass SIMDThreeSameVectorFPTied<bit U, bit S, bits<5> opc,
+ string asm, SDPatternOperator OpNode> {
+ def v2f32 : BaseSIMDThreeSameVectorTied<0, U, {S,0}, opc, V64,
+ asm, ".2s",
+ [(set (v2f32 V64:$dst),
+ (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>;
+ def v4f32 : BaseSIMDThreeSameVectorTied<1, U, {S,0}, opc, V128,
+ asm, ".4s",
+ [(set (v4f32 V128:$dst),
+ (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>;
+ def v2f64 : BaseSIMDThreeSameVectorTied<1, U, {S,1}, opc, V128,
+ asm, ".2d",
+ [(set (v2f64 V128:$dst),
+ (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>;
+}
+
+// As above, but D and B sized elements unsupported.
+multiclass SIMDThreeSameVectorHS<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v4i16 : BaseSIMDThreeSameVector<0, U, 0b01, opc, V64,
+ asm, ".4h",
+ [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
+ def v8i16 : BaseSIMDThreeSameVector<1, U, 0b01, opc, V128,
+ asm, ".8h",
+ [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>;
+ def v2i32 : BaseSIMDThreeSameVector<0, U, 0b10, opc, V64,
+ asm, ".2s",
+ [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
+ def v4i32 : BaseSIMDThreeSameVector<1, U, 0b10, opc, V128,
+ asm, ".4s",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>;
+}
+
+// Logical three vector ops share opcode bits, and only use B sized elements.
+multiclass SIMDLogicalThreeVector<bit U, bits<2> size, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def v8i8 : BaseSIMDThreeSameVector<0, U, size, 0b00011, V64,
+ asm, ".8b",
+ [(set (v8i8 V64:$Rd), (OpNode V64:$Rn, V64:$Rm))]>;
+ def v16i8 : BaseSIMDThreeSameVector<1, U, size, 0b00011, V128,
+ asm, ".16b",
+ [(set (v16i8 V128:$Rd), (OpNode V128:$Rn, V128:$Rm))]>;
+
+ def : Pat<(v4i16 (OpNode V64:$LHS, V64:$RHS)),
+ (!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$RHS)>;
+ def : Pat<(v2i32 (OpNode V64:$LHS, V64:$RHS)),
+ (!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$RHS)>;
+ def : Pat<(v1i64 (OpNode V64:$LHS, V64:$RHS)),
+ (!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$RHS)>;
+
+ def : Pat<(v8i16 (OpNode V128:$LHS, V128:$RHS)),
+ (!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$RHS)>;
+ def : Pat<(v4i32 (OpNode V128:$LHS, V128:$RHS)),
+ (!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$RHS)>;
+ def : Pat<(v2i64 (OpNode V128:$LHS, V128:$RHS)),
+ (!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$RHS)>;
+}
+
+multiclass SIMDLogicalThreeVectorTied<bit U, bits<2> size,
+ string asm, SDPatternOperator OpNode> {
+ def v8i8 : BaseSIMDThreeSameVectorTied<0, U, size, 0b00011, V64,
+ asm, ".8b",
+ [(set (v8i8 V64:$dst),
+ (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
+ def v16i8 : BaseSIMDThreeSameVectorTied<1, U, size, 0b00011, V128,
+ asm, ".16b",
+ [(set (v16i8 V128:$dst),
+ (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn),
+ (v16i8 V128:$Rm)))]>;
+
+ def : Pat<(v4i16 (OpNode (v4i16 V64:$LHS), (v4i16 V64:$MHS),
+ (v4i16 V64:$RHS))),
+ (!cast<Instruction>(NAME#"v8i8")
+ V64:$LHS, V64:$MHS, V64:$RHS)>;
+ def : Pat<(v2i32 (OpNode (v2i32 V64:$LHS), (v2i32 V64:$MHS),
+ (v2i32 V64:$RHS))),
+ (!cast<Instruction>(NAME#"v8i8")
+ V64:$LHS, V64:$MHS, V64:$RHS)>;
+ def : Pat<(v1i64 (OpNode (v1i64 V64:$LHS), (v1i64 V64:$MHS),
+ (v1i64 V64:$RHS))),
+ (!cast<Instruction>(NAME#"v8i8")
+ V64:$LHS, V64:$MHS, V64:$RHS)>;
+
+ def : Pat<(v8i16 (OpNode (v8i16 V128:$LHS), (v8i16 V128:$MHS),
+ (v8i16 V128:$RHS))),
+ (!cast<Instruction>(NAME#"v16i8")
+ V128:$LHS, V128:$MHS, V128:$RHS)>;
+ def : Pat<(v4i32 (OpNode (v4i32 V128:$LHS), (v4i32 V128:$MHS),
+ (v4i32 V128:$RHS))),
+ (!cast<Instruction>(NAME#"v16i8")
+ V128:$LHS, V128:$MHS, V128:$RHS)>;
+ def : Pat<(v2i64 (OpNode (v2i64 V128:$LHS), (v2i64 V128:$MHS),
+ (v2i64 V128:$RHS))),
+ (!cast<Instruction>(NAME#"v16i8")
+ V128:$LHS, V128:$MHS, V128:$RHS)>;
+}
+
+
+//----------------------------------------------------------------------------
+// AdvSIMD two register vector instructions.
+//----------------------------------------------------------------------------
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDTwoSameVector<bit Q, bit U, bits<2> size, bits<5> opcode,
+ RegisterOperand regtype, string asm, string dstkind,
+ string srckind, list<dag> pattern>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn), asm,
+ "{\t$Rd" # dstkind # ", $Rn" # srckind #
+ "|" # dstkind # "\t$Rd, $Rn}", "", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDTwoSameVectorTied<bit Q, bit U, bits<2> size, bits<5> opcode,
+ RegisterOperand regtype, string asm, string dstkind,
+ string srckind, list<dag> pattern>
+ : I<(outs regtype:$dst), (ins regtype:$Rd, regtype:$Rn), asm,
+ "{\t$Rd" # dstkind # ", $Rn" # srckind #
+ "|" # dstkind # "\t$Rd, $Rn}", "$Rd = $dst", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+// Supports B, H, and S element sizes.
+multiclass SIMDTwoVectorBHS<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64,
+ asm, ".8b", ".8b",
+ [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>;
+ def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128,
+ asm, ".16b", ".16b",
+ [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>;
+ def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64,
+ asm, ".4h", ".4h",
+ [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>;
+ def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128,
+ asm, ".8h", ".8h",
+ [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>;
+ def v2i32 : BaseSIMDTwoSameVector<0, U, 0b10, opc, V64,
+ asm, ".2s", ".2s",
+ [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>;
+ def v4i32 : BaseSIMDTwoSameVector<1, U, 0b10, opc, V128,
+ asm, ".4s", ".4s",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
+}
+
+class BaseSIMDVectorLShiftLongBySize<bit Q, bits<2> size,
+ RegisterOperand regtype, string asm, string dstkind,
+ string srckind, string amount>
+ : I<(outs V128:$Rd), (ins regtype:$Rn), asm,
+ "{\t$Rd" # dstkind # ", $Rn" # srckind # ", #" # amount #
+ "|" # dstkind # "\t$Rd, $Rn, #" # amount # "}", "", []>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29-24} = 0b101110;
+ let Inst{23-22} = size;
+ let Inst{21-10} = 0b100001001110;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass SIMDVectorLShiftLongBySizeBHS {
+ let neverHasSideEffects = 1 in {
+ def v8i8 : BaseSIMDVectorLShiftLongBySize<0, 0b00, V64,
+ "shll", ".8h", ".8b", "8">;
+ def v16i8 : BaseSIMDVectorLShiftLongBySize<1, 0b00, V128,
+ "shll2", ".8h", ".16b", "8">;
+ def v4i16 : BaseSIMDVectorLShiftLongBySize<0, 0b01, V64,
+ "shll", ".4s", ".4h", "16">;
+ def v8i16 : BaseSIMDVectorLShiftLongBySize<1, 0b01, V128,
+ "shll2", ".4s", ".8h", "16">;
+ def v2i32 : BaseSIMDVectorLShiftLongBySize<0, 0b10, V64,
+ "shll", ".2d", ".2s", "32">;
+ def v4i32 : BaseSIMDVectorLShiftLongBySize<1, 0b10, V128,
+ "shll2", ".2d", ".4s", "32">;
+ }
+}
+
+// Supports all element sizes.
+multiclass SIMDLongTwoVector<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8_v4i16 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64,
+ asm, ".4h", ".8b",
+ [(set (v4i16 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>;
+ def v16i8_v8i16 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128,
+ asm, ".8h", ".16b",
+ [(set (v8i16 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>;
+ def v4i16_v2i32 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64,
+ asm, ".2s", ".4h",
+ [(set (v2i32 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>;
+ def v8i16_v4i32 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128,
+ asm, ".4s", ".8h",
+ [(set (v4i32 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>;
+ def v2i32_v1i64 : BaseSIMDTwoSameVector<0, U, 0b10, opc, V64,
+ asm, ".1d", ".2s",
+ [(set (v1i64 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>;
+ def v4i32_v2i64 : BaseSIMDTwoSameVector<1, U, 0b10, opc, V128,
+ asm, ".2d", ".4s",
+ [(set (v2i64 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
+}
+
+multiclass SIMDLongTwoVectorTied<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8_v4i16 : BaseSIMDTwoSameVectorTied<0, U, 0b00, opc, V64,
+ asm, ".4h", ".8b",
+ [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd),
+ (v8i8 V64:$Rn)))]>;
+ def v16i8_v8i16 : BaseSIMDTwoSameVectorTied<1, U, 0b00, opc, V128,
+ asm, ".8h", ".16b",
+ [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd),
+ (v16i8 V128:$Rn)))]>;
+ def v4i16_v2i32 : BaseSIMDTwoSameVectorTied<0, U, 0b01, opc, V64,
+ asm, ".2s", ".4h",
+ [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd),
+ (v4i16 V64:$Rn)))]>;
+ def v8i16_v4i32 : BaseSIMDTwoSameVectorTied<1, U, 0b01, opc, V128,
+ asm, ".4s", ".8h",
+ [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd),
+ (v8i16 V128:$Rn)))]>;
+ def v2i32_v1i64 : BaseSIMDTwoSameVectorTied<0, U, 0b10, opc, V64,
+ asm, ".1d", ".2s",
+ [(set (v1i64 V64:$dst), (OpNode (v1i64 V64:$Rd),
+ (v2i32 V64:$Rn)))]>;
+ def v4i32_v2i64 : BaseSIMDTwoSameVectorTied<1, U, 0b10, opc, V128,
+ asm, ".2d", ".4s",
+ [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd),
+ (v4i32 V128:$Rn)))]>;
+}
+
+// Supports all element sizes, except 1xD.
+multiclass SIMDTwoVectorBHSDTied<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8 : BaseSIMDTwoSameVectorTied<0, U, 0b00, opc, V64,
+ asm, ".8b", ".8b",
+ [(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn)))]>;
+ def v16i8 : BaseSIMDTwoSameVectorTied<1, U, 0b00, opc, V128,
+ asm, ".16b", ".16b",
+ [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn)))]>;
+ def v4i16 : BaseSIMDTwoSameVectorTied<0, U, 0b01, opc, V64,
+ asm, ".4h", ".4h",
+ [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn)))]>;
+ def v8i16 : BaseSIMDTwoSameVectorTied<1, U, 0b01, opc, V128,
+ asm, ".8h", ".8h",
+ [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn)))]>;
+ def v2i32 : BaseSIMDTwoSameVectorTied<0, U, 0b10, opc, V64,
+ asm, ".2s", ".2s",
+ [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn)))]>;
+ def v4i32 : BaseSIMDTwoSameVectorTied<1, U, 0b10, opc, V128,
+ asm, ".4s", ".4s",
+ [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn)))]>;
+ def v2i64 : BaseSIMDTwoSameVectorTied<1, U, 0b11, opc, V128,
+ asm, ".2d", ".2d",
+ [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn)))]>;
+}
+
+multiclass SIMDTwoVectorBHSD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64,
+ asm, ".8b", ".8b",
+ [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>;
+ def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128,
+ asm, ".16b", ".16b",
+ [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>;
+ def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64,
+ asm, ".4h", ".4h",
+ [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>;
+ def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128,
+ asm, ".8h", ".8h",
+ [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>;
+ def v2i32 : BaseSIMDTwoSameVector<0, U, 0b10, opc, V64,
+ asm, ".2s", ".2s",
+ [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>;
+ def v4i32 : BaseSIMDTwoSameVector<1, U, 0b10, opc, V128,
+ asm, ".4s", ".4s",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
+ def v2i64 : BaseSIMDTwoSameVector<1, U, 0b11, opc, V128,
+ asm, ".2d", ".2d",
+ [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn)))]>;
+}
+
+
+// Supports only B element sizes.
+multiclass SIMDTwoVectorB<bit U, bits<2> size, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8 : BaseSIMDTwoSameVector<0, U, size, opc, V64,
+ asm, ".8b", ".8b",
+ [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>;
+ def v16i8 : BaseSIMDTwoSameVector<1, U, size, opc, V128,
+ asm, ".16b", ".16b",
+ [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>;
+
+}
+
+// Supports only B and H element sizes.
+multiclass SIMDTwoVectorBH<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64,
+ asm, ".8b", ".8b",
+ [(set (v8i8 V64:$Rd), (OpNode V64:$Rn))]>;
+ def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128,
+ asm, ".16b", ".16b",
+ [(set (v16i8 V128:$Rd), (OpNode V128:$Rn))]>;
+ def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64,
+ asm, ".4h", ".4h",
+ [(set (v4i16 V64:$Rd), (OpNode V64:$Rn))]>;
+ def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128,
+ asm, ".8h", ".8h",
+ [(set (v8i16 V128:$Rd), (OpNode V128:$Rn))]>;
+}
+
+// Supports only S and D element sizes, uses high bit of the size field
+// as an extra opcode bit.
+multiclass SIMDTwoVectorFP<bit U, bit S, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64,
+ asm, ".2s", ".2s",
+ [(set (v2f32 V64:$Rd), (OpNode (v2f32 V64:$Rn)))]>;
+ def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128,
+ asm, ".4s", ".4s",
+ [(set (v4f32 V128:$Rd), (OpNode (v4f32 V128:$Rn)))]>;
+ def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, V128,
+ asm, ".2d", ".2d",
+ [(set (v2f64 V128:$Rd), (OpNode (v2f64 V128:$Rn)))]>;
+}
+
+// Supports only S element size.
+multiclass SIMDTwoVectorS<bit U, bit S, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v2i32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64,
+ asm, ".2s", ".2s",
+ [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>;
+ def v4i32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128,
+ asm, ".4s", ".4s",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
+}
+
+
+multiclass SIMDTwoVectorFPToInt<bit U, bit S, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64,
+ asm, ".2s", ".2s",
+ [(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn)))]>;
+ def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128,
+ asm, ".4s", ".4s",
+ [(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn)))]>;
+ def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, V128,
+ asm, ".2d", ".2d",
+ [(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn)))]>;
+}
+
+multiclass SIMDTwoVectorIntToFP<bit U, bit S, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64,
+ asm, ".2s", ".2s",
+ [(set (v2f32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>;
+ def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128,
+ asm, ".4s", ".4s",
+ [(set (v4f32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
+ def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, V128,
+ asm, ".2d", ".2d",
+ [(set (v2f64 V128:$Rd), (OpNode (v2i64 V128:$Rn)))]>;
+}
+
+
+class BaseSIMDMixedTwoVector<bit Q, bit U, bits<2> size, bits<5> opcode,
+ RegisterOperand inreg, RegisterOperand outreg,
+ string asm, string outkind, string inkind,
+ list<dag> pattern>
+ : I<(outs outreg:$Rd), (ins inreg:$Rn), asm,
+ "{\t$Rd" # outkind # ", $Rn" # inkind #
+ "|" # outkind # "\t$Rd, $Rn}", "", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+class BaseSIMDMixedTwoVectorTied<bit Q, bit U, bits<2> size, bits<5> opcode,
+ RegisterOperand inreg, RegisterOperand outreg,
+ string asm, string outkind, string inkind,
+ list<dag> pattern>
+ : I<(outs outreg:$dst), (ins outreg:$Rd, inreg:$Rn), asm,
+ "{\t$Rd" # outkind # ", $Rn" # inkind #
+ "|" # outkind # "\t$Rd, $Rn}", "$Rd = $dst", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass SIMDMixedTwoVector<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8 : BaseSIMDMixedTwoVector<0, U, 0b00, opc, V128, V64,
+ asm, ".8b", ".8h",
+ [(set (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn)))]>;
+ def v16i8 : BaseSIMDMixedTwoVectorTied<1, U, 0b00, opc, V128, V128,
+ asm#"2", ".16b", ".8h", []>;
+ def v4i16 : BaseSIMDMixedTwoVector<0, U, 0b01, opc, V128, V64,
+ asm, ".4h", ".4s",
+ [(set (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
+ def v8i16 : BaseSIMDMixedTwoVectorTied<1, U, 0b01, opc, V128, V128,
+ asm#"2", ".8h", ".4s", []>;
+ def v2i32 : BaseSIMDMixedTwoVector<0, U, 0b10, opc, V128, V64,
+ asm, ".2s", ".2d",
+ [(set (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn)))]>;
+ def v4i32 : BaseSIMDMixedTwoVectorTied<1, U, 0b10, opc, V128, V128,
+ asm#"2", ".4s", ".2d", []>;
+
+ def : Pat<(concat_vectors (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn))),
+ (!cast<Instruction>(NAME # "v16i8")
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
+ def : Pat<(concat_vectors (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn))),
+ (!cast<Instruction>(NAME # "v8i16")
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
+ def : Pat<(concat_vectors (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn))),
+ (!cast<Instruction>(NAME # "v4i32")
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
+}
+
+class BaseSIMDCmpTwoVector<bit Q, bit U, bits<2> size, bits<5> opcode,
+ RegisterOperand regtype,
+ string asm, string kind, string zero,
+ ValueType dty, ValueType sty, SDNode OpNode>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn), asm,
+ "{\t$Rd" # kind # ", $Rn" # kind # ", #" # zero #
+ "|" # kind # "\t$Rd, $Rn, #" # zero # "}", "",
+ [(set (dty regtype:$Rd), (OpNode (sty regtype:$Rn)))]>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+// Comparisons support all element sizes, except 1xD.
+multiclass SIMDCmpTwoVector<bit U, bits<5> opc, string asm,
+ SDNode OpNode> {
+ def v8i8rz : BaseSIMDCmpTwoVector<0, U, 0b00, opc, V64,
+ asm, ".8b", "0",
+ v8i8, v8i8, OpNode>;
+ def v16i8rz : BaseSIMDCmpTwoVector<1, U, 0b00, opc, V128,
+ asm, ".16b", "0",
+ v16i8, v16i8, OpNode>;
+ def v4i16rz : BaseSIMDCmpTwoVector<0, U, 0b01, opc, V64,
+ asm, ".4h", "0",
+ v4i16, v4i16, OpNode>;
+ def v8i16rz : BaseSIMDCmpTwoVector<1, U, 0b01, opc, V128,
+ asm, ".8h", "0",
+ v8i16, v8i16, OpNode>;
+ def v2i32rz : BaseSIMDCmpTwoVector<0, U, 0b10, opc, V64,
+ asm, ".2s", "0",
+ v2i32, v2i32, OpNode>;
+ def v4i32rz : BaseSIMDCmpTwoVector<1, U, 0b10, opc, V128,
+ asm, ".4s", "0",
+ v4i32, v4i32, OpNode>;
+ def v2i64rz : BaseSIMDCmpTwoVector<1, U, 0b11, opc, V128,
+ asm, ".2d", "0",
+ v2i64, v2i64, OpNode>;
+}
+
+// FP Comparisons support only S and D element sizes.
+multiclass SIMDFPCmpTwoVector<bit U, bit S, bits<5> opc,
+ string asm, SDNode OpNode> {
+
+ def v2i32rz : BaseSIMDCmpTwoVector<0, U, {S,0}, opc, V64,
+ asm, ".2s", "0.0",
+ v2i32, v2f32, OpNode>;
+ def v4i32rz : BaseSIMDCmpTwoVector<1, U, {S,0}, opc, V128,
+ asm, ".4s", "0.0",
+ v4i32, v4f32, OpNode>;
+ def v2i64rz : BaseSIMDCmpTwoVector<1, U, {S,1}, opc, V128,
+ asm, ".2d", "0.0",
+ v2i64, v2f64, OpNode>;
+
+ def : InstAlias<asm # " $Vd.2s, $Vn.2s, #0",
+ (!cast<Instruction>(NAME # v2i32rz) V64:$Vd, V64:$Vn), 0>;
+ def : InstAlias<asm # " $Vd.4s, $Vn.4s, #0",
+ (!cast<Instruction>(NAME # v4i32rz) V128:$Vd, V128:$Vn), 0>;
+ def : InstAlias<asm # " $Vd.2d, $Vn.2d, #0",
+ (!cast<Instruction>(NAME # v2i64rz) V128:$Vd, V128:$Vn), 0>;
+ def : InstAlias<asm # ".2s $Vd, $Vn, #0",
+ (!cast<Instruction>(NAME # v2i32rz) V64:$Vd, V64:$Vn), 0>;
+ def : InstAlias<asm # ".4s $Vd, $Vn, #0",
+ (!cast<Instruction>(NAME # v4i32rz) V128:$Vd, V128:$Vn), 0>;
+ def : InstAlias<asm # ".2d $Vd, $Vn, #0",
+ (!cast<Instruction>(NAME # v2i64rz) V128:$Vd, V128:$Vn), 0>;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDFPCvtTwoVector<bit Q, bit U, bits<2> size, bits<5> opcode,
+ RegisterOperand outtype, RegisterOperand intype,
+ string asm, string VdTy, string VnTy,
+ list<dag> pattern>
+ : I<(outs outtype:$Rd), (ins intype:$Rn), asm,
+ !strconcat("\t$Rd", VdTy, ", $Rn", VnTy), "", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+class BaseSIMDFPCvtTwoVectorTied<bit Q, bit U, bits<2> size, bits<5> opcode,
+ RegisterOperand outtype, RegisterOperand intype,
+ string asm, string VdTy, string VnTy,
+ list<dag> pattern>
+ : I<(outs outtype:$dst), (ins outtype:$Rd, intype:$Rn), asm,
+ !strconcat("\t$Rd", VdTy, ", $Rn", VnTy), "$Rd = $dst", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass SIMDFPWidenTwoVector<bit U, bit S, bits<5> opc, string asm> {
+ def v4i16 : BaseSIMDFPCvtTwoVector<0, U, {S,0}, opc, V128, V64,
+ asm, ".4s", ".4h", []>;
+ def v8i16 : BaseSIMDFPCvtTwoVector<1, U, {S,0}, opc, V128, V128,
+ asm#"2", ".4s", ".8h", []>;
+ def v2i32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V128, V64,
+ asm, ".2d", ".2s", []>;
+ def v4i32 : BaseSIMDFPCvtTwoVector<1, U, {S,1}, opc, V128, V128,
+ asm#"2", ".2d", ".4s", []>;
+}
+
+multiclass SIMDFPNarrowTwoVector<bit U, bit S, bits<5> opc, string asm> {
+ def v4i16 : BaseSIMDFPCvtTwoVector<0, U, {S,0}, opc, V64, V128,
+ asm, ".4h", ".4s", []>;
+ def v8i16 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,0}, opc, V128, V128,
+ asm#"2", ".8h", ".4s", []>;
+ def v2i32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V64, V128,
+ asm, ".2s", ".2d", []>;
+ def v4i32 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,1}, opc, V128, V128,
+ asm#"2", ".4s", ".2d", []>;
+}
+
+multiclass SIMDFPInexactCvtTwoVector<bit U, bit S, bits<5> opc, string asm,
+ Intrinsic OpNode> {
+ def v2f32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V64, V128,
+ asm, ".2s", ".2d",
+ [(set (v2f32 V64:$Rd), (OpNode (v2f64 V128:$Rn)))]>;
+ def v4f32 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,1}, opc, V128, V128,
+ asm#"2", ".4s", ".2d", []>;
+
+ def : Pat<(concat_vectors (v2f32 V64:$Rd), (OpNode (v2f64 V128:$Rn))),
+ (!cast<Instruction>(NAME # "v4f32")
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD three register different-size vector instructions.
+//----------------------------------------------------------------------------
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDDifferentThreeVector<bit U, bits<3> size, bits<4> opcode,
+ RegisterOperand outtype, RegisterOperand intype1,
+ RegisterOperand intype2, string asm,
+ string outkind, string inkind1, string inkind2,
+ list<dag> pattern>
+ : I<(outs outtype:$Rd), (ins intype1:$Rn, intype2:$Rm), asm,
+ "{\t$Rd" # outkind # ", $Rn" # inkind1 # ", $Rm" # inkind2 #
+ "|" # outkind # "\t$Rd, $Rn, $Rm}", "", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{31} = 0;
+ let Inst{30} = size{0};
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size{2-1};
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15-12} = opcode;
+ let Inst{11-10} = 0b00;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDDifferentThreeVectorTied<bit U, bits<3> size, bits<4> opcode,
+ RegisterOperand outtype, RegisterOperand intype1,
+ RegisterOperand intype2, string asm,
+ string outkind, string inkind1, string inkind2,
+ list<dag> pattern>
+ : I<(outs outtype:$dst), (ins outtype:$Rd, intype1:$Rn, intype2:$Rm), asm,
+ "{\t$Rd" # outkind # ", $Rn" # inkind1 # ", $Rm" # inkind2 #
+ "|" # outkind # "\t$Rd, $Rn, $Rm}", "$Rd = $dst", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{31} = 0;
+ let Inst{30} = size{0};
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size{2-1};
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15-12} = opcode;
+ let Inst{11-10} = 0b00;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+// FIXME: TableGen doesn't know how to deal with expanded types that also
+// change the element count (in this case, placing the results in
+// the high elements of the result register rather than the low
+// elements). Until that's fixed, we can't code-gen those.
+multiclass SIMDNarrowThreeVectorBHS<bit U, bits<4> opc, string asm,
+ Intrinsic IntOp> {
+ def v8i16_v8i8 : BaseSIMDDifferentThreeVector<U, 0b000, opc,
+ V64, V128, V128,
+ asm, ".8b", ".8h", ".8h",
+ [(set (v8i8 V64:$Rd), (IntOp (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>;
+ def v8i16_v16i8 : BaseSIMDDifferentThreeVectorTied<U, 0b001, opc,
+ V128, V128, V128,
+ asm#"2", ".16b", ".8h", ".8h",
+ []>;
+ def v4i32_v4i16 : BaseSIMDDifferentThreeVector<U, 0b010, opc,
+ V64, V128, V128,
+ asm, ".4h", ".4s", ".4s",
+ [(set (v4i16 V64:$Rd), (IntOp (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>;
+ def v4i32_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc,
+ V128, V128, V128,
+ asm#"2", ".8h", ".4s", ".4s",
+ []>;
+ def v2i64_v2i32 : BaseSIMDDifferentThreeVector<U, 0b100, opc,
+ V64, V128, V128,
+ asm, ".2s", ".2d", ".2d",
+ [(set (v2i32 V64:$Rd), (IntOp (v2i64 V128:$Rn), (v2i64 V128:$Rm)))]>;
+ def v2i64_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc,
+ V128, V128, V128,
+ asm#"2", ".4s", ".2d", ".2d",
+ []>;
+
+
+ // Patterns for the '2' variants involve INSERT_SUBREG, which you can't put in
+ // a version attached to an instruction.
+ def : Pat<(concat_vectors (v8i8 V64:$Rd), (IntOp (v8i16 V128:$Rn),
+ (v8i16 V128:$Rm))),
+ (!cast<Instruction>(NAME # "v8i16_v16i8")
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
+ V128:$Rn, V128:$Rm)>;
+ def : Pat<(concat_vectors (v4i16 V64:$Rd), (IntOp (v4i32 V128:$Rn),
+ (v4i32 V128:$Rm))),
+ (!cast<Instruction>(NAME # "v4i32_v8i16")
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
+ V128:$Rn, V128:$Rm)>;
+ def : Pat<(concat_vectors (v2i32 V64:$Rd), (IntOp (v2i64 V128:$Rn),
+ (v2i64 V128:$Rm))),
+ (!cast<Instruction>(NAME # "v2i64_v4i32")
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
+ V128:$Rn, V128:$Rm)>;
+}
+
+multiclass SIMDDifferentThreeVectorBD<bit U, bits<4> opc, string asm,
+ Intrinsic IntOp> {
+ def v8i8 : BaseSIMDDifferentThreeVector<U, 0b000, opc,
+ V128, V64, V64,
+ asm, ".8h", ".8b", ".8b",
+ [(set (v8i16 V128:$Rd), (IntOp (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
+ def v16i8 : BaseSIMDDifferentThreeVector<U, 0b001, opc,
+ V128, V128, V128,
+ asm#"2", ".8h", ".16b", ".16b", []>;
+ let Predicates = [HasCrypto] in {
+ def v1i64 : BaseSIMDDifferentThreeVector<U, 0b110, opc,
+ V128, V64, V64,
+ asm, ".1q", ".1d", ".1d", []>;
+ def v2i64 : BaseSIMDDifferentThreeVector<U, 0b111, opc,
+ V128, V128, V128,
+ asm#"2", ".1q", ".2d", ".2d", []>;
+ }
+
+ def : Pat<(v8i16 (IntOp (v8i8 (extract_high_v16i8 V128:$Rn)),
+ (v8i8 (extract_high_v16i8 V128:$Rm)))),
+ (!cast<Instruction>(NAME#"v16i8") V128:$Rn, V128:$Rm)>;
+}
+
+multiclass SIMDLongThreeVectorHS<bit U, bits<4> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc,
+ V128, V64, V64,
+ asm, ".4s", ".4h", ".4h",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
+ def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc,
+ V128, V128, V128,
+ asm#"2", ".4s", ".8h", ".8h",
+ [(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn),
+ (extract_high_v8i16 V128:$Rm)))]>;
+ def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc,
+ V128, V64, V64,
+ asm, ".2d", ".2s", ".2s",
+ [(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
+ def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc,
+ V128, V128, V128,
+ asm#"2", ".2d", ".4s", ".4s",
+ [(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn),
+ (extract_high_v4i32 V128:$Rm)))]>;
+}
+
+multiclass SIMDLongThreeVectorBHSabdl<bit U, bits<4> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def v8i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b000, opc,
+ V128, V64, V64,
+ asm, ".8h", ".8b", ".8b",
+ [(set (v8i16 V128:$Rd),
+ (zext (v8i8 (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))))]>;
+ def v16i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b001, opc,
+ V128, V128, V128,
+ asm#"2", ".8h", ".16b", ".16b",
+ [(set (v8i16 V128:$Rd),
+ (zext (v8i8 (OpNode (extract_high_v16i8 V128:$Rn),
+ (extract_high_v16i8 V128:$Rm)))))]>;
+ def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc,
+ V128, V64, V64,
+ asm, ".4s", ".4h", ".4h",
+ [(set (v4i32 V128:$Rd),
+ (zext (v4i16 (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))))]>;
+ def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc,
+ V128, V128, V128,
+ asm#"2", ".4s", ".8h", ".8h",
+ [(set (v4i32 V128:$Rd),
+ (zext (v4i16 (OpNode (extract_high_v8i16 V128:$Rn),
+ (extract_high_v8i16 V128:$Rm)))))]>;
+ def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc,
+ V128, V64, V64,
+ asm, ".2d", ".2s", ".2s",
+ [(set (v2i64 V128:$Rd),
+ (zext (v2i32 (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))))]>;
+ def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc,
+ V128, V128, V128,
+ asm#"2", ".2d", ".4s", ".4s",
+ [(set (v2i64 V128:$Rd),
+ (zext (v2i32 (OpNode (extract_high_v4i32 V128:$Rn),
+ (extract_high_v4i32 V128:$Rm)))))]>;
+}
+
+multiclass SIMDLongThreeVectorTiedBHSabal<bit U, bits<4> opc,
+ string asm,
+ SDPatternOperator OpNode> {
+ def v8i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b000, opc,
+ V128, V64, V64,
+ asm, ".8h", ".8b", ".8b",
+ [(set (v8i16 V128:$dst),
+ (add (v8i16 V128:$Rd),
+ (zext (v8i8 (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm))))))]>;
+ def v16i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b001, opc,
+ V128, V128, V128,
+ asm#"2", ".8h", ".16b", ".16b",
+ [(set (v8i16 V128:$dst),
+ (add (v8i16 V128:$Rd),
+ (zext (v8i8 (OpNode (extract_high_v16i8 V128:$Rn),
+ (extract_high_v16i8 V128:$Rm))))))]>;
+ def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b010, opc,
+ V128, V64, V64,
+ asm, ".4s", ".4h", ".4h",
+ [(set (v4i32 V128:$dst),
+ (add (v4i32 V128:$Rd),
+ (zext (v4i16 (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm))))))]>;
+ def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc,
+ V128, V128, V128,
+ asm#"2", ".4s", ".8h", ".8h",
+ [(set (v4i32 V128:$dst),
+ (add (v4i32 V128:$Rd),
+ (zext (v4i16 (OpNode (extract_high_v8i16 V128:$Rn),
+ (extract_high_v8i16 V128:$Rm))))))]>;
+ def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b100, opc,
+ V128, V64, V64,
+ asm, ".2d", ".2s", ".2s",
+ [(set (v2i64 V128:$dst),
+ (add (v2i64 V128:$Rd),
+ (zext (v2i32 (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm))))))]>;
+ def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc,
+ V128, V128, V128,
+ asm#"2", ".2d", ".4s", ".4s",
+ [(set (v2i64 V128:$dst),
+ (add (v2i64 V128:$Rd),
+ (zext (v2i32 (OpNode (extract_high_v4i32 V128:$Rn),
+ (extract_high_v4i32 V128:$Rm))))))]>;
+}
+
+multiclass SIMDLongThreeVectorBHS<bit U, bits<4> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def v8i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b000, opc,
+ V128, V64, V64,
+ asm, ".8h", ".8b", ".8b",
+ [(set (v8i16 V128:$Rd), (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
+ def v16i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b001, opc,
+ V128, V128, V128,
+ asm#"2", ".8h", ".16b", ".16b",
+ [(set (v8i16 V128:$Rd), (OpNode (extract_high_v16i8 V128:$Rn),
+ (extract_high_v16i8 V128:$Rm)))]>;
+ def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc,
+ V128, V64, V64,
+ asm, ".4s", ".4h", ".4h",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
+ def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc,
+ V128, V128, V128,
+ asm#"2", ".4s", ".8h", ".8h",
+ [(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn),
+ (extract_high_v8i16 V128:$Rm)))]>;
+ def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc,
+ V128, V64, V64,
+ asm, ".2d", ".2s", ".2s",
+ [(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
+ def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc,
+ V128, V128, V128,
+ asm#"2", ".2d", ".4s", ".4s",
+ [(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn),
+ (extract_high_v4i32 V128:$Rm)))]>;
+}
+
+multiclass SIMDLongThreeVectorTiedBHS<bit U, bits<4> opc,
+ string asm,
+ SDPatternOperator OpNode> {
+ def v8i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b000, opc,
+ V128, V64, V64,
+ asm, ".8h", ".8b", ".8b",
+ [(set (v8i16 V128:$dst),
+ (OpNode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
+ def v16i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b001, opc,
+ V128, V128, V128,
+ asm#"2", ".8h", ".16b", ".16b",
+ [(set (v8i16 V128:$dst),
+ (OpNode (v8i16 V128:$Rd),
+ (extract_high_v16i8 V128:$Rn),
+ (extract_high_v16i8 V128:$Rm)))]>;
+ def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b010, opc,
+ V128, V64, V64,
+ asm, ".4s", ".4h", ".4h",
+ [(set (v4i32 V128:$dst),
+ (OpNode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
+ def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc,
+ V128, V128, V128,
+ asm#"2", ".4s", ".8h", ".8h",
+ [(set (v4i32 V128:$dst),
+ (OpNode (v4i32 V128:$Rd),
+ (extract_high_v8i16 V128:$Rn),
+ (extract_high_v8i16 V128:$Rm)))]>;
+ def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b100, opc,
+ V128, V64, V64,
+ asm, ".2d", ".2s", ".2s",
+ [(set (v2i64 V128:$dst),
+ (OpNode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
+ def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc,
+ V128, V128, V128,
+ asm#"2", ".2d", ".4s", ".4s",
+ [(set (v2i64 V128:$dst),
+ (OpNode (v2i64 V128:$Rd),
+ (extract_high_v4i32 V128:$Rn),
+ (extract_high_v4i32 V128:$Rm)))]>;
+}
+
+multiclass SIMDLongThreeVectorSQDMLXTiedHS<bit U, bits<4> opc, string asm,
+ SDPatternOperator Accum> {
+ def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b010, opc,
+ V128, V64, V64,
+ asm, ".4s", ".4h", ".4h",
+ [(set (v4i32 V128:$dst),
+ (Accum (v4i32 V128:$Rd),
+ (v4i32 (int_aarch64_neon_sqdmull (v4i16 V64:$Rn),
+ (v4i16 V64:$Rm)))))]>;
+ def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc,
+ V128, V128, V128,
+ asm#"2", ".4s", ".8h", ".8h",
+ [(set (v4i32 V128:$dst),
+ (Accum (v4i32 V128:$Rd),
+ (v4i32 (int_aarch64_neon_sqdmull (extract_high_v8i16 V128:$Rn),
+ (extract_high_v8i16 V128:$Rm)))))]>;
+ def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b100, opc,
+ V128, V64, V64,
+ asm, ".2d", ".2s", ".2s",
+ [(set (v2i64 V128:$dst),
+ (Accum (v2i64 V128:$Rd),
+ (v2i64 (int_aarch64_neon_sqdmull (v2i32 V64:$Rn),
+ (v2i32 V64:$Rm)))))]>;
+ def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc,
+ V128, V128, V128,
+ asm#"2", ".2d", ".4s", ".4s",
+ [(set (v2i64 V128:$dst),
+ (Accum (v2i64 V128:$Rd),
+ (v2i64 (int_aarch64_neon_sqdmull (extract_high_v4i32 V128:$Rn),
+ (extract_high_v4i32 V128:$Rm)))))]>;
+}
+
+multiclass SIMDWideThreeVectorBHS<bit U, bits<4> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b000, opc,
+ V128, V128, V64,
+ asm, ".8h", ".8h", ".8b",
+ [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i8 V64:$Rm)))]>;
+ def v16i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b001, opc,
+ V128, V128, V128,
+ asm#"2", ".8h", ".8h", ".16b",
+ [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn),
+ (extract_high_v16i8 V128:$Rm)))]>;
+ def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc,
+ V128, V128, V64,
+ asm, ".4s", ".4s", ".4h",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i16 V64:$Rm)))]>;
+ def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc,
+ V128, V128, V128,
+ asm#"2", ".4s", ".4s", ".8h",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn),
+ (extract_high_v8i16 V128:$Rm)))]>;
+ def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc,
+ V128, V128, V64,
+ asm, ".2d", ".2d", ".2s",
+ [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (v2i32 V64:$Rm)))]>;
+ def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc,
+ V128, V128, V128,
+ asm#"2", ".2d", ".2d", ".4s",
+ [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn),
+ (extract_high_v4i32 V128:$Rm)))]>;
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD bitwise extract from vector
+//----------------------------------------------------------------------------
+
+class BaseSIMDBitwiseExtract<bit size, RegisterOperand regtype, ValueType vty,
+ string asm, string kind>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, i32imm:$imm), asm,
+ "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # ", $imm" #
+ "|" # kind # "\t$Rd, $Rn, $Rm, $imm}", "",
+ [(set (vty regtype:$Rd),
+ (AArch64ext regtype:$Rn, regtype:$Rm, (i32 imm:$imm)))]>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ bits<4> imm;
+ let Inst{31} = 0;
+ let Inst{30} = size;
+ let Inst{29-21} = 0b101110000;
+ let Inst{20-16} = Rm;
+ let Inst{15} = 0;
+ let Inst{14-11} = imm;
+ let Inst{10} = 0;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+
+multiclass SIMDBitwiseExtract<string asm> {
+ def v8i8 : BaseSIMDBitwiseExtract<0, V64, v8i8, asm, ".8b"> {
+ let imm{3} = 0;
+ }
+ def v16i8 : BaseSIMDBitwiseExtract<1, V128, v16i8, asm, ".16b">;
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD zip vector
+//----------------------------------------------------------------------------
+
+class BaseSIMDZipVector<bits<3> size, bits<3> opc, RegisterOperand regtype,
+ string asm, string kind, SDNode OpNode, ValueType valty>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm,
+ "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind #
+ "|" # kind # "\t$Rd, $Rn, $Rm}", "",
+ [(set (valty regtype:$Rd), (OpNode regtype:$Rn, regtype:$Rm))]>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{31} = 0;
+ let Inst{30} = size{0};
+ let Inst{29-24} = 0b001110;
+ let Inst{23-22} = size{2-1};
+ let Inst{21} = 0;
+ let Inst{20-16} = Rm;
+ let Inst{15} = 0;
+ let Inst{14-12} = opc;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass SIMDZipVector<bits<3>opc, string asm,
+ SDNode OpNode> {
+ def v8i8 : BaseSIMDZipVector<0b000, opc, V64,
+ asm, ".8b", OpNode, v8i8>;
+ def v16i8 : BaseSIMDZipVector<0b001, opc, V128,
+ asm, ".16b", OpNode, v16i8>;
+ def v4i16 : BaseSIMDZipVector<0b010, opc, V64,
+ asm, ".4h", OpNode, v4i16>;
+ def v8i16 : BaseSIMDZipVector<0b011, opc, V128,
+ asm, ".8h", OpNode, v8i16>;
+ def v2i32 : BaseSIMDZipVector<0b100, opc, V64,
+ asm, ".2s", OpNode, v2i32>;
+ def v4i32 : BaseSIMDZipVector<0b101, opc, V128,
+ asm, ".4s", OpNode, v4i32>;
+ def v2i64 : BaseSIMDZipVector<0b111, opc, V128,
+ asm, ".2d", OpNode, v2i64>;
+
+ def : Pat<(v2f32 (OpNode V64:$Rn, V64:$Rm)),
+ (!cast<Instruction>(NAME#"v2i32") V64:$Rn, V64:$Rm)>;
+ def : Pat<(v4f32 (OpNode V128:$Rn, V128:$Rm)),
+ (!cast<Instruction>(NAME#"v4i32") V128:$Rn, V128:$Rm)>;
+ def : Pat<(v2f64 (OpNode V128:$Rn, V128:$Rm)),
+ (!cast<Instruction>(NAME#"v2i64") V128:$Rn, V128:$Rm)>;
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD three register scalar instructions
+//----------------------------------------------------------------------------
+
+let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
+class BaseSIMDThreeScalar<bit U, bits<2> size, bits<5> opcode,
+ RegisterClass regtype, string asm,
+ list<dag> pattern>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm,
+ "\t$Rd, $Rn, $Rm", "", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{31-30} = 0b01;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = size;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15-11} = opcode;
+ let Inst{10} = 1;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass SIMDThreeScalarD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v1i64 : BaseSIMDThreeScalar<U, 0b11, opc, FPR64, asm,
+ [(set (v1i64 FPR64:$Rd), (OpNode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm)))]>;
+}
+
+multiclass SIMDThreeScalarBHSD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v1i64 : BaseSIMDThreeScalar<U, 0b11, opc, FPR64, asm,
+ [(set (v1i64 FPR64:$Rd), (OpNode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm)))]>;
+ def v1i32 : BaseSIMDThreeScalar<U, 0b10, opc, FPR32, asm, []>;
+ def v1i16 : BaseSIMDThreeScalar<U, 0b01, opc, FPR16, asm, []>;
+ def v1i8 : BaseSIMDThreeScalar<U, 0b00, opc, FPR8 , asm, []>;
+
+ def : Pat<(i64 (OpNode (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
+ (!cast<Instruction>(NAME#"v1i64") FPR64:$Rn, FPR64:$Rm)>;
+ def : Pat<(i32 (OpNode (i32 FPR32:$Rn), (i32 FPR32:$Rm))),
+ (!cast<Instruction>(NAME#"v1i32") FPR32:$Rn, FPR32:$Rm)>;
+}
+
+multiclass SIMDThreeScalarHS<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v1i32 : BaseSIMDThreeScalar<U, 0b10, opc, FPR32, asm,
+ [(set FPR32:$Rd, (OpNode FPR32:$Rn, FPR32:$Rm))]>;
+ def v1i16 : BaseSIMDThreeScalar<U, 0b01, opc, FPR16, asm, []>;
+}
+
+multiclass SIMDThreeScalarSD<bit U, bit S, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
+ def #NAME#64 : BaseSIMDThreeScalar<U, {S,1}, opc, FPR64, asm,
+ [(set (f64 FPR64:$Rd), (OpNode (f64 FPR64:$Rn), (f64 FPR64:$Rm)))]>;
+ def #NAME#32 : BaseSIMDThreeScalar<U, {S,0}, opc, FPR32, asm,
+ [(set FPR32:$Rd, (OpNode FPR32:$Rn, FPR32:$Rm))]>;
+ }
+
+ def : Pat<(v1f64 (OpNode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
+ (!cast<Instruction>(NAME # "64") FPR64:$Rn, FPR64:$Rm)>;
+}
+
+multiclass SIMDThreeScalarFPCmp<bit U, bit S, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
+ def #NAME#64 : BaseSIMDThreeScalar<U, {S,1}, opc, FPR64, asm,
+ [(set (i64 FPR64:$Rd), (OpNode (f64 FPR64:$Rn), (f64 FPR64:$Rm)))]>;
+ def #NAME#32 : BaseSIMDThreeScalar<U, {S,0}, opc, FPR32, asm,
+ [(set (i32 FPR32:$Rd), (OpNode (f32 FPR32:$Rn), (f32 FPR32:$Rm)))]>;
+ }
+
+ def : Pat<(v1i64 (OpNode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
+ (!cast<Instruction>(NAME # "64") FPR64:$Rn, FPR64:$Rm)>;
+}
+
+class BaseSIMDThreeScalarMixed<bit U, bits<2> size, bits<5> opcode,
+ dag oops, dag iops, string asm, string cstr, list<dag> pat>
+ : I<oops, iops, asm,
+ "\t$Rd, $Rn, $Rm", cstr, pat>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{31-30} = 0b01;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = size;
+ let Inst{21} = 1;
+ let Inst{20-16} = Rm;
+ let Inst{15-11} = opcode;
+ let Inst{10} = 0;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+multiclass SIMDThreeScalarMixedHS<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def i16 : BaseSIMDThreeScalarMixed<U, 0b01, opc,
+ (outs FPR32:$Rd),
+ (ins FPR16:$Rn, FPR16:$Rm), asm, "", []>;
+ def i32 : BaseSIMDThreeScalarMixed<U, 0b10, opc,
+ (outs FPR64:$Rd),
+ (ins FPR32:$Rn, FPR32:$Rm), asm, "",
+ [(set (i64 FPR64:$Rd), (OpNode (i32 FPR32:$Rn), (i32 FPR32:$Rm)))]>;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+multiclass SIMDThreeScalarMixedTiedHS<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def i16 : BaseSIMDThreeScalarMixed<U, 0b01, opc,
+ (outs FPR32:$dst),
+ (ins FPR32:$Rd, FPR16:$Rn, FPR16:$Rm),
+ asm, "$Rd = $dst", []>;
+ def i32 : BaseSIMDThreeScalarMixed<U, 0b10, opc,
+ (outs FPR64:$dst),
+ (ins FPR64:$Rd, FPR32:$Rn, FPR32:$Rm),
+ asm, "$Rd = $dst",
+ [(set (i64 FPR64:$dst),
+ (OpNode (i64 FPR64:$Rd), (i32 FPR32:$Rn), (i32 FPR32:$Rm)))]>;
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD two register scalar instructions
+//----------------------------------------------------------------------------
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDTwoScalar<bit U, bits<2> size, bits<5> opcode,
+ RegisterClass regtype, RegisterClass regtype2,
+ string asm, list<dag> pat>
+ : I<(outs regtype:$Rd), (ins regtype2:$Rn), asm,
+ "\t$Rd, $Rn", "", pat>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31-30} = 0b01;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDTwoScalarTied<bit U, bits<2> size, bits<5> opcode,
+ RegisterClass regtype, RegisterClass regtype2,
+ string asm, list<dag> pat>
+ : I<(outs regtype:$dst), (ins regtype:$Rd, regtype2:$Rn), asm,
+ "\t$Rd, $Rn", "$Rd = $dst", pat>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31-30} = 0b01;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDCmpTwoScalar<bit U, bits<2> size, bits<5> opcode,
+ RegisterClass regtype, string asm, string zero>
+ : I<(outs regtype:$Rd), (ins regtype:$Rn), asm,
+ "\t$Rd, $Rn, #" # zero, "", []>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31-30} = 0b01;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+class SIMDInexactCvtTwoScalar<bits<5> opcode, string asm>
+ : I<(outs FPR32:$Rd), (ins FPR64:$Rn), asm, "\t$Rd, $Rn", "",
+ [(set (f32 FPR32:$Rd), (int_aarch64_sisd_fcvtxn (f64 FPR64:$Rn)))]>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31-17} = 0b011111100110000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass SIMDCmpTwoScalarD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v1i64rz : BaseSIMDCmpTwoScalar<U, 0b11, opc, FPR64, asm, "0">;
+
+ def : Pat<(v1i64 (OpNode FPR64:$Rn)),
+ (!cast<Instruction>(NAME # v1i64rz) FPR64:$Rn)>;
+}
+
+multiclass SIMDCmpTwoScalarSD<bit U, bit S, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v1i64rz : BaseSIMDCmpTwoScalar<U, {S,1}, opc, FPR64, asm, "0.0">;
+ def v1i32rz : BaseSIMDCmpTwoScalar<U, {S,0}, opc, FPR32, asm, "0.0">;
+
+ def : InstAlias<asm # " $Rd, $Rn, #0",
+ (!cast<Instruction>(NAME # v1i64rz) FPR64:$Rd, FPR64:$Rn), 0>;
+ def : InstAlias<asm # " $Rd, $Rn, #0",
+ (!cast<Instruction>(NAME # v1i32rz) FPR32:$Rd, FPR32:$Rn), 0>;
+
+ def : Pat<(v1i64 (OpNode (v1f64 FPR64:$Rn))),
+ (!cast<Instruction>(NAME # v1i64rz) FPR64:$Rn)>;
+}
+
+multiclass SIMDTwoScalarD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def v1i64 : BaseSIMDTwoScalar<U, 0b11, opc, FPR64, FPR64, asm,
+ [(set (v1i64 FPR64:$Rd), (OpNode (v1i64 FPR64:$Rn)))]>;
+
+ def : Pat<(i64 (OpNode (i64 FPR64:$Rn))),
+ (!cast<Instruction>(NAME # "v1i64") FPR64:$Rn)>;
+}
+
+multiclass SIMDTwoScalarSD<bit U, bit S, bits<5> opc, string asm> {
+ def v1i64 : BaseSIMDTwoScalar<U, {S,1}, opc, FPR64, FPR64, asm,[]>;
+ def v1i32 : BaseSIMDTwoScalar<U, {S,0}, opc, FPR32, FPR32, asm,[]>;
+}
+
+multiclass SIMDTwoScalarCVTSD<bit U, bit S, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v1i64 : BaseSIMDTwoScalar<U, {S,1}, opc, FPR64, FPR64, asm,
+ [(set FPR64:$Rd, (OpNode (f64 FPR64:$Rn)))]>;
+ def v1i32 : BaseSIMDTwoScalar<U, {S,0}, opc, FPR32, FPR32, asm,
+ [(set FPR32:$Rd, (OpNode (f32 FPR32:$Rn)))]>;
+}
+
+multiclass SIMDTwoScalarBHSD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
+ def v1i64 : BaseSIMDTwoScalar<U, 0b11, opc, FPR64, FPR64, asm,
+ [(set (i64 FPR64:$Rd), (OpNode (i64 FPR64:$Rn)))]>;
+ def v1i32 : BaseSIMDTwoScalar<U, 0b10, opc, FPR32, FPR32, asm,
+ [(set (i32 FPR32:$Rd), (OpNode (i32 FPR32:$Rn)))]>;
+ def v1i16 : BaseSIMDTwoScalar<U, 0b01, opc, FPR16, FPR16, asm, []>;
+ def v1i8 : BaseSIMDTwoScalar<U, 0b00, opc, FPR8 , FPR8 , asm, []>;
+ }
+
+ def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn))),
+ (!cast<Instruction>(NAME # v1i64) FPR64:$Rn)>;
+}
+
+multiclass SIMDTwoScalarBHSDTied<bit U, bits<5> opc, string asm,
+ Intrinsic OpNode> {
+ let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
+ def v1i64 : BaseSIMDTwoScalarTied<U, 0b11, opc, FPR64, FPR64, asm,
+ [(set (i64 FPR64:$dst), (OpNode (i64 FPR64:$Rd), (i64 FPR64:$Rn)))]>;
+ def v1i32 : BaseSIMDTwoScalarTied<U, 0b10, opc, FPR32, FPR32, asm,
+ [(set (i32 FPR32:$dst), (OpNode (i32 FPR32:$Rd), (i32 FPR32:$Rn)))]>;
+ def v1i16 : BaseSIMDTwoScalarTied<U, 0b01, opc, FPR16, FPR16, asm, []>;
+ def v1i8 : BaseSIMDTwoScalarTied<U, 0b00, opc, FPR8 , FPR8 , asm, []>;
+ }
+
+ def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn))),
+ (!cast<Instruction>(NAME # v1i64) FPR64:$Rd, FPR64:$Rn)>;
+}
+
+
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+multiclass SIMDTwoScalarMixedBHS<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def v1i32 : BaseSIMDTwoScalar<U, 0b10, opc, FPR32, FPR64, asm,
+ [(set (i32 FPR32:$Rd), (OpNode (i64 FPR64:$Rn)))]>;
+ def v1i16 : BaseSIMDTwoScalar<U, 0b01, opc, FPR16, FPR32, asm, []>;
+ def v1i8 : BaseSIMDTwoScalar<U, 0b00, opc, FPR8 , FPR16, asm, []>;
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD scalar pairwise instructions
+//----------------------------------------------------------------------------
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDPairwiseScalar<bit U, bits<2> size, bits<5> opcode,
+ RegisterOperand regtype, RegisterOperand vectype,
+ string asm, string kind>
+ : I<(outs regtype:$Rd), (ins vectype:$Rn), asm,
+ "{\t$Rd, $Rn" # kind # "|" # kind # "\t$Rd, $Rn}", "", []>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31-30} = 0b01;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b11000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass SIMDPairwiseScalarD<bit U, bits<5> opc, string asm> {
+ def v2i64p : BaseSIMDPairwiseScalar<U, 0b11, opc, FPR64Op, V128,
+ asm, ".2d">;
+}
+
+multiclass SIMDPairwiseScalarSD<bit U, bit S, bits<5> opc, string asm> {
+ def v2i32p : BaseSIMDPairwiseScalar<U, {S,0}, opc, FPR32Op, V64,
+ asm, ".2s">;
+ def v2i64p : BaseSIMDPairwiseScalar<U, {S,1}, opc, FPR64Op, V128,
+ asm, ".2d">;
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD across lanes instructions
+//----------------------------------------------------------------------------
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDAcrossLanes<bit Q, bit U, bits<2> size, bits<5> opcode,
+ RegisterClass regtype, RegisterOperand vectype,
+ string asm, string kind, list<dag> pattern>
+ : I<(outs regtype:$Rd), (ins vectype:$Rn), asm,
+ "{\t$Rd, $Rn" # kind # "|" # kind # "\t$Rd, $Rn}", "", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b11000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass SIMDAcrossLanesBHS<bit U, bits<5> opcode,
+ string asm> {
+ def v8i8v : BaseSIMDAcrossLanes<0, U, 0b00, opcode, FPR8, V64,
+ asm, ".8b", []>;
+ def v16i8v : BaseSIMDAcrossLanes<1, U, 0b00, opcode, FPR8, V128,
+ asm, ".16b", []>;
+ def v4i16v : BaseSIMDAcrossLanes<0, U, 0b01, opcode, FPR16, V64,
+ asm, ".4h", []>;
+ def v8i16v : BaseSIMDAcrossLanes<1, U, 0b01, opcode, FPR16, V128,
+ asm, ".8h", []>;
+ def v4i32v : BaseSIMDAcrossLanes<1, U, 0b10, opcode, FPR32, V128,
+ asm, ".4s", []>;
+}
+
+multiclass SIMDAcrossLanesHSD<bit U, bits<5> opcode, string asm> {
+ def v8i8v : BaseSIMDAcrossLanes<0, U, 0b00, opcode, FPR16, V64,
+ asm, ".8b", []>;
+ def v16i8v : BaseSIMDAcrossLanes<1, U, 0b00, opcode, FPR16, V128,
+ asm, ".16b", []>;
+ def v4i16v : BaseSIMDAcrossLanes<0, U, 0b01, opcode, FPR32, V64,
+ asm, ".4h", []>;
+ def v8i16v : BaseSIMDAcrossLanes<1, U, 0b01, opcode, FPR32, V128,
+ asm, ".8h", []>;
+ def v4i32v : BaseSIMDAcrossLanes<1, U, 0b10, opcode, FPR64, V128,
+ asm, ".4s", []>;
+}
+
+multiclass SIMDAcrossLanesS<bits<5> opcode, bit sz1, string asm,
+ Intrinsic intOp> {
+ def v4i32v : BaseSIMDAcrossLanes<1, 1, {sz1, 0}, opcode, FPR32, V128,
+ asm, ".4s",
+ [(set FPR32:$Rd, (intOp (v4f32 V128:$Rn)))]>;
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD INS/DUP instructions
+//----------------------------------------------------------------------------
+
+// FIXME: There has got to be a better way to factor these. ugh.
+
+class BaseSIMDInsDup<bit Q, bit op, dag outs, dag ins, string asm,
+ string operands, string constraints, list<dag> pattern>
+ : I<outs, ins, asm, operands, constraints, pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = op;
+ let Inst{28-21} = 0b01110000;
+ let Inst{15} = 0;
+ let Inst{10} = 1;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+class SIMDDupFromMain<bit Q, bits<5> imm5, string size, ValueType vectype,
+ RegisterOperand vecreg, RegisterClass regtype>
+ : BaseSIMDInsDup<Q, 0, (outs vecreg:$Rd), (ins regtype:$Rn), "dup",
+ "{\t$Rd" # size # ", $Rn" #
+ "|" # size # "\t$Rd, $Rn}", "",
+ [(set (vectype vecreg:$Rd), (AArch64dup regtype:$Rn))]> {
+ let Inst{20-16} = imm5;
+ let Inst{14-11} = 0b0001;
+}
+
+class SIMDDupFromElement<bit Q, string dstkind, string srckind,
+ ValueType vectype, ValueType insreg,
+ RegisterOperand vecreg, Operand idxtype,
+ ValueType elttype, SDNode OpNode>
+ : BaseSIMDInsDup<Q, 0, (outs vecreg:$Rd), (ins V128:$Rn, idxtype:$idx), "dup",
+ "{\t$Rd" # dstkind # ", $Rn" # srckind # "$idx" #
+ "|" # dstkind # "\t$Rd, $Rn$idx}", "",
+ [(set (vectype vecreg:$Rd),
+ (OpNode (insreg V128:$Rn), idxtype:$idx))]> {
+ let Inst{14-11} = 0b0000;
+}
+
+class SIMDDup64FromElement
+ : SIMDDupFromElement<1, ".2d", ".d", v2i64, v2i64, V128,
+ VectorIndexD, i64, AArch64duplane64> {
+ bits<1> idx;
+ let Inst{20} = idx;
+ let Inst{19-16} = 0b1000;
+}
+
+class SIMDDup32FromElement<bit Q, string size, ValueType vectype,
+ RegisterOperand vecreg>
+ : SIMDDupFromElement<Q, size, ".s", vectype, v4i32, vecreg,
+ VectorIndexS, i64, AArch64duplane32> {
+ bits<2> idx;
+ let Inst{20-19} = idx;
+ let Inst{18-16} = 0b100;
+}
+
+class SIMDDup16FromElement<bit Q, string size, ValueType vectype,
+ RegisterOperand vecreg>
+ : SIMDDupFromElement<Q, size, ".h", vectype, v8i16, vecreg,
+ VectorIndexH, i64, AArch64duplane16> {
+ bits<3> idx;
+ let Inst{20-18} = idx;
+ let Inst{17-16} = 0b10;
+}
+
+class SIMDDup8FromElement<bit Q, string size, ValueType vectype,
+ RegisterOperand vecreg>
+ : SIMDDupFromElement<Q, size, ".b", vectype, v16i8, vecreg,
+ VectorIndexB, i64, AArch64duplane8> {
+ bits<4> idx;
+ let Inst{20-17} = idx;
+ let Inst{16} = 1;
+}
+
+class BaseSIMDMov<bit Q, string size, bits<4> imm4, RegisterClass regtype,
+ Operand idxtype, string asm, list<dag> pattern>
+ : BaseSIMDInsDup<Q, 0, (outs regtype:$Rd), (ins V128:$Rn, idxtype:$idx), asm,
+ "{\t$Rd, $Rn" # size # "$idx" #
+ "|" # size # "\t$Rd, $Rn$idx}", "", pattern> {
+ let Inst{14-11} = imm4;
+}
+
+class SIMDSMov<bit Q, string size, RegisterClass regtype,
+ Operand idxtype>
+ : BaseSIMDMov<Q, size, 0b0101, regtype, idxtype, "smov", []>;
+class SIMDUMov<bit Q, string size, ValueType vectype, RegisterClass regtype,
+ Operand idxtype>
+ : BaseSIMDMov<Q, size, 0b0111, regtype, idxtype, "umov",
+ [(set regtype:$Rd, (vector_extract (vectype V128:$Rn), idxtype:$idx))]>;
+
+class SIMDMovAlias<string asm, string size, Instruction inst,
+ RegisterClass regtype, Operand idxtype>
+ : InstAlias<asm#"{\t$dst, $src"#size#"$idx" #
+ "|" # size # "\t$dst, $src$idx}",
+ (inst regtype:$dst, V128:$src, idxtype:$idx)>;
+
+multiclass SMov {
+ def vi8to32 : SIMDSMov<0, ".b", GPR32, VectorIndexB> {
+ bits<4> idx;
+ let Inst{20-17} = idx;
+ let Inst{16} = 1;
+ }
+ def vi8to64 : SIMDSMov<1, ".b", GPR64, VectorIndexB> {
+ bits<4> idx;
+ let Inst{20-17} = idx;
+ let Inst{16} = 1;
+ }
+ def vi16to32 : SIMDSMov<0, ".h", GPR32, VectorIndexH> {
+ bits<3> idx;
+ let Inst{20-18} = idx;
+ let Inst{17-16} = 0b10;
+ }
+ def vi16to64 : SIMDSMov<1, ".h", GPR64, VectorIndexH> {
+ bits<3> idx;
+ let Inst{20-18} = idx;
+ let Inst{17-16} = 0b10;
+ }
+ def vi32to64 : SIMDSMov<1, ".s", GPR64, VectorIndexS> {
+ bits<2> idx;
+ let Inst{20-19} = idx;
+ let Inst{18-16} = 0b100;
+ }
+}
+
+multiclass UMov {
+ def vi8 : SIMDUMov<0, ".b", v16i8, GPR32, VectorIndexB> {
+ bits<4> idx;
+ let Inst{20-17} = idx;
+ let Inst{16} = 1;
+ }
+ def vi16 : SIMDUMov<0, ".h", v8i16, GPR32, VectorIndexH> {
+ bits<3> idx;
+ let Inst{20-18} = idx;
+ let Inst{17-16} = 0b10;
+ }
+ def vi32 : SIMDUMov<0, ".s", v4i32, GPR32, VectorIndexS> {
+ bits<2> idx;
+ let Inst{20-19} = idx;
+ let Inst{18-16} = 0b100;
+ }
+ def vi64 : SIMDUMov<1, ".d", v2i64, GPR64, VectorIndexD> {
+ bits<1> idx;
+ let Inst{20} = idx;
+ let Inst{19-16} = 0b1000;
+ }
+ def : SIMDMovAlias<"mov", ".s",
+ !cast<Instruction>(NAME#"vi32"),
+ GPR32, VectorIndexS>;
+ def : SIMDMovAlias<"mov", ".d",
+ !cast<Instruction>(NAME#"vi64"),
+ GPR64, VectorIndexD>;
+}
+
+class SIMDInsFromMain<string size, ValueType vectype,
+ RegisterClass regtype, Operand idxtype>
+ : BaseSIMDInsDup<1, 0, (outs V128:$dst),
+ (ins V128:$Rd, idxtype:$idx, regtype:$Rn), "ins",
+ "{\t$Rd" # size # "$idx, $Rn" #
+ "|" # size # "\t$Rd$idx, $Rn}",
+ "$Rd = $dst",
+ [(set V128:$dst,
+ (vector_insert (vectype V128:$Rd), regtype:$Rn, idxtype:$idx))]> {
+ let Inst{14-11} = 0b0011;
+}
+
+class SIMDInsFromElement<string size, ValueType vectype,
+ ValueType elttype, Operand idxtype>
+ : BaseSIMDInsDup<1, 1, (outs V128:$dst),
+ (ins V128:$Rd, idxtype:$idx, V128:$Rn, idxtype:$idx2), "ins",
+ "{\t$Rd" # size # "$idx, $Rn" # size # "$idx2" #
+ "|" # size # "\t$Rd$idx, $Rn$idx2}",
+ "$Rd = $dst",
+ [(set V128:$dst,
+ (vector_insert
+ (vectype V128:$Rd),
+ (elttype (vector_extract (vectype V128:$Rn), idxtype:$idx2)),
+ idxtype:$idx))]>;
+
+class SIMDInsMainMovAlias<string size, Instruction inst,
+ RegisterClass regtype, Operand idxtype>
+ : InstAlias<"mov" # "{\t$dst" # size # "$idx, $src" #
+ "|" # size #"\t$dst$idx, $src}",
+ (inst V128:$dst, idxtype:$idx, regtype:$src)>;
+class SIMDInsElementMovAlias<string size, Instruction inst,
+ Operand idxtype>
+ : InstAlias<"mov" # "{\t$dst" # size # "$idx, $src" # size # "$idx2" #
+ # "|" # size #" $dst$idx, $src$idx2}",
+ (inst V128:$dst, idxtype:$idx, V128:$src, idxtype:$idx2)>;
+
+
+multiclass SIMDIns {
+ def vi8gpr : SIMDInsFromMain<".b", v16i8, GPR32, VectorIndexB> {
+ bits<4> idx;
+ let Inst{20-17} = idx;
+ let Inst{16} = 1;
+ }
+ def vi16gpr : SIMDInsFromMain<".h", v8i16, GPR32, VectorIndexH> {
+ bits<3> idx;
+ let Inst{20-18} = idx;
+ let Inst{17-16} = 0b10;
+ }
+ def vi32gpr : SIMDInsFromMain<".s", v4i32, GPR32, VectorIndexS> {
+ bits<2> idx;
+ let Inst{20-19} = idx;
+ let Inst{18-16} = 0b100;
+ }
+ def vi64gpr : SIMDInsFromMain<".d", v2i64, GPR64, VectorIndexD> {
+ bits<1> idx;
+ let Inst{20} = idx;
+ let Inst{19-16} = 0b1000;
+ }
+
+ def vi8lane : SIMDInsFromElement<".b", v16i8, i32, VectorIndexB> {
+ bits<4> idx;
+ bits<4> idx2;
+ let Inst{20-17} = idx;
+ let Inst{16} = 1;
+ let Inst{14-11} = idx2;
+ }
+ def vi16lane : SIMDInsFromElement<".h", v8i16, i32, VectorIndexH> {
+ bits<3> idx;
+ bits<3> idx2;
+ let Inst{20-18} = idx;
+ let Inst{17-16} = 0b10;
+ let Inst{14-12} = idx2;
+ let Inst{11} = 0;
+ }
+ def vi32lane : SIMDInsFromElement<".s", v4i32, i32, VectorIndexS> {
+ bits<2> idx;
+ bits<2> idx2;
+ let Inst{20-19} = idx;
+ let Inst{18-16} = 0b100;
+ let Inst{14-13} = idx2;
+ let Inst{12-11} = 0;
+ }
+ def vi64lane : SIMDInsFromElement<".d", v2i64, i64, VectorIndexD> {
+ bits<1> idx;
+ bits<1> idx2;
+ let Inst{20} = idx;
+ let Inst{19-16} = 0b1000;
+ let Inst{14} = idx2;
+ let Inst{13-11} = 0;
+ }
+
+ // For all forms of the INS instruction, the "mov" mnemonic is the
+ // preferred alias. Why they didn't just call the instruction "mov" in
+ // the first place is a very good question indeed...
+ def : SIMDInsMainMovAlias<".b", !cast<Instruction>(NAME#"vi8gpr"),
+ GPR32, VectorIndexB>;
+ def : SIMDInsMainMovAlias<".h", !cast<Instruction>(NAME#"vi16gpr"),
+ GPR32, VectorIndexH>;
+ def : SIMDInsMainMovAlias<".s", !cast<Instruction>(NAME#"vi32gpr"),
+ GPR32, VectorIndexS>;
+ def : SIMDInsMainMovAlias<".d", !cast<Instruction>(NAME#"vi64gpr"),
+ GPR64, VectorIndexD>;
+
+ def : SIMDInsElementMovAlias<".b", !cast<Instruction>(NAME#"vi8lane"),
+ VectorIndexB>;
+ def : SIMDInsElementMovAlias<".h", !cast<Instruction>(NAME#"vi16lane"),
+ VectorIndexH>;
+ def : SIMDInsElementMovAlias<".s", !cast<Instruction>(NAME#"vi32lane"),
+ VectorIndexS>;
+ def : SIMDInsElementMovAlias<".d", !cast<Instruction>(NAME#"vi64lane"),
+ VectorIndexD>;
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD TBL/TBX
+//----------------------------------------------------------------------------
+
+let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
+class BaseSIMDTableLookup<bit Q, bits<2> len, bit op, RegisterOperand vectype,
+ RegisterOperand listtype, string asm, string kind>
+ : I<(outs vectype:$Vd), (ins listtype:$Vn, vectype:$Vm), asm,
+ "\t$Vd" # kind # ", $Vn, $Vm" # kind, "", []>,
+ Sched<[WriteV]> {
+ bits<5> Vd;
+ bits<5> Vn;
+ bits<5> Vm;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29-21} = 0b001110000;
+ let Inst{20-16} = Vm;
+ let Inst{15} = 0;
+ let Inst{14-13} = len;
+ let Inst{12} = op;
+ let Inst{11-10} = 0b00;
+ let Inst{9-5} = Vn;
+ let Inst{4-0} = Vd;
+}
+
+let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
+class BaseSIMDTableLookupTied<bit Q, bits<2> len, bit op, RegisterOperand vectype,
+ RegisterOperand listtype, string asm, string kind>
+ : I<(outs vectype:$dst), (ins vectype:$Vd, listtype:$Vn, vectype:$Vm), asm,
+ "\t$Vd" # kind # ", $Vn, $Vm" # kind, "$Vd = $dst", []>,
+ Sched<[WriteV]> {
+ bits<5> Vd;
+ bits<5> Vn;
+ bits<5> Vm;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29-21} = 0b001110000;
+ let Inst{20-16} = Vm;
+ let Inst{15} = 0;
+ let Inst{14-13} = len;
+ let Inst{12} = op;
+ let Inst{11-10} = 0b00;
+ let Inst{9-5} = Vn;
+ let Inst{4-0} = Vd;
+}
+
+class SIMDTableLookupAlias<string asm, Instruction inst,
+ RegisterOperand vectype, RegisterOperand listtype>
+ : InstAlias<!strconcat(asm, "\t$dst, $lst, $index"),
+ (inst vectype:$dst, listtype:$lst, vectype:$index), 0>;
+
+multiclass SIMDTableLookup<bit op, string asm> {
+ def v8i8One : BaseSIMDTableLookup<0, 0b00, op, V64, VecListOne16b,
+ asm, ".8b">;
+ def v8i8Two : BaseSIMDTableLookup<0, 0b01, op, V64, VecListTwo16b,
+ asm, ".8b">;
+ def v8i8Three : BaseSIMDTableLookup<0, 0b10, op, V64, VecListThree16b,
+ asm, ".8b">;
+ def v8i8Four : BaseSIMDTableLookup<0, 0b11, op, V64, VecListFour16b,
+ asm, ".8b">;
+ def v16i8One : BaseSIMDTableLookup<1, 0b00, op, V128, VecListOne16b,
+ asm, ".16b">;
+ def v16i8Two : BaseSIMDTableLookup<1, 0b01, op, V128, VecListTwo16b,
+ asm, ".16b">;
+ def v16i8Three: BaseSIMDTableLookup<1, 0b10, op, V128, VecListThree16b,
+ asm, ".16b">;
+ def v16i8Four : BaseSIMDTableLookup<1, 0b11, op, V128, VecListFour16b,
+ asm, ".16b">;
+
+ def : SIMDTableLookupAlias<asm # ".8b",
+ !cast<Instruction>(NAME#"v8i8One"),
+ V64, VecListOne128>;
+ def : SIMDTableLookupAlias<asm # ".8b",
+ !cast<Instruction>(NAME#"v8i8Two"),
+ V64, VecListTwo128>;
+ def : SIMDTableLookupAlias<asm # ".8b",
+ !cast<Instruction>(NAME#"v8i8Three"),
+ V64, VecListThree128>;
+ def : SIMDTableLookupAlias<asm # ".8b",
+ !cast<Instruction>(NAME#"v8i8Four"),
+ V64, VecListFour128>;
+ def : SIMDTableLookupAlias<asm # ".16b",
+ !cast<Instruction>(NAME#"v16i8One"),
+ V128, VecListOne128>;
+ def : SIMDTableLookupAlias<asm # ".16b",
+ !cast<Instruction>(NAME#"v16i8Two"),
+ V128, VecListTwo128>;
+ def : SIMDTableLookupAlias<asm # ".16b",
+ !cast<Instruction>(NAME#"v16i8Three"),
+ V128, VecListThree128>;
+ def : SIMDTableLookupAlias<asm # ".16b",
+ !cast<Instruction>(NAME#"v16i8Four"),
+ V128, VecListFour128>;
+}
+
+multiclass SIMDTableLookupTied<bit op, string asm> {
+ def v8i8One : BaseSIMDTableLookupTied<0, 0b00, op, V64, VecListOne16b,
+ asm, ".8b">;
+ def v8i8Two : BaseSIMDTableLookupTied<0, 0b01, op, V64, VecListTwo16b,
+ asm, ".8b">;
+ def v8i8Three : BaseSIMDTableLookupTied<0, 0b10, op, V64, VecListThree16b,
+ asm, ".8b">;
+ def v8i8Four : BaseSIMDTableLookupTied<0, 0b11, op, V64, VecListFour16b,
+ asm, ".8b">;
+ def v16i8One : BaseSIMDTableLookupTied<1, 0b00, op, V128, VecListOne16b,
+ asm, ".16b">;
+ def v16i8Two : BaseSIMDTableLookupTied<1, 0b01, op, V128, VecListTwo16b,
+ asm, ".16b">;
+ def v16i8Three: BaseSIMDTableLookupTied<1, 0b10, op, V128, VecListThree16b,
+ asm, ".16b">;
+ def v16i8Four : BaseSIMDTableLookupTied<1, 0b11, op, V128, VecListFour16b,
+ asm, ".16b">;
+
+ def : SIMDTableLookupAlias<asm # ".8b",
+ !cast<Instruction>(NAME#"v8i8One"),
+ V64, VecListOne128>;
+ def : SIMDTableLookupAlias<asm # ".8b",
+ !cast<Instruction>(NAME#"v8i8Two"),
+ V64, VecListTwo128>;
+ def : SIMDTableLookupAlias<asm # ".8b",
+ !cast<Instruction>(NAME#"v8i8Three"),
+ V64, VecListThree128>;
+ def : SIMDTableLookupAlias<asm # ".8b",
+ !cast<Instruction>(NAME#"v8i8Four"),
+ V64, VecListFour128>;
+ def : SIMDTableLookupAlias<asm # ".16b",
+ !cast<Instruction>(NAME#"v16i8One"),
+ V128, VecListOne128>;
+ def : SIMDTableLookupAlias<asm # ".16b",
+ !cast<Instruction>(NAME#"v16i8Two"),
+ V128, VecListTwo128>;
+ def : SIMDTableLookupAlias<asm # ".16b",
+ !cast<Instruction>(NAME#"v16i8Three"),
+ V128, VecListThree128>;
+ def : SIMDTableLookupAlias<asm # ".16b",
+ !cast<Instruction>(NAME#"v16i8Four"),
+ V128, VecListFour128>;
+}
+
+
+//----------------------------------------------------------------------------
+// AdvSIMD scalar CPY
+//----------------------------------------------------------------------------
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDScalarCPY<RegisterClass regtype, RegisterOperand vectype,
+ string kind, Operand idxtype>
+ : I<(outs regtype:$dst), (ins vectype:$src, idxtype:$idx), "mov",
+ "{\t$dst, $src" # kind # "$idx" #
+ "|\t$dst, $src$idx}", "", []>,
+ Sched<[WriteV]> {
+ bits<5> dst;
+ bits<5> src;
+ let Inst{31-21} = 0b01011110000;
+ let Inst{15-10} = 0b000001;
+ let Inst{9-5} = src;
+ let Inst{4-0} = dst;
+}
+
+class SIMDScalarCPYAlias<string asm, string size, Instruction inst,
+ RegisterClass regtype, RegisterOperand vectype, Operand idxtype>
+ : InstAlias<asm # "{\t$dst, $src" # size # "$index" #
+ # "|\t$dst, $src$index}",
+ (inst regtype:$dst, vectype:$src, idxtype:$index), 0>;
+
+
+multiclass SIMDScalarCPY<string asm> {
+ def i8 : BaseSIMDScalarCPY<FPR8, V128, ".b", VectorIndexB> {
+ bits<4> idx;
+ let Inst{20-17} = idx;
+ let Inst{16} = 1;
+ }
+ def i16 : BaseSIMDScalarCPY<FPR16, V128, ".h", VectorIndexH> {
+ bits<3> idx;
+ let Inst{20-18} = idx;
+ let Inst{17-16} = 0b10;
+ }
+ def i32 : BaseSIMDScalarCPY<FPR32, V128, ".s", VectorIndexS> {
+ bits<2> idx;
+ let Inst{20-19} = idx;
+ let Inst{18-16} = 0b100;
+ }
+ def i64 : BaseSIMDScalarCPY<FPR64, V128, ".d", VectorIndexD> {
+ bits<1> idx;
+ let Inst{20} = idx;
+ let Inst{19-16} = 0b1000;
+ }
+
+ def : Pat<(v1i64 (scalar_to_vector (i64 (vector_extract (v2i64 V128:$src),
+ VectorIndexD:$idx)))),
+ (!cast<Instruction>(NAME # i64) V128:$src, VectorIndexD:$idx)>;
+
+ // 'DUP' mnemonic aliases.
+ def : SIMDScalarCPYAlias<"dup", ".b",
+ !cast<Instruction>(NAME#"i8"),
+ FPR8, V128, VectorIndexB>;
+ def : SIMDScalarCPYAlias<"dup", ".h",
+ !cast<Instruction>(NAME#"i16"),
+ FPR16, V128, VectorIndexH>;
+ def : SIMDScalarCPYAlias<"dup", ".s",
+ !cast<Instruction>(NAME#"i32"),
+ FPR32, V128, VectorIndexS>;
+ def : SIMDScalarCPYAlias<"dup", ".d",
+ !cast<Instruction>(NAME#"i64"),
+ FPR64, V128, VectorIndexD>;
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD modified immediate instructions
+//----------------------------------------------------------------------------
+
+class BaseSIMDModifiedImm<bit Q, bit op, dag oops, dag iops,
+ string asm, string op_string,
+ string cstr, list<dag> pattern>
+ : I<oops, iops, asm, op_string, cstr, pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<8> imm8;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = op;
+ let Inst{28-19} = 0b0111100000;
+ let Inst{18-16} = imm8{7-5};
+ let Inst{11-10} = 0b01;
+ let Inst{9-5} = imm8{4-0};
+ let Inst{4-0} = Rd;
+}
+
+class BaseSIMDModifiedImmVector<bit Q, bit op, RegisterOperand vectype,
+ Operand immtype, dag opt_shift_iop,
+ string opt_shift, string asm, string kind,
+ list<dag> pattern>
+ : BaseSIMDModifiedImm<Q, op, (outs vectype:$Rd),
+ !con((ins immtype:$imm8), opt_shift_iop), asm,
+ "{\t$Rd" # kind # ", $imm8" # opt_shift #
+ "|" # kind # "\t$Rd, $imm8" # opt_shift # "}",
+ "", pattern> {
+ let DecoderMethod = "DecodeModImmInstruction";
+}
+
+class BaseSIMDModifiedImmVectorTied<bit Q, bit op, RegisterOperand vectype,
+ Operand immtype, dag opt_shift_iop,
+ string opt_shift, string asm, string kind,
+ list<dag> pattern>
+ : BaseSIMDModifiedImm<Q, op, (outs vectype:$dst),
+ !con((ins vectype:$Rd, immtype:$imm8), opt_shift_iop),
+ asm, "{\t$Rd" # kind # ", $imm8" # opt_shift #
+ "|" # kind # "\t$Rd, $imm8" # opt_shift # "}",
+ "$Rd = $dst", pattern> {
+ let DecoderMethod = "DecodeModImmTiedInstruction";
+}
+
+class BaseSIMDModifiedImmVectorShift<bit Q, bit op, bits<2> b15_b12,
+ RegisterOperand vectype, string asm,
+ string kind, list<dag> pattern>
+ : BaseSIMDModifiedImmVector<Q, op, vectype, imm0_255,
+ (ins logical_vec_shift:$shift),
+ "$shift", asm, kind, pattern> {
+ bits<2> shift;
+ let Inst{15} = b15_b12{1};
+ let Inst{14-13} = shift;
+ let Inst{12} = b15_b12{0};
+}
+
+class BaseSIMDModifiedImmVectorShiftTied<bit Q, bit op, bits<2> b15_b12,
+ RegisterOperand vectype, string asm,
+ string kind, list<dag> pattern>
+ : BaseSIMDModifiedImmVectorTied<Q, op, vectype, imm0_255,
+ (ins logical_vec_shift:$shift),
+ "$shift", asm, kind, pattern> {
+ bits<2> shift;
+ let Inst{15} = b15_b12{1};
+ let Inst{14-13} = shift;
+ let Inst{12} = b15_b12{0};
+}
+
+
+class BaseSIMDModifiedImmVectorShiftHalf<bit Q, bit op, bits<2> b15_b12,
+ RegisterOperand vectype, string asm,
+ string kind, list<dag> pattern>
+ : BaseSIMDModifiedImmVector<Q, op, vectype, imm0_255,
+ (ins logical_vec_hw_shift:$shift),
+ "$shift", asm, kind, pattern> {
+ bits<2> shift;
+ let Inst{15} = b15_b12{1};
+ let Inst{14} = 0;
+ let Inst{13} = shift{0};
+ let Inst{12} = b15_b12{0};
+}
+
+class BaseSIMDModifiedImmVectorShiftHalfTied<bit Q, bit op, bits<2> b15_b12,
+ RegisterOperand vectype, string asm,
+ string kind, list<dag> pattern>
+ : BaseSIMDModifiedImmVectorTied<Q, op, vectype, imm0_255,
+ (ins logical_vec_hw_shift:$shift),
+ "$shift", asm, kind, pattern> {
+ bits<2> shift;
+ let Inst{15} = b15_b12{1};
+ let Inst{14} = 0;
+ let Inst{13} = shift{0};
+ let Inst{12} = b15_b12{0};
+}
+
+multiclass SIMDModifiedImmVectorShift<bit op, bits<2> hw_cmode, bits<2> w_cmode,
+ string asm> {
+ def v4i16 : BaseSIMDModifiedImmVectorShiftHalf<0, op, hw_cmode, V64,
+ asm, ".4h", []>;
+ def v8i16 : BaseSIMDModifiedImmVectorShiftHalf<1, op, hw_cmode, V128,
+ asm, ".8h", []>;
+
+ def v2i32 : BaseSIMDModifiedImmVectorShift<0, op, w_cmode, V64,
+ asm, ".2s", []>;
+ def v4i32 : BaseSIMDModifiedImmVectorShift<1, op, w_cmode, V128,
+ asm, ".4s", []>;
+}
+
+multiclass SIMDModifiedImmVectorShiftTied<bit op, bits<2> hw_cmode,
+ bits<2> w_cmode, string asm,
+ SDNode OpNode> {
+ def v4i16 : BaseSIMDModifiedImmVectorShiftHalfTied<0, op, hw_cmode, V64,
+ asm, ".4h",
+ [(set (v4i16 V64:$dst), (OpNode V64:$Rd,
+ imm0_255:$imm8,
+ (i32 imm:$shift)))]>;
+ def v8i16 : BaseSIMDModifiedImmVectorShiftHalfTied<1, op, hw_cmode, V128,
+ asm, ".8h",
+ [(set (v8i16 V128:$dst), (OpNode V128:$Rd,
+ imm0_255:$imm8,
+ (i32 imm:$shift)))]>;
+
+ def v2i32 : BaseSIMDModifiedImmVectorShiftTied<0, op, w_cmode, V64,
+ asm, ".2s",
+ [(set (v2i32 V64:$dst), (OpNode V64:$Rd,
+ imm0_255:$imm8,
+ (i32 imm:$shift)))]>;
+ def v4i32 : BaseSIMDModifiedImmVectorShiftTied<1, op, w_cmode, V128,
+ asm, ".4s",
+ [(set (v4i32 V128:$dst), (OpNode V128:$Rd,
+ imm0_255:$imm8,
+ (i32 imm:$shift)))]>;
+}
+
+class SIMDModifiedImmMoveMSL<bit Q, bit op, bits<4> cmode,
+ RegisterOperand vectype, string asm,
+ string kind, list<dag> pattern>
+ : BaseSIMDModifiedImmVector<Q, op, vectype, imm0_255,
+ (ins move_vec_shift:$shift),
+ "$shift", asm, kind, pattern> {
+ bits<1> shift;
+ let Inst{15-13} = cmode{3-1};
+ let Inst{12} = shift;
+}
+
+class SIMDModifiedImmVectorNoShift<bit Q, bit op, bits<4> cmode,
+ RegisterOperand vectype,
+ Operand imm_type, string asm,
+ string kind, list<dag> pattern>
+ : BaseSIMDModifiedImmVector<Q, op, vectype, imm_type, (ins), "",
+ asm, kind, pattern> {
+ let Inst{15-12} = cmode;
+}
+
+class SIMDModifiedImmScalarNoShift<bit Q, bit op, bits<4> cmode, string asm,
+ list<dag> pattern>
+ : BaseSIMDModifiedImm<Q, op, (outs FPR64:$Rd), (ins simdimmtype10:$imm8), asm,
+ "\t$Rd, $imm8", "", pattern> {
+ let Inst{15-12} = cmode;
+ let DecoderMethod = "DecodeModImmInstruction";
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD indexed element
+//----------------------------------------------------------------------------
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDIndexed<bit Q, bit U, bit Scalar, bits<2> size, bits<4> opc,
+ RegisterOperand dst_reg, RegisterOperand lhs_reg,
+ RegisterOperand rhs_reg, Operand vec_idx, string asm,
+ string apple_kind, string dst_kind, string lhs_kind,
+ string rhs_kind, list<dag> pattern>
+ : I<(outs dst_reg:$Rd), (ins lhs_reg:$Rn, rhs_reg:$Rm, vec_idx:$idx),
+ asm,
+ "{\t$Rd" # dst_kind # ", $Rn" # lhs_kind # ", $Rm" # rhs_kind # "$idx" #
+ "|" # apple_kind # "\t$Rd, $Rn, $Rm$idx}", "", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28} = Scalar;
+ let Inst{27-24} = 0b1111;
+ let Inst{23-22} = size;
+ // Bit 21 must be set by the derived class.
+ let Inst{20-16} = Rm;
+ let Inst{15-12} = opc;
+ // Bit 11 must be set by the derived class.
+ let Inst{10} = 0;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDIndexedTied<bit Q, bit U, bit Scalar, bits<2> size, bits<4> opc,
+ RegisterOperand dst_reg, RegisterOperand lhs_reg,
+ RegisterOperand rhs_reg, Operand vec_idx, string asm,
+ string apple_kind, string dst_kind, string lhs_kind,
+ string rhs_kind, list<dag> pattern>
+ : I<(outs dst_reg:$dst),
+ (ins dst_reg:$Rd, lhs_reg:$Rn, rhs_reg:$Rm, vec_idx:$idx), asm,
+ "{\t$Rd" # dst_kind # ", $Rn" # lhs_kind # ", $Rm" # rhs_kind # "$idx" #
+ "|" # apple_kind # "\t$Rd, $Rn, $Rm$idx}", "$Rd = $dst", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28} = Scalar;
+ let Inst{27-24} = 0b1111;
+ let Inst{23-22} = size;
+ // Bit 21 must be set by the derived class.
+ let Inst{20-16} = Rm;
+ let Inst{15-12} = opc;
+ // Bit 11 must be set by the derived class.
+ let Inst{10} = 0;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass SIMDFPIndexedSD<bit U, bits<4> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc,
+ V64, V64,
+ V128, VectorIndexS,
+ asm, ".2s", ".2s", ".2s", ".s",
+ [(set (v2f32 V64:$Rd),
+ (OpNode (v2f32 V64:$Rn),
+ (v2f32 (AArch64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc,
+ V128, V128,
+ V128, VectorIndexS,
+ asm, ".4s", ".4s", ".4s", ".s",
+ [(set (v4f32 V128:$Rd),
+ (OpNode (v4f32 V128:$Rn),
+ (v4f32 (AArch64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v2i64_indexed : BaseSIMDIndexed<1, U, 0, 0b11, opc,
+ V128, V128,
+ V128, VectorIndexD,
+ asm, ".2d", ".2d", ".2d", ".d",
+ [(set (v2f64 V128:$Rd),
+ (OpNode (v2f64 V128:$Rn),
+ (v2f64 (AArch64duplane64 (v2f64 V128:$Rm), VectorIndexD:$idx))))]> {
+ bits<1> idx;
+ let Inst{11} = idx{0};
+ let Inst{21} = 0;
+ }
+
+ def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc,
+ FPR32Op, FPR32Op, V128, VectorIndexS,
+ asm, ".s", "", "", ".s",
+ [(set (f32 FPR32Op:$Rd),
+ (OpNode (f32 FPR32Op:$Rn),
+ (f32 (vector_extract (v4f32 V128:$Rm),
+ VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v1i64_indexed : BaseSIMDIndexed<1, U, 1, 0b11, opc,
+ FPR64Op, FPR64Op, V128, VectorIndexD,
+ asm, ".d", "", "", ".d",
+ [(set (f64 FPR64Op:$Rd),
+ (OpNode (f64 FPR64Op:$Rn),
+ (f64 (vector_extract (v2f64 V128:$Rm),
+ VectorIndexD:$idx))))]> {
+ bits<1> idx;
+ let Inst{11} = idx{0};
+ let Inst{21} = 0;
+ }
+}
+
+multiclass SIMDFPIndexedSDTiedPatterns<string INST, SDPatternOperator OpNode> {
+ // 2 variants for the .2s version: DUPLANE from 128-bit and DUP scalar.
+ def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
+ (AArch64duplane32 (v4f32 V128:$Rm),
+ VectorIndexS:$idx))),
+ (!cast<Instruction>(INST # v2i32_indexed)
+ V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
+ def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
+ (AArch64dup (f32 FPR32Op:$Rm)))),
+ (!cast<Instruction>(INST # "v2i32_indexed") V64:$Rd, V64:$Rn,
+ (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
+
+
+ // 2 variants for the .4s version: DUPLANE from 128-bit and DUP scalar.
+ def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
+ (AArch64duplane32 (v4f32 V128:$Rm),
+ VectorIndexS:$idx))),
+ (!cast<Instruction>(INST # "v4i32_indexed")
+ V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
+ def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
+ (AArch64dup (f32 FPR32Op:$Rm)))),
+ (!cast<Instruction>(INST # "v4i32_indexed") V128:$Rd, V128:$Rn,
+ (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
+
+ // 2 variants for the .2d version: DUPLANE from 128-bit and DUP scalar.
+ def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
+ (AArch64duplane64 (v2f64 V128:$Rm),
+ VectorIndexD:$idx))),
+ (!cast<Instruction>(INST # "v2i64_indexed")
+ V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
+ def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
+ (AArch64dup (f64 FPR64Op:$Rm)))),
+ (!cast<Instruction>(INST # "v2i64_indexed") V128:$Rd, V128:$Rn,
+ (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
+
+ // 2 variants for 32-bit scalar version: extract from .2s or from .4s
+ def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
+ (vector_extract (v4f32 V128:$Rm), VectorIndexS:$idx))),
+ (!cast<Instruction>(INST # "v1i32_indexed") FPR32:$Rd, FPR32:$Rn,
+ V128:$Rm, VectorIndexS:$idx)>;
+ def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
+ (vector_extract (v2f32 V64:$Rm), VectorIndexS:$idx))),
+ (!cast<Instruction>(INST # "v1i32_indexed") FPR32:$Rd, FPR32:$Rn,
+ (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
+
+ // 1 variant for 64-bit scalar version: extract from .1d or from .2d
+ def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
+ (vector_extract (v2f64 V128:$Rm), VectorIndexD:$idx))),
+ (!cast<Instruction>(INST # "v1i64_indexed") FPR64:$Rd, FPR64:$Rn,
+ V128:$Rm, VectorIndexD:$idx)>;
+}
+
+multiclass SIMDFPIndexedSDTied<bit U, bits<4> opc, string asm> {
+ def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc, V64, V64,
+ V128, VectorIndexS,
+ asm, ".2s", ".2s", ".2s", ".s", []> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc,
+ V128, V128,
+ V128, VectorIndexS,
+ asm, ".4s", ".4s", ".4s", ".s", []> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v2i64_indexed : BaseSIMDIndexedTied<1, U, 0, 0b11, opc,
+ V128, V128,
+ V128, VectorIndexD,
+ asm, ".2d", ".2d", ".2d", ".d", []> {
+ bits<1> idx;
+ let Inst{11} = idx{0};
+ let Inst{21} = 0;
+ }
+
+
+ def v1i32_indexed : BaseSIMDIndexedTied<1, U, 1, 0b10, opc,
+ FPR32Op, FPR32Op, V128, VectorIndexS,
+ asm, ".s", "", "", ".s", []> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v1i64_indexed : BaseSIMDIndexedTied<1, U, 1, 0b11, opc,
+ FPR64Op, FPR64Op, V128, VectorIndexD,
+ asm, ".d", "", "", ".d", []> {
+ bits<1> idx;
+ let Inst{11} = idx{0};
+ let Inst{21} = 0;
+ }
+}
+
+multiclass SIMDIndexedHS<bit U, bits<4> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc, V64, V64,
+ V128_lo, VectorIndexH,
+ asm, ".4h", ".4h", ".4h", ".h",
+ [(set (v4i16 V64:$Rd),
+ (OpNode (v4i16 V64:$Rn),
+ (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc,
+ V128, V128,
+ V128_lo, VectorIndexH,
+ asm, ".8h", ".8h", ".8h", ".h",
+ [(set (v8i16 V128:$Rd),
+ (OpNode (v8i16 V128:$Rn),
+ (v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc,
+ V64, V64,
+ V128, VectorIndexS,
+ asm, ".2s", ".2s", ".2s", ".s",
+ [(set (v2i32 V64:$Rd),
+ (OpNode (v2i32 V64:$Rn),
+ (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc,
+ V128, V128,
+ V128, VectorIndexS,
+ asm, ".4s", ".4s", ".4s", ".s",
+ [(set (v4i32 V128:$Rd),
+ (OpNode (v4i32 V128:$Rn),
+ (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v1i16_indexed : BaseSIMDIndexed<1, U, 1, 0b01, opc,
+ FPR16Op, FPR16Op, V128_lo, VectorIndexH,
+ asm, ".h", "", "", ".h", []> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc,
+ FPR32Op, FPR32Op, V128, VectorIndexS,
+ asm, ".s", "", "", ".s",
+ [(set (i32 FPR32Op:$Rd),
+ (OpNode FPR32Op:$Rn,
+ (i32 (vector_extract (v4i32 V128:$Rm),
+ VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+}
+
+multiclass SIMDVectorIndexedHS<bit U, bits<4> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc,
+ V64, V64,
+ V128_lo, VectorIndexH,
+ asm, ".4h", ".4h", ".4h", ".h",
+ [(set (v4i16 V64:$Rd),
+ (OpNode (v4i16 V64:$Rn),
+ (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc,
+ V128, V128,
+ V128_lo, VectorIndexH,
+ asm, ".8h", ".8h", ".8h", ".h",
+ [(set (v8i16 V128:$Rd),
+ (OpNode (v8i16 V128:$Rn),
+ (v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc,
+ V64, V64,
+ V128, VectorIndexS,
+ asm, ".2s", ".2s", ".2s", ".s",
+ [(set (v2i32 V64:$Rd),
+ (OpNode (v2i32 V64:$Rn),
+ (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc,
+ V128, V128,
+ V128, VectorIndexS,
+ asm, ".4s", ".4s", ".4s", ".s",
+ [(set (v4i32 V128:$Rd),
+ (OpNode (v4i32 V128:$Rn),
+ (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+}
+
+multiclass SIMDVectorIndexedHSTied<bit U, bits<4> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc, V64, V64,
+ V128_lo, VectorIndexH,
+ asm, ".4h", ".4h", ".4h", ".h",
+ [(set (v4i16 V64:$dst),
+ (OpNode (v4i16 V64:$Rd),(v4i16 V64:$Rn),
+ (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc,
+ V128, V128,
+ V128_lo, VectorIndexH,
+ asm, ".8h", ".8h", ".8h", ".h",
+ [(set (v8i16 V128:$dst),
+ (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn),
+ (v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc,
+ V64, V64,
+ V128, VectorIndexS,
+ asm, ".2s", ".2s", ".2s", ".s",
+ [(set (v2i32 V64:$dst),
+ (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn),
+ (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc,
+ V128, V128,
+ V128, VectorIndexS,
+ asm, ".4s", ".4s", ".4s", ".s",
+ [(set (v4i32 V128:$dst),
+ (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn),
+ (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+}
+
+multiclass SIMDIndexedLongSD<bit U, bits<4> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc,
+ V128, V64,
+ V128_lo, VectorIndexH,
+ asm, ".4s", ".4s", ".4h", ".h",
+ [(set (v4i32 V128:$Rd),
+ (OpNode (v4i16 V64:$Rn),
+ (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc,
+ V128, V128,
+ V128_lo, VectorIndexH,
+ asm#"2", ".4s", ".4s", ".8h", ".h",
+ [(set (v4i32 V128:$Rd),
+ (OpNode (extract_high_v8i16 V128:$Rn),
+ (extract_high_v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
+ VectorIndexH:$idx))))]> {
+
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc,
+ V128, V64,
+ V128, VectorIndexS,
+ asm, ".2d", ".2d", ".2s", ".s",
+ [(set (v2i64 V128:$Rd),
+ (OpNode (v2i32 V64:$Rn),
+ (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc,
+ V128, V128,
+ V128, VectorIndexS,
+ asm#"2", ".2d", ".2d", ".4s", ".s",
+ [(set (v2i64 V128:$Rd),
+ (OpNode (extract_high_v4i32 V128:$Rn),
+ (extract_high_v4i32 (AArch64duplane32 (v4i32 V128:$Rm),
+ VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b01, opc,
+ FPR32Op, FPR16Op, V128_lo, VectorIndexH,
+ asm, ".h", "", "", ".h", []> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v1i64_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc,
+ FPR64Op, FPR32Op, V128, VectorIndexS,
+ asm, ".s", "", "", ".s", []> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+}
+
+multiclass SIMDIndexedLongSQDMLXSDTied<bit U, bits<4> opc, string asm,
+ SDPatternOperator Accum> {
+ def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc,
+ V128, V64,
+ V128_lo, VectorIndexH,
+ asm, ".4s", ".4s", ".4h", ".h",
+ [(set (v4i32 V128:$dst),
+ (Accum (v4i32 V128:$Rd),
+ (v4i32 (int_aarch64_neon_sqdmull
+ (v4i16 V64:$Rn),
+ (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
+ VectorIndexH:$idx))))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ // FIXME: it would be nice to use the scalar (v1i32) instruction here, but an
+ // intermediate EXTRACT_SUBREG would be untyped.
+ def : Pat<(i32 (Accum (i32 FPR32Op:$Rd),
+ (i32 (vector_extract (v4i32
+ (int_aarch64_neon_sqdmull (v4i16 V64:$Rn),
+ (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
+ VectorIndexH:$idx)))),
+ (i64 0))))),
+ (EXTRACT_SUBREG
+ (!cast<Instruction>(NAME # v4i16_indexed)
+ (SUBREG_TO_REG (i32 0), FPR32Op:$Rd, ssub), V64:$Rn,
+ V128_lo:$Rm, VectorIndexH:$idx),
+ ssub)>;
+
+ def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc,
+ V128, V128,
+ V128_lo, VectorIndexH,
+ asm#"2", ".4s", ".4s", ".8h", ".h",
+ [(set (v4i32 V128:$dst),
+ (Accum (v4i32 V128:$Rd),
+ (v4i32 (int_aarch64_neon_sqdmull
+ (extract_high_v8i16 V128:$Rn),
+ (extract_high_v8i16
+ (AArch64duplane16 (v8i16 V128_lo:$Rm),
+ VectorIndexH:$idx))))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc,
+ V128, V64,
+ V128, VectorIndexS,
+ asm, ".2d", ".2d", ".2s", ".s",
+ [(set (v2i64 V128:$dst),
+ (Accum (v2i64 V128:$Rd),
+ (v2i64 (int_aarch64_neon_sqdmull
+ (v2i32 V64:$Rn),
+ (v2i32 (AArch64duplane32 (v4i32 V128:$Rm),
+ VectorIndexS:$idx))))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc,
+ V128, V128,
+ V128, VectorIndexS,
+ asm#"2", ".2d", ".2d", ".4s", ".s",
+ [(set (v2i64 V128:$dst),
+ (Accum (v2i64 V128:$Rd),
+ (v2i64 (int_aarch64_neon_sqdmull
+ (extract_high_v4i32 V128:$Rn),
+ (extract_high_v4i32
+ (AArch64duplane32 (v4i32 V128:$Rm),
+ VectorIndexS:$idx))))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v1i32_indexed : BaseSIMDIndexedTied<1, U, 1, 0b01, opc,
+ FPR32Op, FPR16Op, V128_lo, VectorIndexH,
+ asm, ".h", "", "", ".h", []> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+
+ def v1i64_indexed : BaseSIMDIndexedTied<1, U, 1, 0b10, opc,
+ FPR64Op, FPR32Op, V128, VectorIndexS,
+ asm, ".s", "", "", ".s",
+ [(set (i64 FPR64Op:$dst),
+ (Accum (i64 FPR64Op:$Rd),
+ (i64 (int_aarch64_neon_sqdmulls_scalar
+ (i32 FPR32Op:$Rn),
+ (i32 (vector_extract (v4i32 V128:$Rm),
+ VectorIndexS:$idx))))))]> {
+
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+}
+
+multiclass SIMDVectorIndexedLongSD<bit U, bits<4> opc, string asm,
+ SDPatternOperator OpNode> {
+ let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
+ def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc,
+ V128, V64,
+ V128_lo, VectorIndexH,
+ asm, ".4s", ".4s", ".4h", ".h",
+ [(set (v4i32 V128:$Rd),
+ (OpNode (v4i16 V64:$Rn),
+ (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc,
+ V128, V128,
+ V128_lo, VectorIndexH,
+ asm#"2", ".4s", ".4s", ".8h", ".h",
+ [(set (v4i32 V128:$Rd),
+ (OpNode (extract_high_v8i16 V128:$Rn),
+ (extract_high_v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
+ VectorIndexH:$idx))))]> {
+
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc,
+ V128, V64,
+ V128, VectorIndexS,
+ asm, ".2d", ".2d", ".2s", ".s",
+ [(set (v2i64 V128:$Rd),
+ (OpNode (v2i32 V64:$Rn),
+ (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc,
+ V128, V128,
+ V128, VectorIndexS,
+ asm#"2", ".2d", ".2d", ".4s", ".s",
+ [(set (v2i64 V128:$Rd),
+ (OpNode (extract_high_v4i32 V128:$Rn),
+ (extract_high_v4i32 (AArch64duplane32 (v4i32 V128:$Rm),
+ VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+ }
+}
+
+multiclass SIMDVectorIndexedLongSDTied<bit U, bits<4> opc, string asm,
+ SDPatternOperator OpNode> {
+ let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
+ def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc,
+ V128, V64,
+ V128_lo, VectorIndexH,
+ asm, ".4s", ".4s", ".4h", ".h",
+ [(set (v4i32 V128:$dst),
+ (OpNode (v4i32 V128:$Rd), (v4i16 V64:$Rn),
+ (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc,
+ V128, V128,
+ V128_lo, VectorIndexH,
+ asm#"2", ".4s", ".4s", ".8h", ".h",
+ [(set (v4i32 V128:$dst),
+ (OpNode (v4i32 V128:$Rd),
+ (extract_high_v8i16 V128:$Rn),
+ (extract_high_v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
+ VectorIndexH:$idx))))]> {
+ bits<3> idx;
+ let Inst{11} = idx{2};
+ let Inst{21} = idx{1};
+ let Inst{20} = idx{0};
+ }
+
+ def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc,
+ V128, V64,
+ V128, VectorIndexS,
+ asm, ".2d", ".2d", ".2s", ".s",
+ [(set (v2i64 V128:$dst),
+ (OpNode (v2i64 V128:$Rd), (v2i32 V64:$Rn),
+ (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+
+ def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc,
+ V128, V128,
+ V128, VectorIndexS,
+ asm#"2", ".2d", ".2d", ".4s", ".s",
+ [(set (v2i64 V128:$dst),
+ (OpNode (v2i64 V128:$Rd),
+ (extract_high_v4i32 V128:$Rn),
+ (extract_high_v4i32 (AArch64duplane32 (v4i32 V128:$Rm),
+ VectorIndexS:$idx))))]> {
+ bits<2> idx;
+ let Inst{11} = idx{1};
+ let Inst{21} = idx{0};
+ }
+ }
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD scalar shift by immediate
+//----------------------------------------------------------------------------
+
+let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
+class BaseSIMDScalarShift<bit U, bits<5> opc, bits<7> fixed_imm,
+ RegisterClass regtype1, RegisterClass regtype2,
+ Operand immtype, string asm, list<dag> pattern>
+ : I<(outs regtype1:$Rd), (ins regtype2:$Rn, immtype:$imm),
+ asm, "\t$Rd, $Rn, $imm", "", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<7> imm;
+ let Inst{31-30} = 0b01;
+ let Inst{29} = U;
+ let Inst{28-23} = 0b111110;
+ let Inst{22-16} = fixed_imm;
+ let Inst{15-11} = opc;
+ let Inst{10} = 1;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
+class BaseSIMDScalarShiftTied<bit U, bits<5> opc, bits<7> fixed_imm,
+ RegisterClass regtype1, RegisterClass regtype2,
+ Operand immtype, string asm, list<dag> pattern>
+ : I<(outs regtype1:$dst), (ins regtype1:$Rd, regtype2:$Rn, immtype:$imm),
+ asm, "\t$Rd, $Rn, $imm", "$Rd = $dst", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<7> imm;
+ let Inst{31-30} = 0b01;
+ let Inst{29} = U;
+ let Inst{28-23} = 0b111110;
+ let Inst{22-16} = fixed_imm;
+ let Inst{15-11} = opc;
+ let Inst{10} = 1;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+
+multiclass SIMDScalarRShiftSD<bit U, bits<5> opc, string asm> {
+ def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?},
+ FPR32, FPR32, vecshiftR32, asm, []> {
+ let Inst{20-16} = imm{4-0};
+ }
+
+ def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?},
+ FPR64, FPR64, vecshiftR64, asm, []> {
+ let Inst{21-16} = imm{5-0};
+ }
+}
+
+multiclass SIMDScalarRShiftD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?},
+ FPR64, FPR64, vecshiftR64, asm,
+ [(set (i64 FPR64:$Rd),
+ (OpNode (i64 FPR64:$Rn), (i32 vecshiftR64:$imm)))]> {
+ let Inst{21-16} = imm{5-0};
+ }
+
+ def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn), (i32 vecshiftR64:$imm))),
+ (!cast<Instruction>(NAME # "d") FPR64:$Rn, vecshiftR64:$imm)>;
+}
+
+multiclass SIMDScalarRShiftDTied<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def d : BaseSIMDScalarShiftTied<U, opc, {1,?,?,?,?,?,?},
+ FPR64, FPR64, vecshiftR64, asm,
+ [(set (i64 FPR64:$dst), (OpNode (i64 FPR64:$Rd), (i64 FPR64:$Rn),
+ (i32 vecshiftR64:$imm)))]> {
+ let Inst{21-16} = imm{5-0};
+ }
+
+ def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
+ (i32 vecshiftR64:$imm))),
+ (!cast<Instruction>(NAME # "d") FPR64:$Rd, FPR64:$Rn,
+ vecshiftR64:$imm)>;
+}
+
+multiclass SIMDScalarLShiftD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?},
+ FPR64, FPR64, vecshiftL64, asm,
+ [(set (v1i64 FPR64:$Rd),
+ (OpNode (v1i64 FPR64:$Rn), (i32 vecshiftL64:$imm)))]> {
+ let Inst{21-16} = imm{5-0};
+ }
+}
+
+let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
+multiclass SIMDScalarLShiftDTied<bit U, bits<5> opc, string asm> {
+ def d : BaseSIMDScalarShiftTied<U, opc, {1,?,?,?,?,?,?},
+ FPR64, FPR64, vecshiftL64, asm, []> {
+ let Inst{21-16} = imm{5-0};
+ }
+}
+
+let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
+multiclass SIMDScalarRShiftBHS<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def b : BaseSIMDScalarShift<U, opc, {0,0,0,1,?,?,?},
+ FPR8, FPR16, vecshiftR8, asm, []> {
+ let Inst{18-16} = imm{2-0};
+ }
+
+ def h : BaseSIMDScalarShift<U, opc, {0,0,1,?,?,?,?},
+ FPR16, FPR32, vecshiftR16, asm, []> {
+ let Inst{19-16} = imm{3-0};
+ }
+
+ def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?},
+ FPR32, FPR64, vecshiftR32, asm,
+ [(set (i32 FPR32:$Rd), (OpNode (i64 FPR64:$Rn), vecshiftR32:$imm))]> {
+ let Inst{20-16} = imm{4-0};
+ }
+}
+
+multiclass SIMDScalarLShiftBHSD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def b : BaseSIMDScalarShift<U, opc, {0,0,0,1,?,?,?},
+ FPR8, FPR8, vecshiftL8, asm, []> {
+ let Inst{18-16} = imm{2-0};
+ }
+
+ def h : BaseSIMDScalarShift<U, opc, {0,0,1,?,?,?,?},
+ FPR16, FPR16, vecshiftL16, asm, []> {
+ let Inst{19-16} = imm{3-0};
+ }
+
+ def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?},
+ FPR32, FPR32, vecshiftL32, asm,
+ [(set (i32 FPR32:$Rd), (OpNode (i32 FPR32:$Rn), (i32 vecshiftL32:$imm)))]> {
+ let Inst{20-16} = imm{4-0};
+ }
+
+ def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?},
+ FPR64, FPR64, vecshiftL64, asm,
+ [(set (i64 FPR64:$Rd), (OpNode (i64 FPR64:$Rn), (i32 vecshiftL64:$imm)))]> {
+ let Inst{21-16} = imm{5-0};
+ }
+
+ def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn), (i32 vecshiftL64:$imm))),
+ (!cast<Instruction>(NAME # "d") FPR64:$Rn, vecshiftL64:$imm)>;
+}
+
+multiclass SIMDScalarRShiftBHSD<bit U, bits<5> opc, string asm> {
+ def b : BaseSIMDScalarShift<U, opc, {0,0,0,1,?,?,?},
+ FPR8, FPR8, vecshiftR8, asm, []> {
+ let Inst{18-16} = imm{2-0};
+ }
+
+ def h : BaseSIMDScalarShift<U, opc, {0,0,1,?,?,?,?},
+ FPR16, FPR16, vecshiftR16, asm, []> {
+ let Inst{19-16} = imm{3-0};
+ }
+
+ def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?},
+ FPR32, FPR32, vecshiftR32, asm, []> {
+ let Inst{20-16} = imm{4-0};
+ }
+
+ def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?},
+ FPR64, FPR64, vecshiftR64, asm, []> {
+ let Inst{21-16} = imm{5-0};
+ }
+}
+
+//----------------------------------------------------------------------------
+// AdvSIMD vector x indexed element
+//----------------------------------------------------------------------------
+
+let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
+class BaseSIMDVectorShift<bit Q, bit U, bits<5> opc, bits<7> fixed_imm,
+ RegisterOperand dst_reg, RegisterOperand src_reg,
+ Operand immtype,
+ string asm, string dst_kind, string src_kind,
+ list<dag> pattern>
+ : I<(outs dst_reg:$Rd), (ins src_reg:$Rn, immtype:$imm),
+ asm, "{\t$Rd" # dst_kind # ", $Rn" # src_kind # ", $imm" #
+ "|" # dst_kind # "\t$Rd, $Rn, $imm}", "", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-23} = 0b011110;
+ let Inst{22-16} = fixed_imm;
+ let Inst{15-11} = opc;
+ let Inst{10} = 1;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
+class BaseSIMDVectorShiftTied<bit Q, bit U, bits<5> opc, bits<7> fixed_imm,
+ RegisterOperand vectype1, RegisterOperand vectype2,
+ Operand immtype,
+ string asm, string dst_kind, string src_kind,
+ list<dag> pattern>
+ : I<(outs vectype1:$dst), (ins vectype1:$Rd, vectype2:$Rn, immtype:$imm),
+ asm, "{\t$Rd" # dst_kind # ", $Rn" # src_kind # ", $imm" #
+ "|" # dst_kind # "\t$Rd, $Rn, $imm}", "$Rd = $dst", pattern>,
+ Sched<[WriteV]> {
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29} = U;
+ let Inst{28-23} = 0b011110;
+ let Inst{22-16} = fixed_imm;
+ let Inst{15-11} = opc;
+ let Inst{10} = 1;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+multiclass SIMDVectorRShiftSD<bit U, bits<5> opc, string asm,
+ Intrinsic OpNode> {
+ def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
+ V64, V64, vecshiftR32,
+ asm, ".2s", ".2s",
+ [(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (i32 imm:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?},
+ V128, V128, vecshiftR32,
+ asm, ".4s", ".4s",
+ [(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (i32 imm:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?},
+ V128, V128, vecshiftR64,
+ asm, ".2d", ".2d",
+ [(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (i32 imm:$imm)))]> {
+ bits<6> imm;
+ let Inst{21-16} = imm;
+ }
+}
+
+multiclass SIMDVectorRShiftSDToFP<bit U, bits<5> opc, string asm,
+ Intrinsic OpNode> {
+ def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
+ V64, V64, vecshiftR32,
+ asm, ".2s", ".2s",
+ [(set (v2f32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (i32 imm:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?},
+ V128, V128, vecshiftR32,
+ asm, ".4s", ".4s",
+ [(set (v4f32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (i32 imm:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?},
+ V128, V128, vecshiftR64,
+ asm, ".2d", ".2d",
+ [(set (v2f64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (i32 imm:$imm)))]> {
+ bits<6> imm;
+ let Inst{21-16} = imm;
+ }
+}
+
+multiclass SIMDVectorRShiftNarrowBHS<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?},
+ V64, V128, vecshiftR16Narrow,
+ asm, ".8b", ".8h",
+ [(set (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))]> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ }
+
+ def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?},
+ V128, V128, vecshiftR16Narrow,
+ asm#"2", ".16b", ".8h", []> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ let hasSideEffects = 0;
+ }
+
+ def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?},
+ V64, V128, vecshiftR32Narrow,
+ asm, ".4h", ".4s",
+ [(set (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))]> {
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ }
+
+ def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?},
+ V128, V128, vecshiftR32Narrow,
+ asm#"2", ".8h", ".4s", []> {
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ let hasSideEffects = 0;
+ }
+
+ def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
+ V64, V128, vecshiftR64Narrow,
+ asm, ".2s", ".2d",
+ [(set (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?},
+ V128, V128, vecshiftR64Narrow,
+ asm#"2", ".4s", ".2d", []> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ let hasSideEffects = 0;
+ }
+
+ // TableGen doesn't like patters w/ INSERT_SUBREG on the instructions
+ // themselves, so put them here instead.
+
+ // Patterns involving what's effectively an insert high and a normal
+ // intrinsic, represented by CONCAT_VECTORS.
+ def : Pat<(concat_vectors (v8i8 V64:$Rd),(OpNode (v8i16 V128:$Rn),
+ vecshiftR16Narrow:$imm)),
+ (!cast<Instruction>(NAME # "v16i8_shift")
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
+ V128:$Rn, vecshiftR16Narrow:$imm)>;
+ def : Pat<(concat_vectors (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn),
+ vecshiftR32Narrow:$imm)),
+ (!cast<Instruction>(NAME # "v8i16_shift")
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
+ V128:$Rn, vecshiftR32Narrow:$imm)>;
+ def : Pat<(concat_vectors (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn),
+ vecshiftR64Narrow:$imm)),
+ (!cast<Instruction>(NAME # "v4i32_shift")
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
+ V128:$Rn, vecshiftR64Narrow:$imm)>;
+}
+
+multiclass SIMDVectorLShiftBHSD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?},
+ V64, V64, vecshiftL8,
+ asm, ".8b", ".8b",
+ [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn),
+ (i32 vecshiftL8:$imm)))]> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ }
+
+ def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?},
+ V128, V128, vecshiftL8,
+ asm, ".16b", ".16b",
+ [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn),
+ (i32 vecshiftL8:$imm)))]> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ }
+
+ def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?},
+ V64, V64, vecshiftL16,
+ asm, ".4h", ".4h",
+ [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn),
+ (i32 vecshiftL16:$imm)))]> {
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ }
+
+ def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?},
+ V128, V128, vecshiftL16,
+ asm, ".8h", ".8h",
+ [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn),
+ (i32 vecshiftL16:$imm)))]> {
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ }
+
+ def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
+ V64, V64, vecshiftL32,
+ asm, ".2s", ".2s",
+ [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn),
+ (i32 vecshiftL32:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?},
+ V128, V128, vecshiftL32,
+ asm, ".4s", ".4s",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn),
+ (i32 vecshiftL32:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?},
+ V128, V128, vecshiftL64,
+ asm, ".2d", ".2d",
+ [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn),
+ (i32 vecshiftL64:$imm)))]> {
+ bits<6> imm;
+ let Inst{21-16} = imm;
+ }
+}
+
+multiclass SIMDVectorRShiftBHSD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?},
+ V64, V64, vecshiftR8,
+ asm, ".8b", ".8b",
+ [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn),
+ (i32 vecshiftR8:$imm)))]> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ }
+
+ def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?},
+ V128, V128, vecshiftR8,
+ asm, ".16b", ".16b",
+ [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn),
+ (i32 vecshiftR8:$imm)))]> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ }
+
+ def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?},
+ V64, V64, vecshiftR16,
+ asm, ".4h", ".4h",
+ [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn),
+ (i32 vecshiftR16:$imm)))]> {
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ }
+
+ def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?},
+ V128, V128, vecshiftR16,
+ asm, ".8h", ".8h",
+ [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn),
+ (i32 vecshiftR16:$imm)))]> {
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ }
+
+ def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
+ V64, V64, vecshiftR32,
+ asm, ".2s", ".2s",
+ [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn),
+ (i32 vecshiftR32:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?},
+ V128, V128, vecshiftR32,
+ asm, ".4s", ".4s",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn),
+ (i32 vecshiftR32:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?},
+ V128, V128, vecshiftR64,
+ asm, ".2d", ".2d",
+ [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn),
+ (i32 vecshiftR64:$imm)))]> {
+ bits<6> imm;
+ let Inst{21-16} = imm;
+ }
+}
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+multiclass SIMDVectorRShiftBHSDTied<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def v8i8_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,0,1,?,?,?},
+ V64, V64, vecshiftR8, asm, ".8b", ".8b",
+ [(set (v8i8 V64:$dst),
+ (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn),
+ (i32 vecshiftR8:$imm)))]> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ }
+
+ def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?},
+ V128, V128, vecshiftR8, asm, ".16b", ".16b",
+ [(set (v16i8 V128:$dst),
+ (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn),
+ (i32 vecshiftR8:$imm)))]> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ }
+
+ def v4i16_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,1,?,?,?,?},
+ V64, V64, vecshiftR16, asm, ".4h", ".4h",
+ [(set (v4i16 V64:$dst),
+ (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn),
+ (i32 vecshiftR16:$imm)))]> {
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ }
+
+ def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?},
+ V128, V128, vecshiftR16, asm, ".8h", ".8h",
+ [(set (v8i16 V128:$dst),
+ (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn),
+ (i32 vecshiftR16:$imm)))]> {
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ }
+
+ def v2i32_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,1,?,?,?,?,?},
+ V64, V64, vecshiftR32, asm, ".2s", ".2s",
+ [(set (v2i32 V64:$dst),
+ (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn),
+ (i32 vecshiftR32:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?},
+ V128, V128, vecshiftR32, asm, ".4s", ".4s",
+ [(set (v4i32 V128:$dst),
+ (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn),
+ (i32 vecshiftR32:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v2i64_shift : BaseSIMDVectorShiftTied<1, U, opc, {1,?,?,?,?,?,?},
+ V128, V128, vecshiftR64,
+ asm, ".2d", ".2d", [(set (v2i64 V128:$dst),
+ (OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn),
+ (i32 vecshiftR64:$imm)))]> {
+ bits<6> imm;
+ let Inst{21-16} = imm;
+ }
+}
+
+multiclass SIMDVectorLShiftBHSDTied<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode = null_frag> {
+ def v8i8_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,0,1,?,?,?},
+ V64, V64, vecshiftL8,
+ asm, ".8b", ".8b",
+ [(set (v8i8 V64:$dst),
+ (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn),
+ (i32 vecshiftL8:$imm)))]> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ }
+
+ def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?},
+ V128, V128, vecshiftL8,
+ asm, ".16b", ".16b",
+ [(set (v16i8 V128:$dst),
+ (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn),
+ (i32 vecshiftL8:$imm)))]> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ }
+
+ def v4i16_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,1,?,?,?,?},
+ V64, V64, vecshiftL16,
+ asm, ".4h", ".4h",
+ [(set (v4i16 V64:$dst),
+ (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn),
+ (i32 vecshiftL16:$imm)))]> {
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ }
+
+ def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?},
+ V128, V128, vecshiftL16,
+ asm, ".8h", ".8h",
+ [(set (v8i16 V128:$dst),
+ (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn),
+ (i32 vecshiftL16:$imm)))]> {
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ }
+
+ def v2i32_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,1,?,?,?,?,?},
+ V64, V64, vecshiftL32,
+ asm, ".2s", ".2s",
+ [(set (v2i32 V64:$dst),
+ (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn),
+ (i32 vecshiftL32:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?},
+ V128, V128, vecshiftL32,
+ asm, ".4s", ".4s",
+ [(set (v4i32 V128:$dst),
+ (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn),
+ (i32 vecshiftL32:$imm)))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v2i64_shift : BaseSIMDVectorShiftTied<1, U, opc, {1,?,?,?,?,?,?},
+ V128, V128, vecshiftL64,
+ asm, ".2d", ".2d",
+ [(set (v2i64 V128:$dst),
+ (OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn),
+ (i32 vecshiftL64:$imm)))]> {
+ bits<6> imm;
+ let Inst{21-16} = imm;
+ }
+}
+
+multiclass SIMDVectorLShiftLongBHSD<bit U, bits<5> opc, string asm,
+ SDPatternOperator OpNode> {
+ def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?},
+ V128, V64, vecshiftL8, asm, ".8h", ".8b",
+ [(set (v8i16 V128:$Rd), (OpNode (v8i8 V64:$Rn), vecshiftL8:$imm))]> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ }
+
+ def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?},
+ V128, V128, vecshiftL8,
+ asm#"2", ".8h", ".16b",
+ [(set (v8i16 V128:$Rd),
+ (OpNode (extract_high_v16i8 V128:$Rn), vecshiftL8:$imm))]> {
+ bits<3> imm;
+ let Inst{18-16} = imm;
+ }
+
+ def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?},
+ V128, V64, vecshiftL16, asm, ".4s", ".4h",
+ [(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), vecshiftL16:$imm))]> {
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ }
+
+ def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?},
+ V128, V128, vecshiftL16,
+ asm#"2", ".4s", ".8h",
+ [(set (v4i32 V128:$Rd),
+ (OpNode (extract_high_v8i16 V128:$Rn), vecshiftL16:$imm))]> {
+
+ bits<4> imm;
+ let Inst{19-16} = imm;
+ }
+
+ def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
+ V128, V64, vecshiftL32, asm, ".2d", ".2s",
+ [(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), vecshiftL32:$imm))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+
+ def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?},
+ V128, V128, vecshiftL32,
+ asm#"2", ".2d", ".4s",
+ [(set (v2i64 V128:$Rd),
+ (OpNode (extract_high_v4i32 V128:$Rn), vecshiftL32:$imm))]> {
+ bits<5> imm;
+ let Inst{20-16} = imm;
+ }
+}
+
+
+//---
+// Vector load/store
+//---
+// SIMD ldX/stX no-index memory references don't allow the optional
+// ", #0" constant and handle post-indexing explicitly, so we use
+// a more specialized parse method for them. Otherwise, it's the same as
+// the general GPR64sp handling.
+
+class BaseSIMDLdSt<bit Q, bit L, bits<4> opcode, bits<2> size,
+ string asm, dag oops, dag iops, list<dag> pattern>
+ : I<oops, iops, asm, "\t$Vt, [$Rn]", "", pattern> {
+ bits<5> Vt;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29-23} = 0b0011000;
+ let Inst{22} = L;
+ let Inst{21-16} = 0b000000;
+ let Inst{15-12} = opcode;
+ let Inst{11-10} = size;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Vt;
+}
+
+class BaseSIMDLdStPost<bit Q, bit L, bits<4> opcode, bits<2> size,
+ string asm, dag oops, dag iops>
+ : I<oops, iops, asm, "\t$Vt, [$Rn], $Xm", "$Rn = $wback", []> {
+ bits<5> Vt;
+ bits<5> Rn;
+ bits<5> Xm;
+ let Inst{31} = 0;
+ let Inst{30} = Q;
+ let Inst{29-23} = 0b0011001;
+ let Inst{22} = L;
+ let Inst{21} = 0;
+ let Inst{20-16} = Xm;
+ let Inst{15-12} = opcode;
+ let Inst{11-10} = size;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Vt;
+}
+
+// The immediate form of AdvSIMD post-indexed addressing is encoded with
+// register post-index addressing from the zero register.
+multiclass SIMDLdStAliases<string asm, string layout, string Count,
+ int Offset, int Size> {
+ // E.g. "ld1 { v0.8b, v1.8b }, [x1], #16"
+ // "ld1\t$Vt, [$Rn], #16"
+ // may get mapped to
+ // (LD1Twov8b_POST VecListTwo8b:$Vt, GPR64sp:$Rn, XZR)
+ def : InstAlias<asm # "\t$Vt, [$Rn], #" # Offset,
+ (!cast<Instruction>(NAME # Count # "v" # layout # "_POST")
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("VecList" # Count # layout):$Vt,
+ XZR), 1>;
+
+ // E.g. "ld1.8b { v0, v1 }, [x1], #16"
+ // "ld1.8b\t$Vt, [$Rn], #16"
+ // may get mapped to
+ // (LD1Twov8b_POST VecListTwo64:$Vt, GPR64sp:$Rn, XZR)
+ def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], #" # Offset,
+ (!cast<Instruction>(NAME # Count # "v" # layout # "_POST")
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("VecList" # Count # Size):$Vt,
+ XZR), 0>;
+
+ // E.g. "ld1.8b { v0, v1 }, [x1]"
+ // "ld1\t$Vt, [$Rn]"
+ // may get mapped to
+ // (LD1Twov8b VecListTwo64:$Vt, GPR64sp:$Rn)
+ def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn]",
+ (!cast<Instruction>(NAME # Count # "v" # layout)
+ !cast<RegisterOperand>("VecList" # Count # Size):$Vt,
+ GPR64sp:$Rn), 0>;
+
+ // E.g. "ld1.8b { v0, v1 }, [x1], x2"
+ // "ld1\t$Vt, [$Rn], $Xm"
+ // may get mapped to
+ // (LD1Twov8b_POST VecListTwo64:$Vt, GPR64sp:$Rn, GPR64pi8:$Xm)
+ def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], $Xm",
+ (!cast<Instruction>(NAME # Count # "v" # layout # "_POST")
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("VecList" # Count # Size):$Vt,
+ !cast<RegisterOperand>("GPR64pi" # Offset):$Xm), 0>;
+}
+
+multiclass BaseSIMDLdN<string Count, string asm, string veclist, int Offset128,
+ int Offset64, bits<4> opcode> {
+ let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
+ def v16b: BaseSIMDLdSt<1, 1, opcode, 0b00, asm,
+ (outs !cast<RegisterOperand>(veclist # "16b"):$Vt),
+ (ins GPR64sp:$Rn), []>;
+ def v8h : BaseSIMDLdSt<1, 1, opcode, 0b01, asm,
+ (outs !cast<RegisterOperand>(veclist # "8h"):$Vt),
+ (ins GPR64sp:$Rn), []>;
+ def v4s : BaseSIMDLdSt<1, 1, opcode, 0b10, asm,
+ (outs !cast<RegisterOperand>(veclist # "4s"):$Vt),
+ (ins GPR64sp:$Rn), []>;
+ def v2d : BaseSIMDLdSt<1, 1, opcode, 0b11, asm,
+ (outs !cast<RegisterOperand>(veclist # "2d"):$Vt),
+ (ins GPR64sp:$Rn), []>;
+ def v8b : BaseSIMDLdSt<0, 1, opcode, 0b00, asm,
+ (outs !cast<RegisterOperand>(veclist # "8b"):$Vt),
+ (ins GPR64sp:$Rn), []>;
+ def v4h : BaseSIMDLdSt<0, 1, opcode, 0b01, asm,
+ (outs !cast<RegisterOperand>(veclist # "4h"):$Vt),
+ (ins GPR64sp:$Rn), []>;
+ def v2s : BaseSIMDLdSt<0, 1, opcode, 0b10, asm,
+ (outs !cast<RegisterOperand>(veclist # "2s"):$Vt),
+ (ins GPR64sp:$Rn), []>;
+
+
+ def v16b_POST: BaseSIMDLdStPost<1, 1, opcode, 0b00, asm,
+ (outs GPR64sp:$wback,
+ !cast<RegisterOperand>(veclist # "16b"):$Vt),
+ (ins GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
+ def v8h_POST : BaseSIMDLdStPost<1, 1, opcode, 0b01, asm,
+ (outs GPR64sp:$wback,
+ !cast<RegisterOperand>(veclist # "8h"):$Vt),
+ (ins GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
+ def v4s_POST : BaseSIMDLdStPost<1, 1, opcode, 0b10, asm,
+ (outs GPR64sp:$wback,
+ !cast<RegisterOperand>(veclist # "4s"):$Vt),
+ (ins GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
+ def v2d_POST : BaseSIMDLdStPost<1, 1, opcode, 0b11, asm,
+ (outs GPR64sp:$wback,
+ !cast<RegisterOperand>(veclist # "2d"):$Vt),
+ (ins GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
+ def v8b_POST : BaseSIMDLdStPost<0, 1, opcode, 0b00, asm,
+ (outs GPR64sp:$wback,
+ !cast<RegisterOperand>(veclist # "8b"):$Vt),
+ (ins GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
+ def v4h_POST : BaseSIMDLdStPost<0, 1, opcode, 0b01, asm,
+ (outs GPR64sp:$wback,
+ !cast<RegisterOperand>(veclist # "4h"):$Vt),
+ (ins GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
+ def v2s_POST : BaseSIMDLdStPost<0, 1, opcode, 0b10, asm,
+ (outs GPR64sp:$wback,
+ !cast<RegisterOperand>(veclist # "2s"):$Vt),
+ (ins GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
+ }
+
+ defm : SIMDLdStAliases<asm, "16b", Count, Offset128, 128>;
+ defm : SIMDLdStAliases<asm, "8h", Count, Offset128, 128>;
+ defm : SIMDLdStAliases<asm, "4s", Count, Offset128, 128>;
+ defm : SIMDLdStAliases<asm, "2d", Count, Offset128, 128>;
+ defm : SIMDLdStAliases<asm, "8b", Count, Offset64, 64>;
+ defm : SIMDLdStAliases<asm, "4h", Count, Offset64, 64>;
+ defm : SIMDLdStAliases<asm, "2s", Count, Offset64, 64>;
+}
+
+// Only ld1/st1 has a v1d version.
+multiclass BaseSIMDStN<string Count, string asm, string veclist, int Offset128,
+ int Offset64, bits<4> opcode> {
+ let hasSideEffects = 0, mayStore = 1, mayLoad = 0 in {
+ def v16b : BaseSIMDLdSt<1, 0, opcode, 0b00, asm, (outs),
+ (ins !cast<RegisterOperand>(veclist # "16b"):$Vt,
+ GPR64sp:$Rn), []>;
+ def v8h : BaseSIMDLdSt<1, 0, opcode, 0b01, asm, (outs),
+ (ins !cast<RegisterOperand>(veclist # "8h"):$Vt,
+ GPR64sp:$Rn), []>;
+ def v4s : BaseSIMDLdSt<1, 0, opcode, 0b10, asm, (outs),
+ (ins !cast<RegisterOperand>(veclist # "4s"):$Vt,
+ GPR64sp:$Rn), []>;
+ def v2d : BaseSIMDLdSt<1, 0, opcode, 0b11, asm, (outs),
+ (ins !cast<RegisterOperand>(veclist # "2d"):$Vt,
+ GPR64sp:$Rn), []>;
+ def v8b : BaseSIMDLdSt<0, 0, opcode, 0b00, asm, (outs),
+ (ins !cast<RegisterOperand>(veclist # "8b"):$Vt,
+ GPR64sp:$Rn), []>;
+ def v4h : BaseSIMDLdSt<0, 0, opcode, 0b01, asm, (outs),
+ (ins !cast<RegisterOperand>(veclist # "4h"):$Vt,
+ GPR64sp:$Rn), []>;
+ def v2s : BaseSIMDLdSt<0, 0, opcode, 0b10, asm, (outs),
+ (ins !cast<RegisterOperand>(veclist # "2s"):$Vt,
+ GPR64sp:$Rn), []>;
+
+ def v16b_POST : BaseSIMDLdStPost<1, 0, opcode, 0b00, asm,
+ (outs GPR64sp:$wback),
+ (ins !cast<RegisterOperand>(veclist # "16b"):$Vt,
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
+ def v8h_POST : BaseSIMDLdStPost<1, 0, opcode, 0b01, asm,
+ (outs GPR64sp:$wback),
+ (ins !cast<RegisterOperand>(veclist # "8h"):$Vt,
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
+ def v4s_POST : BaseSIMDLdStPost<1, 0, opcode, 0b10, asm,
+ (outs GPR64sp:$wback),
+ (ins !cast<RegisterOperand>(veclist # "4s"):$Vt,
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
+ def v2d_POST : BaseSIMDLdStPost<1, 0, opcode, 0b11, asm,
+ (outs GPR64sp:$wback),
+ (ins !cast<RegisterOperand>(veclist # "2d"):$Vt,
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
+ def v8b_POST : BaseSIMDLdStPost<0, 0, opcode, 0b00, asm,
+ (outs GPR64sp:$wback),
+ (ins !cast<RegisterOperand>(veclist # "8b"):$Vt,
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
+ def v4h_POST : BaseSIMDLdStPost<0, 0, opcode, 0b01, asm,
+ (outs GPR64sp:$wback),
+ (ins !cast<RegisterOperand>(veclist # "4h"):$Vt,
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
+ def v2s_POST : BaseSIMDLdStPost<0, 0, opcode, 0b10, asm,
+ (outs GPR64sp:$wback),
+ (ins !cast<RegisterOperand>(veclist # "2s"):$Vt,
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
+ }
+
+ defm : SIMDLdStAliases<asm, "16b", Count, Offset128, 128>;
+ defm : SIMDLdStAliases<asm, "8h", Count, Offset128, 128>;
+ defm : SIMDLdStAliases<asm, "4s", Count, Offset128, 128>;
+ defm : SIMDLdStAliases<asm, "2d", Count, Offset128, 128>;
+ defm : SIMDLdStAliases<asm, "8b", Count, Offset64, 64>;
+ defm : SIMDLdStAliases<asm, "4h", Count, Offset64, 64>;
+ defm : SIMDLdStAliases<asm, "2s", Count, Offset64, 64>;
+}
+
+multiclass BaseSIMDLd1<string Count, string asm, string veclist,
+ int Offset128, int Offset64, bits<4> opcode>
+ : BaseSIMDLdN<Count, asm, veclist, Offset128, Offset64, opcode> {
+
+ // LD1 instructions have extra "1d" variants.
+ let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
+ def v1d : BaseSIMDLdSt<0, 1, opcode, 0b11, asm,
+ (outs !cast<RegisterOperand>(veclist # "1d"):$Vt),
+ (ins GPR64sp:$Rn), []>;
+
+ def v1d_POST : BaseSIMDLdStPost<0, 1, opcode, 0b11, asm,
+ (outs GPR64sp:$wback,
+ !cast<RegisterOperand>(veclist # "1d"):$Vt),
+ (ins GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
+ }
+
+ defm : SIMDLdStAliases<asm, "1d", Count, Offset64, 64>;
+}
+
+multiclass BaseSIMDSt1<string Count, string asm, string veclist,
+ int Offset128, int Offset64, bits<4> opcode>
+ : BaseSIMDStN<Count, asm, veclist, Offset128, Offset64, opcode> {
+
+ // ST1 instructions have extra "1d" variants.
+ let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
+ def v1d : BaseSIMDLdSt<0, 0, opcode, 0b11, asm, (outs),
+ (ins !cast<RegisterOperand>(veclist # "1d"):$Vt,
+ GPR64sp:$Rn), []>;
+
+ def v1d_POST : BaseSIMDLdStPost<0, 0, opcode, 0b11, asm,
+ (outs GPR64sp:$wback),
+ (ins !cast<RegisterOperand>(veclist # "1d"):$Vt,
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
+ }
+
+ defm : SIMDLdStAliases<asm, "1d", Count, Offset64, 64>;
+}
+
+multiclass SIMDLd1Multiple<string asm> {
+ defm One : BaseSIMDLd1<"One", asm, "VecListOne", 16, 8, 0b0111>;
+ defm Two : BaseSIMDLd1<"Two", asm, "VecListTwo", 32, 16, 0b1010>;
+ defm Three : BaseSIMDLd1<"Three", asm, "VecListThree", 48, 24, 0b0110>;
+ defm Four : BaseSIMDLd1<"Four", asm, "VecListFour", 64, 32, 0b0010>;
+}
+
+multiclass SIMDSt1Multiple<string asm> {
+ defm One : BaseSIMDSt1<"One", asm, "VecListOne", 16, 8, 0b0111>;
+ defm Two : BaseSIMDSt1<"Two", asm, "VecListTwo", 32, 16, 0b1010>;
+ defm Three : BaseSIMDSt1<"Three", asm, "VecListThree", 48, 24, 0b0110>;
+ defm Four : BaseSIMDSt1<"Four", asm, "VecListFour", 64, 32, 0b0010>;
+}
+
+multiclass SIMDLd2Multiple<string asm> {
+ defm Two : BaseSIMDLdN<"Two", asm, "VecListTwo", 32, 16, 0b1000>;
+}
+
+multiclass SIMDSt2Multiple<string asm> {
+ defm Two : BaseSIMDStN<"Two", asm, "VecListTwo", 32, 16, 0b1000>;
+}
+
+multiclass SIMDLd3Multiple<string asm> {
+ defm Three : BaseSIMDLdN<"Three", asm, "VecListThree", 48, 24, 0b0100>;
+}
+
+multiclass SIMDSt3Multiple<string asm> {
+ defm Three : BaseSIMDStN<"Three", asm, "VecListThree", 48, 24, 0b0100>;
+}
+
+multiclass SIMDLd4Multiple<string asm> {
+ defm Four : BaseSIMDLdN<"Four", asm, "VecListFour", 64, 32, 0b0000>;
+}
+
+multiclass SIMDSt4Multiple<string asm> {
+ defm Four : BaseSIMDStN<"Four", asm, "VecListFour", 64, 32, 0b0000>;
+}
+
+//---
+// AdvSIMD Load/store single-element
+//---
+
+class BaseSIMDLdStSingle<bit L, bit R, bits<3> opcode,
+ string asm, string operands, string cst,
+ dag oops, dag iops, list<dag> pattern>
+ : I<oops, iops, asm, operands, cst, pattern> {
+ bits<5> Vt;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{29-24} = 0b001101;
+ let Inst{22} = L;
+ let Inst{21} = R;
+ let Inst{15-13} = opcode;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Vt;
+}
+
+class BaseSIMDLdStSingleTied<bit L, bit R, bits<3> opcode,
+ string asm, string operands, string cst,
+ dag oops, dag iops, list<dag> pattern>
+ : I<oops, iops, asm, operands, "$Vt = $dst," # cst, pattern> {
+ bits<5> Vt;
+ bits<5> Rn;
+ let Inst{31} = 0;
+ let Inst{29-24} = 0b001101;
+ let Inst{22} = L;
+ let Inst{21} = R;
+ let Inst{15-13} = opcode;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Vt;
+}
+
+
+let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDLdR<bit Q, bit R, bits<3> opcode, bit S, bits<2> size, string asm,
+ Operand listtype>
+ : BaseSIMDLdStSingle<1, R, opcode, asm, "\t$Vt, [$Rn]", "",
+ (outs listtype:$Vt), (ins GPR64sp:$Rn),
+ []> {
+ let Inst{30} = Q;
+ let Inst{23} = 0;
+ let Inst{20-16} = 0b00000;
+ let Inst{12} = S;
+ let Inst{11-10} = size;
+}
+let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+class BaseSIMDLdRPost<bit Q, bit R, bits<3> opcode, bit S, bits<2> size,
+ string asm, Operand listtype, Operand GPR64pi>
+ : BaseSIMDLdStSingle<1, R, opcode, asm, "\t$Vt, [$Rn], $Xm",
+ "$Rn = $wback",
+ (outs GPR64sp:$wback, listtype:$Vt),
+ (ins GPR64sp:$Rn, GPR64pi:$Xm), []> {
+ bits<5> Xm;
+ let Inst{30} = Q;
+ let Inst{23} = 1;
+ let Inst{20-16} = Xm;
+ let Inst{12} = S;
+ let Inst{11-10} = size;
+}
+
+multiclass SIMDLdrAliases<string asm, string layout, string Count,
+ int Offset, int Size> {
+ // E.g. "ld1r { v0.8b }, [x1], #1"
+ // "ld1r.8b\t$Vt, [$Rn], #1"
+ // may get mapped to
+ // (LD1Rv8b_POST VecListOne8b:$Vt, GPR64sp:$Rn, XZR)
+ def : InstAlias<asm # "\t$Vt, [$Rn], #" # Offset,
+ (!cast<Instruction>(NAME # "v" # layout # "_POST")
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("VecList" # Count # layout):$Vt,
+ XZR), 1>;
+
+ // E.g. "ld1r.8b { v0 }, [x1], #1"
+ // "ld1r.8b\t$Vt, [$Rn], #1"
+ // may get mapped to
+ // (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, XZR)
+ def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], #" # Offset,
+ (!cast<Instruction>(NAME # "v" # layout # "_POST")
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("VecList" # Count # Size):$Vt,
+ XZR), 0>;
+
+ // E.g. "ld1r.8b { v0 }, [x1]"
+ // "ld1r.8b\t$Vt, [$Rn]"
+ // may get mapped to
+ // (LD1Rv8b VecListOne64:$Vt, GPR64sp:$Rn)
+ def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn]",
+ (!cast<Instruction>(NAME # "v" # layout)
+ !cast<RegisterOperand>("VecList" # Count # Size):$Vt,
+ GPR64sp:$Rn), 0>;
+
+ // E.g. "ld1r.8b { v0 }, [x1], x2"
+ // "ld1r.8b\t$Vt, [$Rn], $Xm"
+ // may get mapped to
+ // (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, GPR64pi1:$Xm)
+ def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], $Xm",
+ (!cast<Instruction>(NAME # "v" # layout # "_POST")
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("VecList" # Count # Size):$Vt,
+ !cast<RegisterOperand>("GPR64pi" # Offset):$Xm), 0>;
+}
+
+multiclass SIMDLdR<bit R, bits<3> opcode, bit S, string asm, string Count,
+ int Offset1, int Offset2, int Offset4, int Offset8> {
+ def v8b : BaseSIMDLdR<0, R, opcode, S, 0b00, asm,
+ !cast<Operand>("VecList" # Count # "8b")>;
+ def v16b: BaseSIMDLdR<1, R, opcode, S, 0b00, asm,
+ !cast<Operand>("VecList" # Count #"16b")>;
+ def v4h : BaseSIMDLdR<0, R, opcode, S, 0b01, asm,
+ !cast<Operand>("VecList" # Count #"4h")>;
+ def v8h : BaseSIMDLdR<1, R, opcode, S, 0b01, asm,
+ !cast<Operand>("VecList" # Count #"8h")>;
+ def v2s : BaseSIMDLdR<0, R, opcode, S, 0b10, asm,
+ !cast<Operand>("VecList" # Count #"2s")>;
+ def v4s : BaseSIMDLdR<1, R, opcode, S, 0b10, asm,
+ !cast<Operand>("VecList" # Count #"4s")>;
+ def v1d : BaseSIMDLdR<0, R, opcode, S, 0b11, asm,
+ !cast<Operand>("VecList" # Count #"1d")>;
+ def v2d : BaseSIMDLdR<1, R, opcode, S, 0b11, asm,
+ !cast<Operand>("VecList" # Count #"2d")>;
+
+ def v8b_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b00, asm,
+ !cast<Operand>("VecList" # Count # "8b"),
+ !cast<Operand>("GPR64pi" # Offset1)>;
+ def v16b_POST: BaseSIMDLdRPost<1, R, opcode, S, 0b00, asm,
+ !cast<Operand>("VecList" # Count # "16b"),
+ !cast<Operand>("GPR64pi" # Offset1)>;
+ def v4h_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b01, asm,
+ !cast<Operand>("VecList" # Count # "4h"),
+ !cast<Operand>("GPR64pi" # Offset2)>;
+ def v8h_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b01, asm,
+ !cast<Operand>("VecList" # Count # "8h"),
+ !cast<Operand>("GPR64pi" # Offset2)>;
+ def v2s_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b10, asm,
+ !cast<Operand>("VecList" # Count # "2s"),
+ !cast<Operand>("GPR64pi" # Offset4)>;
+ def v4s_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b10, asm,
+ !cast<Operand>("VecList" # Count # "4s"),
+ !cast<Operand>("GPR64pi" # Offset4)>;
+ def v1d_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b11, asm,
+ !cast<Operand>("VecList" # Count # "1d"),
+ !cast<Operand>("GPR64pi" # Offset8)>;
+ def v2d_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b11, asm,
+ !cast<Operand>("VecList" # Count # "2d"),
+ !cast<Operand>("GPR64pi" # Offset8)>;
+
+ defm : SIMDLdrAliases<asm, "8b", Count, Offset1, 64>;
+ defm : SIMDLdrAliases<asm, "16b", Count, Offset1, 128>;
+ defm : SIMDLdrAliases<asm, "4h", Count, Offset2, 64>;
+ defm : SIMDLdrAliases<asm, "8h", Count, Offset2, 128>;
+ defm : SIMDLdrAliases<asm, "2s", Count, Offset4, 64>;
+ defm : SIMDLdrAliases<asm, "4s", Count, Offset4, 128>;
+ defm : SIMDLdrAliases<asm, "1d", Count, Offset8, 64>;
+ defm : SIMDLdrAliases<asm, "2d", Count, Offset8, 128>;
+}
+
+class SIMDLdStSingleB<bit L, bit R, bits<3> opcode, string asm,
+ dag oops, dag iops, list<dag> pattern>
+ : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops,
+ pattern> {
+ // idx encoded in Q:S:size fields.
+ bits<4> idx;
+ let Inst{30} = idx{3};
+ let Inst{23} = 0;
+ let Inst{20-16} = 0b00000;
+ let Inst{12} = idx{2};
+ let Inst{11-10} = idx{1-0};
+}
+class SIMDLdStSingleBTied<bit L, bit R, bits<3> opcode, string asm,
+ dag oops, dag iops, list<dag> pattern>
+ : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "",
+ oops, iops, pattern> {
+ // idx encoded in Q:S:size fields.
+ bits<4> idx;
+ let Inst{30} = idx{3};
+ let Inst{23} = 0;
+ let Inst{20-16} = 0b00000;
+ let Inst{12} = idx{2};
+ let Inst{11-10} = idx{1-0};
+}
+class SIMDLdStSingleBPost<bit L, bit R, bits<3> opcode, string asm,
+ dag oops, dag iops>
+ : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
+ "$Rn = $wback", oops, iops, []> {
+ // idx encoded in Q:S:size fields.
+ bits<4> idx;
+ bits<5> Xm;
+ let Inst{30} = idx{3};
+ let Inst{23} = 1;
+ let Inst{20-16} = Xm;
+ let Inst{12} = idx{2};
+ let Inst{11-10} = idx{1-0};
+}
+class SIMDLdStSingleBTiedPost<bit L, bit R, bits<3> opcode, string asm,
+ dag oops, dag iops>
+ : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
+ "$Rn = $wback", oops, iops, []> {
+ // idx encoded in Q:S:size fields.
+ bits<4> idx;
+ bits<5> Xm;
+ let Inst{30} = idx{3};
+ let Inst{23} = 1;
+ let Inst{20-16} = Xm;
+ let Inst{12} = idx{2};
+ let Inst{11-10} = idx{1-0};
+}
+
+class SIMDLdStSingleH<bit L, bit R, bits<3> opcode, bit size, string asm,
+ dag oops, dag iops, list<dag> pattern>
+ : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops,
+ pattern> {
+ // idx encoded in Q:S:size<1> fields.
+ bits<3> idx;
+ let Inst{30} = idx{2};
+ let Inst{23} = 0;
+ let Inst{20-16} = 0b00000;
+ let Inst{12} = idx{1};
+ let Inst{11} = idx{0};
+ let Inst{10} = size;
+}
+class SIMDLdStSingleHTied<bit L, bit R, bits<3> opcode, bit size, string asm,
+ dag oops, dag iops, list<dag> pattern>
+ : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "",
+ oops, iops, pattern> {
+ // idx encoded in Q:S:size<1> fields.
+ bits<3> idx;
+ let Inst{30} = idx{2};
+ let Inst{23} = 0;
+ let Inst{20-16} = 0b00000;
+ let Inst{12} = idx{1};
+ let Inst{11} = idx{0};
+ let Inst{10} = size;
+}
+
+class SIMDLdStSingleHPost<bit L, bit R, bits<3> opcode, bit size, string asm,
+ dag oops, dag iops>
+ : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
+ "$Rn = $wback", oops, iops, []> {
+ // idx encoded in Q:S:size<1> fields.
+ bits<3> idx;
+ bits<5> Xm;
+ let Inst{30} = idx{2};
+ let Inst{23} = 1;
+ let Inst{20-16} = Xm;
+ let Inst{12} = idx{1};
+ let Inst{11} = idx{0};
+ let Inst{10} = size;
+}
+class SIMDLdStSingleHTiedPost<bit L, bit R, bits<3> opcode, bit size, string asm,
+ dag oops, dag iops>
+ : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
+ "$Rn = $wback", oops, iops, []> {
+ // idx encoded in Q:S:size<1> fields.
+ bits<3> idx;
+ bits<5> Xm;
+ let Inst{30} = idx{2};
+ let Inst{23} = 1;
+ let Inst{20-16} = Xm;
+ let Inst{12} = idx{1};
+ let Inst{11} = idx{0};
+ let Inst{10} = size;
+}
+class SIMDLdStSingleS<bit L, bit R, bits<3> opcode, bits<2> size, string asm,
+ dag oops, dag iops, list<dag> pattern>
+ : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops,
+ pattern> {
+ // idx encoded in Q:S fields.
+ bits<2> idx;
+ let Inst{30} = idx{1};
+ let Inst{23} = 0;
+ let Inst{20-16} = 0b00000;
+ let Inst{12} = idx{0};
+ let Inst{11-10} = size;
+}
+class SIMDLdStSingleSTied<bit L, bit R, bits<3> opcode, bits<2> size, string asm,
+ dag oops, dag iops, list<dag> pattern>
+ : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "",
+ oops, iops, pattern> {
+ // idx encoded in Q:S fields.
+ bits<2> idx;
+ let Inst{30} = idx{1};
+ let Inst{23} = 0;
+ let Inst{20-16} = 0b00000;
+ let Inst{12} = idx{0};
+ let Inst{11-10} = size;
+}
+class SIMDLdStSingleSPost<bit L, bit R, bits<3> opcode, bits<2> size,
+ string asm, dag oops, dag iops>
+ : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
+ "$Rn = $wback", oops, iops, []> {
+ // idx encoded in Q:S fields.
+ bits<2> idx;
+ bits<5> Xm;
+ let Inst{30} = idx{1};
+ let Inst{23} = 1;
+ let Inst{20-16} = Xm;
+ let Inst{12} = idx{0};
+ let Inst{11-10} = size;
+}
+class SIMDLdStSingleSTiedPost<bit L, bit R, bits<3> opcode, bits<2> size,
+ string asm, dag oops, dag iops>
+ : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
+ "$Rn = $wback", oops, iops, []> {
+ // idx encoded in Q:S fields.
+ bits<2> idx;
+ bits<5> Xm;
+ let Inst{30} = idx{1};
+ let Inst{23} = 1;
+ let Inst{20-16} = Xm;
+ let Inst{12} = idx{0};
+ let Inst{11-10} = size;
+}
+class SIMDLdStSingleD<bit L, bit R, bits<3> opcode, bits<2> size, string asm,
+ dag oops, dag iops, list<dag> pattern>
+ : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops,
+ pattern> {
+ // idx encoded in Q field.
+ bits<1> idx;
+ let Inst{30} = idx;
+ let Inst{23} = 0;
+ let Inst{20-16} = 0b00000;
+ let Inst{12} = 0;
+ let Inst{11-10} = size;
+}
+class SIMDLdStSingleDTied<bit L, bit R, bits<3> opcode, bits<2> size, string asm,
+ dag oops, dag iops, list<dag> pattern>
+ : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "",
+ oops, iops, pattern> {
+ // idx encoded in Q field.
+ bits<1> idx;
+ let Inst{30} = idx;
+ let Inst{23} = 0;
+ let Inst{20-16} = 0b00000;
+ let Inst{12} = 0;
+ let Inst{11-10} = size;
+}
+class SIMDLdStSingleDPost<bit L, bit R, bits<3> opcode, bits<2> size,
+ string asm, dag oops, dag iops>
+ : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
+ "$Rn = $wback", oops, iops, []> {
+ // idx encoded in Q field.
+ bits<1> idx;
+ bits<5> Xm;
+ let Inst{30} = idx;
+ let Inst{23} = 1;
+ let Inst{20-16} = Xm;
+ let Inst{12} = 0;
+ let Inst{11-10} = size;
+}
+class SIMDLdStSingleDTiedPost<bit L, bit R, bits<3> opcode, bits<2> size,
+ string asm, dag oops, dag iops>
+ : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
+ "$Rn = $wback", oops, iops, []> {
+ // idx encoded in Q field.
+ bits<1> idx;
+ bits<5> Xm;
+ let Inst{30} = idx;
+ let Inst{23} = 1;
+ let Inst{20-16} = Xm;
+ let Inst{12} = 0;
+ let Inst{11-10} = size;
+}
+
+let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+multiclass SIMDLdSingleBTied<bit R, bits<3> opcode, string asm,
+ RegisterOperand listtype,
+ RegisterOperand GPR64pi> {
+ def i8 : SIMDLdStSingleBTied<1, R, opcode, asm,
+ (outs listtype:$dst),
+ (ins listtype:$Vt, VectorIndexB:$idx,
+ GPR64sp:$Rn), []>;
+
+ def i8_POST : SIMDLdStSingleBTiedPost<1, R, opcode, asm,
+ (outs GPR64sp:$wback, listtype:$dst),
+ (ins listtype:$Vt, VectorIndexB:$idx,
+ GPR64sp:$Rn, GPR64pi:$Xm)>;
+}
+let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+multiclass SIMDLdSingleHTied<bit R, bits<3> opcode, bit size, string asm,
+ RegisterOperand listtype,
+ RegisterOperand GPR64pi> {
+ def i16 : SIMDLdStSingleHTied<1, R, opcode, size, asm,
+ (outs listtype:$dst),
+ (ins listtype:$Vt, VectorIndexH:$idx,
+ GPR64sp:$Rn), []>;
+
+ def i16_POST : SIMDLdStSingleHTiedPost<1, R, opcode, size, asm,
+ (outs GPR64sp:$wback, listtype:$dst),
+ (ins listtype:$Vt, VectorIndexH:$idx,
+ GPR64sp:$Rn, GPR64pi:$Xm)>;
+}
+let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+multiclass SIMDLdSingleSTied<bit R, bits<3> opcode, bits<2> size,string asm,
+ RegisterOperand listtype,
+ RegisterOperand GPR64pi> {
+ def i32 : SIMDLdStSingleSTied<1, R, opcode, size, asm,
+ (outs listtype:$dst),
+ (ins listtype:$Vt, VectorIndexS:$idx,
+ GPR64sp:$Rn), []>;
+
+ def i32_POST : SIMDLdStSingleSTiedPost<1, R, opcode, size, asm,
+ (outs GPR64sp:$wback, listtype:$dst),
+ (ins listtype:$Vt, VectorIndexS:$idx,
+ GPR64sp:$Rn, GPR64pi:$Xm)>;
+}
+let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
+multiclass SIMDLdSingleDTied<bit R, bits<3> opcode, bits<2> size, string asm,
+ RegisterOperand listtype, RegisterOperand GPR64pi> {
+ def i64 : SIMDLdStSingleDTied<1, R, opcode, size, asm,
+ (outs listtype:$dst),
+ (ins listtype:$Vt, VectorIndexD:$idx,
+ GPR64sp:$Rn), []>;
+
+ def i64_POST : SIMDLdStSingleDTiedPost<1, R, opcode, size, asm,
+ (outs GPR64sp:$wback, listtype:$dst),
+ (ins listtype:$Vt, VectorIndexD:$idx,
+ GPR64sp:$Rn, GPR64pi:$Xm)>;
+}
+let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
+multiclass SIMDStSingleB<bit R, bits<3> opcode, string asm,
+ RegisterOperand listtype, RegisterOperand GPR64pi> {
+ def i8 : SIMDLdStSingleB<0, R, opcode, asm,
+ (outs), (ins listtype:$Vt, VectorIndexB:$idx,
+ GPR64sp:$Rn), []>;
+
+ def i8_POST : SIMDLdStSingleBPost<0, R, opcode, asm,
+ (outs GPR64sp:$wback),
+ (ins listtype:$Vt, VectorIndexB:$idx,
+ GPR64sp:$Rn, GPR64pi:$Xm)>;
+}
+let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
+multiclass SIMDStSingleH<bit R, bits<3> opcode, bit size, string asm,
+ RegisterOperand listtype, RegisterOperand GPR64pi> {
+ def i16 : SIMDLdStSingleH<0, R, opcode, size, asm,
+ (outs), (ins listtype:$Vt, VectorIndexH:$idx,
+ GPR64sp:$Rn), []>;
+
+ def i16_POST : SIMDLdStSingleHPost<0, R, opcode, size, asm,
+ (outs GPR64sp:$wback),
+ (ins listtype:$Vt, VectorIndexH:$idx,
+ GPR64sp:$Rn, GPR64pi:$Xm)>;
+}
+let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
+multiclass SIMDStSingleS<bit R, bits<3> opcode, bits<2> size,string asm,
+ RegisterOperand listtype, RegisterOperand GPR64pi> {
+ def i32 : SIMDLdStSingleS<0, R, opcode, size, asm,
+ (outs), (ins listtype:$Vt, VectorIndexS:$idx,
+ GPR64sp:$Rn), []>;
+
+ def i32_POST : SIMDLdStSingleSPost<0, R, opcode, size, asm,
+ (outs GPR64sp:$wback),
+ (ins listtype:$Vt, VectorIndexS:$idx,
+ GPR64sp:$Rn, GPR64pi:$Xm)>;
+}
+let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
+multiclass SIMDStSingleD<bit R, bits<3> opcode, bits<2> size, string asm,
+ RegisterOperand listtype, RegisterOperand GPR64pi> {
+ def i64 : SIMDLdStSingleD<0, R, opcode, size, asm,
+ (outs), (ins listtype:$Vt, VectorIndexD:$idx,
+ GPR64sp:$Rn), []>;
+
+ def i64_POST : SIMDLdStSingleDPost<0, R, opcode, size, asm,
+ (outs GPR64sp:$wback),
+ (ins listtype:$Vt, VectorIndexD:$idx,
+ GPR64sp:$Rn, GPR64pi:$Xm)>;
+}
+
+multiclass SIMDLdStSingleAliases<string asm, string layout, string Type,
+ string Count, int Offset, Operand idxtype> {
+ // E.g. "ld1 { v0.8b }[0], [x1], #1"
+ // "ld1\t$Vt, [$Rn], #1"
+ // may get mapped to
+ // (LD1Rv8b_POST VecListOne8b:$Vt, GPR64sp:$Rn, XZR)
+ def : InstAlias<asm # "\t$Vt$idx, [$Rn], #" # Offset,
+ (!cast<Instruction>(NAME # Type # "_POST")
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("VecList" # Count # layout):$Vt,
+ idxtype:$idx, XZR), 1>;
+
+ // E.g. "ld1.8b { v0 }[0], [x1], #1"
+ // "ld1.8b\t$Vt, [$Rn], #1"
+ // may get mapped to
+ // (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, XZR)
+ def : InstAlias<asm # "." # layout # "\t$Vt$idx, [$Rn], #" # Offset,
+ (!cast<Instruction>(NAME # Type # "_POST")
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("VecList" # Count # "128"):$Vt,
+ idxtype:$idx, XZR), 0>;
+
+ // E.g. "ld1.8b { v0 }[0], [x1]"
+ // "ld1.8b\t$Vt, [$Rn]"
+ // may get mapped to
+ // (LD1Rv8b VecListOne64:$Vt, GPR64sp:$Rn)
+ def : InstAlias<asm # "." # layout # "\t$Vt$idx, [$Rn]",
+ (!cast<Instruction>(NAME # Type)
+ !cast<RegisterOperand>("VecList" # Count # "128"):$Vt,
+ idxtype:$idx, GPR64sp:$Rn), 0>;
+
+ // E.g. "ld1.8b { v0 }[0], [x1], x2"
+ // "ld1.8b\t$Vt, [$Rn], $Xm"
+ // may get mapped to
+ // (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, GPR64pi1:$Xm)
+ def : InstAlias<asm # "." # layout # "\t$Vt$idx, [$Rn], $Xm",
+ (!cast<Instruction>(NAME # Type # "_POST")
+ GPR64sp:$Rn,
+ !cast<RegisterOperand>("VecList" # Count # "128"):$Vt,
+ idxtype:$idx,
+ !cast<RegisterOperand>("GPR64pi" # Offset):$Xm), 0>;
+}
+
+multiclass SIMDLdSt1SingleAliases<string asm> {
+ defm : SIMDLdStSingleAliases<asm, "b", "i8", "One", 1, VectorIndexB>;
+ defm : SIMDLdStSingleAliases<asm, "h", "i16", "One", 2, VectorIndexH>;
+ defm : SIMDLdStSingleAliases<asm, "s", "i32", "One", 4, VectorIndexS>;
+ defm : SIMDLdStSingleAliases<asm, "d", "i64", "One", 8, VectorIndexD>;
+}
+
+multiclass SIMDLdSt2SingleAliases<string asm> {
+ defm : SIMDLdStSingleAliases<asm, "b", "i8", "Two", 2, VectorIndexB>;
+ defm : SIMDLdStSingleAliases<asm, "h", "i16", "Two", 4, VectorIndexH>;
+ defm : SIMDLdStSingleAliases<asm, "s", "i32", "Two", 8, VectorIndexS>;
+ defm : SIMDLdStSingleAliases<asm, "d", "i64", "Two", 16, VectorIndexD>;
+}
+
+multiclass SIMDLdSt3SingleAliases<string asm> {
+ defm : SIMDLdStSingleAliases<asm, "b", "i8", "Three", 3, VectorIndexB>;
+ defm : SIMDLdStSingleAliases<asm, "h", "i16", "Three", 6, VectorIndexH>;
+ defm : SIMDLdStSingleAliases<asm, "s", "i32", "Three", 12, VectorIndexS>;
+ defm : SIMDLdStSingleAliases<asm, "d", "i64", "Three", 24, VectorIndexD>;
+}
+
+multiclass SIMDLdSt4SingleAliases<string asm> {
+ defm : SIMDLdStSingleAliases<asm, "b", "i8", "Four", 4, VectorIndexB>;
+ defm : SIMDLdStSingleAliases<asm, "h", "i16", "Four", 8, VectorIndexH>;
+ defm : SIMDLdStSingleAliases<asm, "s", "i32", "Four", 16, VectorIndexS>;
+ defm : SIMDLdStSingleAliases<asm, "d", "i64", "Four", 32, VectorIndexD>;
+}
+} // end of 'let Predicates = [HasNEON]'
+
+//----------------------------------------------------------------------------
+// Crypto extensions
+//----------------------------------------------------------------------------
+
+let Predicates = [HasCrypto] in {
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class AESBase<bits<4> opc, string asm, dag outs, dag ins, string cstr,
+ list<dag> pat>
+ : I<outs, ins, asm, "{\t$Rd.16b, $Rn.16b|.16b\t$Rd, $Rn}", cstr, pat>,
+ Sched<[WriteV]>{
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31-16} = 0b0100111000101000;
+ let Inst{15-12} = opc;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+class AESInst<bits<4> opc, string asm, Intrinsic OpNode>
+ : AESBase<opc, asm, (outs V128:$Rd), (ins V128:$Rn), "",
+ [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>;
+
+class AESTiedInst<bits<4> opc, string asm, Intrinsic OpNode>
+ : AESBase<opc, asm, (outs V128:$dst), (ins V128:$Rd, V128:$Rn),
+ "$Rd = $dst",
+ [(set (v16i8 V128:$dst),
+ (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn)))]>;
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class SHA3OpTiedInst<bits<3> opc, string asm, string dst_lhs_kind,
+ dag oops, dag iops, list<dag> pat>
+ : I<oops, iops, asm,
+ "{\t$Rd" # dst_lhs_kind # ", $Rn" # dst_lhs_kind # ", $Rm.4s" #
+ "|.4s\t$Rd, $Rn, $Rm}", "$Rd = $dst", pat>,
+ Sched<[WriteV]>{
+ bits<5> Rd;
+ bits<5> Rn;
+ bits<5> Rm;
+ let Inst{31-21} = 0b01011110000;
+ let Inst{20-16} = Rm;
+ let Inst{15} = 0;
+ let Inst{14-12} = opc;
+ let Inst{11-10} = 0b00;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+class SHATiedInstQSV<bits<3> opc, string asm, Intrinsic OpNode>
+ : SHA3OpTiedInst<opc, asm, "", (outs FPR128:$dst),
+ (ins FPR128:$Rd, FPR32:$Rn, V128:$Rm),
+ [(set (v4i32 FPR128:$dst),
+ (OpNode (v4i32 FPR128:$Rd), (i32 FPR32:$Rn),
+ (v4i32 V128:$Rm)))]>;
+
+class SHATiedInstVVV<bits<3> opc, string asm, Intrinsic OpNode>
+ : SHA3OpTiedInst<opc, asm, ".4s", (outs V128:$dst),
+ (ins V128:$Rd, V128:$Rn, V128:$Rm),
+ [(set (v4i32 V128:$dst),
+ (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn),
+ (v4i32 V128:$Rm)))]>;
+
+class SHATiedInstQQV<bits<3> opc, string asm, Intrinsic OpNode>
+ : SHA3OpTiedInst<opc, asm, "", (outs FPR128:$dst),
+ (ins FPR128:$Rd, FPR128:$Rn, V128:$Rm),
+ [(set (v4i32 FPR128:$dst),
+ (OpNode (v4i32 FPR128:$Rd), (v4i32 FPR128:$Rn),
+ (v4i32 V128:$Rm)))]>;
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
+class SHA2OpInst<bits<4> opc, string asm, string kind,
+ string cstr, dag oops, dag iops,
+ list<dag> pat>
+ : I<oops, iops, asm, "{\t$Rd" # kind # ", $Rn" # kind #
+ "|" # kind # "\t$Rd, $Rn}", cstr, pat>,
+ Sched<[WriteV]>{
+ bits<5> Rd;
+ bits<5> Rn;
+ let Inst{31-16} = 0b0101111000101000;
+ let Inst{15-12} = opc;
+ let Inst{11-10} = 0b10;
+ let Inst{9-5} = Rn;
+ let Inst{4-0} = Rd;
+}
+
+class SHATiedInstVV<bits<4> opc, string asm, Intrinsic OpNode>
+ : SHA2OpInst<opc, asm, ".4s", "$Rd = $dst", (outs V128:$dst),
+ (ins V128:$Rd, V128:$Rn),
+ [(set (v4i32 V128:$dst),
+ (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn)))]>;
+
+class SHAInstSS<bits<4> opc, string asm, Intrinsic OpNode>
+ : SHA2OpInst<opc, asm, "", "", (outs FPR32:$Rd), (ins FPR32:$Rn),
+ [(set (i32 FPR32:$Rd), (OpNode (i32 FPR32:$Rn)))]>;
+} // end of 'let Predicates = [HasCrypto]'
+
+// Allow the size specifier tokens to be upper case, not just lower.
+def : TokenAlias<".8B", ".8b">;
+def : TokenAlias<".4H", ".4h">;
+def : TokenAlias<".2S", ".2s">;
+def : TokenAlias<".1D", ".1d">;
+def : TokenAlias<".16B", ".16b">;
+def : TokenAlias<".8H", ".8h">;
+def : TokenAlias<".4S", ".4s">;
+def : TokenAlias<".2D", ".2d">;
+def : TokenAlias<".1Q", ".1q">;
+def : TokenAlias<".B", ".b">;
+def : TokenAlias<".H", ".h">;
+def : TokenAlias<".S", ".s">;
+def : TokenAlias<".D", ".d">;
+def : TokenAlias<".Q", ".q">;
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp
new file mode 100644
index 0000000..ce85b2c
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp
@@ -0,0 +1,2089 @@
+//===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the AArch64 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64InstrInfo.h"
+#include "AArch64Subtarget.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "AArch64GenInstrInfo.inc"
+
+AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
+ : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
+ RI(this, &STI), Subtarget(STI) {}
+
+/// GetInstSize - Return the number of bytes of code the specified
+/// instruction may be. This returns the maximum number of bytes.
+unsigned AArch64InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ const MachineBasicBlock &MBB = *MI->getParent();
+ const MachineFunction *MF = MBB.getParent();
+ const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
+
+ if (MI->getOpcode() == AArch64::INLINEASM)
+ return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
+
+ const MCInstrDesc &Desc = MI->getDesc();
+ switch (Desc.getOpcode()) {
+ default:
+ // Anything not explicitly designated otherwise is a nomal 4-byte insn.
+ return 4;
+ case TargetOpcode::DBG_VALUE:
+ case TargetOpcode::EH_LABEL:
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ return 0;
+ }
+
+ llvm_unreachable("GetInstSizeInBytes()- Unable to determin insn size");
+}
+
+static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
+ SmallVectorImpl<MachineOperand> &Cond) {
+ // Block ends with fall-through condbranch.
+ switch (LastInst->getOpcode()) {
+ default:
+ llvm_unreachable("Unknown branch instruction?");
+ case AArch64::Bcc:
+ Target = LastInst->getOperand(1).getMBB();
+ Cond.push_back(LastInst->getOperand(0));
+ break;
+ case AArch64::CBZW:
+ case AArch64::CBZX:
+ case AArch64::CBNZW:
+ case AArch64::CBNZX:
+ Target = LastInst->getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(-1));
+ Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
+ Cond.push_back(LastInst->getOperand(0));
+ break;
+ case AArch64::TBZW:
+ case AArch64::TBZX:
+ case AArch64::TBNZW:
+ case AArch64::TBNZX:
+ Target = LastInst->getOperand(2).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(-1));
+ Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
+ Cond.push_back(LastInst->getOperand(0));
+ Cond.push_back(LastInst->getOperand(1));
+ }
+}
+
+// Branch analysis.
+bool AArch64InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return false;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return false;
+ --I;
+ }
+ if (!isUnpredicatedTerminator(I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ unsigned LastOpc = LastInst->getOpcode();
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ if (isUncondBranchOpcode(LastOpc)) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+ if (isCondBranchOpcode(LastOpc)) {
+ // Block ends with fall-through condbranch.
+ parseCondBranch(LastInst, TBB, Cond);
+ return false;
+ }
+ return true; // Can't handle indirect branch.
+ }
+
+ // Get the instruction before it if it is a terminator.
+ MachineInstr *SecondLastInst = I;
+ unsigned SecondLastOpc = SecondLastInst->getOpcode();
+
+ // If AllowModify is true and the block ends with two or more unconditional
+ // branches, delete all but the first unconditional branch.
+ if (AllowModify && isUncondBranchOpcode(LastOpc)) {
+ while (isUncondBranchOpcode(SecondLastOpc)) {
+ LastInst->eraseFromParent();
+ LastInst = SecondLastInst;
+ LastOpc = LastInst->getOpcode();
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ // Return now the only terminator is an unconditional branch.
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else {
+ SecondLastInst = I;
+ SecondLastOpc = SecondLastInst->getOpcode();
+ }
+ }
+ }
+
+ // If there are three terminators, we don't know what sort of block this is.
+ if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
+ return true;
+
+ // If the block ends with a B and a Bcc, handle it.
+ if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
+ parseCondBranch(SecondLastInst, TBB, Cond);
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two unconditional branches, handle it. The second
+ // one is not executed, so remove it.
+ if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // ...likewise if it ends with an indirect branch followed by an unconditional
+ // branch.
+ if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return true;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+bool AArch64InstrInfo::ReverseBranchCondition(
+ SmallVectorImpl<MachineOperand> &Cond) const {
+ if (Cond[0].getImm() != -1) {
+ // Regular Bcc
+ AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
+ Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
+ } else {
+ // Folded compare-and-branch
+ switch (Cond[1].getImm()) {
+ default:
+ llvm_unreachable("Unknown conditional branch!");
+ case AArch64::CBZW:
+ Cond[1].setImm(AArch64::CBNZW);
+ break;
+ case AArch64::CBNZW:
+ Cond[1].setImm(AArch64::CBZW);
+ break;
+ case AArch64::CBZX:
+ Cond[1].setImm(AArch64::CBNZX);
+ break;
+ case AArch64::CBNZX:
+ Cond[1].setImm(AArch64::CBZX);
+ break;
+ case AArch64::TBZW:
+ Cond[1].setImm(AArch64::TBNZW);
+ break;
+ case AArch64::TBNZW:
+ Cond[1].setImm(AArch64::TBZW);
+ break;
+ case AArch64::TBZX:
+ Cond[1].setImm(AArch64::TBNZX);
+ break;
+ case AArch64::TBNZX:
+ Cond[1].setImm(AArch64::TBZX);
+ break;
+ }
+ }
+
+ return false;
+}
+
+unsigned AArch64InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return 0;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return 0;
+ --I;
+ }
+ if (!isUncondBranchOpcode(I->getOpcode()) &&
+ !isCondBranchOpcode(I->getOpcode()))
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin())
+ return 1;
+ --I;
+ if (!isCondBranchOpcode(I->getOpcode()))
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+void AArch64InstrInfo::instantiateCondBranch(
+ MachineBasicBlock &MBB, DebugLoc DL, MachineBasicBlock *TBB,
+ const SmallVectorImpl<MachineOperand> &Cond) const {
+ if (Cond[0].getImm() != -1) {
+ // Regular Bcc
+ BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
+ } else {
+ // Folded compare-and-branch
+ const MachineInstrBuilder MIB =
+ BuildMI(&MBB, DL, get(Cond[1].getImm())).addReg(Cond[2].getReg());
+ if (Cond.size() > 3)
+ MIB.addImm(Cond[3].getImm());
+ MIB.addMBB(TBB);
+ }
+}
+
+unsigned AArch64InstrInfo::InsertBranch(
+ MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const {
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+
+ if (!FBB) {
+ if (Cond.empty()) // Unconditional branch?
+ BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
+ else
+ instantiateCondBranch(MBB, DL, TBB, Cond);
+ return 1;
+ }
+
+ // Two-way conditional branch.
+ instantiateCondBranch(MBB, DL, TBB, Cond);
+ BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
+ return 2;
+}
+
+// Find the original register that VReg is copied from.
+static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
+ while (TargetRegisterInfo::isVirtualRegister(VReg)) {
+ const MachineInstr *DefMI = MRI.getVRegDef(VReg);
+ if (!DefMI->isFullCopy())
+ return VReg;
+ VReg = DefMI->getOperand(1).getReg();
+ }
+ return VReg;
+}
+
+// Determine if VReg is defined by an instruction that can be folded into a
+// csel instruction. If so, return the folded opcode, and the replacement
+// register.
+static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
+ unsigned *NewVReg = nullptr) {
+ VReg = removeCopies(MRI, VReg);
+ if (!TargetRegisterInfo::isVirtualRegister(VReg))
+ return 0;
+
+ bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
+ const MachineInstr *DefMI = MRI.getVRegDef(VReg);
+ unsigned Opc = 0;
+ unsigned SrcOpNum = 0;
+ switch (DefMI->getOpcode()) {
+ case AArch64::ADDSXri:
+ case AArch64::ADDSWri:
+ // if NZCV is used, do not fold.
+ if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
+ return 0;
+ // fall-through to ADDXri and ADDWri.
+ case AArch64::ADDXri:
+ case AArch64::ADDWri:
+ // add x, 1 -> csinc.
+ if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
+ DefMI->getOperand(3).getImm() != 0)
+ return 0;
+ SrcOpNum = 1;
+ Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
+ break;
+
+ case AArch64::ORNXrr:
+ case AArch64::ORNWrr: {
+ // not x -> csinv, represented as orn dst, xzr, src.
+ unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
+ if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
+ return 0;
+ SrcOpNum = 2;
+ Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
+ break;
+ }
+
+ case AArch64::SUBSXrr:
+ case AArch64::SUBSWrr:
+ // if NZCV is used, do not fold.
+ if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
+ return 0;
+ // fall-through to SUBXrr and SUBWrr.
+ case AArch64::SUBXrr:
+ case AArch64::SUBWrr: {
+ // neg x -> csneg, represented as sub dst, xzr, src.
+ unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
+ if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
+ return 0;
+ SrcOpNum = 2;
+ Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
+ break;
+ }
+ default:
+ return 0;
+ }
+ assert(Opc && SrcOpNum && "Missing parameters");
+
+ if (NewVReg)
+ *NewVReg = DefMI->getOperand(SrcOpNum).getReg();
+ return Opc;
+}
+
+bool AArch64InstrInfo::canInsertSelect(
+ const MachineBasicBlock &MBB, const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles,
+ int &FalseCycles) const {
+ // Check register classes.
+ const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ const TargetRegisterClass *RC =
+ RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
+ if (!RC)
+ return false;
+
+ // Expanding cbz/tbz requires an extra cycle of latency on the condition.
+ unsigned ExtraCondLat = Cond.size() != 1;
+
+ // GPRs are handled by csel.
+ // FIXME: Fold in x+1, -x, and ~x when applicable.
+ if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
+ AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
+ // Single-cycle csel, csinc, csinv, and csneg.
+ CondCycles = 1 + ExtraCondLat;
+ TrueCycles = FalseCycles = 1;
+ if (canFoldIntoCSel(MRI, TrueReg))
+ TrueCycles = 0;
+ else if (canFoldIntoCSel(MRI, FalseReg))
+ FalseCycles = 0;
+ return true;
+ }
+
+ // Scalar floating point is handled by fcsel.
+ // FIXME: Form fabs, fmin, and fmax when applicable.
+ if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
+ AArch64::FPR32RegClass.hasSubClassEq(RC)) {
+ CondCycles = 5 + ExtraCondLat;
+ TrueCycles = FalseCycles = 2;
+ return true;
+ }
+
+ // Can't do vectors.
+ return false;
+}
+
+void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DstReg,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned TrueReg, unsigned FalseReg) const {
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+
+ // Parse the condition code, see parseCondBranch() above.
+ AArch64CC::CondCode CC;
+ switch (Cond.size()) {
+ default:
+ llvm_unreachable("Unknown condition opcode in Cond");
+ case 1: // b.cc
+ CC = AArch64CC::CondCode(Cond[0].getImm());
+ break;
+ case 3: { // cbz/cbnz
+ // We must insert a compare against 0.
+ bool Is64Bit;
+ switch (Cond[1].getImm()) {
+ default:
+ llvm_unreachable("Unknown branch opcode in Cond");
+ case AArch64::CBZW:
+ Is64Bit = 0;
+ CC = AArch64CC::EQ;
+ break;
+ case AArch64::CBZX:
+ Is64Bit = 1;
+ CC = AArch64CC::EQ;
+ break;
+ case AArch64::CBNZW:
+ Is64Bit = 0;
+ CC = AArch64CC::NE;
+ break;
+ case AArch64::CBNZX:
+ Is64Bit = 1;
+ CC = AArch64CC::NE;
+ break;
+ }
+ unsigned SrcReg = Cond[2].getReg();
+ if (Is64Bit) {
+ // cmp reg, #0 is actually subs xzr, reg, #0.
+ MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
+ BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
+ .addReg(SrcReg)
+ .addImm(0)
+ .addImm(0);
+ } else {
+ MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
+ BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
+ .addReg(SrcReg)
+ .addImm(0)
+ .addImm(0);
+ }
+ break;
+ }
+ case 4: { // tbz/tbnz
+ // We must insert a tst instruction.
+ switch (Cond[1].getImm()) {
+ default:
+ llvm_unreachable("Unknown branch opcode in Cond");
+ case AArch64::TBZW:
+ case AArch64::TBZX:
+ CC = AArch64CC::EQ;
+ break;
+ case AArch64::TBNZW:
+ case AArch64::TBNZX:
+ CC = AArch64CC::NE;
+ break;
+ }
+ // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
+ if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
+ BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
+ .addReg(Cond[2].getReg())
+ .addImm(
+ AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
+ else
+ BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
+ .addReg(Cond[2].getReg())
+ .addImm(
+ AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
+ break;
+ }
+ }
+
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = nullptr;
+ bool TryFold = false;
+ if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
+ RC = &AArch64::GPR64RegClass;
+ Opc = AArch64::CSELXr;
+ TryFold = true;
+ } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
+ RC = &AArch64::GPR32RegClass;
+ Opc = AArch64::CSELWr;
+ TryFold = true;
+ } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
+ RC = &AArch64::FPR64RegClass;
+ Opc = AArch64::FCSELDrrr;
+ } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
+ RC = &AArch64::FPR32RegClass;
+ Opc = AArch64::FCSELSrrr;
+ }
+ assert(RC && "Unsupported regclass");
+
+ // Try folding simple instructions into the csel.
+ if (TryFold) {
+ unsigned NewVReg = 0;
+ unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
+ if (FoldedOpc) {
+ // The folded opcodes csinc, csinc and csneg apply the operation to
+ // FalseReg, so we need to invert the condition.
+ CC = AArch64CC::getInvertedCondCode(CC);
+ TrueReg = FalseReg;
+ } else
+ FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
+
+ // Fold the operation. Leave any dead instructions for DCE to clean up.
+ if (FoldedOpc) {
+ FalseReg = NewVReg;
+ Opc = FoldedOpc;
+ // The extends the live range of NewVReg.
+ MRI.clearKillFlags(NewVReg);
+ }
+ }
+
+ // Pull all virtual register into the appropriate class.
+ MRI.constrainRegClass(TrueReg, RC);
+ MRI.constrainRegClass(FalseReg, RC);
+
+ // Insert the csel.
+ BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(TrueReg).addReg(FalseReg).addImm(
+ CC);
+}
+
+bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const {
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case AArch64::SBFMXri: // aka sxtw
+ case AArch64::UBFMXri: // aka uxtw
+ // Check for the 32 -> 64 bit extension case, these instructions can do
+ // much more.
+ if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
+ return false;
+ // This is a signed or unsigned 32 -> 64 bit extension.
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ SubIdx = AArch64::sub_32;
+ return true;
+ }
+}
+
+/// analyzeCompare - For a comparison instruction, return the source registers
+/// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
+/// Return true if the comparison instruction can be analyzed.
+bool AArch64InstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
+ unsigned &SrcReg2, int &CmpMask,
+ int &CmpValue) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::SUBSWrr:
+ case AArch64::SUBSWrs:
+ case AArch64::SUBSWrx:
+ case AArch64::SUBSXrr:
+ case AArch64::SUBSXrs:
+ case AArch64::SUBSXrx:
+ case AArch64::ADDSWrr:
+ case AArch64::ADDSWrs:
+ case AArch64::ADDSWrx:
+ case AArch64::ADDSXrr:
+ case AArch64::ADDSXrs:
+ case AArch64::ADDSXrx:
+ // Replace SUBSWrr with SUBWrr if NZCV is not used.
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = MI->getOperand(2).getReg();
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case AArch64::SUBSWri:
+ case AArch64::ADDSWri:
+ case AArch64::SUBSXri:
+ case AArch64::ADDSXri:
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = MI->getOperand(2).getImm();
+ return true;
+ case AArch64::ANDSWri:
+ case AArch64::ANDSXri:
+ // ANDS does not use the same encoding scheme as the others xxxS
+ // instructions.
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = AArch64_AM::decodeLogicalImmediate(
+ MI->getOperand(2).getImm(),
+ MI->getOpcode() == AArch64::ANDSWri ? 32 : 64);
+ return true;
+ }
+
+ return false;
+}
+
+static bool UpdateOperandRegClass(MachineInstr *Instr) {
+ MachineBasicBlock *MBB = Instr->getParent();
+ assert(MBB && "Can't get MachineBasicBlock here");
+ MachineFunction *MF = MBB->getParent();
+ assert(MF && "Can't get MachineFunction here");
+ const TargetMachine *TM = &MF->getTarget();
+ const TargetInstrInfo *TII = TM->getInstrInfo();
+ const TargetRegisterInfo *TRI = TM->getRegisterInfo();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+
+ for (unsigned OpIdx = 0, EndIdx = Instr->getNumOperands(); OpIdx < EndIdx;
+ ++OpIdx) {
+ MachineOperand &MO = Instr->getOperand(OpIdx);
+ const TargetRegisterClass *OpRegCstraints =
+ Instr->getRegClassConstraint(OpIdx, TII, TRI);
+
+ // If there's no constraint, there's nothing to do.
+ if (!OpRegCstraints)
+ continue;
+ // If the operand is a frame index, there's nothing to do here.
+ // A frame index operand will resolve correctly during PEI.
+ if (MO.isFI())
+ continue;
+
+ assert(MO.isReg() &&
+ "Operand has register constraints without being a register!");
+
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ if (!OpRegCstraints->contains(Reg))
+ return false;
+ } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
+ !MRI->constrainRegClass(Reg, OpRegCstraints))
+ return false;
+ }
+
+ return true;
+}
+
+/// optimizeCompareInstr - Convert the instruction supplying the argument to the
+/// comparison into one that sets the zero bit in the flags register.
+bool AArch64InstrInfo::optimizeCompareInstr(
+ MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
+ int CmpValue, const MachineRegisterInfo *MRI) const {
+
+ // Replace SUBSWrr with SUBWrr if NZCV is not used.
+ int Cmp_NZCV = CmpInstr->findRegisterDefOperandIdx(AArch64::NZCV, true);
+ if (Cmp_NZCV != -1) {
+ unsigned NewOpc;
+ switch (CmpInstr->getOpcode()) {
+ default:
+ return false;
+ case AArch64::ADDSWrr: NewOpc = AArch64::ADDWrr; break;
+ case AArch64::ADDSWri: NewOpc = AArch64::ADDWri; break;
+ case AArch64::ADDSWrs: NewOpc = AArch64::ADDWrs; break;
+ case AArch64::ADDSWrx: NewOpc = AArch64::ADDWrx; break;
+ case AArch64::ADDSXrr: NewOpc = AArch64::ADDXrr; break;
+ case AArch64::ADDSXri: NewOpc = AArch64::ADDXri; break;
+ case AArch64::ADDSXrs: NewOpc = AArch64::ADDXrs; break;
+ case AArch64::ADDSXrx: NewOpc = AArch64::ADDXrx; break;
+ case AArch64::SUBSWrr: NewOpc = AArch64::SUBWrr; break;
+ case AArch64::SUBSWri: NewOpc = AArch64::SUBWri; break;
+ case AArch64::SUBSWrs: NewOpc = AArch64::SUBWrs; break;
+ case AArch64::SUBSWrx: NewOpc = AArch64::SUBWrx; break;
+ case AArch64::SUBSXrr: NewOpc = AArch64::SUBXrr; break;
+ case AArch64::SUBSXri: NewOpc = AArch64::SUBXri; break;
+ case AArch64::SUBSXrs: NewOpc = AArch64::SUBXrs; break;
+ case AArch64::SUBSXrx: NewOpc = AArch64::SUBXrx; break;
+ }
+
+ const MCInstrDesc &MCID = get(NewOpc);
+ CmpInstr->setDesc(MCID);
+ CmpInstr->RemoveOperand(Cmp_NZCV);
+ bool succeeded = UpdateOperandRegClass(CmpInstr);
+ (void)succeeded;
+ assert(succeeded && "Some operands reg class are incompatible!");
+ return true;
+ }
+
+ // Continue only if we have a "ri" where immediate is zero.
+ if (CmpValue != 0 || SrcReg2 != 0)
+ return false;
+
+ // CmpInstr is a Compare instruction if destination register is not used.
+ if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
+ return false;
+
+ // Get the unique definition of SrcReg.
+ MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
+ if (!MI)
+ return false;
+
+ // We iterate backward, starting from the instruction before CmpInstr and
+ // stop when reaching the definition of the source register or done with the
+ // basic block, to check whether NZCV is used or modified in between.
+ MachineBasicBlock::iterator I = CmpInstr, E = MI,
+ B = CmpInstr->getParent()->begin();
+
+ // Early exit if CmpInstr is at the beginning of the BB.
+ if (I == B)
+ return false;
+
+ // Check whether the definition of SrcReg is in the same basic block as
+ // Compare. If not, we can't optimize away the Compare.
+ if (MI->getParent() != CmpInstr->getParent())
+ return false;
+
+ // Check that NZCV isn't set between the comparison instruction and the one we
+ // want to change.
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ for (--I; I != E; --I) {
+ const MachineInstr &Instr = *I;
+
+ if (Instr.modifiesRegister(AArch64::NZCV, TRI) ||
+ Instr.readsRegister(AArch64::NZCV, TRI))
+ // This instruction modifies or uses NZCV after the one we want to
+ // change. We can't do this transformation.
+ return false;
+ if (I == B)
+ // The 'and' is below the comparison instruction.
+ return false;
+ }
+
+ unsigned NewOpc = MI->getOpcode();
+ switch (MI->getOpcode()) {
+ default:
+ return false;
+ case AArch64::ADDSWrr:
+ case AArch64::ADDSWri:
+ case AArch64::ADDSXrr:
+ case AArch64::ADDSXri:
+ case AArch64::SUBSWrr:
+ case AArch64::SUBSWri:
+ case AArch64::SUBSXrr:
+ case AArch64::SUBSXri:
+ break;
+ case AArch64::ADDWrr: NewOpc = AArch64::ADDSWrr; break;
+ case AArch64::ADDWri: NewOpc = AArch64::ADDSWri; break;
+ case AArch64::ADDXrr: NewOpc = AArch64::ADDSXrr; break;
+ case AArch64::ADDXri: NewOpc = AArch64::ADDSXri; break;
+ case AArch64::ADCWr: NewOpc = AArch64::ADCSWr; break;
+ case AArch64::ADCXr: NewOpc = AArch64::ADCSXr; break;
+ case AArch64::SUBWrr: NewOpc = AArch64::SUBSWrr; break;
+ case AArch64::SUBWri: NewOpc = AArch64::SUBSWri; break;
+ case AArch64::SUBXrr: NewOpc = AArch64::SUBSXrr; break;
+ case AArch64::SUBXri: NewOpc = AArch64::SUBSXri; break;
+ case AArch64::SBCWr: NewOpc = AArch64::SBCSWr; break;
+ case AArch64::SBCXr: NewOpc = AArch64::SBCSXr; break;
+ case AArch64::ANDWri: NewOpc = AArch64::ANDSWri; break;
+ case AArch64::ANDXri: NewOpc = AArch64::ANDSXri; break;
+ }
+
+ // Scan forward for the use of NZCV.
+ // When checking against MI: if it's a conditional code requires
+ // checking of V bit, then this is not safe to do.
+ // It is safe to remove CmpInstr if NZCV is redefined or killed.
+ // If we are done with the basic block, we need to check whether NZCV is
+ // live-out.
+ bool IsSafe = false;
+ for (MachineBasicBlock::iterator I = CmpInstr,
+ E = CmpInstr->getParent()->end();
+ !IsSafe && ++I != E;) {
+ const MachineInstr &Instr = *I;
+ for (unsigned IO = 0, EO = Instr.getNumOperands(); !IsSafe && IO != EO;
+ ++IO) {
+ const MachineOperand &MO = Instr.getOperand(IO);
+ if (MO.isRegMask() && MO.clobbersPhysReg(AArch64::NZCV)) {
+ IsSafe = true;
+ break;
+ }
+ if (!MO.isReg() || MO.getReg() != AArch64::NZCV)
+ continue;
+ if (MO.isDef()) {
+ IsSafe = true;
+ break;
+ }
+
+ // Decode the condition code.
+ unsigned Opc = Instr.getOpcode();
+ AArch64CC::CondCode CC;
+ switch (Opc) {
+ default:
+ return false;
+ case AArch64::Bcc:
+ CC = (AArch64CC::CondCode)Instr.getOperand(IO - 2).getImm();
+ break;
+ case AArch64::CSINVWr:
+ case AArch64::CSINVXr:
+ case AArch64::CSINCWr:
+ case AArch64::CSINCXr:
+ case AArch64::CSELWr:
+ case AArch64::CSELXr:
+ case AArch64::CSNEGWr:
+ case AArch64::CSNEGXr:
+ case AArch64::FCSELSrrr:
+ case AArch64::FCSELDrrr:
+ CC = (AArch64CC::CondCode)Instr.getOperand(IO - 1).getImm();
+ break;
+ }
+
+ // It is not safe to remove Compare instruction if Overflow(V) is used.
+ switch (CC) {
+ default:
+ // NZCV can be used multiple times, we should continue.
+ break;
+ case AArch64CC::VS:
+ case AArch64CC::VC:
+ case AArch64CC::GE:
+ case AArch64CC::LT:
+ case AArch64CC::GT:
+ case AArch64CC::LE:
+ return false;
+ }
+ }
+ }
+
+ // If NZCV is not killed nor re-defined, we should check whether it is
+ // live-out. If it is live-out, do not optimize.
+ if (!IsSafe) {
+ MachineBasicBlock *ParentBlock = CmpInstr->getParent();
+ for (auto *MBB : ParentBlock->successors())
+ if (MBB->isLiveIn(AArch64::NZCV))
+ return false;
+ }
+
+ // Update the instruction to set NZCV.
+ MI->setDesc(get(NewOpc));
+ CmpInstr->eraseFromParent();
+ bool succeeded = UpdateOperandRegClass(MI);
+ (void)succeeded;
+ assert(succeeded && "Some operands reg class are incompatible!");
+ MI->addRegisterDefined(AArch64::NZCV, TRI);
+ return true;
+}
+
+/// Return true if this is this instruction has a non-zero immediate
+bool AArch64InstrInfo::hasShiftedReg(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::ADDSWrs:
+ case AArch64::ADDSXrs:
+ case AArch64::ADDWrs:
+ case AArch64::ADDXrs:
+ case AArch64::ANDSWrs:
+ case AArch64::ANDSXrs:
+ case AArch64::ANDWrs:
+ case AArch64::ANDXrs:
+ case AArch64::BICSWrs:
+ case AArch64::BICSXrs:
+ case AArch64::BICWrs:
+ case AArch64::BICXrs:
+ case AArch64::CRC32Brr:
+ case AArch64::CRC32CBrr:
+ case AArch64::CRC32CHrr:
+ case AArch64::CRC32CWrr:
+ case AArch64::CRC32CXrr:
+ case AArch64::CRC32Hrr:
+ case AArch64::CRC32Wrr:
+ case AArch64::CRC32Xrr:
+ case AArch64::EONWrs:
+ case AArch64::EONXrs:
+ case AArch64::EORWrs:
+ case AArch64::EORXrs:
+ case AArch64::ORNWrs:
+ case AArch64::ORNXrs:
+ case AArch64::ORRWrs:
+ case AArch64::ORRXrs:
+ case AArch64::SUBSWrs:
+ case AArch64::SUBSXrs:
+ case AArch64::SUBWrs:
+ case AArch64::SUBXrs:
+ if (MI->getOperand(3).isImm()) {
+ unsigned val = MI->getOperand(3).getImm();
+ return (val != 0);
+ }
+ break;
+ }
+ return false;
+}
+
+/// Return true if this is this instruction has a non-zero immediate
+bool AArch64InstrInfo::hasExtendedReg(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::ADDSWrx:
+ case AArch64::ADDSXrx:
+ case AArch64::ADDSXrx64:
+ case AArch64::ADDWrx:
+ case AArch64::ADDXrx:
+ case AArch64::ADDXrx64:
+ case AArch64::SUBSWrx:
+ case AArch64::SUBSXrx:
+ case AArch64::SUBSXrx64:
+ case AArch64::SUBWrx:
+ case AArch64::SUBXrx:
+ case AArch64::SUBXrx64:
+ if (MI->getOperand(3).isImm()) {
+ unsigned val = MI->getOperand(3).getImm();
+ return (val != 0);
+ }
+ break;
+ }
+
+ return false;
+}
+
+// Return true if this instruction simply sets its single destination register
+// to zero. This is equivalent to a register rename of the zero-register.
+bool AArch64InstrInfo::isGPRZero(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::MOVZWi:
+ case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
+ if (MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) {
+ assert(MI->getDesc().getNumOperands() == 3 &&
+ MI->getOperand(2).getImm() == 0 && "invalid MOVZi operands");
+ return true;
+ }
+ break;
+ case AArch64::ANDWri: // and Rd, Rzr, #imm
+ return MI->getOperand(1).getReg() == AArch64::WZR;
+ case AArch64::ANDXri:
+ return MI->getOperand(1).getReg() == AArch64::XZR;
+ case TargetOpcode::COPY:
+ return MI->getOperand(1).getReg() == AArch64::WZR;
+ }
+ return false;
+}
+
+// Return true if this instruction simply renames a general register without
+// modifying bits.
+bool AArch64InstrInfo::isGPRCopy(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case TargetOpcode::COPY: {
+ // GPR32 copies will by lowered to ORRXrs
+ unsigned DstReg = MI->getOperand(0).getReg();
+ return (AArch64::GPR32RegClass.contains(DstReg) ||
+ AArch64::GPR64RegClass.contains(DstReg));
+ }
+ case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
+ if (MI->getOperand(1).getReg() == AArch64::XZR) {
+ assert(MI->getDesc().getNumOperands() == 4 &&
+ MI->getOperand(3).getImm() == 0 && "invalid ORRrs operands");
+ return true;
+ }
+ case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
+ if (MI->getOperand(2).getImm() == 0) {
+ assert(MI->getDesc().getNumOperands() == 4 &&
+ MI->getOperand(3).getImm() == 0 && "invalid ADDXri operands");
+ return true;
+ }
+ }
+ return false;
+}
+
+// Return true if this instruction simply renames a general register without
+// modifying bits.
+bool AArch64InstrInfo::isFPRCopy(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case TargetOpcode::COPY: {
+ // FPR64 copies will by lowered to ORR.16b
+ unsigned DstReg = MI->getOperand(0).getReg();
+ return (AArch64::FPR64RegClass.contains(DstReg) ||
+ AArch64::FPR128RegClass.contains(DstReg));
+ }
+ case AArch64::ORRv16i8:
+ if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) {
+ assert(MI->getDesc().getNumOperands() == 3 && MI->getOperand(0).isReg() &&
+ "invalid ORRv16i8 operands");
+ return true;
+ }
+ }
+ return false;
+}
+
+unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::LDRWui:
+ case AArch64::LDRXui:
+ case AArch64::LDRBui:
+ case AArch64::LDRHui:
+ case AArch64::LDRSui:
+ case AArch64::LDRDui:
+ case AArch64::LDRQui:
+ if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::STRWui:
+ case AArch64::STRXui:
+ case AArch64::STRBui:
+ case AArch64::STRHui:
+ case AArch64::STRSui:
+ case AArch64::STRDui:
+ case AArch64::STRQui:
+ if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+/// Return true if this is load/store scales or extends its register offset.
+/// This refers to scaling a dynamic index as opposed to scaled immediates.
+/// MI should be a memory op that allows scaled addressing.
+bool AArch64InstrInfo::isScaledAddr(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::LDRBBroW:
+ case AArch64::LDRBroW:
+ case AArch64::LDRDroW:
+ case AArch64::LDRHHroW:
+ case AArch64::LDRHroW:
+ case AArch64::LDRQroW:
+ case AArch64::LDRSBWroW:
+ case AArch64::LDRSBXroW:
+ case AArch64::LDRSHWroW:
+ case AArch64::LDRSHXroW:
+ case AArch64::LDRSWroW:
+ case AArch64::LDRSroW:
+ case AArch64::LDRWroW:
+ case AArch64::LDRXroW:
+ case AArch64::STRBBroW:
+ case AArch64::STRBroW:
+ case AArch64::STRDroW:
+ case AArch64::STRHHroW:
+ case AArch64::STRHroW:
+ case AArch64::STRQroW:
+ case AArch64::STRSroW:
+ case AArch64::STRWroW:
+ case AArch64::STRXroW:
+ case AArch64::LDRBBroX:
+ case AArch64::LDRBroX:
+ case AArch64::LDRDroX:
+ case AArch64::LDRHHroX:
+ case AArch64::LDRHroX:
+ case AArch64::LDRQroX:
+ case AArch64::LDRSBWroX:
+ case AArch64::LDRSBXroX:
+ case AArch64::LDRSHWroX:
+ case AArch64::LDRSHXroX:
+ case AArch64::LDRSWroX:
+ case AArch64::LDRSroX:
+ case AArch64::LDRWroX:
+ case AArch64::LDRXroX:
+ case AArch64::STRBBroX:
+ case AArch64::STRBroX:
+ case AArch64::STRDroX:
+ case AArch64::STRHHroX:
+ case AArch64::STRHroX:
+ case AArch64::STRQroX:
+ case AArch64::STRSroX:
+ case AArch64::STRWroX:
+ case AArch64::STRXroX:
+
+ unsigned Val = MI->getOperand(3).getImm();
+ AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getMemExtendType(Val);
+ return (ExtType != AArch64_AM::UXTX) || AArch64_AM::getMemDoShift(Val);
+ }
+ return false;
+}
+
+/// Check all MachineMemOperands for a hint to suppress pairing.
+bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr *MI) const {
+ assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
+ "Too many target MO flags");
+ for (auto *MM : MI->memoperands()) {
+ if (MM->getFlags() &
+ (MOSuppressPair << MachineMemOperand::MOTargetStartBit)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Set a flag on the first MachineMemOperand to suppress pairing.
+void AArch64InstrInfo::suppressLdStPair(MachineInstr *MI) const {
+ if (MI->memoperands_empty())
+ return;
+
+ assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
+ "Too many target MO flags");
+ (*MI->memoperands_begin())
+ ->setFlags(MOSuppressPair << MachineMemOperand::MOTargetStartBit);
+}
+
+bool
+AArch64InstrInfo::getLdStBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
+ unsigned &Offset,
+ const TargetRegisterInfo *TRI) const {
+ switch (LdSt->getOpcode()) {
+ default:
+ return false;
+ case AArch64::STRSui:
+ case AArch64::STRDui:
+ case AArch64::STRQui:
+ case AArch64::STRXui:
+ case AArch64::STRWui:
+ case AArch64::LDRSui:
+ case AArch64::LDRDui:
+ case AArch64::LDRQui:
+ case AArch64::LDRXui:
+ case AArch64::LDRWui:
+ if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm())
+ return false;
+ BaseReg = LdSt->getOperand(1).getReg();
+ MachineFunction &MF = *LdSt->getParent()->getParent();
+ unsigned Width = getRegClass(LdSt->getDesc(), 0, TRI, MF)->getSize();
+ Offset = LdSt->getOperand(2).getImm() * Width;
+ return true;
+ };
+}
+
+/// Detect opportunities for ldp/stp formation.
+///
+/// Only called for LdSt for which getLdStBaseRegImmOfs returns true.
+bool AArch64InstrInfo::shouldClusterLoads(MachineInstr *FirstLdSt,
+ MachineInstr *SecondLdSt,
+ unsigned NumLoads) const {
+ // Only cluster up to a single pair.
+ if (NumLoads > 1)
+ return false;
+ if (FirstLdSt->getOpcode() != SecondLdSt->getOpcode())
+ return false;
+ // getLdStBaseRegImmOfs guarantees that oper 2 isImm.
+ unsigned Ofs1 = FirstLdSt->getOperand(2).getImm();
+ // Allow 6 bits of positive range.
+ if (Ofs1 > 64)
+ return false;
+ // The caller should already have ordered First/SecondLdSt by offset.
+ unsigned Ofs2 = SecondLdSt->getOperand(2).getImm();
+ return Ofs1 + 1 == Ofs2;
+}
+
+bool AArch64InstrInfo::shouldScheduleAdjacent(MachineInstr *First,
+ MachineInstr *Second) const {
+ // Cyclone can fuse CMN, CMP followed by Bcc.
+
+ // FIXME: B0 can also fuse:
+ // AND, BIC, ORN, ORR, or EOR (optional S) followed by Bcc or CBZ or CBNZ.
+ if (Second->getOpcode() != AArch64::Bcc)
+ return false;
+ switch (First->getOpcode()) {
+ default:
+ return false;
+ case AArch64::SUBSWri:
+ case AArch64::ADDSWri:
+ case AArch64::ANDSWri:
+ case AArch64::SUBSXri:
+ case AArch64::ADDSXri:
+ case AArch64::ANDSXri:
+ return true;
+ }
+}
+
+MachineInstr *AArch64InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
+ int FrameIx,
+ uint64_t Offset,
+ const MDNode *MDPtr,
+ DebugLoc DL) const {
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE))
+ .addFrameIndex(FrameIx)
+ .addImm(0)
+ .addImm(Offset)
+ .addMetadata(MDPtr);
+ return &*MIB;
+}
+
+static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
+ unsigned Reg, unsigned SubIdx,
+ unsigned State,
+ const TargetRegisterInfo *TRI) {
+ if (!SubIdx)
+ return MIB.addReg(Reg, State);
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
+ return MIB.addReg(Reg, State, SubIdx);
+}
+
+static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
+ unsigned NumRegs) {
+ // We really want the positive remainder mod 32 here, that happens to be
+ // easily obtainable with a mask.
+ return ((DestReg - SrcReg) & 0x1f) < NumRegs;
+}
+
+void AArch64InstrInfo::copyPhysRegTuple(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg, bool KillSrc, unsigned Opcode,
+ llvm::ArrayRef<unsigned> Indices) const {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register copy without NEON");
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
+ uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
+ unsigned NumRegs = Indices.size();
+
+ int SubReg = 0, End = NumRegs, Incr = 1;
+ if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
+ SubReg = NumRegs - 1;
+ End = -1;
+ Incr = -1;
+ }
+
+ for (; SubReg != End; SubReg += Incr) {
+ const MachineInstrBuilder &MIB = BuildMI(MBB, I, DL, get(Opcode));
+ AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
+ AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
+ AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
+ }
+}
+
+void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ if (AArch64::GPR32spRegClass.contains(DestReg) &&
+ (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+
+ if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
+ // If either operand is WSP, expand to ADD #0.
+ if (Subtarget.hasZeroCycleRegMove()) {
+ // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
+ unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
+ &AArch64::GPR64spRegClass);
+ unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
+ &AArch64::GPR64spRegClass);
+ // This instruction is reading and writing X registers. This may upset
+ // the register scavenger and machine verifier, so we need to indicate
+ // that we are reading an undefined value from SrcRegX, but a proper
+ // value from SrcReg.
+ BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
+ .addReg(SrcRegX, RegState::Undef)
+ .addImm(0)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
+ .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
+ } else {
+ BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .addImm(0)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
+ }
+ } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroing()) {
+ BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg).addImm(0).addImm(
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
+ } else {
+ if (Subtarget.hasZeroCycleRegMove()) {
+ // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
+ unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
+ &AArch64::GPR64spRegClass);
+ unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
+ &AArch64::GPR64spRegClass);
+ // This instruction is reading and writing X registers. This may upset
+ // the register scavenger and machine verifier, so we need to indicate
+ // that we are reading an undefined value from SrcRegX, but a proper
+ // value from SrcReg.
+ BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
+ .addReg(AArch64::XZR)
+ .addReg(SrcRegX, RegState::Undef)
+ .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
+ } else {
+ // Otherwise, expand to ORR WZR.
+ BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
+ .addReg(AArch64::WZR)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ }
+ return;
+ }
+
+ if (AArch64::GPR64spRegClass.contains(DestReg) &&
+ (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
+ if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
+ // If either operand is SP, expand to ADD #0.
+ BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .addImm(0)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
+ } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroing()) {
+ BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg).addImm(0).addImm(
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
+ } else {
+ // Otherwise, expand to ORR XZR.
+ BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
+ .addReg(AArch64::XZR)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ return;
+ }
+
+ // Copy a DDDD register quad by copying the individual sub-registers.
+ if (AArch64::DDDDRegClass.contains(DestReg) &&
+ AArch64::DDDDRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
+ AArch64::dsub2, AArch64::dsub3 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
+ Indices);
+ return;
+ }
+
+ // Copy a DDD register triple by copying the individual sub-registers.
+ if (AArch64::DDDRegClass.contains(DestReg) &&
+ AArch64::DDDRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
+ AArch64::dsub2 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
+ Indices);
+ return;
+ }
+
+ // Copy a DD register pair by copying the individual sub-registers.
+ if (AArch64::DDRegClass.contains(DestReg) &&
+ AArch64::DDRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
+ Indices);
+ return;
+ }
+
+ // Copy a QQQQ register quad by copying the individual sub-registers.
+ if (AArch64::QQQQRegClass.contains(DestReg) &&
+ AArch64::QQQQRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
+ AArch64::qsub2, AArch64::qsub3 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
+ Indices);
+ return;
+ }
+
+ // Copy a QQQ register triple by copying the individual sub-registers.
+ if (AArch64::QQQRegClass.contains(DestReg) &&
+ AArch64::QQQRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
+ AArch64::qsub2 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
+ Indices);
+ return;
+ }
+
+ // Copy a QQ register pair by copying the individual sub-registers.
+ if (AArch64::QQRegClass.contains(DestReg) &&
+ AArch64::QQRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
+ Indices);
+ return;
+ }
+
+ if (AArch64::FPR128RegClass.contains(DestReg) &&
+ AArch64::FPR128RegClass.contains(SrcReg)) {
+ if(Subtarget.hasNEON()) {
+ BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
+ .addReg(SrcReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ BuildMI(MBB, I, DL, get(AArch64::STRQpre))
+ .addReg(AArch64::SP, RegState::Define)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .addReg(AArch64::SP)
+ .addImm(-16);
+ BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
+ .addReg(AArch64::SP, RegState::Define)
+ .addReg(DestReg, RegState::Define)
+ .addReg(AArch64::SP)
+ .addImm(16);
+ }
+ return;
+ }
+
+ if (AArch64::FPR64RegClass.contains(DestReg) &&
+ AArch64::FPR64RegClass.contains(SrcReg)) {
+ if(Subtarget.hasNEON()) {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub,
+ &AArch64::FPR128RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub,
+ &AArch64::FPR128RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
+ .addReg(SrcReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ return;
+ }
+
+ if (AArch64::FPR32RegClass.contains(DestReg) &&
+ AArch64::FPR32RegClass.contains(SrcReg)) {
+ if(Subtarget.hasNEON()) {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub,
+ &AArch64::FPR128RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub,
+ &AArch64::FPR128RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
+ .addReg(SrcReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ return;
+ }
+
+ if (AArch64::FPR16RegClass.contains(DestReg) &&
+ AArch64::FPR16RegClass.contains(SrcReg)) {
+ if(Subtarget.hasNEON()) {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
+ &AArch64::FPR128RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
+ &AArch64::FPR128RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
+ .addReg(SrcReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
+ &AArch64::FPR32RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
+ &AArch64::FPR32RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ return;
+ }
+
+ if (AArch64::FPR8RegClass.contains(DestReg) &&
+ AArch64::FPR8RegClass.contains(SrcReg)) {
+ if(Subtarget.hasNEON()) {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
+ &AArch64::FPR128RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
+ &AArch64::FPR128RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
+ .addReg(SrcReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
+ &AArch64::FPR32RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
+ &AArch64::FPR32RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ return;
+ }
+
+ // Copies between GPR64 and FPR64.
+ if (AArch64::FPR64RegClass.contains(DestReg) &&
+ AArch64::GPR64RegClass.contains(SrcReg)) {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ if (AArch64::GPR64RegClass.contains(DestReg) &&
+ AArch64::FPR64RegClass.contains(SrcReg)) {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ // Copies between GPR32 and FPR32.
+ if (AArch64::FPR32RegClass.contains(DestReg) &&
+ AArch64::GPR32RegClass.contains(SrcReg)) {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ if (AArch64::GPR32RegClass.contains(DestReg) &&
+ AArch64::FPR32RegClass.contains(SrcReg)) {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+
+ if (DestReg == AArch64::NZCV) {
+ assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
+ BuildMI(MBB, I, DL, get(AArch64::MSR))
+ .addImm(AArch64SysReg::NZCV)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
+ return;
+ }
+
+ if (SrcReg == AArch64::NZCV) {
+ assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
+ BuildMI(MBB, I, DL, get(AArch64::MRS))
+ .addReg(DestReg)
+ .addImm(AArch64SysReg::NZCV)
+ .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
+ return;
+ }
+
+ llvm_unreachable("unimplemented reg-to-reg copy");
+}
+
+void AArch64InstrInfo::storeRegToStackSlot(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
+ bool isKill, int FI, const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (MBBI != MBB.end())
+ DL = MBBI->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+
+ MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align);
+ unsigned Opc = 0;
+ bool Offset = true;
+ switch (RC->getSize()) {
+ case 1:
+ if (AArch64::FPR8RegClass.hasSubClassEq(RC))
+ Opc = AArch64::STRBui;
+ break;
+ case 2:
+ if (AArch64::FPR16RegClass.hasSubClassEq(RC))
+ Opc = AArch64::STRHui;
+ break;
+ case 4:
+ if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
+ Opc = AArch64::STRWui;
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg))
+ MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
+ else
+ assert(SrcReg != AArch64::WSP);
+ } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
+ Opc = AArch64::STRSui;
+ break;
+ case 8:
+ if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
+ Opc = AArch64::STRXui;
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg))
+ MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
+ else
+ assert(SrcReg != AArch64::SP);
+ } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
+ Opc = AArch64::STRDui;
+ break;
+ case 16:
+ if (AArch64::FPR128RegClass.hasSubClassEq(RC))
+ Opc = AArch64::STRQui;
+ else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Twov1d, Offset = false;
+ }
+ break;
+ case 24:
+ if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Threev1d, Offset = false;
+ }
+ break;
+ case 32:
+ if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Fourv1d, Offset = false;
+ } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Twov2d, Offset = false;
+ }
+ break;
+ case 48:
+ if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Threev2d, Offset = false;
+ }
+ break;
+ case 64:
+ if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Fourv2d, Offset = false;
+ }
+ break;
+ }
+ assert(Opc && "Unknown register class");
+
+ const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI);
+
+ if (Offset)
+ MI.addImm(0);
+ MI.addMemOperand(MMO);
+}
+
+void AArch64InstrInfo::loadRegFromStackSlot(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
+ int FI, const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (MBBI != MBB.end())
+ DL = MBBI->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+ MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align);
+
+ unsigned Opc = 0;
+ bool Offset = true;
+ switch (RC->getSize()) {
+ case 1:
+ if (AArch64::FPR8RegClass.hasSubClassEq(RC))
+ Opc = AArch64::LDRBui;
+ break;
+ case 2:
+ if (AArch64::FPR16RegClass.hasSubClassEq(RC))
+ Opc = AArch64::LDRHui;
+ break;
+ case 4:
+ if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
+ Opc = AArch64::LDRWui;
+ if (TargetRegisterInfo::isVirtualRegister(DestReg))
+ MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
+ else
+ assert(DestReg != AArch64::WSP);
+ } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
+ Opc = AArch64::LDRSui;
+ break;
+ case 8:
+ if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
+ Opc = AArch64::LDRXui;
+ if (TargetRegisterInfo::isVirtualRegister(DestReg))
+ MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
+ else
+ assert(DestReg != AArch64::SP);
+ } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
+ Opc = AArch64::LDRDui;
+ break;
+ case 16:
+ if (AArch64::FPR128RegClass.hasSubClassEq(RC))
+ Opc = AArch64::LDRQui;
+ else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Twov1d, Offset = false;
+ }
+ break;
+ case 24:
+ if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Threev1d, Offset = false;
+ }
+ break;
+ case 32:
+ if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Fourv1d, Offset = false;
+ } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Twov2d, Offset = false;
+ }
+ break;
+ case 48:
+ if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Threev2d, Offset = false;
+ }
+ break;
+ case 64:
+ if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Fourv2d, Offset = false;
+ }
+ break;
+ }
+ assert(Opc && "Unknown register class");
+
+ const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
+ .addReg(DestReg, getDefRegState(true))
+ .addFrameIndex(FI);
+ if (Offset)
+ MI.addImm(0);
+ MI.addMemOperand(MMO);
+}
+
+void llvm::emitFrameOffset(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg, int Offset,
+ const TargetInstrInfo *TII,
+ MachineInstr::MIFlag Flag, bool SetNZCV) {
+ if (DestReg == SrcReg && Offset == 0)
+ return;
+
+ bool isSub = Offset < 0;
+ if (isSub)
+ Offset = -Offset;
+
+ // FIXME: If the offset won't fit in 24-bits, compute the offset into a
+ // scratch register. If DestReg is a virtual register, use it as the
+ // scratch register; otherwise, create a new virtual register (to be
+ // replaced by the scavenger at the end of PEI). That case can be optimized
+ // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
+ // register can be loaded with offset%8 and the add/sub can use an extending
+ // instruction with LSL#3.
+ // Currently the function handles any offsets but generates a poor sequence
+ // of code.
+ // assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
+
+ unsigned Opc;
+ if (SetNZCV)
+ Opc = isSub ? AArch64::SUBSXri : AArch64::ADDSXri;
+ else
+ Opc = isSub ? AArch64::SUBXri : AArch64::ADDXri;
+ const unsigned MaxEncoding = 0xfff;
+ const unsigned ShiftSize = 12;
+ const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
+ while (((unsigned)Offset) >= (1 << ShiftSize)) {
+ unsigned ThisVal;
+ if (((unsigned)Offset) > MaxEncodableValue) {
+ ThisVal = MaxEncodableValue;
+ } else {
+ ThisVal = Offset & MaxEncodableValue;
+ }
+ assert((ThisVal >> ShiftSize) <= MaxEncoding &&
+ "Encoding cannot handle value that big");
+ BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
+ .addReg(SrcReg)
+ .addImm(ThisVal >> ShiftSize)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftSize))
+ .setMIFlag(Flag);
+
+ SrcReg = DestReg;
+ Offset -= ThisVal;
+ if (Offset == 0)
+ return;
+ }
+ BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
+ .addReg(SrcReg)
+ .addImm(Offset)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
+ .setMIFlag(Flag);
+}
+
+MachineInstr *
+AArch64InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const {
+ // This is a bit of a hack. Consider this instruction:
+ //
+ // %vreg0<def> = COPY %SP; GPR64all:%vreg0
+ //
+ // We explicitly chose GPR64all for the virtual register so such a copy might
+ // be eliminated by RegisterCoalescer. However, that may not be possible, and
+ // %vreg0 may even spill. We can't spill %SP, and since it is in the GPR64all
+ // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
+ //
+ // To prevent that, we are going to constrain the %vreg0 register class here.
+ //
+ // <rdar://problem/11522048>
+ //
+ if (MI->isCopy()) {
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ if (SrcReg == AArch64::SP &&
+ TargetRegisterInfo::isVirtualRegister(DstReg)) {
+ MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
+ return nullptr;
+ }
+ if (DstReg == AArch64::SP &&
+ TargetRegisterInfo::isVirtualRegister(SrcReg)) {
+ MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
+ return nullptr;
+ }
+ }
+
+ // Cannot fold.
+ return nullptr;
+}
+
+int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI, int &Offset,
+ bool *OutUseUnscaledOp,
+ unsigned *OutUnscaledOp,
+ int *EmittableOffset) {
+ int Scale = 1;
+ bool IsSigned = false;
+ // The ImmIdx should be changed case by case if it is not 2.
+ unsigned ImmIdx = 2;
+ unsigned UnscaledOp = 0;
+ // Set output values in case of early exit.
+ if (EmittableOffset)
+ *EmittableOffset = 0;
+ if (OutUseUnscaledOp)
+ *OutUseUnscaledOp = false;
+ if (OutUnscaledOp)
+ *OutUnscaledOp = 0;
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("unhandled opcode in rewriteAArch64FrameIndex");
+ // Vector spills/fills can't take an immediate offset.
+ case AArch64::LD1Twov2d:
+ case AArch64::LD1Threev2d:
+ case AArch64::LD1Fourv2d:
+ case AArch64::LD1Twov1d:
+ case AArch64::LD1Threev1d:
+ case AArch64::LD1Fourv1d:
+ case AArch64::ST1Twov2d:
+ case AArch64::ST1Threev2d:
+ case AArch64::ST1Fourv2d:
+ case AArch64::ST1Twov1d:
+ case AArch64::ST1Threev1d:
+ case AArch64::ST1Fourv1d:
+ return AArch64FrameOffsetCannotUpdate;
+ case AArch64::PRFMui:
+ Scale = 8;
+ UnscaledOp = AArch64::PRFUMi;
+ break;
+ case AArch64::LDRXui:
+ Scale = 8;
+ UnscaledOp = AArch64::LDURXi;
+ break;
+ case AArch64::LDRWui:
+ Scale = 4;
+ UnscaledOp = AArch64::LDURWi;
+ break;
+ case AArch64::LDRBui:
+ Scale = 1;
+ UnscaledOp = AArch64::LDURBi;
+ break;
+ case AArch64::LDRHui:
+ Scale = 2;
+ UnscaledOp = AArch64::LDURHi;
+ break;
+ case AArch64::LDRSui:
+ Scale = 4;
+ UnscaledOp = AArch64::LDURSi;
+ break;
+ case AArch64::LDRDui:
+ Scale = 8;
+ UnscaledOp = AArch64::LDURDi;
+ break;
+ case AArch64::LDRQui:
+ Scale = 16;
+ UnscaledOp = AArch64::LDURQi;
+ break;
+ case AArch64::LDRBBui:
+ Scale = 1;
+ UnscaledOp = AArch64::LDURBBi;
+ break;
+ case AArch64::LDRHHui:
+ Scale = 2;
+ UnscaledOp = AArch64::LDURHHi;
+ break;
+ case AArch64::LDRSBXui:
+ Scale = 1;
+ UnscaledOp = AArch64::LDURSBXi;
+ break;
+ case AArch64::LDRSBWui:
+ Scale = 1;
+ UnscaledOp = AArch64::LDURSBWi;
+ break;
+ case AArch64::LDRSHXui:
+ Scale = 2;
+ UnscaledOp = AArch64::LDURSHXi;
+ break;
+ case AArch64::LDRSHWui:
+ Scale = 2;
+ UnscaledOp = AArch64::LDURSHWi;
+ break;
+ case AArch64::LDRSWui:
+ Scale = 4;
+ UnscaledOp = AArch64::LDURSWi;
+ break;
+
+ case AArch64::STRXui:
+ Scale = 8;
+ UnscaledOp = AArch64::STURXi;
+ break;
+ case AArch64::STRWui:
+ Scale = 4;
+ UnscaledOp = AArch64::STURWi;
+ break;
+ case AArch64::STRBui:
+ Scale = 1;
+ UnscaledOp = AArch64::STURBi;
+ break;
+ case AArch64::STRHui:
+ Scale = 2;
+ UnscaledOp = AArch64::STURHi;
+ break;
+ case AArch64::STRSui:
+ Scale = 4;
+ UnscaledOp = AArch64::STURSi;
+ break;
+ case AArch64::STRDui:
+ Scale = 8;
+ UnscaledOp = AArch64::STURDi;
+ break;
+ case AArch64::STRQui:
+ Scale = 16;
+ UnscaledOp = AArch64::STURQi;
+ break;
+ case AArch64::STRBBui:
+ Scale = 1;
+ UnscaledOp = AArch64::STURBBi;
+ break;
+ case AArch64::STRHHui:
+ Scale = 2;
+ UnscaledOp = AArch64::STURHHi;
+ break;
+
+ case AArch64::LDPXi:
+ case AArch64::LDPDi:
+ case AArch64::STPXi:
+ case AArch64::STPDi:
+ IsSigned = true;
+ Scale = 8;
+ break;
+ case AArch64::LDPQi:
+ case AArch64::STPQi:
+ IsSigned = true;
+ Scale = 16;
+ break;
+ case AArch64::LDPWi:
+ case AArch64::LDPSi:
+ case AArch64::STPWi:
+ case AArch64::STPSi:
+ IsSigned = true;
+ Scale = 4;
+ break;
+
+ case AArch64::LDURXi:
+ case AArch64::LDURWi:
+ case AArch64::LDURBi:
+ case AArch64::LDURHi:
+ case AArch64::LDURSi:
+ case AArch64::LDURDi:
+ case AArch64::LDURQi:
+ case AArch64::LDURHHi:
+ case AArch64::LDURBBi:
+ case AArch64::LDURSBXi:
+ case AArch64::LDURSBWi:
+ case AArch64::LDURSHXi:
+ case AArch64::LDURSHWi:
+ case AArch64::LDURSWi:
+ case AArch64::STURXi:
+ case AArch64::STURWi:
+ case AArch64::STURBi:
+ case AArch64::STURHi:
+ case AArch64::STURSi:
+ case AArch64::STURDi:
+ case AArch64::STURQi:
+ case AArch64::STURBBi:
+ case AArch64::STURHHi:
+ Scale = 1;
+ break;
+ }
+
+ Offset += MI.getOperand(ImmIdx).getImm() * Scale;
+
+ bool useUnscaledOp = false;
+ // If the offset doesn't match the scale, we rewrite the instruction to
+ // use the unscaled instruction instead. Likewise, if we have a negative
+ // offset (and have an unscaled op to use).
+ if ((Offset & (Scale - 1)) != 0 || (Offset < 0 && UnscaledOp != 0))
+ useUnscaledOp = true;
+
+ // Use an unscaled addressing mode if the instruction has a negative offset
+ // (or if the instruction is already using an unscaled addressing mode).
+ unsigned MaskBits;
+ if (IsSigned) {
+ // ldp/stp instructions.
+ MaskBits = 7;
+ Offset /= Scale;
+ } else if (UnscaledOp == 0 || useUnscaledOp) {
+ MaskBits = 9;
+ IsSigned = true;
+ Scale = 1;
+ } else {
+ MaskBits = 12;
+ IsSigned = false;
+ Offset /= Scale;
+ }
+
+ // Attempt to fold address computation.
+ int MaxOff = (1 << (MaskBits - IsSigned)) - 1;
+ int MinOff = (IsSigned ? (-MaxOff - 1) : 0);
+ if (Offset >= MinOff && Offset <= MaxOff) {
+ if (EmittableOffset)
+ *EmittableOffset = Offset;
+ Offset = 0;
+ } else {
+ int NewOff = Offset < 0 ? MinOff : MaxOff;
+ if (EmittableOffset)
+ *EmittableOffset = NewOff;
+ Offset = (Offset - NewOff) * Scale;
+ }
+ if (OutUseUnscaledOp)
+ *OutUseUnscaledOp = useUnscaledOp;
+ if (OutUnscaledOp)
+ *OutUnscaledOp = UnscaledOp;
+ return AArch64FrameOffsetCanUpdate |
+ (Offset == 0 ? AArch64FrameOffsetIsLegal : 0);
+}
+
+bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const AArch64InstrInfo *TII) {
+ unsigned Opcode = MI.getOpcode();
+ unsigned ImmIdx = FrameRegIdx + 1;
+
+ if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
+ Offset += MI.getOperand(ImmIdx).getImm();
+ emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
+ MI.getOperand(0).getReg(), FrameReg, Offset, TII,
+ MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
+ MI.eraseFromParent();
+ Offset = 0;
+ return true;
+ }
+
+ int NewOffset;
+ unsigned UnscaledOp;
+ bool UseUnscaledOp;
+ int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
+ &UnscaledOp, &NewOffset);
+ if (Status & AArch64FrameOffsetCanUpdate) {
+ if (Status & AArch64FrameOffsetIsLegal)
+ // Replace the FrameIndex with FrameReg.
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ if (UseUnscaledOp)
+ MI.setDesc(TII->get(UnscaledOp));
+
+ MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
+ return Offset == 0;
+ }
+
+ return false;
+}
+
+void AArch64InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
+ NopInst.setOpcode(AArch64::HINT);
+ NopInst.addOperand(MCOperand::CreateImm(0));
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.h b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.h
new file mode 100644
index 0000000..f70b82b
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.h
@@ -0,0 +1,229 @@
+//===- AArch64InstrInfo.h - AArch64 Instruction Information -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the AArch64 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_AArch64INSTRINFO_H
+#define LLVM_TARGET_AArch64INSTRINFO_H
+
+#include "AArch64.h"
+#include "AArch64RegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "AArch64GenInstrInfo.inc"
+
+namespace llvm {
+
+class AArch64Subtarget;
+class AArch64TargetMachine;
+
+class AArch64InstrInfo : public AArch64GenInstrInfo {
+ // Reserve bits in the MachineMemOperand target hint flags, starting at 1.
+ // They will be shifted into MOTargetHintStart when accessed.
+ enum TargetMemOperandFlags {
+ MOSuppressPair = 1
+ };
+
+ const AArch64RegisterInfo RI;
+ const AArch64Subtarget &Subtarget;
+
+public:
+ explicit AArch64InstrInfo(const AArch64Subtarget &STI);
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ const AArch64RegisterInfo &getRegisterInfo() const { return RI; }
+
+ unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
+
+ bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
+ unsigned &DstReg, unsigned &SubIdx) const override;
+
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ /// Returns true if there is a shiftable register and that the shift value
+ /// is non-zero.
+ bool hasShiftedReg(const MachineInstr *MI) const;
+
+ /// Returns true if there is an extendable register and that the extending
+ /// value is non-zero.
+ bool hasExtendedReg(const MachineInstr *MI) const;
+
+ /// \brief Does this instruction set its full destination register to zero?
+ bool isGPRZero(const MachineInstr *MI) const;
+
+ /// \brief Does this instruction rename a GPR without modifying bits?
+ bool isGPRCopy(const MachineInstr *MI) const;
+
+ /// \brief Does this instruction rename an FPR without modifying bits?
+ bool isFPRCopy(const MachineInstr *MI) const;
+
+ /// Return true if this is load/store scales or extends its register offset.
+ /// This refers to scaling a dynamic index as opposed to scaled immediates.
+ /// MI should be a memory op that allows scaled addressing.
+ bool isScaledAddr(const MachineInstr *MI) const;
+
+ /// Return true if pairing the given load or store is hinted to be
+ /// unprofitable.
+ bool isLdStPairSuppressed(const MachineInstr *MI) const;
+
+ /// Hint that pairing the given load or store is unprofitable.
+ void suppressLdStPair(MachineInstr *MI) const;
+
+ bool getLdStBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
+ unsigned &Offset,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool enableClusterLoads() const override { return true; }
+
+ bool shouldClusterLoads(MachineInstr *FirstLdSt, MachineInstr *SecondLdSt,
+ unsigned NumLoads) const override;
+
+ bool shouldScheduleAdjacent(MachineInstr *First,
+ MachineInstr *Second) const override;
+
+ MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx,
+ uint64_t Offset, const MDNode *MDPtr,
+ DebugLoc DL) const;
+ void copyPhysRegTuple(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ DebugLoc DL, unsigned DestReg, unsigned SrcReg,
+ bool KillSrc, unsigned Opcode,
+ llvm::ArrayRef<unsigned> Indices) const;
+ void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ DebugLoc DL, unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, unsigned SrcReg,
+ bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, unsigned DestReg,
+ int FrameIndex, const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ MachineInstr *
+ foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const override;
+
+ bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify = false) const override;
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const override;
+ bool
+ ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
+ bool canInsertSelect(const MachineBasicBlock &,
+ const SmallVectorImpl<MachineOperand> &Cond, unsigned,
+ unsigned, int &, int &, int &) const override;
+ void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ DebugLoc DL, unsigned DstReg,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned TrueReg, unsigned FalseReg) const override;
+ void getNoopForMachoTarget(MCInst &NopInst) const override;
+
+ /// analyzeCompare - For a comparison instruction, return the source registers
+ /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
+ /// Return true if the comparison instruction can be analyzed.
+ bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
+ unsigned &SrcReg2, int &CmpMask,
+ int &CmpValue) const override;
+ /// optimizeCompareInstr - Convert the instruction supplying the argument to
+ /// the comparison into one that sets the zero bit in the flags register.
+ bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
+ unsigned SrcReg2, int CmpMask, int CmpValue,
+ const MachineRegisterInfo *MRI) const override;
+
+private:
+ void instantiateCondBranch(MachineBasicBlock &MBB, DebugLoc DL,
+ MachineBasicBlock *TBB,
+ const SmallVectorImpl<MachineOperand> &Cond) const;
+};
+
+/// emitFrameOffset - Emit instructions as needed to set DestReg to SrcReg
+/// plus Offset. This is intended to be used from within the prolog/epilog
+/// insertion (PEI) pass, where a virtual scratch register may be allocated
+/// if necessary, to be replaced by the scavenger at the end of PEI.
+void emitFrameOffset(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ DebugLoc DL, unsigned DestReg, unsigned SrcReg, int Offset,
+ const TargetInstrInfo *TII,
+ MachineInstr::MIFlag = MachineInstr::NoFlags,
+ bool SetNZCV = false);
+
+/// rewriteAArch64FrameIndex - Rewrite MI to access 'Offset' bytes from the
+/// FP. Return false if the offset could not be handled directly in MI, and
+/// return the left-over portion by reference.
+bool rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const AArch64InstrInfo *TII);
+
+/// \brief Use to report the frame offset status in isAArch64FrameOffsetLegal.
+enum AArch64FrameOffsetStatus {
+ AArch64FrameOffsetCannotUpdate = 0x0, ///< Offset cannot apply.
+ AArch64FrameOffsetIsLegal = 0x1, ///< Offset is legal.
+ AArch64FrameOffsetCanUpdate = 0x2 ///< Offset can apply, at least partly.
+};
+
+/// \brief Check if the @p Offset is a valid frame offset for @p MI.
+/// The returned value reports the validity of the frame offset for @p MI.
+/// It uses the values defined by AArch64FrameOffsetStatus for that.
+/// If result == AArch64FrameOffsetCannotUpdate, @p MI cannot be updated to
+/// use an offset.eq
+/// If result & AArch64FrameOffsetIsLegal, @p Offset can completely be
+/// rewriten in @p MI.
+/// If result & AArch64FrameOffsetCanUpdate, @p Offset contains the
+/// amount that is off the limit of the legal offset.
+/// If set, @p OutUseUnscaledOp will contain the whether @p MI should be
+/// turned into an unscaled operator, which opcode is in @p OutUnscaledOp.
+/// If set, @p EmittableOffset contains the amount that can be set in @p MI
+/// (possibly with @p OutUnscaledOp if OutUseUnscaledOp is true) and that
+/// is a legal offset.
+int isAArch64FrameOffsetLegal(const MachineInstr &MI, int &Offset,
+ bool *OutUseUnscaledOp = nullptr,
+ unsigned *OutUnscaledOp = nullptr,
+ int *EmittableOffset = nullptr);
+
+static inline bool isUncondBranchOpcode(int Opc) { return Opc == AArch64::B; }
+
+static inline bool isCondBranchOpcode(int Opc) {
+ switch (Opc) {
+ case AArch64::Bcc:
+ case AArch64::CBZW:
+ case AArch64::CBZX:
+ case AArch64::CBNZW:
+ case AArch64::CBNZX:
+ case AArch64::TBZW:
+ case AArch64::TBZX:
+ case AArch64::TBNZW:
+ case AArch64::TBNZX:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static inline bool isIndirectBranchOpcode(int Opc) { return Opc == AArch64::BR; }
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.td b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.td
new file mode 100644
index 0000000..0ba069e
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.td
@@ -0,0 +1,5290 @@
+//=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// AArch64 Instruction definitions.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ARM Instruction Predicate Definitions.
+//
+def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">,
+ AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">;
+def HasNEON : Predicate<"Subtarget->hasNEON()">,
+ AssemblerPredicate<"FeatureNEON", "neon">;
+def HasCrypto : Predicate<"Subtarget->hasCrypto()">,
+ AssemblerPredicate<"FeatureCrypto", "crypto">;
+def HasCRC : Predicate<"Subtarget->hasCRC()">,
+ AssemblerPredicate<"FeatureCRC", "crc">;
+def IsLE : Predicate<"Subtarget->isLittleEndian()">;
+def IsBE : Predicate<"!Subtarget->isLittleEndian()">;
+
+//===----------------------------------------------------------------------===//
+// AArch64-specific DAG Nodes.
+//
+
+// SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
+def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
+ [SDTCisSameAs<0, 2>,
+ SDTCisSameAs<0, 3>,
+ SDTCisInt<0>, SDTCisVT<1, i32>]>;
+
+// SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
+def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
+ [SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>,
+ SDTCisInt<0>,
+ SDTCisVT<3, i32>]>;
+
+// SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
+def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
+ [SDTCisSameAs<0, 2>,
+ SDTCisSameAs<0, 3>,
+ SDTCisInt<0>,
+ SDTCisVT<1, i32>,
+ SDTCisVT<4, i32>]>;
+
+def SDT_AArch64Brcond : SDTypeProfile<0, 3,
+ [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
+ SDTCisVT<2, i32>]>;
+def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
+def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
+ SDTCisVT<2, OtherVT>]>;
+
+
+def SDT_AArch64CSel : SDTypeProfile<1, 4,
+ [SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>,
+ SDTCisInt<3>,
+ SDTCisVT<4, i32>]>;
+def SDT_AArch64FCmp : SDTypeProfile<0, 2,
+ [SDTCisFP<0>,
+ SDTCisSameAs<0, 1>]>;
+def SDT_AArch64Dup : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
+def SDT_AArch64DupLane : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
+def SDT_AArch64Zip : SDTypeProfile<1, 2, [SDTCisVec<0>,
+ SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>]>;
+def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
+def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
+def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisInt<2>, SDTCisInt<3>]>;
+def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
+def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisSameAs<0,2>, SDTCisInt<3>]>;
+def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
+
+def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
+def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
+def SDT_AArch64fcmp : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
+def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisSameAs<0,2>]>;
+def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisSameAs<0,2>,
+ SDTCisSameAs<0,3>]>;
+def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
+def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
+
+def SDT_AArch64ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
+
+def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
+ SDTCisPtrTy<1>]>;
+def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
+ [SDTCisVT<0, i64>, SDTCisVT<1, i32>,
+ SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
+ SDTCisSameAs<1, 4>]>;
+
+
+// Node definitions.
+def AArch64adrp : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
+def AArch64addlow : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
+def AArch64LOADgot : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
+def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
+ SDCallSeqStart<[ SDTCisVT<0, i32> ]>,
+ [SDNPHasChain, SDNPOutGlue]>;
+def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END",
+ SDCallSeqEnd<[ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32> ]>,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+def AArch64call : SDNode<"AArch64ISD::CALL",
+ SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+def AArch64brcond : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
+ [SDNPHasChain]>;
+def AArch64cbz : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
+ [SDNPHasChain]>;
+def AArch64cbnz : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
+ [SDNPHasChain]>;
+def AArch64tbz : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
+ [SDNPHasChain]>;
+def AArch64tbnz : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
+ [SDNPHasChain]>;
+
+
+def AArch64csel : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
+def AArch64csinv : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
+def AArch64csneg : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
+def AArch64csinc : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
+def AArch64retflag : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+def AArch64adc : SDNode<"AArch64ISD::ADC", SDTBinaryArithWithFlagsIn >;
+def AArch64sbc : SDNode<"AArch64ISD::SBC", SDTBinaryArithWithFlagsIn>;
+def AArch64add_flag : SDNode<"AArch64ISD::ADDS", SDTBinaryArithWithFlagsOut,
+ [SDNPCommutative]>;
+def AArch64sub_flag : SDNode<"AArch64ISD::SUBS", SDTBinaryArithWithFlagsOut>;
+def AArch64and_flag : SDNode<"AArch64ISD::ANDS", SDTBinaryArithWithFlagsOut,
+ [SDNPCommutative]>;
+def AArch64adc_flag : SDNode<"AArch64ISD::ADCS", SDTBinaryArithWithFlagsInOut>;
+def AArch64sbc_flag : SDNode<"AArch64ISD::SBCS", SDTBinaryArithWithFlagsInOut>;
+
+def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
+
+def AArch64fcmp : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
+
+def AArch64fmax : SDNode<"AArch64ISD::FMAX", SDTFPBinOp>;
+def AArch64fmin : SDNode<"AArch64ISD::FMIN", SDTFPBinOp>;
+
+def AArch64dup : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
+def AArch64duplane8 : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
+def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
+def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
+def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;
+
+def AArch64zip1 : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
+def AArch64zip2 : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
+def AArch64uzp1 : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
+def AArch64uzp2 : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
+def AArch64trn1 : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
+def AArch64trn2 : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;
+
+def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
+def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
+def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
+def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
+def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
+def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
+def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;
+
+def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
+def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
+def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
+def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;
+
+def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
+def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
+def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
+def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
+def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
+def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
+def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
+def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
+
+def AArch64not: SDNode<"AArch64ISD::NOT", SDT_AArch64unvec>;
+def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
+def AArch64bsl: SDNode<"AArch64ISD::BSL", SDT_AArch64trivec>;
+
+def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
+def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
+def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
+def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
+def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;
+
+def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
+def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
+def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;
+
+def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
+def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
+def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
+def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
+def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
+def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
+ (AArch64not (AArch64cmeqz (and node:$LHS, node:$RHS)))>;
+
+def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
+def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
+def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
+def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
+def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;
+
+def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
+def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;
+
+def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>;
+
+def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+def AArch64Prefetch : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
+ [SDNPHasChain, SDNPSideEffect]>;
+
+def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
+def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;
+
+def AArch64tlsdesc_call : SDNode<"AArch64ISD::TLSDESC_CALL",
+ SDT_AArch64TLSDescCall,
+ [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
+ SDNPVariadic]>;
+
+def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
+ SDT_AArch64WrapperLarge>;
+
+
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+
+// AArch64 Instruction Predicate Definitions.
+//
+def HasZCZ : Predicate<"Subtarget->hasZeroCycleZeroing()">;
+def NoZCZ : Predicate<"!Subtarget->hasZeroCycleZeroing()">;
+def IsDarwin : Predicate<"Subtarget->isTargetDarwin()">;
+def IsNotDarwin: Predicate<"!Subtarget->isTargetDarwin()">;
+def ForCodeSize : Predicate<"ForCodeSize">;
+def NotForCodeSize : Predicate<"!ForCodeSize">;
+
+include "AArch64InstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous instructions.
+//===----------------------------------------------------------------------===//
+
+let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
+def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
+ [(AArch64callseq_start timm:$amt)]>;
+def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ [(AArch64callseq_end timm:$amt1, timm:$amt2)]>;
+} // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
+
+let isReMaterializable = 1, isCodeGenOnly = 1 in {
+// FIXME: The following pseudo instructions are only needed because remat
+// cannot handle multiple instructions. When that changes, they can be
+// removed, along with the AArch64Wrapper node.
+
+let AddedComplexity = 10 in
+def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
+ [(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
+ Sched<[WriteLDAdr]>;
+
+// The MOVaddr instruction should match only when the add is not folded
+// into a load or store address.
+def MOVaddr
+ : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
+ [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
+ tglobaladdr:$low))]>,
+ Sched<[WriteAdrAdr]>;
+def MOVaddrJT
+ : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
+ [(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
+ tjumptable:$low))]>,
+ Sched<[WriteAdrAdr]>;
+def MOVaddrCP
+ : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
+ [(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
+ tconstpool:$low))]>,
+ Sched<[WriteAdrAdr]>;
+def MOVaddrBA
+ : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
+ [(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
+ tblockaddress:$low))]>,
+ Sched<[WriteAdrAdr]>;
+def MOVaddrTLS
+ : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
+ [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
+ tglobaltlsaddr:$low))]>,
+ Sched<[WriteAdrAdr]>;
+def MOVaddrEXT
+ : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
+ [(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
+ texternalsym:$low))]>,
+ Sched<[WriteAdrAdr]>;
+
+} // isReMaterializable, isCodeGenOnly
+
+def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
+ (LOADgot tglobaltlsaddr:$addr)>;
+
+def : Pat<(AArch64LOADgot texternalsym:$addr),
+ (LOADgot texternalsym:$addr)>;
+
+def : Pat<(AArch64LOADgot tconstpool:$addr),
+ (LOADgot tconstpool:$addr)>;
+
+//===----------------------------------------------------------------------===//
+// System instructions.
+//===----------------------------------------------------------------------===//
+
+def HINT : HintI<"hint">;
+def : InstAlias<"nop", (HINT 0b000)>;
+def : InstAlias<"yield",(HINT 0b001)>;
+def : InstAlias<"wfe", (HINT 0b010)>;
+def : InstAlias<"wfi", (HINT 0b011)>;
+def : InstAlias<"sev", (HINT 0b100)>;
+def : InstAlias<"sevl", (HINT 0b101)>;
+
+// As far as LLVM is concerned this writes to the system's exclusive monitors.
+let mayLoad = 1, mayStore = 1 in
+def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
+
+// NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
+// model patterns with sufficiently fine granularity.
+let mayLoad = ?, mayStore = ? in {
+def DMB : CRmSystemI<barrier_op, 0b101, "dmb",
+ [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;
+
+def DSB : CRmSystemI<barrier_op, 0b100, "dsb",
+ [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;
+
+def ISB : CRmSystemI<barrier_op, 0b110, "isb",
+ [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;
+}
+
+def : InstAlias<"clrex", (CLREX 0xf)>;
+def : InstAlias<"isb", (ISB 0xf)>;
+
+def MRS : MRSI;
+def MSR : MSRI;
+def MSRpstate: MSRpstateI;
+
+// The thread pointer (on Linux, at least, where this has been implemented) is
+// TPIDR_EL0.
+def : Pat<(AArch64threadpointer), (MRS 0xde82)>;
+
+// Generic system instructions
+def SYSxt : SystemXtI<0, "sys">;
+def SYSLxt : SystemLXtI<1, "sysl">;
+
+def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
+ (SYSxt imm0_7:$op1, sys_cr_op:$Cn,
+ sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
+
+//===----------------------------------------------------------------------===//
+// Move immediate instructions.
+//===----------------------------------------------------------------------===//
+
+defm MOVK : InsertImmediate<0b11, "movk">;
+defm MOVN : MoveImmediate<0b00, "movn">;
+
+let PostEncoderMethod = "fixMOVZ" in
+defm MOVZ : MoveImmediate<0b10, "movz">;
+
+// First group of aliases covers an implicit "lsl #0".
+def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, imm0_65535:$imm, 0)>;
+def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, imm0_65535:$imm, 0)>;
+def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, imm0_65535:$imm, 0)>;
+def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, imm0_65535:$imm, 0)>;
+def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, imm0_65535:$imm, 0)>;
+def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, imm0_65535:$imm, 0)>;
+
+// Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
+def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
+def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
+def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
+def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
+
+def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
+def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
+def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
+def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
+
+def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g3:$sym, 48)>;
+def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g2:$sym, 32)>;
+def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g1:$sym, 16)>;
+def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g0:$sym, 0)>;
+
+def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
+def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
+
+def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
+def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
+
+def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g1:$sym, 16)>;
+def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g0:$sym, 0)>;
+
+// Final group of aliases covers true "mov $Rd, $imm" cases.
+multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
+ int width, int shift> {
+ def _asmoperand : AsmOperandClass {
+ let Name = basename # width # "_lsl" # shift # "MovAlias";
+ let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
+ # shift # ">";
+ let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
+ }
+
+ def _movimm : Operand<i32> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
+ }
+
+ def : InstAlias<"mov $Rd, $imm",
+ (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
+}
+
+defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
+defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;
+
+defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
+defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
+defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
+defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;
+
+defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
+defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;
+
+defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
+defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
+defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
+defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;
+
+let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
+ isAsCheapAsAMove = 1 in {
+// FIXME: The following pseudo instructions are only needed because remat
+// cannot handle multiple instructions. When that changes, we can select
+// directly to the real instructions and get rid of these pseudos.
+
+def MOVi32imm
+ : Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
+ [(set GPR32:$dst, imm:$src)]>,
+ Sched<[WriteImm]>;
+def MOVi64imm
+ : Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
+ [(set GPR64:$dst, imm:$src)]>,
+ Sched<[WriteImm]>;
+} // isReMaterializable, isCodeGenOnly
+
+// If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
+// eventual expansion code fewer bits to worry about getting right. Marshalling
+// the types is a little tricky though:
+def i64imm_32bit : ImmLeaf<i64, [{
+ return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
+}]>;
+
+def trunc_imm : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getZExtValue(), MVT::i32);
+}]>;
+
+def : Pat<(i64 i64imm_32bit:$src),
+ (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
+
+// Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
+// sequences.
+def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
+ tglobaladdr:$g1, tglobaladdr:$g0),
+ (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g3, 48),
+ tglobaladdr:$g2, 32),
+ tglobaladdr:$g1, 16),
+ tglobaladdr:$g0, 0)>;
+
+def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
+ tblockaddress:$g1, tblockaddress:$g0),
+ (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g3, 48),
+ tblockaddress:$g2, 32),
+ tblockaddress:$g1, 16),
+ tblockaddress:$g0, 0)>;
+
+def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
+ tconstpool:$g1, tconstpool:$g0),
+ (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g3, 48),
+ tconstpool:$g2, 32),
+ tconstpool:$g1, 16),
+ tconstpool:$g0, 0)>;
+
+def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
+ tjumptable:$g1, tjumptable:$g0),
+ (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g3, 48),
+ tjumptable:$g2, 32),
+ tjumptable:$g1, 16),
+ tjumptable:$g0, 0)>;
+
+
+//===----------------------------------------------------------------------===//
+// Arithmetic instructions.
+//===----------------------------------------------------------------------===//
+
+// Add/subtract with carry.
+defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
+defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;
+
+def : InstAlias<"ngc $dst, $src", (SBCWr GPR32:$dst, WZR, GPR32:$src)>;
+def : InstAlias<"ngc $dst, $src", (SBCXr GPR64:$dst, XZR, GPR64:$src)>;
+def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
+def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
+
+// Add/subtract
+defm ADD : AddSub<0, "add", add>;
+defm SUB : AddSub<1, "sub">;
+
+def : InstAlias<"mov $dst, $src",
+ (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
+def : InstAlias<"mov $dst, $src",
+ (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
+def : InstAlias<"mov $dst, $src",
+ (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
+def : InstAlias<"mov $dst, $src",
+ (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;
+
+defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn">;
+defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp">;
+
+// Use SUBS instead of SUB to enable CSE between SUBS and SUB.
+def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
+ (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
+def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
+ (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
+def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
+ (SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
+def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
+ (SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
+def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
+ (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
+def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
+ (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
+def : Pat<(sub GPR32sp:$R2, arith_extended_reg32<i32>:$R3),
+ (SUBSWrx GPR32sp:$R2, arith_extended_reg32<i32>:$R3)>;
+def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3),
+ (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3)>;
+
+// Because of the immediate format for add/sub-imm instructions, the
+// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
+// These patterns capture that transformation.
+let AddedComplexity = 1 in {
+def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
+ (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
+def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
+ (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
+def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
+ (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
+def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
+ (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
+}
+
+// Because of the immediate format for add/sub-imm instructions, the
+// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
+// These patterns capture that transformation.
+let AddedComplexity = 1 in {
+def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
+ (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
+def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
+ (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
+def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
+ (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
+def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
+ (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
+}
+
+def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
+def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
+def : InstAlias<"neg $dst, $src$shift",
+ (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
+def : InstAlias<"neg $dst, $src$shift",
+ (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
+
+def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
+def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
+def : InstAlias<"negs $dst, $src$shift",
+ (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
+def : InstAlias<"negs $dst, $src$shift",
+ (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
+
+
+// Unsigned/Signed divide
+defm UDIV : Div<0, "udiv", udiv>;
+defm SDIV : Div<1, "sdiv", sdiv>;
+let isCodeGenOnly = 1 in {
+defm UDIV_Int : Div<0, "udiv", int_aarch64_udiv>;
+defm SDIV_Int : Div<1, "sdiv", int_aarch64_sdiv>;
+}
+
+// Variable shift
+defm ASRV : Shift<0b10, "asr", sra>;
+defm LSLV : Shift<0b00, "lsl", shl>;
+defm LSRV : Shift<0b01, "lsr", srl>;
+defm RORV : Shift<0b11, "ror", rotr>;
+
+def : ShiftAlias<"asrv", ASRVWr, GPR32>;
+def : ShiftAlias<"asrv", ASRVXr, GPR64>;
+def : ShiftAlias<"lslv", LSLVWr, GPR32>;
+def : ShiftAlias<"lslv", LSLVXr, GPR64>;
+def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
+def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
+def : ShiftAlias<"rorv", RORVWr, GPR32>;
+def : ShiftAlias<"rorv", RORVXr, GPR64>;
+
+// Multiply-add
+let AddedComplexity = 7 in {
+defm MADD : MulAccum<0, "madd", add>;
+defm MSUB : MulAccum<1, "msub", sub>;
+
+def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
+ (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
+def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
+ (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
+
+def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
+ (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
+def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
+ (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
+} // AddedComplexity = 7
+
+let AddedComplexity = 5 in {
+def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
+def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
+def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
+def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
+
+def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
+ (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
+def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
+ (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
+
+def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
+ (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
+def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
+ (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
+} // AddedComplexity = 5
+
+def : MulAccumWAlias<"mul", MADDWrrr>;
+def : MulAccumXAlias<"mul", MADDXrrr>;
+def : MulAccumWAlias<"mneg", MSUBWrrr>;
+def : MulAccumXAlias<"mneg", MSUBXrrr>;
+def : WideMulAccumAlias<"smull", SMADDLrrr>;
+def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
+def : WideMulAccumAlias<"umull", UMADDLrrr>;
+def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
+
+// Multiply-high
+def SMULHrr : MulHi<0b010, "smulh", mulhs>;
+def UMULHrr : MulHi<0b110, "umulh", mulhu>;
+
+// CRC32
+def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
+def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
+def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
+def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;
+
+def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
+def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
+def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
+def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;
+
+
+//===----------------------------------------------------------------------===//
+// Logical instructions.
+//===----------------------------------------------------------------------===//
+
+// (immediate)
+defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
+defm AND : LogicalImm<0b00, "and", and, "bic">;
+defm EOR : LogicalImm<0b10, "eor", xor, "eon">;
+defm ORR : LogicalImm<0b01, "orr", or, "orn">;
+
+// FIXME: these aliases *are* canonical sometimes (when movz can't be
+// used). Actually, it seems to be working right now, but putting logical_immXX
+// here is a bit dodgy on the AsmParser side too.
+def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
+ logical_imm32:$imm), 0>;
+def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
+ logical_imm64:$imm), 0>;
+
+
+// (register)
+defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
+defm BICS : LogicalRegS<0b11, 1, "bics",
+ BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
+defm AND : LogicalReg<0b00, 0, "and", and>;
+defm BIC : LogicalReg<0b00, 1, "bic",
+ BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
+defm EON : LogicalReg<0b10, 1, "eon",
+ BinOpFrag<(xor node:$LHS, (not node:$RHS))>>;
+defm EOR : LogicalReg<0b10, 0, "eor", xor>;
+defm ORN : LogicalReg<0b01, 1, "orn",
+ BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
+defm ORR : LogicalReg<0b01, 0, "orr", or>;
+
+def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
+def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;
+
+def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
+def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;
+
+def : InstAlias<"mvn $Wd, $Wm$sh",
+ (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
+def : InstAlias<"mvn $Xd, $Xm$sh",
+ (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;
+
+def : InstAlias<"tst $src1, $src2",
+ (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
+def : InstAlias<"tst $src1, $src2",
+ (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;
+
+def : InstAlias<"tst $src1, $src2",
+ (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
+def : InstAlias<"tst $src1, $src2",
+ (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;
+
+def : InstAlias<"tst $src1, $src2$sh",
+ (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
+def : InstAlias<"tst $src1, $src2$sh",
+ (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;
+
+
+def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
+def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
+
+
+//===----------------------------------------------------------------------===//
+// One operand data processing instructions.
+//===----------------------------------------------------------------------===//
+
+defm CLS : OneOperandData<0b101, "cls">;
+defm CLZ : OneOperandData<0b100, "clz", ctlz>;
+defm RBIT : OneOperandData<0b000, "rbit">;
+
+def : Pat<(int_aarch64_rbit GPR32:$Rn), (RBITWr $Rn)>;
+def : Pat<(int_aarch64_rbit GPR64:$Rn), (RBITXr $Rn)>;
+
+def REV16Wr : OneWRegData<0b001, "rev16",
+ UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
+def REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
+
+def : Pat<(cttz GPR32:$Rn),
+ (CLZWr (RBITWr GPR32:$Rn))>;
+def : Pat<(cttz GPR64:$Rn),
+ (CLZXr (RBITXr GPR64:$Rn))>;
+def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
+ (i32 1))),
+ (CLSWr GPR32:$Rn)>;
+def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
+ (i64 1))),
+ (CLSXr GPR64:$Rn)>;
+
+// Unlike the other one operand instructions, the instructions with the "rev"
+// mnemonic do *not* just different in the size bit, but actually use different
+// opcode bits for the different sizes.
+def REVWr : OneWRegData<0b010, "rev", bswap>;
+def REVXr : OneXRegData<0b011, "rev", bswap>;
+def REV32Xr : OneXRegData<0b010, "rev32",
+ UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
+
+// The bswap commutes with the rotr so we want a pattern for both possible
+// orders.
+def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
+def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
+
+//===----------------------------------------------------------------------===//
+// Bitfield immediate extraction instruction.
+//===----------------------------------------------------------------------===//
+let neverHasSideEffects = 1 in
+defm EXTR : ExtractImm<"extr">;
+def : InstAlias<"ror $dst, $src, $shift",
+ (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
+def : InstAlias<"ror $dst, $src, $shift",
+ (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
+
+def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
+ (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
+def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
+ (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
+
+//===----------------------------------------------------------------------===//
+// Other bitfield immediate instructions.
+//===----------------------------------------------------------------------===//
+let neverHasSideEffects = 1 in {
+defm BFM : BitfieldImmWith2RegArgs<0b01, "bfm">;
+defm SBFM : BitfieldImm<0b00, "sbfm">;
+defm UBFM : BitfieldImm<0b10, "ubfm">;
+}
+
+def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
+ uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
+ return CurDAG->getTargetConstant(enc, MVT::i64);
+}]>;
+
+def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
+ uint64_t enc = 31 - N->getZExtValue();
+ return CurDAG->getTargetConstant(enc, MVT::i64);
+}]>;
+
+// min(7, 31 - shift_amt)
+def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
+ uint64_t enc = 31 - N->getZExtValue();
+ enc = enc > 7 ? 7 : enc;
+ return CurDAG->getTargetConstant(enc, MVT::i64);
+}]>;
+
+// min(15, 31 - shift_amt)
+def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
+ uint64_t enc = 31 - N->getZExtValue();
+ enc = enc > 15 ? 15 : enc;
+ return CurDAG->getTargetConstant(enc, MVT::i64);
+}]>;
+
+def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
+ uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
+ return CurDAG->getTargetConstant(enc, MVT::i64);
+}]>;
+
+def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
+ uint64_t enc = 63 - N->getZExtValue();
+ return CurDAG->getTargetConstant(enc, MVT::i64);
+}]>;
+
+// min(7, 63 - shift_amt)
+def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
+ uint64_t enc = 63 - N->getZExtValue();
+ enc = enc > 7 ? 7 : enc;
+ return CurDAG->getTargetConstant(enc, MVT::i64);
+}]>;
+
+// min(15, 63 - shift_amt)
+def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
+ uint64_t enc = 63 - N->getZExtValue();
+ enc = enc > 15 ? 15 : enc;
+ return CurDAG->getTargetConstant(enc, MVT::i64);
+}]>;
+
+// min(31, 63 - shift_amt)
+def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
+ uint64_t enc = 63 - N->getZExtValue();
+ enc = enc > 31 ? 31 : enc;
+ return CurDAG->getTargetConstant(enc, MVT::i64);
+}]>;
+
+def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
+ (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
+ (i64 (i32shift_b imm0_31:$imm)))>;
+def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
+ (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
+ (i64 (i64shift_b imm0_63:$imm)))>;
+
+let AddedComplexity = 10 in {
+def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
+ (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
+def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
+ (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
+}
+
+def : InstAlias<"asr $dst, $src, $shift",
+ (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
+def : InstAlias<"asr $dst, $src, $shift",
+ (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
+def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
+def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
+def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
+def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
+def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
+
+def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
+ (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
+def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
+ (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
+
+def : InstAlias<"lsr $dst, $src, $shift",
+ (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
+def : InstAlias<"lsr $dst, $src, $shift",
+ (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
+def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
+def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
+def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
+def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
+def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
+
+//===----------------------------------------------------------------------===//
+// Conditionally set flags instructions.
+//===----------------------------------------------------------------------===//
+defm CCMN : CondSetFlagsImm<0, "ccmn">;
+defm CCMP : CondSetFlagsImm<1, "ccmp">;
+
+defm CCMN : CondSetFlagsReg<0, "ccmn">;
+defm CCMP : CondSetFlagsReg<1, "ccmp">;
+
+//===----------------------------------------------------------------------===//
+// Conditional select instructions.
+//===----------------------------------------------------------------------===//
+defm CSEL : CondSelect<0, 0b00, "csel">;
+
+def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
+defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
+defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
+defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
+
+def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
+ (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
+def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
+ (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
+def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
+ (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
+def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
+ (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
+def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
+ (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
+def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
+ (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
+
+def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
+ (CSINCWr WZR, WZR, (i32 imm:$cc))>;
+def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
+ (CSINCXr XZR, XZR, (i32 imm:$cc))>;
+def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
+ (CSINVWr WZR, WZR, (i32 imm:$cc))>;
+def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
+ (CSINVXr XZR, XZR, (i32 imm:$cc))>;
+
+// The inverse of the condition code from the alias instruction is what is used
+// in the aliased instruction. The parser all ready inverts the condition code
+// for these aliases.
+def : InstAlias<"cset $dst, $cc",
+ (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
+def : InstAlias<"cset $dst, $cc",
+ (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
+
+def : InstAlias<"csetm $dst, $cc",
+ (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
+def : InstAlias<"csetm $dst, $cc",
+ (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
+
+def : InstAlias<"cinc $dst, $src, $cc",
+ (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
+def : InstAlias<"cinc $dst, $src, $cc",
+ (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
+
+def : InstAlias<"cinv $dst, $src, $cc",
+ (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
+def : InstAlias<"cinv $dst, $src, $cc",
+ (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
+
+def : InstAlias<"cneg $dst, $src, $cc",
+ (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
+def : InstAlias<"cneg $dst, $src, $cc",
+ (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
+
+//===----------------------------------------------------------------------===//
+// PC-relative instructions.
+//===----------------------------------------------------------------------===//
+let isReMaterializable = 1 in {
+let neverHasSideEffects = 1, mayStore = 0, mayLoad = 0 in {
+def ADR : ADRI<0, "adr", adrlabel, []>;
+} // neverHasSideEffects = 1
+
+def ADRP : ADRI<1, "adrp", adrplabel,
+ [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
+} // isReMaterializable = 1
+
+// page address of a constant pool entry, block address
+def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
+def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
+
+//===----------------------------------------------------------------------===//
+// Unconditional branch (register) instructions.
+//===----------------------------------------------------------------------===//
+
+let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
+def RET : BranchReg<0b0010, "ret", []>;
+def DRPS : SpecialReturn<0b0101, "drps">;
+def ERET : SpecialReturn<0b0100, "eret">;
+} // isReturn = 1, isTerminator = 1, isBarrier = 1
+
+// Default to the LR register.
+def : InstAlias<"ret", (RET LR)>;
+
+let isCall = 1, Defs = [LR], Uses = [SP] in {
+def BLR : BranchReg<0b0001, "blr", [(AArch64call GPR64:$Rn)]>;
+} // isCall
+
+let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
+def BR : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
+} // isBranch, isTerminator, isBarrier, isIndirectBranch
+
+// Create a separate pseudo-instruction for codegen to use so that we don't
+// flag lr as used in every function. It'll be restored before the RET by the
+// epilogue if it's legitimately used.
+def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]> {
+ let isTerminator = 1;
+ let isBarrier = 1;
+ let isReturn = 1;
+}
+
+// This is a directive-like pseudo-instruction. The purpose is to insert an
+// R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
+// (which in the usual case is a BLR).
+let hasSideEffects = 1 in
+def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []> {
+ let AsmString = ".tlsdesccall $sym";
+}
+
+// Pseudo-instruction representing a BLR with attached TLSDESC relocation. It
+// gets expanded to two MCInsts during lowering.
+let isCall = 1, Defs = [LR] in
+def TLSDESC_BLR
+ : Pseudo<(outs), (ins GPR64:$dest, i64imm:$sym),
+ [(AArch64tlsdesc_call GPR64:$dest, tglobaltlsaddr:$sym)]>;
+
+def : Pat<(AArch64tlsdesc_call GPR64:$dest, texternalsym:$sym),
+ (TLSDESC_BLR GPR64:$dest, texternalsym:$sym)>;
+//===----------------------------------------------------------------------===//
+// Conditional branch (immediate) instruction.
+//===----------------------------------------------------------------------===//
+def Bcc : BranchCond;
+
+//===----------------------------------------------------------------------===//
+// Compare-and-branch instructions.
+//===----------------------------------------------------------------------===//
+defm CBZ : CmpBranch<0, "cbz", AArch64cbz>;
+defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;
+
+//===----------------------------------------------------------------------===//
+// Test-bit-and-branch instructions.
+//===----------------------------------------------------------------------===//
+defm TBZ : TestBranch<0, "tbz", AArch64tbz>;
+defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;
+
+//===----------------------------------------------------------------------===//
+// Unconditional branch (immediate) instructions.
+//===----------------------------------------------------------------------===//
+let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
+def B : BranchImm<0, "b", [(br bb:$addr)]>;
+} // isBranch, isTerminator, isBarrier
+
+let isCall = 1, Defs = [LR], Uses = [SP] in {
+def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
+} // isCall
+def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;
+
+//===----------------------------------------------------------------------===//
+// Exception generation instructions.
+//===----------------------------------------------------------------------===//
+def BRK : ExceptionGeneration<0b001, 0b00, "brk">;
+def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
+def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
+def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
+def HLT : ExceptionGeneration<0b010, 0b00, "hlt">;
+def HVC : ExceptionGeneration<0b000, 0b10, "hvc">;
+def SMC : ExceptionGeneration<0b000, 0b11, "smc">;
+def SVC : ExceptionGeneration<0b000, 0b01, "svc">;
+
+// DCPSn defaults to an immediate operand of zero if unspecified.
+def : InstAlias<"dcps1", (DCPS1 0)>;
+def : InstAlias<"dcps2", (DCPS2 0)>;
+def : InstAlias<"dcps3", (DCPS3 0)>;
+
+//===----------------------------------------------------------------------===//
+// Load instructions.
+//===----------------------------------------------------------------------===//
+
+// Pair (indexed, offset)
+defm LDPW : LoadPairOffset<0b00, 0, GPR32, simm7s4, "ldp">;
+defm LDPX : LoadPairOffset<0b10, 0, GPR64, simm7s8, "ldp">;
+defm LDPS : LoadPairOffset<0b00, 1, FPR32, simm7s4, "ldp">;
+defm LDPD : LoadPairOffset<0b01, 1, FPR64, simm7s8, "ldp">;
+defm LDPQ : LoadPairOffset<0b10, 1, FPR128, simm7s16, "ldp">;
+
+defm LDPSW : LoadPairOffset<0b01, 0, GPR64, simm7s4, "ldpsw">;
+
+// Pair (pre-indexed)
+def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32, simm7s4, "ldp">;
+def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64, simm7s8, "ldp">;
+def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32, simm7s4, "ldp">;
+def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64, simm7s8, "ldp">;
+def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128, simm7s16, "ldp">;
+
+def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64, simm7s4, "ldpsw">;
+
+// Pair (post-indexed)
+def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32, simm7s4, "ldp">;
+def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64, simm7s8, "ldp">;
+def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32, simm7s4, "ldp">;
+def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64, simm7s8, "ldp">;
+def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128, simm7s16, "ldp">;
+
+def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64, simm7s4, "ldpsw">;
+
+
+// Pair (no allocate)
+defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32, simm7s4, "ldnp">;
+defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64, simm7s8, "ldnp">;
+defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32, simm7s4, "ldnp">;
+defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64, simm7s8, "ldnp">;
+defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128, simm7s16, "ldnp">;
+
+//---
+// (register offset)
+//---
+
+// Integer
+defm LDRBB : Load8RO<0b00, 0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
+defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
+defm LDRW : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
+defm LDRX : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;
+
+// Floating-point
+defm LDRB : Load8RO<0b00, 1, 0b01, FPR8, "ldr", untyped, load>;
+defm LDRH : Load16RO<0b01, 1, 0b01, FPR16, "ldr", f16, load>;
+defm LDRS : Load32RO<0b10, 1, 0b01, FPR32, "ldr", f32, load>;
+defm LDRD : Load64RO<0b11, 1, 0b01, FPR64, "ldr", f64, load>;
+defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128, "ldr", f128, load>;
+
+// Load sign-extended half-word
+defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
+defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;
+
+// Load sign-extended byte
+defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
+defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;
+
+// Load sign-extended word
+defm LDRSW : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;
+
+// Pre-fetch.
+defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;
+
+// For regular load, we do not have any alignment requirement.
+// Thus, it is safe to directly map the vector loads with interesting
+// addressing modes.
+// FIXME: We could do the same for bitconvert to floating point vectors.
+multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
+ ValueType ScalTy, ValueType VecTy,
+ Instruction LOADW, Instruction LOADX,
+ SubRegIndex sub> {
+ def : Pat<(VecTy (scalar_to_vector (ScalTy
+ (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
+ (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
+ (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
+ sub)>;
+
+ def : Pat<(VecTy (scalar_to_vector (ScalTy
+ (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
+ (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
+ (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
+ sub)>;
+}
+
+let AddedComplexity = 10 in {
+defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v8i8, LDRBroW, LDRBroX, bsub>;
+defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v16i8, LDRBroW, LDRBroX, bsub>;
+
+defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
+defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
+
+defm : ScalToVecROLoadPat<ro32, load, i32, v2i32, LDRSroW, LDRSroX, ssub>;
+defm : ScalToVecROLoadPat<ro32, load, i32, v4i32, LDRSroW, LDRSroX, ssub>;
+
+defm : ScalToVecROLoadPat<ro32, load, f32, v2f32, LDRSroW, LDRSroX, ssub>;
+defm : ScalToVecROLoadPat<ro32, load, f32, v4f32, LDRSroW, LDRSroX, ssub>;
+
+defm : ScalToVecROLoadPat<ro64, load, i64, v2i64, LDRDroW, LDRDroX, dsub>;
+
+defm : ScalToVecROLoadPat<ro64, load, f64, v2f64, LDRDroW, LDRDroX, dsub>;
+
+
+def : Pat <(v1i64 (scalar_to_vector (i64
+ (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
+ ro_Wextend64:$extend))))),
+ (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
+
+def : Pat <(v1i64 (scalar_to_vector (i64
+ (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
+ ro_Xextend64:$extend))))),
+ (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
+}
+
+// Match all load 64 bits width whose type is compatible with FPR64
+multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
+ Instruction LOADW, Instruction LOADX> {
+
+ def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
+ (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
+
+ def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
+ (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
+}
+
+let AddedComplexity = 10 in {
+let Predicates = [IsLE] in {
+ // We must do vector loads with LD1 in big-endian.
+ defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
+ defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
+ defm : VecROLoadPat<ro64, v8i8, LDRDroW, LDRDroX>;
+ defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
+}
+
+defm : VecROLoadPat<ro64, v1i64, LDRDroW, LDRDroX>;
+defm : VecROLoadPat<ro64, v1f64, LDRDroW, LDRDroX>;
+
+// Match all load 128 bits width whose type is compatible with FPR128
+let Predicates = [IsLE] in {
+ // We must do vector loads with LD1 in big-endian.
+ defm : VecROLoadPat<ro128, v2i64, LDRQroW, LDRQroX>;
+ defm : VecROLoadPat<ro128, v2f64, LDRQroW, LDRQroX>;
+ defm : VecROLoadPat<ro128, v4i32, LDRQroW, LDRQroX>;
+ defm : VecROLoadPat<ro128, v4f32, LDRQroW, LDRQroX>;
+ defm : VecROLoadPat<ro128, v8i16, LDRQroW, LDRQroX>;
+ defm : VecROLoadPat<ro128, v16i8, LDRQroW, LDRQroX>;
+}
+} // AddedComplexity = 10
+
+// zextload -> i64
+multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
+ Instruction INSTW, Instruction INSTX> {
+ def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
+ (SUBREG_TO_REG (i64 0),
+ (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
+ sub_32)>;
+
+ def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
+ (SUBREG_TO_REG (i64 0),
+ (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
+ sub_32)>;
+}
+
+let AddedComplexity = 10 in {
+ defm : ExtLoadTo64ROPat<ro8, zextloadi8, LDRBBroW, LDRBBroX>;
+ defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
+ defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW, LDRWroX>;
+
+ // zextloadi1 -> zextloadi8
+ defm : ExtLoadTo64ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
+
+ // extload -> zextload
+ defm : ExtLoadTo64ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>;
+ defm : ExtLoadTo64ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>;
+ defm : ExtLoadTo64ROPat<ro32, extloadi32, LDRWroW, LDRWroX>;
+
+ // extloadi1 -> zextloadi8
+ defm : ExtLoadTo64ROPat<ro8, extloadi1, LDRBBroW, LDRBBroX>;
+}
+
+
+// zextload -> i64
+multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
+ Instruction INSTW, Instruction INSTX> {
+ def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
+ (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
+
+ def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
+ (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
+
+}
+
+let AddedComplexity = 10 in {
+ // extload -> zextload
+ defm : ExtLoadTo32ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>;
+ defm : ExtLoadTo32ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>;
+ defm : ExtLoadTo32ROPat<ro32, extloadi32, LDRWroW, LDRWroX>;
+
+ // zextloadi1 -> zextloadi8
+ defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
+}
+
+//---
+// (unsigned immediate)
+//---
+defm LDRX : LoadUI<0b11, 0, 0b01, GPR64, uimm12s8, "ldr",
+ [(set GPR64:$Rt,
+ (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
+defm LDRW : LoadUI<0b10, 0, 0b01, GPR32, uimm12s4, "ldr",
+ [(set GPR32:$Rt,
+ (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
+defm LDRB : LoadUI<0b00, 1, 0b01, FPR8, uimm12s1, "ldr",
+ [(set FPR8:$Rt,
+ (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
+defm LDRH : LoadUI<0b01, 1, 0b01, FPR16, uimm12s2, "ldr",
+ [(set (f16 FPR16:$Rt),
+ (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
+defm LDRS : LoadUI<0b10, 1, 0b01, FPR32, uimm12s4, "ldr",
+ [(set (f32 FPR32:$Rt),
+ (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
+defm LDRD : LoadUI<0b11, 1, 0b01, FPR64, uimm12s8, "ldr",
+ [(set (f64 FPR64:$Rt),
+ (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
+defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128, uimm12s16, "ldr",
+ [(set (f128 FPR128:$Rt),
+ (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;
+
+// For regular load, we do not have any alignment requirement.
+// Thus, it is safe to directly map the vector loads with interesting
+// addressing modes.
+// FIXME: We could do the same for bitconvert to floating point vectors.
+def : Pat <(v8i8 (scalar_to_vector (i32
+ (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
+ (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
+ (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
+def : Pat <(v16i8 (scalar_to_vector (i32
+ (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
+def : Pat <(v4i16 (scalar_to_vector (i32
+ (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
+ (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
+ (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
+def : Pat <(v8i16 (scalar_to_vector (i32
+ (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
+ (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
+ (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
+def : Pat <(v2i32 (scalar_to_vector (i32
+ (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
+ (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
+ (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
+def : Pat <(v4i32 (scalar_to_vector (i32
+ (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
+ (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
+ (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
+def : Pat <(v1i64 (scalar_to_vector (i64
+ (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
+ (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
+def : Pat <(v2i64 (scalar_to_vector (i64
+ (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
+ (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
+ (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;
+
+// Match all load 64 bits width whose type is compatible with FPR64
+let Predicates = [IsLE] in {
+ // We must use LD1 to perform vector loads in big-endian.
+ def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
+ (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
+ def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
+ (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
+ def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
+ (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
+ def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
+ (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
+}
+def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
+ (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
+def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
+ (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
+
+// Match all load 128 bits width whose type is compatible with FPR128
+let Predicates = [IsLE] in {
+ // We must use LD1 to perform vector loads in big-endian.
+ def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
+ (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
+ (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
+ (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
+ (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
+ (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
+ (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
+}
+def : Pat<(f128 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
+ (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
+
+defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
+ [(set GPR32:$Rt,
+ (zextloadi16 (am_indexed16 GPR64sp:$Rn,
+ uimm12s2:$offset)))]>;
+defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
+ [(set GPR32:$Rt,
+ (zextloadi8 (am_indexed8 GPR64sp:$Rn,
+ uimm12s1:$offset)))]>;
+// zextload -> i64
+def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
+def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
+
+// zextloadi1 -> zextloadi8
+def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
+ (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
+def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
+
+// extload -> zextload
+def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
+ (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
+def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
+ (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
+def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
+ (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
+def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
+def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
+def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
+def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
+
+// load sign-extended half-word
+defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
+ [(set GPR32:$Rt,
+ (sextloadi16 (am_indexed16 GPR64sp:$Rn,
+ uimm12s2:$offset)))]>;
+defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
+ [(set GPR64:$Rt,
+ (sextloadi16 (am_indexed16 GPR64sp:$Rn,
+ uimm12s2:$offset)))]>;
+
+// load sign-extended byte
+defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
+ [(set GPR32:$Rt,
+ (sextloadi8 (am_indexed8 GPR64sp:$Rn,
+ uimm12s1:$offset)))]>;
+defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
+ [(set GPR64:$Rt,
+ (sextloadi8 (am_indexed8 GPR64sp:$Rn,
+ uimm12s1:$offset)))]>;
+
+// load sign-extended word
+defm LDRSW : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
+ [(set GPR64:$Rt,
+ (sextloadi32 (am_indexed32 GPR64sp:$Rn,
+ uimm12s4:$offset)))]>;
+
+// load zero-extended word
+def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
+
+// Pre-fetch.
+def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
+ [(AArch64Prefetch imm:$Rt,
+ (am_indexed64 GPR64sp:$Rn,
+ uimm12s8:$offset))]>;
+
+def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;
+
+//---
+// (literal)
+def LDRWl : LoadLiteral<0b00, 0, GPR32, "ldr">;
+def LDRXl : LoadLiteral<0b01, 0, GPR64, "ldr">;
+def LDRSl : LoadLiteral<0b00, 1, FPR32, "ldr">;
+def LDRDl : LoadLiteral<0b01, 1, FPR64, "ldr">;
+def LDRQl : LoadLiteral<0b10, 1, FPR128, "ldr">;
+
+// load sign-extended word
+def LDRSWl : LoadLiteral<0b10, 0, GPR64, "ldrsw">;
+
+// prefetch
+def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
+// [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;
+
+//---
+// (unscaled immediate)
+defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64, "ldur",
+ [(set GPR64:$Rt,
+ (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
+defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32, "ldur",
+ [(set GPR32:$Rt,
+ (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
+defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8, "ldur",
+ [(set FPR8:$Rt,
+ (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
+defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16, "ldur",
+ [(set FPR16:$Rt,
+ (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
+defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32, "ldur",
+ [(set (f32 FPR32:$Rt),
+ (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
+defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64, "ldur",
+ [(set (f64 FPR64:$Rt),
+ (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
+defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128, "ldur",
+ [(set (f128 FPR128:$Rt),
+ (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;
+
+defm LDURHH
+ : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
+ [(set GPR32:$Rt,
+ (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
+defm LDURBB
+ : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
+ [(set GPR32:$Rt,
+ (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
+
+// Match all load 64 bits width whose type is compatible with FPR64
+let Predicates = [IsLE] in {
+ def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
+ (LDURDi GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
+ (LDURDi GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
+ (LDURDi GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
+ (LDURDi GPR64sp:$Rn, simm9:$offset)>;
+}
+def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
+ (LDURDi GPR64sp:$Rn, simm9:$offset)>;
+def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
+ (LDURDi GPR64sp:$Rn, simm9:$offset)>;
+
+// Match all load 128 bits width whose type is compatible with FPR128
+let Predicates = [IsLE] in {
+ def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
+ (LDURQi GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
+ (LDURQi GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
+ (LDURQi GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
+ (LDURQi GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
+ (LDURQi GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
+ (LDURQi GPR64sp:$Rn, simm9:$offset)>;
+}
+
+// anyext -> zext
+def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
+ (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
+def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
+ (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
+def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
+ (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
+def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
+def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
+def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
+def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
+// unscaled zext
+def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
+ (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
+def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
+ (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
+def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
+ (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
+def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
+def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
+def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
+def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
+
+
+//---
+// LDR mnemonics fall back to LDUR for negative or unaligned offsets.
+
+// Define new assembler match classes as we want to only match these when
+// the don't otherwise match the scaled addressing mode for LDR/STR. Don't
+// associate a DiagnosticType either, as we want the diagnostic for the
+// canonical form (the scaled operand) to take precedence.
+class SImm9OffsetOperand<int Width> : AsmOperandClass {
+ let Name = "SImm9OffsetFB" # Width;
+ let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
+ let RenderMethod = "addImmOperands";
+}
+
+def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
+def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
+def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
+def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
+def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;
+
+def simm9_offset_fb8 : Operand<i64> {
+ let ParserMatchClass = SImm9OffsetFB8Operand;
+}
+def simm9_offset_fb16 : Operand<i64> {
+ let ParserMatchClass = SImm9OffsetFB16Operand;
+}
+def simm9_offset_fb32 : Operand<i64> {
+ let ParserMatchClass = SImm9OffsetFB32Operand;
+}
+def simm9_offset_fb64 : Operand<i64> {
+ let ParserMatchClass = SImm9OffsetFB64Operand;
+}
+def simm9_offset_fb128 : Operand<i64> {
+ let ParserMatchClass = SImm9OffsetFB128Operand;
+}
+
+def : InstAlias<"ldr $Rt, [$Rn, $offset]",
+ (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
+def : InstAlias<"ldr $Rt, [$Rn, $offset]",
+ (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
+def : InstAlias<"ldr $Rt, [$Rn, $offset]",
+ (LDURBi FPR8:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
+def : InstAlias<"ldr $Rt, [$Rn, $offset]",
+ (LDURHi FPR16:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
+def : InstAlias<"ldr $Rt, [$Rn, $offset]",
+ (LDURSi FPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
+def : InstAlias<"ldr $Rt, [$Rn, $offset]",
+ (LDURDi FPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
+def : InstAlias<"ldr $Rt, [$Rn, $offset]",
+ (LDURQi FPR128:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
+
+// zextload -> i64
+def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
+def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
+ (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
+
+// load sign-extended half-word
+defm LDURSHW
+ : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
+ [(set GPR32:$Rt,
+ (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
+defm LDURSHX
+ : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
+ [(set GPR64:$Rt,
+ (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
+
+// load sign-extended byte
+defm LDURSBW
+ : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
+ [(set GPR32:$Rt,
+ (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
+defm LDURSBX
+ : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
+ [(set GPR64:$Rt,
+ (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
+
+// load sign-extended word
+defm LDURSW
+ : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
+ [(set GPR64:$Rt,
+ (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
+
+// zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
+def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
+ (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
+def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
+ (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
+def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
+ (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
+def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
+ (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
+def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
+ (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
+def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
+ (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
+def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
+ (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
+
+// Pre-fetch.
+defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
+ [(AArch64Prefetch imm:$Rt,
+ (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
+
+//---
+// (unscaled immediate, unprivileged)
+defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
+defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
+
+defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
+defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
+
+// load sign-extended half-word
+defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
+defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
+
+// load sign-extended byte
+defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
+defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
+
+// load sign-extended word
+defm LDTRSW : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
+
+//---
+// (immediate pre-indexed)
+def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32, "ldr">;
+def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64, "ldr">;
+def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8, "ldr">;
+def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16, "ldr">;
+def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32, "ldr">;
+def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64, "ldr">;
+def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128, "ldr">;
+
+// load sign-extended half-word
+def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32, "ldrsh">;
+def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64, "ldrsh">;
+
+// load sign-extended byte
+def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32, "ldrsb">;
+def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64, "ldrsb">;
+
+// load zero-extended byte
+def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32, "ldrb">;
+def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32, "ldrh">;
+
+// load sign-extended word
+def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64, "ldrsw">;
+
+//---
+// (immediate post-indexed)
+def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32, "ldr">;
+def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64, "ldr">;
+def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8, "ldr">;
+def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16, "ldr">;
+def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32, "ldr">;
+def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64, "ldr">;
+def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128, "ldr">;
+
+// load sign-extended half-word
+def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32, "ldrsh">;
+def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64, "ldrsh">;
+
+// load sign-extended byte
+def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32, "ldrsb">;
+def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64, "ldrsb">;
+
+// load zero-extended byte
+def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32, "ldrb">;
+def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32, "ldrh">;
+
+// load sign-extended word
+def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64, "ldrsw">;
+
+//===----------------------------------------------------------------------===//
+// Store instructions.
+//===----------------------------------------------------------------------===//
+
+// Pair (indexed, offset)
+// FIXME: Use dedicated range-checked addressing mode operand here.
+defm STPW : StorePairOffset<0b00, 0, GPR32, simm7s4, "stp">;
+defm STPX : StorePairOffset<0b10, 0, GPR64, simm7s8, "stp">;
+defm STPS : StorePairOffset<0b00, 1, FPR32, simm7s4, "stp">;
+defm STPD : StorePairOffset<0b01, 1, FPR64, simm7s8, "stp">;
+defm STPQ : StorePairOffset<0b10, 1, FPR128, simm7s16, "stp">;
+
+// Pair (pre-indexed)
+def STPWpre : StorePairPreIdx<0b00, 0, GPR32, simm7s4, "stp">;
+def STPXpre : StorePairPreIdx<0b10, 0, GPR64, simm7s8, "stp">;
+def STPSpre : StorePairPreIdx<0b00, 1, FPR32, simm7s4, "stp">;
+def STPDpre : StorePairPreIdx<0b01, 1, FPR64, simm7s8, "stp">;
+def STPQpre : StorePairPreIdx<0b10, 1, FPR128, simm7s16, "stp">;
+
+// Pair (pre-indexed)
+def STPWpost : StorePairPostIdx<0b00, 0, GPR32, simm7s4, "stp">;
+def STPXpost : StorePairPostIdx<0b10, 0, GPR64, simm7s8, "stp">;
+def STPSpost : StorePairPostIdx<0b00, 1, FPR32, simm7s4, "stp">;
+def STPDpost : StorePairPostIdx<0b01, 1, FPR64, simm7s8, "stp">;
+def STPQpost : StorePairPostIdx<0b10, 1, FPR128, simm7s16, "stp">;
+
+// Pair (no allocate)
+defm STNPW : StorePairNoAlloc<0b00, 0, GPR32, simm7s4, "stnp">;
+defm STNPX : StorePairNoAlloc<0b10, 0, GPR64, simm7s8, "stnp">;
+defm STNPS : StorePairNoAlloc<0b00, 1, FPR32, simm7s4, "stnp">;
+defm STNPD : StorePairNoAlloc<0b01, 1, FPR64, simm7s8, "stnp">;
+defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128, simm7s16, "stnp">;
+
+//---
+// (Register offset)
+
+// Integer
+defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
+defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
+defm STRW : Store32RO<0b10, 0, 0b00, GPR32, "str", i32, store>;
+defm STRX : Store64RO<0b11, 0, 0b00, GPR64, "str", i64, store>;
+
+
+// Floating-point
+defm STRB : Store8RO< 0b00, 1, 0b00, FPR8, "str", untyped, store>;
+defm STRH : Store16RO<0b01, 1, 0b00, FPR16, "str", f16, store>;
+defm STRS : Store32RO<0b10, 1, 0b00, FPR32, "str", f32, store>;
+defm STRD : Store64RO<0b11, 1, 0b00, FPR64, "str", f64, store>;
+defm STRQ : Store128RO<0b00, 1, 0b10, FPR128, "str", f128, store>;
+
+multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
+ Instruction STRW, Instruction STRX> {
+
+ def : Pat<(storeop GPR64:$Rt,
+ (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
+ (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
+ GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
+
+ def : Pat<(storeop GPR64:$Rt,
+ (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
+ (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
+ GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
+}
+
+let AddedComplexity = 10 in {
+ // truncstore i64
+ defm : TruncStoreFrom64ROPat<ro8, truncstorei8, STRBBroW, STRBBroX>;
+ defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
+ defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW, STRWroX>;
+}
+
+multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
+ Instruction STRW, Instruction STRX> {
+ def : Pat<(store (VecTy FPR:$Rt),
+ (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
+ (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
+
+ def : Pat<(store (VecTy FPR:$Rt),
+ (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
+ (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
+}
+
+let AddedComplexity = 10 in {
+// Match all store 64 bits width whose type is compatible with FPR64
+let Predicates = [IsLE] in {
+ // We must use ST1 to store vectors in big-endian.
+ defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
+ defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
+ defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
+ defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
+}
+
+defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
+defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;
+
+// Match all store 128 bits width whose type is compatible with FPR128
+let Predicates = [IsLE] in {
+ // We must use ST1 to store vectors in big-endian.
+ defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
+ defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
+ defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
+ defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
+ defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
+ defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
+}
+} // AddedComplexity = 10
+
+//---
+// (unsigned immediate)
+defm STRX : StoreUI<0b11, 0, 0b00, GPR64, uimm12s8, "str",
+ [(store GPR64:$Rt,
+ (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
+defm STRW : StoreUI<0b10, 0, 0b00, GPR32, uimm12s4, "str",
+ [(store GPR32:$Rt,
+ (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
+defm STRB : StoreUI<0b00, 1, 0b00, FPR8, uimm12s1, "str",
+ [(store FPR8:$Rt,
+ (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
+defm STRH : StoreUI<0b01, 1, 0b00, FPR16, uimm12s2, "str",
+ [(store (f16 FPR16:$Rt),
+ (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
+defm STRS : StoreUI<0b10, 1, 0b00, FPR32, uimm12s4, "str",
+ [(store (f32 FPR32:$Rt),
+ (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
+defm STRD : StoreUI<0b11, 1, 0b00, FPR64, uimm12s8, "str",
+ [(store (f64 FPR64:$Rt),
+ (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
+defm STRQ : StoreUI<0b00, 1, 0b10, FPR128, uimm12s16, "str", []>;
+
+defm STRHH : StoreUI<0b01, 0, 0b00, GPR32, uimm12s2, "strh",
+ [(truncstorei16 GPR32:$Rt,
+ (am_indexed16 GPR64sp:$Rn,
+ uimm12s2:$offset))]>;
+defm STRBB : StoreUI<0b00, 0, 0b00, GPR32, uimm12s1, "strb",
+ [(truncstorei8 GPR32:$Rt,
+ (am_indexed8 GPR64sp:$Rn,
+ uimm12s1:$offset))]>;
+
+// Match all store 64 bits width whose type is compatible with FPR64
+let AddedComplexity = 10 in {
+let Predicates = [IsLE] in {
+ // We must use ST1 to store vectors in big-endian.
+ def : Pat<(store (v2f32 FPR64:$Rt),
+ (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
+ (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
+ def : Pat<(store (v8i8 FPR64:$Rt),
+ (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
+ (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
+ def : Pat<(store (v4i16 FPR64:$Rt),
+ (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
+ (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
+ def : Pat<(store (v2i32 FPR64:$Rt),
+ (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
+ (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
+}
+def : Pat<(store (v1f64 FPR64:$Rt),
+ (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
+ (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
+def : Pat<(store (v1i64 FPR64:$Rt),
+ (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
+ (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
+
+// Match all store 128 bits width whose type is compatible with FPR128
+let Predicates = [IsLE] in {
+ // We must use ST1 to store vectors in big-endian.
+ def : Pat<(store (v4f32 FPR128:$Rt),
+ (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
+ (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(store (v2f64 FPR128:$Rt),
+ (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
+ (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(store (v16i8 FPR128:$Rt),
+ (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
+ (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(store (v8i16 FPR128:$Rt),
+ (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
+ (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(store (v4i32 FPR128:$Rt),
+ (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
+ (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(store (v2i64 FPR128:$Rt),
+ (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
+ (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
+}
+def : Pat<(store (f128 FPR128:$Rt),
+ (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
+ (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
+
+// truncstore i64
+def : Pat<(truncstorei32 GPR64:$Rt,
+ (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
+ (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
+def : Pat<(truncstorei16 GPR64:$Rt,
+ (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
+ (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
+def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
+ (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;
+
+} // AddedComplexity = 10
+
+//---
+// (unscaled immediate)
+defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64, "stur",
+ [(store GPR64:$Rt,
+ (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
+defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32, "stur",
+ [(store GPR32:$Rt,
+ (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
+defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8, "stur",
+ [(store FPR8:$Rt,
+ (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
+defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16, "stur",
+ [(store (f16 FPR16:$Rt),
+ (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
+defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32, "stur",
+ [(store (f32 FPR32:$Rt),
+ (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
+defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64, "stur",
+ [(store (f64 FPR64:$Rt),
+ (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
+defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128, "stur",
+ [(store (f128 FPR128:$Rt),
+ (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
+defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32, "sturh",
+ [(truncstorei16 GPR32:$Rt,
+ (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
+defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32, "sturb",
+ [(truncstorei8 GPR32:$Rt,
+ (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
+
+// Match all store 64 bits width whose type is compatible with FPR64
+let Predicates = [IsLE] in {
+ // We must use ST1 to store vectors in big-endian.
+ def : Pat<(store (v2f32 FPR64:$Rt),
+ (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
+ (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(store (v8i8 FPR64:$Rt),
+ (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
+ (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(store (v4i16 FPR64:$Rt),
+ (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
+ (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(store (v2i32 FPR64:$Rt),
+ (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
+ (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+}
+def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
+ (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
+ (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+
+// Match all store 128 bits width whose type is compatible with FPR128
+let Predicates = [IsLE] in {
+ // We must use ST1 to store vectors in big-endian.
+ def : Pat<(store (v4f32 FPR128:$Rt),
+ (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
+ (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(store (v2f64 FPR128:$Rt),
+ (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
+ (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(store (v16i8 FPR128:$Rt),
+ (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
+ (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(store (v8i16 FPR128:$Rt),
+ (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
+ (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(store (v4i32 FPR128:$Rt),
+ (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
+ (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(store (v2i64 FPR128:$Rt),
+ (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
+ (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(store (v2f64 FPR128:$Rt),
+ (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
+ (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+}
+
+// unscaled i64 truncating stores
+def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
+ (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
+def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
+ (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
+def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
+ (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
+
+//---
+// STR mnemonics fall back to STUR for negative or unaligned offsets.
+def : InstAlias<"str $Rt, [$Rn, $offset]",
+ (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
+def : InstAlias<"str $Rt, [$Rn, $offset]",
+ (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
+def : InstAlias<"str $Rt, [$Rn, $offset]",
+ (STURBi FPR8:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
+def : InstAlias<"str $Rt, [$Rn, $offset]",
+ (STURHi FPR16:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
+def : InstAlias<"str $Rt, [$Rn, $offset]",
+ (STURSi FPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
+def : InstAlias<"str $Rt, [$Rn, $offset]",
+ (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
+def : InstAlias<"str $Rt, [$Rn, $offset]",
+ (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
+
+def : InstAlias<"strb $Rt, [$Rn, $offset]",
+ (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
+def : InstAlias<"strh $Rt, [$Rn, $offset]",
+ (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
+
+//---
+// (unscaled immediate, unprivileged)
+defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
+defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
+
+defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
+defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
+
+//---
+// (immediate pre-indexed)
+def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32, "str", pre_store, i32>;
+def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64, "str", pre_store, i64>;
+def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8, "str", pre_store, untyped>;
+def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16, "str", pre_store, f16>;
+def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32, "str", pre_store, f32>;
+def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64, "str", pre_store, f64>;
+def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128, "str", pre_store, f128>;
+
+def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32, "strb", pre_truncsti8, i32>;
+def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32, "strh", pre_truncsti16, i32>;
+
+// truncstore i64
+def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
+ (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
+ simm9:$off)>;
+def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
+ (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
+ simm9:$off)>;
+def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
+ (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
+ simm9:$off)>;
+
+def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+
+def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+
+//---
+// (immediate post-indexed)
+def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32, "str", post_store, i32>;
+def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64, "str", post_store, i64>;
+def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8, "str", post_store, untyped>;
+def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16, "str", post_store, f16>;
+def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32, "str", post_store, f32>;
+def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64, "str", post_store, f64>;
+def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128, "str", post_store, f128>;
+
+def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32, "strb", post_truncsti8, i32>;
+def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32, "strh", post_truncsti16, i32>;
+
+// truncstore i64
+def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
+ (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
+ simm9:$off)>;
+def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
+ (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
+ simm9:$off)>;
+def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
+ (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
+ simm9:$off)>;
+
+def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+
+def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+
+//===----------------------------------------------------------------------===//
+// Load/store exclusive instructions.
+//===----------------------------------------------------------------------===//
+
+def LDARW : LoadAcquire <0b10, 1, 1, 0, 1, GPR32, "ldar">;
+def LDARX : LoadAcquire <0b11, 1, 1, 0, 1, GPR64, "ldar">;
+def LDARB : LoadAcquire <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
+def LDARH : LoadAcquire <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
+
+def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
+def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
+def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
+def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
+
+def LDXRW : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
+def LDXRX : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
+def LDXRB : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
+def LDXRH : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
+
+def STLRW : StoreRelease <0b10, 1, 0, 0, 1, GPR32, "stlr">;
+def STLRX : StoreRelease <0b11, 1, 0, 0, 1, GPR64, "stlr">;
+def STLRB : StoreRelease <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
+def STLRH : StoreRelease <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
+
+def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
+def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
+def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
+def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
+
+def STXRW : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
+def STXRX : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
+def STXRB : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
+def STXRH : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
+
+def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
+def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
+
+def LDXPW : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
+def LDXPX : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
+
+def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
+def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
+
+def STXPW : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
+def STXPX : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
+
+//===----------------------------------------------------------------------===//
+// Scaled floating point to integer conversion instructions.
+//===----------------------------------------------------------------------===//
+
+defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
+defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
+defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
+defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
+defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
+defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
+defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
+defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
+defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
+defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
+defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
+defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
+let isCodeGenOnly = 1 in {
+defm FCVTZS_Int : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", int_aarch64_neon_fcvtzs>;
+defm FCVTZU_Int : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", int_aarch64_neon_fcvtzu>;
+defm FCVTZS_Int : FPToIntegerScaled<0b11, 0b000, "fcvtzs", int_aarch64_neon_fcvtzs>;
+defm FCVTZU_Int : FPToIntegerScaled<0b11, 0b001, "fcvtzu", int_aarch64_neon_fcvtzu>;
+}
+
+//===----------------------------------------------------------------------===//
+// Scaled integer to floating point conversion instructions.
+//===----------------------------------------------------------------------===//
+
+defm SCVTF : IntegerToFP<0, "scvtf", sint_to_fp>;
+defm UCVTF : IntegerToFP<1, "ucvtf", uint_to_fp>;
+
+//===----------------------------------------------------------------------===//
+// Unscaled integer to floating point conversion instruction.
+//===----------------------------------------------------------------------===//
+
+defm FMOV : UnscaledConversion<"fmov">;
+
+def : Pat<(f32 (fpimm0)), (FMOVWSr WZR)>, Requires<[NoZCZ]>;
+def : Pat<(f64 (fpimm0)), (FMOVXDr XZR)>, Requires<[NoZCZ]>;
+
+//===----------------------------------------------------------------------===//
+// Floating point conversion instruction.
+//===----------------------------------------------------------------------===//
+
+defm FCVT : FPConversion<"fcvt">;
+
+//===----------------------------------------------------------------------===//
+// Floating point single operand instructions.
+//===----------------------------------------------------------------------===//
+
+defm FABS : SingleOperandFPData<0b0001, "fabs", fabs>;
+defm FMOV : SingleOperandFPData<0b0000, "fmov">;
+defm FNEG : SingleOperandFPData<0b0010, "fneg", fneg>;
+defm FRINTA : SingleOperandFPData<0b1100, "frinta", frnd>;
+defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
+defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
+defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>;
+defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
+
+def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))),
+ (FRINTNDr FPR64:$Rn)>;
+
+// FRINTX is inserted to set the flags as required by FENV_ACCESS ON behavior
+// in the C spec. Setting hasSideEffects ensures it is not DCE'd.
+// <rdar://problem/13715968>
+// TODO: We should really model the FPSR flags correctly. This is really ugly.
+let hasSideEffects = 1 in {
+defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
+}
+
+defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
+
+let SchedRW = [WriteFDiv] in {
+defm FSQRT : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
+}
+
+//===----------------------------------------------------------------------===//
+// Floating point two operand instructions.
+//===----------------------------------------------------------------------===//
+
+defm FADD : TwoOperandFPData<0b0010, "fadd", fadd>;
+let SchedRW = [WriteFDiv] in {
+defm FDIV : TwoOperandFPData<0b0001, "fdiv", fdiv>;
+}
+defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", int_aarch64_neon_fmaxnm>;
+defm FMAX : TwoOperandFPData<0b0100, "fmax", AArch64fmax>;
+defm FMINNM : TwoOperandFPData<0b0111, "fminnm", int_aarch64_neon_fminnm>;
+defm FMIN : TwoOperandFPData<0b0101, "fmin", AArch64fmin>;
+let SchedRW = [WriteFMul] in {
+defm FMUL : TwoOperandFPData<0b0000, "fmul", fmul>;
+defm FNMUL : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
+}
+defm FSUB : TwoOperandFPData<0b0011, "fsub", fsub>;
+
+def : Pat<(v1f64 (AArch64fmax (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
+ (FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
+def : Pat<(v1f64 (AArch64fmin (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
+ (FMINDrr FPR64:$Rn, FPR64:$Rm)>;
+def : Pat<(v1f64 (int_aarch64_neon_fmaxnm (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
+ (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
+def : Pat<(v1f64 (int_aarch64_neon_fminnm (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
+ (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
+
+//===----------------------------------------------------------------------===//
+// Floating point three operand instructions.
+//===----------------------------------------------------------------------===//
+
+defm FMADD : ThreeOperandFPData<0, 0, "fmadd", fma>;
+defm FMSUB : ThreeOperandFPData<0, 1, "fmsub",
+ TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
+defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
+ TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
+defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
+ TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
+
+// The following def pats catch the case where the LHS of an FMA is negated.
+// The TriOpFrag above catches the case where the middle operand is negated.
+
+// N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
+// the NEON variant.
+def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
+ (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
+
+def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
+ (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
+
+// We handled -(a + b*c) for FNMADD above, now it's time for "(-a) + (-b)*c" and
+// "(-a) + b*(-c)".
+def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
+ (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
+
+def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
+ (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
+
+def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))),
+ (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
+
+def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))),
+ (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
+
+//===----------------------------------------------------------------------===//
+// Floating point comparison instructions.
+//===----------------------------------------------------------------------===//
+
+defm FCMPE : FPComparison<1, "fcmpe">;
+defm FCMP : FPComparison<0, "fcmp", AArch64fcmp>;
+
+//===----------------------------------------------------------------------===//
+// Floating point conditional comparison instructions.
+//===----------------------------------------------------------------------===//
+
+defm FCCMPE : FPCondComparison<1, "fccmpe">;
+defm FCCMP : FPCondComparison<0, "fccmp">;
+
+//===----------------------------------------------------------------------===//
+// Floating point conditional select instruction.
+//===----------------------------------------------------------------------===//
+
+defm FCSEL : FPCondSelect<"fcsel">;
+
+// CSEL instructions providing f128 types need to be handled by a
+// pseudo-instruction since the eventual code will need to introduce basic
+// blocks and control flow.
+def F128CSEL : Pseudo<(outs FPR128:$Rd),
+ (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
+ [(set (f128 FPR128:$Rd),
+ (AArch64csel FPR128:$Rn, FPR128:$Rm,
+ (i32 imm:$cond), NZCV))]> {
+ let Uses = [NZCV];
+ let usesCustomInserter = 1;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Floating point immediate move.
+//===----------------------------------------------------------------------===//
+
+let isReMaterializable = 1 in {
+defm FMOV : FPMoveImmediate<"fmov">;
+}
+
+//===----------------------------------------------------------------------===//
+// Advanced SIMD two vector instructions.
+//===----------------------------------------------------------------------===//
+
+defm ABS : SIMDTwoVectorBHSD<0, 0b01011, "abs", int_aarch64_neon_abs>;
+defm CLS : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
+defm CLZ : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
+defm CMEQ : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
+defm CMGE : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
+defm CMGT : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
+defm CMLE : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
+defm CMLT : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
+defm CNT : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
+defm FABS : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
+
+defm FCMEQ : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
+defm FCMGE : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
+defm FCMGT : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
+defm FCMLE : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
+defm FCMLT : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
+defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
+defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
+defm FCVTL : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
+def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
+ (FCVTLv4i16 V64:$Rn)>;
+def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
+ (i64 4)))),
+ (FCVTLv8i16 V128:$Rn)>;
+def : Pat<(v2f64 (fextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
+def : Pat<(v2f64 (fextend (v2f32 (extract_subvector (v4f32 V128:$Rn),
+ (i64 2))))),
+ (FCVTLv4i32 V128:$Rn)>;
+
+defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
+defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
+defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
+defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
+defm FCVTN : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
+def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
+ (FCVTNv4i16 V128:$Rn)>;
+def : Pat<(concat_vectors V64:$Rd,
+ (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
+ (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
+def : Pat<(v2f32 (fround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
+def : Pat<(concat_vectors V64:$Rd, (v2f32 (fround (v2f64 V128:$Rn)))),
+ (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
+defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
+defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
+defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
+ int_aarch64_neon_fcvtxn>;
+defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
+defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
+let isCodeGenOnly = 1 in {
+defm FCVTZS_Int : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs",
+ int_aarch64_neon_fcvtzs>;
+defm FCVTZU_Int : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu",
+ int_aarch64_neon_fcvtzu>;
+}
+defm FNEG : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
+defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
+defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", frnd>;
+defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
+defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
+defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>;
+defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
+defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
+defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
+defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
+defm FSQRT : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
+defm NEG : SIMDTwoVectorBHSD<1, 0b01011, "neg",
+ UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
+defm NOT : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
+// Aliases for MVN -> NOT.
+def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
+ (NOTv8i8 V64:$Vd, V64:$Vn)>;
+def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
+ (NOTv16i8 V128:$Vd, V128:$Vn)>;
+
+def : Pat<(AArch64neg (v8i8 V64:$Rn)), (NEGv8i8 V64:$Rn)>;
+def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
+def : Pat<(AArch64neg (v4i16 V64:$Rn)), (NEGv4i16 V64:$Rn)>;
+def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
+def : Pat<(AArch64neg (v2i32 V64:$Rn)), (NEGv2i32 V64:$Rn)>;
+def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
+def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;
+
+def : Pat<(AArch64not (v8i8 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
+def : Pat<(AArch64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
+def : Pat<(AArch64not (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
+def : Pat<(AArch64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
+def : Pat<(AArch64not (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
+def : Pat<(AArch64not (v1i64 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
+def : Pat<(AArch64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
+def : Pat<(AArch64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
+
+def : Pat<(vnot (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
+def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
+def : Pat<(vnot (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
+def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
+def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
+
+defm RBIT : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>;
+defm REV16 : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
+defm REV32 : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
+defm REV64 : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
+defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
+ BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
+defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
+defm SCVTF : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
+defm SHLL : SIMDVectorLShiftLongBySizeBHS;
+defm SQABS : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
+defm SQNEG : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
+defm SQXTN : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
+defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
+defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
+defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
+ BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >;
+defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
+ int_aarch64_neon_uaddlp>;
+defm UCVTF : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
+defm UQXTN : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
+defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
+defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
+defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
+defm XTN : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
+
+def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>;
+def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
+
+// Patterns for vector long shift (by element width). These need to match all
+// three of zext, sext and anyext so it's easier to pull the patterns out of the
+// definition.
+multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
+ def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
+ (SHLLv8i8 V64:$Rn)>;
+ def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
+ (SHLLv16i8 V128:$Rn)>;
+ def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
+ (SHLLv4i16 V64:$Rn)>;
+ def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
+ (SHLLv8i16 V128:$Rn)>;
+ def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
+ (SHLLv2i32 V64:$Rn)>;
+ def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
+ (SHLLv4i32 V128:$Rn)>;
+}
+
+defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
+defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
+defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
+
+//===----------------------------------------------------------------------===//
+// Advanced SIMD three vector instructions.
+//===----------------------------------------------------------------------===//
+
+defm ADD : SIMDThreeSameVector<0, 0b10000, "add", add>;
+defm ADDP : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
+defm CMEQ : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
+defm CMGE : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
+defm CMGT : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
+defm CMHI : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
+defm CMHS : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
+defm CMTST : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
+defm FABD : SIMDThreeSameVectorFP<1,1,0b11010,"fabd", int_aarch64_neon_fabd>;
+defm FACGE : SIMDThreeSameVectorFPCmp<1,0,0b11101,"facge",int_aarch64_neon_facge>;
+defm FACGT : SIMDThreeSameVectorFPCmp<1,1,0b11101,"facgt",int_aarch64_neon_facgt>;
+defm FADDP : SIMDThreeSameVectorFP<1,0,0b11010,"faddp",int_aarch64_neon_addp>;
+defm FADD : SIMDThreeSameVectorFP<0,0,0b11010,"fadd", fadd>;
+defm FCMEQ : SIMDThreeSameVectorFPCmp<0, 0, 0b11100, "fcmeq", AArch64fcmeq>;
+defm FCMGE : SIMDThreeSameVectorFPCmp<1, 0, 0b11100, "fcmge", AArch64fcmge>;
+defm FCMGT : SIMDThreeSameVectorFPCmp<1, 1, 0b11100, "fcmgt", AArch64fcmgt>;
+defm FDIV : SIMDThreeSameVectorFP<1,0,0b11111,"fdiv", fdiv>;
+defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b11000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
+defm FMAXNM : SIMDThreeSameVectorFP<0,0,0b11000,"fmaxnm", int_aarch64_neon_fmaxnm>;
+defm FMAXP : SIMDThreeSameVectorFP<1,0,0b11110,"fmaxp", int_aarch64_neon_fmaxp>;
+defm FMAX : SIMDThreeSameVectorFP<0,0,0b11110,"fmax", AArch64fmax>;
+defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b11000,"fminnmp", int_aarch64_neon_fminnmp>;
+defm FMINNM : SIMDThreeSameVectorFP<0,1,0b11000,"fminnm", int_aarch64_neon_fminnm>;
+defm FMINP : SIMDThreeSameVectorFP<1,1,0b11110,"fminp", int_aarch64_neon_fminp>;
+defm FMIN : SIMDThreeSameVectorFP<0,1,0b11110,"fmin", AArch64fmin>;
+
+// NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
+// instruction expects the addend first, while the fma intrinsic puts it last.
+defm FMLA : SIMDThreeSameVectorFPTied<0, 0, 0b11001, "fmla",
+ TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
+defm FMLS : SIMDThreeSameVectorFPTied<0, 1, 0b11001, "fmls",
+ TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
+
+// The following def pats catch the case where the LHS of an FMA is negated.
+// The TriOpFrag above catches the case where the middle operand is negated.
+def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)),
+ (FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>;
+
+def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
+ (FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>;
+
+def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
+ (FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>;
+
+defm FMULX : SIMDThreeSameVectorFP<0,0,0b11011,"fmulx", int_aarch64_neon_fmulx>;
+defm FMUL : SIMDThreeSameVectorFP<1,0,0b11011,"fmul", fmul>;
+defm FRECPS : SIMDThreeSameVectorFP<0,0,0b11111,"frecps", int_aarch64_neon_frecps>;
+defm FRSQRTS : SIMDThreeSameVectorFP<0,1,0b11111,"frsqrts", int_aarch64_neon_frsqrts>;
+defm FSUB : SIMDThreeSameVectorFP<0,1,0b11010,"fsub", fsub>;
+defm MLA : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla",
+ TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))> >;
+defm MLS : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls",
+ TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))> >;
+defm MUL : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
+defm PMUL : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
+defm SABA : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
+ TriOpFrag<(add node:$LHS, (int_aarch64_neon_sabd node:$MHS, node:$RHS))> >;
+defm SABD : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_aarch64_neon_sabd>;
+defm SHADD : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_aarch64_neon_shadd>;
+defm SHSUB : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
+defm SMAXP : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
+defm SMAX : SIMDThreeSameVectorBHS<0,0b01100,"smax", int_aarch64_neon_smax>;
+defm SMINP : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
+defm SMIN : SIMDThreeSameVectorBHS<0,0b01101,"smin", int_aarch64_neon_smin>;
+defm SQADD : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
+defm SQDMULH : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
+defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
+defm SQRSHL : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
+defm SQSHL : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
+defm SQSUB : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
+defm SRHADD : SIMDThreeSameVectorBHS<0,0b00010,"srhadd",int_aarch64_neon_srhadd>;
+defm SRSHL : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
+defm SSHL : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
+defm SUB : SIMDThreeSameVector<1,0b10000,"sub", sub>;
+defm UABA : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
+ TriOpFrag<(add node:$LHS, (int_aarch64_neon_uabd node:$MHS, node:$RHS))> >;
+defm UABD : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_aarch64_neon_uabd>;
+defm UHADD : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_aarch64_neon_uhadd>;
+defm UHSUB : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
+defm UMAXP : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
+defm UMAX : SIMDThreeSameVectorBHS<1,0b01100,"umax", int_aarch64_neon_umax>;
+defm UMINP : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
+defm UMIN : SIMDThreeSameVectorBHS<1,0b01101,"umin", int_aarch64_neon_umin>;
+defm UQADD : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
+defm UQRSHL : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
+defm UQSHL : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
+defm UQSUB : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
+defm URHADD : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", int_aarch64_neon_urhadd>;
+defm URSHL : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
+defm USHL : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
+
+defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
+defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
+ BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
+defm BIF : SIMDLogicalThreeVector<1, 0b11, "bif">;
+defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
+defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl",
+ TriOpFrag<(or (and node:$LHS, node:$MHS), (and (vnot node:$LHS), node:$RHS))>>;
+defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
+defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
+ BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
+defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
+
+def : Pat<(AArch64bsl (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
+ (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
+def : Pat<(AArch64bsl (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
+ (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
+def : Pat<(AArch64bsl (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
+ (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
+def : Pat<(AArch64bsl (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
+ (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
+
+def : Pat<(AArch64bsl (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
+ (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
+def : Pat<(AArch64bsl (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
+ (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
+def : Pat<(AArch64bsl (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
+ (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
+def : Pat<(AArch64bsl (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
+ (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
+
+def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
+ (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
+def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
+ (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
+def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
+ (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
+def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
+ (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
+
+def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
+ (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
+def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
+ (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
+def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
+ (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
+def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
+ (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
+
+def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
+ "|cmls.8b\t$dst, $src1, $src2}",
+ (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
+ "|cmls.16b\t$dst, $src1, $src2}",
+ (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
+ "|cmls.4h\t$dst, $src1, $src2}",
+ (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
+ "|cmls.8h\t$dst, $src1, $src2}",
+ (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
+ "|cmls.2s\t$dst, $src1, $src2}",
+ (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
+ "|cmls.4s\t$dst, $src1, $src2}",
+ (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
+ "|cmls.2d\t$dst, $src1, $src2}",
+ (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
+
+def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
+ "|cmlo.8b\t$dst, $src1, $src2}",
+ (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
+ "|cmlo.16b\t$dst, $src1, $src2}",
+ (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
+ "|cmlo.4h\t$dst, $src1, $src2}",
+ (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
+ "|cmlo.8h\t$dst, $src1, $src2}",
+ (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
+ "|cmlo.2s\t$dst, $src1, $src2}",
+ (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
+ "|cmlo.4s\t$dst, $src1, $src2}",
+ (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
+ "|cmlo.2d\t$dst, $src1, $src2}",
+ (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
+
+def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
+ "|cmle.8b\t$dst, $src1, $src2}",
+ (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
+ "|cmle.16b\t$dst, $src1, $src2}",
+ (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
+ "|cmle.4h\t$dst, $src1, $src2}",
+ (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
+ "|cmle.8h\t$dst, $src1, $src2}",
+ (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
+ "|cmle.2s\t$dst, $src1, $src2}",
+ (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
+ "|cmle.4s\t$dst, $src1, $src2}",
+ (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
+ "|cmle.2d\t$dst, $src1, $src2}",
+ (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
+
+def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
+ "|cmlt.8b\t$dst, $src1, $src2}",
+ (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
+ "|cmlt.16b\t$dst, $src1, $src2}",
+ (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
+ "|cmlt.4h\t$dst, $src1, $src2}",
+ (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
+ "|cmlt.8h\t$dst, $src1, $src2}",
+ (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
+ "|cmlt.2s\t$dst, $src1, $src2}",
+ (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
+ "|cmlt.4s\t$dst, $src1, $src2}",
+ (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
+ "|cmlt.2d\t$dst, $src1, $src2}",
+ (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
+
+def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
+ "|fcmle.2s\t$dst, $src1, $src2}",
+ (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
+ "|fcmle.4s\t$dst, $src1, $src2}",
+ (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
+ "|fcmle.2d\t$dst, $src1, $src2}",
+ (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
+
+def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
+ "|fcmlt.2s\t$dst, $src1, $src2}",
+ (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
+ "|fcmlt.4s\t$dst, $src1, $src2}",
+ (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
+ "|fcmlt.2d\t$dst, $src1, $src2}",
+ (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
+
+def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
+ "|facle.2s\t$dst, $src1, $src2}",
+ (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
+ "|facle.4s\t$dst, $src1, $src2}",
+ (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
+ "|facle.2d\t$dst, $src1, $src2}",
+ (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
+
+def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
+ "|faclt.2s\t$dst, $src1, $src2}",
+ (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
+def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
+ "|faclt.4s\t$dst, $src1, $src2}",
+ (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
+def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
+ "|faclt.2d\t$dst, $src1, $src2}",
+ (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
+
+//===----------------------------------------------------------------------===//
+// Advanced SIMD three scalar instructions.
+//===----------------------------------------------------------------------===//
+
+defm ADD : SIMDThreeScalarD<0, 0b10000, "add", add>;
+defm CMEQ : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
+defm CMGE : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
+defm CMGT : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
+defm CMHI : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
+defm CMHS : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
+defm CMTST : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
+defm FABD : SIMDThreeScalarSD<1, 1, 0b11010, "fabd", int_aarch64_sisd_fabd>;
+def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
+ (FABD64 FPR64:$Rn, FPR64:$Rm)>;
+defm FACGE : SIMDThreeScalarFPCmp<1, 0, 0b11101, "facge",
+ int_aarch64_neon_facge>;
+defm FACGT : SIMDThreeScalarFPCmp<1, 1, 0b11101, "facgt",
+ int_aarch64_neon_facgt>;
+defm FCMEQ : SIMDThreeScalarFPCmp<0, 0, 0b11100, "fcmeq", AArch64fcmeq>;
+defm FCMGE : SIMDThreeScalarFPCmp<1, 0, 0b11100, "fcmge", AArch64fcmge>;
+defm FCMGT : SIMDThreeScalarFPCmp<1, 1, 0b11100, "fcmgt", AArch64fcmgt>;
+defm FMULX : SIMDThreeScalarSD<0, 0, 0b11011, "fmulx", int_aarch64_neon_fmulx>;
+defm FRECPS : SIMDThreeScalarSD<0, 0, 0b11111, "frecps", int_aarch64_neon_frecps>;
+defm FRSQRTS : SIMDThreeScalarSD<0, 1, 0b11111, "frsqrts", int_aarch64_neon_frsqrts>;
+defm SQADD : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
+defm SQDMULH : SIMDThreeScalarHS< 0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
+defm SQRDMULH : SIMDThreeScalarHS< 1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
+defm SQRSHL : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
+defm SQSHL : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
+defm SQSUB : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
+defm SRSHL : SIMDThreeScalarD< 0, 0b01010, "srshl", int_aarch64_neon_srshl>;
+defm SSHL : SIMDThreeScalarD< 0, 0b01000, "sshl", int_aarch64_neon_sshl>;
+defm SUB : SIMDThreeScalarD< 1, 0b10000, "sub", sub>;
+defm UQADD : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
+defm UQRSHL : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
+defm UQSHL : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
+defm UQSUB : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
+defm URSHL : SIMDThreeScalarD< 1, 0b01010, "urshl", int_aarch64_neon_urshl>;
+defm USHL : SIMDThreeScalarD< 1, 0b01000, "ushl", int_aarch64_neon_ushl>;
+
+def : InstAlias<"cmls $dst, $src1, $src2",
+ (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
+def : InstAlias<"cmle $dst, $src1, $src2",
+ (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
+def : InstAlias<"cmlo $dst, $src1, $src2",
+ (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
+def : InstAlias<"cmlt $dst, $src1, $src2",
+ (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
+def : InstAlias<"fcmle $dst, $src1, $src2",
+ (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
+def : InstAlias<"fcmle $dst, $src1, $src2",
+ (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
+def : InstAlias<"fcmlt $dst, $src1, $src2",
+ (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
+def : InstAlias<"fcmlt $dst, $src1, $src2",
+ (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
+def : InstAlias<"facle $dst, $src1, $src2",
+ (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
+def : InstAlias<"facle $dst, $src1, $src2",
+ (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
+def : InstAlias<"faclt $dst, $src1, $src2",
+ (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
+def : InstAlias<"faclt $dst, $src1, $src2",
+ (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
+
+//===----------------------------------------------------------------------===//
+// Advanced SIMD three scalar instructions (mixed operands).
+//===----------------------------------------------------------------------===//
+defm SQDMULL : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
+ int_aarch64_neon_sqdmulls_scalar>;
+defm SQDMLAL : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
+defm SQDMLSL : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
+
+def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
+ (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
+ (i32 FPR32:$Rm))))),
+ (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
+def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
+ (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
+ (i32 FPR32:$Rm))))),
+ (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
+
+//===----------------------------------------------------------------------===//
+// Advanced SIMD two scalar instructions.
+//===----------------------------------------------------------------------===//
+
+defm ABS : SIMDTwoScalarD< 0, 0b01011, "abs", int_aarch64_neon_abs>;
+defm CMEQ : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
+defm CMGE : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
+defm CMGT : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
+defm CMLE : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
+defm CMLT : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
+defm FCMEQ : SIMDCmpTwoScalarSD<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
+defm FCMGE : SIMDCmpTwoScalarSD<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
+defm FCMGT : SIMDCmpTwoScalarSD<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
+defm FCMLE : SIMDCmpTwoScalarSD<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
+defm FCMLT : SIMDCmpTwoScalarSD<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
+defm FCVTAS : SIMDTwoScalarSD< 0, 0, 0b11100, "fcvtas">;
+defm FCVTAU : SIMDTwoScalarSD< 1, 0, 0b11100, "fcvtau">;
+defm FCVTMS : SIMDTwoScalarSD< 0, 0, 0b11011, "fcvtms">;
+defm FCVTMU : SIMDTwoScalarSD< 1, 0, 0b11011, "fcvtmu">;
+defm FCVTNS : SIMDTwoScalarSD< 0, 0, 0b11010, "fcvtns">;
+defm FCVTNU : SIMDTwoScalarSD< 1, 0, 0b11010, "fcvtnu">;
+defm FCVTPS : SIMDTwoScalarSD< 0, 1, 0b11010, "fcvtps">;
+defm FCVTPU : SIMDTwoScalarSD< 1, 1, 0b11010, "fcvtpu">;
+def FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
+defm FCVTZS : SIMDTwoScalarSD< 0, 1, 0b11011, "fcvtzs">;
+defm FCVTZU : SIMDTwoScalarSD< 1, 1, 0b11011, "fcvtzu">;
+defm FRECPE : SIMDTwoScalarSD< 0, 1, 0b11101, "frecpe">;
+defm FRECPX : SIMDTwoScalarSD< 0, 1, 0b11111, "frecpx">;
+defm FRSQRTE : SIMDTwoScalarSD< 1, 1, 0b11101, "frsqrte">;
+defm NEG : SIMDTwoScalarD< 1, 0b01011, "neg",
+ UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
+defm SCVTF : SIMDTwoScalarCVTSD< 0, 0, 0b11101, "scvtf", AArch64sitof>;
+defm SQABS : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
+defm SQNEG : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
+defm SQXTN : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
+defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
+defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
+ int_aarch64_neon_suqadd>;
+defm UCVTF : SIMDTwoScalarCVTSD< 1, 0, 0b11101, "ucvtf", AArch64uitof>;
+defm UQXTN : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
+defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
+ int_aarch64_neon_usqadd>;
+
+def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;
+
+def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
+ (FCVTASv1i64 FPR64:$Rn)>;
+def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
+ (FCVTAUv1i64 FPR64:$Rn)>;
+def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
+ (FCVTMSv1i64 FPR64:$Rn)>;
+def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
+ (FCVTMUv1i64 FPR64:$Rn)>;
+def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
+ (FCVTNSv1i64 FPR64:$Rn)>;
+def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
+ (FCVTNUv1i64 FPR64:$Rn)>;
+def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
+ (FCVTPSv1i64 FPR64:$Rn)>;
+def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
+ (FCVTPUv1i64 FPR64:$Rn)>;
+
+def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
+ (FRECPEv1i32 FPR32:$Rn)>;
+def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
+ (FRECPEv1i64 FPR64:$Rn)>;
+def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
+ (FRECPEv1i64 FPR64:$Rn)>;
+
+def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
+ (FRECPXv1i32 FPR32:$Rn)>;
+def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
+ (FRECPXv1i64 FPR64:$Rn)>;
+
+def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
+ (FRSQRTEv1i32 FPR32:$Rn)>;
+def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
+ (FRSQRTEv1i64 FPR64:$Rn)>;
+def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
+ (FRSQRTEv1i64 FPR64:$Rn)>;
+
+// If an integer is about to be converted to a floating point value,
+// just load it on the floating point unit.
+// Here are the patterns for 8 and 16-bits to float.
+// 8-bits -> float.
+multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
+ SDPatternOperator loadop, Instruction UCVTF,
+ ROAddrMode ro, Instruction LDRW, Instruction LDRX,
+ SubRegIndex sub> {
+ def : Pat<(DstTy (uint_to_fp (SrcTy
+ (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
+ ro.Wext:$extend))))),
+ (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
+ (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
+ sub))>;
+
+ def : Pat<(DstTy (uint_to_fp (SrcTy
+ (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
+ ro.Wext:$extend))))),
+ (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
+ (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
+ sub))>;
+}
+
+defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
+ UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
+def : Pat <(f32 (uint_to_fp (i32
+ (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
+ (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
+ (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
+def : Pat <(f32 (uint_to_fp (i32
+ (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
+ (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
+ (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
+// 16-bits -> float.
+defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
+ UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
+def : Pat <(f32 (uint_to_fp (i32
+ (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
+ (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
+ (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
+def : Pat <(f32 (uint_to_fp (i32
+ (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
+ (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
+ (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
+// 32-bits are handled in target specific dag combine:
+// performIntToFpCombine.
+// 64-bits integer to 32-bits floating point, not possible with
+// UCVTF on floating point registers (both source and destination
+// must have the same size).
+
+// Here are the patterns for 8, 16, 32, and 64-bits to double.
+// 8-bits -> double.
+defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
+ UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
+def : Pat <(f64 (uint_to_fp (i32
+ (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
+ (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
+def : Pat <(f64 (uint_to_fp (i32
+ (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
+ (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
+// 16-bits -> double.
+defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
+ UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
+def : Pat <(f64 (uint_to_fp (i32
+ (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
+ (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
+def : Pat <(f64 (uint_to_fp (i32
+ (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
+ (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
+// 32-bits -> double.
+defm : UIntToFPROLoadPat<f64, i32, load,
+ UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
+def : Pat <(f64 (uint_to_fp (i32
+ (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
+ (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
+def : Pat <(f64 (uint_to_fp (i32
+ (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
+ (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
+// 64-bits -> double are handled in target specific dag combine:
+// performIntToFpCombine.
+
+//===----------------------------------------------------------------------===//
+// Advanced SIMD three different-sized vector instructions.
+//===----------------------------------------------------------------------===//
+
+defm ADDHN : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
+defm SUBHN : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
+defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
+defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
+defm PMULL : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
+defm SABAL : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
+ int_aarch64_neon_sabd>;
+defm SABDL : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
+ int_aarch64_neon_sabd>;
+defm SADDL : SIMDLongThreeVectorBHS< 0, 0b0000, "saddl",
+ BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
+defm SADDW : SIMDWideThreeVectorBHS< 0, 0b0001, "saddw",
+ BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
+defm SMLAL : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
+ TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
+defm SMLSL : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
+ TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
+defm SMULL : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
+defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
+ int_aarch64_neon_sqadd>;
+defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
+ int_aarch64_neon_sqsub>;
+defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
+ int_aarch64_neon_sqdmull>;
+defm SSUBL : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
+ BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
+defm SSUBW : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
+ BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
+defm UABAL : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
+ int_aarch64_neon_uabd>;
+defm UABDL : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
+ int_aarch64_neon_uabd>;
+defm UADDL : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
+ BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>;
+defm UADDW : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
+ BinOpFrag<(add node:$LHS, (zext node:$RHS))>>;
+defm UMLAL : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
+ TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
+defm UMLSL : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
+ TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
+defm UMULL : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
+defm USUBL : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
+ BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>;
+defm USUBW : SIMDWideThreeVectorBHS< 1, 0b0011, "usubw",
+ BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;
+
+// Patterns for 64-bit pmull
+def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
+ (PMULLv1i64 V64:$Rn, V64:$Rm)>;
+def : Pat<(int_aarch64_neon_pmull64 (vector_extract (v2i64 V128:$Rn), (i64 1)),
+ (vector_extract (v2i64 V128:$Rm), (i64 1))),
+ (PMULLv2i64 V128:$Rn, V128:$Rm)>;
+
+// CodeGen patterns for addhn and subhn instructions, which can actually be
+// written in LLVM IR without too much difficulty.
+
+// ADDHN
+def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
+ (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
+def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
+ (i32 16))))),
+ (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
+def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
+ (i32 32))))),
+ (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
+def : Pat<(concat_vectors (v8i8 V64:$Rd),
+ (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
+ (i32 8))))),
+ (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
+ V128:$Rn, V128:$Rm)>;
+def : Pat<(concat_vectors (v4i16 V64:$Rd),
+ (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
+ (i32 16))))),
+ (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
+ V128:$Rn, V128:$Rm)>;
+def : Pat<(concat_vectors (v2i32 V64:$Rd),
+ (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
+ (i32 32))))),
+ (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
+ V128:$Rn, V128:$Rm)>;
+
+// SUBHN
+def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
+ (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
+def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
+ (i32 16))))),
+ (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
+def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
+ (i32 32))))),
+ (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
+def : Pat<(concat_vectors (v8i8 V64:$Rd),
+ (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
+ (i32 8))))),
+ (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
+ V128:$Rn, V128:$Rm)>;
+def : Pat<(concat_vectors (v4i16 V64:$Rd),
+ (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
+ (i32 16))))),
+ (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
+ V128:$Rn, V128:$Rm)>;
+def : Pat<(concat_vectors (v2i32 V64:$Rd),
+ (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
+ (i32 32))))),
+ (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
+ V128:$Rn, V128:$Rm)>;
+
+//----------------------------------------------------------------------------
+// AdvSIMD bitwise extract from vector instruction.
+//----------------------------------------------------------------------------
+
+defm EXT : SIMDBitwiseExtract<"ext">;
+
+def : Pat<(v4i16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
+ (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
+def : Pat<(v8i16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
+ (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
+def : Pat<(v2i32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
+ (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
+def : Pat<(v2f32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
+ (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
+def : Pat<(v4i32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
+ (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
+def : Pat<(v4f32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
+ (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
+def : Pat<(v2i64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
+ (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
+def : Pat<(v2f64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
+ (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
+
+// We use EXT to handle extract_subvector to copy the upper 64-bits of a
+// 128-bit vector.
+def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 8))),
+ (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
+def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 4))),
+ (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
+def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 2))),
+ (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
+def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 1))),
+ (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
+def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 2))),
+ (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
+def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 1))),
+ (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
+
+
+//----------------------------------------------------------------------------
+// AdvSIMD zip vector
+//----------------------------------------------------------------------------
+
+defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
+defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
+defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
+defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
+defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
+defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;
+
+//----------------------------------------------------------------------------
+// AdvSIMD TBL/TBX instructions
+//----------------------------------------------------------------------------
+
+defm TBL : SIMDTableLookup< 0, "tbl">;
+defm TBX : SIMDTableLookupTied<1, "tbx">;
+
+def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
+ (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
+def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
+ (TBLv16i8One V128:$Ri, V128:$Rn)>;
+
+def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
+ (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
+ (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
+def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
+ (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
+ (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
+
+
+//----------------------------------------------------------------------------
+// AdvSIMD scalar CPY instruction
+//----------------------------------------------------------------------------
+
+defm CPY : SIMDScalarCPY<"cpy">;
+
+//----------------------------------------------------------------------------
+// AdvSIMD scalar pairwise instructions
+//----------------------------------------------------------------------------
+
+defm ADDP : SIMDPairwiseScalarD<0, 0b11011, "addp">;
+defm FADDP : SIMDPairwiseScalarSD<1, 0, 0b01101, "faddp">;
+defm FMAXNMP : SIMDPairwiseScalarSD<1, 0, 0b01100, "fmaxnmp">;
+defm FMAXP : SIMDPairwiseScalarSD<1, 0, 0b01111, "fmaxp">;
+defm FMINNMP : SIMDPairwiseScalarSD<1, 1, 0b01100, "fminnmp">;
+defm FMINP : SIMDPairwiseScalarSD<1, 1, 0b01111, "fminp">;
+def : Pat<(i64 (int_aarch64_neon_saddv (v2i64 V128:$Rn))),
+ (ADDPv2i64p V128:$Rn)>;
+def : Pat<(i64 (int_aarch64_neon_uaddv (v2i64 V128:$Rn))),
+ (ADDPv2i64p V128:$Rn)>;
+def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
+ (FADDPv2i32p V64:$Rn)>;
+def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
+ (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
+def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
+ (FADDPv2i64p V128:$Rn)>;
+def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
+ (FMAXNMPv2i32p V64:$Rn)>;
+def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
+ (FMAXNMPv2i64p V128:$Rn)>;
+def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
+ (FMAXPv2i32p V64:$Rn)>;
+def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
+ (FMAXPv2i64p V128:$Rn)>;
+def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
+ (FMINNMPv2i32p V64:$Rn)>;
+def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
+ (FMINNMPv2i64p V128:$Rn)>;
+def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
+ (FMINPv2i32p V64:$Rn)>;
+def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
+ (FMINPv2i64p V128:$Rn)>;
+
+//----------------------------------------------------------------------------
+// AdvSIMD INS/DUP instructions
+//----------------------------------------------------------------------------
+
+def DUPv8i8gpr : SIMDDupFromMain<0, 0b00001, ".8b", v8i8, V64, GPR32>;
+def DUPv16i8gpr : SIMDDupFromMain<1, 0b00001, ".16b", v16i8, V128, GPR32>;
+def DUPv4i16gpr : SIMDDupFromMain<0, 0b00010, ".4h", v4i16, V64, GPR32>;
+def DUPv8i16gpr : SIMDDupFromMain<1, 0b00010, ".8h", v8i16, V128, GPR32>;
+def DUPv2i32gpr : SIMDDupFromMain<0, 0b00100, ".2s", v2i32, V64, GPR32>;
+def DUPv4i32gpr : SIMDDupFromMain<1, 0b00100, ".4s", v4i32, V128, GPR32>;
+def DUPv2i64gpr : SIMDDupFromMain<1, 0b01000, ".2d", v2i64, V128, GPR64>;
+
+def DUPv2i64lane : SIMDDup64FromElement;
+def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
+def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
+def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
+def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
+def DUPv8i8lane : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
+def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
+
+def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
+ (v2f32 (DUPv2i32lane
+ (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
+ (i64 0)))>;
+def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
+ (v4f32 (DUPv4i32lane
+ (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
+ (i64 0)))>;
+def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
+ (v2f64 (DUPv2i64lane
+ (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
+ (i64 0)))>;
+
+def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
+ (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
+def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
+ (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
+def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
+ (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
+
+// If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
+// instruction even if the types don't match: we just have to remap the lane
+// carefully. N.b. this trick only applies to truncations.
+def VecIndex_x2 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(2 * N->getZExtValue(), MVT::i64);
+}]>;
+def VecIndex_x4 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(4 * N->getZExtValue(), MVT::i64);
+}]>;
+def VecIndex_x8 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(8 * N->getZExtValue(), MVT::i64);
+}]>;
+
+multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
+ ValueType Src128VT, ValueType ScalVT,
+ Instruction DUP, SDNodeXForm IdxXFORM> {
+ def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
+ imm:$idx)))),
+ (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
+
+ def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
+ imm:$idx)))),
+ (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
+}
+
+defm : DUPWithTruncPats<v8i8, v4i16, v8i16, i32, DUPv8i8lane, VecIndex_x2>;
+defm : DUPWithTruncPats<v8i8, v2i32, v4i32, i32, DUPv8i8lane, VecIndex_x4>;
+defm : DUPWithTruncPats<v4i16, v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
+
+defm : DUPWithTruncPats<v16i8, v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
+defm : DUPWithTruncPats<v16i8, v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
+defm : DUPWithTruncPats<v8i16, v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
+
+multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
+ SDNodeXForm IdxXFORM> {
+ def : Pat<(ResVT (AArch64dup (i32 (trunc (vector_extract (v2i64 V128:$Rn),
+ imm:$idx))))),
+ (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
+
+ def : Pat<(ResVT (AArch64dup (i32 (trunc (vector_extract (v1i64 V64:$Rn),
+ imm:$idx))))),
+ (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
+}
+
+defm : DUPWithTrunci64Pats<v8i8, DUPv8i8lane, VecIndex_x8>;
+defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane, VecIndex_x4>;
+defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane, VecIndex_x2>;
+
+defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
+defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
+defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
+
+// SMOV and UMOV definitions, with some extra patterns for convenience
+defm SMOV : SMov;
+defm UMOV : UMov;
+
+def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
+ (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
+def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
+ (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
+def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
+ (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
+def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
+ (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
+def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
+ (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
+def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
+ (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
+
+// Extracting i8 or i16 elements will have the zero-extend transformed to
+// an 'and' mask by type legalization since neither i8 nor i16 are legal types
+// for AArch64. Match these patterns here since UMOV already zeroes out the high
+// bits of the destination register.
+def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
+ (i32 0xff)),
+ (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
+def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
+ (i32 0xffff)),
+ (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
+
+defm INS : SIMDIns;
+
+def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
+ (SUBREG_TO_REG (i32 0),
+ (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
+def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
+ (SUBREG_TO_REG (i32 0),
+ (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
+
+def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
+ (SUBREG_TO_REG (i32 0),
+ (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
+def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
+ (SUBREG_TO_REG (i32 0),
+ (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
+
+def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
+ (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
+ (i32 FPR32:$Rn), ssub))>;
+def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
+ (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
+ (i32 FPR32:$Rn), ssub))>;
+def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
+ (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
+ (i64 FPR64:$Rn), dsub))>;
+
+def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
+ (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
+def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
+ (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
+def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
+ (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
+
+def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
+ (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
+ (EXTRACT_SUBREG
+ (INSvi32lane
+ (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
+ VectorIndexS:$imm,
+ (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
+ (i64 0)),
+ dsub)>;
+def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
+ (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
+ (INSvi32lane
+ V128:$Rn, VectorIndexS:$imm,
+ (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
+ (i64 0))>;
+def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
+ (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
+ (INSvi64lane
+ V128:$Rn, VectorIndexD:$imm,
+ (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
+ (i64 0))>;
+
+// Copy an element at a constant index in one vector into a constant indexed
+// element of another.
+// FIXME refactor to a shared class/dev parameterized on vector type, vector
+// index type and INS extension
+def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
+ (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
+ VectorIndexB:$idx2)),
+ (v16i8 (INSvi8lane
+ V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
+ )>;
+def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
+ (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
+ VectorIndexH:$idx2)),
+ (v8i16 (INSvi16lane
+ V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
+ )>;
+def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
+ (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
+ VectorIndexS:$idx2)),
+ (v4i32 (INSvi32lane
+ V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
+ )>;
+def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
+ (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
+ VectorIndexD:$idx2)),
+ (v2i64 (INSvi64lane
+ V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
+ )>;
+
+multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
+ ValueType VTScal, Instruction INS> {
+ def : Pat<(VT128 (vector_insert V128:$src,
+ (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
+ imm:$Immd)),
+ (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
+
+ def : Pat<(VT128 (vector_insert V128:$src,
+ (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
+ imm:$Immd)),
+ (INS V128:$src, imm:$Immd,
+ (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
+
+ def : Pat<(VT64 (vector_insert V64:$src,
+ (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
+ imm:$Immd)),
+ (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
+ imm:$Immd, V128:$Rn, imm:$Immn),
+ dsub)>;
+
+ def : Pat<(VT64 (vector_insert V64:$src,
+ (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
+ imm:$Immd)),
+ (EXTRACT_SUBREG
+ (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
+ (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
+ dsub)>;
+}
+
+defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
+defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
+defm : Neon_INS_elt_pattern<v16i8, v8i8, i32, INSvi8lane>;
+defm : Neon_INS_elt_pattern<v8i16, v4i16, i32, INSvi16lane>;
+defm : Neon_INS_elt_pattern<v4i32, v2i32, i32, INSvi32lane>;
+defm : Neon_INS_elt_pattern<v2i64, v1i64, i64, INSvi32lane>;
+
+
+// Floating point vector extractions are codegen'd as either a sequence of
+// subregister extractions, possibly fed by an INS if the lane number is
+// anything other than zero.
+def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
+ (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
+def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
+ (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
+def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
+ (f64 (EXTRACT_SUBREG
+ (INSvi64lane (v2f64 (IMPLICIT_DEF)), 0,
+ V128:$Rn, VectorIndexD:$idx),
+ dsub))>;
+def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
+ (f32 (EXTRACT_SUBREG
+ (INSvi32lane (v4f32 (IMPLICIT_DEF)), 0,
+ V128:$Rn, VectorIndexS:$idx),
+ ssub))>;
+
+// All concat_vectors operations are canonicalised to act on i64 vectors for
+// AArch64. In the general case we need an instruction, which had just as well be
+// INS.
+class ConcatPat<ValueType DstTy, ValueType SrcTy>
+ : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
+ (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
+
+def : ConcatPat<v2i64, v1i64>;
+def : ConcatPat<v2f64, v1f64>;
+def : ConcatPat<v4i32, v2i32>;
+def : ConcatPat<v4f32, v2f32>;
+def : ConcatPat<v8i16, v4i16>;
+def : ConcatPat<v16i8, v8i8>;
+
+// If the high lanes are undef, though, we can just ignore them:
+class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
+ : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
+ (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
+
+def : ConcatUndefPat<v2i64, v1i64>;
+def : ConcatUndefPat<v2f64, v1f64>;
+def : ConcatUndefPat<v4i32, v2i32>;
+def : ConcatUndefPat<v4f32, v2f32>;
+def : ConcatUndefPat<v8i16, v4i16>;
+def : ConcatUndefPat<v16i8, v8i8>;
+
+//----------------------------------------------------------------------------
+// AdvSIMD across lanes instructions
+//----------------------------------------------------------------------------
+
+defm ADDV : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
+defm SMAXV : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
+defm SMINV : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
+defm UMAXV : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
+defm UMINV : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
+defm SADDLV : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
+defm UADDLV : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
+defm FMAXNMV : SIMDAcrossLanesS<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
+defm FMAXV : SIMDAcrossLanesS<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
+defm FMINNMV : SIMDAcrossLanesS<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
+defm FMINV : SIMDAcrossLanesS<0b01111, 1, "fminv", int_aarch64_neon_fminv>;
+
+multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc, Intrinsic intOp> {
+// If there is a sign extension after this intrinsic, consume it as smov already
+// performed it
+ def : Pat<(i32 (sext_inreg (i32 (intOp (v8i8 V64:$Rn))), i8)),
+ (i32 (SMOVvi8to32
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
+ (i64 0)))>;
+ def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
+ (i32 (SMOVvi8to32
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
+ (i64 0)))>;
+// If there is a sign extension after this intrinsic, consume it as smov already
+// performed it
+def : Pat<(i32 (sext_inreg (i32 (intOp (v16i8 V128:$Rn))), i8)),
+ (i32 (SMOVvi8to32
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
+ (i64 0)))>;
+def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
+ (i32 (SMOVvi8to32
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
+ (i64 0)))>;
+// If there is a sign extension after this intrinsic, consume it as smov already
+// performed it
+def : Pat<(i32 (sext_inreg (i32 (intOp (v4i16 V64:$Rn))), i16)),
+ (i32 (SMOVvi16to32
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
+ (i64 0)))>;
+def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
+ (i32 (SMOVvi16to32
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
+ (i64 0)))>;
+// If there is a sign extension after this intrinsic, consume it as smov already
+// performed it
+def : Pat<(i32 (sext_inreg (i32 (intOp (v8i16 V128:$Rn))), i16)),
+ (i32 (SMOVvi16to32
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
+ (i64 0)))>;
+def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
+ (i32 (SMOVvi16to32
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
+ (i64 0)))>;
+
+def : Pat<(i32 (intOp (v4i32 V128:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub),
+ ssub))>;
+}
+
+multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc, Intrinsic intOp> {
+// If there is a masking operation keeping only what has been actually
+// generated, consume it.
+ def : Pat<(i32 (and (i32 (intOp (v8i8 V64:$Rn))), maski8_or_more)),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
+ ssub))>;
+ def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
+ ssub))>;
+// If there is a masking operation keeping only what has been actually
+// generated, consume it.
+def : Pat<(i32 (and (i32 (intOp (v16i8 V128:$Rn))), maski8_or_more)),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
+ ssub))>;
+def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
+ ssub))>;
+
+// If there is a masking operation keeping only what has been actually
+// generated, consume it.
+def : Pat<(i32 (and (i32 (intOp (v4i16 V64:$Rn))), maski16_or_more)),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
+ ssub))>;
+def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
+ ssub))>;
+// If there is a masking operation keeping only what has been actually
+// generated, consume it.
+def : Pat<(i32 (and (i32 (intOp (v8i16 V128:$Rn))), maski16_or_more)),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
+ ssub))>;
+def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
+ ssub))>;
+
+def : Pat<(i32 (intOp (v4i32 V128:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub),
+ ssub))>;
+
+}
+
+multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
+ def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
+ (i32 (SMOVvi16to32
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
+ (i64 0)))>;
+def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
+ (i32 (SMOVvi16to32
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
+ (i64 0)))>;
+
+def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
+ ssub))>;
+def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
+ ssub))>;
+
+def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
+ (i64 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
+ dsub))>;
+}
+
+multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
+ Intrinsic intOp> {
+ def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
+ ssub))>;
+def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
+ ssub))>;
+
+def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
+ ssub))>;
+def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
+ (i32 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
+ ssub))>;
+
+def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
+ (i64 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
+ dsub))>;
+}
+
+defm : SIMDAcrossLanesSignedIntrinsic<"ADDV", int_aarch64_neon_saddv>;
+// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
+def : Pat<(i32 (int_aarch64_neon_saddv (v2i32 V64:$Rn))),
+ (EXTRACT_SUBREG (ADDPv2i32 V64:$Rn, V64:$Rn), ssub)>;
+
+defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", int_aarch64_neon_uaddv>;
+// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
+def : Pat<(i32 (int_aarch64_neon_uaddv (v2i32 V64:$Rn))),
+ (EXTRACT_SUBREG (ADDPv2i32 V64:$Rn, V64:$Rn), ssub)>;
+
+defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", int_aarch64_neon_smaxv>;
+def : Pat<(i32 (int_aarch64_neon_smaxv (v2i32 V64:$Rn))),
+ (EXTRACT_SUBREG (SMAXPv2i32 V64:$Rn, V64:$Rn), ssub)>;
+
+defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", int_aarch64_neon_sminv>;
+def : Pat<(i32 (int_aarch64_neon_sminv (v2i32 V64:$Rn))),
+ (EXTRACT_SUBREG (SMINPv2i32 V64:$Rn, V64:$Rn), ssub)>;
+
+defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", int_aarch64_neon_umaxv>;
+def : Pat<(i32 (int_aarch64_neon_umaxv (v2i32 V64:$Rn))),
+ (EXTRACT_SUBREG (UMAXPv2i32 V64:$Rn, V64:$Rn), ssub)>;
+
+defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", int_aarch64_neon_uminv>;
+def : Pat<(i32 (int_aarch64_neon_uminv (v2i32 V64:$Rn))),
+ (EXTRACT_SUBREG (UMINPv2i32 V64:$Rn, V64:$Rn), ssub)>;
+
+defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
+defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;
+
+// The vaddlv_s32 intrinsic gets mapped to SADDLP.
+def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
+ (i64 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (SADDLPv2i32_v1i64 V64:$Rn), dsub),
+ dsub))>;
+// The vaddlv_u32 intrinsic gets mapped to UADDLP.
+def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
+ (i64 (EXTRACT_SUBREG
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (UADDLPv2i32_v1i64 V64:$Rn), dsub),
+ dsub))>;
+
+//------------------------------------------------------------------------------
+// AdvSIMD modified immediate instructions
+//------------------------------------------------------------------------------
+
+// AdvSIMD BIC
+defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
+// AdvSIMD ORR
+defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;
+
+def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>;
+def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
+def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>;
+def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
+
+def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
+
+def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>;
+def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
+def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>;
+def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
+
+def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
+
+// AdvSIMD FMOV
+def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0b1111, V128, fpimm8,
+ "fmov", ".2d",
+ [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
+def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0b1111, V64, fpimm8,
+ "fmov", ".2s",
+ [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
+def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0b1111, V128, fpimm8,
+ "fmov", ".4s",
+ [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
+
+// AdvSIMD MOVI
+
+// EDIT byte mask: scalar
+let isReMaterializable = 1, isAsCheapAsAMove = 1 in
+def MOVID : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
+ [(set FPR64:$Rd, simdimmtype10:$imm8)]>;
+// The movi_edit node has the immediate value already encoded, so we use
+// a plain imm0_255 here.
+def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
+ (MOVID imm0_255:$shift)>;
+
+def : Pat<(v1i64 immAllZerosV), (MOVID (i32 0))>;
+def : Pat<(v2i32 immAllZerosV), (MOVID (i32 0))>;
+def : Pat<(v4i16 immAllZerosV), (MOVID (i32 0))>;
+def : Pat<(v8i8 immAllZerosV), (MOVID (i32 0))>;
+
+def : Pat<(v1i64 immAllOnesV), (MOVID (i32 255))>;
+def : Pat<(v2i32 immAllOnesV), (MOVID (i32 255))>;
+def : Pat<(v4i16 immAllOnesV), (MOVID (i32 255))>;
+def : Pat<(v8i8 immAllOnesV), (MOVID (i32 255))>;
+
+// EDIT byte mask: 2d
+
+// The movi_edit node has the immediate value already encoded, so we use
+// a plain imm0_255 in the pattern
+let isReMaterializable = 1, isAsCheapAsAMove = 1 in
+def MOVIv2d_ns : SIMDModifiedImmVectorNoShift<1, 1, 0b1110, V128,
+ simdimmtype10,
+ "movi", ".2d",
+ [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;
+
+
+// Use movi.2d to materialize 0.0 if the HW does zero-cycle zeroing.
+// Complexity is added to break a tie with a plain MOVI.
+let AddedComplexity = 1 in {
+def : Pat<(f32 fpimm0),
+ (f32 (EXTRACT_SUBREG (v2i64 (MOVIv2d_ns (i32 0))), ssub))>,
+ Requires<[HasZCZ]>;
+def : Pat<(f64 fpimm0),
+ (f64 (EXTRACT_SUBREG (v2i64 (MOVIv2d_ns (i32 0))), dsub))>,
+ Requires<[HasZCZ]>;
+}
+
+def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
+def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
+def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
+def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
+
+def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
+def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
+def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
+def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
+
+def : Pat<(v2f64 (AArch64dup (f64 fpimm0))), (MOVIv2d_ns (i32 0))>;
+def : Pat<(v4f32 (AArch64dup (f32 fpimm0))), (MOVIv2d_ns (i32 0))>;
+
+// EDIT per word & halfword: 2s, 4h, 4s, & 8h
+defm MOVI : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
+
+def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
+
+def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
+
+def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
+ (MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
+def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
+ (MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
+def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
+ (MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
+def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
+ (MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
+
+// EDIT per word: 2s & 4s with MSL shifter
+def MOVIv2s_msl : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
+ [(set (v2i32 V64:$Rd),
+ (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
+def MOVIv4s_msl : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
+ [(set (v4i32 V128:$Rd),
+ (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
+
+// Per byte: 8b & 16b
+def MOVIv8b_ns : SIMDModifiedImmVectorNoShift<0, 0, 0b1110, V64, imm0_255,
+ "movi", ".8b",
+ [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;
+def MOVIv16b_ns : SIMDModifiedImmVectorNoShift<1, 0, 0b1110, V128, imm0_255,
+ "movi", ".16b",
+ [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
+
+// AdvSIMD MVNI
+
+// EDIT per word & halfword: 2s, 4h, 4s, & 8h
+defm MVNI : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
+
+def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
+
+def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
+def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
+
+def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
+ (MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
+def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
+ (MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
+def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
+ (MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
+def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
+ (MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
+
+// EDIT per word: 2s & 4s with MSL shifter
+def MVNIv2s_msl : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
+ [(set (v2i32 V64:$Rd),
+ (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
+def MVNIv4s_msl : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
+ [(set (v4i32 V128:$Rd),
+ (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
+
+//----------------------------------------------------------------------------
+// AdvSIMD indexed element
+//----------------------------------------------------------------------------
+
+let neverHasSideEffects = 1 in {
+ defm FMLA : SIMDFPIndexedSDTied<0, 0b0001, "fmla">;
+ defm FMLS : SIMDFPIndexedSDTied<0, 0b0101, "fmls">;
+}
+
+// NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
+// instruction expects the addend first, while the intrinsic expects it last.
+
+// On the other hand, there are quite a few valid combinatorial options due to
+// the commutativity of multiplication and the fact that (-x) * y = x * (-y).
+defm : SIMDFPIndexedSDTiedPatterns<"FMLA",
+ TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
+defm : SIMDFPIndexedSDTiedPatterns<"FMLA",
+ TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
+
+defm : SIMDFPIndexedSDTiedPatterns<"FMLS",
+ TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
+defm : SIMDFPIndexedSDTiedPatterns<"FMLS",
+ TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
+defm : SIMDFPIndexedSDTiedPatterns<"FMLS",
+ TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
+defm : SIMDFPIndexedSDTiedPatterns<"FMLS",
+ TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
+
+multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
+ // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
+ // and DUP scalar.
+ def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
+ (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
+ VectorIndexS:$idx))),
+ (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
+ def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
+ (v2f32 (AArch64duplane32
+ (v4f32 (insert_subvector undef,
+ (v2f32 (fneg V64:$Rm)),
+ (i32 0))),
+ VectorIndexS:$idx)))),
+ (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
+ (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
+ VectorIndexS:$idx)>;
+ def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
+ (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
+ (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
+ (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
+
+ // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
+ // and DUP scalar.
+ def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
+ (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
+ VectorIndexS:$idx))),
+ (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
+ VectorIndexS:$idx)>;
+ def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
+ (v4f32 (AArch64duplane32
+ (v4f32 (insert_subvector undef,
+ (v2f32 (fneg V64:$Rm)),
+ (i32 0))),
+ VectorIndexS:$idx)))),
+ (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
+ (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
+ VectorIndexS:$idx)>;
+ def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
+ (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
+ (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
+ (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
+
+ // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
+ // (DUPLANE from 64-bit would be trivial).
+ def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
+ (AArch64duplane64 (v2f64 (fneg V128:$Rm)),
+ VectorIndexD:$idx))),
+ (FMLSv2i64_indexed
+ V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
+ def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
+ (AArch64dup (f64 (fneg FPR64Op:$Rm))))),
+ (FMLSv2i64_indexed V128:$Rd, V128:$Rn,
+ (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
+
+ // 2 variants for 32-bit scalar version: extract from .2s or from .4s
+ def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
+ (vector_extract (v4f32 (fneg V128:$Rm)),
+ VectorIndexS:$idx))),
+ (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
+ V128:$Rm, VectorIndexS:$idx)>;
+ def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
+ (vector_extract (v2f32 (fneg V64:$Rm)),
+ VectorIndexS:$idx))),
+ (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
+ (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
+
+ // 1 variant for 64-bit scalar version: extract from .1d or from .2d
+ def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
+ (vector_extract (v2f64 (fneg V128:$Rm)),
+ VectorIndexS:$idx))),
+ (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
+ V128:$Rm, VectorIndexS:$idx)>;
+}
+
+defm : FMLSIndexedAfterNegPatterns<
+ TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
+defm : FMLSIndexedAfterNegPatterns<
+ TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
+
+defm FMULX : SIMDFPIndexedSD<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
+defm FMUL : SIMDFPIndexedSD<0, 0b1001, "fmul", fmul>;
+
+def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
+ (FMULv2i32_indexed V64:$Rn,
+ (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
+ (i64 0))>;
+def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
+ (FMULv4i32_indexed V128:$Rn,
+ (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
+ (i64 0))>;
+def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
+ (FMULv2i64_indexed V128:$Rn,
+ (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
+ (i64 0))>;
+
+defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
+defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
+defm MLA : SIMDVectorIndexedHSTied<1, 0b0000, "mla",
+ TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))>>;
+defm MLS : SIMDVectorIndexedHSTied<1, 0b0100, "mls",
+ TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))>>;
+defm MUL : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
+defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
+ TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
+defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
+ TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
+defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
+ int_aarch64_neon_smull>;
+defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
+ int_aarch64_neon_sqadd>;
+defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
+ int_aarch64_neon_sqsub>;
+defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
+defm UMLAL : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
+ TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
+defm UMLSL : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
+ TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
+defm UMULL : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
+ int_aarch64_neon_umull>;
+
+// A scalar sqdmull with the second operand being a vector lane can be
+// handled directly with the indexed instruction encoding.
+def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
+ (vector_extract (v4i32 V128:$Vm),
+ VectorIndexS:$idx)),
+ (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
+
+//----------------------------------------------------------------------------
+// AdvSIMD scalar shift instructions
+//----------------------------------------------------------------------------
+defm FCVTZS : SIMDScalarRShiftSD<0, 0b11111, "fcvtzs">;
+defm FCVTZU : SIMDScalarRShiftSD<1, 0b11111, "fcvtzu">;
+defm SCVTF : SIMDScalarRShiftSD<0, 0b11100, "scvtf">;
+defm UCVTF : SIMDScalarRShiftSD<1, 0b11100, "ucvtf">;
+// Codegen patterns for the above. We don't put these directly on the
+// instructions because TableGen's type inference can't handle the truth.
+// Having the same base pattern for fp <--> int totally freaks it out.
+def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
+ (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
+def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
+ (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
+def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
+ (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
+def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
+ (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
+def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
+ vecshiftR64:$imm)),
+ (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
+def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
+ vecshiftR64:$imm)),
+ (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
+def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
+ (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
+def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
+ (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
+def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
+ (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
+def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
+ (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
+def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
+ vecshiftR64:$imm)),
+ (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
+def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
+ vecshiftR64:$imm)),
+ (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
+
+defm SHL : SIMDScalarLShiftD< 0, 0b01010, "shl", AArch64vshl>;
+defm SLI : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
+defm SQRSHRN : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
+ int_aarch64_neon_sqrshrn>;
+defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
+ int_aarch64_neon_sqrshrun>;
+defm SQSHLU : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
+defm SQSHL : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
+defm SQSHRN : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
+ int_aarch64_neon_sqshrn>;
+defm SQSHRUN : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
+ int_aarch64_neon_sqshrun>;
+defm SRI : SIMDScalarRShiftDTied< 1, 0b01000, "sri">;
+defm SRSHR : SIMDScalarRShiftD< 0, 0b00100, "srshr", AArch64srshri>;
+defm SRSRA : SIMDScalarRShiftDTied< 0, 0b00110, "srsra",
+ TriOpFrag<(add node:$LHS,
+ (AArch64srshri node:$MHS, node:$RHS))>>;
+defm SSHR : SIMDScalarRShiftD< 0, 0b00000, "sshr", AArch64vashr>;
+defm SSRA : SIMDScalarRShiftDTied< 0, 0b00010, "ssra",
+ TriOpFrag<(add node:$LHS,
+ (AArch64vashr node:$MHS, node:$RHS))>>;
+defm UQRSHRN : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
+ int_aarch64_neon_uqrshrn>;
+defm UQSHL : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
+defm UQSHRN : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
+ int_aarch64_neon_uqshrn>;
+defm URSHR : SIMDScalarRShiftD< 1, 0b00100, "urshr", AArch64urshri>;
+defm URSRA : SIMDScalarRShiftDTied< 1, 0b00110, "ursra",
+ TriOpFrag<(add node:$LHS,
+ (AArch64urshri node:$MHS, node:$RHS))>>;
+defm USHR : SIMDScalarRShiftD< 1, 0b00000, "ushr", AArch64vlshr>;
+defm USRA : SIMDScalarRShiftDTied< 1, 0b00010, "usra",
+ TriOpFrag<(add node:$LHS,
+ (AArch64vlshr node:$MHS, node:$RHS))>>;
+
+//----------------------------------------------------------------------------
+// AdvSIMD vector shift instructions
+//----------------------------------------------------------------------------
+defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
+defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
+defm SCVTF: SIMDVectorRShiftSDToFP<0, 0b11100, "scvtf",
+ int_aarch64_neon_vcvtfxs2fp>;
+defm RSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
+ int_aarch64_neon_rshrn>;
+defm SHL : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
+defm SHRN : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
+ BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
+defm SLI : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", int_aarch64_neon_vsli>;
+def : Pat<(v1i64 (int_aarch64_neon_vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
+ (i32 vecshiftL64:$imm))),
+ (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
+defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
+ int_aarch64_neon_sqrshrn>;
+defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
+ int_aarch64_neon_sqrshrun>;
+defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
+defm SQSHL : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
+defm SQSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
+ int_aarch64_neon_sqshrn>;
+defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
+ int_aarch64_neon_sqshrun>;
+defm SRI : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", int_aarch64_neon_vsri>;
+def : Pat<(v1i64 (int_aarch64_neon_vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
+ (i32 vecshiftR64:$imm))),
+ (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
+defm SRSHR : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
+defm SRSRA : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
+ TriOpFrag<(add node:$LHS,
+ (AArch64srshri node:$MHS, node:$RHS))> >;
+defm SSHLL : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
+ BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;
+
+defm SSHR : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
+defm SSRA : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
+ TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
+defm UCVTF : SIMDVectorRShiftSDToFP<1, 0b11100, "ucvtf",
+ int_aarch64_neon_vcvtfxu2fp>;
+defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
+ int_aarch64_neon_uqrshrn>;
+defm UQSHL : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
+defm UQSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
+ int_aarch64_neon_uqshrn>;
+defm URSHR : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
+defm URSRA : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
+ TriOpFrag<(add node:$LHS,
+ (AArch64urshri node:$MHS, node:$RHS))> >;
+defm USHLL : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
+ BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
+defm USHR : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
+defm USRA : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
+ TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;
+
+// SHRN patterns for when a logical right shift was used instead of arithmetic
+// (the immediate guarantees no sign bits actually end up in the result so it
+// doesn't matter).
+def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
+ (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
+def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
+ (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
+def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
+ (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
+
+def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
+ (trunc (AArch64vlshr (v8i16 V128:$Rn),
+ vecshiftR16Narrow:$imm)))),
+ (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
+ V128:$Rn, vecshiftR16Narrow:$imm)>;
+def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
+ (trunc (AArch64vlshr (v4i32 V128:$Rn),
+ vecshiftR32Narrow:$imm)))),
+ (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
+ V128:$Rn, vecshiftR32Narrow:$imm)>;
+def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
+ (trunc (AArch64vlshr (v2i64 V128:$Rn),
+ vecshiftR64Narrow:$imm)))),
+ (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
+ V128:$Rn, vecshiftR32Narrow:$imm)>;
+
+// Vector sign and zero extensions are implemented with SSHLL and USSHLL.
+// Anyexts are implemented as zexts.
+def : Pat<(v8i16 (sext (v8i8 V64:$Rn))), (SSHLLv8i8_shift V64:$Rn, (i32 0))>;
+def : Pat<(v8i16 (zext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>;
+def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>;
+def : Pat<(v4i32 (sext (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
+def : Pat<(v4i32 (zext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
+def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
+def : Pat<(v2i64 (sext (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
+def : Pat<(v2i64 (zext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
+def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
+// Also match an extend from the upper half of a 128 bit source register.
+def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
+ (USHLLv16i8_shift V128:$Rn, (i32 0))>;
+def : Pat<(v8i16 (zext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
+ (USHLLv16i8_shift V128:$Rn, (i32 0))>;
+def : Pat<(v8i16 (sext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
+ (SSHLLv16i8_shift V128:$Rn, (i32 0))>;
+def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
+ (USHLLv8i16_shift V128:$Rn, (i32 0))>;
+def : Pat<(v4i32 (zext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
+ (USHLLv8i16_shift V128:$Rn, (i32 0))>;
+def : Pat<(v4i32 (sext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
+ (SSHLLv8i16_shift V128:$Rn, (i32 0))>;
+def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
+ (USHLLv4i32_shift V128:$Rn, (i32 0))>;
+def : Pat<(v2i64 (zext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
+ (USHLLv4i32_shift V128:$Rn, (i32 0))>;
+def : Pat<(v2i64 (sext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
+ (SSHLLv4i32_shift V128:$Rn, (i32 0))>;
+
+// Vector shift sxtl aliases
+def : InstAlias<"sxtl.8h $dst, $src1",
+ (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
+def : InstAlias<"sxtl $dst.8h, $src1.8b",
+ (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
+def : InstAlias<"sxtl.4s $dst, $src1",
+ (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
+def : InstAlias<"sxtl $dst.4s, $src1.4h",
+ (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
+def : InstAlias<"sxtl.2d $dst, $src1",
+ (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
+def : InstAlias<"sxtl $dst.2d, $src1.2s",
+ (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
+
+// Vector shift sxtl2 aliases
+def : InstAlias<"sxtl2.8h $dst, $src1",
+ (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
+def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
+ (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
+def : InstAlias<"sxtl2.4s $dst, $src1",
+ (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
+def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
+ (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
+def : InstAlias<"sxtl2.2d $dst, $src1",
+ (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
+def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
+ (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
+
+// Vector shift uxtl aliases
+def : InstAlias<"uxtl.8h $dst, $src1",
+ (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
+def : InstAlias<"uxtl $dst.8h, $src1.8b",
+ (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
+def : InstAlias<"uxtl.4s $dst, $src1",
+ (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
+def : InstAlias<"uxtl $dst.4s, $src1.4h",
+ (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
+def : InstAlias<"uxtl.2d $dst, $src1",
+ (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
+def : InstAlias<"uxtl $dst.2d, $src1.2s",
+ (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
+
+// Vector shift uxtl2 aliases
+def : InstAlias<"uxtl2.8h $dst, $src1",
+ (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
+def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
+ (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
+def : InstAlias<"uxtl2.4s $dst, $src1",
+ (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
+def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
+ (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
+def : InstAlias<"uxtl2.2d $dst, $src1",
+ (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
+def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
+ (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
+
+// If an integer is about to be converted to a floating point value,
+// just load it on the floating point unit.
+// These patterns are more complex because floating point loads do not
+// support sign extension.
+// The sign extension has to be explicitly added and is only supported for
+// one step: byte-to-half, half-to-word, word-to-doubleword.
+// SCVTF GPR -> FPR is 9 cycles.
+// SCVTF FPR -> FPR is 4 cyclces.
+// (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
+// Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
+// and still being faster.
+// However, this is not good for code size.
+// 8-bits -> float. 2 sizes step-up.
+class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
+ : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
+ (SCVTFv1i32 (f32 (EXTRACT_SUBREG
+ (SSHLLv4i16_shift
+ (f64
+ (EXTRACT_SUBREG
+ (SSHLLv8i8_shift
+ (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ INST,
+ bsub),
+ 0),
+ dsub)),
+ 0),
+ ssub)))>, Requires<[NotForCodeSize]>;
+
+def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
+ (LDRBroW GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
+def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
+ (LDRBroX GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
+def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
+ (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
+def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
+ (LDURBi GPR64sp:$Rn, simm9:$offset)>;
+
+// 16-bits -> float. 1 size step-up.
+class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
+ : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
+ (SCVTFv1i32 (f32 (EXTRACT_SUBREG
+ (SSHLLv4i16_shift
+ (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ INST,
+ hsub),
+ 0),
+ ssub)))>, Requires<[NotForCodeSize]>;
+
+def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
+ (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
+def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
+ (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
+def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
+ (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
+def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
+ (LDURHi GPR64sp:$Rn, simm9:$offset)>;
+
+// 32-bits to 32-bits are handled in target specific dag combine:
+// performIntToFpCombine.
+// 64-bits integer to 32-bits floating point, not possible with
+// SCVTF on floating point registers (both source and destination
+// must have the same size).
+
+// Here are the patterns for 8, 16, 32, and 64-bits to double.
+// 8-bits -> double. 3 size step-up: give up.
+// 16-bits -> double. 2 size step.
+class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
+ : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
+ (SCVTFv1i64 (f64 (EXTRACT_SUBREG
+ (SSHLLv2i32_shift
+ (f64
+ (EXTRACT_SUBREG
+ (SSHLLv4i16_shift
+ (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ INST,
+ hsub),
+ 0),
+ dsub)),
+ 0),
+ dsub)))>, Requires<[NotForCodeSize]>;
+
+def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
+ (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
+def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
+ (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
+def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
+ (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
+def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
+ (LDURHi GPR64sp:$Rn, simm9:$offset)>;
+// 32-bits -> double. 1 size step-up.
+class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
+ : Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
+ (SCVTFv1i64 (f64 (EXTRACT_SUBREG
+ (SSHLLv2i32_shift
+ (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ INST,
+ ssub),
+ 0),
+ dsub)))>, Requires<[NotForCodeSize]>;
+
+def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
+ (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
+def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
+ (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
+def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
+ (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
+def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
+ (LDURSi GPR64sp:$Rn, simm9:$offset)>;
+
+// 64-bits -> double are handled in target specific dag combine:
+// performIntToFpCombine.
+
+
+//----------------------------------------------------------------------------
+// AdvSIMD Load-Store Structure
+//----------------------------------------------------------------------------
+defm LD1 : SIMDLd1Multiple<"ld1">;
+defm LD2 : SIMDLd2Multiple<"ld2">;
+defm LD3 : SIMDLd3Multiple<"ld3">;
+defm LD4 : SIMDLd4Multiple<"ld4">;
+
+defm ST1 : SIMDSt1Multiple<"st1">;
+defm ST2 : SIMDSt2Multiple<"st2">;
+defm ST3 : SIMDSt3Multiple<"st3">;
+defm ST4 : SIMDSt4Multiple<"st4">;
+
+class Ld1Pat<ValueType ty, Instruction INST>
+ : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;
+
+def : Ld1Pat<v16i8, LD1Onev16b>;
+def : Ld1Pat<v8i16, LD1Onev8h>;
+def : Ld1Pat<v4i32, LD1Onev4s>;
+def : Ld1Pat<v2i64, LD1Onev2d>;
+def : Ld1Pat<v8i8, LD1Onev8b>;
+def : Ld1Pat<v4i16, LD1Onev4h>;
+def : Ld1Pat<v2i32, LD1Onev2s>;
+def : Ld1Pat<v1i64, LD1Onev1d>;
+
+class St1Pat<ValueType ty, Instruction INST>
+ : Pat<(store ty:$Vt, GPR64sp:$Rn),
+ (INST ty:$Vt, GPR64sp:$Rn)>;
+
+def : St1Pat<v16i8, ST1Onev16b>;
+def : St1Pat<v8i16, ST1Onev8h>;
+def : St1Pat<v4i32, ST1Onev4s>;
+def : St1Pat<v2i64, ST1Onev2d>;
+def : St1Pat<v8i8, ST1Onev8b>;
+def : St1Pat<v4i16, ST1Onev4h>;
+def : St1Pat<v2i32, ST1Onev2s>;
+def : St1Pat<v1i64, ST1Onev1d>;
+
+//---
+// Single-element
+//---
+
+defm LD1R : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
+defm LD2R : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
+defm LD3R : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
+defm LD4R : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
+let mayLoad = 1, neverHasSideEffects = 1 in {
+defm LD1 : SIMDLdSingleBTied<0, 0b000, "ld1", VecListOneb, GPR64pi1>;
+defm LD1 : SIMDLdSingleHTied<0, 0b010, 0, "ld1", VecListOneh, GPR64pi2>;
+defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes, GPR64pi4>;
+defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned, GPR64pi8>;
+defm LD2 : SIMDLdSingleBTied<1, 0b000, "ld2", VecListTwob, GPR64pi2>;
+defm LD2 : SIMDLdSingleHTied<1, 0b010, 0, "ld2", VecListTwoh, GPR64pi4>;
+defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos, GPR64pi8>;
+defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod, GPR64pi16>;
+defm LD3 : SIMDLdSingleBTied<0, 0b001, "ld3", VecListThreeb, GPR64pi3>;
+defm LD3 : SIMDLdSingleHTied<0, 0b011, 0, "ld3", VecListThreeh, GPR64pi6>;
+defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
+defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
+defm LD4 : SIMDLdSingleBTied<1, 0b001, "ld4", VecListFourb, GPR64pi4>;
+defm LD4 : SIMDLdSingleHTied<1, 0b011, 0, "ld4", VecListFourh, GPR64pi8>;
+defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours, GPR64pi16>;
+defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd, GPR64pi32>;
+}
+
+def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
+ (LD1Rv8b GPR64sp:$Rn)>;
+def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
+ (LD1Rv16b GPR64sp:$Rn)>;
+def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
+ (LD1Rv4h GPR64sp:$Rn)>;
+def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
+ (LD1Rv8h GPR64sp:$Rn)>;
+def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
+ (LD1Rv2s GPR64sp:$Rn)>;
+def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
+ (LD1Rv4s GPR64sp:$Rn)>;
+def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
+ (LD1Rv2d GPR64sp:$Rn)>;
+def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
+ (LD1Rv1d GPR64sp:$Rn)>;
+// Grab the floating point version too
+def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
+ (LD1Rv2s GPR64sp:$Rn)>;
+def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
+ (LD1Rv4s GPR64sp:$Rn)>;
+def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
+ (LD1Rv2d GPR64sp:$Rn)>;
+def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
+ (LD1Rv1d GPR64sp:$Rn)>;
+
+class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
+ ValueType VTy, ValueType STy, Instruction LD1>
+ : Pat<(vector_insert (VTy VecListOne128:$Rd),
+ (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
+ (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;
+
+def : Ld1Lane128Pat<extloadi8, VectorIndexB, v16i8, i32, LD1i8>;
+def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
+def : Ld1Lane128Pat<load, VectorIndexS, v4i32, i32, LD1i32>;
+def : Ld1Lane128Pat<load, VectorIndexS, v4f32, f32, LD1i32>;
+def : Ld1Lane128Pat<load, VectorIndexD, v2i64, i64, LD1i64>;
+def : Ld1Lane128Pat<load, VectorIndexD, v2f64, f64, LD1i64>;
+
+class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
+ ValueType VTy, ValueType STy, Instruction LD1>
+ : Pat<(vector_insert (VTy VecListOne64:$Rd),
+ (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
+ (EXTRACT_SUBREG
+ (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
+ VecIndex:$idx, GPR64sp:$Rn),
+ dsub)>;
+
+def : Ld1Lane64Pat<extloadi8, VectorIndexB, v8i8, i32, LD1i8>;
+def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
+def : Ld1Lane64Pat<load, VectorIndexS, v2i32, i32, LD1i32>;
+def : Ld1Lane64Pat<load, VectorIndexS, v2f32, f32, LD1i32>;
+
+
+defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
+defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
+defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
+defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
+
+// Stores
+defm ST1 : SIMDStSingleB<0, 0b000, "st1", VecListOneb, GPR64pi1>;
+defm ST1 : SIMDStSingleH<0, 0b010, 0, "st1", VecListOneh, GPR64pi2>;
+defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
+defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
+
+let AddedComplexity = 15 in
+class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
+ ValueType VTy, ValueType STy, Instruction ST1>
+ : Pat<(scalar_store
+ (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
+ GPR64sp:$Rn),
+ (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;
+
+def : St1Lane128Pat<truncstorei8, VectorIndexB, v16i8, i32, ST1i8>;
+def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
+def : St1Lane128Pat<store, VectorIndexS, v4i32, i32, ST1i32>;
+def : St1Lane128Pat<store, VectorIndexS, v4f32, f32, ST1i32>;
+def : St1Lane128Pat<store, VectorIndexD, v2i64, i64, ST1i64>;
+def : St1Lane128Pat<store, VectorIndexD, v2f64, f64, ST1i64>;
+
+let AddedComplexity = 15 in
+class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
+ ValueType VTy, ValueType STy, Instruction ST1>
+ : Pat<(scalar_store
+ (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
+ GPR64sp:$Rn),
+ (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
+ VecIndex:$idx, GPR64sp:$Rn)>;
+
+def : St1Lane64Pat<truncstorei8, VectorIndexB, v8i8, i32, ST1i8>;
+def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
+def : St1Lane64Pat<store, VectorIndexS, v2i32, i32, ST1i32>;
+def : St1Lane64Pat<store, VectorIndexS, v2f32, f32, ST1i32>;
+
+multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
+ ValueType VTy, ValueType STy, Instruction ST1,
+ int offset> {
+ def : Pat<(scalar_store
+ (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
+ GPR64sp:$Rn, offset),
+ (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
+ VecIndex:$idx, GPR64sp:$Rn, XZR)>;
+
+ def : Pat<(scalar_store
+ (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
+ GPR64sp:$Rn, GPR64:$Rm),
+ (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
+ VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
+}
+
+defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
+defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
+ 2>;
+defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
+defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
+defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
+defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
+
+multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
+ ValueType VTy, ValueType STy, Instruction ST1,
+ int offset> {
+ def : Pat<(scalar_store
+ (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
+ GPR64sp:$Rn, offset),
+ (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;
+
+ def : Pat<(scalar_store
+ (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
+ GPR64sp:$Rn, GPR64:$Rm),
+ (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
+}
+
+defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
+ 1>;
+defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
+ 2>;
+defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
+defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
+defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
+defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
+
+let mayStore = 1, neverHasSideEffects = 1 in {
+defm ST2 : SIMDStSingleB<1, 0b000, "st2", VecListTwob, GPR64pi2>;
+defm ST2 : SIMDStSingleH<1, 0b010, 0, "st2", VecListTwoh, GPR64pi4>;
+defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos, GPR64pi8>;
+defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod, GPR64pi16>;
+defm ST3 : SIMDStSingleB<0, 0b001, "st3", VecListThreeb, GPR64pi3>;
+defm ST3 : SIMDStSingleH<0, 0b011, 0, "st3", VecListThreeh, GPR64pi6>;
+defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
+defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
+defm ST4 : SIMDStSingleB<1, 0b001, "st4", VecListFourb, GPR64pi4>;
+defm ST4 : SIMDStSingleH<1, 0b011, 0, "st4", VecListFourh, GPR64pi8>;
+defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours, GPR64pi16>;
+defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd, GPR64pi32>;
+}
+
+defm ST1 : SIMDLdSt1SingleAliases<"st1">;
+defm ST2 : SIMDLdSt2SingleAliases<"st2">;
+defm ST3 : SIMDLdSt3SingleAliases<"st3">;
+defm ST4 : SIMDLdSt4SingleAliases<"st4">;
+
+//----------------------------------------------------------------------------
+// Crypto extensions
+//----------------------------------------------------------------------------
+
+def AESErr : AESTiedInst<0b0100, "aese", int_aarch64_crypto_aese>;
+def AESDrr : AESTiedInst<0b0101, "aesd", int_aarch64_crypto_aesd>;
+def AESMCrr : AESInst< 0b0110, "aesmc", int_aarch64_crypto_aesmc>;
+def AESIMCrr : AESInst< 0b0111, "aesimc", int_aarch64_crypto_aesimc>;
+
+def SHA1Crrr : SHATiedInstQSV<0b000, "sha1c", int_aarch64_crypto_sha1c>;
+def SHA1Prrr : SHATiedInstQSV<0b001, "sha1p", int_aarch64_crypto_sha1p>;
+def SHA1Mrrr : SHATiedInstQSV<0b010, "sha1m", int_aarch64_crypto_sha1m>;
+def SHA1SU0rrr : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
+def SHA256Hrrr : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
+def SHA256H2rrr : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
+def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;
+
+def SHA1Hrr : SHAInstSS< 0b0000, "sha1h", int_aarch64_crypto_sha1h>;
+def SHA1SU1rr : SHATiedInstVV<0b0001, "sha1su1", int_aarch64_crypto_sha1su1>;
+def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
+
+//----------------------------------------------------------------------------
+// Compiler-pseudos
+//----------------------------------------------------------------------------
+// FIXME: Like for X86, these should go in their own separate .td file.
+
+// Any instruction that defines a 32-bit result leaves the high half of the
+// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
+// be copying from a truncate. But any other 32-bit operation will zero-extend
+// up to 64 bits.
+// FIXME: X86 also checks for CMOV here. Do we need something similar?
+def def32 : PatLeaf<(i32 GPR32:$src), [{
+ return N->getOpcode() != ISD::TRUNCATE &&
+ N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
+ N->getOpcode() != ISD::CopyFromReg;
+}]>;
+
+// In the case of a 32-bit def that is known to implicitly zero-extend,
+// we can use a SUBREG_TO_REG.
+def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
+
+// For an anyext, we don't care what the high bits are, so we can perform an
+// INSERT_SUBREF into an IMPLICIT_DEF.
+def : Pat<(i64 (anyext GPR32:$src)),
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
+
+// When we need to explicitly zero-extend, we use an unsigned bitfield move
+// instruction (UBFM) on the enclosing super-reg.
+def : Pat<(i64 (zext GPR32:$src)),
+ (UBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
+
+// To sign extend, we use a signed bitfield move instruction (SBFM) on the
+// containing super-reg.
+def : Pat<(i64 (sext GPR32:$src)),
+ (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
+def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
+def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
+def : Pat<(i64 (sext_inreg GPR64:$src, i8)), (SBFMXri GPR64:$src, 0, 7)>;
+def : Pat<(i64 (sext_inreg GPR64:$src, i1)), (SBFMXri GPR64:$src, 0, 0)>;
+def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
+def : Pat<(i32 (sext_inreg GPR32:$src, i8)), (SBFMWri GPR32:$src, 0, 7)>;
+def : Pat<(i32 (sext_inreg GPR32:$src, i1)), (SBFMWri GPR32:$src, 0, 0)>;
+
+def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
+ (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
+ (i64 (i32shift_sext_i8 imm0_31:$imm)))>;
+def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
+ (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
+ (i64 (i64shift_sext_i8 imm0_63:$imm)))>;
+
+def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
+ (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
+ (i64 (i32shift_sext_i16 imm0_31:$imm)))>;
+def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
+ (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
+ (i64 (i64shift_sext_i16 imm0_63:$imm)))>;
+
+def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
+ (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
+ (i64 (i64shift_a imm0_63:$imm)),
+ (i64 (i64shift_sext_i32 imm0_63:$imm)))>;
+
+// sra patterns have an AddedComplexity of 10, so make sure we have a higher
+// AddedComplexity for the following patterns since we want to match sext + sra
+// patterns before we attempt to match a single sra node.
+let AddedComplexity = 20 in {
+// We support all sext + sra combinations which preserve at least one bit of the
+// original value which is to be sign extended. E.g. we support shifts up to
+// bitwidth-1 bits.
+def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
+ (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
+def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
+ (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
+
+def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
+ (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
+def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
+ (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
+
+def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
+ (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
+ (i64 imm0_31:$imm), 31)>;
+} // AddedComplexity = 20
+
+// To truncate, we can simply extract from a subregister.
+def : Pat<(i32 (trunc GPR64sp:$src)),
+ (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
+
+// __builtin_trap() uses the BRK instruction on AArch64.
+def : Pat<(trap), (BRK 1)>;
+
+// Conversions within AdvSIMD types in the same register size are free.
+// But because we need a consistent lane ordering, in big endian many
+// conversions require one or more REV instructions.
+//
+// Consider a simple memory load followed by a bitconvert then a store.
+// v0 = load v2i32
+// v1 = BITCAST v2i32 v0 to v4i16
+// store v4i16 v2
+//
+// In big endian mode every memory access has an implicit byte swap. LDR and
+// STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
+// is, they treat the vector as a sequence of elements to be byte-swapped.
+// The two pairs of instructions are fundamentally incompatible. We've decided
+// to use LD1/ST1 only to simplify compiler implementation.
+//
+// LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
+// the original code sequence:
+// v0 = load v2i32
+// v1 = REV v2i32 (implicit)
+// v2 = BITCAST v2i32 v1 to v4i16
+// v3 = REV v4i16 v2 (implicit)
+// store v4i16 v3
+//
+// But this is now broken - the value stored is different to the value loaded
+// due to lane reordering. To fix this, on every BITCAST we must perform two
+// other REVs:
+// v0 = load v2i32
+// v1 = REV v2i32 (implicit)
+// v2 = REV v2i32
+// v3 = BITCAST v2i32 v2 to v4i16
+// v4 = REV v4i16
+// v5 = REV v4i16 v4 (implicit)
+// store v4i16 v5
+//
+// This means an extra two instructions, but actually in most cases the two REV
+// instructions can be combined into one. For example:
+// (REV64_2s (REV64_4h X)) === (REV32_4h X)
+//
+// There is also no 128-bit REV instruction. This must be synthesized with an
+// EXT instruction.
+//
+// Most bitconverts require some sort of conversion. The only exceptions are:
+// a) Identity conversions - vNfX <-> vNiX
+// b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
+//
+
+let Predicates = [IsLE] in {
+def : Pat<(v8i8 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
+def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
+def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
+def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
+
+def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))),
+ (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
+def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
+ (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
+def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
+ (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
+def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
+ (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
+def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
+ (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v8i8 (bitconvert GPR64:$Xn)),
+ (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
+def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
+ (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
+def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
+ (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
+def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
+ (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
+
+def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))),
+ (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
+def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
+ (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
+def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
+ (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
+def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
+ (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
+}
+def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
+def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
+def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
+ (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
+def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
+ (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
+def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
+ (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
+def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
+
+def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
+ (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
+def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
+ (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
+def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
+ (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
+def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
+ (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
+def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
+ (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
+
+let Predicates = [IsLE] in {
+def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
+def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
+def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
+def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
+ (v1i64 (REV64v2i32 FPR64:$src))>;
+def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
+ (v1i64 (REV64v4i16 FPR64:$src))>;
+def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))),
+ (v1i64 (REV64v8i8 FPR64:$src))>;
+def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
+ (v1i64 (REV64v2i32 FPR64:$src))>;
+}
+def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
+def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
+
+let Predicates = [IsLE] in {
+def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
+def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
+def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
+def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
+def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
+ (v2i32 (REV64v2i32 FPR64:$src))>;
+def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
+ (v2i32 (REV32v4i16 FPR64:$src))>;
+def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))),
+ (v2i32 (REV32v8i8 FPR64:$src))>;
+def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))),
+ (v2i32 (REV64v2i32 FPR64:$src))>;
+def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
+ (v2i32 (REV64v2i32 FPR64:$src))>;
+}
+def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
+
+let Predicates = [IsLE] in {
+def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
+ (v4i16 (REV64v4i16 FPR64:$src))>;
+def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
+ (v4i16 (REV32v4i16 FPR64:$src))>;
+def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))),
+ (v4i16 (REV16v8i8 FPR64:$src))>;
+def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))),
+ (v4i16 (REV64v4i16 FPR64:$src))>;
+def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
+ (v4i16 (REV32v4i16 FPR64:$src))>;
+def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
+ (v4i16 (REV64v4i16 FPR64:$src))>;
+}
+
+let Predicates = [IsLE] in {
+def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), (v8i8 FPR64:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))),
+ (v8i8 (REV64v8i8 FPR64:$src))>;
+def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))),
+ (v8i8 (REV32v8i8 FPR64:$src))>;
+def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))),
+ (v8i8 (REV16v8i8 FPR64:$src))>;
+def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))),
+ (v8i8 (REV64v8i8 FPR64:$src))>;
+def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))),
+ (v8i8 (REV32v8i8 FPR64:$src))>;
+def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))),
+ (v8i8 (REV64v8i8 FPR64:$src))>;
+}
+
+let Predicates = [IsLE] in {
+def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), (f64 FPR64:$src)>;
+def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), (f64 FPR64:$src)>;
+def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), (f64 FPR64:$src)>;
+def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), (f64 FPR64:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))),
+ (f64 (REV64v2i32 FPR64:$src))>;
+def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))),
+ (f64 (REV64v4i16 FPR64:$src))>;
+def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))),
+ (f64 (REV64v2i32 FPR64:$src))>;
+def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))),
+ (f64 (REV64v8i8 FPR64:$src))>;
+}
+def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>;
+def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>;
+
+let Predicates = [IsLE] in {
+def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
+def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
+def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), (v1f64 FPR64:$src)>;
+def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
+ (v1f64 (REV64v2i32 FPR64:$src))>;
+def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
+ (v1f64 (REV64v4i16 FPR64:$src))>;
+def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))),
+ (v1f64 (REV64v8i8 FPR64:$src))>;
+def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
+ (v1f64 (REV64v2i32 FPR64:$src))>;
+}
+def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
+def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
+
+let Predicates = [IsLE] in {
+def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
+def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
+def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
+def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
+def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
+ (v2f32 (REV64v2i32 FPR64:$src))>;
+def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
+ (v2f32 (REV32v4i16 FPR64:$src))>;
+def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))),
+ (v2f32 (REV32v8i8 FPR64:$src))>;
+def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
+ (v2f32 (REV64v2i32 FPR64:$src))>;
+def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))),
+ (v2f32 (REV64v2i32 FPR64:$src))>;
+}
+def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
+
+let Predicates = [IsLE] in {
+def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
+def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
+def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
+def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
+def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
+def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
+ (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
+def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
+ (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
+ (REV64v4i32 FPR128:$src), (i32 8)))>;
+def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
+ (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
+ (REV64v8i16 FPR128:$src), (i32 8)))>;
+def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
+ (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
+def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
+ (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
+ (REV64v4i32 FPR128:$src), (i32 8)))>;
+def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
+ (f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
+ (REV64v16i8 FPR128:$src), (i32 8)))>;
+}
+
+let Predicates = [IsLE] in {
+def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))),
+ (v2f64 (EXTv16i8 FPR128:$src,
+ FPR128:$src, (i32 8)))>;
+def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
+ (v2f64 (REV64v4i32 FPR128:$src))>;
+def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
+ (v2f64 (REV64v8i16 FPR128:$src))>;
+def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
+ (v2f64 (REV64v16i8 FPR128:$src))>;
+def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
+ (v2f64 (REV64v4i32 FPR128:$src))>;
+}
+def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
+
+let Predicates = [IsLE] in {
+def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))),
+ (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
+ (REV64v4i32 FPR128:$src), (i32 8)))>;
+def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
+ (v4f32 (REV32v8i16 FPR128:$src))>;
+def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
+ (v4f32 (REV32v16i8 FPR128:$src))>;
+def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
+ (v4f32 (REV64v4i32 FPR128:$src))>;
+def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
+ (v4f32 (REV64v4i32 FPR128:$src))>;
+}
+def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
+
+let Predicates = [IsLE] in {
+def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))),
+ (v2i64 (EXTv16i8 FPR128:$src,
+ FPR128:$src, (i32 8)))>;
+def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
+ (v2i64 (REV64v4i32 FPR128:$src))>;
+def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
+ (v2i64 (REV64v8i16 FPR128:$src))>;
+def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
+ (v2i64 (REV64v16i8 FPR128:$src))>;
+def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
+ (v2i64 (REV64v4i32 FPR128:$src))>;
+}
+def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
+
+let Predicates = [IsLE] in {
+def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))),
+ (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
+ (REV64v4i32 FPR128:$src),
+ (i32 8)))>;
+def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
+ (v4i32 (REV64v4i32 FPR128:$src))>;
+def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
+ (v4i32 (REV32v8i16 FPR128:$src))>;
+def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
+ (v4i32 (REV32v16i8 FPR128:$src))>;
+def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
+ (v4i32 (REV64v4i32 FPR128:$src))>;
+}
+def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
+
+let Predicates = [IsLE] in {
+def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))),
+ (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
+ (REV64v8i16 FPR128:$src),
+ (i32 8)))>;
+def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
+ (v8i16 (REV64v8i16 FPR128:$src))>;
+def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
+ (v8i16 (REV32v8i16 FPR128:$src))>;
+def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
+ (v8i16 (REV16v16i8 FPR128:$src))>;
+def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
+ (v8i16 (REV64v8i16 FPR128:$src))>;
+def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
+ (v8i16 (REV32v8i16 FPR128:$src))>;
+}
+
+let Predicates = [IsLE] in {
+def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))),
+ (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
+ (REV64v16i8 FPR128:$src),
+ (i32 8)))>;
+def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
+ (v16i8 (REV64v16i8 FPR128:$src))>;
+def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
+ (v16i8 (REV32v16i8 FPR128:$src))>;
+def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
+ (v16i8 (REV16v16i8 FPR128:$src))>;
+def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
+ (v16i8 (REV64v16i8 FPR128:$src))>;
+def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
+ (v16i8 (REV32v16i8 FPR128:$src))>;
+}
+
+def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
+ (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
+def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
+ (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
+def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
+ (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
+def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
+ (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
+
+// A 64-bit subvector insert to the first 128-bit vector position
+// is a subregister copy that needs no instruction.
+def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (i32 0)),
+ (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
+def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (i32 0)),
+ (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
+def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (i32 0)),
+ (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
+def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (i32 0)),
+ (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
+def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (i32 0)),
+ (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
+def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (i32 0)),
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
+
+// Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
+// or v2f32.
+def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
+ (vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
+ (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
+def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
+ (vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
+ (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
+ // vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
+ // so we match on v4f32 here, not v2f32. This will also catch adding
+ // the low two lanes of a true v4f32 vector.
+def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
+ (vector_extract (v4f32 FPR128:$Rn), (i64 1))),
+ (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
+
+// Scalar 64-bit shifts in FPR64 registers.
+def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
+ (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
+def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
+ (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
+def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
+ (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
+def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
+ (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
+
+// Tail call return handling. These are all compiler pseudo-instructions,
+// so no encoding information or anything like that.
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
+ def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff),[]>;
+ def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>;
+}
+
+def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
+ (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>;
+def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
+ (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
+def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
+ (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
+
+include "AArch64InstrAtomics.td"
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64LoadStoreOptimizer.cpp b/contrib/llvm/lib/Target/AArch64/AArch64LoadStoreOptimizer.cpp
new file mode 100644
index 0000000..3df9c4f
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64LoadStoreOptimizer.cpp
@@ -0,0 +1,951 @@
+//=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that performs load / store related peephole
+// optimizations. This pass should be run after register allocation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64InstrInfo.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-ldst-opt"
+
+/// AArch64AllocLoadStoreOpt - Post-register allocation pass to combine
+/// load / store instructions to form ldp / stp instructions.
+
+STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
+STATISTIC(NumPostFolded, "Number of post-index updates folded");
+STATISTIC(NumPreFolded, "Number of pre-index updates folded");
+STATISTIC(NumUnscaledPairCreated,
+ "Number of load/store from unscaled generated");
+
+static cl::opt<unsigned> ScanLimit("aarch64-load-store-scan-limit",
+ cl::init(20), cl::Hidden);
+
+// Place holder while testing unscaled load/store combining
+static cl::opt<bool> EnableAArch64UnscaledMemOp(
+ "aarch64-unscaled-mem-op", cl::Hidden,
+ cl::desc("Allow AArch64 unscaled load/store combining"), cl::init(true));
+
+namespace {
+struct AArch64LoadStoreOpt : public MachineFunctionPass {
+ static char ID;
+ AArch64LoadStoreOpt() : MachineFunctionPass(ID) {}
+
+ const AArch64InstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+
+ // Scan the instructions looking for a load/store that can be combined
+ // with the current instruction into a load/store pair.
+ // Return the matching instruction if one is found, else MBB->end().
+ // If a matching instruction is found, MergeForward is set to true if the
+ // merge is to remove the first instruction and replace the second with
+ // a pair-wise insn, and false if the reverse is true.
+ MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I,
+ bool &MergeForward,
+ unsigned Limit);
+ // Merge the two instructions indicated into a single pair-wise instruction.
+ // If MergeForward is true, erase the first instruction and fold its
+ // operation into the second. If false, the reverse. Return the instruction
+ // following the first instruction (which may change during processing).
+ MachineBasicBlock::iterator
+ mergePairedInsns(MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator Paired, bool MergeForward);
+
+ // Scan the instruction list to find a base register update that can
+ // be combined with the current instruction (a load or store) using
+ // pre or post indexed addressing with writeback. Scan forwards.
+ MachineBasicBlock::iterator
+ findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, unsigned Limit,
+ int Value);
+
+ // Scan the instruction list to find a base register update that can
+ // be combined with the current instruction (a load or store) using
+ // pre or post indexed addressing with writeback. Scan backwards.
+ MachineBasicBlock::iterator
+ findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit);
+
+ // Merge a pre-index base register update into a ld/st instruction.
+ MachineBasicBlock::iterator
+ mergePreIdxUpdateInsn(MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator Update);
+
+ // Merge a post-index base register update into a ld/st instruction.
+ MachineBasicBlock::iterator
+ mergePostIdxUpdateInsn(MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator Update);
+
+ bool optimizeBlock(MachineBasicBlock &MBB);
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "AArch64 load / store optimization pass";
+ }
+
+private:
+ int getMemSize(MachineInstr *MemMI);
+};
+char AArch64LoadStoreOpt::ID = 0;
+}
+
+static bool isUnscaledLdst(unsigned Opc) {
+ switch (Opc) {
+ default:
+ return false;
+ case AArch64::STURSi:
+ return true;
+ case AArch64::STURDi:
+ return true;
+ case AArch64::STURQi:
+ return true;
+ case AArch64::STURWi:
+ return true;
+ case AArch64::STURXi:
+ return true;
+ case AArch64::LDURSi:
+ return true;
+ case AArch64::LDURDi:
+ return true;
+ case AArch64::LDURQi:
+ return true;
+ case AArch64::LDURWi:
+ return true;
+ case AArch64::LDURXi:
+ return true;
+ }
+}
+
+// Size in bytes of the data moved by an unscaled load or store
+int AArch64LoadStoreOpt::getMemSize(MachineInstr *MemMI) {
+ switch (MemMI->getOpcode()) {
+ default:
+ llvm_unreachable("Opcode has unknown size!");
+ case AArch64::STRSui:
+ case AArch64::STURSi:
+ return 4;
+ case AArch64::STRDui:
+ case AArch64::STURDi:
+ return 8;
+ case AArch64::STRQui:
+ case AArch64::STURQi:
+ return 16;
+ case AArch64::STRWui:
+ case AArch64::STURWi:
+ return 4;
+ case AArch64::STRXui:
+ case AArch64::STURXi:
+ return 8;
+ case AArch64::LDRSui:
+ case AArch64::LDURSi:
+ return 4;
+ case AArch64::LDRDui:
+ case AArch64::LDURDi:
+ return 8;
+ case AArch64::LDRQui:
+ case AArch64::LDURQi:
+ return 16;
+ case AArch64::LDRWui:
+ case AArch64::LDURWi:
+ return 4;
+ case AArch64::LDRXui:
+ case AArch64::LDURXi:
+ return 8;
+ }
+}
+
+static unsigned getMatchingPairOpcode(unsigned Opc) {
+ switch (Opc) {
+ default:
+ llvm_unreachable("Opcode has no pairwise equivalent!");
+ case AArch64::STRSui:
+ case AArch64::STURSi:
+ return AArch64::STPSi;
+ case AArch64::STRDui:
+ case AArch64::STURDi:
+ return AArch64::STPDi;
+ case AArch64::STRQui:
+ case AArch64::STURQi:
+ return AArch64::STPQi;
+ case AArch64::STRWui:
+ case AArch64::STURWi:
+ return AArch64::STPWi;
+ case AArch64::STRXui:
+ case AArch64::STURXi:
+ return AArch64::STPXi;
+ case AArch64::LDRSui:
+ case AArch64::LDURSi:
+ return AArch64::LDPSi;
+ case AArch64::LDRDui:
+ case AArch64::LDURDi:
+ return AArch64::LDPDi;
+ case AArch64::LDRQui:
+ case AArch64::LDURQi:
+ return AArch64::LDPQi;
+ case AArch64::LDRWui:
+ case AArch64::LDURWi:
+ return AArch64::LDPWi;
+ case AArch64::LDRXui:
+ case AArch64::LDURXi:
+ return AArch64::LDPXi;
+ }
+}
+
+static unsigned getPreIndexedOpcode(unsigned Opc) {
+ switch (Opc) {
+ default:
+ llvm_unreachable("Opcode has no pre-indexed equivalent!");
+ case AArch64::STRSui:
+ return AArch64::STRSpre;
+ case AArch64::STRDui:
+ return AArch64::STRDpre;
+ case AArch64::STRQui:
+ return AArch64::STRQpre;
+ case AArch64::STRWui:
+ return AArch64::STRWpre;
+ case AArch64::STRXui:
+ return AArch64::STRXpre;
+ case AArch64::LDRSui:
+ return AArch64::LDRSpre;
+ case AArch64::LDRDui:
+ return AArch64::LDRDpre;
+ case AArch64::LDRQui:
+ return AArch64::LDRQpre;
+ case AArch64::LDRWui:
+ return AArch64::LDRWpre;
+ case AArch64::LDRXui:
+ return AArch64::LDRXpre;
+ }
+}
+
+static unsigned getPostIndexedOpcode(unsigned Opc) {
+ switch (Opc) {
+ default:
+ llvm_unreachable("Opcode has no post-indexed wise equivalent!");
+ case AArch64::STRSui:
+ return AArch64::STRSpost;
+ case AArch64::STRDui:
+ return AArch64::STRDpost;
+ case AArch64::STRQui:
+ return AArch64::STRQpost;
+ case AArch64::STRWui:
+ return AArch64::STRWpost;
+ case AArch64::STRXui:
+ return AArch64::STRXpost;
+ case AArch64::LDRSui:
+ return AArch64::LDRSpost;
+ case AArch64::LDRDui:
+ return AArch64::LDRDpost;
+ case AArch64::LDRQui:
+ return AArch64::LDRQpost;
+ case AArch64::LDRWui:
+ return AArch64::LDRWpost;
+ case AArch64::LDRXui:
+ return AArch64::LDRXpost;
+ }
+}
+
+MachineBasicBlock::iterator
+AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator Paired,
+ bool MergeForward) {
+ MachineBasicBlock::iterator NextI = I;
+ ++NextI;
+ // If NextI is the second of the two instructions to be merged, we need
+ // to skip one further. Either way we merge will invalidate the iterator,
+ // and we don't need to scan the new instruction, as it's a pairwise
+ // instruction, which we're not considering for further action anyway.
+ if (NextI == Paired)
+ ++NextI;
+
+ bool IsUnscaled = isUnscaledLdst(I->getOpcode());
+ int OffsetStride =
+ IsUnscaled && EnableAArch64UnscaledMemOp ? getMemSize(I) : 1;
+
+ unsigned NewOpc = getMatchingPairOpcode(I->getOpcode());
+ // Insert our new paired instruction after whichever of the paired
+ // instructions MergeForward indicates.
+ MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
+ // Also based on MergeForward is from where we copy the base register operand
+ // so we get the flags compatible with the input code.
+ MachineOperand &BaseRegOp =
+ MergeForward ? Paired->getOperand(1) : I->getOperand(1);
+
+ // Which register is Rt and which is Rt2 depends on the offset order.
+ MachineInstr *RtMI, *Rt2MI;
+ if (I->getOperand(2).getImm() ==
+ Paired->getOperand(2).getImm() + OffsetStride) {
+ RtMI = Paired;
+ Rt2MI = I;
+ } else {
+ RtMI = I;
+ Rt2MI = Paired;
+ }
+ // Handle Unscaled
+ int OffsetImm = RtMI->getOperand(2).getImm();
+ if (IsUnscaled && EnableAArch64UnscaledMemOp)
+ OffsetImm /= OffsetStride;
+
+ // Construct the new instruction.
+ MachineInstrBuilder MIB = BuildMI(*I->getParent(), InsertionPoint,
+ I->getDebugLoc(), TII->get(NewOpc))
+ .addOperand(RtMI->getOperand(0))
+ .addOperand(Rt2MI->getOperand(0))
+ .addOperand(BaseRegOp)
+ .addImm(OffsetImm);
+ (void)MIB;
+
+ // FIXME: Do we need/want to copy the mem operands from the source
+ // instructions? Probably. What uses them after this?
+
+ DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n ");
+ DEBUG(I->print(dbgs()));
+ DEBUG(dbgs() << " ");
+ DEBUG(Paired->print(dbgs()));
+ DEBUG(dbgs() << " with instruction:\n ");
+ DEBUG(((MachineInstr *)MIB)->print(dbgs()));
+ DEBUG(dbgs() << "\n");
+
+ // Erase the old instructions.
+ I->eraseFromParent();
+ Paired->eraseFromParent();
+
+ return NextI;
+}
+
+/// trackRegDefsUses - Remember what registers the specified instruction uses
+/// and modifies.
+static void trackRegDefsUses(MachineInstr *MI, BitVector &ModifiedRegs,
+ BitVector &UsedRegs,
+ const TargetRegisterInfo *TRI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isRegMask())
+ ModifiedRegs.setBitsNotInMask(MO.getRegMask());
+
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (MO.isDef()) {
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
+ ModifiedRegs.set(*AI);
+ } else {
+ assert(MO.isUse() && "Reg operand not a def and not a use?!?");
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
+ UsedRegs.set(*AI);
+ }
+ }
+}
+
+static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
+ if (!IsUnscaled && (Offset > 63 || Offset < -64))
+ return false;
+ if (IsUnscaled) {
+ // Convert the byte-offset used by unscaled into an "element" offset used
+ // by the scaled pair load/store instructions.
+ int ElemOffset = Offset / OffsetStride;
+ if (ElemOffset > 63 || ElemOffset < -64)
+ return false;
+ }
+ return true;
+}
+
+// Do alignment, specialized to power of 2 and for signed ints,
+// avoiding having to do a C-style cast from uint_64t to int when
+// using RoundUpToAlignment from include/llvm/Support/MathExtras.h.
+// FIXME: Move this function to include/MathExtras.h?
+static int alignTo(int Num, int PowOf2) {
+ return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
+}
+
+/// findMatchingInsn - Scan the instructions looking for a load/store that can
+/// be combined with the current instruction into a load/store pair.
+MachineBasicBlock::iterator
+AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
+ bool &MergeForward, unsigned Limit) {
+ MachineBasicBlock::iterator E = I->getParent()->end();
+ MachineBasicBlock::iterator MBBI = I;
+ MachineInstr *FirstMI = I;
+ ++MBBI;
+
+ int Opc = FirstMI->getOpcode();
+ bool MayLoad = FirstMI->mayLoad();
+ bool IsUnscaled = isUnscaledLdst(Opc);
+ unsigned Reg = FirstMI->getOperand(0).getReg();
+ unsigned BaseReg = FirstMI->getOperand(1).getReg();
+ int Offset = FirstMI->getOperand(2).getImm();
+
+ // Early exit if the first instruction modifies the base register.
+ // e.g., ldr x0, [x0]
+ // Early exit if the offset if not possible to match. (6 bits of positive
+ // range, plus allow an extra one in case we find a later insn that matches
+ // with Offset-1
+ if (FirstMI->modifiesRegister(BaseReg, TRI))
+ return E;
+ int OffsetStride =
+ IsUnscaled && EnableAArch64UnscaledMemOp ? getMemSize(FirstMI) : 1;
+ if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
+ return E;
+
+ // Track which registers have been modified and used between the first insn
+ // (inclusive) and the second insn.
+ BitVector ModifiedRegs, UsedRegs;
+ ModifiedRegs.resize(TRI->getNumRegs());
+ UsedRegs.resize(TRI->getNumRegs());
+ for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) {
+ MachineInstr *MI = MBBI;
+ // Skip DBG_VALUE instructions. Otherwise debug info can affect the
+ // optimization by changing how far we scan.
+ if (MI->isDebugValue())
+ continue;
+
+ // Now that we know this is a real instruction, count it.
+ ++Count;
+
+ if (Opc == MI->getOpcode() && MI->getOperand(2).isImm()) {
+ // If we've found another instruction with the same opcode, check to see
+ // if the base and offset are compatible with our starting instruction.
+ // These instructions all have scaled immediate operands, so we just
+ // check for +1/-1. Make sure to check the new instruction offset is
+ // actually an immediate and not a symbolic reference destined for
+ // a relocation.
+ //
+ // Pairwise instructions have a 7-bit signed offset field. Single insns
+ // have a 12-bit unsigned offset field. To be a valid combine, the
+ // final offset must be in range.
+ unsigned MIBaseReg = MI->getOperand(1).getReg();
+ int MIOffset = MI->getOperand(2).getImm();
+ if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) ||
+ (Offset + OffsetStride == MIOffset))) {
+ int MinOffset = Offset < MIOffset ? Offset : MIOffset;
+ // If this is a volatile load/store that otherwise matched, stop looking
+ // as something is going on that we don't have enough information to
+ // safely transform. Similarly, stop if we see a hint to avoid pairs.
+ if (MI->hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
+ return E;
+ // If the resultant immediate offset of merging these instructions
+ // is out of range for a pairwise instruction, bail and keep looking.
+ bool MIIsUnscaled = isUnscaledLdst(MI->getOpcode());
+ if (!inBoundsForPair(MIIsUnscaled, MinOffset, OffsetStride)) {
+ trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
+ continue;
+ }
+ // If the alignment requirements of the paired (scaled) instruction
+ // can't express the offset of the unscaled input, bail and keep
+ // looking.
+ if (IsUnscaled && EnableAArch64UnscaledMemOp &&
+ (alignTo(MinOffset, OffsetStride) != MinOffset)) {
+ trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
+ continue;
+ }
+ // If the destination register of the loads is the same register, bail
+ // and keep looking. A load-pair instruction with both destination
+ // registers the same is UNPREDICTABLE and will result in an exception.
+ if (MayLoad && Reg == MI->getOperand(0).getReg()) {
+ trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
+ continue;
+ }
+
+ // If the Rt of the second instruction was not modified or used between
+ // the two instructions, we can combine the second into the first.
+ if (!ModifiedRegs[MI->getOperand(0).getReg()] &&
+ !UsedRegs[MI->getOperand(0).getReg()]) {
+ MergeForward = false;
+ return MBBI;
+ }
+
+ // Likewise, if the Rt of the first instruction is not modified or used
+ // between the two instructions, we can combine the first into the
+ // second.
+ if (!ModifiedRegs[FirstMI->getOperand(0).getReg()] &&
+ !UsedRegs[FirstMI->getOperand(0).getReg()]) {
+ MergeForward = true;
+ return MBBI;
+ }
+ // Unable to combine these instructions due to interference in between.
+ // Keep looking.
+ }
+ }
+
+ // If the instruction wasn't a matching load or store, but does (or can)
+ // modify memory, stop searching, as we don't have alias analysis or
+ // anything like that to tell us whether the access is tromping on the
+ // locations we care about. The big one we want to catch is calls.
+ //
+ // FIXME: Theoretically, we can do better than that for SP and FP based
+ // references since we can effectively know where those are touching. It's
+ // unclear if it's worth the extra code, though. Most paired instructions
+ // will be sequential, perhaps with a few intervening non-memory related
+ // instructions.
+ if (MI->mayStore() || MI->isCall())
+ return E;
+ // Likewise, if we're matching a store instruction, we don't want to
+ // move across a load, as it may be reading the same location.
+ if (FirstMI->mayStore() && MI->mayLoad())
+ return E;
+
+ // Update modified / uses register lists.
+ trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
+
+ // Otherwise, if the base register is modified, we have no match, so
+ // return early.
+ if (ModifiedRegs[BaseReg])
+ return E;
+ }
+ return E;
+}
+
+MachineBasicBlock::iterator
+AArch64LoadStoreOpt::mergePreIdxUpdateInsn(MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator Update) {
+ assert((Update->getOpcode() == AArch64::ADDXri ||
+ Update->getOpcode() == AArch64::SUBXri) &&
+ "Unexpected base register update instruction to merge!");
+ MachineBasicBlock::iterator NextI = I;
+ // Return the instruction following the merged instruction, which is
+ // the instruction following our unmerged load. Unless that's the add/sub
+ // instruction we're merging, in which case it's the one after that.
+ if (++NextI == Update)
+ ++NextI;
+
+ int Value = Update->getOperand(2).getImm();
+ assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
+ "Can't merge 1 << 12 offset into pre-indexed load / store");
+ if (Update->getOpcode() == AArch64::SUBXri)
+ Value = -Value;
+
+ unsigned NewOpc = getPreIndexedOpcode(I->getOpcode());
+ MachineInstrBuilder MIB =
+ BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
+ .addOperand(Update->getOperand(0))
+ .addOperand(I->getOperand(0))
+ .addOperand(I->getOperand(1))
+ .addImm(Value);
+ (void)MIB;
+
+ DEBUG(dbgs() << "Creating pre-indexed load/store.");
+ DEBUG(dbgs() << " Replacing instructions:\n ");
+ DEBUG(I->print(dbgs()));
+ DEBUG(dbgs() << " ");
+ DEBUG(Update->print(dbgs()));
+ DEBUG(dbgs() << " with instruction:\n ");
+ DEBUG(((MachineInstr *)MIB)->print(dbgs()));
+ DEBUG(dbgs() << "\n");
+
+ // Erase the old instructions for the block.
+ I->eraseFromParent();
+ Update->eraseFromParent();
+
+ return NextI;
+}
+
+MachineBasicBlock::iterator AArch64LoadStoreOpt::mergePostIdxUpdateInsn(
+ MachineBasicBlock::iterator I, MachineBasicBlock::iterator Update) {
+ assert((Update->getOpcode() == AArch64::ADDXri ||
+ Update->getOpcode() == AArch64::SUBXri) &&
+ "Unexpected base register update instruction to merge!");
+ MachineBasicBlock::iterator NextI = I;
+ // Return the instruction following the merged instruction, which is
+ // the instruction following our unmerged load. Unless that's the add/sub
+ // instruction we're merging, in which case it's the one after that.
+ if (++NextI == Update)
+ ++NextI;
+
+ int Value = Update->getOperand(2).getImm();
+ assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
+ "Can't merge 1 << 12 offset into post-indexed load / store");
+ if (Update->getOpcode() == AArch64::SUBXri)
+ Value = -Value;
+
+ unsigned NewOpc = getPostIndexedOpcode(I->getOpcode());
+ MachineInstrBuilder MIB =
+ BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
+ .addOperand(Update->getOperand(0))
+ .addOperand(I->getOperand(0))
+ .addOperand(I->getOperand(1))
+ .addImm(Value);
+ (void)MIB;
+
+ DEBUG(dbgs() << "Creating post-indexed load/store.");
+ DEBUG(dbgs() << " Replacing instructions:\n ");
+ DEBUG(I->print(dbgs()));
+ DEBUG(dbgs() << " ");
+ DEBUG(Update->print(dbgs()));
+ DEBUG(dbgs() << " with instruction:\n ");
+ DEBUG(((MachineInstr *)MIB)->print(dbgs()));
+ DEBUG(dbgs() << "\n");
+
+ // Erase the old instructions for the block.
+ I->eraseFromParent();
+ Update->eraseFromParent();
+
+ return NextI;
+}
+
+static bool isMatchingUpdateInsn(MachineInstr *MI, unsigned BaseReg,
+ int Offset) {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::SUBXri:
+ // Negate the offset for a SUB instruction.
+ Offset *= -1;
+ // FALLTHROUGH
+ case AArch64::ADDXri:
+ // Make sure it's a vanilla immediate operand, not a relocation or
+ // anything else we can't handle.
+ if (!MI->getOperand(2).isImm())
+ break;
+ // Watch out for 1 << 12 shifted value.
+ if (AArch64_AM::getShiftValue(MI->getOperand(3).getImm()))
+ break;
+ // If the instruction has the base register as source and dest and the
+ // immediate will fit in a signed 9-bit integer, then we have a match.
+ if (MI->getOperand(0).getReg() == BaseReg &&
+ MI->getOperand(1).getReg() == BaseReg &&
+ MI->getOperand(2).getImm() <= 255 &&
+ MI->getOperand(2).getImm() >= -256) {
+ // If we have a non-zero Offset, we check that it matches the amount
+ // we're adding to the register.
+ if (!Offset || Offset == MI->getOperand(2).getImm())
+ return true;
+ }
+ break;
+ }
+ return false;
+}
+
+MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
+ MachineBasicBlock::iterator I, unsigned Limit, int Value) {
+ MachineBasicBlock::iterator E = I->getParent()->end();
+ MachineInstr *MemMI = I;
+ MachineBasicBlock::iterator MBBI = I;
+ const MachineFunction &MF = *MemMI->getParent()->getParent();
+
+ unsigned DestReg = MemMI->getOperand(0).getReg();
+ unsigned BaseReg = MemMI->getOperand(1).getReg();
+ int Offset = MemMI->getOperand(2).getImm() *
+ TII->getRegClass(MemMI->getDesc(), 0, TRI, MF)->getSize();
+
+ // If the base register overlaps the destination register, we can't
+ // merge the update.
+ if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
+ return E;
+
+ // Scan forward looking for post-index opportunities.
+ // Updating instructions can't be formed if the memory insn already
+ // has an offset other than the value we're looking for.
+ if (Offset != Value)
+ return E;
+
+ // Track which registers have been modified and used between the first insn
+ // (inclusive) and the second insn.
+ BitVector ModifiedRegs, UsedRegs;
+ ModifiedRegs.resize(TRI->getNumRegs());
+ UsedRegs.resize(TRI->getNumRegs());
+ ++MBBI;
+ for (unsigned Count = 0; MBBI != E; ++MBBI) {
+ MachineInstr *MI = MBBI;
+ // Skip DBG_VALUE instructions. Otherwise debug info can affect the
+ // optimization by changing how far we scan.
+ if (MI->isDebugValue())
+ continue;
+
+ // Now that we know this is a real instruction, count it.
+ ++Count;
+
+ // If we found a match, return it.
+ if (isMatchingUpdateInsn(MI, BaseReg, Value))
+ return MBBI;
+
+ // Update the status of what the instruction clobbered and used.
+ trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
+
+ // Otherwise, if the base register is used or modified, we have no match, so
+ // return early.
+ if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
+ return E;
+ }
+ return E;
+}
+
+MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
+ MachineBasicBlock::iterator I, unsigned Limit) {
+ MachineBasicBlock::iterator B = I->getParent()->begin();
+ MachineBasicBlock::iterator E = I->getParent()->end();
+ MachineInstr *MemMI = I;
+ MachineBasicBlock::iterator MBBI = I;
+ const MachineFunction &MF = *MemMI->getParent()->getParent();
+
+ unsigned DestReg = MemMI->getOperand(0).getReg();
+ unsigned BaseReg = MemMI->getOperand(1).getReg();
+ int Offset = MemMI->getOperand(2).getImm();
+ unsigned RegSize = TII->getRegClass(MemMI->getDesc(), 0, TRI, MF)->getSize();
+
+ // If the load/store is the first instruction in the block, there's obviously
+ // not any matching update. Ditto if the memory offset isn't zero.
+ if (MBBI == B || Offset != 0)
+ return E;
+ // If the base register overlaps the destination register, we can't
+ // merge the update.
+ if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
+ return E;
+
+ // Track which registers have been modified and used between the first insn
+ // (inclusive) and the second insn.
+ BitVector ModifiedRegs, UsedRegs;
+ ModifiedRegs.resize(TRI->getNumRegs());
+ UsedRegs.resize(TRI->getNumRegs());
+ --MBBI;
+ for (unsigned Count = 0; MBBI != B; --MBBI) {
+ MachineInstr *MI = MBBI;
+ // Skip DBG_VALUE instructions. Otherwise debug info can affect the
+ // optimization by changing how far we scan.
+ if (MI->isDebugValue())
+ continue;
+
+ // Now that we know this is a real instruction, count it.
+ ++Count;
+
+ // If we found a match, return it.
+ if (isMatchingUpdateInsn(MI, BaseReg, RegSize))
+ return MBBI;
+
+ // Update the status of what the instruction clobbered and used.
+ trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
+
+ // Otherwise, if the base register is used or modified, we have no match, so
+ // return early.
+ if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
+ return E;
+ }
+ return E;
+}
+
+bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB) {
+ bool Modified = false;
+ // Two tranformations to do here:
+ // 1) Find loads and stores that can be merged into a single load or store
+ // pair instruction.
+ // e.g.,
+ // ldr x0, [x2]
+ // ldr x1, [x2, #8]
+ // ; becomes
+ // ldp x0, x1, [x2]
+ // 2) Find base register updates that can be merged into the load or store
+ // as a base-reg writeback.
+ // e.g.,
+ // ldr x0, [x2]
+ // add x2, x2, #4
+ // ; becomes
+ // ldr x0, [x2], #4
+
+ for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
+ MBBI != E;) {
+ MachineInstr *MI = MBBI;
+ switch (MI->getOpcode()) {
+ default:
+ // Just move on to the next instruction.
+ ++MBBI;
+ break;
+ case AArch64::STRSui:
+ case AArch64::STRDui:
+ case AArch64::STRQui:
+ case AArch64::STRXui:
+ case AArch64::STRWui:
+ case AArch64::LDRSui:
+ case AArch64::LDRDui:
+ case AArch64::LDRQui:
+ case AArch64::LDRXui:
+ case AArch64::LDRWui:
+ // do the unscaled versions as well
+ case AArch64::STURSi:
+ case AArch64::STURDi:
+ case AArch64::STURQi:
+ case AArch64::STURWi:
+ case AArch64::STURXi:
+ case AArch64::LDURSi:
+ case AArch64::LDURDi:
+ case AArch64::LDURQi:
+ case AArch64::LDURWi:
+ case AArch64::LDURXi: {
+ // If this is a volatile load/store, don't mess with it.
+ if (MI->hasOrderedMemoryRef()) {
+ ++MBBI;
+ break;
+ }
+ // Make sure this is a reg+imm (as opposed to an address reloc).
+ if (!MI->getOperand(2).isImm()) {
+ ++MBBI;
+ break;
+ }
+ // Check if this load/store has a hint to avoid pair formation.
+ // MachineMemOperands hints are set by the AArch64StorePairSuppress pass.
+ if (TII->isLdStPairSuppressed(MI)) {
+ ++MBBI;
+ break;
+ }
+ // Look ahead up to ScanLimit instructions for a pairable instruction.
+ bool MergeForward = false;
+ MachineBasicBlock::iterator Paired =
+ findMatchingInsn(MBBI, MergeForward, ScanLimit);
+ if (Paired != E) {
+ // Merge the loads into a pair. Keeping the iterator straight is a
+ // pain, so we let the merge routine tell us what the next instruction
+ // is after it's done mucking about.
+ MBBI = mergePairedInsns(MBBI, Paired, MergeForward);
+
+ Modified = true;
+ ++NumPairCreated;
+ if (isUnscaledLdst(MI->getOpcode()))
+ ++NumUnscaledPairCreated;
+ break;
+ }
+ ++MBBI;
+ break;
+ }
+ // FIXME: Do the other instructions.
+ }
+ }
+
+ for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
+ MBBI != E;) {
+ MachineInstr *MI = MBBI;
+ // Do update merging. It's simpler to keep this separate from the above
+ // switch, though not strictly necessary.
+ int Opc = MI->getOpcode();
+ switch (Opc) {
+ default:
+ // Just move on to the next instruction.
+ ++MBBI;
+ break;
+ case AArch64::STRSui:
+ case AArch64::STRDui:
+ case AArch64::STRQui:
+ case AArch64::STRXui:
+ case AArch64::STRWui:
+ case AArch64::LDRSui:
+ case AArch64::LDRDui:
+ case AArch64::LDRQui:
+ case AArch64::LDRXui:
+ case AArch64::LDRWui:
+ // do the unscaled versions as well
+ case AArch64::STURSi:
+ case AArch64::STURDi:
+ case AArch64::STURQi:
+ case AArch64::STURWi:
+ case AArch64::STURXi:
+ case AArch64::LDURSi:
+ case AArch64::LDURDi:
+ case AArch64::LDURQi:
+ case AArch64::LDURWi:
+ case AArch64::LDURXi: {
+ // Make sure this is a reg+imm (as opposed to an address reloc).
+ if (!MI->getOperand(2).isImm()) {
+ ++MBBI;
+ break;
+ }
+ // Look ahead up to ScanLimit instructions for a mergable instruction.
+ MachineBasicBlock::iterator Update =
+ findMatchingUpdateInsnForward(MBBI, ScanLimit, 0);
+ if (Update != E) {
+ // Merge the update into the ld/st.
+ MBBI = mergePostIdxUpdateInsn(MBBI, Update);
+ Modified = true;
+ ++NumPostFolded;
+ break;
+ }
+ // Don't know how to handle pre/post-index versions, so move to the next
+ // instruction.
+ if (isUnscaledLdst(Opc)) {
+ ++MBBI;
+ break;
+ }
+
+ // Look back to try to find a pre-index instruction. For example,
+ // add x0, x0, #8
+ // ldr x1, [x0]
+ // merged into:
+ // ldr x1, [x0, #8]!
+ Update = findMatchingUpdateInsnBackward(MBBI, ScanLimit);
+ if (Update != E) {
+ // Merge the update into the ld/st.
+ MBBI = mergePreIdxUpdateInsn(MBBI, Update);
+ Modified = true;
+ ++NumPreFolded;
+ break;
+ }
+
+ // Look forward to try to find a post-index instruction. For example,
+ // ldr x1, [x0, #64]
+ // add x0, x0, #64
+ // merged into:
+ // ldr x1, [x0, #64]!
+
+ // The immediate in the load/store is scaled by the size of the register
+ // being loaded. The immediate in the add we're looking for,
+ // however, is not, so adjust here.
+ int Value = MI->getOperand(2).getImm() *
+ TII->getRegClass(MI->getDesc(), 0, TRI, *(MBB.getParent()))
+ ->getSize();
+ Update = findMatchingUpdateInsnForward(MBBI, ScanLimit, Value);
+ if (Update != E) {
+ // Merge the update into the ld/st.
+ MBBI = mergePreIdxUpdateInsn(MBBI, Update);
+ Modified = true;
+ ++NumPreFolded;
+ break;
+ }
+
+ // Nothing found. Just move to the next instruction.
+ ++MBBI;
+ break;
+ }
+ // FIXME: Do the other instructions.
+ }
+ }
+
+ return Modified;
+}
+
+bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
+ const TargetMachine &TM = Fn.getTarget();
+ TII = static_cast<const AArch64InstrInfo *>(TM.getInstrInfo());
+ TRI = TM.getRegisterInfo();
+
+ bool Modified = false;
+ for (auto &MBB : Fn)
+ Modified |= optimizeBlock(MBB);
+
+ return Modified;
+}
+
+// FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep
+// loads and stores near one another?
+
+/// createARMLoadStoreOptimizationPass - returns an instance of the load / store
+/// optimization pass.
+FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() {
+ return new AArch64LoadStoreOpt();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.cpp b/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.cpp
new file mode 100644
index 0000000..75a17b9
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.cpp
@@ -0,0 +1,202 @@
+//==-- AArch64MCInstLower.cpp - Convert AArch64 MachineInstr to an MCInst --==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code to lower AArch64 MachineInstrs to their corresponding
+// MCInst records.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64MCInstLower.h"
+#include "MCTargetDesc/AArch64MCExpr.h"
+#include "Utils/AArch64BaseInfo.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+AArch64MCInstLower::AArch64MCInstLower(MCContext &ctx, Mangler &mang,
+ AsmPrinter &printer)
+ : Ctx(ctx), Printer(printer), TargetTriple(printer.getTargetTriple()) {}
+
+MCSymbol *
+AArch64MCInstLower::GetGlobalAddressSymbol(const MachineOperand &MO) const {
+ return Printer.getSymbol(MO.getGlobal());
+}
+
+MCSymbol *
+AArch64MCInstLower::GetExternalSymbolSymbol(const MachineOperand &MO) const {
+ return Printer.GetExternalSymbolSymbol(MO.getSymbolName());
+}
+
+MCOperand AArch64MCInstLower::lowerSymbolOperandDarwin(const MachineOperand &MO,
+ MCSymbol *Sym) const {
+ // FIXME: We would like an efficient form for this, so we don't have to do a
+ // lot of extra uniquing.
+ MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
+ if ((MO.getTargetFlags() & AArch64II::MO_GOT) != 0) {
+ if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) == AArch64II::MO_PAGE)
+ RefKind = MCSymbolRefExpr::VK_GOTPAGE;
+ else if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) ==
+ AArch64II::MO_PAGEOFF)
+ RefKind = MCSymbolRefExpr::VK_GOTPAGEOFF;
+ else
+ llvm_unreachable("Unexpected target flags with MO_GOT on GV operand");
+ } else if ((MO.getTargetFlags() & AArch64II::MO_TLS) != 0) {
+ if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) == AArch64II::MO_PAGE)
+ RefKind = MCSymbolRefExpr::VK_TLVPPAGE;
+ else if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) ==
+ AArch64II::MO_PAGEOFF)
+ RefKind = MCSymbolRefExpr::VK_TLVPPAGEOFF;
+ else
+ llvm_unreachable("Unexpected target flags with MO_TLS on GV operand");
+ } else {
+ if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) == AArch64II::MO_PAGE)
+ RefKind = MCSymbolRefExpr::VK_PAGE;
+ else if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) ==
+ AArch64II::MO_PAGEOFF)
+ RefKind = MCSymbolRefExpr::VK_PAGEOFF;
+ }
+ const MCExpr *Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx);
+ if (!MO.isJTI() && MO.getOffset())
+ Expr = MCBinaryExpr::CreateAdd(
+ Expr, MCConstantExpr::Create(MO.getOffset(), Ctx), Ctx);
+ return MCOperand::CreateExpr(Expr);
+}
+
+MCOperand AArch64MCInstLower::lowerSymbolOperandELF(const MachineOperand &MO,
+ MCSymbol *Sym) const {
+ uint32_t RefFlags = 0;
+
+ if (MO.getTargetFlags() & AArch64II::MO_GOT)
+ RefFlags |= AArch64MCExpr::VK_GOT;
+ else if (MO.getTargetFlags() & AArch64II::MO_TLS) {
+ TLSModel::Model Model;
+ if (MO.isGlobal()) {
+ const GlobalValue *GV = MO.getGlobal();
+ Model = Printer.TM.getTLSModel(GV);
+ } else {
+ assert(MO.isSymbol() &&
+ StringRef(MO.getSymbolName()) == "_TLS_MODULE_BASE_" &&
+ "unexpected external TLS symbol");
+ Model = TLSModel::GeneralDynamic;
+ }
+ switch (Model) {
+ case TLSModel::InitialExec:
+ RefFlags |= AArch64MCExpr::VK_GOTTPREL;
+ break;
+ case TLSModel::LocalExec:
+ RefFlags |= AArch64MCExpr::VK_TPREL;
+ break;
+ case TLSModel::LocalDynamic:
+ RefFlags |= AArch64MCExpr::VK_DTPREL;
+ break;
+ case TLSModel::GeneralDynamic:
+ RefFlags |= AArch64MCExpr::VK_TLSDESC;
+ break;
+ }
+ } else {
+ // No modifier means this is a generic reference, classified as absolute for
+ // the cases where it matters (:abs_g0: etc).
+ RefFlags |= AArch64MCExpr::VK_ABS;
+ }
+
+ if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) == AArch64II::MO_PAGE)
+ RefFlags |= AArch64MCExpr::VK_PAGE;
+ else if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) ==
+ AArch64II::MO_PAGEOFF)
+ RefFlags |= AArch64MCExpr::VK_PAGEOFF;
+ else if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) == AArch64II::MO_G3)
+ RefFlags |= AArch64MCExpr::VK_G3;
+ else if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) == AArch64II::MO_G2)
+ RefFlags |= AArch64MCExpr::VK_G2;
+ else if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) == AArch64II::MO_G1)
+ RefFlags |= AArch64MCExpr::VK_G1;
+ else if ((MO.getTargetFlags() & AArch64II::MO_FRAGMENT) == AArch64II::MO_G0)
+ RefFlags |= AArch64MCExpr::VK_G0;
+
+ if (MO.getTargetFlags() & AArch64II::MO_NC)
+ RefFlags |= AArch64MCExpr::VK_NC;
+
+ const MCExpr *Expr =
+ MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None, Ctx);
+ if (!MO.isJTI() && MO.getOffset())
+ Expr = MCBinaryExpr::CreateAdd(
+ Expr, MCConstantExpr::Create(MO.getOffset(), Ctx), Ctx);
+
+ AArch64MCExpr::VariantKind RefKind;
+ RefKind = static_cast<AArch64MCExpr::VariantKind>(RefFlags);
+ Expr = AArch64MCExpr::Create(Expr, RefKind, Ctx);
+
+ return MCOperand::CreateExpr(Expr);
+}
+
+MCOperand AArch64MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
+ MCSymbol *Sym) const {
+ if (TargetTriple.isOSDarwin())
+ return lowerSymbolOperandDarwin(MO, Sym);
+
+ assert(TargetTriple.isOSBinFormatELF() && "Expect Darwin or ELF target");
+ return lowerSymbolOperandELF(MO, Sym);
+}
+
+bool AArch64MCInstLower::lowerOperand(const MachineOperand &MO,
+ MCOperand &MCOp) const {
+ switch (MO.getType()) {
+ default:
+ llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ // Ignore all implicit register operands.
+ if (MO.isImplicit())
+ return false;
+ MCOp = MCOperand::CreateReg(MO.getReg());
+ break;
+ case MachineOperand::MO_RegisterMask:
+ // Regmasks are like implicit defs.
+ return false;
+ case MachineOperand::MO_Immediate:
+ MCOp = MCOperand::CreateImm(MO.getImm());
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ MCOp = MCOperand::CreateExpr(
+ MCSymbolRefExpr::Create(MO.getMBB()->getSymbol(), Ctx));
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ MCOp = LowerSymbolOperand(MO, GetGlobalAddressSymbol(MO));
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ MCOp = LowerSymbolOperand(MO, GetExternalSymbolSymbol(MO));
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ MCOp = LowerSymbolOperand(MO, Printer.GetJTISymbol(MO.getIndex()));
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ MCOp = LowerSymbolOperand(MO, Printer.GetCPISymbol(MO.getIndex()));
+ break;
+ case MachineOperand::MO_BlockAddress:
+ MCOp = LowerSymbolOperand(
+ MO, Printer.GetBlockAddressSymbol(MO.getBlockAddress()));
+ break;
+ }
+ return true;
+}
+
+void AArch64MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
+ OutMI.setOpcode(MI->getOpcode());
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MCOperand MCOp;
+ if (lowerOperand(MI->getOperand(i), MCOp))
+ OutMI.addOperand(MCOp);
+ }
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.h b/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.h
new file mode 100644
index 0000000..ba50ba9
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.h
@@ -0,0 +1,52 @@
+//===-- AArch64MCInstLower.h - Lower MachineInstr to MCInst ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64_MCINSTLOWER_H
+#define AArch64_MCINSTLOWER_H
+
+#include "llvm/ADT/Triple.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+class AsmPrinter;
+class MCAsmInfo;
+class MCContext;
+class MCInst;
+class MCOperand;
+class MCSymbol;
+class MachineInstr;
+class MachineModuleInfoMachO;
+class MachineOperand;
+class Mangler;
+
+/// AArch64MCInstLower - This class is used to lower an MachineInstr
+/// into an MCInst.
+class LLVM_LIBRARY_VISIBILITY AArch64MCInstLower {
+ MCContext &Ctx;
+ AsmPrinter &Printer;
+ Triple TargetTriple;
+
+public:
+ AArch64MCInstLower(MCContext &ctx, Mangler &mang, AsmPrinter &printer);
+
+ bool lowerOperand(const MachineOperand &MO, MCOperand &MCOp) const;
+ void Lower(const MachineInstr *MI, MCInst &OutMI) const;
+
+ MCOperand lowerSymbolOperandDarwin(const MachineOperand &MO,
+ MCSymbol *Sym) const;
+ MCOperand lowerSymbolOperandELF(const MachineOperand &MO,
+ MCSymbol *Sym) const;
+ MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
+
+ MCSymbol *GetGlobalAddressSymbol(const MachineOperand &MO) const;
+ MCSymbol *GetExternalSymbolSymbol(const MachineOperand &MO) const;
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64MachineFunctionInfo.h b/contrib/llvm/lib/Target/AArch64/AArch64MachineFunctionInfo.h
new file mode 100644
index 0000000..7c257ba
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64MachineFunctionInfo.h
@@ -0,0 +1,163 @@
+//=- AArch64MachineFuctionInfo.h - AArch64 machine function info --*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares AArch64-specific per-machine-function information.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64MACHINEFUNCTIONINFO_H
+#define AArch64MACHINEFUNCTIONINFO_H
+
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/MC/MCLinkerOptimizationHint.h"
+
+namespace llvm {
+
+/// AArch64FunctionInfo - This class is derived from MachineFunctionInfo and
+/// contains private AArch64-specific information for each MachineFunction.
+class AArch64FunctionInfo : public MachineFunctionInfo {
+
+ /// Number of bytes of arguments this function has on the stack. If the callee
+ /// is expected to restore the argument stack this should be a multiple of 16,
+ /// all usable during a tail call.
+ ///
+ /// The alternative would forbid tail call optimisation in some cases: if we
+ /// want to transfer control from a function with 8-bytes of stack-argument
+ /// space to a function with 16-bytes then misalignment of this value would
+ /// make a stack adjustment necessary, which could not be undone by the
+ /// callee.
+ unsigned BytesInStackArgArea;
+
+ /// The number of bytes to restore to deallocate space for incoming
+ /// arguments. Canonically 0 in the C calling convention, but non-zero when
+ /// callee is expected to pop the args.
+ unsigned ArgumentStackToRestore;
+
+ /// HasStackFrame - True if this function has a stack frame. Set by
+ /// processFunctionBeforeCalleeSavedScan().
+ bool HasStackFrame;
+
+ /// \brief Amount of stack frame size, not including callee-saved registers.
+ unsigned LocalStackSize;
+
+ /// \brief Number of TLS accesses using the special (combinable)
+ /// _TLS_MODULE_BASE_ symbol.
+ unsigned NumLocalDynamicTLSAccesses;
+
+ /// \brief FrameIndex for start of varargs area for arguments passed on the
+ /// stack.
+ int VarArgsStackIndex;
+
+ /// \brief FrameIndex for start of varargs area for arguments passed in
+ /// general purpose registers.
+ int VarArgsGPRIndex;
+
+ /// \brief Size of the varargs area for arguments passed in general purpose
+ /// registers.
+ unsigned VarArgsGPRSize;
+
+ /// \brief FrameIndex for start of varargs area for arguments passed in
+ /// floating-point registers.
+ int VarArgsFPRIndex;
+
+ /// \brief Size of the varargs area for arguments passed in floating-point
+ /// registers.
+ unsigned VarArgsFPRSize;
+
+public:
+ AArch64FunctionInfo()
+ : BytesInStackArgArea(0), ArgumentStackToRestore(0), HasStackFrame(false),
+ NumLocalDynamicTLSAccesses(0), VarArgsStackIndex(0), VarArgsGPRIndex(0),
+ VarArgsGPRSize(0), VarArgsFPRIndex(0), VarArgsFPRSize(0) {}
+
+ explicit AArch64FunctionInfo(MachineFunction &MF)
+ : BytesInStackArgArea(0), ArgumentStackToRestore(0), HasStackFrame(false),
+ NumLocalDynamicTLSAccesses(0), VarArgsStackIndex(0), VarArgsGPRIndex(0),
+ VarArgsGPRSize(0), VarArgsFPRIndex(0), VarArgsFPRSize(0) {
+ (void)MF;
+ }
+
+ unsigned getBytesInStackArgArea() const { return BytesInStackArgArea; }
+ void setBytesInStackArgArea(unsigned bytes) { BytesInStackArgArea = bytes; }
+
+ unsigned getArgumentStackToRestore() const { return ArgumentStackToRestore; }
+ void setArgumentStackToRestore(unsigned bytes) {
+ ArgumentStackToRestore = bytes;
+ }
+
+ bool hasStackFrame() const { return HasStackFrame; }
+ void setHasStackFrame(bool s) { HasStackFrame = s; }
+
+ void setLocalStackSize(unsigned Size) { LocalStackSize = Size; }
+ unsigned getLocalStackSize() const { return LocalStackSize; }
+
+ void incNumLocalDynamicTLSAccesses() { ++NumLocalDynamicTLSAccesses; }
+ unsigned getNumLocalDynamicTLSAccesses() const {
+ return NumLocalDynamicTLSAccesses;
+ }
+
+ int getVarArgsStackIndex() const { return VarArgsStackIndex; }
+ void setVarArgsStackIndex(int Index) { VarArgsStackIndex = Index; }
+
+ int getVarArgsGPRIndex() const { return VarArgsGPRIndex; }
+ void setVarArgsGPRIndex(int Index) { VarArgsGPRIndex = Index; }
+
+ unsigned getVarArgsGPRSize() const { return VarArgsGPRSize; }
+ void setVarArgsGPRSize(unsigned Size) { VarArgsGPRSize = Size; }
+
+ int getVarArgsFPRIndex() const { return VarArgsFPRIndex; }
+ void setVarArgsFPRIndex(int Index) { VarArgsFPRIndex = Index; }
+
+ unsigned getVarArgsFPRSize() const { return VarArgsFPRSize; }
+ void setVarArgsFPRSize(unsigned Size) { VarArgsFPRSize = Size; }
+
+ typedef SmallPtrSet<const MachineInstr *, 16> SetOfInstructions;
+
+ const SetOfInstructions &getLOHRelated() const { return LOHRelated; }
+
+ // Shortcuts for LOH related types.
+ class MILOHDirective {
+ MCLOHType Kind;
+
+ /// Arguments of this directive. Order matters.
+ SmallVector<const MachineInstr *, 3> Args;
+
+ public:
+ typedef SmallVectorImpl<const MachineInstr *> LOHArgs;
+
+ MILOHDirective(MCLOHType Kind, const LOHArgs &Args)
+ : Kind(Kind), Args(Args.begin(), Args.end()) {
+ assert(isValidMCLOHType(Kind) && "Invalid LOH directive type!");
+ }
+
+ MCLOHType getKind() const { return Kind; }
+ const LOHArgs &getArgs() const { return Args; }
+ };
+
+ typedef MILOHDirective::LOHArgs MILOHArgs;
+ typedef SmallVector<MILOHDirective, 32> MILOHContainer;
+
+ const MILOHContainer &getLOHContainer() const { return LOHContainerSet; }
+
+ /// Add a LOH directive of this @p Kind and this @p Args.
+ void addLOHDirective(MCLOHType Kind, const MILOHArgs &Args) {
+ LOHContainerSet.push_back(MILOHDirective(Kind, Args));
+ LOHRelated.insert(Args.begin(), Args.end());
+ }
+
+private:
+ // Hold the lists of LOHs.
+ MILOHContainer LOHContainerSet;
+ SetOfInstructions LOHRelated;
+};
+} // End llvm namespace
+
+#endif // AArch64MACHINEFUNCTIONINFO_H
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64PerfectShuffle.h b/contrib/llvm/lib/Target/AArch64/AArch64PerfectShuffle.h
new file mode 100644
index 0000000..b22fa24
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64PerfectShuffle.h
@@ -0,0 +1,6586 @@
+//===-- AArch64PerfectShuffle.h - AdvSIMD Perfect Shuffle Table -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file, which was autogenerated by llvm-PerfectShuffle, contains data
+// for the optimal way to build a perfect shuffle using AdvSIMD instructions.
+//
+//===----------------------------------------------------------------------===//
+
+// 31 entries have cost 0
+// 242 entries have cost 1
+// 1447 entries have cost 2
+// 3602 entries have cost 3
+// 1237 entries have cost 4
+// 2 entries have cost 5
+
+// This table is 6561*4 = 26244 bytes in size.
+static const unsigned PerfectShuffleTable[6561+1] = {
+ 135053414U, // <0,0,0,0>: Cost 1 vdup0 LHS
+ 1543503974U, // <0,0,0,1>: Cost 2 vext2 <0,0,0,0>, LHS
+ 2618572962U, // <0,0,0,2>: Cost 3 vext2 <0,2,0,0>, <0,2,0,0>
+ 2568054923U, // <0,0,0,3>: Cost 3 vext1 <3,0,0,0>, <3,0,0,0>
+ 1476398390U, // <0,0,0,4>: Cost 2 vext1 <0,0,0,0>, RHS
+ 2550140624U, // <0,0,0,5>: Cost 3 vext1 <0,0,0,0>, <5,1,7,3>
+ 2550141434U, // <0,0,0,6>: Cost 3 vext1 <0,0,0,0>, <6,2,7,3>
+ 2591945711U, // <0,0,0,7>: Cost 3 vext1 <7,0,0,0>, <7,0,0,0>
+ 135053414U, // <0,0,0,u>: Cost 1 vdup0 LHS
+ 2886516736U, // <0,0,1,0>: Cost 3 vzipl LHS, <0,0,0,0>
+ 1812775014U, // <0,0,1,1>: Cost 2 vzipl LHS, LHS
+ 1618133094U, // <0,0,1,2>: Cost 2 vext3 <1,2,3,0>, LHS
+ 2625209292U, // <0,0,1,3>: Cost 3 vext2 <1,3,0,0>, <1,3,0,0>
+ 2886558034U, // <0,0,1,4>: Cost 3 vzipl LHS, <0,4,1,5>
+ 2617246864U, // <0,0,1,5>: Cost 3 vext2 <0,0,0,0>, <1,5,3,7>
+ 3659723031U, // <0,0,1,6>: Cost 4 vext1 <6,0,0,1>, <6,0,0,1>
+ 2591953904U, // <0,0,1,7>: Cost 3 vext1 <7,0,0,1>, <7,0,0,1>
+ 1812775581U, // <0,0,1,u>: Cost 2 vzipl LHS, LHS
+ 3020734464U, // <0,0,2,0>: Cost 3 vtrnl LHS, <0,0,0,0>
+ 3020734474U, // <0,0,2,1>: Cost 3 vtrnl LHS, <0,0,1,1>
+ 1946992742U, // <0,0,2,2>: Cost 2 vtrnl LHS, LHS
+ 2631181989U, // <0,0,2,3>: Cost 3 vext2 <2,3,0,0>, <2,3,0,0>
+ 3020734668U, // <0,0,2,4>: Cost 3 vtrnl LHS, <0,2,4,6>
+ 3826550569U, // <0,0,2,5>: Cost 4 vuzpl <0,2,0,2>, <2,4,5,6>
+ 2617247674U, // <0,0,2,6>: Cost 3 vext2 <0,0,0,0>, <2,6,3,7>
+ 2591962097U, // <0,0,2,7>: Cost 3 vext1 <7,0,0,2>, <7,0,0,2>
+ 1946992796U, // <0,0,2,u>: Cost 2 vtrnl LHS, LHS
+ 2635163787U, // <0,0,3,0>: Cost 3 vext2 <3,0,0,0>, <3,0,0,0>
+ 2686419196U, // <0,0,3,1>: Cost 3 vext3 <0,3,1,0>, <0,3,1,0>
+ 2686492933U, // <0,0,3,2>: Cost 3 vext3 <0,3,2,0>, <0,3,2,0>
+ 2617248156U, // <0,0,3,3>: Cost 3 vext2 <0,0,0,0>, <3,3,3,3>
+ 2617248258U, // <0,0,3,4>: Cost 3 vext2 <0,0,0,0>, <3,4,5,6>
+ 3826551298U, // <0,0,3,5>: Cost 4 vuzpl <0,2,0,2>, <3,4,5,6>
+ 3690990200U, // <0,0,3,6>: Cost 4 vext2 <0,0,0,0>, <3,6,0,7>
+ 3713551042U, // <0,0,3,7>: Cost 4 vext2 <3,7,0,0>, <3,7,0,0>
+ 2635163787U, // <0,0,3,u>: Cost 3 vext2 <3,0,0,0>, <3,0,0,0>
+ 2617248658U, // <0,0,4,0>: Cost 3 vext2 <0,0,0,0>, <4,0,5,1>
+ 2888450150U, // <0,0,4,1>: Cost 3 vzipl <0,4,1,5>, LHS
+ 3021570150U, // <0,0,4,2>: Cost 3 vtrnl <0,2,4,6>, LHS
+ 3641829519U, // <0,0,4,3>: Cost 4 vext1 <3,0,0,4>, <3,0,0,4>
+ 3021570252U, // <0,0,4,4>: Cost 3 vtrnl <0,2,4,6>, <0,2,4,6>
+ 1543507254U, // <0,0,4,5>: Cost 2 vext2 <0,0,0,0>, RHS
+ 2752810294U, // <0,0,4,6>: Cost 3 vuzpl <0,2,0,2>, RHS
+ 3786998152U, // <0,0,4,7>: Cost 4 vext3 <4,7,5,0>, <0,4,7,5>
+ 1543507497U, // <0,0,4,u>: Cost 2 vext2 <0,0,0,0>, RHS
+ 2684354972U, // <0,0,5,0>: Cost 3 vext3 <0,0,0,0>, <0,5,0,7>
+ 2617249488U, // <0,0,5,1>: Cost 3 vext2 <0,0,0,0>, <5,1,7,3>
+ 3765617070U, // <0,0,5,2>: Cost 4 vext3 <1,2,3,0>, <0,5,2,7>
+ 3635865780U, // <0,0,5,3>: Cost 4 vext1 <2,0,0,5>, <3,0,4,5>
+ 2617249734U, // <0,0,5,4>: Cost 3 vext2 <0,0,0,0>, <5,4,7,6>
+ 2617249796U, // <0,0,5,5>: Cost 3 vext2 <0,0,0,0>, <5,5,5,5>
+ 2718712274U, // <0,0,5,6>: Cost 3 vext3 <5,6,7,0>, <0,5,6,7>
+ 2617249960U, // <0,0,5,7>: Cost 3 vext2 <0,0,0,0>, <5,7,5,7>
+ 2720039396U, // <0,0,5,u>: Cost 3 vext3 <5,u,7,0>, <0,5,u,7>
+ 2684355053U, // <0,0,6,0>: Cost 3 vext3 <0,0,0,0>, <0,6,0,7>
+ 3963609190U, // <0,0,6,1>: Cost 4 vzipl <0,6,2,7>, LHS
+ 2617250298U, // <0,0,6,2>: Cost 3 vext2 <0,0,0,0>, <6,2,7,3>
+ 3796435464U, // <0,0,6,3>: Cost 4 vext3 <6,3,7,0>, <0,6,3,7>
+ 3659762998U, // <0,0,6,4>: Cost 4 vext1 <6,0,0,6>, RHS
+ 3659763810U, // <0,0,6,5>: Cost 4 vext1 <6,0,0,6>, <5,6,7,0>
+ 2617250616U, // <0,0,6,6>: Cost 3 vext2 <0,0,0,0>, <6,6,6,6>
+ 2657727309U, // <0,0,6,7>: Cost 3 vext2 <6,7,0,0>, <6,7,0,0>
+ 2658390942U, // <0,0,6,u>: Cost 3 vext2 <6,u,0,0>, <6,u,0,0>
+ 2659054575U, // <0,0,7,0>: Cost 3 vext2 <7,0,0,0>, <7,0,0,0>
+ 3635880854U, // <0,0,7,1>: Cost 4 vext1 <2,0,0,7>, <1,2,3,0>
+ 3635881401U, // <0,0,7,2>: Cost 4 vext1 <2,0,0,7>, <2,0,0,7>
+ 3734787298U, // <0,0,7,3>: Cost 4 vext2 <7,3,0,0>, <7,3,0,0>
+ 2617251174U, // <0,0,7,4>: Cost 3 vext2 <0,0,0,0>, <7,4,5,6>
+ 3659772002U, // <0,0,7,5>: Cost 4 vext1 <6,0,0,7>, <5,6,7,0>
+ 3659772189U, // <0,0,7,6>: Cost 4 vext1 <6,0,0,7>, <6,0,0,7>
+ 2617251436U, // <0,0,7,7>: Cost 3 vext2 <0,0,0,0>, <7,7,7,7>
+ 2659054575U, // <0,0,7,u>: Cost 3 vext2 <7,0,0,0>, <7,0,0,0>
+ 135053414U, // <0,0,u,0>: Cost 1 vdup0 LHS
+ 1817419878U, // <0,0,u,1>: Cost 2 vzipl LHS, LHS
+ 1947435110U, // <0,0,u,2>: Cost 2 vtrnl LHS, LHS
+ 2568120467U, // <0,0,u,3>: Cost 3 vext1 <3,0,0,u>, <3,0,0,u>
+ 1476463926U, // <0,0,u,4>: Cost 2 vext1 <0,0,0,u>, RHS
+ 1543510170U, // <0,0,u,5>: Cost 2 vext2 <0,0,0,0>, RHS
+ 2752813210U, // <0,0,u,6>: Cost 3 vuzpl <0,2,0,2>, RHS
+ 2592011255U, // <0,0,u,7>: Cost 3 vext1 <7,0,0,u>, <7,0,0,u>
+ 135053414U, // <0,0,u,u>: Cost 1 vdup0 LHS
+ 2618581002U, // <0,1,0,0>: Cost 3 vext2 <0,2,0,1>, <0,0,1,1>
+ 1557446758U, // <0,1,0,1>: Cost 2 vext2 <2,3,0,1>, LHS
+ 2618581155U, // <0,1,0,2>: Cost 3 vext2 <0,2,0,1>, <0,2,0,1>
+ 2690548468U, // <0,1,0,3>: Cost 3 vext3 <1,0,3,0>, <1,0,3,0>
+ 2626543954U, // <0,1,0,4>: Cost 3 vext2 <1,5,0,1>, <0,4,1,5>
+ 4094985216U, // <0,1,0,5>: Cost 4 vtrnl <0,2,0,2>, <1,3,5,7>
+ 2592019278U, // <0,1,0,6>: Cost 3 vext1 <7,0,1,0>, <6,7,0,1>
+ 2592019448U, // <0,1,0,7>: Cost 3 vext1 <7,0,1,0>, <7,0,1,0>
+ 1557447325U, // <0,1,0,u>: Cost 2 vext2 <2,3,0,1>, LHS
+ 1476476938U, // <0,1,1,0>: Cost 2 vext1 <0,0,1,1>, <0,0,1,1>
+ 2886517556U, // <0,1,1,1>: Cost 3 vzipl LHS, <1,1,1,1>
+ 2886517654U, // <0,1,1,2>: Cost 3 vzipl LHS, <1,2,3,0>
+ 2886517720U, // <0,1,1,3>: Cost 3 vzipl LHS, <1,3,1,3>
+ 1476480310U, // <0,1,1,4>: Cost 2 vext1 <0,0,1,1>, RHS
+ 2886558864U, // <0,1,1,5>: Cost 3 vzipl LHS, <1,5,3,7>
+ 2550223354U, // <0,1,1,6>: Cost 3 vext1 <0,0,1,1>, <6,2,7,3>
+ 2550223856U, // <0,1,1,7>: Cost 3 vext1 <0,0,1,1>, <7,0,0,1>
+ 1476482862U, // <0,1,1,u>: Cost 2 vext1 <0,0,1,1>, LHS
+ 1494401126U, // <0,1,2,0>: Cost 2 vext1 <3,0,1,2>, LHS
+ 3020735284U, // <0,1,2,1>: Cost 3 vtrnl LHS, <1,1,1,1>
+ 2562172349U, // <0,1,2,2>: Cost 3 vext1 <2,0,1,2>, <2,0,1,2>
+ 835584U, // <0,1,2,3>: Cost 0 copy LHS
+ 1494404406U, // <0,1,2,4>: Cost 2 vext1 <3,0,1,2>, RHS
+ 3020735488U, // <0,1,2,5>: Cost 3 vtrnl LHS, <1,3,5,7>
+ 2631190458U, // <0,1,2,6>: Cost 3 vext2 <2,3,0,1>, <2,6,3,7>
+ 1518294010U, // <0,1,2,7>: Cost 2 vext1 <7,0,1,2>, <7,0,1,2>
+ 835584U, // <0,1,2,u>: Cost 0 copy LHS
+ 2692318156U, // <0,1,3,0>: Cost 3 vext3 <1,3,0,0>, <1,3,0,0>
+ 2691875800U, // <0,1,3,1>: Cost 3 vext3 <1,2,3,0>, <1,3,1,3>
+ 2691875806U, // <0,1,3,2>: Cost 3 vext3 <1,2,3,0>, <1,3,2,0>
+ 2692539367U, // <0,1,3,3>: Cost 3 vext3 <1,3,3,0>, <1,3,3,0>
+ 2562182454U, // <0,1,3,4>: Cost 3 vext1 <2,0,1,3>, RHS
+ 2691875840U, // <0,1,3,5>: Cost 3 vext3 <1,2,3,0>, <1,3,5,7>
+ 2692760578U, // <0,1,3,6>: Cost 3 vext3 <1,3,6,0>, <1,3,6,0>
+ 2639817411U, // <0,1,3,7>: Cost 3 vext2 <3,7,0,1>, <3,7,0,1>
+ 2691875863U, // <0,1,3,u>: Cost 3 vext3 <1,2,3,0>, <1,3,u,3>
+ 2568159334U, // <0,1,4,0>: Cost 3 vext1 <3,0,1,4>, LHS
+ 4095312692U, // <0,1,4,1>: Cost 4 vtrnl <0,2,4,6>, <1,1,1,1>
+ 2568160934U, // <0,1,4,2>: Cost 3 vext1 <3,0,1,4>, <2,3,0,1>
+ 2568161432U, // <0,1,4,3>: Cost 3 vext1 <3,0,1,4>, <3,0,1,4>
+ 2568162614U, // <0,1,4,4>: Cost 3 vext1 <3,0,1,4>, RHS
+ 1557450038U, // <0,1,4,5>: Cost 2 vext2 <2,3,0,1>, RHS
+ 2754235702U, // <0,1,4,6>: Cost 3 vuzpl <0,4,1,5>, RHS
+ 2592052220U, // <0,1,4,7>: Cost 3 vext1 <7,0,1,4>, <7,0,1,4>
+ 1557450281U, // <0,1,4,u>: Cost 2 vext2 <2,3,0,1>, RHS
+ 3765617775U, // <0,1,5,0>: Cost 4 vext3 <1,2,3,0>, <1,5,0,1>
+ 2647781007U, // <0,1,5,1>: Cost 3 vext2 <5,1,0,1>, <5,1,0,1>
+ 3704934138U, // <0,1,5,2>: Cost 4 vext2 <2,3,0,1>, <5,2,3,0>
+ 2691875984U, // <0,1,5,3>: Cost 3 vext3 <1,2,3,0>, <1,5,3,7>
+ 2657734598U, // <0,1,5,4>: Cost 3 vext2 <6,7,0,1>, <5,4,7,6>
+ 2650435539U, // <0,1,5,5>: Cost 3 vext2 <5,5,0,1>, <5,5,0,1>
+ 2651099172U, // <0,1,5,6>: Cost 3 vext2 <5,6,0,1>, <5,6,0,1>
+ 2651762805U, // <0,1,5,7>: Cost 3 vext2 <5,7,0,1>, <5,7,0,1>
+ 2691876029U, // <0,1,5,u>: Cost 3 vext3 <1,2,3,0>, <1,5,u,7>
+ 2592063590U, // <0,1,6,0>: Cost 3 vext1 <7,0,1,6>, LHS
+ 3765617871U, // <0,1,6,1>: Cost 4 vext3 <1,2,3,0>, <1,6,1,7>
+ 2654417337U, // <0,1,6,2>: Cost 3 vext2 <6,2,0,1>, <6,2,0,1>
+ 3765617889U, // <0,1,6,3>: Cost 4 vext3 <1,2,3,0>, <1,6,3,7>
+ 2592066870U, // <0,1,6,4>: Cost 3 vext1 <7,0,1,6>, RHS
+ 3765617907U, // <0,1,6,5>: Cost 4 vext3 <1,2,3,0>, <1,6,5,7>
+ 2657071869U, // <0,1,6,6>: Cost 3 vext2 <6,6,0,1>, <6,6,0,1>
+ 1583993678U, // <0,1,6,7>: Cost 2 vext2 <6,7,0,1>, <6,7,0,1>
+ 1584657311U, // <0,1,6,u>: Cost 2 vext2 <6,u,0,1>, <6,u,0,1>
+ 2657735672U, // <0,1,7,0>: Cost 3 vext2 <6,7,0,1>, <7,0,1,0>
+ 2657735808U, // <0,1,7,1>: Cost 3 vext2 <6,7,0,1>, <7,1,7,1>
+ 2631193772U, // <0,1,7,2>: Cost 3 vext2 <2,3,0,1>, <7,2,3,0>
+ 2661053667U, // <0,1,7,3>: Cost 3 vext2 <7,3,0,1>, <7,3,0,1>
+ 2657736038U, // <0,1,7,4>: Cost 3 vext2 <6,7,0,1>, <7,4,5,6>
+ 3721524621U, // <0,1,7,5>: Cost 4 vext2 <5,1,0,1>, <7,5,1,0>
+ 2657736158U, // <0,1,7,6>: Cost 3 vext2 <6,7,0,1>, <7,6,1,0>
+ 2657736300U, // <0,1,7,7>: Cost 3 vext2 <6,7,0,1>, <7,7,7,7>
+ 2657736322U, // <0,1,7,u>: Cost 3 vext2 <6,7,0,1>, <7,u,1,2>
+ 1494450278U, // <0,1,u,0>: Cost 2 vext1 <3,0,1,u>, LHS
+ 1557452590U, // <0,1,u,1>: Cost 2 vext2 <2,3,0,1>, LHS
+ 2754238254U, // <0,1,u,2>: Cost 3 vuzpl <0,4,1,5>, LHS
+ 835584U, // <0,1,u,3>: Cost 0 copy LHS
+ 1494453558U, // <0,1,u,4>: Cost 2 vext1 <3,0,1,u>, RHS
+ 1557452954U, // <0,1,u,5>: Cost 2 vext2 <2,3,0,1>, RHS
+ 2754238618U, // <0,1,u,6>: Cost 3 vuzpl <0,4,1,5>, RHS
+ 1518343168U, // <0,1,u,7>: Cost 2 vext1 <7,0,1,u>, <7,0,1,u>
+ 835584U, // <0,1,u,u>: Cost 0 copy LHS
+ 2752299008U, // <0,2,0,0>: Cost 3 vuzpl LHS, <0,0,0,0>
+ 1544847462U, // <0,2,0,1>: Cost 2 vext2 <0,2,0,2>, LHS
+ 1678557286U, // <0,2,0,2>: Cost 2 vuzpl LHS, LHS
+ 2696521165U, // <0,2,0,3>: Cost 3 vext3 <2,0,3,0>, <2,0,3,0>
+ 2752340172U, // <0,2,0,4>: Cost 3 vuzpl LHS, <0,2,4,6>
+ 2691876326U, // <0,2,0,5>: Cost 3 vext3 <1,2,3,0>, <2,0,5,7>
+ 2618589695U, // <0,2,0,6>: Cost 3 vext2 <0,2,0,2>, <0,6,2,7>
+ 2592093185U, // <0,2,0,7>: Cost 3 vext1 <7,0,2,0>, <7,0,2,0>
+ 1678557340U, // <0,2,0,u>: Cost 2 vuzpl LHS, LHS
+ 2618589942U, // <0,2,1,0>: Cost 3 vext2 <0,2,0,2>, <1,0,3,2>
+ 2752299828U, // <0,2,1,1>: Cost 3 vuzpl LHS, <1,1,1,1>
+ 2886518376U, // <0,2,1,2>: Cost 3 vzipl LHS, <2,2,2,2>
+ 2752299766U, // <0,2,1,3>: Cost 3 vuzpl LHS, <1,0,3,2>
+ 2550295862U, // <0,2,1,4>: Cost 3 vext1 <0,0,2,1>, RHS
+ 2752340992U, // <0,2,1,5>: Cost 3 vuzpl LHS, <1,3,5,7>
+ 2886559674U, // <0,2,1,6>: Cost 3 vzipl LHS, <2,6,3,7>
+ 3934208106U, // <0,2,1,7>: Cost 4 vuzpr <7,0,1,2>, <0,1,2,7>
+ 2752340771U, // <0,2,1,u>: Cost 3 vuzpl LHS, <1,0,u,2>
+ 1476558868U, // <0,2,2,0>: Cost 2 vext1 <0,0,2,2>, <0,0,2,2>
+ 2226628029U, // <0,2,2,1>: Cost 3 vrev <2,0,1,2>
+ 2752300648U, // <0,2,2,2>: Cost 3 vuzpl LHS, <2,2,2,2>
+ 3020736114U, // <0,2,2,3>: Cost 3 vtrnl LHS, <2,2,3,3>
+ 1476562230U, // <0,2,2,4>: Cost 2 vext1 <0,0,2,2>, RHS
+ 2550304464U, // <0,2,2,5>: Cost 3 vext1 <0,0,2,2>, <5,1,7,3>
+ 2618591162U, // <0,2,2,6>: Cost 3 vext2 <0,2,0,2>, <2,6,3,7>
+ 2550305777U, // <0,2,2,7>: Cost 3 vext1 <0,0,2,2>, <7,0,0,2>
+ 1476564782U, // <0,2,2,u>: Cost 2 vext1 <0,0,2,2>, LHS
+ 2618591382U, // <0,2,3,0>: Cost 3 vext2 <0,2,0,2>, <3,0,1,2>
+ 2752301206U, // <0,2,3,1>: Cost 3 vuzpl LHS, <3,0,1,2>
+ 3826043121U, // <0,2,3,2>: Cost 4 vuzpl LHS, <3,1,2,3>
+ 2752301468U, // <0,2,3,3>: Cost 3 vuzpl LHS, <3,3,3,3>
+ 2618591746U, // <0,2,3,4>: Cost 3 vext2 <0,2,0,2>, <3,4,5,6>
+ 2752301570U, // <0,2,3,5>: Cost 3 vuzpl LHS, <3,4,5,6>
+ 3830688102U, // <0,2,3,6>: Cost 4 vuzpl LHS, <3,2,6,3>
+ 2698807012U, // <0,2,3,7>: Cost 3 vext3 <2,3,7,0>, <2,3,7,0>
+ 2752301269U, // <0,2,3,u>: Cost 3 vuzpl LHS, <3,0,u,2>
+ 2562261094U, // <0,2,4,0>: Cost 3 vext1 <2,0,2,4>, LHS
+ 4095313828U, // <0,2,4,1>: Cost 4 vtrnl <0,2,4,6>, <2,6,1,3>
+ 2226718152U, // <0,2,4,2>: Cost 3 vrev <2,0,2,4>
+ 2568235169U, // <0,2,4,3>: Cost 3 vext1 <3,0,2,4>, <3,0,2,4>
+ 2562264374U, // <0,2,4,4>: Cost 3 vext1 <2,0,2,4>, RHS
+ 1544850742U, // <0,2,4,5>: Cost 2 vext2 <0,2,0,2>, RHS
+ 1678560566U, // <0,2,4,6>: Cost 2 vuzpl LHS, RHS
+ 2592125957U, // <0,2,4,7>: Cost 3 vext1 <7,0,2,4>, <7,0,2,4>
+ 1678560584U, // <0,2,4,u>: Cost 2 vuzpl LHS, RHS
+ 2691876686U, // <0,2,5,0>: Cost 3 vext3 <1,2,3,0>, <2,5,0,7>
+ 2618592976U, // <0,2,5,1>: Cost 3 vext2 <0,2,0,2>, <5,1,7,3>
+ 3765618528U, // <0,2,5,2>: Cost 4 vext3 <1,2,3,0>, <2,5,2,7>
+ 3765618536U, // <0,2,5,3>: Cost 4 vext3 <1,2,3,0>, <2,5,3,6>
+ 2618593222U, // <0,2,5,4>: Cost 3 vext2 <0,2,0,2>, <5,4,7,6>
+ 2752303108U, // <0,2,5,5>: Cost 3 vuzpl LHS, <5,5,5,5>
+ 2618593378U, // <0,2,5,6>: Cost 3 vext2 <0,2,0,2>, <5,6,7,0>
+ 2824785206U, // <0,2,5,7>: Cost 3 vuzpr <1,0,3,2>, RHS
+ 2824785207U, // <0,2,5,u>: Cost 3 vuzpr <1,0,3,2>, RHS
+ 2752303950U, // <0,2,6,0>: Cost 3 vuzpl LHS, <6,7,0,1>
+ 3830690081U, // <0,2,6,1>: Cost 4 vuzpl LHS, <6,0,1,2>
+ 2618593786U, // <0,2,6,2>: Cost 3 vext2 <0,2,0,2>, <6,2,7,3>
+ 2691876794U, // <0,2,6,3>: Cost 3 vext3 <1,2,3,0>, <2,6,3,7>
+ 2752303990U, // <0,2,6,4>: Cost 3 vuzpl LHS, <6,7,4,5>
+ 3830690445U, // <0,2,6,5>: Cost 4 vuzpl LHS, <6,4,5,6>
+ 2752303928U, // <0,2,6,6>: Cost 3 vuzpl LHS, <6,6,6,6>
+ 2657743695U, // <0,2,6,7>: Cost 3 vext2 <6,7,0,2>, <6,7,0,2>
+ 2691876839U, // <0,2,6,u>: Cost 3 vext3 <1,2,3,0>, <2,6,u,7>
+ 2659070961U, // <0,2,7,0>: Cost 3 vext2 <7,0,0,2>, <7,0,0,2>
+ 2659734594U, // <0,2,7,1>: Cost 3 vext2 <7,1,0,2>, <7,1,0,2>
+ 3734140051U, // <0,2,7,2>: Cost 4 vext2 <7,2,0,2>, <7,2,0,2>
+ 2701166596U, // <0,2,7,3>: Cost 3 vext3 <2,7,3,0>, <2,7,3,0>
+ 2662389094U, // <0,2,7,4>: Cost 3 vext2 <7,5,0,2>, <7,4,5,6>
+ 2662389126U, // <0,2,7,5>: Cost 3 vext2 <7,5,0,2>, <7,5,0,2>
+ 3736794583U, // <0,2,7,6>: Cost 4 vext2 <7,6,0,2>, <7,6,0,2>
+ 2752304748U, // <0,2,7,7>: Cost 3 vuzpl LHS, <7,7,7,7>
+ 2659070961U, // <0,2,7,u>: Cost 3 vext2 <7,0,0,2>, <7,0,0,2>
+ 1476608026U, // <0,2,u,0>: Cost 2 vext1 <0,0,2,u>, <0,0,2,u>
+ 1544853294U, // <0,2,u,1>: Cost 2 vext2 <0,2,0,2>, LHS
+ 1678563118U, // <0,2,u,2>: Cost 2 vuzpl LHS, LHS
+ 3021178482U, // <0,2,u,3>: Cost 3 vtrnl LHS, <2,2,3,3>
+ 1476611382U, // <0,2,u,4>: Cost 2 vext1 <0,0,2,u>, RHS
+ 1544853658U, // <0,2,u,5>: Cost 2 vext2 <0,2,0,2>, RHS
+ 1678563482U, // <0,2,u,6>: Cost 2 vuzpl LHS, RHS
+ 2824785449U, // <0,2,u,7>: Cost 3 vuzpr <1,0,3,2>, RHS
+ 1678563172U, // <0,2,u,u>: Cost 2 vuzpl LHS, LHS
+ 2556329984U, // <0,3,0,0>: Cost 3 vext1 <1,0,3,0>, <0,0,0,0>
+ 2686421142U, // <0,3,0,1>: Cost 3 vext3 <0,3,1,0>, <3,0,1,2>
+ 2562303437U, // <0,3,0,2>: Cost 3 vext1 <2,0,3,0>, <2,0,3,0>
+ 4094986652U, // <0,3,0,3>: Cost 4 vtrnl <0,2,0,2>, <3,3,3,3>
+ 2556333366U, // <0,3,0,4>: Cost 3 vext1 <1,0,3,0>, RHS
+ 4094986754U, // <0,3,0,5>: Cost 4 vtrnl <0,2,0,2>, <3,4,5,6>
+ 3798796488U, // <0,3,0,6>: Cost 4 vext3 <6,7,3,0>, <3,0,6,7>
+ 3776530634U, // <0,3,0,7>: Cost 4 vext3 <3,0,7,0>, <3,0,7,0>
+ 2556335918U, // <0,3,0,u>: Cost 3 vext1 <1,0,3,0>, LHS
+ 2886518934U, // <0,3,1,0>: Cost 3 vzipl LHS, <3,0,1,2>
+ 2556338933U, // <0,3,1,1>: Cost 3 vext1 <1,0,3,1>, <1,0,3,1>
+ 2691877105U, // <0,3,1,2>: Cost 3 vext3 <1,2,3,0>, <3,1,2,3>
+ 2886519196U, // <0,3,1,3>: Cost 3 vzipl LHS, <3,3,3,3>
+ 2886519298U, // <0,3,1,4>: Cost 3 vzipl LHS, <3,4,5,6>
+ 4095740418U, // <0,3,1,5>: Cost 4 vtrnl <0,3,1,4>, <3,4,5,6>
+ 3659944242U, // <0,3,1,6>: Cost 4 vext1 <6,0,3,1>, <6,0,3,1>
+ 3769600286U, // <0,3,1,7>: Cost 4 vext3 <1,u,3,0>, <3,1,7,3>
+ 2886519582U, // <0,3,1,u>: Cost 3 vzipl LHS, <3,u,1,2>
+ 1482604646U, // <0,3,2,0>: Cost 2 vext1 <1,0,3,2>, LHS
+ 1482605302U, // <0,3,2,1>: Cost 2 vext1 <1,0,3,2>, <1,0,3,2>
+ 2556348008U, // <0,3,2,2>: Cost 3 vext1 <1,0,3,2>, <2,2,2,2>
+ 3020736924U, // <0,3,2,3>: Cost 3 vtrnl LHS, <3,3,3,3>
+ 1482607926U, // <0,3,2,4>: Cost 2 vext1 <1,0,3,2>, RHS
+ 3020737026U, // <0,3,2,5>: Cost 3 vtrnl LHS, <3,4,5,6>
+ 2598154746U, // <0,3,2,6>: Cost 3 vext1 <u,0,3,2>, <6,2,7,3>
+ 2598155258U, // <0,3,2,7>: Cost 3 vext1 <u,0,3,2>, <7,0,1,2>
+ 1482610478U, // <0,3,2,u>: Cost 2 vext1 <1,0,3,2>, LHS
+ 3692341398U, // <0,3,3,0>: Cost 4 vext2 <0,2,0,3>, <3,0,1,2>
+ 2635851999U, // <0,3,3,1>: Cost 3 vext2 <3,1,0,3>, <3,1,0,3>
+ 3636069840U, // <0,3,3,2>: Cost 4 vext1 <2,0,3,3>, <2,0,3,3>
+ 2691877276U, // <0,3,3,3>: Cost 3 vext3 <1,2,3,0>, <3,3,3,3>
+ 3961522690U, // <0,3,3,4>: Cost 4 vzipl <0,3,1,4>, <3,4,5,6>
+ 3826797058U, // <0,3,3,5>: Cost 4 vuzpl <0,2,3,5>, <3,4,5,6>
+ 3703622282U, // <0,3,3,6>: Cost 4 vext2 <2,1,0,3>, <3,6,2,7>
+ 3769600452U, // <0,3,3,7>: Cost 4 vext3 <1,u,3,0>, <3,3,7,7>
+ 2640497430U, // <0,3,3,u>: Cost 3 vext2 <3,u,0,3>, <3,u,0,3>
+ 3962194070U, // <0,3,4,0>: Cost 4 vzipl <0,4,1,5>, <3,0,1,2>
+ 2232617112U, // <0,3,4,1>: Cost 3 vrev <3,0,1,4>
+ 2232690849U, // <0,3,4,2>: Cost 3 vrev <3,0,2,4>
+ 4095314332U, // <0,3,4,3>: Cost 4 vtrnl <0,2,4,6>, <3,3,3,3>
+ 3962194434U, // <0,3,4,4>: Cost 4 vzipl <0,4,1,5>, <3,4,5,6>
+ 2691877378U, // <0,3,4,5>: Cost 3 vext3 <1,2,3,0>, <3,4,5,6>
+ 3826765110U, // <0,3,4,6>: Cost 4 vuzpl <0,2,3,1>, RHS
+ 3665941518U, // <0,3,4,7>: Cost 4 vext1 <7,0,3,4>, <7,0,3,4>
+ 2691877405U, // <0,3,4,u>: Cost 3 vext3 <1,2,3,0>, <3,4,u,6>
+ 3630112870U, // <0,3,5,0>: Cost 4 vext1 <1,0,3,5>, LHS
+ 3630113526U, // <0,3,5,1>: Cost 4 vext1 <1,0,3,5>, <1,0,3,2>
+ 4035199734U, // <0,3,5,2>: Cost 4 vzipr <1,4,0,5>, <1,0,3,2>
+ 3769600578U, // <0,3,5,3>: Cost 4 vext3 <1,u,3,0>, <3,5,3,7>
+ 2232846516U, // <0,3,5,4>: Cost 3 vrev <3,0,4,5>
+ 3779037780U, // <0,3,5,5>: Cost 4 vext3 <3,4,5,0>, <3,5,5,7>
+ 2718714461U, // <0,3,5,6>: Cost 3 vext3 <5,6,7,0>, <3,5,6,7>
+ 2706106975U, // <0,3,5,7>: Cost 3 vext3 <3,5,7,0>, <3,5,7,0>
+ 2233141464U, // <0,3,5,u>: Cost 3 vrev <3,0,u,5>
+ 2691877496U, // <0,3,6,0>: Cost 3 vext3 <1,2,3,0>, <3,6,0,7>
+ 3727511914U, // <0,3,6,1>: Cost 4 vext2 <6,1,0,3>, <6,1,0,3>
+ 3765619338U, // <0,3,6,2>: Cost 4 vext3 <1,2,3,0>, <3,6,2,7>
+ 3765619347U, // <0,3,6,3>: Cost 4 vext3 <1,2,3,0>, <3,6,3,7>
+ 3765987996U, // <0,3,6,4>: Cost 4 vext3 <1,2,u,0>, <3,6,4,7>
+ 3306670270U, // <0,3,6,5>: Cost 4 vrev <3,0,5,6>
+ 3792456365U, // <0,3,6,6>: Cost 4 vext3 <5,6,7,0>, <3,6,6,6>
+ 2706770608U, // <0,3,6,7>: Cost 3 vext3 <3,6,7,0>, <3,6,7,0>
+ 2706844345U, // <0,3,6,u>: Cost 3 vext3 <3,6,u,0>, <3,6,u,0>
+ 3769600707U, // <0,3,7,0>: Cost 4 vext3 <1,u,3,0>, <3,7,0,1>
+ 2659742787U, // <0,3,7,1>: Cost 3 vext2 <7,1,0,3>, <7,1,0,3>
+ 3636102612U, // <0,3,7,2>: Cost 4 vext1 <2,0,3,7>, <2,0,3,7>
+ 3769600740U, // <0,3,7,3>: Cost 4 vext3 <1,u,3,0>, <3,7,3,7>
+ 3769600747U, // <0,3,7,4>: Cost 4 vext3 <1,u,3,0>, <3,7,4,5>
+ 3769600758U, // <0,3,7,5>: Cost 4 vext3 <1,u,3,0>, <3,7,5,7>
+ 3659993400U, // <0,3,7,6>: Cost 4 vext1 <6,0,3,7>, <6,0,3,7>
+ 3781176065U, // <0,3,7,7>: Cost 4 vext3 <3,7,7,0>, <3,7,7,0>
+ 2664388218U, // <0,3,7,u>: Cost 3 vext2 <7,u,0,3>, <7,u,0,3>
+ 1482653798U, // <0,3,u,0>: Cost 2 vext1 <1,0,3,u>, LHS
+ 1482654460U, // <0,3,u,1>: Cost 2 vext1 <1,0,3,u>, <1,0,3,u>
+ 2556397160U, // <0,3,u,2>: Cost 3 vext1 <1,0,3,u>, <2,2,2,2>
+ 3021179292U, // <0,3,u,3>: Cost 3 vtrnl LHS, <3,3,3,3>
+ 1482657078U, // <0,3,u,4>: Cost 2 vext1 <1,0,3,u>, RHS
+ 3021179394U, // <0,3,u,5>: Cost 3 vtrnl LHS, <3,4,5,6>
+ 2598203898U, // <0,3,u,6>: Cost 3 vext1 <u,0,3,u>, <6,2,7,3>
+ 2708097874U, // <0,3,u,7>: Cost 3 vext3 <3,u,7,0>, <3,u,7,0>
+ 1482659630U, // <0,3,u,u>: Cost 2 vext1 <1,0,3,u>, LHS
+ 2617278468U, // <0,4,0,0>: Cost 3 vext2 <0,0,0,4>, <0,0,0,4>
+ 2618605670U, // <0,4,0,1>: Cost 3 vext2 <0,2,0,4>, LHS
+ 2618605734U, // <0,4,0,2>: Cost 3 vext2 <0,2,0,4>, <0,2,0,4>
+ 3642091695U, // <0,4,0,3>: Cost 4 vext1 <3,0,4,0>, <3,0,4,0>
+ 2753134796U, // <0,4,0,4>: Cost 3 vuzpl <0,2,4,6>, <0,2,4,6>
+ 2718714770U, // <0,4,0,5>: Cost 3 vext3 <5,6,7,0>, <4,0,5,1>
+ 3021245750U, // <0,4,0,6>: Cost 3 vtrnl <0,2,0,2>, RHS
+ 3665982483U, // <0,4,0,7>: Cost 4 vext1 <7,0,4,0>, <7,0,4,0>
+ 3021245768U, // <0,4,0,u>: Cost 3 vtrnl <0,2,0,2>, RHS
+ 2568355942U, // <0,4,1,0>: Cost 3 vext1 <3,0,4,1>, LHS
+ 3692348212U, // <0,4,1,1>: Cost 4 vext2 <0,2,0,4>, <1,1,1,1>
+ 3692348310U, // <0,4,1,2>: Cost 4 vext2 <0,2,0,4>, <1,2,3,0>
+ 2568358064U, // <0,4,1,3>: Cost 3 vext1 <3,0,4,1>, <3,0,4,1>
+ 2568359222U, // <0,4,1,4>: Cost 3 vext1 <3,0,4,1>, RHS
+ 1812778294U, // <0,4,1,5>: Cost 2 vzipl LHS, RHS
+ 3022671158U, // <0,4,1,6>: Cost 3 vtrnl <0,4,1,5>, RHS
+ 2592248852U, // <0,4,1,7>: Cost 3 vext1 <7,0,4,1>, <7,0,4,1>
+ 1812778537U, // <0,4,1,u>: Cost 2 vzipl LHS, RHS
+ 2568364134U, // <0,4,2,0>: Cost 3 vext1 <3,0,4,2>, LHS
+ 2238573423U, // <0,4,2,1>: Cost 3 vrev <4,0,1,2>
+ 3692349032U, // <0,4,2,2>: Cost 4 vext2 <0,2,0,4>, <2,2,2,2>
+ 2631214761U, // <0,4,2,3>: Cost 3 vext2 <2,3,0,4>, <2,3,0,4>
+ 2568367414U, // <0,4,2,4>: Cost 3 vext1 <3,0,4,2>, RHS
+ 2887028022U, // <0,4,2,5>: Cost 3 vzipl <0,2,0,2>, RHS
+ 1946996022U, // <0,4,2,6>: Cost 2 vtrnl LHS, RHS
+ 2592257045U, // <0,4,2,7>: Cost 3 vext1 <7,0,4,2>, <7,0,4,2>
+ 1946996040U, // <0,4,2,u>: Cost 2 vtrnl LHS, RHS
+ 3692349590U, // <0,4,3,0>: Cost 4 vext2 <0,2,0,4>, <3,0,1,2>
+ 3826878614U, // <0,4,3,1>: Cost 4 vuzpl <0,2,4,6>, <3,0,1,2>
+ 3826878625U, // <0,4,3,2>: Cost 4 vuzpl <0,2,4,6>, <3,0,2,4>
+ 3692349852U, // <0,4,3,3>: Cost 4 vext2 <0,2,0,4>, <3,3,3,3>
+ 3692349954U, // <0,4,3,4>: Cost 4 vext2 <0,2,0,4>, <3,4,5,6>
+ 3826878978U, // <0,4,3,5>: Cost 4 vuzpl <0,2,4,6>, <3,4,5,6>
+ 4095200566U, // <0,4,3,6>: Cost 4 vtrnl <0,2,3,1>, RHS
+ 3713583814U, // <0,4,3,7>: Cost 4 vext2 <3,7,0,4>, <3,7,0,4>
+ 3692350238U, // <0,4,3,u>: Cost 4 vext2 <0,2,0,4>, <3,u,1,2>
+ 2550464552U, // <0,4,4,0>: Cost 3 vext1 <0,0,4,4>, <0,0,4,4>
+ 3962194914U, // <0,4,4,1>: Cost 4 vzipl <0,4,1,5>, <4,1,5,0>
+ 3693677631U, // <0,4,4,2>: Cost 4 vext2 <0,4,0,4>, <4,2,6,3>
+ 3642124467U, // <0,4,4,3>: Cost 4 vext1 <3,0,4,4>, <3,0,4,4>
+ 2718715088U, // <0,4,4,4>: Cost 3 vext3 <5,6,7,0>, <4,4,4,4>
+ 2618608950U, // <0,4,4,5>: Cost 3 vext2 <0,2,0,4>, RHS
+ 2753137974U, // <0,4,4,6>: Cost 3 vuzpl <0,2,4,6>, RHS
+ 3666015255U, // <0,4,4,7>: Cost 4 vext1 <7,0,4,4>, <7,0,4,4>
+ 2618609193U, // <0,4,4,u>: Cost 3 vext2 <0,2,0,4>, RHS
+ 2568388710U, // <0,4,5,0>: Cost 3 vext1 <3,0,4,5>, LHS
+ 2568389526U, // <0,4,5,1>: Cost 3 vext1 <3,0,4,5>, <1,2,3,0>
+ 3636159963U, // <0,4,5,2>: Cost 4 vext1 <2,0,4,5>, <2,0,4,5>
+ 2568390836U, // <0,4,5,3>: Cost 3 vext1 <3,0,4,5>, <3,0,4,5>
+ 2568391990U, // <0,4,5,4>: Cost 3 vext1 <3,0,4,5>, RHS
+ 2718715180U, // <0,4,5,5>: Cost 3 vext3 <5,6,7,0>, <4,5,5,6>
+ 1618136374U, // <0,4,5,6>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2592281624U, // <0,4,5,7>: Cost 3 vext1 <7,0,4,5>, <7,0,4,5>
+ 1618136392U, // <0,4,5,u>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2550480938U, // <0,4,6,0>: Cost 3 vext1 <0,0,4,6>, <0,0,4,6>
+ 3826880801U, // <0,4,6,1>: Cost 4 vuzpl <0,2,4,6>, <6,0,1,2>
+ 2562426332U, // <0,4,6,2>: Cost 3 vext1 <2,0,4,6>, <2,0,4,6>
+ 3786190181U, // <0,4,6,3>: Cost 4 vext3 <4,6,3,0>, <4,6,3,0>
+ 2718715252U, // <0,4,6,4>: Cost 3 vext3 <5,6,7,0>, <4,6,4,6>
+ 3826881165U, // <0,4,6,5>: Cost 4 vuzpl <0,2,4,6>, <6,4,5,6>
+ 2712669568U, // <0,4,6,6>: Cost 3 vext3 <4,6,6,0>, <4,6,6,0>
+ 2657760081U, // <0,4,6,7>: Cost 3 vext2 <6,7,0,4>, <6,7,0,4>
+ 2718715284U, // <0,4,6,u>: Cost 3 vext3 <5,6,7,0>, <4,6,u,2>
+ 3654090854U, // <0,4,7,0>: Cost 4 vext1 <5,0,4,7>, LHS
+ 3934229326U, // <0,4,7,1>: Cost 4 vuzpr <7,0,1,4>, <6,7,0,1>
+ 3734156437U, // <0,4,7,2>: Cost 4 vext2 <7,2,0,4>, <7,2,0,4>
+ 3734820070U, // <0,4,7,3>: Cost 4 vext2 <7,3,0,4>, <7,3,0,4>
+ 3654094134U, // <0,4,7,4>: Cost 4 vext1 <5,0,4,7>, RHS
+ 2713259464U, // <0,4,7,5>: Cost 3 vext3 <4,7,5,0>, <4,7,5,0>
+ 2713333201U, // <0,4,7,6>: Cost 3 vext3 <4,7,6,0>, <4,7,6,0>
+ 3654095866U, // <0,4,7,7>: Cost 4 vext1 <5,0,4,7>, <7,0,1,2>
+ 2713259464U, // <0,4,7,u>: Cost 3 vext3 <4,7,5,0>, <4,7,5,0>
+ 2568413286U, // <0,4,u,0>: Cost 3 vext1 <3,0,4,u>, LHS
+ 2618611502U, // <0,4,u,1>: Cost 3 vext2 <0,2,0,4>, LHS
+ 2753140526U, // <0,4,u,2>: Cost 3 vuzpl <0,2,4,6>, LHS
+ 2568415415U, // <0,4,u,3>: Cost 3 vext1 <3,0,4,u>, <3,0,4,u>
+ 2568416566U, // <0,4,u,4>: Cost 3 vext1 <3,0,4,u>, RHS
+ 1817423158U, // <0,4,u,5>: Cost 2 vzipl LHS, RHS
+ 1947438390U, // <0,4,u,6>: Cost 2 vtrnl LHS, RHS
+ 2592306203U, // <0,4,u,7>: Cost 3 vext1 <7,0,4,u>, <7,0,4,u>
+ 1947438408U, // <0,4,u,u>: Cost 2 vtrnl LHS, RHS
+ 3630219264U, // <0,5,0,0>: Cost 4 vext1 <1,0,5,0>, <0,0,0,0>
+ 2625912934U, // <0,5,0,1>: Cost 3 vext2 <1,4,0,5>, LHS
+ 3692355748U, // <0,5,0,2>: Cost 4 vext2 <0,2,0,5>, <0,2,0,2>
+ 3693019384U, // <0,5,0,3>: Cost 4 vext2 <0,3,0,5>, <0,3,0,5>
+ 3630222646U, // <0,5,0,4>: Cost 4 vext1 <1,0,5,0>, RHS
+ 3699655062U, // <0,5,0,5>: Cost 4 vext2 <1,4,0,5>, <0,5,0,1>
+ 2718715508U, // <0,5,0,6>: Cost 3 vext3 <5,6,7,0>, <5,0,6,1>
+ 3087011126U, // <0,5,0,7>: Cost 3 vtrnr <0,0,0,0>, RHS
+ 2625913501U, // <0,5,0,u>: Cost 3 vext2 <1,4,0,5>, LHS
+ 1500659814U, // <0,5,1,0>: Cost 2 vext1 <4,0,5,1>, LHS
+ 2886520528U, // <0,5,1,1>: Cost 3 vzipl LHS, <5,1,7,3>
+ 2574403176U, // <0,5,1,2>: Cost 3 vext1 <4,0,5,1>, <2,2,2,2>
+ 2574403734U, // <0,5,1,3>: Cost 3 vext1 <4,0,5,1>, <3,0,1,2>
+ 1500662674U, // <0,5,1,4>: Cost 2 vext1 <4,0,5,1>, <4,0,5,1>
+ 2886520836U, // <0,5,1,5>: Cost 3 vzipl LHS, <5,5,5,5>
+ 2886520930U, // <0,5,1,6>: Cost 3 vzipl LHS, <5,6,7,0>
+ 2718715600U, // <0,5,1,7>: Cost 3 vext3 <5,6,7,0>, <5,1,7,3>
+ 1500665646U, // <0,5,1,u>: Cost 2 vext1 <4,0,5,1>, LHS
+ 2556493926U, // <0,5,2,0>: Cost 3 vext1 <1,0,5,2>, LHS
+ 2244546120U, // <0,5,2,1>: Cost 3 vrev <5,0,1,2>
+ 3692357256U, // <0,5,2,2>: Cost 4 vext2 <0,2,0,5>, <2,2,5,7>
+ 2568439994U, // <0,5,2,3>: Cost 3 vext1 <3,0,5,2>, <3,0,5,2>
+ 2556497206U, // <0,5,2,4>: Cost 3 vext1 <1,0,5,2>, RHS
+ 3020738564U, // <0,5,2,5>: Cost 3 vtrnl LHS, <5,5,5,5>
+ 4027877161U, // <0,5,2,6>: Cost 4 vzipr <0,2,0,2>, <2,4,5,6>
+ 3093220662U, // <0,5,2,7>: Cost 3 vtrnr <1,0,3,2>, RHS
+ 3093220663U, // <0,5,2,u>: Cost 3 vtrnr <1,0,3,2>, RHS
+ 3699656854U, // <0,5,3,0>: Cost 4 vext2 <1,4,0,5>, <3,0,1,2>
+ 3699656927U, // <0,5,3,1>: Cost 4 vext2 <1,4,0,5>, <3,1,0,3>
+ 3699657006U, // <0,5,3,2>: Cost 4 vext2 <1,4,0,5>, <3,2,0,1>
+ 3699657116U, // <0,5,3,3>: Cost 4 vext2 <1,4,0,5>, <3,3,3,3>
+ 2637859284U, // <0,5,3,4>: Cost 3 vext2 <3,4,0,5>, <3,4,0,5>
+ 3790319453U, // <0,5,3,5>: Cost 4 vext3 <5,3,5,0>, <5,3,5,0>
+ 3699657354U, // <0,5,3,6>: Cost 4 vext2 <1,4,0,5>, <3,6,2,7>
+ 2716725103U, // <0,5,3,7>: Cost 3 vext3 <5,3,7,0>, <5,3,7,0>
+ 2716798840U, // <0,5,3,u>: Cost 3 vext3 <5,3,u,0>, <5,3,u,0>
+ 2661747602U, // <0,5,4,0>: Cost 3 vext2 <7,4,0,5>, <4,0,5,1>
+ 3630252810U, // <0,5,4,1>: Cost 4 vext1 <1,0,5,4>, <1,0,5,4>
+ 3636225507U, // <0,5,4,2>: Cost 4 vext1 <2,0,5,4>, <2,0,5,4>
+ 3716910172U, // <0,5,4,3>: Cost 4 vext2 <4,3,0,5>, <4,3,0,5>
+ 3962195892U, // <0,5,4,4>: Cost 4 vzipl <0,4,1,5>, <5,4,5,6>
+ 2625916214U, // <0,5,4,5>: Cost 3 vext2 <1,4,0,5>, RHS
+ 3718901071U, // <0,5,4,6>: Cost 4 vext2 <4,6,0,5>, <4,6,0,5>
+ 2718715846U, // <0,5,4,7>: Cost 3 vext3 <5,6,7,0>, <5,4,7,6>
+ 2625916457U, // <0,5,4,u>: Cost 3 vext2 <1,4,0,5>, RHS
+ 3791278034U, // <0,5,5,0>: Cost 4 vext3 <5,5,0,0>, <5,5,0,0>
+ 3791351771U, // <0,5,5,1>: Cost 4 vext3 <5,5,1,0>, <5,5,1,0>
+ 3318386260U, // <0,5,5,2>: Cost 4 vrev <5,0,2,5>
+ 3791499245U, // <0,5,5,3>: Cost 4 vext3 <5,5,3,0>, <5,5,3,0>
+ 3318533734U, // <0,5,5,4>: Cost 4 vrev <5,0,4,5>
+ 2718715908U, // <0,5,5,5>: Cost 3 vext3 <5,6,7,0>, <5,5,5,5>
+ 2657767522U, // <0,5,5,6>: Cost 3 vext2 <6,7,0,5>, <5,6,7,0>
+ 2718715928U, // <0,5,5,7>: Cost 3 vext3 <5,6,7,0>, <5,5,7,7>
+ 2718715937U, // <0,5,5,u>: Cost 3 vext3 <5,6,7,0>, <5,5,u,7>
+ 2592358502U, // <0,5,6,0>: Cost 3 vext1 <7,0,5,6>, LHS
+ 3792015404U, // <0,5,6,1>: Cost 4 vext3 <5,6,1,0>, <5,6,1,0>
+ 3731509754U, // <0,5,6,2>: Cost 4 vext2 <6,7,0,5>, <6,2,7,3>
+ 3785748546U, // <0,5,6,3>: Cost 4 vext3 <4,5,6,0>, <5,6,3,4>
+ 2592361782U, // <0,5,6,4>: Cost 3 vext1 <7,0,5,6>, RHS
+ 2592362594U, // <0,5,6,5>: Cost 3 vext1 <7,0,5,6>, <5,6,7,0>
+ 3785748576U, // <0,5,6,6>: Cost 4 vext3 <4,5,6,0>, <5,6,6,7>
+ 1644974178U, // <0,5,6,7>: Cost 2 vext3 <5,6,7,0>, <5,6,7,0>
+ 1645047915U, // <0,5,6,u>: Cost 2 vext3 <5,6,u,0>, <5,6,u,0>
+ 2562506854U, // <0,5,7,0>: Cost 3 vext1 <2,0,5,7>, LHS
+ 2562507670U, // <0,5,7,1>: Cost 3 vext1 <2,0,5,7>, <1,2,3,0>
+ 2562508262U, // <0,5,7,2>: Cost 3 vext1 <2,0,5,7>, <2,0,5,7>
+ 3636250774U, // <0,5,7,3>: Cost 4 vext1 <2,0,5,7>, <3,0,1,2>
+ 2562510134U, // <0,5,7,4>: Cost 3 vext1 <2,0,5,7>, RHS
+ 2718716072U, // <0,5,7,5>: Cost 3 vext3 <5,6,7,0>, <5,7,5,7>
+ 2718716074U, // <0,5,7,6>: Cost 3 vext3 <5,6,7,0>, <5,7,6,0>
+ 2719379635U, // <0,5,7,7>: Cost 3 vext3 <5,7,7,0>, <5,7,7,0>
+ 2562512686U, // <0,5,7,u>: Cost 3 vext1 <2,0,5,7>, LHS
+ 1500717158U, // <0,5,u,0>: Cost 2 vext1 <4,0,5,u>, LHS
+ 2625918766U, // <0,5,u,1>: Cost 3 vext2 <1,4,0,5>, LHS
+ 2719674583U, // <0,5,u,2>: Cost 3 vext3 <5,u,2,0>, <5,u,2,0>
+ 2568489152U, // <0,5,u,3>: Cost 3 vext1 <3,0,5,u>, <3,0,5,u>
+ 1500720025U, // <0,5,u,4>: Cost 2 vext1 <4,0,5,u>, <4,0,5,u>
+ 2625919130U, // <0,5,u,5>: Cost 3 vext2 <1,4,0,5>, RHS
+ 2586407243U, // <0,5,u,6>: Cost 3 vext1 <6,0,5,u>, <6,0,5,u>
+ 1646301444U, // <0,5,u,7>: Cost 2 vext3 <5,u,7,0>, <5,u,7,0>
+ 1646375181U, // <0,5,u,u>: Cost 2 vext3 <5,u,u,0>, <5,u,u,0>
+ 2586411110U, // <0,6,0,0>: Cost 3 vext1 <6,0,6,0>, LHS
+ 2619949158U, // <0,6,0,1>: Cost 3 vext2 <0,4,0,6>, LHS
+ 2619949220U, // <0,6,0,2>: Cost 3 vext2 <0,4,0,6>, <0,2,0,2>
+ 3785748789U, // <0,6,0,3>: Cost 4 vext3 <4,5,6,0>, <6,0,3,4>
+ 2619949386U, // <0,6,0,4>: Cost 3 vext2 <0,4,0,6>, <0,4,0,6>
+ 2586415202U, // <0,6,0,5>: Cost 3 vext1 <6,0,6,0>, <5,6,7,0>
+ 2586415436U, // <0,6,0,6>: Cost 3 vext1 <6,0,6,0>, <6,0,6,0>
+ 2952793398U, // <0,6,0,7>: Cost 3 vzipr <0,0,0,0>, RHS
+ 2619949725U, // <0,6,0,u>: Cost 3 vext2 <0,4,0,6>, LHS
+ 2562531430U, // <0,6,1,0>: Cost 3 vext1 <2,0,6,1>, LHS
+ 3693691700U, // <0,6,1,1>: Cost 4 vext2 <0,4,0,6>, <1,1,1,1>
+ 2886521338U, // <0,6,1,2>: Cost 3 vzipl LHS, <6,2,7,3>
+ 3693691864U, // <0,6,1,3>: Cost 4 vext2 <0,4,0,6>, <1,3,1,3>
+ 2562534710U, // <0,6,1,4>: Cost 3 vext1 <2,0,6,1>, RHS
+ 2580450932U, // <0,6,1,5>: Cost 3 vext1 <5,0,6,1>, <5,0,6,1>
+ 2886521656U, // <0,6,1,6>: Cost 3 vzipl LHS, <6,6,6,6>
+ 2966736182U, // <0,6,1,7>: Cost 3 vzipr <2,3,0,1>, RHS
+ 2966736183U, // <0,6,1,u>: Cost 3 vzipr <2,3,0,1>, RHS
+ 1500741734U, // <0,6,2,0>: Cost 2 vext1 <4,0,6,2>, LHS
+ 2250518817U, // <0,6,2,1>: Cost 3 vrev <6,0,1,2>
+ 2574485096U, // <0,6,2,2>: Cost 3 vext1 <4,0,6,2>, <2,2,2,2>
+ 2631894694U, // <0,6,2,3>: Cost 3 vext2 <2,4,0,6>, <2,3,0,1>
+ 1500744604U, // <0,6,2,4>: Cost 2 vext1 <4,0,6,2>, <4,0,6,2>
+ 2574487248U, // <0,6,2,5>: Cost 3 vext1 <4,0,6,2>, <5,1,7,3>
+ 3020739384U, // <0,6,2,6>: Cost 3 vtrnl LHS, <6,6,6,6>
+ 2954136886U, // <0,6,2,7>: Cost 3 vzipr <0,2,0,2>, RHS
+ 1500747566U, // <0,6,2,u>: Cost 2 vext1 <4,0,6,2>, LHS
+ 3693693078U, // <0,6,3,0>: Cost 4 vext2 <0,4,0,6>, <3,0,1,2>
+ 3705637136U, // <0,6,3,1>: Cost 4 vext2 <2,4,0,6>, <3,1,5,7>
+ 3705637192U, // <0,6,3,2>: Cost 4 vext2 <2,4,0,6>, <3,2,3,0>
+ 3693693340U, // <0,6,3,3>: Cost 4 vext2 <0,4,0,6>, <3,3,3,3>
+ 2637867477U, // <0,6,3,4>: Cost 3 vext2 <3,4,0,6>, <3,4,0,6>
+ 3705637424U, // <0,6,3,5>: Cost 4 vext2 <2,4,0,6>, <3,5,1,7>
+ 3666154056U, // <0,6,3,6>: Cost 4 vext1 <7,0,6,3>, <6,3,7,0>
+ 2722697800U, // <0,6,3,7>: Cost 3 vext3 <6,3,7,0>, <6,3,7,0>
+ 2722771537U, // <0,6,3,u>: Cost 3 vext3 <6,3,u,0>, <6,3,u,0>
+ 2562556006U, // <0,6,4,0>: Cost 3 vext1 <2,0,6,4>, LHS
+ 4095316257U, // <0,6,4,1>: Cost 4 vtrnl <0,2,4,6>, <6,0,1,2>
+ 2562557420U, // <0,6,4,2>: Cost 3 vext1 <2,0,6,4>, <2,0,6,4>
+ 3636299926U, // <0,6,4,3>: Cost 4 vext1 <2,0,6,4>, <3,0,1,2>
+ 2562559286U, // <0,6,4,4>: Cost 3 vext1 <2,0,6,4>, RHS
+ 2619952438U, // <0,6,4,5>: Cost 3 vext2 <0,4,0,6>, RHS
+ 2723287696U, // <0,6,4,6>: Cost 3 vext3 <6,4,6,0>, <6,4,6,0>
+ 4027895094U, // <0,6,4,7>: Cost 4 vzipr <0,2,0,4>, RHS
+ 2619952681U, // <0,6,4,u>: Cost 3 vext2 <0,4,0,6>, RHS
+ 2718716594U, // <0,6,5,0>: Cost 3 vext3 <5,6,7,0>, <6,5,0,7>
+ 3648250774U, // <0,6,5,1>: Cost 4 vext1 <4,0,6,5>, <1,2,3,0>
+ 3792458436U, // <0,6,5,2>: Cost 4 vext3 <5,6,7,0>, <6,5,2,7>
+ 3705638767U, // <0,6,5,3>: Cost 5 vext2 <2,4,0,6>, <5,3,7,0>
+ 3648252831U, // <0,6,5,4>: Cost 4 vext1 <4,0,6,5>, <4,0,6,5>
+ 3797619416U, // <0,6,5,5>: Cost 4 vext3 <6,5,5,0>, <6,5,5,0>
+ 3792458472U, // <0,6,5,6>: Cost 4 vext3 <5,6,7,0>, <6,5,6,7>
+ 4035202358U, // <0,6,5,7>: Cost 4 vzipr <1,4,0,5>, RHS
+ 2718716594U, // <0,6,5,u>: Cost 3 vext3 <5,6,7,0>, <6,5,0,7>
+ 3786412796U, // <0,6,6,0>: Cost 4 vext3 <4,6,6,0>, <6,6,0,0>
+ 3792458504U, // <0,6,6,1>: Cost 4 vext3 <5,6,7,0>, <6,6,1,3>
+ 3728200126U, // <0,6,6,2>: Cost 4 vext2 <6,2,0,6>, <6,2,0,6>
+ 3798135575U, // <0,6,6,3>: Cost 4 vext3 <6,6,3,0>, <6,6,3,0>
+ 3786412836U, // <0,6,6,4>: Cost 4 vext3 <4,6,6,0>, <6,6,4,4>
+ 3792458543U, // <0,6,6,5>: Cost 4 vext3 <5,6,7,0>, <6,6,5,6>
+ 2718716728U, // <0,6,6,6>: Cost 3 vext3 <5,6,7,0>, <6,6,6,6>
+ 2718716738U, // <0,6,6,7>: Cost 3 vext3 <5,6,7,0>, <6,6,7,7>
+ 2718716747U, // <0,6,6,u>: Cost 3 vext3 <5,6,7,0>, <6,6,u,7>
+ 2718716750U, // <0,6,7,0>: Cost 3 vext3 <5,6,7,0>, <6,7,0,1>
+ 2724909910U, // <0,6,7,1>: Cost 3 vext3 <6,7,1,0>, <6,7,1,0>
+ 3636323823U, // <0,6,7,2>: Cost 4 vext1 <2,0,6,7>, <2,0,6,7>
+ 2725057384U, // <0,6,7,3>: Cost 3 vext3 <6,7,3,0>, <6,7,3,0>
+ 2718716790U, // <0,6,7,4>: Cost 3 vext3 <5,6,7,0>, <6,7,4,5>
+ 2718716800U, // <0,6,7,5>: Cost 3 vext3 <5,6,7,0>, <6,7,5,6>
+ 3792458629U, // <0,6,7,6>: Cost 4 vext3 <5,6,7,0>, <6,7,6,2>
+ 2725352332U, // <0,6,7,7>: Cost 3 vext3 <6,7,7,0>, <6,7,7,0>
+ 2718716822U, // <0,6,7,u>: Cost 3 vext3 <5,6,7,0>, <6,7,u,1>
+ 1500790886U, // <0,6,u,0>: Cost 2 vext1 <4,0,6,u>, LHS
+ 2619954990U, // <0,6,u,1>: Cost 3 vext2 <0,4,0,6>, LHS
+ 2562590192U, // <0,6,u,2>: Cost 3 vext1 <2,0,6,u>, <2,0,6,u>
+ 2725721017U, // <0,6,u,3>: Cost 3 vext3 <6,u,3,0>, <6,u,3,0>
+ 1500793762U, // <0,6,u,4>: Cost 2 vext1 <4,0,6,u>, <4,0,6,u>
+ 2619955354U, // <0,6,u,5>: Cost 3 vext2 <0,4,0,6>, RHS
+ 2725942228U, // <0,6,u,6>: Cost 3 vext3 <6,u,6,0>, <6,u,6,0>
+ 2954186038U, // <0,6,u,7>: Cost 3 vzipr <0,2,0,u>, RHS
+ 1500796718U, // <0,6,u,u>: Cost 2 vext1 <4,0,6,u>, LHS
+ 2256401391U, // <0,7,0,0>: Cost 3 vrev <7,0,0,0>
+ 2632564838U, // <0,7,0,1>: Cost 3 vext2 <2,5,0,7>, LHS
+ 2256548865U, // <0,7,0,2>: Cost 3 vrev <7,0,2,0>
+ 3700998396U, // <0,7,0,3>: Cost 4 vext2 <1,6,0,7>, <0,3,1,0>
+ 2718716952U, // <0,7,0,4>: Cost 3 vext3 <5,6,7,0>, <7,0,4,5>
+ 2718716962U, // <0,7,0,5>: Cost 3 vext3 <5,6,7,0>, <7,0,5,6>
+ 2621284845U, // <0,7,0,6>: Cost 3 vext2 <0,6,0,7>, <0,6,0,7>
+ 3904685542U, // <0,7,0,7>: Cost 4 vuzpr <2,0,5,7>, <2,0,5,7>
+ 2632565405U, // <0,7,0,u>: Cost 3 vext2 <2,5,0,7>, LHS
+ 2256409584U, // <0,7,1,0>: Cost 3 vrev <7,0,0,1>
+ 3706307380U, // <0,7,1,1>: Cost 4 vext2 <2,5,0,7>, <1,1,1,1>
+ 2632565654U, // <0,7,1,2>: Cost 3 vext2 <2,5,0,7>, <1,2,3,0>
+ 3769603168U, // <0,7,1,3>: Cost 4 vext3 <1,u,3,0>, <7,1,3,5>
+ 2256704532U, // <0,7,1,4>: Cost 3 vrev <7,0,4,1>
+ 3769603184U, // <0,7,1,5>: Cost 4 vext3 <1,u,3,0>, <7,1,5,3>
+ 3700999366U, // <0,7,1,6>: Cost 4 vext2 <1,6,0,7>, <1,6,0,7>
+ 2886522476U, // <0,7,1,7>: Cost 3 vzipl LHS, <7,7,7,7>
+ 2256999480U, // <0,7,1,u>: Cost 3 vrev <7,0,u,1>
+ 2586501222U, // <0,7,2,0>: Cost 3 vext1 <6,0,7,2>, LHS
+ 1182749690U, // <0,7,2,1>: Cost 2 vrev <7,0,1,2>
+ 3636356595U, // <0,7,2,2>: Cost 4 vext1 <2,0,7,2>, <2,0,7,2>
+ 2727711916U, // <0,7,2,3>: Cost 3 vext3 <7,2,3,0>, <7,2,3,0>
+ 2586504502U, // <0,7,2,4>: Cost 3 vext1 <6,0,7,2>, RHS
+ 2632566606U, // <0,7,2,5>: Cost 3 vext2 <2,5,0,7>, <2,5,0,7>
+ 2586505559U, // <0,7,2,6>: Cost 3 vext1 <6,0,7,2>, <6,0,7,2>
+ 3020740204U, // <0,7,2,7>: Cost 3 vtrnl LHS, <7,7,7,7>
+ 1183265849U, // <0,7,2,u>: Cost 2 vrev <7,0,u,2>
+ 3701000342U, // <0,7,3,0>: Cost 4 vext2 <1,6,0,7>, <3,0,1,2>
+ 3706308849U, // <0,7,3,1>: Cost 4 vext2 <2,5,0,7>, <3,1,2,3>
+ 3330315268U, // <0,7,3,2>: Cost 4 vrev <7,0,2,3>
+ 3706309020U, // <0,7,3,3>: Cost 4 vext2 <2,5,0,7>, <3,3,3,3>
+ 3706309122U, // <0,7,3,4>: Cost 4 vext2 <2,5,0,7>, <3,4,5,6>
+ 3712281127U, // <0,7,3,5>: Cost 4 vext2 <3,5,0,7>, <3,5,0,7>
+ 2639202936U, // <0,7,3,6>: Cost 3 vext2 <3,6,0,7>, <3,6,0,7>
+ 3802412321U, // <0,7,3,7>: Cost 4 vext3 <7,3,7,0>, <7,3,7,0>
+ 2640530202U, // <0,7,3,u>: Cost 3 vext2 <3,u,0,7>, <3,u,0,7>
+ 3654287462U, // <0,7,4,0>: Cost 4 vext1 <5,0,7,4>, LHS
+ 2256507900U, // <0,7,4,1>: Cost 3 vrev <7,0,1,4>
+ 2256581637U, // <0,7,4,2>: Cost 3 vrev <7,0,2,4>
+ 3660262008U, // <0,7,4,3>: Cost 4 vext1 <6,0,7,4>, <3,6,0,7>
+ 3786413405U, // <0,7,4,4>: Cost 4 vext3 <4,6,6,0>, <7,4,4,6>
+ 2632568118U, // <0,7,4,5>: Cost 3 vext2 <2,5,0,7>, RHS
+ 3718917457U, // <0,7,4,6>: Cost 4 vext2 <4,6,0,7>, <4,6,0,7>
+ 3787003255U, // <0,7,4,7>: Cost 4 vext3 <4,7,5,0>, <7,4,7,5>
+ 2632568361U, // <0,7,4,u>: Cost 3 vext2 <2,5,0,7>, RHS
+ 3706310268U, // <0,7,5,0>: Cost 4 vext2 <2,5,0,7>, <5,0,7,0>
+ 3792459156U, // <0,7,5,1>: Cost 4 vext3 <5,6,7,0>, <7,5,1,7>
+ 3330331654U, // <0,7,5,2>: Cost 4 vrev <7,0,2,5>
+ 3722899255U, // <0,7,5,3>: Cost 4 vext2 <5,3,0,7>, <5,3,0,7>
+ 2256737304U, // <0,7,5,4>: Cost 3 vrev <7,0,4,5>
+ 3724226521U, // <0,7,5,5>: Cost 4 vext2 <5,5,0,7>, <5,5,0,7>
+ 2718717377U, // <0,7,5,6>: Cost 3 vext3 <5,6,7,0>, <7,5,6,7>
+ 2729997763U, // <0,7,5,7>: Cost 3 vext3 <7,5,7,0>, <7,5,7,0>
+ 2720044499U, // <0,7,5,u>: Cost 3 vext3 <5,u,7,0>, <7,5,u,7>
+ 3712946517U, // <0,7,6,0>: Cost 4 vext2 <3,6,0,7>, <6,0,7,0>
+ 2256524286U, // <0,7,6,1>: Cost 3 vrev <7,0,1,6>
+ 3792459246U, // <0,7,6,2>: Cost 4 vext3 <5,6,7,0>, <7,6,2,7>
+ 3796440567U, // <0,7,6,3>: Cost 4 vext3 <6,3,7,0>, <7,6,3,7>
+ 3654307126U, // <0,7,6,4>: Cost 4 vext1 <5,0,7,6>, RHS
+ 2656457394U, // <0,7,6,5>: Cost 3 vext2 <6,5,0,7>, <6,5,0,7>
+ 3792459281U, // <0,7,6,6>: Cost 4 vext3 <5,6,7,0>, <7,6,6,6>
+ 2730661396U, // <0,7,6,7>: Cost 3 vext3 <7,6,7,0>, <7,6,7,0>
+ 2658448293U, // <0,7,6,u>: Cost 3 vext2 <6,u,0,7>, <6,u,0,7>
+ 3787003431U, // <0,7,7,0>: Cost 4 vext3 <4,7,5,0>, <7,7,0,1>
+ 3654312854U, // <0,7,7,1>: Cost 4 vext1 <5,0,7,7>, <1,2,3,0>
+ 3654313446U, // <0,7,7,2>: Cost 4 vext1 <5,0,7,7>, <2,0,5,7>
+ 3804771905U, // <0,7,7,3>: Cost 4 vext3 <7,7,3,0>, <7,7,3,0>
+ 3654315318U, // <0,7,7,4>: Cost 4 vext1 <5,0,7,7>, RHS
+ 3654315651U, // <0,7,7,5>: Cost 4 vext1 <5,0,7,7>, <5,0,7,7>
+ 3660288348U, // <0,7,7,6>: Cost 4 vext1 <6,0,7,7>, <6,0,7,7>
+ 2718717548U, // <0,7,7,7>: Cost 3 vext3 <5,6,7,0>, <7,7,7,7>
+ 2664420990U, // <0,7,7,u>: Cost 3 vext2 <7,u,0,7>, <7,u,0,7>
+ 2256466935U, // <0,7,u,0>: Cost 3 vrev <7,0,0,u>
+ 1182798848U, // <0,7,u,1>: Cost 2 vrev <7,0,1,u>
+ 2256614409U, // <0,7,u,2>: Cost 3 vrev <7,0,2,u>
+ 2731693714U, // <0,7,u,3>: Cost 3 vext3 <7,u,3,0>, <7,u,3,0>
+ 2256761883U, // <0,7,u,4>: Cost 3 vrev <7,0,4,u>
+ 2632571034U, // <0,7,u,5>: Cost 3 vext2 <2,5,0,7>, RHS
+ 2669066421U, // <0,7,u,6>: Cost 3 vext2 <u,6,0,7>, <u,6,0,7>
+ 2731988662U, // <0,7,u,7>: Cost 3 vext3 <7,u,7,0>, <7,u,7,0>
+ 1183315007U, // <0,7,u,u>: Cost 2 vrev <7,0,u,u>
+ 135053414U, // <0,u,0,0>: Cost 1 vdup0 LHS
+ 1544896614U, // <0,u,0,1>: Cost 2 vext2 <0,2,0,u>, LHS
+ 1678999654U, // <0,u,0,2>: Cost 2 vuzpl LHS, LHS
+ 2691880677U, // <0,u,0,3>: Cost 3 vext3 <1,2,3,0>, <u,0,3,2>
+ 1476988214U, // <0,u,0,4>: Cost 2 vext1 <0,0,u,0>, RHS
+ 2718791419U, // <0,u,0,5>: Cost 3 vext3 <5,6,u,0>, <u,0,5,6>
+ 3021248666U, // <0,u,0,6>: Cost 3 vtrnl <0,2,0,2>, RHS
+ 2592535607U, // <0,u,0,7>: Cost 3 vext1 <7,0,u,0>, <7,0,u,0>
+ 135053414U, // <0,u,0,u>: Cost 1 vdup0 LHS
+ 1476993097U, // <0,u,1,0>: Cost 2 vext1 <0,0,u,1>, <0,0,u,1>
+ 1812780846U, // <0,u,1,1>: Cost 2 vzipl LHS, LHS
+ 1618138926U, // <0,u,1,2>: Cost 2 vext3 <1,2,3,0>, LHS
+ 2752742134U, // <0,u,1,3>: Cost 3 vuzpl LHS, <1,0,3,2>
+ 1476996406U, // <0,u,1,4>: Cost 2 vext1 <0,0,u,1>, RHS
+ 1812781210U, // <0,u,1,5>: Cost 2 vzipl LHS, RHS
+ 2887006416U, // <0,u,1,6>: Cost 3 vzipl LHS, <u,6,3,7>
+ 2966736200U, // <0,u,1,7>: Cost 3 vzipr <2,3,0,1>, RHS
+ 1812781413U, // <0,u,1,u>: Cost 2 vzipl LHS, LHS
+ 1482973286U, // <0,u,2,0>: Cost 2 vext1 <1,0,u,2>, LHS
+ 1482973987U, // <0,u,2,1>: Cost 2 vext1 <1,0,u,2>, <1,0,u,2>
+ 1946998574U, // <0,u,2,2>: Cost 2 vtrnl LHS, LHS
+ 835584U, // <0,u,2,3>: Cost 0 copy LHS
+ 1482976566U, // <0,u,2,4>: Cost 2 vext1 <1,0,u,2>, RHS
+ 3020781631U, // <0,u,2,5>: Cost 3 vtrnl LHS, <u,4,5,6>
+ 1946998938U, // <0,u,2,6>: Cost 2 vtrnl LHS, RHS
+ 1518810169U, // <0,u,2,7>: Cost 2 vext1 <7,0,u,2>, <7,0,u,2>
+ 835584U, // <0,u,2,u>: Cost 0 copy LHS
+ 2618640534U, // <0,u,3,0>: Cost 3 vext2 <0,2,0,u>, <3,0,1,2>
+ 2752743574U, // <0,u,3,1>: Cost 3 vuzpl LHS, <3,0,1,2>
+ 2636556597U, // <0,u,3,2>: Cost 3 vext2 <3,2,0,u>, <3,2,0,u>
+ 2752743836U, // <0,u,3,3>: Cost 3 vuzpl LHS, <3,3,3,3>
+ 2618640898U, // <0,u,3,4>: Cost 3 vext2 <0,2,0,u>, <3,4,5,6>
+ 2752743938U, // <0,u,3,5>: Cost 3 vuzpl LHS, <3,4,5,6>
+ 2639202936U, // <0,u,3,6>: Cost 3 vext2 <3,6,0,7>, <3,6,0,7>
+ 2639874762U, // <0,u,3,7>: Cost 3 vext2 <3,7,0,u>, <3,7,0,u>
+ 2752743637U, // <0,u,3,u>: Cost 3 vuzpl LHS, <3,0,u,2>
+ 2562703462U, // <0,u,4,0>: Cost 3 vext1 <2,0,u,4>, LHS
+ 2888455982U, // <0,u,4,1>: Cost 3 vzipl <0,4,1,5>, LHS
+ 3021575982U, // <0,u,4,2>: Cost 3 vtrnl <0,2,4,6>, LHS
+ 2568677591U, // <0,u,4,3>: Cost 3 vext1 <3,0,u,4>, <3,0,u,4>
+ 2562706742U, // <0,u,4,4>: Cost 3 vext1 <2,0,u,4>, RHS
+ 1544899894U, // <0,u,4,5>: Cost 2 vext2 <0,2,0,u>, RHS
+ 1679002934U, // <0,u,4,6>: Cost 2 vuzpl LHS, RHS
+ 2718718033U, // <0,u,4,7>: Cost 3 vext3 <5,6,7,0>, <u,4,7,6>
+ 1679002952U, // <0,u,4,u>: Cost 2 vuzpl LHS, RHS
+ 2568683622U, // <0,u,5,0>: Cost 3 vext1 <3,0,u,5>, LHS
+ 2568684438U, // <0,u,5,1>: Cost 3 vext1 <3,0,u,5>, <1,2,3,0>
+ 3765622902U, // <0,u,5,2>: Cost 4 vext3 <1,2,3,0>, <u,5,2,7>
+ 2691881087U, // <0,u,5,3>: Cost 3 vext3 <1,2,3,0>, <u,5,3,7>
+ 2568686902U, // <0,u,5,4>: Cost 3 vext1 <3,0,u,5>, RHS
+ 2650492890U, // <0,u,5,5>: Cost 3 vext2 <5,5,0,u>, <5,5,0,u>
+ 1618139290U, // <0,u,5,6>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2824834358U, // <0,u,5,7>: Cost 3 vuzpr <1,0,3,u>, RHS
+ 1618139308U, // <0,u,5,u>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2592579686U, // <0,u,6,0>: Cost 3 vext1 <7,0,u,6>, LHS
+ 2262496983U, // <0,u,6,1>: Cost 3 vrev <u,0,1,6>
+ 2654474688U, // <0,u,6,2>: Cost 3 vext2 <6,2,0,u>, <6,2,0,u>
+ 2691881168U, // <0,u,6,3>: Cost 3 vext3 <1,2,3,0>, <u,6,3,7>
+ 2592582966U, // <0,u,6,4>: Cost 3 vext1 <7,0,u,6>, RHS
+ 2656465587U, // <0,u,6,5>: Cost 3 vext2 <6,5,0,u>, <6,5,0,u>
+ 2657129220U, // <0,u,6,6>: Cost 3 vext2 <6,6,0,u>, <6,6,0,u>
+ 1584051029U, // <0,u,6,7>: Cost 2 vext2 <6,7,0,u>, <6,7,0,u>
+ 1584714662U, // <0,u,6,u>: Cost 2 vext2 <6,u,0,u>, <6,u,0,u>
+ 2562728038U, // <0,u,7,0>: Cost 3 vext1 <2,0,u,7>, LHS
+ 2562728854U, // <0,u,7,1>: Cost 3 vext1 <2,0,u,7>, <1,2,3,0>
+ 2562729473U, // <0,u,7,2>: Cost 3 vext1 <2,0,u,7>, <2,0,u,7>
+ 2661111018U, // <0,u,7,3>: Cost 3 vext2 <7,3,0,u>, <7,3,0,u>
+ 2562731318U, // <0,u,7,4>: Cost 3 vext1 <2,0,u,7>, RHS
+ 2718718258U, // <0,u,7,5>: Cost 3 vext3 <5,6,7,0>, <u,7,5,6>
+ 2586620261U, // <0,u,7,6>: Cost 3 vext1 <6,0,u,7>, <6,0,u,7>
+ 2657793644U, // <0,u,7,7>: Cost 3 vext2 <6,7,0,u>, <7,7,7,7>
+ 2562733870U, // <0,u,7,u>: Cost 3 vext1 <2,0,u,7>, LHS
+ 135053414U, // <0,u,u,0>: Cost 1 vdup0 LHS
+ 1544902446U, // <0,u,u,1>: Cost 2 vext2 <0,2,0,u>, LHS
+ 1679005486U, // <0,u,u,2>: Cost 2 vuzpl LHS, LHS
+ 835584U, // <0,u,u,3>: Cost 0 copy LHS
+ 1483025718U, // <0,u,u,4>: Cost 2 vext1 <1,0,u,u>, RHS
+ 1544902810U, // <0,u,u,5>: Cost 2 vext2 <0,2,0,u>, RHS
+ 1679005850U, // <0,u,u,6>: Cost 2 vuzpl LHS, RHS
+ 1518859327U, // <0,u,u,7>: Cost 2 vext1 <7,0,u,u>, <7,0,u,u>
+ 835584U, // <0,u,u,u>: Cost 0 copy LHS
+ 2689744896U, // <1,0,0,0>: Cost 3 vext3 <0,u,1,1>, <0,0,0,0>
+ 1610694666U, // <1,0,0,1>: Cost 2 vext3 <0,0,1,1>, <0,0,1,1>
+ 2689744916U, // <1,0,0,2>: Cost 3 vext3 <0,u,1,1>, <0,0,2,2>
+ 2619310332U, // <1,0,0,3>: Cost 3 vext2 <0,3,1,0>, <0,3,1,0>
+ 2684657701U, // <1,0,0,4>: Cost 3 vext3 <0,0,4,1>, <0,0,4,1>
+ 2620637598U, // <1,0,0,5>: Cost 3 vext2 <0,5,1,0>, <0,5,1,0>
+ 3708977654U, // <1,0,0,6>: Cost 4 vext2 <3,0,1,0>, <0,6,1,7>
+ 3666351168U, // <1,0,0,7>: Cost 4 vext1 <7,1,0,0>, <7,1,0,0>
+ 1611210825U, // <1,0,0,u>: Cost 2 vext3 <0,0,u,1>, <0,0,u,1>
+ 2556780646U, // <1,0,1,0>: Cost 3 vext1 <1,1,0,1>, LHS
+ 2556781355U, // <1,0,1,1>: Cost 3 vext1 <1,1,0,1>, <1,1,0,1>
+ 1616003174U, // <1,0,1,2>: Cost 2 vext3 <0,u,1,1>, LHS
+ 3693052888U, // <1,0,1,3>: Cost 4 vext2 <0,3,1,0>, <1,3,1,3>
+ 2556783926U, // <1,0,1,4>: Cost 3 vext1 <1,1,0,1>, RHS
+ 2580672143U, // <1,0,1,5>: Cost 3 vext1 <5,1,0,1>, <5,1,0,1>
+ 2724839566U, // <1,0,1,6>: Cost 3 vext3 <6,7,0,1>, <0,1,6,7>
+ 3654415354U, // <1,0,1,7>: Cost 4 vext1 <5,1,0,1>, <7,0,1,2>
+ 1616003228U, // <1,0,1,u>: Cost 2 vext3 <0,u,1,1>, LHS
+ 2685690019U, // <1,0,2,0>: Cost 3 vext3 <0,2,0,1>, <0,2,0,1>
+ 2685763756U, // <1,0,2,1>: Cost 3 vext3 <0,2,1,1>, <0,2,1,1>
+ 2698297524U, // <1,0,2,2>: Cost 3 vext3 <2,3,0,1>, <0,2,2,0>
+ 2685911230U, // <1,0,2,3>: Cost 3 vext3 <0,2,3,1>, <0,2,3,1>
+ 2689745100U, // <1,0,2,4>: Cost 3 vext3 <0,u,1,1>, <0,2,4,6>
+ 3764814038U, // <1,0,2,5>: Cost 4 vext3 <1,1,1,1>, <0,2,5,7>
+ 2724839640U, // <1,0,2,6>: Cost 3 vext3 <6,7,0,1>, <0,2,6,0>
+ 2592625658U, // <1,0,2,7>: Cost 3 vext1 <7,1,0,2>, <7,0,1,2>
+ 2686279915U, // <1,0,2,u>: Cost 3 vext3 <0,2,u,1>, <0,2,u,1>
+ 3087843328U, // <1,0,3,0>: Cost 3 vtrnr LHS, <0,0,0,0>
+ 3087843338U, // <1,0,3,1>: Cost 3 vtrnr LHS, <0,0,1,1>
+ 67944550U, // <1,0,3,2>: Cost 1 vrev LHS
+ 2568743135U, // <1,0,3,3>: Cost 3 vext1 <3,1,0,3>, <3,1,0,3>
+ 2562772278U, // <1,0,3,4>: Cost 3 vext1 <2,1,0,3>, RHS
+ 4099850454U, // <1,0,3,5>: Cost 4 vtrnl <1,0,3,2>, <0,2,5,7>
+ 3704998538U, // <1,0,3,6>: Cost 4 vext2 <2,3,1,0>, <3,6,2,7>
+ 2592633923U, // <1,0,3,7>: Cost 3 vext1 <7,1,0,3>, <7,1,0,3>
+ 68386972U, // <1,0,3,u>: Cost 1 vrev LHS
+ 2620640146U, // <1,0,4,0>: Cost 3 vext2 <0,5,1,0>, <4,0,5,1>
+ 2689745234U, // <1,0,4,1>: Cost 3 vext3 <0,u,1,1>, <0,4,1,5>
+ 2689745244U, // <1,0,4,2>: Cost 3 vext3 <0,u,1,1>, <0,4,2,6>
+ 3760980320U, // <1,0,4,3>: Cost 4 vext3 <0,4,3,1>, <0,4,3,1>
+ 3761054057U, // <1,0,4,4>: Cost 4 vext3 <0,4,4,1>, <0,4,4,1>
+ 2619313462U, // <1,0,4,5>: Cost 3 vext2 <0,3,1,0>, RHS
+ 3761201531U, // <1,0,4,6>: Cost 4 vext3 <0,4,6,1>, <0,4,6,1>
+ 3666383940U, // <1,0,4,7>: Cost 4 vext1 <7,1,0,4>, <7,1,0,4>
+ 2619313705U, // <1,0,4,u>: Cost 3 vext2 <0,3,1,0>, RHS
+ 4029300736U, // <1,0,5,0>: Cost 4 vzipr <0,4,1,5>, <0,0,0,0>
+ 2895249510U, // <1,0,5,1>: Cost 3 vzipl <1,5,3,7>, LHS
+ 3028287590U, // <1,0,5,2>: Cost 3 vtrnl <1,3,5,7>, LHS
+ 3642501345U, // <1,0,5,3>: Cost 4 vext1 <3,1,0,5>, <3,1,0,5>
+ 2215592058U, // <1,0,5,4>: Cost 3 vrev <0,1,4,5>
+ 3724242907U, // <1,0,5,5>: Cost 4 vext2 <5,5,1,0>, <5,5,1,0>
+ 3724906540U, // <1,0,5,6>: Cost 4 vext2 <5,6,1,0>, <5,6,1,0>
+ 3911118134U, // <1,0,5,7>: Cost 4 vuzpr <3,1,3,0>, RHS
+ 3028287644U, // <1,0,5,u>: Cost 3 vtrnl <1,3,5,7>, LHS
+ 3762086375U, // <1,0,6,0>: Cost 4 vext3 <0,6,0,1>, <0,6,0,1>
+ 2698297846U, // <1,0,6,1>: Cost 3 vext3 <2,3,0,1>, <0,6,1,7>
+ 3760022015U, // <1,0,6,2>: Cost 4 vext3 <0,2,u,1>, <0,6,2,7>
+ 3642509538U, // <1,0,6,3>: Cost 4 vext1 <3,1,0,6>, <3,1,0,6>
+ 3762381323U, // <1,0,6,4>: Cost 4 vext3 <0,6,4,1>, <0,6,4,1>
+ 3730215604U, // <1,0,6,5>: Cost 4 vext2 <6,5,1,0>, <6,5,1,0>
+ 3730879237U, // <1,0,6,6>: Cost 4 vext2 <6,6,1,0>, <6,6,1,0>
+ 2657801046U, // <1,0,6,7>: Cost 3 vext2 <6,7,1,0>, <6,7,1,0>
+ 2658464679U, // <1,0,6,u>: Cost 3 vext2 <6,u,1,0>, <6,u,1,0>
+ 2659128312U, // <1,0,7,0>: Cost 3 vext2 <7,0,1,0>, <7,0,1,0>
+ 4047898278U, // <1,0,7,1>: Cost 4 vzipr <3,5,1,7>, <2,3,0,1>
+ 2215460970U, // <1,0,7,2>: Cost 3 vrev <0,1,2,7>
+ 3734861035U, // <1,0,7,3>: Cost 4 vext2 <7,3,1,0>, <7,3,1,0>
+ 3731543398U, // <1,0,7,4>: Cost 4 vext2 <6,7,1,0>, <7,4,5,6>
+ 3736188301U, // <1,0,7,5>: Cost 4 vext2 <7,5,1,0>, <7,5,1,0>
+ 2663110110U, // <1,0,7,6>: Cost 3 vext2 <7,6,1,0>, <7,6,1,0>
+ 3731543660U, // <1,0,7,7>: Cost 4 vext2 <6,7,1,0>, <7,7,7,7>
+ 2664437376U, // <1,0,7,u>: Cost 3 vext2 <7,u,1,0>, <7,u,1,0>
+ 3087884288U, // <1,0,u,0>: Cost 3 vtrnr LHS, <0,0,0,0>
+ 1616003730U, // <1,0,u,1>: Cost 2 vext3 <0,u,1,1>, <0,u,1,1>
+ 67985515U, // <1,0,u,2>: Cost 1 vrev LHS
+ 2689893028U, // <1,0,u,3>: Cost 3 vext3 <0,u,3,1>, <0,u,3,1>
+ 2689745586U, // <1,0,u,4>: Cost 3 vext3 <0,u,1,1>, <0,u,4,6>
+ 2619316378U, // <1,0,u,5>: Cost 3 vext2 <0,3,1,0>, RHS
+ 2669082807U, // <1,0,u,6>: Cost 3 vext2 <u,6,1,0>, <u,6,1,0>
+ 2592674888U, // <1,0,u,7>: Cost 3 vext1 <7,1,0,u>, <7,1,0,u>
+ 68427937U, // <1,0,u,u>: Cost 1 vrev LHS
+ 1543585802U, // <1,1,0,0>: Cost 2 vext2 <0,0,1,1>, <0,0,1,1>
+ 1548894310U, // <1,1,0,1>: Cost 2 vext2 <0,u,1,1>, LHS
+ 2618654892U, // <1,1,0,2>: Cost 3 vext2 <0,2,1,1>, <0,2,1,1>
+ 2689745654U, // <1,1,0,3>: Cost 3 vext3 <0,u,1,1>, <1,0,3,2>
+ 2622636370U, // <1,1,0,4>: Cost 3 vext2 <0,u,1,1>, <0,4,1,5>
+ 2620645791U, // <1,1,0,5>: Cost 3 vext2 <0,5,1,1>, <0,5,1,1>
+ 3696378367U, // <1,1,0,6>: Cost 4 vext2 <0,u,1,1>, <0,6,2,7>
+ 3666424905U, // <1,1,0,7>: Cost 4 vext1 <7,1,1,0>, <7,1,1,0>
+ 1548894866U, // <1,1,0,u>: Cost 2 vext2 <0,u,1,1>, <0,u,1,1>
+ 1483112550U, // <1,1,1,0>: Cost 2 vext1 <1,1,1,1>, LHS
+ 202162278U, // <1,1,1,1>: Cost 1 vdup1 LHS
+ 2622636950U, // <1,1,1,2>: Cost 3 vext2 <0,u,1,1>, <1,2,3,0>
+ 2622637016U, // <1,1,1,3>: Cost 3 vext2 <0,u,1,1>, <1,3,1,3>
+ 1483115830U, // <1,1,1,4>: Cost 2 vext1 <1,1,1,1>, RHS
+ 2622637200U, // <1,1,1,5>: Cost 3 vext2 <0,u,1,1>, <1,5,3,7>
+ 2622637263U, // <1,1,1,6>: Cost 3 vext2 <0,u,1,1>, <1,6,1,7>
+ 2592691274U, // <1,1,1,7>: Cost 3 vext1 <7,1,1,1>, <7,1,1,1>
+ 202162278U, // <1,1,1,u>: Cost 1 vdup1 LHS
+ 2550890588U, // <1,1,2,0>: Cost 3 vext1 <0,1,1,2>, <0,1,1,2>
+ 2617329183U, // <1,1,2,1>: Cost 3 vext2 <0,0,1,1>, <2,1,3,1>
+ 2622637672U, // <1,1,2,2>: Cost 3 vext2 <0,u,1,1>, <2,2,2,2>
+ 2622637734U, // <1,1,2,3>: Cost 3 vext2 <0,u,1,1>, <2,3,0,1>
+ 2550893878U, // <1,1,2,4>: Cost 3 vext1 <0,1,1,2>, RHS
+ 3696379744U, // <1,1,2,5>: Cost 4 vext2 <0,u,1,1>, <2,5,2,7>
+ 2622638010U, // <1,1,2,6>: Cost 3 vext2 <0,u,1,1>, <2,6,3,7>
+ 3804554170U, // <1,1,2,7>: Cost 4 vext3 <7,7,0,1>, <1,2,7,0>
+ 2622638139U, // <1,1,2,u>: Cost 3 vext2 <0,u,1,1>, <2,u,0,1>
+ 2622638230U, // <1,1,3,0>: Cost 3 vext2 <0,u,1,1>, <3,0,1,2>
+ 3087844148U, // <1,1,3,1>: Cost 3 vtrnr LHS, <1,1,1,1>
+ 4161585244U, // <1,1,3,2>: Cost 4 vtrnr LHS, <0,1,1,2>
+ 2014101606U, // <1,1,3,3>: Cost 2 vtrnr LHS, LHS
+ 2622638594U, // <1,1,3,4>: Cost 3 vext2 <0,u,1,1>, <3,4,5,6>
+ 2689745920U, // <1,1,3,5>: Cost 3 vext3 <0,u,1,1>, <1,3,5,7>
+ 3763487753U, // <1,1,3,6>: Cost 4 vext3 <0,u,1,1>, <1,3,6,7>
+ 2592707660U, // <1,1,3,7>: Cost 3 vext1 <7,1,1,3>, <7,1,1,3>
+ 2014101611U, // <1,1,3,u>: Cost 2 vtrnr LHS, LHS
+ 2556878950U, // <1,1,4,0>: Cost 3 vext1 <1,1,1,4>, LHS
+ 2221335351U, // <1,1,4,1>: Cost 3 vrev <1,1,1,4>
+ 3696380988U, // <1,1,4,2>: Cost 4 vext2 <0,u,1,1>, <4,2,6,0>
+ 3763487805U, // <1,1,4,3>: Cost 4 vext3 <0,u,1,1>, <1,4,3,5>
+ 2556882230U, // <1,1,4,4>: Cost 3 vext1 <1,1,1,4>, RHS
+ 1548897590U, // <1,1,4,5>: Cost 2 vext2 <0,u,1,1>, RHS
+ 2758184246U, // <1,1,4,6>: Cost 3 vuzpl <1,1,1,1>, RHS
+ 3666457677U, // <1,1,4,7>: Cost 4 vext1 <7,1,1,4>, <7,1,1,4>
+ 1548897833U, // <1,1,4,u>: Cost 2 vext2 <0,u,1,1>, RHS
+ 2693653615U, // <1,1,5,0>: Cost 3 vext3 <1,5,0,1>, <1,5,0,1>
+ 2617331408U, // <1,1,5,1>: Cost 3 vext2 <0,0,1,1>, <5,1,7,3>
+ 4029302934U, // <1,1,5,2>: Cost 4 vzipr <0,4,1,5>, <3,0,1,2>
+ 2689746064U, // <1,1,5,3>: Cost 3 vext3 <0,u,1,1>, <1,5,3,7>
+ 2221564755U, // <1,1,5,4>: Cost 3 vrev <1,1,4,5>
+ 2955559250U, // <1,1,5,5>: Cost 3 vzipr <0,4,1,5>, <0,4,1,5>
+ 2617331810U, // <1,1,5,6>: Cost 3 vext2 <0,0,1,1>, <5,6,7,0>
+ 2825293110U, // <1,1,5,7>: Cost 3 vuzpr <1,1,1,1>, RHS
+ 2689746109U, // <1,1,5,u>: Cost 3 vext3 <0,u,1,1>, <1,5,u,7>
+ 3696382241U, // <1,1,6,0>: Cost 4 vext2 <0,u,1,1>, <6,0,1,2>
+ 2689746127U, // <1,1,6,1>: Cost 3 vext3 <0,u,1,1>, <1,6,1,7>
+ 2617332218U, // <1,1,6,2>: Cost 3 vext2 <0,0,1,1>, <6,2,7,3>
+ 3763487969U, // <1,1,6,3>: Cost 4 vext3 <0,u,1,1>, <1,6,3,7>
+ 3696382605U, // <1,1,6,4>: Cost 4 vext2 <0,u,1,1>, <6,4,5,6>
+ 4029309266U, // <1,1,6,5>: Cost 4 vzipr <0,4,1,6>, <0,4,1,5>
+ 2617332536U, // <1,1,6,6>: Cost 3 vext2 <0,0,1,1>, <6,6,6,6>
+ 2724840702U, // <1,1,6,7>: Cost 3 vext3 <6,7,0,1>, <1,6,7,0>
+ 2725504263U, // <1,1,6,u>: Cost 3 vext3 <6,u,0,1>, <1,6,u,0>
+ 2617332720U, // <1,1,7,0>: Cost 3 vext2 <0,0,1,1>, <7,0,0,1>
+ 2659800138U, // <1,1,7,1>: Cost 3 vext2 <7,1,1,1>, <7,1,1,1>
+ 3691074717U, // <1,1,7,2>: Cost 4 vext2 <0,0,1,1>, <7,2,1,3>
+ 4167811174U, // <1,1,7,3>: Cost 4 vtrnr <1,1,5,7>, LHS
+ 2617333094U, // <1,1,7,4>: Cost 3 vext2 <0,0,1,1>, <7,4,5,6>
+ 3295396702U, // <1,1,7,5>: Cost 4 vrev <1,1,5,7>
+ 3803891014U, // <1,1,7,6>: Cost 4 vext3 <7,6,0,1>, <1,7,6,0>
+ 2617333356U, // <1,1,7,7>: Cost 3 vext2 <0,0,1,1>, <7,7,7,7>
+ 2659800138U, // <1,1,7,u>: Cost 3 vext2 <7,1,1,1>, <7,1,1,1>
+ 1483112550U, // <1,1,u,0>: Cost 2 vext1 <1,1,1,1>, LHS
+ 202162278U, // <1,1,u,1>: Cost 1 vdup1 LHS
+ 2622642056U, // <1,1,u,2>: Cost 3 vext2 <0,u,1,1>, <u,2,3,3>
+ 2014142566U, // <1,1,u,3>: Cost 2 vtrnr LHS, LHS
+ 1483115830U, // <1,1,u,4>: Cost 2 vext1 <1,1,1,1>, RHS
+ 1548900506U, // <1,1,u,5>: Cost 2 vext2 <0,u,1,1>, RHS
+ 2622642384U, // <1,1,u,6>: Cost 3 vext2 <0,u,1,1>, <u,6,3,7>
+ 2825293353U, // <1,1,u,7>: Cost 3 vuzpr <1,1,1,1>, RHS
+ 202162278U, // <1,1,u,u>: Cost 1 vdup1 LHS
+ 2635251712U, // <1,2,0,0>: Cost 3 vext2 <3,0,1,2>, <0,0,0,0>
+ 1561509990U, // <1,2,0,1>: Cost 2 vext2 <3,0,1,2>, LHS
+ 2618663085U, // <1,2,0,2>: Cost 3 vext2 <0,2,1,2>, <0,2,1,2>
+ 2696529358U, // <1,2,0,3>: Cost 3 vext3 <2,0,3,1>, <2,0,3,1>
+ 2635252050U, // <1,2,0,4>: Cost 3 vext2 <3,0,1,2>, <0,4,1,5>
+ 3769533926U, // <1,2,0,5>: Cost 4 vext3 <1,u,2,1>, <2,0,5,7>
+ 2621317617U, // <1,2,0,6>: Cost 3 vext2 <0,6,1,2>, <0,6,1,2>
+ 2659140170U, // <1,2,0,7>: Cost 3 vext2 <7,0,1,2>, <0,7,2,1>
+ 1561510557U, // <1,2,0,u>: Cost 2 vext2 <3,0,1,2>, LHS
+ 2623308516U, // <1,2,1,0>: Cost 3 vext2 <1,0,1,2>, <1,0,1,2>
+ 2635252532U, // <1,2,1,1>: Cost 3 vext2 <3,0,1,2>, <1,1,1,1>
+ 2631271318U, // <1,2,1,2>: Cost 3 vext2 <2,3,1,2>, <1,2,3,0>
+ 2958180454U, // <1,2,1,3>: Cost 3 vzipr <0,u,1,1>, LHS
+ 2550959414U, // <1,2,1,4>: Cost 3 vext1 <0,1,2,1>, RHS
+ 2635252880U, // <1,2,1,5>: Cost 3 vext2 <3,0,1,2>, <1,5,3,7>
+ 2635252952U, // <1,2,1,6>: Cost 3 vext2 <3,0,1,2>, <1,6,2,7>
+ 3732882731U, // <1,2,1,7>: Cost 4 vext2 <7,0,1,2>, <1,7,3,0>
+ 2958180459U, // <1,2,1,u>: Cost 3 vzipr <0,u,1,1>, LHS
+ 2629281213U, // <1,2,2,0>: Cost 3 vext2 <2,0,1,2>, <2,0,1,2>
+ 2635253280U, // <1,2,2,1>: Cost 3 vext2 <3,0,1,2>, <2,1,3,2>
+ 2618664552U, // <1,2,2,2>: Cost 3 vext2 <0,2,1,2>, <2,2,2,2>
+ 2689746546U, // <1,2,2,3>: Cost 3 vext3 <0,u,1,1>, <2,2,3,3>
+ 3764815485U, // <1,2,2,4>: Cost 4 vext3 <1,1,1,1>, <2,2,4,5>
+ 3760023176U, // <1,2,2,5>: Cost 4 vext3 <0,2,u,1>, <2,2,5,7>
+ 2635253690U, // <1,2,2,6>: Cost 3 vext2 <3,0,1,2>, <2,6,3,7>
+ 2659141610U, // <1,2,2,7>: Cost 3 vext2 <7,0,1,2>, <2,7,0,1>
+ 2689746591U, // <1,2,2,u>: Cost 3 vext3 <0,u,1,1>, <2,2,u,3>
+ 403488870U, // <1,2,3,0>: Cost 1 vext1 LHS, LHS
+ 1477231350U, // <1,2,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 1477232232U, // <1,2,3,2>: Cost 2 vext1 LHS, <2,2,2,2>
+ 1477233052U, // <1,2,3,3>: Cost 2 vext1 LHS, <3,3,3,3>
+ 403492150U, // <1,2,3,4>: Cost 1 vext1 LHS, RHS
+ 1525010128U, // <1,2,3,5>: Cost 2 vext1 LHS, <5,1,7,3>
+ 1525010938U, // <1,2,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1525011450U, // <1,2,3,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 403494702U, // <1,2,3,u>: Cost 1 vext1 LHS, LHS
+ 2641226607U, // <1,2,4,0>: Cost 3 vext2 <4,0,1,2>, <4,0,1,2>
+ 3624723446U, // <1,2,4,1>: Cost 4 vext1 <0,1,2,4>, <1,3,4,6>
+ 3301123609U, // <1,2,4,2>: Cost 4 vrev <2,1,2,4>
+ 2598759198U, // <1,2,4,3>: Cost 3 vext1 <u,1,2,4>, <3,u,1,2>
+ 2659142864U, // <1,2,4,4>: Cost 3 vext2 <7,0,1,2>, <4,4,4,4>
+ 1561513270U, // <1,2,4,5>: Cost 2 vext2 <3,0,1,2>, RHS
+ 2659143028U, // <1,2,4,6>: Cost 3 vext2 <7,0,1,2>, <4,6,4,6>
+ 2659143112U, // <1,2,4,7>: Cost 3 vext2 <7,0,1,2>, <4,7,5,0>
+ 1561513513U, // <1,2,4,u>: Cost 2 vext2 <3,0,1,2>, RHS
+ 2550988902U, // <1,2,5,0>: Cost 3 vext1 <0,1,2,5>, LHS
+ 2550989824U, // <1,2,5,1>: Cost 3 vext1 <0,1,2,5>, <1,3,5,7>
+ 3624732264U, // <1,2,5,2>: Cost 4 vext1 <0,1,2,5>, <2,2,2,2>
+ 2955559014U, // <1,2,5,3>: Cost 3 vzipr <0,4,1,5>, LHS
+ 2550992182U, // <1,2,5,4>: Cost 3 vext1 <0,1,2,5>, RHS
+ 2659143684U, // <1,2,5,5>: Cost 3 vext2 <7,0,1,2>, <5,5,5,5>
+ 2659143778U, // <1,2,5,6>: Cost 3 vext2 <7,0,1,2>, <5,6,7,0>
+ 2659143848U, // <1,2,5,7>: Cost 3 vext2 <7,0,1,2>, <5,7,5,7>
+ 2550994734U, // <1,2,5,u>: Cost 3 vext1 <0,1,2,5>, LHS
+ 2700289945U, // <1,2,6,0>: Cost 3 vext3 <2,6,0,1>, <2,6,0,1>
+ 2635256232U, // <1,2,6,1>: Cost 3 vext2 <3,0,1,2>, <6,1,7,2>
+ 2659144186U, // <1,2,6,2>: Cost 3 vext2 <7,0,1,2>, <6,2,7,3>
+ 2689746874U, // <1,2,6,3>: Cost 3 vext3 <0,u,1,1>, <2,6,3,7>
+ 3763488705U, // <1,2,6,4>: Cost 4 vext3 <0,u,1,1>, <2,6,4,5>
+ 3763488716U, // <1,2,6,5>: Cost 4 vext3 <0,u,1,1>, <2,6,5,7>
+ 2659144504U, // <1,2,6,6>: Cost 3 vext2 <7,0,1,2>, <6,6,6,6>
+ 2657817432U, // <1,2,6,7>: Cost 3 vext2 <6,7,1,2>, <6,7,1,2>
+ 2689746919U, // <1,2,6,u>: Cost 3 vext3 <0,u,1,1>, <2,6,u,7>
+ 1585402874U, // <1,2,7,0>: Cost 2 vext2 <7,0,1,2>, <7,0,1,2>
+ 2659144770U, // <1,2,7,1>: Cost 3 vext2 <7,0,1,2>, <7,1,0,2>
+ 3708998858U, // <1,2,7,2>: Cost 4 vext2 <3,0,1,2>, <7,2,6,3>
+ 2635257059U, // <1,2,7,3>: Cost 3 vext2 <3,0,1,2>, <7,3,0,1>
+ 2659145062U, // <1,2,7,4>: Cost 3 vext2 <7,0,1,2>, <7,4,5,6>
+ 3732886916U, // <1,2,7,5>: Cost 4 vext2 <7,0,1,2>, <7,5,0,0>
+ 3732886998U, // <1,2,7,6>: Cost 4 vext2 <7,0,1,2>, <7,6,0,1>
+ 2659145255U, // <1,2,7,7>: Cost 3 vext2 <7,0,1,2>, <7,7,0,1>
+ 1590711938U, // <1,2,7,u>: Cost 2 vext2 <7,u,1,2>, <7,u,1,2>
+ 403529835U, // <1,2,u,0>: Cost 1 vext1 LHS, LHS
+ 1477272310U, // <1,2,u,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 1477273192U, // <1,2,u,2>: Cost 2 vext1 LHS, <2,2,2,2>
+ 1477273750U, // <1,2,u,3>: Cost 2 vext1 LHS, <3,0,1,2>
+ 403533110U, // <1,2,u,4>: Cost 1 vext1 LHS, RHS
+ 1561516186U, // <1,2,u,5>: Cost 2 vext2 <3,0,1,2>, RHS
+ 1525051898U, // <1,2,u,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1525052410U, // <1,2,u,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 403535662U, // <1,2,u,u>: Cost 1 vext1 LHS, LHS
+ 2819407872U, // <1,3,0,0>: Cost 3 vuzpr LHS, <0,0,0,0>
+ 1551564902U, // <1,3,0,1>: Cost 2 vext2 <1,3,1,3>, LHS
+ 2819408630U, // <1,3,0,2>: Cost 3 vuzpr LHS, <1,0,3,2>
+ 2619334911U, // <1,3,0,3>: Cost 3 vext2 <0,3,1,3>, <0,3,1,3>
+ 2625306962U, // <1,3,0,4>: Cost 3 vext2 <1,3,1,3>, <0,4,1,5>
+ 3832725879U, // <1,3,0,5>: Cost 4 vuzpl <1,2,3,0>, <0,4,5,6>
+ 3699048959U, // <1,3,0,6>: Cost 4 vext2 <1,3,1,3>, <0,6,2,7>
+ 3776538827U, // <1,3,0,7>: Cost 4 vext3 <3,0,7,1>, <3,0,7,1>
+ 1551565469U, // <1,3,0,u>: Cost 2 vext2 <1,3,1,3>, LHS
+ 2618671862U, // <1,3,1,0>: Cost 3 vext2 <0,2,1,3>, <1,0,3,2>
+ 2819408692U, // <1,3,1,1>: Cost 3 vuzpr LHS, <1,1,1,1>
+ 2624643975U, // <1,3,1,2>: Cost 3 vext2 <1,2,1,3>, <1,2,1,3>
+ 1745666150U, // <1,3,1,3>: Cost 2 vuzpr LHS, LHS
+ 2557005110U, // <1,3,1,4>: Cost 3 vext1 <1,1,3,1>, RHS
+ 2625307792U, // <1,3,1,5>: Cost 3 vext2 <1,3,1,3>, <1,5,3,7>
+ 3698386127U, // <1,3,1,6>: Cost 4 vext2 <1,2,1,3>, <1,6,1,7>
+ 2592838748U, // <1,3,1,7>: Cost 3 vext1 <7,1,3,1>, <7,1,3,1>
+ 1745666155U, // <1,3,1,u>: Cost 2 vuzpr LHS, LHS
+ 2819408790U, // <1,3,2,0>: Cost 3 vuzpr LHS, <1,2,3,0>
+ 2625308193U, // <1,3,2,1>: Cost 3 vext2 <1,3,1,3>, <2,1,3,3>
+ 2819408036U, // <1,3,2,2>: Cost 3 vuzpr LHS, <0,2,0,2>
+ 2819851890U, // <1,3,2,3>: Cost 3 vuzpr LHS, <2,2,3,3>
+ 2819408794U, // <1,3,2,4>: Cost 3 vuzpr LHS, <1,2,3,4>
+ 3893149890U, // <1,3,2,5>: Cost 4 vuzpr LHS, <0,2,3,5>
+ 2819408076U, // <1,3,2,6>: Cost 3 vuzpr LHS, <0,2,4,6>
+ 3772041583U, // <1,3,2,7>: Cost 4 vext3 <2,3,0,1>, <3,2,7,3>
+ 2819408042U, // <1,3,2,u>: Cost 3 vuzpr LHS, <0,2,0,u>
+ 1483276390U, // <1,3,3,0>: Cost 2 vext1 <1,1,3,3>, LHS
+ 1483277128U, // <1,3,3,1>: Cost 2 vext1 <1,1,3,3>, <1,1,3,3>
+ 2557019752U, // <1,3,3,2>: Cost 3 vext1 <1,1,3,3>, <2,2,2,2>
+ 2819408856U, // <1,3,3,3>: Cost 3 vuzpr LHS, <1,3,1,3>
+ 1483279670U, // <1,3,3,4>: Cost 2 vext1 <1,1,3,3>, RHS
+ 2819409614U, // <1,3,3,5>: Cost 3 vuzpr LHS, <2,3,4,5>
+ 2598826490U, // <1,3,3,6>: Cost 3 vext1 <u,1,3,3>, <6,2,7,3>
+ 3087844352U, // <1,3,3,7>: Cost 3 vtrnr LHS, <1,3,5,7>
+ 1483282222U, // <1,3,3,u>: Cost 2 vext1 <1,1,3,3>, LHS
+ 2568970342U, // <1,3,4,0>: Cost 3 vext1 <3,1,3,4>, LHS
+ 2568971224U, // <1,3,4,1>: Cost 3 vext1 <3,1,3,4>, <1,3,1,3>
+ 3832761290U, // <1,3,4,2>: Cost 4 vuzpl <1,2,3,4>, <4,1,2,3>
+ 2233428219U, // <1,3,4,3>: Cost 3 vrev <3,1,3,4>
+ 2568973622U, // <1,3,4,4>: Cost 3 vext1 <3,1,3,4>, RHS
+ 1551568182U, // <1,3,4,5>: Cost 2 vext2 <1,3,1,3>, RHS
+ 2819410434U, // <1,3,4,6>: Cost 3 vuzpr LHS, <3,4,5,6>
+ 3666605151U, // <1,3,4,7>: Cost 4 vext1 <7,1,3,4>, <7,1,3,4>
+ 1551568425U, // <1,3,4,u>: Cost 2 vext2 <1,3,1,3>, RHS
+ 2563006566U, // <1,3,5,0>: Cost 3 vext1 <2,1,3,5>, LHS
+ 2568979456U, // <1,3,5,1>: Cost 3 vext1 <3,1,3,5>, <1,3,5,7>
+ 2563008035U, // <1,3,5,2>: Cost 3 vext1 <2,1,3,5>, <2,1,3,5>
+ 2233436412U, // <1,3,5,3>: Cost 3 vrev <3,1,3,5>
+ 2563009846U, // <1,3,5,4>: Cost 3 vext1 <2,1,3,5>, RHS
+ 2867187716U, // <1,3,5,5>: Cost 3 vuzpr LHS, <5,5,5,5>
+ 2655834214U, // <1,3,5,6>: Cost 3 vext2 <6,4,1,3>, <5,6,7,4>
+ 1745669430U, // <1,3,5,7>: Cost 2 vuzpr LHS, RHS
+ 1745669431U, // <1,3,5,u>: Cost 2 vuzpr LHS, RHS
+ 2867187810U, // <1,3,6,0>: Cost 3 vuzpr LHS, <5,6,7,0>
+ 3699052931U, // <1,3,6,1>: Cost 4 vext2 <1,3,1,3>, <6,1,3,1>
+ 2654507460U, // <1,3,6,2>: Cost 3 vext2 <6,2,1,3>, <6,2,1,3>
+ 3766291091U, // <1,3,6,3>: Cost 4 vext3 <1,3,3,1>, <3,6,3,7>
+ 2655834726U, // <1,3,6,4>: Cost 3 vext2 <6,4,1,3>, <6,4,1,3>
+ 3923384562U, // <1,3,6,5>: Cost 4 vuzpr <5,1,7,3>, <u,6,7,5>
+ 2657161992U, // <1,3,6,6>: Cost 3 vext2 <6,6,1,3>, <6,6,1,3>
+ 2819852218U, // <1,3,6,7>: Cost 3 vuzpr LHS, <2,6,3,7>
+ 2819852219U, // <1,3,6,u>: Cost 3 vuzpr LHS, <2,6,3,u>
+ 2706926275U, // <1,3,7,0>: Cost 3 vext3 <3,7,0,1>, <3,7,0,1>
+ 2659816524U, // <1,3,7,1>: Cost 3 vext2 <7,1,1,3>, <7,1,1,3>
+ 3636766245U, // <1,3,7,2>: Cost 4 vext1 <2,1,3,7>, <2,1,3,7>
+ 2867187903U, // <1,3,7,3>: Cost 3 vuzpr LHS, <5,7,u,3>
+ 2625312102U, // <1,3,7,4>: Cost 3 vext2 <1,3,1,3>, <7,4,5,6>
+ 2867188598U, // <1,3,7,5>: Cost 3 vuzpr LHS, <6,7,4,5>
+ 3728250344U, // <1,3,7,6>: Cost 4 vext2 <6,2,1,3>, <7,6,2,1>
+ 2867187880U, // <1,3,7,7>: Cost 3 vuzpr LHS, <5,7,5,7>
+ 2707516171U, // <1,3,7,u>: Cost 3 vext3 <3,7,u,1>, <3,7,u,1>
+ 1483317350U, // <1,3,u,0>: Cost 2 vext1 <1,1,3,u>, LHS
+ 1483318093U, // <1,3,u,1>: Cost 2 vext1 <1,1,3,u>, <1,1,3,u>
+ 2819410718U, // <1,3,u,2>: Cost 3 vuzpr LHS, <3,u,1,2>
+ 1745666717U, // <1,3,u,3>: Cost 2 vuzpr LHS, LHS
+ 1483320630U, // <1,3,u,4>: Cost 2 vext1 <1,1,3,u>, RHS
+ 1551571098U, // <1,3,u,5>: Cost 2 vext2 <1,3,1,3>, RHS
+ 2819410758U, // <1,3,u,6>: Cost 3 vuzpr LHS, <3,u,5,6>
+ 1745669673U, // <1,3,u,7>: Cost 2 vuzpr LHS, RHS
+ 1745666722U, // <1,3,u,u>: Cost 2 vuzpr LHS, LHS
+ 2617352205U, // <1,4,0,0>: Cost 3 vext2 <0,0,1,4>, <0,0,1,4>
+ 2619342950U, // <1,4,0,1>: Cost 3 vext2 <0,3,1,4>, LHS
+ 3692421295U, // <1,4,0,2>: Cost 4 vext2 <0,2,1,4>, <0,2,1,4>
+ 2619343104U, // <1,4,0,3>: Cost 3 vext2 <0,3,1,4>, <0,3,1,4>
+ 2617352530U, // <1,4,0,4>: Cost 3 vext2 <0,0,1,4>, <0,4,1,5>
+ 1634880402U, // <1,4,0,5>: Cost 2 vext3 <4,0,5,1>, <4,0,5,1>
+ 2713930652U, // <1,4,0,6>: Cost 3 vext3 <4,u,5,1>, <4,0,6,2>
+ 3732898396U, // <1,4,0,7>: Cost 4 vext2 <7,0,1,4>, <0,7,4,1>
+ 1635101613U, // <1,4,0,u>: Cost 2 vext3 <4,0,u,1>, <4,0,u,1>
+ 3693085430U, // <1,4,1,0>: Cost 4 vext2 <0,3,1,4>, <1,0,3,2>
+ 2623988535U, // <1,4,1,1>: Cost 3 vext2 <1,1,1,4>, <1,1,1,4>
+ 3693085590U, // <1,4,1,2>: Cost 4 vext2 <0,3,1,4>, <1,2,3,0>
+ 3692422134U, // <1,4,1,3>: Cost 4 vext2 <0,2,1,4>, <1,3,4,6>
+ 3693085726U, // <1,4,1,4>: Cost 4 vext2 <0,3,1,4>, <1,4,0,1>
+ 2892401974U, // <1,4,1,5>: Cost 3 vzipl <1,1,1,1>, RHS
+ 3026619702U, // <1,4,1,6>: Cost 3 vtrnl <1,1,1,1>, RHS
+ 3800206324U, // <1,4,1,7>: Cost 4 vext3 <7,0,4,1>, <4,1,7,0>
+ 2892402217U, // <1,4,1,u>: Cost 3 vzipl <1,1,1,1>, RHS
+ 3966978927U, // <1,4,2,0>: Cost 4 vzipl <1,2,3,4>, <4,0,1,2>
+ 3966979018U, // <1,4,2,1>: Cost 4 vzipl <1,2,3,4>, <4,1,2,3>
+ 3693086312U, // <1,4,2,2>: Cost 4 vext2 <0,3,1,4>, <2,2,2,2>
+ 2635269798U, // <1,4,2,3>: Cost 3 vext2 <3,0,1,4>, <2,3,0,1>
+ 3966979280U, // <1,4,2,4>: Cost 4 vzipl <1,2,3,4>, <4,4,4,4>
+ 2893204790U, // <1,4,2,5>: Cost 3 vzipl <1,2,3,0>, RHS
+ 3693086650U, // <1,4,2,6>: Cost 4 vext2 <0,3,1,4>, <2,6,3,7>
+ 3666662502U, // <1,4,2,7>: Cost 4 vext1 <7,1,4,2>, <7,1,4,2>
+ 2893205033U, // <1,4,2,u>: Cost 3 vzipl <1,2,3,0>, RHS
+ 2563063910U, // <1,4,3,0>: Cost 3 vext1 <2,1,4,3>, LHS
+ 2563064730U, // <1,4,3,1>: Cost 3 vext1 <2,1,4,3>, <1,2,3,4>
+ 2563065386U, // <1,4,3,2>: Cost 3 vext1 <2,1,4,3>, <2,1,4,3>
+ 3693087132U, // <1,4,3,3>: Cost 4 vext2 <0,3,1,4>, <3,3,3,3>
+ 2619345410U, // <1,4,3,4>: Cost 3 vext2 <0,3,1,4>, <3,4,5,6>
+ 3087843666U, // <1,4,3,5>: Cost 3 vtrnr LHS, <0,4,1,5>
+ 3087843676U, // <1,4,3,6>: Cost 3 vtrnr LHS, <0,4,2,6>
+ 3666670695U, // <1,4,3,7>: Cost 4 vext1 <7,1,4,3>, <7,1,4,3>
+ 3087843669U, // <1,4,3,u>: Cost 3 vtrnr LHS, <0,4,1,u>
+ 2620672914U, // <1,4,4,0>: Cost 3 vext2 <0,5,1,4>, <4,0,5,1>
+ 3630842706U, // <1,4,4,1>: Cost 4 vext1 <1,1,4,4>, <1,1,4,4>
+ 3313069003U, // <1,4,4,2>: Cost 4 vrev <4,1,2,4>
+ 3642788100U, // <1,4,4,3>: Cost 4 vext1 <3,1,4,4>, <3,1,4,4>
+ 2713930960U, // <1,4,4,4>: Cost 3 vext3 <4,u,5,1>, <4,4,4,4>
+ 2619346230U, // <1,4,4,5>: Cost 3 vext2 <0,3,1,4>, RHS
+ 2713930980U, // <1,4,4,6>: Cost 3 vext3 <4,u,5,1>, <4,4,6,6>
+ 3736882642U, // <1,4,4,7>: Cost 4 vext2 <7,6,1,4>, <4,7,6,1>
+ 2619346473U, // <1,4,4,u>: Cost 3 vext2 <0,3,1,4>, RHS
+ 2557108326U, // <1,4,5,0>: Cost 3 vext1 <1,1,4,5>, LHS
+ 2557109075U, // <1,4,5,1>: Cost 3 vext1 <1,1,4,5>, <1,1,4,5>
+ 2598913774U, // <1,4,5,2>: Cost 3 vext1 <u,1,4,5>, <2,3,u,1>
+ 3630852246U, // <1,4,5,3>: Cost 4 vext1 <1,1,4,5>, <3,0,1,2>
+ 2557111606U, // <1,4,5,4>: Cost 3 vext1 <1,1,4,5>, RHS
+ 2895252790U, // <1,4,5,5>: Cost 3 vzipl <1,5,3,7>, RHS
+ 1616006454U, // <1,4,5,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 3899059510U, // <1,4,5,7>: Cost 4 vuzpr <1,1,1,4>, RHS
+ 1616006472U, // <1,4,5,u>: Cost 2 vext3 <0,u,1,1>, RHS
+ 2557116518U, // <1,4,6,0>: Cost 3 vext1 <1,1,4,6>, LHS
+ 2557117236U, // <1,4,6,1>: Cost 3 vext1 <1,1,4,6>, <1,1,1,1>
+ 3630859880U, // <1,4,6,2>: Cost 4 vext1 <1,1,4,6>, <2,2,2,2>
+ 2569062550U, // <1,4,6,3>: Cost 3 vext1 <3,1,4,6>, <3,0,1,2>
+ 2557119798U, // <1,4,6,4>: Cost 3 vext1 <1,1,4,6>, RHS
+ 3763490174U, // <1,4,6,5>: Cost 4 vext3 <0,u,1,1>, <4,6,5,7>
+ 3763490183U, // <1,4,6,6>: Cost 4 vext3 <0,u,1,1>, <4,6,6,7>
+ 2712751498U, // <1,4,6,7>: Cost 3 vext3 <4,6,7,1>, <4,6,7,1>
+ 2557122350U, // <1,4,6,u>: Cost 3 vext1 <1,1,4,6>, LHS
+ 2659161084U, // <1,4,7,0>: Cost 3 vext2 <7,0,1,4>, <7,0,1,4>
+ 3732903040U, // <1,4,7,1>: Cost 4 vext2 <7,0,1,4>, <7,1,7,1>
+ 3734230174U, // <1,4,7,2>: Cost 4 vext2 <7,2,1,4>, <7,2,1,4>
+ 3734893807U, // <1,4,7,3>: Cost 4 vext2 <7,3,1,4>, <7,3,1,4>
+ 3660729654U, // <1,4,7,4>: Cost 4 vext1 <6,1,4,7>, RHS
+ 3786493384U, // <1,4,7,5>: Cost 4 vext3 <4,6,7,1>, <4,7,5,0>
+ 2713341394U, // <1,4,7,6>: Cost 3 vext3 <4,7,6,1>, <4,7,6,1>
+ 3660731386U, // <1,4,7,7>: Cost 4 vext1 <6,1,4,7>, <7,0,1,2>
+ 2664470148U, // <1,4,7,u>: Cost 3 vext2 <7,u,1,4>, <7,u,1,4>
+ 2557132902U, // <1,4,u,0>: Cost 3 vext1 <1,1,4,u>, LHS
+ 2619348782U, // <1,4,u,1>: Cost 3 vext2 <0,3,1,4>, LHS
+ 2563106351U, // <1,4,u,2>: Cost 3 vext1 <2,1,4,u>, <2,1,4,u>
+ 2713783816U, // <1,4,u,3>: Cost 3 vext3 <4,u,3,1>, <4,u,3,1>
+ 2622666815U, // <1,4,u,4>: Cost 3 vext2 <0,u,1,4>, <u,4,5,6>
+ 1640189466U, // <1,4,u,5>: Cost 2 vext3 <4,u,5,1>, <4,u,5,1>
+ 1616006697U, // <1,4,u,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 2712751498U, // <1,4,u,7>: Cost 3 vext3 <4,6,7,1>, <4,6,7,1>
+ 1616006715U, // <1,4,u,u>: Cost 2 vext3 <0,u,1,1>, RHS
+ 2620014592U, // <1,5,0,0>: Cost 3 vext2 <0,4,1,5>, <0,0,0,0>
+ 1546272870U, // <1,5,0,1>: Cost 2 vext2 <0,4,1,5>, LHS
+ 2618687664U, // <1,5,0,2>: Cost 3 vext2 <0,2,1,5>, <0,2,1,5>
+ 3693093120U, // <1,5,0,3>: Cost 4 vext2 <0,3,1,5>, <0,3,1,4>
+ 1546273106U, // <1,5,0,4>: Cost 2 vext2 <0,4,1,5>, <0,4,1,5>
+ 2620678563U, // <1,5,0,5>: Cost 3 vext2 <0,5,1,5>, <0,5,1,5>
+ 2714668660U, // <1,5,0,6>: Cost 3 vext3 <5,0,6,1>, <5,0,6,1>
+ 3772042877U, // <1,5,0,7>: Cost 4 vext3 <2,3,0,1>, <5,0,7,1>
+ 1546273437U, // <1,5,0,u>: Cost 2 vext2 <0,4,1,5>, LHS
+ 2620015350U, // <1,5,1,0>: Cost 3 vext2 <0,4,1,5>, <1,0,3,2>
+ 2620015412U, // <1,5,1,1>: Cost 3 vext2 <0,4,1,5>, <1,1,1,1>
+ 2620015510U, // <1,5,1,2>: Cost 3 vext2 <0,4,1,5>, <1,2,3,0>
+ 2618688512U, // <1,5,1,3>: Cost 3 vext2 <0,2,1,5>, <1,3,5,7>
+ 2620015677U, // <1,5,1,4>: Cost 3 vext2 <0,4,1,5>, <1,4,3,5>
+ 2620015727U, // <1,5,1,5>: Cost 3 vext2 <0,4,1,5>, <1,5,0,1>
+ 2620015859U, // <1,5,1,6>: Cost 3 vext2 <0,4,1,5>, <1,6,5,7>
+ 3093728566U, // <1,5,1,7>: Cost 3 vtrnr <1,1,1,1>, RHS
+ 2620015981U, // <1,5,1,u>: Cost 3 vext2 <0,4,1,5>, <1,u,1,3>
+ 3692430816U, // <1,5,2,0>: Cost 4 vext2 <0,2,1,5>, <2,0,5,1>
+ 2620016163U, // <1,5,2,1>: Cost 3 vext2 <0,4,1,5>, <2,1,3,5>
+ 2620016232U, // <1,5,2,2>: Cost 3 vext2 <0,4,1,5>, <2,2,2,2>
+ 2620016294U, // <1,5,2,3>: Cost 3 vext2 <0,4,1,5>, <2,3,0,1>
+ 3693758221U, // <1,5,2,4>: Cost 4 vext2 <0,4,1,5>, <2,4,2,5>
+ 3692431209U, // <1,5,2,5>: Cost 4 vext2 <0,2,1,5>, <2,5,3,7>
+ 2620016570U, // <1,5,2,6>: Cost 3 vext2 <0,4,1,5>, <2,6,3,7>
+ 4173598006U, // <1,5,2,7>: Cost 4 vtrnr <2,1,3,2>, RHS
+ 2620016699U, // <1,5,2,u>: Cost 3 vext2 <0,4,1,5>, <2,u,0,1>
+ 2620016790U, // <1,5,3,0>: Cost 3 vext2 <0,4,1,5>, <3,0,1,2>
+ 2569110672U, // <1,5,3,1>: Cost 3 vext1 <3,1,5,3>, <1,5,3,7>
+ 3693758785U, // <1,5,3,2>: Cost 4 vext2 <0,4,1,5>, <3,2,2,2>
+ 2620017052U, // <1,5,3,3>: Cost 3 vext2 <0,4,1,5>, <3,3,3,3>
+ 2620017154U, // <1,5,3,4>: Cost 3 vext2 <0,4,1,5>, <3,4,5,6>
+ 3135623172U, // <1,5,3,5>: Cost 3 vtrnr LHS, <5,5,5,5>
+ 4161587048U, // <1,5,3,6>: Cost 4 vtrnr LHS, <2,5,3,6>
+ 2014104886U, // <1,5,3,7>: Cost 2 vtrnr LHS, RHS
+ 2014104887U, // <1,5,3,u>: Cost 2 vtrnr LHS, RHS
+ 2620017554U, // <1,5,4,0>: Cost 3 vext2 <0,4,1,5>, <4,0,5,1>
+ 2620017634U, // <1,5,4,1>: Cost 3 vext2 <0,4,1,5>, <4,1,5,0>
+ 3693759551U, // <1,5,4,2>: Cost 4 vext2 <0,4,1,5>, <4,2,6,3>
+ 3642861837U, // <1,5,4,3>: Cost 4 vext1 <3,1,5,4>, <3,1,5,4>
+ 2575092710U, // <1,5,4,4>: Cost 3 vext1 <4,1,5,4>, <4,1,5,4>
+ 1546276150U, // <1,5,4,5>: Cost 2 vext2 <0,4,1,5>, RHS
+ 2759855414U, // <1,5,4,6>: Cost 3 vuzpl <1,3,5,7>, RHS
+ 2713931718U, // <1,5,4,7>: Cost 3 vext3 <4,u,5,1>, <5,4,7,6>
+ 1546276393U, // <1,5,4,u>: Cost 2 vext2 <0,4,1,5>, RHS
+ 2557182054U, // <1,5,5,0>: Cost 3 vext1 <1,1,5,5>, LHS
+ 2557182812U, // <1,5,5,1>: Cost 3 vext1 <1,1,5,5>, <1,1,5,5>
+ 3630925347U, // <1,5,5,2>: Cost 4 vext1 <1,1,5,5>, <2,1,3,5>
+ 4029301675U, // <1,5,5,3>: Cost 4 vzipr <0,4,1,5>, <1,2,5,3>
+ 2557185334U, // <1,5,5,4>: Cost 3 vext1 <1,1,5,5>, RHS
+ 2713931780U, // <1,5,5,5>: Cost 3 vext3 <4,u,5,1>, <5,5,5,5>
+ 2667794530U, // <1,5,5,6>: Cost 3 vext2 <u,4,1,5>, <5,6,7,0>
+ 2713931800U, // <1,5,5,7>: Cost 3 vext3 <4,u,5,1>, <5,5,7,7>
+ 2557187886U, // <1,5,5,u>: Cost 3 vext1 <1,1,5,5>, LHS
+ 2718208036U, // <1,5,6,0>: Cost 3 vext3 <5,6,0,1>, <5,6,0,1>
+ 2620019115U, // <1,5,6,1>: Cost 3 vext2 <0,4,1,5>, <6,1,7,5>
+ 2667794938U, // <1,5,6,2>: Cost 3 vext2 <u,4,1,5>, <6,2,7,3>
+ 3787673666U, // <1,5,6,3>: Cost 4 vext3 <4,u,5,1>, <5,6,3,4>
+ 3693761165U, // <1,5,6,4>: Cost 4 vext2 <0,4,1,5>, <6,4,5,6>
+ 3319279297U, // <1,5,6,5>: Cost 4 vrev <5,1,5,6>
+ 2667795256U, // <1,5,6,6>: Cost 3 vext2 <u,4,1,5>, <6,6,6,6>
+ 2713931874U, // <1,5,6,7>: Cost 3 vext3 <4,u,5,1>, <5,6,7,0>
+ 2713931883U, // <1,5,6,u>: Cost 3 vext3 <4,u,5,1>, <5,6,u,0>
+ 2557198438U, // <1,5,7,0>: Cost 3 vext1 <1,1,5,7>, LHS
+ 2557199156U, // <1,5,7,1>: Cost 3 vext1 <1,1,5,7>, <1,1,1,1>
+ 2569143974U, // <1,5,7,2>: Cost 3 vext1 <3,1,5,7>, <2,3,0,1>
+ 2569144592U, // <1,5,7,3>: Cost 3 vext1 <3,1,5,7>, <3,1,5,7>
+ 2557201718U, // <1,5,7,4>: Cost 3 vext1 <1,1,5,7>, RHS
+ 2713931944U, // <1,5,7,5>: Cost 3 vext3 <4,u,5,1>, <5,7,5,7>
+ 3787673770U, // <1,5,7,6>: Cost 4 vext3 <4,u,5,1>, <5,7,6,0>
+ 2719387828U, // <1,5,7,7>: Cost 3 vext3 <5,7,7,1>, <5,7,7,1>
+ 2557204270U, // <1,5,7,u>: Cost 3 vext1 <1,1,5,7>, LHS
+ 2620020435U, // <1,5,u,0>: Cost 3 vext2 <0,4,1,5>, <u,0,1,2>
+ 1546278702U, // <1,5,u,1>: Cost 2 vext2 <0,4,1,5>, LHS
+ 2620020616U, // <1,5,u,2>: Cost 3 vext2 <0,4,1,5>, <u,2,3,3>
+ 2620020668U, // <1,5,u,3>: Cost 3 vext2 <0,4,1,5>, <u,3,0,1>
+ 1594054682U, // <1,5,u,4>: Cost 2 vext2 <u,4,1,5>, <u,4,1,5>
+ 1546279066U, // <1,5,u,5>: Cost 2 vext2 <0,4,1,5>, RHS
+ 2620020944U, // <1,5,u,6>: Cost 3 vext2 <0,4,1,5>, <u,6,3,7>
+ 2014145846U, // <1,5,u,7>: Cost 2 vtrnr LHS, RHS
+ 2014145847U, // <1,5,u,u>: Cost 2 vtrnr LHS, RHS
+ 3692437504U, // <1,6,0,0>: Cost 4 vext2 <0,2,1,6>, <0,0,0,0>
+ 2618695782U, // <1,6,0,1>: Cost 3 vext2 <0,2,1,6>, LHS
+ 2618695857U, // <1,6,0,2>: Cost 3 vext2 <0,2,1,6>, <0,2,1,6>
+ 3794161970U, // <1,6,0,3>: Cost 4 vext3 <6,0,3,1>, <6,0,3,1>
+ 2620023122U, // <1,6,0,4>: Cost 3 vext2 <0,4,1,6>, <0,4,1,5>
+ 2620686756U, // <1,6,0,5>: Cost 3 vext2 <0,5,1,6>, <0,5,1,6>
+ 2621350389U, // <1,6,0,6>: Cost 3 vext2 <0,6,1,6>, <0,6,1,6>
+ 4028599606U, // <1,6,0,7>: Cost 4 vzipr <0,3,1,0>, RHS
+ 2618696349U, // <1,6,0,u>: Cost 3 vext2 <0,2,1,6>, LHS
+ 3692438262U, // <1,6,1,0>: Cost 4 vext2 <0,2,1,6>, <1,0,3,2>
+ 2625995572U, // <1,6,1,1>: Cost 3 vext2 <1,4,1,6>, <1,1,1,1>
+ 3692438422U, // <1,6,1,2>: Cost 4 vext2 <0,2,1,6>, <1,2,3,0>
+ 3692438488U, // <1,6,1,3>: Cost 4 vext2 <0,2,1,6>, <1,3,1,3>
+ 2625995820U, // <1,6,1,4>: Cost 3 vext2 <1,4,1,6>, <1,4,1,6>
+ 3692438672U, // <1,6,1,5>: Cost 4 vext2 <0,2,1,6>, <1,5,3,7>
+ 3692438720U, // <1,6,1,6>: Cost 4 vext2 <0,2,1,6>, <1,6,0,1>
+ 2958183734U, // <1,6,1,7>: Cost 3 vzipr <0,u,1,1>, RHS
+ 2958183735U, // <1,6,1,u>: Cost 3 vzipr <0,u,1,1>, RHS
+ 2721526201U, // <1,6,2,0>: Cost 3 vext3 <6,2,0,1>, <6,2,0,1>
+ 3692439097U, // <1,6,2,1>: Cost 4 vext2 <0,2,1,6>, <2,1,6,0>
+ 3692439144U, // <1,6,2,2>: Cost 4 vext2 <0,2,1,6>, <2,2,2,2>
+ 3692439206U, // <1,6,2,3>: Cost 4 vext2 <0,2,1,6>, <2,3,0,1>
+ 3636948278U, // <1,6,2,4>: Cost 4 vext1 <2,1,6,2>, RHS
+ 3787674092U, // <1,6,2,5>: Cost 4 vext3 <4,u,5,1>, <6,2,5,7>
+ 2618697658U, // <1,6,2,6>: Cost 3 vext2 <0,2,1,6>, <2,6,3,7>
+ 2970799414U, // <1,6,2,7>: Cost 3 vzipr <3,0,1,2>, RHS
+ 2970799415U, // <1,6,2,u>: Cost 3 vzipr <3,0,1,2>, RHS
+ 2563211366U, // <1,6,3,0>: Cost 3 vext1 <2,1,6,3>, LHS
+ 3699738854U, // <1,6,3,1>: Cost 4 vext2 <1,4,1,6>, <3,1,1,1>
+ 2563212860U, // <1,6,3,2>: Cost 3 vext1 <2,1,6,3>, <2,1,6,3>
+ 3692439964U, // <1,6,3,3>: Cost 4 vext2 <0,2,1,6>, <3,3,3,3>
+ 2563214646U, // <1,6,3,4>: Cost 3 vext1 <2,1,6,3>, RHS
+ 4191820018U, // <1,6,3,5>: Cost 4 vtrnr <5,1,7,3>, <u,6,7,5>
+ 2587103648U, // <1,6,3,6>: Cost 3 vext1 <6,1,6,3>, <6,1,6,3>
+ 3087845306U, // <1,6,3,7>: Cost 3 vtrnr LHS, <2,6,3,7>
+ 3087845307U, // <1,6,3,u>: Cost 3 vtrnr LHS, <2,6,3,u>
+ 3693767570U, // <1,6,4,0>: Cost 4 vext2 <0,4,1,6>, <4,0,5,1>
+ 3693767650U, // <1,6,4,1>: Cost 4 vext2 <0,4,1,6>, <4,1,5,0>
+ 3636962877U, // <1,6,4,2>: Cost 4 vext1 <2,1,6,4>, <2,1,6,4>
+ 3325088134U, // <1,6,4,3>: Cost 4 vrev <6,1,3,4>
+ 3693767898U, // <1,6,4,4>: Cost 4 vext2 <0,4,1,6>, <4,4,5,5>
+ 2618699062U, // <1,6,4,5>: Cost 3 vext2 <0,2,1,6>, RHS
+ 3833670966U, // <1,6,4,6>: Cost 4 vuzpl <1,3,6,7>, RHS
+ 4028632374U, // <1,6,4,7>: Cost 4 vzipr <0,3,1,4>, RHS
+ 2618699305U, // <1,6,4,u>: Cost 3 vext2 <0,2,1,6>, RHS
+ 3693768264U, // <1,6,5,0>: Cost 4 vext2 <0,4,1,6>, <5,0,1,2>
+ 3630998373U, // <1,6,5,1>: Cost 4 vext1 <1,1,6,5>, <1,1,6,5>
+ 3636971070U, // <1,6,5,2>: Cost 4 vext1 <2,1,6,5>, <2,1,6,5>
+ 3642943767U, // <1,6,5,3>: Cost 4 vext1 <3,1,6,5>, <3,1,6,5>
+ 3693768628U, // <1,6,5,4>: Cost 4 vext2 <0,4,1,6>, <5,4,5,6>
+ 3732918276U, // <1,6,5,5>: Cost 4 vext2 <7,0,1,6>, <5,5,5,5>
+ 2620690530U, // <1,6,5,6>: Cost 3 vext2 <0,5,1,6>, <5,6,7,0>
+ 2955562294U, // <1,6,5,7>: Cost 3 vzipr <0,4,1,5>, RHS
+ 2955562295U, // <1,6,5,u>: Cost 3 vzipr <0,4,1,5>, RHS
+ 2724180733U, // <1,6,6,0>: Cost 3 vext3 <6,6,0,1>, <6,6,0,1>
+ 3631006566U, // <1,6,6,1>: Cost 4 vext1 <1,1,6,6>, <1,1,6,6>
+ 3631007674U, // <1,6,6,2>: Cost 4 vext1 <1,1,6,6>, <2,6,3,7>
+ 3692442184U, // <1,6,6,3>: Cost 4 vext2 <0,2,1,6>, <6,3,7,0>
+ 3631009078U, // <1,6,6,4>: Cost 4 vext1 <1,1,6,6>, RHS
+ 3787674416U, // <1,6,6,5>: Cost 4 vext3 <4,u,5,1>, <6,6,5,7>
+ 2713932600U, // <1,6,6,6>: Cost 3 vext3 <4,u,5,1>, <6,6,6,6>
+ 2713932610U, // <1,6,6,7>: Cost 3 vext3 <4,u,5,1>, <6,6,7,7>
+ 2713932619U, // <1,6,6,u>: Cost 3 vext3 <4,u,5,1>, <6,6,u,7>
+ 1651102542U, // <1,6,7,0>: Cost 2 vext3 <6,7,0,1>, <6,7,0,1>
+ 2724918103U, // <1,6,7,1>: Cost 3 vext3 <6,7,1,1>, <6,7,1,1>
+ 2698302306U, // <1,6,7,2>: Cost 3 vext3 <2,3,0,1>, <6,7,2,3>
+ 3642960153U, // <1,6,7,3>: Cost 4 vext1 <3,1,6,7>, <3,1,6,7>
+ 2713932662U, // <1,6,7,4>: Cost 3 vext3 <4,u,5,1>, <6,7,4,5>
+ 2725213051U, // <1,6,7,5>: Cost 3 vext3 <6,7,5,1>, <6,7,5,1>
+ 2724844426U, // <1,6,7,6>: Cost 3 vext3 <6,7,0,1>, <6,7,6,7>
+ 4035956022U, // <1,6,7,7>: Cost 4 vzipr <1,5,1,7>, RHS
+ 1651692438U, // <1,6,7,u>: Cost 2 vext3 <6,7,u,1>, <6,7,u,1>
+ 1651766175U, // <1,6,u,0>: Cost 2 vext3 <6,u,0,1>, <6,u,0,1>
+ 2618701614U, // <1,6,u,1>: Cost 3 vext2 <0,2,1,6>, LHS
+ 3135663508U, // <1,6,u,2>: Cost 3 vtrnr LHS, <4,6,u,2>
+ 3692443580U, // <1,6,u,3>: Cost 4 vext2 <0,2,1,6>, <u,3,0,1>
+ 2713932743U, // <1,6,u,4>: Cost 3 vext3 <4,u,5,1>, <6,u,4,5>
+ 2618701978U, // <1,6,u,5>: Cost 3 vext2 <0,2,1,6>, RHS
+ 2622683344U, // <1,6,u,6>: Cost 3 vext2 <0,u,1,6>, <u,6,3,7>
+ 3087886266U, // <1,6,u,7>: Cost 3 vtrnr LHS, <2,6,3,7>
+ 1652356071U, // <1,6,u,u>: Cost 2 vext3 <6,u,u,1>, <6,u,u,1>
+ 2726171632U, // <1,7,0,0>: Cost 3 vext3 <7,0,0,1>, <7,0,0,1>
+ 2626666598U, // <1,7,0,1>: Cost 3 vext2 <1,5,1,7>, LHS
+ 3695100067U, // <1,7,0,2>: Cost 4 vext2 <0,6,1,7>, <0,2,0,1>
+ 3707044102U, // <1,7,0,3>: Cost 4 vext2 <2,6,1,7>, <0,3,2,1>
+ 2726466580U, // <1,7,0,4>: Cost 3 vext3 <7,0,4,1>, <7,0,4,1>
+ 3654921933U, // <1,7,0,5>: Cost 4 vext1 <5,1,7,0>, <5,1,7,0>
+ 2621358582U, // <1,7,0,6>: Cost 3 vext2 <0,6,1,7>, <0,6,1,7>
+ 2622022215U, // <1,7,0,7>: Cost 3 vext2 <0,7,1,7>, <0,7,1,7>
+ 2626667165U, // <1,7,0,u>: Cost 3 vext2 <1,5,1,7>, LHS
+ 2593128550U, // <1,7,1,0>: Cost 3 vext1 <7,1,7,1>, LHS
+ 2626667316U, // <1,7,1,1>: Cost 3 vext2 <1,5,1,7>, <1,1,1,1>
+ 3700409238U, // <1,7,1,2>: Cost 4 vext2 <1,5,1,7>, <1,2,3,0>
+ 2257294428U, // <1,7,1,3>: Cost 3 vrev <7,1,3,1>
+ 2593131830U, // <1,7,1,4>: Cost 3 vext1 <7,1,7,1>, RHS
+ 2626667646U, // <1,7,1,5>: Cost 3 vext2 <1,5,1,7>, <1,5,1,7>
+ 2627331279U, // <1,7,1,6>: Cost 3 vext2 <1,6,1,7>, <1,6,1,7>
+ 2593133696U, // <1,7,1,7>: Cost 3 vext1 <7,1,7,1>, <7,1,7,1>
+ 2628658545U, // <1,7,1,u>: Cost 3 vext2 <1,u,1,7>, <1,u,1,7>
+ 2587164774U, // <1,7,2,0>: Cost 3 vext1 <6,1,7,2>, LHS
+ 3701073445U, // <1,7,2,1>: Cost 4 vext2 <1,6,1,7>, <2,1,3,7>
+ 3700409960U, // <1,7,2,2>: Cost 4 vext2 <1,5,1,7>, <2,2,2,2>
+ 2638612134U, // <1,7,2,3>: Cost 3 vext2 <3,5,1,7>, <2,3,0,1>
+ 2587168054U, // <1,7,2,4>: Cost 3 vext1 <6,1,7,2>, RHS
+ 3706382167U, // <1,7,2,5>: Cost 4 vext2 <2,5,1,7>, <2,5,1,7>
+ 2587169192U, // <1,7,2,6>: Cost 3 vext1 <6,1,7,2>, <6,1,7,2>
+ 3660911610U, // <1,7,2,7>: Cost 4 vext1 <6,1,7,2>, <7,0,1,2>
+ 2587170606U, // <1,7,2,u>: Cost 3 vext1 <6,1,7,2>, LHS
+ 1507459174U, // <1,7,3,0>: Cost 2 vext1 <5,1,7,3>, LHS
+ 2569257984U, // <1,7,3,1>: Cost 3 vext1 <3,1,7,3>, <1,3,5,7>
+ 2581202536U, // <1,7,3,2>: Cost 3 vext1 <5,1,7,3>, <2,2,2,2>
+ 2569259294U, // <1,7,3,3>: Cost 3 vext1 <3,1,7,3>, <3,1,7,3>
+ 1507462454U, // <1,7,3,4>: Cost 2 vext1 <5,1,7,3>, RHS
+ 1507462864U, // <1,7,3,5>: Cost 2 vext1 <5,1,7,3>, <5,1,7,3>
+ 2581205498U, // <1,7,3,6>: Cost 3 vext1 <5,1,7,3>, <6,2,7,3>
+ 2581206010U, // <1,7,3,7>: Cost 3 vext1 <5,1,7,3>, <7,0,1,2>
+ 1507465006U, // <1,7,3,u>: Cost 2 vext1 <5,1,7,3>, LHS
+ 2728826164U, // <1,7,4,0>: Cost 3 vext3 <7,4,0,1>, <7,4,0,1>
+ 3654951732U, // <1,7,4,1>: Cost 4 vext1 <5,1,7,4>, <1,1,1,1>
+ 3330987094U, // <1,7,4,2>: Cost 4 vrev <7,1,2,4>
+ 3331060831U, // <1,7,4,3>: Cost 4 vrev <7,1,3,4>
+ 3787674971U, // <1,7,4,4>: Cost 4 vext3 <4,u,5,1>, <7,4,4,4>
+ 2626669878U, // <1,7,4,5>: Cost 3 vext2 <1,5,1,7>, RHS
+ 3785979241U, // <1,7,4,6>: Cost 4 vext3 <4,6,0,1>, <7,4,6,0>
+ 3787085176U, // <1,7,4,7>: Cost 4 vext3 <4,7,6,1>, <7,4,7,6>
+ 2626670121U, // <1,7,4,u>: Cost 3 vext2 <1,5,1,7>, RHS
+ 2569273446U, // <1,7,5,0>: Cost 3 vext1 <3,1,7,5>, LHS
+ 2569274368U, // <1,7,5,1>: Cost 3 vext1 <3,1,7,5>, <1,3,5,7>
+ 3643016808U, // <1,7,5,2>: Cost 4 vext1 <3,1,7,5>, <2,2,2,2>
+ 2569275680U, // <1,7,5,3>: Cost 3 vext1 <3,1,7,5>, <3,1,7,5>
+ 2569276726U, // <1,7,5,4>: Cost 3 vext1 <3,1,7,5>, RHS
+ 4102034790U, // <1,7,5,5>: Cost 4 vtrnl <1,3,5,7>, <7,4,5,6>
+ 2651222067U, // <1,7,5,6>: Cost 3 vext2 <5,6,1,7>, <5,6,1,7>
+ 3899378998U, // <1,7,5,7>: Cost 4 vuzpr <1,1,5,7>, RHS
+ 2569279278U, // <1,7,5,u>: Cost 3 vext1 <3,1,7,5>, LHS
+ 2730153430U, // <1,7,6,0>: Cost 3 vext3 <7,6,0,1>, <7,6,0,1>
+ 2724845022U, // <1,7,6,1>: Cost 3 vext3 <6,7,0,1>, <7,6,1,0>
+ 3643025338U, // <1,7,6,2>: Cost 4 vext1 <3,1,7,6>, <2,6,3,7>
+ 3643025697U, // <1,7,6,3>: Cost 4 vext1 <3,1,7,6>, <3,1,7,6>
+ 3643026742U, // <1,7,6,4>: Cost 4 vext1 <3,1,7,6>, RHS
+ 3654971091U, // <1,7,6,5>: Cost 4 vext1 <5,1,7,6>, <5,1,7,6>
+ 3787675153U, // <1,7,6,6>: Cost 4 vext3 <4,u,5,1>, <7,6,6,6>
+ 2724845076U, // <1,7,6,7>: Cost 3 vext3 <6,7,0,1>, <7,6,7,0>
+ 2725508637U, // <1,7,6,u>: Cost 3 vext3 <6,u,0,1>, <7,6,u,0>
+ 2730817063U, // <1,7,7,0>: Cost 3 vext3 <7,7,0,1>, <7,7,0,1>
+ 3631088436U, // <1,7,7,1>: Cost 4 vext1 <1,1,7,7>, <1,1,1,1>
+ 3660949158U, // <1,7,7,2>: Cost 4 vext1 <6,1,7,7>, <2,3,0,1>
+ 3801904705U, // <1,7,7,3>: Cost 4 vext3 <7,3,0,1>, <7,7,3,0>
+ 3631090998U, // <1,7,7,4>: Cost 4 vext1 <1,1,7,7>, RHS
+ 2662503828U, // <1,7,7,5>: Cost 3 vext2 <7,5,1,7>, <7,5,1,7>
+ 3660951981U, // <1,7,7,6>: Cost 4 vext1 <6,1,7,7>, <6,1,7,7>
+ 2713933420U, // <1,7,7,7>: Cost 3 vext3 <4,u,5,1>, <7,7,7,7>
+ 2731406959U, // <1,7,7,u>: Cost 3 vext3 <7,7,u,1>, <7,7,u,1>
+ 1507500134U, // <1,7,u,0>: Cost 2 vext1 <5,1,7,u>, LHS
+ 2626672430U, // <1,7,u,1>: Cost 3 vext2 <1,5,1,7>, LHS
+ 2581243496U, // <1,7,u,2>: Cost 3 vext1 <5,1,7,u>, <2,2,2,2>
+ 2569300259U, // <1,7,u,3>: Cost 3 vext1 <3,1,7,u>, <3,1,7,u>
+ 1507503414U, // <1,7,u,4>: Cost 2 vext1 <5,1,7,u>, RHS
+ 1507503829U, // <1,7,u,5>: Cost 2 vext1 <5,1,7,u>, <5,1,7,u>
+ 2581246458U, // <1,7,u,6>: Cost 3 vext1 <5,1,7,u>, <6,2,7,3>
+ 2581246970U, // <1,7,u,7>: Cost 3 vext1 <5,1,7,u>, <7,0,1,2>
+ 1507505966U, // <1,7,u,u>: Cost 2 vext1 <5,1,7,u>, LHS
+ 1543643153U, // <1,u,0,0>: Cost 2 vext2 <0,0,1,u>, <0,0,1,u>
+ 1546297446U, // <1,u,0,1>: Cost 2 vext2 <0,4,1,u>, LHS
+ 2819448852U, // <1,u,0,2>: Cost 3 vuzpr LHS, <0,0,2,2>
+ 2619375876U, // <1,u,0,3>: Cost 3 vext2 <0,3,1,u>, <0,3,1,u>
+ 1546297685U, // <1,u,0,4>: Cost 2 vext2 <0,4,1,u>, <0,4,1,u>
+ 1658771190U, // <1,u,0,5>: Cost 2 vext3 <u,0,5,1>, <u,0,5,1>
+ 2736789248U, // <1,u,0,6>: Cost 3 vext3 <u,7,0,1>, <u,0,6,2>
+ 2659189376U, // <1,u,0,7>: Cost 3 vext2 <7,0,1,u>, <0,7,u,1>
+ 1546298013U, // <1,u,0,u>: Cost 2 vext2 <0,4,1,u>, LHS
+ 1483112550U, // <1,u,1,0>: Cost 2 vext1 <1,1,1,1>, LHS
+ 202162278U, // <1,u,1,1>: Cost 1 vdup1 LHS
+ 1616009006U, // <1,u,1,2>: Cost 2 vext3 <0,u,1,1>, LHS
+ 1745707110U, // <1,u,1,3>: Cost 2 vuzpr LHS, LHS
+ 1483115830U, // <1,u,1,4>: Cost 2 vext1 <1,1,1,1>, RHS
+ 2620040336U, // <1,u,1,5>: Cost 3 vext2 <0,4,1,u>, <1,5,3,7>
+ 3026622618U, // <1,u,1,6>: Cost 3 vtrnl <1,1,1,1>, RHS
+ 2958183752U, // <1,u,1,7>: Cost 3 vzipr <0,u,1,1>, RHS
+ 202162278U, // <1,u,1,u>: Cost 1 vdup1 LHS
+ 2819449750U, // <1,u,2,0>: Cost 3 vuzpr LHS, <1,2,3,0>
+ 2893207342U, // <1,u,2,1>: Cost 3 vzipl <1,2,3,0>, LHS
+ 2819448996U, // <1,u,2,2>: Cost 3 vuzpr LHS, <0,2,0,2>
+ 2819450482U, // <1,u,2,3>: Cost 3 vuzpr LHS, <2,2,3,3>
+ 2819449754U, // <1,u,2,4>: Cost 3 vuzpr LHS, <1,2,3,4>
+ 2893207706U, // <1,u,2,5>: Cost 3 vzipl <1,2,3,0>, RHS
+ 2819449036U, // <1,u,2,6>: Cost 3 vuzpr LHS, <0,2,4,6>
+ 2970799432U, // <1,u,2,7>: Cost 3 vzipr <3,0,1,2>, RHS
+ 2819449002U, // <1,u,2,u>: Cost 3 vuzpr LHS, <0,2,0,u>
+ 403931292U, // <1,u,3,0>: Cost 1 vext1 LHS, LHS
+ 1477673718U, // <1,u,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 115726126U, // <1,u,3,2>: Cost 1 vrev LHS
+ 2014102173U, // <1,u,3,3>: Cost 2 vtrnr LHS, LHS
+ 403934518U, // <1,u,3,4>: Cost 1 vext1 LHS, RHS
+ 1507536601U, // <1,u,3,5>: Cost 2 vext1 <5,1,u,3>, <5,1,u,3>
+ 1525453306U, // <1,u,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 2014105129U, // <1,u,3,7>: Cost 2 vtrnr LHS, RHS
+ 403937070U, // <1,u,3,u>: Cost 1 vext1 LHS, LHS
+ 2620042157U, // <1,u,4,0>: Cost 3 vext2 <0,4,1,u>, <4,0,u,1>
+ 2620042237U, // <1,u,4,1>: Cost 3 vext2 <0,4,1,u>, <4,1,u,0>
+ 2263217967U, // <1,u,4,2>: Cost 3 vrev <u,1,2,4>
+ 2569341224U, // <1,u,4,3>: Cost 3 vext1 <3,1,u,4>, <3,1,u,4>
+ 2569342262U, // <1,u,4,4>: Cost 3 vext1 <3,1,u,4>, RHS
+ 1546300726U, // <1,u,4,5>: Cost 2 vext2 <0,4,1,u>, RHS
+ 2819449180U, // <1,u,4,6>: Cost 3 vuzpr LHS, <0,4,2,6>
+ 2724845649U, // <1,u,4,7>: Cost 3 vext3 <6,7,0,1>, <u,4,7,6>
+ 1546300969U, // <1,u,4,u>: Cost 2 vext2 <0,4,1,u>, RHS
+ 2551431270U, // <1,u,5,0>: Cost 3 vext1 <0,1,u,5>, LHS
+ 2551432192U, // <1,u,5,1>: Cost 3 vext1 <0,1,u,5>, <1,3,5,7>
+ 3028293422U, // <1,u,5,2>: Cost 3 vtrnl <1,3,5,7>, LHS
+ 2955559068U, // <1,u,5,3>: Cost 3 vzipr <0,4,1,5>, LHS
+ 2551434550U, // <1,u,5,4>: Cost 3 vext1 <0,1,u,5>, RHS
+ 2895255706U, // <1,u,5,5>: Cost 3 vzipl <1,5,3,7>, RHS
+ 1616009370U, // <1,u,5,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 1745710390U, // <1,u,5,7>: Cost 2 vuzpr LHS, RHS
+ 1745710391U, // <1,u,5,u>: Cost 2 vuzpr LHS, RHS
+ 2653221159U, // <1,u,6,0>: Cost 3 vext2 <6,0,1,u>, <6,0,1,u>
+ 2725509303U, // <1,u,6,1>: Cost 3 vext3 <6,u,0,1>, <u,6,1,0>
+ 2659193338U, // <1,u,6,2>: Cost 3 vext2 <7,0,1,u>, <6,2,7,3>
+ 2689751248U, // <1,u,6,3>: Cost 3 vext3 <0,u,1,1>, <u,6,3,7>
+ 2867228774U, // <1,u,6,4>: Cost 3 vuzpr LHS, <5,6,7,4>
+ 3764820194U, // <1,u,6,5>: Cost 4 vext3 <1,1,1,1>, <u,6,5,7>
+ 2657202957U, // <1,u,6,6>: Cost 3 vext2 <6,6,1,u>, <6,6,1,u>
+ 2819450810U, // <1,u,6,7>: Cost 3 vuzpr LHS, <2,6,3,7>
+ 2819450811U, // <1,u,6,u>: Cost 3 vuzpr LHS, <2,6,3,u>
+ 1585452032U, // <1,u,7,0>: Cost 2 vext2 <7,0,1,u>, <7,0,1,u>
+ 2557420340U, // <1,u,7,1>: Cost 3 vext1 <1,1,u,7>, <1,1,1,1>
+ 2569365158U, // <1,u,7,2>: Cost 3 vext1 <3,1,u,7>, <2,3,0,1>
+ 2569365803U, // <1,u,7,3>: Cost 3 vext1 <3,1,u,7>, <3,1,u,7>
+ 2557422902U, // <1,u,7,4>: Cost 3 vext1 <1,1,u,7>, RHS
+ 2662512021U, // <1,u,7,5>: Cost 3 vext2 <7,5,1,u>, <7,5,1,u>
+ 2724845884U, // <1,u,7,6>: Cost 3 vext3 <6,7,0,1>, <u,7,6,7>
+ 2659194476U, // <1,u,7,7>: Cost 3 vext2 <7,0,1,u>, <7,7,7,7>
+ 1590761096U, // <1,u,7,u>: Cost 2 vext2 <7,u,1,u>, <7,u,1,u>
+ 403972257U, // <1,u,u,0>: Cost 1 vext1 LHS, LHS
+ 202162278U, // <1,u,u,1>: Cost 1 vdup1 LHS
+ 115767091U, // <1,u,u,2>: Cost 1 vrev LHS
+ 1745707677U, // <1,u,u,3>: Cost 2 vuzpr LHS, LHS
+ 403975478U, // <1,u,u,4>: Cost 1 vext1 LHS, RHS
+ 1546303642U, // <1,u,u,5>: Cost 2 vext2 <0,4,1,u>, RHS
+ 1616009613U, // <1,u,u,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 1745710633U, // <1,u,u,7>: Cost 2 vuzpr LHS, RHS
+ 403978030U, // <1,u,u,u>: Cost 1 vext1 LHS, LHS
+ 2551463936U, // <2,0,0,0>: Cost 3 vext1 <0,2,0,0>, <0,0,0,0>
+ 2685698058U, // <2,0,0,1>: Cost 3 vext3 <0,2,0,2>, <0,0,1,1>
+ 1610776596U, // <2,0,0,2>: Cost 2 vext3 <0,0,2,2>, <0,0,2,2>
+ 2619384069U, // <2,0,0,3>: Cost 3 vext2 <0,3,2,0>, <0,3,2,0>
+ 2551467318U, // <2,0,0,4>: Cost 3 vext1 <0,2,0,0>, RHS
+ 3899836596U, // <2,0,0,5>: Cost 4 vuzpr <1,2,3,0>, <3,0,4,5>
+ 2621374968U, // <2,0,0,6>: Cost 3 vext2 <0,6,2,0>, <0,6,2,0>
+ 4168271334U, // <2,0,0,7>: Cost 4 vtrnr <1,2,3,0>, <2,0,5,7>
+ 1611219018U, // <2,0,0,u>: Cost 2 vext3 <0,0,u,2>, <0,0,u,2>
+ 2551472138U, // <2,0,1,0>: Cost 3 vext1 <0,2,0,1>, <0,0,1,1>
+ 2690564186U, // <2,0,1,1>: Cost 3 vext3 <1,0,3,2>, <0,1,1,0>
+ 1611956326U, // <2,0,1,2>: Cost 2 vext3 <0,2,0,2>, LHS
+ 2826092646U, // <2,0,1,3>: Cost 3 vuzpr <1,2,3,0>, LHS
+ 2551475510U, // <2,0,1,4>: Cost 3 vext1 <0,2,0,1>, RHS
+ 3692463248U, // <2,0,1,5>: Cost 4 vext2 <0,2,2,0>, <1,5,3,7>
+ 2587308473U, // <2,0,1,6>: Cost 3 vext1 <6,2,0,1>, <6,2,0,1>
+ 3661050874U, // <2,0,1,7>: Cost 4 vext1 <6,2,0,1>, <7,0,1,2>
+ 1611956380U, // <2,0,1,u>: Cost 2 vext3 <0,2,0,2>, LHS
+ 1477738598U, // <2,0,2,0>: Cost 2 vext1 <0,2,0,2>, LHS
+ 2551481078U, // <2,0,2,1>: Cost 3 vext1 <0,2,0,2>, <1,0,3,2>
+ 2551481796U, // <2,0,2,2>: Cost 3 vext1 <0,2,0,2>, <2,0,2,0>
+ 2551482518U, // <2,0,2,3>: Cost 3 vext1 <0,2,0,2>, <3,0,1,2>
+ 1477741878U, // <2,0,2,4>: Cost 2 vext1 <0,2,0,2>, RHS
+ 2551484112U, // <2,0,2,5>: Cost 3 vext1 <0,2,0,2>, <5,1,7,3>
+ 2551484759U, // <2,0,2,6>: Cost 3 vext1 <0,2,0,2>, <6,0,7,2>
+ 2551485434U, // <2,0,2,7>: Cost 3 vext1 <0,2,0,2>, <7,0,1,2>
+ 1477744430U, // <2,0,2,u>: Cost 2 vext1 <0,2,0,2>, LHS
+ 2953625600U, // <2,0,3,0>: Cost 3 vzipr LHS, <0,0,0,0>
+ 2953627302U, // <2,0,3,1>: Cost 3 vzipr LHS, <2,3,0,1>
+ 2953625764U, // <2,0,3,2>: Cost 3 vzipr LHS, <0,2,0,2>
+ 4027369695U, // <2,0,3,3>: Cost 4 vzipr LHS, <3,1,0,3>
+ 3625233718U, // <2,0,3,4>: Cost 4 vext1 <0,2,0,3>, RHS
+ 3899836110U, // <2,0,3,5>: Cost 4 vuzpr <1,2,3,0>, <2,3,4,5>
+ 4032012618U, // <2,0,3,6>: Cost 4 vzipr LHS, <0,4,0,6>
+ 3899835392U, // <2,0,3,7>: Cost 4 vuzpr <1,2,3,0>, <1,3,5,7>
+ 2953625770U, // <2,0,3,u>: Cost 3 vzipr LHS, <0,2,0,u>
+ 2551496806U, // <2,0,4,0>: Cost 3 vext1 <0,2,0,4>, LHS
+ 2685698386U, // <2,0,4,1>: Cost 3 vext3 <0,2,0,2>, <0,4,1,5>
+ 2685698396U, // <2,0,4,2>: Cost 3 vext3 <0,2,0,2>, <0,4,2,6>
+ 3625240726U, // <2,0,4,3>: Cost 4 vext1 <0,2,0,4>, <3,0,1,2>
+ 2551500086U, // <2,0,4,4>: Cost 3 vext1 <0,2,0,4>, RHS
+ 2618723638U, // <2,0,4,5>: Cost 3 vext2 <0,2,2,0>, RHS
+ 2765409590U, // <2,0,4,6>: Cost 3 vuzpl <2,3,0,1>, RHS
+ 3799990664U, // <2,0,4,7>: Cost 4 vext3 <7,0,1,2>, <0,4,7,5>
+ 2685698450U, // <2,0,4,u>: Cost 3 vext3 <0,2,0,2>, <0,4,u,6>
+ 3625246822U, // <2,0,5,0>: Cost 4 vext1 <0,2,0,5>, LHS
+ 3289776304U, // <2,0,5,1>: Cost 4 vrev <0,2,1,5>
+ 2690564526U, // <2,0,5,2>: Cost 3 vext3 <1,0,3,2>, <0,5,2,7>
+ 3289923778U, // <2,0,5,3>: Cost 4 vrev <0,2,3,5>
+ 2216255691U, // <2,0,5,4>: Cost 3 vrev <0,2,4,5>
+ 3726307332U, // <2,0,5,5>: Cost 4 vext2 <5,u,2,0>, <5,5,5,5>
+ 3726307426U, // <2,0,5,6>: Cost 4 vext2 <5,u,2,0>, <5,6,7,0>
+ 2826095926U, // <2,0,5,7>: Cost 3 vuzpr <1,2,3,0>, RHS
+ 2216550639U, // <2,0,5,u>: Cost 3 vrev <0,2,u,5>
+ 4162420736U, // <2,0,6,0>: Cost 4 vtrnr <0,2,4,6>, <0,0,0,0>
+ 2901885030U, // <2,0,6,1>: Cost 3 vzipl <2,6,3,7>, LHS
+ 2685698559U, // <2,0,6,2>: Cost 3 vext3 <0,2,0,2>, <0,6,2,7>
+ 3643173171U, // <2,0,6,3>: Cost 4 vext1 <3,2,0,6>, <3,2,0,6>
+ 2216263884U, // <2,0,6,4>: Cost 3 vrev <0,2,4,6>
+ 3730289341U, // <2,0,6,5>: Cost 4 vext2 <6,5,2,0>, <6,5,2,0>
+ 3726308152U, // <2,0,6,6>: Cost 4 vext2 <5,u,2,0>, <6,6,6,6>
+ 3899836346U, // <2,0,6,7>: Cost 4 vuzpr <1,2,3,0>, <2,6,3,7>
+ 2216558832U, // <2,0,6,u>: Cost 3 vrev <0,2,u,6>
+ 2659202049U, // <2,0,7,0>: Cost 3 vext2 <7,0,2,0>, <7,0,2,0>
+ 3726308437U, // <2,0,7,1>: Cost 4 vext2 <5,u,2,0>, <7,1,2,3>
+ 2726249034U, // <2,0,7,2>: Cost 3 vext3 <7,0,1,2>, <0,7,2,1>
+ 3734934772U, // <2,0,7,3>: Cost 4 vext2 <7,3,2,0>, <7,3,2,0>
+ 3726308710U, // <2,0,7,4>: Cost 4 vext2 <5,u,2,0>, <7,4,5,6>
+ 3726308814U, // <2,0,7,5>: Cost 4 vext2 <5,u,2,0>, <7,5,u,2>
+ 3736925671U, // <2,0,7,6>: Cost 4 vext2 <7,6,2,0>, <7,6,2,0>
+ 3726308972U, // <2,0,7,7>: Cost 4 vext2 <5,u,2,0>, <7,7,7,7>
+ 2659202049U, // <2,0,7,u>: Cost 3 vext2 <7,0,2,0>, <7,0,2,0>
+ 1477787750U, // <2,0,u,0>: Cost 2 vext1 <0,2,0,u>, LHS
+ 2953668262U, // <2,0,u,1>: Cost 3 vzipr LHS, <2,3,0,1>
+ 1611956893U, // <2,0,u,2>: Cost 2 vext3 <0,2,0,2>, LHS
+ 2551531670U, // <2,0,u,3>: Cost 3 vext1 <0,2,0,u>, <3,0,1,2>
+ 1477791030U, // <2,0,u,4>: Cost 2 vext1 <0,2,0,u>, RHS
+ 2618726554U, // <2,0,u,5>: Cost 3 vext2 <0,2,2,0>, RHS
+ 2765412506U, // <2,0,u,6>: Cost 3 vuzpl <2,3,0,1>, RHS
+ 2826096169U, // <2,0,u,7>: Cost 3 vuzpr <1,2,3,0>, RHS
+ 1611956947U, // <2,0,u,u>: Cost 2 vext3 <0,2,0,2>, LHS
+ 2569453670U, // <2,1,0,0>: Cost 3 vext1 <3,2,1,0>, LHS
+ 2619392102U, // <2,1,0,1>: Cost 3 vext2 <0,3,2,1>, LHS
+ 3759440619U, // <2,1,0,2>: Cost 4 vext3 <0,2,0,2>, <1,0,2,0>
+ 1616823030U, // <2,1,0,3>: Cost 2 vext3 <1,0,3,2>, <1,0,3,2>
+ 2569456950U, // <2,1,0,4>: Cost 3 vext1 <3,2,1,0>, RHS
+ 2690712328U, // <2,1,0,5>: Cost 3 vext3 <1,0,5,2>, <1,0,5,2>
+ 3661115841U, // <2,1,0,6>: Cost 4 vext1 <6,2,1,0>, <6,2,1,0>
+ 2622046794U, // <2,1,0,7>: Cost 3 vext2 <0,7,2,1>, <0,7,2,1>
+ 1617191715U, // <2,1,0,u>: Cost 2 vext3 <1,0,u,2>, <1,0,u,2>
+ 2551545958U, // <2,1,1,0>: Cost 3 vext1 <0,2,1,1>, LHS
+ 2685698868U, // <2,1,1,1>: Cost 3 vext3 <0,2,0,2>, <1,1,1,1>
+ 2628682646U, // <2,1,1,2>: Cost 3 vext2 <1,u,2,1>, <1,2,3,0>
+ 2685698888U, // <2,1,1,3>: Cost 3 vext3 <0,2,0,2>, <1,1,3,3>
+ 2551549238U, // <2,1,1,4>: Cost 3 vext1 <0,2,1,1>, RHS
+ 3693134992U, // <2,1,1,5>: Cost 4 vext2 <0,3,2,1>, <1,5,3,7>
+ 3661124034U, // <2,1,1,6>: Cost 4 vext1 <6,2,1,1>, <6,2,1,1>
+ 3625292794U, // <2,1,1,7>: Cost 4 vext1 <0,2,1,1>, <7,0,1,2>
+ 2685698933U, // <2,1,1,u>: Cost 3 vext3 <0,2,0,2>, <1,1,u,3>
+ 2551554150U, // <2,1,2,0>: Cost 3 vext1 <0,2,1,2>, LHS
+ 3893649571U, // <2,1,2,1>: Cost 4 vuzpr <0,2,0,1>, <0,2,0,1>
+ 2551555688U, // <2,1,2,2>: Cost 3 vext1 <0,2,1,2>, <2,2,2,2>
+ 2685698966U, // <2,1,2,3>: Cost 3 vext3 <0,2,0,2>, <1,2,3,0>
+ 2551557430U, // <2,1,2,4>: Cost 3 vext1 <0,2,1,2>, RHS
+ 3763422123U, // <2,1,2,5>: Cost 4 vext3 <0,u,0,2>, <1,2,5,3>
+ 3693135802U, // <2,1,2,6>: Cost 4 vext2 <0,3,2,1>, <2,6,3,7>
+ 2726249402U, // <2,1,2,7>: Cost 3 vext3 <7,0,1,2>, <1,2,7,0>
+ 2685699011U, // <2,1,2,u>: Cost 3 vext3 <0,2,0,2>, <1,2,u,0>
+ 2551562342U, // <2,1,3,0>: Cost 3 vext1 <0,2,1,3>, LHS
+ 2953625610U, // <2,1,3,1>: Cost 3 vzipr LHS, <0,0,1,1>
+ 2953627798U, // <2,1,3,2>: Cost 3 vzipr LHS, <3,0,1,2>
+ 2953626584U, // <2,1,3,3>: Cost 3 vzipr LHS, <1,3,1,3>
+ 2551565622U, // <2,1,3,4>: Cost 3 vext1 <0,2,1,3>, RHS
+ 2953625938U, // <2,1,3,5>: Cost 3 vzipr LHS, <0,4,1,5>
+ 2587398596U, // <2,1,3,6>: Cost 3 vext1 <6,2,1,3>, <6,2,1,3>
+ 4032013519U, // <2,1,3,7>: Cost 4 vzipr LHS, <1,6,1,7>
+ 2953625617U, // <2,1,3,u>: Cost 3 vzipr LHS, <0,0,1,u>
+ 2690565154U, // <2,1,4,0>: Cost 3 vext3 <1,0,3,2>, <1,4,0,5>
+ 3625313270U, // <2,1,4,1>: Cost 4 vext1 <0,2,1,4>, <1,3,4,6>
+ 3771532340U, // <2,1,4,2>: Cost 4 vext3 <2,2,2,2>, <1,4,2,5>
+ 1148404634U, // <2,1,4,3>: Cost 2 vrev <1,2,3,4>
+ 3625315638U, // <2,1,4,4>: Cost 4 vext1 <0,2,1,4>, RHS
+ 2619395382U, // <2,1,4,5>: Cost 3 vext2 <0,3,2,1>, RHS
+ 3837242678U, // <2,1,4,6>: Cost 4 vuzpl <2,0,1,2>, RHS
+ 3799991394U, // <2,1,4,7>: Cost 4 vext3 <7,0,1,2>, <1,4,7,6>
+ 1148773319U, // <2,1,4,u>: Cost 2 vrev <1,2,u,4>
+ 2551578726U, // <2,1,5,0>: Cost 3 vext1 <0,2,1,5>, LHS
+ 2551579648U, // <2,1,5,1>: Cost 3 vext1 <0,2,1,5>, <1,3,5,7>
+ 3625321952U, // <2,1,5,2>: Cost 4 vext1 <0,2,1,5>, <2,0,5,1>
+ 2685699216U, // <2,1,5,3>: Cost 3 vext3 <0,2,0,2>, <1,5,3,7>
+ 2551582006U, // <2,1,5,4>: Cost 3 vext1 <0,2,1,5>, RHS
+ 3740913668U, // <2,1,5,5>: Cost 4 vext2 <u,3,2,1>, <5,5,5,5>
+ 3661156806U, // <2,1,5,6>: Cost 4 vext1 <6,2,1,5>, <6,2,1,5>
+ 3893652790U, // <2,1,5,7>: Cost 4 vuzpr <0,2,0,1>, RHS
+ 2685699261U, // <2,1,5,u>: Cost 3 vext3 <0,2,0,2>, <1,5,u,7>
+ 2551586918U, // <2,1,6,0>: Cost 3 vext1 <0,2,1,6>, LHS
+ 3625329398U, // <2,1,6,1>: Cost 4 vext1 <0,2,1,6>, <1,0,3,2>
+ 2551588794U, // <2,1,6,2>: Cost 3 vext1 <0,2,1,6>, <2,6,3,7>
+ 3088679014U, // <2,1,6,3>: Cost 3 vtrnr <0,2,4,6>, LHS
+ 2551590198U, // <2,1,6,4>: Cost 3 vext1 <0,2,1,6>, RHS
+ 4029382994U, // <2,1,6,5>: Cost 4 vzipr <0,4,2,6>, <0,4,1,5>
+ 3625333560U, // <2,1,6,6>: Cost 4 vext1 <0,2,1,6>, <6,6,6,6>
+ 3731624800U, // <2,1,6,7>: Cost 4 vext2 <6,7,2,1>, <6,7,2,1>
+ 2551592750U, // <2,1,6,u>: Cost 3 vext1 <0,2,1,6>, LHS
+ 2622051322U, // <2,1,7,0>: Cost 3 vext2 <0,7,2,1>, <7,0,1,2>
+ 3733615699U, // <2,1,7,1>: Cost 4 vext2 <7,1,2,1>, <7,1,2,1>
+ 3795125538U, // <2,1,7,2>: Cost 4 vext3 <6,1,7,2>, <1,7,2,0>
+ 2222171037U, // <2,1,7,3>: Cost 3 vrev <1,2,3,7>
+ 3740915046U, // <2,1,7,4>: Cost 4 vext2 <u,3,2,1>, <7,4,5,6>
+ 3296060335U, // <2,1,7,5>: Cost 4 vrev <1,2,5,7>
+ 3736933864U, // <2,1,7,6>: Cost 4 vext2 <7,6,2,1>, <7,6,2,1>
+ 3805300055U, // <2,1,7,7>: Cost 4 vext3 <7,u,1,2>, <1,7,7,u>
+ 2669827714U, // <2,1,7,u>: Cost 3 vext2 <u,7,2,1>, <7,u,1,2>
+ 2551603302U, // <2,1,u,0>: Cost 3 vext1 <0,2,1,u>, LHS
+ 2953666570U, // <2,1,u,1>: Cost 3 vzipr LHS, <0,0,1,1>
+ 2953668758U, // <2,1,u,2>: Cost 3 vzipr LHS, <3,0,1,2>
+ 1148437406U, // <2,1,u,3>: Cost 2 vrev <1,2,3,u>
+ 2551606582U, // <2,1,u,4>: Cost 3 vext1 <0,2,1,u>, RHS
+ 2953666898U, // <2,1,u,5>: Cost 3 vzipr LHS, <0,4,1,5>
+ 2587398596U, // <2,1,u,6>: Cost 3 vext1 <6,2,1,3>, <6,2,1,3>
+ 2669828370U, // <2,1,u,7>: Cost 3 vext2 <u,7,2,1>, <u,7,2,1>
+ 1148806091U, // <2,1,u,u>: Cost 2 vrev <1,2,u,u>
+ 1543667732U, // <2,2,0,0>: Cost 2 vext2 <0,0,2,2>, <0,0,2,2>
+ 1548976230U, // <2,2,0,1>: Cost 2 vext2 <0,u,2,2>, LHS
+ 2685699524U, // <2,2,0,2>: Cost 3 vext3 <0,2,0,2>, <2,0,2,0>
+ 2685699535U, // <2,2,0,3>: Cost 3 vext3 <0,2,0,2>, <2,0,3,2>
+ 2551614774U, // <2,2,0,4>: Cost 3 vext1 <0,2,2,0>, RHS
+ 3704422830U, // <2,2,0,5>: Cost 4 vext2 <2,2,2,2>, <0,5,2,7>
+ 3893657642U, // <2,2,0,6>: Cost 4 vuzpr <0,2,0,2>, <0,0,4,6>
+ 3770574323U, // <2,2,0,7>: Cost 4 vext3 <2,0,7,2>, <2,0,7,2>
+ 1548976796U, // <2,2,0,u>: Cost 2 vext2 <0,u,2,2>, <0,u,2,2>
+ 2622718710U, // <2,2,1,0>: Cost 3 vext2 <0,u,2,2>, <1,0,3,2>
+ 2622718772U, // <2,2,1,1>: Cost 3 vext2 <0,u,2,2>, <1,1,1,1>
+ 2622718870U, // <2,2,1,2>: Cost 3 vext2 <0,u,2,2>, <1,2,3,0>
+ 2819915878U, // <2,2,1,3>: Cost 3 vuzpr <0,2,0,2>, LHS
+ 3625364790U, // <2,2,1,4>: Cost 4 vext1 <0,2,2,1>, RHS
+ 2622719120U, // <2,2,1,5>: Cost 3 vext2 <0,u,2,2>, <1,5,3,7>
+ 3760031292U, // <2,2,1,6>: Cost 4 vext3 <0,2,u,2>, <2,1,6,3>
+ 3667170468U, // <2,2,1,7>: Cost 4 vext1 <7,2,2,1>, <7,2,2,1>
+ 2819915883U, // <2,2,1,u>: Cost 3 vuzpr <0,2,0,2>, LHS
+ 1489829990U, // <2,2,2,0>: Cost 2 vext1 <2,2,2,2>, LHS
+ 2563572470U, // <2,2,2,1>: Cost 3 vext1 <2,2,2,2>, <1,0,3,2>
+ 269271142U, // <2,2,2,2>: Cost 1 vdup2 LHS
+ 2685699698U, // <2,2,2,3>: Cost 3 vext3 <0,2,0,2>, <2,2,3,3>
+ 1489833270U, // <2,2,2,4>: Cost 2 vext1 <2,2,2,2>, RHS
+ 2685699720U, // <2,2,2,5>: Cost 3 vext3 <0,2,0,2>, <2,2,5,7>
+ 2622719930U, // <2,2,2,6>: Cost 3 vext2 <0,u,2,2>, <2,6,3,7>
+ 2593436837U, // <2,2,2,7>: Cost 3 vext1 <7,2,2,2>, <7,2,2,2>
+ 269271142U, // <2,2,2,u>: Cost 1 vdup2 LHS
+ 2685699750U, // <2,2,3,0>: Cost 3 vext3 <0,2,0,2>, <2,3,0,1>
+ 2690565806U, // <2,2,3,1>: Cost 3 vext3 <1,0,3,2>, <2,3,1,0>
+ 2953627240U, // <2,2,3,2>: Cost 3 vzipr LHS, <2,2,2,2>
+ 1879883878U, // <2,2,3,3>: Cost 2 vzipr LHS, LHS
+ 2685699790U, // <2,2,3,4>: Cost 3 vext3 <0,2,0,2>, <2,3,4,5>
+ 3893659342U, // <2,2,3,5>: Cost 4 vuzpr <0,2,0,2>, <2,3,4,5>
+ 2958270812U, // <2,2,3,6>: Cost 3 vzipr LHS, <0,4,2,6>
+ 2593445030U, // <2,2,3,7>: Cost 3 vext1 <7,2,2,3>, <7,2,2,3>
+ 1879883883U, // <2,2,3,u>: Cost 2 vzipr LHS, LHS
+ 2551644262U, // <2,2,4,0>: Cost 3 vext1 <0,2,2,4>, LHS
+ 3625386742U, // <2,2,4,1>: Cost 4 vext1 <0,2,2,4>, <1,0,3,2>
+ 2551645902U, // <2,2,4,2>: Cost 3 vext1 <0,2,2,4>, <2,3,4,5>
+ 3759441686U, // <2,2,4,3>: Cost 4 vext3 <0,2,0,2>, <2,4,3,5>
+ 2551647542U, // <2,2,4,4>: Cost 3 vext1 <0,2,2,4>, RHS
+ 1548979510U, // <2,2,4,5>: Cost 2 vext2 <0,u,2,2>, RHS
+ 2764901686U, // <2,2,4,6>: Cost 3 vuzpl <2,2,2,2>, RHS
+ 3667195047U, // <2,2,4,7>: Cost 4 vext1 <7,2,2,4>, <7,2,2,4>
+ 1548979753U, // <2,2,4,u>: Cost 2 vext2 <0,u,2,2>, RHS
+ 3696463432U, // <2,2,5,0>: Cost 4 vext2 <0,u,2,2>, <5,0,1,2>
+ 2617413328U, // <2,2,5,1>: Cost 3 vext2 <0,0,2,2>, <5,1,7,3>
+ 2685699936U, // <2,2,5,2>: Cost 3 vext3 <0,2,0,2>, <2,5,2,7>
+ 4027383910U, // <2,2,5,3>: Cost 4 vzipr <0,1,2,5>, LHS
+ 2228201085U, // <2,2,5,4>: Cost 3 vrev <2,2,4,5>
+ 2617413636U, // <2,2,5,5>: Cost 3 vext2 <0,0,2,2>, <5,5,5,5>
+ 2617413730U, // <2,2,5,6>: Cost 3 vext2 <0,0,2,2>, <5,6,7,0>
+ 2819919158U, // <2,2,5,7>: Cost 3 vuzpr <0,2,0,2>, RHS
+ 2819919159U, // <2,2,5,u>: Cost 3 vuzpr <0,2,0,2>, RHS
+ 3625402554U, // <2,2,6,0>: Cost 4 vext1 <0,2,2,6>, <0,2,2,6>
+ 3760031652U, // <2,2,6,1>: Cost 4 vext3 <0,2,u,2>, <2,6,1,3>
+ 2617414138U, // <2,2,6,2>: Cost 3 vext2 <0,0,2,2>, <6,2,7,3>
+ 2685700026U, // <2,2,6,3>: Cost 3 vext3 <0,2,0,2>, <2,6,3,7>
+ 3625405750U, // <2,2,6,4>: Cost 4 vext1 <0,2,2,6>, RHS
+ 3760031692U, // <2,2,6,5>: Cost 4 vext3 <0,2,u,2>, <2,6,5,7>
+ 3088679116U, // <2,2,6,6>: Cost 3 vtrnr <0,2,4,6>, <0,2,4,6>
+ 2657891169U, // <2,2,6,7>: Cost 3 vext2 <6,7,2,2>, <6,7,2,2>
+ 2685700071U, // <2,2,6,u>: Cost 3 vext3 <0,2,0,2>, <2,6,u,7>
+ 2726250474U, // <2,2,7,0>: Cost 3 vext3 <7,0,1,2>, <2,7,0,1>
+ 3704427616U, // <2,2,7,1>: Cost 4 vext2 <2,2,2,2>, <7,1,3,5>
+ 2660545701U, // <2,2,7,2>: Cost 3 vext2 <7,2,2,2>, <7,2,2,2>
+ 4030718054U, // <2,2,7,3>: Cost 4 vzipr <0,6,2,7>, LHS
+ 2617415014U, // <2,2,7,4>: Cost 3 vext2 <0,0,2,2>, <7,4,5,6>
+ 3302033032U, // <2,2,7,5>: Cost 4 vrev <2,2,5,7>
+ 3661246929U, // <2,2,7,6>: Cost 4 vext1 <6,2,2,7>, <6,2,2,7>
+ 2617415276U, // <2,2,7,7>: Cost 3 vext2 <0,0,2,2>, <7,7,7,7>
+ 2731558962U, // <2,2,7,u>: Cost 3 vext3 <7,u,1,2>, <2,7,u,1>
+ 1489829990U, // <2,2,u,0>: Cost 2 vext1 <2,2,2,2>, LHS
+ 1548982062U, // <2,2,u,1>: Cost 2 vext2 <0,u,2,2>, LHS
+ 269271142U, // <2,2,u,2>: Cost 1 vdup2 LHS
+ 1879924838U, // <2,2,u,3>: Cost 2 vzipr LHS, LHS
+ 1489833270U, // <2,2,u,4>: Cost 2 vext1 <2,2,2,2>, RHS
+ 1548982426U, // <2,2,u,5>: Cost 2 vext2 <0,u,2,2>, RHS
+ 2953666908U, // <2,2,u,6>: Cost 3 vzipr LHS, <0,4,2,6>
+ 2819919401U, // <2,2,u,7>: Cost 3 vuzpr <0,2,0,2>, RHS
+ 269271142U, // <2,2,u,u>: Cost 1 vdup2 LHS
+ 1544339456U, // <2,3,0,0>: Cost 2 vext2 LHS, <0,0,0,0>
+ 470597734U, // <2,3,0,1>: Cost 1 vext2 LHS, LHS
+ 1548984484U, // <2,3,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 2619408648U, // <2,3,0,3>: Cost 3 vext2 <0,3,2,3>, <0,3,2,3>
+ 1548984658U, // <2,3,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 2665857454U, // <2,3,0,5>: Cost 3 vext2 LHS, <0,5,2,7>
+ 2622726655U, // <2,3,0,6>: Cost 3 vext2 LHS, <0,6,2,7>
+ 2593494188U, // <2,3,0,7>: Cost 3 vext1 <7,2,3,0>, <7,2,3,0>
+ 470598301U, // <2,3,0,u>: Cost 1 vext2 LHS, LHS
+ 1544340214U, // <2,3,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 1544340276U, // <2,3,1,1>: Cost 2 vext2 LHS, <1,1,1,1>
+ 1544340374U, // <2,3,1,2>: Cost 2 vext2 LHS, <1,2,3,0>
+ 1548985304U, // <2,3,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 2551696694U, // <2,3,1,4>: Cost 3 vext1 <0,2,3,1>, RHS
+ 1548985488U, // <2,3,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 2622727375U, // <2,3,1,6>: Cost 3 vext2 LHS, <1,6,1,7>
+ 2665858347U, // <2,3,1,7>: Cost 3 vext2 LHS, <1,7,3,0>
+ 1548985709U, // <2,3,1,u>: Cost 2 vext2 LHS, <1,u,1,3>
+ 2622727613U, // <2,3,2,0>: Cost 3 vext2 LHS, <2,0,1,2>
+ 2622727711U, // <2,3,2,1>: Cost 3 vext2 LHS, <2,1,3,1>
+ 1544341096U, // <2,3,2,2>: Cost 2 vext2 LHS, <2,2,2,2>
+ 1544341158U, // <2,3,2,3>: Cost 2 vext2 LHS, <2,3,0,1>
+ 2622727958U, // <2,3,2,4>: Cost 3 vext2 LHS, <2,4,3,5>
+ 2622728032U, // <2,3,2,5>: Cost 3 vext2 LHS, <2,5,2,7>
+ 1548986298U, // <2,3,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 2665859050U, // <2,3,2,7>: Cost 3 vext2 LHS, <2,7,0,1>
+ 1548986427U, // <2,3,2,u>: Cost 2 vext2 LHS, <2,u,0,1>
+ 1548986518U, // <2,3,3,0>: Cost 2 vext2 LHS, <3,0,1,2>
+ 2622728415U, // <2,3,3,1>: Cost 3 vext2 LHS, <3,1,0,3>
+ 1489913458U, // <2,3,3,2>: Cost 2 vext1 <2,2,3,3>, <2,2,3,3>
+ 1544341916U, // <2,3,3,3>: Cost 2 vext2 LHS, <3,3,3,3>
+ 1548986882U, // <2,3,3,4>: Cost 2 vext2 LHS, <3,4,5,6>
+ 2665859632U, // <2,3,3,5>: Cost 3 vext2 LHS, <3,5,1,7>
+ 2234304870U, // <2,3,3,6>: Cost 3 vrev <3,2,6,3>
+ 2958271632U, // <2,3,3,7>: Cost 3 vzipr LHS, <1,5,3,7>
+ 1548987166U, // <2,3,3,u>: Cost 2 vext2 LHS, <3,u,1,2>
+ 1483948134U, // <2,3,4,0>: Cost 2 vext1 <1,2,3,4>, LHS
+ 1483948954U, // <2,3,4,1>: Cost 2 vext1 <1,2,3,4>, <1,2,3,4>
+ 2622729276U, // <2,3,4,2>: Cost 3 vext2 LHS, <4,2,6,0>
+ 2557692054U, // <2,3,4,3>: Cost 3 vext1 <1,2,3,4>, <3,0,1,2>
+ 1483951414U, // <2,3,4,4>: Cost 2 vext1 <1,2,3,4>, RHS
+ 470601014U, // <2,3,4,5>: Cost 1 vext2 LHS, RHS
+ 1592118644U, // <2,3,4,6>: Cost 2 vext2 LHS, <4,6,4,6>
+ 2593526960U, // <2,3,4,7>: Cost 3 vext1 <7,2,3,4>, <7,2,3,4>
+ 470601257U, // <2,3,4,u>: Cost 1 vext2 LHS, RHS
+ 2551726182U, // <2,3,5,0>: Cost 3 vext1 <0,2,3,5>, LHS
+ 1592118992U, // <2,3,5,1>: Cost 2 vext2 LHS, <5,1,7,3>
+ 2665860862U, // <2,3,5,2>: Cost 3 vext2 LHS, <5,2,3,4>
+ 2551728642U, // <2,3,5,3>: Cost 3 vext1 <0,2,3,5>, <3,4,5,6>
+ 1592119238U, // <2,3,5,4>: Cost 2 vext2 LHS, <5,4,7,6>
+ 1592119300U, // <2,3,5,5>: Cost 2 vext2 LHS, <5,5,5,5>
+ 1592119394U, // <2,3,5,6>: Cost 2 vext2 LHS, <5,6,7,0>
+ 1592119464U, // <2,3,5,7>: Cost 2 vext2 LHS, <5,7,5,7>
+ 1592119545U, // <2,3,5,u>: Cost 2 vext2 LHS, <5,u,5,7>
+ 2622730529U, // <2,3,6,0>: Cost 3 vext2 LHS, <6,0,1,2>
+ 2557707164U, // <2,3,6,1>: Cost 3 vext1 <1,2,3,6>, <1,2,3,6>
+ 1592119802U, // <2,3,6,2>: Cost 2 vext2 LHS, <6,2,7,3>
+ 2665861682U, // <2,3,6,3>: Cost 3 vext2 LHS, <6,3,4,5>
+ 2622730893U, // <2,3,6,4>: Cost 3 vext2 LHS, <6,4,5,6>
+ 2665861810U, // <2,3,6,5>: Cost 3 vext2 LHS, <6,5,0,7>
+ 1592120120U, // <2,3,6,6>: Cost 2 vext2 LHS, <6,6,6,6>
+ 1592120142U, // <2,3,6,7>: Cost 2 vext2 LHS, <6,7,0,1>
+ 1592120223U, // <2,3,6,u>: Cost 2 vext2 LHS, <6,u,0,1>
+ 1592120314U, // <2,3,7,0>: Cost 2 vext2 LHS, <7,0,1,2>
+ 2659890261U, // <2,3,7,1>: Cost 3 vext2 <7,1,2,3>, <7,1,2,3>
+ 2660553894U, // <2,3,7,2>: Cost 3 vext2 <7,2,2,3>, <7,2,2,3>
+ 2665862371U, // <2,3,7,3>: Cost 3 vext2 LHS, <7,3,0,1>
+ 1592120678U, // <2,3,7,4>: Cost 2 vext2 LHS, <7,4,5,6>
+ 2665862534U, // <2,3,7,5>: Cost 3 vext2 LHS, <7,5,0,2>
+ 2665862614U, // <2,3,7,6>: Cost 3 vext2 LHS, <7,6,0,1>
+ 1592120940U, // <2,3,7,7>: Cost 2 vext2 LHS, <7,7,7,7>
+ 1592120962U, // <2,3,7,u>: Cost 2 vext2 LHS, <7,u,1,2>
+ 1548990163U, // <2,3,u,0>: Cost 2 vext2 LHS, <u,0,1,2>
+ 470603566U, // <2,3,u,1>: Cost 1 vext2 LHS, LHS
+ 1548990341U, // <2,3,u,2>: Cost 2 vext2 LHS, <u,2,3,0>
+ 1548990396U, // <2,3,u,3>: Cost 2 vext2 LHS, <u,3,0,1>
+ 1548990527U, // <2,3,u,4>: Cost 2 vext2 LHS, <u,4,5,6>
+ 470603930U, // <2,3,u,5>: Cost 1 vext2 LHS, RHS
+ 1548990672U, // <2,3,u,6>: Cost 2 vext2 LHS, <u,6,3,7>
+ 1592121600U, // <2,3,u,7>: Cost 2 vext2 LHS, <u,7,0,1>
+ 470604133U, // <2,3,u,u>: Cost 1 vext2 LHS, LHS
+ 2617425942U, // <2,4,0,0>: Cost 3 vext2 <0,0,2,4>, <0,0,2,4>
+ 2618753126U, // <2,4,0,1>: Cost 3 vext2 <0,2,2,4>, LHS
+ 2618753208U, // <2,4,0,2>: Cost 3 vext2 <0,2,2,4>, <0,2,2,4>
+ 2619416841U, // <2,4,0,3>: Cost 3 vext2 <0,3,2,4>, <0,3,2,4>
+ 2587593628U, // <2,4,0,4>: Cost 3 vext1 <6,2,4,0>, <4,0,6,2>
+ 2712832914U, // <2,4,0,5>: Cost 3 vext3 <4,6,u,2>, <4,0,5,1>
+ 1634962332U, // <2,4,0,6>: Cost 2 vext3 <4,0,6,2>, <4,0,6,2>
+ 3799993252U, // <2,4,0,7>: Cost 4 vext3 <7,0,1,2>, <4,0,7,1>
+ 1634962332U, // <2,4,0,u>: Cost 2 vext3 <4,0,6,2>, <4,0,6,2>
+ 2619417334U, // <2,4,1,0>: Cost 3 vext2 <0,3,2,4>, <1,0,3,2>
+ 3692495668U, // <2,4,1,1>: Cost 4 vext2 <0,2,2,4>, <1,1,1,1>
+ 2625389466U, // <2,4,1,2>: Cost 3 vext2 <1,3,2,4>, <1,2,3,4>
+ 2826125414U, // <2,4,1,3>: Cost 3 vuzpr <1,2,3,4>, LHS
+ 3699794995U, // <2,4,1,4>: Cost 4 vext2 <1,4,2,4>, <1,4,2,4>
+ 3692496016U, // <2,4,1,5>: Cost 4 vext2 <0,2,2,4>, <1,5,3,7>
+ 3763424238U, // <2,4,1,6>: Cost 4 vext3 <0,u,0,2>, <4,1,6,3>
+ 3667317942U, // <2,4,1,7>: Cost 4 vext1 <7,2,4,1>, <7,2,4,1>
+ 2826125419U, // <2,4,1,u>: Cost 3 vuzpr <1,2,3,4>, LHS
+ 2629371336U, // <2,4,2,0>: Cost 3 vext2 <2,0,2,4>, <2,0,2,4>
+ 3699131946U, // <2,4,2,1>: Cost 4 vext2 <1,3,2,4>, <2,1,4,3>
+ 2630698602U, // <2,4,2,2>: Cost 3 vext2 <2,2,2,4>, <2,2,2,4>
+ 2618754766U, // <2,4,2,3>: Cost 3 vext2 <0,2,2,4>, <2,3,4,5>
+ 2826126234U, // <2,4,2,4>: Cost 3 vuzpr <1,2,3,4>, <1,2,3,4>
+ 2899119414U, // <2,4,2,5>: Cost 3 vzipl <2,2,2,2>, RHS
+ 3033337142U, // <2,4,2,6>: Cost 3 vtrnl <2,2,2,2>, RHS
+ 3800214597U, // <2,4,2,7>: Cost 4 vext3 <7,0,4,2>, <4,2,7,0>
+ 2899119657U, // <2,4,2,u>: Cost 3 vzipl <2,2,2,2>, RHS
+ 2635344033U, // <2,4,3,0>: Cost 3 vext2 <3,0,2,4>, <3,0,2,4>
+ 4032012325U, // <2,4,3,1>: Cost 4 vzipr LHS, <0,0,4,1>
+ 3692497228U, // <2,4,3,2>: Cost 4 vext2 <0,2,2,4>, <3,2,3,4>
+ 3692497308U, // <2,4,3,3>: Cost 4 vext2 <0,2,2,4>, <3,3,3,3>
+ 3001404624U, // <2,4,3,4>: Cost 3 vzipr LHS, <4,4,4,4>
+ 2953627342U, // <2,4,3,5>: Cost 3 vzipr LHS, <2,3,4,5>
+ 2953625804U, // <2,4,3,6>: Cost 3 vzipr LHS, <0,2,4,6>
+ 3899868160U, // <2,4,3,7>: Cost 4 vuzpr <1,2,3,4>, <1,3,5,7>
+ 2953625806U, // <2,4,3,u>: Cost 3 vzipr LHS, <0,2,4,u>
+ 2710916266U, // <2,4,4,0>: Cost 3 vext3 <4,4,0,2>, <4,4,0,2>
+ 3899869648U, // <2,4,4,1>: Cost 4 vuzpr <1,2,3,4>, <3,4,0,1>
+ 3899869658U, // <2,4,4,2>: Cost 4 vuzpr <1,2,3,4>, <3,4,1,2>
+ 3899868930U, // <2,4,4,3>: Cost 4 vuzpr <1,2,3,4>, <2,4,1,3>
+ 2712833232U, // <2,4,4,4>: Cost 3 vext3 <4,6,u,2>, <4,4,4,4>
+ 2618756406U, // <2,4,4,5>: Cost 3 vext2 <0,2,2,4>, RHS
+ 2765737270U, // <2,4,4,6>: Cost 3 vuzpl <2,3,4,5>, RHS
+ 4168304426U, // <2,4,4,7>: Cost 4 vtrnr <1,2,3,4>, <2,4,5,7>
+ 2618756649U, // <2,4,4,u>: Cost 3 vext2 <0,2,2,4>, RHS
+ 2551800011U, // <2,4,5,0>: Cost 3 vext1 <0,2,4,5>, <0,2,4,5>
+ 2569716470U, // <2,4,5,1>: Cost 3 vext1 <3,2,4,5>, <1,0,3,2>
+ 2563745405U, // <2,4,5,2>: Cost 3 vext1 <2,2,4,5>, <2,2,4,5>
+ 2569718102U, // <2,4,5,3>: Cost 3 vext1 <3,2,4,5>, <3,2,4,5>
+ 2551803190U, // <2,4,5,4>: Cost 3 vext1 <0,2,4,5>, RHS
+ 3625545732U, // <2,4,5,5>: Cost 4 vext1 <0,2,4,5>, <5,5,5,5>
+ 1611959606U, // <2,4,5,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 2826128694U, // <2,4,5,7>: Cost 3 vuzpr <1,2,3,4>, RHS
+ 1611959624U, // <2,4,5,u>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1478066278U, // <2,4,6,0>: Cost 2 vext1 <0,2,4,6>, LHS
+ 2551808758U, // <2,4,6,1>: Cost 3 vext1 <0,2,4,6>, <1,0,3,2>
+ 2551809516U, // <2,4,6,2>: Cost 3 vext1 <0,2,4,6>, <2,0,6,4>
+ 2551810198U, // <2,4,6,3>: Cost 3 vext1 <0,2,4,6>, <3,0,1,2>
+ 1478069558U, // <2,4,6,4>: Cost 2 vext1 <0,2,4,6>, RHS
+ 2901888310U, // <2,4,6,5>: Cost 3 vzipl <2,6,3,7>, RHS
+ 2551812920U, // <2,4,6,6>: Cost 3 vext1 <0,2,4,6>, <6,6,6,6>
+ 2726251914U, // <2,4,6,7>: Cost 3 vext3 <7,0,1,2>, <4,6,7,1>
+ 1478072110U, // <2,4,6,u>: Cost 2 vext1 <0,2,4,6>, LHS
+ 2659234821U, // <2,4,7,0>: Cost 3 vext2 <7,0,2,4>, <7,0,2,4>
+ 3786722726U, // <2,4,7,1>: Cost 4 vext3 <4,7,1,2>, <4,7,1,2>
+ 3734303911U, // <2,4,7,2>: Cost 4 vext2 <7,2,2,4>, <7,2,2,4>
+ 3734967544U, // <2,4,7,3>: Cost 4 vext2 <7,3,2,4>, <7,3,2,4>
+ 3727005030U, // <2,4,7,4>: Cost 4 vext2 <6,0,2,4>, <7,4,5,6>
+ 2726251976U, // <2,4,7,5>: Cost 3 vext3 <7,0,1,2>, <4,7,5,0>
+ 2726251986U, // <2,4,7,6>: Cost 3 vext3 <7,0,1,2>, <4,7,6,1>
+ 3727005292U, // <2,4,7,7>: Cost 4 vext2 <6,0,2,4>, <7,7,7,7>
+ 2659234821U, // <2,4,7,u>: Cost 3 vext2 <7,0,2,4>, <7,0,2,4>
+ 1478082662U, // <2,4,u,0>: Cost 2 vext1 <0,2,4,u>, LHS
+ 2618758958U, // <2,4,u,1>: Cost 3 vext2 <0,2,2,4>, LHS
+ 2551826024U, // <2,4,u,2>: Cost 3 vext1 <0,2,4,u>, <2,2,2,2>
+ 2551826582U, // <2,4,u,3>: Cost 3 vext1 <0,2,4,u>, <3,0,1,2>
+ 1478085942U, // <2,4,u,4>: Cost 2 vext1 <0,2,4,u>, RHS
+ 2953668302U, // <2,4,u,5>: Cost 3 vzipr LHS, <2,3,4,5>
+ 1611959849U, // <2,4,u,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 2826128937U, // <2,4,u,7>: Cost 3 vuzpr <1,2,3,4>, RHS
+ 1611959867U, // <2,4,u,u>: Cost 2 vext3 <0,2,0,2>, RHS
+ 3691839488U, // <2,5,0,0>: Cost 4 vext2 <0,1,2,5>, <0,0,0,0>
+ 2618097766U, // <2,5,0,1>: Cost 3 vext2 <0,1,2,5>, LHS
+ 2620088484U, // <2,5,0,2>: Cost 3 vext2 <0,4,2,5>, <0,2,0,2>
+ 2619425034U, // <2,5,0,3>: Cost 3 vext2 <0,3,2,5>, <0,3,2,5>
+ 2620088667U, // <2,5,0,4>: Cost 3 vext2 <0,4,2,5>, <0,4,2,5>
+ 2620752300U, // <2,5,0,5>: Cost 3 vext2 <0,5,2,5>, <0,5,2,5>
+ 3693830655U, // <2,5,0,6>: Cost 4 vext2 <0,4,2,5>, <0,6,2,7>
+ 3094531382U, // <2,5,0,7>: Cost 3 vtrnr <1,2,3,0>, RHS
+ 2618098333U, // <2,5,0,u>: Cost 3 vext2 <0,1,2,5>, LHS
+ 3691840246U, // <2,5,1,0>: Cost 4 vext2 <0,1,2,5>, <1,0,3,2>
+ 3691840308U, // <2,5,1,1>: Cost 4 vext2 <0,1,2,5>, <1,1,1,1>
+ 2626061206U, // <2,5,1,2>: Cost 3 vext2 <1,4,2,5>, <1,2,3,0>
+ 2618098688U, // <2,5,1,3>: Cost 3 vext2 <0,1,2,5>, <1,3,5,7>
+ 2626061364U, // <2,5,1,4>: Cost 3 vext2 <1,4,2,5>, <1,4,2,5>
+ 3691840656U, // <2,5,1,5>: Cost 4 vext2 <0,1,2,5>, <1,5,3,7>
+ 3789082310U, // <2,5,1,6>: Cost 4 vext3 <5,1,6,2>, <5,1,6,2>
+ 2712833744U, // <2,5,1,7>: Cost 3 vext3 <4,6,u,2>, <5,1,7,3>
+ 2628715896U, // <2,5,1,u>: Cost 3 vext2 <1,u,2,5>, <1,u,2,5>
+ 3693831613U, // <2,5,2,0>: Cost 4 vext2 <0,4,2,5>, <2,0,1,2>
+ 4026698642U, // <2,5,2,1>: Cost 4 vzipr <0,0,2,2>, <4,0,5,1>
+ 2632033896U, // <2,5,2,2>: Cost 3 vext2 <2,4,2,5>, <2,2,2,2>
+ 3691841190U, // <2,5,2,3>: Cost 4 vext2 <0,1,2,5>, <2,3,0,1>
+ 2632034061U, // <2,5,2,4>: Cost 3 vext2 <2,4,2,5>, <2,4,2,5>
+ 3691841352U, // <2,5,2,5>: Cost 4 vext2 <0,1,2,5>, <2,5,0,1>
+ 3691841466U, // <2,5,2,6>: Cost 4 vext2 <0,1,2,5>, <2,6,3,7>
+ 3088354614U, // <2,5,2,7>: Cost 3 vtrnr <0,2,0,2>, RHS
+ 3088354615U, // <2,5,2,u>: Cost 3 vtrnr <0,2,0,2>, RHS
+ 2557829222U, // <2,5,3,0>: Cost 3 vext1 <1,2,5,3>, LHS
+ 2557830059U, // <2,5,3,1>: Cost 3 vext1 <1,2,5,3>, <1,2,5,3>
+ 2575746766U, // <2,5,3,2>: Cost 3 vext1 <4,2,5,3>, <2,3,4,5>
+ 3691841948U, // <2,5,3,3>: Cost 4 vext2 <0,1,2,5>, <3,3,3,3>
+ 2619427330U, // <2,5,3,4>: Cost 3 vext2 <0,3,2,5>, <3,4,5,6>
+ 2581720847U, // <2,5,3,5>: Cost 3 vext1 <5,2,5,3>, <5,2,5,3>
+ 2953628162U, // <2,5,3,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 2953626624U, // <2,5,3,7>: Cost 3 vzipr LHS, <1,3,5,7>
+ 2953626625U, // <2,5,3,u>: Cost 3 vzipr LHS, <1,3,5,u>
+ 2569781350U, // <2,5,4,0>: Cost 3 vext1 <3,2,5,4>, LHS
+ 3631580076U, // <2,5,4,1>: Cost 4 vext1 <1,2,5,4>, <1,2,5,4>
+ 2569782990U, // <2,5,4,2>: Cost 3 vext1 <3,2,5,4>, <2,3,4,5>
+ 2569783646U, // <2,5,4,3>: Cost 3 vext1 <3,2,5,4>, <3,2,5,4>
+ 2569784630U, // <2,5,4,4>: Cost 3 vext1 <3,2,5,4>, RHS
+ 2618101046U, // <2,5,4,5>: Cost 3 vext2 <0,1,2,5>, RHS
+ 3893905922U, // <2,5,4,6>: Cost 4 vuzpr <0,2,3,5>, <3,4,5,6>
+ 3094564150U, // <2,5,4,7>: Cost 3 vtrnr <1,2,3,4>, RHS
+ 2618101289U, // <2,5,4,u>: Cost 3 vext2 <0,1,2,5>, RHS
+ 2551873638U, // <2,5,5,0>: Cost 3 vext1 <0,2,5,5>, LHS
+ 3637560320U, // <2,5,5,1>: Cost 4 vext1 <2,2,5,5>, <1,3,5,7>
+ 3637560966U, // <2,5,5,2>: Cost 4 vext1 <2,2,5,5>, <2,2,5,5>
+ 3723030343U, // <2,5,5,3>: Cost 4 vext2 <5,3,2,5>, <5,3,2,5>
+ 2551876918U, // <2,5,5,4>: Cost 3 vext1 <0,2,5,5>, RHS
+ 2712834052U, // <2,5,5,5>: Cost 3 vext3 <4,6,u,2>, <5,5,5,5>
+ 4028713474U, // <2,5,5,6>: Cost 4 vzipr <0,3,2,5>, <3,4,5,6>
+ 2712834072U, // <2,5,5,7>: Cost 3 vext3 <4,6,u,2>, <5,5,7,7>
+ 2712834081U, // <2,5,5,u>: Cost 3 vext3 <4,6,u,2>, <5,5,u,7>
+ 2575769702U, // <2,5,6,0>: Cost 3 vext1 <4,2,5,6>, LHS
+ 3631596462U, // <2,5,6,1>: Cost 4 vext1 <1,2,5,6>, <1,2,5,6>
+ 2655924730U, // <2,5,6,2>: Cost 3 vext2 <6,4,2,5>, <6,2,7,3>
+ 3643541856U, // <2,5,6,3>: Cost 4 vext1 <3,2,5,6>, <3,2,5,6>
+ 2655924849U, // <2,5,6,4>: Cost 3 vext2 <6,4,2,5>, <6,4,2,5>
+ 3787755607U, // <2,5,6,5>: Cost 4 vext3 <4,u,6,2>, <5,6,5,7>
+ 4029385218U, // <2,5,6,6>: Cost 4 vzipr <0,4,2,6>, <3,4,5,6>
+ 3088682294U, // <2,5,6,7>: Cost 3 vtrnr <0,2,4,6>, RHS
+ 3088682295U, // <2,5,6,u>: Cost 3 vtrnr <0,2,4,6>, RHS
+ 2563833958U, // <2,5,7,0>: Cost 3 vext1 <2,2,5,7>, LHS
+ 2551890678U, // <2,5,7,1>: Cost 3 vext1 <0,2,5,7>, <1,0,3,2>
+ 2563835528U, // <2,5,7,2>: Cost 3 vext1 <2,2,5,7>, <2,2,5,7>
+ 3637577878U, // <2,5,7,3>: Cost 4 vext1 <2,2,5,7>, <3,0,1,2>
+ 2563837238U, // <2,5,7,4>: Cost 3 vext1 <2,2,5,7>, RHS
+ 2712834216U, // <2,5,7,5>: Cost 3 vext3 <4,6,u,2>, <5,7,5,7>
+ 2712834220U, // <2,5,7,6>: Cost 3 vext3 <4,6,u,2>, <5,7,6,2>
+ 4174449974U, // <2,5,7,7>: Cost 4 vtrnr <2,2,5,7>, RHS
+ 2563839790U, // <2,5,7,u>: Cost 3 vext1 <2,2,5,7>, LHS
+ 2563842150U, // <2,5,u,0>: Cost 3 vext1 <2,2,5,u>, LHS
+ 2618103598U, // <2,5,u,1>: Cost 3 vext2 <0,1,2,5>, LHS
+ 2563843721U, // <2,5,u,2>: Cost 3 vext1 <2,2,5,u>, <2,2,5,u>
+ 2569816418U, // <2,5,u,3>: Cost 3 vext1 <3,2,5,u>, <3,2,5,u>
+ 2622748735U, // <2,5,u,4>: Cost 3 vext2 <0,u,2,5>, <u,4,5,6>
+ 2618103962U, // <2,5,u,5>: Cost 3 vext2 <0,1,2,5>, RHS
+ 2953669122U, // <2,5,u,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 2953667584U, // <2,5,u,7>: Cost 3 vzipr LHS, <1,3,5,7>
+ 2618104165U, // <2,5,u,u>: Cost 3 vext2 <0,1,2,5>, LHS
+ 2620096512U, // <2,6,0,0>: Cost 3 vext2 <0,4,2,6>, <0,0,0,0>
+ 1546354790U, // <2,6,0,1>: Cost 2 vext2 <0,4,2,6>, LHS
+ 2620096676U, // <2,6,0,2>: Cost 3 vext2 <0,4,2,6>, <0,2,0,2>
+ 3693838588U, // <2,6,0,3>: Cost 4 vext2 <0,4,2,6>, <0,3,1,0>
+ 1546355036U, // <2,6,0,4>: Cost 2 vext2 <0,4,2,6>, <0,4,2,6>
+ 3694502317U, // <2,6,0,5>: Cost 4 vext2 <0,5,2,6>, <0,5,2,6>
+ 2551911246U, // <2,6,0,6>: Cost 3 vext1 <0,2,6,0>, <6,7,0,1>
+ 2720723287U, // <2,6,0,7>: Cost 3 vext3 <6,0,7,2>, <6,0,7,2>
+ 1546355357U, // <2,6,0,u>: Cost 2 vext2 <0,4,2,6>, LHS
+ 2620097270U, // <2,6,1,0>: Cost 3 vext2 <0,4,2,6>, <1,0,3,2>
+ 2620097332U, // <2,6,1,1>: Cost 3 vext2 <0,4,2,6>, <1,1,1,1>
+ 2620097430U, // <2,6,1,2>: Cost 3 vext2 <0,4,2,6>, <1,2,3,0>
+ 2820243558U, // <2,6,1,3>: Cost 3 vuzpr <0,2,4,6>, LHS
+ 2620097598U, // <2,6,1,4>: Cost 3 vext2 <0,4,2,6>, <1,4,3,6>
+ 2620097680U, // <2,6,1,5>: Cost 3 vext2 <0,4,2,6>, <1,5,3,7>
+ 3693839585U, // <2,6,1,6>: Cost 4 vext2 <0,4,2,6>, <1,6,3,7>
+ 2721386920U, // <2,6,1,7>: Cost 3 vext3 <6,1,7,2>, <6,1,7,2>
+ 2820243563U, // <2,6,1,u>: Cost 3 vuzpr <0,2,4,6>, LHS
+ 2714014137U, // <2,6,2,0>: Cost 3 vext3 <4,u,6,2>, <6,2,0,1>
+ 2712834500U, // <2,6,2,1>: Cost 3 vext3 <4,6,u,2>, <6,2,1,3>
+ 2620098152U, // <2,6,2,2>: Cost 3 vext2 <0,4,2,6>, <2,2,2,2>
+ 2620098214U, // <2,6,2,3>: Cost 3 vext2 <0,4,2,6>, <2,3,0,1>
+ 2632042254U, // <2,6,2,4>: Cost 3 vext2 <2,4,2,6>, <2,4,2,6>
+ 2712834540U, // <2,6,2,5>: Cost 3 vext3 <4,6,u,2>, <6,2,5,7>
+ 2820243660U, // <2,6,2,6>: Cost 3 vuzpr <0,2,4,6>, <0,2,4,6>
+ 2958265654U, // <2,6,2,7>: Cost 3 vzipr <0,u,2,2>, RHS
+ 2620098619U, // <2,6,2,u>: Cost 3 vext2 <0,4,2,6>, <2,u,0,1>
+ 2620098710U, // <2,6,3,0>: Cost 3 vext2 <0,4,2,6>, <3,0,1,2>
+ 3893986982U, // <2,6,3,1>: Cost 4 vuzpr <0,2,4,6>, <2,3,0,1>
+ 2569848762U, // <2,6,3,2>: Cost 3 vext1 <3,2,6,3>, <2,6,3,7>
+ 2620098972U, // <2,6,3,3>: Cost 3 vext2 <0,4,2,6>, <3,3,3,3>
+ 2620099074U, // <2,6,3,4>: Cost 3 vext2 <0,4,2,6>, <3,4,5,6>
+ 3893987022U, // <2,6,3,5>: Cost 4 vuzpr <0,2,4,6>, <2,3,4,5>
+ 3001404644U, // <2,6,3,6>: Cost 3 vzipr LHS, <4,4,6,6>
+ 1879887158U, // <2,6,3,7>: Cost 2 vzipr LHS, RHS
+ 1879887159U, // <2,6,3,u>: Cost 2 vzipr LHS, RHS
+ 2620099484U, // <2,6,4,0>: Cost 3 vext2 <0,4,2,6>, <4,0,6,2>
+ 2620099566U, // <2,6,4,1>: Cost 3 vext2 <0,4,2,6>, <4,1,6,3>
+ 2620099644U, // <2,6,4,2>: Cost 3 vext2 <0,4,2,6>, <4,2,6,0>
+ 3643599207U, // <2,6,4,3>: Cost 4 vext1 <3,2,6,4>, <3,2,6,4>
+ 2575830080U, // <2,6,4,4>: Cost 3 vext1 <4,2,6,4>, <4,2,6,4>
+ 1546358070U, // <2,6,4,5>: Cost 2 vext2 <0,4,2,6>, RHS
+ 2667875700U, // <2,6,4,6>: Cost 3 vext2 <u,4,2,6>, <4,6,4,6>
+ 4028042550U, // <2,6,4,7>: Cost 4 vzipr <0,2,2,4>, RHS
+ 1546358313U, // <2,6,4,u>: Cost 2 vext2 <0,4,2,6>, RHS
+ 3693841992U, // <2,6,5,0>: Cost 4 vext2 <0,4,2,6>, <5,0,1,2>
+ 2667876048U, // <2,6,5,1>: Cost 3 vext2 <u,4,2,6>, <5,1,7,3>
+ 2712834756U, // <2,6,5,2>: Cost 3 vext3 <4,6,u,2>, <6,5,2,7>
+ 3643607400U, // <2,6,5,3>: Cost 4 vext1 <3,2,6,5>, <3,2,6,5>
+ 2252091873U, // <2,6,5,4>: Cost 3 vrev <6,2,4,5>
+ 2667876356U, // <2,6,5,5>: Cost 3 vext2 <u,4,2,6>, <5,5,5,5>
+ 2667876450U, // <2,6,5,6>: Cost 3 vext2 <u,4,2,6>, <5,6,7,0>
+ 2820246838U, // <2,6,5,7>: Cost 3 vuzpr <0,2,4,6>, RHS
+ 2820246839U, // <2,6,5,u>: Cost 3 vuzpr <0,2,4,6>, RHS
+ 2563899494U, // <2,6,6,0>: Cost 3 vext1 <2,2,6,6>, LHS
+ 3893988683U, // <2,6,6,1>: Cost 4 vuzpr <0,2,4,6>, <4,6,0,1>
+ 2563901072U, // <2,6,6,2>: Cost 3 vext1 <2,2,6,6>, <2,2,6,6>
+ 3893987236U, // <2,6,6,3>: Cost 4 vuzpr <0,2,4,6>, <2,6,1,3>
+ 2563902774U, // <2,6,6,4>: Cost 3 vext1 <2,2,6,6>, RHS
+ 3893988723U, // <2,6,6,5>: Cost 4 vuzpr <0,2,4,6>, <4,6,4,5>
+ 2712834872U, // <2,6,6,6>: Cost 3 vext3 <4,6,u,2>, <6,6,6,6>
+ 2955644214U, // <2,6,6,7>: Cost 3 vzipr <0,4,2,6>, RHS
+ 2955644215U, // <2,6,6,u>: Cost 3 vzipr <0,4,2,6>, RHS
+ 2712834894U, // <2,6,7,0>: Cost 3 vext3 <4,6,u,2>, <6,7,0,1>
+ 2724926296U, // <2,6,7,1>: Cost 3 vext3 <6,7,1,2>, <6,7,1,2>
+ 2725000033U, // <2,6,7,2>: Cost 3 vext3 <6,7,2,2>, <6,7,2,2>
+ 2702365544U, // <2,6,7,3>: Cost 3 vext3 <3,0,1,2>, <6,7,3,0>
+ 2712834934U, // <2,6,7,4>: Cost 3 vext3 <4,6,u,2>, <6,7,4,5>
+ 3776107393U, // <2,6,7,5>: Cost 4 vext3 <3,0,1,2>, <6,7,5,7>
+ 2725294981U, // <2,6,7,6>: Cost 3 vext3 <6,7,6,2>, <6,7,6,2>
+ 2726253452U, // <2,6,7,7>: Cost 3 vext3 <7,0,1,2>, <6,7,7,0>
+ 2712834966U, // <2,6,7,u>: Cost 3 vext3 <4,6,u,2>, <6,7,u,1>
+ 2620102355U, // <2,6,u,0>: Cost 3 vext2 <0,4,2,6>, <u,0,1,2>
+ 1546360622U, // <2,6,u,1>: Cost 2 vext2 <0,4,2,6>, LHS
+ 2620102536U, // <2,6,u,2>: Cost 3 vext2 <0,4,2,6>, <u,2,3,3>
+ 2820244125U, // <2,6,u,3>: Cost 3 vuzpr <0,2,4,6>, LHS
+ 1594136612U, // <2,6,u,4>: Cost 2 vext2 <u,4,2,6>, <u,4,2,6>
+ 1546360986U, // <2,6,u,5>: Cost 2 vext2 <0,4,2,6>, RHS
+ 2620102864U, // <2,6,u,6>: Cost 3 vext2 <0,4,2,6>, <u,6,3,7>
+ 1879928118U, // <2,6,u,7>: Cost 2 vzipr LHS, RHS
+ 1879928119U, // <2,6,u,u>: Cost 2 vzipr LHS, RHS
+ 2726179825U, // <2,7,0,0>: Cost 3 vext3 <7,0,0,2>, <7,0,0,2>
+ 1652511738U, // <2,7,0,1>: Cost 2 vext3 <7,0,1,2>, <7,0,1,2>
+ 2621431972U, // <2,7,0,2>: Cost 3 vext2 <0,6,2,7>, <0,2,0,2>
+ 2257949868U, // <2,7,0,3>: Cost 3 vrev <7,2,3,0>
+ 2726474773U, // <2,7,0,4>: Cost 3 vext3 <7,0,4,2>, <7,0,4,2>
+ 2620768686U, // <2,7,0,5>: Cost 3 vext2 <0,5,2,7>, <0,5,2,7>
+ 2621432319U, // <2,7,0,6>: Cost 3 vext2 <0,6,2,7>, <0,6,2,7>
+ 2599760953U, // <2,7,0,7>: Cost 3 vext1 <u,2,7,0>, <7,0,u,2>
+ 1653027897U, // <2,7,0,u>: Cost 2 vext3 <7,0,u,2>, <7,0,u,2>
+ 2639348470U, // <2,7,1,0>: Cost 3 vext2 <3,6,2,7>, <1,0,3,2>
+ 3695174452U, // <2,7,1,1>: Cost 4 vext2 <0,6,2,7>, <1,1,1,1>
+ 3695174550U, // <2,7,1,2>: Cost 4 vext2 <0,6,2,7>, <1,2,3,0>
+ 3694511104U, // <2,7,1,3>: Cost 4 vext2 <0,5,2,7>, <1,3,5,7>
+ 3713090594U, // <2,7,1,4>: Cost 4 vext2 <3,6,2,7>, <1,4,0,5>
+ 3693184144U, // <2,7,1,5>: Cost 4 vext2 <0,3,2,7>, <1,5,3,7>
+ 2627405016U, // <2,7,1,6>: Cost 3 vext2 <1,6,2,7>, <1,6,2,7>
+ 3799995519U, // <2,7,1,7>: Cost 4 vext3 <7,0,1,2>, <7,1,7,0>
+ 2639348470U, // <2,7,1,u>: Cost 3 vext2 <3,6,2,7>, <1,0,3,2>
+ 3695175101U, // <2,7,2,0>: Cost 4 vext2 <0,6,2,7>, <2,0,1,2>
+ 3643655168U, // <2,7,2,1>: Cost 4 vext1 <3,2,7,2>, <1,3,5,7>
+ 2257892517U, // <2,7,2,2>: Cost 3 vrev <7,2,2,2>
+ 3695175334U, // <2,7,2,3>: Cost 4 vext2 <0,6,2,7>, <2,3,0,1>
+ 3695175465U, // <2,7,2,4>: Cost 4 vext2 <0,6,2,7>, <2,4,5,6>
+ 2632714080U, // <2,7,2,5>: Cost 3 vext2 <2,5,2,7>, <2,5,2,7>
+ 2633377713U, // <2,7,2,6>: Cost 3 vext2 <2,6,2,7>, <2,6,2,7>
+ 3695175658U, // <2,7,2,7>: Cost 4 vext2 <0,6,2,7>, <2,7,0,1>
+ 2634704979U, // <2,7,2,u>: Cost 3 vext2 <2,u,2,7>, <2,u,2,7>
+ 1514094694U, // <2,7,3,0>: Cost 2 vext1 <6,2,7,3>, LHS
+ 2569921680U, // <2,7,3,1>: Cost 3 vext1 <3,2,7,3>, <1,5,3,7>
+ 2587838056U, // <2,7,3,2>: Cost 3 vext1 <6,2,7,3>, <2,2,2,2>
+ 2569922927U, // <2,7,3,3>: Cost 3 vext1 <3,2,7,3>, <3,2,7,3>
+ 1514097974U, // <2,7,3,4>: Cost 2 vext1 <6,2,7,3>, RHS
+ 2581868321U, // <2,7,3,5>: Cost 3 vext1 <5,2,7,3>, <5,2,7,3>
+ 1514099194U, // <2,7,3,6>: Cost 2 vext1 <6,2,7,3>, <6,2,7,3>
+ 2587841530U, // <2,7,3,7>: Cost 3 vext1 <6,2,7,3>, <7,0,1,2>
+ 1514100526U, // <2,7,3,u>: Cost 2 vext1 <6,2,7,3>, LHS
+ 2708706617U, // <2,7,4,0>: Cost 3 vext3 <4,0,6,2>, <7,4,0,6>
+ 3649643418U, // <2,7,4,1>: Cost 4 vext1 <4,2,7,4>, <1,2,3,4>
+ 3649644330U, // <2,7,4,2>: Cost 4 vext1 <4,2,7,4>, <2,4,5,7>
+ 2257982640U, // <2,7,4,3>: Cost 3 vrev <7,2,3,4>
+ 3649645641U, // <2,7,4,4>: Cost 4 vext1 <4,2,7,4>, <4,2,7,4>
+ 2621435190U, // <2,7,4,5>: Cost 3 vext2 <0,6,2,7>, RHS
+ 2712835441U, // <2,7,4,6>: Cost 3 vext3 <4,6,u,2>, <7,4,6,u>
+ 3799995762U, // <2,7,4,7>: Cost 4 vext3 <7,0,1,2>, <7,4,7,0>
+ 2621435433U, // <2,7,4,u>: Cost 3 vext2 <0,6,2,7>, RHS
+ 2729497990U, // <2,7,5,0>: Cost 3 vext3 <7,5,0,2>, <7,5,0,2>
+ 3643679744U, // <2,7,5,1>: Cost 4 vext1 <3,2,7,5>, <1,3,5,7>
+ 3637708424U, // <2,7,5,2>: Cost 4 vext1 <2,2,7,5>, <2,2,5,7>
+ 3643681137U, // <2,7,5,3>: Cost 4 vext1 <3,2,7,5>, <3,2,7,5>
+ 2599800118U, // <2,7,5,4>: Cost 3 vext1 <u,2,7,5>, RHS
+ 3786577334U, // <2,7,5,5>: Cost 4 vext3 <4,6,u,2>, <7,5,5,5>
+ 3786577345U, // <2,7,5,6>: Cost 4 vext3 <4,6,u,2>, <7,5,6,7>
+ 2599802214U, // <2,7,5,7>: Cost 3 vext1 <u,2,7,5>, <7,4,5,6>
+ 2599802670U, // <2,7,5,u>: Cost 3 vext1 <u,2,7,5>, LHS
+ 2581889126U, // <2,7,6,0>: Cost 3 vext1 <5,2,7,6>, LHS
+ 3643687936U, // <2,7,6,1>: Cost 4 vext1 <3,2,7,6>, <1,3,5,7>
+ 2663240186U, // <2,7,6,2>: Cost 3 vext2 <7,6,2,7>, <6,2,7,3>
+ 3643689330U, // <2,7,6,3>: Cost 4 vext1 <3,2,7,6>, <3,2,7,6>
+ 2581892406U, // <2,7,6,4>: Cost 3 vext1 <5,2,7,6>, RHS
+ 2581892900U, // <2,7,6,5>: Cost 3 vext1 <5,2,7,6>, <5,2,7,6>
+ 2587865597U, // <2,7,6,6>: Cost 3 vext1 <6,2,7,6>, <6,2,7,6>
+ 3786577428U, // <2,7,6,7>: Cost 4 vext3 <4,6,u,2>, <7,6,7,0>
+ 2581894958U, // <2,7,6,u>: Cost 3 vext1 <5,2,7,6>, LHS
+ 2726254119U, // <2,7,7,0>: Cost 3 vext3 <7,0,1,2>, <7,7,0,1>
+ 3804640817U, // <2,7,7,1>: Cost 4 vext3 <7,7,1,2>, <7,7,1,2>
+ 3637724826U, // <2,7,7,2>: Cost 4 vext1 <2,2,7,7>, <2,2,7,7>
+ 3734992123U, // <2,7,7,3>: Cost 4 vext2 <7,3,2,7>, <7,3,2,7>
+ 2552040758U, // <2,7,7,4>: Cost 3 vext1 <0,2,7,7>, RHS
+ 3799995992U, // <2,7,7,5>: Cost 4 vext3 <7,0,1,2>, <7,7,5,5>
+ 2663241198U, // <2,7,7,6>: Cost 3 vext2 <7,6,2,7>, <7,6,2,7>
+ 2712835692U, // <2,7,7,7>: Cost 3 vext3 <4,6,u,2>, <7,7,7,7>
+ 2731562607U, // <2,7,7,u>: Cost 3 vext3 <7,u,1,2>, <7,7,u,1>
+ 1514135654U, // <2,7,u,0>: Cost 2 vext1 <6,2,7,u>, LHS
+ 1657820802U, // <2,7,u,1>: Cost 2 vext3 <7,u,1,2>, <7,u,1,2>
+ 2587879016U, // <2,7,u,2>: Cost 3 vext1 <6,2,7,u>, <2,2,2,2>
+ 2569963892U, // <2,7,u,3>: Cost 3 vext1 <3,2,7,u>, <3,2,7,u>
+ 1514138934U, // <2,7,u,4>: Cost 2 vext1 <6,2,7,u>, RHS
+ 2621438106U, // <2,7,u,5>: Cost 3 vext2 <0,6,2,7>, RHS
+ 1514140159U, // <2,7,u,6>: Cost 2 vext1 <6,2,7,u>, <6,2,7,u>
+ 2587882490U, // <2,7,u,7>: Cost 3 vext1 <6,2,7,u>, <7,0,1,2>
+ 1514141486U, // <2,7,u,u>: Cost 2 vext1 <6,2,7,u>, LHS
+ 1544380416U, // <2,u,0,0>: Cost 2 vext2 LHS, <0,0,0,0>
+ 470638699U, // <2,u,0,1>: Cost 1 vext2 LHS, LHS
+ 1544380580U, // <2,u,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 1658631909U, // <2,u,0,3>: Cost 2 vext3 <u,0,3,2>, <u,0,3,2>
+ 1544380754U, // <2,u,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 2665898414U, // <2,u,0,5>: Cost 3 vext2 LHS, <0,5,2,7>
+ 1658853120U, // <2,u,0,6>: Cost 2 vext3 <u,0,6,2>, <u,0,6,2>
+ 3094531625U, // <2,u,0,7>: Cost 3 vtrnr <1,2,3,0>, RHS
+ 470639261U, // <2,u,0,u>: Cost 1 vext2 LHS, LHS
+ 1544381174U, // <2,u,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 1544381236U, // <2,u,1,1>: Cost 2 vext2 LHS, <1,1,1,1>
+ 1544381334U, // <2,u,1,2>: Cost 2 vext2 LHS, <1,2,3,0>
+ 1544381400U, // <2,u,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 2618123325U, // <2,u,1,4>: Cost 3 vext2 LHS, <1,4,3,5>
+ 1544381584U, // <2,u,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 2618123489U, // <2,u,1,6>: Cost 3 vext2 LHS, <1,6,3,7>
+ 2726254427U, // <2,u,1,7>: Cost 3 vext3 <7,0,1,2>, <u,1,7,3>
+ 1544381823U, // <2,u,1,u>: Cost 2 vext2 LHS, <1,u,3,3>
+ 1478328422U, // <2,u,2,0>: Cost 2 vext1 <0,2,u,2>, LHS
+ 2618123807U, // <2,u,2,1>: Cost 3 vext2 LHS, <2,1,3,1>
+ 269271142U, // <2,u,2,2>: Cost 1 vdup2 LHS
+ 1544382118U, // <2,u,2,3>: Cost 2 vext2 LHS, <2,3,0,1>
+ 1478331702U, // <2,u,2,4>: Cost 2 vext1 <0,2,u,2>, RHS
+ 2618124136U, // <2,u,2,5>: Cost 3 vext2 LHS, <2,5,3,6>
+ 1544382394U, // <2,u,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 3088354857U, // <2,u,2,7>: Cost 3 vtrnr <0,2,0,2>, RHS
+ 269271142U, // <2,u,2,u>: Cost 1 vdup2 LHS
+ 1544382614U, // <2,u,3,0>: Cost 2 vext2 LHS, <3,0,1,2>
+ 2953627374U, // <2,u,3,1>: Cost 3 vzipr LHS, <2,3,u,1>
+ 1490282143U, // <2,u,3,2>: Cost 2 vext1 <2,2,u,3>, <2,2,u,3>
+ 1879883932U, // <2,u,3,3>: Cost 2 vzipr LHS, LHS
+ 1544382978U, // <2,u,3,4>: Cost 2 vext2 LHS, <3,4,5,6>
+ 2953627378U, // <2,u,3,5>: Cost 3 vzipr LHS, <2,3,u,5>
+ 1514172931U, // <2,u,3,6>: Cost 2 vext1 <6,2,u,3>, <6,2,u,3>
+ 1879887176U, // <2,u,3,7>: Cost 2 vzipr LHS, RHS
+ 1879883937U, // <2,u,3,u>: Cost 2 vzipr LHS, LHS
+ 1484316774U, // <2,u,4,0>: Cost 2 vext1 <1,2,u,4>, LHS
+ 1484317639U, // <2,u,4,1>: Cost 2 vext1 <1,2,u,4>, <1,2,u,4>
+ 2552088270U, // <2,u,4,2>: Cost 3 vext1 <0,2,u,4>, <2,3,4,5>
+ 1190213513U, // <2,u,4,3>: Cost 2 vrev <u,2,3,4>
+ 1484320054U, // <2,u,4,4>: Cost 2 vext1 <1,2,u,4>, RHS
+ 470641974U, // <2,u,4,5>: Cost 1 vext2 LHS, RHS
+ 1592159604U, // <2,u,4,6>: Cost 2 vext2 LHS, <4,6,4,6>
+ 3094564393U, // <2,u,4,7>: Cost 3 vtrnr <1,2,3,4>, RHS
+ 470642217U, // <2,u,4,u>: Cost 1 vext2 LHS, RHS
+ 2552094959U, // <2,u,5,0>: Cost 3 vext1 <0,2,u,5>, <0,2,u,5>
+ 1592159952U, // <2,u,5,1>: Cost 2 vext2 LHS, <5,1,7,3>
+ 2564040353U, // <2,u,5,2>: Cost 3 vext1 <2,2,u,5>, <2,2,u,5>
+ 2690275455U, // <2,u,5,3>: Cost 3 vext3 <0,u,u,2>, <u,5,3,7>
+ 1592160198U, // <2,u,5,4>: Cost 2 vext2 LHS, <5,4,7,6>
+ 1592160260U, // <2,u,5,5>: Cost 2 vext2 LHS, <5,5,5,5>
+ 1611962522U, // <2,u,5,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1592160424U, // <2,u,5,7>: Cost 2 vext2 LHS, <5,7,5,7>
+ 1611962540U, // <2,u,5,u>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1478361190U, // <2,u,6,0>: Cost 2 vext1 <0,2,u,6>, LHS
+ 2552103670U, // <2,u,6,1>: Cost 3 vext1 <0,2,u,6>, <1,0,3,2>
+ 1592160762U, // <2,u,6,2>: Cost 2 vext2 LHS, <6,2,7,3>
+ 2685704400U, // <2,u,6,3>: Cost 3 vext3 <0,2,0,2>, <u,6,3,7>
+ 1478364470U, // <2,u,6,4>: Cost 2 vext1 <0,2,u,6>, RHS
+ 2901891226U, // <2,u,6,5>: Cost 3 vzipl <2,6,3,7>, RHS
+ 1592161080U, // <2,u,6,6>: Cost 2 vext2 LHS, <6,6,6,6>
+ 1592161102U, // <2,u,6,7>: Cost 2 vext2 LHS, <6,7,0,1>
+ 1478367022U, // <2,u,6,u>: Cost 2 vext1 <0,2,u,6>, LHS
+ 1592161274U, // <2,u,7,0>: Cost 2 vext2 LHS, <7,0,1,2>
+ 2659931226U, // <2,u,7,1>: Cost 3 vext2 <7,1,2,u>, <7,1,2,u>
+ 2564056739U, // <2,u,7,2>: Cost 3 vext1 <2,2,u,7>, <2,2,u,7>
+ 2665903331U, // <2,u,7,3>: Cost 3 vext2 LHS, <7,3,0,1>
+ 1592161638U, // <2,u,7,4>: Cost 2 vext2 LHS, <7,4,5,6>
+ 2665903494U, // <2,u,7,5>: Cost 3 vext2 LHS, <7,5,0,2>
+ 2587947527U, // <2,u,7,6>: Cost 3 vext1 <6,2,u,7>, <6,2,u,7>
+ 1592161900U, // <2,u,7,7>: Cost 2 vext2 LHS, <7,7,7,7>
+ 1592161922U, // <2,u,7,u>: Cost 2 vext2 LHS, <7,u,1,2>
+ 1478377574U, // <2,u,u,0>: Cost 2 vext1 <0,2,u,u>, LHS
+ 470644526U, // <2,u,u,1>: Cost 1 vext2 LHS, LHS
+ 269271142U, // <2,u,u,2>: Cost 1 vdup2 LHS
+ 1879924892U, // <2,u,u,3>: Cost 2 vzipr LHS, LHS
+ 1478380854U, // <2,u,u,4>: Cost 2 vext1 <0,2,u,u>, RHS
+ 470644890U, // <2,u,u,5>: Cost 1 vext2 LHS, RHS
+ 1611962765U, // <2,u,u,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1879928136U, // <2,u,u,7>: Cost 2 vzipr LHS, RHS
+ 470645093U, // <2,u,u,u>: Cost 1 vext2 LHS, LHS
+ 1611448320U, // <3,0,0,0>: Cost 2 vext3 LHS, <0,0,0,0>
+ 1611890698U, // <3,0,0,1>: Cost 2 vext3 LHS, <0,0,1,1>
+ 1611890708U, // <3,0,0,2>: Cost 2 vext3 LHS, <0,0,2,2>
+ 3763576860U, // <3,0,0,3>: Cost 4 vext3 LHS, <0,0,3,1>
+ 2689835045U, // <3,0,0,4>: Cost 3 vext3 LHS, <0,0,4,1>
+ 3698508206U, // <3,0,0,5>: Cost 4 vext2 <1,2,3,0>, <0,5,2,7>
+ 3763576887U, // <3,0,0,6>: Cost 4 vext3 LHS, <0,0,6,1>
+ 3667678434U, // <3,0,0,7>: Cost 4 vext1 <7,3,0,0>, <7,3,0,0>
+ 1616093258U, // <3,0,0,u>: Cost 2 vext3 LHS, <0,0,u,2>
+ 1490337894U, // <3,0,1,0>: Cost 2 vext1 <2,3,0,1>, LHS
+ 2685632602U, // <3,0,1,1>: Cost 3 vext3 LHS, <0,1,1,0>
+ 537706598U, // <3,0,1,2>: Cost 1 vext3 LHS, LHS
+ 2624766936U, // <3,0,1,3>: Cost 3 vext2 <1,2,3,0>, <1,3,1,3>
+ 1490341174U, // <3,0,1,4>: Cost 2 vext1 <2,3,0,1>, RHS
+ 2624767120U, // <3,0,1,5>: Cost 3 vext2 <1,2,3,0>, <1,5,3,7>
+ 2732966030U, // <3,0,1,6>: Cost 3 vext3 LHS, <0,1,6,7>
+ 2593944803U, // <3,0,1,7>: Cost 3 vext1 <7,3,0,1>, <7,3,0,1>
+ 537706652U, // <3,0,1,u>: Cost 1 vext3 LHS, LHS
+ 1611890852U, // <3,0,2,0>: Cost 2 vext3 LHS, <0,2,0,2>
+ 2685632684U, // <3,0,2,1>: Cost 3 vext3 LHS, <0,2,1,1>
+ 2685632692U, // <3,0,2,2>: Cost 3 vext3 LHS, <0,2,2,0>
+ 2685632702U, // <3,0,2,3>: Cost 3 vext3 LHS, <0,2,3,1>
+ 1611890892U, // <3,0,2,4>: Cost 2 vext3 LHS, <0,2,4,6>
+ 2732966102U, // <3,0,2,5>: Cost 3 vext3 LHS, <0,2,5,7>
+ 2624767930U, // <3,0,2,6>: Cost 3 vext2 <1,2,3,0>, <2,6,3,7>
+ 2685632744U, // <3,0,2,7>: Cost 3 vext3 LHS, <0,2,7,7>
+ 1611890924U, // <3,0,2,u>: Cost 2 vext3 LHS, <0,2,u,2>
+ 2624768150U, // <3,0,3,0>: Cost 3 vext2 <1,2,3,0>, <3,0,1,2>
+ 2685632764U, // <3,0,3,1>: Cost 3 vext3 LHS, <0,3,1,0>
+ 2685632774U, // <3,0,3,2>: Cost 3 vext3 LHS, <0,3,2,1>
+ 2624768412U, // <3,0,3,3>: Cost 3 vext2 <1,2,3,0>, <3,3,3,3>
+ 2624768514U, // <3,0,3,4>: Cost 3 vext2 <1,2,3,0>, <3,4,5,6>
+ 3702491714U, // <3,0,3,5>: Cost 4 vext2 <1,u,3,0>, <3,5,3,7>
+ 2624768632U, // <3,0,3,6>: Cost 3 vext2 <1,2,3,0>, <3,6,0,7>
+ 3702491843U, // <3,0,3,7>: Cost 4 vext2 <1,u,3,0>, <3,7,0,1>
+ 2686959934U, // <3,0,3,u>: Cost 3 vext3 <0,3,u,3>, <0,3,u,3>
+ 2689835336U, // <3,0,4,0>: Cost 3 vext3 LHS, <0,4,0,4>
+ 1611891026U, // <3,0,4,1>: Cost 2 vext3 LHS, <0,4,1,5>
+ 1611891036U, // <3,0,4,2>: Cost 2 vext3 LHS, <0,4,2,6>
+ 3763577184U, // <3,0,4,3>: Cost 4 vext3 LHS, <0,4,3,1>
+ 2689835374U, // <3,0,4,4>: Cost 3 vext3 LHS, <0,4,4,6>
+ 1551027510U, // <3,0,4,5>: Cost 2 vext2 <1,2,3,0>, RHS
+ 2666573172U, // <3,0,4,6>: Cost 3 vext2 <u,2,3,0>, <4,6,4,6>
+ 3667711206U, // <3,0,4,7>: Cost 4 vext1 <7,3,0,4>, <7,3,0,4>
+ 1616093586U, // <3,0,4,u>: Cost 2 vext3 LHS, <0,4,u,6>
+ 2685190556U, // <3,0,5,0>: Cost 3 vext3 LHS, <0,5,0,7>
+ 2666573520U, // <3,0,5,1>: Cost 3 vext2 <u,2,3,0>, <5,1,7,3>
+ 3040886886U, // <3,0,5,2>: Cost 3 vtrnl <3,4,5,6>, LHS
+ 3625912834U, // <3,0,5,3>: Cost 4 vext1 <0,3,0,5>, <3,4,5,6>
+ 2666573766U, // <3,0,5,4>: Cost 3 vext2 <u,2,3,0>, <5,4,7,6>
+ 2666573828U, // <3,0,5,5>: Cost 3 vext2 <u,2,3,0>, <5,5,5,5>
+ 2732966354U, // <3,0,5,6>: Cost 3 vext3 LHS, <0,5,6,7>
+ 2666573992U, // <3,0,5,7>: Cost 3 vext2 <u,2,3,0>, <5,7,5,7>
+ 3040886940U, // <3,0,5,u>: Cost 3 vtrnl <3,4,5,6>, LHS
+ 2685190637U, // <3,0,6,0>: Cost 3 vext3 LHS, <0,6,0,7>
+ 2732966390U, // <3,0,6,1>: Cost 3 vext3 LHS, <0,6,1,7>
+ 2689835519U, // <3,0,6,2>: Cost 3 vext3 LHS, <0,6,2,7>
+ 3667724438U, // <3,0,6,3>: Cost 4 vext1 <7,3,0,6>, <3,0,1,2>
+ 3763577355U, // <3,0,6,4>: Cost 4 vext3 LHS, <0,6,4,1>
+ 3806708243U, // <3,0,6,5>: Cost 4 vext3 LHS, <0,6,5,0>
+ 2666574648U, // <3,0,6,6>: Cost 3 vext2 <u,2,3,0>, <6,6,6,6>
+ 2657948520U, // <3,0,6,7>: Cost 3 vext2 <6,7,3,0>, <6,7,3,0>
+ 2689835573U, // <3,0,6,u>: Cost 3 vext3 LHS, <0,6,u,7>
+ 2666574842U, // <3,0,7,0>: Cost 3 vext2 <u,2,3,0>, <7,0,1,2>
+ 2685633095U, // <3,0,7,1>: Cost 3 vext3 LHS, <0,7,1,7>
+ 2660603052U, // <3,0,7,2>: Cost 3 vext2 <7,2,3,0>, <7,2,3,0>
+ 3643844997U, // <3,0,7,3>: Cost 4 vext1 <3,3,0,7>, <3,3,0,7>
+ 2666575206U, // <3,0,7,4>: Cost 3 vext2 <u,2,3,0>, <7,4,5,6>
+ 3655790391U, // <3,0,7,5>: Cost 4 vext1 <5,3,0,7>, <5,3,0,7>
+ 3731690968U, // <3,0,7,6>: Cost 4 vext2 <6,7,3,0>, <7,6,0,3>
+ 2666575468U, // <3,0,7,7>: Cost 3 vext2 <u,2,3,0>, <7,7,7,7>
+ 2664584850U, // <3,0,7,u>: Cost 3 vext2 <7,u,3,0>, <7,u,3,0>
+ 1616093834U, // <3,0,u,0>: Cost 2 vext3 LHS, <0,u,0,2>
+ 1611891346U, // <3,0,u,1>: Cost 2 vext3 LHS, <0,u,1,1>
+ 537707165U, // <3,0,u,2>: Cost 1 vext3 LHS, LHS
+ 2689835684U, // <3,0,u,3>: Cost 3 vext3 LHS, <0,u,3,1>
+ 1616093874U, // <3,0,u,4>: Cost 2 vext3 LHS, <0,u,4,6>
+ 1551030426U, // <3,0,u,5>: Cost 2 vext2 <1,2,3,0>, RHS
+ 2624772304U, // <3,0,u,6>: Cost 3 vext2 <1,2,3,0>, <u,6,3,7>
+ 2594002154U, // <3,0,u,7>: Cost 3 vext1 <7,3,0,u>, <7,3,0,u>
+ 537707219U, // <3,0,u,u>: Cost 1 vext3 LHS, LHS
+ 2552201318U, // <3,1,0,0>: Cost 3 vext1 <0,3,1,0>, LHS
+ 2618802278U, // <3,1,0,1>: Cost 3 vext2 <0,2,3,1>, LHS
+ 2618802366U, // <3,1,0,2>: Cost 3 vext2 <0,2,3,1>, <0,2,3,1>
+ 1611449078U, // <3,1,0,3>: Cost 2 vext3 LHS, <1,0,3,2>
+ 2552204598U, // <3,1,0,4>: Cost 3 vext1 <0,3,1,0>, RHS
+ 2732966663U, // <3,1,0,5>: Cost 3 vext3 LHS, <1,0,5,1>
+ 3906258396U, // <3,1,0,6>: Cost 4 vuzpr <2,3,0,1>, <2,0,4,6>
+ 3667752171U, // <3,1,0,7>: Cost 4 vext1 <7,3,1,0>, <7,3,1,0>
+ 1611891491U, // <3,1,0,u>: Cost 2 vext3 LHS, <1,0,u,2>
+ 2689835819U, // <3,1,1,0>: Cost 3 vext3 LHS, <1,1,0,1>
+ 1611449140U, // <3,1,1,1>: Cost 2 vext3 LHS, <1,1,1,1>
+ 2624775063U, // <3,1,1,2>: Cost 3 vext2 <1,2,3,1>, <1,2,3,1>
+ 1611891528U, // <3,1,1,3>: Cost 2 vext3 LHS, <1,1,3,3>
+ 2689835859U, // <3,1,1,4>: Cost 3 vext3 LHS, <1,1,4,5>
+ 2689835868U, // <3,1,1,5>: Cost 3 vext3 LHS, <1,1,5,5>
+ 3763577701U, // <3,1,1,6>: Cost 4 vext3 LHS, <1,1,6,5>
+ 3765273452U, // <3,1,1,7>: Cost 4 vext3 <1,1,7,3>, <1,1,7,3>
+ 1611891573U, // <3,1,1,u>: Cost 2 vext3 LHS, <1,1,u,3>
+ 2629420494U, // <3,1,2,0>: Cost 3 vext2 <2,0,3,1>, <2,0,3,1>
+ 2689835911U, // <3,1,2,1>: Cost 3 vext3 LHS, <1,2,1,3>
+ 2564163248U, // <3,1,2,2>: Cost 3 vext1 <2,3,1,2>, <2,3,1,2>
+ 1611449238U, // <3,1,2,3>: Cost 2 vext3 LHS, <1,2,3,0>
+ 2564164918U, // <3,1,2,4>: Cost 3 vext1 <2,3,1,2>, RHS
+ 2689835947U, // <3,1,2,5>: Cost 3 vext3 LHS, <1,2,5,3>
+ 3692545978U, // <3,1,2,6>: Cost 4 vext2 <0,2,3,1>, <2,6,3,7>
+ 2732966842U, // <3,1,2,7>: Cost 3 vext3 LHS, <1,2,7,0>
+ 1611891651U, // <3,1,2,u>: Cost 2 vext3 LHS, <1,2,u,0>
+ 1484456038U, // <3,1,3,0>: Cost 2 vext1 <1,3,1,3>, LHS
+ 1611891672U, // <3,1,3,1>: Cost 2 vext3 LHS, <1,3,1,3>
+ 2685633502U, // <3,1,3,2>: Cost 3 vext3 LHS, <1,3,2,0>
+ 2685633512U, // <3,1,3,3>: Cost 3 vext3 LHS, <1,3,3,1>
+ 1484459318U, // <3,1,3,4>: Cost 2 vext1 <1,3,1,3>, RHS
+ 1611891712U, // <3,1,3,5>: Cost 2 vext3 LHS, <1,3,5,7>
+ 2689836041U, // <3,1,3,6>: Cost 3 vext3 LHS, <1,3,6,7>
+ 2733409294U, // <3,1,3,7>: Cost 3 vext3 LHS, <1,3,7,3>
+ 1611891735U, // <3,1,3,u>: Cost 2 vext3 LHS, <1,3,u,3>
+ 2552234086U, // <3,1,4,0>: Cost 3 vext1 <0,3,1,4>, LHS
+ 2732966955U, // <3,1,4,1>: Cost 3 vext3 LHS, <1,4,1,5>
+ 2732966964U, // <3,1,4,2>: Cost 3 vext3 LHS, <1,4,2,5>
+ 2685633597U, // <3,1,4,3>: Cost 3 vext3 LHS, <1,4,3,5>
+ 2552237366U, // <3,1,4,4>: Cost 3 vext1 <0,3,1,4>, RHS
+ 2618805558U, // <3,1,4,5>: Cost 3 vext2 <0,2,3,1>, RHS
+ 2769472822U, // <3,1,4,6>: Cost 3 vuzpl <3,0,1,2>, RHS
+ 3667784943U, // <3,1,4,7>: Cost 4 vext1 <7,3,1,4>, <7,3,1,4>
+ 2685633642U, // <3,1,4,u>: Cost 3 vext3 LHS, <1,4,u,5>
+ 2689836143U, // <3,1,5,0>: Cost 3 vext3 LHS, <1,5,0,1>
+ 2564187280U, // <3,1,5,1>: Cost 3 vext1 <2,3,1,5>, <1,5,3,7>
+ 2564187827U, // <3,1,5,2>: Cost 3 vext1 <2,3,1,5>, <2,3,1,5>
+ 1611891856U, // <3,1,5,3>: Cost 2 vext3 LHS, <1,5,3,7>
+ 2689836183U, // <3,1,5,4>: Cost 3 vext3 LHS, <1,5,4,5>
+ 3759375522U, // <3,1,5,5>: Cost 4 vext3 LHS, <1,5,5,7>
+ 3720417378U, // <3,1,5,6>: Cost 4 vext2 <4,u,3,1>, <5,6,7,0>
+ 2832518454U, // <3,1,5,7>: Cost 3 vuzpr <2,3,0,1>, RHS
+ 1611891901U, // <3,1,5,u>: Cost 2 vext3 LHS, <1,5,u,7>
+ 3763578048U, // <3,1,6,0>: Cost 4 vext3 LHS, <1,6,0,1>
+ 2689836239U, // <3,1,6,1>: Cost 3 vext3 LHS, <1,6,1,7>
+ 2732967128U, // <3,1,6,2>: Cost 3 vext3 LHS, <1,6,2,7>
+ 2685633761U, // <3,1,6,3>: Cost 3 vext3 LHS, <1,6,3,7>
+ 3763578088U, // <3,1,6,4>: Cost 4 vext3 LHS, <1,6,4,5>
+ 2689836275U, // <3,1,6,5>: Cost 3 vext3 LHS, <1,6,5,7>
+ 3763578108U, // <3,1,6,6>: Cost 4 vext3 LHS, <1,6,6,7>
+ 2732967166U, // <3,1,6,7>: Cost 3 vext3 LHS, <1,6,7,0>
+ 2685633806U, // <3,1,6,u>: Cost 3 vext3 LHS, <1,6,u,7>
+ 3631972454U, // <3,1,7,0>: Cost 4 vext1 <1,3,1,7>, LHS
+ 2659947612U, // <3,1,7,1>: Cost 3 vext2 <7,1,3,1>, <7,1,3,1>
+ 4036102294U, // <3,1,7,2>: Cost 4 vzipr <1,5,3,7>, <3,0,1,2>
+ 3095396454U, // <3,1,7,3>: Cost 3 vtrnr <1,3,5,7>, LHS
+ 3631975734U, // <3,1,7,4>: Cost 4 vext1 <1,3,1,7>, RHS
+ 2222982144U, // <3,1,7,5>: Cost 3 vrev <1,3,5,7>
+ 3296797705U, // <3,1,7,6>: Cost 4 vrev <1,3,6,7>
+ 3720418924U, // <3,1,7,7>: Cost 4 vext2 <4,u,3,1>, <7,7,7,7>
+ 3095396459U, // <3,1,7,u>: Cost 3 vtrnr <1,3,5,7>, LHS
+ 1484496998U, // <3,1,u,0>: Cost 2 vext1 <1,3,1,u>, LHS
+ 1611892077U, // <3,1,u,1>: Cost 2 vext3 LHS, <1,u,1,3>
+ 2685633907U, // <3,1,u,2>: Cost 3 vext3 LHS, <1,u,2,0>
+ 1611892092U, // <3,1,u,3>: Cost 2 vext3 LHS, <1,u,3,0>
+ 1484500278U, // <3,1,u,4>: Cost 2 vext1 <1,3,1,u>, RHS
+ 1611892117U, // <3,1,u,5>: Cost 2 vext3 LHS, <1,u,5,7>
+ 2685633950U, // <3,1,u,6>: Cost 3 vext3 LHS, <1,u,6,7>
+ 2832518697U, // <3,1,u,7>: Cost 3 vuzpr <2,3,0,1>, RHS
+ 1611892140U, // <3,1,u,u>: Cost 2 vext3 LHS, <1,u,u,3>
+ 2623455232U, // <3,2,0,0>: Cost 3 vext2 <1,0,3,2>, <0,0,0,0>
+ 1549713510U, // <3,2,0,1>: Cost 2 vext2 <1,0,3,2>, LHS
+ 2689836484U, // <3,2,0,2>: Cost 3 vext3 LHS, <2,0,2,0>
+ 2685633997U, // <3,2,0,3>: Cost 3 vext3 LHS, <2,0,3,0>
+ 2623455570U, // <3,2,0,4>: Cost 3 vext2 <1,0,3,2>, <0,4,1,5>
+ 2732967398U, // <3,2,0,5>: Cost 3 vext3 LHS, <2,0,5,7>
+ 2689836524U, // <3,2,0,6>: Cost 3 vext3 LHS, <2,0,6,4>
+ 2229044964U, // <3,2,0,7>: Cost 3 vrev <2,3,7,0>
+ 1549714077U, // <3,2,0,u>: Cost 2 vext2 <1,0,3,2>, LHS
+ 1549714166U, // <3,2,1,0>: Cost 2 vext2 <1,0,3,2>, <1,0,3,2>
+ 2623456052U, // <3,2,1,1>: Cost 3 vext2 <1,0,3,2>, <1,1,1,1>
+ 2623456150U, // <3,2,1,2>: Cost 3 vext2 <1,0,3,2>, <1,2,3,0>
+ 2685634079U, // <3,2,1,3>: Cost 3 vext3 LHS, <2,1,3,1>
+ 2552286518U, // <3,2,1,4>: Cost 3 vext1 <0,3,2,1>, RHS
+ 2623456400U, // <3,2,1,5>: Cost 3 vext2 <1,0,3,2>, <1,5,3,7>
+ 2689836604U, // <3,2,1,6>: Cost 3 vext3 LHS, <2,1,6,3>
+ 3667834101U, // <3,2,1,7>: Cost 4 vext1 <7,3,2,1>, <7,3,2,1>
+ 1155385070U, // <3,2,1,u>: Cost 2 vrev <2,3,u,1>
+ 2689836629U, // <3,2,2,0>: Cost 3 vext3 LHS, <2,2,0,1>
+ 2689836640U, // <3,2,2,1>: Cost 3 vext3 LHS, <2,2,1,3>
+ 1611449960U, // <3,2,2,2>: Cost 2 vext3 LHS, <2,2,2,2>
+ 1611892338U, // <3,2,2,3>: Cost 2 vext3 LHS, <2,2,3,3>
+ 2689836669U, // <3,2,2,4>: Cost 3 vext3 LHS, <2,2,4,5>
+ 2689836680U, // <3,2,2,5>: Cost 3 vext3 LHS, <2,2,5,7>
+ 2689836688U, // <3,2,2,6>: Cost 3 vext3 LHS, <2,2,6,6>
+ 3763578518U, // <3,2,2,7>: Cost 4 vext3 LHS, <2,2,7,3>
+ 1611892383U, // <3,2,2,u>: Cost 2 vext3 LHS, <2,2,u,3>
+ 1611450022U, // <3,2,3,0>: Cost 2 vext3 LHS, <2,3,0,1>
+ 2685191854U, // <3,2,3,1>: Cost 3 vext3 LHS, <2,3,1,0>
+ 2685191865U, // <3,2,3,2>: Cost 3 vext3 LHS, <2,3,2,2>
+ 2685191875U, // <3,2,3,3>: Cost 3 vext3 LHS, <2,3,3,3>
+ 1611450062U, // <3,2,3,4>: Cost 2 vext3 LHS, <2,3,4,5>
+ 2732967635U, // <3,2,3,5>: Cost 3 vext3 LHS, <2,3,5,1>
+ 2732967645U, // <3,2,3,6>: Cost 3 vext3 LHS, <2,3,6,2>
+ 2732967652U, // <3,2,3,7>: Cost 3 vext3 LHS, <2,3,7,0>
+ 1611450094U, // <3,2,3,u>: Cost 2 vext3 LHS, <2,3,u,1>
+ 2558279782U, // <3,2,4,0>: Cost 3 vext1 <1,3,2,4>, LHS
+ 2558280602U, // <3,2,4,1>: Cost 3 vext1 <1,3,2,4>, <1,2,3,4>
+ 2732967692U, // <3,2,4,2>: Cost 3 vext3 LHS, <2,4,2,4>
+ 2685634326U, // <3,2,4,3>: Cost 3 vext3 LHS, <2,4,3,5>
+ 2558283062U, // <3,2,4,4>: Cost 3 vext1 <1,3,2,4>, RHS
+ 1549716790U, // <3,2,4,5>: Cost 2 vext2 <1,0,3,2>, RHS
+ 2689836844U, // <3,2,4,6>: Cost 3 vext3 LHS, <2,4,6,0>
+ 2229077736U, // <3,2,4,7>: Cost 3 vrev <2,3,7,4>
+ 1549717033U, // <3,2,4,u>: Cost 2 vext2 <1,0,3,2>, RHS
+ 2552316006U, // <3,2,5,0>: Cost 3 vext1 <0,3,2,5>, LHS
+ 2228643507U, // <3,2,5,1>: Cost 3 vrev <2,3,1,5>
+ 2689836896U, // <3,2,5,2>: Cost 3 vext3 LHS, <2,5,2,7>
+ 2685634408U, // <3,2,5,3>: Cost 3 vext3 LHS, <2,5,3,6>
+ 1155122894U, // <3,2,5,4>: Cost 2 vrev <2,3,4,5>
+ 2665263108U, // <3,2,5,5>: Cost 3 vext2 <u,0,3,2>, <5,5,5,5>
+ 2689836932U, // <3,2,5,6>: Cost 3 vext3 LHS, <2,5,6,7>
+ 2665263272U, // <3,2,5,7>: Cost 3 vext2 <u,0,3,2>, <5,7,5,7>
+ 1155417842U, // <3,2,5,u>: Cost 2 vrev <2,3,u,5>
+ 2689836953U, // <3,2,6,0>: Cost 3 vext3 LHS, <2,6,0,1>
+ 2689836964U, // <3,2,6,1>: Cost 3 vext3 LHS, <2,6,1,3>
+ 2689836976U, // <3,2,6,2>: Cost 3 vext3 LHS, <2,6,2,6>
+ 1611892666U, // <3,2,6,3>: Cost 2 vext3 LHS, <2,6,3,7>
+ 2689836993U, // <3,2,6,4>: Cost 3 vext3 LHS, <2,6,4,5>
+ 2689837004U, // <3,2,6,5>: Cost 3 vext3 LHS, <2,6,5,7>
+ 2689837013U, // <3,2,6,6>: Cost 3 vext3 LHS, <2,6,6,7>
+ 2665263950U, // <3,2,6,7>: Cost 3 vext2 <u,0,3,2>, <6,7,0,1>
+ 1611892711U, // <3,2,6,u>: Cost 2 vext3 LHS, <2,6,u,7>
+ 2665264122U, // <3,2,7,0>: Cost 3 vext2 <u,0,3,2>, <7,0,1,2>
+ 2623460419U, // <3,2,7,1>: Cost 3 vext2 <1,0,3,2>, <7,1,0,3>
+ 4169138340U, // <3,2,7,2>: Cost 4 vtrnr <1,3,5,7>, <0,2,0,2>
+ 2962358374U, // <3,2,7,3>: Cost 3 vzipr <1,5,3,7>, LHS
+ 2665264486U, // <3,2,7,4>: Cost 3 vext2 <u,0,3,2>, <7,4,5,6>
+ 2228954841U, // <3,2,7,5>: Cost 3 vrev <2,3,5,7>
+ 2229028578U, // <3,2,7,6>: Cost 3 vrev <2,3,6,7>
+ 2665264748U, // <3,2,7,7>: Cost 3 vext2 <u,0,3,2>, <7,7,7,7>
+ 2962358379U, // <3,2,7,u>: Cost 3 vzipr <1,5,3,7>, LHS
+ 1611892795U, // <3,2,u,0>: Cost 2 vext3 LHS, <2,u,0,1>
+ 1549719342U, // <3,2,u,1>: Cost 2 vext2 <1,0,3,2>, LHS
+ 1611449960U, // <3,2,u,2>: Cost 2 vext3 LHS, <2,2,2,2>
+ 1611892824U, // <3,2,u,3>: Cost 2 vext3 LHS, <2,u,3,3>
+ 1611892835U, // <3,2,u,4>: Cost 2 vext3 LHS, <2,u,4,5>
+ 1549719706U, // <3,2,u,5>: Cost 2 vext2 <1,0,3,2>, RHS
+ 2689837168U, // <3,2,u,6>: Cost 3 vext3 LHS, <2,u,6,0>
+ 2665265408U, // <3,2,u,7>: Cost 3 vext2 <u,0,3,2>, <u,7,0,1>
+ 1611892867U, // <3,2,u,u>: Cost 2 vext3 LHS, <2,u,u,1>
+ 2685192331U, // <3,3,0,0>: Cost 3 vext3 LHS, <3,0,0,0>
+ 1611450518U, // <3,3,0,1>: Cost 2 vext3 LHS, <3,0,1,2>
+ 2685634717U, // <3,3,0,2>: Cost 3 vext3 LHS, <3,0,2,0>
+ 2564294806U, // <3,3,0,3>: Cost 3 vext1 <2,3,3,0>, <3,0,1,2>
+ 2685634736U, // <3,3,0,4>: Cost 3 vext3 LHS, <3,0,4,1>
+ 2732968122U, // <3,3,0,5>: Cost 3 vext3 LHS, <3,0,5,2>
+ 3763579075U, // <3,3,0,6>: Cost 4 vext3 LHS, <3,0,6,2>
+ 4034053264U, // <3,3,0,7>: Cost 4 vzipr <1,2,3,0>, <1,5,3,7>
+ 1611450581U, // <3,3,0,u>: Cost 2 vext3 LHS, <3,0,u,2>
+ 2685192415U, // <3,3,1,0>: Cost 3 vext3 LHS, <3,1,0,3>
+ 1550385992U, // <3,3,1,1>: Cost 2 vext2 <1,1,3,3>, <1,1,3,3>
+ 2685192433U, // <3,3,1,2>: Cost 3 vext3 LHS, <3,1,2,3>
+ 2685634808U, // <3,3,1,3>: Cost 3 vext3 LHS, <3,1,3,1>
+ 2558332214U, // <3,3,1,4>: Cost 3 vext1 <1,3,3,1>, RHS
+ 2685634828U, // <3,3,1,5>: Cost 3 vext3 LHS, <3,1,5,3>
+ 3759376661U, // <3,3,1,6>: Cost 4 vext3 LHS, <3,1,6,3>
+ 2703477022U, // <3,3,1,7>: Cost 3 vext3 <3,1,7,3>, <3,1,7,3>
+ 1555031423U, // <3,3,1,u>: Cost 2 vext2 <1,u,3,3>, <1,u,3,3>
+ 2564309094U, // <3,3,2,0>: Cost 3 vext1 <2,3,3,2>, LHS
+ 2630100513U, // <3,3,2,1>: Cost 3 vext2 <2,1,3,3>, <2,1,3,3>
+ 1557022322U, // <3,3,2,2>: Cost 2 vext2 <2,2,3,3>, <2,2,3,3>
+ 2685192520U, // <3,3,2,3>: Cost 3 vext3 LHS, <3,2,3,0>
+ 2564312374U, // <3,3,2,4>: Cost 3 vext1 <2,3,3,2>, RHS
+ 2732968286U, // <3,3,2,5>: Cost 3 vext3 LHS, <3,2,5,4>
+ 2685634918U, // <3,3,2,6>: Cost 3 vext3 LHS, <3,2,6,3>
+ 2704140655U, // <3,3,2,7>: Cost 3 vext3 <3,2,7,3>, <3,2,7,3>
+ 1561004120U, // <3,3,2,u>: Cost 2 vext2 <2,u,3,3>, <2,u,3,3>
+ 1496547430U, // <3,3,3,0>: Cost 2 vext1 <3,3,3,3>, LHS
+ 2624129256U, // <3,3,3,1>: Cost 3 vext2 <1,1,3,3>, <3,1,1,3>
+ 2630764866U, // <3,3,3,2>: Cost 3 vext2 <2,2,3,3>, <3,2,2,3>
+ 336380006U, // <3,3,3,3>: Cost 1 vdup3 LHS
+ 1496550710U, // <3,3,3,4>: Cost 2 vext1 <3,3,3,3>, RHS
+ 2732968368U, // <3,3,3,5>: Cost 3 vext3 LHS, <3,3,5,5>
+ 2624129683U, // <3,3,3,6>: Cost 3 vext2 <1,1,3,3>, <3,6,3,7>
+ 2594182400U, // <3,3,3,7>: Cost 3 vext1 <7,3,3,3>, <7,3,3,3>
+ 336380006U, // <3,3,3,u>: Cost 1 vdup3 LHS
+ 2558353510U, // <3,3,4,0>: Cost 3 vext1 <1,3,3,4>, LHS
+ 2558354411U, // <3,3,4,1>: Cost 3 vext1 <1,3,3,4>, <1,3,3,4>
+ 2564327108U, // <3,3,4,2>: Cost 3 vext1 <2,3,3,4>, <2,3,3,4>
+ 2564327938U, // <3,3,4,3>: Cost 3 vext1 <2,3,3,4>, <3,4,5,6>
+ 2960343962U, // <3,3,4,4>: Cost 3 vzipr <1,2,3,4>, <1,2,3,4>
+ 1611893250U, // <3,3,4,5>: Cost 2 vext3 LHS, <3,4,5,6>
+ 2771619126U, // <3,3,4,6>: Cost 3 vuzpl <3,3,3,3>, RHS
+ 4034086032U, // <3,3,4,7>: Cost 4 vzipr <1,2,3,4>, <1,5,3,7>
+ 1611893277U, // <3,3,4,u>: Cost 2 vext3 LHS, <3,4,u,6>
+ 2558361702U, // <3,3,5,0>: Cost 3 vext1 <1,3,3,5>, LHS
+ 2558362604U, // <3,3,5,1>: Cost 3 vext1 <1,3,3,5>, <1,3,3,5>
+ 2558363342U, // <3,3,5,2>: Cost 3 vext1 <1,3,3,5>, <2,3,4,5>
+ 2732968512U, // <3,3,5,3>: Cost 3 vext3 LHS, <3,5,3,5>
+ 2558364982U, // <3,3,5,4>: Cost 3 vext1 <1,3,3,5>, RHS
+ 3101279950U, // <3,3,5,5>: Cost 3 vtrnr <2,3,4,5>, <2,3,4,5>
+ 2665934946U, // <3,3,5,6>: Cost 3 vext2 <u,1,3,3>, <5,6,7,0>
+ 2826636598U, // <3,3,5,7>: Cost 3 vuzpr <1,3,1,3>, RHS
+ 2826636599U, // <3,3,5,u>: Cost 3 vuzpr <1,3,1,3>, RHS
+ 2732968568U, // <3,3,6,0>: Cost 3 vext3 LHS, <3,6,0,7>
+ 3763579521U, // <3,3,6,1>: Cost 4 vext3 LHS, <3,6,1,7>
+ 2732968586U, // <3,3,6,2>: Cost 3 vext3 LHS, <3,6,2,7>
+ 2732968595U, // <3,3,6,3>: Cost 3 vext3 LHS, <3,6,3,7>
+ 2732968604U, // <3,3,6,4>: Cost 3 vext3 LHS, <3,6,4,7>
+ 3763579557U, // <3,3,6,5>: Cost 4 vext3 LHS, <3,6,5,7>
+ 2732968621U, // <3,3,6,6>: Cost 3 vext3 LHS, <3,6,6,6>
+ 2657973099U, // <3,3,6,7>: Cost 3 vext2 <6,7,3,3>, <6,7,3,3>
+ 2658636732U, // <3,3,6,u>: Cost 3 vext2 <6,u,3,3>, <6,u,3,3>
+ 2558378086U, // <3,3,7,0>: Cost 3 vext1 <1,3,3,7>, LHS
+ 2558378990U, // <3,3,7,1>: Cost 3 vext1 <1,3,3,7>, <1,3,3,7>
+ 2564351687U, // <3,3,7,2>: Cost 3 vext1 <2,3,3,7>, <2,3,3,7>
+ 2661291264U, // <3,3,7,3>: Cost 3 vext2 <7,3,3,3>, <7,3,3,3>
+ 2558381366U, // <3,3,7,4>: Cost 3 vext1 <1,3,3,7>, RHS
+ 2732968694U, // <3,3,7,5>: Cost 3 vext3 LHS, <3,7,5,7>
+ 3781126907U, // <3,3,7,6>: Cost 4 vext3 <3,7,6,3>, <3,7,6,3>
+ 3095397376U, // <3,3,7,7>: Cost 3 vtrnr <1,3,5,7>, <1,3,5,7>
+ 2558383918U, // <3,3,7,u>: Cost 3 vext1 <1,3,3,7>, LHS
+ 1496547430U, // <3,3,u,0>: Cost 2 vext1 <3,3,3,3>, LHS
+ 1611893534U, // <3,3,u,1>: Cost 2 vext3 LHS, <3,u,1,2>
+ 1592858504U, // <3,3,u,2>: Cost 2 vext2 <u,2,3,3>, <u,2,3,3>
+ 336380006U, // <3,3,u,3>: Cost 1 vdup3 LHS
+ 1496550710U, // <3,3,u,4>: Cost 2 vext1 <3,3,3,3>, RHS
+ 1611893574U, // <3,3,u,5>: Cost 2 vext3 LHS, <3,u,5,6>
+ 2690280268U, // <3,3,u,6>: Cost 3 vext3 LHS, <3,u,6,3>
+ 2826636841U, // <3,3,u,7>: Cost 3 vuzpr <1,3,1,3>, RHS
+ 336380006U, // <3,3,u,u>: Cost 1 vdup3 LHS
+ 2624798720U, // <3,4,0,0>: Cost 3 vext2 <1,2,3,4>, <0,0,0,0>
+ 1551056998U, // <3,4,0,1>: Cost 2 vext2 <1,2,3,4>, LHS
+ 2624798884U, // <3,4,0,2>: Cost 3 vext2 <1,2,3,4>, <0,2,0,2>
+ 3693232384U, // <3,4,0,3>: Cost 4 vext2 <0,3,3,4>, <0,3,1,4>
+ 2624799058U, // <3,4,0,4>: Cost 3 vext2 <1,2,3,4>, <0,4,1,5>
+ 1659227026U, // <3,4,0,5>: Cost 2 vext3 LHS, <4,0,5,1>
+ 1659227036U, // <3,4,0,6>: Cost 2 vext3 LHS, <4,0,6,2>
+ 3667973382U, // <3,4,0,7>: Cost 4 vext1 <7,3,4,0>, <7,3,4,0>
+ 1551057565U, // <3,4,0,u>: Cost 2 vext2 <1,2,3,4>, LHS
+ 2624799478U, // <3,4,1,0>: Cost 3 vext2 <1,2,3,4>, <1,0,3,2>
+ 2624799540U, // <3,4,1,1>: Cost 3 vext2 <1,2,3,4>, <1,1,1,1>
+ 1551057818U, // <3,4,1,2>: Cost 2 vext2 <1,2,3,4>, <1,2,3,4>
+ 2624799704U, // <3,4,1,3>: Cost 3 vext2 <1,2,3,4>, <1,3,1,3>
+ 2564377910U, // <3,4,1,4>: Cost 3 vext1 <2,3,4,1>, RHS
+ 2689838050U, // <3,4,1,5>: Cost 3 vext3 LHS, <4,1,5,0>
+ 2689838062U, // <3,4,1,6>: Cost 3 vext3 LHS, <4,1,6,3>
+ 2628117807U, // <3,4,1,7>: Cost 3 vext2 <1,7,3,4>, <1,7,3,4>
+ 1555039616U, // <3,4,1,u>: Cost 2 vext2 <1,u,3,4>, <1,u,3,4>
+ 3626180710U, // <3,4,2,0>: Cost 4 vext1 <0,3,4,2>, LHS
+ 2624800298U, // <3,4,2,1>: Cost 3 vext2 <1,2,3,4>, <2,1,4,3>
+ 2624800360U, // <3,4,2,2>: Cost 3 vext2 <1,2,3,4>, <2,2,2,2>
+ 2624800422U, // <3,4,2,3>: Cost 3 vext2 <1,2,3,4>, <2,3,0,1>
+ 2624800514U, // <3,4,2,4>: Cost 3 vext2 <1,2,3,4>, <2,4,1,3>
+ 2709965878U, // <3,4,2,5>: Cost 3 vext3 <4,2,5,3>, <4,2,5,3>
+ 2689838140U, // <3,4,2,6>: Cost 3 vext3 LHS, <4,2,6,0>
+ 2634090504U, // <3,4,2,7>: Cost 3 vext2 <2,7,3,4>, <2,7,3,4>
+ 2689838158U, // <3,4,2,u>: Cost 3 vext3 LHS, <4,2,u,0>
+ 2624800918U, // <3,4,3,0>: Cost 3 vext2 <1,2,3,4>, <3,0,1,2>
+ 2636081403U, // <3,4,3,1>: Cost 3 vext2 <3,1,3,4>, <3,1,3,4>
+ 2636745036U, // <3,4,3,2>: Cost 3 vext2 <3,2,3,4>, <3,2,3,4>
+ 2624801180U, // <3,4,3,3>: Cost 3 vext2 <1,2,3,4>, <3,3,3,3>
+ 2624801232U, // <3,4,3,4>: Cost 3 vext2 <1,2,3,4>, <3,4,0,1>
+ 2905836854U, // <3,4,3,5>: Cost 3 vzipl <3,3,3,3>, RHS
+ 3040054582U, // <3,4,3,6>: Cost 3 vtrnl <3,3,3,3>, RHS
+ 3702524611U, // <3,4,3,7>: Cost 4 vext2 <1,u,3,4>, <3,7,0,1>
+ 2624801566U, // <3,4,3,u>: Cost 3 vext2 <1,2,3,4>, <3,u,1,2>
+ 2564399206U, // <3,4,4,0>: Cost 3 vext1 <2,3,4,4>, LHS
+ 2564400026U, // <3,4,4,1>: Cost 3 vext1 <2,3,4,4>, <1,2,3,4>
+ 2564400845U, // <3,4,4,2>: Cost 3 vext1 <2,3,4,4>, <2,3,4,4>
+ 2570373542U, // <3,4,4,3>: Cost 3 vext1 <3,3,4,4>, <3,3,4,4>
+ 1659227344U, // <3,4,4,4>: Cost 2 vext3 LHS, <4,4,4,4>
+ 1551060278U, // <3,4,4,5>: Cost 2 vext2 <1,2,3,4>, RHS
+ 1659227364U, // <3,4,4,6>: Cost 2 vext3 LHS, <4,4,6,6>
+ 3668006154U, // <3,4,4,7>: Cost 4 vext1 <7,3,4,4>, <7,3,4,4>
+ 1551060521U, // <3,4,4,u>: Cost 2 vext2 <1,2,3,4>, RHS
+ 1490665574U, // <3,4,5,0>: Cost 2 vext1 <2,3,4,5>, LHS
+ 2689838341U, // <3,4,5,1>: Cost 3 vext3 LHS, <4,5,1,3>
+ 1490667214U, // <3,4,5,2>: Cost 2 vext1 <2,3,4,5>, <2,3,4,5>
+ 2564409494U, // <3,4,5,3>: Cost 3 vext1 <2,3,4,5>, <3,0,1,2>
+ 1490668854U, // <3,4,5,4>: Cost 2 vext1 <2,3,4,5>, RHS
+ 2689838381U, // <3,4,5,5>: Cost 3 vext3 LHS, <4,5,5,7>
+ 537709878U, // <3,4,5,6>: Cost 1 vext3 LHS, RHS
+ 2594272523U, // <3,4,5,7>: Cost 3 vext1 <7,3,4,5>, <7,3,4,5>
+ 537709896U, // <3,4,5,u>: Cost 1 vext3 LHS, RHS
+ 2689838411U, // <3,4,6,0>: Cost 3 vext3 LHS, <4,6,0,1>
+ 2558444534U, // <3,4,6,1>: Cost 3 vext1 <1,3,4,6>, <1,3,4,6>
+ 2666607098U, // <3,4,6,2>: Cost 3 vext2 <u,2,3,4>, <6,2,7,3>
+ 2558446082U, // <3,4,6,3>: Cost 3 vext1 <1,3,4,6>, <3,4,5,6>
+ 1659227508U, // <3,4,6,4>: Cost 2 vext3 LHS, <4,6,4,6>
+ 2689838462U, // <3,4,6,5>: Cost 3 vext3 LHS, <4,6,5,7>
+ 2689838471U, // <3,4,6,6>: Cost 3 vext3 LHS, <4,6,6,7>
+ 2657981292U, // <3,4,6,7>: Cost 3 vext2 <6,7,3,4>, <6,7,3,4>
+ 1659227540U, // <3,4,6,u>: Cost 2 vext3 LHS, <4,6,u,2>
+ 2666607610U, // <3,4,7,0>: Cost 3 vext2 <u,2,3,4>, <7,0,1,2>
+ 3702527072U, // <3,4,7,1>: Cost 4 vext2 <1,u,3,4>, <7,1,3,5>
+ 2660635824U, // <3,4,7,2>: Cost 3 vext2 <7,2,3,4>, <7,2,3,4>
+ 3644139945U, // <3,4,7,3>: Cost 4 vext1 <3,3,4,7>, <3,3,4,7>
+ 2666607974U, // <3,4,7,4>: Cost 3 vext2 <u,2,3,4>, <7,4,5,6>
+ 2732969416U, // <3,4,7,5>: Cost 3 vext3 LHS, <4,7,5,0>
+ 2732969425U, // <3,4,7,6>: Cost 3 vext3 LHS, <4,7,6,0>
+ 2666608236U, // <3,4,7,7>: Cost 3 vext2 <u,2,3,4>, <7,7,7,7>
+ 2664617622U, // <3,4,7,u>: Cost 3 vext2 <7,u,3,4>, <7,u,3,4>
+ 1490690150U, // <3,4,u,0>: Cost 2 vext1 <2,3,4,u>, LHS
+ 1551062830U, // <3,4,u,1>: Cost 2 vext2 <1,2,3,4>, LHS
+ 1490691793U, // <3,4,u,2>: Cost 2 vext1 <2,3,4,u>, <2,3,4,u>
+ 2624804796U, // <3,4,u,3>: Cost 3 vext2 <1,2,3,4>, <u,3,0,1>
+ 1490693430U, // <3,4,u,4>: Cost 2 vext1 <2,3,4,u>, RHS
+ 1551063194U, // <3,4,u,5>: Cost 2 vext2 <1,2,3,4>, RHS
+ 537710121U, // <3,4,u,6>: Cost 1 vext3 LHS, RHS
+ 2594297102U, // <3,4,u,7>: Cost 3 vext1 <7,3,4,u>, <7,3,4,u>
+ 537710139U, // <3,4,u,u>: Cost 1 vext3 LHS, RHS
+ 3692576768U, // <3,5,0,0>: Cost 4 vext2 <0,2,3,5>, <0,0,0,0>
+ 2618835046U, // <3,5,0,1>: Cost 3 vext2 <0,2,3,5>, LHS
+ 2618835138U, // <3,5,0,2>: Cost 3 vext2 <0,2,3,5>, <0,2,3,5>
+ 3692577024U, // <3,5,0,3>: Cost 4 vext2 <0,2,3,5>, <0,3,1,4>
+ 2689838690U, // <3,5,0,4>: Cost 3 vext3 LHS, <5,0,4,1>
+ 2732969579U, // <3,5,0,5>: Cost 3 vext3 LHS, <5,0,5,1>
+ 2732969588U, // <3,5,0,6>: Cost 3 vext3 LHS, <5,0,6,1>
+ 2246963055U, // <3,5,0,7>: Cost 3 vrev <5,3,7,0>
+ 2618835613U, // <3,5,0,u>: Cost 3 vext2 <0,2,3,5>, LHS
+ 2594308198U, // <3,5,1,0>: Cost 3 vext1 <7,3,5,1>, LHS
+ 3692577588U, // <3,5,1,1>: Cost 4 vext2 <0,2,3,5>, <1,1,1,1>
+ 2624807835U, // <3,5,1,2>: Cost 3 vext2 <1,2,3,5>, <1,2,3,5>
+ 2625471468U, // <3,5,1,3>: Cost 3 vext2 <1,3,3,5>, <1,3,3,5>
+ 2626135101U, // <3,5,1,4>: Cost 3 vext2 <1,4,3,5>, <1,4,3,5>
+ 2594311888U, // <3,5,1,5>: Cost 3 vext1 <7,3,5,1>, <5,1,7,3>
+ 3699877107U, // <3,5,1,6>: Cost 4 vext2 <1,4,3,5>, <1,6,5,7>
+ 1641680592U, // <3,5,1,7>: Cost 2 vext3 <5,1,7,3>, <5,1,7,3>
+ 1641754329U, // <3,5,1,u>: Cost 2 vext3 <5,1,u,3>, <5,1,u,3>
+ 3692578274U, // <3,5,2,0>: Cost 4 vext2 <0,2,3,5>, <2,0,5,3>
+ 2630116899U, // <3,5,2,1>: Cost 3 vext2 <2,1,3,5>, <2,1,3,5>
+ 3692578408U, // <3,5,2,2>: Cost 4 vext2 <0,2,3,5>, <2,2,2,2>
+ 2625472206U, // <3,5,2,3>: Cost 3 vext2 <1,3,3,5>, <2,3,4,5>
+ 2632107798U, // <3,5,2,4>: Cost 3 vext2 <2,4,3,5>, <2,4,3,5>
+ 2715938575U, // <3,5,2,5>: Cost 3 vext3 <5,2,5,3>, <5,2,5,3>
+ 3692578746U, // <3,5,2,6>: Cost 4 vext2 <0,2,3,5>, <2,6,3,7>
+ 2716086049U, // <3,5,2,7>: Cost 3 vext3 <5,2,7,3>, <5,2,7,3>
+ 2634762330U, // <3,5,2,u>: Cost 3 vext2 <2,u,3,5>, <2,u,3,5>
+ 3692578966U, // <3,5,3,0>: Cost 4 vext2 <0,2,3,5>, <3,0,1,2>
+ 2636089596U, // <3,5,3,1>: Cost 3 vext2 <3,1,3,5>, <3,1,3,5>
+ 3699214668U, // <3,5,3,2>: Cost 4 vext2 <1,3,3,5>, <3,2,3,4>
+ 2638080412U, // <3,5,3,3>: Cost 3 vext2 <3,4,3,5>, <3,3,3,3>
+ 2618837506U, // <3,5,3,4>: Cost 3 vext2 <0,2,3,5>, <3,4,5,6>
+ 2832844494U, // <3,5,3,5>: Cost 3 vuzpr <2,3,4,5>, <2,3,4,5>
+ 4033415682U, // <3,5,3,6>: Cost 4 vzipr <1,1,3,3>, <3,4,5,6>
+ 3095072054U, // <3,5,3,7>: Cost 3 vtrnr <1,3,1,3>, RHS
+ 3095072055U, // <3,5,3,u>: Cost 3 vtrnr <1,3,1,3>, RHS
+ 2600304742U, // <3,5,4,0>: Cost 3 vext1 <u,3,5,4>, LHS
+ 3763580815U, // <3,5,4,1>: Cost 4 vext3 LHS, <5,4,1,5>
+ 2564474582U, // <3,5,4,2>: Cost 3 vext1 <2,3,5,4>, <2,3,5,4>
+ 3699879044U, // <3,5,4,3>: Cost 4 vext2 <1,4,3,5>, <4,3,5,0>
+ 2600308022U, // <3,5,4,4>: Cost 3 vext1 <u,3,5,4>, RHS
+ 2618838326U, // <3,5,4,5>: Cost 3 vext2 <0,2,3,5>, RHS
+ 2772454710U, // <3,5,4,6>: Cost 3 vuzpl <3,4,5,6>, RHS
+ 1659228102U, // <3,5,4,7>: Cost 2 vext3 LHS, <5,4,7,6>
+ 1659228111U, // <3,5,4,u>: Cost 2 vext3 LHS, <5,4,u,6>
+ 2570453094U, // <3,5,5,0>: Cost 3 vext1 <3,3,5,5>, LHS
+ 2624810704U, // <3,5,5,1>: Cost 3 vext2 <1,2,3,5>, <5,1,7,3>
+ 2570454734U, // <3,5,5,2>: Cost 3 vext1 <3,3,5,5>, <2,3,4,5>
+ 2570455472U, // <3,5,5,3>: Cost 3 vext1 <3,3,5,5>, <3,3,5,5>
+ 2570456374U, // <3,5,5,4>: Cost 3 vext1 <3,3,5,5>, RHS
+ 1659228164U, // <3,5,5,5>: Cost 2 vext3 LHS, <5,5,5,5>
+ 2732969998U, // <3,5,5,6>: Cost 3 vext3 LHS, <5,5,6,6>
+ 1659228184U, // <3,5,5,7>: Cost 2 vext3 LHS, <5,5,7,7>
+ 1659228193U, // <3,5,5,u>: Cost 2 vext3 LHS, <5,5,u,7>
+ 2732970020U, // <3,5,6,0>: Cost 3 vext3 LHS, <5,6,0,1>
+ 2732970035U, // <3,5,6,1>: Cost 3 vext3 LHS, <5,6,1,7>
+ 2564490968U, // <3,5,6,2>: Cost 3 vext1 <2,3,5,6>, <2,3,5,6>
+ 2732970050U, // <3,5,6,3>: Cost 3 vext3 LHS, <5,6,3,4>
+ 2732970060U, // <3,5,6,4>: Cost 3 vext3 LHS, <5,6,4,5>
+ 2732970071U, // <3,5,6,5>: Cost 3 vext3 LHS, <5,6,5,7>
+ 2732970080U, // <3,5,6,6>: Cost 3 vext3 LHS, <5,6,6,7>
+ 1659228258U, // <3,5,6,7>: Cost 2 vext3 LHS, <5,6,7,0>
+ 1659228267U, // <3,5,6,u>: Cost 2 vext3 LHS, <5,6,u,0>
+ 1484783718U, // <3,5,7,0>: Cost 2 vext1 <1,3,5,7>, LHS
+ 1484784640U, // <3,5,7,1>: Cost 2 vext1 <1,3,5,7>, <1,3,5,7>
+ 2558527080U, // <3,5,7,2>: Cost 3 vext1 <1,3,5,7>, <2,2,2,2>
+ 2558527638U, // <3,5,7,3>: Cost 3 vext1 <1,3,5,7>, <3,0,1,2>
+ 1484786998U, // <3,5,7,4>: Cost 2 vext1 <1,3,5,7>, RHS
+ 1659228328U, // <3,5,7,5>: Cost 2 vext3 LHS, <5,7,5,7>
+ 2732970154U, // <3,5,7,6>: Cost 3 vext3 LHS, <5,7,6,0>
+ 2558531180U, // <3,5,7,7>: Cost 3 vext1 <1,3,5,7>, <7,7,7,7>
+ 1484789550U, // <3,5,7,u>: Cost 2 vext1 <1,3,5,7>, LHS
+ 1484791910U, // <3,5,u,0>: Cost 2 vext1 <1,3,5,u>, LHS
+ 1484792833U, // <3,5,u,1>: Cost 2 vext1 <1,3,5,u>, <1,3,5,u>
+ 2558535272U, // <3,5,u,2>: Cost 3 vext1 <1,3,5,u>, <2,2,2,2>
+ 2558535830U, // <3,5,u,3>: Cost 3 vext1 <1,3,5,u>, <3,0,1,2>
+ 1484795190U, // <3,5,u,4>: Cost 2 vext1 <1,3,5,u>, RHS
+ 1659228409U, // <3,5,u,5>: Cost 2 vext3 LHS, <5,u,5,7>
+ 2772457626U, // <3,5,u,6>: Cost 3 vuzpl <3,4,5,6>, RHS
+ 1646326023U, // <3,5,u,7>: Cost 2 vext3 <5,u,7,3>, <5,u,7,3>
+ 1484797742U, // <3,5,u,u>: Cost 2 vext1 <1,3,5,u>, LHS
+ 2558541926U, // <3,6,0,0>: Cost 3 vext1 <1,3,6,0>, LHS
+ 2689839393U, // <3,6,0,1>: Cost 3 vext3 LHS, <6,0,1,2>
+ 2689839404U, // <3,6,0,2>: Cost 3 vext3 LHS, <6,0,2,4>
+ 3706519808U, // <3,6,0,3>: Cost 4 vext2 <2,5,3,6>, <0,3,1,4>
+ 2689839420U, // <3,6,0,4>: Cost 3 vext3 LHS, <6,0,4,2>
+ 2732970314U, // <3,6,0,5>: Cost 3 vext3 LHS, <6,0,5,7>
+ 2732970316U, // <3,6,0,6>: Cost 3 vext3 LHS, <6,0,6,0>
+ 2960313654U, // <3,6,0,7>: Cost 3 vzipr <1,2,3,0>, RHS
+ 2689839456U, // <3,6,0,u>: Cost 3 vext3 LHS, <6,0,u,2>
+ 3763581290U, // <3,6,1,0>: Cost 4 vext3 LHS, <6,1,0,3>
+ 3763581297U, // <3,6,1,1>: Cost 4 vext3 LHS, <6,1,1,1>
+ 2624816028U, // <3,6,1,2>: Cost 3 vext2 <1,2,3,6>, <1,2,3,6>
+ 3763581315U, // <3,6,1,3>: Cost 4 vext3 LHS, <6,1,3,1>
+ 2626143294U, // <3,6,1,4>: Cost 3 vext2 <1,4,3,6>, <1,4,3,6>
+ 3763581335U, // <3,6,1,5>: Cost 4 vext3 LHS, <6,1,5,3>
+ 2721321376U, // <3,6,1,6>: Cost 3 vext3 <6,1,6,3>, <6,1,6,3>
+ 2721395113U, // <3,6,1,7>: Cost 3 vext3 <6,1,7,3>, <6,1,7,3>
+ 2628797826U, // <3,6,1,u>: Cost 3 vext2 <1,u,3,6>, <1,u,3,6>
+ 2594390118U, // <3,6,2,0>: Cost 3 vext1 <7,3,6,2>, LHS
+ 2721616324U, // <3,6,2,1>: Cost 3 vext3 <6,2,1,3>, <6,2,1,3>
+ 2630788725U, // <3,6,2,2>: Cost 3 vext2 <2,2,3,6>, <2,2,3,6>
+ 3763581395U, // <3,6,2,3>: Cost 4 vext3 LHS, <6,2,3,0>
+ 2632115991U, // <3,6,2,4>: Cost 3 vext2 <2,4,3,6>, <2,4,3,6>
+ 2632779624U, // <3,6,2,5>: Cost 3 vext2 <2,5,3,6>, <2,5,3,6>
+ 2594394618U, // <3,6,2,6>: Cost 3 vext1 <7,3,6,2>, <6,2,7,3>
+ 1648316922U, // <3,6,2,7>: Cost 2 vext3 <6,2,7,3>, <6,2,7,3>
+ 1648390659U, // <3,6,2,u>: Cost 2 vext3 <6,2,u,3>, <6,2,u,3>
+ 3693914262U, // <3,6,3,0>: Cost 4 vext2 <0,4,3,6>, <3,0,1,2>
+ 3638281176U, // <3,6,3,1>: Cost 4 vext1 <2,3,6,3>, <1,3,1,3>
+ 3696568678U, // <3,6,3,2>: Cost 4 vext2 <0,u,3,6>, <3,2,6,3>
+ 2638088604U, // <3,6,3,3>: Cost 3 vext2 <3,4,3,6>, <3,3,3,3>
+ 2632780290U, // <3,6,3,4>: Cost 3 vext2 <2,5,3,6>, <3,4,5,6>
+ 3712494145U, // <3,6,3,5>: Cost 4 vext2 <3,5,3,6>, <3,5,3,6>
+ 3698559612U, // <3,6,3,6>: Cost 4 vext2 <1,2,3,6>, <3,6,1,2>
+ 2959674678U, // <3,6,3,7>: Cost 3 vzipr <1,1,3,3>, RHS
+ 2959674679U, // <3,6,3,u>: Cost 3 vzipr <1,1,3,3>, RHS
+ 3763581536U, // <3,6,4,0>: Cost 4 vext3 LHS, <6,4,0,6>
+ 2722943590U, // <3,6,4,1>: Cost 3 vext3 <6,4,1,3>, <6,4,1,3>
+ 2732970609U, // <3,6,4,2>: Cost 3 vext3 LHS, <6,4,2,5>
+ 3698560147U, // <3,6,4,3>: Cost 4 vext2 <1,2,3,6>, <4,3,6,6>
+ 2732970628U, // <3,6,4,4>: Cost 3 vext3 LHS, <6,4,4,6>
+ 2689839757U, // <3,6,4,5>: Cost 3 vext3 LHS, <6,4,5,6>
+ 2732970640U, // <3,6,4,6>: Cost 3 vext3 LHS, <6,4,6,0>
+ 2960346422U, // <3,6,4,7>: Cost 3 vzipr <1,2,3,4>, RHS
+ 2689839784U, // <3,6,4,u>: Cost 3 vext3 LHS, <6,4,u,6>
+ 2576498790U, // <3,6,5,0>: Cost 3 vext1 <4,3,6,5>, LHS
+ 3650241270U, // <3,6,5,1>: Cost 4 vext1 <4,3,6,5>, <1,0,3,2>
+ 2732970692U, // <3,6,5,2>: Cost 3 vext3 LHS, <6,5,2,7>
+ 2576501250U, // <3,6,5,3>: Cost 3 vext1 <4,3,6,5>, <3,4,5,6>
+ 2576501906U, // <3,6,5,4>: Cost 3 vext1 <4,3,6,5>, <4,3,6,5>
+ 3650244622U, // <3,6,5,5>: Cost 4 vext1 <4,3,6,5>, <5,5,6,6>
+ 4114633528U, // <3,6,5,6>: Cost 4 vtrnl <3,4,5,6>, <6,6,6,6>
+ 2732970735U, // <3,6,5,7>: Cost 3 vext3 LHS, <6,5,7,5>
+ 2576504622U, // <3,6,5,u>: Cost 3 vext1 <4,3,6,5>, LHS
+ 2732970749U, // <3,6,6,0>: Cost 3 vext3 LHS, <6,6,0,1>
+ 2724270856U, // <3,6,6,1>: Cost 3 vext3 <6,6,1,3>, <6,6,1,3>
+ 2624819706U, // <3,6,6,2>: Cost 3 vext2 <1,2,3,6>, <6,2,7,3>
+ 3656223234U, // <3,6,6,3>: Cost 4 vext1 <5,3,6,6>, <3,4,5,6>
+ 2732970788U, // <3,6,6,4>: Cost 3 vext3 LHS, <6,6,4,4>
+ 2732970800U, // <3,6,6,5>: Cost 3 vext3 LHS, <6,6,5,7>
+ 1659228984U, // <3,6,6,6>: Cost 2 vext3 LHS, <6,6,6,6>
+ 1659228994U, // <3,6,6,7>: Cost 2 vext3 LHS, <6,6,7,7>
+ 1659229003U, // <3,6,6,u>: Cost 2 vext3 LHS, <6,6,u,7>
+ 1659229006U, // <3,6,7,0>: Cost 2 vext3 LHS, <6,7,0,1>
+ 2558600201U, // <3,6,7,1>: Cost 3 vext1 <1,3,6,7>, <1,3,6,7>
+ 2558601146U, // <3,6,7,2>: Cost 3 vext1 <1,3,6,7>, <2,6,3,7>
+ 2725081963U, // <3,6,7,3>: Cost 3 vext3 <6,7,3,3>, <6,7,3,3>
+ 1659229046U, // <3,6,7,4>: Cost 2 vext3 LHS, <6,7,4,5>
+ 2715423611U, // <3,6,7,5>: Cost 3 vext3 <5,1,7,3>, <6,7,5,1>
+ 2722059141U, // <3,6,7,6>: Cost 3 vext3 <6,2,7,3>, <6,7,6,2>
+ 2962361654U, // <3,6,7,7>: Cost 3 vzipr <1,5,3,7>, RHS
+ 1659229078U, // <3,6,7,u>: Cost 2 vext3 LHS, <6,7,u,1>
+ 1659229087U, // <3,6,u,0>: Cost 2 vext3 LHS, <6,u,0,1>
+ 2689840041U, // <3,6,u,1>: Cost 3 vext3 LHS, <6,u,1,2>
+ 2558609339U, // <3,6,u,2>: Cost 3 vext1 <1,3,6,u>, <2,6,3,u>
+ 2576525853U, // <3,6,u,3>: Cost 3 vext1 <4,3,6,u>, <3,4,u,6>
+ 1659229127U, // <3,6,u,4>: Cost 2 vext3 LHS, <6,u,4,5>
+ 2689840081U, // <3,6,u,5>: Cost 3 vext3 LHS, <6,u,5,6>
+ 1659228984U, // <3,6,u,6>: Cost 2 vext3 LHS, <6,6,6,6>
+ 1652298720U, // <3,6,u,7>: Cost 2 vext3 <6,u,7,3>, <6,u,7,3>
+ 1659229159U, // <3,6,u,u>: Cost 2 vext3 LHS, <6,u,u,1>
+ 2626813952U, // <3,7,0,0>: Cost 3 vext2 <1,5,3,7>, <0,0,0,0>
+ 1553072230U, // <3,7,0,1>: Cost 2 vext2 <1,5,3,7>, LHS
+ 2626814116U, // <3,7,0,2>: Cost 3 vext2 <1,5,3,7>, <0,2,0,2>
+ 3700556028U, // <3,7,0,3>: Cost 4 vext2 <1,5,3,7>, <0,3,1,0>
+ 2626814290U, // <3,7,0,4>: Cost 3 vext2 <1,5,3,7>, <0,4,1,5>
+ 2582507375U, // <3,7,0,5>: Cost 3 vext1 <5,3,7,0>, <5,3,7,0>
+ 2588480072U, // <3,7,0,6>: Cost 3 vext1 <6,3,7,0>, <6,3,7,0>
+ 2732971055U, // <3,7,0,7>: Cost 3 vext3 LHS, <7,0,7,1>
+ 1553072797U, // <3,7,0,u>: Cost 2 vext2 <1,5,3,7>, LHS
+ 2626814710U, // <3,7,1,0>: Cost 3 vext2 <1,5,3,7>, <1,0,3,2>
+ 2626814772U, // <3,7,1,1>: Cost 3 vext2 <1,5,3,7>, <1,1,1,1>
+ 2626814870U, // <3,7,1,2>: Cost 3 vext2 <1,5,3,7>, <1,2,3,0>
+ 2625487854U, // <3,7,1,3>: Cost 3 vext2 <1,3,3,7>, <1,3,3,7>
+ 2582514998U, // <3,7,1,4>: Cost 3 vext1 <5,3,7,1>, RHS
+ 1553073296U, // <3,7,1,5>: Cost 2 vext2 <1,5,3,7>, <1,5,3,7>
+ 2627478753U, // <3,7,1,6>: Cost 3 vext2 <1,6,3,7>, <1,6,3,7>
+ 2727367810U, // <3,7,1,7>: Cost 3 vext3 <7,1,7,3>, <7,1,7,3>
+ 1555064195U, // <3,7,1,u>: Cost 2 vext2 <1,u,3,7>, <1,u,3,7>
+ 2588491878U, // <3,7,2,0>: Cost 3 vext1 <6,3,7,2>, LHS
+ 3700557318U, // <3,7,2,1>: Cost 4 vext2 <1,5,3,7>, <2,1,0,3>
+ 2626815592U, // <3,7,2,2>: Cost 3 vext2 <1,5,3,7>, <2,2,2,2>
+ 2626815654U, // <3,7,2,3>: Cost 3 vext2 <1,5,3,7>, <2,3,0,1>
+ 2588495158U, // <3,7,2,4>: Cost 3 vext1 <6,3,7,2>, RHS
+ 2632787817U, // <3,7,2,5>: Cost 3 vext2 <2,5,3,7>, <2,5,3,7>
+ 1559709626U, // <3,7,2,6>: Cost 2 vext2 <2,6,3,7>, <2,6,3,7>
+ 2728031443U, // <3,7,2,7>: Cost 3 vext3 <7,2,7,3>, <7,2,7,3>
+ 1561036892U, // <3,7,2,u>: Cost 2 vext2 <2,u,3,7>, <2,u,3,7>
+ 2626816150U, // <3,7,3,0>: Cost 3 vext2 <1,5,3,7>, <3,0,1,2>
+ 2626816268U, // <3,7,3,1>: Cost 3 vext2 <1,5,3,7>, <3,1,5,3>
+ 2633451878U, // <3,7,3,2>: Cost 3 vext2 <2,6,3,7>, <3,2,6,3>
+ 2626816412U, // <3,7,3,3>: Cost 3 vext2 <1,5,3,7>, <3,3,3,3>
+ 2626816514U, // <3,7,3,4>: Cost 3 vext2 <1,5,3,7>, <3,4,5,6>
+ 2638760514U, // <3,7,3,5>: Cost 3 vext2 <3,5,3,7>, <3,5,3,7>
+ 2639424147U, // <3,7,3,6>: Cost 3 vext2 <3,6,3,7>, <3,6,3,7>
+ 2826961920U, // <3,7,3,7>: Cost 3 vuzpr <1,3,5,7>, <1,3,5,7>
+ 2626816798U, // <3,7,3,u>: Cost 3 vext2 <1,5,3,7>, <3,u,1,2>
+ 2582536294U, // <3,7,4,0>: Cost 3 vext1 <5,3,7,4>, LHS
+ 2582537360U, // <3,7,4,1>: Cost 3 vext1 <5,3,7,4>, <1,5,3,7>
+ 2588510138U, // <3,7,4,2>: Cost 3 vext1 <6,3,7,4>, <2,6,3,7>
+ 3700558996U, // <3,7,4,3>: Cost 4 vext2 <1,5,3,7>, <4,3,6,7>
+ 2582539574U, // <3,7,4,4>: Cost 3 vext1 <5,3,7,4>, RHS
+ 1553075510U, // <3,7,4,5>: Cost 2 vext2 <1,5,3,7>, RHS
+ 2588512844U, // <3,7,4,6>: Cost 3 vext1 <6,3,7,4>, <6,3,7,4>
+ 2564625766U, // <3,7,4,7>: Cost 3 vext1 <2,3,7,4>, <7,4,5,6>
+ 1553075753U, // <3,7,4,u>: Cost 2 vext2 <1,5,3,7>, RHS
+ 2732971398U, // <3,7,5,0>: Cost 3 vext3 LHS, <7,5,0,2>
+ 2626817744U, // <3,7,5,1>: Cost 3 vext2 <1,5,3,7>, <5,1,7,3>
+ 3700559649U, // <3,7,5,2>: Cost 4 vext2 <1,5,3,7>, <5,2,7,3>
+ 2626817903U, // <3,7,5,3>: Cost 3 vext2 <1,5,3,7>, <5,3,7,0>
+ 2258728203U, // <3,7,5,4>: Cost 3 vrev <7,3,4,5>
+ 2732971446U, // <3,7,5,5>: Cost 3 vext3 LHS, <7,5,5,5>
+ 2732971457U, // <3,7,5,6>: Cost 3 vext3 LHS, <7,5,6,7>
+ 2826964278U, // <3,7,5,7>: Cost 3 vuzpr <1,3,5,7>, RHS
+ 2826964279U, // <3,7,5,u>: Cost 3 vuzpr <1,3,5,7>, RHS
+ 2732971478U, // <3,7,6,0>: Cost 3 vext3 LHS, <7,6,0,1>
+ 2732971486U, // <3,7,6,1>: Cost 3 vext3 LHS, <7,6,1,0>
+ 2633454074U, // <3,7,6,2>: Cost 3 vext2 <2,6,3,7>, <6,2,7,3>
+ 2633454152U, // <3,7,6,3>: Cost 3 vext2 <2,6,3,7>, <6,3,7,0>
+ 2732971518U, // <3,7,6,4>: Cost 3 vext3 LHS, <7,6,4,5>
+ 2732971526U, // <3,7,6,5>: Cost 3 vext3 LHS, <7,6,5,4>
+ 2732971537U, // <3,7,6,6>: Cost 3 vext3 LHS, <7,6,6,6>
+ 2732971540U, // <3,7,6,7>: Cost 3 vext3 LHS, <7,6,7,0>
+ 2726041124U, // <3,7,6,u>: Cost 3 vext3 <6,u,7,3>, <7,6,u,7>
+ 2570616934U, // <3,7,7,0>: Cost 3 vext1 <3,3,7,7>, LHS
+ 2570617856U, // <3,7,7,1>: Cost 3 vext1 <3,3,7,7>, <1,3,5,7>
+ 2564646635U, // <3,7,7,2>: Cost 3 vext1 <2,3,7,7>, <2,3,7,7>
+ 2570619332U, // <3,7,7,3>: Cost 3 vext1 <3,3,7,7>, <3,3,7,7>
+ 2570620214U, // <3,7,7,4>: Cost 3 vext1 <3,3,7,7>, RHS
+ 2582564726U, // <3,7,7,5>: Cost 3 vext1 <5,3,7,7>, <5,3,7,7>
+ 2588537423U, // <3,7,7,6>: Cost 3 vext1 <6,3,7,7>, <6,3,7,7>
+ 1659229804U, // <3,7,7,7>: Cost 2 vext3 LHS, <7,7,7,7>
+ 1659229804U, // <3,7,7,u>: Cost 2 vext3 LHS, <7,7,7,7>
+ 2626819795U, // <3,7,u,0>: Cost 3 vext2 <1,5,3,7>, <u,0,1,2>
+ 1553078062U, // <3,7,u,1>: Cost 2 vext2 <1,5,3,7>, LHS
+ 2626819973U, // <3,7,u,2>: Cost 3 vext2 <1,5,3,7>, <u,2,3,0>
+ 2826961565U, // <3,7,u,3>: Cost 3 vuzpr <1,3,5,7>, LHS
+ 2626820159U, // <3,7,u,4>: Cost 3 vext2 <1,5,3,7>, <u,4,5,6>
+ 1553078426U, // <3,7,u,5>: Cost 2 vext2 <1,5,3,7>, RHS
+ 1595545808U, // <3,7,u,6>: Cost 2 vext2 <u,6,3,7>, <u,6,3,7>
+ 1659229804U, // <3,7,u,7>: Cost 2 vext3 LHS, <7,7,7,7>
+ 1553078629U, // <3,7,u,u>: Cost 2 vext2 <1,5,3,7>, LHS
+ 1611448320U, // <3,u,0,0>: Cost 2 vext3 LHS, <0,0,0,0>
+ 1611896531U, // <3,u,0,1>: Cost 2 vext3 LHS, <u,0,1,2>
+ 1659672284U, // <3,u,0,2>: Cost 2 vext3 LHS, <u,0,2,2>
+ 1616099045U, // <3,u,0,3>: Cost 2 vext3 LHS, <u,0,3,2>
+ 2685638381U, // <3,u,0,4>: Cost 3 vext3 LHS, <u,0,4,1>
+ 1663874806U, // <3,u,0,5>: Cost 2 vext3 LHS, <u,0,5,1>
+ 1663874816U, // <3,u,0,6>: Cost 2 vext3 LHS, <u,0,6,2>
+ 2960313672U, // <3,u,0,7>: Cost 3 vzipr <1,2,3,0>, RHS
+ 1611896594U, // <3,u,0,u>: Cost 2 vext3 LHS, <u,0,u,2>
+ 1549763324U, // <3,u,1,0>: Cost 2 vext2 <1,0,3,u>, <1,0,3,u>
+ 1550426957U, // <3,u,1,1>: Cost 2 vext2 <1,1,3,u>, <1,1,3,u>
+ 537712430U, // <3,u,1,2>: Cost 1 vext3 LHS, LHS
+ 1616541495U, // <3,u,1,3>: Cost 2 vext3 LHS, <u,1,3,3>
+ 1490930998U, // <3,u,1,4>: Cost 2 vext1 <2,3,u,1>, RHS
+ 1553081489U, // <3,u,1,5>: Cost 2 vext2 <1,5,3,u>, <1,5,3,u>
+ 2627486946U, // <3,u,1,6>: Cost 3 vext2 <1,6,3,u>, <1,6,3,u>
+ 1659230043U, // <3,u,1,7>: Cost 2 vext3 LHS, <u,1,7,3>
+ 537712484U, // <3,u,1,u>: Cost 1 vext3 LHS, LHS
+ 1611890852U, // <3,u,2,0>: Cost 2 vext3 LHS, <0,2,0,2>
+ 2624833102U, // <3,u,2,1>: Cost 3 vext2 <1,2,3,u>, <2,1,u,3>
+ 1557063287U, // <3,u,2,2>: Cost 2 vext2 <2,2,3,u>, <2,2,3,u>
+ 1616099205U, // <3,u,2,3>: Cost 2 vext3 LHS, <u,2,3,0>
+ 1611890892U, // <3,u,2,4>: Cost 2 vext3 LHS, <0,2,4,6>
+ 2689841054U, // <3,u,2,5>: Cost 3 vext3 LHS, <u,2,5,7>
+ 1559717819U, // <3,u,2,6>: Cost 2 vext2 <2,6,3,u>, <2,6,3,u>
+ 1659230124U, // <3,u,2,7>: Cost 2 vext3 LHS, <u,2,7,3>
+ 1616541618U, // <3,u,2,u>: Cost 2 vext3 LHS, <u,2,u,0>
+ 1611896764U, // <3,u,3,0>: Cost 2 vext3 LHS, <u,3,0,1>
+ 1484973079U, // <3,u,3,1>: Cost 2 vext1 <1,3,u,3>, <1,3,u,3>
+ 2685638607U, // <3,u,3,2>: Cost 3 vext3 LHS, <u,3,2,2>
+ 336380006U, // <3,u,3,3>: Cost 1 vdup3 LHS
+ 1611896804U, // <3,u,3,4>: Cost 2 vext3 LHS, <u,3,4,5>
+ 1616541679U, // <3,u,3,5>: Cost 2 vext3 LHS, <u,3,5,7>
+ 2690283512U, // <3,u,3,6>: Cost 3 vext3 LHS, <u,3,6,7>
+ 2959674696U, // <3,u,3,7>: Cost 3 vzipr <1,1,3,3>, RHS
+ 336380006U, // <3,u,3,u>: Cost 1 vdup3 LHS
+ 2558722150U, // <3,u,4,0>: Cost 3 vext1 <1,3,u,4>, LHS
+ 1659672602U, // <3,u,4,1>: Cost 2 vext3 LHS, <u,4,1,5>
+ 1659672612U, // <3,u,4,2>: Cost 2 vext3 LHS, <u,4,2,6>
+ 2689841196U, // <3,u,4,3>: Cost 3 vext3 LHS, <u,4,3,5>
+ 1659227344U, // <3,u,4,4>: Cost 2 vext3 LHS, <4,4,4,4>
+ 1611896895U, // <3,u,4,5>: Cost 2 vext3 LHS, <u,4,5,6>
+ 1663875144U, // <3,u,4,6>: Cost 2 vext3 LHS, <u,4,6,6>
+ 1659230289U, // <3,u,4,7>: Cost 2 vext3 LHS, <u,4,7,6>
+ 1611896922U, // <3,u,4,u>: Cost 2 vext3 LHS, <u,4,u,6>
+ 1490960486U, // <3,u,5,0>: Cost 2 vext1 <2,3,u,5>, LHS
+ 2689841261U, // <3,u,5,1>: Cost 3 vext3 LHS, <u,5,1,7>
+ 1490962162U, // <3,u,5,2>: Cost 2 vext1 <2,3,u,5>, <2,3,u,5>
+ 1616541823U, // <3,u,5,3>: Cost 2 vext3 LHS, <u,5,3,7>
+ 1490963766U, // <3,u,5,4>: Cost 2 vext1 <2,3,u,5>, RHS
+ 1659228164U, // <3,u,5,5>: Cost 2 vext3 LHS, <5,5,5,5>
+ 537712794U, // <3,u,5,6>: Cost 1 vext3 LHS, RHS
+ 1659230371U, // <3,u,5,7>: Cost 2 vext3 LHS, <u,5,7,7>
+ 537712812U, // <3,u,5,u>: Cost 1 vext3 LHS, RHS
+ 2689841327U, // <3,u,6,0>: Cost 3 vext3 LHS, <u,6,0,1>
+ 2558739482U, // <3,u,6,1>: Cost 3 vext1 <1,3,u,6>, <1,3,u,6>
+ 2689841351U, // <3,u,6,2>: Cost 3 vext3 LHS, <u,6,2,7>
+ 1616099536U, // <3,u,6,3>: Cost 2 vext3 LHS, <u,6,3,7>
+ 1659227508U, // <3,u,6,4>: Cost 2 vext3 LHS, <4,6,4,6>
+ 2690283746U, // <3,u,6,5>: Cost 3 vext3 LHS, <u,6,5,7>
+ 1659228984U, // <3,u,6,6>: Cost 2 vext3 LHS, <6,6,6,6>
+ 1659230445U, // <3,u,6,7>: Cost 2 vext3 LHS, <u,6,7,0>
+ 1616099581U, // <3,u,6,u>: Cost 2 vext3 LHS, <u,6,u,7>
+ 1485004902U, // <3,u,7,0>: Cost 2 vext1 <1,3,u,7>, LHS
+ 1485005851U, // <3,u,7,1>: Cost 2 vext1 <1,3,u,7>, <1,3,u,7>
+ 2558748264U, // <3,u,7,2>: Cost 3 vext1 <1,3,u,7>, <2,2,2,2>
+ 3095397021U, // <3,u,7,3>: Cost 3 vtrnr <1,3,5,7>, LHS
+ 1485008182U, // <3,u,7,4>: Cost 2 vext1 <1,3,u,7>, RHS
+ 1659228328U, // <3,u,7,5>: Cost 2 vext3 LHS, <5,7,5,7>
+ 2722060599U, // <3,u,7,6>: Cost 3 vext3 <6,2,7,3>, <u,7,6,2>
+ 1659229804U, // <3,u,7,7>: Cost 2 vext3 LHS, <7,7,7,7>
+ 1485010734U, // <3,u,7,u>: Cost 2 vext1 <1,3,u,7>, LHS
+ 1616099665U, // <3,u,u,0>: Cost 2 vext3 LHS, <u,u,0,1>
+ 1611897179U, // <3,u,u,1>: Cost 2 vext3 LHS, <u,u,1,2>
+ 537712997U, // <3,u,u,2>: Cost 1 vext3 LHS, LHS
+ 336380006U, // <3,u,u,3>: Cost 1 vdup3 LHS
+ 1616099705U, // <3,u,u,4>: Cost 2 vext3 LHS, <u,u,4,5>
+ 1611897219U, // <3,u,u,5>: Cost 2 vext3 LHS, <u,u,5,6>
+ 537713037U, // <3,u,u,6>: Cost 1 vext3 LHS, RHS
+ 1659230607U, // <3,u,u,7>: Cost 2 vext3 LHS, <u,u,7,0>
+ 537713051U, // <3,u,u,u>: Cost 1 vext3 LHS, LHS
+ 2691907584U, // <4,0,0,0>: Cost 3 vext3 <1,2,3,4>, <0,0,0,0>
+ 2691907594U, // <4,0,0,1>: Cost 3 vext3 <1,2,3,4>, <0,0,1,1>
+ 2691907604U, // <4,0,0,2>: Cost 3 vext3 <1,2,3,4>, <0,0,2,2>
+ 3709862144U, // <4,0,0,3>: Cost 4 vext2 <3,1,4,0>, <0,3,1,4>
+ 2684682280U, // <4,0,0,4>: Cost 3 vext3 <0,0,4,4>, <0,0,4,4>
+ 3694600633U, // <4,0,0,5>: Cost 4 vext2 <0,5,4,0>, <0,5,4,0>
+ 3291431290U, // <4,0,0,6>: Cost 4 vrev <0,4,6,0>
+ 3668342067U, // <4,0,0,7>: Cost 4 vext1 <7,4,0,0>, <7,4,0,0>
+ 2691907657U, // <4,0,0,u>: Cost 3 vext3 <1,2,3,4>, <0,0,u,1>
+ 2570715238U, // <4,0,1,0>: Cost 3 vext1 <3,4,0,1>, LHS
+ 2570716058U, // <4,0,1,1>: Cost 3 vext1 <3,4,0,1>, <1,2,3,4>
+ 1618165862U, // <4,0,1,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2570717648U, // <4,0,1,3>: Cost 3 vext1 <3,4,0,1>, <3,4,0,1>
+ 2570718518U, // <4,0,1,4>: Cost 3 vext1 <3,4,0,1>, RHS
+ 2594607206U, // <4,0,1,5>: Cost 3 vext1 <7,4,0,1>, <5,6,7,4>
+ 3662377563U, // <4,0,1,6>: Cost 4 vext1 <6,4,0,1>, <6,4,0,1>
+ 2594608436U, // <4,0,1,7>: Cost 3 vext1 <7,4,0,1>, <7,4,0,1>
+ 1618165916U, // <4,0,1,u>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2685714598U, // <4,0,2,0>: Cost 3 vext3 <0,2,0,4>, <0,2,0,4>
+ 3759530159U, // <4,0,2,1>: Cost 4 vext3 <0,2,1,4>, <0,2,1,4>
+ 2685862072U, // <4,0,2,2>: Cost 3 vext3 <0,2,2,4>, <0,2,2,4>
+ 2631476937U, // <4,0,2,3>: Cost 3 vext2 <2,3,4,0>, <2,3,4,0>
+ 2685714636U, // <4,0,2,4>: Cost 3 vext3 <0,2,0,4>, <0,2,4,6>
+ 3765649622U, // <4,0,2,5>: Cost 4 vext3 <1,2,3,4>, <0,2,5,7>
+ 2686157020U, // <4,0,2,6>: Cost 3 vext3 <0,2,6,4>, <0,2,6,4>
+ 3668358453U, // <4,0,2,7>: Cost 4 vext1 <7,4,0,2>, <7,4,0,2>
+ 2686304494U, // <4,0,2,u>: Cost 3 vext3 <0,2,u,4>, <0,2,u,4>
+ 3632529510U, // <4,0,3,0>: Cost 4 vext1 <1,4,0,3>, LHS
+ 2686451968U, // <4,0,3,1>: Cost 3 vext3 <0,3,1,4>, <0,3,1,4>
+ 2686525705U, // <4,0,3,2>: Cost 3 vext3 <0,3,2,4>, <0,3,2,4>
+ 3760341266U, // <4,0,3,3>: Cost 4 vext3 <0,3,3,4>, <0,3,3,4>
+ 3632532790U, // <4,0,3,4>: Cost 4 vext1 <1,4,0,3>, RHS
+ 3913254606U, // <4,0,3,5>: Cost 4 vuzpr <3,4,5,0>, <2,3,4,5>
+ 3705219740U, // <4,0,3,6>: Cost 4 vext2 <2,3,4,0>, <3,6,4,7>
+ 3713845990U, // <4,0,3,7>: Cost 4 vext2 <3,7,4,0>, <3,7,4,0>
+ 2686451968U, // <4,0,3,u>: Cost 3 vext3 <0,3,1,4>, <0,3,1,4>
+ 2552823910U, // <4,0,4,0>: Cost 3 vext1 <0,4,0,4>, LHS
+ 2691907922U, // <4,0,4,1>: Cost 3 vext3 <1,2,3,4>, <0,4,1,5>
+ 2691907932U, // <4,0,4,2>: Cost 3 vext3 <1,2,3,4>, <0,4,2,6>
+ 3626567830U, // <4,0,4,3>: Cost 4 vext1 <0,4,0,4>, <3,0,1,2>
+ 2552827190U, // <4,0,4,4>: Cost 3 vext1 <0,4,0,4>, RHS
+ 2631478582U, // <4,0,4,5>: Cost 3 vext2 <2,3,4,0>, RHS
+ 3626570017U, // <4,0,4,6>: Cost 4 vext1 <0,4,0,4>, <6,0,1,2>
+ 3668374839U, // <4,0,4,7>: Cost 4 vext1 <7,4,0,4>, <7,4,0,4>
+ 2552829742U, // <4,0,4,u>: Cost 3 vext1 <0,4,0,4>, LHS
+ 2558804070U, // <4,0,5,0>: Cost 3 vext1 <1,4,0,5>, LHS
+ 1839644774U, // <4,0,5,1>: Cost 2 vzipl RHS, LHS
+ 2913386660U, // <4,0,5,2>: Cost 3 vzipl RHS, <0,2,0,2>
+ 2570750420U, // <4,0,5,3>: Cost 3 vext1 <3,4,0,5>, <3,4,0,5>
+ 2558807350U, // <4,0,5,4>: Cost 3 vext1 <1,4,0,5>, RHS
+ 3987128750U, // <4,0,5,5>: Cost 4 vzipl RHS, <0,5,2,7>
+ 3987128822U, // <4,0,5,6>: Cost 4 vzipl RHS, <0,6,1,7>
+ 2594641208U, // <4,0,5,7>: Cost 3 vext1 <7,4,0,5>, <7,4,0,5>
+ 1839645341U, // <4,0,5,u>: Cost 2 vzipl RHS, LHS
+ 2552840294U, // <4,0,6,0>: Cost 3 vext1 <0,4,0,6>, LHS
+ 3047604234U, // <4,0,6,1>: Cost 3 vtrnl RHS, <0,0,1,1>
+ 1973862502U, // <4,0,6,2>: Cost 2 vtrnl RHS, LHS
+ 2570758613U, // <4,0,6,3>: Cost 3 vext1 <3,4,0,6>, <3,4,0,6>
+ 2552843574U, // <4,0,6,4>: Cost 3 vext1 <0,4,0,6>, RHS
+ 2217664887U, // <4,0,6,5>: Cost 3 vrev <0,4,5,6>
+ 3662418528U, // <4,0,6,6>: Cost 4 vext1 <6,4,0,6>, <6,4,0,6>
+ 2658022257U, // <4,0,6,7>: Cost 3 vext2 <6,7,4,0>, <6,7,4,0>
+ 1973862556U, // <4,0,6,u>: Cost 2 vtrnl RHS, LHS
+ 3731764218U, // <4,0,7,0>: Cost 4 vext2 <6,7,4,0>, <7,0,1,2>
+ 3988324454U, // <4,0,7,1>: Cost 4 vzipl <4,7,5,0>, LHS
+ 4122034278U, // <4,0,7,2>: Cost 4 vtrnl <4,6,7,1>, LHS
+ 3735082246U, // <4,0,7,3>: Cost 4 vext2 <7,3,4,0>, <7,3,4,0>
+ 3731764536U, // <4,0,7,4>: Cost 4 vext2 <6,7,4,0>, <7,4,0,5>
+ 3937145718U, // <4,0,7,5>: Cost 4 vuzpr <7,4,5,0>, <6,7,4,5>
+ 3737073145U, // <4,0,7,6>: Cost 4 vext2 <7,6,4,0>, <7,6,4,0>
+ 3731764844U, // <4,0,7,7>: Cost 4 vext2 <6,7,4,0>, <7,7,7,7>
+ 4122034332U, // <4,0,7,u>: Cost 4 vtrnl <4,6,7,1>, LHS
+ 2552856678U, // <4,0,u,0>: Cost 3 vext1 <0,4,0,u>, LHS
+ 1841635430U, // <4,0,u,1>: Cost 2 vzipl RHS, LHS
+ 1618166429U, // <4,0,u,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2570774999U, // <4,0,u,3>: Cost 3 vext1 <3,4,0,u>, <3,4,0,u>
+ 2552859958U, // <4,0,u,4>: Cost 3 vext1 <0,4,0,u>, RHS
+ 2631481498U, // <4,0,u,5>: Cost 3 vext2 <2,3,4,0>, RHS
+ 2686157020U, // <4,0,u,6>: Cost 3 vext3 <0,2,6,4>, <0,2,6,4>
+ 2594665787U, // <4,0,u,7>: Cost 3 vext1 <7,4,0,u>, <7,4,0,u>
+ 1618166483U, // <4,0,u,u>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2617548837U, // <4,1,0,0>: Cost 3 vext2 <0,0,4,1>, <0,0,4,1>
+ 2622857318U, // <4,1,0,1>: Cost 3 vext2 <0,u,4,1>, LHS
+ 3693281484U, // <4,1,0,2>: Cost 4 vext2 <0,3,4,1>, <0,2,4,6>
+ 2691908342U, // <4,1,0,3>: Cost 3 vext3 <1,2,3,4>, <1,0,3,2>
+ 2622857554U, // <4,1,0,4>: Cost 3 vext2 <0,u,4,1>, <0,4,1,5>
+ 3764470538U, // <4,1,0,5>: Cost 4 vext3 <1,0,5,4>, <1,0,5,4>
+ 3695272459U, // <4,1,0,6>: Cost 4 vext2 <0,6,4,1>, <0,6,4,1>
+ 3733094980U, // <4,1,0,7>: Cost 4 vext2 <7,0,4,1>, <0,7,1,4>
+ 2622857885U, // <4,1,0,u>: Cost 3 vext2 <0,u,4,1>, LHS
+ 3696599798U, // <4,1,1,0>: Cost 4 vext2 <0,u,4,1>, <1,0,3,2>
+ 2691097399U, // <4,1,1,1>: Cost 3 vext3 <1,1,1,4>, <1,1,1,4>
+ 2631484314U, // <4,1,1,2>: Cost 3 vext2 <2,3,4,1>, <1,2,3,4>
+ 2691908424U, // <4,1,1,3>: Cost 3 vext3 <1,2,3,4>, <1,1,3,3>
+ 3696600125U, // <4,1,1,4>: Cost 4 vext2 <0,u,4,1>, <1,4,3,5>
+ 3696600175U, // <4,1,1,5>: Cost 4 vext2 <0,u,4,1>, <1,5,0,1>
+ 3696600307U, // <4,1,1,6>: Cost 4 vext2 <0,u,4,1>, <1,6,5,7>
+ 3668423997U, // <4,1,1,7>: Cost 4 vext1 <7,4,1,1>, <7,4,1,1>
+ 2691908469U, // <4,1,1,u>: Cost 3 vext3 <1,2,3,4>, <1,1,u,3>
+ 2570797158U, // <4,1,2,0>: Cost 3 vext1 <3,4,1,2>, LHS
+ 2570797978U, // <4,1,2,1>: Cost 3 vext1 <3,4,1,2>, <1,2,3,4>
+ 3696600680U, // <4,1,2,2>: Cost 4 vext2 <0,u,4,1>, <2,2,2,2>
+ 1618166682U, // <4,1,2,3>: Cost 2 vext3 <1,2,3,4>, <1,2,3,4>
+ 2570800438U, // <4,1,2,4>: Cost 3 vext1 <3,4,1,2>, RHS
+ 3765650347U, // <4,1,2,5>: Cost 4 vext3 <1,2,3,4>, <1,2,5,3>
+ 3696601018U, // <4,1,2,6>: Cost 4 vext2 <0,u,4,1>, <2,6,3,7>
+ 3668432190U, // <4,1,2,7>: Cost 4 vext1 <7,4,1,2>, <7,4,1,2>
+ 1618535367U, // <4,1,2,u>: Cost 2 vext3 <1,2,u,4>, <1,2,u,4>
+ 2564833382U, // <4,1,3,0>: Cost 3 vext1 <2,4,1,3>, LHS
+ 2691908568U, // <4,1,3,1>: Cost 3 vext3 <1,2,3,4>, <1,3,1,3>
+ 2691908578U, // <4,1,3,2>: Cost 3 vext3 <1,2,3,4>, <1,3,2,4>
+ 2692572139U, // <4,1,3,3>: Cost 3 vext3 <1,3,3,4>, <1,3,3,4>
+ 2564836662U, // <4,1,3,4>: Cost 3 vext1 <2,4,1,3>, RHS
+ 2691908608U, // <4,1,3,5>: Cost 3 vext3 <1,2,3,4>, <1,3,5,7>
+ 2588725862U, // <4,1,3,6>: Cost 3 vext1 <6,4,1,3>, <6,4,1,3>
+ 3662468090U, // <4,1,3,7>: Cost 4 vext1 <6,4,1,3>, <7,0,1,2>
+ 2691908631U, // <4,1,3,u>: Cost 3 vext3 <1,2,3,4>, <1,3,u,3>
+ 3760194590U, // <4,1,4,0>: Cost 4 vext3 <0,3,1,4>, <1,4,0,1>
+ 3693947874U, // <4,1,4,1>: Cost 4 vext2 <0,4,4,1>, <4,1,5,0>
+ 3765650484U, // <4,1,4,2>: Cost 4 vext3 <1,2,3,4>, <1,4,2,5>
+ 3113877606U, // <4,1,4,3>: Cost 3 vtrnr <4,4,4,4>, LHS
+ 3760194630U, // <4,1,4,4>: Cost 4 vext3 <0,3,1,4>, <1,4,4,5>
+ 2622860598U, // <4,1,4,5>: Cost 3 vext2 <0,u,4,1>, RHS
+ 3297436759U, // <4,1,4,6>: Cost 4 vrev <1,4,6,4>
+ 3800007772U, // <4,1,4,7>: Cost 4 vext3 <7,0,1,4>, <1,4,7,0>
+ 2622860841U, // <4,1,4,u>: Cost 3 vext2 <0,u,4,1>, RHS
+ 1479164006U, // <4,1,5,0>: Cost 2 vext1 <0,4,1,5>, LHS
+ 2552906486U, // <4,1,5,1>: Cost 3 vext1 <0,4,1,5>, <1,0,3,2>
+ 2552907299U, // <4,1,5,2>: Cost 3 vext1 <0,4,1,5>, <2,1,3,5>
+ 2552907926U, // <4,1,5,3>: Cost 3 vext1 <0,4,1,5>, <3,0,1,2>
+ 1479167286U, // <4,1,5,4>: Cost 2 vext1 <0,4,1,5>, RHS
+ 2913387664U, // <4,1,5,5>: Cost 3 vzipl RHS, <1,5,3,7>
+ 2600686074U, // <4,1,5,6>: Cost 3 vext1 <u,4,1,5>, <6,2,7,3>
+ 2600686586U, // <4,1,5,7>: Cost 3 vext1 <u,4,1,5>, <7,0,1,2>
+ 1479169838U, // <4,1,5,u>: Cost 2 vext1 <0,4,1,5>, LHS
+ 2552914022U, // <4,1,6,0>: Cost 3 vext1 <0,4,1,6>, LHS
+ 2558886708U, // <4,1,6,1>: Cost 3 vext1 <1,4,1,6>, <1,1,1,1>
+ 4028205206U, // <4,1,6,2>: Cost 4 vzipr <0,2,4,6>, <3,0,1,2>
+ 3089858662U, // <4,1,6,3>: Cost 3 vtrnr <0,4,2,6>, LHS
+ 2552917302U, // <4,1,6,4>: Cost 3 vext1 <0,4,1,6>, RHS
+ 2223637584U, // <4,1,6,5>: Cost 3 vrev <1,4,5,6>
+ 4121347081U, // <4,1,6,6>: Cost 4 vtrnl RHS, <1,3,6,7>
+ 3721155406U, // <4,1,6,7>: Cost 4 vext2 <5,0,4,1>, <6,7,0,1>
+ 2552919854U, // <4,1,6,u>: Cost 3 vext1 <0,4,1,6>, LHS
+ 2659357716U, // <4,1,7,0>: Cost 3 vext2 <7,0,4,1>, <7,0,4,1>
+ 3733763173U, // <4,1,7,1>: Cost 4 vext2 <7,1,4,1>, <7,1,4,1>
+ 3734426806U, // <4,1,7,2>: Cost 4 vext2 <7,2,4,1>, <7,2,4,1>
+ 2695226671U, // <4,1,7,3>: Cost 3 vext3 <1,7,3,4>, <1,7,3,4>
+ 3721155942U, // <4,1,7,4>: Cost 4 vext2 <5,0,4,1>, <7,4,5,6>
+ 3721155976U, // <4,1,7,5>: Cost 4 vext2 <5,0,4,1>, <7,5,0,4>
+ 3662500458U, // <4,1,7,6>: Cost 4 vext1 <6,4,1,7>, <6,4,1,7>
+ 3721156204U, // <4,1,7,7>: Cost 4 vext2 <5,0,4,1>, <7,7,7,7>
+ 2659357716U, // <4,1,7,u>: Cost 3 vext2 <7,0,4,1>, <7,0,4,1>
+ 1479188582U, // <4,1,u,0>: Cost 2 vext1 <0,4,1,u>, LHS
+ 2552931062U, // <4,1,u,1>: Cost 3 vext1 <0,4,1,u>, <1,0,3,2>
+ 2552931944U, // <4,1,u,2>: Cost 3 vext1 <0,4,1,u>, <2,2,2,2>
+ 1622148480U, // <4,1,u,3>: Cost 2 vext3 <1,u,3,4>, <1,u,3,4>
+ 1479191862U, // <4,1,u,4>: Cost 2 vext1 <0,4,1,u>, RHS
+ 2622863514U, // <4,1,u,5>: Cost 3 vext2 <0,u,4,1>, RHS
+ 2588725862U, // <4,1,u,6>: Cost 3 vext1 <6,4,1,3>, <6,4,1,3>
+ 2600686586U, // <4,1,u,7>: Cost 3 vext1 <u,4,1,5>, <7,0,1,2>
+ 1479194414U, // <4,1,u,u>: Cost 2 vext1 <0,4,1,u>, LHS
+ 2617557030U, // <4,2,0,0>: Cost 3 vext2 <0,0,4,2>, <0,0,4,2>
+ 2622865510U, // <4,2,0,1>: Cost 3 vext2 <0,u,4,2>, LHS
+ 2622865612U, // <4,2,0,2>: Cost 3 vext2 <0,u,4,2>, <0,2,4,6>
+ 3693289753U, // <4,2,0,3>: Cost 4 vext2 <0,3,4,2>, <0,3,4,2>
+ 2635473244U, // <4,2,0,4>: Cost 3 vext2 <3,0,4,2>, <0,4,2,6>
+ 3765650918U, // <4,2,0,5>: Cost 4 vext3 <1,2,3,4>, <2,0,5,7>
+ 2696775148U, // <4,2,0,6>: Cost 3 vext3 <2,0,6,4>, <2,0,6,4>
+ 3695944285U, // <4,2,0,7>: Cost 4 vext2 <0,7,4,2>, <0,7,4,2>
+ 2622866077U, // <4,2,0,u>: Cost 3 vext2 <0,u,4,2>, LHS
+ 3696607990U, // <4,2,1,0>: Cost 4 vext2 <0,u,4,2>, <1,0,3,2>
+ 3696608052U, // <4,2,1,1>: Cost 4 vext2 <0,u,4,2>, <1,1,1,1>
+ 3696608150U, // <4,2,1,2>: Cost 4 vext2 <0,u,4,2>, <1,2,3,0>
+ 3895574630U, // <4,2,1,3>: Cost 4 vuzpr <0,4,u,2>, LHS
+ 2691909162U, // <4,2,1,4>: Cost 3 vext3 <1,2,3,4>, <2,1,4,3>
+ 3696608400U, // <4,2,1,5>: Cost 4 vext2 <0,u,4,2>, <1,5,3,7>
+ 3760784956U, // <4,2,1,6>: Cost 4 vext3 <0,4,0,4>, <2,1,6,3>
+ 3773908549U, // <4,2,1,7>: Cost 5 vext3 <2,5,7,4>, <2,1,7,3>
+ 2691909162U, // <4,2,1,u>: Cost 3 vext3 <1,2,3,4>, <2,1,4,3>
+ 3696608748U, // <4,2,2,0>: Cost 4 vext2 <0,u,4,2>, <2,0,6,4>
+ 3696608828U, // <4,2,2,1>: Cost 4 vext2 <0,u,4,2>, <2,1,6,3>
+ 2691909224U, // <4,2,2,2>: Cost 3 vext3 <1,2,3,4>, <2,2,2,2>
+ 2691909234U, // <4,2,2,3>: Cost 3 vext3 <1,2,3,4>, <2,2,3,3>
+ 3759605368U, // <4,2,2,4>: Cost 4 vext3 <0,2,2,4>, <2,2,4,0>
+ 3696609156U, // <4,2,2,5>: Cost 4 vext2 <0,u,4,2>, <2,5,6,7>
+ 3760785040U, // <4,2,2,6>: Cost 4 vext3 <0,4,0,4>, <2,2,6,6>
+ 3668505927U, // <4,2,2,7>: Cost 4 vext1 <7,4,2,2>, <7,4,2,2>
+ 2691909279U, // <4,2,2,u>: Cost 3 vext3 <1,2,3,4>, <2,2,u,3>
+ 2691909286U, // <4,2,3,0>: Cost 3 vext3 <1,2,3,4>, <2,3,0,1>
+ 3764840111U, // <4,2,3,1>: Cost 4 vext3 <1,1,1,4>, <2,3,1,1>
+ 3765651129U, // <4,2,3,2>: Cost 4 vext3 <1,2,3,4>, <2,3,2,2>
+ 2698544836U, // <4,2,3,3>: Cost 3 vext3 <2,3,3,4>, <2,3,3,4>
+ 2685863630U, // <4,2,3,4>: Cost 3 vext3 <0,2,2,4>, <2,3,4,5>
+ 2698692310U, // <4,2,3,5>: Cost 3 vext3 <2,3,5,4>, <2,3,5,4>
+ 3772507871U, // <4,2,3,6>: Cost 4 vext3 <2,3,6,4>, <2,3,6,4>
+ 2698839784U, // <4,2,3,7>: Cost 3 vext3 <2,3,7,4>, <2,3,7,4>
+ 2691909358U, // <4,2,3,u>: Cost 3 vext3 <1,2,3,4>, <2,3,u,1>
+ 2564915302U, // <4,2,4,0>: Cost 3 vext1 <2,4,2,4>, LHS
+ 2564916122U, // <4,2,4,1>: Cost 3 vext1 <2,4,2,4>, <1,2,3,4>
+ 2564917004U, // <4,2,4,2>: Cost 3 vext1 <2,4,2,4>, <2,4,2,4>
+ 2699208469U, // <4,2,4,3>: Cost 3 vext3 <2,4,3,4>, <2,4,3,4>
+ 2564918582U, // <4,2,4,4>: Cost 3 vext1 <2,4,2,4>, RHS
+ 2622868790U, // <4,2,4,5>: Cost 3 vext2 <0,u,4,2>, RHS
+ 2229667632U, // <4,2,4,6>: Cost 3 vrev <2,4,6,4>
+ 3800082229U, // <4,2,4,7>: Cost 4 vext3 <7,0,2,4>, <2,4,7,0>
+ 2622869033U, // <4,2,4,u>: Cost 3 vext2 <0,u,4,2>, RHS
+ 2552979558U, // <4,2,5,0>: Cost 3 vext1 <0,4,2,5>, LHS
+ 2558952342U, // <4,2,5,1>: Cost 3 vext1 <1,4,2,5>, <1,2,3,0>
+ 2564925032U, // <4,2,5,2>: Cost 3 vext1 <2,4,2,5>, <2,2,2,2>
+ 2967060582U, // <4,2,5,3>: Cost 3 vzipr <2,3,4,5>, LHS
+ 2552982838U, // <4,2,5,4>: Cost 3 vext1 <0,4,2,5>, RHS
+ 3987130190U, // <4,2,5,5>: Cost 4 vzipl RHS, <2,5,0,7>
+ 2913388474U, // <4,2,5,6>: Cost 3 vzipl RHS, <2,6,3,7>
+ 3895577910U, // <4,2,5,7>: Cost 4 vuzpr <0,4,u,2>, RHS
+ 2552985390U, // <4,2,5,u>: Cost 3 vext1 <0,4,2,5>, LHS
+ 1479245926U, // <4,2,6,0>: Cost 2 vext1 <0,4,2,6>, LHS
+ 2552988406U, // <4,2,6,1>: Cost 3 vext1 <0,4,2,6>, <1,0,3,2>
+ 2552989288U, // <4,2,6,2>: Cost 3 vext1 <0,4,2,6>, <2,2,2,2>
+ 2954461286U, // <4,2,6,3>: Cost 3 vzipr <0,2,4,6>, LHS
+ 1479249206U, // <4,2,6,4>: Cost 2 vext1 <0,4,2,6>, RHS
+ 2229610281U, // <4,2,6,5>: Cost 3 vrev <2,4,5,6>
+ 2600767994U, // <4,2,6,6>: Cost 3 vext1 <u,4,2,6>, <6,2,7,3>
+ 2600768506U, // <4,2,6,7>: Cost 3 vext1 <u,4,2,6>, <7,0,1,2>
+ 1479251758U, // <4,2,6,u>: Cost 2 vext1 <0,4,2,6>, LHS
+ 2659365909U, // <4,2,7,0>: Cost 3 vext2 <7,0,4,2>, <7,0,4,2>
+ 3733771366U, // <4,2,7,1>: Cost 4 vext2 <7,1,4,2>, <7,1,4,2>
+ 3734434999U, // <4,2,7,2>: Cost 4 vext2 <7,2,4,2>, <7,2,4,2>
+ 2701199368U, // <4,2,7,3>: Cost 3 vext3 <2,7,3,4>, <2,7,3,4>
+ 4175774618U, // <4,2,7,4>: Cost 4 vtrnr <2,4,5,7>, <1,2,3,4>
+ 3303360298U, // <4,2,7,5>: Cost 4 vrev <2,4,5,7>
+ 3727136217U, // <4,2,7,6>: Cost 4 vext2 <6,0,4,2>, <7,6,0,4>
+ 3727136364U, // <4,2,7,7>: Cost 4 vext2 <6,0,4,2>, <7,7,7,7>
+ 2659365909U, // <4,2,7,u>: Cost 3 vext2 <7,0,4,2>, <7,0,4,2>
+ 1479262310U, // <4,2,u,0>: Cost 2 vext1 <0,4,2,u>, LHS
+ 2553004790U, // <4,2,u,1>: Cost 3 vext1 <0,4,2,u>, <1,0,3,2>
+ 2553005672U, // <4,2,u,2>: Cost 3 vext1 <0,4,2,u>, <2,2,2,2>
+ 2954477670U, // <4,2,u,3>: Cost 3 vzipr <0,2,4,u>, LHS
+ 1479265590U, // <4,2,u,4>: Cost 2 vext1 <0,4,2,u>, RHS
+ 2622871706U, // <4,2,u,5>: Cost 3 vext2 <0,u,4,2>, RHS
+ 2229700404U, // <4,2,u,6>: Cost 3 vrev <2,4,6,u>
+ 2600784890U, // <4,2,u,7>: Cost 3 vext1 <u,4,2,u>, <7,0,1,2>
+ 1479268142U, // <4,2,u,u>: Cost 2 vext1 <0,4,2,u>, LHS
+ 3765651595U, // <4,3,0,0>: Cost 4 vext3 <1,2,3,4>, <3,0,0,0>
+ 2691909782U, // <4,3,0,1>: Cost 3 vext3 <1,2,3,4>, <3,0,1,2>
+ 2702452897U, // <4,3,0,2>: Cost 3 vext3 <3,0,2,4>, <3,0,2,4>
+ 3693297946U, // <4,3,0,3>: Cost 4 vext2 <0,3,4,3>, <0,3,4,3>
+ 3760711856U, // <4,3,0,4>: Cost 4 vext3 <0,3,u,4>, <3,0,4,1>
+ 2235533820U, // <4,3,0,5>: Cost 3 vrev <3,4,5,0>
+ 3309349381U, // <4,3,0,6>: Cost 4 vrev <3,4,6,0>
+ 3668563278U, // <4,3,0,7>: Cost 4 vext1 <7,4,3,0>, <7,4,3,0>
+ 2691909845U, // <4,3,0,u>: Cost 3 vext3 <1,2,3,4>, <3,0,u,2>
+ 2235173328U, // <4,3,1,0>: Cost 3 vrev <3,4,0,1>
+ 3764840678U, // <4,3,1,1>: Cost 4 vext3 <1,1,1,4>, <3,1,1,1>
+ 2630173594U, // <4,3,1,2>: Cost 3 vext2 <2,1,4,3>, <1,2,3,4>
+ 2703190267U, // <4,3,1,3>: Cost 3 vext3 <3,1,3,4>, <3,1,3,4>
+ 3760195840U, // <4,3,1,4>: Cost 4 vext3 <0,3,1,4>, <3,1,4,0>
+ 3765651724U, // <4,3,1,5>: Cost 4 vext3 <1,2,3,4>, <3,1,5,3>
+ 3309357574U, // <4,3,1,6>: Cost 4 vrev <3,4,6,1>
+ 3769633054U, // <4,3,1,7>: Cost 4 vext3 <1,u,3,4>, <3,1,7,3>
+ 2703558952U, // <4,3,1,u>: Cost 3 vext3 <3,1,u,4>, <3,1,u,4>
+ 3626770534U, // <4,3,2,0>: Cost 4 vext1 <0,4,3,2>, LHS
+ 2630174250U, // <4,3,2,1>: Cost 3 vext2 <2,1,4,3>, <2,1,4,3>
+ 3765651777U, // <4,3,2,2>: Cost 4 vext3 <1,2,3,4>, <3,2,2,2>
+ 2703853900U, // <4,3,2,3>: Cost 3 vext3 <3,2,3,4>, <3,2,3,4>
+ 3626773814U, // <4,3,2,4>: Cost 4 vext1 <0,4,3,2>, RHS
+ 2704001374U, // <4,3,2,5>: Cost 3 vext3 <3,2,5,4>, <3,2,5,4>
+ 3765651814U, // <4,3,2,6>: Cost 4 vext3 <1,2,3,4>, <3,2,6,3>
+ 3769633135U, // <4,3,2,7>: Cost 4 vext3 <1,u,3,4>, <3,2,7,3>
+ 2634819681U, // <4,3,2,u>: Cost 3 vext2 <2,u,4,3>, <2,u,4,3>
+ 3765651839U, // <4,3,3,0>: Cost 4 vext3 <1,2,3,4>, <3,3,0,1>
+ 3765651848U, // <4,3,3,1>: Cost 4 vext3 <1,2,3,4>, <3,3,1,1>
+ 3710552404U, // <4,3,3,2>: Cost 4 vext2 <3,2,4,3>, <3,2,4,3>
+ 2691910044U, // <4,3,3,3>: Cost 3 vext3 <1,2,3,4>, <3,3,3,3>
+ 2704591270U, // <4,3,3,4>: Cost 3 vext3 <3,3,4,4>, <3,3,4,4>
+ 3769633202U, // <4,3,3,5>: Cost 4 vext3 <1,u,3,4>, <3,3,5,7>
+ 3703917212U, // <4,3,3,6>: Cost 4 vext2 <2,1,4,3>, <3,6,4,7>
+ 3769633220U, // <4,3,3,7>: Cost 4 vext3 <1,u,3,4>, <3,3,7,7>
+ 2691910044U, // <4,3,3,u>: Cost 3 vext3 <1,2,3,4>, <3,3,3,3>
+ 2691910096U, // <4,3,4,0>: Cost 3 vext3 <1,2,3,4>, <3,4,0,1>
+ 2691910106U, // <4,3,4,1>: Cost 3 vext3 <1,2,3,4>, <3,4,1,2>
+ 2564990741U, // <4,3,4,2>: Cost 3 vext1 <2,4,3,4>, <2,4,3,4>
+ 3765651946U, // <4,3,4,3>: Cost 4 vext3 <1,2,3,4>, <3,4,3,0>
+ 2691910136U, // <4,3,4,4>: Cost 3 vext3 <1,2,3,4>, <3,4,4,5>
+ 2686454274U, // <4,3,4,5>: Cost 3 vext3 <0,3,1,4>, <3,4,5,6>
+ 2235640329U, // <4,3,4,6>: Cost 3 vrev <3,4,6,4>
+ 3801483792U, // <4,3,4,7>: Cost 4 vext3 <7,2,3,4>, <3,4,7,2>
+ 2691910168U, // <4,3,4,u>: Cost 3 vext3 <1,2,3,4>, <3,4,u,1>
+ 2559025254U, // <4,3,5,0>: Cost 3 vext1 <1,4,3,5>, LHS
+ 2559026237U, // <4,3,5,1>: Cost 3 vext1 <1,4,3,5>, <1,4,3,5>
+ 2564998862U, // <4,3,5,2>: Cost 3 vext1 <2,4,3,5>, <2,3,4,5>
+ 2570971548U, // <4,3,5,3>: Cost 3 vext1 <3,4,3,5>, <3,3,3,3>
+ 2559028534U, // <4,3,5,4>: Cost 3 vext1 <1,4,3,5>, RHS
+ 4163519477U, // <4,3,5,5>: Cost 4 vtrnr <0,4,1,5>, <1,3,4,5>
+ 3309390346U, // <4,3,5,6>: Cost 4 vrev <3,4,6,5>
+ 2706139747U, // <4,3,5,7>: Cost 3 vext3 <3,5,7,4>, <3,5,7,4>
+ 2559031086U, // <4,3,5,u>: Cost 3 vext1 <1,4,3,5>, LHS
+ 2559033446U, // <4,3,6,0>: Cost 3 vext1 <1,4,3,6>, LHS
+ 2559034430U, // <4,3,6,1>: Cost 3 vext1 <1,4,3,6>, <1,4,3,6>
+ 2565007127U, // <4,3,6,2>: Cost 3 vext1 <2,4,3,6>, <2,4,3,6>
+ 2570979740U, // <4,3,6,3>: Cost 3 vext1 <3,4,3,6>, <3,3,3,3>
+ 2559036726U, // <4,3,6,4>: Cost 3 vext1 <1,4,3,6>, RHS
+ 1161841154U, // <4,3,6,5>: Cost 2 vrev <3,4,5,6>
+ 4028203932U, // <4,3,6,6>: Cost 4 vzipr <0,2,4,6>, <1,2,3,6>
+ 2706803380U, // <4,3,6,7>: Cost 3 vext3 <3,6,7,4>, <3,6,7,4>
+ 1162062365U, // <4,3,6,u>: Cost 2 vrev <3,4,u,6>
+ 3769633475U, // <4,3,7,0>: Cost 4 vext3 <1,u,3,4>, <3,7,0,1>
+ 3769633488U, // <4,3,7,1>: Cost 4 vext3 <1,u,3,4>, <3,7,1,5>
+ 3638757144U, // <4,3,7,2>: Cost 4 vext1 <2,4,3,7>, <2,4,3,7>
+ 3769633508U, // <4,3,7,3>: Cost 4 vext3 <1,u,3,4>, <3,7,3,7>
+ 3769633515U, // <4,3,7,4>: Cost 4 vext3 <1,u,3,4>, <3,7,4,5>
+ 3769633526U, // <4,3,7,5>: Cost 4 vext3 <1,u,3,4>, <3,7,5,7>
+ 3662647932U, // <4,3,7,6>: Cost 4 vext1 <6,4,3,7>, <6,4,3,7>
+ 3781208837U, // <4,3,7,7>: Cost 4 vext3 <3,7,7,4>, <3,7,7,4>
+ 3769633547U, // <4,3,7,u>: Cost 4 vext3 <1,u,3,4>, <3,7,u,1>
+ 2559049830U, // <4,3,u,0>: Cost 3 vext1 <1,4,3,u>, LHS
+ 2691910430U, // <4,3,u,1>: Cost 3 vext3 <1,2,3,4>, <3,u,1,2>
+ 2565023513U, // <4,3,u,2>: Cost 3 vext1 <2,4,3,u>, <2,4,3,u>
+ 2707835698U, // <4,3,u,3>: Cost 3 vext3 <3,u,3,4>, <3,u,3,4>
+ 2559053110U, // <4,3,u,4>: Cost 3 vext1 <1,4,3,u>, RHS
+ 1161857540U, // <4,3,u,5>: Cost 2 vrev <3,4,5,u>
+ 2235673101U, // <4,3,u,6>: Cost 3 vrev <3,4,6,u>
+ 2708130646U, // <4,3,u,7>: Cost 3 vext3 <3,u,7,4>, <3,u,7,4>
+ 1162078751U, // <4,3,u,u>: Cost 2 vrev <3,4,u,u>
+ 2617573416U, // <4,4,0,0>: Cost 3 vext2 <0,0,4,4>, <0,0,4,4>
+ 1570373734U, // <4,4,0,1>: Cost 2 vext2 <4,4,4,4>, LHS
+ 2779676774U, // <4,4,0,2>: Cost 3 vuzpl <4,6,4,6>, LHS
+ 3760196480U, // <4,4,0,3>: Cost 4 vext3 <0,3,1,4>, <4,0,3,1>
+ 2576977100U, // <4,4,0,4>: Cost 3 vext1 <4,4,4,0>, <4,4,4,0>
+ 2718747538U, // <4,4,0,5>: Cost 3 vext3 <5,6,7,4>, <4,0,5,1>
+ 2718747548U, // <4,4,0,6>: Cost 3 vext3 <5,6,7,4>, <4,0,6,2>
+ 3668637015U, // <4,4,0,7>: Cost 4 vext1 <7,4,4,0>, <7,4,4,0>
+ 1570374301U, // <4,4,0,u>: Cost 2 vext2 <4,4,4,4>, LHS
+ 2644116214U, // <4,4,1,0>: Cost 3 vext2 <4,4,4,4>, <1,0,3,2>
+ 2644116276U, // <4,4,1,1>: Cost 3 vext2 <4,4,4,4>, <1,1,1,1>
+ 2691910602U, // <4,4,1,2>: Cost 3 vext3 <1,2,3,4>, <4,1,2,3>
+ 2644116440U, // <4,4,1,3>: Cost 3 vext2 <4,4,4,4>, <1,3,1,3>
+ 2711227356U, // <4,4,1,4>: Cost 3 vext3 <4,4,4,4>, <4,1,4,3>
+ 2709310438U, // <4,4,1,5>: Cost 3 vext3 <4,1,5,4>, <4,1,5,4>
+ 3765652462U, // <4,4,1,6>: Cost 4 vext3 <1,2,3,4>, <4,1,6,3>
+ 3768970231U, // <4,4,1,7>: Cost 4 vext3 <1,7,3,4>, <4,1,7,3>
+ 2695891968U, // <4,4,1,u>: Cost 3 vext3 <1,u,3,4>, <4,1,u,3>
+ 3703260634U, // <4,4,2,0>: Cost 4 vext2 <2,0,4,4>, <2,0,4,4>
+ 3765652499U, // <4,4,2,1>: Cost 4 vext3 <1,2,3,4>, <4,2,1,4>
+ 2644117096U, // <4,4,2,2>: Cost 3 vext2 <4,4,4,4>, <2,2,2,2>
+ 2631509709U, // <4,4,2,3>: Cost 3 vext2 <2,3,4,4>, <2,3,4,4>
+ 2644117269U, // <4,4,2,4>: Cost 3 vext2 <4,4,4,4>, <2,4,3,4>
+ 3705251698U, // <4,4,2,5>: Cost 4 vext2 <2,3,4,4>, <2,5,4,7>
+ 2710047808U, // <4,4,2,6>: Cost 3 vext3 <4,2,6,4>, <4,2,6,4>
+ 3783863369U, // <4,4,2,7>: Cost 4 vext3 <4,2,7,4>, <4,2,7,4>
+ 2634827874U, // <4,4,2,u>: Cost 3 vext2 <2,u,4,4>, <2,u,4,4>
+ 2644117654U, // <4,4,3,0>: Cost 3 vext2 <4,4,4,4>, <3,0,1,2>
+ 3638797210U, // <4,4,3,1>: Cost 4 vext1 <2,4,4,3>, <1,2,3,4>
+ 3638798082U, // <4,4,3,2>: Cost 4 vext1 <2,4,4,3>, <2,4,1,3>
+ 2637482406U, // <4,4,3,3>: Cost 3 vext2 <3,3,4,4>, <3,3,4,4>
+ 2638146039U, // <4,4,3,4>: Cost 3 vext2 <3,4,4,4>, <3,4,4,4>
+ 3913287374U, // <4,4,3,5>: Cost 4 vuzpr <3,4,5,4>, <2,3,4,5>
+ 3765652625U, // <4,4,3,6>: Cost 4 vext3 <1,2,3,4>, <4,3,6,4>
+ 3713878762U, // <4,4,3,7>: Cost 4 vext2 <3,7,4,4>, <3,7,4,4>
+ 2637482406U, // <4,4,3,u>: Cost 3 vext2 <3,3,4,4>, <3,3,4,4>
+ 1503264870U, // <4,4,4,0>: Cost 2 vext1 <4,4,4,4>, LHS
+ 2577007514U, // <4,4,4,1>: Cost 3 vext1 <4,4,4,4>, <1,2,3,4>
+ 2577008232U, // <4,4,4,2>: Cost 3 vext1 <4,4,4,4>, <2,2,2,2>
+ 2571037175U, // <4,4,4,3>: Cost 3 vext1 <3,4,4,4>, <3,4,4,4>
+ 161926454U, // <4,4,4,4>: Cost 1 vdup0 RHS
+ 1570377014U, // <4,4,4,5>: Cost 2 vext2 <4,4,4,4>, RHS
+ 2779680054U, // <4,4,4,6>: Cost 3 vuzpl <4,6,4,6>, RHS
+ 2594927963U, // <4,4,4,7>: Cost 3 vext1 <7,4,4,4>, <7,4,4,4>
+ 161926454U, // <4,4,4,u>: Cost 1 vdup0 RHS
+ 2571042918U, // <4,4,5,0>: Cost 3 vext1 <3,4,4,5>, LHS
+ 2571043738U, // <4,4,5,1>: Cost 3 vext1 <3,4,4,5>, <1,2,3,4>
+ 3638814495U, // <4,4,5,2>: Cost 4 vext1 <2,4,4,5>, <2,4,4,5>
+ 2571045368U, // <4,4,5,3>: Cost 3 vext1 <3,4,4,5>, <3,4,4,5>
+ 2571046198U, // <4,4,5,4>: Cost 3 vext1 <3,4,4,5>, RHS
+ 1839648054U, // <4,4,5,5>: Cost 2 vzipl RHS, RHS
+ 1618169142U, // <4,4,5,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 2594936156U, // <4,4,5,7>: Cost 3 vext1 <7,4,4,5>, <7,4,4,5>
+ 1618169160U, // <4,4,5,u>: Cost 2 vext3 <1,2,3,4>, RHS
+ 2553135206U, // <4,4,6,0>: Cost 3 vext1 <0,4,4,6>, LHS
+ 3626877686U, // <4,4,6,1>: Cost 4 vext1 <0,4,4,6>, <1,0,3,2>
+ 2565080782U, // <4,4,6,2>: Cost 3 vext1 <2,4,4,6>, <2,3,4,5>
+ 2571053561U, // <4,4,6,3>: Cost 3 vext1 <3,4,4,6>, <3,4,4,6>
+ 2553138486U, // <4,4,6,4>: Cost 3 vext1 <0,4,4,6>, RHS
+ 2241555675U, // <4,4,6,5>: Cost 3 vrev <4,4,5,6>
+ 1973865782U, // <4,4,6,6>: Cost 2 vtrnl RHS, RHS
+ 2658055029U, // <4,4,6,7>: Cost 3 vext2 <6,7,4,4>, <6,7,4,4>
+ 1973865800U, // <4,4,6,u>: Cost 2 vtrnl RHS, RHS
+ 2644120570U, // <4,4,7,0>: Cost 3 vext2 <4,4,4,4>, <7,0,1,2>
+ 3638829978U, // <4,4,7,1>: Cost 4 vext1 <2,4,4,7>, <1,2,3,4>
+ 3638830881U, // <4,4,7,2>: Cost 4 vext1 <2,4,4,7>, <2,4,4,7>
+ 3735115018U, // <4,4,7,3>: Cost 4 vext2 <7,3,4,4>, <7,3,4,4>
+ 2662036827U, // <4,4,7,4>: Cost 3 vext2 <7,4,4,4>, <7,4,4,4>
+ 2713292236U, // <4,4,7,5>: Cost 3 vext3 <4,7,5,4>, <4,7,5,4>
+ 2713365973U, // <4,4,7,6>: Cost 3 vext3 <4,7,6,4>, <4,7,6,4>
+ 2644121196U, // <4,4,7,7>: Cost 3 vext2 <4,4,4,4>, <7,7,7,7>
+ 2662036827U, // <4,4,7,u>: Cost 3 vext2 <7,4,4,4>, <7,4,4,4>
+ 1503297638U, // <4,4,u,0>: Cost 2 vext1 <4,4,4,u>, LHS
+ 1570379566U, // <4,4,u,1>: Cost 2 vext2 <4,4,4,4>, LHS
+ 2779682606U, // <4,4,u,2>: Cost 3 vuzpl <4,6,4,6>, LHS
+ 2571069947U, // <4,4,u,3>: Cost 3 vext1 <3,4,4,u>, <3,4,4,u>
+ 161926454U, // <4,4,u,4>: Cost 1 vdup0 RHS
+ 1841638710U, // <4,4,u,5>: Cost 2 vzipl RHS, RHS
+ 1618169385U, // <4,4,u,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 2594960735U, // <4,4,u,7>: Cost 3 vext1 <7,4,4,u>, <7,4,4,u>
+ 161926454U, // <4,4,u,u>: Cost 1 vdup0 RHS
+ 2631516160U, // <4,5,0,0>: Cost 3 vext2 <2,3,4,5>, <0,0,0,0>
+ 1557774438U, // <4,5,0,1>: Cost 2 vext2 <2,3,4,5>, LHS
+ 2618908875U, // <4,5,0,2>: Cost 3 vext2 <0,2,4,5>, <0,2,4,5>
+ 2571078140U, // <4,5,0,3>: Cost 3 vext1 <3,4,5,0>, <3,4,5,0>
+ 2626871634U, // <4,5,0,4>: Cost 3 vext2 <1,5,4,5>, <0,4,1,5>
+ 3705258414U, // <4,5,0,5>: Cost 4 vext2 <2,3,4,5>, <0,5,2,7>
+ 2594968438U, // <4,5,0,6>: Cost 3 vext1 <7,4,5,0>, <6,7,4,5>
+ 2594968928U, // <4,5,0,7>: Cost 3 vext1 <7,4,5,0>, <7,4,5,0>
+ 1557775005U, // <4,5,0,u>: Cost 2 vext2 <2,3,4,5>, LHS
+ 2631516918U, // <4,5,1,0>: Cost 3 vext2 <2,3,4,5>, <1,0,3,2>
+ 2624217939U, // <4,5,1,1>: Cost 3 vext2 <1,1,4,5>, <1,1,4,5>
+ 2631517078U, // <4,5,1,2>: Cost 3 vext2 <2,3,4,5>, <1,2,3,0>
+ 2821341286U, // <4,5,1,3>: Cost 3 vuzpr <0,4,1,5>, LHS
+ 3895086054U, // <4,5,1,4>: Cost 4 vuzpr <0,4,1,5>, <4,1,5,4>
+ 2626872471U, // <4,5,1,5>: Cost 3 vext2 <1,5,4,5>, <1,5,4,5>
+ 3895083131U, // <4,5,1,6>: Cost 4 vuzpr <0,4,1,5>, <0,1,4,6>
+ 2718748368U, // <4,5,1,7>: Cost 3 vext3 <5,6,7,4>, <5,1,7,3>
+ 2821341291U, // <4,5,1,u>: Cost 3 vuzpr <0,4,1,5>, LHS
+ 2571092070U, // <4,5,2,0>: Cost 3 vext1 <3,4,5,2>, LHS
+ 3699287585U, // <4,5,2,1>: Cost 4 vext2 <1,3,4,5>, <2,1,3,3>
+ 2630854269U, // <4,5,2,2>: Cost 3 vext2 <2,2,4,5>, <2,2,4,5>
+ 1557776078U, // <4,5,2,3>: Cost 2 vext2 <2,3,4,5>, <2,3,4,5>
+ 2631517974U, // <4,5,2,4>: Cost 3 vext2 <2,3,4,5>, <2,4,3,5>
+ 3692652384U, // <4,5,2,5>: Cost 4 vext2 <0,2,4,5>, <2,5,2,7>
+ 2631518138U, // <4,5,2,6>: Cost 3 vext2 <2,3,4,5>, <2,6,3,7>
+ 4164013366U, // <4,5,2,7>: Cost 4 vtrnr <0,4,u,2>, RHS
+ 1561094243U, // <4,5,2,u>: Cost 2 vext2 <2,u,4,5>, <2,u,4,5>
+ 2631518358U, // <4,5,3,0>: Cost 3 vext2 <2,3,4,5>, <3,0,1,2>
+ 3895084710U, // <4,5,3,1>: Cost 4 vuzpr <0,4,1,5>, <2,3,0,1>
+ 2631518540U, // <4,5,3,2>: Cost 3 vext2 <2,3,4,5>, <3,2,3,4>
+ 2631518620U, // <4,5,3,3>: Cost 3 vext2 <2,3,4,5>, <3,3,3,3>
+ 2631518716U, // <4,5,3,4>: Cost 3 vext2 <2,3,4,5>, <3,4,5,0>
+ 2631518784U, // <4,5,3,5>: Cost 3 vext2 <2,3,4,5>, <3,5,3,5>
+ 2658060980U, // <4,5,3,6>: Cost 3 vext2 <6,7,4,5>, <3,6,7,4>
+ 2640145131U, // <4,5,3,7>: Cost 3 vext2 <3,7,4,5>, <3,7,4,5>
+ 2631519006U, // <4,5,3,u>: Cost 3 vext2 <2,3,4,5>, <3,u,1,2>
+ 2571108454U, // <4,5,4,0>: Cost 3 vext1 <3,4,5,4>, LHS
+ 3632907342U, // <4,5,4,1>: Cost 4 vext1 <1,4,5,4>, <1,4,5,4>
+ 2571110094U, // <4,5,4,2>: Cost 3 vext1 <3,4,5,4>, <2,3,4,5>
+ 2571110912U, // <4,5,4,3>: Cost 3 vext1 <3,4,5,4>, <3,4,5,4>
+ 2571111734U, // <4,5,4,4>: Cost 3 vext1 <3,4,5,4>, RHS
+ 1557777718U, // <4,5,4,5>: Cost 2 vext2 <2,3,4,5>, RHS
+ 2645454195U, // <4,5,4,6>: Cost 3 vext2 <4,6,4,5>, <4,6,4,5>
+ 2718748614U, // <4,5,4,7>: Cost 3 vext3 <5,6,7,4>, <5,4,7,6>
+ 1557777961U, // <4,5,4,u>: Cost 2 vext2 <2,3,4,5>, RHS
+ 1503346790U, // <4,5,5,0>: Cost 2 vext1 <4,4,5,5>, LHS
+ 2913398480U, // <4,5,5,1>: Cost 3 vzipl RHS, <5,1,7,3>
+ 2631519998U, // <4,5,5,2>: Cost 3 vext2 <2,3,4,5>, <5,2,3,4>
+ 2577090710U, // <4,5,5,3>: Cost 3 vext1 <4,4,5,5>, <3,0,1,2>
+ 1503349978U, // <4,5,5,4>: Cost 2 vext1 <4,4,5,5>, <4,4,5,5>
+ 2631520260U, // <4,5,5,5>: Cost 3 vext2 <2,3,4,5>, <5,5,5,5>
+ 2913390690U, // <4,5,5,6>: Cost 3 vzipl RHS, <5,6,7,0>
+ 2821344566U, // <4,5,5,7>: Cost 3 vuzpr <0,4,1,5>, RHS
+ 1503352622U, // <4,5,5,u>: Cost 2 vext1 <4,4,5,5>, LHS
+ 1497383014U, // <4,5,6,0>: Cost 2 vext1 <3,4,5,6>, LHS
+ 2559181904U, // <4,5,6,1>: Cost 3 vext1 <1,4,5,6>, <1,4,5,6>
+ 2565154601U, // <4,5,6,2>: Cost 3 vext1 <2,4,5,6>, <2,4,5,6>
+ 1497385474U, // <4,5,6,3>: Cost 2 vext1 <3,4,5,6>, <3,4,5,6>
+ 1497386294U, // <4,5,6,4>: Cost 2 vext1 <3,4,5,6>, RHS
+ 3047608324U, // <4,5,6,5>: Cost 3 vtrnl RHS, <5,5,5,5>
+ 2571129656U, // <4,5,6,6>: Cost 3 vext1 <3,4,5,6>, <6,6,6,6>
+ 27705344U, // <4,5,6,7>: Cost 0 copy RHS
+ 27705344U, // <4,5,6,u>: Cost 0 copy RHS
+ 2565161062U, // <4,5,7,0>: Cost 3 vext1 <2,4,5,7>, LHS
+ 2565161882U, // <4,5,7,1>: Cost 3 vext1 <2,4,5,7>, <1,2,3,4>
+ 2565162794U, // <4,5,7,2>: Cost 3 vext1 <2,4,5,7>, <2,4,5,7>
+ 2661381387U, // <4,5,7,3>: Cost 3 vext2 <7,3,4,5>, <7,3,4,5>
+ 2565164342U, // <4,5,7,4>: Cost 3 vext1 <2,4,5,7>, RHS
+ 2718748840U, // <4,5,7,5>: Cost 3 vext3 <5,6,7,4>, <5,7,5,7>
+ 2718748846U, // <4,5,7,6>: Cost 3 vext3 <5,6,7,4>, <5,7,6,4>
+ 2719412407U, // <4,5,7,7>: Cost 3 vext3 <5,7,7,4>, <5,7,7,4>
+ 2565166894U, // <4,5,7,u>: Cost 3 vext1 <2,4,5,7>, LHS
+ 1497399398U, // <4,5,u,0>: Cost 2 vext1 <3,4,5,u>, LHS
+ 1557780270U, // <4,5,u,1>: Cost 2 vext2 <2,3,4,5>, LHS
+ 2631522181U, // <4,5,u,2>: Cost 3 vext2 <2,3,4,5>, <u,2,3,0>
+ 1497401860U, // <4,5,u,3>: Cost 2 vext1 <3,4,5,u>, <3,4,5,u>
+ 1497402678U, // <4,5,u,4>: Cost 2 vext1 <3,4,5,u>, RHS
+ 1557780634U, // <4,5,u,5>: Cost 2 vext2 <2,3,4,5>, RHS
+ 2631522512U, // <4,5,u,6>: Cost 3 vext2 <2,3,4,5>, <u,6,3,7>
+ 27705344U, // <4,5,u,7>: Cost 0 copy RHS
+ 27705344U, // <4,5,u,u>: Cost 0 copy RHS
+ 2618916864U, // <4,6,0,0>: Cost 3 vext2 <0,2,4,6>, <0,0,0,0>
+ 1545175142U, // <4,6,0,1>: Cost 2 vext2 <0,2,4,6>, LHS
+ 1545175244U, // <4,6,0,2>: Cost 2 vext2 <0,2,4,6>, <0,2,4,6>
+ 3692658940U, // <4,6,0,3>: Cost 4 vext2 <0,2,4,6>, <0,3,1,0>
+ 2618917202U, // <4,6,0,4>: Cost 3 vext2 <0,2,4,6>, <0,4,1,5>
+ 3852910806U, // <4,6,0,5>: Cost 4 vuzpl RHS, <0,2,5,7>
+ 2253525648U, // <4,6,0,6>: Cost 3 vrev <6,4,6,0>
+ 4040764726U, // <4,6,0,7>: Cost 4 vzipr <2,3,4,0>, RHS
+ 1545175709U, // <4,6,0,u>: Cost 2 vext2 <0,2,4,6>, LHS
+ 2618917622U, // <4,6,1,0>: Cost 3 vext2 <0,2,4,6>, <1,0,3,2>
+ 2618917684U, // <4,6,1,1>: Cost 3 vext2 <0,2,4,6>, <1,1,1,1>
+ 2618917782U, // <4,6,1,2>: Cost 3 vext2 <0,2,4,6>, <1,2,3,0>
+ 2618917848U, // <4,6,1,3>: Cost 3 vext2 <0,2,4,6>, <1,3,1,3>
+ 3692659773U, // <4,6,1,4>: Cost 4 vext2 <0,2,4,6>, <1,4,3,5>
+ 2618918032U, // <4,6,1,5>: Cost 3 vext2 <0,2,4,6>, <1,5,3,7>
+ 3692659937U, // <4,6,1,6>: Cost 4 vext2 <0,2,4,6>, <1,6,3,7>
+ 4032146742U, // <4,6,1,7>: Cost 4 vzipr <0,u,4,1>, RHS
+ 2618918253U, // <4,6,1,u>: Cost 3 vext2 <0,2,4,6>, <1,u,1,3>
+ 2618918380U, // <4,6,2,0>: Cost 3 vext2 <0,2,4,6>, <2,0,6,4>
+ 2618918460U, // <4,6,2,1>: Cost 3 vext2 <0,2,4,6>, <2,1,6,3>
+ 2618918504U, // <4,6,2,2>: Cost 3 vext2 <0,2,4,6>, <2,2,2,2>
+ 2618918566U, // <4,6,2,3>: Cost 3 vext2 <0,2,4,6>, <2,3,0,1>
+ 2618918679U, // <4,6,2,4>: Cost 3 vext2 <0,2,4,6>, <2,4,3,6>
+ 2618918788U, // <4,6,2,5>: Cost 3 vext2 <0,2,4,6>, <2,5,6,7>
+ 2618918842U, // <4,6,2,6>: Cost 3 vext2 <0,2,4,6>, <2,6,3,7>
+ 2718749178U, // <4,6,2,7>: Cost 3 vext3 <5,6,7,4>, <6,2,7,3>
+ 2618918971U, // <4,6,2,u>: Cost 3 vext2 <0,2,4,6>, <2,u,0,1>
+ 2618919062U, // <4,6,3,0>: Cost 3 vext2 <0,2,4,6>, <3,0,1,2>
+ 2636171526U, // <4,6,3,1>: Cost 3 vext2 <3,1,4,6>, <3,1,4,6>
+ 3692661057U, // <4,6,3,2>: Cost 4 vext2 <0,2,4,6>, <3,2,2,2>
+ 2618919324U, // <4,6,3,3>: Cost 3 vext2 <0,2,4,6>, <3,3,3,3>
+ 2618919426U, // <4,6,3,4>: Cost 3 vext2 <0,2,4,6>, <3,4,5,6>
+ 2638826058U, // <4,6,3,5>: Cost 3 vext2 <3,5,4,6>, <3,5,4,6>
+ 3913303030U, // <4,6,3,6>: Cost 4 vuzpr <3,4,5,6>, <1,3,4,6>
+ 2722730572U, // <4,6,3,7>: Cost 3 vext3 <6,3,7,4>, <6,3,7,4>
+ 2618919710U, // <4,6,3,u>: Cost 3 vext2 <0,2,4,6>, <3,u,1,2>
+ 2565210214U, // <4,6,4,0>: Cost 3 vext1 <2,4,6,4>, LHS
+ 2718749286U, // <4,6,4,1>: Cost 3 vext3 <5,6,7,4>, <6,4,1,3>
+ 2565211952U, // <4,6,4,2>: Cost 3 vext1 <2,4,6,4>, <2,4,6,4>
+ 2571184649U, // <4,6,4,3>: Cost 3 vext1 <3,4,6,4>, <3,4,6,4>
+ 2565213494U, // <4,6,4,4>: Cost 3 vext1 <2,4,6,4>, RHS
+ 1545178422U, // <4,6,4,5>: Cost 2 vext2 <0,2,4,6>, RHS
+ 1705430326U, // <4,6,4,6>: Cost 2 vuzpl RHS, RHS
+ 2595075437U, // <4,6,4,7>: Cost 3 vext1 <7,4,6,4>, <7,4,6,4>
+ 1545178665U, // <4,6,4,u>: Cost 2 vext2 <0,2,4,6>, RHS
+ 2565218406U, // <4,6,5,0>: Cost 3 vext1 <2,4,6,5>, LHS
+ 2645462736U, // <4,6,5,1>: Cost 3 vext2 <4,6,4,6>, <5,1,7,3>
+ 2913399290U, // <4,6,5,2>: Cost 3 vzipl RHS, <6,2,7,3>
+ 3913305394U, // <4,6,5,3>: Cost 4 vuzpr <3,4,5,6>, <4,5,6,3>
+ 2645462982U, // <4,6,5,4>: Cost 3 vext2 <4,6,4,6>, <5,4,7,6>
+ 2779172868U, // <4,6,5,5>: Cost 3 vuzpl RHS, <5,5,5,5>
+ 2913391416U, // <4,6,5,6>: Cost 3 vzipl RHS, <6,6,6,6>
+ 2821426486U, // <4,6,5,7>: Cost 3 vuzpr <0,4,2,6>, RHS
+ 2821426487U, // <4,6,5,u>: Cost 3 vuzpr <0,4,2,6>, RHS
+ 1503428710U, // <4,6,6,0>: Cost 2 vext1 <4,4,6,6>, LHS
+ 2577171190U, // <4,6,6,1>: Cost 3 vext1 <4,4,6,6>, <1,0,3,2>
+ 2645463546U, // <4,6,6,2>: Cost 3 vext2 <4,6,4,6>, <6,2,7,3>
+ 2577172630U, // <4,6,6,3>: Cost 3 vext1 <4,4,6,6>, <3,0,1,2>
+ 1503431908U, // <4,6,6,4>: Cost 2 vext1 <4,4,6,6>, <4,4,6,6>
+ 2253501069U, // <4,6,6,5>: Cost 3 vrev <6,4,5,6>
+ 2618921784U, // <4,6,6,6>: Cost 3 vext2 <0,2,4,6>, <6,6,6,6>
+ 2954464566U, // <4,6,6,7>: Cost 3 vzipr <0,2,4,6>, RHS
+ 1503434542U, // <4,6,6,u>: Cost 2 vext1 <4,4,6,6>, LHS
+ 2645464058U, // <4,6,7,0>: Cost 3 vext2 <4,6,4,6>, <7,0,1,2>
+ 2779173882U, // <4,6,7,1>: Cost 3 vuzpl RHS, <7,0,1,2>
+ 3638978355U, // <4,6,7,2>: Cost 4 vext1 <2,4,6,7>, <2,4,6,7>
+ 2725090156U, // <4,6,7,3>: Cost 3 vext3 <6,7,3,4>, <6,7,3,4>
+ 2645464422U, // <4,6,7,4>: Cost 3 vext2 <4,6,4,6>, <7,4,5,6>
+ 2779174246U, // <4,6,7,5>: Cost 3 vuzpl RHS, <7,4,5,6>
+ 3852915914U, // <4,6,7,6>: Cost 4 vuzpl RHS, <7,2,6,3>
+ 2779174508U, // <4,6,7,7>: Cost 3 vuzpl RHS, <7,7,7,7>
+ 2779173945U, // <4,6,7,u>: Cost 3 vuzpl RHS, <7,0,u,2>
+ 1503445094U, // <4,6,u,0>: Cost 2 vext1 <4,4,6,u>, LHS
+ 1545180974U, // <4,6,u,1>: Cost 2 vext2 <0,2,4,6>, LHS
+ 1705432878U, // <4,6,u,2>: Cost 2 vuzpl RHS, LHS
+ 2618922940U, // <4,6,u,3>: Cost 3 vext2 <0,2,4,6>, <u,3,0,1>
+ 1503448294U, // <4,6,u,4>: Cost 2 vext1 <4,4,6,u>, <4,4,6,u>
+ 1545181338U, // <4,6,u,5>: Cost 2 vext2 <0,2,4,6>, RHS
+ 1705433242U, // <4,6,u,6>: Cost 2 vuzpl RHS, RHS
+ 2954480950U, // <4,6,u,7>: Cost 3 vzipr <0,2,4,u>, RHS
+ 1545181541U, // <4,6,u,u>: Cost 2 vext2 <0,2,4,6>, LHS
+ 3706601472U, // <4,7,0,0>: Cost 4 vext2 <2,5,4,7>, <0,0,0,0>
+ 2632859750U, // <4,7,0,1>: Cost 3 vext2 <2,5,4,7>, LHS
+ 2726343685U, // <4,7,0,2>: Cost 3 vext3 <7,0,2,4>, <7,0,2,4>
+ 3701293312U, // <4,7,0,3>: Cost 4 vext2 <1,6,4,7>, <0,3,1,4>
+ 3706601810U, // <4,7,0,4>: Cost 4 vext2 <2,5,4,7>, <0,4,1,5>
+ 2259424608U, // <4,7,0,5>: Cost 3 vrev <7,4,5,0>
+ 3695321617U, // <4,7,0,6>: Cost 4 vext2 <0,6,4,7>, <0,6,4,7>
+ 3800454194U, // <4,7,0,7>: Cost 4 vext3 <7,0,7,4>, <7,0,7,4>
+ 2632860317U, // <4,7,0,u>: Cost 3 vext2 <2,5,4,7>, LHS
+ 2259064116U, // <4,7,1,0>: Cost 3 vrev <7,4,0,1>
+ 3700630324U, // <4,7,1,1>: Cost 4 vext2 <1,5,4,7>, <1,1,1,1>
+ 2632860570U, // <4,7,1,2>: Cost 3 vext2 <2,5,4,7>, <1,2,3,4>
+ 3769635936U, // <4,7,1,3>: Cost 4 vext3 <1,u,3,4>, <7,1,3,5>
+ 3656920374U, // <4,7,1,4>: Cost 4 vext1 <5,4,7,1>, RHS
+ 3700630681U, // <4,7,1,5>: Cost 4 vext2 <1,5,4,7>, <1,5,4,7>
+ 3701294314U, // <4,7,1,6>: Cost 4 vext2 <1,6,4,7>, <1,6,4,7>
+ 3793818754U, // <4,7,1,7>: Cost 4 vext3 <5,u,7,4>, <7,1,7,3>
+ 2259654012U, // <4,7,1,u>: Cost 3 vrev <7,4,u,1>
+ 3656925286U, // <4,7,2,0>: Cost 4 vext1 <5,4,7,2>, LHS
+ 3706603050U, // <4,7,2,1>: Cost 4 vext2 <2,5,4,7>, <2,1,4,3>
+ 3706603112U, // <4,7,2,2>: Cost 4 vext2 <2,5,4,7>, <2,2,2,2>
+ 2727744688U, // <4,7,2,3>: Cost 3 vext3 <7,2,3,4>, <7,2,3,4>
+ 3705939745U, // <4,7,2,4>: Cost 4 vext2 <2,4,4,7>, <2,4,4,7>
+ 2632861554U, // <4,7,2,5>: Cost 3 vext2 <2,5,4,7>, <2,5,4,7>
+ 3706603450U, // <4,7,2,6>: Cost 4 vext2 <2,5,4,7>, <2,6,3,7>
+ 3792491731U, // <4,7,2,7>: Cost 4 vext3 <5,6,7,4>, <7,2,7,3>
+ 2634852453U, // <4,7,2,u>: Cost 3 vext2 <2,u,4,7>, <2,u,4,7>
+ 3706603670U, // <4,7,3,0>: Cost 4 vext2 <2,5,4,7>, <3,0,1,2>
+ 3662906266U, // <4,7,3,1>: Cost 4 vext1 <6,4,7,3>, <1,2,3,4>
+ 3725183326U, // <4,7,3,2>: Cost 4 vext2 <5,6,4,7>, <3,2,5,4>
+ 3706603932U, // <4,7,3,3>: Cost 4 vext2 <2,5,4,7>, <3,3,3,3>
+ 3701295618U, // <4,7,3,4>: Cost 4 vext2 <1,6,4,7>, <3,4,5,6>
+ 2638834251U, // <4,7,3,5>: Cost 3 vext2 <3,5,4,7>, <3,5,4,7>
+ 2639497884U, // <4,7,3,6>: Cost 3 vext2 <3,6,4,7>, <3,6,4,7>
+ 3802445093U, // <4,7,3,7>: Cost 4 vext3 <7,3,7,4>, <7,3,7,4>
+ 2640825150U, // <4,7,3,u>: Cost 3 vext2 <3,u,4,7>, <3,u,4,7>
+ 2718750004U, // <4,7,4,0>: Cost 3 vext3 <5,6,7,4>, <7,4,0,1>
+ 3706604490U, // <4,7,4,1>: Cost 4 vext2 <2,5,4,7>, <4,1,2,3>
+ 3656943474U, // <4,7,4,2>: Cost 4 vext1 <5,4,7,4>, <2,5,4,7>
+ 3779884371U, // <4,7,4,3>: Cost 4 vext3 <3,5,7,4>, <7,4,3,5>
+ 2259383643U, // <4,7,4,4>: Cost 3 vrev <7,4,4,4>
+ 2632863030U, // <4,7,4,5>: Cost 3 vext2 <2,5,4,7>, RHS
+ 2259531117U, // <4,7,4,6>: Cost 3 vrev <7,4,6,4>
+ 3907340074U, // <4,7,4,7>: Cost 4 vuzpr <2,4,5,7>, <2,4,5,7>
+ 2632863273U, // <4,7,4,u>: Cost 3 vext2 <2,5,4,7>, RHS
+ 2913391610U, // <4,7,5,0>: Cost 3 vzipl RHS, <7,0,1,2>
+ 3645006848U, // <4,7,5,1>: Cost 4 vext1 <3,4,7,5>, <1,3,5,7>
+ 2589181646U, // <4,7,5,2>: Cost 3 vext1 <6,4,7,5>, <2,3,4,5>
+ 3645008403U, // <4,7,5,3>: Cost 4 vext1 <3,4,7,5>, <3,4,7,5>
+ 2913391974U, // <4,7,5,4>: Cost 3 vzipl RHS, <7,4,5,6>
+ 2583211973U, // <4,7,5,5>: Cost 3 vext1 <5,4,7,5>, <5,4,7,5>
+ 2589184670U, // <4,7,5,6>: Cost 3 vext1 <6,4,7,5>, <6,4,7,5>
+ 2913392236U, // <4,7,5,7>: Cost 3 vzipl RHS, <7,7,7,7>
+ 2913392258U, // <4,7,5,u>: Cost 3 vzipl RHS, <7,u,1,2>
+ 1509474406U, // <4,7,6,0>: Cost 2 vext1 <5,4,7,6>, LHS
+ 3047609338U, // <4,7,6,1>: Cost 3 vtrnl RHS, <7,0,1,2>
+ 2583217768U, // <4,7,6,2>: Cost 3 vext1 <5,4,7,6>, <2,2,2,2>
+ 2583218326U, // <4,7,6,3>: Cost 3 vext1 <5,4,7,6>, <3,0,1,2>
+ 1509477686U, // <4,7,6,4>: Cost 2 vext1 <5,4,7,6>, RHS
+ 1509478342U, // <4,7,6,5>: Cost 2 vext1 <5,4,7,6>, <5,4,7,6>
+ 2583220730U, // <4,7,6,6>: Cost 3 vext1 <5,4,7,6>, <6,2,7,3>
+ 3047609964U, // <4,7,6,7>: Cost 3 vtrnl RHS, <7,7,7,7>
+ 1509480238U, // <4,7,6,u>: Cost 2 vext1 <5,4,7,6>, LHS
+ 3650994278U, // <4,7,7,0>: Cost 4 vext1 <4,4,7,7>, LHS
+ 3650995098U, // <4,7,7,1>: Cost 4 vext1 <4,4,7,7>, <1,2,3,4>
+ 3650996010U, // <4,7,7,2>: Cost 4 vext1 <4,4,7,7>, <2,4,5,7>
+ 3804804677U, // <4,7,7,3>: Cost 4 vext3 <7,7,3,4>, <7,7,3,4>
+ 3650997486U, // <4,7,7,4>: Cost 4 vext1 <4,4,7,7>, <4,4,7,7>
+ 2662725039U, // <4,7,7,5>: Cost 3 vext2 <7,5,4,7>, <7,5,4,7>
+ 3662942880U, // <4,7,7,6>: Cost 4 vext1 <6,4,7,7>, <6,4,7,7>
+ 2718750316U, // <4,7,7,7>: Cost 3 vext3 <5,6,7,4>, <7,7,7,7>
+ 2664715938U, // <4,7,7,u>: Cost 3 vext2 <7,u,4,7>, <7,u,4,7>
+ 1509490790U, // <4,7,u,0>: Cost 2 vext1 <5,4,7,u>, LHS
+ 2632865582U, // <4,7,u,1>: Cost 3 vext2 <2,5,4,7>, LHS
+ 2583234152U, // <4,7,u,2>: Cost 3 vext1 <5,4,7,u>, <2,2,2,2>
+ 2583234710U, // <4,7,u,3>: Cost 3 vext1 <5,4,7,u>, <3,0,1,2>
+ 1509494070U, // <4,7,u,4>: Cost 2 vext1 <5,4,7,u>, RHS
+ 1509494728U, // <4,7,u,5>: Cost 2 vext1 <5,4,7,u>, <5,4,7,u>
+ 2583237114U, // <4,7,u,6>: Cost 3 vext1 <5,4,7,u>, <6,2,7,3>
+ 3047757420U, // <4,7,u,7>: Cost 3 vtrnl RHS, <7,7,7,7>
+ 1509496622U, // <4,7,u,u>: Cost 2 vext1 <5,4,7,u>, LHS
+ 2618933248U, // <4,u,0,0>: Cost 3 vext2 <0,2,4,u>, <0,0,0,0>
+ 1545191526U, // <4,u,0,1>: Cost 2 vext2 <0,2,4,u>, LHS
+ 1545191630U, // <4,u,0,2>: Cost 2 vext2 <0,2,4,u>, <0,2,4,u>
+ 2691913445U, // <4,u,0,3>: Cost 3 vext3 <1,2,3,4>, <u,0,3,2>
+ 2618933586U, // <4,u,0,4>: Cost 3 vext2 <0,2,4,u>, <0,4,1,5>
+ 2265397305U, // <4,u,0,5>: Cost 3 vrev <u,4,5,0>
+ 2595189625U, // <4,u,0,6>: Cost 3 vext1 <7,4,u,0>, <6,7,4,u>
+ 2595190139U, // <4,u,0,7>: Cost 3 vext1 <7,4,u,0>, <7,4,u,0>
+ 1545192093U, // <4,u,0,u>: Cost 2 vext2 <0,2,4,u>, LHS
+ 2618934006U, // <4,u,1,0>: Cost 3 vext2 <0,2,4,u>, <1,0,3,2>
+ 2618934068U, // <4,u,1,1>: Cost 3 vext2 <0,2,4,u>, <1,1,1,1>
+ 1618171694U, // <4,u,1,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2618934232U, // <4,u,1,3>: Cost 3 vext2 <0,2,4,u>, <1,3,1,3>
+ 2695894848U, // <4,u,1,4>: Cost 3 vext3 <1,u,3,4>, <u,1,4,3>
+ 2618934416U, // <4,u,1,5>: Cost 3 vext2 <0,2,4,u>, <1,5,3,7>
+ 3692676321U, // <4,u,1,6>: Cost 4 vext2 <0,2,4,u>, <1,6,3,7>
+ 2718750555U, // <4,u,1,7>: Cost 3 vext3 <5,6,7,4>, <u,1,7,3>
+ 1618171748U, // <4,u,1,u>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2553397350U, // <4,u,2,0>: Cost 3 vext1 <0,4,u,2>, LHS
+ 2630215215U, // <4,u,2,1>: Cost 3 vext2 <2,1,4,u>, <2,1,4,u>
+ 2618934888U, // <4,u,2,2>: Cost 3 vext2 <0,2,4,u>, <2,2,2,2>
+ 1557800657U, // <4,u,2,3>: Cost 2 vext2 <2,3,4,u>, <2,3,4,u>
+ 2618935065U, // <4,u,2,4>: Cost 3 vext2 <0,2,4,u>, <2,4,3,u>
+ 2733864859U, // <4,u,2,5>: Cost 3 vext3 <u,2,5,4>, <u,2,5,4>
+ 2618935226U, // <4,u,2,6>: Cost 3 vext2 <0,2,4,u>, <2,6,3,7>
+ 2718750636U, // <4,u,2,7>: Cost 3 vext3 <5,6,7,4>, <u,2,7,3>
+ 1561118822U, // <4,u,2,u>: Cost 2 vext2 <2,u,4,u>, <2,u,4,u>
+ 2618935446U, // <4,u,3,0>: Cost 3 vext2 <0,2,4,u>, <3,0,1,2>
+ 2779318422U, // <4,u,3,1>: Cost 3 vuzpl RHS, <3,0,1,2>
+ 2636851545U, // <4,u,3,2>: Cost 3 vext2 <3,2,4,u>, <3,2,4,u>
+ 2618935708U, // <4,u,3,3>: Cost 3 vext2 <0,2,4,u>, <3,3,3,3>
+ 2618935810U, // <4,u,3,4>: Cost 3 vext2 <0,2,4,u>, <3,4,5,6>
+ 2691913711U, // <4,u,3,5>: Cost 3 vext3 <1,2,3,4>, <u,3,5,7>
+ 2588725862U, // <4,u,3,6>: Cost 3 vext1 <6,4,1,3>, <6,4,1,3>
+ 2640169710U, // <4,u,3,7>: Cost 3 vext2 <3,7,4,u>, <3,7,4,u>
+ 2618936094U, // <4,u,3,u>: Cost 3 vext2 <0,2,4,u>, <3,u,1,2>
+ 1503559782U, // <4,u,4,0>: Cost 2 vext1 <4,4,u,4>, LHS
+ 2692282391U, // <4,u,4,1>: Cost 3 vext3 <1,2,u,4>, <u,4,1,2>
+ 2565359426U, // <4,u,4,2>: Cost 3 vext1 <2,4,u,4>, <2,4,u,4>
+ 2571332123U, // <4,u,4,3>: Cost 3 vext1 <3,4,u,4>, <3,4,u,4>
+ 161926454U, // <4,u,4,4>: Cost 1 vdup0 RHS
+ 1545194806U, // <4,u,4,5>: Cost 2 vext2 <0,2,4,u>, RHS
+ 1705577782U, // <4,u,4,6>: Cost 2 vuzpl RHS, RHS
+ 2718750801U, // <4,u,4,7>: Cost 3 vext3 <5,6,7,4>, <u,4,7,6>
+ 161926454U, // <4,u,4,u>: Cost 1 vdup0 RHS
+ 1479164006U, // <4,u,5,0>: Cost 2 vext1 <0,4,1,5>, LHS
+ 1839650606U, // <4,u,5,1>: Cost 2 vzipl RHS, LHS
+ 2565367502U, // <4,u,5,2>: Cost 3 vext1 <2,4,u,5>, <2,3,4,5>
+ 3089777309U, // <4,u,5,3>: Cost 3 vtrnr <0,4,1,5>, LHS
+ 1479167286U, // <4,u,5,4>: Cost 2 vext1 <0,4,1,5>, RHS
+ 1839650970U, // <4,u,5,5>: Cost 2 vzipl RHS, RHS
+ 1618172058U, // <4,u,5,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 3089780265U, // <4,u,5,7>: Cost 3 vtrnr <0,4,1,5>, RHS
+ 1618172076U, // <4,u,5,u>: Cost 2 vext3 <1,2,3,4>, RHS
+ 1479688294U, // <4,u,6,0>: Cost 2 vext1 <0,4,u,6>, LHS
+ 2553430774U, // <4,u,6,1>: Cost 3 vext1 <0,4,u,6>, <1,0,3,2>
+ 1973868334U, // <4,u,6,2>: Cost 2 vtrnl RHS, LHS
+ 1497606685U, // <4,u,6,3>: Cost 2 vext1 <3,4,u,6>, <3,4,u,6>
+ 1479691574U, // <4,u,6,4>: Cost 2 vext1 <0,4,u,6>, RHS
+ 1509552079U, // <4,u,6,5>: Cost 2 vext1 <5,4,u,6>, <5,4,u,6>
+ 1973868698U, // <4,u,6,6>: Cost 2 vtrnl RHS, RHS
+ 27705344U, // <4,u,6,7>: Cost 0 copy RHS
+ 27705344U, // <4,u,6,u>: Cost 0 copy RHS
+ 2565382246U, // <4,u,7,0>: Cost 3 vext1 <2,4,u,7>, LHS
+ 2565383066U, // <4,u,7,1>: Cost 3 vext1 <2,4,u,7>, <1,2,3,4>
+ 2565384005U, // <4,u,7,2>: Cost 3 vext1 <2,4,u,7>, <2,4,u,7>
+ 2661405966U, // <4,u,7,3>: Cost 3 vext2 <7,3,4,u>, <7,3,4,u>
+ 2565385526U, // <4,u,7,4>: Cost 3 vext1 <2,4,u,7>, RHS
+ 2779321702U, // <4,u,7,5>: Cost 3 vuzpl RHS, <7,4,5,6>
+ 2589274793U, // <4,u,7,6>: Cost 3 vext1 <6,4,u,7>, <6,4,u,7>
+ 2779321964U, // <4,u,7,7>: Cost 3 vuzpl RHS, <7,7,7,7>
+ 2565388078U, // <4,u,7,u>: Cost 3 vext1 <2,4,u,7>, LHS
+ 1479704678U, // <4,u,u,0>: Cost 2 vext1 <0,4,u,u>, LHS
+ 1545197358U, // <4,u,u,1>: Cost 2 vext2 <0,2,4,u>, LHS
+ 1618172261U, // <4,u,u,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 1497623071U, // <4,u,u,3>: Cost 2 vext1 <3,4,u,u>, <3,4,u,u>
+ 161926454U, // <4,u,u,4>: Cost 1 vdup0 RHS
+ 1545197722U, // <4,u,u,5>: Cost 2 vext2 <0,2,4,u>, RHS
+ 1618172301U, // <4,u,u,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 27705344U, // <4,u,u,7>: Cost 0 copy RHS
+ 27705344U, // <4,u,u,u>: Cost 0 copy RHS
+ 2687123456U, // <5,0,0,0>: Cost 3 vext3 <0,4,1,5>, <0,0,0,0>
+ 2687123466U, // <5,0,0,1>: Cost 3 vext3 <0,4,1,5>, <0,0,1,1>
+ 2687123476U, // <5,0,0,2>: Cost 3 vext3 <0,4,1,5>, <0,0,2,2>
+ 3710599434U, // <5,0,0,3>: Cost 4 vext2 <3,2,5,0>, <0,3,2,5>
+ 2642166098U, // <5,0,0,4>: Cost 3 vext2 <4,1,5,0>, <0,4,1,5>
+ 3657060306U, // <5,0,0,5>: Cost 4 vext1 <5,5,0,0>, <5,5,0,0>
+ 3292094923U, // <5,0,0,6>: Cost 4 vrev <0,5,6,0>
+ 3669005700U, // <5,0,0,7>: Cost 4 vext1 <7,5,0,0>, <7,5,0,0>
+ 2687123530U, // <5,0,0,u>: Cost 3 vext3 <0,4,1,5>, <0,0,u,2>
+ 2559434854U, // <5,0,1,0>: Cost 3 vext1 <1,5,0,1>, LHS
+ 2559435887U, // <5,0,1,1>: Cost 3 vext1 <1,5,0,1>, <1,5,0,1>
+ 1613381734U, // <5,0,1,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 3698656256U, // <5,0,1,3>: Cost 4 vext2 <1,2,5,0>, <1,3,5,7>
+ 2559438134U, // <5,0,1,4>: Cost 3 vext1 <1,5,0,1>, RHS
+ 2583326675U, // <5,0,1,5>: Cost 3 vext1 <5,5,0,1>, <5,5,0,1>
+ 3715908851U, // <5,0,1,6>: Cost 4 vext2 <4,1,5,0>, <1,6,5,7>
+ 3657069562U, // <5,0,1,7>: Cost 4 vext1 <5,5,0,1>, <7,0,1,2>
+ 1613381788U, // <5,0,1,u>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2686017700U, // <5,0,2,0>: Cost 3 vext3 <0,2,4,5>, <0,2,0,2>
+ 2685796528U, // <5,0,2,1>: Cost 3 vext3 <0,2,1,5>, <0,2,1,5>
+ 2698625208U, // <5,0,2,2>: Cost 3 vext3 <2,3,4,5>, <0,2,2,4>
+ 2685944002U, // <5,0,2,3>: Cost 3 vext3 <0,2,3,5>, <0,2,3,5>
+ 2686017739U, // <5,0,2,4>: Cost 3 vext3 <0,2,4,5>, <0,2,4,5>
+ 2686091476U, // <5,0,2,5>: Cost 3 vext3 <0,2,5,5>, <0,2,5,5>
+ 2725167324U, // <5,0,2,6>: Cost 3 vext3 <6,7,4,5>, <0,2,6,4>
+ 2595280230U, // <5,0,2,7>: Cost 3 vext1 <7,5,0,2>, <7,4,5,6>
+ 2686312687U, // <5,0,2,u>: Cost 3 vext3 <0,2,u,5>, <0,2,u,5>
+ 3760128248U, // <5,0,3,0>: Cost 4 vext3 <0,3,0,5>, <0,3,0,5>
+ 3759685888U, // <5,0,3,1>: Cost 4 vext3 <0,2,3,5>, <0,3,1,4>
+ 2686533898U, // <5,0,3,2>: Cost 3 vext3 <0,3,2,5>, <0,3,2,5>
+ 3760349459U, // <5,0,3,3>: Cost 4 vext3 <0,3,3,5>, <0,3,3,5>
+ 2638187004U, // <5,0,3,4>: Cost 3 vext2 <3,4,5,0>, <3,4,5,0>
+ 3776348452U, // <5,0,3,5>: Cost 4 vext3 <3,0,4,5>, <0,3,5,4>
+ 3713256094U, // <5,0,3,6>: Cost 4 vext2 <3,6,5,0>, <3,6,5,0>
+ 3914064896U, // <5,0,3,7>: Cost 4 vuzpr <3,5,7,0>, <1,3,5,7>
+ 2686976320U, // <5,0,3,u>: Cost 3 vext3 <0,3,u,5>, <0,3,u,5>
+ 2559459430U, // <5,0,4,0>: Cost 3 vext1 <1,5,0,4>, LHS
+ 1613381970U, // <5,0,4,1>: Cost 2 vext3 <0,4,1,5>, <0,4,1,5>
+ 2687123804U, // <5,0,4,2>: Cost 3 vext3 <0,4,1,5>, <0,4,2,6>
+ 3761013092U, // <5,0,4,3>: Cost 4 vext3 <0,4,3,5>, <0,4,3,5>
+ 2559462710U, // <5,0,4,4>: Cost 3 vext1 <1,5,0,4>, RHS
+ 2638187830U, // <5,0,4,5>: Cost 3 vext2 <3,4,5,0>, RHS
+ 3761234303U, // <5,0,4,6>: Cost 4 vext3 <0,4,6,5>, <0,4,6,5>
+ 2646150600U, // <5,0,4,7>: Cost 3 vext2 <4,7,5,0>, <4,7,5,0>
+ 1613381970U, // <5,0,4,u>: Cost 2 vext3 <0,4,1,5>, <0,4,1,5>
+ 3766763926U, // <5,0,5,0>: Cost 4 vext3 <1,4,0,5>, <0,5,0,1>
+ 2919268454U, // <5,0,5,1>: Cost 3 vzipl <5,5,5,5>, LHS
+ 3053486182U, // <5,0,5,2>: Cost 3 vtrnl <5,5,5,5>, LHS
+ 3723210589U, // <5,0,5,3>: Cost 4 vext2 <5,3,5,0>, <5,3,5,0>
+ 3766763966U, // <5,0,5,4>: Cost 4 vext3 <1,4,0,5>, <0,5,4,5>
+ 2650796031U, // <5,0,5,5>: Cost 3 vext2 <5,5,5,0>, <5,5,5,0>
+ 3719893090U, // <5,0,5,6>: Cost 4 vext2 <4,7,5,0>, <5,6,7,0>
+ 3914067254U, // <5,0,5,7>: Cost 4 vuzpr <3,5,7,0>, RHS
+ 2919269021U, // <5,0,5,u>: Cost 3 vzipl <5,5,5,5>, LHS
+ 4047519744U, // <5,0,6,0>: Cost 4 vzipr <3,4,5,6>, <0,0,0,0>
+ 2920038502U, // <5,0,6,1>: Cost 3 vzipl <5,6,7,0>, LHS
+ 3759759871U, // <5,0,6,2>: Cost 4 vext3 <0,2,4,5>, <0,6,2,7>
+ 3645164070U, // <5,0,6,3>: Cost 4 vext1 <3,5,0,6>, <3,5,0,6>
+ 3762414095U, // <5,0,6,4>: Cost 4 vext3 <0,6,4,5>, <0,6,4,5>
+ 3993780690U, // <5,0,6,5>: Cost 4 vzipl <5,6,7,0>, <0,5,6,7>
+ 3719893816U, // <5,0,6,6>: Cost 4 vext2 <4,7,5,0>, <6,6,6,6>
+ 2662077302U, // <5,0,6,7>: Cost 3 vext2 <7,4,5,0>, <6,7,4,5>
+ 2920039069U, // <5,0,6,u>: Cost 3 vzipl <5,6,7,0>, LHS
+ 2565455974U, // <5,0,7,0>: Cost 3 vext1 <2,5,0,7>, LHS
+ 2565456790U, // <5,0,7,1>: Cost 3 vext1 <2,5,0,7>, <1,2,3,0>
+ 2565457742U, // <5,0,7,2>: Cost 3 vext1 <2,5,0,7>, <2,5,0,7>
+ 3639199894U, // <5,0,7,3>: Cost 4 vext1 <2,5,0,7>, <3,0,1,2>
+ 2565459254U, // <5,0,7,4>: Cost 3 vext1 <2,5,0,7>, RHS
+ 2589347938U, // <5,0,7,5>: Cost 3 vext1 <6,5,0,7>, <5,6,7,0>
+ 2589348530U, // <5,0,7,6>: Cost 3 vext1 <6,5,0,7>, <6,5,0,7>
+ 4188456422U, // <5,0,7,7>: Cost 4 vtrnr RHS, <2,0,5,7>
+ 2565461806U, // <5,0,7,u>: Cost 3 vext1 <2,5,0,7>, LHS
+ 2687124106U, // <5,0,u,0>: Cost 3 vext3 <0,4,1,5>, <0,u,0,2>
+ 1616036502U, // <5,0,u,1>: Cost 2 vext3 <0,u,1,5>, <0,u,1,5>
+ 1613382301U, // <5,0,u,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2689925800U, // <5,0,u,3>: Cost 3 vext3 <0,u,3,5>, <0,u,3,5>
+ 2687124146U, // <5,0,u,4>: Cost 3 vext3 <0,4,1,5>, <0,u,4,6>
+ 2638190746U, // <5,0,u,5>: Cost 3 vext2 <3,4,5,0>, RHS
+ 2589356723U, // <5,0,u,6>: Cost 3 vext1 <6,5,0,u>, <6,5,0,u>
+ 2595280230U, // <5,0,u,7>: Cost 3 vext1 <7,5,0,2>, <7,4,5,6>
+ 1613382355U, // <5,0,u,u>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2646818816U, // <5,1,0,0>: Cost 3 vext2 <4,u,5,1>, <0,0,0,0>
+ 1573077094U, // <5,1,0,1>: Cost 2 vext2 <4,u,5,1>, LHS
+ 2646818980U, // <5,1,0,2>: Cost 3 vext2 <4,u,5,1>, <0,2,0,2>
+ 2687124214U, // <5,1,0,3>: Cost 3 vext3 <0,4,1,5>, <1,0,3,2>
+ 2641510738U, // <5,1,0,4>: Cost 3 vext2 <4,0,5,1>, <0,4,1,5>
+ 2641510814U, // <5,1,0,5>: Cost 3 vext2 <4,0,5,1>, <0,5,1,0>
+ 3720561142U, // <5,1,0,6>: Cost 4 vext2 <4,u,5,1>, <0,6,1,7>
+ 3298141357U, // <5,1,0,7>: Cost 4 vrev <1,5,7,0>
+ 1573077661U, // <5,1,0,u>: Cost 2 vext2 <4,u,5,1>, LHS
+ 2223891567U, // <5,1,1,0>: Cost 3 vrev <1,5,0,1>
+ 2687124276U, // <5,1,1,1>: Cost 3 vext3 <0,4,1,5>, <1,1,1,1>
+ 2646819734U, // <5,1,1,2>: Cost 3 vext2 <4,u,5,1>, <1,2,3,0>
+ 2687124296U, // <5,1,1,3>: Cost 3 vext3 <0,4,1,5>, <1,1,3,3>
+ 2691326803U, // <5,1,1,4>: Cost 3 vext3 <1,1,4,5>, <1,1,4,5>
+ 2691400540U, // <5,1,1,5>: Cost 3 vext3 <1,1,5,5>, <1,1,5,5>
+ 3765216101U, // <5,1,1,6>: Cost 4 vext3 <1,1,6,5>, <1,1,6,5>
+ 3765289838U, // <5,1,1,7>: Cost 4 vext3 <1,1,7,5>, <1,1,7,5>
+ 2687124341U, // <5,1,1,u>: Cost 3 vext3 <0,4,1,5>, <1,1,u,3>
+ 3297641584U, // <5,1,2,0>: Cost 4 vrev <1,5,0,2>
+ 3763520391U, // <5,1,2,1>: Cost 4 vext3 <0,u,1,5>, <1,2,1,3>
+ 2646820456U, // <5,1,2,2>: Cost 3 vext2 <4,u,5,1>, <2,2,2,2>
+ 2687124374U, // <5,1,2,3>: Cost 3 vext3 <0,4,1,5>, <1,2,3,0>
+ 2691990436U, // <5,1,2,4>: Cost 3 vext3 <1,2,4,5>, <1,2,4,5>
+ 2687124395U, // <5,1,2,5>: Cost 3 vext3 <0,4,1,5>, <1,2,5,3>
+ 2646820794U, // <5,1,2,6>: Cost 3 vext2 <4,u,5,1>, <2,6,3,7>
+ 3808199610U, // <5,1,2,7>: Cost 4 vext3 <u,3,4,5>, <1,2,7,0>
+ 2687124419U, // <5,1,2,u>: Cost 3 vext3 <0,4,1,5>, <1,2,u,0>
+ 2577440870U, // <5,1,3,0>: Cost 3 vext1 <4,5,1,3>, LHS
+ 2687124440U, // <5,1,3,1>: Cost 3 vext3 <0,4,1,5>, <1,3,1,3>
+ 3759686627U, // <5,1,3,2>: Cost 4 vext3 <0,2,3,5>, <1,3,2,5>
+ 2692580332U, // <5,1,3,3>: Cost 3 vext3 <1,3,3,5>, <1,3,3,5>
+ 2687124469U, // <5,1,3,4>: Cost 3 vext3 <0,4,1,5>, <1,3,4,5>
+ 2685207552U, // <5,1,3,5>: Cost 3 vext3 <0,1,2,5>, <1,3,5,7>
+ 3760866313U, // <5,1,3,6>: Cost 4 vext3 <0,4,1,5>, <1,3,6,7>
+ 2692875280U, // <5,1,3,7>: Cost 3 vext3 <1,3,7,5>, <1,3,7,5>
+ 2687124503U, // <5,1,3,u>: Cost 3 vext3 <0,4,1,5>, <1,3,u,3>
+ 1567771538U, // <5,1,4,0>: Cost 2 vext2 <4,0,5,1>, <4,0,5,1>
+ 2693096491U, // <5,1,4,1>: Cost 3 vext3 <1,4,1,5>, <1,4,1,5>
+ 2693170228U, // <5,1,4,2>: Cost 3 vext3 <1,4,2,5>, <1,4,2,5>
+ 2687124541U, // <5,1,4,3>: Cost 3 vext3 <0,4,1,5>, <1,4,3,5>
+ 2646822096U, // <5,1,4,4>: Cost 3 vext2 <4,u,5,1>, <4,4,4,4>
+ 1573080374U, // <5,1,4,5>: Cost 2 vext2 <4,u,5,1>, RHS
+ 2646822260U, // <5,1,4,6>: Cost 3 vext2 <4,u,5,1>, <4,6,4,6>
+ 3298174129U, // <5,1,4,7>: Cost 4 vrev <1,5,7,4>
+ 1573080602U, // <5,1,4,u>: Cost 2 vext2 <4,u,5,1>, <4,u,5,1>
+ 2687124591U, // <5,1,5,0>: Cost 3 vext3 <0,4,1,5>, <1,5,0,1>
+ 2646822543U, // <5,1,5,1>: Cost 3 vext2 <4,u,5,1>, <5,1,0,1>
+ 3760866433U, // <5,1,5,2>: Cost 4 vext3 <0,4,1,5>, <1,5,2,1>
+ 2687124624U, // <5,1,5,3>: Cost 3 vext3 <0,4,1,5>, <1,5,3,7>
+ 2687124631U, // <5,1,5,4>: Cost 3 vext3 <0,4,1,5>, <1,5,4,5>
+ 2646822916U, // <5,1,5,5>: Cost 3 vext2 <4,u,5,1>, <5,5,5,5>
+ 2646823010U, // <5,1,5,6>: Cost 3 vext2 <4,u,5,1>, <5,6,7,0>
+ 2646823080U, // <5,1,5,7>: Cost 3 vext2 <4,u,5,1>, <5,7,5,7>
+ 2687124663U, // <5,1,5,u>: Cost 3 vext3 <0,4,1,5>, <1,5,u,1>
+ 2553577574U, // <5,1,6,0>: Cost 3 vext1 <0,5,1,6>, LHS
+ 3763520719U, // <5,1,6,1>: Cost 4 vext3 <0,u,1,5>, <1,6,1,7>
+ 2646823418U, // <5,1,6,2>: Cost 3 vext2 <4,u,5,1>, <6,2,7,3>
+ 3760866529U, // <5,1,6,3>: Cost 4 vext3 <0,4,1,5>, <1,6,3,7>
+ 2553580854U, // <5,1,6,4>: Cost 3 vext1 <0,5,1,6>, RHS
+ 2687124723U, // <5,1,6,5>: Cost 3 vext3 <0,4,1,5>, <1,6,5,7>
+ 2646823736U, // <5,1,6,6>: Cost 3 vext2 <4,u,5,1>, <6,6,6,6>
+ 2646823758U, // <5,1,6,7>: Cost 3 vext2 <4,u,5,1>, <6,7,0,1>
+ 2646823839U, // <5,1,6,u>: Cost 3 vext2 <4,u,5,1>, <6,u,0,1>
+ 2559557734U, // <5,1,7,0>: Cost 3 vext1 <1,5,1,7>, LHS
+ 2559558452U, // <5,1,7,1>: Cost 3 vext1 <1,5,1,7>, <1,1,1,1>
+ 2571503270U, // <5,1,7,2>: Cost 3 vext1 <3,5,1,7>, <2,3,0,1>
+ 2040971366U, // <5,1,7,3>: Cost 2 vtrnr RHS, LHS
+ 2559561014U, // <5,1,7,4>: Cost 3 vext1 <1,5,1,7>, RHS
+ 2595393232U, // <5,1,7,5>: Cost 3 vext1 <7,5,1,7>, <5,1,7,3>
+ 4188455035U, // <5,1,7,6>: Cost 4 vtrnr RHS, <0,1,4,6>
+ 2646824556U, // <5,1,7,7>: Cost 3 vext2 <4,u,5,1>, <7,7,7,7>
+ 2040971371U, // <5,1,7,u>: Cost 2 vtrnr RHS, LHS
+ 1591662326U, // <5,1,u,0>: Cost 2 vext2 <u,0,5,1>, <u,0,5,1>
+ 1573082926U, // <5,1,u,1>: Cost 2 vext2 <4,u,5,1>, LHS
+ 2695824760U, // <5,1,u,2>: Cost 3 vext3 <1,u,2,5>, <1,u,2,5>
+ 2040979558U, // <5,1,u,3>: Cost 2 vtrnr RHS, LHS
+ 2687124874U, // <5,1,u,4>: Cost 3 vext3 <0,4,1,5>, <1,u,4,5>
+ 1573083290U, // <5,1,u,5>: Cost 2 vext2 <4,u,5,1>, RHS
+ 2646825168U, // <5,1,u,6>: Cost 3 vext2 <4,u,5,1>, <u,6,3,7>
+ 2646825216U, // <5,1,u,7>: Cost 3 vext2 <4,u,5,1>, <u,7,0,1>
+ 2040979563U, // <5,1,u,u>: Cost 2 vtrnr RHS, LHS
+ 3702652928U, // <5,2,0,0>: Cost 4 vext2 <1,u,5,2>, <0,0,0,0>
+ 2628911206U, // <5,2,0,1>: Cost 3 vext2 <1,u,5,2>, LHS
+ 2641518756U, // <5,2,0,2>: Cost 3 vext2 <4,0,5,2>, <0,2,0,2>
+ 3759760847U, // <5,2,0,3>: Cost 4 vext3 <0,2,4,5>, <2,0,3,2>
+ 3760866775U, // <5,2,0,4>: Cost 4 vext3 <0,4,1,5>, <2,0,4,1>
+ 3759539680U, // <5,2,0,5>: Cost 4 vext3 <0,2,1,5>, <2,0,5,1>
+ 3760866796U, // <5,2,0,6>: Cost 4 vext3 <0,4,1,5>, <2,0,6,4>
+ 3304114054U, // <5,2,0,7>: Cost 4 vrev <2,5,7,0>
+ 2628911773U, // <5,2,0,u>: Cost 3 vext2 <1,u,5,2>, LHS
+ 2623603464U, // <5,2,1,0>: Cost 3 vext2 <1,0,5,2>, <1,0,5,2>
+ 3698008921U, // <5,2,1,1>: Cost 4 vext2 <1,1,5,2>, <1,1,5,2>
+ 3633325603U, // <5,2,1,2>: Cost 4 vext1 <1,5,2,1>, <2,1,3,5>
+ 2687125027U, // <5,2,1,3>: Cost 3 vext3 <0,4,1,5>, <2,1,3,5>
+ 3633327414U, // <5,2,1,4>: Cost 4 vext1 <1,5,2,1>, RHS
+ 3759539760U, // <5,2,1,5>: Cost 4 vext3 <0,2,1,5>, <2,1,5,0>
+ 3760866876U, // <5,2,1,6>: Cost 4 vext3 <0,4,1,5>, <2,1,6,3>
+ 3304122247U, // <5,2,1,7>: Cost 4 vrev <2,5,7,1>
+ 2687125072U, // <5,2,1,u>: Cost 3 vext3 <0,4,1,5>, <2,1,u,5>
+ 3633332326U, // <5,2,2,0>: Cost 4 vext1 <1,5,2,2>, LHS
+ 3759760992U, // <5,2,2,1>: Cost 4 vext3 <0,2,4,5>, <2,2,1,3>
+ 2687125096U, // <5,2,2,2>: Cost 3 vext3 <0,4,1,5>, <2,2,2,2>
+ 2687125106U, // <5,2,2,3>: Cost 3 vext3 <0,4,1,5>, <2,2,3,3>
+ 2697963133U, // <5,2,2,4>: Cost 3 vext3 <2,2,4,5>, <2,2,4,5>
+ 3759466120U, // <5,2,2,5>: Cost 4 vext3 <0,2,0,5>, <2,2,5,7>
+ 3760866960U, // <5,2,2,6>: Cost 4 vext3 <0,4,1,5>, <2,2,6,6>
+ 3771926168U, // <5,2,2,7>: Cost 4 vext3 <2,2,7,5>, <2,2,7,5>
+ 2687125151U, // <5,2,2,u>: Cost 3 vext3 <0,4,1,5>, <2,2,u,3>
+ 2687125158U, // <5,2,3,0>: Cost 3 vext3 <0,4,1,5>, <2,3,0,1>
+ 2698405555U, // <5,2,3,1>: Cost 3 vext3 <2,3,1,5>, <2,3,1,5>
+ 2577516238U, // <5,2,3,2>: Cost 3 vext1 <4,5,2,3>, <2,3,4,5>
+ 3759687365U, // <5,2,3,3>: Cost 4 vext3 <0,2,3,5>, <2,3,3,5>
+ 1624884942U, // <5,2,3,4>: Cost 2 vext3 <2,3,4,5>, <2,3,4,5>
+ 2698700503U, // <5,2,3,5>: Cost 3 vext3 <2,3,5,5>, <2,3,5,5>
+ 3772368608U, // <5,2,3,6>: Cost 4 vext3 <2,3,4,5>, <2,3,6,5>
+ 3702655716U, // <5,2,3,7>: Cost 4 vext2 <1,u,5,2>, <3,7,3,7>
+ 1625179890U, // <5,2,3,u>: Cost 2 vext3 <2,3,u,5>, <2,3,u,5>
+ 2641521555U, // <5,2,4,0>: Cost 3 vext2 <4,0,5,2>, <4,0,5,2>
+ 3772368642U, // <5,2,4,1>: Cost 4 vext3 <2,3,4,5>, <2,4,1,3>
+ 2699142925U, // <5,2,4,2>: Cost 3 vext3 <2,4,2,5>, <2,4,2,5>
+ 2698626838U, // <5,2,4,3>: Cost 3 vext3 <2,3,4,5>, <2,4,3,5>
+ 2698626848U, // <5,2,4,4>: Cost 3 vext3 <2,3,4,5>, <2,4,4,6>
+ 2628914486U, // <5,2,4,5>: Cost 3 vext2 <1,u,5,2>, RHS
+ 2645503353U, // <5,2,4,6>: Cost 3 vext2 <4,6,5,2>, <4,6,5,2>
+ 3304146826U, // <5,2,4,7>: Cost 4 vrev <2,5,7,4>
+ 2628914729U, // <5,2,4,u>: Cost 3 vext2 <1,u,5,2>, RHS
+ 2553643110U, // <5,2,5,0>: Cost 3 vext1 <0,5,2,5>, LHS
+ 3758950227U, // <5,2,5,1>: Cost 4 vext3 <0,1,2,5>, <2,5,1,3>
+ 3759761248U, // <5,2,5,2>: Cost 4 vext3 <0,2,4,5>, <2,5,2,7>
+ 2982396006U, // <5,2,5,3>: Cost 3 vzipr <4,u,5,5>, LHS
+ 2553646390U, // <5,2,5,4>: Cost 3 vext1 <0,5,2,5>, RHS
+ 2553647108U, // <5,2,5,5>: Cost 3 vext1 <0,5,2,5>, <5,5,5,5>
+ 3760867204U, // <5,2,5,6>: Cost 4 vext3 <0,4,1,5>, <2,5,6,7>
+ 3702657141U, // <5,2,5,7>: Cost 4 vext2 <1,u,5,2>, <5,7,0,1>
+ 2982396011U, // <5,2,5,u>: Cost 3 vzipr <4,u,5,5>, LHS
+ 3627393126U, // <5,2,6,0>: Cost 4 vext1 <0,5,2,6>, LHS
+ 3760867236U, // <5,2,6,1>: Cost 4 vext3 <0,4,1,5>, <2,6,1,3>
+ 2645504506U, // <5,2,6,2>: Cost 3 vext2 <4,6,5,2>, <6,2,7,3>
+ 2687125434U, // <5,2,6,3>: Cost 3 vext3 <0,4,1,5>, <2,6,3,7>
+ 2700617665U, // <5,2,6,4>: Cost 3 vext3 <2,6,4,5>, <2,6,4,5>
+ 3760867276U, // <5,2,6,5>: Cost 4 vext3 <0,4,1,5>, <2,6,5,7>
+ 3763521493U, // <5,2,6,6>: Cost 4 vext3 <0,u,1,5>, <2,6,6,7>
+ 3719246670U, // <5,2,6,7>: Cost 4 vext2 <4,6,5,2>, <6,7,0,1>
+ 2687125479U, // <5,2,6,u>: Cost 3 vext3 <0,4,1,5>, <2,6,u,7>
+ 2565603430U, // <5,2,7,0>: Cost 3 vext1 <2,5,2,7>, LHS
+ 2553660150U, // <5,2,7,1>: Cost 3 vext1 <0,5,2,7>, <1,0,3,2>
+ 2565605216U, // <5,2,7,2>: Cost 3 vext1 <2,5,2,7>, <2,5,2,7>
+ 2961178726U, // <5,2,7,3>: Cost 3 vzipr <1,3,5,7>, LHS
+ 2565606710U, // <5,2,7,4>: Cost 3 vext1 <2,5,2,7>, RHS
+ 4034920552U, // <5,2,7,5>: Cost 4 vzipr <1,3,5,7>, <0,1,2,5>
+ 3114713292U, // <5,2,7,6>: Cost 3 vtrnr RHS, <0,2,4,6>
+ 3702658668U, // <5,2,7,7>: Cost 4 vext2 <1,u,5,2>, <7,7,7,7>
+ 2961178731U, // <5,2,7,u>: Cost 3 vzipr <1,3,5,7>, LHS
+ 2687125563U, // <5,2,u,0>: Cost 3 vext3 <0,4,1,5>, <2,u,0,1>
+ 2628917038U, // <5,2,u,1>: Cost 3 vext2 <1,u,5,2>, LHS
+ 2565613409U, // <5,2,u,2>: Cost 3 vext1 <2,5,2,u>, <2,5,2,u>
+ 2687125592U, // <5,2,u,3>: Cost 3 vext3 <0,4,1,5>, <2,u,3,3>
+ 1628203107U, // <5,2,u,4>: Cost 2 vext3 <2,u,4,5>, <2,u,4,5>
+ 2628917402U, // <5,2,u,5>: Cost 3 vext2 <1,u,5,2>, RHS
+ 2702092405U, // <5,2,u,6>: Cost 3 vext3 <2,u,6,5>, <2,u,6,5>
+ 3304179598U, // <5,2,u,7>: Cost 4 vrev <2,5,7,u>
+ 1628498055U, // <5,2,u,u>: Cost 2 vext3 <2,u,u,5>, <2,u,u,5>
+ 3760867467U, // <5,3,0,0>: Cost 4 vext3 <0,4,1,5>, <3,0,0,0>
+ 2687125654U, // <5,3,0,1>: Cost 3 vext3 <0,4,1,5>, <3,0,1,2>
+ 3759761565U, // <5,3,0,2>: Cost 4 vext3 <0,2,4,5>, <3,0,2,0>
+ 3633391766U, // <5,3,0,3>: Cost 4 vext1 <1,5,3,0>, <3,0,1,2>
+ 2687125680U, // <5,3,0,4>: Cost 3 vext3 <0,4,1,5>, <3,0,4,1>
+ 3760277690U, // <5,3,0,5>: Cost 4 vext3 <0,3,2,5>, <3,0,5,2>
+ 3310013014U, // <5,3,0,6>: Cost 4 vrev <3,5,6,0>
+ 2236344927U, // <5,3,0,7>: Cost 3 vrev <3,5,7,0>
+ 2687125717U, // <5,3,0,u>: Cost 3 vext3 <0,4,1,5>, <3,0,u,2>
+ 3760867551U, // <5,3,1,0>: Cost 4 vext3 <0,4,1,5>, <3,1,0,3>
+ 3760867558U, // <5,3,1,1>: Cost 4 vext3 <0,4,1,5>, <3,1,1,1>
+ 2624938923U, // <5,3,1,2>: Cost 3 vext2 <1,2,5,3>, <1,2,5,3>
+ 2703198460U, // <5,3,1,3>: Cost 3 vext3 <3,1,3,5>, <3,1,3,5>
+ 3760867587U, // <5,3,1,4>: Cost 4 vext3 <0,4,1,5>, <3,1,4,3>
+ 2636219536U, // <5,3,1,5>: Cost 3 vext2 <3,1,5,3>, <1,5,3,7>
+ 3698681075U, // <5,3,1,6>: Cost 4 vext2 <1,2,5,3>, <1,6,5,7>
+ 2703493408U, // <5,3,1,7>: Cost 3 vext3 <3,1,7,5>, <3,1,7,5>
+ 2628920721U, // <5,3,1,u>: Cost 3 vext2 <1,u,5,3>, <1,u,5,3>
+ 3766765870U, // <5,3,2,0>: Cost 4 vext3 <1,4,0,5>, <3,2,0,1>
+ 3698681379U, // <5,3,2,1>: Cost 4 vext2 <1,2,5,3>, <2,1,3,5>
+ 3760867649U, // <5,3,2,2>: Cost 4 vext3 <0,4,1,5>, <3,2,2,2>
+ 2698627404U, // <5,3,2,3>: Cost 3 vext3 <2,3,4,5>, <3,2,3,4>
+ 2703935830U, // <5,3,2,4>: Cost 3 vext3 <3,2,4,5>, <3,2,4,5>
+ 2698627422U, // <5,3,2,5>: Cost 3 vext3 <2,3,4,5>, <3,2,5,4>
+ 3760867686U, // <5,3,2,6>: Cost 4 vext3 <0,4,1,5>, <3,2,6,3>
+ 3769788783U, // <5,3,2,7>: Cost 4 vext3 <1,u,5,5>, <3,2,7,3>
+ 2701945209U, // <5,3,2,u>: Cost 3 vext3 <2,u,4,5>, <3,2,u,4>
+ 3760867711U, // <5,3,3,0>: Cost 4 vext3 <0,4,1,5>, <3,3,0,1>
+ 2636220684U, // <5,3,3,1>: Cost 3 vext2 <3,1,5,3>, <3,1,5,3>
+ 3772369298U, // <5,3,3,2>: Cost 4 vext3 <2,3,4,5>, <3,3,2,2>
+ 2687125916U, // <5,3,3,3>: Cost 3 vext3 <0,4,1,5>, <3,3,3,3>
+ 2704599463U, // <5,3,3,4>: Cost 3 vext3 <3,3,4,5>, <3,3,4,5>
+ 2704673200U, // <5,3,3,5>: Cost 3 vext3 <3,3,5,5>, <3,3,5,5>
+ 3709962935U, // <5,3,3,6>: Cost 4 vext2 <3,1,5,3>, <3,6,7,7>
+ 3772369346U, // <5,3,3,7>: Cost 4 vext3 <2,3,4,5>, <3,3,7,5>
+ 2704894411U, // <5,3,3,u>: Cost 3 vext3 <3,3,u,5>, <3,3,u,5>
+ 2704968148U, // <5,3,4,0>: Cost 3 vext3 <3,4,0,5>, <3,4,0,5>
+ 3698682850U, // <5,3,4,1>: Cost 4 vext2 <1,2,5,3>, <4,1,5,0>
+ 2642857014U, // <5,3,4,2>: Cost 3 vext2 <4,2,5,3>, <4,2,5,3>
+ 2705189359U, // <5,3,4,3>: Cost 3 vext3 <3,4,3,5>, <3,4,3,5>
+ 2705263096U, // <5,3,4,4>: Cost 3 vext3 <3,4,4,5>, <3,4,4,5>
+ 2685946370U, // <5,3,4,5>: Cost 3 vext3 <0,2,3,5>, <3,4,5,6>
+ 3779152394U, // <5,3,4,6>: Cost 4 vext3 <3,4,6,5>, <3,4,6,5>
+ 2236377699U, // <5,3,4,7>: Cost 3 vrev <3,5,7,4>
+ 2687126045U, // <5,3,4,u>: Cost 3 vext3 <0,4,1,5>, <3,4,u,6>
+ 2571632742U, // <5,3,5,0>: Cost 3 vext1 <3,5,3,5>, LHS
+ 2559689870U, // <5,3,5,1>: Cost 3 vext1 <1,5,3,5>, <1,5,3,5>
+ 2571634382U, // <5,3,5,2>: Cost 3 vext1 <3,5,3,5>, <2,3,4,5>
+ 2571635264U, // <5,3,5,3>: Cost 3 vext1 <3,5,3,5>, <3,5,3,5>
+ 2571636022U, // <5,3,5,4>: Cost 3 vext1 <3,5,3,5>, RHS
+ 2559692804U, // <5,3,5,5>: Cost 3 vext1 <1,5,3,5>, <5,5,5,5>
+ 3720581218U, // <5,3,5,6>: Cost 4 vext2 <4,u,5,3>, <5,6,7,0>
+ 2236385892U, // <5,3,5,7>: Cost 3 vrev <3,5,7,5>
+ 2571638574U, // <5,3,5,u>: Cost 3 vext1 <3,5,3,5>, LHS
+ 2565668966U, // <5,3,6,0>: Cost 3 vext1 <2,5,3,6>, LHS
+ 3633439887U, // <5,3,6,1>: Cost 4 vext1 <1,5,3,6>, <1,5,3,6>
+ 2565670760U, // <5,3,6,2>: Cost 3 vext1 <2,5,3,6>, <2,5,3,6>
+ 2565671426U, // <5,3,6,3>: Cost 3 vext1 <2,5,3,6>, <3,4,5,6>
+ 2565672246U, // <5,3,6,4>: Cost 3 vext1 <2,5,3,6>, RHS
+ 3639414630U, // <5,3,6,5>: Cost 4 vext1 <2,5,3,6>, <5,3,6,0>
+ 4047521640U, // <5,3,6,6>: Cost 4 vzipr <3,4,5,6>, <2,5,3,6>
+ 2725169844U, // <5,3,6,7>: Cost 3 vext3 <6,7,4,5>, <3,6,7,4>
+ 2565674798U, // <5,3,6,u>: Cost 3 vext1 <2,5,3,6>, LHS
+ 1485963366U, // <5,3,7,0>: Cost 2 vext1 <1,5,3,7>, LHS
+ 1485964432U, // <5,3,7,1>: Cost 2 vext1 <1,5,3,7>, <1,5,3,7>
+ 2559706728U, // <5,3,7,2>: Cost 3 vext1 <1,5,3,7>, <2,2,2,2>
+ 2559707286U, // <5,3,7,3>: Cost 3 vext1 <1,5,3,7>, <3,0,1,2>
+ 1485966646U, // <5,3,7,4>: Cost 2 vext1 <1,5,3,7>, RHS
+ 2559708880U, // <5,3,7,5>: Cost 3 vext1 <1,5,3,7>, <5,1,7,3>
+ 2601513466U, // <5,3,7,6>: Cost 3 vext1 <u,5,3,7>, <6,2,7,3>
+ 3114714112U, // <5,3,7,7>: Cost 3 vtrnr RHS, <1,3,5,7>
+ 1485969198U, // <5,3,7,u>: Cost 2 vext1 <1,5,3,7>, LHS
+ 1485971558U, // <5,3,u,0>: Cost 2 vext1 <1,5,3,u>, LHS
+ 1485972625U, // <5,3,u,1>: Cost 2 vext1 <1,5,3,u>, <1,5,3,u>
+ 2559714920U, // <5,3,u,2>: Cost 3 vext1 <1,5,3,u>, <2,2,2,2>
+ 2559715478U, // <5,3,u,3>: Cost 3 vext1 <1,5,3,u>, <3,0,1,2>
+ 1485974838U, // <5,3,u,4>: Cost 2 vext1 <1,5,3,u>, RHS
+ 2687126342U, // <5,3,u,5>: Cost 3 vext3 <0,4,1,5>, <3,u,5,6>
+ 2601521658U, // <5,3,u,6>: Cost 3 vext1 <u,5,3,u>, <6,2,7,3>
+ 2236410471U, // <5,3,u,7>: Cost 3 vrev <3,5,7,u>
+ 1485977390U, // <5,3,u,u>: Cost 2 vext1 <1,5,3,u>, LHS
+ 3627491430U, // <5,4,0,0>: Cost 4 vext1 <0,5,4,0>, LHS
+ 2636890214U, // <5,4,0,1>: Cost 3 vext2 <3,2,5,4>, LHS
+ 3703333028U, // <5,4,0,2>: Cost 4 vext2 <2,0,5,4>, <0,2,0,2>
+ 3782249348U, // <5,4,0,3>: Cost 4 vext3 <4,0,3,5>, <4,0,3,5>
+ 2642198866U, // <5,4,0,4>: Cost 3 vext2 <4,1,5,4>, <0,4,1,5>
+ 2687126418U, // <5,4,0,5>: Cost 3 vext3 <0,4,1,5>, <4,0,5,1>
+ 2242243887U, // <5,4,0,6>: Cost 3 vrev <4,5,6,0>
+ 3316059448U, // <5,4,0,7>: Cost 4 vrev <4,5,7,0>
+ 2636890781U, // <5,4,0,u>: Cost 3 vext2 <3,2,5,4>, LHS
+ 2241809658U, // <5,4,1,0>: Cost 3 vrev <4,5,0,1>
+ 3698025307U, // <5,4,1,1>: Cost 4 vext2 <1,1,5,4>, <1,1,5,4>
+ 3698688940U, // <5,4,1,2>: Cost 4 vext2 <1,2,5,4>, <1,2,5,4>
+ 3698689024U, // <5,4,1,3>: Cost 4 vext2 <1,2,5,4>, <1,3,5,7>
+ 3700016206U, // <5,4,1,4>: Cost 4 vext2 <1,4,5,4>, <1,4,5,4>
+ 2687126498U, // <5,4,1,5>: Cost 3 vext3 <0,4,1,5>, <4,1,5,0>
+ 3760868336U, // <5,4,1,6>: Cost 4 vext3 <0,4,1,5>, <4,1,6,5>
+ 3316067641U, // <5,4,1,7>: Cost 4 vrev <4,5,7,1>
+ 2242399554U, // <5,4,1,u>: Cost 3 vrev <4,5,u,1>
+ 3703334371U, // <5,4,2,0>: Cost 4 vext2 <2,0,5,4>, <2,0,5,4>
+ 3703998004U, // <5,4,2,1>: Cost 4 vext2 <2,1,5,4>, <2,1,5,4>
+ 3704661637U, // <5,4,2,2>: Cost 4 vext2 <2,2,5,4>, <2,2,5,4>
+ 2636891854U, // <5,4,2,3>: Cost 3 vext2 <3,2,5,4>, <2,3,4,5>
+ 3705988903U, // <5,4,2,4>: Cost 4 vext2 <2,4,5,4>, <2,4,5,4>
+ 2698628150U, // <5,4,2,5>: Cost 3 vext3 <2,3,4,5>, <4,2,5,3>
+ 3760868415U, // <5,4,2,6>: Cost 4 vext3 <0,4,1,5>, <4,2,6,3>
+ 3783871562U, // <5,4,2,7>: Cost 4 vext3 <4,2,7,5>, <4,2,7,5>
+ 2666752099U, // <5,4,2,u>: Cost 3 vext2 <u,2,5,4>, <2,u,4,5>
+ 3639459942U, // <5,4,3,0>: Cost 4 vext1 <2,5,4,3>, LHS
+ 3709970701U, // <5,4,3,1>: Cost 4 vext2 <3,1,5,4>, <3,1,5,4>
+ 2636892510U, // <5,4,3,2>: Cost 3 vext2 <3,2,5,4>, <3,2,5,4>
+ 3710634396U, // <5,4,3,3>: Cost 4 vext2 <3,2,5,4>, <3,3,3,3>
+ 2638219776U, // <5,4,3,4>: Cost 3 vext2 <3,4,5,4>, <3,4,5,4>
+ 3766987908U, // <5,4,3,5>: Cost 4 vext3 <1,4,3,5>, <4,3,5,0>
+ 2710719634U, // <5,4,3,6>: Cost 3 vext3 <4,3,6,5>, <4,3,6,5>
+ 3914097664U, // <5,4,3,7>: Cost 4 vuzpr <3,5,7,4>, <1,3,5,7>
+ 2640874308U, // <5,4,3,u>: Cost 3 vext2 <3,u,5,4>, <3,u,5,4>
+ 2583642214U, // <5,4,4,0>: Cost 3 vext1 <5,5,4,4>, LHS
+ 2642201574U, // <5,4,4,1>: Cost 3 vext2 <4,1,5,4>, <4,1,5,4>
+ 3710635062U, // <5,4,4,2>: Cost 4 vext2 <3,2,5,4>, <4,2,5,3>
+ 3717270664U, // <5,4,4,3>: Cost 4 vext2 <4,3,5,4>, <4,3,5,4>
+ 2713963728U, // <5,4,4,4>: Cost 3 vext3 <4,u,5,5>, <4,4,4,4>
+ 1637567706U, // <5,4,4,5>: Cost 2 vext3 <4,4,5,5>, <4,4,5,5>
+ 2242276659U, // <5,4,4,6>: Cost 3 vrev <4,5,6,4>
+ 2646183372U, // <5,4,4,7>: Cost 3 vext2 <4,7,5,4>, <4,7,5,4>
+ 1637788917U, // <5,4,4,u>: Cost 2 vext3 <4,4,u,5>, <4,4,u,5>
+ 2559762534U, // <5,4,5,0>: Cost 3 vext1 <1,5,4,5>, LHS
+ 2559763607U, // <5,4,5,1>: Cost 3 vext1 <1,5,4,5>, <1,5,4,5>
+ 2698628366U, // <5,4,5,2>: Cost 3 vext3 <2,3,4,5>, <4,5,2,3>
+ 3633506454U, // <5,4,5,3>: Cost 4 vext1 <1,5,4,5>, <3,0,1,2>
+ 2559765814U, // <5,4,5,4>: Cost 3 vext1 <1,5,4,5>, RHS
+ 2583654395U, // <5,4,5,5>: Cost 3 vext1 <5,5,4,5>, <5,5,4,5>
+ 1613385014U, // <5,4,5,6>: Cost 2 vext3 <0,4,1,5>, RHS
+ 3901639990U, // <5,4,5,7>: Cost 4 vuzpr <1,5,0,4>, RHS
+ 1613385032U, // <5,4,5,u>: Cost 2 vext3 <0,4,1,5>, RHS
+ 2559770726U, // <5,4,6,0>: Cost 3 vext1 <1,5,4,6>, LHS
+ 2559771648U, // <5,4,6,1>: Cost 3 vext1 <1,5,4,6>, <1,3,5,7>
+ 3633514088U, // <5,4,6,2>: Cost 4 vext1 <1,5,4,6>, <2,2,2,2>
+ 2571717122U, // <5,4,6,3>: Cost 3 vext1 <3,5,4,6>, <3,4,5,6>
+ 2559774006U, // <5,4,6,4>: Cost 3 vext1 <1,5,4,6>, RHS
+ 2712636796U, // <5,4,6,5>: Cost 3 vext3 <4,6,5,5>, <4,6,5,5>
+ 3760868743U, // <5,4,6,6>: Cost 4 vext3 <0,4,1,5>, <4,6,6,7>
+ 2712784270U, // <5,4,6,7>: Cost 3 vext3 <4,6,7,5>, <4,6,7,5>
+ 2559776558U, // <5,4,6,u>: Cost 3 vext1 <1,5,4,6>, LHS
+ 2565750886U, // <5,4,7,0>: Cost 3 vext1 <2,5,4,7>, LHS
+ 2565751706U, // <5,4,7,1>: Cost 3 vext1 <2,5,4,7>, <1,2,3,4>
+ 2565752690U, // <5,4,7,2>: Cost 3 vext1 <2,5,4,7>, <2,5,4,7>
+ 2571725387U, // <5,4,7,3>: Cost 3 vext1 <3,5,4,7>, <3,5,4,7>
+ 2565754166U, // <5,4,7,4>: Cost 3 vext1 <2,5,4,7>, RHS
+ 3114713426U, // <5,4,7,5>: Cost 3 vtrnr RHS, <0,4,1,5>
+ 94817590U, // <5,4,7,6>: Cost 1 vrev RHS
+ 2595616175U, // <5,4,7,7>: Cost 3 vext1 <7,5,4,7>, <7,5,4,7>
+ 94965064U, // <5,4,7,u>: Cost 1 vrev RHS
+ 2559787110U, // <5,4,u,0>: Cost 3 vext1 <1,5,4,u>, LHS
+ 2559788186U, // <5,4,u,1>: Cost 3 vext1 <1,5,4,u>, <1,5,4,u>
+ 2242014483U, // <5,4,u,2>: Cost 3 vrev <4,5,2,u>
+ 2667419628U, // <5,4,u,3>: Cost 3 vext2 <u,3,5,4>, <u,3,5,4>
+ 2559790390U, // <5,4,u,4>: Cost 3 vext1 <1,5,4,u>, RHS
+ 1640222238U, // <5,4,u,5>: Cost 2 vext3 <4,u,5,5>, <4,u,5,5>
+ 94825783U, // <5,4,u,6>: Cost 1 vrev RHS
+ 2714111536U, // <5,4,u,7>: Cost 3 vext3 <4,u,7,5>, <4,u,7,5>
+ 94973257U, // <5,4,u,u>: Cost 1 vrev RHS
+ 2646851584U, // <5,5,0,0>: Cost 3 vext2 <4,u,5,5>, <0,0,0,0>
+ 1573109862U, // <5,5,0,1>: Cost 2 vext2 <4,u,5,5>, LHS
+ 2646851748U, // <5,5,0,2>: Cost 3 vext2 <4,u,5,5>, <0,2,0,2>
+ 3760279130U, // <5,5,0,3>: Cost 4 vext3 <0,3,2,5>, <5,0,3,2>
+ 2687127138U, // <5,5,0,4>: Cost 3 vext3 <0,4,1,5>, <5,0,4,1>
+ 2248142847U, // <5,5,0,5>: Cost 3 vrev <5,5,5,0>
+ 3720593910U, // <5,5,0,6>: Cost 4 vext2 <4,u,5,5>, <0,6,1,7>
+ 4182502710U, // <5,5,0,7>: Cost 4 vtrnr <3,5,7,0>, RHS
+ 1573110429U, // <5,5,0,u>: Cost 2 vext2 <4,u,5,5>, LHS
+ 2646852342U, // <5,5,1,0>: Cost 3 vext2 <4,u,5,5>, <1,0,3,2>
+ 2624291676U, // <5,5,1,1>: Cost 3 vext2 <1,1,5,5>, <1,1,5,5>
+ 2646852502U, // <5,5,1,2>: Cost 3 vext2 <4,u,5,5>, <1,2,3,0>
+ 2646852568U, // <5,5,1,3>: Cost 3 vext2 <4,u,5,5>, <1,3,1,3>
+ 2715217591U, // <5,5,1,4>: Cost 3 vext3 <5,1,4,5>, <5,1,4,5>
+ 2628936848U, // <5,5,1,5>: Cost 3 vext2 <1,u,5,5>, <1,5,3,7>
+ 3698033907U, // <5,5,1,6>: Cost 4 vext2 <1,1,5,5>, <1,6,5,7>
+ 2713964240U, // <5,5,1,7>: Cost 3 vext3 <4,u,5,5>, <5,1,7,3>
+ 2628937107U, // <5,5,1,u>: Cost 3 vext2 <1,u,5,5>, <1,u,5,5>
+ 3645497446U, // <5,5,2,0>: Cost 4 vext1 <3,5,5,2>, LHS
+ 3760869099U, // <5,5,2,1>: Cost 4 vext3 <0,4,1,5>, <5,2,1,3>
+ 2646853224U, // <5,5,2,2>: Cost 3 vext2 <4,u,5,5>, <2,2,2,2>
+ 2698628862U, // <5,5,2,3>: Cost 3 vext3 <2,3,4,5>, <5,2,3,4>
+ 3772370694U, // <5,5,2,4>: Cost 4 vext3 <2,3,4,5>, <5,2,4,3>
+ 2713964303U, // <5,5,2,5>: Cost 3 vext3 <4,u,5,5>, <5,2,5,3>
+ 2646853562U, // <5,5,2,6>: Cost 3 vext2 <4,u,5,5>, <2,6,3,7>
+ 4038198272U, // <5,5,2,7>: Cost 4 vzipr <1,u,5,2>, <1,3,5,7>
+ 2701946667U, // <5,5,2,u>: Cost 3 vext3 <2,u,4,5>, <5,2,u,4>
+ 2646853782U, // <5,5,3,0>: Cost 3 vext2 <4,u,5,5>, <3,0,1,2>
+ 3698034922U, // <5,5,3,1>: Cost 4 vext2 <1,1,5,5>, <3,1,1,5>
+ 3702679919U, // <5,5,3,2>: Cost 4 vext2 <1,u,5,5>, <3,2,7,3>
+ 2637564336U, // <5,5,3,3>: Cost 3 vext2 <3,3,5,5>, <3,3,5,5>
+ 2646854146U, // <5,5,3,4>: Cost 3 vext2 <4,u,5,5>, <3,4,5,6>
+ 2638891602U, // <5,5,3,5>: Cost 3 vext2 <3,5,5,5>, <3,5,5,5>
+ 3702680247U, // <5,5,3,6>: Cost 4 vext2 <1,u,5,5>, <3,6,7,7>
+ 3702680259U, // <5,5,3,7>: Cost 4 vext2 <1,u,5,5>, <3,7,0,1>
+ 2646854430U, // <5,5,3,u>: Cost 3 vext2 <4,u,5,5>, <3,u,1,2>
+ 2646854546U, // <5,5,4,0>: Cost 3 vext2 <4,u,5,5>, <4,0,5,1>
+ 2642209767U, // <5,5,4,1>: Cost 3 vext2 <4,1,5,5>, <4,1,5,5>
+ 3711306806U, // <5,5,4,2>: Cost 4 vext2 <3,3,5,5>, <4,2,5,3>
+ 3645516369U, // <5,5,4,3>: Cost 4 vext1 <3,5,5,4>, <3,5,5,4>
+ 1570458842U, // <5,5,4,4>: Cost 2 vext2 <4,4,5,5>, <4,4,5,5>
+ 1573113142U, // <5,5,4,5>: Cost 2 vext2 <4,u,5,5>, RHS
+ 2645527932U, // <5,5,4,6>: Cost 3 vext2 <4,6,5,5>, <4,6,5,5>
+ 2713964486U, // <5,5,4,7>: Cost 3 vext3 <4,u,5,5>, <5,4,7,6>
+ 1573113374U, // <5,5,4,u>: Cost 2 vext2 <4,u,5,5>, <4,u,5,5>
+ 1509982310U, // <5,5,5,0>: Cost 2 vext1 <5,5,5,5>, LHS
+ 2646855376U, // <5,5,5,1>: Cost 3 vext2 <4,u,5,5>, <5,1,7,3>
+ 2583725672U, // <5,5,5,2>: Cost 3 vext1 <5,5,5,5>, <2,2,2,2>
+ 2583726230U, // <5,5,5,3>: Cost 3 vext1 <5,5,5,5>, <3,0,1,2>
+ 1509985590U, // <5,5,5,4>: Cost 2 vext1 <5,5,5,5>, RHS
+ 229035318U, // <5,5,5,5>: Cost 1 vdup1 RHS
+ 2646855778U, // <5,5,5,6>: Cost 3 vext2 <4,u,5,5>, <5,6,7,0>
+ 2646855848U, // <5,5,5,7>: Cost 3 vext2 <4,u,5,5>, <5,7,5,7>
+ 229035318U, // <5,5,5,u>: Cost 1 vdup1 RHS
+ 2577760358U, // <5,5,6,0>: Cost 3 vext1 <4,5,5,6>, LHS
+ 3633587361U, // <5,5,6,1>: Cost 4 vext1 <1,5,5,6>, <1,5,5,6>
+ 2646856186U, // <5,5,6,2>: Cost 3 vext2 <4,u,5,5>, <6,2,7,3>
+ 3633588738U, // <5,5,6,3>: Cost 4 vext1 <1,5,5,6>, <3,4,5,6>
+ 2718535756U, // <5,5,6,4>: Cost 3 vext3 <5,6,4,5>, <5,6,4,5>
+ 2644202223U, // <5,5,6,5>: Cost 3 vext2 <4,4,5,5>, <6,5,7,5>
+ 2973780482U, // <5,5,6,6>: Cost 3 vzipr <3,4,5,6>, <3,4,5,6>
+ 2646856526U, // <5,5,6,7>: Cost 3 vext2 <4,u,5,5>, <6,7,0,1>
+ 2646856607U, // <5,5,6,u>: Cost 3 vext2 <4,u,5,5>, <6,u,0,1>
+ 2571796582U, // <5,5,7,0>: Cost 3 vext1 <3,5,5,7>, LHS
+ 3633595392U, // <5,5,7,1>: Cost 4 vext1 <1,5,5,7>, <1,3,5,7>
+ 2571798222U, // <5,5,7,2>: Cost 3 vext1 <3,5,5,7>, <2,3,4,5>
+ 2571799124U, // <5,5,7,3>: Cost 3 vext1 <3,5,5,7>, <3,5,5,7>
+ 2571799862U, // <5,5,7,4>: Cost 3 vext1 <3,5,5,7>, RHS
+ 3114717188U, // <5,5,7,5>: Cost 3 vtrnr RHS, <5,5,5,5>
+ 4034923010U, // <5,5,7,6>: Cost 4 vzipr <1,3,5,7>, <3,4,5,6>
+ 2040974646U, // <5,5,7,7>: Cost 2 vtrnr RHS, RHS
+ 2040974647U, // <5,5,7,u>: Cost 2 vtrnr RHS, RHS
+ 1509982310U, // <5,5,u,0>: Cost 2 vext1 <5,5,5,5>, LHS
+ 1573115694U, // <5,5,u,1>: Cost 2 vext2 <4,u,5,5>, LHS
+ 2571806414U, // <5,5,u,2>: Cost 3 vext1 <3,5,5,u>, <2,3,4,5>
+ 2571807317U, // <5,5,u,3>: Cost 3 vext1 <3,5,5,u>, <3,5,5,u>
+ 1509985590U, // <5,5,u,4>: Cost 2 vext1 <5,5,5,5>, RHS
+ 229035318U, // <5,5,u,5>: Cost 1 vdup1 RHS
+ 2646857936U, // <5,5,u,6>: Cost 3 vext2 <4,u,5,5>, <u,6,3,7>
+ 2040982838U, // <5,5,u,7>: Cost 2 vtrnr RHS, RHS
+ 229035318U, // <5,5,u,u>: Cost 1 vdup1 RHS
+ 2638233600U, // <5,6,0,0>: Cost 3 vext2 <3,4,5,6>, <0,0,0,0>
+ 1564491878U, // <5,6,0,1>: Cost 2 vext2 <3,4,5,6>, LHS
+ 2632261796U, // <5,6,0,2>: Cost 3 vext2 <2,4,5,6>, <0,2,0,2>
+ 2638233856U, // <5,6,0,3>: Cost 3 vext2 <3,4,5,6>, <0,3,1,4>
+ 2638233938U, // <5,6,0,4>: Cost 3 vext2 <3,4,5,6>, <0,4,1,5>
+ 3706003885U, // <5,6,0,5>: Cost 4 vext2 <2,4,5,6>, <0,5,2,6>
+ 3706003967U, // <5,6,0,6>: Cost 4 vext2 <2,4,5,6>, <0,6,2,7>
+ 4047473974U, // <5,6,0,7>: Cost 4 vzipr <3,4,5,0>, RHS
+ 1564492445U, // <5,6,0,u>: Cost 2 vext2 <3,4,5,6>, LHS
+ 2638234358U, // <5,6,1,0>: Cost 3 vext2 <3,4,5,6>, <1,0,3,2>
+ 2638234420U, // <5,6,1,1>: Cost 3 vext2 <3,4,5,6>, <1,1,1,1>
+ 2638234518U, // <5,6,1,2>: Cost 3 vext2 <3,4,5,6>, <1,2,3,0>
+ 2638234584U, // <5,6,1,3>: Cost 3 vext2 <3,4,5,6>, <1,3,1,3>
+ 2626290768U, // <5,6,1,4>: Cost 3 vext2 <1,4,5,6>, <1,4,5,6>
+ 2638234768U, // <5,6,1,5>: Cost 3 vext2 <3,4,5,6>, <1,5,3,7>
+ 3700032719U, // <5,6,1,6>: Cost 4 vext2 <1,4,5,6>, <1,6,1,7>
+ 2982366518U, // <5,6,1,7>: Cost 3 vzipr <4,u,5,1>, RHS
+ 2628945300U, // <5,6,1,u>: Cost 3 vext2 <1,u,5,6>, <1,u,5,6>
+ 3706004925U, // <5,6,2,0>: Cost 4 vext2 <2,4,5,6>, <2,0,1,2>
+ 3711976966U, // <5,6,2,1>: Cost 4 vext2 <3,4,5,6>, <2,1,0,3>
+ 2638235240U, // <5,6,2,2>: Cost 3 vext2 <3,4,5,6>, <2,2,2,2>
+ 2638235302U, // <5,6,2,3>: Cost 3 vext2 <3,4,5,6>, <2,3,0,1>
+ 2632263465U, // <5,6,2,4>: Cost 3 vext2 <2,4,5,6>, <2,4,5,6>
+ 2638235496U, // <5,6,2,5>: Cost 3 vext2 <3,4,5,6>, <2,5,3,6>
+ 2638235578U, // <5,6,2,6>: Cost 3 vext2 <3,4,5,6>, <2,6,3,7>
+ 2713965050U, // <5,6,2,7>: Cost 3 vext3 <4,u,5,5>, <6,2,7,3>
+ 2634917997U, // <5,6,2,u>: Cost 3 vext2 <2,u,5,6>, <2,u,5,6>
+ 2638235798U, // <5,6,3,0>: Cost 3 vext2 <3,4,5,6>, <3,0,1,2>
+ 3711977695U, // <5,6,3,1>: Cost 4 vext2 <3,4,5,6>, <3,1,0,3>
+ 3710650720U, // <5,6,3,2>: Cost 4 vext2 <3,2,5,6>, <3,2,5,6>
+ 2638236060U, // <5,6,3,3>: Cost 3 vext2 <3,4,5,6>, <3,3,3,3>
+ 1564494338U, // <5,6,3,4>: Cost 2 vext2 <3,4,5,6>, <3,4,5,6>
+ 2638236234U, // <5,6,3,5>: Cost 3 vext2 <3,4,5,6>, <3,5,4,6>
+ 3711978104U, // <5,6,3,6>: Cost 4 vext2 <3,4,5,6>, <3,6,0,7>
+ 4034227510U, // <5,6,3,7>: Cost 4 vzipr <1,2,5,3>, RHS
+ 1567148870U, // <5,6,3,u>: Cost 2 vext2 <3,u,5,6>, <3,u,5,6>
+ 2577817702U, // <5,6,4,0>: Cost 3 vext1 <4,5,6,4>, LHS
+ 3700034544U, // <5,6,4,1>: Cost 4 vext2 <1,4,5,6>, <4,1,6,5>
+ 2723033713U, // <5,6,4,2>: Cost 3 vext3 <6,4,2,5>, <6,4,2,5>
+ 2638236818U, // <5,6,4,3>: Cost 3 vext2 <3,4,5,6>, <4,3,6,5>
+ 2644208859U, // <5,6,4,4>: Cost 3 vext2 <4,4,5,6>, <4,4,5,6>
+ 1564495158U, // <5,6,4,5>: Cost 2 vext2 <3,4,5,6>, RHS
+ 2645536125U, // <5,6,4,6>: Cost 3 vext2 <4,6,5,6>, <4,6,5,6>
+ 2723402398U, // <5,6,4,7>: Cost 3 vext3 <6,4,7,5>, <6,4,7,5>
+ 1564495401U, // <5,6,4,u>: Cost 2 vext2 <3,4,5,6>, RHS
+ 2577825894U, // <5,6,5,0>: Cost 3 vext1 <4,5,6,5>, LHS
+ 2662125264U, // <5,6,5,1>: Cost 3 vext2 <7,4,5,6>, <5,1,7,3>
+ 3775836867U, // <5,6,5,2>: Cost 4 vext3 <2,u,6,5>, <6,5,2,6>
+ 3711979343U, // <5,6,5,3>: Cost 4 vext2 <3,4,5,6>, <5,3,3,4>
+ 2650181556U, // <5,6,5,4>: Cost 3 vext2 <5,4,5,6>, <5,4,5,6>
+ 2662125572U, // <5,6,5,5>: Cost 3 vext2 <7,4,5,6>, <5,5,5,5>
+ 2638237732U, // <5,6,5,6>: Cost 3 vext2 <3,4,5,6>, <5,6,0,1>
+ 2982399286U, // <5,6,5,7>: Cost 3 vzipr <4,u,5,5>, RHS
+ 2982399287U, // <5,6,5,u>: Cost 3 vzipr <4,u,5,5>, RHS
+ 2583806054U, // <5,6,6,0>: Cost 3 vext1 <5,5,6,6>, LHS
+ 3711979910U, // <5,6,6,1>: Cost 4 vext2 <3,4,5,6>, <6,1,3,4>
+ 2662126074U, // <5,6,6,2>: Cost 3 vext2 <7,4,5,6>, <6,2,7,3>
+ 2583808514U, // <5,6,6,3>: Cost 3 vext1 <5,5,6,6>, <3,4,5,6>
+ 2583809334U, // <5,6,6,4>: Cost 3 vext1 <5,5,6,6>, RHS
+ 2583810062U, // <5,6,6,5>: Cost 3 vext1 <5,5,6,6>, <5,5,6,6>
+ 2638238520U, // <5,6,6,6>: Cost 3 vext2 <3,4,5,6>, <6,6,6,6>
+ 2973781302U, // <5,6,6,7>: Cost 3 vzipr <3,4,5,6>, RHS
+ 2973781303U, // <5,6,6,u>: Cost 3 vzipr <3,4,5,6>, RHS
+ 430358630U, // <5,6,7,0>: Cost 1 vext1 RHS, LHS
+ 1504101110U, // <5,6,7,1>: Cost 2 vext1 RHS, <1,0,3,2>
+ 1504101992U, // <5,6,7,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1504102550U, // <5,6,7,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 430361910U, // <5,6,7,4>: Cost 1 vext1 RHS, RHS
+ 1504104390U, // <5,6,7,5>: Cost 2 vext1 RHS, <5,4,7,6>
+ 1504105272U, // <5,6,7,6>: Cost 2 vext1 RHS, <6,6,6,6>
+ 1504106092U, // <5,6,7,7>: Cost 2 vext1 RHS, <7,7,7,7>
+ 430364462U, // <5,6,7,u>: Cost 1 vext1 RHS, LHS
+ 430366822U, // <5,6,u,0>: Cost 1 vext1 RHS, LHS
+ 1564497710U, // <5,6,u,1>: Cost 2 vext2 <3,4,5,6>, LHS
+ 1504110184U, // <5,6,u,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1504110742U, // <5,6,u,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 430370103U, // <5,6,u,4>: Cost 1 vext1 RHS, RHS
+ 1564498074U, // <5,6,u,5>: Cost 2 vext2 <3,4,5,6>, RHS
+ 1504113146U, // <5,6,u,6>: Cost 2 vext1 RHS, <6,2,7,3>
+ 1504113658U, // <5,6,u,7>: Cost 2 vext1 RHS, <7,0,1,2>
+ 430372654U, // <5,6,u,u>: Cost 1 vext1 RHS, LHS
+ 2625634304U, // <5,7,0,0>: Cost 3 vext2 <1,3,5,7>, <0,0,0,0>
+ 1551892582U, // <5,7,0,1>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625634468U, // <5,7,0,2>: Cost 3 vext2 <1,3,5,7>, <0,2,0,2>
+ 2571889247U, // <5,7,0,3>: Cost 3 vext1 <3,5,7,0>, <3,5,7,0>
+ 2625634642U, // <5,7,0,4>: Cost 3 vext2 <1,3,5,7>, <0,4,1,5>
+ 2595778728U, // <5,7,0,5>: Cost 3 vext1 <7,5,7,0>, <5,7,5,7>
+ 3699376639U, // <5,7,0,6>: Cost 4 vext2 <1,3,5,7>, <0,6,2,7>
+ 2260235715U, // <5,7,0,7>: Cost 3 vrev <7,5,7,0>
+ 1551893149U, // <5,7,0,u>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625635062U, // <5,7,1,0>: Cost 3 vext2 <1,3,5,7>, <1,0,3,2>
+ 2624308020U, // <5,7,1,1>: Cost 3 vext2 <1,1,5,7>, <1,1,1,1>
+ 2625635222U, // <5,7,1,2>: Cost 3 vext2 <1,3,5,7>, <1,2,3,0>
+ 1551893504U, // <5,7,1,3>: Cost 2 vext2 <1,3,5,7>, <1,3,5,7>
+ 2571898166U, // <5,7,1,4>: Cost 3 vext1 <3,5,7,1>, RHS
+ 2625635472U, // <5,7,1,5>: Cost 3 vext2 <1,3,5,7>, <1,5,3,7>
+ 2627626227U, // <5,7,1,6>: Cost 3 vext2 <1,6,5,7>, <1,6,5,7>
+ 3702031684U, // <5,7,1,7>: Cost 4 vext2 <1,7,5,7>, <1,7,5,7>
+ 1555211669U, // <5,7,1,u>: Cost 2 vext2 <1,u,5,7>, <1,u,5,7>
+ 2629617126U, // <5,7,2,0>: Cost 3 vext2 <2,0,5,7>, <2,0,5,7>
+ 3699377670U, // <5,7,2,1>: Cost 4 vext2 <1,3,5,7>, <2,1,0,3>
+ 2625635944U, // <5,7,2,2>: Cost 3 vext2 <1,3,5,7>, <2,2,2,2>
+ 2625636006U, // <5,7,2,3>: Cost 3 vext2 <1,3,5,7>, <2,3,0,1>
+ 2632271658U, // <5,7,2,4>: Cost 3 vext2 <2,4,5,7>, <2,4,5,7>
+ 2625636201U, // <5,7,2,5>: Cost 3 vext2 <1,3,5,7>, <2,5,3,7>
+ 2625636282U, // <5,7,2,6>: Cost 3 vext2 <1,3,5,7>, <2,6,3,7>
+ 3708004381U, // <5,7,2,7>: Cost 4 vext2 <2,7,5,7>, <2,7,5,7>
+ 2625636411U, // <5,7,2,u>: Cost 3 vext2 <1,3,5,7>, <2,u,0,1>
+ 2625636502U, // <5,7,3,0>: Cost 3 vext2 <1,3,5,7>, <3,0,1,2>
+ 2625636604U, // <5,7,3,1>: Cost 3 vext2 <1,3,5,7>, <3,1,3,5>
+ 3699378478U, // <5,7,3,2>: Cost 4 vext2 <1,3,5,7>, <3,2,0,1>
+ 2625636764U, // <5,7,3,3>: Cost 3 vext2 <1,3,5,7>, <3,3,3,3>
+ 2625636866U, // <5,7,3,4>: Cost 3 vext2 <1,3,5,7>, <3,4,5,6>
+ 2625636959U, // <5,7,3,5>: Cost 3 vext2 <1,3,5,7>, <3,5,7,0>
+ 3699378808U, // <5,7,3,6>: Cost 4 vext2 <1,3,5,7>, <3,6,0,7>
+ 2640235254U, // <5,7,3,7>: Cost 3 vext2 <3,7,5,7>, <3,7,5,7>
+ 2625637150U, // <5,7,3,u>: Cost 3 vext2 <1,3,5,7>, <3,u,1,2>
+ 2571919462U, // <5,7,4,0>: Cost 3 vext1 <3,5,7,4>, LHS
+ 2571920384U, // <5,7,4,1>: Cost 3 vext1 <3,5,7,4>, <1,3,5,7>
+ 3699379260U, // <5,7,4,2>: Cost 4 vext2 <1,3,5,7>, <4,2,6,0>
+ 2571922019U, // <5,7,4,3>: Cost 3 vext1 <3,5,7,4>, <3,5,7,4>
+ 2571922742U, // <5,7,4,4>: Cost 3 vext1 <3,5,7,4>, RHS
+ 1551895862U, // <5,7,4,5>: Cost 2 vext2 <1,3,5,7>, RHS
+ 2846277980U, // <5,7,4,6>: Cost 3 vuzpr RHS, <0,4,2,6>
+ 2646207951U, // <5,7,4,7>: Cost 3 vext2 <4,7,5,7>, <4,7,5,7>
+ 1551896105U, // <5,7,4,u>: Cost 2 vext2 <1,3,5,7>, RHS
+ 2583871590U, // <5,7,5,0>: Cost 3 vext1 <5,5,7,5>, LHS
+ 2652180176U, // <5,7,5,1>: Cost 3 vext2 <5,7,5,7>, <5,1,7,3>
+ 2625638177U, // <5,7,5,2>: Cost 3 vext2 <1,3,5,7>, <5,2,7,3>
+ 2625638262U, // <5,7,5,3>: Cost 3 vext2 <1,3,5,7>, <5,3,7,7>
+ 2583874870U, // <5,7,5,4>: Cost 3 vext1 <5,5,7,5>, RHS
+ 2846281732U, // <5,7,5,5>: Cost 3 vuzpr RHS, <5,5,5,5>
+ 2651517015U, // <5,7,5,6>: Cost 3 vext2 <5,6,5,7>, <5,6,5,7>
+ 1772539190U, // <5,7,5,7>: Cost 2 vuzpr RHS, RHS
+ 1772539191U, // <5,7,5,u>: Cost 2 vuzpr RHS, RHS
+ 2846281826U, // <5,7,6,0>: Cost 3 vuzpr RHS, <5,6,7,0>
+ 3699380615U, // <5,7,6,1>: Cost 4 vext2 <1,3,5,7>, <6,1,3,5>
+ 2846281108U, // <5,7,6,2>: Cost 3 vuzpr RHS, <4,6,u,2>
+ 2589854210U, // <5,7,6,3>: Cost 3 vext1 <6,5,7,6>, <3,4,5,6>
+ 2846281830U, // <5,7,6,4>: Cost 3 vuzpr RHS, <5,6,7,4>
+ 2725467658U, // <5,7,6,5>: Cost 3 vext3 <6,7,u,5>, <7,6,5,u>
+ 2846281076U, // <5,7,6,6>: Cost 3 vuzpr RHS, <4,6,4,6>
+ 2846279610U, // <5,7,6,7>: Cost 3 vuzpr RHS, <2,6,3,7>
+ 2846279611U, // <5,7,6,u>: Cost 3 vuzpr RHS, <2,6,3,u>
+ 1510146150U, // <5,7,7,0>: Cost 2 vext1 <5,5,7,7>, LHS
+ 2846282574U, // <5,7,7,1>: Cost 3 vuzpr RHS, <6,7,0,1>
+ 2583889512U, // <5,7,7,2>: Cost 3 vext1 <5,5,7,7>, <2,2,2,2>
+ 2846281919U, // <5,7,7,3>: Cost 3 vuzpr RHS, <5,7,u,3>
+ 1510149430U, // <5,7,7,4>: Cost 2 vext1 <5,5,7,7>, RHS
+ 1510150168U, // <5,7,7,5>: Cost 2 vext1 <5,5,7,7>, <5,5,7,7>
+ 2583892474U, // <5,7,7,6>: Cost 3 vext1 <5,5,7,7>, <6,2,7,3>
+ 2625640044U, // <5,7,7,7>: Cost 3 vext2 <1,3,5,7>, <7,7,7,7>
+ 1510151982U, // <5,7,7,u>: Cost 2 vext1 <5,5,7,7>, LHS
+ 1510154342U, // <5,7,u,0>: Cost 2 vext1 <5,5,7,u>, LHS
+ 1551898414U, // <5,7,u,1>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625640325U, // <5,7,u,2>: Cost 3 vext2 <1,3,5,7>, <u,2,3,0>
+ 1772536477U, // <5,7,u,3>: Cost 2 vuzpr RHS, LHS
+ 1510157622U, // <5,7,u,4>: Cost 2 vext1 <5,5,7,u>, RHS
+ 1551898778U, // <5,7,u,5>: Cost 2 vext2 <1,3,5,7>, RHS
+ 2625640656U, // <5,7,u,6>: Cost 3 vext2 <1,3,5,7>, <u,6,3,7>
+ 1772539433U, // <5,7,u,7>: Cost 2 vuzpr RHS, RHS
+ 1551898981U, // <5,7,u,u>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625642496U, // <5,u,0,0>: Cost 3 vext2 <1,3,5,u>, <0,0,0,0>
+ 1551900774U, // <5,u,0,1>: Cost 2 vext2 <1,3,5,u>, LHS
+ 2625642660U, // <5,u,0,2>: Cost 3 vext2 <1,3,5,u>, <0,2,0,2>
+ 2698630885U, // <5,u,0,3>: Cost 3 vext3 <2,3,4,5>, <u,0,3,2>
+ 2687129325U, // <5,u,0,4>: Cost 3 vext3 <0,4,1,5>, <u,0,4,1>
+ 2689783542U, // <5,u,0,5>: Cost 3 vext3 <0,u,1,5>, <u,0,5,1>
+ 2266134675U, // <5,u,0,6>: Cost 3 vrev <u,5,6,0>
+ 2595853772U, // <5,u,0,7>: Cost 3 vext1 <7,5,u,0>, <7,5,u,0>
+ 1551901341U, // <5,u,0,u>: Cost 2 vext2 <1,3,5,u>, LHS
+ 2625643254U, // <5,u,1,0>: Cost 3 vext2 <1,3,5,u>, <1,0,3,2>
+ 2625643316U, // <5,u,1,1>: Cost 3 vext2 <1,3,5,u>, <1,1,1,1>
+ 1613387566U, // <5,u,1,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 1551901697U, // <5,u,1,3>: Cost 2 vext2 <1,3,5,u>, <1,3,5,u>
+ 2626307154U, // <5,u,1,4>: Cost 3 vext2 <1,4,5,u>, <1,4,5,u>
+ 2689783622U, // <5,u,1,5>: Cost 3 vext3 <0,u,1,5>, <u,1,5,0>
+ 2627634420U, // <5,u,1,6>: Cost 3 vext2 <1,6,5,u>, <1,6,5,u>
+ 2982366536U, // <5,u,1,7>: Cost 3 vzipr <4,u,5,1>, RHS
+ 1613387620U, // <5,u,1,u>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2846286742U, // <5,u,2,0>: Cost 3 vuzpr RHS, <1,2,3,0>
+ 2685796528U, // <5,u,2,1>: Cost 3 vext3 <0,2,1,5>, <0,2,1,5>
+ 2625644136U, // <5,u,2,2>: Cost 3 vext2 <1,3,5,u>, <2,2,2,2>
+ 2687129480U, // <5,u,2,3>: Cost 3 vext3 <0,4,1,5>, <u,2,3,3>
+ 2632279851U, // <5,u,2,4>: Cost 3 vext2 <2,4,5,u>, <2,4,5,u>
+ 2625644394U, // <5,u,2,5>: Cost 3 vext2 <1,3,5,u>, <2,5,3,u>
+ 2625644474U, // <5,u,2,6>: Cost 3 vext2 <1,3,5,u>, <2,6,3,7>
+ 2713966508U, // <5,u,2,7>: Cost 3 vext3 <4,u,5,5>, <u,2,7,3>
+ 2625644603U, // <5,u,2,u>: Cost 3 vext2 <1,3,5,u>, <2,u,0,1>
+ 2687129532U, // <5,u,3,0>: Cost 3 vext3 <0,4,1,5>, <u,3,0,1>
+ 2636261649U, // <5,u,3,1>: Cost 3 vext2 <3,1,5,u>, <3,1,5,u>
+ 2636925282U, // <5,u,3,2>: Cost 3 vext2 <3,2,5,u>, <3,2,5,u>
+ 2625644956U, // <5,u,3,3>: Cost 3 vext2 <1,3,5,u>, <3,3,3,3>
+ 1564510724U, // <5,u,3,4>: Cost 2 vext2 <3,4,5,u>, <3,4,5,u>
+ 2625645160U, // <5,u,3,5>: Cost 3 vext2 <1,3,5,u>, <3,5,u,0>
+ 2734610422U, // <5,u,3,6>: Cost 3 vext3 <u,3,6,5>, <u,3,6,5>
+ 2640243447U, // <5,u,3,7>: Cost 3 vext2 <3,7,5,u>, <3,7,5,u>
+ 1567165256U, // <5,u,3,u>: Cost 2 vext2 <3,u,5,u>, <3,u,5,u>
+ 1567828889U, // <5,u,4,0>: Cost 2 vext2 <4,0,5,u>, <4,0,5,u>
+ 1661163546U, // <5,u,4,1>: Cost 2 vext3 <u,4,1,5>, <u,4,1,5>
+ 2734463012U, // <5,u,4,2>: Cost 3 vext3 <u,3,4,5>, <u,4,2,6>
+ 2698631212U, // <5,u,4,3>: Cost 3 vext3 <2,3,4,5>, <u,4,3,5>
+ 1570458842U, // <5,u,4,4>: Cost 2 vext2 <4,4,5,5>, <4,4,5,5>
+ 1551904054U, // <5,u,4,5>: Cost 2 vext2 <1,3,5,u>, RHS
+ 2846286172U, // <5,u,4,6>: Cost 3 vuzpr RHS, <0,4,2,6>
+ 2646216144U, // <5,u,4,7>: Cost 3 vext2 <4,7,5,u>, <4,7,5,u>
+ 1551904297U, // <5,u,4,u>: Cost 2 vext2 <1,3,5,u>, RHS
+ 1509982310U, // <5,u,5,0>: Cost 2 vext1 <5,5,5,5>, LHS
+ 2560058555U, // <5,u,5,1>: Cost 3 vext1 <1,5,u,5>, <1,5,u,5>
+ 2698926194U, // <5,u,5,2>: Cost 3 vext3 <2,3,u,5>, <u,5,2,3>
+ 2698631295U, // <5,u,5,3>: Cost 3 vext3 <2,3,4,5>, <u,5,3,7>
+ 1509985590U, // <5,u,5,4>: Cost 2 vext1 <5,5,5,5>, RHS
+ 229035318U, // <5,u,5,5>: Cost 1 vdup1 RHS
+ 1613387930U, // <5,u,5,6>: Cost 2 vext3 <0,4,1,5>, RHS
+ 1772547382U, // <5,u,5,7>: Cost 2 vuzpr RHS, RHS
+ 229035318U, // <5,u,5,u>: Cost 1 vdup1 RHS
+ 2566037606U, // <5,u,6,0>: Cost 3 vext1 <2,5,u,6>, LHS
+ 2920044334U, // <5,u,6,1>: Cost 3 vzipl <5,6,7,0>, LHS
+ 2566039445U, // <5,u,6,2>: Cost 3 vext1 <2,5,u,6>, <2,5,u,6>
+ 2687129808U, // <5,u,6,3>: Cost 3 vext3 <0,4,1,5>, <u,6,3,7>
+ 2566040886U, // <5,u,6,4>: Cost 3 vext1 <2,5,u,6>, RHS
+ 2920044698U, // <5,u,6,5>: Cost 3 vzipl <5,6,7,0>, RHS
+ 2846289268U, // <5,u,6,6>: Cost 3 vuzpr RHS, <4,6,4,6>
+ 2973781320U, // <5,u,6,7>: Cost 3 vzipr <3,4,5,6>, RHS
+ 2687129853U, // <5,u,6,u>: Cost 3 vext3 <0,4,1,5>, <u,6,u,7>
+ 430506086U, // <5,u,7,0>: Cost 1 vext1 RHS, LHS
+ 1486333117U, // <5,u,7,1>: Cost 2 vext1 <1,5,u,7>, <1,5,u,7>
+ 1504249448U, // <5,u,7,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 2040971933U, // <5,u,7,3>: Cost 2 vtrnr RHS, LHS
+ 430509384U, // <5,u,7,4>: Cost 1 vext1 RHS, RHS
+ 1504251600U, // <5,u,7,5>: Cost 2 vext1 RHS, <5,1,7,3>
+ 118708378U, // <5,u,7,6>: Cost 1 vrev RHS
+ 2040974889U, // <5,u,7,7>: Cost 2 vtrnr RHS, RHS
+ 430511918U, // <5,u,7,u>: Cost 1 vext1 RHS, LHS
+ 430514278U, // <5,u,u,0>: Cost 1 vext1 RHS, LHS
+ 1551906606U, // <5,u,u,1>: Cost 2 vext2 <1,3,5,u>, LHS
+ 1613388133U, // <5,u,u,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 1772544669U, // <5,u,u,3>: Cost 2 vuzpr RHS, LHS
+ 430517577U, // <5,u,u,4>: Cost 1 vext1 RHS, RHS
+ 229035318U, // <5,u,u,5>: Cost 1 vdup1 RHS
+ 118716571U, // <5,u,u,6>: Cost 1 vrev RHS
+ 1772547625U, // <5,u,u,7>: Cost 2 vuzpr RHS, RHS
+ 430520110U, // <5,u,u,u>: Cost 1 vext1 RHS, LHS
+ 2686025728U, // <6,0,0,0>: Cost 3 vext3 <0,2,4,6>, <0,0,0,0>
+ 2686025738U, // <6,0,0,1>: Cost 3 vext3 <0,2,4,6>, <0,0,1,1>
+ 2686025748U, // <6,0,0,2>: Cost 3 vext3 <0,2,4,6>, <0,0,2,2>
+ 3779084320U, // <6,0,0,3>: Cost 4 vext3 <3,4,5,6>, <0,0,3,5>
+ 2642903388U, // <6,0,0,4>: Cost 3 vext2 <4,2,6,0>, <0,4,2,6>
+ 3657723939U, // <6,0,0,5>: Cost 4 vext1 <5,6,0,0>, <5,6,0,0>
+ 3926676514U, // <6,0,0,6>: Cost 4 vuzpr <5,6,7,0>, <7,0,5,6>
+ 3926675786U, // <6,0,0,7>: Cost 4 vuzpr <5,6,7,0>, <6,0,5,7>
+ 2686025802U, // <6,0,0,u>: Cost 3 vext3 <0,2,4,6>, <0,0,u,2>
+ 2566070374U, // <6,0,1,0>: Cost 3 vext1 <2,6,0,1>, LHS
+ 3759767642U, // <6,0,1,1>: Cost 4 vext3 <0,2,4,6>, <0,1,1,0>
+ 1612284006U, // <6,0,1,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2583988738U, // <6,0,1,3>: Cost 3 vext1 <5,6,0,1>, <3,4,5,6>
+ 2566073654U, // <6,0,1,4>: Cost 3 vext1 <2,6,0,1>, RHS
+ 2583990308U, // <6,0,1,5>: Cost 3 vext1 <5,6,0,1>, <5,6,0,1>
+ 2589963005U, // <6,0,1,6>: Cost 3 vext1 <6,6,0,1>, <6,6,0,1>
+ 2595935702U, // <6,0,1,7>: Cost 3 vext1 <7,6,0,1>, <7,6,0,1>
+ 1612284060U, // <6,0,1,u>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2686025892U, // <6,0,2,0>: Cost 3 vext3 <0,2,4,6>, <0,2,0,2>
+ 2685804721U, // <6,0,2,1>: Cost 3 vext3 <0,2,1,6>, <0,2,1,6>
+ 3759620282U, // <6,0,2,2>: Cost 4 vext3 <0,2,2,6>, <0,2,2,6>
+ 2705342658U, // <6,0,2,3>: Cost 3 vext3 <3,4,5,6>, <0,2,3,5>
+ 1612284108U, // <6,0,2,4>: Cost 2 vext3 <0,2,4,6>, <0,2,4,6>
+ 3706029956U, // <6,0,2,5>: Cost 4 vext2 <2,4,6,0>, <2,5,6,7>
+ 2686173406U, // <6,0,2,6>: Cost 3 vext3 <0,2,6,6>, <0,2,6,6>
+ 3651769338U, // <6,0,2,7>: Cost 4 vext1 <4,6,0,2>, <7,0,1,2>
+ 1612579056U, // <6,0,2,u>: Cost 2 vext3 <0,2,u,6>, <0,2,u,6>
+ 3706030230U, // <6,0,3,0>: Cost 4 vext2 <2,4,6,0>, <3,0,1,2>
+ 2705342720U, // <6,0,3,1>: Cost 3 vext3 <3,4,5,6>, <0,3,1,4>
+ 2705342730U, // <6,0,3,2>: Cost 3 vext3 <3,4,5,6>, <0,3,2,5>
+ 3706030492U, // <6,0,3,3>: Cost 4 vext2 <2,4,6,0>, <3,3,3,3>
+ 2644896258U, // <6,0,3,4>: Cost 3 vext2 <4,5,6,0>, <3,4,5,6>
+ 3718638154U, // <6,0,3,5>: Cost 4 vext2 <4,5,6,0>, <3,5,4,6>
+ 3729918619U, // <6,0,3,6>: Cost 4 vext2 <6,4,6,0>, <3,6,4,6>
+ 3926672384U, // <6,0,3,7>: Cost 4 vuzpr <5,6,7,0>, <1,3,5,7>
+ 2705342784U, // <6,0,3,u>: Cost 3 vext3 <3,4,5,6>, <0,3,u,5>
+ 2687058250U, // <6,0,4,0>: Cost 3 vext3 <0,4,0,6>, <0,4,0,6>
+ 2686026066U, // <6,0,4,1>: Cost 3 vext3 <0,2,4,6>, <0,4,1,5>
+ 1613463900U, // <6,0,4,2>: Cost 2 vext3 <0,4,2,6>, <0,4,2,6>
+ 3761021285U, // <6,0,4,3>: Cost 4 vext3 <0,4,3,6>, <0,4,3,6>
+ 2687353198U, // <6,0,4,4>: Cost 3 vext3 <0,4,4,6>, <0,4,4,6>
+ 2632289590U, // <6,0,4,5>: Cost 3 vext2 <2,4,6,0>, RHS
+ 2645560704U, // <6,0,4,6>: Cost 3 vext2 <4,6,6,0>, <4,6,6,0>
+ 2646224337U, // <6,0,4,7>: Cost 3 vext2 <4,7,6,0>, <4,7,6,0>
+ 1613906322U, // <6,0,4,u>: Cost 2 vext3 <0,4,u,6>, <0,4,u,6>
+ 3651788902U, // <6,0,5,0>: Cost 4 vext1 <4,6,0,5>, LHS
+ 2687795620U, // <6,0,5,1>: Cost 3 vext3 <0,5,1,6>, <0,5,1,6>
+ 3761611181U, // <6,0,5,2>: Cost 4 vext3 <0,5,2,6>, <0,5,2,6>
+ 3723284326U, // <6,0,5,3>: Cost 4 vext2 <5,3,6,0>, <5,3,6,0>
+ 2646224838U, // <6,0,5,4>: Cost 3 vext2 <4,7,6,0>, <5,4,7,6>
+ 3718639630U, // <6,0,5,5>: Cost 4 vext2 <4,5,6,0>, <5,5,6,6>
+ 2652196962U, // <6,0,5,6>: Cost 3 vext2 <5,7,6,0>, <5,6,7,0>
+ 2852932918U, // <6,0,5,7>: Cost 3 vuzpr <5,6,7,0>, RHS
+ 2852932919U, // <6,0,5,u>: Cost 3 vuzpr <5,6,7,0>, RHS
+ 2852933730U, // <6,0,6,0>: Cost 3 vuzpr <5,6,7,0>, <5,6,7,0>
+ 2925985894U, // <6,0,6,1>: Cost 3 vzipl <6,6,6,6>, LHS
+ 3060203622U, // <6,0,6,2>: Cost 3 vtrnl <6,6,6,6>, LHS
+ 3718640178U, // <6,0,6,3>: Cost 4 vext2 <4,5,6,0>, <6,3,4,5>
+ 2656178832U, // <6,0,6,4>: Cost 3 vext2 <6,4,6,0>, <6,4,6,0>
+ 3725939378U, // <6,0,6,5>: Cost 4 vext2 <5,7,6,0>, <6,5,0,7>
+ 2657506098U, // <6,0,6,6>: Cost 3 vext2 <6,6,6,0>, <6,6,6,0>
+ 2619020110U, // <6,0,6,7>: Cost 3 vext2 <0,2,6,0>, <6,7,0,1>
+ 2925986461U, // <6,0,6,u>: Cost 3 vzipl <6,6,6,6>, LHS
+ 2572091494U, // <6,0,7,0>: Cost 3 vext1 <3,6,0,7>, LHS
+ 2572092310U, // <6,0,7,1>: Cost 3 vext1 <3,6,0,7>, <1,2,3,0>
+ 2980495524U, // <6,0,7,2>: Cost 3 vzipr RHS, <0,2,0,2>
+ 2572094072U, // <6,0,7,3>: Cost 3 vext1 <3,6,0,7>, <3,6,0,7>
+ 2572094774U, // <6,0,7,4>: Cost 3 vext1 <3,6,0,7>, RHS
+ 4054238242U, // <6,0,7,5>: Cost 4 vzipr RHS, <1,4,0,5>
+ 3645837653U, // <6,0,7,6>: Cost 4 vext1 <3,6,0,7>, <6,0,7,0>
+ 4054239054U, // <6,0,7,7>: Cost 4 vzipr RHS, <2,5,0,7>
+ 2572097326U, // <6,0,7,u>: Cost 3 vext1 <3,6,0,7>, LHS
+ 2686026378U, // <6,0,u,0>: Cost 3 vext3 <0,2,4,6>, <0,u,0,2>
+ 2686026386U, // <6,0,u,1>: Cost 3 vext3 <0,2,4,6>, <0,u,1,1>
+ 1612284573U, // <6,0,u,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2705343144U, // <6,0,u,3>: Cost 3 vext3 <3,4,5,6>, <0,u,3,5>
+ 1616265906U, // <6,0,u,4>: Cost 2 vext3 <0,u,4,6>, <0,u,4,6>
+ 2632292506U, // <6,0,u,5>: Cost 3 vext2 <2,4,6,0>, RHS
+ 2590020356U, // <6,0,u,6>: Cost 3 vext1 <6,6,0,u>, <6,6,0,u>
+ 2852933161U, // <6,0,u,7>: Cost 3 vuzpr <5,6,7,0>, RHS
+ 1612284627U, // <6,0,u,u>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2595995750U, // <6,1,0,0>: Cost 3 vext1 <7,6,1,0>, LHS
+ 2646229094U, // <6,1,0,1>: Cost 3 vext2 <4,7,6,1>, LHS
+ 3694092492U, // <6,1,0,2>: Cost 4 vext2 <0,4,6,1>, <0,2,4,6>
+ 2686026486U, // <6,1,0,3>: Cost 3 vext3 <0,2,4,6>, <1,0,3,2>
+ 2595999030U, // <6,1,0,4>: Cost 3 vext1 <7,6,1,0>, RHS
+ 3767730952U, // <6,1,0,5>: Cost 4 vext3 <1,5,4,6>, <1,0,5,2>
+ 2596000590U, // <6,1,0,6>: Cost 3 vext1 <7,6,1,0>, <6,7,0,1>
+ 2596001246U, // <6,1,0,7>: Cost 3 vext1 <7,6,1,0>, <7,6,1,0>
+ 2686026531U, // <6,1,0,u>: Cost 3 vext3 <0,2,4,6>, <1,0,u,2>
+ 3763602219U, // <6,1,1,0>: Cost 4 vext3 <0,u,2,6>, <1,1,0,1>
+ 2686026548U, // <6,1,1,1>: Cost 3 vext3 <0,2,4,6>, <1,1,1,1>
+ 3764929346U, // <6,1,1,2>: Cost 4 vext3 <1,1,2,6>, <1,1,2,6>
+ 2686026568U, // <6,1,1,3>: Cost 3 vext3 <0,2,4,6>, <1,1,3,3>
+ 2691334996U, // <6,1,1,4>: Cost 3 vext3 <1,1,4,6>, <1,1,4,6>
+ 3760874332U, // <6,1,1,5>: Cost 4 vext3 <0,4,1,6>, <1,1,5,5>
+ 3765224294U, // <6,1,1,6>: Cost 4 vext3 <1,1,6,6>, <1,1,6,6>
+ 3669751263U, // <6,1,1,7>: Cost 4 vext1 <7,6,1,1>, <7,6,1,1>
+ 2686026613U, // <6,1,1,u>: Cost 3 vext3 <0,2,4,6>, <1,1,u,3>
+ 2554208358U, // <6,1,2,0>: Cost 3 vext1 <0,6,1,2>, LHS
+ 3763602311U, // <6,1,2,1>: Cost 4 vext3 <0,u,2,6>, <1,2,1,3>
+ 3639895971U, // <6,1,2,2>: Cost 4 vext1 <2,6,1,2>, <2,6,1,2>
+ 2686026646U, // <6,1,2,3>: Cost 3 vext3 <0,2,4,6>, <1,2,3,0>
+ 2554211638U, // <6,1,2,4>: Cost 3 vext1 <0,6,1,2>, RHS
+ 3760874411U, // <6,1,2,5>: Cost 4 vext3 <0,4,1,6>, <1,2,5,3>
+ 2554212858U, // <6,1,2,6>: Cost 3 vext1 <0,6,1,2>, <6,2,7,3>
+ 3802973114U, // <6,1,2,7>: Cost 4 vext3 <7,4,5,6>, <1,2,7,0>
+ 2686026691U, // <6,1,2,u>: Cost 3 vext3 <0,2,4,6>, <1,2,u,0>
+ 2566160486U, // <6,1,3,0>: Cost 3 vext1 <2,6,1,3>, LHS
+ 2686026712U, // <6,1,3,1>: Cost 3 vext3 <0,2,4,6>, <1,3,1,3>
+ 2686026724U, // <6,1,3,2>: Cost 3 vext3 <0,2,4,6>, <1,3,2,6>
+ 3759768552U, // <6,1,3,3>: Cost 4 vext3 <0,2,4,6>, <1,3,3,1>
+ 2692662262U, // <6,1,3,4>: Cost 3 vext3 <1,3,4,6>, <1,3,4,6>
+ 2686026752U, // <6,1,3,5>: Cost 3 vext3 <0,2,4,6>, <1,3,5,7>
+ 2590053128U, // <6,1,3,6>: Cost 3 vext1 <6,6,1,3>, <6,6,1,3>
+ 3663795194U, // <6,1,3,7>: Cost 4 vext1 <6,6,1,3>, <7,0,1,2>
+ 2686026775U, // <6,1,3,u>: Cost 3 vext3 <0,2,4,6>, <1,3,u,3>
+ 2641587099U, // <6,1,4,0>: Cost 3 vext2 <4,0,6,1>, <4,0,6,1>
+ 2693104684U, // <6,1,4,1>: Cost 3 vext3 <1,4,1,6>, <1,4,1,6>
+ 3639912357U, // <6,1,4,2>: Cost 4 vext1 <2,6,1,4>, <2,6,1,4>
+ 2687206462U, // <6,1,4,3>: Cost 3 vext3 <0,4,2,6>, <1,4,3,6>
+ 3633941814U, // <6,1,4,4>: Cost 4 vext1 <1,6,1,4>, RHS
+ 2693399632U, // <6,1,4,5>: Cost 3 vext3 <1,4,5,6>, <1,4,5,6>
+ 3765077075U, // <6,1,4,6>: Cost 4 vext3 <1,1,4,6>, <1,4,6,0>
+ 2646232530U, // <6,1,4,7>: Cost 3 vext2 <4,7,6,1>, <4,7,6,1>
+ 2687206507U, // <6,1,4,u>: Cost 3 vext3 <0,4,2,6>, <1,4,u,6>
+ 2647559796U, // <6,1,5,0>: Cost 3 vext2 <5,0,6,1>, <5,0,6,1>
+ 3765077118U, // <6,1,5,1>: Cost 4 vext3 <1,1,4,6>, <1,5,1,7>
+ 3767583878U, // <6,1,5,2>: Cost 4 vext3 <1,5,2,6>, <1,5,2,6>
+ 2686026896U, // <6,1,5,3>: Cost 3 vext3 <0,2,4,6>, <1,5,3,7>
+ 2693989528U, // <6,1,5,4>: Cost 3 vext3 <1,5,4,6>, <1,5,4,6>
+ 3767805089U, // <6,1,5,5>: Cost 4 vext3 <1,5,5,6>, <1,5,5,6>
+ 2652868706U, // <6,1,5,6>: Cost 3 vext2 <5,u,6,1>, <5,6,7,0>
+ 3908250934U, // <6,1,5,7>: Cost 4 vuzpr <2,6,0,1>, RHS
+ 2686026941U, // <6,1,5,u>: Cost 3 vext3 <0,2,4,6>, <1,5,u,7>
+ 2554241126U, // <6,1,6,0>: Cost 3 vext1 <0,6,1,6>, LHS
+ 3763602639U, // <6,1,6,1>: Cost 4 vext3 <0,u,2,6>, <1,6,1,7>
+ 3759547607U, // <6,1,6,2>: Cost 4 vext3 <0,2,1,6>, <1,6,2,6>
+ 3115221094U, // <6,1,6,3>: Cost 3 vtrnr <4,6,4,6>, LHS
+ 2554244406U, // <6,1,6,4>: Cost 3 vext1 <0,6,1,6>, RHS
+ 3760874739U, // <6,1,6,5>: Cost 4 vext3 <0,4,1,6>, <1,6,5,7>
+ 2554245944U, // <6,1,6,6>: Cost 3 vext1 <0,6,1,6>, <6,6,6,6>
+ 3719975758U, // <6,1,6,7>: Cost 4 vext2 <4,7,6,1>, <6,7,0,1>
+ 3115221099U, // <6,1,6,u>: Cost 3 vtrnr <4,6,4,6>, LHS
+ 2560221286U, // <6,1,7,0>: Cost 3 vext1 <1,6,1,7>, LHS
+ 2560222415U, // <6,1,7,1>: Cost 3 vext1 <1,6,1,7>, <1,6,1,7>
+ 2980497558U, // <6,1,7,2>: Cost 3 vzipr RHS, <3,0,1,2>
+ 3103211622U, // <6,1,7,3>: Cost 3 vtrnr <2,6,3,7>, LHS
+ 2560224566U, // <6,1,7,4>: Cost 3 vext1 <1,6,1,7>, RHS
+ 2980495698U, // <6,1,7,5>: Cost 3 vzipr RHS, <0,4,1,5>
+ 3633967526U, // <6,1,7,6>: Cost 4 vext1 <1,6,1,7>, <6,1,7,0>
+ 4054237686U, // <6,1,7,7>: Cost 4 vzipr RHS, <0,6,1,7>
+ 2560227118U, // <6,1,7,u>: Cost 3 vext1 <1,6,1,7>, LHS
+ 2560229478U, // <6,1,u,0>: Cost 3 vext1 <1,6,1,u>, LHS
+ 2686027117U, // <6,1,u,1>: Cost 3 vext3 <0,2,4,6>, <1,u,1,3>
+ 2686027129U, // <6,1,u,2>: Cost 3 vext3 <0,2,4,6>, <1,u,2,6>
+ 2686027132U, // <6,1,u,3>: Cost 3 vext3 <0,2,4,6>, <1,u,3,0>
+ 2687206795U, // <6,1,u,4>: Cost 3 vext3 <0,4,2,6>, <1,u,4,6>
+ 2686027157U, // <6,1,u,5>: Cost 3 vext3 <0,2,4,6>, <1,u,5,7>
+ 2590094093U, // <6,1,u,6>: Cost 3 vext1 <6,6,1,u>, <6,6,1,u>
+ 2596066790U, // <6,1,u,7>: Cost 3 vext1 <7,6,1,u>, <7,6,1,u>
+ 2686027177U, // <6,1,u,u>: Cost 3 vext3 <0,2,4,6>, <1,u,u,0>
+ 2646900736U, // <6,2,0,0>: Cost 3 vext2 <4,u,6,2>, <0,0,0,0>
+ 1573159014U, // <6,2,0,1>: Cost 2 vext2 <4,u,6,2>, LHS
+ 2646900900U, // <6,2,0,2>: Cost 3 vext2 <4,u,6,2>, <0,2,0,2>
+ 3759769037U, // <6,2,0,3>: Cost 4 vext3 <0,2,4,6>, <2,0,3,0>
+ 2641592668U, // <6,2,0,4>: Cost 3 vext2 <4,0,6,2>, <0,4,2,6>
+ 3779085794U, // <6,2,0,5>: Cost 4 vext3 <3,4,5,6>, <2,0,5,3>
+ 2686027244U, // <6,2,0,6>: Cost 3 vext3 <0,2,4,6>, <2,0,6,4>
+ 3669816807U, // <6,2,0,7>: Cost 4 vext1 <7,6,2,0>, <7,6,2,0>
+ 1573159581U, // <6,2,0,u>: Cost 2 vext2 <4,u,6,2>, LHS
+ 2230527897U, // <6,2,1,0>: Cost 3 vrev <2,6,0,1>
+ 2646901556U, // <6,2,1,1>: Cost 3 vext2 <4,u,6,2>, <1,1,1,1>
+ 2646901654U, // <6,2,1,2>: Cost 3 vext2 <4,u,6,2>, <1,2,3,0>
+ 2847047782U, // <6,2,1,3>: Cost 3 vuzpr <4,6,u,2>, LHS
+ 3771049517U, // <6,2,1,4>: Cost 4 vext3 <2,1,4,6>, <2,1,4,6>
+ 2646901904U, // <6,2,1,5>: Cost 3 vext2 <4,u,6,2>, <1,5,3,7>
+ 2686027324U, // <6,2,1,6>: Cost 3 vext3 <0,2,4,6>, <2,1,6,3>
+ 3669825000U, // <6,2,1,7>: Cost 4 vext1 <7,6,2,1>, <7,6,2,1>
+ 2231117793U, // <6,2,1,u>: Cost 3 vrev <2,6,u,1>
+ 3763603029U, // <6,2,2,0>: Cost 4 vext3 <0,u,2,6>, <2,2,0,1>
+ 3759769184U, // <6,2,2,1>: Cost 4 vext3 <0,2,4,6>, <2,2,1,3>
+ 2686027368U, // <6,2,2,2>: Cost 3 vext3 <0,2,4,6>, <2,2,2,2>
+ 2686027378U, // <6,2,2,3>: Cost 3 vext3 <0,2,4,6>, <2,2,3,3>
+ 2697971326U, // <6,2,2,4>: Cost 3 vext3 <2,2,4,6>, <2,2,4,6>
+ 3759769224U, // <6,2,2,5>: Cost 4 vext3 <0,2,4,6>, <2,2,5,7>
+ 2698118800U, // <6,2,2,6>: Cost 3 vext3 <2,2,6,6>, <2,2,6,6>
+ 3920794092U, // <6,2,2,7>: Cost 4 vuzpr <4,6,u,2>, <6,2,5,7>
+ 2686027423U, // <6,2,2,u>: Cost 3 vext3 <0,2,4,6>, <2,2,u,3>
+ 2686027430U, // <6,2,3,0>: Cost 3 vext3 <0,2,4,6>, <2,3,0,1>
+ 3759769262U, // <6,2,3,1>: Cost 4 vext3 <0,2,4,6>, <2,3,1,0>
+ 2698487485U, // <6,2,3,2>: Cost 3 vext3 <2,3,2,6>, <2,3,2,6>
+ 2705344196U, // <6,2,3,3>: Cost 3 vext3 <3,4,5,6>, <2,3,3,4>
+ 2686027470U, // <6,2,3,4>: Cost 3 vext3 <0,2,4,6>, <2,3,4,5>
+ 2698708696U, // <6,2,3,5>: Cost 3 vext3 <2,3,5,6>, <2,3,5,6>
+ 2724660961U, // <6,2,3,6>: Cost 3 vext3 <6,6,6,6>, <2,3,6,6>
+ 2729232104U, // <6,2,3,7>: Cost 3 vext3 <7,4,5,6>, <2,3,7,4>
+ 2686027502U, // <6,2,3,u>: Cost 3 vext3 <0,2,4,6>, <2,3,u,1>
+ 1567853468U, // <6,2,4,0>: Cost 2 vext2 <4,0,6,2>, <4,0,6,2>
+ 3759769351U, // <6,2,4,1>: Cost 4 vext3 <0,2,4,6>, <2,4,1,u>
+ 2699151118U, // <6,2,4,2>: Cost 3 vext3 <2,4,2,6>, <2,4,2,6>
+ 2686027543U, // <6,2,4,3>: Cost 3 vext3 <0,2,4,6>, <2,4,3,6>
+ 2699298592U, // <6,2,4,4>: Cost 3 vext3 <2,4,4,6>, <2,4,4,6>
+ 1573162294U, // <6,2,4,5>: Cost 2 vext2 <4,u,6,2>, RHS
+ 2686027564U, // <6,2,4,6>: Cost 3 vext3 <0,2,4,6>, <2,4,6,0>
+ 3719982547U, // <6,2,4,7>: Cost 4 vext2 <4,7,6,2>, <4,7,6,2>
+ 1573162532U, // <6,2,4,u>: Cost 2 vext2 <4,u,6,2>, <4,u,6,2>
+ 3779086154U, // <6,2,5,0>: Cost 4 vext3 <3,4,5,6>, <2,5,0,3>
+ 2646904528U, // <6,2,5,1>: Cost 3 vext2 <4,u,6,2>, <5,1,7,3>
+ 3759769440U, // <6,2,5,2>: Cost 4 vext3 <0,2,4,6>, <2,5,2,7>
+ 2699888488U, // <6,2,5,3>: Cost 3 vext3 <2,5,3,6>, <2,5,3,6>
+ 2230855617U, // <6,2,5,4>: Cost 3 vrev <2,6,4,5>
+ 2646904836U, // <6,2,5,5>: Cost 3 vext2 <4,u,6,2>, <5,5,5,5>
+ 2646904930U, // <6,2,5,6>: Cost 3 vext2 <4,u,6,2>, <5,6,7,0>
+ 2847051062U, // <6,2,5,7>: Cost 3 vuzpr <4,6,u,2>, RHS
+ 2700257173U, // <6,2,5,u>: Cost 3 vext3 <2,5,u,6>, <2,5,u,6>
+ 2687207321U, // <6,2,6,0>: Cost 3 vext3 <0,4,2,6>, <2,6,0,1>
+ 2686027684U, // <6,2,6,1>: Cost 3 vext3 <0,2,4,6>, <2,6,1,3>
+ 2566260656U, // <6,2,6,2>: Cost 3 vext1 <2,6,2,6>, <2,6,2,6>
+ 2685806522U, // <6,2,6,3>: Cost 3 vext3 <0,2,1,6>, <2,6,3,7>
+ 2687207361U, // <6,2,6,4>: Cost 3 vext3 <0,4,2,6>, <2,6,4,5>
+ 2686027724U, // <6,2,6,5>: Cost 3 vext3 <0,2,4,6>, <2,6,5,7>
+ 2646905656U, // <6,2,6,6>: Cost 3 vext2 <4,u,6,2>, <6,6,6,6>
+ 2646905678U, // <6,2,6,7>: Cost 3 vext2 <4,u,6,2>, <6,7,0,1>
+ 2686027751U, // <6,2,6,u>: Cost 3 vext3 <0,2,4,6>, <2,6,u,7>
+ 2554323046U, // <6,2,7,0>: Cost 3 vext1 <0,6,2,7>, LHS
+ 2572239606U, // <6,2,7,1>: Cost 3 vext1 <3,6,2,7>, <1,0,3,2>
+ 2566268849U, // <6,2,7,2>: Cost 3 vext1 <2,6,2,7>, <2,6,2,7>
+ 1906753638U, // <6,2,7,3>: Cost 2 vzipr RHS, LHS
+ 2554326326U, // <6,2,7,4>: Cost 3 vext1 <0,6,2,7>, RHS
+ 3304687564U, // <6,2,7,5>: Cost 4 vrev <2,6,5,7>
+ 2980495708U, // <6,2,7,6>: Cost 3 vzipr RHS, <0,4,2,6>
+ 2646906476U, // <6,2,7,7>: Cost 3 vext2 <4,u,6,2>, <7,7,7,7>
+ 1906753643U, // <6,2,7,u>: Cost 2 vzipr RHS, LHS
+ 1591744256U, // <6,2,u,0>: Cost 2 vext2 <u,0,6,2>, <u,0,6,2>
+ 1573164846U, // <6,2,u,1>: Cost 2 vext2 <4,u,6,2>, LHS
+ 2701805650U, // <6,2,u,2>: Cost 3 vext3 <2,u,2,6>, <2,u,2,6>
+ 1906761830U, // <6,2,u,3>: Cost 2 vzipr RHS, LHS
+ 2686027875U, // <6,2,u,4>: Cost 3 vext3 <0,2,4,6>, <2,u,4,5>
+ 1573165210U, // <6,2,u,5>: Cost 2 vext2 <4,u,6,2>, RHS
+ 2686322800U, // <6,2,u,6>: Cost 3 vext3 <0,2,u,6>, <2,u,6,0>
+ 2847051305U, // <6,2,u,7>: Cost 3 vuzpr <4,6,u,2>, RHS
+ 1906761835U, // <6,2,u,u>: Cost 2 vzipr RHS, LHS
+ 3759769739U, // <6,3,0,0>: Cost 4 vext3 <0,2,4,6>, <3,0,0,0>
+ 2686027926U, // <6,3,0,1>: Cost 3 vext3 <0,2,4,6>, <3,0,1,2>
+ 2686027937U, // <6,3,0,2>: Cost 3 vext3 <0,2,4,6>, <3,0,2,4>
+ 3640027286U, // <6,3,0,3>: Cost 4 vext1 <2,6,3,0>, <3,0,1,2>
+ 2687207601U, // <6,3,0,4>: Cost 3 vext3 <0,4,2,6>, <3,0,4,2>
+ 2705344698U, // <6,3,0,5>: Cost 3 vext3 <3,4,5,6>, <3,0,5,2>
+ 3663917847U, // <6,3,0,6>: Cost 4 vext1 <6,6,3,0>, <6,6,3,0>
+ 2237008560U, // <6,3,0,7>: Cost 3 vrev <3,6,7,0>
+ 2686027989U, // <6,3,0,u>: Cost 3 vext3 <0,2,4,6>, <3,0,u,2>
+ 3759769823U, // <6,3,1,0>: Cost 4 vext3 <0,2,4,6>, <3,1,0,3>
+ 3759769830U, // <6,3,1,1>: Cost 4 vext3 <0,2,4,6>, <3,1,1,1>
+ 3759769841U, // <6,3,1,2>: Cost 4 vext3 <0,2,4,6>, <3,1,2,3>
+ 3759769848U, // <6,3,1,3>: Cost 4 vext3 <0,2,4,6>, <3,1,3,1>
+ 2703280390U, // <6,3,1,4>: Cost 3 vext3 <3,1,4,6>, <3,1,4,6>
+ 3759769868U, // <6,3,1,5>: Cost 4 vext3 <0,2,4,6>, <3,1,5,3>
+ 3704063194U, // <6,3,1,6>: Cost 4 vext2 <2,1,6,3>, <1,6,3,0>
+ 3767732510U, // <6,3,1,7>: Cost 4 vext3 <1,5,4,6>, <3,1,7,3>
+ 2703280390U, // <6,3,1,u>: Cost 3 vext3 <3,1,4,6>, <3,1,4,6>
+ 3704063468U, // <6,3,2,0>: Cost 4 vext2 <2,1,6,3>, <2,0,6,4>
+ 2630321724U, // <6,3,2,1>: Cost 3 vext2 <2,1,6,3>, <2,1,6,3>
+ 3759769921U, // <6,3,2,2>: Cost 4 vext3 <0,2,4,6>, <3,2,2,2>
+ 3759769928U, // <6,3,2,3>: Cost 4 vext3 <0,2,4,6>, <3,2,3,0>
+ 3704063767U, // <6,3,2,4>: Cost 4 vext2 <2,1,6,3>, <2,4,3,6>
+ 3704063876U, // <6,3,2,5>: Cost 4 vext2 <2,1,6,3>, <2,5,6,7>
+ 2636957626U, // <6,3,2,6>: Cost 3 vext2 <3,2,6,3>, <2,6,3,7>
+ 3777907058U, // <6,3,2,7>: Cost 4 vext3 <3,2,7,6>, <3,2,7,6>
+ 2630321724U, // <6,3,2,u>: Cost 3 vext2 <2,1,6,3>, <2,1,6,3>
+ 3759769983U, // <6,3,3,0>: Cost 4 vext3 <0,2,4,6>, <3,3,0,1>
+ 3710036245U, // <6,3,3,1>: Cost 4 vext2 <3,1,6,3>, <3,1,6,3>
+ 2636958054U, // <6,3,3,2>: Cost 3 vext2 <3,2,6,3>, <3,2,6,3>
+ 2686028188U, // <6,3,3,3>: Cost 3 vext3 <0,2,4,6>, <3,3,3,3>
+ 2704607656U, // <6,3,3,4>: Cost 3 vext3 <3,3,4,6>, <3,3,4,6>
+ 3773041072U, // <6,3,3,5>: Cost 4 vext3 <2,4,4,6>, <3,3,5,5>
+ 3711363731U, // <6,3,3,6>: Cost 4 vext2 <3,3,6,3>, <3,6,3,7>
+ 3767732676U, // <6,3,3,7>: Cost 4 vext3 <1,5,4,6>, <3,3,7,7>
+ 2707999179U, // <6,3,3,u>: Cost 3 vext3 <3,u,5,6>, <3,3,u,5>
+ 2584232038U, // <6,3,4,0>: Cost 3 vext1 <5,6,3,4>, LHS
+ 2642267118U, // <6,3,4,1>: Cost 3 vext2 <4,1,6,3>, <4,1,6,3>
+ 2642930751U, // <6,3,4,2>: Cost 3 vext2 <4,2,6,3>, <4,2,6,3>
+ 2705197552U, // <6,3,4,3>: Cost 3 vext3 <3,4,3,6>, <3,4,3,6>
+ 2584235318U, // <6,3,4,4>: Cost 3 vext1 <5,6,3,4>, RHS
+ 1631603202U, // <6,3,4,5>: Cost 2 vext3 <3,4,5,6>, <3,4,5,6>
+ 2654211444U, // <6,3,4,6>: Cost 3 vext2 <6,1,6,3>, <4,6,4,6>
+ 2237041332U, // <6,3,4,7>: Cost 3 vrev <3,6,7,4>
+ 1631824413U, // <6,3,4,u>: Cost 2 vext3 <3,4,u,6>, <3,4,u,6>
+ 3640066150U, // <6,3,5,0>: Cost 4 vext1 <2,6,3,5>, LHS
+ 3772746288U, // <6,3,5,1>: Cost 4 vext3 <2,4,0,6>, <3,5,1,7>
+ 3640067790U, // <6,3,5,2>: Cost 4 vext1 <2,6,3,5>, <2,3,4,5>
+ 3773041216U, // <6,3,5,3>: Cost 4 vext3 <2,4,4,6>, <3,5,3,5>
+ 2705934922U, // <6,3,5,4>: Cost 3 vext3 <3,5,4,6>, <3,5,4,6>
+ 3773041236U, // <6,3,5,5>: Cost 4 vext3 <2,4,4,6>, <3,5,5,7>
+ 3779086940U, // <6,3,5,6>: Cost 4 vext3 <3,4,5,6>, <3,5,6,6>
+ 3767732831U, // <6,3,5,7>: Cost 4 vext3 <1,5,4,6>, <3,5,7,0>
+ 2706229870U, // <6,3,5,u>: Cost 3 vext3 <3,5,u,6>, <3,5,u,6>
+ 2602164326U, // <6,3,6,0>: Cost 3 vext1 <u,6,3,6>, LHS
+ 2654212512U, // <6,3,6,1>: Cost 3 vext2 <6,1,6,3>, <6,1,6,3>
+ 2566334393U, // <6,3,6,2>: Cost 3 vext1 <2,6,3,6>, <2,6,3,6>
+ 3704066588U, // <6,3,6,3>: Cost 4 vext2 <2,1,6,3>, <6,3,2,1>
+ 2602167524U, // <6,3,6,4>: Cost 3 vext1 <u,6,3,6>, <4,4,6,6>
+ 3710702321U, // <6,3,6,5>: Cost 4 vext2 <3,2,6,3>, <6,5,7,7>
+ 2724661933U, // <6,3,6,6>: Cost 3 vext3 <6,6,6,6>, <3,6,6,6>
+ 3710702465U, // <6,3,6,7>: Cost 4 vext2 <3,2,6,3>, <6,7,5,7>
+ 2602170158U, // <6,3,6,u>: Cost 3 vext1 <u,6,3,6>, LHS
+ 1492598886U, // <6,3,7,0>: Cost 2 vext1 <2,6,3,7>, LHS
+ 2560369889U, // <6,3,7,1>: Cost 3 vext1 <1,6,3,7>, <1,6,3,7>
+ 1492600762U, // <6,3,7,2>: Cost 2 vext1 <2,6,3,7>, <2,6,3,7>
+ 2566342806U, // <6,3,7,3>: Cost 3 vext1 <2,6,3,7>, <3,0,1,2>
+ 1492602166U, // <6,3,7,4>: Cost 2 vext1 <2,6,3,7>, RHS
+ 2602176208U, // <6,3,7,5>: Cost 3 vext1 <u,6,3,7>, <5,1,7,3>
+ 2566345210U, // <6,3,7,6>: Cost 3 vext1 <2,6,3,7>, <6,2,7,3>
+ 2980496528U, // <6,3,7,7>: Cost 3 vzipr RHS, <1,5,3,7>
+ 1492604718U, // <6,3,7,u>: Cost 2 vext1 <2,6,3,7>, LHS
+ 1492607078U, // <6,3,u,0>: Cost 2 vext1 <2,6,3,u>, LHS
+ 2686028574U, // <6,3,u,1>: Cost 3 vext3 <0,2,4,6>, <3,u,1,2>
+ 1492608955U, // <6,3,u,2>: Cost 2 vext1 <2,6,3,u>, <2,6,3,u>
+ 2566350998U, // <6,3,u,3>: Cost 3 vext1 <2,6,3,u>, <3,0,1,2>
+ 1492610358U, // <6,3,u,4>: Cost 2 vext1 <2,6,3,u>, RHS
+ 1634257734U, // <6,3,u,5>: Cost 2 vext3 <3,u,5,6>, <3,u,5,6>
+ 2566353489U, // <6,3,u,6>: Cost 3 vext1 <2,6,3,u>, <6,3,u,0>
+ 2980504720U, // <6,3,u,7>: Cost 3 vzipr RHS, <1,5,3,7>
+ 1492612910U, // <6,3,u,u>: Cost 2 vext1 <2,6,3,u>, LHS
+ 3703406592U, // <6,4,0,0>: Cost 4 vext2 <2,0,6,4>, <0,0,0,0>
+ 2629664870U, // <6,4,0,1>: Cost 3 vext2 <2,0,6,4>, LHS
+ 2629664972U, // <6,4,0,2>: Cost 3 vext2 <2,0,6,4>, <0,2,4,6>
+ 3779087232U, // <6,4,0,3>: Cost 4 vext3 <3,4,5,6>, <4,0,3,1>
+ 2642936156U, // <6,4,0,4>: Cost 3 vext2 <4,2,6,4>, <0,4,2,6>
+ 2712570770U, // <6,4,0,5>: Cost 3 vext3 <4,6,4,6>, <4,0,5,1>
+ 2687208348U, // <6,4,0,6>: Cost 3 vext3 <0,4,2,6>, <4,0,6,2>
+ 3316723081U, // <6,4,0,7>: Cost 4 vrev <4,6,7,0>
+ 2629665437U, // <6,4,0,u>: Cost 3 vext2 <2,0,6,4>, LHS
+ 2242473291U, // <6,4,1,0>: Cost 3 vrev <4,6,0,1>
+ 3700089652U, // <6,4,1,1>: Cost 4 vext2 <1,4,6,4>, <1,1,1,1>
+ 3703407510U, // <6,4,1,2>: Cost 4 vext2 <2,0,6,4>, <1,2,3,0>
+ 2852962406U, // <6,4,1,3>: Cost 3 vuzpr <5,6,7,4>, LHS
+ 3628166454U, // <6,4,1,4>: Cost 4 vext1 <0,6,4,1>, RHS
+ 3760876514U, // <6,4,1,5>: Cost 4 vext3 <0,4,1,6>, <4,1,5,0>
+ 2687208430U, // <6,4,1,6>: Cost 3 vext3 <0,4,2,6>, <4,1,6,3>
+ 3316731274U, // <6,4,1,7>: Cost 4 vrev <4,6,7,1>
+ 2243063187U, // <6,4,1,u>: Cost 3 vrev <4,6,u,1>
+ 2629666284U, // <6,4,2,0>: Cost 3 vext2 <2,0,6,4>, <2,0,6,4>
+ 3703408188U, // <6,4,2,1>: Cost 4 vext2 <2,0,6,4>, <2,1,6,3>
+ 3703408232U, // <6,4,2,2>: Cost 4 vext2 <2,0,6,4>, <2,2,2,2>
+ 3703408294U, // <6,4,2,3>: Cost 4 vext2 <2,0,6,4>, <2,3,0,1>
+ 2632320816U, // <6,4,2,4>: Cost 3 vext2 <2,4,6,4>, <2,4,6,4>
+ 2923384118U, // <6,4,2,5>: Cost 3 vzipl <6,2,7,3>, RHS
+ 2687208508U, // <6,4,2,6>: Cost 3 vext3 <0,4,2,6>, <4,2,6,0>
+ 3760950341U, // <6,4,2,7>: Cost 4 vext3 <0,4,2,6>, <4,2,7,0>
+ 2634975348U, // <6,4,2,u>: Cost 3 vext2 <2,u,6,4>, <2,u,6,4>
+ 3703408790U, // <6,4,3,0>: Cost 4 vext2 <2,0,6,4>, <3,0,1,2>
+ 3316305238U, // <6,4,3,1>: Cost 4 vrev <4,6,1,3>
+ 3703408947U, // <6,4,3,2>: Cost 4 vext2 <2,0,6,4>, <3,2,0,6>
+ 3703409052U, // <6,4,3,3>: Cost 4 vext2 <2,0,6,4>, <3,3,3,3>
+ 2644929026U, // <6,4,3,4>: Cost 3 vext2 <4,5,6,4>, <3,4,5,6>
+ 3718670922U, // <6,4,3,5>: Cost 4 vext2 <4,5,6,4>, <3,5,4,6>
+ 2705345682U, // <6,4,3,6>: Cost 3 vext3 <3,4,5,6>, <4,3,6,5>
+ 3926705152U, // <6,4,3,7>: Cost 4 vuzpr <5,6,7,4>, <1,3,5,7>
+ 2668817222U, // <6,4,3,u>: Cost 3 vext2 <u,5,6,4>, <3,u,5,6>
+ 2590277734U, // <6,4,4,0>: Cost 3 vext1 <6,6,4,4>, LHS
+ 3716017135U, // <6,4,4,1>: Cost 4 vext2 <4,1,6,4>, <4,1,6,4>
+ 2642938944U, // <6,4,4,2>: Cost 3 vext2 <4,2,6,4>, <4,2,6,4>
+ 3717344401U, // <6,4,4,3>: Cost 4 vext2 <4,3,6,4>, <4,3,6,4>
+ 2712571088U, // <6,4,4,4>: Cost 3 vext3 <4,6,4,6>, <4,4,4,4>
+ 2629668150U, // <6,4,4,5>: Cost 3 vext2 <2,0,6,4>, RHS
+ 1637649636U, // <6,4,4,6>: Cost 2 vext3 <4,4,6,6>, <4,4,6,6>
+ 2646257109U, // <6,4,4,7>: Cost 3 vext2 <4,7,6,4>, <4,7,6,4>
+ 1637649636U, // <6,4,4,u>: Cost 2 vext3 <4,4,6,6>, <4,4,6,6>
+ 2566398054U, // <6,4,5,0>: Cost 3 vext1 <2,6,4,5>, LHS
+ 3760876805U, // <6,4,5,1>: Cost 4 vext3 <0,4,1,6>, <4,5,1,3>
+ 2566399937U, // <6,4,5,2>: Cost 3 vext1 <2,6,4,5>, <2,6,4,5>
+ 2584316418U, // <6,4,5,3>: Cost 3 vext1 <5,6,4,5>, <3,4,5,6>
+ 2566401334U, // <6,4,5,4>: Cost 3 vext1 <2,6,4,5>, RHS
+ 2584318028U, // <6,4,5,5>: Cost 3 vext1 <5,6,4,5>, <5,6,4,5>
+ 1612287286U, // <6,4,5,6>: Cost 2 vext3 <0,2,4,6>, RHS
+ 2852965686U, // <6,4,5,7>: Cost 3 vuzpr <5,6,7,4>, RHS
+ 1612287304U, // <6,4,5,u>: Cost 2 vext3 <0,2,4,6>, RHS
+ 1504608358U, // <6,4,6,0>: Cost 2 vext1 <4,6,4,6>, LHS
+ 2578350838U, // <6,4,6,1>: Cost 3 vext1 <4,6,4,6>, <1,0,3,2>
+ 2578351720U, // <6,4,6,2>: Cost 3 vext1 <4,6,4,6>, <2,2,2,2>
+ 2578352278U, // <6,4,6,3>: Cost 3 vext1 <4,6,4,6>, <3,0,1,2>
+ 1504611638U, // <6,4,6,4>: Cost 2 vext1 <4,6,4,6>, RHS
+ 2578353872U, // <6,4,6,5>: Cost 3 vext1 <4,6,4,6>, <5,1,7,3>
+ 2578354682U, // <6,4,6,6>: Cost 3 vext1 <4,6,4,6>, <6,2,7,3>
+ 2578355194U, // <6,4,6,7>: Cost 3 vext1 <4,6,4,6>, <7,0,1,2>
+ 1504614190U, // <6,4,6,u>: Cost 2 vext1 <4,6,4,6>, LHS
+ 2572386406U, // <6,4,7,0>: Cost 3 vext1 <3,6,4,7>, LHS
+ 2572387226U, // <6,4,7,1>: Cost 3 vext1 <3,6,4,7>, <1,2,3,4>
+ 3640157902U, // <6,4,7,2>: Cost 4 vext1 <2,6,4,7>, <2,3,4,5>
+ 2572389020U, // <6,4,7,3>: Cost 3 vext1 <3,6,4,7>, <3,6,4,7>
+ 2572389686U, // <6,4,7,4>: Cost 3 vext1 <3,6,4,7>, RHS
+ 2980497102U, // <6,4,7,5>: Cost 3 vzipr RHS, <2,3,4,5>
+ 2980495564U, // <6,4,7,6>: Cost 3 vzipr RHS, <0,2,4,6>
+ 4054239090U, // <6,4,7,7>: Cost 4 vzipr RHS, <2,5,4,7>
+ 2572392238U, // <6,4,7,u>: Cost 3 vext1 <3,6,4,7>, LHS
+ 1504608358U, // <6,4,u,0>: Cost 2 vext1 <4,6,4,6>, LHS
+ 2629670702U, // <6,4,u,1>: Cost 3 vext2 <2,0,6,4>, LHS
+ 2566424516U, // <6,4,u,2>: Cost 3 vext1 <2,6,4,u>, <2,6,4,u>
+ 2584340994U, // <6,4,u,3>: Cost 3 vext1 <5,6,4,u>, <3,4,5,6>
+ 1640156694U, // <6,4,u,4>: Cost 2 vext3 <4,u,4,6>, <4,u,4,6>
+ 2629671066U, // <6,4,u,5>: Cost 3 vext2 <2,0,6,4>, RHS
+ 1612287529U, // <6,4,u,6>: Cost 2 vext3 <0,2,4,6>, RHS
+ 2852965929U, // <6,4,u,7>: Cost 3 vuzpr <5,6,7,4>, RHS
+ 1612287547U, // <6,4,u,u>: Cost 2 vext3 <0,2,4,6>, RHS
+ 3708723200U, // <6,5,0,0>: Cost 4 vext2 <2,u,6,5>, <0,0,0,0>
+ 2634981478U, // <6,5,0,1>: Cost 3 vext2 <2,u,6,5>, LHS
+ 3694125260U, // <6,5,0,2>: Cost 4 vext2 <0,4,6,5>, <0,2,4,6>
+ 3779087962U, // <6,5,0,3>: Cost 4 vext3 <3,4,5,6>, <5,0,3,2>
+ 3760877154U, // <6,5,0,4>: Cost 4 vext3 <0,4,1,6>, <5,0,4,1>
+ 4195110916U, // <6,5,0,5>: Cost 4 vtrnr <5,6,7,0>, <5,5,5,5>
+ 3696779775U, // <6,5,0,6>: Cost 4 vext2 <0,u,6,5>, <0,6,2,7>
+ 1175212130U, // <6,5,0,7>: Cost 2 vrev <5,6,7,0>
+ 1175285867U, // <6,5,0,u>: Cost 2 vrev <5,6,u,0>
+ 2248445988U, // <6,5,1,0>: Cost 3 vrev <5,6,0,1>
+ 3698107237U, // <6,5,1,1>: Cost 4 vext2 <1,1,6,5>, <1,1,6,5>
+ 3708724118U, // <6,5,1,2>: Cost 4 vext2 <2,u,6,5>, <1,2,3,0>
+ 3908575334U, // <6,5,1,3>: Cost 4 vuzpr <2,6,4,5>, LHS
+ 3716023376U, // <6,5,1,4>: Cost 4 vext2 <4,1,6,5>, <1,4,5,6>
+ 3708724368U, // <6,5,1,5>: Cost 4 vext2 <2,u,6,5>, <1,5,3,7>
+ 3767733960U, // <6,5,1,6>: Cost 4 vext3 <1,5,4,6>, <5,1,6,4>
+ 2712571600U, // <6,5,1,7>: Cost 3 vext3 <4,6,4,6>, <5,1,7,3>
+ 2712571609U, // <6,5,1,u>: Cost 3 vext3 <4,6,4,6>, <5,1,u,3>
+ 2578391142U, // <6,5,2,0>: Cost 3 vext1 <4,6,5,2>, LHS
+ 3704079934U, // <6,5,2,1>: Cost 4 vext2 <2,1,6,5>, <2,1,6,5>
+ 3708724840U, // <6,5,2,2>: Cost 4 vext2 <2,u,6,5>, <2,2,2,2>
+ 3705407182U, // <6,5,2,3>: Cost 4 vext2 <2,3,6,5>, <2,3,4,5>
+ 2578394422U, // <6,5,2,4>: Cost 3 vext1 <4,6,5,2>, RHS
+ 3717351272U, // <6,5,2,5>: Cost 4 vext2 <4,3,6,5>, <2,5,3,6>
+ 2634983354U, // <6,5,2,6>: Cost 3 vext2 <2,u,6,5>, <2,6,3,7>
+ 3115486518U, // <6,5,2,7>: Cost 3 vtrnr <4,6,u,2>, RHS
+ 2634983541U, // <6,5,2,u>: Cost 3 vext2 <2,u,6,5>, <2,u,6,5>
+ 3708725398U, // <6,5,3,0>: Cost 4 vext2 <2,u,6,5>, <3,0,1,2>
+ 3710052631U, // <6,5,3,1>: Cost 4 vext2 <3,1,6,5>, <3,1,6,5>
+ 3708725606U, // <6,5,3,2>: Cost 4 vext2 <2,u,6,5>, <3,2,6,3>
+ 3708725660U, // <6,5,3,3>: Cost 4 vext2 <2,u,6,5>, <3,3,3,3>
+ 2643610114U, // <6,5,3,4>: Cost 3 vext2 <4,3,6,5>, <3,4,5,6>
+ 3717352010U, // <6,5,3,5>: Cost 4 vext2 <4,3,6,5>, <3,5,4,6>
+ 3773632358U, // <6,5,3,6>: Cost 4 vext3 <2,5,3,6>, <5,3,6,0>
+ 2248978533U, // <6,5,3,7>: Cost 3 vrev <5,6,7,3>
+ 2249052270U, // <6,5,3,u>: Cost 3 vrev <5,6,u,3>
+ 2596323430U, // <6,5,4,0>: Cost 3 vext1 <7,6,5,4>, LHS
+ 3716025328U, // <6,5,4,1>: Cost 4 vext2 <4,1,6,5>, <4,1,6,5>
+ 3716688961U, // <6,5,4,2>: Cost 4 vext2 <4,2,6,5>, <4,2,6,5>
+ 2643610770U, // <6,5,4,3>: Cost 3 vext2 <4,3,6,5>, <4,3,6,5>
+ 2596326710U, // <6,5,4,4>: Cost 3 vext1 <7,6,5,4>, RHS
+ 2634984758U, // <6,5,4,5>: Cost 3 vext2 <2,u,6,5>, RHS
+ 3767734199U, // <6,5,4,6>: Cost 4 vext3 <1,5,4,6>, <5,4,6,0>
+ 1643696070U, // <6,5,4,7>: Cost 2 vext3 <5,4,7,6>, <5,4,7,6>
+ 1643769807U, // <6,5,4,u>: Cost 2 vext3 <5,4,u,6>, <5,4,u,6>
+ 2578415718U, // <6,5,5,0>: Cost 3 vext1 <4,6,5,5>, LHS
+ 3652158198U, // <6,5,5,1>: Cost 4 vext1 <4,6,5,5>, <1,0,3,2>
+ 3652159080U, // <6,5,5,2>: Cost 4 vext1 <4,6,5,5>, <2,2,2,2>
+ 3652159638U, // <6,5,5,3>: Cost 4 vext1 <4,6,5,5>, <3,0,1,2>
+ 2578418998U, // <6,5,5,4>: Cost 3 vext1 <4,6,5,5>, RHS
+ 2712571908U, // <6,5,5,5>: Cost 3 vext3 <4,6,4,6>, <5,5,5,5>
+ 2718027790U, // <6,5,5,6>: Cost 3 vext3 <5,5,6,6>, <5,5,6,6>
+ 2712571928U, // <6,5,5,7>: Cost 3 vext3 <4,6,4,6>, <5,5,7,7>
+ 2712571937U, // <6,5,5,u>: Cost 3 vext3 <4,6,4,6>, <5,5,u,7>
+ 2705346596U, // <6,5,6,0>: Cost 3 vext3 <3,4,5,6>, <5,6,0,1>
+ 3767144496U, // <6,5,6,1>: Cost 4 vext3 <1,4,5,6>, <5,6,1,4>
+ 3773116473U, // <6,5,6,2>: Cost 4 vext3 <2,4,5,6>, <5,6,2,4>
+ 2705346626U, // <6,5,6,3>: Cost 3 vext3 <3,4,5,6>, <5,6,3,4>
+ 2705346636U, // <6,5,6,4>: Cost 3 vext3 <3,4,5,6>, <5,6,4,5>
+ 3908577217U, // <6,5,6,5>: Cost 4 vuzpr <2,6,4,5>, <2,6,4,5>
+ 2578428728U, // <6,5,6,6>: Cost 3 vext1 <4,6,5,6>, <6,6,6,6>
+ 2712572002U, // <6,5,6,7>: Cost 3 vext3 <4,6,4,6>, <5,6,7,0>
+ 2705346668U, // <6,5,6,u>: Cost 3 vext3 <3,4,5,6>, <5,6,u,1>
+ 2560516198U, // <6,5,7,0>: Cost 3 vext1 <1,6,5,7>, LHS
+ 2560517363U, // <6,5,7,1>: Cost 3 vext1 <1,6,5,7>, <1,6,5,7>
+ 2566490060U, // <6,5,7,2>: Cost 3 vext1 <2,6,5,7>, <2,6,5,7>
+ 3634260118U, // <6,5,7,3>: Cost 4 vext1 <1,6,5,7>, <3,0,1,2>
+ 2560519478U, // <6,5,7,4>: Cost 3 vext1 <1,6,5,7>, RHS
+ 2980498650U, // <6,5,7,5>: Cost 3 vzipr RHS, <4,4,5,5>
+ 2980497922U, // <6,5,7,6>: Cost 3 vzipr RHS, <3,4,5,6>
+ 3103214902U, // <6,5,7,7>: Cost 3 vtrnr <2,6,3,7>, RHS
+ 2560522030U, // <6,5,7,u>: Cost 3 vext1 <1,6,5,7>, LHS
+ 2560524390U, // <6,5,u,0>: Cost 3 vext1 <1,6,5,u>, LHS
+ 2560525556U, // <6,5,u,1>: Cost 3 vext1 <1,6,5,u>, <1,6,5,u>
+ 2566498253U, // <6,5,u,2>: Cost 3 vext1 <2,6,5,u>, <2,6,5,u>
+ 2646931439U, // <6,5,u,3>: Cost 3 vext2 <4,u,6,5>, <u,3,5,7>
+ 2560527670U, // <6,5,u,4>: Cost 3 vext1 <1,6,5,u>, RHS
+ 2634987674U, // <6,5,u,5>: Cost 3 vext2 <2,u,6,5>, RHS
+ 2980506114U, // <6,5,u,6>: Cost 3 vzipr RHS, <3,4,5,6>
+ 1175277674U, // <6,5,u,7>: Cost 2 vrev <5,6,7,u>
+ 1175351411U, // <6,5,u,u>: Cost 2 vrev <5,6,u,u>
+ 2578448486U, // <6,6,0,0>: Cost 3 vext1 <4,6,6,0>, LHS
+ 1573191782U, // <6,6,0,1>: Cost 2 vext2 <4,u,6,6>, LHS
+ 2686030124U, // <6,6,0,2>: Cost 3 vext3 <0,2,4,6>, <6,0,2,4>
+ 3779088690U, // <6,6,0,3>: Cost 4 vext3 <3,4,5,6>, <6,0,3,1>
+ 2687209788U, // <6,6,0,4>: Cost 3 vext3 <0,4,2,6>, <6,0,4,2>
+ 3652194000U, // <6,6,0,5>: Cost 4 vext1 <4,6,6,0>, <5,1,7,3>
+ 2254852914U, // <6,6,0,6>: Cost 3 vrev <6,6,6,0>
+ 4041575734U, // <6,6,0,7>: Cost 4 vzipr <2,4,6,0>, RHS
+ 1573192349U, // <6,6,0,u>: Cost 2 vext2 <4,u,6,6>, LHS
+ 2646934262U, // <6,6,1,0>: Cost 3 vext2 <4,u,6,6>, <1,0,3,2>
+ 2646934324U, // <6,6,1,1>: Cost 3 vext2 <4,u,6,6>, <1,1,1,1>
+ 2646934422U, // <6,6,1,2>: Cost 3 vext2 <4,u,6,6>, <1,2,3,0>
+ 2846785638U, // <6,6,1,3>: Cost 3 vuzpr <4,6,4,6>, LHS
+ 3760951694U, // <6,6,1,4>: Cost 4 vext3 <0,4,2,6>, <6,1,4,3>
+ 2646934672U, // <6,6,1,5>: Cost 3 vext2 <4,u,6,6>, <1,5,3,7>
+ 2712572320U, // <6,6,1,6>: Cost 3 vext3 <4,6,4,6>, <6,1,6,3>
+ 3775549865U, // <6,6,1,7>: Cost 4 vext3 <2,u,2,6>, <6,1,7,3>
+ 2846785643U, // <6,6,1,u>: Cost 3 vuzpr <4,6,4,6>, LHS
+ 3759772094U, // <6,6,2,0>: Cost 4 vext3 <0,2,4,6>, <6,2,0,6>
+ 3704751676U, // <6,6,2,1>: Cost 4 vext2 <2,2,6,6>, <2,1,6,3>
+ 2631009936U, // <6,6,2,2>: Cost 3 vext2 <2,2,6,6>, <2,2,6,6>
+ 2646935206U, // <6,6,2,3>: Cost 3 vext2 <4,u,6,6>, <2,3,0,1>
+ 3759772127U, // <6,6,2,4>: Cost 4 vext3 <0,2,4,6>, <6,2,4,3>
+ 3704752004U, // <6,6,2,5>: Cost 4 vext2 <2,2,6,6>, <2,5,6,7>
+ 2646935482U, // <6,6,2,6>: Cost 3 vext2 <4,u,6,6>, <2,6,3,7>
+ 2712572410U, // <6,6,2,7>: Cost 3 vext3 <4,6,4,6>, <6,2,7,3>
+ 2712572419U, // <6,6,2,u>: Cost 3 vext3 <4,6,4,6>, <6,2,u,3>
+ 2646935702U, // <6,6,3,0>: Cost 3 vext2 <4,u,6,6>, <3,0,1,2>
+ 3777024534U, // <6,6,3,1>: Cost 4 vext3 <3,1,4,6>, <6,3,1,4>
+ 3704752453U, // <6,6,3,2>: Cost 4 vext2 <2,2,6,6>, <3,2,2,6>
+ 2646935964U, // <6,6,3,3>: Cost 3 vext2 <4,u,6,6>, <3,3,3,3>
+ 2705347122U, // <6,6,3,4>: Cost 3 vext3 <3,4,5,6>, <6,3,4,5>
+ 3779678778U, // <6,6,3,5>: Cost 4 vext3 <3,5,4,6>, <6,3,5,4>
+ 2657553069U, // <6,6,3,6>: Cost 3 vext2 <6,6,6,6>, <3,6,6,6>
+ 4039609654U, // <6,6,3,7>: Cost 4 vzipr <2,1,6,3>, RHS
+ 2708001366U, // <6,6,3,u>: Cost 3 vext3 <3,u,5,6>, <6,3,u,5>
+ 2578481254U, // <6,6,4,0>: Cost 3 vext1 <4,6,6,4>, LHS
+ 3652223734U, // <6,6,4,1>: Cost 4 vext1 <4,6,6,4>, <1,0,3,2>
+ 3760951922U, // <6,6,4,2>: Cost 4 vext3 <0,4,2,6>, <6,4,2,6>
+ 3779089019U, // <6,6,4,3>: Cost 4 vext3 <3,4,5,6>, <6,4,3,6>
+ 1570540772U, // <6,6,4,4>: Cost 2 vext2 <4,4,6,6>, <4,4,6,6>
+ 1573195062U, // <6,6,4,5>: Cost 2 vext2 <4,u,6,6>, RHS
+ 2712572560U, // <6,6,4,6>: Cost 3 vext3 <4,6,4,6>, <6,4,6,0>
+ 2723410591U, // <6,6,4,7>: Cost 3 vext3 <6,4,7,6>, <6,4,7,6>
+ 1573195304U, // <6,6,4,u>: Cost 2 vext2 <4,u,6,6>, <4,u,6,6>
+ 3640287334U, // <6,6,5,0>: Cost 4 vext1 <2,6,6,5>, LHS
+ 2646937296U, // <6,6,5,1>: Cost 3 vext2 <4,u,6,6>, <5,1,7,3>
+ 3640289235U, // <6,6,5,2>: Cost 4 vext1 <2,6,6,5>, <2,6,6,5>
+ 3720679279U, // <6,6,5,3>: Cost 4 vext2 <4,u,6,6>, <5,3,7,0>
+ 2646937542U, // <6,6,5,4>: Cost 3 vext2 <4,u,6,6>, <5,4,7,6>
+ 2646937604U, // <6,6,5,5>: Cost 3 vext2 <4,u,6,6>, <5,5,5,5>
+ 2646937698U, // <6,6,5,6>: Cost 3 vext2 <4,u,6,6>, <5,6,7,0>
+ 2846788918U, // <6,6,5,7>: Cost 3 vuzpr <4,6,4,6>, RHS
+ 2846788919U, // <6,6,5,u>: Cost 3 vuzpr <4,6,4,6>, RHS
+ 1516699750U, // <6,6,6,0>: Cost 2 vext1 <6,6,6,6>, LHS
+ 2590442230U, // <6,6,6,1>: Cost 3 vext1 <6,6,6,6>, <1,0,3,2>
+ 2646938106U, // <6,6,6,2>: Cost 3 vext2 <4,u,6,6>, <6,2,7,3>
+ 2590443670U, // <6,6,6,3>: Cost 3 vext1 <6,6,6,6>, <3,0,1,2>
+ 1516703030U, // <6,6,6,4>: Cost 2 vext1 <6,6,6,6>, RHS
+ 2590445264U, // <6,6,6,5>: Cost 3 vext1 <6,6,6,6>, <5,1,7,3>
+ 296144182U, // <6,6,6,6>: Cost 1 vdup2 RHS
+ 2712572738U, // <6,6,6,7>: Cost 3 vext3 <4,6,4,6>, <6,6,7,7>
+ 296144182U, // <6,6,6,u>: Cost 1 vdup2 RHS
+ 2566561894U, // <6,6,7,0>: Cost 3 vext1 <2,6,6,7>, LHS
+ 3634332924U, // <6,6,7,1>: Cost 4 vext1 <1,6,6,7>, <1,6,6,7>
+ 2566563797U, // <6,6,7,2>: Cost 3 vext1 <2,6,6,7>, <2,6,6,7>
+ 2584480258U, // <6,6,7,3>: Cost 3 vext1 <5,6,6,7>, <3,4,5,6>
+ 2566565174U, // <6,6,7,4>: Cost 3 vext1 <2,6,6,7>, RHS
+ 2717438846U, // <6,6,7,5>: Cost 3 vext3 <5,4,7,6>, <6,7,5,4>
+ 2980500280U, // <6,6,7,6>: Cost 3 vzipr RHS, <6,6,6,6>
+ 1906756918U, // <6,6,7,7>: Cost 2 vzipr RHS, RHS
+ 1906756919U, // <6,6,7,u>: Cost 2 vzipr RHS, RHS
+ 1516699750U, // <6,6,u,0>: Cost 2 vext1 <6,6,6,6>, LHS
+ 1573197614U, // <6,6,u,1>: Cost 2 vext2 <4,u,6,6>, LHS
+ 2566571990U, // <6,6,u,2>: Cost 3 vext1 <2,6,6,u>, <2,6,6,u>
+ 2846786205U, // <6,6,u,3>: Cost 3 vuzpr <4,6,4,6>, LHS
+ 1516703030U, // <6,6,u,4>: Cost 2 vext1 <6,6,6,6>, RHS
+ 1573197978U, // <6,6,u,5>: Cost 2 vext2 <4,u,6,6>, RHS
+ 296144182U, // <6,6,u,6>: Cost 1 vdup2 RHS
+ 1906765110U, // <6,6,u,7>: Cost 2 vzipr RHS, RHS
+ 296144182U, // <6,6,u,u>: Cost 1 vdup2 RHS
+ 1571209216U, // <6,7,0,0>: Cost 2 vext2 RHS, <0,0,0,0>
+ 497467494U, // <6,7,0,1>: Cost 1 vext2 RHS, LHS
+ 1571209380U, // <6,7,0,2>: Cost 2 vext2 RHS, <0,2,0,2>
+ 2644951292U, // <6,7,0,3>: Cost 3 vext2 RHS, <0,3,1,0>
+ 1571209554U, // <6,7,0,4>: Cost 2 vext2 RHS, <0,4,1,5>
+ 1510756450U, // <6,7,0,5>: Cost 2 vext1 <5,6,7,0>, <5,6,7,0>
+ 2644951542U, // <6,7,0,6>: Cost 3 vext2 RHS, <0,6,1,7>
+ 2584499194U, // <6,7,0,7>: Cost 3 vext1 <5,6,7,0>, <7,0,1,2>
+ 497468061U, // <6,7,0,u>: Cost 1 vext2 RHS, LHS
+ 1571209974U, // <6,7,1,0>: Cost 2 vext2 RHS, <1,0,3,2>
+ 1571210036U, // <6,7,1,1>: Cost 2 vext2 RHS, <1,1,1,1>
+ 1571210134U, // <6,7,1,2>: Cost 2 vext2 RHS, <1,2,3,0>
+ 1571210200U, // <6,7,1,3>: Cost 2 vext2 RHS, <1,3,1,3>
+ 2644952098U, // <6,7,1,4>: Cost 3 vext2 RHS, <1,4,0,5>
+ 1571210384U, // <6,7,1,5>: Cost 2 vext2 RHS, <1,5,3,7>
+ 2644952271U, // <6,7,1,6>: Cost 3 vext2 RHS, <1,6,1,7>
+ 2578535418U, // <6,7,1,7>: Cost 3 vext1 <4,6,7,1>, <7,0,1,2>
+ 1571210605U, // <6,7,1,u>: Cost 2 vext2 RHS, <1,u,1,3>
+ 2644952509U, // <6,7,2,0>: Cost 3 vext2 RHS, <2,0,1,2>
+ 2644952582U, // <6,7,2,1>: Cost 3 vext2 RHS, <2,1,0,3>
+ 1571210856U, // <6,7,2,2>: Cost 2 vext2 RHS, <2,2,2,2>
+ 1571210918U, // <6,7,2,3>: Cost 2 vext2 RHS, <2,3,0,1>
+ 2644952828U, // <6,7,2,4>: Cost 3 vext2 RHS, <2,4,0,6>
+ 2633009028U, // <6,7,2,5>: Cost 3 vext2 <2,5,6,7>, <2,5,6,7>
+ 1571211194U, // <6,7,2,6>: Cost 2 vext2 RHS, <2,6,3,7>
+ 2668840938U, // <6,7,2,7>: Cost 3 vext2 RHS, <2,7,0,1>
+ 1571211323U, // <6,7,2,u>: Cost 2 vext2 RHS, <2,u,0,1>
+ 1571211414U, // <6,7,3,0>: Cost 2 vext2 RHS, <3,0,1,2>
+ 2644953311U, // <6,7,3,1>: Cost 3 vext2 RHS, <3,1,0,3>
+ 2644953390U, // <6,7,3,2>: Cost 3 vext2 RHS, <3,2,0,1>
+ 1571211676U, // <6,7,3,3>: Cost 2 vext2 RHS, <3,3,3,3>
+ 1571211778U, // <6,7,3,4>: Cost 2 vext2 RHS, <3,4,5,6>
+ 2644953648U, // <6,7,3,5>: Cost 3 vext2 RHS, <3,5,1,7>
+ 2644953720U, // <6,7,3,6>: Cost 3 vext2 RHS, <3,6,0,7>
+ 2644953795U, // <6,7,3,7>: Cost 3 vext2 RHS, <3,7,0,1>
+ 1571212062U, // <6,7,3,u>: Cost 2 vext2 RHS, <3,u,1,2>
+ 1573202834U, // <6,7,4,0>: Cost 2 vext2 RHS, <4,0,5,1>
+ 2644954058U, // <6,7,4,1>: Cost 3 vext2 RHS, <4,1,2,3>
+ 2644954166U, // <6,7,4,2>: Cost 3 vext2 RHS, <4,2,5,3>
+ 2644954258U, // <6,7,4,3>: Cost 3 vext2 RHS, <4,3,6,5>
+ 1571212496U, // <6,7,4,4>: Cost 2 vext2 RHS, <4,4,4,4>
+ 497470774U, // <6,7,4,5>: Cost 1 vext2 RHS, RHS
+ 1573203316U, // <6,7,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 2646281688U, // <6,7,4,7>: Cost 3 vext2 <4,7,6,7>, <4,7,6,7>
+ 497471017U, // <6,7,4,u>: Cost 1 vext2 RHS, RHS
+ 2644954696U, // <6,7,5,0>: Cost 3 vext2 RHS, <5,0,1,2>
+ 1573203664U, // <6,7,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 2644954878U, // <6,7,5,2>: Cost 3 vext2 RHS, <5,2,3,4>
+ 2644954991U, // <6,7,5,3>: Cost 3 vext2 RHS, <5,3,7,0>
+ 1571213254U, // <6,7,5,4>: Cost 2 vext2 RHS, <5,4,7,6>
+ 1571213316U, // <6,7,5,5>: Cost 2 vext2 RHS, <5,5,5,5>
+ 1571213410U, // <6,7,5,6>: Cost 2 vext2 RHS, <5,6,7,0>
+ 1573204136U, // <6,7,5,7>: Cost 2 vext2 RHS, <5,7,5,7>
+ 1573204217U, // <6,7,5,u>: Cost 2 vext2 RHS, <5,u,5,7>
+ 2644955425U, // <6,7,6,0>: Cost 3 vext2 RHS, <6,0,1,2>
+ 2644955561U, // <6,7,6,1>: Cost 3 vext2 RHS, <6,1,7,3>
+ 1573204474U, // <6,7,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 2644955698U, // <6,7,6,3>: Cost 3 vext2 RHS, <6,3,4,5>
+ 2644955789U, // <6,7,6,4>: Cost 3 vext2 RHS, <6,4,5,6>
+ 2644955889U, // <6,7,6,5>: Cost 3 vext2 RHS, <6,5,7,7>
+ 1571214136U, // <6,7,6,6>: Cost 2 vext2 RHS, <6,6,6,6>
+ 1571214158U, // <6,7,6,7>: Cost 2 vext2 RHS, <6,7,0,1>
+ 1573204895U, // <6,7,6,u>: Cost 2 vext2 RHS, <6,u,0,1>
+ 1573204986U, // <6,7,7,0>: Cost 2 vext2 RHS, <7,0,1,2>
+ 2572608656U, // <6,7,7,1>: Cost 3 vext1 <3,6,7,7>, <1,5,3,7>
+ 2644956362U, // <6,7,7,2>: Cost 3 vext2 RHS, <7,2,6,3>
+ 2572610231U, // <6,7,7,3>: Cost 3 vext1 <3,6,7,7>, <3,6,7,7>
+ 1573205350U, // <6,7,7,4>: Cost 2 vext2 RHS, <7,4,5,6>
+ 2646947220U, // <6,7,7,5>: Cost 3 vext2 RHS, <7,5,1,7>
+ 1516786498U, // <6,7,7,6>: Cost 2 vext1 <6,6,7,7>, <6,6,7,7>
+ 1571214956U, // <6,7,7,7>: Cost 2 vext2 RHS, <7,7,7,7>
+ 1573205634U, // <6,7,7,u>: Cost 2 vext2 RHS, <7,u,1,2>
+ 1571215059U, // <6,7,u,0>: Cost 2 vext2 RHS, <u,0,1,2>
+ 497473326U, // <6,7,u,1>: Cost 1 vext2 RHS, LHS
+ 1571215237U, // <6,7,u,2>: Cost 2 vext2 RHS, <u,2,3,0>
+ 1571215292U, // <6,7,u,3>: Cost 2 vext2 RHS, <u,3,0,1>
+ 1571215423U, // <6,7,u,4>: Cost 2 vext2 RHS, <u,4,5,6>
+ 497473690U, // <6,7,u,5>: Cost 1 vext2 RHS, RHS
+ 1571215568U, // <6,7,u,6>: Cost 2 vext2 RHS, <u,6,3,7>
+ 1573206272U, // <6,7,u,7>: Cost 2 vext2 RHS, <u,7,0,1>
+ 497473893U, // <6,7,u,u>: Cost 1 vext2 RHS, LHS
+ 1571217408U, // <6,u,0,0>: Cost 2 vext2 RHS, <0,0,0,0>
+ 497475686U, // <6,u,0,1>: Cost 1 vext2 RHS, LHS
+ 1571217572U, // <6,u,0,2>: Cost 2 vext2 RHS, <0,2,0,2>
+ 2689865445U, // <6,u,0,3>: Cost 3 vext3 <0,u,2,6>, <u,0,3,2>
+ 1571217746U, // <6,u,0,4>: Cost 2 vext2 RHS, <0,4,1,5>
+ 1510830187U, // <6,u,0,5>: Cost 2 vext1 <5,6,u,0>, <5,6,u,0>
+ 2644959734U, // <6,u,0,6>: Cost 3 vext2 RHS, <0,6,1,7>
+ 1193130221U, // <6,u,0,7>: Cost 2 vrev <u,6,7,0>
+ 497476253U, // <6,u,0,u>: Cost 1 vext2 RHS, LHS
+ 1571218166U, // <6,u,1,0>: Cost 2 vext2 RHS, <1,0,3,2>
+ 1571218228U, // <6,u,1,1>: Cost 2 vext2 RHS, <1,1,1,1>
+ 1612289838U, // <6,u,1,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 1571218392U, // <6,u,1,3>: Cost 2 vext2 RHS, <1,3,1,3>
+ 2566663478U, // <6,u,1,4>: Cost 3 vext1 <2,6,u,1>, RHS
+ 1571218576U, // <6,u,1,5>: Cost 2 vext2 RHS, <1,5,3,7>
+ 2644960463U, // <6,u,1,6>: Cost 3 vext2 RHS, <1,6,1,7>
+ 2717439835U, // <6,u,1,7>: Cost 3 vext3 <5,4,7,6>, <u,1,7,3>
+ 1612289892U, // <6,u,1,u>: Cost 2 vext3 <0,2,4,6>, LHS
+ 1504870502U, // <6,u,2,0>: Cost 2 vext1 <4,6,u,2>, LHS
+ 2644960774U, // <6,u,2,1>: Cost 3 vext2 RHS, <2,1,0,3>
+ 1571219048U, // <6,u,2,2>: Cost 2 vext2 RHS, <2,2,2,2>
+ 1571219110U, // <6,u,2,3>: Cost 2 vext2 RHS, <2,3,0,1>
+ 1504873782U, // <6,u,2,4>: Cost 2 vext1 <4,6,u,2>, RHS
+ 2633017221U, // <6,u,2,5>: Cost 3 vext2 <2,5,6,u>, <2,5,6,u>
+ 1571219386U, // <6,u,2,6>: Cost 2 vext2 RHS, <2,6,3,7>
+ 2712573868U, // <6,u,2,7>: Cost 3 vext3 <4,6,4,6>, <u,2,7,3>
+ 1571219515U, // <6,u,2,u>: Cost 2 vext2 RHS, <2,u,0,1>
+ 1571219606U, // <6,u,3,0>: Cost 2 vext2 RHS, <3,0,1,2>
+ 2644961503U, // <6,u,3,1>: Cost 3 vext2 RHS, <3,1,0,3>
+ 2566678499U, // <6,u,3,2>: Cost 3 vext1 <2,6,u,3>, <2,6,u,3>
+ 1571219868U, // <6,u,3,3>: Cost 2 vext2 RHS, <3,3,3,3>
+ 1571219970U, // <6,u,3,4>: Cost 2 vext2 RHS, <3,4,5,6>
+ 2689865711U, // <6,u,3,5>: Cost 3 vext3 <0,u,2,6>, <u,3,5,7>
+ 2708002806U, // <6,u,3,6>: Cost 3 vext3 <3,u,5,6>, <u,3,6,5>
+ 2644961987U, // <6,u,3,7>: Cost 3 vext2 RHS, <3,7,0,1>
+ 1571220254U, // <6,u,3,u>: Cost 2 vext2 RHS, <3,u,1,2>
+ 1571220370U, // <6,u,4,0>: Cost 2 vext2 RHS, <4,0,5,1>
+ 2644962250U, // <6,u,4,1>: Cost 3 vext2 RHS, <4,1,2,3>
+ 1661245476U, // <6,u,4,2>: Cost 2 vext3 <u,4,2,6>, <u,4,2,6>
+ 2686031917U, // <6,u,4,3>: Cost 3 vext3 <0,2,4,6>, <u,4,3,6>
+ 1571220688U, // <6,u,4,4>: Cost 2 vext2 RHS, <4,4,4,4>
+ 497478967U, // <6,u,4,5>: Cost 1 vext2 RHS, RHS
+ 1571220852U, // <6,u,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 1661614161U, // <6,u,4,7>: Cost 2 vext3 <u,4,7,6>, <u,4,7,6>
+ 497479209U, // <6,u,4,u>: Cost 1 vext2 RHS, RHS
+ 2566692966U, // <6,u,5,0>: Cost 3 vext1 <2,6,u,5>, LHS
+ 1571221200U, // <6,u,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 2566694885U, // <6,u,5,2>: Cost 3 vext1 <2,6,u,5>, <2,6,u,5>
+ 2689865855U, // <6,u,5,3>: Cost 3 vext3 <0,u,2,6>, <u,5,3,7>
+ 1571221446U, // <6,u,5,4>: Cost 2 vext2 RHS, <5,4,7,6>
+ 1571221508U, // <6,u,5,5>: Cost 2 vext2 RHS, <5,5,5,5>
+ 1612290202U, // <6,u,5,6>: Cost 2 vext3 <0,2,4,6>, RHS
+ 1571221672U, // <6,u,5,7>: Cost 2 vext2 RHS, <5,7,5,7>
+ 1612290220U, // <6,u,5,u>: Cost 2 vext3 <0,2,4,6>, RHS
+ 1504903270U, // <6,u,6,0>: Cost 2 vext1 <4,6,u,6>, LHS
+ 2644963752U, // <6,u,6,1>: Cost 3 vext2 RHS, <6,1,7,2>
+ 1571222010U, // <6,u,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 2686032080U, // <6,u,6,3>: Cost 3 vext3 <0,2,4,6>, <u,6,3,7>
+ 1504906550U, // <6,u,6,4>: Cost 2 vext1 <4,6,u,6>, RHS
+ 2644964079U, // <6,u,6,5>: Cost 3 vext2 RHS, <6,5,7,5>
+ 296144182U, // <6,u,6,6>: Cost 1 vdup2 RHS
+ 1571222350U, // <6,u,6,7>: Cost 2 vext2 RHS, <6,7,0,1>
+ 296144182U, // <6,u,6,u>: Cost 1 vdup2 RHS
+ 1492967526U, // <6,u,7,0>: Cost 2 vext1 <2,6,u,7>, LHS
+ 2560738574U, // <6,u,7,1>: Cost 3 vext1 <1,6,u,7>, <1,6,u,7>
+ 1492969447U, // <6,u,7,2>: Cost 2 vext1 <2,6,u,7>, <2,6,u,7>
+ 1906753692U, // <6,u,7,3>: Cost 2 vzipr RHS, LHS
+ 1492970806U, // <6,u,7,4>: Cost 2 vext1 <2,6,u,7>, RHS
+ 2980495761U, // <6,u,7,5>: Cost 3 vzipr RHS, <0,4,u,5>
+ 1516860235U, // <6,u,7,6>: Cost 2 vext1 <6,6,u,7>, <6,6,u,7>
+ 1906756936U, // <6,u,7,7>: Cost 2 vzipr RHS, RHS
+ 1492973358U, // <6,u,7,u>: Cost 2 vext1 <2,6,u,7>, LHS
+ 1492975718U, // <6,u,u,0>: Cost 2 vext1 <2,6,u,u>, LHS
+ 497481518U, // <6,u,u,1>: Cost 1 vext2 RHS, LHS
+ 1612290405U, // <6,u,u,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 1571223484U, // <6,u,u,3>: Cost 2 vext2 RHS, <u,3,0,1>
+ 1492978998U, // <6,u,u,4>: Cost 2 vext1 <2,6,u,u>, RHS
+ 497481882U, // <6,u,u,5>: Cost 1 vext2 RHS, RHS
+ 296144182U, // <6,u,u,6>: Cost 1 vdup2 RHS
+ 1906765128U, // <6,u,u,7>: Cost 2 vzipr RHS, RHS
+ 497482085U, // <6,u,u,u>: Cost 1 vext2 RHS, LHS
+ 1638318080U, // <7,0,0,0>: Cost 2 vext3 RHS, <0,0,0,0>
+ 1638318090U, // <7,0,0,1>: Cost 2 vext3 RHS, <0,0,1,1>
+ 1638318100U, // <7,0,0,2>: Cost 2 vext3 RHS, <0,0,2,2>
+ 3646442178U, // <7,0,0,3>: Cost 4 vext1 <3,7,0,0>, <3,7,0,0>
+ 2712059941U, // <7,0,0,4>: Cost 3 vext3 RHS, <0,0,4,1>
+ 2651603364U, // <7,0,0,5>: Cost 3 vext2 <5,6,7,0>, <0,5,1,6>
+ 2590618445U, // <7,0,0,6>: Cost 3 vext1 <6,7,0,0>, <6,7,0,0>
+ 3785801798U, // <7,0,0,7>: Cost 4 vext3 RHS, <0,0,7,7>
+ 1638318153U, // <7,0,0,u>: Cost 2 vext3 RHS, <0,0,u,1>
+ 1516879974U, // <7,0,1,0>: Cost 2 vext1 <6,7,0,1>, LHS
+ 2693922911U, // <7,0,1,1>: Cost 3 vext3 <1,5,3,7>, <0,1,1,5>
+ 564576358U, // <7,0,1,2>: Cost 1 vext3 RHS, LHS
+ 2638996480U, // <7,0,1,3>: Cost 3 vext2 <3,5,7,0>, <1,3,5,7>
+ 1516883254U, // <7,0,1,4>: Cost 2 vext1 <6,7,0,1>, RHS
+ 2649613456U, // <7,0,1,5>: Cost 3 vext2 <5,3,7,0>, <1,5,3,7>
+ 1516884814U, // <7,0,1,6>: Cost 2 vext1 <6,7,0,1>, <6,7,0,1>
+ 2590626808U, // <7,0,1,7>: Cost 3 vext1 <6,7,0,1>, <7,0,1,0>
+ 564576412U, // <7,0,1,u>: Cost 1 vext3 RHS, LHS
+ 1638318244U, // <7,0,2,0>: Cost 2 vext3 RHS, <0,2,0,2>
+ 2692743344U, // <7,0,2,1>: Cost 3 vext3 <1,3,5,7>, <0,2,1,5>
+ 2712060084U, // <7,0,2,2>: Cost 3 vext3 RHS, <0,2,2,0>
+ 2712060094U, // <7,0,2,3>: Cost 3 vext3 RHS, <0,2,3,1>
+ 1638318284U, // <7,0,2,4>: Cost 2 vext3 RHS, <0,2,4,6>
+ 2712060118U, // <7,0,2,5>: Cost 3 vext3 RHS, <0,2,5,7>
+ 2651604922U, // <7,0,2,6>: Cost 3 vext2 <5,6,7,0>, <2,6,3,7>
+ 2686255336U, // <7,0,2,7>: Cost 3 vext3 <0,2,7,7>, <0,2,7,7>
+ 1638318316U, // <7,0,2,u>: Cost 2 vext3 RHS, <0,2,u,2>
+ 2651605142U, // <7,0,3,0>: Cost 3 vext2 <5,6,7,0>, <3,0,1,2>
+ 2712060156U, // <7,0,3,1>: Cost 3 vext3 RHS, <0,3,1,0>
+ 2712060165U, // <7,0,3,2>: Cost 3 vext3 RHS, <0,3,2,0>
+ 2651605404U, // <7,0,3,3>: Cost 3 vext2 <5,6,7,0>, <3,3,3,3>
+ 2651605506U, // <7,0,3,4>: Cost 3 vext2 <5,6,7,0>, <3,4,5,6>
+ 2638998111U, // <7,0,3,5>: Cost 3 vext2 <3,5,7,0>, <3,5,7,0>
+ 2639661744U, // <7,0,3,6>: Cost 3 vext2 <3,6,7,0>, <3,6,7,0>
+ 3712740068U, // <7,0,3,7>: Cost 4 vext2 <3,5,7,0>, <3,7,3,7>
+ 2640989010U, // <7,0,3,u>: Cost 3 vext2 <3,u,7,0>, <3,u,7,0>
+ 2712060232U, // <7,0,4,0>: Cost 3 vext3 RHS, <0,4,0,4>
+ 1638318418U, // <7,0,4,1>: Cost 2 vext3 RHS, <0,4,1,5>
+ 1638318428U, // <7,0,4,2>: Cost 2 vext3 RHS, <0,4,2,6>
+ 3646474950U, // <7,0,4,3>: Cost 4 vext1 <3,7,0,4>, <3,7,0,4>
+ 2712060270U, // <7,0,4,4>: Cost 3 vext3 RHS, <0,4,4,6>
+ 1577864502U, // <7,0,4,5>: Cost 2 vext2 <5,6,7,0>, RHS
+ 2651606388U, // <7,0,4,6>: Cost 3 vext2 <5,6,7,0>, <4,6,4,6>
+ 3787792776U, // <7,0,4,7>: Cost 4 vext3 RHS, <0,4,7,5>
+ 1638318481U, // <7,0,4,u>: Cost 2 vext3 RHS, <0,4,u,5>
+ 2590654566U, // <7,0,5,0>: Cost 3 vext1 <6,7,0,5>, LHS
+ 2651606736U, // <7,0,5,1>: Cost 3 vext2 <5,6,7,0>, <5,1,7,3>
+ 2712060334U, // <7,0,5,2>: Cost 3 vext3 RHS, <0,5,2,7>
+ 2649616239U, // <7,0,5,3>: Cost 3 vext2 <5,3,7,0>, <5,3,7,0>
+ 2651606982U, // <7,0,5,4>: Cost 3 vext2 <5,6,7,0>, <5,4,7,6>
+ 2651607044U, // <7,0,5,5>: Cost 3 vext2 <5,6,7,0>, <5,5,5,5>
+ 1577865314U, // <7,0,5,6>: Cost 2 vext2 <5,6,7,0>, <5,6,7,0>
+ 2651607208U, // <7,0,5,7>: Cost 3 vext2 <5,6,7,0>, <5,7,5,7>
+ 1579192580U, // <7,0,5,u>: Cost 2 vext2 <5,u,7,0>, <5,u,7,0>
+ 2688393709U, // <7,0,6,0>: Cost 3 vext3 <0,6,0,7>, <0,6,0,7>
+ 2712060406U, // <7,0,6,1>: Cost 3 vext3 RHS, <0,6,1,7>
+ 2688541183U, // <7,0,6,2>: Cost 3 vext3 <0,6,2,7>, <0,6,2,7>
+ 2655588936U, // <7,0,6,3>: Cost 3 vext2 <6,3,7,0>, <6,3,7,0>
+ 3762430481U, // <7,0,6,4>: Cost 4 vext3 <0,6,4,7>, <0,6,4,7>
+ 2651607730U, // <7,0,6,5>: Cost 3 vext2 <5,6,7,0>, <6,5,0,7>
+ 2651607864U, // <7,0,6,6>: Cost 3 vext2 <5,6,7,0>, <6,6,6,6>
+ 2651607886U, // <7,0,6,7>: Cost 3 vext2 <5,6,7,0>, <6,7,0,1>
+ 2688983605U, // <7,0,6,u>: Cost 3 vext3 <0,6,u,7>, <0,6,u,7>
+ 2651608058U, // <7,0,7,0>: Cost 3 vext2 <5,6,7,0>, <7,0,1,2>
+ 2932703334U, // <7,0,7,1>: Cost 3 vzipl <7,7,7,7>, LHS
+ 3066921062U, // <7,0,7,2>: Cost 3 vtrnl <7,7,7,7>, LHS
+ 3712742678U, // <7,0,7,3>: Cost 4 vext2 <3,5,7,0>, <7,3,5,7>
+ 2651608422U, // <7,0,7,4>: Cost 3 vext2 <5,6,7,0>, <7,4,5,6>
+ 2651608513U, // <7,0,7,5>: Cost 3 vext2 <5,6,7,0>, <7,5,6,7>
+ 2663552532U, // <7,0,7,6>: Cost 3 vext2 <7,6,7,0>, <7,6,7,0>
+ 2651608684U, // <7,0,7,7>: Cost 3 vext2 <5,6,7,0>, <7,7,7,7>
+ 2651608706U, // <7,0,7,u>: Cost 3 vext2 <5,6,7,0>, <7,u,1,2>
+ 1638318730U, // <7,0,u,0>: Cost 2 vext3 RHS, <0,u,0,2>
+ 1638318738U, // <7,0,u,1>: Cost 2 vext3 RHS, <0,u,1,1>
+ 564576925U, // <7,0,u,2>: Cost 1 vext3 RHS, LHS
+ 2572765898U, // <7,0,u,3>: Cost 3 vext1 <3,7,0,u>, <3,7,0,u>
+ 1638318770U, // <7,0,u,4>: Cost 2 vext3 RHS, <0,u,4,6>
+ 1577867418U, // <7,0,u,5>: Cost 2 vext2 <5,6,7,0>, RHS
+ 1516942165U, // <7,0,u,6>: Cost 2 vext1 <6,7,0,u>, <6,7,0,u>
+ 2651609344U, // <7,0,u,7>: Cost 3 vext2 <5,6,7,0>, <u,7,0,1>
+ 564576979U, // <7,0,u,u>: Cost 1 vext3 RHS, LHS
+ 2590687334U, // <7,1,0,0>: Cost 3 vext1 <6,7,1,0>, LHS
+ 2639003750U, // <7,1,0,1>: Cost 3 vext2 <3,5,7,1>, LHS
+ 2793357414U, // <7,1,0,2>: Cost 3 vuzpl <7,0,1,2>, LHS
+ 1638318838U, // <7,1,0,3>: Cost 2 vext3 RHS, <1,0,3,2>
+ 2590690614U, // <7,1,0,4>: Cost 3 vext1 <6,7,1,0>, RHS
+ 2712060679U, // <7,1,0,5>: Cost 3 vext3 RHS, <1,0,5,1>
+ 2590692182U, // <7,1,0,6>: Cost 3 vext1 <6,7,1,0>, <6,7,1,0>
+ 3785802521U, // <7,1,0,7>: Cost 4 vext3 RHS, <1,0,7,1>
+ 1638318883U, // <7,1,0,u>: Cost 2 vext3 RHS, <1,0,u,2>
+ 2712060715U, // <7,1,1,0>: Cost 3 vext3 RHS, <1,1,0,1>
+ 1638318900U, // <7,1,1,1>: Cost 2 vext3 RHS, <1,1,1,1>
+ 3774300994U, // <7,1,1,2>: Cost 4 vext3 <2,6,3,7>, <1,1,2,6>
+ 1638318920U, // <7,1,1,3>: Cost 2 vext3 RHS, <1,1,3,3>
+ 2712060755U, // <7,1,1,4>: Cost 3 vext3 RHS, <1,1,4,5>
+ 2691416926U, // <7,1,1,5>: Cost 3 vext3 <1,1,5,7>, <1,1,5,7>
+ 2590700375U, // <7,1,1,6>: Cost 3 vext1 <6,7,1,1>, <6,7,1,1>
+ 3765158766U, // <7,1,1,7>: Cost 4 vext3 <1,1,5,7>, <1,1,7,5>
+ 1638318965U, // <7,1,1,u>: Cost 2 vext3 RHS, <1,1,u,3>
+ 2712060796U, // <7,1,2,0>: Cost 3 vext3 RHS, <1,2,0,1>
+ 2712060807U, // <7,1,2,1>: Cost 3 vext3 RHS, <1,2,1,3>
+ 3712747112U, // <7,1,2,2>: Cost 4 vext2 <3,5,7,1>, <2,2,2,2>
+ 1638318998U, // <7,1,2,3>: Cost 2 vext3 RHS, <1,2,3,0>
+ 2712060836U, // <7,1,2,4>: Cost 3 vext3 RHS, <1,2,4,5>
+ 2712060843U, // <7,1,2,5>: Cost 3 vext3 RHS, <1,2,5,3>
+ 2590708568U, // <7,1,2,6>: Cost 3 vext1 <6,7,1,2>, <6,7,1,2>
+ 2735948730U, // <7,1,2,7>: Cost 3 vext3 RHS, <1,2,7,0>
+ 1638319043U, // <7,1,2,u>: Cost 2 vext3 RHS, <1,2,u,0>
+ 2712060876U, // <7,1,3,0>: Cost 3 vext3 RHS, <1,3,0,0>
+ 1638319064U, // <7,1,3,1>: Cost 2 vext3 RHS, <1,3,1,3>
+ 2712060894U, // <7,1,3,2>: Cost 3 vext3 RHS, <1,3,2,0>
+ 2692596718U, // <7,1,3,3>: Cost 3 vext3 <1,3,3,7>, <1,3,3,7>
+ 2712060917U, // <7,1,3,4>: Cost 3 vext3 RHS, <1,3,4,5>
+ 1619002368U, // <7,1,3,5>: Cost 2 vext3 <1,3,5,7>, <1,3,5,7>
+ 2692817929U, // <7,1,3,6>: Cost 3 vext3 <1,3,6,7>, <1,3,6,7>
+ 2735948814U, // <7,1,3,7>: Cost 3 vext3 RHS, <1,3,7,3>
+ 1619223579U, // <7,1,3,u>: Cost 2 vext3 <1,3,u,7>, <1,3,u,7>
+ 2712060962U, // <7,1,4,0>: Cost 3 vext3 RHS, <1,4,0,5>
+ 2712060971U, // <7,1,4,1>: Cost 3 vext3 RHS, <1,4,1,5>
+ 2712060980U, // <7,1,4,2>: Cost 3 vext3 RHS, <1,4,2,5>
+ 2712060989U, // <7,1,4,3>: Cost 3 vext3 RHS, <1,4,3,5>
+ 3785802822U, // <7,1,4,4>: Cost 4 vext3 RHS, <1,4,4,5>
+ 2639007030U, // <7,1,4,5>: Cost 3 vext2 <3,5,7,1>, RHS
+ 2645642634U, // <7,1,4,6>: Cost 3 vext2 <4,6,7,1>, <4,6,7,1>
+ 3719384520U, // <7,1,4,7>: Cost 4 vext2 <4,6,7,1>, <4,7,5,0>
+ 2639007273U, // <7,1,4,u>: Cost 3 vext2 <3,5,7,1>, RHS
+ 2572812390U, // <7,1,5,0>: Cost 3 vext1 <3,7,1,5>, LHS
+ 2693776510U, // <7,1,5,1>: Cost 3 vext3 <1,5,1,7>, <1,5,1,7>
+ 3774301318U, // <7,1,5,2>: Cost 4 vext3 <2,6,3,7>, <1,5,2,6>
+ 1620182160U, // <7,1,5,3>: Cost 2 vext3 <1,5,3,7>, <1,5,3,7>
+ 2572815670U, // <7,1,5,4>: Cost 3 vext1 <3,7,1,5>, RHS
+ 3766486178U, // <7,1,5,5>: Cost 4 vext3 <1,3,5,7>, <1,5,5,7>
+ 2651615331U, // <7,1,5,6>: Cost 3 vext2 <5,6,7,1>, <5,6,7,1>
+ 2652278964U, // <7,1,5,7>: Cost 3 vext2 <5,7,7,1>, <5,7,7,1>
+ 1620550845U, // <7,1,5,u>: Cost 2 vext3 <1,5,u,7>, <1,5,u,7>
+ 3768108230U, // <7,1,6,0>: Cost 4 vext3 <1,6,0,7>, <1,6,0,7>
+ 2694440143U, // <7,1,6,1>: Cost 3 vext3 <1,6,1,7>, <1,6,1,7>
+ 2712061144U, // <7,1,6,2>: Cost 3 vext3 RHS, <1,6,2,7>
+ 2694587617U, // <7,1,6,3>: Cost 3 vext3 <1,6,3,7>, <1,6,3,7>
+ 3768403178U, // <7,1,6,4>: Cost 4 vext3 <1,6,4,7>, <1,6,4,7>
+ 2694735091U, // <7,1,6,5>: Cost 3 vext3 <1,6,5,7>, <1,6,5,7>
+ 3768550652U, // <7,1,6,6>: Cost 4 vext3 <1,6,6,7>, <1,6,6,7>
+ 2652279630U, // <7,1,6,7>: Cost 3 vext2 <5,7,7,1>, <6,7,0,1>
+ 2694956302U, // <7,1,6,u>: Cost 3 vext3 <1,6,u,7>, <1,6,u,7>
+ 2645644282U, // <7,1,7,0>: Cost 3 vext2 <4,6,7,1>, <7,0,1,2>
+ 2859062094U, // <7,1,7,1>: Cost 3 vuzpr <6,7,0,1>, <6,7,0,1>
+ 3779462437U, // <7,1,7,2>: Cost 4 vext3 <3,5,1,7>, <1,7,2,3>
+ 3121938534U, // <7,1,7,3>: Cost 3 vtrnr <5,7,5,7>, LHS
+ 2554916150U, // <7,1,7,4>: Cost 3 vext1 <0,7,1,7>, RHS
+ 3769140548U, // <7,1,7,5>: Cost 4 vext3 <1,7,5,7>, <1,7,5,7>
+ 3726022164U, // <7,1,7,6>: Cost 4 vext2 <5,7,7,1>, <7,6,7,0>
+ 2554918508U, // <7,1,7,7>: Cost 3 vext1 <0,7,1,7>, <7,7,7,7>
+ 3121938539U, // <7,1,7,u>: Cost 3 vtrnr <5,7,5,7>, LHS
+ 2572836966U, // <7,1,u,0>: Cost 3 vext1 <3,7,1,u>, LHS
+ 1638319469U, // <7,1,u,1>: Cost 2 vext3 RHS, <1,u,1,3>
+ 2712061299U, // <7,1,u,2>: Cost 3 vext3 RHS, <1,u,2,0>
+ 1622173059U, // <7,1,u,3>: Cost 2 vext3 <1,u,3,7>, <1,u,3,7>
+ 2572840246U, // <7,1,u,4>: Cost 3 vext1 <3,7,1,u>, RHS
+ 1622320533U, // <7,1,u,5>: Cost 2 vext3 <1,u,5,7>, <1,u,5,7>
+ 2696136094U, // <7,1,u,6>: Cost 3 vext3 <1,u,6,7>, <1,u,6,7>
+ 2859060777U, // <7,1,u,7>: Cost 3 vuzpr <6,7,0,1>, RHS
+ 1622541744U, // <7,1,u,u>: Cost 2 vext3 <1,u,u,7>, <1,u,u,7>
+ 2712061364U, // <7,2,0,0>: Cost 3 vext3 RHS, <2,0,0,2>
+ 2712061373U, // <7,2,0,1>: Cost 3 vext3 RHS, <2,0,1,2>
+ 2712061380U, // <7,2,0,2>: Cost 3 vext3 RHS, <2,0,2,0>
+ 2712061389U, // <7,2,0,3>: Cost 3 vext3 RHS, <2,0,3,0>
+ 2712061404U, // <7,2,0,4>: Cost 3 vext3 RHS, <2,0,4,6>
+ 2696725990U, // <7,2,0,5>: Cost 3 vext3 <2,0,5,7>, <2,0,5,7>
+ 2712061417U, // <7,2,0,6>: Cost 3 vext3 RHS, <2,0,6,1>
+ 3785803251U, // <7,2,0,7>: Cost 4 vext3 RHS, <2,0,7,2>
+ 2696947201U, // <7,2,0,u>: Cost 3 vext3 <2,0,u,7>, <2,0,u,7>
+ 2712061446U, // <7,2,1,0>: Cost 3 vext3 RHS, <2,1,0,3>
+ 3785803276U, // <7,2,1,1>: Cost 4 vext3 RHS, <2,1,1,0>
+ 3785803285U, // <7,2,1,2>: Cost 4 vext3 RHS, <2,1,2,0>
+ 2712061471U, // <7,2,1,3>: Cost 3 vext3 RHS, <2,1,3,1>
+ 2712061482U, // <7,2,1,4>: Cost 3 vext3 RHS, <2,1,4,3>
+ 3766486576U, // <7,2,1,5>: Cost 4 vext3 <1,3,5,7>, <2,1,5,0>
+ 2712061500U, // <7,2,1,6>: Cost 3 vext3 RHS, <2,1,6,3>
+ 2602718850U, // <7,2,1,7>: Cost 3 vext1 <u,7,2,1>, <7,u,1,2>
+ 2712061516U, // <7,2,1,u>: Cost 3 vext3 RHS, <2,1,u,1>
+ 2712061525U, // <7,2,2,0>: Cost 3 vext3 RHS, <2,2,0,1>
+ 2712061536U, // <7,2,2,1>: Cost 3 vext3 RHS, <2,2,1,3>
+ 1638319720U, // <7,2,2,2>: Cost 2 vext3 RHS, <2,2,2,2>
+ 1638319730U, // <7,2,2,3>: Cost 2 vext3 RHS, <2,2,3,3>
+ 2712061565U, // <7,2,2,4>: Cost 3 vext3 RHS, <2,2,4,5>
+ 2698053256U, // <7,2,2,5>: Cost 3 vext3 <2,2,5,7>, <2,2,5,7>
+ 2712061584U, // <7,2,2,6>: Cost 3 vext3 RHS, <2,2,6,6>
+ 3771795096U, // <7,2,2,7>: Cost 4 vext3 <2,2,5,7>, <2,2,7,5>
+ 1638319775U, // <7,2,2,u>: Cost 2 vext3 RHS, <2,2,u,3>
+ 1638319782U, // <7,2,3,0>: Cost 2 vext3 RHS, <2,3,0,1>
+ 2693924531U, // <7,2,3,1>: Cost 3 vext3 <1,5,3,7>, <2,3,1,5>
+ 2700560061U, // <7,2,3,2>: Cost 3 vext3 <2,6,3,7>, <2,3,2,6>
+ 2693924551U, // <7,2,3,3>: Cost 3 vext3 <1,5,3,7>, <2,3,3,7>
+ 1638319822U, // <7,2,3,4>: Cost 2 vext3 RHS, <2,3,4,5>
+ 2698716889U, // <7,2,3,5>: Cost 3 vext3 <2,3,5,7>, <2,3,5,7>
+ 2712061665U, // <7,2,3,6>: Cost 3 vext3 RHS, <2,3,6,6>
+ 2735949540U, // <7,2,3,7>: Cost 3 vext3 RHS, <2,3,7,0>
+ 1638319854U, // <7,2,3,u>: Cost 2 vext3 RHS, <2,3,u,1>
+ 2712061692U, // <7,2,4,0>: Cost 3 vext3 RHS, <2,4,0,6>
+ 2712061698U, // <7,2,4,1>: Cost 3 vext3 RHS, <2,4,1,3>
+ 2712061708U, // <7,2,4,2>: Cost 3 vext3 RHS, <2,4,2,4>
+ 2712061718U, // <7,2,4,3>: Cost 3 vext3 RHS, <2,4,3,5>
+ 2712061728U, // <7,2,4,4>: Cost 3 vext3 RHS, <2,4,4,6>
+ 2699380522U, // <7,2,4,5>: Cost 3 vext3 <2,4,5,7>, <2,4,5,7>
+ 2712061740U, // <7,2,4,6>: Cost 3 vext3 RHS, <2,4,6,0>
+ 3809691445U, // <7,2,4,7>: Cost 4 vext3 RHS, <2,4,7,0>
+ 2699601733U, // <7,2,4,u>: Cost 3 vext3 <2,4,u,7>, <2,4,u,7>
+ 2699675470U, // <7,2,5,0>: Cost 3 vext3 <2,5,0,7>, <2,5,0,7>
+ 3766486867U, // <7,2,5,1>: Cost 4 vext3 <1,3,5,7>, <2,5,1,3>
+ 2699822944U, // <7,2,5,2>: Cost 3 vext3 <2,5,2,7>, <2,5,2,7>
+ 2692745065U, // <7,2,5,3>: Cost 3 vext3 <1,3,5,7>, <2,5,3,7>
+ 2699970418U, // <7,2,5,4>: Cost 3 vext3 <2,5,4,7>, <2,5,4,7>
+ 3766486907U, // <7,2,5,5>: Cost 4 vext3 <1,3,5,7>, <2,5,5,7>
+ 2700117892U, // <7,2,5,6>: Cost 3 vext3 <2,5,6,7>, <2,5,6,7>
+ 3771795334U, // <7,2,5,7>: Cost 4 vext3 <2,2,5,7>, <2,5,7,0>
+ 2692745110U, // <7,2,5,u>: Cost 3 vext3 <1,3,5,7>, <2,5,u,7>
+ 2572894310U, // <7,2,6,0>: Cost 3 vext1 <3,7,2,6>, LHS
+ 2712061860U, // <7,2,6,1>: Cost 3 vext3 RHS, <2,6,1,3>
+ 2700486577U, // <7,2,6,2>: Cost 3 vext3 <2,6,2,7>, <2,6,2,7>
+ 1626818490U, // <7,2,6,3>: Cost 2 vext3 <2,6,3,7>, <2,6,3,7>
+ 2572897590U, // <7,2,6,4>: Cost 3 vext1 <3,7,2,6>, RHS
+ 2700707788U, // <7,2,6,5>: Cost 3 vext3 <2,6,5,7>, <2,6,5,7>
+ 2700781525U, // <7,2,6,6>: Cost 3 vext3 <2,6,6,7>, <2,6,6,7>
+ 3774597086U, // <7,2,6,7>: Cost 4 vext3 <2,6,7,7>, <2,6,7,7>
+ 1627187175U, // <7,2,6,u>: Cost 2 vext3 <2,6,u,7>, <2,6,u,7>
+ 2735949802U, // <7,2,7,0>: Cost 3 vext3 RHS, <2,7,0,1>
+ 3780200434U, // <7,2,7,1>: Cost 4 vext3 <3,6,2,7>, <2,7,1,0>
+ 3773564928U, // <7,2,7,2>: Cost 4 vext3 <2,5,2,7>, <2,7,2,5>
+ 2986541158U, // <7,2,7,3>: Cost 3 vzipr <5,5,7,7>, LHS
+ 2554989878U, // <7,2,7,4>: Cost 3 vext1 <0,7,2,7>, RHS
+ 3775113245U, // <7,2,7,5>: Cost 4 vext3 <2,7,5,7>, <2,7,5,7>
+ 4060283228U, // <7,2,7,6>: Cost 4 vzipr <5,5,7,7>, <0,4,2,6>
+ 2554992236U, // <7,2,7,7>: Cost 3 vext1 <0,7,2,7>, <7,7,7,7>
+ 2986541163U, // <7,2,7,u>: Cost 3 vzipr <5,5,7,7>, LHS
+ 1638320187U, // <7,2,u,0>: Cost 2 vext3 RHS, <2,u,0,1>
+ 2693924936U, // <7,2,u,1>: Cost 3 vext3 <1,5,3,7>, <2,u,1,5>
+ 1638319720U, // <7,2,u,2>: Cost 2 vext3 RHS, <2,2,2,2>
+ 1628145756U, // <7,2,u,3>: Cost 2 vext3 <2,u,3,7>, <2,u,3,7>
+ 1638320227U, // <7,2,u,4>: Cost 2 vext3 RHS, <2,u,4,5>
+ 2702035054U, // <7,2,u,5>: Cost 3 vext3 <2,u,5,7>, <2,u,5,7>
+ 2702108791U, // <7,2,u,6>: Cost 3 vext3 <2,u,6,7>, <2,u,6,7>
+ 2735949945U, // <7,2,u,7>: Cost 3 vext3 RHS, <2,u,7,0>
+ 1628514441U, // <7,2,u,u>: Cost 2 vext3 <2,u,u,7>, <2,u,u,7>
+ 2712062091U, // <7,3,0,0>: Cost 3 vext3 RHS, <3,0,0,0>
+ 1638320278U, // <7,3,0,1>: Cost 2 vext3 RHS, <3,0,1,2>
+ 2712062109U, // <7,3,0,2>: Cost 3 vext3 RHS, <3,0,2,0>
+ 2590836886U, // <7,3,0,3>: Cost 3 vext1 <6,7,3,0>, <3,0,1,2>
+ 2712062128U, // <7,3,0,4>: Cost 3 vext3 RHS, <3,0,4,1>
+ 2712062138U, // <7,3,0,5>: Cost 3 vext3 RHS, <3,0,5,2>
+ 2590839656U, // <7,3,0,6>: Cost 3 vext1 <6,7,3,0>, <6,7,3,0>
+ 3311414017U, // <7,3,0,7>: Cost 4 vrev <3,7,7,0>
+ 1638320341U, // <7,3,0,u>: Cost 2 vext3 RHS, <3,0,u,2>
+ 2237164227U, // <7,3,1,0>: Cost 3 vrev <3,7,0,1>
+ 2712062182U, // <7,3,1,1>: Cost 3 vext3 RHS, <3,1,1,1>
+ 2712062193U, // <7,3,1,2>: Cost 3 vext3 RHS, <3,1,2,3>
+ 2692745468U, // <7,3,1,3>: Cost 3 vext3 <1,3,5,7>, <3,1,3,5>
+ 2712062214U, // <7,3,1,4>: Cost 3 vext3 RHS, <3,1,4,6>
+ 2693925132U, // <7,3,1,5>: Cost 3 vext3 <1,5,3,7>, <3,1,5,3>
+ 3768183059U, // <7,3,1,6>: Cost 4 vext3 <1,6,1,7>, <3,1,6,1>
+ 2692745504U, // <7,3,1,7>: Cost 3 vext3 <1,3,5,7>, <3,1,7,5>
+ 2696063273U, // <7,3,1,u>: Cost 3 vext3 <1,u,5,7>, <3,1,u,5>
+ 2712062254U, // <7,3,2,0>: Cost 3 vext3 RHS, <3,2,0,1>
+ 2712062262U, // <7,3,2,1>: Cost 3 vext3 RHS, <3,2,1,0>
+ 2712062273U, // <7,3,2,2>: Cost 3 vext3 RHS, <3,2,2,2>
+ 2712062280U, // <7,3,2,3>: Cost 3 vext3 RHS, <3,2,3,0>
+ 2712062294U, // <7,3,2,4>: Cost 3 vext3 RHS, <3,2,4,5>
+ 2712062302U, // <7,3,2,5>: Cost 3 vext3 RHS, <3,2,5,4>
+ 2700560742U, // <7,3,2,6>: Cost 3 vext3 <2,6,3,7>, <3,2,6,3>
+ 2712062319U, // <7,3,2,7>: Cost 3 vext3 RHS, <3,2,7,3>
+ 2712062325U, // <7,3,2,u>: Cost 3 vext3 RHS, <3,2,u,0>
+ 2712062335U, // <7,3,3,0>: Cost 3 vext3 RHS, <3,3,0,1>
+ 2636368158U, // <7,3,3,1>: Cost 3 vext2 <3,1,7,3>, <3,1,7,3>
+ 2637031791U, // <7,3,3,2>: Cost 3 vext2 <3,2,7,3>, <3,2,7,3>
+ 1638320540U, // <7,3,3,3>: Cost 2 vext3 RHS, <3,3,3,3>
+ 2712062374U, // <7,3,3,4>: Cost 3 vext3 RHS, <3,3,4,4>
+ 2704689586U, // <7,3,3,5>: Cost 3 vext3 <3,3,5,7>, <3,3,5,7>
+ 2590864235U, // <7,3,3,6>: Cost 3 vext1 <6,7,3,3>, <6,7,3,3>
+ 2704837060U, // <7,3,3,7>: Cost 3 vext3 <3,3,7,7>, <3,3,7,7>
+ 1638320540U, // <7,3,3,u>: Cost 2 vext3 RHS, <3,3,3,3>
+ 2712062416U, // <7,3,4,0>: Cost 3 vext3 RHS, <3,4,0,1>
+ 2712062426U, // <7,3,4,1>: Cost 3 vext3 RHS, <3,4,1,2>
+ 2566981640U, // <7,3,4,2>: Cost 3 vext1 <2,7,3,4>, <2,7,3,4>
+ 2712062447U, // <7,3,4,3>: Cost 3 vext3 RHS, <3,4,3,5>
+ 2712062456U, // <7,3,4,4>: Cost 3 vext3 RHS, <3,4,4,5>
+ 1638320642U, // <7,3,4,5>: Cost 2 vext3 RHS, <3,4,5,6>
+ 2648313204U, // <7,3,4,6>: Cost 3 vext2 <5,1,7,3>, <4,6,4,6>
+ 3311446789U, // <7,3,4,7>: Cost 4 vrev <3,7,7,4>
+ 1638320669U, // <7,3,4,u>: Cost 2 vext3 RHS, <3,4,u,6>
+ 2602819686U, // <7,3,5,0>: Cost 3 vext1 <u,7,3,5>, LHS
+ 1574571728U, // <7,3,5,1>: Cost 2 vext2 <5,1,7,3>, <5,1,7,3>
+ 2648977185U, // <7,3,5,2>: Cost 3 vext2 <5,2,7,3>, <5,2,7,3>
+ 2705869378U, // <7,3,5,3>: Cost 3 vext3 <3,5,3,7>, <3,5,3,7>
+ 2237491947U, // <7,3,5,4>: Cost 3 vrev <3,7,4,5>
+ 2706016852U, // <7,3,5,5>: Cost 3 vext3 <3,5,5,7>, <3,5,5,7>
+ 2648313954U, // <7,3,5,6>: Cost 3 vext2 <5,1,7,3>, <5,6,7,0>
+ 2692745823U, // <7,3,5,7>: Cost 3 vext3 <1,3,5,7>, <3,5,7,0>
+ 1579217159U, // <7,3,5,u>: Cost 2 vext2 <5,u,7,3>, <5,u,7,3>
+ 2706311800U, // <7,3,6,0>: Cost 3 vext3 <3,6,0,7>, <3,6,0,7>
+ 2654286249U, // <7,3,6,1>: Cost 3 vext2 <6,1,7,3>, <6,1,7,3>
+ 1581208058U, // <7,3,6,2>: Cost 2 vext2 <6,2,7,3>, <6,2,7,3>
+ 2706533011U, // <7,3,6,3>: Cost 3 vext3 <3,6,3,7>, <3,6,3,7>
+ 2706606748U, // <7,3,6,4>: Cost 3 vext3 <3,6,4,7>, <3,6,4,7>
+ 3780422309U, // <7,3,6,5>: Cost 4 vext3 <3,6,5,7>, <3,6,5,7>
+ 2712062637U, // <7,3,6,6>: Cost 3 vext3 RHS, <3,6,6,6>
+ 2706827959U, // <7,3,6,7>: Cost 3 vext3 <3,6,7,7>, <3,6,7,7>
+ 1585189856U, // <7,3,6,u>: Cost 2 vext2 <6,u,7,3>, <6,u,7,3>
+ 2693925571U, // <7,3,7,0>: Cost 3 vext3 <1,5,3,7>, <3,7,0,1>
+ 2693925584U, // <7,3,7,1>: Cost 3 vext3 <1,5,3,7>, <3,7,1,5>
+ 2700561114U, // <7,3,7,2>: Cost 3 vext3 <2,6,3,7>, <3,7,2,6>
+ 2572978916U, // <7,3,7,3>: Cost 3 vext1 <3,7,3,7>, <3,7,3,7>
+ 2693925611U, // <7,3,7,4>: Cost 3 vext3 <1,5,3,7>, <3,7,4,5>
+ 2707344118U, // <7,3,7,5>: Cost 3 vext3 <3,7,5,7>, <3,7,5,7>
+ 2654950894U, // <7,3,7,6>: Cost 3 vext2 <6,2,7,3>, <7,6,2,7>
+ 2648315500U, // <7,3,7,7>: Cost 3 vext2 <5,1,7,3>, <7,7,7,7>
+ 2693925643U, // <7,3,7,u>: Cost 3 vext3 <1,5,3,7>, <3,7,u,1>
+ 2237221578U, // <7,3,u,0>: Cost 3 vrev <3,7,0,u>
+ 1638320926U, // <7,3,u,1>: Cost 2 vext3 RHS, <3,u,1,2>
+ 1593153452U, // <7,3,u,2>: Cost 2 vext2 <u,2,7,3>, <u,2,7,3>
+ 1638320540U, // <7,3,u,3>: Cost 2 vext3 RHS, <3,3,3,3>
+ 2237516526U, // <7,3,u,4>: Cost 3 vrev <3,7,4,u>
+ 1638320966U, // <7,3,u,5>: Cost 2 vext3 RHS, <3,u,5,6>
+ 2712062796U, // <7,3,u,6>: Cost 3 vext3 RHS, <3,u,6,3>
+ 2692967250U, // <7,3,u,7>: Cost 3 vext3 <1,3,u,7>, <3,u,7,0>
+ 1638320989U, // <7,3,u,u>: Cost 2 vext3 RHS, <3,u,u,2>
+ 2651635712U, // <7,4,0,0>: Cost 3 vext2 <5,6,7,4>, <0,0,0,0>
+ 1577893990U, // <7,4,0,1>: Cost 2 vext2 <5,6,7,4>, LHS
+ 2651635876U, // <7,4,0,2>: Cost 3 vext2 <5,6,7,4>, <0,2,0,2>
+ 3785804672U, // <7,4,0,3>: Cost 4 vext3 RHS, <4,0,3,1>
+ 2651636050U, // <7,4,0,4>: Cost 3 vext2 <5,6,7,4>, <0,4,1,5>
+ 1638468498U, // <7,4,0,5>: Cost 2 vext3 RHS, <4,0,5,1>
+ 1638468508U, // <7,4,0,6>: Cost 2 vext3 RHS, <4,0,6,2>
+ 3787795364U, // <7,4,0,7>: Cost 4 vext3 RHS, <4,0,7,1>
+ 1640459181U, // <7,4,0,u>: Cost 2 vext3 RHS, <4,0,u,1>
+ 2651636470U, // <7,4,1,0>: Cost 3 vext2 <5,6,7,4>, <1,0,3,2>
+ 2651636532U, // <7,4,1,1>: Cost 3 vext2 <5,6,7,4>, <1,1,1,1>
+ 2712062922U, // <7,4,1,2>: Cost 3 vext3 RHS, <4,1,2,3>
+ 2639029248U, // <7,4,1,3>: Cost 3 vext2 <3,5,7,4>, <1,3,5,7>
+ 2712062940U, // <7,4,1,4>: Cost 3 vext3 RHS, <4,1,4,3>
+ 2712062946U, // <7,4,1,5>: Cost 3 vext3 RHS, <4,1,5,0>
+ 2712062958U, // <7,4,1,6>: Cost 3 vext3 RHS, <4,1,6,3>
+ 3785804791U, // <7,4,1,7>: Cost 4 vext3 RHS, <4,1,7,3>
+ 2712062973U, // <7,4,1,u>: Cost 3 vext3 RHS, <4,1,u,0>
+ 3785804807U, // <7,4,2,0>: Cost 4 vext3 RHS, <4,2,0,1>
+ 3785804818U, // <7,4,2,1>: Cost 4 vext3 RHS, <4,2,1,3>
+ 2651637352U, // <7,4,2,2>: Cost 3 vext2 <5,6,7,4>, <2,2,2,2>
+ 2651637414U, // <7,4,2,3>: Cost 3 vext2 <5,6,7,4>, <2,3,0,1>
+ 3716753194U, // <7,4,2,4>: Cost 4 vext2 <4,2,7,4>, <2,4,5,7>
+ 2712063030U, // <7,4,2,5>: Cost 3 vext3 RHS, <4,2,5,3>
+ 2712063036U, // <7,4,2,6>: Cost 3 vext3 RHS, <4,2,6,0>
+ 3773123658U, // <7,4,2,7>: Cost 4 vext3 <2,4,5,7>, <4,2,7,5>
+ 2712063054U, // <7,4,2,u>: Cost 3 vext3 RHS, <4,2,u,0>
+ 2651637910U, // <7,4,3,0>: Cost 3 vext2 <5,6,7,4>, <3,0,1,2>
+ 3712772348U, // <7,4,3,1>: Cost 4 vext2 <3,5,7,4>, <3,1,3,5>
+ 3785804906U, // <7,4,3,2>: Cost 4 vext3 RHS, <4,3,2,1>
+ 2651638172U, // <7,4,3,3>: Cost 3 vext2 <5,6,7,4>, <3,3,3,3>
+ 2651638274U, // <7,4,3,4>: Cost 3 vext2 <5,6,7,4>, <3,4,5,6>
+ 2639030883U, // <7,4,3,5>: Cost 3 vext2 <3,5,7,4>, <3,5,7,4>
+ 2712063122U, // <7,4,3,6>: Cost 3 vext3 RHS, <4,3,6,5>
+ 3712772836U, // <7,4,3,7>: Cost 4 vext2 <3,5,7,4>, <3,7,3,7>
+ 2641021782U, // <7,4,3,u>: Cost 3 vext2 <3,u,7,4>, <3,u,7,4>
+ 2714053802U, // <7,4,4,0>: Cost 3 vext3 RHS, <4,4,0,2>
+ 3785804978U, // <7,4,4,1>: Cost 4 vext3 RHS, <4,4,1,1>
+ 3716754505U, // <7,4,4,2>: Cost 4 vext2 <4,2,7,4>, <4,2,7,4>
+ 3785804998U, // <7,4,4,3>: Cost 4 vext3 RHS, <4,4,3,3>
+ 1638321360U, // <7,4,4,4>: Cost 2 vext3 RHS, <4,4,4,4>
+ 1638468826U, // <7,4,4,5>: Cost 2 vext3 RHS, <4,4,5,5>
+ 1638468836U, // <7,4,4,6>: Cost 2 vext3 RHS, <4,4,6,6>
+ 3785215214U, // <7,4,4,7>: Cost 4 vext3 <4,4,7,7>, <4,4,7,7>
+ 1640459509U, // <7,4,4,u>: Cost 2 vext3 RHS, <4,4,u,5>
+ 1517207654U, // <7,4,5,0>: Cost 2 vext1 <6,7,4,5>, LHS
+ 2573034640U, // <7,4,5,1>: Cost 3 vext1 <3,7,4,5>, <1,5,3,7>
+ 2712063246U, // <7,4,5,2>: Cost 3 vext3 RHS, <4,5,2,3>
+ 2573036267U, // <7,4,5,3>: Cost 3 vext1 <3,7,4,5>, <3,7,4,5>
+ 1517210934U, // <7,4,5,4>: Cost 2 vext1 <6,7,4,5>, RHS
+ 2711989549U, // <7,4,5,5>: Cost 3 vext3 <4,5,5,7>, <4,5,5,7>
+ 564579638U, // <7,4,5,6>: Cost 1 vext3 RHS, RHS
+ 2651639976U, // <7,4,5,7>: Cost 3 vext2 <5,6,7,4>, <5,7,5,7>
+ 564579656U, // <7,4,5,u>: Cost 1 vext3 RHS, RHS
+ 2712063307U, // <7,4,6,0>: Cost 3 vext3 RHS, <4,6,0,1>
+ 3767668056U, // <7,4,6,1>: Cost 4 vext3 <1,5,3,7>, <4,6,1,5>
+ 2651640314U, // <7,4,6,2>: Cost 3 vext2 <5,6,7,4>, <6,2,7,3>
+ 2655621708U, // <7,4,6,3>: Cost 3 vext2 <6,3,7,4>, <6,3,7,4>
+ 1638468980U, // <7,4,6,4>: Cost 2 vext3 RHS, <4,6,4,6>
+ 2712063358U, // <7,4,6,5>: Cost 3 vext3 RHS, <4,6,5,7>
+ 2712063367U, // <7,4,6,6>: Cost 3 vext3 RHS, <4,6,6,7>
+ 2712210826U, // <7,4,6,7>: Cost 3 vext3 RHS, <4,6,7,1>
+ 1638469012U, // <7,4,6,u>: Cost 2 vext3 RHS, <4,6,u,2>
+ 2651640826U, // <7,4,7,0>: Cost 3 vext2 <5,6,7,4>, <7,0,1,2>
+ 3773713830U, // <7,4,7,1>: Cost 4 vext3 <2,5,4,7>, <4,7,1,2>
+ 3773713842U, // <7,4,7,2>: Cost 4 vext3 <2,5,4,7>, <4,7,2,5>
+ 3780349372U, // <7,4,7,3>: Cost 4 vext3 <3,6,4,7>, <4,7,3,6>
+ 2651641140U, // <7,4,7,4>: Cost 3 vext2 <5,6,7,4>, <7,4,0,1>
+ 2712210888U, // <7,4,7,5>: Cost 3 vext3 RHS, <4,7,5,0>
+ 2712210898U, // <7,4,7,6>: Cost 3 vext3 RHS, <4,7,6,1>
+ 2651641452U, // <7,4,7,7>: Cost 3 vext2 <5,6,7,4>, <7,7,7,7>
+ 2713538026U, // <7,4,7,u>: Cost 3 vext3 <4,7,u,7>, <4,7,u,7>
+ 1517232230U, // <7,4,u,0>: Cost 2 vext1 <6,7,4,u>, LHS
+ 1577899822U, // <7,4,u,1>: Cost 2 vext2 <5,6,7,4>, LHS
+ 2712063489U, // <7,4,u,2>: Cost 3 vext3 RHS, <4,u,2,3>
+ 2573060846U, // <7,4,u,3>: Cost 3 vext1 <3,7,4,u>, <3,7,4,u>
+ 1640312342U, // <7,4,u,4>: Cost 2 vext3 RHS, <4,u,4,6>
+ 1638469146U, // <7,4,u,5>: Cost 2 vext3 RHS, <4,u,5,1>
+ 564579881U, // <7,4,u,6>: Cost 1 vext3 RHS, RHS
+ 2714054192U, // <7,4,u,7>: Cost 3 vext3 RHS, <4,u,7,5>
+ 564579899U, // <7,4,u,u>: Cost 1 vext3 RHS, RHS
+ 2579038310U, // <7,5,0,0>: Cost 3 vext1 <4,7,5,0>, LHS
+ 2636382310U, // <7,5,0,1>: Cost 3 vext2 <3,1,7,5>, LHS
+ 2796339302U, // <7,5,0,2>: Cost 3 vuzpl <7,4,5,6>, LHS
+ 3646810719U, // <7,5,0,3>: Cost 4 vext1 <3,7,5,0>, <3,5,7,0>
+ 2712063586U, // <7,5,0,4>: Cost 3 vext3 RHS, <5,0,4,1>
+ 2735951467U, // <7,5,0,5>: Cost 3 vext3 RHS, <5,0,5,1>
+ 2735951476U, // <7,5,0,6>: Cost 3 vext3 RHS, <5,0,6,1>
+ 2579043322U, // <7,5,0,7>: Cost 3 vext1 <4,7,5,0>, <7,0,1,2>
+ 2636382877U, // <7,5,0,u>: Cost 3 vext2 <3,1,7,5>, LHS
+ 2712211087U, // <7,5,1,0>: Cost 3 vext3 RHS, <5,1,0,1>
+ 3698180916U, // <7,5,1,1>: Cost 4 vext2 <1,1,7,5>, <1,1,1,1>
+ 3710124950U, // <7,5,1,2>: Cost 4 vext2 <3,1,7,5>, <1,2,3,0>
+ 2636383232U, // <7,5,1,3>: Cost 3 vext2 <3,1,7,5>, <1,3,5,7>
+ 2712211127U, // <7,5,1,4>: Cost 3 vext3 RHS, <5,1,4,5>
+ 2590994128U, // <7,5,1,5>: Cost 3 vext1 <6,7,5,1>, <5,1,7,3>
+ 2590995323U, // <7,5,1,6>: Cost 3 vext1 <6,7,5,1>, <6,7,5,1>
+ 1638469328U, // <7,5,1,7>: Cost 2 vext3 RHS, <5,1,7,3>
+ 1638469337U, // <7,5,1,u>: Cost 2 vext3 RHS, <5,1,u,3>
+ 3785805536U, // <7,5,2,0>: Cost 4 vext3 RHS, <5,2,0,1>
+ 3785805544U, // <7,5,2,1>: Cost 4 vext3 RHS, <5,2,1,0>
+ 3704817288U, // <7,5,2,2>: Cost 4 vext2 <2,2,7,5>, <2,2,5,7>
+ 2712063742U, // <7,5,2,3>: Cost 3 vext3 RHS, <5,2,3,4>
+ 3716761386U, // <7,5,2,4>: Cost 4 vext2 <4,2,7,5>, <2,4,5,7>
+ 2714054415U, // <7,5,2,5>: Cost 3 vext3 RHS, <5,2,5,3>
+ 3774304024U, // <7,5,2,6>: Cost 4 vext3 <2,6,3,7>, <5,2,6,3>
+ 2712063777U, // <7,5,2,7>: Cost 3 vext3 RHS, <5,2,7,3>
+ 2712063787U, // <7,5,2,u>: Cost 3 vext3 RHS, <5,2,u,4>
+ 3634888806U, // <7,5,3,0>: Cost 4 vext1 <1,7,5,3>, LHS
+ 2636384544U, // <7,5,3,1>: Cost 3 vext2 <3,1,7,5>, <3,1,7,5>
+ 3710790001U, // <7,5,3,2>: Cost 4 vext2 <3,2,7,5>, <3,2,7,5>
+ 3710126492U, // <7,5,3,3>: Cost 4 vext2 <3,1,7,5>, <3,3,3,3>
+ 3634892086U, // <7,5,3,4>: Cost 4 vext1 <1,7,5,3>, RHS
+ 2639039076U, // <7,5,3,5>: Cost 3 vext2 <3,5,7,5>, <3,5,7,5>
+ 3713444533U, // <7,5,3,6>: Cost 4 vext2 <3,6,7,5>, <3,6,7,5>
+ 2693926767U, // <7,5,3,7>: Cost 3 vext3 <1,5,3,7>, <5,3,7,0>
+ 2712063864U, // <7,5,3,u>: Cost 3 vext3 RHS, <5,3,u,0>
+ 2579071078U, // <7,5,4,0>: Cost 3 vext1 <4,7,5,4>, LHS
+ 3646841856U, // <7,5,4,1>: Cost 4 vext1 <3,7,5,4>, <1,3,5,7>
+ 3716762698U, // <7,5,4,2>: Cost 4 vext2 <4,2,7,5>, <4,2,7,5>
+ 3646843491U, // <7,5,4,3>: Cost 4 vext1 <3,7,5,4>, <3,5,7,4>
+ 2579074358U, // <7,5,4,4>: Cost 3 vext1 <4,7,5,4>, RHS
+ 2636385590U, // <7,5,4,5>: Cost 3 vext2 <3,1,7,5>, RHS
+ 2645675406U, // <7,5,4,6>: Cost 3 vext2 <4,6,7,5>, <4,6,7,5>
+ 1638322118U, // <7,5,4,7>: Cost 2 vext3 RHS, <5,4,7,6>
+ 1638469583U, // <7,5,4,u>: Cost 2 vext3 RHS, <5,4,u,6>
+ 2714054611U, // <7,5,5,0>: Cost 3 vext3 RHS, <5,5,0,1>
+ 2652974800U, // <7,5,5,1>: Cost 3 vext2 <5,u,7,5>, <5,1,7,3>
+ 3710127905U, // <7,5,5,2>: Cost 4 vext2 <3,1,7,5>, <5,2,7,3>
+ 3785805808U, // <7,5,5,3>: Cost 4 vext3 RHS, <5,5,3,3>
+ 2712211450U, // <7,5,5,4>: Cost 3 vext3 RHS, <5,5,4,4>
+ 1638322180U, // <7,5,5,5>: Cost 2 vext3 RHS, <5,5,5,5>
+ 2712064014U, // <7,5,5,6>: Cost 3 vext3 RHS, <5,5,6,6>
+ 1638469656U, // <7,5,5,7>: Cost 2 vext3 RHS, <5,5,7,7>
+ 1638469665U, // <7,5,5,u>: Cost 2 vext3 RHS, <5,5,u,7>
+ 2712064036U, // <7,5,6,0>: Cost 3 vext3 RHS, <5,6,0,1>
+ 2714054707U, // <7,5,6,1>: Cost 3 vext3 RHS, <5,6,1,7>
+ 3785805879U, // <7,5,6,2>: Cost 4 vext3 RHS, <5,6,2,2>
+ 2712064066U, // <7,5,6,3>: Cost 3 vext3 RHS, <5,6,3,4>
+ 2712064076U, // <7,5,6,4>: Cost 3 vext3 RHS, <5,6,4,5>
+ 2714054743U, // <7,5,6,5>: Cost 3 vext3 RHS, <5,6,5,7>
+ 2712064096U, // <7,5,6,6>: Cost 3 vext3 RHS, <5,6,6,7>
+ 1638322274U, // <7,5,6,7>: Cost 2 vext3 RHS, <5,6,7,0>
+ 1638469739U, // <7,5,6,u>: Cost 2 vext3 RHS, <5,6,u,0>
+ 1511325798U, // <7,5,7,0>: Cost 2 vext1 <5,7,5,7>, LHS
+ 2692747392U, // <7,5,7,1>: Cost 3 vext3 <1,3,5,7>, <5,7,1,3>
+ 2585069160U, // <7,5,7,2>: Cost 3 vext1 <5,7,5,7>, <2,2,2,2>
+ 2573126390U, // <7,5,7,3>: Cost 3 vext1 <3,7,5,7>, <3,7,5,7>
+ 1511329078U, // <7,5,7,4>: Cost 2 vext1 <5,7,5,7>, RHS
+ 1638469800U, // <7,5,7,5>: Cost 2 vext3 RHS, <5,7,5,7>
+ 2712211626U, // <7,5,7,6>: Cost 3 vext3 RHS, <5,7,6,0>
+ 2712211636U, // <7,5,7,7>: Cost 3 vext3 RHS, <5,7,7,1>
+ 1638469823U, // <7,5,7,u>: Cost 2 vext3 RHS, <5,7,u,3>
+ 1511333990U, // <7,5,u,0>: Cost 2 vext1 <5,7,5,u>, LHS
+ 2636388142U, // <7,5,u,1>: Cost 3 vext2 <3,1,7,5>, LHS
+ 2712211671U, // <7,5,u,2>: Cost 3 vext3 RHS, <5,u,2,0>
+ 2573134583U, // <7,5,u,3>: Cost 3 vext1 <3,7,5,u>, <3,7,5,u>
+ 1511337270U, // <7,5,u,4>: Cost 2 vext1 <5,7,5,u>, RHS
+ 1638469881U, // <7,5,u,5>: Cost 2 vext3 RHS, <5,u,5,7>
+ 2712064258U, // <7,5,u,6>: Cost 3 vext3 RHS, <5,u,6,7>
+ 1638469892U, // <7,5,u,7>: Cost 2 vext3 RHS, <5,u,7,0>
+ 1638469904U, // <7,5,u,u>: Cost 2 vext3 RHS, <5,u,u,3>
+ 2650324992U, // <7,6,0,0>: Cost 3 vext2 <5,4,7,6>, <0,0,0,0>
+ 1576583270U, // <7,6,0,1>: Cost 2 vext2 <5,4,7,6>, LHS
+ 2712064300U, // <7,6,0,2>: Cost 3 vext3 RHS, <6,0,2,4>
+ 2255295336U, // <7,6,0,3>: Cost 3 vrev <6,7,3,0>
+ 2712064316U, // <7,6,0,4>: Cost 3 vext3 RHS, <6,0,4,2>
+ 2585088098U, // <7,6,0,5>: Cost 3 vext1 <5,7,6,0>, <5,6,7,0>
+ 2735952204U, // <7,6,0,6>: Cost 3 vext3 RHS, <6,0,6,0>
+ 2712211799U, // <7,6,0,7>: Cost 3 vext3 RHS, <6,0,7,2>
+ 1576583837U, // <7,6,0,u>: Cost 2 vext2 <5,4,7,6>, LHS
+ 1181340494U, // <7,6,1,0>: Cost 2 vrev <6,7,0,1>
+ 2650325812U, // <7,6,1,1>: Cost 3 vext2 <5,4,7,6>, <1,1,1,1>
+ 2650325910U, // <7,6,1,2>: Cost 3 vext2 <5,4,7,6>, <1,2,3,0>
+ 2650325976U, // <7,6,1,3>: Cost 3 vext2 <5,4,7,6>, <1,3,1,3>
+ 2579123510U, // <7,6,1,4>: Cost 3 vext1 <4,7,6,1>, RHS
+ 2650326160U, // <7,6,1,5>: Cost 3 vext2 <5,4,7,6>, <1,5,3,7>
+ 2714055072U, // <7,6,1,6>: Cost 3 vext3 RHS, <6,1,6,3>
+ 2712064425U, // <7,6,1,7>: Cost 3 vext3 RHS, <6,1,7,3>
+ 1181930390U, // <7,6,1,u>: Cost 2 vrev <6,7,u,1>
+ 2712211897U, // <7,6,2,0>: Cost 3 vext3 RHS, <6,2,0,1>
+ 2714055108U, // <7,6,2,1>: Cost 3 vext3 RHS, <6,2,1,3>
+ 2650326632U, // <7,6,2,2>: Cost 3 vext2 <5,4,7,6>, <2,2,2,2>
+ 2650326694U, // <7,6,2,3>: Cost 3 vext2 <5,4,7,6>, <2,3,0,1>
+ 2714055137U, // <7,6,2,4>: Cost 3 vext3 RHS, <6,2,4,5>
+ 2714055148U, // <7,6,2,5>: Cost 3 vext3 RHS, <6,2,5,7>
+ 2650326970U, // <7,6,2,6>: Cost 3 vext2 <5,4,7,6>, <2,6,3,7>
+ 1638470138U, // <7,6,2,7>: Cost 2 vext3 RHS, <6,2,7,3>
+ 1638470147U, // <7,6,2,u>: Cost 2 vext3 RHS, <6,2,u,3>
+ 2650327190U, // <7,6,3,0>: Cost 3 vext2 <5,4,7,6>, <3,0,1,2>
+ 2255172441U, // <7,6,3,1>: Cost 3 vrev <6,7,1,3>
+ 2255246178U, // <7,6,3,2>: Cost 3 vrev <6,7,2,3>
+ 2650327452U, // <7,6,3,3>: Cost 3 vext2 <5,4,7,6>, <3,3,3,3>
+ 2712064562U, // <7,6,3,4>: Cost 3 vext3 RHS, <6,3,4,5>
+ 2650327627U, // <7,6,3,5>: Cost 3 vext2 <5,4,7,6>, <3,5,4,7>
+ 3713452726U, // <7,6,3,6>: Cost 4 vext2 <3,6,7,6>, <3,6,7,6>
+ 2700563016U, // <7,6,3,7>: Cost 3 vext3 <2,6,3,7>, <6,3,7,0>
+ 2712064593U, // <7,6,3,u>: Cost 3 vext3 RHS, <6,3,u,0>
+ 2650327954U, // <7,6,4,0>: Cost 3 vext2 <5,4,7,6>, <4,0,5,1>
+ 2735952486U, // <7,6,4,1>: Cost 3 vext3 RHS, <6,4,1,3>
+ 2735952497U, // <7,6,4,2>: Cost 3 vext3 RHS, <6,4,2,5>
+ 2255328108U, // <7,6,4,3>: Cost 3 vrev <6,7,3,4>
+ 2712212100U, // <7,6,4,4>: Cost 3 vext3 RHS, <6,4,4,6>
+ 1576586550U, // <7,6,4,5>: Cost 2 vext2 <5,4,7,6>, RHS
+ 2714055312U, // <7,6,4,6>: Cost 3 vext3 RHS, <6,4,6,0>
+ 2712212126U, // <7,6,4,7>: Cost 3 vext3 RHS, <6,4,7,5>
+ 1576586793U, // <7,6,4,u>: Cost 2 vext2 <5,4,7,6>, RHS
+ 2579152998U, // <7,6,5,0>: Cost 3 vext1 <4,7,6,5>, LHS
+ 2650328784U, // <7,6,5,1>: Cost 3 vext2 <5,4,7,6>, <5,1,7,3>
+ 2714055364U, // <7,6,5,2>: Cost 3 vext3 RHS, <6,5,2,7>
+ 3785806538U, // <7,6,5,3>: Cost 4 vext3 RHS, <6,5,3,4>
+ 1576587206U, // <7,6,5,4>: Cost 2 vext2 <5,4,7,6>, <5,4,7,6>
+ 2650329092U, // <7,6,5,5>: Cost 3 vext2 <5,4,7,6>, <5,5,5,5>
+ 2650329186U, // <7,6,5,6>: Cost 3 vext2 <5,4,7,6>, <5,6,7,0>
+ 2712064753U, // <7,6,5,7>: Cost 3 vext3 RHS, <6,5,7,7>
+ 1181963162U, // <7,6,5,u>: Cost 2 vrev <6,7,u,5>
+ 2714055421U, // <7,6,6,0>: Cost 3 vext3 RHS, <6,6,0,1>
+ 2714055432U, // <7,6,6,1>: Cost 3 vext3 RHS, <6,6,1,3>
+ 2650329594U, // <7,6,6,2>: Cost 3 vext2 <5,4,7,6>, <6,2,7,3>
+ 3785806619U, // <7,6,6,3>: Cost 4 vext3 RHS, <6,6,3,4>
+ 2712212260U, // <7,6,6,4>: Cost 3 vext3 RHS, <6,6,4,4>
+ 2714055472U, // <7,6,6,5>: Cost 3 vext3 RHS, <6,6,5,7>
+ 1638323000U, // <7,6,6,6>: Cost 2 vext3 RHS, <6,6,6,6>
+ 1638470466U, // <7,6,6,7>: Cost 2 vext3 RHS, <6,6,7,7>
+ 1638470475U, // <7,6,6,u>: Cost 2 vext3 RHS, <6,6,u,7>
+ 1638323022U, // <7,6,7,0>: Cost 2 vext3 RHS, <6,7,0,1>
+ 2712064854U, // <7,6,7,1>: Cost 3 vext3 RHS, <6,7,1,0>
+ 2712064865U, // <7,6,7,2>: Cost 3 vext3 RHS, <6,7,2,2>
+ 2712064872U, // <7,6,7,3>: Cost 3 vext3 RHS, <6,7,3,0>
+ 1638323062U, // <7,6,7,4>: Cost 2 vext3 RHS, <6,7,4,5>
+ 2712064894U, // <7,6,7,5>: Cost 3 vext3 RHS, <6,7,5,4>
+ 2712064905U, // <7,6,7,6>: Cost 3 vext3 RHS, <6,7,6,6>
+ 2712064915U, // <7,6,7,7>: Cost 3 vext3 RHS, <6,7,7,7>
+ 1638323094U, // <7,6,7,u>: Cost 2 vext3 RHS, <6,7,u,1>
+ 1638470559U, // <7,6,u,0>: Cost 2 vext3 RHS, <6,u,0,1>
+ 1576589102U, // <7,6,u,1>: Cost 2 vext2 <5,4,7,6>, LHS
+ 2712212402U, // <7,6,u,2>: Cost 3 vext3 RHS, <6,u,2,2>
+ 2712212409U, // <7,6,u,3>: Cost 3 vext3 RHS, <6,u,3,0>
+ 1638470599U, // <7,6,u,4>: Cost 2 vext3 RHS, <6,u,4,5>
+ 1576589466U, // <7,6,u,5>: Cost 2 vext2 <5,4,7,6>, RHS
+ 1638323000U, // <7,6,u,6>: Cost 2 vext3 RHS, <6,6,6,6>
+ 1638470624U, // <7,6,u,7>: Cost 2 vext3 RHS, <6,u,7,3>
+ 1638470631U, // <7,6,u,u>: Cost 2 vext3 RHS, <6,u,u,1>
+ 2712065007U, // <7,7,0,0>: Cost 3 vext3 RHS, <7,0,0,0>
+ 1638323194U, // <7,7,0,1>: Cost 2 vext3 RHS, <7,0,1,2>
+ 2712065025U, // <7,7,0,2>: Cost 3 vext3 RHS, <7,0,2,0>
+ 3646958337U, // <7,7,0,3>: Cost 4 vext1 <3,7,7,0>, <3,7,7,0>
+ 2712065044U, // <7,7,0,4>: Cost 3 vext3 RHS, <7,0,4,1>
+ 2585161907U, // <7,7,0,5>: Cost 3 vext1 <5,7,7,0>, <5,7,7,0>
+ 2591134604U, // <7,7,0,6>: Cost 3 vext1 <6,7,7,0>, <6,7,7,0>
+ 2591134714U, // <7,7,0,7>: Cost 3 vext1 <6,7,7,0>, <7,0,1,2>
+ 1638323257U, // <7,7,0,u>: Cost 2 vext3 RHS, <7,0,u,2>
+ 2712065091U, // <7,7,1,0>: Cost 3 vext3 RHS, <7,1,0,3>
+ 2712065098U, // <7,7,1,1>: Cost 3 vext3 RHS, <7,1,1,1>
+ 2712065109U, // <7,7,1,2>: Cost 3 vext3 RHS, <7,1,2,3>
+ 2692748384U, // <7,7,1,3>: Cost 3 vext3 <1,3,5,7>, <7,1,3,5>
+ 2585169206U, // <7,7,1,4>: Cost 3 vext1 <5,7,7,1>, RHS
+ 2693928048U, // <7,7,1,5>: Cost 3 vext3 <1,5,3,7>, <7,1,5,3>
+ 2585170766U, // <7,7,1,6>: Cost 3 vext1 <5,7,7,1>, <6,7,0,1>
+ 2735953024U, // <7,7,1,7>: Cost 3 vext3 RHS, <7,1,7,1>
+ 2695918731U, // <7,7,1,u>: Cost 3 vext3 <1,u,3,7>, <7,1,u,3>
+ 3770471574U, // <7,7,2,0>: Cost 4 vext3 <2,0,5,7>, <7,2,0,5>
+ 3785807002U, // <7,7,2,1>: Cost 4 vext3 RHS, <7,2,1,0>
+ 2712065189U, // <7,7,2,2>: Cost 3 vext3 RHS, <7,2,2,2>
+ 2712065196U, // <7,7,2,3>: Cost 3 vext3 RHS, <7,2,3,0>
+ 3773125818U, // <7,7,2,4>: Cost 4 vext3 <2,4,5,7>, <7,2,4,5>
+ 3766490305U, // <7,7,2,5>: Cost 4 vext3 <1,3,5,7>, <7,2,5,3>
+ 2700563658U, // <7,7,2,6>: Cost 3 vext3 <2,6,3,7>, <7,2,6,3>
+ 2735953107U, // <7,7,2,7>: Cost 3 vext3 RHS, <7,2,7,3>
+ 2701890780U, // <7,7,2,u>: Cost 3 vext3 <2,u,3,7>, <7,2,u,3>
+ 2712065251U, // <7,7,3,0>: Cost 3 vext3 RHS, <7,3,0,1>
+ 3766490350U, // <7,7,3,1>: Cost 4 vext3 <1,3,5,7>, <7,3,1,3>
+ 3774305530U, // <7,7,3,2>: Cost 4 vext3 <2,6,3,7>, <7,3,2,6>
+ 2637728196U, // <7,7,3,3>: Cost 3 vext2 <3,3,7,7>, <3,3,7,7>
+ 2712065291U, // <7,7,3,4>: Cost 3 vext3 RHS, <7,3,4,5>
+ 2585186486U, // <7,7,3,5>: Cost 3 vext1 <5,7,7,3>, <5,7,7,3>
+ 2639719095U, // <7,7,3,6>: Cost 3 vext2 <3,6,7,7>, <3,6,7,7>
+ 2640382728U, // <7,7,3,7>: Cost 3 vext2 <3,7,7,7>, <3,7,7,7>
+ 2641046361U, // <7,7,3,u>: Cost 3 vext2 <3,u,7,7>, <3,u,7,7>
+ 2712212792U, // <7,7,4,0>: Cost 3 vext3 RHS, <7,4,0,5>
+ 3646989312U, // <7,7,4,1>: Cost 4 vext1 <3,7,7,4>, <1,3,5,7>
+ 3785807176U, // <7,7,4,2>: Cost 4 vext3 RHS, <7,4,2,3>
+ 3646991109U, // <7,7,4,3>: Cost 4 vext1 <3,7,7,4>, <3,7,7,4>
+ 2712065371U, // <7,7,4,4>: Cost 3 vext3 RHS, <7,4,4,4>
+ 1638323558U, // <7,7,4,5>: Cost 2 vext3 RHS, <7,4,5,6>
+ 2712212845U, // <7,7,4,6>: Cost 3 vext3 RHS, <7,4,6,4>
+ 2591167846U, // <7,7,4,7>: Cost 3 vext1 <6,7,7,4>, <7,4,5,6>
+ 1638323585U, // <7,7,4,u>: Cost 2 vext3 RHS, <7,4,u,6>
+ 2585198694U, // <7,7,5,0>: Cost 3 vext1 <5,7,7,5>, LHS
+ 2712212884U, // <7,7,5,1>: Cost 3 vext3 RHS, <7,5,1,7>
+ 3711471393U, // <7,7,5,2>: Cost 4 vext2 <3,3,7,7>, <5,2,7,3>
+ 2649673590U, // <7,7,5,3>: Cost 3 vext2 <5,3,7,7>, <5,3,7,7>
+ 2712065455U, // <7,7,5,4>: Cost 3 vext3 RHS, <7,5,4,7>
+ 1577259032U, // <7,7,5,5>: Cost 2 vext2 <5,5,7,7>, <5,5,7,7>
+ 2712065473U, // <7,7,5,6>: Cost 3 vext3 RHS, <7,5,6,7>
+ 2712212936U, // <7,7,5,7>: Cost 3 vext3 RHS, <7,5,7,5>
+ 1579249931U, // <7,7,5,u>: Cost 2 vext2 <5,u,7,7>, <5,u,7,7>
+ 2591178854U, // <7,7,6,0>: Cost 3 vext1 <6,7,7,6>, LHS
+ 2735953374U, // <7,7,6,1>: Cost 3 vext3 RHS, <7,6,1,0>
+ 2712212974U, // <7,7,6,2>: Cost 3 vext3 RHS, <7,6,2,7>
+ 2655646287U, // <7,7,6,3>: Cost 3 vext2 <6,3,7,7>, <6,3,7,7>
+ 2591182134U, // <7,7,6,4>: Cost 3 vext1 <6,7,7,6>, RHS
+ 2656973553U, // <7,7,6,5>: Cost 3 vext2 <6,5,7,7>, <6,5,7,7>
+ 1583895362U, // <7,7,6,6>: Cost 2 vext2 <6,6,7,7>, <6,6,7,7>
+ 2712065556U, // <7,7,6,7>: Cost 3 vext3 RHS, <7,6,7,0>
+ 1585222628U, // <7,7,6,u>: Cost 2 vext2 <6,u,7,7>, <6,u,7,7>
+ 1523417190U, // <7,7,7,0>: Cost 2 vext1 <7,7,7,7>, LHS
+ 2597159670U, // <7,7,7,1>: Cost 3 vext1 <7,7,7,7>, <1,0,3,2>
+ 2597160552U, // <7,7,7,2>: Cost 3 vext1 <7,7,7,7>, <2,2,2,2>
+ 2597161110U, // <7,7,7,3>: Cost 3 vext1 <7,7,7,7>, <3,0,1,2>
+ 1523420470U, // <7,7,7,4>: Cost 2 vext1 <7,7,7,7>, RHS
+ 2651002296U, // <7,7,7,5>: Cost 3 vext2 <5,5,7,7>, <7,5,5,7>
+ 2657637906U, // <7,7,7,6>: Cost 3 vext2 <6,6,7,7>, <7,6,6,7>
+ 363253046U, // <7,7,7,7>: Cost 1 vdup3 RHS
+ 363253046U, // <7,7,7,u>: Cost 1 vdup3 RHS
+ 1523417190U, // <7,7,u,0>: Cost 2 vext1 <7,7,7,7>, LHS
+ 1638471298U, // <7,7,u,1>: Cost 2 vext3 RHS, <7,u,1,2>
+ 2712213132U, // <7,7,u,2>: Cost 3 vext3 RHS, <7,u,2,3>
+ 2712213138U, // <7,7,u,3>: Cost 3 vext3 RHS, <7,u,3,0>
+ 1523420470U, // <7,7,u,4>: Cost 2 vext1 <7,7,7,7>, RHS
+ 1638471338U, // <7,7,u,5>: Cost 2 vext3 RHS, <7,u,5,6>
+ 1595840756U, // <7,7,u,6>: Cost 2 vext2 <u,6,7,7>, <u,6,7,7>
+ 363253046U, // <7,7,u,7>: Cost 1 vdup3 RHS
+ 363253046U, // <7,7,u,u>: Cost 1 vdup3 RHS
+ 1638318080U, // <7,u,0,0>: Cost 2 vext3 RHS, <0,0,0,0>
+ 1638323923U, // <7,u,0,1>: Cost 2 vext3 RHS, <u,0,1,2>
+ 1662211804U, // <7,u,0,2>: Cost 2 vext3 RHS, <u,0,2,2>
+ 1638323941U, // <7,u,0,3>: Cost 2 vext3 RHS, <u,0,3,2>
+ 2712065773U, // <7,u,0,4>: Cost 3 vext3 RHS, <u,0,4,1>
+ 1662359286U, // <7,u,0,5>: Cost 2 vext3 RHS, <u,0,5,1>
+ 1662359296U, // <7,u,0,6>: Cost 2 vext3 RHS, <u,0,6,2>
+ 2987150664U, // <7,u,0,7>: Cost 3 vzipr <5,6,7,0>, RHS
+ 1638323986U, // <7,u,0,u>: Cost 2 vext3 RHS, <u,0,u,2>
+ 1517469798U, // <7,u,1,0>: Cost 2 vext1 <6,7,u,1>, LHS
+ 1638318900U, // <7,u,1,1>: Cost 2 vext3 RHS, <1,1,1,1>
+ 564582190U, // <7,u,1,2>: Cost 1 vext3 RHS, LHS
+ 1638324023U, // <7,u,1,3>: Cost 2 vext3 RHS, <u,1,3,3>
+ 1517473078U, // <7,u,1,4>: Cost 2 vext1 <6,7,u,1>, RHS
+ 2693928777U, // <7,u,1,5>: Cost 3 vext3 <1,5,3,7>, <u,1,5,3>
+ 1517474710U, // <7,u,1,6>: Cost 2 vext1 <6,7,u,1>, <6,7,u,1>
+ 1640462171U, // <7,u,1,7>: Cost 2 vext3 RHS, <u,1,7,3>
+ 564582244U, // <7,u,1,u>: Cost 1 vext3 RHS, LHS
+ 1638318244U, // <7,u,2,0>: Cost 2 vext3 RHS, <0,2,0,2>
+ 2712065907U, // <7,u,2,1>: Cost 3 vext3 RHS, <u,2,1,0>
+ 1638319720U, // <7,u,2,2>: Cost 2 vext3 RHS, <2,2,2,2>
+ 1638324101U, // <7,u,2,3>: Cost 2 vext3 RHS, <u,2,3,0>
+ 1638318284U, // <7,u,2,4>: Cost 2 vext3 RHS, <0,2,4,6>
+ 2712065947U, // <7,u,2,5>: Cost 3 vext3 RHS, <u,2,5,4>
+ 2700564387U, // <7,u,2,6>: Cost 3 vext3 <2,6,3,7>, <u,2,6,3>
+ 1640314796U, // <7,u,2,7>: Cost 2 vext3 RHS, <u,2,7,3>
+ 1638324146U, // <7,u,2,u>: Cost 2 vext3 RHS, <u,2,u,0>
+ 1638324156U, // <7,u,3,0>: Cost 2 vext3 RHS, <u,3,0,1>
+ 1638319064U, // <7,u,3,1>: Cost 2 vext3 RHS, <1,3,1,3>
+ 2700564435U, // <7,u,3,2>: Cost 3 vext3 <2,6,3,7>, <u,3,2,6>
+ 1638320540U, // <7,u,3,3>: Cost 2 vext3 RHS, <3,3,3,3>
+ 1638324196U, // <7,u,3,4>: Cost 2 vext3 RHS, <u,3,4,5>
+ 1638324207U, // <7,u,3,5>: Cost 2 vext3 RHS, <u,3,5,7>
+ 2700564472U, // <7,u,3,6>: Cost 3 vext3 <2,6,3,7>, <u,3,6,7>
+ 2695919610U, // <7,u,3,7>: Cost 3 vext3 <1,u,3,7>, <u,3,7,0>
+ 1638324228U, // <7,u,3,u>: Cost 2 vext3 RHS, <u,3,u,1>
+ 2712066061U, // <7,u,4,0>: Cost 3 vext3 RHS, <u,4,0,1>
+ 1662212122U, // <7,u,4,1>: Cost 2 vext3 RHS, <u,4,1,5>
+ 1662212132U, // <7,u,4,2>: Cost 2 vext3 RHS, <u,4,2,6>
+ 2712066092U, // <7,u,4,3>: Cost 3 vext3 RHS, <u,4,3,5>
+ 1638321360U, // <7,u,4,4>: Cost 2 vext3 RHS, <4,4,4,4>
+ 1638324287U, // <7,u,4,5>: Cost 2 vext3 RHS, <u,4,5,6>
+ 1662359624U, // <7,u,4,6>: Cost 2 vext3 RHS, <u,4,6,6>
+ 1640314961U, // <7,u,4,7>: Cost 2 vext3 RHS, <u,4,7,6>
+ 1638324314U, // <7,u,4,u>: Cost 2 vext3 RHS, <u,4,u,6>
+ 1517502566U, // <7,u,5,0>: Cost 2 vext1 <6,7,u,5>, LHS
+ 1574612693U, // <7,u,5,1>: Cost 2 vext2 <5,1,7,u>, <5,1,7,u>
+ 2712066162U, // <7,u,5,2>: Cost 3 vext3 RHS, <u,5,2,3>
+ 1638324351U, // <7,u,5,3>: Cost 2 vext3 RHS, <u,5,3,7>
+ 1576603592U, // <7,u,5,4>: Cost 2 vext2 <5,4,7,u>, <5,4,7,u>
+ 1577267225U, // <7,u,5,5>: Cost 2 vext2 <5,5,7,u>, <5,5,7,u>
+ 564582554U, // <7,u,5,6>: Cost 1 vext3 RHS, RHS
+ 1640462499U, // <7,u,5,7>: Cost 2 vext3 RHS, <u,5,7,7>
+ 564582572U, // <7,u,5,u>: Cost 1 vext3 RHS, RHS
+ 2712066223U, // <7,u,6,0>: Cost 3 vext3 RHS, <u,6,0,1>
+ 2712066238U, // <7,u,6,1>: Cost 3 vext3 RHS, <u,6,1,7>
+ 1581249023U, // <7,u,6,2>: Cost 2 vext2 <6,2,7,u>, <6,2,7,u>
+ 1638324432U, // <7,u,6,3>: Cost 2 vext3 RHS, <u,6,3,7>
+ 1638468980U, // <7,u,6,4>: Cost 2 vext3 RHS, <4,6,4,6>
+ 2712066274U, // <7,u,6,5>: Cost 3 vext3 RHS, <u,6,5,7>
+ 1583903555U, // <7,u,6,6>: Cost 2 vext2 <6,6,7,u>, <6,6,7,u>
+ 1640315117U, // <7,u,6,7>: Cost 2 vext3 RHS, <u,6,7,0>
+ 1638324477U, // <7,u,6,u>: Cost 2 vext3 RHS, <u,6,u,7>
+ 1638471936U, // <7,u,7,0>: Cost 2 vext3 RHS, <u,7,0,1>
+ 2692970763U, // <7,u,7,1>: Cost 3 vext3 <1,3,u,7>, <u,7,1,3>
+ 2700933399U, // <7,u,7,2>: Cost 3 vext3 <2,6,u,7>, <u,7,2,6>
+ 2573347601U, // <7,u,7,3>: Cost 3 vext1 <3,7,u,7>, <3,7,u,7>
+ 1638471976U, // <7,u,7,4>: Cost 2 vext3 RHS, <u,7,4,5>
+ 1511551171U, // <7,u,7,5>: Cost 2 vext1 <5,7,u,7>, <5,7,u,7>
+ 2712213815U, // <7,u,7,6>: Cost 3 vext3 RHS, <u,7,6,2>
+ 363253046U, // <7,u,7,7>: Cost 1 vdup3 RHS
+ 363253046U, // <7,u,7,u>: Cost 1 vdup3 RHS
+ 1638324561U, // <7,u,u,0>: Cost 2 vext3 RHS, <u,u,0,1>
+ 1638324571U, // <7,u,u,1>: Cost 2 vext3 RHS, <u,u,1,2>
+ 564582757U, // <7,u,u,2>: Cost 1 vext3 RHS, LHS
+ 1638324587U, // <7,u,u,3>: Cost 2 vext3 RHS, <u,u,3,0>
+ 1638324601U, // <7,u,u,4>: Cost 2 vext3 RHS, <u,u,4,5>
+ 1638324611U, // <7,u,u,5>: Cost 2 vext3 RHS, <u,u,5,6>
+ 564582797U, // <7,u,u,6>: Cost 1 vext3 RHS, RHS
+ 363253046U, // <7,u,u,7>: Cost 1 vdup3 RHS
+ 564582811U, // <7,u,u,u>: Cost 1 vext3 RHS, LHS
+ 135053414U, // <u,0,0,0>: Cost 1 vdup0 LHS
+ 1611489290U, // <u,0,0,1>: Cost 2 vext3 LHS, <0,0,1,1>
+ 1611489300U, // <u,0,0,2>: Cost 2 vext3 LHS, <0,0,2,2>
+ 2568054923U, // <u,0,0,3>: Cost 3 vext1 <3,0,0,0>, <3,0,0,0>
+ 1481706806U, // <u,0,0,4>: Cost 2 vext1 <0,u,0,0>, RHS
+ 2555449040U, // <u,0,0,5>: Cost 3 vext1 <0,u,0,0>, <5,1,7,3>
+ 2591282078U, // <u,0,0,6>: Cost 3 vext1 <6,u,0,0>, <6,u,0,0>
+ 2591945711U, // <u,0,0,7>: Cost 3 vext1 <7,0,0,0>, <7,0,0,0>
+ 135053414U, // <u,0,0,u>: Cost 1 vdup0 LHS
+ 1493655654U, // <u,0,1,0>: Cost 2 vext1 <2,u,0,1>, LHS
+ 1860550758U, // <u,0,1,1>: Cost 2 vzipl LHS, LHS
+ 537747563U, // <u,0,1,2>: Cost 1 vext3 LHS, LHS
+ 2625135576U, // <u,0,1,3>: Cost 3 vext2 <1,2,u,0>, <1,3,1,3>
+ 1493658934U, // <u,0,1,4>: Cost 2 vext1 <2,u,0,1>, RHS
+ 2625135760U, // <u,0,1,5>: Cost 3 vext2 <1,2,u,0>, <1,5,3,7>
+ 1517548447U, // <u,0,1,6>: Cost 2 vext1 <6,u,0,1>, <6,u,0,1>
+ 2591290362U, // <u,0,1,7>: Cost 3 vext1 <6,u,0,1>, <7,0,1,2>
+ 537747612U, // <u,0,1,u>: Cost 1 vext3 LHS, LHS
+ 1611489444U, // <u,0,2,0>: Cost 2 vext3 LHS, <0,2,0,2>
+ 2685231276U, // <u,0,2,1>: Cost 3 vext3 LHS, <0,2,1,1>
+ 1994768486U, // <u,0,2,2>: Cost 2 vtrnl LHS, LHS
+ 2685231294U, // <u,0,2,3>: Cost 3 vext3 LHS, <0,2,3,1>
+ 1611489484U, // <u,0,2,4>: Cost 2 vext3 LHS, <0,2,4,6>
+ 2712068310U, // <u,0,2,5>: Cost 3 vext3 RHS, <0,2,5,7>
+ 2625136570U, // <u,0,2,6>: Cost 3 vext2 <1,2,u,0>, <2,6,3,7>
+ 2591962097U, // <u,0,2,7>: Cost 3 vext1 <7,0,0,2>, <7,0,0,2>
+ 1611489516U, // <u,0,2,u>: Cost 2 vext3 LHS, <0,2,u,2>
+ 2954067968U, // <u,0,3,0>: Cost 3 vzipr LHS, <0,0,0,0>
+ 2685231356U, // <u,0,3,1>: Cost 3 vext3 LHS, <0,3,1,0>
+ 72589981U, // <u,0,3,2>: Cost 1 vrev LHS
+ 2625137052U, // <u,0,3,3>: Cost 3 vext2 <1,2,u,0>, <3,3,3,3>
+ 2625137154U, // <u,0,3,4>: Cost 3 vext2 <1,2,u,0>, <3,4,5,6>
+ 2639071848U, // <u,0,3,5>: Cost 3 vext2 <3,5,u,0>, <3,5,u,0>
+ 2639735481U, // <u,0,3,6>: Cost 3 vext2 <3,6,u,0>, <3,6,u,0>
+ 2597279354U, // <u,0,3,7>: Cost 3 vext1 <7,u,0,3>, <7,u,0,3>
+ 73032403U, // <u,0,3,u>: Cost 1 vrev LHS
+ 2687074636U, // <u,0,4,0>: Cost 3 vext3 <0,4,0,u>, <0,4,0,u>
+ 1611489618U, // <u,0,4,1>: Cost 2 vext3 LHS, <0,4,1,5>
+ 1611489628U, // <u,0,4,2>: Cost 2 vext3 LHS, <0,4,2,6>
+ 3629222038U, // <u,0,4,3>: Cost 4 vext1 <0,u,0,4>, <3,0,1,2>
+ 2555481398U, // <u,0,4,4>: Cost 3 vext1 <0,u,0,4>, RHS
+ 1551396150U, // <u,0,4,5>: Cost 2 vext2 <1,2,u,0>, RHS
+ 2651680116U, // <u,0,4,6>: Cost 3 vext2 <5,6,u,0>, <4,6,4,6>
+ 2646150600U, // <u,0,4,7>: Cost 3 vext2 <4,7,5,0>, <4,7,5,0>
+ 1611932050U, // <u,0,4,u>: Cost 2 vext3 LHS, <0,4,u,6>
+ 2561458278U, // <u,0,5,0>: Cost 3 vext1 <1,u,0,5>, LHS
+ 1863532646U, // <u,0,5,1>: Cost 2 vzipl RHS, LHS
+ 2712068526U, // <u,0,5,2>: Cost 3 vext3 RHS, <0,5,2,7>
+ 2649689976U, // <u,0,5,3>: Cost 3 vext2 <5,3,u,0>, <5,3,u,0>
+ 2220237489U, // <u,0,5,4>: Cost 3 vrev <0,u,4,5>
+ 2651680772U, // <u,0,5,5>: Cost 3 vext2 <5,6,u,0>, <5,5,5,5>
+ 1577939051U, // <u,0,5,6>: Cost 2 vext2 <5,6,u,0>, <5,6,u,0>
+ 2830077238U, // <u,0,5,7>: Cost 3 vuzpr <1,u,3,0>, RHS
+ 1579266317U, // <u,0,5,u>: Cost 2 vext2 <5,u,u,0>, <5,u,u,0>
+ 2555494502U, // <u,0,6,0>: Cost 3 vext1 <0,u,0,6>, LHS
+ 2712068598U, // <u,0,6,1>: Cost 3 vext3 RHS, <0,6,1,7>
+ 1997750374U, // <u,0,6,2>: Cost 2 vtrnl RHS, LHS
+ 2655662673U, // <u,0,6,3>: Cost 3 vext2 <6,3,u,0>, <6,3,u,0>
+ 2555497782U, // <u,0,6,4>: Cost 3 vext1 <0,u,0,6>, RHS
+ 2651681459U, // <u,0,6,5>: Cost 3 vext2 <5,6,u,0>, <6,5,0,u>
+ 2651681592U, // <u,0,6,6>: Cost 3 vext2 <5,6,u,0>, <6,6,6,6>
+ 2651681614U, // <u,0,6,7>: Cost 3 vext2 <5,6,u,0>, <6,7,0,1>
+ 1997750428U, // <u,0,6,u>: Cost 2 vtrnl RHS, LHS
+ 2567446630U, // <u,0,7,0>: Cost 3 vext1 <2,u,0,7>, LHS
+ 2567447446U, // <u,0,7,1>: Cost 3 vext1 <2,u,0,7>, <1,2,3,0>
+ 2567448641U, // <u,0,7,2>: Cost 3 vext1 <2,u,0,7>, <2,u,0,7>
+ 2573421338U, // <u,0,7,3>: Cost 3 vext1 <3,u,0,7>, <3,u,0,7>
+ 2567449910U, // <u,0,7,4>: Cost 3 vext1 <2,u,0,7>, RHS
+ 2651682242U, // <u,0,7,5>: Cost 3 vext2 <5,6,u,0>, <7,5,6,u>
+ 2591339429U, // <u,0,7,6>: Cost 3 vext1 <6,u,0,7>, <6,u,0,7>
+ 2651682412U, // <u,0,7,7>: Cost 3 vext2 <5,6,u,0>, <7,7,7,7>
+ 2567452462U, // <u,0,7,u>: Cost 3 vext1 <2,u,0,7>, LHS
+ 135053414U, // <u,0,u,0>: Cost 1 vdup0 LHS
+ 1611489938U, // <u,0,u,1>: Cost 2 vext3 LHS, <0,u,1,1>
+ 537748125U, // <u,0,u,2>: Cost 1 vext3 LHS, LHS
+ 2685674148U, // <u,0,u,3>: Cost 3 vext3 LHS, <0,u,3,1>
+ 1611932338U, // <u,0,u,4>: Cost 2 vext3 LHS, <0,u,4,6>
+ 1551399066U, // <u,0,u,5>: Cost 2 vext2 <1,2,u,0>, RHS
+ 1517605798U, // <u,0,u,6>: Cost 2 vext1 <6,u,0,u>, <6,u,0,u>
+ 2830077481U, // <u,0,u,7>: Cost 3 vuzpr <1,u,3,0>, RHS
+ 537748179U, // <u,0,u,u>: Cost 1 vext3 LHS, LHS
+ 1544101961U, // <u,1,0,0>: Cost 2 vext2 <0,0,u,1>, <0,0,u,1>
+ 1558036582U, // <u,1,0,1>: Cost 2 vext2 <2,3,u,1>, LHS
+ 2619171051U, // <u,1,0,2>: Cost 3 vext2 <0,2,u,1>, <0,2,u,1>
+ 1611490038U, // <u,1,0,3>: Cost 2 vext3 LHS, <1,0,3,2>
+ 2555522358U, // <u,1,0,4>: Cost 3 vext1 <0,u,1,0>, RHS
+ 2712068871U, // <u,1,0,5>: Cost 3 vext3 RHS, <1,0,5,1>
+ 2591355815U, // <u,1,0,6>: Cost 3 vext1 <6,u,1,0>, <6,u,1,0>
+ 2597328512U, // <u,1,0,7>: Cost 3 vext1 <7,u,1,0>, <7,u,1,0>
+ 1611490083U, // <u,1,0,u>: Cost 2 vext3 LHS, <1,0,u,2>
+ 1481785446U, // <u,1,1,0>: Cost 2 vext1 <0,u,1,1>, LHS
+ 202162278U, // <u,1,1,1>: Cost 1 vdup1 LHS
+ 2555528808U, // <u,1,1,2>: Cost 3 vext1 <0,u,1,1>, <2,2,2,2>
+ 1611490120U, // <u,1,1,3>: Cost 2 vext3 LHS, <1,1,3,3>
+ 1481788726U, // <u,1,1,4>: Cost 2 vext1 <0,u,1,1>, RHS
+ 2689876828U, // <u,1,1,5>: Cost 3 vext3 LHS, <1,1,5,5>
+ 2591364008U, // <u,1,1,6>: Cost 3 vext1 <6,u,1,1>, <6,u,1,1>
+ 2592691274U, // <u,1,1,7>: Cost 3 vext1 <7,1,1,1>, <7,1,1,1>
+ 202162278U, // <u,1,1,u>: Cost 1 vdup1 LHS
+ 1499709542U, // <u,1,2,0>: Cost 2 vext1 <3,u,1,2>, LHS
+ 2689876871U, // <u,1,2,1>: Cost 3 vext3 LHS, <1,2,1,3>
+ 2631116445U, // <u,1,2,2>: Cost 3 vext2 <2,2,u,1>, <2,2,u,1>
+ 835584U, // <u,1,2,3>: Cost 0 copy LHS
+ 1499712822U, // <u,1,2,4>: Cost 2 vext1 <3,u,1,2>, RHS
+ 2689876907U, // <u,1,2,5>: Cost 3 vext3 LHS, <1,2,5,3>
+ 2631780282U, // <u,1,2,6>: Cost 3 vext2 <2,3,u,1>, <2,6,3,7>
+ 1523603074U, // <u,1,2,7>: Cost 2 vext1 <7,u,1,2>, <7,u,1,2>
+ 835584U, // <u,1,2,u>: Cost 0 copy LHS
+ 1487773798U, // <u,1,3,0>: Cost 2 vext1 <1,u,1,3>, LHS
+ 1611490264U, // <u,1,3,1>: Cost 2 vext3 LHS, <1,3,1,3>
+ 2685232094U, // <u,1,3,2>: Cost 3 vext3 LHS, <1,3,2,0>
+ 2018746470U, // <u,1,3,3>: Cost 2 vtrnr LHS, LHS
+ 1487777078U, // <u,1,3,4>: Cost 2 vext1 <1,u,1,3>, RHS
+ 1611490304U, // <u,1,3,5>: Cost 2 vext3 LHS, <1,3,5,7>
+ 2685674505U, // <u,1,3,6>: Cost 3 vext3 LHS, <1,3,6,7>
+ 2640407307U, // <u,1,3,7>: Cost 3 vext2 <3,7,u,1>, <3,7,u,1>
+ 1611490327U, // <u,1,3,u>: Cost 2 vext3 LHS, <1,3,u,3>
+ 1567992749U, // <u,1,4,0>: Cost 2 vext2 <4,0,u,1>, <4,0,u,1>
+ 2693121070U, // <u,1,4,1>: Cost 3 vext3 <1,4,1,u>, <1,4,1,u>
+ 2693194807U, // <u,1,4,2>: Cost 3 vext3 <1,4,2,u>, <1,4,2,u>
+ 1152386432U, // <u,1,4,3>: Cost 2 vrev <1,u,3,4>
+ 2555555126U, // <u,1,4,4>: Cost 3 vext1 <0,u,1,4>, RHS
+ 1558039862U, // <u,1,4,5>: Cost 2 vext2 <2,3,u,1>, RHS
+ 2645716371U, // <u,1,4,6>: Cost 3 vext2 <4,6,u,1>, <4,6,u,1>
+ 2597361284U, // <u,1,4,7>: Cost 3 vext1 <7,u,1,4>, <7,u,1,4>
+ 1152755117U, // <u,1,4,u>: Cost 2 vrev <1,u,u,4>
+ 1481818214U, // <u,1,5,0>: Cost 2 vext1 <0,u,1,5>, LHS
+ 2555560694U, // <u,1,5,1>: Cost 3 vext1 <0,u,1,5>, <1,0,3,2>
+ 2555561576U, // <u,1,5,2>: Cost 3 vext1 <0,u,1,5>, <2,2,2,2>
+ 1611490448U, // <u,1,5,3>: Cost 2 vext3 LHS, <1,5,3,7>
+ 1481821494U, // <u,1,5,4>: Cost 2 vext1 <0,u,1,5>, RHS
+ 2651025435U, // <u,1,5,5>: Cost 3 vext2 <5,5,u,1>, <5,5,u,1>
+ 2651689068U, // <u,1,5,6>: Cost 3 vext2 <5,6,u,1>, <5,6,u,1>
+ 2823966006U, // <u,1,5,7>: Cost 3 vuzpr <0,u,1,1>, RHS
+ 1611932861U, // <u,1,5,u>: Cost 2 vext3 LHS, <1,5,u,7>
+ 2555568230U, // <u,1,6,0>: Cost 3 vext1 <0,u,1,6>, LHS
+ 2689877199U, // <u,1,6,1>: Cost 3 vext3 LHS, <1,6,1,7>
+ 2712069336U, // <u,1,6,2>: Cost 3 vext3 RHS, <1,6,2,7>
+ 2685232353U, // <u,1,6,3>: Cost 3 vext3 LHS, <1,6,3,7>
+ 2555571510U, // <u,1,6,4>: Cost 3 vext1 <0,u,1,6>, RHS
+ 2689877235U, // <u,1,6,5>: Cost 3 vext3 LHS, <1,6,5,7>
+ 2657661765U, // <u,1,6,6>: Cost 3 vext2 <6,6,u,1>, <6,6,u,1>
+ 1584583574U, // <u,1,6,7>: Cost 2 vext2 <6,7,u,1>, <6,7,u,1>
+ 1585247207U, // <u,1,6,u>: Cost 2 vext2 <6,u,u,1>, <6,u,u,1>
+ 2561548390U, // <u,1,7,0>: Cost 3 vext1 <1,u,1,7>, LHS
+ 2561549681U, // <u,1,7,1>: Cost 3 vext1 <1,u,1,7>, <1,u,1,7>
+ 2573493926U, // <u,1,7,2>: Cost 3 vext1 <3,u,1,7>, <2,3,0,1>
+ 2042962022U, // <u,1,7,3>: Cost 2 vtrnr RHS, LHS
+ 2561551670U, // <u,1,7,4>: Cost 3 vext1 <1,u,1,7>, RHS
+ 2226300309U, // <u,1,7,5>: Cost 3 vrev <1,u,5,7>
+ 2658325990U, // <u,1,7,6>: Cost 3 vext2 <6,7,u,1>, <7,6,1,u>
+ 2658326124U, // <u,1,7,7>: Cost 3 vext2 <6,7,u,1>, <7,7,7,7>
+ 2042962027U, // <u,1,7,u>: Cost 2 vtrnr RHS, LHS
+ 1481842790U, // <u,1,u,0>: Cost 2 vext1 <0,u,1,u>, LHS
+ 202162278U, // <u,1,u,1>: Cost 1 vdup1 LHS
+ 2685674867U, // <u,1,u,2>: Cost 3 vext3 LHS, <1,u,2,0>
+ 835584U, // <u,1,u,3>: Cost 0 copy LHS
+ 1481846070U, // <u,1,u,4>: Cost 2 vext1 <0,u,1,u>, RHS
+ 1611933077U, // <u,1,u,5>: Cost 2 vext3 LHS, <1,u,5,7>
+ 2685674910U, // <u,1,u,6>: Cost 3 vext3 LHS, <1,u,6,7>
+ 1523652232U, // <u,1,u,7>: Cost 2 vext1 <7,u,1,u>, <7,u,1,u>
+ 835584U, // <u,1,u,u>: Cost 0 copy LHS
+ 1544110154U, // <u,2,0,0>: Cost 2 vext2 <0,0,u,2>, <0,0,u,2>
+ 1545437286U, // <u,2,0,1>: Cost 2 vext2 <0,2,u,2>, LHS
+ 1545437420U, // <u,2,0,2>: Cost 2 vext2 <0,2,u,2>, <0,2,u,2>
+ 2685232589U, // <u,2,0,3>: Cost 3 vext3 LHS, <2,0,3,0>
+ 2619179346U, // <u,2,0,4>: Cost 3 vext2 <0,2,u,2>, <0,4,1,5>
+ 2712069606U, // <u,2,0,5>: Cost 3 vext3 RHS, <2,0,5,7>
+ 2689877484U, // <u,2,0,6>: Cost 3 vext3 LHS, <2,0,6,4>
+ 2659656273U, // <u,2,0,7>: Cost 3 vext2 <7,0,u,2>, <0,7,2,u>
+ 1545437853U, // <u,2,0,u>: Cost 2 vext2 <0,2,u,2>, LHS
+ 1550082851U, // <u,2,1,0>: Cost 2 vext2 <1,0,u,2>, <1,0,u,2>
+ 2619179828U, // <u,2,1,1>: Cost 3 vext2 <0,2,u,2>, <1,1,1,1>
+ 2619179926U, // <u,2,1,2>: Cost 3 vext2 <0,2,u,2>, <1,2,3,0>
+ 2685232671U, // <u,2,1,3>: Cost 3 vext3 LHS, <2,1,3,1>
+ 2555604278U, // <u,2,1,4>: Cost 3 vext1 <0,u,2,1>, RHS
+ 2619180176U, // <u,2,1,5>: Cost 3 vext2 <0,2,u,2>, <1,5,3,7>
+ 2689877564U, // <u,2,1,6>: Cost 3 vext3 LHS, <2,1,6,3>
+ 2602718850U, // <u,2,1,7>: Cost 3 vext1 <u,7,2,1>, <7,u,1,2>
+ 1158703235U, // <u,2,1,u>: Cost 2 vrev <2,u,u,1>
+ 1481867366U, // <u,2,2,0>: Cost 2 vext1 <0,u,2,2>, LHS
+ 2555609846U, // <u,2,2,1>: Cost 3 vext1 <0,u,2,2>, <1,0,3,2>
+ 269271142U, // <u,2,2,2>: Cost 1 vdup2 LHS
+ 1611490930U, // <u,2,2,3>: Cost 2 vext3 LHS, <2,2,3,3>
+ 1481870646U, // <u,2,2,4>: Cost 2 vext1 <0,u,2,2>, RHS
+ 2689877640U, // <u,2,2,5>: Cost 3 vext3 LHS, <2,2,5,7>
+ 2619180986U, // <u,2,2,6>: Cost 3 vext2 <0,2,u,2>, <2,6,3,7>
+ 2593436837U, // <u,2,2,7>: Cost 3 vext1 <7,2,2,2>, <7,2,2,2>
+ 269271142U, // <u,2,2,u>: Cost 1 vdup2 LHS
+ 408134301U, // <u,2,3,0>: Cost 1 vext1 LHS, LHS
+ 1481876214U, // <u,2,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 1481877096U, // <u,2,3,2>: Cost 2 vext1 LHS, <2,2,2,2>
+ 1880326246U, // <u,2,3,3>: Cost 2 vzipr LHS, LHS
+ 408137014U, // <u,2,3,4>: Cost 1 vext1 LHS, RHS
+ 1529654992U, // <u,2,3,5>: Cost 2 vext1 LHS, <5,1,7,3>
+ 1529655802U, // <u,2,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1529656314U, // <u,2,3,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 408139566U, // <u,2,3,u>: Cost 1 vext1 LHS, LHS
+ 1567853468U, // <u,2,4,0>: Cost 2 vext2 <4,0,6,2>, <4,0,6,2>
+ 2561598362U, // <u,2,4,1>: Cost 3 vext1 <1,u,2,4>, <1,2,3,4>
+ 2555627214U, // <u,2,4,2>: Cost 3 vext1 <0,u,2,4>, <2,3,4,5>
+ 2685232918U, // <u,2,4,3>: Cost 3 vext3 LHS, <2,4,3,5>
+ 2555628854U, // <u,2,4,4>: Cost 3 vext1 <0,u,2,4>, RHS
+ 1545440566U, // <u,2,4,5>: Cost 2 vext2 <0,2,u,2>, RHS
+ 1571982740U, // <u,2,4,6>: Cost 2 vext2 <4,6,u,2>, <4,6,u,2>
+ 2592125957U, // <u,2,4,7>: Cost 3 vext1 <7,0,2,4>, <7,0,2,4>
+ 1545440809U, // <u,2,4,u>: Cost 2 vext2 <0,2,u,2>, RHS
+ 2555633766U, // <u,2,5,0>: Cost 3 vext1 <0,u,2,5>, LHS
+ 2561606550U, // <u,2,5,1>: Cost 3 vext1 <1,u,2,5>, <1,2,3,0>
+ 2689877856U, // <u,2,5,2>: Cost 3 vext3 LHS, <2,5,2,7>
+ 2685233000U, // <u,2,5,3>: Cost 3 vext3 LHS, <2,5,3,6>
+ 1158441059U, // <u,2,5,4>: Cost 2 vrev <2,u,4,5>
+ 2645725188U, // <u,2,5,5>: Cost 3 vext2 <4,6,u,2>, <5,5,5,5>
+ 2689877892U, // <u,2,5,6>: Cost 3 vext3 LHS, <2,5,6,7>
+ 2823900470U, // <u,2,5,7>: Cost 3 vuzpr <0,u,0,2>, RHS
+ 1158736007U, // <u,2,5,u>: Cost 2 vrev <2,u,u,5>
+ 1481900134U, // <u,2,6,0>: Cost 2 vext1 <0,u,2,6>, LHS
+ 2555642614U, // <u,2,6,1>: Cost 3 vext1 <0,u,2,6>, <1,0,3,2>
+ 2555643496U, // <u,2,6,2>: Cost 3 vext1 <0,u,2,6>, <2,2,2,2>
+ 1611491258U, // <u,2,6,3>: Cost 2 vext3 LHS, <2,6,3,7>
+ 1481903414U, // <u,2,6,4>: Cost 2 vext1 <0,u,2,6>, RHS
+ 2689877964U, // <u,2,6,5>: Cost 3 vext3 LHS, <2,6,5,7>
+ 2689877973U, // <u,2,6,6>: Cost 3 vext3 LHS, <2,6,6,7>
+ 2645726030U, // <u,2,6,7>: Cost 3 vext2 <4,6,u,2>, <6,7,0,1>
+ 1611933671U, // <u,2,6,u>: Cost 2 vext3 LHS, <2,6,u,7>
+ 1585919033U, // <u,2,7,0>: Cost 2 vext2 <7,0,u,2>, <7,0,u,2>
+ 2573566710U, // <u,2,7,1>: Cost 3 vext1 <3,u,2,7>, <1,0,3,2>
+ 2567596115U, // <u,2,7,2>: Cost 3 vext1 <2,u,2,7>, <2,u,2,7>
+ 1906901094U, // <u,2,7,3>: Cost 2 vzipr RHS, LHS
+ 2555653430U, // <u,2,7,4>: Cost 3 vext1 <0,u,2,7>, RHS
+ 2800080230U, // <u,2,7,5>: Cost 3 vuzpl LHS, <7,4,5,6>
+ 2980643164U, // <u,2,7,6>: Cost 3 vzipr RHS, <0,4,2,6>
+ 2645726828U, // <u,2,7,7>: Cost 3 vext2 <4,6,u,2>, <7,7,7,7>
+ 1906901099U, // <u,2,7,u>: Cost 2 vzipr RHS, LHS
+ 408175266U, // <u,2,u,0>: Cost 1 vext1 LHS, LHS
+ 1545443118U, // <u,2,u,1>: Cost 2 vext2 <0,2,u,2>, LHS
+ 269271142U, // <u,2,u,2>: Cost 1 vdup2 LHS
+ 1611491416U, // <u,2,u,3>: Cost 2 vext3 LHS, <2,u,3,3>
+ 408177974U, // <u,2,u,4>: Cost 1 vext1 LHS, RHS
+ 1545443482U, // <u,2,u,5>: Cost 2 vext2 <0,2,u,2>, RHS
+ 1726339226U, // <u,2,u,6>: Cost 2 vuzpl LHS, RHS
+ 1529697274U, // <u,2,u,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 408180526U, // <u,2,u,u>: Cost 1 vext1 LHS, LHS
+ 1544781824U, // <u,3,0,0>: Cost 2 vext2 LHS, <0,0,0,0>
+ 471040156U, // <u,3,0,1>: Cost 1 vext2 LHS, LHS
+ 1544781988U, // <u,3,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 2618523900U, // <u,3,0,3>: Cost 3 vext2 LHS, <0,3,1,0>
+ 1544782162U, // <u,3,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 2238188352U, // <u,3,0,5>: Cost 3 vrev <3,u,5,0>
+ 2623169023U, // <u,3,0,6>: Cost 3 vext2 LHS, <0,6,2,7>
+ 2238335826U, // <u,3,0,7>: Cost 3 vrev <3,u,7,0>
+ 471040669U, // <u,3,0,u>: Cost 1 vext2 LHS, LHS
+ 1544782582U, // <u,3,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 1544782644U, // <u,3,1,1>: Cost 2 vext2 LHS, <1,1,1,1>
+ 1544782742U, // <u,3,1,2>: Cost 2 vext2 LHS, <1,2,3,0>
+ 1544782808U, // <u,3,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 2618524733U, // <u,3,1,4>: Cost 3 vext2 LHS, <1,4,3,5>
+ 1544782992U, // <u,3,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 2618524897U, // <u,3,1,6>: Cost 3 vext2 LHS, <1,6,3,7>
+ 2703517987U, // <u,3,1,7>: Cost 3 vext3 <3,1,7,u>, <3,1,7,u>
+ 1544783213U, // <u,3,1,u>: Cost 2 vext2 LHS, <1,u,1,3>
+ 1529716838U, // <u,3,2,0>: Cost 2 vext1 <u,u,3,2>, LHS
+ 1164167966U, // <u,3,2,1>: Cost 2 vrev <3,u,1,2>
+ 1544783464U, // <u,3,2,2>: Cost 2 vext2 LHS, <2,2,2,2>
+ 1544783526U, // <u,3,2,3>: Cost 2 vext2 LHS, <2,3,0,1>
+ 1529720118U, // <u,3,2,4>: Cost 2 vext1 <u,u,3,2>, RHS
+ 2618525544U, // <u,3,2,5>: Cost 3 vext2 LHS, <2,5,3,6>
+ 1544783802U, // <u,3,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 2704181620U, // <u,3,2,7>: Cost 3 vext3 <3,2,7,u>, <3,2,7,u>
+ 1544783931U, // <u,3,2,u>: Cost 2 vext2 LHS, <2,u,0,1>
+ 1544784022U, // <u,3,3,0>: Cost 2 vext2 LHS, <3,0,1,2>
+ 1487922559U, // <u,3,3,1>: Cost 2 vext1 <1,u,3,3>, <1,u,3,3>
+ 1493895256U, // <u,3,3,2>: Cost 2 vext1 <2,u,3,3>, <2,u,3,3>
+ 336380006U, // <u,3,3,3>: Cost 1 vdup3 LHS
+ 1544784386U, // <u,3,3,4>: Cost 2 vext2 LHS, <3,4,5,6>
+ 2824054478U, // <u,3,3,5>: Cost 3 vuzpr LHS, <2,3,4,5>
+ 2238286668U, // <u,3,3,6>: Cost 3 vrev <3,u,6,3>
+ 2954069136U, // <u,3,3,7>: Cost 3 vzipr LHS, <1,5,3,7>
+ 336380006U, // <u,3,3,u>: Cost 1 vdup3 LHS
+ 1487929446U, // <u,3,4,0>: Cost 2 vext1 <1,u,3,4>, LHS
+ 1487930752U, // <u,3,4,1>: Cost 2 vext1 <1,u,3,4>, <1,u,3,4>
+ 2623171644U, // <u,3,4,2>: Cost 3 vext2 LHS, <4,2,6,0>
+ 2561673366U, // <u,3,4,3>: Cost 3 vext1 <1,u,3,4>, <3,0,1,2>
+ 1487932726U, // <u,3,4,4>: Cost 2 vext1 <1,u,3,4>, RHS
+ 471043382U, // <u,3,4,5>: Cost 1 vext2 LHS, RHS
+ 1592561012U, // <u,3,4,6>: Cost 2 vext2 LHS, <4,6,4,6>
+ 2238368598U, // <u,3,4,7>: Cost 3 vrev <3,u,7,4>
+ 471043625U, // <u,3,4,u>: Cost 1 vext2 LHS, RHS
+ 2555707494U, // <u,3,5,0>: Cost 3 vext1 <0,u,3,5>, LHS
+ 1574645465U, // <u,3,5,1>: Cost 2 vext2 <5,1,u,3>, <5,1,u,3>
+ 2567653106U, // <u,3,5,2>: Cost 3 vext1 <2,u,3,5>, <2,3,u,5>
+ 2555709954U, // <u,3,5,3>: Cost 3 vext1 <0,u,3,5>, <3,4,5,6>
+ 1592561606U, // <u,3,5,4>: Cost 2 vext2 LHS, <5,4,7,6>
+ 1592561668U, // <u,3,5,5>: Cost 2 vext2 LHS, <5,5,5,5>
+ 1592561762U, // <u,3,5,6>: Cost 2 vext2 LHS, <5,6,7,0>
+ 1750314294U, // <u,3,5,7>: Cost 2 vuzpr LHS, RHS
+ 1750314295U, // <u,3,5,u>: Cost 2 vuzpr LHS, RHS
+ 2623172897U, // <u,3,6,0>: Cost 3 vext2 LHS, <6,0,1,2>
+ 2561688962U, // <u,3,6,1>: Cost 3 vext1 <1,u,3,6>, <1,u,3,6>
+ 1581281795U, // <u,3,6,2>: Cost 2 vext2 <6,2,u,3>, <6,2,u,3>
+ 2706541204U, // <u,3,6,3>: Cost 3 vext3 <3,6,3,u>, <3,6,3,u>
+ 2623173261U, // <u,3,6,4>: Cost 3 vext2 LHS, <6,4,5,6>
+ 1164495686U, // <u,3,6,5>: Cost 2 vrev <3,u,5,6>
+ 1592562488U, // <u,3,6,6>: Cost 2 vext2 LHS, <6,6,6,6>
+ 1592562510U, // <u,3,6,7>: Cost 2 vext2 LHS, <6,7,0,1>
+ 1164716897U, // <u,3,6,u>: Cost 2 vrev <3,u,u,6>
+ 1487954022U, // <u,3,7,0>: Cost 2 vext1 <1,u,3,7>, LHS
+ 1487955331U, // <u,3,7,1>: Cost 2 vext1 <1,u,3,7>, <1,u,3,7>
+ 1493928028U, // <u,3,7,2>: Cost 2 vext1 <2,u,3,7>, <2,u,3,7>
+ 2561697942U, // <u,3,7,3>: Cost 3 vext1 <1,u,3,7>, <3,0,1,2>
+ 1487957302U, // <u,3,7,4>: Cost 2 vext1 <1,u,3,7>, RHS
+ 2707352311U, // <u,3,7,5>: Cost 3 vext3 <3,7,5,u>, <3,7,5,u>
+ 2655024623U, // <u,3,7,6>: Cost 3 vext2 <6,2,u,3>, <7,6,2,u>
+ 1592563308U, // <u,3,7,7>: Cost 2 vext2 LHS, <7,7,7,7>
+ 1487959854U, // <u,3,7,u>: Cost 2 vext1 <1,u,3,7>, LHS
+ 1544787667U, // <u,3,u,0>: Cost 2 vext2 LHS, <u,0,1,2>
+ 471045934U, // <u,3,u,1>: Cost 1 vext2 LHS, LHS
+ 1549432709U, // <u,3,u,2>: Cost 2 vext2 LHS, <u,2,3,0>
+ 336380006U, // <u,3,u,3>: Cost 1 vdup3 LHS
+ 1544788031U, // <u,3,u,4>: Cost 2 vext2 LHS, <u,4,5,6>
+ 471046298U, // <u,3,u,5>: Cost 1 vext2 LHS, RHS
+ 1549433040U, // <u,3,u,6>: Cost 2 vext2 LHS, <u,6,3,7>
+ 1750314537U, // <u,3,u,7>: Cost 2 vuzpr LHS, RHS
+ 471046501U, // <u,3,u,u>: Cost 1 vext2 LHS, LHS
+ 2625167360U, // <u,4,0,0>: Cost 3 vext2 <1,2,u,4>, <0,0,0,0>
+ 1551425638U, // <u,4,0,1>: Cost 2 vext2 <1,2,u,4>, LHS
+ 2619195630U, // <u,4,0,2>: Cost 3 vext2 <0,2,u,4>, <0,2,u,4>
+ 2619343104U, // <u,4,0,3>: Cost 3 vext2 <0,3,1,4>, <0,3,1,4>
+ 2625167698U, // <u,4,0,4>: Cost 3 vext2 <1,2,u,4>, <0,4,1,5>
+ 1638329234U, // <u,4,0,5>: Cost 2 vext3 RHS, <4,0,5,1>
+ 1638329244U, // <u,4,0,6>: Cost 2 vext3 RHS, <4,0,6,2>
+ 3787803556U, // <u,4,0,7>: Cost 4 vext3 RHS, <4,0,7,1>
+ 1551426205U, // <u,4,0,u>: Cost 2 vext2 <1,2,u,4>, LHS
+ 2555748454U, // <u,4,1,0>: Cost 3 vext1 <0,u,4,1>, LHS
+ 2625168180U, // <u,4,1,1>: Cost 3 vext2 <1,2,u,4>, <1,1,1,1>
+ 1551426503U, // <u,4,1,2>: Cost 2 vext2 <1,2,u,4>, <1,2,u,4>
+ 2625168344U, // <u,4,1,3>: Cost 3 vext2 <1,2,u,4>, <1,3,1,3>
+ 2555751734U, // <u,4,1,4>: Cost 3 vext1 <0,u,4,1>, RHS
+ 1860554038U, // <u,4,1,5>: Cost 2 vzipl LHS, RHS
+ 2689879022U, // <u,4,1,6>: Cost 3 vext3 LHS, <4,1,6,3>
+ 2592248852U, // <u,4,1,7>: Cost 3 vext1 <7,0,4,1>, <7,0,4,1>
+ 1555408301U, // <u,4,1,u>: Cost 2 vext2 <1,u,u,4>, <1,u,u,4>
+ 2555756646U, // <u,4,2,0>: Cost 3 vext1 <0,u,4,2>, LHS
+ 2625168943U, // <u,4,2,1>: Cost 3 vext2 <1,2,u,4>, <2,1,4,u>
+ 2625169000U, // <u,4,2,2>: Cost 3 vext2 <1,2,u,4>, <2,2,2,2>
+ 2619197134U, // <u,4,2,3>: Cost 3 vext2 <0,2,u,4>, <2,3,4,5>
+ 2555759926U, // <u,4,2,4>: Cost 3 vext1 <0,u,4,2>, RHS
+ 2712071222U, // <u,4,2,5>: Cost 3 vext3 RHS, <4,2,5,3>
+ 1994771766U, // <u,4,2,6>: Cost 2 vtrnl LHS, RHS
+ 2592257045U, // <u,4,2,7>: Cost 3 vext1 <7,0,4,2>, <7,0,4,2>
+ 1994771784U, // <u,4,2,u>: Cost 2 vtrnl LHS, RHS
+ 2625169558U, // <u,4,3,0>: Cost 3 vext2 <1,2,u,4>, <3,0,1,2>
+ 2567709594U, // <u,4,3,1>: Cost 3 vext1 <2,u,4,3>, <1,2,3,4>
+ 2567710817U, // <u,4,3,2>: Cost 3 vext1 <2,u,4,3>, <2,u,4,3>
+ 2625169820U, // <u,4,3,3>: Cost 3 vext2 <1,2,u,4>, <3,3,3,3>
+ 2625169922U, // <u,4,3,4>: Cost 3 vext2 <1,2,u,4>, <3,4,5,6>
+ 2954069710U, // <u,4,3,5>: Cost 3 vzipr LHS, <2,3,4,5>
+ 2954068172U, // <u,4,3,6>: Cost 3 vzipr LHS, <0,2,4,6>
+ 3903849472U, // <u,4,3,7>: Cost 4 vuzpr <1,u,3,4>, <1,3,5,7>
+ 2954068174U, // <u,4,3,u>: Cost 3 vzipr LHS, <0,2,4,u>
+ 1505919078U, // <u,4,4,0>: Cost 2 vext1 <4,u,4,4>, LHS
+ 2567717831U, // <u,4,4,1>: Cost 3 vext1 <2,u,4,4>, <1,2,u,4>
+ 2567719010U, // <u,4,4,2>: Cost 3 vext1 <2,u,4,4>, <2,u,4,4>
+ 2570373542U, // <u,4,4,3>: Cost 3 vext1 <3,3,4,4>, <3,3,4,4>
+ 161926454U, // <u,4,4,4>: Cost 1 vdup0 RHS
+ 1551428918U, // <u,4,4,5>: Cost 2 vext2 <1,2,u,4>, RHS
+ 1638329572U, // <u,4,4,6>: Cost 2 vext3 RHS, <4,4,6,6>
+ 2594927963U, // <u,4,4,7>: Cost 3 vext1 <7,4,4,4>, <7,4,4,4>
+ 161926454U, // <u,4,4,u>: Cost 1 vdup0 RHS
+ 1493983334U, // <u,4,5,0>: Cost 2 vext1 <2,u,4,5>, LHS
+ 2689879301U, // <u,4,5,1>: Cost 3 vext3 LHS, <4,5,1,3>
+ 1493985379U, // <u,4,5,2>: Cost 2 vext1 <2,u,4,5>, <2,u,4,5>
+ 2567727254U, // <u,4,5,3>: Cost 3 vext1 <2,u,4,5>, <3,0,1,2>
+ 1493986614U, // <u,4,5,4>: Cost 2 vext1 <2,u,4,5>, RHS
+ 1863535926U, // <u,4,5,5>: Cost 2 vzipl RHS, RHS
+ 537750838U, // <u,4,5,6>: Cost 1 vext3 LHS, RHS
+ 2830110006U, // <u,4,5,7>: Cost 3 vuzpr <1,u,3,4>, RHS
+ 537750856U, // <u,4,5,u>: Cost 1 vext3 LHS, RHS
+ 1482047590U, // <u,4,6,0>: Cost 2 vext1 <0,u,4,6>, LHS
+ 2555790070U, // <u,4,6,1>: Cost 3 vext1 <0,u,4,6>, <1,0,3,2>
+ 2555790952U, // <u,4,6,2>: Cost 3 vext1 <0,u,4,6>, <2,2,2,2>
+ 2555791510U, // <u,4,6,3>: Cost 3 vext1 <0,u,4,6>, <3,0,1,2>
+ 1482050870U, // <u,4,6,4>: Cost 2 vext1 <0,u,4,6>, RHS
+ 2689879422U, // <u,4,6,5>: Cost 3 vext3 LHS, <4,6,5,7>
+ 1997753654U, // <u,4,6,6>: Cost 2 vtrnl RHS, RHS
+ 2712071562U, // <u,4,6,7>: Cost 3 vext3 RHS, <4,6,7,1>
+ 1482053422U, // <u,4,6,u>: Cost 2 vext1 <0,u,4,6>, LHS
+ 2567741542U, // <u,4,7,0>: Cost 3 vext1 <2,u,4,7>, LHS
+ 2567742362U, // <u,4,7,1>: Cost 3 vext1 <2,u,4,7>, <1,2,3,4>
+ 2567743589U, // <u,4,7,2>: Cost 3 vext1 <2,u,4,7>, <2,u,4,7>
+ 2573716286U, // <u,4,7,3>: Cost 3 vext1 <3,u,4,7>, <3,u,4,7>
+ 2567744822U, // <u,4,7,4>: Cost 3 vext1 <2,u,4,7>, RHS
+ 2712071624U, // <u,4,7,5>: Cost 3 vext3 RHS, <4,7,5,0>
+ 96808489U, // <u,4,7,6>: Cost 1 vrev RHS
+ 2651715180U, // <u,4,7,7>: Cost 3 vext2 <5,6,u,4>, <7,7,7,7>
+ 96955963U, // <u,4,7,u>: Cost 1 vrev RHS
+ 1482063974U, // <u,4,u,0>: Cost 2 vext1 <0,u,4,u>, LHS
+ 1551431470U, // <u,4,u,1>: Cost 2 vext2 <1,2,u,4>, LHS
+ 1494009958U, // <u,4,u,2>: Cost 2 vext1 <2,u,4,u>, <2,u,4,u>
+ 2555807894U, // <u,4,u,3>: Cost 3 vext1 <0,u,4,u>, <3,0,1,2>
+ 161926454U, // <u,4,u,4>: Cost 1 vdup0 RHS
+ 1551431834U, // <u,4,u,5>: Cost 2 vext2 <1,2,u,4>, RHS
+ 537751081U, // <u,4,u,6>: Cost 1 vext3 LHS, RHS
+ 2830110249U, // <u,4,u,7>: Cost 3 vuzpr <1,u,3,4>, RHS
+ 537751099U, // <u,4,u,u>: Cost 1 vext3 LHS, RHS
+ 2631811072U, // <u,5,0,0>: Cost 3 vext2 <2,3,u,5>, <0,0,0,0>
+ 1558069350U, // <u,5,0,1>: Cost 2 vext2 <2,3,u,5>, LHS
+ 2619203823U, // <u,5,0,2>: Cost 3 vext2 <0,2,u,5>, <0,2,u,5>
+ 2619867456U, // <u,5,0,3>: Cost 3 vext2 <0,3,u,5>, <0,3,u,5>
+ 1546273106U, // <u,5,0,4>: Cost 2 vext2 <0,4,1,5>, <0,4,1,5>
+ 2733010539U, // <u,5,0,5>: Cost 3 vext3 LHS, <5,0,5,1>
+ 2597622682U, // <u,5,0,6>: Cost 3 vext1 <7,u,5,0>, <6,7,u,5>
+ 1176539396U, // <u,5,0,7>: Cost 2 vrev <5,u,7,0>
+ 1558069917U, // <u,5,0,u>: Cost 2 vext2 <2,3,u,5>, LHS
+ 1505968230U, // <u,5,1,0>: Cost 2 vext1 <4,u,5,1>, LHS
+ 2624512887U, // <u,5,1,1>: Cost 3 vext2 <1,1,u,5>, <1,1,u,5>
+ 2631811990U, // <u,5,1,2>: Cost 3 vext2 <2,3,u,5>, <1,2,3,0>
+ 2618541056U, // <u,5,1,3>: Cost 3 vext2 <0,1,u,5>, <1,3,5,7>
+ 1505971510U, // <u,5,1,4>: Cost 2 vext1 <4,u,5,1>, RHS
+ 2627167419U, // <u,5,1,5>: Cost 3 vext2 <1,5,u,5>, <1,5,u,5>
+ 2579714554U, // <u,5,1,6>: Cost 3 vext1 <4,u,5,1>, <6,2,7,3>
+ 1638330064U, // <u,5,1,7>: Cost 2 vext3 RHS, <5,1,7,3>
+ 1638477529U, // <u,5,1,u>: Cost 2 vext3 RHS, <5,1,u,3>
+ 2561802342U, // <u,5,2,0>: Cost 3 vext1 <1,u,5,2>, LHS
+ 2561803264U, // <u,5,2,1>: Cost 3 vext1 <1,u,5,2>, <1,3,5,7>
+ 2631149217U, // <u,5,2,2>: Cost 3 vext2 <2,2,u,5>, <2,2,u,5>
+ 1558071026U, // <u,5,2,3>: Cost 2 vext2 <2,3,u,5>, <2,3,u,5>
+ 2561805622U, // <u,5,2,4>: Cost 3 vext1 <1,u,5,2>, RHS
+ 2714062607U, // <u,5,2,5>: Cost 3 vext3 RHS, <5,2,5,3>
+ 2631813050U, // <u,5,2,6>: Cost 3 vext2 <2,3,u,5>, <2,6,3,7>
+ 3092335926U, // <u,5,2,7>: Cost 3 vtrnr <0,u,0,2>, RHS
+ 1561389191U, // <u,5,2,u>: Cost 2 vext2 <2,u,u,5>, <2,u,u,5>
+ 2561810534U, // <u,5,3,0>: Cost 3 vext1 <1,u,5,3>, LHS
+ 2561811857U, // <u,5,3,1>: Cost 3 vext1 <1,u,5,3>, <1,u,5,3>
+ 2631813474U, // <u,5,3,2>: Cost 3 vext2 <2,3,u,5>, <3,2,5,u>
+ 2631813532U, // <u,5,3,3>: Cost 3 vext2 <2,3,u,5>, <3,3,3,3>
+ 2619869698U, // <u,5,3,4>: Cost 3 vext2 <0,3,u,5>, <3,4,5,6>
+ 3001847002U, // <u,5,3,5>: Cost 3 vzipr LHS, <4,4,5,5>
+ 2954070530U, // <u,5,3,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 2018749750U, // <u,5,3,7>: Cost 2 vtrnr LHS, RHS
+ 2018749751U, // <u,5,3,u>: Cost 2 vtrnr LHS, RHS
+ 2573762662U, // <u,5,4,0>: Cost 3 vext1 <3,u,5,4>, LHS
+ 2620017634U, // <u,5,4,1>: Cost 3 vext2 <0,4,1,5>, <4,1,5,0>
+ 2573764338U, // <u,5,4,2>: Cost 3 vext1 <3,u,5,4>, <2,3,u,5>
+ 2573765444U, // <u,5,4,3>: Cost 3 vext1 <3,u,5,4>, <3,u,5,4>
+ 1570680053U, // <u,5,4,4>: Cost 2 vext2 <4,4,u,5>, <4,4,u,5>
+ 1558072630U, // <u,5,4,5>: Cost 2 vext2 <2,3,u,5>, RHS
+ 2645749143U, // <u,5,4,6>: Cost 3 vext2 <4,6,u,5>, <4,6,u,5>
+ 1638330310U, // <u,5,4,7>: Cost 2 vext3 RHS, <5,4,7,6>
+ 1558072873U, // <u,5,4,u>: Cost 2 vext2 <2,3,u,5>, RHS
+ 1506000998U, // <u,5,5,0>: Cost 2 vext1 <4,u,5,5>, LHS
+ 2561827984U, // <u,5,5,1>: Cost 3 vext1 <1,u,5,5>, <1,5,3,7>
+ 2579744360U, // <u,5,5,2>: Cost 3 vext1 <4,u,5,5>, <2,2,2,2>
+ 2579744918U, // <u,5,5,3>: Cost 3 vext1 <4,u,5,5>, <3,0,1,2>
+ 1506004278U, // <u,5,5,4>: Cost 2 vext1 <4,u,5,5>, RHS
+ 229035318U, // <u,5,5,5>: Cost 1 vdup1 RHS
+ 2712072206U, // <u,5,5,6>: Cost 3 vext3 RHS, <5,5,6,6>
+ 1638330392U, // <u,5,5,7>: Cost 2 vext3 RHS, <5,5,7,7>
+ 229035318U, // <u,5,5,u>: Cost 1 vdup1 RHS
+ 1500037222U, // <u,5,6,0>: Cost 2 vext1 <3,u,5,6>, LHS
+ 2561836436U, // <u,5,6,1>: Cost 3 vext1 <1,u,5,6>, <1,u,5,6>
+ 2567809133U, // <u,5,6,2>: Cost 3 vext1 <2,u,5,6>, <2,u,5,6>
+ 1500040006U, // <u,5,6,3>: Cost 2 vext1 <3,u,5,6>, <3,u,5,6>
+ 1500040502U, // <u,5,6,4>: Cost 2 vext1 <3,u,5,6>, RHS
+ 2714062935U, // <u,5,6,5>: Cost 3 vext3 RHS, <5,6,5,7>
+ 2712072288U, // <u,5,6,6>: Cost 3 vext3 RHS, <5,6,6,7>
+ 27705344U, // <u,5,6,7>: Cost 0 copy RHS
+ 27705344U, // <u,5,6,u>: Cost 0 copy RHS
+ 1488101478U, // <u,5,7,0>: Cost 2 vext1 <1,u,5,7>, LHS
+ 1488102805U, // <u,5,7,1>: Cost 2 vext1 <1,u,5,7>, <1,u,5,7>
+ 2561844840U, // <u,5,7,2>: Cost 3 vext1 <1,u,5,7>, <2,2,2,2>
+ 2561845398U, // <u,5,7,3>: Cost 3 vext1 <1,u,5,7>, <3,0,1,2>
+ 1488104758U, // <u,5,7,4>: Cost 2 vext1 <1,u,5,7>, RHS
+ 1638330536U, // <u,5,7,5>: Cost 2 vext3 RHS, <5,7,5,7>
+ 2712072362U, // <u,5,7,6>: Cost 3 vext3 RHS, <5,7,6,0>
+ 2042965302U, // <u,5,7,7>: Cost 2 vtrnr RHS, RHS
+ 1488107310U, // <u,5,7,u>: Cost 2 vext1 <1,u,5,7>, LHS
+ 1488109670U, // <u,5,u,0>: Cost 2 vext1 <1,u,5,u>, LHS
+ 1488110998U, // <u,5,u,1>: Cost 2 vext1 <1,u,5,u>, <1,u,5,u>
+ 2561853032U, // <u,5,u,2>: Cost 3 vext1 <1,u,5,u>, <2,2,2,2>
+ 1500056392U, // <u,5,u,3>: Cost 2 vext1 <3,u,5,u>, <3,u,5,u>
+ 1488112950U, // <u,5,u,4>: Cost 2 vext1 <1,u,5,u>, RHS
+ 229035318U, // <u,5,u,5>: Cost 1 vdup1 RHS
+ 2954111490U, // <u,5,u,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 27705344U, // <u,5,u,7>: Cost 0 copy RHS
+ 27705344U, // <u,5,u,u>: Cost 0 copy RHS
+ 2619211776U, // <u,6,0,0>: Cost 3 vext2 <0,2,u,6>, <0,0,0,0>
+ 1545470054U, // <u,6,0,1>: Cost 2 vext2 <0,2,u,6>, LHS
+ 1545470192U, // <u,6,0,2>: Cost 2 vext2 <0,2,u,6>, <0,2,u,6>
+ 2255958969U, // <u,6,0,3>: Cost 3 vrev <6,u,3,0>
+ 1546797458U, // <u,6,0,4>: Cost 2 vext2 <0,4,u,6>, <0,4,u,6>
+ 2720624971U, // <u,6,0,5>: Cost 3 vext3 <6,0,5,u>, <6,0,5,u>
+ 2256180180U, // <u,6,0,6>: Cost 3 vrev <6,u,6,0>
+ 2960682294U, // <u,6,0,7>: Cost 3 vzipr <1,2,u,0>, RHS
+ 1545470621U, // <u,6,0,u>: Cost 2 vext2 <0,2,u,6>, LHS
+ 1182004127U, // <u,6,1,0>: Cost 2 vrev <6,u,0,1>
+ 2619212596U, // <u,6,1,1>: Cost 3 vext2 <0,2,u,6>, <1,1,1,1>
+ 2619212694U, // <u,6,1,2>: Cost 3 vext2 <0,2,u,6>, <1,2,3,0>
+ 2619212760U, // <u,6,1,3>: Cost 3 vext2 <0,2,u,6>, <1,3,1,3>
+ 2626511979U, // <u,6,1,4>: Cost 3 vext2 <1,4,u,6>, <1,4,u,6>
+ 2619212944U, // <u,6,1,5>: Cost 3 vext2 <0,2,u,6>, <1,5,3,7>
+ 2714063264U, // <u,6,1,6>: Cost 3 vext3 RHS, <6,1,6,3>
+ 2967326006U, // <u,6,1,7>: Cost 3 vzipr <2,3,u,1>, RHS
+ 1182594023U, // <u,6,1,u>: Cost 2 vrev <6,u,u,1>
+ 1506050150U, // <u,6,2,0>: Cost 2 vext1 <4,u,6,2>, LHS
+ 2579792630U, // <u,6,2,1>: Cost 3 vext1 <4,u,6,2>, <1,0,3,2>
+ 2619213416U, // <u,6,2,2>: Cost 3 vext2 <0,2,u,6>, <2,2,2,2>
+ 2619213478U, // <u,6,2,3>: Cost 3 vext2 <0,2,u,6>, <2,3,0,1>
+ 1506053430U, // <u,6,2,4>: Cost 2 vext1 <4,u,6,2>, RHS
+ 2633148309U, // <u,6,2,5>: Cost 3 vext2 <2,5,u,6>, <2,5,u,6>
+ 2619213754U, // <u,6,2,6>: Cost 3 vext2 <0,2,u,6>, <2,6,3,7>
+ 1638330874U, // <u,6,2,7>: Cost 2 vext3 RHS, <6,2,7,3>
+ 1638478339U, // <u,6,2,u>: Cost 2 vext3 RHS, <6,2,u,3>
+ 2619213974U, // <u,6,3,0>: Cost 3 vext2 <0,2,u,6>, <3,0,1,2>
+ 2255836074U, // <u,6,3,1>: Cost 3 vrev <6,u,1,3>
+ 2255909811U, // <u,6,3,2>: Cost 3 vrev <6,u,2,3>
+ 2619214236U, // <u,6,3,3>: Cost 3 vext2 <0,2,u,6>, <3,3,3,3>
+ 1564715549U, // <u,6,3,4>: Cost 2 vext2 <3,4,u,6>, <3,4,u,6>
+ 2639121006U, // <u,6,3,5>: Cost 3 vext2 <3,5,u,6>, <3,5,u,6>
+ 3001847012U, // <u,6,3,6>: Cost 3 vzipr LHS, <4,4,6,6>
+ 1880329526U, // <u,6,3,7>: Cost 2 vzipr LHS, RHS
+ 1880329527U, // <u,6,3,u>: Cost 2 vzipr LHS, RHS
+ 2567864422U, // <u,6,4,0>: Cost 3 vext1 <2,u,6,4>, LHS
+ 2733011558U, // <u,6,4,1>: Cost 3 vext3 LHS, <6,4,1,3>
+ 2567866484U, // <u,6,4,2>: Cost 3 vext1 <2,u,6,4>, <2,u,6,4>
+ 2638458005U, // <u,6,4,3>: Cost 3 vext2 <3,4,u,6>, <4,3,6,u>
+ 1570540772U, // <u,6,4,4>: Cost 2 vext2 <4,4,6,6>, <4,4,6,6>
+ 1545473334U, // <u,6,4,5>: Cost 2 vext2 <0,2,u,6>, RHS
+ 1572015512U, // <u,6,4,6>: Cost 2 vext2 <4,6,u,6>, <4,6,u,6>
+ 2960715062U, // <u,6,4,7>: Cost 3 vzipr <1,2,u,4>, RHS
+ 1545473577U, // <u,6,4,u>: Cost 2 vext2 <0,2,u,6>, RHS
+ 2567872614U, // <u,6,5,0>: Cost 3 vext1 <2,u,6,5>, LHS
+ 2645757648U, // <u,6,5,1>: Cost 3 vext2 <4,6,u,6>, <5,1,7,3>
+ 2567874490U, // <u,6,5,2>: Cost 3 vext1 <2,u,6,5>, <2,6,3,7>
+ 2576501250U, // <u,6,5,3>: Cost 3 vext1 <4,3,6,5>, <3,4,5,6>
+ 1576660943U, // <u,6,5,4>: Cost 2 vext2 <5,4,u,6>, <5,4,u,6>
+ 2645757956U, // <u,6,5,5>: Cost 3 vext2 <4,6,u,6>, <5,5,5,5>
+ 2645758050U, // <u,6,5,6>: Cost 3 vext2 <4,6,u,6>, <5,6,7,0>
+ 2824080694U, // <u,6,5,7>: Cost 3 vuzpr <0,u,2,6>, RHS
+ 1182626795U, // <u,6,5,u>: Cost 2 vrev <6,u,u,5>
+ 1506082918U, // <u,6,6,0>: Cost 2 vext1 <4,u,6,6>, LHS
+ 2579825398U, // <u,6,6,1>: Cost 3 vext1 <4,u,6,6>, <1,0,3,2>
+ 2645758458U, // <u,6,6,2>: Cost 3 vext2 <4,6,u,6>, <6,2,7,3>
+ 2579826838U, // <u,6,6,3>: Cost 3 vext1 <4,u,6,6>, <3,0,1,2>
+ 1506086198U, // <u,6,6,4>: Cost 2 vext1 <4,u,6,6>, RHS
+ 2579828432U, // <u,6,6,5>: Cost 3 vext1 <4,u,6,6>, <5,1,7,3>
+ 296144182U, // <u,6,6,6>: Cost 1 vdup2 RHS
+ 1638331202U, // <u,6,6,7>: Cost 2 vext3 RHS, <6,6,7,7>
+ 296144182U, // <u,6,6,u>: Cost 1 vdup2 RHS
+ 432349286U, // <u,6,7,0>: Cost 1 vext1 RHS, LHS
+ 1506091766U, // <u,6,7,1>: Cost 2 vext1 RHS, <1,0,3,2>
+ 1506092648U, // <u,6,7,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1506093206U, // <u,6,7,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 432352809U, // <u,6,7,4>: Cost 1 vext1 RHS, RHS
+ 1506094800U, // <u,6,7,5>: Cost 2 vext1 RHS, <5,1,7,3>
+ 1506095610U, // <u,6,7,6>: Cost 2 vext1 RHS, <6,2,7,3>
+ 1906904374U, // <u,6,7,7>: Cost 2 vzipr RHS, RHS
+ 432355118U, // <u,6,7,u>: Cost 1 vext1 RHS, LHS
+ 432357478U, // <u,6,u,0>: Cost 1 vext1 RHS, LHS
+ 1545475886U, // <u,6,u,1>: Cost 2 vext2 <0,2,u,6>, LHS
+ 1506100840U, // <u,6,u,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1506101398U, // <u,6,u,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 432361002U, // <u,6,u,4>: Cost 1 vext1 RHS, RHS
+ 1545476250U, // <u,6,u,5>: Cost 2 vext2 <0,2,u,6>, RHS
+ 296144182U, // <u,6,u,6>: Cost 1 vdup2 RHS
+ 1880370486U, // <u,6,u,7>: Cost 2 vzipr LHS, RHS
+ 432363310U, // <u,6,u,u>: Cost 1 vext1 RHS, LHS
+ 1571356672U, // <u,7,0,0>: Cost 2 vext2 RHS, <0,0,0,0>
+ 497614950U, // <u,7,0,1>: Cost 1 vext2 RHS, LHS
+ 1571356836U, // <u,7,0,2>: Cost 2 vext2 RHS, <0,2,0,2>
+ 2573880146U, // <u,7,0,3>: Cost 3 vext1 <3,u,7,0>, <3,u,7,0>
+ 1571357010U, // <u,7,0,4>: Cost 2 vext2 RHS, <0,4,1,5>
+ 1512083716U, // <u,7,0,5>: Cost 2 vext1 <5,u,7,0>, <5,u,7,0>
+ 2621874741U, // <u,7,0,6>: Cost 3 vext2 <0,6,u,7>, <0,6,u,7>
+ 2585826298U, // <u,7,0,7>: Cost 3 vext1 <5,u,7,0>, <7,0,1,2>
+ 497615517U, // <u,7,0,u>: Cost 1 vext2 RHS, LHS
+ 1571357430U, // <u,7,1,0>: Cost 2 vext2 RHS, <1,0,3,2>
+ 1571357492U, // <u,7,1,1>: Cost 2 vext2 RHS, <1,1,1,1>
+ 1571357590U, // <u,7,1,2>: Cost 2 vext2 RHS, <1,2,3,0>
+ 1552114715U, // <u,7,1,3>: Cost 2 vext2 <1,3,u,7>, <1,3,u,7>
+ 2573888822U, // <u,7,1,4>: Cost 3 vext1 <3,u,7,1>, RHS
+ 1553441981U, // <u,7,1,5>: Cost 2 vext2 <1,5,u,7>, <1,5,u,7>
+ 2627847438U, // <u,7,1,6>: Cost 3 vext2 <1,6,u,7>, <1,6,u,7>
+ 2727408775U, // <u,7,1,7>: Cost 3 vext3 <7,1,7,u>, <7,1,7,u>
+ 1555432880U, // <u,7,1,u>: Cost 2 vext2 <1,u,u,7>, <1,u,u,7>
+ 2629838337U, // <u,7,2,0>: Cost 3 vext2 <2,0,u,7>, <2,0,u,7>
+ 1188058754U, // <u,7,2,1>: Cost 2 vrev <7,u,1,2>
+ 1571358312U, // <u,7,2,2>: Cost 2 vext2 RHS, <2,2,2,2>
+ 1571358374U, // <u,7,2,3>: Cost 2 vext2 RHS, <2,3,0,1>
+ 2632492869U, // <u,7,2,4>: Cost 3 vext2 <2,4,u,7>, <2,4,u,7>
+ 2633156502U, // <u,7,2,5>: Cost 3 vext2 <2,5,u,7>, <2,5,u,7>
+ 1560078311U, // <u,7,2,6>: Cost 2 vext2 <2,6,u,7>, <2,6,u,7>
+ 2728072408U, // <u,7,2,7>: Cost 3 vext3 <7,2,7,u>, <7,2,7,u>
+ 1561405577U, // <u,7,2,u>: Cost 2 vext2 <2,u,u,7>, <2,u,u,7>
+ 1571358870U, // <u,7,3,0>: Cost 2 vext2 RHS, <3,0,1,2>
+ 2627184913U, // <u,7,3,1>: Cost 3 vext2 <1,5,u,7>, <3,1,5,u>
+ 2633820523U, // <u,7,3,2>: Cost 3 vext2 <2,6,u,7>, <3,2,6,u>
+ 1571359132U, // <u,7,3,3>: Cost 2 vext2 RHS, <3,3,3,3>
+ 1571359234U, // <u,7,3,4>: Cost 2 vext2 RHS, <3,4,5,6>
+ 1512108295U, // <u,7,3,5>: Cost 2 vext1 <5,u,7,3>, <5,u,7,3>
+ 1518080992U, // <u,7,3,6>: Cost 2 vext1 <6,u,7,3>, <6,u,7,3>
+ 2640456465U, // <u,7,3,7>: Cost 3 vext2 <3,7,u,7>, <3,7,u,7>
+ 1571359518U, // <u,7,3,u>: Cost 2 vext2 RHS, <3,u,1,2>
+ 1571359634U, // <u,7,4,0>: Cost 2 vext2 RHS, <4,0,5,1>
+ 2573911067U, // <u,7,4,1>: Cost 3 vext1 <3,u,7,4>, <1,3,u,7>
+ 2645101622U, // <u,7,4,2>: Cost 3 vext2 RHS, <4,2,5,3>
+ 2573912918U, // <u,7,4,3>: Cost 3 vext1 <3,u,7,4>, <3,u,7,4>
+ 1571359952U, // <u,7,4,4>: Cost 2 vext2 RHS, <4,4,4,4>
+ 497618248U, // <u,7,4,5>: Cost 1 vext2 RHS, RHS
+ 1571360116U, // <u,7,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 2645102024U, // <u,7,4,7>: Cost 3 vext2 RHS, <4,7,5,0>
+ 497618473U, // <u,7,4,u>: Cost 1 vext2 RHS, RHS
+ 2645102152U, // <u,7,5,0>: Cost 3 vext2 RHS, <5,0,1,2>
+ 1571360464U, // <u,7,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 2645102334U, // <u,7,5,2>: Cost 3 vext2 RHS, <5,2,3,4>
+ 2645102447U, // <u,7,5,3>: Cost 3 vext2 RHS, <5,3,7,0>
+ 1571360710U, // <u,7,5,4>: Cost 2 vext2 RHS, <5,4,7,6>
+ 1571360772U, // <u,7,5,5>: Cost 2 vext2 RHS, <5,5,5,5>
+ 1571360866U, // <u,7,5,6>: Cost 2 vext2 RHS, <5,6,7,0>
+ 1571360936U, // <u,7,5,7>: Cost 2 vext2 RHS, <5,7,5,7>
+ 1571361017U, // <u,7,5,u>: Cost 2 vext2 RHS, <5,u,5,7>
+ 1530044518U, // <u,7,6,0>: Cost 2 vext1 <u,u,7,6>, LHS
+ 2645103016U, // <u,7,6,1>: Cost 3 vext2 RHS, <6,1,7,2>
+ 1571361274U, // <u,7,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 2645103154U, // <u,7,6,3>: Cost 3 vext2 RHS, <6,3,4,5>
+ 1530047798U, // <u,7,6,4>: Cost 2 vext1 <u,u,7,6>, RHS
+ 1188386474U, // <u,7,6,5>: Cost 2 vrev <7,u,5,6>
+ 1571361592U, // <u,7,6,6>: Cost 2 vext2 RHS, <6,6,6,6>
+ 1571361614U, // <u,7,6,7>: Cost 2 vext2 RHS, <6,7,0,1>
+ 1571361695U, // <u,7,6,u>: Cost 2 vext2 RHS, <6,u,0,1>
+ 1571361786U, // <u,7,7,0>: Cost 2 vext2 RHS, <7,0,1,2>
+ 2573935616U, // <u,7,7,1>: Cost 3 vext1 <3,u,7,7>, <1,3,5,7>
+ 2645103781U, // <u,7,7,2>: Cost 3 vext2 RHS, <7,2,2,2>
+ 2573937497U, // <u,7,7,3>: Cost 3 vext1 <3,u,7,7>, <3,u,7,7>
+ 1571362150U, // <u,7,7,4>: Cost 2 vext2 RHS, <7,4,5,6>
+ 1512141067U, // <u,7,7,5>: Cost 2 vext1 <5,u,7,7>, <5,u,7,7>
+ 1518113764U, // <u,7,7,6>: Cost 2 vext1 <6,u,7,7>, <6,u,7,7>
+ 363253046U, // <u,7,7,7>: Cost 1 vdup3 RHS
+ 363253046U, // <u,7,7,u>: Cost 1 vdup3 RHS
+ 1571362515U, // <u,7,u,0>: Cost 2 vext2 RHS, <u,0,1,2>
+ 497620782U, // <u,7,u,1>: Cost 1 vext2 RHS, LHS
+ 1571362693U, // <u,7,u,2>: Cost 2 vext2 RHS, <u,2,3,0>
+ 1571362748U, // <u,7,u,3>: Cost 2 vext2 RHS, <u,3,0,1>
+ 1571362879U, // <u,7,u,4>: Cost 2 vext2 RHS, <u,4,5,6>
+ 497621146U, // <u,7,u,5>: Cost 1 vext2 RHS, RHS
+ 1571363024U, // <u,7,u,6>: Cost 2 vext2 RHS, <u,6,3,7>
+ 363253046U, // <u,7,u,7>: Cost 1 vdup3 RHS
+ 497621349U, // <u,7,u,u>: Cost 1 vext2 RHS, LHS
+ 135053414U, // <u,u,0,0>: Cost 1 vdup0 LHS
+ 471081121U, // <u,u,0,1>: Cost 1 vext2 LHS, LHS
+ 1544822948U, // <u,u,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 1616140005U, // <u,u,0,3>: Cost 2 vext3 LHS, <u,0,3,2>
+ 1544823122U, // <u,u,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 1512157453U, // <u,u,0,5>: Cost 2 vext1 <5,u,u,0>, <5,u,u,0>
+ 1662220032U, // <u,u,0,6>: Cost 2 vext3 RHS, <u,0,6,2>
+ 1194457487U, // <u,u,0,7>: Cost 2 vrev <u,u,7,0>
+ 471081629U, // <u,u,0,u>: Cost 1 vext2 LHS, LHS
+ 1544823542U, // <u,u,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 202162278U, // <u,u,1,1>: Cost 1 vdup1 LHS
+ 537753390U, // <u,u,1,2>: Cost 1 vext3 LHS, LHS
+ 1544823768U, // <u,u,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 1494248758U, // <u,u,1,4>: Cost 2 vext1 <2,u,u,1>, RHS
+ 1544823952U, // <u,u,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 1518138343U, // <u,u,1,6>: Cost 2 vext1 <6,u,u,1>, <6,u,u,1>
+ 1640322907U, // <u,u,1,7>: Cost 2 vext3 RHS, <u,1,7,3>
+ 537753444U, // <u,u,1,u>: Cost 1 vext3 LHS, LHS
+ 1482309734U, // <u,u,2,0>: Cost 2 vext1 <0,u,u,2>, LHS
+ 1194031451U, // <u,u,2,1>: Cost 2 vrev <u,u,1,2>
+ 269271142U, // <u,u,2,2>: Cost 1 vdup2 LHS
+ 835584U, // <u,u,2,3>: Cost 0 copy LHS
+ 1482313014U, // <u,u,2,4>: Cost 2 vext1 <0,u,u,2>, RHS
+ 2618566504U, // <u,u,2,5>: Cost 3 vext2 LHS, <2,5,3,6>
+ 1544824762U, // <u,u,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 1638479788U, // <u,u,2,7>: Cost 2 vext3 RHS, <u,2,7,3>
+ 835584U, // <u,u,2,u>: Cost 0 copy LHS
+ 408576723U, // <u,u,3,0>: Cost 1 vext1 LHS, LHS
+ 1482318582U, // <u,u,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 120371557U, // <u,u,3,2>: Cost 1 vrev LHS
+ 336380006U, // <u,u,3,3>: Cost 1 vdup3 LHS
+ 408579382U, // <u,u,3,4>: Cost 1 vext1 LHS, RHS
+ 1616140271U, // <u,u,3,5>: Cost 2 vext3 LHS, <u,3,5,7>
+ 1530098170U, // <u,u,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1880329544U, // <u,u,3,7>: Cost 2 vzipr LHS, RHS
+ 408581934U, // <u,u,3,u>: Cost 1 vext1 LHS, LHS
+ 1488298086U, // <u,u,4,0>: Cost 2 vext1 <1,u,u,4>, LHS
+ 1488299437U, // <u,u,4,1>: Cost 2 vext1 <1,u,u,4>, <1,u,u,4>
+ 1659271204U, // <u,u,4,2>: Cost 2 vext3 LHS, <u,4,2,6>
+ 1194195311U, // <u,u,4,3>: Cost 2 vrev <u,u,3,4>
+ 161926454U, // <u,u,4,4>: Cost 1 vdup0 RHS
+ 471084342U, // <u,u,4,5>: Cost 1 vext2 LHS, RHS
+ 1571368308U, // <u,u,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 1640323153U, // <u,u,4,7>: Cost 2 vext3 RHS, <u,4,7,6>
+ 471084585U, // <u,u,4,u>: Cost 1 vext2 LHS, RHS
+ 1494278246U, // <u,u,5,0>: Cost 2 vext1 <2,u,u,5>, LHS
+ 1571368656U, // <u,u,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 1494280327U, // <u,u,5,2>: Cost 2 vext1 <2,u,u,5>, <2,u,u,5>
+ 1616140415U, // <u,u,5,3>: Cost 2 vext3 LHS, <u,5,3,7>
+ 1494281526U, // <u,u,5,4>: Cost 2 vext1 <2,u,u,5>, RHS
+ 229035318U, // <u,u,5,5>: Cost 1 vdup1 RHS
+ 537753754U, // <u,u,5,6>: Cost 1 vext3 LHS, RHS
+ 1750355254U, // <u,u,5,7>: Cost 2 vuzpr LHS, RHS
+ 537753772U, // <u,u,5,u>: Cost 1 vext3 LHS, RHS
+ 1482342502U, // <u,u,6,0>: Cost 2 vext1 <0,u,u,6>, LHS
+ 2556084982U, // <u,u,6,1>: Cost 3 vext1 <0,u,u,6>, <1,0,3,2>
+ 1571369466U, // <u,u,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 1611938000U, // <u,u,6,3>: Cost 2 vext3 LHS, <u,6,3,7>
+ 1482345782U, // <u,u,6,4>: Cost 2 vext1 <0,u,u,6>, RHS
+ 1194359171U, // <u,u,6,5>: Cost 2 vrev <u,u,5,6>
+ 296144182U, // <u,u,6,6>: Cost 1 vdup2 RHS
+ 27705344U, // <u,u,6,7>: Cost 0 copy RHS
+ 27705344U, // <u,u,6,u>: Cost 0 copy RHS
+ 432496742U, // <u,u,7,0>: Cost 1 vext1 RHS, LHS
+ 1488324016U, // <u,u,7,1>: Cost 2 vext1 <1,u,u,7>, <1,u,u,7>
+ 1494296713U, // <u,u,7,2>: Cost 2 vext1 <2,u,u,7>, <2,u,u,7>
+ 1906901148U, // <u,u,7,3>: Cost 2 vzipr RHS, LHS
+ 432500283U, // <u,u,7,4>: Cost 1 vext1 RHS, RHS
+ 1506242256U, // <u,u,7,5>: Cost 2 vext1 RHS, <5,1,7,3>
+ 120699277U, // <u,u,7,6>: Cost 1 vrev RHS
+ 363253046U, // <u,u,7,7>: Cost 1 vdup3 RHS
+ 432502574U, // <u,u,7,u>: Cost 1 vext1 RHS, LHS
+ 408617688U, // <u,u,u,0>: Cost 1 vext1 LHS, LHS
+ 471086894U, // <u,u,u,1>: Cost 1 vext2 LHS, LHS
+ 537753957U, // <u,u,u,2>: Cost 1 vext3 LHS, LHS
+ 835584U, // <u,u,u,3>: Cost 0 copy LHS
+ 408620342U, // <u,u,u,4>: Cost 1 vext1 LHS, RHS
+ 471087258U, // <u,u,u,5>: Cost 1 vext2 LHS, RHS
+ 537753997U, // <u,u,u,6>: Cost 1 vext3 LHS, RHS
+ 27705344U, // <u,u,u,7>: Cost 0 copy RHS
+ 835584U, // <u,u,u,u>: Cost 0 copy LHS
+ 0
+};
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp b/contrib/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp
new file mode 100644
index 0000000..4723cc4
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp
@@ -0,0 +1,578 @@
+//=- AArch64PromoteConstant.cpp --- Promote constant to global for AArch64 -==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AArch64PromoteConstant pass which promotes constants
+// to global variables when this is likely to be more efficient. Currently only
+// types related to constant vector (i.e., constant vector, array of constant
+// vectors, constant structure with a constant vector field, etc.) are promoted
+// to global variables. Constant vectors are likely to be lowered in target
+// constant pool during instruction selection already; therefore, the access
+// will remain the same (memory load), but the structure types are not split
+// into different constant pool accesses for each field. A bonus side effect is
+// that created globals may be merged by the global merge pass.
+//
+// FIXME: This pass may be useful for other targets too.
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-promote-const"
+
+// Stress testing mode - disable heuristics.
+static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
+ cl::desc("Promote all vector constants"));
+
+STATISTIC(NumPromoted, "Number of promoted constants");
+STATISTIC(NumPromotedUses, "Number of promoted constants uses");
+
+//===----------------------------------------------------------------------===//
+// AArch64PromoteConstant
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// Promotes interesting constant into global variables.
+/// The motivating example is:
+/// static const uint16_t TableA[32] = {
+/// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
+/// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
+/// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
+/// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
+/// };
+///
+/// uint8x16x4_t LoadStatic(void) {
+/// uint8x16x4_t ret;
+/// ret.val[0] = vld1q_u16(TableA + 0);
+/// ret.val[1] = vld1q_u16(TableA + 8);
+/// ret.val[2] = vld1q_u16(TableA + 16);
+/// ret.val[3] = vld1q_u16(TableA + 24);
+/// return ret;
+/// }
+///
+/// The constants in this example are folded into the uses. Thus, 4 different
+/// constants are created.
+///
+/// As their type is vector the cheapest way to create them is to load them
+/// for the memory.
+///
+/// Therefore the final assembly final has 4 different loads. With this pass
+/// enabled, only one load is issued for the constants.
+class AArch64PromoteConstant : public ModulePass {
+
+public:
+ static char ID;
+ AArch64PromoteConstant() : ModulePass(ID) {}
+
+ const char *getPassName() const override { return "AArch64 Promote Constant"; }
+
+ /// Iterate over the functions and promote the interesting constants into
+ /// global variables with module scope.
+ bool runOnModule(Module &M) override {
+ DEBUG(dbgs() << getPassName() << '\n');
+ bool Changed = false;
+ for (auto &MF : M) {
+ Changed |= runOnFunction(MF);
+ }
+ return Changed;
+ }
+
+private:
+ /// Look for interesting constants used within the given function.
+ /// Promote them into global variables, load these global variables within
+ /// the related function, so that the number of inserted load is minimal.
+ bool runOnFunction(Function &F);
+
+ // This transformation requires dominator info
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ }
+
+ /// Type to store a list of User.
+ typedef SmallVector<Value::user_iterator, 4> Users;
+ /// Map an insertion point to all the uses it dominates.
+ typedef DenseMap<Instruction *, Users> InsertionPoints;
+ /// Map a function to the required insertion point of load for a
+ /// global variable.
+ typedef DenseMap<Function *, InsertionPoints> InsertionPointsPerFunc;
+
+ /// Find the closest point that dominates the given Use.
+ Instruction *findInsertionPoint(Value::user_iterator &Use);
+
+ /// Check if the given insertion point is dominated by an existing
+ /// insertion point.
+ /// If true, the given use is added to the list of dominated uses for
+ /// the related existing point.
+ /// \param NewPt the insertion point to be checked
+ /// \param UseIt the use to be added into the list of dominated uses
+ /// \param InsertPts existing insertion points
+ /// \pre NewPt and all instruction in InsertPts belong to the same function
+ /// \return true if one of the insertion point in InsertPts dominates NewPt,
+ /// false otherwise
+ bool isDominated(Instruction *NewPt, Value::user_iterator &UseIt,
+ InsertionPoints &InsertPts);
+
+ /// Check if the given insertion point can be merged with an existing
+ /// insertion point in a common dominator.
+ /// If true, the given use is added to the list of the created insertion
+ /// point.
+ /// \param NewPt the insertion point to be checked
+ /// \param UseIt the use to be added into the list of dominated uses
+ /// \param InsertPts existing insertion points
+ /// \pre NewPt and all instruction in InsertPts belong to the same function
+ /// \pre isDominated returns false for the exact same parameters.
+ /// \return true if it exists an insertion point in InsertPts that could
+ /// have been merged with NewPt in a common dominator,
+ /// false otherwise
+ bool tryAndMerge(Instruction *NewPt, Value::user_iterator &UseIt,
+ InsertionPoints &InsertPts);
+
+ /// Compute the minimal insertion points to dominates all the interesting
+ /// uses of value.
+ /// Insertion points are group per function and each insertion point
+ /// contains a list of all the uses it dominates within the related function
+ /// \param Val constant to be examined
+ /// \param[out] InsPtsPerFunc output storage of the analysis
+ void computeInsertionPoints(Constant *Val,
+ InsertionPointsPerFunc &InsPtsPerFunc);
+
+ /// Insert a definition of a new global variable at each point contained in
+ /// InsPtsPerFunc and update the related uses (also contained in
+ /// InsPtsPerFunc).
+ bool insertDefinitions(Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc);
+
+ /// Compute the minimal insertion points to dominate all the interesting
+ /// uses of Val and insert a definition of a new global variable
+ /// at these points.
+ /// Also update the uses of Val accordingly.
+ /// Currently a use of Val is considered interesting if:
+ /// - Val is not UndefValue
+ /// - Val is not zeroinitialized
+ /// - Replacing Val per a load of a global variable is valid.
+ /// \see shouldConvert for more details
+ bool computeAndInsertDefinitions(Constant *Val);
+
+ /// Promote the given constant into a global variable if it is expected to
+ /// be profitable.
+ /// \return true if Cst has been promoted
+ bool promoteConstant(Constant *Cst);
+
+ /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
+ /// Append UseIt to this list and delete the entry of IPI in InsertPts.
+ static void appendAndTransferDominatedUses(Instruction *NewPt,
+ Value::user_iterator &UseIt,
+ InsertionPoints::iterator &IPI,
+ InsertionPoints &InsertPts) {
+ // Record the dominated use.
+ IPI->second.push_back(UseIt);
+ // Transfer the dominated uses of IPI to NewPt
+ // Inserting into the DenseMap may invalidate existing iterator.
+ // Keep a copy of the key to find the iterator to erase.
+ Instruction *OldInstr = IPI->first;
+ InsertPts.insert(InsertionPoints::value_type(NewPt, IPI->second));
+ // Erase IPI.
+ IPI = InsertPts.find(OldInstr);
+ InsertPts.erase(IPI);
+ }
+};
+} // end anonymous namespace
+
+char AArch64PromoteConstant::ID = 0;
+
+namespace llvm {
+void initializeAArch64PromoteConstantPass(PassRegistry &);
+}
+
+INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
+ "AArch64 Promote Constant Pass", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
+ "AArch64 Promote Constant Pass", false, false)
+
+ModulePass *llvm::createAArch64PromoteConstantPass() {
+ return new AArch64PromoteConstant();
+}
+
+/// Check if the given type uses a vector type.
+static bool isConstantUsingVectorTy(const Type *CstTy) {
+ if (CstTy->isVectorTy())
+ return true;
+ if (CstTy->isStructTy()) {
+ for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
+ EltIdx < EndEltIdx; ++EltIdx)
+ if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
+ return true;
+ } else if (CstTy->isArrayTy())
+ return isConstantUsingVectorTy(CstTy->getArrayElementType());
+ return false;
+}
+
+/// Check if the given use (Instruction + OpIdx) of Cst should be converted into
+/// a load of a global variable initialized with Cst.
+/// A use should be converted if it is legal to do so.
+/// For instance, it is not legal to turn the mask operand of a shuffle vector
+/// into a load of a global variable.
+static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
+ unsigned OpIdx) {
+ // shufflevector instruction expects a const for the mask argument, i.e., the
+ // third argument. Do not promote this use in that case.
+ if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
+ return false;
+
+ // extractvalue instruction expects a const idx.
+ if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
+ return false;
+
+ // extractvalue instruction expects a const idx.
+ if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
+ return false;
+
+ if (isa<const AllocaInst>(Instr) && OpIdx > 0)
+ return false;
+
+ // Alignment argument must be constant.
+ if (isa<const LoadInst>(Instr) && OpIdx > 0)
+ return false;
+
+ // Alignment argument must be constant.
+ if (isa<const StoreInst>(Instr) && OpIdx > 1)
+ return false;
+
+ // Index must be constant.
+ if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
+ return false;
+
+ // Personality function and filters must be constant.
+ // Give up on that instruction.
+ if (isa<const LandingPadInst>(Instr))
+ return false;
+
+ // Switch instruction expects constants to compare to.
+ if (isa<const SwitchInst>(Instr))
+ return false;
+
+ // Expected address must be a constant.
+ if (isa<const IndirectBrInst>(Instr))
+ return false;
+
+ // Do not mess with intrinsics.
+ if (isa<const IntrinsicInst>(Instr))
+ return false;
+
+ // Do not mess with inline asm.
+ const CallInst *CI = dyn_cast<const CallInst>(Instr);
+ if (CI && isa<const InlineAsm>(CI->getCalledValue()))
+ return false;
+
+ return true;
+}
+
+/// Check if the given Cst should be converted into
+/// a load of a global variable initialized with Cst.
+/// A constant should be converted if it is likely that the materialization of
+/// the constant will be tricky. Thus, we give up on zero or undef values.
+///
+/// \todo Currently, accept only vector related types.
+/// Also we give up on all simple vector type to keep the existing
+/// behavior. Otherwise, we should push here all the check of the lowering of
+/// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
+/// constant via global merge and the fact that the same constant is stored
+/// only once with this method (versus, as many function that uses the constant
+/// for the regular approach, even for float).
+/// Again, the simplest solution would be to promote every
+/// constant and rematerialize them when they are actually cheap to create.
+static bool shouldConvert(const Constant *Cst) {
+ if (isa<const UndefValue>(Cst))
+ return false;
+
+ // FIXME: In some cases, it may be interesting to promote in memory
+ // a zero initialized constant.
+ // E.g., when the type of Cst require more instructions than the
+ // adrp/add/load sequence or when this sequence can be shared by several
+ // instances of Cst.
+ // Ideally, we could promote this into a global and rematerialize the constant
+ // when it was a bad idea.
+ if (Cst->isZeroValue())
+ return false;
+
+ if (Stress)
+ return true;
+
+ // FIXME: see function \todo
+ if (Cst->getType()->isVectorTy())
+ return false;
+ return isConstantUsingVectorTy(Cst->getType());
+}
+
+Instruction *
+AArch64PromoteConstant::findInsertionPoint(Value::user_iterator &Use) {
+ // If this user is a phi, the insertion point is in the related
+ // incoming basic block.
+ PHINode *PhiInst = dyn_cast<PHINode>(*Use);
+ Instruction *InsertionPoint;
+ if (PhiInst)
+ InsertionPoint =
+ PhiInst->getIncomingBlock(Use.getOperandNo())->getTerminator();
+ else
+ InsertionPoint = dyn_cast<Instruction>(*Use);
+ assert(InsertionPoint && "User is not an instruction!");
+ return InsertionPoint;
+}
+
+bool AArch64PromoteConstant::isDominated(Instruction *NewPt,
+ Value::user_iterator &UseIt,
+ InsertionPoints &InsertPts) {
+
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
+ *NewPt->getParent()->getParent()).getDomTree();
+
+ // Traverse all the existing insertion points and check if one is dominating
+ // NewPt. If it is, remember that.
+ for (auto &IPI : InsertPts) {
+ if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
+ // When IPI.first is a terminator instruction, DT may think that
+ // the result is defined on the edge.
+ // Here we are testing the insertion point, not the definition.
+ (IPI.first->getParent() != NewPt->getParent() &&
+ DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
+ // No need to insert this point. Just record the dominated use.
+ DEBUG(dbgs() << "Insertion point dominated by:\n");
+ DEBUG(IPI.first->print(dbgs()));
+ DEBUG(dbgs() << '\n');
+ IPI.second.push_back(UseIt);
+ return true;
+ }
+ }
+ return false;
+}
+
+bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt,
+ Value::user_iterator &UseIt,
+ InsertionPoints &InsertPts) {
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
+ *NewPt->getParent()->getParent()).getDomTree();
+ BasicBlock *NewBB = NewPt->getParent();
+
+ // Traverse all the existing insertion point and check if one is dominated by
+ // NewPt and thus useless or can be combined with NewPt into a common
+ // dominator.
+ for (InsertionPoints::iterator IPI = InsertPts.begin(),
+ EndIPI = InsertPts.end();
+ IPI != EndIPI; ++IPI) {
+ BasicBlock *CurBB = IPI->first->getParent();
+ if (NewBB == CurBB) {
+ // Instructions are in the same block.
+ // By construction, NewPt is dominating the other.
+ // Indeed, isDominated returned false with the exact same arguments.
+ DEBUG(dbgs() << "Merge insertion point with:\n");
+ DEBUG(IPI->first->print(dbgs()));
+ DEBUG(dbgs() << "\nat considered insertion point.\n");
+ appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts);
+ return true;
+ }
+
+ // Look for a common dominator
+ BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
+ // If none exists, we cannot merge these two points.
+ if (!CommonDominator)
+ continue;
+
+ if (CommonDominator != NewBB) {
+ // By construction, the CommonDominator cannot be CurBB.
+ assert(CommonDominator != CurBB &&
+ "Instruction has not been rejected during isDominated check!");
+ // Take the last instruction of the CommonDominator as insertion point
+ NewPt = CommonDominator->getTerminator();
+ }
+ // else, CommonDominator is the block of NewBB, hence NewBB is the last
+ // possible insertion point in that block.
+ DEBUG(dbgs() << "Merge insertion point with:\n");
+ DEBUG(IPI->first->print(dbgs()));
+ DEBUG(dbgs() << '\n');
+ DEBUG(NewPt->print(dbgs()));
+ DEBUG(dbgs() << '\n');
+ appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts);
+ return true;
+ }
+ return false;
+}
+
+void AArch64PromoteConstant::computeInsertionPoints(
+ Constant *Val, InsertionPointsPerFunc &InsPtsPerFunc) {
+ DEBUG(dbgs() << "** Compute insertion points **\n");
+ for (Value::user_iterator UseIt = Val->user_begin(),
+ EndUseIt = Val->user_end();
+ UseIt != EndUseIt; ++UseIt) {
+ // If the user is not an Instruction, we cannot modify it.
+ if (!isa<Instruction>(*UseIt))
+ continue;
+
+ // Filter out uses that should not be converted.
+ if (!shouldConvertUse(Val, cast<Instruction>(*UseIt), UseIt.getOperandNo()))
+ continue;
+
+ DEBUG(dbgs() << "Considered use, opidx " << UseIt.getOperandNo() << ":\n");
+ DEBUG((*UseIt)->print(dbgs()));
+ DEBUG(dbgs() << '\n');
+
+ Instruction *InsertionPoint = findInsertionPoint(UseIt);
+
+ DEBUG(dbgs() << "Considered insertion point:\n");
+ DEBUG(InsertionPoint->print(dbgs()));
+ DEBUG(dbgs() << '\n');
+
+ // Check if the current insertion point is useless, i.e., it is dominated
+ // by another one.
+ InsertionPoints &InsertPts =
+ InsPtsPerFunc[InsertionPoint->getParent()->getParent()];
+ if (isDominated(InsertionPoint, UseIt, InsertPts))
+ continue;
+ // This insertion point is useful, check if we can merge some insertion
+ // point in a common dominator or if NewPt dominates an existing one.
+ if (tryAndMerge(InsertionPoint, UseIt, InsertPts))
+ continue;
+
+ DEBUG(dbgs() << "Keep considered insertion point\n");
+
+ // It is definitely useful by its own
+ InsertPts[InsertionPoint].push_back(UseIt);
+ }
+}
+
+bool AArch64PromoteConstant::insertDefinitions(
+ Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc) {
+ // We will create one global variable per Module.
+ DenseMap<Module *, GlobalVariable *> ModuleToMergedGV;
+ bool HasChanged = false;
+
+ // Traverse all insertion points in all the function.
+ for (InsertionPointsPerFunc::iterator FctToInstPtsIt = InsPtsPerFunc.begin(),
+ EndIt = InsPtsPerFunc.end();
+ FctToInstPtsIt != EndIt; ++FctToInstPtsIt) {
+ InsertionPoints &InsertPts = FctToInstPtsIt->second;
+// Do more checking for debug purposes.
+#ifndef NDEBUG
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
+ *FctToInstPtsIt->first).getDomTree();
+#endif
+ GlobalVariable *PromotedGV;
+ assert(!InsertPts.empty() && "Empty uses does not need a definition");
+
+ Module *M = FctToInstPtsIt->first->getParent();
+ DenseMap<Module *, GlobalVariable *>::iterator MapIt =
+ ModuleToMergedGV.find(M);
+ if (MapIt == ModuleToMergedGV.end()) {
+ PromotedGV = new GlobalVariable(
+ *M, Cst->getType(), true, GlobalValue::InternalLinkage, nullptr,
+ "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
+ PromotedGV->setInitializer(Cst);
+ ModuleToMergedGV[M] = PromotedGV;
+ DEBUG(dbgs() << "Global replacement: ");
+ DEBUG(PromotedGV->print(dbgs()));
+ DEBUG(dbgs() << '\n');
+ ++NumPromoted;
+ HasChanged = true;
+ } else {
+ PromotedGV = MapIt->second;
+ }
+
+ for (InsertionPoints::iterator IPI = InsertPts.begin(),
+ EndIPI = InsertPts.end();
+ IPI != EndIPI; ++IPI) {
+ // Create the load of the global variable.
+ IRBuilder<> Builder(IPI->first->getParent(), IPI->first);
+ LoadInst *LoadedCst = Builder.CreateLoad(PromotedGV);
+ DEBUG(dbgs() << "**********\n");
+ DEBUG(dbgs() << "New def: ");
+ DEBUG(LoadedCst->print(dbgs()));
+ DEBUG(dbgs() << '\n');
+
+ // Update the dominated uses.
+ Users &DominatedUsers = IPI->second;
+ for (Value::user_iterator Use : DominatedUsers) {
+#ifndef NDEBUG
+ assert((DT.dominates(LoadedCst, cast<Instruction>(*Use)) ||
+ (isa<PHINode>(*Use) &&
+ DT.dominates(LoadedCst, findInsertionPoint(Use)))) &&
+ "Inserted definition does not dominate all its uses!");
+#endif
+ DEBUG(dbgs() << "Use to update " << Use.getOperandNo() << ":");
+ DEBUG(Use->print(dbgs()));
+ DEBUG(dbgs() << '\n');
+ Use->setOperand(Use.getOperandNo(), LoadedCst);
+ ++NumPromotedUses;
+ }
+ }
+ }
+ return HasChanged;
+}
+
+bool AArch64PromoteConstant::computeAndInsertDefinitions(Constant *Val) {
+ InsertionPointsPerFunc InsertPtsPerFunc;
+ computeInsertionPoints(Val, InsertPtsPerFunc);
+ return insertDefinitions(Val, InsertPtsPerFunc);
+}
+
+bool AArch64PromoteConstant::promoteConstant(Constant *Cst) {
+ assert(Cst && "Given variable is not a valid constant.");
+
+ if (!shouldConvert(Cst))
+ return false;
+
+ DEBUG(dbgs() << "******************************\n");
+ DEBUG(dbgs() << "Candidate constant: ");
+ DEBUG(Cst->print(dbgs()));
+ DEBUG(dbgs() << '\n');
+
+ return computeAndInsertDefinitions(Cst);
+}
+
+bool AArch64PromoteConstant::runOnFunction(Function &F) {
+ // Look for instructions using constant vector. Promote that constant to a
+ // global variable. Create as few loads of this variable as possible and
+ // update the uses accordingly.
+ bool LocalChange = false;
+ SmallSet<Constant *, 8> AlreadyChecked;
+
+ for (auto &MBB : F) {
+ for (auto &MI : MBB) {
+ // Traverse the operand, looking for constant vectors. Replace them by a
+ // load of a global variable of constant vector type.
+ for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands();
+ OpIdx != EndOpIdx; ++OpIdx) {
+ Constant *Cst = dyn_cast<Constant>(MI.getOperand(OpIdx));
+ // There is no point in promoting global values as they are already
+ // global. Do not promote constant expressions either, as they may
+ // require some code expansion.
+ if (Cst && !isa<GlobalValue>(Cst) && !isa<ConstantExpr>(Cst) &&
+ AlreadyChecked.insert(Cst))
+ LocalChange |= promoteConstant(Cst);
+ }
+ }
+ }
+ return LocalChange;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp
new file mode 100644
index 0000000..01b9587
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp
@@ -0,0 +1,404 @@
+//===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the AArch64 implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64RegisterInfo.h"
+#include "AArch64FrameLowering.h"
+#include "AArch64InstrInfo.h"
+#include "AArch64Subtarget.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+#define GET_REGINFO_TARGET_DESC
+#include "AArch64GenRegisterInfo.inc"
+
+AArch64RegisterInfo::AArch64RegisterInfo(const AArch64InstrInfo *tii,
+ const AArch64Subtarget *sti)
+ : AArch64GenRegisterInfo(AArch64::LR), TII(tii), STI(sti) {}
+
+const MCPhysReg *
+AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ assert(MF && "Invalid MachineFunction pointer.");
+ if (MF->getFunction()->getCallingConv() == CallingConv::AnyReg)
+ return CSR_AArch64_AllRegs_SaveList;
+ else
+ return CSR_AArch64_AAPCS_SaveList;
+}
+
+const uint32_t *
+AArch64RegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
+ if (CC == CallingConv::AnyReg)
+ return CSR_AArch64_AllRegs_RegMask;
+ else
+ return CSR_AArch64_AAPCS_RegMask;
+}
+
+const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const {
+ if (STI->isTargetDarwin())
+ return CSR_AArch64_TLS_Darwin_RegMask;
+
+ assert(STI->isTargetELF() && "only expect Darwin or ELF TLS");
+ return CSR_AArch64_TLS_ELF_RegMask;
+}
+
+const uint32_t *
+AArch64RegisterInfo::getThisReturnPreservedMask(CallingConv::ID) const {
+ // This should return a register mask that is the same as that returned by
+ // getCallPreservedMask but that additionally preserves the register used for
+ // the first i64 argument (which must also be the register used to return a
+ // single i64 return value)
+ //
+ // In case that the calling convention does not use the same register for
+ // both, the function should return NULL (does not currently apply)
+ return CSR_AArch64_AAPCS_ThisReturn_RegMask;
+}
+
+BitVector
+AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ // FIXME: avoid re-calculating this every time.
+ BitVector Reserved(getNumRegs());
+ Reserved.set(AArch64::SP);
+ Reserved.set(AArch64::XZR);
+ Reserved.set(AArch64::WSP);
+ Reserved.set(AArch64::WZR);
+
+ if (TFI->hasFP(MF) || STI->isTargetDarwin()) {
+ Reserved.set(AArch64::FP);
+ Reserved.set(AArch64::W29);
+ }
+
+ if (STI->isTargetDarwin()) {
+ Reserved.set(AArch64::X18); // Platform register
+ Reserved.set(AArch64::W18);
+ }
+
+ if (hasBasePointer(MF)) {
+ Reserved.set(AArch64::X19);
+ Reserved.set(AArch64::W19);
+ }
+
+ return Reserved;
+}
+
+bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF,
+ unsigned Reg) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ switch (Reg) {
+ default:
+ break;
+ case AArch64::SP:
+ case AArch64::XZR:
+ case AArch64::WSP:
+ case AArch64::WZR:
+ return true;
+ case AArch64::X18:
+ case AArch64::W18:
+ return STI->isTargetDarwin();
+ case AArch64::FP:
+ case AArch64::W29:
+ return TFI->hasFP(MF) || STI->isTargetDarwin();
+ case AArch64::W19:
+ case AArch64::X19:
+ return hasBasePointer(MF);
+ }
+
+ return false;
+}
+
+const TargetRegisterClass *
+AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF,
+ unsigned Kind) const {
+ return &AArch64::GPR64RegClass;
+}
+
+const TargetRegisterClass *
+AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
+ if (RC == &AArch64::CCRRegClass)
+ return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV.
+ return RC;
+}
+
+unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; }
+
+bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ // In the presence of variable sized objects, if the fixed stack size is
+ // large enough that referencing from the FP won't result in things being
+ // in range relatively often, we can use a base pointer to allow access
+ // from the other direction like the SP normally works.
+ if (MFI->hasVarSizedObjects()) {
+ // Conservatively estimate whether the negative offset from the frame
+ // pointer will be sufficient to reach. If a function has a smallish
+ // frame, it's less likely to have lots of spills and callee saved
+ // space, so it's all more likely to be within range of the frame pointer.
+ // If it's wrong, we'll materialize the constant and still get to the
+ // object; it's just suboptimal. Negative offsets use the unscaled
+ // load/store instructions, which have a 9-bit signed immediate.
+ if (MFI->getLocalFrameSize() < 256)
+ return false;
+ return true;
+ }
+
+ return false;
+}
+
+unsigned
+AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
+}
+
+bool AArch64RegisterInfo::requiresRegisterScavenging(
+ const MachineFunction &MF) const {
+ return true;
+}
+
+bool AArch64RegisterInfo::requiresVirtualBaseRegisters(
+ const MachineFunction &MF) const {
+ return true;
+}
+
+bool
+AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ // AArch64FrameLowering::resolveFrameIndexReference() can always fall back
+ // to the stack pointer, so only put the emergency spill slot next to the
+ // FP when there's no better way to access it (SP or base pointer).
+ return MFI->hasVarSizedObjects() && !hasBasePointer(MF);
+}
+
+bool AArch64RegisterInfo::requiresFrameIndexScavenging(
+ const MachineFunction &MF) const {
+ return true;
+}
+
+bool
+AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ // Only consider eliminating leaf frames.
+ if (MFI->hasCalls() || (MF.getTarget().Options.DisableFramePointerElim(MF) &&
+ MFI->adjustsStack()))
+ return true;
+ return MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken();
+}
+
+/// needsFrameBaseReg - Returns true if the instruction's frame index
+/// reference would be better served by a base register other than FP
+/// or SP. Used by LocalStackFrameAllocation to determine which frame index
+/// references it should create new base registers for.
+bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI,
+ int64_t Offset) const {
+ for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i)
+ assert(i < MI->getNumOperands() &&
+ "Instr doesn't have FrameIndex operand!");
+
+ // It's the load/store FI references that cause issues, as it can be difficult
+ // to materialize the offset if it won't fit in the literal field. Estimate
+ // based on the size of the local frame and some conservative assumptions
+ // about the rest of the stack frame (note, this is pre-regalloc, so
+ // we don't know everything for certain yet) whether this offset is likely
+ // to be out of range of the immediate. Return true if so.
+
+ // We only generate virtual base registers for loads and stores, so
+ // return false for everything else.
+ if (!MI->mayLoad() && !MI->mayStore())
+ return false;
+
+ // Without a virtual base register, if the function has variable sized
+ // objects, all fixed-size local references will be via the frame pointer,
+ // Approximate the offset and see if it's legal for the instruction.
+ // Note that the incoming offset is based on the SP value at function entry,
+ // so it'll be negative.
+ MachineFunction &MF = *MI->getParent()->getParent();
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ // Estimate an offset from the frame pointer.
+ // Conservatively assume all GPR callee-saved registers get pushed.
+ // FP, LR, X19-X28, D8-D15. 64-bits each.
+ int64_t FPOffset = Offset - 16 * 20;
+ // Estimate an offset from the stack pointer.
+ // The incoming offset is relating to the SP at the start of the function,
+ // but when we access the local it'll be relative to the SP after local
+ // allocation, so adjust our SP-relative offset by that allocation size.
+ Offset += MFI->getLocalFrameSize();
+ // Assume that we'll have at least some spill slots allocated.
+ // FIXME: This is a total SWAG number. We should run some statistics
+ // and pick a real one.
+ Offset += 128; // 128 bytes of spill slots
+
+ // If there is a frame pointer, try using it.
+ // The FP is only available if there is no dynamic realignment. We
+ // don't know for sure yet whether we'll need that, so we guess based
+ // on whether there are any local variables that would trigger it.
+ if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, FPOffset))
+ return false;
+
+ // If we can reference via the stack pointer or base pointer, try that.
+ // FIXME: This (and the code that resolves the references) can be improved
+ // to only disallow SP relative references in the live range of
+ // the VLA(s). In practice, it's unclear how much difference that
+ // would make, but it may be worth doing.
+ if (isFrameOffsetLegal(MI, Offset))
+ return false;
+
+ // The offset likely isn't legal; we want to allocate a virtual base register.
+ return true;
+}
+
+bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
+ int64_t Offset) const {
+ assert(Offset <= INT_MAX && "Offset too big to fit in int.");
+ assert(MI && "Unable to get the legal offset for nil instruction.");
+ int SaveOffset = Offset;
+ return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal;
+}
+
+/// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
+/// at the beginning of the basic block.
+void AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
+ unsigned BaseReg,
+ int FrameIdx,
+ int64_t Offset) const {
+ MachineBasicBlock::iterator Ins = MBB->begin();
+ DebugLoc DL; // Defaults to "unknown"
+ if (Ins != MBB->end())
+ DL = Ins->getDebugLoc();
+
+ const MCInstrDesc &MCID = TII->get(AArch64::ADDXri);
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ const MachineFunction &MF = *MBB->getParent();
+ MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF));
+ unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
+
+ BuildMI(*MBB, Ins, DL, MCID, BaseReg)
+ .addFrameIndex(FrameIdx)
+ .addImm(Offset)
+ .addImm(Shifter);
+}
+
+void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
+ int64_t Offset) const {
+ int Off = Offset; // ARM doesn't need the general 64-bit offsets
+ unsigned i = 0;
+
+ while (!MI.getOperand(i).isFI()) {
+ ++i;
+ assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
+ }
+ bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII);
+ assert(Done && "Unable to resolve frame index!");
+ (void)Done;
+}
+
+void AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ assert(SPAdj == 0 && "Unexpected");
+
+ MachineInstr &MI = *II;
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const AArch64FrameLowering *TFI = static_cast<const AArch64FrameLowering *>(
+ MF.getTarget().getFrameLowering());
+
+ int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
+ unsigned FrameReg;
+ int Offset;
+
+ // Special handling of dbg_value, stackmap and patchpoint instructions.
+ if (MI.isDebugValue() || MI.getOpcode() == TargetOpcode::STACKMAP ||
+ MI.getOpcode() == TargetOpcode::PATCHPOINT) {
+ Offset = TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg,
+ /*PreferFP=*/true);
+ Offset += MI.getOperand(FIOperandNum + 1).getImm();
+ MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
+ MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
+ return;
+ }
+
+ // Modify MI as necessary to handle as much of 'Offset' as possible
+ Offset = TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg);
+ if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
+ return;
+
+ assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) &&
+ "Emergency spill slot is out of reach");
+
+ // If we get here, the immediate doesn't fit into the instruction. We folded
+ // as much as possible above. Handle the rest, providing a register that is
+ // SP+LargeImm.
+ unsigned ScratchReg =
+ MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
+ emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII);
+ MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false, true);
+}
+
+namespace llvm {
+
+unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ switch (RC->getID()) {
+ default:
+ return 0;
+ case AArch64::GPR32RegClassID:
+ case AArch64::GPR32spRegClassID:
+ case AArch64::GPR32allRegClassID:
+ case AArch64::GPR64spRegClassID:
+ case AArch64::GPR64allRegClassID:
+ case AArch64::GPR64RegClassID:
+ case AArch64::GPR32commonRegClassID:
+ case AArch64::GPR64commonRegClassID:
+ return 32 - 1 // XZR/SP
+ - (TFI->hasFP(MF) || STI->isTargetDarwin()) // FP
+ - STI->isTargetDarwin() // X18 reserved as platform register
+ - hasBasePointer(MF); // X19
+ case AArch64::FPR8RegClassID:
+ case AArch64::FPR16RegClassID:
+ case AArch64::FPR32RegClassID:
+ case AArch64::FPR64RegClassID:
+ case AArch64::FPR128RegClassID:
+ return 32;
+
+ case AArch64::DDRegClassID:
+ case AArch64::DDDRegClassID:
+ case AArch64::DDDDRegClassID:
+ case AArch64::QQRegClassID:
+ case AArch64::QQQRegClassID:
+ case AArch64::QQQQRegClassID:
+ return 32;
+
+ case AArch64::FPR128_loRegClassID:
+ return 16;
+ }
+}
+
+} // namespace llvm
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.h b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.h
new file mode 100644
index 0000000..76af1ed
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.h
@@ -0,0 +1,101 @@
+//==- AArch64RegisterInfo.h - AArch64 Register Information Impl --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the AArch64 implementation of the MRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_AArch64REGISTERINFO_H
+#define LLVM_TARGET_AArch64REGISTERINFO_H
+
+#define GET_REGINFO_HEADER
+#include "AArch64GenRegisterInfo.inc"
+
+namespace llvm {
+
+class AArch64InstrInfo;
+class AArch64Subtarget;
+class MachineFunction;
+class RegScavenger;
+class TargetRegisterClass;
+
+struct AArch64RegisterInfo : public AArch64GenRegisterInfo {
+private:
+ const AArch64InstrInfo *TII;
+ const AArch64Subtarget *STI;
+
+public:
+ AArch64RegisterInfo(const AArch64InstrInfo *tii, const AArch64Subtarget *sti);
+
+ bool isReservedReg(const MachineFunction &MF, unsigned Reg) const;
+
+ /// Code Generation virtual methods...
+ const MCPhysReg *
+ getCalleeSavedRegs(const MachineFunction *MF = nullptr) const override;
+ const uint32_t *getCallPreservedMask(CallingConv::ID) const override;
+
+ unsigned getCSRFirstUseCost() const override {
+ // The cost will be compared against BlockFrequency where entry has the
+ // value of 1 << 14. A value of 5 will choose to spill or split really
+ // cold path instead of using a callee-saved register.
+ return 5;
+ }
+
+ // Calls involved in thread-local variable lookup save more registers than
+ // normal calls, so they need a different mask to represent this.
+ const uint32_t *getTLSCallPreservedMask() const;
+
+ /// getThisReturnPreservedMask - Returns a call preserved mask specific to the
+ /// case that 'returned' is on an i64 first argument if the calling convention
+ /// is one that can (partially) model this attribute with a preserved mask
+ /// (i.e. it is a calling convention that uses the same register for the first
+ /// i64 argument and an i64 return value)
+ ///
+ /// Should return NULL in the case that the calling convention does not have
+ /// this property
+ const uint32_t *getThisReturnPreservedMask(CallingConv::ID) const;
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+ const TargetRegisterClass *
+ getPointerRegClass(const MachineFunction &MF,
+ unsigned Kind = 0) const override;
+ const TargetRegisterClass *
+ getCrossCopyRegClass(const TargetRegisterClass *RC) const override;
+
+ bool requiresRegisterScavenging(const MachineFunction &MF) const override;
+ bool useFPForScavengingIndex(const MachineFunction &MF) const override;
+ bool requiresFrameIndexScavenging(const MachineFunction &MF) const override;
+
+ bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const override;
+ bool isFrameOffsetLegal(const MachineInstr *MI,
+ int64_t Offset) const override;
+ void materializeFrameBaseRegister(MachineBasicBlock *MBB, unsigned BaseReg,
+ int FrameIdx,
+ int64_t Offset) const override;
+ void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
+ int64_t Offset) const override;
+ void eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj,
+ unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const override;
+ bool cannotEliminateFrame(const MachineFunction &MF) const;
+
+ bool requiresVirtualBaseRegisters(const MachineFunction &MF) const override;
+ bool hasBasePointer(const MachineFunction &MF) const;
+ unsigned getBaseRegister() const;
+
+ // Debug information queries.
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+
+ unsigned getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const override;
+};
+
+} // end namespace llvm
+
+#endif // LLVM_TARGET_AArch64REGISTERINFO_H
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.td b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.td
new file mode 100644
index 0000000..a30e4ad
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.td
@@ -0,0 +1,593 @@
+//=- AArch64RegisterInfo.td - Describe the AArch64 Regisers --*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+
+class AArch64Reg<bits<16> enc, string n, list<Register> subregs = [],
+ list<string> altNames = []>
+ : Register<n, altNames> {
+ let HWEncoding = enc;
+ let Namespace = "AArch64";
+ let SubRegs = subregs;
+}
+
+let Namespace = "AArch64" in {
+ def sub_32 : SubRegIndex<32>;
+
+ def bsub : SubRegIndex<8>;
+ def hsub : SubRegIndex<16>;
+ def ssub : SubRegIndex<32>;
+ def dsub : SubRegIndex<32>;
+ def qhisub : SubRegIndex<64>;
+ def qsub : SubRegIndex<64>;
+ // Note: Code depends on these having consecutive numbers
+ def dsub0 : SubRegIndex<64>;
+ def dsub1 : SubRegIndex<64>;
+ def dsub2 : SubRegIndex<64>;
+ def dsub3 : SubRegIndex<64>;
+ // Note: Code depends on these having consecutive numbers
+ def qsub0 : SubRegIndex<128>;
+ def qsub1 : SubRegIndex<128>;
+ def qsub2 : SubRegIndex<128>;
+ def qsub3 : SubRegIndex<128>;
+}
+
+let Namespace = "AArch64" in {
+ def vreg : RegAltNameIndex;
+ def vlist1 : RegAltNameIndex;
+}
+
+//===----------------------------------------------------------------------===//
+// Registers
+//===----------------------------------------------------------------------===//
+def W0 : AArch64Reg<0, "w0" >, DwarfRegNum<[0]>;
+def W1 : AArch64Reg<1, "w1" >, DwarfRegNum<[1]>;
+def W2 : AArch64Reg<2, "w2" >, DwarfRegNum<[2]>;
+def W3 : AArch64Reg<3, "w3" >, DwarfRegNum<[3]>;
+def W4 : AArch64Reg<4, "w4" >, DwarfRegNum<[4]>;
+def W5 : AArch64Reg<5, "w5" >, DwarfRegNum<[5]>;
+def W6 : AArch64Reg<6, "w6" >, DwarfRegNum<[6]>;
+def W7 : AArch64Reg<7, "w7" >, DwarfRegNum<[7]>;
+def W8 : AArch64Reg<8, "w8" >, DwarfRegNum<[8]>;
+def W9 : AArch64Reg<9, "w9" >, DwarfRegNum<[9]>;
+def W10 : AArch64Reg<10, "w10">, DwarfRegNum<[10]>;
+def W11 : AArch64Reg<11, "w11">, DwarfRegNum<[11]>;
+def W12 : AArch64Reg<12, "w12">, DwarfRegNum<[12]>;
+def W13 : AArch64Reg<13, "w13">, DwarfRegNum<[13]>;
+def W14 : AArch64Reg<14, "w14">, DwarfRegNum<[14]>;
+def W15 : AArch64Reg<15, "w15">, DwarfRegNum<[15]>;
+def W16 : AArch64Reg<16, "w16">, DwarfRegNum<[16]>;
+def W17 : AArch64Reg<17, "w17">, DwarfRegNum<[17]>;
+def W18 : AArch64Reg<18, "w18">, DwarfRegNum<[18]>;
+def W19 : AArch64Reg<19, "w19">, DwarfRegNum<[19]>;
+def W20 : AArch64Reg<20, "w20">, DwarfRegNum<[20]>;
+def W21 : AArch64Reg<21, "w21">, DwarfRegNum<[21]>;
+def W22 : AArch64Reg<22, "w22">, DwarfRegNum<[22]>;
+def W23 : AArch64Reg<23, "w23">, DwarfRegNum<[23]>;
+def W24 : AArch64Reg<24, "w24">, DwarfRegNum<[24]>;
+def W25 : AArch64Reg<25, "w25">, DwarfRegNum<[25]>;
+def W26 : AArch64Reg<26, "w26">, DwarfRegNum<[26]>;
+def W27 : AArch64Reg<27, "w27">, DwarfRegNum<[27]>;
+def W28 : AArch64Reg<28, "w28">, DwarfRegNum<[28]>;
+def W29 : AArch64Reg<29, "w29">, DwarfRegNum<[29]>;
+def W30 : AArch64Reg<30, "w30">, DwarfRegNum<[30]>;
+def WSP : AArch64Reg<31, "wsp">, DwarfRegNum<[31]>;
+def WZR : AArch64Reg<31, "wzr">, DwarfRegAlias<WSP>;
+
+let SubRegIndices = [sub_32] in {
+def X0 : AArch64Reg<0, "x0", [W0]>, DwarfRegAlias<W0>;
+def X1 : AArch64Reg<1, "x1", [W1]>, DwarfRegAlias<W1>;
+def X2 : AArch64Reg<2, "x2", [W2]>, DwarfRegAlias<W2>;
+def X3 : AArch64Reg<3, "x3", [W3]>, DwarfRegAlias<W3>;
+def X4 : AArch64Reg<4, "x4", [W4]>, DwarfRegAlias<W4>;
+def X5 : AArch64Reg<5, "x5", [W5]>, DwarfRegAlias<W5>;
+def X6 : AArch64Reg<6, "x6", [W6]>, DwarfRegAlias<W6>;
+def X7 : AArch64Reg<7, "x7", [W7]>, DwarfRegAlias<W7>;
+def X8 : AArch64Reg<8, "x8", [W8]>, DwarfRegAlias<W8>;
+def X9 : AArch64Reg<9, "x9", [W9]>, DwarfRegAlias<W9>;
+def X10 : AArch64Reg<10, "x10", [W10]>, DwarfRegAlias<W10>;
+def X11 : AArch64Reg<11, "x11", [W11]>, DwarfRegAlias<W11>;
+def X12 : AArch64Reg<12, "x12", [W12]>, DwarfRegAlias<W12>;
+def X13 : AArch64Reg<13, "x13", [W13]>, DwarfRegAlias<W13>;
+def X14 : AArch64Reg<14, "x14", [W14]>, DwarfRegAlias<W14>;
+def X15 : AArch64Reg<15, "x15", [W15]>, DwarfRegAlias<W15>;
+def X16 : AArch64Reg<16, "x16", [W16]>, DwarfRegAlias<W16>;
+def X17 : AArch64Reg<17, "x17", [W17]>, DwarfRegAlias<W17>;
+def X18 : AArch64Reg<18, "x18", [W18]>, DwarfRegAlias<W18>;
+def X19 : AArch64Reg<19, "x19", [W19]>, DwarfRegAlias<W19>;
+def X20 : AArch64Reg<20, "x20", [W20]>, DwarfRegAlias<W20>;
+def X21 : AArch64Reg<21, "x21", [W21]>, DwarfRegAlias<W21>;
+def X22 : AArch64Reg<22, "x22", [W22]>, DwarfRegAlias<W22>;
+def X23 : AArch64Reg<23, "x23", [W23]>, DwarfRegAlias<W23>;
+def X24 : AArch64Reg<24, "x24", [W24]>, DwarfRegAlias<W24>;
+def X25 : AArch64Reg<25, "x25", [W25]>, DwarfRegAlias<W25>;
+def X26 : AArch64Reg<26, "x26", [W26]>, DwarfRegAlias<W26>;
+def X27 : AArch64Reg<27, "x27", [W27]>, DwarfRegAlias<W27>;
+def X28 : AArch64Reg<28, "x28", [W28]>, DwarfRegAlias<W28>;
+def FP : AArch64Reg<29, "x29", [W29]>, DwarfRegAlias<W29>;
+def LR : AArch64Reg<30, "x30", [W30]>, DwarfRegAlias<W30>;
+def SP : AArch64Reg<31, "sp", [WSP]>, DwarfRegAlias<WSP>;
+def XZR : AArch64Reg<31, "xzr", [WZR]>, DwarfRegAlias<WSP>;
+}
+
+// Condition code register.
+def NZCV : AArch64Reg<0, "nzcv">;
+
+// GPR register classes with the intersections of GPR32/GPR32sp and
+// GPR64/GPR64sp for use by the coalescer.
+def GPR32common : RegisterClass<"AArch64", [i32], 32, (sequence "W%u", 0, 30)> {
+ let AltOrders = [(rotl GPR32common, 8)];
+ let AltOrderSelect = [{ return 1; }];
+}
+def GPR64common : RegisterClass<"AArch64", [i64], 64,
+ (add (sequence "X%u", 0, 28), FP, LR)> {
+ let AltOrders = [(rotl GPR64common, 8)];
+ let AltOrderSelect = [{ return 1; }];
+}
+// GPR register classes which exclude SP/WSP.
+def GPR32 : RegisterClass<"AArch64", [i32], 32, (add GPR32common, WZR)> {
+ let AltOrders = [(rotl GPR32, 8)];
+ let AltOrderSelect = [{ return 1; }];
+}
+def GPR64 : RegisterClass<"AArch64", [i64], 64, (add GPR64common, XZR)> {
+ let AltOrders = [(rotl GPR64, 8)];
+ let AltOrderSelect = [{ return 1; }];
+}
+
+// GPR register classes which include SP/WSP.
+def GPR32sp : RegisterClass<"AArch64", [i32], 32, (add GPR32common, WSP)> {
+ let AltOrders = [(rotl GPR32sp, 8)];
+ let AltOrderSelect = [{ return 1; }];
+}
+def GPR64sp : RegisterClass<"AArch64", [i64], 64, (add GPR64common, SP)> {
+ let AltOrders = [(rotl GPR64sp, 8)];
+ let AltOrderSelect = [{ return 1; }];
+}
+
+def GPR32sponly : RegisterClass<"AArch64", [i32], 32, (add WSP)>;
+def GPR64sponly : RegisterClass<"AArch64", [i64], 64, (add SP)>;
+
+def GPR64spPlus0Operand : AsmOperandClass {
+ let Name = "GPR64sp0";
+ let RenderMethod = "addRegOperands";
+ let ParserMethod = "tryParseGPR64sp0Operand";
+}
+
+def GPR64sp0 : RegisterOperand<GPR64sp> {
+ let ParserMatchClass = GPR64spPlus0Operand;
+}
+
+// GPR register classes which include WZR/XZR AND SP/WSP. This is not a
+// constraint used by any instructions, it is used as a common super-class.
+def GPR32all : RegisterClass<"AArch64", [i32], 32, (add GPR32common, WZR, WSP)>;
+def GPR64all : RegisterClass<"AArch64", [i64], 64, (add GPR64common, XZR, SP)>;
+
+// For tail calls, we can't use callee-saved registers, as they are restored
+// to the saved value before the tail call, which would clobber a call address.
+// This is for indirect tail calls to store the address of the destination.
+def tcGPR64 : RegisterClass<"AArch64", [i64], 64, (sub GPR64common, X19, X20, X21,
+ X22, X23, X24, X25, X26,
+ X27, X28, FP, LR)>;
+
+// GPR register classes for post increment amount of vector load/store that
+// has alternate printing when Rm=31 and prints a constant immediate value
+// equal to the total number of bytes transferred.
+
+// FIXME: TableGen *should* be able to do these itself now. There appears to be
+// a bug in counting how many operands a Post-indexed MCInst should have which
+// means the aliases don't trigger.
+def GPR64pi1 : RegisterOperand<GPR64, "printPostIncOperand<1>">;
+def GPR64pi2 : RegisterOperand<GPR64, "printPostIncOperand<2>">;
+def GPR64pi3 : RegisterOperand<GPR64, "printPostIncOperand<3>">;
+def GPR64pi4 : RegisterOperand<GPR64, "printPostIncOperand<4>">;
+def GPR64pi6 : RegisterOperand<GPR64, "printPostIncOperand<6>">;
+def GPR64pi8 : RegisterOperand<GPR64, "printPostIncOperand<8>">;
+def GPR64pi12 : RegisterOperand<GPR64, "printPostIncOperand<12>">;
+def GPR64pi16 : RegisterOperand<GPR64, "printPostIncOperand<16>">;
+def GPR64pi24 : RegisterOperand<GPR64, "printPostIncOperand<24>">;
+def GPR64pi32 : RegisterOperand<GPR64, "printPostIncOperand<32>">;
+def GPR64pi48 : RegisterOperand<GPR64, "printPostIncOperand<48>">;
+def GPR64pi64 : RegisterOperand<GPR64, "printPostIncOperand<64>">;
+
+// Condition code regclass.
+def CCR : RegisterClass<"AArch64", [i32], 32, (add NZCV)> {
+ let CopyCost = -1; // Don't allow copying of status registers.
+
+ // CCR is not allocatable.
+ let isAllocatable = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Floating Point Scalar Registers
+//===----------------------------------------------------------------------===//
+
+def B0 : AArch64Reg<0, "b0">, DwarfRegNum<[64]>;
+def B1 : AArch64Reg<1, "b1">, DwarfRegNum<[65]>;
+def B2 : AArch64Reg<2, "b2">, DwarfRegNum<[66]>;
+def B3 : AArch64Reg<3, "b3">, DwarfRegNum<[67]>;
+def B4 : AArch64Reg<4, "b4">, DwarfRegNum<[68]>;
+def B5 : AArch64Reg<5, "b5">, DwarfRegNum<[69]>;
+def B6 : AArch64Reg<6, "b6">, DwarfRegNum<[70]>;
+def B7 : AArch64Reg<7, "b7">, DwarfRegNum<[71]>;
+def B8 : AArch64Reg<8, "b8">, DwarfRegNum<[72]>;
+def B9 : AArch64Reg<9, "b9">, DwarfRegNum<[73]>;
+def B10 : AArch64Reg<10, "b10">, DwarfRegNum<[74]>;
+def B11 : AArch64Reg<11, "b11">, DwarfRegNum<[75]>;
+def B12 : AArch64Reg<12, "b12">, DwarfRegNum<[76]>;
+def B13 : AArch64Reg<13, "b13">, DwarfRegNum<[77]>;
+def B14 : AArch64Reg<14, "b14">, DwarfRegNum<[78]>;
+def B15 : AArch64Reg<15, "b15">, DwarfRegNum<[79]>;
+def B16 : AArch64Reg<16, "b16">, DwarfRegNum<[80]>;
+def B17 : AArch64Reg<17, "b17">, DwarfRegNum<[81]>;
+def B18 : AArch64Reg<18, "b18">, DwarfRegNum<[82]>;
+def B19 : AArch64Reg<19, "b19">, DwarfRegNum<[83]>;
+def B20 : AArch64Reg<20, "b20">, DwarfRegNum<[84]>;
+def B21 : AArch64Reg<21, "b21">, DwarfRegNum<[85]>;
+def B22 : AArch64Reg<22, "b22">, DwarfRegNum<[86]>;
+def B23 : AArch64Reg<23, "b23">, DwarfRegNum<[87]>;
+def B24 : AArch64Reg<24, "b24">, DwarfRegNum<[88]>;
+def B25 : AArch64Reg<25, "b25">, DwarfRegNum<[89]>;
+def B26 : AArch64Reg<26, "b26">, DwarfRegNum<[90]>;
+def B27 : AArch64Reg<27, "b27">, DwarfRegNum<[91]>;
+def B28 : AArch64Reg<28, "b28">, DwarfRegNum<[92]>;
+def B29 : AArch64Reg<29, "b29">, DwarfRegNum<[93]>;
+def B30 : AArch64Reg<30, "b30">, DwarfRegNum<[94]>;
+def B31 : AArch64Reg<31, "b31">, DwarfRegNum<[95]>;
+
+let SubRegIndices = [bsub] in {
+def H0 : AArch64Reg<0, "h0", [B0]>, DwarfRegAlias<B0>;
+def H1 : AArch64Reg<1, "h1", [B1]>, DwarfRegAlias<B1>;
+def H2 : AArch64Reg<2, "h2", [B2]>, DwarfRegAlias<B2>;
+def H3 : AArch64Reg<3, "h3", [B3]>, DwarfRegAlias<B3>;
+def H4 : AArch64Reg<4, "h4", [B4]>, DwarfRegAlias<B4>;
+def H5 : AArch64Reg<5, "h5", [B5]>, DwarfRegAlias<B5>;
+def H6 : AArch64Reg<6, "h6", [B6]>, DwarfRegAlias<B6>;
+def H7 : AArch64Reg<7, "h7", [B7]>, DwarfRegAlias<B7>;
+def H8 : AArch64Reg<8, "h8", [B8]>, DwarfRegAlias<B8>;
+def H9 : AArch64Reg<9, "h9", [B9]>, DwarfRegAlias<B9>;
+def H10 : AArch64Reg<10, "h10", [B10]>, DwarfRegAlias<B10>;
+def H11 : AArch64Reg<11, "h11", [B11]>, DwarfRegAlias<B11>;
+def H12 : AArch64Reg<12, "h12", [B12]>, DwarfRegAlias<B12>;
+def H13 : AArch64Reg<13, "h13", [B13]>, DwarfRegAlias<B13>;
+def H14 : AArch64Reg<14, "h14", [B14]>, DwarfRegAlias<B14>;
+def H15 : AArch64Reg<15, "h15", [B15]>, DwarfRegAlias<B15>;
+def H16 : AArch64Reg<16, "h16", [B16]>, DwarfRegAlias<B16>;
+def H17 : AArch64Reg<17, "h17", [B17]>, DwarfRegAlias<B17>;
+def H18 : AArch64Reg<18, "h18", [B18]>, DwarfRegAlias<B18>;
+def H19 : AArch64Reg<19, "h19", [B19]>, DwarfRegAlias<B19>;
+def H20 : AArch64Reg<20, "h20", [B20]>, DwarfRegAlias<B20>;
+def H21 : AArch64Reg<21, "h21", [B21]>, DwarfRegAlias<B21>;
+def H22 : AArch64Reg<22, "h22", [B22]>, DwarfRegAlias<B22>;
+def H23 : AArch64Reg<23, "h23", [B23]>, DwarfRegAlias<B23>;
+def H24 : AArch64Reg<24, "h24", [B24]>, DwarfRegAlias<B24>;
+def H25 : AArch64Reg<25, "h25", [B25]>, DwarfRegAlias<B25>;
+def H26 : AArch64Reg<26, "h26", [B26]>, DwarfRegAlias<B26>;
+def H27 : AArch64Reg<27, "h27", [B27]>, DwarfRegAlias<B27>;
+def H28 : AArch64Reg<28, "h28", [B28]>, DwarfRegAlias<B28>;
+def H29 : AArch64Reg<29, "h29", [B29]>, DwarfRegAlias<B29>;
+def H30 : AArch64Reg<30, "h30", [B30]>, DwarfRegAlias<B30>;
+def H31 : AArch64Reg<31, "h31", [B31]>, DwarfRegAlias<B31>;
+}
+
+let SubRegIndices = [hsub] in {
+def S0 : AArch64Reg<0, "s0", [H0]>, DwarfRegAlias<B0>;
+def S1 : AArch64Reg<1, "s1", [H1]>, DwarfRegAlias<B1>;
+def S2 : AArch64Reg<2, "s2", [H2]>, DwarfRegAlias<B2>;
+def S3 : AArch64Reg<3, "s3", [H3]>, DwarfRegAlias<B3>;
+def S4 : AArch64Reg<4, "s4", [H4]>, DwarfRegAlias<B4>;
+def S5 : AArch64Reg<5, "s5", [H5]>, DwarfRegAlias<B5>;
+def S6 : AArch64Reg<6, "s6", [H6]>, DwarfRegAlias<B6>;
+def S7 : AArch64Reg<7, "s7", [H7]>, DwarfRegAlias<B7>;
+def S8 : AArch64Reg<8, "s8", [H8]>, DwarfRegAlias<B8>;
+def S9 : AArch64Reg<9, "s9", [H9]>, DwarfRegAlias<B9>;
+def S10 : AArch64Reg<10, "s10", [H10]>, DwarfRegAlias<B10>;
+def S11 : AArch64Reg<11, "s11", [H11]>, DwarfRegAlias<B11>;
+def S12 : AArch64Reg<12, "s12", [H12]>, DwarfRegAlias<B12>;
+def S13 : AArch64Reg<13, "s13", [H13]>, DwarfRegAlias<B13>;
+def S14 : AArch64Reg<14, "s14", [H14]>, DwarfRegAlias<B14>;
+def S15 : AArch64Reg<15, "s15", [H15]>, DwarfRegAlias<B15>;
+def S16 : AArch64Reg<16, "s16", [H16]>, DwarfRegAlias<B16>;
+def S17 : AArch64Reg<17, "s17", [H17]>, DwarfRegAlias<B17>;
+def S18 : AArch64Reg<18, "s18", [H18]>, DwarfRegAlias<B18>;
+def S19 : AArch64Reg<19, "s19", [H19]>, DwarfRegAlias<B19>;
+def S20 : AArch64Reg<20, "s20", [H20]>, DwarfRegAlias<B20>;
+def S21 : AArch64Reg<21, "s21", [H21]>, DwarfRegAlias<B21>;
+def S22 : AArch64Reg<22, "s22", [H22]>, DwarfRegAlias<B22>;
+def S23 : AArch64Reg<23, "s23", [H23]>, DwarfRegAlias<B23>;
+def S24 : AArch64Reg<24, "s24", [H24]>, DwarfRegAlias<B24>;
+def S25 : AArch64Reg<25, "s25", [H25]>, DwarfRegAlias<B25>;
+def S26 : AArch64Reg<26, "s26", [H26]>, DwarfRegAlias<B26>;
+def S27 : AArch64Reg<27, "s27", [H27]>, DwarfRegAlias<B27>;
+def S28 : AArch64Reg<28, "s28", [H28]>, DwarfRegAlias<B28>;
+def S29 : AArch64Reg<29, "s29", [H29]>, DwarfRegAlias<B29>;
+def S30 : AArch64Reg<30, "s30", [H30]>, DwarfRegAlias<B30>;
+def S31 : AArch64Reg<31, "s31", [H31]>, DwarfRegAlias<B31>;
+}
+
+let SubRegIndices = [ssub], RegAltNameIndices = [vreg, vlist1] in {
+def D0 : AArch64Reg<0, "d0", [S0], ["v0", ""]>, DwarfRegAlias<B0>;
+def D1 : AArch64Reg<1, "d1", [S1], ["v1", ""]>, DwarfRegAlias<B1>;
+def D2 : AArch64Reg<2, "d2", [S2], ["v2", ""]>, DwarfRegAlias<B2>;
+def D3 : AArch64Reg<3, "d3", [S3], ["v3", ""]>, DwarfRegAlias<B3>;
+def D4 : AArch64Reg<4, "d4", [S4], ["v4", ""]>, DwarfRegAlias<B4>;
+def D5 : AArch64Reg<5, "d5", [S5], ["v5", ""]>, DwarfRegAlias<B5>;
+def D6 : AArch64Reg<6, "d6", [S6], ["v6", ""]>, DwarfRegAlias<B6>;
+def D7 : AArch64Reg<7, "d7", [S7], ["v7", ""]>, DwarfRegAlias<B7>;
+def D8 : AArch64Reg<8, "d8", [S8], ["v8", ""]>, DwarfRegAlias<B8>;
+def D9 : AArch64Reg<9, "d9", [S9], ["v9", ""]>, DwarfRegAlias<B9>;
+def D10 : AArch64Reg<10, "d10", [S10], ["v10", ""]>, DwarfRegAlias<B10>;
+def D11 : AArch64Reg<11, "d11", [S11], ["v11", ""]>, DwarfRegAlias<B11>;
+def D12 : AArch64Reg<12, "d12", [S12], ["v12", ""]>, DwarfRegAlias<B12>;
+def D13 : AArch64Reg<13, "d13", [S13], ["v13", ""]>, DwarfRegAlias<B13>;
+def D14 : AArch64Reg<14, "d14", [S14], ["v14", ""]>, DwarfRegAlias<B14>;
+def D15 : AArch64Reg<15, "d15", [S15], ["v15", ""]>, DwarfRegAlias<B15>;
+def D16 : AArch64Reg<16, "d16", [S16], ["v16", ""]>, DwarfRegAlias<B16>;
+def D17 : AArch64Reg<17, "d17", [S17], ["v17", ""]>, DwarfRegAlias<B17>;
+def D18 : AArch64Reg<18, "d18", [S18], ["v18", ""]>, DwarfRegAlias<B18>;
+def D19 : AArch64Reg<19, "d19", [S19], ["v19", ""]>, DwarfRegAlias<B19>;
+def D20 : AArch64Reg<20, "d20", [S20], ["v20", ""]>, DwarfRegAlias<B20>;
+def D21 : AArch64Reg<21, "d21", [S21], ["v21", ""]>, DwarfRegAlias<B21>;
+def D22 : AArch64Reg<22, "d22", [S22], ["v22", ""]>, DwarfRegAlias<B22>;
+def D23 : AArch64Reg<23, "d23", [S23], ["v23", ""]>, DwarfRegAlias<B23>;
+def D24 : AArch64Reg<24, "d24", [S24], ["v24", ""]>, DwarfRegAlias<B24>;
+def D25 : AArch64Reg<25, "d25", [S25], ["v25", ""]>, DwarfRegAlias<B25>;
+def D26 : AArch64Reg<26, "d26", [S26], ["v26", ""]>, DwarfRegAlias<B26>;
+def D27 : AArch64Reg<27, "d27", [S27], ["v27", ""]>, DwarfRegAlias<B27>;
+def D28 : AArch64Reg<28, "d28", [S28], ["v28", ""]>, DwarfRegAlias<B28>;
+def D29 : AArch64Reg<29, "d29", [S29], ["v29", ""]>, DwarfRegAlias<B29>;
+def D30 : AArch64Reg<30, "d30", [S30], ["v30", ""]>, DwarfRegAlias<B30>;
+def D31 : AArch64Reg<31, "d31", [S31], ["v31", ""]>, DwarfRegAlias<B31>;
+}
+
+let SubRegIndices = [dsub], RegAltNameIndices = [vreg, vlist1] in {
+def Q0 : AArch64Reg<0, "q0", [D0], ["v0", ""]>, DwarfRegAlias<B0>;
+def Q1 : AArch64Reg<1, "q1", [D1], ["v1", ""]>, DwarfRegAlias<B1>;
+def Q2 : AArch64Reg<2, "q2", [D2], ["v2", ""]>, DwarfRegAlias<B2>;
+def Q3 : AArch64Reg<3, "q3", [D3], ["v3", ""]>, DwarfRegAlias<B3>;
+def Q4 : AArch64Reg<4, "q4", [D4], ["v4", ""]>, DwarfRegAlias<B4>;
+def Q5 : AArch64Reg<5, "q5", [D5], ["v5", ""]>, DwarfRegAlias<B5>;
+def Q6 : AArch64Reg<6, "q6", [D6], ["v6", ""]>, DwarfRegAlias<B6>;
+def Q7 : AArch64Reg<7, "q7", [D7], ["v7", ""]>, DwarfRegAlias<B7>;
+def Q8 : AArch64Reg<8, "q8", [D8], ["v8", ""]>, DwarfRegAlias<B8>;
+def Q9 : AArch64Reg<9, "q9", [D9], ["v9", ""]>, DwarfRegAlias<B9>;
+def Q10 : AArch64Reg<10, "q10", [D10], ["v10", ""]>, DwarfRegAlias<B10>;
+def Q11 : AArch64Reg<11, "q11", [D11], ["v11", ""]>, DwarfRegAlias<B11>;
+def Q12 : AArch64Reg<12, "q12", [D12], ["v12", ""]>, DwarfRegAlias<B12>;
+def Q13 : AArch64Reg<13, "q13", [D13], ["v13", ""]>, DwarfRegAlias<B13>;
+def Q14 : AArch64Reg<14, "q14", [D14], ["v14", ""]>, DwarfRegAlias<B14>;
+def Q15 : AArch64Reg<15, "q15", [D15], ["v15", ""]>, DwarfRegAlias<B15>;
+def Q16 : AArch64Reg<16, "q16", [D16], ["v16", ""]>, DwarfRegAlias<B16>;
+def Q17 : AArch64Reg<17, "q17", [D17], ["v17", ""]>, DwarfRegAlias<B17>;
+def Q18 : AArch64Reg<18, "q18", [D18], ["v18", ""]>, DwarfRegAlias<B18>;
+def Q19 : AArch64Reg<19, "q19", [D19], ["v19", ""]>, DwarfRegAlias<B19>;
+def Q20 : AArch64Reg<20, "q20", [D20], ["v20", ""]>, DwarfRegAlias<B20>;
+def Q21 : AArch64Reg<21, "q21", [D21], ["v21", ""]>, DwarfRegAlias<B21>;
+def Q22 : AArch64Reg<22, "q22", [D22], ["v22", ""]>, DwarfRegAlias<B22>;
+def Q23 : AArch64Reg<23, "q23", [D23], ["v23", ""]>, DwarfRegAlias<B23>;
+def Q24 : AArch64Reg<24, "q24", [D24], ["v24", ""]>, DwarfRegAlias<B24>;
+def Q25 : AArch64Reg<25, "q25", [D25], ["v25", ""]>, DwarfRegAlias<B25>;
+def Q26 : AArch64Reg<26, "q26", [D26], ["v26", ""]>, DwarfRegAlias<B26>;
+def Q27 : AArch64Reg<27, "q27", [D27], ["v27", ""]>, DwarfRegAlias<B27>;
+def Q28 : AArch64Reg<28, "q28", [D28], ["v28", ""]>, DwarfRegAlias<B28>;
+def Q29 : AArch64Reg<29, "q29", [D29], ["v29", ""]>, DwarfRegAlias<B29>;
+def Q30 : AArch64Reg<30, "q30", [D30], ["v30", ""]>, DwarfRegAlias<B30>;
+def Q31 : AArch64Reg<31, "q31", [D31], ["v31", ""]>, DwarfRegAlias<B31>;
+}
+
+def FPR8 : RegisterClass<"AArch64", [untyped], 8, (sequence "B%u", 0, 31)> {
+ let Size = 8;
+}
+def FPR16 : RegisterClass<"AArch64", [f16], 16, (sequence "H%u", 0, 31)> {
+ let Size = 16;
+}
+def FPR32 : RegisterClass<"AArch64", [f32, i32], 32,(sequence "S%u", 0, 31)>;
+def FPR64 : RegisterClass<"AArch64", [f64, i64, v2f32, v1f64, v8i8, v4i16, v2i32,
+ v1i64],
+ 64, (sequence "D%u", 0, 31)>;
+// We don't (yet) have an f128 legal type, so don't use that here. We
+// normalize 128-bit vectors to v2f64 for arg passing and such, so use
+// that here.
+def FPR128 : RegisterClass<"AArch64",
+ [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, f128],
+ 128, (sequence "Q%u", 0, 31)>;
+
+// The lower 16 vector registers. Some instructions can only take registers
+// in this range.
+def FPR128_lo : RegisterClass<"AArch64",
+ [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ 128, (trunc FPR128, 16)>;
+
+// Pairs, triples, and quads of 64-bit vector registers.
+def DSeqPairs : RegisterTuples<[dsub0, dsub1], [(rotl FPR64, 0), (rotl FPR64, 1)]>;
+def DSeqTriples : RegisterTuples<[dsub0, dsub1, dsub2],
+ [(rotl FPR64, 0), (rotl FPR64, 1),
+ (rotl FPR64, 2)]>;
+def DSeqQuads : RegisterTuples<[dsub0, dsub1, dsub2, dsub3],
+ [(rotl FPR64, 0), (rotl FPR64, 1),
+ (rotl FPR64, 2), (rotl FPR64, 3)]>;
+def DD : RegisterClass<"AArch64", [untyped], 64, (add DSeqPairs)> {
+ let Size = 128;
+}
+def DDD : RegisterClass<"AArch64", [untyped], 64, (add DSeqTriples)> {
+ let Size = 196;
+}
+def DDDD : RegisterClass<"AArch64", [untyped], 64, (add DSeqQuads)> {
+ let Size = 256;
+}
+
+// Pairs, triples, and quads of 128-bit vector registers.
+def QSeqPairs : RegisterTuples<[qsub0, qsub1], [(rotl FPR128, 0), (rotl FPR128, 1)]>;
+def QSeqTriples : RegisterTuples<[qsub0, qsub1, qsub2],
+ [(rotl FPR128, 0), (rotl FPR128, 1),
+ (rotl FPR128, 2)]>;
+def QSeqQuads : RegisterTuples<[qsub0, qsub1, qsub2, qsub3],
+ [(rotl FPR128, 0), (rotl FPR128, 1),
+ (rotl FPR128, 2), (rotl FPR128, 3)]>;
+def QQ : RegisterClass<"AArch64", [untyped], 128, (add QSeqPairs)> {
+ let Size = 256;
+}
+def QQQ : RegisterClass<"AArch64", [untyped], 128, (add QSeqTriples)> {
+ let Size = 384;
+}
+def QQQQ : RegisterClass<"AArch64", [untyped], 128, (add QSeqQuads)> {
+ let Size = 512;
+}
+
+
+// Vector operand versions of the FP registers. Alternate name printing and
+// assmebler matching.
+def VectorReg64AsmOperand : AsmOperandClass {
+ let Name = "VectorReg64";
+ let PredicateMethod = "isVectorReg";
+}
+def VectorReg128AsmOperand : AsmOperandClass {
+ let Name = "VectorReg128";
+ let PredicateMethod = "isVectorReg";
+}
+
+def V64 : RegisterOperand<FPR64, "printVRegOperand"> {
+ let ParserMatchClass = VectorReg64AsmOperand;
+}
+
+def V128 : RegisterOperand<FPR128, "printVRegOperand"> {
+ let ParserMatchClass = VectorReg128AsmOperand;
+}
+
+def VectorRegLoAsmOperand : AsmOperandClass { let Name = "VectorRegLo"; }
+def V128_lo : RegisterOperand<FPR128_lo, "printVRegOperand"> {
+ let ParserMatchClass = VectorRegLoAsmOperand;
+}
+
+class TypedVecListAsmOperand<int count, int regsize, int lanes, string kind>
+ : AsmOperandClass {
+ let Name = "TypedVectorList" # count # "_" # lanes # kind;
+
+ let PredicateMethod
+ = "isTypedVectorList<" # count # ", " # lanes # ", '" # kind # "'>";
+ let RenderMethod = "addVectorList" # regsize # "Operands<" # count # ">";
+}
+
+class TypedVecListRegOperand<RegisterClass Reg, int lanes, string kind>
+ : RegisterOperand<Reg, "printTypedVectorList<" # lanes # ", '"
+ # kind # "'>">;
+
+multiclass VectorList<int count, RegisterClass Reg64, RegisterClass Reg128> {
+ // With implicit types (probably on instruction instead). E.g. { v0, v1 }
+ def _64AsmOperand : AsmOperandClass {
+ let Name = NAME # "64";
+ let PredicateMethod = "isImplicitlyTypedVectorList<" # count # ">";
+ let RenderMethod = "addVectorList64Operands<" # count # ">";
+ }
+
+ def "64" : RegisterOperand<Reg64, "printImplicitlyTypedVectorList"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_64AsmOperand");
+ }
+
+ def _128AsmOperand : AsmOperandClass {
+ let Name = NAME # "128";
+ let PredicateMethod = "isImplicitlyTypedVectorList<" # count # ">";
+ let RenderMethod = "addVectorList128Operands<" # count # ">";
+ }
+
+ def "128" : RegisterOperand<Reg128, "printImplicitlyTypedVectorList"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_128AsmOperand");
+ }
+
+ // 64-bit register lists with explicit type.
+
+ // { v0.8b, v1.8b }
+ def _8bAsmOperand : TypedVecListAsmOperand<count, 64, 8, "b">;
+ def "8b" : TypedVecListRegOperand<Reg64, 8, "b"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_8bAsmOperand");
+ }
+
+ // { v0.4h, v1.4h }
+ def _4hAsmOperand : TypedVecListAsmOperand<count, 64, 4, "h">;
+ def "4h" : TypedVecListRegOperand<Reg64, 4, "h"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_4hAsmOperand");
+ }
+
+ // { v0.2s, v1.2s }
+ def _2sAsmOperand : TypedVecListAsmOperand<count, 64, 2, "s">;
+ def "2s" : TypedVecListRegOperand<Reg64, 2, "s"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_2sAsmOperand");
+ }
+
+ // { v0.1d, v1.1d }
+ def _1dAsmOperand : TypedVecListAsmOperand<count, 64, 1, "d">;
+ def "1d" : TypedVecListRegOperand<Reg64, 1, "d"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_1dAsmOperand");
+ }
+
+ // 128-bit register lists with explicit type
+
+ // { v0.16b, v1.16b }
+ def _16bAsmOperand : TypedVecListAsmOperand<count, 128, 16, "b">;
+ def "16b" : TypedVecListRegOperand<Reg128, 16, "b"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_16bAsmOperand");
+ }
+
+ // { v0.8h, v1.8h }
+ def _8hAsmOperand : TypedVecListAsmOperand<count, 128, 8, "h">;
+ def "8h" : TypedVecListRegOperand<Reg128, 8, "h"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_8hAsmOperand");
+ }
+
+ // { v0.4s, v1.4s }
+ def _4sAsmOperand : TypedVecListAsmOperand<count, 128, 4, "s">;
+ def "4s" : TypedVecListRegOperand<Reg128, 4, "s"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_4sAsmOperand");
+ }
+
+ // { v0.2d, v1.2d }
+ def _2dAsmOperand : TypedVecListAsmOperand<count, 128, 2, "d">;
+ def "2d" : TypedVecListRegOperand<Reg128, 2, "d"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_2dAsmOperand");
+ }
+
+ // { v0.b, v1.b }
+ def _bAsmOperand : TypedVecListAsmOperand<count, 128, 0, "b">;
+ def "b" : TypedVecListRegOperand<Reg128, 0, "b"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_bAsmOperand");
+ }
+
+ // { v0.h, v1.h }
+ def _hAsmOperand : TypedVecListAsmOperand<count, 128, 0, "h">;
+ def "h" : TypedVecListRegOperand<Reg128, 0, "h"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_hAsmOperand");
+ }
+
+ // { v0.s, v1.s }
+ def _sAsmOperand : TypedVecListAsmOperand<count, 128, 0, "s">;
+ def "s" : TypedVecListRegOperand<Reg128, 0, "s"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_sAsmOperand");
+ }
+
+ // { v0.d, v1.d }
+ def _dAsmOperand : TypedVecListAsmOperand<count, 128, 0, "d">;
+ def "d" : TypedVecListRegOperand<Reg128, 0, "d"> {
+ let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_dAsmOperand");
+ }
+
+
+}
+
+defm VecListOne : VectorList<1, FPR64, FPR128>;
+defm VecListTwo : VectorList<2, DD, QQ>;
+defm VecListThree : VectorList<3, DDD, QQQ>;
+defm VecListFour : VectorList<4, DDDD, QQQQ>;
+
+
+// Register operand versions of the scalar FP registers.
+def FPR16Op : RegisterOperand<FPR16, "printOperand">;
+def FPR32Op : RegisterOperand<FPR32, "printOperand">;
+def FPR64Op : RegisterOperand<FPR64, "printOperand">;
+def FPR128Op : RegisterOperand<FPR128, "printOperand">;
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64SchedA53.td b/contrib/llvm/lib/Target/AArch64/AArch64SchedA53.td
new file mode 100644
index 0000000..d709bee
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64SchedA53.td
@@ -0,0 +1,291 @@
+//==- AArch64SchedA53.td - Cortex-A53 Scheduling Definitions -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the ARM Cortex A53 processors.
+//
+//===----------------------------------------------------------------------===//
+
+// ===---------------------------------------------------------------------===//
+// The following definitions describe the simpler per-operand machine model.
+// This works with MachineScheduler. See MCSchedModel.h for details.
+
+// Cortex-A53 machine model for scheduling and other instruction cost heuristics.
+def CortexA53Model : SchedMachineModel {
+ let MicroOpBufferSize = 0; // Explicitly set to zero since A53 is in-order.
+ let IssueWidth = 2; // 2 micro-ops are dispatched per cycle.
+ let MinLatency = 1 ; // OperandCycles are interpreted as MinLatency.
+ let LoadLatency = 3; // Optimistic load latency assuming bypass.
+ // This is overriden by OperandCycles if the
+ // Itineraries are queried instead.
+ let MispredictPenalty = 9; // Based on "Cortex-A53 Software Optimisation
+ // Specification - Instruction Timings"
+ // v 1.0 Spreadsheet
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define each kind of processor resource and number available.
+
+// Modeling each pipeline as a ProcResource using the BufferSize = 0 since
+// Cortex-A53 is in-order.
+
+def A53UnitALU : ProcResource<2> { let BufferSize = 0; } // Int ALU
+def A53UnitMAC : ProcResource<1> { let BufferSize = 0; } // Int MAC
+def A53UnitDiv : ProcResource<1> { let BufferSize = 0; } // Int Division
+def A53UnitLdSt : ProcResource<1> { let BufferSize = 0; } // Load/Store
+def A53UnitB : ProcResource<1> { let BufferSize = 0; } // Branch
+def A53UnitFPALU : ProcResource<1> { let BufferSize = 0; } // FP ALU
+def A53UnitFPMDS : ProcResource<1> { let BufferSize = 0; } // FP Mult/Div/Sqrt
+
+
+//===----------------------------------------------------------------------===//
+// Subtarget-specific SchedWrite types which both map the ProcResources and
+// set the latency.
+
+let SchedModel = CortexA53Model in {
+
+// ALU - Despite having a full latency of 4, most of the ALU instructions can
+// forward a cycle earlier and then two cycles earlier in the case of a
+// shift-only instruction. These latencies will be incorrect when the
+// result cannot be forwarded, but modeling isn't rocket surgery.
+def : WriteRes<WriteImm, [A53UnitALU]> { let Latency = 3; }
+def : WriteRes<WriteI, [A53UnitALU]> { let Latency = 3; }
+def : WriteRes<WriteISReg, [A53UnitALU]> { let Latency = 3; }
+def : WriteRes<WriteIEReg, [A53UnitALU]> { let Latency = 3; }
+def : WriteRes<WriteIS, [A53UnitALU]> { let Latency = 2; }
+def : WriteRes<WriteExtr, [A53UnitALU]> { let Latency = 3; }
+
+// MAC
+def : WriteRes<WriteIM32, [A53UnitMAC]> { let Latency = 4; }
+def : WriteRes<WriteIM64, [A53UnitMAC]> { let Latency = 4; }
+
+// Div
+def : WriteRes<WriteID32, [A53UnitDiv]> { let Latency = 4; }
+def : WriteRes<WriteID64, [A53UnitDiv]> { let Latency = 4; }
+
+// Load
+def : WriteRes<WriteLD, [A53UnitLdSt]> { let Latency = 4; }
+def : WriteRes<WriteLDIdx, [A53UnitLdSt]> { let Latency = 4; }
+def : WriteRes<WriteLDHi, [A53UnitLdSt]> { let Latency = 4; }
+
+// Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd
+// below, choosing the median of 3 which makes the latency 6.
+// May model this more carefully in the future. The remaining
+// A53WriteVLD# types represent the 1-5 cycle issues explicitly.
+def : WriteRes<WriteVLD, [A53UnitLdSt]> { let Latency = 6;
+ let ResourceCycles = [3]; }
+def A53WriteVLD1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
+def A53WriteVLD2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
+ let ResourceCycles = [2]; }
+def A53WriteVLD3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
+ let ResourceCycles = [3]; }
+def A53WriteVLD4 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 7;
+ let ResourceCycles = [4]; }
+def A53WriteVLD5 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 8;
+ let ResourceCycles = [5]; }
+
+// Pre/Post Indexing - Performed as part of address generation which is already
+// accounted for in the WriteST* latencies below
+def : WriteRes<WriteAdr, []> { let Latency = 0; }
+
+// Store
+def : WriteRes<WriteST, [A53UnitLdSt]> { let Latency = 4; }
+def : WriteRes<WriteSTP, [A53UnitLdSt]> { let Latency = 4; }
+def : WriteRes<WriteSTIdx, [A53UnitLdSt]> { let Latency = 4; }
+def : WriteRes<WriteSTX, [A53UnitLdSt]> { let Latency = 4; }
+
+// Vector Store - Similar to vector loads, can take 1-3 cycles to issue.
+def : WriteRes<WriteVST, [A53UnitLdSt]> { let Latency = 5;
+ let ResourceCycles = [2];}
+def A53WriteVST1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
+def A53WriteVST2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
+ let ResourceCycles = [2]; }
+def A53WriteVST3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
+ let ResourceCycles = [3]; }
+
+// Branch
+def : WriteRes<WriteBr, [A53UnitB]>;
+def : WriteRes<WriteBrReg, [A53UnitB]>;
+def : WriteRes<WriteSys, [A53UnitB]>;
+def : WriteRes<WriteBarrier, [A53UnitB]>;
+def : WriteRes<WriteHint, [A53UnitB]>;
+
+// FP ALU
+def : WriteRes<WriteF, [A53UnitFPALU]> { let Latency = 6; }
+def : WriteRes<WriteFCmp, [A53UnitFPALU]> { let Latency = 6; }
+def : WriteRes<WriteFCvt, [A53UnitFPALU]> { let Latency = 6; }
+def : WriteRes<WriteFCopy, [A53UnitFPALU]> { let Latency = 6; }
+def : WriteRes<WriteFImm, [A53UnitFPALU]> { let Latency = 6; }
+def : WriteRes<WriteV, [A53UnitFPALU]> { let Latency = 6; }
+
+// FP Mul, Div, Sqrt
+def : WriteRes<WriteFMul, [A53UnitFPMDS]> { let Latency = 6; }
+def : WriteRes<WriteFDiv, [A53UnitFPMDS]> { let Latency = 33;
+ let ResourceCycles = [29]; }
+def A53WriteFMAC : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 10; }
+def A53WriteFDivSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 18;
+ let ResourceCycles = [14]; }
+def A53WriteFDivDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 33;
+ let ResourceCycles = [29]; }
+def A53WriteFSqrtSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 17;
+ let ResourceCycles = [13]; }
+def A53WriteFSqrtDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 32;
+ let ResourceCycles = [28]; }
+
+//===----------------------------------------------------------------------===//
+// Subtarget-specific SchedRead types.
+
+// No forwarding for these reads.
+def : ReadAdvance<ReadExtrHi, 0>;
+def : ReadAdvance<ReadAdrBase, 0>;
+def : ReadAdvance<ReadVLD, 0>;
+
+// ALU - Most operands in the ALU pipes are not needed for two cycles. Shiftable
+// operands are needed one cycle later if and only if they are to be
+// shifted. Otherwise, they too are needed two cycles later. This same
+// ReadAdvance applies to Extended registers as well, even though there is
+// a separate SchedPredicate for them.
+def : ReadAdvance<ReadI, 2, [WriteImm,WriteI,
+ WriteISReg, WriteIEReg,WriteIS,
+ WriteID32,WriteID64,
+ WriteIM32,WriteIM64]>;
+def A53ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI,
+ WriteISReg, WriteIEReg,WriteIS,
+ WriteID32,WriteID64,
+ WriteIM32,WriteIM64]>;
+def A53ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI,
+ WriteISReg, WriteIEReg,WriteIS,
+ WriteID32,WriteID64,
+ WriteIM32,WriteIM64]>;
+def A53ReadISReg : SchedReadVariant<[
+ SchedVar<RegShiftedPred, [A53ReadShifted]>,
+ SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
+def : SchedAlias<ReadISReg, A53ReadISReg>;
+
+def A53ReadIEReg : SchedReadVariant<[
+ SchedVar<RegExtendedPred, [A53ReadShifted]>,
+ SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
+def : SchedAlias<ReadIEReg, A53ReadIEReg>;
+
+// MAC - Operands are generally needed one cycle later in the MAC pipe.
+// Accumulator operands are needed two cycles later.
+def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI,
+ WriteISReg, WriteIEReg,WriteIS,
+ WriteID32,WriteID64,
+ WriteIM32,WriteIM64]>;
+def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI,
+ WriteISReg, WriteIEReg,WriteIS,
+ WriteID32,WriteID64,
+ WriteIM32,WriteIM64]>;
+
+// Div
+def : ReadAdvance<ReadID, 1, [WriteImm,WriteI,
+ WriteISReg, WriteIEReg,WriteIS,
+ WriteID32,WriteID64,
+ WriteIM32,WriteIM64]>;
+
+//===----------------------------------------------------------------------===//
+// Subtarget-specific InstRWs.
+
+//---
+// Miscellaneous
+//---
+def : InstRW<[WriteI], (instrs COPY)>;
+
+//---
+// Vector Loads
+//---
+def : InstRW<[A53WriteVLD1], (instregex "LD1i(8|16|32|64)$")>;
+def : InstRW<[A53WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1i(8|16|32|64)_POST$")>;
+def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A53WriteVLD3, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+
+def : InstRW<[A53WriteVLD1], (instregex "LD2i(8|16|32|64)$")>;
+def : InstRW<[A53WriteVLD1], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>;
+def : InstRW<[A53WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD2i(8|16|32|64)(_POST)?$")>;
+def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
+def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>;
+def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>;
+
+def : InstRW<[A53WriteVLD2], (instregex "LD3i(8|16|32|64)$")>;
+def : InstRW<[A53WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVLD4], (instregex "LD3Threev(8b|4h|2s|1d|16b|8h|4s)$")>;
+def : InstRW<[A53WriteVLD3], (instregex "LD3Threev(2d)$")>;
+def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD3i(8|16|32|64)_POST$")>;
+def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD3Threev(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
+def : InstRW<[A53WriteVLD3, WriteAdr], (instregex "LD3Threev(2d)_POST$")>;
+
+def : InstRW<[A53WriteVLD2], (instregex "LD4i(8|16|32|64)$")>;
+def : InstRW<[A53WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVLD5], (instregex "LD4Fourv(8b|4h|2s|1d|16b|8h|4s)$")>;
+def : InstRW<[A53WriteVLD4], (instregex "LD4Fourv(2d)$")>;
+def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD4i(8|16|32|64)_POST$")>;
+def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A53WriteVLD5, WriteAdr], (instregex "LD4Fourv(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
+def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD4Fourv(2d)_POST$")>;
+
+//---
+// Vector Stores
+//---
+def : InstRW<[A53WriteVST1], (instregex "ST1i(8|16|32|64)$")>;
+def : InstRW<[A53WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVST2], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1i(8|16|32|64)_POST$")>;
+def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+
+def : InstRW<[A53WriteVST1], (instregex "ST2i(8|16|32|64)$")>;
+def : InstRW<[A53WriteVST1], (instregex "ST2Twov(8b|4h|2s)$")>;
+def : InstRW<[A53WriteVST2], (instregex "ST2Twov(16b|8h|4s|2d)$")>;
+def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST2i(8|16|32|64)_POST$")>;
+def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>;
+def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>;
+
+def : InstRW<[A53WriteVST2], (instregex "ST3i(8|16|32|64)$")>;
+def : InstRW<[A53WriteVST3], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s)$")>;
+def : InstRW<[A53WriteVST2], (instregex "ST3Threev(2d)$")>;
+def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST3i(8|16|32|64)_POST$")>;
+def : InstRW<[A53WriteVST3, WriteAdr], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
+def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST3Threev(2d)_POST$")>;
+
+def : InstRW<[A53WriteVST2], (instregex "ST4i(8|16|32|64)$")>;
+def : InstRW<[A53WriteVST3], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s)$")>;
+def : InstRW<[A53WriteVST2], (instregex "ST4Fourv(2d)$")>;
+def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST4i(8|16|32|64)_POST$")>;
+def : InstRW<[A53WriteVST3, WriteAdr], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
+def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST4Fourv(2d)_POST$")>;
+
+//---
+// Floating Point MAC, DIV, SQRT
+//---
+def : InstRW<[A53WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>;
+def : InstRW<[A53WriteFMAC], (instregex "^FML(A|S).*")>;
+def : InstRW<[A53WriteFDivSP], (instrs FDIVSrr)>;
+def : InstRW<[A53WriteFDivDP], (instrs FDIVDrr)>;
+def : InstRW<[A53WriteFDivSP], (instregex "^FDIVv.*32$")>;
+def : InstRW<[A53WriteFDivDP], (instregex "^FDIVv.*64$")>;
+def : InstRW<[A53WriteFSqrtSP], (instregex "^.*SQRT.*32$")>;
+def : InstRW<[A53WriteFSqrtDP], (instregex "^.*SQRT.*64$")>;
+
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64SchedA57.td b/contrib/llvm/lib/Target/AArch64/AArch64SchedA57.td
new file mode 100644
index 0000000..8209f96
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64SchedA57.td
@@ -0,0 +1,304 @@
+//=- AArch64SchedA57.td - ARM Cortex-A57 Scheduling Defs -----*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the machine model for ARM Cortex-A57 to support
+// instruction scheduling and other instruction cost heuristics.
+//
+//===----------------------------------------------------------------------===//
+
+def CortexA57Model : SchedMachineModel {
+ let IssueWidth = 8; // 3-way decode and 8-way issue
+ let MicroOpBufferSize = 128; // 128 micro-op re-order buffer
+ let LoadLatency = 4; // Optimistic load latency
+ let MispredictPenalty = 14; // Fetch + Decode/Rename/Dispatch + Branch
+}
+
+//===----------------------------------------------------------------------===//
+// Define each kind of processor resource and number available on Cortex-A57.
+// Cortex A-57 has 8 pipelines that each has its own 8-entry queue where
+// micro-ops wait for their operands and then issue out-of-order.
+
+def A57UnitB : ProcResource<1> { let BufferSize = 8; } // Type B micro-ops
+def A57UnitI : ProcResource<2> { let BufferSize = 8; } // Type I micro-ops
+def A57UnitM : ProcResource<1> { let BufferSize = 8; } // Type M micro-ops
+def A57UnitL : ProcResource<1> { let BufferSize = 8; } // Type L micro-ops
+def A57UnitS : ProcResource<1> { let BufferSize = 8; } // Type S micro-ops
+def A57UnitX : ProcResource<1> { let BufferSize = 8; } // Type X micro-ops
+def A57UnitW : ProcResource<1> { let BufferSize = 8; } // Type W micro-ops
+let SchedModel = CortexA57Model in {
+ def A57UnitV : ProcResGroup<[A57UnitX, A57UnitW]>; // Type V micro-ops
+}
+
+
+let SchedModel = CortexA57Model in {
+
+//===----------------------------------------------------------------------===//
+// Define customized scheduler read/write types specific to the Cortex-A57.
+
+include "AArch64SchedA57WriteRes.td"
+
+//===----------------------------------------------------------------------===//
+// Map the target-defined scheduler read/write resources and latency for
+// Cortex-A57. The Cortex-A57 types are directly associated with resources, so
+// defining the aliases precludes the need for mapping them using WriteRes. The
+// aliases are sufficient for creating a coarse, working model. As the model
+// evolves, InstRWs will be used to override these SchedAliases.
+
+def : SchedAlias<WriteImm, A57Write_1cyc_1I>;
+def : SchedAlias<WriteI, A57Write_1cyc_1I>;
+def : SchedAlias<WriteISReg, A57Write_2cyc_1M>;
+def : SchedAlias<WriteIEReg, A57Write_2cyc_1M>;
+def : SchedAlias<WriteExtr, A57Write_1cyc_1I>;
+def : SchedAlias<WriteIS, A57Write_1cyc_1I>;
+def : SchedAlias<WriteID32, A57Write_19cyc_1M>;
+def : SchedAlias<WriteID64, A57Write_35cyc_1M>;
+def : SchedAlias<WriteIM32, A57Write_3cyc_1M>;
+def : SchedAlias<WriteIM64, A57Write_5cyc_1M>;
+def : SchedAlias<WriteBr, A57Write_1cyc_1B>;
+def : SchedAlias<WriteBrReg, A57Write_1cyc_1B>;
+def : SchedAlias<WriteLD, A57Write_4cyc_1L>;
+def : SchedAlias<WriteST, A57Write_1cyc_1S>;
+def : SchedAlias<WriteSTP, A57Write_1cyc_1S>;
+def : SchedAlias<WriteAdr, A57Write_1cyc_1I>;
+def : SchedAlias<WriteLDIdx, A57Write_4cyc_1I_1L>;
+def : SchedAlias<WriteSTIdx, A57Write_1cyc_1I_1S>;
+def : SchedAlias<WriteF, A57Write_3cyc_1V>;
+def : SchedAlias<WriteFCmp, A57Write_3cyc_1V>;
+def : SchedAlias<WriteFCvt, A57Write_5cyc_1V>;
+def : SchedAlias<WriteFCopy, A57Write_3cyc_1V>;
+def : SchedAlias<WriteFImm, A57Write_3cyc_1V>;
+def : SchedAlias<WriteFMul, A57Write_5cyc_1V>;
+def : SchedAlias<WriteFDiv, A57Write_18cyc_1X>;
+def : SchedAlias<WriteV, A57Write_3cyc_1V>;
+def : SchedAlias<WriteVLD, A57Write_5cyc_1L>;
+def : SchedAlias<WriteVST, A57Write_1cyc_1S>;
+
+def : WriteRes<WriteSys, []> { let Latency = 1; }
+def : WriteRes<WriteBarrier, []> { let Latency = 1; }
+def : WriteRes<WriteHint, []> { let Latency = 1; }
+
+def : WriteRes<WriteLDHi, []> { let Latency = 4; }
+
+// Forwarding logic is not [yet] explicitly modeled beyond what is captured
+// in the latencies of the A57 Generic SchedWriteRes's.
+def : ReadAdvance<ReadI, 0>;
+def : ReadAdvance<ReadISReg, 0>;
+def : ReadAdvance<ReadIEReg, 0>;
+def : ReadAdvance<ReadIM, 0>;
+def : ReadAdvance<ReadIMA, 0>;
+def : ReadAdvance<ReadID, 0>;
+def : ReadAdvance<ReadExtrHi, 0>;
+def : ReadAdvance<ReadAdrBase, 0>;
+def : ReadAdvance<ReadVLD, 0>;
+
+
+//===----------------------------------------------------------------------===//
+// Specialize the coarse model by associating instruction groups with the
+// subtarget-defined types. As the modeled is refined, this will override most
+// of the above ShchedAlias mappings.
+
+// Miscellaneous
+// -----------------------------------------------------------------------------
+
+def : InstRW<[WriteI], (instrs COPY)>;
+
+
+// Branch Instructions
+// -----------------------------------------------------------------------------
+
+def : InstRW<[A57Write_1cyc_1B_1I], (instrs BL)>;
+def : InstRW<[A57Write_2cyc_1B_1I], (instrs BLR)>;
+
+
+// Divide and Multiply Instructions
+// -----------------------------------------------------------------------------
+
+// Multiply high
+def : InstRW<[A57Write_6cyc_1M], (instrs SMULHrr, UMULHrr)>;
+
+
+// Miscellaneous Data-Processing Instructions
+// -----------------------------------------------------------------------------
+
+def : InstRW<[A57Write_1cyc_1I], (instrs EXTRWrri)>;
+def : InstRW<[A57Write_3cyc_1I_1M], (instrs EXTRXrri)>;
+def : InstRW<[A57Write_2cyc_1M], (instregex "BFM")>;
+
+
+// Cryptography Extensions
+// -----------------------------------------------------------------------------
+
+def : InstRW<[A57Write_3cyc_1W], (instregex "CRC32")>;
+
+
+// Vector Load
+// -----------------------------------------------------------------------------
+
+def : InstRW<[A57Write_8cyc_1L_1V], (instregex "LD1i(8|16|32)$")>;
+def : InstRW<[A57Write_8cyc_1L_1V, WriteAdr], (instregex "LD1i(8|16|32)_POST$")>;
+def : InstRW<[A57Write_5cyc_1L], (instregex "LD1i(64)$")>;
+def : InstRW<[A57Write_5cyc_1L, WriteAdr], (instregex "LD1i(64)_POST$")>;
+
+def : InstRW<[A57Write_8cyc_1L_1V], (instregex "LD1Rv(8b|4h|2s)$")>;
+def : InstRW<[A57Write_8cyc_1L_1V, WriteAdr], (instregex "LD1Rv(8b|4h|2s)_POST$")>;
+def : InstRW<[A57Write_5cyc_1L], (instregex "LD1Rv(1d)$")>;
+def : InstRW<[A57Write_5cyc_1L, WriteAdr], (instregex "LD1Rv(1d)_POST$")>;
+def : InstRW<[A57Write_8cyc_1L_1V], (instregex "LD1Rv(16b|8h|4s|2d)$")>;
+def : InstRW<[A57Write_8cyc_1L_1V, WriteAdr], (instregex "LD1Rv(16b|8h|4s|2d)_POST$")>;
+
+def : InstRW<[A57Write_5cyc_1L], (instregex "LD1Onev(8b|4h|2s|1d)$")>;
+def : InstRW<[A57Write_5cyc_1L, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d)_POST$")>;
+def : InstRW<[A57Write_5cyc_1L], (instregex "LD1Onev(16b|8h|4s|2d)$")>;
+def : InstRW<[A57Write_5cyc_1L, WriteAdr], (instregex "LD1Onev(16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A57Write_5cyc_1L], (instregex "LD1Twov(8b|4h|2s|1d)$")>;
+def : InstRW<[A57Write_5cyc_1L, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d)_POST$")>;
+def : InstRW<[A57Write_6cyc_2L], (instregex "LD1Twov(16b|8h|4s|2d)$")>;
+def : InstRW<[A57Write_6cyc_2L, WriteAdr], (instregex "LD1Twov(16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A57Write_6cyc_2L], (instregex "LD1Threev(8b|4h|2s|1d)$")>;
+def : InstRW<[A57Write_6cyc_2L, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d)_POST$")>;
+def : InstRW<[A57Write_7cyc_3L], (instregex "LD1Threev(16b|8h|4s|2d)$")>;
+def : InstRW<[A57Write_7cyc_3L, WriteAdr], (instregex "LD1Threev(16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A57Write_6cyc_2L], (instregex "LD1Fourv(8b|4h|2s|1d)$")>;
+def : InstRW<[A57Write_6cyc_2L, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d)_POST$")>;
+def : InstRW<[A57Write_8cyc_4L], (instregex "LD1Fourv(16b|8h|4s|2d)$")>;
+def : InstRW<[A57Write_8cyc_4L, WriteAdr], (instregex "LD1Fourv(16b|8h|4s|2d)_POST$")>;
+
+def : InstRW<[A57Write_8cyc_1L_2V], (instregex "LD2i(8|16)$")>;
+def : InstRW<[A57Write_8cyc_1L_2V, WriteAdr], (instregex "LD2i(8|16)_POST$")>;
+def : InstRW<[A57Write_6cyc_2L], (instregex "LD2i(32)$")>;
+def : InstRW<[A57Write_6cyc_2L, WriteAdr], (instregex "LD2i(32)_POST$")>;
+def : InstRW<[A57Write_8cyc_1L_1V], (instregex "LD2i(64)$")>;
+def : InstRW<[A57Write_8cyc_1L_1V, WriteAdr], (instregex "LD2i(64)_POST$")>;
+
+def : InstRW<[A57Write_8cyc_1L_1V], (instregex "LD2Rv(8b|4h|2s)$")>;
+def : InstRW<[A57Write_8cyc_1L_1V, WriteAdr], (instregex "LD2Rv(8b|4h|2s)_POST$")>;
+def : InstRW<[A57Write_5cyc_1L], (instregex "LD2Rv(1d)$")>;
+def : InstRW<[A57Write_5cyc_1L, WriteAdr], (instregex "LD2Rv(1d)_POST$")>;
+def : InstRW<[A57Write_8cyc_1L_2V], (instregex "LD2Rv(16b|8h|4s|2d)$")>;
+def : InstRW<[A57Write_8cyc_1L_2V, WriteAdr], (instregex "LD2Rv(16b|8h|4s|2d)_POST$")>;
+
+def : InstRW<[A57Write_8cyc_1L_1V], (instregex "LD2Twov(8b|4h|2s)$")>;
+def : InstRW<[A57Write_8cyc_1L_1V, WriteAdr], (instregex "LD2Twov(8b|4h|2s)_POST$")>;
+def : InstRW<[A57Write_9cyc_2L_2V], (instregex "LD2Twov(16b|8h|4s)$")>;
+def : InstRW<[A57Write_9cyc_2L_2V, WriteAdr], (instregex "LD2Twov(16b|8h|4s)_POST$")>;
+def : InstRW<[A57Write_6cyc_2L], (instregex "LD2Twov(2d)$")>;
+def : InstRW<[A57Write_6cyc_2L, WriteAdr], (instregex "LD2Twov(2d)_POST$")>;
+
+def : InstRW<[A57Write_9cyc_1L_3V], (instregex "LD3i(8|16)$")>;
+def : InstRW<[A57Write_9cyc_1L_3V, WriteAdr], (instregex "LD3i(8|16)_POST$")>;
+def : InstRW<[A57Write_8cyc_1L_2V], (instregex "LD3i(32)$")>;
+def : InstRW<[A57Write_8cyc_1L_2V, WriteAdr], (instregex "LD3i(32)_POST$")>;
+def : InstRW<[A57Write_6cyc_2L], (instregex "LD3i(64)$")>;
+def : InstRW<[A57Write_6cyc_2L, WriteAdr], (instregex "LD3i(64)_POST$")>;
+
+def : InstRW<[A57Write_8cyc_1L_2V], (instregex "LD3Rv(8b|4h|2s)$")>;
+def : InstRW<[A57Write_8cyc_1L_2V, WriteAdr], (instregex "LD3Rv(8b|4h|2s)_POST$")>;
+def : InstRW<[A57Write_6cyc_2L], (instregex "LD3Rv(1d)$")>;
+def : InstRW<[A57Write_6cyc_2L, WriteAdr], (instregex "LD3Rv(1d)_POST$")>;
+def : InstRW<[A57Write_9cyc_1L_3V], (instregex "LD3Rv(16b|8h|4s)$")>;
+def : InstRW<[A57Write_9cyc_1L_3V, WriteAdr], (instregex "LD3Rv(16b|8h|4s)_POST$")>;
+def : InstRW<[A57Write_9cyc_2L_3V], (instregex "LD3Rv(2d)$")>;
+def : InstRW<[A57Write_9cyc_2L_3V, WriteAdr], (instregex "LD3Rv(2d)_POST$")>;
+
+def : InstRW<[A57Write_9cyc_2L_2V], (instregex "LD3Threev(8b|4h|2s)$")>;
+def : InstRW<[A57Write_9cyc_2L_2V, WriteAdr], (instregex "LD3Threev(8b|4h|2s)_POST$")>;
+def : InstRW<[A57Write_10cyc_3L_4V], (instregex "LD3Threev(16b|8h|4s)$")>;
+def : InstRW<[A57Write_10cyc_3L_4V, WriteAdr], (instregex "LD3Threev(16b|8h|4s)_POST$")>;
+def : InstRW<[A57Write_8cyc_4L], (instregex "LD3Threev(2d)$")>;
+def : InstRW<[A57Write_8cyc_4L, WriteAdr], (instregex "LD3Threev(2d)_POST$")>;
+
+def : InstRW<[A57Write_9cyc_2L_3V], (instregex "LD4i(8|16)$")>;
+def : InstRW<[A57Write_9cyc_2L_3V, WriteAdr], (instregex "LD4i(8|16)_POST$")>;
+def : InstRW<[A57Write_8cyc_1L_2V], (instregex "LD4i(32)$")>;
+def : InstRW<[A57Write_8cyc_1L_2V, WriteAdr], (instregex "LD4i(32)_POST$")>;
+def : InstRW<[A57Write_9cyc_2L_3V], (instregex "LD4i(64)$")>;
+def : InstRW<[A57Write_9cyc_2L_3V, WriteAdr], (instregex "LD4i(64)_POST$")>;
+
+def : InstRW<[A57Write_8cyc_1L_2V], (instregex "LD4Rv(8b|4h|2s)$")>;
+def : InstRW<[A57Write_8cyc_1L_2V, WriteAdr], (instregex "LD4Rv(8b|4h|2s)_POST$")>;
+def : InstRW<[A57Write_6cyc_2L], (instregex "LD4Rv(1d)$")>;
+def : InstRW<[A57Write_6cyc_2L, WriteAdr], (instregex "LD4Rv(1d)_POST$")>;
+def : InstRW<[A57Write_9cyc_2L_3V], (instregex "LD4Rv(16b|8h|4s)$")>;
+def : InstRW<[A57Write_9cyc_2L_3V, WriteAdr], (instregex "LD4Rv(16b|8h|4s)_POST$")>;
+def : InstRW<[A57Write_9cyc_2L_4V], (instregex "LD4Rv(2d)$")>;
+def : InstRW<[A57Write_9cyc_2L_4V, WriteAdr], (instregex "LD4Rv(2d)_POST$")>;
+
+def : InstRW<[A57Write_9cyc_2L_2V], (instregex "LD4Fourv(8b|4h|2s)$")>;
+def : InstRW<[A57Write_9cyc_2L_2V, WriteAdr], (instregex "LD4Fourv(8b|4h|2s)_POST$")>;
+def : InstRW<[A57Write_11cyc_4L_4V], (instregex "LD4Fourv(16b|8h|4s)$")>;
+def : InstRW<[A57Write_11cyc_4L_4V, WriteAdr], (instregex "LD4Fourv(16b|8h|4s)_POST$")>;
+def : InstRW<[A57Write_8cyc_4L], (instregex "LD4Fourv(2d)$")>;
+def : InstRW<[A57Write_8cyc_4L, WriteAdr], (instregex "LD4Fourv(2d)_POST$")>;
+
+// Vector Store
+// -----------------------------------------------------------------------------
+
+def : InstRW<[A57Write_1cyc_1S], (instregex "ST1i(8|16|32)$")>;
+def : InstRW<[A57Write_1cyc_1S, WriteAdr], (instregex "ST1i(8|16|32)_POST$")>;
+def : InstRW<[A57Write_3cyc_1S_1V], (instregex "ST1i(64)$")>;
+def : InstRW<[A57Write_3cyc_1S_1V, WriteAdr], (instregex "ST1i(64)_POST$")>;
+
+def : InstRW<[A57Write_1cyc_1S], (instregex "ST1Onev(8b|4h|2s|1d)$")>;
+def : InstRW<[A57Write_1cyc_1S, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d)_POST$")>;
+def : InstRW<[A57Write_2cyc_2S], (instregex "ST1Onev(16b|8h|4s|2d)$")>;
+def : InstRW<[A57Write_2cyc_2S, WriteAdr], (instregex "ST1Onev(16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A57Write_2cyc_2S], (instregex "ST1Twov(8b|4h|2s|1d)$")>;
+def : InstRW<[A57Write_2cyc_2S, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d)_POST$")>;
+def : InstRW<[A57Write_4cyc_4S], (instregex "ST1Twov(16b|8h|4s|2d)$")>;
+def : InstRW<[A57Write_4cyc_4S, WriteAdr], (instregex "ST1Twov(16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A57Write_3cyc_3S], (instregex "ST1Threev(8b|4h|2s|1d)$")>;
+def : InstRW<[A57Write_3cyc_3S, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d)_POST$")>;
+def : InstRW<[A57Write_6cyc_6S], (instregex "ST1Threev(16b|8h|4s|2d)$")>;
+def : InstRW<[A57Write_6cyc_6S, WriteAdr], (instregex "ST1Threev(16b|8h|4s|2d)_POST$")>;
+def : InstRW<[A57Write_4cyc_4S], (instregex "ST1Fourv(8b|4h|2s|1d)$")>;
+def : InstRW<[A57Write_4cyc_4S, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d)_POST$")>;
+def : InstRW<[A57Write_8cyc_8S], (instregex "ST1Fourv(16b|8h|4s|2d)$")>;
+def : InstRW<[A57Write_8cyc_8S, WriteAdr], (instregex "ST1Fourv(16b|8h|4s|2d)_POST$")>;
+
+def : InstRW<[A57Write_3cyc_1S_1V], (instregex "ST2i(8|16|32)$")>;
+def : InstRW<[A57Write_3cyc_1S_1V, WriteAdr], (instregex "ST2i(8|16|32)_POST$")>;
+def : InstRW<[A57Write_2cyc_2S], (instregex "ST2i(64)$")>;
+def : InstRW<[A57Write_2cyc_2S, WriteAdr], (instregex "ST2i(64)_POST$")>;
+
+def : InstRW<[A57Write_3cyc_2S_1V], (instregex "ST2Twov(8b|4h|2s)$")>;
+def : InstRW<[A57Write_3cyc_2S_1V, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>;
+def : InstRW<[A57Write_4cyc_4S_2V], (instregex "ST2Twov(16b|8h|4s)$")>;
+def : InstRW<[A57Write_4cyc_4S_2V, WriteAdr], (instregex "ST2Twov(16b|8h|4s)_POST$")>;
+def : InstRW<[A57Write_4cyc_4S], (instregex "ST2Twov(2d)$")>;
+def : InstRW<[A57Write_4cyc_4S, WriteAdr], (instregex "ST2Twov(2d)_POST$")>;
+
+def : InstRW<[A57Write_3cyc_1S_1V], (instregex "ST3i(8|16)$")>;
+def : InstRW<[A57Write_3cyc_1S_1V, WriteAdr], (instregex "ST3i(8|16)_POST$")>;
+def : InstRW<[A57Write_3cyc_3S], (instregex "ST3i(32)$")>;
+def : InstRW<[A57Write_3cyc_3S, WriteAdr], (instregex "ST3i(32)_POST$")>;
+def : InstRW<[A57Write_3cyc_2S_1V], (instregex "ST3i(64)$")>;
+def : InstRW<[A57Write_3cyc_2S_1V, WriteAdr], (instregex "ST3i(64)_POST$")>;
+
+def : InstRW<[A57Write_3cyc_3S_2V], (instregex "ST3Threev(8b|4h|2s)$")>;
+def : InstRW<[A57Write_3cyc_3S_2V, WriteAdr], (instregex "ST3Threev(8b|4h|2s)_POST$")>;
+def : InstRW<[A57Write_6cyc_6S_4V], (instregex "ST3Threev(16b|8h|4s)$")>;
+def : InstRW<[A57Write_6cyc_6S_4V, WriteAdr], (instregex "ST3Threev(16b|8h|4s)_POST$")>;
+def : InstRW<[A57Write_6cyc_6S], (instregex "ST3Threev(2d)$")>;
+def : InstRW<[A57Write_6cyc_6S, WriteAdr], (instregex "ST3Threev(2d)_POST$")>;
+
+def : InstRW<[A57Write_3cyc_1S_1V], (instregex "ST4i(8|16)$")>;
+def : InstRW<[A57Write_3cyc_1S_1V, WriteAdr], (instregex "ST4i(8|16)_POST$")>;
+def : InstRW<[A57Write_4cyc_4S], (instregex "ST4i(32)$")>;
+def : InstRW<[A57Write_4cyc_4S, WriteAdr], (instregex "ST4i(32)_POST$")>;
+def : InstRW<[A57Write_3cyc_2S_1V], (instregex "ST4i(64)$")>;
+def : InstRW<[A57Write_3cyc_2S_1V, WriteAdr], (instregex "ST4i(64)_POST$")>;
+
+def : InstRW<[A57Write_4cyc_4S_2V], (instregex "ST4Fourv(8b|4h|2s)$")>;
+def : InstRW<[A57Write_4cyc_4S_2V, WriteAdr], (instregex "ST4Fourv(8b|4h|2s)_POST$")>;
+def : InstRW<[A57Write_8cyc_8S_4V], (instregex "ST4Fourv(16b|8h|4s)$")>;
+def : InstRW<[A57Write_8cyc_8S_4V, WriteAdr], (instregex "ST4Fourv(16b|8h|4s)_POST$")>;
+def : InstRW<[A57Write_8cyc_8S], (instregex "ST4Fourv(2d)$")>;
+def : InstRW<[A57Write_8cyc_8S, WriteAdr], (instregex "ST4Fourv(2d)_POST$")>;
+
+} // SchedModel = CortexA57Model
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64SchedA57WriteRes.td b/contrib/llvm/lib/Target/AArch64/AArch64SchedA57WriteRes.td
new file mode 100644
index 0000000..a8f421b
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64SchedA57WriteRes.td
@@ -0,0 +1,512 @@
+//=- AArch64SchedA57WriteRes.td - ARM Cortex-A57 Write Res ---*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Contains all of the Cortex-A57 specific SchedWriteRes types. The approach
+// below is to define a generic SchedWriteRes for every combination of
+// latency and microOps. The naming conventions is to use a prefix, one field
+// for latency, and one or more microOp count/type designators.
+// Prefix: A57Write
+// Latency: #cyc
+// MicroOp Count/Types: #(B|I|M|L|S|X|W|V)
+//
+// e.g. A57Write_6cyc_1I_6S_4V means the total latency is 6 and there are
+// 11 micro-ops to be issued down one I pipe, six S pipes and four V pipes.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Define Generic 1 micro-op types
+
+def A57Write_5cyc_1L : SchedWriteRes<[A57UnitL]> { let Latency = 5; }
+def A57Write_5cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 5; }
+def A57Write_5cyc_1V : SchedWriteRes<[A57UnitV]> { let Latency = 5; }
+def A57Write_5cyc_1W : SchedWriteRes<[A57UnitW]> { let Latency = 5; }
+def A57Write_10cyc_1V : SchedWriteRes<[A57UnitV]> { let Latency = 10; }
+def A57Write_18cyc_1X : SchedWriteRes<[A57UnitX]> { let Latency = 18; }
+def A57Write_19cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 19; }
+def A57Write_1cyc_1B : SchedWriteRes<[A57UnitB]> { let Latency = 1; }
+def A57Write_1cyc_1I : SchedWriteRes<[A57UnitI]> { let Latency = 1; }
+def A57Write_1cyc_1S : SchedWriteRes<[A57UnitS]> { let Latency = 1; }
+def A57Write_2cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 2; }
+def A57Write_32cyc_1X : SchedWriteRes<[A57UnitX]> { let Latency = 32; }
+def A57Write_35cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 35; }
+def A57Write_3cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 3; }
+def A57Write_3cyc_1V : SchedWriteRes<[A57UnitV]> { let Latency = 3; }
+def A57Write_3cyc_1W : SchedWriteRes<[A57UnitW]> { let Latency = 3; }
+def A57Write_3cyc_1X : SchedWriteRes<[A57UnitX]> { let Latency = 3; }
+def A57Write_4cyc_1L : SchedWriteRes<[A57UnitL]> { let Latency = 4; }
+def A57Write_4cyc_1X : SchedWriteRes<[A57UnitX]> { let Latency = 4; }
+def A57Write_9cyc_1V : SchedWriteRes<[A57UnitV]> { let Latency = 9; }
+def A57Write_6cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 6; }
+def A57Write_6cyc_1V : SchedWriteRes<[A57UnitV]> { let Latency = 6; }
+
+
+//===----------------------------------------------------------------------===//
+// Define Generic 2 micro-op types
+
+def A57Write_64cyc_2X : SchedWriteRes<[A57UnitX, A57UnitX]> {
+ let Latency = 64;
+ let NumMicroOps = 2;
+}
+def A57Write_6cyc_1I_1L : SchedWriteRes<[A57UnitI,
+ A57UnitL]> {
+ let Latency = 6;
+ let NumMicroOps = 2;
+}
+def A57Write_7cyc_1V_1X : SchedWriteRes<[A57UnitV,
+ A57UnitX]> {
+ let Latency = 7;
+ let NumMicroOps = 2;
+}
+def A57Write_8cyc_1L_1V : SchedWriteRes<[A57UnitL,
+ A57UnitV]> {
+ let Latency = 8;
+ let NumMicroOps = 2;
+}
+def A57Write_9cyc_2V : SchedWriteRes<[A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 2;
+}
+def A57Write_8cyc_2X : SchedWriteRes<[A57UnitX, A57UnitX]> {
+ let Latency = 8;
+ let NumMicroOps = 2;
+}
+def A57Write_6cyc_2L : SchedWriteRes<[A57UnitL, A57UnitL]> {
+ let Latency = 6;
+ let NumMicroOps = 2;
+}
+def A57Write_6cyc_2V : SchedWriteRes<[A57UnitV, A57UnitV]> {
+ let Latency = 6;
+ let NumMicroOps = 2;
+}
+def A57Write_6cyc_2W : SchedWriteRes<[A57UnitW, A57UnitW]> {
+ let Latency = 6;
+ let NumMicroOps = 2;
+}
+def A57Write_5cyc_1I_1L : SchedWriteRes<[A57UnitI,
+ A57UnitL]> {
+ let Latency = 5;
+ let NumMicroOps = 2;
+}
+def A57Write_5cyc_2V : SchedWriteRes<[A57UnitV, A57UnitV]> {
+ let Latency = 5;
+ let NumMicroOps = 2;
+}
+def A57Write_5cyc_2X : SchedWriteRes<[A57UnitX, A57UnitX]> {
+ let Latency = 5;
+ let NumMicroOps = 2;
+}
+def A57Write_10cyc_1L_1V : SchedWriteRes<[A57UnitL,
+ A57UnitV]> {
+ let Latency = 10;
+ let NumMicroOps = 2;
+}
+def A57Write_10cyc_2V : SchedWriteRes<[A57UnitV, A57UnitV]> {
+ let Latency = 10;
+ let NumMicroOps = 2;
+}
+def A57Write_1cyc_1B_1I : SchedWriteRes<[A57UnitB,
+ A57UnitI]> {
+ let Latency = 1;
+ let NumMicroOps = 2;
+}
+def A57Write_1cyc_1I_1S : SchedWriteRes<[A57UnitI,
+ A57UnitS]> {
+ let Latency = 1;
+ let NumMicroOps = 2;
+}
+def A57Write_2cyc_1B_1I : SchedWriteRes<[A57UnitB,
+ A57UnitI]> {
+ let Latency = 2;
+ let NumMicroOps = 2;
+}
+def A57Write_2cyc_2S : SchedWriteRes<[A57UnitS, A57UnitS]> {
+ let Latency = 2;
+ let NumMicroOps = 2;
+}
+def A57Write_2cyc_2V : SchedWriteRes<[A57UnitV, A57UnitV]> {
+ let Latency = 2;
+ let NumMicroOps = 2;
+}
+def A57Write_36cyc_2X : SchedWriteRes<[A57UnitX, A57UnitX]> {
+ let Latency = 36;
+ let NumMicroOps = 2;
+}
+def A57Write_3cyc_1I_1M : SchedWriteRes<[A57UnitI,
+ A57UnitM]> {
+ let Latency = 3;
+ let NumMicroOps = 2;
+}
+def A57Write_3cyc_1I_1S : SchedWriteRes<[A57UnitI,
+ A57UnitS]> {
+ let Latency = 3;
+ let NumMicroOps = 2;
+}
+def A57Write_3cyc_1S_1V : SchedWriteRes<[A57UnitS,
+ A57UnitV]> {
+ let Latency = 3;
+ let NumMicroOps = 2;
+}
+def A57Write_4cyc_1I_1L : SchedWriteRes<[A57UnitI,
+ A57UnitL]> {
+ let Latency = 4;
+ let NumMicroOps = 2;
+}
+def A57Write_4cyc_2X : SchedWriteRes<[A57UnitX, A57UnitX]> {
+ let Latency = 4;
+ let NumMicroOps = 2;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define Generic 3 micro-op types
+
+def A57Write_10cyc_3V : SchedWriteRes<[A57UnitV, A57UnitV, A57UnitV]> {
+ let Latency = 10;
+ let NumMicroOps = 3;
+}
+def A57Write_2cyc_1I_2S : SchedWriteRes<[A57UnitI,
+ A57UnitS, A57UnitS]> {
+ let Latency = 2;
+ let NumMicroOps = 3;
+}
+def A57Write_3cyc_1I_1S_1V : SchedWriteRes<[A57UnitI,
+ A57UnitS,
+ A57UnitV]> {
+ let Latency = 3;
+ let NumMicroOps = 3;
+}
+def A57Write_3cyc_1M_2S : SchedWriteRes<[A57UnitM,
+ A57UnitS, A57UnitS]> {
+ let Latency = 3;
+ let NumMicroOps = 3;
+}
+def A57Write_3cyc_3S : SchedWriteRes<[A57UnitS, A57UnitS, A57UnitS]> {
+ let Latency = 3;
+ let NumMicroOps = 3;
+}
+def A57Write_3cyc_2S_1V : SchedWriteRes<[A57UnitS, A57UnitS,
+ A57UnitV]> {
+ let Latency = 3;
+ let NumMicroOps = 3;
+}
+def A57Write_5cyc_1I_2L : SchedWriteRes<[A57UnitI,
+ A57UnitL, A57UnitL]> {
+ let Latency = 5;
+ let NumMicroOps = 3;
+}
+def A57Write_6cyc_1I_2L : SchedWriteRes<[A57UnitI,
+ A57UnitL, A57UnitL]> {
+ let Latency = 6;
+ let NumMicroOps = 3;
+}
+def A57Write_6cyc_3V : SchedWriteRes<[A57UnitV, A57UnitV, A57UnitV]> {
+ let Latency = 6;
+ let NumMicroOps = 3;
+}
+def A57Write_7cyc_3L : SchedWriteRes<[A57UnitL, A57UnitL, A57UnitL]> {
+ let Latency = 7;
+ let NumMicroOps = 3;
+}
+def A57Write_8cyc_1I_1L_1V : SchedWriteRes<[A57UnitI,
+ A57UnitL,
+ A57UnitV]> {
+ let Latency = 8;
+ let NumMicroOps = 3;
+}
+def A57Write_8cyc_1L_2V : SchedWriteRes<[A57UnitL,
+ A57UnitV, A57UnitV]> {
+ let Latency = 8;
+ let NumMicroOps = 3;
+}
+def A57Write_8cyc_3V : SchedWriteRes<[A57UnitV, A57UnitV, A57UnitV]> {
+ let Latency = 8;
+ let NumMicroOps = 3;
+}
+def A57Write_9cyc_3V : SchedWriteRes<[A57UnitV, A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 3;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define Generic 4 micro-op types
+
+def A57Write_2cyc_2I_2S : SchedWriteRes<[A57UnitI, A57UnitI,
+ A57UnitS, A57UnitS]> {
+ let Latency = 2;
+ let NumMicroOps = 4;
+}
+def A57Write_3cyc_2I_2S : SchedWriteRes<[A57UnitI, A57UnitI,
+ A57UnitS, A57UnitS]> {
+ let Latency = 3;
+ let NumMicroOps = 4;
+}
+def A57Write_3cyc_1I_3S : SchedWriteRes<[A57UnitI,
+ A57UnitS, A57UnitS, A57UnitS]> {
+ let Latency = 3;
+ let NumMicroOps = 4;
+}
+def A57Write_3cyc_1I_2S_1V : SchedWriteRes<[A57UnitI,
+ A57UnitS, A57UnitS,
+ A57UnitV]> {
+ let Latency = 3;
+ let NumMicroOps = 4;
+}
+def A57Write_4cyc_4S : SchedWriteRes<[A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS]> {
+ let Latency = 4;
+ let NumMicroOps = 4;
+}
+def A57Write_7cyc_1I_3L : SchedWriteRes<[A57UnitI,
+ A57UnitL, A57UnitL, A57UnitL]> {
+ let Latency = 7;
+ let NumMicroOps = 4;
+}
+def A57Write_5cyc_2I_2L : SchedWriteRes<[A57UnitI, A57UnitI,
+ A57UnitL, A57UnitL]> {
+ let Latency = 5;
+ let NumMicroOps = 4;
+}
+def A57Write_8cyc_1I_1L_2V : SchedWriteRes<[A57UnitI,
+ A57UnitL,
+ A57UnitV, A57UnitV]> {
+ let Latency = 8;
+ let NumMicroOps = 4;
+}
+def A57Write_8cyc_4L : SchedWriteRes<[A57UnitL, A57UnitL,
+ A57UnitL, A57UnitL]> {
+ let Latency = 8;
+ let NumMicroOps = 4;
+}
+def A57Write_9cyc_2L_2V : SchedWriteRes<[A57UnitL, A57UnitL,
+ A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 4;
+}
+def A57Write_9cyc_1L_3V : SchedWriteRes<[A57UnitL,
+ A57UnitV, A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 4;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define Generic 5 micro-op types
+
+def A57Write_3cyc_3S_2V : SchedWriteRes<[A57UnitS, A57UnitS, A57UnitS,
+ A57UnitV, A57UnitV]> {
+ let Latency = 3;
+ let NumMicroOps = 5;
+}
+def A57Write_8cyc_1I_4L : SchedWriteRes<[A57UnitI,
+ A57UnitL, A57UnitL,
+ A57UnitL, A57UnitL]> {
+ let Latency = 8;
+ let NumMicroOps = 5;
+}
+def A57Write_4cyc_1I_4S : SchedWriteRes<[A57UnitI,
+ A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS]> {
+ let Latency = 4;
+ let NumMicroOps = 5;
+}
+def A57Write_9cyc_1I_2L_2V : SchedWriteRes<[A57UnitI,
+ A57UnitL, A57UnitL,
+ A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 5;
+}
+def A57Write_9cyc_1I_1L_3V : SchedWriteRes<[A57UnitI,
+ A57UnitL,
+ A57UnitV, A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 5;
+}
+def A57Write_9cyc_2L_3V : SchedWriteRes<[A57UnitL, A57UnitL,
+ A57UnitV, A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 5;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define Generic 6 micro-op types
+
+def A57Write_3cyc_1I_3S_2V : SchedWriteRes<[A57UnitI,
+ A57UnitS, A57UnitS, A57UnitS,
+ A57UnitV, A57UnitV]> {
+ let Latency = 3;
+ let NumMicroOps = 6;
+}
+def A57Write_4cyc_2I_4S : SchedWriteRes<[A57UnitI, A57UnitI,
+ A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS]> {
+ let Latency = 4;
+ let NumMicroOps = 6;
+}
+def A57Write_4cyc_4S_2V : SchedWriteRes<[A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS,
+ A57UnitV, A57UnitV]> {
+ let Latency = 4;
+ let NumMicroOps = 6;
+}
+def A57Write_6cyc_6S : SchedWriteRes<[A57UnitS, A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS, A57UnitS]> {
+ let Latency = 6;
+ let NumMicroOps = 6;
+}
+def A57Write_9cyc_1I_2L_3V : SchedWriteRes<[A57UnitI,
+ A57UnitL, A57UnitL,
+ A57UnitV, A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 6;
+}
+def A57Write_9cyc_1I_1L_4V : SchedWriteRes<[A57UnitI,
+ A57UnitL,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 6;
+}
+def A57Write_9cyc_2L_4V : SchedWriteRes<[A57UnitL, A57UnitL,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 6;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define Generic 7 micro-op types
+
+def A57Write_10cyc_3L_4V : SchedWriteRes<[A57UnitL, A57UnitL, A57UnitL,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 10;
+ let NumMicroOps = 7;
+}
+def A57Write_4cyc_1I_4S_2V : SchedWriteRes<[A57UnitI,
+ A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS,
+ A57UnitV, A57UnitV]> {
+ let Latency = 4;
+ let NumMicroOps = 7;
+}
+def A57Write_6cyc_1I_6S : SchedWriteRes<[A57UnitI,
+ A57UnitS, A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS, A57UnitS]> {
+ let Latency = 6;
+ let NumMicroOps = 7;
+}
+def A57Write_9cyc_1I_2L_4V : SchedWriteRes<[A57UnitI,
+ A57UnitL, A57UnitL,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 7;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define Generic 8 micro-op types
+
+def A57Write_10cyc_1I_3L_4V : SchedWriteRes<[A57UnitI,
+ A57UnitL, A57UnitL, A57UnitL,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 10;
+ let NumMicroOps = 8;
+}
+def A57Write_11cyc_4L_4V : SchedWriteRes<[A57UnitL, A57UnitL,
+ A57UnitL, A57UnitL,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 11;
+ let NumMicroOps = 8;
+}
+def A57Write_8cyc_8S : SchedWriteRes<[A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS]> {
+ let Latency = 8;
+ let NumMicroOps = 8;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define Generic 9 micro-op types
+
+def A57Write_8cyc_1I_8S : SchedWriteRes<[A57UnitI,
+ A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS]> {
+ let Latency = 8;
+ let NumMicroOps = 9;
+}
+def A57Write_11cyc_1I_4L_4V : SchedWriteRes<[A57UnitI,
+ A57UnitL, A57UnitL,
+ A57UnitL, A57UnitL,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 11;
+ let NumMicroOps = 9;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define Generic 10 micro-op types
+
+def A57Write_6cyc_6S_4V : SchedWriteRes<[A57UnitS, A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS, A57UnitS,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 6;
+ let NumMicroOps = 10;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define Generic 11 micro-op types
+
+def A57Write_6cyc_1I_6S_4V : SchedWriteRes<[A57UnitI,
+ A57UnitS, A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS, A57UnitS,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 6;
+ let NumMicroOps = 11;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define Generic 12 micro-op types
+
+def A57Write_8cyc_8S_4V : SchedWriteRes<[A57UnitS, A57UnitS, A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS, A57UnitS, A57UnitS,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 8;
+ let NumMicroOps = 12;
+}
+
+//===----------------------------------------------------------------------===//
+// Define Generic 13 micro-op types
+
+def A57Write_8cyc_1I_8S_4V : SchedWriteRes<[A57UnitI,
+ A57UnitS, A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 8;
+ let NumMicroOps = 13;
+}
+
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64SchedCyclone.td b/contrib/llvm/lib/Target/AArch64/AArch64SchedCyclone.td
new file mode 100644
index 0000000..a2a1802
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64SchedCyclone.td
@@ -0,0 +1,865 @@
+//=- ARMSchedCyclone.td - AArch64 Cyclone Scheduling Defs ----*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the machine model for AArch64 Cyclone to support
+// instruction scheduling and other instruction cost heuristics.
+//
+//===----------------------------------------------------------------------===//
+
+def CycloneModel : SchedMachineModel {
+ let IssueWidth = 6; // 6 micro-ops are dispatched per cycle.
+ let MicroOpBufferSize = 192; // Based on the reorder buffer.
+ let LoadLatency = 4; // Optimistic load latency.
+ let MispredictPenalty = 16; // 14-19 cycles are typical.
+}
+
+//===----------------------------------------------------------------------===//
+// Define each kind of processor resource and number available on Cyclone.
+
+// 4 integer pipes
+def CyUnitI : ProcResource<4> {
+ let BufferSize = 48;
+}
+
+// 2 branch units: I[0..1]
+def CyUnitB : ProcResource<2> {
+ let Super = CyUnitI;
+ let BufferSize = 24;
+}
+
+// 1 indirect-branch unit: I[0]
+def CyUnitBR : ProcResource<1> {
+ let Super = CyUnitB;
+}
+
+// 2 shifter pipes: I[2..3]
+// When an instruction consumes a CyUnitIS, it also consumes a CyUnitI
+def CyUnitIS : ProcResource<2> {
+ let Super = CyUnitI;
+ let BufferSize = 24;
+}
+
+// 1 mul pipe: I[0]
+def CyUnitIM : ProcResource<1> {
+ let Super = CyUnitBR;
+ let BufferSize = 32;
+}
+
+// 1 div pipe: I[1]
+def CyUnitID : ProcResource<1> {
+ let Super = CyUnitB;
+ let BufferSize = 16;
+}
+
+// 1 integer division unit. This is driven by the ID pipe, but only
+// consumes the pipe for one cycle at issue and another cycle at writeback.
+def CyUnitIntDiv : ProcResource<1>;
+
+// 2 ld/st pipes.
+def CyUnitLS : ProcResource<2> {
+ let BufferSize = 28;
+}
+
+// 3 fp/vector pipes.
+def CyUnitV : ProcResource<3> {
+ let BufferSize = 48;
+}
+// 2 fp/vector arithmetic and multiply pipes: V[0-1]
+def CyUnitVM : ProcResource<2> {
+ let Super = CyUnitV;
+ let BufferSize = 32;
+}
+// 1 fp/vector division/sqrt pipe: V[2]
+def CyUnitVD : ProcResource<1> {
+ let Super = CyUnitV;
+ let BufferSize = 16;
+}
+// 1 fp compare pipe: V[0]
+def CyUnitVC : ProcResource<1> {
+ let Super = CyUnitVM;
+ let BufferSize = 16;
+}
+
+// 2 fp division/square-root units. These are driven by the VD pipe,
+// but only consume the pipe for one cycle at issue and a cycle at writeback.
+def CyUnitFloatDiv : ProcResource<2>;
+
+//===----------------------------------------------------------------------===//
+// Define scheduler read/write resources and latency on Cyclone.
+// This mirrors sections 7.7-7.9 of the Tuning Guide v1.0.1.
+
+let SchedModel = CycloneModel in {
+
+//---
+// 7.8.1. Moves
+//---
+
+// A single nop micro-op (uX).
+def WriteX : SchedWriteRes<[]> { let Latency = 0; }
+
+// Move zero is a register rename (to machine register zero).
+// The move is replaced by a single nop micro-op.
+// MOVZ Rd, #0
+// AND Rd, Rzr, #imm
+def WriteZPred : SchedPredicate<[{TII->isGPRZero(MI)}]>;
+def WriteImmZ : SchedWriteVariant<[
+ SchedVar<WriteZPred, [WriteX]>,
+ SchedVar<NoSchedPred, [WriteImm]>]>;
+def : InstRW<[WriteImmZ], (instrs MOVZWi,MOVZXi,ANDWri,ANDXri)>;
+
+// Move GPR is a register rename and single nop micro-op.
+// ORR Xd, XZR, Xm
+// ADD Xd, Xn, #0
+def WriteIMovPred : SchedPredicate<[{TII->isGPRCopy(MI)}]>;
+def WriteVMovPred : SchedPredicate<[{TII->isFPRCopy(MI)}]>;
+def WriteMov : SchedWriteVariant<[
+ SchedVar<WriteIMovPred, [WriteX]>,
+ SchedVar<WriteVMovPred, [WriteX]>,
+ SchedVar<NoSchedPred, [WriteI]>]>;
+def : InstRW<[WriteMov], (instrs COPY,ORRXrr,ADDXrr)>;
+
+// Move non-zero immediate is an integer ALU op.
+// MOVN,MOVZ,MOVK
+def : WriteRes<WriteImm, [CyUnitI]>;
+
+//---
+// 7.8.2-7.8.5. Arithmetic and Logical, Comparison, Conditional,
+// Shifts and Bitfield Operations
+//---
+
+// ADR,ADRP
+// ADD(S)ri,SUB(S)ri,AND(S)ri,EORri,ORRri
+// ADD(S)rr,SUB(S)rr,AND(S)rr,BIC(S)rr,EONrr,EORrr,ORNrr,ORRrr
+// ADC(S),SBC(S)
+// Aliases: CMN, CMP, TST
+//
+// Conditional operations.
+// CCMNi,CCMPi,CCMNr,CCMPr,
+// CSEL,CSINC,CSINV,CSNEG
+//
+// Bit counting and reversal operations.
+// CLS,CLZ,RBIT,REV,REV16,REV32
+def : WriteRes<WriteI, [CyUnitI]>;
+
+// ADD with shifted register operand is a single micro-op that
+// consumes a shift pipeline for two cycles.
+// ADD(S)rs,SUB(S)rs,AND(S)rs,BIC(S)rs,EONrs,EORrs,ORNrs,ORRrs
+// EXAMPLE: ADDrs Xn, Xm LSL #imm
+def : WriteRes<WriteISReg, [CyUnitIS]> {
+ let Latency = 2;
+ let ResourceCycles = [2];
+}
+
+// ADD with extended register operand is the same as shifted reg operand.
+// ADD(S)re,SUB(S)re
+// EXAMPLE: ADDXre Xn, Xm, UXTB #1
+def : WriteRes<WriteIEReg, [CyUnitIS]> {
+ let Latency = 2;
+ let ResourceCycles = [2];
+}
+
+// Variable shift and bitfield operations.
+// ASRV,LSLV,LSRV,RORV,BFM,SBFM,UBFM
+def : WriteRes<WriteIS, [CyUnitIS]>;
+
+// EXTR Shifts a pair of registers and requires two micro-ops.
+// The second micro-op is delayed, as modeled by ReadExtrHi.
+// EXTR Xn, Xm, #imm
+def : WriteRes<WriteExtr, [CyUnitIS, CyUnitIS]> {
+ let Latency = 2;
+ let NumMicroOps = 2;
+}
+
+// EXTR's first register read is delayed by one cycle, effectively
+// shortening its writer's latency.
+// EXTR Xn, Xm, #imm
+def : ReadAdvance<ReadExtrHi, 1>;
+
+//---
+// 7.8.6. Multiplies
+//---
+
+// MUL/MNEG are aliases for MADD/MSUB.
+// MADDW,MSUBW,SMADDL,SMSUBL,UMADDL,UMSUBL
+def : WriteRes<WriteIM32, [CyUnitIM]> {
+ let Latency = 4;
+}
+// MADDX,MSUBX,SMULH,UMULH
+def : WriteRes<WriteIM64, [CyUnitIM]> {
+ let Latency = 5;
+}
+
+//---
+// 7.8.7. Divide
+//---
+
+// 32-bit divide takes 7-13 cycles. 10 cycles covers a 20-bit quotient.
+// The ID pipe is consumed for 2 cycles: issue and writeback.
+// SDIVW,UDIVW
+def : WriteRes<WriteID32, [CyUnitID, CyUnitIntDiv]> {
+ let Latency = 10;
+ let ResourceCycles = [2, 10];
+}
+// 64-bit divide takes 7-21 cycles. 13 cycles covers a 32-bit quotient.
+// The ID pipe is consumed for 2 cycles: issue and writeback.
+// SDIVX,UDIVX
+def : WriteRes<WriteID64, [CyUnitID, CyUnitIntDiv]> {
+ let Latency = 13;
+ let ResourceCycles = [2, 13];
+}
+
+//---
+// 7.8.8,7.8.10. Load/Store, single element
+//---
+
+// Integer loads take 4 cycles and use one LS unit for one cycle.
+def : WriteRes<WriteLD, [CyUnitLS]> {
+ let Latency = 4;
+}
+
+// Store-load forwarding is 4 cycles.
+//
+// Note: The store-exclusive sequence incorporates this
+// latency. However, general heuristics should not model the
+// dependence between a store and subsequent may-alias load because
+// hardware speculation works.
+def : WriteRes<WriteST, [CyUnitLS]> {
+ let Latency = 4;
+}
+
+// Load from base address plus an optionally scaled register offset.
+// Rt latency is latency WriteIS + WriteLD.
+// EXAMPLE: LDR Xn, Xm [, lsl 3]
+def CyWriteLDIdx : SchedWriteVariant<[
+ SchedVar<ScaledIdxPred, [WriteIS, WriteLD]>, // Load from scaled register.
+ SchedVar<NoSchedPred, [WriteLD]>]>; // Load from register offset.
+def : SchedAlias<WriteLDIdx, CyWriteLDIdx>; // Map AArch64->Cyclone type.
+
+// EXAMPLE: STR Xn, Xm [, lsl 3]
+def CyWriteSTIdx : SchedWriteVariant<[
+ SchedVar<ScaledIdxPred, [WriteIS, WriteST]>, // Store to scaled register.
+ SchedVar<NoSchedPred, [WriteST]>]>; // Store to register offset.
+def : SchedAlias<WriteSTIdx, CyWriteSTIdx>; // Map AArch64->Cyclone type.
+
+// Read the (unshifted) base register Xn in the second micro-op one cycle later.
+// EXAMPLE: LDR Xn, Xm [, lsl 3]
+def ReadBaseRS : SchedReadAdvance<1>;
+def CyReadAdrBase : SchedReadVariant<[
+ SchedVar<ScaledIdxPred, [ReadBaseRS]>, // Read base reg after shifting offset.
+ SchedVar<NoSchedPred, [ReadDefault]>]>; // Read base reg with no shift.
+def : SchedAlias<ReadAdrBase, CyReadAdrBase>; // Map AArch64->Cyclone type.
+
+//---
+// 7.8.9,7.8.11. Load/Store, paired
+//---
+
+// Address pre/post increment is a simple ALU op with one cycle latency.
+def : WriteRes<WriteAdr, [CyUnitI]>;
+
+// LDP high register write is fused with the load, but a nop micro-op remains.
+def : WriteRes<WriteLDHi, []> {
+ let Latency = 4;
+}
+
+// STP is a vector op and store, except for QQ, which is just two stores.
+def : SchedAlias<WriteSTP, WriteVSTShuffle>;
+def : InstRW<[WriteST, WriteST], (instrs STPQi)>;
+
+//---
+// 7.8.13. Branches
+//---
+
+// Branches take a single micro-op.
+// The misprediction penalty is defined as a SchedMachineModel property.
+def : WriteRes<WriteBr, [CyUnitB]> {let Latency = 0;}
+def : WriteRes<WriteBrReg, [CyUnitBR]> {let Latency = 0;}
+
+//---
+// 7.8.14. Never-issued Instructions, Barrier and Hint Operations
+//---
+
+// NOP,SEV,SEVL,WFE,WFI,YIELD
+def : WriteRes<WriteHint, []> {let Latency = 0;}
+// ISB
+def : InstRW<[WriteI], (instrs ISB)>;
+// SLREX,DMB,DSB
+def : WriteRes<WriteBarrier, [CyUnitLS]>;
+
+// System instructions get an invalid latency because the latency of
+// other operations across them is meaningless.
+def : WriteRes<WriteSys, []> {let Latency = -1;}
+
+//===----------------------------------------------------------------------===//
+// 7.9 Vector Unit Instructions
+
+// Simple vector operations take 2 cycles.
+def : WriteRes<WriteV, [CyUnitV]> {let Latency = 2;}
+
+// Define some longer latency vector op types for Cyclone.
+def CyWriteV3 : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
+def CyWriteV4 : SchedWriteRes<[CyUnitV]> {let Latency = 4;}
+def CyWriteV5 : SchedWriteRes<[CyUnitV]> {let Latency = 5;}
+def CyWriteV6 : SchedWriteRes<[CyUnitV]> {let Latency = 6;}
+
+// Simple floating-point operations take 2 cycles.
+def : WriteRes<WriteF, [CyUnitV]> {let Latency = 2;}
+
+//---
+// 7.9.1 Vector Moves
+//---
+
+// TODO: Add Cyclone-specific zero-cycle zeros. LLVM currently
+// generates expensive int-float conversion instead:
+// FMOVDi Dd, #0.0
+// FMOVv2f64ns Vd.2d, #0.0
+
+// FMOVSi,FMOVDi
+def : WriteRes<WriteFImm, [CyUnitV]> {let Latency = 2;}
+
+// MOVI,MVNI are WriteV
+// FMOVv2f32ns,FMOVv2f64ns,FMOVv4f32ns are WriteV
+
+// Move FPR is a register rename and single nop micro-op.
+// ORR.16b Vd,Vn,Vn
+// COPY is handled above in the WriteMov Variant.
+def WriteVMov : SchedWriteVariant<[
+ SchedVar<WriteVMovPred, [WriteX]>,
+ SchedVar<NoSchedPred, [WriteV]>]>;
+def : InstRW<[WriteVMov], (instrs ORRv16i8)>;
+
+// FMOVSr,FMOVDr are WriteF.
+
+// MOV V,V is a WriteV.
+
+// CPY D,V[x] is a WriteV
+
+// INS V[x],V[y] is a WriteV.
+
+// FMOVWSr,FMOVXDr,FMOVXDHighr
+def : WriteRes<WriteFCopy, [CyUnitLS]> {
+ let Latency = 5;
+}
+
+// FMOVSWr,FMOVDXr
+def : InstRW<[WriteLD], (instrs FMOVSWr,FMOVDXr,FMOVDXHighr)>;
+
+// INS V[x],R
+def CyWriteCopyToFPR : WriteSequence<[WriteVLD, WriteV]>;
+def : InstRW<[CyWriteCopyToFPR], (instregex "INSv")>;
+
+// SMOV,UMOV R,V[x]
+def CyWriteCopyToGPR : WriteSequence<[WriteLD, WriteI]>;
+def : InstRW<[CyWriteCopyToGPR], (instregex "SMOVv","UMOVv")>;
+
+// DUP V,R
+def : InstRW<[CyWriteCopyToFPR], (instregex "DUPv")>;
+
+// DUP V,V[x] is a WriteV.
+
+//---
+// 7.9.2 Integer Arithmetic, Logical, and Comparisons
+//---
+
+// BIC,ORR V,#imm are WriteV
+
+def : InstRW<[CyWriteV3], (instregex "ABSv")>;
+
+// MVN,NEG,NOT are WriteV
+
+def : InstRW<[CyWriteV3], (instregex "SQABSv","SQNEGv")>;
+
+// ADDP is a WriteV.
+def CyWriteVADDLP : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
+def : InstRW<[CyWriteVADDLP], (instregex "SADDLPv","UADDLPv")>;
+
+def : InstRW<[CyWriteV3],
+ (instregex "ADDVv","SMAXVv","UMAXVv","SMINVv","UMINVv")>;
+
+def : InstRW<[CyWriteV3], (instregex "SADDLV","UADDLV")>;
+
+// ADD,SUB are WriteV
+
+// Forward declare.
+def CyWriteVABD : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
+
+// Add/Diff and accumulate uses the vector multiply unit.
+def CyWriteVAccum : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
+def CyReadVAccum : SchedReadAdvance<1,
+ [CyWriteVAccum, CyWriteVADDLP, CyWriteVABD]>;
+
+def : InstRW<[CyWriteVAccum, CyReadVAccum],
+ (instregex "SADALP","UADALP")>;
+
+def : InstRW<[CyWriteVAccum, CyReadVAccum],
+ (instregex "SABAv","UABAv","SABALv","UABALv")>;
+
+def : InstRW<[CyWriteV3], (instregex "SQADDv","SQSUBv","UQADDv","UQSUBv")>;
+
+def : InstRW<[CyWriteV3], (instregex "SUQADDv","USQADDv")>;
+
+def : InstRW<[CyWriteV4], (instregex "ADDHNv","RADDHNv", "RSUBHNv", "SUBHNv")>;
+
+// WriteV includes:
+// AND,BIC,CMTST,EOR,ORN,ORR
+// ADDP
+// SHADD,SHSUB,SRHADD,UHADD,UHSUB,URHADD
+// SADDL,SSUBL,UADDL,USUBL
+// SADDW,SSUBW,UADDW,USUBW
+
+def : InstRW<[CyWriteV3], (instregex "CMEQv","CMGEv","CMGTv",
+ "CMLEv","CMLTv",
+ "CMHIv","CMHSv")>;
+
+def : InstRW<[CyWriteV3], (instregex "SMAXv","SMINv","UMAXv","UMINv",
+ "SMAXPv","SMINPv","UMAXPv","UMINPv")>;
+
+def : InstRW<[CyWriteVABD], (instregex "SABDv","UABDv",
+ "SABDLv","UABDLv")>;
+
+//---
+// 7.9.3 Floating Point Arithmetic and Comparisons
+//---
+
+// FABS,FNEG are WriteF
+
+def : InstRW<[CyWriteV4], (instrs FADDPv2i32p)>;
+def : InstRW<[CyWriteV5], (instrs FADDPv2i64p)>;
+
+def : InstRW<[CyWriteV3], (instregex "FMAXPv2i","FMAXNMPv2i",
+ "FMINPv2i","FMINNMPv2i")>;
+
+def : InstRW<[CyWriteV4], (instregex "FMAXVv","FMAXNMVv","FMINVv","FMINNMVv")>;
+
+def : InstRW<[CyWriteV4], (instrs FADDSrr,FADDv2f32,FADDv4f32,
+ FSUBSrr,FSUBv2f32,FSUBv4f32,
+ FADDPv2f32,FADDPv4f32,
+ FABD32,FABDv2f32,FABDv4f32)>;
+def : InstRW<[CyWriteV5], (instrs FADDDrr,FADDv2f64,
+ FSUBDrr,FSUBv2f64,
+ FADDPv2f64,
+ FABD64,FABDv2f64)>;
+
+def : InstRW<[CyWriteV3], (instregex "FCMEQ","FCMGT","FCMLE","FCMLT")>;
+
+def : InstRW<[CyWriteV3], (instregex "FACGE","FACGT",
+ "FMAXS","FMAXD","FMAXv",
+ "FMINS","FMIND","FMINv",
+ "FMAXNMS","FMAXNMD","FMAXNMv",
+ "FMINNMS","FMINNMD","FMINNMv",
+ "FMAXPv2f","FMAXPv4f",
+ "FMINPv2f","FMINPv4f",
+ "FMAXNMPv2f","FMAXNMPv4f",
+ "FMINNMPv2f","FMINNMPv4f")>;
+
+// FCMP,FCMPE,FCCMP,FCCMPE
+def : WriteRes<WriteFCmp, [CyUnitVC]> {let Latency = 4;}
+
+// FCSEL is a WriteF.
+
+//---
+// 7.9.4 Shifts and Bitfield Operations
+//---
+
+// SHL is a WriteV
+
+def CyWriteVSHR : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
+def : InstRW<[CyWriteVSHR], (instregex "SSHRv","USHRv")>;
+
+def CyWriteVSRSHR : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
+def : InstRW<[CyWriteVSRSHR], (instregex "SRSHRv","URSHRv")>;
+
+// Shift and accumulate uses the vector multiply unit.
+def CyWriteVShiftAcc : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
+def CyReadVShiftAcc : SchedReadAdvance<1,
+ [CyWriteVShiftAcc, CyWriteVSHR, CyWriteVSRSHR]>;
+def : InstRW<[CyWriteVShiftAcc, CyReadVShiftAcc],
+ (instregex "SRSRAv","SSRAv","URSRAv","USRAv")>;
+
+// SSHL,USHL are WriteV.
+
+def : InstRW<[CyWriteV3], (instregex "SRSHLv","URSHLv")>;
+
+// SQSHL,SQSHLU,UQSHL are WriteV.
+
+def : InstRW<[CyWriteV3], (instregex "SQRSHLv","UQRSHLv")>;
+
+// WriteV includes:
+// SHLL,SSHLL,USHLL
+// SLI,SRI
+// BIF,BIT,BSL
+// EXT
+// CLS,CLZ,CNT,RBIT,REV16,REV32,REV64,XTN
+// XTN2
+
+def : InstRW<[CyWriteV4],
+ (instregex "RSHRNv","SHRNv",
+ "SQRSHRNv","SQRSHRUNv","SQSHRNv","SQSHRUNv",
+ "UQRSHRNv","UQSHRNv","SQXTNv","SQXTUNv","UQXTNv")>;
+
+//---
+// 7.9.5 Multiplication
+//---
+
+def CyWriteVMul : SchedWriteRes<[CyUnitVM]> { let Latency = 4;}
+def : InstRW<[CyWriteVMul], (instregex "MULv","SMULLv","UMULLv",
+ "SQDMULLv","SQDMULHv","SQRDMULHv")>;
+
+// FMUL,FMULX,FNMUL default to WriteFMul.
+def : WriteRes<WriteFMul, [CyUnitVM]> { let Latency = 4;}
+
+def CyWriteV64Mul : SchedWriteRes<[CyUnitVM]> { let Latency = 5;}
+def : InstRW<[CyWriteV64Mul], (instrs FMULDrr,FMULv2f64,FMULv2i64_indexed,
+ FNMULDrr,FMULX64,FMULXv2f64,FMULXv2i64_indexed)>;
+
+def CyReadVMulAcc : SchedReadAdvance<1, [CyWriteVMul, CyWriteV64Mul]>;
+def : InstRW<[CyWriteVMul, CyReadVMulAcc],
+ (instregex "MLA","MLS","SMLAL","SMLSL","UMLAL","UMLSL",
+ "SQDMLAL","SQDMLSL")>;
+
+def CyWriteSMul : SchedWriteRes<[CyUnitVM]> { let Latency = 8;}
+def CyWriteDMul : SchedWriteRes<[CyUnitVM]> { let Latency = 10;}
+def CyReadSMul : SchedReadAdvance<4, [CyWriteSMul]>;
+def CyReadDMul : SchedReadAdvance<5, [CyWriteDMul]>;
+
+def : InstRW<[CyWriteSMul, CyReadSMul],
+ (instrs FMADDSrrr,FMSUBSrrr,FNMADDSrrr,FNMSUBSrrr,
+ FMLAv2f32,FMLAv4f32,
+ FMLAv1i32_indexed,FMLAv1i64_indexed,FMLAv2i32_indexed)>;
+def : InstRW<[CyWriteDMul, CyReadDMul],
+ (instrs FMADDDrrr,FMSUBDrrr,FNMADDDrrr,FNMSUBDrrr,
+ FMLAv2f64,FMLAv2i64_indexed,
+ FMLSv2f64,FMLSv2i64_indexed)>;
+
+def CyWritePMUL : SchedWriteRes<[CyUnitVD]> { let Latency = 3; }
+def : InstRW<[CyWritePMUL], (instregex "PMULv", "PMULLv")>;
+
+//---
+// 7.9.6 Divide and Square Root
+//---
+
+// FDIV,FSQRT
+// TODO: Add 64-bit variant with 19 cycle latency.
+// TODO: Specialize FSQRT for longer latency.
+def : WriteRes<WriteFDiv, [CyUnitVD, CyUnitFloatDiv]> {
+ let Latency = 17;
+ let ResourceCycles = [2, 17];
+}
+
+def : InstRW<[CyWriteV4], (instregex "FRECPEv","FRECPXv","URECPEv","URSQRTEv")>;
+
+def WriteFRSQRTE : SchedWriteRes<[CyUnitVM]> { let Latency = 4; }
+def : InstRW<[WriteFRSQRTE], (instregex "FRSQRTEv")>;
+
+def WriteFRECPS : SchedWriteRes<[CyUnitVM]> { let Latency = 8; }
+def WriteFRSQRTS : SchedWriteRes<[CyUnitVM]> { let Latency = 10; }
+def : InstRW<[WriteFRECPS], (instregex "FRECPSv")>;
+def : InstRW<[WriteFRSQRTS], (instregex "FRSQRTSv")>;
+
+//---
+// 7.9.7 Integer-FP Conversions
+//---
+
+// FCVT lengthen f16/s32
+def : InstRW<[WriteV], (instrs FCVTSHr,FCVTDHr,FCVTDSr)>;
+
+// FCVT,FCVTN,FCVTXN
+// SCVTF,UCVTF V,V
+// FRINT(AIMNPXZ) V,V
+def : WriteRes<WriteFCvt, [CyUnitV]> {let Latency = 4;}
+
+// SCVT/UCVT S/D, Rd = VLD5+V4: 9 cycles.
+def CyWriteCvtToFPR : WriteSequence<[WriteVLD, CyWriteV4]>;
+def : InstRW<[CyWriteCopyToFPR], (instregex "FCVT[AMNPZ][SU][SU][WX][SD]r")>;
+
+// FCVT Rd, S/D = V6+LD4: 10 cycles
+def CyWriteCvtToGPR : WriteSequence<[CyWriteV6, WriteLD]>;
+def : InstRW<[CyWriteCvtToGPR], (instregex "[SU]CVTF[SU][WX][SD]r")>;
+
+// FCVTL is a WriteV
+
+//---
+// 7.9.8-7.9.10 Cryptography, Data Transposition, Table Lookup
+//---
+
+def CyWriteCrypto2 : SchedWriteRes<[CyUnitVD]> {let Latency = 2;}
+def : InstRW<[CyWriteCrypto2], (instrs AESIMCrr, AESMCrr, SHA1Hrr,
+ AESDrr, AESErr, SHA1SU1rr, SHA256SU0rr,
+ SHA1SU0rrr)>;
+
+def CyWriteCrypto3 : SchedWriteRes<[CyUnitVD]> {let Latency = 3;}
+def : InstRW<[CyWriteCrypto3], (instrs SHA256SU1rrr)>;
+
+def CyWriteCrypto6 : SchedWriteRes<[CyUnitVD]> {let Latency = 6;}
+def : InstRW<[CyWriteCrypto6], (instrs SHA1Crrr, SHA1Mrrr, SHA1Prrr,
+ SHA256Hrrr,SHA256H2rrr)>;
+
+// TRN,UZP,ZUP are WriteV.
+
+// TBL,TBX are WriteV.
+
+//---
+// 7.9.11-7.9.14 Load/Store, single element and paired
+//---
+
+// Loading into the vector unit takes 5 cycles vs 4 for integer loads.
+def : WriteRes<WriteVLD, [CyUnitLS]> {
+ let Latency = 5;
+}
+
+// Store-load forwarding is 4 cycles.
+def : WriteRes<WriteVST, [CyUnitLS]> {
+ let Latency = 4;
+}
+
+// WriteVLDPair/VSTPair sequences are expanded by the target description.
+
+//---
+// 7.9.15 Load, element operations
+//---
+
+// Only the first WriteVLD and WriteAdr for writeback matches def operands.
+// Subsequent WriteVLDs consume resources. Since all loaded values have the
+// same latency, this is acceptable.
+
+// Vd is read 5 cycles after issuing the vector load.
+def : ReadAdvance<ReadVLD, 5>;
+
+def : InstRW<[WriteVLD],
+ (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[WriteVLD, WriteAdr],
+ (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
+
+// Register writes from the load's high half are fused micro-ops.
+def : InstRW<[WriteVLD],
+ (instregex "LD1Twov(8b|4h|2s|1d)$")>;
+def : InstRW<[WriteVLD, WriteAdr],
+ (instregex "LD1Twov(8b|4h|2s|1d)_POST")>;
+def : InstRW<[WriteVLD, WriteVLD],
+ (instregex "LD1Twov(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
+ (instregex "LD1Twov(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVLD, WriteVLD],
+ (instregex "LD1Threev(8b|4h|2s|1d)$")>;
+def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
+ (instregex "LD1Threev(8b|4h|2s|1d)_POST")>;
+def : InstRW<[WriteVLD, WriteVLD, WriteVLD],
+ (instregex "LD1Threev(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD],
+ (instregex "LD1Threev(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVLD, WriteVLD],
+ (instregex "LD1Fourv(8b|4h|2s|1d)$")>;
+def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
+ (instregex "LD1Fourv(8b|4h|2s|1d)_POST")>;
+def : InstRW<[WriteVLD, WriteVLD, WriteVLD, WriteVLD],
+ (instregex "LD1Fourv(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD, WriteVLD],
+ (instregex "LD1Fourv(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVLDShuffle, ReadVLD],
+ (instregex "LD1i(8|16|32)$")>;
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],
+ (instregex "LD1i(8|16|32)_POST")>;
+
+def : InstRW<[WriteVLDShuffle, ReadVLD], (instrs LD1i64)>;
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],(instrs LD1i64_POST)>;
+
+def : InstRW<[WriteVLDShuffle],
+ (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[WriteVLDShuffle, WriteAdr],
+ (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
+
+def : InstRW<[WriteVLDShuffle, WriteV],
+ (instregex "LD2Twov(8b|4h|2s)$")>;
+def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
+ (instregex "LD2Twov(8b|4h|2s)_POST$")>;
+def : InstRW<[WriteVLDShuffle, WriteVLDShuffle],
+ (instregex "LD2Twov(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle],
+ (instregex "LD2Twov(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
+ (instregex "LD2i(8|16|32)$")>;
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
+ (instregex "LD2i(8|16|32)_POST")>;
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
+ (instregex "LD2i64$")>;
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
+ (instregex "LD2i64_POST")>;
+
+def : InstRW<[WriteVLDShuffle, WriteV],
+ (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
+ (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
+ (instregex "LD3Threev(8b|4h|2s)$")>;
+def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
+ (instregex "LD3Threev(8b|4h|2s)_POST")>;
+def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVLDShuffle],
+ (instregex "LD3Threev(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVLDShuffle],
+ (instregex "LD3Threev(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV],
+ (instregex "LD3i(8|16|32)$")>;
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV],
+ (instregex "LD3i(8|16|32)_POST")>;
+
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV],
+ (instregex "LD3i64$")>;
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
+ (instregex "LD3i64_POST")>;
+
+def : InstRW<[WriteVLDShuffle, WriteV, WriteV],
+ (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)$")>;
+def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV],
+ (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)_POST")>;
+
+def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
+ (instrs LD3Rv1d,LD3Rv2d)>;
+def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
+ (instrs LD3Rv2d_POST,LD3Rv2d_POST)>;
+
+def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
+ (instregex "LD4Fourv(8b|4h|2s)$")>;
+def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
+ (instregex "LD4Fourv(8b|4h|2s)_POST")>;
+def : InstRW<[WriteVLDPairShuffle, WriteVLDPairShuffle,
+ WriteVLDPairShuffle, WriteVLDPairShuffle],
+ (instregex "LD4Fourv(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteVLDPairShuffle, WriteAdr, WriteVLDPairShuffle,
+ WriteVLDPairShuffle, WriteVLDPairShuffle],
+ (instregex "LD4Fourv(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV, WriteV],
+ (instregex "LD4i(8|16|32)$")>;
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV, WriteV],
+ (instregex "LD4i(8|16|32)_POST")>;
+
+
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV, WriteV],
+ (instrs LD4i64)>;
+def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
+ (instrs LD4i64_POST)>;
+
+def : InstRW<[WriteVLDShuffle, WriteV, WriteV, WriteV],
+ (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)$")>;
+def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV, WriteV],
+ (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)_POST")>;
+
+def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
+ (instrs LD4Rv1d,LD4Rv2d)>;
+def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
+ (instrs LD4Rv1d_POST,LD4Rv2d_POST)>;
+
+//---
+// 7.9.16 Store, element operations
+//---
+
+// Only the WriteAdr for writeback matches a def operands.
+// Subsequent WriteVLDs only consume resources.
+
+def : InstRW<[WriteVST],
+ (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
+def : InstRW<[WriteAdr, WriteVST],
+ (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVSTShuffle],
+ (instregex "ST1Twov(8b|4h|2s|1d)$")>;
+def : InstRW<[WriteAdr, WriteVSTShuffle],
+ (instregex "ST1Twov(8b|4h|2s|1d)_POST")>;
+def : InstRW<[WriteVST, WriteVST],
+ (instregex "ST1Twov(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteAdr, WriteVST, WriteVST],
+ (instregex "ST1Twov(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVSTShuffle, WriteVST],
+ (instregex "ST1Threev(8b|4h|2s|1d)$")>;
+def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVST],
+ (instregex "ST1Threev(8b|4h|2s|1d)_POST")>;
+def : InstRW<[WriteVST, WriteVST, WriteVST],
+ (instregex "ST1Threev(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST],
+ (instregex "ST1Threev(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
+ (instregex "ST1Fourv(8b|4h|2s|1d)$")>;
+def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
+ (instregex "ST1Fourv(8b|4h|2s|1d)_POST")>;
+def : InstRW<[WriteVST, WriteVST, WriteVST, WriteVST],
+ (instregex "ST1Fourv(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST, WriteVST],
+ (instregex "ST1Fourv(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVSTShuffle], (instregex "ST1i(8|16|32)$")>;
+def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1i(8|16|32)_POST")>;
+
+def : InstRW<[WriteVSTShuffle], (instrs ST1i64)>;
+def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST1i64_POST)>;
+
+def : InstRW<[WriteVSTShuffle],
+ (instregex "ST2Twov(8b|4h|2s)$")>;
+def : InstRW<[WriteAdr, WriteVSTShuffle],
+ (instregex "ST2Twov(8b|4h|2s)_POST")>;
+def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
+ (instregex "ST2Twov(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
+ (instregex "ST2Twov(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVSTShuffle], (instregex "ST2i(8|16|32)$")>;
+def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2i(8|16|32)_POST")>;
+def : InstRW<[WriteVSTShuffle], (instrs ST2i64)>;
+def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST2i64_POST)>;
+
+def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
+ (instregex "ST3Threev(8b|4h|2s)$")>;
+def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
+ (instregex "ST3Threev(8b|4h|2s)_POST")>;
+def : InstRW<[WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
+ (instregex "ST3Threev(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
+ (instregex "ST3Threev(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVSTShuffle], (instregex "ST3i(8|16|32)$")>;
+def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST3i(8|16|32)_POST")>;
+
+def :InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64)>;
+def :InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64_POST)>;
+
+def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle],
+ (instregex "ST4Fourv(8b|4h|2s|1d)$")>;
+def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle],
+ (instregex "ST4Fourv(8b|4h|2s|1d)_POST")>;
+def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle,
+ WriteVSTPairShuffle, WriteVSTPairShuffle],
+ (instregex "ST4Fourv(16b|8h|4s|2d)$")>;
+def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle,
+ WriteVSTPairShuffle, WriteVSTPairShuffle],
+ (instregex "ST4Fourv(16b|8h|4s|2d)_POST")>;
+
+def : InstRW<[WriteVSTPairShuffle], (instregex "ST4i(8|16|32)$")>;
+def : InstRW<[WriteAdr, WriteVSTPairShuffle], (instregex "ST4i(8|16|32)_POST")>;
+
+def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST4i64)>;
+def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],(instrs ST4i64_POST)>;
+
+//---
+// Unused SchedRead types
+//---
+
+def : ReadAdvance<ReadI, 0>;
+def : ReadAdvance<ReadISReg, 0>;
+def : ReadAdvance<ReadIEReg, 0>;
+def : ReadAdvance<ReadIM, 0>;
+def : ReadAdvance<ReadIMA, 0>;
+def : ReadAdvance<ReadID, 0>;
+
+} // SchedModel = CycloneModel
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64Schedule.td b/contrib/llvm/lib/Target/AArch64/AArch64Schedule.td
new file mode 100644
index 0000000..eaa9110
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64Schedule.td
@@ -0,0 +1,104 @@
+//==-- AArch64Schedule.td - AArch64 Scheduling Definitions -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// Define TII for use in SchedVariant Predicates.
+// const MachineInstr *MI and const TargetSchedModel *SchedModel
+// are defined by default.
+def : PredicateProlog<[{
+ const AArch64InstrInfo *TII =
+ static_cast<const AArch64InstrInfo*>(SchedModel->getInstrInfo());
+ (void)TII;
+}]>;
+
+// AArch64 Scheduler Definitions
+
+def WriteImm : SchedWrite; // MOVN, MOVZ
+// TODO: Provide variants for MOV32/64imm Pseudos that dynamically
+// select the correct sequence of WriteImms.
+
+def WriteI : SchedWrite; // ALU
+def WriteISReg : SchedWrite; // ALU of Shifted-Reg
+def WriteIEReg : SchedWrite; // ALU of Extended-Reg
+def ReadI : SchedRead; // ALU
+def ReadISReg : SchedRead; // ALU of Shifted-Reg
+def ReadIEReg : SchedRead; // ALU of Extended-Reg
+def WriteExtr : SchedWrite; // EXTR shifts a reg pair
+def ReadExtrHi : SchedRead; // Read the high reg of the EXTR pair
+def WriteIS : SchedWrite; // Shift/Scale
+def WriteID32 : SchedWrite; // 32-bit Divide
+def WriteID64 : SchedWrite; // 64-bit Divide
+def ReadID : SchedRead; // 32/64-bit Divide
+def WriteIM32 : SchedWrite; // 32-bit Multiply
+def WriteIM64 : SchedWrite; // 64-bit Multiply
+def ReadIM : SchedRead; // 32/64-bit Multiply
+def ReadIMA : SchedRead; // 32/64-bit Multiply Accumulate
+def WriteBr : SchedWrite; // Branch
+def WriteBrReg : SchedWrite; // Indirect Branch
+
+def WriteLD : SchedWrite; // Load from base addr plus immediate offset
+def WriteST : SchedWrite; // Store to base addr plus immediate offset
+def WriteSTP : SchedWrite; // Store a register pair.
+def WriteAdr : SchedWrite; // Address pre/post increment.
+
+def WriteLDIdx : SchedWrite; // Load from a register index (maybe scaled).
+def WriteSTIdx : SchedWrite; // Store to a register index (maybe scaled).
+def ReadAdrBase : SchedRead; // Read the base resister of a reg-offset LD/ST.
+
+// Predicate for determining when a shiftable register is shifted.
+def RegShiftedPred : SchedPredicate<[{TII->hasShiftedReg(MI)}]>;
+
+// Predicate for determining when a extendedable register is extended.
+def RegExtendedPred : SchedPredicate<[{TII->hasExtendedReg(MI)}]>;
+
+// ScaledIdxPred is true if a WriteLDIdx operand will be
+// scaled. Subtargets can use this to dynamically select resources and
+// latency for WriteLDIdx and ReadAdrBase.
+def ScaledIdxPred : SchedPredicate<[{TII->isScaledAddr(MI)}]>;
+
+// Serialized two-level address load.
+// EXAMPLE: LOADGot
+def WriteLDAdr : WriteSequence<[WriteAdr, WriteLD]>;
+
+// Serialized two-level address lookup.
+// EXAMPLE: MOVaddr...
+def WriteAdrAdr : WriteSequence<[WriteAdr, WriteAdr]>;
+
+// The second register of a load-pair.
+// LDP,LDPSW,LDNP,LDXP,LDAXP
+def WriteLDHi : SchedWrite;
+
+// Store-exclusive is a store followed by a dependent load.
+def WriteSTX : WriteSequence<[WriteST, WriteLD]>;
+
+def WriteSys : SchedWrite; // Long, variable latency system ops.
+def WriteBarrier : SchedWrite; // Memory barrier.
+def WriteHint : SchedWrite; // Hint instruction.
+
+def WriteF : SchedWrite; // General floating-point ops.
+def WriteFCmp : SchedWrite; // Floating-point compare.
+def WriteFCvt : SchedWrite; // Float conversion.
+def WriteFCopy : SchedWrite; // Float-int register copy.
+def WriteFImm : SchedWrite; // Floating-point immediate.
+def WriteFMul : SchedWrite; // Floating-point multiply.
+def WriteFDiv : SchedWrite; // Floating-point division.
+
+def WriteV : SchedWrite; // Vector ops.
+def WriteVLD : SchedWrite; // Vector loads.
+def WriteVST : SchedWrite; // Vector stores.
+
+// Read the unwritten lanes of the VLD's destination registers.
+def ReadVLD : SchedRead;
+
+// Sequential vector load and shuffle.
+def WriteVLDShuffle : WriteSequence<[WriteVLD, WriteV]>;
+def WriteVLDPairShuffle : WriteSequence<[WriteVLD, WriteV, WriteV]>;
+
+// Store a shuffled vector.
+def WriteVSTShuffle : WriteSequence<[WriteV, WriteVST]>;
+def WriteVSTPairShuffle : WriteSequence<[WriteV, WriteV, WriteVST]>;
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.cpp b/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.cpp
new file mode 100644
index 0000000..1bf64fc
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.cpp
@@ -0,0 +1,60 @@
+//===-- AArch64SelectionDAGInfo.cpp - AArch64 SelectionDAG Info -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AArch64SelectionDAGInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64TargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-selectiondag-info"
+
+AArch64SelectionDAGInfo::AArch64SelectionDAGInfo(const DataLayout *DL)
+ : TargetSelectionDAGInfo(DL) {}
+
+AArch64SelectionDAGInfo::~AArch64SelectionDAGInfo() {}
+
+SDValue AArch64SelectionDAGInfo::EmitTargetCodeForMemset(
+ SelectionDAG &DAG, SDLoc dl, SDValue Chain, SDValue Dst, SDValue Src,
+ SDValue Size, unsigned Align, bool isVolatile,
+ MachinePointerInfo DstPtrInfo) const {
+ // Check to see if there is a specialized entry-point for memory zeroing.
+ ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
+ ConstantSDNode *SizeValue = dyn_cast<ConstantSDNode>(Size);
+ const char *bzeroEntry =
+ (V && V->isNullValue())
+ ? DAG.getTarget().getSubtarget<AArch64Subtarget>().getBZeroEntry()
+ : nullptr;
+ // For small size (< 256), it is not beneficial to use bzero
+ // instead of memset.
+ if (bzeroEntry && (!SizeValue || SizeValue->getZExtValue() > 256)) {
+ const AArch64TargetLowering &TLI =
+ *static_cast<const AArch64TargetLowering *>(
+ DAG.getTarget().getTargetLowering());
+
+ EVT IntPtr = TLI.getPointerTy();
+ Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Node = Dst;
+ Entry.Ty = IntPtrTy;
+ Args.push_back(Entry);
+ Entry.Node = Size;
+ Args.push_back(Entry);
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(Chain)
+ .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
+ DAG.getExternalSymbol(bzeroEntry, IntPtr), std::move(Args), 0)
+ .setDiscardResult();
+ std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
+ return CallResult.second;
+ }
+ return SDValue();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.h b/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.h
new file mode 100644
index 0000000..1180eea
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.h
@@ -0,0 +1,33 @@
+//===-- AArch64SelectionDAGInfo.h - AArch64 SelectionDAG Info ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the AArch64 subclass for TargetSelectionDAGInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64SELECTIONDAGINFO_H
+#define AArch64SELECTIONDAGINFO_H
+
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+class AArch64SelectionDAGInfo : public TargetSelectionDAGInfo {
+public:
+ explicit AArch64SelectionDAGInfo(const DataLayout *DL);
+ ~AArch64SelectionDAGInfo();
+
+ SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl, SDValue Chain,
+ SDValue Dst, SDValue Src, SDValue Size,
+ unsigned Align, bool isVolatile,
+ MachinePointerInfo DstPtrInfo) const override;
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64StorePairSuppress.cpp b/contrib/llvm/lib/Target/AArch64/AArch64StorePairSuppress.cpp
new file mode 100644
index 0000000..45f8ddb
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64StorePairSuppress.cpp
@@ -0,0 +1,168 @@
+//===--- AArch64StorePairSuppress.cpp --- Suppress store pair formation ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass identifies floating point stores that should not be combined into
+// store pairs. Later we may do the same for floating point loads.
+// ===---------------------------------------------------------------------===//
+
+#include "AArch64InstrInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineTraceMetrics.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-stp-suppress"
+
+namespace {
+class AArch64StorePairSuppress : public MachineFunctionPass {
+ const AArch64InstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const MachineRegisterInfo *MRI;
+ MachineFunction *MF;
+ TargetSchedModel SchedModel;
+ MachineTraceMetrics *Traces;
+ MachineTraceMetrics::Ensemble *MinInstr;
+
+public:
+ static char ID;
+ AArch64StorePairSuppress() : MachineFunctionPass(ID) {}
+
+ virtual const char *getPassName() const override {
+ return "AArch64 Store Pair Suppression";
+ }
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+private:
+ bool shouldAddSTPToBlock(const MachineBasicBlock *BB);
+
+ bool isNarrowFPStore(const MachineInstr &MI);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<MachineTraceMetrics>();
+ AU.addPreserved<MachineTraceMetrics>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+char AArch64StorePairSuppress::ID = 0;
+} // anonymous
+
+FunctionPass *llvm::createAArch64StorePairSuppressPass() {
+ return new AArch64StorePairSuppress();
+}
+
+/// Return true if an STP can be added to this block without increasing the
+/// critical resource height. STP is good to form in Ld/St limited blocks and
+/// bad to form in float-point limited blocks. This is true independent of the
+/// critical path. If the critical path is longer than the resource height, the
+/// extra vector ops can limit physreg renaming. Otherwise, it could simply
+/// oversaturate the vector units.
+bool AArch64StorePairSuppress::shouldAddSTPToBlock(const MachineBasicBlock *BB) {
+ if (!MinInstr)
+ MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
+
+ MachineTraceMetrics::Trace BBTrace = MinInstr->getTrace(BB);
+ unsigned ResLength = BBTrace.getResourceLength();
+
+ // Get the machine model's scheduling class for STPQi.
+ // Bypass TargetSchedule's SchedClass resolution since we only have an opcode.
+ unsigned SCIdx = TII->get(AArch64::STPDi).getSchedClass();
+ const MCSchedClassDesc *SCDesc =
+ SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);
+
+ // If a subtarget does not define resources for STPQi, bail here.
+ if (SCDesc->isValid() && !SCDesc->isVariant()) {
+ unsigned ResLenWithSTP = BBTrace.getResourceLength(
+ ArrayRef<const MachineBasicBlock *>(), SCDesc);
+ if (ResLenWithSTP > ResLength) {
+ DEBUG(dbgs() << " Suppress STP in BB: " << BB->getNumber()
+ << " resources " << ResLength << " -> " << ResLenWithSTP
+ << "\n");
+ return false;
+ }
+ }
+ return true;
+}
+
+/// Return true if this is a floating-point store smaller than the V reg. On
+/// cyclone, these require a vector shuffle before storing a pair.
+/// Ideally we would call getMatchingPairOpcode() and have the machine model
+/// tell us if it's profitable with no cpu knowledge here.
+///
+/// FIXME: We plan to develop a decent Target abstraction for simple loads and
+/// stores. Until then use a nasty switch similar to AArch64LoadStoreOptimizer.
+bool AArch64StorePairSuppress::isNarrowFPStore(const MachineInstr &MI) {
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case AArch64::STRSui:
+ case AArch64::STRDui:
+ case AArch64::STURSi:
+ case AArch64::STURDi:
+ return true;
+ }
+}
+
+bool AArch64StorePairSuppress::runOnMachineFunction(MachineFunction &mf) {
+ MF = &mf;
+ TII = static_cast<const AArch64InstrInfo *>(MF->getTarget().getInstrInfo());
+ TRI = MF->getTarget().getRegisterInfo();
+ MRI = &MF->getRegInfo();
+ const TargetSubtargetInfo &ST =
+ MF->getTarget().getSubtarget<TargetSubtargetInfo>();
+ SchedModel.init(*ST.getSchedModel(), &ST, TII);
+
+ Traces = &getAnalysis<MachineTraceMetrics>();
+ MinInstr = nullptr;
+
+ DEBUG(dbgs() << "*** " << getPassName() << ": " << MF->getName() << '\n');
+
+ if (!SchedModel.hasInstrSchedModel()) {
+ DEBUG(dbgs() << " Skipping pass: no machine model present.\n");
+ return false;
+ }
+
+ // Check for a sequence of stores to the same base address. We don't need to
+ // precisely determine whether a store pair can be formed. But we do want to
+ // filter out most situations where we can't form store pairs to avoid
+ // computing trace metrics in those cases.
+ for (auto &MBB : *MF) {
+ bool SuppressSTP = false;
+ unsigned PrevBaseReg = 0;
+ for (auto &MI : MBB) {
+ if (!isNarrowFPStore(MI))
+ continue;
+ unsigned BaseReg;
+ unsigned Offset;
+ if (TII->getLdStBaseRegImmOfs(&MI, BaseReg, Offset, TRI)) {
+ if (PrevBaseReg == BaseReg) {
+ // If this block can take STPs, skip ahead to the next block.
+ if (!SuppressSTP && shouldAddSTPToBlock(MI.getParent()))
+ break;
+ // Otherwise, continue unpairing the stores in this block.
+ DEBUG(dbgs() << "Unpairing store " << MI << "\n");
+ SuppressSTP = true;
+ TII->suppressLdStPair(&MI);
+ }
+ PrevBaseReg = BaseReg;
+ } else
+ PrevBaseReg = 0;
+ }
+ }
+ // This pass just sets some internal MachineMemOperand flags. It can't really
+ // invalidate anything.
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.cpp b/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.cpp
new file mode 100644
index 0000000..bb0b72c
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.cpp
@@ -0,0 +1,130 @@
+//===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AArch64 specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64InstrInfo.h"
+#include "AArch64Subtarget.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineScheduler.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-subtarget"
+
+#define GET_SUBTARGETINFO_CTOR
+#define GET_SUBTARGETINFO_TARGET_DESC
+#include "AArch64GenSubtargetInfo.inc"
+
+static cl::opt<bool>
+EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if "
+ "converter pass"), cl::init(true), cl::Hidden);
+
+AArch64Subtarget &
+AArch64Subtarget::initializeSubtargetDependencies(StringRef FS) {
+ // Determine default and user-specified characteristics
+
+ if (CPUString.empty())
+ CPUString = "generic";
+
+ ParseSubtargetFeatures(CPUString, FS);
+ return *this;
+}
+
+AArch64Subtarget::AArch64Subtarget(const std::string &TT,
+ const std::string &CPU,
+ const std::string &FS, TargetMachine &TM,
+ bool LittleEndian)
+ : AArch64GenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others),
+ HasFPARMv8(false), HasNEON(false), HasCrypto(false), HasCRC(false),
+ HasZeroCycleRegMove(false), HasZeroCycleZeroing(false), CPUString(CPU),
+ TargetTriple(TT),
+ // This nested ternary is horrible, but DL needs to be properly
+ // initialized
+ // before TLInfo is constructed.
+ DL(isTargetMachO()
+ ? "e-m:o-i64:64-i128:128-n32:64-S128"
+ : (LittleEndian ? "e-m:e-i64:64-i128:128-n32:64-S128"
+ : "E-m:e-i64:64-i128:128-n32:64-S128")),
+ FrameLowering(), InstrInfo(initializeSubtargetDependencies(FS)),
+ TSInfo(&DL), TLInfo(TM) {}
+
+/// ClassifyGlobalReference - Find the target operand flags that describe
+/// how a global value should be referenced for the current subtarget.
+unsigned char
+AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
+ const TargetMachine &TM) const {
+
+ // Determine whether this is a reference to a definition or a declaration.
+ // Materializable GVs (in JIT lazy compilation mode) do not require an extra
+ // load from stub.
+ bool isDecl = GV->hasAvailableExternallyLinkage();
+ if (GV->isDeclaration() && !GV->isMaterializable())
+ isDecl = true;
+
+ // MachO large model always goes via a GOT, simply to get a single 8-byte
+ // absolute relocation on all global addresses.
+ if (TM.getCodeModel() == CodeModel::Large && isTargetMachO())
+ return AArch64II::MO_GOT;
+
+ // The small code mode's direct accesses use ADRP, which cannot necessarily
+ // produce the value 0 (if the code is above 4GB). Therefore they must use the
+ // GOT.
+ if (TM.getCodeModel() == CodeModel::Small && GV->isWeakForLinker() && isDecl)
+ return AArch64II::MO_GOT;
+
+ // If symbol visibility is hidden, the extra load is not needed if
+ // the symbol is definitely defined in the current translation unit.
+
+ // The handling of non-hidden symbols in PIC mode is rather target-dependent:
+ // + On MachO, if the symbol is defined in this module the GOT can be
+ // skipped.
+ // + On ELF, the R_AARCH64_COPY relocation means that even symbols actually
+ // defined could end up in unexpected places. Use a GOT.
+ if (TM.getRelocationModel() != Reloc::Static && GV->hasDefaultVisibility()) {
+ if (isTargetMachO())
+ return (isDecl || GV->isWeakForLinker()) ? AArch64II::MO_GOT
+ : AArch64II::MO_NO_FLAG;
+ else
+ // No need to go through the GOT for local symbols on ELF.
+ return GV->hasLocalLinkage() ? AArch64II::MO_NO_FLAG : AArch64II::MO_GOT;
+ }
+
+ return AArch64II::MO_NO_FLAG;
+}
+
+/// This function returns the name of a function which has an interface
+/// like the non-standard bzero function, if such a function exists on
+/// the current subtarget and it is considered prefereable over
+/// memset with zero passed as the second argument. Otherwise it
+/// returns null.
+const char *AArch64Subtarget::getBZeroEntry() const {
+ // Prefer bzero on Darwin only.
+ if(isTargetDarwin())
+ return "bzero";
+
+ return nullptr;
+}
+
+void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
+ MachineInstr *begin, MachineInstr *end,
+ unsigned NumRegionInstrs) const {
+ // LNT run (at least on Cyclone) showed reasonably significant gains for
+ // bi-directional scheduling. 253.perlbmk.
+ Policy.OnlyTopDown = false;
+ Policy.OnlyBottomUp = false;
+}
+
+bool AArch64Subtarget::enableEarlyIfConversion() const {
+ return EnableEarlyIfConvert;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.h b/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.h
new file mode 100644
index 0000000..52124f6
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.h
@@ -0,0 +1,132 @@
+//===--- AArch64Subtarget.h - Define Subtarget for the AArch64 -*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the AArch64 specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64SUBTARGET_H
+#define AArch64SUBTARGET_H
+
+#include "AArch64InstrInfo.h"
+#include "AArch64FrameLowering.h"
+#include "AArch64ISelLowering.h"
+#include "AArch64RegisterInfo.h"
+#include "AArch64SelectionDAGInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "AArch64GenSubtargetInfo.inc"
+
+namespace llvm {
+class GlobalValue;
+class StringRef;
+
+class AArch64Subtarget : public AArch64GenSubtargetInfo {
+protected:
+ enum ARMProcFamilyEnum {Others, CortexA53, CortexA57, Cyclone};
+
+ /// ARMProcFamily - ARM processor family: Cortex-A53, Cortex-A57, and others.
+ ARMProcFamilyEnum ARMProcFamily;
+
+ bool HasFPARMv8;
+ bool HasNEON;
+ bool HasCrypto;
+ bool HasCRC;
+
+ // HasZeroCycleRegMove - Has zero-cycle register mov instructions.
+ bool HasZeroCycleRegMove;
+
+ // HasZeroCycleZeroing - Has zero-cycle zeroing instructions.
+ bool HasZeroCycleZeroing;
+
+ /// CPUString - String name of used CPU.
+ std::string CPUString;
+
+ /// TargetTriple - What processor and OS we're targeting.
+ Triple TargetTriple;
+
+ const DataLayout DL;
+ AArch64FrameLowering FrameLowering;
+ AArch64InstrInfo InstrInfo;
+ AArch64SelectionDAGInfo TSInfo;
+ AArch64TargetLowering TLInfo;
+private:
+ /// initializeSubtargetDependencies - Initializes using CPUString and the
+ /// passed in feature string so that we can use initializer lists for
+ /// subtarget initialization.
+ AArch64Subtarget &initializeSubtargetDependencies(StringRef FS);
+
+public:
+ /// This constructor initializes the data members to match that
+ /// of the specified triple.
+ AArch64Subtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, TargetMachine &TM, bool LittleEndian);
+
+ const AArch64SelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+ const AArch64FrameLowering *getFrameLowering() const {
+ return &FrameLowering;
+ }
+ const AArch64TargetLowering *getTargetLowering() const {
+ return &TLInfo;
+ }
+ const AArch64InstrInfo *getInstrInfo() const { return &InstrInfo; }
+ const DataLayout *getDataLayout() const { return &DL; }
+ bool enableMachineScheduler() const override { return true; }
+
+ bool hasZeroCycleRegMove() const { return HasZeroCycleRegMove; }
+
+ bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; }
+
+ bool hasFPARMv8() const { return HasFPARMv8; }
+ bool hasNEON() const { return HasNEON; }
+ bool hasCrypto() const { return HasCrypto; }
+ bool hasCRC() const { return HasCRC; }
+
+ bool isLittleEndian() const { return DL.isLittleEndian(); }
+
+ bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
+
+ bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
+
+ bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
+
+ bool isCyclone() const { return CPUString == "cyclone"; }
+
+ /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
+ /// that still makes it profitable to inline the call.
+ unsigned getMaxInlineSizeThreshold() const { return 64; }
+
+ /// ParseSubtargetFeatures - Parses features string setting specified
+ /// subtarget options. Definition of function is auto generated by tblgen.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+
+ /// ClassifyGlobalReference - Find the target operand flags that describe
+ /// how a global value should be referenced for the current subtarget.
+ unsigned char ClassifyGlobalReference(const GlobalValue *GV,
+ const TargetMachine &TM) const;
+
+ /// This function returns the name of a function which has an interface
+ /// like the non-standard bzero function, if such a function exists on
+ /// the current subtarget and it is considered prefereable over
+ /// memset with zero passed as the second argument. Otherwise it
+ /// returns null.
+ const char *getBZeroEntry() const;
+
+ void overrideSchedPolicy(MachineSchedPolicy &Policy, MachineInstr *begin,
+ MachineInstr *end,
+ unsigned NumRegionInstrs) const override;
+
+ bool enableEarlyIfConversion() const override;
+};
+} // End llvm namespace
+
+#endif // AArch64SUBTARGET_H
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.cpp b/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.cpp
new file mode 100644
index 0000000..f99b90b
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.cpp
@@ -0,0 +1,216 @@
+//===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64TargetMachine.h"
+#include "llvm/PassManager.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Transforms/Scalar.h"
+using namespace llvm;
+
+static cl::opt<bool>
+EnableCCMP("aarch64-ccmp", cl::desc("Enable the CCMP formation pass"),
+ cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+EnableStPairSuppress("aarch64-stp-suppress", cl::desc("Suppress STP for AArch64"),
+ cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+EnableAdvSIMDScalar("aarch64-simd-scalar", cl::desc("Enable use of AdvSIMD scalar"
+ " integer instructions"), cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+EnablePromoteConstant("aarch64-promote-const", cl::desc("Enable the promote "
+ "constant pass"), cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+EnableCollectLOH("aarch64-collect-loh", cl::desc("Enable the pass that emits the"
+ " linker optimization hints (LOH)"), cl::init(true),
+ cl::Hidden);
+
+static cl::opt<bool>
+EnableDeadRegisterElimination("aarch64-dead-def-elimination", cl::Hidden,
+ cl::desc("Enable the pass that removes dead"
+ " definitons and replaces stores to"
+ " them with stores to the zero"
+ " register"),
+ cl::init(true));
+
+static cl::opt<bool>
+EnableLoadStoreOpt("aarch64-load-store-opt", cl::desc("Enable the load/store pair"
+ " optimization pass"), cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+EnableAtomicTidy("aarch64-atomic-cfg-tidy", cl::Hidden,
+ cl::desc("Run SimplifyCFG after expanding atomic operations"
+ " to make use of cmpxchg flow-based information"),
+ cl::init(true));
+
+extern "C" void LLVMInitializeAArch64Target() {
+ // Register the target.
+ RegisterTargetMachine<AArch64leTargetMachine> X(TheAArch64leTarget);
+ RegisterTargetMachine<AArch64beTargetMachine> Y(TheAArch64beTarget);
+
+ RegisterTargetMachine<AArch64leTargetMachine> Z(TheARM64leTarget);
+ RegisterTargetMachine<AArch64beTargetMachine> W(TheARM64beTarget);
+}
+
+/// TargetMachine ctor - Create an AArch64 architecture model.
+///
+AArch64TargetMachine::AArch64TargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL,
+ bool LittleEndian)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS, *this, LittleEndian) {
+ initAsmInfo();
+}
+
+void AArch64leTargetMachine::anchor() { }
+
+AArch64leTargetMachine::
+AArch64leTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
+
+void AArch64beTargetMachine::anchor() { }
+
+AArch64beTargetMachine::
+AArch64beTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
+
+namespace {
+/// AArch64 Code Generator Pass Configuration Options.
+class AArch64PassConfig : public TargetPassConfig {
+public:
+ AArch64PassConfig(AArch64TargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ AArch64TargetMachine &getAArch64TargetMachine() const {
+ return getTM<AArch64TargetMachine>();
+ }
+
+ void addIRPasses() override;
+ bool addPreISel() override;
+ bool addInstSelector() override;
+ bool addILPOpts() override;
+ bool addPreRegAlloc() override;
+ bool addPostRegAlloc() override;
+ bool addPreSched2() override;
+ bool addPreEmitPass() override;
+};
+} // namespace
+
+void AArch64TargetMachine::addAnalysisPasses(PassManagerBase &PM) {
+ // Add first the target-independent BasicTTI pass, then our AArch64 pass. This
+ // allows the AArch64 pass to delegate to the target independent layer when
+ // appropriate.
+ PM.add(createBasicTargetTransformInfoPass(this));
+ PM.add(createAArch64TargetTransformInfoPass(this));
+}
+
+TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new AArch64PassConfig(this, PM);
+}
+
+void AArch64PassConfig::addIRPasses() {
+ // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg
+ // ourselves.
+ addPass(createAtomicExpandLoadLinkedPass(TM));
+
+ // Cmpxchg instructions are often used with a subsequent comparison to
+ // determine whether it succeeded. We can exploit existing control-flow in
+ // ldrex/strex loops to simplify this, but it needs tidying up.
+ if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
+ addPass(createCFGSimplificationPass());
+
+ TargetPassConfig::addIRPasses();
+}
+
+// Pass Pipeline Configuration
+bool AArch64PassConfig::addPreISel() {
+ // Run promote constant before global merge, so that the promoted constants
+ // get a chance to be merged
+ if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant)
+ addPass(createAArch64PromoteConstantPass());
+ if (TM->getOptLevel() != CodeGenOpt::None)
+ addPass(createGlobalMergePass(TM));
+ if (TM->getOptLevel() != CodeGenOpt::None)
+ addPass(createAArch64AddressTypePromotionPass());
+
+ return false;
+}
+
+bool AArch64PassConfig::addInstSelector() {
+ addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel()));
+
+ // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many
+ // references to _TLS_MODULE_BASE_ as possible.
+ if (TM->getSubtarget<AArch64Subtarget>().isTargetELF() &&
+ getOptLevel() != CodeGenOpt::None)
+ addPass(createAArch64CleanupLocalDynamicTLSPass());
+
+ return false;
+}
+
+bool AArch64PassConfig::addILPOpts() {
+ if (EnableCCMP)
+ addPass(createAArch64ConditionalCompares());
+ addPass(&EarlyIfConverterID);
+ if (EnableStPairSuppress)
+ addPass(createAArch64StorePairSuppressPass());
+ return true;
+}
+
+bool AArch64PassConfig::addPreRegAlloc() {
+ // Use AdvSIMD scalar instructions whenever profitable.
+ if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar)
+ addPass(createAArch64AdvSIMDScalar());
+ return true;
+}
+
+bool AArch64PassConfig::addPostRegAlloc() {
+ // Change dead register definitions to refer to the zero register.
+ if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination)
+ addPass(createAArch64DeadRegisterDefinitions());
+ return true;
+}
+
+bool AArch64PassConfig::addPreSched2() {
+ // Expand some pseudo instructions to allow proper scheduling.
+ addPass(createAArch64ExpandPseudoPass());
+ // Use load/store pair instructions when possible.
+ if (TM->getOptLevel() != CodeGenOpt::None && EnableLoadStoreOpt)
+ addPass(createAArch64LoadStoreOptimizationPass());
+ return true;
+}
+
+bool AArch64PassConfig::addPreEmitPass() {
+ // Relax conditional branch instructions if they're otherwise out of
+ // range of their destination.
+ addPass(createAArch64BranchRelaxation());
+ if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH &&
+ TM->getSubtarget<AArch64Subtarget>().isTargetMachO())
+ addPass(createAArch64CollectLOHPass());
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.h b/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.h
new file mode 100644
index 0000000..852cb3f
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.h
@@ -0,0 +1,87 @@
+//==-- AArch64TargetMachine.h - Define TargetMachine for AArch64 -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the AArch64 specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64TARGETMACHINE_H
+#define AArch64TARGETMACHINE_H
+
+#include "AArch64InstrInfo.h"
+#include "AArch64Subtarget.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+class AArch64TargetMachine : public LLVMTargetMachine {
+protected:
+ AArch64Subtarget Subtarget;
+
+public:
+ AArch64TargetMachine(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL, bool IsLittleEndian);
+
+ const AArch64Subtarget *getSubtargetImpl() const override {
+ return &Subtarget;
+ }
+ const AArch64TargetLowering *getTargetLowering() const override {
+ return getSubtargetImpl()->getTargetLowering();
+ }
+ const DataLayout *getDataLayout() const override {
+ return getSubtargetImpl()->getDataLayout();
+ }
+ const AArch64FrameLowering *getFrameLowering() const override {
+ return getSubtargetImpl()->getFrameLowering();
+ }
+ const AArch64InstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const AArch64RegisterInfo *getRegisterInfo() const override {
+ return &getInstrInfo()->getRegisterInfo();
+ }
+ const AArch64SelectionDAGInfo *getSelectionDAGInfo() const override {
+ return getSubtargetImpl()->getSelectionDAGInfo();
+ }
+
+ // Pass Pipeline Configuration
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+
+ /// \brief Register AArch64 analysis passes with a pass manager.
+ void addAnalysisPasses(PassManagerBase &PM) override;
+};
+
+// AArch64leTargetMachine - AArch64 little endian target machine.
+//
+class AArch64leTargetMachine : public AArch64TargetMachine {
+ virtual void anchor();
+public:
+ AArch64leTargetMachine(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+// AArch64beTargetMachine - AArch64 big endian target machine.
+//
+class AArch64beTargetMachine : public AArch64TargetMachine {
+ virtual void anchor();
+public:
+ AArch64beTargetMachine(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.cpp b/contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.cpp
new file mode 100644
index 0000000..4069038
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.cpp
@@ -0,0 +1,52 @@
+//===-- AArch64TargetObjectFile.cpp - AArch64 Object Info -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64TargetObjectFile.h"
+#include "AArch64TargetMachine.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/Dwarf.h"
+using namespace llvm;
+using namespace dwarf;
+
+void AArch64_ELFTargetObjectFile::Initialize(MCContext &Ctx,
+ const TargetMachine &TM) {
+ TargetLoweringObjectFileELF::Initialize(Ctx, TM);
+ InitializeELF(TM.Options.UseInitArray);
+}
+
+const MCExpr *AArch64_MachoTargetObjectFile::getTTypeGlobalReference(
+ const GlobalValue *GV, unsigned Encoding, Mangler &Mang,
+ const TargetMachine &TM, MachineModuleInfo *MMI,
+ MCStreamer &Streamer) const {
+ // On Darwin, we can reference dwarf symbols with foo@GOT-., which
+ // is an indirect pc-relative reference. The default implementation
+ // won't reference using the GOT, so we need this target-specific
+ // version.
+ if (Encoding & (DW_EH_PE_indirect | DW_EH_PE_pcrel)) {
+ const MCSymbol *Sym = TM.getSymbol(GV, Mang);
+ const MCExpr *Res =
+ MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_GOT, getContext());
+ MCSymbol *PCSym = getContext().CreateTempSymbol();
+ Streamer.EmitLabel(PCSym);
+ const MCExpr *PC = MCSymbolRefExpr::Create(PCSym, getContext());
+ return MCBinaryExpr::CreateSub(Res, PC, getContext());
+ }
+
+ return TargetLoweringObjectFileMachO::getTTypeGlobalReference(
+ GV, Encoding, Mang, TM, MMI, Streamer);
+}
+
+MCSymbol *AArch64_MachoTargetObjectFile::getCFIPersonalitySymbol(
+ const GlobalValue *GV, Mangler &Mang, const TargetMachine &TM,
+ MachineModuleInfo *MMI) const {
+ return TM.getSymbol(GV, Mang);
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.h b/contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.h
new file mode 100644
index 0000000..de63cb4
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.h
@@ -0,0 +1,40 @@
+//===-- AArch64TargetObjectFile.h - AArch64 Object Info -*- C++ ---------*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_AArch64_TARGETOBJECTFILE_H
+#define LLVM_TARGET_AArch64_TARGETOBJECTFILE_H
+
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+
+namespace llvm {
+class AArch64TargetMachine;
+
+/// This implementation is used for AArch64 ELF targets (Linux in particular).
+class AArch64_ELFTargetObjectFile : public TargetLoweringObjectFileELF {
+ void Initialize(MCContext &Ctx, const TargetMachine &TM) override;
+};
+
+/// AArch64_MachoTargetObjectFile - This TLOF implementation is used for Darwin.
+class AArch64_MachoTargetObjectFile : public TargetLoweringObjectFileMachO {
+public:
+ const MCExpr *getTTypeGlobalReference(const GlobalValue *GV,
+ unsigned Encoding, Mangler &Mang,
+ const TargetMachine &TM,
+ MachineModuleInfo *MMI,
+ MCStreamer &Streamer) const override;
+
+ MCSymbol *getCFIPersonalitySymbol(const GlobalValue *GV, Mangler &Mang,
+ const TargetMachine &TM,
+ MachineModuleInfo *MMI) const override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp b/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
new file mode 100644
index 0000000..1dac14b
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
@@ -0,0 +1,500 @@
+//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI pass --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements a TargetTransformInfo analysis pass specific to the
+/// AArch64 target machine. It uses the target's detailed information to provide
+/// more precise answers to certain TTI queries, while letting the target
+/// independent and default TTI implementations handle the rest.
+///
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64TargetMachine.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/CostTable.h"
+#include "llvm/Target/TargetLowering.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64tti"
+
+// Declare the pass initialization routine locally as target-specific passes
+// don't have a target-wide initialization entry point, and so we rely on the
+// pass constructor initialization.
+namespace llvm {
+void initializeAArch64TTIPass(PassRegistry &);
+}
+
+namespace {
+
+class AArch64TTI final : public ImmutablePass, public TargetTransformInfo {
+ const AArch64TargetMachine *TM;
+ const AArch64Subtarget *ST;
+ const AArch64TargetLowering *TLI;
+
+ /// Estimate the overhead of scalarizing an instruction. Insert and Extract
+ /// are set if the result needs to be inserted and/or extracted from vectors.
+ unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
+
+public:
+ AArch64TTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
+ llvm_unreachable("This pass cannot be directly constructed");
+ }
+
+ AArch64TTI(const AArch64TargetMachine *TM)
+ : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
+ TLI(TM->getTargetLowering()) {
+ initializeAArch64TTIPass(*PassRegistry::getPassRegistry());
+ }
+
+ void initializePass() override { pushTTIStack(this); }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ TargetTransformInfo::getAnalysisUsage(AU);
+ }
+
+ /// Pass identification.
+ static char ID;
+
+ /// Provide necessary pointer adjustments for the two base classes.
+ void *getAdjustedAnalysisPointer(const void *ID) override {
+ if (ID == &TargetTransformInfo::ID)
+ return (TargetTransformInfo *)this;
+ return this;
+ }
+
+ /// \name Scalar TTI Implementations
+ /// @{
+ unsigned getIntImmCost(int64_t Val) const;
+ unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
+ unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty) const override;
+ unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+ Type *Ty) const override;
+ PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
+
+ /// @}
+
+ /// \name Vector TTI Implementations
+ /// @{
+
+ unsigned getNumberOfRegisters(bool Vector) const override {
+ if (Vector) {
+ if (ST->hasNEON())
+ return 32;
+ return 0;
+ }
+ return 31;
+ }
+
+ unsigned getRegisterBitWidth(bool Vector) const override {
+ if (Vector) {
+ if (ST->hasNEON())
+ return 128;
+ return 0;
+ }
+ return 64;
+ }
+
+ unsigned getMaximumUnrollFactor() const override { return 2; }
+
+ unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
+ override;
+
+ unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
+ override;
+
+ unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ OperandValueKind Opd1Info = OK_AnyValue,
+ OperandValueKind Opd2Info = OK_AnyValue) const
+ override;
+
+ unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
+
+ unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const
+ override;
+
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const override;
+ /// @}
+};
+
+} // end anonymous namespace
+
+INITIALIZE_AG_PASS(AArch64TTI, TargetTransformInfo, "aarch64tti",
+ "AArch64 Target Transform Info", true, true, false)
+char AArch64TTI::ID = 0;
+
+ImmutablePass *
+llvm::createAArch64TargetTransformInfoPass(const AArch64TargetMachine *TM) {
+ return new AArch64TTI(TM);
+}
+
+/// \brief Calculate the cost of materializing a 64-bit value. This helper
+/// method might only calculate a fraction of a larger immediate. Therefore it
+/// is valid to return a cost of ZERO.
+unsigned AArch64TTI::getIntImmCost(int64_t Val) const {
+ // Check if the immediate can be encoded within an instruction.
+ if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
+ return 0;
+
+ if (Val < 0)
+ Val = ~Val;
+
+ // Calculate how many moves we will need to materialize this constant.
+ unsigned LZ = countLeadingZeros((uint64_t)Val);
+ return (64 - LZ + 15) / 16;
+}
+
+/// \brief Calculate the cost of materializing the given constant.
+unsigned AArch64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ // Sign-extend all constants to a multiple of 64-bit.
+ APInt ImmVal = Imm;
+ if (BitSize & 0x3f)
+ ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
+
+ // Split the constant into 64-bit chunks and calculate the cost for each
+ // chunk.
+ unsigned Cost = 0;
+ for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
+ APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
+ int64_t Val = Tmp.getSExtValue();
+ Cost += getIntImmCost(Val);
+ }
+ // We need at least one instruction to materialze the constant.
+ return std::max(1U, Cost);
+}
+
+unsigned AArch64TTI::getIntImmCost(unsigned Opcode, unsigned Idx,
+ const APInt &Imm, Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TCC_Free;
+
+ unsigned ImmIdx = ~0U;
+ switch (Opcode) {
+ default:
+ return TCC_Free;
+ case Instruction::GetElementPtr:
+ // Always hoist the base address of a GetElementPtr.
+ if (Idx == 0)
+ return 2 * TCC_Basic;
+ return TCC_Free;
+ case Instruction::Store:
+ ImmIdx = 0;
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::ICmp:
+ ImmIdx = 1;
+ break;
+ // Always return TCC_Free for the shift value of a shift instruction.
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ if (Idx == 1)
+ return TCC_Free;
+ break;
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::IntToPtr:
+ case Instruction::PtrToInt:
+ case Instruction::BitCast:
+ case Instruction::PHI:
+ case Instruction::Call:
+ case Instruction::Select:
+ case Instruction::Ret:
+ case Instruction::Load:
+ break;
+ }
+
+ if (Idx == ImmIdx) {
+ unsigned NumConstants = (BitSize + 63) / 64;
+ unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
+ return (Cost <= NumConstants * TCC_Basic)
+ ? static_cast<unsigned>(TCC_Free) : Cost;
+ }
+ return AArch64TTI::getIntImmCost(Imm, Ty);
+}
+
+unsigned AArch64TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
+ const APInt &Imm, Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TCC_Free;
+
+ switch (IID) {
+ default:
+ return TCC_Free;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ if (Idx == 1) {
+ unsigned NumConstants = (BitSize + 63) / 64;
+ unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
+ return (Cost <= NumConstants * TCC_Basic)
+ ? static_cast<unsigned>(TCC_Free) : Cost;
+ }
+ break;
+ case Intrinsic::experimental_stackmap:
+ if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TCC_Free;
+ break;
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64:
+ if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TCC_Free;
+ break;
+ }
+ return AArch64TTI::getIntImmCost(Imm, Ty);
+}
+
+AArch64TTI::PopcntSupportKind
+AArch64TTI::getPopcntSupport(unsigned TyWidth) const {
+ assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
+ if (TyWidth == 32 || TyWidth == 64)
+ return PSK_FastHardware;
+ // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
+ return PSK_Software;
+}
+
+unsigned AArch64TTI::getCastInstrCost(unsigned Opcode, Type *Dst,
+ Type *Src) const {
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ EVT SrcTy = TLI->getValueType(Src);
+ EVT DstTy = TLI->getValueType(Dst);
+
+ if (!SrcTy.isSimple() || !DstTy.isSimple())
+ return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
+
+ static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
+ // LowerVectorINT_TO_FP:
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
+
+ // Complex: to v2f32
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
+
+ // Complex: to v4f32
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+
+ // Complex: to v2f64
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+
+
+ // LowerVectorFP_TO_INT
+ { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
+
+ // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
+ { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
+ { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
+
+ // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
+ { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
+ { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
+
+ // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
+ { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
+ { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
+ { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
+ };
+
+ int Idx = ConvertCostTableLookup<MVT>(
+ ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT());
+ if (Idx != -1)
+ return ConversionTbl[Idx].Cost;
+
+ return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
+}
+
+unsigned AArch64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) const {
+ assert(Val->isVectorTy() && "This must be a vector type");
+
+ if (Index != -1U) {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
+
+ // This type is legalized to a scalar type.
+ if (!LT.second.isVector())
+ return 0;
+
+ // The type may be split. Normalize the index to the new type.
+ unsigned Width = LT.second.getVectorNumElements();
+ Index = Index % Width;
+
+ // The element at index zero is already inside the vector.
+ if (Index == 0)
+ return 0;
+ }
+
+ // All other insert/extracts cost this much.
+ return 2;
+}
+
+unsigned AArch64TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ OperandValueKind Opd1Info,
+ OperandValueKind Opd2Info) const {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+
+ switch (ISD) {
+ default:
+ return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Opd1Info,
+ Opd2Info);
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::XOR:
+ case ISD::OR:
+ case ISD::AND:
+ // These nodes are marked as 'custom' for combining purposes only.
+ // We know that they are legal. See LowerAdd in ISelLowering.
+ return 1 * LT.first;
+ }
+}
+
+unsigned AArch64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
+ // Address computations in vectorized code with non-consecutive addresses will
+ // likely result in more instructions compared to scalar code where the
+ // computation can more often be merged into the index mode. The resulting
+ // extra micro-ops can significantly decrease throughput.
+ unsigned NumVectorInstToHideOverhead = 10;
+
+ if (Ty->isVectorTy() && IsComplex)
+ return NumVectorInstToHideOverhead;
+
+ // In many cases the address computation is not merged into the instruction
+ // addressing mode.
+ return 1;
+}
+
+unsigned AArch64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) const {
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ // We don't lower vector selects well that are wider than the register width.
+ if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
+ // We would need this many instructions to hide the scalarization happening.
+ unsigned AmortizationCost = 20;
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ VectorSelectTbl[] = {
+ { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
+ { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
+ { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
+ { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
+ { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
+ { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
+ };
+
+ EVT SelCondTy = TLI->getValueType(CondTy);
+ EVT SelValTy = TLI->getValueType(ValTy);
+ if (SelCondTy.isSimple() && SelValTy.isSimple()) {
+ int Idx =
+ ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
+ SelValTy.getSimpleVT());
+ if (Idx != -1)
+ return VectorSelectTbl[Idx].Cost;
+ }
+ }
+ return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
+}
+
+unsigned AArch64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment,
+ unsigned AddressSpace) const {
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
+
+ if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
+ Src->getVectorElementType()->isIntegerTy(64)) {
+ // Unaligned stores are extremely inefficient. We don't split
+ // unaligned v2i64 stores because the negative impact that has shown in
+ // practice on inlined memcpy code.
+ // We make v2i64 stores expensive so that we will only vectorize if there
+ // are 6 other instructions getting vectorized.
+ unsigned AmortizationCost = 6;
+
+ return LT.first * 2 * AmortizationCost;
+ }
+
+ if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
+ Src->getVectorNumElements() < 8) {
+ // We scalarize the loads/stores because there is not v.4b register and we
+ // have to promote the elements to v.4h.
+ unsigned NumVecElts = Src->getVectorNumElements();
+ unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
+ // We generate 2 instructions per vector element.
+ return NumVectorizableInstsToAmortize * NumVecElts * 2;
+ }
+
+ return LT.first;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp b/contrib/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
new file mode 100644
index 0000000..37e9296
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
@@ -0,0 +1,4213 @@
+//==- AArch64AsmParser.cpp - Parse AArch64 assembly to MCInst instructions -==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "MCTargetDesc/AArch64MCExpr.h"
+#include "Utils/AArch64BaseInfo.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include <cstdio>
+using namespace llvm;
+
+namespace {
+
+class AArch64Operand;
+
+class AArch64AsmParser : public MCTargetAsmParser {
+private:
+ StringRef Mnemonic; ///< Instruction mnemonic.
+ MCSubtargetInfo &STI;
+ MCAsmParser &Parser;
+
+ // Map of register aliases registers via the .req directive.
+ StringMap<std::pair<bool, unsigned> > RegisterReqs;
+
+ AArch64TargetStreamer &getTargetStreamer() {
+ MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
+ return static_cast<AArch64TargetStreamer &>(TS);
+ }
+
+ MCAsmParser &getParser() const { return Parser; }
+ MCAsmLexer &getLexer() const { return Parser.getLexer(); }
+
+ SMLoc getLoc() const { return Parser.getTok().getLoc(); }
+
+ bool parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands);
+ AArch64CC::CondCode parseCondCodeString(StringRef Cond);
+ bool parseCondCode(OperandVector &Operands, bool invertCondCode);
+ unsigned matchRegisterNameAlias(StringRef Name, bool isVector);
+ int tryParseRegister();
+ int tryMatchVectorRegister(StringRef &Kind, bool expected);
+ bool parseRegister(OperandVector &Operands);
+ bool parseSymbolicImmVal(const MCExpr *&ImmVal);
+ bool parseVectorList(OperandVector &Operands);
+ bool parseOperand(OperandVector &Operands, bool isCondCode,
+ bool invertCondCode);
+
+ void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
+ bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
+ bool showMatchError(SMLoc Loc, unsigned ErrCode);
+
+ bool parseDirectiveWord(unsigned Size, SMLoc L);
+ bool parseDirectiveTLSDescCall(SMLoc L);
+
+ bool parseDirectiveLOH(StringRef LOH, SMLoc L);
+ bool parseDirectiveLtorg(SMLoc L);
+
+ bool parseDirectiveReq(StringRef Name, SMLoc L);
+ bool parseDirectiveUnreq(SMLoc L);
+
+ bool validateInstruction(MCInst &Inst, SmallVectorImpl<SMLoc> &Loc);
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ unsigned &ErrorInfo,
+ bool MatchingInlineAsm) override;
+/// @name Auto-generated Match Functions
+/// {
+
+#define GET_ASSEMBLER_HEADER
+#include "AArch64GenAsmMatcher.inc"
+
+ /// }
+
+ OperandMatchResultTy tryParseOptionalShiftExtend(OperandVector &Operands);
+ OperandMatchResultTy tryParseBarrierOperand(OperandVector &Operands);
+ OperandMatchResultTy tryParseMRSSystemRegister(OperandVector &Operands);
+ OperandMatchResultTy tryParseSysReg(OperandVector &Operands);
+ OperandMatchResultTy tryParseSysCROperand(OperandVector &Operands);
+ OperandMatchResultTy tryParsePrefetch(OperandVector &Operands);
+ OperandMatchResultTy tryParseAdrpLabel(OperandVector &Operands);
+ OperandMatchResultTy tryParseAdrLabel(OperandVector &Operands);
+ OperandMatchResultTy tryParseFPImm(OperandVector &Operands);
+ OperandMatchResultTy tryParseAddSubImm(OperandVector &Operands);
+ OperandMatchResultTy tryParseGPR64sp0Operand(OperandVector &Operands);
+ bool tryParseVectorRegister(OperandVector &Operands);
+
+public:
+ enum AArch64MatchResultTy {
+ Match_InvalidSuffix = FIRST_TARGET_MATCH_RESULT_TY,
+#define GET_OPERAND_DIAGNOSTIC_TYPES
+#include "AArch64GenAsmMatcher.inc"
+ };
+ AArch64AsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
+ const MCInstrInfo &MII,
+ const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
+ MCAsmParserExtension::Initialize(_Parser);
+ if (Parser.getStreamer().getTargetStreamer() == nullptr)
+ new AArch64TargetStreamer(Parser.getStreamer());
+
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+ }
+
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+ bool ParseDirective(AsmToken DirectiveID) override;
+ unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
+ unsigned Kind) override;
+
+ static bool classifySymbolRef(const MCExpr *Expr,
+ AArch64MCExpr::VariantKind &ELFRefKind,
+ MCSymbolRefExpr::VariantKind &DarwinRefKind,
+ int64_t &Addend);
+};
+} // end anonymous namespace
+
+namespace {
+
+/// AArch64Operand - Instances of this class represent a parsed AArch64 machine
+/// instruction.
+class AArch64Operand : public MCParsedAsmOperand {
+private:
+ enum KindTy {
+ k_Immediate,
+ k_ShiftedImm,
+ k_CondCode,
+ k_Register,
+ k_VectorList,
+ k_VectorIndex,
+ k_Token,
+ k_SysReg,
+ k_SysCR,
+ k_Prefetch,
+ k_ShiftExtend,
+ k_FPImm,
+ k_Barrier
+ } Kind;
+
+ SMLoc StartLoc, EndLoc;
+
+ struct TokOp {
+ const char *Data;
+ unsigned Length;
+ bool IsSuffix; // Is the operand actually a suffix on the mnemonic.
+ };
+
+ struct RegOp {
+ unsigned RegNum;
+ bool isVector;
+ };
+
+ struct VectorListOp {
+ unsigned RegNum;
+ unsigned Count;
+ unsigned NumElements;
+ unsigned ElementKind;
+ };
+
+ struct VectorIndexOp {
+ unsigned Val;
+ };
+
+ struct ImmOp {
+ const MCExpr *Val;
+ };
+
+ struct ShiftedImmOp {
+ const MCExpr *Val;
+ unsigned ShiftAmount;
+ };
+
+ struct CondCodeOp {
+ AArch64CC::CondCode Code;
+ };
+
+ struct FPImmOp {
+ unsigned Val; // Encoded 8-bit representation.
+ };
+
+ struct BarrierOp {
+ unsigned Val; // Not the enum since not all values have names.
+ };
+
+ struct SysRegOp {
+ const char *Data;
+ unsigned Length;
+ uint64_t FeatureBits; // We need to pass through information about which
+ // core we are compiling for so that the SysReg
+ // Mappers can appropriately conditionalize.
+ };
+
+ struct SysCRImmOp {
+ unsigned Val;
+ };
+
+ struct PrefetchOp {
+ unsigned Val;
+ };
+
+ struct ShiftExtendOp {
+ AArch64_AM::ShiftExtendType Type;
+ unsigned Amount;
+ bool HasExplicitAmount;
+ };
+
+ struct ExtendOp {
+ unsigned Val;
+ };
+
+ union {
+ struct TokOp Tok;
+ struct RegOp Reg;
+ struct VectorListOp VectorList;
+ struct VectorIndexOp VectorIndex;
+ struct ImmOp Imm;
+ struct ShiftedImmOp ShiftedImm;
+ struct CondCodeOp CondCode;
+ struct FPImmOp FPImm;
+ struct BarrierOp Barrier;
+ struct SysRegOp SysReg;
+ struct SysCRImmOp SysCRImm;
+ struct PrefetchOp Prefetch;
+ struct ShiftExtendOp ShiftExtend;
+ };
+
+ // Keep the MCContext around as the MCExprs may need manipulated during
+ // the add<>Operands() calls.
+ MCContext &Ctx;
+
+public:
+ AArch64Operand(KindTy K, MCContext &_Ctx)
+ : MCParsedAsmOperand(), Kind(K), Ctx(_Ctx) {}
+
+ AArch64Operand(const AArch64Operand &o) : MCParsedAsmOperand(), Ctx(o.Ctx) {
+ Kind = o.Kind;
+ StartLoc = o.StartLoc;
+ EndLoc = o.EndLoc;
+ switch (Kind) {
+ case k_Token:
+ Tok = o.Tok;
+ break;
+ case k_Immediate:
+ Imm = o.Imm;
+ break;
+ case k_ShiftedImm:
+ ShiftedImm = o.ShiftedImm;
+ break;
+ case k_CondCode:
+ CondCode = o.CondCode;
+ break;
+ case k_FPImm:
+ FPImm = o.FPImm;
+ break;
+ case k_Barrier:
+ Barrier = o.Barrier;
+ break;
+ case k_Register:
+ Reg = o.Reg;
+ break;
+ case k_VectorList:
+ VectorList = o.VectorList;
+ break;
+ case k_VectorIndex:
+ VectorIndex = o.VectorIndex;
+ break;
+ case k_SysReg:
+ SysReg = o.SysReg;
+ break;
+ case k_SysCR:
+ SysCRImm = o.SysCRImm;
+ break;
+ case k_Prefetch:
+ Prefetch = o.Prefetch;
+ break;
+ case k_ShiftExtend:
+ ShiftExtend = o.ShiftExtend;
+ break;
+ }
+ }
+
+ /// getStartLoc - Get the location of the first token of this operand.
+ SMLoc getStartLoc() const override { return StartLoc; }
+ /// getEndLoc - Get the location of the last token of this operand.
+ SMLoc getEndLoc() const override { return EndLoc; }
+
+ StringRef getToken() const {
+ assert(Kind == k_Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+
+ bool isTokenSuffix() const {
+ assert(Kind == k_Token && "Invalid access!");
+ return Tok.IsSuffix;
+ }
+
+ const MCExpr *getImm() const {
+ assert(Kind == k_Immediate && "Invalid access!");
+ return Imm.Val;
+ }
+
+ const MCExpr *getShiftedImmVal() const {
+ assert(Kind == k_ShiftedImm && "Invalid access!");
+ return ShiftedImm.Val;
+ }
+
+ unsigned getShiftedImmShift() const {
+ assert(Kind == k_ShiftedImm && "Invalid access!");
+ return ShiftedImm.ShiftAmount;
+ }
+
+ AArch64CC::CondCode getCondCode() const {
+ assert(Kind == k_CondCode && "Invalid access!");
+ return CondCode.Code;
+ }
+
+ unsigned getFPImm() const {
+ assert(Kind == k_FPImm && "Invalid access!");
+ return FPImm.Val;
+ }
+
+ unsigned getBarrier() const {
+ assert(Kind == k_Barrier && "Invalid access!");
+ return Barrier.Val;
+ }
+
+ unsigned getReg() const override {
+ assert(Kind == k_Register && "Invalid access!");
+ return Reg.RegNum;
+ }
+
+ unsigned getVectorListStart() const {
+ assert(Kind == k_VectorList && "Invalid access!");
+ return VectorList.RegNum;
+ }
+
+ unsigned getVectorListCount() const {
+ assert(Kind == k_VectorList && "Invalid access!");
+ return VectorList.Count;
+ }
+
+ unsigned getVectorIndex() const {
+ assert(Kind == k_VectorIndex && "Invalid access!");
+ return VectorIndex.Val;
+ }
+
+ StringRef getSysReg() const {
+ assert(Kind == k_SysReg && "Invalid access!");
+ return StringRef(SysReg.Data, SysReg.Length);
+ }
+
+ uint64_t getSysRegFeatureBits() const {
+ assert(Kind == k_SysReg && "Invalid access!");
+ return SysReg.FeatureBits;
+ }
+
+ unsigned getSysCR() const {
+ assert(Kind == k_SysCR && "Invalid access!");
+ return SysCRImm.Val;
+ }
+
+ unsigned getPrefetch() const {
+ assert(Kind == k_Prefetch && "Invalid access!");
+ return Prefetch.Val;
+ }
+
+ AArch64_AM::ShiftExtendType getShiftExtendType() const {
+ assert(Kind == k_ShiftExtend && "Invalid access!");
+ return ShiftExtend.Type;
+ }
+
+ unsigned getShiftExtendAmount() const {
+ assert(Kind == k_ShiftExtend && "Invalid access!");
+ return ShiftExtend.Amount;
+ }
+
+ bool hasShiftExtendAmount() const {
+ assert(Kind == k_ShiftExtend && "Invalid access!");
+ return ShiftExtend.HasExplicitAmount;
+ }
+
+ bool isImm() const override { return Kind == k_Immediate; }
+ bool isMem() const override { return false; }
+ bool isSImm9() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= -256 && Val < 256);
+ }
+ bool isSImm7s4() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= -256 && Val <= 252 && (Val & 3) == 0);
+ }
+ bool isSImm7s8() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= -512 && Val <= 504 && (Val & 7) == 0);
+ }
+ bool isSImm7s16() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= -1024 && Val <= 1008 && (Val & 15) == 0);
+ }
+
+ bool isSymbolicUImm12Offset(const MCExpr *Expr, unsigned Scale) const {
+ AArch64MCExpr::VariantKind ELFRefKind;
+ MCSymbolRefExpr::VariantKind DarwinRefKind;
+ int64_t Addend;
+ if (!AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind,
+ Addend)) {
+ // If we don't understand the expression, assume the best and
+ // let the fixup and relocation code deal with it.
+ return true;
+ }
+
+ if (DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
+ ELFRefKind == AArch64MCExpr::VK_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_GOT_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC ||
+ ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC ||
+ ELFRefKind == AArch64MCExpr::VK_GOTTPREL_LO12_NC ||
+ ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12) {
+ // Note that we don't range-check the addend. It's adjusted modulo page
+ // size when converted, so there is no "out of range" condition when using
+ // @pageoff.
+ return Addend >= 0 && (Addend % Scale) == 0;
+ } else if (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF ||
+ DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) {
+ // @gotpageoff/@tlvppageoff can only be used directly, not with an addend.
+ return Addend == 0;
+ }
+
+ return false;
+ }
+
+ template <int Scale> bool isUImm12Offset() const {
+ if (!isImm())
+ return false;
+
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return isSymbolicUImm12Offset(getImm(), Scale);
+
+ int64_t Val = MCE->getValue();
+ return (Val % Scale) == 0 && Val >= 0 && (Val / Scale) < 0x1000;
+ }
+
+ bool isImm0_7() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 0 && Val < 8);
+ }
+ bool isImm1_8() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val > 0 && Val < 9);
+ }
+ bool isImm0_15() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 0 && Val < 16);
+ }
+ bool isImm1_16() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val > 0 && Val < 17);
+ }
+ bool isImm0_31() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 0 && Val < 32);
+ }
+ bool isImm1_31() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 1 && Val < 32);
+ }
+ bool isImm1_32() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 1 && Val < 33);
+ }
+ bool isImm0_63() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 0 && Val < 64);
+ }
+ bool isImm1_63() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 1 && Val < 64);
+ }
+ bool isImm1_64() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 1 && Val < 65);
+ }
+ bool isImm0_127() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 0 && Val < 128);
+ }
+ bool isImm0_255() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 0 && Val < 256);
+ }
+ bool isImm0_65535() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 0 && Val < 65536);
+ }
+ bool isImm32_63() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 32 && Val < 64);
+ }
+ bool isLogicalImm32() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ if (Val >> 32 != 0 && Val >> 32 != ~0LL)
+ return false;
+ Val &= 0xFFFFFFFF;
+ return AArch64_AM::isLogicalImmediate(Val, 32);
+ }
+ bool isLogicalImm64() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ return AArch64_AM::isLogicalImmediate(MCE->getValue(), 64);
+ }
+ bool isLogicalImm32Not() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = ~MCE->getValue() & 0xFFFFFFFF;
+ return AArch64_AM::isLogicalImmediate(Val, 32);
+ }
+ bool isLogicalImm64Not() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ return AArch64_AM::isLogicalImmediate(~MCE->getValue(), 64);
+ }
+ bool isShiftedImm() const { return Kind == k_ShiftedImm; }
+ bool isAddSubImm() const {
+ if (!isShiftedImm() && !isImm())
+ return false;
+
+ const MCExpr *Expr;
+
+ // An ADD/SUB shifter is either 'lsl #0' or 'lsl #12'.
+ if (isShiftedImm()) {
+ unsigned Shift = ShiftedImm.ShiftAmount;
+ Expr = ShiftedImm.Val;
+ if (Shift != 0 && Shift != 12)
+ return false;
+ } else {
+ Expr = getImm();
+ }
+
+ AArch64MCExpr::VariantKind ELFRefKind;
+ MCSymbolRefExpr::VariantKind DarwinRefKind;
+ int64_t Addend;
+ if (AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind,
+ DarwinRefKind, Addend)) {
+ return DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF
+ || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF
+ || (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF && Addend == 0)
+ || ELFRefKind == AArch64MCExpr::VK_LO12
+ || ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12
+ || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12
+ || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC
+ || ELFRefKind == AArch64MCExpr::VK_TPREL_HI12
+ || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12
+ || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC
+ || ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12;
+ }
+
+ // Otherwise it should be a real immediate in range:
+ const MCConstantExpr *CE = cast<MCConstantExpr>(Expr);
+ return CE->getValue() >= 0 && CE->getValue() <= 0xfff;
+ }
+ bool isCondCode() const { return Kind == k_CondCode; }
+ bool isSIMDImmType10() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ return AArch64_AM::isAdvSIMDModImmType10(MCE->getValue());
+ }
+ bool isBranchTarget26() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return true;
+ int64_t Val = MCE->getValue();
+ if (Val & 0x3)
+ return false;
+ return (Val >= -(0x2000000 << 2) && Val <= (0x1ffffff << 2));
+ }
+ bool isPCRelLabel19() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return true;
+ int64_t Val = MCE->getValue();
+ if (Val & 0x3)
+ return false;
+ return (Val >= -(0x40000 << 2) && Val <= (0x3ffff << 2));
+ }
+ bool isBranchTarget14() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return true;
+ int64_t Val = MCE->getValue();
+ if (Val & 0x3)
+ return false;
+ return (Val >= -(0x2000 << 2) && Val <= (0x1fff << 2));
+ }
+
+ bool
+ isMovWSymbol(ArrayRef<AArch64MCExpr::VariantKind> AllowedModifiers) const {
+ if (!isImm())
+ return false;
+
+ AArch64MCExpr::VariantKind ELFRefKind;
+ MCSymbolRefExpr::VariantKind DarwinRefKind;
+ int64_t Addend;
+ if (!AArch64AsmParser::classifySymbolRef(getImm(), ELFRefKind,
+ DarwinRefKind, Addend)) {
+ return false;
+ }
+ if (DarwinRefKind != MCSymbolRefExpr::VK_None)
+ return false;
+
+ for (unsigned i = 0; i != AllowedModifiers.size(); ++i) {
+ if (ELFRefKind == AllowedModifiers[i])
+ return Addend == 0;
+ }
+
+ return false;
+ }
+
+ bool isMovZSymbolG3() const {
+ static AArch64MCExpr::VariantKind Variants[] = { AArch64MCExpr::VK_ABS_G3 };
+ return isMovWSymbol(Variants);
+ }
+
+ bool isMovZSymbolG2() const {
+ static AArch64MCExpr::VariantKind Variants[] = {
+ AArch64MCExpr::VK_ABS_G2, AArch64MCExpr::VK_ABS_G2_S,
+ AArch64MCExpr::VK_TPREL_G2, AArch64MCExpr::VK_DTPREL_G2};
+ return isMovWSymbol(Variants);
+ }
+
+ bool isMovZSymbolG1() const {
+ static AArch64MCExpr::VariantKind Variants[] = {
+ AArch64MCExpr::VK_ABS_G1, AArch64MCExpr::VK_ABS_G1_S,
+ AArch64MCExpr::VK_GOTTPREL_G1, AArch64MCExpr::VK_TPREL_G1,
+ AArch64MCExpr::VK_DTPREL_G1,
+ };
+ return isMovWSymbol(Variants);
+ }
+
+ bool isMovZSymbolG0() const {
+ static AArch64MCExpr::VariantKind Variants[] = {
+ AArch64MCExpr::VK_ABS_G0, AArch64MCExpr::VK_ABS_G0_S,
+ AArch64MCExpr::VK_TPREL_G0, AArch64MCExpr::VK_DTPREL_G0};
+ return isMovWSymbol(Variants);
+ }
+
+ bool isMovKSymbolG3() const {
+ static AArch64MCExpr::VariantKind Variants[] = { AArch64MCExpr::VK_ABS_G3 };
+ return isMovWSymbol(Variants);
+ }
+
+ bool isMovKSymbolG2() const {
+ static AArch64MCExpr::VariantKind Variants[] = {
+ AArch64MCExpr::VK_ABS_G2_NC};
+ return isMovWSymbol(Variants);
+ }
+
+ bool isMovKSymbolG1() const {
+ static AArch64MCExpr::VariantKind Variants[] = {
+ AArch64MCExpr::VK_ABS_G1_NC, AArch64MCExpr::VK_TPREL_G1_NC,
+ AArch64MCExpr::VK_DTPREL_G1_NC
+ };
+ return isMovWSymbol(Variants);
+ }
+
+ bool isMovKSymbolG0() const {
+ static AArch64MCExpr::VariantKind Variants[] = {
+ AArch64MCExpr::VK_ABS_G0_NC, AArch64MCExpr::VK_GOTTPREL_G0_NC,
+ AArch64MCExpr::VK_TPREL_G0_NC, AArch64MCExpr::VK_DTPREL_G0_NC
+ };
+ return isMovWSymbol(Variants);
+ }
+
+ template<int RegWidth, int Shift>
+ bool isMOVZMovAlias() const {
+ if (!isImm()) return false;
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ uint64_t Value = CE->getValue();
+
+ if (RegWidth == 32)
+ Value &= 0xffffffffULL;
+
+ // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
+ if (Value == 0 && Shift != 0)
+ return false;
+
+ return (Value & ~(0xffffULL << Shift)) == 0;
+ }
+
+ template<int RegWidth, int Shift>
+ bool isMOVNMovAlias() const {
+ if (!isImm()) return false;
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ uint64_t Value = CE->getValue();
+
+ // MOVZ takes precedence over MOVN.
+ for (int MOVZShift = 0; MOVZShift <= 48; MOVZShift += 16)
+ if ((Value & ~(0xffffULL << MOVZShift)) == 0)
+ return false;
+
+ Value = ~Value;
+ if (RegWidth == 32)
+ Value &= 0xffffffffULL;
+
+ return (Value & ~(0xffffULL << Shift)) == 0;
+ }
+
+ bool isFPImm() const { return Kind == k_FPImm; }
+ bool isBarrier() const { return Kind == k_Barrier; }
+ bool isSysReg() const { return Kind == k_SysReg; }
+ bool isMRSSystemRegister() const {
+ if (!isSysReg()) return false;
+
+ bool IsKnownRegister;
+ auto Mapper = AArch64SysReg::MRSMapper(getSysRegFeatureBits());
+ Mapper.fromString(getSysReg(), IsKnownRegister);
+
+ return IsKnownRegister;
+ }
+ bool isMSRSystemRegister() const {
+ if (!isSysReg()) return false;
+
+ bool IsKnownRegister;
+ auto Mapper = AArch64SysReg::MSRMapper(getSysRegFeatureBits());
+ Mapper.fromString(getSysReg(), IsKnownRegister);
+
+ return IsKnownRegister;
+ }
+ bool isSystemPStateField() const {
+ if (!isSysReg()) return false;
+
+ bool IsKnownRegister;
+ AArch64PState::PStateMapper().fromString(getSysReg(), IsKnownRegister);
+
+ return IsKnownRegister;
+ }
+ bool isReg() const override { return Kind == k_Register && !Reg.isVector; }
+ bool isVectorReg() const { return Kind == k_Register && Reg.isVector; }
+ bool isVectorRegLo() const {
+ return Kind == k_Register && Reg.isVector &&
+ AArch64MCRegisterClasses[AArch64::FPR128_loRegClassID].contains(
+ Reg.RegNum);
+ }
+ bool isGPR32as64() const {
+ return Kind == k_Register && !Reg.isVector &&
+ AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(Reg.RegNum);
+ }
+
+ bool isGPR64sp0() const {
+ return Kind == k_Register && !Reg.isVector &&
+ AArch64MCRegisterClasses[AArch64::GPR64spRegClassID].contains(Reg.RegNum);
+ }
+
+ /// Is this a vector list with the type implicit (presumably attached to the
+ /// instruction itself)?
+ template <unsigned NumRegs> bool isImplicitlyTypedVectorList() const {
+ return Kind == k_VectorList && VectorList.Count == NumRegs &&
+ !VectorList.ElementKind;
+ }
+
+ template <unsigned NumRegs, unsigned NumElements, char ElementKind>
+ bool isTypedVectorList() const {
+ if (Kind != k_VectorList)
+ return false;
+ if (VectorList.Count != NumRegs)
+ return false;
+ if (VectorList.ElementKind != ElementKind)
+ return false;
+ return VectorList.NumElements == NumElements;
+ }
+
+ bool isVectorIndex1() const {
+ return Kind == k_VectorIndex && VectorIndex.Val == 1;
+ }
+ bool isVectorIndexB() const {
+ return Kind == k_VectorIndex && VectorIndex.Val < 16;
+ }
+ bool isVectorIndexH() const {
+ return Kind == k_VectorIndex && VectorIndex.Val < 8;
+ }
+ bool isVectorIndexS() const {
+ return Kind == k_VectorIndex && VectorIndex.Val < 4;
+ }
+ bool isVectorIndexD() const {
+ return Kind == k_VectorIndex && VectorIndex.Val < 2;
+ }
+ bool isToken() const override { return Kind == k_Token; }
+ bool isTokenEqual(StringRef Str) const {
+ return Kind == k_Token && getToken() == Str;
+ }
+ bool isSysCR() const { return Kind == k_SysCR; }
+ bool isPrefetch() const { return Kind == k_Prefetch; }
+ bool isShiftExtend() const { return Kind == k_ShiftExtend; }
+ bool isShifter() const {
+ if (!isShiftExtend())
+ return false;
+
+ AArch64_AM::ShiftExtendType ST = getShiftExtendType();
+ return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
+ ST == AArch64_AM::ASR || ST == AArch64_AM::ROR ||
+ ST == AArch64_AM::MSL);
+ }
+ bool isExtend() const {
+ if (!isShiftExtend())
+ return false;
+
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ return (ET == AArch64_AM::UXTB || ET == AArch64_AM::SXTB ||
+ ET == AArch64_AM::UXTH || ET == AArch64_AM::SXTH ||
+ ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW ||
+ ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX ||
+ ET == AArch64_AM::LSL) &&
+ getShiftExtendAmount() <= 4;
+ }
+
+ bool isExtend64() const {
+ if (!isExtend())
+ return false;
+ // UXTX and SXTX require a 64-bit source register (the ExtendLSL64 class).
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ return ET != AArch64_AM::UXTX && ET != AArch64_AM::SXTX;
+ }
+ bool isExtendLSL64() const {
+ if (!isExtend())
+ return false;
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ return (ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX ||
+ ET == AArch64_AM::LSL) &&
+ getShiftExtendAmount() <= 4;
+ }
+
+ template<int Width> bool isMemXExtend() const {
+ if (!isExtend())
+ return false;
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ return (ET == AArch64_AM::LSL || ET == AArch64_AM::SXTX) &&
+ (getShiftExtendAmount() == Log2_32(Width / 8) ||
+ getShiftExtendAmount() == 0);
+ }
+
+ template<int Width> bool isMemWExtend() const {
+ if (!isExtend())
+ return false;
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ return (ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW) &&
+ (getShiftExtendAmount() == Log2_32(Width / 8) ||
+ getShiftExtendAmount() == 0);
+ }
+
+ template <unsigned width>
+ bool isArithmeticShifter() const {
+ if (!isShifter())
+ return false;
+
+ // An arithmetic shifter is LSL, LSR, or ASR.
+ AArch64_AM::ShiftExtendType ST = getShiftExtendType();
+ return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
+ ST == AArch64_AM::ASR) && getShiftExtendAmount() < width;
+ }
+
+ template <unsigned width>
+ bool isLogicalShifter() const {
+ if (!isShifter())
+ return false;
+
+ // A logical shifter is LSL, LSR, ASR or ROR.
+ AArch64_AM::ShiftExtendType ST = getShiftExtendType();
+ return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
+ ST == AArch64_AM::ASR || ST == AArch64_AM::ROR) &&
+ getShiftExtendAmount() < width;
+ }
+
+ bool isMovImm32Shifter() const {
+ if (!isShifter())
+ return false;
+
+ // A MOVi shifter is LSL of 0, 16, 32, or 48.
+ AArch64_AM::ShiftExtendType ST = getShiftExtendType();
+ if (ST != AArch64_AM::LSL)
+ return false;
+ uint64_t Val = getShiftExtendAmount();
+ return (Val == 0 || Val == 16);
+ }
+
+ bool isMovImm64Shifter() const {
+ if (!isShifter())
+ return false;
+
+ // A MOVi shifter is LSL of 0 or 16.
+ AArch64_AM::ShiftExtendType ST = getShiftExtendType();
+ if (ST != AArch64_AM::LSL)
+ return false;
+ uint64_t Val = getShiftExtendAmount();
+ return (Val == 0 || Val == 16 || Val == 32 || Val == 48);
+ }
+
+ bool isLogicalVecShifter() const {
+ if (!isShifter())
+ return false;
+
+ // A logical vector shifter is a left shift by 0, 8, 16, or 24.
+ unsigned Shift = getShiftExtendAmount();
+ return getShiftExtendType() == AArch64_AM::LSL &&
+ (Shift == 0 || Shift == 8 || Shift == 16 || Shift == 24);
+ }
+
+ bool isLogicalVecHalfWordShifter() const {
+ if (!isLogicalVecShifter())
+ return false;
+
+ // A logical vector shifter is a left shift by 0 or 8.
+ unsigned Shift = getShiftExtendAmount();
+ return getShiftExtendType() == AArch64_AM::LSL &&
+ (Shift == 0 || Shift == 8);
+ }
+
+ bool isMoveVecShifter() const {
+ if (!isShiftExtend())
+ return false;
+
+ // A logical vector shifter is a left shift by 8 or 16.
+ unsigned Shift = getShiftExtendAmount();
+ return getShiftExtendType() == AArch64_AM::MSL &&
+ (Shift == 8 || Shift == 16);
+ }
+
+ // Fallback unscaled operands are for aliases of LDR/STR that fall back
+ // to LDUR/STUR when the offset is not legal for the former but is for
+ // the latter. As such, in addition to checking for being a legal unscaled
+ // address, also check that it is not a legal scaled address. This avoids
+ // ambiguity in the matcher.
+ template<int Width>
+ bool isSImm9OffsetFB() const {
+ return isSImm9() && !isUImm12Offset<Width / 8>();
+ }
+
+ bool isAdrpLabel() const {
+ // Validation was handled during parsing, so we just sanity check that
+ // something didn't go haywire.
+ if (!isImm())
+ return false;
+
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
+ int64_t Val = CE->getValue();
+ int64_t Min = - (4096 * (1LL << (21 - 1)));
+ int64_t Max = 4096 * ((1LL << (21 - 1)) - 1);
+ return (Val % 4096) == 0 && Val >= Min && Val <= Max;
+ }
+
+ return true;
+ }
+
+ bool isAdrLabel() const {
+ // Validation was handled during parsing, so we just sanity check that
+ // something didn't go haywire.
+ if (!isImm())
+ return false;
+
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
+ int64_t Val = CE->getValue();
+ int64_t Min = - (1LL << (21 - 1));
+ int64_t Max = ((1LL << (21 - 1)) - 1);
+ return Val >= Min && Val <= Max;
+ }
+
+ return true;
+ }
+
+ void addExpr(MCInst &Inst, const MCExpr *Expr) const {
+ // Add as immediates when possible. Null MCExpr = 0.
+ if (!Expr)
+ Inst.addOperand(MCOperand::CreateImm(0));
+ else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(Expr));
+ }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+
+ void addGPR32as64Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ assert(
+ AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(getReg()));
+
+ const MCRegisterInfo *RI = Ctx.getRegisterInfo();
+ uint32_t Reg = RI->getRegClass(AArch64::GPR32RegClassID).getRegister(
+ RI->getEncodingValue(getReg()));
+
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ }
+
+ void addVectorReg64Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ assert(
+ AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg()));
+ Inst.addOperand(MCOperand::CreateReg(AArch64::D0 + getReg() - AArch64::Q0));
+ }
+
+ void addVectorReg128Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ assert(
+ AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg()));
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+
+ void addVectorRegLoOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+
+ template <unsigned NumRegs>
+ void addVectorList64Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ static unsigned FirstRegs[] = { AArch64::D0, AArch64::D0_D1,
+ AArch64::D0_D1_D2, AArch64::D0_D1_D2_D3 };
+ unsigned FirstReg = FirstRegs[NumRegs - 1];
+
+ Inst.addOperand(
+ MCOperand::CreateReg(FirstReg + getVectorListStart() - AArch64::Q0));
+ }
+
+ template <unsigned NumRegs>
+ void addVectorList128Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ static unsigned FirstRegs[] = { AArch64::Q0, AArch64::Q0_Q1,
+ AArch64::Q0_Q1_Q2, AArch64::Q0_Q1_Q2_Q3 };
+ unsigned FirstReg = FirstRegs[NumRegs - 1];
+
+ Inst.addOperand(
+ MCOperand::CreateReg(FirstReg + getVectorListStart() - AArch64::Q0));
+ }
+
+ void addVectorIndex1Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
+ }
+
+ void addVectorIndexBOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
+ }
+
+ void addVectorIndexHOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
+ }
+
+ void addVectorIndexSOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
+ }
+
+ void addVectorIndexDOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
+ }
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // If this is a pageoff symrefexpr with an addend, adjust the addend
+ // to be only the page-offset portion. Otherwise, just add the expr
+ // as-is.
+ addExpr(Inst, getImm());
+ }
+
+ void addAddSubImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ if (isShiftedImm()) {
+ addExpr(Inst, getShiftedImmVal());
+ Inst.addOperand(MCOperand::CreateImm(getShiftedImmShift()));
+ } else {
+ addExpr(Inst, getImm());
+ Inst.addOperand(MCOperand::CreateImm(0));
+ }
+ }
+
+ void addCondCodeOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getCondCode()));
+ }
+
+ void addAdrpLabelOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ addExpr(Inst, getImm());
+ else
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 12));
+ }
+
+ void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+
+ template<int Scale>
+ void addUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+
+ if (!MCE) {
+ Inst.addOperand(MCOperand::CreateExpr(getImm()));
+ return;
+ }
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / Scale));
+ }
+
+ void addSImm9Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addSImm7s4Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 4));
+ }
+
+ void addSImm7s8Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 8));
+ }
+
+ void addSImm7s16Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 16));
+ }
+
+ void addImm0_7Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm1_8Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm0_15Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm1_16Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ assert(MCE && "Invalid constant immediate operand!");
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm0_31Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm1_31Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm1_32Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm0_63Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm1_63Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm1_64Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm0_127Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm0_255Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm0_65535Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addImm32_63Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
+ }
+
+ void addLogicalImm32Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ uint64_t encoding =
+ AArch64_AM::encodeLogicalImmediate(MCE->getValue() & 0xFFFFFFFF, 32);
+ Inst.addOperand(MCOperand::CreateImm(encoding));
+ }
+
+ void addLogicalImm64Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ uint64_t encoding = AArch64_AM::encodeLogicalImmediate(MCE->getValue(), 64);
+ Inst.addOperand(MCOperand::CreateImm(encoding));
+ }
+
+ void addLogicalImm32NotOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ int64_t Val = ~MCE->getValue() & 0xFFFFFFFF;
+ uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, 32);
+ Inst.addOperand(MCOperand::CreateImm(encoding));
+ }
+
+ void addLogicalImm64NotOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ uint64_t encoding =
+ AArch64_AM::encodeLogicalImmediate(~MCE->getValue(), 64);
+ Inst.addOperand(MCOperand::CreateImm(encoding));
+ }
+
+ void addSIMDImmType10Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ uint64_t encoding = AArch64_AM::encodeAdvSIMDModImmType10(MCE->getValue());
+ Inst.addOperand(MCOperand::CreateImm(encoding));
+ }
+
+ void addBranchTarget26Operands(MCInst &Inst, unsigned N) const {
+ // Branch operands don't encode the low bits, so shift them off
+ // here. If it's a label, however, just put it on directly as there's
+ // not enough information now to do anything.
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE) {
+ addExpr(Inst, getImm());
+ return;
+ }
+ assert(MCE && "Invalid constant immediate operand!");
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2));
+ }
+
+ void addPCRelLabel19Operands(MCInst &Inst, unsigned N) const {
+ // Branch operands don't encode the low bits, so shift them off
+ // here. If it's a label, however, just put it on directly as there's
+ // not enough information now to do anything.
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE) {
+ addExpr(Inst, getImm());
+ return;
+ }
+ assert(MCE && "Invalid constant immediate operand!");
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2));
+ }
+
+ void addBranchTarget14Operands(MCInst &Inst, unsigned N) const {
+ // Branch operands don't encode the low bits, so shift them off
+ // here. If it's a label, however, just put it on directly as there's
+ // not enough information now to do anything.
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE) {
+ addExpr(Inst, getImm());
+ return;
+ }
+ assert(MCE && "Invalid constant immediate operand!");
+ Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2));
+ }
+
+ void addFPImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getFPImm()));
+ }
+
+ void addBarrierOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getBarrier()));
+ }
+
+ void addMRSSystemRegisterOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ bool Valid;
+ auto Mapper = AArch64SysReg::MRSMapper(getSysRegFeatureBits());
+ uint32_t Bits = Mapper.fromString(getSysReg(), Valid);
+
+ Inst.addOperand(MCOperand::CreateImm(Bits));
+ }
+
+ void addMSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ bool Valid;
+ auto Mapper = AArch64SysReg::MSRMapper(getSysRegFeatureBits());
+ uint32_t Bits = Mapper.fromString(getSysReg(), Valid);
+
+ Inst.addOperand(MCOperand::CreateImm(Bits));
+ }
+
+ void addSystemPStateFieldOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ bool Valid;
+ uint32_t Bits =
+ AArch64PState::PStateMapper().fromString(getSysReg(), Valid);
+
+ Inst.addOperand(MCOperand::CreateImm(Bits));
+ }
+
+ void addSysCROperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getSysCR()));
+ }
+
+ void addPrefetchOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getPrefetch()));
+ }
+
+ void addShifterOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ unsigned Imm =
+ AArch64_AM::getShifterImm(getShiftExtendType(), getShiftExtendAmount());
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addExtendOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTW;
+ unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount());
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addExtend64Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTX;
+ unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount());
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addMemExtendOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX;
+ Inst.addOperand(MCOperand::CreateImm(IsSigned));
+ Inst.addOperand(MCOperand::CreateImm(getShiftExtendAmount() != 0));
+ }
+
+ // For 8-bit load/store instructions with a register offset, both the
+ // "DoShift" and "NoShift" variants have a shift of 0. Because of this,
+ // they're disambiguated by whether the shift was explicit or implicit rather
+ // than its size.
+ void addMemExtend8Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX;
+ Inst.addOperand(MCOperand::CreateImm(IsSigned));
+ Inst.addOperand(MCOperand::CreateImm(hasShiftExtendAmount()));
+ }
+
+ template<int Shift>
+ void addMOVZMovAliasOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
+ uint64_t Value = CE->getValue();
+ Inst.addOperand(MCOperand::CreateImm((Value >> Shift) & 0xffff));
+ }
+
+ template<int Shift>
+ void addMOVNMovAliasOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
+ uint64_t Value = CE->getValue();
+ Inst.addOperand(MCOperand::CreateImm((~Value >> Shift) & 0xffff));
+ }
+
+ void print(raw_ostream &OS) const override;
+
+ static std::unique_ptr<AArch64Operand>
+ CreateToken(StringRef Str, bool IsSuffix, SMLoc S, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_Token, Ctx);
+ Op->Tok.Data = Str.data();
+ Op->Tok.Length = Str.size();
+ Op->Tok.IsSuffix = IsSuffix;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateReg(unsigned RegNum, bool isVector, SMLoc S, SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_Register, Ctx);
+ Op->Reg.RegNum = RegNum;
+ Op->Reg.isVector = isVector;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateVectorList(unsigned RegNum, unsigned Count, unsigned NumElements,
+ char ElementKind, SMLoc S, SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_VectorList, Ctx);
+ Op->VectorList.RegNum = RegNum;
+ Op->VectorList.Count = Count;
+ Op->VectorList.NumElements = NumElements;
+ Op->VectorList.ElementKind = ElementKind;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_VectorIndex, Ctx);
+ Op->VectorIndex.Val = Idx;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreateImm(const MCExpr *Val, SMLoc S,
+ SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_Immediate, Ctx);
+ Op->Imm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreateShiftedImm(const MCExpr *Val,
+ unsigned ShiftAmount,
+ SMLoc S, SMLoc E,
+ MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_ShiftedImm, Ctx);
+ Op->ShiftedImm .Val = Val;
+ Op->ShiftedImm.ShiftAmount = ShiftAmount;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateCondCode(AArch64CC::CondCode Code, SMLoc S, SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_CondCode, Ctx);
+ Op->CondCode.Code = Code;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreateFPImm(unsigned Val, SMLoc S,
+ MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_FPImm, Ctx);
+ Op->FPImm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreateBarrier(unsigned Val, SMLoc S,
+ MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_Barrier, Ctx);
+ Op->Barrier.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateSysReg(StringRef Str, SMLoc S, uint64_t FeatureBits, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_SysReg, Ctx);
+ Op->SysReg.Data = Str.data();
+ Op->SysReg.Length = Str.size();
+ Op->SysReg.FeatureBits = FeatureBits;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreateSysCR(unsigned Val, SMLoc S,
+ SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_SysCR, Ctx);
+ Op->SysCRImm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreatePrefetch(unsigned Val, SMLoc S,
+ MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_Prefetch, Ctx);
+ Op->Prefetch.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateShiftExtend(AArch64_AM::ShiftExtendType ShOp, unsigned Val,
+ bool HasExplicitAmount, SMLoc S, SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_ShiftExtend, Ctx);
+ Op->ShiftExtend.Type = ShOp;
+ Op->ShiftExtend.Amount = Val;
+ Op->ShiftExtend.HasExplicitAmount = HasExplicitAmount;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+};
+
+} // end anonymous namespace.
+
+void AArch64Operand::print(raw_ostream &OS) const {
+ switch (Kind) {
+ case k_FPImm:
+ OS << "<fpimm " << getFPImm() << "("
+ << AArch64_AM::getFPImmFloat(getFPImm()) << ") >";
+ break;
+ case k_Barrier: {
+ bool Valid;
+ StringRef Name = AArch64DB::DBarrierMapper().toString(getBarrier(), Valid);
+ if (Valid)
+ OS << "<barrier " << Name << ">";
+ else
+ OS << "<barrier invalid #" << getBarrier() << ">";
+ break;
+ }
+ case k_Immediate:
+ getImm()->print(OS);
+ break;
+ case k_ShiftedImm: {
+ unsigned Shift = getShiftedImmShift();
+ OS << "<shiftedimm ";
+ getShiftedImmVal()->print(OS);
+ OS << ", lsl #" << AArch64_AM::getShiftValue(Shift) << ">";
+ break;
+ }
+ case k_CondCode:
+ OS << "<condcode " << getCondCode() << ">";
+ break;
+ case k_Register:
+ OS << "<register " << getReg() << ">";
+ break;
+ case k_VectorList: {
+ OS << "<vectorlist ";
+ unsigned Reg = getVectorListStart();
+ for (unsigned i = 0, e = getVectorListCount(); i != e; ++i)
+ OS << Reg + i << " ";
+ OS << ">";
+ break;
+ }
+ case k_VectorIndex:
+ OS << "<vectorindex " << getVectorIndex() << ">";
+ break;
+ case k_SysReg:
+ OS << "<sysreg: " << getSysReg() << '>';
+ break;
+ case k_Token:
+ OS << "'" << getToken() << "'";
+ break;
+ case k_SysCR:
+ OS << "c" << getSysCR();
+ break;
+ case k_Prefetch: {
+ bool Valid;
+ StringRef Name = AArch64PRFM::PRFMMapper().toString(getPrefetch(), Valid);
+ if (Valid)
+ OS << "<prfop " << Name << ">";
+ else
+ OS << "<prfop invalid #" << getPrefetch() << ">";
+ break;
+ }
+ case k_ShiftExtend: {
+ OS << "<" << AArch64_AM::getShiftExtendName(getShiftExtendType()) << " #"
+ << getShiftExtendAmount();
+ if (!hasShiftExtendAmount())
+ OS << "<imp>";
+ OS << '>';
+ break;
+ }
+ }
+}
+
+/// @name Auto-generated Match Functions
+/// {
+
+static unsigned MatchRegisterName(StringRef Name);
+
+/// }
+
+static unsigned matchVectorRegName(StringRef Name) {
+ return StringSwitch<unsigned>(Name)
+ .Case("v0", AArch64::Q0)
+ .Case("v1", AArch64::Q1)
+ .Case("v2", AArch64::Q2)
+ .Case("v3", AArch64::Q3)
+ .Case("v4", AArch64::Q4)
+ .Case("v5", AArch64::Q5)
+ .Case("v6", AArch64::Q6)
+ .Case("v7", AArch64::Q7)
+ .Case("v8", AArch64::Q8)
+ .Case("v9", AArch64::Q9)
+ .Case("v10", AArch64::Q10)
+ .Case("v11", AArch64::Q11)
+ .Case("v12", AArch64::Q12)
+ .Case("v13", AArch64::Q13)
+ .Case("v14", AArch64::Q14)
+ .Case("v15", AArch64::Q15)
+ .Case("v16", AArch64::Q16)
+ .Case("v17", AArch64::Q17)
+ .Case("v18", AArch64::Q18)
+ .Case("v19", AArch64::Q19)
+ .Case("v20", AArch64::Q20)
+ .Case("v21", AArch64::Q21)
+ .Case("v22", AArch64::Q22)
+ .Case("v23", AArch64::Q23)
+ .Case("v24", AArch64::Q24)
+ .Case("v25", AArch64::Q25)
+ .Case("v26", AArch64::Q26)
+ .Case("v27", AArch64::Q27)
+ .Case("v28", AArch64::Q28)
+ .Case("v29", AArch64::Q29)
+ .Case("v30", AArch64::Q30)
+ .Case("v31", AArch64::Q31)
+ .Default(0);
+}
+
+static bool isValidVectorKind(StringRef Name) {
+ return StringSwitch<bool>(Name.lower())
+ .Case(".8b", true)
+ .Case(".16b", true)
+ .Case(".4h", true)
+ .Case(".8h", true)
+ .Case(".2s", true)
+ .Case(".4s", true)
+ .Case(".1d", true)
+ .Case(".2d", true)
+ .Case(".1q", true)
+ // Accept the width neutral ones, too, for verbose syntax. If those
+ // aren't used in the right places, the token operand won't match so
+ // all will work out.
+ .Case(".b", true)
+ .Case(".h", true)
+ .Case(".s", true)
+ .Case(".d", true)
+ .Default(false);
+}
+
+static void parseValidVectorKind(StringRef Name, unsigned &NumElements,
+ char &ElementKind) {
+ assert(isValidVectorKind(Name));
+
+ ElementKind = Name.lower()[Name.size() - 1];
+ NumElements = 0;
+
+ if (Name.size() == 2)
+ return;
+
+ // Parse the lane count
+ Name = Name.drop_front();
+ while (isdigit(Name.front())) {
+ NumElements = 10 * NumElements + (Name.front() - '0');
+ Name = Name.drop_front();
+ }
+}
+
+bool AArch64AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
+ SMLoc &EndLoc) {
+ StartLoc = getLoc();
+ RegNo = tryParseRegister();
+ EndLoc = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ return (RegNo == (unsigned)-1);
+}
+
+// Matches a register name or register alias previously defined by '.req'
+unsigned AArch64AsmParser::matchRegisterNameAlias(StringRef Name,
+ bool isVector) {
+ unsigned RegNum = isVector ? matchVectorRegName(Name)
+ : MatchRegisterName(Name);
+
+ if (RegNum == 0) {
+ // Check for aliases registered via .req. Canonicalize to lower case.
+ // That's more consistent since register names are case insensitive, and
+ // it's how the original entry was passed in from MC/MCParser/AsmParser.
+ auto Entry = RegisterReqs.find(Name.lower());
+ if (Entry == RegisterReqs.end())
+ return 0;
+ // set RegNum if the match is the right kind of register
+ if (isVector == Entry->getValue().first)
+ RegNum = Entry->getValue().second;
+ }
+ return RegNum;
+}
+
+/// tryParseRegister - Try to parse a register name. The token must be an
+/// Identifier when called, and if it is a register name the token is eaten and
+/// the register is added to the operand list.
+int AArch64AsmParser::tryParseRegister() {
+ const AsmToken &Tok = Parser.getTok();
+ assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
+
+ std::string lowerCase = Tok.getString().lower();
+ unsigned RegNum = matchRegisterNameAlias(lowerCase, false);
+ // Also handle a few aliases of registers.
+ if (RegNum == 0)
+ RegNum = StringSwitch<unsigned>(lowerCase)
+ .Case("fp", AArch64::FP)
+ .Case("lr", AArch64::LR)
+ .Case("x31", AArch64::XZR)
+ .Case("w31", AArch64::WZR)
+ .Default(0);
+
+ if (RegNum == 0)
+ return -1;
+
+ Parser.Lex(); // Eat identifier token.
+ return RegNum;
+}
+
+/// tryMatchVectorRegister - Try to parse a vector register name with optional
+/// kind specifier. If it is a register specifier, eat the token and return it.
+int AArch64AsmParser::tryMatchVectorRegister(StringRef &Kind, bool expected) {
+ if (Parser.getTok().isNot(AsmToken::Identifier)) {
+ TokError("vector register expected");
+ return -1;
+ }
+
+ StringRef Name = Parser.getTok().getString();
+ // If there is a kind specifier, it's separated from the register name by
+ // a '.'.
+ size_t Start = 0, Next = Name.find('.');
+ StringRef Head = Name.slice(Start, Next);
+ unsigned RegNum = matchRegisterNameAlias(Head, true);
+
+ if (RegNum) {
+ if (Next != StringRef::npos) {
+ Kind = Name.slice(Next, StringRef::npos);
+ if (!isValidVectorKind(Kind)) {
+ TokError("invalid vector kind qualifier");
+ return -1;
+ }
+ }
+ Parser.Lex(); // Eat the register token.
+ return RegNum;
+ }
+
+ if (expected)
+ TokError("vector register expected");
+ return -1;
+}
+
+/// tryParseSysCROperand - Try to parse a system instruction CR operand name.
+AArch64AsmParser::OperandMatchResultTy
+AArch64AsmParser::tryParseSysCROperand(OperandVector &Operands) {
+ SMLoc S = getLoc();
+
+ if (Parser.getTok().isNot(AsmToken::Identifier)) {
+ Error(S, "Expected cN operand where 0 <= N <= 15");
+ return MatchOperand_ParseFail;
+ }
+
+ StringRef Tok = Parser.getTok().getIdentifier();
+ if (Tok[0] != 'c' && Tok[0] != 'C') {
+ Error(S, "Expected cN operand where 0 <= N <= 15");
+ return MatchOperand_ParseFail;
+ }
+
+ uint32_t CRNum;
+ bool BadNum = Tok.drop_front().getAsInteger(10, CRNum);
+ if (BadNum || CRNum > 15) {
+ Error(S, "Expected cN operand where 0 <= N <= 15");
+ return MatchOperand_ParseFail;
+ }
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(
+ AArch64Operand::CreateSysCR(CRNum, S, getLoc(), getContext()));
+ return MatchOperand_Success;
+}
+
+/// tryParsePrefetch - Try to parse a prefetch operand.
+AArch64AsmParser::OperandMatchResultTy
+AArch64AsmParser::tryParsePrefetch(OperandVector &Operands) {
+ SMLoc S = getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ // Either an identifier for named values or a 5-bit immediate.
+ bool Hash = Tok.is(AsmToken::Hash);
+ if (Hash || Tok.is(AsmToken::Integer)) {
+ if (Hash)
+ Parser.Lex(); // Eat hash token.
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal))
+ return MatchOperand_ParseFail;
+
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE) {
+ TokError("immediate value expected for prefetch operand");
+ return MatchOperand_ParseFail;
+ }
+ unsigned prfop = MCE->getValue();
+ if (prfop > 31) {
+ TokError("prefetch operand out of range, [0,31] expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(AArch64Operand::CreatePrefetch(prfop, S, getContext()));
+ return MatchOperand_Success;
+ }
+
+ if (Tok.isNot(AsmToken::Identifier)) {
+ TokError("pre-fetch hint expected");
+ return MatchOperand_ParseFail;
+ }
+
+ bool Valid;
+ unsigned prfop = AArch64PRFM::PRFMMapper().fromString(Tok.getString(), Valid);
+ if (!Valid) {
+ TokError("pre-fetch hint expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(AArch64Operand::CreatePrefetch(prfop, S, getContext()));
+ return MatchOperand_Success;
+}
+
+/// tryParseAdrpLabel - Parse and validate a source label for the ADRP
+/// instruction.
+AArch64AsmParser::OperandMatchResultTy
+AArch64AsmParser::tryParseAdrpLabel(OperandVector &Operands) {
+ SMLoc S = getLoc();
+ const MCExpr *Expr;
+
+ if (Parser.getTok().is(AsmToken::Hash)) {
+ Parser.Lex(); // Eat hash token.
+ }
+
+ if (parseSymbolicImmVal(Expr))
+ return MatchOperand_ParseFail;
+
+ AArch64MCExpr::VariantKind ELFRefKind;
+ MCSymbolRefExpr::VariantKind DarwinRefKind;
+ int64_t Addend;
+ if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
+ if (DarwinRefKind == MCSymbolRefExpr::VK_None &&
+ ELFRefKind == AArch64MCExpr::VK_INVALID) {
+ // No modifier was specified at all; this is the syntax for an ELF basic
+ // ADRP relocation (unfortunately).
+ Expr =
+ AArch64MCExpr::Create(Expr, AArch64MCExpr::VK_ABS_PAGE, getContext());
+ } else if ((DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGE ||
+ DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGE) &&
+ Addend != 0) {
+ Error(S, "gotpage label reference not allowed an addend");
+ return MatchOperand_ParseFail;
+ } else if (DarwinRefKind != MCSymbolRefExpr::VK_PAGE &&
+ DarwinRefKind != MCSymbolRefExpr::VK_GOTPAGE &&
+ DarwinRefKind != MCSymbolRefExpr::VK_TLVPPAGE &&
+ ELFRefKind != AArch64MCExpr::VK_GOT_PAGE &&
+ ELFRefKind != AArch64MCExpr::VK_GOTTPREL_PAGE &&
+ ELFRefKind != AArch64MCExpr::VK_TLSDESC_PAGE) {
+ // The operand must be an @page or @gotpage qualified symbolref.
+ Error(S, "page or gotpage label reference expected");
+ return MatchOperand_ParseFail;
+ }
+ }
+
+ // We have either a label reference possibly with addend or an immediate. The
+ // addend is a raw value here. The linker will adjust it to only reference the
+ // page.
+ SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
+
+ return MatchOperand_Success;
+}
+
+/// tryParseAdrLabel - Parse and validate a source label for the ADR
+/// instruction.
+AArch64AsmParser::OperandMatchResultTy
+AArch64AsmParser::tryParseAdrLabel(OperandVector &Operands) {
+ SMLoc S = getLoc();
+ const MCExpr *Expr;
+
+ if (Parser.getTok().is(AsmToken::Hash)) {
+ Parser.Lex(); // Eat hash token.
+ }
+
+ if (getParser().parseExpression(Expr))
+ return MatchOperand_ParseFail;
+
+ SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
+
+ return MatchOperand_Success;
+}
+
+/// tryParseFPImm - A floating point immediate expression operand.
+AArch64AsmParser::OperandMatchResultTy
+AArch64AsmParser::tryParseFPImm(OperandVector &Operands) {
+ SMLoc S = getLoc();
+
+ bool Hash = false;
+ if (Parser.getTok().is(AsmToken::Hash)) {
+ Parser.Lex(); // Eat '#'
+ Hash = true;
+ }
+
+ // Handle negation, as that still comes through as a separate token.
+ bool isNegative = false;
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ isNegative = true;
+ Parser.Lex();
+ }
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.is(AsmToken::Real)) {
+ APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
+ uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
+ // If we had a '-' in front, toggle the sign bit.
+ IntVal ^= (uint64_t)isNegative << 63;
+ int Val = AArch64_AM::getFP64Imm(APInt(64, IntVal));
+ Parser.Lex(); // Eat the token.
+ // Check for out of range values. As an exception, we let Zero through,
+ // as we handle that special case in post-processing before matching in
+ // order to use the zero register for it.
+ if (Val == -1 && !RealVal.isZero()) {
+ TokError("expected compatible register or floating-point constant");
+ return MatchOperand_ParseFail;
+ }
+ Operands.push_back(AArch64Operand::CreateFPImm(Val, S, getContext()));
+ return MatchOperand_Success;
+ }
+ if (Tok.is(AsmToken::Integer)) {
+ int64_t Val;
+ if (!isNegative && Tok.getString().startswith("0x")) {
+ Val = Tok.getIntVal();
+ if (Val > 255 || Val < 0) {
+ TokError("encoded floating point value out of range");
+ return MatchOperand_ParseFail;
+ }
+ } else {
+ APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
+ uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
+ // If we had a '-' in front, toggle the sign bit.
+ IntVal ^= (uint64_t)isNegative << 63;
+ Val = AArch64_AM::getFP64Imm(APInt(64, IntVal));
+ }
+ Parser.Lex(); // Eat the token.
+ Operands.push_back(AArch64Operand::CreateFPImm(Val, S, getContext()));
+ return MatchOperand_Success;
+ }
+
+ if (!Hash)
+ return MatchOperand_NoMatch;
+
+ TokError("invalid floating point immediate");
+ return MatchOperand_ParseFail;
+}
+
+/// tryParseAddSubImm - Parse ADD/SUB shifted immediate operand
+AArch64AsmParser::OperandMatchResultTy
+AArch64AsmParser::tryParseAddSubImm(OperandVector &Operands) {
+ SMLoc S = getLoc();
+
+ if (Parser.getTok().is(AsmToken::Hash))
+ Parser.Lex(); // Eat '#'
+ else if (Parser.getTok().isNot(AsmToken::Integer))
+ // Operand should start from # or should be integer, emit error otherwise.
+ return MatchOperand_NoMatch;
+
+ const MCExpr *Imm;
+ if (parseSymbolicImmVal(Imm))
+ return MatchOperand_ParseFail;
+ else if (Parser.getTok().isNot(AsmToken::Comma)) {
+ uint64_t ShiftAmount = 0;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Imm);
+ if (MCE) {
+ int64_t Val = MCE->getValue();
+ if (Val > 0xfff && (Val & 0xfff) == 0) {
+ Imm = MCConstantExpr::Create(Val >> 12, getContext());
+ ShiftAmount = 12;
+ }
+ }
+ SMLoc E = Parser.getTok().getLoc();
+ Operands.push_back(AArch64Operand::CreateShiftedImm(Imm, ShiftAmount, S, E,
+ getContext()));
+ return MatchOperand_Success;
+ }
+
+ // Eat ','
+ Parser.Lex();
+
+ // The optional operand must be "lsl #N" where N is non-negative.
+ if (!Parser.getTok().is(AsmToken::Identifier) ||
+ !Parser.getTok().getIdentifier().equals_lower("lsl")) {
+ Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ // Eat 'lsl'
+ Parser.Lex();
+
+ if (Parser.getTok().is(AsmToken::Hash)) {
+ Parser.Lex();
+ }
+
+ if (Parser.getTok().isNot(AsmToken::Integer)) {
+ Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ int64_t ShiftAmount = Parser.getTok().getIntVal();
+
+ if (ShiftAmount < 0) {
+ Error(Parser.getTok().getLoc(), "positive shift amount required");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat the number
+
+ SMLoc E = Parser.getTok().getLoc();
+ Operands.push_back(AArch64Operand::CreateShiftedImm(Imm, ShiftAmount,
+ S, E, getContext()));
+ return MatchOperand_Success;
+}
+
+/// parseCondCodeString - Parse a Condition Code string.
+AArch64CC::CondCode AArch64AsmParser::parseCondCodeString(StringRef Cond) {
+ AArch64CC::CondCode CC = StringSwitch<AArch64CC::CondCode>(Cond.lower())
+ .Case("eq", AArch64CC::EQ)
+ .Case("ne", AArch64CC::NE)
+ .Case("cs", AArch64CC::HS)
+ .Case("hs", AArch64CC::HS)
+ .Case("cc", AArch64CC::LO)
+ .Case("lo", AArch64CC::LO)
+ .Case("mi", AArch64CC::MI)
+ .Case("pl", AArch64CC::PL)
+ .Case("vs", AArch64CC::VS)
+ .Case("vc", AArch64CC::VC)
+ .Case("hi", AArch64CC::HI)
+ .Case("ls", AArch64CC::LS)
+ .Case("ge", AArch64CC::GE)
+ .Case("lt", AArch64CC::LT)
+ .Case("gt", AArch64CC::GT)
+ .Case("le", AArch64CC::LE)
+ .Case("al", AArch64CC::AL)
+ .Case("nv", AArch64CC::NV)
+ .Default(AArch64CC::Invalid);
+ return CC;
+}
+
+/// parseCondCode - Parse a Condition Code operand.
+bool AArch64AsmParser::parseCondCode(OperandVector &Operands,
+ bool invertCondCode) {
+ SMLoc S = getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
+
+ StringRef Cond = Tok.getString();
+ AArch64CC::CondCode CC = parseCondCodeString(Cond);
+ if (CC == AArch64CC::Invalid)
+ return TokError("invalid condition code");
+ Parser.Lex(); // Eat identifier token.
+
+ if (invertCondCode) {
+ if (CC == AArch64CC::AL || CC == AArch64CC::NV)
+ return TokError("condition codes AL and NV are invalid for this instruction");
+ CC = AArch64CC::getInvertedCondCode(AArch64CC::CondCode(CC));
+ }
+
+ Operands.push_back(
+ AArch64Operand::CreateCondCode(CC, S, getLoc(), getContext()));
+ return false;
+}
+
+/// tryParseOptionalShift - Some operands take an optional shift argument. Parse
+/// them if present.
+AArch64AsmParser::OperandMatchResultTy
+AArch64AsmParser::tryParseOptionalShiftExtend(OperandVector &Operands) {
+ const AsmToken &Tok = Parser.getTok();
+ std::string LowerID = Tok.getString().lower();
+ AArch64_AM::ShiftExtendType ShOp =
+ StringSwitch<AArch64_AM::ShiftExtendType>(LowerID)
+ .Case("lsl", AArch64_AM::LSL)
+ .Case("lsr", AArch64_AM::LSR)
+ .Case("asr", AArch64_AM::ASR)
+ .Case("ror", AArch64_AM::ROR)
+ .Case("msl", AArch64_AM::MSL)
+ .Case("uxtb", AArch64_AM::UXTB)
+ .Case("uxth", AArch64_AM::UXTH)
+ .Case("uxtw", AArch64_AM::UXTW)
+ .Case("uxtx", AArch64_AM::UXTX)
+ .Case("sxtb", AArch64_AM::SXTB)
+ .Case("sxth", AArch64_AM::SXTH)
+ .Case("sxtw", AArch64_AM::SXTW)
+ .Case("sxtx", AArch64_AM::SXTX)
+ .Default(AArch64_AM::InvalidShiftExtend);
+
+ if (ShOp == AArch64_AM::InvalidShiftExtend)
+ return MatchOperand_NoMatch;
+
+ SMLoc S = Tok.getLoc();
+ Parser.Lex();
+
+ bool Hash = getLexer().is(AsmToken::Hash);
+ if (!Hash && getLexer().isNot(AsmToken::Integer)) {
+ if (ShOp == AArch64_AM::LSL || ShOp == AArch64_AM::LSR ||
+ ShOp == AArch64_AM::ASR || ShOp == AArch64_AM::ROR ||
+ ShOp == AArch64_AM::MSL) {
+ // We expect a number here.
+ TokError("expected #imm after shift specifier");
+ return MatchOperand_ParseFail;
+ }
+
+ // "extend" type operatoins don't need an immediate, #0 is implicit.
+ SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(
+ AArch64Operand::CreateShiftExtend(ShOp, 0, false, S, E, getContext()));
+ return MatchOperand_Success;
+ }
+
+ if (Hash)
+ Parser.Lex(); // Eat the '#'.
+
+ // Make sure we do actually have a number
+ if (!Parser.getTok().is(AsmToken::Integer)) {
+ Error(Parser.getTok().getLoc(),
+ "expected integer shift amount");
+ return MatchOperand_ParseFail;
+ }
+
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal))
+ return MatchOperand_ParseFail;
+
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE) {
+ TokError("expected #imm after shift specifier");
+ return MatchOperand_ParseFail;
+ }
+
+ SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateShiftExtend(
+ ShOp, MCE->getValue(), true, S, E, getContext()));
+ return MatchOperand_Success;
+}
+
+/// parseSysAlias - The IC, DC, AT, and TLBI instructions are simple aliases for
+/// the SYS instruction. Parse them specially so that we create a SYS MCInst.
+bool AArch64AsmParser::parseSysAlias(StringRef Name, SMLoc NameLoc,
+ OperandVector &Operands) {
+ if (Name.find('.') != StringRef::npos)
+ return TokError("invalid operand");
+
+ Mnemonic = Name;
+ Operands.push_back(
+ AArch64Operand::CreateToken("sys", false, NameLoc, getContext()));
+
+ const AsmToken &Tok = Parser.getTok();
+ StringRef Op = Tok.getString();
+ SMLoc S = Tok.getLoc();
+
+ const MCExpr *Expr = nullptr;
+
+#define SYS_ALIAS(op1, Cn, Cm, op2) \
+ do { \
+ Expr = MCConstantExpr::Create(op1, getContext()); \
+ Operands.push_back( \
+ AArch64Operand::CreateImm(Expr, S, getLoc(), getContext())); \
+ Operands.push_back( \
+ AArch64Operand::CreateSysCR(Cn, S, getLoc(), getContext())); \
+ Operands.push_back( \
+ AArch64Operand::CreateSysCR(Cm, S, getLoc(), getContext())); \
+ Expr = MCConstantExpr::Create(op2, getContext()); \
+ Operands.push_back( \
+ AArch64Operand::CreateImm(Expr, S, getLoc(), getContext())); \
+ } while (0)
+
+ if (Mnemonic == "ic") {
+ if (!Op.compare_lower("ialluis")) {
+ // SYS #0, C7, C1, #0
+ SYS_ALIAS(0, 7, 1, 0);
+ } else if (!Op.compare_lower("iallu")) {
+ // SYS #0, C7, C5, #0
+ SYS_ALIAS(0, 7, 5, 0);
+ } else if (!Op.compare_lower("ivau")) {
+ // SYS #3, C7, C5, #1
+ SYS_ALIAS(3, 7, 5, 1);
+ } else {
+ return TokError("invalid operand for IC instruction");
+ }
+ } else if (Mnemonic == "dc") {
+ if (!Op.compare_lower("zva")) {
+ // SYS #3, C7, C4, #1
+ SYS_ALIAS(3, 7, 4, 1);
+ } else if (!Op.compare_lower("ivac")) {
+ // SYS #3, C7, C6, #1
+ SYS_ALIAS(0, 7, 6, 1);
+ } else if (!Op.compare_lower("isw")) {
+ // SYS #0, C7, C6, #2
+ SYS_ALIAS(0, 7, 6, 2);
+ } else if (!Op.compare_lower("cvac")) {
+ // SYS #3, C7, C10, #1
+ SYS_ALIAS(3, 7, 10, 1);
+ } else if (!Op.compare_lower("csw")) {
+ // SYS #0, C7, C10, #2
+ SYS_ALIAS(0, 7, 10, 2);
+ } else if (!Op.compare_lower("cvau")) {
+ // SYS #3, C7, C11, #1
+ SYS_ALIAS(3, 7, 11, 1);
+ } else if (!Op.compare_lower("civac")) {
+ // SYS #3, C7, C14, #1
+ SYS_ALIAS(3, 7, 14, 1);
+ } else if (!Op.compare_lower("cisw")) {
+ // SYS #0, C7, C14, #2
+ SYS_ALIAS(0, 7, 14, 2);
+ } else {
+ return TokError("invalid operand for DC instruction");
+ }
+ } else if (Mnemonic == "at") {
+ if (!Op.compare_lower("s1e1r")) {
+ // SYS #0, C7, C8, #0
+ SYS_ALIAS(0, 7, 8, 0);
+ } else if (!Op.compare_lower("s1e2r")) {
+ // SYS #4, C7, C8, #0
+ SYS_ALIAS(4, 7, 8, 0);
+ } else if (!Op.compare_lower("s1e3r")) {
+ // SYS #6, C7, C8, #0
+ SYS_ALIAS(6, 7, 8, 0);
+ } else if (!Op.compare_lower("s1e1w")) {
+ // SYS #0, C7, C8, #1
+ SYS_ALIAS(0, 7, 8, 1);
+ } else if (!Op.compare_lower("s1e2w")) {
+ // SYS #4, C7, C8, #1
+ SYS_ALIAS(4, 7, 8, 1);
+ } else if (!Op.compare_lower("s1e3w")) {
+ // SYS #6, C7, C8, #1
+ SYS_ALIAS(6, 7, 8, 1);
+ } else if (!Op.compare_lower("s1e0r")) {
+ // SYS #0, C7, C8, #3
+ SYS_ALIAS(0, 7, 8, 2);
+ } else if (!Op.compare_lower("s1e0w")) {
+ // SYS #0, C7, C8, #3
+ SYS_ALIAS(0, 7, 8, 3);
+ } else if (!Op.compare_lower("s12e1r")) {
+ // SYS #4, C7, C8, #4
+ SYS_ALIAS(4, 7, 8, 4);
+ } else if (!Op.compare_lower("s12e1w")) {
+ // SYS #4, C7, C8, #5
+ SYS_ALIAS(4, 7, 8, 5);
+ } else if (!Op.compare_lower("s12e0r")) {
+ // SYS #4, C7, C8, #6
+ SYS_ALIAS(4, 7, 8, 6);
+ } else if (!Op.compare_lower("s12e0w")) {
+ // SYS #4, C7, C8, #7
+ SYS_ALIAS(4, 7, 8, 7);
+ } else {
+ return TokError("invalid operand for AT instruction");
+ }
+ } else if (Mnemonic == "tlbi") {
+ if (!Op.compare_lower("vmalle1is")) {
+ // SYS #0, C8, C3, #0
+ SYS_ALIAS(0, 8, 3, 0);
+ } else if (!Op.compare_lower("alle2is")) {
+ // SYS #4, C8, C3, #0
+ SYS_ALIAS(4, 8, 3, 0);
+ } else if (!Op.compare_lower("alle3is")) {
+ // SYS #6, C8, C3, #0
+ SYS_ALIAS(6, 8, 3, 0);
+ } else if (!Op.compare_lower("vae1is")) {
+ // SYS #0, C8, C3, #1
+ SYS_ALIAS(0, 8, 3, 1);
+ } else if (!Op.compare_lower("vae2is")) {
+ // SYS #4, C8, C3, #1
+ SYS_ALIAS(4, 8, 3, 1);
+ } else if (!Op.compare_lower("vae3is")) {
+ // SYS #6, C8, C3, #1
+ SYS_ALIAS(6, 8, 3, 1);
+ } else if (!Op.compare_lower("aside1is")) {
+ // SYS #0, C8, C3, #2
+ SYS_ALIAS(0, 8, 3, 2);
+ } else if (!Op.compare_lower("vaae1is")) {
+ // SYS #0, C8, C3, #3
+ SYS_ALIAS(0, 8, 3, 3);
+ } else if (!Op.compare_lower("alle1is")) {
+ // SYS #4, C8, C3, #4
+ SYS_ALIAS(4, 8, 3, 4);
+ } else if (!Op.compare_lower("vale1is")) {
+ // SYS #0, C8, C3, #5
+ SYS_ALIAS(0, 8, 3, 5);
+ } else if (!Op.compare_lower("vaale1is")) {
+ // SYS #0, C8, C3, #7
+ SYS_ALIAS(0, 8, 3, 7);
+ } else if (!Op.compare_lower("vmalle1")) {
+ // SYS #0, C8, C7, #0
+ SYS_ALIAS(0, 8, 7, 0);
+ } else if (!Op.compare_lower("alle2")) {
+ // SYS #4, C8, C7, #0
+ SYS_ALIAS(4, 8, 7, 0);
+ } else if (!Op.compare_lower("vale2is")) {
+ // SYS #4, C8, C3, #5
+ SYS_ALIAS(4, 8, 3, 5);
+ } else if (!Op.compare_lower("vale3is")) {
+ // SYS #6, C8, C3, #5
+ SYS_ALIAS(6, 8, 3, 5);
+ } else if (!Op.compare_lower("alle3")) {
+ // SYS #6, C8, C7, #0
+ SYS_ALIAS(6, 8, 7, 0);
+ } else if (!Op.compare_lower("vae1")) {
+ // SYS #0, C8, C7, #1
+ SYS_ALIAS(0, 8, 7, 1);
+ } else if (!Op.compare_lower("vae2")) {
+ // SYS #4, C8, C7, #1
+ SYS_ALIAS(4, 8, 7, 1);
+ } else if (!Op.compare_lower("vae3")) {
+ // SYS #6, C8, C7, #1
+ SYS_ALIAS(6, 8, 7, 1);
+ } else if (!Op.compare_lower("aside1")) {
+ // SYS #0, C8, C7, #2
+ SYS_ALIAS(0, 8, 7, 2);
+ } else if (!Op.compare_lower("vaae1")) {
+ // SYS #0, C8, C7, #3
+ SYS_ALIAS(0, 8, 7, 3);
+ } else if (!Op.compare_lower("alle1")) {
+ // SYS #4, C8, C7, #4
+ SYS_ALIAS(4, 8, 7, 4);
+ } else if (!Op.compare_lower("vale1")) {
+ // SYS #0, C8, C7, #5
+ SYS_ALIAS(0, 8, 7, 5);
+ } else if (!Op.compare_lower("vale2")) {
+ // SYS #4, C8, C7, #5
+ SYS_ALIAS(4, 8, 7, 5);
+ } else if (!Op.compare_lower("vale3")) {
+ // SYS #6, C8, C7, #5
+ SYS_ALIAS(6, 8, 7, 5);
+ } else if (!Op.compare_lower("vaale1")) {
+ // SYS #0, C8, C7, #7
+ SYS_ALIAS(0, 8, 7, 7);
+ } else if (!Op.compare_lower("ipas2e1")) {
+ // SYS #4, C8, C4, #1
+ SYS_ALIAS(4, 8, 4, 1);
+ } else if (!Op.compare_lower("ipas2le1")) {
+ // SYS #4, C8, C4, #5
+ SYS_ALIAS(4, 8, 4, 5);
+ } else if (!Op.compare_lower("ipas2e1is")) {
+ // SYS #4, C8, C4, #1
+ SYS_ALIAS(4, 8, 0, 1);
+ } else if (!Op.compare_lower("ipas2le1is")) {
+ // SYS #4, C8, C4, #5
+ SYS_ALIAS(4, 8, 0, 5);
+ } else if (!Op.compare_lower("vmalls12e1")) {
+ // SYS #4, C8, C7, #6
+ SYS_ALIAS(4, 8, 7, 6);
+ } else if (!Op.compare_lower("vmalls12e1is")) {
+ // SYS #4, C8, C3, #6
+ SYS_ALIAS(4, 8, 3, 6);
+ } else {
+ return TokError("invalid operand for TLBI instruction");
+ }
+ }
+
+#undef SYS_ALIAS
+
+ Parser.Lex(); // Eat operand.
+
+ bool ExpectRegister = (Op.lower().find("all") == StringRef::npos);
+ bool HasRegister = false;
+
+ // Check for the optional register operand.
+ if (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat comma.
+
+ if (Tok.isNot(AsmToken::Identifier) || parseRegister(Operands))
+ return TokError("expected register operand");
+
+ HasRegister = true;
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Parser.eatToEndOfStatement();
+ return TokError("unexpected token in argument list");
+ }
+
+ if (ExpectRegister && !HasRegister) {
+ return TokError("specified " + Mnemonic + " op requires a register");
+ }
+ else if (!ExpectRegister && HasRegister) {
+ return TokError("specified " + Mnemonic + " op does not use a register");
+ }
+
+ Parser.Lex(); // Consume the EndOfStatement
+ return false;
+}
+
+AArch64AsmParser::OperandMatchResultTy
+AArch64AsmParser::tryParseBarrierOperand(OperandVector &Operands) {
+ const AsmToken &Tok = Parser.getTok();
+
+ // Can be either a #imm style literal or an option name
+ bool Hash = Tok.is(AsmToken::Hash);
+ if (Hash || Tok.is(AsmToken::Integer)) {
+ // Immediate operand.
+ if (Hash)
+ Parser.Lex(); // Eat the '#'
+ const MCExpr *ImmVal;
+ SMLoc ExprLoc = getLoc();
+ if (getParser().parseExpression(ImmVal))
+ return MatchOperand_ParseFail;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE) {
+ Error(ExprLoc, "immediate value expected for barrier operand");
+ return MatchOperand_ParseFail;
+ }
+ if (MCE->getValue() < 0 || MCE->getValue() > 15) {
+ Error(ExprLoc, "barrier operand out of range");
+ return MatchOperand_ParseFail;
+ }
+ Operands.push_back(
+ AArch64Operand::CreateBarrier(MCE->getValue(), ExprLoc, getContext()));
+ return MatchOperand_Success;
+ }
+
+ if (Tok.isNot(AsmToken::Identifier)) {
+ TokError("invalid operand for instruction");
+ return MatchOperand_ParseFail;
+ }
+
+ bool Valid;
+ unsigned Opt = AArch64DB::DBarrierMapper().fromString(Tok.getString(), Valid);
+ if (!Valid) {
+ TokError("invalid barrier option name");
+ return MatchOperand_ParseFail;
+ }
+
+ // The only valid named option for ISB is 'sy'
+ if (Mnemonic == "isb" && Opt != AArch64DB::SY) {
+ TokError("'sy' or #imm operand expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(
+ AArch64Operand::CreateBarrier(Opt, getLoc(), getContext()));
+ Parser.Lex(); // Consume the option
+
+ return MatchOperand_Success;
+}
+
+AArch64AsmParser::OperandMatchResultTy
+AArch64AsmParser::tryParseSysReg(OperandVector &Operands) {
+ const AsmToken &Tok = Parser.getTok();
+
+ if (Tok.isNot(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+
+ Operands.push_back(AArch64Operand::CreateSysReg(Tok.getString(), getLoc(),
+ STI.getFeatureBits(), getContext()));
+ Parser.Lex(); // Eat identifier
+
+ return MatchOperand_Success;
+}
+
+/// tryParseVectorRegister - Parse a vector register operand.
+bool AArch64AsmParser::tryParseVectorRegister(OperandVector &Operands) {
+ if (Parser.getTok().isNot(AsmToken::Identifier))
+ return true;
+
+ SMLoc S = getLoc();
+ // Check for a vector register specifier first.
+ StringRef Kind;
+ int64_t Reg = tryMatchVectorRegister(Kind, false);
+ if (Reg == -1)
+ return true;
+ Operands.push_back(
+ AArch64Operand::CreateReg(Reg, true, S, getLoc(), getContext()));
+ // If there was an explicit qualifier, that goes on as a literal text
+ // operand.
+ if (!Kind.empty())
+ Operands.push_back(
+ AArch64Operand::CreateToken(Kind, false, S, getContext()));
+
+ // If there is an index specifier following the register, parse that too.
+ if (Parser.getTok().is(AsmToken::LBrac)) {
+ SMLoc SIdx = getLoc();
+ Parser.Lex(); // Eat left bracket token.
+
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal))
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE) {
+ TokError("immediate value expected for vector index");
+ return false;
+ }
+
+ SMLoc E = getLoc();
+ if (Parser.getTok().isNot(AsmToken::RBrac)) {
+ Error(E, "']' expected");
+ return false;
+ }
+
+ Parser.Lex(); // Eat right bracket token.
+
+ Operands.push_back(AArch64Operand::CreateVectorIndex(MCE->getValue(), SIdx,
+ E, getContext()));
+ }
+
+ return false;
+}
+
+/// parseRegister - Parse a non-vector register operand.
+bool AArch64AsmParser::parseRegister(OperandVector &Operands) {
+ SMLoc S = getLoc();
+ // Try for a vector register.
+ if (!tryParseVectorRegister(Operands))
+ return false;
+
+ // Try for a scalar register.
+ int64_t Reg = tryParseRegister();
+ if (Reg == -1)
+ return true;
+ Operands.push_back(
+ AArch64Operand::CreateReg(Reg, false, S, getLoc(), getContext()));
+
+ // A small number of instructions (FMOVXDhighr, for example) have "[1]"
+ // as a string token in the instruction itself.
+ if (getLexer().getKind() == AsmToken::LBrac) {
+ SMLoc LBracS = getLoc();
+ Parser.Lex();
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.is(AsmToken::Integer)) {
+ SMLoc IntS = getLoc();
+ int64_t Val = Tok.getIntVal();
+ if (Val == 1) {
+ Parser.Lex();
+ if (getLexer().getKind() == AsmToken::RBrac) {
+ SMLoc RBracS = getLoc();
+ Parser.Lex();
+ Operands.push_back(
+ AArch64Operand::CreateToken("[", false, LBracS, getContext()));
+ Operands.push_back(
+ AArch64Operand::CreateToken("1", false, IntS, getContext()));
+ Operands.push_back(
+ AArch64Operand::CreateToken("]", false, RBracS, getContext()));
+ return false;
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+bool AArch64AsmParser::parseSymbolicImmVal(const MCExpr *&ImmVal) {
+ bool HasELFModifier = false;
+ AArch64MCExpr::VariantKind RefKind;
+
+ if (Parser.getTok().is(AsmToken::Colon)) {
+ Parser.Lex(); // Eat ':"
+ HasELFModifier = true;
+
+ if (Parser.getTok().isNot(AsmToken::Identifier)) {
+ Error(Parser.getTok().getLoc(),
+ "expect relocation specifier in operand after ':'");
+ return true;
+ }
+
+ std::string LowerCase = Parser.getTok().getIdentifier().lower();
+ RefKind = StringSwitch<AArch64MCExpr::VariantKind>(LowerCase)
+ .Case("lo12", AArch64MCExpr::VK_LO12)
+ .Case("abs_g3", AArch64MCExpr::VK_ABS_G3)
+ .Case("abs_g2", AArch64MCExpr::VK_ABS_G2)
+ .Case("abs_g2_s", AArch64MCExpr::VK_ABS_G2_S)
+ .Case("abs_g2_nc", AArch64MCExpr::VK_ABS_G2_NC)
+ .Case("abs_g1", AArch64MCExpr::VK_ABS_G1)
+ .Case("abs_g1_s", AArch64MCExpr::VK_ABS_G1_S)
+ .Case("abs_g1_nc", AArch64MCExpr::VK_ABS_G1_NC)
+ .Case("abs_g0", AArch64MCExpr::VK_ABS_G0)
+ .Case("abs_g0_s", AArch64MCExpr::VK_ABS_G0_S)
+ .Case("abs_g0_nc", AArch64MCExpr::VK_ABS_G0_NC)
+ .Case("dtprel_g2", AArch64MCExpr::VK_DTPREL_G2)
+ .Case("dtprel_g1", AArch64MCExpr::VK_DTPREL_G1)
+ .Case("dtprel_g1_nc", AArch64MCExpr::VK_DTPREL_G1_NC)
+ .Case("dtprel_g0", AArch64MCExpr::VK_DTPREL_G0)
+ .Case("dtprel_g0_nc", AArch64MCExpr::VK_DTPREL_G0_NC)
+ .Case("dtprel_hi12", AArch64MCExpr::VK_DTPREL_HI12)
+ .Case("dtprel_lo12", AArch64MCExpr::VK_DTPREL_LO12)
+ .Case("dtprel_lo12_nc", AArch64MCExpr::VK_DTPREL_LO12_NC)
+ .Case("tprel_g2", AArch64MCExpr::VK_TPREL_G2)
+ .Case("tprel_g1", AArch64MCExpr::VK_TPREL_G1)
+ .Case("tprel_g1_nc", AArch64MCExpr::VK_TPREL_G1_NC)
+ .Case("tprel_g0", AArch64MCExpr::VK_TPREL_G0)
+ .Case("tprel_g0_nc", AArch64MCExpr::VK_TPREL_G0_NC)
+ .Case("tprel_hi12", AArch64MCExpr::VK_TPREL_HI12)
+ .Case("tprel_lo12", AArch64MCExpr::VK_TPREL_LO12)
+ .Case("tprel_lo12_nc", AArch64MCExpr::VK_TPREL_LO12_NC)
+ .Case("tlsdesc_lo12", AArch64MCExpr::VK_TLSDESC_LO12)
+ .Case("got", AArch64MCExpr::VK_GOT_PAGE)
+ .Case("got_lo12", AArch64MCExpr::VK_GOT_LO12)
+ .Case("gottprel", AArch64MCExpr::VK_GOTTPREL_PAGE)
+ .Case("gottprel_lo12", AArch64MCExpr::VK_GOTTPREL_LO12_NC)
+ .Case("gottprel_g1", AArch64MCExpr::VK_GOTTPREL_G1)
+ .Case("gottprel_g0_nc", AArch64MCExpr::VK_GOTTPREL_G0_NC)
+ .Case("tlsdesc", AArch64MCExpr::VK_TLSDESC_PAGE)
+ .Default(AArch64MCExpr::VK_INVALID);
+
+ if (RefKind == AArch64MCExpr::VK_INVALID) {
+ Error(Parser.getTok().getLoc(),
+ "expect relocation specifier in operand after ':'");
+ return true;
+ }
+
+ Parser.Lex(); // Eat identifier
+
+ if (Parser.getTok().isNot(AsmToken::Colon)) {
+ Error(Parser.getTok().getLoc(), "expect ':' after relocation specifier");
+ return true;
+ }
+ Parser.Lex(); // Eat ':'
+ }
+
+ if (getParser().parseExpression(ImmVal))
+ return true;
+
+ if (HasELFModifier)
+ ImmVal = AArch64MCExpr::Create(ImmVal, RefKind, getContext());
+
+ return false;
+}
+
+/// parseVectorList - Parse a vector list operand for AdvSIMD instructions.
+bool AArch64AsmParser::parseVectorList(OperandVector &Operands) {
+ assert(Parser.getTok().is(AsmToken::LCurly) && "Token is not a Left Bracket");
+ SMLoc S = getLoc();
+ Parser.Lex(); // Eat left bracket token.
+ StringRef Kind;
+ int64_t FirstReg = tryMatchVectorRegister(Kind, true);
+ if (FirstReg == -1)
+ return true;
+ int64_t PrevReg = FirstReg;
+ unsigned Count = 1;
+
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ Parser.Lex(); // Eat the minus.
+
+ SMLoc Loc = getLoc();
+ StringRef NextKind;
+ int64_t Reg = tryMatchVectorRegister(NextKind, true);
+ if (Reg == -1)
+ return true;
+ // Any Kind suffices must match on all regs in the list.
+ if (Kind != NextKind)
+ return Error(Loc, "mismatched register size suffix");
+
+ unsigned Space = (PrevReg < Reg) ? (Reg - PrevReg) : (Reg + 32 - PrevReg);
+
+ if (Space == 0 || Space > 3) {
+ return Error(Loc, "invalid number of vectors");
+ }
+
+ Count += Space;
+ }
+ else {
+ while (Parser.getTok().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma token.
+
+ SMLoc Loc = getLoc();
+ StringRef NextKind;
+ int64_t Reg = tryMatchVectorRegister(NextKind, true);
+ if (Reg == -1)
+ return true;
+ // Any Kind suffices must match on all regs in the list.
+ if (Kind != NextKind)
+ return Error(Loc, "mismatched register size suffix");
+
+ // Registers must be incremental (with wraparound at 31)
+ if (getContext().getRegisterInfo()->getEncodingValue(Reg) !=
+ (getContext().getRegisterInfo()->getEncodingValue(PrevReg) + 1) % 32)
+ return Error(Loc, "registers must be sequential");
+
+ PrevReg = Reg;
+ ++Count;
+ }
+ }
+
+ if (Parser.getTok().isNot(AsmToken::RCurly))
+ return Error(getLoc(), "'}' expected");
+ Parser.Lex(); // Eat the '}' token.
+
+ if (Count > 4)
+ return Error(S, "invalid number of vectors");
+
+ unsigned NumElements = 0;
+ char ElementKind = 0;
+ if (!Kind.empty())
+ parseValidVectorKind(Kind, NumElements, ElementKind);
+
+ Operands.push_back(AArch64Operand::CreateVectorList(
+ FirstReg, Count, NumElements, ElementKind, S, getLoc(), getContext()));
+
+ // If there is an index specifier following the list, parse that too.
+ if (Parser.getTok().is(AsmToken::LBrac)) {
+ SMLoc SIdx = getLoc();
+ Parser.Lex(); // Eat left bracket token.
+
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal))
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE) {
+ TokError("immediate value expected for vector index");
+ return false;
+ }
+
+ SMLoc E = getLoc();
+ if (Parser.getTok().isNot(AsmToken::RBrac)) {
+ Error(E, "']' expected");
+ return false;
+ }
+
+ Parser.Lex(); // Eat right bracket token.
+
+ Operands.push_back(AArch64Operand::CreateVectorIndex(MCE->getValue(), SIdx,
+ E, getContext()));
+ }
+ return false;
+}
+
+AArch64AsmParser::OperandMatchResultTy
+AArch64AsmParser::tryParseGPR64sp0Operand(OperandVector &Operands) {
+ const AsmToken &Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+
+ unsigned RegNum = matchRegisterNameAlias(Tok.getString().lower(), false);
+
+ MCContext &Ctx = getContext();
+ const MCRegisterInfo *RI = Ctx.getRegisterInfo();
+ if (!RI->getRegClass(AArch64::GPR64spRegClassID).contains(RegNum))
+ return MatchOperand_NoMatch;
+
+ SMLoc S = getLoc();
+ Parser.Lex(); // Eat register
+
+ if (Parser.getTok().isNot(AsmToken::Comma)) {
+ Operands.push_back(
+ AArch64Operand::CreateReg(RegNum, false, S, getLoc(), Ctx));
+ return MatchOperand_Success;
+ }
+ Parser.Lex(); // Eat comma.
+
+ if (Parser.getTok().is(AsmToken::Hash))
+ Parser.Lex(); // Eat hash
+
+ if (Parser.getTok().isNot(AsmToken::Integer)) {
+ Error(getLoc(), "index must be absent or #0");
+ return MatchOperand_ParseFail;
+ }
+
+ const MCExpr *ImmVal;
+ if (Parser.parseExpression(ImmVal) || !isa<MCConstantExpr>(ImmVal) ||
+ cast<MCConstantExpr>(ImmVal)->getValue() != 0) {
+ Error(getLoc(), "index must be absent or #0");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(
+ AArch64Operand::CreateReg(RegNum, false, S, getLoc(), Ctx));
+ return MatchOperand_Success;
+}
+
+/// parseOperand - Parse a arm instruction operand. For now this parses the
+/// operand regardless of the mnemonic.
+bool AArch64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode,
+ bool invertCondCode) {
+ // Check if the current operand has a custom associated parser, if so, try to
+ // custom parse the operand, or fallback to the general approach.
+ OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
+ if (ResTy == MatchOperand_Success)
+ return false;
+ // If there wasn't a custom match, try the generic matcher below. Otherwise,
+ // there was a match, but an error occurred, in which case, just return that
+ // the operand parsing failed.
+ if (ResTy == MatchOperand_ParseFail)
+ return true;
+
+ // Nothing custom, so do general case parsing.
+ SMLoc S, E;
+ switch (getLexer().getKind()) {
+ default: {
+ SMLoc S = getLoc();
+ const MCExpr *Expr;
+ if (parseSymbolicImmVal(Expr))
+ return Error(S, "invalid operand");
+
+ SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
+ return false;
+ }
+ case AsmToken::LBrac: {
+ SMLoc Loc = Parser.getTok().getLoc();
+ Operands.push_back(AArch64Operand::CreateToken("[", false, Loc,
+ getContext()));
+ Parser.Lex(); // Eat '['
+
+ // There's no comma after a '[', so we can parse the next operand
+ // immediately.
+ return parseOperand(Operands, false, false);
+ }
+ case AsmToken::LCurly:
+ return parseVectorList(Operands);
+ case AsmToken::Identifier: {
+ // If we're expecting a Condition Code operand, then just parse that.
+ if (isCondCode)
+ return parseCondCode(Operands, invertCondCode);
+
+ // If it's a register name, parse it.
+ if (!parseRegister(Operands))
+ return false;
+
+ // This could be an optional "shift" or "extend" operand.
+ OperandMatchResultTy GotShift = tryParseOptionalShiftExtend(Operands);
+ // We can only continue if no tokens were eaten.
+ if (GotShift != MatchOperand_NoMatch)
+ return GotShift;
+
+ // This was not a register so parse other operands that start with an
+ // identifier (like labels) as expressions and create them as immediates.
+ const MCExpr *IdVal;
+ S = getLoc();
+ if (getParser().parseExpression(IdVal))
+ return true;
+
+ E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateImm(IdVal, S, E, getContext()));
+ return false;
+ }
+ case AsmToken::Integer:
+ case AsmToken::Real:
+ case AsmToken::Hash: {
+ // #42 -> immediate.
+ S = getLoc();
+ if (getLexer().is(AsmToken::Hash))
+ Parser.Lex();
+
+ // Parse a negative sign
+ bool isNegative = false;
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ isNegative = true;
+ // We need to consume this token only when we have a Real, otherwise
+ // we let parseSymbolicImmVal take care of it
+ if (Parser.getLexer().peekTok().is(AsmToken::Real))
+ Parser.Lex();
+ }
+
+ // The only Real that should come through here is a literal #0.0 for
+ // the fcmp[e] r, #0.0 instructions. They expect raw token operands,
+ // so convert the value.
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.is(AsmToken::Real)) {
+ APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
+ uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
+ if (Mnemonic != "fcmp" && Mnemonic != "fcmpe" && Mnemonic != "fcmeq" &&
+ Mnemonic != "fcmge" && Mnemonic != "fcmgt" && Mnemonic != "fcmle" &&
+ Mnemonic != "fcmlt")
+ return TokError("unexpected floating point literal");
+ else if (IntVal != 0 || isNegative)
+ return TokError("expected floating-point constant #0.0");
+ Parser.Lex(); // Eat the token.
+
+ Operands.push_back(
+ AArch64Operand::CreateToken("#0", false, S, getContext()));
+ Operands.push_back(
+ AArch64Operand::CreateToken(".0", false, S, getContext()));
+ return false;
+ }
+
+ const MCExpr *ImmVal;
+ if (parseSymbolicImmVal(ImmVal))
+ return true;
+
+ E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateImm(ImmVal, S, E, getContext()));
+ return false;
+ }
+ case AsmToken::Equal: {
+ SMLoc Loc = Parser.getTok().getLoc();
+ if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
+ return Error(Loc, "unexpected token in operand");
+ Parser.Lex(); // Eat '='
+ const MCExpr *SubExprVal;
+ if (getParser().parseExpression(SubExprVal))
+ return true;
+
+ if (Operands.size() < 2 ||
+ !static_cast<AArch64Operand &>(*Operands[1]).isReg())
+ return true;
+
+ bool IsXReg =
+ AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
+ Operands[1]->getReg());
+
+ MCContext& Ctx = getContext();
+ E = SMLoc::getFromPointer(Loc.getPointer() - 1);
+ // If the op is an imm and can be fit into a mov, then replace ldr with mov.
+ if (isa<MCConstantExpr>(SubExprVal)) {
+ uint64_t Imm = (cast<MCConstantExpr>(SubExprVal))->getValue();
+ uint32_t ShiftAmt = 0, MaxShiftAmt = IsXReg ? 48 : 16;
+ while(Imm > 0xFFFF && countTrailingZeros(Imm) >= 16) {
+ ShiftAmt += 16;
+ Imm >>= 16;
+ }
+ if (ShiftAmt <= MaxShiftAmt && Imm <= 0xFFFF) {
+ Operands[0] = AArch64Operand::CreateToken("movz", false, Loc, Ctx);
+ Operands.push_back(AArch64Operand::CreateImm(
+ MCConstantExpr::Create(Imm, Ctx), S, E, Ctx));
+ if (ShiftAmt)
+ Operands.push_back(AArch64Operand::CreateShiftExtend(AArch64_AM::LSL,
+ ShiftAmt, true, S, E, Ctx));
+ return false;
+ }
+ APInt Simm = APInt(64, Imm << ShiftAmt);
+ // check if the immediate is an unsigned or signed 32-bit int for W regs
+ if (!IsXReg && !(Simm.isIntN(32) || Simm.isSignedIntN(32)))
+ return Error(Loc, "Immediate too large for register");
+ }
+ // If it is a label or an imm that cannot fit in a movz, put it into CP.
+ const MCExpr *CPLoc =
+ getTargetStreamer().addConstantPoolEntry(SubExprVal, IsXReg ? 8 : 4);
+ Operands.push_back(AArch64Operand::CreateImm(CPLoc, S, E, Ctx));
+ return false;
+ }
+ }
+}
+
+/// ParseInstruction - Parse an AArch64 instruction mnemonic followed by its
+/// operands.
+bool AArch64AsmParser::ParseInstruction(ParseInstructionInfo &Info,
+ StringRef Name, SMLoc NameLoc,
+ OperandVector &Operands) {
+ Name = StringSwitch<StringRef>(Name.lower())
+ .Case("beq", "b.eq")
+ .Case("bne", "b.ne")
+ .Case("bhs", "b.hs")
+ .Case("bcs", "b.cs")
+ .Case("blo", "b.lo")
+ .Case("bcc", "b.cc")
+ .Case("bmi", "b.mi")
+ .Case("bpl", "b.pl")
+ .Case("bvs", "b.vs")
+ .Case("bvc", "b.vc")
+ .Case("bhi", "b.hi")
+ .Case("bls", "b.ls")
+ .Case("bge", "b.ge")
+ .Case("blt", "b.lt")
+ .Case("bgt", "b.gt")
+ .Case("ble", "b.le")
+ .Case("bal", "b.al")
+ .Case("bnv", "b.nv")
+ .Default(Name);
+
+ // First check for the AArch64-specific .req directive.
+ if (Parser.getTok().is(AsmToken::Identifier) &&
+ Parser.getTok().getIdentifier() == ".req") {
+ parseDirectiveReq(Name, NameLoc);
+ // We always return 'error' for this, as we're done with this
+ // statement and don't need to match the 'instruction."
+ return true;
+ }
+
+ // Create the leading tokens for the mnemonic, split by '.' characters.
+ size_t Start = 0, Next = Name.find('.');
+ StringRef Head = Name.slice(Start, Next);
+
+ // IC, DC, AT, and TLBI instructions are aliases for the SYS instruction.
+ if (Head == "ic" || Head == "dc" || Head == "at" || Head == "tlbi") {
+ bool IsError = parseSysAlias(Head, NameLoc, Operands);
+ if (IsError && getLexer().isNot(AsmToken::EndOfStatement))
+ Parser.eatToEndOfStatement();
+ return IsError;
+ }
+
+ Operands.push_back(
+ AArch64Operand::CreateToken(Head, false, NameLoc, getContext()));
+ Mnemonic = Head;
+
+ // Handle condition codes for a branch mnemonic
+ if (Head == "b" && Next != StringRef::npos) {
+ Start = Next;
+ Next = Name.find('.', Start + 1);
+ Head = Name.slice(Start + 1, Next);
+
+ SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
+ (Head.data() - Name.data()));
+ AArch64CC::CondCode CC = parseCondCodeString(Head);
+ if (CC == AArch64CC::Invalid)
+ return Error(SuffixLoc, "invalid condition code");
+ Operands.push_back(
+ AArch64Operand::CreateToken(".", true, SuffixLoc, getContext()));
+ Operands.push_back(
+ AArch64Operand::CreateCondCode(CC, NameLoc, NameLoc, getContext()));
+ }
+
+ // Add the remaining tokens in the mnemonic.
+ while (Next != StringRef::npos) {
+ Start = Next;
+ Next = Name.find('.', Start + 1);
+ Head = Name.slice(Start, Next);
+ SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
+ (Head.data() - Name.data()) + 1);
+ Operands.push_back(
+ AArch64Operand::CreateToken(Head, true, SuffixLoc, getContext()));
+ }
+
+ // Conditional compare instructions have a Condition Code operand, which needs
+ // to be parsed and an immediate operand created.
+ bool condCodeFourthOperand =
+ (Head == "ccmp" || Head == "ccmn" || Head == "fccmp" ||
+ Head == "fccmpe" || Head == "fcsel" || Head == "csel" ||
+ Head == "csinc" || Head == "csinv" || Head == "csneg");
+
+ // These instructions are aliases to some of the conditional select
+ // instructions. However, the condition code is inverted in the aliased
+ // instruction.
+ //
+ // FIXME: Is this the correct way to handle these? Or should the parser
+ // generate the aliased instructions directly?
+ bool condCodeSecondOperand = (Head == "cset" || Head == "csetm");
+ bool condCodeThirdOperand =
+ (Head == "cinc" || Head == "cinv" || Head == "cneg");
+
+ // Read the remaining operands.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ // Read the first operand.
+ if (parseOperand(Operands, false, false)) {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+
+ unsigned N = 2;
+ while (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma.
+
+ // Parse and remember the operand.
+ if (parseOperand(Operands, (N == 4 && condCodeFourthOperand) ||
+ (N == 3 && condCodeThirdOperand) ||
+ (N == 2 && condCodeSecondOperand),
+ condCodeSecondOperand || condCodeThirdOperand)) {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+
+ // After successfully parsing some operands there are two special cases to
+ // consider (i.e. notional operands not separated by commas). Both are due
+ // to memory specifiers:
+ // + An RBrac will end an address for load/store/prefetch
+ // + An '!' will indicate a pre-indexed operation.
+ //
+ // It's someone else's responsibility to make sure these tokens are sane
+ // in the given context!
+ if (Parser.getTok().is(AsmToken::RBrac)) {
+ SMLoc Loc = Parser.getTok().getLoc();
+ Operands.push_back(AArch64Operand::CreateToken("]", false, Loc,
+ getContext()));
+ Parser.Lex();
+ }
+
+ if (Parser.getTok().is(AsmToken::Exclaim)) {
+ SMLoc Loc = Parser.getTok().getLoc();
+ Operands.push_back(AArch64Operand::CreateToken("!", false, Loc,
+ getContext()));
+ Parser.Lex();
+ }
+
+ ++N;
+ }
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ SMLoc Loc = Parser.getTok().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+
+ Parser.Lex(); // Consume the EndOfStatement
+ return false;
+}
+
+// FIXME: This entire function is a giant hack to provide us with decent
+// operand range validation/diagnostics until TableGen/MC can be extended
+// to support autogeneration of this kind of validation.
+bool AArch64AsmParser::validateInstruction(MCInst &Inst,
+ SmallVectorImpl<SMLoc> &Loc) {
+ const MCRegisterInfo *RI = getContext().getRegisterInfo();
+ // Check for indexed addressing modes w/ the base register being the
+ // same as a destination/source register or pair load where
+ // the Rt == Rt2. All of those are undefined behaviour.
+ switch (Inst.getOpcode()) {
+ case AArch64::LDPSWpre:
+ case AArch64::LDPWpost:
+ case AArch64::LDPWpre:
+ case AArch64::LDPXpost:
+ case AArch64::LDPXpre: {
+ unsigned Rt = Inst.getOperand(1).getReg();
+ unsigned Rt2 = Inst.getOperand(2).getReg();
+ unsigned Rn = Inst.getOperand(3).getReg();
+ if (RI->isSubRegisterEq(Rn, Rt))
+ return Error(Loc[0], "unpredictable LDP instruction, writeback base "
+ "is also a destination");
+ if (RI->isSubRegisterEq(Rn, Rt2))
+ return Error(Loc[1], "unpredictable LDP instruction, writeback base "
+ "is also a destination");
+ // FALLTHROUGH
+ }
+ case AArch64::LDPDi:
+ case AArch64::LDPQi:
+ case AArch64::LDPSi:
+ case AArch64::LDPSWi:
+ case AArch64::LDPWi:
+ case AArch64::LDPXi: {
+ unsigned Rt = Inst.getOperand(0).getReg();
+ unsigned Rt2 = Inst.getOperand(1).getReg();
+ if (Rt == Rt2)
+ return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt");
+ break;
+ }
+ case AArch64::LDPDpost:
+ case AArch64::LDPDpre:
+ case AArch64::LDPQpost:
+ case AArch64::LDPQpre:
+ case AArch64::LDPSpost:
+ case AArch64::LDPSpre:
+ case AArch64::LDPSWpost: {
+ unsigned Rt = Inst.getOperand(1).getReg();
+ unsigned Rt2 = Inst.getOperand(2).getReg();
+ if (Rt == Rt2)
+ return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt");
+ break;
+ }
+ case AArch64::STPDpost:
+ case AArch64::STPDpre:
+ case AArch64::STPQpost:
+ case AArch64::STPQpre:
+ case AArch64::STPSpost:
+ case AArch64::STPSpre:
+ case AArch64::STPWpost:
+ case AArch64::STPWpre:
+ case AArch64::STPXpost:
+ case AArch64::STPXpre: {
+ unsigned Rt = Inst.getOperand(1).getReg();
+ unsigned Rt2 = Inst.getOperand(2).getReg();
+ unsigned Rn = Inst.getOperand(3).getReg();
+ if (RI->isSubRegisterEq(Rn, Rt))
+ return Error(Loc[0], "unpredictable STP instruction, writeback base "
+ "is also a source");
+ if (RI->isSubRegisterEq(Rn, Rt2))
+ return Error(Loc[1], "unpredictable STP instruction, writeback base "
+ "is also a source");
+ break;
+ }
+ case AArch64::LDRBBpre:
+ case AArch64::LDRBpre:
+ case AArch64::LDRHHpre:
+ case AArch64::LDRHpre:
+ case AArch64::LDRSBWpre:
+ case AArch64::LDRSBXpre:
+ case AArch64::LDRSHWpre:
+ case AArch64::LDRSHXpre:
+ case AArch64::LDRSWpre:
+ case AArch64::LDRWpre:
+ case AArch64::LDRXpre:
+ case AArch64::LDRBBpost:
+ case AArch64::LDRBpost:
+ case AArch64::LDRHHpost:
+ case AArch64::LDRHpost:
+ case AArch64::LDRSBWpost:
+ case AArch64::LDRSBXpost:
+ case AArch64::LDRSHWpost:
+ case AArch64::LDRSHXpost:
+ case AArch64::LDRSWpost:
+ case AArch64::LDRWpost:
+ case AArch64::LDRXpost: {
+ unsigned Rt = Inst.getOperand(1).getReg();
+ unsigned Rn = Inst.getOperand(2).getReg();
+ if (RI->isSubRegisterEq(Rn, Rt))
+ return Error(Loc[0], "unpredictable LDR instruction, writeback base "
+ "is also a source");
+ break;
+ }
+ case AArch64::STRBBpost:
+ case AArch64::STRBpost:
+ case AArch64::STRHHpost:
+ case AArch64::STRHpost:
+ case AArch64::STRWpost:
+ case AArch64::STRXpost:
+ case AArch64::STRBBpre:
+ case AArch64::STRBpre:
+ case AArch64::STRHHpre:
+ case AArch64::STRHpre:
+ case AArch64::STRWpre:
+ case AArch64::STRXpre: {
+ unsigned Rt = Inst.getOperand(1).getReg();
+ unsigned Rn = Inst.getOperand(2).getReg();
+ if (RI->isSubRegisterEq(Rn, Rt))
+ return Error(Loc[0], "unpredictable STR instruction, writeback base "
+ "is also a source");
+ break;
+ }
+ }
+
+ // Now check immediate ranges. Separate from the above as there is overlap
+ // in the instructions being checked and this keeps the nested conditionals
+ // to a minimum.
+ switch (Inst.getOpcode()) {
+ case AArch64::ADDSWri:
+ case AArch64::ADDSXri:
+ case AArch64::ADDWri:
+ case AArch64::ADDXri:
+ case AArch64::SUBSWri:
+ case AArch64::SUBSXri:
+ case AArch64::SUBWri:
+ case AArch64::SUBXri: {
+ // Annoyingly we can't do this in the isAddSubImm predicate, so there is
+ // some slight duplication here.
+ if (Inst.getOperand(2).isExpr()) {
+ const MCExpr *Expr = Inst.getOperand(2).getExpr();
+ AArch64MCExpr::VariantKind ELFRefKind;
+ MCSymbolRefExpr::VariantKind DarwinRefKind;
+ int64_t Addend;
+ if (!classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
+ return Error(Loc[2], "invalid immediate expression");
+ }
+
+ // Only allow these with ADDXri.
+ if ((DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
+ DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) &&
+ Inst.getOpcode() == AArch64::ADDXri)
+ return false;
+
+ // Only allow these with ADDXri/ADDWri
+ if ((ELFRefKind == AArch64MCExpr::VK_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12 ||
+ ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC ||
+ ELFRefKind == AArch64MCExpr::VK_TPREL_HI12 ||
+ ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC ||
+ ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12) &&
+ (Inst.getOpcode() == AArch64::ADDXri ||
+ Inst.getOpcode() == AArch64::ADDWri))
+ return false;
+
+ // Don't allow expressions in the immediate field otherwise
+ return Error(Loc[2], "invalid immediate expression");
+ }
+ return false;
+ }
+ default:
+ return false;
+ }
+}
+
+bool AArch64AsmParser::showMatchError(SMLoc Loc, unsigned ErrCode) {
+ switch (ErrCode) {
+ case Match_MissingFeature:
+ return Error(Loc,
+ "instruction requires a CPU feature not currently enabled");
+ case Match_InvalidOperand:
+ return Error(Loc, "invalid operand for instruction");
+ case Match_InvalidSuffix:
+ return Error(Loc, "invalid type suffix for instruction");
+ case Match_InvalidCondCode:
+ return Error(Loc, "expected AArch64 condition code");
+ case Match_AddSubRegExtendSmall:
+ return Error(Loc,
+ "expected '[su]xt[bhw]' or 'lsl' with optional integer in range [0, 4]");
+ case Match_AddSubRegExtendLarge:
+ return Error(Loc,
+ "expected 'sxtx' 'uxtx' or 'lsl' with optional integer in range [0, 4]");
+ case Match_AddSubSecondSource:
+ return Error(Loc,
+ "expected compatible register, symbol or integer in range [0, 4095]");
+ case Match_LogicalSecondSource:
+ return Error(Loc, "expected compatible register or logical immediate");
+ case Match_InvalidMovImm32Shift:
+ return Error(Loc, "expected 'lsl' with optional integer 0 or 16");
+ case Match_InvalidMovImm64Shift:
+ return Error(Loc, "expected 'lsl' with optional integer 0, 16, 32 or 48");
+ case Match_AddSubRegShift32:
+ return Error(Loc,
+ "expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 31]");
+ case Match_AddSubRegShift64:
+ return Error(Loc,
+ "expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 63]");
+ case Match_InvalidFPImm:
+ return Error(Loc,
+ "expected compatible register or floating-point constant");
+ case Match_InvalidMemoryIndexedSImm9:
+ return Error(Loc, "index must be an integer in range [-256, 255].");
+ case Match_InvalidMemoryIndexed4SImm7:
+ return Error(Loc, "index must be a multiple of 4 in range [-256, 252].");
+ case Match_InvalidMemoryIndexed8SImm7:
+ return Error(Loc, "index must be a multiple of 8 in range [-512, 504].");
+ case Match_InvalidMemoryIndexed16SImm7:
+ return Error(Loc, "index must be a multiple of 16 in range [-1024, 1008].");
+ case Match_InvalidMemoryWExtend8:
+ return Error(Loc,
+ "expected 'uxtw' or 'sxtw' with optional shift of #0");
+ case Match_InvalidMemoryWExtend16:
+ return Error(Loc,
+ "expected 'uxtw' or 'sxtw' with optional shift of #0 or #1");
+ case Match_InvalidMemoryWExtend32:
+ return Error(Loc,
+ "expected 'uxtw' or 'sxtw' with optional shift of #0 or #2");
+ case Match_InvalidMemoryWExtend64:
+ return Error(Loc,
+ "expected 'uxtw' or 'sxtw' with optional shift of #0 or #3");
+ case Match_InvalidMemoryWExtend128:
+ return Error(Loc,
+ "expected 'uxtw' or 'sxtw' with optional shift of #0 or #4");
+ case Match_InvalidMemoryXExtend8:
+ return Error(Loc,
+ "expected 'lsl' or 'sxtx' with optional shift of #0");
+ case Match_InvalidMemoryXExtend16:
+ return Error(Loc,
+ "expected 'lsl' or 'sxtx' with optional shift of #0 or #1");
+ case Match_InvalidMemoryXExtend32:
+ return Error(Loc,
+ "expected 'lsl' or 'sxtx' with optional shift of #0 or #2");
+ case Match_InvalidMemoryXExtend64:
+ return Error(Loc,
+ "expected 'lsl' or 'sxtx' with optional shift of #0 or #3");
+ case Match_InvalidMemoryXExtend128:
+ return Error(Loc,
+ "expected 'lsl' or 'sxtx' with optional shift of #0 or #4");
+ case Match_InvalidMemoryIndexed1:
+ return Error(Loc, "index must be an integer in range [0, 4095].");
+ case Match_InvalidMemoryIndexed2:
+ return Error(Loc, "index must be a multiple of 2 in range [0, 8190].");
+ case Match_InvalidMemoryIndexed4:
+ return Error(Loc, "index must be a multiple of 4 in range [0, 16380].");
+ case Match_InvalidMemoryIndexed8:
+ return Error(Loc, "index must be a multiple of 8 in range [0, 32760].");
+ case Match_InvalidMemoryIndexed16:
+ return Error(Loc, "index must be a multiple of 16 in range [0, 65520].");
+ case Match_InvalidImm0_7:
+ return Error(Loc, "immediate must be an integer in range [0, 7].");
+ case Match_InvalidImm0_15:
+ return Error(Loc, "immediate must be an integer in range [0, 15].");
+ case Match_InvalidImm0_31:
+ return Error(Loc, "immediate must be an integer in range [0, 31].");
+ case Match_InvalidImm0_63:
+ return Error(Loc, "immediate must be an integer in range [0, 63].");
+ case Match_InvalidImm0_127:
+ return Error(Loc, "immediate must be an integer in range [0, 127].");
+ case Match_InvalidImm0_65535:
+ return Error(Loc, "immediate must be an integer in range [0, 65535].");
+ case Match_InvalidImm1_8:
+ return Error(Loc, "immediate must be an integer in range [1, 8].");
+ case Match_InvalidImm1_16:
+ return Error(Loc, "immediate must be an integer in range [1, 16].");
+ case Match_InvalidImm1_32:
+ return Error(Loc, "immediate must be an integer in range [1, 32].");
+ case Match_InvalidImm1_64:
+ return Error(Loc, "immediate must be an integer in range [1, 64].");
+ case Match_InvalidIndex1:
+ return Error(Loc, "expected lane specifier '[1]'");
+ case Match_InvalidIndexB:
+ return Error(Loc, "vector lane must be an integer in range [0, 15].");
+ case Match_InvalidIndexH:
+ return Error(Loc, "vector lane must be an integer in range [0, 7].");
+ case Match_InvalidIndexS:
+ return Error(Loc, "vector lane must be an integer in range [0, 3].");
+ case Match_InvalidIndexD:
+ return Error(Loc, "vector lane must be an integer in range [0, 1].");
+ case Match_InvalidLabel:
+ return Error(Loc, "expected label or encodable integer pc offset");
+ case Match_MRS:
+ return Error(Loc, "expected readable system register");
+ case Match_MSR:
+ return Error(Loc, "expected writable system register or pstate");
+ case Match_MnemonicFail:
+ return Error(Loc, "unrecognized instruction mnemonic");
+ default:
+ llvm_unreachable("unexpected error code!");
+ }
+}
+
+static const char *getSubtargetFeatureName(unsigned Val);
+
+bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ unsigned &ErrorInfo,
+ bool MatchingInlineAsm) {
+ assert(!Operands.empty() && "Unexpect empty operand list!");
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[0]);
+ assert(Op.isToken() && "Leading operand should always be a mnemonic!");
+
+ StringRef Tok = Op.getToken();
+ unsigned NumOperands = Operands.size();
+
+ if (NumOperands == 4 && Tok == "lsl") {
+ AArch64Operand &Op2 = static_cast<AArch64Operand &>(*Operands[2]);
+ AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
+ if (Op2.isReg() && Op3.isImm()) {
+ const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
+ if (Op3CE) {
+ uint64_t Op3Val = Op3CE->getValue();
+ uint64_t NewOp3Val = 0;
+ uint64_t NewOp4Val = 0;
+ if (AArch64MCRegisterClasses[AArch64::GPR32allRegClassID].contains(
+ Op2.getReg())) {
+ NewOp3Val = (32 - Op3Val) & 0x1f;
+ NewOp4Val = 31 - Op3Val;
+ } else {
+ NewOp3Val = (64 - Op3Val) & 0x3f;
+ NewOp4Val = 63 - Op3Val;
+ }
+
+ const MCExpr *NewOp3 = MCConstantExpr::Create(NewOp3Val, getContext());
+ const MCExpr *NewOp4 = MCConstantExpr::Create(NewOp4Val, getContext());
+
+ Operands[0] = AArch64Operand::CreateToken(
+ "ubfm", false, Op.getStartLoc(), getContext());
+ Operands.push_back(AArch64Operand::CreateImm(
+ NewOp4, Op3.getStartLoc(), Op3.getEndLoc(), getContext()));
+ Operands[3] = AArch64Operand::CreateImm(NewOp3, Op3.getStartLoc(),
+ Op3.getEndLoc(), getContext());
+ }
+ }
+ } else if (NumOperands == 5) {
+ // FIXME: Horrible hack to handle the BFI -> BFM, SBFIZ->SBFM, and
+ // UBFIZ -> UBFM aliases.
+ if (Tok == "bfi" || Tok == "sbfiz" || Tok == "ubfiz") {
+ AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
+ AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
+ AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]);
+
+ if (Op1.isReg() && Op3.isImm() && Op4.isImm()) {
+ const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
+ const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm());
+
+ if (Op3CE && Op4CE) {
+ uint64_t Op3Val = Op3CE->getValue();
+ uint64_t Op4Val = Op4CE->getValue();
+
+ uint64_t RegWidth = 0;
+ if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
+ Op1.getReg()))
+ RegWidth = 64;
+ else
+ RegWidth = 32;
+
+ if (Op3Val >= RegWidth)
+ return Error(Op3.getStartLoc(),
+ "expected integer in range [0, 31]");
+ if (Op4Val < 1 || Op4Val > RegWidth)
+ return Error(Op4.getStartLoc(),
+ "expected integer in range [1, 32]");
+
+ uint64_t NewOp3Val = 0;
+ if (AArch64MCRegisterClasses[AArch64::GPR32allRegClassID].contains(
+ Op1.getReg()))
+ NewOp3Val = (32 - Op3Val) & 0x1f;
+ else
+ NewOp3Val = (64 - Op3Val) & 0x3f;
+
+ uint64_t NewOp4Val = Op4Val - 1;
+
+ if (NewOp3Val != 0 && NewOp4Val >= NewOp3Val)
+ return Error(Op4.getStartLoc(),
+ "requested insert overflows register");
+
+ const MCExpr *NewOp3 =
+ MCConstantExpr::Create(NewOp3Val, getContext());
+ const MCExpr *NewOp4 =
+ MCConstantExpr::Create(NewOp4Val, getContext());
+ Operands[3] = AArch64Operand::CreateImm(
+ NewOp3, Op3.getStartLoc(), Op3.getEndLoc(), getContext());
+ Operands[4] = AArch64Operand::CreateImm(
+ NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext());
+ if (Tok == "bfi")
+ Operands[0] = AArch64Operand::CreateToken(
+ "bfm", false, Op.getStartLoc(), getContext());
+ else if (Tok == "sbfiz")
+ Operands[0] = AArch64Operand::CreateToken(
+ "sbfm", false, Op.getStartLoc(), getContext());
+ else if (Tok == "ubfiz")
+ Operands[0] = AArch64Operand::CreateToken(
+ "ubfm", false, Op.getStartLoc(), getContext());
+ else
+ llvm_unreachable("No valid mnemonic for alias?");
+ }
+ }
+
+ // FIXME: Horrible hack to handle the BFXIL->BFM, SBFX->SBFM, and
+ // UBFX -> UBFM aliases.
+ } else if (NumOperands == 5 &&
+ (Tok == "bfxil" || Tok == "sbfx" || Tok == "ubfx")) {
+ AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
+ AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
+ AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]);
+
+ if (Op1.isReg() && Op3.isImm() && Op4.isImm()) {
+ const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
+ const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm());
+
+ if (Op3CE && Op4CE) {
+ uint64_t Op3Val = Op3CE->getValue();
+ uint64_t Op4Val = Op4CE->getValue();
+
+ uint64_t RegWidth = 0;
+ if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
+ Op1.getReg()))
+ RegWidth = 64;
+ else
+ RegWidth = 32;
+
+ if (Op3Val >= RegWidth)
+ return Error(Op3.getStartLoc(),
+ "expected integer in range [0, 31]");
+ if (Op4Val < 1 || Op4Val > RegWidth)
+ return Error(Op4.getStartLoc(),
+ "expected integer in range [1, 32]");
+
+ uint64_t NewOp4Val = Op3Val + Op4Val - 1;
+
+ if (NewOp4Val >= RegWidth || NewOp4Val < Op3Val)
+ return Error(Op4.getStartLoc(),
+ "requested extract overflows register");
+
+ const MCExpr *NewOp4 =
+ MCConstantExpr::Create(NewOp4Val, getContext());
+ Operands[4] = AArch64Operand::CreateImm(
+ NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext());
+ if (Tok == "bfxil")
+ Operands[0] = AArch64Operand::CreateToken(
+ "bfm", false, Op.getStartLoc(), getContext());
+ else if (Tok == "sbfx")
+ Operands[0] = AArch64Operand::CreateToken(
+ "sbfm", false, Op.getStartLoc(), getContext());
+ else if (Tok == "ubfx")
+ Operands[0] = AArch64Operand::CreateToken(
+ "ubfm", false, Op.getStartLoc(), getContext());
+ else
+ llvm_unreachable("No valid mnemonic for alias?");
+ }
+ }
+ }
+ }
+ // FIXME: Horrible hack for sxtw and uxtw with Wn src and Xd dst operands.
+ // InstAlias can't quite handle this since the reg classes aren't
+ // subclasses.
+ if (NumOperands == 3 && (Tok == "sxtw" || Tok == "uxtw")) {
+ // The source register can be Wn here, but the matcher expects a
+ // GPR64. Twiddle it here if necessary.
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]);
+ if (Op.isReg()) {
+ unsigned Reg = getXRegFromWReg(Op.getReg());
+ Operands[2] = AArch64Operand::CreateReg(Reg, false, Op.getStartLoc(),
+ Op.getEndLoc(), getContext());
+ }
+ }
+ // FIXME: Likewise for sxt[bh] with a Xd dst operand
+ else if (NumOperands == 3 && (Tok == "sxtb" || Tok == "sxth")) {
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
+ if (Op.isReg() &&
+ AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
+ Op.getReg())) {
+ // The source register can be Wn here, but the matcher expects a
+ // GPR64. Twiddle it here if necessary.
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]);
+ if (Op.isReg()) {
+ unsigned Reg = getXRegFromWReg(Op.getReg());
+ Operands[2] = AArch64Operand::CreateReg(Reg, false, Op.getStartLoc(),
+ Op.getEndLoc(), getContext());
+ }
+ }
+ }
+ // FIXME: Likewise for uxt[bh] with a Xd dst operand
+ else if (NumOperands == 3 && (Tok == "uxtb" || Tok == "uxth")) {
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
+ if (Op.isReg() &&
+ AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
+ Op.getReg())) {
+ // The source register can be Wn here, but the matcher expects a
+ // GPR32. Twiddle it here if necessary.
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
+ if (Op.isReg()) {
+ unsigned Reg = getWRegFromXReg(Op.getReg());
+ Operands[1] = AArch64Operand::CreateReg(Reg, false, Op.getStartLoc(),
+ Op.getEndLoc(), getContext());
+ }
+ }
+ }
+
+ // Yet another horrible hack to handle FMOV Rd, #0.0 using [WX]ZR.
+ if (NumOperands == 3 && Tok == "fmov") {
+ AArch64Operand &RegOp = static_cast<AArch64Operand &>(*Operands[1]);
+ AArch64Operand &ImmOp = static_cast<AArch64Operand &>(*Operands[2]);
+ if (RegOp.isReg() && ImmOp.isFPImm() && ImmOp.getFPImm() == (unsigned)-1) {
+ unsigned zreg =
+ AArch64MCRegisterClasses[AArch64::FPR32RegClassID].contains(
+ RegOp.getReg())
+ ? AArch64::WZR
+ : AArch64::XZR;
+ Operands[2] = AArch64Operand::CreateReg(zreg, false, Op.getStartLoc(),
+ Op.getEndLoc(), getContext());
+ }
+ }
+
+ MCInst Inst;
+ // First try to match against the secondary set of tables containing the
+ // short-form NEON instructions (e.g. "fadd.2s v0, v1, v2").
+ unsigned MatchResult =
+ MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 1);
+
+ // If that fails, try against the alternate table containing long-form NEON:
+ // "fadd v0.2s, v1.2s, v2.2s"
+ if (MatchResult != Match_Success)
+ MatchResult =
+ MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 0);
+
+ switch (MatchResult) {
+ case Match_Success: {
+ // Perform range checking and other semantic validations
+ SmallVector<SMLoc, 8> OperandLocs;
+ NumOperands = Operands.size();
+ for (unsigned i = 1; i < NumOperands; ++i)
+ OperandLocs.push_back(Operands[i]->getStartLoc());
+ if (validateInstruction(Inst, OperandLocs))
+ return true;
+
+ Inst.setLoc(IDLoc);
+ Out.EmitInstruction(Inst, STI);
+ return false;
+ }
+ case Match_MissingFeature: {
+ assert(ErrorInfo && "Unknown missing feature!");
+ // Special case the error message for the very common case where only
+ // a single subtarget feature is missing (neon, e.g.).
+ std::string Msg = "instruction requires:";
+ unsigned Mask = 1;
+ for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
+ if (ErrorInfo & Mask) {
+ Msg += " ";
+ Msg += getSubtargetFeatureName(ErrorInfo & Mask);
+ }
+ Mask <<= 1;
+ }
+ return Error(IDLoc, Msg);
+ }
+ case Match_MnemonicFail:
+ return showMatchError(IDLoc, MatchResult);
+ case Match_InvalidOperand: {
+ SMLoc ErrorLoc = IDLoc;
+ if (ErrorInfo != ~0U) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc())
+ ErrorLoc = IDLoc;
+ }
+ // If the match failed on a suffix token operand, tweak the diagnostic
+ // accordingly.
+ if (((AArch64Operand &)*Operands[ErrorInfo]).isToken() &&
+ ((AArch64Operand &)*Operands[ErrorInfo]).isTokenSuffix())
+ MatchResult = Match_InvalidSuffix;
+
+ return showMatchError(ErrorLoc, MatchResult);
+ }
+ case Match_InvalidMemoryIndexed1:
+ case Match_InvalidMemoryIndexed2:
+ case Match_InvalidMemoryIndexed4:
+ case Match_InvalidMemoryIndexed8:
+ case Match_InvalidMemoryIndexed16:
+ case Match_InvalidCondCode:
+ case Match_AddSubRegExtendSmall:
+ case Match_AddSubRegExtendLarge:
+ case Match_AddSubSecondSource:
+ case Match_LogicalSecondSource:
+ case Match_AddSubRegShift32:
+ case Match_AddSubRegShift64:
+ case Match_InvalidMovImm32Shift:
+ case Match_InvalidMovImm64Shift:
+ case Match_InvalidFPImm:
+ case Match_InvalidMemoryWExtend8:
+ case Match_InvalidMemoryWExtend16:
+ case Match_InvalidMemoryWExtend32:
+ case Match_InvalidMemoryWExtend64:
+ case Match_InvalidMemoryWExtend128:
+ case Match_InvalidMemoryXExtend8:
+ case Match_InvalidMemoryXExtend16:
+ case Match_InvalidMemoryXExtend32:
+ case Match_InvalidMemoryXExtend64:
+ case Match_InvalidMemoryXExtend128:
+ case Match_InvalidMemoryIndexed4SImm7:
+ case Match_InvalidMemoryIndexed8SImm7:
+ case Match_InvalidMemoryIndexed16SImm7:
+ case Match_InvalidMemoryIndexedSImm9:
+ case Match_InvalidImm0_7:
+ case Match_InvalidImm0_15:
+ case Match_InvalidImm0_31:
+ case Match_InvalidImm0_63:
+ case Match_InvalidImm0_127:
+ case Match_InvalidImm0_65535:
+ case Match_InvalidImm1_8:
+ case Match_InvalidImm1_16:
+ case Match_InvalidImm1_32:
+ case Match_InvalidImm1_64:
+ case Match_InvalidIndex1:
+ case Match_InvalidIndexB:
+ case Match_InvalidIndexH:
+ case Match_InvalidIndexS:
+ case Match_InvalidIndexD:
+ case Match_InvalidLabel:
+ case Match_MSR:
+ case Match_MRS: {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+ // Any time we get here, there's nothing fancy to do. Just get the
+ // operand SMLoc and display the diagnostic.
+ SMLoc ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc())
+ ErrorLoc = IDLoc;
+ return showMatchError(ErrorLoc, MatchResult);
+ }
+ }
+
+ llvm_unreachable("Implement any new match types added!");
+ return true;
+}
+
+/// ParseDirective parses the arm specific directives
+bool AArch64AsmParser::ParseDirective(AsmToken DirectiveID) {
+ StringRef IDVal = DirectiveID.getIdentifier();
+ SMLoc Loc = DirectiveID.getLoc();
+ if (IDVal == ".hword")
+ return parseDirectiveWord(2, Loc);
+ if (IDVal == ".word")
+ return parseDirectiveWord(4, Loc);
+ if (IDVal == ".xword")
+ return parseDirectiveWord(8, Loc);
+ if (IDVal == ".tlsdesccall")
+ return parseDirectiveTLSDescCall(Loc);
+ if (IDVal == ".ltorg" || IDVal == ".pool")
+ return parseDirectiveLtorg(Loc);
+ if (IDVal == ".unreq")
+ return parseDirectiveUnreq(DirectiveID.getLoc());
+
+ return parseDirectiveLOH(IDVal, Loc);
+}
+
+/// parseDirectiveWord
+/// ::= .word [ expression (, expression)* ]
+bool AArch64AsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ for (;;) {
+ const MCExpr *Value;
+ if (getParser().parseExpression(Value))
+ return true;
+
+ getParser().getStreamer().EmitValue(Value, Size);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ // FIXME: Improve diagnostic.
+ if (getLexer().isNot(AsmToken::Comma))
+ return Error(L, "unexpected token in directive");
+ Parser.Lex();
+ }
+ }
+
+ Parser.Lex();
+ return false;
+}
+
+// parseDirectiveTLSDescCall:
+// ::= .tlsdesccall symbol
+bool AArch64AsmParser::parseDirectiveTLSDescCall(SMLoc L) {
+ StringRef Name;
+ if (getParser().parseIdentifier(Name))
+ return Error(L, "expected symbol after directive");
+
+ MCSymbol *Sym = getContext().GetOrCreateSymbol(Name);
+ const MCExpr *Expr = MCSymbolRefExpr::Create(Sym, getContext());
+ Expr = AArch64MCExpr::Create(Expr, AArch64MCExpr::VK_TLSDESC, getContext());
+
+ MCInst Inst;
+ Inst.setOpcode(AArch64::TLSDESCCALL);
+ Inst.addOperand(MCOperand::CreateExpr(Expr));
+
+ getParser().getStreamer().EmitInstruction(Inst, STI);
+ return false;
+}
+
+/// ::= .loh <lohName | lohId> label1, ..., labelN
+/// The number of arguments depends on the loh identifier.
+bool AArch64AsmParser::parseDirectiveLOH(StringRef IDVal, SMLoc Loc) {
+ if (IDVal != MCLOHDirectiveName())
+ return true;
+ MCLOHType Kind;
+ if (getParser().getTok().isNot(AsmToken::Identifier)) {
+ if (getParser().getTok().isNot(AsmToken::Integer))
+ return TokError("expected an identifier or a number in directive");
+ // We successfully get a numeric value for the identifier.
+ // Check if it is valid.
+ int64_t Id = getParser().getTok().getIntVal();
+ Kind = (MCLOHType)Id;
+ // Check that Id does not overflow MCLOHType.
+ if (!isValidMCLOHType(Kind) || Id != Kind)
+ return TokError("invalid numeric identifier in directive");
+ } else {
+ StringRef Name = getTok().getIdentifier();
+ // We successfully parse an identifier.
+ // Check if it is a recognized one.
+ int Id = MCLOHNameToId(Name);
+
+ if (Id == -1)
+ return TokError("invalid identifier in directive");
+ Kind = (MCLOHType)Id;
+ }
+ // Consume the identifier.
+ Lex();
+ // Get the number of arguments of this LOH.
+ int NbArgs = MCLOHIdToNbArgs(Kind);
+
+ assert(NbArgs != -1 && "Invalid number of arguments");
+
+ SmallVector<MCSymbol *, 3> Args;
+ for (int Idx = 0; Idx < NbArgs; ++Idx) {
+ StringRef Name;
+ if (getParser().parseIdentifier(Name))
+ return TokError("expected identifier in directive");
+ Args.push_back(getContext().GetOrCreateSymbol(Name));
+
+ if (Idx + 1 == NbArgs)
+ break;
+ if (getLexer().isNot(AsmToken::Comma))
+ return TokError("unexpected token in '" + Twine(IDVal) + "' directive");
+ Lex();
+ }
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return TokError("unexpected token in '" + Twine(IDVal) + "' directive");
+
+ getStreamer().EmitLOHDirective((MCLOHType)Kind, Args);
+ return false;
+}
+
+/// parseDirectiveLtorg
+/// ::= .ltorg | .pool
+bool AArch64AsmParser::parseDirectiveLtorg(SMLoc L) {
+ getTargetStreamer().emitCurrentConstantPool();
+ return false;
+}
+
+/// parseDirectiveReq
+/// ::= name .req registername
+bool AArch64AsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
+ Parser.Lex(); // Eat the '.req' token.
+ SMLoc SRegLoc = getLoc();
+ unsigned RegNum = tryParseRegister();
+ bool IsVector = false;
+
+ if (RegNum == static_cast<unsigned>(-1)) {
+ StringRef Kind;
+ RegNum = tryMatchVectorRegister(Kind, false);
+ if (!Kind.empty()) {
+ Error(SRegLoc, "vector register without type specifier expected");
+ return false;
+ }
+ IsVector = true;
+ }
+
+ if (RegNum == static_cast<unsigned>(-1)) {
+ Parser.eatToEndOfStatement();
+ Error(SRegLoc, "register name or alias expected");
+ return false;
+ }
+
+ // Shouldn't be anything else.
+ if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
+ Error(Parser.getTok().getLoc(), "unexpected input in .req directive");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ Parser.Lex(); // Consume the EndOfStatement
+
+ auto pair = std::make_pair(IsVector, RegNum);
+ if (RegisterReqs.GetOrCreateValue(Name, pair).getValue() != pair)
+ Warning(L, "ignoring redefinition of register alias '" + Name + "'");
+
+ return true;
+}
+
+/// parseDirectiveUneq
+/// ::= .unreq registername
+bool AArch64AsmParser::parseDirectiveUnreq(SMLoc L) {
+ if (Parser.getTok().isNot(AsmToken::Identifier)) {
+ Error(Parser.getTok().getLoc(), "unexpected input in .unreq directive.");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
+ Parser.Lex(); // Eat the identifier.
+ return false;
+}
+
+bool
+AArch64AsmParser::classifySymbolRef(const MCExpr *Expr,
+ AArch64MCExpr::VariantKind &ELFRefKind,
+ MCSymbolRefExpr::VariantKind &DarwinRefKind,
+ int64_t &Addend) {
+ ELFRefKind = AArch64MCExpr::VK_INVALID;
+ DarwinRefKind = MCSymbolRefExpr::VK_None;
+ Addend = 0;
+
+ if (const AArch64MCExpr *AE = dyn_cast<AArch64MCExpr>(Expr)) {
+ ELFRefKind = AE->getKind();
+ Expr = AE->getSubExpr();
+ }
+
+ const MCSymbolRefExpr *SE = dyn_cast<MCSymbolRefExpr>(Expr);
+ if (SE) {
+ // It's a simple symbol reference with no addend.
+ DarwinRefKind = SE->getKind();
+ return true;
+ }
+
+ const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr);
+ if (!BE)
+ return false;
+
+ SE = dyn_cast<MCSymbolRefExpr>(BE->getLHS());
+ if (!SE)
+ return false;
+ DarwinRefKind = SE->getKind();
+
+ if (BE->getOpcode() != MCBinaryExpr::Add &&
+ BE->getOpcode() != MCBinaryExpr::Sub)
+ return false;
+
+ // See if the addend is is a constant, otherwise there's more going
+ // on here than we can deal with.
+ auto AddendExpr = dyn_cast<MCConstantExpr>(BE->getRHS());
+ if (!AddendExpr)
+ return false;
+
+ Addend = AddendExpr->getValue();
+ if (BE->getOpcode() == MCBinaryExpr::Sub)
+ Addend = -Addend;
+
+ // It's some symbol reference + a constant addend, but really
+ // shouldn't use both Darwin and ELF syntax.
+ return ELFRefKind == AArch64MCExpr::VK_INVALID ||
+ DarwinRefKind == MCSymbolRefExpr::VK_None;
+}
+
+/// Force static initialization.
+extern "C" void LLVMInitializeAArch64AsmParser() {
+ RegisterMCAsmParser<AArch64AsmParser> X(TheAArch64leTarget);
+ RegisterMCAsmParser<AArch64AsmParser> Y(TheAArch64beTarget);
+
+ RegisterMCAsmParser<AArch64AsmParser> Z(TheARM64leTarget);
+ RegisterMCAsmParser<AArch64AsmParser> W(TheARM64beTarget);
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_SUBTARGET_FEATURE_NAME
+#define GET_MATCHER_IMPLEMENTATION
+#include "AArch64GenAsmMatcher.inc"
+
+// Define this matcher function after the auto-generated include so we
+// have the match class enum definitions.
+unsigned AArch64AsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
+ unsigned Kind) {
+ AArch64Operand &Op = static_cast<AArch64Operand &>(AsmOp);
+ // If the kind is a token for a literal immediate, check if our asm
+ // operand matches. This is for InstAliases which have a fixed-value
+ // immediate in the syntax.
+ int64_t ExpectedVal;
+ switch (Kind) {
+ default:
+ return Match_InvalidOperand;
+ case MCK__35_0:
+ ExpectedVal = 0;
+ break;
+ case MCK__35_1:
+ ExpectedVal = 1;
+ break;
+ case MCK__35_12:
+ ExpectedVal = 12;
+ break;
+ case MCK__35_16:
+ ExpectedVal = 16;
+ break;
+ case MCK__35_2:
+ ExpectedVal = 2;
+ break;
+ case MCK__35_24:
+ ExpectedVal = 24;
+ break;
+ case MCK__35_3:
+ ExpectedVal = 3;
+ break;
+ case MCK__35_32:
+ ExpectedVal = 32;
+ break;
+ case MCK__35_4:
+ ExpectedVal = 4;
+ break;
+ case MCK__35_48:
+ ExpectedVal = 48;
+ break;
+ case MCK__35_6:
+ ExpectedVal = 6;
+ break;
+ case MCK__35_64:
+ ExpectedVal = 64;
+ break;
+ case MCK__35_8:
+ ExpectedVal = 8;
+ break;
+ }
+ if (!Op.isImm())
+ return Match_InvalidOperand;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
+ if (!CE)
+ return Match_InvalidOperand;
+ if (CE->getValue() == ExpectedVal)
+ return Match_Success;
+ return Match_InvalidOperand;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp
new file mode 100644
index 0000000..6de27d6
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp
@@ -0,0 +1,1559 @@
+//===- AArch64Disassembler.cpp - Disassembler for AArch64 -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64Disassembler.h"
+#include "AArch64ExternalSymbolizer.h"
+#include "AArch64Subtarget.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "Utils/AArch64BaseInfo.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCFixedLenDisassembler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MemoryObject.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-disassembler"
+
+// Pull DecodeStatus and its enum values into the global namespace.
+typedef llvm::MCDisassembler::DecodeStatus DecodeStatus;
+
+// Forward declare these because the autogenerated code will reference them.
+// Definitions are further down.
+static DecodeStatus DecodeFPR128RegisterClass(llvm::MCInst &Inst,
+ unsigned RegNo, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeFPR128_loRegisterClass(llvm::MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeFPR64RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeFPR32RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeFPR16RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeFPR8RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeGPR64RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeGPR64spRegisterClass(llvm::MCInst &Inst,
+ unsigned RegNo, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeGPR32RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeGPR32spRegisterClass(llvm::MCInst &Inst,
+ unsigned RegNo, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeQQRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeQQQRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeQQQQRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeDDRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeDDDRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeDDDDRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeFixedPointScaleImm32(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeFixedPointScaleImm64(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodePCRelLabel19(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeMemExtend(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeMRSSystemRegister(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeMSRSystemRegister(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThreeAddrSRegInstruction(llvm::MCInst &Inst,
+ uint32_t insn,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeMoveImmInstruction(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeUnsignedLdStInstruction(llvm::MCInst &Inst,
+ uint32_t insn,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeSignedLdStInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeExclusiveLdStInstruction(llvm::MCInst &Inst,
+ uint32_t insn,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodePairLdStInstruction(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeAddSubERegInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeLogicalImmInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeModImmInstruction(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeModImmTiedInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeAdrInstruction(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeBaseAddSubImm(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeUnconditionalBranch(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeSystemPStateInstruction(llvm::MCInst &Inst,
+ uint32_t insn,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeTestAndBranch(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Address, const void *Decoder);
+
+static DecodeStatus DecodeFMOVLaneInstruction(llvm::MCInst &Inst, unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeVecShiftR64Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder);
+static DecodeStatus DecodeVecShiftR64ImmNarrow(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const void *Decoder);
+static DecodeStatus DecodeVecShiftR32Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder);
+static DecodeStatus DecodeVecShiftR32ImmNarrow(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const void *Decoder);
+static DecodeStatus DecodeVecShiftR16Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder);
+static DecodeStatus DecodeVecShiftR16ImmNarrow(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const void *Decoder);
+static DecodeStatus DecodeVecShiftR8Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder);
+static DecodeStatus DecodeVecShiftL64Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder);
+static DecodeStatus DecodeVecShiftL32Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder);
+static DecodeStatus DecodeVecShiftL16Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder);
+static DecodeStatus DecodeVecShiftL8Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder);
+
+static bool Check(DecodeStatus &Out, DecodeStatus In) {
+ switch (In) {
+ case MCDisassembler::Success:
+ // Out stays the same.
+ return true;
+ case MCDisassembler::SoftFail:
+ Out = In;
+ return true;
+ case MCDisassembler::Fail:
+ Out = In;
+ return false;
+ }
+ llvm_unreachable("Invalid DecodeStatus!");
+}
+
+#include "AArch64GenDisassemblerTables.inc"
+#include "AArch64GenInstrInfo.inc"
+
+#define Success llvm::MCDisassembler::Success
+#define Fail llvm::MCDisassembler::Fail
+#define SoftFail llvm::MCDisassembler::SoftFail
+
+static MCDisassembler *createAArch64Disassembler(const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new AArch64Disassembler(STI, Ctx);
+}
+
+DecodeStatus AArch64Disassembler::getInstruction(MCInst &MI, uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &os,
+ raw_ostream &cs) const {
+ CommentStream = &cs;
+
+ uint8_t bytes[4];
+
+ Size = 0;
+ // We want to read exactly 4 bytes of data.
+ if (Region.readBytes(Address, 4, (uint8_t *)bytes) == -1)
+ return Fail;
+ Size = 4;
+
+ // Encoded as a small-endian 32-bit word in the stream.
+ uint32_t insn =
+ (bytes[3] << 24) | (bytes[2] << 16) | (bytes[1] << 8) | (bytes[0] << 0);
+
+ // Calling the auto-generated decoder function.
+ return decodeInstruction(DecoderTable32, MI, insn, Address, this, STI);
+}
+
+static MCSymbolizer *
+createAArch64ExternalSymbolizer(StringRef TT, LLVMOpInfoCallback GetOpInfo,
+ LLVMSymbolLookupCallback SymbolLookUp,
+ void *DisInfo, MCContext *Ctx,
+ MCRelocationInfo *RelInfo) {
+ return new llvm::AArch64ExternalSymbolizer(
+ *Ctx,
+ std::unique_ptr<MCRelocationInfo>(RelInfo),
+ GetOpInfo, SymbolLookUp, DisInfo);
+}
+
+extern "C" void LLVMInitializeAArch64Disassembler() {
+ TargetRegistry::RegisterMCDisassembler(TheAArch64leTarget,
+ createAArch64Disassembler);
+ TargetRegistry::RegisterMCDisassembler(TheAArch64beTarget,
+ createAArch64Disassembler);
+ TargetRegistry::RegisterMCSymbolizer(TheAArch64leTarget,
+ createAArch64ExternalSymbolizer);
+ TargetRegistry::RegisterMCSymbolizer(TheAArch64beTarget,
+ createAArch64ExternalSymbolizer);
+
+ TargetRegistry::RegisterMCDisassembler(TheARM64leTarget,
+ createAArch64Disassembler);
+ TargetRegistry::RegisterMCDisassembler(TheARM64beTarget,
+ createAArch64Disassembler);
+ TargetRegistry::RegisterMCSymbolizer(TheARM64leTarget,
+ createAArch64ExternalSymbolizer);
+ TargetRegistry::RegisterMCSymbolizer(TheARM64beTarget,
+ createAArch64ExternalSymbolizer);
+}
+
+static const unsigned FPR128DecoderTable[] = {
+ AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4,
+ AArch64::Q5, AArch64::Q6, AArch64::Q7, AArch64::Q8, AArch64::Q9,
+ AArch64::Q10, AArch64::Q11, AArch64::Q12, AArch64::Q13, AArch64::Q14,
+ AArch64::Q15, AArch64::Q16, AArch64::Q17, AArch64::Q18, AArch64::Q19,
+ AArch64::Q20, AArch64::Q21, AArch64::Q22, AArch64::Q23, AArch64::Q24,
+ AArch64::Q25, AArch64::Q26, AArch64::Q27, AArch64::Q28, AArch64::Q29,
+ AArch64::Q30, AArch64::Q31
+};
+
+static DecodeStatus DecodeFPR128RegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+
+ unsigned Register = FPR128DecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static DecodeStatus DecodeFPR128_loRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 15)
+ return Fail;
+ return DecodeFPR128RegisterClass(Inst, RegNo, Addr, Decoder);
+}
+
+static const unsigned FPR64DecoderTable[] = {
+ AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4,
+ AArch64::D5, AArch64::D6, AArch64::D7, AArch64::D8, AArch64::D9,
+ AArch64::D10, AArch64::D11, AArch64::D12, AArch64::D13, AArch64::D14,
+ AArch64::D15, AArch64::D16, AArch64::D17, AArch64::D18, AArch64::D19,
+ AArch64::D20, AArch64::D21, AArch64::D22, AArch64::D23, AArch64::D24,
+ AArch64::D25, AArch64::D26, AArch64::D27, AArch64::D28, AArch64::D29,
+ AArch64::D30, AArch64::D31
+};
+
+static DecodeStatus DecodeFPR64RegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+
+ unsigned Register = FPR64DecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned FPR32DecoderTable[] = {
+ AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4,
+ AArch64::S5, AArch64::S6, AArch64::S7, AArch64::S8, AArch64::S9,
+ AArch64::S10, AArch64::S11, AArch64::S12, AArch64::S13, AArch64::S14,
+ AArch64::S15, AArch64::S16, AArch64::S17, AArch64::S18, AArch64::S19,
+ AArch64::S20, AArch64::S21, AArch64::S22, AArch64::S23, AArch64::S24,
+ AArch64::S25, AArch64::S26, AArch64::S27, AArch64::S28, AArch64::S29,
+ AArch64::S30, AArch64::S31
+};
+
+static DecodeStatus DecodeFPR32RegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+
+ unsigned Register = FPR32DecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned FPR16DecoderTable[] = {
+ AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4,
+ AArch64::H5, AArch64::H6, AArch64::H7, AArch64::H8, AArch64::H9,
+ AArch64::H10, AArch64::H11, AArch64::H12, AArch64::H13, AArch64::H14,
+ AArch64::H15, AArch64::H16, AArch64::H17, AArch64::H18, AArch64::H19,
+ AArch64::H20, AArch64::H21, AArch64::H22, AArch64::H23, AArch64::H24,
+ AArch64::H25, AArch64::H26, AArch64::H27, AArch64::H28, AArch64::H29,
+ AArch64::H30, AArch64::H31
+};
+
+static DecodeStatus DecodeFPR16RegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+
+ unsigned Register = FPR16DecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned FPR8DecoderTable[] = {
+ AArch64::B0, AArch64::B1, AArch64::B2, AArch64::B3, AArch64::B4,
+ AArch64::B5, AArch64::B6, AArch64::B7, AArch64::B8, AArch64::B9,
+ AArch64::B10, AArch64::B11, AArch64::B12, AArch64::B13, AArch64::B14,
+ AArch64::B15, AArch64::B16, AArch64::B17, AArch64::B18, AArch64::B19,
+ AArch64::B20, AArch64::B21, AArch64::B22, AArch64::B23, AArch64::B24,
+ AArch64::B25, AArch64::B26, AArch64::B27, AArch64::B28, AArch64::B29,
+ AArch64::B30, AArch64::B31
+};
+
+static DecodeStatus DecodeFPR8RegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+
+ unsigned Register = FPR8DecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned GPR64DecoderTable[] = {
+ AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4,
+ AArch64::X5, AArch64::X6, AArch64::X7, AArch64::X8, AArch64::X9,
+ AArch64::X10, AArch64::X11, AArch64::X12, AArch64::X13, AArch64::X14,
+ AArch64::X15, AArch64::X16, AArch64::X17, AArch64::X18, AArch64::X19,
+ AArch64::X20, AArch64::X21, AArch64::X22, AArch64::X23, AArch64::X24,
+ AArch64::X25, AArch64::X26, AArch64::X27, AArch64::X28, AArch64::FP,
+ AArch64::LR, AArch64::XZR
+};
+
+static DecodeStatus DecodeGPR64RegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+
+ unsigned Register = GPR64DecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static DecodeStatus DecodeGPR64spRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+ unsigned Register = GPR64DecoderTable[RegNo];
+ if (Register == AArch64::XZR)
+ Register = AArch64::SP;
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned GPR32DecoderTable[] = {
+ AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4,
+ AArch64::W5, AArch64::W6, AArch64::W7, AArch64::W8, AArch64::W9,
+ AArch64::W10, AArch64::W11, AArch64::W12, AArch64::W13, AArch64::W14,
+ AArch64::W15, AArch64::W16, AArch64::W17, AArch64::W18, AArch64::W19,
+ AArch64::W20, AArch64::W21, AArch64::W22, AArch64::W23, AArch64::W24,
+ AArch64::W25, AArch64::W26, AArch64::W27, AArch64::W28, AArch64::W29,
+ AArch64::W30, AArch64::WZR
+};
+
+static DecodeStatus DecodeGPR32RegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+
+ unsigned Register = GPR32DecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static DecodeStatus DecodeGPR32spRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+
+ unsigned Register = GPR32DecoderTable[RegNo];
+ if (Register == AArch64::WZR)
+ Register = AArch64::WSP;
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned VectorDecoderTable[] = {
+ AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4,
+ AArch64::Q5, AArch64::Q6, AArch64::Q7, AArch64::Q8, AArch64::Q9,
+ AArch64::Q10, AArch64::Q11, AArch64::Q12, AArch64::Q13, AArch64::Q14,
+ AArch64::Q15, AArch64::Q16, AArch64::Q17, AArch64::Q18, AArch64::Q19,
+ AArch64::Q20, AArch64::Q21, AArch64::Q22, AArch64::Q23, AArch64::Q24,
+ AArch64::Q25, AArch64::Q26, AArch64::Q27, AArch64::Q28, AArch64::Q29,
+ AArch64::Q30, AArch64::Q31
+};
+
+static DecodeStatus DecodeVectorRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+
+ unsigned Register = VectorDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned QQDecoderTable[] = {
+ AArch64::Q0_Q1, AArch64::Q1_Q2, AArch64::Q2_Q3, AArch64::Q3_Q4,
+ AArch64::Q4_Q5, AArch64::Q5_Q6, AArch64::Q6_Q7, AArch64::Q7_Q8,
+ AArch64::Q8_Q9, AArch64::Q9_Q10, AArch64::Q10_Q11, AArch64::Q11_Q12,
+ AArch64::Q12_Q13, AArch64::Q13_Q14, AArch64::Q14_Q15, AArch64::Q15_Q16,
+ AArch64::Q16_Q17, AArch64::Q17_Q18, AArch64::Q18_Q19, AArch64::Q19_Q20,
+ AArch64::Q20_Q21, AArch64::Q21_Q22, AArch64::Q22_Q23, AArch64::Q23_Q24,
+ AArch64::Q24_Q25, AArch64::Q25_Q26, AArch64::Q26_Q27, AArch64::Q27_Q28,
+ AArch64::Q28_Q29, AArch64::Q29_Q30, AArch64::Q30_Q31, AArch64::Q31_Q0
+};
+
+static DecodeStatus DecodeQQRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr, const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+ unsigned Register = QQDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned QQQDecoderTable[] = {
+ AArch64::Q0_Q1_Q2, AArch64::Q1_Q2_Q3, AArch64::Q2_Q3_Q4,
+ AArch64::Q3_Q4_Q5, AArch64::Q4_Q5_Q6, AArch64::Q5_Q6_Q7,
+ AArch64::Q6_Q7_Q8, AArch64::Q7_Q8_Q9, AArch64::Q8_Q9_Q10,
+ AArch64::Q9_Q10_Q11, AArch64::Q10_Q11_Q12, AArch64::Q11_Q12_Q13,
+ AArch64::Q12_Q13_Q14, AArch64::Q13_Q14_Q15, AArch64::Q14_Q15_Q16,
+ AArch64::Q15_Q16_Q17, AArch64::Q16_Q17_Q18, AArch64::Q17_Q18_Q19,
+ AArch64::Q18_Q19_Q20, AArch64::Q19_Q20_Q21, AArch64::Q20_Q21_Q22,
+ AArch64::Q21_Q22_Q23, AArch64::Q22_Q23_Q24, AArch64::Q23_Q24_Q25,
+ AArch64::Q24_Q25_Q26, AArch64::Q25_Q26_Q27, AArch64::Q26_Q27_Q28,
+ AArch64::Q27_Q28_Q29, AArch64::Q28_Q29_Q30, AArch64::Q29_Q30_Q31,
+ AArch64::Q30_Q31_Q0, AArch64::Q31_Q0_Q1
+};
+
+static DecodeStatus DecodeQQQRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr, const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+ unsigned Register = QQQDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned QQQQDecoderTable[] = {
+ AArch64::Q0_Q1_Q2_Q3, AArch64::Q1_Q2_Q3_Q4, AArch64::Q2_Q3_Q4_Q5,
+ AArch64::Q3_Q4_Q5_Q6, AArch64::Q4_Q5_Q6_Q7, AArch64::Q5_Q6_Q7_Q8,
+ AArch64::Q6_Q7_Q8_Q9, AArch64::Q7_Q8_Q9_Q10, AArch64::Q8_Q9_Q10_Q11,
+ AArch64::Q9_Q10_Q11_Q12, AArch64::Q10_Q11_Q12_Q13, AArch64::Q11_Q12_Q13_Q14,
+ AArch64::Q12_Q13_Q14_Q15, AArch64::Q13_Q14_Q15_Q16, AArch64::Q14_Q15_Q16_Q17,
+ AArch64::Q15_Q16_Q17_Q18, AArch64::Q16_Q17_Q18_Q19, AArch64::Q17_Q18_Q19_Q20,
+ AArch64::Q18_Q19_Q20_Q21, AArch64::Q19_Q20_Q21_Q22, AArch64::Q20_Q21_Q22_Q23,
+ AArch64::Q21_Q22_Q23_Q24, AArch64::Q22_Q23_Q24_Q25, AArch64::Q23_Q24_Q25_Q26,
+ AArch64::Q24_Q25_Q26_Q27, AArch64::Q25_Q26_Q27_Q28, AArch64::Q26_Q27_Q28_Q29,
+ AArch64::Q27_Q28_Q29_Q30, AArch64::Q28_Q29_Q30_Q31, AArch64::Q29_Q30_Q31_Q0,
+ AArch64::Q30_Q31_Q0_Q1, AArch64::Q31_Q0_Q1_Q2
+};
+
+static DecodeStatus DecodeQQQQRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+ unsigned Register = QQQQDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned DDDecoderTable[] = {
+ AArch64::D0_D1, AArch64::D1_D2, AArch64::D2_D3, AArch64::D3_D4,
+ AArch64::D4_D5, AArch64::D5_D6, AArch64::D6_D7, AArch64::D7_D8,
+ AArch64::D8_D9, AArch64::D9_D10, AArch64::D10_D11, AArch64::D11_D12,
+ AArch64::D12_D13, AArch64::D13_D14, AArch64::D14_D15, AArch64::D15_D16,
+ AArch64::D16_D17, AArch64::D17_D18, AArch64::D18_D19, AArch64::D19_D20,
+ AArch64::D20_D21, AArch64::D21_D22, AArch64::D22_D23, AArch64::D23_D24,
+ AArch64::D24_D25, AArch64::D25_D26, AArch64::D26_D27, AArch64::D27_D28,
+ AArch64::D28_D29, AArch64::D29_D30, AArch64::D30_D31, AArch64::D31_D0
+};
+
+static DecodeStatus DecodeDDRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr, const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+ unsigned Register = DDDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned DDDDecoderTable[] = {
+ AArch64::D0_D1_D2, AArch64::D1_D2_D3, AArch64::D2_D3_D4,
+ AArch64::D3_D4_D5, AArch64::D4_D5_D6, AArch64::D5_D6_D7,
+ AArch64::D6_D7_D8, AArch64::D7_D8_D9, AArch64::D8_D9_D10,
+ AArch64::D9_D10_D11, AArch64::D10_D11_D12, AArch64::D11_D12_D13,
+ AArch64::D12_D13_D14, AArch64::D13_D14_D15, AArch64::D14_D15_D16,
+ AArch64::D15_D16_D17, AArch64::D16_D17_D18, AArch64::D17_D18_D19,
+ AArch64::D18_D19_D20, AArch64::D19_D20_D21, AArch64::D20_D21_D22,
+ AArch64::D21_D22_D23, AArch64::D22_D23_D24, AArch64::D23_D24_D25,
+ AArch64::D24_D25_D26, AArch64::D25_D26_D27, AArch64::D26_D27_D28,
+ AArch64::D27_D28_D29, AArch64::D28_D29_D30, AArch64::D29_D30_D31,
+ AArch64::D30_D31_D0, AArch64::D31_D0_D1
+};
+
+static DecodeStatus DecodeDDDRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr, const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+ unsigned Register = DDDDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static const unsigned DDDDDecoderTable[] = {
+ AArch64::D0_D1_D2_D3, AArch64::D1_D2_D3_D4, AArch64::D2_D3_D4_D5,
+ AArch64::D3_D4_D5_D6, AArch64::D4_D5_D6_D7, AArch64::D5_D6_D7_D8,
+ AArch64::D6_D7_D8_D9, AArch64::D7_D8_D9_D10, AArch64::D8_D9_D10_D11,
+ AArch64::D9_D10_D11_D12, AArch64::D10_D11_D12_D13, AArch64::D11_D12_D13_D14,
+ AArch64::D12_D13_D14_D15, AArch64::D13_D14_D15_D16, AArch64::D14_D15_D16_D17,
+ AArch64::D15_D16_D17_D18, AArch64::D16_D17_D18_D19, AArch64::D17_D18_D19_D20,
+ AArch64::D18_D19_D20_D21, AArch64::D19_D20_D21_D22, AArch64::D20_D21_D22_D23,
+ AArch64::D21_D22_D23_D24, AArch64::D22_D23_D24_D25, AArch64::D23_D24_D25_D26,
+ AArch64::D24_D25_D26_D27, AArch64::D25_D26_D27_D28, AArch64::D26_D27_D28_D29,
+ AArch64::D27_D28_D29_D30, AArch64::D28_D29_D30_D31, AArch64::D29_D30_D31_D0,
+ AArch64::D30_D31_D0_D1, AArch64::D31_D0_D1_D2
+};
+
+static DecodeStatus DecodeDDDDRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Addr,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return Fail;
+ unsigned Register = DDDDDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return Success;
+}
+
+static DecodeStatus DecodeFixedPointScaleImm32(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const void *Decoder) {
+ // scale{5} is asserted as 1 in tblgen.
+ Imm |= 0x20;
+ Inst.addOperand(MCOperand::CreateImm(64 - Imm));
+ return Success;
+}
+
+static DecodeStatus DecodeFixedPointScaleImm64(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(64 - Imm));
+ return Success;
+}
+
+static DecodeStatus DecodePCRelLabel19(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder) {
+ int64_t ImmVal = Imm;
+ const AArch64Disassembler *Dis =
+ static_cast<const AArch64Disassembler *>(Decoder);
+
+ // Sign-extend 19-bit immediate.
+ if (ImmVal & (1 << (19 - 1)))
+ ImmVal |= ~((1LL << 19) - 1);
+
+ if (!Dis->tryAddingSymbolicOperand(Inst, ImmVal << 2, Addr,
+ Inst.getOpcode() != AArch64::LDRXl, 0, 4))
+ Inst.addOperand(MCOperand::CreateImm(ImmVal));
+ return Success;
+}
+
+static DecodeStatus DecodeMemExtend(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Address, const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm((Imm >> 1) & 1));
+ Inst.addOperand(MCOperand::CreateImm(Imm & 1));
+ return Success;
+}
+
+static DecodeStatus DecodeMRSSystemRegister(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Address,
+ const void *Decoder) {
+ const AArch64Disassembler *Dis =
+ static_cast<const AArch64Disassembler *>(Decoder);
+ const MCSubtargetInfo &STI = Dis->getSubtargetInfo();
+
+ Imm |= 0x8000;
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+
+ bool ValidNamed;
+ (void)AArch64SysReg::MRSMapper(STI.getFeatureBits())
+ .toString(Imm, ValidNamed);
+
+ return ValidNamed ? Success : Fail;
+}
+
+static DecodeStatus DecodeMSRSystemRegister(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Address,
+ const void *Decoder) {
+ const AArch64Disassembler *Dis =
+ static_cast<const AArch64Disassembler *>(Decoder);
+ const MCSubtargetInfo &STI = Dis->getSubtargetInfo();
+
+ Imm |= 0x8000;
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+
+ bool ValidNamed;
+ (void)AArch64SysReg::MSRMapper(STI.getFeatureBits())
+ .toString(Imm, ValidNamed);
+
+ return ValidNamed ? Success : Fail;
+}
+
+static DecodeStatus DecodeFMOVLaneInstruction(llvm::MCInst &Inst, unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ // This decoder exists to add the dummy Lane operand to the MCInst, which must
+ // be 1 in assembly but has no other real manifestation.
+ unsigned Rd = fieldFromInstruction(Insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(Insn, 5, 5);
+ unsigned IsToVec = fieldFromInstruction(Insn, 16, 1);
+
+ if (IsToVec) {
+ DecodeFPR128RegisterClass(Inst, Rd, Address, Decoder);
+ DecodeGPR64RegisterClass(Inst, Rn, Address, Decoder);
+ } else {
+ DecodeGPR64RegisterClass(Inst, Rd, Address, Decoder);
+ DecodeFPR128RegisterClass(Inst, Rn, Address, Decoder);
+ }
+
+ // Add the lane
+ Inst.addOperand(MCOperand::CreateImm(1));
+
+ return Success;
+}
+
+static DecodeStatus DecodeVecShiftRImm(llvm::MCInst &Inst, unsigned Imm,
+ unsigned Add) {
+ Inst.addOperand(MCOperand::CreateImm(Add - Imm));
+ return Success;
+}
+
+static DecodeStatus DecodeVecShiftLImm(llvm::MCInst &Inst, unsigned Imm,
+ unsigned Add) {
+ Inst.addOperand(MCOperand::CreateImm((Imm + Add) & (Add - 1)));
+ return Success;
+}
+
+static DecodeStatus DecodeVecShiftR64Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder) {
+ return DecodeVecShiftRImm(Inst, Imm, 64);
+}
+
+static DecodeStatus DecodeVecShiftR64ImmNarrow(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const void *Decoder) {
+ return DecodeVecShiftRImm(Inst, Imm | 0x20, 64);
+}
+
+static DecodeStatus DecodeVecShiftR32Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder) {
+ return DecodeVecShiftRImm(Inst, Imm, 32);
+}
+
+static DecodeStatus DecodeVecShiftR32ImmNarrow(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const void *Decoder) {
+ return DecodeVecShiftRImm(Inst, Imm | 0x10, 32);
+}
+
+static DecodeStatus DecodeVecShiftR16Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder) {
+ return DecodeVecShiftRImm(Inst, Imm, 16);
+}
+
+static DecodeStatus DecodeVecShiftR16ImmNarrow(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const void *Decoder) {
+ return DecodeVecShiftRImm(Inst, Imm | 0x8, 16);
+}
+
+static DecodeStatus DecodeVecShiftR8Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder) {
+ return DecodeVecShiftRImm(Inst, Imm, 8);
+}
+
+static DecodeStatus DecodeVecShiftL64Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder) {
+ return DecodeVecShiftLImm(Inst, Imm, 64);
+}
+
+static DecodeStatus DecodeVecShiftL32Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder) {
+ return DecodeVecShiftLImm(Inst, Imm, 32);
+}
+
+static DecodeStatus DecodeVecShiftL16Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder) {
+ return DecodeVecShiftLImm(Inst, Imm, 16);
+}
+
+static DecodeStatus DecodeVecShiftL8Imm(llvm::MCInst &Inst, unsigned Imm,
+ uint64_t Addr, const void *Decoder) {
+ return DecodeVecShiftLImm(Inst, Imm, 8);
+}
+
+static DecodeStatus DecodeThreeAddrSRegInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Addr,
+ const void *Decoder) {
+ unsigned Rd = fieldFromInstruction(insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(insn, 5, 5);
+ unsigned Rm = fieldFromInstruction(insn, 16, 5);
+ unsigned shiftHi = fieldFromInstruction(insn, 22, 2);
+ unsigned shiftLo = fieldFromInstruction(insn, 10, 6);
+ unsigned shift = (shiftHi << 6) | shiftLo;
+ switch (Inst.getOpcode()) {
+ default:
+ return Fail;
+ case AArch64::ADDWrs:
+ case AArch64::ADDSWrs:
+ case AArch64::SUBWrs:
+ case AArch64::SUBSWrs:
+ // if shift == '11' then ReservedValue()
+ if (shiftHi == 0x3)
+ return Fail;
+ // Deliberate fallthrough
+ case AArch64::ANDWrs:
+ case AArch64::ANDSWrs:
+ case AArch64::BICWrs:
+ case AArch64::BICSWrs:
+ case AArch64::ORRWrs:
+ case AArch64::ORNWrs:
+ case AArch64::EORWrs:
+ case AArch64::EONWrs: {
+ // if sf == '0' and imm6<5> == '1' then ReservedValue()
+ if (shiftLo >> 5 == 1)
+ return Fail;
+ DecodeGPR32RegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR32RegisterClass(Inst, Rn, Addr, Decoder);
+ DecodeGPR32RegisterClass(Inst, Rm, Addr, Decoder);
+ break;
+ }
+ case AArch64::ADDXrs:
+ case AArch64::ADDSXrs:
+ case AArch64::SUBXrs:
+ case AArch64::SUBSXrs:
+ // if shift == '11' then ReservedValue()
+ if (shiftHi == 0x3)
+ return Fail;
+ // Deliberate fallthrough
+ case AArch64::ANDXrs:
+ case AArch64::ANDSXrs:
+ case AArch64::BICXrs:
+ case AArch64::BICSXrs:
+ case AArch64::ORRXrs:
+ case AArch64::ORNXrs:
+ case AArch64::EORXrs:
+ case AArch64::EONXrs:
+ DecodeGPR64RegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR64RegisterClass(Inst, Rn, Addr, Decoder);
+ DecodeGPR64RegisterClass(Inst, Rm, Addr, Decoder);
+ break;
+ }
+
+ Inst.addOperand(MCOperand::CreateImm(shift));
+ return Success;
+}
+
+static DecodeStatus DecodeMoveImmInstruction(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Addr,
+ const void *Decoder) {
+ unsigned Rd = fieldFromInstruction(insn, 0, 5);
+ unsigned imm = fieldFromInstruction(insn, 5, 16);
+ unsigned shift = fieldFromInstruction(insn, 21, 2);
+ shift <<= 4;
+ switch (Inst.getOpcode()) {
+ default:
+ return Fail;
+ case AArch64::MOVZWi:
+ case AArch64::MOVNWi:
+ case AArch64::MOVKWi:
+ if (shift & (1U << 5))
+ return Fail;
+ DecodeGPR32RegisterClass(Inst, Rd, Addr, Decoder);
+ break;
+ case AArch64::MOVZXi:
+ case AArch64::MOVNXi:
+ case AArch64::MOVKXi:
+ DecodeGPR64RegisterClass(Inst, Rd, Addr, Decoder);
+ break;
+ }
+
+ if (Inst.getOpcode() == AArch64::MOVKWi ||
+ Inst.getOpcode() == AArch64::MOVKXi)
+ Inst.addOperand(Inst.getOperand(0));
+
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ Inst.addOperand(MCOperand::CreateImm(shift));
+ return Success;
+}
+
+static DecodeStatus DecodeUnsignedLdStInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Addr,
+ const void *Decoder) {
+ unsigned Rt = fieldFromInstruction(insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(insn, 5, 5);
+ unsigned offset = fieldFromInstruction(insn, 10, 12);
+ const AArch64Disassembler *Dis =
+ static_cast<const AArch64Disassembler *>(Decoder);
+
+ switch (Inst.getOpcode()) {
+ default:
+ return Fail;
+ case AArch64::PRFMui:
+ // Rt is an immediate in prefetch.
+ Inst.addOperand(MCOperand::CreateImm(Rt));
+ break;
+ case AArch64::STRBBui:
+ case AArch64::LDRBBui:
+ case AArch64::LDRSBWui:
+ case AArch64::STRHHui:
+ case AArch64::LDRHHui:
+ case AArch64::LDRSHWui:
+ case AArch64::STRWui:
+ case AArch64::LDRWui:
+ DecodeGPR32RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDRSBXui:
+ case AArch64::LDRSHXui:
+ case AArch64::LDRSWui:
+ case AArch64::STRXui:
+ case AArch64::LDRXui:
+ DecodeGPR64RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDRQui:
+ case AArch64::STRQui:
+ DecodeFPR128RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDRDui:
+ case AArch64::STRDui:
+ DecodeFPR64RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDRSui:
+ case AArch64::STRSui:
+ DecodeFPR32RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDRHui:
+ case AArch64::STRHui:
+ DecodeFPR16RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDRBui:
+ case AArch64::STRBui:
+ DecodeFPR8RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ }
+
+ DecodeGPR64spRegisterClass(Inst, Rn, Addr, Decoder);
+ if (!Dis->tryAddingSymbolicOperand(Inst, offset, Addr, Fail, 0, 4))
+ Inst.addOperand(MCOperand::CreateImm(offset));
+ return Success;
+}
+
+static DecodeStatus DecodeSignedLdStInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Addr,
+ const void *Decoder) {
+ unsigned Rt = fieldFromInstruction(insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(insn, 5, 5);
+ int64_t offset = fieldFromInstruction(insn, 12, 9);
+
+ // offset is a 9-bit signed immediate, so sign extend it to
+ // fill the unsigned.
+ if (offset & (1 << (9 - 1)))
+ offset |= ~((1LL << 9) - 1);
+
+ // First operand is always the writeback to the address register, if needed.
+ switch (Inst.getOpcode()) {
+ default:
+ break;
+ case AArch64::LDRSBWpre:
+ case AArch64::LDRSHWpre:
+ case AArch64::STRBBpre:
+ case AArch64::LDRBBpre:
+ case AArch64::STRHHpre:
+ case AArch64::LDRHHpre:
+ case AArch64::STRWpre:
+ case AArch64::LDRWpre:
+ case AArch64::LDRSBWpost:
+ case AArch64::LDRSHWpost:
+ case AArch64::STRBBpost:
+ case AArch64::LDRBBpost:
+ case AArch64::STRHHpost:
+ case AArch64::LDRHHpost:
+ case AArch64::STRWpost:
+ case AArch64::LDRWpost:
+ case AArch64::LDRSBXpre:
+ case AArch64::LDRSHXpre:
+ case AArch64::STRXpre:
+ case AArch64::LDRSWpre:
+ case AArch64::LDRXpre:
+ case AArch64::LDRSBXpost:
+ case AArch64::LDRSHXpost:
+ case AArch64::STRXpost:
+ case AArch64::LDRSWpost:
+ case AArch64::LDRXpost:
+ case AArch64::LDRQpre:
+ case AArch64::STRQpre:
+ case AArch64::LDRQpost:
+ case AArch64::STRQpost:
+ case AArch64::LDRDpre:
+ case AArch64::STRDpre:
+ case AArch64::LDRDpost:
+ case AArch64::STRDpost:
+ case AArch64::LDRSpre:
+ case AArch64::STRSpre:
+ case AArch64::LDRSpost:
+ case AArch64::STRSpost:
+ case AArch64::LDRHpre:
+ case AArch64::STRHpre:
+ case AArch64::LDRHpost:
+ case AArch64::STRHpost:
+ case AArch64::LDRBpre:
+ case AArch64::STRBpre:
+ case AArch64::LDRBpost:
+ case AArch64::STRBpost:
+ DecodeGPR64spRegisterClass(Inst, Rn, Addr, Decoder);
+ break;
+ }
+
+ switch (Inst.getOpcode()) {
+ default:
+ return Fail;
+ case AArch64::PRFUMi:
+ // Rt is an immediate in prefetch.
+ Inst.addOperand(MCOperand::CreateImm(Rt));
+ break;
+ case AArch64::STURBBi:
+ case AArch64::LDURBBi:
+ case AArch64::LDURSBWi:
+ case AArch64::STURHHi:
+ case AArch64::LDURHHi:
+ case AArch64::LDURSHWi:
+ case AArch64::STURWi:
+ case AArch64::LDURWi:
+ case AArch64::LDTRSBWi:
+ case AArch64::LDTRSHWi:
+ case AArch64::STTRWi:
+ case AArch64::LDTRWi:
+ case AArch64::STTRHi:
+ case AArch64::LDTRHi:
+ case AArch64::LDTRBi:
+ case AArch64::STTRBi:
+ case AArch64::LDRSBWpre:
+ case AArch64::LDRSHWpre:
+ case AArch64::STRBBpre:
+ case AArch64::LDRBBpre:
+ case AArch64::STRHHpre:
+ case AArch64::LDRHHpre:
+ case AArch64::STRWpre:
+ case AArch64::LDRWpre:
+ case AArch64::LDRSBWpost:
+ case AArch64::LDRSHWpost:
+ case AArch64::STRBBpost:
+ case AArch64::LDRBBpost:
+ case AArch64::STRHHpost:
+ case AArch64::LDRHHpost:
+ case AArch64::STRWpost:
+ case AArch64::LDRWpost:
+ DecodeGPR32RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDURSBXi:
+ case AArch64::LDURSHXi:
+ case AArch64::LDURSWi:
+ case AArch64::STURXi:
+ case AArch64::LDURXi:
+ case AArch64::LDTRSBXi:
+ case AArch64::LDTRSHXi:
+ case AArch64::LDTRSWi:
+ case AArch64::STTRXi:
+ case AArch64::LDTRXi:
+ case AArch64::LDRSBXpre:
+ case AArch64::LDRSHXpre:
+ case AArch64::STRXpre:
+ case AArch64::LDRSWpre:
+ case AArch64::LDRXpre:
+ case AArch64::LDRSBXpost:
+ case AArch64::LDRSHXpost:
+ case AArch64::STRXpost:
+ case AArch64::LDRSWpost:
+ case AArch64::LDRXpost:
+ DecodeGPR64RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDURQi:
+ case AArch64::STURQi:
+ case AArch64::LDRQpre:
+ case AArch64::STRQpre:
+ case AArch64::LDRQpost:
+ case AArch64::STRQpost:
+ DecodeFPR128RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDURDi:
+ case AArch64::STURDi:
+ case AArch64::LDRDpre:
+ case AArch64::STRDpre:
+ case AArch64::LDRDpost:
+ case AArch64::STRDpost:
+ DecodeFPR64RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDURSi:
+ case AArch64::STURSi:
+ case AArch64::LDRSpre:
+ case AArch64::STRSpre:
+ case AArch64::LDRSpost:
+ case AArch64::STRSpost:
+ DecodeFPR32RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDURHi:
+ case AArch64::STURHi:
+ case AArch64::LDRHpre:
+ case AArch64::STRHpre:
+ case AArch64::LDRHpost:
+ case AArch64::STRHpost:
+ DecodeFPR16RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::LDURBi:
+ case AArch64::STURBi:
+ case AArch64::LDRBpre:
+ case AArch64::STRBpre:
+ case AArch64::LDRBpost:
+ case AArch64::STRBpost:
+ DecodeFPR8RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ }
+
+ DecodeGPR64spRegisterClass(Inst, Rn, Addr, Decoder);
+ Inst.addOperand(MCOperand::CreateImm(offset));
+
+ bool IsLoad = fieldFromInstruction(insn, 22, 1);
+ bool IsIndexed = fieldFromInstruction(insn, 10, 2) != 0;
+ bool IsFP = fieldFromInstruction(insn, 26, 1);
+
+ // Cannot write back to a transfer register (but xzr != sp).
+ if (IsLoad && IsIndexed && !IsFP && Rn != 31 && Rt == Rn)
+ return SoftFail;
+
+ return Success;
+}
+
+static DecodeStatus DecodeExclusiveLdStInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Addr,
+ const void *Decoder) {
+ unsigned Rt = fieldFromInstruction(insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(insn, 5, 5);
+ unsigned Rt2 = fieldFromInstruction(insn, 10, 5);
+ unsigned Rs = fieldFromInstruction(insn, 16, 5);
+
+ unsigned Opcode = Inst.getOpcode();
+ switch (Opcode) {
+ default:
+ return Fail;
+ case AArch64::STLXRW:
+ case AArch64::STLXRB:
+ case AArch64::STLXRH:
+ case AArch64::STXRW:
+ case AArch64::STXRB:
+ case AArch64::STXRH:
+ DecodeGPR32RegisterClass(Inst, Rs, Addr, Decoder);
+ // FALLTHROUGH
+ case AArch64::LDARW:
+ case AArch64::LDARB:
+ case AArch64::LDARH:
+ case AArch64::LDAXRW:
+ case AArch64::LDAXRB:
+ case AArch64::LDAXRH:
+ case AArch64::LDXRW:
+ case AArch64::LDXRB:
+ case AArch64::LDXRH:
+ case AArch64::STLRW:
+ case AArch64::STLRB:
+ case AArch64::STLRH:
+ DecodeGPR32RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::STLXRX:
+ case AArch64::STXRX:
+ DecodeGPR32RegisterClass(Inst, Rs, Addr, Decoder);
+ // FALLTHROUGH
+ case AArch64::LDARX:
+ case AArch64::LDAXRX:
+ case AArch64::LDXRX:
+ case AArch64::STLRX:
+ DecodeGPR64RegisterClass(Inst, Rt, Addr, Decoder);
+ break;
+ case AArch64::STLXPW:
+ case AArch64::STXPW:
+ DecodeGPR32RegisterClass(Inst, Rs, Addr, Decoder);
+ // FALLTHROUGH
+ case AArch64::LDAXPW:
+ case AArch64::LDXPW:
+ DecodeGPR32RegisterClass(Inst, Rt, Addr, Decoder);
+ DecodeGPR32RegisterClass(Inst, Rt2, Addr, Decoder);
+ break;
+ case AArch64::STLXPX:
+ case AArch64::STXPX:
+ DecodeGPR32RegisterClass(Inst, Rs, Addr, Decoder);
+ // FALLTHROUGH
+ case AArch64::LDAXPX:
+ case AArch64::LDXPX:
+ DecodeGPR64RegisterClass(Inst, Rt, Addr, Decoder);
+ DecodeGPR64RegisterClass(Inst, Rt2, Addr, Decoder);
+ break;
+ }
+
+ DecodeGPR64spRegisterClass(Inst, Rn, Addr, Decoder);
+
+ // You shouldn't load to the same register twice in an instruction...
+ if ((Opcode == AArch64::LDAXPW || Opcode == AArch64::LDXPW ||
+ Opcode == AArch64::LDAXPX || Opcode == AArch64::LDXPX) &&
+ Rt == Rt2)
+ return SoftFail;
+
+ return Success;
+}
+
+static DecodeStatus DecodePairLdStInstruction(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Addr,
+ const void *Decoder) {
+ unsigned Rt = fieldFromInstruction(insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(insn, 5, 5);
+ unsigned Rt2 = fieldFromInstruction(insn, 10, 5);
+ int64_t offset = fieldFromInstruction(insn, 15, 7);
+ bool IsLoad = fieldFromInstruction(insn, 22, 1);
+
+ // offset is a 7-bit signed immediate, so sign extend it to
+ // fill the unsigned.
+ if (offset & (1 << (7 - 1)))
+ offset |= ~((1LL << 7) - 1);
+
+ unsigned Opcode = Inst.getOpcode();
+ bool NeedsDisjointWritebackTransfer = false;
+
+ // First operand is always writeback of base register.
+ switch (Opcode) {
+ default:
+ break;
+ case AArch64::LDPXpost:
+ case AArch64::STPXpost:
+ case AArch64::LDPSWpost:
+ case AArch64::LDPXpre:
+ case AArch64::STPXpre:
+ case AArch64::LDPSWpre:
+ case AArch64::LDPWpost:
+ case AArch64::STPWpost:
+ case AArch64::LDPWpre:
+ case AArch64::STPWpre:
+ case AArch64::LDPQpost:
+ case AArch64::STPQpost:
+ case AArch64::LDPQpre:
+ case AArch64::STPQpre:
+ case AArch64::LDPDpost:
+ case AArch64::STPDpost:
+ case AArch64::LDPDpre:
+ case AArch64::STPDpre:
+ case AArch64::LDPSpost:
+ case AArch64::STPSpost:
+ case AArch64::LDPSpre:
+ case AArch64::STPSpre:
+ DecodeGPR64spRegisterClass(Inst, Rn, Addr, Decoder);
+ break;
+ }
+
+ switch (Opcode) {
+ default:
+ return Fail;
+ case AArch64::LDPXpost:
+ case AArch64::STPXpost:
+ case AArch64::LDPSWpost:
+ case AArch64::LDPXpre:
+ case AArch64::STPXpre:
+ case AArch64::LDPSWpre:
+ NeedsDisjointWritebackTransfer = true;
+ // Fallthrough
+ case AArch64::LDNPXi:
+ case AArch64::STNPXi:
+ case AArch64::LDPXi:
+ case AArch64::STPXi:
+ case AArch64::LDPSWi:
+ DecodeGPR64RegisterClass(Inst, Rt, Addr, Decoder);
+ DecodeGPR64RegisterClass(Inst, Rt2, Addr, Decoder);
+ break;
+ case AArch64::LDPWpost:
+ case AArch64::STPWpost:
+ case AArch64::LDPWpre:
+ case AArch64::STPWpre:
+ NeedsDisjointWritebackTransfer = true;
+ // Fallthrough
+ case AArch64::LDNPWi:
+ case AArch64::STNPWi:
+ case AArch64::LDPWi:
+ case AArch64::STPWi:
+ DecodeGPR32RegisterClass(Inst, Rt, Addr, Decoder);
+ DecodeGPR32RegisterClass(Inst, Rt2, Addr, Decoder);
+ break;
+ case AArch64::LDNPQi:
+ case AArch64::STNPQi:
+ case AArch64::LDPQpost:
+ case AArch64::STPQpost:
+ case AArch64::LDPQi:
+ case AArch64::STPQi:
+ case AArch64::LDPQpre:
+ case AArch64::STPQpre:
+ DecodeFPR128RegisterClass(Inst, Rt, Addr, Decoder);
+ DecodeFPR128RegisterClass(Inst, Rt2, Addr, Decoder);
+ break;
+ case AArch64::LDNPDi:
+ case AArch64::STNPDi:
+ case AArch64::LDPDpost:
+ case AArch64::STPDpost:
+ case AArch64::LDPDi:
+ case AArch64::STPDi:
+ case AArch64::LDPDpre:
+ case AArch64::STPDpre:
+ DecodeFPR64RegisterClass(Inst, Rt, Addr, Decoder);
+ DecodeFPR64RegisterClass(Inst, Rt2, Addr, Decoder);
+ break;
+ case AArch64::LDNPSi:
+ case AArch64::STNPSi:
+ case AArch64::LDPSpost:
+ case AArch64::STPSpost:
+ case AArch64::LDPSi:
+ case AArch64::STPSi:
+ case AArch64::LDPSpre:
+ case AArch64::STPSpre:
+ DecodeFPR32RegisterClass(Inst, Rt, Addr, Decoder);
+ DecodeFPR32RegisterClass(Inst, Rt2, Addr, Decoder);
+ break;
+ }
+
+ DecodeGPR64spRegisterClass(Inst, Rn, Addr, Decoder);
+ Inst.addOperand(MCOperand::CreateImm(offset));
+
+ // You shouldn't load to the same register twice in an instruction...
+ if (IsLoad && Rt == Rt2)
+ return SoftFail;
+
+ // ... or do any operation that writes-back to a transfer register. But note
+ // that "stp xzr, xzr, [sp], #4" is fine because xzr and sp are different.
+ if (NeedsDisjointWritebackTransfer && Rn != 31 && (Rt == Rn || Rt2 == Rn))
+ return SoftFail;
+
+ return Success;
+}
+
+static DecodeStatus DecodeAddSubERegInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Addr,
+ const void *Decoder) {
+ unsigned Rd = fieldFromInstruction(insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(insn, 5, 5);
+ unsigned Rm = fieldFromInstruction(insn, 16, 5);
+ unsigned extend = fieldFromInstruction(insn, 10, 6);
+
+ unsigned shift = extend & 0x7;
+ if (shift > 4)
+ return Fail;
+
+ switch (Inst.getOpcode()) {
+ default:
+ return Fail;
+ case AArch64::ADDWrx:
+ case AArch64::SUBWrx:
+ DecodeGPR32spRegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR32spRegisterClass(Inst, Rn, Addr, Decoder);
+ DecodeGPR32RegisterClass(Inst, Rm, Addr, Decoder);
+ break;
+ case AArch64::ADDSWrx:
+ case AArch64::SUBSWrx:
+ DecodeGPR32RegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR32spRegisterClass(Inst, Rn, Addr, Decoder);
+ DecodeGPR32RegisterClass(Inst, Rm, Addr, Decoder);
+ break;
+ case AArch64::ADDXrx:
+ case AArch64::SUBXrx:
+ DecodeGPR64spRegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR64spRegisterClass(Inst, Rn, Addr, Decoder);
+ DecodeGPR32RegisterClass(Inst, Rm, Addr, Decoder);
+ break;
+ case AArch64::ADDSXrx:
+ case AArch64::SUBSXrx:
+ DecodeGPR64RegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR64spRegisterClass(Inst, Rn, Addr, Decoder);
+ DecodeGPR32RegisterClass(Inst, Rm, Addr, Decoder);
+ break;
+ case AArch64::ADDXrx64:
+ case AArch64::SUBXrx64:
+ DecodeGPR64spRegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR64spRegisterClass(Inst, Rn, Addr, Decoder);
+ DecodeGPR64RegisterClass(Inst, Rm, Addr, Decoder);
+ break;
+ case AArch64::SUBSXrx64:
+ case AArch64::ADDSXrx64:
+ DecodeGPR64RegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR64spRegisterClass(Inst, Rn, Addr, Decoder);
+ DecodeGPR64RegisterClass(Inst, Rm, Addr, Decoder);
+ break;
+ }
+
+ Inst.addOperand(MCOperand::CreateImm(extend));
+ return Success;
+}
+
+static DecodeStatus DecodeLogicalImmInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Addr,
+ const void *Decoder) {
+ unsigned Rd = fieldFromInstruction(insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(insn, 5, 5);
+ unsigned Datasize = fieldFromInstruction(insn, 31, 1);
+ unsigned imm;
+
+ if (Datasize) {
+ if (Inst.getOpcode() == AArch64::ANDSXri)
+ DecodeGPR64RegisterClass(Inst, Rd, Addr, Decoder);
+ else
+ DecodeGPR64spRegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR64RegisterClass(Inst, Rn, Addr, Decoder);
+ imm = fieldFromInstruction(insn, 10, 13);
+ if (!AArch64_AM::isValidDecodeLogicalImmediate(imm, 64))
+ return Fail;
+ } else {
+ if (Inst.getOpcode() == AArch64::ANDSWri)
+ DecodeGPR32RegisterClass(Inst, Rd, Addr, Decoder);
+ else
+ DecodeGPR32spRegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR32RegisterClass(Inst, Rn, Addr, Decoder);
+ imm = fieldFromInstruction(insn, 10, 12);
+ if (!AArch64_AM::isValidDecodeLogicalImmediate(imm, 32))
+ return Fail;
+ }
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ return Success;
+}
+
+static DecodeStatus DecodeModImmInstruction(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Addr,
+ const void *Decoder) {
+ unsigned Rd = fieldFromInstruction(insn, 0, 5);
+ unsigned cmode = fieldFromInstruction(insn, 12, 4);
+ unsigned imm = fieldFromInstruction(insn, 16, 3) << 5;
+ imm |= fieldFromInstruction(insn, 5, 5);
+
+ if (Inst.getOpcode() == AArch64::MOVID)
+ DecodeFPR64RegisterClass(Inst, Rd, Addr, Decoder);
+ else
+ DecodeVectorRegisterClass(Inst, Rd, Addr, Decoder);
+
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ switch (Inst.getOpcode()) {
+ default:
+ break;
+ case AArch64::MOVIv4i16:
+ case AArch64::MOVIv8i16:
+ case AArch64::MVNIv4i16:
+ case AArch64::MVNIv8i16:
+ case AArch64::MOVIv2i32:
+ case AArch64::MOVIv4i32:
+ case AArch64::MVNIv2i32:
+ case AArch64::MVNIv4i32:
+ Inst.addOperand(MCOperand::CreateImm((cmode & 6) << 2));
+ break;
+ case AArch64::MOVIv2s_msl:
+ case AArch64::MOVIv4s_msl:
+ case AArch64::MVNIv2s_msl:
+ case AArch64::MVNIv4s_msl:
+ Inst.addOperand(MCOperand::CreateImm(cmode & 1 ? 0x110 : 0x108));
+ break;
+ }
+
+ return Success;
+}
+
+static DecodeStatus DecodeModImmTiedInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Addr,
+ const void *Decoder) {
+ unsigned Rd = fieldFromInstruction(insn, 0, 5);
+ unsigned cmode = fieldFromInstruction(insn, 12, 4);
+ unsigned imm = fieldFromInstruction(insn, 16, 3) << 5;
+ imm |= fieldFromInstruction(insn, 5, 5);
+
+ // Tied operands added twice.
+ DecodeVectorRegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeVectorRegisterClass(Inst, Rd, Addr, Decoder);
+
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ Inst.addOperand(MCOperand::CreateImm((cmode & 6) << 2));
+
+ return Success;
+}
+
+static DecodeStatus DecodeAdrInstruction(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Addr, const void *Decoder) {
+ unsigned Rd = fieldFromInstruction(insn, 0, 5);
+ int64_t imm = fieldFromInstruction(insn, 5, 19) << 2;
+ imm |= fieldFromInstruction(insn, 29, 2);
+ const AArch64Disassembler *Dis =
+ static_cast<const AArch64Disassembler *>(Decoder);
+
+ // Sign-extend the 21-bit immediate.
+ if (imm & (1 << (21 - 1)))
+ imm |= ~((1LL << 21) - 1);
+
+ DecodeGPR64RegisterClass(Inst, Rd, Addr, Decoder);
+ if (!Dis->tryAddingSymbolicOperand(Inst, imm, Addr, Fail, 0, 4))
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ return Success;
+}
+
+static DecodeStatus DecodeBaseAddSubImm(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Addr, const void *Decoder) {
+ unsigned Rd = fieldFromInstruction(insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(insn, 5, 5);
+ unsigned Imm = fieldFromInstruction(insn, 10, 14);
+ unsigned S = fieldFromInstruction(insn, 29, 1);
+ unsigned Datasize = fieldFromInstruction(insn, 31, 1);
+
+ unsigned ShifterVal = (Imm >> 12) & 3;
+ unsigned ImmVal = Imm & 0xFFF;
+ const AArch64Disassembler *Dis =
+ static_cast<const AArch64Disassembler *>(Decoder);
+
+ if (ShifterVal != 0 && ShifterVal != 1)
+ return Fail;
+
+ if (Datasize) {
+ if (Rd == 31 && !S)
+ DecodeGPR64spRegisterClass(Inst, Rd, Addr, Decoder);
+ else
+ DecodeGPR64RegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR64spRegisterClass(Inst, Rn, Addr, Decoder);
+ } else {
+ if (Rd == 31 && !S)
+ DecodeGPR32spRegisterClass(Inst, Rd, Addr, Decoder);
+ else
+ DecodeGPR32RegisterClass(Inst, Rd, Addr, Decoder);
+ DecodeGPR32spRegisterClass(Inst, Rn, Addr, Decoder);
+ }
+
+ if (!Dis->tryAddingSymbolicOperand(Inst, Imm, Addr, Fail, 0, 4))
+ Inst.addOperand(MCOperand::CreateImm(ImmVal));
+ Inst.addOperand(MCOperand::CreateImm(12 * ShifterVal));
+ return Success;
+}
+
+static DecodeStatus DecodeUnconditionalBranch(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Addr,
+ const void *Decoder) {
+ int64_t imm = fieldFromInstruction(insn, 0, 26);
+ const AArch64Disassembler *Dis =
+ static_cast<const AArch64Disassembler *>(Decoder);
+
+ // Sign-extend the 26-bit immediate.
+ if (imm & (1 << (26 - 1)))
+ imm |= ~((1LL << 26) - 1);
+
+ if (!Dis->tryAddingSymbolicOperand(Inst, imm << 2, Addr, true, 0, 4))
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ return Success;
+}
+
+static DecodeStatus DecodeSystemPStateInstruction(llvm::MCInst &Inst,
+ uint32_t insn, uint64_t Addr,
+ const void *Decoder) {
+ uint64_t op1 = fieldFromInstruction(insn, 16, 3);
+ uint64_t op2 = fieldFromInstruction(insn, 5, 3);
+ uint64_t crm = fieldFromInstruction(insn, 8, 4);
+
+ uint64_t pstate_field = (op1 << 3) | op2;
+
+ Inst.addOperand(MCOperand::CreateImm(pstate_field));
+ Inst.addOperand(MCOperand::CreateImm(crm));
+
+ bool ValidNamed;
+ (void)AArch64PState::PStateMapper().toString(pstate_field, ValidNamed);
+
+ return ValidNamed ? Success : Fail;
+}
+
+static DecodeStatus DecodeTestAndBranch(llvm::MCInst &Inst, uint32_t insn,
+ uint64_t Addr, const void *Decoder) {
+ uint64_t Rt = fieldFromInstruction(insn, 0, 5);
+ uint64_t bit = fieldFromInstruction(insn, 31, 1) << 5;
+ bit |= fieldFromInstruction(insn, 19, 5);
+ int64_t dst = fieldFromInstruction(insn, 5, 14);
+ const AArch64Disassembler *Dis =
+ static_cast<const AArch64Disassembler *>(Decoder);
+
+ // Sign-extend 14-bit immediate.
+ if (dst & (1 << (14 - 1)))
+ dst |= ~((1LL << 14) - 1);
+
+ if (fieldFromInstruction(insn, 31, 1) == 0)
+ DecodeGPR32RegisterClass(Inst, Rt, Addr, Decoder);
+ else
+ DecodeGPR64RegisterClass(Inst, Rt, Addr, Decoder);
+ Inst.addOperand(MCOperand::CreateImm(bit));
+ if (!Dis->tryAddingSymbolicOperand(Inst, dst << 2, Addr, true, 0, 4))
+ Inst.addOperand(MCOperand::CreateImm(dst));
+
+ return Success;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.h b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.h
new file mode 100644
index 0000000..68d4867
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.h
@@ -0,0 +1,40 @@
+//===- AArch64Disassembler.h - Disassembler for AArch64 ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64DISASSEMBLER_H
+#define AArch64DISASSEMBLER_H
+
+#include "llvm/MC/MCDisassembler.h"
+
+namespace llvm {
+
+class MCInst;
+class MemoryObject;
+class raw_ostream;
+
+class AArch64Disassembler : public MCDisassembler {
+public:
+ AArch64Disassembler(const MCSubtargetInfo &STI, MCContext &Ctx)
+ : MCDisassembler(STI, Ctx) {}
+
+ ~AArch64Disassembler() {}
+
+ /// getInstruction - See MCDisassembler.
+ MCDisassembler::DecodeStatus
+ getInstruction(MCInst &instr, uint64_t &size, const MemoryObject &region,
+ uint64_t address, raw_ostream &vStream,
+ raw_ostream &cStream) const override;
+};
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.cpp b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.cpp
new file mode 100644
index 0000000..2057c51
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.cpp
@@ -0,0 +1,220 @@
+//===- AArch64ExternalSymbolizer.cpp - Symbolizer for AArch64 ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64ExternalSymbolizer.h"
+#include "AArch64Subtarget.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "Utils/AArch64BaseInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-disassembler"
+
+static MCSymbolRefExpr::VariantKind
+getVariant(uint64_t LLVMDisassembler_VariantKind) {
+ switch (LLVMDisassembler_VariantKind) {
+ case LLVMDisassembler_VariantKind_None:
+ return MCSymbolRefExpr::VK_None;
+ case LLVMDisassembler_VariantKind_ARM64_PAGE:
+ return MCSymbolRefExpr::VK_PAGE;
+ case LLVMDisassembler_VariantKind_ARM64_PAGEOFF:
+ return MCSymbolRefExpr::VK_PAGEOFF;
+ case LLVMDisassembler_VariantKind_ARM64_GOTPAGE:
+ return MCSymbolRefExpr::VK_GOTPAGE;
+ case LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF:
+ return MCSymbolRefExpr::VK_GOTPAGEOFF;
+ case LLVMDisassembler_VariantKind_ARM64_TLVP:
+ case LLVMDisassembler_VariantKind_ARM64_TLVOFF:
+ default:
+ llvm_unreachable("bad LLVMDisassembler_VariantKind");
+ }
+}
+
+/// tryAddingSymbolicOperand - tryAddingSymbolicOperand trys to add a symbolic
+/// operand in place of the immediate Value in the MCInst. The immediate
+/// Value has not had any PC adjustment made by the caller. If the instruction
+/// is a branch that adds the PC to the immediate Value then isBranch is
+/// Success, else Fail. If GetOpInfo is non-null, then it is called to get any
+/// symbolic information at the Address for this instrution. If that returns
+/// non-zero then the symbolic information it returns is used to create an
+/// MCExpr and that is added as an operand to the MCInst. If GetOpInfo()
+/// returns zero and isBranch is Success then a symbol look up for
+/// Address + Value is done and if a symbol is found an MCExpr is created with
+/// that, else an MCExpr with Address + Value is created. If GetOpInfo()
+/// returns zero and isBranch is Fail then the the Opcode of the MCInst is
+/// tested and for ADRP an other instructions that help to load of pointers
+/// a symbol look up is done to see it is returns a specific reference type
+/// to add to the comment stream. This function returns Success if it adds
+/// an operand to the MCInst and Fail otherwise.
+bool AArch64ExternalSymbolizer::tryAddingSymbolicOperand(
+ MCInst &MI, raw_ostream &CommentStream, int64_t Value, uint64_t Address,
+ bool IsBranch, uint64_t Offset, uint64_t InstSize) {
+ // FIXME: This method shares a lot of code with
+ // MCExternalSymbolizer::tryAddingSymbolicOperand. It may be possible
+ // refactor the MCExternalSymbolizer interface to allow more of this
+ // implementation to be shared.
+ //
+ struct LLVMOpInfo1 SymbolicOp;
+ memset(&SymbolicOp, '\0', sizeof(struct LLVMOpInfo1));
+ SymbolicOp.Value = Value;
+ uint64_t ReferenceType;
+ const char *ReferenceName;
+ if (!GetOpInfo ||
+ !GetOpInfo(DisInfo, Address, 0 /* Offset */, InstSize, 1, &SymbolicOp)) {
+ if (IsBranch) {
+ ReferenceType = LLVMDisassembler_ReferenceType_In_Branch;
+ const char *Name = SymbolLookUp(DisInfo, Address + Value, &ReferenceType,
+ Address, &ReferenceName);
+ if (Name) {
+ SymbolicOp.AddSymbol.Name = Name;
+ SymbolicOp.AddSymbol.Present = true;
+ SymbolicOp.Value = 0;
+ } else {
+ SymbolicOp.Value = Address + Value;
+ }
+ if (ReferenceType == LLVMDisassembler_ReferenceType_Out_SymbolStub)
+ CommentStream << "symbol stub for: " << ReferenceName;
+ else if (ReferenceType ==
+ LLVMDisassembler_ReferenceType_Out_Objc_Message)
+ CommentStream << "Objc message: " << ReferenceName;
+ } else if (MI.getOpcode() == AArch64::ADRP) {
+ ReferenceType = LLVMDisassembler_ReferenceType_In_ARM64_ADRP;
+ // otool expects the fully encoded ADRP instruction to be passed in as
+ // the value here, so reconstruct it:
+ const MCRegisterInfo &MCRI = *Ctx.getRegisterInfo();
+ uint32_t EncodedInst = 0x90000000;
+ EncodedInst |= (Value & 0x3) << 29; // immlo
+ EncodedInst |= ((Value >> 2) & 0x7FFFF) << 5; // immhi
+ EncodedInst |= MCRI.getEncodingValue(MI.getOperand(0).getReg()); // reg
+ SymbolLookUp(DisInfo, EncodedInst, &ReferenceType, Address,
+ &ReferenceName);
+ CommentStream << format("0x%llx",
+ 0xfffffffffffff000LL & (Address + Value));
+ } else if (MI.getOpcode() == AArch64::ADDXri ||
+ MI.getOpcode() == AArch64::LDRXui ||
+ MI.getOpcode() == AArch64::LDRXl ||
+ MI.getOpcode() == AArch64::ADR) {
+ if (MI.getOpcode() == AArch64::ADDXri)
+ ReferenceType = LLVMDisassembler_ReferenceType_In_ARM64_ADDXri;
+ else if (MI.getOpcode() == AArch64::LDRXui)
+ ReferenceType = LLVMDisassembler_ReferenceType_In_ARM64_LDRXui;
+ if (MI.getOpcode() == AArch64::LDRXl) {
+ ReferenceType = LLVMDisassembler_ReferenceType_In_ARM64_LDRXl;
+ SymbolLookUp(DisInfo, Address + Value, &ReferenceType, Address,
+ &ReferenceName);
+ } else if (MI.getOpcode() == AArch64::ADR) {
+ ReferenceType = LLVMDisassembler_ReferenceType_In_ARM64_ADR;
+ SymbolLookUp(DisInfo, Address + Value, &ReferenceType, Address,
+ &ReferenceName);
+ } else {
+ const MCRegisterInfo &MCRI = *Ctx.getRegisterInfo();
+ // otool expects the fully encoded ADD/LDR instruction to be passed in
+ // as the value here, so reconstruct it:
+ unsigned EncodedInst =
+ MI.getOpcode() == AArch64::ADDXri ? 0x91000000: 0xF9400000;
+ EncodedInst |= Value << 10; // imm12 [+ shift:2 for ADD]
+ EncodedInst |=
+ MCRI.getEncodingValue(MI.getOperand(1).getReg()) << 5; // Rn
+ EncodedInst |= MCRI.getEncodingValue(MI.getOperand(0).getReg()); // Rd
+
+ SymbolLookUp(DisInfo, EncodedInst, &ReferenceType, Address,
+ &ReferenceName);
+ }
+ if (ReferenceType == LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr)
+ CommentStream << "literal pool symbol address: " << ReferenceName;
+ else if (ReferenceType ==
+ LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr)
+ CommentStream << "literal pool for: \"" << ReferenceName << "\"";
+ else if (ReferenceType ==
+ LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref)
+ CommentStream << "Objc cfstring ref: @\"" << ReferenceName << "\"";
+ else if (ReferenceType ==
+ LLVMDisassembler_ReferenceType_Out_Objc_Message)
+ CommentStream << "Objc message: " << ReferenceName;
+ else if (ReferenceType ==
+ LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref)
+ CommentStream << "Objc message ref: " << ReferenceName;
+ else if (ReferenceType ==
+ LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref)
+ CommentStream << "Objc selector ref: " << ReferenceName;
+ else if (ReferenceType ==
+ LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref)
+ CommentStream << "Objc class ref: " << ReferenceName;
+ // For these instructions, the SymbolLookUp() above is just to get the
+ // ReferenceType and ReferenceName. We want to make sure not to
+ // fall through so we don't build an MCExpr to leave the disassembly
+ // of the immediate values of these instructions to the InstPrinter.
+ return false;
+ } else {
+ return false;
+ }
+ }
+
+ const MCExpr *Add = nullptr;
+ if (SymbolicOp.AddSymbol.Present) {
+ if (SymbolicOp.AddSymbol.Name) {
+ StringRef Name(SymbolicOp.AddSymbol.Name);
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name);
+ MCSymbolRefExpr::VariantKind Variant = getVariant(SymbolicOp.VariantKind);
+ if (Variant != MCSymbolRefExpr::VK_None)
+ Add = MCSymbolRefExpr::Create(Sym, Variant, Ctx);
+ else
+ Add = MCSymbolRefExpr::Create(Sym, Ctx);
+ } else {
+ Add = MCConstantExpr::Create(SymbolicOp.AddSymbol.Value, Ctx);
+ }
+ }
+
+ const MCExpr *Sub = nullptr;
+ if (SymbolicOp.SubtractSymbol.Present) {
+ if (SymbolicOp.SubtractSymbol.Name) {
+ StringRef Name(SymbolicOp.SubtractSymbol.Name);
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name);
+ Sub = MCSymbolRefExpr::Create(Sym, Ctx);
+ } else {
+ Sub = MCConstantExpr::Create(SymbolicOp.SubtractSymbol.Value, Ctx);
+ }
+ }
+
+ const MCExpr *Off = nullptr;
+ if (SymbolicOp.Value != 0)
+ Off = MCConstantExpr::Create(SymbolicOp.Value, Ctx);
+
+ const MCExpr *Expr;
+ if (Sub) {
+ const MCExpr *LHS;
+ if (Add)
+ LHS = MCBinaryExpr::CreateSub(Add, Sub, Ctx);
+ else
+ LHS = MCUnaryExpr::CreateMinus(Sub, Ctx);
+ if (Off)
+ Expr = MCBinaryExpr::CreateAdd(LHS, Off, Ctx);
+ else
+ Expr = LHS;
+ } else if (Add) {
+ if (Off)
+ Expr = MCBinaryExpr::CreateAdd(Add, Off, Ctx);
+ else
+ Expr = Add;
+ } else {
+ if (Off)
+ Expr = Off;
+ else
+ Expr = MCConstantExpr::Create(0, Ctx);
+ }
+
+ MI.addOperand(MCOperand::CreateExpr(Expr));
+
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.h b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.h
new file mode 100644
index 0000000..171d31c
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.h
@@ -0,0 +1,38 @@
+//===- AArch64ExternalSymbolizer.h - Symbolizer for AArch64 -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Symbolize AArch64 assembly code during disassembly using callbacks.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64EXTERNALSYMBOLIZER_H
+#define AArch64EXTERNALSYMBOLIZER_H
+
+#include "llvm/MC/MCExternalSymbolizer.h"
+
+namespace llvm {
+
+class AArch64ExternalSymbolizer : public MCExternalSymbolizer {
+public:
+ AArch64ExternalSymbolizer(MCContext &Ctx,
+ std::unique_ptr<MCRelocationInfo> RelInfo,
+ LLVMOpInfoCallback GetOpInfo,
+ LLVMSymbolLookupCallback SymbolLookUp,
+ void *DisInfo)
+ : MCExternalSymbolizer(Ctx, std::move(RelInfo), GetOpInfo, SymbolLookUp,
+ DisInfo) {}
+
+ bool tryAddingSymbolicOperand(MCInst &MI, raw_ostream &CommentStream,
+ int64_t Value, uint64_t Address, bool IsBranch,
+ uint64_t Offset, uint64_t InstSize) override;
+};
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp b/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp
new file mode 100644
index 0000000..8a21f06
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp
@@ -0,0 +1,1316 @@
+//==-- AArch64InstPrinter.cpp - Convert AArch64 MCInst to assembly syntax --==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an AArch64 MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64InstPrinter.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "Utils/AArch64BaseInfo.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+#define GET_INSTRUCTION_NAME
+#define PRINT_ALIAS_INSTR
+#include "AArch64GenAsmWriter.inc"
+#define GET_INSTRUCTION_NAME
+#define PRINT_ALIAS_INSTR
+#include "AArch64GenAsmWriter1.inc"
+
+AArch64InstPrinter::AArch64InstPrinter(const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI)
+ : MCInstPrinter(MAI, MII, MRI) {
+ // Initialize the set of available features.
+ setAvailableFeatures(STI.getFeatureBits());
+}
+
+AArch64AppleInstPrinter::AArch64AppleInstPrinter(const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI)
+ : AArch64InstPrinter(MAI, MII, MRI, STI) {}
+
+void AArch64InstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
+ // This is for .cfi directives.
+ OS << getRegisterName(RegNo);
+}
+
+void AArch64InstPrinter::printInst(const MCInst *MI, raw_ostream &O,
+ StringRef Annot) {
+ // Check for special encodings and print the canonical alias instead.
+
+ unsigned Opcode = MI->getOpcode();
+
+ if (Opcode == AArch64::SYSxt)
+ if (printSysAlias(MI, O)) {
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ // SBFM/UBFM should print to a nicer aliased form if possible.
+ if (Opcode == AArch64::SBFMXri || Opcode == AArch64::SBFMWri ||
+ Opcode == AArch64::UBFMXri || Opcode == AArch64::UBFMWri) {
+ const MCOperand &Op0 = MI->getOperand(0);
+ const MCOperand &Op1 = MI->getOperand(1);
+ const MCOperand &Op2 = MI->getOperand(2);
+ const MCOperand &Op3 = MI->getOperand(3);
+
+ bool IsSigned = (Opcode == AArch64::SBFMXri || Opcode == AArch64::SBFMWri);
+ bool Is64Bit = (Opcode == AArch64::SBFMXri || Opcode == AArch64::UBFMXri);
+ if (Op2.isImm() && Op2.getImm() == 0 && Op3.isImm()) {
+ const char *AsmMnemonic = nullptr;
+
+ switch (Op3.getImm()) {
+ default:
+ break;
+ case 7:
+ if (IsSigned)
+ AsmMnemonic = "sxtb";
+ else if (!Is64Bit)
+ AsmMnemonic = "uxtb";
+ break;
+ case 15:
+ if (IsSigned)
+ AsmMnemonic = "sxth";
+ else if (!Is64Bit)
+ AsmMnemonic = "uxth";
+ break;
+ case 31:
+ // *xtw is only valid for signed 64-bit operations.
+ if (Is64Bit && IsSigned)
+ AsmMnemonic = "sxtw";
+ break;
+ }
+
+ if (AsmMnemonic) {
+ O << '\t' << AsmMnemonic << '\t' << getRegisterName(Op0.getReg())
+ << ", " << getRegisterName(getWRegFromXReg(Op1.getReg()));
+ printAnnotation(O, Annot);
+ return;
+ }
+ }
+
+ // All immediate shifts are aliases, implemented using the Bitfield
+ // instruction. In all cases the immediate shift amount shift must be in
+ // the range 0 to (reg.size -1).
+ if (Op2.isImm() && Op3.isImm()) {
+ const char *AsmMnemonic = nullptr;
+ int shift = 0;
+ int64_t immr = Op2.getImm();
+ int64_t imms = Op3.getImm();
+ if (Opcode == AArch64::UBFMWri && imms != 0x1F && ((imms + 1) == immr)) {
+ AsmMnemonic = "lsl";
+ shift = 31 - imms;
+ } else if (Opcode == AArch64::UBFMXri && imms != 0x3f &&
+ ((imms + 1 == immr))) {
+ AsmMnemonic = "lsl";
+ shift = 63 - imms;
+ } else if (Opcode == AArch64::UBFMWri && imms == 0x1f) {
+ AsmMnemonic = "lsr";
+ shift = immr;
+ } else if (Opcode == AArch64::UBFMXri && imms == 0x3f) {
+ AsmMnemonic = "lsr";
+ shift = immr;
+ } else if (Opcode == AArch64::SBFMWri && imms == 0x1f) {
+ AsmMnemonic = "asr";
+ shift = immr;
+ } else if (Opcode == AArch64::SBFMXri && imms == 0x3f) {
+ AsmMnemonic = "asr";
+ shift = immr;
+ }
+ if (AsmMnemonic) {
+ O << '\t' << AsmMnemonic << '\t' << getRegisterName(Op0.getReg())
+ << ", " << getRegisterName(Op1.getReg()) << ", #" << shift;
+ printAnnotation(O, Annot);
+ return;
+ }
+ }
+
+ // SBFIZ/UBFIZ aliases
+ if (Op2.getImm() > Op3.getImm()) {
+ O << '\t' << (IsSigned ? "sbfiz" : "ubfiz") << '\t'
+ << getRegisterName(Op0.getReg()) << ", " << getRegisterName(Op1.getReg())
+ << ", #" << (Is64Bit ? 64 : 32) - Op2.getImm() << ", #" << Op3.getImm() + 1;
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ // Otherwise SBFX/UBFX is the preferred form
+ O << '\t' << (IsSigned ? "sbfx" : "ubfx") << '\t'
+ << getRegisterName(Op0.getReg()) << ", " << getRegisterName(Op1.getReg())
+ << ", #" << Op2.getImm() << ", #" << Op3.getImm() - Op2.getImm() + 1;
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ if (Opcode == AArch64::BFMXri || Opcode == AArch64::BFMWri) {
+ const MCOperand &Op0 = MI->getOperand(0); // Op1 == Op0
+ const MCOperand &Op2 = MI->getOperand(2);
+ int ImmR = MI->getOperand(3).getImm();
+ int ImmS = MI->getOperand(4).getImm();
+
+ // BFI alias
+ if (ImmS < ImmR) {
+ int BitWidth = Opcode == AArch64::BFMXri ? 64 : 32;
+ int LSB = (BitWidth - ImmR) % BitWidth;
+ int Width = ImmS + 1;
+ O << "\tbfi\t" << getRegisterName(Op0.getReg()) << ", "
+ << getRegisterName(Op2.getReg()) << ", #" << LSB << ", #" << Width;
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ int LSB = ImmR;
+ int Width = ImmS - ImmR + 1;
+ // Otherwise BFXIL the preferred form
+ O << "\tbfxil\t"
+ << getRegisterName(Op0.getReg()) << ", " << getRegisterName(Op2.getReg())
+ << ", #" << LSB << ", #" << Width;
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ // Symbolic operands for MOVZ, MOVN and MOVK already imply a shift
+ // (e.g. :gottprel_g1: is always going to be "lsl #16") so it should not be
+ // printed.
+ if ((Opcode == AArch64::MOVZXi || Opcode == AArch64::MOVZWi ||
+ Opcode == AArch64::MOVNXi || Opcode == AArch64::MOVNWi) &&
+ MI->getOperand(1).isExpr()) {
+ if (Opcode == AArch64::MOVZXi || Opcode == AArch64::MOVZWi)
+ O << "\tmovz\t";
+ else
+ O << "\tmovn\t";
+
+ O << getRegisterName(MI->getOperand(0).getReg()) << ", #"
+ << *MI->getOperand(1).getExpr();
+ return;
+ }
+
+ if ((Opcode == AArch64::MOVKXi || Opcode == AArch64::MOVKWi) &&
+ MI->getOperand(2).isExpr()) {
+ O << "\tmovk\t" << getRegisterName(MI->getOperand(0).getReg()) << ", #"
+ << *MI->getOperand(2).getExpr();
+ return;
+ }
+
+ if (!printAliasInstr(MI, O))
+ printInstruction(MI, O);
+
+ printAnnotation(O, Annot);
+}
+
+static bool isTblTbxInstruction(unsigned Opcode, StringRef &Layout,
+ bool &IsTbx) {
+ switch (Opcode) {
+ case AArch64::TBXv8i8One:
+ case AArch64::TBXv8i8Two:
+ case AArch64::TBXv8i8Three:
+ case AArch64::TBXv8i8Four:
+ IsTbx = true;
+ Layout = ".8b";
+ return true;
+ case AArch64::TBLv8i8One:
+ case AArch64::TBLv8i8Two:
+ case AArch64::TBLv8i8Three:
+ case AArch64::TBLv8i8Four:
+ IsTbx = false;
+ Layout = ".8b";
+ return true;
+ case AArch64::TBXv16i8One:
+ case AArch64::TBXv16i8Two:
+ case AArch64::TBXv16i8Three:
+ case AArch64::TBXv16i8Four:
+ IsTbx = true;
+ Layout = ".16b";
+ return true;
+ case AArch64::TBLv16i8One:
+ case AArch64::TBLv16i8Two:
+ case AArch64::TBLv16i8Three:
+ case AArch64::TBLv16i8Four:
+ IsTbx = false;
+ Layout = ".16b";
+ return true;
+ default:
+ return false;
+ }
+}
+
+struct LdStNInstrDesc {
+ unsigned Opcode;
+ const char *Mnemonic;
+ const char *Layout;
+ int ListOperand;
+ bool HasLane;
+ int NaturalOffset;
+};
+
+static LdStNInstrDesc LdStNInstInfo[] = {
+ { AArch64::LD1i8, "ld1", ".b", 1, true, 0 },
+ { AArch64::LD1i16, "ld1", ".h", 1, true, 0 },
+ { AArch64::LD1i32, "ld1", ".s", 1, true, 0 },
+ { AArch64::LD1i64, "ld1", ".d", 1, true, 0 },
+ { AArch64::LD1i8_POST, "ld1", ".b", 2, true, 1 },
+ { AArch64::LD1i16_POST, "ld1", ".h", 2, true, 2 },
+ { AArch64::LD1i32_POST, "ld1", ".s", 2, true, 4 },
+ { AArch64::LD1i64_POST, "ld1", ".d", 2, true, 8 },
+ { AArch64::LD1Rv16b, "ld1r", ".16b", 0, false, 0 },
+ { AArch64::LD1Rv8h, "ld1r", ".8h", 0, false, 0 },
+ { AArch64::LD1Rv4s, "ld1r", ".4s", 0, false, 0 },
+ { AArch64::LD1Rv2d, "ld1r", ".2d", 0, false, 0 },
+ { AArch64::LD1Rv8b, "ld1r", ".8b", 0, false, 0 },
+ { AArch64::LD1Rv4h, "ld1r", ".4h", 0, false, 0 },
+ { AArch64::LD1Rv2s, "ld1r", ".2s", 0, false, 0 },
+ { AArch64::LD1Rv1d, "ld1r", ".1d", 0, false, 0 },
+ { AArch64::LD1Rv16b_POST, "ld1r", ".16b", 1, false, 1 },
+ { AArch64::LD1Rv8h_POST, "ld1r", ".8h", 1, false, 2 },
+ { AArch64::LD1Rv4s_POST, "ld1r", ".4s", 1, false, 4 },
+ { AArch64::LD1Rv2d_POST, "ld1r", ".2d", 1, false, 8 },
+ { AArch64::LD1Rv8b_POST, "ld1r", ".8b", 1, false, 1 },
+ { AArch64::LD1Rv4h_POST, "ld1r", ".4h", 1, false, 2 },
+ { AArch64::LD1Rv2s_POST, "ld1r", ".2s", 1, false, 4 },
+ { AArch64::LD1Rv1d_POST, "ld1r", ".1d", 1, false, 8 },
+ { AArch64::LD1Onev16b, "ld1", ".16b", 0, false, 0 },
+ { AArch64::LD1Onev8h, "ld1", ".8h", 0, false, 0 },
+ { AArch64::LD1Onev4s, "ld1", ".4s", 0, false, 0 },
+ { AArch64::LD1Onev2d, "ld1", ".2d", 0, false, 0 },
+ { AArch64::LD1Onev8b, "ld1", ".8b", 0, false, 0 },
+ { AArch64::LD1Onev4h, "ld1", ".4h", 0, false, 0 },
+ { AArch64::LD1Onev2s, "ld1", ".2s", 0, false, 0 },
+ { AArch64::LD1Onev1d, "ld1", ".1d", 0, false, 0 },
+ { AArch64::LD1Onev16b_POST, "ld1", ".16b", 1, false, 16 },
+ { AArch64::LD1Onev8h_POST, "ld1", ".8h", 1, false, 16 },
+ { AArch64::LD1Onev4s_POST, "ld1", ".4s", 1, false, 16 },
+ { AArch64::LD1Onev2d_POST, "ld1", ".2d", 1, false, 16 },
+ { AArch64::LD1Onev8b_POST, "ld1", ".8b", 1, false, 8 },
+ { AArch64::LD1Onev4h_POST, "ld1", ".4h", 1, false, 8 },
+ { AArch64::LD1Onev2s_POST, "ld1", ".2s", 1, false, 8 },
+ { AArch64::LD1Onev1d_POST, "ld1", ".1d", 1, false, 8 },
+ { AArch64::LD1Twov16b, "ld1", ".16b", 0, false, 0 },
+ { AArch64::LD1Twov8h, "ld1", ".8h", 0, false, 0 },
+ { AArch64::LD1Twov4s, "ld1", ".4s", 0, false, 0 },
+ { AArch64::LD1Twov2d, "ld1", ".2d", 0, false, 0 },
+ { AArch64::LD1Twov8b, "ld1", ".8b", 0, false, 0 },
+ { AArch64::LD1Twov4h, "ld1", ".4h", 0, false, 0 },
+ { AArch64::LD1Twov2s, "ld1", ".2s", 0, false, 0 },
+ { AArch64::LD1Twov1d, "ld1", ".1d", 0, false, 0 },
+ { AArch64::LD1Twov16b_POST, "ld1", ".16b", 1, false, 32 },
+ { AArch64::LD1Twov8h_POST, "ld1", ".8h", 1, false, 32 },
+ { AArch64::LD1Twov4s_POST, "ld1", ".4s", 1, false, 32 },
+ { AArch64::LD1Twov2d_POST, "ld1", ".2d", 1, false, 32 },
+ { AArch64::LD1Twov8b_POST, "ld1", ".8b", 1, false, 16 },
+ { AArch64::LD1Twov4h_POST, "ld1", ".4h", 1, false, 16 },
+ { AArch64::LD1Twov2s_POST, "ld1", ".2s", 1, false, 16 },
+ { AArch64::LD1Twov1d_POST, "ld1", ".1d", 1, false, 16 },
+ { AArch64::LD1Threev16b, "ld1", ".16b", 0, false, 0 },
+ { AArch64::LD1Threev8h, "ld1", ".8h", 0, false, 0 },
+ { AArch64::LD1Threev4s, "ld1", ".4s", 0, false, 0 },
+ { AArch64::LD1Threev2d, "ld1", ".2d", 0, false, 0 },
+ { AArch64::LD1Threev8b, "ld1", ".8b", 0, false, 0 },
+ { AArch64::LD1Threev4h, "ld1", ".4h", 0, false, 0 },
+ { AArch64::LD1Threev2s, "ld1", ".2s", 0, false, 0 },
+ { AArch64::LD1Threev1d, "ld1", ".1d", 0, false, 0 },
+ { AArch64::LD1Threev16b_POST, "ld1", ".16b", 1, false, 48 },
+ { AArch64::LD1Threev8h_POST, "ld1", ".8h", 1, false, 48 },
+ { AArch64::LD1Threev4s_POST, "ld1", ".4s", 1, false, 48 },
+ { AArch64::LD1Threev2d_POST, "ld1", ".2d", 1, false, 48 },
+ { AArch64::LD1Threev8b_POST, "ld1", ".8b", 1, false, 24 },
+ { AArch64::LD1Threev4h_POST, "ld1", ".4h", 1, false, 24 },
+ { AArch64::LD1Threev2s_POST, "ld1", ".2s", 1, false, 24 },
+ { AArch64::LD1Threev1d_POST, "ld1", ".1d", 1, false, 24 },
+ { AArch64::LD1Fourv16b, "ld1", ".16b", 0, false, 0 },
+ { AArch64::LD1Fourv8h, "ld1", ".8h", 0, false, 0 },
+ { AArch64::LD1Fourv4s, "ld1", ".4s", 0, false, 0 },
+ { AArch64::LD1Fourv2d, "ld1", ".2d", 0, false, 0 },
+ { AArch64::LD1Fourv8b, "ld1", ".8b", 0, false, 0 },
+ { AArch64::LD1Fourv4h, "ld1", ".4h", 0, false, 0 },
+ { AArch64::LD1Fourv2s, "ld1", ".2s", 0, false, 0 },
+ { AArch64::LD1Fourv1d, "ld1", ".1d", 0, false, 0 },
+ { AArch64::LD1Fourv16b_POST, "ld1", ".16b", 1, false, 64 },
+ { AArch64::LD1Fourv8h_POST, "ld1", ".8h", 1, false, 64 },
+ { AArch64::LD1Fourv4s_POST, "ld1", ".4s", 1, false, 64 },
+ { AArch64::LD1Fourv2d_POST, "ld1", ".2d", 1, false, 64 },
+ { AArch64::LD1Fourv8b_POST, "ld1", ".8b", 1, false, 32 },
+ { AArch64::LD1Fourv4h_POST, "ld1", ".4h", 1, false, 32 },
+ { AArch64::LD1Fourv2s_POST, "ld1", ".2s", 1, false, 32 },
+ { AArch64::LD1Fourv1d_POST, "ld1", ".1d", 1, false, 32 },
+ { AArch64::LD2i8, "ld2", ".b", 1, true, 0 },
+ { AArch64::LD2i16, "ld2", ".h", 1, true, 0 },
+ { AArch64::LD2i32, "ld2", ".s", 1, true, 0 },
+ { AArch64::LD2i64, "ld2", ".d", 1, true, 0 },
+ { AArch64::LD2i8_POST, "ld2", ".b", 2, true, 2 },
+ { AArch64::LD2i16_POST, "ld2", ".h", 2, true, 4 },
+ { AArch64::LD2i32_POST, "ld2", ".s", 2, true, 8 },
+ { AArch64::LD2i64_POST, "ld2", ".d", 2, true, 16 },
+ { AArch64::LD2Rv16b, "ld2r", ".16b", 0, false, 0 },
+ { AArch64::LD2Rv8h, "ld2r", ".8h", 0, false, 0 },
+ { AArch64::LD2Rv4s, "ld2r", ".4s", 0, false, 0 },
+ { AArch64::LD2Rv2d, "ld2r", ".2d", 0, false, 0 },
+ { AArch64::LD2Rv8b, "ld2r", ".8b", 0, false, 0 },
+ { AArch64::LD2Rv4h, "ld2r", ".4h", 0, false, 0 },
+ { AArch64::LD2Rv2s, "ld2r", ".2s", 0, false, 0 },
+ { AArch64::LD2Rv1d, "ld2r", ".1d", 0, false, 0 },
+ { AArch64::LD2Rv16b_POST, "ld2r", ".16b", 1, false, 2 },
+ { AArch64::LD2Rv8h_POST, "ld2r", ".8h", 1, false, 4 },
+ { AArch64::LD2Rv4s_POST, "ld2r", ".4s", 1, false, 8 },
+ { AArch64::LD2Rv2d_POST, "ld2r", ".2d", 1, false, 16 },
+ { AArch64::LD2Rv8b_POST, "ld2r", ".8b", 1, false, 2 },
+ { AArch64::LD2Rv4h_POST, "ld2r", ".4h", 1, false, 4 },
+ { AArch64::LD2Rv2s_POST, "ld2r", ".2s", 1, false, 8 },
+ { AArch64::LD2Rv1d_POST, "ld2r", ".1d", 1, false, 16 },
+ { AArch64::LD2Twov16b, "ld2", ".16b", 0, false, 0 },
+ { AArch64::LD2Twov8h, "ld2", ".8h", 0, false, 0 },
+ { AArch64::LD2Twov4s, "ld2", ".4s", 0, false, 0 },
+ { AArch64::LD2Twov2d, "ld2", ".2d", 0, false, 0 },
+ { AArch64::LD2Twov8b, "ld2", ".8b", 0, false, 0 },
+ { AArch64::LD2Twov4h, "ld2", ".4h", 0, false, 0 },
+ { AArch64::LD2Twov2s, "ld2", ".2s", 0, false, 0 },
+ { AArch64::LD2Twov16b_POST, "ld2", ".16b", 1, false, 32 },
+ { AArch64::LD2Twov8h_POST, "ld2", ".8h", 1, false, 32 },
+ { AArch64::LD2Twov4s_POST, "ld2", ".4s", 1, false, 32 },
+ { AArch64::LD2Twov2d_POST, "ld2", ".2d", 1, false, 32 },
+ { AArch64::LD2Twov8b_POST, "ld2", ".8b", 1, false, 16 },
+ { AArch64::LD2Twov4h_POST, "ld2", ".4h", 1, false, 16 },
+ { AArch64::LD2Twov2s_POST, "ld2", ".2s", 1, false, 16 },
+ { AArch64::LD3i8, "ld3", ".b", 1, true, 0 },
+ { AArch64::LD3i16, "ld3", ".h", 1, true, 0 },
+ { AArch64::LD3i32, "ld3", ".s", 1, true, 0 },
+ { AArch64::LD3i64, "ld3", ".d", 1, true, 0 },
+ { AArch64::LD3i8_POST, "ld3", ".b", 2, true, 3 },
+ { AArch64::LD3i16_POST, "ld3", ".h", 2, true, 6 },
+ { AArch64::LD3i32_POST, "ld3", ".s", 2, true, 12 },
+ { AArch64::LD3i64_POST, "ld3", ".d", 2, true, 24 },
+ { AArch64::LD3Rv16b, "ld3r", ".16b", 0, false, 0 },
+ { AArch64::LD3Rv8h, "ld3r", ".8h", 0, false, 0 },
+ { AArch64::LD3Rv4s, "ld3r", ".4s", 0, false, 0 },
+ { AArch64::LD3Rv2d, "ld3r", ".2d", 0, false, 0 },
+ { AArch64::LD3Rv8b, "ld3r", ".8b", 0, false, 0 },
+ { AArch64::LD3Rv4h, "ld3r", ".4h", 0, false, 0 },
+ { AArch64::LD3Rv2s, "ld3r", ".2s", 0, false, 0 },
+ { AArch64::LD3Rv1d, "ld3r", ".1d", 0, false, 0 },
+ { AArch64::LD3Rv16b_POST, "ld3r", ".16b", 1, false, 3 },
+ { AArch64::LD3Rv8h_POST, "ld3r", ".8h", 1, false, 6 },
+ { AArch64::LD3Rv4s_POST, "ld3r", ".4s", 1, false, 12 },
+ { AArch64::LD3Rv2d_POST, "ld3r", ".2d", 1, false, 24 },
+ { AArch64::LD3Rv8b_POST, "ld3r", ".8b", 1, false, 3 },
+ { AArch64::LD3Rv4h_POST, "ld3r", ".4h", 1, false, 6 },
+ { AArch64::LD3Rv2s_POST, "ld3r", ".2s", 1, false, 12 },
+ { AArch64::LD3Rv1d_POST, "ld3r", ".1d", 1, false, 24 },
+ { AArch64::LD3Threev16b, "ld3", ".16b", 0, false, 0 },
+ { AArch64::LD3Threev8h, "ld3", ".8h", 0, false, 0 },
+ { AArch64::LD3Threev4s, "ld3", ".4s", 0, false, 0 },
+ { AArch64::LD3Threev2d, "ld3", ".2d", 0, false, 0 },
+ { AArch64::LD3Threev8b, "ld3", ".8b", 0, false, 0 },
+ { AArch64::LD3Threev4h, "ld3", ".4h", 0, false, 0 },
+ { AArch64::LD3Threev2s, "ld3", ".2s", 0, false, 0 },
+ { AArch64::LD3Threev16b_POST, "ld3", ".16b", 1, false, 48 },
+ { AArch64::LD3Threev8h_POST, "ld3", ".8h", 1, false, 48 },
+ { AArch64::LD3Threev4s_POST, "ld3", ".4s", 1, false, 48 },
+ { AArch64::LD3Threev2d_POST, "ld3", ".2d", 1, false, 48 },
+ { AArch64::LD3Threev8b_POST, "ld3", ".8b", 1, false, 24 },
+ { AArch64::LD3Threev4h_POST, "ld3", ".4h", 1, false, 24 },
+ { AArch64::LD3Threev2s_POST, "ld3", ".2s", 1, false, 24 },
+ { AArch64::LD4i8, "ld4", ".b", 1, true, 0 },
+ { AArch64::LD4i16, "ld4", ".h", 1, true, 0 },
+ { AArch64::LD4i32, "ld4", ".s", 1, true, 0 },
+ { AArch64::LD4i64, "ld4", ".d", 1, true, 0 },
+ { AArch64::LD4i8_POST, "ld4", ".b", 2, true, 4 },
+ { AArch64::LD4i16_POST, "ld4", ".h", 2, true, 8 },
+ { AArch64::LD4i32_POST, "ld4", ".s", 2, true, 16 },
+ { AArch64::LD4i64_POST, "ld4", ".d", 2, true, 32 },
+ { AArch64::LD4Rv16b, "ld4r", ".16b", 0, false, 0 },
+ { AArch64::LD4Rv8h, "ld4r", ".8h", 0, false, 0 },
+ { AArch64::LD4Rv4s, "ld4r", ".4s", 0, false, 0 },
+ { AArch64::LD4Rv2d, "ld4r", ".2d", 0, false, 0 },
+ { AArch64::LD4Rv8b, "ld4r", ".8b", 0, false, 0 },
+ { AArch64::LD4Rv4h, "ld4r", ".4h", 0, false, 0 },
+ { AArch64::LD4Rv2s, "ld4r", ".2s", 0, false, 0 },
+ { AArch64::LD4Rv1d, "ld4r", ".1d", 0, false, 0 },
+ { AArch64::LD4Rv16b_POST, "ld4r", ".16b", 1, false, 4 },
+ { AArch64::LD4Rv8h_POST, "ld4r", ".8h", 1, false, 8 },
+ { AArch64::LD4Rv4s_POST, "ld4r", ".4s", 1, false, 16 },
+ { AArch64::LD4Rv2d_POST, "ld4r", ".2d", 1, false, 32 },
+ { AArch64::LD4Rv8b_POST, "ld4r", ".8b", 1, false, 4 },
+ { AArch64::LD4Rv4h_POST, "ld4r", ".4h", 1, false, 8 },
+ { AArch64::LD4Rv2s_POST, "ld4r", ".2s", 1, false, 16 },
+ { AArch64::LD4Rv1d_POST, "ld4r", ".1d", 1, false, 32 },
+ { AArch64::LD4Fourv16b, "ld4", ".16b", 0, false, 0 },
+ { AArch64::LD4Fourv8h, "ld4", ".8h", 0, false, 0 },
+ { AArch64::LD4Fourv4s, "ld4", ".4s", 0, false, 0 },
+ { AArch64::LD4Fourv2d, "ld4", ".2d", 0, false, 0 },
+ { AArch64::LD4Fourv8b, "ld4", ".8b", 0, false, 0 },
+ { AArch64::LD4Fourv4h, "ld4", ".4h", 0, false, 0 },
+ { AArch64::LD4Fourv2s, "ld4", ".2s", 0, false, 0 },
+ { AArch64::LD4Fourv16b_POST, "ld4", ".16b", 1, false, 64 },
+ { AArch64::LD4Fourv8h_POST, "ld4", ".8h", 1, false, 64 },
+ { AArch64::LD4Fourv4s_POST, "ld4", ".4s", 1, false, 64 },
+ { AArch64::LD4Fourv2d_POST, "ld4", ".2d", 1, false, 64 },
+ { AArch64::LD4Fourv8b_POST, "ld4", ".8b", 1, false, 32 },
+ { AArch64::LD4Fourv4h_POST, "ld4", ".4h", 1, false, 32 },
+ { AArch64::LD4Fourv2s_POST, "ld4", ".2s", 1, false, 32 },
+ { AArch64::ST1i8, "st1", ".b", 0, true, 0 },
+ { AArch64::ST1i16, "st1", ".h", 0, true, 0 },
+ { AArch64::ST1i32, "st1", ".s", 0, true, 0 },
+ { AArch64::ST1i64, "st1", ".d", 0, true, 0 },
+ { AArch64::ST1i8_POST, "st1", ".b", 1, true, 1 },
+ { AArch64::ST1i16_POST, "st1", ".h", 1, true, 2 },
+ { AArch64::ST1i32_POST, "st1", ".s", 1, true, 4 },
+ { AArch64::ST1i64_POST, "st1", ".d", 1, true, 8 },
+ { AArch64::ST1Onev16b, "st1", ".16b", 0, false, 0 },
+ { AArch64::ST1Onev8h, "st1", ".8h", 0, false, 0 },
+ { AArch64::ST1Onev4s, "st1", ".4s", 0, false, 0 },
+ { AArch64::ST1Onev2d, "st1", ".2d", 0, false, 0 },
+ { AArch64::ST1Onev8b, "st1", ".8b", 0, false, 0 },
+ { AArch64::ST1Onev4h, "st1", ".4h", 0, false, 0 },
+ { AArch64::ST1Onev2s, "st1", ".2s", 0, false, 0 },
+ { AArch64::ST1Onev1d, "st1", ".1d", 0, false, 0 },
+ { AArch64::ST1Onev16b_POST, "st1", ".16b", 1, false, 16 },
+ { AArch64::ST1Onev8h_POST, "st1", ".8h", 1, false, 16 },
+ { AArch64::ST1Onev4s_POST, "st1", ".4s", 1, false, 16 },
+ { AArch64::ST1Onev2d_POST, "st1", ".2d", 1, false, 16 },
+ { AArch64::ST1Onev8b_POST, "st1", ".8b", 1, false, 8 },
+ { AArch64::ST1Onev4h_POST, "st1", ".4h", 1, false, 8 },
+ { AArch64::ST1Onev2s_POST, "st1", ".2s", 1, false, 8 },
+ { AArch64::ST1Onev1d_POST, "st1", ".1d", 1, false, 8 },
+ { AArch64::ST1Twov16b, "st1", ".16b", 0, false, 0 },
+ { AArch64::ST1Twov8h, "st1", ".8h", 0, false, 0 },
+ { AArch64::ST1Twov4s, "st1", ".4s", 0, false, 0 },
+ { AArch64::ST1Twov2d, "st1", ".2d", 0, false, 0 },
+ { AArch64::ST1Twov8b, "st1", ".8b", 0, false, 0 },
+ { AArch64::ST1Twov4h, "st1", ".4h", 0, false, 0 },
+ { AArch64::ST1Twov2s, "st1", ".2s", 0, false, 0 },
+ { AArch64::ST1Twov1d, "st1", ".1d", 0, false, 0 },
+ { AArch64::ST1Twov16b_POST, "st1", ".16b", 1, false, 32 },
+ { AArch64::ST1Twov8h_POST, "st1", ".8h", 1, false, 32 },
+ { AArch64::ST1Twov4s_POST, "st1", ".4s", 1, false, 32 },
+ { AArch64::ST1Twov2d_POST, "st1", ".2d", 1, false, 32 },
+ { AArch64::ST1Twov8b_POST, "st1", ".8b", 1, false, 16 },
+ { AArch64::ST1Twov4h_POST, "st1", ".4h", 1, false, 16 },
+ { AArch64::ST1Twov2s_POST, "st1", ".2s", 1, false, 16 },
+ { AArch64::ST1Twov1d_POST, "st1", ".1d", 1, false, 16 },
+ { AArch64::ST1Threev16b, "st1", ".16b", 0, false, 0 },
+ { AArch64::ST1Threev8h, "st1", ".8h", 0, false, 0 },
+ { AArch64::ST1Threev4s, "st1", ".4s", 0, false, 0 },
+ { AArch64::ST1Threev2d, "st1", ".2d", 0, false, 0 },
+ { AArch64::ST1Threev8b, "st1", ".8b", 0, false, 0 },
+ { AArch64::ST1Threev4h, "st1", ".4h", 0, false, 0 },
+ { AArch64::ST1Threev2s, "st1", ".2s", 0, false, 0 },
+ { AArch64::ST1Threev1d, "st1", ".1d", 0, false, 0 },
+ { AArch64::ST1Threev16b_POST, "st1", ".16b", 1, false, 48 },
+ { AArch64::ST1Threev8h_POST, "st1", ".8h", 1, false, 48 },
+ { AArch64::ST1Threev4s_POST, "st1", ".4s", 1, false, 48 },
+ { AArch64::ST1Threev2d_POST, "st1", ".2d", 1, false, 48 },
+ { AArch64::ST1Threev8b_POST, "st1", ".8b", 1, false, 24 },
+ { AArch64::ST1Threev4h_POST, "st1", ".4h", 1, false, 24 },
+ { AArch64::ST1Threev2s_POST, "st1", ".2s", 1, false, 24 },
+ { AArch64::ST1Threev1d_POST, "st1", ".1d", 1, false, 24 },
+ { AArch64::ST1Fourv16b, "st1", ".16b", 0, false, 0 },
+ { AArch64::ST1Fourv8h, "st1", ".8h", 0, false, 0 },
+ { AArch64::ST1Fourv4s, "st1", ".4s", 0, false, 0 },
+ { AArch64::ST1Fourv2d, "st1", ".2d", 0, false, 0 },
+ { AArch64::ST1Fourv8b, "st1", ".8b", 0, false, 0 },
+ { AArch64::ST1Fourv4h, "st1", ".4h", 0, false, 0 },
+ { AArch64::ST1Fourv2s, "st1", ".2s", 0, false, 0 },
+ { AArch64::ST1Fourv1d, "st1", ".1d", 0, false, 0 },
+ { AArch64::ST1Fourv16b_POST, "st1", ".16b", 1, false, 64 },
+ { AArch64::ST1Fourv8h_POST, "st1", ".8h", 1, false, 64 },
+ { AArch64::ST1Fourv4s_POST, "st1", ".4s", 1, false, 64 },
+ { AArch64::ST1Fourv2d_POST, "st1", ".2d", 1, false, 64 },
+ { AArch64::ST1Fourv8b_POST, "st1", ".8b", 1, false, 32 },
+ { AArch64::ST1Fourv4h_POST, "st1", ".4h", 1, false, 32 },
+ { AArch64::ST1Fourv2s_POST, "st1", ".2s", 1, false, 32 },
+ { AArch64::ST1Fourv1d_POST, "st1", ".1d", 1, false, 32 },
+ { AArch64::ST2i8, "st2", ".b", 0, true, 0 },
+ { AArch64::ST2i16, "st2", ".h", 0, true, 0 },
+ { AArch64::ST2i32, "st2", ".s", 0, true, 0 },
+ { AArch64::ST2i64, "st2", ".d", 0, true, 0 },
+ { AArch64::ST2i8_POST, "st2", ".b", 1, true, 2 },
+ { AArch64::ST2i16_POST, "st2", ".h", 1, true, 4 },
+ { AArch64::ST2i32_POST, "st2", ".s", 1, true, 8 },
+ { AArch64::ST2i64_POST, "st2", ".d", 1, true, 16 },
+ { AArch64::ST2Twov16b, "st2", ".16b", 0, false, 0 },
+ { AArch64::ST2Twov8h, "st2", ".8h", 0, false, 0 },
+ { AArch64::ST2Twov4s, "st2", ".4s", 0, false, 0 },
+ { AArch64::ST2Twov2d, "st2", ".2d", 0, false, 0 },
+ { AArch64::ST2Twov8b, "st2", ".8b", 0, false, 0 },
+ { AArch64::ST2Twov4h, "st2", ".4h", 0, false, 0 },
+ { AArch64::ST2Twov2s, "st2", ".2s", 0, false, 0 },
+ { AArch64::ST2Twov16b_POST, "st2", ".16b", 1, false, 32 },
+ { AArch64::ST2Twov8h_POST, "st2", ".8h", 1, false, 32 },
+ { AArch64::ST2Twov4s_POST, "st2", ".4s", 1, false, 32 },
+ { AArch64::ST2Twov2d_POST, "st2", ".2d", 1, false, 32 },
+ { AArch64::ST2Twov8b_POST, "st2", ".8b", 1, false, 16 },
+ { AArch64::ST2Twov4h_POST, "st2", ".4h", 1, false, 16 },
+ { AArch64::ST2Twov2s_POST, "st2", ".2s", 1, false, 16 },
+ { AArch64::ST3i8, "st3", ".b", 0, true, 0 },
+ { AArch64::ST3i16, "st3", ".h", 0, true, 0 },
+ { AArch64::ST3i32, "st3", ".s", 0, true, 0 },
+ { AArch64::ST3i64, "st3", ".d", 0, true, 0 },
+ { AArch64::ST3i8_POST, "st3", ".b", 1, true, 3 },
+ { AArch64::ST3i16_POST, "st3", ".h", 1, true, 6 },
+ { AArch64::ST3i32_POST, "st3", ".s", 1, true, 12 },
+ { AArch64::ST3i64_POST, "st3", ".d", 1, true, 24 },
+ { AArch64::ST3Threev16b, "st3", ".16b", 0, false, 0 },
+ { AArch64::ST3Threev8h, "st3", ".8h", 0, false, 0 },
+ { AArch64::ST3Threev4s, "st3", ".4s", 0, false, 0 },
+ { AArch64::ST3Threev2d, "st3", ".2d", 0, false, 0 },
+ { AArch64::ST3Threev8b, "st3", ".8b", 0, false, 0 },
+ { AArch64::ST3Threev4h, "st3", ".4h", 0, false, 0 },
+ { AArch64::ST3Threev2s, "st3", ".2s", 0, false, 0 },
+ { AArch64::ST3Threev16b_POST, "st3", ".16b", 1, false, 48 },
+ { AArch64::ST3Threev8h_POST, "st3", ".8h", 1, false, 48 },
+ { AArch64::ST3Threev4s_POST, "st3", ".4s", 1, false, 48 },
+ { AArch64::ST3Threev2d_POST, "st3", ".2d", 1, false, 48 },
+ { AArch64::ST3Threev8b_POST, "st3", ".8b", 1, false, 24 },
+ { AArch64::ST3Threev4h_POST, "st3", ".4h", 1, false, 24 },
+ { AArch64::ST3Threev2s_POST, "st3", ".2s", 1, false, 24 },
+ { AArch64::ST4i8, "st4", ".b", 0, true, 0 },
+ { AArch64::ST4i16, "st4", ".h", 0, true, 0 },
+ { AArch64::ST4i32, "st4", ".s", 0, true, 0 },
+ { AArch64::ST4i64, "st4", ".d", 0, true, 0 },
+ { AArch64::ST4i8_POST, "st4", ".b", 1, true, 4 },
+ { AArch64::ST4i16_POST, "st4", ".h", 1, true, 8 },
+ { AArch64::ST4i32_POST, "st4", ".s", 1, true, 16 },
+ { AArch64::ST4i64_POST, "st4", ".d", 1, true, 32 },
+ { AArch64::ST4Fourv16b, "st4", ".16b", 0, false, 0 },
+ { AArch64::ST4Fourv8h, "st4", ".8h", 0, false, 0 },
+ { AArch64::ST4Fourv4s, "st4", ".4s", 0, false, 0 },
+ { AArch64::ST4Fourv2d, "st4", ".2d", 0, false, 0 },
+ { AArch64::ST4Fourv8b, "st4", ".8b", 0, false, 0 },
+ { AArch64::ST4Fourv4h, "st4", ".4h", 0, false, 0 },
+ { AArch64::ST4Fourv2s, "st4", ".2s", 0, false, 0 },
+ { AArch64::ST4Fourv16b_POST, "st4", ".16b", 1, false, 64 },
+ { AArch64::ST4Fourv8h_POST, "st4", ".8h", 1, false, 64 },
+ { AArch64::ST4Fourv4s_POST, "st4", ".4s", 1, false, 64 },
+ { AArch64::ST4Fourv2d_POST, "st4", ".2d", 1, false, 64 },
+ { AArch64::ST4Fourv8b_POST, "st4", ".8b", 1, false, 32 },
+ { AArch64::ST4Fourv4h_POST, "st4", ".4h", 1, false, 32 },
+ { AArch64::ST4Fourv2s_POST, "st4", ".2s", 1, false, 32 },
+};
+
+static LdStNInstrDesc *getLdStNInstrDesc(unsigned Opcode) {
+ unsigned Idx;
+ for (Idx = 0; Idx != array_lengthof(LdStNInstInfo); ++Idx)
+ if (LdStNInstInfo[Idx].Opcode == Opcode)
+ return &LdStNInstInfo[Idx];
+
+ return nullptr;
+}
+
+void AArch64AppleInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
+ StringRef Annot) {
+ unsigned Opcode = MI->getOpcode();
+ StringRef Layout, Mnemonic;
+
+ bool IsTbx;
+ if (isTblTbxInstruction(MI->getOpcode(), Layout, IsTbx)) {
+ O << "\t" << (IsTbx ? "tbx" : "tbl") << Layout << '\t'
+ << getRegisterName(MI->getOperand(0).getReg(), AArch64::vreg) << ", ";
+
+ unsigned ListOpNum = IsTbx ? 2 : 1;
+ printVectorList(MI, ListOpNum, O, "");
+
+ O << ", "
+ << getRegisterName(MI->getOperand(ListOpNum + 1).getReg(), AArch64::vreg);
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ if (LdStNInstrDesc *LdStDesc = getLdStNInstrDesc(Opcode)) {
+ O << "\t" << LdStDesc->Mnemonic << LdStDesc->Layout << '\t';
+
+ // Now onto the operands: first a vector list with possible lane
+ // specifier. E.g. { v0 }[2]
+ int OpNum = LdStDesc->ListOperand;
+ printVectorList(MI, OpNum++, O, "");
+
+ if (LdStDesc->HasLane)
+ O << '[' << MI->getOperand(OpNum++).getImm() << ']';
+
+ // Next the address: [xN]
+ unsigned AddrReg = MI->getOperand(OpNum++).getReg();
+ O << ", [" << getRegisterName(AddrReg) << ']';
+
+ // Finally, there might be a post-indexed offset.
+ if (LdStDesc->NaturalOffset != 0) {
+ unsigned Reg = MI->getOperand(OpNum++).getReg();
+ if (Reg != AArch64::XZR)
+ O << ", " << getRegisterName(Reg);
+ else {
+ assert(LdStDesc->NaturalOffset && "no offset on post-inc instruction?");
+ O << ", #" << LdStDesc->NaturalOffset;
+ }
+ }
+
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ AArch64InstPrinter::printInst(MI, O, Annot);
+}
+
+bool AArch64InstPrinter::printSysAlias(const MCInst *MI, raw_ostream &O) {
+#ifndef NDEBUG
+ unsigned Opcode = MI->getOpcode();
+ assert(Opcode == AArch64::SYSxt && "Invalid opcode for SYS alias!");
+#endif
+
+ const char *Asm = nullptr;
+ const MCOperand &Op1 = MI->getOperand(0);
+ const MCOperand &Cn = MI->getOperand(1);
+ const MCOperand &Cm = MI->getOperand(2);
+ const MCOperand &Op2 = MI->getOperand(3);
+
+ unsigned Op1Val = Op1.getImm();
+ unsigned CnVal = Cn.getImm();
+ unsigned CmVal = Cm.getImm();
+ unsigned Op2Val = Op2.getImm();
+
+ if (CnVal == 7) {
+ switch (CmVal) {
+ default:
+ break;
+
+ // IC aliases
+ case 1:
+ if (Op1Val == 0 && Op2Val == 0)
+ Asm = "ic\tialluis";
+ break;
+ case 5:
+ if (Op1Val == 0 && Op2Val == 0)
+ Asm = "ic\tiallu";
+ else if (Op1Val == 3 && Op2Val == 1)
+ Asm = "ic\tivau";
+ break;
+
+ // DC aliases
+ case 4:
+ if (Op1Val == 3 && Op2Val == 1)
+ Asm = "dc\tzva";
+ break;
+ case 6:
+ if (Op1Val == 0 && Op2Val == 1)
+ Asm = "dc\tivac";
+ if (Op1Val == 0 && Op2Val == 2)
+ Asm = "dc\tisw";
+ break;
+ case 10:
+ if (Op1Val == 3 && Op2Val == 1)
+ Asm = "dc\tcvac";
+ else if (Op1Val == 0 && Op2Val == 2)
+ Asm = "dc\tcsw";
+ break;
+ case 11:
+ if (Op1Val == 3 && Op2Val == 1)
+ Asm = "dc\tcvau";
+ break;
+ case 14:
+ if (Op1Val == 3 && Op2Val == 1)
+ Asm = "dc\tcivac";
+ else if (Op1Val == 0 && Op2Val == 2)
+ Asm = "dc\tcisw";
+ break;
+
+ // AT aliases
+ case 8:
+ switch (Op1Val) {
+ default:
+ break;
+ case 0:
+ switch (Op2Val) {
+ default:
+ break;
+ case 0: Asm = "at\ts1e1r"; break;
+ case 1: Asm = "at\ts1e1w"; break;
+ case 2: Asm = "at\ts1e0r"; break;
+ case 3: Asm = "at\ts1e0w"; break;
+ }
+ break;
+ case 4:
+ switch (Op2Val) {
+ default:
+ break;
+ case 0: Asm = "at\ts1e2r"; break;
+ case 1: Asm = "at\ts1e2w"; break;
+ case 4: Asm = "at\ts12e1r"; break;
+ case 5: Asm = "at\ts12e1w"; break;
+ case 6: Asm = "at\ts12e0r"; break;
+ case 7: Asm = "at\ts12e0w"; break;
+ }
+ break;
+ case 6:
+ switch (Op2Val) {
+ default:
+ break;
+ case 0: Asm = "at\ts1e3r"; break;
+ case 1: Asm = "at\ts1e3w"; break;
+ }
+ break;
+ }
+ break;
+ }
+ } else if (CnVal == 8) {
+ // TLBI aliases
+ switch (CmVal) {
+ default:
+ break;
+ case 3:
+ switch (Op1Val) {
+ default:
+ break;
+ case 0:
+ switch (Op2Val) {
+ default:
+ break;
+ case 0: Asm = "tlbi\tvmalle1is"; break;
+ case 1: Asm = "tlbi\tvae1is"; break;
+ case 2: Asm = "tlbi\taside1is"; break;
+ case 3: Asm = "tlbi\tvaae1is"; break;
+ case 5: Asm = "tlbi\tvale1is"; break;
+ case 7: Asm = "tlbi\tvaale1is"; break;
+ }
+ break;
+ case 4:
+ switch (Op2Val) {
+ default:
+ break;
+ case 0: Asm = "tlbi\talle2is"; break;
+ case 1: Asm = "tlbi\tvae2is"; break;
+ case 4: Asm = "tlbi\talle1is"; break;
+ case 5: Asm = "tlbi\tvale2is"; break;
+ case 6: Asm = "tlbi\tvmalls12e1is"; break;
+ }
+ break;
+ case 6:
+ switch (Op2Val) {
+ default:
+ break;
+ case 0: Asm = "tlbi\talle3is"; break;
+ case 1: Asm = "tlbi\tvae3is"; break;
+ case 5: Asm = "tlbi\tvale3is"; break;
+ }
+ break;
+ }
+ break;
+ case 0:
+ switch (Op1Val) {
+ default:
+ break;
+ case 4:
+ switch (Op2Val) {
+ default:
+ break;
+ case 1: Asm = "tlbi\tipas2e1is"; break;
+ case 5: Asm = "tlbi\tipas2le1is"; break;
+ }
+ break;
+ }
+ break;
+ case 4:
+ switch (Op1Val) {
+ default:
+ break;
+ case 4:
+ switch (Op2Val) {
+ default:
+ break;
+ case 1: Asm = "tlbi\tipas2e1"; break;
+ case 5: Asm = "tlbi\tipas2le1"; break;
+ }
+ break;
+ }
+ break;
+ case 7:
+ switch (Op1Val) {
+ default:
+ break;
+ case 0:
+ switch (Op2Val) {
+ default:
+ break;
+ case 0: Asm = "tlbi\tvmalle1"; break;
+ case 1: Asm = "tlbi\tvae1"; break;
+ case 2: Asm = "tlbi\taside1"; break;
+ case 3: Asm = "tlbi\tvaae1"; break;
+ case 5: Asm = "tlbi\tvale1"; break;
+ case 7: Asm = "tlbi\tvaale1"; break;
+ }
+ break;
+ case 4:
+ switch (Op2Val) {
+ default:
+ break;
+ case 0: Asm = "tlbi\talle2"; break;
+ case 1: Asm = "tlbi\tvae2"; break;
+ case 4: Asm = "tlbi\talle1"; break;
+ case 5: Asm = "tlbi\tvale2"; break;
+ case 6: Asm = "tlbi\tvmalls12e1"; break;
+ }
+ break;
+ case 6:
+ switch (Op2Val) {
+ default:
+ break;
+ case 0: Asm = "tlbi\talle3"; break;
+ case 1: Asm = "tlbi\tvae3"; break;
+ case 5: Asm = "tlbi\tvale3"; break;
+ }
+ break;
+ }
+ break;
+ }
+ }
+
+ if (Asm) {
+ unsigned Reg = MI->getOperand(4).getReg();
+
+ O << '\t' << Asm;
+ if (StringRef(Asm).lower().find("all") == StringRef::npos)
+ O << ", " << getRegisterName(Reg);
+ }
+
+ return Asm != nullptr;
+}
+
+void AArch64InstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ unsigned Reg = Op.getReg();
+ O << getRegisterName(Reg);
+ } else if (Op.isImm()) {
+ O << '#' << Op.getImm();
+ } else {
+ assert(Op.isExpr() && "unknown operand kind in printOperand");
+ O << *Op.getExpr();
+ }
+}
+
+void AArch64InstPrinter::printHexImm(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ O << format("#%#llx", Op.getImm());
+}
+
+void AArch64InstPrinter::printPostIncOperand(const MCInst *MI, unsigned OpNo,
+ unsigned Imm, raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ unsigned Reg = Op.getReg();
+ if (Reg == AArch64::XZR)
+ O << "#" << Imm;
+ else
+ O << getRegisterName(Reg);
+ } else
+ llvm_unreachable("unknown operand kind in printPostIncOperand64");
+}
+
+void AArch64InstPrinter::printVRegOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ assert(Op.isReg() && "Non-register vreg operand!");
+ unsigned Reg = Op.getReg();
+ O << getRegisterName(Reg, AArch64::vreg);
+}
+
+void AArch64InstPrinter::printSysCROperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ assert(Op.isImm() && "System instruction C[nm] operands must be immediates!");
+ O << "c" << Op.getImm();
+}
+
+void AArch64InstPrinter::printAddSubImm(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+ if (MO.isImm()) {
+ unsigned Val = (MO.getImm() & 0xfff);
+ assert(Val == MO.getImm() && "Add/sub immediate out of range!");
+ unsigned Shift =
+ AArch64_AM::getShiftValue(MI->getOperand(OpNum + 1).getImm());
+ O << '#' << Val;
+ if (Shift != 0)
+ printShifter(MI, OpNum + 1, O);
+
+ if (CommentStream)
+ *CommentStream << '=' << (Val << Shift) << '\n';
+ } else {
+ assert(MO.isExpr() && "Unexpected operand type!");
+ O << *MO.getExpr();
+ printShifter(MI, OpNum + 1, O);
+ }
+}
+
+void AArch64InstPrinter::printLogicalImm32(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ uint64_t Val = MI->getOperand(OpNum).getImm();
+ O << "#0x";
+ O.write_hex(AArch64_AM::decodeLogicalImmediate(Val, 32));
+}
+
+void AArch64InstPrinter::printLogicalImm64(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ uint64_t Val = MI->getOperand(OpNum).getImm();
+ O << "#0x";
+ O.write_hex(AArch64_AM::decodeLogicalImmediate(Val, 64));
+}
+
+void AArch64InstPrinter::printShifter(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Val = MI->getOperand(OpNum).getImm();
+ // LSL #0 should not be printed.
+ if (AArch64_AM::getShiftType(Val) == AArch64_AM::LSL &&
+ AArch64_AM::getShiftValue(Val) == 0)
+ return;
+ O << ", " << AArch64_AM::getShiftExtendName(AArch64_AM::getShiftType(Val))
+ << " #" << AArch64_AM::getShiftValue(Val);
+}
+
+void AArch64InstPrinter::printShiftedRegister(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << getRegisterName(MI->getOperand(OpNum).getReg());
+ printShifter(MI, OpNum + 1, O);
+}
+
+void AArch64InstPrinter::printExtendedRegister(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << getRegisterName(MI->getOperand(OpNum).getReg());
+ printArithExtend(MI, OpNum + 1, O);
+}
+
+void AArch64InstPrinter::printArithExtend(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Val = MI->getOperand(OpNum).getImm();
+ AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getArithExtendType(Val);
+ unsigned ShiftVal = AArch64_AM::getArithShiftValue(Val);
+
+ // If the destination or first source register operand is [W]SP, print
+ // UXTW/UXTX as LSL, and if the shift amount is also zero, print nothing at
+ // all.
+ if (ExtType == AArch64_AM::UXTW || ExtType == AArch64_AM::UXTX) {
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Src1 = MI->getOperand(1).getReg();
+ if ( ((Dest == AArch64::SP || Src1 == AArch64::SP) &&
+ ExtType == AArch64_AM::UXTX) ||
+ ((Dest == AArch64::WSP || Src1 == AArch64::WSP) &&
+ ExtType == AArch64_AM::UXTW) ) {
+ if (ShiftVal != 0)
+ O << ", lsl #" << ShiftVal;
+ return;
+ }
+ }
+ O << ", " << AArch64_AM::getShiftExtendName(ExtType);
+ if (ShiftVal != 0)
+ O << " #" << ShiftVal;
+}
+
+void AArch64InstPrinter::printMemExtend(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O, char SrcRegKind,
+ unsigned Width) {
+ unsigned SignExtend = MI->getOperand(OpNum).getImm();
+ unsigned DoShift = MI->getOperand(OpNum + 1).getImm();
+
+ // sxtw, sxtx, uxtw or lsl (== uxtx)
+ bool IsLSL = !SignExtend && SrcRegKind == 'x';
+ if (IsLSL)
+ O << "lsl";
+ else
+ O << (SignExtend ? 's' : 'u') << "xt" << SrcRegKind;
+
+ if (DoShift || IsLSL)
+ O << " #" << Log2_32(Width / 8);
+}
+
+void AArch64InstPrinter::printCondCode(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ AArch64CC::CondCode CC = (AArch64CC::CondCode)MI->getOperand(OpNum).getImm();
+ O << AArch64CC::getCondCodeName(CC);
+}
+
+void AArch64InstPrinter::printInverseCondCode(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ AArch64CC::CondCode CC = (AArch64CC::CondCode)MI->getOperand(OpNum).getImm();
+ O << AArch64CC::getCondCodeName(AArch64CC::getInvertedCondCode(CC));
+}
+
+void AArch64InstPrinter::printAMNoIndex(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << '[' << getRegisterName(MI->getOperand(OpNum).getReg()) << ']';
+}
+
+template<int Scale>
+void AArch64InstPrinter::printImmScale(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << '#' << Scale * MI->getOperand(OpNum).getImm();
+}
+
+void AArch64InstPrinter::printUImm12Offset(const MCInst *MI, unsigned OpNum,
+ unsigned Scale, raw_ostream &O) {
+ const MCOperand MO = MI->getOperand(OpNum);
+ if (MO.isImm()) {
+ O << "#" << (MO.getImm() * Scale);
+ } else {
+ assert(MO.isExpr() && "Unexpected operand type!");
+ O << *MO.getExpr();
+ }
+}
+
+void AArch64InstPrinter::printAMIndexedWB(const MCInst *MI, unsigned OpNum,
+ unsigned Scale, raw_ostream &O) {
+ const MCOperand MO1 = MI->getOperand(OpNum + 1);
+ O << '[' << getRegisterName(MI->getOperand(OpNum).getReg());
+ if (MO1.isImm()) {
+ O << ", #" << (MO1.getImm() * Scale);
+ } else {
+ assert(MO1.isExpr() && "Unexpected operand type!");
+ O << ", " << *MO1.getExpr();
+ }
+ O << ']';
+}
+
+void AArch64InstPrinter::printPrefetchOp(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned prfop = MI->getOperand(OpNum).getImm();
+ bool Valid;
+ StringRef Name = AArch64PRFM::PRFMMapper().toString(prfop, Valid);
+ if (Valid)
+ O << Name;
+ else
+ O << '#' << prfop;
+}
+
+void AArch64InstPrinter::printFPImmOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+ float FPImm =
+ MO.isFPImm() ? MO.getFPImm() : AArch64_AM::getFPImmFloat(MO.getImm());
+
+ // 8 decimal places are enough to perfectly represent permitted floats.
+ O << format("#%.8f", FPImm);
+}
+
+static unsigned getNextVectorRegister(unsigned Reg, unsigned Stride = 1) {
+ while (Stride--) {
+ switch (Reg) {
+ default:
+ llvm_unreachable("Vector register expected!");
+ case AArch64::Q0: Reg = AArch64::Q1; break;
+ case AArch64::Q1: Reg = AArch64::Q2; break;
+ case AArch64::Q2: Reg = AArch64::Q3; break;
+ case AArch64::Q3: Reg = AArch64::Q4; break;
+ case AArch64::Q4: Reg = AArch64::Q5; break;
+ case AArch64::Q5: Reg = AArch64::Q6; break;
+ case AArch64::Q6: Reg = AArch64::Q7; break;
+ case AArch64::Q7: Reg = AArch64::Q8; break;
+ case AArch64::Q8: Reg = AArch64::Q9; break;
+ case AArch64::Q9: Reg = AArch64::Q10; break;
+ case AArch64::Q10: Reg = AArch64::Q11; break;
+ case AArch64::Q11: Reg = AArch64::Q12; break;
+ case AArch64::Q12: Reg = AArch64::Q13; break;
+ case AArch64::Q13: Reg = AArch64::Q14; break;
+ case AArch64::Q14: Reg = AArch64::Q15; break;
+ case AArch64::Q15: Reg = AArch64::Q16; break;
+ case AArch64::Q16: Reg = AArch64::Q17; break;
+ case AArch64::Q17: Reg = AArch64::Q18; break;
+ case AArch64::Q18: Reg = AArch64::Q19; break;
+ case AArch64::Q19: Reg = AArch64::Q20; break;
+ case AArch64::Q20: Reg = AArch64::Q21; break;
+ case AArch64::Q21: Reg = AArch64::Q22; break;
+ case AArch64::Q22: Reg = AArch64::Q23; break;
+ case AArch64::Q23: Reg = AArch64::Q24; break;
+ case AArch64::Q24: Reg = AArch64::Q25; break;
+ case AArch64::Q25: Reg = AArch64::Q26; break;
+ case AArch64::Q26: Reg = AArch64::Q27; break;
+ case AArch64::Q27: Reg = AArch64::Q28; break;
+ case AArch64::Q28: Reg = AArch64::Q29; break;
+ case AArch64::Q29: Reg = AArch64::Q30; break;
+ case AArch64::Q30: Reg = AArch64::Q31; break;
+ // Vector lists can wrap around.
+ case AArch64::Q31:
+ Reg = AArch64::Q0;
+ break;
+ }
+ }
+ return Reg;
+}
+
+void AArch64InstPrinter::printVectorList(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O,
+ StringRef LayoutSuffix) {
+ unsigned Reg = MI->getOperand(OpNum).getReg();
+
+ O << "{ ";
+
+ // Work out how many registers there are in the list (if there is an actual
+ // list).
+ unsigned NumRegs = 1;
+ if (MRI.getRegClass(AArch64::DDRegClassID).contains(Reg) ||
+ MRI.getRegClass(AArch64::QQRegClassID).contains(Reg))
+ NumRegs = 2;
+ else if (MRI.getRegClass(AArch64::DDDRegClassID).contains(Reg) ||
+ MRI.getRegClass(AArch64::QQQRegClassID).contains(Reg))
+ NumRegs = 3;
+ else if (MRI.getRegClass(AArch64::DDDDRegClassID).contains(Reg) ||
+ MRI.getRegClass(AArch64::QQQQRegClassID).contains(Reg))
+ NumRegs = 4;
+
+ // Now forget about the list and find out what the first register is.
+ if (unsigned FirstReg = MRI.getSubReg(Reg, AArch64::dsub0))
+ Reg = FirstReg;
+ else if (unsigned FirstReg = MRI.getSubReg(Reg, AArch64::qsub0))
+ Reg = FirstReg;
+
+ // If it's a D-reg, we need to promote it to the equivalent Q-reg before
+ // printing (otherwise getRegisterName fails).
+ if (MRI.getRegClass(AArch64::FPR64RegClassID).contains(Reg)) {
+ const MCRegisterClass &FPR128RC =
+ MRI.getRegClass(AArch64::FPR128RegClassID);
+ Reg = MRI.getMatchingSuperReg(Reg, AArch64::dsub, &FPR128RC);
+ }
+
+ for (unsigned i = 0; i < NumRegs; ++i, Reg = getNextVectorRegister(Reg)) {
+ O << getRegisterName(Reg, AArch64::vreg) << LayoutSuffix;
+ if (i + 1 != NumRegs)
+ O << ", ";
+ }
+
+ O << " }";
+}
+
+void AArch64InstPrinter::printImplicitlyTypedVectorList(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ printVectorList(MI, OpNum, O, "");
+}
+
+template <unsigned NumLanes, char LaneKind>
+void AArch64InstPrinter::printTypedVectorList(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ std::string Suffix(".");
+ if (NumLanes)
+ Suffix += itostr(NumLanes) + LaneKind;
+ else
+ Suffix += LaneKind;
+
+ printVectorList(MI, OpNum, O, Suffix);
+}
+
+void AArch64InstPrinter::printVectorIndex(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << "[" << MI->getOperand(OpNum).getImm() << "]";
+}
+
+void AArch64InstPrinter::printAlignedLabel(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNum);
+
+ // If the label has already been resolved to an immediate offset (say, when
+ // we're running the disassembler), just print the immediate.
+ if (Op.isImm()) {
+ O << "#" << (Op.getImm() << 2);
+ return;
+ }
+
+ // If the branch target is simply an address then print it in hex.
+ const MCConstantExpr *BranchTarget =
+ dyn_cast<MCConstantExpr>(MI->getOperand(OpNum).getExpr());
+ int64_t Address;
+ if (BranchTarget && BranchTarget->EvaluateAsAbsolute(Address)) {
+ O << "0x";
+ O.write_hex(Address);
+ } else {
+ // Otherwise, just print the expression.
+ O << *MI->getOperand(OpNum).getExpr();
+ }
+}
+
+void AArch64InstPrinter::printAdrpLabel(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNum);
+
+ // If the label has already been resolved to an immediate offset (say, when
+ // we're running the disassembler), just print the immediate.
+ if (Op.isImm()) {
+ O << "#" << (Op.getImm() << 12);
+ return;
+ }
+
+ // Otherwise, just print the expression.
+ O << *MI->getOperand(OpNum).getExpr();
+}
+
+void AArch64InstPrinter::printBarrierOption(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned Val = MI->getOperand(OpNo).getImm();
+ unsigned Opcode = MI->getOpcode();
+
+ bool Valid;
+ StringRef Name;
+ if (Opcode == AArch64::ISB)
+ Name = AArch64ISB::ISBMapper().toString(Val, Valid);
+ else
+ Name = AArch64DB::DBarrierMapper().toString(Val, Valid);
+ if (Valid)
+ O << Name;
+ else
+ O << "#" << Val;
+}
+
+void AArch64InstPrinter::printMRSSystemRegister(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned Val = MI->getOperand(OpNo).getImm();
+
+ bool Valid;
+ auto Mapper = AArch64SysReg::MRSMapper(getAvailableFeatures());
+ std::string Name = Mapper.toString(Val, Valid);
+
+ if (Valid)
+ O << StringRef(Name).upper();
+}
+
+void AArch64InstPrinter::printMSRSystemRegister(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned Val = MI->getOperand(OpNo).getImm();
+
+ bool Valid;
+ auto Mapper = AArch64SysReg::MSRMapper(getAvailableFeatures());
+ std::string Name = Mapper.toString(Val, Valid);
+
+ if (Valid)
+ O << StringRef(Name).upper();
+}
+
+void AArch64InstPrinter::printSystemPStateField(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned Val = MI->getOperand(OpNo).getImm();
+
+ bool Valid;
+ StringRef Name = AArch64PState::PStateMapper().toString(Val, Valid);
+ if (Valid)
+ O << StringRef(Name.str()).upper();
+ else
+ O << "#" << Val;
+}
+
+void AArch64InstPrinter::printSIMDType10Operand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned RawVal = MI->getOperand(OpNo).getImm();
+ uint64_t Val = AArch64_AM::decodeAdvSIMDModImmType10(RawVal);
+ O << format("#%#016llx", Val);
+}
diff --git a/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h b/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h
new file mode 100644
index 0000000..fe7666e
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h
@@ -0,0 +1,140 @@
+//===-- AArch64InstPrinter.h - Convert AArch64 MCInst to assembly syntax --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an AArch64 MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64INSTPRINTER_H
+#define AArch64INSTPRINTER_H
+
+#include "MCTargetDesc/AArch64MCTargetDesc.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+
+namespace llvm {
+
+class MCOperand;
+
+class AArch64InstPrinter : public MCInstPrinter {
+public:
+ AArch64InstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI, const MCSubtargetInfo &STI);
+
+ void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot) override;
+ void printRegName(raw_ostream &OS, unsigned RegNo) const override;
+
+ // Autogenerated by tblgen.
+ virtual void printInstruction(const MCInst *MI, raw_ostream &O);
+ virtual bool printAliasInstr(const MCInst *MI, raw_ostream &O);
+ virtual void printCustomAliasOperand(const MCInst *MI, unsigned OpIdx,
+ unsigned PrintMethodIdx, raw_ostream &O);
+ virtual StringRef getRegName(unsigned RegNo) const {
+ return getRegisterName(RegNo);
+ }
+ static const char *getRegisterName(unsigned RegNo,
+ unsigned AltIdx = AArch64::NoRegAltName);
+
+protected:
+ bool printSysAlias(const MCInst *MI, raw_ostream &O);
+ // Operand printers
+ void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printHexImm(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printPostIncOperand(const MCInst *MI, unsigned OpNo, unsigned Imm,
+ raw_ostream &O);
+ template<int Amount>
+ void printPostIncOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printPostIncOperand(MI, OpNo, Amount, O);
+ }
+
+ void printVRegOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printSysCROperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printAddSubImm(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printLogicalImm32(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printLogicalImm64(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printShifter(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printShiftedRegister(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printExtendedRegister(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printArithExtend(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+
+ void printMemExtend(const MCInst *MI, unsigned OpNum, raw_ostream &O,
+ char SrcRegKind, unsigned Width);
+ template <char SrcRegKind, unsigned Width>
+ void printMemExtend(const MCInst *MI, unsigned OpNum, raw_ostream &O) {
+ printMemExtend(MI, OpNum, O, SrcRegKind, Width);
+ }
+
+ void printCondCode(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printInverseCondCode(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printAlignedLabel(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printUImm12Offset(const MCInst *MI, unsigned OpNum, unsigned Scale,
+ raw_ostream &O);
+ void printAMIndexedWB(const MCInst *MI, unsigned OpNum, unsigned Scale,
+ raw_ostream &O);
+
+ template<int Scale>
+ void printUImm12Offset(const MCInst *MI, unsigned OpNum, raw_ostream &O) {
+ printUImm12Offset(MI, OpNum, Scale, O);
+ }
+
+ template<int BitWidth>
+ void printAMIndexedWB(const MCInst *MI, unsigned OpNum, raw_ostream &O) {
+ printAMIndexedWB(MI, OpNum, BitWidth / 8, O);
+ }
+
+ void printAMNoIndex(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+
+ template<int Scale>
+ void printImmScale(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+
+ void printPrefetchOp(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+
+ void printFPImmOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+
+ void printVectorList(const MCInst *MI, unsigned OpNum, raw_ostream &O,
+ StringRef LayoutSuffix);
+
+ /// Print a list of vector registers where the type suffix is implicit
+ /// (i.e. attached to the instruction rather than the registers).
+ void printImplicitlyTypedVectorList(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+
+ template <unsigned NumLanes, char LaneKind>
+ void printTypedVectorList(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+
+ void printVectorIndex(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printAdrpLabel(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printBarrierOption(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printMSRSystemRegister(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printMRSSystemRegister(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printSystemPStateField(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printSIMDType10Operand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+};
+
+class AArch64AppleInstPrinter : public AArch64InstPrinter {
+public:
+ AArch64AppleInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI, const MCSubtargetInfo &STI);
+
+ void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot) override;
+
+ void printInstruction(const MCInst *MI, raw_ostream &O) override;
+ bool printAliasInstr(const MCInst *MI, raw_ostream &O) override;
+ virtual void printCustomAliasOperand(const MCInst *MI, unsigned OpIdx,
+ unsigned PrintMethodIdx, raw_ostream &O);
+ StringRef getRegName(unsigned RegNo) const override {
+ return getRegisterName(RegNo);
+ }
+ static const char *getRegisterName(unsigned RegNo,
+ unsigned AltIdx = AArch64::NoRegAltName);
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h
new file mode 100644
index 0000000..8b1e44e2
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h
@@ -0,0 +1,738 @@
+//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the AArch64 addressing mode implementation stuff.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_AArch64_AArch64ADDRESSINGMODES_H
+#define LLVM_TARGET_AArch64_AArch64ADDRESSINGMODES_H
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+
+namespace llvm {
+
+/// AArch64_AM - AArch64 Addressing Mode Stuff
+namespace AArch64_AM {
+
+//===----------------------------------------------------------------------===//
+// Shifts
+//
+
+enum ShiftExtendType {
+ InvalidShiftExtend = -1,
+ LSL = 0,
+ LSR,
+ ASR,
+ ROR,
+ MSL,
+
+ UXTB,
+ UXTH,
+ UXTW,
+ UXTX,
+
+ SXTB,
+ SXTH,
+ SXTW,
+ SXTX,
+};
+
+/// getShiftName - Get the string encoding for the shift type.
+static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
+ switch (ST) {
+ default: assert(false && "unhandled shift type!");
+ case AArch64_AM::LSL: return "lsl";
+ case AArch64_AM::LSR: return "lsr";
+ case AArch64_AM::ASR: return "asr";
+ case AArch64_AM::ROR: return "ror";
+ case AArch64_AM::MSL: return "msl";
+ case AArch64_AM::UXTB: return "uxtb";
+ case AArch64_AM::UXTH: return "uxth";
+ case AArch64_AM::UXTW: return "uxtw";
+ case AArch64_AM::UXTX: return "uxtx";
+ case AArch64_AM::SXTB: return "sxtb";
+ case AArch64_AM::SXTH: return "sxth";
+ case AArch64_AM::SXTW: return "sxtw";
+ case AArch64_AM::SXTX: return "sxtx";
+ }
+ return nullptr;
+}
+
+/// getShiftType - Extract the shift type.
+static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
+ switch ((Imm >> 6) & 0x7) {
+ default: return AArch64_AM::InvalidShiftExtend;
+ case 0: return AArch64_AM::LSL;
+ case 1: return AArch64_AM::LSR;
+ case 2: return AArch64_AM::ASR;
+ case 3: return AArch64_AM::ROR;
+ case 4: return AArch64_AM::MSL;
+ }
+}
+
+/// getShiftValue - Extract the shift value.
+static inline unsigned getShiftValue(unsigned Imm) {
+ return Imm & 0x3f;
+}
+
+/// getShifterImm - Encode the shift type and amount:
+/// imm: 6-bit shift amount
+/// shifter: 000 ==> lsl
+/// 001 ==> lsr
+/// 010 ==> asr
+/// 011 ==> ror
+/// 100 ==> msl
+/// {8-6} = shifter
+/// {5-0} = imm
+static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
+ unsigned Imm) {
+ assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
+ unsigned STEnc = 0;
+ switch (ST) {
+ default: llvm_unreachable("Invalid shift requested");
+ case AArch64_AM::LSL: STEnc = 0; break;
+ case AArch64_AM::LSR: STEnc = 1; break;
+ case AArch64_AM::ASR: STEnc = 2; break;
+ case AArch64_AM::ROR: STEnc = 3; break;
+ case AArch64_AM::MSL: STEnc = 4; break;
+ }
+ return (STEnc << 6) | (Imm & 0x3f);
+}
+
+//===----------------------------------------------------------------------===//
+// Extends
+//
+
+/// getArithShiftValue - get the arithmetic shift value.
+static inline unsigned getArithShiftValue(unsigned Imm) {
+ return Imm & 0x7;
+}
+
+/// getExtendType - Extract the extend type for operands of arithmetic ops.
+static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
+ assert((Imm & 0x7) == Imm && "invalid immediate!");
+ switch (Imm) {
+ default: llvm_unreachable("Compiler bug!");
+ case 0: return AArch64_AM::UXTB;
+ case 1: return AArch64_AM::UXTH;
+ case 2: return AArch64_AM::UXTW;
+ case 3: return AArch64_AM::UXTX;
+ case 4: return AArch64_AM::SXTB;
+ case 5: return AArch64_AM::SXTH;
+ case 6: return AArch64_AM::SXTW;
+ case 7: return AArch64_AM::SXTX;
+ }
+}
+
+static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
+ return getExtendType((Imm >> 3) & 0x7);
+}
+
+/// Mapping from extend bits to required operation:
+/// shifter: 000 ==> uxtb
+/// 001 ==> uxth
+/// 010 ==> uxtw
+/// 011 ==> uxtx
+/// 100 ==> sxtb
+/// 101 ==> sxth
+/// 110 ==> sxtw
+/// 111 ==> sxtx
+inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
+ switch (ET) {
+ default: llvm_unreachable("Invalid extend type requested");
+ case AArch64_AM::UXTB: return 0; break;
+ case AArch64_AM::UXTH: return 1; break;
+ case AArch64_AM::UXTW: return 2; break;
+ case AArch64_AM::UXTX: return 3; break;
+ case AArch64_AM::SXTB: return 4; break;
+ case AArch64_AM::SXTH: return 5; break;
+ case AArch64_AM::SXTW: return 6; break;
+ case AArch64_AM::SXTX: return 7; break;
+ }
+}
+
+/// getArithExtendImm - Encode the extend type and shift amount for an
+/// arithmetic instruction:
+/// imm: 3-bit extend amount
+/// {5-3} = shifter
+/// {2-0} = imm3
+static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
+ unsigned Imm) {
+ assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
+ return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
+}
+
+/// getMemDoShift - Extract the "do shift" flag value for load/store
+/// instructions.
+static inline bool getMemDoShift(unsigned Imm) {
+ return (Imm & 0x1) != 0;
+}
+
+/// getExtendType - Extract the extend type for the offset operand of
+/// loads/stores.
+static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
+ return getExtendType((Imm >> 1) & 0x7);
+}
+
+/// getExtendImm - Encode the extend type and amount for a load/store inst:
+/// doshift: should the offset be scaled by the access size
+/// shifter: 000 ==> uxtb
+/// 001 ==> uxth
+/// 010 ==> uxtw
+/// 011 ==> uxtx
+/// 100 ==> sxtb
+/// 101 ==> sxth
+/// 110 ==> sxtw
+/// 111 ==> sxtx
+/// {3-1} = shifter
+/// {0} = doshift
+static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
+ bool DoShift) {
+ return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
+}
+
+static inline uint64_t ror(uint64_t elt, unsigned size) {
+ return ((elt & 1) << (size-1)) | (elt >> 1);
+}
+
+/// processLogicalImmediate - Determine if an immediate value can be encoded
+/// as the immediate operand of a logical instruction for the given register
+/// size. If so, return true with "encoding" set to the encoded value in
+/// the form N:immr:imms.
+static inline bool processLogicalImmediate(uint64_t imm, unsigned regSize,
+ uint64_t &encoding) {
+ if (imm == 0ULL || imm == ~0ULL ||
+ (regSize != 64 && (imm >> regSize != 0 || imm == ~0U)))
+ return false;
+
+ unsigned size = 2;
+ uint64_t eltVal = imm;
+
+ // First, determine the element size.
+ while (size < regSize) {
+ unsigned numElts = regSize / size;
+ unsigned mask = (1ULL << size) - 1;
+ uint64_t lowestEltVal = imm & mask;
+
+ bool allMatched = true;
+ for (unsigned i = 1; i < numElts; ++i) {
+ uint64_t currEltVal = (imm >> (i*size)) & mask;
+ if (currEltVal != lowestEltVal) {
+ allMatched = false;
+ break;
+ }
+ }
+
+ if (allMatched) {
+ eltVal = lowestEltVal;
+ break;
+ }
+
+ size *= 2;
+ }
+
+ // Second, determine the rotation to make the element be: 0^m 1^n.
+ for (unsigned i = 0; i < size; ++i) {
+ eltVal = ror(eltVal, size);
+ uint32_t clz = countLeadingZeros(eltVal) - (64 - size);
+ uint32_t cto = CountTrailingOnes_64(eltVal);
+
+ if (clz + cto == size) {
+ // Encode in immr the number of RORs it would take to get *from* this
+ // element value to our target value, where i+1 is the number of RORs
+ // to go the opposite direction.
+ unsigned immr = size - (i + 1);
+
+ // If size has a 1 in the n'th bit, create a value that has zeroes in
+ // bits [0, n] and ones above that.
+ uint64_t nimms = ~(size-1) << 1;
+
+ // Or the CTO value into the low bits, which must be below the Nth bit
+ // bit mentioned above.
+ nimms |= (cto-1);
+
+ // Extract the seventh bit and toggle it to create the N field.
+ unsigned N = ((nimms >> 6) & 1) ^ 1;
+
+ encoding = (N << 12) | (immr << 6) | (nimms & 0x3f);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// isLogicalImmediate - Return true if the immediate is valid for a logical
+/// immediate instruction of the given register size. Return false otherwise.
+static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
+ uint64_t encoding;
+ return processLogicalImmediate(imm, regSize, encoding);
+}
+
+/// encodeLogicalImmediate - Return the encoded immediate value for a logical
+/// immediate instruction of the given register size.
+static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
+ uint64_t encoding = 0;
+ bool res = processLogicalImmediate(imm, regSize, encoding);
+ assert(res && "invalid logical immediate");
+ (void)res;
+ return encoding;
+}
+
+/// decodeLogicalImmediate - Decode a logical immediate value in the form
+/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
+/// integer value it represents with regSize bits.
+static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
+ // Extract the N, imms, and immr fields.
+ unsigned N = (val >> 12) & 1;
+ unsigned immr = (val >> 6) & 0x3f;
+ unsigned imms = val & 0x3f;
+
+ assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
+ int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
+ assert(len >= 0 && "undefined logical immediate encoding");
+ unsigned size = (1 << len);
+ unsigned R = immr & (size - 1);
+ unsigned S = imms & (size - 1);
+ assert(S != size - 1 && "undefined logical immediate encoding");
+ uint64_t pattern = (1ULL << (S + 1)) - 1;
+ for (unsigned i = 0; i < R; ++i)
+ pattern = ror(pattern, size);
+
+ // Replicate the pattern to fill the regSize.
+ while (size != regSize) {
+ pattern |= (pattern << size);
+ size *= 2;
+ }
+ return pattern;
+}
+
+/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
+/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
+/// is a valid encoding for an integer value with regSize bits.
+static inline bool isValidDecodeLogicalImmediate(uint64_t val,
+ unsigned regSize) {
+ // Extract the N and imms fields needed for checking.
+ unsigned N = (val >> 12) & 1;
+ unsigned imms = val & 0x3f;
+
+ if (regSize == 32 && N != 0) // undefined logical immediate encoding
+ return false;
+ int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
+ if (len < 0) // undefined logical immediate encoding
+ return false;
+ unsigned size = (1 << len);
+ unsigned S = imms & (size - 1);
+ if (S == size - 1) // undefined logical immediate encoding
+ return false;
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Floating-point Immediates
+//
+static inline float getFPImmFloat(unsigned Imm) {
+ // We expect an 8-bit binary encoding of a floating-point number here.
+ union {
+ uint32_t I;
+ float F;
+ } FPUnion;
+
+ uint8_t Sign = (Imm >> 7) & 0x1;
+ uint8_t Exp = (Imm >> 4) & 0x7;
+ uint8_t Mantissa = Imm & 0xf;
+
+ // 8-bit FP iEEEE Float Encoding
+ // abcd efgh aBbbbbbc defgh000 00000000 00000000
+ //
+ // where B = NOT(b);
+
+ FPUnion.I = 0;
+ FPUnion.I |= Sign << 31;
+ FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
+ FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
+ FPUnion.I |= (Exp & 0x3) << 23;
+ FPUnion.I |= Mantissa << 19;
+ return FPUnion.F;
+}
+
+/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
+/// floating-point value. If the value cannot be represented as an 8-bit
+/// floating-point value, then return -1.
+static inline int getFP32Imm(const APInt &Imm) {
+ uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
+ int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
+ int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
+
+ // We can handle 4 bits of mantissa.
+ // mantissa = (16+UInt(e:f:g:h))/16.
+ if (Mantissa & 0x7ffff)
+ return -1;
+ Mantissa >>= 19;
+ if ((Mantissa & 0xf) != Mantissa)
+ return -1;
+
+ // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
+ if (Exp < -3 || Exp > 4)
+ return -1;
+ Exp = ((Exp+3) & 0x7) ^ 4;
+
+ return ((int)Sign << 7) | (Exp << 4) | Mantissa;
+}
+
+static inline int getFP32Imm(const APFloat &FPImm) {
+ return getFP32Imm(FPImm.bitcastToAPInt());
+}
+
+/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
+/// floating-point value. If the value cannot be represented as an 8-bit
+/// floating-point value, then return -1.
+static inline int getFP64Imm(const APInt &Imm) {
+ uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
+ int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
+ uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
+
+ // We can handle 4 bits of mantissa.
+ // mantissa = (16+UInt(e:f:g:h))/16.
+ if (Mantissa & 0xffffffffffffULL)
+ return -1;
+ Mantissa >>= 48;
+ if ((Mantissa & 0xf) != Mantissa)
+ return -1;
+
+ // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
+ if (Exp < -3 || Exp > 4)
+ return -1;
+ Exp = ((Exp+3) & 0x7) ^ 4;
+
+ return ((int)Sign << 7) | (Exp << 4) | Mantissa;
+}
+
+static inline int getFP64Imm(const APFloat &FPImm) {
+ return getFP64Imm(FPImm.bitcastToAPInt());
+}
+
+//===--------------------------------------------------------------------===//
+// AdvSIMD Modified Immediates
+//===--------------------------------------------------------------------===//
+
+// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
+static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xffffff00ffffff00ULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
+ return (Imm & 0xffULL);
+}
+
+static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 32) | EncVal;
+}
+
+// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
+static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xffff00ffffff00ffULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
+ return (Imm & 0xff00ULL) >> 8;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 40) | (EncVal << 8);
+}
+
+// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
+static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xff00ffffff00ffffULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
+ return (Imm & 0xff0000ULL) >> 16;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 48) | (EncVal << 16);
+}
+
+// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
+static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0x00ffffff00ffffffULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
+ return (Imm & 0xff000000ULL) >> 24;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 56) | (EncVal << 24);
+}
+
+// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
+static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
+ ((Imm & 0xff00ff00ff00ff00ULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
+ return (Imm & 0xffULL);
+}
+
+static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
+}
+
+// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
+static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
+ ((Imm & 0x00ff00ff00ff00ffULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
+ return (Imm & 0xff00ULL) >> 8;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
+}
+
+// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
+static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
+ return (Imm & 0xff00ULL) >> 8;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
+}
+
+// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
+static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
+}
+
+static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
+}
+
+static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
+ return (Imm & 0x00ff0000ULL) >> 16;
+}
+
+// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
+static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
+ ((Imm >> 56) == (Imm & 0x000000ffULL));
+}
+
+static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
+ return (Imm & 0xffULL);
+}
+
+static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ EncVal |= (EncVal << 8);
+ EncVal |= (EncVal << 16);
+ EncVal |= (EncVal << 32);
+ return EncVal;
+}
+
+// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
+// cmode: 1110, op: 1
+static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
+ uint64_t ByteA = Imm & 0xff00000000000000ULL;
+ uint64_t ByteB = Imm & 0x00ff000000000000ULL;
+ uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
+ uint64_t ByteD = Imm & 0x000000ff00000000ULL;
+ uint64_t ByteE = Imm & 0x00000000ff000000ULL;
+ uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
+ uint64_t ByteG = Imm & 0x000000000000ff00ULL;
+ uint64_t ByteH = Imm & 0x00000000000000ffULL;
+
+ return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
+ (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
+ (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
+ (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
+ (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
+ (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
+ (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
+ (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
+ uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
+ uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
+ uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
+ uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
+ uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
+ uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
+ uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
+ uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
+
+ uint8_t EncVal = BitA;
+ EncVal <<= 1;
+ EncVal |= BitB;
+ EncVal <<= 1;
+ EncVal |= BitC;
+ EncVal <<= 1;
+ EncVal |= BitD;
+ EncVal <<= 1;
+ EncVal |= BitE;
+ EncVal <<= 1;
+ EncVal |= BitF;
+ EncVal <<= 1;
+ EncVal |= BitG;
+ EncVal <<= 1;
+ EncVal |= BitH;
+ return EncVal;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
+ uint64_t EncVal = 0;
+ if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
+ if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
+ if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
+ if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
+ if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
+ if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
+ if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
+ if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
+ return EncVal;
+}
+
+// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
+static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
+ uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ (BString == 0x1f || BString == 0x20) &&
+ ((Imm & 0x0007ffff0007ffffULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
+ uint8_t BitA = (Imm & 0x80000000ULL) != 0;
+ uint8_t BitB = (Imm & 0x20000000ULL) != 0;
+ uint8_t BitC = (Imm & 0x01000000ULL) != 0;
+ uint8_t BitD = (Imm & 0x00800000ULL) != 0;
+ uint8_t BitE = (Imm & 0x00400000ULL) != 0;
+ uint8_t BitF = (Imm & 0x00200000ULL) != 0;
+ uint8_t BitG = (Imm & 0x00100000ULL) != 0;
+ uint8_t BitH = (Imm & 0x00080000ULL) != 0;
+
+ uint8_t EncVal = BitA;
+ EncVal <<= 1;
+ EncVal |= BitB;
+ EncVal <<= 1;
+ EncVal |= BitC;
+ EncVal <<= 1;
+ EncVal |= BitD;
+ EncVal <<= 1;
+ EncVal |= BitE;
+ EncVal <<= 1;
+ EncVal |= BitF;
+ EncVal <<= 1;
+ EncVal |= BitG;
+ EncVal <<= 1;
+ EncVal |= BitH;
+ return EncVal;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
+ uint64_t EncVal = 0;
+ if (Imm & 0x80) EncVal |= 0x80000000ULL;
+ if (Imm & 0x40) EncVal |= 0x3e000000ULL;
+ else EncVal |= 0x40000000ULL;
+ if (Imm & 0x20) EncVal |= 0x01000000ULL;
+ if (Imm & 0x10) EncVal |= 0x00800000ULL;
+ if (Imm & 0x08) EncVal |= 0x00400000ULL;
+ if (Imm & 0x04) EncVal |= 0x00200000ULL;
+ if (Imm & 0x02) EncVal |= 0x00100000ULL;
+ if (Imm & 0x01) EncVal |= 0x00080000ULL;
+ return (EncVal << 32) | EncVal;
+}
+
+// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
+static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
+ uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
+ return ((BString == 0xff || BString == 0x100) &&
+ ((Imm & 0x0000ffffffffffffULL) == 0));
+}
+
+static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
+ uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
+ uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
+ uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
+ uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
+ uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
+ uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
+ uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
+ uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
+
+ uint8_t EncVal = BitA;
+ EncVal <<= 1;
+ EncVal |= BitB;
+ EncVal <<= 1;
+ EncVal |= BitC;
+ EncVal <<= 1;
+ EncVal |= BitD;
+ EncVal <<= 1;
+ EncVal |= BitE;
+ EncVal <<= 1;
+ EncVal |= BitF;
+ EncVal <<= 1;
+ EncVal |= BitG;
+ EncVal <<= 1;
+ EncVal |= BitH;
+ return EncVal;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
+ uint64_t EncVal = 0;
+ if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
+ if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
+ else EncVal |= 0x4000000000000000ULL;
+ if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
+ if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
+ if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
+ if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
+ if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
+ if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
+ return (EncVal << 32) | EncVal;
+}
+
+} // end namespace AArch64_AM
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp
new file mode 100644
index 0000000..a917616
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp
@@ -0,0 +1,566 @@
+//===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64RegisterInfo.h"
+#include "MCTargetDesc/AArch64FixupKinds.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCDirectives.h"
+#include "llvm/MC/MCFixupKindInfo.h"
+#include "llvm/MC/MCObjectWriter.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachO.h"
+using namespace llvm;
+
+namespace {
+
+class AArch64AsmBackend : public MCAsmBackend {
+ static const unsigned PCRelFlagVal =
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
+
+public:
+ AArch64AsmBackend(const Target &T) : MCAsmBackend() {}
+
+ unsigned getNumFixupKinds() const override {
+ return AArch64::NumTargetFixupKinds;
+ }
+
+ const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
+ const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
+ // This table *must* be in the order that the fixup_* kinds are defined in
+ // AArch64FixupKinds.h.
+ //
+ // Name Offset (bits) Size (bits) Flags
+ { "fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal },
+ { "fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal },
+ { "fixup_aarch64_add_imm12", 10, 12, 0 },
+ { "fixup_aarch64_ldst_imm12_scale1", 10, 12, 0 },
+ { "fixup_aarch64_ldst_imm12_scale2", 10, 12, 0 },
+ { "fixup_aarch64_ldst_imm12_scale4", 10, 12, 0 },
+ { "fixup_aarch64_ldst_imm12_scale8", 10, 12, 0 },
+ { "fixup_aarch64_ldst_imm12_scale16", 10, 12, 0 },
+ { "fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal },
+ { "fixup_aarch64_movw", 5, 16, 0 },
+ { "fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal },
+ { "fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal },
+ { "fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal },
+ { "fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal },
+ { "fixup_aarch64_tlsdesc_call", 0, 0, 0 }
+ };
+
+ if (Kind < FirstTargetFixupKind)
+ return MCAsmBackend::getFixupKindInfo(Kind);
+
+ assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
+ "Invalid kind!");
+ return Infos[Kind - FirstTargetFixupKind];
+ }
+
+ void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
+ uint64_t Value, bool IsPCRel) const override;
+
+ bool mayNeedRelaxation(const MCInst &Inst) const override;
+ bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const override;
+ void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
+ bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
+
+ void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
+
+ unsigned getPointerSize() const { return 8; }
+};
+
+} // end anonymous namespace
+
+/// \brief The number of bytes the fixup may change.
+static unsigned getFixupKindNumBytes(unsigned Kind) {
+ switch (Kind) {
+ default:
+ llvm_unreachable("Unknown fixup kind!");
+
+ case AArch64::fixup_aarch64_tlsdesc_call:
+ return 0;
+
+ case FK_Data_1:
+ return 1;
+
+ case FK_Data_2:
+ case AArch64::fixup_aarch64_movw:
+ return 2;
+
+ case AArch64::fixup_aarch64_pcrel_branch14:
+ case AArch64::fixup_aarch64_add_imm12:
+ case AArch64::fixup_aarch64_ldst_imm12_scale1:
+ case AArch64::fixup_aarch64_ldst_imm12_scale2:
+ case AArch64::fixup_aarch64_ldst_imm12_scale4:
+ case AArch64::fixup_aarch64_ldst_imm12_scale8:
+ case AArch64::fixup_aarch64_ldst_imm12_scale16:
+ case AArch64::fixup_aarch64_ldr_pcrel_imm19:
+ case AArch64::fixup_aarch64_pcrel_branch19:
+ return 3;
+
+ case AArch64::fixup_aarch64_pcrel_adr_imm21:
+ case AArch64::fixup_aarch64_pcrel_adrp_imm21:
+ case AArch64::fixup_aarch64_pcrel_branch26:
+ case AArch64::fixup_aarch64_pcrel_call26:
+ case FK_Data_4:
+ return 4;
+
+ case FK_Data_8:
+ return 8;
+ }
+}
+
+static unsigned AdrImmBits(unsigned Value) {
+ unsigned lo2 = Value & 0x3;
+ unsigned hi19 = (Value & 0x1ffffc) >> 2;
+ return (hi19 << 5) | (lo2 << 29);
+}
+
+static uint64_t adjustFixupValue(unsigned Kind, uint64_t Value) {
+ int64_t SignedValue = static_cast<int64_t>(Value);
+ switch (Kind) {
+ default:
+ assert(false && "Unknown fixup kind!");
+ case AArch64::fixup_aarch64_pcrel_adr_imm21:
+ if (SignedValue > 2097151 || SignedValue < -2097152)
+ report_fatal_error("fixup value out of range");
+ return AdrImmBits(Value & 0x1fffffULL);
+ case AArch64::fixup_aarch64_pcrel_adrp_imm21:
+ return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
+ case AArch64::fixup_aarch64_ldr_pcrel_imm19:
+ case AArch64::fixup_aarch64_pcrel_branch19:
+ // Signed 21-bit immediate
+ if (SignedValue > 2097151 || SignedValue < -2097152)
+ report_fatal_error("fixup value out of range");
+ // Low two bits are not encoded.
+ return (Value >> 2) & 0x7ffff;
+ case AArch64::fixup_aarch64_add_imm12:
+ case AArch64::fixup_aarch64_ldst_imm12_scale1:
+ // Unsigned 12-bit immediate
+ if (Value >= 0x1000)
+ report_fatal_error("invalid imm12 fixup value");
+ return Value;
+ case AArch64::fixup_aarch64_ldst_imm12_scale2:
+ // Unsigned 12-bit immediate which gets multiplied by 2
+ if (Value & 1 || Value >= 0x2000)
+ report_fatal_error("invalid imm12 fixup value");
+ return Value >> 1;
+ case AArch64::fixup_aarch64_ldst_imm12_scale4:
+ // Unsigned 12-bit immediate which gets multiplied by 4
+ if (Value & 3 || Value >= 0x4000)
+ report_fatal_error("invalid imm12 fixup value");
+ return Value >> 2;
+ case AArch64::fixup_aarch64_ldst_imm12_scale8:
+ // Unsigned 12-bit immediate which gets multiplied by 8
+ if (Value & 7 || Value >= 0x8000)
+ report_fatal_error("invalid imm12 fixup value");
+ return Value >> 3;
+ case AArch64::fixup_aarch64_ldst_imm12_scale16:
+ // Unsigned 12-bit immediate which gets multiplied by 16
+ if (Value & 15 || Value >= 0x10000)
+ report_fatal_error("invalid imm12 fixup value");
+ return Value >> 4;
+ case AArch64::fixup_aarch64_movw:
+ report_fatal_error("no resolvable MOVZ/MOVK fixups supported yet");
+ return Value;
+ case AArch64::fixup_aarch64_pcrel_branch14:
+ // Signed 16-bit immediate
+ if (SignedValue > 32767 || SignedValue < -32768)
+ report_fatal_error("fixup value out of range");
+ // Low two bits are not encoded (4-byte alignment assumed).
+ if (Value & 0x3)
+ report_fatal_error("fixup not sufficiently aligned");
+ return (Value >> 2) & 0x3fff;
+ case AArch64::fixup_aarch64_pcrel_branch26:
+ case AArch64::fixup_aarch64_pcrel_call26:
+ // Signed 28-bit immediate
+ if (SignedValue > 134217727 || SignedValue < -134217728)
+ report_fatal_error("fixup value out of range");
+ // Low two bits are not encoded (4-byte alignment assumed).
+ if (Value & 0x3)
+ report_fatal_error("fixup not sufficiently aligned");
+ return (Value >> 2) & 0x3ffffff;
+ case FK_Data_1:
+ case FK_Data_2:
+ case FK_Data_4:
+ case FK_Data_8:
+ return Value;
+ }
+}
+
+void AArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
+ unsigned DataSize, uint64_t Value,
+ bool IsPCRel) const {
+ unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
+ if (!Value)
+ return; // Doesn't change encoding.
+ MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
+ // Apply any target-specific value adjustments.
+ Value = adjustFixupValue(Fixup.getKind(), Value);
+
+ // Shift the value into position.
+ Value <<= Info.TargetOffset;
+
+ unsigned Offset = Fixup.getOffset();
+ assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
+
+ // For each byte of the fragment that the fixup touches, mask in the
+ // bits from the fixup value.
+ for (unsigned i = 0; i != NumBytes; ++i)
+ Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
+}
+
+bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
+ return false;
+}
+
+bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
+ uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const {
+ // FIXME: This isn't correct for AArch64. Just moving the "generic" logic
+ // into the targets for now.
+ //
+ // Relax if the value is too big for a (signed) i8.
+ return int64_t(Value) != int64_t(int8_t(Value));
+}
+
+void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
+ MCInst &Res) const {
+ assert(false && "AArch64AsmBackend::relaxInstruction() unimplemented");
+}
+
+bool AArch64AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
+ // If the count is not 4-byte aligned, we must be writing data into the text
+ // section (otherwise we have unaligned instructions, and thus have far
+ // bigger problems), so just write zeros instead.
+ if ((Count & 3) != 0) {
+ for (uint64_t i = 0, e = (Count & 3); i != e; ++i)
+ OW->Write8(0);
+ }
+
+ // We are properly aligned, so write NOPs as requested.
+ Count /= 4;
+ for (uint64_t i = 0; i != Count; ++i)
+ OW->Write32(0xd503201f);
+ return true;
+}
+
+namespace {
+
+namespace CU {
+
+/// \brief Compact unwind encoding values.
+enum CompactUnwindEncodings {
+ /// \brief A "frameless" leaf function, where no non-volatile registers are
+ /// saved. The return remains in LR throughout the function.
+ UNWIND_AArch64_MODE_FRAMELESS = 0x02000000,
+
+ /// \brief No compact unwind encoding available. Instead the low 23-bits of
+ /// the compact unwind encoding is the offset of the DWARF FDE in the
+ /// __eh_frame section. This mode is never used in object files. It is only
+ /// generated by the linker in final linked images, which have only DWARF info
+ /// for a function.
+ UNWIND_AArch64_MODE_DWARF = 0x03000000,
+
+ /// \brief This is a standard arm64 prologue where FP/LR are immediately
+ /// pushed on the stack, then SP is copied to FP. If there are any
+ /// non-volatile register saved, they are copied into the stack fame in pairs
+ /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
+ /// five X pairs and four D pairs can be saved, but the memory layout must be
+ /// in register number order.
+ UNWIND_AArch64_MODE_FRAME = 0x04000000,
+
+ /// \brief Frame register pair encodings.
+ UNWIND_AArch64_FRAME_X19_X20_PAIR = 0x00000001,
+ UNWIND_AArch64_FRAME_X21_X22_PAIR = 0x00000002,
+ UNWIND_AArch64_FRAME_X23_X24_PAIR = 0x00000004,
+ UNWIND_AArch64_FRAME_X25_X26_PAIR = 0x00000008,
+ UNWIND_AArch64_FRAME_X27_X28_PAIR = 0x00000010,
+ UNWIND_AArch64_FRAME_D8_D9_PAIR = 0x00000100,
+ UNWIND_AArch64_FRAME_D10_D11_PAIR = 0x00000200,
+ UNWIND_AArch64_FRAME_D12_D13_PAIR = 0x00000400,
+ UNWIND_AArch64_FRAME_D14_D15_PAIR = 0x00000800
+};
+
+} // end CU namespace
+
+// FIXME: This should be in a separate file.
+class DarwinAArch64AsmBackend : public AArch64AsmBackend {
+ const MCRegisterInfo &MRI;
+
+ /// \brief Encode compact unwind stack adjustment for frameless functions.
+ /// See UNWIND_AArch64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
+ /// The stack size always needs to be 16 byte aligned.
+ uint32_t encodeStackAdjustment(uint32_t StackSize) const {
+ return (StackSize / 16) << 12;
+ }
+
+public:
+ DarwinAArch64AsmBackend(const Target &T, const MCRegisterInfo &MRI)
+ : AArch64AsmBackend(T), MRI(MRI) {}
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createAArch64MachObjectWriter(OS, MachO::CPU_TYPE_ARM64,
+ MachO::CPU_SUBTYPE_ARM64_ALL);
+ }
+
+ bool doesSectionRequireSymbols(const MCSection &Section) const override {
+ // Any section for which the linker breaks things into atoms needs to
+ // preserve symbols, including assembler local symbols, to identify
+ // those atoms. These sections are:
+ // Sections of type:
+ //
+ // S_CSTRING_LITERALS (e.g. __cstring)
+ // S_LITERAL_POINTERS (e.g. objc selector pointers)
+ // S_16BYTE_LITERALS, S_8BYTE_LITERALS, S_4BYTE_LITERALS
+ //
+ // Sections named:
+ //
+ // __TEXT,__eh_frame
+ // __TEXT,__ustring
+ // __DATA,__cfstring
+ // __DATA,__objc_classrefs
+ // __DATA,__objc_catlist
+ //
+ // FIXME: It would be better if the compiler used actual linker local
+ // symbols for each of these sections rather than preserving what
+ // are ostensibly assembler local symbols.
+ const MCSectionMachO &SMO = static_cast<const MCSectionMachO &>(Section);
+ return (SMO.getType() == MachO::S_CSTRING_LITERALS ||
+ SMO.getType() == MachO::S_4BYTE_LITERALS ||
+ SMO.getType() == MachO::S_8BYTE_LITERALS ||
+ SMO.getType() == MachO::S_16BYTE_LITERALS ||
+ SMO.getType() == MachO::S_LITERAL_POINTERS ||
+ (SMO.getSegmentName() == "__TEXT" &&
+ (SMO.getSectionName() == "__eh_frame" ||
+ SMO.getSectionName() == "__ustring")) ||
+ (SMO.getSegmentName() == "__DATA" &&
+ (SMO.getSectionName() == "__cfstring" ||
+ SMO.getSectionName() == "__objc_classrefs" ||
+ SMO.getSectionName() == "__objc_catlist")));
+ }
+
+ /// \brief Generate the compact unwind encoding from the CFI directives.
+ uint32_t generateCompactUnwindEncoding(
+ ArrayRef<MCCFIInstruction> Instrs) const override {
+ if (Instrs.empty())
+ return CU::UNWIND_AArch64_MODE_FRAMELESS;
+
+ bool HasFP = false;
+ unsigned StackSize = 0;
+
+ uint32_t CompactUnwindEncoding = 0;
+ for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
+ const MCCFIInstruction &Inst = Instrs[i];
+
+ switch (Inst.getOperation()) {
+ default:
+ // Cannot handle this directive: bail out.
+ return CU::UNWIND_AArch64_MODE_DWARF;
+ case MCCFIInstruction::OpDefCfa: {
+ // Defines a frame pointer.
+ assert(getXRegFromWReg(MRI.getLLVMRegNum(Inst.getRegister(), true)) ==
+ AArch64::FP &&
+ "Invalid frame pointer!");
+ assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
+
+ const MCCFIInstruction &LRPush = Instrs[++i];
+ assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
+ "Link register not pushed!");
+ const MCCFIInstruction &FPPush = Instrs[++i];
+ assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
+ "Frame pointer not pushed!");
+
+ unsigned LRReg = MRI.getLLVMRegNum(LRPush.getRegister(), true);
+ unsigned FPReg = MRI.getLLVMRegNum(FPPush.getRegister(), true);
+
+ LRReg = getXRegFromWReg(LRReg);
+ FPReg = getXRegFromWReg(FPReg);
+
+ assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
+ "Pushing invalid registers for frame!");
+
+ // Indicate that the function has a frame.
+ CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAME;
+ HasFP = true;
+ break;
+ }
+ case MCCFIInstruction::OpDefCfaOffset: {
+ assert(StackSize == 0 && "We already have the CFA offset!");
+ StackSize = std::abs(Inst.getOffset());
+ break;
+ }
+ case MCCFIInstruction::OpOffset: {
+ // Registers are saved in pairs. We expect there to be two consecutive
+ // `.cfi_offset' instructions with the appropriate registers specified.
+ unsigned Reg1 = MRI.getLLVMRegNum(Inst.getRegister(), true);
+ if (i + 1 == e)
+ return CU::UNWIND_AArch64_MODE_DWARF;
+
+ const MCCFIInstruction &Inst2 = Instrs[++i];
+ if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
+ return CU::UNWIND_AArch64_MODE_DWARF;
+ unsigned Reg2 = MRI.getLLVMRegNum(Inst2.getRegister(), true);
+
+ // N.B. The encodings must be in register number order, and the X
+ // registers before the D registers.
+
+ // X19/X20 pair = 0x00000001,
+ // X21/X22 pair = 0x00000002,
+ // X23/X24 pair = 0x00000004,
+ // X25/X26 pair = 0x00000008,
+ // X27/X28 pair = 0x00000010
+ Reg1 = getXRegFromWReg(Reg1);
+ Reg2 = getXRegFromWReg(Reg2);
+
+ if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
+ (CompactUnwindEncoding & 0xF1E) == 0)
+ CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X19_X20_PAIR;
+ else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
+ (CompactUnwindEncoding & 0xF1C) == 0)
+ CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X21_X22_PAIR;
+ else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
+ (CompactUnwindEncoding & 0xF18) == 0)
+ CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X23_X24_PAIR;
+ else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
+ (CompactUnwindEncoding & 0xF10) == 0)
+ CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X25_X26_PAIR;
+ else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
+ (CompactUnwindEncoding & 0xF00) == 0)
+ CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X27_X28_PAIR;
+ else {
+ Reg1 = getDRegFromBReg(Reg1);
+ Reg2 = getDRegFromBReg(Reg2);
+
+ // D8/D9 pair = 0x00000100,
+ // D10/D11 pair = 0x00000200,
+ // D12/D13 pair = 0x00000400,
+ // D14/D15 pair = 0x00000800
+ if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
+ (CompactUnwindEncoding & 0xE00) == 0)
+ CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D8_D9_PAIR;
+ else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
+ (CompactUnwindEncoding & 0xC00) == 0)
+ CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D10_D11_PAIR;
+ else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
+ (CompactUnwindEncoding & 0x800) == 0)
+ CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D12_D13_PAIR;
+ else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
+ CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D14_D15_PAIR;
+ else
+ // A pair was pushed which we cannot handle.
+ return CU::UNWIND_AArch64_MODE_DWARF;
+ }
+
+ break;
+ }
+ }
+ }
+
+ if (!HasFP) {
+ // With compact unwind info we can only represent stack adjustments of up
+ // to 65520 bytes.
+ if (StackSize > 65520)
+ return CU::UNWIND_AArch64_MODE_DWARF;
+
+ CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAMELESS;
+ CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
+ }
+
+ return CompactUnwindEncoding;
+ }
+};
+
+} // end anonymous namespace
+
+namespace {
+
+class ELFAArch64AsmBackend : public AArch64AsmBackend {
+public:
+ uint8_t OSABI;
+ bool IsLittleEndian;
+
+ ELFAArch64AsmBackend(const Target &T, uint8_t OSABI, bool IsLittleEndian)
+ : AArch64AsmBackend(T), OSABI(OSABI), IsLittleEndian(IsLittleEndian) {}
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createAArch64ELFObjectWriter(OS, OSABI, IsLittleEndian);
+ }
+
+ void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFixup &Fixup, const MCFragment *DF,
+ const MCValue &Target, uint64_t &Value,
+ bool &IsResolved) override;
+
+ void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
+ uint64_t Value, bool IsPCRel) const override;
+};
+
+void ELFAArch64AsmBackend::processFixupValue(
+ const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFixup &Fixup,
+ const MCFragment *DF, const MCValue &Target, uint64_t &Value,
+ bool &IsResolved) {
+ // The ADRP instruction adds some multiple of 0x1000 to the current PC &
+ // ~0xfff. This means that the required offset to reach a symbol can vary by
+ // up to one step depending on where the ADRP is in memory. For example:
+ //
+ // ADRP x0, there
+ // there:
+ //
+ // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
+ // we'll need that as an offset. At any other address "there" will be in the
+ // same page as the ADRP and the instruction should encode 0x0. Assuming the
+ // section isn't 0x1000-aligned, we therefore need to delegate this decision
+ // to the linker -- a relocation!
+ if ((uint32_t)Fixup.getKind() == AArch64::fixup_aarch64_pcrel_adrp_imm21)
+ IsResolved = false;
+}
+
+void ELFAArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
+ unsigned DataSize, uint64_t Value,
+ bool IsPCRel) const {
+ // store fixups in .eh_frame section in big endian order
+ if (!IsLittleEndian && Fixup.getKind() == FK_Data_4) {
+ const MCSection *Sec = Fixup.getValue()->FindAssociatedSection();
+ const MCSectionELF *SecELF = static_cast<const MCSectionELF *>(Sec);
+ if (SecELF->getSectionName() == ".eh_frame")
+ Value = ByteSwap_32(unsigned(Value));
+ }
+ AArch64AsmBackend::applyFixup (Fixup, Data, DataSize, Value, IsPCRel);
+}
+}
+
+MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU) {
+ Triple TheTriple(TT);
+
+ if (TheTriple.isOSDarwin())
+ return new DarwinAArch64AsmBackend(T, MRI);
+
+ assert(TheTriple.isOSBinFormatELF() && "Expect either MachO or ELF target");
+ return new ELFAArch64AsmBackend(T, TheTriple.getOS(), /*IsLittleEndian=*/true);
+}
+
+MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU) {
+ Triple TheTriple(TT);
+
+ assert(TheTriple.isOSBinFormatELF() &&
+ "Big endian is only supported for ELF targets!");
+ return new ELFAArch64AsmBackend(T, TheTriple.getOS(),
+ /*IsLittleEndian=*/false);
+}
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFObjectWriter.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFObjectWriter.cpp
new file mode 100644
index 0000000..e05191e
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFObjectWriter.cpp
@@ -0,0 +1,257 @@
+//===-- AArch64ELFObjectWriter.cpp - AArch64 ELF Writer -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file handles ELF-specific object emission, converting LLVM's internal
+// fixups into the appropriate relocations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/AArch64FixupKinds.h"
+#include "MCTargetDesc/AArch64MCExpr.h"
+#include "MCTargetDesc/AArch64MCTargetDesc.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace llvm;
+
+namespace {
+class AArch64ELFObjectWriter : public MCELFObjectTargetWriter {
+public:
+ AArch64ELFObjectWriter(uint8_t OSABI, bool IsLittleEndian);
+
+ virtual ~AArch64ELFObjectWriter();
+
+protected:
+ unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsPCRel) const override;
+
+private:
+};
+}
+
+AArch64ELFObjectWriter::AArch64ELFObjectWriter(uint8_t OSABI,
+ bool IsLittleEndian)
+ : MCELFObjectTargetWriter(/*Is64Bit*/ true, OSABI, ELF::EM_AARCH64,
+ /*HasRelocationAddend*/ true) {}
+
+AArch64ELFObjectWriter::~AArch64ELFObjectWriter() {}
+
+unsigned AArch64ELFObjectWriter::GetRelocType(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const {
+ AArch64MCExpr::VariantKind RefKind =
+ static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
+ AArch64MCExpr::VariantKind SymLoc = AArch64MCExpr::getSymbolLoc(RefKind);
+ bool IsNC = AArch64MCExpr::isNotChecked(RefKind);
+
+ assert((!Target.getSymA() ||
+ Target.getSymA()->getKind() == MCSymbolRefExpr::VK_None) &&
+ "Should only be expression-level modifiers here");
+
+ assert((!Target.getSymB() ||
+ Target.getSymB()->getKind() == MCSymbolRefExpr::VK_None) &&
+ "Should only be expression-level modifiers here");
+
+ if (IsPCRel) {
+ switch ((unsigned)Fixup.getKind()) {
+ case FK_Data_2:
+ return ELF::R_AARCH64_PREL16;
+ case FK_Data_4:
+ return ELF::R_AARCH64_PREL32;
+ case FK_Data_8:
+ return ELF::R_AARCH64_PREL64;
+ case AArch64::fixup_aarch64_pcrel_adr_imm21:
+ assert(SymLoc == AArch64MCExpr::VK_NONE && "unexpected ADR relocation");
+ return ELF::R_AARCH64_ADR_PREL_LO21;
+ case AArch64::fixup_aarch64_pcrel_adrp_imm21:
+ if (SymLoc == AArch64MCExpr::VK_ABS && !IsNC)
+ return ELF::R_AARCH64_ADR_PREL_PG_HI21;
+ if (SymLoc == AArch64MCExpr::VK_GOT && !IsNC)
+ return ELF::R_AARCH64_ADR_GOT_PAGE;
+ if (SymLoc == AArch64MCExpr::VK_GOTTPREL && !IsNC)
+ return ELF::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21;
+ if (SymLoc == AArch64MCExpr::VK_TLSDESC && !IsNC)
+ return ELF::R_AARCH64_TLSDESC_ADR_PAGE;
+ llvm_unreachable("invalid symbol kind for ADRP relocation");
+ case AArch64::fixup_aarch64_pcrel_branch26:
+ return ELF::R_AARCH64_JUMP26;
+ case AArch64::fixup_aarch64_pcrel_call26:
+ return ELF::R_AARCH64_CALL26;
+ case AArch64::fixup_aarch64_ldr_pcrel_imm19:
+ if (SymLoc == AArch64MCExpr::VK_GOTTPREL)
+ return ELF::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19;
+ return ELF::R_AARCH64_LD_PREL_LO19;
+ case AArch64::fixup_aarch64_pcrel_branch14:
+ return ELF::R_AARCH64_TSTBR14;
+ case AArch64::fixup_aarch64_pcrel_branch19:
+ return ELF::R_AARCH64_CONDBR19;
+ default:
+ llvm_unreachable("Unsupported pc-relative fixup kind");
+ }
+ } else {
+ switch ((unsigned)Fixup.getKind()) {
+ case FK_Data_2:
+ return ELF::R_AARCH64_ABS16;
+ case FK_Data_4:
+ return ELF::R_AARCH64_ABS32;
+ case FK_Data_8:
+ return ELF::R_AARCH64_ABS64;
+ case AArch64::fixup_aarch64_add_imm12:
+ if (RefKind == AArch64MCExpr::VK_DTPREL_HI12)
+ return ELF::R_AARCH64_TLSLD_ADD_DTPREL_HI12;
+ if (RefKind == AArch64MCExpr::VK_TPREL_HI12)
+ return ELF::R_AARCH64_TLSLE_ADD_TPREL_HI12;
+ if (RefKind == AArch64MCExpr::VK_DTPREL_LO12_NC)
+ return ELF::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC;
+ if (RefKind == AArch64MCExpr::VK_DTPREL_LO12)
+ return ELF::R_AARCH64_TLSLD_ADD_DTPREL_LO12;
+ if (RefKind == AArch64MCExpr::VK_TPREL_LO12_NC)
+ return ELF::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC;
+ if (RefKind == AArch64MCExpr::VK_TPREL_LO12)
+ return ELF::R_AARCH64_TLSLE_ADD_TPREL_LO12;
+ if (RefKind == AArch64MCExpr::VK_TLSDESC_LO12)
+ return ELF::R_AARCH64_TLSDESC_ADD_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_ABS && IsNC)
+ return ELF::R_AARCH64_ADD_ABS_LO12_NC;
+
+ report_fatal_error("invalid fixup for add (uimm12) instruction");
+ return 0;
+ case AArch64::fixup_aarch64_ldst_imm12_scale1:
+ if (SymLoc == AArch64MCExpr::VK_ABS && IsNC)
+ return ELF::R_AARCH64_LDST8_ABS_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_DTPREL && !IsNC)
+ return ELF::R_AARCH64_TLSLD_LDST8_DTPREL_LO12;
+ if (SymLoc == AArch64MCExpr::VK_DTPREL && IsNC)
+ return ELF::R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_TPREL && !IsNC)
+ return ELF::R_AARCH64_TLSLE_LDST8_TPREL_LO12;
+ if (SymLoc == AArch64MCExpr::VK_TPREL && IsNC)
+ return ELF::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC;
+
+ report_fatal_error("invalid fixup for 8-bit load/store instruction");
+ return 0;
+ case AArch64::fixup_aarch64_ldst_imm12_scale2:
+ if (SymLoc == AArch64MCExpr::VK_ABS && IsNC)
+ return ELF::R_AARCH64_LDST16_ABS_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_DTPREL && !IsNC)
+ return ELF::R_AARCH64_TLSLD_LDST16_DTPREL_LO12;
+ if (SymLoc == AArch64MCExpr::VK_DTPREL && IsNC)
+ return ELF::R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_TPREL && !IsNC)
+ return ELF::R_AARCH64_TLSLE_LDST16_TPREL_LO12;
+ if (SymLoc == AArch64MCExpr::VK_TPREL && IsNC)
+ return ELF::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC;
+
+ report_fatal_error("invalid fixup for 16-bit load/store instruction");
+ return 0;
+ case AArch64::fixup_aarch64_ldst_imm12_scale4:
+ if (SymLoc == AArch64MCExpr::VK_ABS && IsNC)
+ return ELF::R_AARCH64_LDST32_ABS_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_DTPREL && !IsNC)
+ return ELF::R_AARCH64_TLSLD_LDST32_DTPREL_LO12;
+ if (SymLoc == AArch64MCExpr::VK_DTPREL && IsNC)
+ return ELF::R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_TPREL && !IsNC)
+ return ELF::R_AARCH64_TLSLE_LDST32_TPREL_LO12;
+ if (SymLoc == AArch64MCExpr::VK_TPREL && IsNC)
+ return ELF::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC;
+
+ report_fatal_error("invalid fixup for 32-bit load/store instruction");
+ return 0;
+ case AArch64::fixup_aarch64_ldst_imm12_scale8:
+ if (SymLoc == AArch64MCExpr::VK_ABS && IsNC)
+ return ELF::R_AARCH64_LDST64_ABS_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_GOT && IsNC)
+ return ELF::R_AARCH64_LD64_GOT_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_DTPREL && !IsNC)
+ return ELF::R_AARCH64_TLSLD_LDST64_DTPREL_LO12;
+ if (SymLoc == AArch64MCExpr::VK_DTPREL && IsNC)
+ return ELF::R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_TPREL && !IsNC)
+ return ELF::R_AARCH64_TLSLE_LDST64_TPREL_LO12;
+ if (SymLoc == AArch64MCExpr::VK_TPREL && IsNC)
+ return ELF::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_GOTTPREL && IsNC)
+ return ELF::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC;
+ if (SymLoc == AArch64MCExpr::VK_TLSDESC && IsNC)
+ return ELF::R_AARCH64_TLSDESC_LD64_LO12_NC;
+
+ report_fatal_error("invalid fixup for 64-bit load/store instruction");
+ return 0;
+ case AArch64::fixup_aarch64_ldst_imm12_scale16:
+ if (SymLoc == AArch64MCExpr::VK_ABS && IsNC)
+ return ELF::R_AARCH64_LDST128_ABS_LO12_NC;
+
+ report_fatal_error("invalid fixup for 128-bit load/store instruction");
+ return 0;
+ case AArch64::fixup_aarch64_movw:
+ if (RefKind == AArch64MCExpr::VK_ABS_G3)
+ return ELF::R_AARCH64_MOVW_UABS_G3;
+ if (RefKind == AArch64MCExpr::VK_ABS_G2)
+ return ELF::R_AARCH64_MOVW_UABS_G2;
+ if (RefKind == AArch64MCExpr::VK_ABS_G2_S)
+ return ELF::R_AARCH64_MOVW_SABS_G2;
+ if (RefKind == AArch64MCExpr::VK_ABS_G2_NC)
+ return ELF::R_AARCH64_MOVW_UABS_G2_NC;
+ if (RefKind == AArch64MCExpr::VK_ABS_G1)
+ return ELF::R_AARCH64_MOVW_UABS_G1;
+ if (RefKind == AArch64MCExpr::VK_ABS_G1_S)
+ return ELF::R_AARCH64_MOVW_SABS_G1;
+ if (RefKind == AArch64MCExpr::VK_ABS_G1_NC)
+ return ELF::R_AARCH64_MOVW_UABS_G1_NC;
+ if (RefKind == AArch64MCExpr::VK_ABS_G0)
+ return ELF::R_AARCH64_MOVW_UABS_G0;
+ if (RefKind == AArch64MCExpr::VK_ABS_G0_S)
+ return ELF::R_AARCH64_MOVW_SABS_G0;
+ if (RefKind == AArch64MCExpr::VK_ABS_G0_NC)
+ return ELF::R_AARCH64_MOVW_UABS_G0_NC;
+ if (RefKind == AArch64MCExpr::VK_DTPREL_G2)
+ return ELF::R_AARCH64_TLSLD_MOVW_DTPREL_G2;
+ if (RefKind == AArch64MCExpr::VK_DTPREL_G1)
+ return ELF::R_AARCH64_TLSLD_MOVW_DTPREL_G1;
+ if (RefKind == AArch64MCExpr::VK_DTPREL_G1_NC)
+ return ELF::R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC;
+ if (RefKind == AArch64MCExpr::VK_DTPREL_G0)
+ return ELF::R_AARCH64_TLSLD_MOVW_DTPREL_G0;
+ if (RefKind == AArch64MCExpr::VK_DTPREL_G0_NC)
+ return ELF::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC;
+ if (RefKind == AArch64MCExpr::VK_TPREL_G2)
+ return ELF::R_AARCH64_TLSLE_MOVW_TPREL_G2;
+ if (RefKind == AArch64MCExpr::VK_TPREL_G1)
+ return ELF::R_AARCH64_TLSLE_MOVW_TPREL_G1;
+ if (RefKind == AArch64MCExpr::VK_TPREL_G1_NC)
+ return ELF::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC;
+ if (RefKind == AArch64MCExpr::VK_TPREL_G0)
+ return ELF::R_AARCH64_TLSLE_MOVW_TPREL_G0;
+ if (RefKind == AArch64MCExpr::VK_TPREL_G0_NC)
+ return ELF::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC;
+ if (RefKind == AArch64MCExpr::VK_GOTTPREL_G1)
+ return ELF::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
+ if (RefKind == AArch64MCExpr::VK_GOTTPREL_G0_NC)
+ return ELF::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
+ report_fatal_error("invalid fixup for movz/movk instruction");
+ return 0;
+ case AArch64::fixup_aarch64_tlsdesc_call:
+ return ELF::R_AARCH64_TLSDESC_CALL;
+ default:
+ llvm_unreachable("Unknown ELF relocation type");
+ }
+ }
+
+ llvm_unreachable("Unimplemented fixup -> relocation");
+}
+
+MCObjectWriter *llvm::createAArch64ELFObjectWriter(raw_ostream &OS,
+ uint8_t OSABI,
+ bool IsLittleEndian) {
+ MCELFObjectTargetWriter *MOTW =
+ new AArch64ELFObjectWriter(OSABI, IsLittleEndian);
+ return createELFObjectWriter(MOTW, OS, IsLittleEndian);
+}
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp
new file mode 100644
index 0000000..a79406d
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp
@@ -0,0 +1,160 @@
+//===- lib/MC/AArch64ELFStreamer.cpp - ELF Object Output for AArch64 ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file assembles .s files and emits AArch64 ELF .o object files. Different
+// from generic ELF streamer in emitting mapping symbols ($x and $d) to delimit
+// regions of data and code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCELF.h"
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCELFSymbolFlags.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCObjectStreamer.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+namespace {
+
+/// Extend the generic ELFStreamer class so that it can emit mapping symbols at
+/// the appropriate points in the object files. These symbols are defined in the
+/// AArch64 ELF ABI:
+/// infocenter.arm.com/help/topic/com.arm.doc.ihi0056a/IHI0056A_aaelf64.pdf
+///
+/// In brief: $x or $d should be emitted at the start of each contiguous region
+/// of A64 code or data in a section. In practice, this emission does not rely
+/// on explicit assembler directives but on inherent properties of the
+/// directives doing the emission (e.g. ".byte" is data, "add x0, x0, x0" an
+/// instruction).
+///
+/// As a result this system is orthogonal to the DataRegion infrastructure used
+/// by MachO. Beware!
+class AArch64ELFStreamer : public MCELFStreamer {
+public:
+ AArch64ELFStreamer(MCContext &Context, MCAsmBackend &TAB, raw_ostream &OS,
+ MCCodeEmitter *Emitter)
+ : MCELFStreamer(Context, TAB, OS, Emitter), MappingSymbolCounter(0),
+ LastEMS(EMS_None) {}
+
+ ~AArch64ELFStreamer() {}
+
+ void ChangeSection(const MCSection *Section,
+ const MCExpr *Subsection) override {
+ // We have to keep track of the mapping symbol state of any sections we
+ // use. Each one should start off as EMS_None, which is provided as the
+ // default constructor by DenseMap::lookup.
+ LastMappingSymbols[getPreviousSection().first] = LastEMS;
+ LastEMS = LastMappingSymbols.lookup(Section);
+
+ MCELFStreamer::ChangeSection(Section, Subsection);
+ }
+
+ /// This function is the one used to emit instruction data into the ELF
+ /// streamer. We override it to add the appropriate mapping symbol if
+ /// necessary.
+ void EmitInstruction(const MCInst &Inst,
+ const MCSubtargetInfo &STI) override {
+ EmitA64MappingSymbol();
+ MCELFStreamer::EmitInstruction(Inst, STI);
+ }
+
+ /// This is one of the functions used to emit data into an ELF section, so the
+ /// AArch64 streamer overrides it to add the appropriate mapping symbol ($d)
+ /// if necessary.
+ void EmitBytes(StringRef Data) override {
+ EmitDataMappingSymbol();
+ MCELFStreamer::EmitBytes(Data);
+ }
+
+ /// This is one of the functions used to emit data into an ELF section, so the
+ /// AArch64 streamer overrides it to add the appropriate mapping symbol ($d)
+ /// if necessary.
+ void EmitValueImpl(const MCExpr *Value, unsigned Size,
+ const SMLoc &Loc) override {
+ EmitDataMappingSymbol();
+ MCELFStreamer::EmitValueImpl(Value, Size);
+ }
+
+private:
+ enum ElfMappingSymbol {
+ EMS_None,
+ EMS_A64,
+ EMS_Data
+ };
+
+ void EmitDataMappingSymbol() {
+ if (LastEMS == EMS_Data)
+ return;
+ EmitMappingSymbol("$d");
+ LastEMS = EMS_Data;
+ }
+
+ void EmitA64MappingSymbol() {
+ if (LastEMS == EMS_A64)
+ return;
+ EmitMappingSymbol("$x");
+ LastEMS = EMS_A64;
+ }
+
+ void EmitMappingSymbol(StringRef Name) {
+ MCSymbol *Start = getContext().CreateTempSymbol();
+ EmitLabel(Start);
+
+ MCSymbol *Symbol = getContext().GetOrCreateSymbol(
+ Name + "." + Twine(MappingSymbolCounter++));
+
+ MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
+ MCELF::SetType(SD, ELF::STT_NOTYPE);
+ MCELF::SetBinding(SD, ELF::STB_LOCAL);
+ SD.setExternal(false);
+ Symbol->setSection(*getCurrentSection().first);
+
+ const MCExpr *Value = MCSymbolRefExpr::Create(Start, getContext());
+ Symbol->setVariableValue(Value);
+ }
+
+ int64_t MappingSymbolCounter;
+
+ DenseMap<const MCSection *, ElfMappingSymbol> LastMappingSymbols;
+ ElfMappingSymbol LastEMS;
+
+ /// @}
+};
+}
+
+namespace llvm {
+MCELFStreamer *createAArch64ELFStreamer(MCContext &Context, MCAsmBackend &TAB,
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ bool RelaxAll, bool NoExecStack) {
+ AArch64ELFStreamer *S = new AArch64ELFStreamer(Context, TAB, OS, Emitter);
+ if (RelaxAll)
+ S->getAssembler().setRelaxAll(true);
+ if (NoExecStack)
+ S->getAssembler().setNoExecStack(true);
+ return S;
+}
+}
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.h
new file mode 100644
index 0000000..bc6973b
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.h
@@ -0,0 +1,26 @@
+//===-- AArch64ELFStreamer.h - ELF Streamer for AArch64 ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements ELF streamer information for the AArch64 backend.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_AARCH64_ELF_STREAMER_H
+#define LLVM_AARCH64_ELF_STREAMER_H
+
+#include "llvm/MC/MCELFStreamer.h"
+
+namespace llvm {
+
+MCELFStreamer *createAArch64ELFStreamer(MCContext &Context, MCAsmBackend &TAB,
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ bool RelaxAll, bool NoExecStack);
+}
+
+#endif // AArch64_ELF_STREAMER_H
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64FixupKinds.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64FixupKinds.h
new file mode 100644
index 0000000..bf405fb
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64FixupKinds.h
@@ -0,0 +1,76 @@
+//===-- AArch64FixupKinds.h - AArch64 Specific Fixup Entries ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_AArch64FIXUPKINDS_H
+#define LLVM_AArch64FIXUPKINDS_H
+
+#include "llvm/MC/MCFixup.h"
+
+namespace llvm {
+namespace AArch64 {
+
+enum Fixups {
+ // fixup_aarch64_pcrel_adr_imm21 - A 21-bit pc-relative immediate inserted into
+ // an ADR instruction.
+ fixup_aarch64_pcrel_adr_imm21 = FirstTargetFixupKind,
+
+ // fixup_aarch64_pcrel_adrp_imm21 - A 21-bit pc-relative immediate inserted into
+ // an ADRP instruction.
+ fixup_aarch64_pcrel_adrp_imm21,
+
+ // fixup_aarch64_imm12 - 12-bit fixup for add/sub instructions.
+ // No alignment adjustment. All value bits are encoded.
+ fixup_aarch64_add_imm12,
+
+ // fixup_aarch64_ldst_imm12_* - unsigned 12-bit fixups for load and
+ // store instructions.
+ fixup_aarch64_ldst_imm12_scale1,
+ fixup_aarch64_ldst_imm12_scale2,
+ fixup_aarch64_ldst_imm12_scale4,
+ fixup_aarch64_ldst_imm12_scale8,
+ fixup_aarch64_ldst_imm12_scale16,
+
+ // fixup_aarch64_ldr_pcrel_imm19 - The high 19 bits of a 21-bit pc-relative
+ // immediate. Same encoding as fixup_aarch64_pcrel_adrhi, except this is used by
+ // pc-relative loads and generates relocations directly when necessary.
+ fixup_aarch64_ldr_pcrel_imm19,
+
+ // FIXME: comment
+ fixup_aarch64_movw,
+
+ // fixup_aarch64_pcrel_imm14 - The high 14 bits of a 21-bit pc-relative
+ // immediate.
+ fixup_aarch64_pcrel_branch14,
+
+ // fixup_aarch64_pcrel_branch19 - The high 19 bits of a 21-bit pc-relative
+ // immediate. Same encoding as fixup_aarch64_pcrel_adrhi, except this is use by
+ // b.cc and generates relocations directly when necessary.
+ fixup_aarch64_pcrel_branch19,
+
+ // fixup_aarch64_pcrel_branch26 - The high 26 bits of a 28-bit pc-relative
+ // immediate.
+ fixup_aarch64_pcrel_branch26,
+
+ // fixup_aarch64_pcrel_call26 - The high 26 bits of a 28-bit pc-relative
+ // immediate. Distinguished from branch26 only on ELF.
+ fixup_aarch64_pcrel_call26,
+
+ // fixup_aarch64_tlsdesc_call - zero-space placeholder for the ELF
+ // R_AARCH64_TLSDESC_CALL relocation.
+ fixup_aarch64_tlsdesc_call,
+
+ // Marker
+ LastTargetFixupKind,
+ NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind
+};
+
+} // end namespace AArch64
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp
new file mode 100644
index 0000000..1763b40
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp
@@ -0,0 +1,101 @@
+//===-- AArch64MCAsmInfo.cpp - AArch64 asm properties ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the AArch64MCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64MCAsmInfo.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+enum AsmWriterVariantTy {
+ Default = -1,
+ Generic = 0,
+ Apple = 1
+};
+
+static cl::opt<AsmWriterVariantTy> AsmWriterVariant(
+ "aarch64-neon-syntax", cl::init(Default),
+ cl::desc("Choose style of NEON code to emit from AArch64 backend:"),
+ cl::values(clEnumValN(Generic, "generic", "Emit generic NEON assembly"),
+ clEnumValN(Apple, "apple", "Emit Apple-style NEON assembly"),
+ clEnumValEnd));
+
+AArch64MCAsmInfoDarwin::AArch64MCAsmInfoDarwin() {
+ // We prefer NEON instructions to be printed in the short form.
+ AssemblerDialect = AsmWriterVariant == Default ? 1 : AsmWriterVariant;
+
+ PrivateGlobalPrefix = "L";
+ SeparatorString = "%%";
+ CommentString = ";";
+ PointerSize = CalleeSaveStackSlotSize = 8;
+
+ AlignmentIsInBytes = false;
+ UsesELFSectionDirectiveForBSS = true;
+ SupportsDebugInformation = true;
+ UseDataRegionDirectives = true;
+
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+}
+
+const MCExpr *AArch64MCAsmInfoDarwin::getExprForPersonalitySymbol(
+ const MCSymbol *Sym, unsigned Encoding, MCStreamer &Streamer) const {
+ // On Darwin, we can reference dwarf symbols with foo@GOT-., which
+ // is an indirect pc-relative reference. The default implementation
+ // won't reference using the GOT, so we need this target-specific
+ // version.
+ MCContext &Context = Streamer.getContext();
+ const MCExpr *Res =
+ MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_GOT, Context);
+ MCSymbol *PCSym = Context.CreateTempSymbol();
+ Streamer.EmitLabel(PCSym);
+ const MCExpr *PC = MCSymbolRefExpr::Create(PCSym, Context);
+ return MCBinaryExpr::CreateSub(Res, PC, Context);
+}
+
+AArch64MCAsmInfoELF::AArch64MCAsmInfoELF(StringRef TT) {
+ Triple T(TT);
+ if (T.getArch() == Triple::arm64_be || T.getArch() == Triple::aarch64_be)
+ IsLittleEndian = false;
+
+ // We prefer NEON instructions to be printed in the short form.
+ AssemblerDialect = AsmWriterVariant == Default ? 0 : AsmWriterVariant;
+
+ PointerSize = 8;
+
+ // ".comm align is in bytes but .align is pow-2."
+ AlignmentIsInBytes = false;
+
+ CommentString = "//";
+ PrivateGlobalPrefix = ".L";
+ Code32Directive = ".code\t32";
+
+ Data16bitsDirective = "\t.hword\t";
+ Data32bitsDirective = "\t.word\t";
+ Data64bitsDirective = "\t.xword\t";
+
+ UseDataRegionDirectives = false;
+
+ WeakRefDirective = "\t.weak\t";
+
+ HasLEB128 = true;
+ SupportsDebugInformation = true;
+
+ // Exceptions handling
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+
+ UseIntegratedAssembler = true;
+
+ HasIdentDirective = true;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h
new file mode 100644
index 0000000..42a031d
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h
@@ -0,0 +1,36 @@
+//=====-- AArch64MCAsmInfo.h - AArch64 asm properties ---------*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the AArch64MCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64TARGETASMINFO_H
+#define AArch64TARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfoDarwin.h"
+
+namespace llvm {
+class Target;
+class StringRef;
+class MCStreamer;
+struct AArch64MCAsmInfoDarwin : public MCAsmInfoDarwin {
+ explicit AArch64MCAsmInfoDarwin();
+ const MCExpr *
+ getExprForPersonalitySymbol(const MCSymbol *Sym, unsigned Encoding,
+ MCStreamer &Streamer) const override;
+};
+
+struct AArch64MCAsmInfoELF : public MCAsmInfo {
+ explicit AArch64MCAsmInfoELF(StringRef TT);
+};
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp
new file mode 100644
index 0000000..f051357
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp
@@ -0,0 +1,650 @@
+//=- AArch64/AArch64MCCodeEmitter.cpp - Convert AArch64 code to machine code-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AArch64MCCodeEmitter class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "MCTargetDesc/AArch64FixupKinds.h"
+#include "MCTargetDesc/AArch64MCExpr.h"
+#include "Utils/AArch64BaseInfo.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "mccodeemitter"
+
+STATISTIC(MCNumEmitted, "Number of MC instructions emitted.");
+STATISTIC(MCNumFixups, "Number of MC fixups created.");
+
+namespace {
+
+class AArch64MCCodeEmitter : public MCCodeEmitter {
+ MCContext &Ctx;
+
+ AArch64MCCodeEmitter(const AArch64MCCodeEmitter &); // DO NOT IMPLEMENT
+ void operator=(const AArch64MCCodeEmitter &); // DO NOT IMPLEMENT
+public:
+ AArch64MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
+ MCContext &ctx)
+ : Ctx(ctx) {}
+
+ ~AArch64MCCodeEmitter() {}
+
+ // getBinaryCodeForInstr - TableGen'erated function for getting the
+ // binary encoding for an instruction.
+ uint64_t getBinaryCodeForInstr(const MCInst &MI,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getMachineOpValue - Return binary encoding of operand. If the machine
+ /// operand requires relocation, record the relocation and return zero.
+ unsigned getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getLdStUImm12OpValue - Return encoding info for 12-bit unsigned immediate
+ /// attached to a load, store or prfm instruction. If operand requires a
+ /// relocation, record it and return zero in that part of the encoding.
+ template <uint32_t FixupKind>
+ uint32_t getLdStUImm12OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getAdrLabelOpValue - Return encoding info for 21-bit immediate ADR label
+ /// target.
+ uint32_t getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getAddSubImmOpValue - Return encoding for the 12-bit immediate value and
+ /// the 2-bit shift field.
+ uint32_t getAddSubImmOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getCondBranchTargetOpValue - Return the encoded value for a conditional
+ /// branch target.
+ uint32_t getCondBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getLoadLiteralOpValue - Return the encoded value for a load-literal
+ /// pc-relative address.
+ uint32_t getLoadLiteralOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getMemExtendOpValue - Return the encoded value for a reg-extend load/store
+ /// instruction: bit 0 is whether a shift is present, bit 1 is whether the
+ /// operation is a sign extend (as opposed to a zero extend).
+ uint32_t getMemExtendOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getTestBranchTargetOpValue - Return the encoded value for a test-bit-and-
+ /// branch target.
+ uint32_t getTestBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getBranchTargetOpValue - Return the encoded value for an unconditional
+ /// branch target.
+ uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getMoveWideImmOpValue - Return the encoded value for the immediate operand
+ /// of a MOVZ or MOVK instruction.
+ uint32_t getMoveWideImmOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getVecShifterOpValue - Return the encoded value for the vector shifter.
+ uint32_t getVecShifterOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getMoveVecShifterOpValue - Return the encoded value for the vector move
+ /// shifter (MSL).
+ uint32_t getMoveVecShifterOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getFixedPointScaleOpValue - Return the encoded value for the
+ // FP-to-fixed-point scale factor.
+ uint32_t getFixedPointScaleOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ uint32_t getVecShiftR64OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint32_t getVecShiftR32OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint32_t getVecShiftR16OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint32_t getVecShiftR8OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint32_t getVecShiftL64OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint32_t getVecShiftL32OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint32_t getVecShiftL16OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint32_t getVecShiftL8OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getSIMDShift64OpValue - Return the encoded value for the
+ // shift-by-immediate AdvSIMD instructions.
+ uint32_t getSIMDShift64OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ uint32_t getSIMDShift64_32OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ uint32_t getSIMDShift32OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ uint32_t getSIMDShift16OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned fixMOVZ(const MCInst &MI, unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const;
+
+ void EmitByte(unsigned char C, raw_ostream &OS) const { OS << (char)C; }
+
+ void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
+ // Output the constant in little endian byte order.
+ for (unsigned i = 0; i != Size; ++i) {
+ EmitByte(Val & 255, OS);
+ Val >>= 8;
+ }
+ }
+
+ void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+
+ unsigned fixMulHigh(const MCInst &MI, unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const;
+
+ template<int hasRs, int hasRt2> unsigned
+ fixLoadStoreExclusive(const MCInst &MI, unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned fixOneOperandFPComparison(const MCInst &MI, unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const;
+};
+
+} // end anonymous namespace
+
+MCCodeEmitter *llvm::createAArch64MCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new AArch64MCCodeEmitter(MCII, STI, Ctx);
+}
+
+/// getMachineOpValue - Return binary encoding of operand. If the machine
+/// operand requires relocation, record the relocation and return zero.
+unsigned
+AArch64MCCodeEmitter::getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ if (MO.isReg())
+ return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
+
+ assert(MO.isImm() && "did not expect relocated expression");
+ return static_cast<unsigned>(MO.getImm());
+}
+
+template<unsigned FixupKind> uint32_t
+AArch64MCCodeEmitter::getLdStUImm12OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ uint32_t ImmVal = 0;
+
+ if (MO.isImm())
+ ImmVal = static_cast<uint32_t>(MO.getImm());
+ else {
+ assert(MO.isExpr() && "unable to encode load/store imm operand");
+ MCFixupKind Kind = MCFixupKind(FixupKind);
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(), Kind, MI.getLoc()));
+ ++MCNumFixups;
+ }
+
+ return ImmVal;
+}
+
+/// getAdrLabelOpValue - Return encoding info for 21-bit immediate ADR label
+/// target.
+uint32_t
+AArch64MCCodeEmitter::getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+
+ // If the destination is an immediate, we have nothing to do.
+ if (MO.isImm())
+ return MO.getImm();
+ assert(MO.isExpr() && "Unexpected target type!");
+ const MCExpr *Expr = MO.getExpr();
+
+ MCFixupKind Kind = MI.getOpcode() == AArch64::ADR
+ ? MCFixupKind(AArch64::fixup_aarch64_pcrel_adr_imm21)
+ : MCFixupKind(AArch64::fixup_aarch64_pcrel_adrp_imm21);
+ Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc()));
+
+ MCNumFixups += 1;
+
+ // All of the information is in the fixup.
+ return 0;
+}
+
+/// getAddSubImmOpValue - Return encoding for the 12-bit immediate value and
+/// the 2-bit shift field. The shift field is stored in bits 13-14 of the
+/// return value.
+uint32_t
+AArch64MCCodeEmitter::getAddSubImmOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Suboperands are [imm, shifter].
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
+ assert(AArch64_AM::getShiftType(MO1.getImm()) == AArch64_AM::LSL &&
+ "unexpected shift type for add/sub immediate");
+ unsigned ShiftVal = AArch64_AM::getShiftValue(MO1.getImm());
+ assert((ShiftVal == 0 || ShiftVal == 12) &&
+ "unexpected shift value for add/sub immediate");
+ if (MO.isImm())
+ return MO.getImm() | (ShiftVal == 0 ? 0 : (1 << 12));
+ assert(MO.isExpr() && "Unable to encode MCOperand!");
+ const MCExpr *Expr = MO.getExpr();
+
+ // Encode the 12 bits of the fixup.
+ MCFixupKind Kind = MCFixupKind(AArch64::fixup_aarch64_add_imm12);
+ Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc()));
+
+ ++MCNumFixups;
+
+ return 0;
+}
+
+/// getCondBranchTargetOpValue - Return the encoded value for a conditional
+/// branch target.
+uint32_t AArch64MCCodeEmitter::getCondBranchTargetOpValue(
+ const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+
+ // If the destination is an immediate, we have nothing to do.
+ if (MO.isImm())
+ return MO.getImm();
+ assert(MO.isExpr() && "Unexpected target type!");
+
+ MCFixupKind Kind = MCFixupKind(AArch64::fixup_aarch64_pcrel_branch19);
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(), Kind, MI.getLoc()));
+
+ ++MCNumFixups;
+
+ // All of the information is in the fixup.
+ return 0;
+}
+
+/// getLoadLiteralOpValue - Return the encoded value for a load-literal
+/// pc-relative address.
+uint32_t
+AArch64MCCodeEmitter::getLoadLiteralOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+
+ // If the destination is an immediate, we have nothing to do.
+ if (MO.isImm())
+ return MO.getImm();
+ assert(MO.isExpr() && "Unexpected target type!");
+
+ MCFixupKind Kind = MCFixupKind(AArch64::fixup_aarch64_ldr_pcrel_imm19);
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(), Kind, MI.getLoc()));
+
+ ++MCNumFixups;
+
+ // All of the information is in the fixup.
+ return 0;
+}
+
+uint32_t
+AArch64MCCodeEmitter::getMemExtendOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ unsigned SignExtend = MI.getOperand(OpIdx).getImm();
+ unsigned DoShift = MI.getOperand(OpIdx + 1).getImm();
+ return (SignExtend << 1) | DoShift;
+}
+
+uint32_t
+AArch64MCCodeEmitter::getMoveWideImmOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+
+ if (MO.isImm())
+ return MO.getImm();
+ assert(MO.isExpr() && "Unexpected movz/movk immediate");
+
+ Fixups.push_back(MCFixup::Create(
+ 0, MO.getExpr(), MCFixupKind(AArch64::fixup_aarch64_movw), MI.getLoc()));
+
+ ++MCNumFixups;
+
+ return 0;
+}
+
+/// getTestBranchTargetOpValue - Return the encoded value for a test-bit-and-
+/// branch target.
+uint32_t AArch64MCCodeEmitter::getTestBranchTargetOpValue(
+ const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+
+ // If the destination is an immediate, we have nothing to do.
+ if (MO.isImm())
+ return MO.getImm();
+ assert(MO.isExpr() && "Unexpected ADR target type!");
+
+ MCFixupKind Kind = MCFixupKind(AArch64::fixup_aarch64_pcrel_branch14);
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(), Kind, MI.getLoc()));
+
+ ++MCNumFixups;
+
+ // All of the information is in the fixup.
+ return 0;
+}
+
+/// getBranchTargetOpValue - Return the encoded value for an unconditional
+/// branch target.
+uint32_t
+AArch64MCCodeEmitter::getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+
+ // If the destination is an immediate, we have nothing to do.
+ if (MO.isImm())
+ return MO.getImm();
+ assert(MO.isExpr() && "Unexpected ADR target type!");
+
+ MCFixupKind Kind = MI.getOpcode() == AArch64::BL
+ ? MCFixupKind(AArch64::fixup_aarch64_pcrel_call26)
+ : MCFixupKind(AArch64::fixup_aarch64_pcrel_branch26);
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(), Kind, MI.getLoc()));
+
+ ++MCNumFixups;
+
+ // All of the information is in the fixup.
+ return 0;
+}
+
+/// getVecShifterOpValue - Return the encoded value for the vector shifter:
+///
+/// 00 -> 0
+/// 01 -> 8
+/// 10 -> 16
+/// 11 -> 24
+uint32_t
+AArch64MCCodeEmitter::getVecShifterOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the shift amount!");
+
+ switch (MO.getImm()) {
+ default:
+ break;
+ case 0:
+ return 0;
+ case 8:
+ return 1;
+ case 16:
+ return 2;
+ case 24:
+ return 3;
+ }
+
+ assert(false && "Invalid value for vector shift amount!");
+ return 0;
+}
+
+uint32_t
+AArch64MCCodeEmitter::getSIMDShift64OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the shift amount!");
+ return 64 - (MO.getImm());
+}
+
+uint32_t AArch64MCCodeEmitter::getSIMDShift64_32OpValue(
+ const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the shift amount!");
+ return 64 - (MO.getImm() | 32);
+}
+
+uint32_t
+AArch64MCCodeEmitter::getSIMDShift32OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the shift amount!");
+ return 32 - (MO.getImm() | 16);
+}
+
+uint32_t
+AArch64MCCodeEmitter::getSIMDShift16OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the shift amount!");
+ return 16 - (MO.getImm() | 8);
+}
+
+/// getFixedPointScaleOpValue - Return the encoded value for the
+// FP-to-fixed-point scale factor.
+uint32_t AArch64MCCodeEmitter::getFixedPointScaleOpValue(
+ const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the scale amount!");
+ return 64 - MO.getImm();
+}
+
+uint32_t
+AArch64MCCodeEmitter::getVecShiftR64OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the scale amount!");
+ return 64 - MO.getImm();
+}
+
+uint32_t
+AArch64MCCodeEmitter::getVecShiftR32OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the scale amount!");
+ return 32 - MO.getImm();
+}
+
+uint32_t
+AArch64MCCodeEmitter::getVecShiftR16OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the scale amount!");
+ return 16 - MO.getImm();
+}
+
+uint32_t
+AArch64MCCodeEmitter::getVecShiftR8OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the scale amount!");
+ return 8 - MO.getImm();
+}
+
+uint32_t
+AArch64MCCodeEmitter::getVecShiftL64OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the scale amount!");
+ return MO.getImm() - 64;
+}
+
+uint32_t
+AArch64MCCodeEmitter::getVecShiftL32OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the scale amount!");
+ return MO.getImm() - 32;
+}
+
+uint32_t
+AArch64MCCodeEmitter::getVecShiftL16OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the scale amount!");
+ return MO.getImm() - 16;
+}
+
+uint32_t
+AArch64MCCodeEmitter::getVecShiftL8OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() && "Expected an immediate value for the scale amount!");
+ return MO.getImm() - 8;
+}
+
+/// getMoveVecShifterOpValue - Return the encoded value for the vector move
+/// shifter (MSL).
+uint32_t AArch64MCCodeEmitter::getMoveVecShifterOpValue(
+ const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isImm() &&
+ "Expected an immediate value for the move shift amount!");
+ unsigned ShiftVal = AArch64_AM::getShiftValue(MO.getImm());
+ assert((ShiftVal == 8 || ShiftVal == 16) && "Invalid shift amount!");
+ return ShiftVal == 8 ? 0 : 1;
+}
+
+unsigned AArch64MCCodeEmitter::fixMOVZ(const MCInst &MI, unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const {
+ // If one of the signed fixup kinds is applied to a MOVZ instruction, the
+ // eventual result could be either a MOVZ or a MOVN. It's the MCCodeEmitter's
+ // job to ensure that any bits possibly affected by this are 0. This means we
+ // must zero out bit 30 (essentially emitting a MOVN).
+ MCOperand UImm16MO = MI.getOperand(1);
+
+ // Nothing to do if there's no fixup.
+ if (UImm16MO.isImm())
+ return EncodedValue;
+
+ const AArch64MCExpr *A64E = cast<AArch64MCExpr>(UImm16MO.getExpr());
+ switch (A64E->getKind()) {
+ case AArch64MCExpr::VK_DTPREL_G2:
+ case AArch64MCExpr::VK_DTPREL_G1:
+ case AArch64MCExpr::VK_DTPREL_G0:
+ case AArch64MCExpr::VK_GOTTPREL_G1:
+ case AArch64MCExpr::VK_TPREL_G2:
+ case AArch64MCExpr::VK_TPREL_G1:
+ case AArch64MCExpr::VK_TPREL_G0:
+ return EncodedValue & ~(1u << 30);
+ default:
+ // Nothing to do for an unsigned fixup.
+ return EncodedValue;
+ }
+
+
+ return EncodedValue & ~(1u << 30);
+}
+
+void AArch64MCCodeEmitter::EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ if (MI.getOpcode() == AArch64::TLSDESCCALL) {
+ // This is a directive which applies an R_AARCH64_TLSDESC_CALL to the
+ // following (BLR) instruction. It doesn't emit any code itself so it
+ // doesn't go through the normal TableGenerated channels.
+ MCFixupKind Fixup = MCFixupKind(AArch64::fixup_aarch64_tlsdesc_call);
+ Fixups.push_back(MCFixup::Create(0, MI.getOperand(0).getExpr(), Fixup));
+ return;
+ }
+
+ uint64_t Binary = getBinaryCodeForInstr(MI, Fixups, STI);
+ EmitConstant(Binary, 4, OS);
+ ++MCNumEmitted; // Keep track of the # of mi's emitted.
+}
+
+unsigned
+AArch64MCCodeEmitter::fixMulHigh(const MCInst &MI,
+ unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const {
+ // The Ra field of SMULH and UMULH is unused: it should be assembled as 31
+ // (i.e. all bits 1) but is ignored by the processor.
+ EncodedValue |= 0x1f << 10;
+ return EncodedValue;
+}
+
+template<int hasRs, int hasRt2> unsigned
+AArch64MCCodeEmitter::fixLoadStoreExclusive(const MCInst &MI,
+ unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const {
+ if (!hasRs) EncodedValue |= 0x001F0000;
+ if (!hasRt2) EncodedValue |= 0x00007C00;
+
+ return EncodedValue;
+}
+
+unsigned AArch64MCCodeEmitter::fixOneOperandFPComparison(
+ const MCInst &MI, unsigned EncodedValue, const MCSubtargetInfo &STI) const {
+ // The Rm field of FCMP and friends is unused - it should be assembled
+ // as 0, but is ignored by the processor.
+ EncodedValue &= ~(0x1f << 16);
+ return EncodedValue;
+}
+
+#include "AArch64GenMCCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.cpp
new file mode 100644
index 0000000..42a6787
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.cpp
@@ -0,0 +1,145 @@
+//===-- AArch64MCExpr.cpp - AArch64 specific MC expression classes --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the assembly expression modifiers
+// accepted by the AArch64 architecture (e.g. ":lo12:", ":gottprel_g1:", ...).
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64MCExpr.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCELF.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Object/ELF.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64symbolrefexpr"
+
+const AArch64MCExpr *AArch64MCExpr::Create(const MCExpr *Expr, VariantKind Kind,
+ MCContext &Ctx) {
+ return new (Ctx) AArch64MCExpr(Expr, Kind);
+}
+
+StringRef AArch64MCExpr::getVariantKindName() const {
+ switch (static_cast<uint32_t>(getKind())) {
+ case VK_CALL: return "";
+ case VK_LO12: return ":lo12:";
+ case VK_ABS_G3: return ":abs_g3:";
+ case VK_ABS_G2: return ":abs_g2:";
+ case VK_ABS_G2_S: return ":abs_g2_s:";
+ case VK_ABS_G2_NC: return ":abs_g2_nc:";
+ case VK_ABS_G1: return ":abs_g1:";
+ case VK_ABS_G1_S: return ":abs_g1_s:";
+ case VK_ABS_G1_NC: return ":abs_g1_nc:";
+ case VK_ABS_G0: return ":abs_g0:";
+ case VK_ABS_G0_S: return ":abs_g0_s:";
+ case VK_ABS_G0_NC: return ":abs_g0_nc:";
+ case VK_DTPREL_G2: return ":dtprel_g2:";
+ case VK_DTPREL_G1: return ":dtprel_g1:";
+ case VK_DTPREL_G1_NC: return ":dtprel_g1_nc:";
+ case VK_DTPREL_G0: return ":dtprel_g0:";
+ case VK_DTPREL_G0_NC: return ":dtprel_g0_nc:";
+ case VK_DTPREL_HI12: return ":dtprel_hi12:";
+ case VK_DTPREL_LO12: return ":dtprel_lo12:";
+ case VK_DTPREL_LO12_NC: return ":dtprel_lo12_nc:";
+ case VK_TPREL_G2: return ":tprel_g2:";
+ case VK_TPREL_G1: return ":tprel_g1:";
+ case VK_TPREL_G1_NC: return ":tprel_g1_nc:";
+ case VK_TPREL_G0: return ":tprel_g0:";
+ case VK_TPREL_G0_NC: return ":tprel_g0_nc:";
+ case VK_TPREL_HI12: return ":tprel_hi12:";
+ case VK_TPREL_LO12: return ":tprel_lo12:";
+ case VK_TPREL_LO12_NC: return ":tprel_lo12_nc:";
+ case VK_TLSDESC_LO12: return ":tlsdesc_lo12:";
+ case VK_ABS_PAGE: return "";
+ case VK_GOT_PAGE: return ":got:";
+ case VK_GOT_LO12: return ":got_lo12:";
+ case VK_GOTTPREL_PAGE: return ":gottprel:";
+ case VK_GOTTPREL_LO12_NC: return ":gottprel_lo12:";
+ case VK_GOTTPREL_G1: return ":gottprel_g1:";
+ case VK_GOTTPREL_G0_NC: return ":gottprel_g0_nc:";
+ case VK_TLSDESC: return "";
+ case VK_TLSDESC_PAGE: return ":tlsdesc:";
+ default:
+ llvm_unreachable("Invalid ELF symbol kind");
+ }
+}
+
+void AArch64MCExpr::PrintImpl(raw_ostream &OS) const {
+ if (getKind() != VK_NONE)
+ OS << getVariantKindName();
+ OS << *Expr;
+}
+
+void AArch64MCExpr::visitUsedExpr(MCStreamer &Streamer) const {
+ Streamer.visitUsedExpr(*getSubExpr());
+}
+
+const MCSection *AArch64MCExpr::FindAssociatedSection() const {
+ llvm_unreachable("FIXME: what goes here?");
+}
+
+bool AArch64MCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
+ const MCAsmLayout *Layout) const {
+ if (!getSubExpr()->EvaluateAsRelocatable(Res, Layout))
+ return false;
+
+ Res =
+ MCValue::get(Res.getSymA(), Res.getSymB(), Res.getConstant(), getKind());
+
+ return true;
+}
+
+static void fixELFSymbolsInTLSFixupsImpl(const MCExpr *Expr, MCAssembler &Asm) {
+ switch (Expr->getKind()) {
+ case MCExpr::Target:
+ llvm_unreachable("Can't handle nested target expression");
+ break;
+ case MCExpr::Constant:
+ break;
+
+ case MCExpr::Binary: {
+ const MCBinaryExpr *BE = cast<MCBinaryExpr>(Expr);
+ fixELFSymbolsInTLSFixupsImpl(BE->getLHS(), Asm);
+ fixELFSymbolsInTLSFixupsImpl(BE->getRHS(), Asm);
+ break;
+ }
+
+ case MCExpr::SymbolRef: {
+ // We're known to be under a TLS fixup, so any symbol should be
+ // modified. There should be only one.
+ const MCSymbolRefExpr &SymRef = *cast<MCSymbolRefExpr>(Expr);
+ MCSymbolData &SD = Asm.getOrCreateSymbolData(SymRef.getSymbol());
+ MCELF::SetType(SD, ELF::STT_TLS);
+ break;
+ }
+
+ case MCExpr::Unary:
+ fixELFSymbolsInTLSFixupsImpl(cast<MCUnaryExpr>(Expr)->getSubExpr(), Asm);
+ break;
+ }
+}
+
+void AArch64MCExpr::fixELFSymbolsInTLSFixups(MCAssembler &Asm) const {
+ switch (getSymbolLoc(Kind)) {
+ default:
+ return;
+ case VK_DTPREL:
+ case VK_GOTTPREL:
+ case VK_TPREL:
+ case VK_TLSDESC:
+ break;
+ }
+
+ fixELFSymbolsInTLSFixupsImpl(getSubExpr(), Asm);
+}
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.h
new file mode 100644
index 0000000..5422f9d
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.h
@@ -0,0 +1,168 @@
+//=--- AArch64MCExpr.h - AArch64 specific MC expression classes ---*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes AArch64-specific MCExprs, used for modifiers like
+// ":lo12:" or ":gottprel_g1:".
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_AArch64MCEXPR_H
+#define LLVM_AArch64MCEXPR_H
+
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace llvm {
+
+class AArch64MCExpr : public MCTargetExpr {
+public:
+ enum VariantKind {
+ VK_NONE = 0x000,
+
+ // Symbol locations specifying (roughly speaking) what calculation should be
+ // performed to construct the final address for the relocated
+ // symbol. E.g. direct, via the GOT, ...
+ VK_ABS = 0x001,
+ VK_SABS = 0x002,
+ VK_GOT = 0x003,
+ VK_DTPREL = 0x004,
+ VK_GOTTPREL = 0x005,
+ VK_TPREL = 0x006,
+ VK_TLSDESC = 0x007,
+ VK_SymLocBits = 0x00f,
+
+ // Variants specifying which part of the final address calculation is
+ // used. E.g. the low 12 bits for an ADD/LDR, the middle 16 bits for a
+ // MOVZ/MOVK.
+ VK_PAGE = 0x010,
+ VK_PAGEOFF = 0x020,
+ VK_HI12 = 0x030,
+ VK_G0 = 0x040,
+ VK_G1 = 0x050,
+ VK_G2 = 0x060,
+ VK_G3 = 0x070,
+ VK_AddressFragBits = 0x0f0,
+
+ // Whether the final relocation is a checked one (where a linker should
+ // perform a range-check on the final address) or not. Note that this field
+ // is unfortunately sometimes omitted from the assembly syntax. E.g. :lo12:
+ // on its own is a non-checked relocation. We side with ELF on being
+ // explicit about this!
+ VK_NC = 0x100,
+
+ // Convenience definitions for referring to specific textual representations
+ // of relocation specifiers. Note that this means the "_NC" is sometimes
+ // omitted in line with assembly syntax here (VK_LO12 rather than VK_LO12_NC
+ // since a user would write ":lo12:").
+ VK_CALL = VK_ABS,
+ VK_ABS_PAGE = VK_ABS | VK_PAGE,
+ VK_ABS_G3 = VK_ABS | VK_G3,
+ VK_ABS_G2 = VK_ABS | VK_G2,
+ VK_ABS_G2_S = VK_SABS | VK_G2,
+ VK_ABS_G2_NC = VK_ABS | VK_G2 | VK_NC,
+ VK_ABS_G1 = VK_ABS | VK_G1,
+ VK_ABS_G1_S = VK_SABS | VK_G1,
+ VK_ABS_G1_NC = VK_ABS | VK_G1 | VK_NC,
+ VK_ABS_G0 = VK_ABS | VK_G0,
+ VK_ABS_G0_S = VK_SABS | VK_G0,
+ VK_ABS_G0_NC = VK_ABS | VK_G0 | VK_NC,
+ VK_LO12 = VK_ABS | VK_PAGEOFF | VK_NC,
+ VK_GOT_LO12 = VK_GOT | VK_PAGEOFF | VK_NC,
+ VK_GOT_PAGE = VK_GOT | VK_PAGE,
+ VK_DTPREL_G2 = VK_DTPREL | VK_G2,
+ VK_DTPREL_G1 = VK_DTPREL | VK_G1,
+ VK_DTPREL_G1_NC = VK_DTPREL | VK_G1 | VK_NC,
+ VK_DTPREL_G0 = VK_DTPREL | VK_G0,
+ VK_DTPREL_G0_NC = VK_DTPREL | VK_G0 | VK_NC,
+ VK_DTPREL_HI12 = VK_DTPREL | VK_HI12,
+ VK_DTPREL_LO12 = VK_DTPREL | VK_PAGEOFF,
+ VK_DTPREL_LO12_NC = VK_DTPREL | VK_PAGEOFF | VK_NC,
+ VK_GOTTPREL_PAGE = VK_GOTTPREL | VK_PAGE,
+ VK_GOTTPREL_LO12_NC = VK_GOTTPREL | VK_PAGEOFF | VK_NC,
+ VK_GOTTPREL_G1 = VK_GOTTPREL | VK_G1,
+ VK_GOTTPREL_G0_NC = VK_GOTTPREL | VK_G0 | VK_NC,
+ VK_TPREL_G2 = VK_TPREL | VK_G2,
+ VK_TPREL_G1 = VK_TPREL | VK_G1,
+ VK_TPREL_G1_NC = VK_TPREL | VK_G1 | VK_NC,
+ VK_TPREL_G0 = VK_TPREL | VK_G0,
+ VK_TPREL_G0_NC = VK_TPREL | VK_G0 | VK_NC,
+ VK_TPREL_HI12 = VK_TPREL | VK_HI12,
+ VK_TPREL_LO12 = VK_TPREL | VK_PAGEOFF,
+ VK_TPREL_LO12_NC = VK_TPREL | VK_PAGEOFF | VK_NC,
+ VK_TLSDESC_LO12 = VK_TLSDESC | VK_PAGEOFF | VK_NC,
+ VK_TLSDESC_PAGE = VK_TLSDESC | VK_PAGE,
+
+ VK_INVALID = 0xfff
+ };
+
+private:
+ const MCExpr *Expr;
+ const VariantKind Kind;
+
+ explicit AArch64MCExpr(const MCExpr *Expr, VariantKind Kind)
+ : Expr(Expr), Kind(Kind) {}
+
+public:
+ /// @name Construction
+ /// @{
+
+ static const AArch64MCExpr *Create(const MCExpr *Expr, VariantKind Kind,
+ MCContext &Ctx);
+
+ /// @}
+ /// @name Accessors
+ /// @{
+
+ /// Get the kind of this expression.
+ VariantKind getKind() const { return static_cast<VariantKind>(Kind); }
+
+ /// Get the expression this modifier applies to.
+ const MCExpr *getSubExpr() const { return Expr; }
+
+ /// @}
+ /// @name VariantKind information extractors.
+ /// @{
+
+ static VariantKind getSymbolLoc(VariantKind Kind) {
+ return static_cast<VariantKind>(Kind & VK_SymLocBits);
+ }
+
+ static VariantKind getAddressFrag(VariantKind Kind) {
+ return static_cast<VariantKind>(Kind & VK_AddressFragBits);
+ }
+
+ static bool isNotChecked(VariantKind Kind) { return Kind & VK_NC; }
+
+ /// @}
+
+ /// Convert the variant kind into an ELF-appropriate modifier
+ /// (e.g. ":got:", ":lo12:").
+ StringRef getVariantKindName() const;
+
+ void PrintImpl(raw_ostream &OS) const override;
+
+ void visitUsedExpr(MCStreamer &Streamer) const override;
+
+ const MCSection *FindAssociatedSection() const override;
+
+ bool EvaluateAsRelocatableImpl(MCValue &Res,
+ const MCAsmLayout *Layout) const override;
+
+ void fixELFSymbolsInTLSFixups(MCAssembler &Asm) const override;
+
+ static bool classof(const MCExpr *E) {
+ return E->getKind() == MCExpr::Target;
+ }
+
+ static bool classof(const AArch64MCExpr *) { return true; }
+
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp
new file mode 100644
index 0000000..ae698c5
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp
@@ -0,0 +1,225 @@
+//===-- AArch64MCTargetDesc.cpp - AArch64 Target Descriptions ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides AArch64 specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64MCTargetDesc.h"
+#include "AArch64ELFStreamer.h"
+#include "AArch64MCAsmInfo.h"
+#include "InstPrinter/AArch64InstPrinter.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_MC_DESC
+#include "AArch64GenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "AArch64GenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "AArch64GenRegisterInfo.inc"
+
+static MCInstrInfo *createAArch64MCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitAArch64MCInstrInfo(X);
+ return X;
+}
+
+static MCSubtargetInfo *
+createAArch64MCSubtargetInfo(StringRef TT, StringRef CPU, StringRef FS) {
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+
+ if (CPU.empty())
+ CPU = "generic";
+
+ InitAArch64MCSubtargetInfo(X, TT, CPU, FS);
+ return X;
+}
+
+static MCRegisterInfo *createAArch64MCRegisterInfo(StringRef Triple) {
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitAArch64MCRegisterInfo(X, AArch64::LR);
+ return X;
+}
+
+static MCAsmInfo *createAArch64MCAsmInfo(const MCRegisterInfo &MRI,
+ StringRef TT) {
+ Triple TheTriple(TT);
+
+ MCAsmInfo *MAI;
+ if (TheTriple.isOSDarwin())
+ MAI = new AArch64MCAsmInfoDarwin();
+ else {
+ assert(TheTriple.isOSBinFormatELF() && "Only expect Darwin or ELF");
+ MAI = new AArch64MCAsmInfoELF(TT);
+ }
+
+ // Initial state of the frame pointer is SP.
+ unsigned Reg = MRI.getDwarfRegNum(AArch64::SP, true);
+ MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(nullptr, Reg, 0);
+ MAI->addInitialFrameState(Inst);
+
+ return MAI;
+}
+
+static MCCodeGenInfo *createAArch64MCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ Triple TheTriple(TT);
+ assert((TheTriple.isOSBinFormatELF() || TheTriple.isOSBinFormatMachO()) &&
+ "Only expect Darwin and ELF targets");
+
+ if (CM == CodeModel::Default)
+ CM = CodeModel::Small;
+ // The default MCJIT memory managers make no guarantees about where they can
+ // find an executable page; JITed code needs to be able to refer to globals
+ // no matter how far away they are.
+ else if (CM == CodeModel::JITDefault)
+ CM = CodeModel::Large;
+ else if (CM != CodeModel::Small && CM != CodeModel::Large)
+ report_fatal_error(
+ "Only small and large code models are allowed on AArch64");
+
+ // AArch64 Darwin is always PIC.
+ if (TheTriple.isOSDarwin())
+ RM = Reloc::PIC_;
+ // On ELF platforms the default static relocation model has a smart enough
+ // linker to cope with referencing external symbols defined in a shared
+ // library. Hence DynamicNoPIC doesn't need to be promoted to PIC.
+ else if (RM == Reloc::Default || RM == Reloc::DynamicNoPIC)
+ RM = Reloc::Static;
+
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+static MCInstPrinter *createAArch64MCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ if (SyntaxVariant == 0)
+ return new AArch64InstPrinter(MAI, MII, MRI, STI);
+ if (SyntaxVariant == 1)
+ return new AArch64AppleInstPrinter(MAI, MII, MRI, STI);
+
+ return nullptr;
+}
+
+static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
+ MCContext &Ctx, MCAsmBackend &TAB,
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI, bool RelaxAll,
+ bool NoExecStack) {
+ Triple TheTriple(TT);
+
+ if (TheTriple.isOSDarwin())
+ return createMachOStreamer(Ctx, TAB, OS, Emitter, RelaxAll,
+ /*LabelSections*/ true);
+
+ return createAArch64ELFStreamer(Ctx, TAB, OS, Emitter, RelaxAll, NoExecStack);
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeAArch64TargetMC() {
+ // Register the MC asm info.
+ RegisterMCAsmInfoFn X(TheAArch64leTarget, createAArch64MCAsmInfo);
+ RegisterMCAsmInfoFn Y(TheAArch64beTarget, createAArch64MCAsmInfo);
+ RegisterMCAsmInfoFn Z(TheARM64leTarget, createAArch64MCAsmInfo);
+ RegisterMCAsmInfoFn W(TheARM64beTarget, createAArch64MCAsmInfo);
+
+ // Register the MC codegen info.
+ TargetRegistry::RegisterMCCodeGenInfo(TheAArch64leTarget,
+ createAArch64MCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheAArch64beTarget,
+ createAArch64MCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheARM64leTarget,
+ createAArch64MCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheARM64beTarget,
+ createAArch64MCCodeGenInfo);
+
+ // Register the MC instruction info.
+ TargetRegistry::RegisterMCInstrInfo(TheAArch64leTarget,
+ createAArch64MCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheAArch64beTarget,
+ createAArch64MCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheARM64leTarget,
+ createAArch64MCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheARM64beTarget,
+ createAArch64MCInstrInfo);
+
+ // Register the MC register info.
+ TargetRegistry::RegisterMCRegInfo(TheAArch64leTarget,
+ createAArch64MCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheAArch64beTarget,
+ createAArch64MCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheARM64leTarget,
+ createAArch64MCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheARM64beTarget,
+ createAArch64MCRegisterInfo);
+
+ // Register the MC subtarget info.
+ TargetRegistry::RegisterMCSubtargetInfo(TheAArch64leTarget,
+ createAArch64MCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheAArch64beTarget,
+ createAArch64MCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheARM64leTarget,
+ createAArch64MCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheARM64beTarget,
+ createAArch64MCSubtargetInfo);
+
+ // Register the asm backend.
+ TargetRegistry::RegisterMCAsmBackend(TheAArch64leTarget,
+ createAArch64leAsmBackend);
+ TargetRegistry::RegisterMCAsmBackend(TheAArch64beTarget,
+ createAArch64beAsmBackend);
+ TargetRegistry::RegisterMCAsmBackend(TheARM64leTarget,
+ createAArch64leAsmBackend);
+ TargetRegistry::RegisterMCAsmBackend(TheARM64beTarget,
+ createAArch64beAsmBackend);
+
+ // Register the MC Code Emitter
+ TargetRegistry::RegisterMCCodeEmitter(TheAArch64leTarget,
+ createAArch64MCCodeEmitter);
+ TargetRegistry::RegisterMCCodeEmitter(TheAArch64beTarget,
+ createAArch64MCCodeEmitter);
+ TargetRegistry::RegisterMCCodeEmitter(TheARM64leTarget,
+ createAArch64MCCodeEmitter);
+ TargetRegistry::RegisterMCCodeEmitter(TheARM64beTarget,
+ createAArch64MCCodeEmitter);
+
+ // Register the object streamer.
+ TargetRegistry::RegisterMCObjectStreamer(TheAArch64leTarget,
+ createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheAArch64beTarget,
+ createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheARM64leTarget, createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheARM64beTarget, createMCStreamer);
+
+ // Register the MCInstPrinter.
+ TargetRegistry::RegisterMCInstPrinter(TheAArch64leTarget,
+ createAArch64MCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheAArch64beTarget,
+ createAArch64MCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheARM64leTarget,
+ createAArch64MCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheARM64beTarget,
+ createAArch64MCInstPrinter);
+}
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h
new file mode 100644
index 0000000..d886ea2
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h
@@ -0,0 +1,70 @@
+//===-- AArch64MCTargetDesc.h - AArch64 Target Descriptions -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides AArch64 specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64MCTARGETDESC_H
+#define AArch64MCTARGETDESC_H
+
+#include "llvm/Support/DataTypes.h"
+#include <string>
+
+namespace llvm {
+class MCAsmBackend;
+class MCCodeEmitter;
+class MCContext;
+class MCInstrInfo;
+class MCRegisterInfo;
+class MCObjectWriter;
+class MCSubtargetInfo;
+class StringRef;
+class Target;
+class raw_ostream;
+
+extern Target TheAArch64leTarget;
+extern Target TheAArch64beTarget;
+extern Target TheARM64leTarget;
+extern Target TheARM64beTarget;
+
+MCCodeEmitter *createAArch64MCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+MCAsmBackend *createAArch64leAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI, StringRef TT,
+ StringRef CPU);
+MCAsmBackend *createAArch64beAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI, StringRef TT,
+ StringRef CPU);
+
+MCObjectWriter *createAArch64ELFObjectWriter(raw_ostream &OS, uint8_t OSABI,
+ bool IsLittleEndian);
+
+MCObjectWriter *createAArch64MachObjectWriter(raw_ostream &OS, uint32_t CPUType,
+ uint32_t CPUSubtype);
+
+} // End llvm namespace
+
+// Defines symbolic names for AArch64 registers. This defines a mapping from
+// register name to register number.
+//
+#define GET_REGINFO_ENUM
+#include "AArch64GenRegisterInfo.inc"
+
+// Defines symbolic names for the AArch64 instructions.
+//
+#define GET_INSTRINFO_ENUM
+#include "AArch64GenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "AArch64GenSubtargetInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MachObjectWriter.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MachObjectWriter.cpp
new file mode 100644
index 0000000..ba95366
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MachObjectWriter.cpp
@@ -0,0 +1,396 @@
+//===-- AArch64MachObjectWriter.cpp - ARM Mach Object Writer --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/AArch64FixupKinds.h"
+#include "MCTargetDesc/AArch64MCTargetDesc.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCAsmLayout.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCFixup.h"
+#include "llvm/MC/MCMachObjectWriter.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachO.h"
+using namespace llvm;
+
+namespace {
+class AArch64MachObjectWriter : public MCMachObjectTargetWriter {
+ bool getAArch64FixupKindMachOInfo(const MCFixup &Fixup, unsigned &RelocType,
+ const MCSymbolRefExpr *Sym,
+ unsigned &Log2Size, const MCAssembler &Asm);
+
+public:
+ AArch64MachObjectWriter(uint32_t CPUType, uint32_t CPUSubtype)
+ : MCMachObjectTargetWriter(true /* is64Bit */, CPUType, CPUSubtype,
+ /*UseAggressiveSymbolFolding=*/true) {}
+
+ void RecordRelocation(MachObjectWriter *Writer, const MCAssembler &Asm,
+ const MCAsmLayout &Layout, const MCFragment *Fragment,
+ const MCFixup &Fixup, MCValue Target,
+ uint64_t &FixedValue) override;
+};
+}
+
+bool AArch64MachObjectWriter::getAArch64FixupKindMachOInfo(
+ const MCFixup &Fixup, unsigned &RelocType, const MCSymbolRefExpr *Sym,
+ unsigned &Log2Size, const MCAssembler &Asm) {
+ RelocType = unsigned(MachO::ARM64_RELOC_UNSIGNED);
+ Log2Size = ~0U;
+
+ switch ((unsigned)Fixup.getKind()) {
+ default:
+ return false;
+
+ case FK_Data_1:
+ Log2Size = llvm::Log2_32(1);
+ return true;
+ case FK_Data_2:
+ Log2Size = llvm::Log2_32(2);
+ return true;
+ case FK_Data_4:
+ Log2Size = llvm::Log2_32(4);
+ if (Sym->getKind() == MCSymbolRefExpr::VK_GOT)
+ RelocType = unsigned(MachO::ARM64_RELOC_POINTER_TO_GOT);
+ return true;
+ case FK_Data_8:
+ Log2Size = llvm::Log2_32(8);
+ if (Sym->getKind() == MCSymbolRefExpr::VK_GOT)
+ RelocType = unsigned(MachO::ARM64_RELOC_POINTER_TO_GOT);
+ return true;
+ case AArch64::fixup_aarch64_add_imm12:
+ case AArch64::fixup_aarch64_ldst_imm12_scale1:
+ case AArch64::fixup_aarch64_ldst_imm12_scale2:
+ case AArch64::fixup_aarch64_ldst_imm12_scale4:
+ case AArch64::fixup_aarch64_ldst_imm12_scale8:
+ case AArch64::fixup_aarch64_ldst_imm12_scale16:
+ Log2Size = llvm::Log2_32(4);
+ switch (Sym->getKind()) {
+ default:
+ llvm_unreachable("Unexpected symbol reference variant kind!");
+ case MCSymbolRefExpr::VK_PAGEOFF:
+ RelocType = unsigned(MachO::ARM64_RELOC_PAGEOFF12);
+ return true;
+ case MCSymbolRefExpr::VK_GOTPAGEOFF:
+ RelocType = unsigned(MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12);
+ return true;
+ case MCSymbolRefExpr::VK_TLVPPAGEOFF:
+ RelocType = unsigned(MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12);
+ return true;
+ }
+ case AArch64::fixup_aarch64_pcrel_adrp_imm21:
+ Log2Size = llvm::Log2_32(4);
+ // This encompasses the relocation for the whole 21-bit value.
+ switch (Sym->getKind()) {
+ default:
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "ADR/ADRP relocations must be GOT relative");
+ case MCSymbolRefExpr::VK_PAGE:
+ RelocType = unsigned(MachO::ARM64_RELOC_PAGE21);
+ return true;
+ case MCSymbolRefExpr::VK_GOTPAGE:
+ RelocType = unsigned(MachO::ARM64_RELOC_GOT_LOAD_PAGE21);
+ return true;
+ case MCSymbolRefExpr::VK_TLVPPAGE:
+ RelocType = unsigned(MachO::ARM64_RELOC_TLVP_LOAD_PAGE21);
+ return true;
+ }
+ return true;
+ case AArch64::fixup_aarch64_pcrel_branch26:
+ case AArch64::fixup_aarch64_pcrel_call26:
+ Log2Size = llvm::Log2_32(4);
+ RelocType = unsigned(MachO::ARM64_RELOC_BRANCH26);
+ return true;
+ }
+}
+
+void AArch64MachObjectWriter::RecordRelocation(
+ MachObjectWriter *Writer, const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target,
+ uint64_t &FixedValue) {
+ unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
+
+ // See <reloc.h>.
+ uint32_t FixupOffset = Layout.getFragmentOffset(Fragment);
+ unsigned Log2Size = 0;
+ int64_t Value = 0;
+ unsigned Index = 0;
+ unsigned IsExtern = 0;
+ unsigned Type = 0;
+ unsigned Kind = Fixup.getKind();
+
+ FixupOffset += Fixup.getOffset();
+
+ // AArch64 pcrel relocation addends do not include the section offset.
+ if (IsPCRel)
+ FixedValue += FixupOffset;
+
+ // ADRP fixups use relocations for the whole symbol value and only
+ // put the addend in the instruction itself. Clear out any value the
+ // generic code figured out from the sybmol definition.
+ if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21)
+ FixedValue = 0;
+
+ // imm19 relocations are for conditional branches, which require
+ // assembler local symbols. If we got here, that's not what we have,
+ // so complain loudly.
+ if (Kind == AArch64::fixup_aarch64_pcrel_branch19) {
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "conditional branch requires assembler-local"
+ " label. '" +
+ Target.getSymA()->getSymbol().getName() +
+ "' is external.");
+ return;
+ }
+
+ // 14-bit branch relocations should only target internal labels, and so
+ // should never get here.
+ if (Kind == AArch64::fixup_aarch64_pcrel_branch14) {
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "Invalid relocation on conditional branch!");
+ return;
+ }
+
+ if (!getAArch64FixupKindMachOInfo(Fixup, Type, Target.getSymA(), Log2Size,
+ Asm)) {
+ Asm.getContext().FatalError(Fixup.getLoc(), "unknown AArch64 fixup kind!");
+ return;
+ }
+
+ Value = Target.getConstant();
+
+ if (Target.isAbsolute()) { // constant
+ // FIXME: Should this always be extern?
+ // SymbolNum of 0 indicates the absolute section.
+ Type = MachO::ARM64_RELOC_UNSIGNED;
+ Index = 0;
+
+ if (IsPCRel) {
+ IsExtern = 1;
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "PC relative absolute relocation!");
+
+ // FIXME: x86_64 sets the type to a branch reloc here. Should we do
+ // something similar?
+ }
+ } else if (Target.getSymB()) { // A - B + constant
+ const MCSymbol *A = &Target.getSymA()->getSymbol();
+ const MCSymbolData &A_SD = Asm.getSymbolData(*A);
+ const MCSymbolData *A_Base = Asm.getAtom(&A_SD);
+
+ const MCSymbol *B = &Target.getSymB()->getSymbol();
+ const MCSymbolData &B_SD = Asm.getSymbolData(*B);
+ const MCSymbolData *B_Base = Asm.getAtom(&B_SD);
+
+ // Check for "_foo@got - .", which comes through here as:
+ // Ltmp0:
+ // ... _foo@got - Ltmp0
+ if (Target.getSymA()->getKind() == MCSymbolRefExpr::VK_GOT &&
+ Target.getSymB()->getKind() == MCSymbolRefExpr::VK_None &&
+ Layout.getSymbolOffset(&B_SD) ==
+ Layout.getFragmentOffset(Fragment) + Fixup.getOffset()) {
+ // SymB is the PC, so use a PC-rel pointer-to-GOT relocation.
+ Index = A_Base->getIndex();
+ IsExtern = 1;
+ Type = MachO::ARM64_RELOC_POINTER_TO_GOT;
+ IsPCRel = 1;
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = FixupOffset;
+ MRE.r_word1 = ((Index << 0) | (IsPCRel << 24) | (Log2Size << 25) |
+ (IsExtern << 27) | (Type << 28));
+ Writer->addRelocation(Fragment->getParent(), MRE);
+ return;
+ } else if (Target.getSymA()->getKind() != MCSymbolRefExpr::VK_None ||
+ Target.getSymB()->getKind() != MCSymbolRefExpr::VK_None)
+ // Otherwise, neither symbol can be modified.
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "unsupported relocation of modified symbol");
+
+ // We don't support PCrel relocations of differences.
+ if (IsPCRel)
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "unsupported pc-relative relocation of "
+ "difference");
+
+ // AArch64 always uses external relocations. If there is no symbol to use as
+ // a base address (a local symbol with no preceding non-local symbol),
+ // error out.
+ //
+ // FIXME: We should probably just synthesize an external symbol and use
+ // that.
+ if (!A_Base)
+ Asm.getContext().FatalError(
+ Fixup.getLoc(),
+ "unsupported relocation of local symbol '" + A->getName() +
+ "'. Must have non-local symbol earlier in section.");
+ if (!B_Base)
+ Asm.getContext().FatalError(
+ Fixup.getLoc(),
+ "unsupported relocation of local symbol '" + B->getName() +
+ "'. Must have non-local symbol earlier in section.");
+
+ if (A_Base == B_Base && A_Base)
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "unsupported relocation with identical base");
+
+ Value += (!A_SD.getFragment() ? 0
+ : Writer->getSymbolAddress(&A_SD, Layout)) -
+ (!A_Base || !A_Base->getFragment()
+ ? 0
+ : Writer->getSymbolAddress(A_Base, Layout));
+ Value -= (!B_SD.getFragment() ? 0
+ : Writer->getSymbolAddress(&B_SD, Layout)) -
+ (!B_Base || !B_Base->getFragment()
+ ? 0
+ : Writer->getSymbolAddress(B_Base, Layout));
+
+ Index = A_Base->getIndex();
+ IsExtern = 1;
+ Type = MachO::ARM64_RELOC_UNSIGNED;
+
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = FixupOffset;
+ MRE.r_word1 = ((Index << 0) | (IsPCRel << 24) | (Log2Size << 25) |
+ (IsExtern << 27) | (Type << 28));
+ Writer->addRelocation(Fragment->getParent(), MRE);
+
+ Index = B_Base->getIndex();
+ IsExtern = 1;
+ Type = MachO::ARM64_RELOC_SUBTRACTOR;
+ } else { // A + constant
+ const MCSymbol *Symbol = &Target.getSymA()->getSymbol();
+ const MCSymbolData &SD = Asm.getSymbolData(*Symbol);
+ const MCSymbolData *Base = Asm.getAtom(&SD);
+ const MCSectionMachO &Section = static_cast<const MCSectionMachO &>(
+ Fragment->getParent()->getSection());
+
+ // If the symbol is a variable and we weren't able to get a Base for it
+ // (i.e., it's not in the symbol table associated with a section) resolve
+ // the relocation based its expansion instead.
+ if (Symbol->isVariable() && !Base) {
+ // If the evaluation is an absolute value, just use that directly
+ // to keep things easy.
+ int64_t Res;
+ if (SD.getSymbol().getVariableValue()->EvaluateAsAbsolute(
+ Res, Layout, Writer->getSectionAddressMap())) {
+ FixedValue = Res;
+ return;
+ }
+
+ // FIXME: Will the Target we already have ever have any data in it
+ // we need to preserve and merge with the new Target? How about
+ // the FixedValue?
+ if (!Symbol->getVariableValue()->EvaluateAsRelocatable(Target, &Layout))
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "unable to resolve variable '" +
+ Symbol->getName() + "'");
+ return RecordRelocation(Writer, Asm, Layout, Fragment, Fixup, Target,
+ FixedValue);
+ }
+
+ // Relocations inside debug sections always use local relocations when
+ // possible. This seems to be done because the debugger doesn't fully
+ // understand relocation entries and expects to find values that
+ // have already been fixed up.
+ if (Symbol->isInSection()) {
+ if (Section.hasAttribute(MachO::S_ATTR_DEBUG))
+ Base = nullptr;
+ }
+
+ // AArch64 uses external relocations as much as possible. For debug
+ // sections, and for pointer-sized relocations (.quad), we allow section
+ // relocations. It's code sections that run into trouble.
+ if (Base) {
+ Index = Base->getIndex();
+ IsExtern = 1;
+
+ // Add the local offset, if needed.
+ if (Base != &SD)
+ Value += Layout.getSymbolOffset(&SD) - Layout.getSymbolOffset(Base);
+ } else if (Symbol->isInSection()) {
+ // Pointer-sized relocations can use a local relocation. Otherwise,
+ // we have to be in a debug info section.
+ if (!Section.hasAttribute(MachO::S_ATTR_DEBUG) && Log2Size != 3)
+ Asm.getContext().FatalError(
+ Fixup.getLoc(),
+ "unsupported relocation of local symbol '" + Symbol->getName() +
+ "'. Must have non-local symbol earlier in section.");
+ // Adjust the relocation to be section-relative.
+ // The index is the section ordinal (1-based).
+ const MCSectionData &SymSD =
+ Asm.getSectionData(SD.getSymbol().getSection());
+ Index = SymSD.getOrdinal() + 1;
+ IsExtern = 0;
+ Value += Writer->getSymbolAddress(&SD, Layout);
+
+ if (IsPCRel)
+ Value -= Writer->getFragmentAddress(Fragment, Layout) +
+ Fixup.getOffset() + (1ULL << Log2Size);
+ } else {
+ // Resolve constant variables.
+ if (SD.getSymbol().isVariable()) {
+ int64_t Res;
+ if (SD.getSymbol().getVariableValue()->EvaluateAsAbsolute(
+ Res, Layout, Writer->getSectionAddressMap())) {
+ FixedValue = Res;
+ return;
+ }
+ }
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "unsupported relocation of variable '" +
+ Symbol->getName() + "'");
+ }
+ }
+
+ // If the relocation kind is Branch26, Page21, or Pageoff12, any addend
+ // is represented via an Addend relocation, not encoded directly into
+ // the instruction.
+ if ((Type == MachO::ARM64_RELOC_BRANCH26 ||
+ Type == MachO::ARM64_RELOC_PAGE21 ||
+ Type == MachO::ARM64_RELOC_PAGEOFF12) &&
+ Value) {
+ assert((Value & 0xff000000) == 0 && "Added relocation out of range!");
+
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = FixupOffset;
+ MRE.r_word1 = ((Index << 0) | (IsPCRel << 24) | (Log2Size << 25) |
+ (IsExtern << 27) | (Type << 28));
+ Writer->addRelocation(Fragment->getParent(), MRE);
+
+ // Now set up the Addend relocation.
+ Type = MachO::ARM64_RELOC_ADDEND;
+ Index = Value;
+ IsPCRel = 0;
+ Log2Size = 2;
+ IsExtern = 0;
+
+ // Put zero into the instruction itself. The addend is in the relocation.
+ Value = 0;
+ }
+
+ // If there's any addend left to handle, encode it in the instruction.
+ FixedValue = Value;
+
+ // struct relocation_info (8 bytes)
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = FixupOffset;
+ MRE.r_word1 = ((Index << 0) | (IsPCRel << 24) | (Log2Size << 25) |
+ (IsExtern << 27) | (Type << 28));
+ Writer->addRelocation(Fragment->getParent(), MRE);
+}
+
+MCObjectWriter *llvm::createAArch64MachObjectWriter(raw_ostream &OS,
+ uint32_t CPUType,
+ uint32_t CPUSubtype) {
+ return createMachObjectWriter(
+ new AArch64MachObjectWriter(CPUType, CPUSubtype), OS,
+ /*IsLittleEndian=*/true);
+}
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64TargetStreamer.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64TargetStreamer.cpp
new file mode 100644
index 0000000..dcc1a3c
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64TargetStreamer.cpp
@@ -0,0 +1,41 @@
+//===- AArch64TargetStreamer.cpp - AArch64TargetStreamer class --*- C++ -*---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AArch64TargetStreamer class.
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/ADT/MapVector.h"
+#include "llvm/MC/ConstantPools.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCStreamer.h"
+
+using namespace llvm;
+
+//
+// AArch64TargetStreamer Implemenation
+//
+AArch64TargetStreamer::AArch64TargetStreamer(MCStreamer &S)
+ : MCTargetStreamer(S), ConstantPools(new AssemblerConstantPools()) {}
+
+AArch64TargetStreamer::~AArch64TargetStreamer() {}
+
+// The constant pool handling is shared by all AArch64TargetStreamer
+// implementations.
+const MCExpr *AArch64TargetStreamer::addConstantPoolEntry(const MCExpr *Expr,
+ unsigned Size) {
+ return ConstantPools->addEntry(Streamer, Expr, Size);
+}
+
+void AArch64TargetStreamer::emitCurrentConstantPool() {
+ ConstantPools->emitForCurrentSection(Streamer);
+}
+
+// finish() - write out any non-empty assembler constant pools.
+void AArch64TargetStreamer::finish() { ConstantPools->emitAll(Streamer); }
diff --git a/contrib/llvm/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp b/contrib/llvm/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp
new file mode 100644
index 0000000..3a382c1
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp
@@ -0,0 +1,31 @@
+//===-- AArch64TargetInfo.cpp - AArch64 Target Implementation -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Triple.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+namespace llvm {
+Target TheAArch64leTarget;
+Target TheAArch64beTarget;
+Target TheARM64leTarget;
+Target TheARM64beTarget;
+} // end namespace llvm
+
+extern "C" void LLVMInitializeAArch64TargetInfo() {
+ RegisterTarget<Triple::arm64, /*HasJIT=*/true> X(TheARM64leTarget, "arm64",
+ "AArch64 (little endian)");
+ RegisterTarget<Triple::arm64_be, /*HasJIT=*/true> Y(TheARM64beTarget, "arm64_be",
+ "AArch64 (big endian)");
+
+ RegisterTarget<Triple::aarch64, /*HasJIT=*/true> Z(
+ TheAArch64leTarget, "aarch64", "AArch64 (little endian)");
+ RegisterTarget<Triple::aarch64_be, /*HasJIT=*/true> W(
+ TheAArch64beTarget, "aarch64_be", "AArch64 (big endian)");
+}
diff --git a/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp b/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp
new file mode 100644
index 0000000..3c24bb3
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp
@@ -0,0 +1,901 @@
+//===-- AArch64BaseInfo.cpp - AArch64 Base encoding information------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides basic encoding and assembly information for AArch64.
+//
+//===----------------------------------------------------------------------===//
+#include "AArch64BaseInfo.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/Regex.h"
+
+using namespace llvm;
+
+StringRef AArch64NamedImmMapper::toString(uint32_t Value, bool &Valid) const {
+ for (unsigned i = 0; i < NumPairs; ++i) {
+ if (Pairs[i].Value == Value) {
+ Valid = true;
+ return Pairs[i].Name;
+ }
+ }
+
+ Valid = false;
+ return StringRef();
+}
+
+uint32_t AArch64NamedImmMapper::fromString(StringRef Name, bool &Valid) const {
+ std::string LowerCaseName = Name.lower();
+ for (unsigned i = 0; i < NumPairs; ++i) {
+ if (Pairs[i].Name == LowerCaseName) {
+ Valid = true;
+ return Pairs[i].Value;
+ }
+ }
+
+ Valid = false;
+ return -1;
+}
+
+bool AArch64NamedImmMapper::validImm(uint32_t Value) const {
+ return Value < TooBigImm;
+}
+
+const AArch64NamedImmMapper::Mapping AArch64AT::ATMapper::ATPairs[] = {
+ {"s1e1r", S1E1R},
+ {"s1e2r", S1E2R},
+ {"s1e3r", S1E3R},
+ {"s1e1w", S1E1W},
+ {"s1e2w", S1E2W},
+ {"s1e3w", S1E3W},
+ {"s1e0r", S1E0R},
+ {"s1e0w", S1E0W},
+ {"s12e1r", S12E1R},
+ {"s12e1w", S12E1W},
+ {"s12e0r", S12E0R},
+ {"s12e0w", S12E0W},
+};
+
+AArch64AT::ATMapper::ATMapper()
+ : AArch64NamedImmMapper(ATPairs, 0) {}
+
+const AArch64NamedImmMapper::Mapping AArch64DB::DBarrierMapper::DBarrierPairs[] = {
+ {"oshld", OSHLD},
+ {"oshst", OSHST},
+ {"osh", OSH},
+ {"nshld", NSHLD},
+ {"nshst", NSHST},
+ {"nsh", NSH},
+ {"ishld", ISHLD},
+ {"ishst", ISHST},
+ {"ish", ISH},
+ {"ld", LD},
+ {"st", ST},
+ {"sy", SY}
+};
+
+AArch64DB::DBarrierMapper::DBarrierMapper()
+ : AArch64NamedImmMapper(DBarrierPairs, 16u) {}
+
+const AArch64NamedImmMapper::Mapping AArch64DC::DCMapper::DCPairs[] = {
+ {"zva", ZVA},
+ {"ivac", IVAC},
+ {"isw", ISW},
+ {"cvac", CVAC},
+ {"csw", CSW},
+ {"cvau", CVAU},
+ {"civac", CIVAC},
+ {"cisw", CISW}
+};
+
+AArch64DC::DCMapper::DCMapper()
+ : AArch64NamedImmMapper(DCPairs, 0) {}
+
+const AArch64NamedImmMapper::Mapping AArch64IC::ICMapper::ICPairs[] = {
+ {"ialluis", IALLUIS},
+ {"iallu", IALLU},
+ {"ivau", IVAU}
+};
+
+AArch64IC::ICMapper::ICMapper()
+ : AArch64NamedImmMapper(ICPairs, 0) {}
+
+const AArch64NamedImmMapper::Mapping AArch64ISB::ISBMapper::ISBPairs[] = {
+ {"sy", SY},
+};
+
+AArch64ISB::ISBMapper::ISBMapper()
+ : AArch64NamedImmMapper(ISBPairs, 16) {}
+
+const AArch64NamedImmMapper::Mapping AArch64PRFM::PRFMMapper::PRFMPairs[] = {
+ {"pldl1keep", PLDL1KEEP},
+ {"pldl1strm", PLDL1STRM},
+ {"pldl2keep", PLDL2KEEP},
+ {"pldl2strm", PLDL2STRM},
+ {"pldl3keep", PLDL3KEEP},
+ {"pldl3strm", PLDL3STRM},
+ {"plil1keep", PLIL1KEEP},
+ {"plil1strm", PLIL1STRM},
+ {"plil2keep", PLIL2KEEP},
+ {"plil2strm", PLIL2STRM},
+ {"plil3keep", PLIL3KEEP},
+ {"plil3strm", PLIL3STRM},
+ {"pstl1keep", PSTL1KEEP},
+ {"pstl1strm", PSTL1STRM},
+ {"pstl2keep", PSTL2KEEP},
+ {"pstl2strm", PSTL2STRM},
+ {"pstl3keep", PSTL3KEEP},
+ {"pstl3strm", PSTL3STRM}
+};
+
+AArch64PRFM::PRFMMapper::PRFMMapper()
+ : AArch64NamedImmMapper(PRFMPairs, 32) {}
+
+const AArch64NamedImmMapper::Mapping AArch64PState::PStateMapper::PStatePairs[] = {
+ {"spsel", SPSel},
+ {"daifset", DAIFSet},
+ {"daifclr", DAIFClr}
+};
+
+AArch64PState::PStateMapper::PStateMapper()
+ : AArch64NamedImmMapper(PStatePairs, 0) {}
+
+const AArch64NamedImmMapper::Mapping AArch64SysReg::MRSMapper::MRSPairs[] = {
+ {"mdccsr_el0", MDCCSR_EL0},
+ {"dbgdtrrx_el0", DBGDTRRX_EL0},
+ {"mdrar_el1", MDRAR_EL1},
+ {"oslsr_el1", OSLSR_EL1},
+ {"dbgauthstatus_el1", DBGAUTHSTATUS_EL1},
+ {"pmceid0_el0", PMCEID0_EL0},
+ {"pmceid1_el0", PMCEID1_EL0},
+ {"midr_el1", MIDR_EL1},
+ {"ccsidr_el1", CCSIDR_EL1},
+ {"clidr_el1", CLIDR_EL1},
+ {"ctr_el0", CTR_EL0},
+ {"mpidr_el1", MPIDR_EL1},
+ {"revidr_el1", REVIDR_EL1},
+ {"aidr_el1", AIDR_EL1},
+ {"dczid_el0", DCZID_EL0},
+ {"id_pfr0_el1", ID_PFR0_EL1},
+ {"id_pfr1_el1", ID_PFR1_EL1},
+ {"id_dfr0_el1", ID_DFR0_EL1},
+ {"id_afr0_el1", ID_AFR0_EL1},
+ {"id_mmfr0_el1", ID_MMFR0_EL1},
+ {"id_mmfr1_el1", ID_MMFR1_EL1},
+ {"id_mmfr2_el1", ID_MMFR2_EL1},
+ {"id_mmfr3_el1", ID_MMFR3_EL1},
+ {"id_isar0_el1", ID_ISAR0_EL1},
+ {"id_isar1_el1", ID_ISAR1_EL1},
+ {"id_isar2_el1", ID_ISAR2_EL1},
+ {"id_isar3_el1", ID_ISAR3_EL1},
+ {"id_isar4_el1", ID_ISAR4_EL1},
+ {"id_isar5_el1", ID_ISAR5_EL1},
+ {"id_aa64pfr0_el1", ID_A64PFR0_EL1},
+ {"id_aa64pfr1_el1", ID_A64PFR1_EL1},
+ {"id_aa64dfr0_el1", ID_A64DFR0_EL1},
+ {"id_aa64dfr1_el1", ID_A64DFR1_EL1},
+ {"id_aa64afr0_el1", ID_A64AFR0_EL1},
+ {"id_aa64afr1_el1", ID_A64AFR1_EL1},
+ {"id_aa64isar0_el1", ID_A64ISAR0_EL1},
+ {"id_aa64isar1_el1", ID_A64ISAR1_EL1},
+ {"id_aa64mmfr0_el1", ID_A64MMFR0_EL1},
+ {"id_aa64mmfr1_el1", ID_A64MMFR1_EL1},
+ {"mvfr0_el1", MVFR0_EL1},
+ {"mvfr1_el1", MVFR1_EL1},
+ {"mvfr2_el1", MVFR2_EL1},
+ {"rvbar_el1", RVBAR_EL1},
+ {"rvbar_el2", RVBAR_EL2},
+ {"rvbar_el3", RVBAR_EL3},
+ {"isr_el1", ISR_EL1},
+ {"cntpct_el0", CNTPCT_EL0},
+ {"cntvct_el0", CNTVCT_EL0},
+
+ // Trace registers
+ {"trcstatr", TRCSTATR},
+ {"trcidr8", TRCIDR8},
+ {"trcidr9", TRCIDR9},
+ {"trcidr10", TRCIDR10},
+ {"trcidr11", TRCIDR11},
+ {"trcidr12", TRCIDR12},
+ {"trcidr13", TRCIDR13},
+ {"trcidr0", TRCIDR0},
+ {"trcidr1", TRCIDR1},
+ {"trcidr2", TRCIDR2},
+ {"trcidr3", TRCIDR3},
+ {"trcidr4", TRCIDR4},
+ {"trcidr5", TRCIDR5},
+ {"trcidr6", TRCIDR6},
+ {"trcidr7", TRCIDR7},
+ {"trcoslsr", TRCOSLSR},
+ {"trcpdsr", TRCPDSR},
+ {"trcdevaff0", TRCDEVAFF0},
+ {"trcdevaff1", TRCDEVAFF1},
+ {"trclsr", TRCLSR},
+ {"trcauthstatus", TRCAUTHSTATUS},
+ {"trcdevarch", TRCDEVARCH},
+ {"trcdevid", TRCDEVID},
+ {"trcdevtype", TRCDEVTYPE},
+ {"trcpidr4", TRCPIDR4},
+ {"trcpidr5", TRCPIDR5},
+ {"trcpidr6", TRCPIDR6},
+ {"trcpidr7", TRCPIDR7},
+ {"trcpidr0", TRCPIDR0},
+ {"trcpidr1", TRCPIDR1},
+ {"trcpidr2", TRCPIDR2},
+ {"trcpidr3", TRCPIDR3},
+ {"trccidr0", TRCCIDR0},
+ {"trccidr1", TRCCIDR1},
+ {"trccidr2", TRCCIDR2},
+ {"trccidr3", TRCCIDR3},
+
+ // GICv3 registers
+ {"icc_iar1_el1", ICC_IAR1_EL1},
+ {"icc_iar0_el1", ICC_IAR0_EL1},
+ {"icc_hppir1_el1", ICC_HPPIR1_EL1},
+ {"icc_hppir0_el1", ICC_HPPIR0_EL1},
+ {"icc_rpr_el1", ICC_RPR_EL1},
+ {"ich_vtr_el2", ICH_VTR_EL2},
+ {"ich_eisr_el2", ICH_EISR_EL2},
+ {"ich_elsr_el2", ICH_ELSR_EL2}
+};
+
+AArch64SysReg::MRSMapper::MRSMapper(uint64_t FeatureBits)
+ : SysRegMapper(FeatureBits) {
+ InstPairs = &MRSPairs[0];
+ NumInstPairs = llvm::array_lengthof(MRSPairs);
+}
+
+const AArch64NamedImmMapper::Mapping AArch64SysReg::MSRMapper::MSRPairs[] = {
+ {"dbgdtrtx_el0", DBGDTRTX_EL0},
+ {"oslar_el1", OSLAR_EL1},
+ {"pmswinc_el0", PMSWINC_EL0},
+
+ // Trace registers
+ {"trcoslar", TRCOSLAR},
+ {"trclar", TRCLAR},
+
+ // GICv3 registers
+ {"icc_eoir1_el1", ICC_EOIR1_EL1},
+ {"icc_eoir0_el1", ICC_EOIR0_EL1},
+ {"icc_dir_el1", ICC_DIR_EL1},
+ {"icc_sgi1r_el1", ICC_SGI1R_EL1},
+ {"icc_asgi1r_el1", ICC_ASGI1R_EL1},
+ {"icc_sgi0r_el1", ICC_SGI0R_EL1}
+};
+
+AArch64SysReg::MSRMapper::MSRMapper(uint64_t FeatureBits)
+ : SysRegMapper(FeatureBits) {
+ InstPairs = &MSRPairs[0];
+ NumInstPairs = llvm::array_lengthof(MSRPairs);
+}
+
+
+const AArch64NamedImmMapper::Mapping AArch64SysReg::SysRegMapper::SysRegPairs[] = {
+ {"osdtrrx_el1", OSDTRRX_EL1},
+ {"osdtrtx_el1", OSDTRTX_EL1},
+ {"teecr32_el1", TEECR32_EL1},
+ {"mdccint_el1", MDCCINT_EL1},
+ {"mdscr_el1", MDSCR_EL1},
+ {"dbgdtr_el0", DBGDTR_EL0},
+ {"oseccr_el1", OSECCR_EL1},
+ {"dbgvcr32_el2", DBGVCR32_EL2},
+ {"dbgbvr0_el1", DBGBVR0_EL1},
+ {"dbgbvr1_el1", DBGBVR1_EL1},
+ {"dbgbvr2_el1", DBGBVR2_EL1},
+ {"dbgbvr3_el1", DBGBVR3_EL1},
+ {"dbgbvr4_el1", DBGBVR4_EL1},
+ {"dbgbvr5_el1", DBGBVR5_EL1},
+ {"dbgbvr6_el1", DBGBVR6_EL1},
+ {"dbgbvr7_el1", DBGBVR7_EL1},
+ {"dbgbvr8_el1", DBGBVR8_EL1},
+ {"dbgbvr9_el1", DBGBVR9_EL1},
+ {"dbgbvr10_el1", DBGBVR10_EL1},
+ {"dbgbvr11_el1", DBGBVR11_EL1},
+ {"dbgbvr12_el1", DBGBVR12_EL1},
+ {"dbgbvr13_el1", DBGBVR13_EL1},
+ {"dbgbvr14_el1", DBGBVR14_EL1},
+ {"dbgbvr15_el1", DBGBVR15_EL1},
+ {"dbgbcr0_el1", DBGBCR0_EL1},
+ {"dbgbcr1_el1", DBGBCR1_EL1},
+ {"dbgbcr2_el1", DBGBCR2_EL1},
+ {"dbgbcr3_el1", DBGBCR3_EL1},
+ {"dbgbcr4_el1", DBGBCR4_EL1},
+ {"dbgbcr5_el1", DBGBCR5_EL1},
+ {"dbgbcr6_el1", DBGBCR6_EL1},
+ {"dbgbcr7_el1", DBGBCR7_EL1},
+ {"dbgbcr8_el1", DBGBCR8_EL1},
+ {"dbgbcr9_el1", DBGBCR9_EL1},
+ {"dbgbcr10_el1", DBGBCR10_EL1},
+ {"dbgbcr11_el1", DBGBCR11_EL1},
+ {"dbgbcr12_el1", DBGBCR12_EL1},
+ {"dbgbcr13_el1", DBGBCR13_EL1},
+ {"dbgbcr14_el1", DBGBCR14_EL1},
+ {"dbgbcr15_el1", DBGBCR15_EL1},
+ {"dbgwvr0_el1", DBGWVR0_EL1},
+ {"dbgwvr1_el1", DBGWVR1_EL1},
+ {"dbgwvr2_el1", DBGWVR2_EL1},
+ {"dbgwvr3_el1", DBGWVR3_EL1},
+ {"dbgwvr4_el1", DBGWVR4_EL1},
+ {"dbgwvr5_el1", DBGWVR5_EL1},
+ {"dbgwvr6_el1", DBGWVR6_EL1},
+ {"dbgwvr7_el1", DBGWVR7_EL1},
+ {"dbgwvr8_el1", DBGWVR8_EL1},
+ {"dbgwvr9_el1", DBGWVR9_EL1},
+ {"dbgwvr10_el1", DBGWVR10_EL1},
+ {"dbgwvr11_el1", DBGWVR11_EL1},
+ {"dbgwvr12_el1", DBGWVR12_EL1},
+ {"dbgwvr13_el1", DBGWVR13_EL1},
+ {"dbgwvr14_el1", DBGWVR14_EL1},
+ {"dbgwvr15_el1", DBGWVR15_EL1},
+ {"dbgwcr0_el1", DBGWCR0_EL1},
+ {"dbgwcr1_el1", DBGWCR1_EL1},
+ {"dbgwcr2_el1", DBGWCR2_EL1},
+ {"dbgwcr3_el1", DBGWCR3_EL1},
+ {"dbgwcr4_el1", DBGWCR4_EL1},
+ {"dbgwcr5_el1", DBGWCR5_EL1},
+ {"dbgwcr6_el1", DBGWCR6_EL1},
+ {"dbgwcr7_el1", DBGWCR7_EL1},
+ {"dbgwcr8_el1", DBGWCR8_EL1},
+ {"dbgwcr9_el1", DBGWCR9_EL1},
+ {"dbgwcr10_el1", DBGWCR10_EL1},
+ {"dbgwcr11_el1", DBGWCR11_EL1},
+ {"dbgwcr12_el1", DBGWCR12_EL1},
+ {"dbgwcr13_el1", DBGWCR13_EL1},
+ {"dbgwcr14_el1", DBGWCR14_EL1},
+ {"dbgwcr15_el1", DBGWCR15_EL1},
+ {"teehbr32_el1", TEEHBR32_EL1},
+ {"osdlr_el1", OSDLR_EL1},
+ {"dbgprcr_el1", DBGPRCR_EL1},
+ {"dbgclaimset_el1", DBGCLAIMSET_EL1},
+ {"dbgclaimclr_el1", DBGCLAIMCLR_EL1},
+ {"csselr_el1", CSSELR_EL1},
+ {"vpidr_el2", VPIDR_EL2},
+ {"vmpidr_el2", VMPIDR_EL2},
+ {"sctlr_el1", SCTLR_EL1},
+ {"sctlr_el2", SCTLR_EL2},
+ {"sctlr_el3", SCTLR_EL3},
+ {"actlr_el1", ACTLR_EL1},
+ {"actlr_el2", ACTLR_EL2},
+ {"actlr_el3", ACTLR_EL3},
+ {"cpacr_el1", CPACR_EL1},
+ {"hcr_el2", HCR_EL2},
+ {"scr_el3", SCR_EL3},
+ {"mdcr_el2", MDCR_EL2},
+ {"sder32_el3", SDER32_EL3},
+ {"cptr_el2", CPTR_EL2},
+ {"cptr_el3", CPTR_EL3},
+ {"hstr_el2", HSTR_EL2},
+ {"hacr_el2", HACR_EL2},
+ {"mdcr_el3", MDCR_EL3},
+ {"ttbr0_el1", TTBR0_EL1},
+ {"ttbr0_el2", TTBR0_EL2},
+ {"ttbr0_el3", TTBR0_EL3},
+ {"ttbr1_el1", TTBR1_EL1},
+ {"tcr_el1", TCR_EL1},
+ {"tcr_el2", TCR_EL2},
+ {"tcr_el3", TCR_EL3},
+ {"vttbr_el2", VTTBR_EL2},
+ {"vtcr_el2", VTCR_EL2},
+ {"dacr32_el2", DACR32_EL2},
+ {"spsr_el1", SPSR_EL1},
+ {"spsr_el2", SPSR_EL2},
+ {"spsr_el3", SPSR_EL3},
+ {"elr_el1", ELR_EL1},
+ {"elr_el2", ELR_EL2},
+ {"elr_el3", ELR_EL3},
+ {"sp_el0", SP_EL0},
+ {"sp_el1", SP_EL1},
+ {"sp_el2", SP_EL2},
+ {"spsel", SPSel},
+ {"nzcv", NZCV},
+ {"daif", DAIF},
+ {"currentel", CurrentEL},
+ {"spsr_irq", SPSR_irq},
+ {"spsr_abt", SPSR_abt},
+ {"spsr_und", SPSR_und},
+ {"spsr_fiq", SPSR_fiq},
+ {"fpcr", FPCR},
+ {"fpsr", FPSR},
+ {"dspsr_el0", DSPSR_EL0},
+ {"dlr_el0", DLR_EL0},
+ {"ifsr32_el2", IFSR32_EL2},
+ {"afsr0_el1", AFSR0_EL1},
+ {"afsr0_el2", AFSR0_EL2},
+ {"afsr0_el3", AFSR0_EL3},
+ {"afsr1_el1", AFSR1_EL1},
+ {"afsr1_el2", AFSR1_EL2},
+ {"afsr1_el3", AFSR1_EL3},
+ {"esr_el1", ESR_EL1},
+ {"esr_el2", ESR_EL2},
+ {"esr_el3", ESR_EL3},
+ {"fpexc32_el2", FPEXC32_EL2},
+ {"far_el1", FAR_EL1},
+ {"far_el2", FAR_EL2},
+ {"far_el3", FAR_EL3},
+ {"hpfar_el2", HPFAR_EL2},
+ {"par_el1", PAR_EL1},
+ {"pmcr_el0", PMCR_EL0},
+ {"pmcntenset_el0", PMCNTENSET_EL0},
+ {"pmcntenclr_el0", PMCNTENCLR_EL0},
+ {"pmovsclr_el0", PMOVSCLR_EL0},
+ {"pmselr_el0", PMSELR_EL0},
+ {"pmccntr_el0", PMCCNTR_EL0},
+ {"pmxevtyper_el0", PMXEVTYPER_EL0},
+ {"pmxevcntr_el0", PMXEVCNTR_EL0},
+ {"pmuserenr_el0", PMUSERENR_EL0},
+ {"pmintenset_el1", PMINTENSET_EL1},
+ {"pmintenclr_el1", PMINTENCLR_EL1},
+ {"pmovsset_el0", PMOVSSET_EL0},
+ {"mair_el1", MAIR_EL1},
+ {"mair_el2", MAIR_EL2},
+ {"mair_el3", MAIR_EL3},
+ {"amair_el1", AMAIR_EL1},
+ {"amair_el2", AMAIR_EL2},
+ {"amair_el3", AMAIR_EL3},
+ {"vbar_el1", VBAR_EL1},
+ {"vbar_el2", VBAR_EL2},
+ {"vbar_el3", VBAR_EL3},
+ {"rmr_el1", RMR_EL1},
+ {"rmr_el2", RMR_EL2},
+ {"rmr_el3", RMR_EL3},
+ {"contextidr_el1", CONTEXTIDR_EL1},
+ {"tpidr_el0", TPIDR_EL0},
+ {"tpidr_el2", TPIDR_EL2},
+ {"tpidr_el3", TPIDR_EL3},
+ {"tpidrro_el0", TPIDRRO_EL0},
+ {"tpidr_el1", TPIDR_EL1},
+ {"cntfrq_el0", CNTFRQ_EL0},
+ {"cntvoff_el2", CNTVOFF_EL2},
+ {"cntkctl_el1", CNTKCTL_EL1},
+ {"cnthctl_el2", CNTHCTL_EL2},
+ {"cntp_tval_el0", CNTP_TVAL_EL0},
+ {"cnthp_tval_el2", CNTHP_TVAL_EL2},
+ {"cntps_tval_el1", CNTPS_TVAL_EL1},
+ {"cntp_ctl_el0", CNTP_CTL_EL0},
+ {"cnthp_ctl_el2", CNTHP_CTL_EL2},
+ {"cntps_ctl_el1", CNTPS_CTL_EL1},
+ {"cntp_cval_el0", CNTP_CVAL_EL0},
+ {"cnthp_cval_el2", CNTHP_CVAL_EL2},
+ {"cntps_cval_el1", CNTPS_CVAL_EL1},
+ {"cntv_tval_el0", CNTV_TVAL_EL0},
+ {"cntv_ctl_el0", CNTV_CTL_EL0},
+ {"cntv_cval_el0", CNTV_CVAL_EL0},
+ {"pmevcntr0_el0", PMEVCNTR0_EL0},
+ {"pmevcntr1_el0", PMEVCNTR1_EL0},
+ {"pmevcntr2_el0", PMEVCNTR2_EL0},
+ {"pmevcntr3_el0", PMEVCNTR3_EL0},
+ {"pmevcntr4_el0", PMEVCNTR4_EL0},
+ {"pmevcntr5_el0", PMEVCNTR5_EL0},
+ {"pmevcntr6_el0", PMEVCNTR6_EL0},
+ {"pmevcntr7_el0", PMEVCNTR7_EL0},
+ {"pmevcntr8_el0", PMEVCNTR8_EL0},
+ {"pmevcntr9_el0", PMEVCNTR9_EL0},
+ {"pmevcntr10_el0", PMEVCNTR10_EL0},
+ {"pmevcntr11_el0", PMEVCNTR11_EL0},
+ {"pmevcntr12_el0", PMEVCNTR12_EL0},
+ {"pmevcntr13_el0", PMEVCNTR13_EL0},
+ {"pmevcntr14_el0", PMEVCNTR14_EL0},
+ {"pmevcntr15_el0", PMEVCNTR15_EL0},
+ {"pmevcntr16_el0", PMEVCNTR16_EL0},
+ {"pmevcntr17_el0", PMEVCNTR17_EL0},
+ {"pmevcntr18_el0", PMEVCNTR18_EL0},
+ {"pmevcntr19_el0", PMEVCNTR19_EL0},
+ {"pmevcntr20_el0", PMEVCNTR20_EL0},
+ {"pmevcntr21_el0", PMEVCNTR21_EL0},
+ {"pmevcntr22_el0", PMEVCNTR22_EL0},
+ {"pmevcntr23_el0", PMEVCNTR23_EL0},
+ {"pmevcntr24_el0", PMEVCNTR24_EL0},
+ {"pmevcntr25_el0", PMEVCNTR25_EL0},
+ {"pmevcntr26_el0", PMEVCNTR26_EL0},
+ {"pmevcntr27_el0", PMEVCNTR27_EL0},
+ {"pmevcntr28_el0", PMEVCNTR28_EL0},
+ {"pmevcntr29_el0", PMEVCNTR29_EL0},
+ {"pmevcntr30_el0", PMEVCNTR30_EL0},
+ {"pmccfiltr_el0", PMCCFILTR_EL0},
+ {"pmevtyper0_el0", PMEVTYPER0_EL0},
+ {"pmevtyper1_el0", PMEVTYPER1_EL0},
+ {"pmevtyper2_el0", PMEVTYPER2_EL0},
+ {"pmevtyper3_el0", PMEVTYPER3_EL0},
+ {"pmevtyper4_el0", PMEVTYPER4_EL0},
+ {"pmevtyper5_el0", PMEVTYPER5_EL0},
+ {"pmevtyper6_el0", PMEVTYPER6_EL0},
+ {"pmevtyper7_el0", PMEVTYPER7_EL0},
+ {"pmevtyper8_el0", PMEVTYPER8_EL0},
+ {"pmevtyper9_el0", PMEVTYPER9_EL0},
+ {"pmevtyper10_el0", PMEVTYPER10_EL0},
+ {"pmevtyper11_el0", PMEVTYPER11_EL0},
+ {"pmevtyper12_el0", PMEVTYPER12_EL0},
+ {"pmevtyper13_el0", PMEVTYPER13_EL0},
+ {"pmevtyper14_el0", PMEVTYPER14_EL0},
+ {"pmevtyper15_el0", PMEVTYPER15_EL0},
+ {"pmevtyper16_el0", PMEVTYPER16_EL0},
+ {"pmevtyper17_el0", PMEVTYPER17_EL0},
+ {"pmevtyper18_el0", PMEVTYPER18_EL0},
+ {"pmevtyper19_el0", PMEVTYPER19_EL0},
+ {"pmevtyper20_el0", PMEVTYPER20_EL0},
+ {"pmevtyper21_el0", PMEVTYPER21_EL0},
+ {"pmevtyper22_el0", PMEVTYPER22_EL0},
+ {"pmevtyper23_el0", PMEVTYPER23_EL0},
+ {"pmevtyper24_el0", PMEVTYPER24_EL0},
+ {"pmevtyper25_el0", PMEVTYPER25_EL0},
+ {"pmevtyper26_el0", PMEVTYPER26_EL0},
+ {"pmevtyper27_el0", PMEVTYPER27_EL0},
+ {"pmevtyper28_el0", PMEVTYPER28_EL0},
+ {"pmevtyper29_el0", PMEVTYPER29_EL0},
+ {"pmevtyper30_el0", PMEVTYPER30_EL0},
+
+ // Trace registers
+ {"trcprgctlr", TRCPRGCTLR},
+ {"trcprocselr", TRCPROCSELR},
+ {"trcconfigr", TRCCONFIGR},
+ {"trcauxctlr", TRCAUXCTLR},
+ {"trceventctl0r", TRCEVENTCTL0R},
+ {"trceventctl1r", TRCEVENTCTL1R},
+ {"trcstallctlr", TRCSTALLCTLR},
+ {"trctsctlr", TRCTSCTLR},
+ {"trcsyncpr", TRCSYNCPR},
+ {"trcccctlr", TRCCCCTLR},
+ {"trcbbctlr", TRCBBCTLR},
+ {"trctraceidr", TRCTRACEIDR},
+ {"trcqctlr", TRCQCTLR},
+ {"trcvictlr", TRCVICTLR},
+ {"trcviiectlr", TRCVIIECTLR},
+ {"trcvissctlr", TRCVISSCTLR},
+ {"trcvipcssctlr", TRCVIPCSSCTLR},
+ {"trcvdctlr", TRCVDCTLR},
+ {"trcvdsacctlr", TRCVDSACCTLR},
+ {"trcvdarcctlr", TRCVDARCCTLR},
+ {"trcseqevr0", TRCSEQEVR0},
+ {"trcseqevr1", TRCSEQEVR1},
+ {"trcseqevr2", TRCSEQEVR2},
+ {"trcseqrstevr", TRCSEQRSTEVR},
+ {"trcseqstr", TRCSEQSTR},
+ {"trcextinselr", TRCEXTINSELR},
+ {"trccntrldvr0", TRCCNTRLDVR0},
+ {"trccntrldvr1", TRCCNTRLDVR1},
+ {"trccntrldvr2", TRCCNTRLDVR2},
+ {"trccntrldvr3", TRCCNTRLDVR3},
+ {"trccntctlr0", TRCCNTCTLR0},
+ {"trccntctlr1", TRCCNTCTLR1},
+ {"trccntctlr2", TRCCNTCTLR2},
+ {"trccntctlr3", TRCCNTCTLR3},
+ {"trccntvr0", TRCCNTVR0},
+ {"trccntvr1", TRCCNTVR1},
+ {"trccntvr2", TRCCNTVR2},
+ {"trccntvr3", TRCCNTVR3},
+ {"trcimspec0", TRCIMSPEC0},
+ {"trcimspec1", TRCIMSPEC1},
+ {"trcimspec2", TRCIMSPEC2},
+ {"trcimspec3", TRCIMSPEC3},
+ {"trcimspec4", TRCIMSPEC4},
+ {"trcimspec5", TRCIMSPEC5},
+ {"trcimspec6", TRCIMSPEC6},
+ {"trcimspec7", TRCIMSPEC7},
+ {"trcrsctlr2", TRCRSCTLR2},
+ {"trcrsctlr3", TRCRSCTLR3},
+ {"trcrsctlr4", TRCRSCTLR4},
+ {"trcrsctlr5", TRCRSCTLR5},
+ {"trcrsctlr6", TRCRSCTLR6},
+ {"trcrsctlr7", TRCRSCTLR7},
+ {"trcrsctlr8", TRCRSCTLR8},
+ {"trcrsctlr9", TRCRSCTLR9},
+ {"trcrsctlr10", TRCRSCTLR10},
+ {"trcrsctlr11", TRCRSCTLR11},
+ {"trcrsctlr12", TRCRSCTLR12},
+ {"trcrsctlr13", TRCRSCTLR13},
+ {"trcrsctlr14", TRCRSCTLR14},
+ {"trcrsctlr15", TRCRSCTLR15},
+ {"trcrsctlr16", TRCRSCTLR16},
+ {"trcrsctlr17", TRCRSCTLR17},
+ {"trcrsctlr18", TRCRSCTLR18},
+ {"trcrsctlr19", TRCRSCTLR19},
+ {"trcrsctlr20", TRCRSCTLR20},
+ {"trcrsctlr21", TRCRSCTLR21},
+ {"trcrsctlr22", TRCRSCTLR22},
+ {"trcrsctlr23", TRCRSCTLR23},
+ {"trcrsctlr24", TRCRSCTLR24},
+ {"trcrsctlr25", TRCRSCTLR25},
+ {"trcrsctlr26", TRCRSCTLR26},
+ {"trcrsctlr27", TRCRSCTLR27},
+ {"trcrsctlr28", TRCRSCTLR28},
+ {"trcrsctlr29", TRCRSCTLR29},
+ {"trcrsctlr30", TRCRSCTLR30},
+ {"trcrsctlr31", TRCRSCTLR31},
+ {"trcssccr0", TRCSSCCR0},
+ {"trcssccr1", TRCSSCCR1},
+ {"trcssccr2", TRCSSCCR2},
+ {"trcssccr3", TRCSSCCR3},
+ {"trcssccr4", TRCSSCCR4},
+ {"trcssccr5", TRCSSCCR5},
+ {"trcssccr6", TRCSSCCR6},
+ {"trcssccr7", TRCSSCCR7},
+ {"trcsscsr0", TRCSSCSR0},
+ {"trcsscsr1", TRCSSCSR1},
+ {"trcsscsr2", TRCSSCSR2},
+ {"trcsscsr3", TRCSSCSR3},
+ {"trcsscsr4", TRCSSCSR4},
+ {"trcsscsr5", TRCSSCSR5},
+ {"trcsscsr6", TRCSSCSR6},
+ {"trcsscsr7", TRCSSCSR7},
+ {"trcsspcicr0", TRCSSPCICR0},
+ {"trcsspcicr1", TRCSSPCICR1},
+ {"trcsspcicr2", TRCSSPCICR2},
+ {"trcsspcicr3", TRCSSPCICR3},
+ {"trcsspcicr4", TRCSSPCICR4},
+ {"trcsspcicr5", TRCSSPCICR5},
+ {"trcsspcicr6", TRCSSPCICR6},
+ {"trcsspcicr7", TRCSSPCICR7},
+ {"trcpdcr", TRCPDCR},
+ {"trcacvr0", TRCACVR0},
+ {"trcacvr1", TRCACVR1},
+ {"trcacvr2", TRCACVR2},
+ {"trcacvr3", TRCACVR3},
+ {"trcacvr4", TRCACVR4},
+ {"trcacvr5", TRCACVR5},
+ {"trcacvr6", TRCACVR6},
+ {"trcacvr7", TRCACVR7},
+ {"trcacvr8", TRCACVR8},
+ {"trcacvr9", TRCACVR9},
+ {"trcacvr10", TRCACVR10},
+ {"trcacvr11", TRCACVR11},
+ {"trcacvr12", TRCACVR12},
+ {"trcacvr13", TRCACVR13},
+ {"trcacvr14", TRCACVR14},
+ {"trcacvr15", TRCACVR15},
+ {"trcacatr0", TRCACATR0},
+ {"trcacatr1", TRCACATR1},
+ {"trcacatr2", TRCACATR2},
+ {"trcacatr3", TRCACATR3},
+ {"trcacatr4", TRCACATR4},
+ {"trcacatr5", TRCACATR5},
+ {"trcacatr6", TRCACATR6},
+ {"trcacatr7", TRCACATR7},
+ {"trcacatr8", TRCACATR8},
+ {"trcacatr9", TRCACATR9},
+ {"trcacatr10", TRCACATR10},
+ {"trcacatr11", TRCACATR11},
+ {"trcacatr12", TRCACATR12},
+ {"trcacatr13", TRCACATR13},
+ {"trcacatr14", TRCACATR14},
+ {"trcacatr15", TRCACATR15},
+ {"trcdvcvr0", TRCDVCVR0},
+ {"trcdvcvr1", TRCDVCVR1},
+ {"trcdvcvr2", TRCDVCVR2},
+ {"trcdvcvr3", TRCDVCVR3},
+ {"trcdvcvr4", TRCDVCVR4},
+ {"trcdvcvr5", TRCDVCVR5},
+ {"trcdvcvr6", TRCDVCVR6},
+ {"trcdvcvr7", TRCDVCVR7},
+ {"trcdvcmr0", TRCDVCMR0},
+ {"trcdvcmr1", TRCDVCMR1},
+ {"trcdvcmr2", TRCDVCMR2},
+ {"trcdvcmr3", TRCDVCMR3},
+ {"trcdvcmr4", TRCDVCMR4},
+ {"trcdvcmr5", TRCDVCMR5},
+ {"trcdvcmr6", TRCDVCMR6},
+ {"trcdvcmr7", TRCDVCMR7},
+ {"trccidcvr0", TRCCIDCVR0},
+ {"trccidcvr1", TRCCIDCVR1},
+ {"trccidcvr2", TRCCIDCVR2},
+ {"trccidcvr3", TRCCIDCVR3},
+ {"trccidcvr4", TRCCIDCVR4},
+ {"trccidcvr5", TRCCIDCVR5},
+ {"trccidcvr6", TRCCIDCVR6},
+ {"trccidcvr7", TRCCIDCVR7},
+ {"trcvmidcvr0", TRCVMIDCVR0},
+ {"trcvmidcvr1", TRCVMIDCVR1},
+ {"trcvmidcvr2", TRCVMIDCVR2},
+ {"trcvmidcvr3", TRCVMIDCVR3},
+ {"trcvmidcvr4", TRCVMIDCVR4},
+ {"trcvmidcvr5", TRCVMIDCVR5},
+ {"trcvmidcvr6", TRCVMIDCVR6},
+ {"trcvmidcvr7", TRCVMIDCVR7},
+ {"trccidcctlr0", TRCCIDCCTLR0},
+ {"trccidcctlr1", TRCCIDCCTLR1},
+ {"trcvmidcctlr0", TRCVMIDCCTLR0},
+ {"trcvmidcctlr1", TRCVMIDCCTLR1},
+ {"trcitctrl", TRCITCTRL},
+ {"trcclaimset", TRCCLAIMSET},
+ {"trcclaimclr", TRCCLAIMCLR},
+
+ // GICv3 registers
+ {"icc_bpr1_el1", ICC_BPR1_EL1},
+ {"icc_bpr0_el1", ICC_BPR0_EL1},
+ {"icc_pmr_el1", ICC_PMR_EL1},
+ {"icc_ctlr_el1", ICC_CTLR_EL1},
+ {"icc_ctlr_el3", ICC_CTLR_EL3},
+ {"icc_sre_el1", ICC_SRE_EL1},
+ {"icc_sre_el2", ICC_SRE_EL2},
+ {"icc_sre_el3", ICC_SRE_EL3},
+ {"icc_igrpen0_el1", ICC_IGRPEN0_EL1},
+ {"icc_igrpen1_el1", ICC_IGRPEN1_EL1},
+ {"icc_igrpen1_el3", ICC_IGRPEN1_EL3},
+ {"icc_seien_el1", ICC_SEIEN_EL1},
+ {"icc_ap0r0_el1", ICC_AP0R0_EL1},
+ {"icc_ap0r1_el1", ICC_AP0R1_EL1},
+ {"icc_ap0r2_el1", ICC_AP0R2_EL1},
+ {"icc_ap0r3_el1", ICC_AP0R3_EL1},
+ {"icc_ap1r0_el1", ICC_AP1R0_EL1},
+ {"icc_ap1r1_el1", ICC_AP1R1_EL1},
+ {"icc_ap1r2_el1", ICC_AP1R2_EL1},
+ {"icc_ap1r3_el1", ICC_AP1R3_EL1},
+ {"ich_ap0r0_el2", ICH_AP0R0_EL2},
+ {"ich_ap0r1_el2", ICH_AP0R1_EL2},
+ {"ich_ap0r2_el2", ICH_AP0R2_EL2},
+ {"ich_ap0r3_el2", ICH_AP0R3_EL2},
+ {"ich_ap1r0_el2", ICH_AP1R0_EL2},
+ {"ich_ap1r1_el2", ICH_AP1R1_EL2},
+ {"ich_ap1r2_el2", ICH_AP1R2_EL2},
+ {"ich_ap1r3_el2", ICH_AP1R3_EL2},
+ {"ich_hcr_el2", ICH_HCR_EL2},
+ {"ich_misr_el2", ICH_MISR_EL2},
+ {"ich_vmcr_el2", ICH_VMCR_EL2},
+ {"ich_vseir_el2", ICH_VSEIR_EL2},
+ {"ich_lr0_el2", ICH_LR0_EL2},
+ {"ich_lr1_el2", ICH_LR1_EL2},
+ {"ich_lr2_el2", ICH_LR2_EL2},
+ {"ich_lr3_el2", ICH_LR3_EL2},
+ {"ich_lr4_el2", ICH_LR4_EL2},
+ {"ich_lr5_el2", ICH_LR5_EL2},
+ {"ich_lr6_el2", ICH_LR6_EL2},
+ {"ich_lr7_el2", ICH_LR7_EL2},
+ {"ich_lr8_el2", ICH_LR8_EL2},
+ {"ich_lr9_el2", ICH_LR9_EL2},
+ {"ich_lr10_el2", ICH_LR10_EL2},
+ {"ich_lr11_el2", ICH_LR11_EL2},
+ {"ich_lr12_el2", ICH_LR12_EL2},
+ {"ich_lr13_el2", ICH_LR13_EL2},
+ {"ich_lr14_el2", ICH_LR14_EL2},
+ {"ich_lr15_el2", ICH_LR15_EL2}
+};
+
+const AArch64NamedImmMapper::Mapping
+AArch64SysReg::SysRegMapper::CycloneSysRegPairs[] = {
+ {"cpm_ioacc_ctl_el3", CPM_IOACC_CTL_EL3}
+};
+
+uint32_t
+AArch64SysReg::SysRegMapper::fromString(StringRef Name, bool &Valid) const {
+ std::string NameLower = Name.lower();
+
+ // First search the registers shared by all
+ for (unsigned i = 0; i < array_lengthof(SysRegPairs); ++i) {
+ if (SysRegPairs[i].Name == NameLower) {
+ Valid = true;
+ return SysRegPairs[i].Value;
+ }
+ }
+
+ // Next search for target specific registers
+ if (FeatureBits & AArch64::ProcCyclone) {
+ for (unsigned i = 0; i < array_lengthof(CycloneSysRegPairs); ++i) {
+ if (CycloneSysRegPairs[i].Name == NameLower) {
+ Valid = true;
+ return CycloneSysRegPairs[i].Value;
+ }
+ }
+ }
+
+ // Now try the instruction-specific registers (either read-only or
+ // write-only).
+ for (unsigned i = 0; i < NumInstPairs; ++i) {
+ if (InstPairs[i].Name == NameLower) {
+ Valid = true;
+ return InstPairs[i].Value;
+ }
+ }
+
+ // Try to parse an S<op0>_<op1>_<Cn>_<Cm>_<op2> register name, where the bits
+ // are: 11 xxx 1x11 xxxx xxx
+ Regex GenericRegPattern("^s3_([0-7])_c(1[15])_c([0-9]|1[0-5])_([0-7])$");
+
+ SmallVector<StringRef, 4> Ops;
+ if (!GenericRegPattern.match(NameLower, &Ops)) {
+ Valid = false;
+ return -1;
+ }
+
+ uint32_t Op0 = 3, Op1 = 0, CRn = 0, CRm = 0, Op2 = 0;
+ uint32_t Bits;
+ Ops[1].getAsInteger(10, Op1);
+ Ops[2].getAsInteger(10, CRn);
+ Ops[3].getAsInteger(10, CRm);
+ Ops[4].getAsInteger(10, Op2);
+ Bits = (Op0 << 14) | (Op1 << 11) | (CRn << 7) | (CRm << 3) | Op2;
+
+ Valid = true;
+ return Bits;
+}
+
+std::string
+AArch64SysReg::SysRegMapper::toString(uint32_t Bits, bool &Valid) const {
+ // First search the registers shared by all
+ for (unsigned i = 0; i < array_lengthof(SysRegPairs); ++i) {
+ if (SysRegPairs[i].Value == Bits) {
+ Valid = true;
+ return SysRegPairs[i].Name;
+ }
+ }
+
+ // Next search for target specific registers
+ if (FeatureBits & AArch64::ProcCyclone) {
+ for (unsigned i = 0; i < array_lengthof(CycloneSysRegPairs); ++i) {
+ if (CycloneSysRegPairs[i].Value == Bits) {
+ Valid = true;
+ return CycloneSysRegPairs[i].Name;
+ }
+ }
+ }
+
+ // Now try the instruction-specific registers (either read-only or
+ // write-only).
+ for (unsigned i = 0; i < NumInstPairs; ++i) {
+ if (InstPairs[i].Value == Bits) {
+ Valid = true;
+ return InstPairs[i].Name;
+ }
+ }
+
+ uint32_t Op0 = (Bits >> 14) & 0x3;
+ uint32_t Op1 = (Bits >> 11) & 0x7;
+ uint32_t CRn = (Bits >> 7) & 0xf;
+ uint32_t CRm = (Bits >> 3) & 0xf;
+ uint32_t Op2 = Bits & 0x7;
+
+ // Only combinations matching: 11 xxx 1x11 xxxx xxx are valid for a generic
+ // name.
+ if (Op0 != 3 || (CRn != 11 && CRn != 15)) {
+ Valid = false;
+ return "";
+ }
+
+ assert(Op0 == 3 && (CRn == 11 || CRn == 15) && "Invalid generic sysreg");
+
+ Valid = true;
+ return "s3_" + utostr(Op1) + "_c" + utostr(CRn)
+ + "_c" + utostr(CRm) + "_" + utostr(Op2);
+}
+
+const AArch64NamedImmMapper::Mapping AArch64TLBI::TLBIMapper::TLBIPairs[] = {
+ {"ipas2e1is", IPAS2E1IS},
+ {"ipas2le1is", IPAS2LE1IS},
+ {"vmalle1is", VMALLE1IS},
+ {"alle2is", ALLE2IS},
+ {"alle3is", ALLE3IS},
+ {"vae1is", VAE1IS},
+ {"vae2is", VAE2IS},
+ {"vae3is", VAE3IS},
+ {"aside1is", ASIDE1IS},
+ {"vaae1is", VAAE1IS},
+ {"alle1is", ALLE1IS},
+ {"vale1is", VALE1IS},
+ {"vale2is", VALE2IS},
+ {"vale3is", VALE3IS},
+ {"vmalls12e1is", VMALLS12E1IS},
+ {"vaale1is", VAALE1IS},
+ {"ipas2e1", IPAS2E1},
+ {"ipas2le1", IPAS2LE1},
+ {"vmalle1", VMALLE1},
+ {"alle2", ALLE2},
+ {"alle3", ALLE3},
+ {"vae1", VAE1},
+ {"vae2", VAE2},
+ {"vae3", VAE3},
+ {"aside1", ASIDE1},
+ {"vaae1", VAAE1},
+ {"alle1", ALLE1},
+ {"vale1", VALE1},
+ {"vale2", VALE2},
+ {"vale3", VALE3},
+ {"vmalls12e1", VMALLS12E1},
+ {"vaale1", VAALE1}
+};
+
+AArch64TLBI::TLBIMapper::TLBIMapper()
+ : AArch64NamedImmMapper(TLBIPairs, 0) {}
diff --git a/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.h b/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.h
new file mode 100644
index 0000000..9d2ce21
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.h
@@ -0,0 +1,1280 @@
+//===-- AArch64BaseInfo.h - Top level definitions for AArch64 ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains small standalone helper functions and enum definitions for
+// the AArch64 target useful for the compiler back-end and the MC libraries.
+// As such, it deliberately does not include references to LLVM core
+// code gen types, passes, etc..
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AArch64BASEINFO_H
+#define AArch64BASEINFO_H
+
+// FIXME: Is it easiest to fix this layering violation by moving the .inc
+// #includes from AArch64MCTargetDesc.h to here?
+#include "MCTargetDesc/AArch64MCTargetDesc.h" // For AArch64::X0 and friends.
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace llvm {
+
+inline static unsigned getWRegFromXReg(unsigned Reg) {
+ switch (Reg) {
+ case AArch64::X0: return AArch64::W0;
+ case AArch64::X1: return AArch64::W1;
+ case AArch64::X2: return AArch64::W2;
+ case AArch64::X3: return AArch64::W3;
+ case AArch64::X4: return AArch64::W4;
+ case AArch64::X5: return AArch64::W5;
+ case AArch64::X6: return AArch64::W6;
+ case AArch64::X7: return AArch64::W7;
+ case AArch64::X8: return AArch64::W8;
+ case AArch64::X9: return AArch64::W9;
+ case AArch64::X10: return AArch64::W10;
+ case AArch64::X11: return AArch64::W11;
+ case AArch64::X12: return AArch64::W12;
+ case AArch64::X13: return AArch64::W13;
+ case AArch64::X14: return AArch64::W14;
+ case AArch64::X15: return AArch64::W15;
+ case AArch64::X16: return AArch64::W16;
+ case AArch64::X17: return AArch64::W17;
+ case AArch64::X18: return AArch64::W18;
+ case AArch64::X19: return AArch64::W19;
+ case AArch64::X20: return AArch64::W20;
+ case AArch64::X21: return AArch64::W21;
+ case AArch64::X22: return AArch64::W22;
+ case AArch64::X23: return AArch64::W23;
+ case AArch64::X24: return AArch64::W24;
+ case AArch64::X25: return AArch64::W25;
+ case AArch64::X26: return AArch64::W26;
+ case AArch64::X27: return AArch64::W27;
+ case AArch64::X28: return AArch64::W28;
+ case AArch64::FP: return AArch64::W29;
+ case AArch64::LR: return AArch64::W30;
+ case AArch64::SP: return AArch64::WSP;
+ case AArch64::XZR: return AArch64::WZR;
+ }
+ // For anything else, return it unchanged.
+ return Reg;
+}
+
+inline static unsigned getXRegFromWReg(unsigned Reg) {
+ switch (Reg) {
+ case AArch64::W0: return AArch64::X0;
+ case AArch64::W1: return AArch64::X1;
+ case AArch64::W2: return AArch64::X2;
+ case AArch64::W3: return AArch64::X3;
+ case AArch64::W4: return AArch64::X4;
+ case AArch64::W5: return AArch64::X5;
+ case AArch64::W6: return AArch64::X6;
+ case AArch64::W7: return AArch64::X7;
+ case AArch64::W8: return AArch64::X8;
+ case AArch64::W9: return AArch64::X9;
+ case AArch64::W10: return AArch64::X10;
+ case AArch64::W11: return AArch64::X11;
+ case AArch64::W12: return AArch64::X12;
+ case AArch64::W13: return AArch64::X13;
+ case AArch64::W14: return AArch64::X14;
+ case AArch64::W15: return AArch64::X15;
+ case AArch64::W16: return AArch64::X16;
+ case AArch64::W17: return AArch64::X17;
+ case AArch64::W18: return AArch64::X18;
+ case AArch64::W19: return AArch64::X19;
+ case AArch64::W20: return AArch64::X20;
+ case AArch64::W21: return AArch64::X21;
+ case AArch64::W22: return AArch64::X22;
+ case AArch64::W23: return AArch64::X23;
+ case AArch64::W24: return AArch64::X24;
+ case AArch64::W25: return AArch64::X25;
+ case AArch64::W26: return AArch64::X26;
+ case AArch64::W27: return AArch64::X27;
+ case AArch64::W28: return AArch64::X28;
+ case AArch64::W29: return AArch64::FP;
+ case AArch64::W30: return AArch64::LR;
+ case AArch64::WSP: return AArch64::SP;
+ case AArch64::WZR: return AArch64::XZR;
+ }
+ // For anything else, return it unchanged.
+ return Reg;
+}
+
+static inline unsigned getBRegFromDReg(unsigned Reg) {
+ switch (Reg) {
+ case AArch64::D0: return AArch64::B0;
+ case AArch64::D1: return AArch64::B1;
+ case AArch64::D2: return AArch64::B2;
+ case AArch64::D3: return AArch64::B3;
+ case AArch64::D4: return AArch64::B4;
+ case AArch64::D5: return AArch64::B5;
+ case AArch64::D6: return AArch64::B6;
+ case AArch64::D7: return AArch64::B7;
+ case AArch64::D8: return AArch64::B8;
+ case AArch64::D9: return AArch64::B9;
+ case AArch64::D10: return AArch64::B10;
+ case AArch64::D11: return AArch64::B11;
+ case AArch64::D12: return AArch64::B12;
+ case AArch64::D13: return AArch64::B13;
+ case AArch64::D14: return AArch64::B14;
+ case AArch64::D15: return AArch64::B15;
+ case AArch64::D16: return AArch64::B16;
+ case AArch64::D17: return AArch64::B17;
+ case AArch64::D18: return AArch64::B18;
+ case AArch64::D19: return AArch64::B19;
+ case AArch64::D20: return AArch64::B20;
+ case AArch64::D21: return AArch64::B21;
+ case AArch64::D22: return AArch64::B22;
+ case AArch64::D23: return AArch64::B23;
+ case AArch64::D24: return AArch64::B24;
+ case AArch64::D25: return AArch64::B25;
+ case AArch64::D26: return AArch64::B26;
+ case AArch64::D27: return AArch64::B27;
+ case AArch64::D28: return AArch64::B28;
+ case AArch64::D29: return AArch64::B29;
+ case AArch64::D30: return AArch64::B30;
+ case AArch64::D31: return AArch64::B31;
+ }
+ // For anything else, return it unchanged.
+ return Reg;
+}
+
+
+static inline unsigned getDRegFromBReg(unsigned Reg) {
+ switch (Reg) {
+ case AArch64::B0: return AArch64::D0;
+ case AArch64::B1: return AArch64::D1;
+ case AArch64::B2: return AArch64::D2;
+ case AArch64::B3: return AArch64::D3;
+ case AArch64::B4: return AArch64::D4;
+ case AArch64::B5: return AArch64::D5;
+ case AArch64::B6: return AArch64::D6;
+ case AArch64::B7: return AArch64::D7;
+ case AArch64::B8: return AArch64::D8;
+ case AArch64::B9: return AArch64::D9;
+ case AArch64::B10: return AArch64::D10;
+ case AArch64::B11: return AArch64::D11;
+ case AArch64::B12: return AArch64::D12;
+ case AArch64::B13: return AArch64::D13;
+ case AArch64::B14: return AArch64::D14;
+ case AArch64::B15: return AArch64::D15;
+ case AArch64::B16: return AArch64::D16;
+ case AArch64::B17: return AArch64::D17;
+ case AArch64::B18: return AArch64::D18;
+ case AArch64::B19: return AArch64::D19;
+ case AArch64::B20: return AArch64::D20;
+ case AArch64::B21: return AArch64::D21;
+ case AArch64::B22: return AArch64::D22;
+ case AArch64::B23: return AArch64::D23;
+ case AArch64::B24: return AArch64::D24;
+ case AArch64::B25: return AArch64::D25;
+ case AArch64::B26: return AArch64::D26;
+ case AArch64::B27: return AArch64::D27;
+ case AArch64::B28: return AArch64::D28;
+ case AArch64::B29: return AArch64::D29;
+ case AArch64::B30: return AArch64::D30;
+ case AArch64::B31: return AArch64::D31;
+ }
+ // For anything else, return it unchanged.
+ return Reg;
+}
+
+namespace AArch64CC {
+
+// The CondCodes constants map directly to the 4-bit encoding of the condition
+// field for predicated instructions.
+enum CondCode { // Meaning (integer) Meaning (floating-point)
+ EQ = 0x0, // Equal Equal
+ NE = 0x1, // Not equal Not equal, or unordered
+ HS = 0x2, // Unsigned higher or same >, ==, or unordered
+ LO = 0x3, // Unsigned lower Less than
+ MI = 0x4, // Minus, negative Less than
+ PL = 0x5, // Plus, positive or zero >, ==, or unordered
+ VS = 0x6, // Overflow Unordered
+ VC = 0x7, // No overflow Not unordered
+ HI = 0x8, // Unsigned higher Greater than, or unordered
+ LS = 0x9, // Unsigned lower or same Less than or equal
+ GE = 0xa, // Greater than or equal Greater than or equal
+ LT = 0xb, // Less than Less than, or unordered
+ GT = 0xc, // Greater than Greater than
+ LE = 0xd, // Less than or equal <, ==, or unordered
+ AL = 0xe, // Always (unconditional) Always (unconditional)
+ NV = 0xf, // Always (unconditional) Always (unconditional)
+ // Note the NV exists purely to disassemble 0b1111. Execution is "always".
+ Invalid
+};
+
+inline static const char *getCondCodeName(CondCode Code) {
+ switch (Code) {
+ default: llvm_unreachable("Unknown condition code");
+ case EQ: return "eq";
+ case NE: return "ne";
+ case HS: return "hs";
+ case LO: return "lo";
+ case MI: return "mi";
+ case PL: return "pl";
+ case VS: return "vs";
+ case VC: return "vc";
+ case HI: return "hi";
+ case LS: return "ls";
+ case GE: return "ge";
+ case LT: return "lt";
+ case GT: return "gt";
+ case LE: return "le";
+ case AL: return "al";
+ case NV: return "nv";
+ }
+}
+
+inline static CondCode getInvertedCondCode(CondCode Code) {
+ // To reverse a condition it's necessary to only invert the low bit:
+
+ return static_cast<CondCode>(static_cast<unsigned>(Code) ^ 0x1);
+}
+
+/// Given a condition code, return NZCV flags that would satisfy that condition.
+/// The flag bits are in the format expected by the ccmp instructions.
+/// Note that many different flag settings can satisfy a given condition code,
+/// this function just returns one of them.
+inline static unsigned getNZCVToSatisfyCondCode(CondCode Code) {
+ // NZCV flags encoded as expected by ccmp instructions, ARMv8 ISA 5.5.7.
+ enum { N = 8, Z = 4, C = 2, V = 1 };
+ switch (Code) {
+ default: llvm_unreachable("Unknown condition code");
+ case EQ: return Z; // Z == 1
+ case NE: return 0; // Z == 0
+ case HS: return C; // C == 1
+ case LO: return 0; // C == 0
+ case MI: return N; // N == 1
+ case PL: return 0; // N == 0
+ case VS: return V; // V == 1
+ case VC: return 0; // V == 0
+ case HI: return C; // C == 1 && Z == 0
+ case LS: return 0; // C == 0 || Z == 1
+ case GE: return 0; // N == V
+ case LT: return N; // N != V
+ case GT: return 0; // Z == 0 && N == V
+ case LE: return Z; // Z == 1 || N != V
+ }
+}
+} // end namespace AArch64CC
+
+/// Instances of this class can perform bidirectional mapping from random
+/// identifier strings to operand encodings. For example "MSR" takes a named
+/// system-register which must be encoded somehow and decoded for printing. This
+/// central location means that the information for those transformations is not
+/// duplicated and remains in sync.
+///
+/// FIXME: currently the algorithm is a completely unoptimised linear
+/// search. Obviously this could be improved, but we would probably want to work
+/// out just how often these instructions are emitted before working on it. It
+/// might even be optimal to just reorder the tables for the common instructions
+/// rather than changing the algorithm.
+struct AArch64NamedImmMapper {
+ struct Mapping {
+ const char *Name;
+ uint32_t Value;
+ };
+
+ template<int N>
+ AArch64NamedImmMapper(const Mapping (&Pairs)[N], uint32_t TooBigImm)
+ : Pairs(&Pairs[0]), NumPairs(N), TooBigImm(TooBigImm) {}
+
+ StringRef toString(uint32_t Value, bool &Valid) const;
+ uint32_t fromString(StringRef Name, bool &Valid) const;
+
+ /// Many of the instructions allow an alternative assembly form consisting of
+ /// a simple immediate. Currently the only valid forms are ranges [0, N) where
+ /// N being 0 indicates no immediate syntax-form is allowed.
+ bool validImm(uint32_t Value) const;
+protected:
+ const Mapping *Pairs;
+ size_t NumPairs;
+ uint32_t TooBigImm;
+};
+
+namespace AArch64AT {
+ enum ATValues {
+ Invalid = -1, // Op0 Op1 CRn CRm Op2
+ S1E1R = 0x43c0, // 01 000 0111 1000 000
+ S1E2R = 0x63c0, // 01 100 0111 1000 000
+ S1E3R = 0x73c0, // 01 110 0111 1000 000
+ S1E1W = 0x43c1, // 01 000 0111 1000 001
+ S1E2W = 0x63c1, // 01 100 0111 1000 001
+ S1E3W = 0x73c1, // 01 110 0111 1000 001
+ S1E0R = 0x43c2, // 01 000 0111 1000 010
+ S1E0W = 0x43c3, // 01 000 0111 1000 011
+ S12E1R = 0x63c4, // 01 100 0111 1000 100
+ S12E1W = 0x63c5, // 01 100 0111 1000 101
+ S12E0R = 0x63c6, // 01 100 0111 1000 110
+ S12E0W = 0x63c7 // 01 100 0111 1000 111
+ };
+
+ struct ATMapper : AArch64NamedImmMapper {
+ const static Mapping ATPairs[];
+
+ ATMapper();
+ };
+
+}
+namespace AArch64DB {
+ enum DBValues {
+ Invalid = -1,
+ OSHLD = 0x1,
+ OSHST = 0x2,
+ OSH = 0x3,
+ NSHLD = 0x5,
+ NSHST = 0x6,
+ NSH = 0x7,
+ ISHLD = 0x9,
+ ISHST = 0xa,
+ ISH = 0xb,
+ LD = 0xd,
+ ST = 0xe,
+ SY = 0xf
+ };
+
+ struct DBarrierMapper : AArch64NamedImmMapper {
+ const static Mapping DBarrierPairs[];
+
+ DBarrierMapper();
+ };
+}
+
+namespace AArch64DC {
+ enum DCValues {
+ Invalid = -1, // Op1 CRn CRm Op2
+ ZVA = 0x5ba1, // 01 011 0111 0100 001
+ IVAC = 0x43b1, // 01 000 0111 0110 001
+ ISW = 0x43b2, // 01 000 0111 0110 010
+ CVAC = 0x5bd1, // 01 011 0111 1010 001
+ CSW = 0x43d2, // 01 000 0111 1010 010
+ CVAU = 0x5bd9, // 01 011 0111 1011 001
+ CIVAC = 0x5bf1, // 01 011 0111 1110 001
+ CISW = 0x43f2 // 01 000 0111 1110 010
+ };
+
+ struct DCMapper : AArch64NamedImmMapper {
+ const static Mapping DCPairs[];
+
+ DCMapper();
+ };
+
+}
+
+namespace AArch64IC {
+ enum ICValues {
+ Invalid = -1, // Op1 CRn CRm Op2
+ IALLUIS = 0x0388, // 000 0111 0001 000
+ IALLU = 0x03a8, // 000 0111 0101 000
+ IVAU = 0x1ba9 // 011 0111 0101 001
+ };
+
+
+ struct ICMapper : AArch64NamedImmMapper {
+ const static Mapping ICPairs[];
+
+ ICMapper();
+ };
+
+ static inline bool NeedsRegister(ICValues Val) {
+ return Val == IVAU;
+ }
+}
+
+namespace AArch64ISB {
+ enum ISBValues {
+ Invalid = -1,
+ SY = 0xf
+ };
+ struct ISBMapper : AArch64NamedImmMapper {
+ const static Mapping ISBPairs[];
+
+ ISBMapper();
+ };
+}
+
+namespace AArch64PRFM {
+ enum PRFMValues {
+ Invalid = -1,
+ PLDL1KEEP = 0x00,
+ PLDL1STRM = 0x01,
+ PLDL2KEEP = 0x02,
+ PLDL2STRM = 0x03,
+ PLDL3KEEP = 0x04,
+ PLDL3STRM = 0x05,
+ PLIL1KEEP = 0x08,
+ PLIL1STRM = 0x09,
+ PLIL2KEEP = 0x0a,
+ PLIL2STRM = 0x0b,
+ PLIL3KEEP = 0x0c,
+ PLIL3STRM = 0x0d,
+ PSTL1KEEP = 0x10,
+ PSTL1STRM = 0x11,
+ PSTL2KEEP = 0x12,
+ PSTL2STRM = 0x13,
+ PSTL3KEEP = 0x14,
+ PSTL3STRM = 0x15
+ };
+
+ struct PRFMMapper : AArch64NamedImmMapper {
+ const static Mapping PRFMPairs[];
+
+ PRFMMapper();
+ };
+}
+
+namespace AArch64PState {
+ enum PStateValues {
+ Invalid = -1,
+ SPSel = 0x05,
+ DAIFSet = 0x1e,
+ DAIFClr = 0x1f
+ };
+
+ struct PStateMapper : AArch64NamedImmMapper {
+ const static Mapping PStatePairs[];
+
+ PStateMapper();
+ };
+
+}
+
+namespace AArch64SE {
+ enum ShiftExtSpecifiers {
+ Invalid = -1,
+ LSL,
+ MSL,
+ LSR,
+ ASR,
+ ROR,
+
+ UXTB,
+ UXTH,
+ UXTW,
+ UXTX,
+
+ SXTB,
+ SXTH,
+ SXTW,
+ SXTX
+ };
+}
+
+namespace AArch64Layout {
+ enum VectorLayout {
+ Invalid = -1,
+ VL_8B,
+ VL_4H,
+ VL_2S,
+ VL_1D,
+
+ VL_16B,
+ VL_8H,
+ VL_4S,
+ VL_2D,
+
+ // Bare layout for the 128-bit vector
+ // (only show ".b", ".h", ".s", ".d" without vector number)
+ VL_B,
+ VL_H,
+ VL_S,
+ VL_D
+ };
+}
+
+inline static const char *
+AArch64VectorLayoutToString(AArch64Layout::VectorLayout Layout) {
+ switch (Layout) {
+ case AArch64Layout::VL_8B: return ".8b";
+ case AArch64Layout::VL_4H: return ".4h";
+ case AArch64Layout::VL_2S: return ".2s";
+ case AArch64Layout::VL_1D: return ".1d";
+ case AArch64Layout::VL_16B: return ".16b";
+ case AArch64Layout::VL_8H: return ".8h";
+ case AArch64Layout::VL_4S: return ".4s";
+ case AArch64Layout::VL_2D: return ".2d";
+ case AArch64Layout::VL_B: return ".b";
+ case AArch64Layout::VL_H: return ".h";
+ case AArch64Layout::VL_S: return ".s";
+ case AArch64Layout::VL_D: return ".d";
+ default: llvm_unreachable("Unknown Vector Layout");
+ }
+}
+
+inline static AArch64Layout::VectorLayout
+AArch64StringToVectorLayout(StringRef LayoutStr) {
+ return StringSwitch<AArch64Layout::VectorLayout>(LayoutStr)
+ .Case(".8b", AArch64Layout::VL_8B)
+ .Case(".4h", AArch64Layout::VL_4H)
+ .Case(".2s", AArch64Layout::VL_2S)
+ .Case(".1d", AArch64Layout::VL_1D)
+ .Case(".16b", AArch64Layout::VL_16B)
+ .Case(".8h", AArch64Layout::VL_8H)
+ .Case(".4s", AArch64Layout::VL_4S)
+ .Case(".2d", AArch64Layout::VL_2D)
+ .Case(".b", AArch64Layout::VL_B)
+ .Case(".h", AArch64Layout::VL_H)
+ .Case(".s", AArch64Layout::VL_S)
+ .Case(".d", AArch64Layout::VL_D)
+ .Default(AArch64Layout::Invalid);
+}
+
+namespace AArch64SysReg {
+ enum SysRegROValues {
+ MDCCSR_EL0 = 0x9808, // 10 011 0000 0001 000
+ DBGDTRRX_EL0 = 0x9828, // 10 011 0000 0101 000
+ MDRAR_EL1 = 0x8080, // 10 000 0001 0000 000
+ OSLSR_EL1 = 0x808c, // 10 000 0001 0001 100
+ DBGAUTHSTATUS_EL1 = 0x83f6, // 10 000 0111 1110 110
+ PMCEID0_EL0 = 0xdce6, // 11 011 1001 1100 110
+ PMCEID1_EL0 = 0xdce7, // 11 011 1001 1100 111
+ MIDR_EL1 = 0xc000, // 11 000 0000 0000 000
+ CCSIDR_EL1 = 0xc800, // 11 001 0000 0000 000
+ CLIDR_EL1 = 0xc801, // 11 001 0000 0000 001
+ CTR_EL0 = 0xd801, // 11 011 0000 0000 001
+ MPIDR_EL1 = 0xc005, // 11 000 0000 0000 101
+ REVIDR_EL1 = 0xc006, // 11 000 0000 0000 110
+ AIDR_EL1 = 0xc807, // 11 001 0000 0000 111
+ DCZID_EL0 = 0xd807, // 11 011 0000 0000 111
+ ID_PFR0_EL1 = 0xc008, // 11 000 0000 0001 000
+ ID_PFR1_EL1 = 0xc009, // 11 000 0000 0001 001
+ ID_DFR0_EL1 = 0xc00a, // 11 000 0000 0001 010
+ ID_AFR0_EL1 = 0xc00b, // 11 000 0000 0001 011
+ ID_MMFR0_EL1 = 0xc00c, // 11 000 0000 0001 100
+ ID_MMFR1_EL1 = 0xc00d, // 11 000 0000 0001 101
+ ID_MMFR2_EL1 = 0xc00e, // 11 000 0000 0001 110
+ ID_MMFR3_EL1 = 0xc00f, // 11 000 0000 0001 111
+ ID_ISAR0_EL1 = 0xc010, // 11 000 0000 0010 000
+ ID_ISAR1_EL1 = 0xc011, // 11 000 0000 0010 001
+ ID_ISAR2_EL1 = 0xc012, // 11 000 0000 0010 010
+ ID_ISAR3_EL1 = 0xc013, // 11 000 0000 0010 011
+ ID_ISAR4_EL1 = 0xc014, // 11 000 0000 0010 100
+ ID_ISAR5_EL1 = 0xc015, // 11 000 0000 0010 101
+ ID_A64PFR0_EL1 = 0xc020, // 11 000 0000 0100 000
+ ID_A64PFR1_EL1 = 0xc021, // 11 000 0000 0100 001
+ ID_A64DFR0_EL1 = 0xc028, // 11 000 0000 0101 000
+ ID_A64DFR1_EL1 = 0xc029, // 11 000 0000 0101 001
+ ID_A64AFR0_EL1 = 0xc02c, // 11 000 0000 0101 100
+ ID_A64AFR1_EL1 = 0xc02d, // 11 000 0000 0101 101
+ ID_A64ISAR0_EL1 = 0xc030, // 11 000 0000 0110 000
+ ID_A64ISAR1_EL1 = 0xc031, // 11 000 0000 0110 001
+ ID_A64MMFR0_EL1 = 0xc038, // 11 000 0000 0111 000
+ ID_A64MMFR1_EL1 = 0xc039, // 11 000 0000 0111 001
+ MVFR0_EL1 = 0xc018, // 11 000 0000 0011 000
+ MVFR1_EL1 = 0xc019, // 11 000 0000 0011 001
+ MVFR2_EL1 = 0xc01a, // 11 000 0000 0011 010
+ RVBAR_EL1 = 0xc601, // 11 000 1100 0000 001
+ RVBAR_EL2 = 0xe601, // 11 100 1100 0000 001
+ RVBAR_EL3 = 0xf601, // 11 110 1100 0000 001
+ ISR_EL1 = 0xc608, // 11 000 1100 0001 000
+ CNTPCT_EL0 = 0xdf01, // 11 011 1110 0000 001
+ CNTVCT_EL0 = 0xdf02, // 11 011 1110 0000 010
+
+ // Trace registers
+ TRCSTATR = 0x8818, // 10 001 0000 0011 000
+ TRCIDR8 = 0x8806, // 10 001 0000 0000 110
+ TRCIDR9 = 0x880e, // 10 001 0000 0001 110
+ TRCIDR10 = 0x8816, // 10 001 0000 0010 110
+ TRCIDR11 = 0x881e, // 10 001 0000 0011 110
+ TRCIDR12 = 0x8826, // 10 001 0000 0100 110
+ TRCIDR13 = 0x882e, // 10 001 0000 0101 110
+ TRCIDR0 = 0x8847, // 10 001 0000 1000 111
+ TRCIDR1 = 0x884f, // 10 001 0000 1001 111
+ TRCIDR2 = 0x8857, // 10 001 0000 1010 111
+ TRCIDR3 = 0x885f, // 10 001 0000 1011 111
+ TRCIDR4 = 0x8867, // 10 001 0000 1100 111
+ TRCIDR5 = 0x886f, // 10 001 0000 1101 111
+ TRCIDR6 = 0x8877, // 10 001 0000 1110 111
+ TRCIDR7 = 0x887f, // 10 001 0000 1111 111
+ TRCOSLSR = 0x888c, // 10 001 0001 0001 100
+ TRCPDSR = 0x88ac, // 10 001 0001 0101 100
+ TRCDEVAFF0 = 0x8bd6, // 10 001 0111 1010 110
+ TRCDEVAFF1 = 0x8bde, // 10 001 0111 1011 110
+ TRCLSR = 0x8bee, // 10 001 0111 1101 110
+ TRCAUTHSTATUS = 0x8bf6, // 10 001 0111 1110 110
+ TRCDEVARCH = 0x8bfe, // 10 001 0111 1111 110
+ TRCDEVID = 0x8b97, // 10 001 0111 0010 111
+ TRCDEVTYPE = 0x8b9f, // 10 001 0111 0011 111
+ TRCPIDR4 = 0x8ba7, // 10 001 0111 0100 111
+ TRCPIDR5 = 0x8baf, // 10 001 0111 0101 111
+ TRCPIDR6 = 0x8bb7, // 10 001 0111 0110 111
+ TRCPIDR7 = 0x8bbf, // 10 001 0111 0111 111
+ TRCPIDR0 = 0x8bc7, // 10 001 0111 1000 111
+ TRCPIDR1 = 0x8bcf, // 10 001 0111 1001 111
+ TRCPIDR2 = 0x8bd7, // 10 001 0111 1010 111
+ TRCPIDR3 = 0x8bdf, // 10 001 0111 1011 111
+ TRCCIDR0 = 0x8be7, // 10 001 0111 1100 111
+ TRCCIDR1 = 0x8bef, // 10 001 0111 1101 111
+ TRCCIDR2 = 0x8bf7, // 10 001 0111 1110 111
+ TRCCIDR3 = 0x8bff, // 10 001 0111 1111 111
+
+ // GICv3 registers
+ ICC_IAR1_EL1 = 0xc660, // 11 000 1100 1100 000
+ ICC_IAR0_EL1 = 0xc640, // 11 000 1100 1000 000
+ ICC_HPPIR1_EL1 = 0xc662, // 11 000 1100 1100 010
+ ICC_HPPIR0_EL1 = 0xc642, // 11 000 1100 1000 010
+ ICC_RPR_EL1 = 0xc65b, // 11 000 1100 1011 011
+ ICH_VTR_EL2 = 0xe659, // 11 100 1100 1011 001
+ ICH_EISR_EL2 = 0xe65b, // 11 100 1100 1011 011
+ ICH_ELSR_EL2 = 0xe65d // 11 100 1100 1011 101
+ };
+
+ enum SysRegWOValues {
+ DBGDTRTX_EL0 = 0x9828, // 10 011 0000 0101 000
+ OSLAR_EL1 = 0x8084, // 10 000 0001 0000 100
+ PMSWINC_EL0 = 0xdce4, // 11 011 1001 1100 100
+
+ // Trace Registers
+ TRCOSLAR = 0x8884, // 10 001 0001 0000 100
+ TRCLAR = 0x8be6, // 10 001 0111 1100 110
+
+ // GICv3 registers
+ ICC_EOIR1_EL1 = 0xc661, // 11 000 1100 1100 001
+ ICC_EOIR0_EL1 = 0xc641, // 11 000 1100 1000 001
+ ICC_DIR_EL1 = 0xc659, // 11 000 1100 1011 001
+ ICC_SGI1R_EL1 = 0xc65d, // 11 000 1100 1011 101
+ ICC_ASGI1R_EL1 = 0xc65e, // 11 000 1100 1011 110
+ ICC_SGI0R_EL1 = 0xc65f // 11 000 1100 1011 111
+ };
+
+ enum SysRegValues {
+ Invalid = -1, // Op0 Op1 CRn CRm Op2
+ OSDTRRX_EL1 = 0x8002, // 10 000 0000 0000 010
+ OSDTRTX_EL1 = 0x801a, // 10 000 0000 0011 010
+ TEECR32_EL1 = 0x9000, // 10 010 0000 0000 000
+ MDCCINT_EL1 = 0x8010, // 10 000 0000 0010 000
+ MDSCR_EL1 = 0x8012, // 10 000 0000 0010 010
+ DBGDTR_EL0 = 0x9820, // 10 011 0000 0100 000
+ OSECCR_EL1 = 0x8032, // 10 000 0000 0110 010
+ DBGVCR32_EL2 = 0xa038, // 10 100 0000 0111 000
+ DBGBVR0_EL1 = 0x8004, // 10 000 0000 0000 100
+ DBGBVR1_EL1 = 0x800c, // 10 000 0000 0001 100
+ DBGBVR2_EL1 = 0x8014, // 10 000 0000 0010 100
+ DBGBVR3_EL1 = 0x801c, // 10 000 0000 0011 100
+ DBGBVR4_EL1 = 0x8024, // 10 000 0000 0100 100
+ DBGBVR5_EL1 = 0x802c, // 10 000 0000 0101 100
+ DBGBVR6_EL1 = 0x8034, // 10 000 0000 0110 100
+ DBGBVR7_EL1 = 0x803c, // 10 000 0000 0111 100
+ DBGBVR8_EL1 = 0x8044, // 10 000 0000 1000 100
+ DBGBVR9_EL1 = 0x804c, // 10 000 0000 1001 100
+ DBGBVR10_EL1 = 0x8054, // 10 000 0000 1010 100
+ DBGBVR11_EL1 = 0x805c, // 10 000 0000 1011 100
+ DBGBVR12_EL1 = 0x8064, // 10 000 0000 1100 100
+ DBGBVR13_EL1 = 0x806c, // 10 000 0000 1101 100
+ DBGBVR14_EL1 = 0x8074, // 10 000 0000 1110 100
+ DBGBVR15_EL1 = 0x807c, // 10 000 0000 1111 100
+ DBGBCR0_EL1 = 0x8005, // 10 000 0000 0000 101
+ DBGBCR1_EL1 = 0x800d, // 10 000 0000 0001 101
+ DBGBCR2_EL1 = 0x8015, // 10 000 0000 0010 101
+ DBGBCR3_EL1 = 0x801d, // 10 000 0000 0011 101
+ DBGBCR4_EL1 = 0x8025, // 10 000 0000 0100 101
+ DBGBCR5_EL1 = 0x802d, // 10 000 0000 0101 101
+ DBGBCR6_EL1 = 0x8035, // 10 000 0000 0110 101
+ DBGBCR7_EL1 = 0x803d, // 10 000 0000 0111 101
+ DBGBCR8_EL1 = 0x8045, // 10 000 0000 1000 101
+ DBGBCR9_EL1 = 0x804d, // 10 000 0000 1001 101
+ DBGBCR10_EL1 = 0x8055, // 10 000 0000 1010 101
+ DBGBCR11_EL1 = 0x805d, // 10 000 0000 1011 101
+ DBGBCR12_EL1 = 0x8065, // 10 000 0000 1100 101
+ DBGBCR13_EL1 = 0x806d, // 10 000 0000 1101 101
+ DBGBCR14_EL1 = 0x8075, // 10 000 0000 1110 101
+ DBGBCR15_EL1 = 0x807d, // 10 000 0000 1111 101
+ DBGWVR0_EL1 = 0x8006, // 10 000 0000 0000 110
+ DBGWVR1_EL1 = 0x800e, // 10 000 0000 0001 110
+ DBGWVR2_EL1 = 0x8016, // 10 000 0000 0010 110
+ DBGWVR3_EL1 = 0x801e, // 10 000 0000 0011 110
+ DBGWVR4_EL1 = 0x8026, // 10 000 0000 0100 110
+ DBGWVR5_EL1 = 0x802e, // 10 000 0000 0101 110
+ DBGWVR6_EL1 = 0x8036, // 10 000 0000 0110 110
+ DBGWVR7_EL1 = 0x803e, // 10 000 0000 0111 110
+ DBGWVR8_EL1 = 0x8046, // 10 000 0000 1000 110
+ DBGWVR9_EL1 = 0x804e, // 10 000 0000 1001 110
+ DBGWVR10_EL1 = 0x8056, // 10 000 0000 1010 110
+ DBGWVR11_EL1 = 0x805e, // 10 000 0000 1011 110
+ DBGWVR12_EL1 = 0x8066, // 10 000 0000 1100 110
+ DBGWVR13_EL1 = 0x806e, // 10 000 0000 1101 110
+ DBGWVR14_EL1 = 0x8076, // 10 000 0000 1110 110
+ DBGWVR15_EL1 = 0x807e, // 10 000 0000 1111 110
+ DBGWCR0_EL1 = 0x8007, // 10 000 0000 0000 111
+ DBGWCR1_EL1 = 0x800f, // 10 000 0000 0001 111
+ DBGWCR2_EL1 = 0x8017, // 10 000 0000 0010 111
+ DBGWCR3_EL1 = 0x801f, // 10 000 0000 0011 111
+ DBGWCR4_EL1 = 0x8027, // 10 000 0000 0100 111
+ DBGWCR5_EL1 = 0x802f, // 10 000 0000 0101 111
+ DBGWCR6_EL1 = 0x8037, // 10 000 0000 0110 111
+ DBGWCR7_EL1 = 0x803f, // 10 000 0000 0111 111
+ DBGWCR8_EL1 = 0x8047, // 10 000 0000 1000 111
+ DBGWCR9_EL1 = 0x804f, // 10 000 0000 1001 111
+ DBGWCR10_EL1 = 0x8057, // 10 000 0000 1010 111
+ DBGWCR11_EL1 = 0x805f, // 10 000 0000 1011 111
+ DBGWCR12_EL1 = 0x8067, // 10 000 0000 1100 111
+ DBGWCR13_EL1 = 0x806f, // 10 000 0000 1101 111
+ DBGWCR14_EL1 = 0x8077, // 10 000 0000 1110 111
+ DBGWCR15_EL1 = 0x807f, // 10 000 0000 1111 111
+ TEEHBR32_EL1 = 0x9080, // 10 010 0001 0000 000
+ OSDLR_EL1 = 0x809c, // 10 000 0001 0011 100
+ DBGPRCR_EL1 = 0x80a4, // 10 000 0001 0100 100
+ DBGCLAIMSET_EL1 = 0x83c6, // 10 000 0111 1000 110
+ DBGCLAIMCLR_EL1 = 0x83ce, // 10 000 0111 1001 110
+ CSSELR_EL1 = 0xd000, // 11 010 0000 0000 000
+ VPIDR_EL2 = 0xe000, // 11 100 0000 0000 000
+ VMPIDR_EL2 = 0xe005, // 11 100 0000 0000 101
+ CPACR_EL1 = 0xc082, // 11 000 0001 0000 010
+ SCTLR_EL1 = 0xc080, // 11 000 0001 0000 000
+ SCTLR_EL2 = 0xe080, // 11 100 0001 0000 000
+ SCTLR_EL3 = 0xf080, // 11 110 0001 0000 000
+ ACTLR_EL1 = 0xc081, // 11 000 0001 0000 001
+ ACTLR_EL2 = 0xe081, // 11 100 0001 0000 001
+ ACTLR_EL3 = 0xf081, // 11 110 0001 0000 001
+ HCR_EL2 = 0xe088, // 11 100 0001 0001 000
+ SCR_EL3 = 0xf088, // 11 110 0001 0001 000
+ MDCR_EL2 = 0xe089, // 11 100 0001 0001 001
+ SDER32_EL3 = 0xf089, // 11 110 0001 0001 001
+ CPTR_EL2 = 0xe08a, // 11 100 0001 0001 010
+ CPTR_EL3 = 0xf08a, // 11 110 0001 0001 010
+ HSTR_EL2 = 0xe08b, // 11 100 0001 0001 011
+ HACR_EL2 = 0xe08f, // 11 100 0001 0001 111
+ MDCR_EL3 = 0xf099, // 11 110 0001 0011 001
+ TTBR0_EL1 = 0xc100, // 11 000 0010 0000 000
+ TTBR0_EL2 = 0xe100, // 11 100 0010 0000 000
+ TTBR0_EL3 = 0xf100, // 11 110 0010 0000 000
+ TTBR1_EL1 = 0xc101, // 11 000 0010 0000 001
+ TCR_EL1 = 0xc102, // 11 000 0010 0000 010
+ TCR_EL2 = 0xe102, // 11 100 0010 0000 010
+ TCR_EL3 = 0xf102, // 11 110 0010 0000 010
+ VTTBR_EL2 = 0xe108, // 11 100 0010 0001 000
+ VTCR_EL2 = 0xe10a, // 11 100 0010 0001 010
+ DACR32_EL2 = 0xe180, // 11 100 0011 0000 000
+ SPSR_EL1 = 0xc200, // 11 000 0100 0000 000
+ SPSR_EL2 = 0xe200, // 11 100 0100 0000 000
+ SPSR_EL3 = 0xf200, // 11 110 0100 0000 000
+ ELR_EL1 = 0xc201, // 11 000 0100 0000 001
+ ELR_EL2 = 0xe201, // 11 100 0100 0000 001
+ ELR_EL3 = 0xf201, // 11 110 0100 0000 001
+ SP_EL0 = 0xc208, // 11 000 0100 0001 000
+ SP_EL1 = 0xe208, // 11 100 0100 0001 000
+ SP_EL2 = 0xf208, // 11 110 0100 0001 000
+ SPSel = 0xc210, // 11 000 0100 0010 000
+ NZCV = 0xda10, // 11 011 0100 0010 000
+ DAIF = 0xda11, // 11 011 0100 0010 001
+ CurrentEL = 0xc212, // 11 000 0100 0010 010
+ SPSR_irq = 0xe218, // 11 100 0100 0011 000
+ SPSR_abt = 0xe219, // 11 100 0100 0011 001
+ SPSR_und = 0xe21a, // 11 100 0100 0011 010
+ SPSR_fiq = 0xe21b, // 11 100 0100 0011 011
+ FPCR = 0xda20, // 11 011 0100 0100 000
+ FPSR = 0xda21, // 11 011 0100 0100 001
+ DSPSR_EL0 = 0xda28, // 11 011 0100 0101 000
+ DLR_EL0 = 0xda29, // 11 011 0100 0101 001
+ IFSR32_EL2 = 0xe281, // 11 100 0101 0000 001
+ AFSR0_EL1 = 0xc288, // 11 000 0101 0001 000
+ AFSR0_EL2 = 0xe288, // 11 100 0101 0001 000
+ AFSR0_EL3 = 0xf288, // 11 110 0101 0001 000
+ AFSR1_EL1 = 0xc289, // 11 000 0101 0001 001
+ AFSR1_EL2 = 0xe289, // 11 100 0101 0001 001
+ AFSR1_EL3 = 0xf289, // 11 110 0101 0001 001
+ ESR_EL1 = 0xc290, // 11 000 0101 0010 000
+ ESR_EL2 = 0xe290, // 11 100 0101 0010 000
+ ESR_EL3 = 0xf290, // 11 110 0101 0010 000
+ FPEXC32_EL2 = 0xe298, // 11 100 0101 0011 000
+ FAR_EL1 = 0xc300, // 11 000 0110 0000 000
+ FAR_EL2 = 0xe300, // 11 100 0110 0000 000
+ FAR_EL3 = 0xf300, // 11 110 0110 0000 000
+ HPFAR_EL2 = 0xe304, // 11 100 0110 0000 100
+ PAR_EL1 = 0xc3a0, // 11 000 0111 0100 000
+ PMCR_EL0 = 0xdce0, // 11 011 1001 1100 000
+ PMCNTENSET_EL0 = 0xdce1, // 11 011 1001 1100 001
+ PMCNTENCLR_EL0 = 0xdce2, // 11 011 1001 1100 010
+ PMOVSCLR_EL0 = 0xdce3, // 11 011 1001 1100 011
+ PMSELR_EL0 = 0xdce5, // 11 011 1001 1100 101
+ PMCCNTR_EL0 = 0xdce8, // 11 011 1001 1101 000
+ PMXEVTYPER_EL0 = 0xdce9, // 11 011 1001 1101 001
+ PMXEVCNTR_EL0 = 0xdcea, // 11 011 1001 1101 010
+ PMUSERENR_EL0 = 0xdcf0, // 11 011 1001 1110 000
+ PMINTENSET_EL1 = 0xc4f1, // 11 000 1001 1110 001
+ PMINTENCLR_EL1 = 0xc4f2, // 11 000 1001 1110 010
+ PMOVSSET_EL0 = 0xdcf3, // 11 011 1001 1110 011
+ MAIR_EL1 = 0xc510, // 11 000 1010 0010 000
+ MAIR_EL2 = 0xe510, // 11 100 1010 0010 000
+ MAIR_EL3 = 0xf510, // 11 110 1010 0010 000
+ AMAIR_EL1 = 0xc518, // 11 000 1010 0011 000
+ AMAIR_EL2 = 0xe518, // 11 100 1010 0011 000
+ AMAIR_EL3 = 0xf518, // 11 110 1010 0011 000
+ VBAR_EL1 = 0xc600, // 11 000 1100 0000 000
+ VBAR_EL2 = 0xe600, // 11 100 1100 0000 000
+ VBAR_EL3 = 0xf600, // 11 110 1100 0000 000
+ RMR_EL1 = 0xc602, // 11 000 1100 0000 010
+ RMR_EL2 = 0xe602, // 11 100 1100 0000 010
+ RMR_EL3 = 0xf602, // 11 110 1100 0000 010
+ CONTEXTIDR_EL1 = 0xc681, // 11 000 1101 0000 001
+ TPIDR_EL0 = 0xde82, // 11 011 1101 0000 010
+ TPIDR_EL2 = 0xe682, // 11 100 1101 0000 010
+ TPIDR_EL3 = 0xf682, // 11 110 1101 0000 010
+ TPIDRRO_EL0 = 0xde83, // 11 011 1101 0000 011
+ TPIDR_EL1 = 0xc684, // 11 000 1101 0000 100
+ CNTFRQ_EL0 = 0xdf00, // 11 011 1110 0000 000
+ CNTVOFF_EL2 = 0xe703, // 11 100 1110 0000 011
+ CNTKCTL_EL1 = 0xc708, // 11 000 1110 0001 000
+ CNTHCTL_EL2 = 0xe708, // 11 100 1110 0001 000
+ CNTP_TVAL_EL0 = 0xdf10, // 11 011 1110 0010 000
+ CNTHP_TVAL_EL2 = 0xe710, // 11 100 1110 0010 000
+ CNTPS_TVAL_EL1 = 0xff10, // 11 111 1110 0010 000
+ CNTP_CTL_EL0 = 0xdf11, // 11 011 1110 0010 001
+ CNTHP_CTL_EL2 = 0xe711, // 11 100 1110 0010 001
+ CNTPS_CTL_EL1 = 0xff11, // 11 111 1110 0010 001
+ CNTP_CVAL_EL0 = 0xdf12, // 11 011 1110 0010 010
+ CNTHP_CVAL_EL2 = 0xe712, // 11 100 1110 0010 010
+ CNTPS_CVAL_EL1 = 0xff12, // 11 111 1110 0010 010
+ CNTV_TVAL_EL0 = 0xdf18, // 11 011 1110 0011 000
+ CNTV_CTL_EL0 = 0xdf19, // 11 011 1110 0011 001
+ CNTV_CVAL_EL0 = 0xdf1a, // 11 011 1110 0011 010
+ PMEVCNTR0_EL0 = 0xdf40, // 11 011 1110 1000 000
+ PMEVCNTR1_EL0 = 0xdf41, // 11 011 1110 1000 001
+ PMEVCNTR2_EL0 = 0xdf42, // 11 011 1110 1000 010
+ PMEVCNTR3_EL0 = 0xdf43, // 11 011 1110 1000 011
+ PMEVCNTR4_EL0 = 0xdf44, // 11 011 1110 1000 100
+ PMEVCNTR5_EL0 = 0xdf45, // 11 011 1110 1000 101
+ PMEVCNTR6_EL0 = 0xdf46, // 11 011 1110 1000 110
+ PMEVCNTR7_EL0 = 0xdf47, // 11 011 1110 1000 111
+ PMEVCNTR8_EL0 = 0xdf48, // 11 011 1110 1001 000
+ PMEVCNTR9_EL0 = 0xdf49, // 11 011 1110 1001 001
+ PMEVCNTR10_EL0 = 0xdf4a, // 11 011 1110 1001 010
+ PMEVCNTR11_EL0 = 0xdf4b, // 11 011 1110 1001 011
+ PMEVCNTR12_EL0 = 0xdf4c, // 11 011 1110 1001 100
+ PMEVCNTR13_EL0 = 0xdf4d, // 11 011 1110 1001 101
+ PMEVCNTR14_EL0 = 0xdf4e, // 11 011 1110 1001 110
+ PMEVCNTR15_EL0 = 0xdf4f, // 11 011 1110 1001 111
+ PMEVCNTR16_EL0 = 0xdf50, // 11 011 1110 1010 000
+ PMEVCNTR17_EL0 = 0xdf51, // 11 011 1110 1010 001
+ PMEVCNTR18_EL0 = 0xdf52, // 11 011 1110 1010 010
+ PMEVCNTR19_EL0 = 0xdf53, // 11 011 1110 1010 011
+ PMEVCNTR20_EL0 = 0xdf54, // 11 011 1110 1010 100
+ PMEVCNTR21_EL0 = 0xdf55, // 11 011 1110 1010 101
+ PMEVCNTR22_EL0 = 0xdf56, // 11 011 1110 1010 110
+ PMEVCNTR23_EL0 = 0xdf57, // 11 011 1110 1010 111
+ PMEVCNTR24_EL0 = 0xdf58, // 11 011 1110 1011 000
+ PMEVCNTR25_EL0 = 0xdf59, // 11 011 1110 1011 001
+ PMEVCNTR26_EL0 = 0xdf5a, // 11 011 1110 1011 010
+ PMEVCNTR27_EL0 = 0xdf5b, // 11 011 1110 1011 011
+ PMEVCNTR28_EL0 = 0xdf5c, // 11 011 1110 1011 100
+ PMEVCNTR29_EL0 = 0xdf5d, // 11 011 1110 1011 101
+ PMEVCNTR30_EL0 = 0xdf5e, // 11 011 1110 1011 110
+ PMCCFILTR_EL0 = 0xdf7f, // 11 011 1110 1111 111
+ PMEVTYPER0_EL0 = 0xdf60, // 11 011 1110 1100 000
+ PMEVTYPER1_EL0 = 0xdf61, // 11 011 1110 1100 001
+ PMEVTYPER2_EL0 = 0xdf62, // 11 011 1110 1100 010
+ PMEVTYPER3_EL0 = 0xdf63, // 11 011 1110 1100 011
+ PMEVTYPER4_EL0 = 0xdf64, // 11 011 1110 1100 100
+ PMEVTYPER5_EL0 = 0xdf65, // 11 011 1110 1100 101
+ PMEVTYPER6_EL0 = 0xdf66, // 11 011 1110 1100 110
+ PMEVTYPER7_EL0 = 0xdf67, // 11 011 1110 1100 111
+ PMEVTYPER8_EL0 = 0xdf68, // 11 011 1110 1101 000
+ PMEVTYPER9_EL0 = 0xdf69, // 11 011 1110 1101 001
+ PMEVTYPER10_EL0 = 0xdf6a, // 11 011 1110 1101 010
+ PMEVTYPER11_EL0 = 0xdf6b, // 11 011 1110 1101 011
+ PMEVTYPER12_EL0 = 0xdf6c, // 11 011 1110 1101 100
+ PMEVTYPER13_EL0 = 0xdf6d, // 11 011 1110 1101 101
+ PMEVTYPER14_EL0 = 0xdf6e, // 11 011 1110 1101 110
+ PMEVTYPER15_EL0 = 0xdf6f, // 11 011 1110 1101 111
+ PMEVTYPER16_EL0 = 0xdf70, // 11 011 1110 1110 000
+ PMEVTYPER17_EL0 = 0xdf71, // 11 011 1110 1110 001
+ PMEVTYPER18_EL0 = 0xdf72, // 11 011 1110 1110 010
+ PMEVTYPER19_EL0 = 0xdf73, // 11 011 1110 1110 011
+ PMEVTYPER20_EL0 = 0xdf74, // 11 011 1110 1110 100
+ PMEVTYPER21_EL0 = 0xdf75, // 11 011 1110 1110 101
+ PMEVTYPER22_EL0 = 0xdf76, // 11 011 1110 1110 110
+ PMEVTYPER23_EL0 = 0xdf77, // 11 011 1110 1110 111
+ PMEVTYPER24_EL0 = 0xdf78, // 11 011 1110 1111 000
+ PMEVTYPER25_EL0 = 0xdf79, // 11 011 1110 1111 001
+ PMEVTYPER26_EL0 = 0xdf7a, // 11 011 1110 1111 010
+ PMEVTYPER27_EL0 = 0xdf7b, // 11 011 1110 1111 011
+ PMEVTYPER28_EL0 = 0xdf7c, // 11 011 1110 1111 100
+ PMEVTYPER29_EL0 = 0xdf7d, // 11 011 1110 1111 101
+ PMEVTYPER30_EL0 = 0xdf7e, // 11 011 1110 1111 110
+
+ // Trace registers
+ TRCPRGCTLR = 0x8808, // 10 001 0000 0001 000
+ TRCPROCSELR = 0x8810, // 10 001 0000 0010 000
+ TRCCONFIGR = 0x8820, // 10 001 0000 0100 000
+ TRCAUXCTLR = 0x8830, // 10 001 0000 0110 000
+ TRCEVENTCTL0R = 0x8840, // 10 001 0000 1000 000
+ TRCEVENTCTL1R = 0x8848, // 10 001 0000 1001 000
+ TRCSTALLCTLR = 0x8858, // 10 001 0000 1011 000
+ TRCTSCTLR = 0x8860, // 10 001 0000 1100 000
+ TRCSYNCPR = 0x8868, // 10 001 0000 1101 000
+ TRCCCCTLR = 0x8870, // 10 001 0000 1110 000
+ TRCBBCTLR = 0x8878, // 10 001 0000 1111 000
+ TRCTRACEIDR = 0x8801, // 10 001 0000 0000 001
+ TRCQCTLR = 0x8809, // 10 001 0000 0001 001
+ TRCVICTLR = 0x8802, // 10 001 0000 0000 010
+ TRCVIIECTLR = 0x880a, // 10 001 0000 0001 010
+ TRCVISSCTLR = 0x8812, // 10 001 0000 0010 010
+ TRCVIPCSSCTLR = 0x881a, // 10 001 0000 0011 010
+ TRCVDCTLR = 0x8842, // 10 001 0000 1000 010
+ TRCVDSACCTLR = 0x884a, // 10 001 0000 1001 010
+ TRCVDARCCTLR = 0x8852, // 10 001 0000 1010 010
+ TRCSEQEVR0 = 0x8804, // 10 001 0000 0000 100
+ TRCSEQEVR1 = 0x880c, // 10 001 0000 0001 100
+ TRCSEQEVR2 = 0x8814, // 10 001 0000 0010 100
+ TRCSEQRSTEVR = 0x8834, // 10 001 0000 0110 100
+ TRCSEQSTR = 0x883c, // 10 001 0000 0111 100
+ TRCEXTINSELR = 0x8844, // 10 001 0000 1000 100
+ TRCCNTRLDVR0 = 0x8805, // 10 001 0000 0000 101
+ TRCCNTRLDVR1 = 0x880d, // 10 001 0000 0001 101
+ TRCCNTRLDVR2 = 0x8815, // 10 001 0000 0010 101
+ TRCCNTRLDVR3 = 0x881d, // 10 001 0000 0011 101
+ TRCCNTCTLR0 = 0x8825, // 10 001 0000 0100 101
+ TRCCNTCTLR1 = 0x882d, // 10 001 0000 0101 101
+ TRCCNTCTLR2 = 0x8835, // 10 001 0000 0110 101
+ TRCCNTCTLR3 = 0x883d, // 10 001 0000 0111 101
+ TRCCNTVR0 = 0x8845, // 10 001 0000 1000 101
+ TRCCNTVR1 = 0x884d, // 10 001 0000 1001 101
+ TRCCNTVR2 = 0x8855, // 10 001 0000 1010 101
+ TRCCNTVR3 = 0x885d, // 10 001 0000 1011 101
+ TRCIMSPEC0 = 0x8807, // 10 001 0000 0000 111
+ TRCIMSPEC1 = 0x880f, // 10 001 0000 0001 111
+ TRCIMSPEC2 = 0x8817, // 10 001 0000 0010 111
+ TRCIMSPEC3 = 0x881f, // 10 001 0000 0011 111
+ TRCIMSPEC4 = 0x8827, // 10 001 0000 0100 111
+ TRCIMSPEC5 = 0x882f, // 10 001 0000 0101 111
+ TRCIMSPEC6 = 0x8837, // 10 001 0000 0110 111
+ TRCIMSPEC7 = 0x883f, // 10 001 0000 0111 111
+ TRCRSCTLR2 = 0x8890, // 10 001 0001 0010 000
+ TRCRSCTLR3 = 0x8898, // 10 001 0001 0011 000
+ TRCRSCTLR4 = 0x88a0, // 10 001 0001 0100 000
+ TRCRSCTLR5 = 0x88a8, // 10 001 0001 0101 000
+ TRCRSCTLR6 = 0x88b0, // 10 001 0001 0110 000
+ TRCRSCTLR7 = 0x88b8, // 10 001 0001 0111 000
+ TRCRSCTLR8 = 0x88c0, // 10 001 0001 1000 000
+ TRCRSCTLR9 = 0x88c8, // 10 001 0001 1001 000
+ TRCRSCTLR10 = 0x88d0, // 10 001 0001 1010 000
+ TRCRSCTLR11 = 0x88d8, // 10 001 0001 1011 000
+ TRCRSCTLR12 = 0x88e0, // 10 001 0001 1100 000
+ TRCRSCTLR13 = 0x88e8, // 10 001 0001 1101 000
+ TRCRSCTLR14 = 0x88f0, // 10 001 0001 1110 000
+ TRCRSCTLR15 = 0x88f8, // 10 001 0001 1111 000
+ TRCRSCTLR16 = 0x8881, // 10 001 0001 0000 001
+ TRCRSCTLR17 = 0x8889, // 10 001 0001 0001 001
+ TRCRSCTLR18 = 0x8891, // 10 001 0001 0010 001
+ TRCRSCTLR19 = 0x8899, // 10 001 0001 0011 001
+ TRCRSCTLR20 = 0x88a1, // 10 001 0001 0100 001
+ TRCRSCTLR21 = 0x88a9, // 10 001 0001 0101 001
+ TRCRSCTLR22 = 0x88b1, // 10 001 0001 0110 001
+ TRCRSCTLR23 = 0x88b9, // 10 001 0001 0111 001
+ TRCRSCTLR24 = 0x88c1, // 10 001 0001 1000 001
+ TRCRSCTLR25 = 0x88c9, // 10 001 0001 1001 001
+ TRCRSCTLR26 = 0x88d1, // 10 001 0001 1010 001
+ TRCRSCTLR27 = 0x88d9, // 10 001 0001 1011 001
+ TRCRSCTLR28 = 0x88e1, // 10 001 0001 1100 001
+ TRCRSCTLR29 = 0x88e9, // 10 001 0001 1101 001
+ TRCRSCTLR30 = 0x88f1, // 10 001 0001 1110 001
+ TRCRSCTLR31 = 0x88f9, // 10 001 0001 1111 001
+ TRCSSCCR0 = 0x8882, // 10 001 0001 0000 010
+ TRCSSCCR1 = 0x888a, // 10 001 0001 0001 010
+ TRCSSCCR2 = 0x8892, // 10 001 0001 0010 010
+ TRCSSCCR3 = 0x889a, // 10 001 0001 0011 010
+ TRCSSCCR4 = 0x88a2, // 10 001 0001 0100 010
+ TRCSSCCR5 = 0x88aa, // 10 001 0001 0101 010
+ TRCSSCCR6 = 0x88b2, // 10 001 0001 0110 010
+ TRCSSCCR7 = 0x88ba, // 10 001 0001 0111 010
+ TRCSSCSR0 = 0x88c2, // 10 001 0001 1000 010
+ TRCSSCSR1 = 0x88ca, // 10 001 0001 1001 010
+ TRCSSCSR2 = 0x88d2, // 10 001 0001 1010 010
+ TRCSSCSR3 = 0x88da, // 10 001 0001 1011 010
+ TRCSSCSR4 = 0x88e2, // 10 001 0001 1100 010
+ TRCSSCSR5 = 0x88ea, // 10 001 0001 1101 010
+ TRCSSCSR6 = 0x88f2, // 10 001 0001 1110 010
+ TRCSSCSR7 = 0x88fa, // 10 001 0001 1111 010
+ TRCSSPCICR0 = 0x8883, // 10 001 0001 0000 011
+ TRCSSPCICR1 = 0x888b, // 10 001 0001 0001 011
+ TRCSSPCICR2 = 0x8893, // 10 001 0001 0010 011
+ TRCSSPCICR3 = 0x889b, // 10 001 0001 0011 011
+ TRCSSPCICR4 = 0x88a3, // 10 001 0001 0100 011
+ TRCSSPCICR5 = 0x88ab, // 10 001 0001 0101 011
+ TRCSSPCICR6 = 0x88b3, // 10 001 0001 0110 011
+ TRCSSPCICR7 = 0x88bb, // 10 001 0001 0111 011
+ TRCPDCR = 0x88a4, // 10 001 0001 0100 100
+ TRCACVR0 = 0x8900, // 10 001 0010 0000 000
+ TRCACVR1 = 0x8910, // 10 001 0010 0010 000
+ TRCACVR2 = 0x8920, // 10 001 0010 0100 000
+ TRCACVR3 = 0x8930, // 10 001 0010 0110 000
+ TRCACVR4 = 0x8940, // 10 001 0010 1000 000
+ TRCACVR5 = 0x8950, // 10 001 0010 1010 000
+ TRCACVR6 = 0x8960, // 10 001 0010 1100 000
+ TRCACVR7 = 0x8970, // 10 001 0010 1110 000
+ TRCACVR8 = 0x8901, // 10 001 0010 0000 001
+ TRCACVR9 = 0x8911, // 10 001 0010 0010 001
+ TRCACVR10 = 0x8921, // 10 001 0010 0100 001
+ TRCACVR11 = 0x8931, // 10 001 0010 0110 001
+ TRCACVR12 = 0x8941, // 10 001 0010 1000 001
+ TRCACVR13 = 0x8951, // 10 001 0010 1010 001
+ TRCACVR14 = 0x8961, // 10 001 0010 1100 001
+ TRCACVR15 = 0x8971, // 10 001 0010 1110 001
+ TRCACATR0 = 0x8902, // 10 001 0010 0000 010
+ TRCACATR1 = 0x8912, // 10 001 0010 0010 010
+ TRCACATR2 = 0x8922, // 10 001 0010 0100 010
+ TRCACATR3 = 0x8932, // 10 001 0010 0110 010
+ TRCACATR4 = 0x8942, // 10 001 0010 1000 010
+ TRCACATR5 = 0x8952, // 10 001 0010 1010 010
+ TRCACATR6 = 0x8962, // 10 001 0010 1100 010
+ TRCACATR7 = 0x8972, // 10 001 0010 1110 010
+ TRCACATR8 = 0x8903, // 10 001 0010 0000 011
+ TRCACATR9 = 0x8913, // 10 001 0010 0010 011
+ TRCACATR10 = 0x8923, // 10 001 0010 0100 011
+ TRCACATR11 = 0x8933, // 10 001 0010 0110 011
+ TRCACATR12 = 0x8943, // 10 001 0010 1000 011
+ TRCACATR13 = 0x8953, // 10 001 0010 1010 011
+ TRCACATR14 = 0x8963, // 10 001 0010 1100 011
+ TRCACATR15 = 0x8973, // 10 001 0010 1110 011
+ TRCDVCVR0 = 0x8904, // 10 001 0010 0000 100
+ TRCDVCVR1 = 0x8924, // 10 001 0010 0100 100
+ TRCDVCVR2 = 0x8944, // 10 001 0010 1000 100
+ TRCDVCVR3 = 0x8964, // 10 001 0010 1100 100
+ TRCDVCVR4 = 0x8905, // 10 001 0010 0000 101
+ TRCDVCVR5 = 0x8925, // 10 001 0010 0100 101
+ TRCDVCVR6 = 0x8945, // 10 001 0010 1000 101
+ TRCDVCVR7 = 0x8965, // 10 001 0010 1100 101
+ TRCDVCMR0 = 0x8906, // 10 001 0010 0000 110
+ TRCDVCMR1 = 0x8926, // 10 001 0010 0100 110
+ TRCDVCMR2 = 0x8946, // 10 001 0010 1000 110
+ TRCDVCMR3 = 0x8966, // 10 001 0010 1100 110
+ TRCDVCMR4 = 0x8907, // 10 001 0010 0000 111
+ TRCDVCMR5 = 0x8927, // 10 001 0010 0100 111
+ TRCDVCMR6 = 0x8947, // 10 001 0010 1000 111
+ TRCDVCMR7 = 0x8967, // 10 001 0010 1100 111
+ TRCCIDCVR0 = 0x8980, // 10 001 0011 0000 000
+ TRCCIDCVR1 = 0x8990, // 10 001 0011 0010 000
+ TRCCIDCVR2 = 0x89a0, // 10 001 0011 0100 000
+ TRCCIDCVR3 = 0x89b0, // 10 001 0011 0110 000
+ TRCCIDCVR4 = 0x89c0, // 10 001 0011 1000 000
+ TRCCIDCVR5 = 0x89d0, // 10 001 0011 1010 000
+ TRCCIDCVR6 = 0x89e0, // 10 001 0011 1100 000
+ TRCCIDCVR7 = 0x89f0, // 10 001 0011 1110 000
+ TRCVMIDCVR0 = 0x8981, // 10 001 0011 0000 001
+ TRCVMIDCVR1 = 0x8991, // 10 001 0011 0010 001
+ TRCVMIDCVR2 = 0x89a1, // 10 001 0011 0100 001
+ TRCVMIDCVR3 = 0x89b1, // 10 001 0011 0110 001
+ TRCVMIDCVR4 = 0x89c1, // 10 001 0011 1000 001
+ TRCVMIDCVR5 = 0x89d1, // 10 001 0011 1010 001
+ TRCVMIDCVR6 = 0x89e1, // 10 001 0011 1100 001
+ TRCVMIDCVR7 = 0x89f1, // 10 001 0011 1110 001
+ TRCCIDCCTLR0 = 0x8982, // 10 001 0011 0000 010
+ TRCCIDCCTLR1 = 0x898a, // 10 001 0011 0001 010
+ TRCVMIDCCTLR0 = 0x8992, // 10 001 0011 0010 010
+ TRCVMIDCCTLR1 = 0x899a, // 10 001 0011 0011 010
+ TRCITCTRL = 0x8b84, // 10 001 0111 0000 100
+ TRCCLAIMSET = 0x8bc6, // 10 001 0111 1000 110
+ TRCCLAIMCLR = 0x8bce, // 10 001 0111 1001 110
+
+ // GICv3 registers
+ ICC_BPR1_EL1 = 0xc663, // 11 000 1100 1100 011
+ ICC_BPR0_EL1 = 0xc643, // 11 000 1100 1000 011
+ ICC_PMR_EL1 = 0xc230, // 11 000 0100 0110 000
+ ICC_CTLR_EL1 = 0xc664, // 11 000 1100 1100 100
+ ICC_CTLR_EL3 = 0xf664, // 11 110 1100 1100 100
+ ICC_SRE_EL1 = 0xc665, // 11 000 1100 1100 101
+ ICC_SRE_EL2 = 0xe64d, // 11 100 1100 1001 101
+ ICC_SRE_EL3 = 0xf665, // 11 110 1100 1100 101
+ ICC_IGRPEN0_EL1 = 0xc666, // 11 000 1100 1100 110
+ ICC_IGRPEN1_EL1 = 0xc667, // 11 000 1100 1100 111
+ ICC_IGRPEN1_EL3 = 0xf667, // 11 110 1100 1100 111
+ ICC_SEIEN_EL1 = 0xc668, // 11 000 1100 1101 000
+ ICC_AP0R0_EL1 = 0xc644, // 11 000 1100 1000 100
+ ICC_AP0R1_EL1 = 0xc645, // 11 000 1100 1000 101
+ ICC_AP0R2_EL1 = 0xc646, // 11 000 1100 1000 110
+ ICC_AP0R3_EL1 = 0xc647, // 11 000 1100 1000 111
+ ICC_AP1R0_EL1 = 0xc648, // 11 000 1100 1001 000
+ ICC_AP1R1_EL1 = 0xc649, // 11 000 1100 1001 001
+ ICC_AP1R2_EL1 = 0xc64a, // 11 000 1100 1001 010
+ ICC_AP1R3_EL1 = 0xc64b, // 11 000 1100 1001 011
+ ICH_AP0R0_EL2 = 0xe640, // 11 100 1100 1000 000
+ ICH_AP0R1_EL2 = 0xe641, // 11 100 1100 1000 001
+ ICH_AP0R2_EL2 = 0xe642, // 11 100 1100 1000 010
+ ICH_AP0R3_EL2 = 0xe643, // 11 100 1100 1000 011
+ ICH_AP1R0_EL2 = 0xe648, // 11 100 1100 1001 000
+ ICH_AP1R1_EL2 = 0xe649, // 11 100 1100 1001 001
+ ICH_AP1R2_EL2 = 0xe64a, // 11 100 1100 1001 010
+ ICH_AP1R3_EL2 = 0xe64b, // 11 100 1100 1001 011
+ ICH_HCR_EL2 = 0xe658, // 11 100 1100 1011 000
+ ICH_MISR_EL2 = 0xe65a, // 11 100 1100 1011 010
+ ICH_VMCR_EL2 = 0xe65f, // 11 100 1100 1011 111
+ ICH_VSEIR_EL2 = 0xe64c, // 11 100 1100 1001 100
+ ICH_LR0_EL2 = 0xe660, // 11 100 1100 1100 000
+ ICH_LR1_EL2 = 0xe661, // 11 100 1100 1100 001
+ ICH_LR2_EL2 = 0xe662, // 11 100 1100 1100 010
+ ICH_LR3_EL2 = 0xe663, // 11 100 1100 1100 011
+ ICH_LR4_EL2 = 0xe664, // 11 100 1100 1100 100
+ ICH_LR5_EL2 = 0xe665, // 11 100 1100 1100 101
+ ICH_LR6_EL2 = 0xe666, // 11 100 1100 1100 110
+ ICH_LR7_EL2 = 0xe667, // 11 100 1100 1100 111
+ ICH_LR8_EL2 = 0xe668, // 11 100 1100 1101 000
+ ICH_LR9_EL2 = 0xe669, // 11 100 1100 1101 001
+ ICH_LR10_EL2 = 0xe66a, // 11 100 1100 1101 010
+ ICH_LR11_EL2 = 0xe66b, // 11 100 1100 1101 011
+ ICH_LR12_EL2 = 0xe66c, // 11 100 1100 1101 100
+ ICH_LR13_EL2 = 0xe66d, // 11 100 1100 1101 101
+ ICH_LR14_EL2 = 0xe66e, // 11 100 1100 1101 110
+ ICH_LR15_EL2 = 0xe66f, // 11 100 1100 1101 111
+ };
+
+ // Cyclone specific system registers
+ enum CycloneSysRegValues {
+ CPM_IOACC_CTL_EL3 = 0xff90
+ };
+
+ // Note that these do not inherit from AArch64NamedImmMapper. This class is
+ // sufficiently different in its behaviour that I don't believe it's worth
+ // burdening the common AArch64NamedImmMapper with abstractions only needed in
+ // this one case.
+ struct SysRegMapper {
+ static const AArch64NamedImmMapper::Mapping SysRegPairs[];
+ static const AArch64NamedImmMapper::Mapping CycloneSysRegPairs[];
+
+ const AArch64NamedImmMapper::Mapping *InstPairs;
+ size_t NumInstPairs;
+ uint64_t FeatureBits;
+
+ SysRegMapper(uint64_t FeatureBits) : FeatureBits(FeatureBits) { }
+ uint32_t fromString(StringRef Name, bool &Valid) const;
+ std::string toString(uint32_t Bits, bool &Valid) const;
+ };
+
+ struct MSRMapper : SysRegMapper {
+ static const AArch64NamedImmMapper::Mapping MSRPairs[];
+ MSRMapper(uint64_t FeatureBits);
+ };
+
+ struct MRSMapper : SysRegMapper {
+ static const AArch64NamedImmMapper::Mapping MRSPairs[];
+ MRSMapper(uint64_t FeatureBits);
+ };
+
+ uint32_t ParseGenericRegister(StringRef Name, bool &Valid);
+}
+
+namespace AArch64TLBI {
+ enum TLBIValues {
+ Invalid = -1, // Op0 Op1 CRn CRm Op2
+ IPAS2E1IS = 0x6401, // 01 100 1000 0000 001
+ IPAS2LE1IS = 0x6405, // 01 100 1000 0000 101
+ VMALLE1IS = 0x4418, // 01 000 1000 0011 000
+ ALLE2IS = 0x6418, // 01 100 1000 0011 000
+ ALLE3IS = 0x7418, // 01 110 1000 0011 000
+ VAE1IS = 0x4419, // 01 000 1000 0011 001
+ VAE2IS = 0x6419, // 01 100 1000 0011 001
+ VAE3IS = 0x7419, // 01 110 1000 0011 001
+ ASIDE1IS = 0x441a, // 01 000 1000 0011 010
+ VAAE1IS = 0x441b, // 01 000 1000 0011 011
+ ALLE1IS = 0x641c, // 01 100 1000 0011 100
+ VALE1IS = 0x441d, // 01 000 1000 0011 101
+ VALE2IS = 0x641d, // 01 100 1000 0011 101
+ VALE3IS = 0x741d, // 01 110 1000 0011 101
+ VMALLS12E1IS = 0x641e, // 01 100 1000 0011 110
+ VAALE1IS = 0x441f, // 01 000 1000 0011 111
+ IPAS2E1 = 0x6421, // 01 100 1000 0100 001
+ IPAS2LE1 = 0x6425, // 01 100 1000 0100 101
+ VMALLE1 = 0x4438, // 01 000 1000 0111 000
+ ALLE2 = 0x6438, // 01 100 1000 0111 000
+ ALLE3 = 0x7438, // 01 110 1000 0111 000
+ VAE1 = 0x4439, // 01 000 1000 0111 001
+ VAE2 = 0x6439, // 01 100 1000 0111 001
+ VAE3 = 0x7439, // 01 110 1000 0111 001
+ ASIDE1 = 0x443a, // 01 000 1000 0111 010
+ VAAE1 = 0x443b, // 01 000 1000 0111 011
+ ALLE1 = 0x643c, // 01 100 1000 0111 100
+ VALE1 = 0x443d, // 01 000 1000 0111 101
+ VALE2 = 0x643d, // 01 100 1000 0111 101
+ VALE3 = 0x743d, // 01 110 1000 0111 101
+ VMALLS12E1 = 0x643e, // 01 100 1000 0111 110
+ VAALE1 = 0x443f // 01 000 1000 0111 111
+ };
+
+ struct TLBIMapper : AArch64NamedImmMapper {
+ const static Mapping TLBIPairs[];
+
+ TLBIMapper();
+ };
+
+ static inline bool NeedsRegister(TLBIValues Val) {
+ switch (Val) {
+ case VMALLE1IS:
+ case ALLE2IS:
+ case ALLE3IS:
+ case ALLE1IS:
+ case VMALLS12E1IS:
+ case VMALLE1:
+ case ALLE2:
+ case ALLE3:
+ case ALLE1:
+ case VMALLS12E1:
+ return false;
+ default:
+ return true;
+ }
+ }
+}
+
+namespace AArch64II {
+ /// Target Operand Flag enum.
+ enum TOF {
+ //===------------------------------------------------------------------===//
+ // AArch64 Specific MachineOperand flags.
+
+ MO_NO_FLAG,
+
+ MO_FRAGMENT = 0x7,
+
+ /// MO_PAGE - A symbol operand with this flag represents the pc-relative
+ /// offset of the 4K page containing the symbol. This is used with the
+ /// ADRP instruction.
+ MO_PAGE = 1,
+
+ /// MO_PAGEOFF - A symbol operand with this flag represents the offset of
+ /// that symbol within a 4K page. This offset is added to the page address
+ /// to produce the complete address.
+ MO_PAGEOFF = 2,
+
+ /// MO_G3 - A symbol operand with this flag (granule 3) represents the high
+ /// 16-bits of a 64-bit address, used in a MOVZ or MOVK instruction
+ MO_G3 = 3,
+
+ /// MO_G2 - A symbol operand with this flag (granule 2) represents the bits
+ /// 32-47 of a 64-bit address, used in a MOVZ or MOVK instruction
+ MO_G2 = 4,
+
+ /// MO_G1 - A symbol operand with this flag (granule 1) represents the bits
+ /// 16-31 of a 64-bit address, used in a MOVZ or MOVK instruction
+ MO_G1 = 5,
+
+ /// MO_G0 - A symbol operand with this flag (granule 0) represents the bits
+ /// 0-15 of a 64-bit address, used in a MOVZ or MOVK instruction
+ MO_G0 = 6,
+
+ /// MO_GOT - This flag indicates that a symbol operand represents the
+ /// address of the GOT entry for the symbol, rather than the address of
+ /// the symbol itself.
+ MO_GOT = 8,
+
+ /// MO_NC - Indicates whether the linker is expected to check the symbol
+ /// reference for overflow. For example in an ADRP/ADD pair of relocations
+ /// the ADRP usually does check, but not the ADD.
+ MO_NC = 0x10,
+
+ /// MO_TLS - Indicates that the operand being accessed is some kind of
+ /// thread-local symbol. On Darwin, only one type of thread-local access
+ /// exists (pre linker-relaxation), but on ELF the TLSModel used for the
+ /// referee will affect interpretation.
+ MO_TLS = 0x20
+ };
+} // end namespace AArch64II
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/A15SDOptimizer.cpp b/contrib/llvm/lib/Target/ARM/A15SDOptimizer.cpp
new file mode 100644
index 0000000..92eaf9e
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/A15SDOptimizer.cpp
@@ -0,0 +1,710 @@
+//=== A15SDOptimizerPass.cpp - Optimize DPR and SPR register accesses on A15==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// The Cortex-A15 processor employs a tracking scheme in its register renaming
+// in order to process each instruction's micro-ops speculatively and
+// out-of-order with appropriate forwarding. The ARM architecture allows VFP
+// instructions to read and write 32-bit S-registers. Each S-register
+// corresponds to one half (upper or lower) of an overlaid 64-bit D-register.
+//
+// There are several instruction patterns which can be used to provide this
+// capability which can provide higher performance than other, potentially more
+// direct patterns, specifically around when one micro-op reads a D-register
+// operand that has recently been written as one or more S-register results.
+//
+// This file defines a pre-regalloc pass which looks for SPR producers which
+// are going to be used by a DPR (or QPR) consumers and creates the more
+// optimized access pattern.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMBaseRegisterInfo.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <set>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "a15-sd-optimizer"
+
+namespace {
+ struct A15SDOptimizer : public MachineFunctionPass {
+ static char ID;
+ A15SDOptimizer() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "ARM A15 S->D optimizer";
+ }
+
+ private:
+ const ARMBaseInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MachineRegisterInfo *MRI;
+
+ bool runOnInstruction(MachineInstr *MI);
+
+ //
+ // Instruction builder helpers
+ //
+ unsigned createDupLane(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL,
+ unsigned Reg, unsigned Lane,
+ bool QPR=false);
+
+ unsigned createExtractSubreg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL,
+ unsigned DReg, unsigned Lane,
+ const TargetRegisterClass *TRC);
+
+ unsigned createVExt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL,
+ unsigned Ssub0, unsigned Ssub1);
+
+ unsigned createRegSequence(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL,
+ unsigned Reg1, unsigned Reg2);
+
+ unsigned createInsertSubreg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL, unsigned DReg, unsigned Lane,
+ unsigned ToInsert);
+
+ unsigned createImplicitDef(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL);
+
+ //
+ // Various property checkers
+ //
+ bool usesRegClass(MachineOperand &MO, const TargetRegisterClass *TRC);
+ bool hasPartialWrite(MachineInstr *MI);
+ SmallVector<unsigned, 8> getReadDPRs(MachineInstr *MI);
+ unsigned getDPRLaneFromSPR(unsigned SReg);
+
+ //
+ // Methods used for getting the definitions of partial registers
+ //
+
+ MachineInstr *elideCopies(MachineInstr *MI);
+ void elideCopiesAndPHIs(MachineInstr *MI,
+ SmallVectorImpl<MachineInstr*> &Outs);
+
+ //
+ // Pattern optimization methods
+ //
+ unsigned optimizeAllLanesPattern(MachineInstr *MI, unsigned Reg);
+ unsigned optimizeSDPattern(MachineInstr *MI);
+ unsigned getPrefSPRLane(unsigned SReg);
+
+ //
+ // Sanitizing method - used to make sure if don't leave dead code around.
+ //
+ void eraseInstrWithNoUses(MachineInstr *MI);
+
+ //
+ // A map used to track the changes done by this pass.
+ //
+ std::map<MachineInstr*, unsigned> Replacements;
+ std::set<MachineInstr *> DeadInstr;
+ };
+ char A15SDOptimizer::ID = 0;
+} // end anonymous namespace
+
+// Returns true if this is a use of a SPR register.
+bool A15SDOptimizer::usesRegClass(MachineOperand &MO,
+ const TargetRegisterClass *TRC) {
+ if (!MO.isReg())
+ return false;
+ unsigned Reg = MO.getReg();
+
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ return MRI->getRegClass(Reg)->hasSuperClassEq(TRC);
+ else
+ return TRC->contains(Reg);
+}
+
+unsigned A15SDOptimizer::getDPRLaneFromSPR(unsigned SReg) {
+ unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1,
+ &ARM::DPRRegClass);
+ if (DReg != ARM::NoRegister) return ARM::ssub_1;
+ return ARM::ssub_0;
+}
+
+// Get the subreg type that is most likely to be coalesced
+// for an SPR register that will be used in VDUP32d pseudo.
+unsigned A15SDOptimizer::getPrefSPRLane(unsigned SReg) {
+ if (!TRI->isVirtualRegister(SReg))
+ return getDPRLaneFromSPR(SReg);
+
+ MachineInstr *MI = MRI->getVRegDef(SReg);
+ if (!MI) return ARM::ssub_0;
+ MachineOperand *MO = MI->findRegisterDefOperand(SReg);
+
+ assert(MO->isReg() && "Non-register operand found!");
+ if (!MO) return ARM::ssub_0;
+
+ if (MI->isCopy() && usesRegClass(MI->getOperand(1),
+ &ARM::SPRRegClass)) {
+ SReg = MI->getOperand(1).getReg();
+ }
+
+ if (TargetRegisterInfo::isVirtualRegister(SReg)) {
+ if (MO->getSubReg() == ARM::ssub_1) return ARM::ssub_1;
+ return ARM::ssub_0;
+ }
+ return getDPRLaneFromSPR(SReg);
+}
+
+// MI is known to be dead. Figure out what instructions
+// are also made dead by this and mark them for removal.
+void A15SDOptimizer::eraseInstrWithNoUses(MachineInstr *MI) {
+ SmallVector<MachineInstr *, 8> Front;
+ DeadInstr.insert(MI);
+
+ DEBUG(dbgs() << "Deleting base instruction " << *MI << "\n");
+ Front.push_back(MI);
+
+ while (Front.size() != 0) {
+ MI = Front.back();
+ Front.pop_back();
+
+ // MI is already known to be dead. We need to see
+ // if other instructions can also be removed.
+ for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if ((!MO.isReg()) || (!MO.isUse()))
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!TRI->isVirtualRegister(Reg))
+ continue;
+ MachineOperand *Op = MI->findRegisterDefOperand(Reg);
+
+ if (!Op)
+ continue;
+
+ MachineInstr *Def = Op->getParent();
+
+ // We don't need to do anything if we have already marked
+ // this instruction as being dead.
+ if (DeadInstr.find(Def) != DeadInstr.end())
+ continue;
+
+ // Check if all the uses of this instruction are marked as
+ // dead. If so, we can also mark this instruction as being
+ // dead.
+ bool IsDead = true;
+ for (unsigned int j = 0; j < Def->getNumOperands(); ++j) {
+ MachineOperand &MODef = Def->getOperand(j);
+ if ((!MODef.isReg()) || (!MODef.isDef()))
+ continue;
+ unsigned DefReg = MODef.getReg();
+ if (!TRI->isVirtualRegister(DefReg)) {
+ IsDead = false;
+ break;
+ }
+ for (MachineRegisterInfo::use_instr_iterator
+ II = MRI->use_instr_begin(Reg), EE = MRI->use_instr_end();
+ II != EE; ++II) {
+ // We don't care about self references.
+ if (&*II == Def)
+ continue;
+ if (DeadInstr.find(&*II) == DeadInstr.end()) {
+ IsDead = false;
+ break;
+ }
+ }
+ }
+
+ if (!IsDead) continue;
+
+ DEBUG(dbgs() << "Deleting instruction " << *Def << "\n");
+ DeadInstr.insert(Def);
+ }
+ }
+}
+
+// Creates the more optimized patterns and generally does all the code
+// transformations in this pass.
+unsigned A15SDOptimizer::optimizeSDPattern(MachineInstr *MI) {
+ if (MI->isCopy()) {
+ return optimizeAllLanesPattern(MI, MI->getOperand(1).getReg());
+ }
+
+ if (MI->isInsertSubreg()) {
+ unsigned DPRReg = MI->getOperand(1).getReg();
+ unsigned SPRReg = MI->getOperand(2).getReg();
+
+ if (TRI->isVirtualRegister(DPRReg) && TRI->isVirtualRegister(SPRReg)) {
+ MachineInstr *DPRMI = MRI->getVRegDef(MI->getOperand(1).getReg());
+ MachineInstr *SPRMI = MRI->getVRegDef(MI->getOperand(2).getReg());
+
+ if (DPRMI && SPRMI) {
+ // See if the first operand of this insert_subreg is IMPLICIT_DEF
+ MachineInstr *ECDef = elideCopies(DPRMI);
+ if (ECDef && ECDef->isImplicitDef()) {
+ // Another corner case - if we're inserting something that is purely
+ // a subreg copy of a DPR, just use that DPR.
+
+ MachineInstr *EC = elideCopies(SPRMI);
+ // Is it a subreg copy of ssub_0?
+ if (EC && EC->isCopy() &&
+ EC->getOperand(1).getSubReg() == ARM::ssub_0) {
+ DEBUG(dbgs() << "Found a subreg copy: " << *SPRMI);
+
+ // Find the thing we're subreg copying out of - is it of the same
+ // regclass as DPRMI? (i.e. a DPR or QPR).
+ unsigned FullReg = SPRMI->getOperand(1).getReg();
+ const TargetRegisterClass *TRC =
+ MRI->getRegClass(MI->getOperand(1).getReg());
+ if (TRC->hasSuperClassEq(MRI->getRegClass(FullReg))) {
+ DEBUG(dbgs() << "Subreg copy is compatible - returning ");
+ DEBUG(dbgs() << PrintReg(FullReg) << "\n");
+ eraseInstrWithNoUses(MI);
+ return FullReg;
+ }
+ }
+
+ return optimizeAllLanesPattern(MI, MI->getOperand(2).getReg());
+ }
+ }
+ }
+ return optimizeAllLanesPattern(MI, MI->getOperand(0).getReg());
+ }
+
+ if (MI->isRegSequence() && usesRegClass(MI->getOperand(1),
+ &ARM::SPRRegClass)) {
+ // See if all bar one of the operands are IMPLICIT_DEF and insert the
+ // optimizer pattern accordingly.
+ unsigned NumImplicit = 0, NumTotal = 0;
+ unsigned NonImplicitReg = ~0U;
+
+ for (unsigned I = 1; I < MI->getNumExplicitOperands(); ++I) {
+ if (!MI->getOperand(I).isReg())
+ continue;
+ ++NumTotal;
+ unsigned OpReg = MI->getOperand(I).getReg();
+
+ if (!TRI->isVirtualRegister(OpReg))
+ break;
+
+ MachineInstr *Def = MRI->getVRegDef(OpReg);
+ if (!Def)
+ break;
+ if (Def->isImplicitDef())
+ ++NumImplicit;
+ else
+ NonImplicitReg = MI->getOperand(I).getReg();
+ }
+
+ if (NumImplicit == NumTotal - 1)
+ return optimizeAllLanesPattern(MI, NonImplicitReg);
+ else
+ return optimizeAllLanesPattern(MI, MI->getOperand(0).getReg());
+ }
+
+ llvm_unreachable("Unhandled update pattern!");
+}
+
+// Return true if this MachineInstr inserts a scalar (SPR) value into
+// a D or Q register.
+bool A15SDOptimizer::hasPartialWrite(MachineInstr *MI) {
+ // The only way we can do a partial register update is through a COPY,
+ // INSERT_SUBREG or REG_SEQUENCE.
+ if (MI->isCopy() && usesRegClass(MI->getOperand(1), &ARM::SPRRegClass))
+ return true;
+
+ if (MI->isInsertSubreg() && usesRegClass(MI->getOperand(2),
+ &ARM::SPRRegClass))
+ return true;
+
+ if (MI->isRegSequence() && usesRegClass(MI->getOperand(1), &ARM::SPRRegClass))
+ return true;
+
+ return false;
+}
+
+// Looks through full copies to get the instruction that defines the input
+// operand for MI.
+MachineInstr *A15SDOptimizer::elideCopies(MachineInstr *MI) {
+ if (!MI->isFullCopy())
+ return MI;
+ if (!TRI->isVirtualRegister(MI->getOperand(1).getReg()))
+ return nullptr;
+ MachineInstr *Def = MRI->getVRegDef(MI->getOperand(1).getReg());
+ if (!Def)
+ return nullptr;
+ return elideCopies(Def);
+}
+
+// Look through full copies and PHIs to get the set of non-copy MachineInstrs
+// that can produce MI.
+void A15SDOptimizer::elideCopiesAndPHIs(MachineInstr *MI,
+ SmallVectorImpl<MachineInstr*> &Outs) {
+ // Looking through PHIs may create loops so we need to track what
+ // instructions we have visited before.
+ std::set<MachineInstr *> Reached;
+ SmallVector<MachineInstr *, 8> Front;
+ Front.push_back(MI);
+ while (Front.size() != 0) {
+ MI = Front.back();
+ Front.pop_back();
+
+ // If we have already explored this MachineInstr, ignore it.
+ if (Reached.find(MI) != Reached.end())
+ continue;
+ Reached.insert(MI);
+ if (MI->isPHI()) {
+ for (unsigned I = 1, E = MI->getNumOperands(); I != E; I += 2) {
+ unsigned Reg = MI->getOperand(I).getReg();
+ if (!TRI->isVirtualRegister(Reg)) {
+ continue;
+ }
+ MachineInstr *NewMI = MRI->getVRegDef(Reg);
+ if (!NewMI)
+ continue;
+ Front.push_back(NewMI);
+ }
+ } else if (MI->isFullCopy()) {
+ if (!TRI->isVirtualRegister(MI->getOperand(1).getReg()))
+ continue;
+ MachineInstr *NewMI = MRI->getVRegDef(MI->getOperand(1).getReg());
+ if (!NewMI)
+ continue;
+ Front.push_back(NewMI);
+ } else {
+ DEBUG(dbgs() << "Found partial copy" << *MI <<"\n");
+ Outs.push_back(MI);
+ }
+ }
+}
+
+// Return the DPR virtual registers that are read by this machine instruction
+// (if any).
+SmallVector<unsigned, 8> A15SDOptimizer::getReadDPRs(MachineInstr *MI) {
+ if (MI->isCopyLike() || MI->isInsertSubreg() || MI->isRegSequence() ||
+ MI->isKill())
+ return SmallVector<unsigned, 8>();
+
+ SmallVector<unsigned, 8> Defs;
+ for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ if (!usesRegClass(MO, &ARM::DPRRegClass) &&
+ !usesRegClass(MO, &ARM::QPRRegClass) &&
+ !usesRegClass(MO, &ARM::DPairRegClass)) // Treat DPair as QPR
+ continue;
+
+ Defs.push_back(MO.getReg());
+ }
+ return Defs;
+}
+
+// Creates a DPR register from an SPR one by using a VDUP.
+unsigned
+A15SDOptimizer::createDupLane(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL,
+ unsigned Reg, unsigned Lane, bool QPR) {
+ unsigned Out = MRI->createVirtualRegister(QPR ? &ARM::QPRRegClass :
+ &ARM::DPRRegClass);
+ AddDefaultPred(BuildMI(MBB,
+ InsertBefore,
+ DL,
+ TII->get(QPR ? ARM::VDUPLN32q : ARM::VDUPLN32d),
+ Out)
+ .addReg(Reg)
+ .addImm(Lane));
+
+ return Out;
+}
+
+// Creates a SPR register from a DPR by copying the value in lane 0.
+unsigned
+A15SDOptimizer::createExtractSubreg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL,
+ unsigned DReg, unsigned Lane,
+ const TargetRegisterClass *TRC) {
+ unsigned Out = MRI->createVirtualRegister(TRC);
+ BuildMI(MBB,
+ InsertBefore,
+ DL,
+ TII->get(TargetOpcode::COPY), Out)
+ .addReg(DReg, 0, Lane);
+
+ return Out;
+}
+
+// Takes two SPR registers and creates a DPR by using a REG_SEQUENCE.
+unsigned
+A15SDOptimizer::createRegSequence(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL,
+ unsigned Reg1, unsigned Reg2) {
+ unsigned Out = MRI->createVirtualRegister(&ARM::QPRRegClass);
+ BuildMI(MBB,
+ InsertBefore,
+ DL,
+ TII->get(TargetOpcode::REG_SEQUENCE), Out)
+ .addReg(Reg1)
+ .addImm(ARM::dsub_0)
+ .addReg(Reg2)
+ .addImm(ARM::dsub_1);
+ return Out;
+}
+
+// Takes two DPR registers that have previously been VDUPed (Ssub0 and Ssub1)
+// and merges them into one DPR register.
+unsigned
+A15SDOptimizer::createVExt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL,
+ unsigned Ssub0, unsigned Ssub1) {
+ unsigned Out = MRI->createVirtualRegister(&ARM::DPRRegClass);
+ AddDefaultPred(BuildMI(MBB,
+ InsertBefore,
+ DL,
+ TII->get(ARM::VEXTd32), Out)
+ .addReg(Ssub0)
+ .addReg(Ssub1)
+ .addImm(1));
+ return Out;
+}
+
+unsigned
+A15SDOptimizer::createInsertSubreg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL, unsigned DReg, unsigned Lane,
+ unsigned ToInsert) {
+ unsigned Out = MRI->createVirtualRegister(&ARM::DPR_VFP2RegClass);
+ BuildMI(MBB,
+ InsertBefore,
+ DL,
+ TII->get(TargetOpcode::INSERT_SUBREG), Out)
+ .addReg(DReg)
+ .addReg(ToInsert)
+ .addImm(Lane);
+
+ return Out;
+}
+
+unsigned
+A15SDOptimizer::createImplicitDef(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ DebugLoc DL) {
+ unsigned Out = MRI->createVirtualRegister(&ARM::DPRRegClass);
+ BuildMI(MBB,
+ InsertBefore,
+ DL,
+ TII->get(TargetOpcode::IMPLICIT_DEF), Out);
+ return Out;
+}
+
+// This function inserts instructions in order to optimize interactions between
+// SPR registers and DPR/QPR registers. It does so by performing VDUPs on all
+// lanes, and the using VEXT instructions to recompose the result.
+unsigned
+A15SDOptimizer::optimizeAllLanesPattern(MachineInstr *MI, unsigned Reg) {
+ MachineBasicBlock::iterator InsertPt(MI);
+ DebugLoc DL = MI->getDebugLoc();
+ MachineBasicBlock &MBB = *MI->getParent();
+ InsertPt++;
+ unsigned Out;
+
+ // DPair has the same length as QPR and also has two DPRs as subreg.
+ // Treat DPair as QPR.
+ if (MRI->getRegClass(Reg)->hasSuperClassEq(&ARM::QPRRegClass) ||
+ MRI->getRegClass(Reg)->hasSuperClassEq(&ARM::DPairRegClass)) {
+ unsigned DSub0 = createExtractSubreg(MBB, InsertPt, DL, Reg,
+ ARM::dsub_0, &ARM::DPRRegClass);
+ unsigned DSub1 = createExtractSubreg(MBB, InsertPt, DL, Reg,
+ ARM::dsub_1, &ARM::DPRRegClass);
+
+ unsigned Out1 = createDupLane(MBB, InsertPt, DL, DSub0, 0);
+ unsigned Out2 = createDupLane(MBB, InsertPt, DL, DSub0, 1);
+ Out = createVExt(MBB, InsertPt, DL, Out1, Out2);
+
+ unsigned Out3 = createDupLane(MBB, InsertPt, DL, DSub1, 0);
+ unsigned Out4 = createDupLane(MBB, InsertPt, DL, DSub1, 1);
+ Out2 = createVExt(MBB, InsertPt, DL, Out3, Out4);
+
+ Out = createRegSequence(MBB, InsertPt, DL, Out, Out2);
+
+ } else if (MRI->getRegClass(Reg)->hasSuperClassEq(&ARM::DPRRegClass)) {
+ unsigned Out1 = createDupLane(MBB, InsertPt, DL, Reg, 0);
+ unsigned Out2 = createDupLane(MBB, InsertPt, DL, Reg, 1);
+ Out = createVExt(MBB, InsertPt, DL, Out1, Out2);
+
+ } else {
+ assert(MRI->getRegClass(Reg)->hasSuperClassEq(&ARM::SPRRegClass) &&
+ "Found unexpected regclass!");
+
+ unsigned PrefLane = getPrefSPRLane(Reg);
+ unsigned Lane;
+ switch (PrefLane) {
+ case ARM::ssub_0: Lane = 0; break;
+ case ARM::ssub_1: Lane = 1; break;
+ default: llvm_unreachable("Unknown preferred lane!");
+ }
+
+ // Treat DPair as QPR
+ bool UsesQPR = usesRegClass(MI->getOperand(0), &ARM::QPRRegClass) ||
+ usesRegClass(MI->getOperand(0), &ARM::DPairRegClass);
+
+ Out = createImplicitDef(MBB, InsertPt, DL);
+ Out = createInsertSubreg(MBB, InsertPt, DL, Out, PrefLane, Reg);
+ Out = createDupLane(MBB, InsertPt, DL, Out, Lane, UsesQPR);
+ eraseInstrWithNoUses(MI);
+ }
+ return Out;
+}
+
+bool A15SDOptimizer::runOnInstruction(MachineInstr *MI) {
+ // We look for instructions that write S registers that are then read as
+ // D/Q registers. These can only be caused by COPY, INSERT_SUBREG and
+ // REG_SEQUENCE pseudos that insert an SPR value into a DPR register or
+ // merge two SPR values to form a DPR register. In order avoid false
+ // positives we make sure that there is an SPR producer so we look past
+ // COPY and PHI nodes to find it.
+ //
+ // The best code pattern for when an SPR producer is going to be used by a
+ // DPR or QPR consumer depends on whether the other lanes of the
+ // corresponding DPR/QPR are currently defined.
+ //
+ // We can handle these efficiently, depending on the type of
+ // pseudo-instruction that is producing the pattern
+ //
+ // * COPY: * VDUP all lanes and merge the results together
+ // using VEXTs.
+ //
+ // * INSERT_SUBREG: * If the SPR value was originally in another DPR/QPR
+ // lane, and the other lane(s) of the DPR/QPR register
+ // that we are inserting in are undefined, use the
+ // original DPR/QPR value.
+ // * Otherwise, fall back on the same stategy as COPY.
+ //
+ // * REG_SEQUENCE: * If all except one of the input operands are
+ // IMPLICIT_DEFs, insert the VDUP pattern for just the
+ // defined input operand
+ // * Otherwise, fall back on the same stategy as COPY.
+ //
+
+ // First, get all the reads of D-registers done by this instruction.
+ SmallVector<unsigned, 8> Defs = getReadDPRs(MI);
+ bool Modified = false;
+
+ for (SmallVectorImpl<unsigned>::iterator I = Defs.begin(), E = Defs.end();
+ I != E; ++I) {
+ // Follow the def-use chain for this DPR through COPYs, and also through
+ // PHIs (which are essentially multi-way COPYs). It is because of PHIs that
+ // we can end up with multiple defs of this DPR.
+
+ SmallVector<MachineInstr *, 8> DefSrcs;
+ if (!TRI->isVirtualRegister(*I))
+ continue;
+ MachineInstr *Def = MRI->getVRegDef(*I);
+ if (!Def)
+ continue;
+
+ elideCopiesAndPHIs(Def, DefSrcs);
+
+ for (SmallVectorImpl<MachineInstr *>::iterator II = DefSrcs.begin(),
+ EE = DefSrcs.end(); II != EE; ++II) {
+ MachineInstr *MI = *II;
+
+ // If we've already analyzed and replaced this operand, don't do
+ // anything.
+ if (Replacements.find(MI) != Replacements.end())
+ continue;
+
+ // Now, work out if the instruction causes a SPR->DPR dependency.
+ if (!hasPartialWrite(MI))
+ continue;
+
+ // Collect all the uses of this MI's DPR def for updating later.
+ SmallVector<MachineOperand*, 8> Uses;
+ unsigned DPRDefReg = MI->getOperand(0).getReg();
+ for (MachineRegisterInfo::use_iterator I = MRI->use_begin(DPRDefReg),
+ E = MRI->use_end(); I != E; ++I)
+ Uses.push_back(&*I);
+
+ // We can optimize this.
+ unsigned NewReg = optimizeSDPattern(MI);
+
+ if (NewReg != 0) {
+ Modified = true;
+ for (SmallVectorImpl<MachineOperand *>::const_iterator I = Uses.begin(),
+ E = Uses.end(); I != E; ++I) {
+ // Make sure to constrain the register class of the new register to
+ // match what we're replacing. Otherwise we can optimize a DPR_VFP2
+ // reference into a plain DPR, and that will end poorly. NewReg is
+ // always virtual here, so there will always be a matching subclass
+ // to find.
+ MRI->constrainRegClass(NewReg, MRI->getRegClass((*I)->getReg()));
+
+ DEBUG(dbgs() << "Replacing operand "
+ << **I << " with "
+ << PrintReg(NewReg) << "\n");
+ (*I)->substVirtReg(NewReg, 0, *TRI);
+ }
+ }
+ Replacements[MI] = NewReg;
+ }
+ }
+ return Modified;
+}
+
+bool A15SDOptimizer::runOnMachineFunction(MachineFunction &Fn) {
+ TII = static_cast<const ARMBaseInstrInfo*>(Fn.getTarget().getInstrInfo());
+ TRI = Fn.getTarget().getRegisterInfo();
+ MRI = &Fn.getRegInfo();
+ bool Modified = false;
+
+ DEBUG(dbgs() << "Running on function " << Fn.getName()<< "\n");
+
+ DeadInstr.clear();
+ Replacements.clear();
+
+ for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
+ ++MFI) {
+
+ for (MachineBasicBlock::iterator MI = MFI->begin(), ME = MFI->end();
+ MI != ME;) {
+ Modified |= runOnInstruction(MI++);
+ }
+
+ }
+
+ for (std::set<MachineInstr *>::iterator I = DeadInstr.begin(),
+ E = DeadInstr.end();
+ I != E; ++I) {
+ (*I)->eraseFromParent();
+ }
+
+ return Modified;
+}
+
+FunctionPass *llvm::createA15SDOptimizerPass() {
+ return new A15SDOptimizer();
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARM.h b/contrib/llvm/lib/Target/ARM/ARM.h
new file mode 100644
index 0000000..55df29c
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARM.h
@@ -0,0 +1,57 @@
+//===-- ARM.h - Top-level interface for ARM representation ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in the LLVM
+// ARM back-end.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef TARGET_ARM_H
+#define TARGET_ARM_H
+
+#include "llvm/Support/CodeGen.h"
+
+namespace llvm {
+
+class ARMAsmPrinter;
+class ARMBaseTargetMachine;
+class FunctionPass;
+class ImmutablePass;
+class JITCodeEmitter;
+class MachineInstr;
+class MCInst;
+class TargetLowering;
+class TargetMachine;
+
+FunctionPass *createARMISelDag(ARMBaseTargetMachine &TM,
+ CodeGenOpt::Level OptLevel);
+
+FunctionPass *createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
+ JITCodeEmitter &JCE);
+
+FunctionPass *createA15SDOptimizerPass();
+FunctionPass *createARMLoadStoreOptimizationPass(bool PreAlloc = false);
+FunctionPass *createARMExpandPseudoPass();
+FunctionPass *createARMGlobalBaseRegPass();
+FunctionPass *createARMGlobalMergePass(const TargetLowering* tli);
+FunctionPass *createARMConstantIslandPass();
+FunctionPass *createMLxExpansionPass();
+FunctionPass *createThumb2ITBlockPass();
+FunctionPass *createARMOptimizeBarriersPass();
+FunctionPass *createThumb2SizeReductionPass();
+
+/// \brief Creates an ARM-specific Target Transformation Info pass.
+ImmutablePass *createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM);
+
+void LowerARMMachineInstrToMCInst(const MachineInstr *MI, MCInst &OutMI,
+ ARMAsmPrinter &AP);
+
+} // end namespace llvm;
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARM.td b/contrib/llvm/lib/Target/ARM/ARM.td
new file mode 100644
index 0000000..7916ccc
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARM.td
@@ -0,0 +1,440 @@
+//===-- ARM.td - Describe the ARM Target Machine -----------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces which we are implementing
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// ARM Subtarget state.
+//
+
+def ModeThumb : SubtargetFeature<"thumb-mode", "InThumbMode", "true",
+ "Thumb mode">;
+
+//===----------------------------------------------------------------------===//
+// ARM Subtarget features.
+//
+
+def FeatureVFP2 : SubtargetFeature<"vfp2", "HasVFPv2", "true",
+ "Enable VFP2 instructions">;
+def FeatureVFP3 : SubtargetFeature<"vfp3", "HasVFPv3", "true",
+ "Enable VFP3 instructions",
+ [FeatureVFP2]>;
+def FeatureNEON : SubtargetFeature<"neon", "HasNEON", "true",
+ "Enable NEON instructions",
+ [FeatureVFP3]>;
+def FeatureThumb2 : SubtargetFeature<"thumb2", "HasThumb2", "true",
+ "Enable Thumb2 instructions">;
+def FeatureNoARM : SubtargetFeature<"noarm", "NoARM", "true",
+ "Does not support ARM mode execution",
+ [ModeThumb]>;
+def FeatureFP16 : SubtargetFeature<"fp16", "HasFP16", "true",
+ "Enable half-precision floating point">;
+def FeatureVFP4 : SubtargetFeature<"vfp4", "HasVFPv4", "true",
+ "Enable VFP4 instructions",
+ [FeatureVFP3, FeatureFP16]>;
+def FeatureFPARMv8 : SubtargetFeature<"fp-armv8", "HasFPARMv8",
+ "true", "Enable ARMv8 FP",
+ [FeatureVFP4]>;
+def FeatureD16 : SubtargetFeature<"d16", "HasD16", "true",
+ "Restrict VFP3 to 16 double registers">;
+def FeatureHWDiv : SubtargetFeature<"hwdiv", "HasHardwareDivide", "true",
+ "Enable divide instructions">;
+def FeatureHWDivARM : SubtargetFeature<"hwdiv-arm",
+ "HasHardwareDivideInARM", "true",
+ "Enable divide instructions in ARM mode">;
+def FeatureT2XtPk : SubtargetFeature<"t2xtpk", "HasT2ExtractPack", "true",
+ "Enable Thumb2 extract and pack instructions">;
+def FeatureDB : SubtargetFeature<"db", "HasDataBarrier", "true",
+ "Has data barrier (dmb / dsb) instructions">;
+def FeatureSlowFPBrcc : SubtargetFeature<"slow-fp-brcc", "SlowFPBrcc", "true",
+ "FP compare + branch is slow">;
+def FeatureVFPOnlySP : SubtargetFeature<"fp-only-sp", "FPOnlySP", "true",
+ "Floating point unit supports single precision only">;
+def FeaturePerfMon : SubtargetFeature<"perfmon", "HasPerfMon", "true",
+ "Enable support for Performance Monitor extensions">;
+def FeatureTrustZone : SubtargetFeature<"trustzone", "HasTrustZone", "true",
+ "Enable support for TrustZone security extensions">;
+def FeatureCrypto : SubtargetFeature<"crypto", "HasCrypto", "true",
+ "Enable support for Cryptography extensions",
+ [FeatureNEON]>;
+def FeatureCRC : SubtargetFeature<"crc", "HasCRC", "true",
+ "Enable support for CRC instructions">;
+
+// Cyclone has preferred instructions for zeroing VFP registers, which can
+// execute in 0 cycles.
+def FeatureZCZeroing : SubtargetFeature<"zcz", "HasZeroCycleZeroing", "true",
+ "Has zero-cycle zeroing instructions">;
+
+// Some processors have FP multiply-accumulate instructions that don't
+// play nicely with other VFP / NEON instructions, and it's generally better
+// to just not use them.
+def FeatureHasSlowFPVMLx : SubtargetFeature<"slowfpvmlx", "SlowFPVMLx", "true",
+ "Disable VFP / NEON MAC instructions">;
+
+// Cortex-A8 / A9 Advanced SIMD has multiplier accumulator forwarding.
+def FeatureVMLxForwarding : SubtargetFeature<"vmlx-forwarding",
+ "HasVMLxForwarding", "true",
+ "Has multiplier accumulator forwarding">;
+
+// Some processors benefit from using NEON instructions for scalar
+// single-precision FP operations.
+def FeatureNEONForFP : SubtargetFeature<"neonfp", "UseNEONForSinglePrecisionFP",
+ "true",
+ "Use NEON for single precision FP">;
+
+// Disable 32-bit to 16-bit narrowing for experimentation.
+def FeaturePref32BitThumb : SubtargetFeature<"32bit", "Pref32BitThumb", "true",
+ "Prefer 32-bit Thumb instrs">;
+
+/// Some instructions update CPSR partially, which can add false dependency for
+/// out-of-order implementation, e.g. Cortex-A9, unless each individual bit is
+/// mapped to a separate physical register. Avoid partial CPSR update for these
+/// processors.
+def FeatureAvoidPartialCPSR : SubtargetFeature<"avoid-partial-cpsr",
+ "AvoidCPSRPartialUpdate", "true",
+ "Avoid CPSR partial update for OOO execution">;
+
+def FeatureAvoidMOVsShOp : SubtargetFeature<"avoid-movs-shop",
+ "AvoidMOVsShifterOperand", "true",
+ "Avoid movs instructions with shifter operand">;
+
+// Some processors perform return stack prediction. CodeGen should avoid issue
+// "normal" call instructions to callees which do not return.
+def FeatureHasRAS : SubtargetFeature<"ras", "HasRAS", "true",
+ "Has return address stack">;
+
+/// Some M architectures don't have the DSP extension (v7E-M vs. v7M)
+def FeatureDSPThumb2 : SubtargetFeature<"t2dsp", "Thumb2DSP", "true",
+ "Supports v7 DSP instructions in Thumb2">;
+
+// Multiprocessing extension.
+def FeatureMP : SubtargetFeature<"mp", "HasMPExtension", "true",
+ "Supports Multiprocessing extension">;
+
+// Virtualization extension - requires HW divide (ARMv7-AR ARMARM - 4.4.8).
+def FeatureVirtualization : SubtargetFeature<"virtualization",
+ "HasVirtualization", "true",
+ "Supports Virtualization extension",
+ [FeatureHWDiv, FeatureHWDivARM]>;
+
+// M-series ISA
+def FeatureMClass : SubtargetFeature<"mclass", "ARMProcClass", "MClass",
+ "Is microcontroller profile ('M' series)">;
+
+// R-series ISA
+def FeatureRClass : SubtargetFeature<"rclass", "ARMProcClass", "RClass",
+ "Is realtime profile ('R' series)">;
+
+// A-series ISA
+def FeatureAClass : SubtargetFeature<"aclass", "ARMProcClass", "AClass",
+ "Is application profile ('A' series)">;
+
+// Special TRAP encoding for NaCl, which looks like a TRAP in Thumb too.
+// See ARMInstrInfo.td for details.
+def FeatureNaClTrap : SubtargetFeature<"nacl-trap", "UseNaClTrap", "true",
+ "NaCl trap">;
+
+// ARM ISAs.
+def HasV4TOps : SubtargetFeature<"v4t", "HasV4TOps", "true",
+ "Support ARM v4T instructions">;
+def HasV5TOps : SubtargetFeature<"v5t", "HasV5TOps", "true",
+ "Support ARM v5T instructions",
+ [HasV4TOps]>;
+def HasV5TEOps : SubtargetFeature<"v5te", "HasV5TEOps", "true",
+ "Support ARM v5TE, v5TEj, and v5TExp instructions",
+ [HasV5TOps]>;
+def HasV6Ops : SubtargetFeature<"v6", "HasV6Ops", "true",
+ "Support ARM v6 instructions",
+ [HasV5TEOps]>;
+def HasV6MOps : SubtargetFeature<"v6m", "HasV6MOps", "true",
+ "Support ARM v6M instructions",
+ [HasV6Ops]>;
+def HasV6T2Ops : SubtargetFeature<"v6t2", "HasV6T2Ops", "true",
+ "Support ARM v6t2 instructions",
+ [HasV6MOps, FeatureThumb2]>;
+def HasV7Ops : SubtargetFeature<"v7", "HasV7Ops", "true",
+ "Support ARM v7 instructions",
+ [HasV6T2Ops, FeaturePerfMon]>;
+def HasV8Ops : SubtargetFeature<"v8", "HasV8Ops", "true",
+ "Support ARM v8 instructions",
+ [HasV7Ops, FeatureVirtualization,
+ FeatureMP]>;
+
+//===----------------------------------------------------------------------===//
+// ARM Processors supported.
+//
+
+include "ARMSchedule.td"
+
+// ARM processor families.
+def ProcA5 : SubtargetFeature<"a5", "ARMProcFamily", "CortexA5",
+ "Cortex-A5 ARM processors",
+ [FeatureSlowFPBrcc, FeatureHasSlowFPVMLx,
+ FeatureVMLxForwarding, FeatureT2XtPk,
+ FeatureTrustZone, FeatureMP]>;
+def ProcA7 : SubtargetFeature<"a7", "ARMProcFamily", "CortexA7",
+ "Cortex-A7 ARM processors",
+ [FeatureSlowFPBrcc, FeatureHasSlowFPVMLx,
+ FeatureVMLxForwarding, FeatureT2XtPk,
+ FeatureVFP4, FeatureMP,
+ FeatureHWDiv, FeatureHWDivARM,
+ FeatureTrustZone, FeatureVirtualization]>;
+def ProcA8 : SubtargetFeature<"a8", "ARMProcFamily", "CortexA8",
+ "Cortex-A8 ARM processors",
+ [FeatureSlowFPBrcc, FeatureHasSlowFPVMLx,
+ FeatureVMLxForwarding, FeatureT2XtPk,
+ FeatureTrustZone]>;
+def ProcA9 : SubtargetFeature<"a9", "ARMProcFamily", "CortexA9",
+ "Cortex-A9 ARM processors",
+ [FeatureVMLxForwarding,
+ FeatureT2XtPk, FeatureFP16,
+ FeatureAvoidPartialCPSR,
+ FeatureTrustZone]>;
+def ProcSwift : SubtargetFeature<"swift", "ARMProcFamily", "Swift",
+ "Swift ARM processors",
+ [FeatureNEONForFP, FeatureT2XtPk,
+ FeatureVFP4, FeatureMP, FeatureHWDiv,
+ FeatureHWDivARM, FeatureAvoidPartialCPSR,
+ FeatureAvoidMOVsShOp,
+ FeatureHasSlowFPVMLx, FeatureTrustZone]>;
+def ProcA12 : SubtargetFeature<"a12", "ARMProcFamily", "CortexA12",
+ "Cortex-A12 ARM processors",
+ [FeatureVMLxForwarding,
+ FeatureT2XtPk, FeatureVFP4,
+ FeatureHWDiv, FeatureHWDivARM,
+ FeatureAvoidPartialCPSR,
+ FeatureVirtualization,
+ FeatureTrustZone]>;
+
+
+// FIXME: It has not been determined if A15 has these features.
+def ProcA15 : SubtargetFeature<"a15", "ARMProcFamily", "CortexA15",
+ "Cortex-A15 ARM processors",
+ [FeatureT2XtPk, FeatureVFP4,
+ FeatureMP, FeatureHWDiv, FeatureHWDivARM,
+ FeatureAvoidPartialCPSR,
+ FeatureTrustZone, FeatureVirtualization]>;
+
+def ProcA53 : SubtargetFeature<"a53", "ARMProcFamily", "CortexA53",
+ "Cortex-A53 ARM processors",
+ [FeatureHWDiv, FeatureHWDivARM,
+ FeatureTrustZone, FeatureT2XtPk,
+ FeatureCrypto, FeatureCRC]>;
+
+def ProcA57 : SubtargetFeature<"a57", "ARMProcFamily", "CortexA57",
+ "Cortex-A57 ARM processors",
+ [FeatureHWDiv, FeatureHWDivARM,
+ FeatureTrustZone, FeatureT2XtPk,
+ FeatureCrypto, FeatureCRC]>;
+
+def ProcR5 : SubtargetFeature<"r5", "ARMProcFamily", "CortexR5",
+ "Cortex-R5 ARM processors",
+ [FeatureSlowFPBrcc,
+ FeatureHWDiv, FeatureHWDivARM,
+ FeatureHasSlowFPVMLx,
+ FeatureAvoidPartialCPSR,
+ FeatureT2XtPk]>;
+
+// FIXME: krait has currently the same features as A9
+// plus VFP4 and hardware division features.
+def ProcKrait : SubtargetFeature<"krait", "ARMProcFamily", "Krait",
+ "Qualcomm ARM processors",
+ [FeatureVMLxForwarding,
+ FeatureT2XtPk, FeatureFP16,
+ FeatureAvoidPartialCPSR,
+ FeatureTrustZone,
+ FeatureVFP4,
+ FeatureHWDiv,
+ FeatureHWDivARM]>;
+
+
+def FeatureAPCS : SubtargetFeature<"apcs", "TargetABI", "ARM_ABI_APCS",
+ "Use the APCS ABI">;
+
+def FeatureAAPCS : SubtargetFeature<"aapcs", "TargetABI", "ARM_ABI_AAPCS",
+ "Use the AAPCS ABI">;
+
+
+class ProcNoItin<string Name, list<SubtargetFeature> Features>
+ : Processor<Name, NoItineraries, Features>;
+
+// V4 Processors.
+def : ProcNoItin<"generic", []>;
+def : ProcNoItin<"arm8", []>;
+def : ProcNoItin<"arm810", []>;
+def : ProcNoItin<"strongarm", []>;
+def : ProcNoItin<"strongarm110", []>;
+def : ProcNoItin<"strongarm1100", []>;
+def : ProcNoItin<"strongarm1110", []>;
+
+// V4T Processors.
+def : ProcNoItin<"arm7tdmi", [HasV4TOps]>;
+def : ProcNoItin<"arm7tdmi-s", [HasV4TOps]>;
+def : ProcNoItin<"arm710t", [HasV4TOps]>;
+def : ProcNoItin<"arm720t", [HasV4TOps]>;
+def : ProcNoItin<"arm9", [HasV4TOps]>;
+def : ProcNoItin<"arm9tdmi", [HasV4TOps]>;
+def : ProcNoItin<"arm920", [HasV4TOps]>;
+def : ProcNoItin<"arm920t", [HasV4TOps]>;
+def : ProcNoItin<"arm922t", [HasV4TOps]>;
+def : ProcNoItin<"arm940t", [HasV4TOps]>;
+def : ProcNoItin<"ep9312", [HasV4TOps]>;
+
+// V5T Processors.
+def : ProcNoItin<"arm10tdmi", [HasV5TOps]>;
+def : ProcNoItin<"arm1020t", [HasV5TOps]>;
+
+// V5TE Processors.
+def : ProcNoItin<"arm9e", [HasV5TEOps]>;
+def : ProcNoItin<"arm926ej-s", [HasV5TEOps]>;
+def : ProcNoItin<"arm946e-s", [HasV5TEOps]>;
+def : ProcNoItin<"arm966e-s", [HasV5TEOps]>;
+def : ProcNoItin<"arm968e-s", [HasV5TEOps]>;
+def : ProcNoItin<"arm10e", [HasV5TEOps]>;
+def : ProcNoItin<"arm1020e", [HasV5TEOps]>;
+def : ProcNoItin<"arm1022e", [HasV5TEOps]>;
+def : ProcNoItin<"xscale", [HasV5TEOps]>;
+def : ProcNoItin<"iwmmxt", [HasV5TEOps]>;
+
+// V6 Processors.
+def : Processor<"arm1136j-s", ARMV6Itineraries, [HasV6Ops]>;
+def : Processor<"arm1136jf-s", ARMV6Itineraries, [HasV6Ops, FeatureVFP2,
+ FeatureHasSlowFPVMLx]>;
+def : Processor<"arm1176jz-s", ARMV6Itineraries, [HasV6Ops]>;
+def : Processor<"arm1176jzf-s", ARMV6Itineraries, [HasV6Ops, FeatureVFP2,
+ FeatureHasSlowFPVMLx]>;
+def : Processor<"mpcorenovfp", ARMV6Itineraries, [HasV6Ops]>;
+def : Processor<"mpcore", ARMV6Itineraries, [HasV6Ops, FeatureVFP2,
+ FeatureHasSlowFPVMLx]>;
+
+// V6M Processors.
+def : Processor<"cortex-m0", ARMV6Itineraries, [HasV6MOps, FeatureNoARM,
+ FeatureDB, FeatureMClass]>;
+
+// V6T2 Processors.
+def : Processor<"arm1156t2-s", ARMV6Itineraries, [HasV6T2Ops,
+ FeatureDSPThumb2]>;
+def : Processor<"arm1156t2f-s", ARMV6Itineraries, [HasV6T2Ops, FeatureVFP2,
+ FeatureHasSlowFPVMLx,
+ FeatureDSPThumb2]>;
+
+// V7a Processors.
+// FIXME: A5 has currently the same Schedule model as A8
+def : ProcessorModel<"cortex-a5", CortexA8Model,
+ [ProcA5, HasV7Ops, FeatureNEON, FeatureDB,
+ FeatureVFP4, FeatureDSPThumb2,
+ FeatureHasRAS, FeatureAClass]>;
+def : ProcessorModel<"cortex-a7", CortexA8Model,
+ [ProcA7, HasV7Ops, FeatureNEON, FeatureDB,
+ FeatureDSPThumb2, FeatureHasRAS,
+ FeatureAClass]>;
+def : ProcessorModel<"cortex-a8", CortexA8Model,
+ [ProcA8, HasV7Ops, FeatureNEON, FeatureDB,
+ FeatureDSPThumb2, FeatureHasRAS,
+ FeatureAClass]>;
+def : ProcessorModel<"cortex-a9", CortexA9Model,
+ [ProcA9, HasV7Ops, FeatureNEON, FeatureDB,
+ FeatureDSPThumb2, FeatureHasRAS,
+ FeatureAClass]>;
+def : ProcessorModel<"cortex-a9-mp", CortexA9Model,
+ [ProcA9, HasV7Ops, FeatureNEON, FeatureDB,
+ FeatureDSPThumb2, FeatureMP,
+ FeatureHasRAS, FeatureAClass]>;
+
+// FIXME: A12 has currently the same Schedule model as A9
+def : ProcessorModel<"cortex-a12", CortexA9Model,
+ [ProcA12, HasV7Ops, FeatureNEON, FeatureDB,
+ FeatureDSPThumb2, FeatureMP,
+ FeatureHasRAS, FeatureAClass]>;
+
+// FIXME: A15 has currently the same ProcessorModel as A9.
+def : ProcessorModel<"cortex-a15", CortexA9Model,
+ [ProcA15, HasV7Ops, FeatureNEON, FeatureDB,
+ FeatureDSPThumb2, FeatureHasRAS,
+ FeatureAClass]>;
+
+// FIXME: krait has currently the same Schedule model as A9
+def : ProcessorModel<"krait", CortexA9Model,
+ [ProcKrait, HasV7Ops,
+ FeatureNEON, FeatureDB,
+ FeatureDSPThumb2, FeatureHasRAS,
+ FeatureAClass]>;
+
+// FIXME: R5 has currently the same ProcessorModel as A8.
+def : ProcessorModel<"cortex-r5", CortexA8Model,
+ [ProcR5, HasV7Ops, FeatureDB,
+ FeatureVFP3, FeatureDSPThumb2,
+ FeatureHasRAS, FeatureVFPOnlySP,
+ FeatureD16, FeatureRClass]>;
+
+// V7M Processors.
+def : ProcNoItin<"cortex-m3", [HasV7Ops,
+ FeatureThumb2, FeatureNoARM, FeatureDB,
+ FeatureHWDiv, FeatureMClass]>;
+
+// V7EM Processors.
+def : ProcNoItin<"cortex-m4", [HasV7Ops,
+ FeatureThumb2, FeatureNoARM, FeatureDB,
+ FeatureHWDiv, FeatureDSPThumb2,
+ FeatureT2XtPk, FeatureVFP4,
+ FeatureVFPOnlySP, FeatureD16,
+ FeatureMClass]>;
+
+// Swift uArch Processors.
+def : ProcessorModel<"swift", SwiftModel,
+ [ProcSwift, HasV7Ops, FeatureNEON,
+ FeatureDB, FeatureDSPThumb2,
+ FeatureHasRAS, FeatureAClass]>;
+
+// V8 Processors
+def : ProcNoItin<"cortex-a53", [ProcA53, HasV8Ops, FeatureAClass,
+ FeatureDB, FeatureFPARMv8,
+ FeatureNEON, FeatureDSPThumb2]>;
+def : ProcNoItin<"cortex-a57", [ProcA57, HasV8Ops, FeatureAClass,
+ FeatureDB, FeatureFPARMv8,
+ FeatureNEON, FeatureDSPThumb2]>;
+
+// Cyclone is very similar to swift
+def : ProcessorModel<"cyclone", SwiftModel,
+ [ProcSwift, HasV8Ops, HasV7Ops,
+ FeatureCrypto, FeatureFPARMv8,
+ FeatureDB,FeatureDSPThumb2,
+ FeatureHasRAS, FeatureZCZeroing]>;
+
+//===----------------------------------------------------------------------===//
+// Register File Description
+//===----------------------------------------------------------------------===//
+
+include "ARMRegisterInfo.td"
+
+include "ARMCallingConv.td"
+
+//===----------------------------------------------------------------------===//
+// Instruction Descriptions
+//===----------------------------------------------------------------------===//
+
+include "ARMInstrInfo.td"
+
+def ARMInstrInfo : InstrInfo;
+
+//===----------------------------------------------------------------------===//
+// Declare the target which we are implementing
+//===----------------------------------------------------------------------===//
+
+def ARM : Target {
+ // Pull in Instruction Info:
+ let InstructionSet = ARMInstrInfo;
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.cpp b/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.cpp
new file mode 100644
index 0000000..28d2610
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.cpp
@@ -0,0 +1,1834 @@
+//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to GAS-format ARM assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMAsmPrinter.h"
+#include "ARM.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMFPUName.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMTargetMachine.h"
+#include "ARMTargetObjectFile.h"
+#include "InstPrinter/ARMInstPrinter.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "MCTargetDesc/ARMMCExpr.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstBuilder.h"
+#include "llvm/MC/MCObjectStreamer.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/ARMBuildAttributes.h"
+#include "llvm/Support/COFF.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cctype>
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+void ARMAsmPrinter::EmitFunctionBodyEnd() {
+ // Make sure to terminate any constant pools that were at the end
+ // of the function.
+ if (!InConstantPool)
+ return;
+ InConstantPool = false;
+ OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
+}
+
+void ARMAsmPrinter::EmitFunctionEntryLabel() {
+ if (AFI->isThumbFunction()) {
+ OutStreamer.EmitAssemblerFlag(MCAF_Code16);
+ OutStreamer.EmitThumbFunc(CurrentFnSym);
+ }
+
+ OutStreamer.EmitLabel(CurrentFnSym);
+}
+
+void ARMAsmPrinter::EmitXXStructor(const Constant *CV) {
+ uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
+ assert(Size && "C++ constructor pointer had zero size!");
+
+ const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
+ assert(GV && "C++ constructor pointer was not a GlobalValue!");
+
+ const MCExpr *E = MCSymbolRefExpr::Create(GetARMGVSymbol(GV,
+ ARMII::MO_NO_FLAG),
+ (Subtarget->isTargetELF()
+ ? MCSymbolRefExpr::VK_ARM_TARGET1
+ : MCSymbolRefExpr::VK_None),
+ OutContext);
+
+ OutStreamer.EmitValue(E, Size);
+}
+
+/// runOnMachineFunction - This uses the EmitInstruction()
+/// method to print assembly for each instruction.
+///
+bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+ AFI = MF.getInfo<ARMFunctionInfo>();
+ MCP = MF.getConstantPool();
+
+ SetupMachineFunction(MF);
+
+ if (Subtarget->isTargetCOFF()) {
+ bool Internal = MF.getFunction()->hasInternalLinkage();
+ COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
+ : COFF::IMAGE_SYM_CLASS_EXTERNAL;
+ int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
+
+ OutStreamer.BeginCOFFSymbolDef(CurrentFnSym);
+ OutStreamer.EmitCOFFSymbolStorageClass(Scl);
+ OutStreamer.EmitCOFFSymbolType(Type);
+ OutStreamer.EndCOFFSymbolDef();
+ }
+
+ // Have common code print out the function header with linkage info etc.
+ EmitFunctionHeader();
+
+ // Emit the rest of the function body.
+ EmitFunctionBody();
+
+ // We didn't modify anything.
+ return false;
+}
+
+void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
+ raw_ostream &O, const char *Modifier) {
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ unsigned TF = MO.getTargetFlags();
+
+ switch (MO.getType()) {
+ default: llvm_unreachable("<unknown operand type>");
+ case MachineOperand::MO_Register: {
+ unsigned Reg = MO.getReg();
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg));
+ assert(!MO.getSubReg() && "Subregs should be eliminated!");
+ if(ARM::GPRPairRegClass.contains(Reg)) {
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ Reg = TRI->getSubReg(Reg, ARM::gsub_0);
+ }
+ O << ARMInstPrinter::getRegisterName(Reg);
+ break;
+ }
+ case MachineOperand::MO_Immediate: {
+ int64_t Imm = MO.getImm();
+ O << '#';
+ if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
+ (TF == ARMII::MO_LO16))
+ O << ":lower16:";
+ else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
+ (TF == ARMII::MO_HI16))
+ O << ":upper16:";
+ O << Imm;
+ break;
+ }
+ case MachineOperand::MO_MachineBasicBlock:
+ O << *MO.getMBB()->getSymbol();
+ return;
+ case MachineOperand::MO_GlobalAddress: {
+ const GlobalValue *GV = MO.getGlobal();
+ if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
+ (TF & ARMII::MO_LO16))
+ O << ":lower16:";
+ else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
+ (TF & ARMII::MO_HI16))
+ O << ":upper16:";
+ O << *GetARMGVSymbol(GV, TF);
+
+ printOffset(MO.getOffset(), O);
+ if (TF == ARMII::MO_PLT)
+ O << "(PLT)";
+ break;
+ }
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << *GetCPISymbol(MO.getIndex());
+ break;
+ }
+}
+
+//===--------------------------------------------------------------------===//
+
+MCSymbol *ARMAsmPrinter::
+GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
+ const DataLayout *DL = TM.getDataLayout();
+ SmallString<60> Name;
+ raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "JTI"
+ << getFunctionNumber() << '_' << uid << '_' << uid2;
+ return OutContext.GetOrCreateSymbol(Name.str());
+}
+
+
+MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const {
+ const DataLayout *DL = TM.getDataLayout();
+ SmallString<60> Name;
+ raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "SJLJEH"
+ << getFunctionNumber();
+ return OutContext.GetOrCreateSymbol(Name.str());
+}
+
+bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) {
+ // Does this asm operand have a single letter operand modifier?
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ default:
+ // See if this is a generic print operand
+ return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
+ case 'a': // Print as a memory address.
+ if (MI->getOperand(OpNum).isReg()) {
+ O << "["
+ << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
+ << "]";
+ return false;
+ }
+ // Fallthrough
+ case 'c': // Don't print "#" before an immediate operand.
+ if (!MI->getOperand(OpNum).isImm())
+ return true;
+ O << MI->getOperand(OpNum).getImm();
+ return false;
+ case 'P': // Print a VFP double precision register.
+ case 'q': // Print a NEON quad precision register.
+ printOperand(MI, OpNum, O);
+ return false;
+ case 'y': // Print a VFP single precision register as indexed double.
+ if (MI->getOperand(OpNum).isReg()) {
+ unsigned Reg = MI->getOperand(OpNum).getReg();
+ const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ // Find the 'd' register that has this 's' register as a sub-register,
+ // and determine the lane number.
+ for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
+ if (!ARM::DPRRegClass.contains(*SR))
+ continue;
+ bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
+ O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
+ return false;
+ }
+ }
+ return true;
+ case 'B': // Bitwise inverse of integer or symbol without a preceding #.
+ if (!MI->getOperand(OpNum).isImm())
+ return true;
+ O << ~(MI->getOperand(OpNum).getImm());
+ return false;
+ case 'L': // The low 16 bits of an immediate constant.
+ if (!MI->getOperand(OpNum).isImm())
+ return true;
+ O << (MI->getOperand(OpNum).getImm() & 0xffff);
+ return false;
+ case 'M': { // A register range suitable for LDM/STM.
+ if (!MI->getOperand(OpNum).isReg())
+ return true;
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ unsigned RegBegin = MO.getReg();
+ // This takes advantage of the 2 operand-ness of ldm/stm and that we've
+ // already got the operands in registers that are operands to the
+ // inline asm statement.
+ O << "{";
+ if (ARM::GPRPairRegClass.contains(RegBegin)) {
+ const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
+ O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
+ RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
+ }
+ O << ARMInstPrinter::getRegisterName(RegBegin);
+
+ // FIXME: The register allocator not only may not have given us the
+ // registers in sequence, but may not be in ascending registers. This
+ // will require changes in the register allocator that'll need to be
+ // propagated down here if the operands change.
+ unsigned RegOps = OpNum + 1;
+ while (MI->getOperand(RegOps).isReg()) {
+ O << ", "
+ << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
+ RegOps++;
+ }
+
+ O << "}";
+
+ return false;
+ }
+ case 'R': // The most significant register of a pair.
+ case 'Q': { // The least significant register of a pair.
+ if (OpNum == 0)
+ return true;
+ const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
+ if (!FlagsOP.isImm())
+ return true;
+ unsigned Flags = FlagsOP.getImm();
+
+ // This operand may not be the one that actually provides the register. If
+ // it's tied to a previous one then we should refer instead to that one
+ // for registers and their classes.
+ unsigned TiedIdx;
+ if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
+ for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
+ unsigned OpFlags = MI->getOperand(OpNum).getImm();
+ OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
+ }
+ Flags = MI->getOperand(OpNum).getImm();
+
+ // Later code expects OpNum to be pointing at the register rather than
+ // the flags.
+ OpNum += 1;
+ }
+
+ unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
+ unsigned RC;
+ InlineAsm::hasRegClassConstraint(Flags, RC);
+ if (RC == ARM::GPRPairRegClassID) {
+ if (NumVals != 1)
+ return true;
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ if (!MO.isReg())
+ return true;
+ const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
+ ARM::gsub_0 : ARM::gsub_1);
+ O << ARMInstPrinter::getRegisterName(Reg);
+ return false;
+ }
+ if (NumVals != 2)
+ return true;
+ unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
+ if (RegOp >= MI->getNumOperands())
+ return true;
+ const MachineOperand &MO = MI->getOperand(RegOp);
+ if (!MO.isReg())
+ return true;
+ unsigned Reg = MO.getReg();
+ O << ARMInstPrinter::getRegisterName(Reg);
+ return false;
+ }
+
+ case 'e': // The low doubleword register of a NEON quad register.
+ case 'f': { // The high doubleword register of a NEON quad register.
+ if (!MI->getOperand(OpNum).isReg())
+ return true;
+ unsigned Reg = MI->getOperand(OpNum).getReg();
+ if (!ARM::QPRRegClass.contains(Reg))
+ return true;
+ const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
+ ARM::dsub_0 : ARM::dsub_1);
+ O << ARMInstPrinter::getRegisterName(SubReg);
+ return false;
+ }
+
+ // This modifier is not yet supported.
+ case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
+ return true;
+ case 'H': { // The highest-numbered register of a pair.
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ if (!MO.isReg())
+ return true;
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ unsigned Reg = MO.getReg();
+ if(!ARM::GPRPairRegClass.contains(Reg))
+ return false;
+ Reg = TRI->getSubReg(Reg, ARM::gsub_1);
+ O << ARMInstPrinter::getRegisterName(Reg);
+ return false;
+ }
+ }
+ }
+
+ printOperand(MI, OpNum, O);
+ return false;
+}
+
+bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNum, unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &O) {
+ // Does this asm operand have a single letter operand modifier?
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ case 'A': // A memory operand for a VLD1/VST1 instruction.
+ default: return true; // Unknown modifier.
+ case 'm': // The base register of a memory operand.
+ if (!MI->getOperand(OpNum).isReg())
+ return true;
+ O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
+ return false;
+ }
+ }
+
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ assert(MO.isReg() && "unexpected inline asm memory operand");
+ O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
+ return false;
+}
+
+static bool isThumb(const MCSubtargetInfo& STI) {
+ return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
+}
+
+void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
+ const MCSubtargetInfo *EndInfo) const {
+ // If either end mode is unknown (EndInfo == NULL) or different than
+ // the start mode, then restore the start mode.
+ const bool WasThumb = isThumb(StartInfo);
+ if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
+ OutStreamer.EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
+ }
+}
+
+void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
+ if (Subtarget->isTargetMachO()) {
+ Reloc::Model RelocM = TM.getRelocationModel();
+ if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
+ // Declare all the text sections up front (before the DWARF sections
+ // emitted by AsmPrinter::doInitialization) so the assembler will keep
+ // them together at the beginning of the object file. This helps
+ // avoid out-of-range branches that are due a fundamental limitation of
+ // the way symbol offsets are encoded with the current Darwin ARM
+ // relocations.
+ const TargetLoweringObjectFileMachO &TLOFMacho =
+ static_cast<const TargetLoweringObjectFileMachO &>(
+ getObjFileLowering());
+
+ // Collect the set of sections our functions will go into.
+ SetVector<const MCSection *, SmallVector<const MCSection *, 8>,
+ SmallPtrSet<const MCSection *, 8> > TextSections;
+ // Default text section comes first.
+ TextSections.insert(TLOFMacho.getTextSection());
+ // Now any user defined text sections from function attributes.
+ for (Module::iterator F = M.begin(), e = M.end(); F != e; ++F)
+ if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage())
+ TextSections.insert(TLOFMacho.SectionForGlobal(F, *Mang, TM));
+ // Now the coalescable sections.
+ TextSections.insert(TLOFMacho.getTextCoalSection());
+ TextSections.insert(TLOFMacho.getConstTextCoalSection());
+
+ // Emit the sections in the .s file header to fix the order.
+ for (unsigned i = 0, e = TextSections.size(); i != e; ++i)
+ OutStreamer.SwitchSection(TextSections[i]);
+
+ if (RelocM == Reloc::DynamicNoPIC) {
+ const MCSection *sect =
+ OutContext.getMachOSection("__TEXT", "__symbol_stub4",
+ MachO::S_SYMBOL_STUBS,
+ 12, SectionKind::getText());
+ OutStreamer.SwitchSection(sect);
+ } else {
+ const MCSection *sect =
+ OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
+ MachO::S_SYMBOL_STUBS,
+ 16, SectionKind::getText());
+ OutStreamer.SwitchSection(sect);
+ }
+ const MCSection *StaticInitSect =
+ OutContext.getMachOSection("__TEXT", "__StaticInit",
+ MachO::S_REGULAR |
+ MachO::S_ATTR_PURE_INSTRUCTIONS,
+ SectionKind::getText());
+ OutStreamer.SwitchSection(StaticInitSect);
+ }
+
+ // Compiling with debug info should not affect the code
+ // generation. Ensure the cstring section comes before the
+ // optional __DWARF secion. Otherwise, PC-relative loads would
+ // have to use different instruction sequences at "-g" in order to
+ // reach global data in the same object file.
+ OutStreamer.SwitchSection(getObjFileLowering().getCStringSection());
+ }
+
+ // Use unified assembler syntax.
+ OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
+
+ // Emit ARM Build Attributes
+ if (Subtarget->isTargetELF())
+ emitAttributes();
+}
+
+static void
+emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
+ MachineModuleInfoImpl::StubValueTy &MCSym) {
+ // L_foo$stub:
+ OutStreamer.EmitLabel(StubLabel);
+ // .indirect_symbol _foo
+ OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
+
+ if (MCSym.getInt())
+ // External to current translation unit.
+ OutStreamer.EmitIntValue(0, 4/*size*/);
+ else
+ // Internal to current translation unit.
+ //
+ // When we place the LSDA into the TEXT section, the type info
+ // pointers need to be indirect and pc-rel. We accomplish this by
+ // using NLPs; however, sometimes the types are local to the file.
+ // We need to fill in the value for the NLP in those cases.
+ OutStreamer.EmitValue(
+ MCSymbolRefExpr::Create(MCSym.getPointer(), OutStreamer.getContext()),
+ 4 /*size*/);
+}
+
+
+void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
+ if (Subtarget->isTargetMachO()) {
+ // All darwin targets use mach-o.
+ const TargetLoweringObjectFileMachO &TLOFMacho =
+ static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
+ MachineModuleInfoMachO &MMIMacho =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>();
+
+ // Output non-lazy-pointers for external and common global variables.
+ MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
+
+ if (!Stubs.empty()) {
+ // Switch with ".non_lazy_symbol_pointer" directive.
+ OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
+ EmitAlignment(2);
+
+ for (auto &Stub : Stubs)
+ emitNonLazySymbolPointer(OutStreamer, Stub.first, Stub.second);
+
+ Stubs.clear();
+ OutStreamer.AddBlankLine();
+ }
+
+ Stubs = MMIMacho.GetHiddenGVStubList();
+ if (!Stubs.empty()) {
+ OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
+ EmitAlignment(2);
+
+ for (auto &Stub : Stubs)
+ emitNonLazySymbolPointer(OutStreamer, Stub.first, Stub.second);
+
+ Stubs.clear();
+ OutStreamer.AddBlankLine();
+ }
+
+ // Funny Darwin hack: This flag tells the linker that no global symbols
+ // contain code that falls through to other global symbols (e.g. the obvious
+ // implementation of multiple entry points). If this doesn't occur, the
+ // linker can safely perform dead code stripping. Since LLVM never
+ // generates code that does this, it is always safe to set.
+ OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
+ }
+
+ // Emit a .data.rel section containing any stubs that were created.
+ if (Subtarget->isTargetELF()) {
+ const TargetLoweringObjectFileELF &TLOFELF =
+ static_cast<const TargetLoweringObjectFileELF &>(getObjFileLowering());
+
+ MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
+
+ // Output stubs for external and common global variables.
+ MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
+ if (!Stubs.empty()) {
+ OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
+ const DataLayout *TD = TM.getDataLayout();
+
+ for (auto &stub: Stubs) {
+ OutStreamer.EmitLabel(stub.first);
+ OutStreamer.EmitSymbolValue(stub.second.getPointer(),
+ TD->getPointerSize(0));
+ }
+ Stubs.clear();
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
+// FIXME:
+// The following seem like one-off assembler flags, but they actually need
+// to appear in the .ARM.attributes section in ELF.
+// Instead of subclassing the MCELFStreamer, we do the work here.
+
+static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU,
+ const ARMSubtarget *Subtarget) {
+ if (CPU == "xscale")
+ return ARMBuildAttrs::v5TEJ;
+
+ if (Subtarget->hasV8Ops())
+ return ARMBuildAttrs::v8;
+ else if (Subtarget->hasV7Ops()) {
+ if (Subtarget->isMClass() && Subtarget->hasThumb2DSP())
+ return ARMBuildAttrs::v7E_M;
+ return ARMBuildAttrs::v7;
+ } else if (Subtarget->hasV6T2Ops())
+ return ARMBuildAttrs::v6T2;
+ else if (Subtarget->hasV6MOps())
+ return ARMBuildAttrs::v6S_M;
+ else if (Subtarget->hasV6Ops())
+ return ARMBuildAttrs::v6;
+ else if (Subtarget->hasV5TEOps())
+ return ARMBuildAttrs::v5TE;
+ else if (Subtarget->hasV5TOps())
+ return ARMBuildAttrs::v5T;
+ else if (Subtarget->hasV4TOps())
+ return ARMBuildAttrs::v4T;
+ else
+ return ARMBuildAttrs::v4;
+}
+
+void ARMAsmPrinter::emitAttributes() {
+ MCTargetStreamer &TS = *OutStreamer.getTargetStreamer();
+ ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
+
+ ATS.switchVendor("aeabi");
+
+ std::string CPUString = Subtarget->getCPUString();
+
+ // FIXME: remove krait check when GNU tools support krait cpu
+ if (CPUString != "generic" && CPUString != "krait")
+ ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
+
+ ATS.emitAttribute(ARMBuildAttrs::CPU_arch,
+ getArchForCPU(CPUString, Subtarget));
+
+ // Tag_CPU_arch_profile must have the default value of 0 when "Architecture
+ // profile is not applicable (e.g. pre v7, or cross-profile code)".
+ if (Subtarget->hasV7Ops()) {
+ if (Subtarget->isAClass()) {
+ ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
+ ARMBuildAttrs::ApplicationProfile);
+ } else if (Subtarget->isRClass()) {
+ ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
+ ARMBuildAttrs::RealTimeProfile);
+ } else if (Subtarget->isMClass()) {
+ ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
+ ARMBuildAttrs::MicroControllerProfile);
+ }
+ }
+
+ ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, Subtarget->hasARMOps() ?
+ ARMBuildAttrs::Allowed : ARMBuildAttrs::Not_Allowed);
+ if (Subtarget->isThumb1Only()) {
+ ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
+ ARMBuildAttrs::Allowed);
+ } else if (Subtarget->hasThumb2()) {
+ ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
+ ARMBuildAttrs::AllowThumb32);
+ }
+
+ if (Subtarget->hasNEON()) {
+ /* NEON is not exactly a VFP architecture, but GAS emit one of
+ * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
+ if (Subtarget->hasFPARMv8()) {
+ if (Subtarget->hasCrypto())
+ ATS.emitFPU(ARM::CRYPTO_NEON_FP_ARMV8);
+ else
+ ATS.emitFPU(ARM::NEON_FP_ARMV8);
+ }
+ else if (Subtarget->hasVFP4())
+ ATS.emitFPU(ARM::NEON_VFPV4);
+ else
+ ATS.emitFPU(ARM::NEON);
+ // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
+ if (Subtarget->hasV8Ops())
+ ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
+ ARMBuildAttrs::AllowNeonARMv8);
+ } else {
+ if (Subtarget->hasFPARMv8())
+ ATS.emitFPU(ARM::FP_ARMV8);
+ else if (Subtarget->hasVFP4())
+ ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV4_D16 : ARM::VFPV4);
+ else if (Subtarget->hasVFP3())
+ ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV3_D16 : ARM::VFPV3);
+ else if (Subtarget->hasVFP2())
+ ATS.emitFPU(ARM::VFPV2);
+ }
+
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ // PIC specific attributes.
+ ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
+ ARMBuildAttrs::AddressRWPCRel);
+ ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
+ ARMBuildAttrs::AddressROPCRel);
+ ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
+ ARMBuildAttrs::AddressGOT);
+ } else {
+ // Allow direct addressing of imported data for all other relocation models.
+ ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
+ ARMBuildAttrs::AddressDirect);
+ }
+
+ // Signal various FP modes.
+ if (!TM.Options.UnsafeFPMath) {
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::Allowed);
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
+ ARMBuildAttrs::Allowed);
+ }
+
+ if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
+ ARMBuildAttrs::Allowed);
+ else
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
+ ARMBuildAttrs::AllowIEE754);
+
+ // FIXME: add more flags to ARMBuildAttributes.h
+ // 8-bytes alignment stuff.
+ ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
+ ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
+
+ // ABI_HardFP_use attribute to indicate single precision FP.
+ if (Subtarget->isFPOnlySP())
+ ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
+ ARMBuildAttrs::HardFPSinglePrecision);
+
+ // Hard float. Use both S and D registers and conform to AAPCS-VFP.
+ if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
+ ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
+
+ // FIXME: Should we signal R9 usage?
+
+ if (Subtarget->hasFP16())
+ ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
+
+ if (Subtarget->hasMPExtension())
+ ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
+
+ // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
+ // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
+ // It is not possible to produce DisallowDIV: if hwdiv is present in the base
+ // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
+ // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
+ // otherwise, the default value (AllowDIVIfExists) applies.
+ if (Subtarget->hasDivideInARMMode() && !Subtarget->hasV8Ops())
+ ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
+
+ if (MMI) {
+ if (const Module *SourceModule = MMI->getModule()) {
+ // ABI_PCS_wchar_t to indicate wchar_t width
+ // FIXME: There is no way to emit value 0 (wchar_t prohibited).
+ if (auto WCharWidthValue = cast_or_null<ConstantInt>(
+ SourceModule->getModuleFlag("wchar_size"))) {
+ int WCharWidth = WCharWidthValue->getZExtValue();
+ assert((WCharWidth == 2 || WCharWidth == 4) &&
+ "wchar_t width must be 2 or 4 bytes");
+ ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
+ }
+
+ // ABI_enum_size to indicate enum width
+ // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
+ // (all enums contain a value needing 32 bits to encode).
+ if (auto EnumWidthValue = cast_or_null<ConstantInt>(
+ SourceModule->getModuleFlag("min_enum_size"))) {
+ int EnumWidth = EnumWidthValue->getZExtValue();
+ assert((EnumWidth == 1 || EnumWidth == 4) &&
+ "Minimum enum width must be 1 or 4 bytes");
+ int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
+ ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
+ }
+ }
+ }
+
+ if (Subtarget->hasTrustZone() && Subtarget->hasVirtualization())
+ ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
+ ARMBuildAttrs::AllowTZVirtualization);
+ else if (Subtarget->hasTrustZone())
+ ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
+ ARMBuildAttrs::AllowTZ);
+ else if (Subtarget->hasVirtualization())
+ ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
+ ARMBuildAttrs::AllowVirtualization);
+
+ ATS.finishAttributeSection();
+}
+
+//===----------------------------------------------------------------------===//
+
+static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
+ unsigned LabelId, MCContext &Ctx) {
+
+ MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
+ + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
+ return Label;
+}
+
+static MCSymbolRefExpr::VariantKind
+getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
+ switch (Modifier) {
+ case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
+ case ARMCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD;
+ case ARMCP::TPOFF: return MCSymbolRefExpr::VK_TPOFF;
+ case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_GOTTPOFF;
+ case ARMCP::GOT: return MCSymbolRefExpr::VK_GOT;
+ case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_GOTOFF;
+ }
+ llvm_unreachable("Invalid ARMCPModifier!");
+}
+
+MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
+ unsigned char TargetFlags) {
+ if (Subtarget->isTargetMachO()) {
+ bool IsIndirect = (TargetFlags & ARMII::MO_NONLAZY) &&
+ Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
+
+ if (!IsIndirect)
+ return getSymbol(GV);
+
+ // FIXME: Remove this when Darwin transition to @GOT like syntax.
+ MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
+ MachineModuleInfoMachO &MMIMachO =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>();
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym)
+ : MMIMachO.getGVStubEntry(MCSym);
+ if (!StubSym.getPointer())
+ StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
+ !GV->hasInternalLinkage());
+ return MCSym;
+ } else if (Subtarget->isTargetCOFF()) {
+ assert(Subtarget->isTargetWindows() &&
+ "Windows is the only supported COFF target");
+
+ bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
+ if (!IsIndirect)
+ return getSymbol(GV);
+
+ SmallString<128> Name;
+ Name = "__imp_";
+ getNameWithPrefix(Name, GV);
+
+ return OutContext.GetOrCreateSymbol(Name);
+ } else if (Subtarget->isTargetELF()) {
+ return getSymbol(GV);
+ }
+ llvm_unreachable("unexpected target");
+}
+
+void ARMAsmPrinter::
+EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
+ const DataLayout *DL = TM.getDataLayout();
+ int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType());
+
+ ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
+
+ MCSymbol *MCSym;
+ if (ACPV->isLSDA()) {
+ SmallString<128> Str;
+ raw_svector_ostream OS(Str);
+ OS << DL->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
+ MCSym = OutContext.GetOrCreateSymbol(OS.str());
+ } else if (ACPV->isBlockAddress()) {
+ const BlockAddress *BA =
+ cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
+ MCSym = GetBlockAddressSymbol(BA);
+ } else if (ACPV->isGlobalValue()) {
+ const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
+
+ // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
+ // flag the global as MO_NONLAZY.
+ unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
+ MCSym = GetARMGVSymbol(GV, TF);
+ } else if (ACPV->isMachineBasicBlock()) {
+ const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
+ MCSym = MBB->getSymbol();
+ } else {
+ assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
+ const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
+ MCSym = GetExternalSymbolSymbol(Sym);
+ }
+
+ // Create an MCSymbol for the reference.
+ const MCExpr *Expr =
+ MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()),
+ OutContext);
+
+ if (ACPV->getPCAdjustment()) {
+ MCSymbol *PCLabel = getPICLabel(DL->getPrivateGlobalPrefix(),
+ getFunctionNumber(),
+ ACPV->getLabelId(),
+ OutContext);
+ const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext);
+ PCRelExpr =
+ MCBinaryExpr::CreateAdd(PCRelExpr,
+ MCConstantExpr::Create(ACPV->getPCAdjustment(),
+ OutContext),
+ OutContext);
+ if (ACPV->mustAddCurrentAddress()) {
+ // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
+ // label, so just emit a local label end reference that instead.
+ MCSymbol *DotSym = OutContext.CreateTempSymbol();
+ OutStreamer.EmitLabel(DotSym);
+ const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
+ PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext);
+ }
+ Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext);
+ }
+ OutStreamer.EmitValue(Expr, Size);
+}
+
+void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
+ unsigned Opcode = MI->getOpcode();
+ int OpNum = 1;
+ if (Opcode == ARM::BR_JTadd)
+ OpNum = 2;
+ else if (Opcode == ARM::BR_JTm)
+ OpNum = 3;
+
+ const MachineOperand &MO1 = MI->getOperand(OpNum);
+ const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
+ unsigned JTI = MO1.getIndex();
+
+ // Emit a label for the jump table.
+ MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
+ OutStreamer.EmitLabel(JTISymbol);
+
+ // Mark the jump table as data-in-code.
+ OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
+
+ // Emit each entry of the table.
+ const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
+
+ for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = JTBBs[i];
+ // Construct an MCExpr for the entry. We want a value of the form:
+ // (BasicBlockAddr - TableBeginAddr)
+ //
+ // For example, a table with entries jumping to basic blocks BB0 and BB1
+ // would look like:
+ // LJTI_0_0:
+ // .word (LBB0 - LJTI_0_0)
+ // .word (LBB1 - LJTI_0_0)
+ const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
+
+ if (TM.getRelocationModel() == Reloc::PIC_)
+ Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
+ OutContext),
+ OutContext);
+ // If we're generating a table of Thumb addresses in static relocation
+ // model, we need to add one to keep interworking correctly.
+ else if (AFI->isThumbFunction())
+ Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext),
+ OutContext);
+ OutStreamer.EmitValue(Expr, 4);
+ }
+ // Mark the end of jump table data-in-code region.
+ OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
+}
+
+void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
+ unsigned Opcode = MI->getOpcode();
+ int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
+ const MachineOperand &MO1 = MI->getOperand(OpNum);
+ const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
+ unsigned JTI = MO1.getIndex();
+
+ MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
+ OutStreamer.EmitLabel(JTISymbol);
+
+ // Emit each entry of the table.
+ const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
+ unsigned OffsetWidth = 4;
+ if (MI->getOpcode() == ARM::t2TBB_JT) {
+ OffsetWidth = 1;
+ // Mark the jump table as data-in-code.
+ OutStreamer.EmitDataRegion(MCDR_DataRegionJT8);
+ } else if (MI->getOpcode() == ARM::t2TBH_JT) {
+ OffsetWidth = 2;
+ // Mark the jump table as data-in-code.
+ OutStreamer.EmitDataRegion(MCDR_DataRegionJT16);
+ }
+
+ for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = JTBBs[i];
+ const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
+ OutContext);
+ // If this isn't a TBB or TBH, the entries are direct branch instructions.
+ if (OffsetWidth == 4) {
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2B)
+ .addExpr(MBBSymbolExpr)
+ .addImm(ARMCC::AL)
+ .addReg(0));
+ continue;
+ }
+ // Otherwise it's an offset from the dispatch instruction. Construct an
+ // MCExpr for the entry. We want a value of the form:
+ // (BasicBlockAddr - TableBeginAddr) / 2
+ //
+ // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
+ // would look like:
+ // LJTI_0_0:
+ // .byte (LBB0 - LJTI_0_0) / 2
+ // .byte (LBB1 - LJTI_0_0) / 2
+ const MCExpr *Expr =
+ MCBinaryExpr::CreateSub(MBBSymbolExpr,
+ MCSymbolRefExpr::Create(JTISymbol, OutContext),
+ OutContext);
+ Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
+ OutContext);
+ OutStreamer.EmitValue(Expr, OffsetWidth);
+ }
+ // Mark the end of jump table data-in-code region. 32-bit offsets use
+ // actual branch instructions here, so we don't mark those as a data-region
+ // at all.
+ if (OffsetWidth != 4)
+ OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
+}
+
+void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
+ assert(MI->getFlag(MachineInstr::FrameSetup) &&
+ "Only instruction which are involved into frame setup code are allowed");
+
+ MCTargetStreamer &TS = *OutStreamer.getTargetStreamer();
+ ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
+ const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
+
+ unsigned FramePtr = RegInfo->getFrameRegister(MF);
+ unsigned Opc = MI->getOpcode();
+ unsigned SrcReg, DstReg;
+
+ if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
+ // Two special cases:
+ // 1) tPUSH does not have src/dst regs.
+ // 2) for Thumb1 code we sometimes materialize the constant via constpool
+ // load. Yes, this is pretty fragile, but for now I don't see better
+ // way... :(
+ SrcReg = DstReg = ARM::SP;
+ } else {
+ SrcReg = MI->getOperand(1).getReg();
+ DstReg = MI->getOperand(0).getReg();
+ }
+
+ // Try to figure out the unwinding opcode out of src / dst regs.
+ if (MI->mayStore()) {
+ // Register saves.
+ assert(DstReg == ARM::SP &&
+ "Only stack pointer as a destination reg is supported");
+
+ SmallVector<unsigned, 4> RegList;
+ // Skip src & dst reg, and pred ops.
+ unsigned StartOp = 2 + 2;
+ // Use all the operands.
+ unsigned NumOffset = 0;
+
+ switch (Opc) {
+ default:
+ MI->dump();
+ llvm_unreachable("Unsupported opcode for unwinding information");
+ case ARM::tPUSH:
+ // Special case here: no src & dst reg, but two extra imp ops.
+ StartOp = 2; NumOffset = 2;
+ case ARM::STMDB_UPD:
+ case ARM::t2STMDB_UPD:
+ case ARM::VSTMDDB_UPD:
+ assert(SrcReg == ARM::SP &&
+ "Only stack pointer as a source reg is supported");
+ for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
+ i != NumOps; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ // Actually, there should never be any impdef stuff here. Skip it
+ // temporary to workaround PR11902.
+ if (MO.isImplicit())
+ continue;
+ RegList.push_back(MO.getReg());
+ }
+ break;
+ case ARM::STR_PRE_IMM:
+ case ARM::STR_PRE_REG:
+ case ARM::t2STR_PRE:
+ assert(MI->getOperand(2).getReg() == ARM::SP &&
+ "Only stack pointer as a source reg is supported");
+ RegList.push_back(SrcReg);
+ break;
+ }
+ if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
+ ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
+ } else {
+ // Changes of stack / frame pointer.
+ if (SrcReg == ARM::SP) {
+ int64_t Offset = 0;
+ switch (Opc) {
+ default:
+ MI->dump();
+ llvm_unreachable("Unsupported opcode for unwinding information");
+ case ARM::MOVr:
+ case ARM::tMOVr:
+ Offset = 0;
+ break;
+ case ARM::ADDri:
+ Offset = -MI->getOperand(2).getImm();
+ break;
+ case ARM::SUBri:
+ case ARM::t2SUBri:
+ Offset = MI->getOperand(2).getImm();
+ break;
+ case ARM::tSUBspi:
+ Offset = MI->getOperand(2).getImm()*4;
+ break;
+ case ARM::tADDspi:
+ case ARM::tADDrSPi:
+ Offset = -MI->getOperand(2).getImm()*4;
+ break;
+ case ARM::tLDRpci: {
+ // Grab the constpool index and check, whether it corresponds to
+ // original or cloned constpool entry.
+ unsigned CPI = MI->getOperand(1).getIndex();
+ const MachineConstantPool *MCP = MF.getConstantPool();
+ if (CPI >= MCP->getConstants().size())
+ CPI = AFI.getOriginalCPIdx(CPI);
+ assert(CPI != -1U && "Invalid constpool index");
+
+ // Derive the actual offset.
+ const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
+ assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
+ // FIXME: Check for user, it should be "add" instruction!
+ Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
+ break;
+ }
+ }
+
+ if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
+ if (DstReg == FramePtr && FramePtr != ARM::SP)
+ // Set-up of the frame pointer. Positive values correspond to "add"
+ // instruction.
+ ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
+ else if (DstReg == ARM::SP) {
+ // Change of SP by an offset. Positive values correspond to "sub"
+ // instruction.
+ ATS.emitPad(Offset);
+ } else {
+ // Move of SP to a register. Positive values correspond to an "add"
+ // instruction.
+ ATS.emitMovSP(DstReg, -Offset);
+ }
+ }
+ } else if (DstReg == ARM::SP) {
+ MI->dump();
+ llvm_unreachable("Unsupported opcode for unwinding information");
+ }
+ else {
+ MI->dump();
+ llvm_unreachable("Unsupported opcode for unwinding information");
+ }
+ }
+}
+
+// Simple pseudo-instructions have their lowering (with expansion to real
+// instructions) auto-generated.
+#include "ARMGenMCPseudoLowering.inc"
+
+void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ const DataLayout *DL = TM.getDataLayout();
+
+ // If we just ended a constant pool, mark it as such.
+ if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
+ OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
+ InConstantPool = false;
+ }
+
+ // Emit unwinding stuff for frame-related instructions
+ if (Subtarget->isTargetEHABICompatible() &&
+ MI->getFlag(MachineInstr::FrameSetup))
+ EmitUnwindingInstruction(MI);
+
+ // Do any auto-generated pseudo lowerings.
+ if (emitPseudoExpansionLowering(OutStreamer, MI))
+ return;
+
+ assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
+ "Pseudo flag setting opcode should be expanded early");
+
+ // Check for manual lowerings.
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
+ case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
+ case ARM::LEApcrel:
+ case ARM::tLEApcrel:
+ case ARM::t2LEApcrel: {
+ // FIXME: Need to also handle globals and externals
+ MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
+ EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() ==
+ ARM::t2LEApcrel ? ARM::t2ADR
+ : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
+ : ARM::ADR))
+ .addReg(MI->getOperand(0).getReg())
+ .addExpr(MCSymbolRefExpr::Create(CPISymbol, OutContext))
+ // Add predicate operands.
+ .addImm(MI->getOperand(2).getImm())
+ .addReg(MI->getOperand(3).getReg()));
+ return;
+ }
+ case ARM::LEApcrelJT:
+ case ARM::tLEApcrelJT:
+ case ARM::t2LEApcrelJT: {
+ MCSymbol *JTIPICSymbol =
+ GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(),
+ MI->getOperand(2).getImm());
+ EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() ==
+ ARM::t2LEApcrelJT ? ARM::t2ADR
+ : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
+ : ARM::ADR))
+ .addReg(MI->getOperand(0).getReg())
+ .addExpr(MCSymbolRefExpr::Create(JTIPICSymbol, OutContext))
+ // Add predicate operands.
+ .addImm(MI->getOperand(3).getImm())
+ .addReg(MI->getOperand(4).getReg()));
+ return;
+ }
+ // Darwin call instructions are just normal call instructions with different
+ // clobber semantics (they clobber R9).
+ case ARM::BX_CALL: {
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
+ .addReg(ARM::LR)
+ .addReg(ARM::PC)
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0)
+ // Add 's' bit operand (always reg0 for this)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX)
+ .addReg(MI->getOperand(0).getReg()));
+ return;
+ }
+ case ARM::tBX_CALL: {
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
+ .addReg(ARM::LR)
+ .addReg(ARM::PC)
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX)
+ .addReg(MI->getOperand(0).getReg())
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+ return;
+ }
+ case ARM::BMOVPCRX_CALL: {
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
+ .addReg(ARM::LR)
+ .addReg(ARM::PC)
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0)
+ // Add 's' bit operand (always reg0 for this)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
+ .addReg(ARM::PC)
+ .addReg(MI->getOperand(0).getReg())
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0)
+ // Add 's' bit operand (always reg0 for this)
+ .addReg(0));
+ return;
+ }
+ case ARM::BMOVPCB_CALL: {
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr)
+ .addReg(ARM::LR)
+ .addReg(ARM::PC)
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0)
+ // Add 's' bit operand (always reg0 for this)
+ .addReg(0));
+
+ const MachineOperand &Op = MI->getOperand(0);
+ const GlobalValue *GV = Op.getGlobal();
+ const unsigned TF = Op.getTargetFlags();
+ MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
+ const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::Bcc)
+ .addExpr(GVSymExpr)
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+ return;
+ }
+ case ARM::MOVi16_ga_pcrel:
+ case ARM::t2MOVi16_ga_pcrel: {
+ MCInst TmpInst;
+ TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
+ TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
+
+ unsigned TF = MI->getOperand(1).getTargetFlags();
+ const GlobalValue *GV = MI->getOperand(1).getGlobal();
+ MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
+ const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
+
+ MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(),
+ getFunctionNumber(),
+ MI->getOperand(2).getImm(), OutContext);
+ const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
+ unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
+ const MCExpr *PCRelExpr =
+ ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr,
+ MCBinaryExpr::CreateAdd(LabelSymExpr,
+ MCConstantExpr::Create(PCAdj, OutContext),
+ OutContext), OutContext), OutContext);
+ TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
+
+ // Add predicate operands.
+ TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ TmpInst.addOperand(MCOperand::CreateReg(0));
+ // Add 's' bit operand (always reg0 for this)
+ TmpInst.addOperand(MCOperand::CreateReg(0));
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+ case ARM::MOVTi16_ga_pcrel:
+ case ARM::t2MOVTi16_ga_pcrel: {
+ MCInst TmpInst;
+ TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
+ ? ARM::MOVTi16 : ARM::t2MOVTi16);
+ TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
+ TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
+
+ unsigned TF = MI->getOperand(2).getTargetFlags();
+ const GlobalValue *GV = MI->getOperand(2).getGlobal();
+ MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
+ const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
+
+ MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(),
+ getFunctionNumber(),
+ MI->getOperand(3).getImm(), OutContext);
+ const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
+ unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
+ const MCExpr *PCRelExpr =
+ ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr,
+ MCBinaryExpr::CreateAdd(LabelSymExpr,
+ MCConstantExpr::Create(PCAdj, OutContext),
+ OutContext), OutContext), OutContext);
+ TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
+ // Add predicate operands.
+ TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ TmpInst.addOperand(MCOperand::CreateReg(0));
+ // Add 's' bit operand (always reg0 for this)
+ TmpInst.addOperand(MCOperand::CreateReg(0));
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+ case ARM::tPICADD: {
+ // This is a pseudo op for a label + instruction sequence, which looks like:
+ // LPC0:
+ // add r0, pc
+ // This adds the address of LPC0 to r0.
+
+ // Emit the label.
+ OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(),
+ getFunctionNumber(), MI->getOperand(2).getImm(),
+ OutContext));
+
+ // Form and emit the add.
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDhirr)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(ARM::PC)
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+ return;
+ }
+ case ARM::PICADD: {
+ // This is a pseudo op for a label + instruction sequence, which looks like:
+ // LPC0:
+ // add r0, pc, r0
+ // This adds the address of LPC0 to r0.
+
+ // Emit the label.
+ OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(),
+ getFunctionNumber(), MI->getOperand(2).getImm(),
+ OutContext));
+
+ // Form and emit the add.
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(ARM::PC)
+ .addReg(MI->getOperand(1).getReg())
+ // Add predicate operands.
+ .addImm(MI->getOperand(3).getImm())
+ .addReg(MI->getOperand(4).getReg())
+ // Add 's' bit operand (always reg0 for this)
+ .addReg(0));
+ return;
+ }
+ case ARM::PICSTR:
+ case ARM::PICSTRB:
+ case ARM::PICSTRH:
+ case ARM::PICLDR:
+ case ARM::PICLDRB:
+ case ARM::PICLDRH:
+ case ARM::PICLDRSB:
+ case ARM::PICLDRSH: {
+ // This is a pseudo op for a label + instruction sequence, which looks like:
+ // LPC0:
+ // OP r0, [pc, r0]
+ // The LCP0 label is referenced by a constant pool entry in order to get
+ // a PC-relative address at the ldr instruction.
+
+ // Emit the label.
+ OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(),
+ getFunctionNumber(), MI->getOperand(2).getImm(),
+ OutContext));
+
+ // Form and emit the load
+ unsigned Opcode;
+ switch (MI->getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected opcode!");
+ case ARM::PICSTR: Opcode = ARM::STRrs; break;
+ case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
+ case ARM::PICSTRH: Opcode = ARM::STRH; break;
+ case ARM::PICLDR: Opcode = ARM::LDRrs; break;
+ case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
+ case ARM::PICLDRH: Opcode = ARM::LDRH; break;
+ case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
+ case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
+ }
+ EmitToStreamer(OutStreamer, MCInstBuilder(Opcode)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(ARM::PC)
+ .addReg(MI->getOperand(1).getReg())
+ .addImm(0)
+ // Add predicate operands.
+ .addImm(MI->getOperand(3).getImm())
+ .addReg(MI->getOperand(4).getReg()));
+
+ return;
+ }
+ case ARM::CONSTPOOL_ENTRY: {
+ /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
+ /// in the function. The first operand is the ID# for this instruction, the
+ /// second is the index into the MachineConstantPool that this is, the third
+ /// is the size in bytes of this constant pool entry.
+ /// The required alignment is specified on the basic block holding this MI.
+ unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
+ unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
+
+ // If this is the first entry of the pool, mark it.
+ if (!InConstantPool) {
+ OutStreamer.EmitDataRegion(MCDR_DataRegion);
+ InConstantPool = true;
+ }
+
+ OutStreamer.EmitLabel(GetCPISymbol(LabelId));
+
+ const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
+ if (MCPE.isMachineConstantPoolEntry())
+ EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
+ else
+ EmitGlobalConstant(MCPE.Val.ConstVal);
+ return;
+ }
+ case ARM::t2BR_JT: {
+ // Lower and emit the instruction itself, then the jump table following it.
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
+ .addReg(ARM::PC)
+ .addReg(MI->getOperand(0).getReg())
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ // Output the data for the jump table itself
+ EmitJump2Table(MI);
+ return;
+ }
+ case ARM::t2TBB_JT: {
+ // Lower and emit the instruction itself, then the jump table following it.
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBB)
+ .addReg(ARM::PC)
+ .addReg(MI->getOperand(0).getReg())
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ // Output the data for the jump table itself
+ EmitJump2Table(MI);
+ // Make sure the next instruction is 2-byte aligned.
+ EmitAlignment(1);
+ return;
+ }
+ case ARM::t2TBH_JT: {
+ // Lower and emit the instruction itself, then the jump table following it.
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBH)
+ .addReg(ARM::PC)
+ .addReg(MI->getOperand(0).getReg())
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ // Output the data for the jump table itself
+ EmitJump2Table(MI);
+ return;
+ }
+ case ARM::tBR_JTr:
+ case ARM::BR_JTr: {
+ // Lower and emit the instruction itself, then the jump table following it.
+ // mov pc, target
+ MCInst TmpInst;
+ unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
+ ARM::MOVr : ARM::tMOVr;
+ TmpInst.setOpcode(Opc);
+ TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
+ TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
+ // Add predicate operands.
+ TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ TmpInst.addOperand(MCOperand::CreateReg(0));
+ // Add 's' bit operand (always reg0 for this)
+ if (Opc == ARM::MOVr)
+ TmpInst.addOperand(MCOperand::CreateReg(0));
+ EmitToStreamer(OutStreamer, TmpInst);
+
+ // Make sure the Thumb jump table is 4-byte aligned.
+ if (Opc == ARM::tMOVr)
+ EmitAlignment(2);
+
+ // Output the data for the jump table itself
+ EmitJumpTable(MI);
+ return;
+ }
+ case ARM::BR_JTm: {
+ // Lower and emit the instruction itself, then the jump table following it.
+ // ldr pc, target
+ MCInst TmpInst;
+ if (MI->getOperand(1).getReg() == 0) {
+ // literal offset
+ TmpInst.setOpcode(ARM::LDRi12);
+ TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
+ TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
+ TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
+ } else {
+ TmpInst.setOpcode(ARM::LDRrs);
+ TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
+ TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
+ TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
+ TmpInst.addOperand(MCOperand::CreateImm(0));
+ }
+ // Add predicate operands.
+ TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ TmpInst.addOperand(MCOperand::CreateReg(0));
+ EmitToStreamer(OutStreamer, TmpInst);
+
+ // Output the data for the jump table itself
+ EmitJumpTable(MI);
+ return;
+ }
+ case ARM::BR_JTadd: {
+ // Lower and emit the instruction itself, then the jump table following it.
+ // add pc, target, idx
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr)
+ .addReg(ARM::PC)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg())
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0)
+ // Add 's' bit operand (always reg0 for this)
+ .addReg(0));
+
+ // Output the data for the jump table itself
+ EmitJumpTable(MI);
+ return;
+ }
+ case ARM::TRAP: {
+ // Non-Darwin binutils don't yet support the "trap" mnemonic.
+ // FIXME: Remove this special case when they do.
+ if (!Subtarget->isTargetMachO()) {
+ //.long 0xe7ffdefe @ trap
+ uint32_t Val = 0xe7ffdefeUL;
+ OutStreamer.AddComment("trap");
+ OutStreamer.EmitIntValue(Val, 4);
+ return;
+ }
+ break;
+ }
+ case ARM::TRAPNaCl: {
+ //.long 0xe7fedef0 @ trap
+ uint32_t Val = 0xe7fedef0UL;
+ OutStreamer.AddComment("trap");
+ OutStreamer.EmitIntValue(Val, 4);
+ return;
+ }
+ case ARM::tTRAP: {
+ // Non-Darwin binutils don't yet support the "trap" mnemonic.
+ // FIXME: Remove this special case when they do.
+ if (!Subtarget->isTargetMachO()) {
+ //.short 57086 @ trap
+ uint16_t Val = 0xdefe;
+ OutStreamer.AddComment("trap");
+ OutStreamer.EmitIntValue(Val, 2);
+ return;
+ }
+ break;
+ }
+ case ARM::t2Int_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp_nofp:
+ case ARM::tInt_eh_sjlj_setjmp: {
+ // Two incoming args: GPR:$src, GPR:$val
+ // mov $val, pc
+ // adds $val, #7
+ // str $val, [$src, #4]
+ // movs r0, #0
+ // b 1f
+ // movs r0, #1
+ // 1:
+ unsigned SrcReg = MI->getOperand(0).getReg();
+ unsigned ValReg = MI->getOperand(1).getReg();
+ MCSymbol *Label = GetARMSJLJEHLabel();
+ OutStreamer.AddComment("eh_setjmp begin");
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
+ .addReg(ValReg)
+ .addReg(ARM::PC)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDi3)
+ .addReg(ValReg)
+ // 's' bit operand
+ .addReg(ARM::CPSR)
+ .addReg(ValReg)
+ .addImm(7)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tSTRi)
+ .addReg(ValReg)
+ .addReg(SrcReg)
+ // The offset immediate is #4. The operand value is scaled by 4 for the
+ // tSTR instruction.
+ .addImm(1)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8)
+ .addReg(ARM::R0)
+ .addReg(ARM::CPSR)
+ .addImm(0)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tB)
+ .addExpr(SymbolExpr)
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ OutStreamer.AddComment("eh_setjmp end");
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8)
+ .addReg(ARM::R0)
+ .addReg(ARM::CPSR)
+ .addImm(1)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ OutStreamer.EmitLabel(Label);
+ return;
+ }
+
+ case ARM::Int_eh_sjlj_setjmp_nofp:
+ case ARM::Int_eh_sjlj_setjmp: {
+ // Two incoming args: GPR:$src, GPR:$val
+ // add $val, pc, #8
+ // str $val, [$src, #+4]
+ // mov r0, #0
+ // add pc, pc, #0
+ // mov r0, #1
+ unsigned SrcReg = MI->getOperand(0).getReg();
+ unsigned ValReg = MI->getOperand(1).getReg();
+
+ OutStreamer.AddComment("eh_setjmp begin");
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri)
+ .addReg(ValReg)
+ .addReg(ARM::PC)
+ .addImm(8)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0)
+ // 's' bit operand (always reg0 for this).
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::STRi12)
+ .addReg(ValReg)
+ .addReg(SrcReg)
+ .addImm(4)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi)
+ .addReg(ARM::R0)
+ .addImm(0)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0)
+ // 's' bit operand (always reg0 for this).
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri)
+ .addReg(ARM::PC)
+ .addReg(ARM::PC)
+ .addImm(0)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0)
+ // 's' bit operand (always reg0 for this).
+ .addReg(0));
+
+ OutStreamer.AddComment("eh_setjmp end");
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi)
+ .addReg(ARM::R0)
+ .addImm(1)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0)
+ // 's' bit operand (always reg0 for this).
+ .addReg(0));
+ return;
+ }
+ case ARM::Int_eh_sjlj_longjmp: {
+ // ldr sp, [$src, #8]
+ // ldr $scratch, [$src, #4]
+ // ldr r7, [$src]
+ // bx $scratch
+ unsigned SrcReg = MI->getOperand(0).getReg();
+ unsigned ScratchReg = MI->getOperand(1).getReg();
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12)
+ .addReg(ARM::SP)
+ .addReg(SrcReg)
+ .addImm(8)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12)
+ .addReg(ScratchReg)
+ .addReg(SrcReg)
+ .addImm(4)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12)
+ .addReg(ARM::R7)
+ .addReg(SrcReg)
+ .addImm(0)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX)
+ .addReg(ScratchReg)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+ return;
+ }
+ case ARM::tInt_eh_sjlj_longjmp: {
+ // ldr $scratch, [$src, #8]
+ // mov sp, $scratch
+ // ldr $scratch, [$src, #4]
+ // ldr r7, [$src]
+ // bx $scratch
+ unsigned SrcReg = MI->getOperand(0).getReg();
+ unsigned ScratchReg = MI->getOperand(1).getReg();
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi)
+ .addReg(ScratchReg)
+ .addReg(SrcReg)
+ // The offset immediate is #8. The operand value is scaled by 4 for the
+ // tLDR instruction.
+ .addImm(2)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
+ .addReg(ARM::SP)
+ .addReg(ScratchReg)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi)
+ .addReg(ScratchReg)
+ .addReg(SrcReg)
+ .addImm(1)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi)
+ .addReg(ARM::R7)
+ .addReg(SrcReg)
+ .addImm(0)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX)
+ .addReg(ScratchReg)
+ // Predicate.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+ return;
+ }
+ }
+
+ MCInst TmpInst;
+ LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
+
+ EmitToStreamer(OutStreamer, TmpInst);
+}
+
+//===----------------------------------------------------------------------===//
+// Target Registry Stuff
+//===----------------------------------------------------------------------===//
+
+// Force static initialization.
+extern "C" void LLVMInitializeARMAsmPrinter() {
+ RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget);
+ RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget);
+ RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget);
+ RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget);
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.h b/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.h
new file mode 100644
index 0000000..7c103c6
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.h
@@ -0,0 +1,126 @@
+//===-- ARMAsmPrinter.h - ARM implementation of AsmPrinter ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMASMPRINTER_H
+#define ARMASMPRINTER_H
+
+#include "ARMSubtarget.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+class ARMFunctionInfo;
+class MCOperand;
+class MachineConstantPool;
+class MachineOperand;
+
+namespace ARM {
+ enum DW_ISA {
+ DW_ISA_ARM_thumb = 1,
+ DW_ISA_ARM_arm = 2
+ };
+}
+
+class LLVM_LIBRARY_VISIBILITY ARMAsmPrinter : public AsmPrinter {
+
+ /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
+ /// make the right decision when printing asm code for different targets.
+ const ARMSubtarget *Subtarget;
+
+ /// AFI - Keep a pointer to ARMFunctionInfo for the current
+ /// MachineFunction.
+ ARMFunctionInfo *AFI;
+
+ /// MCP - Keep a pointer to constantpool entries of the current
+ /// MachineFunction.
+ const MachineConstantPool *MCP;
+
+ /// InConstantPool - Maintain state when emitting a sequence of constant
+ /// pool entries so we can properly mark them as data regions.
+ bool InConstantPool;
+public:
+ explicit ARMAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer), AFI(nullptr), MCP(nullptr),
+ InConstantPool(false) {
+ Subtarget = &TM.getSubtarget<ARMSubtarget>();
+ }
+
+ const char *getPassName() const override {
+ return "ARM Assembly / Object Emitter";
+ }
+
+ void printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O,
+ const char *Modifier = nullptr);
+
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+
+ void emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
+ const MCSubtargetInfo *EndInfo) const override;
+
+ void EmitJumpTable(const MachineInstr *MI);
+ void EmitJump2Table(const MachineInstr *MI);
+ void EmitInstruction(const MachineInstr *MI) override;
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+ void EmitConstantPool() override {
+ // we emit constant pools customly!
+ }
+ void EmitFunctionBodyEnd() override;
+ void EmitFunctionEntryLabel() override;
+ void EmitStartOfAsmFile(Module &M) override;
+ void EmitEndOfAsmFile(Module &M) override;
+ void EmitXXStructor(const Constant *CV) override;
+
+ // lowerOperand - Convert a MachineOperand into the equivalent MCOperand.
+ bool lowerOperand(const MachineOperand &MO, MCOperand &MCOp);
+
+private:
+ // Helpers for EmitStartOfAsmFile() and EmitEndOfAsmFile()
+ void emitAttributes();
+
+ // Generic helper used to emit e.g. ARMv5 mul pseudos
+ void EmitPatchedInstruction(const MachineInstr *MI, unsigned TargetOpc);
+
+ void EmitUnwindingInstruction(const MachineInstr *MI);
+
+ // emitPseudoExpansionLowering - tblgen'erated.
+ bool emitPseudoExpansionLowering(MCStreamer &OutStreamer,
+ const MachineInstr *MI);
+
+public:
+ unsigned getISAEncoding() override {
+ // ARM/Darwin adds ISA to the DWARF info for each function.
+ if (!Subtarget->isTargetMachO())
+ return 0;
+ return Subtarget->isThumb() ?
+ ARM::DW_ISA_ARM_thumb : ARM::DW_ISA_ARM_arm;
+ }
+
+private:
+ MCOperand GetSymbolRef(const MachineOperand &MO, const MCSymbol *Symbol);
+ MCSymbol *GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const;
+
+ MCSymbol *GetARMSJLJEHLabel() const;
+
+ MCSymbol *GetARMGVSymbol(const GlobalValue *GV, unsigned char TargetFlags);
+
+public:
+ /// EmitMachineConstantPoolValue - Print a machine constantpool value to
+ /// the .s file.
+ void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) override;
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
new file mode 100644
index 0000000..0288db9
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
@@ -0,0 +1,4403 @@
+//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Base ARM implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMFeatures.h"
+#include "ARMHazardRecognizer.h"
+#include "ARMMachineFunctionInfo.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-instrinfo"
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "ARMGenInstrInfo.inc"
+
+static cl::opt<bool>
+EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
+ cl::desc("Enable ARM 2-addr to 3-addr conv"));
+
+static cl::opt<bool>
+WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
+ cl::desc("Widen ARM vmovs to vmovd when possible"));
+
+static cl::opt<unsigned>
+SwiftPartialUpdateClearance("swift-partial-update-clearance",
+ cl::Hidden, cl::init(12),
+ cl::desc("Clearance before partial register updates"));
+
+/// ARM_MLxEntry - Record information about MLA / MLS instructions.
+struct ARM_MLxEntry {
+ uint16_t MLxOpc; // MLA / MLS opcode
+ uint16_t MulOpc; // Expanded multiplication opcode
+ uint16_t AddSubOpc; // Expanded add / sub opcode
+ bool NegAcc; // True if the acc is negated before the add / sub.
+ bool HasLane; // True if instruction has an extra "lane" operand.
+};
+
+static const ARM_MLxEntry ARM_MLxTable[] = {
+ // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
+ // fp scalar ops
+ { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
+ { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
+ { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
+ { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
+ { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
+ { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
+ { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
+ { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
+
+ // fp SIMD ops
+ { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
+ { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
+ { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
+ { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
+ { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
+ { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
+ { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
+ { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
+};
+
+ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
+ : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
+ Subtarget(STI) {
+ for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
+ if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
+ assert(false && "Duplicated entries?");
+ MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
+ MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
+ }
+}
+
+// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
+// currently defaults to no prepass hazard recognizer.
+ScheduleHazardRecognizer *
+ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
+ const ScheduleDAG *DAG) const {
+ if (usePreRAHazardRecognizer()) {
+ const InstrItineraryData *II =
+ &static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
+ return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
+ }
+ return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
+}
+
+ScheduleHazardRecognizer *ARMBaseInstrInfo::
+CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const {
+ if (Subtarget.isThumb2() || Subtarget.hasVFP2())
+ return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
+ return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
+}
+
+MachineInstr *
+ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ // FIXME: Thumb2 support.
+
+ if (!EnableARM3Addr)
+ return nullptr;
+
+ MachineInstr *MI = MBBI;
+ MachineFunction &MF = *MI->getParent()->getParent();
+ uint64_t TSFlags = MI->getDesc().TSFlags;
+ bool isPre = false;
+ switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
+ default: return nullptr;
+ case ARMII::IndexModePre:
+ isPre = true;
+ break;
+ case ARMII::IndexModePost:
+ break;
+ }
+
+ // Try splitting an indexed load/store to an un-indexed one plus an add/sub
+ // operation.
+ unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
+ if (MemOpc == 0)
+ return nullptr;
+
+ MachineInstr *UpdateMI = nullptr;
+ MachineInstr *MemMI = nullptr;
+ unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned NumOps = MCID.getNumOperands();
+ bool isLoad = !MI->mayStore();
+ const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
+ const MachineOperand &Base = MI->getOperand(2);
+ const MachineOperand &Offset = MI->getOperand(NumOps-3);
+ unsigned WBReg = WB.getReg();
+ unsigned BaseReg = Base.getReg();
+ unsigned OffReg = Offset.getReg();
+ unsigned OffImm = MI->getOperand(NumOps-2).getImm();
+ ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
+ switch (AddrMode) {
+ default: llvm_unreachable("Unknown indexed op!");
+ case ARMII::AddrMode2: {
+ bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
+ unsigned Amt = ARM_AM::getAM2Offset(OffImm);
+ if (OffReg == 0) {
+ if (ARM_AM::getSOImmVal(Amt) == -1)
+ // Can't encode it in a so_imm operand. This transformation will
+ // add more than 1 instruction. Abandon!
+ return nullptr;
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+ .addReg(BaseReg).addImm(Amt)
+ .addImm(Pred).addReg(0).addReg(0);
+ } else if (Amt != 0) {
+ ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
+ unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
+ .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
+ .addImm(Pred).addReg(0).addReg(0);
+ } else
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+ .addReg(BaseReg).addReg(OffReg)
+ .addImm(Pred).addReg(0).addReg(0);
+ break;
+ }
+ case ARMII::AddrMode3 : {
+ bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
+ unsigned Amt = ARM_AM::getAM3Offset(OffImm);
+ if (OffReg == 0)
+ // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+ .addReg(BaseReg).addImm(Amt)
+ .addImm(Pred).addReg(0).addReg(0);
+ else
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+ .addReg(BaseReg).addReg(OffReg)
+ .addImm(Pred).addReg(0).addReg(0);
+ break;
+ }
+ }
+
+ std::vector<MachineInstr*> NewMIs;
+ if (isPre) {
+ if (isLoad)
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc), MI->getOperand(0).getReg())
+ .addReg(WBReg).addImm(0).addImm(Pred);
+ else
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc)).addReg(MI->getOperand(1).getReg())
+ .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
+ NewMIs.push_back(MemMI);
+ NewMIs.push_back(UpdateMI);
+ } else {
+ if (isLoad)
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc), MI->getOperand(0).getReg())
+ .addReg(BaseReg).addImm(0).addImm(Pred);
+ else
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc)).addReg(MI->getOperand(1).getReg())
+ .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
+ if (WB.isDead())
+ UpdateMI->getOperand(0).setIsDead();
+ NewMIs.push_back(UpdateMI);
+ NewMIs.push_back(MemMI);
+ }
+
+ // Transfer LiveVariables states, kill / dead info.
+ if (LV) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+ unsigned Reg = MO.getReg();
+
+ LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
+ if (MO.isDef()) {
+ MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
+ if (MO.isDead())
+ LV->addVirtualRegisterDead(Reg, NewMI);
+ }
+ if (MO.isUse() && MO.isKill()) {
+ for (unsigned j = 0; j < 2; ++j) {
+ // Look at the two new MI's in reverse order.
+ MachineInstr *NewMI = NewMIs[j];
+ if (!NewMI->readsRegister(Reg))
+ continue;
+ LV->addVirtualRegisterKilled(Reg, NewMI);
+ if (VI.removeKill(MI))
+ VI.Kills.push_back(NewMI);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ MFI->insert(MBBI, NewMIs[1]);
+ MFI->insert(MBBI, NewMIs[0]);
+ return NewMIs[0];
+}
+
+// Branch analysis.
+bool
+ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ TBB = nullptr;
+ FBB = nullptr;
+
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return false; // Empty blocks are easy.
+ --I;
+
+ // Walk backwards from the end of the basic block until the branch is
+ // analyzed or we give up.
+ while (isPredicated(I) || I->isTerminator() || I->isDebugValue()) {
+
+ // Flag to be raised on unanalyzeable instructions. This is useful in cases
+ // where we want to clean up on the end of the basic block before we bail
+ // out.
+ bool CantAnalyze = false;
+
+ // Skip over DEBUG values and predicated nonterminators.
+ while (I->isDebugValue() || !I->isTerminator()) {
+ if (I == MBB.begin())
+ return false;
+ --I;
+ }
+
+ if (isIndirectBranchOpcode(I->getOpcode()) ||
+ isJumpTableBranchOpcode(I->getOpcode())) {
+ // Indirect branches and jump tables can't be analyzed, but we still want
+ // to clean up any instructions at the tail of the basic block.
+ CantAnalyze = true;
+ } else if (isUncondBranchOpcode(I->getOpcode())) {
+ TBB = I->getOperand(0).getMBB();
+ } else if (isCondBranchOpcode(I->getOpcode())) {
+ // Bail out if we encounter multiple conditional branches.
+ if (!Cond.empty())
+ return true;
+
+ assert(!FBB && "FBB should have been null.");
+ FBB = TBB;
+ TBB = I->getOperand(0).getMBB();
+ Cond.push_back(I->getOperand(1));
+ Cond.push_back(I->getOperand(2));
+ } else if (I->isReturn()) {
+ // Returns can't be analyzed, but we should run cleanup.
+ CantAnalyze = !isPredicated(I);
+ } else {
+ // We encountered other unrecognized terminator. Bail out immediately.
+ return true;
+ }
+
+ // Cleanup code - to be run for unpredicated unconditional branches and
+ // returns.
+ if (!isPredicated(I) &&
+ (isUncondBranchOpcode(I->getOpcode()) ||
+ isIndirectBranchOpcode(I->getOpcode()) ||
+ isJumpTableBranchOpcode(I->getOpcode()) ||
+ I->isReturn())) {
+ // Forget any previous condition branch information - it no longer applies.
+ Cond.clear();
+ FBB = nullptr;
+
+ // If we can modify the function, delete everything below this
+ // unconditional branch.
+ if (AllowModify) {
+ MachineBasicBlock::iterator DI = std::next(I);
+ while (DI != MBB.end()) {
+ MachineInstr *InstToDelete = DI;
+ ++DI;
+ InstToDelete->eraseFromParent();
+ }
+ }
+ }
+
+ if (CantAnalyze)
+ return true;
+
+ if (I == MBB.begin())
+ return false;
+
+ --I;
+ }
+
+ // We made it past the terminators without bailing out - we must have
+ // analyzed this branch successfully.
+ return false;
+}
+
+
+unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin()) return 0;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return 0;
+ --I;
+ }
+ if (!isUncondBranchOpcode(I->getOpcode()) &&
+ !isCondBranchOpcode(I->getOpcode()))
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (!isCondBranchOpcode(I->getOpcode()))
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+unsigned
+ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
+ int BOpc = !AFI->isThumbFunction()
+ ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
+ int BccOpc = !AFI->isThumbFunction()
+ ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
+ bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
+
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0) &&
+ "ARM branch conditions have two components!");
+
+ if (!FBB) {
+ if (Cond.empty()) { // Unconditional branch?
+ if (isThumb)
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
+ else
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
+ } else
+ BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
+ .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
+ return 1;
+ }
+
+ // Two-way conditional branch.
+ BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
+ .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
+ if (isThumb)
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
+ else
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
+ return 2;
+}
+
+bool ARMBaseInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
+ Cond[0].setImm(ARMCC::getOppositeCondition(CC));
+ return false;
+}
+
+bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
+ if (MI->isBundle()) {
+ MachineBasicBlock::const_instr_iterator I = MI;
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ int PIdx = I->findFirstPredOperandIdx();
+ if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
+ return true;
+ }
+ return false;
+ }
+
+ int PIdx = MI->findFirstPredOperandIdx();
+ return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
+}
+
+bool ARMBaseInstrInfo::
+PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const {
+ unsigned Opc = MI->getOpcode();
+ if (isUncondBranchOpcode(Opc)) {
+ MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addImm(Pred[0].getImm())
+ .addReg(Pred[1].getReg());
+ return true;
+ }
+
+ int PIdx = MI->findFirstPredOperandIdx();
+ if (PIdx != -1) {
+ MachineOperand &PMO = MI->getOperand(PIdx);
+ PMO.setImm(Pred[0].getImm());
+ MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
+ return true;
+ }
+ return false;
+}
+
+bool ARMBaseInstrInfo::
+SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const {
+ if (Pred1.size() > 2 || Pred2.size() > 2)
+ return false;
+
+ ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
+ ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
+ if (CC1 == CC2)
+ return true;
+
+ switch (CC1) {
+ default:
+ return false;
+ case ARMCC::AL:
+ return true;
+ case ARMCC::HS:
+ return CC2 == ARMCC::HI;
+ case ARMCC::LS:
+ return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
+ case ARMCC::GE:
+ return CC2 == ARMCC::GT;
+ case ARMCC::LE:
+ return CC2 == ARMCC::LT;
+ }
+}
+
+bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const {
+ bool Found = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
+ (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
+ Pred.push_back(MO);
+ Found = true;
+ }
+ }
+
+ return Found;
+}
+
+/// isPredicable - Return true if the specified instruction can be predicated.
+/// By default, this returns true for every instruction with a
+/// PredicateOperand.
+bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
+ if (!MI->isPredicable())
+ return false;
+
+ ARMFunctionInfo *AFI =
+ MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
+
+ if (AFI->isThumb2Function()) {
+ if (getSubtarget().restrictIT())
+ return isV8EligibleForIT(MI);
+ } else { // non-Thumb
+ if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
+ return false;
+ }
+
+ return true;
+}
+
+namespace llvm {
+template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || MO.isUndef() || MO.isUse())
+ continue;
+ if (MO.getReg() != ARM::CPSR)
+ continue;
+ if (!MO.isDead())
+ return false;
+ }
+ // all definitions of CPSR are dead
+ return true;
+}
+}
+
+/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
+LLVM_ATTRIBUTE_NOINLINE
+static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
+ unsigned JTI);
+static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
+ unsigned JTI) {
+ assert(JTI < JT.size());
+ return JT[JTI].MBBs.size();
+}
+
+/// GetInstSize - Return the size of the specified MachineInstr.
+///
+unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ const MachineBasicBlock &MBB = *MI->getParent();
+ const MachineFunction *MF = MBB.getParent();
+ const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MCID.getSize())
+ return MCID.getSize();
+
+ // If this machine instr is an inline asm, measure it.
+ if (MI->getOpcode() == ARM::INLINEASM)
+ return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ default:
+ // pseudo-instruction sizes are zero.
+ return 0;
+ case TargetOpcode::BUNDLE:
+ return getInstBundleLength(MI);
+ case ARM::MOVi16_ga_pcrel:
+ case ARM::MOVTi16_ga_pcrel:
+ case ARM::t2MOVi16_ga_pcrel:
+ case ARM::t2MOVTi16_ga_pcrel:
+ return 4;
+ case ARM::MOVi32imm:
+ case ARM::t2MOVi32imm:
+ return 8;
+ case ARM::CONSTPOOL_ENTRY:
+ // If this machine instr is a constant pool entry, its size is recorded as
+ // operand #2.
+ return MI->getOperand(2).getImm();
+ case ARM::Int_eh_sjlj_longjmp:
+ return 16;
+ case ARM::tInt_eh_sjlj_longjmp:
+ return 10;
+ case ARM::Int_eh_sjlj_setjmp:
+ case ARM::Int_eh_sjlj_setjmp_nofp:
+ return 20;
+ case ARM::tInt_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp_nofp:
+ return 12;
+ case ARM::BR_JTr:
+ case ARM::BR_JTm:
+ case ARM::BR_JTadd:
+ case ARM::tBR_JTr:
+ case ARM::t2BR_JT:
+ case ARM::t2TBB_JT:
+ case ARM::t2TBH_JT: {
+ // These are jumptable branches, i.e. a branch followed by an inlined
+ // jumptable. The size is 4 + 4 * number of entries. For TBB, each
+ // entry is one byte; TBH two byte each.
+ unsigned EntrySize = (Opc == ARM::t2TBB_JT)
+ ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
+ unsigned NumOps = MCID.getNumOperands();
+ MachineOperand JTOP =
+ MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
+ unsigned JTI = JTOP.getIndex();
+ const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+ assert(MJTI != nullptr);
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ assert(JTI < JT.size());
+ // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
+ // 4 aligned. The assembler / linker may add 2 byte padding just before
+ // the JT entries. The size does not include this padding; the
+ // constant islands pass does separate bookkeeping for it.
+ // FIXME: If we know the size of the function is less than (1 << 16) *2
+ // bytes, we can use 16-bit entries instead. Then there won't be an
+ // alignment issue.
+ unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
+ unsigned NumEntries = getNumJTEntries(JT, JTI);
+ if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
+ // Make sure the instruction that follows TBB is 2-byte aligned.
+ // FIXME: Constant island pass should insert an "ALIGN" instruction
+ // instead.
+ ++NumEntries;
+ return NumEntries * EntrySize + InstSize;
+ }
+ }
+}
+
+unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
+ unsigned Size = 0;
+ MachineBasicBlock::const_instr_iterator I = MI;
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ assert(!I->isBundle() && "No nested bundle!");
+ Size += GetInstSizeInBytes(&*I);
+ }
+ return Size;
+}
+
+void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ bool GPRDest = ARM::GPRRegClass.contains(DestReg);
+ bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
+
+ if (GPRDest && GPRSrc) {
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))));
+ return;
+ }
+
+ bool SPRDest = ARM::SPRRegClass.contains(DestReg);
+ bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
+
+ unsigned Opc = 0;
+ if (SPRDest && SPRSrc)
+ Opc = ARM::VMOVS;
+ else if (GPRDest && SPRSrc)
+ Opc = ARM::VMOVRS;
+ else if (SPRDest && GPRSrc)
+ Opc = ARM::VMOVSR;
+ else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VMOVD;
+ else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VORRq;
+
+ if (Opc) {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+ if (Opc == ARM::VORRq)
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+ AddDefaultPred(MIB);
+ return;
+ }
+
+ // Handle register classes that require multiple instructions.
+ unsigned BeginIdx = 0;
+ unsigned SubRegs = 0;
+ int Spacing = 1;
+
+ // Use VORRq when possible.
+ if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VORRq;
+ BeginIdx = ARM::qsub_0;
+ SubRegs = 2;
+ } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VORRq;
+ BeginIdx = ARM::qsub_0;
+ SubRegs = 4;
+ // Fall back to VMOVD.
+ } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 2;
+ } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 3;
+ } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 4;
+ } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
+ Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
+ BeginIdx = ARM::gsub_0;
+ SubRegs = 2;
+ } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 2;
+ Spacing = 2;
+ } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 3;
+ Spacing = 2;
+ } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 4;
+ Spacing = 2;
+ }
+
+ assert(Opc && "Impossible reg-to-reg copy");
+
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ MachineInstrBuilder Mov;
+
+ // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
+ if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
+ BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
+ Spacing = -Spacing;
+ }
+#ifndef NDEBUG
+ SmallSet<unsigned, 4> DstRegs;
+#endif
+ for (unsigned i = 0; i != SubRegs; ++i) {
+ unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
+ unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
+ assert(Dst && Src && "Bad sub-register");
+#ifndef NDEBUG
+ assert(!DstRegs.count(Src) && "destructive vector copy");
+ DstRegs.insert(Dst);
+#endif
+ Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
+ // VORR takes two source operands.
+ if (Opc == ARM::VORRq)
+ Mov.addReg(Src);
+ Mov = AddDefaultPred(Mov);
+ // MOVr can set CC.
+ if (Opc == ARM::MOVr)
+ Mov = AddDefaultCC(Mov);
+ }
+ // Add implicit super-register defs and kills to the last instruction.
+ Mov->addRegisterDefined(DestReg, TRI);
+ if (KillSrc)
+ Mov->addRegisterKilled(SrcReg, TRI);
+}
+
+const MachineInstrBuilder &
+ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
+ unsigned SubIdx, unsigned State,
+ const TargetRegisterInfo *TRI) const {
+ if (!SubIdx)
+ return MIB.addReg(Reg, State);
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
+ return MIB.addReg(Reg, State, SubIdx);
+}
+
+void ARMBaseInstrInfo::
+storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FI),
+ Align);
+
+ switch (RC->getSize()) {
+ case 4:
+ if (ARM::GPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 8:
+ if (ARM::DPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
+ if (Subtarget.hasV5TEOps()) {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
+ AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
+ AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
+ MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
+
+ AddDefaultPred(MIB);
+ } else {
+ // Fallback to STM instruction, which has existed since the dawn of
+ // time.
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
+ .addFrameIndex(FI).addMemOperand(MMO));
+ AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
+ AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 16:
+ if (ARM::DPairRegClass.hasSubClassEq(RC)) {
+ // Use aligned spills if the stack can be realigned.
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
+ .addFrameIndex(FI).addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO));
+ } else {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO));
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 24:
+ if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
+ // Use aligned spills if the stack can be realigned.
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
+ .addFrameIndex(FI).addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 32:
+ if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ // FIXME: It's possible to only store part of the QQ register if the
+ // spilled def has a sub-register index.
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
+ .addFrameIndex(FI).addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 64:
+ if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ default:
+ llvm_unreachable("Unknown reg class!");
+ }
+}
+
+unsigned
+ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::STRrs:
+ case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isReg() &&
+ MI->getOperand(3).isImm() &&
+ MI->getOperand(2).getReg() == 0 &&
+ MI->getOperand(3).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::STRi12:
+ case ARM::t2STRi12:
+ case ARM::tSTRspi:
+ case ARM::VSTRD:
+ case ARM::VSTRS:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::VST1q64:
+ case ARM::VST1d64TPseudo:
+ case ARM::VST1d64QPseudo:
+ if (MI->getOperand(0).isFI() &&
+ MI->getOperand(2).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(0).getIndex();
+ return MI->getOperand(2).getReg();
+ }
+ break;
+ case ARM::VSTMQIA:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ const MachineMemOperand *Dummy;
+ return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
+}
+
+void ARMBaseInstrInfo::
+loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FI),
+ Align);
+
+ switch (RC->getSize()) {
+ case 4:
+ if (ARM::GPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+
+ } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 8:
+ if (ARM::DPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
+ MachineInstrBuilder MIB;
+
+ if (Subtarget.hasV5TEOps()) {
+ MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
+ AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
+ AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
+ MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
+
+ AddDefaultPred(MIB);
+ } else {
+ // Fallback to LDM instruction, which has existed since the dawn of
+ // time.
+ MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
+ .addFrameIndex(FI).addMemOperand(MMO));
+ MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
+ }
+
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 16:
+ if (ARM::DPairRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
+ .addFrameIndex(FI).addImm(16)
+ .addMemOperand(MMO));
+ } else {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
+ .addFrameIndex(FI)
+ .addMemOperand(MMO));
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 24:
+ if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
+ .addFrameIndex(FI).addImm(16)
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO));
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 32:
+ if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
+ .addFrameIndex(FI).addImm(16)
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 64:
+ if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ default:
+ llvm_unreachable("Unknown regclass!");
+ }
+}
+
+unsigned
+ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isReg() &&
+ MI->getOperand(3).isImm() &&
+ MI->getOperand(2).getReg() == 0 &&
+ MI->getOperand(3).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::LDRi12:
+ case ARM::t2LDRi12:
+ case ARM::tLDRspi:
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::VLD1q64:
+ case ARM::VLD1d64TPseudo:
+ case ARM::VLD1d64QPseudo:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::VLDMQIA:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ const MachineMemOperand *Dummy;
+ return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
+}
+
+bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
+ // This hook gets to expand COPY instructions before they become
+ // copyPhysReg() calls. Look for VMOVS instructions that can legally be
+ // widened to VMOVD. We prefer the VMOVD when possible because it may be
+ // changed into a VORR that can go down the NEON pipeline.
+ if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15())
+ return false;
+
+ // Look for a copy between even S-registers. That is where we keep floats
+ // when using NEON v2f32 instructions for f32 arithmetic.
+ unsigned DstRegS = MI->getOperand(0).getReg();
+ unsigned SrcRegS = MI->getOperand(1).getReg();
+ if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
+ return false;
+
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
+ &ARM::DPRRegClass);
+ unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
+ &ARM::DPRRegClass);
+ if (!DstRegD || !SrcRegD)
+ return false;
+
+ // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
+ // legal if the COPY already defines the full DstRegD, and it isn't a
+ // sub-register insertion.
+ if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
+ return false;
+
+ // A dead copy shouldn't show up here, but reject it just in case.
+ if (MI->getOperand(0).isDead())
+ return false;
+
+ // All clear, widen the COPY.
+ DEBUG(dbgs() << "widening: " << *MI);
+ MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
+
+ // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg
+ // or some other super-register.
+ int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
+ if (ImpDefIdx != -1)
+ MI->RemoveOperand(ImpDefIdx);
+
+ // Change the opcode and operands.
+ MI->setDesc(get(ARM::VMOVD));
+ MI->getOperand(0).setReg(DstRegD);
+ MI->getOperand(1).setReg(SrcRegD);
+ AddDefaultPred(MIB);
+
+ // We are now reading SrcRegD instead of SrcRegS. This may upset the
+ // register scavenger and machine verifier, so we need to indicate that we
+ // are reading an undefined value from SrcRegD, but a proper value from
+ // SrcRegS.
+ MI->getOperand(1).setIsUndef();
+ MIB.addReg(SrcRegS, RegState::Implicit);
+
+ // SrcRegD may actually contain an unrelated value in the ssub_1
+ // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
+ if (MI->getOperand(1).isKill()) {
+ MI->getOperand(1).setIsKill(false);
+ MI->addRegisterKilled(SrcRegS, TRI, true);
+ }
+
+ DEBUG(dbgs() << "replaced by: " << *MI);
+ return true;
+}
+
+/// Create a copy of a const pool value. Update CPI to the new index and return
+/// the label UID.
+static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
+ MachineConstantPool *MCP = MF.getConstantPool();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
+ assert(MCPE.isMachineConstantPoolEntry() &&
+ "Expecting a machine constantpool entry!");
+ ARMConstantPoolValue *ACPV =
+ static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
+
+ unsigned PCLabelId = AFI->createPICLabelUId();
+ ARMConstantPoolValue *NewCPV = nullptr;
+
+ // FIXME: The below assumes PIC relocation model and that the function
+ // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
+ // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
+ // instructions, so that's probably OK, but is PIC always correct when
+ // we get here?
+ if (ACPV->isGlobalValue())
+ NewCPV = ARMConstantPoolConstant::
+ Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
+ ARMCP::CPValue, 4);
+ else if (ACPV->isExtSymbol())
+ NewCPV = ARMConstantPoolSymbol::
+ Create(MF.getFunction()->getContext(),
+ cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
+ else if (ACPV->isBlockAddress())
+ NewCPV = ARMConstantPoolConstant::
+ Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
+ ARMCP::CPBlockAddress, 4);
+ else if (ACPV->isLSDA())
+ NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
+ ARMCP::CPLSDA, 4);
+ else if (ACPV->isMachineBasicBlock())
+ NewCPV = ARMConstantPoolMBB::
+ Create(MF.getFunction()->getContext(),
+ cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
+ else
+ llvm_unreachable("Unexpected ARM constantpool value type!!");
+ CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
+ return PCLabelId;
+}
+
+void ARMBaseInstrInfo::
+reMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig,
+ const TargetRegisterInfo &TRI) const {
+ unsigned Opcode = Orig->getOpcode();
+ switch (Opcode) {
+ default: {
+ MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
+ MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
+ MBB.insert(I, MI);
+ break;
+ }
+ case ARM::tLDRpci_pic:
+ case ARM::t2LDRpci_pic: {
+ MachineFunction &MF = *MBB.getParent();
+ unsigned CPI = Orig->getOperand(1).getIndex();
+ unsigned PCLabelId = duplicateCPV(MF, CPI);
+ MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
+ DestReg)
+ .addConstantPoolIndex(CPI).addImm(PCLabelId);
+ MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
+ break;
+ }
+ }
+}
+
+MachineInstr *
+ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
+ MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
+ switch(Orig->getOpcode()) {
+ case ARM::tLDRpci_pic:
+ case ARM::t2LDRpci_pic: {
+ unsigned CPI = Orig->getOperand(1).getIndex();
+ unsigned PCLabelId = duplicateCPV(MF, CPI);
+ Orig->getOperand(1).setIndex(CPI);
+ Orig->getOperand(2).setImm(PCLabelId);
+ break;
+ }
+ }
+ return MI;
+}
+
+bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
+ const MachineInstr *MI1,
+ const MachineRegisterInfo *MRI) const {
+ int Opcode = MI0->getOpcode();
+ if (Opcode == ARM::t2LDRpci ||
+ Opcode == ARM::t2LDRpci_pic ||
+ Opcode == ARM::tLDRpci ||
+ Opcode == ARM::tLDRpci_pic ||
+ Opcode == ARM::LDRLIT_ga_pcrel ||
+ Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
+ Opcode == ARM::tLDRLIT_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel_ldr ||
+ Opcode == ARM::t2MOV_ga_pcrel) {
+ if (MI1->getOpcode() != Opcode)
+ return false;
+ if (MI0->getNumOperands() != MI1->getNumOperands())
+ return false;
+
+ const MachineOperand &MO0 = MI0->getOperand(1);
+ const MachineOperand &MO1 = MI1->getOperand(1);
+ if (MO0.getOffset() != MO1.getOffset())
+ return false;
+
+ if (Opcode == ARM::LDRLIT_ga_pcrel ||
+ Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
+ Opcode == ARM::tLDRLIT_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel_ldr ||
+ Opcode == ARM::t2MOV_ga_pcrel)
+ // Ignore the PC labels.
+ return MO0.getGlobal() == MO1.getGlobal();
+
+ const MachineFunction *MF = MI0->getParent()->getParent();
+ const MachineConstantPool *MCP = MF->getConstantPool();
+ int CPI0 = MO0.getIndex();
+ int CPI1 = MO1.getIndex();
+ const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
+ const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
+ bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
+ bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
+ if (isARMCP0 && isARMCP1) {
+ ARMConstantPoolValue *ACPV0 =
+ static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
+ ARMConstantPoolValue *ACPV1 =
+ static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
+ return ACPV0->hasSameValue(ACPV1);
+ } else if (!isARMCP0 && !isARMCP1) {
+ return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
+ }
+ return false;
+ } else if (Opcode == ARM::PICLDR) {
+ if (MI1->getOpcode() != Opcode)
+ return false;
+ if (MI0->getNumOperands() != MI1->getNumOperands())
+ return false;
+
+ unsigned Addr0 = MI0->getOperand(1).getReg();
+ unsigned Addr1 = MI1->getOperand(1).getReg();
+ if (Addr0 != Addr1) {
+ if (!MRI ||
+ !TargetRegisterInfo::isVirtualRegister(Addr0) ||
+ !TargetRegisterInfo::isVirtualRegister(Addr1))
+ return false;
+
+ // This assumes SSA form.
+ MachineInstr *Def0 = MRI->getVRegDef(Addr0);
+ MachineInstr *Def1 = MRI->getVRegDef(Addr1);
+ // Check if the loaded value, e.g. a constantpool of a global address, are
+ // the same.
+ if (!produceSameValue(Def0, Def1, MRI))
+ return false;
+ }
+
+ for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
+ // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
+ const MachineOperand &MO0 = MI0->getOperand(i);
+ const MachineOperand &MO1 = MI1->getOperand(i);
+ if (!MO0.isIdenticalTo(MO1))
+ return false;
+ }
+ return true;
+ }
+
+ return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
+}
+
+/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
+/// determine if two loads are loading from the same base address. It should
+/// only return true if the base pointers are the same and the only differences
+/// between the two addresses is the offset. It also returns the offsets by
+/// reference.
+///
+/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
+/// is permanently disabled.
+bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
+ int64_t &Offset1,
+ int64_t &Offset2) const {
+ // Don't worry about Thumb: just ARM and Thumb2.
+ if (Subtarget.isThumb1Only()) return false;
+
+ if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
+ return false;
+
+ switch (Load1->getMachineOpcode()) {
+ default:
+ return false;
+ case ARM::LDRi12:
+ case ARM::LDRBi12:
+ case ARM::LDRD:
+ case ARM::LDRH:
+ case ARM::LDRSB:
+ case ARM::LDRSH:
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRBi8:
+ case ARM::t2LDRDi8:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRi12:
+ case ARM::t2LDRBi12:
+ case ARM::t2LDRSHi12:
+ break;
+ }
+
+ switch (Load2->getMachineOpcode()) {
+ default:
+ return false;
+ case ARM::LDRi12:
+ case ARM::LDRBi12:
+ case ARM::LDRD:
+ case ARM::LDRH:
+ case ARM::LDRSB:
+ case ARM::LDRSH:
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRBi8:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRi12:
+ case ARM::t2LDRBi12:
+ case ARM::t2LDRSHi12:
+ break;
+ }
+
+ // Check if base addresses and chain operands match.
+ if (Load1->getOperand(0) != Load2->getOperand(0) ||
+ Load1->getOperand(4) != Load2->getOperand(4))
+ return false;
+
+ // Index should be Reg0.
+ if (Load1->getOperand(3) != Load2->getOperand(3))
+ return false;
+
+ // Determine the offsets.
+ if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
+ isa<ConstantSDNode>(Load2->getOperand(1))) {
+ Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
+ Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
+ return true;
+ }
+
+ return false;
+}
+
+/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
+/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
+/// be scheduled togther. On some targets if two loads are loading from
+/// addresses in the same cache line, it's better if they are scheduled
+/// together. This function takes two integers that represent the load offsets
+/// from the common base address. It returns true if it decides it's desirable
+/// to schedule the two loads together. "NumLoads" is the number of loads that
+/// have already been scheduled after Load1.
+///
+/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
+/// is permanently disabled.
+bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const {
+ // Don't worry about Thumb: just ARM and Thumb2.
+ if (Subtarget.isThumb1Only()) return false;
+
+ assert(Offset2 > Offset1);
+
+ if ((Offset2 - Offset1) / 8 > 64)
+ return false;
+
+ // Check if the machine opcodes are different. If they are different
+ // then we consider them to not be of the same base address,
+ // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
+ // In this case, they are considered to be the same because they are different
+ // encoding forms of the same basic instruction.
+ if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
+ !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
+ Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
+ (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
+ Load2->getMachineOpcode() == ARM::t2LDRBi8)))
+ return false; // FIXME: overly conservative?
+
+ // Four loads in a row should be sufficient.
+ if (NumLoads >= 3)
+ return false;
+
+ return true;
+}
+
+bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ const MachineFunction &MF) const {
+ // Debug info is never a scheduling boundary. It's necessary to be explicit
+ // due to the special treatment of IT instructions below, otherwise a
+ // dbg_value followed by an IT will result in the IT instruction being
+ // considered a scheduling hazard, which is wrong. It should be the actual
+ // instruction preceding the dbg_value instruction(s), just like it is
+ // when debug info is not present.
+ if (MI->isDebugValue())
+ return false;
+
+ // Terminators and labels can't be scheduled around.
+ if (MI->isTerminator() || MI->isPosition())
+ return true;
+
+ // Treat the start of the IT block as a scheduling boundary, but schedule
+ // t2IT along with all instructions following it.
+ // FIXME: This is a big hammer. But the alternative is to add all potential
+ // true and anti dependencies to IT block instructions as implicit operands
+ // to the t2IT instruction. The added compile time and complexity does not
+ // seem worth it.
+ MachineBasicBlock::const_iterator I = MI;
+ // Make sure to skip any dbg_value instructions
+ while (++I != MBB->end() && I->isDebugValue())
+ ;
+ if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
+ return true;
+
+ // Don't attempt to schedule around any instruction that defines
+ // a stack-oriented pointer, as it's unlikely to be profitable. This
+ // saves compile time, because it doesn't require every single
+ // stack slot reference to depend on the instruction that does the
+ // modification.
+ // Calls don't actually change the stack pointer, even if they have imp-defs.
+ // No ARM calling conventions change the stack pointer. (X86 calling
+ // conventions sometimes do).
+ if (!MI->isCall() && MI->definesRegister(ARM::SP))
+ return true;
+
+ return false;
+}
+
+bool ARMBaseInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles, unsigned ExtraPredCycles,
+ const BranchProbability &Probability) const {
+ if (!NumCycles)
+ return false;
+
+ // Attempt to estimate the relative costs of predication versus branching.
+ unsigned UnpredCost = Probability.getNumerator() * NumCycles;
+ UnpredCost /= Probability.getDenominator();
+ UnpredCost += 1; // The branch itself
+ UnpredCost += Subtarget.getMispredictionPenalty() / 10;
+
+ return (NumCycles + ExtraPredCycles) <= UnpredCost;
+}
+
+bool ARMBaseInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned TCycles, unsigned TExtra,
+ MachineBasicBlock &FMBB,
+ unsigned FCycles, unsigned FExtra,
+ const BranchProbability &Probability) const {
+ if (!TCycles || !FCycles)
+ return false;
+
+ // Attempt to estimate the relative costs of predication versus branching.
+ unsigned TUnpredCost = Probability.getNumerator() * TCycles;
+ TUnpredCost /= Probability.getDenominator();
+
+ uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
+ unsigned FUnpredCost = Comp * FCycles;
+ FUnpredCost /= Probability.getDenominator();
+
+ unsigned UnpredCost = TUnpredCost + FUnpredCost;
+ UnpredCost += 1; // The branch itself
+ UnpredCost += Subtarget.getMispredictionPenalty() / 10;
+
+ return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
+}
+
+bool
+ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
+ MachineBasicBlock &FMBB) const {
+ // Reduce false anti-dependencies to let Swift's out-of-order execution
+ // engine do its thing.
+ return Subtarget.isSwift();
+}
+
+/// getInstrPredicate - If instruction is predicated, returns its predicate
+/// condition, otherwise returns AL. It also returns the condition code
+/// register by reference.
+ARMCC::CondCodes
+llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
+ int PIdx = MI->findFirstPredOperandIdx();
+ if (PIdx == -1) {
+ PredReg = 0;
+ return ARMCC::AL;
+ }
+
+ PredReg = MI->getOperand(PIdx+1).getReg();
+ return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
+}
+
+
+int llvm::getMatchingCondBranchOpcode(int Opc) {
+ if (Opc == ARM::B)
+ return ARM::Bcc;
+ if (Opc == ARM::tB)
+ return ARM::tBcc;
+ if (Opc == ARM::t2B)
+ return ARM::t2Bcc;
+
+ llvm_unreachable("Unknown unconditional branch opcode!");
+}
+
+/// commuteInstruction - Handle commutable instructions.
+MachineInstr *
+ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
+ switch (MI->getOpcode()) {
+ case ARM::MOVCCr:
+ case ARM::t2MOVCCr: {
+ // MOVCC can be commuted by inverting the condition.
+ unsigned PredReg = 0;
+ ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
+ // MOVCC AL can't be inverted. Shouldn't happen.
+ if (CC == ARMCC::AL || PredReg != ARM::CPSR)
+ return nullptr;
+ MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
+ if (!MI)
+ return nullptr;
+ // After swapping the MOVCC operands, also invert the condition.
+ MI->getOperand(MI->findFirstPredOperandIdx())
+ .setImm(ARMCC::getOppositeCondition(CC));
+ return MI;
+ }
+ }
+ return TargetInstrInfo::commuteInstruction(MI, NewMI);
+}
+
+/// Identify instructions that can be folded into a MOVCC instruction, and
+/// return the defining instruction.
+static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
+ const MachineRegisterInfo &MRI,
+ const TargetInstrInfo *TII) {
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return nullptr;
+ if (!MRI.hasOneNonDBGUse(Reg))
+ return nullptr;
+ MachineInstr *MI = MRI.getVRegDef(Reg);
+ if (!MI)
+ return nullptr;
+ // MI is folded into the MOVCC by predicating it.
+ if (!MI->isPredicable())
+ return nullptr;
+ // Check if MI has any non-dead defs or physreg uses. This also detects
+ // predicated instructions which will be reading CPSR.
+ for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ // Reject frame index operands, PEI can't handle the predicated pseudos.
+ if (MO.isFI() || MO.isCPI() || MO.isJTI())
+ return nullptr;
+ if (!MO.isReg())
+ continue;
+ // MI can't have any tied operands, that would conflict with predication.
+ if (MO.isTied())
+ return nullptr;
+ if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
+ return nullptr;
+ if (MO.isDef() && !MO.isDead())
+ return nullptr;
+ }
+ bool DontMoveAcrossStores = true;
+ if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ nullptr,
+ DontMoveAcrossStores))
+ return nullptr;
+ return MI;
+}
+
+bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
+ SmallVectorImpl<MachineOperand> &Cond,
+ unsigned &TrueOp, unsigned &FalseOp,
+ bool &Optimizable) const {
+ assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
+ "Unknown select instruction");
+ // MOVCC operands:
+ // 0: Def.
+ // 1: True use.
+ // 2: False use.
+ // 3: Condition code.
+ // 4: CPSR use.
+ TrueOp = 1;
+ FalseOp = 2;
+ Cond.push_back(MI->getOperand(3));
+ Cond.push_back(MI->getOperand(4));
+ // We can always fold a def.
+ Optimizable = true;
+ return false;
+}
+
+MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
+ bool PreferFalse) const {
+ assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
+ "Unknown select instruction");
+ MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
+ bool Invert = !DefMI;
+ if (!DefMI)
+ DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
+ if (!DefMI)
+ return nullptr;
+
+ // Find new register class to use.
+ MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
+ unsigned DestReg = MI->getOperand(0).getReg();
+ const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
+ if (!MRI.constrainRegClass(DestReg, PreviousClass))
+ return nullptr;
+
+ // Create a new predicated version of DefMI.
+ // Rfalse is the first use.
+ MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ DefMI->getDesc(), DestReg);
+
+ // Copy all the DefMI operands, excluding its (null) predicate.
+ const MCInstrDesc &DefDesc = DefMI->getDesc();
+ for (unsigned i = 1, e = DefDesc.getNumOperands();
+ i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
+ NewMI.addOperand(DefMI->getOperand(i));
+
+ unsigned CondCode = MI->getOperand(3).getImm();
+ if (Invert)
+ NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
+ else
+ NewMI.addImm(CondCode);
+ NewMI.addOperand(MI->getOperand(4));
+
+ // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
+ if (NewMI->hasOptionalDef())
+ AddDefaultCC(NewMI);
+
+ // The output register value when the predicate is false is an implicit
+ // register operand tied to the first def.
+ // The tie makes the register allocator ensure the FalseReg is allocated the
+ // same register as operand 0.
+ FalseReg.setImplicit();
+ NewMI.addOperand(FalseReg);
+ NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
+
+ // The caller will erase MI, but not DefMI.
+ DefMI->eraseFromParent();
+ return NewMI;
+}
+
+/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
+/// instruction is encoded with an 'S' bit is determined by the optional CPSR
+/// def operand.
+///
+/// This will go away once we can teach tblgen how to set the optional CPSR def
+/// operand itself.
+struct AddSubFlagsOpcodePair {
+ uint16_t PseudoOpc;
+ uint16_t MachineOpc;
+};
+
+static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
+ {ARM::ADDSri, ARM::ADDri},
+ {ARM::ADDSrr, ARM::ADDrr},
+ {ARM::ADDSrsi, ARM::ADDrsi},
+ {ARM::ADDSrsr, ARM::ADDrsr},
+
+ {ARM::SUBSri, ARM::SUBri},
+ {ARM::SUBSrr, ARM::SUBrr},
+ {ARM::SUBSrsi, ARM::SUBrsi},
+ {ARM::SUBSrsr, ARM::SUBrsr},
+
+ {ARM::RSBSri, ARM::RSBri},
+ {ARM::RSBSrsi, ARM::RSBrsi},
+ {ARM::RSBSrsr, ARM::RSBrsr},
+
+ {ARM::t2ADDSri, ARM::t2ADDri},
+ {ARM::t2ADDSrr, ARM::t2ADDrr},
+ {ARM::t2ADDSrs, ARM::t2ADDrs},
+
+ {ARM::t2SUBSri, ARM::t2SUBri},
+ {ARM::t2SUBSrr, ARM::t2SUBrr},
+ {ARM::t2SUBSrs, ARM::t2SUBrs},
+
+ {ARM::t2RSBSri, ARM::t2RSBri},
+ {ARM::t2RSBSrs, ARM::t2RSBrs},
+};
+
+unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
+ for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
+ if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
+ return AddSubFlagsOpcodeMap[i].MachineOpc;
+ return 0;
+}
+
+void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg, int NumBytes,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ const ARMBaseInstrInfo &TII, unsigned MIFlags) {
+ if (NumBytes == 0 && DestReg != BaseReg) {
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
+ .addReg(BaseReg, RegState::Kill)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
+ .setMIFlags(MIFlags);
+ return;
+ }
+
+ bool isSub = NumBytes < 0;
+ if (isSub) NumBytes = -NumBytes;
+
+ while (NumBytes) {
+ unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
+ unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
+ assert(ThisVal && "Didn't extract field correctly");
+
+ // We will handle these bits from offset, clear them.
+ NumBytes &= ~ThisVal;
+
+ assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
+
+ // Build the new ADD / SUB.
+ unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
+ BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
+ .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
+ .setMIFlags(MIFlags);
+ BaseReg = DestReg;
+ }
+}
+
+static bool isAnySubRegLive(unsigned Reg, const TargetRegisterInfo *TRI,
+ MachineInstr *MI) {
+ for (MCSubRegIterator Subreg(Reg, TRI, /* IncludeSelf */ true);
+ Subreg.isValid(); ++Subreg)
+ if (MI->getParent()->computeRegisterLiveness(TRI, *Subreg, MI) !=
+ MachineBasicBlock::LQR_Dead)
+ return true;
+ return false;
+}
+bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
+ MachineFunction &MF, MachineInstr *MI,
+ unsigned NumBytes) {
+ // This optimisation potentially adds lots of load and store
+ // micro-operations, it's only really a great benefit to code-size.
+ if (!MF.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::MinSize))
+ return false;
+
+ // If only one register is pushed/popped, LLVM can use an LDR/STR
+ // instead. We can't modify those so make sure we're dealing with an
+ // instruction we understand.
+ bool IsPop = isPopOpcode(MI->getOpcode());
+ bool IsPush = isPushOpcode(MI->getOpcode());
+ if (!IsPush && !IsPop)
+ return false;
+
+ bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
+ MI->getOpcode() == ARM::VLDMDIA_UPD;
+ bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
+ MI->getOpcode() == ARM::tPOP ||
+ MI->getOpcode() == ARM::tPOP_RET;
+
+ assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
+ MI->getOperand(1).getReg() == ARM::SP)) &&
+ "trying to fold sp update into non-sp-updating push/pop");
+
+ // The VFP push & pop act on D-registers, so we can only fold an adjustment
+ // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
+ // if this is violated.
+ if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
+ return false;
+
+ // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
+ // pred) so the list starts at 4. Thumb1 starts after the predicate.
+ int RegListIdx = IsT1PushPop ? 2 : 4;
+
+ // Calculate the space we'll need in terms of registers.
+ unsigned FirstReg = MI->getOperand(RegListIdx).getReg();
+ unsigned RD0Reg, RegsNeeded;
+ if (IsVFPPushPop) {
+ RD0Reg = ARM::D0;
+ RegsNeeded = NumBytes / 8;
+ } else {
+ RD0Reg = ARM::R0;
+ RegsNeeded = NumBytes / 4;
+ }
+
+ // We're going to have to strip all list operands off before
+ // re-adding them since the order matters, so save the existing ones
+ // for later.
+ SmallVector<MachineOperand, 4> RegList;
+ for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
+ RegList.push_back(MI->getOperand(i));
+
+ const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
+ const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
+
+ // Now try to find enough space in the reglist to allocate NumBytes.
+ for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded;
+ --CurReg) {
+ if (!IsPop) {
+ // Pushing any register is completely harmless, mark the
+ // register involved as undef since we don't care about it in
+ // the slightest.
+ RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
+ false, false, true));
+ --RegsNeeded;
+ continue;
+ }
+
+ // However, we can only pop an extra register if it's not live. For
+ // registers live within the function we might clobber a return value
+ // register; the other way a register can be live here is if it's
+ // callee-saved.
+ // TODO: Currently, computeRegisterLiveness() does not report "live" if a
+ // sub reg is live. When computeRegisterLiveness() works for sub reg, it
+ // can replace isAnySubRegLive().
+ if (isCalleeSavedRegister(CurReg, CSRegs) ||
+ isAnySubRegLive(CurReg, TRI, MI)) {
+ // VFP pops don't allow holes in the register list, so any skip is fatal
+ // for our transformation. GPR pops do, so we should just keep looking.
+ if (IsVFPPushPop)
+ return false;
+ else
+ continue;
+ }
+
+ // Mark the unimportant registers as <def,dead> in the POP.
+ RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
+ true));
+ --RegsNeeded;
+ }
+
+ if (RegsNeeded > 0)
+ return false;
+
+ // Finally we know we can profitably perform the optimisation so go
+ // ahead: strip all existing registers off and add them back again
+ // in the right order.
+ for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
+ MI->RemoveOperand(i);
+
+ // Add the complete list back in.
+ MachineInstrBuilder MIB(MF, &*MI);
+ for (int i = RegList.size() - 1; i >= 0; --i)
+ MIB.addOperand(RegList[i]);
+
+ return true;
+}
+
+bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII) {
+ unsigned Opcode = MI.getOpcode();
+ const MCInstrDesc &Desc = MI.getDesc();
+ unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
+ bool isSub = false;
+
+ // Memory operands in inline assembly always use AddrMode2.
+ if (Opcode == ARM::INLINEASM)
+ AddrMode = ARMII::AddrMode2;
+
+ if (Opcode == ARM::ADDri) {
+ Offset += MI.getOperand(FrameRegIdx+1).getImm();
+ if (Offset == 0) {
+ // Turn it into a move.
+ MI.setDesc(TII.get(ARM::MOVr));
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.RemoveOperand(FrameRegIdx+1);
+ Offset = 0;
+ return true;
+ } else if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ MI.setDesc(TII.get(ARM::SUBri));
+ }
+
+ // Common case: small offset, fits into instruction.
+ if (ARM_AM::getSOImmVal(Offset) != -1) {
+ // Replace the FrameIndex with sp / fp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, pull as much of the immedidate into this ADDri/SUBri
+ // as possible.
+ unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
+ unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
+
+ // We will handle these bits from offset, clear them.
+ Offset &= ~ThisImmVal;
+
+ // Get the properly encoded SOImmVal field.
+ assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
+ "Bit extraction didn't work?");
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
+ } else {
+ unsigned ImmIdx = 0;
+ int InstrOffs = 0;
+ unsigned NumBits = 0;
+ unsigned Scale = 1;
+ switch (AddrMode) {
+ case ARMII::AddrMode_i12: {
+ ImmIdx = FrameRegIdx + 1;
+ InstrOffs = MI.getOperand(ImmIdx).getImm();
+ NumBits = 12;
+ break;
+ }
+ case ARMII::AddrMode2: {
+ ImmIdx = FrameRegIdx+2;
+ InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 12;
+ break;
+ }
+ case ARMII::AddrMode3: {
+ ImmIdx = FrameRegIdx+2;
+ InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ break;
+ }
+ case ARMII::AddrMode4:
+ case ARMII::AddrMode6:
+ // Can't fold any offset even if it's zero.
+ return false;
+ case ARMII::AddrMode5: {
+ ImmIdx = FrameRegIdx+1;
+ InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ Scale = 4;
+ break;
+ }
+ default:
+ llvm_unreachable("Unsupported addressing mode!");
+ }
+
+ Offset += InstrOffs * Scale;
+ assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
+ if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ }
+
+ // Attempt to fold address comp. if opcode has offset bits
+ if (NumBits > 0) {
+ // Common case: small offset, fits into instruction.
+ MachineOperand &ImmOp = MI.getOperand(ImmIdx);
+ int ImmedOffset = Offset / Scale;
+ unsigned Mask = (1 << NumBits) - 1;
+ if ((unsigned)Offset <= Mask * Scale) {
+ // Replace the FrameIndex with sp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ // FIXME: When addrmode2 goes away, this will simplify (like the
+ // T2 version), as the LDR.i12 versions don't need the encoding
+ // tricks for the offset value.
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode_i12)
+ ImmedOffset = -ImmedOffset;
+ else
+ ImmedOffset |= 1 << NumBits;
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
+ ImmedOffset = ImmedOffset & Mask;
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode_i12)
+ ImmedOffset = -ImmedOffset;
+ else
+ ImmedOffset |= 1 << NumBits;
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset &= ~(Mask*Scale);
+ }
+ }
+
+ Offset = (isSub) ? -Offset : Offset;
+ return Offset == 0;
+}
+
+/// analyzeCompare - For a comparison instruction, return the source registers
+/// in SrcReg and SrcReg2 if having two register operands, and the value it
+/// compares against in CmpValue. Return true if the comparison instruction
+/// can be analyzed.
+bool ARMBaseInstrInfo::
+analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
+ int &CmpMask, int &CmpValue) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::CMPri:
+ case ARM::t2CMPri:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = MI->getOperand(1).getImm();
+ return true;
+ case ARM::CMPrr:
+ case ARM::t2CMPrr:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = MI->getOperand(1).getReg();
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case ARM::TSTri:
+ case ARM::t2TSTri:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = 0;
+ CmpMask = MI->getOperand(1).getImm();
+ CmpValue = 0;
+ return true;
+ }
+
+ return false;
+}
+
+/// isSuitableForMask - Identify a suitable 'and' instruction that
+/// operates on the given source register and applies the same mask
+/// as a 'tst' instruction. Provide a limited look-through for copies.
+/// When successful, MI will hold the found instruction.
+static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
+ int CmpMask, bool CommonUse) {
+ switch (MI->getOpcode()) {
+ case ARM::ANDri:
+ case ARM::t2ANDri:
+ if (CmpMask != MI->getOperand(2).getImm())
+ return false;
+ if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
+ return true;
+ break;
+ case ARM::COPY: {
+ // Walk down one instruction which is potentially an 'and'.
+ const MachineInstr &Copy = *MI;
+ MachineBasicBlock::iterator AND(
+ std::next(MachineBasicBlock::iterator(MI)));
+ if (AND == MI->getParent()->end()) return false;
+ MI = AND;
+ return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
+ CmpMask, true);
+ }
+ }
+
+ return false;
+}
+
+/// getSwappedCondition - assume the flags are set by MI(a,b), return
+/// the condition code if we modify the instructions such that flags are
+/// set by MI(b,a).
+inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
+ switch (CC) {
+ default: return ARMCC::AL;
+ case ARMCC::EQ: return ARMCC::EQ;
+ case ARMCC::NE: return ARMCC::NE;
+ case ARMCC::HS: return ARMCC::LS;
+ case ARMCC::LO: return ARMCC::HI;
+ case ARMCC::HI: return ARMCC::LO;
+ case ARMCC::LS: return ARMCC::HS;
+ case ARMCC::GE: return ARMCC::LE;
+ case ARMCC::LT: return ARMCC::GT;
+ case ARMCC::GT: return ARMCC::LT;
+ case ARMCC::LE: return ARMCC::GE;
+ }
+}
+
+/// isRedundantFlagInstr - check whether the first instruction, whose only
+/// purpose is to update flags, can be made redundant.
+/// CMPrr can be made redundant by SUBrr if the operands are the same.
+/// CMPri can be made redundant by SUBri if the operands are the same.
+/// This function can be extended later on.
+inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
+ unsigned SrcReg2, int ImmValue,
+ MachineInstr *OI) {
+ if ((CmpI->getOpcode() == ARM::CMPrr ||
+ CmpI->getOpcode() == ARM::t2CMPrr) &&
+ (OI->getOpcode() == ARM::SUBrr ||
+ OI->getOpcode() == ARM::t2SUBrr) &&
+ ((OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getReg() == SrcReg2) ||
+ (OI->getOperand(1).getReg() == SrcReg2 &&
+ OI->getOperand(2).getReg() == SrcReg)))
+ return true;
+
+ if ((CmpI->getOpcode() == ARM::CMPri ||
+ CmpI->getOpcode() == ARM::t2CMPri) &&
+ (OI->getOpcode() == ARM::SUBri ||
+ OI->getOpcode() == ARM::t2SUBri) &&
+ OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getImm() == ImmValue)
+ return true;
+ return false;
+}
+
+/// optimizeCompareInstr - Convert the instruction supplying the argument to the
+/// comparison into one that sets the zero bit in the flags register;
+/// Remove a redundant Compare instruction if an earlier instruction can set the
+/// flags in the same way as Compare.
+/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
+/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
+/// condition code of instructions which use the flags.
+bool ARMBaseInstrInfo::
+optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
+ int CmpMask, int CmpValue,
+ const MachineRegisterInfo *MRI) const {
+ // Get the unique definition of SrcReg.
+ MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
+ if (!MI) return false;
+
+ // Masked compares sometimes use the same register as the corresponding 'and'.
+ if (CmpMask != ~0) {
+ if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
+ MI = nullptr;
+ for (MachineRegisterInfo::use_instr_iterator
+ UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
+ UI != UE; ++UI) {
+ if (UI->getParent() != CmpInstr->getParent()) continue;
+ MachineInstr *PotentialAND = &*UI;
+ if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
+ isPredicated(PotentialAND))
+ continue;
+ MI = PotentialAND;
+ break;
+ }
+ if (!MI) return false;
+ }
+ }
+
+ // Get ready to iterate backward from CmpInstr.
+ MachineBasicBlock::iterator I = CmpInstr, E = MI,
+ B = CmpInstr->getParent()->begin();
+
+ // Early exit if CmpInstr is at the beginning of the BB.
+ if (I == B) return false;
+
+ // There are two possible candidates which can be changed to set CPSR:
+ // One is MI, the other is a SUB instruction.
+ // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
+ // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
+ MachineInstr *Sub = nullptr;
+ if (SrcReg2 != 0)
+ // MI is not a candidate for CMPrr.
+ MI = nullptr;
+ else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
+ // Conservatively refuse to convert an instruction which isn't in the same
+ // BB as the comparison.
+ // For CMPri, we need to check Sub, thus we can't return here.
+ if (CmpInstr->getOpcode() == ARM::CMPri ||
+ CmpInstr->getOpcode() == ARM::t2CMPri)
+ MI = nullptr;
+ else
+ return false;
+ }
+
+ // Check that CPSR isn't set between the comparison instruction and the one we
+ // want to change. At the same time, search for Sub.
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ --I;
+ for (; I != E; --I) {
+ const MachineInstr &Instr = *I;
+
+ if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
+ Instr.readsRegister(ARM::CPSR, TRI))
+ // This instruction modifies or uses CPSR after the one we want to
+ // change. We can't do this transformation.
+ return false;
+
+ // Check whether CmpInstr can be made redundant by the current instruction.
+ if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
+ Sub = &*I;
+ break;
+ }
+
+ if (I == B)
+ // The 'and' is below the comparison instruction.
+ return false;
+ }
+
+ // Return false if no candidates exist.
+ if (!MI && !Sub)
+ return false;
+
+ // The single candidate is called MI.
+ if (!MI) MI = Sub;
+
+ // We can't use a predicated instruction - it doesn't always write the flags.
+ if (isPredicated(MI))
+ return false;
+
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::RSBrr:
+ case ARM::RSBri:
+ case ARM::RSCrr:
+ case ARM::RSCri:
+ case ARM::ADDrr:
+ case ARM::ADDri:
+ case ARM::ADCrr:
+ case ARM::ADCri:
+ case ARM::SUBrr:
+ case ARM::SUBri:
+ case ARM::SBCrr:
+ case ARM::SBCri:
+ case ARM::t2RSBri:
+ case ARM::t2ADDrr:
+ case ARM::t2ADDri:
+ case ARM::t2ADCrr:
+ case ARM::t2ADCri:
+ case ARM::t2SUBrr:
+ case ARM::t2SUBri:
+ case ARM::t2SBCrr:
+ case ARM::t2SBCri:
+ case ARM::ANDrr:
+ case ARM::ANDri:
+ case ARM::t2ANDrr:
+ case ARM::t2ANDri:
+ case ARM::ORRrr:
+ case ARM::ORRri:
+ case ARM::t2ORRrr:
+ case ARM::t2ORRri:
+ case ARM::EORrr:
+ case ARM::EORri:
+ case ARM::t2EORrr:
+ case ARM::t2EORri: {
+ // Scan forward for the use of CPSR
+ // When checking against MI: if it's a conditional code requires
+ // checking of V bit, then this is not safe to do.
+ // It is safe to remove CmpInstr if CPSR is redefined or killed.
+ // If we are done with the basic block, we need to check whether CPSR is
+ // live-out.
+ SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
+ OperandsToUpdate;
+ bool isSafe = false;
+ I = CmpInstr;
+ E = CmpInstr->getParent()->end();
+ while (!isSafe && ++I != E) {
+ const MachineInstr &Instr = *I;
+ for (unsigned IO = 0, EO = Instr.getNumOperands();
+ !isSafe && IO != EO; ++IO) {
+ const MachineOperand &MO = Instr.getOperand(IO);
+ if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
+ isSafe = true;
+ break;
+ }
+ if (!MO.isReg() || MO.getReg() != ARM::CPSR)
+ continue;
+ if (MO.isDef()) {
+ isSafe = true;
+ break;
+ }
+ // Condition code is after the operand before CPSR except for VSELs.
+ ARMCC::CondCodes CC;
+ bool IsInstrVSel = true;
+ switch (Instr.getOpcode()) {
+ default:
+ IsInstrVSel = false;
+ CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
+ break;
+ case ARM::VSELEQD:
+ case ARM::VSELEQS:
+ CC = ARMCC::EQ;
+ break;
+ case ARM::VSELGTD:
+ case ARM::VSELGTS:
+ CC = ARMCC::GT;
+ break;
+ case ARM::VSELGED:
+ case ARM::VSELGES:
+ CC = ARMCC::GE;
+ break;
+ case ARM::VSELVSS:
+ case ARM::VSELVSD:
+ CC = ARMCC::VS;
+ break;
+ }
+
+ if (Sub) {
+ ARMCC::CondCodes NewCC = getSwappedCondition(CC);
+ if (NewCC == ARMCC::AL)
+ return false;
+ // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
+ // on CMP needs to be updated to be based on SUB.
+ // Push the condition code operands to OperandsToUpdate.
+ // If it is safe to remove CmpInstr, the condition code of these
+ // operands will be modified.
+ if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
+ Sub->getOperand(2).getReg() == SrcReg) {
+ // VSel doesn't support condition code update.
+ if (IsInstrVSel)
+ return false;
+ OperandsToUpdate.push_back(
+ std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
+ }
+ } else
+ switch (CC) {
+ default:
+ // CPSR can be used multiple times, we should continue.
+ break;
+ case ARMCC::VS:
+ case ARMCC::VC:
+ case ARMCC::GE:
+ case ARMCC::LT:
+ case ARMCC::GT:
+ case ARMCC::LE:
+ return false;
+ }
+ }
+ }
+
+ // If CPSR is not killed nor re-defined, we should check whether it is
+ // live-out. If it is live-out, do not optimize.
+ if (!isSafe) {
+ MachineBasicBlock *MBB = CmpInstr->getParent();
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI)
+ if ((*SI)->isLiveIn(ARM::CPSR))
+ return false;
+ }
+
+ // Toggle the optional operand to CPSR.
+ MI->getOperand(5).setReg(ARM::CPSR);
+ MI->getOperand(5).setIsDef(true);
+ assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
+ CmpInstr->eraseFromParent();
+
+ // Modify the condition code of operands in OperandsToUpdate.
+ // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
+ // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
+ for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
+ OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
+ MachineInstr *DefMI, unsigned Reg,
+ MachineRegisterInfo *MRI) const {
+ // Fold large immediates into add, sub, or, xor.
+ unsigned DefOpc = DefMI->getOpcode();
+ if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
+ return false;
+ if (!DefMI->getOperand(1).isImm())
+ // Could be t2MOVi32imm <ga:xx>
+ return false;
+
+ if (!MRI->hasOneNonDBGUse(Reg))
+ return false;
+
+ const MCInstrDesc &DefMCID = DefMI->getDesc();
+ if (DefMCID.hasOptionalDef()) {
+ unsigned NumOps = DefMCID.getNumOperands();
+ const MachineOperand &MO = DefMI->getOperand(NumOps-1);
+ if (MO.getReg() == ARM::CPSR && !MO.isDead())
+ // If DefMI defines CPSR and it is not dead, it's obviously not safe
+ // to delete DefMI.
+ return false;
+ }
+
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
+ if (UseMCID.hasOptionalDef()) {
+ unsigned NumOps = UseMCID.getNumOperands();
+ if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
+ // If the instruction sets the flag, do not attempt this optimization
+ // since it may change the semantics of the code.
+ return false;
+ }
+
+ unsigned UseOpc = UseMI->getOpcode();
+ unsigned NewUseOpc = 0;
+ uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
+ uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
+ bool Commute = false;
+ switch (UseOpc) {
+ default: return false;
+ case ARM::SUBrr:
+ case ARM::ADDrr:
+ case ARM::ORRrr:
+ case ARM::EORrr:
+ case ARM::t2SUBrr:
+ case ARM::t2ADDrr:
+ case ARM::t2ORRrr:
+ case ARM::t2EORrr: {
+ Commute = UseMI->getOperand(2).getReg() != Reg;
+ switch (UseOpc) {
+ default: break;
+ case ARM::SUBrr: {
+ if (Commute)
+ return false;
+ ImmVal = -ImmVal;
+ NewUseOpc = ARM::SUBri;
+ // Fallthrough
+ }
+ case ARM::ADDrr:
+ case ARM::ORRrr:
+ case ARM::EORrr: {
+ if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
+ return false;
+ SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
+ SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
+ switch (UseOpc) {
+ default: break;
+ case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
+ case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
+ case ARM::EORrr: NewUseOpc = ARM::EORri; break;
+ }
+ break;
+ }
+ case ARM::t2SUBrr: {
+ if (Commute)
+ return false;
+ ImmVal = -ImmVal;
+ NewUseOpc = ARM::t2SUBri;
+ // Fallthrough
+ }
+ case ARM::t2ADDrr:
+ case ARM::t2ORRrr:
+ case ARM::t2EORrr: {
+ if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
+ return false;
+ SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
+ SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
+ switch (UseOpc) {
+ default: break;
+ case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
+ case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
+ case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ unsigned OpIdx = Commute ? 2 : 1;
+ unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
+ bool isKill = UseMI->getOperand(OpIdx).isKill();
+ unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
+ AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
+ UseMI, UseMI->getDebugLoc(),
+ get(NewUseOpc), NewReg)
+ .addReg(Reg1, getKillRegState(isKill))
+ .addImm(SOImmValV1)));
+ UseMI->setDesc(get(NewUseOpc));
+ UseMI->getOperand(1).setReg(NewReg);
+ UseMI->getOperand(1).setIsKill();
+ UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
+ DefMI->eraseFromParent();
+ return true;
+}
+
+static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
+ const MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default: {
+ const MCInstrDesc &Desc = MI->getDesc();
+ int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
+ assert(UOps >= 0 && "bad # UOps");
+ return UOps;
+ }
+
+ case ARM::LDRrs:
+ case ARM::LDRBrs:
+ case ARM::STRrs:
+ case ARM::STRBrs: {
+ unsigned ShOpVal = MI->getOperand(3).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 1;
+ return 2;
+ }
+
+ case ARM::LDRH:
+ case ARM::STRH: {
+ if (!MI->getOperand(2).getReg())
+ return 1;
+
+ unsigned ShOpVal = MI->getOperand(3).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 1;
+ return 2;
+ }
+
+ case ARM::LDRSB:
+ case ARM::LDRSH:
+ return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2;
+
+ case ARM::LDRSB_POST:
+ case ARM::LDRSH_POST: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rm = MI->getOperand(3).getReg();
+ return (Rt == Rm) ? 4 : 3;
+ }
+
+ case ARM::LDR_PRE_REG:
+ case ARM::LDRB_PRE_REG: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rm = MI->getOperand(3).getReg();
+ if (Rt == Rm)
+ return 3;
+ unsigned ShOpVal = MI->getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 2;
+ return 3;
+ }
+
+ case ARM::STR_PRE_REG:
+ case ARM::STRB_PRE_REG: {
+ unsigned ShOpVal = MI->getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 2;
+ return 3;
+ }
+
+ case ARM::LDRH_PRE:
+ case ARM::STRH_PRE: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rm = MI->getOperand(3).getReg();
+ if (!Rm)
+ return 2;
+ if (Rt == Rm)
+ return 3;
+ return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub)
+ ? 3 : 2;
+ }
+
+ case ARM::LDR_POST_REG:
+ case ARM::LDRB_POST_REG:
+ case ARM::LDRH_POST: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rm = MI->getOperand(3).getReg();
+ return (Rt == Rm) ? 3 : 2;
+ }
+
+ case ARM::LDR_PRE_IMM:
+ case ARM::LDRB_PRE_IMM:
+ case ARM::LDR_POST_IMM:
+ case ARM::LDRB_POST_IMM:
+ case ARM::STRB_POST_IMM:
+ case ARM::STRB_POST_REG:
+ case ARM::STRB_PRE_IMM:
+ case ARM::STRH_POST:
+ case ARM::STR_POST_IMM:
+ case ARM::STR_POST_REG:
+ case ARM::STR_PRE_IMM:
+ return 2;
+
+ case ARM::LDRSB_PRE:
+ case ARM::LDRSH_PRE: {
+ unsigned Rm = MI->getOperand(3).getReg();
+ if (Rm == 0)
+ return 3;
+ unsigned Rt = MI->getOperand(0).getReg();
+ if (Rt == Rm)
+ return 4;
+ unsigned ShOpVal = MI->getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 3;
+ return 4;
+ }
+
+ case ARM::LDRD: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rn = MI->getOperand(2).getReg();
+ unsigned Rm = MI->getOperand(3).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
+ return (Rt == Rn) ? 3 : 2;
+ }
+
+ case ARM::STRD: {
+ unsigned Rm = MI->getOperand(3).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
+ return 2;
+ }
+
+ case ARM::LDRD_POST:
+ case ARM::t2LDRD_POST:
+ return 3;
+
+ case ARM::STRD_POST:
+ case ARM::t2STRD_POST:
+ return 4;
+
+ case ARM::LDRD_PRE: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rn = MI->getOperand(3).getReg();
+ unsigned Rm = MI->getOperand(4).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
+ return (Rt == Rn) ? 4 : 3;
+ }
+
+ case ARM::t2LDRD_PRE: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rn = MI->getOperand(3).getReg();
+ return (Rt == Rn) ? 4 : 3;
+ }
+
+ case ARM::STRD_PRE: {
+ unsigned Rm = MI->getOperand(4).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
+ return 3;
+ }
+
+ case ARM::t2STRD_PRE:
+ return 3;
+
+ case ARM::t2LDR_POST:
+ case ARM::t2LDRB_POST:
+ case ARM::t2LDRB_PRE:
+ case ARM::t2LDRSBi12:
+ case ARM::t2LDRSBi8:
+ case ARM::t2LDRSBpci:
+ case ARM::t2LDRSBs:
+ case ARM::t2LDRH_POST:
+ case ARM::t2LDRH_PRE:
+ case ARM::t2LDRSBT:
+ case ARM::t2LDRSB_POST:
+ case ARM::t2LDRSB_PRE:
+ case ARM::t2LDRSH_POST:
+ case ARM::t2LDRSH_PRE:
+ case ARM::t2LDRSHi12:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRSHpci:
+ case ARM::t2LDRSHs:
+ return 2;
+
+ case ARM::t2LDRDi8: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rn = MI->getOperand(2).getReg();
+ return (Rt == Rn) ? 3 : 2;
+ }
+
+ case ARM::t2STRB_POST:
+ case ARM::t2STRB_PRE:
+ case ARM::t2STRBs:
+ case ARM::t2STRDi8:
+ case ARM::t2STRH_POST:
+ case ARM::t2STRH_PRE:
+ case ARM::t2STRHs:
+ case ARM::t2STR_POST:
+ case ARM::t2STR_PRE:
+ case ARM::t2STRs:
+ return 2;
+ }
+}
+
+// Return the number of 32-bit words loaded by LDM or stored by STM. If this
+// can't be easily determined return 0 (missing MachineMemOperand).
+//
+// FIXME: The current MachineInstr design does not support relying on machine
+// mem operands to determine the width of a memory access. Instead, we expect
+// the target to provide this information based on the instruction opcode and
+// operands. However, using MachineMemOperand is a the best solution now for
+// two reasons:
+//
+// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
+// operands. This is much more dangerous than using the MachineMemOperand
+// sizes because CodeGen passes can insert/remove optional machine operands. In
+// fact, it's totally incorrect for preRA passes and appears to be wrong for
+// postRA passes as well.
+//
+// 2) getNumLDMAddresses is only used by the scheduling machine model and any
+// machine model that calls this should handle the unknown (zero size) case.
+//
+// Long term, we should require a target hook that verifies MachineMemOperand
+// sizes during MC lowering. That target hook should be local to MC lowering
+// because we can't ensure that it is aware of other MI forms. Doing this will
+// ensure that MachineMemOperands are correctly propagated through all passes.
+unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const {
+ unsigned Size = 0;
+ for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
+ E = MI->memoperands_end(); I != E; ++I) {
+ Size += (*I)->getSize();
+ }
+ return Size / 4;
+}
+
+unsigned
+ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
+ const MachineInstr *MI) const {
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ const MCInstrDesc &Desc = MI->getDesc();
+ unsigned Class = Desc.getSchedClass();
+ int ItinUOps = ItinData->getNumMicroOps(Class);
+ if (ItinUOps >= 0) {
+ if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
+ return getNumMicroOpsSwiftLdSt(ItinData, MI);
+
+ return ItinUOps;
+ }
+
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unexpected multi-uops instruction!");
+ case ARM::VLDMQIA:
+ case ARM::VSTMQIA:
+ return 2;
+
+ // The number of uOps for load / store multiple are determined by the number
+ // registers.
+ //
+ // On Cortex-A8, each pair of register loads / stores can be scheduled on the
+ // same cycle. The scheduling for the first load / store must be done
+ // separately by assuming the address is not 64-bit aligned.
+ //
+ // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
+ // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
+ // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
+ case ARM::VLDMDIA:
+ case ARM::VLDMDIA_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ case ARM::VSTMDIA:
+ case ARM::VSTMDIA_UPD:
+ case ARM::VSTMDDB_UPD:
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD: {
+ unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
+ return (NumRegs / 2) + (NumRegs % 2) + 1;
+ }
+
+ case ARM::LDMIA_RET:
+ case ARM::LDMIA:
+ case ARM::LDMDA:
+ case ARM::LDMDB:
+ case ARM::LDMIB:
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::STMIA:
+ case ARM::STMDA:
+ case ARM::STMDB:
+ case ARM::STMIB:
+ case ARM::STMIA_UPD:
+ case ARM::STMDA_UPD:
+ case ARM::STMDB_UPD:
+ case ARM::STMIB_UPD:
+ case ARM::tLDMIA:
+ case ARM::tLDMIA_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::tPOP_RET:
+ case ARM::tPOP:
+ case ARM::tPUSH:
+ case ARM::t2LDMIA_RET:
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMIA:
+ case ARM::t2STMDB:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD: {
+ unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
+ if (Subtarget.isSwift()) {
+ int UOps = 1 + NumRegs; // One for address computation, one for each ld / st.
+ switch (Opc) {
+ default: break;
+ case ARM::VLDMDIA_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ case ARM::VSTMDIA_UPD:
+ case ARM::VSTMDDB_UPD:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD:
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::STMIA_UPD:
+ case ARM::STMDA_UPD:
+ case ARM::STMDB_UPD:
+ case ARM::STMIB_UPD:
+ case ARM::tLDMIA_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD:
+ ++UOps; // One for base register writeback.
+ break;
+ case ARM::LDMIA_RET:
+ case ARM::tPOP_RET:
+ case ARM::t2LDMIA_RET:
+ UOps += 2; // One for base reg wb, one for write to pc.
+ break;
+ }
+ return UOps;
+ } else if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ if (NumRegs < 4)
+ return 2;
+ // 4 registers would be issued: 2, 2.
+ // 5 registers would be issued: 2, 2, 1.
+ int A8UOps = (NumRegs / 2);
+ if (NumRegs % 2)
+ ++A8UOps;
+ return A8UOps;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ int A9UOps = (NumRegs / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((NumRegs % 2) ||
+ !MI->hasOneMemOperand() ||
+ (*MI->memoperands_begin())->getAlignment() < 8)
+ ++A9UOps;
+ return A9UOps;
+ } else {
+ // Assume the worst.
+ return NumRegs;
+ }
+ }
+ }
+}
+
+int
+ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefClass,
+ unsigned DefIdx, unsigned DefAlign) const {
+ int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ // Def is the address writeback.
+ return ItinData->getOperandCycle(DefClass, DefIdx);
+
+ int DefCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ // (regno / 2) + (regno % 2) + 1
+ DefCycle = RegNo / 2 + 1;
+ if (RegNo % 2)
+ ++DefCycle;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ DefCycle = RegNo;
+ bool isSLoad = false;
+
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ isSLoad = true;
+ break;
+ }
+
+ // If there are odd number of 'S' registers or if it's not 64-bit aligned,
+ // then it takes an extra cycle.
+ if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
+ ++DefCycle;
+ } else {
+ // Assume the worst.
+ DefCycle = RegNo + 2;
+ }
+
+ return DefCycle;
+}
+
+int
+ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefClass,
+ unsigned DefIdx, unsigned DefAlign) const {
+ int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ // Def is the address writeback.
+ return ItinData->getOperandCycle(DefClass, DefIdx);
+
+ int DefCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ // 4 registers would be issued: 1, 2, 1.
+ // 5 registers would be issued: 1, 2, 2.
+ DefCycle = RegNo / 2;
+ if (DefCycle < 1)
+ DefCycle = 1;
+ // Result latency is issue cycle + 2: E2.
+ DefCycle += 2;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ DefCycle = (RegNo / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((RegNo % 2) || DefAlign < 8)
+ ++DefCycle;
+ // Result latency is AGU cycles + 2.
+ DefCycle += 2;
+ } else {
+ // Assume the worst.
+ DefCycle = RegNo + 2;
+ }
+
+ return DefCycle;
+}
+
+int
+ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &UseMCID,
+ unsigned UseClass,
+ unsigned UseIdx, unsigned UseAlign) const {
+ int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ return ItinData->getOperandCycle(UseClass, UseIdx);
+
+ int UseCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ // (regno / 2) + (regno % 2) + 1
+ UseCycle = RegNo / 2 + 1;
+ if (RegNo % 2)
+ ++UseCycle;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ UseCycle = RegNo;
+ bool isSStore = false;
+
+ switch (UseMCID.getOpcode()) {
+ default: break;
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD:
+ isSStore = true;
+ break;
+ }
+
+ // If there are odd number of 'S' registers or if it's not 64-bit aligned,
+ // then it takes an extra cycle.
+ if ((isSStore && (RegNo % 2)) || UseAlign < 8)
+ ++UseCycle;
+ } else {
+ // Assume the worst.
+ UseCycle = RegNo + 2;
+ }
+
+ return UseCycle;
+}
+
+int
+ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &UseMCID,
+ unsigned UseClass,
+ unsigned UseIdx, unsigned UseAlign) const {
+ int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ return ItinData->getOperandCycle(UseClass, UseIdx);
+
+ int UseCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ UseCycle = RegNo / 2;
+ if (UseCycle < 2)
+ UseCycle = 2;
+ // Read in E3.
+ UseCycle += 2;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ UseCycle = (RegNo / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((RegNo % 2) || UseAlign < 8)
+ ++UseCycle;
+ } else {
+ // Assume the worst.
+ UseCycle = 1;
+ }
+ return UseCycle;
+}
+
+int
+ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefIdx, unsigned DefAlign,
+ const MCInstrDesc &UseMCID,
+ unsigned UseIdx, unsigned UseAlign) const {
+ unsigned DefClass = DefMCID.getSchedClass();
+ unsigned UseClass = UseMCID.getSchedClass();
+
+ if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
+ return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
+
+ // This may be a def / use of a variable_ops instruction, the operand
+ // latency might be determinable dynamically. Let the target try to
+ // figure it out.
+ int DefCycle = -1;
+ bool LdmBypass = false;
+ switch (DefMCID.getOpcode()) {
+ default:
+ DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
+ break;
+
+ case ARM::VLDMDIA:
+ case ARM::VLDMDIA_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
+ break;
+
+ case ARM::LDMIA_RET:
+ case ARM::LDMIA:
+ case ARM::LDMDA:
+ case ARM::LDMDB:
+ case ARM::LDMIB:
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::tLDMIA:
+ case ARM::tLDMIA_UPD:
+ case ARM::tPUSH:
+ case ARM::t2LDMIA_RET:
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ LdmBypass = 1;
+ DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
+ break;
+ }
+
+ if (DefCycle == -1)
+ // We can't seem to determine the result latency of the def, assume it's 2.
+ DefCycle = 2;
+
+ int UseCycle = -1;
+ switch (UseMCID.getOpcode()) {
+ default:
+ UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
+ break;
+
+ case ARM::VSTMDIA:
+ case ARM::VSTMDIA_UPD:
+ case ARM::VSTMDDB_UPD:
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD:
+ UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
+ break;
+
+ case ARM::STMIA:
+ case ARM::STMDA:
+ case ARM::STMDB:
+ case ARM::STMIB:
+ case ARM::STMIA_UPD:
+ case ARM::STMDA_UPD:
+ case ARM::STMDB_UPD:
+ case ARM::STMIB_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::tPOP_RET:
+ case ARM::tPOP:
+ case ARM::t2STMIA:
+ case ARM::t2STMDB:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD:
+ UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
+ break;
+ }
+
+ if (UseCycle == -1)
+ // Assume it's read in the first stage.
+ UseCycle = 1;
+
+ UseCycle = DefCycle - UseCycle + 1;
+ if (UseCycle > 0) {
+ if (LdmBypass) {
+ // It's a variable_ops instruction so we can't use DefIdx here. Just use
+ // first def operand.
+ if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
+ UseClass, UseIdx))
+ --UseCycle;
+ } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
+ UseClass, UseIdx)) {
+ --UseCycle;
+ }
+ }
+
+ return UseCycle;
+}
+
+static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
+ const MachineInstr *MI, unsigned Reg,
+ unsigned &DefIdx, unsigned &Dist) {
+ Dist = 0;
+
+ MachineBasicBlock::const_iterator I = MI; ++I;
+ MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
+ assert(II->isInsideBundle() && "Empty bundle?");
+
+ int Idx = -1;
+ while (II->isInsideBundle()) {
+ Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
+ if (Idx != -1)
+ break;
+ --II;
+ ++Dist;
+ }
+
+ assert(Idx != -1 && "Cannot find bundled definition!");
+ DefIdx = Idx;
+ return II;
+}
+
+static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
+ const MachineInstr *MI, unsigned Reg,
+ unsigned &UseIdx, unsigned &Dist) {
+ Dist = 0;
+
+ MachineBasicBlock::const_instr_iterator II = MI; ++II;
+ assert(II->isInsideBundle() && "Empty bundle?");
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+
+ // FIXME: This doesn't properly handle multiple uses.
+ int Idx = -1;
+ while (II != E && II->isInsideBundle()) {
+ Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
+ if (Idx != -1)
+ break;
+ if (II->getOpcode() != ARM::t2IT)
+ ++Dist;
+ ++II;
+ }
+
+ if (Idx == -1) {
+ Dist = 0;
+ return nullptr;
+ }
+
+ UseIdx = Idx;
+ return II;
+}
+
+/// Return the number of cycles to add to (or subtract from) the static
+/// itinerary based on the def opcode and alignment. The caller will ensure that
+/// adjusted latency is at least one cycle.
+static int adjustDefLatency(const ARMSubtarget &Subtarget,
+ const MachineInstr *DefMI,
+ const MCInstrDesc *DefMCID, unsigned DefAlign) {
+ int Adjust = 0;
+ if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
+ // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
+ // variants are one cycle cheaper.
+ switch (DefMCID->getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal = DefMI->getOperand(3).getImm();
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (ShImm == 0 ||
+ (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
+ --Adjust;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl only.
+ unsigned ShAmt = DefMI->getOperand(3).getImm();
+ if (ShAmt == 0 || ShAmt == 2)
+ --Adjust;
+ break;
+ }
+ }
+ } else if (Subtarget.isSwift()) {
+ // FIXME: Properly handle all of the latency adjustments for address
+ // writeback.
+ switch (DefMCID->getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal = DefMI->getOperand(3).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ Adjust -= 2;
+ else if (!isSub &&
+ ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
+ --Adjust;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl only.
+ unsigned ShAmt = DefMI->getOperand(3).getImm();
+ if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
+ Adjust -= 2;
+ break;
+ }
+ }
+ }
+
+ if (DefAlign < 8 && Subtarget.isLikeA9()) {
+ switch (DefMCID->getOpcode()) {
+ default: break;
+ case ARM::VLD1q8:
+ case ARM::VLD1q16:
+ case ARM::VLD1q32:
+ case ARM::VLD1q64:
+ case ARM::VLD1q8wb_fixed:
+ case ARM::VLD1q16wb_fixed:
+ case ARM::VLD1q32wb_fixed:
+ case ARM::VLD1q64wb_fixed:
+ case ARM::VLD1q8wb_register:
+ case ARM::VLD1q16wb_register:
+ case ARM::VLD1q32wb_register:
+ case ARM::VLD1q64wb_register:
+ case ARM::VLD2d8:
+ case ARM::VLD2d16:
+ case ARM::VLD2d32:
+ case ARM::VLD2q8:
+ case ARM::VLD2q16:
+ case ARM::VLD2q32:
+ case ARM::VLD2d8wb_fixed:
+ case ARM::VLD2d16wb_fixed:
+ case ARM::VLD2d32wb_fixed:
+ case ARM::VLD2q8wb_fixed:
+ case ARM::VLD2q16wb_fixed:
+ case ARM::VLD2q32wb_fixed:
+ case ARM::VLD2d8wb_register:
+ case ARM::VLD2d16wb_register:
+ case ARM::VLD2d32wb_register:
+ case ARM::VLD2q8wb_register:
+ case ARM::VLD2q16wb_register:
+ case ARM::VLD2q32wb_register:
+ case ARM::VLD3d8:
+ case ARM::VLD3d16:
+ case ARM::VLD3d32:
+ case ARM::VLD1d64T:
+ case ARM::VLD3d8_UPD:
+ case ARM::VLD3d16_UPD:
+ case ARM::VLD3d32_UPD:
+ case ARM::VLD1d64Twb_fixed:
+ case ARM::VLD1d64Twb_register:
+ case ARM::VLD3q8_UPD:
+ case ARM::VLD3q16_UPD:
+ case ARM::VLD3q32_UPD:
+ case ARM::VLD4d8:
+ case ARM::VLD4d16:
+ case ARM::VLD4d32:
+ case ARM::VLD1d64Q:
+ case ARM::VLD4d8_UPD:
+ case ARM::VLD4d16_UPD:
+ case ARM::VLD4d32_UPD:
+ case ARM::VLD1d64Qwb_fixed:
+ case ARM::VLD1d64Qwb_register:
+ case ARM::VLD4q8_UPD:
+ case ARM::VLD4q16_UPD:
+ case ARM::VLD4q32_UPD:
+ case ARM::VLD1DUPq8:
+ case ARM::VLD1DUPq16:
+ case ARM::VLD1DUPq32:
+ case ARM::VLD1DUPq8wb_fixed:
+ case ARM::VLD1DUPq16wb_fixed:
+ case ARM::VLD1DUPq32wb_fixed:
+ case ARM::VLD1DUPq8wb_register:
+ case ARM::VLD1DUPq16wb_register:
+ case ARM::VLD1DUPq32wb_register:
+ case ARM::VLD2DUPd8:
+ case ARM::VLD2DUPd16:
+ case ARM::VLD2DUPd32:
+ case ARM::VLD2DUPd8wb_fixed:
+ case ARM::VLD2DUPd16wb_fixed:
+ case ARM::VLD2DUPd32wb_fixed:
+ case ARM::VLD2DUPd8wb_register:
+ case ARM::VLD2DUPd16wb_register:
+ case ARM::VLD2DUPd32wb_register:
+ case ARM::VLD4DUPd8:
+ case ARM::VLD4DUPd16:
+ case ARM::VLD4DUPd32:
+ case ARM::VLD4DUPd8_UPD:
+ case ARM::VLD4DUPd16_UPD:
+ case ARM::VLD4DUPd32_UPD:
+ case ARM::VLD1LNd8:
+ case ARM::VLD1LNd16:
+ case ARM::VLD1LNd32:
+ case ARM::VLD1LNd8_UPD:
+ case ARM::VLD1LNd16_UPD:
+ case ARM::VLD1LNd32_UPD:
+ case ARM::VLD2LNd8:
+ case ARM::VLD2LNd16:
+ case ARM::VLD2LNd32:
+ case ARM::VLD2LNq16:
+ case ARM::VLD2LNq32:
+ case ARM::VLD2LNd8_UPD:
+ case ARM::VLD2LNd16_UPD:
+ case ARM::VLD2LNd32_UPD:
+ case ARM::VLD2LNq16_UPD:
+ case ARM::VLD2LNq32_UPD:
+ case ARM::VLD4LNd8:
+ case ARM::VLD4LNd16:
+ case ARM::VLD4LNd32:
+ case ARM::VLD4LNq16:
+ case ARM::VLD4LNq32:
+ case ARM::VLD4LNd8_UPD:
+ case ARM::VLD4LNd16_UPD:
+ case ARM::VLD4LNd32_UPD:
+ case ARM::VLD4LNq16_UPD:
+ case ARM::VLD4LNq32_UPD:
+ // If the address is not 64-bit aligned, the latencies of these
+ // instructions increases by one.
+ ++Adjust;
+ break;
+ }
+ }
+ return Adjust;
+}
+
+
+
+int
+ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI,
+ unsigned UseIdx) const {
+ // No operand latency. The caller may fall back to getInstrLatency.
+ if (!ItinData || ItinData->isEmpty())
+ return -1;
+
+ const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
+ unsigned Reg = DefMO.getReg();
+ const MCInstrDesc *DefMCID = &DefMI->getDesc();
+ const MCInstrDesc *UseMCID = &UseMI->getDesc();
+
+ unsigned DefAdj = 0;
+ if (DefMI->isBundle()) {
+ DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
+ DefMCID = &DefMI->getDesc();
+ }
+ if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
+ DefMI->isRegSequence() || DefMI->isImplicitDef()) {
+ return 1;
+ }
+
+ unsigned UseAdj = 0;
+ if (UseMI->isBundle()) {
+ unsigned NewUseIdx;
+ const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
+ Reg, NewUseIdx, UseAdj);
+ if (!NewUseMI)
+ return -1;
+
+ UseMI = NewUseMI;
+ UseIdx = NewUseIdx;
+ UseMCID = &UseMI->getDesc();
+ }
+
+ if (Reg == ARM::CPSR) {
+ if (DefMI->getOpcode() == ARM::FMSTAT) {
+ // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
+ return Subtarget.isLikeA9() ? 1 : 20;
+ }
+
+ // CPSR set and branch can be paired in the same cycle.
+ if (UseMI->isBranch())
+ return 0;
+
+ // Otherwise it takes the instruction latency (generally one).
+ unsigned Latency = getInstrLatency(ItinData, DefMI);
+
+ // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
+ // its uses. Instructions which are otherwise scheduled between them may
+ // incur a code size penalty (not able to use the CPSR setting 16-bit
+ // instructions).
+ if (Latency > 0 && Subtarget.isThumb2()) {
+ const MachineFunction *MF = DefMI->getParent()->getParent();
+ if (MF->getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize))
+ --Latency;
+ }
+ return Latency;
+ }
+
+ if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
+ return -1;
+
+ unsigned DefAlign = DefMI->hasOneMemOperand()
+ ? (*DefMI->memoperands_begin())->getAlignment() : 0;
+ unsigned UseAlign = UseMI->hasOneMemOperand()
+ ? (*UseMI->memoperands_begin())->getAlignment() : 0;
+
+ // Get the itinerary's latency if possible, and handle variable_ops.
+ int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
+ *UseMCID, UseIdx, UseAlign);
+ // Unable to find operand latency. The caller may resort to getInstrLatency.
+ if (Latency < 0)
+ return Latency;
+
+ // Adjust for IT block position.
+ int Adj = DefAdj + UseAdj;
+
+ // Adjust for dynamic def-side opcode variants not captured by the itinerary.
+ Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
+ if (Adj >= 0 || (int)Latency > -Adj) {
+ return Latency + Adj;
+ }
+ // Return the itinerary latency, which may be zero but not less than zero.
+ return Latency;
+}
+
+int
+ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ SDNode *DefNode, unsigned DefIdx,
+ SDNode *UseNode, unsigned UseIdx) const {
+ if (!DefNode->isMachineOpcode())
+ return 1;
+
+ const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
+
+ if (isZeroCost(DefMCID.Opcode))
+ return 0;
+
+ if (!ItinData || ItinData->isEmpty())
+ return DefMCID.mayLoad() ? 3 : 1;
+
+ if (!UseNode->isMachineOpcode()) {
+ int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
+ if (Subtarget.isLikeA9() || Subtarget.isSwift())
+ return Latency <= 2 ? 1 : Latency - 1;
+ else
+ return Latency <= 3 ? 1 : Latency - 2;
+ }
+
+ const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
+ const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
+ unsigned DefAlign = !DefMN->memoperands_empty()
+ ? (*DefMN->memoperands_begin())->getAlignment() : 0;
+ const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
+ unsigned UseAlign = !UseMN->memoperands_empty()
+ ? (*UseMN->memoperands_begin())->getAlignment() : 0;
+ int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
+ UseMCID, UseIdx, UseAlign);
+
+ if (Latency > 1 &&
+ (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
+ Subtarget.isCortexA7())) {
+ // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
+ // variants are one cycle cheaper.
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal =
+ cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (ShImm == 0 ||
+ (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
+ --Latency;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl only.
+ unsigned ShAmt =
+ cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
+ if (ShAmt == 0 || ShAmt == 2)
+ --Latency;
+ break;
+ }
+ }
+ } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
+ // FIXME: Properly handle all of the latency adjustments for address
+ // writeback.
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal =
+ cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
+ Latency -= 2;
+ else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
+ --Latency;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl 0-3 only.
+ Latency -= 2;
+ break;
+ }
+ }
+ }
+
+ if (DefAlign < 8 && Subtarget.isLikeA9())
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::VLD1q8:
+ case ARM::VLD1q16:
+ case ARM::VLD1q32:
+ case ARM::VLD1q64:
+ case ARM::VLD1q8wb_register:
+ case ARM::VLD1q16wb_register:
+ case ARM::VLD1q32wb_register:
+ case ARM::VLD1q64wb_register:
+ case ARM::VLD1q8wb_fixed:
+ case ARM::VLD1q16wb_fixed:
+ case ARM::VLD1q32wb_fixed:
+ case ARM::VLD1q64wb_fixed:
+ case ARM::VLD2d8:
+ case ARM::VLD2d16:
+ case ARM::VLD2d32:
+ case ARM::VLD2q8Pseudo:
+ case ARM::VLD2q16Pseudo:
+ case ARM::VLD2q32Pseudo:
+ case ARM::VLD2d8wb_fixed:
+ case ARM::VLD2d16wb_fixed:
+ case ARM::VLD2d32wb_fixed:
+ case ARM::VLD2q8PseudoWB_fixed:
+ case ARM::VLD2q16PseudoWB_fixed:
+ case ARM::VLD2q32PseudoWB_fixed:
+ case ARM::VLD2d8wb_register:
+ case ARM::VLD2d16wb_register:
+ case ARM::VLD2d32wb_register:
+ case ARM::VLD2q8PseudoWB_register:
+ case ARM::VLD2q16PseudoWB_register:
+ case ARM::VLD2q32PseudoWB_register:
+ case ARM::VLD3d8Pseudo:
+ case ARM::VLD3d16Pseudo:
+ case ARM::VLD3d32Pseudo:
+ case ARM::VLD1d64TPseudo:
+ case ARM::VLD1d64TPseudoWB_fixed:
+ case ARM::VLD3d8Pseudo_UPD:
+ case ARM::VLD3d16Pseudo_UPD:
+ case ARM::VLD3d32Pseudo_UPD:
+ case ARM::VLD3q8Pseudo_UPD:
+ case ARM::VLD3q16Pseudo_UPD:
+ case ARM::VLD3q32Pseudo_UPD:
+ case ARM::VLD3q8oddPseudo:
+ case ARM::VLD3q16oddPseudo:
+ case ARM::VLD3q32oddPseudo:
+ case ARM::VLD3q8oddPseudo_UPD:
+ case ARM::VLD3q16oddPseudo_UPD:
+ case ARM::VLD3q32oddPseudo_UPD:
+ case ARM::VLD4d8Pseudo:
+ case ARM::VLD4d16Pseudo:
+ case ARM::VLD4d32Pseudo:
+ case ARM::VLD1d64QPseudo:
+ case ARM::VLD1d64QPseudoWB_fixed:
+ case ARM::VLD4d8Pseudo_UPD:
+ case ARM::VLD4d16Pseudo_UPD:
+ case ARM::VLD4d32Pseudo_UPD:
+ case ARM::VLD4q8Pseudo_UPD:
+ case ARM::VLD4q16Pseudo_UPD:
+ case ARM::VLD4q32Pseudo_UPD:
+ case ARM::VLD4q8oddPseudo:
+ case ARM::VLD4q16oddPseudo:
+ case ARM::VLD4q32oddPseudo:
+ case ARM::VLD4q8oddPseudo_UPD:
+ case ARM::VLD4q16oddPseudo_UPD:
+ case ARM::VLD4q32oddPseudo_UPD:
+ case ARM::VLD1DUPq8:
+ case ARM::VLD1DUPq16:
+ case ARM::VLD1DUPq32:
+ case ARM::VLD1DUPq8wb_fixed:
+ case ARM::VLD1DUPq16wb_fixed:
+ case ARM::VLD1DUPq32wb_fixed:
+ case ARM::VLD1DUPq8wb_register:
+ case ARM::VLD1DUPq16wb_register:
+ case ARM::VLD1DUPq32wb_register:
+ case ARM::VLD2DUPd8:
+ case ARM::VLD2DUPd16:
+ case ARM::VLD2DUPd32:
+ case ARM::VLD2DUPd8wb_fixed:
+ case ARM::VLD2DUPd16wb_fixed:
+ case ARM::VLD2DUPd32wb_fixed:
+ case ARM::VLD2DUPd8wb_register:
+ case ARM::VLD2DUPd16wb_register:
+ case ARM::VLD2DUPd32wb_register:
+ case ARM::VLD4DUPd8Pseudo:
+ case ARM::VLD4DUPd16Pseudo:
+ case ARM::VLD4DUPd32Pseudo:
+ case ARM::VLD4DUPd8Pseudo_UPD:
+ case ARM::VLD4DUPd16Pseudo_UPD:
+ case ARM::VLD4DUPd32Pseudo_UPD:
+ case ARM::VLD1LNq8Pseudo:
+ case ARM::VLD1LNq16Pseudo:
+ case ARM::VLD1LNq32Pseudo:
+ case ARM::VLD1LNq8Pseudo_UPD:
+ case ARM::VLD1LNq16Pseudo_UPD:
+ case ARM::VLD1LNq32Pseudo_UPD:
+ case ARM::VLD2LNd8Pseudo:
+ case ARM::VLD2LNd16Pseudo:
+ case ARM::VLD2LNd32Pseudo:
+ case ARM::VLD2LNq16Pseudo:
+ case ARM::VLD2LNq32Pseudo:
+ case ARM::VLD2LNd8Pseudo_UPD:
+ case ARM::VLD2LNd16Pseudo_UPD:
+ case ARM::VLD2LNd32Pseudo_UPD:
+ case ARM::VLD2LNq16Pseudo_UPD:
+ case ARM::VLD2LNq32Pseudo_UPD:
+ case ARM::VLD4LNd8Pseudo:
+ case ARM::VLD4LNd16Pseudo:
+ case ARM::VLD4LNd32Pseudo:
+ case ARM::VLD4LNq16Pseudo:
+ case ARM::VLD4LNq32Pseudo:
+ case ARM::VLD4LNd8Pseudo_UPD:
+ case ARM::VLD4LNd16Pseudo_UPD:
+ case ARM::VLD4LNd32Pseudo_UPD:
+ case ARM::VLD4LNq16Pseudo_UPD:
+ case ARM::VLD4LNq32Pseudo_UPD:
+ // If the address is not 64-bit aligned, the latencies of these
+ // instructions increases by one.
+ ++Latency;
+ break;
+ }
+
+ return Latency;
+}
+
+unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr *MI) const {
+ if (MI->isCopyLike() || MI->isInsertSubreg() ||
+ MI->isRegSequence() || MI->isImplicitDef())
+ return 0;
+
+ if (MI->isBundle())
+ return 0;
+
+ const MCInstrDesc &MCID = MI->getDesc();
+
+ if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) {
+ // When predicated, CPSR is an additional source operand for CPSR updating
+ // instructions, this apparently increases their latencies.
+ return 1;
+ }
+ return 0;
+}
+
+unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *MI,
+ unsigned *PredCost) const {
+ if (MI->isCopyLike() || MI->isInsertSubreg() ||
+ MI->isRegSequence() || MI->isImplicitDef())
+ return 1;
+
+ // An instruction scheduler typically runs on unbundled instructions, however
+ // other passes may query the latency of a bundled instruction.
+ if (MI->isBundle()) {
+ unsigned Latency = 0;
+ MachineBasicBlock::const_instr_iterator I = MI;
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ if (I->getOpcode() != ARM::t2IT)
+ Latency += getInstrLatency(ItinData, I, PredCost);
+ }
+ return Latency;
+ }
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
+ // When predicated, CPSR is an additional source operand for CPSR updating
+ // instructions, this apparently increases their latencies.
+ *PredCost = 1;
+ }
+ // Be sure to call getStageLatency for an empty itinerary in case it has a
+ // valid MinLatency property.
+ if (!ItinData)
+ return MI->mayLoad() ? 3 : 1;
+
+ unsigned Class = MCID.getSchedClass();
+
+ // For instructions with variable uops, use uops as latency.
+ if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
+ return getNumMicroOps(ItinData, MI);
+
+ // For the common case, fall back on the itinerary's latency.
+ unsigned Latency = ItinData->getStageLatency(Class);
+
+ // Adjust for dynamic def-side opcode variants not captured by the itinerary.
+ unsigned DefAlign = MI->hasOneMemOperand()
+ ? (*MI->memoperands_begin())->getAlignment() : 0;
+ int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
+ if (Adj >= 0 || (int)Latency > -Adj) {
+ return Latency + Adj;
+ }
+ return Latency;
+}
+
+int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ SDNode *Node) const {
+ if (!Node->isMachineOpcode())
+ return 1;
+
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ unsigned Opcode = Node->getMachineOpcode();
+ switch (Opcode) {
+ default:
+ return ItinData->getStageLatency(get(Opcode).getSchedClass());
+ case ARM::VLDMQIA:
+ case ARM::VSTMQIA:
+ return 2;
+ }
+}
+
+bool ARMBaseInstrInfo::
+hasHighOperandLatency(const InstrItineraryData *ItinData,
+ const MachineRegisterInfo *MRI,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI, unsigned UseIdx) const {
+ unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
+ unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
+ if (Subtarget.isCortexA8() &&
+ (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
+ // CortexA8 VFP instructions are not pipelined.
+ return true;
+
+ // Hoist VFP / NEON instructions with 4 or higher latency.
+ int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
+ if (Latency < 0)
+ Latency = getInstrLatency(ItinData, DefMI);
+ if (Latency <= 3)
+ return false;
+ return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
+ UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
+}
+
+bool ARMBaseInstrInfo::
+hasLowDefLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, unsigned DefIdx) const {
+ if (!ItinData || ItinData->isEmpty())
+ return false;
+
+ unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
+ if (DDomain == ARMII::DomainGeneral) {
+ unsigned DefClass = DefMI->getDesc().getSchedClass();
+ int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
+ return (DefCycle != -1 && DefCycle <= 2);
+ }
+ return false;
+}
+
+bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
+ StringRef &ErrInfo) const {
+ if (convertAddSubFlagsOpcode(MI->getOpcode())) {
+ ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
+ return false;
+ }
+ return true;
+}
+
+bool
+ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
+ unsigned &AddSubOpc,
+ bool &NegAcc, bool &HasLane) const {
+ DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
+ if (I == MLxEntryMap.end())
+ return false;
+
+ const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
+ MulOpc = Entry.MulOpc;
+ AddSubOpc = Entry.AddSubOpc;
+ NegAcc = Entry.NegAcc;
+ HasLane = Entry.HasLane;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Execution domains.
+//===----------------------------------------------------------------------===//
+//
+// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
+// and some can go down both. The vmov instructions go down the VFP pipeline,
+// but they can be changed to vorr equivalents that are executed by the NEON
+// pipeline.
+//
+// We use the following execution domain numbering:
+//
+enum ARMExeDomain {
+ ExeGeneric = 0,
+ ExeVFP = 1,
+ ExeNEON = 2
+};
+//
+// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
+//
+std::pair<uint16_t, uint16_t>
+ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
+ // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
+ // if they are not predicated.
+ if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
+ return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
+
+ // CortexA9 is particularly picky about mixing the two and wants these
+ // converted.
+ if (Subtarget.isCortexA9() && !isPredicated(MI) &&
+ (MI->getOpcode() == ARM::VMOVRS ||
+ MI->getOpcode() == ARM::VMOVSR ||
+ MI->getOpcode() == ARM::VMOVS))
+ return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
+
+ // No other instructions can be swizzled, so just determine their domain.
+ unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
+
+ if (Domain & ARMII::DomainNEON)
+ return std::make_pair(ExeNEON, 0);
+
+ // Certain instructions can go either way on Cortex-A8.
+ // Treat them as NEON instructions.
+ if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
+ return std::make_pair(ExeNEON, 0);
+
+ if (Domain & ARMII::DomainVFP)
+ return std::make_pair(ExeVFP, 0);
+
+ return std::make_pair(ExeGeneric, 0);
+}
+
+static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
+ unsigned SReg, unsigned &Lane) {
+ unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
+ Lane = 0;
+
+ if (DReg != ARM::NoRegister)
+ return DReg;
+
+ Lane = 1;
+ DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
+
+ assert(DReg && "S-register with no D super-register?");
+ return DReg;
+}
+
+/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
+/// set ImplicitSReg to a register number that must be marked as implicit-use or
+/// zero if no register needs to be defined as implicit-use.
+///
+/// If the function cannot determine if an SPR should be marked implicit use or
+/// not, it returns false.
+///
+/// This function handles cases where an instruction is being modified from taking
+/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
+/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
+/// lane of the DPR).
+///
+/// If the other SPR is defined, an implicit-use of it should be added. Else,
+/// (including the case where the DPR itself is defined), it should not.
+///
+static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
+ MachineInstr *MI,
+ unsigned DReg, unsigned Lane,
+ unsigned &ImplicitSReg) {
+ // If the DPR is defined or used already, the other SPR lane will be chained
+ // correctly, so there is nothing to be done.
+ if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) {
+ ImplicitSReg = 0;
+ return true;
+ }
+
+ // Otherwise we need to go searching to see if the SPR is set explicitly.
+ ImplicitSReg = TRI->getSubReg(DReg,
+ (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
+ MachineBasicBlock::LivenessQueryResult LQR =
+ MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
+
+ if (LQR == MachineBasicBlock::LQR_Live)
+ return true;
+ else if (LQR == MachineBasicBlock::LQR_Unknown)
+ return false;
+
+ // If the register is known not to be live, there is no need to add an
+ // implicit-use.
+ ImplicitSReg = 0;
+ return true;
+}
+
+void
+ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
+ unsigned DstReg, SrcReg, DReg;
+ unsigned Lane;
+ MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ switch (MI->getOpcode()) {
+ default:
+ llvm_unreachable("cannot handle opcode!");
+ break;
+ case ARM::VMOVD:
+ if (Domain != ExeNEON)
+ break;
+
+ // Zap the predicate operands.
+ assert(!isPredicated(MI) && "Cannot predicate a VORRd");
+
+ // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+
+ for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
+ MI->RemoveOperand(i-1);
+
+ // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
+ MI->setDesc(get(ARM::VORRd));
+ AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
+ .addReg(SrcReg)
+ .addReg(SrcReg));
+ break;
+ case ARM::VMOVRS:
+ if (Domain != ExeNEON)
+ break;
+ assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
+
+ // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+
+ for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
+ MI->RemoveOperand(i-1);
+
+ DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
+
+ // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
+ // Note that DSrc has been widened and the other lane may be undef, which
+ // contaminates the entire register.
+ MI->setDesc(get(ARM::VGETLNi32));
+ AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
+ .addReg(DReg, RegState::Undef)
+ .addImm(Lane));
+
+ // The old source should be an implicit use, otherwise we might think it
+ // was dead before here.
+ MIB.addReg(SrcReg, RegState::Implicit);
+ break;
+ case ARM::VMOVSR: {
+ if (Domain != ExeNEON)
+ break;
+ assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
+
+ // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+
+ DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
+
+ unsigned ImplicitSReg;
+ if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
+ break;
+
+ for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
+ MI->RemoveOperand(i-1);
+
+ // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
+ // Again DDst may be undefined at the beginning of this instruction.
+ MI->setDesc(get(ARM::VSETLNi32));
+ MIB.addReg(DReg, RegState::Define)
+ .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
+ .addReg(SrcReg)
+ .addImm(Lane);
+ AddDefaultPred(MIB);
+
+ // The narrower destination must be marked as set to keep previous chains
+ // in place.
+ MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
+ if (ImplicitSReg != 0)
+ MIB.addReg(ImplicitSReg, RegState::Implicit);
+ break;
+ }
+ case ARM::VMOVS: {
+ if (Domain != ExeNEON)
+ break;
+
+ // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+
+ unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
+ DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
+ DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
+
+ unsigned ImplicitSReg;
+ if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
+ break;
+
+ for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
+ MI->RemoveOperand(i-1);
+
+ if (DSrc == DDst) {
+ // Destination can be:
+ // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
+ MI->setDesc(get(ARM::VDUPLN32d));
+ MIB.addReg(DDst, RegState::Define)
+ .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
+ .addImm(SrcLane);
+ AddDefaultPred(MIB);
+
+ // Neither the source or the destination are naturally represented any
+ // more, so add them in manually.
+ MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
+ MIB.addReg(SrcReg, RegState::Implicit);
+ if (ImplicitSReg != 0)
+ MIB.addReg(ImplicitSReg, RegState::Implicit);
+ break;
+ }
+
+ // In general there's no single instruction that can perform an S <-> S
+ // move in NEON space, but a pair of VEXT instructions *can* do the
+ // job. It turns out that the VEXTs needed will only use DSrc once, with
+ // the position based purely on the combination of lane-0 and lane-1
+ // involved. For example
+ // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
+ // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
+ // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
+ // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
+ //
+ // Pattern of the MachineInstrs is:
+ // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
+ MachineInstrBuilder NewMIB;
+ NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ get(ARM::VEXTd32), DDst);
+
+ // On the first instruction, both DSrc and DDst may be <undef> if present.
+ // Specifically when the original instruction didn't have them as an
+ // <imp-use>.
+ unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
+ bool CurUndef = !MI->readsRegister(CurReg, TRI);
+ NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
+
+ CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
+ CurUndef = !MI->readsRegister(CurReg, TRI);
+ NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
+
+ NewMIB.addImm(1);
+ AddDefaultPred(NewMIB);
+
+ if (SrcLane == DstLane)
+ NewMIB.addReg(SrcReg, RegState::Implicit);
+
+ MI->setDesc(get(ARM::VEXTd32));
+ MIB.addReg(DDst, RegState::Define);
+
+ // On the second instruction, DDst has definitely been defined above, so
+ // it is not <undef>. DSrc, if present, can be <undef> as above.
+ CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
+ CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
+ MIB.addReg(CurReg, getUndefRegState(CurUndef));
+
+ CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
+ CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
+ MIB.addReg(CurReg, getUndefRegState(CurUndef));
+
+ MIB.addImm(1);
+ AddDefaultPred(MIB);
+
+ if (SrcLane != DstLane)
+ MIB.addReg(SrcReg, RegState::Implicit);
+
+ // As before, the original destination is no longer represented, add it
+ // implicitly.
+ MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
+ if (ImplicitSReg != 0)
+ MIB.addReg(ImplicitSReg, RegState::Implicit);
+ break;
+ }
+ }
+
+}
+
+//===----------------------------------------------------------------------===//
+// Partial register updates
+//===----------------------------------------------------------------------===//
+//
+// Swift renames NEON registers with 64-bit granularity. That means any
+// instruction writing an S-reg implicitly reads the containing D-reg. The
+// problem is mostly avoided by translating f32 operations to v2f32 operations
+// on D-registers, but f32 loads are still a problem.
+//
+// These instructions can load an f32 into a NEON register:
+//
+// VLDRS - Only writes S, partial D update.
+// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
+// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
+//
+// FCONSTD can be used as a dependency-breaking instruction.
+unsigned ARMBaseInstrInfo::
+getPartialRegUpdateClearance(const MachineInstr *MI,
+ unsigned OpNum,
+ const TargetRegisterInfo *TRI) const {
+ if (!SwiftPartialUpdateClearance ||
+ !(Subtarget.isSwift() || Subtarget.isCortexA15()))
+ return 0;
+
+ assert(TRI && "Need TRI instance");
+
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ if (MO.readsReg())
+ return 0;
+ unsigned Reg = MO.getReg();
+ int UseOp = -1;
+
+ switch(MI->getOpcode()) {
+ // Normal instructions writing only an S-register.
+ case ARM::VLDRS:
+ case ARM::FCONSTS:
+ case ARM::VMOVSR:
+ case ARM::VMOVv8i8:
+ case ARM::VMOVv4i16:
+ case ARM::VMOVv2i32:
+ case ARM::VMOVv2f32:
+ case ARM::VMOVv1i64:
+ UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI);
+ break;
+
+ // Explicitly reads the dependency.
+ case ARM::VLD1LNd32:
+ UseOp = 3;
+ break;
+ default:
+ return 0;
+ }
+
+ // If this instruction actually reads a value from Reg, there is no unwanted
+ // dependency.
+ if (UseOp != -1 && MI->getOperand(UseOp).readsReg())
+ return 0;
+
+ // We must be able to clobber the whole D-reg.
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ // Virtual register must be a foo:ssub_0<def,undef> operand.
+ if (!MO.getSubReg() || MI->readsVirtualRegister(Reg))
+ return 0;
+ } else if (ARM::SPRRegClass.contains(Reg)) {
+ // Physical register: MI must define the full D-reg.
+ unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
+ &ARM::DPRRegClass);
+ if (!DReg || !MI->definesRegister(DReg, TRI))
+ return 0;
+ }
+
+ // MI has an unwanted D-register dependency.
+ // Avoid defs in the previous N instructrions.
+ return SwiftPartialUpdateClearance;
+}
+
+// Break a partial register dependency after getPartialRegUpdateClearance
+// returned non-zero.
+void ARMBaseInstrInfo::
+breakPartialRegDependency(MachineBasicBlock::iterator MI,
+ unsigned OpNum,
+ const TargetRegisterInfo *TRI) const {
+ assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def");
+ assert(TRI && "Need TRI instance");
+
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ unsigned Reg = MO.getReg();
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ "Can't break virtual register dependencies.");
+ unsigned DReg = Reg;
+
+ // If MI defines an S-reg, find the corresponding D super-register.
+ if (ARM::SPRRegClass.contains(Reg)) {
+ DReg = ARM::D0 + (Reg - ARM::S0) / 2;
+ assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
+ }
+
+ assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
+ assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
+
+ // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
+ // the full D-register by loading the same value to both lanes. The
+ // instruction is micro-coded with 2 uops, so don't do this until we can
+ // properly schedule micro-coded instructions. The dispatcher stalls cause
+ // too big regressions.
+
+ // Insert the dependency-breaking FCONSTD before MI.
+ // 96 is the encoding of 0.5, but the actual value doesn't matter here.
+ AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ get(ARM::FCONSTD), DReg).addImm(96));
+ MI->addRegisterKilled(DReg, TRI, true);
+}
+
+void ARMBaseInstrInfo::getUnconditionalBranch(
+ MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
+ if (Subtarget.isThumb())
+ Branch.setOpcode(ARM::tB);
+ else if (Subtarget.isThumb2())
+ Branch.setOpcode(ARM::t2B);
+ else
+ Branch.setOpcode(ARM::Bcc);
+
+ Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
+ Branch.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ Branch.addOperand(MCOperand::CreateReg(0));
+}
+
+void ARMBaseInstrInfo::getTrap(MCInst &MI) const {
+ if (Subtarget.isThumb())
+ MI.setOpcode(ARM::tTRAP);
+ else if (Subtarget.useNaClTrap())
+ MI.setOpcode(ARM::TRAPNaCl);
+ else
+ MI.setOpcode(ARM::TRAP);
+}
+
+bool ARMBaseInstrInfo::hasNOP() const {
+ return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
+}
+
+bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
+ if (MI->getNumOperands() < 4)
+ return true;
+ unsigned ShOpVal = MI->getOperand(3).getImm();
+ unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
+ // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
+ if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
+ ((ShImm == 1 || ShImm == 2) &&
+ ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
+ return true;
+
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.h b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.h
new file mode 100644
index 0000000..b8d6758
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.h
@@ -0,0 +1,441 @@
+//===-- ARMBaseInstrInfo.h - ARM Base Instruction Information ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Base ARM implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMBASEINSTRUCTIONINFO_H
+#define ARMBASEINSTRUCTIONINFO_H
+
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "ARMGenInstrInfo.inc"
+
+namespace llvm {
+ class ARMSubtarget;
+ class ARMBaseRegisterInfo;
+
+class ARMBaseInstrInfo : public ARMGenInstrInfo {
+ const ARMSubtarget &Subtarget;
+
+protected:
+ // Can be only subclassed.
+ explicit ARMBaseInstrInfo(const ARMSubtarget &STI);
+
+public:
+ // Return whether the target has an explicit NOP encoding.
+ bool hasNOP() const;
+
+ // Return the non-pre/post incrementing version of 'Opc'. Return 0
+ // if there is not such an opcode.
+ virtual unsigned getUnindexedOpcode(unsigned Opc) const =0;
+
+ MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const override;
+
+ virtual const ARMBaseRegisterInfo &getRegisterInfo() const = 0;
+ const ARMSubtarget &getSubtarget() const { return Subtarget; }
+
+ ScheduleHazardRecognizer *
+ CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
+ const ScheduleDAG *DAG) const override;
+
+ ScheduleHazardRecognizer *
+ CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const override;
+
+ // Branch analysis.
+ bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify = false) const override;
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const override;
+
+ bool
+ ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
+
+ // Predication support.
+ bool isPredicated(const MachineInstr *MI) const override;
+
+ ARMCC::CondCodes getPredicate(const MachineInstr *MI) const {
+ int PIdx = MI->findFirstPredOperandIdx();
+ return PIdx != -1 ? (ARMCC::CondCodes)MI->getOperand(PIdx).getImm()
+ : ARMCC::AL;
+ }
+
+ bool PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const override;
+
+ bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const override;
+
+ bool DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const override;
+
+ bool isPredicable(MachineInstr *MI) const override;
+
+ /// GetInstSize - Returns the size of the specified MachineInstr.
+ ///
+ virtual unsigned GetInstSizeInBytes(const MachineInstr* MI) const;
+
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ DebugLoc DL, unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
+
+ void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig,
+ const TargetRegisterInfo &TRI) const override;
+
+ MachineInstr *duplicate(MachineInstr *Orig,
+ MachineFunction &MF) const override;
+
+ MachineInstr *commuteInstruction(MachineInstr*,
+ bool=false) const override;
+
+ const MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
+ unsigned SubIdx, unsigned State,
+ const TargetRegisterInfo *TRI) const;
+
+ bool produceSameValue(const MachineInstr *MI0, const MachineInstr *MI1,
+ const MachineRegisterInfo *MRI) const override;
+
+ /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
+ /// determine if two loads are loading from the same base address. It should
+ /// only return true if the base pointers are the same and the only
+ /// differences between the two addresses is the offset. It also returns the
+ /// offsets by reference.
+ bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
+ int64_t &Offset2) const override;
+
+ /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
+ /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
+ /// should be scheduled togther. On some targets if two loads are loading from
+ /// addresses in the same cache line, it's better if they are scheduled
+ /// together. This function takes two integers that represent the load offsets
+ /// from the common base address. It returns true if it decides it's desirable
+ /// to schedule the two loads together. "NumLoads" is the number of loads that
+ /// have already been scheduled after Load1.
+ bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const override;
+
+ bool isSchedulingBoundary(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ const MachineFunction &MF) const override;
+
+ bool isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles, unsigned ExtraPredCycles,
+ const BranchProbability &Probability) const override;
+
+ bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumT,
+ unsigned ExtraT, MachineBasicBlock &FMBB,
+ unsigned NumF, unsigned ExtraF,
+ const BranchProbability &Probability) const override;
+
+ bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
+ const BranchProbability &Probability) const override {
+ return NumCycles == 1;
+ }
+
+ bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
+ MachineBasicBlock &FMBB) const override;
+
+ /// analyzeCompare - For a comparison instruction, return the source registers
+ /// in SrcReg and SrcReg2 if having two register operands, and the value it
+ /// compares against in CmpValue. Return true if the comparison instruction
+ /// can be analyzed.
+ bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
+ unsigned &SrcReg2, int &CmpMask,
+ int &CmpValue) const override;
+
+ /// optimizeCompareInstr - Convert the instruction to set the zero flag so
+ /// that we can remove a "comparison with zero"; Remove a redundant CMP
+ /// instruction if the flags can be updated in the same way by an earlier
+ /// instruction such as SUB.
+ bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
+ unsigned SrcReg2, int CmpMask, int CmpValue,
+ const MachineRegisterInfo *MRI) const override;
+
+ bool analyzeSelect(const MachineInstr *MI,
+ SmallVectorImpl<MachineOperand> &Cond,
+ unsigned &TrueOp, unsigned &FalseOp,
+ bool &Optimizable) const override;
+
+ MachineInstr *optimizeSelect(MachineInstr *MI, bool) const override;
+
+ /// FoldImmediate - 'Reg' is known to be defined by a move immediate
+ /// instruction, try to fold the immediate into the use instruction.
+ bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
+ unsigned Reg, MachineRegisterInfo *MRI) const override;
+
+ unsigned getNumMicroOps(const InstrItineraryData *ItinData,
+ const MachineInstr *MI) const override;
+
+ int getOperandLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI,
+ unsigned UseIdx) const override;
+ int getOperandLatency(const InstrItineraryData *ItinData,
+ SDNode *DefNode, unsigned DefIdx,
+ SDNode *UseNode, unsigned UseIdx) const override;
+
+ /// VFP/NEON execution domains.
+ std::pair<uint16_t, uint16_t>
+ getExecutionDomain(const MachineInstr *MI) const override;
+ void setExecutionDomain(MachineInstr *MI, unsigned Domain) const override;
+
+ unsigned getPartialRegUpdateClearance(const MachineInstr*, unsigned,
+ const TargetRegisterInfo*) const override;
+ void breakPartialRegDependency(MachineBasicBlock::iterator, unsigned,
+ const TargetRegisterInfo *TRI) const override;
+
+ void
+ getUnconditionalBranch(MCInst &Branch,
+ const MCSymbolRefExpr *BranchTarget) const override;
+
+ void getTrap(MCInst &MI) const override;
+
+ /// Get the number of addresses by LDM or VLDM or zero for unknown.
+ unsigned getNumLDMAddresses(const MachineInstr *MI) const;
+
+private:
+ unsigned getInstBundleLength(const MachineInstr *MI) const;
+
+ int getVLDMDefCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefClass,
+ unsigned DefIdx, unsigned DefAlign) const;
+ int getLDMDefCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefClass,
+ unsigned DefIdx, unsigned DefAlign) const;
+ int getVSTMUseCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &UseMCID,
+ unsigned UseClass,
+ unsigned UseIdx, unsigned UseAlign) const;
+ int getSTMUseCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &UseMCID,
+ unsigned UseClass,
+ unsigned UseIdx, unsigned UseAlign) const;
+ int getOperandLatency(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefIdx, unsigned DefAlign,
+ const MCInstrDesc &UseMCID,
+ unsigned UseIdx, unsigned UseAlign) const;
+
+ unsigned getPredicationCost(const MachineInstr *MI) const override;
+
+ unsigned getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *MI,
+ unsigned *PredCost = nullptr) const override;
+
+ int getInstrLatency(const InstrItineraryData *ItinData,
+ SDNode *Node) const override;
+
+ bool hasHighOperandLatency(const InstrItineraryData *ItinData,
+ const MachineRegisterInfo *MRI,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI,
+ unsigned UseIdx) const override;
+ bool hasLowDefLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI,
+ unsigned DefIdx) const override;
+
+ /// verifyInstruction - Perform target specific instruction verification.
+ bool verifyInstruction(const MachineInstr *MI,
+ StringRef &ErrInfo) const override;
+
+private:
+ /// Modeling special VFP / NEON fp MLA / MLS hazards.
+
+ /// MLxEntryMap - Map fp MLA / MLS to the corresponding entry in the internal
+ /// MLx table.
+ DenseMap<unsigned, unsigned> MLxEntryMap;
+
+ /// MLxHazardOpcodes - Set of add / sub and multiply opcodes that would cause
+ /// stalls when scheduled together with fp MLA / MLS opcodes.
+ SmallSet<unsigned, 16> MLxHazardOpcodes;
+
+public:
+ /// isFpMLxInstruction - Return true if the specified opcode is a fp MLA / MLS
+ /// instruction.
+ bool isFpMLxInstruction(unsigned Opcode) const {
+ return MLxEntryMap.count(Opcode);
+ }
+
+ /// isFpMLxInstruction - This version also returns the multiply opcode and the
+ /// addition / subtraction opcode to expand to. Return true for 'HasLane' for
+ /// the MLX instructions with an extra lane operand.
+ bool isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
+ unsigned &AddSubOpc, bool &NegAcc,
+ bool &HasLane) const;
+
+ /// canCauseFpMLxStall - Return true if an instruction of the specified opcode
+ /// will cause stalls when scheduled after (within 4-cycle window) a fp
+ /// MLA / MLS instruction.
+ bool canCauseFpMLxStall(unsigned Opcode) const {
+ return MLxHazardOpcodes.count(Opcode);
+ }
+
+ /// Returns true if the instruction has a shift by immediate that can be
+ /// executed in one cycle less.
+ bool isSwiftFastImmShift(const MachineInstr *MI) const;
+};
+
+static inline
+const MachineInstrBuilder &AddDefaultPred(const MachineInstrBuilder &MIB) {
+ return MIB.addImm((int64_t)ARMCC::AL).addReg(0);
+}
+
+static inline
+const MachineInstrBuilder &AddDefaultCC(const MachineInstrBuilder &MIB) {
+ return MIB.addReg(0);
+}
+
+static inline
+const MachineInstrBuilder &AddDefaultT1CC(const MachineInstrBuilder &MIB,
+ bool isDead = false) {
+ return MIB.addReg(ARM::CPSR, getDefRegState(true) | getDeadRegState(isDead));
+}
+
+static inline
+const MachineInstrBuilder &AddNoT1CC(const MachineInstrBuilder &MIB) {
+ return MIB.addReg(0);
+}
+
+static inline
+bool isUncondBranchOpcode(int Opc) {
+ return Opc == ARM::B || Opc == ARM::tB || Opc == ARM::t2B;
+}
+
+static inline
+bool isCondBranchOpcode(int Opc) {
+ return Opc == ARM::Bcc || Opc == ARM::tBcc || Opc == ARM::t2Bcc;
+}
+
+static inline
+bool isJumpTableBranchOpcode(int Opc) {
+ return Opc == ARM::BR_JTr || Opc == ARM::BR_JTm || Opc == ARM::BR_JTadd ||
+ Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT;
+}
+
+static inline
+bool isIndirectBranchOpcode(int Opc) {
+ return Opc == ARM::BX || Opc == ARM::MOVPCRX || Opc == ARM::tBRIND;
+}
+
+static inline bool isPopOpcode(int Opc) {
+ return Opc == ARM::tPOP_RET || Opc == ARM::LDMIA_RET ||
+ Opc == ARM::t2LDMIA_RET || Opc == ARM::tPOP || Opc == ARM::LDMIA_UPD ||
+ Opc == ARM::t2LDMIA_UPD || Opc == ARM::VLDMDIA_UPD;
+}
+
+static inline bool isPushOpcode(int Opc) {
+ return Opc == ARM::tPUSH || Opc == ARM::t2STMDB_UPD ||
+ Opc == ARM::STMDB_UPD || Opc == ARM::VSTMDDB_UPD;
+}
+
+/// getInstrPredicate - If instruction is predicated, returns its predicate
+/// condition, otherwise returns AL. It also returns the condition code
+/// register by reference.
+ARMCC::CondCodes getInstrPredicate(const MachineInstr *MI, unsigned &PredReg);
+
+int getMatchingCondBranchOpcode(int Opc);
+
+/// Determine if MI can be folded into an ARM MOVCC instruction, and return the
+/// opcode of the SSA instruction representing the conditional MI.
+unsigned canFoldARMInstrIntoMOVCC(unsigned Reg,
+ MachineInstr *&MI,
+ const MachineRegisterInfo &MRI);
+
+/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether
+/// the instruction is encoded with an 'S' bit is determined by the optional
+/// CPSR def operand.
+unsigned convertAddSubFlagsOpcode(unsigned OldOpc);
+
+/// emitARMRegPlusImmediate / emitT2RegPlusImmediate - Emits a series of
+/// instructions to materializea destreg = basereg + immediate in ARM / Thumb2
+/// code.
+void emitARMRegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg, int NumBytes,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ const ARMBaseInstrInfo &TII, unsigned MIFlags = 0);
+
+void emitT2RegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg, int NumBytes,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ const ARMBaseInstrInfo &TII, unsigned MIFlags = 0);
+void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg,
+ int NumBytes, const TargetInstrInfo &TII,
+ const ARMBaseRegisterInfo& MRI,
+ unsigned MIFlags = 0);
+
+/// Tries to add registers to the reglist of a given base-updating
+/// push/pop instruction to adjust the stack by an additional
+/// NumBytes. This can save a few bytes per function in code-size, but
+/// obviously generates more memory traffic. As such, it only takes
+/// effect in functions being optimised for size.
+bool tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
+ MachineFunction &MF, MachineInstr *MI,
+ unsigned NumBytes);
+
+/// rewriteARMFrameIndex / rewriteT2FrameIndex -
+/// Rewrite MI to access 'Offset' bytes from the FP. Return false if the
+/// offset could not be handled directly in MI, and return the left-over
+/// portion by reference.
+bool rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII);
+
+bool rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII);
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.cpp
new file mode 100644
index 0000000..32b5f4a
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.cpp
@@ -0,0 +1,836 @@
+//===-- ARMBaseRegisterInfo.cpp - ARM Register Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the base ARM implementation of TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMBaseRegisterInfo.h"
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMFrameLowering.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMSubtarget.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/CodeGen/VirtRegMap.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+
+#define DEBUG_TYPE "arm-register-info"
+
+#define GET_REGINFO_TARGET_DESC
+#include "ARMGenRegisterInfo.inc"
+
+using namespace llvm;
+
+ARMBaseRegisterInfo::ARMBaseRegisterInfo(const ARMSubtarget &sti)
+ : ARMGenRegisterInfo(ARM::LR, 0, 0, ARM::PC), STI(sti), BasePtr(ARM::R6) {
+ if (STI.isTargetMachO()) {
+ if (STI.isTargetDarwin() || STI.isThumb1Only())
+ FramePtr = ARM::R7;
+ else
+ FramePtr = ARM::R11;
+ } else if (STI.isTargetWindows())
+ FramePtr = ARM::R11;
+ else // ARM EABI
+ FramePtr = STI.isThumb() ? ARM::R7 : ARM::R11;
+}
+
+const MCPhysReg*
+ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ const MCPhysReg *RegList = (STI.isTargetIOS() && !STI.isAAPCS_ABI())
+ ? CSR_iOS_SaveList
+ : CSR_AAPCS_SaveList;
+
+ if (!MF) return RegList;
+
+ const Function *F = MF->getFunction();
+ if (F->getCallingConv() == CallingConv::GHC) {
+ // GHC set of callee saved regs is empty as all those regs are
+ // used for passing STG regs around
+ return CSR_NoRegs_SaveList;
+ } else if (F->hasFnAttribute("interrupt")) {
+ if (STI.isMClass()) {
+ // M-class CPUs have hardware which saves the registers needed to allow a
+ // function conforming to the AAPCS to function as a handler.
+ return CSR_AAPCS_SaveList;
+ } else if (F->getFnAttribute("interrupt").getValueAsString() == "FIQ") {
+ // Fast interrupt mode gives the handler a private copy of R8-R14, so less
+ // need to be saved to restore user-mode state.
+ return CSR_FIQ_SaveList;
+ } else {
+ // Generally only R13-R14 (i.e. SP, LR) are automatically preserved by
+ // exception handling.
+ return CSR_GenericInt_SaveList;
+ }
+ }
+
+ return RegList;
+}
+
+const uint32_t*
+ARMBaseRegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
+ if (CC == CallingConv::GHC)
+ // This is academic becase all GHC calls are (supposed to be) tail calls
+ return CSR_NoRegs_RegMask;
+ return (STI.isTargetIOS() && !STI.isAAPCS_ABI())
+ ? CSR_iOS_RegMask : CSR_AAPCS_RegMask;
+}
+
+const uint32_t*
+ARMBaseRegisterInfo::getNoPreservedMask() const {
+ return CSR_NoRegs_RegMask;
+}
+
+const uint32_t*
+ARMBaseRegisterInfo::getThisReturnPreservedMask(CallingConv::ID CC) const {
+ // This should return a register mask that is the same as that returned by
+ // getCallPreservedMask but that additionally preserves the register used for
+ // the first i32 argument (which must also be the register used to return a
+ // single i32 return value)
+ //
+ // In case that the calling convention does not use the same register for
+ // both or otherwise does not want to enable this optimization, the function
+ // should return NULL
+ if (CC == CallingConv::GHC)
+ // This is academic becase all GHC calls are (supposed to be) tail calls
+ return nullptr;
+ return (STI.isTargetIOS() && !STI.isAAPCS_ABI())
+ ? CSR_iOS_ThisReturn_RegMask : CSR_AAPCS_ThisReturn_RegMask;
+}
+
+BitVector ARMBaseRegisterInfo::
+getReservedRegs(const MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ // FIXME: avoid re-calculating this every time.
+ BitVector Reserved(getNumRegs());
+ Reserved.set(ARM::SP);
+ Reserved.set(ARM::PC);
+ Reserved.set(ARM::FPSCR);
+ Reserved.set(ARM::APSR_NZCV);
+ if (TFI->hasFP(MF))
+ Reserved.set(FramePtr);
+ if (hasBasePointer(MF))
+ Reserved.set(BasePtr);
+ // Some targets reserve R9.
+ if (STI.isR9Reserved())
+ Reserved.set(ARM::R9);
+ // Reserve D16-D31 if the subtarget doesn't support them.
+ if (!STI.hasVFP3() || STI.hasD16()) {
+ assert(ARM::D31 == ARM::D16 + 15);
+ for (unsigned i = 0; i != 16; ++i)
+ Reserved.set(ARM::D16 + i);
+ }
+ const TargetRegisterClass *RC = &ARM::GPRPairRegClass;
+ for(TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); I!=E; ++I)
+ for (MCSubRegIterator SI(*I, this); SI.isValid(); ++SI)
+ if (Reserved.test(*SI)) Reserved.set(*I);
+
+ return Reserved;
+}
+
+const TargetRegisterClass*
+ARMBaseRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC)
+ const {
+ const TargetRegisterClass *Super = RC;
+ TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
+ do {
+ switch (Super->getID()) {
+ case ARM::GPRRegClassID:
+ case ARM::SPRRegClassID:
+ case ARM::DPRRegClassID:
+ case ARM::QPRRegClassID:
+ case ARM::QQPRRegClassID:
+ case ARM::QQQQPRRegClassID:
+ case ARM::GPRPairRegClassID:
+ return Super;
+ }
+ Super = *I++;
+ } while (Super);
+ return RC;
+}
+
+const TargetRegisterClass *
+ARMBaseRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
+ const {
+ return &ARM::GPRRegClass;
+}
+
+const TargetRegisterClass *
+ARMBaseRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
+ if (RC == &ARM::CCRRegClass)
+ return nullptr; // Can't copy CCR registers.
+ return RC;
+}
+
+unsigned
+ARMBaseRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ switch (RC->getID()) {
+ default:
+ return 0;
+ case ARM::tGPRRegClassID:
+ return TFI->hasFP(MF) ? 4 : 5;
+ case ARM::GPRRegClassID: {
+ unsigned FP = TFI->hasFP(MF) ? 1 : 0;
+ return 10 - FP - (STI.isR9Reserved() ? 1 : 0);
+ }
+ case ARM::SPRRegClassID: // Currently not used as 'rep' register class.
+ case ARM::DPRRegClassID:
+ return 32 - 10;
+ }
+}
+
+// Get the other register in a GPRPair.
+static unsigned getPairedGPR(unsigned Reg, bool Odd, const MCRegisterInfo *RI) {
+ for (MCSuperRegIterator Supers(Reg, RI); Supers.isValid(); ++Supers)
+ if (ARM::GPRPairRegClass.contains(*Supers))
+ return RI->getSubReg(*Supers, Odd ? ARM::gsub_1 : ARM::gsub_0);
+ return 0;
+}
+
+// Resolve the RegPairEven / RegPairOdd register allocator hints.
+void
+ARMBaseRegisterInfo::getRegAllocationHints(unsigned VirtReg,
+ ArrayRef<MCPhysReg> Order,
+ SmallVectorImpl<MCPhysReg> &Hints,
+ const MachineFunction &MF,
+ const VirtRegMap *VRM) const {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
+
+ unsigned Odd;
+ switch (Hint.first) {
+ case ARMRI::RegPairEven:
+ Odd = 0;
+ break;
+ case ARMRI::RegPairOdd:
+ Odd = 1;
+ break;
+ default:
+ TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF, VRM);
+ return;
+ }
+
+ // This register should preferably be even (Odd == 0) or odd (Odd == 1).
+ // Check if the other part of the pair has already been assigned, and provide
+ // the paired register as the first hint.
+ unsigned PairedPhys = 0;
+ if (VRM && VRM->hasPhys(Hint.second)) {
+ PairedPhys = getPairedGPR(VRM->getPhys(Hint.second), Odd, this);
+ if (PairedPhys && MRI.isReserved(PairedPhys))
+ PairedPhys = 0;
+ }
+
+ // First prefer the paired physreg.
+ if (PairedPhys &&
+ std::find(Order.begin(), Order.end(), PairedPhys) != Order.end())
+ Hints.push_back(PairedPhys);
+
+ // Then prefer even or odd registers.
+ for (unsigned I = 0, E = Order.size(); I != E; ++I) {
+ unsigned Reg = Order[I];
+ if (Reg == PairedPhys || (getEncodingValue(Reg) & 1) != Odd)
+ continue;
+ // Don't provide hints that are paired to a reserved register.
+ unsigned Paired = getPairedGPR(Reg, !Odd, this);
+ if (!Paired || MRI.isReserved(Paired))
+ continue;
+ Hints.push_back(Reg);
+ }
+}
+
+void
+ARMBaseRegisterInfo::UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
+ MachineFunction &MF) const {
+ MachineRegisterInfo *MRI = &MF.getRegInfo();
+ std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
+ if ((Hint.first == (unsigned)ARMRI::RegPairOdd ||
+ Hint.first == (unsigned)ARMRI::RegPairEven) &&
+ TargetRegisterInfo::isVirtualRegister(Hint.second)) {
+ // If 'Reg' is one of the even / odd register pair and it's now changed
+ // (e.g. coalesced) into a different register. The other register of the
+ // pair allocation hint must be updated to reflect the relationship
+ // change.
+ unsigned OtherReg = Hint.second;
+ Hint = MRI->getRegAllocationHint(OtherReg);
+ if (Hint.second == Reg)
+ // Make sure the pair has not already divorced.
+ MRI->setRegAllocationHint(OtherReg, Hint.first, NewReg);
+ }
+}
+
+bool
+ARMBaseRegisterInfo::avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
+ // CortexA9 has a Write-after-write hazard for NEON registers.
+ if (!STI.isLikeA9())
+ return false;
+
+ switch (RC->getID()) {
+ case ARM::DPRRegClassID:
+ case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ case ARM::QPRRegClassID:
+ case ARM::QPR_8RegClassID:
+ case ARM::QPR_VFP2RegClassID:
+ case ARM::SPRRegClassID:
+ case ARM::SPR_8RegClassID:
+ // Avoid reusing S, D, and Q registers.
+ // Don't increase register pressure for QQ and QQQQ.
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool ARMBaseRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ // When outgoing call frames are so large that we adjust the stack pointer
+ // around the call, we can no longer use the stack pointer to reach the
+ // emergency spill slot.
+ if (needsStackRealignment(MF) && !TFI->hasReservedCallFrame(MF))
+ return true;
+
+ // Thumb has trouble with negative offsets from the FP. Thumb2 has a limited
+ // negative range for ldr/str (255), and thumb1 is positive offsets only.
+ // It's going to be better to use the SP or Base Pointer instead. When there
+ // are variable sized objects, we can't reference off of the SP, so we
+ // reserve a Base Pointer.
+ if (AFI->isThumbFunction() && MFI->hasVarSizedObjects()) {
+ // Conservatively estimate whether the negative offset from the frame
+ // pointer will be sufficient to reach. If a function has a smallish
+ // frame, it's less likely to have lots of spills and callee saved
+ // space, so it's all more likely to be within range of the frame pointer.
+ // If it's wrong, the scavenger will still enable access to work, it just
+ // won't be optimal.
+ if (AFI->isThumb2Function() && MFI->getLocalFrameSize() < 128)
+ return false;
+ return true;
+ }
+
+ return false;
+}
+
+bool ARMBaseRegisterInfo::canRealignStack(const MachineFunction &MF) const {
+ const MachineRegisterInfo *MRI = &MF.getRegInfo();
+ const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ // We can't realign the stack if:
+ // 1. Dynamic stack realignment is explicitly disabled,
+ // 2. This is a Thumb1 function (it's not useful, so we don't bother), or
+ // 3. There are VLAs in the function and the base pointer is disabled.
+ if (MF.getFunction()->hasFnAttribute("no-realign-stack"))
+ return false;
+ if (AFI->isThumb1OnlyFunction())
+ return false;
+ // Stack realignment requires a frame pointer. If we already started
+ // register allocation with frame pointer elimination, it is too late now.
+ if (!MRI->canReserveReg(FramePtr))
+ return false;
+ // We may also need a base pointer if there are dynamic allocas or stack
+ // pointer adjustments around calls.
+ if (MF.getTarget().getFrameLowering()->hasReservedCallFrame(MF))
+ return true;
+ // A base pointer is required and allowed. Check that it isn't too late to
+ // reserve it.
+ return MRI->canReserveReg(BasePtr);
+}
+
+bool ARMBaseRegisterInfo::
+needsStackRealignment(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const Function *F = MF.getFunction();
+ unsigned StackAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
+ bool requiresRealignment =
+ ((MFI->getMaxAlignment() > StackAlign) ||
+ F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackAlignment));
+
+ return requiresRealignment && canRealignStack(MF);
+}
+
+bool ARMBaseRegisterInfo::
+cannotEliminateFrame(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI->adjustsStack())
+ return true;
+ return MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken()
+ || needsStackRealignment(MF);
+}
+
+unsigned
+ARMBaseRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ if (TFI->hasFP(MF))
+ return FramePtr;
+ return ARM::SP;
+}
+
+/// emitLoadConstPool - Emits a load from constpool to materialize the
+/// specified immediate.
+void ARMBaseRegisterInfo::
+emitLoadConstPool(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl,
+ unsigned DestReg, unsigned SubIdx, int Val,
+ ARMCC::CondCodes Pred,
+ unsigned PredReg, unsigned MIFlags) const {
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ MachineConstantPool *ConstantPool = MF.getConstantPool();
+ const Constant *C =
+ ConstantInt::get(Type::getInt32Ty(MF.getFunction()->getContext()), Val);
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
+
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::LDRcp))
+ .addReg(DestReg, getDefRegState(true), SubIdx)
+ .addConstantPoolIndex(Idx)
+ .addImm(0).addImm(Pred).addReg(PredReg)
+ .setMIFlags(MIFlags);
+}
+
+bool ARMBaseRegisterInfo::mayOverrideLocalAssignment() const {
+ // The native linux build hits a downstream codegen bug when this is enabled.
+ return STI.isTargetDarwin();
+}
+
+bool ARMBaseRegisterInfo::
+requiresRegisterScavenging(const MachineFunction &MF) const {
+ return true;
+}
+
+bool ARMBaseRegisterInfo::
+trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
+ return true;
+}
+
+bool ARMBaseRegisterInfo::
+requiresFrameIndexScavenging(const MachineFunction &MF) const {
+ return true;
+}
+
+bool ARMBaseRegisterInfo::
+requiresVirtualBaseRegisters(const MachineFunction &MF) const {
+ return true;
+}
+
+int64_t ARMBaseRegisterInfo::
+getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const {
+ const MCInstrDesc &Desc = MI->getDesc();
+ unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
+ int64_t InstrOffs = 0;
+ int Scale = 1;
+ unsigned ImmIdx = 0;
+ switch (AddrMode) {
+ case ARMII::AddrModeT2_i8:
+ case ARMII::AddrModeT2_i12:
+ case ARMII::AddrMode_i12:
+ InstrOffs = MI->getOperand(Idx+1).getImm();
+ Scale = 1;
+ break;
+ case ARMII::AddrMode5: {
+ // VFP address mode.
+ const MachineOperand &OffOp = MI->getOperand(Idx+1);
+ InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm());
+ if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub)
+ InstrOffs = -InstrOffs;
+ Scale = 4;
+ break;
+ }
+ case ARMII::AddrMode2: {
+ ImmIdx = Idx+2;
+ InstrOffs = ARM_AM::getAM2Offset(MI->getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM2Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs = -InstrOffs;
+ break;
+ }
+ case ARMII::AddrMode3: {
+ ImmIdx = Idx+2;
+ InstrOffs = ARM_AM::getAM3Offset(MI->getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM3Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs = -InstrOffs;
+ break;
+ }
+ case ARMII::AddrModeT1_s: {
+ ImmIdx = Idx+1;
+ InstrOffs = MI->getOperand(ImmIdx).getImm();
+ Scale = 4;
+ break;
+ }
+ default:
+ llvm_unreachable("Unsupported addressing mode!");
+ }
+
+ return InstrOffs * Scale;
+}
+
+/// needsFrameBaseReg - Returns true if the instruction's frame index
+/// reference would be better served by a base register other than FP
+/// or SP. Used by LocalStackFrameAllocation to determine which frame index
+/// references it should create new base registers for.
+bool ARMBaseRegisterInfo::
+needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
+ for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) {
+ assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!");
+ }
+
+ // It's the load/store FI references that cause issues, as it can be difficult
+ // to materialize the offset if it won't fit in the literal field. Estimate
+ // based on the size of the local frame and some conservative assumptions
+ // about the rest of the stack frame (note, this is pre-regalloc, so
+ // we don't know everything for certain yet) whether this offset is likely
+ // to be out of range of the immediate. Return true if so.
+
+ // We only generate virtual base registers for loads and stores, so
+ // return false for everything else.
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ case ARM::LDRi12: case ARM::LDRH: case ARM::LDRBi12:
+ case ARM::STRi12: case ARM::STRH: case ARM::STRBi12:
+ case ARM::t2LDRi12: case ARM::t2LDRi8:
+ case ARM::t2STRi12: case ARM::t2STRi8:
+ case ARM::VLDRS: case ARM::VLDRD:
+ case ARM::VSTRS: case ARM::VSTRD:
+ case ARM::tSTRspi: case ARM::tLDRspi:
+ break;
+ default:
+ return false;
+ }
+
+ // Without a virtual base register, if the function has variable sized
+ // objects, all fixed-size local references will be via the frame pointer,
+ // Approximate the offset and see if it's legal for the instruction.
+ // Note that the incoming offset is based on the SP value at function entry,
+ // so it'll be negative.
+ MachineFunction &MF = *MI->getParent()->getParent();
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ // Estimate an offset from the frame pointer.
+ // Conservatively assume all callee-saved registers get pushed. R4-R6
+ // will be earlier than the FP, so we ignore those.
+ // R7, LR
+ int64_t FPOffset = Offset - 8;
+ // ARM and Thumb2 functions also need to consider R8-R11 and D8-D15
+ if (!AFI->isThumbFunction() || !AFI->isThumb1OnlyFunction())
+ FPOffset -= 80;
+ // Estimate an offset from the stack pointer.
+ // The incoming offset is relating to the SP at the start of the function,
+ // but when we access the local it'll be relative to the SP after local
+ // allocation, so adjust our SP-relative offset by that allocation size.
+ Offset = -Offset;
+ Offset += MFI->getLocalFrameSize();
+ // Assume that we'll have at least some spill slots allocated.
+ // FIXME: This is a total SWAG number. We should run some statistics
+ // and pick a real one.
+ Offset += 128; // 128 bytes of spill slots
+
+ // If there is a frame pointer, try using it.
+ // The FP is only available if there is no dynamic realignment. We
+ // don't know for sure yet whether we'll need that, so we guess based
+ // on whether there are any local variables that would trigger it.
+ unsigned StackAlign = TFI->getStackAlignment();
+ if (TFI->hasFP(MF) &&
+ !((MFI->getLocalFrameMaxAlign() > StackAlign) && canRealignStack(MF))) {
+ if (isFrameOffsetLegal(MI, FPOffset))
+ return false;
+ }
+ // If we can reference via the stack pointer, try that.
+ // FIXME: This (and the code that resolves the references) can be improved
+ // to only disallow SP relative references in the live range of
+ // the VLA(s). In practice, it's unclear how much difference that
+ // would make, but it may be worth doing.
+ if (!MFI->hasVarSizedObjects() && isFrameOffsetLegal(MI, Offset))
+ return false;
+
+ // The offset likely isn't legal, we want to allocate a virtual base register.
+ return true;
+}
+
+/// materializeFrameBaseRegister - Insert defining instruction(s) for BaseReg to
+/// be a pointer to FrameIdx at the beginning of the basic block.
+void ARMBaseRegisterInfo::
+materializeFrameBaseRegister(MachineBasicBlock *MBB,
+ unsigned BaseReg, int FrameIdx,
+ int64_t Offset) const {
+ ARMFunctionInfo *AFI = MBB->getParent()->getInfo<ARMFunctionInfo>();
+ unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri :
+ (AFI->isThumb1OnlyFunction() ? ARM::tADDrSPi : ARM::t2ADDri);
+
+ MachineBasicBlock::iterator Ins = MBB->begin();
+ DebugLoc DL; // Defaults to "unknown"
+ if (Ins != MBB->end())
+ DL = Ins->getDebugLoc();
+
+ const MachineFunction &MF = *MBB->getParent();
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const MCInstrDesc &MCID = TII.get(ADDriOpc);
+ MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
+
+ MachineInstrBuilder MIB = AddDefaultPred(BuildMI(*MBB, Ins, DL, MCID, BaseReg)
+ .addFrameIndex(FrameIdx).addImm(Offset));
+
+ if (!AFI->isThumb1OnlyFunction())
+ AddDefaultCC(MIB);
+}
+
+void ARMBaseRegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
+ int64_t Offset) const {
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ int Off = Offset; // ARM doesn't need the general 64-bit offsets
+ unsigned i = 0;
+
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This resolveFrameIndex does not support Thumb1!");
+
+ while (!MI.getOperand(i).isFI()) {
+ ++i;
+ assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
+ }
+ bool Done = false;
+ if (!AFI->isThumbFunction())
+ Done = rewriteARMFrameIndex(MI, i, BaseReg, Off, TII);
+ else {
+ assert(AFI->isThumb2Function());
+ Done = rewriteT2FrameIndex(MI, i, BaseReg, Off, TII);
+ }
+ assert (Done && "Unable to resolve frame index!");
+ (void)Done;
+}
+
+bool ARMBaseRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
+ int64_t Offset) const {
+ const MCInstrDesc &Desc = MI->getDesc();
+ unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
+ unsigned i = 0;
+
+ while (!MI->getOperand(i).isFI()) {
+ ++i;
+ assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!");
+ }
+
+ // AddrMode4 and AddrMode6 cannot handle any offset.
+ if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6)
+ return Offset == 0;
+
+ unsigned NumBits = 0;
+ unsigned Scale = 1;
+ bool isSigned = true;
+ switch (AddrMode) {
+ case ARMII::AddrModeT2_i8:
+ case ARMII::AddrModeT2_i12:
+ // i8 supports only negative, and i12 supports only positive, so
+ // based on Offset sign, consider the appropriate instruction
+ Scale = 1;
+ if (Offset < 0) {
+ NumBits = 8;
+ Offset = -Offset;
+ } else {
+ NumBits = 12;
+ }
+ break;
+ case ARMII::AddrMode5:
+ // VFP address mode.
+ NumBits = 8;
+ Scale = 4;
+ break;
+ case ARMII::AddrMode_i12:
+ case ARMII::AddrMode2:
+ NumBits = 12;
+ break;
+ case ARMII::AddrMode3:
+ NumBits = 8;
+ break;
+ case ARMII::AddrModeT1_s:
+ NumBits = 5;
+ Scale = 4;
+ isSigned = false;
+ break;
+ default:
+ llvm_unreachable("Unsupported addressing mode!");
+ }
+
+ Offset += getFrameIndexInstrOffset(MI, i);
+ // Make sure the offset is encodable for instructions that scale the
+ // immediate.
+ if ((Offset & (Scale-1)) != 0)
+ return false;
+
+ if (isSigned && Offset < 0)
+ Offset = -Offset;
+
+ unsigned Mask = (1 << NumBits) - 1;
+ if ((unsigned)Offset <= Mask * Scale)
+ return true;
+
+ return false;
+}
+
+void
+ARMBaseRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ MachineInstr &MI = *II;
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ const ARMFrameLowering *TFI =
+ static_cast<const ARMFrameLowering*>(MF.getTarget().getFrameLowering());
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This eliminateFrameIndex does not support Thumb1!");
+ int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
+ unsigned FrameReg;
+
+ int Offset = TFI->ResolveFrameIndexReference(MF, FrameIndex, FrameReg, SPAdj);
+
+ // PEI::scavengeFrameVirtualRegs() cannot accurately track SPAdj because the
+ // call frame setup/destroy instructions have already been eliminated. That
+ // means the stack pointer cannot be used to access the emergency spill slot
+ // when !hasReservedCallFrame().
+#ifndef NDEBUG
+ if (RS && FrameReg == ARM::SP && RS->isScavengingFrameIndex(FrameIndex)){
+ assert(TFI->hasReservedCallFrame(MF) &&
+ "Cannot use SP to access the emergency spill slot in "
+ "functions without a reserved call frame");
+ assert(!MF.getFrameInfo()->hasVarSizedObjects() &&
+ "Cannot use SP to access the emergency spill slot in "
+ "functions with variable sized frame objects");
+ }
+#endif // NDEBUG
+
+ assert(!MI.isDebugValue() && "DBG_VALUEs should be handled in target-independent code");
+
+ // Modify MI as necessary to handle as much of 'Offset' as possible
+ bool Done = false;
+ if (!AFI->isThumbFunction())
+ Done = rewriteARMFrameIndex(MI, FIOperandNum, FrameReg, Offset, TII);
+ else {
+ assert(AFI->isThumb2Function());
+ Done = rewriteT2FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII);
+ }
+ if (Done)
+ return;
+
+ // If we get here, the immediate doesn't fit into the instruction. We folded
+ // as much as possible above, handle the rest, providing a register that is
+ // SP+LargeImm.
+ assert((Offset ||
+ (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode4 ||
+ (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode6) &&
+ "This code isn't needed if offset already handled!");
+
+ unsigned ScratchReg = 0;
+ int PIdx = MI.findFirstPredOperandIdx();
+ ARMCC::CondCodes Pred = (PIdx == -1)
+ ? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
+ unsigned PredReg = (PIdx == -1) ? 0 : MI.getOperand(PIdx+1).getReg();
+ if (Offset == 0)
+ // Must be addrmode4/6.
+ MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false, false, false);
+ else {
+ ScratchReg = MF.getRegInfo().createVirtualRegister(&ARM::GPRRegClass);
+ if (!AFI->isThumbFunction())
+ emitARMRegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
+ Offset, Pred, PredReg, TII);
+ else {
+ assert(AFI->isThumb2Function());
+ emitT2RegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
+ Offset, Pred, PredReg, TII);
+ }
+ // Update the original instruction to use the scratch register.
+ MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false,true);
+ }
+}
+
+bool ARMBaseRegisterInfo::shouldCoalesce(MachineInstr *MI,
+ const TargetRegisterClass *SrcRC,
+ unsigned SubReg,
+ const TargetRegisterClass *DstRC,
+ unsigned DstSubReg,
+ const TargetRegisterClass *NewRC) const {
+ auto MBB = MI->getParent();
+ auto MF = MBB->getParent();
+ const MachineRegisterInfo &MRI = MF->getRegInfo();
+ // If not copying into a sub-register this should be ok because we shouldn't
+ // need to split the reg.
+ if (!DstSubReg)
+ return true;
+ // Small registers don't frequently cause a problem, so we can coalesce them.
+ if (NewRC->getSize() < 32 && DstRC->getSize() < 32 && SrcRC->getSize() < 32)
+ return true;
+
+ auto NewRCWeight =
+ MRI.getTargetRegisterInfo()->getRegClassWeight(NewRC);
+ auto SrcRCWeight =
+ MRI.getTargetRegisterInfo()->getRegClassWeight(SrcRC);
+ auto DstRCWeight =
+ MRI.getTargetRegisterInfo()->getRegClassWeight(DstRC);
+ // If the source register class is more expensive than the destination, the
+ // coalescing is probably profitable.
+ if (SrcRCWeight.RegWeight > NewRCWeight.RegWeight)
+ return true;
+ if (DstRCWeight.RegWeight > NewRCWeight.RegWeight)
+ return true;
+
+ // If the register allocator isn't constrained, we can always allow coalescing
+ // unfortunately we don't know yet if we will be constrained.
+ // The goal of this heuristic is to restrict how many expensive registers
+ // we allow to coalesce in a given basic block.
+ auto AFI = MF->getInfo<ARMFunctionInfo>();
+ auto It = AFI->getCoalescedWeight(MBB);
+
+ DEBUG(dbgs() << "\tARM::shouldCoalesce - Coalesced Weight: "
+ << It->second << "\n");
+ DEBUG(dbgs() << "\tARM::shouldCoalesce - Reg Weight: "
+ << NewRCWeight.RegWeight << "\n");
+
+ // This number is the largest round number that which meets the criteria:
+ // (1) addresses PR18825
+ // (2) generates better code in some test cases (like vldm-shed-a9.ll)
+ // (3) Doesn't regress any test cases (in-tree, test-suite, and SPEC)
+ // In practice the SizeMultiplier will only factor in for straight line code
+ // that uses a lot of NEON vectors, which isn't terribly common.
+ unsigned SizeMultiplier = MBB->size()/100;
+ SizeMultiplier = SizeMultiplier ? SizeMultiplier : 1;
+ if (It->second < NewRCWeight.WeightLimit * SizeMultiplier) {
+ It->second += NewRCWeight.RegWeight;
+ return true;
+ }
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.h b/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.h
new file mode 100644
index 0000000..833d3f2
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.h
@@ -0,0 +1,202 @@
+//===-- ARMBaseRegisterInfo.h - ARM Register Information Impl ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the base ARM implementation of TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMBASEREGISTERINFO_H
+#define ARMBASEREGISTERINFO_H
+
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define GET_REGINFO_HEADER
+#include "ARMGenRegisterInfo.inc"
+
+namespace llvm {
+ class ARMSubtarget;
+ class ARMBaseInstrInfo;
+ class Type;
+
+/// Register allocation hints.
+namespace ARMRI {
+ enum {
+ RegPairOdd = 1,
+ RegPairEven = 2
+ };
+}
+
+/// isARMArea1Register - Returns true if the register is a low register (r0-r7)
+/// or a stack/pc register that we should push/pop.
+static inline bool isARMArea1Register(unsigned Reg, bool isIOS) {
+ using namespace ARM;
+ switch (Reg) {
+ case R0: case R1: case R2: case R3:
+ case R4: case R5: case R6: case R7:
+ case LR: case SP: case PC:
+ return true;
+ case R8: case R9: case R10: case R11: case R12:
+ // For iOS we want r7 and lr to be next to each other.
+ return !isIOS;
+ default:
+ return false;
+ }
+}
+
+static inline bool isARMArea2Register(unsigned Reg, bool isIOS) {
+ using namespace ARM;
+ switch (Reg) {
+ case R8: case R9: case R10: case R11: case R12:
+ // iOS has this second area.
+ return isIOS;
+ default:
+ return false;
+ }
+}
+
+static inline bool isARMArea3Register(unsigned Reg, bool isIOS) {
+ using namespace ARM;
+ switch (Reg) {
+ case D15: case D14: case D13: case D12:
+ case D11: case D10: case D9: case D8:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static inline bool isCalleeSavedRegister(unsigned Reg,
+ const MCPhysReg *CSRegs) {
+ for (unsigned i = 0; CSRegs[i]; ++i)
+ if (Reg == CSRegs[i])
+ return true;
+ return false;
+}
+
+class ARMBaseRegisterInfo : public ARMGenRegisterInfo {
+protected:
+ const ARMSubtarget &STI;
+
+ /// FramePtr - ARM physical register used as frame ptr.
+ unsigned FramePtr;
+
+ /// BasePtr - ARM physical register used as a base ptr in complex stack
+ /// frames. I.e., when we need a 3rd base, not just SP and FP, due to
+ /// variable size stack objects.
+ unsigned BasePtr;
+
+ // Can be only subclassed.
+ explicit ARMBaseRegisterInfo(const ARMSubtarget &STI);
+
+ // Return the opcode that implements 'Op', or 0 if no opcode
+ unsigned getOpcode(int Op) const;
+
+public:
+ /// Code Generation virtual methods...
+ const MCPhysReg *
+ getCalleeSavedRegs(const MachineFunction *MF = nullptr) const override;
+ const uint32_t *getCallPreservedMask(CallingConv::ID) const override;
+ const uint32_t *getNoPreservedMask() const;
+
+ /// getThisReturnPreservedMask - Returns a call preserved mask specific to the
+ /// case that 'returned' is on an i32 first argument if the calling convention
+ /// is one that can (partially) model this attribute with a preserved mask
+ /// (i.e. it is a calling convention that uses the same register for the first
+ /// i32 argument and an i32 return value)
+ ///
+ /// Should return NULL in the case that the calling convention does not have
+ /// this property
+ const uint32_t *getThisReturnPreservedMask(CallingConv::ID) const;
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+
+ const TargetRegisterClass *
+ getPointerRegClass(const MachineFunction &MF,
+ unsigned Kind = 0) const override;
+ const TargetRegisterClass *
+ getCrossCopyRegClass(const TargetRegisterClass *RC) const override;
+
+ const TargetRegisterClass *
+ getLargestLegalSuperClass(const TargetRegisterClass *RC) const override;
+
+ unsigned getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const override;
+
+ void getRegAllocationHints(unsigned VirtReg,
+ ArrayRef<MCPhysReg> Order,
+ SmallVectorImpl<MCPhysReg> &Hints,
+ const MachineFunction &MF,
+ const VirtRegMap *VRM) const override;
+
+ void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
+ MachineFunction &MF) const override;
+
+ bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const override;
+
+ bool hasBasePointer(const MachineFunction &MF) const;
+
+ bool canRealignStack(const MachineFunction &MF) const;
+ bool needsStackRealignment(const MachineFunction &MF) const override;
+ int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
+ int Idx) const override;
+ bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const override;
+ void materializeFrameBaseRegister(MachineBasicBlock *MBB,
+ unsigned BaseReg, int FrameIdx,
+ int64_t Offset) const override;
+ void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
+ int64_t Offset) const override;
+ bool isFrameOffsetLegal(const MachineInstr *MI,
+ int64_t Offset) const override;
+
+ bool cannotEliminateFrame(const MachineFunction &MF) const;
+
+ // Debug information queries.
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+ unsigned getBaseRegister() const { return BasePtr; }
+
+ bool isLowRegister(unsigned Reg) const;
+
+
+ /// emitLoadConstPool - Emits a load from constpool to materialize the
+ /// specified immediate.
+ virtual void emitLoadConstPool(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl, unsigned DestReg, unsigned SubIdx,
+ int Val, ARMCC::CondCodes Pred = ARMCC::AL,
+ unsigned PredReg = 0,
+ unsigned MIFlags = MachineInstr::NoFlags)const;
+
+ /// Code Generation virtual methods...
+ bool mayOverrideLocalAssignment() const override;
+
+ bool requiresRegisterScavenging(const MachineFunction &MF) const override;
+
+ bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const override;
+
+ bool requiresFrameIndexScavenging(const MachineFunction &MF) const override;
+
+ bool requiresVirtualBaseRegisters(const MachineFunction &MF) const override;
+
+ void eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const override;
+
+ /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true
+ bool shouldCoalesce(MachineInstr *MI,
+ const TargetRegisterClass *SrcRC,
+ unsigned SubReg,
+ const TargetRegisterClass *DstRC,
+ unsigned DstSubReg,
+ const TargetRegisterClass *NewRC) const override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMCallingConv.h b/contrib/llvm/lib/Target/ARM/ARMCallingConv.h
new file mode 100644
index 0000000..dc41c1c
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMCallingConv.h
@@ -0,0 +1,264 @@
+//=== ARMCallingConv.h - ARM Custom Calling Convention Routines -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the custom routines for the ARM Calling Convention that
+// aren't done by tablegen.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMCALLINGCONV_H
+#define ARMCALLINGCONV_H
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMSubtarget.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+namespace llvm {
+
+// APCS f64 is in register pairs, possibly split to stack
+static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ CCState &State, bool CanFail) {
+ static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
+
+ // Try to get the first register.
+ if (unsigned Reg = State.AllocateReg(RegList, 4))
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ else {
+ // For the 2nd half of a v2f64, do not fail.
+ if (CanFail)
+ return false;
+
+ // Put the whole thing on the stack.
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ State.AllocateStack(8, 4),
+ LocVT, LocInfo));
+ return true;
+ }
+
+ // Try to get the second register.
+ if (unsigned Reg = State.AllocateReg(RegList, 4))
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ else
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ State.AllocateStack(4, 4),
+ LocVT, LocInfo));
+ return true;
+}
+
+static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
+ return false;
+ if (LocVT == MVT::v2f64 &&
+ !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
+ return false;
+ return true; // we handled it
+}
+
+// AAPCS f64 is in aligned register pairs
+static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ CCState &State, bool CanFail) {
+ static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
+ static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
+ static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 };
+ static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
+
+ unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList, 2);
+ if (Reg == 0) {
+
+ // If we had R3 unallocated only, now we still must to waste it.
+ Reg = State.AllocateReg(GPRArgRegs, 4);
+ assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64");
+
+ // For the 2nd half of a v2f64, do not just fail.
+ if (CanFail)
+ return false;
+
+ // Put the whole thing on the stack.
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ State.AllocateStack(8, 8),
+ LocVT, LocInfo));
+ return true;
+ }
+
+ unsigned i;
+ for (i = 0; i < 2; ++i)
+ if (HiRegList[i] == Reg)
+ break;
+
+ unsigned T = State.AllocateReg(LoRegList[i]);
+ (void)T;
+ assert(T == LoRegList[i] && "Could not allocate register");
+
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
+ LocVT, LocInfo));
+ return true;
+}
+
+static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
+ return false;
+ if (LocVT == MVT::v2f64 &&
+ !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
+ return false;
+ return true; // we handled it
+}
+
+static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo, CCState &State) {
+ static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
+ static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
+
+ unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
+ if (Reg == 0)
+ return false; // we didn't handle it
+
+ unsigned i;
+ for (i = 0; i < 2; ++i)
+ if (HiRegList[i] == Reg)
+ break;
+
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
+ LocVT, LocInfo));
+ return true;
+}
+
+static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
+ return false;
+ if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
+ return false;
+ return true; // we handled it
+}
+
+static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
+ State);
+}
+
+static const uint16_t SRegList[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3,
+ ARM::S4, ARM::S5, ARM::S6, ARM::S7,
+ ARM::S8, ARM::S9, ARM::S10, ARM::S11,
+ ARM::S12, ARM::S13, ARM::S14, ARM::S15 };
+static const uint16_t DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3,
+ ARM::D4, ARM::D5, ARM::D6, ARM::D7 };
+static const uint16_t QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 };
+
+// Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA
+// has InConsecutiveRegs set, and that the last member also has
+// InConsecutiveRegsLast set. We must process all members of the HA before
+// we can allocate it, as we need to know the total number of registers that
+// will be needed in order to (attempt to) allocate a contiguous block.
+static bool CC_ARM_AAPCS_Custom_HA(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ SmallVectorImpl<CCValAssign> &PendingHAMembers = State.getPendingLocs();
+ // AAPCS HFAs must have 1-4 elements, all of the same type
+ assert(PendingHAMembers.size() < 8);
+ if (PendingHAMembers.size() > 0)
+ assert(PendingHAMembers[0].getLocVT() == LocVT);
+
+ // Add the argument to the list to be allocated once we know the size of the
+ // HA
+ PendingHAMembers.push_back(
+ CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
+
+ if (ArgFlags.isInConsecutiveRegsLast()) {
+ assert(PendingHAMembers.size() > 0 && PendingHAMembers.size() <= 8 &&
+ "Homogeneous aggregates must have between 1 and 4 members");
+
+ // Try to allocate a contiguous block of registers, each of the correct
+ // size to hold one member.
+ const uint16_t *RegList;
+ unsigned NumRegs;
+ switch (LocVT.SimpleTy) {
+ case MVT::i32:
+ case MVT::f32:
+ RegList = SRegList;
+ NumRegs = 16;
+ break;
+ case MVT::f64:
+ RegList = DRegList;
+ NumRegs = 8;
+ break;
+ case MVT::v2f64:
+ RegList = QRegList;
+ NumRegs = 4;
+ break;
+ default:
+ llvm_unreachable("Unexpected member type for HA");
+ break;
+ }
+
+ unsigned RegResult =
+ State.AllocateRegBlock(RegList, NumRegs, PendingHAMembers.size());
+
+ if (RegResult) {
+ for (SmallVectorImpl<CCValAssign>::iterator It = PendingHAMembers.begin();
+ It != PendingHAMembers.end(); ++It) {
+ It->convertToReg(RegResult);
+ State.addLoc(*It);
+ ++RegResult;
+ }
+ PendingHAMembers.clear();
+ return true;
+ }
+
+ // Register allocation failed, fall back to the stack
+
+ // Mark all VFP regs as unavailable (AAPCS rule C.2.vfp)
+ for (unsigned regNo = 0; regNo < 16; ++regNo)
+ State.AllocateReg(SRegList[regNo]);
+
+ unsigned Size = LocVT.getSizeInBits() / 8;
+ unsigned Align = Size;
+
+ if (LocVT.SimpleTy == MVT::v2f64 || LocVT.SimpleTy == MVT::i32) {
+ // Vectors are always aligned to 8 bytes. If we've seen an i32 here
+ // it's because it's been split from a larger type, also with align 8.
+ Align = 8;
+ }
+
+ for (auto It : PendingHAMembers) {
+ It.convertToMem(State.AllocateStack(Size, Align));
+ State.addLoc(It);
+
+ // Only the first member needs to be aligned.
+ Align = 1;
+ }
+
+ // All pending members have now been allocated
+ PendingHAMembers.clear();
+ }
+
+ // This will be allocated by the last member of the HA
+ return true;
+}
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMCallingConv.td b/contrib/llvm/lib/Target/ARM/ARMCallingConv.td
new file mode 100644
index 0000000..526089b
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMCallingConv.td
@@ -0,0 +1,241 @@
+//===-- ARMCallingConv.td - Calling Conventions for ARM ----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This describes the calling conventions for ARM architecture.
+//===----------------------------------------------------------------------===//
+
+/// CCIfAlign - Match of the original alignment of the arg
+class CCIfAlign<string Align, CCAction A>:
+ CCIf<!strconcat("ArgFlags.getOrigAlign() == ", Align), A>;
+
+//===----------------------------------------------------------------------===//
+// ARM APCS Calling Convention
+//===----------------------------------------------------------------------===//
+def CC_ARM_APCS : CallingConv<[
+
+ // Handles byval parameters.
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
+
+ // Handle all vector types as either f64 or v2f64.
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+
+ // f64 and v2f64 are passed in adjacent GPRs, possibly split onto the stack
+ CCIfType<[f64, v2f64], CCCustom<"CC_ARM_APCS_Custom_f64">>,
+
+ CCIfType<[f32], CCBitConvertToType<i32>>,
+ CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>,
+
+ CCIfType<[i32], CCAssignToStack<4, 4>>,
+ CCIfType<[f64], CCAssignToStack<8, 4>>,
+ CCIfType<[v2f64], CCAssignToStack<16, 4>>
+]>;
+
+def RetCC_ARM_APCS : CallingConv<[
+ CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
+ CCIfType<[f32], CCBitConvertToType<i32>>,
+
+ // Handle all vector types as either f64 or v2f64.
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+
+ CCIfType<[f64, v2f64], CCCustom<"RetCC_ARM_APCS_Custom_f64">>,
+
+ CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>,
+ CCIfType<[i64], CCAssignToRegWithShadow<[R0, R2], [R1, R3]>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// ARM APCS Calling Convention for FastCC (when VFP2 or later is available)
+//===----------------------------------------------------------------------===//
+def FastCC_ARM_APCS : CallingConv<[
+ // Handle all vector types as either f64 or v2f64.
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+
+ CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
+ CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
+ CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
+ S9, S10, S11, S12, S13, S14, S15]>>,
+
+ // CPRCs may be allocated to co-processor registers or the stack - they
+ // may never be allocated to core registers.
+ CCIfType<[f32], CCAssignToStackWithShadow<4, 4, [Q0, Q1, Q2, Q3]>>,
+ CCIfType<[f64], CCAssignToStackWithShadow<8, 4, [Q0, Q1, Q2, Q3]>>,
+ CCIfType<[v2f64], CCAssignToStackWithShadow<16, 4, [Q0, Q1, Q2, Q3]>>,
+
+ CCDelegateTo<CC_ARM_APCS>
+]>;
+
+def RetFastCC_ARM_APCS : CallingConv<[
+ // Handle all vector types as either f64 or v2f64.
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+
+ CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
+ CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
+ CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
+ S9, S10, S11, S12, S13, S14, S15]>>,
+ CCDelegateTo<RetCC_ARM_APCS>
+]>;
+
+//===----------------------------------------------------------------------===//
+// ARM APCS Calling Convention for GHC
+//===----------------------------------------------------------------------===//
+
+def CC_ARM_APCS_GHC : CallingConv<[
+ // Handle all vector types as either f64 or v2f64.
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+
+ CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
+ CCIfType<[f64], CCAssignToReg<[D8, D9, D10, D11]>>,
+ CCIfType<[f32], CCAssignToReg<[S16, S17, S18, S19, S20, S21, S22, S23]>>,
+
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, SpLim
+ CCIfType<[i32], CCAssignToReg<[R4, R5, R6, R7, R8, R9, R10, R11]>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// ARM AAPCS (EABI) Calling Convention, common parts
+//===----------------------------------------------------------------------===//
+
+def CC_ARM_AAPCS_Common : CallingConv<[
+
+ CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
+
+ // i64/f64 is passed in even pairs of GPRs
+ // i64 is 8-aligned i32 here, so we may need to eat R1 as a pad register
+ // (and the same is true for f64 if VFP is not enabled)
+ CCIfType<[i32], CCIfAlign<"8", CCAssignToRegWithShadow<[R0, R2], [R0, R1]>>>,
+ CCIfType<[i32], CCIf<"ArgFlags.getOrigAlign() != 8",
+ CCAssignToReg<[R0, R1, R2, R3]>>>,
+
+ CCIfType<[i32], CCIfAlign<"8", CCAssignToStackWithShadow<4, 8, [R0, R1, R2, R3]>>>,
+ CCIfType<[i32], CCAssignToStackWithShadow<4, 4, [R0, R1, R2, R3]>>,
+ CCIfType<[f32], CCAssignToStackWithShadow<4, 4, [Q0, Q1, Q2, Q3]>>,
+ CCIfType<[f64], CCAssignToStackWithShadow<8, 8, [Q0, Q1, Q2, Q3]>>,
+ CCIfType<[v2f64], CCAssignToStackWithShadow<16, 8, [Q0, Q1, Q2, Q3]>>
+]>;
+
+def RetCC_ARM_AAPCS_Common : CallingConv<[
+ CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
+ CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>,
+ CCIfType<[i64], CCAssignToRegWithShadow<[R0, R2], [R1, R3]>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// ARM AAPCS (EABI) Calling Convention
+//===----------------------------------------------------------------------===//
+
+def CC_ARM_AAPCS : CallingConv<[
+ // Handles byval parameters.
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ // Handle all vector types as either f64 or v2f64.
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+
+ CCIfType<[f64, v2f64], CCCustom<"CC_ARM_AAPCS_Custom_f64">>,
+ CCIfType<[f32], CCBitConvertToType<i32>>,
+ CCDelegateTo<CC_ARM_AAPCS_Common>
+]>;
+
+def RetCC_ARM_AAPCS : CallingConv<[
+ // Handle all vector types as either f64 or v2f64.
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+
+ CCIfType<[f64, v2f64], CCCustom<"RetCC_ARM_AAPCS_Custom_f64">>,
+ CCIfType<[f32], CCBitConvertToType<i32>>,
+ CCDelegateTo<RetCC_ARM_AAPCS_Common>
+]>;
+
+//===----------------------------------------------------------------------===//
+// ARM AAPCS-VFP (EABI) Calling Convention
+// Also used for FastCC (when VFP2 or later is available)
+//===----------------------------------------------------------------------===//
+
+def CC_ARM_AAPCS_VFP : CallingConv<[
+ // Handles byval parameters.
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ // Handle all vector types as either f64 or v2f64.
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+
+ // HFAs are passed in a contiguous block of registers, or on the stack
+ CCIfConsecutiveRegs<CCCustom<"CC_ARM_AAPCS_Custom_HA">>,
+
+ CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
+ CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
+ CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
+ S9, S10, S11, S12, S13, S14, S15]>>,
+ CCDelegateTo<CC_ARM_AAPCS_Common>
+]>;
+
+def RetCC_ARM_AAPCS_VFP : CallingConv<[
+ // Handle all vector types as either f64 or v2f64.
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+
+ CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
+ CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
+ CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
+ S9, S10, S11, S12, S13, S14, S15]>>,
+ CCDelegateTo<RetCC_ARM_AAPCS_Common>
+]>;
+
+//===----------------------------------------------------------------------===//
+// Callee-saved register lists.
+//===----------------------------------------------------------------------===//
+
+def CSR_NoRegs : CalleeSavedRegs<(add)>;
+
+def CSR_AAPCS : CalleeSavedRegs<(add LR, R11, R10, R9, R8, R7, R6, R5, R4,
+ (sequence "D%u", 15, 8))>;
+
+// Constructors and destructors return 'this' in the ARM C++ ABI; since 'this'
+// and the pointer return value are both passed in R0 in these cases, this can
+// be partially modelled by treating R0 as a callee-saved register
+// Only the resulting RegMask is used; the SaveList is ignored
+def CSR_AAPCS_ThisReturn : CalleeSavedRegs<(add LR, R11, R10, R9, R8, R7, R6,
+ R5, R4, (sequence "D%u", 15, 8),
+ R0)>;
+
+// iOS ABI deviates from ARM standard ABI. R9 is not a callee-saved register.
+// Also save R7-R4 first to match the stack frame fixed spill areas.
+def CSR_iOS : CalleeSavedRegs<(add LR, R7, R6, R5, R4, (sub CSR_AAPCS, R9))>;
+
+def CSR_iOS_ThisReturn : CalleeSavedRegs<(add LR, R7, R6, R5, R4,
+ (sub CSR_AAPCS_ThisReturn, R9))>;
+
+// The "interrupt" attribute is used to generate code that is acceptable in
+// exception-handlers of various kinds. It makes us use a different return
+// instruction (handled elsewhere) and affects which registers we must return to
+// our "caller" in the same state as we receive them.
+
+// For most interrupts, all registers except SP and LR are shared with
+// user-space. We mark LR to be saved anyway, since this is what the ARM backend
+// generally does rather than tracking its liveness as a normal register.
+def CSR_GenericInt : CalleeSavedRegs<(add LR, (sequence "R%u", 12, 0))>;
+
+// The fast interrupt handlers have more private state and get their own copies
+// of R8-R12, in addition to SP and LR. As before, mark LR for saving too.
+
+// FIXME: we mark R11 as callee-saved since it's often the frame-pointer, and
+// current frame lowering expects to encounter it while processing callee-saved
+// registers.
+def CSR_FIQ : CalleeSavedRegs<(add LR, R11, (sequence "R%u", 7, 0))>;
+
+
diff --git a/contrib/llvm/lib/Target/ARM/ARMCodeEmitter.cpp b/contrib/llvm/lib/Target/ARM/ARMCodeEmitter.cpp
new file mode 100644
index 0000000..5fb6ebfe
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMCodeEmitter.cpp
@@ -0,0 +1,1909 @@
+//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the pass that transforms the ARM machine instructions into
+// relocatable machine code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMRelocations.h"
+#include "ARMSubtarget.h"
+#include "ARMTargetMachine.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#ifndef NDEBUG
+#include <iomanip>
+#endif
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+STATISTIC(NumEmitted, "Number of machine instructions emitted");
+
+namespace {
+
+ class ARMCodeEmitter : public MachineFunctionPass {
+ ARMJITInfo *JTI;
+ const ARMBaseInstrInfo *II;
+ const DataLayout *TD;
+ const ARMSubtarget *Subtarget;
+ TargetMachine &TM;
+ JITCodeEmitter &MCE;
+ MachineModuleInfo *MMI;
+ const std::vector<MachineConstantPoolEntry> *MCPEs;
+ const std::vector<MachineJumpTableEntry> *MJTEs;
+ bool IsPIC;
+ bool IsThumb;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineModuleInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ static char ID;
+ public:
+ ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
+ : MachineFunctionPass(ID), JTI(nullptr),
+ II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
+ TD(tm.getDataLayout()), TM(tm),
+ MCE(mce), MCPEs(nullptr), MJTEs(nullptr),
+ IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
+
+ /// getBinaryCodeForInstr - This function, generated by the
+ /// CodeEmitterGenerator using TableGen, produces the binary encoding for
+ /// machine instructions.
+ uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "ARM Machine Code Emitter";
+ }
+
+ void emitInstruction(const MachineInstr &MI);
+
+ private:
+
+ void emitWordLE(unsigned Binary);
+ void emitDWordLE(uint64_t Binary);
+ void emitConstPoolInstruction(const MachineInstr &MI);
+ void emitMOVi32immInstruction(const MachineInstr &MI);
+ void emitMOVi2piecesInstruction(const MachineInstr &MI);
+ void emitLEApcrelJTInstruction(const MachineInstr &MI);
+ void emitPseudoMoveInstruction(const MachineInstr &MI);
+ void addPCLabel(unsigned LabelID);
+ void emitPseudoInstruction(const MachineInstr &MI);
+ unsigned getMachineSoRegOpValue(const MachineInstr &MI,
+ const MCInstrDesc &MCID,
+ const MachineOperand &MO,
+ unsigned OpIdx);
+
+ unsigned getMachineSoImmOpValue(unsigned SoImm);
+ unsigned getAddrModeSBit(const MachineInstr &MI,
+ const MCInstrDesc &MCID) const;
+
+ void emitDataProcessingInstruction(const MachineInstr &MI,
+ unsigned ImplicitRd = 0,
+ unsigned ImplicitRn = 0);
+
+ void emitLoadStoreInstruction(const MachineInstr &MI,
+ unsigned ImplicitRd = 0,
+ unsigned ImplicitRn = 0);
+
+ void emitMiscLoadStoreInstruction(const MachineInstr &MI,
+ unsigned ImplicitRn = 0);
+
+ void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
+
+ void emitMulFrmInstruction(const MachineInstr &MI);
+
+ void emitExtendInstruction(const MachineInstr &MI);
+
+ void emitMiscArithInstruction(const MachineInstr &MI);
+
+ void emitSaturateInstruction(const MachineInstr &MI);
+
+ void emitBranchInstruction(const MachineInstr &MI);
+
+ void emitInlineJumpTable(unsigned JTIndex);
+
+ void emitMiscBranchInstruction(const MachineInstr &MI);
+
+ void emitVFPArithInstruction(const MachineInstr &MI);
+
+ void emitVFPConversionInstruction(const MachineInstr &MI);
+
+ void emitVFPLoadStoreInstruction(const MachineInstr &MI);
+
+ void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
+
+ void emitNEONLaneInstruction(const MachineInstr &MI);
+ void emitNEONDupInstruction(const MachineInstr &MI);
+ void emitNEON1RegModImmInstruction(const MachineInstr &MI);
+ void emitNEON2RegInstruction(const MachineInstr &MI);
+ void emitNEON3RegInstruction(const MachineInstr &MI);
+
+ /// getMachineOpValue - Return binary encoding of operand. If the machine
+ /// operand requires relocation, record the relocation and return zero.
+ unsigned getMachineOpValue(const MachineInstr &MI,
+ const MachineOperand &MO) const;
+ unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
+ return getMachineOpValue(MI, MI.getOperand(OpIdx));
+ }
+
+ // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
+ // TableGen'erated getBinaryCodeForInstr() function to encode any
+ // operand values, instead querying getMachineOpValue() directly for
+ // each operand it needs to encode. Thus, any of the new encoder
+ // helper functions can simply return 0 as the values the return
+ // are already handled elsewhere. They are placeholders to allow this
+ // encoder to continue to function until the MC encoder is sufficiently
+ // far along that this one can be eliminated entirely.
+ unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
+ const { return 0; }
+ unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
+ const { return 0; }
+ unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
+ const { return 0; }
+ unsigned NEONThumb2V8PostEncoder(const MachineInstr &MI,unsigned Val)
+ const { return 0; }
+ unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
+ const { return 0; }
+ unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
+ unsigned Op) const { return 0; }
+ unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
+ const { return 0; }
+ unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
+ unsigned Op)
+ const { return 0; }
+ unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
+ unsigned Op) const { return 0; }
+ uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
+ const { return 0; }
+
+ unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
+ const {
+ // {17-13} = reg
+ // {12} = (U)nsigned (add == '1', sub == '0')
+ // {11-0} = imm12
+ const MachineOperand &MO = MI.getOperand(Op);
+ const MachineOperand &MO1 = MI.getOperand(Op + 1);
+ if (!MO.isReg()) {
+ emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
+ return 0;
+ }
+ unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
+ int32_t Imm12 = MO1.getImm();
+ uint32_t Binary;
+ Binary = Imm12 & 0xfff;
+ if (Imm12 >= 0)
+ Binary |= (1 << 12);
+ Binary |= (Reg << 13);
+ return Binary;
+ }
+
+ unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
+ return 0;
+ }
+
+ uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
+ const { return 0;}
+ uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
+ const { return 0;}
+ uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
+ const { return 0;}
+ uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
+ // {17-13} = reg
+ // {12} = (U)nsigned (add == '1', sub == '0')
+ // {11-0} = imm12
+ const MachineOperand &MO = MI.getOperand(Op);
+ const MachineOperand &MO1 = MI.getOperand(Op + 1);
+ if (!MO.isReg()) {
+ emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
+ return 0;
+ }
+ unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
+ int32_t Imm12 = MO1.getImm();
+
+ // Special value for #-0
+ if (Imm12 == INT32_MIN)
+ Imm12 = 0;
+
+ // Immediate is always encoded as positive. The 'U' bit controls add vs
+ // sub.
+ bool isAdd = true;
+ if (Imm12 < 0) {
+ Imm12 = -Imm12;
+ isAdd = false;
+ }
+
+ uint32_t Binary = Imm12 & 0xfff;
+ if (isAdd)
+ Binary |= (1 << 12);
+ Binary |= (Reg << 13);
+ return Binary;
+ }
+ unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+
+ unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+
+ unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+ unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
+ const { return 0; }
+
+ /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
+ /// machine operand requires relocation, record the relocation and return
+ /// zero.
+ unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
+ unsigned Reloc);
+
+ /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
+ ///
+ unsigned getShiftOp(unsigned Imm) const ;
+
+ /// Routines that handle operands which add machine relocations which are
+ /// fixed up by the relocation stage.
+ void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
+ bool MayNeedFarStub, bool Indirect,
+ intptr_t ACPV = 0) const;
+ void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
+ void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
+ void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
+ void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
+ intptr_t JTBase = 0) const;
+ unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
+ unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
+ unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
+ unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
+ unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
+ unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
+ };
+}
+
+char ARMCodeEmitter::ID = 0;
+
+/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
+/// code to the specified MCE object.
+FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
+ JITCodeEmitter &JCE) {
+ return new ARMCodeEmitter(TM, JCE);
+}
+
+bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
+ TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget());
+
+ assert((Target.getRelocationModel() != Reloc::Default ||
+ Target.getRelocationModel() != Reloc::Static) &&
+ "JIT relocation model must be set to static or default!");
+
+ JTI = static_cast<ARMJITInfo*>(Target.getJITInfo());
+ II = static_cast<const ARMBaseInstrInfo*>(Target.getInstrInfo());
+ TD = Target.getDataLayout();
+
+ Subtarget = &TM.getSubtarget<ARMSubtarget>();
+ MCPEs = &MF.getConstantPool()->getConstants();
+ MJTEs = nullptr;
+ if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
+ IsPIC = TM.getRelocationModel() == Reloc::PIC_;
+ IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
+ JTI->Initialize(MF, IsPIC);
+ MMI = &getAnalysis<MachineModuleInfo>();
+ MCE.setModuleInfo(MMI);
+
+ do {
+ DEBUG(errs() << "JITTing function '"
+ << MF.getName() << "'\n");
+ MCE.startFunction(MF);
+ for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
+ MBB != E; ++MBB) {
+ MCE.StartMachineBasicBlock(MBB);
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+ I != E; ++I)
+ emitInstruction(*I);
+ }
+ } while (MCE.finishFunction(MF));
+
+ return false;
+}
+
+/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
+///
+unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
+ switch (ARM_AM::getAM2ShiftOpc(Imm)) {
+ default: llvm_unreachable("Unknown shift opc!");
+ case ARM_AM::asr: return 2;
+ case ARM_AM::lsl: return 0;
+ case ARM_AM::lsr: return 1;
+ case ARM_AM::ror:
+ case ARM_AM::rrx: return 3;
+ }
+}
+
+/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
+/// machine operand requires relocation, record the relocation and return zero.
+unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
+ const MachineOperand &MO,
+ unsigned Reloc) {
+ assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
+ && "Relocation to this function should be for movt or movw");
+
+ if (MO.isImm())
+ return static_cast<unsigned>(MO.getImm());
+ else if (MO.isGlobal())
+ emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
+ else if (MO.isSymbol())
+ emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
+ else if (MO.isMBB())
+ emitMachineBasicBlock(MO.getMBB(), Reloc);
+ else {
+#ifndef NDEBUG
+ errs() << MO;
+#endif
+ llvm_unreachable("Unsupported operand type for movw/movt");
+ }
+ return 0;
+}
+
+/// getMachineOpValue - Return binary encoding of operand. If the machine
+/// operand requires relocation, record the relocation and return zero.
+unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
+ const MachineOperand &MO) const {
+ if (MO.isReg())
+ return II->getRegisterInfo().getEncodingValue(MO.getReg());
+ else if (MO.isImm())
+ return static_cast<unsigned>(MO.getImm());
+ else if (MO.isGlobal())
+ emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
+ else if (MO.isSymbol())
+ emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
+ else if (MO.isCPI()) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ // For VFP load, the immediate offset is multiplied by 4.
+ unsigned Reloc = ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
+ ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
+ emitConstPoolAddress(MO.getIndex(), Reloc);
+ } else if (MO.isJTI())
+ emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
+ else if (MO.isMBB())
+ emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
+ else
+ llvm_unreachable("Unable to encode MachineOperand!");
+ return 0;
+}
+
+/// emitGlobalAddress - Emit the specified address to the code stream.
+///
+void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
+ bool MayNeedFarStub, bool Indirect,
+ intptr_t ACPV) const {
+ MachineRelocation MR = Indirect
+ ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
+ const_cast<GlobalValue *>(GV),
+ ACPV, MayNeedFarStub)
+ : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
+ const_cast<GlobalValue *>(GV), ACPV,
+ MayNeedFarStub);
+ MCE.addRelocation(MR);
+}
+
+/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
+/// be emitted to the current location in the function, and allow it to be PC
+/// relative.
+void ARMCodeEmitter::
+emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
+ Reloc, ES));
+}
+
+/// emitConstPoolAddress - Arrange for the address of an constant pool
+/// to be emitted to the current location in the function, and allow it to be PC
+/// relative.
+void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
+ // Tell JIT emitter we'll resolve the address.
+ MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
+ Reloc, CPI, 0, true));
+}
+
+/// emitJumpTableAddress - Arrange for the address of a jump table to
+/// be emitted to the current location in the function, and allow it to be PC
+/// relative.
+void ARMCodeEmitter::
+emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
+ Reloc, JTIndex, 0, true));
+}
+
+/// emitMachineBasicBlock - Emit the specified address basic block.
+void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
+ unsigned Reloc,
+ intptr_t JTBase) const {
+ MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
+ Reloc, BB, JTBase));
+}
+
+void ARMCodeEmitter::emitWordLE(unsigned Binary) {
+ DEBUG(errs() << " 0x";
+ errs().write_hex(Binary) << "\n");
+ MCE.emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
+ DEBUG(errs() << " 0x";
+ errs().write_hex(Binary) << "\n");
+ MCE.emitDWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
+ DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
+
+ MCE.processDebugLoc(MI.getDebugLoc(), true);
+
+ ++NumEmitted; // Keep track of the # of mi's emitted
+ switch (MI.getDesc().TSFlags & ARMII::FormMask) {
+ default: {
+ llvm_unreachable("Unhandled instruction encoding format!");
+ }
+ case ARMII::MiscFrm:
+ if (MI.getOpcode() == ARM::LEApcrelJT) {
+ // Materialize jumptable address.
+ emitLEApcrelJTInstruction(MI);
+ break;
+ }
+ llvm_unreachable("Unhandled instruction encoding!");
+ case ARMII::Pseudo:
+ emitPseudoInstruction(MI);
+ break;
+ case ARMII::DPFrm:
+ case ARMII::DPSoRegFrm:
+ emitDataProcessingInstruction(MI);
+ break;
+ case ARMII::LdFrm:
+ case ARMII::StFrm:
+ emitLoadStoreInstruction(MI);
+ break;
+ case ARMII::LdMiscFrm:
+ case ARMII::StMiscFrm:
+ emitMiscLoadStoreInstruction(MI);
+ break;
+ case ARMII::LdStMulFrm:
+ emitLoadStoreMultipleInstruction(MI);
+ break;
+ case ARMII::MulFrm:
+ emitMulFrmInstruction(MI);
+ break;
+ case ARMII::ExtFrm:
+ emitExtendInstruction(MI);
+ break;
+ case ARMII::ArithMiscFrm:
+ emitMiscArithInstruction(MI);
+ break;
+ case ARMII::SatFrm:
+ emitSaturateInstruction(MI);
+ break;
+ case ARMII::BrFrm:
+ emitBranchInstruction(MI);
+ break;
+ case ARMII::BrMiscFrm:
+ emitMiscBranchInstruction(MI);
+ break;
+ // VFP instructions.
+ case ARMII::VFPUnaryFrm:
+ case ARMII::VFPBinaryFrm:
+ emitVFPArithInstruction(MI);
+ break;
+ case ARMII::VFPConv1Frm:
+ case ARMII::VFPConv2Frm:
+ case ARMII::VFPConv3Frm:
+ case ARMII::VFPConv4Frm:
+ case ARMII::VFPConv5Frm:
+ emitVFPConversionInstruction(MI);
+ break;
+ case ARMII::VFPLdStFrm:
+ emitVFPLoadStoreInstruction(MI);
+ break;
+ case ARMII::VFPLdStMulFrm:
+ emitVFPLoadStoreMultipleInstruction(MI);
+ break;
+
+ // NEON instructions.
+ case ARMII::NGetLnFrm:
+ case ARMII::NSetLnFrm:
+ emitNEONLaneInstruction(MI);
+ break;
+ case ARMII::NDupFrm:
+ emitNEONDupInstruction(MI);
+ break;
+ case ARMII::N1RegModImmFrm:
+ emitNEON1RegModImmInstruction(MI);
+ break;
+ case ARMII::N2RegFrm:
+ emitNEON2RegInstruction(MI);
+ break;
+ case ARMII::N3RegFrm:
+ emitNEON3RegInstruction(MI);
+ break;
+ }
+ MCE.processDebugLoc(MI.getDebugLoc(), false);
+}
+
+void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
+ unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
+ unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
+ const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
+
+ // Remember the CONSTPOOL_ENTRY address for later relocation.
+ JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
+
+ // Emit constpool island entry. In most cases, the actual values will be
+ // resolved and relocated after code emission.
+ if (MCPE.isMachineConstantPoolEntry()) {
+ ARMConstantPoolValue *ACPV =
+ static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
+
+ DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ "
+ << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
+
+ assert(ACPV->isGlobalValue() && "unsupported constant pool value");
+ const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
+ if (GV) {
+ Reloc::Model RelocM = TM.getRelocationModel();
+ emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
+ isa<Function>(GV),
+ Subtarget->GVIsIndirectSymbol(GV, RelocM),
+ (intptr_t)ACPV);
+ } else {
+ const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
+ emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
+ }
+ emitWordLE(0);
+ } else {
+ const Constant *CV = MCPE.Val.ConstVal;
+
+ DEBUG({
+ errs() << " ** Constant pool #" << CPI << " @ "
+ << (void*)MCE.getCurrentPCValue() << " ";
+ if (const Function *F = dyn_cast<Function>(CV))
+ errs() << F->getName();
+ else
+ errs() << *CV;
+ errs() << '\n';
+ });
+
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
+ emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
+ emitWordLE(0);
+ } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ uint32_t Val = uint32_t(*CI->getValue().getRawData());
+ emitWordLE(Val);
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ if (CFP->getType()->isFloatTy())
+ emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+ else if (CFP->getType()->isDoubleTy())
+ emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+ else {
+ llvm_unreachable("Unable to handle this constantpool entry!");
+ }
+ } else {
+ llvm_unreachable("Unable to handle this constantpool entry!");
+ }
+ }
+}
+
+void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
+ const MachineOperand &MO0 = MI.getOperand(0);
+ const MachineOperand &MO1 = MI.getOperand(1);
+
+ // Emit the 'movw' instruction.
+ unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000
+
+ unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
+
+ // Set the conditional execution predicate.
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
+
+ // Encode imm16 as imm4:imm12
+ Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
+ Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
+ emitWordLE(Binary);
+
+ unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
+ // Emit the 'movt' instruction.
+ Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
+
+ // Set the conditional execution predicate.
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
+
+ // Encode imm16 as imm4:imm1, same as movw above.
+ Binary |= Hi16 & 0xFFF;
+ Binary |= ((Hi16 >> 12) & 0xF) << 16;
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
+ const MachineOperand &MO0 = MI.getOperand(0);
+ const MachineOperand &MO1 = MI.getOperand(1);
+ assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
+ "Not a valid so_imm value!");
+ unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
+ unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
+
+ // Emit the 'mov' instruction.
+ unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
+
+ // Set the conditional execution predicate.
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
+
+ // Encode so_imm.
+ // Set bit I(25) to identify this is the immediate form of <shifter_op>
+ Binary |= 1 << ARMII::I_BitShift;
+ Binary |= getMachineSoImmOpValue(V1);
+ emitWordLE(Binary);
+
+ // Now the 'orr' instruction.
+ Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
+
+ // Set the conditional execution predicate.
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
+
+ // Encode Rn.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
+
+ // Encode so_imm.
+ // Set bit I(25) to identify this is the immediate form of <shifter_op>
+ Binary |= 1 << ARMII::I_BitShift;
+ Binary |= getMachineSoImmOpValue(V2);
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
+ // It's basically add r, pc, (LJTI - $+8)
+
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Emit the 'add' instruction.
+ unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ Binary |= getAddrModeSBit(MI, MCID);
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
+
+ // Encode Rn which is PC.
+ Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
+
+ // Encode the displacement.
+ Binary |= 1 << ARMII::I_BitShift;
+ emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
+ unsigned Opcode = MI.getDesc().Opcode;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
+ Binary |= 1 << ARMII::S_BitShift;
+
+ // Encode register def if there is one.
+ Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
+
+ // Encode the shift operation.
+ switch (Opcode) {
+ default: break;
+ case ARM::RRX:
+ // rrx
+ Binary |= 0x6 << 4;
+ break;
+ case ARM::MOVsrl_flag:
+ // lsr #1
+ Binary |= (0x2 << 4) | (1 << 7);
+ break;
+ case ARM::MOVsra_flag:
+ // asr #1
+ Binary |= (0x4 << 4) | (1 << 7);
+ break;
+ }
+
+ // Encode register Rm.
+ Binary |= getMachineOpValue(MI, 1);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
+ DEBUG(errs() << " ** LPC" << LabelID << " @ "
+ << (void*)MCE.getCurrentPCValue() << '\n');
+ JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
+}
+
+void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
+ unsigned Opcode = MI.getDesc().Opcode;
+ switch (Opcode) {
+ default:
+ llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
+ case ARM::BX_CALL:
+ case ARM::BMOVPCRX_CALL: {
+ // First emit mov lr, pc
+ unsigned Binary = 0x01a0e00f;
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+ emitWordLE(Binary);
+
+ // and then emit the branch.
+ emitMiscBranchInstruction(MI);
+ break;
+ }
+ case TargetOpcode::INLINEASM: {
+ // We allow inline assembler nodes with empty bodies - they can
+ // implicitly define registers, which is ok for JIT.
+ if (MI.getOperand(0).getSymbolName()[0]) {
+ report_fatal_error("JIT does not support inline asm!");
+ }
+ break;
+ }
+ case TargetOpcode::CFI_INSTRUCTION:
+ break;
+ case TargetOpcode::EH_LABEL:
+ MCE.emitLabel(MI.getOperand(0).getMCSymbol());
+ break;
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ // Do nothing.
+ break;
+ case ARM::CONSTPOOL_ENTRY:
+ emitConstPoolInstruction(MI);
+ break;
+ case ARM::PICADD: {
+ // Remember of the address of the PC label for relocation later.
+ addPCLabel(MI.getOperand(2).getImm());
+ // PICADD is just an add instruction that implicitly read pc.
+ emitDataProcessingInstruction(MI, 0, ARM::PC);
+ break;
+ }
+ case ARM::PICLDR:
+ case ARM::PICLDRB:
+ case ARM::PICSTR:
+ case ARM::PICSTRB: {
+ // Remember of the address of the PC label for relocation later.
+ addPCLabel(MI.getOperand(2).getImm());
+ // These are just load / store instructions that implicitly read pc.
+ emitLoadStoreInstruction(MI, 0, ARM::PC);
+ break;
+ }
+ case ARM::PICLDRH:
+ case ARM::PICLDRSH:
+ case ARM::PICLDRSB:
+ case ARM::PICSTRH: {
+ // Remember of the address of the PC label for relocation later.
+ addPCLabel(MI.getOperand(2).getImm());
+ // These are just load / store instructions that implicitly read pc.
+ emitMiscLoadStoreInstruction(MI, ARM::PC);
+ break;
+ }
+
+ case ARM::MOVi32imm:
+ // Two instructions to materialize a constant.
+ if (Subtarget->hasV6T2Ops())
+ emitMOVi32immInstruction(MI);
+ else
+ emitMOVi2piecesInstruction(MI);
+ break;
+
+ case ARM::LEApcrelJT:
+ // Materialize jumptable address.
+ emitLEApcrelJTInstruction(MI);
+ break;
+ case ARM::RRX:
+ case ARM::MOVsrl_flag:
+ case ARM::MOVsra_flag:
+ emitPseudoMoveInstruction(MI);
+ break;
+ }
+}
+
+unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
+ const MCInstrDesc &MCID,
+ const MachineOperand &MO,
+ unsigned OpIdx) {
+ unsigned Binary = getMachineOpValue(MI, MO);
+
+ const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
+ const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
+ ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
+
+ // Encode the shift opcode.
+ unsigned SBits = 0;
+ unsigned Rs = MO1.getReg();
+ if (Rs) {
+ // Set shift operand (bit[7:4]).
+ // LSL - 0001
+ // LSR - 0011
+ // ASR - 0101
+ // ROR - 0111
+ // RRX - 0110 and bit[11:8] clear.
+ switch (SOpc) {
+ default: llvm_unreachable("Unknown shift opc!");
+ case ARM_AM::lsl: SBits = 0x1; break;
+ case ARM_AM::lsr: SBits = 0x3; break;
+ case ARM_AM::asr: SBits = 0x5; break;
+ case ARM_AM::ror: SBits = 0x7; break;
+ case ARM_AM::rrx: SBits = 0x6; break;
+ }
+ } else {
+ // Set shift operand (bit[6:4]).
+ // LSL - 000
+ // LSR - 010
+ // ASR - 100
+ // ROR - 110
+ switch (SOpc) {
+ default: llvm_unreachable("Unknown shift opc!");
+ case ARM_AM::lsl: SBits = 0x0; break;
+ case ARM_AM::lsr: SBits = 0x2; break;
+ case ARM_AM::asr: SBits = 0x4; break;
+ case ARM_AM::ror: SBits = 0x6; break;
+ }
+ }
+ Binary |= SBits << 4;
+ if (SOpc == ARM_AM::rrx)
+ return Binary;
+
+ // Encode the shift operation Rs or shift_imm (except rrx).
+ if (Rs) {
+ // Encode Rs bit[11:8].
+ assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
+ return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
+ }
+
+ // Encode shift_imm bit[11:7].
+ return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
+}
+
+unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
+ int SoImmVal = ARM_AM::getSOImmVal(SoImm);
+ assert(SoImmVal != -1 && "Not a valid so_imm value!");
+
+ // Encode rotate_imm.
+ unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
+ << ARMII::SoRotImmShift;
+
+ // Encode immed_8.
+ Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
+ return Binary;
+}
+
+unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
+ const MCInstrDesc &MCID) const {
+ for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
+ const MachineOperand &MO = MI.getOperand(i-1);
+ if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
+ return 1 << ARMII::S_BitShift;
+ }
+ return 0;
+}
+
+void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
+ unsigned ImplicitRd,
+ unsigned ImplicitRn) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ Binary |= getAddrModeSBit(MI, MCID);
+
+ // Encode register def if there is one.
+ unsigned NumDefs = MCID.getNumDefs();
+ unsigned OpIdx = 0;
+ if (NumDefs)
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+ else if (ImplicitRd)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
+
+ if (MCID.Opcode == ARM::MOVi16) {
+ // Get immediate from MI.
+ unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
+ ARM::reloc_arm_movw);
+ // Encode imm which is the same as in emitMOVi32immInstruction().
+ Binary |= Lo16 & 0xFFF;
+ Binary |= ((Lo16 >> 12) & 0xF) << 16;
+ emitWordLE(Binary);
+ return;
+ } else if(MCID.Opcode == ARM::MOVTi16) {
+ unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
+ ARM::reloc_arm_movt) >> 16);
+ Binary |= Hi16 & 0xFFF;
+ Binary |= ((Hi16 >> 12) & 0xF) << 16;
+ emitWordLE(Binary);
+ return;
+ } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
+ uint32_t v = ~MI.getOperand(2).getImm();
+ int32_t lsb = countTrailingZeros(v);
+ int32_t msb = (32 - countLeadingZeros(v)) - 1;
+ // Instr{20-16} = msb, Instr{11-7} = lsb
+ Binary |= (msb & 0x1F) << 16;
+ Binary |= (lsb & 0x1F) << 7;
+ emitWordLE(Binary);
+ return;
+ } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
+ // Encode Rn in Instr{0-3}
+ Binary |= getMachineOpValue(MI, OpIdx++);
+
+ uint32_t lsb = MI.getOperand(OpIdx++).getImm();
+ uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
+
+ // Instr{20-16} = widthm1, Instr{11-7} = lsb
+ Binary |= (widthm1 & 0x1F) << 16;
+ Binary |= (lsb & 0x1F) << 7;
+ emitWordLE(Binary);
+ return;
+ }
+
+ // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
+ if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ // Encode first non-shifter register operand if there is one.
+ bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
+ if (!isUnary) {
+ if (ImplicitRn)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
+ else {
+ Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
+ ++OpIdx;
+ }
+ }
+
+ // Encode shifter operand.
+ const MachineOperand &MO = MI.getOperand(OpIdx);
+ if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
+ // Encode SoReg.
+ emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
+ return;
+ }
+
+ if (MO.isReg()) {
+ // Encode register Rm.
+ emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
+ return;
+ }
+
+ // Encode so_imm.
+ Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
+ unsigned ImplicitRd,
+ unsigned ImplicitRn) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned Form = MCID.TSFlags & ARMII::FormMask;
+ bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
+ if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
+ MI.getOpcode() == ARM::STRi12) {
+ emitWordLE(Binary);
+ return;
+ }
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Operand 0 of a pre- and post-indexed store is the address base
+ // writeback. Skip it.
+ bool Skipped = false;
+ if (IsPrePost && Form == ARMII::StFrm) {
+ ++OpIdx;
+ Skipped = true;
+ }
+
+ // Set first operand
+ if (ImplicitRd)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
+ else
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ // Set second operand
+ if (ImplicitRn)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
+ else
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
+
+ // If this is a two-address operand, skip it. e.g. LDR_PRE.
+ if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ const MachineOperand &MO2 = MI.getOperand(OpIdx);
+ unsigned AM2Opc = (ImplicitRn == ARM::PC)
+ ? 0 : MI.getOperand(OpIdx+1).getImm();
+
+ // Set bit U(23) according to sign of immed value (positive or negative).
+ Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
+ ARMII::U_BitShift);
+ if (!MO2.getReg()) { // is immediate
+ if (ARM_AM::getAM2Offset(AM2Opc))
+ // Set the value of offset_12 field
+ Binary |= ARM_AM::getAM2Offset(AM2Opc);
+ emitWordLE(Binary);
+ return;
+ }
+
+ // Set bit I(25), because this is not in immediate encoding.
+ Binary |= 1 << ARMII::I_BitShift;
+ assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
+ // Set bit[3:0] to the corresponding Rm register
+ Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
+
+ // If this instr is in scaled register offset/index instruction, set
+ // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
+ if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
+ Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
+ Binary |= ShImm << ARMII::ShiftShift; // shift_immed
+ }
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
+ unsigned ImplicitRn) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned Form = MCID.TSFlags & ARMII::FormMask;
+ bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Operand 0 of a pre- and post-indexed store is the address base
+ // writeback. Skip it.
+ bool Skipped = false;
+ if (IsPrePost && Form == ARMII::StMiscFrm) {
+ ++OpIdx;
+ Skipped = true;
+ }
+
+ // Set first operand
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ // Skip LDRD and STRD's second operand.
+ if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
+ ++OpIdx;
+
+ // Set second operand
+ if (ImplicitRn)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
+ else
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
+
+ // If this is a two-address operand, skip it. e.g. LDRH_POST.
+ if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ const MachineOperand &MO2 = MI.getOperand(OpIdx);
+ unsigned AM3Opc = (ImplicitRn == ARM::PC)
+ ? 0 : MI.getOperand(OpIdx+1).getImm();
+
+ // Set bit U(23) according to sign of immed value (positive or negative)
+ Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
+ ARMII::U_BitShift);
+
+ // If this instr is in register offset/index encoding, set bit[3:0]
+ // to the corresponding Rm register.
+ if (MO2.getReg()) {
+ Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
+ emitWordLE(Binary);
+ return;
+ }
+
+ // This instr is in immediate offset/index encoding, set bit 22 to 1.
+ Binary |= 1 << ARMII::AM3_I_BitShift;
+ if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
+ // Set operands
+ Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
+ Binary |= (ImmOffs & 0xF); // immedL
+ }
+
+ emitWordLE(Binary);
+}
+
+static unsigned getAddrModeUPBits(unsigned Mode) {
+ unsigned Binary = 0;
+
+ // Set addressing mode by modifying bits U(23) and P(24)
+ // IA - Increment after - bit U = 1 and bit P = 0
+ // IB - Increment before - bit U = 1 and bit P = 1
+ // DA - Decrement after - bit U = 0 and bit P = 0
+ // DB - Decrement before - bit U = 0 and bit P = 1
+ switch (Mode) {
+ default: llvm_unreachable("Unknown addressing sub-mode!");
+ case ARM_AM::da: break;
+ case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
+ case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
+ case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
+ }
+
+ return Binary;
+}
+
+void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Skip operand 0 of an instruction with base register update.
+ unsigned OpIdx = 0;
+ if (IsUpdating)
+ ++OpIdx;
+
+ // Set base address operand
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
+
+ // Set addressing mode by modifying bits U(23) and P(24)
+ ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
+ Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
+
+ // Set bit W(21)
+ if (IsUpdating)
+ Binary |= 0x1 << ARMII::W_BitShift;
+
+ // Set registers
+ for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ break;
+ unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
+ assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ RegNum < 16);
+ Binary |= 0x1 << RegNum;
+ }
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ Binary |= getAddrModeSBit(MI, MCID);
+
+ // 32x32->64bit operations have two destination registers. The number
+ // of register definitions will tell us if that's what we're dealing with.
+ unsigned OpIdx = 0;
+ if (MCID.getNumDefs() == 2)
+ Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
+
+ // Encode Rd
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
+
+ // Encode Rm
+ Binary |= getMachineOpValue(MI, OpIdx++);
+
+ // Encode Rs
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
+
+ // Many multiple instructions (e.g. MLA) have three src operands. Encode
+ // it as Rn (for multiply, that's in the same offset as RdLo.
+ if (MCID.getNumOperands() > OpIdx &&
+ !MCID.OpInfo[OpIdx].isPredicate() &&
+ !MCID.OpInfo[OpIdx].isOptionalDef())
+ Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Encode Rd
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ const MachineOperand &MO1 = MI.getOperand(OpIdx++);
+ const MachineOperand &MO2 = MI.getOperand(OpIdx);
+ if (MO2.isReg()) {
+ // Two register operand form.
+ // Encode Rn.
+ Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
+
+ // Encode Rm.
+ Binary |= getMachineOpValue(MI, MO2);
+ ++OpIdx;
+ } else {
+ Binary |= getMachineOpValue(MI, MO1);
+ }
+
+ // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
+ if (MI.getOperand(OpIdx).isImm() &&
+ !MCID.OpInfo[OpIdx].isPredicate() &&
+ !MCID.OpInfo[OpIdx].isOptionalDef())
+ Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // PKH instructions are finished at this point
+ if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
+ emitWordLE(Binary);
+ return;
+ }
+
+ unsigned OpIdx = 0;
+
+ // Encode Rd
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ const MachineOperand &MO = MI.getOperand(OpIdx++);
+ if (OpIdx == MCID.getNumOperands() ||
+ MCID.OpInfo[OpIdx].isPredicate() ||
+ MCID.OpInfo[OpIdx].isOptionalDef()) {
+ // Encode Rm and it's done.
+ Binary |= getMachineOpValue(MI, MO);
+ emitWordLE(Binary);
+ return;
+ }
+
+ // Encode Rn.
+ Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
+
+ // Encode Rm.
+ Binary |= getMachineOpValue(MI, OpIdx++);
+
+ // Encode shift_imm.
+ unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
+ if (MCID.Opcode == ARM::PKHTB) {
+ assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
+ if (ShiftAmt == 32)
+ ShiftAmt = 0;
+ }
+ assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
+ Binary |= ShiftAmt << ARMII::ShiftShift;
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGen.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd
+ Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
+
+ // Encode saturate bit position.
+ unsigned Pos = MI.getOperand(1).getImm();
+ if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
+ Pos -= 1;
+ assert((Pos < 16 || (Pos < 32 &&
+ MCID.Opcode != ARM::SSAT16 &&
+ MCID.Opcode != ARM::USAT16)) &&
+ "saturate bit position out of range");
+ Binary |= Pos << 16;
+
+ // Encode Rm
+ Binary |= getMachineOpValue(MI, 2);
+
+ // Encode shift_imm.
+ if (MCID.getNumOperands() == 4) {
+ unsigned ShiftOp = MI.getOperand(3).getImm();
+ ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
+ if (Opc == ARM_AM::asr)
+ Binary |= (1 << 6);
+ unsigned ShiftAmt = MI.getOperand(3).getImm();
+ if (ShiftAmt == 32 && Opc == ARM_AM::asr)
+ ShiftAmt = 0;
+ assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
+ Binary |= ShiftAmt << ARMII::ShiftShift;
+ }
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ if (MCID.Opcode == ARM::TPsoft) {
+ llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
+ }
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Set signed_immed_24 field
+ Binary |= getMachineOpValue(MI, 0);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
+ // Remember the base address of the inline jump table.
+ uintptr_t JTBase = MCE.getCurrentPCValue();
+ JTI->addJumpTableBaseAddr(JTIndex, JTBase);
+ DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
+ << '\n');
+
+ // Now emit the jump table entries.
+ const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
+ for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
+ if (IsPIC)
+ // DestBB address - JT base.
+ emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
+ else
+ // Absolute DestBB address.
+ emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
+ emitWordLE(0);
+ }
+}
+
+void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Handle jump tables.
+ if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
+ // First emit a ldr pc, [] instruction.
+ emitDataProcessingInstruction(MI, ARM::PC);
+
+ // Then emit the inline jump table.
+ unsigned JTIndex =
+ (MCID.Opcode == ARM::BR_JTr)
+ ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
+ emitInlineJumpTable(JTIndex);
+ return;
+ } else if (MCID.Opcode == ARM::BR_JTm) {
+ // First emit a ldr pc, [] instruction.
+ emitLoadStoreInstruction(MI, ARM::PC);
+
+ // Then emit the inline jump table.
+ emitInlineJumpTable(MI.getOperand(3).getIndex());
+ return;
+ }
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
+ // The return register is LR.
+ Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
+ else
+ // otherwise, set the return register
+ Binary |= getMachineOpValue(MI, 0);
+
+ emitWordLE(Binary);
+}
+
+unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegD = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ bool isSPVFP = ARM::SPRRegClass.contains(RegD);
+ RegD = II->getRegisterInfo().getEncodingValue(RegD);
+ if (!isSPVFP)
+ Binary |= RegD << ARMII::RegRdShift;
+ else {
+ Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
+ Binary |= (RegD & 0x01) << ARMII::D_BitShift;
+ }
+ return Binary;
+}
+
+unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegN = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ bool isSPVFP = ARM::SPRRegClass.contains(RegN);
+ RegN = II->getRegisterInfo().getEncodingValue(RegN);
+ if (!isSPVFP)
+ Binary |= RegN << ARMII::RegRnShift;
+ else {
+ Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
+ Binary |= (RegN & 0x01) << ARMII::N_BitShift;
+ }
+ return Binary;
+}
+
+unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegM = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ bool isSPVFP = ARM::SPRRegClass.contains(RegM);
+ RegM = II->getRegisterInfo().getEncodingValue(RegM);
+ if (!isSPVFP)
+ Binary |= RegM;
+ else {
+ Binary |= ((RegM & 0x1E) >> 1);
+ Binary |= (RegM & 0x01) << ARMII::M_BitShift;
+ }
+ return Binary;
+}
+
+void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+ assert((Binary & ARMII::D_BitShift) == 0 &&
+ (Binary & ARMII::N_BitShift) == 0 &&
+ (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
+
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, OpIdx++);
+
+ // If this is a two-address operand, skip it, e.g. FMACD.
+ if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ // Encode Dn / Sn.
+ if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
+ Binary |= encodeVFPRn(MI, OpIdx++);
+
+ if (OpIdx == MCID.getNumOperands() ||
+ MCID.OpInfo[OpIdx].isPredicate() ||
+ MCID.OpInfo[OpIdx].isOptionalDef()) {
+ // FCMPEZD etc. has only one operand.
+ emitWordLE(Binary);
+ return;
+ }
+
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, OpIdx);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned Form = MCID.TSFlags & ARMII::FormMask;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ switch (Form) {
+ default: break;
+ case ARMII::VFPConv1Frm:
+ case ARMII::VFPConv2Frm:
+ case ARMII::VFPConv3Frm:
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, 0);
+ break;
+ case ARMII::VFPConv4Frm:
+ // Encode Dn / Sn.
+ Binary |= encodeVFPRn(MI, 0);
+ break;
+ case ARMII::VFPConv5Frm:
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, 0);
+ break;
+ }
+
+ switch (Form) {
+ default: break;
+ case ARMII::VFPConv1Frm:
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, 1);
+ break;
+ case ARMII::VFPConv2Frm:
+ case ARMII::VFPConv3Frm:
+ // Encode Dn / Sn.
+ Binary |= encodeVFPRn(MI, 1);
+ break;
+ case ARMII::VFPConv4Frm:
+ case ARMII::VFPConv5Frm:
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, 1);
+ break;
+ }
+
+ if (Form == ARMII::VFPConv5Frm)
+ // Encode Dn / Sn.
+ Binary |= encodeVFPRn(MI, 2);
+ else if (Form == ARMII::VFPConv3Frm)
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, 2);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, OpIdx++);
+
+ // Encode address base.
+ const MachineOperand &Base = MI.getOperand(OpIdx++);
+ Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
+
+ // If there is a non-zero immediate offset, encode it.
+ if (Base.isReg()) {
+ const MachineOperand &Offset = MI.getOperand(OpIdx);
+ if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
+ if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
+ Binary |= 1 << ARMII::U_BitShift;
+ Binary |= ImmOffs;
+ emitWordLE(Binary);
+ return;
+ }
+ }
+
+ // If immediate offset is omitted, default to +0.
+ Binary |= 1 << ARMII::U_BitShift;
+
+ emitWordLE(Binary);
+}
+
+void
+ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Skip operand 0 of an instruction with base register update.
+ unsigned OpIdx = 0;
+ if (IsUpdating)
+ ++OpIdx;
+
+ // Set base address operand
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
+
+ // Set addressing mode by modifying bits U(23) and P(24)
+ ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
+ Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
+
+ // Set bit W(21)
+ if (IsUpdating)
+ Binary |= 0x1 << ARMII::W_BitShift;
+
+ // First register is encoded in Dd.
+ Binary |= encodeVFPRd(MI, OpIdx+2);
+
+ // Count the number of registers.
+ unsigned NumRegs = 1;
+ for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ break;
+ ++NumRegs;
+ }
+ // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
+ // Otherwise, it will be 0, in the case of 32-bit registers.
+ if(Binary & 0x100)
+ Binary |= NumRegs * 2;
+ else
+ Binary |= NumRegs;
+
+ emitWordLE(Binary);
+}
+
+unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegD = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ RegD = II->getRegisterInfo().getEncodingValue(RegD);
+ Binary |= (RegD & 0xf) << ARMII::RegRdShift;
+ Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
+ return Binary;
+}
+
+unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegN = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ RegN = II->getRegisterInfo().getEncodingValue(RegN);
+ Binary |= (RegN & 0xf) << ARMII::RegRnShift;
+ Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
+ return Binary;
+}
+
+unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
+ unsigned OpIdx) const {
+ unsigned RegM = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ RegM = II->getRegisterInfo().getEncodingValue(RegM);
+ Binary |= (RegM & 0xf);
+ Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
+ return Binary;
+}
+
+/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
+/// data-processing instruction to the corresponding Thumb encoding.
+static unsigned convertNEONDataProcToThumb(unsigned Binary) {
+ assert((Binary & 0xfe000000) == 0xf2000000 &&
+ "not an ARM NEON data-processing instruction");
+ unsigned UBit = (Binary >> 24) & 1;
+ return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
+}
+
+void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
+ const MCInstrDesc &MCID = MI.getDesc();
+ if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
+ RegTOpIdx = 0;
+ RegNOpIdx = 1;
+ LnOpIdx = 2;
+ } else { // ARMII::NSetLnFrm
+ RegTOpIdx = 2;
+ RegNOpIdx = 0;
+ LnOpIdx = 3;
+ }
+
+ // Set the conditional execution predicate
+ Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
+
+ unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
+ RegT = II->getRegisterInfo().getEncodingValue(RegT);
+ Binary |= (RegT << ARMII::RegRdShift);
+ Binary |= encodeNEONRn(MI, RegNOpIdx);
+
+ unsigned LaneShift;
+ if ((Binary & (1 << 22)) != 0)
+ LaneShift = 0; // 8-bit elements
+ else if ((Binary & (1 << 5)) != 0)
+ LaneShift = 1; // 16-bit elements
+ else
+ LaneShift = 2; // 32-bit elements
+
+ unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
+ unsigned Opc1 = Lane >> 2;
+ unsigned Opc2 = Lane & 3;
+ assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
+ Binary |= (Opc1 << 21);
+ Binary |= (Opc2 << 5);
+
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
+
+ unsigned RegT = MI.getOperand(1).getReg();
+ RegT = II->getRegisterInfo().getEncodingValue(RegT);
+ Binary |= (RegT << ARMII::RegRdShift);
+ Binary |= encodeNEONRn(MI, 0);
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
+ unsigned Binary = getBinaryCodeForInstr(MI);
+ // Destination register is encoded in Dd.
+ Binary |= encodeNEONRd(MI, 0);
+ // Immediate fields: Op, Cmode, I, Imm3, Imm4
+ unsigned Imm = MI.getOperand(1).getImm();
+ unsigned Op = (Imm >> 12) & 1;
+ unsigned Cmode = (Imm >> 8) & 0xf;
+ unsigned I = (Imm >> 7) & 1;
+ unsigned Imm3 = (Imm >> 4) & 0x7;
+ unsigned Imm4 = Imm & 0xf;
+ Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
+ if (IsThumb)
+ Binary = convertNEONDataProcToThumb(Binary);
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned Binary = getBinaryCodeForInstr(MI);
+ // Destination register is encoded in Dd; source register in Dm.
+ unsigned OpIdx = 0;
+ Binary |= encodeNEONRd(MI, OpIdx++);
+ if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+ Binary |= encodeNEONRm(MI, OpIdx);
+ if (IsThumb)
+ Binary = convertNEONDataProcToThumb(Binary);
+ // FIXME: This does not handle VDUPfdf or VDUPfqf.
+ emitWordLE(Binary);
+}
+
+void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned Binary = getBinaryCodeForInstr(MI);
+ // Destination register is encoded in Dd; source registers in Dn and Dm.
+ unsigned OpIdx = 0;
+ Binary |= encodeNEONRd(MI, OpIdx++);
+ if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+ Binary |= encodeNEONRn(MI, OpIdx++);
+ if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
+ ++OpIdx;
+ Binary |= encodeNEONRm(MI, OpIdx);
+ if (IsThumb)
+ Binary = convertNEONDataProcToThumb(Binary);
+ // FIXME: This does not handle VMOVDneon or VMOVQ.
+ emitWordLE(Binary);
+}
+
+#include "ARMGenCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp b/contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp
new file mode 100644
index 0000000..ce264ee
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp
@@ -0,0 +1,2062 @@
+//===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that splits the constant pool up into 'islands'
+// which are scattered through-out the function. This is required due to the
+// limited pc-relative displacements that ARM has.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMMachineFunctionInfo.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "Thumb2InstrInfo.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-cp-islands"
+
+STATISTIC(NumCPEs, "Number of constpool entries");
+STATISTIC(NumSplit, "Number of uncond branches inserted");
+STATISTIC(NumCBrFixed, "Number of cond branches fixed");
+STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
+STATISTIC(NumTBs, "Number of table branches generated");
+STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
+STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
+STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
+STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
+STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
+
+
+static cl::opt<bool>
+AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
+ cl::desc("Adjust basic block layout to better use TB[BH]"));
+
+// FIXME: This option should be removed once it has received sufficient testing.
+static cl::opt<bool>
+AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true),
+ cl::desc("Align constant islands in code"));
+
+/// UnknownPadding - Return the worst case padding that could result from
+/// unknown offset bits. This does not include alignment padding caused by
+/// known offset bits.
+///
+/// @param LogAlign log2(alignment)
+/// @param KnownBits Number of known low offset bits.
+static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
+ if (KnownBits < LogAlign)
+ return (1u << LogAlign) - (1u << KnownBits);
+ return 0;
+}
+
+namespace {
+ /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
+ /// requires constant pool entries to be scattered among the instructions
+ /// inside a function. To do this, it completely ignores the normal LLVM
+ /// constant pool; instead, it places constants wherever it feels like with
+ /// special instructions.
+ ///
+ /// The terminology used in this pass includes:
+ /// Islands - Clumps of constants placed in the function.
+ /// Water - Potential places where an island could be formed.
+ /// CPE - A constant pool entry that has been placed somewhere, which
+ /// tracks a list of users.
+ class ARMConstantIslands : public MachineFunctionPass {
+ /// BasicBlockInfo - Information about the offset and size of a single
+ /// basic block.
+ struct BasicBlockInfo {
+ /// Offset - Distance from the beginning of the function to the beginning
+ /// of this basic block.
+ ///
+ /// Offsets are computed assuming worst case padding before an aligned
+ /// block. This means that subtracting basic block offsets always gives a
+ /// conservative estimate of the real distance which may be smaller.
+ ///
+ /// Because worst case padding is used, the computed offset of an aligned
+ /// block may not actually be aligned.
+ unsigned Offset;
+
+ /// Size - Size of the basic block in bytes. If the block contains
+ /// inline assembly, this is a worst case estimate.
+ ///
+ /// The size does not include any alignment padding whether from the
+ /// beginning of the block, or from an aligned jump table at the end.
+ unsigned Size;
+
+ /// KnownBits - The number of low bits in Offset that are known to be
+ /// exact. The remaining bits of Offset are an upper bound.
+ uint8_t KnownBits;
+
+ /// Unalign - When non-zero, the block contains instructions (inline asm)
+ /// of unknown size. The real size may be smaller than Size bytes by a
+ /// multiple of 1 << Unalign.
+ uint8_t Unalign;
+
+ /// PostAlign - When non-zero, the block terminator contains a .align
+ /// directive, so the end of the block is aligned to 1 << PostAlign
+ /// bytes.
+ uint8_t PostAlign;
+
+ BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
+ PostAlign(0) {}
+
+ /// Compute the number of known offset bits internally to this block.
+ /// This number should be used to predict worst case padding when
+ /// splitting the block.
+ unsigned internalKnownBits() const {
+ unsigned Bits = Unalign ? Unalign : KnownBits;
+ // If the block size isn't a multiple of the known bits, assume the
+ // worst case padding.
+ if (Size & ((1u << Bits) - 1))
+ Bits = countTrailingZeros(Size);
+ return Bits;
+ }
+
+ /// Compute the offset immediately following this block. If LogAlign is
+ /// specified, return the offset the successor block will get if it has
+ /// this alignment.
+ unsigned postOffset(unsigned LogAlign = 0) const {
+ unsigned PO = Offset + Size;
+ unsigned LA = std::max(unsigned(PostAlign), LogAlign);
+ if (!LA)
+ return PO;
+ // Add alignment padding from the terminator.
+ return PO + UnknownPadding(LA, internalKnownBits());
+ }
+
+ /// Compute the number of known low bits of postOffset. If this block
+ /// contains inline asm, the number of known bits drops to the
+ /// instruction alignment. An aligned terminator may increase the number
+ /// of know bits.
+ /// If LogAlign is given, also consider the alignment of the next block.
+ unsigned postKnownBits(unsigned LogAlign = 0) const {
+ return std::max(std::max(unsigned(PostAlign), LogAlign),
+ internalKnownBits());
+ }
+ };
+
+ std::vector<BasicBlockInfo> BBInfo;
+
+ /// WaterList - A sorted list of basic blocks where islands could be placed
+ /// (i.e. blocks that don't fall through to the following block, due
+ /// to a return, unreachable, or unconditional branch).
+ std::vector<MachineBasicBlock*> WaterList;
+
+ /// NewWaterList - The subset of WaterList that was created since the
+ /// previous iteration by inserting unconditional branches.
+ SmallSet<MachineBasicBlock*, 4> NewWaterList;
+
+ typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
+
+ /// CPUser - One user of a constant pool, keeping the machine instruction
+ /// pointer, the constant pool being referenced, and the max displacement
+ /// allowed from the instruction to the CP. The HighWaterMark records the
+ /// highest basic block where a new CPEntry can be placed. To ensure this
+ /// pass terminates, the CP entries are initially placed at the end of the
+ /// function and then move monotonically to lower addresses. The
+ /// exception to this rule is when the current CP entry for a particular
+ /// CPUser is out of range, but there is another CP entry for the same
+ /// constant value in range. We want to use the existing in-range CP
+ /// entry, but if it later moves out of range, the search for new water
+ /// should resume where it left off. The HighWaterMark is used to record
+ /// that point.
+ struct CPUser {
+ MachineInstr *MI;
+ MachineInstr *CPEMI;
+ MachineBasicBlock *HighWaterMark;
+ private:
+ unsigned MaxDisp;
+ public:
+ bool NegOk;
+ bool IsSoImm;
+ bool KnownAlignment;
+ CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
+ bool neg, bool soimm)
+ : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm),
+ KnownAlignment(false) {
+ HighWaterMark = CPEMI->getParent();
+ }
+ /// getMaxDisp - Returns the maximum displacement supported by MI.
+ /// Correct for unknown alignment.
+ /// Conservatively subtract 2 bytes to handle weird alignment effects.
+ unsigned getMaxDisp() const {
+ return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
+ }
+ };
+
+ /// CPUsers - Keep track of all of the machine instructions that use various
+ /// constant pools and their max displacement.
+ std::vector<CPUser> CPUsers;
+
+ /// CPEntry - One per constant pool entry, keeping the machine instruction
+ /// pointer, the constpool index, and the number of CPUser's which
+ /// reference this entry.
+ struct CPEntry {
+ MachineInstr *CPEMI;
+ unsigned CPI;
+ unsigned RefCount;
+ CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
+ : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
+ };
+
+ /// CPEntries - Keep track of all of the constant pool entry machine
+ /// instructions. For each original constpool index (i.e. those that
+ /// existed upon entry to this pass), it keeps a vector of entries.
+ /// Original elements are cloned as we go along; the clones are
+ /// put in the vector of the original element, but have distinct CPIs.
+ std::vector<std::vector<CPEntry> > CPEntries;
+
+ /// ImmBranch - One per immediate branch, keeping the machine instruction
+ /// pointer, conditional or unconditional, the max displacement,
+ /// and (if isCond is true) the corresponding unconditional branch
+ /// opcode.
+ struct ImmBranch {
+ MachineInstr *MI;
+ unsigned MaxDisp : 31;
+ bool isCond : 1;
+ int UncondBr;
+ ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
+ : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
+ };
+
+ /// ImmBranches - Keep track of all the immediate branch instructions.
+ ///
+ std::vector<ImmBranch> ImmBranches;
+
+ /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
+ ///
+ SmallVector<MachineInstr*, 4> PushPopMIs;
+
+ /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
+ SmallVector<MachineInstr*, 4> T2JumpTables;
+
+ /// HasFarJump - True if any far jump instruction has been emitted during
+ /// the branch fix up pass.
+ bool HasFarJump;
+
+ MachineFunction *MF;
+ MachineConstantPool *MCP;
+ const ARMBaseInstrInfo *TII;
+ const ARMSubtarget *STI;
+ ARMFunctionInfo *AFI;
+ bool isThumb;
+ bool isThumb1;
+ bool isThumb2;
+ public:
+ static char ID;
+ ARMConstantIslands() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "ARM constant island placement and branch shortening pass";
+ }
+
+ private:
+ void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
+ CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
+ unsigned getCPELogAlign(const MachineInstr *CPEMI);
+ void scanFunctionJumpTables();
+ void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
+ MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
+ void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
+ void adjustBBOffsetsAfter(MachineBasicBlock *BB);
+ bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
+ int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
+ bool findAvailableWater(CPUser&U, unsigned UserOffset,
+ water_iterator &WaterIter);
+ void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
+ MachineBasicBlock *&NewMBB);
+ bool handleConstantPoolUser(unsigned CPUserIndex);
+ void removeDeadCPEMI(MachineInstr *CPEMI);
+ bool removeUnusedCPEntries();
+ bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
+ MachineInstr *CPEMI, unsigned Disp, bool NegOk,
+ bool DoDump = false);
+ bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
+ CPUser &U, unsigned &Growth);
+ bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
+ bool fixupImmediateBr(ImmBranch &Br);
+ bool fixupConditionalBr(ImmBranch &Br);
+ bool fixupUnconditionalBr(ImmBranch &Br);
+ bool undoLRSpillRestore();
+ bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const;
+ bool optimizeThumb2Instructions();
+ bool optimizeThumb2Branches();
+ bool reorderThumb2JumpTables();
+ bool optimizeThumb2JumpTables();
+ MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
+ MachineBasicBlock *JTBB);
+
+ void computeBlockSize(MachineBasicBlock *MBB);
+ unsigned getOffsetOf(MachineInstr *MI) const;
+ unsigned getUserOffset(CPUser&) const;
+ void dumpBBs();
+ void verify();
+
+ bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
+ unsigned Disp, bool NegativeOK, bool IsSoImm = false);
+ bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
+ const CPUser &U) {
+ return isOffsetInRange(UserOffset, TrialOffset,
+ U.getMaxDisp(), U.NegOk, U.IsSoImm);
+ }
+ };
+ char ARMConstantIslands::ID = 0;
+}
+
+/// verify - check BBOffsets, BBSizes, alignment of islands
+void ARMConstantIslands::verify() {
+#ifndef NDEBUG
+ for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock *MBB = MBBI;
+ unsigned MBBId = MBB->getNumber();
+ assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset);
+ }
+ DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
+ for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
+ CPUser &U = CPUsers[i];
+ unsigned UserOffset = getUserOffset(U);
+ // Verify offset using the real max displacement without the safety
+ // adjustment.
+ if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
+ /* DoDump = */ true)) {
+ DEBUG(dbgs() << "OK\n");
+ continue;
+ }
+ DEBUG(dbgs() << "Out of range.\n");
+ dumpBBs();
+ DEBUG(MF->dump());
+ llvm_unreachable("Constant pool entry out of range!");
+ }
+#endif
+}
+
+/// print block size and offset information - debugging
+void ARMConstantIslands::dumpBBs() {
+ DEBUG({
+ for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
+ const BasicBlockInfo &BBI = BBInfo[J];
+ dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
+ << " kb=" << unsigned(BBI.KnownBits)
+ << " ua=" << unsigned(BBI.Unalign)
+ << " pa=" << unsigned(BBI.PostAlign)
+ << format(" size=%#x\n", BBInfo[J].Size);
+ }
+ });
+}
+
+/// createARMConstantIslandPass - returns an instance of the constpool
+/// island pass.
+FunctionPass *llvm::createARMConstantIslandPass() {
+ return new ARMConstantIslands();
+}
+
+bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
+ MF = &mf;
+ MCP = mf.getConstantPool();
+
+ DEBUG(dbgs() << "***** ARMConstantIslands: "
+ << MCP->getConstants().size() << " CP entries, aligned to "
+ << MCP->getConstantPoolAlignment() << " bytes *****\n");
+
+ TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo();
+ AFI = MF->getInfo<ARMFunctionInfo>();
+ STI = &MF->getTarget().getSubtarget<ARMSubtarget>();
+
+ isThumb = AFI->isThumbFunction();
+ isThumb1 = AFI->isThumb1OnlyFunction();
+ isThumb2 = AFI->isThumb2Function();
+
+ HasFarJump = false;
+
+ // This pass invalidates liveness information when it splits basic blocks.
+ MF->getRegInfo().invalidateLiveness();
+
+ // Renumber all of the machine basic blocks in the function, guaranteeing that
+ // the numbers agree with the position of the block in the function.
+ MF->RenumberBlocks();
+
+ // Try to reorder and otherwise adjust the block layout to make good use
+ // of the TB[BH] instructions.
+ bool MadeChange = false;
+ if (isThumb2 && AdjustJumpTableBlocks) {
+ scanFunctionJumpTables();
+ MadeChange |= reorderThumb2JumpTables();
+ // Data is out of date, so clear it. It'll be re-computed later.
+ T2JumpTables.clear();
+ // Blocks may have shifted around. Keep the numbering up to date.
+ MF->RenumberBlocks();
+ }
+
+ // Thumb1 functions containing constant pools get 4-byte alignment.
+ // This is so we can keep exact track of where the alignment padding goes.
+
+ // ARM and Thumb2 functions need to be 4-byte aligned.
+ if (!isThumb1)
+ MF->ensureAlignment(2); // 2 = log2(4)
+
+ // Perform the initial placement of the constant pool entries. To start with,
+ // we put them all at the end of the function.
+ std::vector<MachineInstr*> CPEMIs;
+ if (!MCP->isEmpty())
+ doInitialPlacement(CPEMIs);
+
+ /// The next UID to take is the first unused one.
+ AFI->initPICLabelUId(CPEMIs.size());
+
+ // Do the initial scan of the function, building up information about the
+ // sizes of each block, the location of all the water, and finding all of the
+ // constant pool users.
+ initializeFunctionInfo(CPEMIs);
+ CPEMIs.clear();
+ DEBUG(dumpBBs());
+
+
+ /// Remove dead constant pool entries.
+ MadeChange |= removeUnusedCPEntries();
+
+ // Iteratively place constant pool entries and fix up branches until there
+ // is no change.
+ unsigned NoCPIters = 0, NoBRIters = 0;
+ while (true) {
+ DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
+ bool CPChange = false;
+ for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
+ CPChange |= handleConstantPoolUser(i);
+ if (CPChange && ++NoCPIters > 30)
+ report_fatal_error("Constant Island pass failed to converge!");
+ DEBUG(dumpBBs());
+
+ // Clear NewWaterList now. If we split a block for branches, it should
+ // appear as "new water" for the next iteration of constant pool placement.
+ NewWaterList.clear();
+
+ DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
+ bool BRChange = false;
+ for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
+ BRChange |= fixupImmediateBr(ImmBranches[i]);
+ if (BRChange && ++NoBRIters > 30)
+ report_fatal_error("Branch Fix Up pass failed to converge!");
+ DEBUG(dumpBBs());
+
+ if (!CPChange && !BRChange)
+ break;
+ MadeChange = true;
+ }
+
+ // Shrink 32-bit Thumb2 branch, load, and store instructions.
+ if (isThumb2 && !STI->prefers32BitThumb())
+ MadeChange |= optimizeThumb2Instructions();
+
+ // After a while, this might be made debug-only, but it is not expensive.
+ verify();
+
+ // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
+ // undo the spill / restore of LR if possible.
+ if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
+ MadeChange |= undoLRSpillRestore();
+
+ // Save the mapping between original and cloned constpool entries.
+ for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
+ for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
+ const CPEntry & CPE = CPEntries[i][j];
+ AFI->recordCPEClone(i, CPE.CPI);
+ }
+ }
+
+ DEBUG(dbgs() << '\n'; dumpBBs());
+
+ BBInfo.clear();
+ WaterList.clear();
+ CPUsers.clear();
+ CPEntries.clear();
+ ImmBranches.clear();
+ PushPopMIs.clear();
+ T2JumpTables.clear();
+
+ return MadeChange;
+}
+
+/// doInitialPlacement - Perform the initial placement of the constant pool
+/// entries. To start with, we put them all at the end of the function.
+void
+ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
+ // Create the basic block to hold the CPE's.
+ MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
+ MF->push_back(BB);
+
+ // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
+ unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
+
+ // Mark the basic block as required by the const-pool.
+ // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
+ BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
+
+ // The function needs to be as aligned as the basic blocks. The linker may
+ // move functions around based on their alignment.
+ MF->ensureAlignment(BB->getAlignment());
+
+ // Order the entries in BB by descending alignment. That ensures correct
+ // alignment of all entries as long as BB is sufficiently aligned. Keep
+ // track of the insertion point for each alignment. We are going to bucket
+ // sort the entries as they are created.
+ SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
+
+ // Add all of the constants from the constant pool to the end block, use an
+ // identity mapping of CPI's to CPE's.
+ const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
+
+ const DataLayout &TD = *MF->getTarget().getDataLayout();
+ for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
+ unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
+ assert(Size >= 4 && "Too small constant pool entry");
+ unsigned Align = CPs[i].getAlignment();
+ assert(isPowerOf2_32(Align) && "Invalid alignment");
+ // Verify that all constant pool entries are a multiple of their alignment.
+ // If not, we would have to pad them out so that instructions stay aligned.
+ assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
+
+ // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
+ unsigned LogAlign = Log2_32(Align);
+ MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
+ MachineInstr *CPEMI =
+ BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
+ .addImm(i).addConstantPoolIndex(i).addImm(Size);
+ CPEMIs.push_back(CPEMI);
+
+ // Ensure that future entries with higher alignment get inserted before
+ // CPEMI. This is bucket sort with iterators.
+ for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
+ if (InsPoint[a] == InsAt)
+ InsPoint[a] = CPEMI;
+
+ // Add a new CPEntry, but no corresponding CPUser yet.
+ std::vector<CPEntry> CPEs;
+ CPEs.push_back(CPEntry(CPEMI, i));
+ CPEntries.push_back(CPEs);
+ ++NumCPEs;
+ DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
+ << Size << ", align = " << Align <<'\n');
+ }
+ DEBUG(BB->dump());
+}
+
+/// BBHasFallthrough - Return true if the specified basic block can fallthrough
+/// into the block immediately after it.
+static bool BBHasFallthrough(MachineBasicBlock *MBB) {
+ // Get the next machine basic block in the function.
+ MachineFunction::iterator MBBI = MBB;
+ // Can't fall off end of function.
+ if (std::next(MBBI) == MBB->getParent()->end())
+ return false;
+
+ MachineBasicBlock *NextBB = std::next(MBBI);
+ for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
+ E = MBB->succ_end(); I != E; ++I)
+ if (*I == NextBB)
+ return true;
+
+ return false;
+}
+
+/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
+/// look up the corresponding CPEntry.
+ARMConstantIslands::CPEntry
+*ARMConstantIslands::findConstPoolEntry(unsigned CPI,
+ const MachineInstr *CPEMI) {
+ std::vector<CPEntry> &CPEs = CPEntries[CPI];
+ // Number of entries per constpool index should be small, just do a
+ // linear search.
+ for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
+ if (CPEs[i].CPEMI == CPEMI)
+ return &CPEs[i];
+ }
+ return nullptr;
+}
+
+/// getCPELogAlign - Returns the required alignment of the constant pool entry
+/// represented by CPEMI. Alignment is measured in log2(bytes) units.
+unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
+ assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY);
+
+ // Everything is 4-byte aligned unless AlignConstantIslands is set.
+ if (!AlignConstantIslands)
+ return 2;
+
+ unsigned CPI = CPEMI->getOperand(1).getIndex();
+ assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
+ unsigned Align = MCP->getConstants()[CPI].getAlignment();
+ assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
+ return Log2_32(Align);
+}
+
+/// scanFunctionJumpTables - Do a scan of the function, building up
+/// information about the sizes of each block and the locations of all
+/// the jump tables.
+void ARMConstantIslands::scanFunctionJumpTables() {
+ for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock &MBB = *MBBI;
+
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ I != E; ++I)
+ if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT)
+ T2JumpTables.push_back(I);
+ }
+}
+
+/// initializeFunctionInfo - Do the initial scan of the function, building up
+/// information about the sizes of each block, the location of all the water,
+/// and finding all of the constant pool users.
+void ARMConstantIslands::
+initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
+ BBInfo.clear();
+ BBInfo.resize(MF->getNumBlockIDs());
+
+ // First thing, compute the size of all basic blocks, and see if the function
+ // has any inline assembly in it. If so, we have to be conservative about
+ // alignment assumptions, as we don't know for sure the size of any
+ // instructions in the inline assembly.
+ for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
+ computeBlockSize(I);
+
+ // The known bits of the entry block offset are determined by the function
+ // alignment.
+ BBInfo.front().KnownBits = MF->getAlignment();
+
+ // Compute block offsets and known bits.
+ adjustBBOffsetsAfter(MF->begin());
+
+ // Now go back through the instructions and build up our data structures.
+ for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock &MBB = *MBBI;
+
+ // If this block doesn't fall through into the next MBB, then this is
+ // 'water' that a constant pool island could be placed.
+ if (!BBHasFallthrough(&MBB))
+ WaterList.push_back(&MBB);
+
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ I != E; ++I) {
+ if (I->isDebugValue())
+ continue;
+
+ int Opc = I->getOpcode();
+ if (I->isBranch()) {
+ bool isCond = false;
+ unsigned Bits = 0;
+ unsigned Scale = 1;
+ int UOpc = Opc;
+ switch (Opc) {
+ default:
+ continue; // Ignore other JT branches
+ case ARM::t2BR_JT:
+ T2JumpTables.push_back(I);
+ continue; // Does not get an entry in ImmBranches
+ case ARM::Bcc:
+ isCond = true;
+ UOpc = ARM::B;
+ // Fallthrough
+ case ARM::B:
+ Bits = 24;
+ Scale = 4;
+ break;
+ case ARM::tBcc:
+ isCond = true;
+ UOpc = ARM::tB;
+ Bits = 8;
+ Scale = 2;
+ break;
+ case ARM::tB:
+ Bits = 11;
+ Scale = 2;
+ break;
+ case ARM::t2Bcc:
+ isCond = true;
+ UOpc = ARM::t2B;
+ Bits = 20;
+ Scale = 2;
+ break;
+ case ARM::t2B:
+ Bits = 24;
+ Scale = 2;
+ break;
+ }
+
+ // Record this immediate branch.
+ unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
+ ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
+ }
+
+ if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
+ PushPopMIs.push_back(I);
+
+ if (Opc == ARM::CONSTPOOL_ENTRY)
+ continue;
+
+ // Scan the instructions for constant pool operands.
+ for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
+ if (I->getOperand(op).isCPI()) {
+ // We found one. The addressing mode tells us the max displacement
+ // from the PC that this instruction permits.
+
+ // Basic size info comes from the TSFlags field.
+ unsigned Bits = 0;
+ unsigned Scale = 1;
+ bool NegOk = false;
+ bool IsSoImm = false;
+
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unknown addressing mode for CP reference!");
+
+ // Taking the address of a CP entry.
+ case ARM::LEApcrel:
+ // This takes a SoImm, which is 8 bit immediate rotated. We'll
+ // pretend the maximum offset is 255 * 4. Since each instruction
+ // 4 byte wide, this is always correct. We'll check for other
+ // displacements that fits in a SoImm as well.
+ Bits = 8;
+ Scale = 4;
+ NegOk = true;
+ IsSoImm = true;
+ break;
+ case ARM::t2LEApcrel:
+ Bits = 12;
+ NegOk = true;
+ break;
+ case ARM::tLEApcrel:
+ Bits = 8;
+ Scale = 4;
+ break;
+
+ case ARM::LDRBi12:
+ case ARM::LDRi12:
+ case ARM::LDRcp:
+ case ARM::t2LDRpci:
+ Bits = 12; // +-offset_12
+ NegOk = true;
+ break;
+
+ case ARM::tLDRpci:
+ Bits = 8;
+ Scale = 4; // +(offset_8*4)
+ break;
+
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ Bits = 8;
+ Scale = 4; // +-(offset_8*4)
+ NegOk = true;
+ break;
+ }
+
+ // Remember that this is a user of a CP entry.
+ unsigned CPI = I->getOperand(op).getIndex();
+ MachineInstr *CPEMI = CPEMIs[CPI];
+ unsigned MaxOffs = ((1 << Bits)-1) * Scale;
+ CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
+
+ // Increment corresponding CPEntry reference count.
+ CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
+ assert(CPE && "Cannot find a corresponding CPEntry!");
+ CPE->RefCount++;
+
+ // Instructions can only use one CP entry, don't bother scanning the
+ // rest of the operands.
+ break;
+ }
+ }
+ }
+}
+
+/// computeBlockSize - Compute the size and some alignment information for MBB.
+/// This function updates BBInfo directly.
+void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
+ BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
+ BBI.Size = 0;
+ BBI.Unalign = 0;
+ BBI.PostAlign = 0;
+
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
+ ++I) {
+ BBI.Size += TII->GetInstSizeInBytes(I);
+ // For inline asm, GetInstSizeInBytes returns a conservative estimate.
+ // The actual size may be smaller, but still a multiple of the instr size.
+ if (I->isInlineAsm())
+ BBI.Unalign = isThumb ? 1 : 2;
+ // Also consider instructions that may be shrunk later.
+ else if (isThumb && mayOptimizeThumb2Instruction(I))
+ BBI.Unalign = 1;
+ }
+
+ // tBR_JTr contains a .align 2 directive.
+ if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) {
+ BBI.PostAlign = 2;
+ MBB->getParent()->ensureAlignment(2);
+ }
+}
+
+/// getOffsetOf - Return the current offset of the specified machine instruction
+/// from the start of the function. This offset changes as stuff is moved
+/// around inside the function.
+unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
+ MachineBasicBlock *MBB = MI->getParent();
+
+ // The offset is composed of two things: the sum of the sizes of all MBB's
+ // before this instruction's block, and the offset from the start of the block
+ // it is in.
+ unsigned Offset = BBInfo[MBB->getNumber()].Offset;
+
+ // Sum instructions before MI in MBB.
+ for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
+ assert(I != MBB->end() && "Didn't find MI in its own basic block?");
+ Offset += TII->GetInstSizeInBytes(I);
+ }
+ return Offset;
+}
+
+/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
+/// ID.
+static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
+ const MachineBasicBlock *RHS) {
+ return LHS->getNumber() < RHS->getNumber();
+}
+
+/// updateForInsertedWaterBlock - When a block is newly inserted into the
+/// machine function, it upsets all of the block numbers. Renumber the blocks
+/// and update the arrays that parallel this numbering.
+void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
+ // Renumber the MBB's to keep them consecutive.
+ NewBB->getParent()->RenumberBlocks(NewBB);
+
+ // Insert an entry into BBInfo to align it properly with the (newly
+ // renumbered) block numbers.
+ BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
+
+ // Next, update WaterList. Specifically, we need to add NewMBB as having
+ // available water after it.
+ water_iterator IP =
+ std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
+ CompareMBBNumbers);
+ WaterList.insert(IP, NewBB);
+}
+
+
+/// Split the basic block containing MI into two blocks, which are joined by
+/// an unconditional branch. Update data structures and renumber blocks to
+/// account for this change and returns the newly created block.
+MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
+ MachineBasicBlock *OrigBB = MI->getParent();
+
+ // Create a new MBB for the code after the OrigBB.
+ MachineBasicBlock *NewBB =
+ MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
+ MachineFunction::iterator MBBI = OrigBB; ++MBBI;
+ MF->insert(MBBI, NewBB);
+
+ // Splice the instructions starting with MI over to NewBB.
+ NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
+
+ // Add an unconditional branch from OrigBB to NewBB.
+ // Note the new unconditional branch is not being recorded.
+ // There doesn't seem to be meaningful DebugInfo available; this doesn't
+ // correspond to anything in the source.
+ unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
+ if (!isThumb)
+ BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
+ else
+ BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
+ .addImm(ARMCC::AL).addReg(0);
+ ++NumSplit;
+
+ // Update the CFG. All succs of OrigBB are now succs of NewBB.
+ NewBB->transferSuccessors(OrigBB);
+
+ // OrigBB branches to NewBB.
+ OrigBB->addSuccessor(NewBB);
+
+ // Update internal data structures to account for the newly inserted MBB.
+ // This is almost the same as updateForInsertedWaterBlock, except that
+ // the Water goes after OrigBB, not NewBB.
+ MF->RenumberBlocks(NewBB);
+
+ // Insert an entry into BBInfo to align it properly with the (newly
+ // renumbered) block numbers.
+ BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
+
+ // Next, update WaterList. Specifically, we need to add OrigMBB as having
+ // available water after it (but not if it's already there, which happens
+ // when splitting before a conditional branch that is followed by an
+ // unconditional branch - in that case we want to insert NewBB).
+ water_iterator IP =
+ std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
+ CompareMBBNumbers);
+ MachineBasicBlock* WaterBB = *IP;
+ if (WaterBB == OrigBB)
+ WaterList.insert(std::next(IP), NewBB);
+ else
+ WaterList.insert(IP, OrigBB);
+ NewWaterList.insert(OrigBB);
+
+ // Figure out how large the OrigBB is. As the first half of the original
+ // block, it cannot contain a tablejump. The size includes
+ // the new jump we added. (It should be possible to do this without
+ // recounting everything, but it's very confusing, and this is rarely
+ // executed.)
+ computeBlockSize(OrigBB);
+
+ // Figure out how large the NewMBB is. As the second half of the original
+ // block, it may contain a tablejump.
+ computeBlockSize(NewBB);
+
+ // All BBOffsets following these blocks must be modified.
+ adjustBBOffsetsAfter(OrigBB);
+
+ return NewBB;
+}
+
+/// getUserOffset - Compute the offset of U.MI as seen by the hardware
+/// displacement computation. Update U.KnownAlignment to match its current
+/// basic block location.
+unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
+ unsigned UserOffset = getOffsetOf(U.MI);
+ const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
+ unsigned KnownBits = BBI.internalKnownBits();
+
+ // The value read from PC is offset from the actual instruction address.
+ UserOffset += (isThumb ? 4 : 8);
+
+ // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
+ // Make sure U.getMaxDisp() returns a constrained range.
+ U.KnownAlignment = (KnownBits >= 2);
+
+ // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
+ // purposes of the displacement computation; compensate for that here.
+ // For unknown alignments, getMaxDisp() constrains the range instead.
+ if (isThumb && U.KnownAlignment)
+ UserOffset &= ~3u;
+
+ return UserOffset;
+}
+
+/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
+/// reference) is within MaxDisp of TrialOffset (a proposed location of a
+/// constant pool entry).
+/// UserOffset is computed by getUserOffset above to include PC adjustments. If
+/// the mod 4 alignment of UserOffset is not known, the uncertainty must be
+/// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
+bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
+ unsigned TrialOffset, unsigned MaxDisp,
+ bool NegativeOK, bool IsSoImm) {
+ if (UserOffset <= TrialOffset) {
+ // User before the Trial.
+ if (TrialOffset - UserOffset <= MaxDisp)
+ return true;
+ // FIXME: Make use full range of soimm values.
+ } else if (NegativeOK) {
+ if (UserOffset - TrialOffset <= MaxDisp)
+ return true;
+ // FIXME: Make use full range of soimm values.
+ }
+ return false;
+}
+
+/// isWaterInRange - Returns true if a CPE placed after the specified
+/// Water (a basic block) will be in range for the specific MI.
+///
+/// Compute how much the function will grow by inserting a CPE after Water.
+bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
+ MachineBasicBlock* Water, CPUser &U,
+ unsigned &Growth) {
+ unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
+ unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
+ unsigned NextBlockOffset, NextBlockAlignment;
+ MachineFunction::const_iterator NextBlock = Water;
+ if (++NextBlock == MF->end()) {
+ NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
+ NextBlockAlignment = 0;
+ } else {
+ NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
+ NextBlockAlignment = NextBlock->getAlignment();
+ }
+ unsigned Size = U.CPEMI->getOperand(2).getImm();
+ unsigned CPEEnd = CPEOffset + Size;
+
+ // The CPE may be able to hide in the alignment padding before the next
+ // block. It may also cause more padding to be required if it is more aligned
+ // that the next block.
+ if (CPEEnd > NextBlockOffset) {
+ Growth = CPEEnd - NextBlockOffset;
+ // Compute the padding that would go at the end of the CPE to align the next
+ // block.
+ Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
+
+ // If the CPE is to be inserted before the instruction, that will raise
+ // the offset of the instruction. Also account for unknown alignment padding
+ // in blocks between CPE and the user.
+ if (CPEOffset < UserOffset)
+ UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
+ } else
+ // CPE fits in existing padding.
+ Growth = 0;
+
+ return isOffsetInRange(UserOffset, CPEOffset, U);
+}
+
+/// isCPEntryInRange - Returns true if the distance between specific MI and
+/// specific ConstPool entry instruction can fit in MI's displacement field.
+bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
+ MachineInstr *CPEMI, unsigned MaxDisp,
+ bool NegOk, bool DoDump) {
+ unsigned CPEOffset = getOffsetOf(CPEMI);
+
+ if (DoDump) {
+ DEBUG({
+ unsigned Block = MI->getParent()->getNumber();
+ const BasicBlockInfo &BBI = BBInfo[Block];
+ dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
+ << " max delta=" << MaxDisp
+ << format(" insn address=%#x", UserOffset)
+ << " in BB#" << Block << ": "
+ << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
+ << format("CPE address=%#x offset=%+d: ", CPEOffset,
+ int(CPEOffset-UserOffset));
+ });
+ }
+
+ return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
+}
+
+#ifndef NDEBUG
+/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
+/// unconditionally branches to its only successor.
+static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
+ if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
+ return false;
+
+ MachineBasicBlock *Succ = *MBB->succ_begin();
+ MachineBasicBlock *Pred = *MBB->pred_begin();
+ MachineInstr *PredMI = &Pred->back();
+ if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
+ || PredMI->getOpcode() == ARM::t2B)
+ return PredMI->getOperand(0).getMBB() == Succ;
+ return false;
+}
+#endif // NDEBUG
+
+void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
+ unsigned BBNum = BB->getNumber();
+ for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
+ // Get the offset and known bits at the end of the layout predecessor.
+ // Include the alignment of the current block.
+ unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
+ unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
+ unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
+
+ // This is where block i begins. Stop if the offset is already correct,
+ // and we have updated 2 blocks. This is the maximum number of blocks
+ // changed before calling this function.
+ if (i > BBNum + 2 &&
+ BBInfo[i].Offset == Offset &&
+ BBInfo[i].KnownBits == KnownBits)
+ break;
+
+ BBInfo[i].Offset = Offset;
+ BBInfo[i].KnownBits = KnownBits;
+ }
+}
+
+/// decrementCPEReferenceCount - find the constant pool entry with index CPI
+/// and instruction CPEMI, and decrement its refcount. If the refcount
+/// becomes 0 remove the entry and instruction. Returns true if we removed
+/// the entry, false if we didn't.
+
+bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
+ MachineInstr *CPEMI) {
+ // Find the old entry. Eliminate it if it is no longer used.
+ CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
+ assert(CPE && "Unexpected!");
+ if (--CPE->RefCount == 0) {
+ removeDeadCPEMI(CPEMI);
+ CPE->CPEMI = nullptr;
+ --NumCPEs;
+ return true;
+ }
+ return false;
+}
+
+/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
+/// if not, see if an in-range clone of the CPE is in range, and if so,
+/// change the data structures so the user references the clone. Returns:
+/// 0 = no existing entry found
+/// 1 = entry found, and there were no code insertions or deletions
+/// 2 = entry found, and there were code insertions or deletions
+int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
+{
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+
+ // Check to see if the CPE is already in-range.
+ if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
+ true)) {
+ DEBUG(dbgs() << "In range\n");
+ return 1;
+ }
+
+ // No. Look for previously created clones of the CPE that are in range.
+ unsigned CPI = CPEMI->getOperand(1).getIndex();
+ std::vector<CPEntry> &CPEs = CPEntries[CPI];
+ for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
+ // We already tried this one
+ if (CPEs[i].CPEMI == CPEMI)
+ continue;
+ // Removing CPEs can leave empty entries, skip
+ if (CPEs[i].CPEMI == nullptr)
+ continue;
+ if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
+ U.NegOk)) {
+ DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
+ << CPEs[i].CPI << "\n");
+ // Point the CPUser node to the replacement
+ U.CPEMI = CPEs[i].CPEMI;
+ // Change the CPI in the instruction operand to refer to the clone.
+ for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
+ if (UserMI->getOperand(j).isCPI()) {
+ UserMI->getOperand(j).setIndex(CPEs[i].CPI);
+ break;
+ }
+ // Adjust the refcount of the clone...
+ CPEs[i].RefCount++;
+ // ...and the original. If we didn't remove the old entry, none of the
+ // addresses changed, so we don't need another pass.
+ return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
+ }
+ }
+ return 0;
+}
+
+/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
+/// the specific unconditional branch instruction.
+static inline unsigned getUnconditionalBrDisp(int Opc) {
+ switch (Opc) {
+ case ARM::tB:
+ return ((1<<10)-1)*2;
+ case ARM::t2B:
+ return ((1<<23)-1)*2;
+ default:
+ break;
+ }
+
+ return ((1<<23)-1)*4;
+}
+
+/// findAvailableWater - Look for an existing entry in the WaterList in which
+/// we can place the CPE referenced from U so it's within range of U's MI.
+/// Returns true if found, false if not. If it returns true, WaterIter
+/// is set to the WaterList entry. For Thumb, prefer water that will not
+/// introduce padding to water that will. To ensure that this pass
+/// terminates, the CPE location for a particular CPUser is only allowed to
+/// move to a lower address, so search backward from the end of the list and
+/// prefer the first water that is in range.
+bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
+ water_iterator &WaterIter) {
+ if (WaterList.empty())
+ return false;
+
+ unsigned BestGrowth = ~0u;
+ for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
+ --IP) {
+ MachineBasicBlock* WaterBB = *IP;
+ // Check if water is in range and is either at a lower address than the
+ // current "high water mark" or a new water block that was created since
+ // the previous iteration by inserting an unconditional branch. In the
+ // latter case, we want to allow resetting the high water mark back to
+ // this new water since we haven't seen it before. Inserting branches
+ // should be relatively uncommon and when it does happen, we want to be
+ // sure to take advantage of it for all the CPEs near that block, so that
+ // we don't insert more branches than necessary.
+ unsigned Growth;
+ if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
+ (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
+ NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
+ // This is the least amount of required padding seen so far.
+ BestGrowth = Growth;
+ WaterIter = IP;
+ DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
+ << " Growth=" << Growth << '\n');
+
+ // Keep looking unless it is perfect.
+ if (BestGrowth == 0)
+ return true;
+ }
+ if (IP == B)
+ break;
+ }
+ return BestGrowth != ~0u;
+}
+
+/// createNewWater - No existing WaterList entry will work for
+/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
+/// block is used if in range, and the conditional branch munged so control
+/// flow is correct. Otherwise the block is split to create a hole with an
+/// unconditional branch around it. In either case NewMBB is set to a
+/// block following which the new island can be inserted (the WaterList
+/// is not adjusted).
+void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
+ unsigned UserOffset,
+ MachineBasicBlock *&NewMBB) {
+ CPUser &U = CPUsers[CPUserIndex];
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+ unsigned CPELogAlign = getCPELogAlign(CPEMI);
+ MachineBasicBlock *UserMBB = UserMI->getParent();
+ const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
+
+ // If the block does not end in an unconditional branch already, and if the
+ // end of the block is within range, make new water there. (The addition
+ // below is for the unconditional branch we will be adding: 4 bytes on ARM +
+ // Thumb2, 2 on Thumb1.
+ if (BBHasFallthrough(UserMBB)) {
+ // Size of branch to insert.
+ unsigned Delta = isThumb1 ? 2 : 4;
+ // Compute the offset where the CPE will begin.
+ unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
+
+ if (isOffsetInRange(UserOffset, CPEOffset, U)) {
+ DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
+ << format(", expected CPE offset %#x\n", CPEOffset));
+ NewMBB = std::next(MachineFunction::iterator(UserMBB));
+ // Add an unconditional branch from UserMBB to fallthrough block. Record
+ // it for branch lengthening; this new branch will not get out of range,
+ // but if the preceding conditional branch is out of range, the targets
+ // will be exchanged, and the altered branch may be out of range, so the
+ // machinery has to know about it.
+ int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
+ if (!isThumb)
+ BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
+ else
+ BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
+ .addImm(ARMCC::AL).addReg(0);
+ unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
+ ImmBranches.push_back(ImmBranch(&UserMBB->back(),
+ MaxDisp, false, UncondBr));
+ BBInfo[UserMBB->getNumber()].Size += Delta;
+ adjustBBOffsetsAfter(UserMBB);
+ return;
+ }
+ }
+
+ // What a big block. Find a place within the block to split it. This is a
+ // little tricky on Thumb1 since instructions are 2 bytes and constant pool
+ // entries are 4 bytes: if instruction I references island CPE, and
+ // instruction I+1 references CPE', it will not work well to put CPE as far
+ // forward as possible, since then CPE' cannot immediately follow it (that
+ // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
+ // need to create a new island. So, we make a first guess, then walk through
+ // the instructions between the one currently being looked at and the
+ // possible insertion point, and make sure any other instructions that
+ // reference CPEs will be able to use the same island area; if not, we back
+ // up the insertion point.
+
+ // Try to split the block so it's fully aligned. Compute the latest split
+ // point where we can add a 4-byte branch instruction, and then align to
+ // LogAlign which is the largest possible alignment in the function.
+ unsigned LogAlign = MF->getAlignment();
+ assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
+ unsigned KnownBits = UserBBI.internalKnownBits();
+ unsigned UPad = UnknownPadding(LogAlign, KnownBits);
+ unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
+ DEBUG(dbgs() << format("Split in middle of big block before %#x",
+ BaseInsertOffset));
+
+ // The 4 in the following is for the unconditional branch we'll be inserting
+ // (allows for long branch on Thumb1). Alignment of the island is handled
+ // inside isOffsetInRange.
+ BaseInsertOffset -= 4;
+
+ DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
+ << " la=" << LogAlign
+ << " kb=" << KnownBits
+ << " up=" << UPad << '\n');
+
+ // This could point off the end of the block if we've already got constant
+ // pool entries following this block; only the last one is in the water list.
+ // Back past any possible branches (allow for a conditional and a maximally
+ // long unconditional).
+ if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
+ BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
+ DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
+ }
+ unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
+ CPEMI->getOperand(2).getImm();
+ MachineBasicBlock::iterator MI = UserMI;
+ ++MI;
+ unsigned CPUIndex = CPUserIndex+1;
+ unsigned NumCPUsers = CPUsers.size();
+ MachineInstr *LastIT = nullptr;
+ for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
+ Offset < BaseInsertOffset;
+ Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) {
+ assert(MI != UserMBB->end() && "Fell off end of block");
+ if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
+ CPUser &U = CPUsers[CPUIndex];
+ if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
+ // Shift intertion point by one unit of alignment so it is within reach.
+ BaseInsertOffset -= 1u << LogAlign;
+ EndInsertOffset -= 1u << LogAlign;
+ }
+ // This is overly conservative, as we don't account for CPEMIs being
+ // reused within the block, but it doesn't matter much. Also assume CPEs
+ // are added in order with alignment padding. We may eventually be able
+ // to pack the aligned CPEs better.
+ EndInsertOffset += U.CPEMI->getOperand(2).getImm();
+ CPUIndex++;
+ }
+
+ // Remember the last IT instruction.
+ if (MI->getOpcode() == ARM::t2IT)
+ LastIT = MI;
+ }
+
+ --MI;
+
+ // Avoid splitting an IT block.
+ if (LastIT) {
+ unsigned PredReg = 0;
+ ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg);
+ if (CC != ARMCC::AL)
+ MI = LastIT;
+ }
+ NewMBB = splitBlockBeforeInstr(MI);
+}
+
+/// handleConstantPoolUser - Analyze the specified user, checking to see if it
+/// is out-of-range. If so, pick up the constant pool value and move it some
+/// place in-range. Return true if we changed any addresses (thus must run
+/// another pass of branch lengthening), false otherwise.
+bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
+ CPUser &U = CPUsers[CPUserIndex];
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+ unsigned CPI = CPEMI->getOperand(1).getIndex();
+ unsigned Size = CPEMI->getOperand(2).getImm();
+ // Compute this only once, it's expensive.
+ unsigned UserOffset = getUserOffset(U);
+
+ // See if the current entry is within range, or there is a clone of it
+ // in range.
+ int result = findInRangeCPEntry(U, UserOffset);
+ if (result==1) return false;
+ else if (result==2) return true;
+
+ // No existing clone of this CPE is within range.
+ // We will be generating a new clone. Get a UID for it.
+ unsigned ID = AFI->createPICLabelUId();
+
+ // Look for water where we can place this CPE.
+ MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
+ MachineBasicBlock *NewMBB;
+ water_iterator IP;
+ if (findAvailableWater(U, UserOffset, IP)) {
+ DEBUG(dbgs() << "Found water in range\n");
+ MachineBasicBlock *WaterBB = *IP;
+
+ // If the original WaterList entry was "new water" on this iteration,
+ // propagate that to the new island. This is just keeping NewWaterList
+ // updated to match the WaterList, which will be updated below.
+ if (NewWaterList.erase(WaterBB))
+ NewWaterList.insert(NewIsland);
+
+ // The new CPE goes before the following block (NewMBB).
+ NewMBB = std::next(MachineFunction::iterator(WaterBB));
+
+ } else {
+ // No water found.
+ DEBUG(dbgs() << "No water found\n");
+ createNewWater(CPUserIndex, UserOffset, NewMBB);
+
+ // splitBlockBeforeInstr adds to WaterList, which is important when it is
+ // called while handling branches so that the water will be seen on the
+ // next iteration for constant pools, but in this context, we don't want
+ // it. Check for this so it will be removed from the WaterList.
+ // Also remove any entry from NewWaterList.
+ MachineBasicBlock *WaterBB = std::prev(MachineFunction::iterator(NewMBB));
+ IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
+ if (IP != WaterList.end())
+ NewWaterList.erase(WaterBB);
+
+ // We are adding new water. Update NewWaterList.
+ NewWaterList.insert(NewIsland);
+ }
+
+ // Remove the original WaterList entry; we want subsequent insertions in
+ // this vicinity to go after the one we're about to insert. This
+ // considerably reduces the number of times we have to move the same CPE
+ // more than once and is also important to ensure the algorithm terminates.
+ if (IP != WaterList.end())
+ WaterList.erase(IP);
+
+ // Okay, we know we can put an island before NewMBB now, do it!
+ MF->insert(NewMBB, NewIsland);
+
+ // Update internal data structures to account for the newly inserted MBB.
+ updateForInsertedWaterBlock(NewIsland);
+
+ // Decrement the old entry, and remove it if refcount becomes 0.
+ decrementCPEReferenceCount(CPI, CPEMI);
+
+ // Now that we have an island to add the CPE to, clone the original CPE and
+ // add it to the island.
+ U.HighWaterMark = NewIsland;
+ U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
+ .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
+ CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
+ ++NumCPEs;
+
+ // Mark the basic block as aligned as required by the const-pool entry.
+ NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
+
+ // Increase the size of the island block to account for the new entry.
+ BBInfo[NewIsland->getNumber()].Size += Size;
+ adjustBBOffsetsAfter(std::prev(MachineFunction::iterator(NewIsland)));
+
+ // Finally, change the CPI in the instruction operand to be ID.
+ for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
+ if (UserMI->getOperand(i).isCPI()) {
+ UserMI->getOperand(i).setIndex(ID);
+ break;
+ }
+
+ DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
+ << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
+
+ return true;
+}
+
+/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
+/// sizes and offsets of impacted basic blocks.
+void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
+ MachineBasicBlock *CPEBB = CPEMI->getParent();
+ unsigned Size = CPEMI->getOperand(2).getImm();
+ CPEMI->eraseFromParent();
+ BBInfo[CPEBB->getNumber()].Size -= Size;
+ // All succeeding offsets have the current size value added in, fix this.
+ if (CPEBB->empty()) {
+ BBInfo[CPEBB->getNumber()].Size = 0;
+
+ // This block no longer needs to be aligned.
+ CPEBB->setAlignment(0);
+ } else
+ // Entries are sorted by descending alignment, so realign from the front.
+ CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
+
+ adjustBBOffsetsAfter(CPEBB);
+ // An island has only one predecessor BB and one successor BB. Check if
+ // this BB's predecessor jumps directly to this BB's successor. This
+ // shouldn't happen currently.
+ assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
+ // FIXME: remove the empty blocks after all the work is done?
+}
+
+/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
+/// are zero.
+bool ARMConstantIslands::removeUnusedCPEntries() {
+ unsigned MadeChange = false;
+ for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
+ std::vector<CPEntry> &CPEs = CPEntries[i];
+ for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
+ if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
+ removeDeadCPEMI(CPEs[j].CPEMI);
+ CPEs[j].CPEMI = nullptr;
+ MadeChange = true;
+ }
+ }
+ }
+ return MadeChange;
+}
+
+/// isBBInRange - Returns true if the distance between specific MI and
+/// specific BB can fit in MI's displacement field.
+bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
+ unsigned MaxDisp) {
+ unsigned PCAdj = isThumb ? 4 : 8;
+ unsigned BrOffset = getOffsetOf(MI) + PCAdj;
+ unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
+
+ DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
+ << " from BB#" << MI->getParent()->getNumber()
+ << " max delta=" << MaxDisp
+ << " from " << getOffsetOf(MI) << " to " << DestOffset
+ << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
+
+ if (BrOffset <= DestOffset) {
+ // Branch before the Dest.
+ if (DestOffset-BrOffset <= MaxDisp)
+ return true;
+ } else {
+ if (BrOffset-DestOffset <= MaxDisp)
+ return true;
+ }
+ return false;
+}
+
+/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
+/// away to fit in its displacement field.
+bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
+
+ // Check to see if the DestBB is already in-range.
+ if (isBBInRange(MI, DestBB, Br.MaxDisp))
+ return false;
+
+ if (!Br.isCond)
+ return fixupUnconditionalBr(Br);
+ return fixupConditionalBr(Br);
+}
+
+/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
+/// too far away to fit in its displacement field. If the LR register has been
+/// spilled in the epilogue, then we can use BL to implement a far jump.
+/// Otherwise, add an intermediate branch instruction to a branch.
+bool
+ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ MachineBasicBlock *MBB = MI->getParent();
+ if (!isThumb1)
+ llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
+
+ // Use BL to implement far jump.
+ Br.MaxDisp = (1 << 21) * 2;
+ MI->setDesc(TII->get(ARM::tBfar));
+ BBInfo[MBB->getNumber()].Size += 2;
+ adjustBBOffsetsAfter(MBB);
+ HasFarJump = true;
+ ++NumUBrFixed;
+
+ DEBUG(dbgs() << " Changed B to long jump " << *MI);
+
+ return true;
+}
+
+/// fixupConditionalBr - Fix up a conditional branch whose destination is too
+/// far away to fit in its displacement field. It is converted to an inverse
+/// conditional branch + an unconditional branch to the destination.
+bool
+ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
+
+ // Add an unconditional branch to the destination and invert the branch
+ // condition to jump over it:
+ // blt L1
+ // =>
+ // bge L2
+ // b L1
+ // L2:
+ ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
+ CC = ARMCC::getOppositeCondition(CC);
+ unsigned CCReg = MI->getOperand(2).getReg();
+
+ // If the branch is at the end of its MBB and that has a fall-through block,
+ // direct the updated conditional branch to the fall-through block. Otherwise,
+ // split the MBB before the next instruction.
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineInstr *BMI = &MBB->back();
+ bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
+
+ ++NumCBrFixed;
+ if (BMI != MI) {
+ if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
+ BMI->getOpcode() == Br.UncondBr) {
+ // Last MI in the BB is an unconditional branch. Can we simply invert the
+ // condition and swap destinations:
+ // beq L1
+ // b L2
+ // =>
+ // bne L2
+ // b L1
+ MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
+ if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
+ DEBUG(dbgs() << " Invert Bcc condition and swap its destination with "
+ << *BMI);
+ BMI->getOperand(0).setMBB(DestBB);
+ MI->getOperand(0).setMBB(NewDest);
+ MI->getOperand(1).setImm(CC);
+ return true;
+ }
+ }
+ }
+
+ if (NeedSplit) {
+ splitBlockBeforeInstr(MI);
+ // No need for the branch to the next block. We're adding an unconditional
+ // branch to the destination.
+ int delta = TII->GetInstSizeInBytes(&MBB->back());
+ BBInfo[MBB->getNumber()].Size -= delta;
+ MBB->back().eraseFromParent();
+ // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
+ }
+ MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(MBB));
+
+ DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber()
+ << " also invert condition and change dest. to BB#"
+ << NextBB->getNumber() << "\n");
+
+ // Insert a new conditional branch and a new unconditional branch.
+ // Also update the ImmBranch as well as adding a new entry for the new branch.
+ BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
+ .addMBB(NextBB).addImm(CC).addReg(CCReg);
+ Br.MI = &MBB->back();
+ BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
+ if (isThumb)
+ BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
+ .addImm(ARMCC::AL).addReg(0);
+ else
+ BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
+ BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
+ unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
+ ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
+
+ // Remove the old conditional branch. It may or may not still be in MBB.
+ BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
+ MI->eraseFromParent();
+ adjustBBOffsetsAfter(MBB);
+ return true;
+}
+
+/// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
+/// LR / restores LR to pc. FIXME: This is done here because it's only possible
+/// to do this if tBfar is not used.
+bool ARMConstantIslands::undoLRSpillRestore() {
+ bool MadeChange = false;
+ for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
+ MachineInstr *MI = PushPopMIs[i];
+ // First two operands are predicates.
+ if (MI->getOpcode() == ARM::tPOP_RET &&
+ MI->getOperand(2).getReg() == ARM::PC &&
+ MI->getNumExplicitOperands() == 3) {
+ // Create the new insn and copy the predicate from the old.
+ BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(1));
+ MI->eraseFromParent();
+ MadeChange = true;
+ }
+ }
+ return MadeChange;
+}
+
+// mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions
+// below may shrink MI.
+bool
+ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const {
+ switch(MI->getOpcode()) {
+ // optimizeThumb2Instructions.
+ case ARM::t2LEApcrel:
+ case ARM::t2LDRpci:
+ // optimizeThumb2Branches.
+ case ARM::t2B:
+ case ARM::t2Bcc:
+ case ARM::tBcc:
+ // optimizeThumb2JumpTables.
+ case ARM::t2BR_JT:
+ return true;
+ }
+ return false;
+}
+
+bool ARMConstantIslands::optimizeThumb2Instructions() {
+ bool MadeChange = false;
+
+ // Shrink ADR and LDR from constantpool.
+ for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
+ CPUser &U = CPUsers[i];
+ unsigned Opcode = U.MI->getOpcode();
+ unsigned NewOpc = 0;
+ unsigned Scale = 1;
+ unsigned Bits = 0;
+ switch (Opcode) {
+ default: break;
+ case ARM::t2LEApcrel:
+ if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
+ NewOpc = ARM::tLEApcrel;
+ Bits = 8;
+ Scale = 4;
+ }
+ break;
+ case ARM::t2LDRpci:
+ if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
+ NewOpc = ARM::tLDRpci;
+ Bits = 8;
+ Scale = 4;
+ }
+ break;
+ }
+
+ if (!NewOpc)
+ continue;
+
+ unsigned UserOffset = getUserOffset(U);
+ unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
+
+ // Be conservative with inline asm.
+ if (!U.KnownAlignment)
+ MaxOffs -= 2;
+
+ // FIXME: Check if offset is multiple of scale if scale is not 4.
+ if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
+ DEBUG(dbgs() << "Shrink: " << *U.MI);
+ U.MI->setDesc(TII->get(NewOpc));
+ MachineBasicBlock *MBB = U.MI->getParent();
+ BBInfo[MBB->getNumber()].Size -= 2;
+ adjustBBOffsetsAfter(MBB);
+ ++NumT2CPShrunk;
+ MadeChange = true;
+ }
+ }
+
+ MadeChange |= optimizeThumb2Branches();
+ MadeChange |= optimizeThumb2JumpTables();
+ return MadeChange;
+}
+
+bool ARMConstantIslands::optimizeThumb2Branches() {
+ bool MadeChange = false;
+
+ for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
+ ImmBranch &Br = ImmBranches[i];
+ unsigned Opcode = Br.MI->getOpcode();
+ unsigned NewOpc = 0;
+ unsigned Scale = 1;
+ unsigned Bits = 0;
+ switch (Opcode) {
+ default: break;
+ case ARM::t2B:
+ NewOpc = ARM::tB;
+ Bits = 11;
+ Scale = 2;
+ break;
+ case ARM::t2Bcc: {
+ NewOpc = ARM::tBcc;
+ Bits = 8;
+ Scale = 2;
+ break;
+ }
+ }
+ if (NewOpc) {
+ unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
+ MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
+ if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
+ DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
+ Br.MI->setDesc(TII->get(NewOpc));
+ MachineBasicBlock *MBB = Br.MI->getParent();
+ BBInfo[MBB->getNumber()].Size -= 2;
+ adjustBBOffsetsAfter(MBB);
+ ++NumT2BrShrunk;
+ MadeChange = true;
+ }
+ }
+
+ Opcode = Br.MI->getOpcode();
+ if (Opcode != ARM::tBcc)
+ continue;
+
+ // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
+ // so this transformation is not safe.
+ if (!Br.MI->killsRegister(ARM::CPSR))
+ continue;
+
+ NewOpc = 0;
+ unsigned PredReg = 0;
+ ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg);
+ if (Pred == ARMCC::EQ)
+ NewOpc = ARM::tCBZ;
+ else if (Pred == ARMCC::NE)
+ NewOpc = ARM::tCBNZ;
+ if (!NewOpc)
+ continue;
+ MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
+ // Check if the distance is within 126. Subtract starting offset by 2
+ // because the cmp will be eliminated.
+ unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
+ unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
+ if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
+ MachineBasicBlock::iterator CmpMI = Br.MI;
+ if (CmpMI != Br.MI->getParent()->begin()) {
+ --CmpMI;
+ if (CmpMI->getOpcode() == ARM::tCMPi8) {
+ unsigned Reg = CmpMI->getOperand(0).getReg();
+ Pred = getInstrPredicate(CmpMI, PredReg);
+ if (Pred == ARMCC::AL &&
+ CmpMI->getOperand(1).getImm() == 0 &&
+ isARMLowRegister(Reg)) {
+ MachineBasicBlock *MBB = Br.MI->getParent();
+ DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
+ MachineInstr *NewBR =
+ BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
+ .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
+ CmpMI->eraseFromParent();
+ Br.MI->eraseFromParent();
+ Br.MI = NewBR;
+ BBInfo[MBB->getNumber()].Size -= 2;
+ adjustBBOffsetsAfter(MBB);
+ ++NumCBZ;
+ MadeChange = true;
+ }
+ }
+ }
+ }
+ }
+
+ return MadeChange;
+}
+
+/// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
+/// jumptables when it's possible.
+bool ARMConstantIslands::optimizeThumb2JumpTables() {
+ bool MadeChange = false;
+
+ // FIXME: After the tables are shrunk, can we get rid some of the
+ // constantpool tables?
+ MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+ if (!MJTI) return false;
+
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
+ MachineInstr *MI = T2JumpTables[i];
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned NumOps = MCID.getNumOperands();
+ unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
+ MachineOperand JTOP = MI->getOperand(JTOpIdx);
+ unsigned JTI = JTOP.getIndex();
+ assert(JTI < JT.size());
+
+ bool ByteOk = true;
+ bool HalfWordOk = true;
+ unsigned JTOffset = getOffsetOf(MI) + 4;
+ const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
+ for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
+ MachineBasicBlock *MBB = JTBBs[j];
+ unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
+ // Negative offset is not ok. FIXME: We should change BB layout to make
+ // sure all the branches are forward.
+ if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
+ ByteOk = false;
+ unsigned TBHLimit = ((1<<16)-1)*2;
+ if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
+ HalfWordOk = false;
+ if (!ByteOk && !HalfWordOk)
+ break;
+ }
+
+ if (ByteOk || HalfWordOk) {
+ MachineBasicBlock *MBB = MI->getParent();
+ unsigned BaseReg = MI->getOperand(0).getReg();
+ bool BaseRegKill = MI->getOperand(0).isKill();
+ if (!BaseRegKill)
+ continue;
+ unsigned IdxReg = MI->getOperand(1).getReg();
+ bool IdxRegKill = MI->getOperand(1).isKill();
+
+ // Scan backwards to find the instruction that defines the base
+ // register. Due to post-RA scheduling, we can't count on it
+ // immediately preceding the branch instruction.
+ MachineBasicBlock::iterator PrevI = MI;
+ MachineBasicBlock::iterator B = MBB->begin();
+ while (PrevI != B && !PrevI->definesRegister(BaseReg))
+ --PrevI;
+
+ // If for some reason we didn't find it, we can't do anything, so
+ // just skip this one.
+ if (!PrevI->definesRegister(BaseReg))
+ continue;
+
+ MachineInstr *AddrMI = PrevI;
+ bool OptOk = true;
+ // Examine the instruction that calculates the jumptable entry address.
+ // Make sure it only defines the base register and kills any uses
+ // other than the index register.
+ for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
+ const MachineOperand &MO = AddrMI->getOperand(k);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ if (MO.isDef() && MO.getReg() != BaseReg) {
+ OptOk = false;
+ break;
+ }
+ if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
+ OptOk = false;
+ break;
+ }
+ }
+ if (!OptOk)
+ continue;
+
+ // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
+ // that gave us the initial base register definition.
+ for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
+ ;
+
+ // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
+ // to delete it as well.
+ MachineInstr *LeaMI = PrevI;
+ if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
+ LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
+ LeaMI->getOperand(0).getReg() != BaseReg)
+ OptOk = false;
+
+ if (!OptOk)
+ continue;
+
+ DEBUG(dbgs() << "Shrink JT: " << *MI << " addr: " << *AddrMI
+ << " lea: " << *LeaMI);
+ unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
+ MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
+ .addReg(IdxReg, getKillRegState(IdxRegKill))
+ .addJumpTableIndex(JTI, JTOP.getTargetFlags())
+ .addImm(MI->getOperand(JTOpIdx+1).getImm());
+ DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI);
+ // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
+ // is 2-byte aligned. For now, asm printer will fix it up.
+ unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
+ unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
+ OrigSize += TII->GetInstSizeInBytes(LeaMI);
+ OrigSize += TII->GetInstSizeInBytes(MI);
+
+ AddrMI->eraseFromParent();
+ LeaMI->eraseFromParent();
+ MI->eraseFromParent();
+
+ int delta = OrigSize - NewSize;
+ BBInfo[MBB->getNumber()].Size -= delta;
+ adjustBBOffsetsAfter(MBB);
+
+ ++NumTBs;
+ MadeChange = true;
+ }
+ }
+
+ return MadeChange;
+}
+
+/// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
+/// jump tables always branch forwards, since that's what tbb and tbh need.
+bool ARMConstantIslands::reorderThumb2JumpTables() {
+ bool MadeChange = false;
+
+ MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+ if (!MJTI) return false;
+
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
+ MachineInstr *MI = T2JumpTables[i];
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned NumOps = MCID.getNumOperands();
+ unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
+ MachineOperand JTOP = MI->getOperand(JTOpIdx);
+ unsigned JTI = JTOP.getIndex();
+ assert(JTI < JT.size());
+
+ // We prefer if target blocks for the jump table come after the jump
+ // instruction so we can use TB[BH]. Loop through the target blocks
+ // and try to adjust them such that that's true.
+ int JTNumber = MI->getParent()->getNumber();
+ const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
+ for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
+ MachineBasicBlock *MBB = JTBBs[j];
+ int DTNumber = MBB->getNumber();
+
+ if (DTNumber < JTNumber) {
+ // The destination precedes the switch. Try to move the block forward
+ // so we have a positive offset.
+ MachineBasicBlock *NewBB =
+ adjustJTTargetBlockForward(MBB, MI->getParent());
+ if (NewBB)
+ MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
+ MadeChange = true;
+ }
+ }
+ }
+
+ return MadeChange;
+}
+
+MachineBasicBlock *ARMConstantIslands::
+adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
+ // If the destination block is terminated by an unconditional branch,
+ // try to move it; otherwise, create a new block following the jump
+ // table that branches back to the actual target. This is a very simple
+ // heuristic. FIXME: We can definitely improve it.
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ SmallVector<MachineOperand, 4> CondPrior;
+ MachineFunction::iterator BBi = BB;
+ MachineFunction::iterator OldPrior = std::prev(BBi);
+
+ // If the block terminator isn't analyzable, don't try to move the block
+ bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
+
+ // If the block ends in an unconditional branch, move it. The prior block
+ // has to have an analyzable terminator for us to move this one. Be paranoid
+ // and make sure we're not trying to move the entry block of the function.
+ if (!B && Cond.empty() && BB != MF->begin() &&
+ !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
+ BB->moveAfter(JTBB);
+ OldPrior->updateTerminator();
+ BB->updateTerminator();
+ // Update numbering to account for the block being moved.
+ MF->RenumberBlocks();
+ ++NumJTMoved;
+ return nullptr;
+ }
+
+ // Create a new MBB for the code after the jump BB.
+ MachineBasicBlock *NewBB =
+ MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
+ MachineFunction::iterator MBBI = JTBB; ++MBBI;
+ MF->insert(MBBI, NewBB);
+
+ // Add an unconditional branch from NewBB to BB.
+ // There doesn't seem to be meaningful DebugInfo available; this doesn't
+ // correspond directly to anything in the source.
+ assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
+ BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
+ .addImm(ARMCC::AL).addReg(0);
+
+ // Update internal data structures to account for the newly inserted MBB.
+ MF->RenumberBlocks(NewBB);
+
+ // Update the CFG.
+ NewBB->addSuccessor(BB);
+ JTBB->removeSuccessor(BB);
+ JTBB->addSuccessor(NewBB);
+
+ ++NumJTInserted;
+ return NewBB;
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.cpp b/contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.cpp
new file mode 100644
index 0000000..7d41c69
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.cpp
@@ -0,0 +1,262 @@
+//===-- ARMConstantPoolValue.cpp - ARM constantpool value -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ARM specific constantpool value class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMConstantPoolValue.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdlib>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// ARMConstantPoolValue
+//===----------------------------------------------------------------------===//
+
+ARMConstantPoolValue::ARMConstantPoolValue(Type *Ty, unsigned id,
+ ARMCP::ARMCPKind kind,
+ unsigned char PCAdj,
+ ARMCP::ARMCPModifier modifier,
+ bool addCurrentAddress)
+ : MachineConstantPoolValue(Ty), LabelId(id), Kind(kind),
+ PCAdjust(PCAdj), Modifier(modifier),
+ AddCurrentAddress(addCurrentAddress) {}
+
+ARMConstantPoolValue::ARMConstantPoolValue(LLVMContext &C, unsigned id,
+ ARMCP::ARMCPKind kind,
+ unsigned char PCAdj,
+ ARMCP::ARMCPModifier modifier,
+ bool addCurrentAddress)
+ : MachineConstantPoolValue((Type*)Type::getInt32Ty(C)),
+ LabelId(id), Kind(kind), PCAdjust(PCAdj), Modifier(modifier),
+ AddCurrentAddress(addCurrentAddress) {}
+
+ARMConstantPoolValue::~ARMConstantPoolValue() {}
+
+const char *ARMConstantPoolValue::getModifierText() const {
+ switch (Modifier) {
+ // FIXME: Are these case sensitive? It'd be nice to lower-case all the
+ // strings if that's legal.
+ case ARMCP::no_modifier: return "none";
+ case ARMCP::TLSGD: return "tlsgd";
+ case ARMCP::GOT: return "GOT";
+ case ARMCP::GOTOFF: return "GOTOFF";
+ case ARMCP::GOTTPOFF: return "gottpoff";
+ case ARMCP::TPOFF: return "tpoff";
+ }
+ llvm_unreachable("Unknown modifier!");
+}
+
+int ARMConstantPoolValue::getExistingMachineCPValue(MachineConstantPool *CP,
+ unsigned Alignment) {
+ llvm_unreachable("Shouldn't be calling this directly!");
+}
+
+void
+ARMConstantPoolValue::addSelectionDAGCSEId(FoldingSetNodeID &ID) {
+ ID.AddInteger(LabelId);
+ ID.AddInteger(PCAdjust);
+}
+
+bool
+ARMConstantPoolValue::hasSameValue(ARMConstantPoolValue *ACPV) {
+ if (ACPV->Kind == Kind &&
+ ACPV->PCAdjust == PCAdjust &&
+ ACPV->Modifier == Modifier) {
+ if (ACPV->LabelId == LabelId)
+ return true;
+ // Two PC relative constpool entries containing the same GV address or
+ // external symbols. FIXME: What about blockaddress?
+ if (Kind == ARMCP::CPValue || Kind == ARMCP::CPExtSymbol)
+ return true;
+ }
+ return false;
+}
+
+void ARMConstantPoolValue::dump() const {
+ errs() << " " << *this;
+}
+
+void ARMConstantPoolValue::print(raw_ostream &O) const {
+ if (Modifier) O << "(" << getModifierText() << ")";
+ if (PCAdjust != 0) {
+ O << "-(LPC" << LabelId << "+" << (unsigned)PCAdjust;
+ if (AddCurrentAddress) O << "-.";
+ O << ")";
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ARMConstantPoolConstant
+//===----------------------------------------------------------------------===//
+
+ARMConstantPoolConstant::ARMConstantPoolConstant(Type *Ty,
+ const Constant *C,
+ unsigned ID,
+ ARMCP::ARMCPKind Kind,
+ unsigned char PCAdj,
+ ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress)
+ : ARMConstantPoolValue(Ty, ID, Kind, PCAdj, Modifier, AddCurrentAddress),
+ CVal(C) {}
+
+ARMConstantPoolConstant::ARMConstantPoolConstant(const Constant *C,
+ unsigned ID,
+ ARMCP::ARMCPKind Kind,
+ unsigned char PCAdj,
+ ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress)
+ : ARMConstantPoolValue((Type*)C->getType(), ID, Kind, PCAdj, Modifier,
+ AddCurrentAddress),
+ CVal(C) {}
+
+ARMConstantPoolConstant *
+ARMConstantPoolConstant::Create(const Constant *C, unsigned ID) {
+ return new ARMConstantPoolConstant(C, ID, ARMCP::CPValue, 0,
+ ARMCP::no_modifier, false);
+}
+
+ARMConstantPoolConstant *
+ARMConstantPoolConstant::Create(const GlobalValue *GV,
+ ARMCP::ARMCPModifier Modifier) {
+ return new ARMConstantPoolConstant((Type*)Type::getInt32Ty(GV->getContext()),
+ GV, 0, ARMCP::CPValue, 0,
+ Modifier, false);
+}
+
+ARMConstantPoolConstant *
+ARMConstantPoolConstant::Create(const Constant *C, unsigned ID,
+ ARMCP::ARMCPKind Kind, unsigned char PCAdj) {
+ return new ARMConstantPoolConstant(C, ID, Kind, PCAdj,
+ ARMCP::no_modifier, false);
+}
+
+ARMConstantPoolConstant *
+ARMConstantPoolConstant::Create(const Constant *C, unsigned ID,
+ ARMCP::ARMCPKind Kind, unsigned char PCAdj,
+ ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress) {
+ return new ARMConstantPoolConstant(C, ID, Kind, PCAdj, Modifier,
+ AddCurrentAddress);
+}
+
+const GlobalValue *ARMConstantPoolConstant::getGV() const {
+ return dyn_cast_or_null<GlobalValue>(CVal);
+}
+
+const BlockAddress *ARMConstantPoolConstant::getBlockAddress() const {
+ return dyn_cast_or_null<BlockAddress>(CVal);
+}
+
+int ARMConstantPoolConstant::getExistingMachineCPValue(MachineConstantPool *CP,
+ unsigned Alignment) {
+ return getExistingMachineCPValueImpl<ARMConstantPoolConstant>(CP, Alignment);
+}
+
+bool ARMConstantPoolConstant::hasSameValue(ARMConstantPoolValue *ACPV) {
+ const ARMConstantPoolConstant *ACPC = dyn_cast<ARMConstantPoolConstant>(ACPV);
+ return ACPC && ACPC->CVal == CVal && ARMConstantPoolValue::hasSameValue(ACPV);
+}
+
+void ARMConstantPoolConstant::addSelectionDAGCSEId(FoldingSetNodeID &ID) {
+ ID.AddPointer(CVal);
+ ARMConstantPoolValue::addSelectionDAGCSEId(ID);
+}
+
+void ARMConstantPoolConstant::print(raw_ostream &O) const {
+ O << CVal->getName();
+ ARMConstantPoolValue::print(O);
+}
+
+//===----------------------------------------------------------------------===//
+// ARMConstantPoolSymbol
+//===----------------------------------------------------------------------===//
+
+ARMConstantPoolSymbol::ARMConstantPoolSymbol(LLVMContext &C, const char *s,
+ unsigned id,
+ unsigned char PCAdj,
+ ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress)
+ : ARMConstantPoolValue(C, id, ARMCP::CPExtSymbol, PCAdj, Modifier,
+ AddCurrentAddress),
+ S(s) {}
+
+ARMConstantPoolSymbol *
+ARMConstantPoolSymbol::Create(LLVMContext &C, const char *s,
+ unsigned ID, unsigned char PCAdj) {
+ return new ARMConstantPoolSymbol(C, s, ID, PCAdj, ARMCP::no_modifier, false);
+}
+
+int ARMConstantPoolSymbol::getExistingMachineCPValue(MachineConstantPool *CP,
+ unsigned Alignment) {
+ return getExistingMachineCPValueImpl<ARMConstantPoolSymbol>(CP, Alignment);
+}
+
+bool ARMConstantPoolSymbol::hasSameValue(ARMConstantPoolValue *ACPV) {
+ const ARMConstantPoolSymbol *ACPS = dyn_cast<ARMConstantPoolSymbol>(ACPV);
+ return ACPS && ACPS->S == S && ARMConstantPoolValue::hasSameValue(ACPV);
+}
+
+void ARMConstantPoolSymbol::addSelectionDAGCSEId(FoldingSetNodeID &ID) {
+ ID.AddString(S);
+ ARMConstantPoolValue::addSelectionDAGCSEId(ID);
+}
+
+void ARMConstantPoolSymbol::print(raw_ostream &O) const {
+ O << S;
+ ARMConstantPoolValue::print(O);
+}
+
+//===----------------------------------------------------------------------===//
+// ARMConstantPoolMBB
+//===----------------------------------------------------------------------===//
+
+ARMConstantPoolMBB::ARMConstantPoolMBB(LLVMContext &C,
+ const MachineBasicBlock *mbb,
+ unsigned id, unsigned char PCAdj,
+ ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress)
+ : ARMConstantPoolValue(C, id, ARMCP::CPMachineBasicBlock, PCAdj,
+ Modifier, AddCurrentAddress),
+ MBB(mbb) {}
+
+ARMConstantPoolMBB *ARMConstantPoolMBB::Create(LLVMContext &C,
+ const MachineBasicBlock *mbb,
+ unsigned ID,
+ unsigned char PCAdj) {
+ return new ARMConstantPoolMBB(C, mbb, ID, PCAdj, ARMCP::no_modifier, false);
+}
+
+int ARMConstantPoolMBB::getExistingMachineCPValue(MachineConstantPool *CP,
+ unsigned Alignment) {
+ return getExistingMachineCPValueImpl<ARMConstantPoolMBB>(CP, Alignment);
+}
+
+bool ARMConstantPoolMBB::hasSameValue(ARMConstantPoolValue *ACPV) {
+ const ARMConstantPoolMBB *ACPMBB = dyn_cast<ARMConstantPoolMBB>(ACPV);
+ return ACPMBB && ACPMBB->MBB == MBB &&
+ ARMConstantPoolValue::hasSameValue(ACPV);
+}
+
+void ARMConstantPoolMBB::addSelectionDAGCSEId(FoldingSetNodeID &ID) {
+ ID.AddPointer(MBB);
+ ARMConstantPoolValue::addSelectionDAGCSEId(ID);
+}
+
+void ARMConstantPoolMBB::print(raw_ostream &O) const {
+ O << "BB#" << MBB->getNumber();
+ ARMConstantPoolValue::print(O);
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.h b/contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.h
new file mode 100644
index 0000000..c7a8415
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.h
@@ -0,0 +1,259 @@
+//===-- ARMConstantPoolValue.h - ARM constantpool value ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ARM specific constantpool value class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_ARM_CONSTANTPOOLVALUE_H
+#define LLVM_TARGET_ARM_CONSTANTPOOLVALUE_H
+
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cstddef>
+
+namespace llvm {
+
+class BlockAddress;
+class Constant;
+class GlobalValue;
+class LLVMContext;
+class MachineBasicBlock;
+
+namespace ARMCP {
+ enum ARMCPKind {
+ CPValue,
+ CPExtSymbol,
+ CPBlockAddress,
+ CPLSDA,
+ CPMachineBasicBlock
+ };
+
+ enum ARMCPModifier {
+ no_modifier,
+ TLSGD,
+ GOT,
+ GOTOFF,
+ GOTTPOFF,
+ TPOFF
+ };
+}
+
+/// ARMConstantPoolValue - ARM specific constantpool value. This is used to
+/// represent PC-relative displacement between the address of the load
+/// instruction and the constant being loaded, i.e. (&GV-(LPIC+8)).
+class ARMConstantPoolValue : public MachineConstantPoolValue {
+ unsigned LabelId; // Label id of the load.
+ ARMCP::ARMCPKind Kind; // Kind of constant.
+ unsigned char PCAdjust; // Extra adjustment if constantpool is pc-relative.
+ // 8 for ARM, 4 for Thumb.
+ ARMCP::ARMCPModifier Modifier; // GV modifier i.e. (&GV(modifier)-(LPIC+8))
+ bool AddCurrentAddress;
+
+protected:
+ ARMConstantPoolValue(Type *Ty, unsigned id, ARMCP::ARMCPKind Kind,
+ unsigned char PCAdj, ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress);
+
+ ARMConstantPoolValue(LLVMContext &C, unsigned id, ARMCP::ARMCPKind Kind,
+ unsigned char PCAdj, ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress);
+
+ template <typename Derived>
+ int getExistingMachineCPValueImpl(MachineConstantPool *CP,
+ unsigned Alignment) {
+ unsigned AlignMask = Alignment - 1;
+ const std::vector<MachineConstantPoolEntry> &Constants = CP->getConstants();
+ for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
+ if (Constants[i].isMachineConstantPoolEntry() &&
+ (Constants[i].getAlignment() & AlignMask) == 0) {
+ ARMConstantPoolValue *CPV =
+ (ARMConstantPoolValue *)Constants[i].Val.MachineCPVal;
+ if (Derived *APC = dyn_cast<Derived>(CPV))
+ if (cast<Derived>(this)->equals(APC))
+ return i;
+ }
+ }
+
+ return -1;
+ }
+
+public:
+ virtual ~ARMConstantPoolValue();
+
+ ARMCP::ARMCPModifier getModifier() const { return Modifier; }
+ const char *getModifierText() const;
+ bool hasModifier() const { return Modifier != ARMCP::no_modifier; }
+
+ bool mustAddCurrentAddress() const { return AddCurrentAddress; }
+
+ unsigned getLabelId() const { return LabelId; }
+ unsigned char getPCAdjustment() const { return PCAdjust; }
+
+ bool isGlobalValue() const { return Kind == ARMCP::CPValue; }
+ bool isExtSymbol() const { return Kind == ARMCP::CPExtSymbol; }
+ bool isBlockAddress() const { return Kind == ARMCP::CPBlockAddress; }
+ bool isLSDA() const { return Kind == ARMCP::CPLSDA; }
+ bool isMachineBasicBlock() const{ return Kind == ARMCP::CPMachineBasicBlock; }
+
+ unsigned getRelocationInfo() const override { return 2; }
+
+ int getExistingMachineCPValue(MachineConstantPool *CP,
+ unsigned Alignment) override;
+
+ void addSelectionDAGCSEId(FoldingSetNodeID &ID) override;
+
+ /// hasSameValue - Return true if this ARM constpool value can share the same
+ /// constantpool entry as another ARM constpool value.
+ virtual bool hasSameValue(ARMConstantPoolValue *ACPV);
+
+ bool equals(const ARMConstantPoolValue *A) const {
+ return this->LabelId == A->LabelId &&
+ this->PCAdjust == A->PCAdjust &&
+ this->Modifier == A->Modifier;
+ }
+
+ void print(raw_ostream &O) const override;
+ void print(raw_ostream *O) const { if (O) print(*O); }
+ void dump() const;
+};
+
+inline raw_ostream &operator<<(raw_ostream &O, const ARMConstantPoolValue &V) {
+ V.print(O);
+ return O;
+}
+
+/// ARMConstantPoolConstant - ARM-specific constant pool values for Constants,
+/// Functions, and BlockAddresses.
+class ARMConstantPoolConstant : public ARMConstantPoolValue {
+ const Constant *CVal; // Constant being loaded.
+
+ ARMConstantPoolConstant(const Constant *C,
+ unsigned ID,
+ ARMCP::ARMCPKind Kind,
+ unsigned char PCAdj,
+ ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress);
+ ARMConstantPoolConstant(Type *Ty, const Constant *C,
+ unsigned ID,
+ ARMCP::ARMCPKind Kind,
+ unsigned char PCAdj,
+ ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress);
+
+public:
+ static ARMConstantPoolConstant *Create(const Constant *C, unsigned ID);
+ static ARMConstantPoolConstant *Create(const GlobalValue *GV,
+ ARMCP::ARMCPModifier Modifier);
+ static ARMConstantPoolConstant *Create(const Constant *C, unsigned ID,
+ ARMCP::ARMCPKind Kind,
+ unsigned char PCAdj);
+ static ARMConstantPoolConstant *Create(const Constant *C, unsigned ID,
+ ARMCP::ARMCPKind Kind,
+ unsigned char PCAdj,
+ ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress);
+
+ const GlobalValue *getGV() const;
+ const BlockAddress *getBlockAddress() const;
+
+ int getExistingMachineCPValue(MachineConstantPool *CP,
+ unsigned Alignment) override;
+
+ /// hasSameValue - Return true if this ARM constpool value can share the same
+ /// constantpool entry as another ARM constpool value.
+ bool hasSameValue(ARMConstantPoolValue *ACPV) override;
+
+ void addSelectionDAGCSEId(FoldingSetNodeID &ID) override;
+
+ void print(raw_ostream &O) const override;
+ static bool classof(const ARMConstantPoolValue *APV) {
+ return APV->isGlobalValue() || APV->isBlockAddress() || APV->isLSDA();
+ }
+
+ bool equals(const ARMConstantPoolConstant *A) const {
+ return CVal == A->CVal && ARMConstantPoolValue::equals(A);
+ }
+};
+
+/// ARMConstantPoolSymbol - ARM-specific constantpool values for external
+/// symbols.
+class ARMConstantPoolSymbol : public ARMConstantPoolValue {
+ const std::string S; // ExtSymbol being loaded.
+
+ ARMConstantPoolSymbol(LLVMContext &C, const char *s, unsigned id,
+ unsigned char PCAdj, ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress);
+
+public:
+ static ARMConstantPoolSymbol *Create(LLVMContext &C, const char *s,
+ unsigned ID, unsigned char PCAdj);
+
+ const char *getSymbol() const { return S.c_str(); }
+
+ int getExistingMachineCPValue(MachineConstantPool *CP,
+ unsigned Alignment) override;
+
+ void addSelectionDAGCSEId(FoldingSetNodeID &ID) override;
+
+ /// hasSameValue - Return true if this ARM constpool value can share the same
+ /// constantpool entry as another ARM constpool value.
+ bool hasSameValue(ARMConstantPoolValue *ACPV) override;
+
+ void print(raw_ostream &O) const override;
+
+ static bool classof(const ARMConstantPoolValue *ACPV) {
+ return ACPV->isExtSymbol();
+ }
+
+ bool equals(const ARMConstantPoolSymbol *A) const {
+ return S == A->S && ARMConstantPoolValue::equals(A);
+ }
+};
+
+/// ARMConstantPoolMBB - ARM-specific constantpool value of a machine basic
+/// block.
+class ARMConstantPoolMBB : public ARMConstantPoolValue {
+ const MachineBasicBlock *MBB; // Machine basic block.
+
+ ARMConstantPoolMBB(LLVMContext &C, const MachineBasicBlock *mbb, unsigned id,
+ unsigned char PCAdj, ARMCP::ARMCPModifier Modifier,
+ bool AddCurrentAddress);
+
+public:
+ static ARMConstantPoolMBB *Create(LLVMContext &C,
+ const MachineBasicBlock *mbb,
+ unsigned ID, unsigned char PCAdj);
+
+ const MachineBasicBlock *getMBB() const { return MBB; }
+
+ int getExistingMachineCPValue(MachineConstantPool *CP,
+ unsigned Alignment) override;
+
+ void addSelectionDAGCSEId(FoldingSetNodeID &ID) override;
+
+ /// hasSameValue - Return true if this ARM constpool value can share the same
+ /// constantpool entry as another ARM constpool value.
+ bool hasSameValue(ARMConstantPoolValue *ACPV) override;
+
+ void print(raw_ostream &O) const override;
+
+ static bool classof(const ARMConstantPoolValue *ACPV) {
+ return ACPV->isMachineBasicBlock();
+ }
+
+ bool equals(const ARMConstantPoolMBB *A) const {
+ return MBB == A->MBB && ARMConstantPoolValue::equals(A);
+ }
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMExpandPseudoInsts.cpp b/contrib/llvm/lib/Target/ARM/ARMExpandPseudoInsts.cpp
new file mode 100644
index 0000000..51d3dbb
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMExpandPseudoInsts.cpp
@@ -0,0 +1,1364 @@
+//===-- ARMExpandPseudoInsts.cpp - Expand pseudo instructions -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that expands pseudo instructions into target
+// instructions to allow proper scheduling, if-conversion, and other late
+// optimizations. This pass should be run after register allocation but before
+// the post-regalloc scheduling pass.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h" // FIXME: for debug only. remove!
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-pseudo"
+
+static cl::opt<bool>
+VerifyARMPseudo("verify-arm-pseudo-expand", cl::Hidden,
+ cl::desc("Verify machine code after expanding ARM pseudos"));
+
+namespace {
+ class ARMExpandPseudo : public MachineFunctionPass {
+ public:
+ static char ID;
+ ARMExpandPseudo() : MachineFunctionPass(ID) {}
+
+ const ARMBaseInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const ARMSubtarget *STI;
+ ARMFunctionInfo *AFI;
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "ARM pseudo instruction expansion pass";
+ }
+
+ private:
+ void TransferImpOps(MachineInstr &OldMI,
+ MachineInstrBuilder &UseMI, MachineInstrBuilder &DefMI);
+ bool ExpandMI(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI);
+ bool ExpandMBB(MachineBasicBlock &MBB);
+ void ExpandVLD(MachineBasicBlock::iterator &MBBI);
+ void ExpandVST(MachineBasicBlock::iterator &MBBI);
+ void ExpandLaneOp(MachineBasicBlock::iterator &MBBI);
+ void ExpandVTBL(MachineBasicBlock::iterator &MBBI,
+ unsigned Opc, bool IsExt);
+ void ExpandMOV32BitImm(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI);
+ };
+ char ARMExpandPseudo::ID = 0;
+}
+
+/// TransferImpOps - Transfer implicit operands on the pseudo instruction to
+/// the instructions created from the expansion.
+void ARMExpandPseudo::TransferImpOps(MachineInstr &OldMI,
+ MachineInstrBuilder &UseMI,
+ MachineInstrBuilder &DefMI) {
+ const MCInstrDesc &Desc = OldMI.getDesc();
+ for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands();
+ i != e; ++i) {
+ const MachineOperand &MO = OldMI.getOperand(i);
+ assert(MO.isReg() && MO.getReg());
+ if (MO.isUse())
+ UseMI.addOperand(MO);
+ else
+ DefMI.addOperand(MO);
+ }
+}
+
+namespace {
+ // Constants for register spacing in NEON load/store instructions.
+ // For quad-register load-lane and store-lane pseudo instructors, the
+ // spacing is initially assumed to be EvenDblSpc, and that is changed to
+ // OddDblSpc depending on the lane number operand.
+ enum NEONRegSpacing {
+ SingleSpc,
+ EvenDblSpc,
+ OddDblSpc
+ };
+
+ // Entries for NEON load/store information table. The table is sorted by
+ // PseudoOpc for fast binary-search lookups.
+ struct NEONLdStTableEntry {
+ uint16_t PseudoOpc;
+ uint16_t RealOpc;
+ bool IsLoad;
+ bool isUpdating;
+ bool hasWritebackOperand;
+ uint8_t RegSpacing; // One of type NEONRegSpacing
+ uint8_t NumRegs; // D registers loaded or stored
+ uint8_t RegElts; // elements per D register; used for lane ops
+ // FIXME: Temporary flag to denote whether the real instruction takes
+ // a single register (like the encoding) or all of the registers in
+ // the list (like the asm syntax and the isel DAG). When all definitions
+ // are converted to take only the single encoded register, this will
+ // go away.
+ bool copyAllListRegs;
+
+ // Comparison methods for binary search of the table.
+ bool operator<(const NEONLdStTableEntry &TE) const {
+ return PseudoOpc < TE.PseudoOpc;
+ }
+ friend bool operator<(const NEONLdStTableEntry &TE, unsigned PseudoOpc) {
+ return TE.PseudoOpc < PseudoOpc;
+ }
+ friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned PseudoOpc,
+ const NEONLdStTableEntry &TE) {
+ return PseudoOpc < TE.PseudoOpc;
+ }
+ };
+}
+
+static const NEONLdStTableEntry NEONLdStTable[] = {
+{ ARM::VLD1LNq16Pseudo, ARM::VLD1LNd16, true, false, false, EvenDblSpc, 1, 4 ,true},
+{ ARM::VLD1LNq16Pseudo_UPD, ARM::VLD1LNd16_UPD, true, true, true, EvenDblSpc, 1, 4 ,true},
+{ ARM::VLD1LNq32Pseudo, ARM::VLD1LNd32, true, false, false, EvenDblSpc, 1, 2 ,true},
+{ ARM::VLD1LNq32Pseudo_UPD, ARM::VLD1LNd32_UPD, true, true, true, EvenDblSpc, 1, 2 ,true},
+{ ARM::VLD1LNq8Pseudo, ARM::VLD1LNd8, true, false, false, EvenDblSpc, 1, 8 ,true},
+{ ARM::VLD1LNq8Pseudo_UPD, ARM::VLD1LNd8_UPD, true, true, true, EvenDblSpc, 1, 8 ,true},
+
+{ ARM::VLD1d64QPseudo, ARM::VLD1d64Q, true, false, false, SingleSpc, 4, 1 ,false},
+{ ARM::VLD1d64QPseudoWB_fixed, ARM::VLD1d64Qwb_fixed, true, true, false, SingleSpc, 4, 1 ,false},
+{ ARM::VLD1d64TPseudo, ARM::VLD1d64T, true, false, false, SingleSpc, 3, 1 ,false},
+{ ARM::VLD1d64TPseudoWB_fixed, ARM::VLD1d64Twb_fixed, true, true, false, SingleSpc, 3, 1 ,false},
+
+{ ARM::VLD2LNd16Pseudo, ARM::VLD2LNd16, true, false, false, SingleSpc, 2, 4 ,true},
+{ ARM::VLD2LNd16Pseudo_UPD, ARM::VLD2LNd16_UPD, true, true, true, SingleSpc, 2, 4 ,true},
+{ ARM::VLD2LNd32Pseudo, ARM::VLD2LNd32, true, false, false, SingleSpc, 2, 2 ,true},
+{ ARM::VLD2LNd32Pseudo_UPD, ARM::VLD2LNd32_UPD, true, true, true, SingleSpc, 2, 2 ,true},
+{ ARM::VLD2LNd8Pseudo, ARM::VLD2LNd8, true, false, false, SingleSpc, 2, 8 ,true},
+{ ARM::VLD2LNd8Pseudo_UPD, ARM::VLD2LNd8_UPD, true, true, true, SingleSpc, 2, 8 ,true},
+{ ARM::VLD2LNq16Pseudo, ARM::VLD2LNq16, true, false, false, EvenDblSpc, 2, 4 ,true},
+{ ARM::VLD2LNq16Pseudo_UPD, ARM::VLD2LNq16_UPD, true, true, true, EvenDblSpc, 2, 4 ,true},
+{ ARM::VLD2LNq32Pseudo, ARM::VLD2LNq32, true, false, false, EvenDblSpc, 2, 2 ,true},
+{ ARM::VLD2LNq32Pseudo_UPD, ARM::VLD2LNq32_UPD, true, true, true, EvenDblSpc, 2, 2 ,true},
+
+{ ARM::VLD2q16Pseudo, ARM::VLD2q16, true, false, false, SingleSpc, 4, 4 ,false},
+{ ARM::VLD2q16PseudoWB_fixed, ARM::VLD2q16wb_fixed, true, true, false, SingleSpc, 4, 4 ,false},
+{ ARM::VLD2q16PseudoWB_register, ARM::VLD2q16wb_register, true, true, true, SingleSpc, 4, 4 ,false},
+{ ARM::VLD2q32Pseudo, ARM::VLD2q32, true, false, false, SingleSpc, 4, 2 ,false},
+{ ARM::VLD2q32PseudoWB_fixed, ARM::VLD2q32wb_fixed, true, true, false, SingleSpc, 4, 2 ,false},
+{ ARM::VLD2q32PseudoWB_register, ARM::VLD2q32wb_register, true, true, true, SingleSpc, 4, 2 ,false},
+{ ARM::VLD2q8Pseudo, ARM::VLD2q8, true, false, false, SingleSpc, 4, 8 ,false},
+{ ARM::VLD2q8PseudoWB_fixed, ARM::VLD2q8wb_fixed, true, true, false, SingleSpc, 4, 8 ,false},
+{ ARM::VLD2q8PseudoWB_register, ARM::VLD2q8wb_register, true, true, true, SingleSpc, 4, 8 ,false},
+
+{ ARM::VLD3DUPd16Pseudo, ARM::VLD3DUPd16, true, false, false, SingleSpc, 3, 4,true},
+{ ARM::VLD3DUPd16Pseudo_UPD, ARM::VLD3DUPd16_UPD, true, true, true, SingleSpc, 3, 4,true},
+{ ARM::VLD3DUPd32Pseudo, ARM::VLD3DUPd32, true, false, false, SingleSpc, 3, 2,true},
+{ ARM::VLD3DUPd32Pseudo_UPD, ARM::VLD3DUPd32_UPD, true, true, true, SingleSpc, 3, 2,true},
+{ ARM::VLD3DUPd8Pseudo, ARM::VLD3DUPd8, true, false, false, SingleSpc, 3, 8,true},
+{ ARM::VLD3DUPd8Pseudo_UPD, ARM::VLD3DUPd8_UPD, true, true, true, SingleSpc, 3, 8,true},
+
+{ ARM::VLD3LNd16Pseudo, ARM::VLD3LNd16, true, false, false, SingleSpc, 3, 4 ,true},
+{ ARM::VLD3LNd16Pseudo_UPD, ARM::VLD3LNd16_UPD, true, true, true, SingleSpc, 3, 4 ,true},
+{ ARM::VLD3LNd32Pseudo, ARM::VLD3LNd32, true, false, false, SingleSpc, 3, 2 ,true},
+{ ARM::VLD3LNd32Pseudo_UPD, ARM::VLD3LNd32_UPD, true, true, true, SingleSpc, 3, 2 ,true},
+{ ARM::VLD3LNd8Pseudo, ARM::VLD3LNd8, true, false, false, SingleSpc, 3, 8 ,true},
+{ ARM::VLD3LNd8Pseudo_UPD, ARM::VLD3LNd8_UPD, true, true, true, SingleSpc, 3, 8 ,true},
+{ ARM::VLD3LNq16Pseudo, ARM::VLD3LNq16, true, false, false, EvenDblSpc, 3, 4 ,true},
+{ ARM::VLD3LNq16Pseudo_UPD, ARM::VLD3LNq16_UPD, true, true, true, EvenDblSpc, 3, 4 ,true},
+{ ARM::VLD3LNq32Pseudo, ARM::VLD3LNq32, true, false, false, EvenDblSpc, 3, 2 ,true},
+{ ARM::VLD3LNq32Pseudo_UPD, ARM::VLD3LNq32_UPD, true, true, true, EvenDblSpc, 3, 2 ,true},
+
+{ ARM::VLD3d16Pseudo, ARM::VLD3d16, true, false, false, SingleSpc, 3, 4 ,true},
+{ ARM::VLD3d16Pseudo_UPD, ARM::VLD3d16_UPD, true, true, true, SingleSpc, 3, 4 ,true},
+{ ARM::VLD3d32Pseudo, ARM::VLD3d32, true, false, false, SingleSpc, 3, 2 ,true},
+{ ARM::VLD3d32Pseudo_UPD, ARM::VLD3d32_UPD, true, true, true, SingleSpc, 3, 2 ,true},
+{ ARM::VLD3d8Pseudo, ARM::VLD3d8, true, false, false, SingleSpc, 3, 8 ,true},
+{ ARM::VLD3d8Pseudo_UPD, ARM::VLD3d8_UPD, true, true, true, SingleSpc, 3, 8 ,true},
+
+{ ARM::VLD3q16Pseudo_UPD, ARM::VLD3q16_UPD, true, true, true, EvenDblSpc, 3, 4 ,true},
+{ ARM::VLD3q16oddPseudo, ARM::VLD3q16, true, false, false, OddDblSpc, 3, 4 ,true},
+{ ARM::VLD3q16oddPseudo_UPD, ARM::VLD3q16_UPD, true, true, true, OddDblSpc, 3, 4 ,true},
+{ ARM::VLD3q32Pseudo_UPD, ARM::VLD3q32_UPD, true, true, true, EvenDblSpc, 3, 2 ,true},
+{ ARM::VLD3q32oddPseudo, ARM::VLD3q32, true, false, false, OddDblSpc, 3, 2 ,true},
+{ ARM::VLD3q32oddPseudo_UPD, ARM::VLD3q32_UPD, true, true, true, OddDblSpc, 3, 2 ,true},
+{ ARM::VLD3q8Pseudo_UPD, ARM::VLD3q8_UPD, true, true, true, EvenDblSpc, 3, 8 ,true},
+{ ARM::VLD3q8oddPseudo, ARM::VLD3q8, true, false, false, OddDblSpc, 3, 8 ,true},
+{ ARM::VLD3q8oddPseudo_UPD, ARM::VLD3q8_UPD, true, true, true, OddDblSpc, 3, 8 ,true},
+
+{ ARM::VLD4DUPd16Pseudo, ARM::VLD4DUPd16, true, false, false, SingleSpc, 4, 4,true},
+{ ARM::VLD4DUPd16Pseudo_UPD, ARM::VLD4DUPd16_UPD, true, true, true, SingleSpc, 4, 4,true},
+{ ARM::VLD4DUPd32Pseudo, ARM::VLD4DUPd32, true, false, false, SingleSpc, 4, 2,true},
+{ ARM::VLD4DUPd32Pseudo_UPD, ARM::VLD4DUPd32_UPD, true, true, true, SingleSpc, 4, 2,true},
+{ ARM::VLD4DUPd8Pseudo, ARM::VLD4DUPd8, true, false, false, SingleSpc, 4, 8,true},
+{ ARM::VLD4DUPd8Pseudo_UPD, ARM::VLD4DUPd8_UPD, true, true, true, SingleSpc, 4, 8,true},
+
+{ ARM::VLD4LNd16Pseudo, ARM::VLD4LNd16, true, false, false, SingleSpc, 4, 4 ,true},
+{ ARM::VLD4LNd16Pseudo_UPD, ARM::VLD4LNd16_UPD, true, true, true, SingleSpc, 4, 4 ,true},
+{ ARM::VLD4LNd32Pseudo, ARM::VLD4LNd32, true, false, false, SingleSpc, 4, 2 ,true},
+{ ARM::VLD4LNd32Pseudo_UPD, ARM::VLD4LNd32_UPD, true, true, true, SingleSpc, 4, 2 ,true},
+{ ARM::VLD4LNd8Pseudo, ARM::VLD4LNd8, true, false, false, SingleSpc, 4, 8 ,true},
+{ ARM::VLD4LNd8Pseudo_UPD, ARM::VLD4LNd8_UPD, true, true, true, SingleSpc, 4, 8 ,true},
+{ ARM::VLD4LNq16Pseudo, ARM::VLD4LNq16, true, false, false, EvenDblSpc, 4, 4 ,true},
+{ ARM::VLD4LNq16Pseudo_UPD, ARM::VLD4LNq16_UPD, true, true, true, EvenDblSpc, 4, 4 ,true},
+{ ARM::VLD4LNq32Pseudo, ARM::VLD4LNq32, true, false, false, EvenDblSpc, 4, 2 ,true},
+{ ARM::VLD4LNq32Pseudo_UPD, ARM::VLD4LNq32_UPD, true, true, true, EvenDblSpc, 4, 2 ,true},
+
+{ ARM::VLD4d16Pseudo, ARM::VLD4d16, true, false, false, SingleSpc, 4, 4 ,true},
+{ ARM::VLD4d16Pseudo_UPD, ARM::VLD4d16_UPD, true, true, true, SingleSpc, 4, 4 ,true},
+{ ARM::VLD4d32Pseudo, ARM::VLD4d32, true, false, false, SingleSpc, 4, 2 ,true},
+{ ARM::VLD4d32Pseudo_UPD, ARM::VLD4d32_UPD, true, true, true, SingleSpc, 4, 2 ,true},
+{ ARM::VLD4d8Pseudo, ARM::VLD4d8, true, false, false, SingleSpc, 4, 8 ,true},
+{ ARM::VLD4d8Pseudo_UPD, ARM::VLD4d8_UPD, true, true, true, SingleSpc, 4, 8 ,true},
+
+{ ARM::VLD4q16Pseudo_UPD, ARM::VLD4q16_UPD, true, true, true, EvenDblSpc, 4, 4 ,true},
+{ ARM::VLD4q16oddPseudo, ARM::VLD4q16, true, false, false, OddDblSpc, 4, 4 ,true},
+{ ARM::VLD4q16oddPseudo_UPD, ARM::VLD4q16_UPD, true, true, true, OddDblSpc, 4, 4 ,true},
+{ ARM::VLD4q32Pseudo_UPD, ARM::VLD4q32_UPD, true, true, true, EvenDblSpc, 4, 2 ,true},
+{ ARM::VLD4q32oddPseudo, ARM::VLD4q32, true, false, false, OddDblSpc, 4, 2 ,true},
+{ ARM::VLD4q32oddPseudo_UPD, ARM::VLD4q32_UPD, true, true, true, OddDblSpc, 4, 2 ,true},
+{ ARM::VLD4q8Pseudo_UPD, ARM::VLD4q8_UPD, true, true, true, EvenDblSpc, 4, 8 ,true},
+{ ARM::VLD4q8oddPseudo, ARM::VLD4q8, true, false, false, OddDblSpc, 4, 8 ,true},
+{ ARM::VLD4q8oddPseudo_UPD, ARM::VLD4q8_UPD, true, true, true, OddDblSpc, 4, 8 ,true},
+
+{ ARM::VST1LNq16Pseudo, ARM::VST1LNd16, false, false, false, EvenDblSpc, 1, 4 ,true},
+{ ARM::VST1LNq16Pseudo_UPD, ARM::VST1LNd16_UPD, false, true, true, EvenDblSpc, 1, 4 ,true},
+{ ARM::VST1LNq32Pseudo, ARM::VST1LNd32, false, false, false, EvenDblSpc, 1, 2 ,true},
+{ ARM::VST1LNq32Pseudo_UPD, ARM::VST1LNd32_UPD, false, true, true, EvenDblSpc, 1, 2 ,true},
+{ ARM::VST1LNq8Pseudo, ARM::VST1LNd8, false, false, false, EvenDblSpc, 1, 8 ,true},
+{ ARM::VST1LNq8Pseudo_UPD, ARM::VST1LNd8_UPD, false, true, true, EvenDblSpc, 1, 8 ,true},
+
+{ ARM::VST1d64QPseudo, ARM::VST1d64Q, false, false, false, SingleSpc, 4, 1 ,false},
+{ ARM::VST1d64QPseudoWB_fixed, ARM::VST1d64Qwb_fixed, false, true, false, SingleSpc, 4, 1 ,false},
+{ ARM::VST1d64QPseudoWB_register, ARM::VST1d64Qwb_register, false, true, true, SingleSpc, 4, 1 ,false},
+{ ARM::VST1d64TPseudo, ARM::VST1d64T, false, false, false, SingleSpc, 3, 1 ,false},
+{ ARM::VST1d64TPseudoWB_fixed, ARM::VST1d64Twb_fixed, false, true, false, SingleSpc, 3, 1 ,false},
+{ ARM::VST1d64TPseudoWB_register, ARM::VST1d64Twb_register, false, true, true, SingleSpc, 3, 1 ,false},
+
+{ ARM::VST2LNd16Pseudo, ARM::VST2LNd16, false, false, false, SingleSpc, 2, 4 ,true},
+{ ARM::VST2LNd16Pseudo_UPD, ARM::VST2LNd16_UPD, false, true, true, SingleSpc, 2, 4 ,true},
+{ ARM::VST2LNd32Pseudo, ARM::VST2LNd32, false, false, false, SingleSpc, 2, 2 ,true},
+{ ARM::VST2LNd32Pseudo_UPD, ARM::VST2LNd32_UPD, false, true, true, SingleSpc, 2, 2 ,true},
+{ ARM::VST2LNd8Pseudo, ARM::VST2LNd8, false, false, false, SingleSpc, 2, 8 ,true},
+{ ARM::VST2LNd8Pseudo_UPD, ARM::VST2LNd8_UPD, false, true, true, SingleSpc, 2, 8 ,true},
+{ ARM::VST2LNq16Pseudo, ARM::VST2LNq16, false, false, false, EvenDblSpc, 2, 4,true},
+{ ARM::VST2LNq16Pseudo_UPD, ARM::VST2LNq16_UPD, false, true, true, EvenDblSpc, 2, 4,true},
+{ ARM::VST2LNq32Pseudo, ARM::VST2LNq32, false, false, false, EvenDblSpc, 2, 2,true},
+{ ARM::VST2LNq32Pseudo_UPD, ARM::VST2LNq32_UPD, false, true, true, EvenDblSpc, 2, 2,true},
+
+{ ARM::VST2q16Pseudo, ARM::VST2q16, false, false, false, SingleSpc, 4, 4 ,false},
+{ ARM::VST2q16PseudoWB_fixed, ARM::VST2q16wb_fixed, false, true, false, SingleSpc, 4, 4 ,false},
+{ ARM::VST2q16PseudoWB_register, ARM::VST2q16wb_register, false, true, true, SingleSpc, 4, 4 ,false},
+{ ARM::VST2q32Pseudo, ARM::VST2q32, false, false, false, SingleSpc, 4, 2 ,false},
+{ ARM::VST2q32PseudoWB_fixed, ARM::VST2q32wb_fixed, false, true, false, SingleSpc, 4, 2 ,false},
+{ ARM::VST2q32PseudoWB_register, ARM::VST2q32wb_register, false, true, true, SingleSpc, 4, 2 ,false},
+{ ARM::VST2q8Pseudo, ARM::VST2q8, false, false, false, SingleSpc, 4, 8 ,false},
+{ ARM::VST2q8PseudoWB_fixed, ARM::VST2q8wb_fixed, false, true, false, SingleSpc, 4, 8 ,false},
+{ ARM::VST2q8PseudoWB_register, ARM::VST2q8wb_register, false, true, true, SingleSpc, 4, 8 ,false},
+
+{ ARM::VST3LNd16Pseudo, ARM::VST3LNd16, false, false, false, SingleSpc, 3, 4 ,true},
+{ ARM::VST3LNd16Pseudo_UPD, ARM::VST3LNd16_UPD, false, true, true, SingleSpc, 3, 4 ,true},
+{ ARM::VST3LNd32Pseudo, ARM::VST3LNd32, false, false, false, SingleSpc, 3, 2 ,true},
+{ ARM::VST3LNd32Pseudo_UPD, ARM::VST3LNd32_UPD, false, true, true, SingleSpc, 3, 2 ,true},
+{ ARM::VST3LNd8Pseudo, ARM::VST3LNd8, false, false, false, SingleSpc, 3, 8 ,true},
+{ ARM::VST3LNd8Pseudo_UPD, ARM::VST3LNd8_UPD, false, true, true, SingleSpc, 3, 8 ,true},
+{ ARM::VST3LNq16Pseudo, ARM::VST3LNq16, false, false, false, EvenDblSpc, 3, 4,true},
+{ ARM::VST3LNq16Pseudo_UPD, ARM::VST3LNq16_UPD, false, true, true, EvenDblSpc, 3, 4,true},
+{ ARM::VST3LNq32Pseudo, ARM::VST3LNq32, false, false, false, EvenDblSpc, 3, 2,true},
+{ ARM::VST3LNq32Pseudo_UPD, ARM::VST3LNq32_UPD, false, true, true, EvenDblSpc, 3, 2,true},
+
+{ ARM::VST3d16Pseudo, ARM::VST3d16, false, false, false, SingleSpc, 3, 4 ,true},
+{ ARM::VST3d16Pseudo_UPD, ARM::VST3d16_UPD, false, true, true, SingleSpc, 3, 4 ,true},
+{ ARM::VST3d32Pseudo, ARM::VST3d32, false, false, false, SingleSpc, 3, 2 ,true},
+{ ARM::VST3d32Pseudo_UPD, ARM::VST3d32_UPD, false, true, true, SingleSpc, 3, 2 ,true},
+{ ARM::VST3d8Pseudo, ARM::VST3d8, false, false, false, SingleSpc, 3, 8 ,true},
+{ ARM::VST3d8Pseudo_UPD, ARM::VST3d8_UPD, false, true, true, SingleSpc, 3, 8 ,true},
+
+{ ARM::VST3q16Pseudo_UPD, ARM::VST3q16_UPD, false, true, true, EvenDblSpc, 3, 4 ,true},
+{ ARM::VST3q16oddPseudo, ARM::VST3q16, false, false, false, OddDblSpc, 3, 4 ,true},
+{ ARM::VST3q16oddPseudo_UPD, ARM::VST3q16_UPD, false, true, true, OddDblSpc, 3, 4 ,true},
+{ ARM::VST3q32Pseudo_UPD, ARM::VST3q32_UPD, false, true, true, EvenDblSpc, 3, 2 ,true},
+{ ARM::VST3q32oddPseudo, ARM::VST3q32, false, false, false, OddDblSpc, 3, 2 ,true},
+{ ARM::VST3q32oddPseudo_UPD, ARM::VST3q32_UPD, false, true, true, OddDblSpc, 3, 2 ,true},
+{ ARM::VST3q8Pseudo_UPD, ARM::VST3q8_UPD, false, true, true, EvenDblSpc, 3, 8 ,true},
+{ ARM::VST3q8oddPseudo, ARM::VST3q8, false, false, false, OddDblSpc, 3, 8 ,true},
+{ ARM::VST3q8oddPseudo_UPD, ARM::VST3q8_UPD, false, true, true, OddDblSpc, 3, 8 ,true},
+
+{ ARM::VST4LNd16Pseudo, ARM::VST4LNd16, false, false, false, SingleSpc, 4, 4 ,true},
+{ ARM::VST4LNd16Pseudo_UPD, ARM::VST4LNd16_UPD, false, true, true, SingleSpc, 4, 4 ,true},
+{ ARM::VST4LNd32Pseudo, ARM::VST4LNd32, false, false, false, SingleSpc, 4, 2 ,true},
+{ ARM::VST4LNd32Pseudo_UPD, ARM::VST4LNd32_UPD, false, true, true, SingleSpc, 4, 2 ,true},
+{ ARM::VST4LNd8Pseudo, ARM::VST4LNd8, false, false, false, SingleSpc, 4, 8 ,true},
+{ ARM::VST4LNd8Pseudo_UPD, ARM::VST4LNd8_UPD, false, true, true, SingleSpc, 4, 8 ,true},
+{ ARM::VST4LNq16Pseudo, ARM::VST4LNq16, false, false, false, EvenDblSpc, 4, 4,true},
+{ ARM::VST4LNq16Pseudo_UPD, ARM::VST4LNq16_UPD, false, true, true, EvenDblSpc, 4, 4,true},
+{ ARM::VST4LNq32Pseudo, ARM::VST4LNq32, false, false, false, EvenDblSpc, 4, 2,true},
+{ ARM::VST4LNq32Pseudo_UPD, ARM::VST4LNq32_UPD, false, true, true, EvenDblSpc, 4, 2,true},
+
+{ ARM::VST4d16Pseudo, ARM::VST4d16, false, false, false, SingleSpc, 4, 4 ,true},
+{ ARM::VST4d16Pseudo_UPD, ARM::VST4d16_UPD, false, true, true, SingleSpc, 4, 4 ,true},
+{ ARM::VST4d32Pseudo, ARM::VST4d32, false, false, false, SingleSpc, 4, 2 ,true},
+{ ARM::VST4d32Pseudo_UPD, ARM::VST4d32_UPD, false, true, true, SingleSpc, 4, 2 ,true},
+{ ARM::VST4d8Pseudo, ARM::VST4d8, false, false, false, SingleSpc, 4, 8 ,true},
+{ ARM::VST4d8Pseudo_UPD, ARM::VST4d8_UPD, false, true, true, SingleSpc, 4, 8 ,true},
+
+{ ARM::VST4q16Pseudo_UPD, ARM::VST4q16_UPD, false, true, true, EvenDblSpc, 4, 4 ,true},
+{ ARM::VST4q16oddPseudo, ARM::VST4q16, false, false, false, OddDblSpc, 4, 4 ,true},
+{ ARM::VST4q16oddPseudo_UPD, ARM::VST4q16_UPD, false, true, true, OddDblSpc, 4, 4 ,true},
+{ ARM::VST4q32Pseudo_UPD, ARM::VST4q32_UPD, false, true, true, EvenDblSpc, 4, 2 ,true},
+{ ARM::VST4q32oddPseudo, ARM::VST4q32, false, false, false, OddDblSpc, 4, 2 ,true},
+{ ARM::VST4q32oddPseudo_UPD, ARM::VST4q32_UPD, false, true, true, OddDblSpc, 4, 2 ,true},
+{ ARM::VST4q8Pseudo_UPD, ARM::VST4q8_UPD, false, true, true, EvenDblSpc, 4, 8 ,true},
+{ ARM::VST4q8oddPseudo, ARM::VST4q8, false, false, false, OddDblSpc, 4, 8 ,true},
+{ ARM::VST4q8oddPseudo_UPD, ARM::VST4q8_UPD, false, true, true, OddDblSpc, 4, 8 ,true}
+};
+
+/// LookupNEONLdSt - Search the NEONLdStTable for information about a NEON
+/// load or store pseudo instruction.
+static const NEONLdStTableEntry *LookupNEONLdSt(unsigned Opcode) {
+ const unsigned NumEntries = array_lengthof(NEONLdStTable);
+
+#ifndef NDEBUG
+ // Make sure the table is sorted.
+ static bool TableChecked = false;
+ if (!TableChecked) {
+ for (unsigned i = 0; i != NumEntries-1; ++i)
+ assert(NEONLdStTable[i] < NEONLdStTable[i+1] &&
+ "NEONLdStTable is not sorted!");
+ TableChecked = true;
+ }
+#endif
+
+ const NEONLdStTableEntry *I =
+ std::lower_bound(NEONLdStTable, NEONLdStTable + NumEntries, Opcode);
+ if (I != NEONLdStTable + NumEntries && I->PseudoOpc == Opcode)
+ return I;
+ return nullptr;
+}
+
+/// GetDSubRegs - Get 4 D subregisters of a Q, QQ, or QQQQ register,
+/// corresponding to the specified register spacing. Not all of the results
+/// are necessarily valid, e.g., a Q register only has 2 D subregisters.
+static void GetDSubRegs(unsigned Reg, NEONRegSpacing RegSpc,
+ const TargetRegisterInfo *TRI, unsigned &D0,
+ unsigned &D1, unsigned &D2, unsigned &D3) {
+ if (RegSpc == SingleSpc) {
+ D0 = TRI->getSubReg(Reg, ARM::dsub_0);
+ D1 = TRI->getSubReg(Reg, ARM::dsub_1);
+ D2 = TRI->getSubReg(Reg, ARM::dsub_2);
+ D3 = TRI->getSubReg(Reg, ARM::dsub_3);
+ } else if (RegSpc == EvenDblSpc) {
+ D0 = TRI->getSubReg(Reg, ARM::dsub_0);
+ D1 = TRI->getSubReg(Reg, ARM::dsub_2);
+ D2 = TRI->getSubReg(Reg, ARM::dsub_4);
+ D3 = TRI->getSubReg(Reg, ARM::dsub_6);
+ } else {
+ assert(RegSpc == OddDblSpc && "unknown register spacing");
+ D0 = TRI->getSubReg(Reg, ARM::dsub_1);
+ D1 = TRI->getSubReg(Reg, ARM::dsub_3);
+ D2 = TRI->getSubReg(Reg, ARM::dsub_5);
+ D3 = TRI->getSubReg(Reg, ARM::dsub_7);
+ }
+}
+
+/// ExpandVLD - Translate VLD pseudo instructions with Q, QQ or QQQQ register
+/// operands to real VLD instructions with D register operands.
+void ARMExpandPseudo::ExpandVLD(MachineBasicBlock::iterator &MBBI) {
+ MachineInstr &MI = *MBBI;
+ MachineBasicBlock &MBB = *MI.getParent();
+
+ const NEONLdStTableEntry *TableEntry = LookupNEONLdSt(MI.getOpcode());
+ assert(TableEntry && TableEntry->IsLoad && "NEONLdStTable lookup failed");
+ NEONRegSpacing RegSpc = (NEONRegSpacing)TableEntry->RegSpacing;
+ unsigned NumRegs = TableEntry->NumRegs;
+
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(),
+ TII->get(TableEntry->RealOpc));
+ unsigned OpIdx = 0;
+
+ bool DstIsDead = MI.getOperand(OpIdx).isDead();
+ unsigned DstReg = MI.getOperand(OpIdx++).getReg();
+ unsigned D0, D1, D2, D3;
+ GetDSubRegs(DstReg, RegSpc, TRI, D0, D1, D2, D3);
+ MIB.addReg(D0, RegState::Define | getDeadRegState(DstIsDead));
+ if (NumRegs > 1 && TableEntry->copyAllListRegs)
+ MIB.addReg(D1, RegState::Define | getDeadRegState(DstIsDead));
+ if (NumRegs > 2 && TableEntry->copyAllListRegs)
+ MIB.addReg(D2, RegState::Define | getDeadRegState(DstIsDead));
+ if (NumRegs > 3 && TableEntry->copyAllListRegs)
+ MIB.addReg(D3, RegState::Define | getDeadRegState(DstIsDead));
+
+ if (TableEntry->isUpdating)
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Copy the addrmode6 operands.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ // Copy the am6offset operand.
+ if (TableEntry->hasWritebackOperand)
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // For an instruction writing double-spaced subregs, the pseudo instruction
+ // has an extra operand that is a use of the super-register. Record the
+ // operand index and skip over it.
+ unsigned SrcOpIdx = 0;
+ if (RegSpc == EvenDblSpc || RegSpc == OddDblSpc)
+ SrcOpIdx = OpIdx++;
+
+ // Copy the predicate operands.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Copy the super-register source operand used for double-spaced subregs over
+ // to the new instruction as an implicit operand.
+ if (SrcOpIdx != 0) {
+ MachineOperand MO = MI.getOperand(SrcOpIdx);
+ MO.setImplicit(true);
+ MIB.addOperand(MO);
+ }
+ // Add an implicit def for the super-register.
+ MIB.addReg(DstReg, RegState::ImplicitDefine | getDeadRegState(DstIsDead));
+ TransferImpOps(MI, MIB, MIB);
+
+ // Transfer memoperands.
+ MIB->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+
+ MI.eraseFromParent();
+}
+
+/// ExpandVST - Translate VST pseudo instructions with Q, QQ or QQQQ register
+/// operands to real VST instructions with D register operands.
+void ARMExpandPseudo::ExpandVST(MachineBasicBlock::iterator &MBBI) {
+ MachineInstr &MI = *MBBI;
+ MachineBasicBlock &MBB = *MI.getParent();
+
+ const NEONLdStTableEntry *TableEntry = LookupNEONLdSt(MI.getOpcode());
+ assert(TableEntry && !TableEntry->IsLoad && "NEONLdStTable lookup failed");
+ NEONRegSpacing RegSpc = (NEONRegSpacing)TableEntry->RegSpacing;
+ unsigned NumRegs = TableEntry->NumRegs;
+
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(),
+ TII->get(TableEntry->RealOpc));
+ unsigned OpIdx = 0;
+ if (TableEntry->isUpdating)
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Copy the addrmode6 operands.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ // Copy the am6offset operand.
+ if (TableEntry->hasWritebackOperand)
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ bool SrcIsKill = MI.getOperand(OpIdx).isKill();
+ bool SrcIsUndef = MI.getOperand(OpIdx).isUndef();
+ unsigned SrcReg = MI.getOperand(OpIdx++).getReg();
+ unsigned D0, D1, D2, D3;
+ GetDSubRegs(SrcReg, RegSpc, TRI, D0, D1, D2, D3);
+ MIB.addReg(D0, getUndefRegState(SrcIsUndef));
+ if (NumRegs > 1 && TableEntry->copyAllListRegs)
+ MIB.addReg(D1, getUndefRegState(SrcIsUndef));
+ if (NumRegs > 2 && TableEntry->copyAllListRegs)
+ MIB.addReg(D2, getUndefRegState(SrcIsUndef));
+ if (NumRegs > 3 && TableEntry->copyAllListRegs)
+ MIB.addReg(D3, getUndefRegState(SrcIsUndef));
+
+ // Copy the predicate operands.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ if (SrcIsKill && !SrcIsUndef) // Add an implicit kill for the super-reg.
+ MIB->addRegisterKilled(SrcReg, TRI, true);
+ else if (!SrcIsUndef)
+ MIB.addReg(SrcReg, RegState::Implicit); // Add implicit uses for src reg.
+ TransferImpOps(MI, MIB, MIB);
+
+ // Transfer memoperands.
+ MIB->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+
+ MI.eraseFromParent();
+}
+
+/// ExpandLaneOp - Translate VLD*LN and VST*LN instructions with Q, QQ or QQQQ
+/// register operands to real instructions with D register operands.
+void ARMExpandPseudo::ExpandLaneOp(MachineBasicBlock::iterator &MBBI) {
+ MachineInstr &MI = *MBBI;
+ MachineBasicBlock &MBB = *MI.getParent();
+
+ const NEONLdStTableEntry *TableEntry = LookupNEONLdSt(MI.getOpcode());
+ assert(TableEntry && "NEONLdStTable lookup failed");
+ NEONRegSpacing RegSpc = (NEONRegSpacing)TableEntry->RegSpacing;
+ unsigned NumRegs = TableEntry->NumRegs;
+ unsigned RegElts = TableEntry->RegElts;
+
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(),
+ TII->get(TableEntry->RealOpc));
+ unsigned OpIdx = 0;
+ // The lane operand is always the 3rd from last operand, before the 2
+ // predicate operands.
+ unsigned Lane = MI.getOperand(MI.getDesc().getNumOperands() - 3).getImm();
+
+ // Adjust the lane and spacing as needed for Q registers.
+ assert(RegSpc != OddDblSpc && "unexpected register spacing for VLD/VST-lane");
+ if (RegSpc == EvenDblSpc && Lane >= RegElts) {
+ RegSpc = OddDblSpc;
+ Lane -= RegElts;
+ }
+ assert(Lane < RegElts && "out of range lane for VLD/VST-lane");
+
+ unsigned D0 = 0, D1 = 0, D2 = 0, D3 = 0;
+ unsigned DstReg = 0;
+ bool DstIsDead = false;
+ if (TableEntry->IsLoad) {
+ DstIsDead = MI.getOperand(OpIdx).isDead();
+ DstReg = MI.getOperand(OpIdx++).getReg();
+ GetDSubRegs(DstReg, RegSpc, TRI, D0, D1, D2, D3);
+ MIB.addReg(D0, RegState::Define | getDeadRegState(DstIsDead));
+ if (NumRegs > 1)
+ MIB.addReg(D1, RegState::Define | getDeadRegState(DstIsDead));
+ if (NumRegs > 2)
+ MIB.addReg(D2, RegState::Define | getDeadRegState(DstIsDead));
+ if (NumRegs > 3)
+ MIB.addReg(D3, RegState::Define | getDeadRegState(DstIsDead));
+ }
+
+ if (TableEntry->isUpdating)
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Copy the addrmode6 operands.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ // Copy the am6offset operand.
+ if (TableEntry->hasWritebackOperand)
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Grab the super-register source.
+ MachineOperand MO = MI.getOperand(OpIdx++);
+ if (!TableEntry->IsLoad)
+ GetDSubRegs(MO.getReg(), RegSpc, TRI, D0, D1, D2, D3);
+
+ // Add the subregs as sources of the new instruction.
+ unsigned SrcFlags = (getUndefRegState(MO.isUndef()) |
+ getKillRegState(MO.isKill()));
+ MIB.addReg(D0, SrcFlags);
+ if (NumRegs > 1)
+ MIB.addReg(D1, SrcFlags);
+ if (NumRegs > 2)
+ MIB.addReg(D2, SrcFlags);
+ if (NumRegs > 3)
+ MIB.addReg(D3, SrcFlags);
+
+ // Add the lane number operand.
+ MIB.addImm(Lane);
+ OpIdx += 1;
+
+ // Copy the predicate operands.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Copy the super-register source to be an implicit source.
+ MO.setImplicit(true);
+ MIB.addOperand(MO);
+ if (TableEntry->IsLoad)
+ // Add an implicit def for the super-register.
+ MIB.addReg(DstReg, RegState::ImplicitDefine | getDeadRegState(DstIsDead));
+ TransferImpOps(MI, MIB, MIB);
+ // Transfer memoperands.
+ MIB->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+ MI.eraseFromParent();
+}
+
+/// ExpandVTBL - Translate VTBL and VTBX pseudo instructions with Q or QQ
+/// register operands to real instructions with D register operands.
+void ARMExpandPseudo::ExpandVTBL(MachineBasicBlock::iterator &MBBI,
+ unsigned Opc, bool IsExt) {
+ MachineInstr &MI = *MBBI;
+ MachineBasicBlock &MBB = *MI.getParent();
+
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc));
+ unsigned OpIdx = 0;
+
+ // Transfer the destination register operand.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ if (IsExt)
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ bool SrcIsKill = MI.getOperand(OpIdx).isKill();
+ unsigned SrcReg = MI.getOperand(OpIdx++).getReg();
+ unsigned D0, D1, D2, D3;
+ GetDSubRegs(SrcReg, SingleSpc, TRI, D0, D1, D2, D3);
+ MIB.addReg(D0);
+
+ // Copy the other source register operand.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Copy the predicate operands.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Add an implicit kill and use for the super-reg.
+ MIB.addReg(SrcReg, RegState::Implicit | getKillRegState(SrcIsKill));
+ TransferImpOps(MI, MIB, MIB);
+ MI.eraseFromParent();
+}
+
+static bool IsAnAddressOperand(const MachineOperand &MO) {
+ // This check is overly conservative. Unless we are certain that the machine
+ // operand is not a symbol reference, we return that it is a symbol reference.
+ // This is important as the load pair may not be split up Windows.
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register:
+ case MachineOperand::MO_Immediate:
+ case MachineOperand::MO_CImmediate:
+ case MachineOperand::MO_FPImmediate:
+ return false;
+ case MachineOperand::MO_MachineBasicBlock:
+ return true;
+ case MachineOperand::MO_FrameIndex:
+ return false;
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_TargetIndex:
+ case MachineOperand::MO_JumpTableIndex:
+ case MachineOperand::MO_ExternalSymbol:
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_BlockAddress:
+ return true;
+ case MachineOperand::MO_RegisterMask:
+ case MachineOperand::MO_RegisterLiveOut:
+ return false;
+ case MachineOperand::MO_Metadata:
+ case MachineOperand::MO_MCSymbol:
+ return true;
+ case MachineOperand::MO_CFIIndex:
+ return false;
+ }
+ llvm_unreachable("unhandled machine operand type");
+}
+
+void ARMExpandPseudo::ExpandMOV32BitImm(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI) {
+ MachineInstr &MI = *MBBI;
+ unsigned Opcode = MI.getOpcode();
+ unsigned PredReg = 0;
+ ARMCC::CondCodes Pred = getInstrPredicate(&MI, PredReg);
+ unsigned DstReg = MI.getOperand(0).getReg();
+ bool DstIsDead = MI.getOperand(0).isDead();
+ bool isCC = Opcode == ARM::MOVCCi32imm || Opcode == ARM::t2MOVCCi32imm;
+ const MachineOperand &MO = MI.getOperand(isCC ? 2 : 1);
+ bool RequiresBundling = STI->isTargetWindows() && IsAnAddressOperand(MO);
+ MachineInstrBuilder LO16, HI16;
+
+ if (!STI->hasV6T2Ops() &&
+ (Opcode == ARM::MOVi32imm || Opcode == ARM::MOVCCi32imm)) {
+ // FIXME Windows CE supports older ARM CPUs
+ assert(!STI->isTargetWindows() && "Windows on ARM requires ARMv7+");
+
+ // Expand into a movi + orr.
+ LO16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVi), DstReg);
+ HI16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::ORRri))
+ .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(DstReg);
+
+ assert (MO.isImm() && "MOVi32imm w/ non-immediate source operand!");
+ unsigned ImmVal = (unsigned)MO.getImm();
+ unsigned SOImmValV1 = ARM_AM::getSOImmTwoPartFirst(ImmVal);
+ unsigned SOImmValV2 = ARM_AM::getSOImmTwoPartSecond(ImmVal);
+ LO16 = LO16.addImm(SOImmValV1);
+ HI16 = HI16.addImm(SOImmValV2);
+ LO16->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+ HI16->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+ LO16.addImm(Pred).addReg(PredReg).addReg(0);
+ HI16.addImm(Pred).addReg(PredReg).addReg(0);
+ TransferImpOps(MI, LO16, HI16);
+ MI.eraseFromParent();
+ return;
+ }
+
+ unsigned LO16Opc = 0;
+ unsigned HI16Opc = 0;
+ if (Opcode == ARM::t2MOVi32imm || Opcode == ARM::t2MOVCCi32imm) {
+ LO16Opc = ARM::t2MOVi16;
+ HI16Opc = ARM::t2MOVTi16;
+ } else {
+ LO16Opc = ARM::MOVi16;
+ HI16Opc = ARM::MOVTi16;
+ }
+
+ LO16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(LO16Opc), DstReg);
+ HI16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(HI16Opc))
+ .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(DstReg);
+
+ switch (MO.getType()) {
+ case MachineOperand::MO_Immediate: {
+ unsigned Imm = MO.getImm();
+ unsigned Lo16 = Imm & 0xffff;
+ unsigned Hi16 = (Imm >> 16) & 0xffff;
+ LO16 = LO16.addImm(Lo16);
+ HI16 = HI16.addImm(Hi16);
+ break;
+ }
+ case MachineOperand::MO_ExternalSymbol: {
+ const char *ES = MO.getSymbolName();
+ unsigned TF = MO.getTargetFlags();
+ LO16 = LO16.addExternalSymbol(ES, TF | ARMII::MO_LO16);
+ HI16 = HI16.addExternalSymbol(ES, TF | ARMII::MO_HI16);
+ break;
+ }
+ default: {
+ const GlobalValue *GV = MO.getGlobal();
+ unsigned TF = MO.getTargetFlags();
+ LO16 = LO16.addGlobalAddress(GV, MO.getOffset(), TF | ARMII::MO_LO16);
+ HI16 = HI16.addGlobalAddress(GV, MO.getOffset(), TF | ARMII::MO_HI16);
+ break;
+ }
+ }
+
+ LO16->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+ HI16->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+ LO16.addImm(Pred).addReg(PredReg);
+ HI16.addImm(Pred).addReg(PredReg);
+
+ if (RequiresBundling)
+ finalizeBundle(MBB, &*LO16, &*MBBI);
+
+ TransferImpOps(MI, LO16, HI16);
+ MI.eraseFromParent();
+}
+
+bool ARMExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI) {
+ MachineInstr &MI = *MBBI;
+ unsigned Opcode = MI.getOpcode();
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::VMOVScc:
+ case ARM::VMOVDcc: {
+ unsigned newOpc = Opcode == ARM::VMOVScc ? ARM::VMOVS : ARM::VMOVD;
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(newOpc),
+ MI.getOperand(1).getReg())
+ .addOperand(MI.getOperand(2))
+ .addImm(MI.getOperand(3).getImm()) // 'pred'
+ .addOperand(MI.getOperand(4));
+
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::t2MOVCCr:
+ case ARM::MOVCCr: {
+ unsigned Opc = AFI->isThumbFunction() ? ARM::t2MOVr : ARM::MOVr;
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc),
+ MI.getOperand(1).getReg())
+ .addOperand(MI.getOperand(2))
+ .addImm(MI.getOperand(3).getImm()) // 'pred'
+ .addOperand(MI.getOperand(4))
+ .addReg(0); // 's' bit
+
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::MOVCCsi: {
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVsi),
+ (MI.getOperand(1).getReg()))
+ .addOperand(MI.getOperand(2))
+ .addImm(MI.getOperand(3).getImm())
+ .addImm(MI.getOperand(4).getImm()) // 'pred'
+ .addOperand(MI.getOperand(5))
+ .addReg(0); // 's' bit
+
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::MOVCCsr: {
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVsr),
+ (MI.getOperand(1).getReg()))
+ .addOperand(MI.getOperand(2))
+ .addOperand(MI.getOperand(3))
+ .addImm(MI.getOperand(4).getImm())
+ .addImm(MI.getOperand(5).getImm()) // 'pred'
+ .addOperand(MI.getOperand(6))
+ .addReg(0); // 's' bit
+
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::t2MOVCCi16:
+ case ARM::MOVCCi16: {
+ unsigned NewOpc = AFI->isThumbFunction() ? ARM::t2MOVi16 : ARM::MOVi16;
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc),
+ MI.getOperand(1).getReg())
+ .addImm(MI.getOperand(2).getImm())
+ .addImm(MI.getOperand(3).getImm()) // 'pred'
+ .addOperand(MI.getOperand(4));
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::t2MOVCCi:
+ case ARM::MOVCCi: {
+ unsigned Opc = AFI->isThumbFunction() ? ARM::t2MOVi : ARM::MOVi;
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc),
+ MI.getOperand(1).getReg())
+ .addImm(MI.getOperand(2).getImm())
+ .addImm(MI.getOperand(3).getImm()) // 'pred'
+ .addOperand(MI.getOperand(4))
+ .addReg(0); // 's' bit
+
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::t2MVNCCi:
+ case ARM::MVNCCi: {
+ unsigned Opc = AFI->isThumbFunction() ? ARM::t2MVNi : ARM::MVNi;
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc),
+ MI.getOperand(1).getReg())
+ .addImm(MI.getOperand(2).getImm())
+ .addImm(MI.getOperand(3).getImm()) // 'pred'
+ .addOperand(MI.getOperand(4))
+ .addReg(0); // 's' bit
+
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::t2MOVCClsl:
+ case ARM::t2MOVCClsr:
+ case ARM::t2MOVCCasr:
+ case ARM::t2MOVCCror: {
+ unsigned NewOpc;
+ switch (Opcode) {
+ case ARM::t2MOVCClsl: NewOpc = ARM::t2LSLri; break;
+ case ARM::t2MOVCClsr: NewOpc = ARM::t2LSRri; break;
+ case ARM::t2MOVCCasr: NewOpc = ARM::t2ASRri; break;
+ case ARM::t2MOVCCror: NewOpc = ARM::t2RORri; break;
+ default: llvm_unreachable("unexpeced conditional move");
+ }
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc),
+ MI.getOperand(1).getReg())
+ .addOperand(MI.getOperand(2))
+ .addImm(MI.getOperand(3).getImm())
+ .addImm(MI.getOperand(4).getImm()) // 'pred'
+ .addOperand(MI.getOperand(5))
+ .addReg(0); // 's' bit
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::Int_eh_sjlj_dispatchsetup: {
+ MachineFunction &MF = *MI.getParent()->getParent();
+ const ARMBaseInstrInfo *AII =
+ static_cast<const ARMBaseInstrInfo*>(TII);
+ const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
+ // For functions using a base pointer, we rematerialize it (via the frame
+ // pointer) here since eh.sjlj.setjmp and eh.sjlj.longjmp don't do it
+ // for us. Otherwise, expand to nothing.
+ if (RI.hasBasePointer(MF)) {
+ int32_t NumBytes = AFI->getFramePtrSpillOffset();
+ unsigned FramePtr = RI.getFrameRegister(MF);
+ assert(MF.getTarget().getFrameLowering()->hasFP(MF) &&
+ "base pointer without frame pointer?");
+
+ if (AFI->isThumb2Function()) {
+ emitT2RegPlusImmediate(MBB, MBBI, MI.getDebugLoc(), ARM::R6,
+ FramePtr, -NumBytes, ARMCC::AL, 0, *TII);
+ } else if (AFI->isThumbFunction()) {
+ emitThumbRegPlusImmediate(MBB, MBBI, MI.getDebugLoc(), ARM::R6,
+ FramePtr, -NumBytes, *TII, RI);
+ } else {
+ emitARMRegPlusImmediate(MBB, MBBI, MI.getDebugLoc(), ARM::R6,
+ FramePtr, -NumBytes, ARMCC::AL, 0,
+ *TII);
+ }
+ // If there's dynamic realignment, adjust for it.
+ if (RI.needsStackRealignment(MF)) {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ unsigned MaxAlign = MFI->getMaxAlignment();
+ assert (!AFI->isThumb1OnlyFunction());
+ // Emit bic r6, r6, MaxAlign
+ unsigned bicOpc = AFI->isThumbFunction() ?
+ ARM::t2BICri : ARM::BICri;
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, MI.getDebugLoc(),
+ TII->get(bicOpc), ARM::R6)
+ .addReg(ARM::R6, RegState::Kill)
+ .addImm(MaxAlign-1)));
+ }
+
+ }
+ MI.eraseFromParent();
+ return true;
+ }
+
+ case ARM::MOVsrl_flag:
+ case ARM::MOVsra_flag: {
+ // These are just fancy MOVs instructions.
+ AddDefaultPred(BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVsi),
+ MI.getOperand(0).getReg())
+ .addOperand(MI.getOperand(1))
+ .addImm(ARM_AM::getSORegOpc((Opcode == ARM::MOVsrl_flag ?
+ ARM_AM::lsr : ARM_AM::asr),
+ 1)))
+ .addReg(ARM::CPSR, RegState::Define);
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::RRX: {
+ // This encodes as "MOVs Rd, Rm, rrx
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, MBBI, MI.getDebugLoc(),TII->get(ARM::MOVsi),
+ MI.getOperand(0).getReg())
+ .addOperand(MI.getOperand(1))
+ .addImm(ARM_AM::getSORegOpc(ARM_AM::rrx, 0)))
+ .addReg(0);
+ TransferImpOps(MI, MIB, MIB);
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::tTPsoft:
+ case ARM::TPsoft: {
+ MachineInstrBuilder MIB;
+ if (Opcode == ARM::tTPsoft)
+ MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(),
+ TII->get( ARM::tBL))
+ .addImm((unsigned)ARMCC::AL).addReg(0)
+ .addExternalSymbol("__aeabi_read_tp", 0);
+ else
+ MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(),
+ TII->get( ARM::BL))
+ .addExternalSymbol("__aeabi_read_tp", 0);
+
+ MIB->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+ TransferImpOps(MI, MIB, MIB);
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::tLDRpci_pic:
+ case ARM::t2LDRpci_pic: {
+ unsigned NewLdOpc = (Opcode == ARM::tLDRpci_pic)
+ ? ARM::tLDRpci : ARM::t2LDRpci;
+ unsigned DstReg = MI.getOperand(0).getReg();
+ bool DstIsDead = MI.getOperand(0).isDead();
+ MachineInstrBuilder MIB1 =
+ AddDefaultPred(BuildMI(MBB, MBBI, MI.getDebugLoc(),
+ TII->get(NewLdOpc), DstReg)
+ .addOperand(MI.getOperand(1)));
+ MIB1->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+ MachineInstrBuilder MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(),
+ TII->get(ARM::tPICADD))
+ .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(DstReg)
+ .addOperand(MI.getOperand(2));
+ TransferImpOps(MI, MIB1, MIB2);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ case ARM::LDRLIT_ga_abs:
+ case ARM::LDRLIT_ga_pcrel:
+ case ARM::LDRLIT_ga_pcrel_ldr:
+ case ARM::tLDRLIT_ga_abs:
+ case ARM::tLDRLIT_ga_pcrel: {
+ unsigned DstReg = MI.getOperand(0).getReg();
+ bool DstIsDead = MI.getOperand(0).isDead();
+ const MachineOperand &MO1 = MI.getOperand(1);
+ const GlobalValue *GV = MO1.getGlobal();
+ bool IsARM =
+ Opcode != ARM::tLDRLIT_ga_pcrel && Opcode != ARM::tLDRLIT_ga_abs;
+ bool IsPIC =
+ Opcode != ARM::LDRLIT_ga_abs && Opcode != ARM::tLDRLIT_ga_abs;
+ unsigned LDRLITOpc = IsARM ? ARM::LDRi12 : ARM::tLDRpci;
+ unsigned PICAddOpc =
+ IsARM
+ ? (Opcode == ARM::LDRLIT_ga_pcrel_ldr ? ARM::PICADD : ARM::PICLDR)
+ : ARM::tPICADD;
+
+ // We need a new const-pool entry to load from.
+ MachineConstantPool *MCP = MBB.getParent()->getConstantPool();
+ unsigned ARMPCLabelIndex = 0;
+ MachineConstantPoolValue *CPV;
+
+ if (IsPIC) {
+ unsigned PCAdj = IsARM ? 8 : 4;
+ ARMPCLabelIndex = AFI->createPICLabelUId();
+ CPV = ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj);
+ } else
+ CPV = ARMConstantPoolConstant::Create(GV, ARMCP::no_modifier);
+
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(LDRLITOpc), DstReg)
+ .addConstantPoolIndex(MCP->getConstantPoolIndex(CPV, 4));
+ if (IsARM)
+ MIB.addImm(0);
+ AddDefaultPred(MIB);
+
+ if (IsPIC) {
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(PICAddOpc))
+ .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(DstReg)
+ .addImm(ARMPCLabelIndex);
+
+ if (IsARM)
+ AddDefaultPred(MIB);
+ }
+
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::MOV_ga_pcrel:
+ case ARM::MOV_ga_pcrel_ldr:
+ case ARM::t2MOV_ga_pcrel: {
+ // Expand into movw + movw. Also "add pc" / ldr [pc] in PIC mode.
+ unsigned LabelId = AFI->createPICLabelUId();
+ unsigned DstReg = MI.getOperand(0).getReg();
+ bool DstIsDead = MI.getOperand(0).isDead();
+ const MachineOperand &MO1 = MI.getOperand(1);
+ const GlobalValue *GV = MO1.getGlobal();
+ unsigned TF = MO1.getTargetFlags();
+ bool isARM = Opcode != ARM::t2MOV_ga_pcrel;
+ unsigned LO16Opc = isARM ? ARM::MOVi16_ga_pcrel : ARM::t2MOVi16_ga_pcrel;
+ unsigned HI16Opc = isARM ? ARM::MOVTi16_ga_pcrel :ARM::t2MOVTi16_ga_pcrel;
+ unsigned LO16TF = TF | ARMII::MO_LO16;
+ unsigned HI16TF = TF | ARMII::MO_HI16;
+ unsigned PICAddOpc = isARM
+ ? (Opcode == ARM::MOV_ga_pcrel_ldr ? ARM::PICLDR : ARM::PICADD)
+ : ARM::tPICADD;
+ MachineInstrBuilder MIB1 = BuildMI(MBB, MBBI, MI.getDebugLoc(),
+ TII->get(LO16Opc), DstReg)
+ .addGlobalAddress(GV, MO1.getOffset(), TF | LO16TF)
+ .addImm(LabelId);
+
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(HI16Opc), DstReg)
+ .addReg(DstReg)
+ .addGlobalAddress(GV, MO1.getOffset(), TF | HI16TF)
+ .addImm(LabelId);
+
+ MachineInstrBuilder MIB3 = BuildMI(MBB, MBBI, MI.getDebugLoc(),
+ TII->get(PICAddOpc))
+ .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(DstReg).addImm(LabelId);
+ if (isARM) {
+ AddDefaultPred(MIB3);
+ if (Opcode == ARM::MOV_ga_pcrel_ldr)
+ MIB3->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+ }
+ TransferImpOps(MI, MIB1, MIB3);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ case ARM::MOVi32imm:
+ case ARM::MOVCCi32imm:
+ case ARM::t2MOVi32imm:
+ case ARM::t2MOVCCi32imm:
+ ExpandMOV32BitImm(MBB, MBBI);
+ return true;
+
+ case ARM::SUBS_PC_LR: {
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::SUBri), ARM::PC)
+ .addReg(ARM::LR)
+ .addOperand(MI.getOperand(0))
+ .addOperand(MI.getOperand(1))
+ .addOperand(MI.getOperand(2))
+ .addReg(ARM::CPSR, RegState::Undef);
+ TransferImpOps(MI, MIB, MIB);
+ MI.eraseFromParent();
+ return true;
+ }
+ case ARM::VLDMQIA: {
+ unsigned NewOpc = ARM::VLDMDIA;
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc));
+ unsigned OpIdx = 0;
+
+ // Grab the Q register destination.
+ bool DstIsDead = MI.getOperand(OpIdx).isDead();
+ unsigned DstReg = MI.getOperand(OpIdx++).getReg();
+
+ // Copy the source register.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Copy the predicate operands.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Add the destination operands (D subregs).
+ unsigned D0 = TRI->getSubReg(DstReg, ARM::dsub_0);
+ unsigned D1 = TRI->getSubReg(DstReg, ARM::dsub_1);
+ MIB.addReg(D0, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(D1, RegState::Define | getDeadRegState(DstIsDead));
+
+ // Add an implicit def for the super-register.
+ MIB.addReg(DstReg, RegState::ImplicitDefine | getDeadRegState(DstIsDead));
+ TransferImpOps(MI, MIB, MIB);
+ MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+ MI.eraseFromParent();
+ return true;
+ }
+
+ case ARM::VSTMQIA: {
+ unsigned NewOpc = ARM::VSTMDIA;
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc));
+ unsigned OpIdx = 0;
+
+ // Grab the Q register source.
+ bool SrcIsKill = MI.getOperand(OpIdx).isKill();
+ unsigned SrcReg = MI.getOperand(OpIdx++).getReg();
+
+ // Copy the destination register.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Copy the predicate operands.
+ MIB.addOperand(MI.getOperand(OpIdx++));
+ MIB.addOperand(MI.getOperand(OpIdx++));
+
+ // Add the source operands (D subregs).
+ unsigned D0 = TRI->getSubReg(SrcReg, ARM::dsub_0);
+ unsigned D1 = TRI->getSubReg(SrcReg, ARM::dsub_1);
+ MIB.addReg(D0).addReg(D1);
+
+ if (SrcIsKill) // Add an implicit kill for the Q register.
+ MIB->addRegisterKilled(SrcReg, TRI, true);
+
+ TransferImpOps(MI, MIB, MIB);
+ MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+ MI.eraseFromParent();
+ return true;
+ }
+
+ case ARM::VLD2q8Pseudo:
+ case ARM::VLD2q16Pseudo:
+ case ARM::VLD2q32Pseudo:
+ case ARM::VLD2q8PseudoWB_fixed:
+ case ARM::VLD2q16PseudoWB_fixed:
+ case ARM::VLD2q32PseudoWB_fixed:
+ case ARM::VLD2q8PseudoWB_register:
+ case ARM::VLD2q16PseudoWB_register:
+ case ARM::VLD2q32PseudoWB_register:
+ case ARM::VLD3d8Pseudo:
+ case ARM::VLD3d16Pseudo:
+ case ARM::VLD3d32Pseudo:
+ case ARM::VLD1d64TPseudo:
+ case ARM::VLD1d64TPseudoWB_fixed:
+ case ARM::VLD3d8Pseudo_UPD:
+ case ARM::VLD3d16Pseudo_UPD:
+ case ARM::VLD3d32Pseudo_UPD:
+ case ARM::VLD3q8Pseudo_UPD:
+ case ARM::VLD3q16Pseudo_UPD:
+ case ARM::VLD3q32Pseudo_UPD:
+ case ARM::VLD3q8oddPseudo:
+ case ARM::VLD3q16oddPseudo:
+ case ARM::VLD3q32oddPseudo:
+ case ARM::VLD3q8oddPseudo_UPD:
+ case ARM::VLD3q16oddPseudo_UPD:
+ case ARM::VLD3q32oddPseudo_UPD:
+ case ARM::VLD4d8Pseudo:
+ case ARM::VLD4d16Pseudo:
+ case ARM::VLD4d32Pseudo:
+ case ARM::VLD1d64QPseudo:
+ case ARM::VLD1d64QPseudoWB_fixed:
+ case ARM::VLD4d8Pseudo_UPD:
+ case ARM::VLD4d16Pseudo_UPD:
+ case ARM::VLD4d32Pseudo_UPD:
+ case ARM::VLD4q8Pseudo_UPD:
+ case ARM::VLD4q16Pseudo_UPD:
+ case ARM::VLD4q32Pseudo_UPD:
+ case ARM::VLD4q8oddPseudo:
+ case ARM::VLD4q16oddPseudo:
+ case ARM::VLD4q32oddPseudo:
+ case ARM::VLD4q8oddPseudo_UPD:
+ case ARM::VLD4q16oddPseudo_UPD:
+ case ARM::VLD4q32oddPseudo_UPD:
+ case ARM::VLD3DUPd8Pseudo:
+ case ARM::VLD3DUPd16Pseudo:
+ case ARM::VLD3DUPd32Pseudo:
+ case ARM::VLD3DUPd8Pseudo_UPD:
+ case ARM::VLD3DUPd16Pseudo_UPD:
+ case ARM::VLD3DUPd32Pseudo_UPD:
+ case ARM::VLD4DUPd8Pseudo:
+ case ARM::VLD4DUPd16Pseudo:
+ case ARM::VLD4DUPd32Pseudo:
+ case ARM::VLD4DUPd8Pseudo_UPD:
+ case ARM::VLD4DUPd16Pseudo_UPD:
+ case ARM::VLD4DUPd32Pseudo_UPD:
+ ExpandVLD(MBBI);
+ return true;
+
+ case ARM::VST2q8Pseudo:
+ case ARM::VST2q16Pseudo:
+ case ARM::VST2q32Pseudo:
+ case ARM::VST2q8PseudoWB_fixed:
+ case ARM::VST2q16PseudoWB_fixed:
+ case ARM::VST2q32PseudoWB_fixed:
+ case ARM::VST2q8PseudoWB_register:
+ case ARM::VST2q16PseudoWB_register:
+ case ARM::VST2q32PseudoWB_register:
+ case ARM::VST3d8Pseudo:
+ case ARM::VST3d16Pseudo:
+ case ARM::VST3d32Pseudo:
+ case ARM::VST1d64TPseudo:
+ case ARM::VST3d8Pseudo_UPD:
+ case ARM::VST3d16Pseudo_UPD:
+ case ARM::VST3d32Pseudo_UPD:
+ case ARM::VST1d64TPseudoWB_fixed:
+ case ARM::VST1d64TPseudoWB_register:
+ case ARM::VST3q8Pseudo_UPD:
+ case ARM::VST3q16Pseudo_UPD:
+ case ARM::VST3q32Pseudo_UPD:
+ case ARM::VST3q8oddPseudo:
+ case ARM::VST3q16oddPseudo:
+ case ARM::VST3q32oddPseudo:
+ case ARM::VST3q8oddPseudo_UPD:
+ case ARM::VST3q16oddPseudo_UPD:
+ case ARM::VST3q32oddPseudo_UPD:
+ case ARM::VST4d8Pseudo:
+ case ARM::VST4d16Pseudo:
+ case ARM::VST4d32Pseudo:
+ case ARM::VST1d64QPseudo:
+ case ARM::VST4d8Pseudo_UPD:
+ case ARM::VST4d16Pseudo_UPD:
+ case ARM::VST4d32Pseudo_UPD:
+ case ARM::VST1d64QPseudoWB_fixed:
+ case ARM::VST1d64QPseudoWB_register:
+ case ARM::VST4q8Pseudo_UPD:
+ case ARM::VST4q16Pseudo_UPD:
+ case ARM::VST4q32Pseudo_UPD:
+ case ARM::VST4q8oddPseudo:
+ case ARM::VST4q16oddPseudo:
+ case ARM::VST4q32oddPseudo:
+ case ARM::VST4q8oddPseudo_UPD:
+ case ARM::VST4q16oddPseudo_UPD:
+ case ARM::VST4q32oddPseudo_UPD:
+ ExpandVST(MBBI);
+ return true;
+
+ case ARM::VLD1LNq8Pseudo:
+ case ARM::VLD1LNq16Pseudo:
+ case ARM::VLD1LNq32Pseudo:
+ case ARM::VLD1LNq8Pseudo_UPD:
+ case ARM::VLD1LNq16Pseudo_UPD:
+ case ARM::VLD1LNq32Pseudo_UPD:
+ case ARM::VLD2LNd8Pseudo:
+ case ARM::VLD2LNd16Pseudo:
+ case ARM::VLD2LNd32Pseudo:
+ case ARM::VLD2LNq16Pseudo:
+ case ARM::VLD2LNq32Pseudo:
+ case ARM::VLD2LNd8Pseudo_UPD:
+ case ARM::VLD2LNd16Pseudo_UPD:
+ case ARM::VLD2LNd32Pseudo_UPD:
+ case ARM::VLD2LNq16Pseudo_UPD:
+ case ARM::VLD2LNq32Pseudo_UPD:
+ case ARM::VLD3LNd8Pseudo:
+ case ARM::VLD3LNd16Pseudo:
+ case ARM::VLD3LNd32Pseudo:
+ case ARM::VLD3LNq16Pseudo:
+ case ARM::VLD3LNq32Pseudo:
+ case ARM::VLD3LNd8Pseudo_UPD:
+ case ARM::VLD3LNd16Pseudo_UPD:
+ case ARM::VLD3LNd32Pseudo_UPD:
+ case ARM::VLD3LNq16Pseudo_UPD:
+ case ARM::VLD3LNq32Pseudo_UPD:
+ case ARM::VLD4LNd8Pseudo:
+ case ARM::VLD4LNd16Pseudo:
+ case ARM::VLD4LNd32Pseudo:
+ case ARM::VLD4LNq16Pseudo:
+ case ARM::VLD4LNq32Pseudo:
+ case ARM::VLD4LNd8Pseudo_UPD:
+ case ARM::VLD4LNd16Pseudo_UPD:
+ case ARM::VLD4LNd32Pseudo_UPD:
+ case ARM::VLD4LNq16Pseudo_UPD:
+ case ARM::VLD4LNq32Pseudo_UPD:
+ case ARM::VST1LNq8Pseudo:
+ case ARM::VST1LNq16Pseudo:
+ case ARM::VST1LNq32Pseudo:
+ case ARM::VST1LNq8Pseudo_UPD:
+ case ARM::VST1LNq16Pseudo_UPD:
+ case ARM::VST1LNq32Pseudo_UPD:
+ case ARM::VST2LNd8Pseudo:
+ case ARM::VST2LNd16Pseudo:
+ case ARM::VST2LNd32Pseudo:
+ case ARM::VST2LNq16Pseudo:
+ case ARM::VST2LNq32Pseudo:
+ case ARM::VST2LNd8Pseudo_UPD:
+ case ARM::VST2LNd16Pseudo_UPD:
+ case ARM::VST2LNd32Pseudo_UPD:
+ case ARM::VST2LNq16Pseudo_UPD:
+ case ARM::VST2LNq32Pseudo_UPD:
+ case ARM::VST3LNd8Pseudo:
+ case ARM::VST3LNd16Pseudo:
+ case ARM::VST3LNd32Pseudo:
+ case ARM::VST3LNq16Pseudo:
+ case ARM::VST3LNq32Pseudo:
+ case ARM::VST3LNd8Pseudo_UPD:
+ case ARM::VST3LNd16Pseudo_UPD:
+ case ARM::VST3LNd32Pseudo_UPD:
+ case ARM::VST3LNq16Pseudo_UPD:
+ case ARM::VST3LNq32Pseudo_UPD:
+ case ARM::VST4LNd8Pseudo:
+ case ARM::VST4LNd16Pseudo:
+ case ARM::VST4LNd32Pseudo:
+ case ARM::VST4LNq16Pseudo:
+ case ARM::VST4LNq32Pseudo:
+ case ARM::VST4LNd8Pseudo_UPD:
+ case ARM::VST4LNd16Pseudo_UPD:
+ case ARM::VST4LNd32Pseudo_UPD:
+ case ARM::VST4LNq16Pseudo_UPD:
+ case ARM::VST4LNq32Pseudo_UPD:
+ ExpandLaneOp(MBBI);
+ return true;
+
+ case ARM::VTBL3Pseudo: ExpandVTBL(MBBI, ARM::VTBL3, false); return true;
+ case ARM::VTBL4Pseudo: ExpandVTBL(MBBI, ARM::VTBL4, false); return true;
+ case ARM::VTBX3Pseudo: ExpandVTBL(MBBI, ARM::VTBX3, true); return true;
+ case ARM::VTBX4Pseudo: ExpandVTBL(MBBI, ARM::VTBX4, true); return true;
+ }
+}
+
+bool ARMExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
+ bool Modified = false;
+
+ MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
+ while (MBBI != E) {
+ MachineBasicBlock::iterator NMBBI = std::next(MBBI);
+ Modified |= ExpandMI(MBB, MBBI);
+ MBBI = NMBBI;
+ }
+
+ return Modified;
+}
+
+bool ARMExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
+ const TargetMachine &TM = MF.getTarget();
+ TII = static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo());
+ TRI = TM.getRegisterInfo();
+ STI = &TM.getSubtarget<ARMSubtarget>();
+ AFI = MF.getInfo<ARMFunctionInfo>();
+
+ bool Modified = false;
+ for (MachineFunction::iterator MFI = MF.begin(), E = MF.end(); MFI != E;
+ ++MFI)
+ Modified |= ExpandMBB(*MFI);
+ if (VerifyARMPseudo)
+ MF.verify(this, "After expanding ARM pseudo instructions.");
+ return Modified;
+}
+
+/// createARMExpandPseudoPass - returns an instance of the pseudo instruction
+/// expansion pass.
+FunctionPass *llvm::createARMExpandPseudoPass() {
+ return new ARMExpandPseudo();
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMFPUName.def b/contrib/llvm/lib/Target/ARM/ARMFPUName.def
new file mode 100644
index 0000000..1fef3b3
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMFPUName.def
@@ -0,0 +1,33 @@
+//===-- ARMFPUName.def - List of the ARM FPU names --------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the list of the supported ARM FPU names.
+//
+//===----------------------------------------------------------------------===//
+
+// NOTE: NO INCLUDE GUARD DESIRED!
+
+#ifndef ARM_FPU_NAME
+#error "You must define ARM_FPU_NAME(NAME, ID) before including ARMFPUName.h"
+#endif
+
+ARM_FPU_NAME("vfp", VFP)
+ARM_FPU_NAME("vfpv2", VFPV2)
+ARM_FPU_NAME("vfpv3", VFPV3)
+ARM_FPU_NAME("vfpv3-d16", VFPV3_D16)
+ARM_FPU_NAME("vfpv4", VFPV4)
+ARM_FPU_NAME("vfpv4-d16", VFPV4_D16)
+ARM_FPU_NAME("fp-armv8", FP_ARMV8)
+ARM_FPU_NAME("neon", NEON)
+ARM_FPU_NAME("neon-vfpv4", NEON_VFPV4)
+ARM_FPU_NAME("neon-fp-armv8", NEON_FP_ARMV8)
+ARM_FPU_NAME("crypto-neon-fp-armv8", CRYPTO_NEON_FP_ARMV8)
+ARM_FPU_NAME("softvfp", SOFTVFP)
+
+#undef ARM_FPU_NAME
diff --git a/contrib/llvm/lib/Target/ARM/ARMFPUName.h b/contrib/llvm/lib/Target/ARM/ARMFPUName.h
new file mode 100644
index 0000000..2a64cce
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMFPUName.h
@@ -0,0 +1,26 @@
+//===-- ARMFPUName.h - List of the ARM FPU names ----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMFPUNAME_H
+#define ARMFPUNAME_H
+
+namespace llvm {
+namespace ARM {
+
+enum FPUKind {
+ INVALID_FPU = 0
+
+#define ARM_FPU_NAME(NAME, ID) , ID
+#include "ARMFPUName.def"
+};
+
+} // namespace ARM
+} // namespace llvm
+
+#endif // ARMFPUNAME_H
diff --git a/contrib/llvm/lib/Target/ARM/ARMFastISel.cpp b/contrib/llvm/lib/Target/ARM/ARMFastISel.cpp
new file mode 100644
index 0000000..e2d90cd
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMFastISel.cpp
@@ -0,0 +1,3081 @@
+//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ARM-specific support for the FastISel class. Some
+// of the target-specific code is generated by tablegen in the file
+// ARMGenFastISel.inc, which is #included here.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMCallingConv.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMISelLowering.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMSubtarget.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+extern cl::opt<bool> EnableARMLongCalls;
+
+namespace {
+
+ // All possible address modes, plus some.
+ typedef struct Address {
+ enum {
+ RegBase,
+ FrameIndexBase
+ } BaseType;
+
+ union {
+ unsigned Reg;
+ int FI;
+ } Base;
+
+ int Offset;
+
+ // Innocuous defaults for our address.
+ Address()
+ : BaseType(RegBase), Offset(0) {
+ Base.Reg = 0;
+ }
+ } Address;
+
+class ARMFastISel final : public FastISel {
+
+ /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const ARMSubtarget *Subtarget;
+ Module &M;
+ const TargetMachine &TM;
+ const TargetInstrInfo &TII;
+ const TargetLowering &TLI;
+ ARMFunctionInfo *AFI;
+
+ // Convenience variables to avoid some queries.
+ bool isThumb2;
+ LLVMContext *Context;
+
+ public:
+ explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo)
+ : FastISel(funcInfo, libInfo),
+ M(const_cast<Module&>(*funcInfo.Fn->getParent())),
+ TM(funcInfo.MF->getTarget()),
+ TII(*TM.getInstrInfo()),
+ TLI(*TM.getTargetLowering()) {
+ Subtarget = &TM.getSubtarget<ARMSubtarget>();
+ AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
+ isThumb2 = AFI->isThumbFunction();
+ Context = &funcInfo.Fn->getContext();
+ }
+
+ // Code from FastISel.cpp.
+ private:
+ unsigned FastEmitInst_r(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill);
+ unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill);
+ unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill,
+ unsigned Op2, bool Op2IsKill);
+ unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ uint64_t Imm);
+ unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill,
+ uint64_t Imm);
+ unsigned FastEmitInst_i(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ uint64_t Imm);
+
+ // Backend specific FastISel code.
+ private:
+ bool TargetSelectInstruction(const Instruction *I) override;
+ unsigned TargetMaterializeConstant(const Constant *C) override;
+ unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
+ bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI) override;
+ bool FastLowerArguments() override;
+ private:
+ #include "ARMGenFastISel.inc"
+
+ // Instruction selection routines.
+ private:
+ bool SelectLoad(const Instruction *I);
+ bool SelectStore(const Instruction *I);
+ bool SelectBranch(const Instruction *I);
+ bool SelectIndirectBr(const Instruction *I);
+ bool SelectCmp(const Instruction *I);
+ bool SelectFPExt(const Instruction *I);
+ bool SelectFPTrunc(const Instruction *I);
+ bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
+ bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
+ bool SelectIToFP(const Instruction *I, bool isSigned);
+ bool SelectFPToI(const Instruction *I, bool isSigned);
+ bool SelectDiv(const Instruction *I, bool isSigned);
+ bool SelectRem(const Instruction *I, bool isSigned);
+ bool SelectCall(const Instruction *I, const char *IntrMemName);
+ bool SelectIntrinsicCall(const IntrinsicInst &I);
+ bool SelectSelect(const Instruction *I);
+ bool SelectRet(const Instruction *I);
+ bool SelectTrunc(const Instruction *I);
+ bool SelectIntExt(const Instruction *I);
+ bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
+
+ // Utility routines.
+ private:
+ bool isTypeLegal(Type *Ty, MVT &VT);
+ bool isLoadTypeLegal(Type *Ty, MVT &VT);
+ bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
+ bool isZExt);
+ bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
+ unsigned Alignment = 0, bool isZExt = true,
+ bool allocReg = true);
+ bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
+ unsigned Alignment = 0);
+ bool ARMComputeAddress(const Value *Obj, Address &Addr);
+ void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
+ bool ARMIsMemCpySmall(uint64_t Len);
+ bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
+ unsigned Alignment);
+ unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
+ unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
+ unsigned ARMMaterializeInt(const Constant *C, MVT VT);
+ unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
+ unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
+ unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
+ unsigned ARMSelectCallOp(bool UseReg);
+ unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
+
+ const TargetLowering *getTargetLowering() { return TM.getTargetLowering(); }
+
+ // Call handling routines.
+ private:
+ CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
+ bool Return,
+ bool isVarArg);
+ bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
+ SmallVectorImpl<unsigned> &ArgRegs,
+ SmallVectorImpl<MVT> &ArgVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+ SmallVectorImpl<unsigned> &RegArgs,
+ CallingConv::ID CC,
+ unsigned &NumBytes,
+ bool isVarArg);
+ unsigned getLibcallReg(const Twine &Name);
+ bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+ const Instruction *I, CallingConv::ID CC,
+ unsigned &NumBytes, bool isVarArg);
+ bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
+
+ // OptionalDef handling routines.
+ private:
+ bool isARMNEONPred(const MachineInstr *MI);
+ bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
+ const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
+ void AddLoadStoreOperands(MVT VT, Address &Addr,
+ const MachineInstrBuilder &MIB,
+ unsigned Flags, bool useAM3);
+};
+
+} // end anonymous namespace
+
+#include "ARMGenCallingConv.inc"
+
+// DefinesOptionalPredicate - This is different from DefinesPredicate in that
+// we don't care about implicit defs here, just places we'll need to add a
+// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
+bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
+ if (!MI->hasOptionalDef())
+ return false;
+
+ // Look to see if our OptionalDef is defining CPSR or CCR.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef()) continue;
+ if (MO.getReg() == ARM::CPSR)
+ *CPSR = true;
+ }
+ return true;
+}
+
+bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
+ const MCInstrDesc &MCID = MI->getDesc();
+
+ // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
+ if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
+ AFI->isThumb2Function())
+ return MI->isPredicable();
+
+ for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
+ if (MCID.OpInfo[i].isPredicate())
+ return true;
+
+ return false;
+}
+
+// If the machine is predicable go ahead and add the predicate operands, if
+// it needs default CC operands add those.
+// TODO: If we want to support thumb1 then we'll need to deal with optional
+// CPSR defs that need to be added before the remaining operands. See s_cc_out
+// for descriptions why.
+const MachineInstrBuilder &
+ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
+ MachineInstr *MI = &*MIB;
+
+ // Do we use a predicate? or...
+ // Are we NEON in ARM mode and have a predicate operand? If so, I know
+ // we're not predicable but add it anyways.
+ if (isARMNEONPred(MI))
+ AddDefaultPred(MIB);
+
+ // Do we optionally set a predicate? Preds is size > 0 iff the predicate
+ // defines CPSR. All other OptionalDefines in ARM are the CCR register.
+ bool CPSR = false;
+ if (DefinesOptionalPredicate(MI, &CPSR)) {
+ if (CPSR)
+ AddDefaultT1CC(MIB);
+ else
+ AddDefaultCC(MIB);
+ }
+ return MIB;
+}
+
+unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill) {
+ unsigned ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ // Make sure the input operand is sufficiently constrained to be legal
+ // for this instruction.
+ Op0 = constrainOperandRegClass(II, Op0, 1);
+ if (II.getNumDefs() >= 1) {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
+ ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
+ } else {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(II.ImplicitDefs[0]));
+ }
+ return ResultReg;
+}
+
+unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill) {
+ unsigned ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ // Make sure the input operands are sufficiently constrained to be legal
+ // for this instruction.
+ Op0 = constrainOperandRegClass(II, Op0, 1);
+ Op1 = constrainOperandRegClass(II, Op1, 2);
+
+ if (II.getNumDefs() >= 1) {
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill));
+ } else {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(II.ImplicitDefs[0]));
+ }
+ return ResultReg;
+}
+
+unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill,
+ unsigned Op2, bool Op2IsKill) {
+ unsigned ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ // Make sure the input operands are sufficiently constrained to be legal
+ // for this instruction.
+ Op0 = constrainOperandRegClass(II, Op0, 1);
+ Op1 = constrainOperandRegClass(II, Op1, 2);
+ Op2 = constrainOperandRegClass(II, Op1, 3);
+
+ if (II.getNumDefs() >= 1) {
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill)
+ .addReg(Op2, Op2IsKill * RegState::Kill));
+ } else {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill)
+ .addReg(Op2, Op2IsKill * RegState::Kill));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(II.ImplicitDefs[0]));
+ }
+ return ResultReg;
+}
+
+unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ uint64_t Imm) {
+ unsigned ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ // Make sure the input operand is sufficiently constrained to be legal
+ // for this instruction.
+ Op0 = constrainOperandRegClass(II, Op0, 1);
+ if (II.getNumDefs() >= 1) {
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addImm(Imm));
+ } else {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addImm(Imm));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(II.ImplicitDefs[0]));
+ }
+ return ResultReg;
+}
+
+unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill,
+ uint64_t Imm) {
+ unsigned ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ // Make sure the input operands are sufficiently constrained to be legal
+ // for this instruction.
+ Op0 = constrainOperandRegClass(II, Op0, 1);
+ Op1 = constrainOperandRegClass(II, Op1, 2);
+ if (II.getNumDefs() >= 1) {
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill)
+ .addImm(Imm));
+ } else {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill)
+ .addImm(Imm));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(II.ImplicitDefs[0]));
+ }
+ return ResultReg;
+}
+
+unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ uint64_t Imm) {
+ unsigned ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1) {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
+ ResultReg).addImm(Imm));
+ } else {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addImm(Imm));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(II.ImplicitDefs[0]));
+ }
+ return ResultReg;
+}
+
+// TODO: Don't worry about 64-bit now, but when this is fixed remove the
+// checks from the various callers.
+unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
+ if (VT == MVT::f64) return 0;
+
+ unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVSR), MoveReg)
+ .addReg(SrcReg));
+ return MoveReg;
+}
+
+unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
+ if (VT == MVT::i64) return 0;
+
+ unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVRS), MoveReg)
+ .addReg(SrcReg));
+ return MoveReg;
+}
+
+// For double width floating point we need to materialize two constants
+// (the high and the low) into integer registers then use a move to get
+// the combined constant into an FP reg.
+unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
+ const APFloat Val = CFP->getValueAPF();
+ bool is64bit = VT == MVT::f64;
+
+ // This checks to see if we can use VFP3 instructions to materialize
+ // a constant, otherwise we have to go through the constant pool.
+ if (TLI.isFPImmLegal(Val, VT)) {
+ int Imm;
+ unsigned Opc;
+ if (is64bit) {
+ Imm = ARM_AM::getFP64Imm(Val);
+ Opc = ARM::FCONSTD;
+ } else {
+ Imm = ARM_AM::getFP32Imm(Val);
+ Opc = ARM::FCONSTS;
+ }
+ unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), DestReg).addImm(Imm));
+ return DestReg;
+ }
+
+ // Require VFP2 for loading fp constants.
+ if (!Subtarget->hasVFP2()) return false;
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
+ if (Align == 0) {
+ // TODO: Figure out if this is correct.
+ Align = DL.getTypeAllocSize(CFP->getType());
+ }
+ unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
+ unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
+ unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
+
+ // The extra reg is for addrmode5.
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
+ .addConstantPoolIndex(Idx)
+ .addReg(0));
+ return DestReg;
+}
+
+unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
+
+ if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
+ return false;
+
+ // If we can do this in a single instruction without a constant pool entry
+ // do so now.
+ const ConstantInt *CI = cast<ConstantInt>(C);
+ if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
+ unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
+ &ARM::GPRRegClass;
+ unsigned ImmReg = createResultReg(RC);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ImmReg)
+ .addImm(CI->getZExtValue()));
+ return ImmReg;
+ }
+
+ // Use MVN to emit negative constants.
+ if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
+ unsigned Imm = (unsigned)~(CI->getSExtValue());
+ bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
+ (ARM_AM::getSOImmVal(Imm) != -1);
+ if (UseImm) {
+ unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
+ unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ImmReg)
+ .addImm(Imm));
+ return ImmReg;
+ }
+ }
+
+ // Load from constant pool. For now 32-bit only.
+ if (VT != MVT::i32)
+ return false;
+
+ unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = DL.getPrefTypeAlignment(C->getType());
+ if (Align == 0) {
+ // TODO: Figure out if this is correct.
+ Align = DL.getTypeAllocSize(C->getType());
+ }
+ unsigned Idx = MCP.getConstantPoolIndex(C, Align);
+
+ if (isThumb2)
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::t2LDRpci), DestReg)
+ .addConstantPoolIndex(Idx));
+ else {
+ // The extra immediate is for addrmode2.
+ DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::LDRcp), DestReg)
+ .addConstantPoolIndex(Idx)
+ .addImm(0));
+ }
+
+ return DestReg;
+}
+
+unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
+ // For now 32-bit only.
+ if (VT != MVT::i32) return 0;
+
+ Reloc::Model RelocM = TM.getRelocationModel();
+ bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
+ const TargetRegisterClass *RC = isThumb2 ?
+ (const TargetRegisterClass*)&ARM::rGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass;
+ unsigned DestReg = createResultReg(RC);
+
+ // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+ bool IsThreadLocal = GVar && GVar->isThreadLocal();
+ if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
+
+ // Use movw+movt when possible, it avoids constant pool entries.
+ // Non-darwin targets only support static movt relocations in FastISel.
+ if (Subtarget->useMovt(*FuncInfo.MF) &&
+ (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) {
+ unsigned Opc;
+ unsigned char TF = 0;
+ if (Subtarget->isTargetMachO())
+ TF = ARMII::MO_NONLAZY;
+
+ switch (RelocM) {
+ case Reloc::PIC_:
+ Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
+ break;
+ default:
+ Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
+ break;
+ }
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
+ } else {
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = DL.getPrefTypeAlignment(GV->getType());
+ if (Align == 0) {
+ // TODO: Figure out if this is correct.
+ Align = DL.getTypeAllocSize(GV->getType());
+ }
+
+ if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
+ return ARMLowerPICELF(GV, Align, VT);
+
+ // Grab index.
+ unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
+ (Subtarget->isThumb() ? 4 : 8);
+ unsigned Id = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
+ ARMCP::CPValue,
+ PCAdj);
+ unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
+
+ // Load value.
+ MachineInstrBuilder MIB;
+ if (isThumb2) {
+ unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
+ DestReg).addConstantPoolIndex(Idx);
+ if (RelocM == Reloc::PIC_)
+ MIB.addImm(Id);
+ AddOptionalDefs(MIB);
+ } else {
+ // The extra immediate is for addrmode2.
+ DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::LDRcp), DestReg)
+ .addConstantPoolIndex(Idx)
+ .addImm(0);
+ AddOptionalDefs(MIB);
+
+ if (RelocM == Reloc::PIC_) {
+ unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
+ unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
+
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
+ DbgLoc, TII.get(Opc), NewDestReg)
+ .addReg(DestReg)
+ .addImm(Id);
+ AddOptionalDefs(MIB);
+ return NewDestReg;
+ }
+ }
+ }
+
+ if (IsIndirect) {
+ MachineInstrBuilder MIB;
+ unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
+ if (isThumb2)
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::t2LDRi12), NewDestReg)
+ .addReg(DestReg)
+ .addImm(0);
+ else
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::LDRi12), NewDestReg)
+ .addReg(DestReg)
+ .addImm(0);
+ DestReg = NewDestReg;
+ AddOptionalDefs(MIB);
+ }
+
+ return DestReg;
+}
+
+unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
+ EVT CEVT = TLI.getValueType(C->getType(), true);
+
+ // Only handle simple types.
+ if (!CEVT.isSimple()) return 0;
+ MVT VT = CEVT.getSimpleVT();
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return ARMMaterializeFP(CFP, VT);
+ else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return ARMMaterializeGV(GV, VT);
+ else if (isa<ConstantInt>(C))
+ return ARMMaterializeInt(C, VT);
+
+ return 0;
+}
+
+// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
+
+unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
+ // Don't handle dynamic allocas.
+ if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
+
+ MVT VT;
+ if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
+
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+
+ // This will get lowered later into the correct offsets and registers
+ // via rewriteXFrameIndex.
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
+ const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
+ unsigned ResultReg = createResultReg(RC);
+ ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
+
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg)
+ .addFrameIndex(SI->second)
+ .addImm(0));
+ return ResultReg;
+ }
+
+ return 0;
+}
+
+bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
+ EVT evt = TLI.getValueType(Ty, true);
+
+ // Only handle simple types.
+ if (evt == MVT::Other || !evt.isSimple()) return false;
+ VT = evt.getSimpleVT();
+
+ // Handle all legal types, i.e. a register that will directly hold this
+ // value.
+ return TLI.isTypeLegal(VT);
+}
+
+bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
+ if (isTypeLegal(Ty, VT)) return true;
+
+ // If this is a type than can be sign or zero-extended to a basic operation
+ // go ahead and accept it now.
+ if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
+ return true;
+
+ return false;
+}
+
+// Computes the address to get to an object.
+bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
+ // Some boilerplate from the X86 FastISel.
+ const User *U = nullptr;
+ unsigned Opcode = Instruction::UserOp1;
+ if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
+ // Don't walk into other basic blocks unless the object is an alloca from
+ // another block, otherwise it may not have a virtual register assigned.
+ if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
+ FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
+ Opcode = I->getOpcode();
+ U = I;
+ }
+ } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
+ if (Ty->getAddressSpace() > 255)
+ // Fast instruction selection doesn't support the special
+ // address spaces.
+ return false;
+
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::BitCast:
+ // Look through bitcasts.
+ return ARMComputeAddress(U->getOperand(0), Addr);
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs.
+ if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return ARMComputeAddress(U->getOperand(0), Addr);
+ break;
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints.
+ if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return ARMComputeAddress(U->getOperand(0), Addr);
+ break;
+ case Instruction::GetElementPtr: {
+ Address SavedAddr = Addr;
+ int TmpOffset = Addr.Offset;
+
+ // Iterate through the GEP folding the constants into offsets where
+ // we can.
+ gep_type_iterator GTI = gep_type_begin(U);
+ for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
+ i != e; ++i, ++GTI) {
+ const Value *Op = *i;
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
+ TmpOffset += SL->getElementOffset(Idx);
+ } else {
+ uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
+ for (;;) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // Constant-offset addressing.
+ TmpOffset += CI->getSExtValue() * S;
+ break;
+ }
+ if (canFoldAddIntoGEP(U, Op)) {
+ // A compatible add with a constant operand. Fold the constant.
+ ConstantInt *CI =
+ cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
+ TmpOffset += CI->getSExtValue() * S;
+ // Iterate on the other operand.
+ Op = cast<AddOperator>(Op)->getOperand(0);
+ continue;
+ }
+ // Unsupported
+ goto unsupported_gep;
+ }
+ }
+ }
+
+ // Try to grab the base operand now.
+ Addr.Offset = TmpOffset;
+ if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
+
+ // We failed, restore everything and try the other options.
+ Addr = SavedAddr;
+
+ unsupported_gep:
+ break;
+ }
+ case Instruction::Alloca: {
+ const AllocaInst *AI = cast<AllocaInst>(Obj);
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ Addr.BaseType = Address::FrameIndexBase;
+ Addr.Base.FI = SI->second;
+ return true;
+ }
+ break;
+ }
+ }
+
+ // Try to get this in a register if nothing else has worked.
+ if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
+ return Addr.Base.Reg != 0;
+}
+
+void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
+ bool needsLowering = false;
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unhandled load/store type!");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ if (!useAM3) {
+ // Integer loads/stores handle 12-bit offsets.
+ needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
+ // Handle negative offsets.
+ if (needsLowering && isThumb2)
+ needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
+ Addr.Offset > -256);
+ } else {
+ // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
+ needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
+ }
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ // Floating point operands handle 8-bit offsets.
+ needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
+ break;
+ }
+
+ // If this is a stack pointer and the offset needs to be simplified then
+ // put the alloca address into a register, set the base type back to
+ // register and continue. This should almost never happen.
+ if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
+ const TargetRegisterClass *RC = isThumb2 ?
+ (const TargetRegisterClass*)&ARM::tGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass;
+ unsigned ResultReg = createResultReg(RC);
+ unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg)
+ .addFrameIndex(Addr.Base.FI)
+ .addImm(0));
+ Addr.Base.Reg = ResultReg;
+ Addr.BaseType = Address::RegBase;
+ }
+
+ // Since the offset is too large for the load/store instruction
+ // get the reg+offset into a register.
+ if (needsLowering) {
+ Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
+ /*Op0IsKill*/false, Addr.Offset, MVT::i32);
+ Addr.Offset = 0;
+ }
+}
+
+void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
+ const MachineInstrBuilder &MIB,
+ unsigned Flags, bool useAM3) {
+ // addrmode5 output depends on the selection dag addressing dividing the
+ // offset by 4 that it then later multiplies. Do this here as well.
+ if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
+ Addr.Offset /= 4;
+
+ // Frame base works a bit differently. Handle it separately.
+ if (Addr.BaseType == Address::FrameIndexBase) {
+ int FI = Addr.Base.FI;
+ int Offset = Addr.Offset;
+ MachineMemOperand *MMO =
+ FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(FI, Offset),
+ Flags,
+ MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+ // Now add the rest of the operands.
+ MIB.addFrameIndex(FI);
+
+ // ARM halfword load/stores and signed byte loads need an additional
+ // operand.
+ if (useAM3) {
+ signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
+ MIB.addReg(0);
+ MIB.addImm(Imm);
+ } else {
+ MIB.addImm(Addr.Offset);
+ }
+ MIB.addMemOperand(MMO);
+ } else {
+ // Now add the rest of the operands.
+ MIB.addReg(Addr.Base.Reg);
+
+ // ARM halfword load/stores and signed byte loads need an additional
+ // operand.
+ if (useAM3) {
+ signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
+ MIB.addReg(0);
+ MIB.addImm(Imm);
+ } else {
+ MIB.addImm(Addr.Offset);
+ }
+ }
+ AddOptionalDefs(MIB);
+}
+
+bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
+ unsigned Alignment, bool isZExt, bool allocReg) {
+ unsigned Opc;
+ bool useAM3 = false;
+ bool needVMOV = false;
+ const TargetRegisterClass *RC;
+ switch (VT.SimpleTy) {
+ // This is mostly going to be Neon/vector support.
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
+ else
+ Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
+ } else {
+ if (isZExt) {
+ Opc = ARM::LDRBi12;
+ } else {
+ Opc = ARM::LDRSB;
+ useAM3 = true;
+ }
+ }
+ RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
+ break;
+ case MVT::i16:
+ if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
+ return false;
+
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
+ else
+ Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
+ } else {
+ Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
+ useAM3 = true;
+ }
+ RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
+ break;
+ case MVT::i32:
+ if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
+ return false;
+
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ Opc = ARM::t2LDRi8;
+ else
+ Opc = ARM::t2LDRi12;
+ } else {
+ Opc = ARM::LDRi12;
+ }
+ RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
+ break;
+ case MVT::f32:
+ if (!Subtarget->hasVFP2()) return false;
+ // Unaligned loads need special handling. Floats require word-alignment.
+ if (Alignment && Alignment < 4) {
+ needVMOV = true;
+ VT = MVT::i32;
+ Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
+ RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
+ } else {
+ Opc = ARM::VLDRS;
+ RC = TLI.getRegClassFor(VT);
+ }
+ break;
+ case MVT::f64:
+ if (!Subtarget->hasVFP2()) return false;
+ // FIXME: Unaligned loads need special handling. Doublewords require
+ // word-alignment.
+ if (Alignment && Alignment < 4)
+ return false;
+
+ Opc = ARM::VLDRD;
+ RC = TLI.getRegClassFor(VT);
+ break;
+ }
+ // Simplify this down to something we can handle.
+ ARMSimplifyAddress(Addr, VT, useAM3);
+
+ // Create the base instruction, then add the operands.
+ if (allocReg)
+ ResultReg = createResultReg(RC);
+ assert (ResultReg > 255 && "Expected an allocated virtual register.");
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg);
+ AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
+
+ // If we had an unaligned load of a float we've converted it to an regular
+ // load. Now we must move from the GRP to the FP register.
+ if (needVMOV) {
+ unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVSR), MoveReg)
+ .addReg(ResultReg));
+ ResultReg = MoveReg;
+ }
+ return true;
+}
+
+bool ARMFastISel::SelectLoad(const Instruction *I) {
+ // Atomic loads need special handling.
+ if (cast<LoadInst>(I)->isAtomic())
+ return false;
+
+ // Verify we have a legal type before going any further.
+ MVT VT;
+ if (!isLoadTypeLegal(I->getType(), VT))
+ return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
+
+ unsigned ResultReg;
+ if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
+ return false;
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
+ unsigned Alignment) {
+ unsigned StrOpc;
+ bool useAM3 = false;
+ switch (VT.SimpleTy) {
+ // This is mostly going to be Neon/vector support.
+ default: return false;
+ case MVT::i1: {
+ unsigned Res = createResultReg(isThumb2 ?
+ (const TargetRegisterClass*)&ARM::tGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass);
+ unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
+ SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), Res)
+ .addReg(SrcReg).addImm(1));
+ SrcReg = Res;
+ } // Fallthrough here.
+ case MVT::i8:
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ StrOpc = ARM::t2STRBi8;
+ else
+ StrOpc = ARM::t2STRBi12;
+ } else {
+ StrOpc = ARM::STRBi12;
+ }
+ break;
+ case MVT::i16:
+ if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
+ return false;
+
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ StrOpc = ARM::t2STRHi8;
+ else
+ StrOpc = ARM::t2STRHi12;
+ } else {
+ StrOpc = ARM::STRH;
+ useAM3 = true;
+ }
+ break;
+ case MVT::i32:
+ if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
+ return false;
+
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ StrOpc = ARM::t2STRi8;
+ else
+ StrOpc = ARM::t2STRi12;
+ } else {
+ StrOpc = ARM::STRi12;
+ }
+ break;
+ case MVT::f32:
+ if (!Subtarget->hasVFP2()) return false;
+ // Unaligned stores need special handling. Floats require word-alignment.
+ if (Alignment && Alignment < 4) {
+ unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVRS), MoveReg)
+ .addReg(SrcReg));
+ SrcReg = MoveReg;
+ VT = MVT::i32;
+ StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
+ } else {
+ StrOpc = ARM::VSTRS;
+ }
+ break;
+ case MVT::f64:
+ if (!Subtarget->hasVFP2()) return false;
+ // FIXME: Unaligned stores need special handling. Doublewords require
+ // word-alignment.
+ if (Alignment && Alignment < 4)
+ return false;
+
+ StrOpc = ARM::VSTRD;
+ break;
+ }
+ // Simplify this down to something we can handle.
+ ARMSimplifyAddress(Addr, VT, useAM3);
+
+ // Create the base instruction, then add the operands.
+ SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(StrOpc))
+ .addReg(SrcReg);
+ AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
+ return true;
+}
+
+bool ARMFastISel::SelectStore(const Instruction *I) {
+ Value *Op0 = I->getOperand(0);
+ unsigned SrcReg = 0;
+
+ // Atomic stores need special handling.
+ if (cast<StoreInst>(I)->isAtomic())
+ return false;
+
+ // Verify we have a legal type before going any further.
+ MVT VT;
+ if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
+ return false;
+
+ // Get the value to be stored into a register.
+ SrcReg = getRegForValue(Op0);
+ if (SrcReg == 0) return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ARMComputeAddress(I->getOperand(1), Addr))
+ return false;
+
+ if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
+ return false;
+ return true;
+}
+
+static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
+ switch (Pred) {
+ // Needs two compares...
+ case CmpInst::FCMP_ONE:
+ case CmpInst::FCMP_UEQ:
+ default:
+ // AL is our "false" for now. The other two need more compares.
+ return ARMCC::AL;
+ case CmpInst::ICMP_EQ:
+ case CmpInst::FCMP_OEQ:
+ return ARMCC::EQ;
+ case CmpInst::ICMP_SGT:
+ case CmpInst::FCMP_OGT:
+ return ARMCC::GT;
+ case CmpInst::ICMP_SGE:
+ case CmpInst::FCMP_OGE:
+ return ARMCC::GE;
+ case CmpInst::ICMP_UGT:
+ case CmpInst::FCMP_UGT:
+ return ARMCC::HI;
+ case CmpInst::FCMP_OLT:
+ return ARMCC::MI;
+ case CmpInst::ICMP_ULE:
+ case CmpInst::FCMP_OLE:
+ return ARMCC::LS;
+ case CmpInst::FCMP_ORD:
+ return ARMCC::VC;
+ case CmpInst::FCMP_UNO:
+ return ARMCC::VS;
+ case CmpInst::FCMP_UGE:
+ return ARMCC::PL;
+ case CmpInst::ICMP_SLT:
+ case CmpInst::FCMP_ULT:
+ return ARMCC::LT;
+ case CmpInst::ICMP_SLE:
+ case CmpInst::FCMP_ULE:
+ return ARMCC::LE;
+ case CmpInst::FCMP_UNE:
+ case CmpInst::ICMP_NE:
+ return ARMCC::NE;
+ case CmpInst::ICMP_UGE:
+ return ARMCC::HS;
+ case CmpInst::ICMP_ULT:
+ return ARMCC::LO;
+ }
+}
+
+bool ARMFastISel::SelectBranch(const Instruction *I) {
+ const BranchInst *BI = cast<BranchInst>(I);
+ MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+ // Simple branch support.
+
+ // If we can, avoid recomputing the compare - redoing it could lead to wonky
+ // behavior.
+ if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
+ if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
+
+ // Get the compare predicate.
+ // Try to take advantage of fallthrough opportunities.
+ CmpInst::Predicate Predicate = CI->getPredicate();
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ Predicate = CmpInst::getInversePredicate(Predicate);
+ }
+
+ ARMCC::CondCodes ARMPred = getComparePred(Predicate);
+
+ // We may not handle every CC for now.
+ if (ARMPred == ARMCC::AL) return false;
+
+ // Emit the compare.
+ if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+ return false;
+
+ unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
+ .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
+ FastEmitBranch(FBB, DbgLoc);
+ FuncInfo.MBB->addSuccessor(TBB);
+ return true;
+ }
+ } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
+ MVT SourceVT;
+ if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
+ (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
+ unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
+ unsigned OpReg = getRegForValue(TI->getOperand(0));
+ OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TstOpc))
+ .addReg(OpReg).addImm(1));
+
+ unsigned CCMode = ARMCC::NE;
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ CCMode = ARMCC::EQ;
+ }
+
+ unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
+ .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
+
+ FastEmitBranch(FBB, DbgLoc);
+ FuncInfo.MBB->addSuccessor(TBB);
+ return true;
+ }
+ } else if (const ConstantInt *CI =
+ dyn_cast<ConstantInt>(BI->getCondition())) {
+ uint64_t Imm = CI->getZExtValue();
+ MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
+ FastEmitBranch(Target, DbgLoc);
+ return true;
+ }
+
+ unsigned CmpReg = getRegForValue(BI->getCondition());
+ if (CmpReg == 0) return false;
+
+ // We've been divorced from our compare! Our block was split, and
+ // now our compare lives in a predecessor block. We musn't
+ // re-compare here, as the children of the compare aren't guaranteed
+ // live across the block boundary (we *could* check for this).
+ // Regardless, the compare has been done in the predecessor block,
+ // and it left a value for us in a virtual register. Ergo, we test
+ // the one-bit value left in the virtual register.
+ unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
+ CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
+ .addReg(CmpReg)
+ .addImm(1));
+
+ unsigned CCMode = ARMCC::NE;
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ CCMode = ARMCC::EQ;
+ }
+
+ unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
+ .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
+ FastEmitBranch(FBB, DbgLoc);
+ FuncInfo.MBB->addSuccessor(TBB);
+ return true;
+}
+
+bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
+ unsigned AddrReg = getRegForValue(I->getOperand(0));
+ if (AddrReg == 0) return false;
+
+ unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc)).addReg(AddrReg));
+
+ const IndirectBrInst *IB = cast<IndirectBrInst>(I);
+ for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
+ FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
+
+ return true;
+}
+
+bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
+ bool isZExt) {
+ Type *Ty = Src1Value->getType();
+ EVT SrcEVT = TLI.getValueType(Ty, true);
+ if (!SrcEVT.isSimple()) return false;
+ MVT SrcVT = SrcEVT.getSimpleVT();
+
+ bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
+ if (isFloat && !Subtarget->hasVFP2())
+ return false;
+
+ // Check to see if the 2nd operand is a constant that we can encode directly
+ // in the compare.
+ int Imm = 0;
+ bool UseImm = false;
+ bool isNegativeImm = false;
+ // FIXME: At -O0 we don't have anything that canonicalizes operand order.
+ // Thus, Src1Value may be a ConstantInt, but we're missing it.
+ if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
+ if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
+ SrcVT == MVT::i1) {
+ const APInt &CIVal = ConstInt->getValue();
+ Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
+ // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
+ // then a cmn, because there is no way to represent 2147483648 as a
+ // signed 32-bit int.
+ if (Imm < 0 && Imm != (int)0x80000000) {
+ isNegativeImm = true;
+ Imm = -Imm;
+ }
+ UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
+ (ARM_AM::getSOImmVal(Imm) != -1);
+ }
+ } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
+ if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
+ if (ConstFP->isZero() && !ConstFP->isNegative())
+ UseImm = true;
+ }
+
+ unsigned CmpOpc;
+ bool isICmp = true;
+ bool needsExt = false;
+ switch (SrcVT.SimpleTy) {
+ default: return false;
+ // TODO: Verify compares.
+ case MVT::f32:
+ isICmp = false;
+ CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
+ break;
+ case MVT::f64:
+ isICmp = false;
+ CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
+ break;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ needsExt = true;
+ // Intentional fall-through.
+ case MVT::i32:
+ if (isThumb2) {
+ if (!UseImm)
+ CmpOpc = ARM::t2CMPrr;
+ else
+ CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
+ } else {
+ if (!UseImm)
+ CmpOpc = ARM::CMPrr;
+ else
+ CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
+ }
+ break;
+ }
+
+ unsigned SrcReg1 = getRegForValue(Src1Value);
+ if (SrcReg1 == 0) return false;
+
+ unsigned SrcReg2 = 0;
+ if (!UseImm) {
+ SrcReg2 = getRegForValue(Src2Value);
+ if (SrcReg2 == 0) return false;
+ }
+
+ // We have i1, i8, or i16, we need to either zero extend or sign extend.
+ if (needsExt) {
+ SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
+ if (SrcReg1 == 0) return false;
+ if (!UseImm) {
+ SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
+ if (SrcReg2 == 0) return false;
+ }
+ }
+
+ const MCInstrDesc &II = TII.get(CmpOpc);
+ SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
+ if (!UseImm) {
+ SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(SrcReg1).addReg(SrcReg2));
+ } else {
+ MachineInstrBuilder MIB;
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(SrcReg1);
+
+ // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
+ if (isICmp)
+ MIB.addImm(Imm);
+ AddOptionalDefs(MIB);
+ }
+
+ // For floating point we need to move the result to a comparison register
+ // that we can then use for branches.
+ if (Ty->isFloatTy() || Ty->isDoubleTy())
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::FMSTAT)));
+ return true;
+}
+
+bool ARMFastISel::SelectCmp(const Instruction *I) {
+ const CmpInst *CI = cast<CmpInst>(I);
+
+ // Get the compare predicate.
+ ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
+
+ // We may not handle every CC for now.
+ if (ARMPred == ARMCC::AL) return false;
+
+ // Emit the compare.
+ if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+ return false;
+
+ // Now set a register based on the comparison. Explicitly set the predicates
+ // here.
+ unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
+ const TargetRegisterClass *RC = isThumb2 ?
+ (const TargetRegisterClass*)&ARM::rGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass;
+ unsigned DestReg = createResultReg(RC);
+ Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
+ unsigned ZeroReg = TargetMaterializeConstant(Zero);
+ // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
+ .addReg(ZeroReg).addImm(1)
+ .addImm(ARMPred).addReg(ARM::CPSR);
+
+ UpdateValueMap(I, DestReg);
+ return true;
+}
+
+bool ARMFastISel::SelectFPExt(const Instruction *I) {
+ // Make sure we have VFP and that we're extending float to double.
+ if (!Subtarget->hasVFP2()) return false;
+
+ Value *V = I->getOperand(0);
+ if (!I->getType()->isDoubleTy() ||
+ !V->getType()->isFloatTy()) return false;
+
+ unsigned Op = getRegForValue(V);
+ if (Op == 0) return false;
+
+ unsigned Result = createResultReg(&ARM::DPRRegClass);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VCVTDS), Result)
+ .addReg(Op));
+ UpdateValueMap(I, Result);
+ return true;
+}
+
+bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
+ // Make sure we have VFP and that we're truncating double to float.
+ if (!Subtarget->hasVFP2()) return false;
+
+ Value *V = I->getOperand(0);
+ if (!(I->getType()->isFloatTy() &&
+ V->getType()->isDoubleTy())) return false;
+
+ unsigned Op = getRegForValue(V);
+ if (Op == 0) return false;
+
+ unsigned Result = createResultReg(&ARM::SPRRegClass);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VCVTSD), Result)
+ .addReg(Op));
+ UpdateValueMap(I, Result);
+ return true;
+}
+
+bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
+ // Make sure we have VFP.
+ if (!Subtarget->hasVFP2()) return false;
+
+ MVT DstVT;
+ Type *Ty = I->getType();
+ if (!isTypeLegal(Ty, DstVT))
+ return false;
+
+ Value *Src = I->getOperand(0);
+ EVT SrcEVT = TLI.getValueType(Src->getType(), true);
+ if (!SrcEVT.isSimple())
+ return false;
+ MVT SrcVT = SrcEVT.getSimpleVT();
+ if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Src);
+ if (SrcReg == 0) return false;
+
+ // Handle sign-extension.
+ if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
+ SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
+ /*isZExt*/!isSigned);
+ if (SrcReg == 0) return false;
+ }
+
+ // The conversion routine works on fp-reg to fp-reg and the operand above
+ // was an integer, move it to the fp registers if possible.
+ unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
+ if (FP == 0) return false;
+
+ unsigned Opc;
+ if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
+ else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
+ else return false;
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg).addReg(FP));
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
+ // Make sure we have VFP.
+ if (!Subtarget->hasVFP2()) return false;
+
+ MVT DstVT;
+ Type *RetTy = I->getType();
+ if (!isTypeLegal(RetTy, DstVT))
+ return false;
+
+ unsigned Op = getRegForValue(I->getOperand(0));
+ if (Op == 0) return false;
+
+ unsigned Opc;
+ Type *OpTy = I->getOperand(0)->getType();
+ if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
+ else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
+ else return false;
+
+ // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg).addReg(Op));
+
+ // This result needs to be in an integer register, but the conversion only
+ // takes place in fp-regs.
+ unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
+ if (IntReg == 0) return false;
+
+ UpdateValueMap(I, IntReg);
+ return true;
+}
+
+bool ARMFastISel::SelectSelect(const Instruction *I) {
+ MVT VT;
+ if (!isTypeLegal(I->getType(), VT))
+ return false;
+
+ // Things need to be register sized for register moves.
+ if (VT != MVT::i32) return false;
+
+ unsigned CondReg = getRegForValue(I->getOperand(0));
+ if (CondReg == 0) return false;
+ unsigned Op1Reg = getRegForValue(I->getOperand(1));
+ if (Op1Reg == 0) return false;
+
+ // Check to see if we can use an immediate in the conditional move.
+ int Imm = 0;
+ bool UseImm = false;
+ bool isNegativeImm = false;
+ if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
+ assert (VT == MVT::i32 && "Expecting an i32.");
+ Imm = (int)ConstInt->getValue().getZExtValue();
+ if (Imm < 0) {
+ isNegativeImm = true;
+ Imm = ~Imm;
+ }
+ UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
+ (ARM_AM::getSOImmVal(Imm) != -1);
+ }
+
+ unsigned Op2Reg = 0;
+ if (!UseImm) {
+ Op2Reg = getRegForValue(I->getOperand(2));
+ if (Op2Reg == 0) return false;
+ }
+
+ unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
+ CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0);
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+ .addReg(CondReg)
+ .addImm(0));
+
+ unsigned MovCCOpc;
+ const TargetRegisterClass *RC;
+ if (!UseImm) {
+ RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
+ MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
+ } else {
+ RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
+ if (!isNegativeImm)
+ MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
+ else
+ MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
+ }
+ unsigned ResultReg = createResultReg(RC);
+ if (!UseImm) {
+ Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
+ Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
+ ResultReg)
+ .addReg(Op2Reg)
+ .addReg(Op1Reg)
+ .addImm(ARMCC::NE)
+ .addReg(ARM::CPSR);
+ } else {
+ Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
+ ResultReg)
+ .addReg(Op1Reg)
+ .addImm(Imm)
+ .addImm(ARMCC::EQ)
+ .addReg(ARM::CPSR);
+ }
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
+ MVT VT;
+ Type *Ty = I->getType();
+ if (!isTypeLegal(Ty, VT))
+ return false;
+
+ // If we have integer div support we should have selected this automagically.
+ // In case we have a real miss go ahead and return false and we'll pick
+ // it up later.
+ if (Subtarget->hasDivide()) return false;
+
+ // Otherwise emit a libcall.
+ RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
+ if (VT == MVT::i8)
+ LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
+ else if (VT == MVT::i16)
+ LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
+ else if (VT == MVT::i32)
+ LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
+ else if (VT == MVT::i64)
+ LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
+ else if (VT == MVT::i128)
+ LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
+ assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
+
+ return ARMEmitLibcall(I, LC);
+}
+
+bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
+ MVT VT;
+ Type *Ty = I->getType();
+ if (!isTypeLegal(Ty, VT))
+ return false;
+
+ RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
+ if (VT == MVT::i8)
+ LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
+ else if (VT == MVT::i16)
+ LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
+ else if (VT == MVT::i32)
+ LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
+ else if (VT == MVT::i64)
+ LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
+ else if (VT == MVT::i128)
+ LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
+ assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
+
+ return ARMEmitLibcall(I, LC);
+}
+
+bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
+ EVT DestVT = TLI.getValueType(I->getType(), true);
+
+ // We can get here in the case when we have a binary operation on a non-legal
+ // type and the target independent selector doesn't know how to handle it.
+ if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
+ return false;
+
+ unsigned Opc;
+ switch (ISDOpcode) {
+ default: return false;
+ case ISD::ADD:
+ Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
+ break;
+ case ISD::OR:
+ Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
+ break;
+ case ISD::SUB:
+ Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
+ break;
+ }
+
+ unsigned SrcReg1 = getRegForValue(I->getOperand(0));
+ if (SrcReg1 == 0) return false;
+
+ // TODO: Often the 2nd operand is an immediate, which can be encoded directly
+ // in the instruction, rather then materializing the value in a register.
+ unsigned SrcReg2 = getRegForValue(I->getOperand(1));
+ if (SrcReg2 == 0) return false;
+
+ unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
+ SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
+ SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg)
+ .addReg(SrcReg1).addReg(SrcReg2));
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
+ EVT FPVT = TLI.getValueType(I->getType(), true);
+ if (!FPVT.isSimple()) return false;
+ MVT VT = FPVT.getSimpleVT();
+
+ // We can get here in the case when we want to use NEON for our fp
+ // operations, but can't figure out how to. Just use the vfp instructions
+ // if we have them.
+ // FIXME: It'd be nice to use NEON instructions.
+ Type *Ty = I->getType();
+ bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
+ if (isFloat && !Subtarget->hasVFP2())
+ return false;
+
+ unsigned Opc;
+ bool is64bit = VT == MVT::f64 || VT == MVT::i64;
+ switch (ISDOpcode) {
+ default: return false;
+ case ISD::FADD:
+ Opc = is64bit ? ARM::VADDD : ARM::VADDS;
+ break;
+ case ISD::FSUB:
+ Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
+ break;
+ case ISD::FMUL:
+ Opc = is64bit ? ARM::VMULD : ARM::VMULS;
+ break;
+ }
+ unsigned Op1 = getRegForValue(I->getOperand(0));
+ if (Op1 == 0) return false;
+
+ unsigned Op2 = getRegForValue(I->getOperand(1));
+ if (Op2 == 0) return false;
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg)
+ .addReg(Op1).addReg(Op2));
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+// Call Handling Code
+
+// This is largely taken directly from CCAssignFnForNode
+// TODO: We may not support all of this.
+CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
+ bool Return,
+ bool isVarArg) {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::Fast:
+ if (Subtarget->hasVFP2() && !isVarArg) {
+ if (!Subtarget->isAAPCS_ABI())
+ return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
+ // For AAPCS ABI targets, just use VFP variant of the calling convention.
+ return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
+ }
+ // Fallthrough
+ case CallingConv::C:
+ // Use target triple & subtarget features to do actual dispatch.
+ if (Subtarget->isAAPCS_ABI()) {
+ if (Subtarget->hasVFP2() &&
+ TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
+ return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
+ else
+ return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
+ } else
+ return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
+ case CallingConv::ARM_AAPCS_VFP:
+ if (!isVarArg)
+ return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
+ // Fall through to soft float variant, variadic functions don't
+ // use hard floating point ABI.
+ case CallingConv::ARM_AAPCS:
+ return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
+ case CallingConv::ARM_APCS:
+ return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
+ case CallingConv::GHC:
+ if (Return)
+ llvm_unreachable("Can't return in GHC call convention");
+ else
+ return CC_ARM_APCS_GHC;
+ }
+}
+
+bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
+ SmallVectorImpl<unsigned> &ArgRegs,
+ SmallVectorImpl<MVT> &ArgVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+ SmallVectorImpl<unsigned> &RegArgs,
+ CallingConv::ID CC,
+ unsigned &NumBytes,
+ bool isVarArg) {
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
+ CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
+ CCAssignFnForCall(CC, false, isVarArg));
+
+ // Check that we can handle all of the arguments. If we can't, then bail out
+ // now before we add code to the MBB.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ MVT ArgVT = ArgVTs[VA.getValNo()];
+
+ // We don't handle NEON/vector parameters yet.
+ if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
+ return false;
+
+ // Now copy/store arg to correct locations.
+ if (VA.isRegLoc() && !VA.needsCustom()) {
+ continue;
+ } else if (VA.needsCustom()) {
+ // TODO: We need custom lowering for vector (v2f64) args.
+ if (VA.getLocVT() != MVT::f64 ||
+ // TODO: Only handle register args for now.
+ !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
+ return false;
+ } else {
+ switch (ArgVT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ break;
+ case MVT::f32:
+ if (!Subtarget->hasVFP2())
+ return false;
+ break;
+ case MVT::f64:
+ if (!Subtarget->hasVFP2())
+ return false;
+ break;
+ }
+ }
+ }
+
+ // At the point, we are able to handle the call's arguments in fast isel.
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ NumBytes = CCInfo.getNextStackOffset();
+
+ // Issue CALLSEQ_START
+ unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AdjStackDown))
+ .addImm(NumBytes));
+
+ // Process the args.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ unsigned Arg = ArgRegs[VA.getValNo()];
+ MVT ArgVT = ArgVTs[VA.getValNo()];
+
+ assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
+ "We don't handle NEON/vector parameters yet.");
+
+ // Handle arg promotion, etc.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt: {
+ MVT DestVT = VA.getLocVT();
+ Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
+ assert (Arg != 0 && "Failed to emit a sext");
+ ArgVT = DestVT;
+ break;
+ }
+ case CCValAssign::AExt:
+ // Intentional fall-through. Handle AExt and ZExt.
+ case CCValAssign::ZExt: {
+ MVT DestVT = VA.getLocVT();
+ Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
+ assert (Arg != 0 && "Failed to emit a zext");
+ ArgVT = DestVT;
+ break;
+ }
+ case CCValAssign::BCvt: {
+ unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
+ /*TODO: Kill=*/false);
+ assert(BC != 0 && "Failed to emit a bitcast!");
+ Arg = BC;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ default: llvm_unreachable("Unknown arg promotion!");
+ }
+
+ // Now copy/store arg to correct locations.
+ if (VA.isRegLoc() && !VA.needsCustom()) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
+ RegArgs.push_back(VA.getLocReg());
+ } else if (VA.needsCustom()) {
+ // TODO: We need custom lowering for vector (v2f64) args.
+ assert(VA.getLocVT() == MVT::f64 &&
+ "Custom lowering for v2f64 args not available");
+
+ CCValAssign &NextVA = ArgLocs[++i];
+
+ assert(VA.isRegLoc() && NextVA.isRegLoc() &&
+ "We only handle register args!");
+
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVRRD), VA.getLocReg())
+ .addReg(NextVA.getLocReg(), RegState::Define)
+ .addReg(Arg));
+ RegArgs.push_back(VA.getLocReg());
+ RegArgs.push_back(NextVA.getLocReg());
+ } else {
+ assert(VA.isMemLoc());
+ // Need to store on the stack.
+ Address Addr;
+ Addr.BaseType = Address::RegBase;
+ Addr.Base.Reg = ARM::SP;
+ Addr.Offset = VA.getLocMemOffset();
+
+ bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
+ assert(EmitRet && "Could not emit a store for argument!");
+ }
+ }
+
+ return true;
+}
+
+bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+ const Instruction *I, CallingConv::ID CC,
+ unsigned &NumBytes, bool isVarArg) {
+ // Issue CALLSEQ_END
+ unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AdjStackUp))
+ .addImm(NumBytes).addImm(0));
+
+ // Now the return value.
+ if (RetVT != MVT::isVoid) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
+
+ // Copy all of the result registers out of their specified physreg.
+ if (RVLocs.size() == 2 && RetVT == MVT::f64) {
+ // For this move we copy into two registers and then move into the
+ // double fp reg we want.
+ MVT DestVT = RVLocs[0].getValVT();
+ const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
+ unsigned ResultReg = createResultReg(DstRC);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVDRR), ResultReg)
+ .addReg(RVLocs[0].getLocReg())
+ .addReg(RVLocs[1].getLocReg()));
+
+ UsedRegs.push_back(RVLocs[0].getLocReg());
+ UsedRegs.push_back(RVLocs[1].getLocReg());
+
+ // Finally update the result.
+ UpdateValueMap(I, ResultReg);
+ } else {
+ assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
+ MVT CopyVT = RVLocs[0].getValVT();
+
+ // Special handling for extended integers.
+ if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
+ CopyVT = MVT::i32;
+
+ const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
+
+ unsigned ResultReg = createResultReg(DstRC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(RVLocs[0].getLocReg());
+ UsedRegs.push_back(RVLocs[0].getLocReg());
+
+ // Finally update the result.
+ UpdateValueMap(I, ResultReg);
+ }
+ }
+
+ return true;
+}
+
+bool ARMFastISel::SelectRet(const Instruction *I) {
+ const ReturnInst *Ret = cast<ReturnInst>(I);
+ const Function &F = *I->getParent()->getParent();
+
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ // Build a list of return value registers.
+ SmallVector<unsigned, 4> RetRegs;
+
+ CallingConv::ID CC = F.getCallingConv();
+ if (Ret->getNumOperands() > 0) {
+ SmallVector<ISD::OutputArg, 4> Outs;
+ GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ValLocs;
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
+ CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
+ F.isVarArg()));
+
+ const Value *RV = Ret->getOperand(0);
+ unsigned Reg = getRegForValue(RV);
+ if (Reg == 0)
+ return false;
+
+ // Only handle a single return value for now.
+ if (ValLocs.size() != 1)
+ return false;
+
+ CCValAssign &VA = ValLocs[0];
+
+ // Don't bother handling odd stuff for now.
+ if (VA.getLocInfo() != CCValAssign::Full)
+ return false;
+ // Only handle register returns for now.
+ if (!VA.isRegLoc())
+ return false;
+
+ unsigned SrcReg = Reg + VA.getValNo();
+ EVT RVEVT = TLI.getValueType(RV->getType());
+ if (!RVEVT.isSimple()) return false;
+ MVT RVVT = RVEVT.getSimpleVT();
+ MVT DestVT = VA.getValVT();
+ // Special handling for extended integers.
+ if (RVVT != DestVT) {
+ if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
+ return false;
+
+ assert(DestVT == MVT::i32 && "ARM should always ext to i32");
+
+ // Perform extension if flagged as either zext or sext. Otherwise, do
+ // nothing.
+ if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
+ SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
+ if (SrcReg == 0) return false;
+ }
+ }
+
+ // Make the copy.
+ unsigned DstReg = VA.getLocReg();
+ const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
+ // Avoid a cross-class copy. This is very unlikely.
+ if (!SrcRC->contains(DstReg))
+ return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
+
+ // Add register to return instruction.
+ RetRegs.push_back(VA.getLocReg());
+ }
+
+ unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(RetOpc));
+ AddOptionalDefs(MIB);
+ for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
+ MIB.addReg(RetRegs[i], RegState::Implicit);
+ return true;
+}
+
+unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
+ if (UseReg)
+ return isThumb2 ? ARM::tBLXr : ARM::BLX;
+ else
+ return isThumb2 ? ARM::tBL : ARM::BL;
+}
+
+unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
+ // Manually compute the global's type to avoid building it when unnecessary.
+ Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
+ EVT LCREVT = TLI.getValueType(GVTy);
+ if (!LCREVT.isSimple()) return 0;
+
+ GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
+ GlobalValue::ExternalLinkage, nullptr,
+ Name);
+ assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
+ return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
+}
+
+// A quick function that will emit a call for a named libcall in F with the
+// vector of passed arguments for the Instruction in I. We can assume that we
+// can emit a call for any libcall we can produce. This is an abridged version
+// of the full call infrastructure since we won't need to worry about things
+// like computed function pointers or strange arguments at call sites.
+// TODO: Try to unify this and the normal call bits for ARM, then try to unify
+// with X86.
+bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
+ CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
+
+ // Handle *simple* calls for now.
+ Type *RetTy = I->getType();
+ MVT RetVT;
+ if (RetTy->isVoidTy())
+ RetVT = MVT::isVoid;
+ else if (!isTypeLegal(RetTy, RetVT))
+ return false;
+
+ // Can't handle non-double multi-reg retvals.
+ if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
+ if (RVLocs.size() >= 2 && RetVT != MVT::f64)
+ return false;
+ }
+
+ // Set up the argument vectors.
+ SmallVector<Value*, 8> Args;
+ SmallVector<unsigned, 8> ArgRegs;
+ SmallVector<MVT, 8> ArgVTs;
+ SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
+ Args.reserve(I->getNumOperands());
+ ArgRegs.reserve(I->getNumOperands());
+ ArgVTs.reserve(I->getNumOperands());
+ ArgFlags.reserve(I->getNumOperands());
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ Value *Op = I->getOperand(i);
+ unsigned Arg = getRegForValue(Op);
+ if (Arg == 0) return false;
+
+ Type *ArgTy = Op->getType();
+ MVT ArgVT;
+ if (!isTypeLegal(ArgTy, ArgVT)) return false;
+
+ ISD::ArgFlagsTy Flags;
+ unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
+ Flags.setOrigAlign(OriginalAlignment);
+
+ Args.push_back(Op);
+ ArgRegs.push_back(Arg);
+ ArgVTs.push_back(ArgVT);
+ ArgFlags.push_back(Flags);
+ }
+
+ // Handle the arguments now that we've gotten them.
+ SmallVector<unsigned, 4> RegArgs;
+ unsigned NumBytes;
+ if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
+ RegArgs, CC, NumBytes, false))
+ return false;
+
+ unsigned CalleeReg = 0;
+ if (EnableARMLongCalls) {
+ CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
+ if (CalleeReg == 0) return false;
+ }
+
+ // Issue the call.
+ unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls);
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
+ DbgLoc, TII.get(CallOpc));
+ // BL / BLX don't take a predicate, but tBL / tBLX do.
+ if (isThumb2)
+ AddDefaultPred(MIB);
+ if (EnableARMLongCalls)
+ MIB.addReg(CalleeReg);
+ else
+ MIB.addExternalSymbol(TLI.getLibcallName(Call));
+
+ // Add implicit physical register uses to the call.
+ for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
+ MIB.addReg(RegArgs[i], RegState::Implicit);
+
+ // Add a register mask with the call-preserved registers.
+ // Proper defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(CC));
+
+ // Finish off the call including any return values.
+ SmallVector<unsigned, 4> UsedRegs;
+ if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
+
+ // Set all unused physreg defs as dead.
+ static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+
+ return true;
+}
+
+bool ARMFastISel::SelectCall(const Instruction *I,
+ const char *IntrMemName = nullptr) {
+ const CallInst *CI = cast<CallInst>(I);
+ const Value *Callee = CI->getCalledValue();
+
+ // Can't handle inline asm.
+ if (isa<InlineAsm>(Callee)) return false;
+
+ // Allow SelectionDAG isel to handle tail calls.
+ if (CI->isTailCall()) return false;
+
+ // Check the calling convention.
+ ImmutableCallSite CS(CI);
+ CallingConv::ID CC = CS.getCallingConv();
+
+ // TODO: Avoid some calling conventions?
+
+ PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+ FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+ bool isVarArg = FTy->isVarArg();
+
+ // Handle *simple* calls for now.
+ Type *RetTy = I->getType();
+ MVT RetVT;
+ if (RetTy->isVoidTy())
+ RetVT = MVT::isVoid;
+ else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
+ RetVT != MVT::i8 && RetVT != MVT::i1)
+ return false;
+
+ // Can't handle non-double multi-reg retvals.
+ if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
+ RetVT != MVT::i16 && RetVT != MVT::i32) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
+ if (RVLocs.size() >= 2 && RetVT != MVT::f64)
+ return false;
+ }
+
+ // Set up the argument vectors.
+ SmallVector<Value*, 8> Args;
+ SmallVector<unsigned, 8> ArgRegs;
+ SmallVector<MVT, 8> ArgVTs;
+ SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
+ unsigned arg_size = CS.arg_size();
+ Args.reserve(arg_size);
+ ArgRegs.reserve(arg_size);
+ ArgVTs.reserve(arg_size);
+ ArgFlags.reserve(arg_size);
+ for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+ i != e; ++i) {
+ // If we're lowering a memory intrinsic instead of a regular call, skip the
+ // last two arguments, which shouldn't be passed to the underlying function.
+ if (IntrMemName && e-i <= 2)
+ break;
+
+ ISD::ArgFlagsTy Flags;
+ unsigned AttrInd = i - CS.arg_begin() + 1;
+ if (CS.paramHasAttr(AttrInd, Attribute::SExt))
+ Flags.setSExt();
+ if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
+ Flags.setZExt();
+
+ // FIXME: Only handle *easy* calls for now.
+ if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
+ CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
+ CS.paramHasAttr(AttrInd, Attribute::Nest) ||
+ CS.paramHasAttr(AttrInd, Attribute::ByVal))
+ return false;
+
+ Type *ArgTy = (*i)->getType();
+ MVT ArgVT;
+ if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
+ ArgVT != MVT::i1)
+ return false;
+
+ unsigned Arg = getRegForValue(*i);
+ if (Arg == 0)
+ return false;
+
+ unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
+ Flags.setOrigAlign(OriginalAlignment);
+
+ Args.push_back(*i);
+ ArgRegs.push_back(Arg);
+ ArgVTs.push_back(ArgVT);
+ ArgFlags.push_back(Flags);
+ }
+
+ // Handle the arguments now that we've gotten them.
+ SmallVector<unsigned, 4> RegArgs;
+ unsigned NumBytes;
+ if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
+ RegArgs, CC, NumBytes, isVarArg))
+ return false;
+
+ bool UseReg = false;
+ const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
+ if (!GV || EnableARMLongCalls) UseReg = true;
+
+ unsigned CalleeReg = 0;
+ if (UseReg) {
+ if (IntrMemName)
+ CalleeReg = getLibcallReg(IntrMemName);
+ else
+ CalleeReg = getRegForValue(Callee);
+
+ if (CalleeReg == 0) return false;
+ }
+
+ // Issue the call.
+ unsigned CallOpc = ARMSelectCallOp(UseReg);
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
+ DbgLoc, TII.get(CallOpc));
+
+ unsigned char OpFlags = 0;
+
+ // Add MO_PLT for global address or external symbol in the PIC relocation
+ // model.
+ if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_)
+ OpFlags = ARMII::MO_PLT;
+
+ // ARM calls don't take a predicate, but tBL / tBLX do.
+ if(isThumb2)
+ AddDefaultPred(MIB);
+ if (UseReg)
+ MIB.addReg(CalleeReg);
+ else if (!IntrMemName)
+ MIB.addGlobalAddress(GV, 0, OpFlags);
+ else
+ MIB.addExternalSymbol(IntrMemName, OpFlags);
+
+ // Add implicit physical register uses to the call.
+ for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
+ MIB.addReg(RegArgs[i], RegState::Implicit);
+
+ // Add a register mask with the call-preserved registers.
+ // Proper defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(CC));
+
+ // Finish off the call including any return values.
+ SmallVector<unsigned, 4> UsedRegs;
+ if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
+ return false;
+
+ // Set all unused physreg defs as dead.
+ static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+
+ return true;
+}
+
+bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
+ return Len <= 16;
+}
+
+bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
+ uint64_t Len, unsigned Alignment) {
+ // Make sure we don't bloat code by inlining very large memcpy's.
+ if (!ARMIsMemCpySmall(Len))
+ return false;
+
+ while (Len) {
+ MVT VT;
+ if (!Alignment || Alignment >= 4) {
+ if (Len >= 4)
+ VT = MVT::i32;
+ else if (Len >= 2)
+ VT = MVT::i16;
+ else {
+ assert (Len == 1 && "Expected a length of 1!");
+ VT = MVT::i8;
+ }
+ } else {
+ // Bound based on alignment.
+ if (Len >= 2 && Alignment == 2)
+ VT = MVT::i16;
+ else {
+ VT = MVT::i8;
+ }
+ }
+
+ bool RV;
+ unsigned ResultReg;
+ RV = ARMEmitLoad(VT, ResultReg, Src);
+ assert (RV == true && "Should be able to handle this load.");
+ RV = ARMEmitStore(VT, ResultReg, Dest);
+ assert (RV == true && "Should be able to handle this store.");
+ (void)RV;
+
+ unsigned Size = VT.getSizeInBits()/8;
+ Len -= Size;
+ Dest.Offset += Size;
+ Src.Offset += Size;
+ }
+
+ return true;
+}
+
+bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
+ // FIXME: Handle more intrinsics.
+ switch (I.getIntrinsicID()) {
+ default: return false;
+ case Intrinsic::frameaddress: {
+ MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ unsigned LdrOpc;
+ const TargetRegisterClass *RC;
+ if (isThumb2) {
+ LdrOpc = ARM::t2LDRi12;
+ RC = (const TargetRegisterClass*)&ARM::tGPRRegClass;
+ } else {
+ LdrOpc = ARM::LDRi12;
+ RC = (const TargetRegisterClass*)&ARM::GPRRegClass;
+ }
+
+ const ARMBaseRegisterInfo *RegInfo =
+ static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
+ unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
+ unsigned SrcReg = FramePtr;
+
+ // Recursively load frame address
+ // ldr r0 [fp]
+ // ldr r0 [r0]
+ // ldr r0 [r0]
+ // ...
+ unsigned DestReg;
+ unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
+ while (Depth--) {
+ DestReg = createResultReg(RC);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(LdrOpc), DestReg)
+ .addReg(SrcReg).addImm(0));
+ SrcReg = DestReg;
+ }
+ UpdateValueMap(&I, SrcReg);
+ return true;
+ }
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove: {
+ const MemTransferInst &MTI = cast<MemTransferInst>(I);
+ // Don't handle volatile.
+ if (MTI.isVolatile())
+ return false;
+
+ // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
+ // we would emit dead code because we don't currently handle memmoves.
+ bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
+ if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
+ // Small memcpy's are common enough that we want to do them without a call
+ // if possible.
+ uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
+ if (ARMIsMemCpySmall(Len)) {
+ Address Dest, Src;
+ if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
+ !ARMComputeAddress(MTI.getRawSource(), Src))
+ return false;
+ unsigned Alignment = MTI.getAlignment();
+ if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
+ return true;
+ }
+ }
+
+ if (!MTI.getLength()->getType()->isIntegerTy(32))
+ return false;
+
+ if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
+ return false;
+
+ const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
+ return SelectCall(&I, IntrMemName);
+ }
+ case Intrinsic::memset: {
+ const MemSetInst &MSI = cast<MemSetInst>(I);
+ // Don't handle volatile.
+ if (MSI.isVolatile())
+ return false;
+
+ if (!MSI.getLength()->getType()->isIntegerTy(32))
+ return false;
+
+ if (MSI.getDestAddressSpace() > 255)
+ return false;
+
+ return SelectCall(&I, "memset");
+ }
+ case Intrinsic::trap: {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
+ Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
+ return true;
+ }
+ }
+}
+
+bool ARMFastISel::SelectTrunc(const Instruction *I) {
+ // The high bits for a type smaller than the register size are assumed to be
+ // undefined.
+ Value *Op = I->getOperand(0);
+
+ EVT SrcVT, DestVT;
+ SrcVT = TLI.getValueType(Op->getType(), true);
+ DestVT = TLI.getValueType(I->getType(), true);
+
+ if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
+ return false;
+ if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Op);
+ if (!SrcReg) return false;
+
+ // Because the high bits are undefined, a truncate doesn't generate
+ // any code.
+ UpdateValueMap(I, SrcReg);
+ return true;
+}
+
+unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ bool isZExt) {
+ if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
+ return 0;
+ if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
+ return 0;
+
+ // Table of which combinations can be emitted as a single instruction,
+ // and which will require two.
+ static const uint8_t isSingleInstrTbl[3][2][2][2] = {
+ // ARM Thumb
+ // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops
+ // ext: s z s z s z s z
+ /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
+ /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
+ /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
+ };
+
+ // Target registers for:
+ // - For ARM can never be PC.
+ // - For 16-bit Thumb are restricted to lower 8 registers.
+ // - For 32-bit Thumb are restricted to non-SP and non-PC.
+ static const TargetRegisterClass *RCTbl[2][2] = {
+ // Instructions: Two Single
+ /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
+ /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass }
+ };
+
+ // Table governing the instruction(s) to be emitted.
+ static const struct InstructionTable {
+ uint32_t Opc : 16;
+ uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0.
+ uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi.
+ uint32_t Imm : 8; // All instructions have either a shift or a mask.
+ } IT[2][2][3][2] = {
+ { // Two instructions (first is left shift, second is in this table).
+ { // ARM Opc S Shift Imm
+ /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 },
+ /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } },
+ /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 },
+ /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } },
+ /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 },
+ /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } }
+ },
+ { // Thumb Opc S Shift Imm
+ /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 },
+ /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } },
+ /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 },
+ /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } },
+ /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 },
+ /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } }
+ }
+ },
+ { // Single instruction.
+ { // ARM Opc S Shift Imm
+ /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
+ /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } },
+ /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 },
+ /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } },
+ /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 },
+ /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } }
+ },
+ { // Thumb Opc S Shift Imm
+ /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
+ /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } },
+ /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 },
+ /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
+ /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 },
+ /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } }
+ }
+ }
+ };
+
+ unsigned SrcBits = SrcVT.getSizeInBits();
+ unsigned DestBits = DestVT.getSizeInBits();
+ (void) DestBits;
+ assert((SrcBits < DestBits) && "can only extend to larger types");
+ assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
+ "other sizes unimplemented");
+ assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
+ "other sizes unimplemented");
+
+ bool hasV6Ops = Subtarget->hasV6Ops();
+ unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2}
+ assert((Bitness < 3) && "sanity-check table bounds");
+
+ bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
+ const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
+ const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
+ unsigned Opc = ITP->Opc;
+ assert(ARM::KILL != Opc && "Invalid table entry");
+ unsigned hasS = ITP->hasS;
+ ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
+ assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
+ "only MOVsi has shift operand addressing mode");
+ unsigned Imm = ITP->Imm;
+
+ // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
+ bool setsCPSR = &ARM::tGPRRegClass == RC;
+ unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
+ unsigned ResultReg;
+ // MOVsi encodes shift and immediate in shift operand addressing mode.
+ // The following condition has the same value when emitting two
+ // instruction sequences: both are shifts.
+ bool ImmIsSO = (Shift != ARM_AM::no_shift);
+
+ // Either one or two instructions are emitted.
+ // They're always of the form:
+ // dst = in OP imm
+ // CPSR is set only by 16-bit Thumb instructions.
+ // Predicate, if any, is AL.
+ // S bit, if available, is always 0.
+ // When two are emitted the first's result will feed as the second's input,
+ // that value is then dead.
+ unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
+ for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
+ ResultReg = createResultReg(RC);
+ bool isLsl = (0 == Instr) && !isSingleInstr;
+ unsigned Opcode = isLsl ? LSLOpc : Opc;
+ ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
+ unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
+ bool isKill = 1 == Instr;
+ MachineInstrBuilder MIB = BuildMI(
+ *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
+ if (setsCPSR)
+ MIB.addReg(ARM::CPSR, RegState::Define);
+ SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
+ AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
+ if (hasS)
+ AddDefaultCC(MIB);
+ // Second instruction consumes the first's result.
+ SrcReg = ResultReg;
+ }
+
+ return ResultReg;
+}
+
+bool ARMFastISel::SelectIntExt(const Instruction *I) {
+ // On ARM, in general, integer casts don't involve legal types; this code
+ // handles promotable integers.
+ Type *DestTy = I->getType();
+ Value *Src = I->getOperand(0);
+ Type *SrcTy = Src->getType();
+
+ bool isZExt = isa<ZExtInst>(I);
+ unsigned SrcReg = getRegForValue(Src);
+ if (!SrcReg) return false;
+
+ EVT SrcEVT, DestEVT;
+ SrcEVT = TLI.getValueType(SrcTy, true);
+ DestEVT = TLI.getValueType(DestTy, true);
+ if (!SrcEVT.isSimple()) return false;
+ if (!DestEVT.isSimple()) return false;
+
+ MVT SrcVT = SrcEVT.getSimpleVT();
+ MVT DestVT = DestEVT.getSimpleVT();
+ unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
+ if (ResultReg == 0) return false;
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool ARMFastISel::SelectShift(const Instruction *I,
+ ARM_AM::ShiftOpc ShiftTy) {
+ // We handle thumb2 mode by target independent selector
+ // or SelectionDAG ISel.
+ if (isThumb2)
+ return false;
+
+ // Only handle i32 now.
+ EVT DestVT = TLI.getValueType(I->getType(), true);
+ if (DestVT != MVT::i32)
+ return false;
+
+ unsigned Opc = ARM::MOVsr;
+ unsigned ShiftImm;
+ Value *Src2Value = I->getOperand(1);
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
+ ShiftImm = CI->getZExtValue();
+
+ // Fall back to selection DAG isel if the shift amount
+ // is zero or greater than the width of the value type.
+ if (ShiftImm == 0 || ShiftImm >=32)
+ return false;
+
+ Opc = ARM::MOVsi;
+ }
+
+ Value *Src1Value = I->getOperand(0);
+ unsigned Reg1 = getRegForValue(Src1Value);
+ if (Reg1 == 0) return false;
+
+ unsigned Reg2 = 0;
+ if (Opc == ARM::MOVsr) {
+ Reg2 = getRegForValue(Src2Value);
+ if (Reg2 == 0) return false;
+ }
+
+ unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
+ if(ResultReg == 0) return false;
+
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg)
+ .addReg(Reg1);
+
+ if (Opc == ARM::MOVsi)
+ MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
+ else if (Opc == ARM::MOVsr) {
+ MIB.addReg(Reg2);
+ MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
+ }
+
+ AddOptionalDefs(MIB);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+// TODO: SoftFP support.
+bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
+
+ switch (I->getOpcode()) {
+ case Instruction::Load:
+ return SelectLoad(I);
+ case Instruction::Store:
+ return SelectStore(I);
+ case Instruction::Br:
+ return SelectBranch(I);
+ case Instruction::IndirectBr:
+ return SelectIndirectBr(I);
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ return SelectCmp(I);
+ case Instruction::FPExt:
+ return SelectFPExt(I);
+ case Instruction::FPTrunc:
+ return SelectFPTrunc(I);
+ case Instruction::SIToFP:
+ return SelectIToFP(I, /*isSigned*/ true);
+ case Instruction::UIToFP:
+ return SelectIToFP(I, /*isSigned*/ false);
+ case Instruction::FPToSI:
+ return SelectFPToI(I, /*isSigned*/ true);
+ case Instruction::FPToUI:
+ return SelectFPToI(I, /*isSigned*/ false);
+ case Instruction::Add:
+ return SelectBinaryIntOp(I, ISD::ADD);
+ case Instruction::Or:
+ return SelectBinaryIntOp(I, ISD::OR);
+ case Instruction::Sub:
+ return SelectBinaryIntOp(I, ISD::SUB);
+ case Instruction::FAdd:
+ return SelectBinaryFPOp(I, ISD::FADD);
+ case Instruction::FSub:
+ return SelectBinaryFPOp(I, ISD::FSUB);
+ case Instruction::FMul:
+ return SelectBinaryFPOp(I, ISD::FMUL);
+ case Instruction::SDiv:
+ return SelectDiv(I, /*isSigned*/ true);
+ case Instruction::UDiv:
+ return SelectDiv(I, /*isSigned*/ false);
+ case Instruction::SRem:
+ return SelectRem(I, /*isSigned*/ true);
+ case Instruction::URem:
+ return SelectRem(I, /*isSigned*/ false);
+ case Instruction::Call:
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ return SelectIntrinsicCall(*II);
+ return SelectCall(I);
+ case Instruction::Select:
+ return SelectSelect(I);
+ case Instruction::Ret:
+ return SelectRet(I);
+ case Instruction::Trunc:
+ return SelectTrunc(I);
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ return SelectIntExt(I);
+ case Instruction::Shl:
+ return SelectShift(I, ARM_AM::lsl);
+ case Instruction::LShr:
+ return SelectShift(I, ARM_AM::lsr);
+ case Instruction::AShr:
+ return SelectShift(I, ARM_AM::asr);
+ default: break;
+ }
+ return false;
+}
+
+namespace {
+// This table describes sign- and zero-extend instructions which can be
+// folded into a preceding load. All of these extends have an immediate
+// (sometimes a mask and sometimes a shift) that's applied after
+// extension.
+const struct FoldableLoadExtendsStruct {
+ uint16_t Opc[2]; // ARM, Thumb.
+ uint8_t ExpectedImm;
+ uint8_t isZExt : 1;
+ uint8_t ExpectedVT : 7;
+} FoldableLoadExtends[] = {
+ { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 },
+ { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 },
+ { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 },
+ { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 },
+ { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 }
+};
+}
+
+/// \brief The specified machine instr operand is a vreg, and that
+/// vreg is being provided by the specified load instruction. If possible,
+/// try to fold the load as an operand to the instruction, returning true if
+/// successful.
+bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI) {
+ // Verify we have a legal type before going any further.
+ MVT VT;
+ if (!isLoadTypeLegal(LI->getType(), VT))
+ return false;
+
+ // Combine load followed by zero- or sign-extend.
+ // ldrb r1, [r0] ldrb r1, [r0]
+ // uxtb r2, r1 =>
+ // mov r3, r2 mov r3, r1
+ if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
+ return false;
+ const uint64_t Imm = MI->getOperand(2).getImm();
+
+ bool Found = false;
+ bool isZExt;
+ for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
+ i != e; ++i) {
+ if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
+ (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
+ MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
+ Found = true;
+ isZExt = FoldableLoadExtends[i].isZExt;
+ }
+ }
+ if (!Found) return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
+
+ unsigned ResultReg = MI->getOperand(0).getReg();
+ if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
+ return false;
+ MI->eraseFromParent();
+ return true;
+}
+
+unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
+ unsigned Align, MVT VT) {
+ bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
+ ARMConstantPoolConstant *CPV =
+ ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
+ unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
+
+ unsigned Opc;
+ unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT));
+ // Load value.
+ if (isThumb2) {
+ DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::t2LDRpci), DestReg1)
+ .addConstantPoolIndex(Idx));
+ Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs;
+ } else {
+ // The extra immediate is for addrmode2.
+ DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
+ DbgLoc, TII.get(ARM::LDRcp), DestReg1)
+ .addConstantPoolIndex(Idx).addImm(0));
+ Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs;
+ }
+
+ unsigned GlobalBaseReg = AFI->getGlobalBaseReg();
+ if (GlobalBaseReg == 0) {
+ GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT));
+ AFI->setGlobalBaseReg(GlobalBaseReg);
+ }
+
+ unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT));
+ DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0);
+ DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1);
+ GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2);
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
+ DbgLoc, TII.get(Opc), DestReg2)
+ .addReg(DestReg1)
+ .addReg(GlobalBaseReg);
+ if (!UseGOTOFF)
+ MIB.addImm(0);
+ AddOptionalDefs(MIB);
+
+ return DestReg2;
+}
+
+bool ARMFastISel::FastLowerArguments() {
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ const Function *F = FuncInfo.Fn;
+ if (F->isVarArg())
+ return false;
+
+ CallingConv::ID CC = F->getCallingConv();
+ switch (CC) {
+ default:
+ return false;
+ case CallingConv::Fast:
+ case CallingConv::C:
+ case CallingConv::ARM_AAPCS_VFP:
+ case CallingConv::ARM_AAPCS:
+ case CallingConv::ARM_APCS:
+ break;
+ }
+
+ // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
+ // which are passed in r0 - r3.
+ unsigned Idx = 1;
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I, ++Idx) {
+ if (Idx > 4)
+ return false;
+
+ if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
+ return false;
+
+ Type *ArgTy = I->getType();
+ if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
+ return false;
+
+ EVT ArgVT = TLI.getValueType(ArgTy);
+ if (!ArgVT.isSimple()) return false;
+ switch (ArgVT.getSimpleVT().SimpleTy) {
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ break;
+ default:
+ return false;
+ }
+ }
+
+
+ static const uint16_t GPRArgRegs[] = {
+ ARM::R0, ARM::R1, ARM::R2, ARM::R3
+ };
+
+ const TargetRegisterClass *RC = &ARM::rGPRRegClass;
+ Idx = 0;
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I, ++Idx) {
+ unsigned SrcReg = GPRArgRegs[Idx];
+ unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
+ // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
+ // Without this, EmitLiveInCopies may eliminate the livein if its only
+ // use is a bitcast (which isn't turned into an instruction).
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(DstReg, getKillRegState(true));
+ UpdateValueMap(I, ResultReg);
+ }
+
+ return true;
+}
+
+namespace llvm {
+ FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) {
+ const TargetMachine &TM = funcInfo.MF->getTarget();
+
+ const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
+ // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
+ bool UseFastISel = false;
+ UseFastISel |= Subtarget->isTargetMachO() && !Subtarget->isThumb1Only();
+ UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb();
+ UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb();
+
+ if (UseFastISel) {
+ // iOS always has a FP for backtracking, force other targets
+ // to keep their FP when doing FastISel. The emitted code is
+ // currently superior, and in cases like test-suite's lencod
+ // FastISel isn't quite correct when FP is eliminated.
+ TM.Options.NoFramePointerElim = true;
+ return new ARMFastISel(funcInfo, libInfo);
+ }
+ return nullptr;
+ }
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMFeatures.h b/contrib/llvm/lib/Target/ARM/ARMFeatures.h
new file mode 100644
index 0000000..e191a3c
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMFeatures.h
@@ -0,0 +1,97 @@
+//===-- ARMFeatures.h - Checks for ARM instruction features -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the code shared between ARM CodeGen and ARM MC
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef TARGET_ARM_FEATURES_H
+#define TARGET_ARM_FEATURES_H
+
+#include "MCTargetDesc/ARMMCTargetDesc.h"
+
+namespace llvm {
+
+template<typename InstrType> // could be MachineInstr or MCInst
+bool IsCPSRDead(InstrType *Instr);
+
+template<typename InstrType> // could be MachineInstr or MCInst
+inline bool isV8EligibleForIT(InstrType *Instr) {
+ switch (Instr->getOpcode()) {
+ default:
+ return false;
+ case ARM::tADC:
+ case ARM::tADDi3:
+ case ARM::tADDi8:
+ case ARM::tADDrr:
+ case ARM::tAND:
+ case ARM::tASRri:
+ case ARM::tASRrr:
+ case ARM::tBIC:
+ case ARM::tEOR:
+ case ARM::tLSLri:
+ case ARM::tLSLrr:
+ case ARM::tLSRri:
+ case ARM::tLSRrr:
+ case ARM::tMOVi8:
+ case ARM::tMUL:
+ case ARM::tMVN:
+ case ARM::tORR:
+ case ARM::tROR:
+ case ARM::tRSB:
+ case ARM::tSBC:
+ case ARM::tSUBi3:
+ case ARM::tSUBi8:
+ case ARM::tSUBrr:
+ // Outside of an IT block, these set CPSR.
+ return IsCPSRDead(Instr);
+ case ARM::tADDrSPi:
+ case ARM::tCMNz:
+ case ARM::tCMPi8:
+ case ARM::tCMPr:
+ case ARM::tLDRBi:
+ case ARM::tLDRBr:
+ case ARM::tLDRHi:
+ case ARM::tLDRHr:
+ case ARM::tLDRSB:
+ case ARM::tLDRSH:
+ case ARM::tLDRi:
+ case ARM::tLDRr:
+ case ARM::tLDRspi:
+ case ARM::tSTRBi:
+ case ARM::tSTRBr:
+ case ARM::tSTRHi:
+ case ARM::tSTRHr:
+ case ARM::tSTRi:
+ case ARM::tSTRr:
+ case ARM::tSTRspi:
+ case ARM::tTST:
+ return true;
+// there are some "conditionally deprecated" opcodes
+ case ARM::tADDspr:
+ case ARM::tBLXr:
+ return Instr->getOperand(2).getReg() != ARM::PC;
+ // ADD PC, SP and BLX PC were always unpredictable,
+ // now on top of it they're deprecated
+ case ARM::tADDrSP:
+ case ARM::tBX:
+ return Instr->getOperand(0).getReg() != ARM::PC;
+ case ARM::tADDhirr:
+ return Instr->getOperand(0).getReg() != ARM::PC &&
+ Instr->getOperand(2).getReg() != ARM::PC;
+ case ARM::tCMPhir:
+ case ARM::tMOVr:
+ return Instr->getOperand(0).getReg() != ARM::PC &&
+ Instr->getOperand(1).getReg() != ARM::PC;
+ }
+}
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMFrameLowering.cpp b/contrib/llvm/lib/Target/ARM/ARMFrameLowering.cpp
new file mode 100644
index 0000000..a67b360
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMFrameLowering.cpp
@@ -0,0 +1,2039 @@
+//===-- ARMFrameLowering.cpp - ARM Frame Information ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the ARM implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMFrameLowering.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+static cl::opt<bool>
+SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
+ cl::desc("Align ARM NEON spills in prolog and epilog"));
+
+static MachineBasicBlock::iterator
+skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
+ unsigned NumAlignedDPRCS2Regs);
+
+ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
+ : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4),
+ STI(sti) {}
+
+/// hasFP - Return true if the specified function should have a dedicated frame
+/// pointer register. This is true if the function has variable sized allocas
+/// or if frame pointer elimination is disabled.
+bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
+ const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
+
+ // iOS requires FP not to be clobbered for backtracing purpose.
+ if (STI.isTargetIOS())
+ return true;
+
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ // Always eliminate non-leaf frame pointers.
+ return ((MF.getTarget().Options.DisableFramePointerElim(MF) &&
+ MFI->hasCalls()) ||
+ RegInfo->needsStackRealignment(MF) ||
+ MFI->hasVarSizedObjects() ||
+ MFI->isFrameAddressTaken());
+}
+
+/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
+/// not required, we reserve argument space for call sites in the function
+/// immediately on entry to the current function. This eliminates the need for
+/// add/sub sp brackets around call sites. Returns true if the call frame is
+/// included as part of the stack frame.
+bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ const MachineFrameInfo *FFI = MF.getFrameInfo();
+ unsigned CFSize = FFI->getMaxCallFrameSize();
+ // It's not always a good idea to include the call frame as part of the
+ // stack frame. ARM (especially Thumb) has small immediate offset to
+ // address the stack frame. So a large call frame can cause poor codegen
+ // and may even makes it impossible to scavenge a register.
+ if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
+ return false;
+
+ return !MF.getFrameInfo()->hasVarSizedObjects();
+}
+
+/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
+/// call frame pseudos can be simplified. Unlike most targets, having a FP
+/// is not sufficient here since we still may reference some objects via SP
+/// even when FP is available in Thumb2 mode.
+bool
+ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
+ return hasReservedCallFrame(MF) || MF.getFrameInfo()->hasVarSizedObjects();
+}
+
+static bool isCSRestore(MachineInstr *MI,
+ const ARMBaseInstrInfo &TII,
+ const MCPhysReg *CSRegs) {
+ // Integer spill area is handled with "pop".
+ if (isPopOpcode(MI->getOpcode())) {
+ // The first two operands are predicates. The last two are
+ // imp-def and imp-use of SP. Check everything in between.
+ for (int i = 5, e = MI->getNumOperands(); i != e; ++i)
+ if (!isCalleeSavedRegister(MI->getOperand(i).getReg(), CSRegs))
+ return false;
+ return true;
+ }
+ if ((MI->getOpcode() == ARM::LDR_POST_IMM ||
+ MI->getOpcode() == ARM::LDR_POST_REG ||
+ MI->getOpcode() == ARM::t2LDR_POST) &&
+ isCalleeSavedRegister(MI->getOperand(0).getReg(), CSRegs) &&
+ MI->getOperand(1).getReg() == ARM::SP)
+ return true;
+
+ return false;
+}
+
+static void emitRegPlusImmediate(bool isARM, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ const ARMBaseInstrInfo &TII, unsigned DestReg,
+ unsigned SrcReg, int NumBytes,
+ unsigned MIFlags = MachineInstr::NoFlags,
+ ARMCC::CondCodes Pred = ARMCC::AL,
+ unsigned PredReg = 0) {
+ if (isARM)
+ emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
+ Pred, PredReg, TII, MIFlags);
+ else
+ emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
+ Pred, PredReg, TII, MIFlags);
+}
+
+static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ const ARMBaseInstrInfo &TII, int NumBytes,
+ unsigned MIFlags = MachineInstr::NoFlags,
+ ARMCC::CondCodes Pred = ARMCC::AL,
+ unsigned PredReg = 0) {
+ emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
+ MIFlags, Pred, PredReg);
+}
+
+static int sizeOfSPAdjustment(const MachineInstr *MI) {
+ assert(MI->getOpcode() == ARM::VSTMDDB_UPD);
+ int count = 0;
+ // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
+ // pred) so the list starts at 4.
+ for (int i = MI->getNumOperands() - 1; i >= 4; --i)
+ count += 8;
+ return count;
+}
+
+static bool WindowsRequiresStackProbe(const MachineFunction &MF,
+ size_t StackSizeInBytes) {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ if (MFI->getStackProtectorIndex() > 0)
+ return StackSizeInBytes >= 4080;
+ return StackSizeInBytes >= 4096;
+}
+
+void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front();
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ MachineModuleInfo &MMI = MF.getMMI();
+ MCContext &Context = MMI.getContext();
+ const TargetMachine &TM = MF.getTarget();
+ const MCRegisterInfo *MRI = Context.getRegisterInfo();
+ const ARMBaseRegisterInfo *RegInfo =
+ static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo());
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This emitPrologue does not support Thumb1!");
+ bool isARM = !AFI->isThumbFunction();
+ unsigned Align = TM.getFrameLowering()->getStackAlignment();
+ unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(Align);
+ unsigned NumBytes = MFI->getStackSize();
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+ unsigned FramePtr = RegInfo->getFrameRegister(MF);
+ int CFAOffset = 0;
+
+ // Determine the sizes of each callee-save spill areas and record which frame
+ // belongs to which callee-save spill areas.
+ unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
+ int FramePtrSpillFI = 0;
+ int D8SpillFI = 0;
+
+ // All calls are tail calls in GHC calling conv, and functions have no
+ // prologue/epilogue.
+ if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
+ return;
+
+ // Allocate the vararg register save area.
+ if (ArgRegsSaveSize) {
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
+ MachineInstr::FrameSetup);
+ CFAOffset -= ArgRegsSaveSize;
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ if (!AFI->hasStackFrame() &&
+ (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
+ if (NumBytes - ArgRegsSaveSize != 0) {
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
+ MachineInstr::FrameSetup);
+ CFAOffset -= NumBytes - ArgRegsSaveSize;
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ return;
+ }
+
+ // Determine spill area sizes.
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ int FI = CSI[i].getFrameIdx();
+ switch (Reg) {
+ case ARM::R8:
+ case ARM::R9:
+ case ARM::R10:
+ case ARM::R11:
+ case ARM::R12:
+ if (STI.isTargetDarwin()) {
+ GPRCS2Size += 4;
+ break;
+ }
+ // fallthrough
+ case ARM::R0:
+ case ARM::R1:
+ case ARM::R2:
+ case ARM::R3:
+ case ARM::R4:
+ case ARM::R5:
+ case ARM::R6:
+ case ARM::R7:
+ case ARM::LR:
+ if (Reg == FramePtr)
+ FramePtrSpillFI = FI;
+ GPRCS1Size += 4;
+ break;
+ default:
+ // This is a DPR. Exclude the aligned DPRCS2 spills.
+ if (Reg == ARM::D8)
+ D8SpillFI = FI;
+ if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
+ DPRCSSize += 8;
+ }
+ }
+
+ // Move past area 1.
+ MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push,
+ DPRCSPush;
+ if (GPRCS1Size > 0)
+ GPRCS1Push = LastPush = MBBI++;
+
+ // Determine starting offsets of spill areas.
+ bool HasFP = hasFP(MF);
+ unsigned DPRCSOffset = NumBytes - (ArgRegsSaveSize + GPRCS1Size
+ + GPRCS2Size + DPRCSSize);
+ unsigned GPRCS2Offset = DPRCSOffset + DPRCSSize;
+ unsigned GPRCS1Offset = GPRCS2Offset + GPRCS2Size;
+ int FramePtrOffsetInPush = 0;
+ if (HasFP) {
+ FramePtrOffsetInPush = MFI->getObjectOffset(FramePtrSpillFI)
+ + GPRCS1Size + ArgRegsSaveSize;
+ AFI->setFramePtrSpillOffset(MFI->getObjectOffset(FramePtrSpillFI) +
+ NumBytes);
+ }
+ AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
+ AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
+ AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
+
+ // Move past area 2.
+ if (GPRCS2Size > 0)
+ GPRCS2Push = LastPush = MBBI++;
+
+ // Move past area 3.
+ if (DPRCSSize > 0) {
+ DPRCSPush = MBBI;
+ // Since vpush register list cannot have gaps, there may be multiple vpush
+ // instructions in the prologue.
+ while (MBBI->getOpcode() == ARM::VSTMDDB_UPD)
+ LastPush = MBBI++;
+ }
+
+ // Move past the aligned DPRCS2 area.
+ if (AFI->getNumAlignedDPRCS2Regs() > 0) {
+ MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
+ // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
+ // leaves the stack pointer pointing to the DPRCS2 area.
+ //
+ // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
+ NumBytes += MFI->getObjectOffset(D8SpillFI);
+ } else
+ NumBytes = DPRCSOffset;
+
+ if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
+ uint32_t NumWords = NumBytes >> 2;
+
+ if (NumWords < 65536)
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
+ .addImm(NumWords)
+ .setMIFlags(MachineInstr::FrameSetup));
+ else
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
+ .addImm(NumWords)
+ .setMIFlags(MachineInstr::FrameSetup);
+
+ switch (TM.getCodeModel()) {
+ case CodeModel::Small:
+ case CodeModel::Medium:
+ case CodeModel::Default:
+ case CodeModel::Kernel:
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
+ .addImm((unsigned)ARMCC::AL).addReg(0)
+ .addExternalSymbol("__chkstk")
+ .addReg(ARM::R4, RegState::Implicit)
+ .setMIFlags(MachineInstr::FrameSetup);
+ break;
+ case CodeModel::Large:
+ case CodeModel::JITDefault:
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
+ .addExternalSymbol("__chkstk")
+ .setMIFlags(MachineInstr::FrameSetup);
+
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
+ .addImm((unsigned)ARMCC::AL).addReg(0)
+ .addReg(ARM::R12, RegState::Kill)
+ .addReg(ARM::R4, RegState::Implicit)
+ .setMIFlags(MachineInstr::FrameSetup);
+ break;
+ }
+
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr),
+ ARM::SP)
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::R4, RegState::Kill)
+ .setMIFlags(MachineInstr::FrameSetup)));
+ NumBytes = 0;
+ }
+
+ unsigned adjustedGPRCS1Size = GPRCS1Size;
+ if (NumBytes) {
+ // Adjust SP after all the callee-save spills.
+ if (tryFoldSPUpdateIntoPushPop(STI, MF, LastPush, NumBytes)) {
+ if (LastPush == GPRCS1Push) {
+ FramePtrOffsetInPush += NumBytes;
+ adjustedGPRCS1Size += NumBytes;
+ NumBytes = 0;
+ }
+ } else
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
+ MachineInstr::FrameSetup);
+
+ if (HasFP && isARM)
+ // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
+ // Note it's not safe to do this in Thumb2 mode because it would have
+ // taken two instructions:
+ // mov sp, r7
+ // sub sp, #24
+ // If an interrupt is taken between the two instructions, then sp is in
+ // an inconsistent state (pointing to the middle of callee-saved area).
+ // The interrupt handler can end up clobbering the registers.
+ AFI->setShouldRestoreSPFromFP(true);
+ }
+
+ if (adjustedGPRCS1Size > 0) {
+ CFAOffset -= adjustedGPRCS1Size;
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
+ MachineBasicBlock::iterator Pos = ++GPRCS1Push;
+ BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ for (const auto &Entry : CSI) {
+ unsigned Reg = Entry.getReg();
+ int FI = Entry.getFrameIdx();
+ switch (Reg) {
+ case ARM::R8:
+ case ARM::R9:
+ case ARM::R10:
+ case ARM::R11:
+ case ARM::R12:
+ if (STI.isTargetDarwin())
+ break;
+ // fallthrough
+ case ARM::R0:
+ case ARM::R1:
+ case ARM::R2:
+ case ARM::R3:
+ case ARM::R4:
+ case ARM::R5:
+ case ARM::R6:
+ case ARM::R7:
+ case ARM::LR:
+ CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(Reg, true), MFI->getObjectOffset(FI)));
+ BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ break;
+ }
+ }
+ }
+
+ // Set FP to point to the stack slot that contains the previous FP.
+ // For iOS, FP is R7, which has now been stored in spill area 1.
+ // Otherwise, if this is not iOS, all the callee-saved registers go
+ // into spill area 1, including the FP in R11. In either case, it
+ // is in area one and the adjustment needs to take place just after
+ // that push.
+ if (HasFP) {
+ emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, GPRCS1Push, dl, TII,
+ FramePtr, ARM::SP, FramePtrOffsetInPush,
+ MachineInstr::FrameSetup);
+ if (FramePtrOffsetInPush) {
+ CFAOffset += FramePtrOffsetInPush;
+ unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa(
+ nullptr, MRI->getDwarfRegNum(FramePtr, true), CFAOffset));
+ BuildMI(MBB, GPRCS1Push, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ } else {
+ unsigned CFIIndex =
+ MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(
+ nullptr, MRI->getDwarfRegNum(FramePtr, true)));
+ BuildMI(MBB, GPRCS1Push, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+
+ if (GPRCS2Size > 0) {
+ MachineBasicBlock::iterator Pos = ++GPRCS2Push;
+ if (!HasFP) {
+ CFAOffset -= GPRCS2Size;
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
+ BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ for (const auto &Entry : CSI) {
+ unsigned Reg = Entry.getReg();
+ int FI = Entry.getFrameIdx();
+ switch (Reg) {
+ case ARM::R8:
+ case ARM::R9:
+ case ARM::R10:
+ case ARM::R11:
+ case ARM::R12:
+ if (STI.isTargetDarwin()) {
+ unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
+ unsigned Offset = MFI->getObjectOffset(FI);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
+ BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ break;
+ }
+ }
+ }
+
+ if (DPRCSSize > 0) {
+ // Since vpush register list cannot have gaps, there may be multiple vpush
+ // instructions in the prologue.
+ do {
+ MachineBasicBlock::iterator Push = DPRCSPush++;
+ if (!HasFP) {
+ CFAOffset -= sizeOfSPAdjustment(Push);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
+ BuildMI(MBB, DPRCSPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ } while (DPRCSPush->getOpcode() == ARM::VSTMDDB_UPD);
+
+ for (const auto &Entry : CSI) {
+ unsigned Reg = Entry.getReg();
+ int FI = Entry.getFrameIdx();
+ if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
+ (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
+ unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
+ unsigned Offset = MFI->getObjectOffset(FI);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
+ BuildMI(MBB, DPRCSPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+ }
+
+ if (NumBytes) {
+ if (!HasFP) {
+ CFAOffset -= NumBytes;
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+
+ if (STI.isTargetELF() && hasFP(MF))
+ MFI->setOffsetAdjustment(MFI->getOffsetAdjustment() -
+ AFI->getFramePtrSpillOffset());
+
+ AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
+ AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
+ AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
+
+ // If we need dynamic stack realignment, do it here. Be paranoid and make
+ // sure if we also have VLAs, we have a base pointer for frame access.
+ // If aligned NEON registers were spilled, the stack has already been
+ // realigned.
+ if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
+ unsigned MaxAlign = MFI->getMaxAlignment();
+ assert (!AFI->isThumb1OnlyFunction());
+ if (!AFI->isThumbFunction()) {
+ // Emit bic sp, sp, MaxAlign
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, dl,
+ TII.get(ARM::BICri), ARM::SP)
+ .addReg(ARM::SP, RegState::Kill)
+ .addImm(MaxAlign-1)));
+ } else {
+ // We cannot use sp as source/dest register here, thus we're emitting the
+ // following sequence:
+ // mov r4, sp
+ // bic r4, r4, MaxAlign
+ // mov sp, r4
+ // FIXME: It will be better just to find spare register here.
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
+ .addReg(ARM::SP, RegState::Kill));
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, dl,
+ TII.get(ARM::t2BICri), ARM::R4)
+ .addReg(ARM::R4, RegState::Kill)
+ .addImm(MaxAlign-1)));
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
+ .addReg(ARM::R4, RegState::Kill));
+ }
+
+ AFI->setShouldRestoreSPFromFP(true);
+ }
+
+ // If we need a base pointer, set it up here. It's whatever the value
+ // of the stack pointer is at this point. Any variable size objects
+ // will be allocated after this, so we can still use the base pointer
+ // to reference locals.
+ // FIXME: Clarify FrameSetup flags here.
+ if (RegInfo->hasBasePointer(MF)) {
+ if (isARM)
+ BuildMI(MBB, MBBI, dl,
+ TII.get(ARM::MOVr), RegInfo->getBaseRegister())
+ .addReg(ARM::SP)
+ .addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
+ else
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr),
+ RegInfo->getBaseRegister())
+ .addReg(ARM::SP));
+ }
+
+ // If the frame has variable sized objects then the epilogue must restore
+ // the sp from fp. We can assume there's an FP here since hasFP already
+ // checks for hasVarSizedObjects.
+ if (MFI->hasVarSizedObjects())
+ AFI->setShouldRestoreSPFromFP(true);
+}
+
+void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ assert(MBBI->isReturn() && "Can only insert epilog into returning blocks");
+ unsigned RetOpcode = MBBI->getOpcode();
+ DebugLoc dl = MBBI->getDebugLoc();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This emitEpilogue does not support Thumb1!");
+ bool isARM = !AFI->isThumbFunction();
+
+ unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(Align);
+ int NumBytes = (int)MFI->getStackSize();
+ unsigned FramePtr = RegInfo->getFrameRegister(MF);
+
+ // All calls are tail calls in GHC calling conv, and functions have no
+ // prologue/epilogue.
+ if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
+ return;
+
+ if (!AFI->hasStackFrame()) {
+ if (NumBytes - ArgRegsSaveSize != 0)
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize);
+ } else {
+ // Unwind MBBI to point to first LDR / VLDRD.
+ const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
+ if (MBBI != MBB.begin()) {
+ do {
+ --MBBI;
+ } while (MBBI != MBB.begin() && isCSRestore(MBBI, TII, CSRegs));
+ if (!isCSRestore(MBBI, TII, CSRegs))
+ ++MBBI;
+ }
+
+ // Move SP to start of FP callee save spill area.
+ NumBytes -= (ArgRegsSaveSize +
+ AFI->getGPRCalleeSavedArea1Size() +
+ AFI->getGPRCalleeSavedArea2Size() +
+ AFI->getDPRCalleeSavedAreaSize());
+
+ // Reset SP based on frame pointer only if the stack frame extends beyond
+ // frame pointer stack slot or target is ELF and the function has FP.
+ if (AFI->shouldRestoreSPFromFP()) {
+ NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
+ if (NumBytes) {
+ if (isARM)
+ emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
+ ARMCC::AL, 0, TII);
+ else {
+ // It's not possible to restore SP from FP in a single instruction.
+ // For iOS, this looks like:
+ // mov sp, r7
+ // sub sp, #24
+ // This is bad, if an interrupt is taken after the mov, sp is in an
+ // inconsistent state.
+ // Use the first callee-saved register as a scratch register.
+ assert(MF.getRegInfo().isPhysRegUsed(ARM::R4) &&
+ "No scratch register to restore SP from FP!");
+ emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
+ ARMCC::AL, 0, TII);
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr),
+ ARM::SP)
+ .addReg(ARM::R4));
+ }
+ } else {
+ // Thumb2 or ARM.
+ if (isARM)
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
+ .addReg(FramePtr).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
+ else
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr),
+ ARM::SP)
+ .addReg(FramePtr));
+ }
+ } else if (NumBytes &&
+ !tryFoldSPUpdateIntoPushPop(STI, MF, MBBI, NumBytes))
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
+
+ // Increment past our save areas.
+ if (AFI->getDPRCalleeSavedAreaSize()) {
+ MBBI++;
+ // Since vpop register list cannot have gaps, there may be multiple vpop
+ // instructions in the epilogue.
+ while (MBBI->getOpcode() == ARM::VLDMDIA_UPD)
+ MBBI++;
+ }
+ if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
+ if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
+ }
+
+ if (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri) {
+ // Tail call return: adjust the stack pointer and jump to callee.
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &JumpTarget = MBBI->getOperand(0);
+
+ // Jump to label or value in register.
+ if (RetOpcode == ARM::TCRETURNdi) {
+ unsigned TCOpcode = STI.isThumb() ?
+ (STI.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND) :
+ ARM::TAILJMPd;
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(TCOpcode));
+ if (JumpTarget.isGlobal())
+ MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
+ JumpTarget.getTargetFlags());
+ else {
+ assert(JumpTarget.isSymbol());
+ MIB.addExternalSymbol(JumpTarget.getSymbolName(),
+ JumpTarget.getTargetFlags());
+ }
+
+ // Add the default predicate in Thumb mode.
+ if (STI.isThumb()) MIB.addImm(ARMCC::AL).addReg(0);
+ } else if (RetOpcode == ARM::TCRETURNri) {
+ BuildMI(MBB, MBBI, dl,
+ TII.get(STI.isThumb() ? ARM::tTAILJMPr : ARM::TAILJMPr)).
+ addReg(JumpTarget.getReg(), RegState::Kill);
+ }
+
+ MachineInstr *NewMI = std::prev(MBBI);
+ for (unsigned i = 1, e = MBBI->getNumOperands(); i != e; ++i)
+ NewMI->addOperand(MBBI->getOperand(i));
+
+ // Delete the pseudo instruction TCRETURN.
+ MBB.erase(MBBI);
+ MBBI = NewMI;
+ }
+
+ if (ArgRegsSaveSize)
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize);
+}
+
+/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
+/// debug info. It's the same as what we use for resolving the code-gen
+/// references for now. FIXME: This can go wrong when references are
+/// SP-relative and simple call frames aren't used.
+int
+ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const {
+ return ResolveFrameIndexReference(MF, FI, FrameReg, 0);
+}
+
+int
+ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
+ int FI, unsigned &FrameReg,
+ int SPAdj) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const ARMBaseRegisterInfo *RegInfo =
+ static_cast<const ARMBaseRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ int Offset = MFI->getObjectOffset(FI) + MFI->getStackSize();
+ int FPOffset = Offset - AFI->getFramePtrSpillOffset();
+ bool isFixed = MFI->isFixedObjectIndex(FI);
+
+ FrameReg = ARM::SP;
+ Offset += SPAdj;
+
+ // SP can move around if there are allocas. We may also lose track of SP
+ // when emergency spilling inside a non-reserved call frame setup.
+ bool hasMovingSP = !hasReservedCallFrame(MF);
+
+ // When dynamically realigning the stack, use the frame pointer for
+ // parameters, and the stack/base pointer for locals.
+ if (RegInfo->needsStackRealignment(MF)) {
+ assert (hasFP(MF) && "dynamic stack realignment without a FP!");
+ if (isFixed) {
+ FrameReg = RegInfo->getFrameRegister(MF);
+ Offset = FPOffset;
+ } else if (hasMovingSP) {
+ assert(RegInfo->hasBasePointer(MF) &&
+ "VLAs and dynamic stack alignment, but missing base pointer!");
+ FrameReg = RegInfo->getBaseRegister();
+ }
+ return Offset;
+ }
+
+ // If there is a frame pointer, use it when we can.
+ if (hasFP(MF) && AFI->hasStackFrame()) {
+ // Use frame pointer to reference fixed objects. Use it for locals if
+ // there are VLAs (and thus the SP isn't reliable as a base).
+ if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
+ FrameReg = RegInfo->getFrameRegister(MF);
+ return FPOffset;
+ } else if (hasMovingSP) {
+ assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
+ if (AFI->isThumb2Function()) {
+ // Try to use the frame pointer if we can, else use the base pointer
+ // since it's available. This is handy for the emergency spill slot, in
+ // particular.
+ if (FPOffset >= -255 && FPOffset < 0) {
+ FrameReg = RegInfo->getFrameRegister(MF);
+ return FPOffset;
+ }
+ }
+ } else if (AFI->isThumb2Function()) {
+ // Use add <rd>, sp, #<imm8>
+ // ldr <rd>, [sp, #<imm8>]
+ // if at all possible to save space.
+ if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
+ return Offset;
+ // In Thumb2 mode, the negative offset is very limited. Try to avoid
+ // out of range references. ldr <rt>,[<rn>, #-<imm8>]
+ if (FPOffset >= -255 && FPOffset < 0) {
+ FrameReg = RegInfo->getFrameRegister(MF);
+ return FPOffset;
+ }
+ } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
+ // Otherwise, use SP or FP, whichever is closer to the stack slot.
+ FrameReg = RegInfo->getFrameRegister(MF);
+ return FPOffset;
+ }
+ }
+ // Use the base pointer if we have one.
+ if (RegInfo->hasBasePointer(MF))
+ FrameReg = RegInfo->getBaseRegister();
+ return Offset;
+}
+
+int ARMFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
+ int FI) const {
+ unsigned FrameReg;
+ return getFrameIndexReference(MF, FI, FrameReg);
+}
+
+void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ unsigned StmOpc, unsigned StrOpc,
+ bool NoGap,
+ bool(*Func)(unsigned, bool),
+ unsigned NumAlignedDPRCS2Regs,
+ unsigned MIFlags) const {
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+
+ DebugLoc DL;
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+
+ SmallVector<std::pair<unsigned,bool>, 4> Regs;
+ unsigned i = CSI.size();
+ while (i != 0) {
+ unsigned LastReg = 0;
+ for (; i != 0; --i) {
+ unsigned Reg = CSI[i-1].getReg();
+ if (!(Func)(Reg, STI.isTargetDarwin())) continue;
+
+ // D-registers in the aligned area DPRCS2 are NOT spilled here.
+ if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
+ continue;
+
+ // Add the callee-saved register as live-in unless it's LR and
+ // @llvm.returnaddress is called. If LR is returned for
+ // @llvm.returnaddress then it's already added to the function and
+ // entry block live-in sets.
+ bool isKill = true;
+ if (Reg == ARM::LR) {
+ if (MF.getFrameInfo()->isReturnAddressTaken() &&
+ MF.getRegInfo().isLiveIn(Reg))
+ isKill = false;
+ }
+
+ if (isKill)
+ MBB.addLiveIn(Reg);
+
+ // If NoGap is true, push consecutive registers and then leave the rest
+ // for other instructions. e.g.
+ // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
+ if (NoGap && LastReg && LastReg != Reg-1)
+ break;
+ LastReg = Reg;
+ Regs.push_back(std::make_pair(Reg, isKill));
+ }
+
+ if (Regs.empty())
+ continue;
+ if (Regs.size() > 1 || StrOpc== 0) {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
+ .addReg(ARM::SP).setMIFlags(MIFlags));
+ for (unsigned i = 0, e = Regs.size(); i < e; ++i)
+ MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
+ } else if (Regs.size() == 1) {
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc),
+ ARM::SP)
+ .addReg(Regs[0].first, getKillRegState(Regs[0].second))
+ .addReg(ARM::SP).setMIFlags(MIFlags)
+ .addImm(-4);
+ AddDefaultPred(MIB);
+ }
+ Regs.clear();
+
+ // Put any subsequent vpush instructions before this one: they will refer to
+ // higher register numbers so need to be pushed first in order to preserve
+ // monotonicity.
+ --MI;
+ }
+}
+
+void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ unsigned LdmOpc, unsigned LdrOpc,
+ bool isVarArg, bool NoGap,
+ bool(*Func)(unsigned, bool),
+ unsigned NumAlignedDPRCS2Regs) const {
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned RetOpcode = MI->getOpcode();
+ bool isTailCall = (RetOpcode == ARM::TCRETURNdi ||
+ RetOpcode == ARM::TCRETURNri);
+ bool isInterrupt =
+ RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
+
+ SmallVector<unsigned, 4> Regs;
+ unsigned i = CSI.size();
+ while (i != 0) {
+ unsigned LastReg = 0;
+ bool DeleteRet = false;
+ for (; i != 0; --i) {
+ unsigned Reg = CSI[i-1].getReg();
+ if (!(Func)(Reg, STI.isTargetDarwin())) continue;
+
+ // The aligned reloads from area DPRCS2 are not inserted here.
+ if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
+ continue;
+
+ if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
+ STI.hasV5TOps()) {
+ Reg = ARM::PC;
+ LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
+ // Fold the return instruction into the LDM.
+ DeleteRet = true;
+ }
+
+ // If NoGap is true, pop consecutive registers and then leave the rest
+ // for other instructions. e.g.
+ // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
+ if (NoGap && LastReg && LastReg != Reg-1)
+ break;
+
+ LastReg = Reg;
+ Regs.push_back(Reg);
+ }
+
+ if (Regs.empty())
+ continue;
+ if (Regs.size() > 1 || LdrOpc == 0) {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
+ .addReg(ARM::SP));
+ for (unsigned i = 0, e = Regs.size(); i < e; ++i)
+ MIB.addReg(Regs[i], getDefRegState(true));
+ if (DeleteRet) {
+ MIB.copyImplicitOps(&*MI);
+ MI->eraseFromParent();
+ }
+ MI = MIB;
+ } else if (Regs.size() == 1) {
+ // If we adjusted the reg to PC from LR above, switch it back here. We
+ // only do that for LDM.
+ if (Regs[0] == ARM::PC)
+ Regs[0] = ARM::LR;
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP);
+ // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
+ // that refactoring is complete (eventually).
+ if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
+ MIB.addReg(0);
+ MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
+ } else
+ MIB.addImm(4);
+ AddDefaultPred(MIB);
+ }
+ Regs.clear();
+
+ // Put any subsequent vpop instructions after this one: they will refer to
+ // higher register numbers so need to be popped afterwards.
+ ++MI;
+ }
+}
+
+/// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
+/// starting from d8. Also insert stack realignment code and leave the stack
+/// pointer pointing to the d8 spill slot.
+static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned NumAlignedDPRCS2Regs,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) {
+ MachineFunction &MF = *MBB.getParent();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ DebugLoc DL = MI->getDebugLoc();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+
+ // Mark the D-register spill slots as properly aligned. Since MFI computes
+ // stack slot layout backwards, this can actually mean that the d-reg stack
+ // slot offsets can be wrong. The offset for d8 will always be correct.
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned DNum = CSI[i].getReg() - ARM::D8;
+ if (DNum >= 8)
+ continue;
+ int FI = CSI[i].getFrameIdx();
+ // The even-numbered registers will be 16-byte aligned, the odd-numbered
+ // registers will be 8-byte aligned.
+ MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16);
+
+ // The stack slot for D8 needs to be maximally aligned because this is
+ // actually the point where we align the stack pointer. MachineFrameInfo
+ // computes all offsets relative to the incoming stack pointer which is a
+ // bit weird when realigning the stack. Any extra padding for this
+ // over-alignment is not realized because the code inserted below adjusts
+ // the stack pointer by numregs * 8 before aligning the stack pointer.
+ if (DNum == 0)
+ MFI.setObjectAlignment(FI, MFI.getMaxAlignment());
+ }
+
+ // Move the stack pointer to the d8 spill slot, and align it at the same
+ // time. Leave the stack slot address in the scratch register r4.
+ //
+ // sub r4, sp, #numregs * 8
+ // bic r4, r4, #align - 1
+ // mov sp, r4
+ //
+ bool isThumb = AFI->isThumbFunction();
+ assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
+ AFI->setShouldRestoreSPFromFP(true);
+
+ // sub r4, sp, #numregs * 8
+ // The immediate is <= 64, so it doesn't need any special encoding.
+ unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
+ .addReg(ARM::SP)
+ .addImm(8 * NumAlignedDPRCS2Regs)));
+
+ // bic r4, r4, #align-1
+ Opc = isThumb ? ARM::t2BICri : ARM::BICri;
+ unsigned MaxAlign = MF.getFrameInfo()->getMaxAlignment();
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
+ .addReg(ARM::R4, RegState::Kill)
+ .addImm(MaxAlign - 1)));
+
+ // mov sp, r4
+ // The stack pointer must be adjusted before spilling anything, otherwise
+ // the stack slots could be clobbered by an interrupt handler.
+ // Leave r4 live, it is used below.
+ Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
+ .addReg(ARM::R4);
+ MIB = AddDefaultPred(MIB);
+ if (!isThumb)
+ AddDefaultCC(MIB);
+
+ // Now spill NumAlignedDPRCS2Regs registers starting from d8.
+ // r4 holds the stack slot address.
+ unsigned NextReg = ARM::D8;
+
+ // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
+ // The writeback is only needed when emitting two vst1.64 instructions.
+ if (NumAlignedDPRCS2Regs >= 6) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QQPRRegClass);
+ MBB.addLiveIn(SupReg);
+ AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed),
+ ARM::R4)
+ .addReg(ARM::R4, RegState::Kill).addImm(16)
+ .addReg(NextReg)
+ .addReg(SupReg, RegState::ImplicitKill));
+ NextReg += 4;
+ NumAlignedDPRCS2Regs -= 4;
+ }
+
+ // We won't modify r4 beyond this point. It currently points to the next
+ // register to be spilled.
+ unsigned R4BaseReg = NextReg;
+
+ // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
+ if (NumAlignedDPRCS2Regs >= 4) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QQPRRegClass);
+ MBB.addLiveIn(SupReg);
+ AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
+ .addReg(ARM::R4).addImm(16).addReg(NextReg)
+ .addReg(SupReg, RegState::ImplicitKill));
+ NextReg += 4;
+ NumAlignedDPRCS2Regs -= 4;
+ }
+
+ // 16-byte aligned vst1.64 with 2 d-regs.
+ if (NumAlignedDPRCS2Regs >= 2) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QPRRegClass);
+ MBB.addLiveIn(SupReg);
+ AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
+ .addReg(ARM::R4).addImm(16).addReg(SupReg));
+ NextReg += 2;
+ NumAlignedDPRCS2Regs -= 2;
+ }
+
+ // Finally, use a vanilla vstr.64 for the odd last register.
+ if (NumAlignedDPRCS2Regs) {
+ MBB.addLiveIn(NextReg);
+ // vstr.64 uses addrmode5 which has an offset scale of 4.
+ AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
+ .addReg(NextReg)
+ .addReg(ARM::R4).addImm((NextReg-R4BaseReg)*2));
+ }
+
+ // The last spill instruction inserted should kill the scratch register r4.
+ std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
+}
+
+/// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
+/// iterator to the following instruction.
+static MachineBasicBlock::iterator
+skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
+ unsigned NumAlignedDPRCS2Regs) {
+ // sub r4, sp, #numregs * 8
+ // bic r4, r4, #align - 1
+ // mov sp, r4
+ ++MI; ++MI; ++MI;
+ assert(MI->mayStore() && "Expecting spill instruction");
+
+ // These switches all fall through.
+ switch(NumAlignedDPRCS2Regs) {
+ case 7:
+ ++MI;
+ assert(MI->mayStore() && "Expecting spill instruction");
+ default:
+ ++MI;
+ assert(MI->mayStore() && "Expecting spill instruction");
+ case 1:
+ case 2:
+ case 4:
+ assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
+ ++MI;
+ }
+ return MI;
+}
+
+/// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
+/// starting from d8. These instructions are assumed to execute while the
+/// stack is still aligned, unlike the code inserted by emitPopInst.
+static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned NumAlignedDPRCS2Regs,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) {
+ MachineFunction &MF = *MBB.getParent();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ DebugLoc DL = MI->getDebugLoc();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+
+ // Find the frame index assigned to d8.
+ int D8SpillFI = 0;
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i)
+ if (CSI[i].getReg() == ARM::D8) {
+ D8SpillFI = CSI[i].getFrameIdx();
+ break;
+ }
+
+ // Materialize the address of the d8 spill slot into the scratch register r4.
+ // This can be fairly complicated if the stack frame is large, so just use
+ // the normal frame index elimination mechanism to do it. This code runs as
+ // the initial part of the epilog where the stack and base pointers haven't
+ // been changed yet.
+ bool isThumb = AFI->isThumbFunction();
+ assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
+
+ unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
+ .addFrameIndex(D8SpillFI).addImm(0)));
+
+ // Now restore NumAlignedDPRCS2Regs registers starting from d8.
+ unsigned NextReg = ARM::D8;
+
+ // 16-byte aligned vld1.64 with 4 d-regs and writeback.
+ if (NumAlignedDPRCS2Regs >= 6) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QQPRRegClass);
+ AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
+ .addReg(ARM::R4, RegState::Define)
+ .addReg(ARM::R4, RegState::Kill).addImm(16)
+ .addReg(SupReg, RegState::ImplicitDefine));
+ NextReg += 4;
+ NumAlignedDPRCS2Regs -= 4;
+ }
+
+ // We won't modify r4 beyond this point. It currently points to the next
+ // register to be spilled.
+ unsigned R4BaseReg = NextReg;
+
+ // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
+ if (NumAlignedDPRCS2Regs >= 4) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QQPRRegClass);
+ AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
+ .addReg(ARM::R4).addImm(16)
+ .addReg(SupReg, RegState::ImplicitDefine));
+ NextReg += 4;
+ NumAlignedDPRCS2Regs -= 4;
+ }
+
+ // 16-byte aligned vld1.64 with 2 d-regs.
+ if (NumAlignedDPRCS2Regs >= 2) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QPRRegClass);
+ AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
+ .addReg(ARM::R4).addImm(16));
+ NextReg += 2;
+ NumAlignedDPRCS2Regs -= 2;
+ }
+
+ // Finally, use a vanilla vldr.64 for the remaining odd register.
+ if (NumAlignedDPRCS2Regs)
+ AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
+ .addReg(ARM::R4).addImm(2*(NextReg-R4BaseReg)));
+
+ // Last store kills r4.
+ std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
+}
+
+bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ MachineFunction &MF = *MBB.getParent();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
+ unsigned PushOneOpc = AFI->isThumbFunction() ?
+ ARM::t2STR_PRE : ARM::STR_PRE_IMM;
+ unsigned FltOpc = ARM::VSTMDDB_UPD;
+ unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
+ emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
+ MachineInstr::FrameSetup);
+ emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
+ MachineInstr::FrameSetup);
+ emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
+ NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
+
+ // The code above does not insert spill code for the aligned DPRCS2 registers.
+ // The stack realignment code will be inserted between the push instructions
+ // and these spills.
+ if (NumAlignedDPRCS2Regs)
+ emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
+
+ return true;
+}
+
+bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ MachineFunction &MF = *MBB.getParent();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ bool isVarArg = AFI->getArgRegsSaveSize() > 0;
+ unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
+
+ // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
+ // registers. Do that here instead.
+ if (NumAlignedDPRCS2Regs)
+ emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
+
+ unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
+ unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
+ unsigned FltOpc = ARM::VLDMDIA_UPD;
+ emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
+ NumAlignedDPRCS2Regs);
+ emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
+ &isARMArea2Register, 0);
+ emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
+ &isARMArea1Register, 0);
+
+ return true;
+}
+
+// FIXME: Make generic?
+static unsigned GetFunctionSizeInBytes(const MachineFunction &MF,
+ const ARMBaseInstrInfo &TII) {
+ unsigned FnSize = 0;
+ for (auto &MBB : MF) {
+ for (auto &MI : MBB)
+ FnSize += TII.GetInstSizeInBytes(&MI);
+ }
+ return FnSize;
+}
+
+/// estimateRSStackSizeLimit - Look at each instruction that references stack
+/// frames and return the stack size limit beyond which some of these
+/// instructions will require a scratch register during their expansion later.
+// FIXME: Move to TII?
+static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
+ const TargetFrameLowering *TFI) {
+ const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned Limit = (1 << 12) - 1;
+ for (auto &MBB : MF) {
+ for (auto &MI : MBB) {
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ if (!MI.getOperand(i).isFI())
+ continue;
+
+ // When using ADDri to get the address of a stack object, 255 is the
+ // largest offset guaranteed to fit in the immediate offset.
+ if (MI.getOpcode() == ARM::ADDri) {
+ Limit = std::min(Limit, (1U << 8) - 1);
+ break;
+ }
+
+ // Otherwise check the addressing mode.
+ switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
+ case ARMII::AddrMode3:
+ case ARMII::AddrModeT2_i8:
+ Limit = std::min(Limit, (1U << 8) - 1);
+ break;
+ case ARMII::AddrMode5:
+ case ARMII::AddrModeT2_i8s4:
+ Limit = std::min(Limit, ((1U << 8) - 1) * 4);
+ break;
+ case ARMII::AddrModeT2_i12:
+ // i12 supports only positive offset so these will be converted to
+ // i8 opcodes. See llvm::rewriteT2FrameIndex.
+ if (TFI->hasFP(MF) && AFI->hasStackFrame())
+ Limit = std::min(Limit, (1U << 8) - 1);
+ break;
+ case ARMII::AddrMode4:
+ case ARMII::AddrMode6:
+ // Addressing modes 4 & 6 (load/store) instructions can't encode an
+ // immediate offset for stack references.
+ return 0;
+ default:
+ break;
+ }
+ break; // At most one FI per instruction
+ }
+ }
+ }
+
+ return Limit;
+}
+
+// In functions that realign the stack, it can be an advantage to spill the
+// callee-saved vector registers after realigning the stack. The vst1 and vld1
+// instructions take alignment hints that can improve performance.
+//
+static void checkNumAlignedDPRCS2Regs(MachineFunction &MF) {
+ MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
+ if (!SpillAlignedNEONRegs)
+ return;
+
+ // Naked functions don't spill callee-saved registers.
+ if (MF.getFunction()->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::Naked))
+ return;
+
+ // We are planning to use NEON instructions vst1 / vld1.
+ if (!MF.getTarget().getSubtarget<ARMSubtarget>().hasNEON())
+ return;
+
+ // Don't bother if the default stack alignment is sufficiently high.
+ if (MF.getTarget().getFrameLowering()->getStackAlignment() >= 8)
+ return;
+
+ // Aligned spills require stack realignment.
+ const ARMBaseRegisterInfo *RegInfo =
+ static_cast<const ARMBaseRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ if (!RegInfo->canRealignStack(MF))
+ return;
+
+ // We always spill contiguous d-registers starting from d8. Count how many
+ // needs spilling. The register allocator will almost always use the
+ // callee-saved registers in order, but it can happen that there are holes in
+ // the range. Registers above the hole will be spilled to the standard DPRCS
+ // area.
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ unsigned NumSpills = 0;
+ for (; NumSpills < 8; ++NumSpills)
+ if (!MRI.isPhysRegUsed(ARM::D8 + NumSpills))
+ break;
+
+ // Don't do this for just one d-register. It's not worth it.
+ if (NumSpills < 2)
+ return;
+
+ // Spill the first NumSpills D-registers after realigning the stack.
+ MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
+
+ // A scratch register is required for the vst1 / vld1 instructions.
+ MF.getRegInfo().setPhysRegUsed(ARM::R4);
+}
+
+void
+ARMFrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const {
+ // This tells PEI to spill the FP as if it is any other callee-save register
+ // to take advantage the eliminateFrameIndex machinery. This also ensures it
+ // is spilled in the order specified by getCalleeSavedRegs() to make it easier
+ // to combine multiple loads / stores.
+ bool CanEliminateFrame = true;
+ bool CS1Spilled = false;
+ bool LRSpilled = false;
+ unsigned NumGPRSpills = 0;
+ SmallVector<unsigned, 4> UnspilledCS1GPRs;
+ SmallVector<unsigned, 4> UnspilledCS2GPRs;
+ const ARMBaseRegisterInfo *RegInfo =
+ static_cast<const ARMBaseRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ unsigned FramePtr = RegInfo->getFrameRegister(MF);
+
+ // Spill R4 if Thumb2 function requires stack realignment - it will be used as
+ // scratch register. Also spill R4 if Thumb2 function has varsized objects,
+ // since it's not always possible to restore sp from fp in a single
+ // instruction.
+ // FIXME: It will be better just to find spare register here.
+ if (AFI->isThumb2Function() &&
+ (MFI->hasVarSizedObjects() || RegInfo->needsStackRealignment(MF)))
+ MRI.setPhysRegUsed(ARM::R4);
+
+ if (AFI->isThumb1OnlyFunction()) {
+ // Spill LR if Thumb1 function uses variable length argument lists.
+ if (AFI->getArgRegsSaveSize() > 0)
+ MRI.setPhysRegUsed(ARM::LR);
+
+ // Spill R4 if Thumb1 epilogue has to restore SP from FP. We don't know
+ // for sure what the stack size will be, but for this, an estimate is good
+ // enough. If there anything changes it, it'll be a spill, which implies
+ // we've used all the registers and so R4 is already used, so not marking
+ // it here will be OK.
+ // FIXME: It will be better just to find spare register here.
+ unsigned StackSize = MFI->estimateStackSize(MF);
+ if (MFI->hasVarSizedObjects() || StackSize > 508)
+ MRI.setPhysRegUsed(ARM::R4);
+ }
+
+ // See if we can spill vector registers to aligned stack.
+ checkNumAlignedDPRCS2Regs(MF);
+
+ // Spill the BasePtr if it's used.
+ if (RegInfo->hasBasePointer(MF))
+ MRI.setPhysRegUsed(RegInfo->getBaseRegister());
+
+ // Don't spill FP if the frame can be eliminated. This is determined
+ // by scanning the callee-save registers to see if any is used.
+ const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
+ for (unsigned i = 0; CSRegs[i]; ++i) {
+ unsigned Reg = CSRegs[i];
+ bool Spilled = false;
+ if (MRI.isPhysRegUsed(Reg)) {
+ Spilled = true;
+ CanEliminateFrame = false;
+ }
+
+ if (!ARM::GPRRegClass.contains(Reg))
+ continue;
+
+ if (Spilled) {
+ NumGPRSpills++;
+
+ if (!STI.isTargetDarwin()) {
+ if (Reg == ARM::LR)
+ LRSpilled = true;
+ CS1Spilled = true;
+ continue;
+ }
+
+ // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
+ switch (Reg) {
+ case ARM::LR:
+ LRSpilled = true;
+ // Fallthrough
+ case ARM::R0: case ARM::R1:
+ case ARM::R2: case ARM::R3:
+ case ARM::R4: case ARM::R5:
+ case ARM::R6: case ARM::R7:
+ CS1Spilled = true;
+ break;
+ default:
+ break;
+ }
+ } else {
+ if (!STI.isTargetDarwin()) {
+ UnspilledCS1GPRs.push_back(Reg);
+ continue;
+ }
+
+ switch (Reg) {
+ case ARM::R0: case ARM::R1:
+ case ARM::R2: case ARM::R3:
+ case ARM::R4: case ARM::R5:
+ case ARM::R6: case ARM::R7:
+ case ARM::LR:
+ UnspilledCS1GPRs.push_back(Reg);
+ break;
+ default:
+ UnspilledCS2GPRs.push_back(Reg);
+ break;
+ }
+ }
+ }
+
+ bool ForceLRSpill = false;
+ if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
+ unsigned FnSize = GetFunctionSizeInBytes(MF, TII);
+ // Force LR to be spilled if the Thumb function size is > 2048. This enables
+ // use of BL to implement far jump. If it turns out that it's not needed
+ // then the branch fix up path will undo it.
+ if (FnSize >= (1 << 11)) {
+ CanEliminateFrame = false;
+ ForceLRSpill = true;
+ }
+ }
+
+ // If any of the stack slot references may be out of range of an immediate
+ // offset, make sure a register (or a spill slot) is available for the
+ // register scavenger. Note that if we're indexing off the frame pointer, the
+ // effective stack size is 4 bytes larger since the FP points to the stack
+ // slot of the previous FP. Also, if we have variable sized objects in the
+ // function, stack slot references will often be negative, and some of
+ // our instructions are positive-offset only, so conservatively consider
+ // that case to want a spill slot (or register) as well. Similarly, if
+ // the function adjusts the stack pointer during execution and the
+ // adjustments aren't already part of our stack size estimate, our offset
+ // calculations may be off, so be conservative.
+ // FIXME: We could add logic to be more precise about negative offsets
+ // and which instructions will need a scratch register for them. Is it
+ // worth the effort and added fragility?
+ bool BigStack =
+ (RS &&
+ (MFI->estimateStackSize(MF) +
+ ((hasFP(MF) && AFI->hasStackFrame()) ? 4:0) >=
+ estimateRSStackSizeLimit(MF, this)))
+ || MFI->hasVarSizedObjects()
+ || (MFI->adjustsStack() && !canSimplifyCallFramePseudos(MF));
+
+ bool ExtraCSSpill = false;
+ if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
+ AFI->setHasStackFrame(true);
+
+ // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
+ // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
+ if (!LRSpilled && CS1Spilled) {
+ MRI.setPhysRegUsed(ARM::LR);
+ NumGPRSpills++;
+ SmallVectorImpl<unsigned>::iterator LRPos;
+ LRPos = std::find(UnspilledCS1GPRs.begin(), UnspilledCS1GPRs.end(),
+ (unsigned)ARM::LR);
+ if (LRPos != UnspilledCS1GPRs.end())
+ UnspilledCS1GPRs.erase(LRPos);
+
+ ForceLRSpill = false;
+ ExtraCSSpill = true;
+ }
+
+ if (hasFP(MF)) {
+ MRI.setPhysRegUsed(FramePtr);
+ auto FPPos = std::find(UnspilledCS1GPRs.begin(), UnspilledCS1GPRs.end(),
+ FramePtr);
+ if (FPPos != UnspilledCS1GPRs.end())
+ UnspilledCS1GPRs.erase(FPPos);
+ NumGPRSpills++;
+ }
+
+ // If stack and double are 8-byte aligned and we are spilling an odd number
+ // of GPRs, spill one extra callee save GPR so we won't have to pad between
+ // the integer and double callee save areas.
+ unsigned TargetAlign = getStackAlignment();
+ if (TargetAlign == 8 && (NumGPRSpills & 1)) {
+ if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
+ for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
+ unsigned Reg = UnspilledCS1GPRs[i];
+ // Don't spill high register if the function is thumb1
+ if (!AFI->isThumb1OnlyFunction() ||
+ isARMLowRegister(Reg) || Reg == ARM::LR) {
+ MRI.setPhysRegUsed(Reg);
+ if (!MRI.isReserved(Reg))
+ ExtraCSSpill = true;
+ break;
+ }
+ }
+ } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
+ unsigned Reg = UnspilledCS2GPRs.front();
+ MRI.setPhysRegUsed(Reg);
+ if (!MRI.isReserved(Reg))
+ ExtraCSSpill = true;
+ }
+ }
+
+ // Estimate if we might need to scavenge a register at some point in order
+ // to materialize a stack offset. If so, either spill one additional
+ // callee-saved register or reserve a special spill slot to facilitate
+ // register scavenging. Thumb1 needs a spill slot for stack pointer
+ // adjustments also, even when the frame itself is small.
+ if (BigStack && !ExtraCSSpill) {
+ // If any non-reserved CS register isn't spilled, just spill one or two
+ // extra. That should take care of it!
+ unsigned NumExtras = TargetAlign / 4;
+ SmallVector<unsigned, 2> Extras;
+ while (NumExtras && !UnspilledCS1GPRs.empty()) {
+ unsigned Reg = UnspilledCS1GPRs.back();
+ UnspilledCS1GPRs.pop_back();
+ if (!MRI.isReserved(Reg) &&
+ (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) ||
+ Reg == ARM::LR)) {
+ Extras.push_back(Reg);
+ NumExtras--;
+ }
+ }
+ // For non-Thumb1 functions, also check for hi-reg CS registers
+ if (!AFI->isThumb1OnlyFunction()) {
+ while (NumExtras && !UnspilledCS2GPRs.empty()) {
+ unsigned Reg = UnspilledCS2GPRs.back();
+ UnspilledCS2GPRs.pop_back();
+ if (!MRI.isReserved(Reg)) {
+ Extras.push_back(Reg);
+ NumExtras--;
+ }
+ }
+ }
+ if (Extras.size() && NumExtras == 0) {
+ for (unsigned i = 0, e = Extras.size(); i != e; ++i) {
+ MRI.setPhysRegUsed(Extras[i]);
+ }
+ } else if (!AFI->isThumb1OnlyFunction()) {
+ // note: Thumb1 functions spill to R12, not the stack. Reserve a slot
+ // closest to SP or frame pointer.
+ const TargetRegisterClass *RC = &ARM::GPRRegClass;
+ RS->addScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
+ RC->getAlignment(),
+ false));
+ }
+ }
+ }
+
+ if (ForceLRSpill) {
+ MRI.setPhysRegUsed(ARM::LR);
+ AFI->setLRIsSpilledForFarJump(true);
+ }
+}
+
+
+void ARMFrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ if (!hasReservedCallFrame(MF)) {
+ // If we have alloca, convert as follows:
+ // ADJCALLSTACKDOWN -> sub, sp, sp, amount
+ // ADJCALLSTACKUP -> add, sp, sp, amount
+ MachineInstr *Old = I;
+ DebugLoc dl = Old->getDebugLoc();
+ unsigned Amount = Old->getOperand(0).getImm();
+ if (Amount != 0) {
+ // We need to keep the stack aligned properly. To do this, we round the
+ // amount of space needed for the outgoing arguments up to the next
+ // alignment boundary.
+ unsigned Align = getStackAlignment();
+ Amount = (Amount+Align-1)/Align*Align;
+
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This eliminateCallFramePseudoInstr does not support Thumb1!");
+ bool isARM = !AFI->isThumbFunction();
+
+ // Replace the pseudo instruction with a new instruction...
+ unsigned Opc = Old->getOpcode();
+ int PIdx = Old->findFirstPredOperandIdx();
+ ARMCC::CondCodes Pred = (PIdx == -1)
+ ? ARMCC::AL : (ARMCC::CondCodes)Old->getOperand(PIdx).getImm();
+ if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
+ // Note: PredReg is operand 2 for ADJCALLSTACKDOWN.
+ unsigned PredReg = Old->getOperand(2).getReg();
+ emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
+ Pred, PredReg);
+ } else {
+ // Note: PredReg is operand 3 for ADJCALLSTACKUP.
+ unsigned PredReg = Old->getOperand(3).getReg();
+ assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
+ emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
+ Pred, PredReg);
+ }
+ }
+ }
+ MBB.erase(I);
+}
+
+/// Get the minimum constant for ARM that is greater than or equal to the
+/// argument. In ARM, constants can have any value that can be produced by
+/// rotating an 8-bit value to the right by an even number of bits within a
+/// 32-bit word.
+static uint32_t alignToARMConstant(uint32_t Value) {
+ unsigned Shifted = 0;
+
+ if (Value == 0)
+ return 0;
+
+ while (!(Value & 0xC0000000)) {
+ Value = Value << 2;
+ Shifted += 2;
+ }
+
+ bool Carry = (Value & 0x00FFFFFF);
+ Value = ((Value & 0xFF000000) >> 24) + Carry;
+
+ if (Value & 0x0000100)
+ Value = Value & 0x000001FC;
+
+ if (Shifted > 24)
+ Value = Value >> (Shifted - 24);
+ else
+ Value = Value << (24 - Shifted);
+
+ return Value;
+}
+
+// The stack limit in the TCB is set to this many bytes above the actual
+// stack limit.
+static const uint64_t kSplitStackAvailable = 256;
+
+// Adjust the function prologue to enable split stacks. This currently only
+// supports android and linux.
+//
+// The ABI of the segmented stack prologue is a little arbitrarily chosen, but
+// must be well defined in order to allow for consistent implementations of the
+// __morestack helper function. The ABI is also not a normal ABI in that it
+// doesn't follow the normal calling conventions because this allows the
+// prologue of each function to be optimized further.
+//
+// Currently, the ABI looks like (when calling __morestack)
+//
+// * r4 holds the minimum stack size requested for this function call
+// * r5 holds the stack size of the arguments to the function
+// * the beginning of the function is 3 instructions after the call to
+// __morestack
+//
+// Implementations of __morestack should use r4 to allocate a new stack, r5 to
+// place the arguments on to the new stack, and the 3-instruction knowledge to
+// jump directly to the body of the function when working on the new stack.
+//
+// An old (and possibly no longer compatible) implementation of __morestack for
+// ARM can be found at [1].
+//
+// [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
+void ARMFrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
+ unsigned Opcode;
+ unsigned CFIIndex;
+ const ARMSubtarget *ST = &MF.getTarget().getSubtarget<ARMSubtarget>();
+ bool Thumb = ST->isThumb();
+
+ // Sadly, this currently doesn't support varargs, platforms other than
+ // android/linux. Note that thumb1/thumb2 are support for android/linux.
+ if (MF.getFunction()->isVarArg())
+ report_fatal_error("Segmented stacks do not support vararg functions.");
+ if (!ST->isTargetAndroid() && !ST->isTargetLinux())
+ report_fatal_error("Segmented stacks not supported on this platform.");
+
+ MachineBasicBlock &prologueMBB = MF.front();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineModuleInfo &MMI = MF.getMMI();
+ MCContext &Context = MMI.getContext();
+ const MCRegisterInfo *MRI = Context.getRegisterInfo();
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
+ DebugLoc DL;
+
+ uint64_t StackSize = MFI->getStackSize();
+
+ // Do not generate a prologue for functions with a stack of size zero
+ if (StackSize == 0)
+ return;
+
+ // Use R4 and R5 as scratch registers.
+ // We save R4 and R5 before use and restore them before leaving the function.
+ unsigned ScratchReg0 = ARM::R4;
+ unsigned ScratchReg1 = ARM::R5;
+ uint64_t AlignedStackSize;
+
+ MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
+
+ for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
+ e = prologueMBB.livein_end();
+ i != e; ++i) {
+ AllocMBB->addLiveIn(*i);
+ GetMBB->addLiveIn(*i);
+ McrMBB->addLiveIn(*i);
+ PrevStackMBB->addLiveIn(*i);
+ PostStackMBB->addLiveIn(*i);
+ }
+
+ MF.push_front(PostStackMBB);
+ MF.push_front(AllocMBB);
+ MF.push_front(GetMBB);
+ MF.push_front(McrMBB);
+ MF.push_front(PrevStackMBB);
+
+ // The required stack size that is aligned to ARM constant criterion.
+ AlignedStackSize = alignToARMConstant(StackSize);
+
+ // When the frame size is less than 256 we just compare the stack
+ // boundary directly to the value of the stack pointer, per gcc.
+ bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
+
+ // We will use two of the callee save registers as scratch registers so we
+ // need to save those registers onto the stack.
+ // We will use SR0 to hold stack limit and SR1 to hold the stack size
+ // requested and arguments for __morestack().
+ // SR0: Scratch Register #0
+ // SR1: Scratch Register #1
+ // push {SR0, SR1}
+ if (Thumb) {
+ AddDefaultPred(BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)))
+ .addReg(ScratchReg0).addReg(ScratchReg1);
+ } else {
+ AddDefaultPred(BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
+ .addReg(ARM::SP, RegState::Define).addReg(ARM::SP))
+ .addReg(ScratchReg0).addReg(ScratchReg1);
+ }
+
+ // Emit the relevant DWARF information about the change in stack pointer as
+ // well as where to find both r4 and r5 (the callee-save registers)
+ CFIIndex =
+ MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8));
+ BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
+ BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
+ BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // mov SR1, sp
+ if (Thumb) {
+ AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
+ .addReg(ARM::SP));
+ } else if (CompareStackPointer) {
+ AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
+ .addReg(ARM::SP)).addReg(0);
+ }
+
+ // sub SR1, sp, #StackSize
+ if (!CompareStackPointer && Thumb) {
+ AddDefaultPred(
+ AddDefaultCC(BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1))
+ .addReg(ScratchReg1).addImm(AlignedStackSize));
+ } else if (!CompareStackPointer) {
+ AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
+ .addReg(ARM::SP).addImm(AlignedStackSize)).addReg(0);
+ }
+
+ if (Thumb && ST->isThumb1Only()) {
+ unsigned PCLabelId = ARMFI->createPICLabelUId();
+ ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
+ MF.getFunction()->getContext(), "__STACK_LIMIT", PCLabelId, 0);
+ MachineConstantPool *MCP = MF.getConstantPool();
+ unsigned CPI = MCP->getConstantPoolIndex(NewCPV, MF.getAlignment());
+
+ // ldr SR0, [pc, offset(STACK_LIMIT)]
+ AddDefaultPred(BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
+ .addConstantPoolIndex(CPI));
+
+ // ldr SR0, [SR0]
+ AddDefaultPred(BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
+ .addReg(ScratchReg0).addImm(0));
+ } else {
+ // Get TLS base address from the coprocessor
+ // mrc p15, #0, SR0, c13, c0, #3
+ AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0)
+ .addImm(15)
+ .addImm(0)
+ .addImm(13)
+ .addImm(0)
+ .addImm(3));
+
+ // Use the last tls slot on android and a private field of the TCP on linux.
+ assert(ST->isTargetAndroid() || ST->isTargetLinux());
+ unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
+
+ // Get the stack limit from the right offset
+ // ldr SR0, [sr0, #4 * TlsOffset]
+ AddDefaultPred(BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0)
+ .addReg(ScratchReg0).addImm(4 * TlsOffset));
+ }
+
+ // Compare stack limit with stack size requested.
+ // cmp SR0, SR1
+ Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
+ AddDefaultPred(BuildMI(GetMBB, DL, TII.get(Opcode))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1));
+
+ // This jump is taken if StackLimit < SP - stack required.
+ Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
+ BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
+ .addImm(ARMCC::LO)
+ .addReg(ARM::CPSR);
+
+
+ // Calling __morestack(StackSize, Size of stack arguments).
+ // __morestack knows that the stack size requested is in SR0(r4)
+ // and amount size of stack arguments is in SR1(r5).
+
+ // Pass first argument for the __morestack by Scratch Register #0.
+ // The amount size of stack required
+ if (Thumb) {
+ AddDefaultPred(AddDefaultCC(BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8),
+ ScratchReg0)).addImm(AlignedStackSize));
+ } else {
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
+ .addImm(AlignedStackSize)).addReg(0);
+ }
+ // Pass second argument for the __morestack by Scratch Register #1.
+ // The amount size of stack consumed to save function arguments.
+ if (Thumb) {
+ AddDefaultPred(
+ AddDefaultCC(BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1))
+ .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())));
+ } else {
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
+ .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())))
+ .addReg(0);
+ }
+
+ // push {lr} - Save return address of this function.
+ if (Thumb) {
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)))
+ .addReg(ARM::LR);
+ } else {
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP))
+ .addReg(ARM::LR);
+ }
+
+ // Emit the DWARF info about the change in stack as well as where to find the
+ // previous link register
+ CFIIndex =
+ MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12));
+ BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
+ BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // Call __morestack().
+ if (Thumb) {
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tBL)))
+ .addExternalSymbol("__morestack");
+ } else {
+ BuildMI(AllocMBB, DL, TII.get(ARM::BL))
+ .addExternalSymbol("__morestack");
+ }
+
+ // pop {lr} - Restore return address of this original function.
+ if (Thumb) {
+ if (ST->isThumb1Only()) {
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)))
+ .addReg(ScratchReg0);
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
+ .addReg(ScratchReg0));
+ } else {
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
+ .addReg(ARM::LR, RegState::Define)
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP)
+ .addImm(4));
+ }
+ } else {
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP))
+ .addReg(ARM::LR);
+ }
+
+ // Restore SR0 and SR1 in case of __morestack() was called.
+ // __morestack() will skip PostStackMBB block so we need to restore
+ // scratch registers from here.
+ // pop {SR0, SR1}
+ if (Thumb) {
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1);
+ } else {
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1);
+ }
+
+ // Update the CFA offset now that we've popped
+ CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
+ BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // bx lr - Return from this function.
+ Opcode = Thumb ? ARM::tBX_RET : ARM::BX_RET;
+ AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(Opcode)));
+
+ // Restore SR0 and SR1 in case of __morestack() was not called.
+ // pop {SR0, SR1}
+ if (Thumb) {
+ AddDefaultPred(BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1);
+ } else {
+ AddDefaultPred(BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1);
+ }
+
+ // Update the CFA offset now that we've popped
+ CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
+ BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // Tell debuggers that r4 and r5 are now the same as they were in the
+ // previous function, that they're the "Same Value".
+ CFIIndex = MMI.addFrameInst(MCCFIInstruction::createSameValue(
+ nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
+ BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ CFIIndex = MMI.addFrameInst(MCCFIInstruction::createSameValue(
+ nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
+ BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // Organizing MBB lists
+ PostStackMBB->addSuccessor(&prologueMBB);
+
+ AllocMBB->addSuccessor(PostStackMBB);
+
+ GetMBB->addSuccessor(PostStackMBB);
+ GetMBB->addSuccessor(AllocMBB);
+
+ McrMBB->addSuccessor(GetMBB);
+
+ PrevStackMBB->addSuccessor(McrMBB);
+
+#ifdef XDEBUG
+ MF.verify();
+#endif
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMFrameLowering.h b/contrib/llvm/lib/Target/ARM/ARMFrameLowering.h
new file mode 100644
index 0000000..709afbc
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMFrameLowering.h
@@ -0,0 +1,78 @@
+//==-- ARMTargetFrameLowering.h - Define frame lowering for ARM --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARM_FRAMEINFO_H
+#define ARM_FRAMEINFO_H
+
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+ class ARMSubtarget;
+
+class ARMFrameLowering : public TargetFrameLowering {
+protected:
+ const ARMSubtarget &STI;
+
+public:
+ explicit ARMFrameLowering(const ARMSubtarget &sti);
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool hasFP(const MachineFunction &MF) const override;
+ bool hasReservedCallFrame(const MachineFunction &MF) const override;
+ bool canSimplifyCallFramePseudos(const MachineFunction &MF) const override;
+ int getFrameIndexReference(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const override;
+ int ResolveFrameIndexReference(const MachineFunction &MF, int FI,
+ unsigned &FrameReg, int SPAdj) const;
+ int getFrameIndexOffset(const MachineFunction &MF, int FI) const override;
+
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const override;
+
+ void adjustForSegmentedStacks(MachineFunction &MF) const override;
+
+ private:
+ void emitPushInst(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI, unsigned StmOpc,
+ unsigned StrOpc, bool NoGap,
+ bool(*Func)(unsigned, bool), unsigned NumAlignedDPRCS2Regs,
+ unsigned MIFlags = 0) const;
+ void emitPopInst(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI, unsigned LdmOpc,
+ unsigned LdrOpc, bool isVarArg, bool NoGap,
+ bool(*Func)(unsigned, bool),
+ unsigned NumAlignedDPRCS2Regs) const;
+
+ void
+ eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const override;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.cpp b/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.cpp
new file mode 100644
index 0000000..0885c4e
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.cpp
@@ -0,0 +1,104 @@
+//===-- ARMHazardRecognizer.cpp - ARM postra hazard recognizer ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMHazardRecognizer.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMSubtarget.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+using namespace llvm;
+
+static bool hasRAWHazard(MachineInstr *DefMI, MachineInstr *MI,
+ const TargetRegisterInfo &TRI) {
+ // FIXME: Detect integer instructions properly.
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned Domain = MCID.TSFlags & ARMII::DomainMask;
+ if (MI->mayStore())
+ return false;
+ unsigned Opcode = MCID.getOpcode();
+ if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
+ return false;
+ if ((Domain & ARMII::DomainVFP) || (Domain & ARMII::DomainNEON))
+ return MI->readsRegister(DefMI->getOperand(0).getReg(), &TRI);
+ return false;
+}
+
+ScheduleHazardRecognizer::HazardType
+ARMHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
+ assert(Stalls == 0 && "ARM hazards don't support scoreboard lookahead");
+
+ MachineInstr *MI = SU->getInstr();
+
+ if (!MI->isDebugValue()) {
+ // Look for special VMLA / VMLS hazards. A VMUL / VADD / VSUB following
+ // a VMLA / VMLS will cause 4 cycle stall.
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (LastMI && (MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainGeneral) {
+ MachineInstr *DefMI = LastMI;
+ const MCInstrDesc &LastMCID = LastMI->getDesc();
+ const TargetMachine &TM =
+ MI->getParent()->getParent()->getTarget();
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo());
+
+ // Skip over one non-VFP / NEON instruction.
+ if (!LastMI->isBarrier() &&
+ // On A9, AGU and NEON/FPU are muxed.
+ !(TII.getSubtarget().isLikeA9() &&
+ (LastMI->mayLoad() || LastMI->mayStore())) &&
+ (LastMCID.TSFlags & ARMII::DomainMask) == ARMII::DomainGeneral) {
+ MachineBasicBlock::iterator I = LastMI;
+ if (I != LastMI->getParent()->begin()) {
+ I = std::prev(I);
+ DefMI = &*I;
+ }
+ }
+
+ if (TII.isFpMLxInstruction(DefMI->getOpcode()) &&
+ (TII.canCauseFpMLxStall(MI->getOpcode()) ||
+ hasRAWHazard(DefMI, MI, TII.getRegisterInfo()))) {
+ // Try to schedule another instruction for the next 4 cycles.
+ if (FpMLxStalls == 0)
+ FpMLxStalls = 4;
+ return Hazard;
+ }
+ }
+ }
+
+ return ScoreboardHazardRecognizer::getHazardType(SU, Stalls);
+}
+
+void ARMHazardRecognizer::Reset() {
+ LastMI = nullptr;
+ FpMLxStalls = 0;
+ ScoreboardHazardRecognizer::Reset();
+}
+
+void ARMHazardRecognizer::EmitInstruction(SUnit *SU) {
+ MachineInstr *MI = SU->getInstr();
+ if (!MI->isDebugValue()) {
+ LastMI = MI;
+ FpMLxStalls = 0;
+ }
+
+ ScoreboardHazardRecognizer::EmitInstruction(SU);
+}
+
+void ARMHazardRecognizer::AdvanceCycle() {
+ if (FpMLxStalls && --FpMLxStalls == 0)
+ // Stalled for 4 cycles but still can't schedule any other instructions.
+ LastMI = nullptr;
+ ScoreboardHazardRecognizer::AdvanceCycle();
+}
+
+void ARMHazardRecognizer::RecedeCycle() {
+ llvm_unreachable("reverse ARM hazard checking unsupported");
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.h b/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.h
new file mode 100644
index 0000000..a8198e2
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.h
@@ -0,0 +1,49 @@
+//===-- ARMHazardRecognizer.h - ARM Hazard Recognizers ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines hazard recognizers for scheduling ARM functions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMHAZARDRECOGNIZER_H
+#define ARMHAZARDRECOGNIZER_H
+
+#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
+
+namespace llvm {
+
+class ARMBaseInstrInfo;
+class ARMBaseRegisterInfo;
+class ARMSubtarget;
+class MachineInstr;
+
+/// ARMHazardRecognizer handles special constraints that are not expressed in
+/// the scheduling itinerary. This is only used during postRA scheduling. The
+/// ARM preRA scheduler uses an unspecialized instance of the
+/// ScoreboardHazardRecognizer.
+class ARMHazardRecognizer : public ScoreboardHazardRecognizer {
+ MachineInstr *LastMI;
+ unsigned FpMLxStalls;
+
+public:
+ ARMHazardRecognizer(const InstrItineraryData *ItinData,
+ const ScheduleDAG *DAG)
+ : ScoreboardHazardRecognizer(ItinData, DAG, "post-RA-sched"),
+ LastMI(nullptr) {}
+
+ HazardType getHazardType(SUnit *SU, int Stalls) override;
+ void Reset() override;
+ void EmitInstruction(SUnit *SU) override;
+ void AdvanceCycle() override;
+ void RecedeCycle() override;
+};
+
+} // end namespace llvm
+
+#endif // ARMHAZARDRECOGNIZER_H
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp b/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
new file mode 100644
index 0000000..38547cf
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
@@ -0,0 +1,3468 @@
+//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the ARM target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMTargetMachine.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-isel"
+
+static cl::opt<bool>
+DisableShifterOp("disable-shifter-op", cl::Hidden,
+ cl::desc("Disable isel of shifter-op"),
+ cl::init(false));
+
+static cl::opt<bool>
+CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
+ cl::desc("Check fp vmla / vmls hazard at isel time"),
+ cl::init(true));
+
+//===--------------------------------------------------------------------===//
+/// ARMDAGToDAGISel - ARM specific code to select ARM machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+
+enum AddrMode2Type {
+ AM2_BASE, // Simple AM2 (+-imm12)
+ AM2_SHOP // Shifter-op AM2
+};
+
+class ARMDAGToDAGISel : public SelectionDAGISel {
+ /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const ARMSubtarget *Subtarget;
+
+public:
+ explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(tm, OptLevel) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ // Reset the subtarget each time through.
+ Subtarget = &MF.getTarget().getSubtarget<ARMSubtarget>();
+ SelectionDAGISel::runOnMachineFunction(MF);
+ return true;
+ }
+
+ const char *getPassName() const override {
+ return "ARM Instruction Selection";
+ }
+
+ void PreprocessISelDAG() override;
+
+ /// getI32Imm - Return a target constant of type i32 with the specified
+ /// value.
+ inline SDValue getI32Imm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ }
+
+ SDNode *Select(SDNode *N) override;
+
+
+ bool hasNoVMLxHazardUse(SDNode *N) const;
+ bool isShifterOpProfitable(const SDValue &Shift,
+ ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
+ bool SelectRegShifterOperand(SDValue N, SDValue &A,
+ SDValue &B, SDValue &C,
+ bool CheckProfitability = true);
+ bool SelectImmShifterOperand(SDValue N, SDValue &A,
+ SDValue &B, bool CheckProfitability = true);
+ bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
+ SDValue &B, SDValue &C) {
+ // Don't apply the profitability check
+ return SelectRegShifterOperand(N, A, B, C, false);
+ }
+ bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
+ SDValue &B) {
+ // Don't apply the profitability check
+ return SelectImmShifterOperand(N, A, B, false);
+ }
+
+ bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
+ bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
+
+ AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
+ }
+
+ bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
+ }
+
+ bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ SelectAddrMode2Worker(N, Base, Offset, Opc);
+// return SelectAddrMode2ShOp(N, Base, Offset, Opc);
+ // This always matches one way or another.
+ return true;
+ }
+
+ bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
+ const ConstantSDNode *CN = cast<ConstantSDNode>(N);
+ Pred = CurDAG->getTargetConstant(CN->getZExtValue(), MVT::i32);
+ Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
+ return true;
+ }
+
+ bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
+ bool SelectAddrMode3(SDValue N, SDValue &Base,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode5(SDValue N, SDValue &Base,
+ SDValue &Offset);
+ bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
+ bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
+
+ bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
+
+ // Thumb Addressing Modes:
+ bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
+ bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
+ unsigned Scale);
+ bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
+ bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
+ bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
+ bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
+
+ // Thumb 2 Addressing Modes:
+ bool SelectT2ShifterOperandReg(SDValue N,
+ SDValue &BaseReg, SDValue &Opc);
+ bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
+ bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
+ SDValue &OffImm);
+ bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
+ SDValue &OffReg, SDValue &ShImm);
+ bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
+
+ inline bool is_so_imm(unsigned Imm) const {
+ return ARM_AM::getSOImmVal(Imm) != -1;
+ }
+
+ inline bool is_so_imm_not(unsigned Imm) const {
+ return ARM_AM::getSOImmVal(~Imm) != -1;
+ }
+
+ inline bool is_t2_so_imm(unsigned Imm) const {
+ return ARM_AM::getT2SOImmVal(Imm) != -1;
+ }
+
+ inline bool is_t2_so_imm_not(unsigned Imm) const {
+ return ARM_AM::getT2SOImmVal(~Imm) != -1;
+ }
+
+ // Include the pieces autogenerated from the target description.
+#include "ARMGenDAGISel.inc"
+
+private:
+ /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
+ /// ARM.
+ SDNode *SelectARMIndexedLoad(SDNode *N);
+ SDNode *SelectT2IndexedLoad(SDNode *N);
+
+ /// SelectVLD - Select NEON load intrinsics. NumVecs should be
+ /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
+ /// loads of D registers and even subregs and odd subregs of Q registers.
+ /// For NumVecs <= 2, QOpcodes1 is not used.
+ SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes,
+ const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
+
+ /// SelectVST - Select NEON store intrinsics. NumVecs should
+ /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
+ /// stores of D registers and even subregs and odd subregs of Q registers.
+ /// For NumVecs <= 2, QOpcodes1 is not used.
+ SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes,
+ const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
+
+ /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
+ /// be 2, 3 or 4. The opcode arrays specify the instructions used for
+ /// load/store of D registers and Q registers.
+ SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
+ bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes, const uint16_t *QOpcodes);
+
+ /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs
+ /// should be 2, 3 or 4. The opcode array specifies the instructions used
+ /// for loading D registers. (Q registers are not supported.)
+ SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *Opcodes);
+
+ /// SelectVTBL - Select NEON VTBL and VTBX intrinsics. NumVecs should be 2,
+ /// 3 or 4. These are custom-selected so that a REG_SEQUENCE can be
+ /// generated to force the table registers to be consecutive.
+ SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
+
+ /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
+ SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
+
+ // Select special operations if node forms integer ABS pattern
+ SDNode *SelectABSOp(SDNode *N);
+
+ SDNode *SelectInlineAsm(SDNode *N);
+
+ SDNode *SelectConcatVector(SDNode *N);
+
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions.
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) override;
+
+ // Form pairs of consecutive R, S, D, or Q registers.
+ SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
+ SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
+ SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
+ SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
+
+ // Form sequences of 4 consecutive S, D, or Q registers.
+ SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
+ SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
+ SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
+
+ // Get the alignment operand for a NEON VLD or VST instruction.
+ SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
+};
+}
+
+/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
+/// operand. If so Imm will receive the 32-bit value.
+static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
+ if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
+ Imm = cast<ConstantSDNode>(N)->getZExtValue();
+ return true;
+ }
+ return false;
+}
+
+// isInt32Immediate - This method tests to see if a constant operand.
+// If so Imm will receive the 32 bit value.
+static bool isInt32Immediate(SDValue N, unsigned &Imm) {
+ return isInt32Immediate(N.getNode(), Imm);
+}
+
+// isOpcWithIntImmediate - This method tests to see if the node is a specific
+// opcode and that it has a immediate integer right operand.
+// If so Imm will receive the 32 bit value.
+static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
+ return N->getOpcode() == Opc &&
+ isInt32Immediate(N->getOperand(1).getNode(), Imm);
+}
+
+/// \brief Check whether a particular node is a constant value representable as
+/// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
+///
+/// \param ScaledConstant [out] - On success, the pre-scaled constant value.
+static bool isScaledConstantInRange(SDValue Node, int Scale,
+ int RangeMin, int RangeMax,
+ int &ScaledConstant) {
+ assert(Scale > 0 && "Invalid scale!");
+
+ // Check that this is a constant.
+ const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
+ if (!C)
+ return false;
+
+ ScaledConstant = (int) C->getZExtValue();
+ if ((ScaledConstant % Scale) != 0)
+ return false;
+
+ ScaledConstant /= Scale;
+ return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
+}
+
+void ARMDAGToDAGISel::PreprocessISelDAG() {
+ if (!Subtarget->hasV6T2Ops())
+ return;
+
+ bool isThumb2 = Subtarget->isThumb();
+ for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
+ E = CurDAG->allnodes_end(); I != E; ) {
+ SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
+
+ if (N->getOpcode() != ISD::ADD)
+ continue;
+
+ // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
+ // leading zeros, followed by consecutive set bits, followed by 1 or 2
+ // trailing zeros, e.g. 1020.
+ // Transform the expression to
+ // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
+ // of trailing zeros of c2. The left shift would be folded as an shifter
+ // operand of 'add' and the 'and' and 'srl' would become a bits extraction
+ // node (UBFX).
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ unsigned And_imm = 0;
+ if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
+ if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
+ std::swap(N0, N1);
+ }
+ if (!And_imm)
+ continue;
+
+ // Check if the AND mask is an immediate of the form: 000.....1111111100
+ unsigned TZ = countTrailingZeros(And_imm);
+ if (TZ != 1 && TZ != 2)
+ // Be conservative here. Shifter operands aren't always free. e.g. On
+ // Swift, left shifter operand of 1 / 2 for free but others are not.
+ // e.g.
+ // ubfx r3, r1, #16, #8
+ // ldr.w r3, [r0, r3, lsl #2]
+ // vs.
+ // mov.w r9, #1020
+ // and.w r2, r9, r1, lsr #14
+ // ldr r2, [r0, r2]
+ continue;
+ And_imm >>= TZ;
+ if (And_imm & (And_imm + 1))
+ continue;
+
+ // Look for (and (srl X, c1), c2).
+ SDValue Srl = N1.getOperand(0);
+ unsigned Srl_imm = 0;
+ if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
+ (Srl_imm <= 2))
+ continue;
+
+ // Make sure first operand is not a shifter operand which would prevent
+ // folding of the left shift.
+ SDValue CPTmp0;
+ SDValue CPTmp1;
+ SDValue CPTmp2;
+ if (isThumb2) {
+ if (SelectT2ShifterOperandReg(N0, CPTmp0, CPTmp1))
+ continue;
+ } else {
+ if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
+ SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
+ continue;
+ }
+
+ // Now make the transformation.
+ Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
+ Srl.getOperand(0),
+ CurDAG->getConstant(Srl_imm+TZ, MVT::i32));
+ N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
+ Srl, CurDAG->getConstant(And_imm, MVT::i32));
+ N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
+ N1, CurDAG->getConstant(TZ, MVT::i32));
+ CurDAG->UpdateNodeOperands(N, N0, N1);
+ }
+}
+
+/// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
+/// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
+/// least on current ARM implementations) which should be avoidded.
+bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
+ if (OptLevel == CodeGenOpt::None)
+ return true;
+
+ if (!CheckVMLxHazard)
+ return true;
+
+ if (!Subtarget->isCortexA7() && !Subtarget->isCortexA8() &&
+ !Subtarget->isCortexA9() && !Subtarget->isSwift())
+ return true;
+
+ if (!N->hasOneUse())
+ return false;
+
+ SDNode *Use = *N->use_begin();
+ if (Use->getOpcode() == ISD::CopyToReg)
+ return true;
+ if (Use->isMachineOpcode()) {
+ const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
+ CurDAG->getTarget().getInstrInfo());
+
+ const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
+ if (MCID.mayStore())
+ return true;
+ unsigned Opcode = MCID.getOpcode();
+ if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
+ return true;
+ // vmlx feeding into another vmlx. We actually want to unfold
+ // the use later in the MLxExpansion pass. e.g.
+ // vmla
+ // vmla (stall 8 cycles)
+ //
+ // vmul (5 cycles)
+ // vadd (5 cycles)
+ // vmla
+ // This adds up to about 18 - 19 cycles.
+ //
+ // vmla
+ // vmul (stall 4 cycles)
+ // vadd adds up to about 14 cycles.
+ return TII->isFpMLxInstruction(Opcode);
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
+ ARM_AM::ShiftOpc ShOpcVal,
+ unsigned ShAmt) {
+ if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
+ return true;
+ if (Shift.hasOneUse())
+ return true;
+ // R << 2 is free.
+ return ShOpcVal == ARM_AM::lsl &&
+ (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
+}
+
+bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
+ SDValue &BaseReg,
+ SDValue &Opc,
+ bool CheckProfitability) {
+ if (DisableShifterOp)
+ return false;
+
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
+
+ // Don't match base register only case. That is matched to a separate
+ // lower complexity pattern with explicit register operand.
+ if (ShOpcVal == ARM_AM::no_shift) return false;
+
+ BaseReg = N.getOperand(0);
+ unsigned ShImmVal = 0;
+ ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!RHS) return false;
+ ShImmVal = RHS->getZExtValue() & 31;
+ Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
+ MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
+ SDValue &BaseReg,
+ SDValue &ShReg,
+ SDValue &Opc,
+ bool CheckProfitability) {
+ if (DisableShifterOp)
+ return false;
+
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
+
+ // Don't match base register only case. That is matched to a separate
+ // lower complexity pattern with explicit register operand.
+ if (ShOpcVal == ARM_AM::no_shift) return false;
+
+ BaseReg = N.getOperand(0);
+ unsigned ShImmVal = 0;
+ ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (RHS) return false;
+
+ ShReg = N.getOperand(1);
+ if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
+ return false;
+ Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
+ MVT::i32);
+ return true;
+}
+
+
+bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
+ SDValue &Base,
+ SDValue &OffImm) {
+ // Match simple R + imm12 operands.
+
+ // Base only.
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
+ !CurDAG->isBaseWithConstantOffset(N)) {
+ if (N.getOpcode() == ISD::FrameIndex) {
+ // Match frame index.
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
+ Base = N.getOperand(0);
+ } else
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (N.getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+
+ if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+
+ // Base only.
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+
+
+bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ if (N.getOpcode() == ISD::MUL &&
+ ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ // X * [3,5,9] -> X + X * [2,4,8] etc.
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC & 1) {
+ RHSC = RHSC & ~1;
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = - RHSC;
+ }
+ if (isPowerOf2_32(RHSC)) {
+ unsigned ShAmt = Log2_32(RHSC);
+ Base = Offset = N.getOperand(0);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
+ ARM_AM::lsl),
+ MVT::i32);
+ return true;
+ }
+ }
+ }
+ }
+
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
+ // ISD::OR that is equivalent to an ISD::ADD.
+ !CurDAG->isBaseWithConstantOffset(N))
+ return false;
+
+ // Leave simple R +/- imm12 operands for LDRi12
+ if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
+ -0x1000+1, 0x1000, RHSC)) // 12 bits.
+ return false;
+ }
+
+ // Otherwise this is R +/- [possibly shifted] R.
+ ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
+ ARM_AM::ShiftOpc ShOpcVal =
+ ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
+ unsigned ShAmt = 0;
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't fold
+ // it.
+ if (ConstantSDNode *Sh =
+ dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
+ Offset = N.getOperand(1).getOperand(0);
+ else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+
+ // Try matching (R shl C) + (R).
+ if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
+ !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
+ N.getOperand(0).hasOneUse())) {
+ ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't
+ // fold it.
+ if (ConstantSDNode *Sh =
+ dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
+ Offset = N.getOperand(0).getOperand(0);
+ Base = N.getOperand(1);
+ } else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+ }
+
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
+ MVT::i32);
+ return true;
+}
+
+
+//-----
+
+AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
+ SDValue &Base,
+ SDValue &Offset,
+ SDValue &Opc) {
+ if (N.getOpcode() == ISD::MUL &&
+ (!(Subtarget->isLikeA9() || Subtarget->isSwift()) || N.hasOneUse())) {
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ // X * [3,5,9] -> X + X * [2,4,8] etc.
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC & 1) {
+ RHSC = RHSC & ~1;
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = - RHSC;
+ }
+ if (isPowerOf2_32(RHSC)) {
+ unsigned ShAmt = Log2_32(RHSC);
+ Base = Offset = N.getOperand(0);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
+ ARM_AM::lsl),
+ MVT::i32);
+ return AM2_SHOP;
+ }
+ }
+ }
+ }
+
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
+ // ISD::OR that is equivalent to an ADD.
+ !CurDAG->isBaseWithConstantOffset(N)) {
+ Base = N;
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ } else if (N.getOpcode() == ARMISD::Wrapper &&
+ N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
+ Base = N.getOperand(0);
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
+ ARM_AM::no_shift),
+ MVT::i32);
+ return AM2_BASE;
+ }
+
+ // Match simple R +/- imm12 operands.
+ if (N.getOpcode() != ISD::SUB) {
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
+ -0x1000+1, 0x1000, RHSC)) { // 12 bits.
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = - RHSC;
+ }
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
+ ARM_AM::no_shift),
+ MVT::i32);
+ return AM2_BASE;
+ }
+ }
+
+ if ((Subtarget->isLikeA9() || Subtarget->isSwift()) && !N.hasOneUse()) {
+ // Compute R +/- (R << N) and reuse it.
+ Base = N;
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
+ ARM_AM::no_shift),
+ MVT::i32);
+ return AM2_BASE;
+ }
+
+ // Otherwise this is R +/- [possibly shifted] R.
+ ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
+ ARM_AM::ShiftOpc ShOpcVal =
+ ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
+ unsigned ShAmt = 0;
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't fold
+ // it.
+ if (ConstantSDNode *Sh =
+ dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
+ Offset = N.getOperand(1).getOperand(0);
+ else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+
+ // Try matching (R shl C) + (R).
+ if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
+ !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
+ N.getOperand(0).hasOneUse())) {
+ ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't
+ // fold it.
+ if (ConstantSDNode *Sh =
+ dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
+ Offset = N.getOperand(0).getOperand(0);
+ Base = N.getOperand(1);
+ } else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+ }
+
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
+ MVT::i32);
+ return AM2_SHOP;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc) {
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
+ ? ARM_AM::add : ARM_AM::sub;
+ int Val;
+ if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
+ return false;
+
+ Offset = N;
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
+ unsigned ShAmt = 0;
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't fold
+ // it.
+ if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
+ Offset = N.getOperand(0);
+ else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
+ MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc) {
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
+ ? ARM_AM::add : ARM_AM::sub;
+ int Val;
+ if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
+ if (AddSub == ARM_AM::sub) Val *= -1;
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(Val, MVT::i32);
+ return true;
+ }
+
+ return false;
+}
+
+
+bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc) {
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
+ ? ARM_AM::add : ARM_AM::sub;
+ int Val;
+ if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
+ ARM_AM::no_shift),
+ MVT::i32);
+ return true;
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
+ Base = N;
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
+ SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ if (N.getOpcode() == ISD::SUB) {
+ // X - C is canonicalize to X + -C, no need to handle it here.
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
+ return true;
+ }
+
+ if (!CurDAG->isBaseWithConstantOffset(N)) {
+ Base = N;
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
+ return true;
+ }
+
+ // If the RHS is +/- imm8, fold into addr mode.
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
+ -256 + 1, 256, RHSC)) { // 8 bits.
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = -RHSC;
+ }
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
+ return true;
+ }
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc) {
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
+ ? ARM_AM::add : ARM_AM::sub;
+ int Val;
+ if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
+ return true;
+ }
+
+ Offset = N;
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
+ SDValue &Base, SDValue &Offset) {
+ if (!CurDAG->isBaseWithConstantOffset(N)) {
+ Base = N;
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ } else if (N.getOpcode() == ARMISD::Wrapper &&
+ N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
+ Base = N.getOperand(0);
+ }
+ Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
+ MVT::i32);
+ return true;
+ }
+
+ // If the RHS is +/- imm8, fold into addr mode.
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
+ -256 + 1, 256, RHSC)) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = -RHSC;
+ }
+ Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
+ MVT::i32);
+ return true;
+ }
+
+ Base = N;
+ Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
+ MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
+ SDValue &Align) {
+ Addr = N;
+
+ unsigned Alignment = 0;
+ if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) {
+ // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
+ // The maximum alignment is equal to the memory size being referenced.
+ unsigned LSNAlign = LSN->getAlignment();
+ unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8;
+ if (LSNAlign >= MemSize && MemSize > 1)
+ Alignment = MemSize;
+ } else {
+ // All other uses of addrmode6 are for intrinsics. For now just record
+ // the raw alignment value; it will be refined later based on the legal
+ // alignment operands for the intrinsic.
+ Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment();
+ }
+
+ Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
+ SDValue &Offset) {
+ LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
+ ISD::MemIndexedMode AM = LdSt->getAddressingMode();
+ if (AM != ISD::POST_INC)
+ return false;
+ Offset = N;
+ if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
+ if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ }
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
+ SDValue &Offset, SDValue &Label) {
+ if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
+ Offset = N.getOperand(0);
+ SDValue N1 = N.getOperand(1);
+ Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
+ MVT::i32);
+ return true;
+ }
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Thumb Addressing Modes
+//===----------------------------------------------------------------------===//
+
+bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
+ SDValue &Base, SDValue &Offset){
+ if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
+ ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
+ if (!NC || !NC->isNullValue())
+ return false;
+
+ Base = Offset = N;
+ return true;
+ }
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ return true;
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
+ SDValue &Offset, unsigned Scale) {
+ if (Scale == 4) {
+ SDValue TmpBase, TmpOffImm;
+ if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
+ return false; // We want to select tLDRspi / tSTRspi instead.
+
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
+ return false; // We want to select tLDRpci instead.
+ }
+
+ if (!CurDAG->isBaseWithConstantOffset(N))
+ return false;
+
+ // Thumb does not have [sp, r] address mode.
+ RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
+ RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
+ if ((LHSR && LHSR->getReg() == ARM::SP) ||
+ (RHSR && RHSR->getReg() == ARM::SP))
+ return false;
+
+ // FIXME: Why do we explicitly check for a match here and then return false?
+ // Presumably to allow something else to match, but shouldn't this be
+ // documented?
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
+ return false;
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ return true;
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
+ SDValue &Base,
+ SDValue &Offset) {
+ return SelectThumbAddrModeRI(N, Base, Offset, 1);
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
+ SDValue &Base,
+ SDValue &Offset) {
+ return SelectThumbAddrModeRI(N, Base, Offset, 2);
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
+ SDValue &Base,
+ SDValue &Offset) {
+ return SelectThumbAddrModeRI(N, Base, Offset, 4);
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
+ SDValue &Base, SDValue &OffImm) {
+ if (Scale == 4) {
+ SDValue TmpBase, TmpOffImm;
+ if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
+ return false; // We want to select tLDRspi / tSTRspi instead.
+
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
+ return false; // We want to select tLDRpci instead.
+ }
+
+ if (!CurDAG->isBaseWithConstantOffset(N)) {
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
+ Base = N.getOperand(0);
+ } else {
+ Base = N;
+ }
+
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
+ RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
+ if ((LHSR && LHSR->getReg() == ARM::SP) ||
+ (RHSR && RHSR->getReg() == ARM::SP)) {
+ ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
+ ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
+ unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
+
+ // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
+ if (LHSC != 0 || RHSC != 0) return false;
+
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ // If the RHS is + imm5 * scale, fold into addr mode.
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
+ Base = N.getOperand(0);
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+
+ Base = N.getOperand(0);
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
+ SDValue &OffImm) {
+ return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
+ SDValue &OffImm) {
+ return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
+ SDValue &OffImm) {
+ return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
+}
+
+bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
+ SDValue &Base, SDValue &OffImm) {
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (!CurDAG->isBaseWithConstantOffset(N))
+ return false;
+
+ RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
+ if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
+ (LHSR && LHSR->getReg() == ARM::SP)) {
+ // If the RHS is + imm8 * scale, fold into addr mode.
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Thumb 2 Addressing Modes
+//===----------------------------------------------------------------------===//
+
+
+bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
+ SDValue &Opc) {
+ if (DisableShifterOp)
+ return false;
+
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
+
+ // Don't match base register only case. That is matched to a separate
+ // lower complexity pattern with explicit register operand.
+ if (ShOpcVal == ARM_AM::no_shift) return false;
+
+ BaseReg = N.getOperand(0);
+ unsigned ShImmVal = 0;
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ ShImmVal = RHS->getZExtValue() & 31;
+ Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
+ return true;
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
+ SDValue &Base, SDValue &OffImm) {
+ // Match simple R + imm12 operands.
+
+ // Base only.
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
+ !CurDAG->isBaseWithConstantOffset(N)) {
+ if (N.getOpcode() == ISD::FrameIndex) {
+ // Match frame index.
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::TargetConstantPool)
+ return false; // We want to select t2LDRpci instead.
+ } else
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ if (SelectT2AddrModeImm8(N, Base, OffImm))
+ // Let t2LDRi8 handle (R - imm8).
+ return false;
+
+ int RHSC = (int)RHS->getZExtValue();
+ if (N.getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+
+ if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+
+ // Base only.
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
+ SDValue &Base, SDValue &OffImm) {
+ // Match simple R - imm8 operands.
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
+ !CurDAG->isBaseWithConstantOffset(N))
+ return false;
+
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getSExtValue();
+ if (N.getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+
+ if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
+ SDValue &OffImm){
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ int RHSC;
+ if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
+ OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
+ ? CurDAG->getTargetConstant(RHSC, MVT::i32)
+ : CurDAG->getTargetConstant(-RHSC, MVT::i32);
+ return true;
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
+ SDValue &Base,
+ SDValue &OffReg, SDValue &ShImm) {
+ // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
+ if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
+ return false;
+
+ // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
+ return false;
+ else if (RHSC < 0 && RHSC >= -255) // 8 bits
+ return false;
+ }
+
+ // Look for (R + R) or (R + (R << [1,2,3])).
+ unsigned ShAmt = 0;
+ Base = N.getOperand(0);
+ OffReg = N.getOperand(1);
+
+ // Swap if it is ((R << c) + R).
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
+ if (ShOpcVal != ARM_AM::lsl) {
+ ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
+ if (ShOpcVal == ARM_AM::lsl)
+ std::swap(Base, OffReg);
+ }
+
+ if (ShOpcVal == ARM_AM::lsl) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't fold
+ // it.
+ if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
+ OffReg = OffReg.getOperand(0);
+ else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+
+ ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
+
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
+ SDValue &OffImm) {
+ // This *must* succeed since it's used for the irreplaceable ldrex and strex
+ // instructions.
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+
+ if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
+ return true;
+
+ ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!RHS)
+ return true;
+
+ uint32_t RHSC = (int)RHS->getZExtValue();
+ if (RHSC > 1020 || RHSC % 4 != 0)
+ return true;
+
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, getTargetLowering()->getPointerTy());
+ }
+
+ OffImm = CurDAG->getTargetConstant(RHSC / 4, MVT::i32);
+ return true;
+}
+
+//===--------------------------------------------------------------------===//
+
+/// getAL - Returns a ARMCC::AL immediate node.
+static inline SDValue getAL(SelectionDAG *CurDAG) {
+ return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
+}
+
+SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ if (AM == ISD::UNINDEXED)
+ return nullptr;
+
+ EVT LoadedVT = LD->getMemoryVT();
+ SDValue Offset, AMOpc;
+ bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
+ unsigned Opcode = 0;
+ bool Match = false;
+ if (LoadedVT == MVT::i32 && isPre &&
+ SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
+ Opcode = ARM::LDR_PRE_IMM;
+ Match = true;
+ } else if (LoadedVT == MVT::i32 && !isPre &&
+ SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
+ Opcode = ARM::LDR_POST_IMM;
+ Match = true;
+ } else if (LoadedVT == MVT::i32 &&
+ SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
+ Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
+ Match = true;
+
+ } else if (LoadedVT == MVT::i16 &&
+ SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
+ ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
+ : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
+ } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
+ if (LD->getExtensionType() == ISD::SEXTLOAD) {
+ if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
+ }
+ } else {
+ if (isPre &&
+ SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = ARM::LDRB_PRE_IMM;
+ } else if (!isPre &&
+ SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = ARM::LDRB_POST_IMM;
+ } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
+ }
+ }
+ }
+
+ if (Match) {
+ if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32), Chain };
+ return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
+ MVT::i32, MVT::Other, Ops);
+ } else {
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32), Chain };
+ return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
+ MVT::i32, MVT::Other, Ops);
+ }
+ }
+
+ return nullptr;
+}
+
+SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ if (AM == ISD::UNINDEXED)
+ return nullptr;
+
+ EVT LoadedVT = LD->getMemoryVT();
+ bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
+ SDValue Offset;
+ bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
+ unsigned Opcode = 0;
+ bool Match = false;
+ if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ case MVT::i32:
+ Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
+ break;
+ case MVT::i16:
+ if (isSExtLd)
+ Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
+ else
+ Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
+ break;
+ case MVT::i8:
+ case MVT::i1:
+ if (isSExtLd)
+ Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
+ else
+ Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
+ break;
+ default:
+ return nullptr;
+ }
+ Match = true;
+ }
+
+ if (Match) {
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[]= { Base, Offset, getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32), Chain };
+ return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
+ MVT::Other, Ops);
+ }
+
+ return nullptr;
+}
+
+/// \brief Form a GPRPair pseudo register from a pair of GPR regs.
+SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass =
+ CurDAG->getTargetConstant(ARM::GPRPairRegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form a D register from a pair of S registers.
+SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass =
+ CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form a quad register from a pair of D registers.
+SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form 4 consecutive D registers from a pair of Q registers.
+SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form 4 consecutive S registers.
+SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
+ SDValue V2, SDValue V3) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass =
+ CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
+ SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
+ SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
+ V2, SubReg2, V3, SubReg3 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form 4 consecutive D registers.
+SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
+ SDValue V2, SDValue V3) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
+ SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
+ SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
+ V2, SubReg2, V3, SubReg3 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form 4 consecutive Q registers.
+SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
+ SDValue V2, SDValue V3) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
+ SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
+ SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
+ V2, SubReg2, V3, SubReg3 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
+/// of a NEON VLD or VST instruction. The supported values depend on the
+/// number of registers being loaded.
+SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
+ bool is64BitVector) {
+ unsigned NumRegs = NumVecs;
+ if (!is64BitVector && NumVecs < 3)
+ NumRegs *= 2;
+
+ unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
+ if (Alignment >= 32 && NumRegs == 4)
+ Alignment = 32;
+ else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
+ Alignment = 16;
+ else if (Alignment >= 8)
+ Alignment = 8;
+ else
+ Alignment = 0;
+
+ return CurDAG->getTargetConstant(Alignment, MVT::i32);
+}
+
+static bool isVLDfixed(unsigned Opc)
+{
+ switch (Opc) {
+ default: return false;
+ case ARM::VLD1d8wb_fixed : return true;
+ case ARM::VLD1d16wb_fixed : return true;
+ case ARM::VLD1d64Qwb_fixed : return true;
+ case ARM::VLD1d32wb_fixed : return true;
+ case ARM::VLD1d64wb_fixed : return true;
+ case ARM::VLD1d64TPseudoWB_fixed : return true;
+ case ARM::VLD1d64QPseudoWB_fixed : return true;
+ case ARM::VLD1q8wb_fixed : return true;
+ case ARM::VLD1q16wb_fixed : return true;
+ case ARM::VLD1q32wb_fixed : return true;
+ case ARM::VLD1q64wb_fixed : return true;
+ case ARM::VLD2d8wb_fixed : return true;
+ case ARM::VLD2d16wb_fixed : return true;
+ case ARM::VLD2d32wb_fixed : return true;
+ case ARM::VLD2q8PseudoWB_fixed : return true;
+ case ARM::VLD2q16PseudoWB_fixed : return true;
+ case ARM::VLD2q32PseudoWB_fixed : return true;
+ case ARM::VLD2DUPd8wb_fixed : return true;
+ case ARM::VLD2DUPd16wb_fixed : return true;
+ case ARM::VLD2DUPd32wb_fixed : return true;
+ }
+}
+
+static bool isVSTfixed(unsigned Opc)
+{
+ switch (Opc) {
+ default: return false;
+ case ARM::VST1d8wb_fixed : return true;
+ case ARM::VST1d16wb_fixed : return true;
+ case ARM::VST1d32wb_fixed : return true;
+ case ARM::VST1d64wb_fixed : return true;
+ case ARM::VST1q8wb_fixed : return true;
+ case ARM::VST1q16wb_fixed : return true;
+ case ARM::VST1q32wb_fixed : return true;
+ case ARM::VST1q64wb_fixed : return true;
+ case ARM::VST1d64TPseudoWB_fixed : return true;
+ case ARM::VST1d64QPseudoWB_fixed : return true;
+ case ARM::VST2d8wb_fixed : return true;
+ case ARM::VST2d16wb_fixed : return true;
+ case ARM::VST2d32wb_fixed : return true;
+ case ARM::VST2q8PseudoWB_fixed : return true;
+ case ARM::VST2q16PseudoWB_fixed : return true;
+ case ARM::VST2q32PseudoWB_fixed : return true;
+ }
+}
+
+// Get the register stride update opcode of a VLD/VST instruction that
+// is otherwise equivalent to the given fixed stride updating instruction.
+static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
+ assert((isVLDfixed(Opc) || isVSTfixed(Opc))
+ && "Incorrect fixed stride updating instruction.");
+ switch (Opc) {
+ default: break;
+ case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
+ case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
+ case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
+ case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
+ case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
+ case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
+ case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
+ case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
+ case ARM::VLD1d64Twb_fixed: return ARM::VLD1d64Twb_register;
+ case ARM::VLD1d64Qwb_fixed: return ARM::VLD1d64Qwb_register;
+ case ARM::VLD1d64TPseudoWB_fixed: return ARM::VLD1d64TPseudoWB_register;
+ case ARM::VLD1d64QPseudoWB_fixed: return ARM::VLD1d64QPseudoWB_register;
+
+ case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
+ case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
+ case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
+ case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
+ case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
+ case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
+ case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
+ case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
+ case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
+ case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
+
+ case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
+ case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
+ case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
+ case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
+ case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
+ case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
+
+ case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
+ case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
+ case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
+ case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
+ case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
+ case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
+
+ case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
+ case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
+ case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
+ }
+ return Opc; // If not one we handle, return it unchanged.
+}
+
+SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes,
+ const uint16_t *QOpcodes0,
+ const uint16_t *QOpcodes1) {
+ assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
+ SDLoc dl(N);
+
+ SDValue MemAddr, Align;
+ unsigned AddrOpIdx = isUpdating ? 1 : 2;
+ if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
+ return nullptr;
+
+ SDValue Chain = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ bool is64BitVector = VT.is64BitVector();
+ Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vld type");
+ // Double-register operations:
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ case MVT::v1i64: OpcodeIndex = 3; break;
+ // Quad-register operations:
+ case MVT::v16i8: OpcodeIndex = 0; break;
+ case MVT::v8i16: OpcodeIndex = 1; break;
+ case MVT::v4f32:
+ case MVT::v4i32: OpcodeIndex = 2; break;
+ case MVT::v2i64: OpcodeIndex = 3;
+ assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
+ break;
+ }
+
+ EVT ResTy;
+ if (NumVecs == 1)
+ ResTy = VT;
+ else {
+ unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
+ if (!is64BitVector)
+ ResTyElts *= 2;
+ ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
+ }
+ std::vector<EVT> ResTys;
+ ResTys.push_back(ResTy);
+ if (isUpdating)
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::Other);
+
+ SDValue Pred = getAL(CurDAG);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SDNode *VLd;
+ SmallVector<SDValue, 7> Ops;
+
+ // Double registers and VLD1/VLD2 quad registers are directly supported.
+ if (is64BitVector || NumVecs <= 2) {
+ unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
+ QOpcodes0[OpcodeIndex]);
+ Ops.push_back(MemAddr);
+ Ops.push_back(Align);
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ // FIXME: VLD1/VLD2 fixed increment doesn't need Reg0. Remove the reg0
+ // case entirely when the rest are updated to that form, too.
+ if ((NumVecs <= 2) && !isa<ConstantSDNode>(Inc.getNode()))
+ Opc = getVLDSTRegisterUpdateOpcode(Opc);
+ // FIXME: We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
+ // check for that explicitly too. Horribly hacky, but temporary.
+ if ((NumVecs > 2 && !isVLDfixed(Opc)) ||
+ !isa<ConstantSDNode>(Inc.getNode()))
+ Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
+ }
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+ VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ } else {
+ // Otherwise, quad registers are loaded with two separate instructions,
+ // where one loads the even registers and the other loads the odd registers.
+ EVT AddrTy = MemAddr.getValueType();
+
+ // Load the even subregs. This is always an updating load, so that it
+ // provides the address to the second load for the odd subregs.
+ SDValue ImplDef =
+ SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
+ const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
+ SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
+ ResTy, AddrTy, MVT::Other, OpsA);
+ Chain = SDValue(VLdA, 2);
+
+ // Load the odd subregs.
+ Ops.push_back(SDValue(VLdA, 1));
+ Ops.push_back(Align);
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ assert(isa<ConstantSDNode>(Inc.getNode()) &&
+ "only constant post-increment update allowed for VLD3/4");
+ (void)Inc;
+ Ops.push_back(Reg0);
+ }
+ Ops.push_back(SDValue(VLdA, 0));
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+ VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
+ }
+
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
+
+ if (NumVecs == 1)
+ return VLd;
+
+ // Extract out the subregisters.
+ SDValue SuperReg = SDValue(VLd, 0);
+ assert(ARM::dsub_7 == ARM::dsub_0+7 &&
+ ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
+ unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ ReplaceUses(SDValue(N, Vec),
+ CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
+ ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
+ if (isUpdating)
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
+ return nullptr;
+}
+
+SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes,
+ const uint16_t *QOpcodes0,
+ const uint16_t *QOpcodes1) {
+ assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
+ SDLoc dl(N);
+
+ SDValue MemAddr, Align;
+ unsigned AddrOpIdx = isUpdating ? 1 : 2;
+ unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
+ if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
+ return nullptr;
+
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+
+ SDValue Chain = N->getOperand(0);
+ EVT VT = N->getOperand(Vec0Idx).getValueType();
+ bool is64BitVector = VT.is64BitVector();
+ Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vst type");
+ // Double-register operations:
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ case MVT::v1i64: OpcodeIndex = 3; break;
+ // Quad-register operations:
+ case MVT::v16i8: OpcodeIndex = 0; break;
+ case MVT::v8i16: OpcodeIndex = 1; break;
+ case MVT::v4f32:
+ case MVT::v4i32: OpcodeIndex = 2; break;
+ case MVT::v2i64: OpcodeIndex = 3;
+ assert(NumVecs == 1 && "v2i64 type only supported for VST1");
+ break;
+ }
+
+ std::vector<EVT> ResTys;
+ if (isUpdating)
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::Other);
+
+ SDValue Pred = getAL(CurDAG);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SmallVector<SDValue, 7> Ops;
+
+ // Double registers and VST1/VST2 quad registers are directly supported.
+ if (is64BitVector || NumVecs <= 2) {
+ SDValue SrcReg;
+ if (NumVecs == 1) {
+ SrcReg = N->getOperand(Vec0Idx);
+ } else if (is64BitVector) {
+ // Form a REG_SEQUENCE to force register allocation.
+ SDValue V0 = N->getOperand(Vec0Idx + 0);
+ SDValue V1 = N->getOperand(Vec0Idx + 1);
+ if (NumVecs == 2)
+ SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
+ else {
+ SDValue V2 = N->getOperand(Vec0Idx + 2);
+ // If it's a vst3, form a quad D-register and leave the last part as
+ // an undef.
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
+ : N->getOperand(Vec0Idx + 3);
+ SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
+ }
+ } else {
+ // Form a QQ register.
+ SDValue Q0 = N->getOperand(Vec0Idx);
+ SDValue Q1 = N->getOperand(Vec0Idx + 1);
+ SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
+ }
+
+ unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
+ QOpcodes0[OpcodeIndex]);
+ Ops.push_back(MemAddr);
+ Ops.push_back(Align);
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ // FIXME: VST1/VST2 fixed increment doesn't need Reg0. Remove the reg0
+ // case entirely when the rest are updated to that form, too.
+ if (NumVecs <= 2 && !isa<ConstantSDNode>(Inc.getNode()))
+ Opc = getVLDSTRegisterUpdateOpcode(Opc);
+ // FIXME: We use a VST1 for v1i64 even if the pseudo says vld2/3/4, so
+ // check for that explicitly too. Horribly hacky, but temporary.
+ if (!isa<ConstantSDNode>(Inc.getNode()))
+ Ops.push_back(Inc);
+ else if (NumVecs > 2 && !isVSTfixed(Opc))
+ Ops.push_back(Reg0);
+ }
+ Ops.push_back(SrcReg);
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+ SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ // Transfer memoperands.
+ cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
+
+ return VSt;
+ }
+
+ // Otherwise, quad registers are stored with two separate instructions,
+ // where one stores the even registers and the other stores the odd registers.
+
+ // Form the QQQQ REG_SEQUENCE.
+ SDValue V0 = N->getOperand(Vec0Idx + 0);
+ SDValue V1 = N->getOperand(Vec0Idx + 1);
+ SDValue V2 = N->getOperand(Vec0Idx + 2);
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
+ : N->getOperand(Vec0Idx + 3);
+ SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
+
+ // Store the even D registers. This is always an updating store, so that it
+ // provides the address to the second store for the odd subregs.
+ const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
+ SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
+ MemAddr.getValueType(),
+ MVT::Other, OpsA);
+ cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
+ Chain = SDValue(VStA, 1);
+
+ // Store the odd D registers.
+ Ops.push_back(SDValue(VStA, 0));
+ Ops.push_back(Align);
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ assert(isa<ConstantSDNode>(Inc.getNode()) &&
+ "only constant post-increment update allowed for VST3/4");
+ (void)Inc;
+ Ops.push_back(Reg0);
+ }
+ Ops.push_back(RegSeq);
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+ SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
+ Ops);
+ cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
+ return VStB;
+}
+
+SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
+ bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes,
+ const uint16_t *QOpcodes) {
+ assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
+ SDLoc dl(N);
+
+ SDValue MemAddr, Align;
+ unsigned AddrOpIdx = isUpdating ? 1 : 2;
+ unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
+ if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
+ return nullptr;
+
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+
+ SDValue Chain = N->getOperand(0);
+ unsigned Lane =
+ cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
+ EVT VT = N->getOperand(Vec0Idx).getValueType();
+ bool is64BitVector = VT.is64BitVector();
+
+ unsigned Alignment = 0;
+ if (NumVecs != 3) {
+ Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
+ unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
+ if (Alignment > NumBytes)
+ Alignment = NumBytes;
+ if (Alignment < 8 && Alignment < NumBytes)
+ Alignment = 0;
+ // Alignment must be a power of two; make sure of that.
+ Alignment = (Alignment & -Alignment);
+ if (Alignment == 1)
+ Alignment = 0;
+ }
+ Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vld/vst lane type");
+ // Double-register operations:
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ // Quad-register operations:
+ case MVT::v8i16: OpcodeIndex = 0; break;
+ case MVT::v4f32:
+ case MVT::v4i32: OpcodeIndex = 1; break;
+ }
+
+ std::vector<EVT> ResTys;
+ if (IsLoad) {
+ unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
+ if (!is64BitVector)
+ ResTyElts *= 2;
+ ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
+ MVT::i64, ResTyElts));
+ }
+ if (isUpdating)
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::Other);
+
+ SDValue Pred = getAL(CurDAG);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(MemAddr);
+ Ops.push_back(Align);
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
+ }
+
+ SDValue SuperReg;
+ SDValue V0 = N->getOperand(Vec0Idx + 0);
+ SDValue V1 = N->getOperand(Vec0Idx + 1);
+ if (NumVecs == 2) {
+ if (is64BitVector)
+ SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
+ else
+ SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
+ } else {
+ SDValue V2 = N->getOperand(Vec0Idx + 2);
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
+ : N->getOperand(Vec0Idx + 3);
+ if (is64BitVector)
+ SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
+ else
+ SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
+ }
+ Ops.push_back(SuperReg);
+ Ops.push_back(getI32Imm(Lane));
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+
+ unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
+ QOpcodes[OpcodeIndex]);
+ SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
+ if (!IsLoad)
+ return VLdLn;
+
+ // Extract the subregisters.
+ SuperReg = SDValue(VLdLn, 0);
+ assert(ARM::dsub_7 == ARM::dsub_0+7 &&
+ ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
+ unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ ReplaceUses(SDValue(N, Vec),
+ CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
+ ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
+ if (isUpdating)
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
+ return nullptr;
+}
+
+SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
+ unsigned NumVecs,
+ const uint16_t *Opcodes) {
+ assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
+ SDLoc dl(N);
+
+ SDValue MemAddr, Align;
+ if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
+ return nullptr;
+
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+
+ SDValue Chain = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ unsigned Alignment = 0;
+ if (NumVecs != 3) {
+ Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
+ unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
+ if (Alignment > NumBytes)
+ Alignment = NumBytes;
+ if (Alignment < 8 && Alignment < NumBytes)
+ Alignment = 0;
+ // Alignment must be a power of two; make sure of that.
+ Alignment = (Alignment & -Alignment);
+ if (Alignment == 1)
+ Alignment = 0;
+ }
+ Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vld-dup type");
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ }
+
+ SDValue Pred = getAL(CurDAG);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SDValue SuperReg;
+ unsigned Opc = Opcodes[OpcodeIndex];
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(MemAddr);
+ Ops.push_back(Align);
+ if (isUpdating) {
+ // fixed-stride update instructions don't have an explicit writeback
+ // operand. It's implicit in the opcode itself.
+ SDValue Inc = N->getOperand(2);
+ if (!isa<ConstantSDNode>(Inc.getNode()))
+ Ops.push_back(Inc);
+ // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
+ else if (NumVecs > 2)
+ Ops.push_back(Reg0);
+ }
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+
+ unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
+ std::vector<EVT> ResTys;
+ ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
+ if (isUpdating)
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::Other);
+ SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
+ SuperReg = SDValue(VLdDup, 0);
+
+ // Extract the subregisters.
+ assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
+ unsigned SubIdx = ARM::dsub_0;
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ ReplaceUses(SDValue(N, Vec),
+ CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
+ ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
+ if (isUpdating)
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
+ return nullptr;
+}
+
+SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
+ unsigned Opc) {
+ assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ unsigned FirstTblReg = IsExt ? 2 : 1;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SDValue RegSeq;
+ SDValue V0 = N->getOperand(FirstTblReg + 0);
+ SDValue V1 = N->getOperand(FirstTblReg + 1);
+ if (NumVecs == 2)
+ RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
+ else {
+ SDValue V2 = N->getOperand(FirstTblReg + 2);
+ // If it's a vtbl3, form a quad D-register and leave the last part as
+ // an undef.
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
+ : N->getOperand(FirstTblReg + 3);
+ RegSeq = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
+ }
+
+ SmallVector<SDValue, 6> Ops;
+ if (IsExt)
+ Ops.push_back(N->getOperand(1));
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
+ Ops.push_back(getAL(CurDAG)); // predicate
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
+ return CurDAG->getMachineNode(Opc, dl, VT, Ops);
+}
+
+SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
+ bool isSigned) {
+ if (!Subtarget->hasV6T2Ops())
+ return nullptr;
+
+ unsigned Opc = isSigned
+ ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
+ : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
+
+ // For unsigned extracts, check for a shift right and mask
+ unsigned And_imm = 0;
+ if (N->getOpcode() == ISD::AND) {
+ if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
+
+ // The immediate is a mask of the low bits iff imm & (imm+1) == 0
+ if (And_imm & (And_imm + 1))
+ return nullptr;
+
+ unsigned Srl_imm = 0;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
+ Srl_imm)) {
+ assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
+
+ // Note: The width operand is encoded as width-1.
+ unsigned Width = CountTrailingOnes_32(And_imm) - 1;
+ unsigned LSB = Srl_imm;
+
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+
+ if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
+ // It's cheaper to use a right shift to extract the top bits.
+ if (Subtarget->isThumb()) {
+ Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ CurDAG->getTargetConstant(LSB, MVT::i32),
+ getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
+ }
+
+ // ARM models shift instructions as MOVsi with shifter operand.
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
+ SDValue ShOpc =
+ CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB),
+ MVT::i32);
+ SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
+ getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops);
+ }
+
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ CurDAG->getTargetConstant(LSB, MVT::i32),
+ CurDAG->getTargetConstant(Width, MVT::i32),
+ getAL(CurDAG), Reg0 };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
+ }
+ }
+ return nullptr;
+ }
+
+ // Otherwise, we're looking for a shift of a shift
+ unsigned Shl_imm = 0;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
+ assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
+ unsigned Srl_imm = 0;
+ if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
+ assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
+ // Note: The width operand is encoded as width-1.
+ unsigned Width = 32 - Srl_imm - 1;
+ int LSB = Srl_imm - Shl_imm;
+ if (LSB < 0)
+ return nullptr;
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ CurDAG->getTargetConstant(LSB, MVT::i32),
+ CurDAG->getTargetConstant(Width, MVT::i32),
+ getAL(CurDAG), Reg0 };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
+ }
+ }
+ return nullptr;
+}
+
+/// Target-specific DAG combining for ISD::XOR.
+/// Target-independent combining lowers SELECT_CC nodes of the form
+/// select_cc setg[ge] X, 0, X, -X
+/// select_cc setgt X, -1, X, -X
+/// select_cc setl[te] X, 0, -X, X
+/// select_cc setlt X, 1, -X, X
+/// which represent Integer ABS into:
+/// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
+/// ARM instruction selection detects the latter and matches it to
+/// ARM::ABS or ARM::t2ABS machine node.
+SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){
+ SDValue XORSrc0 = N->getOperand(0);
+ SDValue XORSrc1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ if (Subtarget->isThumb1Only())
+ return nullptr;
+
+ if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
+ return nullptr;
+
+ SDValue ADDSrc0 = XORSrc0.getOperand(0);
+ SDValue ADDSrc1 = XORSrc0.getOperand(1);
+ SDValue SRASrc0 = XORSrc1.getOperand(0);
+ SDValue SRASrc1 = XORSrc1.getOperand(1);
+ ConstantSDNode *SRAConstant = dyn_cast<ConstantSDNode>(SRASrc1);
+ EVT XType = SRASrc0.getValueType();
+ unsigned Size = XType.getSizeInBits() - 1;
+
+ if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
+ XType.isInteger() && SRAConstant != nullptr &&
+ Size == SRAConstant->getZExtValue()) {
+ unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
+ return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
+ }
+
+ return nullptr;
+}
+
+SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
+ // The only time a CONCAT_VECTORS operation can have legal types is when
+ // two 64-bit vectors are concatenated to a 128-bit vector.
+ EVT VT = N->getValueType(0);
+ if (!VT.is128BitVector() || N->getNumOperands() != 2)
+ llvm_unreachable("unexpected CONCAT_VECTORS");
+ return createDRegPairNode(VT, N->getOperand(0), N->getOperand(1));
+}
+
+SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
+ SDLoc dl(N);
+
+ if (N->isMachineOpcode()) {
+ N->setNodeId(-1);
+ return nullptr; // Already selected.
+ }
+
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::INLINEASM: {
+ SDNode *ResNode = SelectInlineAsm(N);
+ if (ResNode)
+ return ResNode;
+ break;
+ }
+ case ISD::XOR: {
+ // Select special operations if XOR node forms integer ABS pattern
+ SDNode *ResNode = SelectABSOp(N);
+ if (ResNode)
+ return ResNode;
+ // Other cases are autogenerated.
+ break;
+ }
+ case ISD::Constant: {
+ unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
+ bool UseCP = true;
+ if (Subtarget->useMovt(*MF))
+ // Thumb2-aware targets have the MOVT instruction, so all immediates can
+ // be done with MOV + MOVT, at worst.
+ UseCP = false;
+ else {
+ if (Subtarget->isThumb()) {
+ UseCP = (Val > 255 && // MOV
+ ~Val > 255 && // MOV + MVN
+ !ARM_AM::isThumbImmShiftedVal(Val) && // MOV + LSL
+ !(Subtarget->hasV6T2Ops() && Val <= 0xffff)); // MOVW
+ } else
+ UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV
+ ARM_AM::getSOImmVal(~Val) == -1 && // MVN
+ !ARM_AM::isSOImmTwoPartVal(Val) && // two instrs.
+ !(Subtarget->hasV6T2Ops() && Val <= 0xffff)); // MOVW
+ }
+
+ if (UseCP) {
+ SDValue CPIdx =
+ CurDAG->getTargetConstantPool(ConstantInt::get(
+ Type::getInt32Ty(*CurDAG->getContext()), Val),
+ getTargetLowering()->getPointerTy());
+
+ SDNode *ResNode;
+ if (Subtarget->isThumb()) {
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
+ ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
+ Ops);
+ } else {
+ SDValue Ops[] = {
+ CPIdx,
+ CurDAG->getTargetConstant(0, MVT::i32),
+ getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getEntryNode()
+ };
+ ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
+ Ops);
+ }
+ ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
+ return nullptr;
+ }
+
+ // Other cases are autogenerated.
+ break;
+ }
+ case ISD::FrameIndex: {
+ // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ if (Subtarget->isThumb1Only()) {
+ SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops);
+ } else {
+ unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
+ ARM::t2ADDri : ARM::ADDri);
+ SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
+ }
+ }
+ case ISD::SRL:
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
+ return I;
+ break;
+ case ISD::SRA:
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
+ return I;
+ break;
+ case ISD::MUL:
+ if (Subtarget->isThumb1Only())
+ break;
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
+ unsigned RHSV = C->getZExtValue();
+ if (!RHSV) break;
+ if (isPowerOf2_32(RHSV-1)) { // 2^n+1?
+ unsigned ShImm = Log2_32(RHSV-1);
+ if (ShImm >= 32)
+ break;
+ SDValue V = N->getOperand(0);
+ ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
+ SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops);
+ } else {
+ SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops);
+ }
+ }
+ if (isPowerOf2_32(RHSV+1)) { // 2^n-1?
+ unsigned ShImm = Log2_32(RHSV+1);
+ if (ShImm >= 32)
+ break;
+ SDValue V = N->getOperand(0);
+ ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
+ SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops);
+ } else {
+ SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops);
+ }
+ }
+ }
+ break;
+ case ISD::AND: {
+ // Check for unsigned bitfield extract
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
+ return I;
+
+ // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
+ // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
+ // are entirely contributed by c2 and lower 16-bits are entirely contributed
+ // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
+ // Select it to: "movt x, ((c1 & 0xffff) >> 16)
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i32)
+ break;
+ unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
+ ? ARM::t2MOVTi16
+ : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
+ if (!Opc)
+ break;
+ SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (!N1C)
+ break;
+ if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
+ SDValue N2 = N0.getOperand(1);
+ ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
+ if (!N2C)
+ break;
+ unsigned N1CVal = N1C->getZExtValue();
+ unsigned N2CVal = N2C->getZExtValue();
+ if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
+ (N1CVal & 0xffffU) == 0xffffU &&
+ (N2CVal & 0xffffU) == 0x0U) {
+ SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
+ MVT::i32);
+ SDValue Ops[] = { N0.getOperand(0), Imm16,
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(Opc, dl, VT, Ops);
+ }
+ }
+ break;
+ }
+ case ARMISD::VMOVRRD:
+ return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
+ N->getOperand(0), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32));
+ case ISD::UMUL_LOHI: {
+ if (Subtarget->isThumb1Only())
+ break;
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops);
+ } else {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
+ ARM::UMULL : ARM::UMULLv5,
+ dl, MVT::i32, MVT::i32, Ops);
+ }
+ }
+ case ISD::SMUL_LOHI: {
+ if (Subtarget->isThumb1Only())
+ break;
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops);
+ } else {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
+ ARM::SMULL : ARM::SMULLv5,
+ dl, MVT::i32, MVT::i32, Ops);
+ }
+ }
+ case ARMISD::UMLAL:{
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
+ N->getOperand(3), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32)};
+ return CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops);
+ }else{
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
+ N->getOperand(3), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
+ ARM::UMLAL : ARM::UMLALv5,
+ dl, MVT::i32, MVT::i32, Ops);
+ }
+ }
+ case ARMISD::SMLAL:{
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
+ N->getOperand(3), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32)};
+ return CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops);
+ }else{
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
+ N->getOperand(3), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
+ ARM::SMLAL : ARM::SMLALv5,
+ dl, MVT::i32, MVT::i32, Ops);
+ }
+ }
+ case ISD::LOAD: {
+ SDNode *ResNode = nullptr;
+ if (Subtarget->isThumb() && Subtarget->hasThumb2())
+ ResNode = SelectT2IndexedLoad(N);
+ else
+ ResNode = SelectARMIndexedLoad(N);
+ if (ResNode)
+ return ResNode;
+ // Other cases are autogenerated.
+ break;
+ }
+ case ARMISD::BRCOND: {
+ // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
+ // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
+ // Pattern complexity = 6 cost = 1 size = 0
+
+ // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
+ // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
+ // Pattern complexity = 6 cost = 1 size = 0
+
+ // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
+ // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
+ // Pattern complexity = 6 cost = 1 size = 0
+
+ unsigned Opc = Subtarget->isThumb() ?
+ ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
+ SDValue Chain = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ SDValue N3 = N->getOperand(3);
+ SDValue InFlag = N->getOperand(4);
+ assert(N1.getOpcode() == ISD::BasicBlock);
+ assert(N2.getOpcode() == ISD::Constant);
+ assert(N3.getOpcode() == ISD::Register);
+
+ SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
+ cast<ConstantSDNode>(N2)->getZExtValue()),
+ MVT::i32);
+ SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
+ SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
+ MVT::Glue, Ops);
+ Chain = SDValue(ResNode, 0);
+ if (N->getNumValues() == 2) {
+ InFlag = SDValue(ResNode, 1);
+ ReplaceUses(SDValue(N, 1), InFlag);
+ }
+ ReplaceUses(SDValue(N, 0),
+ SDValue(Chain.getNode(), Chain.getResNo()));
+ return nullptr;
+ }
+ case ARMISD::VZIP: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return nullptr;
+ case MVT::v8i8: Opc = ARM::VZIPd8; break;
+ case MVT::v4i16: Opc = ARM::VZIPd16; break;
+ case MVT::v2f32:
+ // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
+ case MVT::v2i32: Opc = ARM::VTRNd32; break;
+ case MVT::v16i8: Opc = ARM::VZIPq8; break;
+ case MVT::v8i16: Opc = ARM::VZIPq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VZIPq32; break;
+ }
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
+ return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
+ }
+ case ARMISD::VUZP: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return nullptr;
+ case MVT::v8i8: Opc = ARM::VUZPd8; break;
+ case MVT::v4i16: Opc = ARM::VUZPd16; break;
+ case MVT::v2f32:
+ // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
+ case MVT::v2i32: Opc = ARM::VTRNd32; break;
+ case MVT::v16i8: Opc = ARM::VUZPq8; break;
+ case MVT::v8i16: Opc = ARM::VUZPq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VUZPq32; break;
+ }
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
+ return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
+ }
+ case ARMISD::VTRN: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return nullptr;
+ case MVT::v8i8: Opc = ARM::VTRNd8; break;
+ case MVT::v4i16: Opc = ARM::VTRNd16; break;
+ case MVT::v2f32:
+ case MVT::v2i32: Opc = ARM::VTRNd32; break;
+ case MVT::v16i8: Opc = ARM::VTRNq8; break;
+ case MVT::v8i16: Opc = ARM::VTRNq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VTRNq32; break;
+ }
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
+ return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
+ }
+ case ARMISD::BUILD_VECTOR: {
+ EVT VecVT = N->getValueType(0);
+ EVT EltVT = VecVT.getVectorElementType();
+ unsigned NumElts = VecVT.getVectorNumElements();
+ if (EltVT == MVT::f64) {
+ assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
+ return createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
+ }
+ assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
+ if (NumElts == 2)
+ return createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
+ assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
+ return createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
+ N->getOperand(2), N->getOperand(3));
+ }
+
+ case ARMISD::VLD2DUP: {
+ static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
+ ARM::VLD2DUPd32 };
+ return SelectVLDDup(N, false, 2, Opcodes);
+ }
+
+ case ARMISD::VLD3DUP: {
+ static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
+ ARM::VLD3DUPd16Pseudo,
+ ARM::VLD3DUPd32Pseudo };
+ return SelectVLDDup(N, false, 3, Opcodes);
+ }
+
+ case ARMISD::VLD4DUP: {
+ static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
+ ARM::VLD4DUPd16Pseudo,
+ ARM::VLD4DUPd32Pseudo };
+ return SelectVLDDup(N, false, 4, Opcodes);
+ }
+
+ case ARMISD::VLD2DUP_UPD: {
+ static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed,
+ ARM::VLD2DUPd16wb_fixed,
+ ARM::VLD2DUPd32wb_fixed };
+ return SelectVLDDup(N, true, 2, Opcodes);
+ }
+
+ case ARMISD::VLD3DUP_UPD: {
+ static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
+ ARM::VLD3DUPd16Pseudo_UPD,
+ ARM::VLD3DUPd32Pseudo_UPD };
+ return SelectVLDDup(N, true, 3, Opcodes);
+ }
+
+ case ARMISD::VLD4DUP_UPD: {
+ static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
+ ARM::VLD4DUPd16Pseudo_UPD,
+ ARM::VLD4DUPd32Pseudo_UPD };
+ return SelectVLDDup(N, true, 4, Opcodes);
+ }
+
+ case ARMISD::VLD1_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
+ ARM::VLD1d16wb_fixed,
+ ARM::VLD1d32wb_fixed,
+ ARM::VLD1d64wb_fixed };
+ static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
+ ARM::VLD1q16wb_fixed,
+ ARM::VLD1q32wb_fixed,
+ ARM::VLD1q64wb_fixed };
+ return SelectVLD(N, true, 1, DOpcodes, QOpcodes, nullptr);
+ }
+
+ case ARMISD::VLD2_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed,
+ ARM::VLD2d16wb_fixed,
+ ARM::VLD2d32wb_fixed,
+ ARM::VLD1q64wb_fixed};
+ static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
+ ARM::VLD2q16PseudoWB_fixed,
+ ARM::VLD2q32PseudoWB_fixed };
+ return SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
+ }
+
+ case ARMISD::VLD3_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
+ ARM::VLD3d16Pseudo_UPD,
+ ARM::VLD3d32Pseudo_UPD,
+ ARM::VLD1d64TPseudoWB_fixed};
+ static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
+ ARM::VLD3q16Pseudo_UPD,
+ ARM::VLD3q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
+ ARM::VLD3q16oddPseudo_UPD,
+ ARM::VLD3q32oddPseudo_UPD };
+ return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case ARMISD::VLD4_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD,
+ ARM::VLD4d16Pseudo_UPD,
+ ARM::VLD4d32Pseudo_UPD,
+ ARM::VLD1d64QPseudoWB_fixed};
+ static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
+ ARM::VLD4q16Pseudo_UPD,
+ ARM::VLD4q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
+ ARM::VLD4q16oddPseudo_UPD,
+ ARM::VLD4q32oddPseudo_UPD };
+ return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case ARMISD::VLD2LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
+ ARM::VLD2LNd16Pseudo_UPD,
+ ARM::VLD2LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
+ ARM::VLD2LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
+ }
+
+ case ARMISD::VLD3LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
+ ARM::VLD3LNd16Pseudo_UPD,
+ ARM::VLD3LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
+ ARM::VLD3LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
+ }
+
+ case ARMISD::VLD4LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
+ ARM::VLD4LNd16Pseudo_UPD,
+ ARM::VLD4LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
+ ARM::VLD4LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
+ }
+
+ case ARMISD::VST1_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
+ ARM::VST1d16wb_fixed,
+ ARM::VST1d32wb_fixed,
+ ARM::VST1d64wb_fixed };
+ static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
+ ARM::VST1q16wb_fixed,
+ ARM::VST1q32wb_fixed,
+ ARM::VST1q64wb_fixed };
+ return SelectVST(N, true, 1, DOpcodes, QOpcodes, nullptr);
+ }
+
+ case ARMISD::VST2_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed,
+ ARM::VST2d16wb_fixed,
+ ARM::VST2d32wb_fixed,
+ ARM::VST1q64wb_fixed};
+ static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
+ ARM::VST2q16PseudoWB_fixed,
+ ARM::VST2q32PseudoWB_fixed };
+ return SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
+ }
+
+ case ARMISD::VST3_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
+ ARM::VST3d16Pseudo_UPD,
+ ARM::VST3d32Pseudo_UPD,
+ ARM::VST1d64TPseudoWB_fixed};
+ static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
+ ARM::VST3q16Pseudo_UPD,
+ ARM::VST3q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
+ ARM::VST3q16oddPseudo_UPD,
+ ARM::VST3q32oddPseudo_UPD };
+ return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case ARMISD::VST4_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD,
+ ARM::VST4d16Pseudo_UPD,
+ ARM::VST4d32Pseudo_UPD,
+ ARM::VST1d64QPseudoWB_fixed};
+ static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
+ ARM::VST4q16Pseudo_UPD,
+ ARM::VST4q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
+ ARM::VST4q16oddPseudo_UPD,
+ ARM::VST4q32oddPseudo_UPD };
+ return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case ARMISD::VST2LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
+ ARM::VST2LNd16Pseudo_UPD,
+ ARM::VST2LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
+ ARM::VST2LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
+ }
+
+ case ARMISD::VST3LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
+ ARM::VST3LNd16Pseudo_UPD,
+ ARM::VST3LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
+ ARM::VST3LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
+ }
+
+ case ARMISD::VST4LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
+ ARM::VST4LNd16Pseudo_UPD,
+ ARM::VST4LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
+ ARM::VST4LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
+ }
+
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+
+ case Intrinsic::arm_ldaexd:
+ case Intrinsic::arm_ldrexd: {
+ SDLoc dl(N);
+ SDValue Chain = N->getOperand(0);
+ SDValue MemAddr = N->getOperand(2);
+ bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
+
+ bool IsAcquire = IntNo == Intrinsic::arm_ldaexd;
+ unsigned NewOpc = isThumb ? (IsAcquire ? ARM::t2LDAEXD : ARM::t2LDREXD)
+ : (IsAcquire ? ARM::LDAEXD : ARM::LDREXD);
+
+ // arm_ldrexd returns a i64 value in {i32, i32}
+ std::vector<EVT> ResTys;
+ if (isThumb) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ } else
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
+
+ // Place arguments in the right order.
+ SmallVector<SDValue, 7> Ops;
+ Ops.push_back(MemAddr);
+ Ops.push_back(getAL(CurDAG));
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32));
+ Ops.push_back(Chain);
+ SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
+
+ // Remap uses.
+ SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
+ if (!SDValue(N, 0).use_empty()) {
+ SDValue Result;
+ if (isThumb)
+ Result = SDValue(Ld, 0);
+ else {
+ SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
+ SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
+ Result = SDValue(ResNode,0);
+ }
+ ReplaceUses(SDValue(N, 0), Result);
+ }
+ if (!SDValue(N, 1).use_empty()) {
+ SDValue Result;
+ if (isThumb)
+ Result = SDValue(Ld, 1);
+ else {
+ SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
+ SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
+ Result = SDValue(ResNode,0);
+ }
+ ReplaceUses(SDValue(N, 1), Result);
+ }
+ ReplaceUses(SDValue(N, 2), OutChain);
+ return nullptr;
+ }
+ case Intrinsic::arm_stlexd:
+ case Intrinsic::arm_strexd: {
+ SDLoc dl(N);
+ SDValue Chain = N->getOperand(0);
+ SDValue Val0 = N->getOperand(2);
+ SDValue Val1 = N->getOperand(3);
+ SDValue MemAddr = N->getOperand(4);
+
+ // Store exclusive double return a i32 value which is the return status
+ // of the issued store.
+ EVT ResTys[] = { MVT::i32, MVT::Other };
+
+ bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
+ // Place arguments in the right order.
+ SmallVector<SDValue, 7> Ops;
+ if (isThumb) {
+ Ops.push_back(Val0);
+ Ops.push_back(Val1);
+ } else
+ // arm_strexd uses GPRPair.
+ Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
+ Ops.push_back(MemAddr);
+ Ops.push_back(getAL(CurDAG));
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32));
+ Ops.push_back(Chain);
+
+ bool IsRelease = IntNo == Intrinsic::arm_stlexd;
+ unsigned NewOpc = isThumb ? (IsRelease ? ARM::t2STLEXD : ARM::t2STREXD)
+ : (IsRelease ? ARM::STLEXD : ARM::STREXD);
+
+ SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
+
+ return St;
+ }
+
+ case Intrinsic::arm_neon_vld1: {
+ static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
+ ARM::VLD1d32, ARM::VLD1d64 };
+ static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
+ ARM::VLD1q32, ARM::VLD1q64};
+ return SelectVLD(N, false, 1, DOpcodes, QOpcodes, nullptr);
+ }
+
+ case Intrinsic::arm_neon_vld2: {
+ static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
+ ARM::VLD2d32, ARM::VLD1q64 };
+ static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
+ ARM::VLD2q32Pseudo };
+ return SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
+ }
+
+ case Intrinsic::arm_neon_vld3: {
+ static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
+ ARM::VLD3d16Pseudo,
+ ARM::VLD3d32Pseudo,
+ ARM::VLD1d64TPseudo };
+ static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
+ ARM::VLD3q16Pseudo_UPD,
+ ARM::VLD3q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
+ ARM::VLD3q16oddPseudo,
+ ARM::VLD3q32oddPseudo };
+ return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld4: {
+ static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
+ ARM::VLD4d16Pseudo,
+ ARM::VLD4d32Pseudo,
+ ARM::VLD1d64QPseudo };
+ static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
+ ARM::VLD4q16Pseudo_UPD,
+ ARM::VLD4q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
+ ARM::VLD4q16oddPseudo,
+ ARM::VLD4q32oddPseudo };
+ return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld2lane: {
+ static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
+ ARM::VLD2LNd16Pseudo,
+ ARM::VLD2LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
+ ARM::VLD2LNq32Pseudo };
+ return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
+ }
+
+ case Intrinsic::arm_neon_vld3lane: {
+ static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
+ ARM::VLD3LNd16Pseudo,
+ ARM::VLD3LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
+ ARM::VLD3LNq32Pseudo };
+ return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
+ }
+
+ case Intrinsic::arm_neon_vld4lane: {
+ static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
+ ARM::VLD4LNd16Pseudo,
+ ARM::VLD4LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
+ ARM::VLD4LNq32Pseudo };
+ return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
+ }
+
+ case Intrinsic::arm_neon_vst1: {
+ static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
+ ARM::VST1d32, ARM::VST1d64 };
+ static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
+ ARM::VST1q32, ARM::VST1q64 };
+ return SelectVST(N, false, 1, DOpcodes, QOpcodes, nullptr);
+ }
+
+ case Intrinsic::arm_neon_vst2: {
+ static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
+ ARM::VST2d32, ARM::VST1q64 };
+ static uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
+ ARM::VST2q32Pseudo };
+ return SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
+ }
+
+ case Intrinsic::arm_neon_vst3: {
+ static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
+ ARM::VST3d16Pseudo,
+ ARM::VST3d32Pseudo,
+ ARM::VST1d64TPseudo };
+ static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
+ ARM::VST3q16Pseudo_UPD,
+ ARM::VST3q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
+ ARM::VST3q16oddPseudo,
+ ARM::VST3q32oddPseudo };
+ return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst4: {
+ static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
+ ARM::VST4d16Pseudo,
+ ARM::VST4d32Pseudo,
+ ARM::VST1d64QPseudo };
+ static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
+ ARM::VST4q16Pseudo_UPD,
+ ARM::VST4q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
+ ARM::VST4q16oddPseudo,
+ ARM::VST4q32oddPseudo };
+ return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst2lane: {
+ static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
+ ARM::VST2LNd16Pseudo,
+ ARM::VST2LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
+ ARM::VST2LNq32Pseudo };
+ return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
+ }
+
+ case Intrinsic::arm_neon_vst3lane: {
+ static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
+ ARM::VST3LNd16Pseudo,
+ ARM::VST3LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
+ ARM::VST3LNq32Pseudo };
+ return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
+ }
+
+ case Intrinsic::arm_neon_vst4lane: {
+ static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
+ ARM::VST4LNd16Pseudo,
+ ARM::VST4LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
+ ARM::VST4LNq32Pseudo };
+ return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
+ }
+ }
+ break;
+ }
+
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+
+ case Intrinsic::arm_neon_vtbl2:
+ return SelectVTBL(N, false, 2, ARM::VTBL2);
+ case Intrinsic::arm_neon_vtbl3:
+ return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
+ case Intrinsic::arm_neon_vtbl4:
+ return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
+
+ case Intrinsic::arm_neon_vtbx2:
+ return SelectVTBL(N, true, 2, ARM::VTBX2);
+ case Intrinsic::arm_neon_vtbx3:
+ return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
+ case Intrinsic::arm_neon_vtbx4:
+ return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
+ }
+ break;
+ }
+
+ case ARMISD::VTBL1: {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SmallVector<SDValue, 6> Ops;
+
+ Ops.push_back(N->getOperand(0));
+ Ops.push_back(N->getOperand(1));
+ Ops.push_back(getAL(CurDAG)); // Predicate
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
+ return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops);
+ }
+ case ARMISD::VTBL2: {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SDValue V0 = N->getOperand(0);
+ SDValue V1 = N->getOperand(1);
+ SDValue RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(getAL(CurDAG)); // Predicate
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
+ return CurDAG->getMachineNode(ARM::VTBL2, dl, VT, Ops);
+ }
+
+ case ISD::CONCAT_VECTORS:
+ return SelectConcatVector(N);
+ }
+
+ return SelectCode(N);
+}
+
+SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){
+ std::vector<SDValue> AsmNodeOperands;
+ unsigned Flag, Kind;
+ bool Changed = false;
+ unsigned NumOps = N->getNumOperands();
+
+ // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
+ // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
+ // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
+ // respectively. Since there is no constraint to explicitly specify a
+ // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
+ // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
+ // them into a GPRPair.
+
+ SDLoc dl(N);
+ SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1)
+ : SDValue(nullptr,0);
+
+ SmallVector<bool, 8> OpChanged;
+ // Glue node will be appended late.
+ for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
+ SDValue op = N->getOperand(i);
+ AsmNodeOperands.push_back(op);
+
+ if (i < InlineAsm::Op_FirstOperand)
+ continue;
+
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
+ Flag = C->getZExtValue();
+ Kind = InlineAsm::getKind(Flag);
+ }
+ else
+ continue;
+
+ // Immediate operands to inline asm in the SelectionDAG are modeled with
+ // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
+ // the second is a constant with the value of the immediate. If we get here
+ // and we have a Kind_Imm, skip the next operand, and continue.
+ if (Kind == InlineAsm::Kind_Imm) {
+ SDValue op = N->getOperand(++i);
+ AsmNodeOperands.push_back(op);
+ continue;
+ }
+
+ unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
+ if (NumRegs)
+ OpChanged.push_back(false);
+
+ unsigned DefIdx = 0;
+ bool IsTiedToChangedOp = false;
+ // If it's a use that is tied with a previous def, it has no
+ // reg class constraint.
+ if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
+ IsTiedToChangedOp = OpChanged[DefIdx];
+
+ if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
+ && Kind != InlineAsm::Kind_RegDefEarlyClobber)
+ continue;
+
+ unsigned RC;
+ bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
+ if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
+ || NumRegs != 2)
+ continue;
+
+ assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
+ SDValue V0 = N->getOperand(i+1);
+ SDValue V1 = N->getOperand(i+2);
+ unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
+ unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
+ SDValue PairedReg;
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ if (Kind == InlineAsm::Kind_RegDef ||
+ Kind == InlineAsm::Kind_RegDefEarlyClobber) {
+ // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
+ // the original GPRs.
+
+ unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
+ PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
+ SDValue Chain = SDValue(N,0);
+
+ SDNode *GU = N->getGluedUser();
+ SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
+ Chain.getValue(1));
+
+ // Extract values from a GPRPair reg and copy to the original GPR reg.
+ SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
+ RegCopy);
+ SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
+ RegCopy);
+ SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
+ RegCopy.getValue(1));
+ SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
+
+ // Update the original glue user.
+ std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
+ Ops.push_back(T1.getValue(1));
+ CurDAG->UpdateNodeOperands(GU, Ops);
+ GU = T1.getNode();
+ }
+ else {
+ // For Kind == InlineAsm::Kind_RegUse, we first copy two GPRs into a
+ // GPRPair and then pass the GPRPair to the inline asm.
+ SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
+
+ // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
+ SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
+ Chain.getValue(1));
+ SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
+ T0.getValue(1));
+ SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
+
+ // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
+ // i32 VRs of inline asm with it.
+ unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
+ PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
+ Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
+
+ AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
+ Glue = Chain.getValue(1);
+ }
+
+ Changed = true;
+
+ if(PairedReg.getNode()) {
+ OpChanged[OpChanged.size() -1 ] = true;
+ Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
+ if (IsTiedToChangedOp)
+ Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
+ else
+ Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
+ // Replace the current flag.
+ AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
+ Flag, MVT::i32);
+ // Add the new register node and skip the original two GPRs.
+ AsmNodeOperands.push_back(PairedReg);
+ // Skip the next two GPRs.
+ i += 2;
+ }
+ }
+
+ if (Glue.getNode())
+ AsmNodeOperands.push_back(Glue);
+ if (!Changed)
+ return nullptr;
+
+ SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
+ CurDAG->getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
+ New->setNodeId(-1);
+ return New.getNode();
+}
+
+
+bool ARMDAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
+ // Require the address to be in a register. That is safe for all ARM
+ // variants and it is hard to do anything much smarter without knowing
+ // how the operand is used.
+ OutOps.push_back(Op);
+ return false;
+}
+
+/// createARMISelDag - This pass converts a legalized DAG into a
+/// ARM-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new ARMDAGToDAGISel(TM, OptLevel);
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
new file mode 100644
index 0000000..a76531a
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
@@ -0,0 +1,10949 @@
+//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that ARM uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMISelLowering.h"
+#include "ARMCallingConv.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMPerfectShuffle.h"
+#include "ARMSubtarget.h"
+#include "ARMTargetMachine.h"
+#include "ARMTargetObjectFile.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetOptions.h"
+#include <utility>
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-isel"
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
+STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
+
+cl::opt<bool>
+EnableARMLongCalls("arm-long-calls", cl::Hidden,
+ cl::desc("Generate calls via indirect call instructions"),
+ cl::init(false));
+
+static cl::opt<bool>
+ARMInterworking("arm-interworking", cl::Hidden,
+ cl::desc("Enable / disable ARM interworking (for debugging only)"),
+ cl::init(true));
+
+namespace {
+ class ARMCCState : public CCState {
+ public:
+ ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
+ const TargetMachine &TM, SmallVectorImpl<CCValAssign> &locs,
+ LLVMContext &C, ParmContext PC)
+ : CCState(CC, isVarArg, MF, TM, locs, C) {
+ assert(((PC == Call) || (PC == Prologue)) &&
+ "ARMCCState users must specify whether their context is call"
+ "or prologue generation.");
+ CallOrPrologue = PC;
+ }
+ };
+}
+
+// The APCS parameter registers.
+static const MCPhysReg GPRArgRegs[] = {
+ ARM::R0, ARM::R1, ARM::R2, ARM::R3
+};
+
+void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
+ MVT PromotedBitwiseVT) {
+ if (VT != PromotedLdStVT) {
+ setOperationAction(ISD::LOAD, VT, Promote);
+ AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
+
+ setOperationAction(ISD::STORE, VT, Promote);
+ AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
+ }
+
+ MVT ElemTy = VT.getVectorElementType();
+ if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
+ setOperationAction(ISD::SETCC, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ if (ElemTy == MVT::i32) {
+ setOperationAction(ISD::SINT_TO_FP, VT, Custom);
+ setOperationAction(ISD::UINT_TO_FP, VT, Custom);
+ setOperationAction(ISD::FP_TO_SINT, VT, Custom);
+ setOperationAction(ISD::FP_TO_UINT, VT, Custom);
+ } else {
+ setOperationAction(ISD::SINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::UINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::FP_TO_SINT, VT, Expand);
+ setOperationAction(ISD::FP_TO_UINT, VT, Expand);
+ }
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
+ setOperationAction(ISD::SELECT, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
+ if (VT.isInteger()) {
+ setOperationAction(ISD::SHL, VT, Custom);
+ setOperationAction(ISD::SRA, VT, Custom);
+ setOperationAction(ISD::SRL, VT, Custom);
+ }
+
+ // Promote all bit-wise operations.
+ if (VT.isInteger() && VT != PromotedBitwiseVT) {
+ setOperationAction(ISD::AND, VT, Promote);
+ AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
+ setOperationAction(ISD::OR, VT, Promote);
+ AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
+ setOperationAction(ISD::XOR, VT, Promote);
+ AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
+ }
+
+ // Neon does not support vector divide/remainder operations.
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::FDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+}
+
+void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
+ addRegisterClass(VT, &ARM::DPRRegClass);
+ addTypeForNEON(VT, MVT::f64, MVT::v2i32);
+}
+
+void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
+ addRegisterClass(VT, &ARM::DPairRegClass);
+ addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
+}
+
+static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
+ if (TT.isOSBinFormatMachO())
+ return new TargetLoweringObjectFileMachO();
+ if (TT.isOSWindows())
+ return new TargetLoweringObjectFileCOFF();
+ return new ARMElfTargetObjectFile();
+}
+
+ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
+ : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
+ Subtarget = &TM.getSubtarget<ARMSubtarget>();
+ RegInfo = TM.getRegisterInfo();
+ Itins = TM.getInstrItineraryData();
+
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ if (Subtarget->isTargetMachO()) {
+ // Uses VFP for Thumb libfuncs if available.
+ if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
+ Subtarget->hasARMOps() && !TM.Options.UseSoftFloat) {
+ // Single-precision floating-point arithmetic.
+ setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
+ setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
+ setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
+ setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
+
+ // Double-precision floating-point arithmetic.
+ setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
+ setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
+ setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
+ setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
+
+ // Single-precision comparisons.
+ setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
+ setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
+ setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
+ setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
+ setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
+ setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
+ setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
+ setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
+
+ setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
+
+ // Double-precision comparisons.
+ setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
+ setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
+ setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
+ setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
+ setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
+ setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
+ setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
+ setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
+
+ setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
+
+ // Floating-point to integer conversions.
+ // i64 conversions are done via library routines even when generating VFP
+ // instructions, so use the same ones.
+ setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
+ setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
+ setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
+ setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
+
+ // Conversions between floating types.
+ setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
+ setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
+
+ // Integer to floating-point conversions.
+ // i64 conversions are done via library routines even when generating VFP
+ // instructions, so use the same ones.
+ // FIXME: There appears to be some naming inconsistency in ARM libgcc:
+ // e.g., __floatunsidf vs. __floatunssidfvfp.
+ setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
+ setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
+ setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
+ setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
+ }
+ }
+
+ // These libcalls are not available in 32-bit.
+ setLibcallName(RTLIB::SHL_I128, nullptr);
+ setLibcallName(RTLIB::SRL_I128, nullptr);
+ setLibcallName(RTLIB::SRA_I128, nullptr);
+
+ if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetMachO() &&
+ !Subtarget->isTargetWindows()) {
+ static const struct {
+ const RTLIB::Libcall Op;
+ const char * const Name;
+ const CallingConv::ID CC;
+ const ISD::CondCode Cond;
+ } LibraryCalls[] = {
+ // Double-precision floating-point arithmetic helper functions
+ // RTABI chapter 4.1.2, Table 2
+ { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Double-precision floating-point comparison helper functions
+ // RTABI chapter 4.1.2, Table 3
+ { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
+ { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
+
+ // Single-precision floating-point arithmetic helper functions
+ // RTABI chapter 4.1.2, Table 4
+ { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Single-precision floating-point comparison helper functions
+ // RTABI chapter 4.1.2, Table 5
+ { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
+ { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
+
+ // Floating-point to integer conversions.
+ // RTABI chapter 4.1.2, Table 6
+ { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Conversions between floating types.
+ // RTABI chapter 4.1.2, Table 7
+ { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Integer to floating-point conversions.
+ // RTABI chapter 4.1.2, Table 8
+ { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Long long helper functions
+ // RTABI chapter 4.2, Table 9
+ { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Integer division functions
+ // RTABI chapter 4.3.1
+ { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Memory operations
+ // RTABI chapter 4.3.4
+ { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ };
+
+ for (const auto &LC : LibraryCalls) {
+ setLibcallName(LC.Op, LC.Name);
+ setLibcallCallingConv(LC.Op, LC.CC);
+ if (LC.Cond != ISD::SETCC_INVALID)
+ setCmpLibcallCC(LC.Op, LC.Cond);
+ }
+ }
+
+ if (Subtarget->isTargetWindows()) {
+ static const struct {
+ const RTLIB::Libcall Op;
+ const char * const Name;
+ const CallingConv::ID CC;
+ } LibraryCalls[] = {
+ { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
+ };
+
+ for (const auto &LC : LibraryCalls) {
+ setLibcallName(LC.Op, LC.Name);
+ setLibcallCallingConv(LC.Op, LC.CC);
+ }
+ }
+
+ // Use divmod compiler-rt calls for iOS 5.0 and later.
+ if (Subtarget->getTargetTriple().isiOS() &&
+ !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
+ setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
+ setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
+ }
+
+ if (Subtarget->isThumb1Only())
+ addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
+ else
+ addRegisterClass(MVT::i32, &ARM::GPRRegClass);
+ if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
+ !Subtarget->isThumb1Only()) {
+ addRegisterClass(MVT::f32, &ARM::SPRRegClass);
+ if (!Subtarget->isFPOnlySP())
+ addRegisterClass(MVT::f64, &ARM::DPRRegClass);
+ }
+
+ for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
+ for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
+ setTruncStoreAction((MVT::SimpleValueType)VT,
+ (MVT::SimpleValueType)InnerVT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
+
+ setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
+
+ setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
+ }
+
+ setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
+ setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
+
+ if (Subtarget->hasNEON()) {
+ addDRTypeForNEON(MVT::v2f32);
+ addDRTypeForNEON(MVT::v8i8);
+ addDRTypeForNEON(MVT::v4i16);
+ addDRTypeForNEON(MVT::v2i32);
+ addDRTypeForNEON(MVT::v1i64);
+
+ addQRTypeForNEON(MVT::v4f32);
+ addQRTypeForNEON(MVT::v2f64);
+ addQRTypeForNEON(MVT::v16i8);
+ addQRTypeForNEON(MVT::v8i16);
+ addQRTypeForNEON(MVT::v4i32);
+ addQRTypeForNEON(MVT::v2i64);
+
+ // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
+ // neither Neon nor VFP support any arithmetic operations on it.
+ // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
+ // supported for v4f32.
+ setOperationAction(ISD::FADD, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
+ setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
+ // FIXME: Code duplication: FDIV and FREM are expanded always, see
+ // ARMTargetLowering::addTypeForNEON method for details.
+ setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
+ setOperationAction(ISD::FREM, MVT::v2f64, Expand);
+ // FIXME: Create unittest.
+ // In another words, find a way when "copysign" appears in DAG with vector
+ // operands.
+ setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
+ // FIXME: Code duplication: SETCC has custom operation action, see
+ // ARMTargetLowering::addTypeForNEON method for details.
+ setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
+ // FIXME: Create unittest for FNEG and for FABS.
+ setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
+ setOperationAction(ISD::FABS, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
+ setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
+ // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
+ setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
+ setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
+ setOperationAction(ISD::FMA, MVT::v2f64, Expand);
+
+ setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
+ setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
+ setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
+ setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
+
+ // Mark v2f32 intrinsics.
+ setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
+ setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
+ setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
+ setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
+
+ // Neon does not support some operations on v1i64 and v2i64 types.
+ setOperationAction(ISD::MUL, MVT::v1i64, Expand);
+ // Custom handling for some quad-vector types to detect VMULL.
+ setOperationAction(ISD::MUL, MVT::v8i16, Custom);
+ setOperationAction(ISD::MUL, MVT::v4i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v2i64, Custom);
+ // Custom handling for some vector types to avoid expensive expansions
+ setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
+ setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
+ setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
+ setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
+ setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
+ // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
+ // a destination type that is wider than the source, and nor does
+ // it have a FP_TO_[SU]INT instruction with a narrower destination than
+ // source.
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
+
+ setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
+ setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
+
+ // NEON does not have single instruction CTPOP for vectors with element
+ // types wider than 8-bits. However, custom lowering can leverage the
+ // v8i8/v16i8 vcnt instruction.
+ setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
+
+ // NEON only has FMA instructions as of VFP4.
+ if (!Subtarget->hasVFP4()) {
+ setOperationAction(ISD::FMA, MVT::v2f32, Expand);
+ setOperationAction(ISD::FMA, MVT::v4f32, Expand);
+ }
+
+ setTargetDAGCombine(ISD::INTRINSIC_VOID);
+ setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
+ setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
+ setTargetDAGCombine(ISD::SHL);
+ setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::SIGN_EXTEND);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ setTargetDAGCombine(ISD::ANY_EXTEND);
+ setTargetDAGCombine(ISD::SELECT_CC);
+ setTargetDAGCombine(ISD::BUILD_VECTOR);
+ setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
+ setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::FP_TO_SINT);
+ setTargetDAGCombine(ISD::FP_TO_UINT);
+ setTargetDAGCombine(ISD::FDIV);
+
+ // It is legal to extload from v4i8 to v4i16 or v4i32.
+ MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
+ MVT::v4i16, MVT::v2i16,
+ MVT::v2i32};
+ for (unsigned i = 0; i < 6; ++i) {
+ setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
+ setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
+ }
+ }
+
+ // ARM and Thumb2 support UMLAL/SMLAL.
+ if (!Subtarget->isThumb1Only())
+ setTargetDAGCombine(ISD::ADDC);
+
+
+ computeRegisterProperties();
+
+ // ARM does not have floating-point extending loads.
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
+
+ // ... or truncating stores
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+
+ // ARM does not have i1 sign extending load.
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+
+ // ARM supports all 4 flavors of integer indexed load / store.
+ if (!Subtarget->isThumb1Only()) {
+ for (unsigned im = (unsigned)ISD::PRE_INC;
+ im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
+ setIndexedLoadAction(im, MVT::i1, Legal);
+ setIndexedLoadAction(im, MVT::i8, Legal);
+ setIndexedLoadAction(im, MVT::i16, Legal);
+ setIndexedLoadAction(im, MVT::i32, Legal);
+ setIndexedStoreAction(im, MVT::i1, Legal);
+ setIndexedStoreAction(im, MVT::i8, Legal);
+ setIndexedStoreAction(im, MVT::i16, Legal);
+ setIndexedStoreAction(im, MVT::i32, Legal);
+ }
+ }
+
+ setOperationAction(ISD::SADDO, MVT::i32, Custom);
+ setOperationAction(ISD::UADDO, MVT::i32, Custom);
+ setOperationAction(ISD::SSUBO, MVT::i32, Custom);
+ setOperationAction(ISD::USUBO, MVT::i32, Custom);
+
+ // i64 operation support.
+ setOperationAction(ISD::MUL, MVT::i64, Expand);
+ setOperationAction(ISD::MULHU, MVT::i32, Expand);
+ if (Subtarget->isThumb1Only()) {
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
+ }
+ if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
+ || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
+ setOperationAction(ISD::MULHS, MVT::i32, Expand);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL, MVT::i64, Custom);
+ setOperationAction(ISD::SRA, MVT::i64, Custom);
+
+ if (!Subtarget->isThumb1Only()) {
+ // FIXME: We should do this for Thumb1 as well.
+ setOperationAction(ISD::ADDC, MVT::i32, Custom);
+ setOperationAction(ISD::ADDE, MVT::i32, Custom);
+ setOperationAction(ISD::SUBC, MVT::i32, Custom);
+ setOperationAction(ISD::SUBE, MVT::i32, Custom);
+ }
+
+ // ARM does not have ROTL.
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
+ setOperationAction(ISD::CTLZ, MVT::i32, Expand);
+
+ // These just redirect to CTTZ and CTLZ on ARM.
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand);
+
+ setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
+
+ // Only ARMv6 has BSWAP.
+ if (!Subtarget->hasV6Ops())
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+
+ if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
+ !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
+ // These are expanded into libcalls if the cpu doesn't have HW divider.
+ setOperationAction(ISD::SDIV, MVT::i32, Expand);
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+ }
+
+ // FIXME: Also set divmod for SREM on EABI
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ // Register based DivRem for AEABI (RTABI 4.2)
+ if (Subtarget->isTargetAEABI()) {
+ setLibcallName(RTLIB::SDIVREM_I8, "__aeabi_idivmod");
+ setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
+ setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
+ setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
+ setLibcallName(RTLIB::UDIVREM_I8, "__aeabi_uidivmod");
+ setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
+ setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
+ setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
+
+ setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
+
+ setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
+ } else {
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+ }
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+
+ if (!Subtarget->isTargetMachO()) {
+ // Non-MachO platforms may return values in these registers via the
+ // personality function.
+ setExceptionPointerRegister(ARM::R0);
+ setExceptionSelectorRegister(ARM::R1);
+ }
+
+ if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
+ else
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
+
+ // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
+ // the default expansion.
+ if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) {
+ // ATOMIC_FENCE needs custom lowering; the others should have been expanded
+ // to ldrex/strex loops already.
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
+
+ // On v8, we have particularly efficient implementations of atomic fences
+ // if they can be combined with nearby atomic loads and stores.
+ if (!Subtarget->hasV8Ops()) {
+ // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
+ setInsertFencesForAtomic(true);
+ }
+ } else {
+ // If there's anything we can use as a barrier, go through custom lowering
+ // for ATOMIC_FENCE.
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
+ Subtarget->hasAnyDataBarrier() ? Custom : Expand);
+
+ // Set them all for expansion, which will force libcalls.
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
+ // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
+ // Unordered/Monotonic case.
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
+ }
+
+ setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
+
+ // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
+ if (!Subtarget->hasV6Ops()) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
+ }
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
+ !Subtarget->isThumb1Only()) {
+ // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
+ // iff target supports vfp2.
+ setOperationAction(ISD::BITCAST, MVT::i64, Custom);
+ setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
+ }
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ if (Subtarget->isTargetDarwin()) {
+ setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
+ setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
+ setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
+ }
+
+ setOperationAction(ISD::SETCC, MVT::i32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f64, Custom);
+ setOperationAction(ISD::BR_JT, MVT::Other, Custom);
+
+ // We don't support sin/cos/fmod/copysign/pow
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f32, Expand);
+ if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
+ !Subtarget->isThumb1Only()) {
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+ }
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+
+ if (!Subtarget->hasVFP4()) {
+ setOperationAction(ISD::FMA, MVT::f64, Expand);
+ setOperationAction(ISD::FMA, MVT::f32, Expand);
+ }
+
+ // Various VFP goodness
+ if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
+ // int <-> fp are custom expanded into bit_convert + ARMISD ops.
+ if (Subtarget->hasVFP2()) {
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ }
+
+ // v8 adds f64 <-> f16 conversion. Before that it should be expanded.
+ if (!Subtarget->hasV8Ops()) {
+ setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
+ }
+
+ // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
+ if (!Subtarget->hasFP16()) {
+ setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
+ }
+ }
+
+ // Combine sin / cos into one node or libcall if possible.
+ if (Subtarget->hasSinCos()) {
+ setLibcallName(RTLIB::SINCOS_F32, "sincosf");
+ setLibcallName(RTLIB::SINCOS_F64, "sincos");
+ if (Subtarget->getTargetTriple().getOS() == Triple::IOS) {
+ // For iOS, we don't want to the normal expansion of a libcall to
+ // sincos. We want to issue a libcall to __sincos_stret.
+ setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
+ }
+ }
+
+ // We have target-specific dag combine patterns for the following nodes:
+ // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::SUB);
+ setTargetDAGCombine(ISD::MUL);
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::XOR);
+
+ if (Subtarget->hasV6Ops())
+ setTargetDAGCombine(ISD::SRL);
+
+ setStackPointerRegisterToSaveRestore(ARM::SP);
+
+ if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
+ !Subtarget->hasVFP2())
+ setSchedulingPreference(Sched::RegPressure);
+ else
+ setSchedulingPreference(Sched::Hybrid);
+
+ //// temporary - rewrite interface to use type
+ MaxStoresPerMemset = 8;
+ MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
+ MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
+ MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
+ MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
+ MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
+
+ // On ARM arguments smaller than 4 bytes are extended, so all arguments
+ // are at least 4 bytes aligned.
+ setMinStackArgumentAlignment(4);
+
+ // Prefer likely predicted branches to selects on out-of-order cores.
+ PredictableSelectIsExpensive = Subtarget->isLikeA9();
+
+ setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
+}
+
+// FIXME: It might make sense to define the representative register class as the
+// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
+// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
+// SPR's representative would be DPR_VFP2. This should work well if register
+// pressure tracking were modified such that a register use would increment the
+// pressure of the register class's representative and all of it's super
+// classes' representatives transitively. We have not implemented this because
+// of the difficulty prior to coalescing of modeling operand register classes
+// due to the common occurrence of cross class copies and subregister insertions
+// and extractions.
+std::pair<const TargetRegisterClass*, uint8_t>
+ARMTargetLowering::findRepresentativeClass(MVT VT) const{
+ const TargetRegisterClass *RRC = nullptr;
+ uint8_t Cost = 1;
+ switch (VT.SimpleTy) {
+ default:
+ return TargetLowering::findRepresentativeClass(VT);
+ // Use DPR as representative register class for all floating point
+ // and vector types. Since there are 32 SPR registers and 32 DPR registers so
+ // the cost is 1 for both f32 and f64.
+ case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
+ case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
+ RRC = &ARM::DPRRegClass;
+ // When NEON is used for SP, only half of the register file is available
+ // because operations that define both SP and DP results will be constrained
+ // to the VFP2 class (D0-D15). We currently model this constraint prior to
+ // coalescing by double-counting the SP regs. See the FIXME above.
+ if (Subtarget->useNEONForSinglePrecisionFP())
+ Cost = 2;
+ break;
+ case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
+ case MVT::v4f32: case MVT::v2f64:
+ RRC = &ARM::DPRRegClass;
+ Cost = 2;
+ break;
+ case MVT::v4i64:
+ RRC = &ARM::DPRRegClass;
+ Cost = 4;
+ break;
+ case MVT::v8i64:
+ RRC = &ARM::DPRRegClass;
+ Cost = 8;
+ break;
+ }
+ return std::make_pair(RRC, Cost);
+}
+
+const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return nullptr;
+ case ARMISD::Wrapper: return "ARMISD::Wrapper";
+ case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
+ case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
+ case ARMISD::CALL: return "ARMISD::CALL";
+ case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
+ case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
+ case ARMISD::tCALL: return "ARMISD::tCALL";
+ case ARMISD::BRCOND: return "ARMISD::BRCOND";
+ case ARMISD::BR_JT: return "ARMISD::BR_JT";
+ case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
+ case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
+ case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
+ case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
+ case ARMISD::CMP: return "ARMISD::CMP";
+ case ARMISD::CMN: return "ARMISD::CMN";
+ case ARMISD::CMPZ: return "ARMISD::CMPZ";
+ case ARMISD::CMPFP: return "ARMISD::CMPFP";
+ case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
+ case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
+ case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
+
+ case ARMISD::CMOV: return "ARMISD::CMOV";
+
+ case ARMISD::RBIT: return "ARMISD::RBIT";
+
+ case ARMISD::FTOSI: return "ARMISD::FTOSI";
+ case ARMISD::FTOUI: return "ARMISD::FTOUI";
+ case ARMISD::SITOF: return "ARMISD::SITOF";
+ case ARMISD::UITOF: return "ARMISD::UITOF";
+
+ case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
+ case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
+ case ARMISD::RRX: return "ARMISD::RRX";
+
+ case ARMISD::ADDC: return "ARMISD::ADDC";
+ case ARMISD::ADDE: return "ARMISD::ADDE";
+ case ARMISD::SUBC: return "ARMISD::SUBC";
+ case ARMISD::SUBE: return "ARMISD::SUBE";
+
+ case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
+ case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
+
+ case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
+ case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
+
+ case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
+
+ case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
+
+ case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
+
+ case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
+
+ case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
+
+ case ARMISD::WIN__CHKSTK: return "ARMISD:::WIN__CHKSTK";
+
+ case ARMISD::VCEQ: return "ARMISD::VCEQ";
+ case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
+ case ARMISD::VCGE: return "ARMISD::VCGE";
+ case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
+ case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
+ case ARMISD::VCGEU: return "ARMISD::VCGEU";
+ case ARMISD::VCGT: return "ARMISD::VCGT";
+ case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
+ case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
+ case ARMISD::VCGTU: return "ARMISD::VCGTU";
+ case ARMISD::VTST: return "ARMISD::VTST";
+
+ case ARMISD::VSHL: return "ARMISD::VSHL";
+ case ARMISD::VSHRs: return "ARMISD::VSHRs";
+ case ARMISD::VSHRu: return "ARMISD::VSHRu";
+ case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
+ case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
+ case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
+ case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
+ case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
+ case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
+ case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
+ case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
+ case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
+ case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
+ case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
+ case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
+ case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
+ case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
+ case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
+ case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
+ case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
+ case ARMISD::VDUP: return "ARMISD::VDUP";
+ case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
+ case ARMISD::VEXT: return "ARMISD::VEXT";
+ case ARMISD::VREV64: return "ARMISD::VREV64";
+ case ARMISD::VREV32: return "ARMISD::VREV32";
+ case ARMISD::VREV16: return "ARMISD::VREV16";
+ case ARMISD::VZIP: return "ARMISD::VZIP";
+ case ARMISD::VUZP: return "ARMISD::VUZP";
+ case ARMISD::VTRN: return "ARMISD::VTRN";
+ case ARMISD::VTBL1: return "ARMISD::VTBL1";
+ case ARMISD::VTBL2: return "ARMISD::VTBL2";
+ case ARMISD::VMULLs: return "ARMISD::VMULLs";
+ case ARMISD::VMULLu: return "ARMISD::VMULLu";
+ case ARMISD::UMLAL: return "ARMISD::UMLAL";
+ case ARMISD::SMLAL: return "ARMISD::SMLAL";
+ case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
+ case ARMISD::FMAX: return "ARMISD::FMAX";
+ case ARMISD::FMIN: return "ARMISD::FMIN";
+ case ARMISD::VMAXNM: return "ARMISD::VMAX";
+ case ARMISD::VMINNM: return "ARMISD::VMIN";
+ case ARMISD::BFI: return "ARMISD::BFI";
+ case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
+ case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
+ case ARMISD::VBSL: return "ARMISD::VBSL";
+ case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
+ case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
+ case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
+ case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
+ case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
+ case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
+ case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
+ case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
+ case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
+ case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
+ case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
+ case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
+ case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
+ case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
+ case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
+ case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
+ case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
+ case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
+ case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
+ case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
+ }
+}
+
+EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector()) return getPointerTy();
+ return VT.changeVectorElementTypeToInteger();
+}
+
+/// getRegClassFor - Return the register class that should be used for the
+/// specified value type.
+const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
+ // Map v4i64 to QQ registers but do not make the type legal. Similarly map
+ // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
+ // load / store 4 to 8 consecutive D registers.
+ if (Subtarget->hasNEON()) {
+ if (VT == MVT::v4i64)
+ return &ARM::QQPRRegClass;
+ if (VT == MVT::v8i64)
+ return &ARM::QQQQPRRegClass;
+ }
+ return TargetLowering::getRegClassFor(VT);
+}
+
+// Create a fast isel object.
+FastISel *
+ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const {
+ return ARM::createFastISel(funcInfo, libInfo);
+}
+
+/// getMaximalGlobalOffset - Returns the maximal possible offset which can
+/// be used for loads / stores from the global.
+unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
+ return (Subtarget->isThumb1Only() ? 127 : 4095);
+}
+
+Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
+ unsigned NumVals = N->getNumValues();
+ if (!NumVals)
+ return Sched::RegPressure;
+
+ for (unsigned i = 0; i != NumVals; ++i) {
+ EVT VT = N->getValueType(i);
+ if (VT == MVT::Glue || VT == MVT::Other)
+ continue;
+ if (VT.isFloatingPoint() || VT.isVector())
+ return Sched::ILP;
+ }
+
+ if (!N->isMachineOpcode())
+ return Sched::RegPressure;
+
+ // Load are scheduled for latency even if there instruction itinerary
+ // is not available.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
+
+ if (MCID.getNumDefs() == 0)
+ return Sched::RegPressure;
+ if (!Itins->isEmpty() &&
+ Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
+ return Sched::ILP;
+
+ return Sched::RegPressure;
+}
+
+//===----------------------------------------------------------------------===//
+// Lowering Code
+//===----------------------------------------------------------------------===//
+
+/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
+static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown condition code!");
+ case ISD::SETNE: return ARMCC::NE;
+ case ISD::SETEQ: return ARMCC::EQ;
+ case ISD::SETGT: return ARMCC::GT;
+ case ISD::SETGE: return ARMCC::GE;
+ case ISD::SETLT: return ARMCC::LT;
+ case ISD::SETLE: return ARMCC::LE;
+ case ISD::SETUGT: return ARMCC::HI;
+ case ISD::SETUGE: return ARMCC::HS;
+ case ISD::SETULT: return ARMCC::LO;
+ case ISD::SETULE: return ARMCC::LS;
+ }
+}
+
+/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
+static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
+ ARMCC::CondCodes &CondCode2) {
+ CondCode2 = ARMCC::AL;
+ switch (CC) {
+ default: llvm_unreachable("Unknown FP condition!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
+ case ISD::SETGT:
+ case ISD::SETOGT: CondCode = ARMCC::GT; break;
+ case ISD::SETGE:
+ case ISD::SETOGE: CondCode = ARMCC::GE; break;
+ case ISD::SETOLT: CondCode = ARMCC::MI; break;
+ case ISD::SETOLE: CondCode = ARMCC::LS; break;
+ case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
+ case ISD::SETO: CondCode = ARMCC::VC; break;
+ case ISD::SETUO: CondCode = ARMCC::VS; break;
+ case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
+ case ISD::SETUGT: CondCode = ARMCC::HI; break;
+ case ISD::SETUGE: CondCode = ARMCC::PL; break;
+ case ISD::SETLT:
+ case ISD::SETULT: CondCode = ARMCC::LT; break;
+ case ISD::SETLE:
+ case ISD::SETULE: CondCode = ARMCC::LE; break;
+ case ISD::SETNE:
+ case ISD::SETUNE: CondCode = ARMCC::NE; break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "ARMGenCallingConv.inc"
+
+/// getEffectiveCallingConv - Get the effective calling convention, taking into
+/// account presence of floating point hardware and calling convention
+/// limitations, such as support for variadic functions.
+CallingConv::ID
+ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
+ bool isVarArg) const {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::ARM_AAPCS:
+ case CallingConv::ARM_APCS:
+ case CallingConv::GHC:
+ return CC;
+ case CallingConv::ARM_AAPCS_VFP:
+ return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
+ case CallingConv::C:
+ if (!Subtarget->isAAPCS_ABI())
+ return CallingConv::ARM_APCS;
+ else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
+ getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
+ !isVarArg)
+ return CallingConv::ARM_AAPCS_VFP;
+ else
+ return CallingConv::ARM_AAPCS;
+ case CallingConv::Fast:
+ if (!Subtarget->isAAPCS_ABI()) {
+ if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
+ return CallingConv::Fast;
+ return CallingConv::ARM_APCS;
+ } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
+ return CallingConv::ARM_AAPCS_VFP;
+ else
+ return CallingConv::ARM_AAPCS;
+ }
+}
+
+/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
+/// CallingConvention.
+CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
+ bool Return,
+ bool isVarArg) const {
+ switch (getEffectiveCallingConv(CC, isVarArg)) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::ARM_APCS:
+ return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
+ case CallingConv::ARM_AAPCS:
+ return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
+ case CallingConv::ARM_AAPCS_VFP:
+ return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
+ case CallingConv::Fast:
+ return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
+ case CallingConv::GHC:
+ return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
+ }
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue
+ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals,
+ bool isThisReturn, SDValue ThisVal) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext(), Call);
+ CCInfo.AnalyzeCallResult(Ins,
+ CCAssignFnForNode(CallConv, /* Return*/ true,
+ isVarArg));
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign VA = RVLocs[i];
+
+ // Pass 'this' value directly from the argument to return value, to avoid
+ // reg unit interference
+ if (i == 0 && isThisReturn) {
+ assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
+ "unexpected return calling convention register assignment");
+ InVals.push_back(ThisVal);
+ continue;
+ }
+
+ SDValue Val;
+ if (VA.needsCustom()) {
+ // Handle f64 or half of a v2f64.
+ SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
+ InFlag);
+ Chain = Lo.getValue(1);
+ InFlag = Lo.getValue(2);
+ VA = RVLocs[++i]; // skip ahead to next loc
+ SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
+ InFlag);
+ Chain = Hi.getValue(1);
+ InFlag = Hi.getValue(2);
+ if (!Subtarget->isLittle())
+ std::swap (Lo, Hi);
+ Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
+ DAG.getConstant(0, MVT::i32));
+
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
+ Chain = Lo.getValue(1);
+ InFlag = Lo.getValue(2);
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
+ Chain = Hi.getValue(1);
+ InFlag = Hi.getValue(2);
+ if (!Subtarget->isLittle())
+ std::swap (Lo, Hi);
+ Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
+ DAG.getConstant(1, MVT::i32));
+ }
+ } else {
+ Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
+ InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+ }
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
+ break;
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+/// LowerMemOpCallTo - Store the argument to the stack.
+SDValue
+ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
+ SDValue StackPtr, SDValue Arg,
+ SDLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) const {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+ return DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo::getStack(LocMemOffset),
+ false, false, 0);
+}
+
+void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
+ SDValue Chain, SDValue &Arg,
+ RegsToPassVector &RegsToPass,
+ CCValAssign &VA, CCValAssign &NextVA,
+ SDValue &StackPtr,
+ SmallVectorImpl<SDValue> &MemOpChains,
+ ISD::ArgFlagsTy Flags) const {
+
+ SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Arg);
+ unsigned id = Subtarget->isLittle() ? 0 : 1;
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
+
+ if (NextVA.isRegLoc())
+ RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
+ else {
+ assert(NextVA.isMemLoc());
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
+ dl, DAG, NextVA,
+ Flags));
+ }
+}
+
+/// LowerCall - Lowering a call into a callseq_start <-
+/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
+/// nodes.
+SDValue
+ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool doesNotRet = CLI.DoesNotReturn;
+ bool isVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
+ bool isThisReturn = false;
+ bool isSibCall = false;
+
+ // Disable tail calls if they're not supported.
+ if (!Subtarget->supportsTailCall() || MF.getTarget().Options.DisableTailCalls)
+ isTailCall = false;
+
+ if (isTailCall) {
+ // Check if it's really possible to do a tail call.
+ isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
+ isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
+ Outs, OutVals, Ins, DAG);
+ if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
+ report_fatal_error("failed to perform tail call elimination on a call "
+ "site marked musttail");
+ // We don't support GuaranteedTailCallOpt for ARM, only automatically
+ // detected sibcalls.
+ if (isTailCall) {
+ ++NumTailCalls;
+ isSibCall = true;
+ }
+ }
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
+ CCInfo.AnalyzeCallOperands(Outs,
+ CCAssignFnForNode(CallConv, /* Return*/ false,
+ isVarArg));
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ // For tail calls, memory operands are available in our caller's stack.
+ if (isSibCall)
+ NumBytes = 0;
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ if (!isSibCall)
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ dl);
+
+ SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
+
+ RegsToPassVector RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ // Walk the register/memloc assignments, inserting copies/loads. In the case
+ // of tail call optimization, arguments are handled later.
+ for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
+ i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[realArgIdx];
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+ bool isByVal = Flags.isByVal();
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
+ if (VA.needsCustom()) {
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(0, MVT::i32));
+ SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(1, MVT::i32));
+
+ PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
+ VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
+
+ VA = ArgLocs[++i]; // skip ahead to next loc
+ if (VA.isRegLoc()) {
+ PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
+ VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
+ } else {
+ assert(VA.isMemLoc());
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
+ dl, DAG, VA, Flags));
+ }
+ } else {
+ PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
+ StackPtr, MemOpChains, Flags);
+ }
+ } else if (VA.isRegLoc()) {
+ if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
+ assert(VA.getLocVT() == MVT::i32 &&
+ "unexpected calling convention register assignment");
+ assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
+ "unexpected use of 'returned'");
+ isThisReturn = true;
+ }
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else if (isByVal) {
+ assert(VA.isMemLoc());
+ unsigned offset = 0;
+
+ // True if this byval aggregate will be split between registers
+ // and memory.
+ unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
+ unsigned CurByValIdx = CCInfo.getInRegsParamsProceed();
+
+ if (CurByValIdx < ByValArgsCount) {
+
+ unsigned RegBegin, RegEnd;
+ CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ unsigned int i, j;
+ for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
+ SDValue Const = DAG.getConstant(4*i, MVT::i32);
+ SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
+ SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
+ MachinePointerInfo(),
+ false, false, false,
+ DAG.InferPtrAlignment(AddArg));
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(j, Load));
+ }
+
+ // If parameter size outsides register area, "offset" value
+ // helps us to calculate stack slot for remained part properly.
+ offset = RegEnd - RegBegin;
+
+ CCInfo.nextInRegsParam();
+ }
+
+ if (Flags.getByValSize() > 4*offset) {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
+ SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
+ StkPtrOff);
+ SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
+ SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
+ MVT::i32);
+ SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
+
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
+ MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
+ Ops));
+ }
+ } else if (!isSibCall) {
+ assert(VA.isMemLoc());
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
+ dl, DAG, VA, Flags));
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ // Tail call byval lowering might overwrite argument registers so in case of
+ // tail call optimization the copies to registers are lowered later.
+ if (!isTailCall)
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // For tail calls lower the arguments to the 'real' stack slot.
+ if (isTailCall) {
+ // Force all the incoming stack arguments to be loaded from the stack
+ // before any new outgoing arguments are stored to the stack, because the
+ // outgoing stack slots may alias the incoming argument stack slots, and
+ // the alias isn't otherwise explicit. This is slightly more conservative
+ // than necessary, because it means that each store effectively depends
+ // on every argument instead of just those arguments it would clobber.
+
+ // Do not flag preceding copytoreg stuff together with the following stuff.
+ InFlag = SDValue();
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+ InFlag = SDValue();
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ bool isDirect = false;
+ bool isARMFunc = false;
+ bool isLocalARMFunc = false;
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ if (EnableARMLongCalls) {
+ assert((Subtarget->isTargetWindows() ||
+ getTargetMachine().getRelocationModel() == Reloc::Static) &&
+ "long-calls with non-static relocation model!");
+ // Handle a global address or an external symbol. If it's not one of
+ // those, the target's already in a register, so we don't need to do
+ // anything extra.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ // Create a constant pool entry for the callee address
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
+
+ // Get the address of the callee into a register
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), dl,
+ DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const char *Sym = S->getSymbol();
+
+ // Create a constant pool entry for the callee address
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
+ ARMPCLabelIndex, 0);
+ // Get the address of the callee into a register
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), dl,
+ DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ }
+ } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ isDirect = true;
+ bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
+ bool isStub = (isExt && Subtarget->isTargetMachO()) &&
+ getTargetMachine().getRelocationModel() != Reloc::Static;
+ isARMFunc = !Subtarget->isThumb() || isStub;
+ // ARM call to a local ARM function is predicable.
+ isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
+ // tBX takes a register source operand.
+ if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
+ assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
+ Callee = DAG.getNode(ARMISD::WrapperPIC, dl, getPointerTy(),
+ DAG.getTargetGlobalAddress(GV, dl, getPointerTy()));
+ } else if (Subtarget->isTargetCOFF()) {
+ assert(Subtarget->isTargetWindows() &&
+ "Windows is the only supported COFF target");
+ unsigned TargetFlags = GV->hasDLLImportStorageClass()
+ ? ARMII::MO_DLLIMPORT
+ : ARMII::MO_NO_FLAG;
+ Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), /*Offset=*/0,
+ TargetFlags);
+ if (GV->hasDLLImportStorageClass())
+ Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ DAG.getNode(ARMISD::Wrapper, dl, getPointerTy(),
+ Callee), MachinePointerInfo::getGOT(),
+ false, false, false, 0);
+ } else {
+ // On ELF targets for PIC code, direct calls should go through the PLT
+ unsigned OpFlags = 0;
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ OpFlags = ARMII::MO_PLT;
+ Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
+ }
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ isDirect = true;
+ bool isStub = Subtarget->isTargetMachO() &&
+ getTargetMachine().getRelocationModel() != Reloc::Static;
+ isARMFunc = !Subtarget->isThumb() || isStub;
+ // tBX takes a register source operand.
+ const char *Sym = S->getSymbol();
+ if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
+ ARMPCLabelIndex, 4);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), dl,
+ DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
+ getPointerTy(), Callee, PICLabel);
+ } else {
+ unsigned OpFlags = 0;
+ // On ELF targets for PIC code, direct calls should go through the PLT
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ OpFlags = ARMII::MO_PLT;
+ Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
+ }
+ }
+
+ // FIXME: handle tail calls differently.
+ unsigned CallOpc;
+ bool HasMinSizeAttr = MF.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::MinSize);
+ if (Subtarget->isThumb()) {
+ if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
+ CallOpc = ARMISD::CALL_NOLINK;
+ else
+ CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
+ } else {
+ if (!isDirect && !Subtarget->hasV5TOps())
+ CallOpc = ARMISD::CALL_NOLINK;
+ else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
+ // Emit regular call when code size is the priority
+ !HasMinSizeAttr)
+ // "mov lr, pc; b _foo" to avoid confusing the RSP
+ CallOpc = ARMISD::CALL_NOLINK;
+ else
+ CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
+ }
+
+ std::vector<SDValue> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ if (!isTailCall) {
+ const uint32_t *Mask;
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo*>(TRI);
+ if (isThisReturn) {
+ // For 'this' returns, use the R0-preserving mask if applicable
+ Mask = ARI->getThisReturnPreservedMask(CallConv);
+ if (!Mask) {
+ // Set isThisReturn to false if the calling convention is not one that
+ // allows 'returned' to be modeled in this way, so LowerCallResult does
+ // not try to pass 'this' straight through
+ isThisReturn = false;
+ Mask = ARI->getCallPreservedMask(CallConv);
+ }
+ } else
+ Mask = ARI->getCallPreservedMask(CallConv);
+
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+ }
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ if (isTailCall)
+ return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
+
+ // Returns a chain and a flag for retval copy to use.
+ Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(0, true), InFlag, dl);
+ if (!Ins.empty())
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
+ InVals, isThisReturn,
+ isThisReturn ? OutVals[0] : SDValue());
+}
+
+/// HandleByVal - Every parameter *after* a byval parameter is passed
+/// on the stack. Remember the next parameter register to allocate,
+/// and then confiscate the rest of the parameter registers to insure
+/// this.
+void
+ARMTargetLowering::HandleByVal(
+ CCState *State, unsigned &size, unsigned Align) const {
+ unsigned reg = State->AllocateReg(GPRArgRegs, 4);
+ assert((State->getCallOrPrologue() == Prologue ||
+ State->getCallOrPrologue() == Call) &&
+ "unhandled ParmContext");
+
+ if ((ARM::R0 <= reg) && (reg <= ARM::R3)) {
+ if (Subtarget->isAAPCS_ABI() && Align > 4) {
+ unsigned AlignInRegs = Align / 4;
+ unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
+ for (unsigned i = 0; i < Waste; ++i)
+ reg = State->AllocateReg(GPRArgRegs, 4);
+ }
+ if (reg != 0) {
+ unsigned excess = 4 * (ARM::R4 - reg);
+
+ // Special case when NSAA != SP and parameter size greater than size of
+ // all remained GPR regs. In that case we can't split parameter, we must
+ // send it to stack. We also must set NCRN to R4, so waste all
+ // remained registers.
+ const unsigned NSAAOffset = State->getNextStackOffset();
+ if (Subtarget->isAAPCS_ABI() && NSAAOffset != 0 && size > excess) {
+ while (State->AllocateReg(GPRArgRegs, 4))
+ ;
+ return;
+ }
+
+ // First register for byval parameter is the first register that wasn't
+ // allocated before this method call, so it would be "reg".
+ // If parameter is small enough to be saved in range [reg, r4), then
+ // the end (first after last) register would be reg + param-size-in-regs,
+ // else parameter would be splitted between registers and stack,
+ // end register would be r4 in this case.
+ unsigned ByValRegBegin = reg;
+ unsigned ByValRegEnd = (size < excess) ? reg + size/4 : (unsigned)ARM::R4;
+ State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
+ // Note, first register is allocated in the beginning of function already,
+ // allocate remained amount of registers we need.
+ for (unsigned i = reg+1; i != ByValRegEnd; ++i)
+ State->AllocateReg(GPRArgRegs, 4);
+ // A byval parameter that is split between registers and memory needs its
+ // size truncated here.
+ // In the case where the entire structure fits in registers, we set the
+ // size in memory to zero.
+ if (size < excess)
+ size = 0;
+ else
+ size -= excess;
+ }
+ }
+}
+
+/// MatchingStackOffset - Return true if the given stack call argument is
+/// already available in the same position (relatively) of the caller's
+/// incoming argument stack.
+static
+bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
+ MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
+ const TargetInstrInfo *TII) {
+ unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
+ int FI = INT_MAX;
+ if (Arg.getOpcode() == ISD::CopyFromReg) {
+ unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(VR))
+ return false;
+ MachineInstr *Def = MRI->getVRegDef(VR);
+ if (!Def)
+ return false;
+ if (!Flags.isByVal()) {
+ if (!TII->isLoadFromStackSlot(Def, FI))
+ return false;
+ } else {
+ return false;
+ }
+ } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
+ if (Flags.isByVal())
+ // ByVal argument is passed in as a pointer but it's now being
+ // dereferenced. e.g.
+ // define @foo(%struct.X* %A) {
+ // tail call @bar(%struct.X* byval %A)
+ // }
+ return false;
+ SDValue Ptr = Ld->getBasePtr();
+ FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
+ if (!FINode)
+ return false;
+ FI = FINode->getIndex();
+ } else
+ return false;
+
+ assert(FI != INT_MAX);
+ if (!MFI->isFixedObjectIndex(FI))
+ return false;
+ return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
+}
+
+/// IsEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization. Targets which want to do tail call
+/// optimization should implement this function.
+bool
+ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ bool isCalleeStructRet,
+ bool isCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const {
+ const Function *CallerF = DAG.getMachineFunction().getFunction();
+ CallingConv::ID CallerCC = CallerF->getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+
+ // Look for obvious safe cases to perform tail call optimization that do not
+ // require ABI changes. This is what gcc calls sibcall.
+
+ // Do not sibcall optimize vararg calls unless the call site is not passing
+ // any arguments.
+ if (isVarArg && !Outs.empty())
+ return false;
+
+ // Exception-handling functions need a special set of instructions to indicate
+ // a return to the hardware. Tail-calling another function would probably
+ // break this.
+ if (CallerF->hasFnAttribute("interrupt"))
+ return false;
+
+ // Also avoid sibcall optimization if either caller or callee uses struct
+ // return semantics.
+ if (isCalleeStructRet || isCallerStructRet)
+ return false;
+
+ // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
+ // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
+ // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
+ // support in the assembler and linker to be used. This would need to be
+ // fixed to fully support tail calls in Thumb1.
+ //
+ // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
+ // LR. This means if we need to reload LR, it takes an extra instructions,
+ // which outweighs the value of the tail call; but here we don't know yet
+ // whether LR is going to be used. Probably the right approach is to
+ // generate the tail call here and turn it back into CALL/RET in
+ // emitEpilogue if LR is used.
+
+ // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
+ // but we need to make sure there are enough registers; the only valid
+ // registers are the 4 used for parameters. We don't currently do this
+ // case.
+ if (Subtarget->isThumb1Only())
+ return false;
+
+ // If the calling conventions do not match, then we'd better make sure the
+ // results are returned in the same way as what the caller expects.
+ if (!CCMatch) {
+ SmallVector<CCValAssign, 16> RVLocs1;
+ ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
+ CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
+
+ SmallVector<CCValAssign, 16> RVLocs2;
+ ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
+ CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
+
+ if (RVLocs1.size() != RVLocs2.size())
+ return false;
+ for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
+ if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
+ return false;
+ if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
+ return false;
+ if (RVLocs1[i].isRegLoc()) {
+ if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
+ return false;
+ } else {
+ if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
+ return false;
+ }
+ }
+ }
+
+ // If Caller's vararg or byval argument has been split between registers and
+ // stack, do not perform tail call, since part of the argument is in caller's
+ // local frame.
+ const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
+ getInfo<ARMFunctionInfo>();
+ if (AFI_Caller->getArgRegsSaveSize())
+ return false;
+
+ // If the callee takes no arguments then go on to check the results of the
+ // call.
+ if (!Outs.empty()) {
+ // Check if stack adjustment is needed. For now, do not do this if any
+ // argument is passed on the stack.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
+ CCInfo.AnalyzeCallOperands(Outs,
+ CCAssignFnForNode(CalleeCC, false, isVarArg));
+ if (CCInfo.getNextStackOffset()) {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Check if the arguments are already laid out in the right way as
+ // the caller's fixed stack objects.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineRegisterInfo *MRI = &MF.getRegInfo();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
+ i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ EVT RegVT = VA.getLocVT();
+ SDValue Arg = OutVals[realArgIdx];
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ return false;
+ if (VA.needsCustom()) {
+ // f64 and vector types are split into multiple registers or
+ // register/stack-slot combinations. The types will not match
+ // the registers; give up on memory f64 refs until we figure
+ // out what to do about this.
+ if (!VA.isRegLoc())
+ return false;
+ if (!ArgLocs[++i].isRegLoc())
+ return false;
+ if (RegVT == MVT::v2f64) {
+ if (!ArgLocs[++i].isRegLoc())
+ return false;
+ if (!ArgLocs[++i].isRegLoc())
+ return false;
+ }
+ } else if (!VA.isRegLoc()) {
+ if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
+ MFI, MRI, TII))
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+bool
+ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
+ MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
+ isVarArg));
+}
+
+static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
+ SDLoc DL, SelectionDAG &DAG) {
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const Function *F = MF.getFunction();
+
+ StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
+
+ // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
+ // version of the "preferred return address". These offsets affect the return
+ // instruction if this is a return from PL1 without hypervisor extensions.
+ // IRQ/FIQ: +4 "subs pc, lr, #4"
+ // SWI: 0 "subs pc, lr, #0"
+ // ABORT: +4 "subs pc, lr, #4"
+ // UNDEF: +4/+2 "subs pc, lr, #0"
+ // UNDEF varies depending on where the exception came from ARM or Thumb
+ // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
+
+ int64_t LROffset;
+ if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
+ IntKind == "ABORT")
+ LROffset = 4;
+ else if (IntKind == "SWI" || IntKind == "UNDEF")
+ LROffset = 0;
+ else
+ report_fatal_error("Unsupported interrupt attribute. If present, value "
+ "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
+
+ RetOps.insert(RetOps.begin() + 1, DAG.getConstant(LROffset, MVT::i32, false));
+
+ return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
+}
+
+SDValue
+ARMTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+
+ // CCValAssign - represent the assignment of the return value to a location.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slots.
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext(), Call);
+
+ // Analyze outgoing return values.
+ CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
+ isVarArg));
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps;
+ RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
+ bool isLittleEndian = Subtarget->isLittle();
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0, realRVLocIdx = 0;
+ i != RVLocs.size();
+ ++i, ++realRVLocIdx) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ SDValue Arg = OutVals[realRVLocIdx];
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (VA.needsCustom()) {
+ if (VA.getLocVT() == MVT::v2f64) {
+ // Extract the first half and return it in two registers.
+ SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(0, MVT::i32));
+ SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Half);
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ HalfGPRs.getValue(isLittleEndian ? 0 : 1),
+ Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ HalfGPRs.getValue(isLittleEndian ? 1 : 0),
+ Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ VA = RVLocs[++i]; // skip ahead to next loc
+
+ // Extract the 2nd half and fall through to handle it as an f64 value.
+ Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(1, MVT::i32));
+ }
+ // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
+ // available.
+ SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Arg);
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ fmrrd.getValue(isLittleEndian ? 0 : 1),
+ Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ fmrrd.getValue(isLittleEndian ? 1 : 0),
+ Flag);
+ } else
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
+
+ // Guarantee that all emitted copies are
+ // stuck together, avoiding something bad.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ // Update chain and glue.
+ RetOps[0] = Chain;
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ // CPUs which aren't M-class use a special sequence to return from
+ // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
+ // though we use "subs pc, lr, #N").
+ //
+ // M-class CPUs actually use a normal return sequence with a special
+ // (hardware-provided) value in LR, so the normal code path works.
+ if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
+ !Subtarget->isMClass()) {
+ if (Subtarget->isThumb1Only())
+ report_fatal_error("interrupt attribute is not supported in Thumb1");
+ return LowerInterruptReturn(RetOps, dl, DAG);
+ }
+
+ return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
+}
+
+bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
+ if (N->getNumValues() != 1)
+ return false;
+ if (!N->hasNUsesOfValue(1, 0))
+ return false;
+
+ SDValue TCChain = Chain;
+ SDNode *Copy = *N->use_begin();
+ if (Copy->getOpcode() == ISD::CopyToReg) {
+ // If the copy has a glue operand, we conservatively assume it isn't safe to
+ // perform a tail call.
+ if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
+ return false;
+ TCChain = Copy->getOperand(0);
+ } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
+ SDNode *VMov = Copy;
+ // f64 returned in a pair of GPRs.
+ SmallPtrSet<SDNode*, 2> Copies;
+ for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
+ UI != UE; ++UI) {
+ if (UI->getOpcode() != ISD::CopyToReg)
+ return false;
+ Copies.insert(*UI);
+ }
+ if (Copies.size() > 2)
+ return false;
+
+ for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
+ UI != UE; ++UI) {
+ SDValue UseChain = UI->getOperand(0);
+ if (Copies.count(UseChain.getNode()))
+ // Second CopyToReg
+ Copy = *UI;
+ else
+ // First CopyToReg
+ TCChain = UseChain;
+ }
+ } else if (Copy->getOpcode() == ISD::BITCAST) {
+ // f32 returned in a single GPR.
+ if (!Copy->hasOneUse())
+ return false;
+ Copy = *Copy->use_begin();
+ if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
+ return false;
+ TCChain = Copy->getOperand(0);
+ } else {
+ return false;
+ }
+
+ bool HasRet = false;
+ for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
+ UI != UE; ++UI) {
+ if (UI->getOpcode() != ARMISD::RET_FLAG &&
+ UI->getOpcode() != ARMISD::INTRET_FLAG)
+ return false;
+ HasRet = true;
+ }
+
+ if (!HasRet)
+ return false;
+
+ Chain = TCChain;
+ return true;
+}
+
+bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
+ if (!Subtarget->supportsTailCall())
+ return false;
+
+ if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
+ return false;
+
+ return !Subtarget->isThumb1Only();
+}
+
+// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
+// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
+// one of the above mentioned nodes. It has to be wrapped because otherwise
+// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
+// be used to form addressing mode. These wrapped nodes will be selected
+// into MOVi.
+static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
+ EVT PtrVT = Op.getValueType();
+ // FIXME there is no actual debug info here
+ SDLoc dl(Op);
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ SDValue Res;
+ if (CP->isMachineConstantPoolEntry())
+ Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
+ CP->getAlignment());
+ else
+ Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
+ CP->getAlignment());
+ return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
+}
+
+unsigned ARMTargetLowering::getJumpTableEncoding() const {
+ return MachineJumpTableInfo::EK_Inline;
+}
+
+SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = 0;
+ SDLoc DL(Op);
+ EVT PtrVT = getPointerTy();
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ SDValue CPAddr;
+ if (RelocM == Reloc::Static) {
+ CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
+ } else {
+ unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
+ ARMCP::CPBlockAddress, PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ }
+ CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
+ SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ if (RelocM == Reloc::Static)
+ return Result;
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model
+SDValue
+ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG) const {
+ SDLoc dl(GA);
+ EVT PtrVT = getPointerTy();
+ unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
+ SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
+ Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ SDValue Chain = Argument.getValue(1);
+
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
+
+ // call __tls_get_addr.
+ ArgListTy Args;
+ ArgListEntry Entry;
+ Entry.Node = Argument;
+ Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
+ Args.push_back(Entry);
+
+ // FIXME: is there useful debug info available here?
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(Chain)
+ .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
+ DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args),
+ 0);
+
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+ return CallResult.first;
+}
+
+// Lower ISD::GlobalTLSAddress using the "initial exec" or
+// "local exec" model.
+SDValue
+ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG,
+ TLSModel::Model model) const {
+ const GlobalValue *GV = GA->getGlobal();
+ SDLoc dl(GA);
+ SDValue Offset;
+ SDValue Chain = DAG.getEntryNode();
+ EVT PtrVT = getPointerTy();
+ // Get the Thread Pointer
+ SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
+
+ if (model == TLSModel::InitialExec) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ // Initial exec model.
+ unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
+ true);
+ Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
+ Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ Chain = Offset.getValue(1);
+
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
+
+ Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ } else {
+ // local exec model
+ assert(model == TLSModel::LocalExec);
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
+ Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
+ Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ }
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
+}
+
+SDValue
+ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
+ // TODO: implement the "local dynamic" model
+ assert(Subtarget->isTargetELF() &&
+ "TLS not implemented for non-ELF targets");
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+
+ TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
+
+ switch (model) {
+ case TLSModel::GeneralDynamic:
+ case TLSModel::LocalDynamic:
+ return LowerToTLSGeneralDynamicModel(GA, DAG);
+ case TLSModel::InitialExec:
+ case TLSModel::LocalExec:
+ return LowerToTLSExecModels(GA, DAG, model);
+ }
+ llvm_unreachable("bogus TLS model");
+}
+
+SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy();
+ SDLoc dl(Op);
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GV,
+ UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
+ CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ SDValue Chain = Result.getValue(1);
+ SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
+ Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
+ if (!UseGOTOFF)
+ Result = DAG.getLoad(PtrVT, dl, Chain, Result,
+ MachinePointerInfo::getGOT(),
+ false, false, false, 0);
+ return Result;
+ }
+
+ // If we have T2 ops, we can materialize the address directly via movt/movw
+ // pair. This is always cheaper.
+ if (Subtarget->useMovt(DAG.getMachineFunction())) {
+ ++NumMovwMovt;
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into two nodes.
+ return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
+ DAG.getTargetGlobalAddress(GV, dl, PtrVT));
+ } else {
+ SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ }
+}
+
+SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy();
+ SDLoc dl(Op);
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+
+ if (Subtarget->useMovt(DAG.getMachineFunction()))
+ ++NumMovwMovt;
+
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into multiple nodes
+ unsigned Wrapper =
+ RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper;
+
+ SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
+ SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
+
+ if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
+ Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(), false, false, false, 0);
+ return Result;
+}
+
+SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
+ assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
+ "Windows on ARM expects to use movw/movt");
+
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ const ARMII::TOF TargetFlags =
+ (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
+ EVT PtrVT = getPointerTy();
+ SDValue Result;
+ SDLoc DL(Op);
+
+ ++NumMovwMovt;
+
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into two nodes.
+ Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
+ TargetFlags));
+ if (GV->hasDLLImportStorageClass())
+ Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(), false, false, false, 0);
+ return Result;
+}
+
+SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetELF() &&
+ "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ EVT PtrVT = getPointerTy();
+ SDLoc dl(Op);
+ unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
+ ARMPCLabelIndex, PCAdj);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
+}
+
+SDValue
+ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ SDValue Val = DAG.getConstant(0, MVT::i32);
+ return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
+ DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
+ Op.getOperand(1), Val);
+}
+
+SDValue
+ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
+ Op.getOperand(1), DAG.getConstant(0, MVT::i32));
+}
+
+SDValue
+ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) const {
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDLoc dl(Op);
+ switch (IntNo) {
+ default: return SDValue(); // Don't custom lower most intrinsics.
+ case Intrinsic::arm_rbit: {
+ assert(Op.getOperand(1).getValueType() == MVT::i32 &&
+ "RBIT intrinsic must have i32 type!");
+ return DAG.getNode(ARMISD::RBIT, dl, MVT::i32, Op.getOperand(1));
+ }
+ case Intrinsic::arm_thread_pointer: {
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
+ }
+ case Intrinsic::eh_sjlj_lsda: {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ EVT PtrVT = getPointerTy();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ SDValue CPAddr;
+ unsigned PCAdj = (RelocM != Reloc::PIC_)
+ ? 0 : (Subtarget->isThumb() ? 4 : 8);
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
+ ARMCP::CPLSDA, PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result =
+ DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+
+ if (RelocM == Reloc::PIC_) {
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
+ }
+ return Result;
+ }
+ case Intrinsic::arm_neon_vmulls:
+ case Intrinsic::arm_neon_vmullu: {
+ unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
+ ? ARMISD::VMULLs : ARMISD::VMULLu;
+ return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+ }
+}
+
+static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ // FIXME: handle "fence singlethread" more efficiently.
+ SDLoc dl(Op);
+ if (!Subtarget->hasDataBarrier()) {
+ // Some ARMv6 cpus can support data barriers with an mcr instruction.
+ // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
+ // here.
+ assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
+ "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
+ return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(0, MVT::i32));
+ }
+
+ ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
+ AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
+ unsigned Domain = ARM_MB::ISH;
+ if (Subtarget->isMClass()) {
+ // Only a full system barrier exists in the M-class architectures.
+ Domain = ARM_MB::SY;
+ } else if (Subtarget->isSwift() && Ord == Release) {
+ // Swift happens to implement ISHST barriers in a way that's compatible with
+ // Release semantics but weaker than ISH so we'd be fools not to use
+ // it. Beware: other processors probably don't!
+ Domain = ARM_MB::ISHST;
+ }
+
+ return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(Intrinsic::arm_dmb, MVT::i32),
+ DAG.getConstant(Domain, MVT::i32));
+}
+
+static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ // ARM pre v5TE and Thumb1 does not have preload instructions.
+ if (!(Subtarget->isThumb2() ||
+ (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
+ // Just preserve the chain.
+ return Op.getOperand(0);
+
+ SDLoc dl(Op);
+ unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
+ if (!isRead &&
+ (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
+ // ARMv7 with MP extension has PLDW.
+ return Op.getOperand(0);
+
+ unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
+ if (Subtarget->isThumb()) {
+ // Invert the bits.
+ isRead = ~isRead & 1;
+ isData = ~isData & 1;
+ }
+
+ return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
+ Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
+ DAG.getConstant(isData, MVT::i32));
+}
+
+static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
+
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ SDLoc dl(Op);
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
+ MachinePointerInfo(SV), false, false, 0);
+}
+
+SDValue
+ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
+ SDValue &Root, SelectionDAG &DAG,
+ SDLoc dl) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ const TargetRegisterClass *RC;
+ if (AFI->isThumb1OnlyFunction())
+ RC = &ARM::tGPRRegClass;
+ else
+ RC = &ARM::GPRRegClass;
+
+ // Transform the arguments stored in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
+
+ SDValue ArgValue2;
+ if (NextVA.isMemLoc()) {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
+
+ // Create load node to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0);
+ } else {
+ Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
+ ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
+ }
+ if (!Subtarget->isLittle())
+ std::swap (ArgValue, ArgValue2);
+ return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
+}
+
+void
+ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
+ unsigned InRegsParamRecordIdx,
+ unsigned ArgSize,
+ unsigned &ArgRegsSize,
+ unsigned &ArgRegsSaveSize)
+ const {
+ unsigned NumGPRs;
+ if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
+ unsigned RBegin, REnd;
+ CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
+ NumGPRs = REnd - RBegin;
+ } else {
+ unsigned int firstUnalloced;
+ firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
+ sizeof(GPRArgRegs) /
+ sizeof(GPRArgRegs[0]));
+ NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
+ }
+
+ unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
+ ArgRegsSize = NumGPRs * 4;
+
+ // If parameter is split between stack and GPRs...
+ if (NumGPRs && Align > 4 &&
+ (ArgRegsSize < ArgSize ||
+ InRegsParamRecordIdx >= CCInfo.getInRegsParamsCount())) {
+ // Add padding for part of param recovered from GPRs. For example,
+ // if Align == 8, its last byte must be at address K*8 - 1.
+ // We need to do it, since remained (stack) part of parameter has
+ // stack alignment, and we need to "attach" "GPRs head" without gaps
+ // to it:
+ // Stack:
+ // |---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
+ // [ [padding] [GPRs head] ] [ Tail passed via stack ....
+ //
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned Padding =
+ OffsetToAlignment(ArgRegsSize + AFI->getArgRegsSaveSize(), Align);
+ ArgRegsSaveSize = ArgRegsSize + Padding;
+ } else
+ // We don't need to extend regs save size for byval parameters if they
+ // are passed via GPRs only.
+ ArgRegsSaveSize = ArgRegsSize;
+}
+
+// The remaining GPRs hold either the beginning of variable-argument
+// data, or the beginning of an aggregate passed by value (usually
+// byval). Either way, we allocate stack slots adjacent to the data
+// provided by our caller, and store the unallocated registers there.
+// If this is a variadic function, the va_list pointer will begin with
+// these values; otherwise, this reassembles a (byval) structure that
+// was split between registers and memory.
+// Return: The frame index registers were stored into.
+int
+ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
+ SDLoc dl, SDValue &Chain,
+ const Value *OrigArg,
+ unsigned InRegsParamRecordIdx,
+ unsigned OffsetFromOrigArg,
+ unsigned ArgOffset,
+ unsigned ArgSize,
+ bool ForceMutable,
+ unsigned ByValStoreOffset,
+ unsigned TotalArgRegsSaveSize) const {
+
+ // Currently, two use-cases possible:
+ // Case #1. Non-var-args function, and we meet first byval parameter.
+ // Setup first unallocated register as first byval register;
+ // eat all remained registers
+ // (these two actions are performed by HandleByVal method).
+ // Then, here, we initialize stack frame with
+ // "store-reg" instructions.
+ // Case #2. Var-args function, that doesn't contain byval parameters.
+ // The same: eat all remained unallocated registers,
+ // initialize stack frame.
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned firstRegToSaveIndex, lastRegToSaveIndex;
+ unsigned RBegin, REnd;
+ if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
+ CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
+ firstRegToSaveIndex = RBegin - ARM::R0;
+ lastRegToSaveIndex = REnd - ARM::R0;
+ } else {
+ firstRegToSaveIndex = CCInfo.getFirstUnallocated
+ (GPRArgRegs, array_lengthof(GPRArgRegs));
+ lastRegToSaveIndex = 4;
+ }
+
+ unsigned ArgRegsSize, ArgRegsSaveSize;
+ computeRegArea(CCInfo, MF, InRegsParamRecordIdx, ArgSize,
+ ArgRegsSize, ArgRegsSaveSize);
+
+ // Store any by-val regs to their spots on the stack so that they may be
+ // loaded by deferencing the result of formal parameter pointer or va_next.
+ // Note: once stack area for byval/varargs registers
+ // was initialized, it can't be initialized again.
+ if (ArgRegsSaveSize) {
+ unsigned Padding = ArgRegsSaveSize - ArgRegsSize;
+
+ if (Padding) {
+ assert(AFI->getStoredByValParamsPadding() == 0 &&
+ "The only parameter may be padded.");
+ AFI->setStoredByValParamsPadding(Padding);
+ }
+
+ int FrameIndex = MFI->CreateFixedObject(ArgRegsSaveSize,
+ Padding +
+ ByValStoreOffset -
+ (int64_t)TotalArgRegsSaveSize,
+ false);
+ SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy());
+ if (Padding) {
+ MFI->CreateFixedObject(Padding,
+ ArgOffset + ByValStoreOffset -
+ (int64_t)ArgRegsSaveSize,
+ false);
+ }
+
+ SmallVector<SDValue, 4> MemOps;
+ for (unsigned i = 0; firstRegToSaveIndex < lastRegToSaveIndex;
+ ++firstRegToSaveIndex, ++i) {
+ const TargetRegisterClass *RC;
+ if (AFI->isThumb1OnlyFunction())
+ RC = &ARM::tGPRRegClass;
+ else
+ RC = &ARM::GPRRegClass;
+
+ unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
+ false, false, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
+ DAG.getConstant(4, getPointerTy()));
+ }
+
+ AFI->setArgRegsSaveSize(ArgRegsSaveSize + AFI->getArgRegsSaveSize());
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+ return FrameIndex;
+ } else {
+ if (ArgSize == 0) {
+ // We cannot allocate a zero-byte object for the first variadic argument,
+ // so just make up a size.
+ ArgSize = 4;
+ }
+ // This will point to the next argument passed via stack.
+ return MFI->CreateFixedObject(
+ ArgSize, ArgOffset, !ForceMutable);
+ }
+}
+
+// Setup stack frame, the va_list pointer will start from.
+void
+ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
+ SDLoc dl, SDValue &Chain,
+ unsigned ArgOffset,
+ unsigned TotalArgRegsSaveSize,
+ bool ForceMutable) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ // Try to store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing
+ // the result of va_next.
+ // If there is no regs to be stored, just point address after last
+ // argument passed via stack.
+ int FrameIndex =
+ StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
+ CCInfo.getInRegsParamsCount(), 0, ArgOffset, 0, ForceMutable,
+ 0, TotalArgRegsSaveSize);
+
+ AFI->setVarArgsFrameIndex(FrameIndex);
+}
+
+SDValue
+ARMTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
+ CCInfo.AnalyzeFormalArguments(Ins,
+ CCAssignFnForNode(CallConv, /* Return*/ false,
+ isVarArg));
+
+ SmallVector<SDValue, 16> ArgValues;
+ int lastInsIndex = -1;
+ SDValue ArgValue;
+ Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
+ unsigned CurArgIdx = 0;
+
+ // Initially ArgRegsSaveSize is zero.
+ // Then we increase this value each time we meet byval parameter.
+ // We also increase this value in case of varargs function.
+ AFI->setArgRegsSaveSize(0);
+
+ unsigned ByValStoreOffset = 0;
+ unsigned TotalArgRegsSaveSize = 0;
+ unsigned ArgRegsSaveSizeMaxAlign = 4;
+
+ // Calculate the amount of stack space that we need to allocate to store
+ // byval and variadic arguments that are passed in registers.
+ // We need to know this before we allocate the first byval or variadic
+ // argument, as they will be allocated a stack slot below the CFA (Canonical
+ // Frame Address, the stack pointer at entry to the function).
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (VA.isMemLoc()) {
+ int index = VA.getValNo();
+ if (index != lastInsIndex) {
+ ISD::ArgFlagsTy Flags = Ins[index].Flags;
+ if (Flags.isByVal()) {
+ unsigned ExtraArgRegsSize;
+ unsigned ExtraArgRegsSaveSize;
+ computeRegArea(CCInfo, MF, CCInfo.getInRegsParamsProceed(),
+ Flags.getByValSize(),
+ ExtraArgRegsSize, ExtraArgRegsSaveSize);
+
+ TotalArgRegsSaveSize += ExtraArgRegsSaveSize;
+ if (Flags.getByValAlign() > ArgRegsSaveSizeMaxAlign)
+ ArgRegsSaveSizeMaxAlign = Flags.getByValAlign();
+ CCInfo.nextInRegsParam();
+ }
+ lastInsIndex = index;
+ }
+ }
+ }
+ CCInfo.rewindByValRegsInfo();
+ lastInsIndex = -1;
+ if (isVarArg) {
+ unsigned ExtraArgRegsSize;
+ unsigned ExtraArgRegsSaveSize;
+ computeRegArea(CCInfo, MF, CCInfo.getInRegsParamsCount(), 0,
+ ExtraArgRegsSize, ExtraArgRegsSaveSize);
+ TotalArgRegsSaveSize += ExtraArgRegsSaveSize;
+ }
+ // If the arg regs save area contains N-byte aligned values, the
+ // bottom of it must be at least N-byte aligned.
+ TotalArgRegsSaveSize = RoundUpToAlignment(TotalArgRegsSaveSize, ArgRegsSaveSizeMaxAlign);
+ TotalArgRegsSaveSize = std::min(TotalArgRegsSaveSize, 16U);
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
+ CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
+ // Arguments stored in registers.
+ if (VA.isRegLoc()) {
+ EVT RegVT = VA.getLocVT();
+
+ if (VA.needsCustom()) {
+ // f64 and vector types are split up into multiple registers or
+ // combinations of registers and stack slots.
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
+ Chain, DAG, dl);
+ VA = ArgLocs[++i]; // skip ahead to next loc
+ SDValue ArgValue2;
+ if (VA.isMemLoc()) {
+ int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0);
+ } else {
+ ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
+ Chain, DAG, dl);
+ }
+ ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
+ ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
+ ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
+ ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
+ ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
+ } else
+ ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
+
+ } else {
+ const TargetRegisterClass *RC;
+
+ if (RegVT == MVT::f32)
+ RC = &ARM::SPRRegClass;
+ else if (RegVT == MVT::f64)
+ RC = &ARM::DPRRegClass;
+ else if (RegVT == MVT::v2f64)
+ RC = &ARM::QPRRegClass;
+ else if (RegVT == MVT::i32)
+ RC = AFI->isThumb1OnlyFunction() ?
+ (const TargetRegisterClass*)&ARM::tGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass;
+ else
+ llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
+
+ // Transform the arguments in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+ }
+
+ // If this is an 8 or 16-bit value, it is really passed promoted
+ // to 32 bits. Insert an assert[sz]ext to capture this, then
+ // truncate to the right size.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::SExt:
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::ZExt:
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ break;
+ }
+
+ InVals.push_back(ArgValue);
+
+ } else { // VA.isRegLoc()
+
+ // sanity check
+ assert(VA.isMemLoc());
+ assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
+
+ int index = ArgLocs[i].getValNo();
+
+ // Some Ins[] entries become multiple ArgLoc[] entries.
+ // Process them only once.
+ if (index != lastInsIndex)
+ {
+ ISD::ArgFlagsTy Flags = Ins[index].Flags;
+ // FIXME: For now, all byval parameter objects are marked mutable.
+ // This can be changed with more analysis.
+ // In case of tail call optimization mark all arguments mutable.
+ // Since they could be overwritten by lowering of arguments in case of
+ // a tail call.
+ if (Flags.isByVal()) {
+ unsigned CurByValIndex = CCInfo.getInRegsParamsProceed();
+
+ ByValStoreOffset = RoundUpToAlignment(ByValStoreOffset, Flags.getByValAlign());
+ int FrameIndex = StoreByValRegs(
+ CCInfo, DAG, dl, Chain, CurOrigArg,
+ CurByValIndex,
+ Ins[VA.getValNo()].PartOffset,
+ VA.getLocMemOffset(),
+ Flags.getByValSize(),
+ true /*force mutable frames*/,
+ ByValStoreOffset,
+ TotalArgRegsSaveSize);
+ ByValStoreOffset += Flags.getByValSize();
+ ByValStoreOffset = std::min(ByValStoreOffset, 16U);
+ InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy()));
+ CCInfo.nextInRegsParam();
+ } else {
+ unsigned FIOffset = VA.getLocMemOffset();
+ int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
+ FIOffset, true);
+
+ // Create load nodes to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0));
+ }
+ lastInsIndex = index;
+ }
+ }
+ }
+
+ // varargs
+ if (isVarArg)
+ VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
+ CCInfo.getNextStackOffset(),
+ TotalArgRegsSaveSize);
+
+ AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
+
+ return Chain;
+}
+
+/// isFloatingPointZero - Return true if this is +0.0.
+static bool isFloatingPointZero(SDValue Op) {
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
+ return CFP->getValueAPF().isPosZero();
+ else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
+ // Maybe this has already been legalized into the constant pool?
+ if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
+ SDValue WrapperOp = Op.getOperand(1).getOperand(0);
+ if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
+ return CFP->getValueAPF().isPosZero();
+ }
+ }
+ return false;
+}
+
+/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
+/// the given operands.
+SDValue
+ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
+ SDValue &ARMcc, SelectionDAG &DAG,
+ SDLoc dl) const {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
+ unsigned C = RHSC->getZExtValue();
+ if (!isLegalICmpImmediate(C)) {
+ // Constant does not fit, try adjusting it by one?
+ switch (CC) {
+ default: break;
+ case ISD::SETLT:
+ case ISD::SETGE:
+ if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
+ CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
+ RHS = DAG.getConstant(C-1, MVT::i32);
+ }
+ break;
+ case ISD::SETULT:
+ case ISD::SETUGE:
+ if (C != 0 && isLegalICmpImmediate(C-1)) {
+ CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
+ RHS = DAG.getConstant(C-1, MVT::i32);
+ }
+ break;
+ case ISD::SETLE:
+ case ISD::SETGT:
+ if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
+ CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
+ RHS = DAG.getConstant(C+1, MVT::i32);
+ }
+ break;
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
+ CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+ RHS = DAG.getConstant(C+1, MVT::i32);
+ }
+ break;
+ }
+ }
+ }
+
+ ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
+ ARMISD::NodeType CompareType;
+ switch (CondCode) {
+ default:
+ CompareType = ARMISD::CMP;
+ break;
+ case ARMCC::EQ:
+ case ARMCC::NE:
+ // Uses only Z Flag
+ CompareType = ARMISD::CMPZ;
+ break;
+ }
+ ARMcc = DAG.getConstant(CondCode, MVT::i32);
+ return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
+}
+
+/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
+SDValue
+ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
+ SDLoc dl) const {
+ SDValue Cmp;
+ if (!isFloatingPointZero(RHS))
+ Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
+ else
+ Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
+ return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
+}
+
+/// duplicateCmp - Glue values can have only one use, so this function
+/// duplicates a comparison node.
+SDValue
+ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
+ unsigned Opc = Cmp.getOpcode();
+ SDLoc DL(Cmp);
+ if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
+ return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
+
+ assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
+ Cmp = Cmp.getOperand(0);
+ Opc = Cmp.getOpcode();
+ if (Opc == ARMISD::CMPFP)
+ Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
+ else {
+ assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
+ Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
+ }
+ return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
+}
+
+std::pair<SDValue, SDValue>
+ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
+ SDValue &ARMcc) const {
+ assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
+
+ SDValue Value, OverflowCmp;
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+
+
+ // FIXME: We are currently always generating CMPs because we don't support
+ // generating CMN through the backend. This is not as good as the natural
+ // CMP case because it causes a register dependency and cannot be folded
+ // later.
+
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Unknown overflow instruction!");
+ case ISD::SADDO:
+ ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
+ Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
+ OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
+ break;
+ case ISD::UADDO:
+ ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
+ Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
+ OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
+ break;
+ case ISD::SSUBO:
+ ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
+ Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
+ OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
+ break;
+ case ISD::USUBO:
+ ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
+ Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
+ OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
+ break;
+ } // switch (...)
+
+ return std::make_pair(Value, OverflowCmp);
+}
+
+
+SDValue
+ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
+ return SDValue();
+
+ SDValue Value, OverflowCmp;
+ SDValue ARMcc;
+ std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ // We use 0 and 1 as false and true values.
+ SDValue TVal = DAG.getConstant(1, MVT::i32);
+ SDValue FVal = DAG.getConstant(0, MVT::i32);
+ EVT VT = Op.getValueType();
+
+ SDValue Overflow = DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, TVal, FVal,
+ ARMcc, CCR, OverflowCmp);
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
+}
+
+
+SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Cond = Op.getOperand(0);
+ SDValue SelectTrue = Op.getOperand(1);
+ SDValue SelectFalse = Op.getOperand(2);
+ SDLoc dl(Op);
+ unsigned Opc = Cond.getOpcode();
+
+ if (Cond.getResNo() == 1 &&
+ (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
+ Opc == ISD::USUBO)) {
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
+ return SDValue();
+
+ SDValue Value, OverflowCmp;
+ SDValue ARMcc;
+ std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ EVT VT = Op.getValueType();
+
+ return DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, SelectTrue, SelectFalse,
+ ARMcc, CCR, OverflowCmp);
+
+ }
+
+ // Convert:
+ //
+ // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
+ // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
+ //
+ if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
+ const ConstantSDNode *CMOVTrue =
+ dyn_cast<ConstantSDNode>(Cond.getOperand(0));
+ const ConstantSDNode *CMOVFalse =
+ dyn_cast<ConstantSDNode>(Cond.getOperand(1));
+
+ if (CMOVTrue && CMOVFalse) {
+ unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
+ unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
+
+ SDValue True;
+ SDValue False;
+ if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
+ True = SelectTrue;
+ False = SelectFalse;
+ } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
+ True = SelectFalse;
+ False = SelectTrue;
+ }
+
+ if (True.getNode() && False.getNode()) {
+ EVT VT = Op.getValueType();
+ SDValue ARMcc = Cond.getOperand(2);
+ SDValue CCR = Cond.getOperand(3);
+ SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
+ assert(True.getValueType() == VT);
+ return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
+ }
+ }
+ }
+
+ // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
+ // undefined bits before doing a full-word comparison with zero.
+ Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
+ DAG.getConstant(1, Cond.getValueType()));
+
+ return DAG.getSelectCC(dl, Cond,
+ DAG.getConstant(0, Cond.getValueType()),
+ SelectTrue, SelectFalse, ISD::SETNE);
+}
+
+static ISD::CondCode getInverseCCForVSEL(ISD::CondCode CC) {
+ if (CC == ISD::SETNE)
+ return ISD::SETEQ;
+ return ISD::getSetCCInverse(CC, true);
+}
+
+static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
+ bool &swpCmpOps, bool &swpVselOps) {
+ // Start by selecting the GE condition code for opcodes that return true for
+ // 'equality'
+ if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
+ CC == ISD::SETULE)
+ CondCode = ARMCC::GE;
+
+ // and GT for opcodes that return false for 'equality'.
+ else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
+ CC == ISD::SETULT)
+ CondCode = ARMCC::GT;
+
+ // Since we are constrained to GE/GT, if the opcode contains 'less', we need
+ // to swap the compare operands.
+ if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
+ CC == ISD::SETULT)
+ swpCmpOps = true;
+
+ // Both GT and GE are ordered comparisons, and return false for 'unordered'.
+ // If we have an unordered opcode, we need to swap the operands to the VSEL
+ // instruction (effectively negating the condition).
+ //
+ // This also has the effect of swapping which one of 'less' or 'greater'
+ // returns true, so we also swap the compare operands. It also switches
+ // whether we return true for 'equality', so we compensate by picking the
+ // opposite condition code to our original choice.
+ if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
+ CC == ISD::SETUGT) {
+ swpCmpOps = !swpCmpOps;
+ swpVselOps = !swpVselOps;
+ CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
+ }
+
+ // 'ordered' is 'anything but unordered', so use the VS condition code and
+ // swap the VSEL operands.
+ if (CC == ISD::SETO) {
+ CondCode = ARMCC::VS;
+ swpVselOps = true;
+ }
+
+ // 'unordered or not equal' is 'anything but equal', so use the EQ condition
+ // code and swap the VSEL operands.
+ if (CC == ISD::SETUNE) {
+ CondCode = ARMCC::EQ;
+ swpVselOps = true;
+ }
+}
+
+SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDValue TrueVal = Op.getOperand(2);
+ SDValue FalseVal = Op.getOperand(3);
+ SDLoc dl(Op);
+
+ if (LHS.getValueType() == MVT::i32) {
+ // Try to generate VSEL on ARMv8.
+ // The VSEL instruction can't use all the usual ARM condition
+ // codes: it only has two bits to select the condition code, so it's
+ // constrained to use only GE, GT, VS and EQ.
+ //
+ // To implement all the various ISD::SETXXX opcodes, we sometimes need to
+ // swap the operands of the previous compare instruction (effectively
+ // inverting the compare condition, swapping 'less' and 'greater') and
+ // sometimes need to swap the operands to the VSEL (which inverts the
+ // condition in the sense of firing whenever the previous condition didn't)
+ if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
+ TrueVal.getValueType() == MVT::f64)) {
+ ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
+ if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
+ CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
+ CC = getInverseCCForVSEL(CC);
+ std::swap(TrueVal, FalseVal);
+ }
+ }
+
+ SDValue ARMcc;
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
+ return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
+ Cmp);
+ }
+
+ ARMCC::CondCodes CondCode, CondCode2;
+ FPCCToARMCC(CC, CondCode, CondCode2);
+
+ // Try to generate VSEL on ARMv8.
+ if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
+ TrueVal.getValueType() == MVT::f64)) {
+ // We can select VMAXNM/VMINNM from a compare followed by a select with the
+ // same operands, as follows:
+ // c = fcmp [ogt, olt, ugt, ult] a, b
+ // select c, a, b
+ // We only do this in unsafe-fp-math, because signed zeros and NaNs are
+ // handled differently than the original code sequence.
+ if (getTargetMachine().Options.UnsafeFPMath && LHS == TrueVal &&
+ RHS == FalseVal) {
+ if (CC == ISD::SETOGT || CC == ISD::SETUGT)
+ return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
+ if (CC == ISD::SETOLT || CC == ISD::SETULT)
+ return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
+ }
+
+ bool swpCmpOps = false;
+ bool swpVselOps = false;
+ checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
+
+ if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
+ CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
+ if (swpCmpOps)
+ std::swap(LHS, RHS);
+ if (swpVselOps)
+ std::swap(TrueVal, FalseVal);
+ }
+ }
+
+ SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
+ SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
+ ARMcc, CCR, Cmp);
+ if (CondCode2 != ARMCC::AL) {
+ SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
+ // FIXME: Needs another CMP because flag can have but one use.
+ SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
+ Result = DAG.getNode(ARMISD::CMOV, dl, VT,
+ Result, TrueVal, ARMcc2, CCR, Cmp2);
+ }
+ return Result;
+}
+
+/// canChangeToInt - Given the fp compare operand, return true if it is suitable
+/// to morph to an integer compare sequence.
+static bool canChangeToInt(SDValue Op, bool &SeenZero,
+ const ARMSubtarget *Subtarget) {
+ SDNode *N = Op.getNode();
+ if (!N->hasOneUse())
+ // Otherwise it requires moving the value from fp to integer registers.
+ return false;
+ if (!N->getNumValues())
+ return false;
+ EVT VT = Op.getValueType();
+ if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
+ // f32 case is generally profitable. f64 case only makes sense when vcmpe +
+ // vmrs are very slow, e.g. cortex-a8.
+ return false;
+
+ if (isFloatingPointZero(Op)) {
+ SeenZero = true;
+ return true;
+ }
+ return ISD::isNormalLoad(N);
+}
+
+static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
+ if (isFloatingPointZero(Op))
+ return DAG.getConstant(0, MVT::i32);
+
+ if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
+ return DAG.getLoad(MVT::i32, SDLoc(Op),
+ Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), Ld->getAlignment());
+
+ llvm_unreachable("Unknown VFP cmp argument!");
+}
+
+static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
+ SDValue &RetVal1, SDValue &RetVal2) {
+ if (isFloatingPointZero(Op)) {
+ RetVal1 = DAG.getConstant(0, MVT::i32);
+ RetVal2 = DAG.getConstant(0, MVT::i32);
+ return;
+ }
+
+ if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
+ SDValue Ptr = Ld->getBasePtr();
+ RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op),
+ Ld->getChain(), Ptr,
+ Ld->getPointerInfo(),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), Ld->getAlignment());
+
+ EVT PtrType = Ptr.getValueType();
+ unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
+ SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op),
+ PtrType, Ptr, DAG.getConstant(4, PtrType));
+ RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op),
+ Ld->getChain(), NewPtr,
+ Ld->getPointerInfo().getWithOffset(4),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), NewAlign);
+ return;
+ }
+
+ llvm_unreachable("Unknown VFP cmp argument!");
+}
+
+/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
+/// f32 and even f64 comparisons to integer ones.
+SDValue
+ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ SDLoc dl(Op);
+
+ bool LHSSeenZero = false;
+ bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
+ bool RHSSeenZero = false;
+ bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
+ if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
+ // If unsafe fp math optimization is enabled and there are no other uses of
+ // the CMP operands, and the condition code is EQ or NE, we can optimize it
+ // to an integer comparison.
+ if (CC == ISD::SETOEQ)
+ CC = ISD::SETEQ;
+ else if (CC == ISD::SETUNE)
+ CC = ISD::SETNE;
+
+ SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
+ SDValue ARMcc;
+ if (LHS.getValueType() == MVT::f32) {
+ LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
+ bitcastf32Toi32(LHS, DAG), Mask);
+ RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
+ bitcastf32Toi32(RHS, DAG), Mask);
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
+ Chain, Dest, ARMcc, CCR, Cmp);
+ }
+
+ SDValue LHS1, LHS2;
+ SDValue RHS1, RHS2;
+ expandf64Toi32(LHS, DAG, LHS1, LHS2);
+ expandf64Toi32(RHS, DAG, RHS1, RHS2);
+ LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
+ RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
+ ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
+ ARMcc = DAG.getConstant(CondCode, MVT::i32);
+ SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
+ return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
+ }
+
+ return SDValue();
+}
+
+SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ SDLoc dl(Op);
+
+ if (LHS.getValueType() == MVT::i32) {
+ SDValue ARMcc;
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
+ Chain, Dest, ARMcc, CCR, Cmp);
+ }
+
+ assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
+
+ if (getTargetMachine().Options.UnsafeFPMath &&
+ (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
+ CC == ISD::SETNE || CC == ISD::SETUNE)) {
+ SDValue Result = OptimizeVFPBrcond(Op, DAG);
+ if (Result.getNode())
+ return Result;
+ }
+
+ ARMCC::CondCodes CondCode, CondCode2;
+ FPCCToARMCC(CC, CondCode, CondCode2);
+
+ SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
+ SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
+ SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
+ if (CondCode2 != ARMCC::AL) {
+ ARMcc = DAG.getConstant(CondCode2, MVT::i32);
+ SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
+ Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
+ }
+ return Res;
+}
+
+SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Table = Op.getOperand(1);
+ SDValue Index = Op.getOperand(2);
+ SDLoc dl(Op);
+
+ EVT PTy = getPointerTy();
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
+ ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
+ SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
+ SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
+ Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
+ Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
+ SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
+ if (Subtarget->isThumb2()) {
+ // Thumb2 uses a two-level jump. That is, it jumps into the jump table
+ // which does another jump to the destination. This also makes it easier
+ // to translate it to TBB / TBH later.
+ // FIXME: This might not work if the function is extremely large.
+ return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
+ Addr, Op.getOperand(2), JTI, UId);
+ }
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
+ MachinePointerInfo::getJumpTable(),
+ false, false, false, 0);
+ Chain = Addr.getValue(1);
+ Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
+ return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
+ } else {
+ Addr = DAG.getLoad(PTy, dl, Chain, Addr,
+ MachinePointerInfo::getJumpTable(),
+ false, false, false, 0);
+ Chain = Addr.getValue(1);
+ return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
+ }
+}
+
+static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+
+ if (Op.getValueType().getVectorElementType() == MVT::i32) {
+ if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
+ return Op;
+ return DAG.UnrollVectorOp(Op.getNode());
+ }
+
+ assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
+ "Invalid type for custom lowering!");
+ if (VT != MVT::v4i16)
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
+}
+
+static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ if (VT.isVector())
+ return LowerVectorFP_TO_INT(Op, DAG);
+
+ SDLoc dl(Op);
+ unsigned Opc;
+
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode!");
+ case ISD::FP_TO_SINT:
+ Opc = ARMISD::FTOSI;
+ break;
+ case ISD::FP_TO_UINT:
+ Opc = ARMISD::FTOUI;
+ break;
+ }
+ Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
+ return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
+}
+
+static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+
+ if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
+ if (VT.getVectorElementType() == MVT::f32)
+ return Op;
+ return DAG.UnrollVectorOp(Op.getNode());
+ }
+
+ assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
+ "Invalid type for custom lowering!");
+ if (VT != MVT::v4f32)
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ unsigned CastOpc;
+ unsigned Opc;
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode!");
+ case ISD::SINT_TO_FP:
+ CastOpc = ISD::SIGN_EXTEND;
+ Opc = ISD::SINT_TO_FP;
+ break;
+ case ISD::UINT_TO_FP:
+ CastOpc = ISD::ZERO_EXTEND;
+ Opc = ISD::UINT_TO_FP;
+ break;
+ }
+
+ Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
+ return DAG.getNode(Opc, dl, VT, Op);
+}
+
+static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ if (VT.isVector())
+ return LowerVectorINT_TO_FP(Op, DAG);
+
+ SDLoc dl(Op);
+ unsigned Opc;
+
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode!");
+ case ISD::SINT_TO_FP:
+ Opc = ARMISD::SITOF;
+ break;
+ case ISD::UINT_TO_FP:
+ Opc = ARMISD::UITOF;
+ break;
+ }
+
+ Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
+ return DAG.getNode(Opc, dl, VT, Op);
+}
+
+SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
+ // Implement fcopysign with a fabs and a conditional fneg.
+ SDValue Tmp0 = Op.getOperand(0);
+ SDValue Tmp1 = Op.getOperand(1);
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ EVT SrcVT = Tmp1.getValueType();
+ bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
+ Tmp0.getOpcode() == ARMISD::VMOVDRR;
+ bool UseNEON = !InGPR && Subtarget->hasNEON();
+
+ if (UseNEON) {
+ // Use VBSL to copy the sign bit.
+ unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
+ SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
+ DAG.getTargetConstant(EncodedVal, MVT::i32));
+ EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
+ if (VT == MVT::f64)
+ Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
+ DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
+ DAG.getConstant(32, MVT::i32));
+ else /*if (VT == MVT::f32)*/
+ Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
+ if (SrcVT == MVT::f32) {
+ Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
+ if (VT == MVT::f64)
+ Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
+ DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
+ DAG.getConstant(32, MVT::i32));
+ } else if (VT == MVT::f32)
+ Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
+ DAG.getConstant(32, MVT::i32));
+ Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
+ Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
+
+ SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
+ MVT::i32);
+ AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
+ SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
+ DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
+
+ SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
+ DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
+ DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
+ if (VT == MVT::f32) {
+ Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
+ Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
+ DAG.getConstant(0, MVT::i32));
+ } else {
+ Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
+ }
+
+ return Res;
+ }
+
+ // Bitcast operand 1 to i32.
+ if (SrcVT == MVT::f64)
+ Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ Tmp1).getValue(1);
+ Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
+
+ // Or in the signbit with integer operations.
+ SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
+ SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
+ Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
+ if (VT == MVT::f32) {
+ Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
+ DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
+ DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
+ }
+
+ // f64: Or the high part with signbit and then combine two parts.
+ Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ Tmp0);
+ SDValue Lo = Tmp0.getValue(0);
+ SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
+ Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
+ return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+}
+
+SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ if (Depth) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset = DAG.getConstant(4, MVT::i32);
+ return DAG.getLoad(VT, dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Return LR, which contains the return address. Mark it an implicit live-in.
+ unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
+ return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
+}
+
+SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ const ARMBaseRegisterInfo &ARI =
+ *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op); // FIXME probably not meaningful
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ unsigned FrameReg = ARI.getFrameRegister(MF);
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ return FrameAddr;
+}
+
+// FIXME? Maybe this could be a TableGen attribute on some registers and
+// this table could be generated automatically from RegInfo.
+unsigned ARMTargetLowering::getRegisterByName(const char* RegName,
+ EVT VT) const {
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("sp", ARM::SP)
+ .Default(0);
+ if (Reg)
+ return Reg;
+ report_fatal_error("Invalid register name global variable");
+}
+
+/// ExpandBITCAST - If the target supports VFP, this function is called to
+/// expand a bit convert where either the source or destination type is i64 to
+/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
+/// operand type is illegal (e.g., v2f32 for a target that doesn't support
+/// vectors), since the legalizer won't know what to do with that.
+static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDLoc dl(N);
+ SDValue Op = N->getOperand(0);
+
+ // This function is only supposed to be called for i64 types, either as the
+ // source or destination of the bit convert.
+ EVT SrcVT = Op.getValueType();
+ EVT DstVT = N->getValueType(0);
+ assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
+ "ExpandBITCAST called for non-i64 type");
+
+ // Turn i64->f64 into VMOVDRR.
+ if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
+ DAG.getConstant(0, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
+ DAG.getConstant(1, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, DstVT,
+ DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
+ }
+
+ // Turn f64->i64 into VMOVRRD.
+ if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
+ SDValue Cvt;
+ if (TLI.isBigEndian() && SrcVT.isVector() &&
+ SrcVT.getVectorNumElements() > 1)
+ Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32),
+ DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
+ else
+ Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Op);
+ // Merge the pieces into a single i64 value.
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
+ }
+
+ return SDValue();
+}
+
+/// getZeroVector - Returns a vector of specified type with all zero elements.
+/// Zero vectors are used to represent vector negation and in those cases
+/// will be implemented with the NEON VNEG instruction. However, VNEG does
+/// not support i64 elements, so sometimes the zero vectors will need to be
+/// explicitly constructed. Regardless, use a canonical VMOV to create the
+/// zero vector.
+static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
+ assert(VT.isVector() && "Expected a vector type");
+ // The canonical modified immediate encoding of a zero vector is....0!
+ SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
+ EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
+ SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
+}
+
+/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
+/// i32 values and take a 2 x i32 value to shift plus a shift amount.
+SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMcc;
+ unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
+
+ assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
+
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
+ DAG.getConstant(VTBits, MVT::i32), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
+ DAG.getConstant(VTBits, MVT::i32));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
+
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
+ ARMcc, DAG, dl);
+ SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
+ SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
+ CCR, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
+/// i32 values and take a 2 x i32 value to shift plus a shift amount.
+SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMcc;
+
+ assert(Op.getOpcode() == ISD::SHL_PARTS);
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
+ DAG.getConstant(VTBits, MVT::i32), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
+ DAG.getConstant(VTBits, MVT::i32));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
+ SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
+
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
+ ARMcc, DAG, dl);
+ SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
+ SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
+ CCR, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
+ SelectionDAG &DAG) const {
+ // The rounding mode is in bits 23:22 of the FPSCR.
+ // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
+ // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
+ // so that the shift + and get folded into a bitfield extract.
+ SDLoc dl(Op);
+ SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
+ DAG.getConstant(Intrinsic::arm_get_fpscr,
+ MVT::i32));
+ SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
+ DAG.getConstant(1U << 22, MVT::i32));
+ SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
+ DAG.getConstant(22, MVT::i32));
+ return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
+ DAG.getConstant(3, MVT::i32));
+}
+
+static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+
+ if (!ST->hasV6T2Ops())
+ return SDValue();
+
+ SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
+ return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
+}
+
+/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
+/// for each 16-bit element from operand, repeated. The basic idea is to
+/// leverage vcnt to get the 8-bit counts, gather and add the results.
+///
+/// Trace for v4i16:
+/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
+/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
+/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
+/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
+/// [b0 b1 b2 b3 b4 b5 b6 b7]
+/// +[b1 b0 b3 b2 b5 b4 b7 b6]
+/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
+/// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits)
+static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
+ SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
+ SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
+ SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
+ SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
+ return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
+}
+
+/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
+/// bit-count for each 16-bit element from the operand. We need slightly
+/// different sequencing for v4i16 and v8i16 to stay within NEON's available
+/// 64/128-bit registers.
+///
+/// Trace for v4i16:
+/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
+/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
+/// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ]
+/// v4i16:Extracted = [k0 k1 k2 k3 ]
+static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
+ if (VT.is64BitVector()) {
+ SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
+ DAG.getIntPtrConstant(0));
+ } else {
+ SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
+ BitCounts, DAG.getIntPtrConstant(0));
+ return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
+ }
+}
+
+/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
+/// bit-count for each 32-bit element from the operand. The idea here is
+/// to split the vector into 16-bit elements, leverage the 16-bit count
+/// routine, and then combine the results.
+///
+/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
+/// input = [v0 v1 ] (vi: 32-bit elements)
+/// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
+/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
+/// vrev: N0 = [k1 k0 k3 k2 ]
+/// [k0 k1 k2 k3 ]
+/// N1 =+[k1 k0 k3 k2 ]
+/// [k0 k2 k1 k3 ]
+/// N2 =+[k1 k3 k0 k2 ]
+/// [k0 k2 k1 k3 ]
+/// Extended =+[k1 k3 k0 k2 ]
+/// [k0 k2 ]
+/// Extracted=+[k1 k3 ]
+///
+static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
+
+ SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
+ SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
+ SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
+ SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
+ SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
+
+ if (VT.is64BitVector()) {
+ SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
+ DAG.getIntPtrConstant(0));
+ } else {
+ SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
+ DAG.getIntPtrConstant(0));
+ return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
+ }
+}
+
+static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+
+ assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
+ assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
+ VT == MVT::v4i16 || VT == MVT::v8i16) &&
+ "Unexpected type for custom ctpop lowering");
+
+ if (VT.getVectorElementType() == MVT::i32)
+ return lowerCTPOP32BitElements(N, DAG);
+ else
+ return lowerCTPOP16BitElements(N, DAG);
+}
+
+static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+
+ if (!VT.isVector())
+ return SDValue();
+
+ // Lower vector shifts on NEON to use VSHL.
+ assert(ST->hasNEON() && "unexpected vector shift");
+
+ // Left shifts translate directly to the vshiftu intrinsic.
+ if (N->getOpcode() == ISD::SHL)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
+ N->getOperand(0), N->getOperand(1));
+
+ assert((N->getOpcode() == ISD::SRA ||
+ N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
+
+ // NEON uses the same intrinsics for both left and right shifts. For
+ // right shifts, the shift amounts are negative, so negate the vector of
+ // shift amounts.
+ EVT ShiftVT = N->getOperand(1).getValueType();
+ SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
+ getZeroVector(ShiftVT, DAG, dl),
+ N->getOperand(1));
+ Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
+ Intrinsic::arm_neon_vshifts :
+ Intrinsic::arm_neon_vshiftu);
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(vshiftInt, MVT::i32),
+ N->getOperand(0), NegatedCount);
+}
+
+static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+
+ // We can get here for a node like i32 = ISD::SHL i32, i64
+ if (VT != MVT::i64)
+ return SDValue();
+
+ assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
+ "Unknown shift to lower!");
+
+ // We only lower SRA, SRL of 1 here, all others use generic lowering.
+ if (!isa<ConstantSDNode>(N->getOperand(1)) ||
+ cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
+ return SDValue();
+
+ // If we are in thumb mode, we don't have RRX.
+ if (ST->isThumb1Only()) return SDValue();
+
+ // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
+ DAG.getConstant(0, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
+ DAG.getConstant(1, MVT::i32));
+
+ // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
+ // captures the result into a carry flag.
+ unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
+ Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
+
+ // The low part is an ARMISD::RRX operand, which shifts the carry in.
+ Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
+
+ // Merge the pieces into a single i64 value.
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+}
+
+static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
+ SDValue TmpOp0, TmpOp1;
+ bool Invert = false;
+ bool Swap = false;
+ unsigned Opc = 0;
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ EVT VT = Op.getValueType();
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ SDLoc dl(Op);
+
+ if (Op.getOperand(1).getValueType().isFloatingPoint()) {
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Illegal FP comparison");
+ case ISD::SETUNE:
+ case ISD::SETNE: Invert = true; // Fallthrough
+ case ISD::SETOEQ:
+ case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
+ case ISD::SETOLT:
+ case ISD::SETLT: Swap = true; // Fallthrough
+ case ISD::SETOGT:
+ case ISD::SETGT: Opc = ARMISD::VCGT; break;
+ case ISD::SETOLE:
+ case ISD::SETLE: Swap = true; // Fallthrough
+ case ISD::SETOGE:
+ case ISD::SETGE: Opc = ARMISD::VCGE; break;
+ case ISD::SETUGE: Swap = true; // Fallthrough
+ case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
+ case ISD::SETUGT: Swap = true; // Fallthrough
+ case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
+ case ISD::SETUEQ: Invert = true; // Fallthrough
+ case ISD::SETONE:
+ // Expand this to (OLT | OGT).
+ TmpOp0 = Op0;
+ TmpOp1 = Op1;
+ Opc = ISD::OR;
+ Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
+ Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
+ break;
+ case ISD::SETUO: Invert = true; // Fallthrough
+ case ISD::SETO:
+ // Expand this to (OLT | OGE).
+ TmpOp0 = Op0;
+ TmpOp1 = Op1;
+ Opc = ISD::OR;
+ Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
+ Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
+ break;
+ }
+ } else {
+ // Integer comparisons.
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Illegal integer comparison");
+ case ISD::SETNE: Invert = true;
+ case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
+ case ISD::SETLT: Swap = true;
+ case ISD::SETGT: Opc = ARMISD::VCGT; break;
+ case ISD::SETLE: Swap = true;
+ case ISD::SETGE: Opc = ARMISD::VCGE; break;
+ case ISD::SETULT: Swap = true;
+ case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
+ case ISD::SETULE: Swap = true;
+ case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
+ }
+
+ // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
+ if (Opc == ARMISD::VCEQ) {
+
+ SDValue AndOp;
+ if (ISD::isBuildVectorAllZeros(Op1.getNode()))
+ AndOp = Op0;
+ else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
+ AndOp = Op1;
+
+ // Ignore bitconvert.
+ if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
+ AndOp = AndOp.getOperand(0);
+
+ if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
+ Opc = ARMISD::VTST;
+ Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
+ Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
+ Invert = !Invert;
+ }
+ }
+ }
+
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ // If one of the operands is a constant vector zero, attempt to fold the
+ // comparison to a specialized compare-against-zero form.
+ SDValue SingleOp;
+ if (ISD::isBuildVectorAllZeros(Op1.getNode()))
+ SingleOp = Op0;
+ else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
+ if (Opc == ARMISD::VCGE)
+ Opc = ARMISD::VCLEZ;
+ else if (Opc == ARMISD::VCGT)
+ Opc = ARMISD::VCLTZ;
+ SingleOp = Op1;
+ }
+
+ SDValue Result;
+ if (SingleOp.getNode()) {
+ switch (Opc) {
+ case ARMISD::VCEQ:
+ Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
+ case ARMISD::VCGE:
+ Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
+ case ARMISD::VCLEZ:
+ Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
+ case ARMISD::VCGT:
+ Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
+ case ARMISD::VCLTZ:
+ Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
+ default:
+ Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+ }
+ } else {
+ Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+ }
+
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, VT);
+
+ return Result;
+}
+
+/// isNEONModifiedImm - Check if the specified splat value corresponds to a
+/// valid vector constant for a NEON instruction with a "modified immediate"
+/// operand (e.g., VMOV). If so, return the encoded value.
+static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
+ unsigned SplatBitSize, SelectionDAG &DAG,
+ EVT &VT, bool is128Bits, NEONModImmType type) {
+ unsigned OpCmode, Imm;
+
+ // SplatBitSize is set to the smallest size that splats the vector, so a
+ // zero vector will always have SplatBitSize == 8. However, NEON modified
+ // immediate instructions others than VMOV do not support the 8-bit encoding
+ // of a zero vector, and the default encoding of zero is supposed to be the
+ // 32-bit version.
+ if (SplatBits == 0)
+ SplatBitSize = 32;
+
+ switch (SplatBitSize) {
+ case 8:
+ if (type != VMOVModImm)
+ return SDValue();
+ // Any 1-byte value is OK. Op=0, Cmode=1110.
+ assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
+ OpCmode = 0xe;
+ Imm = SplatBits;
+ VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
+ break;
+
+ case 16:
+ // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
+ VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
+ if ((SplatBits & ~0xff) == 0) {
+ // Value = 0x00nn: Op=x, Cmode=100x.
+ OpCmode = 0x8;
+ Imm = SplatBits;
+ break;
+ }
+ if ((SplatBits & ~0xff00) == 0) {
+ // Value = 0xnn00: Op=x, Cmode=101x.
+ OpCmode = 0xa;
+ Imm = SplatBits >> 8;
+ break;
+ }
+ return SDValue();
+
+ case 32:
+ // NEON's 32-bit VMOV supports splat values where:
+ // * only one byte is nonzero, or
+ // * the least significant byte is 0xff and the second byte is nonzero, or
+ // * the least significant 2 bytes are 0xff and the third is nonzero.
+ VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
+ if ((SplatBits & ~0xff) == 0) {
+ // Value = 0x000000nn: Op=x, Cmode=000x.
+ OpCmode = 0;
+ Imm = SplatBits;
+ break;
+ }
+ if ((SplatBits & ~0xff00) == 0) {
+ // Value = 0x0000nn00: Op=x, Cmode=001x.
+ OpCmode = 0x2;
+ Imm = SplatBits >> 8;
+ break;
+ }
+ if ((SplatBits & ~0xff0000) == 0) {
+ // Value = 0x00nn0000: Op=x, Cmode=010x.
+ OpCmode = 0x4;
+ Imm = SplatBits >> 16;
+ break;
+ }
+ if ((SplatBits & ~0xff000000) == 0) {
+ // Value = 0xnn000000: Op=x, Cmode=011x.
+ OpCmode = 0x6;
+ Imm = SplatBits >> 24;
+ break;
+ }
+
+ // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
+ if (type == OtherModImm) return SDValue();
+
+ if ((SplatBits & ~0xffff) == 0 &&
+ ((SplatBits | SplatUndef) & 0xff) == 0xff) {
+ // Value = 0x0000nnff: Op=x, Cmode=1100.
+ OpCmode = 0xc;
+ Imm = SplatBits >> 8;
+ break;
+ }
+
+ if ((SplatBits & ~0xffffff) == 0 &&
+ ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
+ // Value = 0x00nnffff: Op=x, Cmode=1101.
+ OpCmode = 0xd;
+ Imm = SplatBits >> 16;
+ break;
+ }
+
+ // Note: there are a few 32-bit splat values (specifically: 00ffff00,
+ // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
+ // VMOV.I32. A (very) minor optimization would be to replicate the value
+ // and fall through here to test for a valid 64-bit splat. But, then the
+ // caller would also need to check and handle the change in size.
+ return SDValue();
+
+ case 64: {
+ if (type != VMOVModImm)
+ return SDValue();
+ // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
+ uint64_t BitMask = 0xff;
+ uint64_t Val = 0;
+ unsigned ImmMask = 1;
+ Imm = 0;
+ for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
+ if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
+ Val |= BitMask;
+ Imm |= ImmMask;
+ } else if ((SplatBits & BitMask) != 0) {
+ return SDValue();
+ }
+ BitMask <<= 8;
+ ImmMask <<= 1;
+ }
+
+ if (DAG.getTargetLoweringInfo().isBigEndian())
+ // swap higher and lower 32 bit word
+ Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
+
+ // Op=1, Cmode=1110.
+ OpCmode = 0x1e;
+ VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
+ break;
+ }
+
+ default:
+ llvm_unreachable("unexpected size for isNEONModifiedImm");
+ }
+
+ unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
+ return DAG.getTargetConstant(EncodedVal, MVT::i32);
+}
+
+SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) const {
+ if (!ST->hasVFP3())
+ return SDValue();
+
+ bool IsDouble = Op.getValueType() == MVT::f64;
+ ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
+
+ // Try splatting with a VMOV.f32...
+ APFloat FPVal = CFP->getValueAPF();
+ int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
+
+ if (ImmVal != -1) {
+ if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
+ // We have code in place to select a valid ConstantFP already, no need to
+ // do any mangling.
+ return Op;
+ }
+
+ // It's a float and we are trying to use NEON operations where
+ // possible. Lower it to a splat followed by an extract.
+ SDLoc DL(Op);
+ SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
+ SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
+ NewVal);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
+ DAG.getConstant(0, MVT::i32));
+ }
+
+ // The rest of our options are NEON only, make sure that's allowed before
+ // proceeding..
+ if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
+ return SDValue();
+
+ EVT VMovVT;
+ uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
+
+ // It wouldn't really be worth bothering for doubles except for one very
+ // important value, which does happen to match: 0.0. So make sure we don't do
+ // anything stupid.
+ if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
+ return SDValue();
+
+ // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
+ SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
+ false, VMOVModImm);
+ if (NewVal != SDValue()) {
+ SDLoc DL(Op);
+ SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
+ NewVal);
+ if (IsDouble)
+ return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
+
+ // It's a float: cast and extract a vector element.
+ SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
+ VecConstant);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
+ DAG.getConstant(0, MVT::i32));
+ }
+
+ // Finally, try a VMVN.i32
+ NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
+ false, VMVNModImm);
+ if (NewVal != SDValue()) {
+ SDLoc DL(Op);
+ SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
+
+ if (IsDouble)
+ return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
+
+ // It's a float: cast and extract a vector element.
+ SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
+ VecConstant);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
+ DAG.getConstant(0, MVT::i32));
+ }
+
+ return SDValue();
+}
+
+// check if an VEXT instruction can handle the shuffle mask when the
+// vector sources of the shuffle are the same.
+static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ // Assume that the first shuffle index is not UNDEF. Fail if it is.
+ if (M[0] < 0)
+ return false;
+
+ Imm = M[0];
+
+ // If this is a VEXT shuffle, the immediate value is the index of the first
+ // element. The other shuffle indices must be the successive elements after
+ // the first one.
+ unsigned ExpectedElt = Imm;
+ for (unsigned i = 1; i < NumElts; ++i) {
+ // Increment the expected index. If it wraps around, just follow it
+ // back to index zero and keep going.
+ ++ExpectedElt;
+ if (ExpectedElt == NumElts)
+ ExpectedElt = 0;
+
+ if (M[i] < 0) continue; // ignore UNDEF indices
+ if (ExpectedElt != static_cast<unsigned>(M[i]))
+ return false;
+ }
+
+ return true;
+}
+
+
+static bool isVEXTMask(ArrayRef<int> M, EVT VT,
+ bool &ReverseVEXT, unsigned &Imm) {
+ unsigned NumElts = VT.getVectorNumElements();
+ ReverseVEXT = false;
+
+ // Assume that the first shuffle index is not UNDEF. Fail if it is.
+ if (M[0] < 0)
+ return false;
+
+ Imm = M[0];
+
+ // If this is a VEXT shuffle, the immediate value is the index of the first
+ // element. The other shuffle indices must be the successive elements after
+ // the first one.
+ unsigned ExpectedElt = Imm;
+ for (unsigned i = 1; i < NumElts; ++i) {
+ // Increment the expected index. If it wraps around, it may still be
+ // a VEXT but the source vectors must be swapped.
+ ExpectedElt += 1;
+ if (ExpectedElt == NumElts * 2) {
+ ExpectedElt = 0;
+ ReverseVEXT = true;
+ }
+
+ if (M[i] < 0) continue; // ignore UNDEF indices
+ if (ExpectedElt != static_cast<unsigned>(M[i]))
+ return false;
+ }
+
+ // Adjust the index value if the source operands will be swapped.
+ if (ReverseVEXT)
+ Imm -= NumElts;
+
+ return true;
+}
+
+/// isVREVMask - Check if a vector shuffle corresponds to a VREV
+/// instruction with the specified blocksize. (The order of the elements
+/// within each block of the vector is reversed.)
+static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
+ assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
+ "Only possible block sizes for VREV are: 16, 32, 64");
+
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned BlockElts = M[0] + 1;
+ // If the first shuffle index is UNDEF, be optimistic.
+ if (M[0] < 0)
+ BlockElts = BlockSize / EltSz;
+
+ if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
+ return false;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if (M[i] < 0) continue; // ignore UNDEF indices
+ if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
+ return false;
+ }
+
+ return true;
+}
+
+static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
+ // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
+ // range, then 0 is placed into the resulting vector. So pretty much any mask
+ // of 8 elements can work here.
+ return VT == MVT::v8i8 && M.size() == 8;
+}
+
+static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
+ (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
+ return false;
+ }
+ return true;
+}
+
+/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
+static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
+ (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
+ return false;
+ }
+ return true;
+}
+
+static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (M[i] < 0) continue; // ignore UNDEF indices
+ if ((unsigned) M[i] != 2 * i + WhichResult)
+ return false;
+ }
+
+ // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
+static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned Half = VT.getVectorNumElements() / 2;
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned j = 0; j != 2; ++j) {
+ unsigned Idx = WhichResult;
+ for (unsigned i = 0; i != Half; ++i) {
+ int MIdx = M[i + j * Half];
+ if (MIdx >= 0 && (unsigned) MIdx != Idx)
+ return false;
+ Idx += 2;
+ }
+ }
+
+ // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
+ (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
+ return false;
+ Idx += 1;
+ }
+
+ // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
+static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
+ (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
+ return false;
+ Idx += 1;
+ }
+
+ // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+/// \return true if this is a reverse operation on an vector.
+static bool isReverseMask(ArrayRef<int> M, EVT VT) {
+ unsigned NumElts = VT.getVectorNumElements();
+ // Make sure the mask has the right size.
+ if (NumElts != M.size())
+ return false;
+
+ // Look for <15, ..., 3, -1, 1, 0>.
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
+ return false;
+
+ return true;
+}
+
+// If N is an integer constant that can be moved into a register in one
+// instruction, return an SDValue of such a constant (will become a MOV
+// instruction). Otherwise return null.
+static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
+ const ARMSubtarget *ST, SDLoc dl) {
+ uint64_t Val;
+ if (!isa<ConstantSDNode>(N))
+ return SDValue();
+ Val = cast<ConstantSDNode>(N)->getZExtValue();
+
+ if (ST->isThumb1Only()) {
+ if (Val <= 255 || ~Val <= 255)
+ return DAG.getConstant(Val, MVT::i32);
+ } else {
+ if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
+ return DAG.getConstant(Val, MVT::i32);
+ }
+ return SDValue();
+}
+
+// If this is a case we can't handle, return null and let the default
+// expansion code take care of it.
+SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) const {
+ BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ // Check if an immediate VMOV works.
+ EVT VmovVT;
+ SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, VmovVT, VT.is128BitVector(),
+ VMOVModImm);
+ if (Val.getNode()) {
+ SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
+ }
+
+ // Try an immediate VMVN.
+ uint64_t NegatedImm = (~SplatBits).getZExtValue();
+ Val = isNEONModifiedImm(NegatedImm,
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, VmovVT, VT.is128BitVector(),
+ VMVNModImm);
+ if (Val.getNode()) {
+ SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
+ }
+
+ // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
+ if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
+ int ImmVal = ARM_AM::getFP32Imm(SplatBits);
+ if (ImmVal != -1) {
+ SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
+ return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
+ }
+ }
+ }
+ }
+
+ // Scan through the operands to see if only one value is used.
+ //
+ // As an optimisation, even if more than one value is used it may be more
+ // profitable to splat with one value then change some lanes.
+ //
+ // Heuristically we decide to do this if the vector has a "dominant" value,
+ // defined as splatted to more than half of the lanes.
+ unsigned NumElts = VT.getVectorNumElements();
+ bool isOnlyLowElement = true;
+ bool usesOnlyOneValue = true;
+ bool hasDominantValue = false;
+ bool isConstant = true;
+
+ // Map of the number of times a particular SDValue appears in the
+ // element list.
+ DenseMap<SDValue, unsigned> ValueCounts;
+ SDValue Value;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ if (i > 0)
+ isOnlyLowElement = false;
+ if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
+ isConstant = false;
+
+ ValueCounts.insert(std::make_pair(V, 0));
+ unsigned &Count = ValueCounts[V];
+
+ // Is this value dominant? (takes up more than half of the lanes)
+ if (++Count > (NumElts / 2)) {
+ hasDominantValue = true;
+ Value = V;
+ }
+ }
+ if (ValueCounts.size() != 1)
+ usesOnlyOneValue = false;
+ if (!Value.getNode() && ValueCounts.size() > 0)
+ Value = ValueCounts.begin()->first;
+
+ if (ValueCounts.size() == 0)
+ return DAG.getUNDEF(VT);
+
+ // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
+ // Keep going if we are hitting this case.
+ if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+
+ // Use VDUP for non-constant splats. For f32 constant splats, reduce to
+ // i32 and try again.
+ if (hasDominantValue && EltSize <= 32) {
+ if (!isConstant) {
+ SDValue N;
+
+ // If we are VDUPing a value that comes directly from a vector, that will
+ // cause an unnecessary move to and from a GPR, where instead we could
+ // just use VDUPLANE. We can only do this if the lane being extracted
+ // is at a constant index, as the VDUP from lane instructions only have
+ // constant-index forms.
+ if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ isa<ConstantSDNode>(Value->getOperand(1))) {
+ // We need to create a new undef vector to use for the VDUPLANE if the
+ // size of the vector from which we get the value is different than the
+ // size of the vector that we need to create. We will insert the element
+ // such that the register coalescer will remove unnecessary copies.
+ if (VT != Value->getOperand(0).getValueType()) {
+ ConstantSDNode *constIndex;
+ constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
+ assert(constIndex && "The index is not a constant!");
+ unsigned index = constIndex->getAPIntValue().getLimitedValue() %
+ VT.getVectorNumElements();
+ N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
+ DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
+ Value, DAG.getConstant(index, MVT::i32)),
+ DAG.getConstant(index, MVT::i32));
+ } else
+ N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
+ Value->getOperand(0), Value->getOperand(1));
+ } else
+ N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
+
+ if (!usesOnlyOneValue) {
+ // The dominant value was splatted as 'N', but we now have to insert
+ // all differing elements.
+ for (unsigned I = 0; I < NumElts; ++I) {
+ if (Op.getOperand(I) == Value)
+ continue;
+ SmallVector<SDValue, 3> Ops;
+ Ops.push_back(N);
+ Ops.push_back(Op.getOperand(I));
+ Ops.push_back(DAG.getConstant(I, MVT::i32));
+ N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
+ }
+ }
+ return N;
+ }
+ if (VT.getVectorElementType().isFloatingPoint()) {
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElts; ++i)
+ Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
+ Op.getOperand(i)));
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
+ SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
+ Val = LowerBUILD_VECTOR(Val, DAG, ST);
+ if (Val.getNode())
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
+ }
+ if (usesOnlyOneValue) {
+ SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
+ if (isConstant && Val.getNode())
+ return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
+ }
+ }
+
+ // If all elements are constants and the case above didn't get hit, fall back
+ // to the default expansion, which will generate a load from the constant
+ // pool.
+ if (isConstant)
+ return SDValue();
+
+ // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
+ if (NumElts >= 4) {
+ SDValue shuffle = ReconstructShuffle(Op, DAG);
+ if (shuffle != SDValue())
+ return shuffle;
+ }
+
+ // Vectors with 32- or 64-bit elements can be built by directly assigning
+ // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
+ // will be legalized.
+ if (EltSize >= 32) {
+ // Do the expansion with floating-point types, since that is what the VFP
+ // registers are defined to use, and since i64 is not legal.
+ EVT EltVT = EVT::getFloatingPointVT(EltSize);
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElts; ++i)
+ Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
+ SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
+ }
+
+ // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
+ // know the default expansion would otherwise fall back on something even
+ // worse. For a vector with one or two non-undef values, that's
+ // scalar_to_vector for the elements followed by a shuffle (provided the
+ // shuffle is valid for the target) and materialization element by element
+ // on the stack followed by a load for everything else.
+ if (!isConstant && !usesOnlyOneValue) {
+ SDValue Vec = DAG.getUNDEF(VT);
+ for (unsigned i = 0 ; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ SDValue LaneIdx = DAG.getConstant(i, MVT::i32);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
+ }
+ return Vec;
+ }
+
+ return SDValue();
+}
+
+// Gather data to see if the operation can be modelled as a
+// shuffle in combination with VEXTs.
+SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ SmallVector<SDValue, 2> SourceVecs;
+ SmallVector<unsigned, 2> MinElts;
+ SmallVector<unsigned, 2> MaxElts;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
+ // A shuffle can only come from building a vector from various
+ // elements of other vectors.
+ return SDValue();
+ } else if (V.getOperand(0).getValueType().getVectorElementType() !=
+ VT.getVectorElementType()) {
+ // This code doesn't know how to handle shuffles where the vector
+ // element types do not match (this happens because type legalization
+ // promotes the return type of EXTRACT_VECTOR_ELT).
+ // FIXME: It might be appropriate to extend this code to handle
+ // mismatched types.
+ return SDValue();
+ }
+
+ // Record this extraction against the appropriate vector if possible...
+ SDValue SourceVec = V.getOperand(0);
+ // If the element number isn't a constant, we can't effectively
+ // analyze what's going on.
+ if (!isa<ConstantSDNode>(V.getOperand(1)))
+ return SDValue();
+ unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
+ bool FoundSource = false;
+ for (unsigned j = 0; j < SourceVecs.size(); ++j) {
+ if (SourceVecs[j] == SourceVec) {
+ if (MinElts[j] > EltNo)
+ MinElts[j] = EltNo;
+ if (MaxElts[j] < EltNo)
+ MaxElts[j] = EltNo;
+ FoundSource = true;
+ break;
+ }
+ }
+
+ // Or record a new source if not...
+ if (!FoundSource) {
+ SourceVecs.push_back(SourceVec);
+ MinElts.push_back(EltNo);
+ MaxElts.push_back(EltNo);
+ }
+ }
+
+ // Currently only do something sane when at most two source vectors
+ // involved.
+ if (SourceVecs.size() > 2)
+ return SDValue();
+
+ SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
+ int VEXTOffsets[2] = {0, 0};
+
+ // This loop extracts the usage patterns of the source vectors
+ // and prepares appropriate SDValues for a shuffle if possible.
+ for (unsigned i = 0; i < SourceVecs.size(); ++i) {
+ if (SourceVecs[i].getValueType() == VT) {
+ // No VEXT necessary
+ ShuffleSrcs[i] = SourceVecs[i];
+ VEXTOffsets[i] = 0;
+ continue;
+ } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
+ // It probably isn't worth padding out a smaller vector just to
+ // break it down again in a shuffle.
+ return SDValue();
+ }
+
+ // Since only 64-bit and 128-bit vectors are legal on ARM and
+ // we've eliminated the other cases...
+ assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
+ "unexpected vector sizes in ReconstructShuffle");
+
+ if (MaxElts[i] - MinElts[i] >= NumElts) {
+ // Span too large for a VEXT to cope
+ return SDValue();
+ }
+
+ if (MinElts[i] >= NumElts) {
+ // The extraction can just take the second half
+ VEXTOffsets[i] = NumElts;
+ ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(NumElts));
+ } else if (MaxElts[i] < NumElts) {
+ // The extraction can just take the first half
+ VEXTOffsets[i] = 0;
+ ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(0));
+ } else {
+ // An actual VEXT is needed
+ VEXTOffsets[i] = MinElts[i];
+ SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(0));
+ SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(NumElts));
+ ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
+ DAG.getConstant(VEXTOffsets[i], MVT::i32));
+ }
+ }
+
+ SmallVector<int, 8> Mask;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue Entry = Op.getOperand(i);
+ if (Entry.getOpcode() == ISD::UNDEF) {
+ Mask.push_back(-1);
+ continue;
+ }
+
+ SDValue ExtractVec = Entry.getOperand(0);
+ int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
+ .getOperand(1))->getSExtValue();
+ if (ExtractVec == SourceVecs[0]) {
+ Mask.push_back(ExtractElt - VEXTOffsets[0]);
+ } else {
+ Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
+ }
+ }
+
+ // Final check before we try to produce nonsense...
+ if (isShuffleMaskLegal(Mask, VT))
+ return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
+ &Mask[0]);
+
+ return SDValue();
+}
+
+/// isShuffleMaskLegal - Targets can use this to indicate that they only
+/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
+/// are assumed to be legal.
+bool
+ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
+ EVT VT) const {
+ if (VT.getVectorNumElements() == 4 &&
+ (VT.is128BitVector() || VT.is64BitVector())) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (M[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = M[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return true;
+ }
+
+ bool ReverseVEXT;
+ unsigned Imm, WhichResult;
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ return (EltSize >= 32 ||
+ ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
+ isVREVMask(M, VT, 64) ||
+ isVREVMask(M, VT, 32) ||
+ isVREVMask(M, VT, 16) ||
+ isVEXTMask(M, VT, ReverseVEXT, Imm) ||
+ isVTBLMask(M, VT) ||
+ isVTRNMask(M, VT, WhichResult) ||
+ isVUZPMask(M, VT, WhichResult) ||
+ isVZIPMask(M, VT, WhichResult) ||
+ isVTRN_v_undef_Mask(M, VT, WhichResult) ||
+ isVUZP_v_undef_Mask(M, VT, WhichResult) ||
+ isVZIP_v_undef_Mask(M, VT, WhichResult) ||
+ ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
+}
+
+/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
+/// the specified operations to build the shuffle.
+static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
+ SDValue RHS, SelectionDAG &DAG,
+ SDLoc dl) {
+ unsigned OpNum = (PFEntry >> 26) & 0x0F;
+ unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
+ unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
+
+ enum {
+ OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
+ OP_VREV,
+ OP_VDUP0,
+ OP_VDUP1,
+ OP_VDUP2,
+ OP_VDUP3,
+ OP_VEXT1,
+ OP_VEXT2,
+ OP_VEXT3,
+ OP_VUZPL, // VUZP, left result
+ OP_VUZPR, // VUZP, right result
+ OP_VZIPL, // VZIP, left result
+ OP_VZIPR, // VZIP, right result
+ OP_VTRNL, // VTRN, left result
+ OP_VTRNR // VTRN, right result
+ };
+
+ if (OpNum == OP_COPY) {
+ if (LHSID == (1*9+2)*9+3) return LHS;
+ assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
+ return RHS;
+ }
+
+ SDValue OpLHS, OpRHS;
+ OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
+ OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
+ EVT VT = OpLHS.getValueType();
+
+ switch (OpNum) {
+ default: llvm_unreachable("Unknown shuffle opcode!");
+ case OP_VREV:
+ // VREV divides the vector in half and swaps within the half.
+ if (VT.getVectorElementType() == MVT::i32 ||
+ VT.getVectorElementType() == MVT::f32)
+ return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
+ // vrev <4 x i16> -> VREV32
+ if (VT.getVectorElementType() == MVT::i16)
+ return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
+ // vrev <4 x i8> -> VREV16
+ assert(VT.getVectorElementType() == MVT::i8);
+ return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
+ case OP_VDUP0:
+ case OP_VDUP1:
+ case OP_VDUP2:
+ case OP_VDUP3:
+ return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
+ OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
+ case OP_VEXT1:
+ case OP_VEXT2:
+ case OP_VEXT3:
+ return DAG.getNode(ARMISD::VEXT, dl, VT,
+ OpLHS, OpRHS,
+ DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
+ case OP_VUZPL:
+ case OP_VUZPR:
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
+ case OP_VZIPL:
+ case OP_VZIPR:
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
+ case OP_VTRNL:
+ case OP_VTRNR:
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
+ }
+}
+
+static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
+ ArrayRef<int> ShuffleMask,
+ SelectionDAG &DAG) {
+ // Check to see if we can use the VTBL instruction.
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ SDLoc DL(Op);
+
+ SmallVector<SDValue, 8> VTBLMask;
+ for (ArrayRef<int>::iterator
+ I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
+ VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
+
+ if (V2.getNode()->getOpcode() == ISD::UNDEF)
+ return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
+
+ return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
+}
+
+static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ SDValue OpLHS = Op.getOperand(0);
+ EVT VT = OpLHS.getValueType();
+
+ assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
+ "Expect an v8i16/v16i8 type");
+ OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
+ // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
+ // extract the first 8 bytes into the top double word and the last 8 bytes
+ // into the bottom double word. The v8i16 case is similar.
+ unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
+ return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
+ DAG.getConstant(ExtractNum, MVT::i32));
+}
+
+static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
+
+ // Convert shuffles that are directly supported on NEON to target-specific
+ // DAG nodes, instead of keeping them as shuffles and matching them again
+ // during code selection. This is more efficient and avoids the possibility
+ // of inconsistencies between legalization and selection.
+ // FIXME: floating-point vectors should be canonicalized to integer vectors
+ // of the same time so that they get CSEd properly.
+ ArrayRef<int> ShuffleMask = SVN->getMask();
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (EltSize <= 32) {
+ if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
+ int Lane = SVN->getSplatIndex();
+ // If this is undef splat, generate it via "just" vdup, if possible.
+ if (Lane == -1) Lane = 0;
+
+ // Test if V1 is a SCALAR_TO_VECTOR.
+ if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+ return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
+ }
+ // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
+ // (and probably will turn into a SCALAR_TO_VECTOR once legalization
+ // reaches it).
+ if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
+ !isa<ConstantSDNode>(V1.getOperand(0))) {
+ bool IsScalarToVector = true;
+ for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
+ if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
+ IsScalarToVector = false;
+ break;
+ }
+ if (IsScalarToVector)
+ return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
+ }
+ return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
+ DAG.getConstant(Lane, MVT::i32));
+ }
+
+ bool ReverseVEXT;
+ unsigned Imm;
+ if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
+ if (ReverseVEXT)
+ std::swap(V1, V2);
+ return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+
+ if (isVREVMask(ShuffleMask, VT, 64))
+ return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
+ if (isVREVMask(ShuffleMask, VT, 32))
+ return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
+ if (isVREVMask(ShuffleMask, VT, 16))
+ return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
+
+ if (V2->getOpcode() == ISD::UNDEF &&
+ isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
+ return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+
+ // Check for Neon shuffles that modify both input vectors in place.
+ // If both results are used, i.e., if there are two shuffles with the same
+ // source operands and with masks corresponding to both results of one of
+ // these operations, DAG memoization will ensure that a single node is
+ // used for both shuffles.
+ unsigned WhichResult;
+ if (isVTRNMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+ if (isVUZPMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+ if (isVZIPMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+
+ if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ V1, V1).getValue(WhichResult);
+ if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ V1, V1).getValue(WhichResult);
+ if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ V1, V1).getValue(WhichResult);
+ }
+
+ // If the shuffle is not directly supported and it has 4 elements, use
+ // the PerfectShuffle-generated table to synthesize it from other shuffles.
+ unsigned NumElts = VT.getVectorNumElements();
+ if (NumElts == 4) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (ShuffleMask[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = ShuffleMask[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
+ }
+
+ // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
+ if (EltSize >= 32) {
+ // Do the expansion with floating-point types, since that is what the VFP
+ // registers are defined to use, and since i64 is not legal.
+ EVT EltVT = EVT::getFloatingPointVT(EltSize);
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
+ V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
+ V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if (ShuffleMask[i] < 0)
+ Ops.push_back(DAG.getUNDEF(EltVT));
+ else
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
+ ShuffleMask[i] < (int)NumElts ? V1 : V2,
+ DAG.getConstant(ShuffleMask[i] & (NumElts-1),
+ MVT::i32)));
+ }
+ SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
+ }
+
+ if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
+ return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
+
+ if (VT == MVT::v8i8) {
+ SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
+ if (NewOp.getNode())
+ return NewOp;
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
+ // INSERT_VECTOR_ELT is legal only for immediate indexes.
+ SDValue Lane = Op.getOperand(2);
+ if (!isa<ConstantSDNode>(Lane))
+ return SDValue();
+
+ return Op;
+}
+
+static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
+ // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
+ SDValue Lane = Op.getOperand(1);
+ if (!isa<ConstantSDNode>(Lane))
+ return SDValue();
+
+ SDValue Vec = Op.getOperand(0);
+ if (Op.getValueType() == MVT::i32 &&
+ Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
+ SDLoc dl(Op);
+ return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
+ }
+
+ return Op;
+}
+
+static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
+ // The only time a CONCAT_VECTORS operation can have legal types is when
+ // two 64-bit vectors are concatenated to a 128-bit vector.
+ assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
+ "unexpected CONCAT_VECTORS");
+ SDLoc dl(Op);
+ SDValue Val = DAG.getUNDEF(MVT::v2f64);
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ if (Op0.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
+ DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
+ DAG.getIntPtrConstant(0));
+ if (Op1.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
+ DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
+ DAG.getIntPtrConstant(1));
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
+}
+
+/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
+/// element has been zero/sign-extended, depending on the isSigned parameter,
+/// from an integer type half its size.
+static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
+ bool isSigned) {
+ // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
+ EVT VT = N->getValueType(0);
+ if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
+ SDNode *BVN = N->getOperand(0).getNode();
+ if (BVN->getValueType(0) != MVT::v4i32 ||
+ BVN->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+ unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
+ unsigned HiElt = 1 - LoElt;
+ ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
+ ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
+ ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
+ ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
+ if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
+ return false;
+ if (isSigned) {
+ if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
+ Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
+ return true;
+ } else {
+ if (Hi0->isNullValue() && Hi1->isNullValue())
+ return true;
+ }
+ return false;
+ }
+
+ if (N->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ SDNode *Elt = N->getOperand(i).getNode();
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ unsigned HalfSize = EltSize / 2;
+ if (isSigned) {
+ if (!isIntN(HalfSize, C->getSExtValue()))
+ return false;
+ } else {
+ if (!isUIntN(HalfSize, C->getZExtValue()))
+ return false;
+ }
+ continue;
+ }
+ return false;
+ }
+
+ return true;
+}
+
+/// isSignExtended - Check if a node is a vector value that is sign-extended
+/// or a constant BUILD_VECTOR with sign-extended elements.
+static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
+ return true;
+ if (isExtendedBUILD_VECTOR(N, DAG, true))
+ return true;
+ return false;
+}
+
+/// isZeroExtended - Check if a node is a vector value that is zero-extended
+/// or a constant BUILD_VECTOR with zero-extended elements.
+static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
+ return true;
+ if (isExtendedBUILD_VECTOR(N, DAG, false))
+ return true;
+ return false;
+}
+
+static EVT getExtensionTo64Bits(const EVT &OrigVT) {
+ if (OrigVT.getSizeInBits() >= 64)
+ return OrigVT;
+
+ assert(OrigVT.isSimple() && "Expecting a simple value type");
+
+ MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
+ switch (OrigSimpleTy) {
+ default: llvm_unreachable("Unexpected Vector Type");
+ case MVT::v2i8:
+ case MVT::v2i16:
+ return MVT::v2i32;
+ case MVT::v4i8:
+ return MVT::v4i16;
+ }
+}
+
+/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
+/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
+/// We insert the required extension here to get the vector to fill a D register.
+static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
+ const EVT &OrigTy,
+ const EVT &ExtTy,
+ unsigned ExtOpcode) {
+ // The vector originally had a size of OrigTy. It was then extended to ExtTy.
+ // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
+ // 64-bits we need to insert a new extension so that it will be 64-bits.
+ assert(ExtTy.is128BitVector() && "Unexpected extension size");
+ if (OrigTy.getSizeInBits() >= 64)
+ return N;
+
+ // Must extend size to at least 64 bits to be used as an operand for VMULL.
+ EVT NewVT = getExtensionTo64Bits(OrigTy);
+
+ return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
+}
+
+/// SkipLoadExtensionForVMULL - return a load of the original vector size that
+/// does not do any sign/zero extension. If the original vector is less
+/// than 64 bits, an appropriate extension will be added after the load to
+/// reach a total size of 64 bits. We have to add the extension separately
+/// because ARM does not have a sign/zero extending load for vectors.
+static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
+ EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
+
+ // The load already has the right type.
+ if (ExtendedTy == LD->getMemoryVT())
+ return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
+ LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
+ LD->isNonTemporal(), LD->isInvariant(),
+ LD->getAlignment());
+
+ // We need to create a zextload/sextload. We cannot just create a load
+ // followed by a zext/zext node because LowerMUL is also run during normal
+ // operation legalization where we can't create illegal types.
+ return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
+ LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
+ LD->getMemoryVT(), LD->isVolatile(),
+ LD->isNonTemporal(), LD->getAlignment());
+}
+
+/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
+/// extending load, or BUILD_VECTOR with extended elements, return the
+/// unextended value. The unextended vector should be 64 bits so that it can
+/// be used as an operand to a VMULL instruction. If the original vector size
+/// before extension is less than 64 bits we add a an extension to resize
+/// the vector to 64 bits.
+static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
+ return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
+ N->getOperand(0)->getValueType(0),
+ N->getValueType(0),
+ N->getOpcode());
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
+ return SkipLoadExtensionForVMULL(LD, DAG);
+
+ // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
+ // have been legalized as a BITCAST from v4i32.
+ if (N->getOpcode() == ISD::BITCAST) {
+ SDNode *BVN = N->getOperand(0).getNode();
+ assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
+ BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
+ unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
+ BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
+ }
+ // Construct a new BUILD_VECTOR with elements truncated to half the size.
+ assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
+ EVT VT = N->getValueType(0);
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT TruncVT = MVT::getIntegerVT(EltSize);
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
+ const APInt &CInt = C->getAPIntValue();
+ // Element types smaller than 32 bits are not legal, so use i32 elements.
+ // The values are implicitly truncated so sext vs. zext doesn't matter.
+ Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
+ }
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
+ MVT::getVectorVT(TruncVT, NumElts), Ops);
+}
+
+static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
+ unsigned Opcode = N->getOpcode();
+ if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
+ SDNode *N0 = N->getOperand(0).getNode();
+ SDNode *N1 = N->getOperand(1).getNode();
+ return N0->hasOneUse() && N1->hasOneUse() &&
+ isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
+ }
+ return false;
+}
+
+static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
+ unsigned Opcode = N->getOpcode();
+ if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
+ SDNode *N0 = N->getOperand(0).getNode();
+ SDNode *N1 = N->getOperand(1).getNode();
+ return N0->hasOneUse() && N1->hasOneUse() &&
+ isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
+ }
+ return false;
+}
+
+static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
+ // Multiplications are only custom-lowered for 128-bit vectors so that
+ // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
+ EVT VT = Op.getValueType();
+ assert(VT.is128BitVector() && VT.isInteger() &&
+ "unexpected type for custom-lowering ISD::MUL");
+ SDNode *N0 = Op.getOperand(0).getNode();
+ SDNode *N1 = Op.getOperand(1).getNode();
+ unsigned NewOpc = 0;
+ bool isMLA = false;
+ bool isN0SExt = isSignExtended(N0, DAG);
+ bool isN1SExt = isSignExtended(N1, DAG);
+ if (isN0SExt && isN1SExt)
+ NewOpc = ARMISD::VMULLs;
+ else {
+ bool isN0ZExt = isZeroExtended(N0, DAG);
+ bool isN1ZExt = isZeroExtended(N1, DAG);
+ if (isN0ZExt && isN1ZExt)
+ NewOpc = ARMISD::VMULLu;
+ else if (isN1SExt || isN1ZExt) {
+ // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
+ // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
+ if (isN1SExt && isAddSubSExt(N0, DAG)) {
+ NewOpc = ARMISD::VMULLs;
+ isMLA = true;
+ } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
+ NewOpc = ARMISD::VMULLu;
+ isMLA = true;
+ } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
+ std::swap(N0, N1);
+ NewOpc = ARMISD::VMULLu;
+ isMLA = true;
+ }
+ }
+
+ if (!NewOpc) {
+ if (VT == MVT::v2i64)
+ // Fall through to expand this. It is not legal.
+ return SDValue();
+ else
+ // Other vector multiplications are legal.
+ return Op;
+ }
+ }
+
+ // Legalize to a VMULL instruction.
+ SDLoc DL(Op);
+ SDValue Op0;
+ SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
+ if (!isMLA) {
+ Op0 = SkipExtensionForVMULL(N0, DAG);
+ assert(Op0.getValueType().is64BitVector() &&
+ Op1.getValueType().is64BitVector() &&
+ "unexpected types for extended operands to VMULL");
+ return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
+ }
+
+ // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
+ // isel lowering to take advantage of no-stall back to back vmul + vmla.
+ // vmull q0, d4, d6
+ // vmlal q0, d5, d6
+ // is faster than
+ // vaddl q0, d4, d5
+ // vmovl q1, d6
+ // vmul q0, q0, q1
+ SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
+ SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
+ EVT Op1VT = Op1.getValueType();
+ return DAG.getNode(N0->getOpcode(), DL, VT,
+ DAG.getNode(NewOpc, DL, VT,
+ DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
+ DAG.getNode(NewOpc, DL, VT,
+ DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
+}
+
+static SDValue
+LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
+ // Convert to float
+ // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
+ // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
+ X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
+ Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
+ X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
+ Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
+ // Get reciprocal estimate.
+ // float4 recip = vrecpeq_f32(yf);
+ Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
+ // Because char has a smaller range than uchar, we can actually get away
+ // without any newton steps. This requires that we use a weird bias
+ // of 0xb000, however (again, this has been exhaustively tested).
+ // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
+ X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
+ X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
+ Y = DAG.getConstant(0xb000, MVT::i32);
+ Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
+ X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
+ X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
+ // Convert back to short.
+ X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
+ X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
+ return X;
+}
+
+static SDValue
+LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
+ SDValue N2;
+ // Convert to float.
+ // float4 yf = vcvt_f32_s32(vmovl_s16(y));
+ // float4 xf = vcvt_f32_s32(vmovl_s16(x));
+ N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
+ N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
+ N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
+ N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
+
+ // Use reciprocal estimate and one refinement step.
+ // float4 recip = vrecpeq_f32(yf);
+ // recip *= vrecpsq_f32(yf, recip);
+ N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
+ N1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ // Because short has a smaller range than ushort, we can actually get away
+ // with only a single newton step. This requires that we use a weird bias
+ // of 89, however (again, this has been exhaustively tested).
+ // float4 result = as_float4(as_int4(xf*recip) + 0x89);
+ N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
+ N1 = DAG.getConstant(0x89, MVT::i32);
+ N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
+ N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
+ // Convert back to integer and return.
+ // return vmovn_s32(vcvt_s32_f32(result));
+ N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
+ return N0;
+}
+
+static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
+ "unexpected type for custom-lowering ISD::SDIV");
+
+ SDLoc dl(Op);
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2, N3;
+
+ if (VT == MVT::v8i8) {
+ N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
+ N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
+
+ N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(4));
+ N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(4));
+ N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(0));
+ N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(0));
+
+ N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
+ N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
+
+ N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
+ N0 = LowerCONCAT_VECTORS(N0, DAG);
+
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
+ return N0;
+ }
+ return LowerSDIV_v4i16(N0, N1, dl, DAG);
+}
+
+static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
+ "unexpected type for custom-lowering ISD::UDIV");
+
+ SDLoc dl(Op);
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2, N3;
+
+ if (VT == MVT::v8i8) {
+ N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
+
+ N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(4));
+ N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(4));
+ N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(0));
+ N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(0));
+
+ N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
+ N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
+
+ N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
+ N0 = LowerCONCAT_VECTORS(N0, DAG);
+
+ N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
+ DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
+ N0);
+ return N0;
+ }
+
+ // v4i16 sdiv ... Convert to float.
+ // float4 yf = vcvt_f32_s32(vmovl_u16(y));
+ // float4 xf = vcvt_f32_s32(vmovl_u16(x));
+ N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
+ N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
+ SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
+
+ // Use reciprocal estimate and two refinement steps.
+ // float4 recip = vrecpeq_f32(yf);
+ // recip *= vrecpsq_f32(yf, recip);
+ // recip *= vrecpsq_f32(yf, recip);
+ N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
+ BN1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
+ BN1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ // Simply multiplying by the reciprocal estimate can leave us a few ulps
+ // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
+ // and that it will never cause us to return an answer too large).
+ // float4 result = as_float4(as_int4(xf*recip) + 2);
+ N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
+ N1 = DAG.getConstant(2, MVT::i32);
+ N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
+ N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
+ // Convert back to integer and return.
+ // return vmovn_u32(vcvt_s32_f32(result));
+ N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
+ return N0;
+}
+
+static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getNode()->getValueType(0);
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+
+ unsigned Opc;
+ bool ExtraOp = false;
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid code");
+ case ISD::ADDC: Opc = ARMISD::ADDC; break;
+ case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
+ case ISD::SUBC: Opc = ARMISD::SUBC; break;
+ case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
+ }
+
+ if (!ExtraOp)
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
+ Op.getOperand(1));
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
+ Op.getOperand(1), Op.getOperand(2));
+}
+
+SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetDarwin());
+
+ // For iOS, we want to call an alternative entry point: __sincos_stret,
+ // return values are passed via sret.
+ SDLoc dl(Op);
+ SDValue Arg = Op.getOperand(0);
+ EVT ArgVT = Arg.getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+
+ MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // Pair of floats / doubles used to pass the result.
+ StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
+
+ // Create stack object for sret.
+ const uint64_t ByteSize = TLI.getDataLayout()->getTypeAllocSize(RetTy);
+ const unsigned StackAlign = TLI.getDataLayout()->getPrefTypeAlignment(RetTy);
+ int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
+ SDValue SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy());
+
+ ArgListTy Args;
+ ArgListEntry Entry;
+
+ Entry.Node = SRet;
+ Entry.Ty = RetTy->getPointerTo();
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Entry.isSRet = true;
+ Args.push_back(Entry);
+
+ Entry.Node = Arg;
+ Entry.Ty = ArgTy;
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Args.push_back(Entry);
+
+ const char *LibcallName = (ArgVT == MVT::f64)
+ ? "__sincos_stret" : "__sincosf_stret";
+ SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
+ .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), Callee,
+ std::move(Args), 0)
+ .setDiscardResult();
+
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+
+ SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
+ MachinePointerInfo(), false, false, false, 0);
+
+ // Address of cos field.
+ SDValue Add = DAG.getNode(ISD::ADD, dl, getPointerTy(), SRet,
+ DAG.getIntPtrConstant(ArgVT.getStoreSize()));
+ SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
+ MachinePointerInfo(), false, false, false, 0);
+
+ SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
+ LoadSin.getValue(0), LoadCos.getValue(0));
+}
+
+static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
+ // Monotonic load/store is legal for all targets
+ if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
+ return Op;
+
+ // Acquire/Release load/store is not legal for targets without a
+ // dmb or equivalent available.
+ return SDValue();
+}
+
+static void ReplaceREADCYCLECOUNTER(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ SDLoc DL(N);
+ SDValue Cycles32, OutChain;
+
+ if (Subtarget->hasPerfMon()) {
+ // Under Power Management extensions, the cycle-count is:
+ // mrc p15, #0, <Rt>, c9, c13, #0
+ SDValue Ops[] = { N->getOperand(0), // Chain
+ DAG.getConstant(Intrinsic::arm_mrc, MVT::i32),
+ DAG.getConstant(15, MVT::i32),
+ DAG.getConstant(0, MVT::i32),
+ DAG.getConstant(9, MVT::i32),
+ DAG.getConstant(13, MVT::i32),
+ DAG.getConstant(0, MVT::i32)
+ };
+
+ Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
+ DAG.getVTList(MVT::i32, MVT::Other), Ops);
+ OutChain = Cycles32.getValue(1);
+ } else {
+ // Intrinsic is defined to return 0 on unsupported platforms. Technically
+ // there are older ARM CPUs that have implementation-specific ways of
+ // obtaining this information (FIXME!).
+ Cycles32 = DAG.getConstant(0, MVT::i32);
+ OutChain = DAG.getEntryNode();
+ }
+
+
+ SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
+ Cycles32, DAG.getConstant(0, MVT::i32));
+ Results.push_back(Cycles64);
+ Results.push_back(OutChain);
+}
+
+SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Don't know how to custom lower this!");
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::GlobalAddress:
+ switch (Subtarget->getTargetTriple().getObjectFormat()) {
+ default: llvm_unreachable("unknown object format");
+ case Triple::COFF:
+ return LowerGlobalAddressWindows(Op, DAG);
+ case Triple::ELF:
+ return LowerGlobalAddressELF(Op, DAG);
+ case Triple::MachO:
+ return LowerGlobalAddressDarwin(Op, DAG);
+ }
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
+ case ISD::BR_CC: return LowerBR_CC(Op, DAG);
+ case ISD::BR_JT: return LowerBR_JT(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
+ case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
+ case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
+ case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
+ case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
+ Subtarget);
+ case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG);
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
+ case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
+ case ISD::SRL_PARTS:
+ case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
+ case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
+ case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
+ case ISD::SETCC: return LowerVSETCC(Op, DAG);
+ case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
+ case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
+ case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
+ case ISD::MUL: return LowerMUL(Op, DAG);
+ case ISD::SDIV: return LowerSDIV(Op, DAG);
+ case ISD::UDIV: return LowerUDIV(Op, DAG);
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUBC:
+ case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
+ case ISD::SADDO:
+ case ISD::UADDO:
+ case ISD::SSUBO:
+ case ISD::USUBO:
+ return LowerXALUO(Op, DAG);
+ case ISD::ATOMIC_LOAD:
+ case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
+ case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
+ case ISD::SDIVREM:
+ case ISD::UDIVREM: return LowerDivRem(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC:
+ if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
+ return LowerDYNAMIC_STACKALLOC(Op, DAG);
+ llvm_unreachable("Don't know how to custom lower this!");
+ }
+}
+
+/// ReplaceNodeResults - Replace the results of node with an illegal result
+/// type with new values built out of custom code.
+void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const {
+ SDValue Res;
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Don't know how to custom expand this!");
+ case ISD::BITCAST:
+ Res = ExpandBITCAST(N, DAG);
+ break;
+ case ISD::SRL:
+ case ISD::SRA:
+ Res = Expand64BitShift(N, DAG, Subtarget);
+ break;
+ case ISD::READCYCLECOUNTER:
+ ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
+ return;
+ }
+ if (Res.getNode())
+ Results.push_back(Res);
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Scheduler Hooks
+//===----------------------------------------------------------------------===//
+
+/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
+/// registers the function context.
+void ARMTargetLowering::
+SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
+ MachineBasicBlock *DispatchBB, int FI) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+ MachineConstantPool *MCP = MF->getConstantPool();
+ ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
+ const Function *F = MF->getFunction();
+
+ bool isThumb = Subtarget->isThumb();
+ bool isThumb2 = Subtarget->isThumb2();
+
+ unsigned PCLabelId = AFI->createPICLabelUId();
+ unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
+ unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
+
+ const TargetRegisterClass *TRC = isThumb ?
+ (const TargetRegisterClass*)&ARM::tGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass;
+
+ // Grab constant pool and fixed stack memory operands.
+ MachineMemOperand *CPMMO =
+ MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
+ MachineMemOperand::MOLoad, 4, 4);
+
+ MachineMemOperand *FIMMOSt =
+ MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOStore, 4, 4);
+
+ // Load the address of the dispatch MBB into the jump buffer.
+ if (isThumb2) {
+ // Incoming value: jbuf
+ // ldr.n r5, LCPI1_1
+ // orr r5, r5, #1
+ // add r5, pc
+ // str r5, [$jbuf, #+4] ; &jbuf[1]
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
+ .addConstantPoolIndex(CPI)
+ .addMemOperand(CPMMO));
+ // Set the low bit because of thumb mode.
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultCC(
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
+ .addReg(NewVReg1, RegState::Kill)
+ .addImm(0x01)));
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
+ .addReg(NewVReg2, RegState::Kill)
+ .addImm(PCLabelId);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
+ .addReg(NewVReg3, RegState::Kill)
+ .addFrameIndex(FI)
+ .addImm(36) // &jbuf[1] :: pc
+ .addMemOperand(FIMMOSt));
+ } else if (isThumb) {
+ // Incoming value: jbuf
+ // ldr.n r1, LCPI1_4
+ // add r1, pc
+ // mov r2, #1
+ // orrs r1, r2
+ // add r2, $jbuf, #+4 ; &jbuf[1]
+ // str r1, [r2]
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
+ .addConstantPoolIndex(CPI)
+ .addMemOperand(CPMMO));
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
+ .addReg(NewVReg1, RegState::Kill)
+ .addImm(PCLabelId);
+ // Set the low bit because of thumb mode.
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addImm(1));
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg2, RegState::Kill)
+ .addReg(NewVReg3, RegState::Kill));
+ unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
+ .addFrameIndex(FI)
+ .addImm(36)); // &jbuf[1] :: pc
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
+ .addReg(NewVReg4, RegState::Kill)
+ .addReg(NewVReg5, RegState::Kill)
+ .addImm(0)
+ .addMemOperand(FIMMOSt));
+ } else {
+ // Incoming value: jbuf
+ // ldr r1, LCPI1_1
+ // add r1, pc, r1
+ // str r1, [$jbuf, #+4] ; &jbuf[1]
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
+ .addConstantPoolIndex(CPI)
+ .addImm(0)
+ .addMemOperand(CPMMO));
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
+ .addReg(NewVReg1, RegState::Kill)
+ .addImm(PCLabelId));
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
+ .addReg(NewVReg2, RegState::Kill)
+ .addFrameIndex(FI)
+ .addImm(36) // &jbuf[1] :: pc
+ .addMemOperand(FIMMOSt));
+ }
+}
+
+MachineBasicBlock *ARMTargetLowering::
+EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+ ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
+ MachineFrameInfo *MFI = MF->getFrameInfo();
+ int FI = MFI->getFunctionContextIndex();
+
+ const TargetRegisterClass *TRC = Subtarget->isThumb() ?
+ (const TargetRegisterClass*)&ARM::tGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
+
+ // Get a mapping of the call site numbers to all of the landing pads they're
+ // associated with.
+ DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
+ unsigned MaxCSNum = 0;
+ MachineModuleInfo &MMI = MF->getMMI();
+ for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
+ ++BB) {
+ if (!BB->isLandingPad()) continue;
+
+ // FIXME: We should assert that the EH_LABEL is the first MI in the landing
+ // pad.
+ for (MachineBasicBlock::iterator
+ II = BB->begin(), IE = BB->end(); II != IE; ++II) {
+ if (!II->isEHLabel()) continue;
+
+ MCSymbol *Sym = II->getOperand(0).getMCSymbol();
+ if (!MMI.hasCallSiteLandingPad(Sym)) continue;
+
+ SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
+ for (SmallVectorImpl<unsigned>::iterator
+ CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
+ CSI != CSE; ++CSI) {
+ CallSiteNumToLPad[*CSI].push_back(BB);
+ MaxCSNum = std::max(MaxCSNum, *CSI);
+ }
+ break;
+ }
+ }
+
+ // Get an ordered list of the machine basic blocks for the jump table.
+ std::vector<MachineBasicBlock*> LPadList;
+ SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
+ LPadList.reserve(CallSiteNumToLPad.size());
+ for (unsigned I = 1; I <= MaxCSNum; ++I) {
+ SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
+ for (SmallVectorImpl<MachineBasicBlock*>::iterator
+ II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
+ LPadList.push_back(*II);
+ InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
+ }
+ }
+
+ assert(!LPadList.empty() &&
+ "No landing pad destinations for the dispatch jump table!");
+
+ // Create the jump table and associated information.
+ MachineJumpTableInfo *JTI =
+ MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
+ unsigned MJTI = JTI->createJumpTableIndex(LPadList);
+ unsigned UId = AFI->createJumpTableUId();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+
+ // Create the MBBs for the dispatch code.
+
+ // Shove the dispatch's address into the return slot in the function context.
+ MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
+ DispatchBB->setIsLandingPad();
+
+ MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
+ unsigned trap_opcode;
+ if (Subtarget->isThumb())
+ trap_opcode = ARM::tTRAP;
+ else
+ trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
+
+ BuildMI(TrapBB, dl, TII->get(trap_opcode));
+ DispatchBB->addSuccessor(TrapBB);
+
+ MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
+ DispatchBB->addSuccessor(DispContBB);
+
+ // Insert and MBBs.
+ MF->insert(MF->end(), DispatchBB);
+ MF->insert(MF->end(), DispContBB);
+ MF->insert(MF->end(), TrapBB);
+
+ // Insert code into the entry block that creates and registers the function
+ // context.
+ SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
+
+ MachineMemOperand *FIMMOLd =
+ MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOLoad |
+ MachineMemOperand::MOVolatile, 4, 4);
+
+ MachineInstrBuilder MIB;
+ MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
+
+ const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
+ const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
+
+ // Add a register mask with no preserved registers. This results in all
+ // registers being marked as clobbered.
+ MIB.addRegMask(RI.getNoPreservedMask());
+
+ unsigned NumLPads = LPadList.size();
+ if (Subtarget->isThumb2()) {
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
+ .addFrameIndex(FI)
+ .addImm(4)
+ .addMemOperand(FIMMOLd));
+
+ if (NumLPads < 256) {
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
+ .addReg(NewVReg1)
+ .addImm(LPadList.size()));
+ } else {
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
+ .addImm(NumLPads & 0xFFFF));
+
+ unsigned VReg2 = VReg1;
+ if ((NumLPads & 0xFFFF0000) != 0) {
+ VReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
+ .addReg(VReg1)
+ .addImm(NumLPads >> 16));
+ }
+
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
+ .addReg(NewVReg1)
+ .addReg(VReg2));
+ }
+
+ BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
+ .addMBB(TrapBB)
+ .addImm(ARMCC::HI)
+ .addReg(ARM::CPSR);
+
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId));
+
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultCC(
+ AddDefaultPred(
+ BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
+ .addReg(NewVReg3, RegState::Kill)
+ .addReg(NewVReg1)
+ .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
+
+ BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
+ .addReg(NewVReg4, RegState::Kill)
+ .addReg(NewVReg1)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId);
+ } else if (Subtarget->isThumb()) {
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
+ .addFrameIndex(FI)
+ .addImm(1)
+ .addMemOperand(FIMMOLd));
+
+ if (NumLPads < 256) {
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
+ .addReg(NewVReg1)
+ .addImm(NumLPads));
+ } else {
+ MachineConstantPool *ConstantPool = MF->getConstantPool();
+ Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
+ const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
+ if (Align == 0)
+ Align = getDataLayout()->getTypeAllocSize(C->getType());
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
+
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
+ .addReg(VReg1, RegState::Define)
+ .addConstantPoolIndex(Idx));
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
+ .addReg(NewVReg1)
+ .addReg(VReg1));
+ }
+
+ BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
+ .addMBB(TrapBB)
+ .addImm(ARMCC::HI)
+ .addReg(ARM::CPSR);
+
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg1)
+ .addImm(2));
+
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId));
+
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg2, RegState::Kill)
+ .addReg(NewVReg3));
+
+ MachineMemOperand *JTMMOLd =
+ MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
+ MachineMemOperand::MOLoad, 4, 4);
+
+ unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
+ .addReg(NewVReg4, RegState::Kill)
+ .addImm(0)
+ .addMemOperand(JTMMOLd));
+
+ unsigned NewVReg6 = NewVReg5;
+ if (RelocM == Reloc::PIC_) {
+ NewVReg6 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg5, RegState::Kill)
+ .addReg(NewVReg3));
+ }
+
+ BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
+ .addReg(NewVReg6, RegState::Kill)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId);
+ } else {
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
+ .addFrameIndex(FI)
+ .addImm(4)
+ .addMemOperand(FIMMOLd));
+
+ if (NumLPads < 256) {
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
+ .addReg(NewVReg1)
+ .addImm(NumLPads));
+ } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
+ .addImm(NumLPads & 0xFFFF));
+
+ unsigned VReg2 = VReg1;
+ if ((NumLPads & 0xFFFF0000) != 0) {
+ VReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
+ .addReg(VReg1)
+ .addImm(NumLPads >> 16));
+ }
+
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
+ .addReg(NewVReg1)
+ .addReg(VReg2));
+ } else {
+ MachineConstantPool *ConstantPool = MF->getConstantPool();
+ Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
+ const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
+ if (Align == 0)
+ Align = getDataLayout()->getTypeAllocSize(C->getType());
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
+
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
+ .addReg(VReg1, RegState::Define)
+ .addConstantPoolIndex(Idx)
+ .addImm(0));
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
+ .addReg(NewVReg1)
+ .addReg(VReg1, RegState::Kill));
+ }
+
+ BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
+ .addMBB(TrapBB)
+ .addImm(ARMCC::HI)
+ .addReg(ARM::CPSR);
+
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultCC(
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
+ .addReg(NewVReg1)
+ .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId));
+
+ MachineMemOperand *JTMMOLd =
+ MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
+ MachineMemOperand::MOLoad, 4, 4);
+ unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(
+ BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
+ .addReg(NewVReg3, RegState::Kill)
+ .addReg(NewVReg4)
+ .addImm(0)
+ .addMemOperand(JTMMOLd));
+
+ if (RelocM == Reloc::PIC_) {
+ BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
+ .addReg(NewVReg5, RegState::Kill)
+ .addReg(NewVReg4)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId);
+ } else {
+ BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
+ .addReg(NewVReg5, RegState::Kill)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId);
+ }
+ }
+
+ // Add the jump table entries as successors to the MBB.
+ SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
+ for (std::vector<MachineBasicBlock*>::iterator
+ I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
+ MachineBasicBlock *CurMBB = *I;
+ if (SeenMBBs.insert(CurMBB))
+ DispContBB->addSuccessor(CurMBB);
+ }
+
+ // N.B. the order the invoke BBs are processed in doesn't matter here.
+ const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
+ SmallVector<MachineBasicBlock*, 64> MBBLPads;
+ for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
+ I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
+ MachineBasicBlock *BB = *I;
+
+ // Remove the landing pad successor from the invoke block and replace it
+ // with the new dispatch block.
+ SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
+ BB->succ_end());
+ while (!Successors.empty()) {
+ MachineBasicBlock *SMBB = Successors.pop_back_val();
+ if (SMBB->isLandingPad()) {
+ BB->removeSuccessor(SMBB);
+ MBBLPads.push_back(SMBB);
+ }
+ }
+
+ BB->addSuccessor(DispatchBB);
+
+ // Find the invoke call and mark all of the callee-saved registers as
+ // 'implicit defined' so that they're spilled. This prevents code from
+ // moving instructions to before the EH block, where they will never be
+ // executed.
+ for (MachineBasicBlock::reverse_iterator
+ II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
+ if (!II->isCall()) continue;
+
+ DenseMap<unsigned, bool> DefRegs;
+ for (MachineInstr::mop_iterator
+ OI = II->operands_begin(), OE = II->operands_end();
+ OI != OE; ++OI) {
+ if (!OI->isReg()) continue;
+ DefRegs[OI->getReg()] = true;
+ }
+
+ MachineInstrBuilder MIB(*MF, &*II);
+
+ for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
+ unsigned Reg = SavedRegs[i];
+ if (Subtarget->isThumb2() &&
+ !ARM::tGPRRegClass.contains(Reg) &&
+ !ARM::hGPRRegClass.contains(Reg))
+ continue;
+ if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
+ continue;
+ if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
+ continue;
+ if (!DefRegs[Reg])
+ MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
+ }
+
+ break;
+ }
+ }
+
+ // Mark all former landing pads as non-landing pads. The dispatch is the only
+ // landing pad now.
+ for (SmallVectorImpl<MachineBasicBlock*>::iterator
+ I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
+ (*I)->setIsLandingPad(false);
+
+ // The instruction is gone now.
+ MI->eraseFromParent();
+
+ return MBB;
+}
+
+static
+MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
+ for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
+ E = MBB->succ_end(); I != E; ++I)
+ if (*I != Succ)
+ return *I;
+ llvm_unreachable("Expecting a BB with two successors!");
+}
+
+/// Return the load opcode for a given load size. If load size >= 8,
+/// neon opcode will be returned.
+static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
+ if (LdSize >= 8)
+ return LdSize == 16 ? ARM::VLD1q32wb_fixed
+ : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
+ if (IsThumb1)
+ return LdSize == 4 ? ARM::tLDRi
+ : LdSize == 2 ? ARM::tLDRHi
+ : LdSize == 1 ? ARM::tLDRBi : 0;
+ if (IsThumb2)
+ return LdSize == 4 ? ARM::t2LDR_POST
+ : LdSize == 2 ? ARM::t2LDRH_POST
+ : LdSize == 1 ? ARM::t2LDRB_POST : 0;
+ return LdSize == 4 ? ARM::LDR_POST_IMM
+ : LdSize == 2 ? ARM::LDRH_POST
+ : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
+}
+
+/// Return the store opcode for a given store size. If store size >= 8,
+/// neon opcode will be returned.
+static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
+ if (StSize >= 8)
+ return StSize == 16 ? ARM::VST1q32wb_fixed
+ : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
+ if (IsThumb1)
+ return StSize == 4 ? ARM::tSTRi
+ : StSize == 2 ? ARM::tSTRHi
+ : StSize == 1 ? ARM::tSTRBi : 0;
+ if (IsThumb2)
+ return StSize == 4 ? ARM::t2STR_POST
+ : StSize == 2 ? ARM::t2STRH_POST
+ : StSize == 1 ? ARM::t2STRB_POST : 0;
+ return StSize == 4 ? ARM::STR_POST_IMM
+ : StSize == 2 ? ARM::STRH_POST
+ : StSize == 1 ? ARM::STRB_POST_IMM : 0;
+}
+
+/// Emit a post-increment load operation with given size. The instructions
+/// will be added to BB at Pos.
+static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos,
+ const TargetInstrInfo *TII, DebugLoc dl,
+ unsigned LdSize, unsigned Data, unsigned AddrIn,
+ unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
+ unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
+ assert(LdOpc != 0 && "Should have a load opcode");
+ if (LdSize >= 8) {
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
+ .addReg(AddrOut, RegState::Define).addReg(AddrIn)
+ .addImm(0));
+ } else if (IsThumb1) {
+ // load + update AddrIn
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
+ .addReg(AddrIn).addImm(0));
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
+ MIB = AddDefaultT1CC(MIB);
+ MIB.addReg(AddrIn).addImm(LdSize);
+ AddDefaultPred(MIB);
+ } else if (IsThumb2) {
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
+ .addReg(AddrOut, RegState::Define).addReg(AddrIn)
+ .addImm(LdSize));
+ } else { // arm
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
+ .addReg(AddrOut, RegState::Define).addReg(AddrIn)
+ .addReg(0).addImm(LdSize));
+ }
+}
+
+/// Emit a post-increment store operation with given size. The instructions
+/// will be added to BB at Pos.
+static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos,
+ const TargetInstrInfo *TII, DebugLoc dl,
+ unsigned StSize, unsigned Data, unsigned AddrIn,
+ unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
+ unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
+ assert(StOpc != 0 && "Should have a store opcode");
+ if (StSize >= 8) {
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
+ .addReg(AddrIn).addImm(0).addReg(Data));
+ } else if (IsThumb1) {
+ // store + update AddrIn
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
+ .addReg(AddrIn).addImm(0));
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
+ MIB = AddDefaultT1CC(MIB);
+ MIB.addReg(AddrIn).addImm(StSize);
+ AddDefaultPred(MIB);
+ } else if (IsThumb2) {
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
+ .addReg(Data).addReg(AddrIn).addImm(StSize));
+ } else { // arm
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
+ .addReg(Data).addReg(AddrIn).addReg(0)
+ .addImm(StSize));
+ }
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitStructByval(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ // This pseudo instruction has 3 operands: dst, src, size
+ // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
+ // Otherwise, we will generate unrolled scalar copies.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned src = MI->getOperand(1).getReg();
+ unsigned SizeVal = MI->getOperand(2).getImm();
+ unsigned Align = MI->getOperand(3).getImm();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ unsigned UnitSize = 0;
+ const TargetRegisterClass *TRC = nullptr;
+ const TargetRegisterClass *VecTRC = nullptr;
+
+ bool IsThumb1 = Subtarget->isThumb1Only();
+ bool IsThumb2 = Subtarget->isThumb2();
+
+ if (Align & 1) {
+ UnitSize = 1;
+ } else if (Align & 2) {
+ UnitSize = 2;
+ } else {
+ // Check whether we can use NEON instructions.
+ if (!MF->getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NoImplicitFloat) &&
+ Subtarget->hasNEON()) {
+ if ((Align % 16 == 0) && SizeVal >= 16)
+ UnitSize = 16;
+ else if ((Align % 8 == 0) && SizeVal >= 8)
+ UnitSize = 8;
+ }
+ // Can't use NEON instructions.
+ if (UnitSize == 0)
+ UnitSize = 4;
+ }
+
+ // Select the correct opcode and register class for unit size load/store
+ bool IsNeon = UnitSize >= 8;
+ TRC = (IsThumb1 || IsThumb2) ? (const TargetRegisterClass *)&ARM::tGPRRegClass
+ : (const TargetRegisterClass *)&ARM::GPRRegClass;
+ if (IsNeon)
+ VecTRC = UnitSize == 16
+ ? (const TargetRegisterClass *)&ARM::DPairRegClass
+ : UnitSize == 8
+ ? (const TargetRegisterClass *)&ARM::DPRRegClass
+ : nullptr;
+
+ unsigned BytesLeft = SizeVal % UnitSize;
+ unsigned LoopSize = SizeVal - BytesLeft;
+
+ if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
+ // Use LDR and STR to copy.
+ // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
+ // [destOut] = STR_POST(scratch, destIn, UnitSize)
+ unsigned srcIn = src;
+ unsigned destIn = dest;
+ for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
+ unsigned srcOut = MRI.createVirtualRegister(TRC);
+ unsigned destOut = MRI.createVirtualRegister(TRC);
+ unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
+ emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
+ IsThumb1, IsThumb2);
+ emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
+ IsThumb1, IsThumb2);
+ srcIn = srcOut;
+ destIn = destOut;
+ }
+
+ // Handle the leftover bytes with LDRB and STRB.
+ // [scratch, srcOut] = LDRB_POST(srcIn, 1)
+ // [destOut] = STRB_POST(scratch, destIn, 1)
+ for (unsigned i = 0; i < BytesLeft; i++) {
+ unsigned srcOut = MRI.createVirtualRegister(TRC);
+ unsigned destOut = MRI.createVirtualRegister(TRC);
+ unsigned scratch = MRI.createVirtualRegister(TRC);
+ emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
+ IsThumb1, IsThumb2);
+ emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
+ IsThumb1, IsThumb2);
+ srcIn = srcOut;
+ destIn = destOut;
+ }
+ MI->eraseFromParent(); // The instruction is gone now.
+ return BB;
+ }
+
+ // Expand the pseudo op to a loop.
+ // thisMBB:
+ // ...
+ // movw varEnd, # --> with thumb2
+ // movt varEnd, #
+ // ldrcp varEnd, idx --> without thumb2
+ // fallthrough --> loopMBB
+ // loopMBB:
+ // PHI varPhi, varEnd, varLoop
+ // PHI srcPhi, src, srcLoop
+ // PHI destPhi, dst, destLoop
+ // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
+ // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
+ // subs varLoop, varPhi, #UnitSize
+ // bne loopMBB
+ // fallthrough --> exitMBB
+ // exitMBB:
+ // epilogue to handle left-over bytes
+ // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
+ // [destOut] = STRB_POST(scratch, destLoop, 1)
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loopMBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Load an immediate to varEnd.
+ unsigned varEnd = MRI.createVirtualRegister(TRC);
+ if (IsThumb2) {
+ unsigned Vtmp = varEnd;
+ if ((LoopSize & 0xFFFF0000) != 0)
+ Vtmp = MRI.createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), Vtmp)
+ .addImm(LoopSize & 0xFFFF));
+
+ if ((LoopSize & 0xFFFF0000) != 0)
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
+ .addReg(Vtmp).addImm(LoopSize >> 16));
+ } else {
+ MachineConstantPool *ConstantPool = MF->getConstantPool();
+ Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
+ const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
+ if (Align == 0)
+ Align = getDataLayout()->getTypeAllocSize(C->getType());
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
+
+ if (IsThumb1)
+ AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
+ varEnd, RegState::Define).addConstantPoolIndex(Idx));
+ else
+ AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
+ varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
+ }
+ BB->addSuccessor(loopMBB);
+
+ // Generate the loop body:
+ // varPhi = PHI(varLoop, varEnd)
+ // srcPhi = PHI(srcLoop, src)
+ // destPhi = PHI(destLoop, dst)
+ MachineBasicBlock *entryBB = BB;
+ BB = loopMBB;
+ unsigned varLoop = MRI.createVirtualRegister(TRC);
+ unsigned varPhi = MRI.createVirtualRegister(TRC);
+ unsigned srcLoop = MRI.createVirtualRegister(TRC);
+ unsigned srcPhi = MRI.createVirtualRegister(TRC);
+ unsigned destLoop = MRI.createVirtualRegister(TRC);
+ unsigned destPhi = MRI.createVirtualRegister(TRC);
+
+ BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
+ .addReg(varLoop).addMBB(loopMBB)
+ .addReg(varEnd).addMBB(entryBB);
+ BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
+ .addReg(srcLoop).addMBB(loopMBB)
+ .addReg(src).addMBB(entryBB);
+ BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
+ .addReg(destLoop).addMBB(loopMBB)
+ .addReg(dest).addMBB(entryBB);
+
+ // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
+ // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
+ unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
+ emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
+ IsThumb1, IsThumb2);
+ emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
+ IsThumb1, IsThumb2);
+
+ // Decrement loop variable by UnitSize.
+ if (IsThumb1) {
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
+ MIB = AddDefaultT1CC(MIB);
+ MIB.addReg(varPhi).addImm(UnitSize);
+ AddDefaultPred(MIB);
+ } else {
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, BB->end(), dl,
+ TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
+ AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
+ MIB->getOperand(5).setReg(ARM::CPSR);
+ MIB->getOperand(5).setIsDef(true);
+ }
+ BuildMI(*BB, BB->end(), dl,
+ TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+
+ // loopMBB can loop back to loopMBB or fall through to exitMBB.
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // Add epilogue to handle BytesLeft.
+ BB = exitMBB;
+ MachineInstr *StartOfExit = exitMBB->begin();
+
+ // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
+ // [destOut] = STRB_POST(scratch, destLoop, 1)
+ unsigned srcIn = srcLoop;
+ unsigned destIn = destLoop;
+ for (unsigned i = 0; i < BytesLeft; i++) {
+ unsigned srcOut = MRI.createVirtualRegister(TRC);
+ unsigned destOut = MRI.createVirtualRegister(TRC);
+ unsigned scratch = MRI.createVirtualRegister(TRC);
+ emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
+ IsThumb1, IsThumb2);
+ emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
+ IsThumb1, IsThumb2);
+ srcIn = srcOut;
+ destIn = destOut;
+ }
+
+ MI->eraseFromParent(); // The instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ const TargetMachine &TM = getTargetMachine();
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ assert(Subtarget->isTargetWindows() &&
+ "__chkstk is only supported on Windows");
+ assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
+
+ // __chkstk takes the number of words to allocate on the stack in R4, and
+ // returns the stack adjustment in number of bytes in R4. This will not
+ // clober any other registers (other than the obvious lr).
+ //
+ // Although, technically, IP should be considered a register which may be
+ // clobbered, the call itself will not touch it. Windows on ARM is a pure
+ // thumb-2 environment, so there is no interworking required. As a result, we
+ // do not expect a veneer to be emitted by the linker, clobbering IP.
+ //
+ // Each module receives its own copy of __chkstk, so no import thunk is
+ // required, again, ensuring that IP is not clobbered.
+ //
+ // Finally, although some linkers may theoretically provide a trampoline for
+ // out of range calls (which is quite common due to a 32M range limitation of
+ // branches for Thumb), we can generate the long-call version via
+ // -mcmodel=large, alleviating the need for the trampoline which may clobber
+ // IP.
+
+ switch (TM.getCodeModel()) {
+ case CodeModel::Small:
+ case CodeModel::Medium:
+ case CodeModel::Default:
+ case CodeModel::Kernel:
+ BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
+ .addImm((unsigned)ARMCC::AL).addReg(0)
+ .addExternalSymbol("__chkstk")
+ .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
+ .addReg(ARM::R4, RegState::Implicit | RegState::Define)
+ .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
+ break;
+ case CodeModel::Large:
+ case CodeModel::JITDefault: {
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
+
+ BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
+ .addExternalSymbol("__chkstk");
+ BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
+ .addImm((unsigned)ARMCC::AL).addReg(0)
+ .addReg(Reg, RegState::Kill)
+ .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
+ .addReg(ARM::R4, RegState::Implicit | RegState::Define)
+ .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
+ break;
+ }
+ }
+
+ AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
+ ARM::SP)
+ .addReg(ARM::SP).addReg(ARM::R4)));
+
+ MI->eraseFromParent();
+ return MBB;
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ bool isThumb2 = Subtarget->isThumb2();
+ switch (MI->getOpcode()) {
+ default: {
+ MI->dump();
+ llvm_unreachable("Unexpected instr type to insert");
+ }
+ // The Thumb2 pre-indexed stores have the same MI operands, they just
+ // define them differently in the .td files from the isel patterns, so
+ // they need pseudos.
+ case ARM::t2STR_preidx:
+ MI->setDesc(TII->get(ARM::t2STR_PRE));
+ return BB;
+ case ARM::t2STRB_preidx:
+ MI->setDesc(TII->get(ARM::t2STRB_PRE));
+ return BB;
+ case ARM::t2STRH_preidx:
+ MI->setDesc(TII->get(ARM::t2STRH_PRE));
+ return BB;
+
+ case ARM::STRi_preidx:
+ case ARM::STRBi_preidx: {
+ unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
+ ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
+ // Decode the offset.
+ unsigned Offset = MI->getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
+ Offset = ARM_AM::getAM2Offset(Offset);
+ if (isSub)
+ Offset = -Offset;
+
+ MachineMemOperand *MMO = *MI->memoperands_begin();
+ BuildMI(*BB, MI, dl, TII->get(NewOpc))
+ .addOperand(MI->getOperand(0)) // Rn_wb
+ .addOperand(MI->getOperand(1)) // Rt
+ .addOperand(MI->getOperand(2)) // Rn
+ .addImm(Offset) // offset (skip GPR==zero_reg)
+ .addOperand(MI->getOperand(5)) // pred
+ .addOperand(MI->getOperand(6))
+ .addMemOperand(MMO);
+ MI->eraseFromParent();
+ return BB;
+ }
+ case ARM::STRr_preidx:
+ case ARM::STRBr_preidx:
+ case ARM::STRH_preidx: {
+ unsigned NewOpc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
+ case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
+ case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
+ }
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
+ for (unsigned i = 0; i < MI->getNumOperands(); ++i)
+ MIB.addOperand(MI->getOperand(i));
+ MI->eraseFromParent();
+ return BB;
+ }
+
+ case ARM::tMOVCCr_pseudo: {
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
+ .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(*BB, BB->begin(), dl,
+ TII->get(ARM::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+ }
+
+ case ARM::BCCi64:
+ case ARM::BCCZi64: {
+ // If there is an unconditional branch to the other successor, remove it.
+ BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
+
+ // Compare both parts that make up the double comparison separately for
+ // equality.
+ bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
+
+ unsigned LHS1 = MI->getOperand(1).getReg();
+ unsigned LHS2 = MI->getOperand(2).getReg();
+ if (RHSisZero) {
+ AddDefaultPred(BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(LHS1).addImm(0));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(LHS2).addImm(0)
+ .addImm(ARMCC::EQ).addReg(ARM::CPSR);
+ } else {
+ unsigned RHS1 = MI->getOperand(3).getReg();
+ unsigned RHS2 = MI->getOperand(4).getReg();
+ AddDefaultPred(BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
+ .addReg(LHS1).addReg(RHS1));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
+ .addReg(LHS2).addReg(RHS2)
+ .addImm(ARMCC::EQ).addReg(ARM::CPSR);
+ }
+
+ MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
+ MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
+ if (MI->getOperand(0).getImm() == ARMCC::NE)
+ std::swap(destMBB, exitMBB);
+
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
+ if (isThumb2)
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
+ else
+ BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+ }
+
+ case ARM::Int_eh_sjlj_setjmp:
+ case ARM::Int_eh_sjlj_setjmp_nofp:
+ case ARM::tInt_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp_nofp:
+ EmitSjLjDispatchBlock(MI, BB);
+ return BB;
+
+ case ARM::ABS:
+ case ARM::t2ABS: {
+ // To insert an ABS instruction, we have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // source vreg to test against 0, the destination vreg to set,
+ // the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ // It transforms
+ // V1 = ABS V0
+ // into
+ // V2 = MOVS V0
+ // BCC (branch to SinkBB if V0 >= 0)
+ // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
+ // SinkBB: V1 = PHI(V2, V3)
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator BBI = BB;
+ ++BBI;
+ MachineFunction *Fn = BB->getParent();
+ MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
+ Fn->insert(BBI, RSBBB);
+ Fn->insert(BBI, SinkBB);
+
+ unsigned int ABSSrcReg = MI->getOperand(1).getReg();
+ unsigned int ABSDstReg = MI->getOperand(0).getReg();
+ bool isThumb2 = Subtarget->isThumb2();
+ MachineRegisterInfo &MRI = Fn->getRegInfo();
+ // In Thumb mode S must not be specified if source register is the SP or
+ // PC and if destination register is the SP, so restrict register class
+ unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
+ (const TargetRegisterClass*)&ARM::rGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ SinkBB->splice(SinkBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ SinkBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(RSBBB);
+ BB->addSuccessor(SinkBB);
+
+ // fall through to SinkMBB
+ RSBBB->addSuccessor(SinkBB);
+
+ // insert a cmp at the end of BB
+ AddDefaultPred(BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(ABSSrcReg).addImm(0));
+
+ // insert a bcc with opposite CC to ARMCC::MI at the end of BB
+ BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
+ .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
+
+ // insert rsbri in RSBBB
+ // Note: BCC and rsbri will be converted into predicated rsbmi
+ // by if-conversion pass
+ BuildMI(*RSBBB, RSBBB->begin(), dl,
+ TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
+ .addReg(ABSSrcReg, RegState::Kill)
+ .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
+
+ // insert PHI in SinkBB,
+ // reuse ABSDstReg to not change uses of ABS instruction
+ BuildMI(*SinkBB, SinkBB->begin(), dl,
+ TII->get(ARM::PHI), ABSDstReg)
+ .addReg(NewRsbDstReg).addMBB(RSBBB)
+ .addReg(ABSSrcReg).addMBB(BB);
+
+ // remove ABS instruction
+ MI->eraseFromParent();
+
+ // return last added BB
+ return SinkBB;
+ }
+ case ARM::COPY_STRUCT_BYVAL_I32:
+ ++NumLoopByVals;
+ return EmitStructByval(MI, BB);
+ case ARM::WIN__CHKSTK:
+ return EmitLowered__chkstk(MI, BB);
+ }
+}
+
+void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
+ SDNode *Node) const {
+ if (!MI->hasPostISelHook()) {
+ assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
+ "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
+ return;
+ }
+
+ const MCInstrDesc *MCID = &MI->getDesc();
+ // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
+ // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
+ // operand is still set to noreg. If needed, set the optional operand's
+ // register to CPSR, and remove the redundant implicit def.
+ //
+ // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
+
+ // Rename pseudo opcodes.
+ unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
+ if (NewOpc) {
+ const ARMBaseInstrInfo *TII =
+ static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
+ MCID = &TII->get(NewOpc);
+
+ assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
+ "converted opcode should be the same except for cc_out");
+
+ MI->setDesc(*MCID);
+
+ // Add the optional cc_out operand
+ MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
+ }
+ unsigned ccOutIdx = MCID->getNumOperands() - 1;
+
+ // Any ARM instruction that sets the 's' bit should specify an optional
+ // "cc_out" operand in the last operand position.
+ if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
+ assert(!NewOpc && "Optional cc_out operand required");
+ return;
+ }
+ // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
+ // since we already have an optional CPSR def.
+ bool definesCPSR = false;
+ bool deadCPSR = false;
+ for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
+ i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
+ definesCPSR = true;
+ if (MO.isDead())
+ deadCPSR = true;
+ MI->RemoveOperand(i);
+ break;
+ }
+ }
+ if (!definesCPSR) {
+ assert(!NewOpc && "Optional cc_out operand required");
+ return;
+ }
+ assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
+ if (deadCPSR) {
+ assert(!MI->getOperand(ccOutIdx).getReg() &&
+ "expect uninitialized optional cc_out operand");
+ return;
+ }
+
+ // If this instruction was defined with an optional CPSR def and its dag node
+ // had a live implicit CPSR def, then activate the optional CPSR def.
+ MachineOperand &MO = MI->getOperand(ccOutIdx);
+ MO.setReg(ARM::CPSR);
+ MO.setIsDef(true);
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+// Helper function that checks if N is a null or all ones constant.
+static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
+ if (!C)
+ return false;
+ return AllOnes ? C->isAllOnesValue() : C->isNullValue();
+}
+
+// Return true if N is conditionally 0 or all ones.
+// Detects these expressions where cc is an i1 value:
+//
+// (select cc 0, y) [AllOnes=0]
+// (select cc y, 0) [AllOnes=0]
+// (zext cc) [AllOnes=0]
+// (sext cc) [AllOnes=0/1]
+// (select cc -1, y) [AllOnes=1]
+// (select cc y, -1) [AllOnes=1]
+//
+// Invert is set when N is the null/all ones constant when CC is false.
+// OtherOp is set to the alternative value of N.
+static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
+ SDValue &CC, bool &Invert,
+ SDValue &OtherOp,
+ SelectionDAG &DAG) {
+ switch (N->getOpcode()) {
+ default: return false;
+ case ISD::SELECT: {
+ CC = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ if (isZeroOrAllOnes(N1, AllOnes)) {
+ Invert = false;
+ OtherOp = N2;
+ return true;
+ }
+ if (isZeroOrAllOnes(N2, AllOnes)) {
+ Invert = true;
+ OtherOp = N1;
+ return true;
+ }
+ return false;
+ }
+ case ISD::ZERO_EXTEND:
+ // (zext cc) can never be the all ones value.
+ if (AllOnes)
+ return false;
+ // Fall through.
+ case ISD::SIGN_EXTEND: {
+ EVT VT = N->getValueType(0);
+ CC = N->getOperand(0);
+ if (CC.getValueType() != MVT::i1)
+ return false;
+ Invert = !AllOnes;
+ if (AllOnes)
+ // When looking for an AllOnes constant, N is an sext, and the 'other'
+ // value is 0.
+ OtherOp = DAG.getConstant(0, VT);
+ else if (N->getOpcode() == ISD::ZERO_EXTEND)
+ // When looking for a 0 constant, N can be zext or sext.
+ OtherOp = DAG.getConstant(1, VT);
+ else
+ OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
+ return true;
+ }
+ }
+}
+
+// Combine a constant select operand into its use:
+//
+// (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
+// (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
+// (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
+// (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
+// (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
+//
+// The transform is rejected if the select doesn't have a constant operand that
+// is null, or all ones when AllOnes is set.
+//
+// Also recognize sext/zext from i1:
+//
+// (add (zext cc), x) -> (select cc (add x, 1), x)
+// (add (sext cc), x) -> (select cc (add x, -1), x)
+//
+// These transformations eventually create predicated instructions.
+//
+// @param N The node to transform.
+// @param Slct The N operand that is a select.
+// @param OtherOp The other N operand (x above).
+// @param DCI Context.
+// @param AllOnes Require the select constant to be all ones instead of null.
+// @returns The new node, or SDValue() on failure.
+static
+SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
+ TargetLowering::DAGCombinerInfo &DCI,
+ bool AllOnes = false) {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+ SDValue NonConstantVal;
+ SDValue CCOp;
+ bool SwapSelectOps;
+ if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
+ NonConstantVal, DAG))
+ return SDValue();
+
+ // Slct is now know to be the desired identity constant when CC is true.
+ SDValue TrueVal = OtherOp;
+ SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
+ OtherOp, NonConstantVal);
+ // Unless SwapSelectOps says CC should be false.
+ if (SwapSelectOps)
+ std::swap(TrueVal, FalseVal);
+
+ return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
+ CCOp, TrueVal, FalseVal);
+}
+
+// Attempt combineSelectAndUse on each operand of a commutative operator N.
+static
+SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ if (N0.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
+ if (Result.getNode())
+ return Result;
+ }
+ if (N1.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
+ if (Result.getNode())
+ return Result;
+ }
+ return SDValue();
+}
+
+// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
+// (only after legalization).
+static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ // Only perform optimization if after legalize, and if NEON is available. We
+ // also expected both operands to be BUILD_VECTORs.
+ if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
+ || N0.getOpcode() != ISD::BUILD_VECTOR
+ || N1.getOpcode() != ISD::BUILD_VECTOR)
+ return SDValue();
+
+ // Check output type since VPADDL operand elements can only be 8, 16, or 32.
+ EVT VT = N->getValueType(0);
+ if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
+ return SDValue();
+
+ // Check that the vector operands are of the right form.
+ // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
+ // operands, where N is the size of the formed vector.
+ // Each EXTRACT_VECTOR should have the same input vector and odd or even
+ // index such that we have a pair wise add pattern.
+
+ // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
+ if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+ SDValue Vec = N0->getOperand(0)->getOperand(0);
+ SDNode *V = Vec.getNode();
+ unsigned nextIndex = 0;
+
+ // For each operands to the ADD which are BUILD_VECTORs,
+ // check to see if each of their operands are an EXTRACT_VECTOR with
+ // the same vector and appropriate index.
+ for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
+ if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
+ && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+
+ SDValue ExtVec0 = N0->getOperand(i);
+ SDValue ExtVec1 = N1->getOperand(i);
+
+ // First operand is the vector, verify its the same.
+ if (V != ExtVec0->getOperand(0).getNode() ||
+ V != ExtVec1->getOperand(0).getNode())
+ return SDValue();
+
+ // Second is the constant, verify its correct.
+ ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
+ ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
+
+ // For the constant, we want to see all the even or all the odd.
+ if (!C0 || !C1 || C0->getZExtValue() != nextIndex
+ || C1->getZExtValue() != nextIndex+1)
+ return SDValue();
+
+ // Increment index.
+ nextIndex+=2;
+ } else
+ return SDValue();
+ }
+
+ // Create VPADDL node.
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // Build operand list.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
+ TLI.getPointerTy()));
+
+ // Input is the vector.
+ Ops.push_back(Vec);
+
+ // Get widened type and narrowed type.
+ MVT widenType;
+ unsigned numElem = VT.getVectorNumElements();
+
+ EVT inputLaneType = Vec.getValueType().getVectorElementType();
+ switch (inputLaneType.getSimpleVT().SimpleTy) {
+ case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
+ case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
+ case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
+ default:
+ llvm_unreachable("Invalid vector element type for padd optimization.");
+ }
+
+ SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), widenType, Ops);
+ unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
+ return DAG.getNode(ExtOp, SDLoc(N), VT, tmp);
+}
+
+static SDValue findMUL_LOHI(SDValue V) {
+ if (V->getOpcode() == ISD::UMUL_LOHI ||
+ V->getOpcode() == ISD::SMUL_LOHI)
+ return V;
+ return SDValue();
+}
+
+static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ if (Subtarget->isThumb1Only()) return SDValue();
+
+ // Only perform the checks after legalize when the pattern is available.
+ if (DCI.isBeforeLegalize()) return SDValue();
+
+ // Look for multiply add opportunities.
+ // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
+ // each add nodes consumes a value from ISD::UMUL_LOHI and there is
+ // a glue link from the first add to the second add.
+ // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
+ // a S/UMLAL instruction.
+ // loAdd UMUL_LOHI
+ // \ / :lo \ :hi
+ // \ / \ [no multiline comment]
+ // ADDC | hiAdd
+ // \ :glue / /
+ // \ / /
+ // ADDE
+ //
+ assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
+ SDValue AddcOp0 = AddcNode->getOperand(0);
+ SDValue AddcOp1 = AddcNode->getOperand(1);
+
+ // Check if the two operands are from the same mul_lohi node.
+ if (AddcOp0.getNode() == AddcOp1.getNode())
+ return SDValue();
+
+ assert(AddcNode->getNumValues() == 2 &&
+ AddcNode->getValueType(0) == MVT::i32 &&
+ "Expect ADDC with two result values. First: i32");
+
+ // Check that we have a glued ADDC node.
+ if (AddcNode->getValueType(1) != MVT::Glue)
+ return SDValue();
+
+ // Check that the ADDC adds the low result of the S/UMUL_LOHI.
+ if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
+ AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
+ AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
+ AddcOp1->getOpcode() != ISD::SMUL_LOHI)
+ return SDValue();
+
+ // Look for the glued ADDE.
+ SDNode* AddeNode = AddcNode->getGluedUser();
+ if (!AddeNode)
+ return SDValue();
+
+ // Make sure it is really an ADDE.
+ if (AddeNode->getOpcode() != ISD::ADDE)
+ return SDValue();
+
+ assert(AddeNode->getNumOperands() == 3 &&
+ AddeNode->getOperand(2).getValueType() == MVT::Glue &&
+ "ADDE node has the wrong inputs");
+
+ // Check for the triangle shape.
+ SDValue AddeOp0 = AddeNode->getOperand(0);
+ SDValue AddeOp1 = AddeNode->getOperand(1);
+
+ // Make sure that the ADDE operands are not coming from the same node.
+ if (AddeOp0.getNode() == AddeOp1.getNode())
+ return SDValue();
+
+ // Find the MUL_LOHI node walking up ADDE's operands.
+ bool IsLeftOperandMUL = false;
+ SDValue MULOp = findMUL_LOHI(AddeOp0);
+ if (MULOp == SDValue())
+ MULOp = findMUL_LOHI(AddeOp1);
+ else
+ IsLeftOperandMUL = true;
+ if (MULOp == SDValue())
+ return SDValue();
+
+ // Figure out the right opcode.
+ unsigned Opc = MULOp->getOpcode();
+ unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
+
+ // Figure out the high and low input values to the MLAL node.
+ SDValue* HiMul = &MULOp;
+ SDValue* HiAdd = nullptr;
+ SDValue* LoMul = nullptr;
+ SDValue* LowAdd = nullptr;
+
+ if (IsLeftOperandMUL)
+ HiAdd = &AddeOp1;
+ else
+ HiAdd = &AddeOp0;
+
+
+ if (AddcOp0->getOpcode() == Opc) {
+ LoMul = &AddcOp0;
+ LowAdd = &AddcOp1;
+ }
+ if (AddcOp1->getOpcode() == Opc) {
+ LoMul = &AddcOp1;
+ LowAdd = &AddcOp0;
+ }
+
+ if (!LoMul)
+ return SDValue();
+
+ if (LoMul->getNode() != HiMul->getNode())
+ return SDValue();
+
+ // Create the merged node.
+ SelectionDAG &DAG = DCI.DAG;
+
+ // Build operand list.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(LoMul->getOperand(0));
+ Ops.push_back(LoMul->getOperand(1));
+ Ops.push_back(*LowAdd);
+ Ops.push_back(*HiAdd);
+
+ SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcNode),
+ DAG.getVTList(MVT::i32, MVT::i32), Ops);
+
+ // Replace the ADDs' nodes uses by the MLA node's values.
+ SDValue HiMLALResult(MLALNode.getNode(), 1);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
+
+ SDValue LoMLALResult(MLALNode.getNode(), 0);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
+
+ // Return original node to notify the driver to stop replacing.
+ SDValue resNode(AddcNode, 0);
+ return resNode;
+}
+
+/// PerformADDCCombine - Target-specific dag combine transform from
+/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
+static SDValue PerformADDCCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ return AddCombineTo64bitMLAL(N, DCI, Subtarget);
+
+}
+
+/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
+/// operands N0 and N1. This is a helper for PerformADDCombine that is
+/// called with the default operands, and if that fails, with commuted
+/// operands.
+static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget){
+
+ // Attempt to create vpaddl for this add.
+ SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
+ if (Result.getNode())
+ return Result;
+
+ // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
+ if (N0.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
+ if (Result.getNode()) return Result;
+ }
+ return SDValue();
+}
+
+/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
+///
+static SDValue PerformADDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // First try with the default operand order.
+ SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
+ if (Result.getNode())
+ return Result;
+
+ // If that didn't work, try again with the operands commuted.
+ return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
+}
+
+/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
+///
+static SDValue PerformSUBCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
+ if (N1.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
+ if (Result.getNode()) return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformVMULCombine
+/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
+/// special multiplier accumulator forwarding.
+/// vmul d3, d0, d2
+/// vmla d3, d1, d2
+/// is faster than
+/// vadd d3, d0, d1
+/// vmul d3, d3, d2
+// However, for (A + B) * (A + B),
+// vadd d2, d0, d1
+// vmul d3, d0, d2
+// vmla d3, d1, d2
+// is slower than
+// vadd d2, d0, d1
+// vmul d3, d2, d2
+static SDValue PerformVMULCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ if (!Subtarget->hasVMLxForwarding())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ unsigned Opcode = N0.getOpcode();
+ if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
+ Opcode != ISD::FADD && Opcode != ISD::FSUB) {
+ Opcode = N1.getOpcode();
+ if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
+ Opcode != ISD::FADD && Opcode != ISD::FSUB)
+ return SDValue();
+ std::swap(N0, N1);
+ }
+
+ if (N0 == N1)
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+ SDValue N00 = N0->getOperand(0);
+ SDValue N01 = N0->getOperand(1);
+ return DAG.getNode(Opcode, DL, VT,
+ DAG.getNode(ISD::MUL, DL, VT, N00, N1),
+ DAG.getNode(ISD::MUL, DL, VT, N01, N1));
+}
+
+static SDValue PerformMULCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+
+ if (Subtarget->isThumb1Only())
+ return SDValue();
+
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT.is64BitVector() || VT.is128BitVector())
+ return PerformVMULCombine(N, DCI, Subtarget);
+ if (VT != MVT::i32)
+ return SDValue();
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!C)
+ return SDValue();
+
+ int64_t MulAmt = C->getSExtValue();
+ unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
+
+ ShiftAmt = ShiftAmt & (32 - 1);
+ SDValue V = N->getOperand(0);
+ SDLoc DL(N);
+
+ SDValue Res;
+ MulAmt >>= ShiftAmt;
+
+ if (MulAmt >= 0) {
+ if (isPowerOf2_32(MulAmt - 1)) {
+ // (mul x, 2^N + 1) => (add (shl x, N), x)
+ Res = DAG.getNode(ISD::ADD, DL, VT,
+ V,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmt - 1),
+ MVT::i32)));
+ } else if (isPowerOf2_32(MulAmt + 1)) {
+ // (mul x, 2^N - 1) => (sub (shl x, N), x)
+ Res = DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmt + 1),
+ MVT::i32)),
+ V);
+ } else
+ return SDValue();
+ } else {
+ uint64_t MulAmtAbs = -MulAmt;
+ if (isPowerOf2_32(MulAmtAbs + 1)) {
+ // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
+ Res = DAG.getNode(ISD::SUB, DL, VT,
+ V,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmtAbs + 1),
+ MVT::i32)));
+ } else if (isPowerOf2_32(MulAmtAbs - 1)) {
+ // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
+ Res = DAG.getNode(ISD::ADD, DL, VT,
+ V,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmtAbs-1),
+ MVT::i32)));
+ Res = DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getConstant(0, MVT::i32),Res);
+
+ } else
+ return SDValue();
+ }
+
+ if (ShiftAmt != 0)
+ Res = DAG.getNode(ISD::SHL, DL, VT,
+ Res, DAG.getConstant(ShiftAmt, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+}
+
+static SDValue PerformANDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ // Attempt to use immediate-form VBIC
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN &&
+ BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ EVT VbicVT;
+ SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, VbicVT, VT.is128BitVector(),
+ OtherModImm);
+ if (Val.getNode()) {
+ SDValue Input =
+ DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
+ SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
+ }
+ }
+ }
+
+ if (!Subtarget->isThumb1Only()) {
+ // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
+ SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
+ if (Result.getNode())
+ return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
+static SDValue PerformORCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ // Attempt to use immediate-form VORR
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN && Subtarget->hasNEON() &&
+ BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ EVT VorrVT;
+ SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, VorrVT, VT.is128BitVector(),
+ OtherModImm);
+ if (Val.getNode()) {
+ SDValue Input =
+ DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
+ SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
+ }
+ }
+ }
+
+ if (!Subtarget->isThumb1Only()) {
+ // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
+ SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
+ if (Result.getNode())
+ return Result;
+ }
+
+ // The code below optimizes (or (and X, Y), Z).
+ // The AND operand needs to have a single user to make these optimizations
+ // profitable.
+ SDValue N0 = N->getOperand(0);
+ if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
+ return SDValue();
+ SDValue N1 = N->getOperand(1);
+
+ // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
+ if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
+ DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
+ APInt SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+
+ APInt SplatBits0, SplatBits1;
+ BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
+ BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
+ // Ensure that the second operand of both ands are constants
+ if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
+ HasAnyUndefs) && !HasAnyUndefs) {
+ if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
+ HasAnyUndefs) && !HasAnyUndefs) {
+ // Ensure that the bit width of the constants are the same and that
+ // the splat arguments are logical inverses as per the pattern we
+ // are trying to simplify.
+ if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
+ SplatBits0 == ~SplatBits1) {
+ // Canonicalize the vector type to make instruction selection
+ // simpler.
+ EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
+ SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
+ N0->getOperand(1),
+ N0->getOperand(0),
+ N1->getOperand(0));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+ }
+ }
+ }
+ }
+
+ // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
+ // reasonable.
+
+ // BFI is only available on V6T2+
+ if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
+ return SDValue();
+
+ SDLoc DL(N);
+ // 1) or (and A, mask), val => ARMbfi A, val, mask
+ // iff (val & mask) == val
+ //
+ // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
+ // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
+ // && mask == ~mask2
+ // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
+ // && ~mask == mask2
+ // (i.e., copy a bitfield value into another bitfield of the same width)
+
+ if (VT != MVT::i32)
+ return SDValue();
+
+ SDValue N00 = N0.getOperand(0);
+
+ // The value and the mask need to be constants so we can verify this is
+ // actually a bitfield set. If the mask is 0xffff, we can do better
+ // via a movt instruction, so don't use BFI in that case.
+ SDValue MaskOp = N0.getOperand(1);
+ ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
+ if (!MaskC)
+ return SDValue();
+ unsigned Mask = MaskC->getZExtValue();
+ if (Mask == 0xffff)
+ return SDValue();
+ SDValue Res;
+ // Case (1): or (and A, mask), val => ARMbfi A, val, mask
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (N1C) {
+ unsigned Val = N1C->getZExtValue();
+ if ((Val & ~Mask) != Val)
+ return SDValue();
+
+ if (ARM::isBitFieldInvertedMask(Mask)) {
+ Val >>= countTrailingZeros(~Mask);
+
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
+ DAG.getConstant(Val, MVT::i32),
+ DAG.getConstant(Mask, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+ }
+ } else if (N1.getOpcode() == ISD::AND) {
+ // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
+ ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
+ if (!N11C)
+ return SDValue();
+ unsigned Mask2 = N11C->getZExtValue();
+
+ // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
+ // as is to match.
+ if (ARM::isBitFieldInvertedMask(Mask) &&
+ (Mask == ~Mask2)) {
+ // The pack halfword instruction works better for masks that fit it,
+ // so use that when it's available.
+ if (Subtarget->hasT2ExtractPack() &&
+ (Mask == 0xffff || Mask == 0xffff0000))
+ return SDValue();
+ // 2a
+ unsigned amt = countTrailingZeros(Mask2);
+ Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
+ DAG.getConstant(amt, MVT::i32));
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
+ DAG.getConstant(Mask, MVT::i32));
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+ } else if (ARM::isBitFieldInvertedMask(~Mask) &&
+ (~Mask == Mask2)) {
+ // The pack halfword instruction works better for masks that fit it,
+ // so use that when it's available.
+ if (Subtarget->hasT2ExtractPack() &&
+ (Mask2 == 0xffff || Mask2 == 0xffff0000))
+ return SDValue();
+ // 2b
+ unsigned lsb = countTrailingZeros(Mask);
+ Res = DAG.getNode(ISD::SRL, DL, VT, N00,
+ DAG.getConstant(lsb, MVT::i32));
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
+ DAG.getConstant(Mask2, MVT::i32));
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+ }
+ }
+
+ if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
+ N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
+ ARM::isBitFieldInvertedMask(~Mask)) {
+ // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
+ // where lsb(mask) == #shamt and masked bits of B are known zero.
+ SDValue ShAmt = N00.getOperand(1);
+ unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
+ unsigned LSB = countTrailingZeros(Mask);
+ if (ShAmtC != LSB)
+ return SDValue();
+
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
+ DAG.getConstant(~Mask, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformXORCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ if (!Subtarget->isThumb1Only()) {
+ // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
+ SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
+ if (Result.getNode())
+ return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
+/// the bits being cleared by the AND are not demanded by the BFI.
+static SDValue PerformBFICombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue N1 = N->getOperand(1);
+ if (N1.getOpcode() == ISD::AND) {
+ ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
+ if (!N11C)
+ return SDValue();
+ unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
+ unsigned LSB = countTrailingZeros(~InvMask);
+ unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
+ unsigned Mask = (1 << Width)-1;
+ unsigned Mask2 = N11C->getZExtValue();
+ if ((Mask & (~Mask2)) == 0)
+ return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
+ N->getOperand(0), N1.getOperand(0),
+ N->getOperand(2));
+ }
+ return SDValue();
+}
+
+/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
+/// ARMISD::VMOVRRD.
+static SDValue PerformVMOVRRDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // vmovrrd(vmovdrr x, y) -> x,y
+ SDValue InDouble = N->getOperand(0);
+ if (InDouble.getOpcode() == ARMISD::VMOVDRR)
+ return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
+
+ // vmovrrd(load f64) -> (load i32), (load i32)
+ SDNode *InNode = InDouble.getNode();
+ if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
+ InNode->getValueType(0) == MVT::f64 &&
+ InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
+ !cast<LoadSDNode>(InNode)->isVolatile()) {
+ // TODO: Should this be done for non-FrameIndex operands?
+ LoadSDNode *LD = cast<LoadSDNode>(InNode);
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(LD);
+ SDValue BasePtr = LD->getBasePtr();
+ SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
+ LD->getPointerInfo(), LD->isVolatile(),
+ LD->isNonTemporal(), LD->isInvariant(),
+ LD->getAlignment());
+
+ SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
+ DAG.getConstant(4, MVT::i32));
+ SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
+ LD->getPointerInfo(), LD->isVolatile(),
+ LD->isNonTemporal(), LD->isInvariant(),
+ std::min(4U, LD->getAlignment() / 2));
+
+ DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
+ if (DCI.DAG.getTargetLoweringInfo().isBigEndian())
+ std::swap (NewLD1, NewLD2);
+ SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
+ DCI.RemoveFromWorklist(LD);
+ DAG.DeleteNode(LD);
+ return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
+/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
+static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
+ // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ if (Op0.getOpcode() == ISD::BITCAST)
+ Op0 = Op0.getOperand(0);
+ if (Op1.getOpcode() == ISD::BITCAST)
+ Op1 = Op1.getOperand(0);
+ if (Op0.getOpcode() == ARMISD::VMOVRRD &&
+ Op0.getNode() == Op1.getNode() &&
+ Op0.getResNo() == 0 && Op1.getResNo() == 1)
+ return DAG.getNode(ISD::BITCAST, SDLoc(N),
+ N->getValueType(0), Op0.getOperand(0));
+ return SDValue();
+}
+
+/// PerformSTORECombine - Target-specific dag combine xforms for
+/// ISD::STORE.
+static SDValue PerformSTORECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ StoreSDNode *St = cast<StoreSDNode>(N);
+ if (St->isVolatile())
+ return SDValue();
+
+ // Optimize trunc store (of multiple scalars) to shuffle and store. First,
+ // pack all of the elements in one place. Next, store to memory in fewer
+ // chunks.
+ SDValue StVal = St->getValue();
+ EVT VT = StVal.getValueType();
+ if (St->isTruncatingStore() && VT.isVector()) {
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT StVT = St->getMemoryVT();
+ unsigned NumElems = VT.getVectorNumElements();
+ assert(StVT != VT && "Cannot truncate to the same type");
+ unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
+ unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
+
+ // From, To sizes and ElemCount must be pow of two
+ if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
+
+ // We are going to use the original vector elt for storing.
+ // Accumulated smaller vector elements must be a multiple of the store size.
+ if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
+
+ unsigned SizeRatio = FromEltSz / ToEltSz;
+ assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
+
+ // Create a type on which we perform the shuffle.
+ EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
+ NumElems*SizeRatio);
+ assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ SDLoc DL(St);
+ SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
+ SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i < NumElems; ++i)
+ ShuffleVec[i] = TLI.isBigEndian() ? (i+1) * SizeRatio - 1 : i * SizeRatio;
+
+ // Can't shuffle using an illegal type.
+ if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
+ DAG.getUNDEF(WideVec.getValueType()),
+ ShuffleVec.data());
+ // At this point all of the data is stored at the bottom of the
+ // register. We now need to save it to mem.
+
+ // Find the largest store unit
+ MVT StoreType = MVT::i8;
+ for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
+ tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
+ MVT Tp = (MVT::SimpleValueType)tp;
+ if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
+ StoreType = Tp;
+ }
+ // Didn't find a legal store type.
+ if (!TLI.isTypeLegal(StoreType))
+ return SDValue();
+
+ // Bitcast the original vector into a vector of store-size units
+ EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
+ assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
+ SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
+ SmallVector<SDValue, 8> Chains;
+ SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
+ TLI.getPointerTy());
+ SDValue BasePtr = St->getBasePtr();
+
+ // Perform one or more big stores into memory.
+ unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
+ for (unsigned I = 0; I < E; I++) {
+ SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
+ StoreType, ShuffWide,
+ DAG.getIntPtrConstant(I));
+ SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+ BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
+ Increment);
+ Chains.push_back(Ch);
+ }
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
+ }
+
+ if (!ISD::isNormalStore(St))
+ return SDValue();
+
+ // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
+ // ARM stores of arguments in the same cache line.
+ if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
+ StVal.getNode()->hasOneUse()) {
+ SelectionDAG &DAG = DCI.DAG;
+ bool isBigEndian = DAG.getTargetLoweringInfo().isBigEndian();
+ SDLoc DL(St);
+ SDValue BasePtr = St->getBasePtr();
+ SDValue NewST1 = DAG.getStore(St->getChain(), DL,
+ StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
+ BasePtr, St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+
+ SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
+ DAG.getConstant(4, MVT::i32));
+ return DAG.getStore(NewST1.getValue(0), DL,
+ StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
+ OffsetPtr, St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(),
+ std::min(4U, St->getAlignment() / 2));
+ }
+
+ if (StVal.getValueType() != MVT::i64 ||
+ StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ // Bitcast an i64 store extracted from a vector to f64.
+ // Otherwise, the i64 value will be legalized to a pair of i32 values.
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(StVal);
+ SDValue IntVec = StVal.getOperand(0);
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
+ IntVec.getValueType().getVectorNumElements());
+ SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
+ SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ Vec, StVal.getOperand(1));
+ dl = SDLoc(N);
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(Vec.getNode());
+ DCI.AddToWorklist(ExtElt.getNode());
+ DCI.AddToWorklist(V.getNode());
+ return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment(),
+ St->getTBAAInfo());
+}
+
+/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
+/// are normal, non-volatile loads. If so, it is profitable to bitcast an
+/// i64 vector to have f64 elements, since the value can then be loaded
+/// directly into a VFP register.
+static bool hasNormalLoadOperand(SDNode *N) {
+ unsigned NumElts = N->getValueType(0).getVectorNumElements();
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDNode *Elt = N->getOperand(i).getNode();
+ if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
+ return true;
+ }
+ return false;
+}
+
+/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
+/// ISD::BUILD_VECTOR.
+static SDValue PerformBUILD_VECTORCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI){
+ // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
+ // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
+ // into a pair of GPRs, which is fine when the value is used as a scalar,
+ // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
+ SelectionDAG &DAG = DCI.DAG;
+ if (N->getNumOperands() == 2) {
+ SDValue RV = PerformVMOVDRRCombine(N, DAG);
+ if (RV.getNode())
+ return RV;
+ }
+
+ // Load i64 elements as f64 values so that type legalization does not split
+ // them up into i32 values.
+ EVT VT = N->getValueType(0);
+ if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
+ return SDValue();
+ SDLoc dl(N);
+ SmallVector<SDValue, 8> Ops;
+ unsigned NumElts = VT.getVectorNumElements();
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
+ Ops.push_back(V);
+ // Make the DAGCombiner fold the bitcast.
+ DCI.AddToWorklist(V.getNode());
+ }
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops);
+ return DAG.getNode(ISD::BITCAST, dl, VT, BV);
+}
+
+/// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
+static SDValue
+PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
+ // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
+ // At that time, we may have inserted bitcasts from integer to float.
+ // If these bitcasts have survived DAGCombine, change the lowering of this
+ // BUILD_VECTOR in something more vector friendly, i.e., that does not
+ // force to use floating point types.
+
+ // Make sure we can change the type of the vector.
+ // This is possible iff:
+ // 1. The vector is only used in a bitcast to a integer type. I.e.,
+ // 1.1. Vector is used only once.
+ // 1.2. Use is a bit convert to an integer type.
+ // 2. The size of its operands are 32-bits (64-bits are not legal).
+ EVT VT = N->getValueType(0);
+ EVT EltVT = VT.getVectorElementType();
+
+ // Check 1.1. and 2.
+ if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
+ return SDValue();
+
+ // By construction, the input type must be float.
+ assert(EltVT == MVT::f32 && "Unexpected type!");
+
+ // Check 1.2.
+ SDNode *Use = *N->use_begin();
+ if (Use->getOpcode() != ISD::BITCAST ||
+ Use->getValueType(0).isFloatingPoint())
+ return SDValue();
+
+ // Check profitability.
+ // Model is, if more than half of the relevant operands are bitcast from
+ // i32, turn the build_vector into a sequence of insert_vector_elt.
+ // Relevant operands are everything that is not statically
+ // (i.e., at compile time) bitcasted.
+ unsigned NumOfBitCastedElts = 0;
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumOfRelevantElts = NumElts;
+ for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
+ SDValue Elt = N->getOperand(Idx);
+ if (Elt->getOpcode() == ISD::BITCAST) {
+ // Assume only bit cast to i32 will go away.
+ if (Elt->getOperand(0).getValueType() == MVT::i32)
+ ++NumOfBitCastedElts;
+ } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
+ // Constants are statically casted, thus do not count them as
+ // relevant operands.
+ --NumOfRelevantElts;
+ }
+
+ // Check if more than half of the elements require a non-free bitcast.
+ if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ // Create the new vector type.
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
+ // Check if the type is legal.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!TLI.isTypeLegal(VecVT))
+ return SDValue();
+
+ // Combine:
+ // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
+ // => BITCAST INSERT_VECTOR_ELT
+ // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
+ // (BITCAST EN), N.
+ SDValue Vec = DAG.getUNDEF(VecVT);
+ SDLoc dl(N);
+ for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
+ SDValue V = N->getOperand(Idx);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ if (V.getOpcode() == ISD::BITCAST &&
+ V->getOperand(0).getValueType() == MVT::i32)
+ // Fold obvious case.
+ V = V.getOperand(0);
+ else {
+ V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(V.getNode());
+ }
+ SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
+ }
+ Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(Vec.getNode());
+ return Vec;
+}
+
+/// PerformInsertEltCombine - Target-specific dag combine xforms for
+/// ISD::INSERT_VECTOR_ELT.
+static SDValue PerformInsertEltCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // Bitcast an i64 load inserted into a vector to f64.
+ // Otherwise, the i64 value will be legalized to a pair of i32 values.
+ EVT VT = N->getValueType(0);
+ SDNode *Elt = N->getOperand(1).getNode();
+ if (VT.getVectorElementType() != MVT::i64 ||
+ !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(N);
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
+ VT.getVectorNumElements());
+ SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(Vec.getNode());
+ DCI.AddToWorklist(V.getNode());
+ SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
+ Vec, V, N->getOperand(2));
+ return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
+}
+
+/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
+/// ISD::VECTOR_SHUFFLE.
+static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
+ // The LLVM shufflevector instruction does not require the shuffle mask
+ // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
+ // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
+ // operands do not match the mask length, they are extended by concatenating
+ // them with undef vectors. That is probably the right thing for other
+ // targets, but for NEON it is better to concatenate two double-register
+ // size vector operands into a single quad-register size vector. Do that
+ // transformation here:
+ // shuffle(concat(v1, undef), concat(v2, undef)) ->
+ // shuffle(concat(v1, v2), undef)
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
+ Op1.getOpcode() != ISD::CONCAT_VECTORS ||
+ Op0.getNumOperands() != 2 ||
+ Op1.getNumOperands() != 2)
+ return SDValue();
+ SDValue Concat0Op1 = Op0.getOperand(1);
+ SDValue Concat1Op1 = Op1.getOperand(1);
+ if (Concat0Op1.getOpcode() != ISD::UNDEF ||
+ Concat1Op1.getOpcode() != ISD::UNDEF)
+ return SDValue();
+ // Skip the transformation if any of the types are illegal.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = N->getValueType(0);
+ if (!TLI.isTypeLegal(VT) ||
+ !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
+ !TLI.isTypeLegal(Concat1Op1.getValueType()))
+ return SDValue();
+
+ SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
+ Op0.getOperand(0), Op1.getOperand(0));
+ // Translate the shuffle mask.
+ SmallVector<int, 16> NewMask;
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned HalfElts = NumElts/2;
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
+ for (unsigned n = 0; n < NumElts; ++n) {
+ int MaskElt = SVN->getMaskElt(n);
+ int NewElt = -1;
+ if (MaskElt < (int)HalfElts)
+ NewElt = MaskElt;
+ else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
+ NewElt = HalfElts + MaskElt - NumElts;
+ NewMask.push_back(NewElt);
+ }
+ return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
+ DAG.getUNDEF(VT), NewMask.data());
+}
+
+/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
+/// NEON load/store intrinsics to merge base address updates.
+static SDValue CombineBaseUpdate(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
+ N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
+ unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
+ SDValue Addr = N->getOperand(AddrOpIdx);
+
+ // Search for a use of the address operand that is an increment.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User->getOpcode() != ISD::ADD ||
+ UI.getUse().getResNo() != Addr.getResNo())
+ continue;
+
+ // Check that the add is independent of the load/store. Otherwise, folding
+ // it would create a cycle.
+ if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
+ continue;
+
+ // Find the new opcode for the updating load/store.
+ bool isLoad = true;
+ bool isLaneOp = false;
+ unsigned NewOpc = 0;
+ unsigned NumVecs = 0;
+ if (isIntrinsic) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default: llvm_unreachable("unexpected intrinsic for Neon base update");
+ case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
+ NumVecs = 1; break;
+ case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
+ NumVecs = 2; break;
+ case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
+ NumVecs = 3; break;
+ case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
+ NumVecs = 4; break;
+ case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
+ NumVecs = 2; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
+ NumVecs = 3; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
+ NumVecs = 4; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
+ NumVecs = 1; isLoad = false; break;
+ case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
+ NumVecs = 2; isLoad = false; break;
+ case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
+ NumVecs = 3; isLoad = false; break;
+ case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
+ NumVecs = 4; isLoad = false; break;
+ case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
+ NumVecs = 2; isLoad = false; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
+ NumVecs = 3; isLoad = false; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
+ NumVecs = 4; isLoad = false; isLaneOp = true; break;
+ }
+ } else {
+ isLaneOp = true;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected opcode for Neon base update");
+ case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
+ case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
+ case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
+ }
+ }
+
+ // Find the size of memory referenced by the load/store.
+ EVT VecTy;
+ if (isLoad)
+ VecTy = N->getValueType(0);
+ else
+ VecTy = N->getOperand(AddrOpIdx+1).getValueType();
+ unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
+ if (isLaneOp)
+ NumBytes /= VecTy.getVectorNumElements();
+
+ // If the increment is a constant, it must match the memory ref size.
+ SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
+ if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
+ uint64_t IncVal = CInc->getZExtValue();
+ if (IncVal != NumBytes)
+ continue;
+ } else if (NumBytes >= 3 * 16) {
+ // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
+ // separate instructions that make it harder to use a non-constant update.
+ continue;
+ }
+
+ // Create the new updating load/store node.
+ EVT Tys[6];
+ unsigned NumResultVecs = (isLoad ? NumVecs : 0);
+ unsigned n;
+ for (n = 0; n < NumResultVecs; ++n)
+ Tys[n] = VecTy;
+ Tys[n++] = MVT::i32;
+ Tys[n] = MVT::Other;
+ SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs+2));
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(N->getOperand(0)); // incoming chain
+ Ops.push_back(N->getOperand(AddrOpIdx));
+ Ops.push_back(Inc);
+ for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
+ Ops.push_back(N->getOperand(i));
+ }
+ MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
+ SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
+ Ops, MemInt->getMemoryVT(),
+ MemInt->getMemOperand());
+
+ // Update the uses.
+ std::vector<SDValue> NewResults;
+ for (unsigned i = 0; i < NumResultVecs; ++i) {
+ NewResults.push_back(SDValue(UpdN.getNode(), i));
+ }
+ NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
+ DCI.CombineTo(N, NewResults);
+ DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
+
+ break;
+ }
+ return SDValue();
+}
+
+/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
+/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
+/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
+/// return true.
+static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+ // vldN-dup instructions only support 64-bit vectors for N > 1.
+ if (!VT.is64BitVector())
+ return false;
+
+ // Check if the VDUPLANE operand is a vldN-dup intrinsic.
+ SDNode *VLD = N->getOperand(0).getNode();
+ if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
+ return false;
+ unsigned NumVecs = 0;
+ unsigned NewOpc = 0;
+ unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
+ if (IntNo == Intrinsic::arm_neon_vld2lane) {
+ NumVecs = 2;
+ NewOpc = ARMISD::VLD2DUP;
+ } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
+ NumVecs = 3;
+ NewOpc = ARMISD::VLD3DUP;
+ } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
+ NumVecs = 4;
+ NewOpc = ARMISD::VLD4DUP;
+ } else {
+ return false;
+ }
+
+ // First check that all the vldN-lane uses are VDUPLANEs and that the lane
+ // numbers match the load.
+ unsigned VLDLaneNo =
+ cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
+ for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
+ UI != UE; ++UI) {
+ // Ignore uses of the chain result.
+ if (UI.getUse().getResNo() == NumVecs)
+ continue;
+ SDNode *User = *UI;
+ if (User->getOpcode() != ARMISD::VDUPLANE ||
+ VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
+ return false;
+ }
+
+ // Create the vldN-dup node.
+ EVT Tys[5];
+ unsigned n;
+ for (n = 0; n < NumVecs; ++n)
+ Tys[n] = VT;
+ Tys[n] = MVT::Other;
+ SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumVecs+1));
+ SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
+ MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
+ SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
+ Ops, VLDMemInt->getMemoryVT(),
+ VLDMemInt->getMemOperand());
+
+ // Update the uses.
+ for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
+ UI != UE; ++UI) {
+ unsigned ResNo = UI.getUse().getResNo();
+ // Ignore uses of the chain result.
+ if (ResNo == NumVecs)
+ continue;
+ SDNode *User = *UI;
+ DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
+ }
+
+ // Now the vldN-lane intrinsic is dead except for its chain result.
+ // Update uses of the chain.
+ std::vector<SDValue> VLDDupResults;
+ for (unsigned n = 0; n < NumVecs; ++n)
+ VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
+ VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
+ DCI.CombineTo(VLD, VLDDupResults);
+
+ return true;
+}
+
+/// PerformVDUPLANECombine - Target-specific dag combine xforms for
+/// ARMISD::VDUPLANE.
+static SDValue PerformVDUPLANECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue Op = N->getOperand(0);
+
+ // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
+ // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
+ if (CombineVLDDUP(N, DCI))
+ return SDValue(N, 0);
+
+ // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
+ // redundant. Ignore bit_converts for now; element sizes are checked below.
+ while (Op.getOpcode() == ISD::BITCAST)
+ Op = Op.getOperand(0);
+ if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
+ return SDValue();
+
+ // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
+ unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
+ // The canonical VMOV for a zero vector uses a 32-bit element size.
+ unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ unsigned EltBits;
+ if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
+ EltSize = 8;
+ EVT VT = N->getValueType(0);
+ if (EltSize > VT.getVectorElementType().getSizeInBits())
+ return SDValue();
+
+ return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
+}
+
+// isConstVecPow2 - Return true if each vector element is a power of 2, all
+// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
+static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
+{
+ integerPart cN;
+ integerPart c0 = 0;
+ for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
+ I != E; I++) {
+ ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
+ if (!C)
+ return false;
+
+ bool isExact;
+ APFloat APF = C->getValueAPF();
+ if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
+ != APFloat::opOK || !isExact)
+ return false;
+
+ c0 = (I == 0) ? cN : c0;
+ if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
+ return false;
+ }
+ C = c0;
+ return true;
+}
+
+/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
+/// can replace combinations of VMUL and VCVT (floating-point to integer)
+/// when the VMUL has a constant operand that is a power of 2.
+///
+/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
+/// vmul.f32 d16, d17, d16
+/// vcvt.s32.f32 d16, d16
+/// becomes:
+/// vcvt.s32.f32 d16, d16, #3
+static SDValue PerformVCVTCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Op = N->getOperand(0);
+
+ if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
+ Op.getOpcode() != ISD::FMUL)
+ return SDValue();
+
+ uint64_t C;
+ SDValue N0 = Op->getOperand(0);
+ SDValue ConstVec = Op->getOperand(1);
+ bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
+
+ if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
+ !isConstVecPow2(ConstVec, isSigned, C))
+ return SDValue();
+
+ MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
+ MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
+ if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
+ // These instructions only exist converting from f32 to i32. We can handle
+ // smaller integers by generating an extra truncate, but larger ones would
+ // be lossy.
+ return SDValue();
+ }
+
+ unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
+ Intrinsic::arm_neon_vcvtfp2fxu;
+ unsigned NumLanes = Op.getValueType().getVectorNumElements();
+ SDValue FixConv = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
+ NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
+ DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
+ DAG.getConstant(Log2_64(C), MVT::i32));
+
+ if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
+ FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv);
+
+ return FixConv;
+}
+
+/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
+/// can replace combinations of VCVT (integer to floating-point) and VDIV
+/// when the VDIV has a constant operand that is a power of 2.
+///
+/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
+/// vcvt.f32.s32 d16, d16
+/// vdiv.f32 d16, d17, d16
+/// becomes:
+/// vcvt.f32.s32 d16, d16, #3
+static SDValue PerformVDIVCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Op = N->getOperand(0);
+ unsigned OpOpcode = Op.getNode()->getOpcode();
+
+ if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
+ (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
+ return SDValue();
+
+ uint64_t C;
+ SDValue ConstVec = N->getOperand(1);
+ bool isSigned = OpOpcode == ISD::SINT_TO_FP;
+
+ if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
+ !isConstVecPow2(ConstVec, isSigned, C))
+ return SDValue();
+
+ MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
+ MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
+ if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
+ // These instructions only exist converting from i32 to f32. We can handle
+ // smaller integers by generating an extra extend, but larger ones would
+ // be lossy.
+ return SDValue();
+ }
+
+ SDValue ConvInput = Op.getOperand(0);
+ unsigned NumLanes = Op.getValueType().getVectorNumElements();
+ if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
+ ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
+ SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
+ ConvInput);
+
+ unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
+ Intrinsic::arm_neon_vcvtfxu2fp;
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
+ Op.getValueType(),
+ DAG.getConstant(IntrinsicOpcode, MVT::i32),
+ ConvInput, DAG.getConstant(Log2_64(C), MVT::i32));
+}
+
+/// Getvshiftimm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift operation, where all the elements of the
+/// build_vector must have the same constant integer value.
+static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
+ // Ignore bit_converts.
+ while (Op.getOpcode() == ISD::BITCAST)
+ Op = Op.getOperand(0);
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
+ HasAnyUndefs, ElementBits) ||
+ SplatBitSize > ElementBits)
+ return false;
+ Cnt = SplatBits.getSExtValue();
+ return true;
+}
+
+/// isVShiftLImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift left operation. That value must be in the range:
+/// 0 <= Value < ElementBits for a left shift; or
+/// 0 <= Value <= ElementBits for a long left shift.
+static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (! getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
+}
+
+/// isVShiftRImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift right operation. For a shift opcode, the value
+/// is positive, but for an intrinsic the value count must be negative. The
+/// absolute value must be in the range:
+/// 1 <= |Value| <= ElementBits for a right shift; or
+/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
+static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
+ int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (! getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ if (isIntrinsic)
+ Cnt = -Cnt;
+ return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
+}
+
+/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
+static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ // Don't do anything for most intrinsics.
+ break;
+
+ // Vector shifts: check for immediate versions and lower them.
+ // Note: This is done during DAG combining instead of DAG legalizing because
+ // the build_vectors for 64-bit vector element shift counts are generally
+ // not legal, and it is hard to see their values after they get legalized to
+ // loads from a constant pool.
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ case Intrinsic::arm_neon_vrshifts:
+ case Intrinsic::arm_neon_vrshiftu:
+ case Intrinsic::arm_neon_vrshiftn:
+ case Intrinsic::arm_neon_vqshifts:
+ case Intrinsic::arm_neon_vqshiftu:
+ case Intrinsic::arm_neon_vqshiftsu:
+ case Intrinsic::arm_neon_vqshiftns:
+ case Intrinsic::arm_neon_vqshiftnu:
+ case Intrinsic::arm_neon_vqshiftnsu:
+ case Intrinsic::arm_neon_vqrshiftns:
+ case Intrinsic::arm_neon_vqrshiftnu:
+ case Intrinsic::arm_neon_vqrshiftnsu: {
+ EVT VT = N->getOperand(1).getValueType();
+ int64_t Cnt;
+ unsigned VShiftOpc = 0;
+
+ switch (IntNo) {
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
+ VShiftOpc = ARMISD::VSHL;
+ break;
+ }
+ if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
+ VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
+ ARMISD::VSHRs : ARMISD::VSHRu);
+ break;
+ }
+ return SDValue();
+
+ case Intrinsic::arm_neon_vrshifts:
+ case Intrinsic::arm_neon_vrshiftu:
+ if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
+ break;
+ return SDValue();
+
+ case Intrinsic::arm_neon_vqshifts:
+ case Intrinsic::arm_neon_vqshiftu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
+ break;
+ return SDValue();
+
+ case Intrinsic::arm_neon_vqshiftsu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
+ break;
+ llvm_unreachable("invalid shift count for vqshlu intrinsic");
+
+ case Intrinsic::arm_neon_vrshiftn:
+ case Intrinsic::arm_neon_vqshiftns:
+ case Intrinsic::arm_neon_vqshiftnu:
+ case Intrinsic::arm_neon_vqshiftnsu:
+ case Intrinsic::arm_neon_vqrshiftns:
+ case Intrinsic::arm_neon_vqrshiftnu:
+ case Intrinsic::arm_neon_vqrshiftnsu:
+ // Narrowing shifts require an immediate right shift.
+ if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
+ break;
+ llvm_unreachable("invalid shift count for narrowing vector shift "
+ "intrinsic");
+
+ default:
+ llvm_unreachable("unhandled vector shift");
+ }
+
+ switch (IntNo) {
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ // Opcode already set above.
+ break;
+ case Intrinsic::arm_neon_vrshifts:
+ VShiftOpc = ARMISD::VRSHRs; break;
+ case Intrinsic::arm_neon_vrshiftu:
+ VShiftOpc = ARMISD::VRSHRu; break;
+ case Intrinsic::arm_neon_vrshiftn:
+ VShiftOpc = ARMISD::VRSHRN; break;
+ case Intrinsic::arm_neon_vqshifts:
+ VShiftOpc = ARMISD::VQSHLs; break;
+ case Intrinsic::arm_neon_vqshiftu:
+ VShiftOpc = ARMISD::VQSHLu; break;
+ case Intrinsic::arm_neon_vqshiftsu:
+ VShiftOpc = ARMISD::VQSHLsu; break;
+ case Intrinsic::arm_neon_vqshiftns:
+ VShiftOpc = ARMISD::VQSHRNs; break;
+ case Intrinsic::arm_neon_vqshiftnu:
+ VShiftOpc = ARMISD::VQSHRNu; break;
+ case Intrinsic::arm_neon_vqshiftnsu:
+ VShiftOpc = ARMISD::VQSHRNsu; break;
+ case Intrinsic::arm_neon_vqrshiftns:
+ VShiftOpc = ARMISD::VQRSHRNs; break;
+ case Intrinsic::arm_neon_vqrshiftnu:
+ VShiftOpc = ARMISD::VQRSHRNu; break;
+ case Intrinsic::arm_neon_vqrshiftnsu:
+ VShiftOpc = ARMISD::VQRSHRNsu; break;
+ }
+
+ return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
+ N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
+ }
+
+ case Intrinsic::arm_neon_vshiftins: {
+ EVT VT = N->getOperand(1).getValueType();
+ int64_t Cnt;
+ unsigned VShiftOpc = 0;
+
+ if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
+ VShiftOpc = ARMISD::VSLI;
+ else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
+ VShiftOpc = ARMISD::VSRI;
+ else {
+ llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
+ }
+
+ return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
+ N->getOperand(1), N->getOperand(2),
+ DAG.getConstant(Cnt, MVT::i32));
+ }
+
+ case Intrinsic::arm_neon_vqrshifts:
+ case Intrinsic::arm_neon_vqrshiftu:
+ // No immediate versions of these to check for.
+ break;
+ }
+
+ return SDValue();
+}
+
+/// PerformShiftCombine - Checks for immediate versions of vector shifts and
+/// lowers them. As with the vector shift intrinsics, this is done during DAG
+/// combining instead of DAG legalizing because the build_vectors for 64-bit
+/// vector element shift counts are generally not legal, and it is hard to see
+/// their values after they get legalized to loads from a constant pool.
+static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
+ // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
+ // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
+ SDValue N1 = N->getOperand(1);
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
+ SDValue N0 = N->getOperand(0);
+ if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
+ DAG.MaskedValueIsZero(N0.getOperand(0),
+ APInt::getHighBitsSet(32, 16)))
+ return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
+ }
+ }
+
+ // Nothing to be done for scalar shifts.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!VT.isVector() || !TLI.isTypeLegal(VT))
+ return SDValue();
+
+ assert(ST->hasNEON() && "unexpected vector shift");
+ int64_t Cnt;
+
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected shift opcode");
+
+ case ISD::SHL:
+ if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
+ return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0),
+ DAG.getConstant(Cnt, MVT::i32));
+ break;
+
+ case ISD::SRA:
+ case ISD::SRL:
+ if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
+ unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
+ ARMISD::VSHRs : ARMISD::VSHRu);
+ return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0),
+ DAG.getConstant(Cnt, MVT::i32));
+ }
+ }
+ return SDValue();
+}
+
+/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
+/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
+static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ SDValue N0 = N->getOperand(0);
+
+ // Check for sign- and zero-extensions of vector extract operations of 8-
+ // and 16-bit vector elements. NEON supports these directly. They are
+ // handled during DAG combining because type legalization will promote them
+ // to 32-bit types and it is messy to recognize the operations after that.
+ if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ SDValue Vec = N0.getOperand(0);
+ SDValue Lane = N0.getOperand(1);
+ EVT VT = N->getValueType(0);
+ EVT EltVT = N0.getValueType();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ if (VT == MVT::i32 &&
+ (EltVT == MVT::i8 || EltVT == MVT::i16) &&
+ TLI.isTypeLegal(Vec.getValueType()) &&
+ isa<ConstantSDNode>(Lane)) {
+
+ unsigned Opc = 0;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case ISD::SIGN_EXTEND:
+ Opc = ARMISD::VGETLANEs;
+ break;
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ Opc = ARMISD::VGETLANEu;
+ break;
+ }
+ return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
+ }
+ }
+
+ return SDValue();
+}
+
+/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
+/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
+static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ // If the target supports NEON, try to use vmax/vmin instructions for f32
+ // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set,
+ // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is
+ // a NaN; only do the transformation when it matches that behavior.
+
+ // For now only do this when using NEON for FP operations; if using VFP, it
+ // is not obvious that the benefit outweighs the cost of switching to the
+ // NEON pipeline.
+ if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
+ N->getValueType(0) != MVT::f32)
+ return SDValue();
+
+ SDValue CondLHS = N->getOperand(0);
+ SDValue CondRHS = N->getOperand(1);
+ SDValue LHS = N->getOperand(2);
+ SDValue RHS = N->getOperand(3);
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
+
+ unsigned Opcode = 0;
+ bool IsReversed;
+ if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
+ IsReversed = false; // x CC y ? x : y
+ } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
+ IsReversed = true ; // x CC y ? y : x
+ } else {
+ return SDValue();
+ }
+
+ bool IsUnordered;
+ switch (CC) {
+ default: break;
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ case ISD::SETULT:
+ case ISD::SETULE:
+ // If LHS is NaN, an ordered comparison will be false and the result will
+ // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS
+ // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
+ IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
+ if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
+ break;
+ // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
+ // will return -0, so vmin can only be used for unsafe math or if one of
+ // the operands is known to be nonzero.
+ if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
+ !DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
+ break;
+
+ case ISD::SETOGT:
+ case ISD::SETOGE:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ // If LHS is NaN, an ordered comparison will be false and the result will
+ // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS
+ // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
+ IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
+ if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
+ break;
+ // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
+ // will return +0, so vmax can only be used for unsafe math or if one of
+ // the operands is known to be nonzero.
+ if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
+ !DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
+ break;
+ }
+
+ if (!Opcode)
+ return SDValue();
+ return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
+}
+
+/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
+SDValue
+ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
+ SDValue Cmp = N->getOperand(4);
+ if (Cmp.getOpcode() != ARMISD::CMPZ)
+ // Only looking at EQ and NE cases.
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+ SDValue LHS = Cmp.getOperand(0);
+ SDValue RHS = Cmp.getOperand(1);
+ SDValue FalseVal = N->getOperand(0);
+ SDValue TrueVal = N->getOperand(1);
+ SDValue ARMcc = N->getOperand(2);
+ ARMCC::CondCodes CC =
+ (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
+
+ // Simplify
+ // mov r1, r0
+ // cmp r1, x
+ // mov r0, y
+ // moveq r0, x
+ // to
+ // cmp r0, x
+ // movne r0, y
+ //
+ // mov r1, r0
+ // cmp r1, x
+ // mov r0, x
+ // movne r0, y
+ // to
+ // cmp r0, x
+ // movne r0, y
+ /// FIXME: Turn this into a target neutral optimization?
+ SDValue Res;
+ if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
+ Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
+ N->getOperand(3), Cmp);
+ } else if (CC == ARMCC::EQ && TrueVal == RHS) {
+ SDValue ARMcc;
+ SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
+ Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
+ N->getOperand(3), NewCmp);
+ }
+
+ if (Res.getNode()) {
+ APInt KnownZero, KnownOne;
+ DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
+ // Capture demanded bits information that would be otherwise lost.
+ if (KnownZero == 0xfffffffe)
+ Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
+ DAG.getValueType(MVT::i1));
+ else if (KnownZero == 0xffffff00)
+ Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
+ DAG.getValueType(MVT::i8));
+ else if (KnownZero == 0xffff0000)
+ Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
+ DAG.getValueType(MVT::i16));
+ }
+
+ return Res;
+}
+
+SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget);
+ case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
+ case ISD::SUB: return PerformSUBCombine(N, DCI);
+ case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
+ case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
+ case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
+ case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
+ case ARMISD::BFI: return PerformBFICombine(N, DCI);
+ case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
+ case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
+ case ISD::STORE: return PerformSTORECombine(N, DCI);
+ case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
+ case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
+ case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
+ case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
+ case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget);
+ case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
+ case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
+ case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
+ case ARMISD::VLD2DUP:
+ case ARMISD::VLD3DUP:
+ case ARMISD::VLD4DUP:
+ return CombineBaseUpdate(N, DCI);
+ case ARMISD::BUILD_VECTOR:
+ return PerformARMBUILD_VECTORCombine(N, DCI);
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN:
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane:
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane:
+ return CombineBaseUpdate(N, DCI);
+ default: break;
+ }
+ break;
+ }
+ return SDValue();
+}
+
+bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
+ EVT VT) const {
+ return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
+}
+
+bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, unsigned,
+ bool *Fast) const {
+ // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
+ bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default:
+ return false;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32: {
+ // Unaligned access can use (for example) LRDB, LRDH, LDR
+ if (AllowsUnaligned) {
+ if (Fast)
+ *Fast = Subtarget->hasV7Ops();
+ return true;
+ }
+ return false;
+ }
+ case MVT::f64:
+ case MVT::v2f64: {
+ // For any little-endian targets with neon, we can support unaligned ld/st
+ // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
+ // A big-endian target may also explicitly support unaligned accesses
+ if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
+ if (Fast)
+ *Fast = true;
+ return true;
+ }
+ return false;
+ }
+ }
+}
+
+static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
+ unsigned AlignCheck) {
+ return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
+ (DstAlign == 0 || DstAlign % AlignCheck == 0));
+}
+
+EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ const Function *F = MF.getFunction();
+
+ // See if we can use NEON instructions for this...
+ if ((!IsMemset || ZeroMemset) &&
+ Subtarget->hasNEON() &&
+ !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NoImplicitFloat)) {
+ bool Fast;
+ if (Size >= 16 &&
+ (memOpAlign(SrcAlign, DstAlign, 16) ||
+ (allowsUnalignedMemoryAccesses(MVT::v2f64, 0, &Fast) && Fast))) {
+ return MVT::v2f64;
+ } else if (Size >= 8 &&
+ (memOpAlign(SrcAlign, DstAlign, 8) ||
+ (allowsUnalignedMemoryAccesses(MVT::f64, 0, &Fast) && Fast))) {
+ return MVT::f64;
+ }
+ }
+
+ // Lowering to i32/i16 if the size permits.
+ if (Size >= 4)
+ return MVT::i32;
+ else if (Size >= 2)
+ return MVT::i16;
+
+ // Let the target-independent logic figure it out.
+ return MVT::Other;
+}
+
+bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ if (Val.getOpcode() != ISD::LOAD)
+ return false;
+
+ EVT VT1 = Val.getValueType();
+ if (!VT1.isSimple() || !VT1.isInteger() ||
+ !VT2.isSimple() || !VT2.isInteger())
+ return false;
+
+ switch (VT1.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
+ return true;
+ }
+
+ return false;
+}
+
+bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+
+ if (!isTypeLegal(EVT::getEVT(Ty1)))
+ return false;
+
+ assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
+
+ // Assuming the caller doesn't have a zeroext or signext return parameter,
+ // truncation all the way down to i1 is valid.
+ return true;
+}
+
+
+static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
+ if (V < 0)
+ return false;
+
+ unsigned Scale = 1;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ // Scale == 1;
+ break;
+ case MVT::i16:
+ // Scale == 2;
+ Scale = 2;
+ break;
+ case MVT::i32:
+ // Scale == 4;
+ Scale = 4;
+ break;
+ }
+
+ if ((V & (Scale - 1)) != 0)
+ return false;
+ V /= Scale;
+ return V == (V & ((1LL << 5) - 1));
+}
+
+static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
+ const ARMSubtarget *Subtarget) {
+ bool isNeg = false;
+ if (V < 0) {
+ isNeg = true;
+ V = - V;
+ }
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ // + imm12 or - imm8
+ if (isNeg)
+ return V == (V & ((1LL << 8) - 1));
+ return V == (V & ((1LL << 12) - 1));
+ case MVT::f32:
+ case MVT::f64:
+ // Same as ARM mode. FIXME: NEON?
+ if (!Subtarget->hasVFP2())
+ return false;
+ if ((V & 3) != 0)
+ return false;
+ V >>= 2;
+ return V == (V & ((1LL << 8) - 1));
+ }
+}
+
+/// isLegalAddressImmediate - Return true if the integer value can be used
+/// as the offset of the target addressing mode for load / store of the
+/// given type.
+static bool isLegalAddressImmediate(int64_t V, EVT VT,
+ const ARMSubtarget *Subtarget) {
+ if (V == 0)
+ return true;
+
+ if (!VT.isSimple())
+ return false;
+
+ if (Subtarget->isThumb1Only())
+ return isLegalT1AddressImmediate(V, VT);
+ else if (Subtarget->isThumb2())
+ return isLegalT2AddressImmediate(V, VT, Subtarget);
+
+ // ARM mode.
+ if (V < 0)
+ V = - V;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i32:
+ // +- imm12
+ return V == (V & ((1LL << 12) - 1));
+ case MVT::i16:
+ // +- imm8
+ return V == (V & ((1LL << 8) - 1));
+ case MVT::f32:
+ case MVT::f64:
+ if (!Subtarget->hasVFP2()) // FIXME: NEON?
+ return false;
+ if ((V & 3) != 0)
+ return false;
+ V >>= 2;
+ return V == (V & ((1LL << 8) - 1));
+ }
+}
+
+bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
+ EVT VT) const {
+ int Scale = AM.Scale;
+ if (Scale < 0)
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ if (Scale == 1)
+ return true;
+ // r + r << imm
+ Scale = Scale & ~1;
+ return Scale == 2 || Scale == 4 || Scale == 8;
+ case MVT::i64:
+ // r + r
+ if (((unsigned)AM.HasBaseReg + Scale) <= 2)
+ return true;
+ return false;
+ case MVT::isVoid:
+ // Note, we allow "void" uses (basically, uses that aren't loads or
+ // stores), because arm allows folding a scale into many arithmetic
+ // operations. This should be made more precise and revisited later.
+
+ // Allow r << imm, but the imm has to be a multiple of two.
+ if (Scale & 1) return false;
+ return isPowerOf2_32(Scale);
+ }
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ EVT VT = getValueType(Ty, true);
+ if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
+ return false;
+
+ // Can never fold addr of global into load/store.
+ if (AM.BaseGV)
+ return false;
+
+ switch (AM.Scale) {
+ case 0: // no scale reg, must be "r+i" or "r", or "i".
+ break;
+ case 1:
+ if (Subtarget->isThumb1Only())
+ return false;
+ // FALL THROUGH.
+ default:
+ // ARM doesn't support any R+R*scale+imm addr modes.
+ if (AM.BaseOffs)
+ return false;
+
+ if (!VT.isSimple())
+ return false;
+
+ if (Subtarget->isThumb2())
+ return isLegalT2ScaledAddressingMode(AM, VT);
+
+ int Scale = AM.Scale;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i32:
+ if (Scale < 0) Scale = -Scale;
+ if (Scale == 1)
+ return true;
+ // r + r << imm
+ return isPowerOf2_32(Scale & ~1);
+ case MVT::i16:
+ case MVT::i64:
+ // r + r
+ if (((unsigned)AM.HasBaseReg + Scale) <= 2)
+ return true;
+ return false;
+
+ case MVT::isVoid:
+ // Note, we allow "void" uses (basically, uses that aren't loads or
+ // stores), because arm allows folding a scale into many arithmetic
+ // operations. This should be made more precise and revisited later.
+
+ // Allow r << imm, but the imm has to be a multiple of two.
+ if (Scale & 1) return false;
+ return isPowerOf2_32(Scale);
+ }
+ }
+ return true;
+}
+
+/// isLegalICmpImmediate - Return true if the specified immediate is legal
+/// icmp immediate, that is the target has icmp instructions which can compare
+/// a register against the immediate without having to materialize the
+/// immediate into a register.
+bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
+ // Thumb2 and ARM modes can use cmn for negative immediates.
+ if (!Subtarget->isThumb())
+ return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
+ if (Subtarget->isThumb2())
+ return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
+ // Thumb1 doesn't have cmn, and only 8-bit immediates.
+ return Imm >= 0 && Imm <= 255;
+}
+
+/// isLegalAddImmediate - Return true if the specified immediate is a legal add
+/// *or sub* immediate, that is the target has add or sub instructions which can
+/// add a register with the immediate without having to materialize the
+/// immediate into a register.
+bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
+ // Same encoding for add/sub, just flip the sign.
+ int64_t AbsImm = llvm::abs64(Imm);
+ if (!Subtarget->isThumb())
+ return ARM_AM::getSOImmVal(AbsImm) != -1;
+ if (Subtarget->isThumb2())
+ return ARM_AM::getT2SOImmVal(AbsImm) != -1;
+ // Thumb1 only has 8-bit unsigned immediate.
+ return AbsImm >= 0 && AbsImm <= 255;
+}
+
+static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
+ bool isSEXTLoad, SDValue &Base,
+ SDValue &Offset, bool &isInc,
+ SelectionDAG &DAG) {
+ if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
+ return false;
+
+ if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
+ // AddressingMode 3
+ Base = Ptr->getOperand(0);
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -256) {
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
+ return true;
+ }
+ }
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Offset = Ptr->getOperand(1);
+ return true;
+ } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
+ // AddressingMode 2
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -0x1000) {
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
+ Base = Ptr->getOperand(0);
+ return true;
+ }
+ }
+
+ if (Ptr->getOpcode() == ISD::ADD) {
+ isInc = true;
+ ARM_AM::ShiftOpc ShOpcVal=
+ ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
+ if (ShOpcVal != ARM_AM::no_shift) {
+ Base = Ptr->getOperand(1);
+ Offset = Ptr->getOperand(0);
+ } else {
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ }
+ return true;
+ }
+
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ return true;
+ }
+
+ // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
+ return false;
+}
+
+static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
+ bool isSEXTLoad, SDValue &Base,
+ SDValue &Offset, bool &isInc,
+ SelectionDAG &DAG) {
+ if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
+ return false;
+
+ Base = Ptr->getOperand(0);
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
+ return true;
+ } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
+ isInc = Ptr->getOpcode() == ISD::ADD;
+ Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// getPreIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if the node's address
+/// can be legally represented as pre-indexed load / store address.
+bool
+ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ if (Subtarget->isThumb1Only())
+ return false;
+
+ EVT VT;
+ SDValue Ptr;
+ bool isSEXTLoad = false;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ Ptr = LD->getBasePtr();
+ VT = LD->getMemoryVT();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ Ptr = ST->getBasePtr();
+ VT = ST->getMemoryVT();
+ } else
+ return false;
+
+ bool isInc;
+ bool isLegal = false;
+ if (Subtarget->isThumb2())
+ isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
+ Offset, isInc, DAG);
+ else
+ isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
+ Offset, isInc, DAG);
+ if (!isLegal)
+ return false;
+
+ AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
+ return true;
+}
+
+/// getPostIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if this node can be
+/// combined with a load / store to form a post-indexed load / store.
+bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ if (Subtarget->isThumb1Only())
+ return false;
+
+ EVT VT;
+ SDValue Ptr;
+ bool isSEXTLoad = false;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ Ptr = LD->getBasePtr();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ Ptr = ST->getBasePtr();
+ } else
+ return false;
+
+ bool isInc;
+ bool isLegal = false;
+ if (Subtarget->isThumb2())
+ isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ else
+ isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ if (!isLegal)
+ return false;
+
+ if (Ptr != Base) {
+ // Swap base ptr and offset to catch more post-index load / store when
+ // it's legal. In Thumb2 mode, offset must be an immediate.
+ if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
+ !Subtarget->isThumb2())
+ std::swap(Base, Offset);
+
+ // Post-indexed load / store update the base pointer.
+ if (Ptr != Base)
+ return false;
+ }
+
+ AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
+ return true;
+}
+
+void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ unsigned BitWidth = KnownOne.getBitWidth();
+ KnownZero = KnownOne = APInt(BitWidth, 0);
+ switch (Op.getOpcode()) {
+ default: break;
+ case ARMISD::ADDC:
+ case ARMISD::ADDE:
+ case ARMISD::SUBC:
+ case ARMISD::SUBE:
+ // These nodes' second result is a boolean
+ if (Op.getResNo() == 0)
+ break;
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
+ break;
+ case ARMISD::CMOV: {
+ // Bits are known zero/one if known on the LHS and RHS.
+ DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
+ if (KnownZero == 0 && KnownOne == 0) return;
+
+ APInt KnownZeroRHS, KnownOneRHS;
+ DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
+ KnownZero &= KnownZeroRHS;
+ KnownOne &= KnownOneRHS;
+ return;
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
+ Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
+ switch (IntID) {
+ default: return;
+ case Intrinsic::arm_ldaex:
+ case Intrinsic::arm_ldrex: {
+ EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
+ unsigned MemBits = VT.getScalarType().getSizeInBits();
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
+ return;
+ }
+ }
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
+ // Looking for "rev" which is V6+.
+ if (!Subtarget->hasV6Ops())
+ return false;
+
+ InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
+ std::string AsmStr = IA->getAsmString();
+ SmallVector<StringRef, 4> AsmPieces;
+ SplitString(AsmStr, AsmPieces, ";\n");
+
+ switch (AsmPieces.size()) {
+ default: return false;
+ case 1:
+ AsmStr = AsmPieces[0];
+ AsmPieces.clear();
+ SplitString(AsmStr, AsmPieces, " \t,");
+
+ // rev $0, $1
+ if (AsmPieces.size() == 3 &&
+ AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
+ IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
+ IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
+ if (Ty && Ty->getBitWidth() == 32)
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+ break;
+ }
+
+ return false;
+}
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+ARMTargetLowering::ConstraintType
+ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'l': return C_RegisterClass;
+ case 'w': return C_RegisterClass;
+ case 'h': return C_RegisterClass;
+ case 'x': return C_RegisterClass;
+ case 't': return C_RegisterClass;
+ case 'j': return C_Other; // Constant for movw.
+ // An address with a single base register. Due to the way we
+ // currently handle addresses it is the same as an 'r' memory constraint.
+ case 'Q': return C_Memory;
+ }
+ } else if (Constraint.size() == 2) {
+ switch (Constraint[0]) {
+ default: break;
+ // All 'U+' constraints are addresses.
+ case 'U': return C_Memory;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ARMTargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'l':
+ if (type->isIntegerTy()) {
+ if (Subtarget->isThumb())
+ weight = CW_SpecificReg;
+ else
+ weight = CW_Register;
+ }
+ break;
+ case 'w':
+ if (type->isFloatingPointTy())
+ weight = CW_Register;
+ break;
+ }
+ return weight;
+}
+
+typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
+RCPair
+ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const {
+ if (Constraint.size() == 1) {
+ // GCC ARM Constraint Letters
+ switch (Constraint[0]) {
+ case 'l': // Low regs or general regs.
+ if (Subtarget->isThumb())
+ return RCPair(0U, &ARM::tGPRRegClass);
+ return RCPair(0U, &ARM::GPRRegClass);
+ case 'h': // High regs or no regs.
+ if (Subtarget->isThumb())
+ return RCPair(0U, &ARM::hGPRRegClass);
+ break;
+ case 'r':
+ return RCPair(0U, &ARM::GPRRegClass);
+ case 'w':
+ if (VT == MVT::Other)
+ break;
+ if (VT == MVT::f32)
+ return RCPair(0U, &ARM::SPRRegClass);
+ if (VT.getSizeInBits() == 64)
+ return RCPair(0U, &ARM::DPRRegClass);
+ if (VT.getSizeInBits() == 128)
+ return RCPair(0U, &ARM::QPRRegClass);
+ break;
+ case 'x':
+ if (VT == MVT::Other)
+ break;
+ if (VT == MVT::f32)
+ return RCPair(0U, &ARM::SPR_8RegClass);
+ if (VT.getSizeInBits() == 64)
+ return RCPair(0U, &ARM::DPR_8RegClass);
+ if (VT.getSizeInBits() == 128)
+ return RCPair(0U, &ARM::QPR_8RegClass);
+ break;
+ case 't':
+ if (VT == MVT::f32)
+ return RCPair(0U, &ARM::SPRRegClass);
+ break;
+ }
+ }
+ if (StringRef("{cc}").equals_lower(Constraint))
+ return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
+
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result;
+
+ // Currently only support length 1 constraints.
+ if (Constraint.length() != 1) return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break;
+ case 'j':
+ case 'I': case 'J': case 'K': case 'L':
+ case 'M': case 'N': case 'O':
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C)
+ return;
+
+ int64_t CVal64 = C->getSExtValue();
+ int CVal = (int) CVal64;
+ // None of these constraints allow values larger than 32 bits. Check
+ // that the value fits in an int.
+ if (CVal != CVal64)
+ return;
+
+ switch (ConstraintLetter) {
+ case 'j':
+ // Constant suitable for movw, must be between 0 and
+ // 65535.
+ if (Subtarget->hasV6T2Ops())
+ if (CVal >= 0 && CVal <= 65535)
+ break;
+ return;
+ case 'I':
+ if (Subtarget->isThumb1Only()) {
+ // This must be a constant between 0 and 255, for ADD
+ // immediates.
+ if (CVal >= 0 && CVal <= 255)
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant that can be used as an immediate value in a
+ // data-processing instruction.
+ if (ARM_AM::getT2SOImmVal(CVal) != -1)
+ break;
+ } else {
+ // A constant that can be used as an immediate value in a
+ // data-processing instruction.
+ if (ARM_AM::getSOImmVal(CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'J':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a constant between -255 and -1, for negated ADD
+ // immediates. This can be used in GCC with an "n" modifier that
+ // prints the negated value, for use with SUB instructions. It is
+ // not useful otherwise but is implemented for compatibility.
+ if (CVal >= -255 && CVal <= -1)
+ break;
+ } else {
+ // This must be a constant between -4095 and 4095. It is not clear
+ // what this constraint is intended for. Implemented for
+ // compatibility with GCC.
+ if (CVal >= -4095 && CVal <= 4095)
+ break;
+ }
+ return;
+
+ case 'K':
+ if (Subtarget->isThumb1Only()) {
+ // A 32-bit value where only one byte has a nonzero value. Exclude
+ // zero to match GCC. This constraint is used by GCC internally for
+ // constants that can be loaded with a move/shift combination.
+ // It is not useful otherwise but is implemented for compatibility.
+ if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant whose bitwise inverse can be used as an immediate
+ // value in a data-processing instruction. This can be used in GCC
+ // with a "B" modifier that prints the inverted value, for use with
+ // BIC and MVN instructions. It is not useful otherwise but is
+ // implemented for compatibility.
+ if (ARM_AM::getT2SOImmVal(~CVal) != -1)
+ break;
+ } else {
+ // A constant whose bitwise inverse can be used as an immediate
+ // value in a data-processing instruction. This can be used in GCC
+ // with a "B" modifier that prints the inverted value, for use with
+ // BIC and MVN instructions. It is not useful otherwise but is
+ // implemented for compatibility.
+ if (ARM_AM::getSOImmVal(~CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'L':
+ if (Subtarget->isThumb1Only()) {
+ // This must be a constant between -7 and 7,
+ // for 3-operand ADD/SUB immediate instructions.
+ if (CVal >= -7 && CVal < 7)
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant whose negation can be used as an immediate value in a
+ // data-processing instruction. This can be used in GCC with an "n"
+ // modifier that prints the negated value, for use with SUB
+ // instructions. It is not useful otherwise but is implemented for
+ // compatibility.
+ if (ARM_AM::getT2SOImmVal(-CVal) != -1)
+ break;
+ } else {
+ // A constant whose negation can be used as an immediate value in a
+ // data-processing instruction. This can be used in GCC with an "n"
+ // modifier that prints the negated value, for use with SUB
+ // instructions. It is not useful otherwise but is implemented for
+ // compatibility.
+ if (ARM_AM::getSOImmVal(-CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'M':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a multiple of 4 between 0 and 1020, for
+ // ADD sp + immediate.
+ if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
+ break;
+ } else {
+ // A power of two or a constant between 0 and 32. This is used in
+ // GCC for the shift amount on shifted register operands, but it is
+ // useful in general for any shift amounts.
+ if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
+ break;
+ }
+ return;
+
+ case 'N':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a constant between 0 and 31, for shift amounts.
+ if (CVal >= 0 && CVal <= 31)
+ break;
+ }
+ return;
+
+ case 'O':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a multiple of 4 between -508 and 508, for
+ // ADD/SUB sp = sp + immediate.
+ if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
+ break;
+ }
+ return;
+ }
+ Result = DAG.getTargetConstant(CVal, Op.getValueType());
+ break;
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+ return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only");
+ unsigned Opcode = Op->getOpcode();
+ assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
+ "Invalid opcode for Div/Rem lowering");
+ bool isSigned = (Opcode == ISD::SDIVREM);
+ EVT VT = Op->getValueType(0);
+ Type *Ty = VT.getTypeForEVT(*DAG.getContext());
+
+ RTLIB::Libcall LC;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unexpected request for libcall!");
+ case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
+ case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
+ case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
+ case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
+ }
+
+ SDValue InChain = DAG.getEntryNode();
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
+ EVT ArgVT = Op->getOperand(i).getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+ Entry.Node = Op->getOperand(i);
+ Entry.Ty = ArgTy;
+ Entry.isSExt = isSigned;
+ Entry.isZExt = !isSigned;
+ Args.push_back(Entry);
+ }
+
+ SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
+ getPointerTy());
+
+ Type *RetTy = (Type*)StructType::get(Ty, Ty, NULL);
+
+ SDLoc dl(Op);
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(InChain)
+ .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
+ .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
+
+ std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
+ return CallInfo.first;
+}
+
+SDValue
+ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetWindows() && "unsupported target platform");
+ SDLoc DL(Op);
+
+ // Get the inputs.
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+
+ SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
+ DAG.getConstant(2, MVT::i32));
+
+ SDValue Flag;
+ Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
+ Flag = Chain.getValue(1);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
+
+ SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
+ Chain = NewSP.getValue(1);
+
+ SDValue Ops[2] = { NewSP, Chain };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+bool
+ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The ARM target isn't yet aware of offsets.
+ return false;
+}
+
+bool ARM::isBitFieldInvertedMask(unsigned v) {
+ if (v == 0xffffffff)
+ return false;
+
+ // there can be 1's on either or both "outsides", all the "inside"
+ // bits must be 0's
+ unsigned TO = CountTrailingOnes_32(v);
+ unsigned LO = CountLeadingOnes_32(v);
+ v = (v >> TO) << TO;
+ v = (v << LO) >> LO;
+ return v == 0;
+}
+
+/// isFPImmLegal - Returns true if the target can instruction select the
+/// specified FP immediate natively. If false, the legalizer will
+/// materialize the FP immediate as a load from a constant pool.
+bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ if (!Subtarget->hasVFP3())
+ return false;
+ if (VT == MVT::f32)
+ return ARM_AM::getFP32Imm(Imm) != -1;
+ if (VT == MVT::f64)
+ return ARM_AM::getFP64Imm(Imm) != -1;
+ return false;
+}
+
+/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
+/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
+/// specified in the intrinsic calls.
+bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ unsigned Intrinsic) const {
+ switch (Intrinsic) {
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ // Conservatively set memVT to the entire set of vectors loaded.
+ uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
+ Info.vol = false; // volatile loads with NEON intrinsics not supported
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane: {
+ Info.opc = ISD::INTRINSIC_VOID;
+ // Conservatively set memVT to the entire set of vectors stored.
+ unsigned NumElts = 0;
+ for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
+ Type *ArgTy = I.getArgOperand(ArgI)->getType();
+ if (!ArgTy->isVectorTy())
+ break;
+ NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
+ }
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
+ Info.vol = false; // volatile stores with NEON intrinsics not supported
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::arm_ldaex:
+ case Intrinsic::arm_ldrex: {
+ PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(PtrTy->getElementType());
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
+ Info.vol = true;
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::arm_stlex:
+ case Intrinsic::arm_strex: {
+ PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(PtrTy->getElementType());
+ Info.ptrVal = I.getArgOperand(1);
+ Info.offset = 0;
+ Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
+ Info.vol = true;
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::arm_stlexd:
+ case Intrinsic::arm_strexd: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i64;
+ Info.ptrVal = I.getArgOperand(2);
+ Info.offset = 0;
+ Info.align = 8;
+ Info.vol = true;
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::arm_ldaexd:
+ case Intrinsic::arm_ldrexd: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i64;
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.align = 8;
+ Info.vol = true;
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/// \brief Returns true if it is beneficial to convert a load of a constant
+/// to just the constant itself.
+bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned Bits = Ty->getPrimitiveSizeInBits();
+ if (Bits == 0 || Bits > 32)
+ return false;
+ return true;
+}
+
+bool ARMTargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
+ // Loads and stores less than 64-bits are already atomic; ones above that
+ // are doomed anyway, so defer to the default libcall and blame the OS when
+ // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
+ // anything for those.
+ bool IsMClass = Subtarget->isMClass();
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
+ return Size == 64 && !IsMClass;
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+ return LI->getType()->getPrimitiveSizeInBits() == 64 && !IsMClass;
+ }
+
+ // For the real atomic operations, we have ldrex/strex up to 32 bits,
+ // and up to 64 bits on the non-M profiles
+ unsigned AtomicLimit = IsMClass ? 32 : 64;
+ return Inst->getType()->getPrimitiveSizeInBits() <= AtomicLimit;
+}
+
+Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
+ AtomicOrdering Ord) const {
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
+ bool IsAcquire =
+ Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
+
+ // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
+ // intrinsic must return {i32, i32} and we have to recombine them into a
+ // single i64 here.
+ if (ValTy->getPrimitiveSizeInBits() == 64) {
+ Intrinsic::ID Int =
+ IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
+ Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
+
+ Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
+ Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
+
+ Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
+ Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
+ if (!Subtarget->isLittle())
+ std::swap (Lo, Hi);
+ Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
+ Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
+ return Builder.CreateOr(
+ Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
+ }
+
+ Type *Tys[] = { Addr->getType() };
+ Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
+ Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
+
+ return Builder.CreateTruncOrBitCast(
+ Builder.CreateCall(Ldrex, Addr),
+ cast<PointerType>(Addr->getType())->getElementType());
+}
+
+Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
+ Value *Addr,
+ AtomicOrdering Ord) const {
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ bool IsRelease =
+ Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
+
+ // Since the intrinsics must have legal type, the i64 intrinsics take two
+ // parameters: "i32, i32". We must marshal Val into the appropriate form
+ // before the call.
+ if (Val->getType()->getPrimitiveSizeInBits() == 64) {
+ Intrinsic::ID Int =
+ IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
+ Function *Strex = Intrinsic::getDeclaration(M, Int);
+ Type *Int32Ty = Type::getInt32Ty(M->getContext());
+
+ Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
+ Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
+ if (!Subtarget->isLittle())
+ std::swap (Lo, Hi);
+ Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
+ return Builder.CreateCall3(Strex, Lo, Hi, Addr);
+ }
+
+ Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
+ Type *Tys[] = { Addr->getType() };
+ Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
+
+ return Builder.CreateCall2(
+ Strex, Builder.CreateZExtOrBitCast(
+ Val, Strex->getFunctionType()->getParamType(0)),
+ Addr);
+}
+
+enum HABaseType {
+ HA_UNKNOWN = 0,
+ HA_FLOAT,
+ HA_DOUBLE,
+ HA_VECT64,
+ HA_VECT128
+};
+
+static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
+ uint64_t &Members) {
+ if (const StructType *ST = dyn_cast<StructType>(Ty)) {
+ for (unsigned i = 0; i < ST->getNumElements(); ++i) {
+ uint64_t SubMembers = 0;
+ if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
+ return false;
+ Members += SubMembers;
+ }
+ } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
+ uint64_t SubMembers = 0;
+ if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
+ return false;
+ Members += SubMembers * AT->getNumElements();
+ } else if (Ty->isFloatTy()) {
+ if (Base != HA_UNKNOWN && Base != HA_FLOAT)
+ return false;
+ Members = 1;
+ Base = HA_FLOAT;
+ } else if (Ty->isDoubleTy()) {
+ if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
+ return false;
+ Members = 1;
+ Base = HA_DOUBLE;
+ } else if (const VectorType *VT = dyn_cast<VectorType>(Ty)) {
+ Members = 1;
+ switch (Base) {
+ case HA_FLOAT:
+ case HA_DOUBLE:
+ return false;
+ case HA_VECT64:
+ return VT->getBitWidth() == 64;
+ case HA_VECT128:
+ return VT->getBitWidth() == 128;
+ case HA_UNKNOWN:
+ switch (VT->getBitWidth()) {
+ case 64:
+ Base = HA_VECT64;
+ return true;
+ case 128:
+ Base = HA_VECT128;
+ return true;
+ default:
+ return false;
+ }
+ }
+ }
+
+ return (Members > 0 && Members <= 4);
+}
+
+/// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate.
+bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
+ Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
+ if (getEffectiveCallingConv(CallConv, isVarArg) !=
+ CallingConv::ARM_AAPCS_VFP)
+ return false;
+
+ HABaseType Base = HA_UNKNOWN;
+ uint64_t Members = 0;
+ bool result = isHomogeneousAggregate(Ty, Base, Members);
+ DEBUG(dbgs() << "isHA: " << result << " "; Ty->dump(); dbgs() << "\n");
+ return result;
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelLowering.h b/contrib/llvm/lib/Target/ARM/ARMISelLowering.h
new file mode 100644
index 0000000..1ace0f3
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMISelLowering.h
@@ -0,0 +1,601 @@
+//===-- ARMISelLowering.h - ARM DAG Lowering Interface ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that ARM uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMISELLOWERING_H
+#define ARMISELLOWERING_H
+
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLowering.h"
+#include <vector>
+
+namespace llvm {
+ class ARMConstantPoolValue;
+ class ARMSubtarget;
+
+ namespace ARMISD {
+ // ARM Specific DAG Nodes
+ enum NodeType {
+ // Start the numbering where the builtin ops and target ops leave off.
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ Wrapper, // Wrapper - A wrapper node for TargetConstantPool,
+ // TargetExternalSymbol, and TargetGlobalAddress.
+ WrapperPIC, // WrapperPIC - A wrapper node for TargetGlobalAddress in
+ // PIC mode.
+ WrapperJT, // WrapperJT - A wrapper node for TargetJumpTable
+
+ // Add pseudo op to model memcpy for struct byval.
+ COPY_STRUCT_BYVAL,
+
+ CALL, // Function call.
+ CALL_PRED, // Function call that's predicable.
+ CALL_NOLINK, // Function call with branch not branch-and-link.
+ tCALL, // Thumb function call.
+ BRCOND, // Conditional branch.
+ BR_JT, // Jumptable branch.
+ BR2_JT, // Jumptable branch (2 level - jumptable entry is a jump).
+ RET_FLAG, // Return with a flag operand.
+ INTRET_FLAG, // Interrupt return with an LR-offset and a flag operand.
+
+ PIC_ADD, // Add with a PC operand and a PIC label.
+
+ CMP, // ARM compare instructions.
+ CMN, // ARM CMN instructions.
+ CMPZ, // ARM compare that sets only Z flag.
+ CMPFP, // ARM VFP compare instruction, sets FPSCR.
+ CMPFPw0, // ARM VFP compare against zero instruction, sets FPSCR.
+ FMSTAT, // ARM fmstat instruction.
+
+ CMOV, // ARM conditional move instructions.
+
+ BCC_i64,
+
+ RBIT, // ARM bitreverse instruction
+
+ FTOSI, // FP to sint within a FP register.
+ FTOUI, // FP to uint within a FP register.
+ SITOF, // sint to FP within a FP register.
+ UITOF, // uint to FP within a FP register.
+
+ SRL_FLAG, // V,Flag = srl_flag X -> srl X, 1 + save carry out.
+ SRA_FLAG, // V,Flag = sra_flag X -> sra X, 1 + save carry out.
+ RRX, // V = RRX X, Flag -> srl X, 1 + shift in carry flag.
+
+ ADDC, // Add with carry
+ ADDE, // Add using carry
+ SUBC, // Sub with carry
+ SUBE, // Sub using carry
+
+ VMOVRRD, // double to two gprs.
+ VMOVDRR, // Two gprs to double.
+
+ EH_SJLJ_SETJMP, // SjLj exception handling setjmp.
+ EH_SJLJ_LONGJMP, // SjLj exception handling longjmp.
+
+ TC_RETURN, // Tail call return pseudo.
+
+ THREAD_POINTER,
+
+ DYN_ALLOC, // Dynamic allocation on the stack.
+
+ MEMBARRIER_MCR, // Memory barrier (MCR)
+
+ PRELOAD, // Preload
+
+ WIN__CHKSTK, // Windows' __chkstk call to do stack probing.
+
+ VCEQ, // Vector compare equal.
+ VCEQZ, // Vector compare equal to zero.
+ VCGE, // Vector compare greater than or equal.
+ VCGEZ, // Vector compare greater than or equal to zero.
+ VCLEZ, // Vector compare less than or equal to zero.
+ VCGEU, // Vector compare unsigned greater than or equal.
+ VCGT, // Vector compare greater than.
+ VCGTZ, // Vector compare greater than zero.
+ VCLTZ, // Vector compare less than zero.
+ VCGTU, // Vector compare unsigned greater than.
+ VTST, // Vector test bits.
+
+ // Vector shift by immediate:
+ VSHL, // ...left
+ VSHRs, // ...right (signed)
+ VSHRu, // ...right (unsigned)
+
+ // Vector rounding shift by immediate:
+ VRSHRs, // ...right (signed)
+ VRSHRu, // ...right (unsigned)
+ VRSHRN, // ...right narrow
+
+ // Vector saturating shift by immediate:
+ VQSHLs, // ...left (signed)
+ VQSHLu, // ...left (unsigned)
+ VQSHLsu, // ...left (signed to unsigned)
+ VQSHRNs, // ...right narrow (signed)
+ VQSHRNu, // ...right narrow (unsigned)
+ VQSHRNsu, // ...right narrow (signed to unsigned)
+
+ // Vector saturating rounding shift by immediate:
+ VQRSHRNs, // ...right narrow (signed)
+ VQRSHRNu, // ...right narrow (unsigned)
+ VQRSHRNsu, // ...right narrow (signed to unsigned)
+
+ // Vector shift and insert:
+ VSLI, // ...left
+ VSRI, // ...right
+
+ // Vector get lane (VMOV scalar to ARM core register)
+ // (These are used for 8- and 16-bit element types only.)
+ VGETLANEu, // zero-extend vector extract element
+ VGETLANEs, // sign-extend vector extract element
+
+ // Vector move immediate and move negated immediate:
+ VMOVIMM,
+ VMVNIMM,
+
+ // Vector move f32 immediate:
+ VMOVFPIMM,
+
+ // Vector duplicate:
+ VDUP,
+ VDUPLANE,
+
+ // Vector shuffles:
+ VEXT, // extract
+ VREV64, // reverse elements within 64-bit doublewords
+ VREV32, // reverse elements within 32-bit words
+ VREV16, // reverse elements within 16-bit halfwords
+ VZIP, // zip (interleave)
+ VUZP, // unzip (deinterleave)
+ VTRN, // transpose
+ VTBL1, // 1-register shuffle with mask
+ VTBL2, // 2-register shuffle with mask
+
+ // Vector multiply long:
+ VMULLs, // ...signed
+ VMULLu, // ...unsigned
+
+ UMLAL, // 64bit Unsigned Accumulate Multiply
+ SMLAL, // 64bit Signed Accumulate Multiply
+
+ // Operands of the standard BUILD_VECTOR node are not legalized, which
+ // is fine if BUILD_VECTORs are always lowered to shuffles or other
+ // operations, but for ARM some BUILD_VECTORs are legal as-is and their
+ // operands need to be legalized. Define an ARM-specific version of
+ // BUILD_VECTOR for this purpose.
+ BUILD_VECTOR,
+
+ // Floating-point max and min:
+ FMAX,
+ FMIN,
+ VMAXNM,
+ VMINNM,
+
+ // Bit-field insert
+ BFI,
+
+ // Vector OR with immediate
+ VORRIMM,
+ // Vector AND with NOT of immediate
+ VBICIMM,
+
+ // Vector bitwise select
+ VBSL,
+
+ // Vector load N-element structure to all lanes:
+ VLD2DUP = ISD::FIRST_TARGET_MEMORY_OPCODE,
+ VLD3DUP,
+ VLD4DUP,
+
+ // NEON loads with post-increment base updates:
+ VLD1_UPD,
+ VLD2_UPD,
+ VLD3_UPD,
+ VLD4_UPD,
+ VLD2LN_UPD,
+ VLD3LN_UPD,
+ VLD4LN_UPD,
+ VLD2DUP_UPD,
+ VLD3DUP_UPD,
+ VLD4DUP_UPD,
+
+ // NEON stores with post-increment base updates:
+ VST1_UPD,
+ VST2_UPD,
+ VST3_UPD,
+ VST4_UPD,
+ VST2LN_UPD,
+ VST3LN_UPD,
+ VST4LN_UPD
+ };
+ }
+
+ /// Define some predicates that are used for node matching.
+ namespace ARM {
+ bool isBitFieldInvertedMask(unsigned v);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // ARMTargetLowering - ARM Implementation of the TargetLowering interface
+
+ class ARMTargetLowering : public TargetLowering {
+ public:
+ explicit ARMTargetLowering(TargetMachine &TM);
+
+ unsigned getJumpTableEncoding() const override;
+
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+
+ /// ReplaceNodeResults - Replace the results of node with an illegal result
+ /// type with new values built out of custom code.
+ ///
+ void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const override;
+
+ const char *getTargetNodeName(unsigned Opcode) const override;
+
+ bool isSelectSupported(SelectSupportKind Kind) const override {
+ // ARM does not support scalar condition selects on vectors.
+ return (Kind != ScalarCondVectorVal);
+ }
+
+ /// getSetCCResultType - Return the value type to use for ISD::SETCC.
+ EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
+
+ MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const override;
+
+ void AdjustInstrPostInstrSelection(MachineInstr *MI,
+ SDNode *Node) const override;
+
+ SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const;
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+
+ bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const override;
+
+ /// allowsUnalignedMemoryAccesses - Returns true if the target allows
+ /// unaligned memory accesses of the specified type. Returns whether it
+ /// is "fast" by reference in the second argument.
+ bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
+ bool *Fast) const override;
+
+ EVT getOptimalMemOpType(uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const override;
+
+ using TargetLowering::isZExtFree;
+ bool isZExtFree(SDValue Val, EVT VT2) const override;
+
+ bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
+
+
+ /// isLegalAddressingMode - Return true if the addressing mode represented
+ /// by AM is legal for this target, for a load/store of the specified type.
+ bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
+ bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const;
+
+ /// isLegalICmpImmediate - Return true if the specified immediate is legal
+ /// icmp immediate, that is the target has icmp instructions which can
+ /// compare a register against the immediate without having to materialize
+ /// the immediate into a register.
+ bool isLegalICmpImmediate(int64_t Imm) const override;
+
+ /// isLegalAddImmediate - Return true if the specified immediate is legal
+ /// add immediate, that is the target has add instructions which can
+ /// add a register and the immediate without having to materialize
+ /// the immediate into a register.
+ bool isLegalAddImmediate(int64_t Imm) const override;
+
+ /// getPreIndexedAddressParts - returns true by value, base pointer and
+ /// offset pointer and addressing mode by reference if the node's address
+ /// can be legally represented as pre-indexed load / store address.
+ bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const override;
+
+ /// getPostIndexedAddressParts - returns true by value, base pointer and
+ /// offset pointer and addressing mode by reference if this node can be
+ /// combined with a load / store to form a post-indexed load / store.
+ bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base,
+ SDValue &Offset, ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const override;
+
+ void computeKnownBitsForTargetNode(const SDValue Op, APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const override;
+
+
+ bool ExpandInlineAsm(CallInst *CI) const override;
+
+ ConstraintType
+ getConstraintType(const std::string &Constraint) const override;
+
+ /// Examine constraint string and operand type and determine a weight value.
+ /// The operand object must already have been set up with the operand type.
+ ConstraintWeight getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const override;
+
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const override;
+
+ /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+ /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
+ /// true it means one of the asm constraint of the inline asm instruction
+ /// being processed is 'm'.
+ void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const override;
+
+ const ARMSubtarget* getSubtarget() const {
+ return Subtarget;
+ }
+
+ /// getRegClassFor - Return the register class that should be used for the
+ /// specified value type.
+ const TargetRegisterClass *getRegClassFor(MVT VT) const override;
+
+ /// getMaximalGlobalOffset - Returns the maximal possible offset which can
+ /// be used for loads / stores from the global.
+ unsigned getMaximalGlobalOffset() const override;
+
+ /// Returns true if a cast between SrcAS and DestAS is a noop.
+ bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override {
+ // Addrspacecasts are always noops.
+ return true;
+ }
+
+ /// createFastISel - This method returns a target specific FastISel object,
+ /// or null if the target does not support "fast" ISel.
+ FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const override;
+
+ Sched::Preference getSchedulingPreference(SDNode *N) const override;
+
+ bool
+ isShuffleMaskLegal(const SmallVectorImpl<int> &M, EVT VT) const override;
+ bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
+
+ /// isFPImmLegal - Returns true if the target can instruction select the
+ /// specified FP immediate natively. If false, the legalizer will
+ /// materialize the FP immediate as a load from a constant pool.
+ bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
+
+ bool getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ unsigned Intrinsic) const override;
+
+ /// \brief Returns true if it is beneficial to convert a load of a constant
+ /// to just the constant itself.
+ bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const override;
+
+ /// \brief Returns true if an argument of type Ty needs to be passed in a
+ /// contiguous block of registers in calling convention CallConv.
+ bool functionArgumentNeedsConsecutiveRegisters(
+ Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override;
+
+ Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
+ AtomicOrdering Ord) const override;
+ Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
+ Value *Addr, AtomicOrdering Ord) const override;
+
+ bool shouldExpandAtomicInIR(Instruction *Inst) const override;
+
+ protected:
+ std::pair<const TargetRegisterClass*, uint8_t>
+ findRepresentativeClass(MVT VT) const override;
+
+ private:
+ /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const ARMSubtarget *Subtarget;
+
+ const TargetRegisterInfo *RegInfo;
+
+ const InstrItineraryData *Itins;
+
+ /// ARMPCLabelIndex - Keep track of the number of ARM PC labels created.
+ ///
+ unsigned ARMPCLabelIndex;
+
+ void addTypeForNEON(MVT VT, MVT PromotedLdStVT, MVT PromotedBitwiseVT);
+ void addDRTypeForNEON(MVT VT);
+ void addQRTypeForNEON(MVT VT);
+ std::pair<SDValue, SDValue> getARMXALUOOp(SDValue Op, SelectionDAG &DAG, SDValue &ARMcc) const;
+
+ typedef SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPassVector;
+ void PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
+ SDValue Chain, SDValue &Arg,
+ RegsToPassVector &RegsToPass,
+ CCValAssign &VA, CCValAssign &NextVA,
+ SDValue &StackPtr,
+ SmallVectorImpl<SDValue> &MemOpChains,
+ ISD::ArgFlagsTy Flags) const;
+ SDValue GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
+ SDValue &Root, SelectionDAG &DAG,
+ SDLoc dl) const;
+
+ CallingConv::ID getEffectiveCallingConv(CallingConv::ID CC,
+ bool isVarArg) const;
+ CCAssignFn *CCAssignFnForNode(CallingConv::ID CC, bool Return,
+ bool isVarArg) const;
+ SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
+ SDLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) const;
+ SDValue LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) const;
+ SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddressWindows(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG) const;
+ SDValue LowerToTLSExecModels(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG,
+ TLSModel::Model model) const;
+ SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerConstantFP(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) const;
+ SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) const;
+ SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerDivRem(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
+
+ unsigned getRegisterByName(const char* RegName, EVT VT) const override;
+
+ /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
+ /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
+ /// expanded to FMAs when this method returns true, otherwise fmuladd is
+ /// expanded to fmul + fadd.
+ ///
+ /// ARM supports both fused and unfused multiply-add operations; we already
+ /// lower a pair of fmul and fadd to the latter so it's not clear that there
+ /// would be a gain or that the gain would be worthwhile enough to risk
+ /// correctness bugs.
+ bool isFMAFasterThanFMulAndFAdd(EVT VT) const override { return false; }
+
+ SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals,
+ bool isThisReturn, SDValue ThisVal) const;
+
+ SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ int StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
+ SDLoc dl, SDValue &Chain,
+ const Value *OrigArg,
+ unsigned InRegsParamRecordIdx,
+ unsigned OffsetFromOrigArg,
+ unsigned ArgOffset,
+ unsigned ArgSize,
+ bool ForceMutable,
+ unsigned ByValStoreOffset,
+ unsigned TotalArgRegsSaveSize) const;
+
+ void VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
+ SDLoc dl, SDValue &Chain,
+ unsigned ArgOffset,
+ unsigned TotalArgRegsSaveSize,
+ bool ForceMutable = false) const;
+
+ void computeRegArea(CCState &CCInfo, MachineFunction &MF,
+ unsigned InRegsParamRecordIdx,
+ unsigned ArgSize,
+ unsigned &ArgRegsSize,
+ unsigned &ArgRegsSaveSize) const;
+
+ SDValue
+ LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ /// HandleByVal - Target-specific cleanup for ByVal support.
+ void HandleByVal(CCState *, unsigned &, unsigned) const override;
+
+ /// IsEligibleForTailCallOptimization - Check whether the call is eligible
+ /// for tail call optimization. Targets which want to do tail call
+ /// optimization should implement this function.
+ bool IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ bool isCalleeStructRet,
+ bool isCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const;
+
+ bool CanLowerReturn(CallingConv::ID CallConv,
+ MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const override;
+
+ SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const override;
+
+ bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
+
+ bool mayBeEmittedAsTailCall(CallInst *CI) const override;
+
+ SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
+ SDValue &ARMcc, SelectionDAG &DAG, SDLoc dl) const;
+ SDValue getVFPCmp(SDValue LHS, SDValue RHS,
+ SelectionDAG &DAG, SDLoc dl) const;
+ SDValue duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const;
+
+ SDValue OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const;
+
+ void SetupEntryBlockForSjLj(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *DispatchBB, int FI) const;
+
+ MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+ bool RemapAddSubWithFlags(MachineInstr *MI, MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *EmitStructByval(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+ MachineBasicBlock *EmitLowered__chkstk(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+ };
+
+ enum NEONModImmType {
+ VMOVModImm,
+ VMVNModImm,
+ OtherModImm
+ };
+
+ namespace ARM {
+ FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo);
+ }
+}
+
+#endif // ARMISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrFormats.td b/contrib/llvm/lib/Target/ARM/ARMInstrFormats.td
new file mode 100644
index 0000000..59e9260
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrFormats.td
@@ -0,0 +1,2357 @@
+//===-- ARMInstrFormats.td - ARM Instruction Formats -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+//
+// ARM Instruction Format Definitions.
+//
+
+// Format specifies the encoding used by the instruction. This is part of the
+// ad-hoc solution used to emit machine instruction encodings by our machine
+// code emitter.
+class Format<bits<6> val> {
+ bits<6> Value = val;
+}
+
+def Pseudo : Format<0>;
+def MulFrm : Format<1>;
+def BrFrm : Format<2>;
+def BrMiscFrm : Format<3>;
+
+def DPFrm : Format<4>;
+def DPSoRegRegFrm : Format<5>;
+
+def LdFrm : Format<6>;
+def StFrm : Format<7>;
+def LdMiscFrm : Format<8>;
+def StMiscFrm : Format<9>;
+def LdStMulFrm : Format<10>;
+
+def LdStExFrm : Format<11>;
+
+def ArithMiscFrm : Format<12>;
+def SatFrm : Format<13>;
+def ExtFrm : Format<14>;
+
+def VFPUnaryFrm : Format<15>;
+def VFPBinaryFrm : Format<16>;
+def VFPConv1Frm : Format<17>;
+def VFPConv2Frm : Format<18>;
+def VFPConv3Frm : Format<19>;
+def VFPConv4Frm : Format<20>;
+def VFPConv5Frm : Format<21>;
+def VFPLdStFrm : Format<22>;
+def VFPLdStMulFrm : Format<23>;
+def VFPMiscFrm : Format<24>;
+
+def ThumbFrm : Format<25>;
+def MiscFrm : Format<26>;
+
+def NGetLnFrm : Format<27>;
+def NSetLnFrm : Format<28>;
+def NDupFrm : Format<29>;
+def NLdStFrm : Format<30>;
+def N1RegModImmFrm: Format<31>;
+def N2RegFrm : Format<32>;
+def NVCVTFrm : Format<33>;
+def NVDupLnFrm : Format<34>;
+def N2RegVShLFrm : Format<35>;
+def N2RegVShRFrm : Format<36>;
+def N3RegFrm : Format<37>;
+def N3RegVShFrm : Format<38>;
+def NVExtFrm : Format<39>;
+def NVMulSLFrm : Format<40>;
+def NVTBLFrm : Format<41>;
+def DPSoRegImmFrm : Format<42>;
+
+// Misc flags.
+
+// The instruction has an Rn register operand.
+// UnaryDP - Indicates this is a unary data processing instruction, i.e.
+// it doesn't have a Rn operand.
+class UnaryDP { bit isUnaryDataProc = 1; }
+
+// Xform16Bit - Indicates this Thumb2 instruction may be transformed into
+// a 16-bit Thumb instruction if certain conditions are met.
+class Xform16Bit { bit canXformTo16Bit = 1; }
+
+//===----------------------------------------------------------------------===//
+// ARM Instruction flags. These need to match ARMBaseInstrInfo.h.
+//
+
+// FIXME: Once the JIT is MC-ized, these can go away.
+// Addressing mode.
+class AddrMode<bits<5> val> {
+ bits<5> Value = val;
+}
+def AddrModeNone : AddrMode<0>;
+def AddrMode1 : AddrMode<1>;
+def AddrMode2 : AddrMode<2>;
+def AddrMode3 : AddrMode<3>;
+def AddrMode4 : AddrMode<4>;
+def AddrMode5 : AddrMode<5>;
+def AddrMode6 : AddrMode<6>;
+def AddrModeT1_1 : AddrMode<7>;
+def AddrModeT1_2 : AddrMode<8>;
+def AddrModeT1_4 : AddrMode<9>;
+def AddrModeT1_s : AddrMode<10>;
+def AddrModeT2_i12 : AddrMode<11>;
+def AddrModeT2_i8 : AddrMode<12>;
+def AddrModeT2_so : AddrMode<13>;
+def AddrModeT2_pc : AddrMode<14>;
+def AddrModeT2_i8s4 : AddrMode<15>;
+def AddrMode_i12 : AddrMode<16>;
+
+// Load / store index mode.
+class IndexMode<bits<2> val> {
+ bits<2> Value = val;
+}
+def IndexModeNone : IndexMode<0>;
+def IndexModePre : IndexMode<1>;
+def IndexModePost : IndexMode<2>;
+def IndexModeUpd : IndexMode<3>;
+
+// Instruction execution domain.
+class Domain<bits<3> val> {
+ bits<3> Value = val;
+}
+def GenericDomain : Domain<0>;
+def VFPDomain : Domain<1>; // Instructions in VFP domain only
+def NeonDomain : Domain<2>; // Instructions in Neon domain only
+def VFPNeonDomain : Domain<3>; // Instructions in both VFP & Neon domains
+def VFPNeonA8Domain : Domain<5>; // Instructions in VFP & Neon under A8
+
+//===----------------------------------------------------------------------===//
+// ARM special operands.
+//
+
+// ARM imod and iflag operands, used only by the CPS instruction.
+def imod_op : Operand<i32> {
+ let PrintMethod = "printCPSIMod";
+}
+
+def ProcIFlagsOperand : AsmOperandClass {
+ let Name = "ProcIFlags";
+ let ParserMethod = "parseProcIFlagsOperand";
+}
+def iflags_op : Operand<i32> {
+ let PrintMethod = "printCPSIFlag";
+ let ParserMatchClass = ProcIFlagsOperand;
+}
+
+// ARM Predicate operand. Default to 14 = always (AL). Second part is CC
+// register whose default is 0 (no register).
+def CondCodeOperand : AsmOperandClass { let Name = "CondCode"; }
+def pred : PredicateOperand<OtherVT, (ops i32imm, i32imm),
+ (ops (i32 14), (i32 zero_reg))> {
+ let PrintMethod = "printPredicateOperand";
+ let ParserMatchClass = CondCodeOperand;
+ let DecoderMethod = "DecodePredicateOperand";
+}
+
+// Selectable predicate operand for CMOV instructions. We can't use a normal
+// predicate because the default values interfere with instruction selection. In
+// all other respects it is identical though: pseudo-instruction expansion
+// relies on the MachineOperands being compatible.
+def cmovpred : Operand<i32>, PredicateOp,
+ ComplexPattern<i32, 2, "SelectCMOVPred"> {
+ let MIOperandInfo = (ops i32imm, i32imm);
+ let PrintMethod = "printPredicateOperand";
+}
+
+// Conditional code result for instructions whose 's' bit is set, e.g. subs.
+def CCOutOperand : AsmOperandClass { let Name = "CCOut"; }
+def cc_out : OptionalDefOperand<OtherVT, (ops CCR), (ops (i32 zero_reg))> {
+ let EncoderMethod = "getCCOutOpValue";
+ let PrintMethod = "printSBitModifierOperand";
+ let ParserMatchClass = CCOutOperand;
+ let DecoderMethod = "DecodeCCOutOperand";
+}
+
+// Same as cc_out except it defaults to setting CPSR.
+def s_cc_out : OptionalDefOperand<OtherVT, (ops CCR), (ops (i32 CPSR))> {
+ let EncoderMethod = "getCCOutOpValue";
+ let PrintMethod = "printSBitModifierOperand";
+ let ParserMatchClass = CCOutOperand;
+ let DecoderMethod = "DecodeCCOutOperand";
+}
+
+// ARM special operands for disassembly only.
+//
+def SetEndAsmOperand : ImmAsmOperand {
+ let Name = "SetEndImm";
+ let ParserMethod = "parseSetEndImm";
+}
+def setend_op : Operand<i32> {
+ let PrintMethod = "printSetendOperand";
+ let ParserMatchClass = SetEndAsmOperand;
+}
+
+def MSRMaskOperand : AsmOperandClass {
+ let Name = "MSRMask";
+ let ParserMethod = "parseMSRMaskOperand";
+}
+def msr_mask : Operand<i32> {
+ let PrintMethod = "printMSRMaskOperand";
+ let DecoderMethod = "DecodeMSRMask";
+ let ParserMatchClass = MSRMaskOperand;
+}
+
+// Shift Right Immediate - A shift right immediate is encoded differently from
+// other shift immediates. The imm6 field is encoded like so:
+//
+// Offset Encoding
+// 8 imm6<5:3> = '001', 8 - <imm> is encoded in imm6<2:0>
+// 16 imm6<5:4> = '01', 16 - <imm> is encoded in imm6<3:0>
+// 32 imm6<5> = '1', 32 - <imm> is encoded in imm6<4:0>
+// 64 64 - <imm> is encoded in imm6<5:0>
+def shr_imm8_asm_operand : ImmAsmOperand { let Name = "ShrImm8"; }
+def shr_imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm <= 8; }]> {
+ let EncoderMethod = "getShiftRight8Imm";
+ let DecoderMethod = "DecodeShiftRight8Imm";
+ let ParserMatchClass = shr_imm8_asm_operand;
+}
+def shr_imm16_asm_operand : ImmAsmOperand { let Name = "ShrImm16"; }
+def shr_imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm <= 16; }]> {
+ let EncoderMethod = "getShiftRight16Imm";
+ let DecoderMethod = "DecodeShiftRight16Imm";
+ let ParserMatchClass = shr_imm16_asm_operand;
+}
+def shr_imm32_asm_operand : ImmAsmOperand { let Name = "ShrImm32"; }
+def shr_imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm <= 32; }]> {
+ let EncoderMethod = "getShiftRight32Imm";
+ let DecoderMethod = "DecodeShiftRight32Imm";
+ let ParserMatchClass = shr_imm32_asm_operand;
+}
+def shr_imm64_asm_operand : ImmAsmOperand { let Name = "ShrImm64"; }
+def shr_imm64 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm <= 64; }]> {
+ let EncoderMethod = "getShiftRight64Imm";
+ let DecoderMethod = "DecodeShiftRight64Imm";
+ let ParserMatchClass = shr_imm64_asm_operand;
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Assembler alias templates.
+//
+class ARMInstAlias<string Asm, dag Result, bit Emit = 0b1>
+ : InstAlias<Asm, Result, Emit>, Requires<[IsARM]>;
+class tInstAlias<string Asm, dag Result, bit Emit = 0b1>
+ : InstAlias<Asm, Result, Emit>, Requires<[IsThumb]>;
+class t2InstAlias<string Asm, dag Result, bit Emit = 0b1>
+ : InstAlias<Asm, Result, Emit>, Requires<[IsThumb2]>;
+class VFP2InstAlias<string Asm, dag Result, bit Emit = 0b1>
+ : InstAlias<Asm, Result, Emit>, Requires<[HasVFP2]>;
+class VFP2DPInstAlias<string Asm, dag Result, bit Emit = 0b1>
+ : InstAlias<Asm, Result, Emit>, Requires<[HasVFP2,HasDPVFP]>;
+class VFP3InstAlias<string Asm, dag Result, bit Emit = 0b1>
+ : InstAlias<Asm, Result, Emit>, Requires<[HasVFP3]>;
+class NEONInstAlias<string Asm, dag Result, bit Emit = 0b1>
+ : InstAlias<Asm, Result, Emit>, Requires<[HasNEON]>;
+
+
+class VFP2MnemonicAlias<string src, string dst> : MnemonicAlias<src, dst>,
+ Requires<[HasVFP2]>;
+class NEONMnemonicAlias<string src, string dst> : MnemonicAlias<src, dst>,
+ Requires<[HasNEON]>;
+
+//===----------------------------------------------------------------------===//
+// ARM Instruction templates.
+//
+
+
+class InstTemplate<AddrMode am, int sz, IndexMode im,
+ Format f, Domain d, string cstr, InstrItinClass itin>
+ : Instruction {
+ let Namespace = "ARM";
+
+ AddrMode AM = am;
+ int Size = sz;
+ IndexMode IM = im;
+ bits<2> IndexModeBits = IM.Value;
+ Format F = f;
+ bits<6> Form = F.Value;
+ Domain D = d;
+ bit isUnaryDataProc = 0;
+ bit canXformTo16Bit = 0;
+ // The instruction is a 16-bit flag setting Thumb instruction. Used
+ // by the parser to determine whether to require the 'S' suffix on the
+ // mnemonic (when not in an IT block) or preclude it (when in an IT block).
+ bit thumbArithFlagSetting = 0;
+
+ // If this is a pseudo instruction, mark it isCodeGenOnly.
+ let isCodeGenOnly = !eq(!cast<string>(f), "Pseudo");
+
+ // The layout of TSFlags should be kept in sync with ARMBaseInfo.h.
+ let TSFlags{4-0} = AM.Value;
+ let TSFlags{6-5} = IndexModeBits;
+ let TSFlags{12-7} = Form;
+ let TSFlags{13} = isUnaryDataProc;
+ let TSFlags{14} = canXformTo16Bit;
+ let TSFlags{17-15} = D.Value;
+ let TSFlags{18} = thumbArithFlagSetting;
+
+ let Constraints = cstr;
+ let Itinerary = itin;
+}
+
+class Encoding {
+ field bits<32> Inst;
+ // Mask of bits that cause an encoding to be UNPREDICTABLE.
+ // If a bit is set, then if the corresponding bit in the
+ // target encoding differs from its value in the "Inst" field,
+ // the instruction is UNPREDICTABLE (SoftFail in abstract parlance).
+ field bits<32> Unpredictable = 0;
+ // SoftFail is the generic name for this field, but we alias it so
+ // as to make it more obvious what it means in ARM-land.
+ field bits<32> SoftFail = Unpredictable;
+}
+
+class InstARM<AddrMode am, int sz, IndexMode im,
+ Format f, Domain d, string cstr, InstrItinClass itin>
+ : InstTemplate<am, sz, im, f, d, cstr, itin>, Encoding {
+ let DecoderNamespace = "ARM";
+}
+
+// This Encoding-less class is used by Thumb1 to specify the encoding bits later
+// on by adding flavors to specific instructions.
+class InstThumb<AddrMode am, int sz, IndexMode im,
+ Format f, Domain d, string cstr, InstrItinClass itin>
+ : InstTemplate<am, sz, im, f, d, cstr, itin> {
+ let DecoderNamespace = "Thumb";
+}
+
+// Pseudo-instructions for alternate assembly syntax (never used by codegen).
+// These are aliases that require C++ handling to convert to the target
+// instruction, while InstAliases can be handled directly by tblgen.
+class AsmPseudoInst<string asm, dag iops, dag oops = (outs)>
+ : InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain,
+ "", NoItinerary> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
+ let Pattern = [];
+ let isCodeGenOnly = 0; // So we get asm matcher for it.
+ let AsmString = asm;
+ let isPseudo = 1;
+}
+
+class ARMAsmPseudo<string asm, dag iops, dag oops = (outs)>
+ : AsmPseudoInst<asm, iops, oops>, Requires<[IsARM]>;
+class tAsmPseudo<string asm, dag iops, dag oops = (outs)>
+ : AsmPseudoInst<asm, iops, oops>, Requires<[IsThumb]>;
+class t2AsmPseudo<string asm, dag iops, dag oops = (outs)>
+ : AsmPseudoInst<asm, iops, oops>, Requires<[IsThumb2]>;
+class VFP2AsmPseudo<string asm, dag iops, dag oops = (outs)>
+ : AsmPseudoInst<asm, iops, oops>, Requires<[HasVFP2]>;
+class NEONAsmPseudo<string asm, dag iops, dag oops = (outs)>
+ : AsmPseudoInst<asm, iops, oops>, Requires<[HasNEON]>;
+
+// Pseudo instructions for the code generator.
+class PseudoInst<dag oops, dag iops, InstrItinClass itin, list<dag> pattern>
+ : InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo,
+ GenericDomain, "", itin> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
+ let Pattern = pattern;
+ let isCodeGenOnly = 1;
+ let isPseudo = 1;
+}
+
+// PseudoInst that's ARM-mode only.
+class ARMPseudoInst<dag oops, dag iops, int sz, InstrItinClass itin,
+ list<dag> pattern>
+ : PseudoInst<oops, iops, itin, pattern> {
+ let Size = sz;
+ list<Predicate> Predicates = [IsARM];
+}
+
+// PseudoInst that's Thumb-mode only.
+class tPseudoInst<dag oops, dag iops, int sz, InstrItinClass itin,
+ list<dag> pattern>
+ : PseudoInst<oops, iops, itin, pattern> {
+ let Size = sz;
+ list<Predicate> Predicates = [IsThumb];
+}
+
+// PseudoInst that's Thumb2-mode only.
+class t2PseudoInst<dag oops, dag iops, int sz, InstrItinClass itin,
+ list<dag> pattern>
+ : PseudoInst<oops, iops, itin, pattern> {
+ let Size = sz;
+ list<Predicate> Predicates = [IsThumb2];
+}
+
+class ARMPseudoExpand<dag oops, dag iops, int sz,
+ InstrItinClass itin, list<dag> pattern,
+ dag Result>
+ : ARMPseudoInst<oops, iops, sz, itin, pattern>,
+ PseudoInstExpansion<Result>;
+
+class tPseudoExpand<dag oops, dag iops, int sz,
+ InstrItinClass itin, list<dag> pattern,
+ dag Result>
+ : tPseudoInst<oops, iops, sz, itin, pattern>,
+ PseudoInstExpansion<Result>;
+
+class t2PseudoExpand<dag oops, dag iops, int sz,
+ InstrItinClass itin, list<dag> pattern,
+ dag Result>
+ : t2PseudoInst<oops, iops, sz, itin, pattern>,
+ PseudoInstExpansion<Result>;
+
+// Almost all ARM instructions are predicable.
+class I<dag oops, dag iops, AddrMode am, int sz,
+ IndexMode im, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr,
+ list<dag> pattern>
+ : InstARM<am, sz, im, f, GenericDomain, cstr, itin> {
+ bits<4> p;
+ let Inst{31-28} = p;
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ let AsmString = !strconcat(opc, "${p}", asm);
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsARM];
+}
+
+// A few are not predicable
+class InoP<dag oops, dag iops, AddrMode am, int sz,
+ IndexMode im, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr,
+ list<dag> pattern>
+ : InstARM<am, sz, im, f, GenericDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
+ let AsmString = !strconcat(opc, asm);
+ let Pattern = pattern;
+ let isPredicable = 0;
+ list<Predicate> Predicates = [IsARM];
+}
+
+// Same as I except it can optionally modify CPSR. Note it's modeled as an input
+// operand since by default it's a zero register. It will become an implicit def
+// once it's "flipped".
+class sI<dag oops, dag iops, AddrMode am, int sz,
+ IndexMode im, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr,
+ list<dag> pattern>
+ : InstARM<am, sz, im, f, GenericDomain, cstr, itin> {
+ bits<4> p; // Predicate operand
+ bits<1> s; // condition-code set flag ('1' if the insn should set the flags)
+ let Inst{31-28} = p;
+ let Inst{20} = s;
+
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p, cc_out:$s));
+ let AsmString = !strconcat(opc, "${s}${p}", asm);
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsARM];
+}
+
+// Special cases
+class XI<dag oops, dag iops, AddrMode am, int sz,
+ IndexMode im, Format f, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, im, f, GenericDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
+ let AsmString = asm;
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsARM];
+}
+
+class AI<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, 4, IndexModeNone, f, itin,
+ opc, asm, "", pattern>;
+class AsI<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : sI<oops, iops, AddrModeNone, 4, IndexModeNone, f, itin,
+ opc, asm, "", pattern>;
+class AXI<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrModeNone, 4, IndexModeNone, f, itin,
+ asm, "", pattern>;
+class AXIM<dag oops, dag iops, AddrMode am, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, am, 4, IndexModeNone, f, itin,
+ asm, "", pattern>;
+class AInoP<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : InoP<oops, iops, AddrModeNone, 4, IndexModeNone, f, itin,
+ opc, asm, "", pattern>;
+
+// Ctrl flow instructions
+class ABI<bits<4> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, 4, IndexModeNone, BrFrm, itin,
+ opc, asm, "", pattern> {
+ let Inst{27-24} = opcod;
+}
+class ABXI<bits<4> opcod, dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrModeNone, 4, IndexModeNone, BrFrm, itin,
+ asm, "", pattern> {
+ let Inst{27-24} = opcod;
+}
+
+// BR_JT instructions
+class JTI<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrModeNone, 0, IndexModeNone, BrMiscFrm, itin,
+ asm, "", pattern>;
+
+class AIldr_ex_or_acq<bits<2> opcod, bits<2> opcod2, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, 4, IndexModeNone, LdStExFrm, itin,
+ opc, asm, "", pattern> {
+ bits<4> Rt;
+ bits<4> addr;
+ let Inst{27-23} = 0b00011;
+ let Inst{22-21} = opcod;
+ let Inst{20} = 1;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = Rt;
+ let Inst{11-10} = 0b11;
+ let Inst{9-8} = opcod2;
+ let Inst{7-0} = 0b10011111;
+}
+class AIstr_ex_or_rel<bits<2> opcod, bits<2> opcod2, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, 4, IndexModeNone, LdStExFrm, itin,
+ opc, asm, "", pattern> {
+ bits<4> Rt;
+ bits<4> addr;
+ let Inst{27-23} = 0b00011;
+ let Inst{22-21} = opcod;
+ let Inst{20} = 0;
+ let Inst{19-16} = addr;
+ let Inst{11-10} = 0b11;
+ let Inst{9-8} = opcod2;
+ let Inst{7-4} = 0b1001;
+ let Inst{3-0} = Rt;
+}
+// Atomic load/store instructions
+class AIldrex<bits<2> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AIldr_ex_or_acq<opcod, 0b11, oops, iops, itin, opc, asm, pattern>;
+
+class AIstrex<bits<2> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AIstr_ex_or_rel<opcod, 0b11, oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ let Inst{15-12} = Rd;
+}
+
+// Exclusive load/store instructions
+
+class AIldaex<bits<2> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AIldr_ex_or_acq<opcod, 0b10, oops, iops, itin, opc, asm, pattern>,
+ Requires<[IsARM, HasV8]>;
+
+class AIstlex<bits<2> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AIstr_ex_or_rel<opcod, 0b10, oops, iops, itin, opc, asm, pattern>,
+ Requires<[IsARM, HasV8]> {
+ bits<4> Rd;
+ let Inst{15-12} = Rd;
+}
+
+class AIswp<bit b, dag oops, dag iops, string opc, list<dag> pattern>
+ : AI<oops, iops, MiscFrm, NoItinerary, opc, "\t$Rt, $Rt2, $addr", pattern> {
+ bits<4> Rt;
+ bits<4> Rt2;
+ bits<4> addr;
+ let Inst{27-23} = 0b00010;
+ let Inst{22} = b;
+ let Inst{21-20} = 0b00;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = Rt;
+ let Inst{11-4} = 0b00001001;
+ let Inst{3-0} = Rt2;
+
+ let Unpredictable{11-8} = 0b1111;
+ let DecoderMethod = "DecodeSwap";
+}
+// Acquire/Release load/store instructions
+class AIldracq<bits<2> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AIldr_ex_or_acq<opcod, 0b00, oops, iops, itin, opc, asm, pattern>,
+ Requires<[IsARM, HasV8]>;
+
+class AIstrrel<bits<2> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AIstr_ex_or_rel<opcod, 0b00, oops, iops, itin, opc, asm, pattern>,
+ Requires<[IsARM, HasV8]> {
+ let Inst{15-12} = 0b1111;
+}
+
+// addrmode1 instructions
+class AI1<bits<4> opcod, dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode1, 4, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
+ let Inst{24-21} = opcod;
+ let Inst{27-26} = 0b00;
+}
+class AsI1<bits<4> opcod, dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : sI<oops, iops, AddrMode1, 4, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
+ let Inst{24-21} = opcod;
+ let Inst{27-26} = 0b00;
+}
+class AXI1<bits<4> opcod, dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode1, 4, IndexModeNone, f, itin,
+ asm, "", pattern> {
+ let Inst{24-21} = opcod;
+ let Inst{27-26} = 0b00;
+}
+
+// loads
+
+// LDR/LDRB/STR/STRB/...
+class AI2ldst<bits<3> op, bit isLd, bit isByte, dag oops, dag iops, AddrMode am,
+ Format f, InstrItinClass itin, string opc, string asm,
+ list<dag> pattern>
+ : I<oops, iops, am, 4, IndexModeNone, f, itin, opc, asm,
+ "", pattern> {
+ let Inst{27-25} = op;
+ let Inst{24} = 1; // 24 == P
+ // 23 == U
+ let Inst{22} = isByte;
+ let Inst{21} = 0; // 21 == W
+ let Inst{20} = isLd;
+}
+// Indexed load/stores
+class AI2ldstidx<bit isLd, bit isByte, bit isPre, dag oops, dag iops,
+ IndexMode im, Format f, InstrItinClass itin, string opc,
+ string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode2, 4, im, f, itin,
+ opc, asm, cstr, pattern> {
+ bits<4> Rt;
+ let Inst{27-26} = 0b01;
+ let Inst{24} = isPre; // P bit
+ let Inst{22} = isByte; // B bit
+ let Inst{21} = isPre; // W bit
+ let Inst{20} = isLd; // L bit
+ let Inst{15-12} = Rt;
+}
+class AI2stridx_reg<bit isByte, bit isPre, dag oops, dag iops,
+ IndexMode im, Format f, InstrItinClass itin, string opc,
+ string asm, string cstr, list<dag> pattern>
+ : AI2ldstidx<0, isByte, isPre, oops, iops, im, f, itin, opc, asm, cstr,
+ pattern> {
+ // AM2 store w/ two operands: (GPR, am2offset)
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> Rn;
+ let Inst{25} = 1;
+ let Inst{23} = offset{12};
+ let Inst{19-16} = Rn;
+ let Inst{11-5} = offset{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = offset{3-0};
+}
+
+class AI2stridx_imm<bit isByte, bit isPre, dag oops, dag iops,
+ IndexMode im, Format f, InstrItinClass itin, string opc,
+ string asm, string cstr, list<dag> pattern>
+ : AI2ldstidx<0, isByte, isPre, oops, iops, im, f, itin, opc, asm, cstr,
+ pattern> {
+ // AM2 store w/ two operands: (GPR, am2offset)
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> Rn;
+ let Inst{25} = 0;
+ let Inst{23} = offset{12};
+ let Inst{19-16} = Rn;
+ let Inst{11-0} = offset{11-0};
+}
+
+
+// FIXME: Merge with the above class when addrmode2 gets used for STR, STRB
+// but for now use this class for STRT and STRBT.
+class AI2stridxT<bit isByte, bit isPre, dag oops, dag iops,
+ IndexMode im, Format f, InstrItinClass itin, string opc,
+ string asm, string cstr, list<dag> pattern>
+ : AI2ldstidx<0, isByte, isPre, oops, iops, im, f, itin, opc, asm, cstr,
+ pattern> {
+ // AM2 store w/ two operands: (GPR, am2offset)
+ // {17-14} Rn
+ // {13} 1 == Rm, 0 == imm12
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<18> addr;
+ let Inst{25} = addr{13};
+ let Inst{23} = addr{12};
+ let Inst{19-16} = addr{17-14};
+ let Inst{11-0} = addr{11-0};
+}
+
+// addrmode3 instructions
+class AI3ld<bits<4> op, bit op20, dag oops, dag iops, Format f,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode3, 4, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
+ bits<14> addr;
+ bits<4> Rt;
+ let Inst{27-25} = 0b000;
+ let Inst{24} = 1; // P bit
+ let Inst{23} = addr{8}; // U bit
+ let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
+ let Inst{21} = 0; // W bit
+ let Inst{20} = op20; // L bit
+ let Inst{19-16} = addr{12-9}; // Rn
+ let Inst{15-12} = Rt; // Rt
+ let Inst{11-8} = addr{7-4}; // imm7_4/zero
+ let Inst{7-4} = op;
+ let Inst{3-0} = addr{3-0}; // imm3_0/Rm
+
+ let DecoderMethod = "DecodeAddrMode3Instruction";
+}
+
+class AI3ldstidx<bits<4> op, bit op20, bit isPre, dag oops, dag iops,
+ IndexMode im, Format f, InstrItinClass itin, string opc,
+ string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode3, 4, im, f, itin,
+ opc, asm, cstr, pattern> {
+ bits<4> Rt;
+ let Inst{27-25} = 0b000;
+ let Inst{24} = isPre; // P bit
+ let Inst{21} = isPre; // W bit
+ let Inst{20} = op20; // L bit
+ let Inst{15-12} = Rt; // Rt
+ let Inst{7-4} = op;
+}
+
+// FIXME: Merge with the above class when addrmode2 gets used for LDR, LDRB
+// but for now use this class for LDRSBT, LDRHT, LDSHT.
+class AI3ldstidxT<bits<4> op, bit isLoad, dag oops, dag iops,
+ IndexMode im, Format f, InstrItinClass itin, string opc,
+ string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode3, 4, im, f, itin, opc, asm, cstr, pattern> {
+ // {13} 1 == imm8, 0 == Rm
+ // {12-9} Rn
+ // {8} isAdd
+ // {7-4} imm7_4/zero
+ // {3-0} imm3_0/Rm
+ bits<4> addr;
+ bits<4> Rt;
+ let Inst{27-25} = 0b000;
+ let Inst{24} = 0; // P bit
+ let Inst{21} = 1;
+ let Inst{20} = isLoad; // L bit
+ let Inst{19-16} = addr; // Rn
+ let Inst{15-12} = Rt; // Rt
+ let Inst{7-4} = op;
+}
+
+// stores
+class AI3str<bits<4> op, dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode3, 4, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
+ bits<14> addr;
+ bits<4> Rt;
+ let Inst{27-25} = 0b000;
+ let Inst{24} = 1; // P bit
+ let Inst{23} = addr{8}; // U bit
+ let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
+ let Inst{21} = 0; // W bit
+ let Inst{20} = 0; // L bit
+ let Inst{19-16} = addr{12-9}; // Rn
+ let Inst{15-12} = Rt; // Rt
+ let Inst{11-8} = addr{7-4}; // imm7_4/zero
+ let Inst{7-4} = op;
+ let Inst{3-0} = addr{3-0}; // imm3_0/Rm
+ let DecoderMethod = "DecodeAddrMode3Instruction";
+}
+
+// addrmode4 instructions
+class AXI4<dag oops, dag iops, IndexMode im, Format f, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : XI<oops, iops, AddrMode4, 4, im, f, itin, asm, cstr, pattern> {
+ bits<4> p;
+ bits<16> regs;
+ bits<4> Rn;
+ let Inst{31-28} = p;
+ let Inst{27-25} = 0b100;
+ let Inst{22} = 0; // S bit
+ let Inst{19-16} = Rn;
+ let Inst{15-0} = regs;
+}
+
+// Unsigned multiply, multiply-accumulate instructions.
+class AMul1I<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, 4, IndexModeNone, MulFrm, itin,
+ opc, asm, "", pattern> {
+ let Inst{7-4} = 0b1001;
+ let Inst{20} = 0; // S bit
+ let Inst{27-21} = opcod;
+}
+class AsMul1I<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : sI<oops, iops, AddrModeNone, 4, IndexModeNone, MulFrm, itin,
+ opc, asm, "", pattern> {
+ let Inst{7-4} = 0b1001;
+ let Inst{27-21} = opcod;
+}
+
+// Most significant word multiply
+class AMul2I<bits<7> opcod, bits<4> opc7_4, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, 4, IndexModeNone, MulFrm, itin,
+ opc, asm, "", pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{7-4} = opc7_4;
+ let Inst{20} = 1;
+ let Inst{27-21} = opcod;
+ let Inst{19-16} = Rd;
+ let Inst{11-8} = Rm;
+ let Inst{3-0} = Rn;
+}
+// MSW multiple w/ Ra operand
+class AMul2Ia<bits<7> opcod, bits<4> opc7_4, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AMul2I<opcod, opc7_4, oops, iops, itin, opc, asm, pattern> {
+ bits<4> Ra;
+ let Inst{15-12} = Ra;
+}
+
+// SMUL<x><y> / SMULW<y> / SMLA<x><y> / SMLAW<x><y>
+class AMulxyIbase<bits<7> opcod, bits<2> bit6_5, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, 4, IndexModeNone, MulFrm, itin,
+ opc, asm, "", pattern> {
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{4} = 0;
+ let Inst{7} = 1;
+ let Inst{20} = 0;
+ let Inst{27-21} = opcod;
+ let Inst{6-5} = bit6_5;
+ let Inst{11-8} = Rm;
+ let Inst{3-0} = Rn;
+}
+class AMulxyI<bits<7> opcod, bits<2> bit6_5, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AMulxyIbase<opcod, bit6_5, oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ let Inst{19-16} = Rd;
+}
+
+// AMulxyI with Ra operand
+class AMulxyIa<bits<7> opcod, bits<2> bit6_5, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AMulxyI<opcod, bit6_5, oops, iops, itin, opc, asm, pattern> {
+ bits<4> Ra;
+ let Inst{15-12} = Ra;
+}
+// SMLAL*
+class AMulxyI64<bits<7> opcod, bits<2> bit6_5, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AMulxyIbase<opcod, bit6_5, oops, iops, itin, opc, asm, pattern> {
+ bits<4> RdLo;
+ bits<4> RdHi;
+ let Inst{19-16} = RdHi;
+ let Inst{15-12} = RdLo;
+}
+
+// Extend instructions.
+class AExtI<bits<8> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, 4, IndexModeNone, ExtFrm, itin,
+ opc, asm, "", pattern> {
+ // All AExtI instructions have Rd and Rm register operands.
+ bits<4> Rd;
+ bits<4> Rm;
+ let Inst{15-12} = Rd;
+ let Inst{3-0} = Rm;
+ let Inst{7-4} = 0b0111;
+ let Inst{9-8} = 0b00;
+ let Inst{27-20} = opcod;
+
+ let Unpredictable{9-8} = 0b11;
+}
+
+// Misc Arithmetic instructions.
+class AMiscA1I<bits<8> opcod, bits<4> opc7_4, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, 4, IndexModeNone, ArithMiscFrm, itin,
+ opc, asm, "", pattern> {
+ bits<4> Rd;
+ bits<4> Rm;
+ let Inst{27-20} = opcod;
+ let Inst{19-16} = 0b1111;
+ let Inst{15-12} = Rd;
+ let Inst{11-8} = 0b1111;
+ let Inst{7-4} = opc7_4;
+ let Inst{3-0} = Rm;
+}
+
+// Division instructions.
+class ADivA1I<bits<3> opcod, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, 4, IndexModeNone, ArithMiscFrm, itin,
+ opc, asm, "", pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{27-23} = 0b01110;
+ let Inst{22-20} = opcod;
+ let Inst{19-16} = Rd;
+ let Inst{15-12} = 0b1111;
+ let Inst{11-8} = Rm;
+ let Inst{7-4} = 0b0001;
+ let Inst{3-0} = Rn;
+}
+
+// PKH instructions
+def PKHLSLAsmOperand : ImmAsmOperand {
+ let Name = "PKHLSLImm";
+ let ParserMethod = "parsePKHLSLImm";
+}
+def pkh_lsl_amt: Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 32; }]>{
+ let PrintMethod = "printPKHLSLShiftImm";
+ let ParserMatchClass = PKHLSLAsmOperand;
+}
+def PKHASRAsmOperand : AsmOperandClass {
+ let Name = "PKHASRImm";
+ let ParserMethod = "parsePKHASRImm";
+}
+def pkh_asr_amt: Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm <= 32; }]>{
+ let PrintMethod = "printPKHASRShiftImm";
+ let ParserMatchClass = PKHASRAsmOperand;
+}
+
+class APKHI<bits<8> opcod, bit tb, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, 4, IndexModeNone, ArithMiscFrm, itin,
+ opc, asm, "", pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+ bits<5> sh;
+ let Inst{27-20} = opcod;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-7} = sh;
+ let Inst{6} = tb;
+ let Inst{5-4} = 0b01;
+ let Inst{3-0} = Rm;
+}
+
+//===----------------------------------------------------------------------===//
+
+// ARMPat - Same as Pat<>, but requires that the compiler be in ARM mode.
+class ARMPat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [IsARM];
+}
+class ARMV5TPat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [IsARM, HasV5T];
+}
+class ARMV5TEPat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [IsARM, HasV5TE];
+}
+// ARMV5MOPat - Same as ARMV5TEPat with UseMulOps.
+class ARMV5MOPat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [IsARM, HasV5TE, UseMulOps];
+}
+class ARMV6Pat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [IsARM, HasV6];
+}
+
+//===----------------------------------------------------------------------===//
+// Thumb Instruction Format Definitions.
+//
+
+class ThumbI<dag oops, dag iops, AddrMode am, int sz,
+ InstrItinClass itin, string asm, string cstr, list<dag> pattern>
+ : InstThumb<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
+ let AsmString = asm;
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsThumb];
+}
+
+// TI - Thumb instruction.
+class TI<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern>
+ : ThumbI<oops, iops, AddrModeNone, 2, itin, asm, "", pattern>;
+
+// Two-address instructions
+class TIt<dag oops, dag iops, InstrItinClass itin, string asm,
+ list<dag> pattern>
+ : ThumbI<oops, iops, AddrModeNone, 2, itin, asm, "$lhs = $dst",
+ pattern>;
+
+// tBL, tBX 32-bit instructions
+class TIx2<bits<5> opcod1, bits<2> opcod2, bit opcod3,
+ dag oops, dag iops, InstrItinClass itin, string asm,
+ list<dag> pattern>
+ : ThumbI<oops, iops, AddrModeNone, 4, itin, asm, "", pattern>,
+ Encoding {
+ let Inst{31-27} = opcod1;
+ let Inst{15-14} = opcod2;
+ let Inst{12} = opcod3;
+}
+
+// BR_JT instructions
+class TJTI<dag oops, dag iops, InstrItinClass itin, string asm,
+ list<dag> pattern>
+ : ThumbI<oops, iops, AddrModeNone, 0, itin, asm, "", pattern>;
+
+// Thumb1 only
+class Thumb1I<dag oops, dag iops, AddrMode am, int sz,
+ InstrItinClass itin, string asm, string cstr, list<dag> pattern>
+ : InstThumb<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
+ let AsmString = asm;
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsThumb, IsThumb1Only];
+}
+
+class T1I<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : Thumb1I<oops, iops, AddrModeNone, 2, itin, asm, "", pattern>;
+class T1Ix2<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : Thumb1I<oops, iops, AddrModeNone, 4, itin, asm, "", pattern>;
+
+// Two-address instructions
+class T1It<dag oops, dag iops, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : Thumb1I<oops, iops, AddrModeNone, 2, itin,
+ asm, cstr, pattern>;
+
+// Thumb1 instruction that can either be predicated or set CPSR.
+class Thumb1sI<dag oops, dag iops, AddrMode am, int sz,
+ InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : InstThumb<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> {
+ let OutOperandList = !con(oops, (outs s_cc_out:$s));
+ let InOperandList = !con(iops, (ins pred:$p));
+ let AsmString = !strconcat(opc, "${s}${p}", asm);
+ let Pattern = pattern;
+ let thumbArithFlagSetting = 1;
+ list<Predicate> Predicates = [IsThumb, IsThumb1Only];
+ let DecoderNamespace = "ThumbSBit";
+}
+
+class T1sI<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb1sI<oops, iops, AddrModeNone, 2, itin, opc, asm, "", pattern>;
+
+// Two-address instructions
+class T1sIt<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb1sI<oops, iops, AddrModeNone, 2, itin, opc, asm,
+ "$Rn = $Rdn", pattern>;
+
+// Thumb1 instruction that can be predicated.
+class Thumb1pI<dag oops, dag iops, AddrMode am, int sz,
+ InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : InstThumb<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ let AsmString = !strconcat(opc, "${p}", asm);
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsThumb, IsThumb1Only];
+}
+
+class T1pI<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb1pI<oops, iops, AddrModeNone, 2, itin, opc, asm, "", pattern>;
+
+// Two-address instructions
+class T1pIt<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb1pI<oops, iops, AddrModeNone, 2, itin, opc, asm,
+ "$Rn = $Rdn", pattern>;
+
+class T1pIs<dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : Thumb1pI<oops, iops, AddrModeT1_s, 2, itin, opc, asm, "", pattern>;
+
+class Encoding16 : Encoding {
+ let Inst{31-16} = 0x0000;
+}
+
+// A6.2 16-bit Thumb instruction encoding
+class T1Encoding<bits<6> opcode> : Encoding16 {
+ let Inst{15-10} = opcode;
+}
+
+// A6.2.1 Shift (immediate), add, subtract, move, and compare encoding.
+class T1General<bits<5> opcode> : Encoding16 {
+ let Inst{15-14} = 0b00;
+ let Inst{13-9} = opcode;
+}
+
+// A6.2.2 Data-processing encoding.
+class T1DataProcessing<bits<4> opcode> : Encoding16 {
+ let Inst{15-10} = 0b010000;
+ let Inst{9-6} = opcode;
+}
+
+// A6.2.3 Special data instructions and branch and exchange encoding.
+class T1Special<bits<4> opcode> : Encoding16 {
+ let Inst{15-10} = 0b010001;
+ let Inst{9-6} = opcode;
+}
+
+// A6.2.4 Load/store single data item encoding.
+class T1LoadStore<bits<4> opA, bits<3> opB> : Encoding16 {
+ let Inst{15-12} = opA;
+ let Inst{11-9} = opB;
+}
+class T1LdStSP<bits<3> opB> : T1LoadStore<0b1001, opB>; // SP relative
+
+class T1BranchCond<bits<4> opcode> : Encoding16 {
+ let Inst{15-12} = opcode;
+}
+
+// Helper classes to encode Thumb1 loads and stores. For immediates, the
+// following bits are used for "opA" (see A6.2.4):
+//
+// 0b0110 => Immediate, 4 bytes
+// 0b1000 => Immediate, 2 bytes
+// 0b0111 => Immediate, 1 byte
+class T1pILdStEncode<bits<3> opcode, dag oops, dag iops, AddrMode am,
+ InstrItinClass itin, string opc, string asm,
+ list<dag> pattern>
+ : Thumb1pI<oops, iops, am, 2, itin, opc, asm, "", pattern>,
+ T1LoadStore<0b0101, opcode> {
+ bits<3> Rt;
+ bits<8> addr;
+ let Inst{8-6} = addr{5-3}; // Rm
+ let Inst{5-3} = addr{2-0}; // Rn
+ let Inst{2-0} = Rt;
+}
+class T1pILdStEncodeImm<bits<4> opA, bit opB, dag oops, dag iops, AddrMode am,
+ InstrItinClass itin, string opc, string asm,
+ list<dag> pattern>
+ : Thumb1pI<oops, iops, am, 2, itin, opc, asm, "", pattern>,
+ T1LoadStore<opA, {opB,?,?}> {
+ bits<3> Rt;
+ bits<8> addr;
+ let Inst{10-6} = addr{7-3}; // imm5
+ let Inst{5-3} = addr{2-0}; // Rn
+ let Inst{2-0} = Rt;
+}
+
+// A6.2.5 Miscellaneous 16-bit instructions encoding.
+class T1Misc<bits<7> opcode> : Encoding16 {
+ let Inst{15-12} = 0b1011;
+ let Inst{11-5} = opcode;
+}
+
+// Thumb2I - Thumb2 instruction. Almost all Thumb2 instructions are predicable.
+class Thumb2I<dag oops, dag iops, AddrMode am, int sz,
+ InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ let AsmString = !strconcat(opc, "${p}", asm);
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsThumb2];
+ let DecoderNamespace = "Thumb2";
+}
+
+// Same as Thumb2I except it can optionally modify CPSR. Note it's modeled as an
+// input operand since by default it's a zero register. It will become an
+// implicit def once it's "flipped".
+//
+// FIXME: This uses unified syntax so {s} comes before {p}. We should make it
+// more consistent.
+class Thumb2sI<dag oops, dag iops, AddrMode am, int sz,
+ InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> {
+ bits<1> s; // condition-code set flag ('1' if the insn should set the flags)
+ let Inst{20} = s;
+
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p, cc_out:$s));
+ let AsmString = !strconcat(opc, "${s}${p}", asm);
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsThumb2];
+ let DecoderNamespace = "Thumb2";
+}
+
+// Special cases
+class Thumb2XI<dag oops, dag iops, AddrMode am, int sz,
+ InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
+ let AsmString = asm;
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsThumb2];
+ let DecoderNamespace = "Thumb2";
+}
+
+class ThumbXI<dag oops, dag iops, AddrMode am, int sz,
+ InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, IndexModeNone, ThumbFrm, GenericDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
+ let AsmString = asm;
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsThumb, IsThumb1Only];
+ let DecoderNamespace = "Thumb";
+}
+
+class T2I<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeNone, 4, itin, opc, asm, "", pattern>;
+class T2Ii12<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeT2_i12, 4, itin, opc, asm, "",pattern>;
+class T2Ii8<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeT2_i8, 4, itin, opc, asm, "", pattern>;
+class T2Iso<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeT2_so, 4, itin, opc, asm, "", pattern>;
+class T2Ipc<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeT2_pc, 4, itin, opc, asm, "", pattern>;
+class T2Ii8s4<bit P, bit W, bit isLoad, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeT2_i8s4, 4, itin, opc, asm, cstr,
+ pattern> {
+ bits<4> Rt;
+ bits<4> Rt2;
+ bits<13> addr;
+ let Inst{31-25} = 0b1110100;
+ let Inst{24} = P;
+ let Inst{23} = addr{8};
+ let Inst{22} = 1;
+ let Inst{21} = W;
+ let Inst{20} = isLoad;
+ let Inst{19-16} = addr{12-9};
+ let Inst{15-12} = Rt{3-0};
+ let Inst{11-8} = Rt2{3-0};
+ let Inst{7-0} = addr{7-0};
+}
+class T2Ii8s4post<bit P, bit W, bit isLoad, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, string cstr,
+ list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeT2_i8s4, 4, itin, opc, asm, cstr,
+ pattern> {
+ bits<4> Rt;
+ bits<4> Rt2;
+ bits<4> addr;
+ bits<9> imm;
+ let Inst{31-25} = 0b1110100;
+ let Inst{24} = P;
+ let Inst{23} = imm{8};
+ let Inst{22} = 1;
+ let Inst{21} = W;
+ let Inst{20} = isLoad;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = Rt{3-0};
+ let Inst{11-8} = Rt2{3-0};
+ let Inst{7-0} = imm{7-0};
+}
+
+class T2sI<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2sI<oops, iops, AddrModeNone, 4, itin, opc, asm, "", pattern>;
+
+class T2XI<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : Thumb2XI<oops, iops, AddrModeNone, 4, itin, asm, "", pattern>;
+class T2JTI<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : Thumb2XI<oops, iops, AddrModeNone, 0, itin, asm, "", pattern>;
+
+// Move to/from coprocessor instructions
+class T2Cop<bits<4> opc, dag oops, dag iops, string opcstr, string asm,
+ list<dag> pattern>
+ : T2I <oops, iops, NoItinerary, opcstr, asm, pattern>, Requires<[IsThumb2]> {
+ let Inst{31-28} = opc;
+}
+
+// Two-address instructions
+class T2XIt<dag oops, dag iops, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : Thumb2XI<oops, iops, AddrModeNone, 4, itin, asm, cstr, pattern>;
+
+// T2Ipreldst - Thumb2 pre-indexed load / store instructions.
+class T2Ipreldst<bit signed, bits<2> opcod, bit load, bit pre,
+ dag oops, dag iops,
+ AddrMode am, IndexMode im, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : InstARM<am, 4, im, ThumbFrm, GenericDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ let AsmString = !strconcat(opc, "${p}", asm);
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsThumb2];
+ let DecoderNamespace = "Thumb2";
+
+ bits<4> Rt;
+ bits<13> addr;
+ let Inst{31-27} = 0b11111;
+ let Inst{26-25} = 0b00;
+ let Inst{24} = signed;
+ let Inst{23} = 0;
+ let Inst{22-21} = opcod;
+ let Inst{20} = load;
+ let Inst{19-16} = addr{12-9};
+ let Inst{15-12} = Rt{3-0};
+ let Inst{11} = 1;
+ // (P, W) = (1, 1) Pre-indexed or (0, 1) Post-indexed
+ let Inst{10} = pre; // The P bit.
+ let Inst{9} = addr{8}; // Sign bit
+ let Inst{8} = 1; // The W bit.
+ let Inst{7-0} = addr{7-0};
+
+ let DecoderMethod = "DecodeT2LdStPre";
+}
+
+// T2Ipostldst - Thumb2 post-indexed load / store instructions.
+class T2Ipostldst<bit signed, bits<2> opcod, bit load, bit pre,
+ dag oops, dag iops,
+ AddrMode am, IndexMode im, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : InstARM<am, 4, im, ThumbFrm, GenericDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ let AsmString = !strconcat(opc, "${p}", asm);
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsThumb2];
+ let DecoderNamespace = "Thumb2";
+
+ bits<4> Rt;
+ bits<4> Rn;
+ bits<9> offset;
+ let Inst{31-27} = 0b11111;
+ let Inst{26-25} = 0b00;
+ let Inst{24} = signed;
+ let Inst{23} = 0;
+ let Inst{22-21} = opcod;
+ let Inst{20} = load;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rt{3-0};
+ let Inst{11} = 1;
+ // (P, W) = (1, 1) Pre-indexed or (0, 1) Post-indexed
+ let Inst{10} = pre; // The P bit.
+ let Inst{9} = offset{8}; // Sign bit
+ let Inst{8} = 1; // The W bit.
+ let Inst{7-0} = offset{7-0};
+
+ let DecoderMethod = "DecodeT2LdStPre";
+}
+
+// Tv5Pat - Same as Pat<>, but requires V5T Thumb mode.
+class Tv5Pat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [IsThumb, IsThumb1Only, HasV5T];
+}
+
+// T1Pat - Same as Pat<>, but requires that the compiler be in Thumb1 mode.
+class T1Pat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [IsThumb, IsThumb1Only];
+}
+
+// T2v6Pat - Same as Pat<>, but requires V6T2 Thumb2 mode.
+class T2v6Pat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [IsThumb2, HasV6T2];
+}
+
+// T2Pat - Same as Pat<>, but requires that the compiler be in Thumb2 mode.
+class T2Pat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [IsThumb2];
+}
+
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ARM VFP Instruction templates.
+//
+
+// Almost all VFP instructions are predicable.
+class VFPI<dag oops, dag iops, AddrMode am, int sz,
+ IndexMode im, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, im, f, VFPDomain, cstr, itin> {
+ bits<4> p;
+ let Inst{31-28} = p;
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ let AsmString = !strconcat(opc, "${p}", asm);
+ let Pattern = pattern;
+ let PostEncoderMethod = "VFPThumb2PostEncoder";
+ let DecoderNamespace = "VFP";
+ list<Predicate> Predicates = [HasVFP2];
+}
+
+// Special cases
+class VFPXI<dag oops, dag iops, AddrMode am, int sz,
+ IndexMode im, Format f, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, im, f, VFPDomain, cstr, itin> {
+ bits<4> p;
+ let Inst{31-28} = p;
+ let OutOperandList = oops;
+ let InOperandList = iops;
+ let AsmString = asm;
+ let Pattern = pattern;
+ let PostEncoderMethod = "VFPThumb2PostEncoder";
+ let DecoderNamespace = "VFP";
+ list<Predicate> Predicates = [HasVFP2];
+}
+
+class VFPAI<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : VFPI<oops, iops, AddrModeNone, 4, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
+ let PostEncoderMethod = "VFPThumb2PostEncoder";
+}
+
+// ARM VFP addrmode5 loads and stores
+class ADI5<bits<4> opcod1, bits<2> opcod2, dag oops, dag iops,
+ InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : VFPI<oops, iops, AddrMode5, 4, IndexModeNone,
+ VFPLdStFrm, itin, opc, asm, "", pattern> {
+ // Instruction operands.
+ bits<5> Dd;
+ bits<13> addr;
+
+ // Encode instruction operands.
+ let Inst{23} = addr{8}; // U (add = (U == '1'))
+ let Inst{22} = Dd{4};
+ let Inst{19-16} = addr{12-9}; // Rn
+ let Inst{15-12} = Dd{3-0};
+ let Inst{7-0} = addr{7-0}; // imm8
+
+ let Inst{27-24} = opcod1;
+ let Inst{21-20} = opcod2;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 1; // Double precision
+
+ // Loads & stores operate on both NEON and VFP pipelines.
+ let D = VFPNeonDomain;
+}
+
+class ASI5<bits<4> opcod1, bits<2> opcod2, dag oops, dag iops,
+ InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : VFPI<oops, iops, AddrMode5, 4, IndexModeNone,
+ VFPLdStFrm, itin, opc, asm, "", pattern> {
+ // Instruction operands.
+ bits<5> Sd;
+ bits<13> addr;
+
+ // Encode instruction operands.
+ let Inst{23} = addr{8}; // U (add = (U == '1'))
+ let Inst{22} = Sd{0};
+ let Inst{19-16} = addr{12-9}; // Rn
+ let Inst{15-12} = Sd{4-1};
+ let Inst{7-0} = addr{7-0}; // imm8
+
+ let Inst{27-24} = opcod1;
+ let Inst{21-20} = opcod2;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 0; // Single precision
+
+ // Loads & stores operate on both NEON and VFP pipelines.
+ let D = VFPNeonDomain;
+}
+
+// VFP Load / store multiple pseudo instructions.
+class PseudoVFPLdStM<dag oops, dag iops, InstrItinClass itin, string cstr,
+ list<dag> pattern>
+ : InstARM<AddrMode4, 4, IndexModeNone, Pseudo, VFPNeonDomain,
+ cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ let Pattern = pattern;
+ list<Predicate> Predicates = [HasVFP2];
+}
+
+// Load / store multiple
+
+// Unknown precision
+class AXXI4<dag oops, dag iops, IndexMode im,
+ string asm, string cstr, list<dag> pattern>
+ : VFPXI<oops, iops, AddrMode4, 4, im,
+ VFPLdStFrm, NoItinerary, asm, cstr, pattern> {
+ // Instruction operands.
+ bits<4> Rn;
+ bits<13> regs;
+
+ // Encode instruction operands.
+ let Inst{19-16} = Rn;
+ let Inst{22} = 0;
+ let Inst{15-12} = regs{11-8};
+ let Inst{7-1} = regs{7-1};
+
+ let Inst{27-25} = 0b110;
+ let Inst{11-8} = 0b1011;
+ let Inst{0} = 1;
+}
+
+// Double precision
+class AXDI4<dag oops, dag iops, IndexMode im, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : VFPXI<oops, iops, AddrMode4, 4, im,
+ VFPLdStMulFrm, itin, asm, cstr, pattern> {
+ // Instruction operands.
+ bits<4> Rn;
+ bits<13> regs;
+
+ // Encode instruction operands.
+ let Inst{19-16} = Rn;
+ let Inst{22} = regs{12};
+ let Inst{15-12} = regs{11-8};
+ let Inst{7-1} = regs{7-1};
+
+ let Inst{27-25} = 0b110;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 1; // Double precision
+ let Inst{0} = 0;
+}
+
+// Single Precision
+class AXSI4<dag oops, dag iops, IndexMode im, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : VFPXI<oops, iops, AddrMode4, 4, im,
+ VFPLdStMulFrm, itin, asm, cstr, pattern> {
+ // Instruction operands.
+ bits<4> Rn;
+ bits<13> regs;
+
+ // Encode instruction operands.
+ let Inst{19-16} = Rn;
+ let Inst{22} = regs{8};
+ let Inst{15-12} = regs{12-9};
+ let Inst{7-0} = regs{7-0};
+
+ let Inst{27-25} = 0b110;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 0; // Single precision
+}
+
+// Double precision, unary
+class ADuI<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4,
+ bit opcod5, dag oops, dag iops, InstrItinClass itin, string opc,
+ string asm, list<dag> pattern>
+ : VFPAI<oops, iops, VFPUnaryFrm, itin, opc, asm, pattern> {
+ // Instruction operands.
+ bits<5> Dd;
+ bits<5> Dm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+ let Inst{15-12} = Dd{3-0};
+ let Inst{22} = Dd{4};
+
+ let Inst{27-23} = opcod1;
+ let Inst{21-20} = opcod2;
+ let Inst{19-16} = opcod3;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 1; // Double precision
+ let Inst{7-6} = opcod4;
+ let Inst{4} = opcod5;
+
+ let Predicates = [HasVFP2, HasDPVFP];
+}
+
+// Double precision, unary, not-predicated
+class ADuInp<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4,
+ bit opcod5, dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : VFPXI<oops, iops, AddrModeNone, 4, IndexModeNone, VFPUnaryFrm, itin, asm, "", pattern> {
+ // Instruction operands.
+ bits<5> Dd;
+ bits<5> Dm;
+
+ let Inst{31-28} = 0b1111;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+ let Inst{15-12} = Dd{3-0};
+ let Inst{22} = Dd{4};
+
+ let Inst{27-23} = opcod1;
+ let Inst{21-20} = opcod2;
+ let Inst{19-16} = opcod3;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 1; // Double precision
+ let Inst{7-6} = opcod4;
+ let Inst{4} = opcod5;
+}
+
+// Double precision, binary
+class ADbI<bits<5> opcod1, bits<2> opcod2, bit op6, bit op4, dag oops,
+ dag iops, InstrItinClass itin, string opc, string asm,
+ list<dag> pattern>
+ : VFPAI<oops, iops, VFPBinaryFrm, itin, opc, asm, pattern> {
+ // Instruction operands.
+ bits<5> Dd;
+ bits<5> Dn;
+ bits<5> Dm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+ let Inst{19-16} = Dn{3-0};
+ let Inst{7} = Dn{4};
+ let Inst{15-12} = Dd{3-0};
+ let Inst{22} = Dd{4};
+
+ let Inst{27-23} = opcod1;
+ let Inst{21-20} = opcod2;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 1; // Double precision
+ let Inst{6} = op6;
+ let Inst{4} = op4;
+
+ let Predicates = [HasVFP2, HasDPVFP];
+}
+
+// FP, binary, not predicated
+class ADbInp<bits<5> opcod1, bits<2> opcod2, bit opcod3, dag oops, dag iops,
+ InstrItinClass itin, string asm, list<dag> pattern>
+ : VFPXI<oops, iops, AddrModeNone, 4, IndexModeNone, VFPBinaryFrm, itin,
+ asm, "", pattern>
+{
+ // Instruction operands.
+ bits<5> Dd;
+ bits<5> Dn;
+ bits<5> Dm;
+
+ let Inst{31-28} = 0b1111;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+ let Inst{19-16} = Dn{3-0};
+ let Inst{7} = Dn{4};
+ let Inst{15-12} = Dd{3-0};
+ let Inst{22} = Dd{4};
+
+ let Inst{27-23} = opcod1;
+ let Inst{21-20} = opcod2;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 1; // double precision
+ let Inst{6} = opcod3;
+ let Inst{4} = 0;
+
+ let Predicates = [HasVFP2, HasDPVFP];
+}
+
+// Single precision, unary, predicated
+class ASuI<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4,
+ bit opcod5, dag oops, dag iops, InstrItinClass itin, string opc,
+ string asm, list<dag> pattern>
+ : VFPAI<oops, iops, VFPUnaryFrm, itin, opc, asm, pattern> {
+ // Instruction operands.
+ bits<5> Sd;
+ bits<5> Sm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Sm{4-1};
+ let Inst{5} = Sm{0};
+ let Inst{15-12} = Sd{4-1};
+ let Inst{22} = Sd{0};
+
+ let Inst{27-23} = opcod1;
+ let Inst{21-20} = opcod2;
+ let Inst{19-16} = opcod3;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 0; // Single precision
+ let Inst{7-6} = opcod4;
+ let Inst{4} = opcod5;
+}
+
+// Single precision, unary, non-predicated
+class ASuInp<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4,
+ bit opcod5, dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : VFPXI<oops, iops, AddrModeNone, 4, IndexModeNone,
+ VFPUnaryFrm, itin, asm, "", pattern> {
+ // Instruction operands.
+ bits<5> Sd;
+ bits<5> Sm;
+
+ let Inst{31-28} = 0b1111;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Sm{4-1};
+ let Inst{5} = Sm{0};
+ let Inst{15-12} = Sd{4-1};
+ let Inst{22} = Sd{0};
+
+ let Inst{27-23} = opcod1;
+ let Inst{21-20} = opcod2;
+ let Inst{19-16} = opcod3;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 0; // Single precision
+ let Inst{7-6} = opcod4;
+ let Inst{4} = opcod5;
+}
+
+// Single precision unary, if no NEON. Same as ASuI except not available if
+// NEON is enabled.
+class ASuIn<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<2> opcod4,
+ bit opcod5, dag oops, dag iops, InstrItinClass itin, string opc,
+ string asm, list<dag> pattern>
+ : ASuI<opcod1, opcod2, opcod3, opcod4, opcod5, oops, iops, itin, opc, asm,
+ pattern> {
+ list<Predicate> Predicates = [HasVFP2,DontUseNEONForFP];
+}
+
+// Single precision, binary
+class ASbI<bits<5> opcod1, bits<2> opcod2, bit op6, bit op4, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : VFPAI<oops, iops, VFPBinaryFrm, itin, opc, asm, pattern> {
+ // Instruction operands.
+ bits<5> Sd;
+ bits<5> Sn;
+ bits<5> Sm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Sm{4-1};
+ let Inst{5} = Sm{0};
+ let Inst{19-16} = Sn{4-1};
+ let Inst{7} = Sn{0};
+ let Inst{15-12} = Sd{4-1};
+ let Inst{22} = Sd{0};
+
+ let Inst{27-23} = opcod1;
+ let Inst{21-20} = opcod2;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 0; // Single precision
+ let Inst{6} = op6;
+ let Inst{4} = op4;
+}
+
+// Single precision, binary, not predicated
+class ASbInp<bits<5> opcod1, bits<2> opcod2, bit opcod3, dag oops, dag iops,
+ InstrItinClass itin, string asm, list<dag> pattern>
+ : VFPXI<oops, iops, AddrModeNone, 4, IndexModeNone,
+ VFPBinaryFrm, itin, asm, "", pattern>
+{
+ // Instruction operands.
+ bits<5> Sd;
+ bits<5> Sn;
+ bits<5> Sm;
+
+ let Inst{31-28} = 0b1111;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Sm{4-1};
+ let Inst{5} = Sm{0};
+ let Inst{19-16} = Sn{4-1};
+ let Inst{7} = Sn{0};
+ let Inst{15-12} = Sd{4-1};
+ let Inst{22} = Sd{0};
+
+ let Inst{27-23} = opcod1;
+ let Inst{21-20} = opcod2;
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 0; // Single precision
+ let Inst{6} = opcod3;
+ let Inst{4} = 0;
+}
+
+// Single precision binary, if no NEON. Same as ASbI except not available if
+// NEON is enabled.
+class ASbIn<bits<5> opcod1, bits<2> opcod2, bit op6, bit op4, dag oops,
+ dag iops, InstrItinClass itin, string opc, string asm,
+ list<dag> pattern>
+ : ASbI<opcod1, opcod2, op6, op4, oops, iops, itin, opc, asm, pattern> {
+ list<Predicate> Predicates = [HasVFP2,DontUseNEONForFP];
+
+ // Instruction operands.
+ bits<5> Sd;
+ bits<5> Sn;
+ bits<5> Sm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Sm{4-1};
+ let Inst{5} = Sm{0};
+ let Inst{19-16} = Sn{4-1};
+ let Inst{7} = Sn{0};
+ let Inst{15-12} = Sd{4-1};
+ let Inst{22} = Sd{0};
+}
+
+// VFP conversion instructions
+class AVConv1I<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4,
+ dag oops, dag iops, InstrItinClass itin, string opc, string asm,
+ list<dag> pattern>
+ : VFPAI<oops, iops, VFPConv1Frm, itin, opc, asm, pattern> {
+ let Inst{27-23} = opcod1;
+ let Inst{21-20} = opcod2;
+ let Inst{19-16} = opcod3;
+ let Inst{11-8} = opcod4;
+ let Inst{6} = 1;
+ let Inst{4} = 0;
+}
+
+// VFP conversion between floating-point and fixed-point
+class AVConv1XI<bits<5> op1, bits<2> op2, bits<4> op3, bits<4> op4, bit op5,
+ dag oops, dag iops, InstrItinClass itin, string opc, string asm,
+ list<dag> pattern>
+ : AVConv1I<op1, op2, op3, op4, oops, iops, itin, opc, asm, pattern> {
+ bits<5> fbits;
+ // size (fixed-point number): sx == 0 ? 16 : 32
+ let Inst{7} = op5; // sx
+ let Inst{5} = fbits{0};
+ let Inst{3-0} = fbits{4-1};
+}
+
+// VFP conversion instructions, if no NEON
+class AVConv1In<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, bits<4> opcod4,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
+ pattern> {
+ list<Predicate> Predicates = [HasVFP2,DontUseNEONForFP];
+}
+
+class AVConvXI<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, Format f,
+ InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : VFPAI<oops, iops, f, itin, opc, asm, pattern> {
+ let Inst{27-20} = opcod1;
+ let Inst{11-8} = opcod2;
+ let Inst{4} = 1;
+}
+
+class AVConv2I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AVConvXI<opcod1, opcod2, oops, iops, VFPConv2Frm, itin, opc, asm, pattern>;
+
+class AVConv3I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AVConvXI<opcod1, opcod2, oops, iops, VFPConv3Frm, itin, opc, asm, pattern>;
+
+class AVConv4I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AVConvXI<opcod1, opcod2, oops, iops, VFPConv4Frm, itin, opc, asm, pattern>;
+
+class AVConv5I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AVConvXI<opcod1, opcod2, oops, iops, VFPConv5Frm, itin, opc, asm, pattern>;
+
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ARM NEON Instruction templates.
+//
+
+class NeonI<dag oops, dag iops, AddrMode am, IndexMode im, Format f,
+ InstrItinClass itin, string opc, string dt, string asm, string cstr,
+ list<dag> pattern>
+ : InstARM<am, 4, im, f, NeonDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ let AsmString = !strconcat(opc, "${p}", ".", dt, "\t", asm);
+ let Pattern = pattern;
+ list<Predicate> Predicates = [HasNEON];
+ let DecoderNamespace = "NEON";
+}
+
+// Same as NeonI except it does not have a "data type" specifier.
+class NeonXI<dag oops, dag iops, AddrMode am, IndexMode im, Format f,
+ InstrItinClass itin, string opc, string asm, string cstr,
+ list<dag> pattern>
+ : InstARM<am, 4, im, f, NeonDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ let AsmString = !strconcat(opc, "${p}", "\t", asm);
+ let Pattern = pattern;
+ list<Predicate> Predicates = [HasNEON];
+ let DecoderNamespace = "NEON";
+}
+
+// Same as NeonI except it is not predicated
+class NeonInp<dag oops, dag iops, AddrMode am, IndexMode im, Format f,
+ InstrItinClass itin, string opc, string dt, string asm, string cstr,
+ list<dag> pattern>
+ : InstARM<am, 4, im, f, NeonDomain, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
+ let AsmString = !strconcat(opc, ".", dt, "\t", asm);
+ let Pattern = pattern;
+ list<Predicate> Predicates = [HasNEON];
+ let DecoderNamespace = "NEON";
+
+ let Inst{31-28} = 0b1111;
+}
+
+class NLdSt<bit op23, bits<2> op21_20, bits<4> op11_8, bits<4> op7_4,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string dt, string asm, string cstr, list<dag> pattern>
+ : NeonI<oops, iops, AddrMode6, IndexModeNone, NLdStFrm, itin, opc, dt, asm,
+ cstr, pattern> {
+ let Inst{31-24} = 0b11110100;
+ let Inst{23} = op23;
+ let Inst{21-20} = op21_20;
+ let Inst{11-8} = op11_8;
+ let Inst{7-4} = op7_4;
+
+ let PostEncoderMethod = "NEONThumb2LoadStorePostEncoder";
+ let DecoderNamespace = "NEONLoadStore";
+
+ bits<5> Vd;
+ bits<6> Rn;
+ bits<4> Rm;
+
+ let Inst{22} = Vd{4};
+ let Inst{15-12} = Vd{3-0};
+ let Inst{19-16} = Rn{3-0};
+ let Inst{3-0} = Rm{3-0};
+}
+
+class NLdStLn<bit op23, bits<2> op21_20, bits<4> op11_8, bits<4> op7_4,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string dt, string asm, string cstr, list<dag> pattern>
+ : NLdSt<op23, op21_20, op11_8, op7_4, oops, iops, itin, opc,
+ dt, asm, cstr, pattern> {
+ bits<3> lane;
+}
+
+class PseudoNLdSt<dag oops, dag iops, InstrItinClass itin, string cstr>
+ : InstARM<AddrMode6, 4, IndexModeNone, Pseudo, NeonDomain, cstr,
+ itin> {
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ list<Predicate> Predicates = [HasNEON];
+}
+
+class PseudoNeonI<dag oops, dag iops, InstrItinClass itin, string cstr,
+ list<dag> pattern>
+ : InstARM<AddrModeNone, 4, IndexModeNone, Pseudo, NeonDomain, cstr,
+ itin> {
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ let Pattern = pattern;
+ list<Predicate> Predicates = [HasNEON];
+}
+
+class NDataI<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string dt, string asm, string cstr, list<dag> pattern>
+ : NeonI<oops, iops, AddrModeNone, IndexModeNone, f, itin, opc, dt, asm, cstr,
+ pattern> {
+ let Inst{31-25} = 0b1111001;
+ let PostEncoderMethod = "NEONThumb2DataIPostEncoder";
+ let DecoderNamespace = "NEONData";
+}
+
+class NDataXI<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : NeonXI<oops, iops, AddrModeNone, IndexModeNone, f, itin, opc, asm,
+ cstr, pattern> {
+ let Inst{31-25} = 0b1111001;
+ let PostEncoderMethod = "NEONThumb2DataIPostEncoder";
+ let DecoderNamespace = "NEONData";
+}
+
+// NEON "one register and a modified immediate" format.
+class N1ModImm<bit op23, bits<3> op21_19, bits<4> op11_8, bit op7, bit op6,
+ bit op5, bit op4,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string dt, string asm, string cstr,
+ list<dag> pattern>
+ : NDataI<oops, iops, N1RegModImmFrm, itin, opc, dt, asm, cstr, pattern> {
+ let Inst{23} = op23;
+ let Inst{21-19} = op21_19;
+ let Inst{11-8} = op11_8;
+ let Inst{7} = op7;
+ let Inst{6} = op6;
+ let Inst{5} = op5;
+ let Inst{4} = op4;
+
+ // Instruction operands.
+ bits<5> Vd;
+ bits<13> SIMM;
+
+ let Inst{15-12} = Vd{3-0};
+ let Inst{22} = Vd{4};
+ let Inst{24} = SIMM{7};
+ let Inst{18-16} = SIMM{6-4};
+ let Inst{3-0} = SIMM{3-0};
+ let DecoderMethod = "DecodeNEONModImmInstruction";
+}
+
+// NEON 2 vector register format.
+class N2V<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16,
+ bits<5> op11_7, bit op6, bit op4,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string dt, string asm, string cstr, list<dag> pattern>
+ : NDataI<oops, iops, N2RegFrm, itin, opc, dt, asm, cstr, pattern> {
+ let Inst{24-23} = op24_23;
+ let Inst{21-20} = op21_20;
+ let Inst{19-18} = op19_18;
+ let Inst{17-16} = op17_16;
+ let Inst{11-7} = op11_7;
+ let Inst{6} = op6;
+ let Inst{4} = op4;
+
+ // Instruction operands.
+ bits<5> Vd;
+ bits<5> Vm;
+
+ let Inst{15-12} = Vd{3-0};
+ let Inst{22} = Vd{4};
+ let Inst{3-0} = Vm{3-0};
+ let Inst{5} = Vm{4};
+}
+
+// Same as N2V but not predicated.
+class N2Vnp<bits<2> op19_18, bits<2> op17_16, bits<3> op10_8, bit op7, bit op6,
+ dag oops, dag iops, InstrItinClass itin, string OpcodeStr,
+ string Dt, list<dag> pattern>
+ : NeonInp<oops, iops, AddrModeNone, IndexModeNone, N2RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vm", "", pattern> {
+ bits<5> Vd;
+ bits<5> Vm;
+
+ // Encode instruction operands
+ let Inst{22} = Vd{4};
+ let Inst{15-12} = Vd{3-0};
+ let Inst{5} = Vm{4};
+ let Inst{3-0} = Vm{3-0};
+
+ // Encode constant bits
+ let Inst{27-23} = 0b00111;
+ let Inst{21-20} = 0b11;
+ let Inst{19-18} = op19_18;
+ let Inst{17-16} = op17_16;
+ let Inst{11} = 0;
+ let Inst{10-8} = op10_8;
+ let Inst{7} = op7;
+ let Inst{6} = op6;
+ let Inst{4} = 0;
+
+ let DecoderNamespace = "NEON";
+}
+
+// Same as N2V except it doesn't have a datatype suffix.
+class N2VX<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16,
+ bits<5> op11_7, bit op6, bit op4,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : NDataXI<oops, iops, N2RegFrm, itin, opc, asm, cstr, pattern> {
+ let Inst{24-23} = op24_23;
+ let Inst{21-20} = op21_20;
+ let Inst{19-18} = op19_18;
+ let Inst{17-16} = op17_16;
+ let Inst{11-7} = op11_7;
+ let Inst{6} = op6;
+ let Inst{4} = op4;
+
+ // Instruction operands.
+ bits<5> Vd;
+ bits<5> Vm;
+
+ let Inst{15-12} = Vd{3-0};
+ let Inst{22} = Vd{4};
+ let Inst{3-0} = Vm{3-0};
+ let Inst{5} = Vm{4};
+}
+
+// NEON 2 vector register with immediate.
+class N2VImm<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
+ dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string dt, string asm, string cstr, list<dag> pattern>
+ : NDataI<oops, iops, f, itin, opc, dt, asm, cstr, pattern> {
+ let Inst{24} = op24;
+ let Inst{23} = op23;
+ let Inst{11-8} = op11_8;
+ let Inst{7} = op7;
+ let Inst{6} = op6;
+ let Inst{4} = op4;
+
+ // Instruction operands.
+ bits<5> Vd;
+ bits<5> Vm;
+ bits<6> SIMM;
+
+ let Inst{15-12} = Vd{3-0};
+ let Inst{22} = Vd{4};
+ let Inst{3-0} = Vm{3-0};
+ let Inst{5} = Vm{4};
+ let Inst{21-16} = SIMM{5-0};
+}
+
+// NEON 3 vector register format.
+
+class N3VCommon<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6,
+ bit op4, dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string dt, string asm, string cstr,
+ list<dag> pattern>
+ : NDataI<oops, iops, f, itin, opc, dt, asm, cstr, pattern> {
+ let Inst{24} = op24;
+ let Inst{23} = op23;
+ let Inst{21-20} = op21_20;
+ let Inst{11-8} = op11_8;
+ let Inst{6} = op6;
+ let Inst{4} = op4;
+}
+
+class N3V<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4,
+ dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string dt, string asm, string cstr, list<dag> pattern>
+ : N3VCommon<op24, op23, op21_20, op11_8, op6, op4,
+ oops, iops, f, itin, opc, dt, asm, cstr, pattern> {
+ // Instruction operands.
+ bits<5> Vd;
+ bits<5> Vn;
+ bits<5> Vm;
+
+ let Inst{15-12} = Vd{3-0};
+ let Inst{22} = Vd{4};
+ let Inst{19-16} = Vn{3-0};
+ let Inst{7} = Vn{4};
+ let Inst{3-0} = Vm{3-0};
+ let Inst{5} = Vm{4};
+}
+
+class N3Vnp<bits<5> op27_23, bits<2> op21_20, bits<4> op11_8, bit op6,
+ bit op4, dag oops, dag iops,Format f, InstrItinClass itin,
+ string OpcodeStr, string Dt, list<dag> pattern>
+ : NeonInp<oops, iops, AddrModeNone, IndexModeNone, f, itin, OpcodeStr,
+ Dt, "$Vd, $Vn, $Vm", "", pattern> {
+ bits<5> Vd;
+ bits<5> Vn;
+ bits<5> Vm;
+
+ // Encode instruction operands
+ let Inst{22} = Vd{4};
+ let Inst{15-12} = Vd{3-0};
+ let Inst{19-16} = Vn{3-0};
+ let Inst{7} = Vn{4};
+ let Inst{5} = Vm{4};
+ let Inst{3-0} = Vm{3-0};
+
+ // Encode constant bits
+ let Inst{27-23} = op27_23;
+ let Inst{21-20} = op21_20;
+ let Inst{11-8} = op11_8;
+ let Inst{6} = op6;
+ let Inst{4} = op4;
+}
+
+class N3VLane32<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6,
+ bit op4, dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string dt, string asm, string cstr,
+ list<dag> pattern>
+ : N3VCommon<op24, op23, op21_20, op11_8, op6, op4,
+ oops, iops, f, itin, opc, dt, asm, cstr, pattern> {
+
+ // Instruction operands.
+ bits<5> Vd;
+ bits<5> Vn;
+ bits<5> Vm;
+ bit lane;
+
+ let Inst{15-12} = Vd{3-0};
+ let Inst{22} = Vd{4};
+ let Inst{19-16} = Vn{3-0};
+ let Inst{7} = Vn{4};
+ let Inst{3-0} = Vm{3-0};
+ let Inst{5} = lane;
+}
+
+class N3VLane16<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6,
+ bit op4, dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string dt, string asm, string cstr,
+ list<dag> pattern>
+ : N3VCommon<op24, op23, op21_20, op11_8, op6, op4,
+ oops, iops, f, itin, opc, dt, asm, cstr, pattern> {
+
+ // Instruction operands.
+ bits<5> Vd;
+ bits<5> Vn;
+ bits<5> Vm;
+ bits<2> lane;
+
+ let Inst{15-12} = Vd{3-0};
+ let Inst{22} = Vd{4};
+ let Inst{19-16} = Vn{3-0};
+ let Inst{7} = Vn{4};
+ let Inst{2-0} = Vm{2-0};
+ let Inst{5} = lane{1};
+ let Inst{3} = lane{0};
+}
+
+// Same as N3V except it doesn't have a data type suffix.
+class N3VX<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6,
+ bit op4,
+ dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : NDataXI<oops, iops, f, itin, opc, asm, cstr, pattern> {
+ let Inst{24} = op24;
+ let Inst{23} = op23;
+ let Inst{21-20} = op21_20;
+ let Inst{11-8} = op11_8;
+ let Inst{6} = op6;
+ let Inst{4} = op4;
+
+ // Instruction operands.
+ bits<5> Vd;
+ bits<5> Vn;
+ bits<5> Vm;
+
+ let Inst{15-12} = Vd{3-0};
+ let Inst{22} = Vd{4};
+ let Inst{19-16} = Vn{3-0};
+ let Inst{7} = Vn{4};
+ let Inst{3-0} = Vm{3-0};
+ let Inst{5} = Vm{4};
+}
+
+// NEON VMOVs between scalar and core registers.
+class NVLaneOp<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3,
+ dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string dt, string asm, list<dag> pattern>
+ : InstARM<AddrModeNone, 4, IndexModeNone, f, NeonDomain,
+ "", itin> {
+ let Inst{27-20} = opcod1;
+ let Inst{11-8} = opcod2;
+ let Inst{6-5} = opcod3;
+ let Inst{4} = 1;
+ // A8.6.303, A8.6.328, A8.6.329
+ let Inst{3-0} = 0b0000;
+
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ins pred:$p));
+ let AsmString = !strconcat(opc, "${p}", ".", dt, "\t", asm);
+ let Pattern = pattern;
+ list<Predicate> Predicates = [HasNEON];
+
+ let PostEncoderMethod = "NEONThumb2DupPostEncoder";
+ let DecoderNamespace = "NEONDup";
+
+ bits<5> V;
+ bits<4> R;
+ bits<4> p;
+ bits<4> lane;
+
+ let Inst{31-28} = p{3-0};
+ let Inst{7} = V{4};
+ let Inst{19-16} = V{3-0};
+ let Inst{15-12} = R{3-0};
+}
+class NVGetLane<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string dt, string asm, list<dag> pattern>
+ : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NGetLnFrm, itin,
+ opc, dt, asm, pattern>;
+class NVSetLane<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string dt, string asm, list<dag> pattern>
+ : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NSetLnFrm, itin,
+ opc, dt, asm, pattern>;
+class NVDup<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string dt, string asm, list<dag> pattern>
+ : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NDupFrm, itin,
+ opc, dt, asm, pattern>;
+
+// Vector Duplicate Lane (from scalar to all elements)
+class NVDupLane<bits<4> op19_16, bit op6, dag oops, dag iops,
+ InstrItinClass itin, string opc, string dt, string asm,
+ list<dag> pattern>
+ : NDataI<oops, iops, NVDupLnFrm, itin, opc, dt, asm, "", pattern> {
+ let Inst{24-23} = 0b11;
+ let Inst{21-20} = 0b11;
+ let Inst{19-16} = op19_16;
+ let Inst{11-7} = 0b11000;
+ let Inst{6} = op6;
+ let Inst{4} = 0;
+
+ bits<5> Vd;
+ bits<5> Vm;
+
+ let Inst{22} = Vd{4};
+ let Inst{15-12} = Vd{3-0};
+ let Inst{5} = Vm{4};
+ let Inst{3-0} = Vm{3-0};
+}
+
+// NEONFPPat - Same as Pat<>, but requires that the compiler be using NEON
+// for single-precision FP.
+class NEONFPPat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [HasNEON,UseNEONForFP];
+}
+
+// VFP/NEON Instruction aliases for type suffices.
+class VFPDataTypeInstAlias<string opc, string dt, string asm, dag Result> :
+ InstAlias<!strconcat(opc, dt, "\t", asm), Result>, Requires<[HasVFP2]>;
+
+multiclass VFPDTAnyInstAlias<string opc, string asm, dag Result> {
+ def : VFPDataTypeInstAlias<opc, ".8", asm, Result>;
+ def : VFPDataTypeInstAlias<opc, ".16", asm, Result>;
+ def : VFPDataTypeInstAlias<opc, ".32", asm, Result>;
+ def : VFPDataTypeInstAlias<opc, ".64", asm, Result>;
+}
+
+multiclass NEONDTAnyInstAlias<string opc, string asm, dag Result> {
+ let Predicates = [HasNEON] in {
+ def : VFPDataTypeInstAlias<opc, ".8", asm, Result>;
+ def : VFPDataTypeInstAlias<opc, ".16", asm, Result>;
+ def : VFPDataTypeInstAlias<opc, ".32", asm, Result>;
+ def : VFPDataTypeInstAlias<opc, ".64", asm, Result>;
+}
+}
+
+// The same alias classes using AsmPseudo instead, for the more complex
+// stuff in NEON that InstAlias can't quite handle.
+// Note that we can't use anonymous defm references here like we can
+// above, as we care about the ultimate instruction enum names generated, unlike
+// for instalias defs.
+class NEONDataTypeAsmPseudoInst<string opc, string dt, string asm, dag iops> :
+ AsmPseudoInst<!strconcat(opc, dt, "\t", asm), iops>, Requires<[HasNEON]>;
+
+// Data type suffix token aliases. Implements Table A7-3 in the ARM ARM.
+def : TokenAlias<".s8", ".i8">;
+def : TokenAlias<".u8", ".i8">;
+def : TokenAlias<".s16", ".i16">;
+def : TokenAlias<".u16", ".i16">;
+def : TokenAlias<".s32", ".i32">;
+def : TokenAlias<".u32", ".i32">;
+def : TokenAlias<".s64", ".i64">;
+def : TokenAlias<".u64", ".i64">;
+
+def : TokenAlias<".i8", ".8">;
+def : TokenAlias<".i16", ".16">;
+def : TokenAlias<".i32", ".32">;
+def : TokenAlias<".i64", ".64">;
+
+def : TokenAlias<".p8", ".8">;
+def : TokenAlias<".p16", ".16">;
+
+def : TokenAlias<".f32", ".32">;
+def : TokenAlias<".f64", ".64">;
+def : TokenAlias<".f", ".f32">;
+def : TokenAlias<".d", ".f64">;
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.cpp
new file mode 100644
index 0000000..f235ac2
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.cpp
@@ -0,0 +1,162 @@
+//===-- ARMInstrInfo.cpp - ARM Instruction Information --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the ARM implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMInstrInfo.h"
+#include "ARM.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMTargetMachine.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCInst.h"
+using namespace llvm;
+
+ARMInstrInfo::ARMInstrInfo(const ARMSubtarget &STI)
+ : ARMBaseInstrInfo(STI), RI(STI) {
+}
+
+/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
+void ARMInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
+ if (hasNOP()) {
+ NopInst.setOpcode(ARM::HINT);
+ NopInst.addOperand(MCOperand::CreateImm(0));
+ NopInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ NopInst.addOperand(MCOperand::CreateReg(0));
+ } else {
+ NopInst.setOpcode(ARM::MOVr);
+ NopInst.addOperand(MCOperand::CreateReg(ARM::R0));
+ NopInst.addOperand(MCOperand::CreateReg(ARM::R0));
+ NopInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ NopInst.addOperand(MCOperand::CreateReg(0));
+ NopInst.addOperand(MCOperand::CreateReg(0));
+ }
+}
+
+unsigned ARMInstrInfo::getUnindexedOpcode(unsigned Opc) const {
+ switch (Opc) {
+ default: break;
+ case ARM::LDR_PRE_IMM:
+ case ARM::LDR_PRE_REG:
+ case ARM::LDR_POST_IMM:
+ case ARM::LDR_POST_REG:
+ return ARM::LDRi12;
+ case ARM::LDRH_PRE:
+ case ARM::LDRH_POST:
+ return ARM::LDRH;
+ case ARM::LDRB_PRE_IMM:
+ case ARM::LDRB_PRE_REG:
+ case ARM::LDRB_POST_IMM:
+ case ARM::LDRB_POST_REG:
+ return ARM::LDRBi12;
+ case ARM::LDRSH_PRE:
+ case ARM::LDRSH_POST:
+ return ARM::LDRSH;
+ case ARM::LDRSB_PRE:
+ case ARM::LDRSB_POST:
+ return ARM::LDRSB;
+ case ARM::STR_PRE_IMM:
+ case ARM::STR_PRE_REG:
+ case ARM::STR_POST_IMM:
+ case ARM::STR_POST_REG:
+ return ARM::STRi12;
+ case ARM::STRH_PRE:
+ case ARM::STRH_POST:
+ return ARM::STRH;
+ case ARM::STRB_PRE_IMM:
+ case ARM::STRB_PRE_REG:
+ case ARM::STRB_POST_IMM:
+ case ARM::STRB_POST_REG:
+ return ARM::STRBi12;
+ }
+
+ return 0;
+}
+
+namespace {
+ /// ARMCGBR - Create Global Base Reg pass. This initializes the PIC
+ /// global base register for ARM ELF.
+ struct ARMCGBR : public MachineFunctionPass {
+ static char ID;
+ ARMCGBR() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ if (AFI->getGlobalBaseReg() == 0)
+ return false;
+
+ const ARMTargetMachine *TM =
+ static_cast<const ARMTargetMachine *>(&MF.getTarget());
+ if (TM->getRelocationModel() != Reloc::PIC_)
+ return false;
+
+ LLVMContext *Context = &MF.getFunction()->getContext();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ unsigned PCAdj = TM->getSubtarget<ARMSubtarget>().isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(
+ *Context, "_GLOBAL_OFFSET_TABLE_", ARMPCLabelIndex, PCAdj);
+
+ unsigned Align = TM->getDataLayout()
+ ->getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
+ unsigned Idx = MF.getConstantPool()->getConstantPoolIndex(CPV, Align);
+
+ MachineBasicBlock &FirstMBB = MF.front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
+ unsigned TempReg =
+ MF.getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
+ unsigned Opc = TM->getSubtarget<ARMSubtarget>().isThumb2() ?
+ ARM::t2LDRpci : ARM::LDRcp;
+ const TargetInstrInfo &TII = *TM->getInstrInfo();
+ MachineInstrBuilder MIB = BuildMI(FirstMBB, MBBI, DL,
+ TII.get(Opc), TempReg)
+ .addConstantPoolIndex(Idx);
+ if (Opc == ARM::LDRcp)
+ MIB.addImm(0);
+ AddDefaultPred(MIB);
+
+ // Fix the GOT address by adding pc.
+ unsigned GlobalBaseReg = AFI->getGlobalBaseReg();
+ Opc = TM->getSubtarget<ARMSubtarget>().isThumb2() ? ARM::tPICADD
+ : ARM::PICADD;
+ MIB = BuildMI(FirstMBB, MBBI, DL, TII.get(Opc), GlobalBaseReg)
+ .addReg(TempReg)
+ .addImm(ARMPCLabelIndex);
+ if (Opc == ARM::PICADD)
+ AddDefaultPred(MIB);
+
+
+ return true;
+ }
+
+ const char *getPassName() const override {
+ return "ARM PIC Global Base Reg Initialization";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ };
+}
+
+char ARMCGBR::ID = 0;
+FunctionPass*
+llvm::createARMGlobalBaseRegPass() { return new ARMCGBR(); }
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrInfo.h b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.h
new file mode 100644
index 0000000..b09958a
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.h
@@ -0,0 +1,44 @@
+//===-- ARMInstrInfo.h - ARM Instruction Information ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the ARM implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMINSTRUCTIONINFO_H
+#define ARMINSTRUCTIONINFO_H
+
+#include "ARMBaseInstrInfo.h"
+#include "ARMRegisterInfo.h"
+
+namespace llvm {
+ class ARMSubtarget;
+
+class ARMInstrInfo : public ARMBaseInstrInfo {
+ ARMRegisterInfo RI;
+public:
+ explicit ARMInstrInfo(const ARMSubtarget &STI);
+
+ /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
+ void getNoopForMachoTarget(MCInst &NopInst) const override;
+
+ // Return the non-pre/post incrementing version of 'Opc'. Return 0
+ // if there is not such an opcode.
+ unsigned getUnindexedOpcode(unsigned Opc) const override;
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ const ARMRegisterInfo &getRegisterInfo() const override { return RI; }
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrInfo.td b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.td
new file mode 100644
index 0000000..a02d997
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.td
@@ -0,0 +1,5596 @@
+//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the ARM instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ARM specific DAG Nodes.
+//
+
+// Type profiles.
+def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
+def SDT_ARMCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>;
+def SDT_ARMStructByVal : SDTypeProfile<0, 4,
+ [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
+ SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
+
+def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>;
+
+def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
+
+def SDT_ARMCMov : SDTypeProfile<1, 3,
+ [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
+ SDTCisVT<3, i32>]>;
+
+def SDT_ARMBrcond : SDTypeProfile<0, 2,
+ [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
+
+def SDT_ARMBrJT : SDTypeProfile<0, 3,
+ [SDTCisPtrTy<0>, SDTCisVT<1, i32>,
+ SDTCisVT<2, i32>]>;
+
+def SDT_ARMBr2JT : SDTypeProfile<0, 4,
+ [SDTCisPtrTy<0>, SDTCisVT<1, i32>,
+ SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
+
+def SDT_ARMBCC_i64 : SDTypeProfile<0, 6,
+ [SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>, SDTCisVT<2, i32>,
+ SDTCisVT<3, i32>, SDTCisVT<4, i32>,
+ SDTCisVT<5, OtherVT>]>;
+
+def SDT_ARMAnd : SDTypeProfile<1, 2,
+ [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
+ SDTCisVT<2, i32>]>;
+
+def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
+
+def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
+ SDTCisPtrTy<1>, SDTCisVT<2, i32>]>;
+
+def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
+def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>,
+ SDTCisInt<2>]>;
+def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>;
+
+def SDT_ARMMEMBARRIER : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+
+def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>,
+ SDTCisInt<1>]>;
+
+def SDT_ARMTCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
+
+def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
+ SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
+
+def SDT_ARMVMAXNM : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisFP<1>, SDTCisFP<2>]>;
+def SDT_ARMVMINNM : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisFP<1>, SDTCisFP<2>]>;
+
+def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
+ [SDTCisSameAs<0, 2>,
+ SDTCisSameAs<0, 3>,
+ SDTCisInt<0>, SDTCisVT<1, i32>]>;
+
+// SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR
+def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
+ [SDTCisSameAs<0, 2>,
+ SDTCisSameAs<0, 3>,
+ SDTCisInt<0>,
+ SDTCisVT<1, i32>,
+ SDTCisVT<4, i32>]>;
+
+def SDT_ARM64bitmlal : SDTypeProfile<2,4, [ SDTCisVT<0, i32>, SDTCisVT<1, i32>,
+ SDTCisVT<2, i32>, SDTCisVT<3, i32>,
+ SDTCisVT<4, i32>, SDTCisVT<5, i32> ] >;
+def ARMUmlal : SDNode<"ARMISD::UMLAL", SDT_ARM64bitmlal>;
+def ARMSmlal : SDNode<"ARMISD::SMLAL", SDT_ARM64bitmlal>;
+
+// Node definitions.
+def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>;
+def ARMWrapperPIC : SDNode<"ARMISD::WrapperPIC", SDTIntUnaryOp>;
+def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntBinOp>;
+
+def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart,
+ [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
+def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeqEnd,
+ [SDNPHasChain, SDNPSideEffect,
+ SDNPOptInGlue, SDNPOutGlue]>;
+def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" ,
+ SDT_ARMStructByVal,
+ [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
+ SDNPMayStore, SDNPMayLoad]>;
+
+def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+
+def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+def ARMintretflag : SDNode<"ARMISD::INTRET_FLAG", SDT_ARMcall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov,
+ [SDNPInGlue]>;
+
+def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
+ [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
+
+def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
+ [SDNPHasChain]>;
+def ARMbr2jt : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT,
+ [SDNPHasChain]>;
+
+def ARMBcci64 : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64,
+ [SDNPHasChain]>;
+
+def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp,
+ [SDNPOutGlue]>;
+
+def ARMcmn : SDNode<"ARMISD::CMN", SDT_ARMCmp,
+ [SDNPOutGlue]>;
+
+def ARMcmpZ : SDNode<"ARMISD::CMPZ", SDT_ARMCmp,
+ [SDNPOutGlue, SDNPCommutative]>;
+
+def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>;
+
+def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
+def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
+def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInGlue ]>;
+
+def ARMaddc : SDNode<"ARMISD::ADDC", SDTBinaryArithWithFlags,
+ [SDNPCommutative]>;
+def ARMsubc : SDNode<"ARMISD::SUBC", SDTBinaryArithWithFlags>;
+def ARMadde : SDNode<"ARMISD::ADDE", SDTBinaryArithWithFlagsInOut>;
+def ARMsube : SDNode<"ARMISD::SUBE", SDTBinaryArithWithFlagsInOut>;
+
+def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>;
+def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP",
+ SDT_ARMEH_SJLJ_Setjmp,
+ [SDNPHasChain, SDNPSideEffect]>;
+def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP",
+ SDT_ARMEH_SJLJ_Longjmp,
+ [SDNPHasChain, SDNPSideEffect]>;
+
+def ARMMemBarrierMCR : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER,
+ [SDNPHasChain, SDNPSideEffect]>;
+def ARMPreload : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH,
+ [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>;
+
+def ARMrbit : SDNode<"ARMISD::RBIT", SDTIntUnaryOp>;
+
+def ARMtcret : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+def ARMbfi : SDNode<"ARMISD::BFI", SDT_ARMBFI>;
+
+def ARMvmaxnm : SDNode<"ARMISD::VMAXNM", SDT_ARMVMAXNM, []>;
+def ARMvminnm : SDNode<"ARMISD::VMINNM", SDT_ARMVMINNM, []>;
+
+//===----------------------------------------------------------------------===//
+// ARM Instruction Predicate Definitions.
+//
+def HasV4T : Predicate<"Subtarget->hasV4TOps()">,
+ AssemblerPredicate<"HasV4TOps", "armv4t">;
+def NoV4T : Predicate<"!Subtarget->hasV4TOps()">;
+def HasV5T : Predicate<"Subtarget->hasV5TOps()">,
+ AssemblerPredicate<"HasV5TOps", "armv5t">;
+def HasV5TE : Predicate<"Subtarget->hasV5TEOps()">,
+ AssemblerPredicate<"HasV5TEOps", "armv5te">;
+def HasV6 : Predicate<"Subtarget->hasV6Ops()">,
+ AssemblerPredicate<"HasV6Ops", "armv6">;
+def NoV6 : Predicate<"!Subtarget->hasV6Ops()">;
+def HasV6M : Predicate<"Subtarget->hasV6MOps()">,
+ AssemblerPredicate<"HasV6MOps",
+ "armv6m or armv6t2">;
+def HasV6T2 : Predicate<"Subtarget->hasV6T2Ops()">,
+ AssemblerPredicate<"HasV6T2Ops", "armv6t2">;
+def NoV6T2 : Predicate<"!Subtarget->hasV6T2Ops()">;
+def HasV7 : Predicate<"Subtarget->hasV7Ops()">,
+ AssemblerPredicate<"HasV7Ops", "armv7">;
+def HasV8 : Predicate<"Subtarget->hasV8Ops()">,
+ AssemblerPredicate<"HasV8Ops", "armv8">;
+def PreV8 : Predicate<"!Subtarget->hasV8Ops()">,
+ AssemblerPredicate<"!HasV8Ops", "armv7 or earlier">;
+def NoVFP : Predicate<"!Subtarget->hasVFP2()">;
+def HasVFP2 : Predicate<"Subtarget->hasVFP2()">,
+ AssemblerPredicate<"FeatureVFP2", "VFP2">;
+def HasVFP3 : Predicate<"Subtarget->hasVFP3()">,
+ AssemblerPredicate<"FeatureVFP3", "VFP3">;
+def HasVFP4 : Predicate<"Subtarget->hasVFP4()">,
+ AssemblerPredicate<"FeatureVFP4", "VFP4">;
+def HasDPVFP : Predicate<"!Subtarget->isFPOnlySP()">,
+ AssemblerPredicate<"!FeatureVFPOnlySP",
+ "double precision VFP">;
+def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">,
+ AssemblerPredicate<"FeatureFPARMv8", "FPARMv8">;
+def HasNEON : Predicate<"Subtarget->hasNEON()">,
+ AssemblerPredicate<"FeatureNEON", "NEON">;
+def HasCrypto : Predicate<"Subtarget->hasCrypto()">,
+ AssemblerPredicate<"FeatureCrypto", "crypto">;
+def HasCRC : Predicate<"Subtarget->hasCRC()">,
+ AssemblerPredicate<"FeatureCRC", "crc">;
+def HasFP16 : Predicate<"Subtarget->hasFP16()">,
+ AssemblerPredicate<"FeatureFP16","half-float">;
+def HasDivide : Predicate<"Subtarget->hasDivide()">,
+ AssemblerPredicate<"FeatureHWDiv", "divide in THUMB">;
+def HasDivideInARM : Predicate<"Subtarget->hasDivideInARMMode()">,
+ AssemblerPredicate<"FeatureHWDivARM", "divide in ARM">;
+def HasT2ExtractPack : Predicate<"Subtarget->hasT2ExtractPack()">,
+ AssemblerPredicate<"FeatureT2XtPk",
+ "pack/extract">;
+def HasThumb2DSP : Predicate<"Subtarget->hasThumb2DSP()">,
+ AssemblerPredicate<"FeatureDSPThumb2",
+ "thumb2-dsp">;
+def HasDB : Predicate<"Subtarget->hasDataBarrier()">,
+ AssemblerPredicate<"FeatureDB",
+ "data-barriers">;
+def HasMP : Predicate<"Subtarget->hasMPExtension()">,
+ AssemblerPredicate<"FeatureMP",
+ "mp-extensions">;
+def HasTrustZone : Predicate<"Subtarget->hasTrustZone()">,
+ AssemblerPredicate<"FeatureTrustZone",
+ "TrustZone">;
+def HasZCZ : Predicate<"Subtarget->hasZeroCycleZeroing()">;
+def UseNEONForFP : Predicate<"Subtarget->useNEONForSinglePrecisionFP()">;
+def DontUseNEONForFP : Predicate<"!Subtarget->useNEONForSinglePrecisionFP()">;
+def IsThumb : Predicate<"Subtarget->isThumb()">,
+ AssemblerPredicate<"ModeThumb", "thumb">;
+def IsThumb1Only : Predicate<"Subtarget->isThumb1Only()">;
+def IsThumb2 : Predicate<"Subtarget->isThumb2()">,
+ AssemblerPredicate<"ModeThumb,FeatureThumb2",
+ "thumb2">;
+def IsMClass : Predicate<"Subtarget->isMClass()">,
+ AssemblerPredicate<"FeatureMClass", "armv*m">;
+def IsNotMClass : Predicate<"!Subtarget->isMClass()">,
+ AssemblerPredicate<"!FeatureMClass",
+ "!armv*m">;
+def IsARM : Predicate<"!Subtarget->isThumb()">,
+ AssemblerPredicate<"!ModeThumb", "arm-mode">;
+def IsIOS : Predicate<"Subtarget->isTargetIOS()">;
+def IsNotIOS : Predicate<"!Subtarget->isTargetIOS()">;
+def IsMachO : Predicate<"Subtarget->isTargetMachO()">;
+def IsNotMachO : Predicate<"!Subtarget->isTargetMachO()">;
+def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">;
+def UseNaClTrap : Predicate<"Subtarget->useNaClTrap()">,
+ AssemblerPredicate<"FeatureNaClTrap", "NaCl">;
+def DontUseNaClTrap : Predicate<"!Subtarget->useNaClTrap()">;
+
+// FIXME: Eventually this will be just "hasV6T2Ops".
+def UseMovt : Predicate<"Subtarget->useMovt(*MF)">;
+def DontUseMovt : Predicate<"!Subtarget->useMovt(*MF)">;
+def UseFPVMLx : Predicate<"Subtarget->useFPVMLx()">;
+def UseMulOps : Predicate<"Subtarget->useMulOps()">;
+
+// Prefer fused MAC for fp mul + add over fp VMLA / VMLS if they are available.
+// But only select them if more precision in FP computation is allowed.
+// Do not use them for Darwin platforms.
+def UseFusedMAC : Predicate<"(TM.Options.AllowFPOpFusion =="
+ " FPOpFusion::Fast && "
+ " Subtarget->hasVFP4()) && "
+ "!Subtarget->isTargetDarwin()">;
+def DontUseFusedMAC : Predicate<"!(TM.Options.AllowFPOpFusion =="
+ " FPOpFusion::Fast &&"
+ " Subtarget->hasVFP4()) || "
+ "Subtarget->isTargetDarwin()">;
+
+// VGETLNi32 is microcoded on Swift - prefer VMOV.
+def HasFastVGETLNi32 : Predicate<"!Subtarget->isSwift()">;
+def HasSlowVGETLNi32 : Predicate<"Subtarget->isSwift()">;
+
+// VDUP.32 is microcoded on Swift - prefer VMOV.
+def HasFastVDUP32 : Predicate<"!Subtarget->isSwift()">;
+def HasSlowVDUP32 : Predicate<"Subtarget->isSwift()">;
+
+// Cortex-A9 prefers VMOVSR to VMOVDRR even when using NEON for scalar FP, as
+// this allows more effective execution domain optimization. See
+// setExecutionDomain().
+def UseVMOVSR : Predicate<"Subtarget->isCortexA9() || !Subtarget->useNEONForSinglePrecisionFP()">;
+def DontUseVMOVSR : Predicate<"!Subtarget->isCortexA9() && Subtarget->useNEONForSinglePrecisionFP()">;
+
+def IsLE : Predicate<"getTargetLowering()->isLittleEndian()">;
+def IsBE : Predicate<"getTargetLowering()->isBigEndian()">;
+
+//===----------------------------------------------------------------------===//
+// ARM Flag Definitions.
+
+class RegConstraint<string C> {
+ string Constraints = C;
+}
+
+//===----------------------------------------------------------------------===//
+// ARM specific transformation functions and pattern fragments.
+//
+
+// imm_neg_XFORM - Return the negation of an i32 immediate value.
+def imm_neg_XFORM : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(-(int)N->getZExtValue(), MVT::i32);
+}]>;
+
+// imm_not_XFORM - Return the complement of a i32 immediate value.
+def imm_not_XFORM : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(~(int)N->getZExtValue(), MVT::i32);
+}]>;
+
+/// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31].
+def imm16_31 : ImmLeaf<i32, [{
+ return (int32_t)Imm >= 16 && (int32_t)Imm < 32;
+}]>;
+
+def so_imm_neg_asmoperand : AsmOperandClass { let Name = "ARMSOImmNeg"; }
+def so_imm_neg : Operand<i32>, PatLeaf<(imm), [{
+ unsigned Value = -(unsigned)N->getZExtValue();
+ return Value && ARM_AM::getSOImmVal(Value) != -1;
+ }], imm_neg_XFORM> {
+ let ParserMatchClass = so_imm_neg_asmoperand;
+}
+
+// Note: this pattern doesn't require an encoder method and such, as it's
+// only used on aliases (Pat<> and InstAlias<>). The actual encoding
+// is handled by the destination instructions, which use so_imm.
+def so_imm_not_asmoperand : AsmOperandClass { let Name = "ARMSOImmNot"; }
+def so_imm_not : Operand<i32>, PatLeaf<(imm), [{
+ return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
+ }], imm_not_XFORM> {
+ let ParserMatchClass = so_imm_not_asmoperand;
+}
+
+// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
+def sext_16_node : PatLeaf<(i32 GPR:$a), [{
+ return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
+}]>;
+
+/// Split a 32-bit immediate into two 16 bit parts.
+def hi16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, MVT::i32);
+}]>;
+
+def lo16AllZero : PatLeaf<(i32 imm), [{
+ // Returns true if all low 16-bits are 0.
+ return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
+}], hi16>;
+
+class BinOpWithFlagFrag<dag res> :
+ PatFrag<(ops node:$LHS, node:$RHS, node:$FLAG), res>;
+class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
+class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
+
+// An 'and' node with a single use.
+def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
+ return N->hasOneUse();
+}]>;
+
+// An 'xor' node with a single use.
+def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{
+ return N->hasOneUse();
+}]>;
+
+// An 'fmul' node with a single use.
+def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{
+ return N->hasOneUse();
+}]>;
+
+// An 'fadd' node which checks for single non-hazardous use.
+def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{
+ return hasNoVMLxHazardUse(N);
+}]>;
+
+// An 'fsub' node which checks for single non-hazardous use.
+def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{
+ return hasNoVMLxHazardUse(N);
+}]>;
+
+//===----------------------------------------------------------------------===//
+// Operand Definitions.
+//
+
+// Immediate operands with a shared generic asm render method.
+class ImmAsmOperand : AsmOperandClass { let RenderMethod = "addImmOperands"; }
+
+// Branch target.
+// FIXME: rename brtarget to t2_brtarget
+def brtarget : Operand<OtherVT> {
+ let EncoderMethod = "getBranchTargetOpValue";
+ let OperandType = "OPERAND_PCREL";
+ let DecoderMethod = "DecodeT2BROperand";
+}
+
+// FIXME: get rid of this one?
+def uncondbrtarget : Operand<OtherVT> {
+ let EncoderMethod = "getUnconditionalBranchTargetOpValue";
+ let OperandType = "OPERAND_PCREL";
+}
+
+// Branch target for ARM. Handles conditional/unconditional
+def br_target : Operand<OtherVT> {
+ let EncoderMethod = "getARMBranchTargetOpValue";
+ let OperandType = "OPERAND_PCREL";
+}
+
+// Call target.
+// FIXME: rename bltarget to t2_bl_target?
+def bltarget : Operand<i32> {
+ // Encoded the same as branch targets.
+ let EncoderMethod = "getBranchTargetOpValue";
+ let OperandType = "OPERAND_PCREL";
+}
+
+// Call target for ARM. Handles conditional/unconditional
+// FIXME: rename bl_target to t2_bltarget?
+def bl_target : Operand<i32> {
+ let EncoderMethod = "getARMBLTargetOpValue";
+ let OperandType = "OPERAND_PCREL";
+}
+
+def blx_target : Operand<i32> {
+ let EncoderMethod = "getARMBLXTargetOpValue";
+ let OperandType = "OPERAND_PCREL";
+}
+
+// A list of registers separated by comma. Used by load/store multiple.
+def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; }
+def reglist : Operand<i32> {
+ let EncoderMethod = "getRegisterListOpValue";
+ let ParserMatchClass = RegListAsmOperand;
+ let PrintMethod = "printRegisterList";
+ let DecoderMethod = "DecodeRegListOperand";
+}
+
+def GPRPairOp : RegisterOperand<GPRPair, "printGPRPairOperand">;
+
+def DPRRegListAsmOperand : AsmOperandClass { let Name = "DPRRegList"; }
+def dpr_reglist : Operand<i32> {
+ let EncoderMethod = "getRegisterListOpValue";
+ let ParserMatchClass = DPRRegListAsmOperand;
+ let PrintMethod = "printRegisterList";
+ let DecoderMethod = "DecodeDPRRegListOperand";
+}
+
+def SPRRegListAsmOperand : AsmOperandClass { let Name = "SPRRegList"; }
+def spr_reglist : Operand<i32> {
+ let EncoderMethod = "getRegisterListOpValue";
+ let ParserMatchClass = SPRRegListAsmOperand;
+ let PrintMethod = "printRegisterList";
+ let DecoderMethod = "DecodeSPRRegListOperand";
+}
+
+// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
+def cpinst_operand : Operand<i32> {
+ let PrintMethod = "printCPInstOperand";
+}
+
+// Local PC labels.
+def pclabel : Operand<i32> {
+ let PrintMethod = "printPCLabel";
+}
+
+// ADR instruction labels.
+def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; }
+def adrlabel : Operand<i32> {
+ let EncoderMethod = "getAdrLabelOpValue";
+ let ParserMatchClass = AdrLabelAsmOperand;
+ let PrintMethod = "printAdrLabelOperand<0>";
+}
+
+def neon_vcvt_imm32 : Operand<i32> {
+ let EncoderMethod = "getNEONVcvtImm32OpValue";
+ let DecoderMethod = "DecodeVCVTImmOperand";
+}
+
+// rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24.
+def rot_imm_XFORM: SDNodeXForm<imm, [{
+ switch (N->getZExtValue()){
+ default: llvm_unreachable(nullptr);
+ case 0: return CurDAG->getTargetConstant(0, MVT::i32);
+ case 8: return CurDAG->getTargetConstant(1, MVT::i32);
+ case 16: return CurDAG->getTargetConstant(2, MVT::i32);
+ case 24: return CurDAG->getTargetConstant(3, MVT::i32);
+ }
+}]>;
+def RotImmAsmOperand : AsmOperandClass {
+ let Name = "RotImm";
+ let ParserMethod = "parseRotImm";
+}
+def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{
+ int32_t v = N->getZExtValue();
+ return v == 8 || v == 16 || v == 24; }],
+ rot_imm_XFORM> {
+ let PrintMethod = "printRotImmOperand";
+ let ParserMatchClass = RotImmAsmOperand;
+}
+
+// shift_imm: An integer that encodes a shift amount and the type of shift
+// (asr or lsl). The 6-bit immediate encodes as:
+// {5} 0 ==> lsl
+// 1 asr
+// {4-0} imm5 shift amount.
+// asr #32 encoded as imm5 == 0.
+def ShifterImmAsmOperand : AsmOperandClass {
+ let Name = "ShifterImm";
+ let ParserMethod = "parseShifterImm";
+}
+def shift_imm : Operand<i32> {
+ let PrintMethod = "printShiftImmOperand";
+ let ParserMatchClass = ShifterImmAsmOperand;
+}
+
+// shifter_operand operands: so_reg_reg, so_reg_imm, and so_imm.
+def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; }
+def so_reg_reg : Operand<i32>, // reg reg imm
+ ComplexPattern<i32, 3, "SelectRegShifterOperand",
+ [shl, srl, sra, rotr]> {
+ let EncoderMethod = "getSORegRegOpValue";
+ let PrintMethod = "printSORegRegOperand";
+ let DecoderMethod = "DecodeSORegRegOperand";
+ let ParserMatchClass = ShiftedRegAsmOperand;
+ let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm);
+}
+
+def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; }
+def so_reg_imm : Operand<i32>, // reg imm
+ ComplexPattern<i32, 2, "SelectImmShifterOperand",
+ [shl, srl, sra, rotr]> {
+ let EncoderMethod = "getSORegImmOpValue";
+ let PrintMethod = "printSORegImmOperand";
+ let DecoderMethod = "DecodeSORegImmOperand";
+ let ParserMatchClass = ShiftedImmAsmOperand;
+ let MIOperandInfo = (ops GPR, i32imm);
+}
+
+// FIXME: Does this need to be distinct from so_reg?
+def shift_so_reg_reg : Operand<i32>, // reg reg imm
+ ComplexPattern<i32, 3, "SelectShiftRegShifterOperand",
+ [shl,srl,sra,rotr]> {
+ let EncoderMethod = "getSORegRegOpValue";
+ let PrintMethod = "printSORegRegOperand";
+ let DecoderMethod = "DecodeSORegRegOperand";
+ let ParserMatchClass = ShiftedRegAsmOperand;
+ let MIOperandInfo = (ops GPR, GPR, i32imm);
+}
+
+// FIXME: Does this need to be distinct from so_reg?
+def shift_so_reg_imm : Operand<i32>, // reg reg imm
+ ComplexPattern<i32, 2, "SelectShiftImmShifterOperand",
+ [shl,srl,sra,rotr]> {
+ let EncoderMethod = "getSORegImmOpValue";
+ let PrintMethod = "printSORegImmOperand";
+ let DecoderMethod = "DecodeSORegImmOperand";
+ let ParserMatchClass = ShiftedImmAsmOperand;
+ let MIOperandInfo = (ops GPR, i32imm);
+}
+
+
+// so_imm - Match a 32-bit shifter_operand immediate operand, which is an
+// 8-bit immediate rotated by an arbitrary number of bits.
+def SOImmAsmOperand: ImmAsmOperand { let Name = "ARMSOImm"; }
+def so_imm : Operand<i32>, ImmLeaf<i32, [{
+ return ARM_AM::getSOImmVal(Imm) != -1;
+ }]> {
+ let EncoderMethod = "getSOImmOpValue";
+ let ParserMatchClass = SOImmAsmOperand;
+ let DecoderMethod = "DecodeSOImmOperand";
+}
+
+// Break so_imm's up into two pieces. This handles immediates with up to 16
+// bits set in them. This uses so_imm2part to match and so_imm2part_[12] to
+// get the first/second pieces.
+def so_imm2part : PatLeaf<(imm), [{
+ return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue());
+}]>;
+
+/// arm_i32imm - True for +V6T2, or true only if so_imm2part is true.
+///
+def arm_i32imm : PatLeaf<(imm), [{
+ if (Subtarget->useMovt(*MF))
+ return true;
+ return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue());
+}]>;
+
+/// imm0_1 predicate - Immediate in the range [0,1].
+def Imm0_1AsmOperand: ImmAsmOperand { let Name = "Imm0_1"; }
+def imm0_1 : Operand<i32> { let ParserMatchClass = Imm0_1AsmOperand; }
+
+/// imm0_3 predicate - Immediate in the range [0,3].
+def Imm0_3AsmOperand: ImmAsmOperand { let Name = "Imm0_3"; }
+def imm0_3 : Operand<i32> { let ParserMatchClass = Imm0_3AsmOperand; }
+
+/// imm0_7 predicate - Immediate in the range [0,7].
+def Imm0_7AsmOperand: ImmAsmOperand { let Name = "Imm0_7"; }
+def imm0_7 : Operand<i32>, ImmLeaf<i32, [{
+ return Imm >= 0 && Imm < 8;
+}]> {
+ let ParserMatchClass = Imm0_7AsmOperand;
+}
+
+/// imm8 predicate - Immediate is exactly 8.
+def Imm8AsmOperand: ImmAsmOperand { let Name = "Imm8"; }
+def imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 8; }]> {
+ let ParserMatchClass = Imm8AsmOperand;
+}
+
+/// imm16 predicate - Immediate is exactly 16.
+def Imm16AsmOperand: ImmAsmOperand { let Name = "Imm16"; }
+def imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 16; }]> {
+ let ParserMatchClass = Imm16AsmOperand;
+}
+
+/// imm32 predicate - Immediate is exactly 32.
+def Imm32AsmOperand: ImmAsmOperand { let Name = "Imm32"; }
+def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> {
+ let ParserMatchClass = Imm32AsmOperand;
+}
+
+/// imm1_7 predicate - Immediate in the range [1,7].
+def Imm1_7AsmOperand: ImmAsmOperand { let Name = "Imm1_7"; }
+def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> {
+ let ParserMatchClass = Imm1_7AsmOperand;
+}
+
+/// imm1_15 predicate - Immediate in the range [1,15].
+def Imm1_15AsmOperand: ImmAsmOperand { let Name = "Imm1_15"; }
+def imm1_15 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 16; }]> {
+ let ParserMatchClass = Imm1_15AsmOperand;
+}
+
+/// imm1_31 predicate - Immediate in the range [1,31].
+def Imm1_31AsmOperand: ImmAsmOperand { let Name = "Imm1_31"; }
+def imm1_31 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 32; }]> {
+ let ParserMatchClass = Imm1_31AsmOperand;
+}
+
+/// imm0_15 predicate - Immediate in the range [0,15].
+def Imm0_15AsmOperand: ImmAsmOperand {
+ let Name = "Imm0_15";
+ let DiagnosticType = "ImmRange0_15";
+}
+def imm0_15 : Operand<i32>, ImmLeaf<i32, [{
+ return Imm >= 0 && Imm < 16;
+}]> {
+ let ParserMatchClass = Imm0_15AsmOperand;
+}
+
+/// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31].
+def Imm0_31AsmOperand: ImmAsmOperand { let Name = "Imm0_31"; }
+def imm0_31 : Operand<i32>, ImmLeaf<i32, [{
+ return Imm >= 0 && Imm < 32;
+}]> {
+ let ParserMatchClass = Imm0_31AsmOperand;
+}
+
+/// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32].
+def Imm0_32AsmOperand: ImmAsmOperand { let Name = "Imm0_32"; }
+def imm0_32 : Operand<i32>, ImmLeaf<i32, [{
+ return Imm >= 0 && Imm < 32;
+}]> {
+ let ParserMatchClass = Imm0_32AsmOperand;
+}
+
+/// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63].
+def Imm0_63AsmOperand: ImmAsmOperand { let Name = "Imm0_63"; }
+def imm0_63 : Operand<i32>, ImmLeaf<i32, [{
+ return Imm >= 0 && Imm < 64;
+}]> {
+ let ParserMatchClass = Imm0_63AsmOperand;
+}
+
+/// imm0_239 predicate - Immediate in the range [0,239].
+def Imm0_239AsmOperand : ImmAsmOperand {
+ let Name = "Imm0_239";
+ let DiagnosticType = "ImmRange0_239";
+}
+def imm0_239 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 240; }]> {
+ let ParserMatchClass = Imm0_239AsmOperand;
+}
+
+/// imm0_255 predicate - Immediate in the range [0,255].
+def Imm0_255AsmOperand : ImmAsmOperand { let Name = "Imm0_255"; }
+def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> {
+ let ParserMatchClass = Imm0_255AsmOperand;
+}
+
+/// imm0_65535 - An immediate is in the range [0.65535].
+def Imm0_65535AsmOperand: ImmAsmOperand { let Name = "Imm0_65535"; }
+def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{
+ return Imm >= 0 && Imm < 65536;
+}]> {
+ let ParserMatchClass = Imm0_65535AsmOperand;
+}
+
+// imm0_65535_neg - An immediate whose negative value is in the range [0.65535].
+def imm0_65535_neg : Operand<i32>, ImmLeaf<i32, [{
+ return -Imm >= 0 && -Imm < 65536;
+}]>;
+
+// imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference
+// a relocatable expression.
+//
+// FIXME: This really needs a Thumb version separate from the ARM version.
+// While the range is the same, and can thus use the same match class,
+// the encoding is different so it should have a different encoder method.
+def Imm0_65535ExprAsmOperand: ImmAsmOperand { let Name = "Imm0_65535Expr"; }
+def imm0_65535_expr : Operand<i32> {
+ let EncoderMethod = "getHiLo16ImmOpValue";
+ let ParserMatchClass = Imm0_65535ExprAsmOperand;
+}
+
+def Imm256_65535ExprAsmOperand: ImmAsmOperand { let Name = "Imm256_65535Expr"; }
+def imm256_65535_expr : Operand<i32> {
+ let ParserMatchClass = Imm256_65535ExprAsmOperand;
+}
+
+/// imm24b - True if the 32-bit immediate is encodable in 24 bits.
+def Imm24bitAsmOperand: ImmAsmOperand { let Name = "Imm24bit"; }
+def imm24b : Operand<i32>, ImmLeaf<i32, [{
+ return Imm >= 0 && Imm <= 0xffffff;
+}]> {
+ let ParserMatchClass = Imm24bitAsmOperand;
+}
+
+
+/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
+/// e.g., 0xf000ffff
+def BitfieldAsmOperand : AsmOperandClass {
+ let Name = "Bitfield";
+ let ParserMethod = "parseBitfield";
+}
+
+def bf_inv_mask_imm : Operand<i32>,
+ PatLeaf<(imm), [{
+ return ARM::isBitFieldInvertedMask(N->getZExtValue());
+}] > {
+ let EncoderMethod = "getBitfieldInvertedMaskOpValue";
+ let PrintMethod = "printBitfieldInvMaskImmOperand";
+ let DecoderMethod = "DecodeBitfieldMaskOperand";
+ let ParserMatchClass = BitfieldAsmOperand;
+}
+
+def imm1_32_XFORM: SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, MVT::i32);
+}]>;
+def Imm1_32AsmOperand: AsmOperandClass { let Name = "Imm1_32"; }
+def imm1_32 : Operand<i32>, PatLeaf<(imm), [{
+ uint64_t Imm = N->getZExtValue();
+ return Imm > 0 && Imm <= 32;
+ }],
+ imm1_32_XFORM> {
+ let PrintMethod = "printImmPlusOneOperand";
+ let ParserMatchClass = Imm1_32AsmOperand;
+}
+
+def imm1_16_XFORM: SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, MVT::i32);
+}]>;
+def Imm1_16AsmOperand: AsmOperandClass { let Name = "Imm1_16"; }
+def imm1_16 : Operand<i32>, PatLeaf<(imm), [{ return Imm > 0 && Imm <= 16; }],
+ imm1_16_XFORM> {
+ let PrintMethod = "printImmPlusOneOperand";
+ let ParserMatchClass = Imm1_16AsmOperand;
+}
+
+// Define ARM specific addressing modes.
+// addrmode_imm12 := reg +/- imm12
+//
+def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; }
+class AddrMode_Imm12 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectAddrModeImm12", []> {
+ // 12-bit immediate operand. Note that instructions using this encode
+ // #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other
+ // immediate values are as normal.
+
+ let EncoderMethod = "getAddrModeImm12OpValue";
+ let DecoderMethod = "DecodeAddrModeImm12Operand";
+ let ParserMatchClass = MemImm12OffsetAsmOperand;
+ let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
+}
+
+def addrmode_imm12 : AddrMode_Imm12 {
+ let PrintMethod = "printAddrModeImm12Operand<false>";
+}
+
+def addrmode_imm12_pre : AddrMode_Imm12 {
+ let PrintMethod = "printAddrModeImm12Operand<true>";
+}
+
+// ldst_so_reg := reg +/- reg shop imm
+//
+def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; }
+def ldst_so_reg : Operand<i32>,
+ ComplexPattern<i32, 3, "SelectLdStSOReg", []> {
+ let EncoderMethod = "getLdStSORegOpValue";
+ // FIXME: Simplify the printer
+ let PrintMethod = "printAddrMode2Operand";
+ let DecoderMethod = "DecodeSORegMemOperand";
+ let ParserMatchClass = MemRegOffsetAsmOperand;
+ let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift);
+}
+
+// postidx_imm8 := +/- [0,255]
+//
+// 9 bit value:
+// {8} 1 is imm8 is non-negative. 0 otherwise.
+// {7-0} [0,255] imm8 value.
+def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; }
+def postidx_imm8 : Operand<i32> {
+ let PrintMethod = "printPostIdxImm8Operand";
+ let ParserMatchClass = PostIdxImm8AsmOperand;
+ let MIOperandInfo = (ops i32imm);
+}
+
+// postidx_imm8s4 := +/- [0,1020]
+//
+// 9 bit value:
+// {8} 1 is imm8 is non-negative. 0 otherwise.
+// {7-0} [0,255] imm8 value, scaled by 4.
+def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; }
+def postidx_imm8s4 : Operand<i32> {
+ let PrintMethod = "printPostIdxImm8s4Operand";
+ let ParserMatchClass = PostIdxImm8s4AsmOperand;
+ let MIOperandInfo = (ops i32imm);
+}
+
+
+// postidx_reg := +/- reg
+//
+def PostIdxRegAsmOperand : AsmOperandClass {
+ let Name = "PostIdxReg";
+ let ParserMethod = "parsePostIdxReg";
+}
+def postidx_reg : Operand<i32> {
+ let EncoderMethod = "getPostIdxRegOpValue";
+ let DecoderMethod = "DecodePostIdxReg";
+ let PrintMethod = "printPostIdxRegOperand";
+ let ParserMatchClass = PostIdxRegAsmOperand;
+ let MIOperandInfo = (ops GPRnopc, i32imm);
+}
+
+
+// addrmode2 := reg +/- imm12
+// := reg +/- reg shop imm
+//
+// FIXME: addrmode2 should be refactored the rest of the way to always
+// use explicit imm vs. reg versions above (addrmode_imm12 and ldst_so_reg).
+def AddrMode2AsmOperand : AsmOperandClass { let Name = "AddrMode2"; }
+def addrmode2 : Operand<i32>,
+ ComplexPattern<i32, 3, "SelectAddrMode2", []> {
+ let EncoderMethod = "getAddrMode2OpValue";
+ let PrintMethod = "printAddrMode2Operand";
+ let ParserMatchClass = AddrMode2AsmOperand;
+ let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
+}
+
+def PostIdxRegShiftedAsmOperand : AsmOperandClass {
+ let Name = "PostIdxRegShifted";
+ let ParserMethod = "parsePostIdxReg";
+}
+def am2offset_reg : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg",
+ [], [SDNPWantRoot]> {
+ let EncoderMethod = "getAddrMode2OffsetOpValue";
+ let PrintMethod = "printAddrMode2OffsetOperand";
+ // When using this for assembly, it's always as a post-index offset.
+ let ParserMatchClass = PostIdxRegShiftedAsmOperand;
+ let MIOperandInfo = (ops GPRnopc, i32imm);
+}
+
+// FIXME: am2offset_imm should only need the immediate, not the GPR. Having
+// the GPR is purely vestigal at this point.
+def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; }
+def am2offset_imm : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm",
+ [], [SDNPWantRoot]> {
+ let EncoderMethod = "getAddrMode2OffsetOpValue";
+ let PrintMethod = "printAddrMode2OffsetOperand";
+ let ParserMatchClass = AM2OffsetImmAsmOperand;
+ let MIOperandInfo = (ops GPRnopc, i32imm);
+}
+
+
+// addrmode3 := reg +/- reg
+// addrmode3 := reg +/- imm8
+//
+// FIXME: split into imm vs. reg versions.
+def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; }
+class AddrMode3 : Operand<i32>,
+ ComplexPattern<i32, 3, "SelectAddrMode3", []> {
+ let EncoderMethod = "getAddrMode3OpValue";
+ let ParserMatchClass = AddrMode3AsmOperand;
+ let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
+}
+
+def addrmode3 : AddrMode3
+{
+ let PrintMethod = "printAddrMode3Operand<false>";
+}
+
+def addrmode3_pre : AddrMode3
+{
+ let PrintMethod = "printAddrMode3Operand<true>";
+}
+
+// FIXME: split into imm vs. reg versions.
+// FIXME: parser method to handle +/- register.
+def AM3OffsetAsmOperand : AsmOperandClass {
+ let Name = "AM3Offset";
+ let ParserMethod = "parseAM3Offset";
+}
+def am3offset : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectAddrMode3Offset",
+ [], [SDNPWantRoot]> {
+ let EncoderMethod = "getAddrMode3OffsetOpValue";
+ let PrintMethod = "printAddrMode3OffsetOperand";
+ let ParserMatchClass = AM3OffsetAsmOperand;
+ let MIOperandInfo = (ops GPR, i32imm);
+}
+
+// ldstm_mode := {ia, ib, da, db}
+//
+def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> {
+ let EncoderMethod = "getLdStmModeOpValue";
+ let PrintMethod = "printLdStmModeOperand";
+}
+
+// addrmode5 := reg +/- imm8*4
+//
+def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; }
+class AddrMode5 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectAddrMode5", []> {
+ let EncoderMethod = "getAddrMode5OpValue";
+ let DecoderMethod = "DecodeAddrMode5Operand";
+ let ParserMatchClass = AddrMode5AsmOperand;
+ let MIOperandInfo = (ops GPR:$base, i32imm);
+}
+
+def addrmode5 : AddrMode5 {
+ let PrintMethod = "printAddrMode5Operand<false>";
+}
+
+def addrmode5_pre : AddrMode5 {
+ let PrintMethod = "printAddrMode5Operand<true>";
+}
+
+// addrmode6 := reg with optional alignment
+//
+def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; }
+def addrmode6 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
+ let PrintMethod = "printAddrMode6Operand";
+ let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
+ let EncoderMethod = "getAddrMode6AddressOpValue";
+ let DecoderMethod = "DecodeAddrMode6Operand";
+ let ParserMatchClass = AddrMode6AsmOperand;
+}
+
+def am6offset : Operand<i32>,
+ ComplexPattern<i32, 1, "SelectAddrMode6Offset",
+ [], [SDNPWantRoot]> {
+ let PrintMethod = "printAddrMode6OffsetOperand";
+ let MIOperandInfo = (ops GPR);
+ let EncoderMethod = "getAddrMode6OffsetOpValue";
+ let DecoderMethod = "DecodeGPRRegisterClass";
+}
+
+// Special version of addrmode6 to handle alignment encoding for VST1/VLD1
+// (single element from one lane) for size 32.
+def addrmode6oneL32 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
+ let PrintMethod = "printAddrMode6Operand";
+ let MIOperandInfo = (ops GPR:$addr, i32imm);
+ let EncoderMethod = "getAddrMode6OneLane32AddressOpValue";
+}
+
+// Base class for addrmode6 with specific alignment restrictions.
+class AddrMode6Align : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
+ let PrintMethod = "printAddrMode6Operand";
+ let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
+ let EncoderMethod = "getAddrMode6AddressOpValue";
+ let DecoderMethod = "DecodeAddrMode6Operand";
+}
+
+// Special version of addrmode6 to handle no allowed alignment encoding for
+// VLD/VST instructions and checking the alignment is not specified.
+def AddrMode6AlignNoneAsmOperand : AsmOperandClass {
+ let Name = "AlignedMemoryNone";
+ let DiagnosticType = "AlignedMemoryRequiresNone";
+}
+def addrmode6alignNone : AddrMode6Align {
+ // The alignment specifier can only be omitted.
+ let ParserMatchClass = AddrMode6AlignNoneAsmOperand;
+}
+
+// Special version of addrmode6 to handle 16-bit alignment encoding for
+// VLD/VST instructions and checking the alignment value.
+def AddrMode6Align16AsmOperand : AsmOperandClass {
+ let Name = "AlignedMemory16";
+ let DiagnosticType = "AlignedMemoryRequires16";
+}
+def addrmode6align16 : AddrMode6Align {
+ // The alignment specifier can only be 16 or omitted.
+ let ParserMatchClass = AddrMode6Align16AsmOperand;
+}
+
+// Special version of addrmode6 to handle 32-bit alignment encoding for
+// VLD/VST instructions and checking the alignment value.
+def AddrMode6Align32AsmOperand : AsmOperandClass {
+ let Name = "AlignedMemory32";
+ let DiagnosticType = "AlignedMemoryRequires32";
+}
+def addrmode6align32 : AddrMode6Align {
+ // The alignment specifier can only be 32 or omitted.
+ let ParserMatchClass = AddrMode6Align32AsmOperand;
+}
+
+// Special version of addrmode6 to handle 64-bit alignment encoding for
+// VLD/VST instructions and checking the alignment value.
+def AddrMode6Align64AsmOperand : AsmOperandClass {
+ let Name = "AlignedMemory64";
+ let DiagnosticType = "AlignedMemoryRequires64";
+}
+def addrmode6align64 : AddrMode6Align {
+ // The alignment specifier can only be 64 or omitted.
+ let ParserMatchClass = AddrMode6Align64AsmOperand;
+}
+
+// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
+// for VLD/VST instructions and checking the alignment value.
+def AddrMode6Align64or128AsmOperand : AsmOperandClass {
+ let Name = "AlignedMemory64or128";
+ let DiagnosticType = "AlignedMemoryRequires64or128";
+}
+def addrmode6align64or128 : AddrMode6Align {
+ // The alignment specifier can only be 64, 128 or omitted.
+ let ParserMatchClass = AddrMode6Align64or128AsmOperand;
+}
+
+// Special version of addrmode6 to handle 64-bit, 128-bit or 256-bit alignment
+// encoding for VLD/VST instructions and checking the alignment value.
+def AddrMode6Align64or128or256AsmOperand : AsmOperandClass {
+ let Name = "AlignedMemory64or128or256";
+ let DiagnosticType = "AlignedMemoryRequires64or128or256";
+}
+def addrmode6align64or128or256 : AddrMode6Align {
+ // The alignment specifier can only be 64, 128, 256 or omitted.
+ let ParserMatchClass = AddrMode6Align64or128or256AsmOperand;
+}
+
+// Special version of addrmode6 to handle alignment encoding for VLD-dup
+// instructions, specifically VLD4-dup.
+def addrmode6dup : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
+ let PrintMethod = "printAddrMode6Operand";
+ let MIOperandInfo = (ops GPR:$addr, i32imm);
+ let EncoderMethod = "getAddrMode6DupAddressOpValue";
+ // FIXME: This is close, but not quite right. The alignment specifier is
+ // different.
+ let ParserMatchClass = AddrMode6AsmOperand;
+}
+
+// Base class for addrmode6dup with specific alignment restrictions.
+class AddrMode6DupAlign : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
+ let PrintMethod = "printAddrMode6Operand";
+ let MIOperandInfo = (ops GPR:$addr, i32imm);
+ let EncoderMethod = "getAddrMode6DupAddressOpValue";
+}
+
+// Special version of addrmode6 to handle no allowed alignment encoding for
+// VLD-dup instruction and checking the alignment is not specified.
+def AddrMode6dupAlignNoneAsmOperand : AsmOperandClass {
+ let Name = "DupAlignedMemoryNone";
+ let DiagnosticType = "DupAlignedMemoryRequiresNone";
+}
+def addrmode6dupalignNone : AddrMode6DupAlign {
+ // The alignment specifier can only be omitted.
+ let ParserMatchClass = AddrMode6dupAlignNoneAsmOperand;
+}
+
+// Special version of addrmode6 to handle 16-bit alignment encoding for VLD-dup
+// instruction and checking the alignment value.
+def AddrMode6dupAlign16AsmOperand : AsmOperandClass {
+ let Name = "DupAlignedMemory16";
+ let DiagnosticType = "DupAlignedMemoryRequires16";
+}
+def addrmode6dupalign16 : AddrMode6DupAlign {
+ // The alignment specifier can only be 16 or omitted.
+ let ParserMatchClass = AddrMode6dupAlign16AsmOperand;
+}
+
+// Special version of addrmode6 to handle 32-bit alignment encoding for VLD-dup
+// instruction and checking the alignment value.
+def AddrMode6dupAlign32AsmOperand : AsmOperandClass {
+ let Name = "DupAlignedMemory32";
+ let DiagnosticType = "DupAlignedMemoryRequires32";
+}
+def addrmode6dupalign32 : AddrMode6DupAlign {
+ // The alignment specifier can only be 32 or omitted.
+ let ParserMatchClass = AddrMode6dupAlign32AsmOperand;
+}
+
+// Special version of addrmode6 to handle 64-bit alignment encoding for VLD
+// instructions and checking the alignment value.
+def AddrMode6dupAlign64AsmOperand : AsmOperandClass {
+ let Name = "DupAlignedMemory64";
+ let DiagnosticType = "DupAlignedMemoryRequires64";
+}
+def addrmode6dupalign64 : AddrMode6DupAlign {
+ // The alignment specifier can only be 64 or omitted.
+ let ParserMatchClass = AddrMode6dupAlign64AsmOperand;
+}
+
+// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
+// for VLD instructions and checking the alignment value.
+def AddrMode6dupAlign64or128AsmOperand : AsmOperandClass {
+ let Name = "DupAlignedMemory64or128";
+ let DiagnosticType = "DupAlignedMemoryRequires64or128";
+}
+def addrmode6dupalign64or128 : AddrMode6DupAlign {
+ // The alignment specifier can only be 64, 128 or omitted.
+ let ParserMatchClass = AddrMode6dupAlign64or128AsmOperand;
+}
+
+// addrmodepc := pc + reg
+//
+def addrmodepc : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectAddrModePC", []> {
+ let PrintMethod = "printAddrModePCOperand";
+ let MIOperandInfo = (ops GPR, i32imm);
+}
+
+// addr_offset_none := reg
+//
+def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; }
+def addr_offset_none : Operand<i32>,
+ ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> {
+ let PrintMethod = "printAddrMode7Operand";
+ let DecoderMethod = "DecodeAddrMode7Operand";
+ let ParserMatchClass = MemNoOffsetAsmOperand;
+ let MIOperandInfo = (ops GPR:$base);
+}
+
+def nohash_imm : Operand<i32> {
+ let PrintMethod = "printNoHashImmediate";
+}
+
+def CoprocNumAsmOperand : AsmOperandClass {
+ let Name = "CoprocNum";
+ let ParserMethod = "parseCoprocNumOperand";
+}
+def p_imm : Operand<i32> {
+ let PrintMethod = "printPImmediate";
+ let ParserMatchClass = CoprocNumAsmOperand;
+ let DecoderMethod = "DecodeCoprocessor";
+}
+
+def CoprocRegAsmOperand : AsmOperandClass {
+ let Name = "CoprocReg";
+ let ParserMethod = "parseCoprocRegOperand";
+}
+def c_imm : Operand<i32> {
+ let PrintMethod = "printCImmediate";
+ let ParserMatchClass = CoprocRegAsmOperand;
+}
+def CoprocOptionAsmOperand : AsmOperandClass {
+ let Name = "CoprocOption";
+ let ParserMethod = "parseCoprocOptionOperand";
+}
+def coproc_option_imm : Operand<i32> {
+ let PrintMethod = "printCoprocOptionImm";
+ let ParserMatchClass = CoprocOptionAsmOperand;
+}
+
+//===----------------------------------------------------------------------===//
+
+include "ARMInstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+// Multiclass helpers...
+//
+
+/// AsI1_bin_irs - Defines a set of (op r, {so_imm|r|so_reg}) patterns for a
+/// binop that produces a value.
+let TwoOperandAliasConstraint = "$Rn = $Rd" in
+multiclass AsI1_bin_irs<bits<4> opcod, string opc,
+ InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
+ PatFrag opnode, bit Commutable = 0> {
+ // The register-immediate version is re-materializable. This is useful
+ // in particular for taking the address of a local.
+ let isReMaterializable = 1 in {
+ def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm,
+ iii, opc, "\t$Rd, $Rn, $imm",
+ [(set GPR:$Rd, (opnode GPR:$Rn, so_imm:$imm))]>,
+ Sched<[WriteALU, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> imm;
+ let Inst{25} = 1;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-0} = imm;
+ }
+ }
+ def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
+ iir, opc, "\t$Rd, $Rn, $Rm",
+ [(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
+ Sched<[WriteALU, ReadALU, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{25} = 0;
+ let isCommutable = Commutable;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-4} = 0b00000000;
+ let Inst{3-0} = Rm;
+ }
+
+ def rsi : AsI1<opcod, (outs GPR:$Rd),
+ (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
+ iis, opc, "\t$Rd, $Rn, $shift",
+ [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]>,
+ Sched<[WriteALUsi, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-5} = shift{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = shift{3-0};
+ }
+
+ def rsr : AsI1<opcod, (outs GPR:$Rd),
+ (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
+ iis, opc, "\t$Rd, $Rn, $shift",
+ [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]>,
+ Sched<[WriteALUsr, ReadALUsr]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-8} = shift{11-8};
+ let Inst{7} = 0;
+ let Inst{6-5} = shift{6-5};
+ let Inst{4} = 1;
+ let Inst{3-0} = shift{3-0};
+ }
+}
+
+/// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are
+/// reversed. The 'rr' form is only defined for the disassembler; for codegen
+/// it is equivalent to the AsI1_bin_irs counterpart.
+let TwoOperandAliasConstraint = "$Rn = $Rd" in
+multiclass AsI1_rbin_irs<bits<4> opcod, string opc,
+ InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
+ PatFrag opnode, bit Commutable = 0> {
+ // The register-immediate version is re-materializable. This is useful
+ // in particular for taking the address of a local.
+ let isReMaterializable = 1 in {
+ def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm,
+ iii, opc, "\t$Rd, $Rn, $imm",
+ [(set GPR:$Rd, (opnode so_imm:$imm, GPR:$Rn))]>,
+ Sched<[WriteALU, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> imm;
+ let Inst{25} = 1;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-0} = imm;
+ }
+ }
+ def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
+ iir, opc, "\t$Rd, $Rn, $Rm",
+ [/* pattern left blank */]>,
+ Sched<[WriteALU, ReadALU, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{11-4} = 0b00000000;
+ let Inst{25} = 0;
+ let Inst{3-0} = Rm;
+ let Inst{15-12} = Rd;
+ let Inst{19-16} = Rn;
+ }
+
+ def rsi : AsI1<opcod, (outs GPR:$Rd),
+ (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
+ iis, opc, "\t$Rd, $Rn, $shift",
+ [(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]>,
+ Sched<[WriteALUsi, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-5} = shift{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = shift{3-0};
+ }
+
+ def rsr : AsI1<opcod, (outs GPR:$Rd),
+ (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
+ iis, opc, "\t$Rd, $Rn, $shift",
+ [(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]>,
+ Sched<[WriteALUsr, ReadALUsr]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-8} = shift{11-8};
+ let Inst{7} = 0;
+ let Inst{6-5} = shift{6-5};
+ let Inst{4} = 1;
+ let Inst{3-0} = shift{3-0};
+ }
+}
+
+/// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default.
+///
+/// These opcodes will be converted to the real non-S opcodes by
+/// AdjustInstrPostInstrSelection after giving them an optional CPSR operand.
+let hasPostISelHook = 1, Defs = [CPSR] in {
+multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir,
+ InstrItinClass iis, PatFrag opnode,
+ bit Commutable = 0> {
+ def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm, pred:$p),
+ 4, iii,
+ [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_imm:$imm))]>,
+ Sched<[WriteALU, ReadALU]>;
+
+ def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p),
+ 4, iir,
+ [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>,
+ Sched<[WriteALU, ReadALU, ReadALU]> {
+ let isCommutable = Commutable;
+ }
+ def rsi : ARMPseudoInst<(outs GPR:$Rd),
+ (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
+ 4, iis,
+ [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
+ so_reg_imm:$shift))]>,
+ Sched<[WriteALUsi, ReadALU]>;
+
+ def rsr : ARMPseudoInst<(outs GPR:$Rd),
+ (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
+ 4, iis,
+ [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
+ so_reg_reg:$shift))]>,
+ Sched<[WriteALUSsr, ReadALUsr]>;
+}
+}
+
+/// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG
+/// operands are reversed.
+let hasPostISelHook = 1, Defs = [CPSR] in {
+multiclass AsI1_rbin_s_is<InstrItinClass iii, InstrItinClass iir,
+ InstrItinClass iis, PatFrag opnode,
+ bit Commutable = 0> {
+ def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm, pred:$p),
+ 4, iii,
+ [(set GPR:$Rd, CPSR, (opnode so_imm:$imm, GPR:$Rn))]>,
+ Sched<[WriteALU, ReadALU]>;
+
+ def rsi : ARMPseudoInst<(outs GPR:$Rd),
+ (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
+ 4, iis,
+ [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift,
+ GPR:$Rn))]>,
+ Sched<[WriteALUsi, ReadALU]>;
+
+ def rsr : ARMPseudoInst<(outs GPR:$Rd),
+ (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
+ 4, iis,
+ [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift,
+ GPR:$Rn))]>,
+ Sched<[WriteALUSsr, ReadALUsr]>;
+}
+}
+
+/// AI1_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test
+/// patterns. Similar to AsI1_bin_irs except the instruction does not produce
+/// a explicit result, only implicitly set CPSR.
+let isCompare = 1, Defs = [CPSR] in {
+multiclass AI1_cmp_irs<bits<4> opcod, string opc,
+ InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
+ PatFrag opnode, bit Commutable = 0> {
+ def ri : AI1<opcod, (outs), (ins GPR:$Rn, so_imm:$imm), DPFrm, iii,
+ opc, "\t$Rn, $imm",
+ [(opnode GPR:$Rn, so_imm:$imm)]>,
+ Sched<[WriteCMP, ReadALU]> {
+ bits<4> Rn;
+ bits<12> imm;
+ let Inst{25} = 1;
+ let Inst{20} = 1;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = 0b0000;
+ let Inst{11-0} = imm;
+
+ let Unpredictable{15-12} = 0b1111;
+ }
+ def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir,
+ opc, "\t$Rn, $Rm",
+ [(opnode GPR:$Rn, GPR:$Rm)]>,
+ Sched<[WriteCMP, ReadALU, ReadALU]> {
+ bits<4> Rn;
+ bits<4> Rm;
+ let isCommutable = Commutable;
+ let Inst{25} = 0;
+ let Inst{20} = 1;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = 0b0000;
+ let Inst{11-4} = 0b00000000;
+ let Inst{3-0} = Rm;
+
+ let Unpredictable{15-12} = 0b1111;
+ }
+ def rsi : AI1<opcod, (outs),
+ (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis,
+ opc, "\t$Rn, $shift",
+ [(opnode GPR:$Rn, so_reg_imm:$shift)]>,
+ Sched<[WriteCMPsi, ReadALU]> {
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{20} = 1;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = 0b0000;
+ let Inst{11-5} = shift{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = shift{3-0};
+
+ let Unpredictable{15-12} = 0b1111;
+ }
+ def rsr : AI1<opcod, (outs),
+ (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis,
+ opc, "\t$Rn, $shift",
+ [(opnode GPRnopc:$Rn, so_reg_reg:$shift)]>,
+ Sched<[WriteCMPsr, ReadALU]> {
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{20} = 1;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = 0b0000;
+ let Inst{11-8} = shift{11-8};
+ let Inst{7} = 0;
+ let Inst{6-5} = shift{6-5};
+ let Inst{4} = 1;
+ let Inst{3-0} = shift{3-0};
+
+ let Unpredictable{15-12} = 0b1111;
+ }
+
+}
+}
+
+/// AI_ext_rrot - A unary operation with two forms: one whose operand is a
+/// register and one whose operand is a register rotated by 8/16/24.
+/// FIXME: Remove the 'r' variant. Its rot_imm is zero.
+class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode>
+ : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
+ IIC_iEXTr, opc, "\t$Rd, $Rm$rot",
+ [(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
+ Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
+ bits<4> Rd;
+ bits<4> Rm;
+ bits<2> rot;
+ let Inst{19-16} = 0b1111;
+ let Inst{15-12} = Rd;
+ let Inst{11-10} = rot;
+ let Inst{3-0} = Rm;
+}
+
+class AI_ext_rrot_np<bits<8> opcod, string opc>
+ : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
+ IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>,
+ Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
+ bits<2> rot;
+ let Inst{19-16} = 0b1111;
+ let Inst{11-10} = rot;
+ }
+
+/// AI_exta_rrot - A binary operation with two forms: one whose operand is a
+/// register and one whose operand is a register rotated by 8/16/24.
+class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode>
+ : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
+ IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot",
+ [(set GPRnopc:$Rd, (opnode GPR:$Rn,
+ (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
+ Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
+ bits<4> Rd;
+ bits<4> Rm;
+ bits<4> Rn;
+ bits<2> rot;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-10} = rot;
+ let Inst{9-4} = 0b000111;
+ let Inst{3-0} = Rm;
+}
+
+class AI_exta_rrot_np<bits<8> opcod, string opc>
+ : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
+ IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>,
+ Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
+ bits<4> Rn;
+ bits<2> rot;
+ let Inst{19-16} = Rn;
+ let Inst{11-10} = rot;
+}
+
+/// AI1_adde_sube_irs - Define instructions and patterns for adde and sube.
+let TwoOperandAliasConstraint = "$Rn = $Rd" in
+multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, PatFrag opnode,
+ bit Commutable = 0> {
+ let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
+ def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm),
+ DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
+ [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_imm:$imm, CPSR))]>,
+ Requires<[IsARM]>,
+ Sched<[WriteALU, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> imm;
+ let Inst{25} = 1;
+ let Inst{15-12} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{11-0} = imm;
+ }
+ def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
+ [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>,
+ Requires<[IsARM]>,
+ Sched<[WriteALU, ReadALU, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{11-4} = 0b00000000;
+ let Inst{25} = 0;
+ let isCommutable = Commutable;
+ let Inst{3-0} = Rm;
+ let Inst{15-12} = Rd;
+ let Inst{19-16} = Rn;
+ }
+ def rsi : AsI1<opcod, (outs GPR:$Rd),
+ (ins GPR:$Rn, so_reg_imm:$shift),
+ DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
+ [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>,
+ Requires<[IsARM]>,
+ Sched<[WriteALUsi, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-5} = shift{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = shift{3-0};
+ }
+ def rsr : AsI1<opcod, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, so_reg_reg:$shift),
+ DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
+ [(set GPRnopc:$Rd, CPSR,
+ (opnode GPRnopc:$Rn, so_reg_reg:$shift, CPSR))]>,
+ Requires<[IsARM]>,
+ Sched<[WriteALUsr, ReadALUsr]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-8} = shift{11-8};
+ let Inst{7} = 0;
+ let Inst{6-5} = shift{6-5};
+ let Inst{4} = 1;
+ let Inst{3-0} = shift{3-0};
+ }
+ }
+}
+
+/// AI1_rsc_irs - Define instructions and patterns for rsc
+let TwoOperandAliasConstraint = "$Rn = $Rd" in
+multiclass AI1_rsc_irs<bits<4> opcod, string opc, PatFrag opnode> {
+ let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
+ def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm),
+ DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
+ [(set GPR:$Rd, CPSR, (opnode so_imm:$imm, GPR:$Rn, CPSR))]>,
+ Requires<[IsARM]>,
+ Sched<[WriteALU, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> imm;
+ let Inst{25} = 1;
+ let Inst{15-12} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{11-0} = imm;
+ }
+ def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
+ [/* pattern left blank */]>,
+ Sched<[WriteALU, ReadALU, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{11-4} = 0b00000000;
+ let Inst{25} = 0;
+ let Inst{3-0} = Rm;
+ let Inst{15-12} = Rd;
+ let Inst{19-16} = Rn;
+ }
+ def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift),
+ DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
+ [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>,
+ Requires<[IsARM]>,
+ Sched<[WriteALUsi, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-5} = shift{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = shift{3-0};
+ }
+ def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift),
+ DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
+ [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>,
+ Requires<[IsARM]>,
+ Sched<[WriteALUsr, ReadALUsr]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-8} = shift{11-8};
+ let Inst{7} = 0;
+ let Inst{6-5} = shift{6-5};
+ let Inst{4} = 1;
+ let Inst{3-0} = shift{3-0};
+ }
+ }
+}
+
+let canFoldAsLoad = 1, isReMaterializable = 1 in {
+multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii,
+ InstrItinClass iir, PatFrag opnode> {
+ // Note: We use the complex addrmode_imm12 rather than just an input
+ // GPR and a constrained immediate so that we can use this to match
+ // frame index references and avoid matching constant pool references.
+ def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
+ AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
+ [(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> {
+ bits<4> Rt;
+ bits<17> addr;
+ let Inst{23} = addr{12}; // U (add = ('U' == 1))
+ let Inst{19-16} = addr{16-13}; // Rn
+ let Inst{15-12} = Rt;
+ let Inst{11-0} = addr{11-0}; // imm12
+ }
+ def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift),
+ AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
+ [(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> {
+ bits<4> Rt;
+ bits<17> shift;
+ let shift{4} = 0; // Inst{4} = 0
+ let Inst{23} = shift{12}; // U (add = ('U' == 1))
+ let Inst{19-16} = shift{16-13}; // Rn
+ let Inst{15-12} = Rt;
+ let Inst{11-0} = shift{11-0};
+ }
+}
+}
+
+let canFoldAsLoad = 1, isReMaterializable = 1 in {
+multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii,
+ InstrItinClass iir, PatFrag opnode> {
+ // Note: We use the complex addrmode_imm12 rather than just an input
+ // GPR and a constrained immediate so that we can use this to match
+ // frame index references and avoid matching constant pool references.
+ def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt),
+ (ins addrmode_imm12:$addr),
+ AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
+ [(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> {
+ bits<4> Rt;
+ bits<17> addr;
+ let Inst{23} = addr{12}; // U (add = ('U' == 1))
+ let Inst{19-16} = addr{16-13}; // Rn
+ let Inst{15-12} = Rt;
+ let Inst{11-0} = addr{11-0}; // imm12
+ }
+ def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt),
+ (ins ldst_so_reg:$shift),
+ AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
+ [(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> {
+ bits<4> Rt;
+ bits<17> shift;
+ let shift{4} = 0; // Inst{4} = 0
+ let Inst{23} = shift{12}; // U (add = ('U' == 1))
+ let Inst{19-16} = shift{16-13}; // Rn
+ let Inst{15-12} = Rt;
+ let Inst{11-0} = shift{11-0};
+ }
+}
+}
+
+
+multiclass AI_str1<bit isByte, string opc, InstrItinClass iii,
+ InstrItinClass iir, PatFrag opnode> {
+ // Note: We use the complex addrmode_imm12 rather than just an input
+ // GPR and a constrained immediate so that we can use this to match
+ // frame index references and avoid matching constant pool references.
+ def i12 : AI2ldst<0b010, 0, isByte, (outs),
+ (ins GPR:$Rt, addrmode_imm12:$addr),
+ AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
+ [(opnode GPR:$Rt, addrmode_imm12:$addr)]> {
+ bits<4> Rt;
+ bits<17> addr;
+ let Inst{23} = addr{12}; // U (add = ('U' == 1))
+ let Inst{19-16} = addr{16-13}; // Rn
+ let Inst{15-12} = Rt;
+ let Inst{11-0} = addr{11-0}; // imm12
+ }
+ def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift),
+ AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
+ [(opnode GPR:$Rt, ldst_so_reg:$shift)]> {
+ bits<4> Rt;
+ bits<17> shift;
+ let shift{4} = 0; // Inst{4} = 0
+ let Inst{23} = shift{12}; // U (add = ('U' == 1))
+ let Inst{19-16} = shift{16-13}; // Rn
+ let Inst{15-12} = Rt;
+ let Inst{11-0} = shift{11-0};
+ }
+}
+
+multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii,
+ InstrItinClass iir, PatFrag opnode> {
+ // Note: We use the complex addrmode_imm12 rather than just an input
+ // GPR and a constrained immediate so that we can use this to match
+ // frame index references and avoid matching constant pool references.
+ def i12 : AI2ldst<0b010, 0, isByte, (outs),
+ (ins GPRnopc:$Rt, addrmode_imm12:$addr),
+ AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
+ [(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> {
+ bits<4> Rt;
+ bits<17> addr;
+ let Inst{23} = addr{12}; // U (add = ('U' == 1))
+ let Inst{19-16} = addr{16-13}; // Rn
+ let Inst{15-12} = Rt;
+ let Inst{11-0} = addr{11-0}; // imm12
+ }
+ def rs : AI2ldst<0b011, 0, isByte, (outs),
+ (ins GPRnopc:$Rt, ldst_so_reg:$shift),
+ AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
+ [(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> {
+ bits<4> Rt;
+ bits<17> shift;
+ let shift{4} = 0; // Inst{4} = 0
+ let Inst{23} = shift{12}; // U (add = ('U' == 1))
+ let Inst{19-16} = shift{16-13}; // Rn
+ let Inst{15-12} = Rt;
+ let Inst{11-0} = shift{11-0};
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Instructions
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instructions.
+//
+
+/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
+/// the function. The first operand is the ID# for this instruction, the second
+/// is the index into the MachineConstantPool that this is, the third is the
+/// size in bytes of this constant pool entry.
+let neverHasSideEffects = 1, isNotDuplicable = 1 in
+def CONSTPOOL_ENTRY :
+PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
+ i32imm:$size), NoItinerary, []>;
+
+// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
+// from removing one half of the matched pairs. That breaks PEI, which assumes
+// these will always be in pairs, and asserts if it finds otherwise. Better way?
+let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
+def ADJCALLSTACKUP :
+PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary,
+ [(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
+
+def ADJCALLSTACKDOWN :
+PseudoInst<(outs), (ins i32imm:$amt, pred:$p), NoItinerary,
+ [(ARMcallseq_start timm:$amt)]>;
+}
+
+def HINT : AI<(outs), (ins imm0_239:$imm), MiscFrm, NoItinerary,
+ "hint", "\t$imm", [(int_arm_hint imm0_239:$imm)]>,
+ Requires<[IsARM, HasV6]> {
+ bits<8> imm;
+ let Inst{27-8} = 0b00110010000011110000;
+ let Inst{7-0} = imm;
+}
+
+def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6T2]>;
+def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6T2]>;
+def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6T2]>;
+def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6T2]>;
+def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6T2]>;
+def : InstAlias<"sevl$p", (HINT 5, pred:$p)>, Requires<[IsARM, HasV8]>;
+
+def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel",
+ "\t$Rd, $Rn, $Rm", []>, Requires<[IsARM, HasV6]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{3-0} = Rm;
+ let Inst{15-12} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{27-20} = 0b01101000;
+ let Inst{7-4} = 0b1011;
+ let Inst{11-8} = 0b1111;
+ let Unpredictable{11-8} = 0b1111;
+}
+
+// The 16-bit operand $val can be used by a debugger to store more information
+// about the breakpoint.
+def BKPT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
+ "bkpt", "\t$val", []>, Requires<[IsARM]> {
+ bits<16> val;
+ let Inst{3-0} = val{3-0};
+ let Inst{19-8} = val{15-4};
+ let Inst{27-20} = 0b00010010;
+ let Inst{31-28} = 0xe; // AL
+ let Inst{7-4} = 0b0111;
+}
+// default immediate for breakpoint mnemonic
+def : InstAlias<"bkpt", (BKPT 0)>, Requires<[IsARM]>;
+
+def HLT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
+ "hlt", "\t$val", []>, Requires<[IsARM, HasV8]> {
+ bits<16> val;
+ let Inst{3-0} = val{3-0};
+ let Inst{19-8} = val{15-4};
+ let Inst{27-20} = 0b00010000;
+ let Inst{31-28} = 0xe; // AL
+ let Inst{7-4} = 0b0111;
+}
+
+// Change Processor State
+// FIXME: We should use InstAlias to handle the optional operands.
+class CPS<dag iops, string asm_ops>
+ : AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops),
+ []>, Requires<[IsARM]> {
+ bits<2> imod;
+ bits<3> iflags;
+ bits<5> mode;
+ bit M;
+
+ let Inst{31-28} = 0b1111;
+ let Inst{27-20} = 0b00010000;
+ let Inst{19-18} = imod;
+ let Inst{17} = M; // Enabled if mode is set;
+ let Inst{16-9} = 0b00000000;
+ let Inst{8-6} = iflags;
+ let Inst{5} = 0;
+ let Inst{4-0} = mode;
+}
+
+let DecoderMethod = "DecodeCPSInstruction" in {
+let M = 1 in
+ def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode),
+ "$imod\t$iflags, $mode">;
+let mode = 0, M = 0 in
+ def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">;
+
+let imod = 0, iflags = 0, M = 1 in
+ def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">;
+}
+
+// Preload signals the memory system of possible future data/instruction access.
+multiclass APreLoad<bits<1> read, bits<1> data, string opc> {
+
+ def i12 : AXIM<(outs), (ins addrmode_imm12:$addr), AddrMode_i12, MiscFrm,
+ IIC_Preload, !strconcat(opc, "\t$addr"),
+ [(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]>,
+ Sched<[WritePreLd]> {
+ bits<4> Rt;
+ bits<17> addr;
+ let Inst{31-26} = 0b111101;
+ let Inst{25} = 0; // 0 for immediate form
+ let Inst{24} = data;
+ let Inst{23} = addr{12}; // U (add = ('U' == 1))
+ let Inst{22} = read;
+ let Inst{21-20} = 0b01;
+ let Inst{19-16} = addr{16-13}; // Rn
+ let Inst{15-12} = 0b1111;
+ let Inst{11-0} = addr{11-0}; // imm12
+ }
+
+ def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload,
+ !strconcat(opc, "\t$shift"),
+ [(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]>,
+ Sched<[WritePreLd]> {
+ bits<17> shift;
+ let Inst{31-26} = 0b111101;
+ let Inst{25} = 1; // 1 for register form
+ let Inst{24} = data;
+ let Inst{23} = shift{12}; // U (add = ('U' == 1))
+ let Inst{22} = read;
+ let Inst{21-20} = 0b01;
+ let Inst{19-16} = shift{16-13}; // Rn
+ let Inst{15-12} = 0b1111;
+ let Inst{11-0} = shift{11-0};
+ let Inst{4} = 0;
+ }
+}
+
+defm PLD : APreLoad<1, 1, "pld">, Requires<[IsARM]>;
+defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>;
+defm PLI : APreLoad<1, 0, "pli">, Requires<[IsARM,HasV7]>;
+
+def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary,
+ "setend\t$end", []>, Requires<[IsARM]>, Deprecated<HasV8Ops> {
+ bits<1> end;
+ let Inst{31-10} = 0b1111000100000001000000;
+ let Inst{9} = end;
+ let Inst{8-0} = 0;
+}
+
+def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt",
+ []>, Requires<[IsARM, HasV7]> {
+ bits<4> opt;
+ let Inst{27-4} = 0b001100100000111100001111;
+ let Inst{3-0} = opt;
+}
+
+// A8.8.247 UDF - Undefined (Encoding A1)
+def UDF : AInoP<(outs), (ins imm0_65535:$imm16), MiscFrm, NoItinerary,
+ "udf", "\t$imm16", [(int_arm_undefined imm0_65535:$imm16)]> {
+ bits<16> imm16;
+ let Inst{31-28} = 0b1110; // AL
+ let Inst{27-25} = 0b011;
+ let Inst{24-20} = 0b11111;
+ let Inst{19-8} = imm16{15-4};
+ let Inst{7-4} = 0b1111;
+ let Inst{3-0} = imm16{3-0};
+}
+
+/*
+ * A5.4 Permanently UNDEFINED instructions.
+ *
+ * For most targets use UDF #65006, for which the OS will generate SIGTRAP.
+ * Other UDF encodings generate SIGILL.
+ *
+ * NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb.
+ * Encoding A1:
+ * 1110 0111 1111 iiii iiii iiii 1111 iiii
+ * Encoding T1:
+ * 1101 1110 iiii iiii
+ * It uses the following encoding:
+ * 1110 0111 1111 1110 1101 1110 1111 0000
+ * - In ARM: UDF #60896;
+ * - In Thumb: UDF #254 followed by a branch-to-self.
+ */
+let isBarrier = 1, isTerminator = 1 in
+def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary,
+ "trap", [(trap)]>,
+ Requires<[IsARM,UseNaClTrap]> {
+ let Inst = 0xe7fedef0;
+}
+let isBarrier = 1, isTerminator = 1 in
+def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary,
+ "trap", [(trap)]>,
+ Requires<[IsARM,DontUseNaClTrap]> {
+ let Inst = 0xe7ffdefe;
+}
+
+// Address computation and loads and stores in PIC mode.
+let isNotDuplicable = 1 in {
+def PICADD : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
+ 4, IIC_iALUr,
+ [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>,
+ Sched<[WriteALU, ReadALU]>;
+
+let AddedComplexity = 10 in {
+def PICLDR : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
+ 4, IIC_iLoad_r,
+ [(set GPR:$dst, (load addrmodepc:$addr))]>;
+
+def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
+ 4, IIC_iLoad_bh_r,
+ [(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>;
+
+def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
+ 4, IIC_iLoad_bh_r,
+ [(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>;
+
+def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
+ 4, IIC_iLoad_bh_r,
+ [(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>;
+
+def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
+ 4, IIC_iLoad_bh_r,
+ [(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>;
+}
+let AddedComplexity = 10 in {
+def PICSTR : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
+ 4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>;
+
+def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
+ 4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src,
+ addrmodepc:$addr)]>;
+
+def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
+ 4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
+}
+} // isNotDuplicable = 1
+
+
+// LEApcrel - Load a pc-relative address into a register without offending the
+// assembler.
+let neverHasSideEffects = 1, isReMaterializable = 1 in
+// The 'adr' mnemonic encodes differently if the label is before or after
+// the instruction. The {24-21} opcode bits are set by the fixup, as we don't
+// know until then which form of the instruction will be used.
+def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label),
+ MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []>,
+ Sched<[WriteALU, ReadALU]> {
+ bits<4> Rd;
+ bits<14> label;
+ let Inst{27-25} = 0b001;
+ let Inst{24} = 0;
+ let Inst{23-22} = label{13-12};
+ let Inst{21} = 0;
+ let Inst{20} = 0;
+ let Inst{19-16} = 0b1111;
+ let Inst{15-12} = Rd;
+ let Inst{11-0} = label{11-0};
+}
+
+let hasSideEffects = 1 in {
+def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p),
+ 4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
+
+def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd),
+ (ins i32imm:$label, nohash_imm:$id, pred:$p),
+ 4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Control Flow Instructions.
+//
+
+let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
+ // ARMV4T and above
+ def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br,
+ "bx", "\tlr", [(ARMretflag)]>,
+ Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
+ let Inst{27-0} = 0b0001001011111111111100011110;
+ }
+
+ // ARMV4 only
+ def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br,
+ "mov", "\tpc, lr", [(ARMretflag)]>,
+ Requires<[IsARM, NoV4T]>, Sched<[WriteBr]> {
+ let Inst{27-0} = 0b0001101000001111000000001110;
+ }
+
+ // Exception return: N.b. doesn't set CPSR as far as we're concerned (it sets
+ // the user-space one).
+ def SUBS_PC_LR : ARMPseudoInst<(outs), (ins i32imm:$offset, pred:$p),
+ 4, IIC_Br,
+ [(ARMintretflag imm:$offset)]>;
+}
+
+// Indirect branches
+let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
+ // ARMV4T and above
+ def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst",
+ [(brind GPR:$dst)]>,
+ Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
+ bits<4> dst;
+ let Inst{31-4} = 0b1110000100101111111111110001;
+ let Inst{3-0} = dst;
+ }
+
+ def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br,
+ "bx", "\t$dst", [/* pattern left blank */]>,
+ Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
+ bits<4> dst;
+ let Inst{27-4} = 0b000100101111111111110001;
+ let Inst{3-0} = dst;
+ }
+}
+
+// SP is marked as a use to prevent stack-pointer assignments that appear
+// immediately before calls from potentially appearing dead.
+let isCall = 1,
+ // FIXME: Do we really need a non-predicated version? If so, it should
+ // at least be a pseudo instruction expanding to the predicated version
+ // at MC lowering time.
+ Defs = [LR], Uses = [SP] in {
+ def BL : ABXI<0b1011, (outs), (ins bl_target:$func),
+ IIC_Br, "bl\t$func",
+ [(ARMcall tglobaladdr:$func)]>,
+ Requires<[IsARM]>, Sched<[WriteBrL]> {
+ let Inst{31-28} = 0b1110;
+ bits<24> func;
+ let Inst{23-0} = func;
+ let DecoderMethod = "DecodeBranchImmInstruction";
+ }
+
+ def BL_pred : ABI<0b1011, (outs), (ins bl_target:$func),
+ IIC_Br, "bl", "\t$func",
+ [(ARMcall_pred tglobaladdr:$func)]>,
+ Requires<[IsARM]>, Sched<[WriteBrL]> {
+ bits<24> func;
+ let Inst{23-0} = func;
+ let DecoderMethod = "DecodeBranchImmInstruction";
+ }
+
+ // ARMv5T and above
+ def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm,
+ IIC_Br, "blx\t$func",
+ [(ARMcall GPR:$func)]>,
+ Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
+ bits<4> func;
+ let Inst{31-4} = 0b1110000100101111111111110011;
+ let Inst{3-0} = func;
+ }
+
+ def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm,
+ IIC_Br, "blx", "\t$func",
+ [(ARMcall_pred GPR:$func)]>,
+ Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
+ bits<4> func;
+ let Inst{27-4} = 0b000100101111111111110011;
+ let Inst{3-0} = func;
+ }
+
+ // ARMv4T
+ // Note: Restrict $func to the tGPR regclass to prevent it being in LR.
+ def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
+ 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
+ Requires<[IsARM, HasV4T]>, Sched<[WriteBr]>;
+
+ // ARMv4
+ def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
+ 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
+ Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
+
+ // mov lr, pc; b if callee is marked noreturn to avoid confusing the
+ // return stack predictor.
+ def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins bl_target:$func),
+ 8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>,
+ Requires<[IsARM]>, Sched<[WriteBr]>;
+}
+
+let isBranch = 1, isTerminator = 1 in {
+ // FIXME: should be able to write a pattern for ARMBrcond, but can't use
+ // a two-value operand where a dag node expects two operands. :(
+ def Bcc : ABI<0b1010, (outs), (ins br_target:$target),
+ IIC_Br, "b", "\t$target",
+ [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>,
+ Sched<[WriteBr]> {
+ bits<24> target;
+ let Inst{23-0} = target;
+ let DecoderMethod = "DecodeBranchImmInstruction";
+ }
+
+ let isBarrier = 1 in {
+ // B is "predicable" since it's just a Bcc with an 'always' condition.
+ let isPredicable = 1 in
+ // FIXME: We shouldn't need this pseudo at all. Just using Bcc directly
+ // should be sufficient.
+ // FIXME: Is B really a Barrier? That doesn't seem right.
+ def B : ARMPseudoExpand<(outs), (ins br_target:$target), 4, IIC_Br,
+ [(br bb:$target)], (Bcc br_target:$target, (ops 14, zero_reg))>,
+ Sched<[WriteBr]>;
+
+ let isNotDuplicable = 1, isIndirectBranch = 1 in {
+ def BR_JTr : ARMPseudoInst<(outs),
+ (ins GPR:$target, i32imm:$jt, i32imm:$id),
+ 0, IIC_Br,
+ [(ARMbrjt GPR:$target, tjumptable:$jt, imm:$id)]>,
+ Sched<[WriteBr]>;
+ // FIXME: This shouldn't use the generic "addrmode2," but rather be split
+ // into i12 and rs suffixed versions.
+ def BR_JTm : ARMPseudoInst<(outs),
+ (ins addrmode2:$target, i32imm:$jt, i32imm:$id),
+ 0, IIC_Br,
+ [(ARMbrjt (i32 (load addrmode2:$target)), tjumptable:$jt,
+ imm:$id)]>, Sched<[WriteBrTbl]>;
+ def BR_JTadd : ARMPseudoInst<(outs),
+ (ins GPR:$target, GPR:$idx, i32imm:$jt, i32imm:$id),
+ 0, IIC_Br,
+ [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt,
+ imm:$id)]>, Sched<[WriteBrTbl]>;
+ } // isNotDuplicable = 1, isIndirectBranch = 1
+ } // isBarrier = 1
+
+}
+
+// BLX (immediate)
+def BLXi : AXI<(outs), (ins blx_target:$target), BrMiscFrm, NoItinerary,
+ "blx\t$target", []>,
+ Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
+ let Inst{31-25} = 0b1111101;
+ bits<25> target;
+ let Inst{23-0} = target{24-1};
+ let Inst{24} = target{0};
+}
+
+// Branch and Exchange Jazelle
+def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func",
+ [/* pattern left blank */]>, Sched<[WriteBr]> {
+ bits<4> func;
+ let Inst{23-20} = 0b0010;
+ let Inst{19-8} = 0xfff;
+ let Inst{7-4} = 0b0010;
+ let Inst{3-0} = func;
+}
+
+// Tail calls.
+
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
+ def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst), IIC_Br, []>,
+ Sched<[WriteBr]>;
+
+ def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst), IIC_Br, []>,
+ Sched<[WriteBr]>;
+
+ def TAILJMPd : ARMPseudoExpand<(outs), (ins br_target:$dst),
+ 4, IIC_Br, [],
+ (Bcc br_target:$dst, (ops 14, zero_reg))>,
+ Requires<[IsARM]>, Sched<[WriteBr]>;
+
+ def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst),
+ 4, IIC_Br, [],
+ (BX GPR:$dst)>, Sched<[WriteBr]>,
+ Requires<[IsARM]>;
+}
+
+// Secure Monitor Call is a system instruction.
+def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt",
+ []>, Requires<[IsARM, HasTrustZone]> {
+ bits<4> opt;
+ let Inst{23-4} = 0b01100000000000000111;
+ let Inst{3-0} = opt;
+}
+
+// Supervisor Call (Software Interrupt)
+let isCall = 1, Uses = [SP] in {
+def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []>,
+ Sched<[WriteBr]> {
+ bits<24> svc;
+ let Inst{23-0} = svc;
+}
+}
+
+// Store Return State
+class SRSI<bit wb, string asm>
+ : XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm,
+ NoItinerary, asm, "", []> {
+ bits<5> mode;
+ let Inst{31-28} = 0b1111;
+ let Inst{27-25} = 0b100;
+ let Inst{22} = 1;
+ let Inst{21} = wb;
+ let Inst{20} = 0;
+ let Inst{19-16} = 0b1101; // SP
+ let Inst{15-5} = 0b00000101000;
+ let Inst{4-0} = mode;
+}
+
+def SRSDA : SRSI<0, "srsda\tsp, $mode"> {
+ let Inst{24-23} = 0;
+}
+def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> {
+ let Inst{24-23} = 0;
+}
+def SRSDB : SRSI<0, "srsdb\tsp, $mode"> {
+ let Inst{24-23} = 0b10;
+}
+def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> {
+ let Inst{24-23} = 0b10;
+}
+def SRSIA : SRSI<0, "srsia\tsp, $mode"> {
+ let Inst{24-23} = 0b01;
+}
+def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> {
+ let Inst{24-23} = 0b01;
+}
+def SRSIB : SRSI<0, "srsib\tsp, $mode"> {
+ let Inst{24-23} = 0b11;
+}
+def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> {
+ let Inst{24-23} = 0b11;
+}
+
+def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>;
+def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>;
+
+def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>;
+def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>;
+
+def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>;
+def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>;
+
+def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>;
+def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>;
+
+// Return From Exception
+class RFEI<bit wb, string asm>
+ : XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm,
+ NoItinerary, asm, "", []> {
+ bits<4> Rn;
+ let Inst{31-28} = 0b1111;
+ let Inst{27-25} = 0b100;
+ let Inst{22} = 0;
+ let Inst{21} = wb;
+ let Inst{20} = 1;
+ let Inst{19-16} = Rn;
+ let Inst{15-0} = 0xa00;
+}
+
+def RFEDA : RFEI<0, "rfeda\t$Rn"> {
+ let Inst{24-23} = 0;
+}
+def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> {
+ let Inst{24-23} = 0;
+}
+def RFEDB : RFEI<0, "rfedb\t$Rn"> {
+ let Inst{24-23} = 0b10;
+}
+def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> {
+ let Inst{24-23} = 0b10;
+}
+def RFEIA : RFEI<0, "rfeia\t$Rn"> {
+ let Inst{24-23} = 0b01;
+}
+def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> {
+ let Inst{24-23} = 0b01;
+}
+def RFEIB : RFEI<0, "rfeib\t$Rn"> {
+ let Inst{24-23} = 0b11;
+}
+def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> {
+ let Inst{24-23} = 0b11;
+}
+
+//===----------------------------------------------------------------------===//
+// Load / Store Instructions.
+//
+
+// Load
+
+
+defm LDR : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si,
+ UnOpFrag<(load node:$Src)>>;
+defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si,
+ UnOpFrag<(zextloadi8 node:$Src)>>;
+defm STR : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si,
+ BinOpFrag<(store node:$LHS, node:$RHS)>>;
+defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si,
+ BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
+
+// Special LDR for loads from non-pc-relative constpools.
+let canFoldAsLoad = 1, mayLoad = 1, neverHasSideEffects = 1,
+ isReMaterializable = 1, isCodeGenOnly = 1 in
+def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
+ AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr",
+ []> {
+ bits<4> Rt;
+ bits<17> addr;
+ let Inst{23} = addr{12}; // U (add = ('U' == 1))
+ let Inst{19-16} = 0b1111;
+ let Inst{15-12} = Rt;
+ let Inst{11-0} = addr{11-0}; // imm12
+}
+
+// Loads with zero extension
+def LDRH : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
+ IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr",
+ [(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>;
+
+// Loads with sign extension
+def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
+ IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr",
+ [(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>;
+
+def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
+ IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr",
+ [(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>;
+
+let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
+ // Load doubleword
+ def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr),
+ LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>,
+ Requires<[IsARM, HasV5TE]>;
+}
+
+def LDA : AIldracq<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
+ NoItinerary, "lda", "\t$Rt, $addr", []>;
+def LDAB : AIldracq<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
+ NoItinerary, "ldab", "\t$Rt, $addr", []>;
+def LDAH : AIldracq<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
+ NoItinerary, "ldah", "\t$Rt, $addr", []>;
+
+// Indexed loads
+multiclass AI2_ldridx<bit isByte, string opc,
+ InstrItinClass iii, InstrItinClass iir> {
+ def _PRE_IMM : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addrmode_imm12_pre:$addr), IndexModePre, LdFrm, iii,
+ opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
+ bits<17> addr;
+ let Inst{25} = 0;
+ let Inst{23} = addr{12};
+ let Inst{19-16} = addr{16-13};
+ let Inst{11-0} = addr{11-0};
+ let DecoderMethod = "DecodeLDRPreImm";
+ }
+
+ def _PRE_REG : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir,
+ opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
+ bits<17> addr;
+ let Inst{25} = 1;
+ let Inst{23} = addr{12};
+ let Inst{19-16} = addr{16-13};
+ let Inst{11-0} = addr{11-0};
+ let Inst{4} = 0;
+ let DecoderMethod = "DecodeLDRPreReg";
+ }
+
+ def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$addr, am2offset_reg:$offset),
+ IndexModePost, LdFrm, iir,
+ opc, "\t$Rt, $addr, $offset",
+ "$addr.base = $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 1;
+ let Inst{23} = offset{12};
+ let Inst{19-16} = addr;
+ let Inst{11-0} = offset{11-0};
+ let Inst{4} = 0;
+
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+ }
+
+ def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$addr, am2offset_imm:$offset),
+ IndexModePost, LdFrm, iii,
+ opc, "\t$Rt, $addr, $offset",
+ "$addr.base = $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 0;
+ let Inst{23} = offset{12};
+ let Inst{19-16} = addr;
+ let Inst{11-0} = offset{11-0};
+
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+ }
+
+}
+
+let mayLoad = 1, neverHasSideEffects = 1 in {
+// FIXME: for LDR_PRE_REG etc. the itineray should be either IIC_iLoad_ru or
+// IIC_iLoad_siu depending on whether it the offset register is shifted.
+defm LDR : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>;
+defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>;
+}
+
+multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> {
+ def _PRE : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addrmode3_pre:$addr), IndexModePre,
+ LdMiscFrm, itin,
+ opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
+ bits<14> addr;
+ let Inst{23} = addr{8}; // U bit
+ let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
+ let Inst{19-16} = addr{12-9}; // Rn
+ let Inst{11-8} = addr{7-4}; // imm7_4/zero
+ let Inst{3-0} = addr{3-0}; // imm3_0/Rm
+ let DecoderMethod = "DecodeAddrMode3Instruction";
+ }
+ def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$addr, am3offset:$offset),
+ IndexModePost, LdMiscFrm, itin,
+ opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb",
+ []> {
+ bits<10> offset;
+ bits<4> addr;
+ let Inst{23} = offset{8}; // U bit
+ let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
+ let Inst{19-16} = addr;
+ let Inst{11-8} = offset{7-4}; // imm7_4/zero
+ let Inst{3-0} = offset{3-0}; // imm3_0/Rm
+ let DecoderMethod = "DecodeAddrMode3Instruction";
+ }
+}
+
+let mayLoad = 1, neverHasSideEffects = 1 in {
+defm LDRH : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>;
+defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>;
+defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>;
+let hasExtraDefRegAllocReq = 1 in {
+def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
+ (ins addrmode3_pre:$addr), IndexModePre,
+ LdMiscFrm, IIC_iLoad_d_ru,
+ "ldrd", "\t$Rt, $Rt2, $addr!",
+ "$addr.base = $Rn_wb", []> {
+ bits<14> addr;
+ let Inst{23} = addr{8}; // U bit
+ let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
+ let Inst{19-16} = addr{12-9}; // Rn
+ let Inst{11-8} = addr{7-4}; // imm7_4/zero
+ let Inst{3-0} = addr{3-0}; // imm3_0/Rm
+ let DecoderMethod = "DecodeAddrMode3Instruction";
+}
+def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
+ (ins addr_offset_none:$addr, am3offset:$offset),
+ IndexModePost, LdMiscFrm, IIC_iLoad_d_ru,
+ "ldrd", "\t$Rt, $Rt2, $addr, $offset",
+ "$addr.base = $Rn_wb", []> {
+ bits<10> offset;
+ bits<4> addr;
+ let Inst{23} = offset{8}; // U bit
+ let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
+ let Inst{19-16} = addr;
+ let Inst{11-8} = offset{7-4}; // imm7_4/zero
+ let Inst{3-0} = offset{3-0}; // imm3_0/Rm
+ let DecoderMethod = "DecodeAddrMode3Instruction";
+}
+} // hasExtraDefRegAllocReq = 1
+} // mayLoad = 1, neverHasSideEffects = 1
+
+// LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT.
+let mayLoad = 1, neverHasSideEffects = 1 in {
+def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$addr, am2offset_reg:$offset),
+ IndexModePost, LdFrm, IIC_iLoad_ru,
+ "ldrt", "\t$Rt, $addr, $offset",
+ "$addr.base = $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 1;
+ let Inst{23} = offset{12};
+ let Inst{21} = 1; // overwrite
+ let Inst{19-16} = addr;
+ let Inst{11-5} = offset{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = offset{3-0};
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+}
+
+def LDRT_POST_IMM
+ : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$addr, am2offset_imm:$offset),
+ IndexModePost, LdFrm, IIC_iLoad_ru,
+ "ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 0;
+ let Inst{23} = offset{12};
+ let Inst{21} = 1; // overwrite
+ let Inst{19-16} = addr;
+ let Inst{11-0} = offset{11-0};
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+}
+
+def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$addr, am2offset_reg:$offset),
+ IndexModePost, LdFrm, IIC_iLoad_bh_ru,
+ "ldrbt", "\t$Rt, $addr, $offset",
+ "$addr.base = $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 1;
+ let Inst{23} = offset{12};
+ let Inst{21} = 1; // overwrite
+ let Inst{19-16} = addr;
+ let Inst{11-5} = offset{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = offset{3-0};
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+}
+
+def LDRBT_POST_IMM
+ : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$addr, am2offset_imm:$offset),
+ IndexModePost, LdFrm, IIC_iLoad_bh_ru,
+ "ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 0;
+ let Inst{23} = offset{12};
+ let Inst{21} = 1; // overwrite
+ let Inst{19-16} = addr;
+ let Inst{11-0} = offset{11-0};
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+}
+
+multiclass AI3ldrT<bits<4> op, string opc> {
+ def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb),
+ (ins addr_offset_none:$addr, postidx_imm8:$offset),
+ IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
+ "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
+ bits<9> offset;
+ let Inst{23} = offset{8};
+ let Inst{22} = 1;
+ let Inst{11-8} = offset{7-4};
+ let Inst{3-0} = offset{3-0};
+ }
+ def r : AI3ldstidxT<op, 1, (outs GPRnopc:$Rt, GPRnopc:$base_wb),
+ (ins addr_offset_none:$addr, postidx_reg:$Rm),
+ IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
+ "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
+ bits<5> Rm;
+ let Inst{23} = Rm{4};
+ let Inst{22} = 0;
+ let Inst{11-8} = 0;
+ let Unpredictable{11-8} = 0b1111;
+ let Inst{3-0} = Rm{3-0};
+ let DecoderMethod = "DecodeLDR";
+ }
+}
+
+defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">;
+defm LDRHT : AI3ldrT<0b1011, "ldrht">;
+defm LDRSHT : AI3ldrT<0b1111, "ldrsht">;
+}
+
+def LDRT_POST
+ : ARMAsmPseudo<"ldrt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
+ (outs GPR:$Rt)>;
+
+def LDRBT_POST
+ : ARMAsmPseudo<"ldrbt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
+ (outs GPR:$Rt)>;
+
+// Store
+
+// Stores with truncate
+def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm,
+ IIC_iStore_bh_r, "strh", "\t$Rt, $addr",
+ [(truncstorei16 GPR:$Rt, addrmode3:$addr)]>;
+
+// Store doubleword
+let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in {
+ def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr),
+ StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>,
+ Requires<[IsARM, HasV5TE]> {
+ let Inst{21} = 0;
+ }
+}
+
+// Indexed stores
+multiclass AI2_stridx<bit isByte, string opc,
+ InstrItinClass iii, InstrItinClass iir> {
+ def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, addrmode_imm12_pre:$addr), IndexModePre,
+ StFrm, iii,
+ opc, "\t$Rt, $addr!",
+ "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
+ bits<17> addr;
+ let Inst{25} = 0;
+ let Inst{23} = addr{12}; // U (add = ('U' == 1))
+ let Inst{19-16} = addr{16-13}; // Rn
+ let Inst{11-0} = addr{11-0}; // imm12
+ let DecoderMethod = "DecodeSTRPreImm";
+ }
+
+ def _PRE_REG : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, ldst_so_reg:$addr),
+ IndexModePre, StFrm, iir,
+ opc, "\t$Rt, $addr!",
+ "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
+ bits<17> addr;
+ let Inst{25} = 1;
+ let Inst{23} = addr{12}; // U (add = ('U' == 1))
+ let Inst{19-16} = addr{16-13}; // Rn
+ let Inst{11-0} = addr{11-0};
+ let Inst{4} = 0; // Inst{4} = 0
+ let DecoderMethod = "DecodeSTRPreReg";
+ }
+ def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
+ IndexModePost, StFrm, iir,
+ opc, "\t$Rt, $addr, $offset",
+ "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 1;
+ let Inst{23} = offset{12};
+ let Inst{19-16} = addr;
+ let Inst{11-0} = offset{11-0};
+ let Inst{4} = 0;
+
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+ }
+
+ def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
+ IndexModePost, StFrm, iii,
+ opc, "\t$Rt, $addr, $offset",
+ "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 0;
+ let Inst{23} = offset{12};
+ let Inst{19-16} = addr;
+ let Inst{11-0} = offset{11-0};
+
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+ }
+}
+
+let mayStore = 1, neverHasSideEffects = 1 in {
+// FIXME: for STR_PRE_REG etc. the itineray should be either IIC_iStore_ru or
+// IIC_iStore_siu depending on whether it the offset register is shifted.
+defm STR : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>;
+defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>;
+}
+
+def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
+ am2offset_reg:$offset),
+ (STR_POST_REG GPR:$Rt, addr_offset_none:$addr,
+ am2offset_reg:$offset)>;
+def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
+ am2offset_imm:$offset),
+ (STR_POST_IMM GPR:$Rt, addr_offset_none:$addr,
+ am2offset_imm:$offset)>;
+def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
+ am2offset_reg:$offset),
+ (STRB_POST_REG GPR:$Rt, addr_offset_none:$addr,
+ am2offset_reg:$offset)>;
+def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
+ am2offset_imm:$offset),
+ (STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr,
+ am2offset_imm:$offset)>;
+
+// Pseudo-instructions for pattern matching the pre-indexed stores. We can't
+// put the patterns on the instruction definitions directly as ISel wants
+// the address base and offset to be separate operands, not a single
+// complex operand like we represent the instructions themselves. The
+// pseudos map between the two.
+let usesCustomInserter = 1,
+ Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in {
+def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
+ (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
+ 4, IIC_iStore_ru,
+ [(set GPR:$Rn_wb,
+ (pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
+def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
+ (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
+ 4, IIC_iStore_ru,
+ [(set GPR:$Rn_wb,
+ (pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
+def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
+ (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
+ 4, IIC_iStore_ru,
+ [(set GPR:$Rn_wb,
+ (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
+def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
+ (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
+ 4, IIC_iStore_ru,
+ [(set GPR:$Rn_wb,
+ (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
+def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
+ (ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p),
+ 4, IIC_iStore_ru,
+ [(set GPR:$Rn_wb,
+ (pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>;
+}
+
+
+
+def STRH_PRE : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre,
+ StMiscFrm, IIC_iStore_bh_ru,
+ "strh", "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
+ bits<14> addr;
+ let Inst{23} = addr{8}; // U bit
+ let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
+ let Inst{19-16} = addr{12-9}; // Rn
+ let Inst{11-8} = addr{7-4}; // imm7_4/zero
+ let Inst{3-0} = addr{3-0}; // imm3_0/Rm
+ let DecoderMethod = "DecodeAddrMode3Instruction";
+}
+
+def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset),
+ IndexModePost, StMiscFrm, IIC_iStore_bh_ru,
+ "strh", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb",
+ [(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt,
+ addr_offset_none:$addr,
+ am3offset:$offset))]> {
+ bits<10> offset;
+ bits<4> addr;
+ let Inst{23} = offset{8}; // U bit
+ let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
+ let Inst{19-16} = addr;
+ let Inst{11-8} = offset{7-4}; // imm7_4/zero
+ let Inst{3-0} = offset{3-0}; // imm3_0/Rm
+ let DecoderMethod = "DecodeAddrMode3Instruction";
+}
+
+let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in {
+def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr),
+ IndexModePre, StMiscFrm, IIC_iStore_d_ru,
+ "strd", "\t$Rt, $Rt2, $addr!",
+ "$addr.base = $Rn_wb", []> {
+ bits<14> addr;
+ let Inst{23} = addr{8}; // U bit
+ let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
+ let Inst{19-16} = addr{12-9}; // Rn
+ let Inst{11-8} = addr{7-4}; // imm7_4/zero
+ let Inst{3-0} = addr{3-0}; // imm3_0/Rm
+ let DecoderMethod = "DecodeAddrMode3Instruction";
+}
+
+def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr,
+ am3offset:$offset),
+ IndexModePost, StMiscFrm, IIC_iStore_d_ru,
+ "strd", "\t$Rt, $Rt2, $addr, $offset",
+ "$addr.base = $Rn_wb", []> {
+ bits<10> offset;
+ bits<4> addr;
+ let Inst{23} = offset{8}; // U bit
+ let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
+ let Inst{19-16} = addr;
+ let Inst{11-8} = offset{7-4}; // imm7_4/zero
+ let Inst{3-0} = offset{3-0}; // imm3_0/Rm
+ let DecoderMethod = "DecodeAddrMode3Instruction";
+}
+} // mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1
+
+// STRT, STRBT, and STRHT
+
+def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
+ IndexModePost, StFrm, IIC_iStore_bh_ru,
+ "strbt", "\t$Rt, $addr, $offset",
+ "$addr.base = $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 1;
+ let Inst{23} = offset{12};
+ let Inst{21} = 1; // overwrite
+ let Inst{19-16} = addr;
+ let Inst{11-5} = offset{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = offset{3-0};
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+}
+
+def STRBT_POST_IMM
+ : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
+ IndexModePost, StFrm, IIC_iStore_bh_ru,
+ "strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 0;
+ let Inst{23} = offset{12};
+ let Inst{21} = 1; // overwrite
+ let Inst{19-16} = addr;
+ let Inst{11-0} = offset{11-0};
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+}
+
+def STRBT_POST
+ : ARMAsmPseudo<"strbt${q} $Rt, $addr",
+ (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
+
+let mayStore = 1, neverHasSideEffects = 1 in {
+def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
+ IndexModePost, StFrm, IIC_iStore_ru,
+ "strt", "\t$Rt, $addr, $offset",
+ "$addr.base = $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 1;
+ let Inst{23} = offset{12};
+ let Inst{21} = 1; // overwrite
+ let Inst{19-16} = addr;
+ let Inst{11-5} = offset{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = offset{3-0};
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+}
+
+def STRT_POST_IMM
+ : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
+ (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
+ IndexModePost, StFrm, IIC_iStore_ru,
+ "strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ bits<14> offset;
+ bits<4> addr;
+ let Inst{25} = 0;
+ let Inst{23} = offset{12};
+ let Inst{21} = 1; // overwrite
+ let Inst{19-16} = addr;
+ let Inst{11-0} = offset{11-0};
+ let DecoderMethod = "DecodeAddrMode2IdxInstruction";
+}
+}
+
+def STRT_POST
+ : ARMAsmPseudo<"strt${q} $Rt, $addr",
+ (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
+
+multiclass AI3strT<bits<4> op, string opc> {
+ def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
+ (ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset),
+ IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
+ "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
+ bits<9> offset;
+ let Inst{23} = offset{8};
+ let Inst{22} = 1;
+ let Inst{11-8} = offset{7-4};
+ let Inst{3-0} = offset{3-0};
+ }
+ def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
+ (ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm),
+ IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
+ "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
+ bits<5> Rm;
+ let Inst{23} = Rm{4};
+ let Inst{22} = 0;
+ let Inst{11-8} = 0;
+ let Inst{3-0} = Rm{3-0};
+ }
+}
+
+
+defm STRHT : AI3strT<0b1011, "strht">;
+
+def STL : AIstrrel<0b00, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
+ NoItinerary, "stl", "\t$Rt, $addr", []>;
+def STLB : AIstrrel<0b10, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
+ NoItinerary, "stlb", "\t$Rt, $addr", []>;
+def STLH : AIstrrel<0b11, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
+ NoItinerary, "stlh", "\t$Rt, $addr", []>;
+
+//===----------------------------------------------------------------------===//
+// Load / store multiple Instructions.
+//
+
+multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f,
+ InstrItinClass itin, InstrItinClass itin_upd> {
+ // IA is the default, so no need for an explicit suffix on the
+ // mnemonic here. Without it is the canonical spelling.
+ def IA :
+ AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ IndexModeNone, f, itin,
+ !strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> {
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{22} = P_bit;
+ let Inst{21} = 0; // No writeback
+ let Inst{20} = L_bit;
+ }
+ def IA_UPD :
+ AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ IndexModeUpd, f, itin_upd,
+ !strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{22} = P_bit;
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+
+ let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
+ }
+ def DA :
+ AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ IndexModeNone, f, itin,
+ !strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> {
+ let Inst{24-23} = 0b00; // Decrement After
+ let Inst{22} = P_bit;
+ let Inst{21} = 0; // No writeback
+ let Inst{20} = L_bit;
+ }
+ def DA_UPD :
+ AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ IndexModeUpd, f, itin_upd,
+ !strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
+ let Inst{24-23} = 0b00; // Decrement After
+ let Inst{22} = P_bit;
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+
+ let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
+ }
+ def DB :
+ AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ IndexModeNone, f, itin,
+ !strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> {
+ let Inst{24-23} = 0b10; // Decrement Before
+ let Inst{22} = P_bit;
+ let Inst{21} = 0; // No writeback
+ let Inst{20} = L_bit;
+ }
+ def DB_UPD :
+ AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ IndexModeUpd, f, itin_upd,
+ !strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
+ let Inst{24-23} = 0b10; // Decrement Before
+ let Inst{22} = P_bit;
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+
+ let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
+ }
+ def IB :
+ AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ IndexModeNone, f, itin,
+ !strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> {
+ let Inst{24-23} = 0b11; // Increment Before
+ let Inst{22} = P_bit;
+ let Inst{21} = 0; // No writeback
+ let Inst{20} = L_bit;
+ }
+ def IB_UPD :
+ AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ IndexModeUpd, f, itin_upd,
+ !strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
+ let Inst{24-23} = 0b11; // Increment Before
+ let Inst{22} = P_bit;
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+
+ let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
+ }
+}
+
+let neverHasSideEffects = 1 in {
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
+defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m,
+ IIC_iLoad_mu>;
+
+let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
+defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m,
+ IIC_iStore_mu>;
+
+} // neverHasSideEffects
+
+// FIXME: remove when we have a way to marking a MI with these properties.
+// FIXME: Should pc be an implicit operand like PICADD, etc?
+let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
+ hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
+def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p,
+ reglist:$regs, variable_ops),
+ 4, IIC_iLoad_mBr, [],
+ (LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>,
+ RegConstraint<"$Rn = $wb">;
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
+defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m,
+ IIC_iLoad_mu>;
+
+let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
+defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m,
+ IIC_iStore_mu>;
+
+
+
+//===----------------------------------------------------------------------===//
+// Move Instructions.
+//
+
+let neverHasSideEffects = 1 in
+def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
+ "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
+ bits<4> Rd;
+ bits<4> Rm;
+
+ let Inst{19-16} = 0b0000;
+ let Inst{11-4} = 0b00000000;
+ let Inst{25} = 0;
+ let Inst{3-0} = Rm;
+ let Inst{15-12} = Rd;
+}
+
+// A version for the smaller set of tail call registers.
+let neverHasSideEffects = 1 in
+def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm,
+ IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
+ bits<4> Rd;
+ bits<4> Rm;
+
+ let Inst{11-4} = 0b00000000;
+ let Inst{25} = 0;
+ let Inst{3-0} = Rm;
+ let Inst{15-12} = Rd;
+}
+
+def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src),
+ DPSoRegRegFrm, IIC_iMOVsr,
+ "mov", "\t$Rd, $src",
+ [(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP,
+ Sched<[WriteALU]> {
+ bits<4> Rd;
+ bits<12> src;
+ let Inst{15-12} = Rd;
+ let Inst{19-16} = 0b0000;
+ let Inst{11-8} = src{11-8};
+ let Inst{7} = 0;
+ let Inst{6-5} = src{6-5};
+ let Inst{4} = 1;
+ let Inst{3-0} = src{3-0};
+ let Inst{25} = 0;
+}
+
+def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src),
+ DPSoRegImmFrm, IIC_iMOVsr,
+ "mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>,
+ UnaryDP, Sched<[WriteALU]> {
+ bits<4> Rd;
+ bits<12> src;
+ let Inst{15-12} = Rd;
+ let Inst{19-16} = 0b0000;
+ let Inst{11-5} = src{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = src{3-0};
+ let Inst{25} = 0;
+}
+
+let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
+def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins so_imm:$imm), DPFrm, IIC_iMOVi,
+ "mov", "\t$Rd, $imm", [(set GPR:$Rd, so_imm:$imm)]>, UnaryDP,
+ Sched<[WriteALU]> {
+ bits<4> Rd;
+ bits<12> imm;
+ let Inst{25} = 1;
+ let Inst{15-12} = Rd;
+ let Inst{19-16} = 0b0000;
+ let Inst{11-0} = imm;
+}
+
+let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
+def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm),
+ DPFrm, IIC_iMOVi,
+ "movw", "\t$Rd, $imm",
+ [(set GPR:$Rd, imm0_65535:$imm)]>,
+ Requires<[IsARM, HasV6T2]>, UnaryDP, Sched<[WriteALU]> {
+ bits<4> Rd;
+ bits<16> imm;
+ let Inst{15-12} = Rd;
+ let Inst{11-0} = imm{11-0};
+ let Inst{19-16} = imm{15-12};
+ let Inst{20} = 0;
+ let Inst{25} = 1;
+ let DecoderMethod = "DecodeArmMOVTWInstruction";
+}
+
+def : InstAlias<"mov${p} $Rd, $imm",
+ (MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p)>,
+ Requires<[IsARM]>;
+
+def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
+ (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
+ Sched<[WriteALU]>;
+
+let Constraints = "$src = $Rd" in {
+def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd),
+ (ins GPR:$src, imm0_65535_expr:$imm),
+ DPFrm, IIC_iMOVi,
+ "movt", "\t$Rd, $imm",
+ [(set GPRnopc:$Rd,
+ (or (and GPR:$src, 0xffff),
+ lo16AllZero:$imm))]>, UnaryDP,
+ Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]> {
+ bits<4> Rd;
+ bits<16> imm;
+ let Inst{15-12} = Rd;
+ let Inst{11-0} = imm{11-0};
+ let Inst{19-16} = imm{15-12};
+ let Inst{20} = 0;
+ let Inst{25} = 1;
+ let DecoderMethod = "DecodeArmMOVTWInstruction";
+}
+
+def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
+ (ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
+ Sched<[WriteALU]>;
+
+} // Constraints
+
+def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>,
+ Requires<[IsARM, HasV6T2]>;
+
+let Uses = [CPSR] in
+def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi,
+ [(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP,
+ Requires<[IsARM]>, Sched<[WriteALU]>;
+
+// These aren't really mov instructions, but we have to define them this way
+// due to flag operands.
+
+let Defs = [CPSR] in {
+def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
+ [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP,
+ Sched<[WriteALU]>, Requires<[IsARM]>;
+def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
+ [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP,
+ Sched<[WriteALU]>, Requires<[IsARM]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Extend Instructions.
+//
+
+// Sign extenders
+
+def SXTB : AI_ext_rrot<0b01101010,
+ "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>;
+def SXTH : AI_ext_rrot<0b01101011,
+ "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>;
+
+def SXTAB : AI_exta_rrot<0b01101010,
+ "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
+def SXTAH : AI_exta_rrot<0b01101011,
+ "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
+
+def SXTB16 : AI_ext_rrot_np<0b01101000, "sxtb16">;
+
+def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">;
+
+// Zero extenders
+
+let AddedComplexity = 16 in {
+def UXTB : AI_ext_rrot<0b01101110,
+ "uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>;
+def UXTH : AI_ext_rrot<0b01101111,
+ "uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
+def UXTB16 : AI_ext_rrot<0b01101100,
+ "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
+
+// FIXME: This pattern incorrectly assumes the shl operator is a rotate.
+// The transformation should probably be done as a combiner action
+// instead so we can include a check for masking back in the upper
+// eight bits of the source into the lower eight bits of the result.
+//def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF),
+// (UXTB16r_rot GPR:$Src, 3)>;
+def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF),
+ (UXTB16 GPR:$Src, 1)>;
+
+def UXTAB : AI_exta_rrot<0b01101110, "uxtab",
+ BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
+def UXTAH : AI_exta_rrot<0b01101111, "uxtah",
+ BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
+}
+
+// This isn't safe in general, the add is two 16-bit units, not a 32-bit add.
+def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">;
+
+
+def SBFX : I<(outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
+ AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
+ "sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
+ Requires<[IsARM, HasV6T2]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<5> lsb;
+ bits<5> width;
+ let Inst{27-21} = 0b0111101;
+ let Inst{6-4} = 0b101;
+ let Inst{20-16} = width;
+ let Inst{15-12} = Rd;
+ let Inst{11-7} = lsb;
+ let Inst{3-0} = Rn;
+}
+
+def UBFX : I<(outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
+ AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
+ "ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
+ Requires<[IsARM, HasV6T2]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<5> lsb;
+ bits<5> width;
+ let Inst{27-21} = 0b0111111;
+ let Inst{6-4} = 0b101;
+ let Inst{20-16} = width;
+ let Inst{15-12} = Rd;
+ let Inst{11-7} = lsb;
+ let Inst{3-0} = Rn;
+}
+
+//===----------------------------------------------------------------------===//
+// Arithmetic Instructions.
+//
+
+defm ADD : AsI1_bin_irs<0b0100, "add",
+ IIC_iALUi, IIC_iALUr, IIC_iALUsr,
+ BinOpFrag<(add node:$LHS, node:$RHS)>, 1>;
+defm SUB : AsI1_bin_irs<0b0010, "sub",
+ IIC_iALUi, IIC_iALUr, IIC_iALUsr,
+ BinOpFrag<(sub node:$LHS, node:$RHS)>>;
+
+// ADD and SUB with 's' bit set.
+//
+// Currently, ADDS/SUBS are pseudo opcodes that exist only in the
+// selection DAG. They are "lowered" to real ADD/SUB opcodes by
+// AdjustInstrPostInstrSelection where we determine whether or not to
+// set the "s" bit based on CPSR liveness.
+//
+// FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen
+// support for an optional CPSR definition that corresponds to the DAG
+// node's second value. We can then eliminate the implicit def of CPSR.
+defm ADDS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr,
+ BinOpFrag<(ARMaddc node:$LHS, node:$RHS)>, 1>;
+defm SUBS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr,
+ BinOpFrag<(ARMsubc node:$LHS, node:$RHS)>>;
+
+defm ADC : AI1_adde_sube_irs<0b0101, "adc",
+ BinOpWithFlagFrag<(ARMadde node:$LHS, node:$RHS, node:$FLAG)>, 1>;
+defm SBC : AI1_adde_sube_irs<0b0110, "sbc",
+ BinOpWithFlagFrag<(ARMsube node:$LHS, node:$RHS, node:$FLAG)>>;
+
+defm RSB : AsI1_rbin_irs<0b0011, "rsb",
+ IIC_iALUi, IIC_iALUr, IIC_iALUsr,
+ BinOpFrag<(sub node:$LHS, node:$RHS)>>;
+
+// FIXME: Eliminate them if we can write def : Pat patterns which defines
+// CPSR and the implicit def of CPSR is not needed.
+defm RSBS : AsI1_rbin_s_is<IIC_iALUi, IIC_iALUr, IIC_iALUsr,
+ BinOpFrag<(ARMsubc node:$LHS, node:$RHS)>>;
+
+defm RSC : AI1_rsc_irs<0b0111, "rsc",
+ BinOpWithFlagFrag<(ARMsube node:$LHS, node:$RHS, node:$FLAG)>>;
+
+// (sub X, imm) gets canonicalized to (add X, -imm). Match this form.
+// The assume-no-carry-in form uses the negation of the input since add/sub
+// assume opposite meanings of the carry flag (i.e., carry == !borrow).
+// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
+// details.
+def : ARMPat<(add GPR:$src, so_imm_neg:$imm),
+ (SUBri GPR:$src, so_imm_neg:$imm)>;
+def : ARMPat<(ARMaddc GPR:$src, so_imm_neg:$imm),
+ (SUBSri GPR:$src, so_imm_neg:$imm)>;
+
+def : ARMPat<(add GPR:$src, imm0_65535_neg:$imm),
+ (SUBrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
+ Requires<[IsARM, HasV6T2]>;
+def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm),
+ (SUBSrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
+ Requires<[IsARM, HasV6T2]>;
+
+// The with-carry-in form matches bitwise not instead of the negation.
+// Effectively, the inverse interpretation of the carry flag already accounts
+// for part of the negation.
+def : ARMPat<(ARMadde GPR:$src, so_imm_not:$imm, CPSR),
+ (SBCri GPR:$src, so_imm_not:$imm)>;
+def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR),
+ (SBCrr GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>,
+ Requires<[IsARM, HasV6T2]>;
+
+// Note: These are implemented in C++ code, because they have to generate
+// ADD/SUBrs instructions, which use a complex pattern that a xform function
+// cannot produce.
+// (mul X, 2^n+1) -> (add (X << n), X)
+// (mul X, 2^n-1) -> (rsb X, (X << n))
+
+// ARM Arithmetic Instruction
+// GPR:$dst = GPR:$a op GPR:$b
+class AAI<bits<8> op27_20, bits<8> op11_4, string opc,
+ list<dag> pattern = [],
+ dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm),
+ string asm = "\t$Rd, $Rn, $Rm">
+ : AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern>,
+ Sched<[WriteALU, ReadALU, ReadALU]> {
+ bits<4> Rn;
+ bits<4> Rd;
+ bits<4> Rm;
+ let Inst{27-20} = op27_20;
+ let Inst{11-4} = op11_4;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{3-0} = Rm;
+
+ let Unpredictable{11-8} = 0b1111;
+}
+
+// Saturating add/subtract
+
+let DecoderMethod = "DecodeQADDInstruction" in
+def QADD : AAI<0b00010000, 0b00000101, "qadd",
+ [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))],
+ (ins GPRnopc:$Rm, GPRnopc:$Rn), "\t$Rd, $Rm, $Rn">;
+
+def QSUB : AAI<0b00010010, 0b00000101, "qsub",
+ [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))],
+ (ins GPRnopc:$Rm, GPRnopc:$Rn), "\t$Rd, $Rm, $Rn">;
+def QDADD : AAI<0b00010100, 0b00000101, "qdadd", [],
+ (ins GPRnopc:$Rm, GPRnopc:$Rn),
+ "\t$Rd, $Rm, $Rn">;
+def QDSUB : AAI<0b00010110, 0b00000101, "qdsub", [],
+ (ins GPRnopc:$Rm, GPRnopc:$Rn),
+ "\t$Rd, $Rm, $Rn">;
+
+def QADD16 : AAI<0b01100010, 0b11110001, "qadd16">;
+def QADD8 : AAI<0b01100010, 0b11111001, "qadd8">;
+def QASX : AAI<0b01100010, 0b11110011, "qasx">;
+def QSAX : AAI<0b01100010, 0b11110101, "qsax">;
+def QSUB16 : AAI<0b01100010, 0b11110111, "qsub16">;
+def QSUB8 : AAI<0b01100010, 0b11111111, "qsub8">;
+def UQADD16 : AAI<0b01100110, 0b11110001, "uqadd16">;
+def UQADD8 : AAI<0b01100110, 0b11111001, "uqadd8">;
+def UQASX : AAI<0b01100110, 0b11110011, "uqasx">;
+def UQSAX : AAI<0b01100110, 0b11110101, "uqsax">;
+def UQSUB16 : AAI<0b01100110, 0b11110111, "uqsub16">;
+def UQSUB8 : AAI<0b01100110, 0b11111111, "uqsub8">;
+
+// Signed/Unsigned add/subtract
+
+def SASX : AAI<0b01100001, 0b11110011, "sasx">;
+def SADD16 : AAI<0b01100001, 0b11110001, "sadd16">;
+def SADD8 : AAI<0b01100001, 0b11111001, "sadd8">;
+def SSAX : AAI<0b01100001, 0b11110101, "ssax">;
+def SSUB16 : AAI<0b01100001, 0b11110111, "ssub16">;
+def SSUB8 : AAI<0b01100001, 0b11111111, "ssub8">;
+def UASX : AAI<0b01100101, 0b11110011, "uasx">;
+def UADD16 : AAI<0b01100101, 0b11110001, "uadd16">;
+def UADD8 : AAI<0b01100101, 0b11111001, "uadd8">;
+def USAX : AAI<0b01100101, 0b11110101, "usax">;
+def USUB16 : AAI<0b01100101, 0b11110111, "usub16">;
+def USUB8 : AAI<0b01100101, 0b11111111, "usub8">;
+
+// Signed/Unsigned halving add/subtract
+
+def SHASX : AAI<0b01100011, 0b11110011, "shasx">;
+def SHADD16 : AAI<0b01100011, 0b11110001, "shadd16">;
+def SHADD8 : AAI<0b01100011, 0b11111001, "shadd8">;
+def SHSAX : AAI<0b01100011, 0b11110101, "shsax">;
+def SHSUB16 : AAI<0b01100011, 0b11110111, "shsub16">;
+def SHSUB8 : AAI<0b01100011, 0b11111111, "shsub8">;
+def UHASX : AAI<0b01100111, 0b11110011, "uhasx">;
+def UHADD16 : AAI<0b01100111, 0b11110001, "uhadd16">;
+def UHADD8 : AAI<0b01100111, 0b11111001, "uhadd8">;
+def UHSAX : AAI<0b01100111, 0b11110101, "uhsax">;
+def UHSUB16 : AAI<0b01100111, 0b11110111, "uhsub16">;
+def UHSUB8 : AAI<0b01100111, 0b11111111, "uhsub8">;
+
+// Unsigned Sum of Absolute Differences [and Accumulate].
+
+def USAD8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ MulFrm /* for convenience */, NoItinerary, "usad8",
+ "\t$Rd, $Rn, $Rm", []>,
+ Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{27-20} = 0b01111000;
+ let Inst{15-12} = 0b1111;
+ let Inst{7-4} = 0b0001;
+ let Inst{19-16} = Rd;
+ let Inst{11-8} = Rm;
+ let Inst{3-0} = Rn;
+}
+def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
+ MulFrm /* for convenience */, NoItinerary, "usada8",
+ "\t$Rd, $Rn, $Rm, $Ra", []>,
+ Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]>{
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+ bits<4> Ra;
+ let Inst{27-20} = 0b01111000;
+ let Inst{7-4} = 0b0001;
+ let Inst{19-16} = Rd;
+ let Inst{15-12} = Ra;
+ let Inst{11-8} = Rm;
+ let Inst{3-0} = Rn;
+}
+
+// Signed/Unsigned saturate
+
+def SSAT : AI<(outs GPRnopc:$Rd),
+ (ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
+ SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []> {
+ bits<4> Rd;
+ bits<5> sat_imm;
+ bits<4> Rn;
+ bits<8> sh;
+ let Inst{27-21} = 0b0110101;
+ let Inst{5-4} = 0b01;
+ let Inst{20-16} = sat_imm;
+ let Inst{15-12} = Rd;
+ let Inst{11-7} = sh{4-0};
+ let Inst{6} = sh{5};
+ let Inst{3-0} = Rn;
+}
+
+def SSAT16 : AI<(outs GPRnopc:$Rd),
+ (ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm,
+ NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []> {
+ bits<4> Rd;
+ bits<4> sat_imm;
+ bits<4> Rn;
+ let Inst{27-20} = 0b01101010;
+ let Inst{11-4} = 0b11110011;
+ let Inst{15-12} = Rd;
+ let Inst{19-16} = sat_imm;
+ let Inst{3-0} = Rn;
+}
+
+def USAT : AI<(outs GPRnopc:$Rd),
+ (ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
+ SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []> {
+ bits<4> Rd;
+ bits<5> sat_imm;
+ bits<4> Rn;
+ bits<8> sh;
+ let Inst{27-21} = 0b0110111;
+ let Inst{5-4} = 0b01;
+ let Inst{15-12} = Rd;
+ let Inst{11-7} = sh{4-0};
+ let Inst{6} = sh{5};
+ let Inst{20-16} = sat_imm;
+ let Inst{3-0} = Rn;
+}
+
+def USAT16 : AI<(outs GPRnopc:$Rd),
+ (ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm,
+ NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []> {
+ bits<4> Rd;
+ bits<4> sat_imm;
+ bits<4> Rn;
+ let Inst{27-20} = 0b01101110;
+ let Inst{11-4} = 0b11110011;
+ let Inst{15-12} = Rd;
+ let Inst{19-16} = sat_imm;
+ let Inst{3-0} = Rn;
+}
+
+def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm:$pos),
+ (SSAT imm:$pos, GPRnopc:$a, 0)>;
+def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm:$pos),
+ (USAT imm:$pos, GPRnopc:$a, 0)>;
+
+//===----------------------------------------------------------------------===//
+// Bitwise Instructions.
+//
+
+defm AND : AsI1_bin_irs<0b0000, "and",
+ IIC_iBITi, IIC_iBITr, IIC_iBITsr,
+ BinOpFrag<(and node:$LHS, node:$RHS)>, 1>;
+defm ORR : AsI1_bin_irs<0b1100, "orr",
+ IIC_iBITi, IIC_iBITr, IIC_iBITsr,
+ BinOpFrag<(or node:$LHS, node:$RHS)>, 1>;
+defm EOR : AsI1_bin_irs<0b0001, "eor",
+ IIC_iBITi, IIC_iBITr, IIC_iBITsr,
+ BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>;
+defm BIC : AsI1_bin_irs<0b1110, "bic",
+ IIC_iBITi, IIC_iBITr, IIC_iBITsr,
+ BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
+
+// FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just
+// like in the actual instruction encoding. The complexity of mapping the mask
+// to the lsb/msb pair should be handled by ISel, not encapsulated in the
+// instruction description.
+def BFC : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm),
+ AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
+ "bfc", "\t$Rd, $imm", "$src = $Rd",
+ [(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>,
+ Requires<[IsARM, HasV6T2]> {
+ bits<4> Rd;
+ bits<10> imm;
+ let Inst{27-21} = 0b0111110;
+ let Inst{6-0} = 0b0011111;
+ let Inst{15-12} = Rd;
+ let Inst{11-7} = imm{4-0}; // lsb
+ let Inst{20-16} = imm{9-5}; // msb
+}
+
+// A8.6.18 BFI - Bitfield insert (Encoding A1)
+def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm),
+ AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
+ "bfi", "\t$Rd, $Rn, $imm", "$src = $Rd",
+ [(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn,
+ bf_inv_mask_imm:$imm))]>,
+ Requires<[IsARM, HasV6T2]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<10> imm;
+ let Inst{27-21} = 0b0111110;
+ let Inst{6-4} = 0b001; // Rn: Inst{3-0} != 15
+ let Inst{15-12} = Rd;
+ let Inst{11-7} = imm{4-0}; // lsb
+ let Inst{20-16} = imm{9-5}; // width
+ let Inst{3-0} = Rn;
+}
+
+def MVNr : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr,
+ "mvn", "\t$Rd, $Rm",
+ [(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP, Sched<[WriteALU]> {
+ bits<4> Rd;
+ bits<4> Rm;
+ let Inst{25} = 0;
+ let Inst{19-16} = 0b0000;
+ let Inst{11-4} = 0b00000000;
+ let Inst{15-12} = Rd;
+ let Inst{3-0} = Rm;
+}
+def MVNsi : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift),
+ DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
+ [(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP,
+ Sched<[WriteALU]> {
+ bits<4> Rd;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{19-16} = 0b0000;
+ let Inst{15-12} = Rd;
+ let Inst{11-5} = shift{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = shift{3-0};
+}
+def MVNsr : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_reg:$shift),
+ DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
+ [(set GPR:$Rd, (not so_reg_reg:$shift))]>, UnaryDP,
+ Sched<[WriteALU]> {
+ bits<4> Rd;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{19-16} = 0b0000;
+ let Inst{15-12} = Rd;
+ let Inst{11-8} = shift{11-8};
+ let Inst{7} = 0;
+ let Inst{6-5} = shift{6-5};
+ let Inst{4} = 1;
+ let Inst{3-0} = shift{3-0};
+}
+let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
+def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins so_imm:$imm), DPFrm,
+ IIC_iMVNi, "mvn", "\t$Rd, $imm",
+ [(set GPR:$Rd, so_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> {
+ bits<4> Rd;
+ bits<12> imm;
+ let Inst{25} = 1;
+ let Inst{19-16} = 0b0000;
+ let Inst{15-12} = Rd;
+ let Inst{11-0} = imm;
+}
+
+def : ARMPat<(and GPR:$src, so_imm_not:$imm),
+ (BICri GPR:$src, so_imm_not:$imm)>;
+
+//===----------------------------------------------------------------------===//
+// Multiply Instructions.
+//
+class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rm;
+ bits<4> Rn;
+ let Inst{19-16} = Rd;
+ let Inst{11-8} = Rm;
+ let Inst{3-0} = Rn;
+}
+class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
+ bits<4> RdLo;
+ bits<4> RdHi;
+ bits<4> Rm;
+ bits<4> Rn;
+ let Inst{19-16} = RdHi;
+ let Inst{15-12} = RdLo;
+ let Inst{11-8} = Rm;
+ let Inst{3-0} = Rn;
+}
+class AsMla1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
+ bits<4> RdLo;
+ bits<4> RdHi;
+ bits<4> Rm;
+ bits<4> Rn;
+ let Inst{19-16} = RdHi;
+ let Inst{15-12} = RdLo;
+ let Inst{11-8} = Rm;
+ let Inst{3-0} = Rn;
+}
+
+// FIXME: The v5 pseudos are only necessary for the additional Constraint
+// property. Remove them when it's possible to add those properties
+// on an individual MachineInstr, not just an instruction description.
+let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in {
+def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm),
+ IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm",
+ [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>,
+ Requires<[IsARM, HasV6]> {
+ let Inst{15-12} = 0b0000;
+ let Unpredictable{15-12} = 0b1111;
+}
+
+let Constraints = "@earlyclobber $Rd" in
+def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm,
+ pred:$p, cc_out:$s),
+ 4, IIC_iMUL32,
+ [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))],
+ (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6, UseMulOps]>;
+}
+
+def MLA : AsMul1I32<0b0000001, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra),
+ IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra",
+ [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))]>,
+ Requires<[IsARM, HasV6, UseMulOps]> {
+ bits<4> Ra;
+ let Inst{15-12} = Ra;
+}
+
+let Constraints = "@earlyclobber $Rd" in
+def MLAv5: ARMPseudoExpand<(outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
+ pred:$p, cc_out:$s), 4, IIC_iMAC32,
+ [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))],
+ (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6]>;
+
+def MLS : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
+ IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra",
+ [(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>,
+ Requires<[IsARM, HasV6T2, UseMulOps]> {
+ bits<4> Rd;
+ bits<4> Rm;
+ bits<4> Rn;
+ bits<4> Ra;
+ let Inst{19-16} = Rd;
+ let Inst{15-12} = Ra;
+ let Inst{11-8} = Rm;
+ let Inst{3-0} = Rn;
+}
+
+// Extra precision multiplies with low / high results
+let neverHasSideEffects = 1 in {
+let isCommutable = 1 in {
+def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi),
+ (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
+ "smull", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ Requires<[IsARM, HasV6]>;
+
+def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi),
+ (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
+ "umull", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ Requires<[IsARM, HasV6]>;
+
+let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in {
+def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
+ (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
+ 4, IIC_iMUL64, [],
+ (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6]>;
+
+def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
+ (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
+ 4, IIC_iMUL64, [],
+ (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6]>;
+}
+}
+
+// Multiply + accumulate
+def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi),
+ (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
+ "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>;
+def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi),
+ (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
+ "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>;
+
+def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi),
+ (ins GPR:$Rn, GPR:$Rm), IIC_iMAC64,
+ "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ Requires<[IsARM, HasV6]> {
+ bits<4> RdLo;
+ bits<4> RdHi;
+ bits<4> Rm;
+ bits<4> Rn;
+ let Inst{19-16} = RdHi;
+ let Inst{15-12} = RdLo;
+ let Inst{11-8} = Rm;
+ let Inst{3-0} = Rn;
+}
+
+let Constraints =
+ "@earlyclobber $RdLo,@earlyclobber $RdHi,$RLo = $RdLo,$RHi = $RdHi" in {
+def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
+ (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
+ 4, IIC_iMAC64, [],
+ (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
+ pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6]>;
+def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
+ (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
+ 4, IIC_iMAC64, [],
+ (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
+ pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6]>;
+}
+
+} // neverHasSideEffects
+
+// Most significant word multiply
+def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm",
+ [(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>,
+ Requires<[IsARM, HasV6]> {
+ let Inst{15-12} = 0b1111;
+}
+
+def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm", []>,
+ Requires<[IsARM, HasV6]> {
+ let Inst{15-12} = 0b1111;
+}
+
+def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd),
+ (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
+ IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra",
+ [(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>,
+ Requires<[IsARM, HasV6, UseMulOps]>;
+
+def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd),
+ (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
+ IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra", []>,
+ Requires<[IsARM, HasV6]>;
+
+def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd),
+ (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
+ IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>,
+ Requires<[IsARM, HasV6, UseMulOps]>;
+
+def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd),
+ (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
+ IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra", []>,
+ Requires<[IsARM, HasV6]>;
+
+multiclass AI_smul<string opc, PatFrag opnode> {
+ def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm",
+ [(set GPR:$Rd, (opnode (sext_inreg GPR:$Rn, i16),
+ (sext_inreg GPR:$Rm, i16)))]>,
+ Requires<[IsARM, HasV5TE]>;
+
+ def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm",
+ [(set GPR:$Rd, (opnode (sext_inreg GPR:$Rn, i16),
+ (sra GPR:$Rm, (i32 16))))]>,
+ Requires<[IsARM, HasV5TE]>;
+
+ def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm",
+ [(set GPR:$Rd, (opnode (sra GPR:$Rn, (i32 16)),
+ (sext_inreg GPR:$Rm, i16)))]>,
+ Requires<[IsARM, HasV5TE]>;
+
+ def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm",
+ [(set GPR:$Rd, (opnode (sra GPR:$Rn, (i32 16)),
+ (sra GPR:$Rm, (i32 16))))]>,
+ Requires<[IsARM, HasV5TE]>;
+
+ def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
+ [(set GPR:$Rd, (sra (opnode GPR:$Rn,
+ (sext_inreg GPR:$Rm, i16)), (i32 16)))]>,
+ Requires<[IsARM, HasV5TE]>;
+
+ def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
+ [(set GPR:$Rd, (sra (opnode GPR:$Rn,
+ (sra GPR:$Rm, (i32 16))), (i32 16)))]>,
+ Requires<[IsARM, HasV5TE]>;
+}
+
+
+multiclass AI_smla<string opc, PatFrag opnode> {
+ let DecoderMethod = "DecodeSMLAInstruction" in {
+ def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
+ IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set GPRnopc:$Rd, (add GPR:$Ra,
+ (opnode (sext_inreg GPRnopc:$Rn, i16),
+ (sext_inreg GPRnopc:$Rm, i16))))]>,
+ Requires<[IsARM, HasV5TE, UseMulOps]>;
+
+ def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
+ IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set GPRnopc:$Rd,
+ (add GPR:$Ra, (opnode (sext_inreg GPRnopc:$Rn, i16),
+ (sra GPRnopc:$Rm, (i32 16)))))]>,
+ Requires<[IsARM, HasV5TE, UseMulOps]>;
+
+ def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
+ IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set GPRnopc:$Rd,
+ (add GPR:$Ra, (opnode (sra GPRnopc:$Rn, (i32 16)),
+ (sext_inreg GPRnopc:$Rm, i16))))]>,
+ Requires<[IsARM, HasV5TE, UseMulOps]>;
+
+ def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
+ IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set GPRnopc:$Rd,
+ (add GPR:$Ra, (opnode (sra GPRnopc:$Rn, (i32 16)),
+ (sra GPRnopc:$Rm, (i32 16)))))]>,
+ Requires<[IsARM, HasV5TE, UseMulOps]>;
+
+ def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
+ IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set GPRnopc:$Rd,
+ (add GPR:$Ra, (sra (opnode GPRnopc:$Rn,
+ (sext_inreg GPRnopc:$Rm, i16)), (i32 16))))]>,
+ Requires<[IsARM, HasV5TE, UseMulOps]>;
+
+ def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
+ IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set GPRnopc:$Rd,
+ (add GPR:$Ra, (sra (opnode GPRnopc:$Rn,
+ (sra GPRnopc:$Rm, (i32 16))), (i32 16))))]>,
+ Requires<[IsARM, HasV5TE, UseMulOps]>;
+ }
+}
+
+defm SMUL : AI_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
+defm SMLA : AI_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
+
+// Halfword multiply accumulate long: SMLAL<x><y>.
+def SMLALBB : AMulxyI64<0b0001010, 0b00, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm),
+ IIC_iMAC64, "smlalbb", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ Requires<[IsARM, HasV5TE]>;
+
+def SMLALBT : AMulxyI64<0b0001010, 0b10, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm),
+ IIC_iMAC64, "smlalbt", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ Requires<[IsARM, HasV5TE]>;
+
+def SMLALTB : AMulxyI64<0b0001010, 0b01, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm),
+ IIC_iMAC64, "smlaltb", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ Requires<[IsARM, HasV5TE]>;
+
+def SMLALTT : AMulxyI64<0b0001010, 0b11, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm),
+ IIC_iMAC64, "smlaltt", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ Requires<[IsARM, HasV5TE]>;
+
+// Helper class for AI_smld.
+class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm>
+ : AI<oops, iops, MulFrm, itin, opc, asm, []>, Requires<[IsARM, HasV6]> {
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{27-23} = 0b01110;
+ let Inst{22} = long;
+ let Inst{21-20} = 0b00;
+ let Inst{11-8} = Rm;
+ let Inst{7} = 0;
+ let Inst{6} = sub;
+ let Inst{5} = swap;
+ let Inst{4} = 1;
+ let Inst{3-0} = Rn;
+}
+class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm>
+ : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
+ bits<4> Rd;
+ let Inst{15-12} = 0b1111;
+ let Inst{19-16} = Rd;
+}
+class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm>
+ : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
+ bits<4> Ra;
+ bits<4> Rd;
+ let Inst{19-16} = Rd;
+ let Inst{15-12} = Ra;
+}
+class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm>
+ : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
+ bits<4> RdLo;
+ bits<4> RdHi;
+ let Inst{19-16} = RdHi;
+ let Inst{15-12} = RdLo;
+}
+
+multiclass AI_smld<bit sub, string opc> {
+
+ def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
+ NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">;
+
+ def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
+ NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">;
+
+ def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary,
+ !strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">;
+
+ def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary,
+ !strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">;
+
+}
+
+defm SMLA : AI_smld<0, "smla">;
+defm SMLS : AI_smld<1, "smls">;
+
+multiclass AI_sdml<bit sub, string opc> {
+
+ def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm),
+ NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">;
+ def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm),
+ NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">;
+}
+
+defm SMUA : AI_sdml<0, "smua">;
+defm SMUS : AI_sdml<1, "smus">;
+
+//===----------------------------------------------------------------------===//
+// Division Instructions (ARMv7-A with virtualization extension)
+//
+def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
+ "sdiv", "\t$Rd, $Rn, $Rm",
+ [(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>,
+ Requires<[IsARM, HasDivideInARM]>;
+
+def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
+ "udiv", "\t$Rd, $Rn, $Rm",
+ [(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>,
+ Requires<[IsARM, HasDivideInARM]>;
+
+//===----------------------------------------------------------------------===//
+// Misc. Arithmetic Instructions.
+//
+
+def CLZ : AMiscA1I<0b000010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
+ IIC_iUNAr, "clz", "\t$Rd, $Rm",
+ [(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>,
+ Sched<[WriteALU]>;
+
+def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
+ IIC_iUNAr, "rbit", "\t$Rd, $Rm",
+ [(set GPR:$Rd, (ARMrbit GPR:$Rm))]>,
+ Requires<[IsARM, HasV6T2]>,
+ Sched<[WriteALU]>;
+
+def REV : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
+ IIC_iUNAr, "rev", "\t$Rd, $Rm",
+ [(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>,
+ Sched<[WriteALU]>;
+
+let AddedComplexity = 5 in
+def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
+ IIC_iUNAr, "rev16", "\t$Rd, $Rm",
+ [(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>,
+ Requires<[IsARM, HasV6]>,
+ Sched<[WriteALU]>;
+
+def : ARMV6Pat<(srl (bswap (extloadi16 addrmode3:$addr)), (i32 16)),
+ (REV16 (LDRH addrmode3:$addr))>;
+def : ARMV6Pat<(truncstorei16 (srl (bswap GPR:$Rn), (i32 16)), addrmode3:$addr),
+ (STRH (REV16 GPR:$Rn), addrmode3:$addr)>;
+
+let AddedComplexity = 5 in
+def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
+ IIC_iUNAr, "revsh", "\t$Rd, $Rm",
+ [(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>,
+ Requires<[IsARM, HasV6]>,
+ Sched<[WriteALU]>;
+
+def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)),
+ (and (srl GPR:$Rm, (i32 8)), 0xFF)),
+ (REVSH GPR:$Rm)>;
+
+def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh),
+ IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh",
+ [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF),
+ (and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh),
+ 0xFFFF0000)))]>,
+ Requires<[IsARM, HasV6]>,
+ Sched<[WriteALUsi, ReadALU]>;
+
+// Alternate cases for PKHBT where identities eliminate some nodes.
+def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)),
+ (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>;
+def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)),
+ (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>;
+
+// Note: Shifts of 1-15 bits will be transformed to srl instead of sra and
+// will match the pattern below.
+def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd),
+ (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh),
+ IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh",
+ [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000),
+ (and (sra GPRnopc:$Rm, pkh_asr_amt:$sh),
+ 0xFFFF)))]>,
+ Requires<[IsARM, HasV6]>,
+ Sched<[WriteALUsi, ReadALU]>;
+
+// Alternate cases for PKHTB where identities eliminate some nodes. Note that
+// a shift amount of 0 is *not legal* here, it is PKHBT instead.
+// We also can not replace a srl (17..31) by an arithmetic shift we would use in
+// pkhtb src1, src2, asr (17..31).
+def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
+ (srl GPRnopc:$src2, imm16:$sh)),
+ (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16:$sh)>;
+def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
+ (sra GPRnopc:$src2, imm16_31:$sh)),
+ (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>;
+def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
+ (and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)),
+ (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>;
+
+//===----------------------------------------------------------------------===//
+// CRC Instructions
+//
+// Polynomials:
+// + CRC32{B,H,W} 0x04C11DB7
+// + CRC32C{B,H,W} 0x1EDC6F41
+//
+
+class AI_crc32<bit C, bits<2> sz, string suffix, SDPatternOperator builtin>
+ : AInoP<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), MiscFrm, NoItinerary,
+ !strconcat("crc32", suffix), "\t$Rd, $Rn, $Rm",
+ [(set GPRnopc:$Rd, (builtin GPRnopc:$Rn, GPRnopc:$Rm))]>,
+ Requires<[IsARM, HasV8, HasCRC]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+
+ let Inst{31-28} = 0b1110;
+ let Inst{27-23} = 0b00010;
+ let Inst{22-21} = sz;
+ let Inst{20} = 0;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Rd;
+ let Inst{11-10} = 0b00;
+ let Inst{9} = C;
+ let Inst{8} = 0;
+ let Inst{7-4} = 0b0100;
+ let Inst{3-0} = Rm;
+
+ let Unpredictable{11-8} = 0b1101;
+}
+
+def CRC32B : AI_crc32<0, 0b00, "b", int_arm_crc32b>;
+def CRC32CB : AI_crc32<1, 0b00, "cb", int_arm_crc32cb>;
+def CRC32H : AI_crc32<0, 0b01, "h", int_arm_crc32h>;
+def CRC32CH : AI_crc32<1, 0b01, "ch", int_arm_crc32ch>;
+def CRC32W : AI_crc32<0, 0b10, "w", int_arm_crc32w>;
+def CRC32CW : AI_crc32<1, 0b10, "cw", int_arm_crc32cw>;
+
+//===----------------------------------------------------------------------===//
+// Comparison Instructions...
+//
+
+defm CMP : AI1_cmp_irs<0b1010, "cmp",
+ IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr,
+ BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>;
+
+// ARMcmpZ can re-use the above instruction definitions.
+def : ARMPat<(ARMcmpZ GPR:$src, so_imm:$imm),
+ (CMPri GPR:$src, so_imm:$imm)>;
+def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs),
+ (CMPrr GPR:$src, GPR:$rhs)>;
+def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs),
+ (CMPrsi GPR:$src, so_reg_imm:$rhs)>;
+def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs),
+ (CMPrsr GPR:$src, so_reg_reg:$rhs)>;
+
+// CMN register-integer
+let isCompare = 1, Defs = [CPSR] in {
+def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, so_imm:$imm), DPFrm, IIC_iCMPi,
+ "cmn", "\t$Rn, $imm",
+ [(ARMcmn GPR:$Rn, so_imm:$imm)]>,
+ Sched<[WriteCMP, ReadALU]> {
+ bits<4> Rn;
+ bits<12> imm;
+ let Inst{25} = 1;
+ let Inst{20} = 1;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = 0b0000;
+ let Inst{11-0} = imm;
+
+ let Unpredictable{15-12} = 0b1111;
+}
+
+// CMN register-register/shift
+def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr,
+ "cmn", "\t$Rn, $Rm",
+ [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
+ GPR:$Rn, GPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> {
+ bits<4> Rn;
+ bits<4> Rm;
+ let isCommutable = 1;
+ let Inst{25} = 0;
+ let Inst{20} = 1;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = 0b0000;
+ let Inst{11-4} = 0b00000000;
+ let Inst{3-0} = Rm;
+
+ let Unpredictable{15-12} = 0b1111;
+}
+
+def CMNzrsi : AI1<0b1011, (outs),
+ (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr,
+ "cmn", "\t$Rn, $shift",
+ [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
+ GPR:$Rn, so_reg_imm:$shift)]>,
+ Sched<[WriteCMPsi, ReadALU]> {
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{20} = 1;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = 0b0000;
+ let Inst{11-5} = shift{11-5};
+ let Inst{4} = 0;
+ let Inst{3-0} = shift{3-0};
+
+ let Unpredictable{15-12} = 0b1111;
+}
+
+def CMNzrsr : AI1<0b1011, (outs),
+ (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr,
+ "cmn", "\t$Rn, $shift",
+ [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
+ GPRnopc:$Rn, so_reg_reg:$shift)]>,
+ Sched<[WriteCMPsr, ReadALU]> {
+ bits<4> Rn;
+ bits<12> shift;
+ let Inst{25} = 0;
+ let Inst{20} = 1;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = 0b0000;
+ let Inst{11-8} = shift{11-8};
+ let Inst{7} = 0;
+ let Inst{6-5} = shift{6-5};
+ let Inst{4} = 1;
+ let Inst{3-0} = shift{3-0};
+
+ let Unpredictable{15-12} = 0b1111;
+}
+
+}
+
+def : ARMPat<(ARMcmp GPR:$src, so_imm_neg:$imm),
+ (CMNri GPR:$src, so_imm_neg:$imm)>;
+
+def : ARMPat<(ARMcmpZ GPR:$src, so_imm_neg:$imm),
+ (CMNri GPR:$src, so_imm_neg:$imm)>;
+
+// Note that TST/TEQ don't set all the same flags that CMP does!
+defm TST : AI1_cmp_irs<0b1000, "tst",
+ IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
+ BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1>;
+defm TEQ : AI1_cmp_irs<0b1001, "teq",
+ IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
+ BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>;
+
+// Pseudo i64 compares for some floating point compares.
+let usesCustomInserter = 1, isBranch = 1, isTerminator = 1,
+ Defs = [CPSR] in {
+def BCCi64 : PseudoInst<(outs),
+ (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst),
+ IIC_Br,
+ [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>,
+ Sched<[WriteBr]>;
+
+def BCCZi64 : PseudoInst<(outs),
+ (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br,
+ [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>,
+ Sched<[WriteBr]>;
+} // usesCustomInserter
+
+
+// Conditional moves
+let neverHasSideEffects = 1 in {
+
+let isCommutable = 1, isSelect = 1 in
+def MOVCCr : ARMPseudoInst<(outs GPR:$Rd),
+ (ins GPR:$false, GPR:$Rm, cmovpred:$p),
+ 4, IIC_iCMOVr,
+ [(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
+
+def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd),
+ (ins GPR:$false, so_reg_imm:$shift, cmovpred:$p),
+ 4, IIC_iCMOVsr,
+ [(set GPR:$Rd,
+ (ARMcmov GPR:$false, so_reg_imm:$shift,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
+def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd),
+ (ins GPR:$false, so_reg_reg:$shift, cmovpred:$p),
+ 4, IIC_iCMOVsr,
+ [(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
+
+
+let isMoveImm = 1 in
+def MOVCCi16
+ : ARMPseudoInst<(outs GPR:$Rd),
+ (ins GPR:$false, imm0_65535_expr:$imm, cmovpred:$p),
+ 4, IIC_iMOVi,
+ [(set GPR:$Rd, (ARMcmov GPR:$false, imm0_65535:$imm,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>,
+ Sched<[WriteALU]>;
+
+let isMoveImm = 1 in
+def MOVCCi : ARMPseudoInst<(outs GPR:$Rd),
+ (ins GPR:$false, so_imm:$imm, cmovpred:$p),
+ 4, IIC_iCMOVi,
+ [(set GPR:$Rd, (ARMcmov GPR:$false, so_imm:$imm,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
+
+// Two instruction predicate mov immediate.
+let isMoveImm = 1 in
+def MOVCCi32imm
+ : ARMPseudoInst<(outs GPR:$Rd),
+ (ins GPR:$false, i32imm:$src, cmovpred:$p),
+ 8, IIC_iCMOVix2,
+ [(set GPR:$Rd, (ARMcmov GPR:$false, imm:$src,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>;
+
+let isMoveImm = 1 in
+def MVNCCi : ARMPseudoInst<(outs GPR:$Rd),
+ (ins GPR:$false, so_imm:$imm, cmovpred:$p),
+ 4, IIC_iCMOVi,
+ [(set GPR:$Rd, (ARMcmov GPR:$false, so_imm_not:$imm,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
+
+} // neverHasSideEffects
+
+
+//===----------------------------------------------------------------------===//
+// Atomic operations intrinsics
+//
+
+def MemBarrierOptOperand : AsmOperandClass {
+ let Name = "MemBarrierOpt";
+ let ParserMethod = "parseMemBarrierOptOperand";
+}
+def memb_opt : Operand<i32> {
+ let PrintMethod = "printMemBOption";
+ let ParserMatchClass = MemBarrierOptOperand;
+ let DecoderMethod = "DecodeMemBarrierOption";
+}
+
+def InstSyncBarrierOptOperand : AsmOperandClass {
+ let Name = "InstSyncBarrierOpt";
+ let ParserMethod = "parseInstSyncBarrierOptOperand";
+}
+def instsyncb_opt : Operand<i32> {
+ let PrintMethod = "printInstSyncBOption";
+ let ParserMatchClass = InstSyncBarrierOptOperand;
+ let DecoderMethod = "DecodeInstSyncBarrierOption";
+}
+
+// Memory barriers protect the atomic sequences
+let hasSideEffects = 1 in {
+def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
+ "dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>,
+ Requires<[IsARM, HasDB]> {
+ bits<4> opt;
+ let Inst{31-4} = 0xf57ff05;
+ let Inst{3-0} = opt;
+}
+
+def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
+ "dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>,
+ Requires<[IsARM, HasDB]> {
+ bits<4> opt;
+ let Inst{31-4} = 0xf57ff04;
+ let Inst{3-0} = opt;
+}
+
+// ISB has only full system option
+def ISB : AInoP<(outs), (ins instsyncb_opt:$opt), MiscFrm, NoItinerary,
+ "isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>,
+ Requires<[IsARM, HasDB]> {
+ bits<4> opt;
+ let Inst{31-4} = 0xf57ff06;
+ let Inst{3-0} = opt;
+}
+}
+
+let usesCustomInserter = 1, Defs = [CPSR] in {
+
+// Pseudo instruction that combines movs + predicated rsbmi
+// to implement integer ABS
+ def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>;
+}
+
+let usesCustomInserter = 1 in {
+ def COPY_STRUCT_BYVAL_I32 : PseudoInst<
+ (outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment),
+ NoItinerary,
+ [(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>;
+}
+
+def ldrex_1 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+
+def ldrex_2 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+
+def ldrex_4 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+def strex_1 : PatFrag<(ops node:$val, node:$ptr),
+ (int_arm_strex node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+
+def strex_2 : PatFrag<(ops node:$val, node:$ptr),
+ (int_arm_strex node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+
+def strex_4 : PatFrag<(ops node:$val, node:$ptr),
+ (int_arm_strex node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+def ldaex_1 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+
+def ldaex_2 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+
+def ldaex_4 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+def stlex_1 : PatFrag<(ops node:$val, node:$ptr),
+ (int_arm_stlex node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+
+def stlex_2 : PatFrag<(ops node:$val, node:$ptr),
+ (int_arm_stlex node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+
+def stlex_4 : PatFrag<(ops node:$val, node:$ptr),
+ (int_arm_stlex node:$val, node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+let mayLoad = 1 in {
+def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
+ NoItinerary, "ldrexb", "\t$Rt, $addr",
+ [(set GPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>;
+def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
+ NoItinerary, "ldrexh", "\t$Rt, $addr",
+ [(set GPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>;
+def LDREX : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
+ NoItinerary, "ldrex", "\t$Rt, $addr",
+ [(set GPR:$Rt, (ldrex_4 addr_offset_none:$addr))]>;
+let hasExtraDefRegAllocReq = 1 in
+def LDREXD : AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
+ NoItinerary, "ldrexd", "\t$Rt, $addr", []> {
+ let DecoderMethod = "DecodeDoubleRegLoad";
+}
+
+def LDAEXB : AIldaex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
+ NoItinerary, "ldaexb", "\t$Rt, $addr",
+ [(set GPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>;
+def LDAEXH : AIldaex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
+ NoItinerary, "ldaexh", "\t$Rt, $addr",
+ [(set GPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>;
+def LDAEX : AIldaex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
+ NoItinerary, "ldaex", "\t$Rt, $addr",
+ [(set GPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>;
+let hasExtraDefRegAllocReq = 1 in
+def LDAEXD : AIldaex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
+ NoItinerary, "ldaexd", "\t$Rt, $addr", []> {
+ let DecoderMethod = "DecodeDoubleRegLoad";
+}
+}
+
+let mayStore = 1, Constraints = "@earlyclobber $Rd" in {
+def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
+ NoItinerary, "strexb", "\t$Rd, $Rt, $addr",
+ [(set GPR:$Rd, (strex_1 GPR:$Rt,
+ addr_offset_none:$addr))]>;
+def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
+ NoItinerary, "strexh", "\t$Rd, $Rt, $addr",
+ [(set GPR:$Rd, (strex_2 GPR:$Rt,
+ addr_offset_none:$addr))]>;
+def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
+ NoItinerary, "strex", "\t$Rd, $Rt, $addr",
+ [(set GPR:$Rd, (strex_4 GPR:$Rt,
+ addr_offset_none:$addr))]>;
+let hasExtraSrcRegAllocReq = 1 in
+def STREXD : AIstrex<0b01, (outs GPR:$Rd),
+ (ins GPRPairOp:$Rt, addr_offset_none:$addr),
+ NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> {
+ let DecoderMethod = "DecodeDoubleRegStore";
+}
+def STLEXB: AIstlex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
+ NoItinerary, "stlexb", "\t$Rd, $Rt, $addr",
+ [(set GPR:$Rd,
+ (stlex_1 GPR:$Rt, addr_offset_none:$addr))]>;
+def STLEXH: AIstlex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
+ NoItinerary, "stlexh", "\t$Rd, $Rt, $addr",
+ [(set GPR:$Rd,
+ (stlex_2 GPR:$Rt, addr_offset_none:$addr))]>;
+def STLEX : AIstlex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
+ NoItinerary, "stlex", "\t$Rd, $Rt, $addr",
+ [(set GPR:$Rd,
+ (stlex_4 GPR:$Rt, addr_offset_none:$addr))]>;
+let hasExtraSrcRegAllocReq = 1 in
+def STLEXD : AIstlex<0b01, (outs GPR:$Rd),
+ (ins GPRPairOp:$Rt, addr_offset_none:$addr),
+ NoItinerary, "stlexd", "\t$Rd, $Rt, $addr", []> {
+ let DecoderMethod = "DecodeDoubleRegStore";
+}
+}
+
+def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex",
+ [(int_arm_clrex)]>,
+ Requires<[IsARM, HasV7]> {
+ let Inst{31-0} = 0b11110101011111111111000000011111;
+}
+
+def : ARMPat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
+ (STREXB GPR:$Rt, addr_offset_none:$addr)>;
+def : ARMPat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
+ (STREXH GPR:$Rt, addr_offset_none:$addr)>;
+
+def : ARMPat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
+ (STLEXB GPR:$Rt, addr_offset_none:$addr)>;
+def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
+ (STLEXH GPR:$Rt, addr_offset_none:$addr)>;
+
+class acquiring_load<PatFrag base>
+ : PatFrag<(ops node:$ptr), (base node:$ptr), [{
+ AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
+ return Ordering == Acquire || Ordering == SequentiallyConsistent;
+}]>;
+
+def atomic_load_acquire_8 : acquiring_load<atomic_load_8>;
+def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
+def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
+
+class releasing_store<PatFrag base>
+ : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
+ AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
+ return Ordering == Release || Ordering == SequentiallyConsistent;
+}]>;
+
+def atomic_store_release_8 : releasing_store<atomic_store_8>;
+def atomic_store_release_16 : releasing_store<atomic_store_16>;
+def atomic_store_release_32 : releasing_store<atomic_store_32>;
+
+let AddedComplexity = 8 in {
+ def : ARMPat<(atomic_load_acquire_8 addr_offset_none:$addr), (LDAB addr_offset_none:$addr)>;
+ def : ARMPat<(atomic_load_acquire_16 addr_offset_none:$addr), (LDAH addr_offset_none:$addr)>;
+ def : ARMPat<(atomic_load_acquire_32 addr_offset_none:$addr), (LDA addr_offset_none:$addr)>;
+ def : ARMPat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val), (STLB GPR:$val, addr_offset_none:$addr)>;
+ def : ARMPat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (STLH GPR:$val, addr_offset_none:$addr)>;
+ def : ARMPat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (STL GPR:$val, addr_offset_none:$addr)>;
+}
+
+// SWP/SWPB are deprecated in V6/V7.
+let mayLoad = 1, mayStore = 1 in {
+def SWP : AIswp<0, (outs GPRnopc:$Rt),
+ (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>,
+ Requires<[PreV8]>;
+def SWPB: AIswp<1, (outs GPRnopc:$Rt),
+ (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>,
+ Requires<[PreV8]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Coprocessor Instructions.
+//
+
+def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
+ c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
+ NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
+ [(int_arm_cdp imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn,
+ imm:$CRm, imm:$opc2)]>,
+ Requires<[PreV8]> {
+ bits<4> opc1;
+ bits<4> CRn;
+ bits<4> CRd;
+ bits<4> cop;
+ bits<3> opc2;
+ bits<4> CRm;
+
+ let Inst{3-0} = CRm;
+ let Inst{4} = 0;
+ let Inst{7-5} = opc2;
+ let Inst{11-8} = cop;
+ let Inst{15-12} = CRd;
+ let Inst{19-16} = CRn;
+ let Inst{23-20} = opc1;
+}
+
+def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
+ c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
+ NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
+ [(int_arm_cdp2 imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn,
+ imm:$CRm, imm:$opc2)]>,
+ Requires<[PreV8]> {
+ let Inst{31-28} = 0b1111;
+ bits<4> opc1;
+ bits<4> CRn;
+ bits<4> CRd;
+ bits<4> cop;
+ bits<3> opc2;
+ bits<4> CRm;
+
+ let Inst{3-0} = CRm;
+ let Inst{4} = 0;
+ let Inst{7-5} = opc2;
+ let Inst{11-8} = cop;
+ let Inst{15-12} = CRd;
+ let Inst{19-16} = CRn;
+ let Inst{23-20} = opc1;
+}
+
+class ACI<dag oops, dag iops, string opc, string asm,
+ IndexMode im = IndexModeNone>
+ : I<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
+ opc, asm, "", []> {
+ let Inst{27-25} = 0b110;
+}
+class ACInoP<dag oops, dag iops, string opc, string asm,
+ IndexMode im = IndexModeNone>
+ : InoP<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
+ opc, asm, "", []> {
+ let Inst{31-28} = 0b1111;
+ let Inst{27-25} = 0b110;
+}
+multiclass LdStCop<bit load, bit Dbit, string asm> {
+ def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
+ asm, "\t$cop, $CRd, $addr"> {
+ bits<13> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 1; // P = 1
+ let Inst{23} = addr{8};
+ let Inst{22} = Dbit;
+ let Inst{21} = 0; // W = 0
+ let Inst{20} = load;
+ let Inst{19-16} = addr{12-9};
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = addr{7-0};
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+ def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
+ asm, "\t$cop, $CRd, $addr!", IndexModePre> {
+ bits<13> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 1; // P = 1
+ let Inst{23} = addr{8};
+ let Inst{22} = Dbit;
+ let Inst{21} = 1; // W = 1
+ let Inst{20} = load;
+ let Inst{19-16} = addr{12-9};
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = addr{7-0};
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+ def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
+ postidx_imm8s4:$offset),
+ asm, "\t$cop, $CRd, $addr, $offset", IndexModePost> {
+ bits<9> offset;
+ bits<4> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 0; // P = 0
+ let Inst{23} = offset{8};
+ let Inst{22} = Dbit;
+ let Inst{21} = 1; // W = 1
+ let Inst{20} = load;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = offset{7-0};
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+ def _OPTION : ACI<(outs),
+ (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
+ coproc_option_imm:$option),
+ asm, "\t$cop, $CRd, $addr, $option"> {
+ bits<8> option;
+ bits<4> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 0; // P = 0
+ let Inst{23} = 1; // U = 1
+ let Inst{22} = Dbit;
+ let Inst{21} = 0; // W = 0
+ let Inst{20} = load;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = option;
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+}
+multiclass LdSt2Cop<bit load, bit Dbit, string asm> {
+ def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
+ asm, "\t$cop, $CRd, $addr"> {
+ bits<13> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 1; // P = 1
+ let Inst{23} = addr{8};
+ let Inst{22} = Dbit;
+ let Inst{21} = 0; // W = 0
+ let Inst{20} = load;
+ let Inst{19-16} = addr{12-9};
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = addr{7-0};
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+ def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
+ asm, "\t$cop, $CRd, $addr!", IndexModePre> {
+ bits<13> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 1; // P = 1
+ let Inst{23} = addr{8};
+ let Inst{22} = Dbit;
+ let Inst{21} = 1; // W = 1
+ let Inst{20} = load;
+ let Inst{19-16} = addr{12-9};
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = addr{7-0};
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+ def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
+ postidx_imm8s4:$offset),
+ asm, "\t$cop, $CRd, $addr, $offset", IndexModePost> {
+ bits<9> offset;
+ bits<4> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 0; // P = 0
+ let Inst{23} = offset{8};
+ let Inst{22} = Dbit;
+ let Inst{21} = 1; // W = 1
+ let Inst{20} = load;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = offset{7-0};
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+ def _OPTION : ACInoP<(outs),
+ (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
+ coproc_option_imm:$option),
+ asm, "\t$cop, $CRd, $addr, $option"> {
+ bits<8> option;
+ bits<4> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 0; // P = 0
+ let Inst{23} = 1; // U = 1
+ let Inst{22} = Dbit;
+ let Inst{21} = 0; // W = 0
+ let Inst{20} = load;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = option;
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+}
+
+defm LDC : LdStCop <1, 0, "ldc">;
+defm LDCL : LdStCop <1, 1, "ldcl">;
+defm STC : LdStCop <0, 0, "stc">;
+defm STCL : LdStCop <0, 1, "stcl">;
+defm LDC2 : LdSt2Cop<1, 0, "ldc2">, Requires<[PreV8]>;
+defm LDC2L : LdSt2Cop<1, 1, "ldc2l">, Requires<[PreV8]>;
+defm STC2 : LdSt2Cop<0, 0, "stc2">, Requires<[PreV8]>;
+defm STC2L : LdSt2Cop<0, 1, "stc2l">, Requires<[PreV8]>;
+
+//===----------------------------------------------------------------------===//
+// Move between coprocessor and ARM core register.
+//
+
+class MovRCopro<string opc, bit direction, dag oops, dag iops,
+ list<dag> pattern>
+ : ABI<0b1110, oops, iops, NoItinerary, opc,
+ "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> {
+ let Inst{20} = direction;
+ let Inst{4} = 1;
+
+ bits<4> Rt;
+ bits<4> cop;
+ bits<3> opc1;
+ bits<3> opc2;
+ bits<4> CRm;
+ bits<4> CRn;
+
+ let Inst{15-12} = Rt;
+ let Inst{11-8} = cop;
+ let Inst{23-21} = opc1;
+ let Inst{7-5} = opc2;
+ let Inst{3-0} = CRm;
+ let Inst{19-16} = CRn;
+}
+
+def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */,
+ (outs),
+ (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
+ c_imm:$CRm, imm0_7:$opc2),
+ [(int_arm_mcr imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn,
+ imm:$CRm, imm:$opc2)]>,
+ ComplexDeprecationPredicate<"MCR">;
+def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm",
+ (MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
+ c_imm:$CRm, 0, pred:$p)>;
+def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */,
+ (outs GPRwithAPSR:$Rt),
+ (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
+ imm0_7:$opc2), []>;
+def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm",
+ (MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
+ c_imm:$CRm, 0, pred:$p)>;
+
+def : ARMPat<(int_arm_mrc imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2),
+ (MRC imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>;
+
+class MovRCopro2<string opc, bit direction, dag oops, dag iops,
+ list<dag> pattern>
+ : ABXI<0b1110, oops, iops, NoItinerary,
+ !strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> {
+ let Inst{31-24} = 0b11111110;
+ let Inst{20} = direction;
+ let Inst{4} = 1;
+
+ bits<4> Rt;
+ bits<4> cop;
+ bits<3> opc1;
+ bits<3> opc2;
+ bits<4> CRm;
+ bits<4> CRn;
+
+ let Inst{15-12} = Rt;
+ let Inst{11-8} = cop;
+ let Inst{23-21} = opc1;
+ let Inst{7-5} = opc2;
+ let Inst{3-0} = CRm;
+ let Inst{19-16} = CRn;
+}
+
+def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */,
+ (outs),
+ (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
+ c_imm:$CRm, imm0_7:$opc2),
+ [(int_arm_mcr2 imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn,
+ imm:$CRm, imm:$opc2)]>,
+ Requires<[PreV8]>;
+def : ARMInstAlias<"mcr2 $cop, $opc1, $Rt, $CRn, $CRm",
+ (MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
+ c_imm:$CRm, 0)>;
+def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */,
+ (outs GPRwithAPSR:$Rt),
+ (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
+ imm0_7:$opc2), []>,
+ Requires<[PreV8]>;
+def : ARMInstAlias<"mrc2 $cop, $opc1, $Rt, $CRn, $CRm",
+ (MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
+ c_imm:$CRm, 0)>;
+
+def : ARMV5TPat<(int_arm_mrc2 imm:$cop, imm:$opc1, imm:$CRn,
+ imm:$CRm, imm:$opc2),
+ (MRC2 imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>;
+
+class MovRRCopro<string opc, bit direction, list<dag> pattern = []>
+ : ABI<0b1100, (outs), (ins p_imm:$cop, imm0_15:$opc1,
+ GPRnopc:$Rt, GPRnopc:$Rt2, c_imm:$CRm),
+ NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> {
+ let Inst{23-21} = 0b010;
+ let Inst{20} = direction;
+
+ bits<4> Rt;
+ bits<4> Rt2;
+ bits<4> cop;
+ bits<4> opc1;
+ bits<4> CRm;
+
+ let Inst{15-12} = Rt;
+ let Inst{19-16} = Rt2;
+ let Inst{11-8} = cop;
+ let Inst{7-4} = opc1;
+ let Inst{3-0} = CRm;
+}
+
+def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */,
+ [(int_arm_mcrr imm:$cop, imm:$opc1, GPRnopc:$Rt,
+ GPRnopc:$Rt2, imm:$CRm)]>;
+def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */>;
+
+class MovRRCopro2<string opc, bit direction, list<dag> pattern = []>
+ : ABXI<0b1100, (outs), (ins p_imm:$cop, imm0_15:$opc1,
+ GPRnopc:$Rt, GPRnopc:$Rt2, c_imm:$CRm), NoItinerary,
+ !strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern>,
+ Requires<[PreV8]> {
+ let Inst{31-28} = 0b1111;
+ let Inst{23-21} = 0b010;
+ let Inst{20} = direction;
+
+ bits<4> Rt;
+ bits<4> Rt2;
+ bits<4> cop;
+ bits<4> opc1;
+ bits<4> CRm;
+
+ let Inst{15-12} = Rt;
+ let Inst{19-16} = Rt2;
+ let Inst{11-8} = cop;
+ let Inst{7-4} = opc1;
+ let Inst{3-0} = CRm;
+
+ let DecoderMethod = "DecodeMRRC2";
+}
+
+def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */,
+ [(int_arm_mcrr2 imm:$cop, imm:$opc1, GPRnopc:$Rt,
+ GPRnopc:$Rt2, imm:$CRm)]>;
+def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */>;
+
+//===----------------------------------------------------------------------===//
+// Move between special register and ARM core register
+//
+
+// Move to ARM core register from Special Register
+def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
+ "mrs", "\t$Rd, apsr", []> {
+ bits<4> Rd;
+ let Inst{23-16} = 0b00001111;
+ let Unpredictable{19-17} = 0b111;
+
+ let Inst{15-12} = Rd;
+
+ let Inst{11-0} = 0b000000000000;
+ let Unpredictable{11-0} = 0b110100001111;
+}
+
+def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p)>,
+ Requires<[IsARM]>;
+
+// The MRSsys instruction is the MRS instruction from the ARM ARM,
+// section B9.3.9, with the R bit set to 1.
+def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
+ "mrs", "\t$Rd, spsr", []> {
+ bits<4> Rd;
+ let Inst{23-16} = 0b01001111;
+ let Unpredictable{19-16} = 0b1111;
+
+ let Inst{15-12} = Rd;
+
+ let Inst{11-0} = 0b000000000000;
+ let Unpredictable{11-0} = 0b110100001111;
+}
+
+// Move from ARM core register to Special Register
+//
+// No need to have both system and application versions, the encodings are the
+// same and the assembly parser has no way to distinguish between them. The mask
+// operand contains the special register (R Bit) in bit 4 and bits 3-0 contains
+// the mask with the fields to be accessed in the special register.
+def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary,
+ "msr", "\t$mask, $Rn", []> {
+ bits<5> mask;
+ bits<4> Rn;
+
+ let Inst{23} = 0;
+ let Inst{22} = mask{4}; // R bit
+ let Inst{21-20} = 0b10;
+ let Inst{19-16} = mask{3-0};
+ let Inst{15-12} = 0b1111;
+ let Inst{11-4} = 0b00000000;
+ let Inst{3-0} = Rn;
+}
+
+def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask, so_imm:$a), NoItinerary,
+ "msr", "\t$mask, $a", []> {
+ bits<5> mask;
+ bits<12> a;
+
+ let Inst{23} = 0;
+ let Inst{22} = mask{4}; // R bit
+ let Inst{21-20} = 0b10;
+ let Inst{19-16} = mask{3-0};
+ let Inst{15-12} = 0b1111;
+ let Inst{11-0} = a;
+}
+
+// Dynamic stack allocation yields a _chkstk for Windows targets. These calls
+// are needed to probe the stack when allocating more than
+// 4k bytes in one go. Touching the stack at 4K increments is necessary to
+// ensure that the guard pages used by the OS virtual memory manager are
+// allocated in correct sequence.
+// The main point of having separate instruction are extra unmodelled effects
+// (compared to ordinary calls) like stack pointer change.
+
+def win__chkstk : SDNode<"ARMISD::WIN__CHKSTK", SDTNone,
+ [SDNPHasChain, SDNPSideEffect]>;
+let usesCustomInserter = 1, Uses = [R4], Defs = [R4, SP] in
+ def WIN__CHKSTK : PseudoInst<(outs), (ins), NoItinerary, [(win__chkstk)]>;
+
+//===----------------------------------------------------------------------===//
+// TLS Instructions
+//
+
+// __aeabi_read_tp preserves the registers r1-r3.
+// This is a pseudo inst so that we can get the encoding right,
+// complete with fixup for the aeabi_read_tp function.
+// TPsoft is valid for ARM mode only, in case of Thumb mode a tTPsoft pattern
+// is defined in "ARMInstrThumb.td".
+let isCall = 1,
+ Defs = [R0, R12, LR, CPSR], Uses = [SP] in {
+ def TPsoft : ARMPseudoInst<(outs), (ins), 4, IIC_Br,
+ [(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>;
+}
+
+//===----------------------------------------------------------------------===//
+// SJLJ Exception handling intrinsics
+// eh_sjlj_setjmp() is an instruction sequence to store the return
+// address and save #0 in R0 for the non-longjmp case.
+// Since by its nature we may be coming from some other function to get
+// here, and we're using the stack frame for the containing function to
+// save/restore registers, we can't keep anything live in regs across
+// the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
+// when we get here from a longjmp(). We force everything out of registers
+// except for our own input by listing the relevant registers in Defs. By
+// doing so, we also cause the prologue/epilogue code to actively preserve
+// all of the callee-saved resgisters, which is exactly what we want.
+// A constant value is passed in $val, and we use the location as a scratch.
+//
+// These are pseudo-instructions and are lowered to individual MC-insts, so
+// no encoding information is necessary.
+let Defs =
+ [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR,
+ Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ],
+ hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
+ def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
+ NoItinerary,
+ [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
+ Requires<[IsARM, HasVFP2]>;
+}
+
+let Defs =
+ [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR ],
+ hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
+ def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
+ NoItinerary,
+ [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
+ Requires<[IsARM, NoVFP]>;
+}
+
+// FIXME: Non-IOS version(s)
+let isBarrier = 1, hasSideEffects = 1, isTerminator = 1,
+ Defs = [ R7, LR, SP ] in {
+def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch),
+ NoItinerary,
+ [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
+ Requires<[IsARM, IsIOS]>;
+}
+
+// eh.sjlj.dispatchsetup pseudo-instruction.
+// This pseudo is used for both ARM and Thumb. Any differences are handled when
+// the pseudo is expanded (which happens before any passes that need the
+// instruction size).
+let isBarrier = 1 in
+def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>;
+
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//
+
+// ARMv4 indirect branch using (MOVr PC, dst)
+let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in
+ def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst),
+ 4, IIC_Br, [(brind GPR:$dst)],
+ (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
+ Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
+
+// Large immediate handling.
+
+// 32-bit immediate using two piece so_imms or movw + movt.
+// This is a single pseudo instruction, the benefit is that it can be remat'd
+// as a single unit instead of having to handle reg inputs.
+// FIXME: Remove this when we can do generalized remat.
+let isReMaterializable = 1, isMoveImm = 1 in
+def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2,
+ [(set GPR:$dst, (arm_i32imm:$src))]>,
+ Requires<[IsARM]>;
+
+def LDRLIT_ga_abs : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iLoad_i,
+ [(set GPR:$dst, (ARMWrapper tglobaladdr:$src))]>,
+ Requires<[IsARM, DontUseMovt]>;
+
+// Pseudo instruction that combines movw + movt + add pc (if PIC).
+// It also makes it possible to rematerialize the instructions.
+// FIXME: Remove this when we can do generalized remat and when machine licm
+// can properly the instructions.
+let isReMaterializable = 1 in {
+def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
+ IIC_iMOVix2addpc,
+ [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>,
+ Requires<[IsARM, UseMovt]>;
+
+def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
+ IIC_iLoadiALU,
+ [(set GPR:$dst,
+ (ARMWrapperPIC tglobaladdr:$addr))]>,
+ Requires<[IsARM, DontUseMovt]>;
+
+def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
+ NoItinerary,
+ [(set GPR:$dst,
+ (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
+ Requires<[IsARM, DontUseMovt]>;
+
+let AddedComplexity = 10 in
+def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
+ IIC_iMOVix2ld,
+ [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
+ Requires<[IsARM, UseMovt]>;
+} // isReMaterializable
+
+// ConstantPool, GlobalAddress, and JumpTable
+def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>;
+def : ARMPat<(ARMWrapper tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>,
+ Requires<[IsARM, UseMovt]>;
+def : ARMPat<(ARMWrapperJT tjumptable:$dst, imm:$id),
+ (LEApcrelJT tjumptable:$dst, imm:$id)>;
+
+// TODO: add,sub,and, 3-instr forms?
+
+// Tail calls. These patterns also apply to Thumb mode.
+def : Pat<(ARMtcret tcGPR:$dst), (TCRETURNri tcGPR:$dst)>;
+def : Pat<(ARMtcret (i32 tglobaladdr:$dst)), (TCRETURNdi texternalsym:$dst)>;
+def : Pat<(ARMtcret (i32 texternalsym:$dst)), (TCRETURNdi texternalsym:$dst)>;
+
+// Direct calls
+def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>;
+def : ARMPat<(ARMcall_nolink texternalsym:$func),
+ (BMOVPCB_CALL texternalsym:$func)>;
+
+// zextload i1 -> zextload i8
+def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
+def : ARMPat<(zextloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
+
+// extload -> zextload
+def : ARMPat<(extloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
+def : ARMPat<(extloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
+def : ARMPat<(extloadi8 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
+def : ARMPat<(extloadi8 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
+
+def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>;
+
+def : ARMPat<(extloadi8 addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>;
+def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>;
+
+// smul* and smla*
+def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
+ (sra (shl GPR:$b, (i32 16)), (i32 16))),
+ (SMULBB GPR:$a, GPR:$b)>;
+def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b),
+ (SMULBB GPR:$a, GPR:$b)>;
+def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
+ (sra GPR:$b, (i32 16))),
+ (SMULBT GPR:$a, GPR:$b)>;
+def : ARMV5TEPat<(mul sext_16_node:$a, (sra GPR:$b, (i32 16))),
+ (SMULBT GPR:$a, GPR:$b)>;
+def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)),
+ (sra (shl GPR:$b, (i32 16)), (i32 16))),
+ (SMULTB GPR:$a, GPR:$b)>;
+def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), sext_16_node:$b),
+ (SMULTB GPR:$a, GPR:$b)>;
+def : ARMV5TEPat<(sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))),
+ (i32 16)),
+ (SMULWB GPR:$a, GPR:$b)>;
+def : ARMV5TEPat<(sra (mul GPR:$a, sext_16_node:$b), (i32 16)),
+ (SMULWB GPR:$a, GPR:$b)>;
+
+def : ARMV5MOPat<(add GPR:$acc,
+ (mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
+ (sra (shl GPR:$b, (i32 16)), (i32 16)))),
+ (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
+def : ARMV5MOPat<(add GPR:$acc,
+ (mul sext_16_node:$a, sext_16_node:$b)),
+ (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
+def : ARMV5MOPat<(add GPR:$acc,
+ (mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
+ (sra GPR:$b, (i32 16)))),
+ (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
+def : ARMV5MOPat<(add GPR:$acc,
+ (mul sext_16_node:$a, (sra GPR:$b, (i32 16)))),
+ (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
+def : ARMV5MOPat<(add GPR:$acc,
+ (mul (sra GPR:$a, (i32 16)),
+ (sra (shl GPR:$b, (i32 16)), (i32 16)))),
+ (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
+def : ARMV5MOPat<(add GPR:$acc,
+ (mul (sra GPR:$a, (i32 16)), sext_16_node:$b)),
+ (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
+def : ARMV5MOPat<(add GPR:$acc,
+ (sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))),
+ (i32 16))),
+ (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
+def : ARMV5MOPat<(add GPR:$acc,
+ (sra (mul GPR:$a, sext_16_node:$b), (i32 16))),
+ (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
+
+
+// Pre-v7 uses MCR for synchronization barriers.
+def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>,
+ Requires<[IsARM, HasV6]>;
+
+// SXT/UXT with no rotate
+let AddedComplexity = 16 in {
+def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>;
+def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>;
+def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>;
+def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)),
+ (UXTAB GPR:$Rn, GPR:$Rm, 0)>;
+def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)),
+ (UXTAH GPR:$Rn, GPR:$Rm, 0)>;
+}
+
+def : ARMV6Pat<(sext_inreg GPR:$Src, i8), (SXTB GPR:$Src, 0)>;
+def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>;
+
+def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)),
+ (SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>;
+def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)),
+ (SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>;
+
+// Atomic load/store patterns
+def : ARMPat<(atomic_load_8 ldst_so_reg:$src),
+ (LDRBrs ldst_so_reg:$src)>;
+def : ARMPat<(atomic_load_8 addrmode_imm12:$src),
+ (LDRBi12 addrmode_imm12:$src)>;
+def : ARMPat<(atomic_load_16 addrmode3:$src),
+ (LDRH addrmode3:$src)>;
+def : ARMPat<(atomic_load_32 ldst_so_reg:$src),
+ (LDRrs ldst_so_reg:$src)>;
+def : ARMPat<(atomic_load_32 addrmode_imm12:$src),
+ (LDRi12 addrmode_imm12:$src)>;
+def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val),
+ (STRBrs GPR:$val, ldst_so_reg:$ptr)>;
+def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val),
+ (STRBi12 GPR:$val, addrmode_imm12:$ptr)>;
+def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val),
+ (STRH GPR:$val, addrmode3:$ptr)>;
+def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val),
+ (STRrs GPR:$val, ldst_so_reg:$ptr)>;
+def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val),
+ (STRi12 GPR:$val, addrmode_imm12:$ptr)>;
+
+
+//===----------------------------------------------------------------------===//
+// Thumb Support
+//
+
+include "ARMInstrThumb.td"
+
+//===----------------------------------------------------------------------===//
+// Thumb2 Support
+//
+
+include "ARMInstrThumb2.td"
+
+//===----------------------------------------------------------------------===//
+// Floating Point Support
+//
+
+include "ARMInstrVFP.td"
+
+//===----------------------------------------------------------------------===//
+// Advanced SIMD (NEON) Support
+//
+
+include "ARMInstrNEON.td"
+
+//===----------------------------------------------------------------------===//
+// Assembler aliases
+//
+
+// Memory barriers
+def : InstAlias<"dmb", (DMB 0xf)>, Requires<[IsARM, HasDB]>;
+def : InstAlias<"dsb", (DSB 0xf)>, Requires<[IsARM, HasDB]>;
+def : InstAlias<"isb", (ISB 0xf)>, Requires<[IsARM, HasDB]>;
+
+// System instructions
+def : MnemonicAlias<"swi", "svc">;
+
+// Load / Store Multiple
+def : MnemonicAlias<"ldmfd", "ldm">;
+def : MnemonicAlias<"ldmia", "ldm">;
+def : MnemonicAlias<"ldmea", "ldmdb">;
+def : MnemonicAlias<"stmfd", "stmdb">;
+def : MnemonicAlias<"stmia", "stm">;
+def : MnemonicAlias<"stmea", "stm">;
+
+// PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT when the
+// shift amount is zero (i.e., unspecified).
+def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm",
+ (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p)>,
+ Requires<[IsARM, HasV6]>;
+def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm",
+ (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p)>,
+ Requires<[IsARM, HasV6]>;
+
+// PUSH/POP aliases for STM/LDM
+def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>;
+def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>;
+
+// SSAT/USAT optional shift operand.
+def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn",
+ (SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
+def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn",
+ (USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
+
+
+// Extend instruction optional rotate operand.
+def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm",
+ (SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
+def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm",
+ (SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
+def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm",
+ (SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
+def : ARMInstAlias<"sxtb${p} $Rd, $Rm",
+ (SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
+def : ARMInstAlias<"sxtb16${p} $Rd, $Rm",
+ (SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
+def : ARMInstAlias<"sxth${p} $Rd, $Rm",
+ (SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
+
+def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm",
+ (UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
+def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm",
+ (UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
+def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm",
+ (UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
+def : ARMInstAlias<"uxtb${p} $Rd, $Rm",
+ (UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
+def : ARMInstAlias<"uxtb16${p} $Rd, $Rm",
+ (UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
+def : ARMInstAlias<"uxth${p} $Rd, $Rm",
+ (UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
+
+
+// RFE aliases
+def : MnemonicAlias<"rfefa", "rfeda">;
+def : MnemonicAlias<"rfeea", "rfedb">;
+def : MnemonicAlias<"rfefd", "rfeia">;
+def : MnemonicAlias<"rfeed", "rfeib">;
+def : MnemonicAlias<"rfe", "rfeia">;
+
+// SRS aliases
+def : MnemonicAlias<"srsfa", "srsib">;
+def : MnemonicAlias<"srsea", "srsia">;
+def : MnemonicAlias<"srsfd", "srsdb">;
+def : MnemonicAlias<"srsed", "srsda">;
+def : MnemonicAlias<"srs", "srsia">;
+
+// QSAX == QSUBADDX
+def : MnemonicAlias<"qsubaddx", "qsax">;
+// SASX == SADDSUBX
+def : MnemonicAlias<"saddsubx", "sasx">;
+// SHASX == SHADDSUBX
+def : MnemonicAlias<"shaddsubx", "shasx">;
+// SHSAX == SHSUBADDX
+def : MnemonicAlias<"shsubaddx", "shsax">;
+// SSAX == SSUBADDX
+def : MnemonicAlias<"ssubaddx", "ssax">;
+// UASX == UADDSUBX
+def : MnemonicAlias<"uaddsubx", "uasx">;
+// UHASX == UHADDSUBX
+def : MnemonicAlias<"uhaddsubx", "uhasx">;
+// UHSAX == UHSUBADDX
+def : MnemonicAlias<"uhsubaddx", "uhsax">;
+// UQASX == UQADDSUBX
+def : MnemonicAlias<"uqaddsubx", "uqasx">;
+// UQSAX == UQSUBADDX
+def : MnemonicAlias<"uqsubaddx", "uqsax">;
+// USAX == USUBADDX
+def : MnemonicAlias<"usubaddx", "usax">;
+
+// "mov Rd, so_imm_not" can be handled via "mvn" in assembly, just like
+// for isel.
+def : ARMInstAlias<"mov${s}${p} $Rd, $imm",
+ (MVNi rGPR:$Rd, so_imm_not:$imm, pred:$p, cc_out:$s)>;
+def : ARMInstAlias<"mvn${s}${p} $Rd, $imm",
+ (MOVi rGPR:$Rd, so_imm_not:$imm, pred:$p, cc_out:$s)>;
+// Same for AND <--> BIC
+def : ARMInstAlias<"bic${s}${p} $Rd, $Rn, $imm",
+ (ANDri rGPR:$Rd, rGPR:$Rn, so_imm_not:$imm,
+ pred:$p, cc_out:$s)>;
+def : ARMInstAlias<"bic${s}${p} $Rdn, $imm",
+ (ANDri rGPR:$Rdn, rGPR:$Rdn, so_imm_not:$imm,
+ pred:$p, cc_out:$s)>;
+def : ARMInstAlias<"and${s}${p} $Rd, $Rn, $imm",
+ (BICri rGPR:$Rd, rGPR:$Rn, so_imm_not:$imm,
+ pred:$p, cc_out:$s)>;
+def : ARMInstAlias<"and${s}${p} $Rdn, $imm",
+ (BICri rGPR:$Rdn, rGPR:$Rdn, so_imm_not:$imm,
+ pred:$p, cc_out:$s)>;
+
+// Likewise, "add Rd, so_imm_neg" -> sub
+def : ARMInstAlias<"add${s}${p} $Rd, $Rn, $imm",
+ (SUBri GPR:$Rd, GPR:$Rn, so_imm_neg:$imm, pred:$p, cc_out:$s)>;
+def : ARMInstAlias<"add${s}${p} $Rd, $imm",
+ (SUBri GPR:$Rd, GPR:$Rd, so_imm_neg:$imm, pred:$p, cc_out:$s)>;
+// Same for CMP <--> CMN via so_imm_neg
+def : ARMInstAlias<"cmp${p} $Rd, $imm",
+ (CMNri rGPR:$Rd, so_imm_neg:$imm, pred:$p)>;
+def : ARMInstAlias<"cmn${p} $Rd, $imm",
+ (CMPri rGPR:$Rd, so_imm_neg:$imm, pred:$p)>;
+
+// The shifter forms of the MOV instruction are aliased to the ASR, LSL,
+// LSR, ROR, and RRX instructions.
+// FIXME: We need C++ parser hooks to map the alias to the MOV
+// encoding. It seems we should be able to do that sort of thing
+// in tblgen, but it could get ugly.
+let TwoOperandAliasConstraint = "$Rm = $Rd" in {
+def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm",
+ (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
+ cc_out:$s)>;
+def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm",
+ (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
+ cc_out:$s)>;
+def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm",
+ (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
+ cc_out:$s)>;
+def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm",
+ (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
+ cc_out:$s)>;
+}
+def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm",
+ (ins GPR:$Rd, GPR:$Rm, pred:$p, cc_out:$s)>;
+let TwoOperandAliasConstraint = "$Rn = $Rd" in {
+def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm",
+ (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
+ cc_out:$s)>;
+def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm",
+ (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
+ cc_out:$s)>;
+def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm",
+ (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
+ cc_out:$s)>;
+def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm",
+ (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
+ cc_out:$s)>;
+}
+
+// "neg" is and alias for "rsb rd, rn, #0"
+def : ARMInstAlias<"neg${s}${p} $Rd, $Rm",
+ (RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>;
+
+// Pre-v6, 'mov r0, r0' was used as a NOP encoding.
+def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg)>,
+ Requires<[IsARM, NoV6]>;
+
+// MUL/UMLAL/SMLAL/UMULL/SMULL are available on all arches, but
+// the instruction definitions need difference constraints pre-v6.
+// Use these aliases for the assembly parsing on pre-v6.
+def : InstAlias<"mul${s}${p} $Rd, $Rn, $Rm",
+ (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6]>;
+def : InstAlias<"mla${s}${p} $Rd, $Rn, $Rm, $Ra",
+ (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
+ pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6]>;
+def : InstAlias<"smlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
+ (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6]>;
+def : InstAlias<"umlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
+ (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6]>;
+def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
+ (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6]>;
+def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
+ (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
+ Requires<[IsARM, NoV6]>;
+
+// 'it' blocks in ARM mode just validate the predicates. The IT itself
+// is discarded.
+def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>,
+ ComplexDeprecationPredicate<"IT">;
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrNEON.td b/contrib/llvm/lib/Target/ARM/ARMInstrNEON.td
new file mode 100644
index 0000000..c02bb3b
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrNEON.td
@@ -0,0 +1,7626 @@
+//===-- ARMInstrNEON.td - NEON support for ARM -------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the ARM NEON instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// NEON-specific Operands.
+//===----------------------------------------------------------------------===//
+def nModImm : Operand<i32> {
+ let PrintMethod = "printNEONModImmOperand";
+}
+
+def nImmSplatI8AsmOperand : AsmOperandClass { let Name = "NEONi8splat"; }
+def nImmSplatI8 : Operand<i32> {
+ let PrintMethod = "printNEONModImmOperand";
+ let ParserMatchClass = nImmSplatI8AsmOperand;
+}
+def nImmSplatI16AsmOperand : AsmOperandClass { let Name = "NEONi16splat"; }
+def nImmSplatI16 : Operand<i32> {
+ let PrintMethod = "printNEONModImmOperand";
+ let ParserMatchClass = nImmSplatI16AsmOperand;
+}
+def nImmSplatI32AsmOperand : AsmOperandClass { let Name = "NEONi32splat"; }
+def nImmSplatI32 : Operand<i32> {
+ let PrintMethod = "printNEONModImmOperand";
+ let ParserMatchClass = nImmSplatI32AsmOperand;
+}
+def nImmVMOVI32AsmOperand : AsmOperandClass { let Name = "NEONi32vmov"; }
+def nImmVMOVI32 : Operand<i32> {
+ let PrintMethod = "printNEONModImmOperand";
+ let ParserMatchClass = nImmVMOVI32AsmOperand;
+}
+
+def nImmVMOVI16AsmOperandByteReplicate :
+ AsmOperandClass {
+ let Name = "NEONi16vmovByteReplicate";
+ let PredicateMethod = "isNEONi16ByteReplicate";
+ let RenderMethod = "addNEONvmovByteReplicateOperands";
+}
+def nImmVMOVI32AsmOperandByteReplicate :
+ AsmOperandClass {
+ let Name = "NEONi32vmovByteReplicate";
+ let PredicateMethod = "isNEONi32ByteReplicate";
+ let RenderMethod = "addNEONvmovByteReplicateOperands";
+}
+def nImmVMVNI16AsmOperandByteReplicate :
+ AsmOperandClass {
+ let Name = "NEONi16invByteReplicate";
+ let PredicateMethod = "isNEONi16ByteReplicate";
+ let RenderMethod = "addNEONinvByteReplicateOperands";
+}
+def nImmVMVNI32AsmOperandByteReplicate :
+ AsmOperandClass {
+ let Name = "NEONi32invByteReplicate";
+ let PredicateMethod = "isNEONi32ByteReplicate";
+ let RenderMethod = "addNEONinvByteReplicateOperands";
+}
+
+def nImmVMOVI16ByteReplicate : Operand<i32> {
+ let PrintMethod = "printNEONModImmOperand";
+ let ParserMatchClass = nImmVMOVI16AsmOperandByteReplicate;
+}
+def nImmVMOVI32ByteReplicate : Operand<i32> {
+ let PrintMethod = "printNEONModImmOperand";
+ let ParserMatchClass = nImmVMOVI32AsmOperandByteReplicate;
+}
+def nImmVMVNI16ByteReplicate : Operand<i32> {
+ let PrintMethod = "printNEONModImmOperand";
+ let ParserMatchClass = nImmVMVNI16AsmOperandByteReplicate;
+}
+def nImmVMVNI32ByteReplicate : Operand<i32> {
+ let PrintMethod = "printNEONModImmOperand";
+ let ParserMatchClass = nImmVMVNI32AsmOperandByteReplicate;
+}
+
+def nImmVMOVI32NegAsmOperand : AsmOperandClass { let Name = "NEONi32vmovNeg"; }
+def nImmVMOVI32Neg : Operand<i32> {
+ let PrintMethod = "printNEONModImmOperand";
+ let ParserMatchClass = nImmVMOVI32NegAsmOperand;
+}
+def nImmVMOVF32 : Operand<i32> {
+ let PrintMethod = "printFPImmOperand";
+ let ParserMatchClass = FPImmOperand;
+}
+def nImmSplatI64AsmOperand : AsmOperandClass { let Name = "NEONi64splat"; }
+def nImmSplatI64 : Operand<i32> {
+ let PrintMethod = "printNEONModImmOperand";
+ let ParserMatchClass = nImmSplatI64AsmOperand;
+}
+
+def VectorIndex8Operand : AsmOperandClass { let Name = "VectorIndex8"; }
+def VectorIndex16Operand : AsmOperandClass { let Name = "VectorIndex16"; }
+def VectorIndex32Operand : AsmOperandClass { let Name = "VectorIndex32"; }
+def VectorIndex8 : Operand<i32>, ImmLeaf<i32, [{
+ return ((uint64_t)Imm) < 8;
+}]> {
+ let ParserMatchClass = VectorIndex8Operand;
+ let PrintMethod = "printVectorIndex";
+ let MIOperandInfo = (ops i32imm);
+}
+def VectorIndex16 : Operand<i32>, ImmLeaf<i32, [{
+ return ((uint64_t)Imm) < 4;
+}]> {
+ let ParserMatchClass = VectorIndex16Operand;
+ let PrintMethod = "printVectorIndex";
+ let MIOperandInfo = (ops i32imm);
+}
+def VectorIndex32 : Operand<i32>, ImmLeaf<i32, [{
+ return ((uint64_t)Imm) < 2;
+}]> {
+ let ParserMatchClass = VectorIndex32Operand;
+ let PrintMethod = "printVectorIndex";
+ let MIOperandInfo = (ops i32imm);
+}
+
+// Register list of one D register.
+def VecListOneDAsmOperand : AsmOperandClass {
+ let Name = "VecListOneD";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListOneD : RegisterOperand<DPR, "printVectorListOne"> {
+ let ParserMatchClass = VecListOneDAsmOperand;
+}
+// Register list of two sequential D registers.
+def VecListDPairAsmOperand : AsmOperandClass {
+ let Name = "VecListDPair";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListDPair : RegisterOperand<DPair, "printVectorListTwo"> {
+ let ParserMatchClass = VecListDPairAsmOperand;
+}
+// Register list of three sequential D registers.
+def VecListThreeDAsmOperand : AsmOperandClass {
+ let Name = "VecListThreeD";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListThreeD : RegisterOperand<DPR, "printVectorListThree"> {
+ let ParserMatchClass = VecListThreeDAsmOperand;
+}
+// Register list of four sequential D registers.
+def VecListFourDAsmOperand : AsmOperandClass {
+ let Name = "VecListFourD";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListFourD : RegisterOperand<DPR, "printVectorListFour"> {
+ let ParserMatchClass = VecListFourDAsmOperand;
+}
+// Register list of two D registers spaced by 2 (two sequential Q registers).
+def VecListDPairSpacedAsmOperand : AsmOperandClass {
+ let Name = "VecListDPairSpaced";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListDPairSpaced : RegisterOperand<DPair, "printVectorListTwoSpaced"> {
+ let ParserMatchClass = VecListDPairSpacedAsmOperand;
+}
+// Register list of three D registers spaced by 2 (three Q registers).
+def VecListThreeQAsmOperand : AsmOperandClass {
+ let Name = "VecListThreeQ";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListThreeQ : RegisterOperand<DPR, "printVectorListThreeSpaced"> {
+ let ParserMatchClass = VecListThreeQAsmOperand;
+}
+// Register list of three D registers spaced by 2 (three Q registers).
+def VecListFourQAsmOperand : AsmOperandClass {
+ let Name = "VecListFourQ";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListFourQ : RegisterOperand<DPR, "printVectorListFourSpaced"> {
+ let ParserMatchClass = VecListFourQAsmOperand;
+}
+
+// Register list of one D register, with "all lanes" subscripting.
+def VecListOneDAllLanesAsmOperand : AsmOperandClass {
+ let Name = "VecListOneDAllLanes";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListOneDAllLanes : RegisterOperand<DPR, "printVectorListOneAllLanes"> {
+ let ParserMatchClass = VecListOneDAllLanesAsmOperand;
+}
+// Register list of two D registers, with "all lanes" subscripting.
+def VecListDPairAllLanesAsmOperand : AsmOperandClass {
+ let Name = "VecListDPairAllLanes";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListDPairAllLanes : RegisterOperand<DPair,
+ "printVectorListTwoAllLanes"> {
+ let ParserMatchClass = VecListDPairAllLanesAsmOperand;
+}
+// Register list of two D registers spaced by 2 (two sequential Q registers).
+def VecListDPairSpacedAllLanesAsmOperand : AsmOperandClass {
+ let Name = "VecListDPairSpacedAllLanes";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListDPairSpacedAllLanes : RegisterOperand<DPair,
+ "printVectorListTwoSpacedAllLanes"> {
+ let ParserMatchClass = VecListDPairSpacedAllLanesAsmOperand;
+}
+// Register list of three D registers, with "all lanes" subscripting.
+def VecListThreeDAllLanesAsmOperand : AsmOperandClass {
+ let Name = "VecListThreeDAllLanes";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListThreeDAllLanes : RegisterOperand<DPR,
+ "printVectorListThreeAllLanes"> {
+ let ParserMatchClass = VecListThreeDAllLanesAsmOperand;
+}
+// Register list of three D registers spaced by 2 (three sequential Q regs).
+def VecListThreeQAllLanesAsmOperand : AsmOperandClass {
+ let Name = "VecListThreeQAllLanes";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListThreeQAllLanes : RegisterOperand<DPR,
+ "printVectorListThreeSpacedAllLanes"> {
+ let ParserMatchClass = VecListThreeQAllLanesAsmOperand;
+}
+// Register list of four D registers, with "all lanes" subscripting.
+def VecListFourDAllLanesAsmOperand : AsmOperandClass {
+ let Name = "VecListFourDAllLanes";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListFourDAllLanes : RegisterOperand<DPR, "printVectorListFourAllLanes"> {
+ let ParserMatchClass = VecListFourDAllLanesAsmOperand;
+}
+// Register list of four D registers spaced by 2 (four sequential Q regs).
+def VecListFourQAllLanesAsmOperand : AsmOperandClass {
+ let Name = "VecListFourQAllLanes";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListOperands";
+}
+def VecListFourQAllLanes : RegisterOperand<DPR,
+ "printVectorListFourSpacedAllLanes"> {
+ let ParserMatchClass = VecListFourQAllLanesAsmOperand;
+}
+
+
+// Register list of one D register, with byte lane subscripting.
+def VecListOneDByteIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListOneDByteIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListOneDByteIndexed : Operand<i32> {
+ let ParserMatchClass = VecListOneDByteIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// ...with half-word lane subscripting.
+def VecListOneDHWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListOneDHWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListOneDHWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListOneDHWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// ...with word lane subscripting.
+def VecListOneDWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListOneDWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListOneDWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListOneDWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+
+// Register list of two D registers with byte lane subscripting.
+def VecListTwoDByteIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListTwoDByteIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListTwoDByteIndexed : Operand<i32> {
+ let ParserMatchClass = VecListTwoDByteIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// ...with half-word lane subscripting.
+def VecListTwoDHWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListTwoDHWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListTwoDHWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListTwoDHWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// ...with word lane subscripting.
+def VecListTwoDWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListTwoDWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListTwoDWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListTwoDWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// Register list of two Q registers with half-word lane subscripting.
+def VecListTwoQHWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListTwoQHWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListTwoQHWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListTwoQHWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// ...with word lane subscripting.
+def VecListTwoQWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListTwoQWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListTwoQWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListTwoQWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+
+
+// Register list of three D registers with byte lane subscripting.
+def VecListThreeDByteIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListThreeDByteIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListThreeDByteIndexed : Operand<i32> {
+ let ParserMatchClass = VecListThreeDByteIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// ...with half-word lane subscripting.
+def VecListThreeDHWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListThreeDHWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListThreeDHWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListThreeDHWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// ...with word lane subscripting.
+def VecListThreeDWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListThreeDWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListThreeDWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListThreeDWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// Register list of three Q registers with half-word lane subscripting.
+def VecListThreeQHWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListThreeQHWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListThreeQHWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListThreeQHWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// ...with word lane subscripting.
+def VecListThreeQWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListThreeQWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListThreeQWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListThreeQWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+
+// Register list of four D registers with byte lane subscripting.
+def VecListFourDByteIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListFourDByteIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListFourDByteIndexed : Operand<i32> {
+ let ParserMatchClass = VecListFourDByteIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// ...with half-word lane subscripting.
+def VecListFourDHWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListFourDHWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListFourDHWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListFourDHWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// ...with word lane subscripting.
+def VecListFourDWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListFourDWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListFourDWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListFourDWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// Register list of four Q registers with half-word lane subscripting.
+def VecListFourQHWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListFourQHWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListFourQHWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListFourQHWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+// ...with word lane subscripting.
+def VecListFourQWordIndexAsmOperand : AsmOperandClass {
+ let Name = "VecListFourQWordIndexed";
+ let ParserMethod = "parseVectorList";
+ let RenderMethod = "addVecListIndexedOperands";
+}
+def VecListFourQWordIndexed : Operand<i32> {
+ let ParserMatchClass = VecListFourQWordIndexAsmOperand;
+ let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx);
+}
+
+def dword_alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() >= 8;
+}]>;
+def dword_alignedstore : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getAlignment() >= 8;
+}]>;
+def word_alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() == 4;
+}]>;
+def word_alignedstore : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getAlignment() == 4;
+}]>;
+def hword_alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() == 2;
+}]>;
+def hword_alignedstore : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getAlignment() == 2;
+}]>;
+def byte_alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() == 1;
+}]>;
+def byte_alignedstore : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getAlignment() == 1;
+}]>;
+def non_word_alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() < 4;
+}]>;
+def non_word_alignedstore : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getAlignment() < 4;
+}]>;
+
+//===----------------------------------------------------------------------===//
+// NEON-specific DAG Nodes.
+//===----------------------------------------------------------------------===//
+
+def SDTARMVCMP : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<1, 2>]>;
+def SDTARMVCMPZ : SDTypeProfile<1, 1, []>;
+
+def NEONvceq : SDNode<"ARMISD::VCEQ", SDTARMVCMP>;
+def NEONvceqz : SDNode<"ARMISD::VCEQZ", SDTARMVCMPZ>;
+def NEONvcge : SDNode<"ARMISD::VCGE", SDTARMVCMP>;
+def NEONvcgez : SDNode<"ARMISD::VCGEZ", SDTARMVCMPZ>;
+def NEONvclez : SDNode<"ARMISD::VCLEZ", SDTARMVCMPZ>;
+def NEONvcgeu : SDNode<"ARMISD::VCGEU", SDTARMVCMP>;
+def NEONvcgt : SDNode<"ARMISD::VCGT", SDTARMVCMP>;
+def NEONvcgtz : SDNode<"ARMISD::VCGTZ", SDTARMVCMPZ>;
+def NEONvcltz : SDNode<"ARMISD::VCLTZ", SDTARMVCMPZ>;
+def NEONvcgtu : SDNode<"ARMISD::VCGTU", SDTARMVCMP>;
+def NEONvtst : SDNode<"ARMISD::VTST", SDTARMVCMP>;
+
+// Types for vector shift by immediates. The "SHX" version is for long and
+// narrow operations where the source and destination vectors have different
+// types. The "SHINS" version is for shift and insert operations.
+def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
+ SDTCisVT<2, i32>]>;
+def SDTARMVSHX : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
+ SDTCisVT<2, i32>]>;
+def SDTARMVSHINS : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>, SDTCisVT<3, i32>]>;
+
+def NEONvshl : SDNode<"ARMISD::VSHL", SDTARMVSH>;
+def NEONvshrs : SDNode<"ARMISD::VSHRs", SDTARMVSH>;
+def NEONvshru : SDNode<"ARMISD::VSHRu", SDTARMVSH>;
+def NEONvshrn : SDNode<"ARMISD::VSHRN", SDTARMVSHX>;
+
+def NEONvrshrs : SDNode<"ARMISD::VRSHRs", SDTARMVSH>;
+def NEONvrshru : SDNode<"ARMISD::VRSHRu", SDTARMVSH>;
+def NEONvrshrn : SDNode<"ARMISD::VRSHRN", SDTARMVSHX>;
+
+def NEONvqshls : SDNode<"ARMISD::VQSHLs", SDTARMVSH>;
+def NEONvqshlu : SDNode<"ARMISD::VQSHLu", SDTARMVSH>;
+def NEONvqshlsu : SDNode<"ARMISD::VQSHLsu", SDTARMVSH>;
+def NEONvqshrns : SDNode<"ARMISD::VQSHRNs", SDTARMVSHX>;
+def NEONvqshrnu : SDNode<"ARMISD::VQSHRNu", SDTARMVSHX>;
+def NEONvqshrnsu : SDNode<"ARMISD::VQSHRNsu", SDTARMVSHX>;
+
+def NEONvqrshrns : SDNode<"ARMISD::VQRSHRNs", SDTARMVSHX>;
+def NEONvqrshrnu : SDNode<"ARMISD::VQRSHRNu", SDTARMVSHX>;
+def NEONvqrshrnsu : SDNode<"ARMISD::VQRSHRNsu", SDTARMVSHX>;
+
+def NEONvsli : SDNode<"ARMISD::VSLI", SDTARMVSHINS>;
+def NEONvsri : SDNode<"ARMISD::VSRI", SDTARMVSHINS>;
+
+def SDTARMVGETLN : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisInt<1>,
+ SDTCisVT<2, i32>]>;
+def NEONvgetlaneu : SDNode<"ARMISD::VGETLANEu", SDTARMVGETLN>;
+def NEONvgetlanes : SDNode<"ARMISD::VGETLANEs", SDTARMVGETLN>;
+
+def SDTARMVMOVIMM : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
+def NEONvmovImm : SDNode<"ARMISD::VMOVIMM", SDTARMVMOVIMM>;
+def NEONvmvnImm : SDNode<"ARMISD::VMVNIMM", SDTARMVMOVIMM>;
+def NEONvmovFPImm : SDNode<"ARMISD::VMOVFPIMM", SDTARMVMOVIMM>;
+
+def SDTARMVORRIMM : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
+ SDTCisVT<2, i32>]>;
+def NEONvorrImm : SDNode<"ARMISD::VORRIMM", SDTARMVORRIMM>;
+def NEONvbicImm : SDNode<"ARMISD::VBICIMM", SDTARMVORRIMM>;
+
+def NEONvbsl : SDNode<"ARMISD::VBSL",
+ SDTypeProfile<1, 3, [SDTCisVec<0>,
+ SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>,
+ SDTCisSameAs<0, 3>]>>;
+
+def NEONvdup : SDNode<"ARMISD::VDUP", SDTypeProfile<1, 1, [SDTCisVec<0>]>>;
+
+// VDUPLANE can produce a quad-register result from a double-register source,
+// so the result is not constrained to match the source.
+def NEONvduplane : SDNode<"ARMISD::VDUPLANE",
+ SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
+ SDTCisVT<2, i32>]>>;
+
+def SDTARMVEXT : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>, SDTCisVT<3, i32>]>;
+def NEONvext : SDNode<"ARMISD::VEXT", SDTARMVEXT>;
+
+def SDTARMVSHUF : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
+def NEONvrev64 : SDNode<"ARMISD::VREV64", SDTARMVSHUF>;
+def NEONvrev32 : SDNode<"ARMISD::VREV32", SDTARMVSHUF>;
+def NEONvrev16 : SDNode<"ARMISD::VREV16", SDTARMVSHUF>;
+
+def SDTARMVSHUF2 : SDTypeProfile<2, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>,
+ SDTCisSameAs<0, 3>]>;
+def NEONzip : SDNode<"ARMISD::VZIP", SDTARMVSHUF2>;
+def NEONuzp : SDNode<"ARMISD::VUZP", SDTARMVSHUF2>;
+def NEONtrn : SDNode<"ARMISD::VTRN", SDTARMVSHUF2>;
+
+def SDTARMVMULL : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
+ SDTCisSameAs<1, 2>]>;
+def NEONvmulls : SDNode<"ARMISD::VMULLs", SDTARMVMULL>;
+def NEONvmullu : SDNode<"ARMISD::VMULLu", SDTARMVMULL>;
+
+def SDTARMFMAX : SDTypeProfile<1, 2, [SDTCisVT<0, f32>, SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>]>;
+def NEONfmax : SDNode<"ARMISD::FMAX", SDTARMFMAX>;
+def NEONfmin : SDNode<"ARMISD::FMIN", SDTARMFMAX>;
+
+def NEONimmAllZerosV: PatLeaf<(NEONvmovImm (i32 timm)), [{
+ ConstantSDNode *ConstVal = cast<ConstantSDNode>(N->getOperand(0));
+ unsigned EltBits = 0;
+ uint64_t EltVal = ARM_AM::decodeNEONModImm(ConstVal->getZExtValue(), EltBits);
+ return (EltBits == 32 && EltVal == 0);
+}]>;
+
+def NEONimmAllOnesV: PatLeaf<(NEONvmovImm (i32 timm)), [{
+ ConstantSDNode *ConstVal = cast<ConstantSDNode>(N->getOperand(0));
+ unsigned EltBits = 0;
+ uint64_t EltVal = ARM_AM::decodeNEONModImm(ConstVal->getZExtValue(), EltBits);
+ return (EltBits == 8 && EltVal == 0xff);
+}]>;
+
+//===----------------------------------------------------------------------===//
+// NEON load / store instructions
+//===----------------------------------------------------------------------===//
+
+// Use VLDM to load a Q register as a D register pair.
+// This is a pseudo instruction that is expanded to VLDMD after reg alloc.
+def VLDMQIA
+ : PseudoVFPLdStM<(outs DPair:$dst), (ins GPR:$Rn),
+ IIC_fpLoad_m, "",
+ [(set DPair:$dst, (v2f64 (load GPR:$Rn)))]>;
+
+// Use VSTM to store a Q register as a D register pair.
+// This is a pseudo instruction that is expanded to VSTMD after reg alloc.
+def VSTMQIA
+ : PseudoVFPLdStM<(outs), (ins DPair:$src, GPR:$Rn),
+ IIC_fpStore_m, "",
+ [(store (v2f64 DPair:$src), GPR:$Rn)]>;
+
+// Classes for VLD* pseudo-instructions with multi-register operands.
+// These are expanded to real instructions after register allocation.
+class VLDQPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QPR:$dst), (ins addrmode6:$addr), itin, "">;
+class VLDQWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QPR:$dst, GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset), itin,
+ "$addr.addr = $wb">;
+class VLDQWBfixedPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QPR:$dst, GPR:$wb),
+ (ins addrmode6:$addr), itin,
+ "$addr.addr = $wb">;
+class VLDQWBregisterPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QPR:$dst, GPR:$wb),
+ (ins addrmode6:$addr, rGPR:$offset), itin,
+ "$addr.addr = $wb">;
+
+class VLDQQPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QQPR:$dst), (ins addrmode6:$addr), itin, "">;
+class VLDQQWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QQPR:$dst, GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset), itin,
+ "$addr.addr = $wb">;
+class VLDQQWBfixedPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QQPR:$dst, GPR:$wb),
+ (ins addrmode6:$addr), itin,
+ "$addr.addr = $wb">;
+class VLDQQWBregisterPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QQPR:$dst, GPR:$wb),
+ (ins addrmode6:$addr, rGPR:$offset), itin,
+ "$addr.addr = $wb">;
+
+
+class VLDQQQQPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QQQQPR:$dst), (ins addrmode6:$addr, QQQQPR:$src),itin,
+ "$src = $dst">;
+class VLDQQQQWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QQQQPR:$dst, GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src), itin,
+ "$addr.addr = $wb, $src = $dst">;
+
+let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
+
+// VLD1 : Vector Load (multiple single elements)
+class VLD1D<bits<4> op7_4, string Dt, Operand AddrMode>
+ : NLdSt<0,0b10,0b0111,op7_4, (outs VecListOneD:$Vd),
+ (ins AddrMode:$Rn), IIC_VLD1,
+ "vld1", Dt, "$Vd, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+}
+class VLD1Q<bits<4> op7_4, string Dt, Operand AddrMode>
+ : NLdSt<0,0b10,0b1010,op7_4, (outs VecListDPair:$Vd),
+ (ins AddrMode:$Rn), IIC_VLD1x2,
+ "vld1", Dt, "$Vd, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+}
+
+def VLD1d8 : VLD1D<{0,0,0,?}, "8", addrmode6align64>;
+def VLD1d16 : VLD1D<{0,1,0,?}, "16", addrmode6align64>;
+def VLD1d32 : VLD1D<{1,0,0,?}, "32", addrmode6align64>;
+def VLD1d64 : VLD1D<{1,1,0,?}, "64", addrmode6align64>;
+
+def VLD1q8 : VLD1Q<{0,0,?,?}, "8", addrmode6align64or128>;
+def VLD1q16 : VLD1Q<{0,1,?,?}, "16", addrmode6align64or128>;
+def VLD1q32 : VLD1Q<{1,0,?,?}, "32", addrmode6align64or128>;
+def VLD1q64 : VLD1Q<{1,1,?,?}, "64", addrmode6align64or128>;
+
+// ...with address register writeback:
+multiclass VLD1DWB<bits<4> op7_4, string Dt, Operand AddrMode> {
+ def _fixed : NLdSt<0,0b10, 0b0111,op7_4, (outs VecListOneD:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn), IIC_VLD1u,
+ "vld1", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+ def _register : NLdSt<0,0b10,0b0111,op7_4, (outs VecListOneD:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1u,
+ "vld1", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+}
+multiclass VLD1QWB<bits<4> op7_4, string Dt, Operand AddrMode> {
+ def _fixed : NLdSt<0,0b10,0b1010,op7_4, (outs VecListDPair:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn), IIC_VLD1x2u,
+ "vld1", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+ def _register : NLdSt<0,0b10,0b1010,op7_4, (outs VecListDPair:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1x2u,
+ "vld1", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+}
+
+defm VLD1d8wb : VLD1DWB<{0,0,0,?}, "8", addrmode6align64>;
+defm VLD1d16wb : VLD1DWB<{0,1,0,?}, "16", addrmode6align64>;
+defm VLD1d32wb : VLD1DWB<{1,0,0,?}, "32", addrmode6align64>;
+defm VLD1d64wb : VLD1DWB<{1,1,0,?}, "64", addrmode6align64>;
+defm VLD1q8wb : VLD1QWB<{0,0,?,?}, "8", addrmode6align64or128>;
+defm VLD1q16wb : VLD1QWB<{0,1,?,?}, "16", addrmode6align64or128>;
+defm VLD1q32wb : VLD1QWB<{1,0,?,?}, "32", addrmode6align64or128>;
+defm VLD1q64wb : VLD1QWB<{1,1,?,?}, "64", addrmode6align64or128>;
+
+// ...with 3 registers
+class VLD1D3<bits<4> op7_4, string Dt, Operand AddrMode>
+ : NLdSt<0,0b10,0b0110,op7_4, (outs VecListThreeD:$Vd),
+ (ins AddrMode:$Rn), IIC_VLD1x3, "vld1", Dt,
+ "$Vd, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+}
+multiclass VLD1D3WB<bits<4> op7_4, string Dt, Operand AddrMode> {
+ def _fixed : NLdSt<0,0b10,0b0110, op7_4, (outs VecListThreeD:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn), IIC_VLD1x2u,
+ "vld1", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+ def _register : NLdSt<0,0b10,0b0110,op7_4, (outs VecListThreeD:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1x2u,
+ "vld1", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+}
+
+def VLD1d8T : VLD1D3<{0,0,0,?}, "8", addrmode6align64>;
+def VLD1d16T : VLD1D3<{0,1,0,?}, "16", addrmode6align64>;
+def VLD1d32T : VLD1D3<{1,0,0,?}, "32", addrmode6align64>;
+def VLD1d64T : VLD1D3<{1,1,0,?}, "64", addrmode6align64>;
+
+defm VLD1d8Twb : VLD1D3WB<{0,0,0,?}, "8", addrmode6align64>;
+defm VLD1d16Twb : VLD1D3WB<{0,1,0,?}, "16", addrmode6align64>;
+defm VLD1d32Twb : VLD1D3WB<{1,0,0,?}, "32", addrmode6align64>;
+defm VLD1d64Twb : VLD1D3WB<{1,1,0,?}, "64", addrmode6align64>;
+
+def VLD1d64TPseudo : VLDQQPseudo<IIC_VLD1x3>;
+def VLD1d64TPseudoWB_fixed : VLDQQWBfixedPseudo<IIC_VLD1x3>;
+def VLD1d64TPseudoWB_register : VLDQQWBregisterPseudo<IIC_VLD1x3>;
+
+// ...with 4 registers
+class VLD1D4<bits<4> op7_4, string Dt, Operand AddrMode>
+ : NLdSt<0, 0b10, 0b0010, op7_4, (outs VecListFourD:$Vd),
+ (ins AddrMode:$Rn), IIC_VLD1x4, "vld1", Dt,
+ "$Vd, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+}
+multiclass VLD1D4WB<bits<4> op7_4, string Dt, Operand AddrMode> {
+ def _fixed : NLdSt<0,0b10,0b0010, op7_4, (outs VecListFourD:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn), IIC_VLD1x2u,
+ "vld1", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+ def _register : NLdSt<0,0b10,0b0010,op7_4, (outs VecListFourD:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1x2u,
+ "vld1", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+}
+
+def VLD1d8Q : VLD1D4<{0,0,?,?}, "8", addrmode6align64or128or256>;
+def VLD1d16Q : VLD1D4<{0,1,?,?}, "16", addrmode6align64or128or256>;
+def VLD1d32Q : VLD1D4<{1,0,?,?}, "32", addrmode6align64or128or256>;
+def VLD1d64Q : VLD1D4<{1,1,?,?}, "64", addrmode6align64or128or256>;
+
+defm VLD1d8Qwb : VLD1D4WB<{0,0,?,?}, "8", addrmode6align64or128or256>;
+defm VLD1d16Qwb : VLD1D4WB<{0,1,?,?}, "16", addrmode6align64or128or256>;
+defm VLD1d32Qwb : VLD1D4WB<{1,0,?,?}, "32", addrmode6align64or128or256>;
+defm VLD1d64Qwb : VLD1D4WB<{1,1,?,?}, "64", addrmode6align64or128or256>;
+
+def VLD1d64QPseudo : VLDQQPseudo<IIC_VLD1x4>;
+def VLD1d64QPseudoWB_fixed : VLDQQWBfixedPseudo<IIC_VLD1x4>;
+def VLD1d64QPseudoWB_register : VLDQQWBregisterPseudo<IIC_VLD1x4>;
+
+// VLD2 : Vector Load (multiple 2-element structures)
+class VLD2<bits<4> op11_8, bits<4> op7_4, string Dt, RegisterOperand VdTy,
+ InstrItinClass itin, Operand AddrMode>
+ : NLdSt<0, 0b10, op11_8, op7_4, (outs VdTy:$Vd),
+ (ins AddrMode:$Rn), itin,
+ "vld2", Dt, "$Vd, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST2Instruction";
+}
+
+def VLD2d8 : VLD2<0b1000, {0,0,?,?}, "8", VecListDPair, IIC_VLD2,
+ addrmode6align64or128>;
+def VLD2d16 : VLD2<0b1000, {0,1,?,?}, "16", VecListDPair, IIC_VLD2,
+ addrmode6align64or128>;
+def VLD2d32 : VLD2<0b1000, {1,0,?,?}, "32", VecListDPair, IIC_VLD2,
+ addrmode6align64or128>;
+
+def VLD2q8 : VLD2<0b0011, {0,0,?,?}, "8", VecListFourD, IIC_VLD2x2,
+ addrmode6align64or128or256>;
+def VLD2q16 : VLD2<0b0011, {0,1,?,?}, "16", VecListFourD, IIC_VLD2x2,
+ addrmode6align64or128or256>;
+def VLD2q32 : VLD2<0b0011, {1,0,?,?}, "32", VecListFourD, IIC_VLD2x2,
+ addrmode6align64or128or256>;
+
+def VLD2q8Pseudo : VLDQQPseudo<IIC_VLD2x2>;
+def VLD2q16Pseudo : VLDQQPseudo<IIC_VLD2x2>;
+def VLD2q32Pseudo : VLDQQPseudo<IIC_VLD2x2>;
+
+// ...with address register writeback:
+multiclass VLD2WB<bits<4> op11_8, bits<4> op7_4, string Dt,
+ RegisterOperand VdTy, InstrItinClass itin, Operand AddrMode> {
+ def _fixed : NLdSt<0, 0b10, op11_8, op7_4, (outs VdTy:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn), itin,
+ "vld2", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST2Instruction";
+ }
+ def _register : NLdSt<0, 0b10, op11_8, op7_4, (outs VdTy:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm), itin,
+ "vld2", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST2Instruction";
+ }
+}
+
+defm VLD2d8wb : VLD2WB<0b1000, {0,0,?,?}, "8", VecListDPair, IIC_VLD2u,
+ addrmode6align64or128>;
+defm VLD2d16wb : VLD2WB<0b1000, {0,1,?,?}, "16", VecListDPair, IIC_VLD2u,
+ addrmode6align64or128>;
+defm VLD2d32wb : VLD2WB<0b1000, {1,0,?,?}, "32", VecListDPair, IIC_VLD2u,
+ addrmode6align64or128>;
+
+defm VLD2q8wb : VLD2WB<0b0011, {0,0,?,?}, "8", VecListFourD, IIC_VLD2x2u,
+ addrmode6align64or128or256>;
+defm VLD2q16wb : VLD2WB<0b0011, {0,1,?,?}, "16", VecListFourD, IIC_VLD2x2u,
+ addrmode6align64or128or256>;
+defm VLD2q32wb : VLD2WB<0b0011, {1,0,?,?}, "32", VecListFourD, IIC_VLD2x2u,
+ addrmode6align64or128or256>;
+
+def VLD2q8PseudoWB_fixed : VLDQQWBfixedPseudo<IIC_VLD2x2u>;
+def VLD2q16PseudoWB_fixed : VLDQQWBfixedPseudo<IIC_VLD2x2u>;
+def VLD2q32PseudoWB_fixed : VLDQQWBfixedPseudo<IIC_VLD2x2u>;
+def VLD2q8PseudoWB_register : VLDQQWBregisterPseudo<IIC_VLD2x2u>;
+def VLD2q16PseudoWB_register : VLDQQWBregisterPseudo<IIC_VLD2x2u>;
+def VLD2q32PseudoWB_register : VLDQQWBregisterPseudo<IIC_VLD2x2u>;
+
+// ...with double-spaced registers
+def VLD2b8 : VLD2<0b1001, {0,0,?,?}, "8", VecListDPairSpaced, IIC_VLD2,
+ addrmode6align64or128>;
+def VLD2b16 : VLD2<0b1001, {0,1,?,?}, "16", VecListDPairSpaced, IIC_VLD2,
+ addrmode6align64or128>;
+def VLD2b32 : VLD2<0b1001, {1,0,?,?}, "32", VecListDPairSpaced, IIC_VLD2,
+ addrmode6align64or128>;
+defm VLD2b8wb : VLD2WB<0b1001, {0,0,?,?}, "8", VecListDPairSpaced, IIC_VLD2u,
+ addrmode6align64or128>;
+defm VLD2b16wb : VLD2WB<0b1001, {0,1,?,?}, "16", VecListDPairSpaced, IIC_VLD2u,
+ addrmode6align64or128>;
+defm VLD2b32wb : VLD2WB<0b1001, {1,0,?,?}, "32", VecListDPairSpaced, IIC_VLD2u,
+ addrmode6align64or128>;
+
+// VLD3 : Vector Load (multiple 3-element structures)
+class VLD3D<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdSt<0, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3),
+ (ins addrmode6:$Rn), IIC_VLD3,
+ "vld3", Dt, "\\{$Vd, $dst2, $dst3\\}, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST3Instruction";
+}
+
+def VLD3d8 : VLD3D<0b0100, {0,0,0,?}, "8">;
+def VLD3d16 : VLD3D<0b0100, {0,1,0,?}, "16">;
+def VLD3d32 : VLD3D<0b0100, {1,0,0,?}, "32">;
+
+def VLD3d8Pseudo : VLDQQPseudo<IIC_VLD3>;
+def VLD3d16Pseudo : VLDQQPseudo<IIC_VLD3>;
+def VLD3d32Pseudo : VLDQQPseudo<IIC_VLD3>;
+
+// ...with address register writeback:
+class VLD3DWB<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdSt<0, 0b10, op11_8, op7_4,
+ (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, GPR:$wb),
+ (ins addrmode6:$Rn, am6offset:$Rm), IIC_VLD3u,
+ "vld3", Dt, "\\{$Vd, $dst2, $dst3\\}, $Rn$Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST3Instruction";
+}
+
+def VLD3d8_UPD : VLD3DWB<0b0100, {0,0,0,?}, "8">;
+def VLD3d16_UPD : VLD3DWB<0b0100, {0,1,0,?}, "16">;
+def VLD3d32_UPD : VLD3DWB<0b0100, {1,0,0,?}, "32">;
+
+def VLD3d8Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3u>;
+def VLD3d16Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3u>;
+def VLD3d32Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3u>;
+
+// ...with double-spaced registers:
+def VLD3q8 : VLD3D<0b0101, {0,0,0,?}, "8">;
+def VLD3q16 : VLD3D<0b0101, {0,1,0,?}, "16">;
+def VLD3q32 : VLD3D<0b0101, {1,0,0,?}, "32">;
+def VLD3q8_UPD : VLD3DWB<0b0101, {0,0,0,?}, "8">;
+def VLD3q16_UPD : VLD3DWB<0b0101, {0,1,0,?}, "16">;
+def VLD3q32_UPD : VLD3DWB<0b0101, {1,0,0,?}, "32">;
+
+def VLD3q8Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
+def VLD3q16Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
+def VLD3q32Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
+
+// ...alternate versions to be allocated odd register numbers:
+def VLD3q8oddPseudo : VLDQQQQPseudo<IIC_VLD3>;
+def VLD3q16oddPseudo : VLDQQQQPseudo<IIC_VLD3>;
+def VLD3q32oddPseudo : VLDQQQQPseudo<IIC_VLD3>;
+
+def VLD3q8oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
+def VLD3q16oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
+def VLD3q32oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
+
+// VLD4 : Vector Load (multiple 4-element structures)
+class VLD4D<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdSt<0, 0b10, op11_8, op7_4,
+ (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4),
+ (ins addrmode6:$Rn), IIC_VLD4,
+ "vld4", Dt, "\\{$Vd, $dst2, $dst3, $dst4\\}, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST4Instruction";
+}
+
+def VLD4d8 : VLD4D<0b0000, {0,0,?,?}, "8">;
+def VLD4d16 : VLD4D<0b0000, {0,1,?,?}, "16">;
+def VLD4d32 : VLD4D<0b0000, {1,0,?,?}, "32">;
+
+def VLD4d8Pseudo : VLDQQPseudo<IIC_VLD4>;
+def VLD4d16Pseudo : VLDQQPseudo<IIC_VLD4>;
+def VLD4d32Pseudo : VLDQQPseudo<IIC_VLD4>;
+
+// ...with address register writeback:
+class VLD4DWB<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdSt<0, 0b10, op11_8, op7_4,
+ (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb),
+ (ins addrmode6:$Rn, am6offset:$Rm), IIC_VLD4u,
+ "vld4", Dt, "\\{$Vd, $dst2, $dst3, $dst4\\}, $Rn$Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST4Instruction";
+}
+
+def VLD4d8_UPD : VLD4DWB<0b0000, {0,0,?,?}, "8">;
+def VLD4d16_UPD : VLD4DWB<0b0000, {0,1,?,?}, "16">;
+def VLD4d32_UPD : VLD4DWB<0b0000, {1,0,?,?}, "32">;
+
+def VLD4d8Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4u>;
+def VLD4d16Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4u>;
+def VLD4d32Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4u>;
+
+// ...with double-spaced registers:
+def VLD4q8 : VLD4D<0b0001, {0,0,?,?}, "8">;
+def VLD4q16 : VLD4D<0b0001, {0,1,?,?}, "16">;
+def VLD4q32 : VLD4D<0b0001, {1,0,?,?}, "32">;
+def VLD4q8_UPD : VLD4DWB<0b0001, {0,0,?,?}, "8">;
+def VLD4q16_UPD : VLD4DWB<0b0001, {0,1,?,?}, "16">;
+def VLD4q32_UPD : VLD4DWB<0b0001, {1,0,?,?}, "32">;
+
+def VLD4q8Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
+def VLD4q16Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
+def VLD4q32Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
+
+// ...alternate versions to be allocated odd register numbers:
+def VLD4q8oddPseudo : VLDQQQQPseudo<IIC_VLD4>;
+def VLD4q16oddPseudo : VLDQQQQPseudo<IIC_VLD4>;
+def VLD4q32oddPseudo : VLDQQQQPseudo<IIC_VLD4>;
+
+def VLD4q8oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
+def VLD4q16oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
+def VLD4q32oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
+
+} // mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1
+
+// Classes for VLD*LN pseudo-instructions with multi-register operands.
+// These are expanded to real instructions after register allocation.
+class VLDQLNPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QPR:$dst),
+ (ins addrmode6:$addr, QPR:$src, nohash_imm:$lane),
+ itin, "$src = $dst">;
+class VLDQLNWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QPR:$dst, GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset, QPR:$src,
+ nohash_imm:$lane), itin, "$addr.addr = $wb, $src = $dst">;
+class VLDQQLNPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QQPR:$dst),
+ (ins addrmode6:$addr, QQPR:$src, nohash_imm:$lane),
+ itin, "$src = $dst">;
+class VLDQQLNWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QQPR:$dst, GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset, QQPR:$src,
+ nohash_imm:$lane), itin, "$addr.addr = $wb, $src = $dst">;
+class VLDQQQQLNPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QQQQPR:$dst),
+ (ins addrmode6:$addr, QQQQPR:$src, nohash_imm:$lane),
+ itin, "$src = $dst">;
+class VLDQQQQLNWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs QQQQPR:$dst, GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src,
+ nohash_imm:$lane), itin, "$addr.addr = $wb, $src = $dst">;
+
+// VLD1LN : Vector Load (single element to one lane)
+class VLD1LN<bits<4> op11_8, bits<4> op7_4, string Dt, ValueType Ty,
+ PatFrag LoadOp>
+ : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd),
+ (ins addrmode6:$Rn, DPR:$src, nohash_imm:$lane),
+ IIC_VLD1ln, "vld1", Dt, "\\{$Vd[$lane]\\}, $Rn",
+ "$src = $Vd",
+ [(set DPR:$Vd, (vector_insert (Ty DPR:$src),
+ (i32 (LoadOp addrmode6:$Rn)),
+ imm:$lane))]> {
+ let Rm = 0b1111;
+ let DecoderMethod = "DecodeVLD1LN";
+}
+class VLD1LN32<bits<4> op11_8, bits<4> op7_4, string Dt, ValueType Ty,
+ PatFrag LoadOp>
+ : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd),
+ (ins addrmode6oneL32:$Rn, DPR:$src, nohash_imm:$lane),
+ IIC_VLD1ln, "vld1", Dt, "\\{$Vd[$lane]\\}, $Rn",
+ "$src = $Vd",
+ [(set DPR:$Vd, (vector_insert (Ty DPR:$src),
+ (i32 (LoadOp addrmode6oneL32:$Rn)),
+ imm:$lane))]> {
+ let Rm = 0b1111;
+ let DecoderMethod = "DecodeVLD1LN";
+}
+class VLD1QLNPseudo<ValueType Ty, PatFrag LoadOp> : VLDQLNPseudo<IIC_VLD1ln> {
+ let Pattern = [(set QPR:$dst, (vector_insert (Ty QPR:$src),
+ (i32 (LoadOp addrmode6:$addr)),
+ imm:$lane))];
+}
+
+def VLD1LNd8 : VLD1LN<0b0000, {?,?,?,0}, "8", v8i8, extloadi8> {
+ let Inst{7-5} = lane{2-0};
+}
+def VLD1LNd16 : VLD1LN<0b0100, {?,?,0,?}, "16", v4i16, extloadi16> {
+ let Inst{7-6} = lane{1-0};
+ let Inst{5-4} = Rn{5-4};
+}
+def VLD1LNd32 : VLD1LN32<0b1000, {?,0,?,?}, "32", v2i32, load> {
+ let Inst{7} = lane{0};
+ let Inst{5-4} = Rn{5-4};
+}
+
+def VLD1LNq8Pseudo : VLD1QLNPseudo<v16i8, extloadi8>;
+def VLD1LNq16Pseudo : VLD1QLNPseudo<v8i16, extloadi16>;
+def VLD1LNq32Pseudo : VLD1QLNPseudo<v4i32, load>;
+
+def : Pat<(vector_insert (v2f32 DPR:$src),
+ (f32 (load addrmode6:$addr)), imm:$lane),
+ (VLD1LNd32 addrmode6:$addr, DPR:$src, imm:$lane)>;
+def : Pat<(vector_insert (v4f32 QPR:$src),
+ (f32 (load addrmode6:$addr)), imm:$lane),
+ (VLD1LNq32Pseudo addrmode6:$addr, QPR:$src, imm:$lane)>;
+
+let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
+
+// ...with address register writeback:
+class VLD1LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, GPR:$wb),
+ (ins addrmode6:$Rn, am6offset:$Rm,
+ DPR:$src, nohash_imm:$lane), IIC_VLD1lnu, "vld1", Dt,
+ "\\{$Vd[$lane]\\}, $Rn$Rm",
+ "$src = $Vd, $Rn.addr = $wb", []> {
+ let DecoderMethod = "DecodeVLD1LN";
+}
+
+def VLD1LNd8_UPD : VLD1LNWB<0b0000, {?,?,?,0}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VLD1LNd16_UPD : VLD1LNWB<0b0100, {?,?,0,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+ let Inst{4} = Rn{4};
+}
+def VLD1LNd32_UPD : VLD1LNWB<0b1000, {?,0,?,?}, "32"> {
+ let Inst{7} = lane{0};
+ let Inst{5} = Rn{4};
+ let Inst{4} = Rn{4};
+}
+
+def VLD1LNq8Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD1lnu>;
+def VLD1LNq16Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD1lnu>;
+def VLD1LNq32Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD1lnu>;
+
+// VLD2LN : Vector Load (single 2-element structure to one lane)
+class VLD2LN<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2),
+ (ins addrmode6:$Rn, DPR:$src1, DPR:$src2, nohash_imm:$lane),
+ IIC_VLD2ln, "vld2", Dt, "\\{$Vd[$lane], $dst2[$lane]\\}, $Rn",
+ "$src1 = $Vd, $src2 = $dst2", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD2LN";
+}
+
+def VLD2LNd8 : VLD2LN<0b0001, {?,?,?,?}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VLD2LNd16 : VLD2LN<0b0101, {?,?,0,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD2LNd32 : VLD2LN<0b1001, {?,0,0,?}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VLD2LNd8Pseudo : VLDQLNPseudo<IIC_VLD2ln>;
+def VLD2LNd16Pseudo : VLDQLNPseudo<IIC_VLD2ln>;
+def VLD2LNd32Pseudo : VLDQLNPseudo<IIC_VLD2ln>;
+
+// ...with double-spaced registers:
+def VLD2LNq16 : VLD2LN<0b0101, {?,?,1,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD2LNq32 : VLD2LN<0b1001, {?,1,0,?}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VLD2LNq16Pseudo : VLDQQLNPseudo<IIC_VLD2ln>;
+def VLD2LNq32Pseudo : VLDQQLNPseudo<IIC_VLD2ln>;
+
+// ...with address register writeback:
+class VLD2LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, GPR:$wb),
+ (ins addrmode6:$Rn, am6offset:$Rm,
+ DPR:$src1, DPR:$src2, nohash_imm:$lane), IIC_VLD2lnu, "vld2", Dt,
+ "\\{$Vd[$lane], $dst2[$lane]\\}, $Rn$Rm",
+ "$src1 = $Vd, $src2 = $dst2, $Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD2LN";
+}
+
+def VLD2LNd8_UPD : VLD2LNWB<0b0001, {?,?,?,?}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VLD2LNd16_UPD : VLD2LNWB<0b0101, {?,?,0,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD2LNd32_UPD : VLD2LNWB<0b1001, {?,0,0,?}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VLD2LNd8Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD2lnu>;
+def VLD2LNd16Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD2lnu>;
+def VLD2LNd32Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD2lnu>;
+
+def VLD2LNq16_UPD : VLD2LNWB<0b0101, {?,?,1,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD2LNq32_UPD : VLD2LNWB<0b1001, {?,1,0,?}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VLD2LNq16Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD2lnu>;
+def VLD2LNq32Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD2lnu>;
+
+// VLD3LN : Vector Load (single 3-element structure to one lane)
+class VLD3LN<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3),
+ (ins addrmode6:$Rn, DPR:$src1, DPR:$src2, DPR:$src3,
+ nohash_imm:$lane), IIC_VLD3ln, "vld3", Dt,
+ "\\{$Vd[$lane], $dst2[$lane], $dst3[$lane]\\}, $Rn",
+ "$src1 = $Vd, $src2 = $dst2, $src3 = $dst3", []> {
+ let Rm = 0b1111;
+ let DecoderMethod = "DecodeVLD3LN";
+}
+
+def VLD3LNd8 : VLD3LN<0b0010, {?,?,?,0}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VLD3LNd16 : VLD3LN<0b0110, {?,?,0,0}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD3LNd32 : VLD3LN<0b1010, {?,0,0,0}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VLD3LNd8Pseudo : VLDQQLNPseudo<IIC_VLD3ln>;
+def VLD3LNd16Pseudo : VLDQQLNPseudo<IIC_VLD3ln>;
+def VLD3LNd32Pseudo : VLDQQLNPseudo<IIC_VLD3ln>;
+
+// ...with double-spaced registers:
+def VLD3LNq16 : VLD3LN<0b0110, {?,?,1,0}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD3LNq32 : VLD3LN<0b1010, {?,1,0,0}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VLD3LNq16Pseudo : VLDQQQQLNPseudo<IIC_VLD3ln>;
+def VLD3LNq32Pseudo : VLDQQQQLNPseudo<IIC_VLD3ln>;
+
+// ...with address register writeback:
+class VLD3LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b10, op11_8, op7_4,
+ (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, GPR:$wb),
+ (ins addrmode6:$Rn, am6offset:$Rm,
+ DPR:$src1, DPR:$src2, DPR:$src3, nohash_imm:$lane),
+ IIC_VLD3lnu, "vld3", Dt,
+ "\\{$Vd[$lane], $dst2[$lane], $dst3[$lane]\\}, $Rn$Rm",
+ "$src1 = $Vd, $src2 = $dst2, $src3 = $dst3, $Rn.addr = $wb",
+ []> {
+ let DecoderMethod = "DecodeVLD3LN";
+}
+
+def VLD3LNd8_UPD : VLD3LNWB<0b0010, {?,?,?,0}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VLD3LNd16_UPD : VLD3LNWB<0b0110, {?,?,0,0}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD3LNd32_UPD : VLD3LNWB<0b1010, {?,0,0,0}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VLD3LNd8Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD3lnu>;
+def VLD3LNd16Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD3lnu>;
+def VLD3LNd32Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD3lnu>;
+
+def VLD3LNq16_UPD : VLD3LNWB<0b0110, {?,?,1,0}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD3LNq32_UPD : VLD3LNWB<0b1010, {?,1,0,0}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VLD3LNq16Pseudo_UPD : VLDQQQQLNWBPseudo<IIC_VLD3lnu>;
+def VLD3LNq32Pseudo_UPD : VLDQQQQLNWBPseudo<IIC_VLD3lnu>;
+
+// VLD4LN : Vector Load (single 4-element structure to one lane)
+class VLD4LN<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b10, op11_8, op7_4,
+ (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4),
+ (ins addrmode6:$Rn, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4,
+ nohash_imm:$lane), IIC_VLD4ln, "vld4", Dt,
+ "\\{$Vd[$lane], $dst2[$lane], $dst3[$lane], $dst4[$lane]\\}, $Rn",
+ "$src1 = $Vd, $src2 = $dst2, $src3 = $dst3, $src4 = $dst4", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD4LN";
+}
+
+def VLD4LNd8 : VLD4LN<0b0011, {?,?,?,?}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VLD4LNd16 : VLD4LN<0b0111, {?,?,0,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD4LNd32 : VLD4LN<0b1011, {?,0,?,?}, "32"> {
+ let Inst{7} = lane{0};
+ let Inst{5} = Rn{5};
+}
+
+def VLD4LNd8Pseudo : VLDQQLNPseudo<IIC_VLD4ln>;
+def VLD4LNd16Pseudo : VLDQQLNPseudo<IIC_VLD4ln>;
+def VLD4LNd32Pseudo : VLDQQLNPseudo<IIC_VLD4ln>;
+
+// ...with double-spaced registers:
+def VLD4LNq16 : VLD4LN<0b0111, {?,?,1,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD4LNq32 : VLD4LN<0b1011, {?,1,?,?}, "32"> {
+ let Inst{7} = lane{0};
+ let Inst{5} = Rn{5};
+}
+
+def VLD4LNq16Pseudo : VLDQQQQLNPseudo<IIC_VLD4ln>;
+def VLD4LNq32Pseudo : VLDQQQQLNPseudo<IIC_VLD4ln>;
+
+// ...with address register writeback:
+class VLD4LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b10, op11_8, op7_4,
+ (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb),
+ (ins addrmode6:$Rn, am6offset:$Rm,
+ DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4, nohash_imm:$lane),
+ IIC_VLD4lnu, "vld4", Dt,
+"\\{$Vd[$lane], $dst2[$lane], $dst3[$lane], $dst4[$lane]\\}, $Rn$Rm",
+"$src1 = $Vd, $src2 = $dst2, $src3 = $dst3, $src4 = $dst4, $Rn.addr = $wb",
+ []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD4LN" ;
+}
+
+def VLD4LNd8_UPD : VLD4LNWB<0b0011, {?,?,?,?}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VLD4LNd16_UPD : VLD4LNWB<0b0111, {?,?,0,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD4LNd32_UPD : VLD4LNWB<0b1011, {?,0,?,?}, "32"> {
+ let Inst{7} = lane{0};
+ let Inst{5} = Rn{5};
+}
+
+def VLD4LNd8Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD4lnu>;
+def VLD4LNd16Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD4lnu>;
+def VLD4LNd32Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD4lnu>;
+
+def VLD4LNq16_UPD : VLD4LNWB<0b0111, {?,?,1,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VLD4LNq32_UPD : VLD4LNWB<0b1011, {?,1,?,?}, "32"> {
+ let Inst{7} = lane{0};
+ let Inst{5} = Rn{5};
+}
+
+def VLD4LNq16Pseudo_UPD : VLDQQQQLNWBPseudo<IIC_VLD4lnu>;
+def VLD4LNq32Pseudo_UPD : VLDQQQQLNWBPseudo<IIC_VLD4lnu>;
+
+} // mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1
+
+// VLD1DUP : Vector Load (single element to all lanes)
+class VLD1DUP<bits<4> op7_4, string Dt, ValueType Ty, PatFrag LoadOp,
+ Operand AddrMode>
+ : NLdSt<1, 0b10, 0b1100, op7_4, (outs VecListOneDAllLanes:$Vd),
+ (ins AddrMode:$Rn),
+ IIC_VLD1dup, "vld1", Dt, "$Vd, $Rn", "",
+ [(set VecListOneDAllLanes:$Vd,
+ (Ty (NEONvdup (i32 (LoadOp AddrMode:$Rn)))))]> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD1DupInstruction";
+}
+def VLD1DUPd8 : VLD1DUP<{0,0,0,?}, "8", v8i8, extloadi8,
+ addrmode6dupalignNone>;
+def VLD1DUPd16 : VLD1DUP<{0,1,0,?}, "16", v4i16, extloadi16,
+ addrmode6dupalign16>;
+def VLD1DUPd32 : VLD1DUP<{1,0,0,?}, "32", v2i32, load,
+ addrmode6dupalign32>;
+
+def : Pat<(v2f32 (NEONvdup (f32 (load addrmode6dup:$addr)))),
+ (VLD1DUPd32 addrmode6:$addr)>;
+
+class VLD1QDUP<bits<4> op7_4, string Dt, ValueType Ty, PatFrag LoadOp,
+ Operand AddrMode>
+ : NLdSt<1, 0b10, 0b1100, op7_4, (outs VecListDPairAllLanes:$Vd),
+ (ins AddrMode:$Rn), IIC_VLD1dup,
+ "vld1", Dt, "$Vd, $Rn", "",
+ [(set VecListDPairAllLanes:$Vd,
+ (Ty (NEONvdup (i32 (LoadOp AddrMode:$Rn)))))]> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD1DupInstruction";
+}
+
+def VLD1DUPq8 : VLD1QDUP<{0,0,1,0}, "8", v16i8, extloadi8,
+ addrmode6dupalignNone>;
+def VLD1DUPq16 : VLD1QDUP<{0,1,1,?}, "16", v8i16, extloadi16,
+ addrmode6dupalign16>;
+def VLD1DUPq32 : VLD1QDUP<{1,0,1,?}, "32", v4i32, load,
+ addrmode6dupalign32>;
+
+def : Pat<(v4f32 (NEONvdup (f32 (load addrmode6dup:$addr)))),
+ (VLD1DUPq32 addrmode6:$addr)>;
+
+let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
+// ...with address register writeback:
+multiclass VLD1DUPWB<bits<4> op7_4, string Dt, Operand AddrMode> {
+ def _fixed : NLdSt<1, 0b10, 0b1100, op7_4,
+ (outs VecListOneDAllLanes:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn), IIC_VLD1dupu,
+ "vld1", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD1DupInstruction";
+ }
+ def _register : NLdSt<1, 0b10, 0b1100, op7_4,
+ (outs VecListOneDAllLanes:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1dupu,
+ "vld1", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD1DupInstruction";
+ }
+}
+multiclass VLD1QDUPWB<bits<4> op7_4, string Dt, Operand AddrMode> {
+ def _fixed : NLdSt<1, 0b10, 0b1100, op7_4,
+ (outs VecListDPairAllLanes:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn), IIC_VLD1dupu,
+ "vld1", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD1DupInstruction";
+ }
+ def _register : NLdSt<1, 0b10, 0b1100, op7_4,
+ (outs VecListDPairAllLanes:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1dupu,
+ "vld1", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD1DupInstruction";
+ }
+}
+
+defm VLD1DUPd8wb : VLD1DUPWB<{0,0,0,0}, "8", addrmode6dupalignNone>;
+defm VLD1DUPd16wb : VLD1DUPWB<{0,1,0,?}, "16", addrmode6dupalign16>;
+defm VLD1DUPd32wb : VLD1DUPWB<{1,0,0,?}, "32", addrmode6dupalign32>;
+
+defm VLD1DUPq8wb : VLD1QDUPWB<{0,0,1,0}, "8", addrmode6dupalignNone>;
+defm VLD1DUPq16wb : VLD1QDUPWB<{0,1,1,?}, "16", addrmode6dupalign16>;
+defm VLD1DUPq32wb : VLD1QDUPWB<{1,0,1,?}, "32", addrmode6dupalign32>;
+
+// VLD2DUP : Vector Load (single 2-element structure to all lanes)
+class VLD2DUP<bits<4> op7_4, string Dt, RegisterOperand VdTy, Operand AddrMode>
+ : NLdSt<1, 0b10, 0b1101, op7_4, (outs VdTy:$Vd),
+ (ins AddrMode:$Rn), IIC_VLD2dup,
+ "vld2", Dt, "$Vd, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD2DupInstruction";
+}
+
+def VLD2DUPd8 : VLD2DUP<{0,0,0,?}, "8", VecListDPairAllLanes,
+ addrmode6dupalign16>;
+def VLD2DUPd16 : VLD2DUP<{0,1,0,?}, "16", VecListDPairAllLanes,
+ addrmode6dupalign32>;
+def VLD2DUPd32 : VLD2DUP<{1,0,0,?}, "32", VecListDPairAllLanes,
+ addrmode6dupalign64>;
+
+// HACK this one, VLD2DUPd8x2 must be changed at the same time with VLD2b8 or
+// "vld2.8 {d0[], d2[]}, [r4:32]" will become "vld2.8 {d0, d2}, [r4:32]".
+// ...with double-spaced registers
+def VLD2DUPd8x2 : VLD2DUP<{0,0,1,?}, "8", VecListDPairSpacedAllLanes,
+ addrmode6dupalign16>;
+def VLD2DUPd16x2 : VLD2DUP<{0,1,1,?}, "16", VecListDPairSpacedAllLanes,
+ addrmode6dupalign32>;
+def VLD2DUPd32x2 : VLD2DUP<{1,0,1,?}, "32", VecListDPairSpacedAllLanes,
+ addrmode6dupalign64>;
+
+// ...with address register writeback:
+multiclass VLD2DUPWB<bits<4> op7_4, string Dt, RegisterOperand VdTy,
+ Operand AddrMode> {
+ def _fixed : NLdSt<1, 0b10, 0b1101, op7_4,
+ (outs VdTy:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn), IIC_VLD2dupu,
+ "vld2", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD2DupInstruction";
+ }
+ def _register : NLdSt<1, 0b10, 0b1101, op7_4,
+ (outs VdTy:$Vd, GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD2dupu,
+ "vld2", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD2DupInstruction";
+ }
+}
+
+defm VLD2DUPd8wb : VLD2DUPWB<{0,0,0,0}, "8", VecListDPairAllLanes,
+ addrmode6dupalign16>;
+defm VLD2DUPd16wb : VLD2DUPWB<{0,1,0,?}, "16", VecListDPairAllLanes,
+ addrmode6dupalign32>;
+defm VLD2DUPd32wb : VLD2DUPWB<{1,0,0,?}, "32", VecListDPairAllLanes,
+ addrmode6dupalign64>;
+
+defm VLD2DUPd8x2wb : VLD2DUPWB<{0,0,1,0}, "8", VecListDPairSpacedAllLanes,
+ addrmode6dupalign16>;
+defm VLD2DUPd16x2wb : VLD2DUPWB<{0,1,1,?}, "16", VecListDPairSpacedAllLanes,
+ addrmode6dupalign32>;
+defm VLD2DUPd32x2wb : VLD2DUPWB<{1,0,1,?}, "32", VecListDPairSpacedAllLanes,
+ addrmode6dupalign64>;
+
+// VLD3DUP : Vector Load (single 3-element structure to all lanes)
+class VLD3DUP<bits<4> op7_4, string Dt>
+ : NLdSt<1, 0b10, 0b1110, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3),
+ (ins addrmode6dup:$Rn), IIC_VLD3dup,
+ "vld3", Dt, "\\{$Vd[], $dst2[], $dst3[]\\}, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{4} = 0;
+ let DecoderMethod = "DecodeVLD3DupInstruction";
+}
+
+def VLD3DUPd8 : VLD3DUP<{0,0,0,?}, "8">;
+def VLD3DUPd16 : VLD3DUP<{0,1,0,?}, "16">;
+def VLD3DUPd32 : VLD3DUP<{1,0,0,?}, "32">;
+
+def VLD3DUPd8Pseudo : VLDQQPseudo<IIC_VLD3dup>;
+def VLD3DUPd16Pseudo : VLDQQPseudo<IIC_VLD3dup>;
+def VLD3DUPd32Pseudo : VLDQQPseudo<IIC_VLD3dup>;
+
+// ...with double-spaced registers (not used for codegen):
+def VLD3DUPq8 : VLD3DUP<{0,0,1,?}, "8">;
+def VLD3DUPq16 : VLD3DUP<{0,1,1,?}, "16">;
+def VLD3DUPq32 : VLD3DUP<{1,0,1,?}, "32">;
+
+// ...with address register writeback:
+class VLD3DUPWB<bits<4> op7_4, string Dt, Operand AddrMode>
+ : NLdSt<1, 0b10, 0b1110, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, GPR:$wb),
+ (ins AddrMode:$Rn, am6offset:$Rm), IIC_VLD3dupu,
+ "vld3", Dt, "\\{$Vd[], $dst2[], $dst3[]\\}, $Rn$Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = 0;
+ let DecoderMethod = "DecodeVLD3DupInstruction";
+}
+
+def VLD3DUPd8_UPD : VLD3DUPWB<{0,0,0,0}, "8", addrmode6dupalign64>;
+def VLD3DUPd16_UPD : VLD3DUPWB<{0,1,0,?}, "16", addrmode6dupalign64>;
+def VLD3DUPd32_UPD : VLD3DUPWB<{1,0,0,?}, "32", addrmode6dupalign64>;
+
+def VLD3DUPq8_UPD : VLD3DUPWB<{0,0,1,0}, "8", addrmode6dupalign64>;
+def VLD3DUPq16_UPD : VLD3DUPWB<{0,1,1,?}, "16", addrmode6dupalign64>;
+def VLD3DUPq32_UPD : VLD3DUPWB<{1,0,1,?}, "32", addrmode6dupalign64>;
+
+def VLD3DUPd8Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3dupu>;
+def VLD3DUPd16Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3dupu>;
+def VLD3DUPd32Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3dupu>;
+
+// VLD4DUP : Vector Load (single 4-element structure to all lanes)
+class VLD4DUP<bits<4> op7_4, string Dt>
+ : NLdSt<1, 0b10, 0b1111, op7_4,
+ (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4),
+ (ins addrmode6dup:$Rn), IIC_VLD4dup,
+ "vld4", Dt, "\\{$Vd[], $dst2[], $dst3[], $dst4[]\\}, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD4DupInstruction";
+}
+
+def VLD4DUPd8 : VLD4DUP<{0,0,0,?}, "8">;
+def VLD4DUPd16 : VLD4DUP<{0,1,0,?}, "16">;
+def VLD4DUPd32 : VLD4DUP<{1,?,0,?}, "32"> { let Inst{6} = Rn{5}; }
+
+def VLD4DUPd8Pseudo : VLDQQPseudo<IIC_VLD4dup>;
+def VLD4DUPd16Pseudo : VLDQQPseudo<IIC_VLD4dup>;
+def VLD4DUPd32Pseudo : VLDQQPseudo<IIC_VLD4dup>;
+
+// ...with double-spaced registers (not used for codegen):
+def VLD4DUPq8 : VLD4DUP<{0,0,1,?}, "8">;
+def VLD4DUPq16 : VLD4DUP<{0,1,1,?}, "16">;
+def VLD4DUPq32 : VLD4DUP<{1,?,1,?}, "32"> { let Inst{6} = Rn{5}; }
+
+// ...with address register writeback:
+class VLD4DUPWB<bits<4> op7_4, string Dt>
+ : NLdSt<1, 0b10, 0b1111, op7_4,
+ (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb),
+ (ins addrmode6dup:$Rn, am6offset:$Rm), IIC_VLD4dupu,
+ "vld4", Dt, "\\{$Vd[], $dst2[], $dst3[], $dst4[]\\}, $Rn$Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLD4DupInstruction";
+}
+
+def VLD4DUPd8_UPD : VLD4DUPWB<{0,0,0,0}, "8">;
+def VLD4DUPd16_UPD : VLD4DUPWB<{0,1,0,?}, "16">;
+def VLD4DUPd32_UPD : VLD4DUPWB<{1,?,0,?}, "32"> { let Inst{6} = Rn{5}; }
+
+def VLD4DUPq8_UPD : VLD4DUPWB<{0,0,1,0}, "8">;
+def VLD4DUPq16_UPD : VLD4DUPWB<{0,1,1,?}, "16">;
+def VLD4DUPq32_UPD : VLD4DUPWB<{1,?,1,?}, "32"> { let Inst{6} = Rn{5}; }
+
+def VLD4DUPd8Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4dupu>;
+def VLD4DUPd16Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4dupu>;
+def VLD4DUPd32Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4dupu>;
+
+} // mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1
+
+let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in {
+
+// Classes for VST* pseudo-instructions with multi-register operands.
+// These are expanded to real instructions after register allocation.
+class VSTQPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs), (ins addrmode6:$addr, QPR:$src), itin, "">;
+class VSTQWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset, QPR:$src), itin,
+ "$addr.addr = $wb">;
+class VSTQWBfixedPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs GPR:$wb),
+ (ins addrmode6:$addr, QPR:$src), itin,
+ "$addr.addr = $wb">;
+class VSTQWBregisterPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs GPR:$wb),
+ (ins addrmode6:$addr, rGPR:$offset, QPR:$src), itin,
+ "$addr.addr = $wb">;
+class VSTQQPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs), (ins addrmode6:$addr, QQPR:$src), itin, "">;
+class VSTQQWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset, QQPR:$src), itin,
+ "$addr.addr = $wb">;
+class VSTQQWBfixedPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs GPR:$wb),
+ (ins addrmode6:$addr, QQPR:$src), itin,
+ "$addr.addr = $wb">;
+class VSTQQWBregisterPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs GPR:$wb),
+ (ins addrmode6:$addr, rGPR:$offset, QQPR:$src), itin,
+ "$addr.addr = $wb">;
+
+class VSTQQQQPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs), (ins addrmode6:$addr, QQQQPR:$src), itin, "">;
+class VSTQQQQWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src), itin,
+ "$addr.addr = $wb">;
+
+// VST1 : Vector Store (multiple single elements)
+class VST1D<bits<4> op7_4, string Dt, Operand AddrMode>
+ : NLdSt<0,0b00,0b0111,op7_4, (outs), (ins AddrMode:$Rn, VecListOneD:$Vd),
+ IIC_VST1, "vst1", Dt, "$Vd, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+}
+class VST1Q<bits<4> op7_4, string Dt, Operand AddrMode>
+ : NLdSt<0,0b00,0b1010,op7_4, (outs), (ins AddrMode:$Rn, VecListDPair:$Vd),
+ IIC_VST1x2, "vst1", Dt, "$Vd, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+}
+
+def VST1d8 : VST1D<{0,0,0,?}, "8", addrmode6align64>;
+def VST1d16 : VST1D<{0,1,0,?}, "16", addrmode6align64>;
+def VST1d32 : VST1D<{1,0,0,?}, "32", addrmode6align64>;
+def VST1d64 : VST1D<{1,1,0,?}, "64", addrmode6align64>;
+
+def VST1q8 : VST1Q<{0,0,?,?}, "8", addrmode6align64or128>;
+def VST1q16 : VST1Q<{0,1,?,?}, "16", addrmode6align64or128>;
+def VST1q32 : VST1Q<{1,0,?,?}, "32", addrmode6align64or128>;
+def VST1q64 : VST1Q<{1,1,?,?}, "64", addrmode6align64or128>;
+
+// ...with address register writeback:
+multiclass VST1DWB<bits<4> op7_4, string Dt, Operand AddrMode> {
+ def _fixed : NLdSt<0,0b00, 0b0111,op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, VecListOneD:$Vd), IIC_VLD1u,
+ "vst1", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+ def _register : NLdSt<0,0b00,0b0111,op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm, VecListOneD:$Vd),
+ IIC_VLD1u,
+ "vst1", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+}
+multiclass VST1QWB<bits<4> op7_4, string Dt, Operand AddrMode> {
+ def _fixed : NLdSt<0,0b00,0b1010,op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, VecListDPair:$Vd), IIC_VLD1x2u,
+ "vst1", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+ def _register : NLdSt<0,0b00,0b1010,op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm, VecListDPair:$Vd),
+ IIC_VLD1x2u,
+ "vst1", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+}
+
+defm VST1d8wb : VST1DWB<{0,0,0,?}, "8", addrmode6align64>;
+defm VST1d16wb : VST1DWB<{0,1,0,?}, "16", addrmode6align64>;
+defm VST1d32wb : VST1DWB<{1,0,0,?}, "32", addrmode6align64>;
+defm VST1d64wb : VST1DWB<{1,1,0,?}, "64", addrmode6align64>;
+
+defm VST1q8wb : VST1QWB<{0,0,?,?}, "8", addrmode6align64or128>;
+defm VST1q16wb : VST1QWB<{0,1,?,?}, "16", addrmode6align64or128>;
+defm VST1q32wb : VST1QWB<{1,0,?,?}, "32", addrmode6align64or128>;
+defm VST1q64wb : VST1QWB<{1,1,?,?}, "64", addrmode6align64or128>;
+
+// ...with 3 registers
+class VST1D3<bits<4> op7_4, string Dt, Operand AddrMode>
+ : NLdSt<0, 0b00, 0b0110, op7_4, (outs),
+ (ins AddrMode:$Rn, VecListThreeD:$Vd),
+ IIC_VST1x3, "vst1", Dt, "$Vd, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+}
+multiclass VST1D3WB<bits<4> op7_4, string Dt, Operand AddrMode> {
+ def _fixed : NLdSt<0,0b00,0b0110,op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, VecListThreeD:$Vd), IIC_VLD1x3u,
+ "vst1", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+ def _register : NLdSt<0,0b00,0b0110,op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm, VecListThreeD:$Vd),
+ IIC_VLD1x3u,
+ "vst1", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+}
+
+def VST1d8T : VST1D3<{0,0,0,?}, "8", addrmode6align64>;
+def VST1d16T : VST1D3<{0,1,0,?}, "16", addrmode6align64>;
+def VST1d32T : VST1D3<{1,0,0,?}, "32", addrmode6align64>;
+def VST1d64T : VST1D3<{1,1,0,?}, "64", addrmode6align64>;
+
+defm VST1d8Twb : VST1D3WB<{0,0,0,?}, "8", addrmode6align64>;
+defm VST1d16Twb : VST1D3WB<{0,1,0,?}, "16", addrmode6align64>;
+defm VST1d32Twb : VST1D3WB<{1,0,0,?}, "32", addrmode6align64>;
+defm VST1d64Twb : VST1D3WB<{1,1,0,?}, "64", addrmode6align64>;
+
+def VST1d64TPseudo : VSTQQPseudo<IIC_VST1x3>;
+def VST1d64TPseudoWB_fixed : VSTQQWBfixedPseudo<IIC_VST1x3u>;
+def VST1d64TPseudoWB_register : VSTQQWBPseudo<IIC_VST1x3u>;
+
+// ...with 4 registers
+class VST1D4<bits<4> op7_4, string Dt, Operand AddrMode>
+ : NLdSt<0, 0b00, 0b0010, op7_4, (outs),
+ (ins AddrMode:$Rn, VecListFourD:$Vd),
+ IIC_VST1x4, "vst1", Dt, "$Vd, $Rn", "",
+ []> {
+ let Rm = 0b1111;
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+}
+multiclass VST1D4WB<bits<4> op7_4, string Dt, Operand AddrMode> {
+ def _fixed : NLdSt<0,0b00,0b0010,op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, VecListFourD:$Vd), IIC_VLD1x4u,
+ "vst1", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+ def _register : NLdSt<0,0b00,0b0010,op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm, VecListFourD:$Vd),
+ IIC_VLD1x4u,
+ "vst1", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST1Instruction";
+ }
+}
+
+def VST1d8Q : VST1D4<{0,0,?,?}, "8", addrmode6align64or128or256>;
+def VST1d16Q : VST1D4<{0,1,?,?}, "16", addrmode6align64or128or256>;
+def VST1d32Q : VST1D4<{1,0,?,?}, "32", addrmode6align64or128or256>;
+def VST1d64Q : VST1D4<{1,1,?,?}, "64", addrmode6align64or128or256>;
+
+defm VST1d8Qwb : VST1D4WB<{0,0,?,?}, "8", addrmode6align64or128or256>;
+defm VST1d16Qwb : VST1D4WB<{0,1,?,?}, "16", addrmode6align64or128or256>;
+defm VST1d32Qwb : VST1D4WB<{1,0,?,?}, "32", addrmode6align64or128or256>;
+defm VST1d64Qwb : VST1D4WB<{1,1,?,?}, "64", addrmode6align64or128or256>;
+
+def VST1d64QPseudo : VSTQQPseudo<IIC_VST1x4>;
+def VST1d64QPseudoWB_fixed : VSTQQWBfixedPseudo<IIC_VST1x4u>;
+def VST1d64QPseudoWB_register : VSTQQWBPseudo<IIC_VST1x4u>;
+
+// VST2 : Vector Store (multiple 2-element structures)
+class VST2<bits<4> op11_8, bits<4> op7_4, string Dt, RegisterOperand VdTy,
+ InstrItinClass itin, Operand AddrMode>
+ : NLdSt<0, 0b00, op11_8, op7_4, (outs), (ins AddrMode:$Rn, VdTy:$Vd),
+ itin, "vst2", Dt, "$Vd, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST2Instruction";
+}
+
+def VST2d8 : VST2<0b1000, {0,0,?,?}, "8", VecListDPair, IIC_VST2,
+ addrmode6align64or128>;
+def VST2d16 : VST2<0b1000, {0,1,?,?}, "16", VecListDPair, IIC_VST2,
+ addrmode6align64or128>;
+def VST2d32 : VST2<0b1000, {1,0,?,?}, "32", VecListDPair, IIC_VST2,
+ addrmode6align64or128>;
+
+def VST2q8 : VST2<0b0011, {0,0,?,?}, "8", VecListFourD, IIC_VST2x2,
+ addrmode6align64or128or256>;
+def VST2q16 : VST2<0b0011, {0,1,?,?}, "16", VecListFourD, IIC_VST2x2,
+ addrmode6align64or128or256>;
+def VST2q32 : VST2<0b0011, {1,0,?,?}, "32", VecListFourD, IIC_VST2x2,
+ addrmode6align64or128or256>;
+
+def VST2q8Pseudo : VSTQQPseudo<IIC_VST2x2>;
+def VST2q16Pseudo : VSTQQPseudo<IIC_VST2x2>;
+def VST2q32Pseudo : VSTQQPseudo<IIC_VST2x2>;
+
+// ...with address register writeback:
+multiclass VST2DWB<bits<4> op11_8, bits<4> op7_4, string Dt,
+ RegisterOperand VdTy, Operand AddrMode> {
+ def _fixed : NLdSt<0, 0b00, op11_8, op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, VdTy:$Vd), IIC_VLD1u,
+ "vst2", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST2Instruction";
+ }
+ def _register : NLdSt<0, 0b00, op11_8, op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm, VdTy:$Vd), IIC_VLD1u,
+ "vst2", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST2Instruction";
+ }
+}
+multiclass VST2QWB<bits<4> op7_4, string Dt, Operand AddrMode> {
+ def _fixed : NLdSt<0, 0b00, 0b0011, op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, VecListFourD:$Vd), IIC_VLD1u,
+ "vst2", Dt, "$Vd, $Rn!",
+ "$Rn.addr = $wb", []> {
+ let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST2Instruction";
+ }
+ def _register : NLdSt<0, 0b00, 0b0011, op7_4, (outs GPR:$wb),
+ (ins AddrMode:$Rn, rGPR:$Rm, VecListFourD:$Vd),
+ IIC_VLD1u,
+ "vst2", Dt, "$Vd, $Rn, $Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST2Instruction";
+ }
+}
+
+defm VST2d8wb : VST2DWB<0b1000, {0,0,?,?}, "8", VecListDPair,
+ addrmode6align64or128>;
+defm VST2d16wb : VST2DWB<0b1000, {0,1,?,?}, "16", VecListDPair,
+ addrmode6align64or128>;
+defm VST2d32wb : VST2DWB<0b1000, {1,0,?,?}, "32", VecListDPair,
+ addrmode6align64or128>;
+
+defm VST2q8wb : VST2QWB<{0,0,?,?}, "8", addrmode6align64or128or256>;
+defm VST2q16wb : VST2QWB<{0,1,?,?}, "16", addrmode6align64or128or256>;
+defm VST2q32wb : VST2QWB<{1,0,?,?}, "32", addrmode6align64or128or256>;
+
+def VST2q8PseudoWB_fixed : VSTQQWBfixedPseudo<IIC_VST2x2u>;
+def VST2q16PseudoWB_fixed : VSTQQWBfixedPseudo<IIC_VST2x2u>;
+def VST2q32PseudoWB_fixed : VSTQQWBfixedPseudo<IIC_VST2x2u>;
+def VST2q8PseudoWB_register : VSTQQWBregisterPseudo<IIC_VST2x2u>;
+def VST2q16PseudoWB_register : VSTQQWBregisterPseudo<IIC_VST2x2u>;
+def VST2q32PseudoWB_register : VSTQQWBregisterPseudo<IIC_VST2x2u>;
+
+// ...with double-spaced registers
+def VST2b8 : VST2<0b1001, {0,0,?,?}, "8", VecListDPairSpaced, IIC_VST2,
+ addrmode6align64or128>;
+def VST2b16 : VST2<0b1001, {0,1,?,?}, "16", VecListDPairSpaced, IIC_VST2,
+ addrmode6align64or128>;
+def VST2b32 : VST2<0b1001, {1,0,?,?}, "32", VecListDPairSpaced, IIC_VST2,
+ addrmode6align64or128>;
+defm VST2b8wb : VST2DWB<0b1001, {0,0,?,?}, "8", VecListDPairSpaced,
+ addrmode6align64or128>;
+defm VST2b16wb : VST2DWB<0b1001, {0,1,?,?}, "16", VecListDPairSpaced,
+ addrmode6align64or128>;
+defm VST2b32wb : VST2DWB<0b1001, {1,0,?,?}, "32", VecListDPairSpaced,
+ addrmode6align64or128>;
+
+// VST3 : Vector Store (multiple 3-element structures)
+class VST3D<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdSt<0, 0b00, op11_8, op7_4, (outs),
+ (ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3), IIC_VST3,
+ "vst3", Dt, "\\{$Vd, $src2, $src3\\}, $Rn", "", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST3Instruction";
+}
+
+def VST3d8 : VST3D<0b0100, {0,0,0,?}, "8">;
+def VST3d16 : VST3D<0b0100, {0,1,0,?}, "16">;
+def VST3d32 : VST3D<0b0100, {1,0,0,?}, "32">;
+
+def VST3d8Pseudo : VSTQQPseudo<IIC_VST3>;
+def VST3d16Pseudo : VSTQQPseudo<IIC_VST3>;
+def VST3d32Pseudo : VSTQQPseudo<IIC_VST3>;
+
+// ...with address register writeback:
+class VST3DWB<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdSt<0, 0b00, op11_8, op7_4, (outs GPR:$wb),
+ (ins addrmode6:$Rn, am6offset:$Rm,
+ DPR:$Vd, DPR:$src2, DPR:$src3), IIC_VST3u,
+ "vst3", Dt, "\\{$Vd, $src2, $src3\\}, $Rn$Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVLDST3Instruction";
+}
+
+def VST3d8_UPD : VST3DWB<0b0100, {0,0,0,?}, "8">;
+def VST3d16_UPD : VST3DWB<0b0100, {0,1,0,?}, "16">;
+def VST3d32_UPD : VST3DWB<0b0100, {1,0,0,?}, "32">;
+
+def VST3d8Pseudo_UPD : VSTQQWBPseudo<IIC_VST3u>;
+def VST3d16Pseudo_UPD : VSTQQWBPseudo<IIC_VST3u>;
+def VST3d32Pseudo_UPD : VSTQQWBPseudo<IIC_VST3u>;
+
+// ...with double-spaced registers:
+def VST3q8 : VST3D<0b0101, {0,0,0,?}, "8">;
+def VST3q16 : VST3D<0b0101, {0,1,0,?}, "16">;
+def VST3q32 : VST3D<0b0101, {1,0,0,?}, "32">;
+def VST3q8_UPD : VST3DWB<0b0101, {0,0,0,?}, "8">;
+def VST3q16_UPD : VST3DWB<0b0101, {0,1,0,?}, "16">;
+def VST3q32_UPD : VST3DWB<0b0101, {1,0,0,?}, "32">;
+
+def VST3q8Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
+def VST3q16Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
+def VST3q32Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
+
+// ...alternate versions to be allocated odd register numbers:
+def VST3q8oddPseudo : VSTQQQQPseudo<IIC_VST3>;
+def VST3q16oddPseudo : VSTQQQQPseudo<IIC_VST3>;
+def VST3q32oddPseudo : VSTQQQQPseudo<IIC_VST3>;
+
+def VST3q8oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
+def VST3q16oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
+def VST3q32oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
+
+// VST4 : Vector Store (multiple 4-element structures)
+class VST4D<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdSt<0, 0b00, op11_8, op7_4, (outs),
+ (ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4),
+ IIC_VST4, "vst4", Dt, "\\{$Vd, $src2, $src3, $src4\\}, $Rn",
+ "", []> {
+ let Rm = 0b1111;
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST4Instruction";
+}
+
+def VST4d8 : VST4D<0b0000, {0,0,?,?}, "8">;
+def VST4d16 : VST4D<0b0000, {0,1,?,?}, "16">;
+def VST4d32 : VST4D<0b0000, {1,0,?,?}, "32">;
+
+def VST4d8Pseudo : VSTQQPseudo<IIC_VST4>;
+def VST4d16Pseudo : VSTQQPseudo<IIC_VST4>;
+def VST4d32Pseudo : VSTQQPseudo<IIC_VST4>;
+
+// ...with address register writeback:
+class VST4DWB<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdSt<0, 0b00, op11_8, op7_4, (outs GPR:$wb),
+ (ins addrmode6:$Rn, am6offset:$Rm,
+ DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4), IIC_VST4u,
+ "vst4", Dt, "\\{$Vd, $src2, $src3, $src4\\}, $Rn$Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{5-4} = Rn{5-4};
+ let DecoderMethod = "DecodeVLDST4Instruction";
+}
+
+def VST4d8_UPD : VST4DWB<0b0000, {0,0,?,?}, "8">;
+def VST4d16_UPD : VST4DWB<0b0000, {0,1,?,?}, "16">;
+def VST4d32_UPD : VST4DWB<0b0000, {1,0,?,?}, "32">;
+
+def VST4d8Pseudo_UPD : VSTQQWBPseudo<IIC_VST4u>;
+def VST4d16Pseudo_UPD : VSTQQWBPseudo<IIC_VST4u>;
+def VST4d32Pseudo_UPD : VSTQQWBPseudo<IIC_VST4u>;
+
+// ...with double-spaced registers:
+def VST4q8 : VST4D<0b0001, {0,0,?,?}, "8">;
+def VST4q16 : VST4D<0b0001, {0,1,?,?}, "16">;
+def VST4q32 : VST4D<0b0001, {1,0,?,?}, "32">;
+def VST4q8_UPD : VST4DWB<0b0001, {0,0,?,?}, "8">;
+def VST4q16_UPD : VST4DWB<0b0001, {0,1,?,?}, "16">;
+def VST4q32_UPD : VST4DWB<0b0001, {1,0,?,?}, "32">;
+
+def VST4q8Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
+def VST4q16Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
+def VST4q32Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
+
+// ...alternate versions to be allocated odd register numbers:
+def VST4q8oddPseudo : VSTQQQQPseudo<IIC_VST4>;
+def VST4q16oddPseudo : VSTQQQQPseudo<IIC_VST4>;
+def VST4q32oddPseudo : VSTQQQQPseudo<IIC_VST4>;
+
+def VST4q8oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
+def VST4q16oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
+def VST4q32oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
+
+} // mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1
+
+// Classes for VST*LN pseudo-instructions with multi-register operands.
+// These are expanded to real instructions after register allocation.
+class VSTQLNPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs), (ins addrmode6:$addr, QPR:$src, nohash_imm:$lane),
+ itin, "">;
+class VSTQLNWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset, QPR:$src,
+ nohash_imm:$lane), itin, "$addr.addr = $wb">;
+class VSTQQLNPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs), (ins addrmode6:$addr, QQPR:$src, nohash_imm:$lane),
+ itin, "">;
+class VSTQQLNWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset, QQPR:$src,
+ nohash_imm:$lane), itin, "$addr.addr = $wb">;
+class VSTQQQQLNPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs), (ins addrmode6:$addr, QQQQPR:$src, nohash_imm:$lane),
+ itin, "">;
+class VSTQQQQLNWBPseudo<InstrItinClass itin>
+ : PseudoNLdSt<(outs GPR:$wb),
+ (ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src,
+ nohash_imm:$lane), itin, "$addr.addr = $wb">;
+
+// VST1LN : Vector Store (single element from one lane)
+class VST1LN<bits<4> op11_8, bits<4> op7_4, string Dt, ValueType Ty,
+ PatFrag StoreOp, SDNode ExtractOp, Operand AddrMode>
+ : NLdStLn<1, 0b00, op11_8, op7_4, (outs),
+ (ins AddrMode:$Rn, DPR:$Vd, nohash_imm:$lane),
+ IIC_VST1ln, "vst1", Dt, "\\{$Vd[$lane]\\}, $Rn", "",
+ [(StoreOp (ExtractOp (Ty DPR:$Vd), imm:$lane), AddrMode:$Rn)]> {
+ let Rm = 0b1111;
+ let DecoderMethod = "DecodeVST1LN";
+}
+class VST1QLNPseudo<ValueType Ty, PatFrag StoreOp, SDNode ExtractOp>
+ : VSTQLNPseudo<IIC_VST1ln> {
+ let Pattern = [(StoreOp (ExtractOp (Ty QPR:$src), imm:$lane),
+ addrmode6:$addr)];
+}
+
+def VST1LNd8 : VST1LN<0b0000, {?,?,?,0}, "8", v8i8, truncstorei8,
+ NEONvgetlaneu, addrmode6> {
+ let Inst{7-5} = lane{2-0};
+}
+def VST1LNd16 : VST1LN<0b0100, {?,?,0,?}, "16", v4i16, truncstorei16,
+ NEONvgetlaneu, addrmode6> {
+ let Inst{7-6} = lane{1-0};
+ let Inst{4} = Rn{4};
+}
+
+def VST1LNd32 : VST1LN<0b1000, {?,0,?,?}, "32", v2i32, store, extractelt,
+ addrmode6oneL32> {
+ let Inst{7} = lane{0};
+ let Inst{5-4} = Rn{5-4};
+}
+
+def VST1LNq8Pseudo : VST1QLNPseudo<v16i8, truncstorei8, NEONvgetlaneu>;
+def VST1LNq16Pseudo : VST1QLNPseudo<v8i16, truncstorei16, NEONvgetlaneu>;
+def VST1LNq32Pseudo : VST1QLNPseudo<v4i32, store, extractelt>;
+
+def : Pat<(store (extractelt (v2f32 DPR:$src), imm:$lane), addrmode6:$addr),
+ (VST1LNd32 addrmode6:$addr, DPR:$src, imm:$lane)>;
+def : Pat<(store (extractelt (v4f32 QPR:$src), imm:$lane), addrmode6:$addr),
+ (VST1LNq32Pseudo addrmode6:$addr, QPR:$src, imm:$lane)>;
+
+// ...with address register writeback:
+class VST1LNWB<bits<4> op11_8, bits<4> op7_4, string Dt, ValueType Ty,
+ PatFrag StoreOp, SDNode ExtractOp, Operand AdrMode>
+ : NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb),
+ (ins AdrMode:$Rn, am6offset:$Rm,
+ DPR:$Vd, nohash_imm:$lane), IIC_VST1lnu, "vst1", Dt,
+ "\\{$Vd[$lane]\\}, $Rn$Rm",
+ "$Rn.addr = $wb",
+ [(set GPR:$wb, (StoreOp (ExtractOp (Ty DPR:$Vd), imm:$lane),
+ AdrMode:$Rn, am6offset:$Rm))]> {
+ let DecoderMethod = "DecodeVST1LN";
+}
+class VST1QLNWBPseudo<ValueType Ty, PatFrag StoreOp, SDNode ExtractOp>
+ : VSTQLNWBPseudo<IIC_VST1lnu> {
+ let Pattern = [(set GPR:$wb, (StoreOp (ExtractOp (Ty QPR:$src), imm:$lane),
+ addrmode6:$addr, am6offset:$offset))];
+}
+
+def VST1LNd8_UPD : VST1LNWB<0b0000, {?,?,?,0}, "8", v8i8, post_truncsti8,
+ NEONvgetlaneu, addrmode6> {
+ let Inst{7-5} = lane{2-0};
+}
+def VST1LNd16_UPD : VST1LNWB<0b0100, {?,?,0,?}, "16", v4i16, post_truncsti16,
+ NEONvgetlaneu, addrmode6> {
+ let Inst{7-6} = lane{1-0};
+ let Inst{4} = Rn{4};
+}
+def VST1LNd32_UPD : VST1LNWB<0b1000, {?,0,?,?}, "32", v2i32, post_store,
+ extractelt, addrmode6oneL32> {
+ let Inst{7} = lane{0};
+ let Inst{5-4} = Rn{5-4};
+}
+
+def VST1LNq8Pseudo_UPD : VST1QLNWBPseudo<v16i8, post_truncsti8, NEONvgetlaneu>;
+def VST1LNq16Pseudo_UPD : VST1QLNWBPseudo<v8i16, post_truncsti16,NEONvgetlaneu>;
+def VST1LNq32Pseudo_UPD : VST1QLNWBPseudo<v4i32, post_store, extractelt>;
+
+let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in {
+
+// VST2LN : Vector Store (single 2-element structure from one lane)
+class VST2LN<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b00, op11_8, op7_4, (outs),
+ (ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, nohash_imm:$lane),
+ IIC_VST2ln, "vst2", Dt, "\\{$Vd[$lane], $src2[$lane]\\}, $Rn",
+ "", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVST2LN";
+}
+
+def VST2LNd8 : VST2LN<0b0001, {?,?,?,?}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VST2LNd16 : VST2LN<0b0101, {?,?,0,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VST2LNd32 : VST2LN<0b1001, {?,0,0,?}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VST2LNd8Pseudo : VSTQLNPseudo<IIC_VST2ln>;
+def VST2LNd16Pseudo : VSTQLNPseudo<IIC_VST2ln>;
+def VST2LNd32Pseudo : VSTQLNPseudo<IIC_VST2ln>;
+
+// ...with double-spaced registers:
+def VST2LNq16 : VST2LN<0b0101, {?,?,1,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+ let Inst{4} = Rn{4};
+}
+def VST2LNq32 : VST2LN<0b1001, {?,1,0,?}, "32"> {
+ let Inst{7} = lane{0};
+ let Inst{4} = Rn{4};
+}
+
+def VST2LNq16Pseudo : VSTQQLNPseudo<IIC_VST2ln>;
+def VST2LNq32Pseudo : VSTQQLNPseudo<IIC_VST2ln>;
+
+// ...with address register writeback:
+class VST2LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb),
+ (ins addrmode6:$Rn, am6offset:$Rm,
+ DPR:$Vd, DPR:$src2, nohash_imm:$lane), IIC_VST2lnu, "vst2", Dt,
+ "\\{$Vd[$lane], $src2[$lane]\\}, $Rn$Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVST2LN";
+}
+
+def VST2LNd8_UPD : VST2LNWB<0b0001, {?,?,?,?}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VST2LNd16_UPD : VST2LNWB<0b0101, {?,?,0,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VST2LNd32_UPD : VST2LNWB<0b1001, {?,0,0,?}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VST2LNd8Pseudo_UPD : VSTQLNWBPseudo<IIC_VST2lnu>;
+def VST2LNd16Pseudo_UPD : VSTQLNWBPseudo<IIC_VST2lnu>;
+def VST2LNd32Pseudo_UPD : VSTQLNWBPseudo<IIC_VST2lnu>;
+
+def VST2LNq16_UPD : VST2LNWB<0b0101, {?,?,1,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VST2LNq32_UPD : VST2LNWB<0b1001, {?,1,0,?}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VST2LNq16Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST2lnu>;
+def VST2LNq32Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST2lnu>;
+
+// VST3LN : Vector Store (single 3-element structure from one lane)
+class VST3LN<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b00, op11_8, op7_4, (outs),
+ (ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3,
+ nohash_imm:$lane), IIC_VST3ln, "vst3", Dt,
+ "\\{$Vd[$lane], $src2[$lane], $src3[$lane]\\}, $Rn", "", []> {
+ let Rm = 0b1111;
+ let DecoderMethod = "DecodeVST3LN";
+}
+
+def VST3LNd8 : VST3LN<0b0010, {?,?,?,0}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VST3LNd16 : VST3LN<0b0110, {?,?,0,0}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VST3LNd32 : VST3LN<0b1010, {?,0,0,0}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VST3LNd8Pseudo : VSTQQLNPseudo<IIC_VST3ln>;
+def VST3LNd16Pseudo : VSTQQLNPseudo<IIC_VST3ln>;
+def VST3LNd32Pseudo : VSTQQLNPseudo<IIC_VST3ln>;
+
+// ...with double-spaced registers:
+def VST3LNq16 : VST3LN<0b0110, {?,?,1,0}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VST3LNq32 : VST3LN<0b1010, {?,1,0,0}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VST3LNq16Pseudo : VSTQQQQLNPseudo<IIC_VST3ln>;
+def VST3LNq32Pseudo : VSTQQQQLNPseudo<IIC_VST3ln>;
+
+// ...with address register writeback:
+class VST3LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb),
+ (ins addrmode6:$Rn, am6offset:$Rm,
+ DPR:$Vd, DPR:$src2, DPR:$src3, nohash_imm:$lane),
+ IIC_VST3lnu, "vst3", Dt,
+ "\\{$Vd[$lane], $src2[$lane], $src3[$lane]\\}, $Rn$Rm",
+ "$Rn.addr = $wb", []> {
+ let DecoderMethod = "DecodeVST3LN";
+}
+
+def VST3LNd8_UPD : VST3LNWB<0b0010, {?,?,?,0}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VST3LNd16_UPD : VST3LNWB<0b0110, {?,?,0,0}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VST3LNd32_UPD : VST3LNWB<0b1010, {?,0,0,0}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VST3LNd8Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST3lnu>;
+def VST3LNd16Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST3lnu>;
+def VST3LNd32Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST3lnu>;
+
+def VST3LNq16_UPD : VST3LNWB<0b0110, {?,?,1,0}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VST3LNq32_UPD : VST3LNWB<0b1010, {?,1,0,0}, "32"> {
+ let Inst{7} = lane{0};
+}
+
+def VST3LNq16Pseudo_UPD : VSTQQQQLNWBPseudo<IIC_VST3lnu>;
+def VST3LNq32Pseudo_UPD : VSTQQQQLNWBPseudo<IIC_VST3lnu>;
+
+// VST4LN : Vector Store (single 4-element structure from one lane)
+class VST4LN<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b00, op11_8, op7_4, (outs),
+ (ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4,
+ nohash_imm:$lane), IIC_VST4ln, "vst4", Dt,
+ "\\{$Vd[$lane], $src2[$lane], $src3[$lane], $src4[$lane]\\}, $Rn",
+ "", []> {
+ let Rm = 0b1111;
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVST4LN";
+}
+
+def VST4LNd8 : VST4LN<0b0011, {?,?,?,?}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VST4LNd16 : VST4LN<0b0111, {?,?,0,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VST4LNd32 : VST4LN<0b1011, {?,0,?,?}, "32"> {
+ let Inst{7} = lane{0};
+ let Inst{5} = Rn{5};
+}
+
+def VST4LNd8Pseudo : VSTQQLNPseudo<IIC_VST4ln>;
+def VST4LNd16Pseudo : VSTQQLNPseudo<IIC_VST4ln>;
+def VST4LNd32Pseudo : VSTQQLNPseudo<IIC_VST4ln>;
+
+// ...with double-spaced registers:
+def VST4LNq16 : VST4LN<0b0111, {?,?,1,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VST4LNq32 : VST4LN<0b1011, {?,1,?,?}, "32"> {
+ let Inst{7} = lane{0};
+ let Inst{5} = Rn{5};
+}
+
+def VST4LNq16Pseudo : VSTQQQQLNPseudo<IIC_VST4ln>;
+def VST4LNq32Pseudo : VSTQQQQLNPseudo<IIC_VST4ln>;
+
+// ...with address register writeback:
+class VST4LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
+ : NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb),
+ (ins addrmode6:$Rn, am6offset:$Rm,
+ DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4, nohash_imm:$lane),
+ IIC_VST4lnu, "vst4", Dt,
+ "\\{$Vd[$lane], $src2[$lane], $src3[$lane], $src4[$lane]\\}, $Rn$Rm",
+ "$Rn.addr = $wb", []> {
+ let Inst{4} = Rn{4};
+ let DecoderMethod = "DecodeVST4LN";
+}
+
+def VST4LNd8_UPD : VST4LNWB<0b0011, {?,?,?,?}, "8"> {
+ let Inst{7-5} = lane{2-0};
+}
+def VST4LNd16_UPD : VST4LNWB<0b0111, {?,?,0,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VST4LNd32_UPD : VST4LNWB<0b1011, {?,0,?,?}, "32"> {
+ let Inst{7} = lane{0};
+ let Inst{5} = Rn{5};
+}
+
+def VST4LNd8Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST4lnu>;
+def VST4LNd16Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST4lnu>;
+def VST4LNd32Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST4lnu>;
+
+def VST4LNq16_UPD : VST4LNWB<0b0111, {?,?,1,?}, "16"> {
+ let Inst{7-6} = lane{1-0};
+}
+def VST4LNq32_UPD : VST4LNWB<0b1011, {?,1,?,?}, "32"> {
+ let Inst{7} = lane{0};
+ let Inst{5} = Rn{5};
+}
+
+def VST4LNq16Pseudo_UPD : VSTQQQQLNWBPseudo<IIC_VST4lnu>;
+def VST4LNq32Pseudo_UPD : VSTQQQQLNWBPseudo<IIC_VST4lnu>;
+
+} // mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1
+
+// Use vld1/vst1 for unaligned f64 load / store
+def : Pat<(f64 (hword_alignedload addrmode6:$addr)),
+ (VLD1d16 addrmode6:$addr)>, Requires<[IsLE]>;
+def : Pat<(hword_alignedstore (f64 DPR:$value), addrmode6:$addr),
+ (VST1d16 addrmode6:$addr, DPR:$value)>, Requires<[IsLE]>;
+def : Pat<(f64 (byte_alignedload addrmode6:$addr)),
+ (VLD1d8 addrmode6:$addr)>, Requires<[IsLE]>;
+def : Pat<(byte_alignedstore (f64 DPR:$value), addrmode6:$addr),
+ (VST1d8 addrmode6:$addr, DPR:$value)>, Requires<[IsLE]>;
+def : Pat<(f64 (non_word_alignedload addrmode6:$addr)),
+ (VLD1d64 addrmode6:$addr)>, Requires<[IsBE]>;
+def : Pat<(non_word_alignedstore (f64 DPR:$value), addrmode6:$addr),
+ (VST1d64 addrmode6:$addr, DPR:$value)>, Requires<[IsBE]>;
+
+// Use vld1/vst1 for Q and QQ. Also use them for unaligned v2f64
+// load / store if it's legal.
+def : Pat<(v2f64 (dword_alignedload addrmode6:$addr)),
+ (VLD1q64 addrmode6:$addr)>;
+def : Pat<(dword_alignedstore (v2f64 QPR:$value), addrmode6:$addr),
+ (VST1q64 addrmode6:$addr, QPR:$value)>;
+def : Pat<(v2f64 (word_alignedload addrmode6:$addr)),
+ (VLD1q32 addrmode6:$addr)>, Requires<[IsLE]>;
+def : Pat<(word_alignedstore (v2f64 QPR:$value), addrmode6:$addr),
+ (VST1q32 addrmode6:$addr, QPR:$value)>, Requires<[IsLE]>;
+def : Pat<(v2f64 (hword_alignedload addrmode6:$addr)),
+ (VLD1q16 addrmode6:$addr)>, Requires<[IsLE]>;
+def : Pat<(hword_alignedstore (v2f64 QPR:$value), addrmode6:$addr),
+ (VST1q16 addrmode6:$addr, QPR:$value)>, Requires<[IsLE]>;
+def : Pat<(v2f64 (byte_alignedload addrmode6:$addr)),
+ (VLD1q8 addrmode6:$addr)>, Requires<[IsLE]>;
+def : Pat<(byte_alignedstore (v2f64 QPR:$value), addrmode6:$addr),
+ (VST1q8 addrmode6:$addr, QPR:$value)>, Requires<[IsLE]>;
+
+//===----------------------------------------------------------------------===//
+// NEON pattern fragments
+//===----------------------------------------------------------------------===//
+
+// Extract D sub-registers of Q registers.
+def DSubReg_i8_reg : SDNodeXForm<imm, [{
+ assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
+ return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/8, MVT::i32);
+}]>;
+def DSubReg_i16_reg : SDNodeXForm<imm, [{
+ assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
+ return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/4, MVT::i32);
+}]>;
+def DSubReg_i32_reg : SDNodeXForm<imm, [{
+ assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
+ return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/2, MVT::i32);
+}]>;
+def DSubReg_f64_reg : SDNodeXForm<imm, [{
+ assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
+ return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue(), MVT::i32);
+}]>;
+
+// Extract S sub-registers of Q/D registers.
+def SSubReg_f32_reg : SDNodeXForm<imm, [{
+ assert(ARM::ssub_3 == ARM::ssub_0+3 && "Unexpected subreg numbering");
+ return CurDAG->getTargetConstant(ARM::ssub_0 + N->getZExtValue(), MVT::i32);
+}]>;
+
+// Translate lane numbers from Q registers to D subregs.
+def SubReg_i8_lane : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getZExtValue() & 7, MVT::i32);
+}]>;
+def SubReg_i16_lane : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getZExtValue() & 3, MVT::i32);
+}]>;
+def SubReg_i32_lane : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getZExtValue() & 1, MVT::i32);
+}]>;
+
+//===----------------------------------------------------------------------===//
+// Instruction Classes
+//===----------------------------------------------------------------------===//
+
+// Basic 2-register operations: double- and quad-register.
+class N2VD<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
+ string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4, (outs DPR:$Vd),
+ (ins DPR:$Vm), IIC_VUNAD, OpcodeStr, Dt,"$Vd, $Vm", "",
+ [(set DPR:$Vd, (ResTy (OpNode (OpTy DPR:$Vm))))]>;
+class N2VQ<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
+ string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4, (outs QPR:$Vd),
+ (ins QPR:$Vm), IIC_VUNAQ, OpcodeStr, Dt,"$Vd, $Vm", "",
+ [(set QPR:$Vd, (ResTy (OpNode (OpTy QPR:$Vm))))]>;
+
+// Basic 2-register intrinsics, both double- and quad-register.
+class N2VDInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4, (outs DPR:$Vd),
+ (ins DPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vm))))]>;
+class N2VQInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4, (outs QPR:$Vd),
+ (ins QPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vm))))]>;
+
+// Same as above, but not predicated.
+class N2VDIntnp<bits<2> op17_16, bits<3> op10_8, bit op7,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N2Vnp<0b10, op17_16, op10_8, op7, 0, (outs DPR:$Vd), (ins DPR:$Vm),
+ itin, OpcodeStr, Dt,
+ [(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vm))))]>;
+
+class N2VQIntnp<bits<2> op17_16, bits<3> op10_8, bit op7,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N2Vnp<0b10, op17_16, op10_8, op7, 1, (outs QPR:$Vd), (ins QPR:$Vm),
+ itin, OpcodeStr, Dt,
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vm))))]>;
+
+// Similar to NV2VQIntnp with some more encoding bits exposed (crypto).
+class N2VQIntXnp<bits<2> op19_18, bits<2> op17_16, bits<3> op10_8, bit op6,
+ bit op7, InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N2Vnp<op19_18, op17_16, op10_8, op7, op6, (outs QPR:$Vd), (ins QPR:$Vm),
+ itin, OpcodeStr, Dt,
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vm))))]>;
+
+// Same as N2VQIntXnp but with Vd as a src register.
+class N2VQIntX2np<bits<2> op19_18, bits<2> op17_16, bits<3> op10_8, bit op6,
+ bit op7, InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N2Vnp<op19_18, op17_16, op10_8, op7, op6,
+ (outs QPR:$Vd), (ins QPR:$src, QPR:$Vm),
+ itin, OpcodeStr, Dt,
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$src), (OpTy QPR:$Vm))))]> {
+ let Constraints = "$src = $Vd";
+}
+
+// Narrow 2-register operations.
+class N2VN<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op6, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyD, ValueType TyQ, SDNode OpNode>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, op6, op4, (outs DPR:$Vd),
+ (ins QPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set DPR:$Vd, (TyD (OpNode (TyQ QPR:$Vm))))]>;
+
+// Narrow 2-register intrinsics.
+class N2VNInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op6, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyD, ValueType TyQ, SDPatternOperator IntOp>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, op6, op4, (outs DPR:$Vd),
+ (ins QPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set DPR:$Vd, (TyD (IntOp (TyQ QPR:$Vm))))]>;
+
+// Long 2-register operations (currently only used for VMOVL).
+class N2VL<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op6, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDNode OpNode>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, op6, op4, (outs QPR:$Vd),
+ (ins DPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set QPR:$Vd, (TyQ (OpNode (TyD DPR:$Vm))))]>;
+
+// Long 2-register intrinsics.
+class N2VLInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op6, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDPatternOperator IntOp>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, op6, op4, (outs QPR:$Vd),
+ (ins DPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set QPR:$Vd, (TyQ (IntOp (TyD DPR:$Vm))))]>;
+
+// 2-register shuffles (VTRN/VZIP/VUZP), both double- and quad-register.
+class N2VDShuffle<bits<2> op19_18, bits<5> op11_7, string OpcodeStr, string Dt>
+ : N2V<0b11, 0b11, op19_18, 0b10, op11_7, 0, 0, (outs DPR:$Vd, DPR:$Vm),
+ (ins DPR:$src1, DPR:$src2), IIC_VPERMD,
+ OpcodeStr, Dt, "$Vd, $Vm",
+ "$src1 = $Vd, $src2 = $Vm", []>;
+class N2VQShuffle<bits<2> op19_18, bits<5> op11_7,
+ InstrItinClass itin, string OpcodeStr, string Dt>
+ : N2V<0b11, 0b11, op19_18, 0b10, op11_7, 1, 0, (outs QPR:$Vd, QPR:$Vm),
+ (ins QPR:$src1, QPR:$src2), itin, OpcodeStr, Dt, "$Vd, $Vm",
+ "$src1 = $Vd, $src2 = $Vm", []>;
+
+// Basic 3-register operations: double- and quad-register.
+class N3VD<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDNode OpNode, bit Commutable>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
+ [(set DPR:$Vd, (ResTy (OpNode (OpTy DPR:$Vn), (OpTy DPR:$Vm))))]> {
+ // All of these have a two-operand InstAlias.
+ let TwoOperandAliasConstraint = "$Vn = $Vd";
+ let isCommutable = Commutable;
+}
+// Same as N3VD but no data type.
+class N3VDX<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr,
+ ValueType ResTy, ValueType OpTy,
+ SDNode OpNode, bit Commutable>
+ : N3VX<op24, op23, op21_20, op11_8, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, "$Vd, $Vn, $Vm", "",
+ [(set DPR:$Vd, (ResTy (OpNode (OpTy DPR:$Vn), (OpTy DPR:$Vm))))]>{
+ // All of these have a two-operand InstAlias.
+ let TwoOperandAliasConstraint = "$Vn = $Vd";
+ let isCommutable = Commutable;
+}
+
+class N3VDSL<bits<2> op21_20, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType Ty, SDNode ShOp>
+ : N3VLane32<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$Vd), (ins DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
+ NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
+ [(set (Ty DPR:$Vd),
+ (Ty (ShOp (Ty DPR:$Vn),
+ (Ty (NEONvduplane (Ty DPR_VFP2:$Vm),imm:$lane)))))]> {
+ // All of these have a two-operand InstAlias.
+ let TwoOperandAliasConstraint = "$Vn = $Vd";
+ let isCommutable = 0;
+}
+class N3VDSL16<bits<2> op21_20, bits<4> op11_8,
+ string OpcodeStr, string Dt, ValueType Ty, SDNode ShOp>
+ : N3VLane16<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$Vd), (ins DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
+ NVMulSLFrm, IIC_VMULi16D, OpcodeStr, Dt,"$Vd, $Vn, $Vm$lane","",
+ [(set (Ty DPR:$Vd),
+ (Ty (ShOp (Ty DPR:$Vn),
+ (Ty (NEONvduplane (Ty DPR_8:$Vm), imm:$lane)))))]> {
+ // All of these have a two-operand InstAlias.
+ let TwoOperandAliasConstraint = "$Vn = $Vd";
+ let isCommutable = 0;
+}
+
+class N3VQ<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDNode OpNode, bit Commutable>
+ : N3V<op24, op23, op21_20, op11_8, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$Vn, QPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
+ [(set QPR:$Vd, (ResTy (OpNode (OpTy QPR:$Vn), (OpTy QPR:$Vm))))]> {
+ // All of these have a two-operand InstAlias.
+ let TwoOperandAliasConstraint = "$Vn = $Vd";
+ let isCommutable = Commutable;
+}
+class N3VQX<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr,
+ ValueType ResTy, ValueType OpTy, SDNode OpNode, bit Commutable>
+ : N3VX<op24, op23, op21_20, op11_8, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$Vn, QPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, "$Vd, $Vn, $Vm", "",
+ [(set QPR:$Vd, (ResTy (OpNode (OpTy QPR:$Vn), (OpTy QPR:$Vm))))]>{
+ // All of these have a two-operand InstAlias.
+ let TwoOperandAliasConstraint = "$Vn = $Vd";
+ let isCommutable = Commutable;
+}
+class N3VQSL<bits<2> op21_20, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDNode ShOp>
+ : N3VLane32<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd), (ins QPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
+ NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
+ [(set (ResTy QPR:$Vd),
+ (ResTy (ShOp (ResTy QPR:$Vn),
+ (ResTy (NEONvduplane (OpTy DPR_VFP2:$Vm),
+ imm:$lane)))))]> {
+ // All of these have a two-operand InstAlias.
+ let TwoOperandAliasConstraint = "$Vn = $Vd";
+ let isCommutable = 0;
+}
+class N3VQSL16<bits<2> op21_20, bits<4> op11_8, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDNode ShOp>
+ : N3VLane16<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd), (ins QPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
+ NVMulSLFrm, IIC_VMULi16Q, OpcodeStr, Dt,"$Vd, $Vn, $Vm$lane", "",
+ [(set (ResTy QPR:$Vd),
+ (ResTy (ShOp (ResTy QPR:$Vn),
+ (ResTy (NEONvduplane (OpTy DPR_8:$Vm),
+ imm:$lane)))))]> {
+ // All of these have a two-operand InstAlias.
+ let TwoOperandAliasConstraint = "$Vn = $Vd";
+ let isCommutable = 0;
+}
+
+// Basic 3-register intrinsics, both double- and quad-register.
+class N3VDInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ Format f, InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp, bit Commutable>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$Vn, DPR:$Vm), f, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
+ [(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vn), (OpTy DPR:$Vm))))]> {
+ // All of these have a two-operand InstAlias.
+ let TwoOperandAliasConstraint = "$Vn = $Vd";
+ let isCommutable = Commutable;
+}
+
+class N3VDIntnp<bits<5> op27_23, bits<2> op21_20, bits<4> op11_8, bit op6,
+ bit op4, Format f, InstrItinClass itin, string OpcodeStr,
+ string Dt, ValueType ResTy, ValueType OpTy,
+ SDPatternOperator IntOp, bit Commutable>
+ : N3Vnp<op27_23, op21_20, op11_8, op6, op4,
+ (outs DPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin, OpcodeStr, Dt,
+ [(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vn), (OpTy DPR:$Vm))))]>;
+
+class N3VDIntSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, string Dt, ValueType Ty, SDPatternOperator IntOp>
+ : N3VLane32<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$Vd), (ins DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
+ NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
+ [(set (Ty DPR:$Vd),
+ (Ty (IntOp (Ty DPR:$Vn),
+ (Ty (NEONvduplane (Ty DPR_VFP2:$Vm),
+ imm:$lane)))))]> {
+ let isCommutable = 0;
+}
+
+class N3VDIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, string Dt, ValueType Ty, SDPatternOperator IntOp>
+ : N3VLane16<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$Vd), (ins DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
+ NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
+ [(set (Ty DPR:$Vd),
+ (Ty (IntOp (Ty DPR:$Vn),
+ (Ty (NEONvduplane (Ty DPR_8:$Vm), imm:$lane)))))]> {
+ let isCommutable = 0;
+}
+class N3VDIntSh<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ Format f, InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$Vm, DPR:$Vn), f, itin,
+ OpcodeStr, Dt, "$Vd, $Vm, $Vn", "",
+ [(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vm), (OpTy DPR:$Vn))))]> {
+ let TwoOperandAliasConstraint = "$Vm = $Vd";
+ let isCommutable = 0;
+}
+
+class N3VQInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ Format f, InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp, bit Commutable>
+ : N3V<op24, op23, op21_20, op11_8, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$Vn, QPR:$Vm), f, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vn), (OpTy QPR:$Vm))))]> {
+ // All of these have a two-operand InstAlias.
+ let TwoOperandAliasConstraint = "$Vn = $Vd";
+ let isCommutable = Commutable;
+}
+
+class N3VQIntnp<bits<5> op27_23, bits<2> op21_20, bits<4> op11_8, bit op6,
+ bit op4, Format f, InstrItinClass itin, string OpcodeStr,
+ string Dt, ValueType ResTy, ValueType OpTy,
+ SDPatternOperator IntOp, bit Commutable>
+ : N3Vnp<op27_23, op21_20, op11_8, op6, op4,
+ (outs QPR:$Vd), (ins QPR:$Vn, QPR:$Vm), f, itin, OpcodeStr, Dt,
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vn), (OpTy QPR:$Vm))))]>;
+
+// Same as N3VQIntnp but with Vd as a src register.
+class N3VQInt3np<bits<5> op27_23, bits<2> op21_20, bits<4> op11_8, bit op6,
+ bit op4, Format f, InstrItinClass itin, string OpcodeStr,
+ string Dt, ValueType ResTy, ValueType OpTy,
+ SDPatternOperator IntOp, bit Commutable>
+ : N3Vnp<op27_23, op21_20, op11_8, op6, op4,
+ (outs QPR:$Vd), (ins QPR:$src, QPR:$Vn, QPR:$Vm),
+ f, itin, OpcodeStr, Dt,
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$src), (OpTy QPR:$Vn),
+ (OpTy QPR:$Vm))))]> {
+ let Constraints = "$src = $Vd";
+}
+
+class N3VQIntSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N3VLane32<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd), (ins QPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
+ NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
+ [(set (ResTy QPR:$Vd),
+ (ResTy (IntOp (ResTy QPR:$Vn),
+ (ResTy (NEONvduplane (OpTy DPR_VFP2:$Vm),
+ imm:$lane)))))]> {
+ let isCommutable = 0;
+}
+class N3VQIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N3VLane16<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd), (ins QPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
+ NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
+ [(set (ResTy QPR:$Vd),
+ (ResTy (IntOp (ResTy QPR:$Vn),
+ (ResTy (NEONvduplane (OpTy DPR_8:$Vm),
+ imm:$lane)))))]> {
+ let isCommutable = 0;
+}
+class N3VQIntSh<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ Format f, InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N3V<op24, op23, op21_20, op11_8, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$Vm, QPR:$Vn), f, itin,
+ OpcodeStr, Dt, "$Vd, $Vm, $Vn", "",
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vm), (OpTy QPR:$Vn))))]> {
+ let TwoOperandAliasConstraint = "$Vm = $Vd";
+ let isCommutable = 0;
+}
+
+// Multiply-Add/Sub operations: double- and quad-register.
+class N3VDMulOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType Ty, SDPatternOperator MulOp, SDPatternOperator OpNode>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ [(set DPR:$Vd, (Ty (OpNode DPR:$src1,
+ (Ty (MulOp DPR:$Vn, DPR:$Vm)))))]>;
+
+class N3VDMulOpSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, string Dt,
+ ValueType Ty, SDPatternOperator MulOp, SDPatternOperator ShOp>
+ : N3VLane32<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$Vd),
+ (ins DPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
+ NVMulSLFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
+ [(set (Ty DPR:$Vd),
+ (Ty (ShOp (Ty DPR:$src1),
+ (Ty (MulOp DPR:$Vn,
+ (Ty (NEONvduplane (Ty DPR_VFP2:$Vm),
+ imm:$lane)))))))]>;
+class N3VDMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, string Dt,
+ ValueType Ty, SDNode MulOp, SDNode ShOp>
+ : N3VLane16<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$Vd),
+ (ins DPR:$src1, DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
+ NVMulSLFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
+ [(set (Ty DPR:$Vd),
+ (Ty (ShOp (Ty DPR:$src1),
+ (Ty (MulOp DPR:$Vn,
+ (Ty (NEONvduplane (Ty DPR_8:$Vm),
+ imm:$lane)))))))]>;
+
+class N3VQMulOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty,
+ SDPatternOperator MulOp, SDPatternOperator OpNode>
+ : N3V<op24, op23, op21_20, op11_8, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ [(set QPR:$Vd, (Ty (OpNode QPR:$src1,
+ (Ty (MulOp QPR:$Vn, QPR:$Vm)))))]>;
+class N3VQMulOpSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy,
+ SDPatternOperator MulOp, SDPatternOperator ShOp>
+ : N3VLane32<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd),
+ (ins QPR:$src1, QPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
+ NVMulSLFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
+ [(set (ResTy QPR:$Vd),
+ (ResTy (ShOp (ResTy QPR:$src1),
+ (ResTy (MulOp QPR:$Vn,
+ (ResTy (NEONvduplane (OpTy DPR_VFP2:$Vm),
+ imm:$lane)))))))]>;
+class N3VQMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy,
+ SDNode MulOp, SDNode ShOp>
+ : N3VLane16<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd),
+ (ins QPR:$src1, QPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
+ NVMulSLFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
+ [(set (ResTy QPR:$Vd),
+ (ResTy (ShOp (ResTy QPR:$src1),
+ (ResTy (MulOp QPR:$Vn,
+ (ResTy (NEONvduplane (OpTy DPR_8:$Vm),
+ imm:$lane)))))))]>;
+
+// Neon Intrinsic-Op instructions (VABA): double- and quad-register.
+class N3VDIntOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType Ty, SDPatternOperator IntOp, SDNode OpNode>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ [(set DPR:$Vd, (Ty (OpNode DPR:$src1,
+ (Ty (IntOp (Ty DPR:$Vn), (Ty DPR:$Vm))))))]>;
+class N3VQIntOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType Ty, SDPatternOperator IntOp, SDNode OpNode>
+ : N3V<op24, op23, op21_20, op11_8, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ [(set QPR:$Vd, (Ty (OpNode QPR:$src1,
+ (Ty (IntOp (Ty QPR:$Vn), (Ty QPR:$Vm))))))]>;
+
+// Neon 3-argument intrinsics, both double- and quad-register.
+// The destination register is also used as the first source operand register.
+class N3VDInt3<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ [(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$src1),
+ (OpTy DPR:$Vn), (OpTy DPR:$Vm))))]>;
+class N3VQInt3<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N3V<op24, op23, op21_20, op11_8, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$src1),
+ (OpTy QPR:$Vn), (OpTy QPR:$Vm))))]>;
+
+// Long Multiply-Add/Sub operations.
+class N3VLMulOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDNode MulOp, SDNode OpNode>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs QPR:$Vd), (ins QPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ [(set QPR:$Vd, (OpNode (TyQ QPR:$src1),
+ (TyQ (MulOp (TyD DPR:$Vn),
+ (TyD DPR:$Vm)))))]>;
+class N3VLMulOpSL<bit op24, bits<2> op21_20, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDNode MulOp, SDNode OpNode>
+ : N3VLane32<op24, 1, op21_20, op11_8, 1, 0, (outs QPR:$Vd),
+ (ins QPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
+ NVMulSLFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
+ [(set QPR:$Vd,
+ (OpNode (TyQ QPR:$src1),
+ (TyQ (MulOp (TyD DPR:$Vn),
+ (TyD (NEONvduplane (TyD DPR_VFP2:$Vm),
+ imm:$lane))))))]>;
+class N3VLMulOpSL16<bit op24, bits<2> op21_20, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDNode MulOp, SDNode OpNode>
+ : N3VLane16<op24, 1, op21_20, op11_8, 1, 0, (outs QPR:$Vd),
+ (ins QPR:$src1, DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
+ NVMulSLFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
+ [(set QPR:$Vd,
+ (OpNode (TyQ QPR:$src1),
+ (TyQ (MulOp (TyD DPR:$Vn),
+ (TyD (NEONvduplane (TyD DPR_8:$Vm),
+ imm:$lane))))))]>;
+
+// Long Intrinsic-Op vector operations with explicit extend (VABAL).
+class N3VLIntExtOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDPatternOperator IntOp, SDNode ExtOp,
+ SDNode OpNode>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs QPR:$Vd), (ins QPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ [(set QPR:$Vd, (OpNode (TyQ QPR:$src1),
+ (TyQ (ExtOp (TyD (IntOp (TyD DPR:$Vn),
+ (TyD DPR:$Vm)))))))]>;
+
+// Neon Long 3-argument intrinsic. The destination register is
+// a quad-register and is also used as the first source operand register.
+class N3VLInt3<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDPatternOperator IntOp>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs QPR:$Vd), (ins QPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ [(set QPR:$Vd,
+ (TyQ (IntOp (TyQ QPR:$src1), (TyD DPR:$Vn), (TyD DPR:$Vm))))]>;
+class N3VLInt3SL<bit op24, bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N3VLane32<op24, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd),
+ (ins QPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
+ NVMulSLFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
+ [(set (ResTy QPR:$Vd),
+ (ResTy (IntOp (ResTy QPR:$src1),
+ (OpTy DPR:$Vn),
+ (OpTy (NEONvduplane (OpTy DPR_VFP2:$Vm),
+ imm:$lane)))))]>;
+class N3VLInt3SL16<bit op24, bits<2> op21_20, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N3VLane16<op24, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd),
+ (ins QPR:$src1, DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
+ NVMulSLFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
+ [(set (ResTy QPR:$Vd),
+ (ResTy (IntOp (ResTy QPR:$src1),
+ (OpTy DPR:$Vn),
+ (OpTy (NEONvduplane (OpTy DPR_8:$Vm),
+ imm:$lane)))))]>;
+
+// Narrowing 3-register intrinsics.
+class N3VNInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ string OpcodeStr, string Dt, ValueType TyD, ValueType TyQ,
+ SDPatternOperator IntOp, bit Commutable>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs DPR:$Vd), (ins QPR:$Vn, QPR:$Vm), N3RegFrm, IIC_VBINi4D,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
+ [(set DPR:$Vd, (TyD (IntOp (TyQ QPR:$Vn), (TyQ QPR:$Vm))))]> {
+ let isCommutable = Commutable;
+}
+
+// Long 3-register operations.
+class N3VL<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDNode OpNode, bit Commutable>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs QPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
+ [(set QPR:$Vd, (TyQ (OpNode (TyD DPR:$Vn), (TyD DPR:$Vm))))]> {
+ let isCommutable = Commutable;
+}
+
+class N3VLSL<bit op24, bits<2> op21_20, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDNode OpNode>
+ : N3VLane32<op24, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd), (ins DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
+ NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
+ [(set QPR:$Vd,
+ (TyQ (OpNode (TyD DPR:$Vn),
+ (TyD (NEONvduplane (TyD DPR_VFP2:$Vm),imm:$lane)))))]>;
+class N3VLSL16<bit op24, bits<2> op21_20, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDNode OpNode>
+ : N3VLane16<op24, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd), (ins DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
+ NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
+ [(set QPR:$Vd,
+ (TyQ (OpNode (TyD DPR:$Vn),
+ (TyD (NEONvduplane (TyD DPR_8:$Vm), imm:$lane)))))]>;
+
+// Long 3-register operations with explicitly extended operands.
+class N3VLExt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDNode OpNode, SDNode ExtOp,
+ bit Commutable>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs QPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
+ [(set QPR:$Vd, (OpNode (TyQ (ExtOp (TyD DPR:$Vn))),
+ (TyQ (ExtOp (TyD DPR:$Vm)))))]> {
+ let isCommutable = Commutable;
+}
+
+// Long 3-register intrinsics with explicit extend (VABDL).
+class N3VLIntExt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDPatternOperator IntOp, SDNode ExtOp,
+ bit Commutable>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs QPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
+ [(set QPR:$Vd, (TyQ (ExtOp (TyD (IntOp (TyD DPR:$Vn),
+ (TyD DPR:$Vm))))))]> {
+ let isCommutable = Commutable;
+}
+
+// Long 3-register intrinsics.
+class N3VLInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType TyQ, ValueType TyD, SDPatternOperator IntOp, bit Commutable>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs QPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
+ [(set QPR:$Vd, (TyQ (IntOp (TyD DPR:$Vn), (TyD DPR:$Vm))))]> {
+ let isCommutable = Commutable;
+}
+
+// Same as above, but not predicated.
+class N3VLIntnp<bits<5> op27_23, bits<2> op21_20, bits<4> op11_8, bit op6,
+ bit op4, InstrItinClass itin, string OpcodeStr,
+ string Dt, ValueType ResTy, ValueType OpTy,
+ SDPatternOperator IntOp, bit Commutable>
+ : N3Vnp<op27_23, op21_20, op11_8, op6, op4,
+ (outs QPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin, OpcodeStr, Dt,
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vn), (OpTy DPR:$Vm))))]>;
+
+class N3VLIntSL<bit op24, bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N3VLane32<op24, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd), (ins DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
+ NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
+ [(set (ResTy QPR:$Vd),
+ (ResTy (IntOp (OpTy DPR:$Vn),
+ (OpTy (NEONvduplane (OpTy DPR_VFP2:$Vm),
+ imm:$lane)))))]>;
+class N3VLIntSL16<bit op24, bits<2> op21_20, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N3VLane16<op24, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$Vd), (ins DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
+ NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
+ [(set (ResTy QPR:$Vd),
+ (ResTy (IntOp (OpTy DPR:$Vn),
+ (OpTy (NEONvduplane (OpTy DPR_8:$Vm),
+ imm:$lane)))))]>;
+
+// Wide 3-register operations.
+class N3VW<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD,
+ SDNode OpNode, SDNode ExtOp, bit Commutable>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs QPR:$Vd), (ins QPR:$Vn, DPR:$Vm), N3RegFrm, IIC_VSUBiD,
+ OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
+ [(set QPR:$Vd, (OpNode (TyQ QPR:$Vn),
+ (TyQ (ExtOp (TyD DPR:$Vm)))))]> {
+ // All of these have a two-operand InstAlias.
+ let TwoOperandAliasConstraint = "$Vn = $Vd";
+ let isCommutable = Commutable;
+}
+
+// Pairwise long 2-register intrinsics, both double- and quad-register.
+class N2VDPLInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4, (outs DPR:$Vd),
+ (ins DPR:$Vm), IIC_VSHLiD, OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vm))))]>;
+class N2VQPLInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4, (outs QPR:$Vd),
+ (ins QPR:$Vm), IIC_VSHLiD, OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vm))))]>;
+
+// Pairwise long 2-register accumulate intrinsics,
+// both double- and quad-register.
+// The destination register is also used as the first source operand register.
+class N2VDPLInt2<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$src1, DPR:$Vm), IIC_VPALiD,
+ OpcodeStr, Dt, "$Vd, $Vm", "$src1 = $Vd",
+ [(set DPR:$Vd, (ResTy (IntOp (ResTy DPR:$src1), (OpTy DPR:$Vm))))]>;
+class N2VQPLInt2<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$src1, QPR:$Vm), IIC_VPALiQ,
+ OpcodeStr, Dt, "$Vd, $Vm", "$src1 = $Vd",
+ [(set QPR:$Vd, (ResTy (IntOp (ResTy QPR:$src1), (OpTy QPR:$Vm))))]>;
+
+// Shift by immediate,
+// both double- and quad-register.
+let TwoOperandAliasConstraint = "$Vm = $Vd" in {
+class N2VDSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
+ Format f, InstrItinClass itin, Operand ImmTy,
+ string OpcodeStr, string Dt, ValueType Ty, SDNode OpNode>
+ : N2VImm<op24, op23, op11_8, op7, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$Vm, ImmTy:$SIMM), f, itin,
+ OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
+ [(set DPR:$Vd, (Ty (OpNode (Ty DPR:$Vm), (i32 imm:$SIMM))))]>;
+class N2VQSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
+ Format f, InstrItinClass itin, Operand ImmTy,
+ string OpcodeStr, string Dt, ValueType Ty, SDNode OpNode>
+ : N2VImm<op24, op23, op11_8, op7, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$Vm, ImmTy:$SIMM), f, itin,
+ OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
+ [(set QPR:$Vd, (Ty (OpNode (Ty QPR:$Vm), (i32 imm:$SIMM))))]>;
+}
+
+// Long shift by immediate.
+class N2VLSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, Operand ImmTy,
+ SDPatternOperator OpNode>
+ : N2VImm<op24, op23, op11_8, op7, op6, op4,
+ (outs QPR:$Vd), (ins DPR:$Vm, ImmTy:$SIMM), N2RegVShLFrm,
+ IIC_VSHLiD, OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
+ [(set QPR:$Vd, (ResTy (OpNode (OpTy DPR:$Vm), ImmTy:$SIMM)))]>;
+
+// Narrow shift by immediate.
+class N2VNSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, Operand ImmTy,
+ SDPatternOperator OpNode>
+ : N2VImm<op24, op23, op11_8, op7, op6, op4,
+ (outs DPR:$Vd), (ins QPR:$Vm, ImmTy:$SIMM), N2RegVShRFrm, itin,
+ OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
+ [(set DPR:$Vd, (ResTy (OpNode (OpTy QPR:$Vm),
+ (i32 ImmTy:$SIMM))))]>;
+
+// Shift right by immediate and accumulate,
+// both double- and quad-register.
+let TwoOperandAliasConstraint = "$Vm = $Vd" in {
+class N2VDShAdd<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
+ Operand ImmTy, string OpcodeStr, string Dt,
+ ValueType Ty, SDNode ShOp>
+ : N2VImm<op24, op23, op11_8, op7, 0, op4, (outs DPR:$Vd),
+ (ins DPR:$src1, DPR:$Vm, ImmTy:$SIMM), N2RegVShRFrm, IIC_VPALiD,
+ OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "$src1 = $Vd",
+ [(set DPR:$Vd, (Ty (add DPR:$src1,
+ (Ty (ShOp DPR:$Vm, (i32 imm:$SIMM))))))]>;
+class N2VQShAdd<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
+ Operand ImmTy, string OpcodeStr, string Dt,
+ ValueType Ty, SDNode ShOp>
+ : N2VImm<op24, op23, op11_8, op7, 1, op4, (outs QPR:$Vd),
+ (ins QPR:$src1, QPR:$Vm, ImmTy:$SIMM), N2RegVShRFrm, IIC_VPALiD,
+ OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "$src1 = $Vd",
+ [(set QPR:$Vd, (Ty (add QPR:$src1,
+ (Ty (ShOp QPR:$Vm, (i32 imm:$SIMM))))))]>;
+}
+
+// Shift by immediate and insert,
+// both double- and quad-register.
+let TwoOperandAliasConstraint = "$Vm = $Vd" in {
+class N2VDShIns<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
+ Operand ImmTy, Format f, string OpcodeStr, string Dt,
+ ValueType Ty,SDNode ShOp>
+ : N2VImm<op24, op23, op11_8, op7, 0, op4, (outs DPR:$Vd),
+ (ins DPR:$src1, DPR:$Vm, ImmTy:$SIMM), f, IIC_VSHLiD,
+ OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "$src1 = $Vd",
+ [(set DPR:$Vd, (Ty (ShOp DPR:$src1, DPR:$Vm, (i32 imm:$SIMM))))]>;
+class N2VQShIns<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
+ Operand ImmTy, Format f, string OpcodeStr, string Dt,
+ ValueType Ty,SDNode ShOp>
+ : N2VImm<op24, op23, op11_8, op7, 1, op4, (outs QPR:$Vd),
+ (ins QPR:$src1, QPR:$Vm, ImmTy:$SIMM), f, IIC_VSHLiQ,
+ OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "$src1 = $Vd",
+ [(set QPR:$Vd, (Ty (ShOp QPR:$src1, QPR:$Vm, (i32 imm:$SIMM))))]>;
+}
+
+// Convert, with fractional bits immediate,
+// both double- and quad-register.
+class N2VCvtD<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
+ string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy,
+ SDPatternOperator IntOp>
+ : N2VImm<op24, op23, op11_8, op7, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$Vm, neon_vcvt_imm32:$SIMM), NVCVTFrm,
+ IIC_VUNAD, OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
+ [(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vm), (i32 imm:$SIMM))))]>;
+class N2VCvtQ<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
+ string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy,
+ SDPatternOperator IntOp>
+ : N2VImm<op24, op23, op11_8, op7, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$Vm, neon_vcvt_imm32:$SIMM), NVCVTFrm,
+ IIC_VUNAQ, OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
+ [(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vm), (i32 imm:$SIMM))))]>;
+
+//===----------------------------------------------------------------------===//
+// Multiclasses
+//===----------------------------------------------------------------------===//
+
+// Abbreviations used in multiclass suffixes:
+// Q = quarter int (8 bit) elements
+// H = half int (16 bit) elements
+// S = single int (32 bit) elements
+// D = double int (64 bit) elements
+
+// Neon 2-register vector operations and intrinsics.
+
+// Neon 2-register comparisons.
+// source operand element sizes of 8, 16 and 32 bits:
+multiclass N2V_QHS_cmp<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
+ bits<5> op11_7, bit op4, string opc, string Dt,
+ string asm, SDNode OpNode> {
+ // 64-bit vector types.
+ def v8i8 : N2V<op24_23, op21_20, 0b00, op17_16, op11_7, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$Vm), NoItinerary,
+ opc, !strconcat(Dt, "8"), asm, "",
+ [(set DPR:$Vd, (v8i8 (OpNode (v8i8 DPR:$Vm))))]>;
+ def v4i16 : N2V<op24_23, op21_20, 0b01, op17_16, op11_7, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$Vm), NoItinerary,
+ opc, !strconcat(Dt, "16"), asm, "",
+ [(set DPR:$Vd, (v4i16 (OpNode (v4i16 DPR:$Vm))))]>;
+ def v2i32 : N2V<op24_23, op21_20, 0b10, op17_16, op11_7, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$Vm), NoItinerary,
+ opc, !strconcat(Dt, "32"), asm, "",
+ [(set DPR:$Vd, (v2i32 (OpNode (v2i32 DPR:$Vm))))]>;
+ def v2f32 : N2V<op24_23, op21_20, 0b10, op17_16, op11_7, 0, op4,
+ (outs DPR:$Vd), (ins DPR:$Vm), NoItinerary,
+ opc, "f32", asm, "",
+ [(set DPR:$Vd, (v2i32 (OpNode (v2f32 DPR:$Vm))))]> {
+ let Inst{10} = 1; // overwrite F = 1
+ }
+
+ // 128-bit vector types.
+ def v16i8 : N2V<op24_23, op21_20, 0b00, op17_16, op11_7, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$Vm), NoItinerary,
+ opc, !strconcat(Dt, "8"), asm, "",
+ [(set QPR:$Vd, (v16i8 (OpNode (v16i8 QPR:$Vm))))]>;
+ def v8i16 : N2V<op24_23, op21_20, 0b01, op17_16, op11_7, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$Vm), NoItinerary,
+ opc, !strconcat(Dt, "16"), asm, "",
+ [(set QPR:$Vd, (v8i16 (OpNode (v8i16 QPR:$Vm))))]>;
+ def v4i32 : N2V<op24_23, op21_20, 0b10, op17_16, op11_7, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$Vm), NoItinerary,
+ opc, !strconcat(Dt, "32"), asm, "",
+ [(set QPR:$Vd, (v4i32 (OpNode (v4i32 QPR:$Vm))))]>;
+ def v4f32 : N2V<op24_23, op21_20, 0b10, op17_16, op11_7, 1, op4,
+ (outs QPR:$Vd), (ins QPR:$Vm), NoItinerary,
+ opc, "f32", asm, "",
+ [(set QPR:$Vd, (v4i32 (OpNode (v4f32 QPR:$Vm))))]> {
+ let Inst{10} = 1; // overwrite F = 1
+ }
+}
+
+
+// Neon 2-register vector intrinsics,
+// element sizes of 8, 16 and 32 bits:
+multiclass N2VInt_QHS<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
+ bits<5> op11_7, bit op4,
+ InstrItinClass itinD, InstrItinClass itinQ,
+ string OpcodeStr, string Dt, SDPatternOperator IntOp> {
+ // 64-bit vector types.
+ def v8i8 : N2VDInt<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
+ itinD, OpcodeStr, !strconcat(Dt, "8"), v8i8, v8i8, IntOp>;
+ def v4i16 : N2VDInt<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
+ itinD, OpcodeStr, !strconcat(Dt, "16"),v4i16,v4i16,IntOp>;
+ def v2i32 : N2VDInt<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
+ itinD, OpcodeStr, !strconcat(Dt, "32"),v2i32,v2i32,IntOp>;
+
+ // 128-bit vector types.
+ def v16i8 : N2VQInt<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
+ itinQ, OpcodeStr, !strconcat(Dt, "8"), v16i8,v16i8,IntOp>;
+ def v8i16 : N2VQInt<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
+ itinQ, OpcodeStr, !strconcat(Dt, "16"),v8i16,v8i16,IntOp>;
+ def v4i32 : N2VQInt<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
+ itinQ, OpcodeStr, !strconcat(Dt, "32"),v4i32,v4i32,IntOp>;
+}
+
+
+// Neon Narrowing 2-register vector operations,
+// source operand element sizes of 16, 32 and 64 bits:
+multiclass N2VN_HSD<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
+ bits<5> op11_7, bit op6, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ SDNode OpNode> {
+ def v8i8 : N2VN<op24_23, op21_20, 0b00, op17_16, op11_7, op6, op4,
+ itin, OpcodeStr, !strconcat(Dt, "16"),
+ v8i8, v8i16, OpNode>;
+ def v4i16 : N2VN<op24_23, op21_20, 0b01, op17_16, op11_7, op6, op4,
+ itin, OpcodeStr, !strconcat(Dt, "32"),
+ v4i16, v4i32, OpNode>;
+ def v2i32 : N2VN<op24_23, op21_20, 0b10, op17_16, op11_7, op6, op4,
+ itin, OpcodeStr, !strconcat(Dt, "64"),
+ v2i32, v2i64, OpNode>;
+}
+
+// Neon Narrowing 2-register vector intrinsics,
+// source operand element sizes of 16, 32 and 64 bits:
+multiclass N2VNInt_HSD<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
+ bits<5> op11_7, bit op6, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ SDPatternOperator IntOp> {
+ def v8i8 : N2VNInt<op24_23, op21_20, 0b00, op17_16, op11_7, op6, op4,
+ itin, OpcodeStr, !strconcat(Dt, "16"),
+ v8i8, v8i16, IntOp>;
+ def v4i16 : N2VNInt<op24_23, op21_20, 0b01, op17_16, op11_7, op6, op4,
+ itin, OpcodeStr, !strconcat(Dt, "32"),
+ v4i16, v4i32, IntOp>;
+ def v2i32 : N2VNInt<op24_23, op21_20, 0b10, op17_16, op11_7, op6, op4,
+ itin, OpcodeStr, !strconcat(Dt, "64"),
+ v2i32, v2i64, IntOp>;
+}
+
+
+// Neon Lengthening 2-register vector intrinsic (currently specific to VMOVL).
+// source operand element sizes of 16, 32 and 64 bits:
+multiclass N2VL_QHS<bits<2> op24_23, bits<5> op11_7, bit op6, bit op4,
+ string OpcodeStr, string Dt, SDNode OpNode> {
+ def v8i16 : N2VL<op24_23, 0b00, 0b10, 0b00, op11_7, op6, op4, IIC_VQUNAiD,
+ OpcodeStr, !strconcat(Dt, "8"), v8i16, v8i8, OpNode>;
+ def v4i32 : N2VL<op24_23, 0b01, 0b00, 0b00, op11_7, op6, op4, IIC_VQUNAiD,
+ OpcodeStr, !strconcat(Dt, "16"), v4i32, v4i16, OpNode>;
+ def v2i64 : N2VL<op24_23, 0b10, 0b00, 0b00, op11_7, op6, op4, IIC_VQUNAiD,
+ OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32, OpNode>;
+}
+
+
+// Neon 3-register vector operations.
+
+// First with only element sizes of 8, 16 and 32 bits:
+multiclass N3V_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ SDNode OpNode, bit Commutable = 0> {
+ // 64-bit vector types.
+ def v8i8 : N3VD<op24, op23, 0b00, op11_8, op4, itinD16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v8i8, v8i8, OpNode, Commutable>;
+ def v4i16 : N3VD<op24, op23, 0b01, op11_8, op4, itinD16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v4i16, v4i16, OpNode, Commutable>;
+ def v2i32 : N3VD<op24, op23, 0b10, op11_8, op4, itinD32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v2i32, v2i32, OpNode, Commutable>;
+
+ // 128-bit vector types.
+ def v16i8 : N3VQ<op24, op23, 0b00, op11_8, op4, itinQ16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v16i8, v16i8, OpNode, Commutable>;
+ def v8i16 : N3VQ<op24, op23, 0b01, op11_8, op4, itinQ16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v8i16, v8i16, OpNode, Commutable>;
+ def v4i32 : N3VQ<op24, op23, 0b10, op11_8, op4, itinQ32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v4i32, v4i32, OpNode, Commutable>;
+}
+
+multiclass N3VSL_HS<bits<4> op11_8, string OpcodeStr, SDNode ShOp> {
+ def v4i16 : N3VDSL16<0b01, op11_8, OpcodeStr, "i16", v4i16, ShOp>;
+ def v2i32 : N3VDSL<0b10, op11_8, IIC_VMULi32D, OpcodeStr, "i32", v2i32, ShOp>;
+ def v8i16 : N3VQSL16<0b01, op11_8, OpcodeStr, "i16", v8i16, v4i16, ShOp>;
+ def v4i32 : N3VQSL<0b10, op11_8, IIC_VMULi32Q, OpcodeStr, "i32",
+ v4i32, v2i32, ShOp>;
+}
+
+// ....then also with element size 64 bits:
+multiclass N3V_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD, InstrItinClass itinQ,
+ string OpcodeStr, string Dt,
+ SDNode OpNode, bit Commutable = 0>
+ : N3V_QHS<op24, op23, op11_8, op4, itinD, itinD, itinQ, itinQ,
+ OpcodeStr, Dt, OpNode, Commutable> {
+ def v1i64 : N3VD<op24, op23, 0b11, op11_8, op4, itinD,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v1i64, v1i64, OpNode, Commutable>;
+ def v2i64 : N3VQ<op24, op23, 0b11, op11_8, op4, itinQ,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v2i64, v2i64, OpNode, Commutable>;
+}
+
+
+// Neon 3-register vector intrinsics.
+
+// First with only element sizes of 16 and 32 bits:
+multiclass N3VInt_HS<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ SDPatternOperator IntOp, bit Commutable = 0> {
+ // 64-bit vector types.
+ def v4i16 : N3VDInt<op24, op23, 0b01, op11_8, op4, f, itinD16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v4i16, v4i16, IntOp, Commutable>;
+ def v2i32 : N3VDInt<op24, op23, 0b10, op11_8, op4, f, itinD32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v2i32, v2i32, IntOp, Commutable>;
+
+ // 128-bit vector types.
+ def v8i16 : N3VQInt<op24, op23, 0b01, op11_8, op4, f, itinQ16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v8i16, v8i16, IntOp, Commutable>;
+ def v4i32 : N3VQInt<op24, op23, 0b10, op11_8, op4, f, itinQ32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v4i32, v4i32, IntOp, Commutable>;
+}
+multiclass N3VInt_HSSh<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ SDPatternOperator IntOp> {
+ // 64-bit vector types.
+ def v4i16 : N3VDIntSh<op24, op23, 0b01, op11_8, op4, f, itinD16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v4i16, v4i16, IntOp>;
+ def v2i32 : N3VDIntSh<op24, op23, 0b10, op11_8, op4, f, itinD32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v2i32, v2i32, IntOp>;
+
+ // 128-bit vector types.
+ def v8i16 : N3VQIntSh<op24, op23, 0b01, op11_8, op4, f, itinQ16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v8i16, v8i16, IntOp>;
+ def v4i32 : N3VQIntSh<op24, op23, 0b10, op11_8, op4, f, itinQ32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v4i32, v4i32, IntOp>;
+}
+
+multiclass N3VIntSL_HS<bits<4> op11_8,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt, SDPatternOperator IntOp> {
+ def v4i16 : N3VDIntSL16<0b01, op11_8, itinD16,
+ OpcodeStr, !strconcat(Dt, "16"), v4i16, IntOp>;
+ def v2i32 : N3VDIntSL<0b10, op11_8, itinD32,
+ OpcodeStr, !strconcat(Dt, "32"), v2i32, IntOp>;
+ def v8i16 : N3VQIntSL16<0b01, op11_8, itinQ16,
+ OpcodeStr, !strconcat(Dt, "16"), v8i16, v4i16, IntOp>;
+ def v4i32 : N3VQIntSL<0b10, op11_8, itinQ32,
+ OpcodeStr, !strconcat(Dt, "32"), v4i32, v2i32, IntOp>;
+}
+
+// ....then also with element size of 8 bits:
+multiclass N3VInt_QHS<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ SDPatternOperator IntOp, bit Commutable = 0>
+ : N3VInt_HS<op24, op23, op11_8, op4, f, itinD16, itinD32, itinQ16, itinQ32,
+ OpcodeStr, Dt, IntOp, Commutable> {
+ def v8i8 : N3VDInt<op24, op23, 0b00, op11_8, op4, f, itinD16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v8i8, v8i8, IntOp, Commutable>;
+ def v16i8 : N3VQInt<op24, op23, 0b00, op11_8, op4, f, itinQ16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v16i8, v16i8, IntOp, Commutable>;
+}
+multiclass N3VInt_QHSSh<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ SDPatternOperator IntOp>
+ : N3VInt_HSSh<op24, op23, op11_8, op4, f, itinD16, itinD32, itinQ16, itinQ32,
+ OpcodeStr, Dt, IntOp> {
+ def v8i8 : N3VDIntSh<op24, op23, 0b00, op11_8, op4, f, itinD16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v8i8, v8i8, IntOp>;
+ def v16i8 : N3VQIntSh<op24, op23, 0b00, op11_8, op4, f, itinQ16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v16i8, v16i8, IntOp>;
+}
+
+
+// ....then also with element size of 64 bits:
+multiclass N3VInt_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ SDPatternOperator IntOp, bit Commutable = 0>
+ : N3VInt_QHS<op24, op23, op11_8, op4, f, itinD16, itinD32, itinQ16, itinQ32,
+ OpcodeStr, Dt, IntOp, Commutable> {
+ def v1i64 : N3VDInt<op24, op23, 0b11, op11_8, op4, f, itinD32,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v1i64, v1i64, IntOp, Commutable>;
+ def v2i64 : N3VQInt<op24, op23, 0b11, op11_8, op4, f, itinQ32,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v2i64, v2i64, IntOp, Commutable>;
+}
+multiclass N3VInt_QHSDSh<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ SDPatternOperator IntOp>
+ : N3VInt_QHSSh<op24, op23, op11_8, op4, f, itinD16, itinD32, itinQ16, itinQ32,
+ OpcodeStr, Dt, IntOp> {
+ def v1i64 : N3VDIntSh<op24, op23, 0b11, op11_8, op4, f, itinD32,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v1i64, v1i64, IntOp>;
+ def v2i64 : N3VQIntSh<op24, op23, 0b11, op11_8, op4, f, itinQ32,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v2i64, v2i64, IntOp>;
+}
+
+// Neon Narrowing 3-register vector intrinsics,
+// source operand element sizes of 16, 32 and 64 bits:
+multiclass N3VNInt_HSD<bit op24, bit op23, bits<4> op11_8, bit op4,
+ string OpcodeStr, string Dt,
+ SDPatternOperator IntOp, bit Commutable = 0> {
+ def v8i8 : N3VNInt<op24, op23, 0b00, op11_8, op4,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v8i8, v8i16, IntOp, Commutable>;
+ def v4i16 : N3VNInt<op24, op23, 0b01, op11_8, op4,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v4i16, v4i32, IntOp, Commutable>;
+ def v2i32 : N3VNInt<op24, op23, 0b10, op11_8, op4,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v2i32, v2i64, IntOp, Commutable>;
+}
+
+
+// Neon Long 3-register vector operations.
+
+multiclass N3VL_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin16, InstrItinClass itin32,
+ string OpcodeStr, string Dt,
+ SDNode OpNode, bit Commutable = 0> {
+ def v8i16 : N3VL<op24, op23, 0b00, op11_8, op4, itin16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v8i16, v8i8, OpNode, Commutable>;
+ def v4i32 : N3VL<op24, op23, 0b01, op11_8, op4, itin16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v4i32, v4i16, OpNode, Commutable>;
+ def v2i64 : N3VL<op24, op23, 0b10, op11_8, op4, itin32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v2i64, v2i32, OpNode, Commutable>;
+}
+
+multiclass N3VLSL_HS<bit op24, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ SDNode OpNode> {
+ def v4i16 : N3VLSL16<op24, 0b01, op11_8, itin, OpcodeStr,
+ !strconcat(Dt, "16"), v4i32, v4i16, OpNode>;
+ def v2i32 : N3VLSL<op24, 0b10, op11_8, itin, OpcodeStr,
+ !strconcat(Dt, "32"), v2i64, v2i32, OpNode>;
+}
+
+multiclass N3VLExt_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin16, InstrItinClass itin32,
+ string OpcodeStr, string Dt,
+ SDNode OpNode, SDNode ExtOp, bit Commutable = 0> {
+ def v8i16 : N3VLExt<op24, op23, 0b00, op11_8, op4, itin16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v8i16, v8i8, OpNode, ExtOp, Commutable>;
+ def v4i32 : N3VLExt<op24, op23, 0b01, op11_8, op4, itin16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v4i32, v4i16, OpNode, ExtOp, Commutable>;
+ def v2i64 : N3VLExt<op24, op23, 0b10, op11_8, op4, itin32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v2i64, v2i32, OpNode, ExtOp, Commutable>;
+}
+
+// Neon Long 3-register vector intrinsics.
+
+// First with only element sizes of 16 and 32 bits:
+multiclass N3VLInt_HS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin16, InstrItinClass itin32,
+ string OpcodeStr, string Dt,
+ SDPatternOperator IntOp, bit Commutable = 0> {
+ def v4i32 : N3VLInt<op24, op23, 0b01, op11_8, op4, itin16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v4i32, v4i16, IntOp, Commutable>;
+ def v2i64 : N3VLInt<op24, op23, 0b10, op11_8, op4, itin32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v2i64, v2i32, IntOp, Commutable>;
+}
+
+multiclass N3VLIntSL_HS<bit op24, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ SDPatternOperator IntOp> {
+ def v4i16 : N3VLIntSL16<op24, 0b01, op11_8, itin,
+ OpcodeStr, !strconcat(Dt, "16"), v4i32, v4i16, IntOp>;
+ def v2i32 : N3VLIntSL<op24, 0b10, op11_8, itin,
+ OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32, IntOp>;
+}
+
+// ....then also with element size of 8 bits:
+multiclass N3VLInt_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin16, InstrItinClass itin32,
+ string OpcodeStr, string Dt,
+ SDPatternOperator IntOp, bit Commutable = 0>
+ : N3VLInt_HS<op24, op23, op11_8, op4, itin16, itin32, OpcodeStr, Dt,
+ IntOp, Commutable> {
+ def v8i16 : N3VLInt<op24, op23, 0b00, op11_8, op4, itin16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v8i16, v8i8, IntOp, Commutable>;
+}
+
+// ....with explicit extend (VABDL).
+multiclass N3VLIntExt_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ SDPatternOperator IntOp, SDNode ExtOp, bit Commutable = 0> {
+ def v8i16 : N3VLIntExt<op24, op23, 0b00, op11_8, op4, itin,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v8i16, v8i8, IntOp, ExtOp, Commutable>;
+ def v4i32 : N3VLIntExt<op24, op23, 0b01, op11_8, op4, itin,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v4i32, v4i16, IntOp, ExtOp, Commutable>;
+ def v2i64 : N3VLIntExt<op24, op23, 0b10, op11_8, op4, itin,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v2i64, v2i32, IntOp, ExtOp, Commutable>;
+}
+
+
+// Neon Wide 3-register vector intrinsics,
+// source operand element sizes of 8, 16 and 32 bits:
+multiclass N3VW_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ string OpcodeStr, string Dt,
+ SDNode OpNode, SDNode ExtOp, bit Commutable = 0> {
+ def v8i16 : N3VW<op24, op23, 0b00, op11_8, op4,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v8i16, v8i8, OpNode, ExtOp, Commutable>;
+ def v4i32 : N3VW<op24, op23, 0b01, op11_8, op4,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v4i32, v4i16, OpNode, ExtOp, Commutable>;
+ def v2i64 : N3VW<op24, op23, 0b10, op11_8, op4,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v2i64, v2i32, OpNode, ExtOp, Commutable>;
+}
+
+
+// Neon Multiply-Op vector operations,
+// element sizes of 8, 16 and 32 bits:
+multiclass N3VMulOp_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt, SDNode OpNode> {
+ // 64-bit vector types.
+ def v8i8 : N3VDMulOp<op24, op23, 0b00, op11_8, op4, itinD16,
+ OpcodeStr, !strconcat(Dt, "8"), v8i8, mul, OpNode>;
+ def v4i16 : N3VDMulOp<op24, op23, 0b01, op11_8, op4, itinD16,
+ OpcodeStr, !strconcat(Dt, "16"), v4i16, mul, OpNode>;
+ def v2i32 : N3VDMulOp<op24, op23, 0b10, op11_8, op4, itinD32,
+ OpcodeStr, !strconcat(Dt, "32"), v2i32, mul, OpNode>;
+
+ // 128-bit vector types.
+ def v16i8 : N3VQMulOp<op24, op23, 0b00, op11_8, op4, itinQ16,
+ OpcodeStr, !strconcat(Dt, "8"), v16i8, mul, OpNode>;
+ def v8i16 : N3VQMulOp<op24, op23, 0b01, op11_8, op4, itinQ16,
+ OpcodeStr, !strconcat(Dt, "16"), v8i16, mul, OpNode>;
+ def v4i32 : N3VQMulOp<op24, op23, 0b10, op11_8, op4, itinQ32,
+ OpcodeStr, !strconcat(Dt, "32"), v4i32, mul, OpNode>;
+}
+
+multiclass N3VMulOpSL_HS<bits<4> op11_8,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt, SDNode ShOp> {
+ def v4i16 : N3VDMulOpSL16<0b01, op11_8, itinD16,
+ OpcodeStr, !strconcat(Dt, "16"), v4i16, mul, ShOp>;
+ def v2i32 : N3VDMulOpSL<0b10, op11_8, itinD32,
+ OpcodeStr, !strconcat(Dt, "32"), v2i32, mul, ShOp>;
+ def v8i16 : N3VQMulOpSL16<0b01, op11_8, itinQ16,
+ OpcodeStr, !strconcat(Dt, "16"), v8i16, v4i16,
+ mul, ShOp>;
+ def v4i32 : N3VQMulOpSL<0b10, op11_8, itinQ32,
+ OpcodeStr, !strconcat(Dt, "32"), v4i32, v2i32,
+ mul, ShOp>;
+}
+
+// Neon Intrinsic-Op vector operations,
+// element sizes of 8, 16 and 32 bits:
+multiclass N3VIntOp_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD, InstrItinClass itinQ,
+ string OpcodeStr, string Dt, SDPatternOperator IntOp,
+ SDNode OpNode> {
+ // 64-bit vector types.
+ def v8i8 : N3VDIntOp<op24, op23, 0b00, op11_8, op4, itinD,
+ OpcodeStr, !strconcat(Dt, "8"), v8i8, IntOp, OpNode>;
+ def v4i16 : N3VDIntOp<op24, op23, 0b01, op11_8, op4, itinD,
+ OpcodeStr, !strconcat(Dt, "16"), v4i16, IntOp, OpNode>;
+ def v2i32 : N3VDIntOp<op24, op23, 0b10, op11_8, op4, itinD,
+ OpcodeStr, !strconcat(Dt, "32"), v2i32, IntOp, OpNode>;
+
+ // 128-bit vector types.
+ def v16i8 : N3VQIntOp<op24, op23, 0b00, op11_8, op4, itinQ,
+ OpcodeStr, !strconcat(Dt, "8"), v16i8, IntOp, OpNode>;
+ def v8i16 : N3VQIntOp<op24, op23, 0b01, op11_8, op4, itinQ,
+ OpcodeStr, !strconcat(Dt, "16"), v8i16, IntOp, OpNode>;
+ def v4i32 : N3VQIntOp<op24, op23, 0b10, op11_8, op4, itinQ,
+ OpcodeStr, !strconcat(Dt, "32"), v4i32, IntOp, OpNode>;
+}
+
+// Neon 3-argument intrinsics,
+// element sizes of 8, 16 and 32 bits:
+multiclass N3VInt3_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD, InstrItinClass itinQ,
+ string OpcodeStr, string Dt, SDPatternOperator IntOp> {
+ // 64-bit vector types.
+ def v8i8 : N3VDInt3<op24, op23, 0b00, op11_8, op4, itinD,
+ OpcodeStr, !strconcat(Dt, "8"), v8i8, v8i8, IntOp>;
+ def v4i16 : N3VDInt3<op24, op23, 0b01, op11_8, op4, itinD,
+ OpcodeStr, !strconcat(Dt, "16"), v4i16, v4i16, IntOp>;
+ def v2i32 : N3VDInt3<op24, op23, 0b10, op11_8, op4, itinD,
+ OpcodeStr, !strconcat(Dt, "32"), v2i32, v2i32, IntOp>;
+
+ // 128-bit vector types.
+ def v16i8 : N3VQInt3<op24, op23, 0b00, op11_8, op4, itinQ,
+ OpcodeStr, !strconcat(Dt, "8"), v16i8, v16i8, IntOp>;
+ def v8i16 : N3VQInt3<op24, op23, 0b01, op11_8, op4, itinQ,
+ OpcodeStr, !strconcat(Dt, "16"), v8i16, v8i16, IntOp>;
+ def v4i32 : N3VQInt3<op24, op23, 0b10, op11_8, op4, itinQ,
+ OpcodeStr, !strconcat(Dt, "32"), v4i32, v4i32, IntOp>;
+}
+
+
+// Neon Long Multiply-Op vector operations,
+// element sizes of 8, 16 and 32 bits:
+multiclass N3VLMulOp_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin16, InstrItinClass itin32,
+ string OpcodeStr, string Dt, SDNode MulOp,
+ SDNode OpNode> {
+ def v8i16 : N3VLMulOp<op24, op23, 0b00, op11_8, op4, itin16, OpcodeStr,
+ !strconcat(Dt, "8"), v8i16, v8i8, MulOp, OpNode>;
+ def v4i32 : N3VLMulOp<op24, op23, 0b01, op11_8, op4, itin16, OpcodeStr,
+ !strconcat(Dt, "16"), v4i32, v4i16, MulOp, OpNode>;
+ def v2i64 : N3VLMulOp<op24, op23, 0b10, op11_8, op4, itin32, OpcodeStr,
+ !strconcat(Dt, "32"), v2i64, v2i32, MulOp, OpNode>;
+}
+
+multiclass N3VLMulOpSL_HS<bit op24, bits<4> op11_8, string OpcodeStr,
+ string Dt, SDNode MulOp, SDNode OpNode> {
+ def v4i16 : N3VLMulOpSL16<op24, 0b01, op11_8, IIC_VMACi16D, OpcodeStr,
+ !strconcat(Dt,"16"), v4i32, v4i16, MulOp, OpNode>;
+ def v2i32 : N3VLMulOpSL<op24, 0b10, op11_8, IIC_VMACi32D, OpcodeStr,
+ !strconcat(Dt, "32"), v2i64, v2i32, MulOp, OpNode>;
+}
+
+
+// Neon Long 3-argument intrinsics.
+
+// First with only element sizes of 16 and 32 bits:
+multiclass N3VLInt3_HS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin16, InstrItinClass itin32,
+ string OpcodeStr, string Dt, SDPatternOperator IntOp> {
+ def v4i32 : N3VLInt3<op24, op23, 0b01, op11_8, op4, itin16,
+ OpcodeStr, !strconcat(Dt, "16"), v4i32, v4i16, IntOp>;
+ def v2i64 : N3VLInt3<op24, op23, 0b10, op11_8, op4, itin32,
+ OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32, IntOp>;
+}
+
+multiclass N3VLInt3SL_HS<bit op24, bits<4> op11_8,
+ string OpcodeStr, string Dt, SDPatternOperator IntOp> {
+ def v4i16 : N3VLInt3SL16<op24, 0b01, op11_8, IIC_VMACi16D,
+ OpcodeStr, !strconcat(Dt,"16"), v4i32, v4i16, IntOp>;
+ def v2i32 : N3VLInt3SL<op24, 0b10, op11_8, IIC_VMACi32D,
+ OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32, IntOp>;
+}
+
+// ....then also with element size of 8 bits:
+multiclass N3VLInt3_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin16, InstrItinClass itin32,
+ string OpcodeStr, string Dt, SDPatternOperator IntOp>
+ : N3VLInt3_HS<op24, op23, op11_8, op4, itin16, itin32, OpcodeStr, Dt, IntOp> {
+ def v8i16 : N3VLInt3<op24, op23, 0b00, op11_8, op4, itin16,
+ OpcodeStr, !strconcat(Dt, "8"), v8i16, v8i8, IntOp>;
+}
+
+// ....with explicit extend (VABAL).
+multiclass N3VLIntExtOp_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ SDPatternOperator IntOp, SDNode ExtOp, SDNode OpNode> {
+ def v8i16 : N3VLIntExtOp<op24, op23, 0b00, op11_8, op4, itin,
+ OpcodeStr, !strconcat(Dt, "8"), v8i16, v8i8,
+ IntOp, ExtOp, OpNode>;
+ def v4i32 : N3VLIntExtOp<op24, op23, 0b01, op11_8, op4, itin,
+ OpcodeStr, !strconcat(Dt, "16"), v4i32, v4i16,
+ IntOp, ExtOp, OpNode>;
+ def v2i64 : N3VLIntExtOp<op24, op23, 0b10, op11_8, op4, itin,
+ OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32,
+ IntOp, ExtOp, OpNode>;
+}
+
+
+// Neon Pairwise long 2-register intrinsics,
+// element sizes of 8, 16 and 32 bits:
+multiclass N2VPLInt_QHS<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
+ bits<5> op11_7, bit op4,
+ string OpcodeStr, string Dt, SDPatternOperator IntOp> {
+ // 64-bit vector types.
+ def v8i8 : N2VDPLInt<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "8"), v4i16, v8i8, IntOp>;
+ def v4i16 : N2VDPLInt<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "16"), v2i32, v4i16, IntOp>;
+ def v2i32 : N2VDPLInt<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "32"), v1i64, v2i32, IntOp>;
+
+ // 128-bit vector types.
+ def v16i8 : N2VQPLInt<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "8"), v8i16, v16i8, IntOp>;
+ def v8i16 : N2VQPLInt<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "16"), v4i32, v8i16, IntOp>;
+ def v4i32 : N2VQPLInt<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "32"), v2i64, v4i32, IntOp>;
+}
+
+
+// Neon Pairwise long 2-register accumulate intrinsics,
+// element sizes of 8, 16 and 32 bits:
+multiclass N2VPLInt2_QHS<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
+ bits<5> op11_7, bit op4,
+ string OpcodeStr, string Dt, SDPatternOperator IntOp> {
+ // 64-bit vector types.
+ def v8i8 : N2VDPLInt2<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "8"), v4i16, v8i8, IntOp>;
+ def v4i16 : N2VDPLInt2<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "16"), v2i32, v4i16, IntOp>;
+ def v2i32 : N2VDPLInt2<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "32"), v1i64, v2i32, IntOp>;
+
+ // 128-bit vector types.
+ def v16i8 : N2VQPLInt2<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "8"), v8i16, v16i8, IntOp>;
+ def v8i16 : N2VQPLInt2<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "16"), v4i32, v8i16, IntOp>;
+ def v4i32 : N2VQPLInt2<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
+ OpcodeStr, !strconcat(Dt, "32"), v2i64, v4i32, IntOp>;
+}
+
+
+// Neon 2-register vector shift by immediate,
+// with f of either N2RegVShLFrm or N2RegVShRFrm
+// element sizes of 8, 16, 32 and 64 bits:
+multiclass N2VShL_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ SDNode OpNode> {
+ // 64-bit vector types.
+ def v8i8 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
+ OpcodeStr, !strconcat(Dt, "8"), v8i8, OpNode> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v4i16 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
+ OpcodeStr, !strconcat(Dt, "16"), v4i16, OpNode> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v2i32 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
+ OpcodeStr, !strconcat(Dt, "32"), v2i32, OpNode> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v1i64 : N2VDSh<op24, op23, op11_8, 1, op4, N2RegVShLFrm, itin, i32imm,
+ OpcodeStr, !strconcat(Dt, "64"), v1i64, OpNode>;
+ // imm6 = xxxxxx
+
+ // 128-bit vector types.
+ def v16i8 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
+ OpcodeStr, !strconcat(Dt, "8"), v16i8, OpNode> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v8i16 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
+ OpcodeStr, !strconcat(Dt, "16"), v8i16, OpNode> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v4i32 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
+ OpcodeStr, !strconcat(Dt, "32"), v4i32, OpNode> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v2i64 : N2VQSh<op24, op23, op11_8, 1, op4, N2RegVShLFrm, itin, i32imm,
+ OpcodeStr, !strconcat(Dt, "64"), v2i64, OpNode>;
+ // imm6 = xxxxxx
+}
+multiclass N2VShR_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ string baseOpc, SDNode OpNode> {
+ // 64-bit vector types.
+ def v8i8 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm8,
+ OpcodeStr, !strconcat(Dt, "8"), v8i8, OpNode> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v4i16 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm16,
+ OpcodeStr, !strconcat(Dt, "16"), v4i16, OpNode> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v2i32 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm32,
+ OpcodeStr, !strconcat(Dt, "32"), v2i32, OpNode> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v1i64 : N2VDSh<op24, op23, op11_8, 1, op4, N2RegVShRFrm, itin, shr_imm64,
+ OpcodeStr, !strconcat(Dt, "64"), v1i64, OpNode>;
+ // imm6 = xxxxxx
+
+ // 128-bit vector types.
+ def v16i8 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm8,
+ OpcodeStr, !strconcat(Dt, "8"), v16i8, OpNode> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v8i16 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm16,
+ OpcodeStr, !strconcat(Dt, "16"), v8i16, OpNode> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v4i32 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm32,
+ OpcodeStr, !strconcat(Dt, "32"), v4i32, OpNode> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v2i64 : N2VQSh<op24, op23, op11_8, 1, op4, N2RegVShRFrm, itin, shr_imm64,
+ OpcodeStr, !strconcat(Dt, "64"), v2i64, OpNode>;
+ // imm6 = xxxxxx
+}
+
+// Neon Shift-Accumulate vector operations,
+// element sizes of 8, 16, 32 and 64 bits:
+multiclass N2VShAdd_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
+ string OpcodeStr, string Dt, SDNode ShOp> {
+ // 64-bit vector types.
+ def v8i8 : N2VDShAdd<op24, op23, op11_8, 0, op4, shr_imm8,
+ OpcodeStr, !strconcat(Dt, "8"), v8i8, ShOp> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v4i16 : N2VDShAdd<op24, op23, op11_8, 0, op4, shr_imm16,
+ OpcodeStr, !strconcat(Dt, "16"), v4i16, ShOp> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v2i32 : N2VDShAdd<op24, op23, op11_8, 0, op4, shr_imm32,
+ OpcodeStr, !strconcat(Dt, "32"), v2i32, ShOp> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v1i64 : N2VDShAdd<op24, op23, op11_8, 1, op4, shr_imm64,
+ OpcodeStr, !strconcat(Dt, "64"), v1i64, ShOp>;
+ // imm6 = xxxxxx
+
+ // 128-bit vector types.
+ def v16i8 : N2VQShAdd<op24, op23, op11_8, 0, op4, shr_imm8,
+ OpcodeStr, !strconcat(Dt, "8"), v16i8, ShOp> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v8i16 : N2VQShAdd<op24, op23, op11_8, 0, op4, shr_imm16,
+ OpcodeStr, !strconcat(Dt, "16"), v8i16, ShOp> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v4i32 : N2VQShAdd<op24, op23, op11_8, 0, op4, shr_imm32,
+ OpcodeStr, !strconcat(Dt, "32"), v4i32, ShOp> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v2i64 : N2VQShAdd<op24, op23, op11_8, 1, op4, shr_imm64,
+ OpcodeStr, !strconcat(Dt, "64"), v2i64, ShOp>;
+ // imm6 = xxxxxx
+}
+
+// Neon Shift-Insert vector operations,
+// with f of either N2RegVShLFrm or N2RegVShRFrm
+// element sizes of 8, 16, 32 and 64 bits:
+multiclass N2VShInsL_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
+ string OpcodeStr> {
+ // 64-bit vector types.
+ def v8i8 : N2VDShIns<op24, op23, op11_8, 0, op4, i32imm,
+ N2RegVShLFrm, OpcodeStr, "8", v8i8, NEONvsli> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v4i16 : N2VDShIns<op24, op23, op11_8, 0, op4, i32imm,
+ N2RegVShLFrm, OpcodeStr, "16", v4i16, NEONvsli> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v2i32 : N2VDShIns<op24, op23, op11_8, 0, op4, i32imm,
+ N2RegVShLFrm, OpcodeStr, "32", v2i32, NEONvsli> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v1i64 : N2VDShIns<op24, op23, op11_8, 1, op4, i32imm,
+ N2RegVShLFrm, OpcodeStr, "64", v1i64, NEONvsli>;
+ // imm6 = xxxxxx
+
+ // 128-bit vector types.
+ def v16i8 : N2VQShIns<op24, op23, op11_8, 0, op4, i32imm,
+ N2RegVShLFrm, OpcodeStr, "8", v16i8, NEONvsli> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v8i16 : N2VQShIns<op24, op23, op11_8, 0, op4, i32imm,
+ N2RegVShLFrm, OpcodeStr, "16", v8i16, NEONvsli> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v4i32 : N2VQShIns<op24, op23, op11_8, 0, op4, i32imm,
+ N2RegVShLFrm, OpcodeStr, "32", v4i32, NEONvsli> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v2i64 : N2VQShIns<op24, op23, op11_8, 1, op4, i32imm,
+ N2RegVShLFrm, OpcodeStr, "64", v2i64, NEONvsli>;
+ // imm6 = xxxxxx
+}
+multiclass N2VShInsR_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
+ string OpcodeStr> {
+ // 64-bit vector types.
+ def v8i8 : N2VDShIns<op24, op23, op11_8, 0, op4, shr_imm8,
+ N2RegVShRFrm, OpcodeStr, "8", v8i8, NEONvsri> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v4i16 : N2VDShIns<op24, op23, op11_8, 0, op4, shr_imm16,
+ N2RegVShRFrm, OpcodeStr, "16", v4i16, NEONvsri> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v2i32 : N2VDShIns<op24, op23, op11_8, 0, op4, shr_imm32,
+ N2RegVShRFrm, OpcodeStr, "32", v2i32, NEONvsri> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v1i64 : N2VDShIns<op24, op23, op11_8, 1, op4, shr_imm64,
+ N2RegVShRFrm, OpcodeStr, "64", v1i64, NEONvsri>;
+ // imm6 = xxxxxx
+
+ // 128-bit vector types.
+ def v16i8 : N2VQShIns<op24, op23, op11_8, 0, op4, shr_imm8,
+ N2RegVShRFrm, OpcodeStr, "8", v16i8, NEONvsri> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v8i16 : N2VQShIns<op24, op23, op11_8, 0, op4, shr_imm16,
+ N2RegVShRFrm, OpcodeStr, "16", v8i16, NEONvsri> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v4i32 : N2VQShIns<op24, op23, op11_8, 0, op4, shr_imm32,
+ N2RegVShRFrm, OpcodeStr, "32", v4i32, NEONvsri> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v2i64 : N2VQShIns<op24, op23, op11_8, 1, op4, shr_imm64,
+ N2RegVShRFrm, OpcodeStr, "64", v2i64, NEONvsri>;
+ // imm6 = xxxxxx
+}
+
+// Neon Shift Long operations,
+// element sizes of 8, 16, 32 bits:
+multiclass N2VLSh_QHS<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6,
+ bit op4, string OpcodeStr, string Dt,
+ SDPatternOperator OpNode> {
+ def v8i16 : N2VLSh<op24, op23, op11_8, op7, op6, op4,
+ OpcodeStr, !strconcat(Dt, "8"), v8i16, v8i8, imm1_7, OpNode> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v4i32 : N2VLSh<op24, op23, op11_8, op7, op6, op4,
+ OpcodeStr, !strconcat(Dt, "16"), v4i32, v4i16, imm1_15, OpNode> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v2i64 : N2VLSh<op24, op23, op11_8, op7, op6, op4,
+ OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32, imm1_31, OpNode> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+}
+
+// Neon Shift Narrow operations,
+// element sizes of 16, 32, 64 bits:
+multiclass N2VNSh_HSD<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6,
+ bit op4, InstrItinClass itin, string OpcodeStr, string Dt,
+ SDPatternOperator OpNode> {
+ def v8i8 : N2VNSh<op24, op23, op11_8, op7, op6, op4, itin,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v8i8, v8i16, shr_imm8, OpNode> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v4i16 : N2VNSh<op24, op23, op11_8, op7, op6, op4, itin,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v4i16, v4i32, shr_imm16, OpNode> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v2i32 : N2VNSh<op24, op23, op11_8, op7, op6, op4, itin,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v2i32, v2i64, shr_imm32, OpNode> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction Definitions.
+//===----------------------------------------------------------------------===//
+
+// Vector Add Operations.
+
+// VADD : Vector Add (integer and floating-point)
+defm VADD : N3V_QHSD<0, 0, 0b1000, 0, IIC_VBINiD, IIC_VBINiQ, "vadd", "i",
+ add, 1>;
+def VADDfd : N3VD<0, 0, 0b00, 0b1101, 0, IIC_VBIND, "vadd", "f32",
+ v2f32, v2f32, fadd, 1>;
+def VADDfq : N3VQ<0, 0, 0b00, 0b1101, 0, IIC_VBINQ, "vadd", "f32",
+ v4f32, v4f32, fadd, 1>;
+// VADDL : Vector Add Long (Q = D + D)
+defm VADDLs : N3VLExt_QHS<0,1,0b0000,0, IIC_VSHLiD, IIC_VSHLiD,
+ "vaddl", "s", add, sext, 1>;
+defm VADDLu : N3VLExt_QHS<1,1,0b0000,0, IIC_VSHLiD, IIC_VSHLiD,
+ "vaddl", "u", add, zext, 1>;
+// VADDW : Vector Add Wide (Q = Q + D)
+defm VADDWs : N3VW_QHS<0,1,0b0001,0, "vaddw", "s", add, sext, 0>;
+defm VADDWu : N3VW_QHS<1,1,0b0001,0, "vaddw", "u", add, zext, 0>;
+// VHADD : Vector Halving Add
+defm VHADDs : N3VInt_QHS<0, 0, 0b0000, 0, N3RegFrm,
+ IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
+ "vhadd", "s", int_arm_neon_vhadds, 1>;
+defm VHADDu : N3VInt_QHS<1, 0, 0b0000, 0, N3RegFrm,
+ IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
+ "vhadd", "u", int_arm_neon_vhaddu, 1>;
+// VRHADD : Vector Rounding Halving Add
+defm VRHADDs : N3VInt_QHS<0, 0, 0b0001, 0, N3RegFrm,
+ IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
+ "vrhadd", "s", int_arm_neon_vrhadds, 1>;
+defm VRHADDu : N3VInt_QHS<1, 0, 0b0001, 0, N3RegFrm,
+ IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
+ "vrhadd", "u", int_arm_neon_vrhaddu, 1>;
+// VQADD : Vector Saturating Add
+defm VQADDs : N3VInt_QHSD<0, 0, 0b0000, 1, N3RegFrm,
+ IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
+ "vqadd", "s", int_arm_neon_vqadds, 1>;
+defm VQADDu : N3VInt_QHSD<1, 0, 0b0000, 1, N3RegFrm,
+ IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
+ "vqadd", "u", int_arm_neon_vqaddu, 1>;
+// VADDHN : Vector Add and Narrow Returning High Half (D = Q + Q)
+defm VADDHN : N3VNInt_HSD<0,1,0b0100,0, "vaddhn", "i", null_frag, 1>;
+// VRADDHN : Vector Rounding Add and Narrow Returning High Half (D = Q + Q)
+defm VRADDHN : N3VNInt_HSD<1,1,0b0100,0, "vraddhn", "i",
+ int_arm_neon_vraddhn, 1>;
+
+def : Pat<(v8i8 (trunc (NEONvshru (add (v8i16 QPR:$Vn), QPR:$Vm), 8))),
+ (VADDHNv8i8 QPR:$Vn, QPR:$Vm)>;
+def : Pat<(v4i16 (trunc (NEONvshru (add (v4i32 QPR:$Vn), QPR:$Vm), 16))),
+ (VADDHNv4i16 QPR:$Vn, QPR:$Vm)>;
+def : Pat<(v2i32 (trunc (NEONvshru (add (v2i64 QPR:$Vn), QPR:$Vm), 32))),
+ (VADDHNv2i32 QPR:$Vn, QPR:$Vm)>;
+
+// Vector Multiply Operations.
+
+// VMUL : Vector Multiply (integer, polynomial and floating-point)
+defm VMUL : N3V_QHS<0, 0, 0b1001, 1, IIC_VMULi16D, IIC_VMULi32D,
+ IIC_VMULi16Q, IIC_VMULi32Q, "vmul", "i", mul, 1>;
+def VMULpd : N3VDInt<1, 0, 0b00, 0b1001, 1, N3RegFrm, IIC_VMULi16D, "vmul",
+ "p8", v8i8, v8i8, int_arm_neon_vmulp, 1>;
+def VMULpq : N3VQInt<1, 0, 0b00, 0b1001, 1, N3RegFrm, IIC_VMULi16Q, "vmul",
+ "p8", v16i8, v16i8, int_arm_neon_vmulp, 1>;
+def VMULfd : N3VD<1, 0, 0b00, 0b1101, 1, IIC_VFMULD, "vmul", "f32",
+ v2f32, v2f32, fmul, 1>;
+def VMULfq : N3VQ<1, 0, 0b00, 0b1101, 1, IIC_VFMULQ, "vmul", "f32",
+ v4f32, v4f32, fmul, 1>;
+defm VMULsl : N3VSL_HS<0b1000, "vmul", mul>;
+def VMULslfd : N3VDSL<0b10, 0b1001, IIC_VBIND, "vmul", "f32", v2f32, fmul>;
+def VMULslfq : N3VQSL<0b10, 0b1001, IIC_VBINQ, "vmul", "f32", v4f32,
+ v2f32, fmul>;
+
+def : Pat<(v8i16 (mul (v8i16 QPR:$src1),
+ (v8i16 (NEONvduplane (v8i16 QPR:$src2), imm:$lane)))),
+ (v8i16 (VMULslv8i16 (v8i16 QPR:$src1),
+ (v4i16 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+def : Pat<(v4i32 (mul (v4i32 QPR:$src1),
+ (v4i32 (NEONvduplane (v4i32 QPR:$src2), imm:$lane)))),
+ (v4i32 (VMULslv4i32 (v4i32 QPR:$src1),
+ (v2i32 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+def : Pat<(v4f32 (fmul (v4f32 QPR:$src1),
+ (v4f32 (NEONvduplane (v4f32 QPR:$src2), imm:$lane)))),
+ (v4f32 (VMULslfq (v4f32 QPR:$src1),
+ (v2f32 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
+
+def : Pat<(v2f32 (fmul DPR:$Rn, (NEONvdup (f32 SPR:$Rm)))),
+ (VMULslfd DPR:$Rn,
+ (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$Rm, ssub_0),
+ (i32 0))>;
+def : Pat<(v4f32 (fmul QPR:$Rn, (NEONvdup (f32 SPR:$Rm)))),
+ (VMULslfq QPR:$Rn,
+ (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$Rm, ssub_0),
+ (i32 0))>;
+
+
+// VQDMULH : Vector Saturating Doubling Multiply Returning High Half
+defm VQDMULH : N3VInt_HS<0, 0, 0b1011, 0, N3RegFrm, IIC_VMULi16D, IIC_VMULi32D,
+ IIC_VMULi16Q, IIC_VMULi32Q,
+ "vqdmulh", "s", int_arm_neon_vqdmulh, 1>;
+defm VQDMULHsl: N3VIntSL_HS<0b1100, IIC_VMULi16D, IIC_VMULi32D,
+ IIC_VMULi16Q, IIC_VMULi32Q,
+ "vqdmulh", "s", int_arm_neon_vqdmulh>;
+def : Pat<(v8i16 (int_arm_neon_vqdmulh (v8i16 QPR:$src1),
+ (v8i16 (NEONvduplane (v8i16 QPR:$src2),
+ imm:$lane)))),
+ (v8i16 (VQDMULHslv8i16 (v8i16 QPR:$src1),
+ (v4i16 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+def : Pat<(v4i32 (int_arm_neon_vqdmulh (v4i32 QPR:$src1),
+ (v4i32 (NEONvduplane (v4i32 QPR:$src2),
+ imm:$lane)))),
+ (v4i32 (VQDMULHslv4i32 (v4i32 QPR:$src1),
+ (v2i32 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
+// VQRDMULH : Vector Rounding Saturating Doubling Multiply Returning High Half
+defm VQRDMULH : N3VInt_HS<1, 0, 0b1011, 0, N3RegFrm,
+ IIC_VMULi16D,IIC_VMULi32D,IIC_VMULi16Q,IIC_VMULi32Q,
+ "vqrdmulh", "s", int_arm_neon_vqrdmulh, 1>;
+defm VQRDMULHsl : N3VIntSL_HS<0b1101, IIC_VMULi16D, IIC_VMULi32D,
+ IIC_VMULi16Q, IIC_VMULi32Q,
+ "vqrdmulh", "s", int_arm_neon_vqrdmulh>;
+def : Pat<(v8i16 (int_arm_neon_vqrdmulh (v8i16 QPR:$src1),
+ (v8i16 (NEONvduplane (v8i16 QPR:$src2),
+ imm:$lane)))),
+ (v8i16 (VQRDMULHslv8i16 (v8i16 QPR:$src1),
+ (v4i16 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+def : Pat<(v4i32 (int_arm_neon_vqrdmulh (v4i32 QPR:$src1),
+ (v4i32 (NEONvduplane (v4i32 QPR:$src2),
+ imm:$lane)))),
+ (v4i32 (VQRDMULHslv4i32 (v4i32 QPR:$src1),
+ (v2i32 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
+// VMULL : Vector Multiply Long (integer and polynomial) (Q = D * D)
+let PostEncoderMethod = "NEONThumb2DataIPostEncoder",
+ DecoderNamespace = "NEONData" in {
+ defm VMULLs : N3VL_QHS<0,1,0b1100,0, IIC_VMULi16D, IIC_VMULi32D,
+ "vmull", "s", NEONvmulls, 1>;
+ defm VMULLu : N3VL_QHS<1,1,0b1100,0, IIC_VMULi16D, IIC_VMULi32D,
+ "vmull", "u", NEONvmullu, 1>;
+ def VMULLp8 : N3VLInt<0, 1, 0b00, 0b1110, 0, IIC_VMULi16D, "vmull", "p8",
+ v8i16, v8i8, int_arm_neon_vmullp, 1>;
+ def VMULLp64 : N3VLIntnp<0b00101, 0b10, 0b1110, 0, 0, NoItinerary,
+ "vmull", "p64", v2i64, v1i64, int_arm_neon_vmullp, 1>,
+ Requires<[HasV8, HasCrypto]>;
+}
+defm VMULLsls : N3VLSL_HS<0, 0b1010, IIC_VMULi16D, "vmull", "s", NEONvmulls>;
+defm VMULLslu : N3VLSL_HS<1, 0b1010, IIC_VMULi16D, "vmull", "u", NEONvmullu>;
+
+// VQDMULL : Vector Saturating Doubling Multiply Long (Q = D * D)
+defm VQDMULL : N3VLInt_HS<0,1,0b1101,0, IIC_VMULi16D, IIC_VMULi32D,
+ "vqdmull", "s", int_arm_neon_vqdmull, 1>;
+defm VQDMULLsl: N3VLIntSL_HS<0, 0b1011, IIC_VMULi16D,
+ "vqdmull", "s", int_arm_neon_vqdmull>;
+
+// Vector Multiply-Accumulate and Multiply-Subtract Operations.
+
+// VMLA : Vector Multiply Accumulate (integer and floating-point)
+defm VMLA : N3VMulOp_QHS<0, 0, 0b1001, 0, IIC_VMACi16D, IIC_VMACi32D,
+ IIC_VMACi16Q, IIC_VMACi32Q, "vmla", "i", add>;
+def VMLAfd : N3VDMulOp<0, 0, 0b00, 0b1101, 1, IIC_VMACD, "vmla", "f32",
+ v2f32, fmul_su, fadd_mlx>,
+ Requires<[HasNEON, UseFPVMLx, DontUseFusedMAC]>;
+def VMLAfq : N3VQMulOp<0, 0, 0b00, 0b1101, 1, IIC_VMACQ, "vmla", "f32",
+ v4f32, fmul_su, fadd_mlx>,
+ Requires<[HasNEON, UseFPVMLx, DontUseFusedMAC]>;
+defm VMLAsl : N3VMulOpSL_HS<0b0000, IIC_VMACi16D, IIC_VMACi32D,
+ IIC_VMACi16Q, IIC_VMACi32Q, "vmla", "i", add>;
+def VMLAslfd : N3VDMulOpSL<0b10, 0b0001, IIC_VMACD, "vmla", "f32",
+ v2f32, fmul_su, fadd_mlx>,
+ Requires<[HasNEON, UseFPVMLx]>;
+def VMLAslfq : N3VQMulOpSL<0b10, 0b0001, IIC_VMACQ, "vmla", "f32",
+ v4f32, v2f32, fmul_su, fadd_mlx>,
+ Requires<[HasNEON, UseFPVMLx]>;
+
+def : Pat<(v8i16 (add (v8i16 QPR:$src1),
+ (mul (v8i16 QPR:$src2),
+ (v8i16 (NEONvduplane (v8i16 QPR:$src3), imm:$lane))))),
+ (v8i16 (VMLAslv8i16 (v8i16 QPR:$src1), (v8i16 QPR:$src2),
+ (v4i16 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+
+def : Pat<(v4i32 (add (v4i32 QPR:$src1),
+ (mul (v4i32 QPR:$src2),
+ (v4i32 (NEONvduplane (v4i32 QPR:$src3), imm:$lane))))),
+ (v4i32 (VMLAslv4i32 (v4i32 QPR:$src1), (v4i32 QPR:$src2),
+ (v2i32 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
+def : Pat<(v4f32 (fadd_mlx (v4f32 QPR:$src1),
+ (fmul_su (v4f32 QPR:$src2),
+ (v4f32 (NEONvduplane (v4f32 QPR:$src3), imm:$lane))))),
+ (v4f32 (VMLAslfq (v4f32 QPR:$src1),
+ (v4f32 QPR:$src2),
+ (v2f32 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>,
+ Requires<[HasNEON, UseFPVMLx]>;
+
+// VMLAL : Vector Multiply Accumulate Long (Q += D * D)
+defm VMLALs : N3VLMulOp_QHS<0,1,0b1000,0, IIC_VMACi16D, IIC_VMACi32D,
+ "vmlal", "s", NEONvmulls, add>;
+defm VMLALu : N3VLMulOp_QHS<1,1,0b1000,0, IIC_VMACi16D, IIC_VMACi32D,
+ "vmlal", "u", NEONvmullu, add>;
+
+defm VMLALsls : N3VLMulOpSL_HS<0, 0b0010, "vmlal", "s", NEONvmulls, add>;
+defm VMLALslu : N3VLMulOpSL_HS<1, 0b0010, "vmlal", "u", NEONvmullu, add>;
+
+// VQDMLAL : Vector Saturating Doubling Multiply Accumulate Long (Q += D * D)
+defm VQDMLAL : N3VLInt3_HS<0, 1, 0b1001, 0, IIC_VMACi16D, IIC_VMACi32D,
+ "vqdmlal", "s", null_frag>;
+defm VQDMLALsl: N3VLInt3SL_HS<0, 0b0011, "vqdmlal", "s", null_frag>;
+
+def : Pat<(v4i32 (int_arm_neon_vqadds (v4i32 QPR:$src1),
+ (v4i32 (int_arm_neon_vqdmull (v4i16 DPR:$Vn),
+ (v4i16 DPR:$Vm))))),
+ (VQDMLALv4i32 QPR:$src1, DPR:$Vn, DPR:$Vm)>;
+def : Pat<(v2i64 (int_arm_neon_vqadds (v2i64 QPR:$src1),
+ (v2i64 (int_arm_neon_vqdmull (v2i32 DPR:$Vn),
+ (v2i32 DPR:$Vm))))),
+ (VQDMLALv2i64 QPR:$src1, DPR:$Vn, DPR:$Vm)>;
+def : Pat<(v4i32 (int_arm_neon_vqadds (v4i32 QPR:$src1),
+ (v4i32 (int_arm_neon_vqdmull (v4i16 DPR:$Vn),
+ (v4i16 (NEONvduplane (v4i16 DPR_8:$Vm),
+ imm:$lane)))))),
+ (VQDMLALslv4i16 QPR:$src1, DPR:$Vn, DPR_8:$Vm, imm:$lane)>;
+def : Pat<(v2i64 (int_arm_neon_vqadds (v2i64 QPR:$src1),
+ (v2i64 (int_arm_neon_vqdmull (v2i32 DPR:$Vn),
+ (v2i32 (NEONvduplane (v2i32 DPR_VFP2:$Vm),
+ imm:$lane)))))),
+ (VQDMLALslv2i32 QPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, imm:$lane)>;
+
+// VMLS : Vector Multiply Subtract (integer and floating-point)
+defm VMLS : N3VMulOp_QHS<1, 0, 0b1001, 0, IIC_VMACi16D, IIC_VMACi32D,
+ IIC_VMACi16Q, IIC_VMACi32Q, "vmls", "i", sub>;
+def VMLSfd : N3VDMulOp<0, 0, 0b10, 0b1101, 1, IIC_VMACD, "vmls", "f32",
+ v2f32, fmul_su, fsub_mlx>,
+ Requires<[HasNEON, UseFPVMLx, DontUseFusedMAC]>;
+def VMLSfq : N3VQMulOp<0, 0, 0b10, 0b1101, 1, IIC_VMACQ, "vmls", "f32",
+ v4f32, fmul_su, fsub_mlx>,
+ Requires<[HasNEON, UseFPVMLx, DontUseFusedMAC]>;
+defm VMLSsl : N3VMulOpSL_HS<0b0100, IIC_VMACi16D, IIC_VMACi32D,
+ IIC_VMACi16Q, IIC_VMACi32Q, "vmls", "i", sub>;
+def VMLSslfd : N3VDMulOpSL<0b10, 0b0101, IIC_VMACD, "vmls", "f32",
+ v2f32, fmul_su, fsub_mlx>,
+ Requires<[HasNEON, UseFPVMLx]>;
+def VMLSslfq : N3VQMulOpSL<0b10, 0b0101, IIC_VMACQ, "vmls", "f32",
+ v4f32, v2f32, fmul_su, fsub_mlx>,
+ Requires<[HasNEON, UseFPVMLx]>;
+
+def : Pat<(v8i16 (sub (v8i16 QPR:$src1),
+ (mul (v8i16 QPR:$src2),
+ (v8i16 (NEONvduplane (v8i16 QPR:$src3), imm:$lane))))),
+ (v8i16 (VMLSslv8i16 (v8i16 QPR:$src1), (v8i16 QPR:$src2),
+ (v4i16 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+
+def : Pat<(v4i32 (sub (v4i32 QPR:$src1),
+ (mul (v4i32 QPR:$src2),
+ (v4i32 (NEONvduplane (v4i32 QPR:$src3), imm:$lane))))),
+ (v4i32 (VMLSslv4i32 (v4i32 QPR:$src1), (v4i32 QPR:$src2),
+ (v2i32 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
+def : Pat<(v4f32 (fsub_mlx (v4f32 QPR:$src1),
+ (fmul_su (v4f32 QPR:$src2),
+ (v4f32 (NEONvduplane (v4f32 QPR:$src3), imm:$lane))))),
+ (v4f32 (VMLSslfq (v4f32 QPR:$src1), (v4f32 QPR:$src2),
+ (v2f32 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>,
+ Requires<[HasNEON, UseFPVMLx]>;
+
+// VMLSL : Vector Multiply Subtract Long (Q -= D * D)
+defm VMLSLs : N3VLMulOp_QHS<0,1,0b1010,0, IIC_VMACi16D, IIC_VMACi32D,
+ "vmlsl", "s", NEONvmulls, sub>;
+defm VMLSLu : N3VLMulOp_QHS<1,1,0b1010,0, IIC_VMACi16D, IIC_VMACi32D,
+ "vmlsl", "u", NEONvmullu, sub>;
+
+defm VMLSLsls : N3VLMulOpSL_HS<0, 0b0110, "vmlsl", "s", NEONvmulls, sub>;
+defm VMLSLslu : N3VLMulOpSL_HS<1, 0b0110, "vmlsl", "u", NEONvmullu, sub>;
+
+// VQDMLSL : Vector Saturating Doubling Multiply Subtract Long (Q -= D * D)
+defm VQDMLSL : N3VLInt3_HS<0, 1, 0b1011, 0, IIC_VMACi16D, IIC_VMACi32D,
+ "vqdmlsl", "s", null_frag>;
+defm VQDMLSLsl: N3VLInt3SL_HS<0, 0b111, "vqdmlsl", "s", null_frag>;
+
+def : Pat<(v4i32 (int_arm_neon_vqsubs (v4i32 QPR:$src1),
+ (v4i32 (int_arm_neon_vqdmull (v4i16 DPR:$Vn),
+ (v4i16 DPR:$Vm))))),
+ (VQDMLSLv4i32 QPR:$src1, DPR:$Vn, DPR:$Vm)>;
+def : Pat<(v2i64 (int_arm_neon_vqsubs (v2i64 QPR:$src1),
+ (v2i64 (int_arm_neon_vqdmull (v2i32 DPR:$Vn),
+ (v2i32 DPR:$Vm))))),
+ (VQDMLSLv2i64 QPR:$src1, DPR:$Vn, DPR:$Vm)>;
+def : Pat<(v4i32 (int_arm_neon_vqsubs (v4i32 QPR:$src1),
+ (v4i32 (int_arm_neon_vqdmull (v4i16 DPR:$Vn),
+ (v4i16 (NEONvduplane (v4i16 DPR_8:$Vm),
+ imm:$lane)))))),
+ (VQDMLSLslv4i16 QPR:$src1, DPR:$Vn, DPR_8:$Vm, imm:$lane)>;
+def : Pat<(v2i64 (int_arm_neon_vqsubs (v2i64 QPR:$src1),
+ (v2i64 (int_arm_neon_vqdmull (v2i32 DPR:$Vn),
+ (v2i32 (NEONvduplane (v2i32 DPR_VFP2:$Vm),
+ imm:$lane)))))),
+ (VQDMLSLslv2i32 QPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, imm:$lane)>;
+
+// Fused Vector Multiply-Accumulate and Fused Multiply-Subtract Operations.
+def VFMAfd : N3VDMulOp<0, 0, 0b00, 0b1100, 1, IIC_VFMACD, "vfma", "f32",
+ v2f32, fmul_su, fadd_mlx>,
+ Requires<[HasNEON,HasVFP4,UseFusedMAC]>;
+
+def VFMAfq : N3VQMulOp<0, 0, 0b00, 0b1100, 1, IIC_VFMACQ, "vfma", "f32",
+ v4f32, fmul_su, fadd_mlx>,
+ Requires<[HasNEON,HasVFP4,UseFusedMAC]>;
+
+// Fused Vector Multiply Subtract (floating-point)
+def VFMSfd : N3VDMulOp<0, 0, 0b10, 0b1100, 1, IIC_VFMACD, "vfms", "f32",
+ v2f32, fmul_su, fsub_mlx>,
+ Requires<[HasNEON,HasVFP4,UseFusedMAC]>;
+def VFMSfq : N3VQMulOp<0, 0, 0b10, 0b1100, 1, IIC_VFMACQ, "vfms", "f32",
+ v4f32, fmul_su, fsub_mlx>,
+ Requires<[HasNEON,HasVFP4,UseFusedMAC]>;
+
+// Match @llvm.fma.* intrinsics
+def : Pat<(v2f32 (fma DPR:$Vn, DPR:$Vm, DPR:$src1)),
+ (VFMAfd DPR:$src1, DPR:$Vn, DPR:$Vm)>,
+ Requires<[HasVFP4]>;
+def : Pat<(v4f32 (fma QPR:$Vn, QPR:$Vm, QPR:$src1)),
+ (VFMAfq QPR:$src1, QPR:$Vn, QPR:$Vm)>,
+ Requires<[HasVFP4]>;
+def : Pat<(v2f32 (fma (fneg DPR:$Vn), DPR:$Vm, DPR:$src1)),
+ (VFMSfd DPR:$src1, DPR:$Vn, DPR:$Vm)>,
+ Requires<[HasVFP4]>;
+def : Pat<(v4f32 (fma (fneg QPR:$Vn), QPR:$Vm, QPR:$src1)),
+ (VFMSfq QPR:$src1, QPR:$Vn, QPR:$Vm)>,
+ Requires<[HasVFP4]>;
+
+// Vector Subtract Operations.
+
+// VSUB : Vector Subtract (integer and floating-point)
+defm VSUB : N3V_QHSD<1, 0, 0b1000, 0, IIC_VSUBiD, IIC_VSUBiQ,
+ "vsub", "i", sub, 0>;
+def VSUBfd : N3VD<0, 0, 0b10, 0b1101, 0, IIC_VBIND, "vsub", "f32",
+ v2f32, v2f32, fsub, 0>;
+def VSUBfq : N3VQ<0, 0, 0b10, 0b1101, 0, IIC_VBINQ, "vsub", "f32",
+ v4f32, v4f32, fsub, 0>;
+// VSUBL : Vector Subtract Long (Q = D - D)
+defm VSUBLs : N3VLExt_QHS<0,1,0b0010,0, IIC_VSHLiD, IIC_VSHLiD,
+ "vsubl", "s", sub, sext, 0>;
+defm VSUBLu : N3VLExt_QHS<1,1,0b0010,0, IIC_VSHLiD, IIC_VSHLiD,
+ "vsubl", "u", sub, zext, 0>;
+// VSUBW : Vector Subtract Wide (Q = Q - D)
+defm VSUBWs : N3VW_QHS<0,1,0b0011,0, "vsubw", "s", sub, sext, 0>;
+defm VSUBWu : N3VW_QHS<1,1,0b0011,0, "vsubw", "u", sub, zext, 0>;
+// VHSUB : Vector Halving Subtract
+defm VHSUBs : N3VInt_QHS<0, 0, 0b0010, 0, N3RegFrm,
+ IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
+ "vhsub", "s", int_arm_neon_vhsubs, 0>;
+defm VHSUBu : N3VInt_QHS<1, 0, 0b0010, 0, N3RegFrm,
+ IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
+ "vhsub", "u", int_arm_neon_vhsubu, 0>;
+// VQSUB : Vector Saturing Subtract
+defm VQSUBs : N3VInt_QHSD<0, 0, 0b0010, 1, N3RegFrm,
+ IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
+ "vqsub", "s", int_arm_neon_vqsubs, 0>;
+defm VQSUBu : N3VInt_QHSD<1, 0, 0b0010, 1, N3RegFrm,
+ IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
+ "vqsub", "u", int_arm_neon_vqsubu, 0>;
+// VSUBHN : Vector Subtract and Narrow Returning High Half (D = Q - Q)
+defm VSUBHN : N3VNInt_HSD<0,1,0b0110,0, "vsubhn", "i", null_frag, 0>;
+// VRSUBHN : Vector Rounding Subtract and Narrow Returning High Half (D=Q-Q)
+defm VRSUBHN : N3VNInt_HSD<1,1,0b0110,0, "vrsubhn", "i",
+ int_arm_neon_vrsubhn, 0>;
+
+def : Pat<(v8i8 (trunc (NEONvshru (sub (v8i16 QPR:$Vn), QPR:$Vm), 8))),
+ (VSUBHNv8i8 QPR:$Vn, QPR:$Vm)>;
+def : Pat<(v4i16 (trunc (NEONvshru (sub (v4i32 QPR:$Vn), QPR:$Vm), 16))),
+ (VSUBHNv4i16 QPR:$Vn, QPR:$Vm)>;
+def : Pat<(v2i32 (trunc (NEONvshru (sub (v2i64 QPR:$Vn), QPR:$Vm), 32))),
+ (VSUBHNv2i32 QPR:$Vn, QPR:$Vm)>;
+
+// Vector Comparisons.
+
+// VCEQ : Vector Compare Equal
+defm VCEQ : N3V_QHS<1, 0, 0b1000, 1, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q,
+ IIC_VSUBi4Q, "vceq", "i", NEONvceq, 1>;
+def VCEQfd : N3VD<0,0,0b00,0b1110,0, IIC_VBIND, "vceq", "f32", v2i32, v2f32,
+ NEONvceq, 1>;
+def VCEQfq : N3VQ<0,0,0b00,0b1110,0, IIC_VBINQ, "vceq", "f32", v4i32, v4f32,
+ NEONvceq, 1>;
+
+let TwoOperandAliasConstraint = "$Vm = $Vd" in
+defm VCEQz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00010, 0, "vceq", "i",
+ "$Vd, $Vm, #0", NEONvceqz>;
+
+// VCGE : Vector Compare Greater Than or Equal
+defm VCGEs : N3V_QHS<0, 0, 0b0011, 1, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q,
+ IIC_VSUBi4Q, "vcge", "s", NEONvcge, 0>;
+defm VCGEu : N3V_QHS<1, 0, 0b0011, 1, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q,
+ IIC_VSUBi4Q, "vcge", "u", NEONvcgeu, 0>;
+def VCGEfd : N3VD<1,0,0b00,0b1110,0, IIC_VBIND, "vcge", "f32", v2i32, v2f32,
+ NEONvcge, 0>;
+def VCGEfq : N3VQ<1,0,0b00,0b1110,0, IIC_VBINQ, "vcge", "f32", v4i32, v4f32,
+ NEONvcge, 0>;
+
+let TwoOperandAliasConstraint = "$Vm = $Vd" in {
+defm VCGEz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00001, 0, "vcge", "s",
+ "$Vd, $Vm, #0", NEONvcgez>;
+defm VCLEz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00011, 0, "vcle", "s",
+ "$Vd, $Vm, #0", NEONvclez>;
+}
+
+// VCGT : Vector Compare Greater Than
+defm VCGTs : N3V_QHS<0, 0, 0b0011, 0, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q,
+ IIC_VSUBi4Q, "vcgt", "s", NEONvcgt, 0>;
+defm VCGTu : N3V_QHS<1, 0, 0b0011, 0, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q,
+ IIC_VSUBi4Q, "vcgt", "u", NEONvcgtu, 0>;
+def VCGTfd : N3VD<1,0,0b10,0b1110,0, IIC_VBIND, "vcgt", "f32", v2i32, v2f32,
+ NEONvcgt, 0>;
+def VCGTfq : N3VQ<1,0,0b10,0b1110,0, IIC_VBINQ, "vcgt", "f32", v4i32, v4f32,
+ NEONvcgt, 0>;
+
+let TwoOperandAliasConstraint = "$Vm = $Vd" in {
+defm VCGTz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00000, 0, "vcgt", "s",
+ "$Vd, $Vm, #0", NEONvcgtz>;
+defm VCLTz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00100, 0, "vclt", "s",
+ "$Vd, $Vm, #0", NEONvcltz>;
+}
+
+// VACGE : Vector Absolute Compare Greater Than or Equal (aka VCAGE)
+def VACGEd : N3VDInt<1, 0, 0b00, 0b1110, 1, N3RegFrm, IIC_VBIND, "vacge",
+ "f32", v2i32, v2f32, int_arm_neon_vacge, 0>;
+def VACGEq : N3VQInt<1, 0, 0b00, 0b1110, 1, N3RegFrm, IIC_VBINQ, "vacge",
+ "f32", v4i32, v4f32, int_arm_neon_vacge, 0>;
+// VACGT : Vector Absolute Compare Greater Than (aka VCAGT)
+def VACGTd : N3VDInt<1, 0, 0b10, 0b1110, 1, N3RegFrm, IIC_VBIND, "vacgt",
+ "f32", v2i32, v2f32, int_arm_neon_vacgt, 0>;
+def VACGTq : N3VQInt<1, 0, 0b10, 0b1110, 1, N3RegFrm, IIC_VBINQ, "vacgt",
+ "f32", v4i32, v4f32, int_arm_neon_vacgt, 0>;
+// VTST : Vector Test Bits
+defm VTST : N3V_QHS<0, 0, 0b1000, 1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vtst", "", NEONvtst, 1>;
+
+def: NEONInstAlias<"vaclt${p}.f32 $Vd, $Vn, $Vm",
+ (VACGTd DPR:$Vd, DPR:$Vm, DPR:$Vn, pred:$p)>;
+def: NEONInstAlias<"vaclt${p}.f32 $Vd, $Vn, $Vm",
+ (VACGTq QPR:$Vd, QPR:$Vm, QPR:$Vn, pred:$p)>;
+def: NEONInstAlias<"vacle${p}.f32 $Vd, $Vn, $Vm",
+ (VACGEd DPR:$Vd, DPR:$Vm, DPR:$Vn, pred:$p)>;
+def: NEONInstAlias<"vacle${p}.f32 $Vd, $Vn, $Vm",
+ (VACGEq QPR:$Vd, QPR:$Vm, QPR:$Vn, pred:$p)>;
+
+def: NEONInstAlias<"vaclt${p}.f32 $Vd, $Vm",
+ (VACGTd DPR:$Vd, DPR:$Vm, DPR:$Vd, pred:$p)>;
+def: NEONInstAlias<"vaclt${p}.f32 $Vd, $Vm",
+ (VACGTq QPR:$Vd, QPR:$Vm, QPR:$Vd, pred:$p)>;
+def: NEONInstAlias<"vacle${p}.f32 $Vd, $Vm",
+ (VACGEd DPR:$Vd, DPR:$Vm, DPR:$Vd, pred:$p)>;
+def: NEONInstAlias<"vacle${p}.f32 $Vd, $Vm",
+ (VACGEq QPR:$Vd, QPR:$Vm, QPR:$Vd, pred:$p)>;
+
+// Vector Bitwise Operations.
+
+def vnotd : PatFrag<(ops node:$in),
+ (xor node:$in, (bitconvert (v8i8 NEONimmAllOnesV)))>;
+def vnotq : PatFrag<(ops node:$in),
+ (xor node:$in, (bitconvert (v16i8 NEONimmAllOnesV)))>;
+
+
+// VAND : Vector Bitwise AND
+def VANDd : N3VDX<0, 0, 0b00, 0b0001, 1, IIC_VBINiD, "vand",
+ v2i32, v2i32, and, 1>;
+def VANDq : N3VQX<0, 0, 0b00, 0b0001, 1, IIC_VBINiQ, "vand",
+ v4i32, v4i32, and, 1>;
+
+// VEOR : Vector Bitwise Exclusive OR
+def VEORd : N3VDX<1, 0, 0b00, 0b0001, 1, IIC_VBINiD, "veor",
+ v2i32, v2i32, xor, 1>;
+def VEORq : N3VQX<1, 0, 0b00, 0b0001, 1, IIC_VBINiQ, "veor",
+ v4i32, v4i32, xor, 1>;
+
+// VORR : Vector Bitwise OR
+def VORRd : N3VDX<0, 0, 0b10, 0b0001, 1, IIC_VBINiD, "vorr",
+ v2i32, v2i32, or, 1>;
+def VORRq : N3VQX<0, 0, 0b10, 0b0001, 1, IIC_VBINiQ, "vorr",
+ v4i32, v4i32, or, 1>;
+
+def VORRiv4i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 0, 0, 1,
+ (outs DPR:$Vd), (ins nImmSplatI16:$SIMM, DPR:$src),
+ IIC_VMOVImm,
+ "vorr", "i16", "$Vd, $SIMM", "$src = $Vd",
+ [(set DPR:$Vd,
+ (v4i16 (NEONvorrImm DPR:$src, timm:$SIMM)))]> {
+ let Inst{9} = SIMM{9};
+}
+
+def VORRiv2i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 0, 0, 1,
+ (outs DPR:$Vd), (ins nImmSplatI32:$SIMM, DPR:$src),
+ IIC_VMOVImm,
+ "vorr", "i32", "$Vd, $SIMM", "$src = $Vd",
+ [(set DPR:$Vd,
+ (v2i32 (NEONvorrImm DPR:$src, timm:$SIMM)))]> {
+ let Inst{10-9} = SIMM{10-9};
+}
+
+def VORRiv8i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 1, 0, 1,
+ (outs QPR:$Vd), (ins nImmSplatI16:$SIMM, QPR:$src),
+ IIC_VMOVImm,
+ "vorr", "i16", "$Vd, $SIMM", "$src = $Vd",
+ [(set QPR:$Vd,
+ (v8i16 (NEONvorrImm QPR:$src, timm:$SIMM)))]> {
+ let Inst{9} = SIMM{9};
+}
+
+def VORRiv4i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 1, 0, 1,
+ (outs QPR:$Vd), (ins nImmSplatI32:$SIMM, QPR:$src),
+ IIC_VMOVImm,
+ "vorr", "i32", "$Vd, $SIMM", "$src = $Vd",
+ [(set QPR:$Vd,
+ (v4i32 (NEONvorrImm QPR:$src, timm:$SIMM)))]> {
+ let Inst{10-9} = SIMM{10-9};
+}
+
+
+// VBIC : Vector Bitwise Bit Clear (AND NOT)
+let TwoOperandAliasConstraint = "$Vn = $Vd" in {
+def VBICd : N3VX<0, 0, 0b01, 0b0001, 0, 1, (outs DPR:$Vd),
+ (ins DPR:$Vn, DPR:$Vm), N3RegFrm, IIC_VBINiD,
+ "vbic", "$Vd, $Vn, $Vm", "",
+ [(set DPR:$Vd, (v2i32 (and DPR:$Vn,
+ (vnotd DPR:$Vm))))]>;
+def VBICq : N3VX<0, 0, 0b01, 0b0001, 1, 1, (outs QPR:$Vd),
+ (ins QPR:$Vn, QPR:$Vm), N3RegFrm, IIC_VBINiQ,
+ "vbic", "$Vd, $Vn, $Vm", "",
+ [(set QPR:$Vd, (v4i32 (and QPR:$Vn,
+ (vnotq QPR:$Vm))))]>;
+}
+
+def VBICiv4i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 0, 1, 1,
+ (outs DPR:$Vd), (ins nImmSplatI16:$SIMM, DPR:$src),
+ IIC_VMOVImm,
+ "vbic", "i16", "$Vd, $SIMM", "$src = $Vd",
+ [(set DPR:$Vd,
+ (v4i16 (NEONvbicImm DPR:$src, timm:$SIMM)))]> {
+ let Inst{9} = SIMM{9};
+}
+
+def VBICiv2i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 0, 1, 1,
+ (outs DPR:$Vd), (ins nImmSplatI32:$SIMM, DPR:$src),
+ IIC_VMOVImm,
+ "vbic", "i32", "$Vd, $SIMM", "$src = $Vd",
+ [(set DPR:$Vd,
+ (v2i32 (NEONvbicImm DPR:$src, timm:$SIMM)))]> {
+ let Inst{10-9} = SIMM{10-9};
+}
+
+def VBICiv8i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 1, 1, 1,
+ (outs QPR:$Vd), (ins nImmSplatI16:$SIMM, QPR:$src),
+ IIC_VMOVImm,
+ "vbic", "i16", "$Vd, $SIMM", "$src = $Vd",
+ [(set QPR:$Vd,
+ (v8i16 (NEONvbicImm QPR:$src, timm:$SIMM)))]> {
+ let Inst{9} = SIMM{9};
+}
+
+def VBICiv4i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 1, 1, 1,
+ (outs QPR:$Vd), (ins nImmSplatI32:$SIMM, QPR:$src),
+ IIC_VMOVImm,
+ "vbic", "i32", "$Vd, $SIMM", "$src = $Vd",
+ [(set QPR:$Vd,
+ (v4i32 (NEONvbicImm QPR:$src, timm:$SIMM)))]> {
+ let Inst{10-9} = SIMM{10-9};
+}
+
+// VORN : Vector Bitwise OR NOT
+def VORNd : N3VX<0, 0, 0b11, 0b0001, 0, 1, (outs DPR:$Vd),
+ (ins DPR:$Vn, DPR:$Vm), N3RegFrm, IIC_VBINiD,
+ "vorn", "$Vd, $Vn, $Vm", "",
+ [(set DPR:$Vd, (v2i32 (or DPR:$Vn,
+ (vnotd DPR:$Vm))))]>;
+def VORNq : N3VX<0, 0, 0b11, 0b0001, 1, 1, (outs QPR:$Vd),
+ (ins QPR:$Vn, QPR:$Vm), N3RegFrm, IIC_VBINiQ,
+ "vorn", "$Vd, $Vn, $Vm", "",
+ [(set QPR:$Vd, (v4i32 (or QPR:$Vn,
+ (vnotq QPR:$Vm))))]>;
+
+// VMVN : Vector Bitwise NOT (Immediate)
+
+let isReMaterializable = 1 in {
+
+def VMVNv4i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 0, 1, 1, (outs DPR:$Vd),
+ (ins nImmSplatI16:$SIMM), IIC_VMOVImm,
+ "vmvn", "i16", "$Vd, $SIMM", "",
+ [(set DPR:$Vd, (v4i16 (NEONvmvnImm timm:$SIMM)))]> {
+ let Inst{9} = SIMM{9};
+}
+
+def VMVNv8i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 1, 1, 1, (outs QPR:$Vd),
+ (ins nImmSplatI16:$SIMM), IIC_VMOVImm,
+ "vmvn", "i16", "$Vd, $SIMM", "",
+ [(set QPR:$Vd, (v8i16 (NEONvmvnImm timm:$SIMM)))]> {
+ let Inst{9} = SIMM{9};
+}
+
+def VMVNv2i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 0, 1, 1, (outs DPR:$Vd),
+ (ins nImmVMOVI32:$SIMM), IIC_VMOVImm,
+ "vmvn", "i32", "$Vd, $SIMM", "",
+ [(set DPR:$Vd, (v2i32 (NEONvmvnImm timm:$SIMM)))]> {
+ let Inst{11-8} = SIMM{11-8};
+}
+
+def VMVNv4i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 1, 1, 1, (outs QPR:$Vd),
+ (ins nImmVMOVI32:$SIMM), IIC_VMOVImm,
+ "vmvn", "i32", "$Vd, $SIMM", "",
+ [(set QPR:$Vd, (v4i32 (NEONvmvnImm timm:$SIMM)))]> {
+ let Inst{11-8} = SIMM{11-8};
+}
+}
+
+// VMVN : Vector Bitwise NOT
+def VMVNd : N2VX<0b11, 0b11, 0b00, 0b00, 0b01011, 0, 0,
+ (outs DPR:$Vd), (ins DPR:$Vm), IIC_VSUBiD,
+ "vmvn", "$Vd, $Vm", "",
+ [(set DPR:$Vd, (v2i32 (vnotd DPR:$Vm)))]>;
+def VMVNq : N2VX<0b11, 0b11, 0b00, 0b00, 0b01011, 1, 0,
+ (outs QPR:$Vd), (ins QPR:$Vm), IIC_VSUBiD,
+ "vmvn", "$Vd, $Vm", "",
+ [(set QPR:$Vd, (v4i32 (vnotq QPR:$Vm)))]>;
+def : Pat<(v2i32 (vnotd DPR:$src)), (VMVNd DPR:$src)>;
+def : Pat<(v4i32 (vnotq QPR:$src)), (VMVNq QPR:$src)>;
+
+// VBSL : Vector Bitwise Select
+def VBSLd : N3VX<1, 0, 0b01, 0b0001, 0, 1, (outs DPR:$Vd),
+ (ins DPR:$src1, DPR:$Vn, DPR:$Vm),
+ N3RegFrm, IIC_VCNTiD,
+ "vbsl", "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ [(set DPR:$Vd,
+ (v2i32 (NEONvbsl DPR:$src1, DPR:$Vn, DPR:$Vm)))]>;
+def : Pat<(v8i8 (int_arm_neon_vbsl (v8i8 DPR:$src1),
+ (v8i8 DPR:$Vn), (v8i8 DPR:$Vm))),
+ (VBSLd DPR:$src1, DPR:$Vn, DPR:$Vm)>,
+ Requires<[HasNEON]>;
+def : Pat<(v4i16 (int_arm_neon_vbsl (v4i16 DPR:$src1),
+ (v4i16 DPR:$Vn), (v4i16 DPR:$Vm))),
+ (VBSLd DPR:$src1, DPR:$Vn, DPR:$Vm)>,
+ Requires<[HasNEON]>;
+def : Pat<(v2i32 (int_arm_neon_vbsl (v2i32 DPR:$src1),
+ (v2i32 DPR:$Vn), (v2i32 DPR:$Vm))),
+ (VBSLd DPR:$src1, DPR:$Vn, DPR:$Vm)>,
+ Requires<[HasNEON]>;
+def : Pat<(v2f32 (int_arm_neon_vbsl (v2f32 DPR:$src1),
+ (v2f32 DPR:$Vn), (v2f32 DPR:$Vm))),
+ (VBSLd DPR:$src1, DPR:$Vn, DPR:$Vm)>,
+ Requires<[HasNEON]>;
+def : Pat<(v1i64 (int_arm_neon_vbsl (v1i64 DPR:$src1),
+ (v1i64 DPR:$Vn), (v1i64 DPR:$Vm))),
+ (VBSLd DPR:$src1, DPR:$Vn, DPR:$Vm)>,
+ Requires<[HasNEON]>;
+
+def : Pat<(v2i32 (or (and DPR:$Vn, DPR:$Vd),
+ (and DPR:$Vm, (vnotd DPR:$Vd)))),
+ (VBSLd DPR:$Vd, DPR:$Vn, DPR:$Vm)>,
+ Requires<[HasNEON]>;
+
+def : Pat<(v1i64 (or (and DPR:$Vn, DPR:$Vd),
+ (and DPR:$Vm, (vnotd DPR:$Vd)))),
+ (VBSLd DPR:$Vd, DPR:$Vn, DPR:$Vm)>,
+ Requires<[HasNEON]>;
+
+def VBSLq : N3VX<1, 0, 0b01, 0b0001, 1, 1, (outs QPR:$Vd),
+ (ins QPR:$src1, QPR:$Vn, QPR:$Vm),
+ N3RegFrm, IIC_VCNTiQ,
+ "vbsl", "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ [(set QPR:$Vd,
+ (v4i32 (NEONvbsl QPR:$src1, QPR:$Vn, QPR:$Vm)))]>;
+
+def : Pat<(v16i8 (int_arm_neon_vbsl (v16i8 QPR:$src1),
+ (v16i8 QPR:$Vn), (v16i8 QPR:$Vm))),
+ (VBSLq QPR:$src1, QPR:$Vn, QPR:$Vm)>,
+ Requires<[HasNEON]>;
+def : Pat<(v8i16 (int_arm_neon_vbsl (v8i16 QPR:$src1),
+ (v8i16 QPR:$Vn), (v8i16 QPR:$Vm))),
+ (VBSLq QPR:$src1, QPR:$Vn, QPR:$Vm)>,
+ Requires<[HasNEON]>;
+def : Pat<(v4i32 (int_arm_neon_vbsl (v4i32 QPR:$src1),
+ (v4i32 QPR:$Vn), (v4i32 QPR:$Vm))),
+ (VBSLq QPR:$src1, QPR:$Vn, QPR:$Vm)>,
+ Requires<[HasNEON]>;
+def : Pat<(v4f32 (int_arm_neon_vbsl (v4f32 QPR:$src1),
+ (v4f32 QPR:$Vn), (v4f32 QPR:$Vm))),
+ (VBSLq QPR:$src1, QPR:$Vn, QPR:$Vm)>,
+ Requires<[HasNEON]>;
+def : Pat<(v2i64 (int_arm_neon_vbsl (v2i64 QPR:$src1),
+ (v2i64 QPR:$Vn), (v2i64 QPR:$Vm))),
+ (VBSLq QPR:$src1, QPR:$Vn, QPR:$Vm)>,
+ Requires<[HasNEON]>;
+
+def : Pat<(v4i32 (or (and QPR:$Vn, QPR:$Vd),
+ (and QPR:$Vm, (vnotq QPR:$Vd)))),
+ (VBSLq QPR:$Vd, QPR:$Vn, QPR:$Vm)>,
+ Requires<[HasNEON]>;
+def : Pat<(v2i64 (or (and QPR:$Vn, QPR:$Vd),
+ (and QPR:$Vm, (vnotq QPR:$Vd)))),
+ (VBSLq QPR:$Vd, QPR:$Vn, QPR:$Vm)>,
+ Requires<[HasNEON]>;
+
+// VBIF : Vector Bitwise Insert if False
+// like VBSL but with: "vbif $dst, $src3, $src1", "$src2 = $dst",
+// FIXME: This instruction's encoding MAY NOT BE correct.
+def VBIFd : N3VX<1, 0, 0b11, 0b0001, 0, 1,
+ (outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm),
+ N3RegFrm, IIC_VBINiD,
+ "vbif", "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ []>;
+def VBIFq : N3VX<1, 0, 0b11, 0b0001, 1, 1,
+ (outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm),
+ N3RegFrm, IIC_VBINiQ,
+ "vbif", "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ []>;
+
+// VBIT : Vector Bitwise Insert if True
+// like VBSL but with: "vbit $dst, $src2, $src1", "$src3 = $dst",
+// FIXME: This instruction's encoding MAY NOT BE correct.
+def VBITd : N3VX<1, 0, 0b10, 0b0001, 0, 1,
+ (outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm),
+ N3RegFrm, IIC_VBINiD,
+ "vbit", "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ []>;
+def VBITq : N3VX<1, 0, 0b10, 0b0001, 1, 1,
+ (outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm),
+ N3RegFrm, IIC_VBINiQ,
+ "vbit", "$Vd, $Vn, $Vm", "$src1 = $Vd",
+ []>;
+
+// VBIT/VBIF are not yet implemented. The TwoAddress pass will not go looking
+// for equivalent operations with different register constraints; it just
+// inserts copies.
+
+// Vector Absolute Differences.
+
+// VABD : Vector Absolute Difference
+defm VABDs : N3VInt_QHS<0, 0, 0b0111, 0, N3RegFrm,
+ IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
+ "vabd", "s", int_arm_neon_vabds, 1>;
+defm VABDu : N3VInt_QHS<1, 0, 0b0111, 0, N3RegFrm,
+ IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
+ "vabd", "u", int_arm_neon_vabdu, 1>;
+def VABDfd : N3VDInt<1, 0, 0b10, 0b1101, 0, N3RegFrm, IIC_VBIND,
+ "vabd", "f32", v2f32, v2f32, int_arm_neon_vabds, 1>;
+def VABDfq : N3VQInt<1, 0, 0b10, 0b1101, 0, N3RegFrm, IIC_VBINQ,
+ "vabd", "f32", v4f32, v4f32, int_arm_neon_vabds, 1>;
+
+// VABDL : Vector Absolute Difference Long (Q = | D - D |)
+defm VABDLs : N3VLIntExt_QHS<0,1,0b0111,0, IIC_VSUBi4Q,
+ "vabdl", "s", int_arm_neon_vabds, zext, 1>;
+defm VABDLu : N3VLIntExt_QHS<1,1,0b0111,0, IIC_VSUBi4Q,
+ "vabdl", "u", int_arm_neon_vabdu, zext, 1>;
+
+// VABA : Vector Absolute Difference and Accumulate
+defm VABAs : N3VIntOp_QHS<0,0,0b0111,1, IIC_VABAD, IIC_VABAQ,
+ "vaba", "s", int_arm_neon_vabds, add>;
+defm VABAu : N3VIntOp_QHS<1,0,0b0111,1, IIC_VABAD, IIC_VABAQ,
+ "vaba", "u", int_arm_neon_vabdu, add>;
+
+// VABAL : Vector Absolute Difference and Accumulate Long (Q += | D - D |)
+defm VABALs : N3VLIntExtOp_QHS<0,1,0b0101,0, IIC_VABAD,
+ "vabal", "s", int_arm_neon_vabds, zext, add>;
+defm VABALu : N3VLIntExtOp_QHS<1,1,0b0101,0, IIC_VABAD,
+ "vabal", "u", int_arm_neon_vabdu, zext, add>;
+
+// Vector Maximum and Minimum.
+
+// VMAX : Vector Maximum
+defm VMAXs : N3VInt_QHS<0, 0, 0b0110, 0, N3RegFrm,
+ IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
+ "vmax", "s", int_arm_neon_vmaxs, 1>;
+defm VMAXu : N3VInt_QHS<1, 0, 0b0110, 0, N3RegFrm,
+ IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
+ "vmax", "u", int_arm_neon_vmaxu, 1>;
+def VMAXfd : N3VDInt<0, 0, 0b00, 0b1111, 0, N3RegFrm, IIC_VBIND,
+ "vmax", "f32",
+ v2f32, v2f32, int_arm_neon_vmaxs, 1>;
+def VMAXfq : N3VQInt<0, 0, 0b00, 0b1111, 0, N3RegFrm, IIC_VBINQ,
+ "vmax", "f32",
+ v4f32, v4f32, int_arm_neon_vmaxs, 1>;
+
+// VMAXNM
+let PostEncoderMethod = "NEONThumb2V8PostEncoder", DecoderNamespace = "v8NEON" in {
+ def VMAXNMND : N3VDIntnp<0b00110, 0b00, 0b1111, 0, 1,
+ N3RegFrm, NoItinerary, "vmaxnm", "f32",
+ v2f32, v2f32, int_arm_neon_vmaxnm, 1>,
+ Requires<[HasV8, HasNEON]>;
+ def VMAXNMNQ : N3VQIntnp<0b00110, 0b00, 0b1111, 1, 1,
+ N3RegFrm, NoItinerary, "vmaxnm", "f32",
+ v4f32, v4f32, int_arm_neon_vmaxnm, 1>,
+ Requires<[HasV8, HasNEON]>;
+}
+
+// VMIN : Vector Minimum
+defm VMINs : N3VInt_QHS<0, 0, 0b0110, 1, N3RegFrm,
+ IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
+ "vmin", "s", int_arm_neon_vmins, 1>;
+defm VMINu : N3VInt_QHS<1, 0, 0b0110, 1, N3RegFrm,
+ IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
+ "vmin", "u", int_arm_neon_vminu, 1>;
+def VMINfd : N3VDInt<0, 0, 0b10, 0b1111, 0, N3RegFrm, IIC_VBIND,
+ "vmin", "f32",
+ v2f32, v2f32, int_arm_neon_vmins, 1>;
+def VMINfq : N3VQInt<0, 0, 0b10, 0b1111, 0, N3RegFrm, IIC_VBINQ,
+ "vmin", "f32",
+ v4f32, v4f32, int_arm_neon_vmins, 1>;
+
+// VMINNM
+let PostEncoderMethod = "NEONThumb2V8PostEncoder", DecoderNamespace = "v8NEON" in {
+ def VMINNMND : N3VDIntnp<0b00110, 0b10, 0b1111, 0, 1,
+ N3RegFrm, NoItinerary, "vminnm", "f32",
+ v2f32, v2f32, int_arm_neon_vminnm, 1>,
+ Requires<[HasV8, HasNEON]>;
+ def VMINNMNQ : N3VQIntnp<0b00110, 0b10, 0b1111, 1, 1,
+ N3RegFrm, NoItinerary, "vminnm", "f32",
+ v4f32, v4f32, int_arm_neon_vminnm, 1>,
+ Requires<[HasV8, HasNEON]>;
+}
+
+// Vector Pairwise Operations.
+
+// VPADD : Vector Pairwise Add
+def VPADDi8 : N3VDInt<0, 0, 0b00, 0b1011, 1, N3RegFrm, IIC_VSHLiD,
+ "vpadd", "i8",
+ v8i8, v8i8, int_arm_neon_vpadd, 0>;
+def VPADDi16 : N3VDInt<0, 0, 0b01, 0b1011, 1, N3RegFrm, IIC_VSHLiD,
+ "vpadd", "i16",
+ v4i16, v4i16, int_arm_neon_vpadd, 0>;
+def VPADDi32 : N3VDInt<0, 0, 0b10, 0b1011, 1, N3RegFrm, IIC_VSHLiD,
+ "vpadd", "i32",
+ v2i32, v2i32, int_arm_neon_vpadd, 0>;
+def VPADDf : N3VDInt<1, 0, 0b00, 0b1101, 0, N3RegFrm,
+ IIC_VPBIND, "vpadd", "f32",
+ v2f32, v2f32, int_arm_neon_vpadd, 0>;
+
+// VPADDL : Vector Pairwise Add Long
+defm VPADDLs : N2VPLInt_QHS<0b11, 0b11, 0b00, 0b00100, 0, "vpaddl", "s",
+ int_arm_neon_vpaddls>;
+defm VPADDLu : N2VPLInt_QHS<0b11, 0b11, 0b00, 0b00101, 0, "vpaddl", "u",
+ int_arm_neon_vpaddlu>;
+
+// VPADAL : Vector Pairwise Add and Accumulate Long
+defm VPADALs : N2VPLInt2_QHS<0b11, 0b11, 0b00, 0b01100, 0, "vpadal", "s",
+ int_arm_neon_vpadals>;
+defm VPADALu : N2VPLInt2_QHS<0b11, 0b11, 0b00, 0b01101, 0, "vpadal", "u",
+ int_arm_neon_vpadalu>;
+
+// VPMAX : Vector Pairwise Maximum
+def VPMAXs8 : N3VDInt<0, 0, 0b00, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
+ "s8", v8i8, v8i8, int_arm_neon_vpmaxs, 0>;
+def VPMAXs16 : N3VDInt<0, 0, 0b01, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
+ "s16", v4i16, v4i16, int_arm_neon_vpmaxs, 0>;
+def VPMAXs32 : N3VDInt<0, 0, 0b10, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
+ "s32", v2i32, v2i32, int_arm_neon_vpmaxs, 0>;
+def VPMAXu8 : N3VDInt<1, 0, 0b00, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
+ "u8", v8i8, v8i8, int_arm_neon_vpmaxu, 0>;
+def VPMAXu16 : N3VDInt<1, 0, 0b01, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
+ "u16", v4i16, v4i16, int_arm_neon_vpmaxu, 0>;
+def VPMAXu32 : N3VDInt<1, 0, 0b10, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
+ "u32", v2i32, v2i32, int_arm_neon_vpmaxu, 0>;
+def VPMAXf : N3VDInt<1, 0, 0b00, 0b1111, 0, N3RegFrm, IIC_VPBIND, "vpmax",
+ "f32", v2f32, v2f32, int_arm_neon_vpmaxs, 0>;
+
+// VPMIN : Vector Pairwise Minimum
+def VPMINs8 : N3VDInt<0, 0, 0b00, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
+ "s8", v8i8, v8i8, int_arm_neon_vpmins, 0>;
+def VPMINs16 : N3VDInt<0, 0, 0b01, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
+ "s16", v4i16, v4i16, int_arm_neon_vpmins, 0>;
+def VPMINs32 : N3VDInt<0, 0, 0b10, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
+ "s32", v2i32, v2i32, int_arm_neon_vpmins, 0>;
+def VPMINu8 : N3VDInt<1, 0, 0b00, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
+ "u8", v8i8, v8i8, int_arm_neon_vpminu, 0>;
+def VPMINu16 : N3VDInt<1, 0, 0b01, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
+ "u16", v4i16, v4i16, int_arm_neon_vpminu, 0>;
+def VPMINu32 : N3VDInt<1, 0, 0b10, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
+ "u32", v2i32, v2i32, int_arm_neon_vpminu, 0>;
+def VPMINf : N3VDInt<1, 0, 0b10, 0b1111, 0, N3RegFrm, IIC_VPBIND, "vpmin",
+ "f32", v2f32, v2f32, int_arm_neon_vpmins, 0>;
+
+// Vector Reciprocal and Reciprocal Square Root Estimate and Step.
+
+// VRECPE : Vector Reciprocal Estimate
+def VRECPEd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01000, 0,
+ IIC_VUNAD, "vrecpe", "u32",
+ v2i32, v2i32, int_arm_neon_vrecpe>;
+def VRECPEq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01000, 0,
+ IIC_VUNAQ, "vrecpe", "u32",
+ v4i32, v4i32, int_arm_neon_vrecpe>;
+def VRECPEfd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01010, 0,
+ IIC_VUNAD, "vrecpe", "f32",
+ v2f32, v2f32, int_arm_neon_vrecpe>;
+def VRECPEfq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01010, 0,
+ IIC_VUNAQ, "vrecpe", "f32",
+ v4f32, v4f32, int_arm_neon_vrecpe>;
+
+// VRECPS : Vector Reciprocal Step
+def VRECPSfd : N3VDInt<0, 0, 0b00, 0b1111, 1, N3RegFrm,
+ IIC_VRECSD, "vrecps", "f32",
+ v2f32, v2f32, int_arm_neon_vrecps, 1>;
+def VRECPSfq : N3VQInt<0, 0, 0b00, 0b1111, 1, N3RegFrm,
+ IIC_VRECSQ, "vrecps", "f32",
+ v4f32, v4f32, int_arm_neon_vrecps, 1>;
+
+// VRSQRTE : Vector Reciprocal Square Root Estimate
+def VRSQRTEd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01001, 0,
+ IIC_VUNAD, "vrsqrte", "u32",
+ v2i32, v2i32, int_arm_neon_vrsqrte>;
+def VRSQRTEq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01001, 0,
+ IIC_VUNAQ, "vrsqrte", "u32",
+ v4i32, v4i32, int_arm_neon_vrsqrte>;
+def VRSQRTEfd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01011, 0,
+ IIC_VUNAD, "vrsqrte", "f32",
+ v2f32, v2f32, int_arm_neon_vrsqrte>;
+def VRSQRTEfq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01011, 0,
+ IIC_VUNAQ, "vrsqrte", "f32",
+ v4f32, v4f32, int_arm_neon_vrsqrte>;
+
+// VRSQRTS : Vector Reciprocal Square Root Step
+def VRSQRTSfd : N3VDInt<0, 0, 0b10, 0b1111, 1, N3RegFrm,
+ IIC_VRECSD, "vrsqrts", "f32",
+ v2f32, v2f32, int_arm_neon_vrsqrts, 1>;
+def VRSQRTSfq : N3VQInt<0, 0, 0b10, 0b1111, 1, N3RegFrm,
+ IIC_VRECSQ, "vrsqrts", "f32",
+ v4f32, v4f32, int_arm_neon_vrsqrts, 1>;
+
+// Vector Shifts.
+
+// VSHL : Vector Shift
+defm VSHLs : N3VInt_QHSDSh<0, 0, 0b0100, 0, N3RegVShFrm,
+ IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ, IIC_VSHLiQ,
+ "vshl", "s", int_arm_neon_vshifts>;
+defm VSHLu : N3VInt_QHSDSh<1, 0, 0b0100, 0, N3RegVShFrm,
+ IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ, IIC_VSHLiQ,
+ "vshl", "u", int_arm_neon_vshiftu>;
+
+// VSHL : Vector Shift Left (Immediate)
+defm VSHLi : N2VShL_QHSD<0, 1, 0b0101, 1, IIC_VSHLiD, "vshl", "i", NEONvshl>;
+
+// VSHR : Vector Shift Right (Immediate)
+defm VSHRs : N2VShR_QHSD<0, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "s", "VSHRs",
+ NEONvshrs>;
+defm VSHRu : N2VShR_QHSD<1, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "u", "VSHRu",
+ NEONvshru>;
+
+// VSHLL : Vector Shift Left Long
+defm VSHLLs : N2VLSh_QHS<0, 1, 0b1010, 0, 0, 1, "vshll", "s",
+ PatFrag<(ops node:$LHS, node:$RHS), (NEONvshl (sext node:$LHS), node:$RHS)>>;
+defm VSHLLu : N2VLSh_QHS<1, 1, 0b1010, 0, 0, 1, "vshll", "u",
+ PatFrag<(ops node:$LHS, node:$RHS), (NEONvshl (zext node:$LHS), node:$RHS)>>;
+
+// VSHLL : Vector Shift Left Long (with maximum shift count)
+class N2VLShMax<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
+ bit op6, bit op4, string OpcodeStr, string Dt, ValueType ResTy,
+ ValueType OpTy, Operand ImmTy>
+ : N2VLSh<op24, op23, op11_8, op7, op6, op4, OpcodeStr, Dt,
+ ResTy, OpTy, ImmTy, null_frag> {
+ let Inst{21-16} = op21_16;
+ let DecoderMethod = "DecodeVSHLMaxInstruction";
+}
+def VSHLLi8 : N2VLShMax<1, 1, 0b110010, 0b0011, 0, 0, 0, "vshll", "i8",
+ v8i16, v8i8, imm8>;
+def VSHLLi16 : N2VLShMax<1, 1, 0b110110, 0b0011, 0, 0, 0, "vshll", "i16",
+ v4i32, v4i16, imm16>;
+def VSHLLi32 : N2VLShMax<1, 1, 0b111010, 0b0011, 0, 0, 0, "vshll", "i32",
+ v2i64, v2i32, imm32>;
+
+def : Pat<(v8i16 (NEONvshl (zext (v8i8 DPR:$Rn)), (i32 8))),
+ (VSHLLi8 DPR:$Rn, 8)>;
+def : Pat<(v4i32 (NEONvshl (zext (v4i16 DPR:$Rn)), (i32 16))),
+ (VSHLLi16 DPR:$Rn, 16)>;
+def : Pat<(v2i64 (NEONvshl (zext (v2i32 DPR:$Rn)), (i32 32))),
+ (VSHLLi32 DPR:$Rn, 32)>;
+def : Pat<(v8i16 (NEONvshl (sext (v8i8 DPR:$Rn)), (i32 8))),
+ (VSHLLi8 DPR:$Rn, 8)>;
+def : Pat<(v4i32 (NEONvshl (sext (v4i16 DPR:$Rn)), (i32 16))),
+ (VSHLLi16 DPR:$Rn, 16)>;
+def : Pat<(v2i64 (NEONvshl (sext (v2i32 DPR:$Rn)), (i32 32))),
+ (VSHLLi32 DPR:$Rn, 32)>;
+
+// VSHRN : Vector Shift Right and Narrow
+defm VSHRN : N2VNSh_HSD<0,1,0b1000,0,0,1, IIC_VSHLiD, "vshrn", "i",
+ PatFrag<(ops node:$Rn, node:$amt),
+ (trunc (NEONvshrs node:$Rn, node:$amt))>>;
+
+def : Pat<(v8i8 (trunc (NEONvshru (v8i16 QPR:$Vn), shr_imm8:$amt))),
+ (VSHRNv8i8 QPR:$Vn, shr_imm8:$amt)>;
+def : Pat<(v4i16 (trunc (NEONvshru (v4i32 QPR:$Vn), shr_imm16:$amt))),
+ (VSHRNv4i16 QPR:$Vn, shr_imm16:$amt)>;
+def : Pat<(v2i32 (trunc (NEONvshru (v2i64 QPR:$Vn), shr_imm32:$amt))),
+ (VSHRNv2i32 QPR:$Vn, shr_imm32:$amt)>;
+
+// VRSHL : Vector Rounding Shift
+defm VRSHLs : N3VInt_QHSDSh<0, 0, 0b0101, 0, N3RegVShFrm,
+ IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
+ "vrshl", "s", int_arm_neon_vrshifts>;
+defm VRSHLu : N3VInt_QHSDSh<1, 0, 0b0101, 0, N3RegVShFrm,
+ IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
+ "vrshl", "u", int_arm_neon_vrshiftu>;
+// VRSHR : Vector Rounding Shift Right
+defm VRSHRs : N2VShR_QHSD<0,1,0b0010,1, IIC_VSHLi4D, "vrshr", "s", "VRSHRs",
+ NEONvrshrs>;
+defm VRSHRu : N2VShR_QHSD<1,1,0b0010,1, IIC_VSHLi4D, "vrshr", "u", "VRSHRu",
+ NEONvrshru>;
+
+// VRSHRN : Vector Rounding Shift Right and Narrow
+defm VRSHRN : N2VNSh_HSD<0, 1, 0b1000, 0, 1, 1, IIC_VSHLi4D, "vrshrn", "i",
+ NEONvrshrn>;
+
+// VQSHL : Vector Saturating Shift
+defm VQSHLs : N3VInt_QHSDSh<0, 0, 0b0100, 1, N3RegVShFrm,
+ IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
+ "vqshl", "s", int_arm_neon_vqshifts>;
+defm VQSHLu : N3VInt_QHSDSh<1, 0, 0b0100, 1, N3RegVShFrm,
+ IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
+ "vqshl", "u", int_arm_neon_vqshiftu>;
+// VQSHL : Vector Saturating Shift Left (Immediate)
+defm VQSHLsi : N2VShL_QHSD<0,1,0b0111,1, IIC_VSHLi4D, "vqshl", "s",NEONvqshls>;
+defm VQSHLui : N2VShL_QHSD<1,1,0b0111,1, IIC_VSHLi4D, "vqshl", "u",NEONvqshlu>;
+
+// VQSHLU : Vector Saturating Shift Left (Immediate, Unsigned)
+defm VQSHLsu : N2VShL_QHSD<1,1,0b0110,1, IIC_VSHLi4D,"vqshlu","s",NEONvqshlsu>;
+
+// VQSHRN : Vector Saturating Shift Right and Narrow
+defm VQSHRNs : N2VNSh_HSD<0, 1, 0b1001, 0, 0, 1, IIC_VSHLi4D, "vqshrn", "s",
+ NEONvqshrns>;
+defm VQSHRNu : N2VNSh_HSD<1, 1, 0b1001, 0, 0, 1, IIC_VSHLi4D, "vqshrn", "u",
+ NEONvqshrnu>;
+
+// VQSHRUN : Vector Saturating Shift Right and Narrow (Unsigned)
+defm VQSHRUN : N2VNSh_HSD<1, 1, 0b1000, 0, 0, 1, IIC_VSHLi4D, "vqshrun", "s",
+ NEONvqshrnsu>;
+
+// VQRSHL : Vector Saturating Rounding Shift
+defm VQRSHLs : N3VInt_QHSDSh<0, 0, 0b0101, 1, N3RegVShFrm,
+ IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
+ "vqrshl", "s", int_arm_neon_vqrshifts>;
+defm VQRSHLu : N3VInt_QHSDSh<1, 0, 0b0101, 1, N3RegVShFrm,
+ IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
+ "vqrshl", "u", int_arm_neon_vqrshiftu>;
+
+// VQRSHRN : Vector Saturating Rounding Shift Right and Narrow
+defm VQRSHRNs : N2VNSh_HSD<0, 1, 0b1001, 0, 1, 1, IIC_VSHLi4D, "vqrshrn", "s",
+ NEONvqrshrns>;
+defm VQRSHRNu : N2VNSh_HSD<1, 1, 0b1001, 0, 1, 1, IIC_VSHLi4D, "vqrshrn", "u",
+ NEONvqrshrnu>;
+
+// VQRSHRUN : Vector Saturating Rounding Shift Right and Narrow (Unsigned)
+defm VQRSHRUN : N2VNSh_HSD<1, 1, 0b1000, 0, 1, 1, IIC_VSHLi4D, "vqrshrun", "s",
+ NEONvqrshrnsu>;
+
+// VSRA : Vector Shift Right and Accumulate
+defm VSRAs : N2VShAdd_QHSD<0, 1, 0b0001, 1, "vsra", "s", NEONvshrs>;
+defm VSRAu : N2VShAdd_QHSD<1, 1, 0b0001, 1, "vsra", "u", NEONvshru>;
+// VRSRA : Vector Rounding Shift Right and Accumulate
+defm VRSRAs : N2VShAdd_QHSD<0, 1, 0b0011, 1, "vrsra", "s", NEONvrshrs>;
+defm VRSRAu : N2VShAdd_QHSD<1, 1, 0b0011, 1, "vrsra", "u", NEONvrshru>;
+
+// VSLI : Vector Shift Left and Insert
+defm VSLI : N2VShInsL_QHSD<1, 1, 0b0101, 1, "vsli">;
+
+// VSRI : Vector Shift Right and Insert
+defm VSRI : N2VShInsR_QHSD<1, 1, 0b0100, 1, "vsri">;
+
+// Vector Absolute and Saturating Absolute.
+
+// VABS : Vector Absolute Value
+defm VABS : N2VInt_QHS<0b11, 0b11, 0b01, 0b00110, 0,
+ IIC_VUNAiD, IIC_VUNAiQ, "vabs", "s",
+ int_arm_neon_vabs>;
+def VABSfd : N2VD<0b11, 0b11, 0b10, 0b01, 0b01110, 0,
+ "vabs", "f32",
+ v2f32, v2f32, fabs>;
+def VABSfq : N2VQ<0b11, 0b11, 0b10, 0b01, 0b01110, 0,
+ "vabs", "f32",
+ v4f32, v4f32, fabs>;
+
+def : Pat<(xor (v2i32 (bitconvert (v8i8 (NEONvshrs DPR:$src, (i32 7))))),
+ (v2i32 (bitconvert (v8i8 (add DPR:$src,
+ (NEONvshrs DPR:$src, (i32 7))))))),
+ (VABSv8i8 DPR:$src)>;
+def : Pat<(xor (v2i32 (bitconvert (v4i16 (NEONvshrs DPR:$src, (i32 15))))),
+ (v2i32 (bitconvert (v4i16 (add DPR:$src,
+ (NEONvshrs DPR:$src, (i32 15))))))),
+ (VABSv4i16 DPR:$src)>;
+def : Pat<(xor (v2i32 (NEONvshrs DPR:$src, (i32 31))),
+ (v2i32 (add DPR:$src, (NEONvshrs DPR:$src, (i32 31))))),
+ (VABSv2i32 DPR:$src)>;
+def : Pat<(xor (v4i32 (bitconvert (v16i8 (NEONvshrs QPR:$src, (i32 7))))),
+ (v4i32 (bitconvert (v16i8 (add QPR:$src,
+ (NEONvshrs QPR:$src, (i32 7))))))),
+ (VABSv16i8 QPR:$src)>;
+def : Pat<(xor (v4i32 (bitconvert (v8i16 (NEONvshrs QPR:$src, (i32 15))))),
+ (v4i32 (bitconvert (v8i16 (add QPR:$src,
+ (NEONvshrs QPR:$src, (i32 15))))))),
+ (VABSv8i16 QPR:$src)>;
+def : Pat<(xor (v4i32 (NEONvshrs QPR:$src, (i32 31))),
+ (v4i32 (add QPR:$src, (NEONvshrs QPR:$src, (i32 31))))),
+ (VABSv4i32 QPR:$src)>;
+
+// VQABS : Vector Saturating Absolute Value
+defm VQABS : N2VInt_QHS<0b11, 0b11, 0b00, 0b01110, 0,
+ IIC_VQUNAiD, IIC_VQUNAiQ, "vqabs", "s",
+ int_arm_neon_vqabs>;
+
+// Vector Negate.
+
+def vnegd : PatFrag<(ops node:$in),
+ (sub (bitconvert (v2i32 NEONimmAllZerosV)), node:$in)>;
+def vnegq : PatFrag<(ops node:$in),
+ (sub (bitconvert (v4i32 NEONimmAllZerosV)), node:$in)>;
+
+class VNEGD<bits<2> size, string OpcodeStr, string Dt, ValueType Ty>
+ : N2V<0b11, 0b11, size, 0b01, 0b00111, 0, 0, (outs DPR:$Vd), (ins DPR:$Vm),
+ IIC_VSHLiD, OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set DPR:$Vd, (Ty (vnegd DPR:$Vm)))]>;
+class VNEGQ<bits<2> size, string OpcodeStr, string Dt, ValueType Ty>
+ : N2V<0b11, 0b11, size, 0b01, 0b00111, 1, 0, (outs QPR:$Vd), (ins QPR:$Vm),
+ IIC_VSHLiQ, OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set QPR:$Vd, (Ty (vnegq QPR:$Vm)))]>;
+
+// VNEG : Vector Negate (integer)
+def VNEGs8d : VNEGD<0b00, "vneg", "s8", v8i8>;
+def VNEGs16d : VNEGD<0b01, "vneg", "s16", v4i16>;
+def VNEGs32d : VNEGD<0b10, "vneg", "s32", v2i32>;
+def VNEGs8q : VNEGQ<0b00, "vneg", "s8", v16i8>;
+def VNEGs16q : VNEGQ<0b01, "vneg", "s16", v8i16>;
+def VNEGs32q : VNEGQ<0b10, "vneg", "s32", v4i32>;
+
+// VNEG : Vector Negate (floating-point)
+def VNEGfd : N2V<0b11, 0b11, 0b10, 0b01, 0b01111, 0, 0,
+ (outs DPR:$Vd), (ins DPR:$Vm), IIC_VUNAD,
+ "vneg", "f32", "$Vd, $Vm", "",
+ [(set DPR:$Vd, (v2f32 (fneg DPR:$Vm)))]>;
+def VNEGf32q : N2V<0b11, 0b11, 0b10, 0b01, 0b01111, 1, 0,
+ (outs QPR:$Vd), (ins QPR:$Vm), IIC_VUNAQ,
+ "vneg", "f32", "$Vd, $Vm", "",
+ [(set QPR:$Vd, (v4f32 (fneg QPR:$Vm)))]>;
+
+def : Pat<(v8i8 (vnegd DPR:$src)), (VNEGs8d DPR:$src)>;
+def : Pat<(v4i16 (vnegd DPR:$src)), (VNEGs16d DPR:$src)>;
+def : Pat<(v2i32 (vnegd DPR:$src)), (VNEGs32d DPR:$src)>;
+def : Pat<(v16i8 (vnegq QPR:$src)), (VNEGs8q QPR:$src)>;
+def : Pat<(v8i16 (vnegq QPR:$src)), (VNEGs16q QPR:$src)>;
+def : Pat<(v4i32 (vnegq QPR:$src)), (VNEGs32q QPR:$src)>;
+
+// VQNEG : Vector Saturating Negate
+defm VQNEG : N2VInt_QHS<0b11, 0b11, 0b00, 0b01111, 0,
+ IIC_VQUNAiD, IIC_VQUNAiQ, "vqneg", "s",
+ int_arm_neon_vqneg>;
+
+// Vector Bit Counting Operations.
+
+// VCLS : Vector Count Leading Sign Bits
+defm VCLS : N2VInt_QHS<0b11, 0b11, 0b00, 0b01000, 0,
+ IIC_VCNTiD, IIC_VCNTiQ, "vcls", "s",
+ int_arm_neon_vcls>;
+// VCLZ : Vector Count Leading Zeros
+defm VCLZ : N2VInt_QHS<0b11, 0b11, 0b00, 0b01001, 0,
+ IIC_VCNTiD, IIC_VCNTiQ, "vclz", "i",
+ ctlz>;
+// VCNT : Vector Count One Bits
+def VCNTd : N2VDInt<0b11, 0b11, 0b00, 0b00, 0b01010, 0,
+ IIC_VCNTiD, "vcnt", "8",
+ v8i8, v8i8, ctpop>;
+def VCNTq : N2VQInt<0b11, 0b11, 0b00, 0b00, 0b01010, 0,
+ IIC_VCNTiQ, "vcnt", "8",
+ v16i8, v16i8, ctpop>;
+
+// Vector Swap
+def VSWPd : N2VX<0b11, 0b11, 0b00, 0b10, 0b00000, 0, 0,
+ (outs DPR:$Vd, DPR:$Vm), (ins DPR:$in1, DPR:$in2),
+ NoItinerary, "vswp", "$Vd, $Vm", "$in1 = $Vd, $in2 = $Vm",
+ []>;
+def VSWPq : N2VX<0b11, 0b11, 0b00, 0b10, 0b00000, 1, 0,
+ (outs QPR:$Vd, QPR:$Vm), (ins QPR:$in1, QPR:$in2),
+ NoItinerary, "vswp", "$Vd, $Vm", "$in1 = $Vd, $in2 = $Vm",
+ []>;
+
+// Vector Move Operations.
+
+// VMOV : Vector Move (Register)
+def : NEONInstAlias<"vmov${p} $Vd, $Vm",
+ (VORRd DPR:$Vd, DPR:$Vm, DPR:$Vm, pred:$p)>;
+def : NEONInstAlias<"vmov${p} $Vd, $Vm",
+ (VORRq QPR:$Vd, QPR:$Vm, QPR:$Vm, pred:$p)>;
+
+// VMOV : Vector Move (Immediate)
+
+let isReMaterializable = 1 in {
+def VMOVv8i8 : N1ModImm<1, 0b000, 0b1110, 0, 0, 0, 1, (outs DPR:$Vd),
+ (ins nImmSplatI8:$SIMM), IIC_VMOVImm,
+ "vmov", "i8", "$Vd, $SIMM", "",
+ [(set DPR:$Vd, (v8i8 (NEONvmovImm timm:$SIMM)))]>;
+def VMOVv16i8 : N1ModImm<1, 0b000, 0b1110, 0, 1, 0, 1, (outs QPR:$Vd),
+ (ins nImmSplatI8:$SIMM), IIC_VMOVImm,
+ "vmov", "i8", "$Vd, $SIMM", "",
+ [(set QPR:$Vd, (v16i8 (NEONvmovImm timm:$SIMM)))]>;
+
+def VMOVv4i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 0, 0, 1, (outs DPR:$Vd),
+ (ins nImmSplatI16:$SIMM), IIC_VMOVImm,
+ "vmov", "i16", "$Vd, $SIMM", "",
+ [(set DPR:$Vd, (v4i16 (NEONvmovImm timm:$SIMM)))]> {
+ let Inst{9} = SIMM{9};
+}
+
+def VMOVv8i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 1, 0, 1, (outs QPR:$Vd),
+ (ins nImmSplatI16:$SIMM), IIC_VMOVImm,
+ "vmov", "i16", "$Vd, $SIMM", "",
+ [(set QPR:$Vd, (v8i16 (NEONvmovImm timm:$SIMM)))]> {
+ let Inst{9} = SIMM{9};
+}
+
+def VMOVv2i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 0, 0, 1, (outs DPR:$Vd),
+ (ins nImmVMOVI32:$SIMM), IIC_VMOVImm,
+ "vmov", "i32", "$Vd, $SIMM", "",
+ [(set DPR:$Vd, (v2i32 (NEONvmovImm timm:$SIMM)))]> {
+ let Inst{11-8} = SIMM{11-8};
+}
+
+def VMOVv4i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 1, 0, 1, (outs QPR:$Vd),
+ (ins nImmVMOVI32:$SIMM), IIC_VMOVImm,
+ "vmov", "i32", "$Vd, $SIMM", "",
+ [(set QPR:$Vd, (v4i32 (NEONvmovImm timm:$SIMM)))]> {
+ let Inst{11-8} = SIMM{11-8};
+}
+
+def VMOVv1i64 : N1ModImm<1, 0b000, 0b1110, 0, 0, 1, 1, (outs DPR:$Vd),
+ (ins nImmSplatI64:$SIMM), IIC_VMOVImm,
+ "vmov", "i64", "$Vd, $SIMM", "",
+ [(set DPR:$Vd, (v1i64 (NEONvmovImm timm:$SIMM)))]>;
+def VMOVv2i64 : N1ModImm<1, 0b000, 0b1110, 0, 1, 1, 1, (outs QPR:$Vd),
+ (ins nImmSplatI64:$SIMM), IIC_VMOVImm,
+ "vmov", "i64", "$Vd, $SIMM", "",
+ [(set QPR:$Vd, (v2i64 (NEONvmovImm timm:$SIMM)))]>;
+
+def VMOVv2f32 : N1ModImm<1, 0b000, 0b1111, 0, 0, 0, 1, (outs DPR:$Vd),
+ (ins nImmVMOVF32:$SIMM), IIC_VMOVImm,
+ "vmov", "f32", "$Vd, $SIMM", "",
+ [(set DPR:$Vd, (v2f32 (NEONvmovFPImm timm:$SIMM)))]>;
+def VMOVv4f32 : N1ModImm<1, 0b000, 0b1111, 0, 1, 0, 1, (outs QPR:$Vd),
+ (ins nImmVMOVF32:$SIMM), IIC_VMOVImm,
+ "vmov", "f32", "$Vd, $SIMM", "",
+ [(set QPR:$Vd, (v4f32 (NEONvmovFPImm timm:$SIMM)))]>;
+} // isReMaterializable
+
+// Add support for bytes replication feature, so it could be GAS compatible.
+// E.g. instructions below:
+// "vmov.i32 d0, 0xffffffff"
+// "vmov.i32 d0, 0xabababab"
+// "vmov.i16 d0, 0xabab"
+// are incorrect, but we could deal with such cases.
+// For last two instructions, for example, it should emit:
+// "vmov.i8 d0, 0xab"
+def : NEONInstAlias<"vmov${p}.i16 $Vd, $Vm",
+ (VMOVv8i8 DPR:$Vd, nImmVMOVI16ByteReplicate:$Vm, pred:$p)>;
+def : NEONInstAlias<"vmov${p}.i32 $Vd, $Vm",
+ (VMOVv8i8 DPR:$Vd, nImmVMOVI32ByteReplicate:$Vm, pred:$p)>;
+def : NEONInstAlias<"vmov${p}.i16 $Vd, $Vm",
+ (VMOVv16i8 QPR:$Vd, nImmVMOVI16ByteReplicate:$Vm, pred:$p)>;
+def : NEONInstAlias<"vmov${p}.i32 $Vd, $Vm",
+ (VMOVv16i8 QPR:$Vd, nImmVMOVI32ByteReplicate:$Vm, pred:$p)>;
+
+// Also add same support for VMVN instructions. So instruction:
+// "vmvn.i32 d0, 0xabababab"
+// actually means:
+// "vmov.i8 d0, 0x54"
+def : NEONInstAlias<"vmvn${p}.i16 $Vd, $Vm",
+ (VMOVv8i8 DPR:$Vd, nImmVMVNI16ByteReplicate:$Vm, pred:$p)>;
+def : NEONInstAlias<"vmvn${p}.i32 $Vd, $Vm",
+ (VMOVv8i8 DPR:$Vd, nImmVMVNI32ByteReplicate:$Vm, pred:$p)>;
+def : NEONInstAlias<"vmvn${p}.i16 $Vd, $Vm",
+ (VMOVv16i8 QPR:$Vd, nImmVMVNI16ByteReplicate:$Vm, pred:$p)>;
+def : NEONInstAlias<"vmvn${p}.i32 $Vd, $Vm",
+ (VMOVv16i8 QPR:$Vd, nImmVMVNI32ByteReplicate:$Vm, pred:$p)>;
+
+// On some CPUs the two instructions "vmov.i32 dD, #0" and "vmov.i32 qD, #0"
+// require zero cycles to execute so they should be used wherever possible for
+// setting a register to zero.
+
+// Even without these pseudo-insts we would probably end up with the correct
+// instruction, but we could not mark the general ones with "isAsCheapAsAMove"
+// since they are sometimes rather expensive (in general).
+
+let AddedComplexity = 50, isAsCheapAsAMove = 1, isReMaterializable = 1 in {
+ def VMOVD0 : ARMPseudoExpand<(outs DPR:$Vd), (ins), 4, IIC_VMOVImm,
+ [(set DPR:$Vd, (v2i32 NEONimmAllZerosV))],
+ (VMOVv2i32 DPR:$Vd, 0, (ops 14, zero_reg))>,
+ Requires<[HasZCZ]>;
+ def VMOVQ0 : ARMPseudoExpand<(outs QPR:$Vd), (ins), 4, IIC_VMOVImm,
+ [(set QPR:$Vd, (v4i32 NEONimmAllZerosV))],
+ (VMOVv4i32 QPR:$Vd, 0, (ops 14, zero_reg))>,
+ Requires<[HasZCZ]>;
+}
+
+// VMOV : Vector Get Lane (move scalar to ARM core register)
+
+def VGETLNs8 : NVGetLane<{1,1,1,0,0,1,?,1}, 0b1011, {?,?},
+ (outs GPR:$R), (ins DPR:$V, VectorIndex8:$lane),
+ IIC_VMOVSI, "vmov", "s8", "$R, $V$lane",
+ [(set GPR:$R, (NEONvgetlanes (v8i8 DPR:$V),
+ imm:$lane))]> {
+ let Inst{21} = lane{2};
+ let Inst{6-5} = lane{1-0};
+}
+def VGETLNs16 : NVGetLane<{1,1,1,0,0,0,?,1}, 0b1011, {?,1},
+ (outs GPR:$R), (ins DPR:$V, VectorIndex16:$lane),
+ IIC_VMOVSI, "vmov", "s16", "$R, $V$lane",
+ [(set GPR:$R, (NEONvgetlanes (v4i16 DPR:$V),
+ imm:$lane))]> {
+ let Inst{21} = lane{1};
+ let Inst{6} = lane{0};
+}
+def VGETLNu8 : NVGetLane<{1,1,1,0,1,1,?,1}, 0b1011, {?,?},
+ (outs GPR:$R), (ins DPR:$V, VectorIndex8:$lane),
+ IIC_VMOVSI, "vmov", "u8", "$R, $V$lane",
+ [(set GPR:$R, (NEONvgetlaneu (v8i8 DPR:$V),
+ imm:$lane))]> {
+ let Inst{21} = lane{2};
+ let Inst{6-5} = lane{1-0};
+}
+def VGETLNu16 : NVGetLane<{1,1,1,0,1,0,?,1}, 0b1011, {?,1},
+ (outs GPR:$R), (ins DPR:$V, VectorIndex16:$lane),
+ IIC_VMOVSI, "vmov", "u16", "$R, $V$lane",
+ [(set GPR:$R, (NEONvgetlaneu (v4i16 DPR:$V),
+ imm:$lane))]> {
+ let Inst{21} = lane{1};
+ let Inst{6} = lane{0};
+}
+def VGETLNi32 : NVGetLane<{1,1,1,0,0,0,?,1}, 0b1011, 0b00,
+ (outs GPR:$R), (ins DPR:$V, VectorIndex32:$lane),
+ IIC_VMOVSI, "vmov", "32", "$R, $V$lane",
+ [(set GPR:$R, (extractelt (v2i32 DPR:$V),
+ imm:$lane))]>,
+ Requires<[HasNEON, HasFastVGETLNi32]> {
+ let Inst{21} = lane{0};
+}
+// def VGETLNf32: see FMRDH and FMRDL in ARMInstrVFP.td
+def : Pat<(NEONvgetlanes (v16i8 QPR:$src), imm:$lane),
+ (VGETLNs8 (v8i8 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i8_reg imm:$lane))),
+ (SubReg_i8_lane imm:$lane))>;
+def : Pat<(NEONvgetlanes (v8i16 QPR:$src), imm:$lane),
+ (VGETLNs16 (v4i16 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane))>;
+def : Pat<(NEONvgetlaneu (v16i8 QPR:$src), imm:$lane),
+ (VGETLNu8 (v8i8 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i8_reg imm:$lane))),
+ (SubReg_i8_lane imm:$lane))>;
+def : Pat<(NEONvgetlaneu (v8i16 QPR:$src), imm:$lane),
+ (VGETLNu16 (v4i16 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane))>;
+def : Pat<(extractelt (v4i32 QPR:$src), imm:$lane),
+ (VGETLNi32 (v2i32 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane))>,
+ Requires<[HasNEON, HasFastVGETLNi32]>;
+def : Pat<(extractelt (v2i32 DPR:$src), imm:$lane),
+ (COPY_TO_REGCLASS
+ (i32 (EXTRACT_SUBREG DPR:$src, (SSubReg_f32_reg imm:$lane))), GPR)>,
+ Requires<[HasNEON, HasSlowVGETLNi32]>;
+def : Pat<(extractelt (v4i32 QPR:$src), imm:$lane),
+ (COPY_TO_REGCLASS
+ (i32 (EXTRACT_SUBREG QPR:$src, (SSubReg_f32_reg imm:$lane))), GPR)>,
+ Requires<[HasNEON, HasSlowVGETLNi32]>;
+def : Pat<(extractelt (v2f32 DPR:$src1), imm:$src2),
+ (EXTRACT_SUBREG (v2f32 (COPY_TO_REGCLASS (v2f32 DPR:$src1),DPR_VFP2)),
+ (SSubReg_f32_reg imm:$src2))>;
+def : Pat<(extractelt (v4f32 QPR:$src1), imm:$src2),
+ (EXTRACT_SUBREG (v4f32 (COPY_TO_REGCLASS (v4f32 QPR:$src1),QPR_VFP2)),
+ (SSubReg_f32_reg imm:$src2))>;
+//def : Pat<(extractelt (v2i64 QPR:$src1), imm:$src2),
+// (EXTRACT_SUBREG QPR:$src1, (DSubReg_f64_reg imm:$src2))>;
+def : Pat<(extractelt (v2f64 QPR:$src1), imm:$src2),
+ (EXTRACT_SUBREG QPR:$src1, (DSubReg_f64_reg imm:$src2))>;
+
+
+// VMOV : Vector Set Lane (move ARM core register to scalar)
+
+let Constraints = "$src1 = $V" in {
+def VSETLNi8 : NVSetLane<{1,1,1,0,0,1,?,0}, 0b1011, {?,?}, (outs DPR:$V),
+ (ins DPR:$src1, GPR:$R, VectorIndex8:$lane),
+ IIC_VMOVISL, "vmov", "8", "$V$lane, $R",
+ [(set DPR:$V, (vector_insert (v8i8 DPR:$src1),
+ GPR:$R, imm:$lane))]> {
+ let Inst{21} = lane{2};
+ let Inst{6-5} = lane{1-0};
+}
+def VSETLNi16 : NVSetLane<{1,1,1,0,0,0,?,0}, 0b1011, {?,1}, (outs DPR:$V),
+ (ins DPR:$src1, GPR:$R, VectorIndex16:$lane),
+ IIC_VMOVISL, "vmov", "16", "$V$lane, $R",
+ [(set DPR:$V, (vector_insert (v4i16 DPR:$src1),
+ GPR:$R, imm:$lane))]> {
+ let Inst{21} = lane{1};
+ let Inst{6} = lane{0};
+}
+def VSETLNi32 : NVSetLane<{1,1,1,0,0,0,?,0}, 0b1011, 0b00, (outs DPR:$V),
+ (ins DPR:$src1, GPR:$R, VectorIndex32:$lane),
+ IIC_VMOVISL, "vmov", "32", "$V$lane, $R",
+ [(set DPR:$V, (insertelt (v2i32 DPR:$src1),
+ GPR:$R, imm:$lane))]> {
+ let Inst{21} = lane{0};
+}
+}
+def : Pat<(vector_insert (v16i8 QPR:$src1), GPR:$src2, imm:$lane),
+ (v16i8 (INSERT_SUBREG QPR:$src1,
+ (v8i8 (VSETLNi8 (v8i8 (EXTRACT_SUBREG QPR:$src1,
+ (DSubReg_i8_reg imm:$lane))),
+ GPR:$src2, (SubReg_i8_lane imm:$lane))),
+ (DSubReg_i8_reg imm:$lane)))>;
+def : Pat<(vector_insert (v8i16 QPR:$src1), GPR:$src2, imm:$lane),
+ (v8i16 (INSERT_SUBREG QPR:$src1,
+ (v4i16 (VSETLNi16 (v4i16 (EXTRACT_SUBREG QPR:$src1,
+ (DSubReg_i16_reg imm:$lane))),
+ GPR:$src2, (SubReg_i16_lane imm:$lane))),
+ (DSubReg_i16_reg imm:$lane)))>;
+def : Pat<(insertelt (v4i32 QPR:$src1), GPR:$src2, imm:$lane),
+ (v4i32 (INSERT_SUBREG QPR:$src1,
+ (v2i32 (VSETLNi32 (v2i32 (EXTRACT_SUBREG QPR:$src1,
+ (DSubReg_i32_reg imm:$lane))),
+ GPR:$src2, (SubReg_i32_lane imm:$lane))),
+ (DSubReg_i32_reg imm:$lane)))>;
+
+def : Pat<(v2f32 (insertelt DPR:$src1, SPR:$src2, imm:$src3)),
+ (INSERT_SUBREG (v2f32 (COPY_TO_REGCLASS DPR:$src1, DPR_VFP2)),
+ SPR:$src2, (SSubReg_f32_reg imm:$src3))>;
+def : Pat<(v4f32 (insertelt QPR:$src1, SPR:$src2, imm:$src3)),
+ (INSERT_SUBREG (v4f32 (COPY_TO_REGCLASS QPR:$src1, QPR_VFP2)),
+ SPR:$src2, (SSubReg_f32_reg imm:$src3))>;
+
+//def : Pat<(v2i64 (insertelt QPR:$src1, DPR:$src2, imm:$src3)),
+// (INSERT_SUBREG QPR:$src1, DPR:$src2, (DSubReg_f64_reg imm:$src3))>;
+def : Pat<(v2f64 (insertelt QPR:$src1, DPR:$src2, imm:$src3)),
+ (INSERT_SUBREG QPR:$src1, DPR:$src2, (DSubReg_f64_reg imm:$src3))>;
+
+def : Pat<(v2f32 (scalar_to_vector SPR:$src)),
+ (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$src, ssub_0)>;
+def : Pat<(v2f64 (scalar_to_vector (f64 DPR:$src))),
+ (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), DPR:$src, dsub_0)>;
+def : Pat<(v4f32 (scalar_to_vector SPR:$src)),
+ (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), SPR:$src, ssub_0)>;
+
+def : Pat<(v8i8 (scalar_to_vector GPR:$src)),
+ (VSETLNi8 (v8i8 (IMPLICIT_DEF)), GPR:$src, (i32 0))>;
+def : Pat<(v4i16 (scalar_to_vector GPR:$src)),
+ (VSETLNi16 (v4i16 (IMPLICIT_DEF)), GPR:$src, (i32 0))>;
+def : Pat<(v2i32 (scalar_to_vector GPR:$src)),
+ (VSETLNi32 (v2i32 (IMPLICIT_DEF)), GPR:$src, (i32 0))>;
+
+def : Pat<(v16i8 (scalar_to_vector GPR:$src)),
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (VSETLNi8 (v8i8 (IMPLICIT_DEF)), GPR:$src, (i32 0)),
+ dsub_0)>;
+def : Pat<(v8i16 (scalar_to_vector GPR:$src)),
+ (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
+ (VSETLNi16 (v4i16 (IMPLICIT_DEF)), GPR:$src, (i32 0)),
+ dsub_0)>;
+def : Pat<(v4i32 (scalar_to_vector GPR:$src)),
+ (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
+ (VSETLNi32 (v2i32 (IMPLICIT_DEF)), GPR:$src, (i32 0)),
+ dsub_0)>;
+
+// VDUP : Vector Duplicate (from ARM core register to all elements)
+
+class VDUPD<bits<8> opcod1, bits<2> opcod3, string Dt, ValueType Ty>
+ : NVDup<opcod1, 0b1011, opcod3, (outs DPR:$V), (ins GPR:$R),
+ IIC_VMOVIS, "vdup", Dt, "$V, $R",
+ [(set DPR:$V, (Ty (NEONvdup (i32 GPR:$R))))]>;
+class VDUPQ<bits<8> opcod1, bits<2> opcod3, string Dt, ValueType Ty>
+ : NVDup<opcod1, 0b1011, opcod3, (outs QPR:$V), (ins GPR:$R),
+ IIC_VMOVIS, "vdup", Dt, "$V, $R",
+ [(set QPR:$V, (Ty (NEONvdup (i32 GPR:$R))))]>;
+
+def VDUP8d : VDUPD<0b11101100, 0b00, "8", v8i8>;
+def VDUP16d : VDUPD<0b11101000, 0b01, "16", v4i16>;
+def VDUP32d : VDUPD<0b11101000, 0b00, "32", v2i32>,
+ Requires<[HasNEON, HasFastVDUP32]>;
+def VDUP8q : VDUPQ<0b11101110, 0b00, "8", v16i8>;
+def VDUP16q : VDUPQ<0b11101010, 0b01, "16", v8i16>;
+def VDUP32q : VDUPQ<0b11101010, 0b00, "32", v4i32>;
+
+// NEONvdup patterns for uarchs with fast VDUP.32.
+def : Pat<(v2f32 (NEONvdup (f32 (bitconvert GPR:$R)))), (VDUP32d GPR:$R)>,
+ Requires<[HasNEON,HasFastVDUP32]>;
+def : Pat<(v4f32 (NEONvdup (f32 (bitconvert GPR:$R)))), (VDUP32q GPR:$R)>;
+
+// NEONvdup patterns for uarchs with slow VDUP.32 - use VMOVDRR instead.
+def : Pat<(v2i32 (NEONvdup (i32 GPR:$R))), (VMOVDRR GPR:$R, GPR:$R)>,
+ Requires<[HasNEON,HasSlowVDUP32]>;
+def : Pat<(v2f32 (NEONvdup (f32 (bitconvert GPR:$R)))), (VMOVDRR GPR:$R, GPR:$R)>,
+ Requires<[HasNEON,HasSlowVDUP32]>;
+
+// VDUP : Vector Duplicate Lane (from scalar to all elements)
+
+class VDUPLND<bits<4> op19_16, string OpcodeStr, string Dt,
+ ValueType Ty, Operand IdxTy>
+ : NVDupLane<op19_16, 0, (outs DPR:$Vd), (ins DPR:$Vm, IdxTy:$lane),
+ IIC_VMOVD, OpcodeStr, Dt, "$Vd, $Vm$lane",
+ [(set DPR:$Vd, (Ty (NEONvduplane (Ty DPR:$Vm), imm:$lane)))]>;
+
+class VDUPLNQ<bits<4> op19_16, string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, Operand IdxTy>
+ : NVDupLane<op19_16, 1, (outs QPR:$Vd), (ins DPR:$Vm, IdxTy:$lane),
+ IIC_VMOVQ, OpcodeStr, Dt, "$Vd, $Vm$lane",
+ [(set QPR:$Vd, (ResTy (NEONvduplane (OpTy DPR:$Vm),
+ VectorIndex32:$lane)))]>;
+
+// Inst{19-16} is partially specified depending on the element size.
+
+def VDUPLN8d : VDUPLND<{?,?,?,1}, "vdup", "8", v8i8, VectorIndex8> {
+ bits<3> lane;
+ let Inst{19-17} = lane{2-0};
+}
+def VDUPLN16d : VDUPLND<{?,?,1,0}, "vdup", "16", v4i16, VectorIndex16> {
+ bits<2> lane;
+ let Inst{19-18} = lane{1-0};
+}
+def VDUPLN32d : VDUPLND<{?,1,0,0}, "vdup", "32", v2i32, VectorIndex32> {
+ bits<1> lane;
+ let Inst{19} = lane{0};
+}
+def VDUPLN8q : VDUPLNQ<{?,?,?,1}, "vdup", "8", v16i8, v8i8, VectorIndex8> {
+ bits<3> lane;
+ let Inst{19-17} = lane{2-0};
+}
+def VDUPLN16q : VDUPLNQ<{?,?,1,0}, "vdup", "16", v8i16, v4i16, VectorIndex16> {
+ bits<2> lane;
+ let Inst{19-18} = lane{1-0};
+}
+def VDUPLN32q : VDUPLNQ<{?,1,0,0}, "vdup", "32", v4i32, v2i32, VectorIndex32> {
+ bits<1> lane;
+ let Inst{19} = lane{0};
+}
+
+def : Pat<(v2f32 (NEONvduplane (v2f32 DPR:$Vm), imm:$lane)),
+ (VDUPLN32d DPR:$Vm, imm:$lane)>;
+
+def : Pat<(v4f32 (NEONvduplane (v2f32 DPR:$Vm), imm:$lane)),
+ (VDUPLN32q DPR:$Vm, imm:$lane)>;
+
+def : Pat<(v16i8 (NEONvduplane (v16i8 QPR:$src), imm:$lane)),
+ (v16i8 (VDUPLN8q (v8i8 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i8_reg imm:$lane))),
+ (SubReg_i8_lane imm:$lane)))>;
+def : Pat<(v8i16 (NEONvduplane (v8i16 QPR:$src), imm:$lane)),
+ (v8i16 (VDUPLN16q (v4i16 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+def : Pat<(v4i32 (NEONvduplane (v4i32 QPR:$src), imm:$lane)),
+ (v4i32 (VDUPLN32q (v2i32 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+def : Pat<(v4f32 (NEONvduplane (v4f32 QPR:$src), imm:$lane)),
+ (v4f32 (VDUPLN32q (v2f32 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
+def : Pat<(v2f32 (NEONvdup (f32 SPR:$src))),
+ (v2f32 (VDUPLN32d (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)),
+ SPR:$src, ssub_0), (i32 0)))>;
+def : Pat<(v4f32 (NEONvdup (f32 SPR:$src))),
+ (v4f32 (VDUPLN32q (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)),
+ SPR:$src, ssub_0), (i32 0)))>;
+
+// VMOVN : Vector Narrowing Move
+defm VMOVN : N2VN_HSD<0b11,0b11,0b10,0b00100,0,0, IIC_VMOVN,
+ "vmovn", "i", trunc>;
+// VQMOVN : Vector Saturating Narrowing Move
+defm VQMOVNs : N2VNInt_HSD<0b11,0b11,0b10,0b00101,0,0, IIC_VQUNAiD,
+ "vqmovn", "s", int_arm_neon_vqmovns>;
+defm VQMOVNu : N2VNInt_HSD<0b11,0b11,0b10,0b00101,1,0, IIC_VQUNAiD,
+ "vqmovn", "u", int_arm_neon_vqmovnu>;
+defm VQMOVNsu : N2VNInt_HSD<0b11,0b11,0b10,0b00100,1,0, IIC_VQUNAiD,
+ "vqmovun", "s", int_arm_neon_vqmovnsu>;
+// VMOVL : Vector Lengthening Move
+defm VMOVLs : N2VL_QHS<0b01,0b10100,0,1, "vmovl", "s", sext>;
+defm VMOVLu : N2VL_QHS<0b11,0b10100,0,1, "vmovl", "u", zext>;
+def : Pat<(v8i16 (anyext (v8i8 DPR:$Vm))), (VMOVLuv8i16 DPR:$Vm)>;
+def : Pat<(v4i32 (anyext (v4i16 DPR:$Vm))), (VMOVLuv4i32 DPR:$Vm)>;
+def : Pat<(v2i64 (anyext (v2i32 DPR:$Vm))), (VMOVLuv2i64 DPR:$Vm)>;
+
+// Vector Conversions.
+
+// VCVT : Vector Convert Between Floating-Point and Integers
+def VCVTf2sd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
+ v2i32, v2f32, fp_to_sint>;
+def VCVTf2ud : N2VD<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
+ v2i32, v2f32, fp_to_uint>;
+def VCVTs2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
+ v2f32, v2i32, sint_to_fp>;
+def VCVTu2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
+ v2f32, v2i32, uint_to_fp>;
+
+def VCVTf2sq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
+ v4i32, v4f32, fp_to_sint>;
+def VCVTf2uq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
+ v4i32, v4f32, fp_to_uint>;
+def VCVTs2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
+ v4f32, v4i32, sint_to_fp>;
+def VCVTu2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
+ v4f32, v4i32, uint_to_fp>;
+
+// VCVT{A, N, P, M}
+multiclass VCVT_FPI<string op, bits<3> op10_8, SDPatternOperator IntS,
+ SDPatternOperator IntU> {
+ let PostEncoderMethod = "NEONThumb2V8PostEncoder", DecoderNamespace = "v8NEON" in {
+ def SD : N2VDIntnp<0b11, op10_8, 0, NoItinerary, !strconcat("vcvt", op),
+ "s32.f32", v2i32, v2f32, IntS>, Requires<[HasV8, HasNEON]>;
+ def SQ : N2VQIntnp<0b11, op10_8, 0, NoItinerary, !strconcat("vcvt", op),
+ "s32.f32", v4i32, v4f32, IntS>, Requires<[HasV8, HasNEON]>;
+ def UD : N2VDIntnp<0b11, op10_8, 1, NoItinerary, !strconcat("vcvt", op),
+ "u32.f32", v2i32, v2f32, IntU>, Requires<[HasV8, HasNEON]>;
+ def UQ : N2VQIntnp<0b11, op10_8, 1, NoItinerary, !strconcat("vcvt", op),
+ "u32.f32", v4i32, v4f32, IntU>, Requires<[HasV8, HasNEON]>;
+ }
+}
+
+defm VCVTAN : VCVT_FPI<"a", 0b000, int_arm_neon_vcvtas, int_arm_neon_vcvtau>;
+defm VCVTNN : VCVT_FPI<"n", 0b001, int_arm_neon_vcvtns, int_arm_neon_vcvtnu>;
+defm VCVTPN : VCVT_FPI<"p", 0b010, int_arm_neon_vcvtps, int_arm_neon_vcvtpu>;
+defm VCVTMN : VCVT_FPI<"m", 0b011, int_arm_neon_vcvtms, int_arm_neon_vcvtmu>;
+
+// VCVT : Vector Convert Between Floating-Point and Fixed-Point.
+let DecoderMethod = "DecodeVCVTD" in {
+def VCVTf2xsd : N2VCvtD<0, 1, 0b1111, 0, 1, "vcvt", "s32.f32",
+ v2i32, v2f32, int_arm_neon_vcvtfp2fxs>;
+def VCVTf2xud : N2VCvtD<1, 1, 0b1111, 0, 1, "vcvt", "u32.f32",
+ v2i32, v2f32, int_arm_neon_vcvtfp2fxu>;
+def VCVTxs2fd : N2VCvtD<0, 1, 0b1110, 0, 1, "vcvt", "f32.s32",
+ v2f32, v2i32, int_arm_neon_vcvtfxs2fp>;
+def VCVTxu2fd : N2VCvtD<1, 1, 0b1110, 0, 1, "vcvt", "f32.u32",
+ v2f32, v2i32, int_arm_neon_vcvtfxu2fp>;
+}
+
+let DecoderMethod = "DecodeVCVTQ" in {
+def VCVTf2xsq : N2VCvtQ<0, 1, 0b1111, 0, 1, "vcvt", "s32.f32",
+ v4i32, v4f32, int_arm_neon_vcvtfp2fxs>;
+def VCVTf2xuq : N2VCvtQ<1, 1, 0b1111, 0, 1, "vcvt", "u32.f32",
+ v4i32, v4f32, int_arm_neon_vcvtfp2fxu>;
+def VCVTxs2fq : N2VCvtQ<0, 1, 0b1110, 0, 1, "vcvt", "f32.s32",
+ v4f32, v4i32, int_arm_neon_vcvtfxs2fp>;
+def VCVTxu2fq : N2VCvtQ<1, 1, 0b1110, 0, 1, "vcvt", "f32.u32",
+ v4f32, v4i32, int_arm_neon_vcvtfxu2fp>;
+}
+
+def : NEONInstAlias<"vcvt${p}.s32.f32 $Dd, $Dm, #0",
+ (VCVTf2sd DPR:$Dd, DPR:$Dm, pred:$p)>;
+def : NEONInstAlias<"vcvt${p}.u32.f32 $Dd, $Dm, #0",
+ (VCVTf2ud DPR:$Dd, DPR:$Dm, pred:$p)>;
+def : NEONInstAlias<"vcvt${p}.f32.s32 $Dd, $Dm, #0",
+ (VCVTs2fd DPR:$Dd, DPR:$Dm, pred:$p)>;
+def : NEONInstAlias<"vcvt${p}.f32.u32 $Dd, $Dm, #0",
+ (VCVTu2fd DPR:$Dd, DPR:$Dm, pred:$p)>;
+
+def : NEONInstAlias<"vcvt${p}.s32.f32 $Qd, $Qm, #0",
+ (VCVTf2sq QPR:$Qd, QPR:$Qm, pred:$p)>;
+def : NEONInstAlias<"vcvt${p}.u32.f32 $Qd, $Qm, #0",
+ (VCVTf2uq QPR:$Qd, QPR:$Qm, pred:$p)>;
+def : NEONInstAlias<"vcvt${p}.f32.s32 $Qd, $Qm, #0",
+ (VCVTs2fq QPR:$Qd, QPR:$Qm, pred:$p)>;
+def : NEONInstAlias<"vcvt${p}.f32.u32 $Qd, $Qm, #0",
+ (VCVTu2fq QPR:$Qd, QPR:$Qm, pred:$p)>;
+
+
+// VCVT : Vector Convert Between Half-Precision and Single-Precision.
+def VCVTf2h : N2VNInt<0b11, 0b11, 0b01, 0b10, 0b01100, 0, 0,
+ IIC_VUNAQ, "vcvt", "f16.f32",
+ v4i16, v4f32, int_arm_neon_vcvtfp2hf>,
+ Requires<[HasNEON, HasFP16]>;
+def VCVTh2f : N2VLInt<0b11, 0b11, 0b01, 0b10, 0b01110, 0, 0,
+ IIC_VUNAQ, "vcvt", "f32.f16",
+ v4f32, v4i16, int_arm_neon_vcvthf2fp>,
+ Requires<[HasNEON, HasFP16]>;
+
+// Vector Reverse.
+
+// VREV64 : Vector Reverse elements within 64-bit doublewords
+
+class VREV64D<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00000, 0, 0, (outs DPR:$Vd),
+ (ins DPR:$Vm), IIC_VMOVD,
+ OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set DPR:$Vd, (Ty (NEONvrev64 (Ty DPR:$Vm))))]>;
+class VREV64Q<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00000, 1, 0, (outs QPR:$Vd),
+ (ins QPR:$Vm), IIC_VMOVQ,
+ OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set QPR:$Vd, (Ty (NEONvrev64 (Ty QPR:$Vm))))]>;
+
+def VREV64d8 : VREV64D<0b00, "vrev64", "8", v8i8>;
+def VREV64d16 : VREV64D<0b01, "vrev64", "16", v4i16>;
+def VREV64d32 : VREV64D<0b10, "vrev64", "32", v2i32>;
+def : Pat<(v2f32 (NEONvrev64 (v2f32 DPR:$Vm))), (VREV64d32 DPR:$Vm)>;
+
+def VREV64q8 : VREV64Q<0b00, "vrev64", "8", v16i8>;
+def VREV64q16 : VREV64Q<0b01, "vrev64", "16", v8i16>;
+def VREV64q32 : VREV64Q<0b10, "vrev64", "32", v4i32>;
+def : Pat<(v4f32 (NEONvrev64 (v4f32 QPR:$Vm))), (VREV64q32 QPR:$Vm)>;
+
+// VREV32 : Vector Reverse elements within 32-bit words
+
+class VREV32D<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00001, 0, 0, (outs DPR:$Vd),
+ (ins DPR:$Vm), IIC_VMOVD,
+ OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set DPR:$Vd, (Ty (NEONvrev32 (Ty DPR:$Vm))))]>;
+class VREV32Q<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00001, 1, 0, (outs QPR:$Vd),
+ (ins QPR:$Vm), IIC_VMOVQ,
+ OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set QPR:$Vd, (Ty (NEONvrev32 (Ty QPR:$Vm))))]>;
+
+def VREV32d8 : VREV32D<0b00, "vrev32", "8", v8i8>;
+def VREV32d16 : VREV32D<0b01, "vrev32", "16", v4i16>;
+
+def VREV32q8 : VREV32Q<0b00, "vrev32", "8", v16i8>;
+def VREV32q16 : VREV32Q<0b01, "vrev32", "16", v8i16>;
+
+// VREV16 : Vector Reverse elements within 16-bit halfwords
+
+class VREV16D<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00010, 0, 0, (outs DPR:$Vd),
+ (ins DPR:$Vm), IIC_VMOVD,
+ OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set DPR:$Vd, (Ty (NEONvrev16 (Ty DPR:$Vm))))]>;
+class VREV16Q<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00010, 1, 0, (outs QPR:$Vd),
+ (ins QPR:$Vm), IIC_VMOVQ,
+ OpcodeStr, Dt, "$Vd, $Vm", "",
+ [(set QPR:$Vd, (Ty (NEONvrev16 (Ty QPR:$Vm))))]>;
+
+def VREV16d8 : VREV16D<0b00, "vrev16", "8", v8i8>;
+def VREV16q8 : VREV16Q<0b00, "vrev16", "8", v16i8>;
+
+// Other Vector Shuffles.
+
+// Aligned extractions: really just dropping registers
+
+class AlignedVEXTq<ValueType DestTy, ValueType SrcTy, SDNodeXForm LaneCVT>
+ : Pat<(DestTy (vector_extract_subvec (SrcTy QPR:$src), (i32 imm:$start))),
+ (EXTRACT_SUBREG (SrcTy QPR:$src), (LaneCVT imm:$start))>;
+
+def : AlignedVEXTq<v8i8, v16i8, DSubReg_i8_reg>;
+
+def : AlignedVEXTq<v4i16, v8i16, DSubReg_i16_reg>;
+
+def : AlignedVEXTq<v2i32, v4i32, DSubReg_i32_reg>;
+
+def : AlignedVEXTq<v1i64, v2i64, DSubReg_f64_reg>;
+
+def : AlignedVEXTq<v2f32, v4f32, DSubReg_i32_reg>;
+
+
+// VEXT : Vector Extract
+
+
+// All of these have a two-operand InstAlias.
+let TwoOperandAliasConstraint = "$Vn = $Vd" in {
+class VEXTd<string OpcodeStr, string Dt, ValueType Ty, Operand immTy>
+ : N3V<0,1,0b11,{?,?,?,?},0,0, (outs DPR:$Vd),
+ (ins DPR:$Vn, DPR:$Vm, immTy:$index), NVExtFrm,
+ IIC_VEXTD, OpcodeStr, Dt, "$Vd, $Vn, $Vm, $index", "",
+ [(set DPR:$Vd, (Ty (NEONvext (Ty DPR:$Vn),
+ (Ty DPR:$Vm), imm:$index)))]> {
+ bits<3> index;
+ let Inst{11} = 0b0;
+ let Inst{10-8} = index{2-0};
+}
+
+class VEXTq<string OpcodeStr, string Dt, ValueType Ty, Operand immTy>
+ : N3V<0,1,0b11,{?,?,?,?},1,0, (outs QPR:$Vd),
+ (ins QPR:$Vn, QPR:$Vm, imm0_15:$index), NVExtFrm,
+ IIC_VEXTQ, OpcodeStr, Dt, "$Vd, $Vn, $Vm, $index", "",
+ [(set QPR:$Vd, (Ty (NEONvext (Ty QPR:$Vn),
+ (Ty QPR:$Vm), imm:$index)))]> {
+ bits<4> index;
+ let Inst{11-8} = index{3-0};
+}
+}
+
+def VEXTd8 : VEXTd<"vext", "8", v8i8, imm0_7> {
+ let Inst{10-8} = index{2-0};
+}
+def VEXTd16 : VEXTd<"vext", "16", v4i16, imm0_3> {
+ let Inst{10-9} = index{1-0};
+ let Inst{8} = 0b0;
+}
+def VEXTd32 : VEXTd<"vext", "32", v2i32, imm0_1> {
+ let Inst{10} = index{0};
+ let Inst{9-8} = 0b00;
+}
+def : Pat<(v2f32 (NEONvext (v2f32 DPR:$Vn),
+ (v2f32 DPR:$Vm),
+ (i32 imm:$index))),
+ (VEXTd32 DPR:$Vn, DPR:$Vm, imm:$index)>;
+
+def VEXTq8 : VEXTq<"vext", "8", v16i8, imm0_15> {
+ let Inst{11-8} = index{3-0};
+}
+def VEXTq16 : VEXTq<"vext", "16", v8i16, imm0_7> {
+ let Inst{11-9} = index{2-0};
+ let Inst{8} = 0b0;
+}
+def VEXTq32 : VEXTq<"vext", "32", v4i32, imm0_3> {
+ let Inst{11-10} = index{1-0};
+ let Inst{9-8} = 0b00;
+}
+def VEXTq64 : VEXTq<"vext", "64", v2i64, imm0_1> {
+ let Inst{11} = index{0};
+ let Inst{10-8} = 0b000;
+}
+def : Pat<(v4f32 (NEONvext (v4f32 QPR:$Vn),
+ (v4f32 QPR:$Vm),
+ (i32 imm:$index))),
+ (VEXTq32 QPR:$Vn, QPR:$Vm, imm:$index)>;
+
+// VTRN : Vector Transpose
+
+def VTRNd8 : N2VDShuffle<0b00, 0b00001, "vtrn", "8">;
+def VTRNd16 : N2VDShuffle<0b01, 0b00001, "vtrn", "16">;
+def VTRNd32 : N2VDShuffle<0b10, 0b00001, "vtrn", "32">;
+
+def VTRNq8 : N2VQShuffle<0b00, 0b00001, IIC_VPERMQ, "vtrn", "8">;
+def VTRNq16 : N2VQShuffle<0b01, 0b00001, IIC_VPERMQ, "vtrn", "16">;
+def VTRNq32 : N2VQShuffle<0b10, 0b00001, IIC_VPERMQ, "vtrn", "32">;
+
+// VUZP : Vector Unzip (Deinterleave)
+
+def VUZPd8 : N2VDShuffle<0b00, 0b00010, "vuzp", "8">;
+def VUZPd16 : N2VDShuffle<0b01, 0b00010, "vuzp", "16">;
+// vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
+def : NEONInstAlias<"vuzp${p}.32 $Dd, $Dm",
+ (VTRNd32 DPR:$Dd, DPR:$Dm, pred:$p)>;
+
+def VUZPq8 : N2VQShuffle<0b00, 0b00010, IIC_VPERMQ3, "vuzp", "8">;
+def VUZPq16 : N2VQShuffle<0b01, 0b00010, IIC_VPERMQ3, "vuzp", "16">;
+def VUZPq32 : N2VQShuffle<0b10, 0b00010, IIC_VPERMQ3, "vuzp", "32">;
+
+// VZIP : Vector Zip (Interleave)
+
+def VZIPd8 : N2VDShuffle<0b00, 0b00011, "vzip", "8">;
+def VZIPd16 : N2VDShuffle<0b01, 0b00011, "vzip", "16">;
+// vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
+def : NEONInstAlias<"vzip${p}.32 $Dd, $Dm",
+ (VTRNd32 DPR:$Dd, DPR:$Dm, pred:$p)>;
+
+def VZIPq8 : N2VQShuffle<0b00, 0b00011, IIC_VPERMQ3, "vzip", "8">;
+def VZIPq16 : N2VQShuffle<0b01, 0b00011, IIC_VPERMQ3, "vzip", "16">;
+def VZIPq32 : N2VQShuffle<0b10, 0b00011, IIC_VPERMQ3, "vzip", "32">;
+
+// Vector Table Lookup and Table Extension.
+
+// VTBL : Vector Table Lookup
+let DecoderMethod = "DecodeTBLInstruction" in {
+def VTBL1
+ : N3V<1,1,0b11,0b1000,0,0, (outs DPR:$Vd),
+ (ins VecListOneD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTB1,
+ "vtbl", "8", "$Vd, $Vn, $Vm", "",
+ [(set DPR:$Vd, (v8i8 (int_arm_neon_vtbl1 VecListOneD:$Vn, DPR:$Vm)))]>;
+let hasExtraSrcRegAllocReq = 1 in {
+def VTBL2
+ : N3V<1,1,0b11,0b1001,0,0, (outs DPR:$Vd),
+ (ins VecListDPair:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTB2,
+ "vtbl", "8", "$Vd, $Vn, $Vm", "", []>;
+def VTBL3
+ : N3V<1,1,0b11,0b1010,0,0, (outs DPR:$Vd),
+ (ins VecListThreeD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTB3,
+ "vtbl", "8", "$Vd, $Vn, $Vm", "", []>;
+def VTBL4
+ : N3V<1,1,0b11,0b1011,0,0, (outs DPR:$Vd),
+ (ins VecListFourD:$Vn, DPR:$Vm),
+ NVTBLFrm, IIC_VTB4,
+ "vtbl", "8", "$Vd, $Vn, $Vm", "", []>;
+} // hasExtraSrcRegAllocReq = 1
+
+def VTBL3Pseudo
+ : PseudoNeonI<(outs DPR:$dst), (ins QQPR:$tbl, DPR:$src), IIC_VTB3, "", []>;
+def VTBL4Pseudo
+ : PseudoNeonI<(outs DPR:$dst), (ins QQPR:$tbl, DPR:$src), IIC_VTB4, "", []>;
+
+// VTBX : Vector Table Extension
+def VTBX1
+ : N3V<1,1,0b11,0b1000,1,0, (outs DPR:$Vd),
+ (ins DPR:$orig, VecListOneD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTBX1,
+ "vtbx", "8", "$Vd, $Vn, $Vm", "$orig = $Vd",
+ [(set DPR:$Vd, (v8i8 (int_arm_neon_vtbx1
+ DPR:$orig, VecListOneD:$Vn, DPR:$Vm)))]>;
+let hasExtraSrcRegAllocReq = 1 in {
+def VTBX2
+ : N3V<1,1,0b11,0b1001,1,0, (outs DPR:$Vd),
+ (ins DPR:$orig, VecListDPair:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTBX2,
+ "vtbx", "8", "$Vd, $Vn, $Vm", "$orig = $Vd", []>;
+def VTBX3
+ : N3V<1,1,0b11,0b1010,1,0, (outs DPR:$Vd),
+ (ins DPR:$orig, VecListThreeD:$Vn, DPR:$Vm),
+ NVTBLFrm, IIC_VTBX3,
+ "vtbx", "8", "$Vd, $Vn, $Vm",
+ "$orig = $Vd", []>;
+def VTBX4
+ : N3V<1,1,0b11,0b1011,1,0, (outs DPR:$Vd),
+ (ins DPR:$orig, VecListFourD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTBX4,
+ "vtbx", "8", "$Vd, $Vn, $Vm",
+ "$orig = $Vd", []>;
+} // hasExtraSrcRegAllocReq = 1
+
+def VTBX3Pseudo
+ : PseudoNeonI<(outs DPR:$dst), (ins DPR:$orig, QQPR:$tbl, DPR:$src),
+ IIC_VTBX3, "$orig = $dst", []>;
+def VTBX4Pseudo
+ : PseudoNeonI<(outs DPR:$dst), (ins DPR:$orig, QQPR:$tbl, DPR:$src),
+ IIC_VTBX4, "$orig = $dst", []>;
+} // DecoderMethod = "DecodeTBLInstruction"
+
+// VRINT : Vector Rounding
+multiclass VRINT_FPI<string op, bits<3> op9_7, SDPatternOperator Int> {
+ let PostEncoderMethod = "NEONThumb2V8PostEncoder", DecoderNamespace = "v8NEON" in {
+ def D : N2VDIntnp<0b10, 0b100, 0, NoItinerary,
+ !strconcat("vrint", op), "f32",
+ v2f32, v2f32, Int>, Requires<[HasV8, HasNEON]> {
+ let Inst{9-7} = op9_7;
+ }
+ def Q : N2VQIntnp<0b10, 0b100, 0, NoItinerary,
+ !strconcat("vrint", op), "f32",
+ v4f32, v4f32, Int>, Requires<[HasV8, HasNEON]> {
+ let Inst{9-7} = op9_7;
+ }
+ }
+
+ def : NEONInstAlias<!strconcat("vrint", op, ".f32.f32\t$Dd, $Dm"),
+ (!cast<Instruction>(NAME#"D") DPR:$Dd, DPR:$Dm)>;
+ def : NEONInstAlias<!strconcat("vrint", op, ".f32.f32\t$Qd, $Qm"),
+ (!cast<Instruction>(NAME#"Q") QPR:$Qd, QPR:$Qm)>;
+}
+
+defm VRINTNN : VRINT_FPI<"n", 0b000, int_arm_neon_vrintn>;
+defm VRINTXN : VRINT_FPI<"x", 0b001, int_arm_neon_vrintx>;
+defm VRINTAN : VRINT_FPI<"a", 0b010, int_arm_neon_vrinta>;
+defm VRINTZN : VRINT_FPI<"z", 0b011, int_arm_neon_vrintz>;
+defm VRINTMN : VRINT_FPI<"m", 0b101, int_arm_neon_vrintm>;
+defm VRINTPN : VRINT_FPI<"p", 0b111, int_arm_neon_vrintp>;
+
+// Cryptography instructions
+let PostEncoderMethod = "NEONThumb2DataIPostEncoder",
+ DecoderNamespace = "v8Crypto", hasSideEffects = 0 in {
+ class AES<string op, bit op7, bit op6, SDPatternOperator Int>
+ : N2VQIntXnp<0b00, 0b00, 0b011, op6, op7, NoItinerary,
+ !strconcat("aes", op), "8", v16i8, v16i8, Int>,
+ Requires<[HasV8, HasCrypto]>;
+ class AES2Op<string op, bit op7, bit op6, SDPatternOperator Int>
+ : N2VQIntX2np<0b00, 0b00, 0b011, op6, op7, NoItinerary,
+ !strconcat("aes", op), "8", v16i8, v16i8, Int>,
+ Requires<[HasV8, HasCrypto]>;
+ class N2SHA<string op, bits<2> op17_16, bits<3> op10_8, bit op7, bit op6,
+ SDPatternOperator Int>
+ : N2VQIntXnp<0b10, op17_16, op10_8, op6, op7, NoItinerary,
+ !strconcat("sha", op), "32", v4i32, v4i32, Int>,
+ Requires<[HasV8, HasCrypto]>;
+ class N2SHA2Op<string op, bits<2> op17_16, bits<3> op10_8, bit op7, bit op6,
+ SDPatternOperator Int>
+ : N2VQIntX2np<0b10, op17_16, op10_8, op6, op7, NoItinerary,
+ !strconcat("sha", op), "32", v4i32, v4i32, Int>,
+ Requires<[HasV8, HasCrypto]>;
+ class N3SHA3Op<string op, bits<5> op27_23, bits<2> op21_20, SDPatternOperator Int>
+ : N3VQInt3np<op27_23, op21_20, 0b1100, 1, 0, N3RegFrm, NoItinerary,
+ !strconcat("sha", op), "32", v4i32, v4i32, Int, 0>,
+ Requires<[HasV8, HasCrypto]>;
+}
+
+def AESD : AES2Op<"d", 0, 1, int_arm_neon_aesd>;
+def AESE : AES2Op<"e", 0, 0, int_arm_neon_aese>;
+def AESIMC : AES<"imc", 1, 1, int_arm_neon_aesimc>;
+def AESMC : AES<"mc", 1, 0, int_arm_neon_aesmc>;
+
+def SHA1H : N2SHA<"1h", 0b01, 0b010, 1, 1, null_frag>;
+def SHA1SU1 : N2SHA2Op<"1su1", 0b10, 0b011, 1, 0, int_arm_neon_sha1su1>;
+def SHA256SU0 : N2SHA2Op<"256su0", 0b10, 0b011, 1, 1, int_arm_neon_sha256su0>;
+def SHA1C : N3SHA3Op<"1c", 0b00100, 0b00, null_frag>;
+def SHA1M : N3SHA3Op<"1m", 0b00100, 0b10, null_frag>;
+def SHA1P : N3SHA3Op<"1p", 0b00100, 0b01, null_frag>;
+def SHA1SU0 : N3SHA3Op<"1su0", 0b00100, 0b11, int_arm_neon_sha1su0>;
+def SHA256H : N3SHA3Op<"256h", 0b00110, 0b00, int_arm_neon_sha256h>;
+def SHA256H2 : N3SHA3Op<"256h2", 0b00110, 0b01, int_arm_neon_sha256h2>;
+def SHA256SU1 : N3SHA3Op<"256su1", 0b00110, 0b10, int_arm_neon_sha256su1>;
+
+def : Pat<(i32 (int_arm_neon_sha1h i32:$Rn)),
+ (COPY_TO_REGCLASS (f32 (EXTRACT_SUBREG
+ (SHA1H (SUBREG_TO_REG (i64 0),
+ (f32 (COPY_TO_REGCLASS i32:$Rn, SPR)),
+ ssub_0)),
+ ssub_0)), GPR)>;
+
+def : Pat<(v4i32 (int_arm_neon_sha1c v4i32:$hash_abcd, i32:$hash_e, v4i32:$wk)),
+ (SHA1C v4i32:$hash_abcd,
+ (SUBREG_TO_REG (i64 0),
+ (f32 (COPY_TO_REGCLASS i32:$hash_e, SPR)),
+ ssub_0),
+ v4i32:$wk)>;
+
+def : Pat<(v4i32 (int_arm_neon_sha1m v4i32:$hash_abcd, i32:$hash_e, v4i32:$wk)),
+ (SHA1M v4i32:$hash_abcd,
+ (SUBREG_TO_REG (i64 0),
+ (f32 (COPY_TO_REGCLASS i32:$hash_e, SPR)),
+ ssub_0),
+ v4i32:$wk)>;
+
+def : Pat<(v4i32 (int_arm_neon_sha1p v4i32:$hash_abcd, i32:$hash_e, v4i32:$wk)),
+ (SHA1P v4i32:$hash_abcd,
+ (SUBREG_TO_REG (i64 0),
+ (f32 (COPY_TO_REGCLASS i32:$hash_e, SPR)),
+ ssub_0),
+ v4i32:$wk)>;
+
+//===----------------------------------------------------------------------===//
+// NEON instructions for single-precision FP math
+//===----------------------------------------------------------------------===//
+
+class N2VSPat<SDNode OpNode, NeonI Inst>
+ : NEONFPPat<(f32 (OpNode SPR:$a)),
+ (EXTRACT_SUBREG
+ (v2f32 (COPY_TO_REGCLASS (Inst
+ (INSERT_SUBREG
+ (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
+ SPR:$a, ssub_0)), DPR_VFP2)), ssub_0)>;
+
+class N3VSPat<SDNode OpNode, NeonI Inst>
+ : NEONFPPat<(f32 (OpNode SPR:$a, SPR:$b)),
+ (EXTRACT_SUBREG
+ (v2f32 (COPY_TO_REGCLASS (Inst
+ (INSERT_SUBREG
+ (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
+ SPR:$a, ssub_0),
+ (INSERT_SUBREG
+ (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
+ SPR:$b, ssub_0)), DPR_VFP2)), ssub_0)>;
+
+class N3VSMulOpPat<SDNode MulNode, SDNode OpNode, NeonI Inst>
+ : NEONFPPat<(f32 (OpNode SPR:$acc, (f32 (MulNode SPR:$a, SPR:$b)))),
+ (EXTRACT_SUBREG
+ (v2f32 (COPY_TO_REGCLASS (Inst
+ (INSERT_SUBREG
+ (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
+ SPR:$acc, ssub_0),
+ (INSERT_SUBREG
+ (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
+ SPR:$a, ssub_0),
+ (INSERT_SUBREG
+ (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
+ SPR:$b, ssub_0)), DPR_VFP2)), ssub_0)>;
+
+def : N3VSPat<fadd, VADDfd>;
+def : N3VSPat<fsub, VSUBfd>;
+def : N3VSPat<fmul, VMULfd>;
+def : N3VSMulOpPat<fmul, fadd, VMLAfd>,
+ Requires<[HasNEON, UseNEONForFP, UseFPVMLx, DontUseFusedMAC]>;
+def : N3VSMulOpPat<fmul, fsub, VMLSfd>,
+ Requires<[HasNEON, UseNEONForFP, UseFPVMLx, DontUseFusedMAC]>;
+def : N3VSMulOpPat<fmul, fadd, VFMAfd>,
+ Requires<[HasVFP4, UseNEONForFP, UseFusedMAC]>;
+def : N3VSMulOpPat<fmul, fsub, VFMSfd>,
+ Requires<[HasVFP4, UseNEONForFP, UseFusedMAC]>;
+def : N2VSPat<fabs, VABSfd>;
+def : N2VSPat<fneg, VNEGfd>;
+def : N3VSPat<NEONfmax, VMAXfd>;
+def : N3VSPat<NEONfmin, VMINfd>;
+def : N2VSPat<arm_ftosi, VCVTf2sd>;
+def : N2VSPat<arm_ftoui, VCVTf2ud>;
+def : N2VSPat<arm_sitof, VCVTs2fd>;
+def : N2VSPat<arm_uitof, VCVTu2fd>;
+
+// Prefer VMOVDRR for i32 -> f32 bitcasts, it can write all DPR registers.
+def : Pat<(f32 (bitconvert GPR:$a)),
+ (EXTRACT_SUBREG (VMOVDRR GPR:$a, GPR:$a), ssub_0)>,
+ Requires<[HasNEON, DontUseVMOVSR]>;
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//===----------------------------------------------------------------------===//
+
+// bit_convert
+let Predicates = [IsLE] in {
+ def : Pat<(v1i64 (bitconvert (v2i32 DPR:$src))), (v1i64 DPR:$src)>;
+ def : Pat<(v1i64 (bitconvert (v4i16 DPR:$src))), (v1i64 DPR:$src)>;
+ def : Pat<(v1i64 (bitconvert (v8i8 DPR:$src))), (v1i64 DPR:$src)>;
+}
+def : Pat<(v1i64 (bitconvert (f64 DPR:$src))), (v1i64 DPR:$src)>;
+let Predicates = [IsLE] in {
+ def : Pat<(v1i64 (bitconvert (v2f32 DPR:$src))), (v1i64 DPR:$src)>;
+ def : Pat<(v2i32 (bitconvert (v1i64 DPR:$src))), (v2i32 DPR:$src)>;
+ def : Pat<(v2i32 (bitconvert (v4i16 DPR:$src))), (v2i32 DPR:$src)>;
+ def : Pat<(v2i32 (bitconvert (v8i8 DPR:$src))), (v2i32 DPR:$src)>;
+ def : Pat<(v2i32 (bitconvert (f64 DPR:$src))), (v2i32 DPR:$src)>;
+}
+def : Pat<(v2i32 (bitconvert (v2f32 DPR:$src))), (v2i32 DPR:$src)>;
+let Predicates = [IsLE] in {
+ def : Pat<(v4i16 (bitconvert (v1i64 DPR:$src))), (v4i16 DPR:$src)>;
+ def : Pat<(v4i16 (bitconvert (v2i32 DPR:$src))), (v4i16 DPR:$src)>;
+ def : Pat<(v4i16 (bitconvert (v8i8 DPR:$src))), (v4i16 DPR:$src)>;
+ def : Pat<(v4i16 (bitconvert (f64 DPR:$src))), (v4i16 DPR:$src)>;
+ def : Pat<(v4i16 (bitconvert (v2f32 DPR:$src))), (v4i16 DPR:$src)>;
+ def : Pat<(v8i8 (bitconvert (v1i64 DPR:$src))), (v8i8 DPR:$src)>;
+ def : Pat<(v8i8 (bitconvert (v2i32 DPR:$src))), (v8i8 DPR:$src)>;
+ def : Pat<(v8i8 (bitconvert (v4i16 DPR:$src))), (v8i8 DPR:$src)>;
+ def : Pat<(v8i8 (bitconvert (f64 DPR:$src))), (v8i8 DPR:$src)>;
+ def : Pat<(v8i8 (bitconvert (v2f32 DPR:$src))), (v8i8 DPR:$src)>;
+}
+def : Pat<(f64 (bitconvert (v1i64 DPR:$src))), (f64 DPR:$src)>;
+let Predicates = [IsLE] in {
+ def : Pat<(f64 (bitconvert (v2i32 DPR:$src))), (f64 DPR:$src)>;
+ def : Pat<(f64 (bitconvert (v4i16 DPR:$src))), (f64 DPR:$src)>;
+ def : Pat<(f64 (bitconvert (v8i8 DPR:$src))), (f64 DPR:$src)>;
+ def : Pat<(f64 (bitconvert (v2f32 DPR:$src))), (f64 DPR:$src)>;
+ def : Pat<(v2f32 (bitconvert (f64 DPR:$src))), (v2f32 DPR:$src)>;
+ def : Pat<(v2f32 (bitconvert (v1i64 DPR:$src))), (v2f32 DPR:$src)>;
+}
+def : Pat<(v2f32 (bitconvert (v2i32 DPR:$src))), (v2f32 DPR:$src)>;
+let Predicates = [IsLE] in {
+ def : Pat<(v2f32 (bitconvert (v4i16 DPR:$src))), (v2f32 DPR:$src)>;
+ def : Pat<(v2f32 (bitconvert (v8i8 DPR:$src))), (v2f32 DPR:$src)>;
+}
+
+let Predicates = [IsLE] in {
+ def : Pat<(v2i64 (bitconvert (v4i32 QPR:$src))), (v2i64 QPR:$src)>;
+ def : Pat<(v2i64 (bitconvert (v8i16 QPR:$src))), (v2i64 QPR:$src)>;
+ def : Pat<(v2i64 (bitconvert (v16i8 QPR:$src))), (v2i64 QPR:$src)>;
+}
+def : Pat<(v2i64 (bitconvert (v2f64 QPR:$src))), (v2i64 QPR:$src)>;
+let Predicates = [IsLE] in {
+ def : Pat<(v2i64 (bitconvert (v4f32 QPR:$src))), (v2i64 QPR:$src)>;
+ def : Pat<(v4i32 (bitconvert (v2i64 QPR:$src))), (v4i32 QPR:$src)>;
+ def : Pat<(v4i32 (bitconvert (v8i16 QPR:$src))), (v4i32 QPR:$src)>;
+ def : Pat<(v4i32 (bitconvert (v16i8 QPR:$src))), (v4i32 QPR:$src)>;
+ def : Pat<(v4i32 (bitconvert (v2f64 QPR:$src))), (v4i32 QPR:$src)>;
+}
+def : Pat<(v4i32 (bitconvert (v4f32 QPR:$src))), (v4i32 QPR:$src)>;
+let Predicates = [IsLE] in {
+ def : Pat<(v8i16 (bitconvert (v2i64 QPR:$src))), (v8i16 QPR:$src)>;
+ def : Pat<(v8i16 (bitconvert (v4i32 QPR:$src))), (v8i16 QPR:$src)>;
+ def : Pat<(v8i16 (bitconvert (v16i8 QPR:$src))), (v8i16 QPR:$src)>;
+ def : Pat<(v8i16 (bitconvert (v2f64 QPR:$src))), (v8i16 QPR:$src)>;
+ def : Pat<(v8i16 (bitconvert (v4f32 QPR:$src))), (v8i16 QPR:$src)>;
+ def : Pat<(v16i8 (bitconvert (v2i64 QPR:$src))), (v16i8 QPR:$src)>;
+ def : Pat<(v16i8 (bitconvert (v4i32 QPR:$src))), (v16i8 QPR:$src)>;
+ def : Pat<(v16i8 (bitconvert (v8i16 QPR:$src))), (v16i8 QPR:$src)>;
+ def : Pat<(v16i8 (bitconvert (v2f64 QPR:$src))), (v16i8 QPR:$src)>;
+ def : Pat<(v16i8 (bitconvert (v4f32 QPR:$src))), (v16i8 QPR:$src)>;
+ def : Pat<(v4f32 (bitconvert (v2i64 QPR:$src))), (v4f32 QPR:$src)>;
+}
+def : Pat<(v4f32 (bitconvert (v4i32 QPR:$src))), (v4f32 QPR:$src)>;
+let Predicates = [IsLE] in {
+ def : Pat<(v4f32 (bitconvert (v8i16 QPR:$src))), (v4f32 QPR:$src)>;
+ def : Pat<(v4f32 (bitconvert (v16i8 QPR:$src))), (v4f32 QPR:$src)>;
+ def : Pat<(v4f32 (bitconvert (v2f64 QPR:$src))), (v4f32 QPR:$src)>;
+}
+def : Pat<(v2f64 (bitconvert (v2i64 QPR:$src))), (v2f64 QPR:$src)>;
+let Predicates = [IsLE] in {
+ def : Pat<(v2f64 (bitconvert (v4i32 QPR:$src))), (v2f64 QPR:$src)>;
+ def : Pat<(v2f64 (bitconvert (v8i16 QPR:$src))), (v2f64 QPR:$src)>;
+ def : Pat<(v2f64 (bitconvert (v16i8 QPR:$src))), (v2f64 QPR:$src)>;
+ def : Pat<(v2f64 (bitconvert (v4f32 QPR:$src))), (v2f64 QPR:$src)>;
+}
+
+let Predicates = [IsBE] in {
+ // 64 bit conversions
+ def : Pat<(v1i64 (bitconvert (v2i32 DPR:$src))), (VREV64d32 DPR:$src)>;
+ def : Pat<(v1i64 (bitconvert (v4i16 DPR:$src))), (VREV64d16 DPR:$src)>;
+ def : Pat<(v1i64 (bitconvert (v8i8 DPR:$src))), (VREV64d8 DPR:$src)>;
+ def : Pat<(v1i64 (bitconvert (v2f32 DPR:$src))), (VREV64d32 DPR:$src)>;
+ def : Pat<(v2i32 (bitconvert (v1i64 DPR:$src))), (VREV64d32 DPR:$src)>;
+ def : Pat<(v2i32 (bitconvert (v4i16 DPR:$src))), (VREV32d16 DPR:$src)>;
+ def : Pat<(v2i32 (bitconvert (v8i8 DPR:$src))), (VREV32d8 DPR:$src)>;
+ def : Pat<(v2i32 (bitconvert (f64 DPR:$src))), (VREV64d32 DPR:$src)>;
+ def : Pat<(v4i16 (bitconvert (v1i64 DPR:$src))), (VREV64d16 DPR:$src)>;
+ def : Pat<(v4i16 (bitconvert (v2i32 DPR:$src))), (VREV32d16 DPR:$src)>;
+ def : Pat<(v4i16 (bitconvert (v8i8 DPR:$src))), (VREV16d8 DPR:$src)>;
+ def : Pat<(v4i16 (bitconvert (f64 DPR:$src))), (VREV64d16 DPR:$src)>;
+ def : Pat<(v4i16 (bitconvert (v2f32 DPR:$src))), (VREV32d16 DPR:$src)>;
+ def : Pat<(v8i8 (bitconvert (v1i64 DPR:$src))), (VREV64d8 DPR:$src)>;
+ def : Pat<(v8i8 (bitconvert (v2i32 DPR:$src))), (VREV32d8 DPR:$src)>;
+ def : Pat<(v8i8 (bitconvert (v4i16 DPR:$src))), (VREV16d8 DPR:$src)>;
+ def : Pat<(v8i8 (bitconvert (f64 DPR:$src))), (VREV64d8 DPR:$src)>;
+ def : Pat<(v8i8 (bitconvert (v2f32 DPR:$src))), (VREV32d8 DPR:$src)>;
+ def : Pat<(f64 (bitconvert (v2i32 DPR:$src))), (VREV64d32 DPR:$src)>;
+ def : Pat<(f64 (bitconvert (v4i16 DPR:$src))), (VREV64d16 DPR:$src)>;
+ def : Pat<(f64 (bitconvert (v8i8 DPR:$src))), (VREV64d8 DPR:$src)>;
+ def : Pat<(f64 (bitconvert (v2f32 DPR:$src))), (VREV64d32 DPR:$src)>;
+ def : Pat<(v2f32 (bitconvert (f64 DPR:$src))), (VREV64d32 DPR:$src)>;
+ def : Pat<(v2f32 (bitconvert (v1i64 DPR:$src))), (VREV64d32 DPR:$src)>;
+ def : Pat<(v2f32 (bitconvert (v4i16 DPR:$src))), (VREV32d16 DPR:$src)>;
+ def : Pat<(v2f32 (bitconvert (v8i8 DPR:$src))), (VREV32d8 DPR:$src)>;
+
+ // 128 bit conversions
+ def : Pat<(v2i64 (bitconvert (v4i32 QPR:$src))), (VREV64q32 QPR:$src)>;
+ def : Pat<(v2i64 (bitconvert (v8i16 QPR:$src))), (VREV64q16 QPR:$src)>;
+ def : Pat<(v2i64 (bitconvert (v16i8 QPR:$src))), (VREV64q8 QPR:$src)>;
+ def : Pat<(v2i64 (bitconvert (v4f32 QPR:$src))), (VREV64q32 QPR:$src)>;
+ def : Pat<(v4i32 (bitconvert (v2i64 QPR:$src))), (VREV64q32 QPR:$src)>;
+ def : Pat<(v4i32 (bitconvert (v8i16 QPR:$src))), (VREV32q16 QPR:$src)>;
+ def : Pat<(v4i32 (bitconvert (v16i8 QPR:$src))), (VREV32q8 QPR:$src)>;
+ def : Pat<(v4i32 (bitconvert (v2f64 QPR:$src))), (VREV64q32 QPR:$src)>;
+ def : Pat<(v8i16 (bitconvert (v2i64 QPR:$src))), (VREV64q16 QPR:$src)>;
+ def : Pat<(v8i16 (bitconvert (v4i32 QPR:$src))), (VREV32q16 QPR:$src)>;
+ def : Pat<(v8i16 (bitconvert (v16i8 QPR:$src))), (VREV16q8 QPR:$src)>;
+ def : Pat<(v8i16 (bitconvert (v2f64 QPR:$src))), (VREV64q16 QPR:$src)>;
+ def : Pat<(v8i16 (bitconvert (v4f32 QPR:$src))), (VREV32q16 QPR:$src)>;
+ def : Pat<(v16i8 (bitconvert (v2i64 QPR:$src))), (VREV64q8 QPR:$src)>;
+ def : Pat<(v16i8 (bitconvert (v4i32 QPR:$src))), (VREV32q8 QPR:$src)>;
+ def : Pat<(v16i8 (bitconvert (v8i16 QPR:$src))), (VREV16q8 QPR:$src)>;
+ def : Pat<(v16i8 (bitconvert (v2f64 QPR:$src))), (VREV64q8 QPR:$src)>;
+ def : Pat<(v16i8 (bitconvert (v4f32 QPR:$src))), (VREV32q8 QPR:$src)>;
+ def : Pat<(v4f32 (bitconvert (v2i64 QPR:$src))), (VREV64q32 QPR:$src)>;
+ def : Pat<(v4f32 (bitconvert (v8i16 QPR:$src))), (VREV32q16 QPR:$src)>;
+ def : Pat<(v4f32 (bitconvert (v16i8 QPR:$src))), (VREV32q8 QPR:$src)>;
+ def : Pat<(v4f32 (bitconvert (v2f64 QPR:$src))), (VREV64q32 QPR:$src)>;
+ def : Pat<(v2f64 (bitconvert (v4i32 QPR:$src))), (VREV64q32 QPR:$src)>;
+ def : Pat<(v2f64 (bitconvert (v8i16 QPR:$src))), (VREV64q16 QPR:$src)>;
+ def : Pat<(v2f64 (bitconvert (v16i8 QPR:$src))), (VREV64q8 QPR:$src)>;
+ def : Pat<(v2f64 (bitconvert (v4f32 QPR:$src))), (VREV64q32 QPR:$src)>;
+}
+
+// Fold extracting an element out of a v2i32 into a vfp register.
+def : Pat<(f32 (bitconvert (i32 (extractelt (v2i32 DPR:$src), imm:$lane)))),
+ (f32 (EXTRACT_SUBREG DPR:$src, (SSubReg_f32_reg imm:$lane)))>;
+
+// Vector lengthening move with load, matching extending loads.
+
+// extload, zextload and sextload for a standard lengthening load. Example:
+// Lengthen_Single<"8", "i16", "8"> =
+// Pat<(v8i16 (extloadvi8 addrmode6:$addr))
+// (VMOVLuv8i16 (VLD1d8 addrmode6:$addr,
+// (f64 (IMPLICIT_DEF)), (i32 0)))>;
+multiclass Lengthen_Single<string DestLanes, string DestTy, string SrcTy> {
+ let AddedComplexity = 10 in {
+ def _Any : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("extloadvi" # SrcTy) addrmode6:$addr)),
+ (!cast<Instruction>("VMOVLuv" # DestLanes # DestTy)
+ (!cast<Instruction>("VLD1d" # SrcTy) addrmode6:$addr))>;
+
+ def _Z : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("zextloadvi" # SrcTy) addrmode6:$addr)),
+ (!cast<Instruction>("VMOVLuv" # DestLanes # DestTy)
+ (!cast<Instruction>("VLD1d" # SrcTy) addrmode6:$addr))>;
+
+ def _S : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("sextloadvi" # SrcTy) addrmode6:$addr)),
+ (!cast<Instruction>("VMOVLsv" # DestLanes # DestTy)
+ (!cast<Instruction>("VLD1d" # SrcTy) addrmode6:$addr))>;
+ }
+}
+
+// extload, zextload and sextload for a lengthening load which only uses
+// half the lanes available. Example:
+// Lengthen_HalfSingle<"4", "i16", "8", "i16", "i8"> =
+// Pat<(v4i16 (extloadvi8 addrmode6oneL32:$addr)),
+// (EXTRACT_SUBREG (VMOVLuv8i16 (VLD1LNd32 addrmode6oneL32:$addr,
+// (f64 (IMPLICIT_DEF)), (i32 0))),
+// dsub_0)>;
+multiclass Lengthen_HalfSingle<string DestLanes, string DestTy, string SrcTy,
+ string InsnLanes, string InsnTy> {
+ def _Any : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("extloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # InsnLanes # InsnTy)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))),
+ dsub_0)>;
+ def _Z : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("zextloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # InsnLanes # InsnTy)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))),
+ dsub_0)>;
+ def _S : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("sextloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLsv" # InsnLanes # InsnTy)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))),
+ dsub_0)>;
+}
+
+// The following class definition is basically a copy of the
+// Lengthen_HalfSingle definition above, however with an additional parameter
+// "RevLanes" to select the correct VREV32dXX instruction. This is to convert
+// data loaded by VLD1LN into proper vector format in big endian mode.
+multiclass Lengthen_HalfSingle_Big_Endian<string DestLanes, string DestTy, string SrcTy,
+ string InsnLanes, string InsnTy, string RevLanes> {
+ def _Any : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("extloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # InsnLanes # InsnTy)
+ (!cast<Instruction>("VREV32d" # RevLanes)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))),
+ dsub_0)>;
+ def _Z : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("zextloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # InsnLanes # InsnTy)
+ (!cast<Instruction>("VREV32d" # RevLanes)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))),
+ dsub_0)>;
+ def _S : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("sextloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLsv" # InsnLanes # InsnTy)
+ (!cast<Instruction>("VREV32d" # RevLanes)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))),
+ dsub_0)>;
+}
+
+// extload, zextload and sextload for a lengthening load followed by another
+// lengthening load, to quadruple the initial length.
+//
+// Lengthen_Double<"4", "i32", "i8", "8", "i16", "4", "i32"> =
+// Pat<(v4i32 (extloadvi8 addrmode6oneL32:$addr))
+// (EXTRACT_SUBREG (VMOVLuv4i32
+// (EXTRACT_SUBREG (VMOVLuv8i16 (VLD1LNd32 addrmode6oneL32:$addr,
+// (f64 (IMPLICIT_DEF)),
+// (i32 0))),
+// dsub_0)),
+// dsub_0)>;
+multiclass Lengthen_Double<string DestLanes, string DestTy, string SrcTy,
+ string Insn1Lanes, string Insn1Ty, string Insn2Lanes,
+ string Insn2Ty> {
+ def _Any : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("extloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (!cast<Instruction>("VMOVLuv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn1Lanes # Insn1Ty)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))),
+ dsub_0))>;
+ def _Z : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("zextloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (!cast<Instruction>("VMOVLuv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn1Lanes # Insn1Ty)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))),
+ dsub_0))>;
+ def _S : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("sextloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (!cast<Instruction>("VMOVLsv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLsv" # Insn1Lanes # Insn1Ty)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))),
+ dsub_0))>;
+}
+
+// The following class definition is basically a copy of the
+// Lengthen_Double definition above, however with an additional parameter
+// "RevLanes" to select the correct VREV32dXX instruction. This is to convert
+// data loaded by VLD1LN into proper vector format in big endian mode.
+multiclass Lengthen_Double_Big_Endian<string DestLanes, string DestTy, string SrcTy,
+ string Insn1Lanes, string Insn1Ty, string Insn2Lanes,
+ string Insn2Ty, string RevLanes> {
+ def _Any : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("extloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (!cast<Instruction>("VMOVLuv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn1Lanes # Insn1Ty)
+ (!cast<Instruction>("VREV32d" # RevLanes)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))),
+ dsub_0))>;
+ def _Z : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("zextloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (!cast<Instruction>("VMOVLuv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn1Lanes # Insn1Ty)
+ (!cast<Instruction>("VREV32d" # RevLanes)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))),
+ dsub_0))>;
+ def _S : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("sextloadv" # SrcTy) addrmode6oneL32:$addr)),
+ (!cast<Instruction>("VMOVLsv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLsv" # Insn1Lanes # Insn1Ty)
+ (!cast<Instruction>("VREV32d" # RevLanes)
+ (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))),
+ dsub_0))>;
+}
+
+// extload, zextload and sextload for a lengthening load followed by another
+// lengthening load, to quadruple the initial length, but which ends up only
+// requiring half the available lanes (a 64-bit outcome instead of a 128-bit).
+//
+// Lengthen_HalfDouble<"2", "i32", "i8", "8", "i16", "4", "i32"> =
+// Pat<(v2i32 (extloadvi8 addrmode6:$addr))
+// (EXTRACT_SUBREG (VMOVLuv4i32
+// (EXTRACT_SUBREG (VMOVLuv8i16 (VLD1LNd16 addrmode6:$addr,
+// (f64 (IMPLICIT_DEF)), (i32 0))),
+// dsub_0)),
+// dsub_0)>;
+multiclass Lengthen_HalfDouble<string DestLanes, string DestTy, string SrcTy,
+ string Insn1Lanes, string Insn1Ty, string Insn2Lanes,
+ string Insn2Ty> {
+ def _Any : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("extloadv" # SrcTy) addrmode6:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn1Lanes # Insn1Ty)
+ (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0))),
+ dsub_0)),
+ dsub_0)>;
+ def _Z : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("zextloadv" # SrcTy) addrmode6:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn1Lanes # Insn1Ty)
+ (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0))),
+ dsub_0)),
+ dsub_0)>;
+ def _S : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("sextloadv" # SrcTy) addrmode6:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLsv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLsv" # Insn1Lanes # Insn1Ty)
+ (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0))),
+ dsub_0)),
+ dsub_0)>;
+}
+
+// The following class definition is basically a copy of the
+// Lengthen_HalfDouble definition above, however with an additional VREV16d8
+// instruction to convert data loaded by VLD1LN into proper vector format
+// in big endian mode.
+multiclass Lengthen_HalfDouble_Big_Endian<string DestLanes, string DestTy, string SrcTy,
+ string Insn1Lanes, string Insn1Ty, string Insn2Lanes,
+ string Insn2Ty> {
+ def _Any : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("extloadv" # SrcTy) addrmode6:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn1Lanes # Insn1Ty)
+ (!cast<Instruction>("VREV16d8")
+ (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))),
+ dsub_0)),
+ dsub_0)>;
+ def _Z : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("zextloadv" # SrcTy) addrmode6:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLuv" # Insn1Lanes # Insn1Ty)
+ (!cast<Instruction>("VREV16d8")
+ (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))),
+ dsub_0)),
+ dsub_0)>;
+ def _S : Pat<(!cast<ValueType>("v" # DestLanes # DestTy)
+ (!cast<PatFrag>("sextloadv" # SrcTy) addrmode6:$addr)),
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLsv" # Insn2Lanes # Insn2Ty)
+ (EXTRACT_SUBREG (!cast<Instruction>("VMOVLsv" # Insn1Lanes # Insn1Ty)
+ (!cast<Instruction>("VREV16d8")
+ (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))),
+ dsub_0)),
+ dsub_0)>;
+}
+
+defm : Lengthen_Single<"8", "i16", "8">; // v8i8 -> v8i16
+defm : Lengthen_Single<"4", "i32", "16">; // v4i16 -> v4i32
+defm : Lengthen_Single<"2", "i64", "32">; // v2i32 -> v2i64
+
+let Predicates = [IsLE] in {
+ defm : Lengthen_HalfSingle<"4", "i16", "i8", "8", "i16">; // v4i8 -> v4i16
+ defm : Lengthen_HalfSingle<"2", "i32", "i16", "4", "i32">; // v2i16 -> v2i32
+
+ // Double lengthening - v4i8 -> v4i16 -> v4i32
+ defm : Lengthen_Double<"4", "i32", "i8", "8", "i16", "4", "i32">;
+ // v2i8 -> v2i16 -> v2i32
+ defm : Lengthen_HalfDouble<"2", "i32", "i8", "8", "i16", "4", "i32">;
+ // v2i16 -> v2i32 -> v2i64
+ defm : Lengthen_Double<"2", "i64", "i16", "4", "i32", "2", "i64">;
+}
+
+let Predicates = [IsBE] in {
+ defm : Lengthen_HalfSingle_Big_Endian<"4", "i16", "i8", "8", "i16", "8">; // v4i8 -> v4i16
+ defm : Lengthen_HalfSingle_Big_Endian<"2", "i32", "i16", "4", "i32", "16">; // v2i16 -> v2i32
+
+ // Double lengthening - v4i8 -> v4i16 -> v4i32
+ defm : Lengthen_Double_Big_Endian<"4", "i32", "i8", "8", "i16", "4", "i32", "8">;
+ // v2i8 -> v2i16 -> v2i32
+ defm : Lengthen_HalfDouble_Big_Endian<"2", "i32", "i8", "8", "i16", "4", "i32">;
+ // v2i16 -> v2i32 -> v2i64
+ defm : Lengthen_Double_Big_Endian<"2", "i64", "i16", "4", "i32", "2", "i64", "16">;
+}
+
+// Triple lengthening - v2i8 -> v2i16 -> v2i32 -> v2i64
+let Predicates = [IsLE] in {
+ def : Pat<(v2i64 (extloadvi8 addrmode6:$addr)),
+ (VMOVLuv2i64 (EXTRACT_SUBREG (VMOVLuv4i32 (EXTRACT_SUBREG (VMOVLuv8i16
+ (VLD1LNd16 addrmode6:$addr,
+ (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)), dsub_0))>;
+ def : Pat<(v2i64 (zextloadvi8 addrmode6:$addr)),
+ (VMOVLuv2i64 (EXTRACT_SUBREG (VMOVLuv4i32 (EXTRACT_SUBREG (VMOVLuv8i16
+ (VLD1LNd16 addrmode6:$addr,
+ (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)), dsub_0))>;
+ def : Pat<(v2i64 (sextloadvi8 addrmode6:$addr)),
+ (VMOVLsv2i64 (EXTRACT_SUBREG (VMOVLsv4i32 (EXTRACT_SUBREG (VMOVLsv8i16
+ (VLD1LNd16 addrmode6:$addr,
+ (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)), dsub_0))>;
+}
+// The following patterns are basically a copy of the patterns above,
+// however with an additional VREV16d instruction to convert data
+// loaded by VLD1LN into proper vector format in big endian mode.
+let Predicates = [IsBE] in {
+ def : Pat<(v2i64 (extloadvi8 addrmode6:$addr)),
+ (VMOVLuv2i64 (EXTRACT_SUBREG (VMOVLuv4i32 (EXTRACT_SUBREG (VMOVLuv8i16
+ (!cast<Instruction>("VREV16d8")
+ (VLD1LNd16 addrmode6:$addr,
+ (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)), dsub_0))>;
+ def : Pat<(v2i64 (zextloadvi8 addrmode6:$addr)),
+ (VMOVLuv2i64 (EXTRACT_SUBREG (VMOVLuv4i32 (EXTRACT_SUBREG (VMOVLuv8i16
+ (!cast<Instruction>("VREV16d8")
+ (VLD1LNd16 addrmode6:$addr,
+ (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)), dsub_0))>;
+ def : Pat<(v2i64 (sextloadvi8 addrmode6:$addr)),
+ (VMOVLsv2i64 (EXTRACT_SUBREG (VMOVLsv4i32 (EXTRACT_SUBREG (VMOVLsv8i16
+ (!cast<Instruction>("VREV16d8")
+ (VLD1LNd16 addrmode6:$addr,
+ (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)), dsub_0))>;
+}
+
+//===----------------------------------------------------------------------===//
+// Assembler aliases
+//
+
+def : VFP2InstAlias<"fmdhr${p} $Dd, $Rn",
+ (VSETLNi32 DPR:$Dd, GPR:$Rn, 1, pred:$p)>;
+def : VFP2InstAlias<"fmdlr${p} $Dd, $Rn",
+ (VSETLNi32 DPR:$Dd, GPR:$Rn, 0, pred:$p)>;
+
+// VAND/VBIC/VEOR/VORR accept but do not require a type suffix.
+defm : NEONDTAnyInstAlias<"vand${p}", "$Vd, $Vn, $Vm",
+ (VANDd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vand${p}", "$Vd, $Vn, $Vm",
+ (VANDq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vbic${p}", "$Vd, $Vn, $Vm",
+ (VBICd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vbic${p}", "$Vd, $Vn, $Vm",
+ (VBICq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"veor${p}", "$Vd, $Vn, $Vm",
+ (VEORd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"veor${p}", "$Vd, $Vn, $Vm",
+ (VEORq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vorr${p}", "$Vd, $Vn, $Vm",
+ (VORRd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vorr${p}", "$Vd, $Vn, $Vm",
+ (VORRq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>;
+// ... two-operand aliases
+defm : NEONDTAnyInstAlias<"vand${p}", "$Vdn, $Vm",
+ (VANDd DPR:$Vdn, DPR:$Vdn, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vand${p}", "$Vdn, $Vm",
+ (VANDq QPR:$Vdn, QPR:$Vdn, QPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"veor${p}", "$Vdn, $Vm",
+ (VEORd DPR:$Vdn, DPR:$Vdn, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"veor${p}", "$Vdn, $Vm",
+ (VEORq QPR:$Vdn, QPR:$Vdn, QPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vorr${p}", "$Vdn, $Vm",
+ (VORRd DPR:$Vdn, DPR:$Vdn, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vorr${p}", "$Vdn, $Vm",
+ (VORRq QPR:$Vdn, QPR:$Vdn, QPR:$Vm, pred:$p)>;
+
+// VLD1 single-lane pseudo-instructions. These need special handling for
+// the lane index that an InstAlias can't handle, so we use these instead.
+def VLD1LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".8", "$list, $addr",
+ (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VLD1LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".16", "$list, $addr",
+ (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr,
+ pred:$p)>;
+def VLD1LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".32", "$list, $addr",
+ (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+
+def VLD1LNdWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld1${p}", ".8", "$list, $addr!",
+ (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VLD1LNdWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld1${p}", ".16", "$list, $addr!",
+ (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr,
+ pred:$p)>;
+def VLD1LNdWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld1${p}", ".32", "$list, $addr!",
+ (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VLD1LNdWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld1${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD1LNdWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld1${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD1LNdWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld1${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr,
+ rGPR:$Rm, pred:$p)>;
+
+
+// VST1 single-lane pseudo-instructions. These need special handling for
+// the lane index that an InstAlias can't handle, so we use these instead.
+def VST1LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".8", "$list, $addr",
+ (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VST1LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".16", "$list, $addr",
+ (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr,
+ pred:$p)>;
+def VST1LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".32", "$list, $addr",
+ (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+
+def VST1LNdWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst1${p}", ".8", "$list, $addr!",
+ (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VST1LNdWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst1${p}", ".16", "$list, $addr!",
+ (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr,
+ pred:$p)>;
+def VST1LNdWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst1${p}", ".32", "$list, $addr!",
+ (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VST1LNdWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst1${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST1LNdWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst1${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST1LNdWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst1${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr,
+ rGPR:$Rm, pred:$p)>;
+
+// VLD2 single-lane pseudo-instructions. These need special handling for
+// the lane index that an InstAlias can't handle, so we use these instead.
+def VLD2LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".8", "$list, $addr",
+ (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr,
+ pred:$p)>;
+def VLD2LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr",
+ (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VLD2LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr",
+ (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD2LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr",
+ (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VLD2LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr",
+ (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+
+def VLD2LNdWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld2${p}", ".8", "$list, $addr!",
+ (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr,
+ pred:$p)>;
+def VLD2LNdWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr!",
+ (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VLD2LNdWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr!",
+ (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VLD2LNqWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr!",
+ (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VLD2LNqWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr!",
+ (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VLD2LNdWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld2${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD2LNdWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD2LNdWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD2LNqWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD2LNqWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+
+
+// VST2 single-lane pseudo-instructions. These need special handling for
+// the lane index that an InstAlias can't handle, so we use these instead.
+def VST2LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".8", "$list, $addr",
+ (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr,
+ pred:$p)>;
+def VST2LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".16", "$list, $addr",
+ (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VST2LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr",
+ (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VST2LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".16", "$list, $addr",
+ (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VST2LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr",
+ (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+
+def VST2LNdWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst2${p}", ".8", "$list, $addr!",
+ (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr,
+ pred:$p)>;
+def VST2LNdWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst2${p}", ".16", "$list, $addr!",
+ (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VST2LNdWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr!",
+ (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VST2LNqWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst2${p}", ".16", "$list, $addr!",
+ (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VST2LNqWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr!",
+ (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VST2LNdWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst2${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST2LNdWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst2${p}", ".16","$list, $addr, $Rm",
+ (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST2LNdWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST2LNqWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst2${p}", ".16","$list, $addr, $Rm",
+ (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST2LNqWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+
+// VLD3 all-lanes pseudo-instructions. These need special handling for
+// the lane index that an InstAlias can't handle, so we use these instead.
+def VLD3DUPdAsm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr",
+ (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+def VLD3DUPdAsm_16: NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr",
+ (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+def VLD3DUPdAsm_32: NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr",
+ (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+def VLD3DUPqAsm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr",
+ (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+def VLD3DUPqAsm_16: NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr",
+ (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+def VLD3DUPqAsm_32: NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr",
+ (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+
+def VLD3DUPdWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr!",
+ (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+def VLD3DUPdWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!",
+ (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+def VLD3DUPdWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!",
+ (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+def VLD3DUPqWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr!",
+ (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+def VLD3DUPqWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!",
+ (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+def VLD3DUPqWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!",
+ (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr,
+ pred:$p)>;
+def VLD3DUPdWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3DUPdWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3DUPdWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3DUPqWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3DUPqWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3DUPqWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+
+
+// VLD3 single-lane pseudo-instructions. These need special handling for
+// the lane index that an InstAlias can't handle, so we use these instead.
+def VLD3LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr",
+ (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VLD3LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr",
+ (ins VecListThreeDHWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VLD3LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr",
+ (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VLD3LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr",
+ (ins VecListThreeQHWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VLD3LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr",
+ (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+
+def VLD3LNdWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr!",
+ (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VLD3LNdWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!",
+ (ins VecListThreeDHWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VLD3LNdWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!",
+ (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VLD3LNqWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!",
+ (ins VecListThreeQHWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VLD3LNqWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!",
+ (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VLD3LNdWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3LNdWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListThreeDHWordIndexed:$list,
+ addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>;
+def VLD3LNdWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3LNqWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListThreeQHWordIndexed:$list,
+ addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>;
+def VLD3LNqWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+
+// VLD3 multiple structure pseudo-instructions. These need special handling for
+// the vector operands that the normal instructions don't yet model.
+// FIXME: Remove these when the register classes and instructions are updated.
+def VLD3dAsm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD3dAsm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD3dAsm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD3qAsm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD3qAsm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD3qAsm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+
+def VLD3dWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr!",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD3dWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD3dWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD3qWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr!",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD3qWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD3qWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+def VLD3dWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListThreeD:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3dWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListThreeD:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3dWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListThreeD:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3qWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3qWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD3qWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+
+// VST3 single-lane pseudo-instructions. These need special handling for
+// the lane index that an InstAlias can't handle, so we use these instead.
+def VST3LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr",
+ (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VST3LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr",
+ (ins VecListThreeDHWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VST3LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr",
+ (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VST3LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr",
+ (ins VecListThreeQHWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VST3LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr",
+ (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+
+def VST3LNdWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr!",
+ (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VST3LNdWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr!",
+ (ins VecListThreeDHWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VST3LNdWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr!",
+ (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VST3LNqWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr!",
+ (ins VecListThreeQHWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VST3LNqWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr!",
+ (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr,
+ pred:$p)>;
+def VST3LNdWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST3LNdWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListThreeDHWordIndexed:$list,
+ addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>;
+def VST3LNdWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST3LNqWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListThreeQHWordIndexed:$list,
+ addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>;
+def VST3LNqWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr,
+ rGPR:$Rm, pred:$p)>;
+
+
+// VST3 multiple structure pseudo-instructions. These need special handling for
+// the vector operands that the normal instructions don't yet model.
+// FIXME: Remove these when the register classes and instructions are updated.
+def VST3dAsm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VST3dAsm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VST3dAsm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VST3qAsm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+def VST3qAsm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+def VST3qAsm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+
+def VST3dWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr!",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VST3dWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr!",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VST3dWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr!",
+ (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>;
+def VST3qWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr!",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+def VST3qWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr!",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+def VST3qWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr!",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>;
+def VST3dWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListThreeD:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST3dWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListThreeD:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST3dWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListThreeD:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST3qWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST3qWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST3qWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListThreeQ:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+
+// VLD4 all-lanes pseudo-instructions. These need special handling for
+// the lane index that an InstAlias can't handle, so we use these instead.
+def VLD4DUPdAsm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr",
+ (ins VecListFourDAllLanes:$list, addrmode6dupalign32:$addr,
+ pred:$p)>;
+def VLD4DUPdAsm_16: NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr",
+ (ins VecListFourDAllLanes:$list, addrmode6dupalign64:$addr,
+ pred:$p)>;
+def VLD4DUPdAsm_32: NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr",
+ (ins VecListFourDAllLanes:$list, addrmode6dupalign64or128:$addr,
+ pred:$p)>;
+def VLD4DUPqAsm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr",
+ (ins VecListFourQAllLanes:$list, addrmode6dupalign32:$addr,
+ pred:$p)>;
+def VLD4DUPqAsm_16: NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr",
+ (ins VecListFourQAllLanes:$list, addrmode6dupalign64:$addr,
+ pred:$p)>;
+def VLD4DUPqAsm_32: NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr",
+ (ins VecListFourQAllLanes:$list, addrmode6dupalign64or128:$addr,
+ pred:$p)>;
+
+def VLD4DUPdWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr!",
+ (ins VecListFourDAllLanes:$list, addrmode6dupalign32:$addr,
+ pred:$p)>;
+def VLD4DUPdWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!",
+ (ins VecListFourDAllLanes:$list, addrmode6dupalign64:$addr,
+ pred:$p)>;
+def VLD4DUPdWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!",
+ (ins VecListFourDAllLanes:$list, addrmode6dupalign64or128:$addr,
+ pred:$p)>;
+def VLD4DUPqWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr!",
+ (ins VecListFourQAllLanes:$list, addrmode6dupalign32:$addr,
+ pred:$p)>;
+def VLD4DUPqWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!",
+ (ins VecListFourQAllLanes:$list, addrmode6dupalign64:$addr,
+ pred:$p)>;
+def VLD4DUPqWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!",
+ (ins VecListFourQAllLanes:$list, addrmode6dupalign64or128:$addr,
+ pred:$p)>;
+def VLD4DUPdWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListFourDAllLanes:$list, addrmode6dupalign32:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4DUPdWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListFourDAllLanes:$list, addrmode6dupalign64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4DUPdWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListFourDAllLanes:$list,
+ addrmode6dupalign64or128:$addr, rGPR:$Rm, pred:$p)>;
+def VLD4DUPqWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListFourQAllLanes:$list, addrmode6dupalign32:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4DUPqWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListFourQAllLanes:$list, addrmode6dupalign64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4DUPqWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListFourQAllLanes:$list,
+ addrmode6dupalign64or128:$addr, rGPR:$Rm, pred:$p)>;
+
+
+// VLD4 single-lane pseudo-instructions. These need special handling for
+// the lane index that an InstAlias can't handle, so we use these instead.
+def VLD4LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr",
+ (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VLD4LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr",
+ (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VLD4LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr",
+ (ins VecListFourDWordIndexed:$list, addrmode6align64or128:$addr,
+ pred:$p)>;
+def VLD4LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr",
+ (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VLD4LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr",
+ (ins VecListFourQWordIndexed:$list, addrmode6align64or128:$addr,
+ pred:$p)>;
+
+def VLD4LNdWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr!",
+ (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VLD4LNdWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!",
+ (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VLD4LNdWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!",
+ (ins VecListFourDWordIndexed:$list, addrmode6align64or128:$addr,
+ pred:$p)>;
+def VLD4LNqWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!",
+ (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VLD4LNqWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!",
+ (ins VecListFourQWordIndexed:$list, addrmode6align64or128:$addr,
+ pred:$p)>;
+def VLD4LNdWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4LNdWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4LNdWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListFourDWordIndexed:$list,
+ addrmode6align64or128:$addr, rGPR:$Rm, pred:$p)>;
+def VLD4LNqWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4LNqWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListFourQWordIndexed:$list,
+ addrmode6align64or128:$addr, rGPR:$Rm, pred:$p)>;
+
+
+
+// VLD4 multiple structure pseudo-instructions. These need special handling for
+// the vector operands that the normal instructions don't yet model.
+// FIXME: Remove these when the register classes and instructions are updated.
+def VLD4dAsm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VLD4dAsm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VLD4dAsm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VLD4qAsm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VLD4qAsm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VLD4qAsm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+
+def VLD4dWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr!",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VLD4dWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VLD4dWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VLD4qWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr!",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VLD4qWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VLD4qWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VLD4dWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4dWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4dWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4qWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4qWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VLD4qWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+
+// VST4 single-lane pseudo-instructions. These need special handling for
+// the lane index that an InstAlias can't handle, so we use these instead.
+def VST4LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr",
+ (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VST4LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr",
+ (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VST4LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr",
+ (ins VecListFourDWordIndexed:$list, addrmode6align64or128:$addr,
+ pred:$p)>;
+def VST4LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr",
+ (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VST4LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr",
+ (ins VecListFourQWordIndexed:$list, addrmode6align64or128:$addr,
+ pred:$p)>;
+
+def VST4LNdWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr!",
+ (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr,
+ pred:$p)>;
+def VST4LNdWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr!",
+ (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VST4LNdWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr!",
+ (ins VecListFourDWordIndexed:$list, addrmode6align64or128:$addr,
+ pred:$p)>;
+def VST4LNqWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr!",
+ (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr,
+ pred:$p)>;
+def VST4LNqWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr!",
+ (ins VecListFourQWordIndexed:$list, addrmode6align64or128:$addr,
+ pred:$p)>;
+def VST4LNdWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST4LNdWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST4LNdWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListFourDWordIndexed:$list,
+ addrmode6align64or128:$addr, rGPR:$Rm, pred:$p)>;
+def VST4LNqWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST4LNqWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListFourQWordIndexed:$list,
+ addrmode6align64or128:$addr, rGPR:$Rm, pred:$p)>;
+
+
+// VST4 multiple structure pseudo-instructions. These need special handling for
+// the vector operands that the normal instructions don't yet model.
+// FIXME: Remove these when the register classes and instructions are updated.
+def VST4dAsm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VST4dAsm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VST4dAsm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VST4qAsm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VST4qAsm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VST4qAsm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+
+def VST4dWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr!",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VST4dWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr!",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VST4dWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr!",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VST4qWB_fixed_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr!",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VST4qWB_fixed_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr!",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VST4qWB_fixed_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr!",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ pred:$p)>;
+def VST4dWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST4dWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST4dWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListFourD:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST4qWB_register_Asm_8 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr, $Rm",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST4qWB_register_Asm_16 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr, $Rm",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+def VST4qWB_register_Asm_32 :
+ NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr, $Rm",
+ (ins VecListFourQ:$list, addrmode6align64or128or256:$addr,
+ rGPR:$Rm, pred:$p)>;
+
+// VMOV/VMVN takes an optional datatype suffix
+defm : NEONDTAnyInstAlias<"vmov${p}", "$Vd, $Vm",
+ (VORRd DPR:$Vd, DPR:$Vm, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vmov${p}", "$Vd, $Vm",
+ (VORRq QPR:$Vd, QPR:$Vm, QPR:$Vm, pred:$p)>;
+
+defm : NEONDTAnyInstAlias<"vmvn${p}", "$Vd, $Vm",
+ (VMVNd DPR:$Vd, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vmvn${p}", "$Vd, $Vm",
+ (VMVNq QPR:$Vd, QPR:$Vm, pred:$p)>;
+
+// VCLT (register) is an assembler alias for VCGT w/ the operands reversed.
+// D-register versions.
+def : NEONInstAlias<"vcle${p}.s8 $Dd, $Dn, $Dm",
+ (VCGEsv8i8 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.s16 $Dd, $Dn, $Dm",
+ (VCGEsv4i16 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.s32 $Dd, $Dn, $Dm",
+ (VCGEsv2i32 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.u8 $Dd, $Dn, $Dm",
+ (VCGEuv8i8 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.u16 $Dd, $Dn, $Dm",
+ (VCGEuv4i16 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.u32 $Dd, $Dn, $Dm",
+ (VCGEuv2i32 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.f32 $Dd, $Dn, $Dm",
+ (VCGEfd DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+// Q-register versions.
+def : NEONInstAlias<"vcle${p}.s8 $Qd, $Qn, $Qm",
+ (VCGEsv16i8 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.s16 $Qd, $Qn, $Qm",
+ (VCGEsv8i16 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.s32 $Qd, $Qn, $Qm",
+ (VCGEsv4i32 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.u8 $Qd, $Qn, $Qm",
+ (VCGEuv16i8 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.u16 $Qd, $Qn, $Qm",
+ (VCGEuv8i16 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.u32 $Qd, $Qn, $Qm",
+ (VCGEuv4i32 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vcle${p}.f32 $Qd, $Qn, $Qm",
+ (VCGEfq QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+
+// VCLT (register) is an assembler alias for VCGT w/ the operands reversed.
+// D-register versions.
+def : NEONInstAlias<"vclt${p}.s8 $Dd, $Dn, $Dm",
+ (VCGTsv8i8 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.s16 $Dd, $Dn, $Dm",
+ (VCGTsv4i16 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.s32 $Dd, $Dn, $Dm",
+ (VCGTsv2i32 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.u8 $Dd, $Dn, $Dm",
+ (VCGTuv8i8 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.u16 $Dd, $Dn, $Dm",
+ (VCGTuv4i16 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.u32 $Dd, $Dn, $Dm",
+ (VCGTuv2i32 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.f32 $Dd, $Dn, $Dm",
+ (VCGTfd DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>;
+// Q-register versions.
+def : NEONInstAlias<"vclt${p}.s8 $Qd, $Qn, $Qm",
+ (VCGTsv16i8 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.s16 $Qd, $Qn, $Qm",
+ (VCGTsv8i16 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.s32 $Qd, $Qn, $Qm",
+ (VCGTsv4i32 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.u8 $Qd, $Qn, $Qm",
+ (VCGTuv16i8 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.u16 $Qd, $Qn, $Qm",
+ (VCGTuv8i16 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.u32 $Qd, $Qn, $Qm",
+ (VCGTuv4i32 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+def : NEONInstAlias<"vclt${p}.f32 $Qd, $Qn, $Qm",
+ (VCGTfq QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>;
+
+// VSWP allows, but does not require, a type suffix.
+defm : NEONDTAnyInstAlias<"vswp${p}", "$Vd, $Vm",
+ (VSWPd DPR:$Vd, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vswp${p}", "$Vd, $Vm",
+ (VSWPq QPR:$Vd, QPR:$Vm, pred:$p)>;
+
+// VBIF, VBIT, and VBSL allow, but do not require, a type suffix.
+defm : NEONDTAnyInstAlias<"vbif${p}", "$Vd, $Vn, $Vm",
+ (VBIFd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vbit${p}", "$Vd, $Vn, $Vm",
+ (VBITd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vbsl${p}", "$Vd, $Vn, $Vm",
+ (VBSLd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vbif${p}", "$Vd, $Vn, $Vm",
+ (VBIFq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vbit${p}", "$Vd, $Vn, $Vm",
+ (VBITq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>;
+defm : NEONDTAnyInstAlias<"vbsl${p}", "$Vd, $Vn, $Vm",
+ (VBSLq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>;
+
+// "vmov Rd, #-imm" can be handled via "vmvn".
+def : NEONInstAlias<"vmov${p}.i32 $Vd, $imm",
+ (VMVNv2i32 DPR:$Vd, nImmVMOVI32Neg:$imm, pred:$p)>;
+def : NEONInstAlias<"vmov${p}.i32 $Vd, $imm",
+ (VMVNv4i32 QPR:$Vd, nImmVMOVI32Neg:$imm, pred:$p)>;
+def : NEONInstAlias<"vmvn${p}.i32 $Vd, $imm",
+ (VMOVv2i32 DPR:$Vd, nImmVMOVI32Neg:$imm, pred:$p)>;
+def : NEONInstAlias<"vmvn${p}.i32 $Vd, $imm",
+ (VMOVv4i32 QPR:$Vd, nImmVMOVI32Neg:$imm, pred:$p)>;
+
+// 'gas' compatibility aliases for quad-word instructions. Strictly speaking,
+// these should restrict to just the Q register variants, but the register
+// classes are enough to match correctly regardless, so we keep it simple
+// and just use MnemonicAlias.
+def : NEONMnemonicAlias<"vbicq", "vbic">;
+def : NEONMnemonicAlias<"vandq", "vand">;
+def : NEONMnemonicAlias<"veorq", "veor">;
+def : NEONMnemonicAlias<"vorrq", "vorr">;
+
+def : NEONMnemonicAlias<"vmovq", "vmov">;
+def : NEONMnemonicAlias<"vmvnq", "vmvn">;
+// Explicit versions for floating point so that the FPImm variants get
+// handled early. The parser gets confused otherwise.
+def : NEONMnemonicAlias<"vmovq.f32", "vmov.f32">;
+def : NEONMnemonicAlias<"vmovq.f64", "vmov.f64">;
+
+def : NEONMnemonicAlias<"vaddq", "vadd">;
+def : NEONMnemonicAlias<"vsubq", "vsub">;
+
+def : NEONMnemonicAlias<"vminq", "vmin">;
+def : NEONMnemonicAlias<"vmaxq", "vmax">;
+
+def : NEONMnemonicAlias<"vmulq", "vmul">;
+
+def : NEONMnemonicAlias<"vabsq", "vabs">;
+
+def : NEONMnemonicAlias<"vshlq", "vshl">;
+def : NEONMnemonicAlias<"vshrq", "vshr">;
+
+def : NEONMnemonicAlias<"vcvtq", "vcvt">;
+
+def : NEONMnemonicAlias<"vcleq", "vcle">;
+def : NEONMnemonicAlias<"vceqq", "vceq">;
+
+def : NEONMnemonicAlias<"vzipq", "vzip">;
+def : NEONMnemonicAlias<"vswpq", "vswp">;
+
+def : NEONMnemonicAlias<"vrecpeq.f32", "vrecpe.f32">;
+def : NEONMnemonicAlias<"vrecpeq.u32", "vrecpe.u32">;
+
+
+// Alias for loading floating point immediates that aren't representable
+// using the vmov.f32 encoding but the bitpattern is representable using
+// the .i32 encoding.
+def : NEONInstAlias<"vmov${p}.f32 $Vd, $imm",
+ (VMOVv4i32 QPR:$Vd, nImmVMOVI32:$imm, pred:$p)>;
+def : NEONInstAlias<"vmov${p}.f32 $Vd, $imm",
+ (VMOVv2i32 DPR:$Vd, nImmVMOVI32:$imm, pred:$p)>;
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrThumb.td b/contrib/llvm/lib/Target/ARM/ARMInstrThumb.td
new file mode 100644
index 0000000..e17f73af
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrThumb.td
@@ -0,0 +1,1486 @@
+//===-- ARMInstrThumb.td - Thumb support for ARM -----------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Thumb instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Thumb specific DAG Nodes.
+//
+
+def ARMtcall : SDNode<"ARMISD::tCALL", SDT_ARMcall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+
+def imm_sr_XFORM: SDNodeXForm<imm, [{
+ unsigned Imm = N->getZExtValue();
+ return CurDAG->getTargetConstant((Imm == 32 ? 0 : Imm), MVT::i32);
+}]>;
+def ThumbSRImmAsmOperand: AsmOperandClass { let Name = "ImmThumbSR"; }
+def imm_sr : Operand<i32>, PatLeaf<(imm), [{
+ uint64_t Imm = N->getZExtValue();
+ return Imm > 0 && Imm <= 32;
+}], imm_sr_XFORM> {
+ let PrintMethod = "printThumbSRImm";
+ let ParserMatchClass = ThumbSRImmAsmOperand;
+}
+
+def imm_comp_XFORM : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32);
+}]>;
+
+def imm0_7_neg : PatLeaf<(i32 imm), [{
+ return (uint32_t)-N->getZExtValue() < 8;
+}], imm_neg_XFORM>;
+
+def imm0_255_comp : PatLeaf<(i32 imm), [{
+ return ~((uint32_t)N->getZExtValue()) < 256;
+}]>;
+
+def imm8_255 : ImmLeaf<i32, [{
+ return Imm >= 8 && Imm < 256;
+}]>;
+def imm8_255_neg : PatLeaf<(i32 imm), [{
+ unsigned Val = -N->getZExtValue();
+ return Val >= 8 && Val < 256;
+}], imm_neg_XFORM>;
+
+// Break imm's up into two pieces: an immediate + a left shift. This uses
+// thumb_immshifted to match and thumb_immshifted_val and thumb_immshifted_shamt
+// to get the val/shift pieces.
+def thumb_immshifted : PatLeaf<(imm), [{
+ return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue());
+}]>;
+
+def thumb_immshifted_val : SDNodeXForm<imm, [{
+ unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue());
+ return CurDAG->getTargetConstant(V, MVT::i32);
+}]>;
+
+def thumb_immshifted_shamt : SDNodeXForm<imm, [{
+ unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue());
+ return CurDAG->getTargetConstant(V, MVT::i32);
+}]>;
+
+// Scaled 4 immediate.
+def t_imm0_1020s4_asmoperand: AsmOperandClass { let Name = "Imm0_1020s4"; }
+def t_imm0_1020s4 : Operand<i32> {
+ let PrintMethod = "printThumbS4ImmOperand";
+ let ParserMatchClass = t_imm0_1020s4_asmoperand;
+ let OperandType = "OPERAND_IMMEDIATE";
+}
+
+def t_imm0_508s4_asmoperand: AsmOperandClass { let Name = "Imm0_508s4"; }
+def t_imm0_508s4 : Operand<i32> {
+ let PrintMethod = "printThumbS4ImmOperand";
+ let ParserMatchClass = t_imm0_508s4_asmoperand;
+ let OperandType = "OPERAND_IMMEDIATE";
+}
+// Alias use only, so no printer is necessary.
+def t_imm0_508s4_neg_asmoperand: AsmOperandClass { let Name = "Imm0_508s4Neg"; }
+def t_imm0_508s4_neg : Operand<i32> {
+ let ParserMatchClass = t_imm0_508s4_neg_asmoperand;
+ let OperandType = "OPERAND_IMMEDIATE";
+}
+
+// Define Thumb specific addressing modes.
+
+// unsigned 8-bit, 2-scaled memory offset
+class OperandUnsignedOffset_b8s2 : AsmOperandClass {
+ let Name = "UnsignedOffset_b8s2";
+ let PredicateMethod = "isUnsignedOffset<8, 2>";
+}
+
+def UnsignedOffset_b8s2 : OperandUnsignedOffset_b8s2;
+
+// thumb style PC relative operand. signed, 8 bits magnitude,
+// two bits shift. can be represented as either [pc, #imm], #imm,
+// or relocatable expression...
+def ThumbMemPC : AsmOperandClass {
+ let Name = "ThumbMemPC";
+}
+
+let OperandType = "OPERAND_PCREL" in {
+def t_brtarget : Operand<OtherVT> {
+ let EncoderMethod = "getThumbBRTargetOpValue";
+ let DecoderMethod = "DecodeThumbBROperand";
+}
+
+// ADR instruction labels.
+def t_adrlabel : Operand<i32> {
+ let EncoderMethod = "getThumbAdrLabelOpValue";
+ let PrintMethod = "printAdrLabelOperand<2>";
+ let ParserMatchClass = UnsignedOffset_b8s2;
+}
+
+def t_bcctarget : Operand<i32> {
+ let EncoderMethod = "getThumbBCCTargetOpValue";
+ let DecoderMethod = "DecodeThumbBCCTargetOperand";
+}
+
+def t_cbtarget : Operand<i32> {
+ let EncoderMethod = "getThumbCBTargetOpValue";
+ let DecoderMethod = "DecodeThumbCmpBROperand";
+}
+
+def t_bltarget : Operand<i32> {
+ let EncoderMethod = "getThumbBLTargetOpValue";
+ let DecoderMethod = "DecodeThumbBLTargetOperand";
+}
+
+def t_blxtarget : Operand<i32> {
+ let EncoderMethod = "getThumbBLXTargetOpValue";
+ let DecoderMethod = "DecodeThumbBLXOffset";
+}
+
+// t_addrmode_pc := <label> => pc + imm8 * 4
+//
+def t_addrmode_pc : Operand<i32> {
+ let EncoderMethod = "getAddrModePCOpValue";
+ let DecoderMethod = "DecodeThumbAddrModePC";
+ let PrintMethod = "printThumbLdrLabelOperand";
+ let ParserMatchClass = ThumbMemPC;
+}
+}
+
+// t_addrmode_rr := reg + reg
+//
+def t_addrmode_rr_asm_operand : AsmOperandClass { let Name = "MemThumbRR"; }
+def t_addrmode_rr : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> {
+ let EncoderMethod = "getThumbAddrModeRegRegOpValue";
+ let PrintMethod = "printThumbAddrModeRROperand";
+ let DecoderMethod = "DecodeThumbAddrModeRR";
+ let ParserMatchClass = t_addrmode_rr_asm_operand;
+ let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
+}
+
+// t_addrmode_rrs := reg + reg
+//
+// We use separate scaled versions because the Select* functions need
+// to explicitly check for a matching constant and return false here so that
+// the reg+imm forms will match instead. This is a horrible way to do that,
+// as it forces tight coupling between the methods, but it's how selectiondag
+// currently works.
+def t_addrmode_rrs1 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S1", []> {
+ let EncoderMethod = "getThumbAddrModeRegRegOpValue";
+ let PrintMethod = "printThumbAddrModeRROperand";
+ let DecoderMethod = "DecodeThumbAddrModeRR";
+ let ParserMatchClass = t_addrmode_rr_asm_operand;
+ let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
+}
+def t_addrmode_rrs2 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S2", []> {
+ let EncoderMethod = "getThumbAddrModeRegRegOpValue";
+ let DecoderMethod = "DecodeThumbAddrModeRR";
+ let PrintMethod = "printThumbAddrModeRROperand";
+ let ParserMatchClass = t_addrmode_rr_asm_operand;
+ let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
+}
+def t_addrmode_rrs4 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S4", []> {
+ let EncoderMethod = "getThumbAddrModeRegRegOpValue";
+ let DecoderMethod = "DecodeThumbAddrModeRR";
+ let PrintMethod = "printThumbAddrModeRROperand";
+ let ParserMatchClass = t_addrmode_rr_asm_operand;
+ let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
+}
+
+// t_addrmode_is4 := reg + imm5 * 4
+//
+def t_addrmode_is4_asm_operand : AsmOperandClass { let Name = "MemThumbRIs4"; }
+def t_addrmode_is4 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S4", []> {
+ let EncoderMethod = "getAddrModeISOpValue";
+ let DecoderMethod = "DecodeThumbAddrModeIS";
+ let PrintMethod = "printThumbAddrModeImm5S4Operand";
+ let ParserMatchClass = t_addrmode_is4_asm_operand;
+ let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
+}
+
+// t_addrmode_is2 := reg + imm5 * 2
+//
+def t_addrmode_is2_asm_operand : AsmOperandClass { let Name = "MemThumbRIs2"; }
+def t_addrmode_is2 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S2", []> {
+ let EncoderMethod = "getAddrModeISOpValue";
+ let DecoderMethod = "DecodeThumbAddrModeIS";
+ let PrintMethod = "printThumbAddrModeImm5S2Operand";
+ let ParserMatchClass = t_addrmode_is2_asm_operand;
+ let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
+}
+
+// t_addrmode_is1 := reg + imm5
+//
+def t_addrmode_is1_asm_operand : AsmOperandClass { let Name = "MemThumbRIs1"; }
+def t_addrmode_is1 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S1", []> {
+ let EncoderMethod = "getAddrModeISOpValue";
+ let DecoderMethod = "DecodeThumbAddrModeIS";
+ let PrintMethod = "printThumbAddrModeImm5S1Operand";
+ let ParserMatchClass = t_addrmode_is1_asm_operand;
+ let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
+}
+
+// t_addrmode_sp := sp + imm8 * 4
+//
+// FIXME: This really shouldn't have an explicit SP operand at all. It should
+// be implicit, just like in the instruction encoding itself.
+def t_addrmode_sp_asm_operand : AsmOperandClass { let Name = "MemThumbSPI"; }
+def t_addrmode_sp : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> {
+ let EncoderMethod = "getAddrModeThumbSPOpValue";
+ let DecoderMethod = "DecodeThumbAddrModeSP";
+ let PrintMethod = "printThumbAddrModeSPOperand";
+ let ParserMatchClass = t_addrmode_sp_asm_operand;
+ let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
+}
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instructions.
+//
+
+// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
+// from removing one half of the matched pairs. That breaks PEI, which assumes
+// these will always be in pairs, and asserts if it finds otherwise. Better way?
+let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
+def tADJCALLSTACKUP :
+ PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary,
+ [(ARMcallseq_end imm:$amt1, imm:$amt2)]>,
+ Requires<[IsThumb, IsThumb1Only]>;
+
+def tADJCALLSTACKDOWN :
+ PseudoInst<(outs), (ins i32imm:$amt), NoItinerary,
+ [(ARMcallseq_start imm:$amt)]>,
+ Requires<[IsThumb, IsThumb1Only]>;
+}
+
+class T1SystemEncoding<bits<8> opc>
+ : T1Encoding<0b101111> {
+ let Inst{9-8} = 0b11;
+ let Inst{7-0} = opc;
+}
+
+def tHINT : T1pI<(outs), (ins imm0_15:$imm), NoItinerary, "hint", "\t$imm",
+ [(int_arm_hint imm0_15:$imm)]>,
+ T1SystemEncoding<0x00>,
+ Requires<[IsThumb, HasV6M]> {
+ bits<4> imm;
+ let Inst{7-4} = imm;
+}
+
+class tHintAlias<string Asm, dag Result> : tInstAlias<Asm, Result> {
+ let Predicates = [IsThumb, HasV6M];
+}
+
+def : tHintAlias<"nop$p", (tHINT 0, pred:$p)>; // A8.6.110
+def : tHintAlias<"yield$p", (tHINT 1, pred:$p)>; // A8.6.410
+def : tHintAlias<"wfe$p", (tHINT 2, pred:$p)>; // A8.6.408
+def : tHintAlias<"wfi$p", (tHINT 3, pred:$p)>; // A8.6.409
+def : tHintAlias<"sev$p", (tHINT 4, pred:$p)>; // A8.6.157
+def : tInstAlias<"sevl$p", (tHINT 5, pred:$p)> {
+ let Predicates = [IsThumb2, HasV8];
+}
+
+// The imm operand $val can be used by a debugger to store more information
+// about the breakpoint.
+def tBKPT : T1I<(outs), (ins imm0_255:$val), NoItinerary, "bkpt\t$val",
+ []>,
+ T1Encoding<0b101111> {
+ let Inst{9-8} = 0b10;
+ // A8.6.22
+ bits<8> val;
+ let Inst{7-0} = val;
+}
+// default immediate for breakpoint mnemonic
+def : InstAlias<"bkpt", (tBKPT 0)>, Requires<[IsThumb]>;
+
+def tHLT : T1I<(outs), (ins imm0_63:$val), NoItinerary, "hlt\t$val",
+ []>, T1Encoding<0b101110>, Requires<[IsThumb, HasV8]> {
+ let Inst{9-6} = 0b1010;
+ bits<6> val;
+ let Inst{5-0} = val;
+}
+
+def tSETEND : T1I<(outs), (ins setend_op:$end), NoItinerary, "setend\t$end",
+ []>, T1Encoding<0b101101>, Deprecated<HasV8Ops> {
+ bits<1> end;
+ // A8.6.156
+ let Inst{9-5} = 0b10010;
+ let Inst{4} = 1;
+ let Inst{3} = end;
+ let Inst{2-0} = 0b000;
+}
+
+// Change Processor State is a system instruction -- for disassembly only.
+def tCPS : T1I<(outs), (ins imod_op:$imod, iflags_op:$iflags),
+ NoItinerary, "cps$imod $iflags", []>,
+ T1Misc<0b0110011> {
+ // A8.6.38 & B6.1.1
+ bit imod;
+ bits<3> iflags;
+
+ let Inst{4} = imod;
+ let Inst{3} = 0;
+ let Inst{2-0} = iflags;
+ let DecoderMethod = "DecodeThumbCPS";
+}
+
+// For both thumb1 and thumb2.
+let isNotDuplicable = 1, isCodeGenOnly = 1 in
+def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "",
+ [(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>,
+ T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
+ // A8.6.6
+ bits<3> dst;
+ let Inst{6-3} = 0b1111; // Rm = pc
+ let Inst{2-0} = dst;
+}
+
+// ADD <Rd>, sp, #<imm8>
+// FIXME: This should not be marked as having side effects, and it should be
+// rematerializable. Clearing the side effect bit causes miscompilations,
+// probably because the instruction can be moved around.
+def tADDrSPi : T1pI<(outs tGPR:$dst), (ins GPRsp:$sp, t_imm0_1020s4:$imm),
+ IIC_iALUi, "add", "\t$dst, $sp, $imm", []>,
+ T1Encoding<{1,0,1,0,1,?}>, Sched<[WriteALU]> {
+ // A6.2 & A8.6.8
+ bits<3> dst;
+ bits<8> imm;
+ let Inst{10-8} = dst;
+ let Inst{7-0} = imm;
+ let DecoderMethod = "DecodeThumbAddSpecialReg";
+}
+
+// ADD sp, sp, #<imm7>
+def tADDspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
+ IIC_iALUi, "add", "\t$Rdn, $imm", []>,
+ T1Misc<{0,0,0,0,0,?,?}>, Sched<[WriteALU]> {
+ // A6.2.5 & A8.6.8
+ bits<7> imm;
+ let Inst{6-0} = imm;
+ let DecoderMethod = "DecodeThumbAddSPImm";
+}
+
+// SUB sp, sp, #<imm7>
+// FIXME: The encoding and the ASM string don't match up.
+def tSUBspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
+ IIC_iALUi, "sub", "\t$Rdn, $imm", []>,
+ T1Misc<{0,0,0,0,1,?,?}>, Sched<[WriteALU]> {
+ // A6.2.5 & A8.6.214
+ bits<7> imm;
+ let Inst{6-0} = imm;
+ let DecoderMethod = "DecodeThumbAddSPImm";
+}
+
+def : tInstAlias<"add${p} sp, $imm",
+ (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;
+def : tInstAlias<"add${p} sp, sp, $imm",
+ (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;
+
+// Can optionally specify SP as a three operand instruction.
+def : tInstAlias<"add${p} sp, sp, $imm",
+ (tADDspi SP, t_imm0_508s4:$imm, pred:$p)>;
+def : tInstAlias<"sub${p} sp, sp, $imm",
+ (tSUBspi SP, t_imm0_508s4:$imm, pred:$p)>;
+
+// ADD <Rm>, sp
+def tADDrSP : T1pI<(outs GPR:$Rdn), (ins GPRsp:$sp, GPR:$Rn), IIC_iALUr,
+ "add", "\t$Rdn, $sp, $Rn", []>,
+ T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
+ // A8.6.9 Encoding T1
+ bits<4> Rdn;
+ let Inst{7} = Rdn{3};
+ let Inst{6-3} = 0b1101;
+ let Inst{2-0} = Rdn{2-0};
+ let DecoderMethod = "DecodeThumbAddSPReg";
+}
+
+// ADD sp, <Rm>
+def tADDspr : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, GPR:$Rm), IIC_iALUr,
+ "add", "\t$Rdn, $Rm", []>,
+ T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
+ // A8.6.9 Encoding T2
+ bits<4> Rm;
+ let Inst{7} = 1;
+ let Inst{6-3} = Rm;
+ let Inst{2-0} = 0b101;
+ let DecoderMethod = "DecodeThumbAddSPReg";
+}
+
+//===----------------------------------------------------------------------===//
+// Control Flow Instructions.
+//
+
+// Indirect branches
+let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
+ def tBX : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bx${p}\t$Rm", []>,
+ T1Special<{1,1,0,?}>, Sched<[WriteBr]> {
+ // A6.2.3 & A8.6.25
+ bits<4> Rm;
+ let Inst{6-3} = Rm;
+ let Inst{2-0} = 0b000;
+ let Unpredictable{2-0} = 0b111;
+ }
+}
+
+let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
+ def tBX_RET : tPseudoExpand<(outs), (ins pred:$p), 2, IIC_Br,
+ [(ARMretflag)], (tBX LR, pred:$p)>, Sched<[WriteBr]>;
+
+ // Alternative return instruction used by vararg functions.
+ def tBX_RET_vararg : tPseudoExpand<(outs), (ins tGPR:$Rm, pred:$p),
+ 2, IIC_Br, [],
+ (tBX GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
+}
+
+// All calls clobber the non-callee saved registers. SP is marked as a use to
+// prevent stack-pointer assignments that appear immediately before calls from
+// potentially appearing dead.
+let isCall = 1,
+ Defs = [LR], Uses = [SP] in {
+ // Also used for Thumb2
+ def tBL : TIx2<0b11110, 0b11, 1,
+ (outs), (ins pred:$p, t_bltarget:$func), IIC_Br,
+ "bl${p}\t$func",
+ [(ARMtcall tglobaladdr:$func)]>,
+ Requires<[IsThumb]>, Sched<[WriteBrL]> {
+ bits<24> func;
+ let Inst{26} = func{23};
+ let Inst{25-16} = func{20-11};
+ let Inst{13} = func{22};
+ let Inst{11} = func{21};
+ let Inst{10-0} = func{10-0};
+ }
+
+ // ARMv5T and above, also used for Thumb2
+ def tBLXi : TIx2<0b11110, 0b11, 0,
+ (outs), (ins pred:$p, t_blxtarget:$func), IIC_Br,
+ "blx${p}\t$func",
+ [(ARMcall tglobaladdr:$func)]>,
+ Requires<[IsThumb, HasV5T]>, Sched<[WriteBrL]> {
+ bits<24> func;
+ let Inst{26} = func{23};
+ let Inst{25-16} = func{20-11};
+ let Inst{13} = func{22};
+ let Inst{11} = func{21};
+ let Inst{10-1} = func{10-1};
+ let Inst{0} = 0; // func{0} is assumed zero
+ }
+
+ // Also used for Thumb2
+ def tBLXr : TI<(outs), (ins pred:$p, GPR:$func), IIC_Br,
+ "blx${p}\t$func",
+ [(ARMtcall GPR:$func)]>,
+ Requires<[IsThumb, HasV5T]>,
+ T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { // A6.2.3 & A8.6.24;
+ bits<4> func;
+ let Inst{6-3} = func;
+ let Inst{2-0} = 0b000;
+ }
+
+ // ARMv4T
+ def tBX_CALL : tPseudoInst<(outs), (ins tGPR:$func),
+ 4, IIC_Br,
+ [(ARMcall_nolink tGPR:$func)]>,
+ Requires<[IsThumb, IsThumb1Only]>, Sched<[WriteBr]>;
+}
+
+let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
+ let isPredicable = 1 in
+ def tB : T1pI<(outs), (ins t_brtarget:$target), IIC_Br,
+ "b", "\t$target", [(br bb:$target)]>,
+ T1Encoding<{1,1,1,0,0,?}>, Sched<[WriteBr]> {
+ bits<11> target;
+ let Inst{10-0} = target;
+ let AsmMatchConverter = "cvtThumbBranches";
+ }
+
+ // Far jump
+ // Just a pseudo for a tBL instruction. Needed to let regalloc know about
+ // the clobber of LR.
+ let Defs = [LR] in
+ def tBfar : tPseudoExpand<(outs), (ins t_bltarget:$target, pred:$p),
+ 4, IIC_Br, [], (tBL pred:$p, t_bltarget:$target)>,
+ Sched<[WriteBrTbl]>;
+
+ def tBR_JTr : tPseudoInst<(outs),
+ (ins tGPR:$target, i32imm:$jt, i32imm:$id),
+ 0, IIC_Br,
+ [(ARMbrjt tGPR:$target, tjumptable:$jt, imm:$id)]>,
+ Sched<[WriteBrTbl]> {
+ list<Predicate> Predicates = [IsThumb, IsThumb1Only];
+ }
+}
+
+// FIXME: should be able to write a pattern for ARMBrcond, but can't use
+// a two-value operand where a dag node expects two operands. :(
+let isBranch = 1, isTerminator = 1 in
+ def tBcc : T1I<(outs), (ins t_bcctarget:$target, pred:$p), IIC_Br,
+ "b${p}\t$target",
+ [/*(ARMbrcond bb:$target, imm:$cc)*/]>,
+ T1BranchCond<{1,1,0,1}>, Sched<[WriteBr]> {
+ bits<4> p;
+ bits<8> target;
+ let Inst{11-8} = p;
+ let Inst{7-0} = target;
+ let AsmMatchConverter = "cvtThumbBranches";
+}
+
+
+// Tail calls
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
+ // IOS versions.
+ let Uses = [SP] in {
+ def tTAILJMPr : tPseudoExpand<(outs), (ins tcGPR:$dst),
+ 4, IIC_Br, [],
+ (tBX GPR:$dst, (ops 14, zero_reg))>,
+ Requires<[IsThumb]>, Sched<[WriteBr]>;
+ }
+ // tTAILJMPd: MachO version uses a Thumb2 branch (no Thumb1 tail calls
+ // on MachO), so it's in ARMInstrThumb2.td.
+ // Non-MachO version:
+ let Uses = [SP] in {
+ def tTAILJMPdND : tPseudoExpand<(outs),
+ (ins t_brtarget:$dst, pred:$p),
+ 4, IIC_Br, [],
+ (tB t_brtarget:$dst, pred:$p)>,
+ Requires<[IsThumb, IsNotMachO]>, Sched<[WriteBr]>;
+ }
+}
+
+
+// A8.6.218 Supervisor Call (Software Interrupt)
+// A8.6.16 B: Encoding T1
+// If Inst{11-8} == 0b1111 then SEE SVC
+let isCall = 1, Uses = [SP] in
+def tSVC : T1pI<(outs), (ins imm0_255:$imm), IIC_Br,
+ "svc", "\t$imm", []>, Encoding16, Sched<[WriteBr]> {
+ bits<8> imm;
+ let Inst{15-12} = 0b1101;
+ let Inst{11-8} = 0b1111;
+ let Inst{7-0} = imm;
+}
+
+// The assembler uses 0xDEFE for a trap instruction.
+let isBarrier = 1, isTerminator = 1 in
+def tTRAP : TI<(outs), (ins), IIC_Br,
+ "trap", [(trap)]>, Encoding16, Sched<[WriteBr]> {
+ let Inst = 0xdefe;
+}
+
+//===----------------------------------------------------------------------===//
+// Load Store Instructions.
+//
+
+// Loads: reg/reg and reg/imm5
+let canFoldAsLoad = 1, isReMaterializable = 1 in
+multiclass thumb_ld_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
+ Operand AddrMode_r, Operand AddrMode_i,
+ AddrMode am, InstrItinClass itin_r,
+ InstrItinClass itin_i, string asm,
+ PatFrag opnode> {
+ def r : // reg/reg
+ T1pILdStEncode<reg_opc,
+ (outs tGPR:$Rt), (ins AddrMode_r:$addr),
+ am, itin_r, asm, "\t$Rt, $addr",
+ [(set tGPR:$Rt, (opnode AddrMode_r:$addr))]>;
+ def i : // reg/imm5
+ T1pILdStEncodeImm<imm_opc, 1 /* Load */,
+ (outs tGPR:$Rt), (ins AddrMode_i:$addr),
+ am, itin_i, asm, "\t$Rt, $addr",
+ [(set tGPR:$Rt, (opnode AddrMode_i:$addr))]>;
+}
+// Stores: reg/reg and reg/imm5
+multiclass thumb_st_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
+ Operand AddrMode_r, Operand AddrMode_i,
+ AddrMode am, InstrItinClass itin_r,
+ InstrItinClass itin_i, string asm,
+ PatFrag opnode> {
+ def r : // reg/reg
+ T1pILdStEncode<reg_opc,
+ (outs), (ins tGPR:$Rt, AddrMode_r:$addr),
+ am, itin_r, asm, "\t$Rt, $addr",
+ [(opnode tGPR:$Rt, AddrMode_r:$addr)]>;
+ def i : // reg/imm5
+ T1pILdStEncodeImm<imm_opc, 0 /* Store */,
+ (outs), (ins tGPR:$Rt, AddrMode_i:$addr),
+ am, itin_i, asm, "\t$Rt, $addr",
+ [(opnode tGPR:$Rt, AddrMode_i:$addr)]>;
+}
+
+// A8.6.57 & A8.6.60
+defm tLDR : thumb_ld_rr_ri_enc<0b100, 0b0110, t_addrmode_rrs4,
+ t_addrmode_is4, AddrModeT1_4,
+ IIC_iLoad_r, IIC_iLoad_i, "ldr",
+ UnOpFrag<(load node:$Src)>>;
+
+// A8.6.64 & A8.6.61
+defm tLDRB : thumb_ld_rr_ri_enc<0b110, 0b0111, t_addrmode_rrs1,
+ t_addrmode_is1, AddrModeT1_1,
+ IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrb",
+ UnOpFrag<(zextloadi8 node:$Src)>>;
+
+// A8.6.76 & A8.6.73
+defm tLDRH : thumb_ld_rr_ri_enc<0b101, 0b1000, t_addrmode_rrs2,
+ t_addrmode_is2, AddrModeT1_2,
+ IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrh",
+ UnOpFrag<(zextloadi16 node:$Src)>>;
+
+let AddedComplexity = 10 in
+def tLDRSB : // A8.6.80
+ T1pILdStEncode<0b011, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr),
+ AddrModeT1_1, IIC_iLoad_bh_r,
+ "ldrsb", "\t$Rt, $addr",
+ [(set tGPR:$Rt, (sextloadi8 t_addrmode_rr:$addr))]>;
+
+let AddedComplexity = 10 in
+def tLDRSH : // A8.6.84
+ T1pILdStEncode<0b111, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr),
+ AddrModeT1_2, IIC_iLoad_bh_r,
+ "ldrsh", "\t$Rt, $addr",
+ [(set tGPR:$Rt, (sextloadi16 t_addrmode_rr:$addr))]>;
+
+let canFoldAsLoad = 1 in
+def tLDRspi : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_sp:$addr), IIC_iLoad_i,
+ "ldr", "\t$Rt, $addr",
+ [(set tGPR:$Rt, (load t_addrmode_sp:$addr))]>,
+ T1LdStSP<{1,?,?}> {
+ bits<3> Rt;
+ bits<8> addr;
+ let Inst{10-8} = Rt;
+ let Inst{7-0} = addr;
+}
+
+let canFoldAsLoad = 1, isReMaterializable = 1 in
+def tLDRpci : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_pc:$addr), IIC_iLoad_i,
+ "ldr", "\t$Rt, $addr",
+ [(set tGPR:$Rt, (load (ARMWrapper tconstpool:$addr)))]>,
+ T1Encoding<{0,1,0,0,1,?}> {
+ // A6.2 & A8.6.59
+ bits<3> Rt;
+ bits<8> addr;
+ let Inst{10-8} = Rt;
+ let Inst{7-0} = addr;
+}
+
+// A8.6.194 & A8.6.192
+defm tSTR : thumb_st_rr_ri_enc<0b000, 0b0110, t_addrmode_rrs4,
+ t_addrmode_is4, AddrModeT1_4,
+ IIC_iStore_r, IIC_iStore_i, "str",
+ BinOpFrag<(store node:$LHS, node:$RHS)>>;
+
+// A8.6.197 & A8.6.195
+defm tSTRB : thumb_st_rr_ri_enc<0b010, 0b0111, t_addrmode_rrs1,
+ t_addrmode_is1, AddrModeT1_1,
+ IIC_iStore_bh_r, IIC_iStore_bh_i, "strb",
+ BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
+
+// A8.6.207 & A8.6.205
+defm tSTRH : thumb_st_rr_ri_enc<0b001, 0b1000, t_addrmode_rrs2,
+ t_addrmode_is2, AddrModeT1_2,
+ IIC_iStore_bh_r, IIC_iStore_bh_i, "strh",
+ BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>;
+
+
+def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i,
+ "str", "\t$Rt, $addr",
+ [(store tGPR:$Rt, t_addrmode_sp:$addr)]>,
+ T1LdStSP<{0,?,?}> {
+ bits<3> Rt;
+ bits<8> addr;
+ let Inst{10-8} = Rt;
+ let Inst{7-0} = addr;
+}
+
+//===----------------------------------------------------------------------===//
+// Load / store multiple Instructions.
+//
+
+// These require base address to be written back or one of the loaded regs.
+let neverHasSideEffects = 1 in {
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
+def tLDMIA : T1I<(outs), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ IIC_iLoad_m, "ldm${p}\t$Rn, $regs", []>, T1Encoding<{1,1,0,0,1,?}> {
+ bits<3> Rn;
+ bits<8> regs;
+ let Inst{10-8} = Rn;
+ let Inst{7-0} = regs;
+}
+
+// Writeback version is just a pseudo, as there's no encoding difference.
+// Writeback happens iff the base register is not in the destination register
+// list.
+def tLDMIA_UPD :
+ InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain,
+ "$Rn = $wb", IIC_iLoad_mu>,
+ PseudoInstExpansion<(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)> {
+ let Size = 2;
+ let OutOperandList = (outs GPR:$wb);
+ let InOperandList = (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops);
+ let Pattern = [];
+ let isCodeGenOnly = 1;
+ let isPseudo = 1;
+ list<Predicate> Predicates = [IsThumb];
+}
+
+// There is no non-writeback version of STM for Thumb.
+let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
+def tSTMIA_UPD : Thumb1I<(outs GPR:$wb),
+ (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ AddrModeNone, 2, IIC_iStore_mu,
+ "stm${p}\t$Rn!, $regs", "$Rn = $wb", []>,
+ T1Encoding<{1,1,0,0,0,?}> {
+ bits<3> Rn;
+ bits<8> regs;
+ let Inst{10-8} = Rn;
+ let Inst{7-0} = regs;
+}
+
+} // neverHasSideEffects
+
+def : InstAlias<"ldm${p} $Rn!, $regs",
+ (tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)>,
+ Requires<[IsThumb, IsThumb1Only]>;
+
+let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1 in
+def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
+ IIC_iPop,
+ "pop${p}\t$regs", []>,
+ T1Misc<{1,1,0,?,?,?,?}> {
+ bits<16> regs;
+ let Inst{8} = regs{15};
+ let Inst{7-0} = regs{7-0};
+}
+
+let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in
+def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
+ IIC_iStore_m,
+ "push${p}\t$regs", []>,
+ T1Misc<{0,1,0,?,?,?,?}> {
+ bits<16> regs;
+ let Inst{8} = regs{14};
+ let Inst{7-0} = regs{7-0};
+}
+
+//===----------------------------------------------------------------------===//
+// Arithmetic Instructions.
+//
+
+// Helper classes for encoding T1pI patterns:
+class T1pIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T1pI<oops, iops, itin, opc, asm, pattern>,
+ T1DataProcessing<opA> {
+ bits<3> Rm;
+ bits<3> Rn;
+ let Inst{5-3} = Rm;
+ let Inst{2-0} = Rn;
+}
+class T1pIMiscEncode<bits<7> opA, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T1pI<oops, iops, itin, opc, asm, pattern>,
+ T1Misc<opA> {
+ bits<3> Rm;
+ bits<3> Rd;
+ let Inst{5-3} = Rm;
+ let Inst{2-0} = Rd;
+}
+
+// Helper classes for encoding T1sI patterns:
+class T1sIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T1sI<oops, iops, itin, opc, asm, pattern>,
+ T1DataProcessing<opA> {
+ bits<3> Rd;
+ bits<3> Rn;
+ let Inst{5-3} = Rn;
+ let Inst{2-0} = Rd;
+}
+class T1sIGenEncode<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T1sI<oops, iops, itin, opc, asm, pattern>,
+ T1General<opA> {
+ bits<3> Rm;
+ bits<3> Rn;
+ bits<3> Rd;
+ let Inst{8-6} = Rm;
+ let Inst{5-3} = Rn;
+ let Inst{2-0} = Rd;
+}
+class T1sIGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T1sI<oops, iops, itin, opc, asm, pattern>,
+ T1General<opA> {
+ bits<3> Rd;
+ bits<3> Rm;
+ let Inst{5-3} = Rm;
+ let Inst{2-0} = Rd;
+}
+
+// Helper classes for encoding T1sIt patterns:
+class T1sItDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T1sIt<oops, iops, itin, opc, asm, pattern>,
+ T1DataProcessing<opA> {
+ bits<3> Rdn;
+ bits<3> Rm;
+ let Inst{5-3} = Rm;
+ let Inst{2-0} = Rdn;
+}
+class T1sItGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T1sIt<oops, iops, itin, opc, asm, pattern>,
+ T1General<opA> {
+ bits<3> Rdn;
+ bits<8> imm8;
+ let Inst{10-8} = Rdn;
+ let Inst{7-0} = imm8;
+}
+
+// Add with carry register
+let isCommutable = 1, Uses = [CPSR] in
+def tADC : // A8.6.2
+ T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr,
+ "adc", "\t$Rdn, $Rm",
+ [(set tGPR:$Rdn, (adde tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
+
+// Add immediate
+def tADDi3 : // A8.6.4 T1
+ T1sIGenEncodeImm<0b01110, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
+ IIC_iALUi,
+ "add", "\t$Rd, $Rm, $imm3",
+ [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7:$imm3))]>,
+ Sched<[WriteALU]> {
+ bits<3> imm3;
+ let Inst{8-6} = imm3;
+}
+
+def tADDi8 : // A8.6.4 T2
+ T1sItGenEncodeImm<{1,1,0,?,?}, (outs tGPR:$Rdn),
+ (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
+ "add", "\t$Rdn, $imm8",
+ [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255:$imm8))]>,
+ Sched<[WriteALU]>;
+
+// Add register
+let isCommutable = 1 in
+def tADDrr : // A8.6.6 T1
+ T1sIGenEncode<0b01100, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iALUr,
+ "add", "\t$Rd, $Rn, $Rm",
+ [(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
+
+let neverHasSideEffects = 1 in
+def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr,
+ "add", "\t$Rdn, $Rm", []>,
+ T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
+ // A8.6.6 T2
+ bits<4> Rdn;
+ bits<4> Rm;
+ let Inst{7} = Rdn{3};
+ let Inst{6-3} = Rm;
+ let Inst{2-0} = Rdn{2-0};
+}
+
+// AND register
+let isCommutable = 1 in
+def tAND : // A8.6.12
+ T1sItDPEncode<0b0000, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iBITr,
+ "and", "\t$Rdn, $Rm",
+ [(set tGPR:$Rdn, (and tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
+
+// ASR immediate
+def tASRri : // A8.6.14
+ T1sIGenEncodeImm<{0,1,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
+ IIC_iMOVsi,
+ "asr", "\t$Rd, $Rm, $imm5",
+ [(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
+ Sched<[WriteALU]> {
+ bits<5> imm5;
+ let Inst{10-6} = imm5;
+}
+
+// ASR register
+def tASRrr : // A8.6.15
+ T1sItDPEncode<0b0100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iMOVsr,
+ "asr", "\t$Rdn, $Rm",
+ [(set tGPR:$Rdn, (sra tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
+
+// BIC register
+def tBIC : // A8.6.20
+ T1sItDPEncode<0b1110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iBITr,
+ "bic", "\t$Rdn, $Rm",
+ [(set tGPR:$Rdn, (and tGPR:$Rn, (not tGPR:$Rm)))]>,
+ Sched<[WriteALU]>;
+
+// CMN register
+let isCompare = 1, Defs = [CPSR] in {
+//FIXME: Disable CMN, as CCodes are backwards from compare expectations
+// Compare-to-zero still works out, just not the relationals
+//def tCMN : // A8.6.33
+// T1pIDPEncode<0b1011, (outs), (ins tGPR:$lhs, tGPR:$rhs),
+// IIC_iCMPr,
+// "cmn", "\t$lhs, $rhs",
+// [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>;
+
+def tCMNz : // A8.6.33
+ T1pIDPEncode<0b1011, (outs), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iCMPr,
+ "cmn", "\t$Rn, $Rm",
+ [(ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm))]>, Sched<[WriteCMP]>;
+
+} // isCompare = 1, Defs = [CPSR]
+
+// CMP immediate
+let isCompare = 1, Defs = [CPSR] in {
+def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iCMPi,
+ "cmp", "\t$Rn, $imm8",
+ [(ARMcmp tGPR:$Rn, imm0_255:$imm8)]>,
+ T1General<{1,0,1,?,?}>, Sched<[WriteCMP]> {
+ // A8.6.35
+ bits<3> Rn;
+ bits<8> imm8;
+ let Inst{10-8} = Rn;
+ let Inst{7-0} = imm8;
+}
+
+// CMP register
+def tCMPr : // A8.6.36 T1
+ T1pIDPEncode<0b1010, (outs), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iCMPr,
+ "cmp", "\t$Rn, $Rm",
+ [(ARMcmp tGPR:$Rn, tGPR:$Rm)]>, Sched<[WriteCMP]>;
+
+def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr,
+ "cmp", "\t$Rn, $Rm", []>,
+ T1Special<{0,1,?,?}>, Sched<[WriteCMP]> {
+ // A8.6.36 T2
+ bits<4> Rm;
+ bits<4> Rn;
+ let Inst{7} = Rn{3};
+ let Inst{6-3} = Rm;
+ let Inst{2-0} = Rn{2-0};
+}
+} // isCompare = 1, Defs = [CPSR]
+
+
+// XOR register
+let isCommutable = 1 in
+def tEOR : // A8.6.45
+ T1sItDPEncode<0b0001, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iBITr,
+ "eor", "\t$Rdn, $Rm",
+ [(set tGPR:$Rdn, (xor tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
+
+// LSL immediate
+def tLSLri : // A8.6.88
+ T1sIGenEncodeImm<{0,0,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_31:$imm5),
+ IIC_iMOVsi,
+ "lsl", "\t$Rd, $Rm, $imm5",
+ [(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]>,
+ Sched<[WriteALU]> {
+ bits<5> imm5;
+ let Inst{10-6} = imm5;
+}
+
+// LSL register
+def tLSLrr : // A8.6.89
+ T1sItDPEncode<0b0010, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iMOVsr,
+ "lsl", "\t$Rdn, $Rm",
+ [(set tGPR:$Rdn, (shl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
+
+// LSR immediate
+def tLSRri : // A8.6.90
+ T1sIGenEncodeImm<{0,0,1,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
+ IIC_iMOVsi,
+ "lsr", "\t$Rd, $Rm, $imm5",
+ [(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
+ Sched<[WriteALU]> {
+ bits<5> imm5;
+ let Inst{10-6} = imm5;
+}
+
+// LSR register
+def tLSRrr : // A8.6.91
+ T1sItDPEncode<0b0011, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iMOVsr,
+ "lsr", "\t$Rdn, $Rm",
+ [(set tGPR:$Rdn, (srl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
+
+// Move register
+let isMoveImm = 1 in
+def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins imm0_255:$imm8), IIC_iMOVi,
+ "mov", "\t$Rd, $imm8",
+ [(set tGPR:$Rd, imm0_255:$imm8)]>,
+ T1General<{1,0,0,?,?}>, Sched<[WriteALU]> {
+ // A8.6.96
+ bits<3> Rd;
+ bits<8> imm8;
+ let Inst{10-8} = Rd;
+ let Inst{7-0} = imm8;
+}
+// Because we have an explicit tMOVSr below, we need an alias to handle
+// the immediate "movs" form here. Blech.
+def : tInstAlias <"movs $Rdn, $imm",
+ (tMOVi8 tGPR:$Rdn, CPSR, imm0_255:$imm, 14, 0)>;
+
+// A7-73: MOV(2) - mov setting flag.
+
+let neverHasSideEffects = 1 in {
+def tMOVr : Thumb1pI<(outs GPR:$Rd), (ins GPR:$Rm), AddrModeNone,
+ 2, IIC_iMOVr,
+ "mov", "\t$Rd, $Rm", "", []>,
+ T1Special<{1,0,?,?}>, Sched<[WriteALU]> {
+ // A8.6.97
+ bits<4> Rd;
+ bits<4> Rm;
+ let Inst{7} = Rd{3};
+ let Inst{6-3} = Rm;
+ let Inst{2-0} = Rd{2-0};
+}
+let Defs = [CPSR] in
+def tMOVSr : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr,
+ "movs\t$Rd, $Rm", []>, Encoding16, Sched<[WriteALU]> {
+ // A8.6.97
+ bits<3> Rd;
+ bits<3> Rm;
+ let Inst{15-6} = 0b0000000000;
+ let Inst{5-3} = Rm;
+ let Inst{2-0} = Rd;
+}
+} // neverHasSideEffects
+
+// Multiply register
+let isCommutable = 1 in
+def tMUL : // A8.6.105 T1
+ Thumb1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), AddrModeNone, 2,
+ IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", "$Rm = $Rd",
+ [(set tGPR:$Rd, (mul tGPR:$Rn, tGPR:$Rm))]>,
+ T1DataProcessing<0b1101> {
+ bits<3> Rd;
+ bits<3> Rn;
+ let Inst{5-3} = Rn;
+ let Inst{2-0} = Rd;
+ let AsmMatchConverter = "cvtThumbMultiply";
+}
+
+def :tInstAlias<"mul${s}${p} $Rdm, $Rn", (tMUL tGPR:$Rdm, s_cc_out:$s, tGPR:$Rn,
+ pred:$p)>;
+
+// Move inverse register
+def tMVN : // A8.6.107
+ T1sIDPEncode<0b1111, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iMVNr,
+ "mvn", "\t$Rd, $Rn",
+ [(set tGPR:$Rd, (not tGPR:$Rn))]>, Sched<[WriteALU]>;
+
+// Bitwise or register
+let isCommutable = 1 in
+def tORR : // A8.6.114
+ T1sItDPEncode<0b1100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iBITr,
+ "orr", "\t$Rdn, $Rm",
+ [(set tGPR:$Rdn, (or tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
+
+// Swaps
+def tREV : // A8.6.134
+ T1pIMiscEncode<{1,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
+ IIC_iUNAr,
+ "rev", "\t$Rd, $Rm",
+ [(set tGPR:$Rd, (bswap tGPR:$Rm))]>,
+ Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
+
+def tREV16 : // A8.6.135
+ T1pIMiscEncode<{1,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
+ IIC_iUNAr,
+ "rev16", "\t$Rd, $Rm",
+ [(set tGPR:$Rd, (rotr (bswap tGPR:$Rm), (i32 16)))]>,
+ Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
+
+def tREVSH : // A8.6.136
+ T1pIMiscEncode<{1,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
+ IIC_iUNAr,
+ "revsh", "\t$Rd, $Rm",
+ [(set tGPR:$Rd, (sra (bswap tGPR:$Rm), (i32 16)))]>,
+ Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
+
+// Rotate right register
+def tROR : // A8.6.139
+ T1sItDPEncode<0b0111, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iMOVsr,
+ "ror", "\t$Rdn, $Rm",
+ [(set tGPR:$Rdn, (rotr tGPR:$Rn, tGPR:$Rm))]>,
+ Sched<[WriteALU]>;
+
+// Negate register
+def tRSB : // A8.6.141
+ T1sIDPEncode<0b1001, (outs tGPR:$Rd), (ins tGPR:$Rn),
+ IIC_iALUi,
+ "rsb", "\t$Rd, $Rn, #0",
+ [(set tGPR:$Rd, (ineg tGPR:$Rn))]>, Sched<[WriteALU]>;
+
+// Subtract with carry register
+let Uses = [CPSR] in
+def tSBC : // A8.6.151
+ T1sItDPEncode<0b0110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iALUr,
+ "sbc", "\t$Rdn, $Rm",
+ [(set tGPR:$Rdn, (sube tGPR:$Rn, tGPR:$Rm))]>,
+ Sched<[WriteALU]>;
+
+// Subtract immediate
+def tSUBi3 : // A8.6.210 T1
+ T1sIGenEncodeImm<0b01111, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
+ IIC_iALUi,
+ "sub", "\t$Rd, $Rm, $imm3",
+ [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7_neg:$imm3))]>,
+ Sched<[WriteALU]> {
+ bits<3> imm3;
+ let Inst{8-6} = imm3;
+}
+
+def tSUBi8 : // A8.6.210 T2
+ T1sItGenEncodeImm<{1,1,1,?,?}, (outs tGPR:$Rdn),
+ (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
+ "sub", "\t$Rdn, $imm8",
+ [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255_neg:$imm8))]>,
+ Sched<[WriteALU]>;
+
+// Subtract register
+def tSUBrr : // A8.6.212
+ T1sIGenEncode<0b01101, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
+ IIC_iALUr,
+ "sub", "\t$Rd, $Rn, $Rm",
+ [(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>,
+ Sched<[WriteALU]>;
+
+// Sign-extend byte
+def tSXTB : // A8.6.222
+ T1pIMiscEncode<{0,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
+ IIC_iUNAr,
+ "sxtb", "\t$Rd, $Rm",
+ [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>,
+ Requires<[IsThumb, IsThumb1Only, HasV6]>,
+ Sched<[WriteALU]>;
+
+// Sign-extend short
+def tSXTH : // A8.6.224
+ T1pIMiscEncode<{0,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
+ IIC_iUNAr,
+ "sxth", "\t$Rd, $Rm",
+ [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>,
+ Requires<[IsThumb, IsThumb1Only, HasV6]>,
+ Sched<[WriteALU]>;
+
+// Test
+let isCompare = 1, isCommutable = 1, Defs = [CPSR] in
+def tTST : // A8.6.230
+ T1pIDPEncode<0b1000, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr,
+ "tst", "\t$Rn, $Rm",
+ [(ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0)]>,
+ Sched<[WriteALU]>;
+
+// A8.8.247 UDF - Undefined (Encoding T1)
+def tUDF : TI<(outs), (ins imm0_255:$imm8), IIC_Br, "udf\t$imm8",
+ [(int_arm_undefined imm0_255:$imm8)]>, Encoding16 {
+ bits<8> imm8;
+ let Inst{15-12} = 0b1101;
+ let Inst{11-8} = 0b1110;
+ let Inst{7-0} = imm8;
+}
+
+// Zero-extend byte
+def tUXTB : // A8.6.262
+ T1pIMiscEncode<{0,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
+ IIC_iUNAr,
+ "uxtb", "\t$Rd, $Rm",
+ [(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>,
+ Requires<[IsThumb, IsThumb1Only, HasV6]>,
+ Sched<[WriteALU]>;
+
+// Zero-extend short
+def tUXTH : // A8.6.264
+ T1pIMiscEncode<{0,0,1,0,1,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
+ IIC_iUNAr,
+ "uxth", "\t$Rd, $Rm",
+ [(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>,
+ Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
+
+// Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation.
+// Expanded after instruction selection into a branch sequence.
+let usesCustomInserter = 1 in // Expanded after instruction selection.
+ def tMOVCCr_pseudo :
+ PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, cmovpred:$p),
+ NoItinerary,
+ [(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, cmovpred:$p))]>;
+
+// tLEApcrel - Load a pc-relative address into a register without offending the
+// assembler.
+
+def tADR : T1I<(outs tGPR:$Rd), (ins t_adrlabel:$addr, pred:$p),
+ IIC_iALUi, "adr{$p}\t$Rd, $addr", []>,
+ T1Encoding<{1,0,1,0,0,?}>, Sched<[WriteALU]> {
+ bits<3> Rd;
+ bits<8> addr;
+ let Inst{10-8} = Rd;
+ let Inst{7-0} = addr;
+ let DecoderMethod = "DecodeThumbAddSpecialReg";
+}
+
+let neverHasSideEffects = 1, isReMaterializable = 1 in
+def tLEApcrel : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p),
+ 2, IIC_iALUi, []>, Sched<[WriteALU]>;
+
+let hasSideEffects = 1 in
+def tLEApcrelJT : tPseudoInst<(outs tGPR:$Rd),
+ (ins i32imm:$label, nohash_imm:$id, pred:$p),
+ 2, IIC_iALUi, []>, Sched<[WriteALU]>;
+
+//===----------------------------------------------------------------------===//
+// TLS Instructions
+//
+
+// __aeabi_read_tp preserves the registers r1-r3.
+// This is a pseudo inst so that we can get the encoding right,
+// complete with fixup for the aeabi_read_tp function.
+let isCall = 1, Defs = [R0, R12, LR, CPSR], Uses = [SP] in
+def tTPsoft : tPseudoInst<(outs), (ins), 4, IIC_Br,
+ [(set R0, ARMthread_pointer)]>,
+ Sched<[WriteBr]>;
+
+//===----------------------------------------------------------------------===//
+// SJLJ Exception handling intrinsics
+//
+
+// eh_sjlj_setjmp() is an instruction sequence to store the return address and
+// save #0 in R0 for the non-longjmp case. Since by its nature we may be coming
+// from some other function to get here, and we're using the stack frame for the
+// containing function to save/restore registers, we can't keep anything live in
+// regs across the eh_sjlj_setjmp(), else it will almost certainly have been
+// tromped upon when we get here from a longjmp(). We force everything out of
+// registers except for our own input by listing the relevant registers in
+// Defs. By doing so, we also cause the prologue/epilogue code to actively
+// preserve all of the callee-saved resgisters, which is exactly what we want.
+// $val is a scratch register for our use.
+let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R12, CPSR ],
+ hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
+ usesCustomInserter = 1 in
+def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val),
+ AddrModeNone, 0, NoItinerary, "","",
+ [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>;
+
+// FIXME: Non-IOS version(s)
+let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1,
+ Defs = [ R7, LR, SP ] in
+def tInt_eh_sjlj_longjmp : XI<(outs), (ins GPR:$src, GPR:$scratch),
+ AddrModeNone, 0, IndexModeNone,
+ Pseudo, NoItinerary, "", "",
+ [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
+ Requires<[IsThumb, IsIOS]>;
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//
+
+// Comparisons
+def : T1Pat<(ARMcmpZ tGPR:$Rn, imm0_255:$imm8),
+ (tCMPi8 tGPR:$Rn, imm0_255:$imm8)>;
+def : T1Pat<(ARMcmpZ tGPR:$Rn, tGPR:$Rm),
+ (tCMPr tGPR:$Rn, tGPR:$Rm)>;
+
+// Add with carry
+def : T1Pat<(addc tGPR:$lhs, imm0_7:$rhs),
+ (tADDi3 tGPR:$lhs, imm0_7:$rhs)>;
+def : T1Pat<(addc tGPR:$lhs, imm8_255:$rhs),
+ (tADDi8 tGPR:$lhs, imm8_255:$rhs)>;
+def : T1Pat<(addc tGPR:$lhs, tGPR:$rhs),
+ (tADDrr tGPR:$lhs, tGPR:$rhs)>;
+
+// Subtract with carry
+def : T1Pat<(addc tGPR:$lhs, imm0_7_neg:$rhs),
+ (tSUBi3 tGPR:$lhs, imm0_7_neg:$rhs)>;
+def : T1Pat<(addc tGPR:$lhs, imm8_255_neg:$rhs),
+ (tSUBi8 tGPR:$lhs, imm8_255_neg:$rhs)>;
+def : T1Pat<(subc tGPR:$lhs, tGPR:$rhs),
+ (tSUBrr tGPR:$lhs, tGPR:$rhs)>;
+
+// Bswap 16 with load/store
+def : T1Pat<(srl (bswap (extloadi16 t_addrmode_rrs2:$addr)), (i32 16)),
+ (tREV16 (tLDRHr t_addrmode_rrs2:$addr))>;
+def : T1Pat<(srl (bswap (extloadi16 t_addrmode_is2:$addr)), (i32 16)),
+ (tREV16 (tLDRHi t_addrmode_is2:$addr))>;
+def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)),
+ t_addrmode_rrs2:$addr),
+ (tSTRHr (tREV16 tGPR:$Rn), t_addrmode_rrs2:$addr)>;
+def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)),
+ t_addrmode_is2:$addr),
+ (tSTRHi(tREV16 tGPR:$Rn), t_addrmode_is2:$addr)>;
+
+// ConstantPool
+def : T1Pat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>;
+
+// GlobalAddress
+def tLDRLIT_ga_pcrel : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr),
+ IIC_iLoadiALU,
+ [(set tGPR:$dst,
+ (ARMWrapperPIC tglobaladdr:$addr))]>,
+ Requires<[IsThumb, DontUseMovt]>;
+
+def tLDRLIT_ga_abs : PseudoInst<(outs tGPR:$dst), (ins i32imm:$src),
+ IIC_iLoad_i,
+ [(set tGPR:$dst,
+ (ARMWrapper tglobaladdr:$src))]>,
+ Requires<[IsThumb, DontUseMovt]>;
+
+
+// JumpTable
+def : T1Pat<(ARMWrapperJT tjumptable:$dst, imm:$id),
+ (tLEApcrelJT tjumptable:$dst, imm:$id)>;
+
+// Direct calls
+def : T1Pat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>,
+ Requires<[IsThumb]>;
+
+def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>,
+ Requires<[IsThumb, HasV5T]>;
+
+// Indirect calls to ARM routines
+def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr GPR:$dst)>,
+ Requires<[IsThumb, HasV5T]>;
+
+// zextload i1 -> zextload i8
+def : T1Pat<(zextloadi1 t_addrmode_rrs1:$addr),
+ (tLDRBr t_addrmode_rrs1:$addr)>;
+def : T1Pat<(zextloadi1 t_addrmode_is1:$addr),
+ (tLDRBi t_addrmode_is1:$addr)>;
+
+// extload -> zextload
+def : T1Pat<(extloadi1 t_addrmode_rrs1:$addr), (tLDRBr t_addrmode_rrs1:$addr)>;
+def : T1Pat<(extloadi1 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>;
+def : T1Pat<(extloadi8 t_addrmode_rrs1:$addr), (tLDRBr t_addrmode_rrs1:$addr)>;
+def : T1Pat<(extloadi8 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>;
+def : T1Pat<(extloadi16 t_addrmode_rrs2:$addr), (tLDRHr t_addrmode_rrs2:$addr)>;
+def : T1Pat<(extloadi16 t_addrmode_is2:$addr), (tLDRHi t_addrmode_is2:$addr)>;
+
+// If it's impossible to use [r,r] address mode for sextload, select to
+// ldr{b|h} + sxt{b|h} instead.
+def : T1Pat<(sextloadi8 t_addrmode_is1:$addr),
+ (tSXTB (tLDRBi t_addrmode_is1:$addr))>,
+ Requires<[IsThumb, IsThumb1Only, HasV6]>;
+def : T1Pat<(sextloadi8 t_addrmode_rrs1:$addr),
+ (tSXTB (tLDRBr t_addrmode_rrs1:$addr))>,
+ Requires<[IsThumb, IsThumb1Only, HasV6]>;
+def : T1Pat<(sextloadi16 t_addrmode_is2:$addr),
+ (tSXTH (tLDRHi t_addrmode_is2:$addr))>,
+ Requires<[IsThumb, IsThumb1Only, HasV6]>;
+def : T1Pat<(sextloadi16 t_addrmode_rrs2:$addr),
+ (tSXTH (tLDRHr t_addrmode_rrs2:$addr))>,
+ Requires<[IsThumb, IsThumb1Only, HasV6]>;
+
+def : T1Pat<(sextloadi8 t_addrmode_rrs1:$addr),
+ (tASRri (tLSLri (tLDRBr t_addrmode_rrs1:$addr), 24), 24)>;
+def : T1Pat<(sextloadi8 t_addrmode_is1:$addr),
+ (tASRri (tLSLri (tLDRBi t_addrmode_is1:$addr), 24), 24)>;
+def : T1Pat<(sextloadi16 t_addrmode_rrs2:$addr),
+ (tASRri (tLSLri (tLDRHr t_addrmode_rrs2:$addr), 16), 16)>;
+def : T1Pat<(sextloadi16 t_addrmode_is2:$addr),
+ (tASRri (tLSLri (tLDRHi t_addrmode_is2:$addr), 16), 16)>;
+
+def : T1Pat<(atomic_load_8 t_addrmode_is1:$src),
+ (tLDRBi t_addrmode_is1:$src)>;
+def : T1Pat<(atomic_load_8 t_addrmode_rrs1:$src),
+ (tLDRBr t_addrmode_rrs1:$src)>;
+def : T1Pat<(atomic_load_16 t_addrmode_is2:$src),
+ (tLDRHi t_addrmode_is2:$src)>;
+def : T1Pat<(atomic_load_16 t_addrmode_rrs2:$src),
+ (tLDRHr t_addrmode_rrs2:$src)>;
+def : T1Pat<(atomic_load_32 t_addrmode_is4:$src),
+ (tLDRi t_addrmode_is4:$src)>;
+def : T1Pat<(atomic_load_32 t_addrmode_rrs4:$src),
+ (tLDRr t_addrmode_rrs4:$src)>;
+def : T1Pat<(atomic_store_8 t_addrmode_is1:$ptr, tGPR:$val),
+ (tSTRBi tGPR:$val, t_addrmode_is1:$ptr)>;
+def : T1Pat<(atomic_store_8 t_addrmode_rrs1:$ptr, tGPR:$val),
+ (tSTRBr tGPR:$val, t_addrmode_rrs1:$ptr)>;
+def : T1Pat<(atomic_store_16 t_addrmode_is2:$ptr, tGPR:$val),
+ (tSTRHi tGPR:$val, t_addrmode_is2:$ptr)>;
+def : T1Pat<(atomic_store_16 t_addrmode_rrs2:$ptr, tGPR:$val),
+ (tSTRHr tGPR:$val, t_addrmode_rrs2:$ptr)>;
+def : T1Pat<(atomic_store_32 t_addrmode_is4:$ptr, tGPR:$val),
+ (tSTRi tGPR:$val, t_addrmode_is4:$ptr)>;
+def : T1Pat<(atomic_store_32 t_addrmode_rrs4:$ptr, tGPR:$val),
+ (tSTRr tGPR:$val, t_addrmode_rrs4:$ptr)>;
+
+// Large immediate handling.
+
+// Two piece imms.
+def : T1Pat<(i32 thumb_immshifted:$src),
+ (tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)),
+ (thumb_immshifted_shamt imm:$src))>;
+
+def : T1Pat<(i32 imm0_255_comp:$src),
+ (tMVN (tMOVi8 (imm_comp_XFORM imm:$src)))>;
+
+// Pseudo instruction that combines ldr from constpool and add pc. This should
+// be expanded into two instructions late to allow if-conversion and
+// scheduling.
+let isReMaterializable = 1 in
+def tLDRpci_pic : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr, pclabel:$cp),
+ NoItinerary,
+ [(set GPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)),
+ imm:$cp))]>,
+ Requires<[IsThumb, IsThumb1Only]>;
+
+// Pseudo-instruction for merged POP and return.
+// FIXME: remove when we have a way to marking a MI with these properties.
+let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
+ hasExtraDefRegAllocReq = 1 in
+def tPOP_RET : tPseudoExpand<(outs), (ins pred:$p, reglist:$regs, variable_ops),
+ 2, IIC_iPop_Br, [],
+ (tPOP pred:$p, reglist:$regs)>, Sched<[WriteBrL]>;
+
+// Indirect branch using "mov pc, $Rm"
+let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
+ def tBRIND : tPseudoExpand<(outs), (ins GPR:$Rm, pred:$p),
+ 2, IIC_Br, [(brind GPR:$Rm)],
+ (tMOVr PC, GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
+}
+
+
+// In Thumb1, "nop" is encoded as a "mov r8, r8". Technically, the bf00
+// encoding is available on ARMv6K, but we don't differentiate that finely.
+def : InstAlias<"nop", (tMOVr R8, R8, 14, 0)>,Requires<[IsThumb, IsThumb1Only]>;
+
+
+// For round-trip assembly/disassembly, we have to handle a CPS instruction
+// without any iflags. That's not, strictly speaking, valid syntax, but it's
+// a useful extension and assembles to defined behaviour (the insn does
+// nothing).
+def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>;
+def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>;
+
+// "neg" is and alias for "rsb rd, rn, #0"
+def : tInstAlias<"neg${s}${p} $Rd, $Rm",
+ (tRSB tGPR:$Rd, s_cc_out:$s, tGPR:$Rm, pred:$p)>;
+
+
+// Implied destination operand forms for shifts.
+def : tInstAlias<"lsl${s}${p} $Rdm, $imm",
+ (tLSLri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm0_31:$imm, pred:$p)>;
+def : tInstAlias<"lsr${s}${p} $Rdm, $imm",
+ (tLSRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;
+def : tInstAlias<"asr${s}${p} $Rdm, $imm",
+ (tASRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrThumb2.td b/contrib/llvm/lib/Target/ARM/ARMInstrThumb2.td
new file mode 100644
index 0000000..85e9351
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrThumb2.td
@@ -0,0 +1,4643 @@
+//===-- ARMInstrThumb2.td - Thumb2 support for ARM ---------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Thumb2 instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+// IT block predicate field
+def it_pred_asmoperand : AsmOperandClass {
+ let Name = "ITCondCode";
+ let ParserMethod = "parseITCondCode";
+}
+def it_pred : Operand<i32> {
+ let PrintMethod = "printMandatoryPredicateOperand";
+ let ParserMatchClass = it_pred_asmoperand;
+}
+
+// IT block condition mask
+def it_mask_asmoperand : AsmOperandClass { let Name = "ITMask"; }
+def it_mask : Operand<i32> {
+ let PrintMethod = "printThumbITMask";
+ let ParserMatchClass = it_mask_asmoperand;
+}
+
+// t2_shift_imm: An integer that encodes a shift amount and the type of shift
+// (asr or lsl). The 6-bit immediate encodes as:
+// {5} 0 ==> lsl
+// 1 asr
+// {4-0} imm5 shift amount.
+// asr #32 not allowed
+def t2_shift_imm : Operand<i32> {
+ let PrintMethod = "printShiftImmOperand";
+ let ParserMatchClass = ShifterImmAsmOperand;
+ let DecoderMethod = "DecodeT2ShifterImmOperand";
+}
+
+// Shifted operands. No register controlled shifts for Thumb2.
+// Note: We do not support rrx shifted operands yet.
+def t2_so_reg : Operand<i32>, // reg imm
+ ComplexPattern<i32, 2, "SelectT2ShifterOperandReg",
+ [shl,srl,sra,rotr]> {
+ let EncoderMethod = "getT2SORegOpValue";
+ let PrintMethod = "printT2SOOperand";
+ let DecoderMethod = "DecodeSORegImmOperand";
+ let ParserMatchClass = ShiftedImmAsmOperand;
+ let MIOperandInfo = (ops rGPR, i32imm);
+}
+
+// t2_so_imm_not_XFORM - Return the complement of a t2_so_imm value
+def t2_so_imm_not_XFORM : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32);
+}]>;
+
+// t2_so_imm_neg_XFORM - Return the negation of a t2_so_imm value
+def t2_so_imm_neg_XFORM : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(-((int)N->getZExtValue()), MVT::i32);
+}]>;
+
+// so_imm_notSext_XFORM - Return a so_imm value packed into the format
+// described for so_imm_notSext def below, with sign extension from 16
+// bits.
+def t2_so_imm_notSext16_XFORM : SDNodeXForm<imm, [{
+ APInt apIntN = N->getAPIntValue();
+ unsigned N16bitSignExt = apIntN.trunc(16).sext(32).getZExtValue();
+ return CurDAG->getTargetConstant(~N16bitSignExt, MVT::i32);
+}]>;
+
+// t2_so_imm - Match a 32-bit immediate operand, which is an
+// 8-bit immediate rotated by an arbitrary number of bits, or an 8-bit
+// immediate splatted into multiple bytes of the word.
+def t2_so_imm_asmoperand : ImmAsmOperand { let Name = "T2SOImm"; }
+def t2_so_imm : Operand<i32>, ImmLeaf<i32, [{
+ return ARM_AM::getT2SOImmVal(Imm) != -1;
+ }]> {
+ let ParserMatchClass = t2_so_imm_asmoperand;
+ let EncoderMethod = "getT2SOImmOpValue";
+ let DecoderMethod = "DecodeT2SOImm";
+}
+
+// t2_so_imm_not - Match an immediate that is a complement
+// of a t2_so_imm.
+// Note: this pattern doesn't require an encoder method and such, as it's
+// only used on aliases (Pat<> and InstAlias<>). The actual encoding
+// is handled by the destination instructions, which use t2_so_imm.
+def t2_so_imm_not_asmoperand : AsmOperandClass { let Name = "T2SOImmNot"; }
+def t2_so_imm_not : Operand<i32>, PatLeaf<(imm), [{
+ return ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())) != -1;
+}], t2_so_imm_not_XFORM> {
+ let ParserMatchClass = t2_so_imm_not_asmoperand;
+}
+
+// t2_so_imm_notSext - match an immediate that is a complement of a t2_so_imm
+// if the upper 16 bits are zero.
+def t2_so_imm_notSext : Operand<i32>, PatLeaf<(imm), [{
+ APInt apIntN = N->getAPIntValue();
+ if (!apIntN.isIntN(16)) return false;
+ unsigned N16bitSignExt = apIntN.trunc(16).sext(32).getZExtValue();
+ return ARM_AM::getT2SOImmVal(~N16bitSignExt) != -1;
+ }], t2_so_imm_notSext16_XFORM> {
+ let ParserMatchClass = t2_so_imm_not_asmoperand;
+}
+
+// t2_so_imm_neg - Match an immediate that is a negation of a t2_so_imm.
+def t2_so_imm_neg_asmoperand : AsmOperandClass { let Name = "T2SOImmNeg"; }
+def t2_so_imm_neg : Operand<i32>, PatLeaf<(imm), [{
+ int64_t Value = -(int)N->getZExtValue();
+ return Value && ARM_AM::getT2SOImmVal(Value) != -1;
+}], t2_so_imm_neg_XFORM> {
+ let ParserMatchClass = t2_so_imm_neg_asmoperand;
+}
+
+/// imm0_4095 predicate - True if the 32-bit immediate is in the range [0.4095].
+def imm0_4095_asmoperand: ImmAsmOperand { let Name = "Imm0_4095"; }
+def imm0_4095 : Operand<i32>, ImmLeaf<i32, [{
+ return Imm >= 0 && Imm < 4096;
+}]> {
+ let ParserMatchClass = imm0_4095_asmoperand;
+}
+
+def imm0_4095_neg_asmoperand: AsmOperandClass { let Name = "Imm0_4095Neg"; }
+def imm0_4095_neg : Operand<i32>, PatLeaf<(i32 imm), [{
+ return (uint32_t)(-N->getZExtValue()) < 4096;
+}], imm_neg_XFORM> {
+ let ParserMatchClass = imm0_4095_neg_asmoperand;
+}
+
+def imm1_255_neg : PatLeaf<(i32 imm), [{
+ uint32_t Val = -N->getZExtValue();
+ return (Val > 0 && Val < 255);
+}], imm_neg_XFORM>;
+
+def imm0_255_not : PatLeaf<(i32 imm), [{
+ return (uint32_t)(~N->getZExtValue()) < 255;
+}], imm_comp_XFORM>;
+
+def lo5AllOne : PatLeaf<(i32 imm), [{
+ // Returns true if all low 5-bits are 1.
+ return (((uint32_t)N->getZExtValue()) & 0x1FUL) == 0x1FUL;
+}]>;
+
+// Define Thumb2 specific addressing modes.
+
+// t2addrmode_imm12 := reg + imm12
+def t2addrmode_imm12_asmoperand : AsmOperandClass {let Name="MemUImm12Offset";}
+def t2addrmode_imm12 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectT2AddrModeImm12", []> {
+ let PrintMethod = "printAddrModeImm12Operand<false>";
+ let EncoderMethod = "getAddrModeImm12OpValue";
+ let DecoderMethod = "DecodeT2AddrModeImm12";
+ let ParserMatchClass = t2addrmode_imm12_asmoperand;
+ let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
+}
+
+// t2ldrlabel := imm12
+def t2ldrlabel : Operand<i32> {
+ let EncoderMethod = "getAddrModeImm12OpValue";
+ let PrintMethod = "printThumbLdrLabelOperand";
+}
+
+def t2ldr_pcrel_imm12_asmoperand : AsmOperandClass {let Name = "MemPCRelImm12";}
+def t2ldr_pcrel_imm12 : Operand<i32> {
+ let ParserMatchClass = t2ldr_pcrel_imm12_asmoperand;
+ // used for assembler pseudo instruction and maps to t2ldrlabel, so
+ // doesn't need encoder or print methods of its own.
+}
+
+// ADR instruction labels.
+def t2adrlabel : Operand<i32> {
+ let EncoderMethod = "getT2AdrLabelOpValue";
+ let PrintMethod = "printAdrLabelOperand<0>";
+}
+
+// t2addrmode_posimm8 := reg + imm8
+def MemPosImm8OffsetAsmOperand : AsmOperandClass {let Name="MemPosImm8Offset";}
+def t2addrmode_posimm8 : Operand<i32> {
+ let PrintMethod = "printT2AddrModeImm8Operand<false>";
+ let EncoderMethod = "getT2AddrModeImm8OpValue";
+ let DecoderMethod = "DecodeT2AddrModeImm8";
+ let ParserMatchClass = MemPosImm8OffsetAsmOperand;
+ let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
+}
+
+// t2addrmode_negimm8 := reg - imm8
+def MemNegImm8OffsetAsmOperand : AsmOperandClass {let Name="MemNegImm8Offset";}
+def t2addrmode_negimm8 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectT2AddrModeImm8", []> {
+ let PrintMethod = "printT2AddrModeImm8Operand<false>";
+ let EncoderMethod = "getT2AddrModeImm8OpValue";
+ let DecoderMethod = "DecodeT2AddrModeImm8";
+ let ParserMatchClass = MemNegImm8OffsetAsmOperand;
+ let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
+}
+
+// t2addrmode_imm8 := reg +/- imm8
+def MemImm8OffsetAsmOperand : AsmOperandClass { let Name = "MemImm8Offset"; }
+class T2AddrMode_Imm8 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectT2AddrModeImm8", []> {
+ let EncoderMethod = "getT2AddrModeImm8OpValue";
+ let DecoderMethod = "DecodeT2AddrModeImm8";
+ let ParserMatchClass = MemImm8OffsetAsmOperand;
+ let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
+}
+
+def t2addrmode_imm8 : T2AddrMode_Imm8 {
+ let PrintMethod = "printT2AddrModeImm8Operand<false>";
+}
+
+def t2addrmode_imm8_pre : T2AddrMode_Imm8 {
+ let PrintMethod = "printT2AddrModeImm8Operand<true>";
+}
+
+def t2am_imm8_offset : Operand<i32>,
+ ComplexPattern<i32, 1, "SelectT2AddrModeImm8Offset",
+ [], [SDNPWantRoot]> {
+ let PrintMethod = "printT2AddrModeImm8OffsetOperand";
+ let EncoderMethod = "getT2AddrModeImm8OffsetOpValue";
+ let DecoderMethod = "DecodeT2Imm8";
+}
+
+// t2addrmode_imm8s4 := reg +/- (imm8 << 2)
+def MemImm8s4OffsetAsmOperand : AsmOperandClass {let Name = "MemImm8s4Offset";}
+class T2AddrMode_Imm8s4 : Operand<i32> {
+ let EncoderMethod = "getT2AddrModeImm8s4OpValue";
+ let DecoderMethod = "DecodeT2AddrModeImm8s4";
+ let ParserMatchClass = MemImm8s4OffsetAsmOperand;
+ let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
+}
+
+def t2addrmode_imm8s4 : T2AddrMode_Imm8s4 {
+ let PrintMethod = "printT2AddrModeImm8s4Operand<false>";
+}
+
+def t2addrmode_imm8s4_pre : T2AddrMode_Imm8s4 {
+ let PrintMethod = "printT2AddrModeImm8s4Operand<true>";
+}
+
+def t2am_imm8s4_offset_asmoperand : AsmOperandClass { let Name = "Imm8s4"; }
+def t2am_imm8s4_offset : Operand<i32> {
+ let PrintMethod = "printT2AddrModeImm8s4OffsetOperand";
+ let EncoderMethod = "getT2Imm8s4OpValue";
+ let DecoderMethod = "DecodeT2Imm8S4";
+}
+
+// t2addrmode_imm0_1020s4 := reg + (imm8 << 2)
+def MemImm0_1020s4OffsetAsmOperand : AsmOperandClass {
+ let Name = "MemImm0_1020s4Offset";
+}
+def t2addrmode_imm0_1020s4 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectT2AddrModeExclusive"> {
+ let PrintMethod = "printT2AddrModeImm0_1020s4Operand";
+ let EncoderMethod = "getT2AddrModeImm0_1020s4OpValue";
+ let DecoderMethod = "DecodeT2AddrModeImm0_1020s4";
+ let ParserMatchClass = MemImm0_1020s4OffsetAsmOperand;
+ let MIOperandInfo = (ops GPRnopc:$base, i32imm:$offsimm);
+}
+
+// t2addrmode_so_reg := reg + (reg << imm2)
+def t2addrmode_so_reg_asmoperand : AsmOperandClass {let Name="T2MemRegOffset";}
+def t2addrmode_so_reg : Operand<i32>,
+ ComplexPattern<i32, 3, "SelectT2AddrModeSoReg", []> {
+ let PrintMethod = "printT2AddrModeSoRegOperand";
+ let EncoderMethod = "getT2AddrModeSORegOpValue";
+ let DecoderMethod = "DecodeT2AddrModeSOReg";
+ let ParserMatchClass = t2addrmode_so_reg_asmoperand;
+ let MIOperandInfo = (ops GPR:$base, rGPR:$offsreg, i32imm:$offsimm);
+}
+
+// Addresses for the TBB/TBH instructions.
+def addrmode_tbb_asmoperand : AsmOperandClass { let Name = "MemTBB"; }
+def addrmode_tbb : Operand<i32> {
+ let PrintMethod = "printAddrModeTBB";
+ let ParserMatchClass = addrmode_tbb_asmoperand;
+ let MIOperandInfo = (ops GPR:$Rn, rGPR:$Rm);
+}
+def addrmode_tbh_asmoperand : AsmOperandClass { let Name = "MemTBH"; }
+def addrmode_tbh : Operand<i32> {
+ let PrintMethod = "printAddrModeTBH";
+ let ParserMatchClass = addrmode_tbh_asmoperand;
+ let MIOperandInfo = (ops GPR:$Rn, rGPR:$Rm);
+}
+
+//===----------------------------------------------------------------------===//
+// Multiclass helpers...
+//
+
+
+class T2OneRegImm<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<12> imm;
+
+ let Inst{11-8} = Rd;
+ let Inst{26} = imm{11};
+ let Inst{14-12} = imm{10-8};
+ let Inst{7-0} = imm{7-0};
+}
+
+
+class T2sOneRegImm<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2sI<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> imm;
+
+ let Inst{11-8} = Rd;
+ let Inst{26} = imm{11};
+ let Inst{14-12} = imm{10-8};
+ let Inst{7-0} = imm{7-0};
+}
+
+class T2OneRegCmpImm<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rn;
+ bits<12> imm;
+
+ let Inst{19-16} = Rn;
+ let Inst{26} = imm{11};
+ let Inst{14-12} = imm{10-8};
+ let Inst{7-0} = imm{7-0};
+}
+
+
+class T2OneRegShiftedReg<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<12> ShiftedRm;
+
+ let Inst{11-8} = Rd;
+ let Inst{3-0} = ShiftedRm{3-0};
+ let Inst{5-4} = ShiftedRm{6-5};
+ let Inst{14-12} = ShiftedRm{11-9};
+ let Inst{7-6} = ShiftedRm{8-7};
+}
+
+class T2sOneRegShiftedReg<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2sI<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<12> ShiftedRm;
+
+ let Inst{11-8} = Rd;
+ let Inst{3-0} = ShiftedRm{3-0};
+ let Inst{5-4} = ShiftedRm{6-5};
+ let Inst{14-12} = ShiftedRm{11-9};
+ let Inst{7-6} = ShiftedRm{8-7};
+}
+
+class T2OneRegCmpShiftedReg<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rn;
+ bits<12> ShiftedRm;
+
+ let Inst{19-16} = Rn;
+ let Inst{3-0} = ShiftedRm{3-0};
+ let Inst{5-4} = ShiftedRm{6-5};
+ let Inst{14-12} = ShiftedRm{11-9};
+ let Inst{7-6} = ShiftedRm{8-7};
+}
+
+class T2TwoReg<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rm;
+
+ let Inst{11-8} = Rd;
+ let Inst{3-0} = Rm;
+}
+
+class T2sTwoReg<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2sI<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rm;
+
+ let Inst{11-8} = Rd;
+ let Inst{3-0} = Rm;
+}
+
+class T2TwoRegCmp<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rn;
+ bits<4> Rm;
+
+ let Inst{19-16} = Rn;
+ let Inst{3-0} = Rm;
+}
+
+
+class T2TwoRegImm<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> imm;
+
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{26} = imm{11};
+ let Inst{14-12} = imm{10-8};
+ let Inst{7-0} = imm{7-0};
+}
+
+class T2sTwoRegImm<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2sI<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> imm;
+
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{26} = imm{11};
+ let Inst{14-12} = imm{10-8};
+ let Inst{7-0} = imm{7-0};
+}
+
+class T2TwoRegShiftImm<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rm;
+ bits<5> imm;
+
+ let Inst{11-8} = Rd;
+ let Inst{3-0} = Rm;
+ let Inst{14-12} = imm{4-2};
+ let Inst{7-6} = imm{1-0};
+}
+
+class T2sTwoRegShiftImm<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2sI<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rm;
+ bits<5> imm;
+
+ let Inst{11-8} = Rd;
+ let Inst{3-0} = Rm;
+ let Inst{14-12} = imm{4-2};
+ let Inst{7-6} = imm{1-0};
+}
+
+class T2ThreeReg<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{3-0} = Rm;
+}
+
+class T2ThreeRegNoP<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : T2XI<oops, iops, itin, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{3-0} = Rm;
+}
+
+class T2sThreeReg<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2sI<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{3-0} = Rm;
+}
+
+class T2TwoRegShiftedReg<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> ShiftedRm;
+
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{3-0} = ShiftedRm{3-0};
+ let Inst{5-4} = ShiftedRm{6-5};
+ let Inst{14-12} = ShiftedRm{11-9};
+ let Inst{7-6} = ShiftedRm{8-7};
+}
+
+class T2sTwoRegShiftedReg<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2sI<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> ShiftedRm;
+
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{3-0} = ShiftedRm{3-0};
+ let Inst{5-4} = ShiftedRm{6-5};
+ let Inst{14-12} = ShiftedRm{11-9};
+ let Inst{7-6} = ShiftedRm{8-7};
+}
+
+class T2FourReg<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+ bits<4> Ra;
+
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = Ra;
+ let Inst{11-8} = Rd;
+ let Inst{3-0} = Rm;
+}
+
+class T2MulLong<bits<3> opc22_20, bits<4> opc7_4,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> RdLo;
+ bits<4> RdHi;
+ bits<4> Rn;
+ bits<4> Rm;
+
+ let Inst{31-23} = 0b111110111;
+ let Inst{22-20} = opc22_20;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = RdLo;
+ let Inst{11-8} = RdHi;
+ let Inst{7-4} = opc7_4;
+ let Inst{3-0} = Rm;
+}
+class T2MlaLong<bits<3> opc22_20, bits<4> opc7_4,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> RdLo;
+ bits<4> RdHi;
+ bits<4> Rn;
+ bits<4> Rm;
+
+ let Inst{31-23} = 0b111110111;
+ let Inst{22-20} = opc22_20;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = RdLo;
+ let Inst{11-8} = RdHi;
+ let Inst{7-4} = opc7_4;
+ let Inst{3-0} = Rm;
+}
+
+
+/// T2I_bin_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a
+/// binary operation that produces a value. These are predicable and can be
+/// changed to modify CPSR.
+multiclass T2I_bin_irs<bits<4> opcod, string opc,
+ InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
+ PatFrag opnode, bit Commutable = 0,
+ string wide = ""> {
+ // shifted imm
+ def ri : T2sTwoRegImm<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, t2_so_imm:$imm), iii,
+ opc, "\t$Rd, $Rn, $imm",
+ [(set rGPR:$Rd, (opnode rGPR:$Rn, t2_so_imm:$imm))]>,
+ Sched<[WriteALU, ReadALU]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 0;
+ let Inst{24-21} = opcod;
+ let Inst{15} = 0;
+ }
+ // register
+ def rr : T2sThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), iir,
+ opc, !strconcat(wide, "\t$Rd, $Rn, $Rm"),
+ [(set rGPR:$Rd, (opnode rGPR:$Rn, rGPR:$Rm))]>,
+ Sched<[WriteALU, ReadALU, ReadALU]> {
+ let isCommutable = Commutable;
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = opcod;
+ let Inst{14-12} = 0b000; // imm3
+ let Inst{7-6} = 0b00; // imm2
+ let Inst{5-4} = 0b00; // type
+ }
+ // shifted register
+ def rs : T2sTwoRegShiftedReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, t2_so_reg:$ShiftedRm), iis,
+ opc, !strconcat(wide, "\t$Rd, $Rn, $ShiftedRm"),
+ [(set rGPR:$Rd, (opnode rGPR:$Rn, t2_so_reg:$ShiftedRm))]>,
+ Sched<[WriteALUsi, ReadALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = opcod;
+ }
+ // Assembly aliases for optional destination operand when it's the same
+ // as the source operand.
+ def : t2InstAlias<!strconcat(opc, "${s}${p} $Rdn, $imm"),
+ (!cast<Instruction>(NAME#"ri") rGPR:$Rdn, rGPR:$Rdn,
+ t2_so_imm:$imm, pred:$p,
+ cc_out:$s)>;
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", wide, " $Rdn, $Rm"),
+ (!cast<Instruction>(NAME#"rr") rGPR:$Rdn, rGPR:$Rdn,
+ rGPR:$Rm, pred:$p,
+ cc_out:$s)>;
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", wide, " $Rdn, $shift"),
+ (!cast<Instruction>(NAME#"rs") rGPR:$Rdn, rGPR:$Rdn,
+ t2_so_reg:$shift, pred:$p,
+ cc_out:$s)>;
+}
+
+/// T2I_bin_w_irs - Same as T2I_bin_irs except these operations need
+// the ".w" suffix to indicate that they are wide.
+multiclass T2I_bin_w_irs<bits<4> opcod, string opc,
+ InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
+ PatFrag opnode, bit Commutable = 0> :
+ T2I_bin_irs<opcod, opc, iii, iir, iis, opnode, Commutable, ".w"> {
+ // Assembler aliases w/ the ".w" suffix.
+ def : t2InstAlias<!strconcat(opc, "${s}${p}.w", " $Rd, $Rn, $imm"),
+ (!cast<Instruction>(NAME#"ri") rGPR:$Rd, rGPR:$Rn, t2_so_imm:$imm, pred:$p,
+ cc_out:$s)>;
+ // Assembler aliases w/o the ".w" suffix.
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", " $Rd, $Rn, $Rm"),
+ (!cast<Instruction>(NAME#"rr") rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, pred:$p,
+ cc_out:$s)>;
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", " $Rd, $Rn, $shift"),
+ (!cast<Instruction>(NAME#"rs") rGPR:$Rd, rGPR:$Rn, t2_so_reg:$shift,
+ pred:$p, cc_out:$s)>;
+
+ // and with the optional destination operand, too.
+ def : t2InstAlias<!strconcat(opc, "${s}${p}.w", " $Rdn, $imm"),
+ (!cast<Instruction>(NAME#"ri") rGPR:$Rdn, rGPR:$Rdn, t2_so_imm:$imm,
+ pred:$p, cc_out:$s)>;
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", " $Rdn, $Rm"),
+ (!cast<Instruction>(NAME#"rr") rGPR:$Rdn, rGPR:$Rdn, rGPR:$Rm, pred:$p,
+ cc_out:$s)>;
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", " $Rdn, $shift"),
+ (!cast<Instruction>(NAME#"rs") rGPR:$Rdn, rGPR:$Rdn, t2_so_reg:$shift,
+ pred:$p, cc_out:$s)>;
+}
+
+/// T2I_rbin_is - Same as T2I_bin_irs except the order of operands are
+/// reversed. The 'rr' form is only defined for the disassembler; for codegen
+/// it is equivalent to the T2I_bin_irs counterpart.
+multiclass T2I_rbin_irs<bits<4> opcod, string opc, PatFrag opnode> {
+ // shifted imm
+ def ri : T2sTwoRegImm<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, t2_so_imm:$imm), IIC_iALUi,
+ opc, ".w\t$Rd, $Rn, $imm",
+ [(set rGPR:$Rd, (opnode t2_so_imm:$imm, rGPR:$Rn))]>,
+ Sched<[WriteALU, ReadALU]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 0;
+ let Inst{24-21} = opcod;
+ let Inst{15} = 0;
+ }
+ // register
+ def rr : T2sThreeReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iALUr,
+ opc, "\t$Rd, $Rn, $Rm",
+ [/* For disassembly only; pattern left blank */]>,
+ Sched<[WriteALU, ReadALU, ReadALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = opcod;
+ let Inst{14-12} = 0b000; // imm3
+ let Inst{7-6} = 0b00; // imm2
+ let Inst{5-4} = 0b00; // type
+ }
+ // shifted register
+ def rs : T2sTwoRegShiftedReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, t2_so_reg:$ShiftedRm),
+ IIC_iALUsir, opc, "\t$Rd, $Rn, $ShiftedRm",
+ [(set rGPR:$Rd, (opnode t2_so_reg:$ShiftedRm, rGPR:$Rn))]>,
+ Sched<[WriteALUsi, ReadALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = opcod;
+ }
+}
+
+/// T2I_bin_s_irs - Similar to T2I_bin_irs except it sets the 's' bit so the
+/// instruction modifies the CPSR register.
+///
+/// These opcodes will be converted to the real non-S opcodes by
+/// AdjustInstrPostInstrSelection after giving then an optional CPSR operand.
+let hasPostISelHook = 1, Defs = [CPSR] in {
+multiclass T2I_bin_s_irs<InstrItinClass iii, InstrItinClass iir,
+ InstrItinClass iis, PatFrag opnode,
+ bit Commutable = 0> {
+ // shifted imm
+ def ri : t2PseudoInst<(outs rGPR:$Rd),
+ (ins GPRnopc:$Rn, t2_so_imm:$imm, pred:$p),
+ 4, iii,
+ [(set rGPR:$Rd, CPSR, (opnode GPRnopc:$Rn,
+ t2_so_imm:$imm))]>,
+ Sched<[WriteALU, ReadALU]>;
+ // register
+ def rr : t2PseudoInst<(outs rGPR:$Rd), (ins GPRnopc:$Rn, rGPR:$Rm, pred:$p),
+ 4, iir,
+ [(set rGPR:$Rd, CPSR, (opnode GPRnopc:$Rn,
+ rGPR:$Rm))]>,
+ Sched<[WriteALU, ReadALU, ReadALU]> {
+ let isCommutable = Commutable;
+ }
+ // shifted register
+ def rs : t2PseudoInst<(outs rGPR:$Rd),
+ (ins GPRnopc:$Rn, t2_so_reg:$ShiftedRm, pred:$p),
+ 4, iis,
+ [(set rGPR:$Rd, CPSR, (opnode GPRnopc:$Rn,
+ t2_so_reg:$ShiftedRm))]>,
+ Sched<[WriteALUsi, ReadALUsr]>;
+}
+}
+
+/// T2I_rbin_s_is - Same as T2I_bin_s_irs, except selection DAG
+/// operands are reversed.
+let hasPostISelHook = 1, Defs = [CPSR] in {
+multiclass T2I_rbin_s_is<PatFrag opnode> {
+ // shifted imm
+ def ri : t2PseudoInst<(outs rGPR:$Rd),
+ (ins rGPR:$Rn, t2_so_imm:$imm, pred:$p),
+ 4, IIC_iALUi,
+ [(set rGPR:$Rd, CPSR, (opnode t2_so_imm:$imm,
+ rGPR:$Rn))]>,
+ Sched<[WriteALU, ReadALU]>;
+ // shifted register
+ def rs : t2PseudoInst<(outs rGPR:$Rd),
+ (ins rGPR:$Rn, t2_so_reg:$ShiftedRm, pred:$p),
+ 4, IIC_iALUsi,
+ [(set rGPR:$Rd, CPSR, (opnode t2_so_reg:$ShiftedRm,
+ rGPR:$Rn))]>,
+ Sched<[WriteALUsi, ReadALU]>;
+}
+}
+
+/// T2I_bin_ii12rs - Defines a set of (op reg, {so_imm|imm0_4095|r|so_reg})
+/// patterns for a binary operation that produces a value.
+multiclass T2I_bin_ii12rs<bits<3> op23_21, string opc, PatFrag opnode,
+ bit Commutable = 0> {
+ // shifted imm
+ // The register-immediate version is re-materializable. This is useful
+ // in particular for taking the address of a local.
+ let isReMaterializable = 1 in {
+ def ri : T2sTwoRegImm<
+ (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, t2_so_imm:$imm), IIC_iALUi,
+ opc, ".w\t$Rd, $Rn, $imm",
+ [(set GPRnopc:$Rd, (opnode GPRnopc:$Rn, t2_so_imm:$imm))]>,
+ Sched<[WriteALU, ReadALU]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 0;
+ let Inst{24} = 1;
+ let Inst{23-21} = op23_21;
+ let Inst{15} = 0;
+ }
+ }
+ // 12-bit imm
+ def ri12 : T2I<
+ (outs GPRnopc:$Rd), (ins GPR:$Rn, imm0_4095:$imm), IIC_iALUi,
+ !strconcat(opc, "w"), "\t$Rd, $Rn, $imm",
+ [(set GPRnopc:$Rd, (opnode GPR:$Rn, imm0_4095:$imm))]>,
+ Sched<[WriteALU, ReadALU]> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<12> imm;
+ let Inst{31-27} = 0b11110;
+ let Inst{26} = imm{11};
+ let Inst{25-24} = 0b10;
+ let Inst{23-21} = op23_21;
+ let Inst{20} = 0; // The S bit.
+ let Inst{19-16} = Rn;
+ let Inst{15} = 0;
+ let Inst{14-12} = imm{10-8};
+ let Inst{11-8} = Rd;
+ let Inst{7-0} = imm{7-0};
+ }
+ // register
+ def rr : T2sThreeReg<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, rGPR:$Rm),
+ IIC_iALUr, opc, ".w\t$Rd, $Rn, $Rm",
+ [(set GPRnopc:$Rd, (opnode GPRnopc:$Rn, rGPR:$Rm))]>,
+ Sched<[WriteALU, ReadALU, ReadALU]> {
+ let isCommutable = Commutable;
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24} = 1;
+ let Inst{23-21} = op23_21;
+ let Inst{14-12} = 0b000; // imm3
+ let Inst{7-6} = 0b00; // imm2
+ let Inst{5-4} = 0b00; // type
+ }
+ // shifted register
+ def rs : T2sTwoRegShiftedReg<
+ (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, t2_so_reg:$ShiftedRm),
+ IIC_iALUsi, opc, ".w\t$Rd, $Rn, $ShiftedRm",
+ [(set GPRnopc:$Rd, (opnode GPRnopc:$Rn, t2_so_reg:$ShiftedRm))]>,
+ Sched<[WriteALUsi, ReadALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24} = 1;
+ let Inst{23-21} = op23_21;
+ }
+}
+
+/// T2I_adde_sube_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns
+/// for a binary operation that produces a value and use the carry
+/// bit. It's not predicable.
+let Defs = [CPSR], Uses = [CPSR] in {
+multiclass T2I_adde_sube_irs<bits<4> opcod, string opc, PatFrag opnode,
+ bit Commutable = 0> {
+ // shifted imm
+ def ri : T2sTwoRegImm<(outs rGPR:$Rd), (ins rGPR:$Rn, t2_so_imm:$imm),
+ IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
+ [(set rGPR:$Rd, CPSR, (opnode rGPR:$Rn, t2_so_imm:$imm, CPSR))]>,
+ Requires<[IsThumb2]>, Sched<[WriteALU, ReadALU]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 0;
+ let Inst{24-21} = opcod;
+ let Inst{15} = 0;
+ }
+ // register
+ def rr : T2sThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iALUr,
+ opc, ".w\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, CPSR, (opnode rGPR:$Rn, rGPR:$Rm, CPSR))]>,
+ Requires<[IsThumb2]>, Sched<[WriteALU, ReadALU, ReadALU]> {
+ let isCommutable = Commutable;
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = opcod;
+ let Inst{14-12} = 0b000; // imm3
+ let Inst{7-6} = 0b00; // imm2
+ let Inst{5-4} = 0b00; // type
+ }
+ // shifted register
+ def rs : T2sTwoRegShiftedReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, t2_so_reg:$ShiftedRm),
+ IIC_iALUsi, opc, ".w\t$Rd, $Rn, $ShiftedRm",
+ [(set rGPR:$Rd, CPSR, (opnode rGPR:$Rn, t2_so_reg:$ShiftedRm, CPSR))]>,
+ Requires<[IsThumb2]>, Sched<[WriteALUsi, ReadALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = opcod;
+ }
+}
+}
+
+/// T2I_sh_ir - Defines a set of (op reg, {so_imm|r}) patterns for a shift /
+// rotate operation that produces a value.
+multiclass T2I_sh_ir<bits<2> opcod, string opc, Operand ty, PatFrag opnode> {
+ // 5-bit imm
+ def ri : T2sTwoRegShiftImm<
+ (outs rGPR:$Rd), (ins rGPR:$Rm, ty:$imm), IIC_iMOVsi,
+ opc, ".w\t$Rd, $Rm, $imm",
+ [(set rGPR:$Rd, (opnode rGPR:$Rm, (i32 ty:$imm)))]>,
+ Sched<[WriteALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-21} = 0b010010;
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{5-4} = opcod;
+ }
+ // register
+ def rr : T2sThreeReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMOVsr,
+ opc, ".w\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, (opnode rGPR:$Rn, rGPR:$Rm))]>,
+ Sched<[WriteALU]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0100;
+ let Inst{22-21} = opcod;
+ let Inst{15-12} = 0b1111;
+ let Inst{7-4} = 0b0000;
+ }
+
+ // Optional destination register
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", ".w $Rdn, $imm"),
+ (!cast<Instruction>(NAME#"ri") rGPR:$Rdn, rGPR:$Rdn, ty:$imm, pred:$p,
+ cc_out:$s)>;
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", ".w $Rdn, $Rm"),
+ (!cast<Instruction>(NAME#"rr") rGPR:$Rdn, rGPR:$Rdn, rGPR:$Rm, pred:$p,
+ cc_out:$s)>;
+
+ // Assembler aliases w/o the ".w" suffix.
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", " $Rd, $Rn, $imm"),
+ (!cast<Instruction>(NAME#"ri") rGPR:$Rd, rGPR:$Rn, ty:$imm, pred:$p,
+ cc_out:$s)>;
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", " $Rd, $Rn, $Rm"),
+ (!cast<Instruction>(NAME#"rr") rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, pred:$p,
+ cc_out:$s)>;
+
+ // and with the optional destination operand, too.
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", " $Rdn, $imm"),
+ (!cast<Instruction>(NAME#"ri") rGPR:$Rdn, rGPR:$Rdn, ty:$imm, pred:$p,
+ cc_out:$s)>;
+ def : t2InstAlias<!strconcat(opc, "${s}${p}", " $Rdn, $Rm"),
+ (!cast<Instruction>(NAME#"rr") rGPR:$Rdn, rGPR:$Rdn, rGPR:$Rm, pred:$p,
+ cc_out:$s)>;
+}
+
+/// T2I_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test
+/// patterns. Similar to T2I_bin_irs except the instruction does not produce
+/// a explicit result, only implicitly set CPSR.
+multiclass T2I_cmp_irs<bits<4> opcod, string opc,
+ InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
+ PatFrag opnode> {
+let isCompare = 1, Defs = [CPSR] in {
+ // shifted imm
+ def ri : T2OneRegCmpImm<
+ (outs), (ins GPRnopc:$Rn, t2_so_imm:$imm), iii,
+ opc, ".w\t$Rn, $imm",
+ [(opnode GPRnopc:$Rn, t2_so_imm:$imm)]>, Sched<[WriteCMP]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 0;
+ let Inst{24-21} = opcod;
+ let Inst{20} = 1; // The S bit.
+ let Inst{15} = 0;
+ let Inst{11-8} = 0b1111; // Rd
+ }
+ // register
+ def rr : T2TwoRegCmp<
+ (outs), (ins GPRnopc:$Rn, rGPR:$Rm), iir,
+ opc, ".w\t$Rn, $Rm",
+ [(opnode GPRnopc:$Rn, rGPR:$Rm)]>, Sched<[WriteCMP]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = opcod;
+ let Inst{20} = 1; // The S bit.
+ let Inst{14-12} = 0b000; // imm3
+ let Inst{11-8} = 0b1111; // Rd
+ let Inst{7-6} = 0b00; // imm2
+ let Inst{5-4} = 0b00; // type
+ }
+ // shifted register
+ def rs : T2OneRegCmpShiftedReg<
+ (outs), (ins GPRnopc:$Rn, t2_so_reg:$ShiftedRm), iis,
+ opc, ".w\t$Rn, $ShiftedRm",
+ [(opnode GPRnopc:$Rn, t2_so_reg:$ShiftedRm)]>,
+ Sched<[WriteCMPsi]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = opcod;
+ let Inst{20} = 1; // The S bit.
+ let Inst{11-8} = 0b1111; // Rd
+ }
+}
+
+ // Assembler aliases w/o the ".w" suffix.
+ // No alias here for 'rr' version as not all instantiations of this
+ // multiclass want one (CMP in particular, does not).
+ def : t2InstAlias<!strconcat(opc, "${p}", " $Rn, $imm"),
+ (!cast<Instruction>(NAME#"ri") GPRnopc:$Rn, t2_so_imm:$imm, pred:$p)>;
+ def : t2InstAlias<!strconcat(opc, "${p}", " $Rn, $shift"),
+ (!cast<Instruction>(NAME#"rs") GPRnopc:$Rn, t2_so_reg:$shift, pred:$p)>;
+}
+
+/// T2I_ld - Defines a set of (op r, {imm12|imm8|so_reg}) load patterns.
+multiclass T2I_ld<bit signed, bits<2> opcod, string opc,
+ InstrItinClass iii, InstrItinClass iis, RegisterClass target,
+ PatFrag opnode> {
+ def i12 : T2Ii12<(outs target:$Rt), (ins t2addrmode_imm12:$addr), iii,
+ opc, ".w\t$Rt, $addr",
+ [(set target:$Rt, (opnode t2addrmode_imm12:$addr))]> {
+ bits<4> Rt;
+ bits<17> addr;
+ let Inst{31-25} = 0b1111100;
+ let Inst{24} = signed;
+ let Inst{23} = 1;
+ let Inst{22-21} = opcod;
+ let Inst{20} = 1; // load
+ let Inst{19-16} = addr{16-13}; // Rn
+ let Inst{15-12} = Rt;
+ let Inst{11-0} = addr{11-0}; // imm
+
+ let DecoderMethod = "DecodeT2LoadImm12";
+ }
+ def i8 : T2Ii8 <(outs target:$Rt), (ins t2addrmode_negimm8:$addr), iii,
+ opc, "\t$Rt, $addr",
+ [(set target:$Rt, (opnode t2addrmode_negimm8:$addr))]> {
+ bits<4> Rt;
+ bits<13> addr;
+ let Inst{31-27} = 0b11111;
+ let Inst{26-25} = 0b00;
+ let Inst{24} = signed;
+ let Inst{23} = 0;
+ let Inst{22-21} = opcod;
+ let Inst{20} = 1; // load
+ let Inst{19-16} = addr{12-9}; // Rn
+ let Inst{15-12} = Rt;
+ let Inst{11} = 1;
+ // Offset: index==TRUE, wback==FALSE
+ let Inst{10} = 1; // The P bit.
+ let Inst{9} = addr{8}; // U
+ let Inst{8} = 0; // The W bit.
+ let Inst{7-0} = addr{7-0}; // imm
+
+ let DecoderMethod = "DecodeT2LoadImm8";
+ }
+ def s : T2Iso <(outs target:$Rt), (ins t2addrmode_so_reg:$addr), iis,
+ opc, ".w\t$Rt, $addr",
+ [(set target:$Rt, (opnode t2addrmode_so_reg:$addr))]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-25} = 0b00;
+ let Inst{24} = signed;
+ let Inst{23} = 0;
+ let Inst{22-21} = opcod;
+ let Inst{20} = 1; // load
+ let Inst{11-6} = 0b000000;
+
+ bits<4> Rt;
+ let Inst{15-12} = Rt;
+
+ bits<10> addr;
+ let Inst{19-16} = addr{9-6}; // Rn
+ let Inst{3-0} = addr{5-2}; // Rm
+ let Inst{5-4} = addr{1-0}; // imm
+
+ let DecoderMethod = "DecodeT2LoadShift";
+ }
+
+ // pci variant is very similar to i12, but supports negative offsets
+ // from the PC.
+ def pci : T2Ipc <(outs target:$Rt), (ins t2ldrlabel:$addr), iii,
+ opc, ".w\t$Rt, $addr",
+ [(set target:$Rt, (opnode (ARMWrapper tconstpool:$addr)))]> {
+ let isReMaterializable = 1;
+ let Inst{31-27} = 0b11111;
+ let Inst{26-25} = 0b00;
+ let Inst{24} = signed;
+ let Inst{22-21} = opcod;
+ let Inst{20} = 1; // load
+ let Inst{19-16} = 0b1111; // Rn
+
+ bits<4> Rt;
+ let Inst{15-12} = Rt{3-0};
+
+ bits<13> addr;
+ let Inst{23} = addr{12}; // add = (U == '1')
+ let Inst{11-0} = addr{11-0};
+
+ let DecoderMethod = "DecodeT2LoadLabel";
+ }
+}
+
+/// T2I_st - Defines a set of (op r, {imm12|imm8|so_reg}) store patterns.
+multiclass T2I_st<bits<2> opcod, string opc,
+ InstrItinClass iii, InstrItinClass iis, RegisterClass target,
+ PatFrag opnode> {
+ def i12 : T2Ii12<(outs), (ins target:$Rt, t2addrmode_imm12:$addr), iii,
+ opc, ".w\t$Rt, $addr",
+ [(opnode target:$Rt, t2addrmode_imm12:$addr)]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0001;
+ let Inst{22-21} = opcod;
+ let Inst{20} = 0; // !load
+
+ bits<4> Rt;
+ let Inst{15-12} = Rt;
+
+ bits<17> addr;
+ let addr{12} = 1; // add = TRUE
+ let Inst{19-16} = addr{16-13}; // Rn
+ let Inst{23} = addr{12}; // U
+ let Inst{11-0} = addr{11-0}; // imm
+ }
+ def i8 : T2Ii8 <(outs), (ins target:$Rt, t2addrmode_negimm8:$addr), iii,
+ opc, "\t$Rt, $addr",
+ [(opnode target:$Rt, t2addrmode_negimm8:$addr)]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0000;
+ let Inst{22-21} = opcod;
+ let Inst{20} = 0; // !load
+ let Inst{11} = 1;
+ // Offset: index==TRUE, wback==FALSE
+ let Inst{10} = 1; // The P bit.
+ let Inst{8} = 0; // The W bit.
+
+ bits<4> Rt;
+ let Inst{15-12} = Rt;
+
+ bits<13> addr;
+ let Inst{19-16} = addr{12-9}; // Rn
+ let Inst{9} = addr{8}; // U
+ let Inst{7-0} = addr{7-0}; // imm
+ }
+ def s : T2Iso <(outs), (ins target:$Rt, t2addrmode_so_reg:$addr), iis,
+ opc, ".w\t$Rt, $addr",
+ [(opnode target:$Rt, t2addrmode_so_reg:$addr)]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0000;
+ let Inst{22-21} = opcod;
+ let Inst{20} = 0; // !load
+ let Inst{11-6} = 0b000000;
+
+ bits<4> Rt;
+ let Inst{15-12} = Rt;
+
+ bits<10> addr;
+ let Inst{19-16} = addr{9-6}; // Rn
+ let Inst{3-0} = addr{5-2}; // Rm
+ let Inst{5-4} = addr{1-0}; // imm
+ }
+}
+
+/// T2I_ext_rrot - A unary operation with two forms: one whose operand is a
+/// register and one whose operand is a register rotated by 8/16/24.
+class T2I_ext_rrot<bits<3> opcod, string opc, PatFrag opnode>
+ : T2TwoReg<(outs rGPR:$Rd), (ins rGPR:$Rm, rot_imm:$rot), IIC_iEXTr,
+ opc, ".w\t$Rd, $Rm$rot",
+ [(set rGPR:$Rd, (opnode (rotr rGPR:$Rm, rot_imm:$rot)))]>,
+ Requires<[IsThumb2]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0100;
+ let Inst{22-20} = opcod;
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{15-12} = 0b1111;
+ let Inst{7} = 1;
+
+ bits<2> rot;
+ let Inst{5-4} = rot{1-0}; // rotate
+}
+
+// UXTB16 - Requres T2ExtractPack, does not need the .w qualifier.
+class T2I_ext_rrot_uxtb16<bits<3> opcod, string opc, PatFrag opnode>
+ : T2TwoReg<(outs rGPR:$Rd), (ins rGPR:$Rm, rot_imm:$rot),
+ IIC_iEXTr, opc, "\t$Rd, $Rm$rot",
+ [(set rGPR:$Rd, (opnode (rotr rGPR:$Rm, rot_imm:$rot)))]>,
+ Requires<[HasT2ExtractPack, IsThumb2]> {
+ bits<2> rot;
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0100;
+ let Inst{22-20} = opcod;
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{15-12} = 0b1111;
+ let Inst{7} = 1;
+ let Inst{5-4} = rot;
+}
+
+// SXTB16 - Requres T2ExtractPack, does not need the .w qualifier, no pattern
+// supported yet.
+class T2I_ext_rrot_sxtb16<bits<3> opcod, string opc>
+ : T2TwoReg<(outs rGPR:$Rd), (ins rGPR:$Rm, rot_imm:$rot), IIC_iEXTr,
+ opc, "\t$Rd, $Rm$rot", []>,
+ Requires<[IsThumb2, HasT2ExtractPack]> {
+ bits<2> rot;
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0100;
+ let Inst{22-20} = opcod;
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{15-12} = 0b1111;
+ let Inst{7} = 1;
+ let Inst{5-4} = rot;
+}
+
+/// T2I_exta_rrot - A binary operation with two forms: one whose operand is a
+/// register and one whose operand is a register rotated by 8/16/24.
+class T2I_exta_rrot<bits<3> opcod, string opc, PatFrag opnode>
+ : T2ThreeReg<(outs rGPR:$Rd),
+ (ins rGPR:$Rn, rGPR:$Rm, rot_imm:$rot),
+ IIC_iEXTAsr, opc, "\t$Rd, $Rn, $Rm$rot",
+ [(set rGPR:$Rd, (opnode rGPR:$Rn, (rotr rGPR:$Rm,rot_imm:$rot)))]>,
+ Requires<[HasT2ExtractPack, IsThumb2]> {
+ bits<2> rot;
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0100;
+ let Inst{22-20} = opcod;
+ let Inst{15-12} = 0b1111;
+ let Inst{7} = 1;
+ let Inst{5-4} = rot;
+}
+
+class T2I_exta_rrot_np<bits<3> opcod, string opc>
+ : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm,rot_imm:$rot),
+ IIC_iEXTAsr, opc, "\t$Rd, $Rn, $Rm$rot", []> {
+ bits<2> rot;
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0100;
+ let Inst{22-20} = opcod;
+ let Inst{15-12} = 0b1111;
+ let Inst{7} = 1;
+ let Inst{5-4} = rot;
+}
+
+//===----------------------------------------------------------------------===//
+// Instructions
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instructions.
+//
+
+class T2PCOneRegImm<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : T2XI<oops, iops, itin, asm, pattern> {
+ bits<4> Rd;
+ bits<12> label;
+
+ let Inst{11-8} = Rd;
+ let Inst{26} = label{11};
+ let Inst{14-12} = label{10-8};
+ let Inst{7-0} = label{7-0};
+}
+
+// LEApcrel - Load a pc-relative address into a register without offending the
+// assembler.
+def t2ADR : T2PCOneRegImm<(outs rGPR:$Rd),
+ (ins t2adrlabel:$addr, pred:$p),
+ IIC_iALUi, "adr{$p}.w\t$Rd, $addr", []>,
+ Sched<[WriteALU, ReadALU]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25-24} = 0b10;
+ // Inst{23:21} = '11' (add = FALSE) or '00' (add = TRUE)
+ let Inst{22} = 0;
+ let Inst{20} = 0;
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{15} = 0;
+
+ bits<4> Rd;
+ bits<13> addr;
+ let Inst{11-8} = Rd;
+ let Inst{23} = addr{12};
+ let Inst{21} = addr{12};
+ let Inst{26} = addr{11};
+ let Inst{14-12} = addr{10-8};
+ let Inst{7-0} = addr{7-0};
+
+ let DecoderMethod = "DecodeT2Adr";
+}
+
+let neverHasSideEffects = 1, isReMaterializable = 1 in
+def t2LEApcrel : t2PseudoInst<(outs rGPR:$Rd), (ins i32imm:$label, pred:$p),
+ 4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
+let hasSideEffects = 1 in
+def t2LEApcrelJT : t2PseudoInst<(outs rGPR:$Rd),
+ (ins i32imm:$label, nohash_imm:$id, pred:$p),
+ 4, IIC_iALUi,
+ []>, Sched<[WriteALU, ReadALU]>;
+
+
+//===----------------------------------------------------------------------===//
+// Load / store Instructions.
+//
+
+// Load
+let canFoldAsLoad = 1, isReMaterializable = 1 in
+defm t2LDR : T2I_ld<0, 0b10, "ldr", IIC_iLoad_i, IIC_iLoad_si, GPR,
+ UnOpFrag<(load node:$Src)>>;
+
+// Loads with zero extension
+defm t2LDRH : T2I_ld<0, 0b01, "ldrh", IIC_iLoad_bh_i, IIC_iLoad_bh_si,
+ GPR, UnOpFrag<(zextloadi16 node:$Src)>>;
+defm t2LDRB : T2I_ld<0, 0b00, "ldrb", IIC_iLoad_bh_i, IIC_iLoad_bh_si,
+ GPR, UnOpFrag<(zextloadi8 node:$Src)>>;
+
+// Loads with sign extension
+defm t2LDRSH : T2I_ld<1, 0b01, "ldrsh", IIC_iLoad_bh_i, IIC_iLoad_bh_si,
+ GPR, UnOpFrag<(sextloadi16 node:$Src)>>;
+defm t2LDRSB : T2I_ld<1, 0b00, "ldrsb", IIC_iLoad_bh_i, IIC_iLoad_bh_si,
+ GPR, UnOpFrag<(sextloadi8 node:$Src)>>;
+
+let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
+// Load doubleword
+def t2LDRDi8 : T2Ii8s4<1, 0, 1, (outs rGPR:$Rt, rGPR:$Rt2),
+ (ins t2addrmode_imm8s4:$addr),
+ IIC_iLoad_d_i, "ldrd", "\t$Rt, $Rt2, $addr", "", []>;
+} // mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1
+
+// zextload i1 -> zextload i8
+def : T2Pat<(zextloadi1 t2addrmode_imm12:$addr),
+ (t2LDRBi12 t2addrmode_imm12:$addr)>;
+def : T2Pat<(zextloadi1 t2addrmode_negimm8:$addr),
+ (t2LDRBi8 t2addrmode_negimm8:$addr)>;
+def : T2Pat<(zextloadi1 t2addrmode_so_reg:$addr),
+ (t2LDRBs t2addrmode_so_reg:$addr)>;
+def : T2Pat<(zextloadi1 (ARMWrapper tconstpool:$addr)),
+ (t2LDRBpci tconstpool:$addr)>;
+
+// extload -> zextload
+// FIXME: Reduce the number of patterns by legalizing extload to zextload
+// earlier?
+def : T2Pat<(extloadi1 t2addrmode_imm12:$addr),
+ (t2LDRBi12 t2addrmode_imm12:$addr)>;
+def : T2Pat<(extloadi1 t2addrmode_negimm8:$addr),
+ (t2LDRBi8 t2addrmode_negimm8:$addr)>;
+def : T2Pat<(extloadi1 t2addrmode_so_reg:$addr),
+ (t2LDRBs t2addrmode_so_reg:$addr)>;
+def : T2Pat<(extloadi1 (ARMWrapper tconstpool:$addr)),
+ (t2LDRBpci tconstpool:$addr)>;
+
+def : T2Pat<(extloadi8 t2addrmode_imm12:$addr),
+ (t2LDRBi12 t2addrmode_imm12:$addr)>;
+def : T2Pat<(extloadi8 t2addrmode_negimm8:$addr),
+ (t2LDRBi8 t2addrmode_negimm8:$addr)>;
+def : T2Pat<(extloadi8 t2addrmode_so_reg:$addr),
+ (t2LDRBs t2addrmode_so_reg:$addr)>;
+def : T2Pat<(extloadi8 (ARMWrapper tconstpool:$addr)),
+ (t2LDRBpci tconstpool:$addr)>;
+
+def : T2Pat<(extloadi16 t2addrmode_imm12:$addr),
+ (t2LDRHi12 t2addrmode_imm12:$addr)>;
+def : T2Pat<(extloadi16 t2addrmode_negimm8:$addr),
+ (t2LDRHi8 t2addrmode_negimm8:$addr)>;
+def : T2Pat<(extloadi16 t2addrmode_so_reg:$addr),
+ (t2LDRHs t2addrmode_so_reg:$addr)>;
+def : T2Pat<(extloadi16 (ARMWrapper tconstpool:$addr)),
+ (t2LDRHpci tconstpool:$addr)>;
+
+// FIXME: The destination register of the loads and stores can't be PC, but
+// can be SP. We need another regclass (similar to rGPR) to represent
+// that. Not a pressing issue since these are selected manually,
+// not via pattern.
+
+// Indexed loads
+
+let mayLoad = 1, neverHasSideEffects = 1 in {
+def t2LDR_PRE : T2Ipreldst<0, 0b10, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins t2addrmode_imm8_pre:$addr),
+ AddrModeT2_i8, IndexModePre, IIC_iLoad_iu,
+ "ldr", "\t$Rt, $addr!", "$addr.base = $Rn_wb", []>;
+
+def t2LDR_POST : T2Ipostldst<0, 0b10, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$Rn, t2am_imm8_offset:$offset),
+ AddrModeT2_i8, IndexModePost, IIC_iLoad_iu,
+ "ldr", "\t$Rt, $Rn$offset", "$Rn = $Rn_wb", []>;
+
+def t2LDRB_PRE : T2Ipreldst<0, 0b00, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins t2addrmode_imm8_pre:$addr),
+ AddrModeT2_i8, IndexModePre, IIC_iLoad_bh_iu,
+ "ldrb", "\t$Rt, $addr!", "$addr.base = $Rn_wb", []>;
+
+def t2LDRB_POST : T2Ipostldst<0, 0b00, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$Rn, t2am_imm8_offset:$offset),
+ AddrModeT2_i8, IndexModePost, IIC_iLoad_bh_iu,
+ "ldrb", "\t$Rt, $Rn$offset", "$Rn = $Rn_wb", []>;
+
+def t2LDRH_PRE : T2Ipreldst<0, 0b01, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins t2addrmode_imm8_pre:$addr),
+ AddrModeT2_i8, IndexModePre, IIC_iLoad_bh_iu,
+ "ldrh", "\t$Rt, $addr!", "$addr.base = $Rn_wb", []>;
+
+def t2LDRH_POST : T2Ipostldst<0, 0b01, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$Rn, t2am_imm8_offset:$offset),
+ AddrModeT2_i8, IndexModePost, IIC_iLoad_bh_iu,
+ "ldrh", "\t$Rt, $Rn$offset", "$Rn = $Rn_wb", []>;
+
+def t2LDRSB_PRE : T2Ipreldst<1, 0b00, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins t2addrmode_imm8_pre:$addr),
+ AddrModeT2_i8, IndexModePre, IIC_iLoad_bh_iu,
+ "ldrsb", "\t$Rt, $addr!", "$addr.base = $Rn_wb",
+ []>;
+
+def t2LDRSB_POST : T2Ipostldst<1, 0b00, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$Rn, t2am_imm8_offset:$offset),
+ AddrModeT2_i8, IndexModePost, IIC_iLoad_bh_iu,
+ "ldrsb", "\t$Rt, $Rn$offset", "$Rn = $Rn_wb", []>;
+
+def t2LDRSH_PRE : T2Ipreldst<1, 0b01, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins t2addrmode_imm8_pre:$addr),
+ AddrModeT2_i8, IndexModePre, IIC_iLoad_bh_iu,
+ "ldrsh", "\t$Rt, $addr!", "$addr.base = $Rn_wb",
+ []>;
+
+def t2LDRSH_POST : T2Ipostldst<1, 0b01, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
+ (ins addr_offset_none:$Rn, t2am_imm8_offset:$offset),
+ AddrModeT2_i8, IndexModePost, IIC_iLoad_bh_iu,
+ "ldrsh", "\t$Rt, $Rn$offset", "$Rn = $Rn_wb", []>;
+} // mayLoad = 1, neverHasSideEffects = 1
+
+// LDRT, LDRBT, LDRHT, LDRSBT, LDRSHT all have offset mode (PUW=0b110).
+// Ref: A8.6.57 LDR (immediate, Thumb) Encoding T4
+class T2IldT<bit signed, bits<2> type, string opc, InstrItinClass ii>
+ : T2Ii8<(outs rGPR:$Rt), (ins t2addrmode_posimm8:$addr), ii, opc,
+ "\t$Rt, $addr", []> {
+ bits<4> Rt;
+ bits<13> addr;
+ let Inst{31-27} = 0b11111;
+ let Inst{26-25} = 0b00;
+ let Inst{24} = signed;
+ let Inst{23} = 0;
+ let Inst{22-21} = type;
+ let Inst{20} = 1; // load
+ let Inst{19-16} = addr{12-9};
+ let Inst{15-12} = Rt;
+ let Inst{11} = 1;
+ let Inst{10-8} = 0b110; // PUW.
+ let Inst{7-0} = addr{7-0};
+
+ let DecoderMethod = "DecodeT2LoadT";
+}
+
+def t2LDRT : T2IldT<0, 0b10, "ldrt", IIC_iLoad_i>;
+def t2LDRBT : T2IldT<0, 0b00, "ldrbt", IIC_iLoad_bh_i>;
+def t2LDRHT : T2IldT<0, 0b01, "ldrht", IIC_iLoad_bh_i>;
+def t2LDRSBT : T2IldT<1, 0b00, "ldrsbt", IIC_iLoad_bh_i>;
+def t2LDRSHT : T2IldT<1, 0b01, "ldrsht", IIC_iLoad_bh_i>;
+
+class T2Ildacq<bits<4> bits23_20, bits<2> bit54, dag oops, dag iops,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeNone, 4, NoItinerary,
+ opc, asm, "", pattern>, Requires<[IsThumb, HasV8]> {
+ bits<4> Rt;
+ bits<4> addr;
+
+ let Inst{31-27} = 0b11101;
+ let Inst{26-24} = 0b000;
+ let Inst{23-20} = bits23_20;
+ let Inst{11-6} = 0b111110;
+ let Inst{5-4} = bit54;
+ let Inst{3-0} = 0b1111;
+
+ // Encode instruction operands
+ let Inst{19-16} = addr;
+ let Inst{15-12} = Rt;
+}
+
+def t2LDA : T2Ildacq<0b1101, 0b10, (outs rGPR:$Rt),
+ (ins addr_offset_none:$addr), "lda", "\t$Rt, $addr", []>;
+def t2LDAB : T2Ildacq<0b1101, 0b00, (outs rGPR:$Rt),
+ (ins addr_offset_none:$addr), "ldab", "\t$Rt, $addr", []>;
+def t2LDAH : T2Ildacq<0b1101, 0b01, (outs rGPR:$Rt),
+ (ins addr_offset_none:$addr), "ldah", "\t$Rt, $addr", []>;
+
+// Store
+defm t2STR :T2I_st<0b10,"str", IIC_iStore_i, IIC_iStore_si, GPR,
+ BinOpFrag<(store node:$LHS, node:$RHS)>>;
+defm t2STRB:T2I_st<0b00,"strb", IIC_iStore_bh_i, IIC_iStore_bh_si,
+ rGPR, BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
+defm t2STRH:T2I_st<0b01,"strh", IIC_iStore_bh_i, IIC_iStore_bh_si,
+ rGPR, BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>;
+
+// Store doubleword
+let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in
+def t2STRDi8 : T2Ii8s4<1, 0, 0, (outs),
+ (ins rGPR:$Rt, rGPR:$Rt2, t2addrmode_imm8s4:$addr),
+ IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", "", []>;
+
+// Indexed stores
+
+let mayStore = 1, neverHasSideEffects = 1 in {
+def t2STR_PRE : T2Ipreldst<0, 0b10, 0, 1, (outs GPRnopc:$Rn_wb),
+ (ins GPRnopc:$Rt, t2addrmode_imm8_pre:$addr),
+ AddrModeT2_i8, IndexModePre, IIC_iStore_iu,
+ "str", "\t$Rt, $addr!",
+ "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []>;
+
+def t2STRH_PRE : T2Ipreldst<0, 0b01, 0, 1, (outs GPRnopc:$Rn_wb),
+ (ins rGPR:$Rt, t2addrmode_imm8_pre:$addr),
+ AddrModeT2_i8, IndexModePre, IIC_iStore_iu,
+ "strh", "\t$Rt, $addr!",
+ "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []>;
+
+def t2STRB_PRE : T2Ipreldst<0, 0b00, 0, 1, (outs GPRnopc:$Rn_wb),
+ (ins rGPR:$Rt, t2addrmode_imm8_pre:$addr),
+ AddrModeT2_i8, IndexModePre, IIC_iStore_bh_iu,
+ "strb", "\t$Rt, $addr!",
+ "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []>;
+} // mayStore = 1, neverHasSideEffects = 1
+
+def t2STR_POST : T2Ipostldst<0, 0b10, 0, 0, (outs GPRnopc:$Rn_wb),
+ (ins GPRnopc:$Rt, addr_offset_none:$Rn,
+ t2am_imm8_offset:$offset),
+ AddrModeT2_i8, IndexModePost, IIC_iStore_iu,
+ "str", "\t$Rt, $Rn$offset",
+ "$Rn = $Rn_wb,@earlyclobber $Rn_wb",
+ [(set GPRnopc:$Rn_wb,
+ (post_store GPRnopc:$Rt, addr_offset_none:$Rn,
+ t2am_imm8_offset:$offset))]>;
+
+def t2STRH_POST : T2Ipostldst<0, 0b01, 0, 0, (outs GPRnopc:$Rn_wb),
+ (ins rGPR:$Rt, addr_offset_none:$Rn,
+ t2am_imm8_offset:$offset),
+ AddrModeT2_i8, IndexModePost, IIC_iStore_bh_iu,
+ "strh", "\t$Rt, $Rn$offset",
+ "$Rn = $Rn_wb,@earlyclobber $Rn_wb",
+ [(set GPRnopc:$Rn_wb,
+ (post_truncsti16 rGPR:$Rt, addr_offset_none:$Rn,
+ t2am_imm8_offset:$offset))]>;
+
+def t2STRB_POST : T2Ipostldst<0, 0b00, 0, 0, (outs GPRnopc:$Rn_wb),
+ (ins rGPR:$Rt, addr_offset_none:$Rn,
+ t2am_imm8_offset:$offset),
+ AddrModeT2_i8, IndexModePost, IIC_iStore_bh_iu,
+ "strb", "\t$Rt, $Rn$offset",
+ "$Rn = $Rn_wb,@earlyclobber $Rn_wb",
+ [(set GPRnopc:$Rn_wb,
+ (post_truncsti8 rGPR:$Rt, addr_offset_none:$Rn,
+ t2am_imm8_offset:$offset))]>;
+
+// Pseudo-instructions for pattern matching the pre-indexed stores. We can't
+// put the patterns on the instruction definitions directly as ISel wants
+// the address base and offset to be separate operands, not a single
+// complex operand like we represent the instructions themselves. The
+// pseudos map between the two.
+let usesCustomInserter = 1,
+ Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in {
+def t2STR_preidx: t2PseudoInst<(outs GPRnopc:$Rn_wb),
+ (ins rGPR:$Rt, GPRnopc:$Rn, t2am_imm8_offset:$offset, pred:$p),
+ 4, IIC_iStore_ru,
+ [(set GPRnopc:$Rn_wb,
+ (pre_store rGPR:$Rt, GPRnopc:$Rn, t2am_imm8_offset:$offset))]>;
+def t2STRB_preidx: t2PseudoInst<(outs GPRnopc:$Rn_wb),
+ (ins rGPR:$Rt, GPRnopc:$Rn, t2am_imm8_offset:$offset, pred:$p),
+ 4, IIC_iStore_ru,
+ [(set GPRnopc:$Rn_wb,
+ (pre_truncsti8 rGPR:$Rt, GPRnopc:$Rn, t2am_imm8_offset:$offset))]>;
+def t2STRH_preidx: t2PseudoInst<(outs GPRnopc:$Rn_wb),
+ (ins rGPR:$Rt, GPRnopc:$Rn, t2am_imm8_offset:$offset, pred:$p),
+ 4, IIC_iStore_ru,
+ [(set GPRnopc:$Rn_wb,
+ (pre_truncsti16 rGPR:$Rt, GPRnopc:$Rn, t2am_imm8_offset:$offset))]>;
+}
+
+// STRT, STRBT, STRHT all have offset mode (PUW=0b110) and are for disassembly
+// only.
+// Ref: A8.6.193 STR (immediate, Thumb) Encoding T4
+class T2IstT<bits<2> type, string opc, InstrItinClass ii>
+ : T2Ii8<(outs rGPR:$Rt), (ins t2addrmode_imm8:$addr), ii, opc,
+ "\t$Rt, $addr", []> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-25} = 0b00;
+ let Inst{24} = 0; // not signed
+ let Inst{23} = 0;
+ let Inst{22-21} = type;
+ let Inst{20} = 0; // store
+ let Inst{11} = 1;
+ let Inst{10-8} = 0b110; // PUW
+
+ bits<4> Rt;
+ bits<13> addr;
+ let Inst{15-12} = Rt;
+ let Inst{19-16} = addr{12-9};
+ let Inst{7-0} = addr{7-0};
+}
+
+def t2STRT : T2IstT<0b10, "strt", IIC_iStore_i>;
+def t2STRBT : T2IstT<0b00, "strbt", IIC_iStore_bh_i>;
+def t2STRHT : T2IstT<0b01, "strht", IIC_iStore_bh_i>;
+
+// ldrd / strd pre / post variants
+// For disassembly only.
+
+def t2LDRD_PRE : T2Ii8s4<1, 1, 1, (outs rGPR:$Rt, rGPR:$Rt2, GPR:$wb),
+ (ins t2addrmode_imm8s4_pre:$addr), IIC_iLoad_d_ru,
+ "ldrd", "\t$Rt, $Rt2, $addr!", "$addr.base = $wb", []> {
+ let DecoderMethod = "DecodeT2LDRDPreInstruction";
+}
+
+def t2LDRD_POST : T2Ii8s4post<0, 1, 1, (outs rGPR:$Rt, rGPR:$Rt2, GPR:$wb),
+ (ins addr_offset_none:$addr, t2am_imm8s4_offset:$imm),
+ IIC_iLoad_d_ru, "ldrd", "\t$Rt, $Rt2, $addr$imm",
+ "$addr.base = $wb", []>;
+
+def t2STRD_PRE : T2Ii8s4<1, 1, 0, (outs GPR:$wb),
+ (ins rGPR:$Rt, rGPR:$Rt2, t2addrmode_imm8s4_pre:$addr),
+ IIC_iStore_d_ru, "strd", "\t$Rt, $Rt2, $addr!",
+ "$addr.base = $wb", []> {
+ let DecoderMethod = "DecodeT2STRDPreInstruction";
+}
+
+def t2STRD_POST : T2Ii8s4post<0, 1, 0, (outs GPR:$wb),
+ (ins rGPR:$Rt, rGPR:$Rt2, addr_offset_none:$addr,
+ t2am_imm8s4_offset:$imm),
+ IIC_iStore_d_ru, "strd", "\t$Rt, $Rt2, $addr$imm",
+ "$addr.base = $wb", []>;
+
+class T2Istrrel<bits<2> bit54, dag oops, dag iops,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeNone, 4, NoItinerary, opc,
+ asm, "", pattern>, Requires<[IsThumb, HasV8]> {
+ bits<4> Rt;
+ bits<4> addr;
+
+ let Inst{31-27} = 0b11101;
+ let Inst{26-20} = 0b0001100;
+ let Inst{11-6} = 0b111110;
+ let Inst{5-4} = bit54;
+ let Inst{3-0} = 0b1111;
+
+ // Encode instruction operands
+ let Inst{19-16} = addr;
+ let Inst{15-12} = Rt;
+}
+
+def t2STL : T2Istrrel<0b10, (outs), (ins rGPR:$Rt, addr_offset_none:$addr),
+ "stl", "\t$Rt, $addr", []>;
+def t2STLB : T2Istrrel<0b00, (outs), (ins rGPR:$Rt, addr_offset_none:$addr),
+ "stlb", "\t$Rt, $addr", []>;
+def t2STLH : T2Istrrel<0b01, (outs), (ins rGPR:$Rt, addr_offset_none:$addr),
+ "stlh", "\t$Rt, $addr", []>;
+
+// T2Ipl (Preload Data/Instruction) signals the memory system of possible future
+// data/instruction access.
+// instr_write is inverted for Thumb mode: (prefetch 3) -> (preload 0),
+// (prefetch 1) -> (preload 2), (prefetch 2) -> (preload 1).
+multiclass T2Ipl<bits<1> write, bits<1> instr, string opc> {
+
+ def i12 : T2Ii12<(outs), (ins t2addrmode_imm12:$addr), IIC_Preload, opc,
+ "\t$addr",
+ [(ARMPreload t2addrmode_imm12:$addr, (i32 write), (i32 instr))]>,
+ Sched<[WritePreLd]> {
+ let Inst{31-25} = 0b1111100;
+ let Inst{24} = instr;
+ let Inst{23} = 1;
+ let Inst{22} = 0;
+ let Inst{21} = write;
+ let Inst{20} = 1;
+ let Inst{15-12} = 0b1111;
+
+ bits<17> addr;
+ let Inst{19-16} = addr{16-13}; // Rn
+ let Inst{11-0} = addr{11-0}; // imm12
+
+ let DecoderMethod = "DecodeT2LoadImm12";
+ }
+
+ def i8 : T2Ii8<(outs), (ins t2addrmode_negimm8:$addr), IIC_Preload, opc,
+ "\t$addr",
+ [(ARMPreload t2addrmode_negimm8:$addr, (i32 write), (i32 instr))]>,
+ Sched<[WritePreLd]> {
+ let Inst{31-25} = 0b1111100;
+ let Inst{24} = instr;
+ let Inst{23} = 0; // U = 0
+ let Inst{22} = 0;
+ let Inst{21} = write;
+ let Inst{20} = 1;
+ let Inst{15-12} = 0b1111;
+ let Inst{11-8} = 0b1100;
+
+ bits<13> addr;
+ let Inst{19-16} = addr{12-9}; // Rn
+ let Inst{7-0} = addr{7-0}; // imm8
+
+ let DecoderMethod = "DecodeT2LoadImm8";
+ }
+
+ def s : T2Iso<(outs), (ins t2addrmode_so_reg:$addr), IIC_Preload, opc,
+ "\t$addr",
+ [(ARMPreload t2addrmode_so_reg:$addr, (i32 write), (i32 instr))]>,
+ Sched<[WritePreLd]> {
+ let Inst{31-25} = 0b1111100;
+ let Inst{24} = instr;
+ let Inst{23} = 0; // add = TRUE for T1
+ let Inst{22} = 0;
+ let Inst{21} = write;
+ let Inst{20} = 1;
+ let Inst{15-12} = 0b1111;
+ let Inst{11-6} = 0b000000;
+
+ bits<10> addr;
+ let Inst{19-16} = addr{9-6}; // Rn
+ let Inst{3-0} = addr{5-2}; // Rm
+ let Inst{5-4} = addr{1-0}; // imm2
+
+ let DecoderMethod = "DecodeT2LoadShift";
+ }
+}
+
+defm t2PLD : T2Ipl<0, 0, "pld">, Requires<[IsThumb2]>;
+defm t2PLDW : T2Ipl<1, 0, "pldw">, Requires<[IsThumb2,HasV7,HasMP]>;
+defm t2PLI : T2Ipl<0, 1, "pli">, Requires<[IsThumb2,HasV7]>;
+
+// pci variant is very similar to i12, but supports negative offsets
+// from the PC. Only PLD and PLI have pci variants (not PLDW)
+class T2Iplpci<bits<1> inst, string opc> : T2Iso<(outs), (ins t2ldrlabel:$addr),
+ IIC_Preload, opc, "\t$addr",
+ [(ARMPreload (ARMWrapper tconstpool:$addr),
+ (i32 0), (i32 inst))]>, Sched<[WritePreLd]> {
+ let Inst{31-25} = 0b1111100;
+ let Inst{24} = inst;
+ let Inst{22-20} = 0b001;
+ let Inst{19-16} = 0b1111;
+ let Inst{15-12} = 0b1111;
+
+ bits<13> addr;
+ let Inst{23} = addr{12}; // add = (U == '1')
+ let Inst{11-0} = addr{11-0}; // imm12
+
+ let DecoderMethod = "DecodeT2LoadLabel";
+}
+
+def t2PLDpci : T2Iplpci<0, "pld">, Requires<[IsThumb2]>;
+def t2PLIpci : T2Iplpci<1, "pli">, Requires<[IsThumb2,HasV7]>;
+
+//===----------------------------------------------------------------------===//
+// Load / store multiple Instructions.
+//
+
+multiclass thumb2_ld_mult<string asm, InstrItinClass itin,
+ InstrItinClass itin_upd, bit L_bit> {
+ def IA :
+ T2XI<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ itin, !strconcat(asm, "${p}.w\t$Rn, $regs"), []> {
+ bits<4> Rn;
+ bits<16> regs;
+
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b00;
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{22} = 0;
+ let Inst{21} = 0; // No writeback
+ let Inst{20} = L_bit;
+ let Inst{19-16} = Rn;
+ let Inst{15-0} = regs;
+ }
+ def IA_UPD :
+ T2XIt<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ itin_upd, !strconcat(asm, "${p}.w\t$Rn!, $regs"), "$Rn = $wb", []> {
+ bits<4> Rn;
+ bits<16> regs;
+
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b00;
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{22} = 0;
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+ let Inst{19-16} = Rn;
+ let Inst{15-0} = regs;
+ }
+ def DB :
+ T2XI<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ itin, !strconcat(asm, "db${p}\t$Rn, $regs"), []> {
+ bits<4> Rn;
+ bits<16> regs;
+
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b00;
+ let Inst{24-23} = 0b10; // Decrement Before
+ let Inst{22} = 0;
+ let Inst{21} = 0; // No writeback
+ let Inst{20} = L_bit;
+ let Inst{19-16} = Rn;
+ let Inst{15-0} = regs;
+ }
+ def DB_UPD :
+ T2XIt<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ itin_upd, !strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
+ bits<4> Rn;
+ bits<16> regs;
+
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b00;
+ let Inst{24-23} = 0b10; // Decrement Before
+ let Inst{22} = 0;
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+ let Inst{19-16} = Rn;
+ let Inst{15-0} = regs;
+ }
+}
+
+let neverHasSideEffects = 1 in {
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
+defm t2LDM : thumb2_ld_mult<"ldm", IIC_iLoad_m, IIC_iLoad_mu, 1>;
+
+multiclass thumb2_st_mult<string asm, InstrItinClass itin,
+ InstrItinClass itin_upd, bit L_bit> {
+ def IA :
+ T2XI<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ itin, !strconcat(asm, "${p}.w\t$Rn, $regs"), []> {
+ bits<4> Rn;
+ bits<16> regs;
+
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b00;
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{22} = 0;
+ let Inst{21} = 0; // No writeback
+ let Inst{20} = L_bit;
+ let Inst{19-16} = Rn;
+ let Inst{15} = 0;
+ let Inst{14} = regs{14};
+ let Inst{13} = 0;
+ let Inst{12-0} = regs{12-0};
+ }
+ def IA_UPD :
+ T2XIt<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ itin_upd, !strconcat(asm, "${p}.w\t$Rn!, $regs"), "$Rn = $wb", []> {
+ bits<4> Rn;
+ bits<16> regs;
+
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b00;
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{22} = 0;
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+ let Inst{19-16} = Rn;
+ let Inst{15} = 0;
+ let Inst{14} = regs{14};
+ let Inst{13} = 0;
+ let Inst{12-0} = regs{12-0};
+ }
+ def DB :
+ T2XI<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ itin, !strconcat(asm, "db${p}\t$Rn, $regs"), []> {
+ bits<4> Rn;
+ bits<16> regs;
+
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b00;
+ let Inst{24-23} = 0b10; // Decrement Before
+ let Inst{22} = 0;
+ let Inst{21} = 0; // No writeback
+ let Inst{20} = L_bit;
+ let Inst{19-16} = Rn;
+ let Inst{15} = 0;
+ let Inst{14} = regs{14};
+ let Inst{13} = 0;
+ let Inst{12-0} = regs{12-0};
+ }
+ def DB_UPD :
+ T2XIt<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
+ itin_upd, !strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
+ bits<4> Rn;
+ bits<16> regs;
+
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b00;
+ let Inst{24-23} = 0b10; // Decrement Before
+ let Inst{22} = 0;
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+ let Inst{19-16} = Rn;
+ let Inst{15} = 0;
+ let Inst{14} = regs{14};
+ let Inst{13} = 0;
+ let Inst{12-0} = regs{12-0};
+ }
+}
+
+
+let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
+defm t2STM : thumb2_st_mult<"stm", IIC_iStore_m, IIC_iStore_mu, 0>;
+
+} // neverHasSideEffects
+
+
+//===----------------------------------------------------------------------===//
+// Move Instructions.
+//
+
+let neverHasSideEffects = 1 in
+def t2MOVr : T2sTwoReg<(outs GPRnopc:$Rd), (ins GPR:$Rm), IIC_iMOVr,
+ "mov", ".w\t$Rd, $Rm", []>, Sched<[WriteALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = 0b0010;
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{14-12} = 0b000;
+ let Inst{7-4} = 0b0000;
+}
+def : t2InstAlias<"mov${p}.w $Rd, $Rm", (t2MOVr GPRnopc:$Rd, GPR:$Rm,
+ pred:$p, zero_reg)>;
+def : t2InstAlias<"movs${p}.w $Rd, $Rm", (t2MOVr GPRnopc:$Rd, GPR:$Rm,
+ pred:$p, CPSR)>;
+def : t2InstAlias<"movs${p} $Rd, $Rm", (t2MOVr GPRnopc:$Rd, GPR:$Rm,
+ pred:$p, CPSR)>;
+
+// AddedComplexity to ensure isel tries t2MOVi before t2MOVi16.
+let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
+ AddedComplexity = 1 in
+def t2MOVi : T2sOneRegImm<(outs rGPR:$Rd), (ins t2_so_imm:$imm), IIC_iMOVi,
+ "mov", ".w\t$Rd, $imm",
+ [(set rGPR:$Rd, t2_so_imm:$imm)]>, Sched<[WriteALU]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 0;
+ let Inst{24-21} = 0b0010;
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{15} = 0;
+}
+
+// cc_out is handled as part of the explicit mnemonic in the parser for 'mov'.
+// Use aliases to get that to play nice here.
+def : t2InstAlias<"movs${p}.w $Rd, $imm", (t2MOVi rGPR:$Rd, t2_so_imm:$imm,
+ pred:$p, CPSR)>;
+def : t2InstAlias<"movs${p} $Rd, $imm", (t2MOVi rGPR:$Rd, t2_so_imm:$imm,
+ pred:$p, CPSR)>;
+
+def : t2InstAlias<"mov${p}.w $Rd, $imm", (t2MOVi rGPR:$Rd, t2_so_imm:$imm,
+ pred:$p, zero_reg)>;
+def : t2InstAlias<"mov${p} $Rd, $imm", (t2MOVi rGPR:$Rd, t2_so_imm:$imm,
+ pred:$p, zero_reg)>;
+
+let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
+def t2MOVi16 : T2I<(outs rGPR:$Rd), (ins imm0_65535_expr:$imm), IIC_iMOVi,
+ "movw", "\t$Rd, $imm",
+ [(set rGPR:$Rd, imm0_65535:$imm)]>, Sched<[WriteALU]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 1;
+ let Inst{24-21} = 0b0010;
+ let Inst{20} = 0; // The S bit.
+ let Inst{15} = 0;
+
+ bits<4> Rd;
+ bits<16> imm;
+
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = imm{15-12};
+ let Inst{26} = imm{11};
+ let Inst{14-12} = imm{10-8};
+ let Inst{7-0} = imm{7-0};
+ let DecoderMethod = "DecodeT2MOVTWInstruction";
+}
+
+def : t2InstAlias<"mov${p} $Rd, $imm",
+ (t2MOVi16 rGPR:$Rd, imm256_65535_expr:$imm, pred:$p)>;
+
+def t2MOVi16_ga_pcrel : PseudoInst<(outs rGPR:$Rd),
+ (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>;
+
+let Constraints = "$src = $Rd" in {
+def t2MOVTi16 : T2I<(outs rGPR:$Rd),
+ (ins rGPR:$src, imm0_65535_expr:$imm), IIC_iMOVi,
+ "movt", "\t$Rd, $imm",
+ [(set rGPR:$Rd,
+ (or (and rGPR:$src, 0xffff), lo16AllZero:$imm))]>,
+ Sched<[WriteALU]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 1;
+ let Inst{24-21} = 0b0110;
+ let Inst{20} = 0; // The S bit.
+ let Inst{15} = 0;
+
+ bits<4> Rd;
+ bits<16> imm;
+
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = imm{15-12};
+ let Inst{26} = imm{11};
+ let Inst{14-12} = imm{10-8};
+ let Inst{7-0} = imm{7-0};
+ let DecoderMethod = "DecodeT2MOVTWInstruction";
+}
+
+def t2MOVTi16_ga_pcrel : PseudoInst<(outs rGPR:$Rd),
+ (ins rGPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
+ Sched<[WriteALU]>;
+} // Constraints
+
+def : T2Pat<(or rGPR:$src, 0xffff0000), (t2MOVTi16 rGPR:$src, 0xffff)>;
+
+//===----------------------------------------------------------------------===//
+// Extend Instructions.
+//
+
+// Sign extenders
+
+def t2SXTB : T2I_ext_rrot<0b100, "sxtb",
+ UnOpFrag<(sext_inreg node:$Src, i8)>>;
+def t2SXTH : T2I_ext_rrot<0b000, "sxth",
+ UnOpFrag<(sext_inreg node:$Src, i16)>>;
+def t2SXTB16 : T2I_ext_rrot_sxtb16<0b010, "sxtb16">;
+
+def t2SXTAB : T2I_exta_rrot<0b100, "sxtab",
+ BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
+def t2SXTAH : T2I_exta_rrot<0b000, "sxtah",
+ BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
+def t2SXTAB16 : T2I_exta_rrot_np<0b010, "sxtab16">;
+
+// Zero extenders
+
+let AddedComplexity = 16 in {
+def t2UXTB : T2I_ext_rrot<0b101, "uxtb",
+ UnOpFrag<(and node:$Src, 0x000000FF)>>;
+def t2UXTH : T2I_ext_rrot<0b001, "uxth",
+ UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
+def t2UXTB16 : T2I_ext_rrot_uxtb16<0b011, "uxtb16",
+ UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
+
+// FIXME: This pattern incorrectly assumes the shl operator is a rotate.
+// The transformation should probably be done as a combiner action
+// instead so we can include a check for masking back in the upper
+// eight bits of the source into the lower eight bits of the result.
+//def : T2Pat<(and (shl rGPR:$Src, (i32 8)), 0xFF00FF),
+// (t2UXTB16 rGPR:$Src, 3)>,
+// Requires<[HasT2ExtractPack, IsThumb2]>;
+def : T2Pat<(and (srl rGPR:$Src, (i32 8)), 0xFF00FF),
+ (t2UXTB16 rGPR:$Src, 1)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+
+def t2UXTAB : T2I_exta_rrot<0b101, "uxtab",
+ BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
+def t2UXTAH : T2I_exta_rrot<0b001, "uxtah",
+ BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
+def t2UXTAB16 : T2I_exta_rrot_np<0b011, "uxtab16">;
+}
+
+//===----------------------------------------------------------------------===//
+// Arithmetic Instructions.
+//
+
+defm t2ADD : T2I_bin_ii12rs<0b000, "add",
+ BinOpFrag<(add node:$LHS, node:$RHS)>, 1>;
+defm t2SUB : T2I_bin_ii12rs<0b101, "sub",
+ BinOpFrag<(sub node:$LHS, node:$RHS)>>;
+
+// ADD and SUB with 's' bit set. No 12-bit immediate (T4) variants.
+//
+// Currently, t2ADDS/t2SUBS are pseudo opcodes that exist only in the
+// selection DAG. They are "lowered" to real t2ADD/t2SUB opcodes by
+// AdjustInstrPostInstrSelection where we determine whether or not to
+// set the "s" bit based on CPSR liveness.
+//
+// FIXME: Eliminate t2ADDS/t2SUBS pseudo opcodes after adding tablegen
+// support for an optional CPSR definition that corresponds to the DAG
+// node's second value. We can then eliminate the implicit def of CPSR.
+defm t2ADDS : T2I_bin_s_irs <IIC_iALUi, IIC_iALUr, IIC_iALUsi,
+ BinOpFrag<(ARMaddc node:$LHS, node:$RHS)>, 1>;
+defm t2SUBS : T2I_bin_s_irs <IIC_iALUi, IIC_iALUr, IIC_iALUsi,
+ BinOpFrag<(ARMsubc node:$LHS, node:$RHS)>>;
+
+let hasPostISelHook = 1 in {
+defm t2ADC : T2I_adde_sube_irs<0b1010, "adc",
+ BinOpWithFlagFrag<(ARMadde node:$LHS, node:$RHS, node:$FLAG)>, 1>;
+defm t2SBC : T2I_adde_sube_irs<0b1011, "sbc",
+ BinOpWithFlagFrag<(ARMsube node:$LHS, node:$RHS, node:$FLAG)>>;
+}
+
+// RSB
+defm t2RSB : T2I_rbin_irs <0b1110, "rsb",
+ BinOpFrag<(sub node:$LHS, node:$RHS)>>;
+
+// FIXME: Eliminate them if we can write def : Pat patterns which defines
+// CPSR and the implicit def of CPSR is not needed.
+defm t2RSBS : T2I_rbin_s_is <BinOpFrag<(ARMsubc node:$LHS, node:$RHS)>>;
+
+// (sub X, imm) gets canonicalized to (add X, -imm). Match this form.
+// The assume-no-carry-in form uses the negation of the input since add/sub
+// assume opposite meanings of the carry flag (i.e., carry == !borrow).
+// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
+// details.
+// The AddedComplexity preferences the first variant over the others since
+// it can be shrunk to a 16-bit wide encoding, while the others cannot.
+let AddedComplexity = 1 in
+def : T2Pat<(add GPR:$src, imm1_255_neg:$imm),
+ (t2SUBri GPR:$src, imm1_255_neg:$imm)>;
+def : T2Pat<(add GPR:$src, t2_so_imm_neg:$imm),
+ (t2SUBri GPR:$src, t2_so_imm_neg:$imm)>;
+def : T2Pat<(add GPR:$src, imm0_4095_neg:$imm),
+ (t2SUBri12 GPR:$src, imm0_4095_neg:$imm)>;
+def : T2Pat<(add GPR:$src, imm0_65535_neg:$imm),
+ (t2SUBrr GPR:$src, (t2MOVi16 (imm_neg_XFORM imm:$imm)))>;
+
+let AddedComplexity = 1 in
+def : T2Pat<(ARMaddc rGPR:$src, imm1_255_neg:$imm),
+ (t2SUBSri rGPR:$src, imm1_255_neg:$imm)>;
+def : T2Pat<(ARMaddc rGPR:$src, t2_so_imm_neg:$imm),
+ (t2SUBSri rGPR:$src, t2_so_imm_neg:$imm)>;
+def : T2Pat<(ARMaddc rGPR:$src, imm0_65535_neg:$imm),
+ (t2SUBSrr rGPR:$src, (t2MOVi16 (imm_neg_XFORM imm:$imm)))>;
+// The with-carry-in form matches bitwise not instead of the negation.
+// Effectively, the inverse interpretation of the carry flag already accounts
+// for part of the negation.
+let AddedComplexity = 1 in
+def : T2Pat<(ARMadde rGPR:$src, imm0_255_not:$imm, CPSR),
+ (t2SBCri rGPR:$src, imm0_255_not:$imm)>;
+def : T2Pat<(ARMadde rGPR:$src, t2_so_imm_not:$imm, CPSR),
+ (t2SBCri rGPR:$src, t2_so_imm_not:$imm)>;
+def : T2Pat<(ARMadde rGPR:$src, imm0_65535_neg:$imm, CPSR),
+ (t2SBCrr rGPR:$src, (t2MOVi16 (imm_not_XFORM imm:$imm)))>;
+
+// Select Bytes -- for disassembly only
+
+def t2SEL : T2ThreeReg<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
+ NoItinerary, "sel", "\t$Rd, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-24} = 0b010;
+ let Inst{23} = 0b1;
+ let Inst{22-20} = 0b010;
+ let Inst{15-12} = 0b1111;
+ let Inst{7} = 0b1;
+ let Inst{6-4} = 0b000;
+}
+
+// A6.3.13, A6.3.14, A6.3.15 Parallel addition and subtraction (signed/unsigned)
+// And Miscellaneous operations -- for disassembly only
+class T2I_pam<bits<3> op22_20, bits<4> op7_4, string opc,
+ list<dag> pat = [/* For disassembly only; pattern left blank */],
+ dag iops = (ins rGPR:$Rn, rGPR:$Rm),
+ string asm = "\t$Rd, $Rn, $Rm">
+ : T2I<(outs rGPR:$Rd), iops, NoItinerary, opc, asm, pat>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0101;
+ let Inst{22-20} = op22_20;
+ let Inst{15-12} = 0b1111;
+ let Inst{7-4} = op7_4;
+
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<4> Rm;
+
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{3-0} = Rm;
+}
+
+// Saturating add/subtract -- for disassembly only
+
+def t2QADD : T2I_pam<0b000, 0b1000, "qadd",
+ [(set rGPR:$Rd, (int_arm_qadd rGPR:$Rn, rGPR:$Rm))],
+ (ins rGPR:$Rm, rGPR:$Rn), "\t$Rd, $Rm, $Rn">;
+def t2QADD16 : T2I_pam<0b001, 0b0001, "qadd16">;
+def t2QADD8 : T2I_pam<0b000, 0b0001, "qadd8">;
+def t2QASX : T2I_pam<0b010, 0b0001, "qasx">;
+def t2QDADD : T2I_pam<0b000, 0b1001, "qdadd", [],
+ (ins rGPR:$Rm, rGPR:$Rn), "\t$Rd, $Rm, $Rn">;
+def t2QDSUB : T2I_pam<0b000, 0b1011, "qdsub", [],
+ (ins rGPR:$Rm, rGPR:$Rn), "\t$Rd, $Rm, $Rn">;
+def t2QSAX : T2I_pam<0b110, 0b0001, "qsax">;
+def t2QSUB : T2I_pam<0b000, 0b1010, "qsub",
+ [(set rGPR:$Rd, (int_arm_qsub rGPR:$Rn, rGPR:$Rm))],
+ (ins rGPR:$Rm, rGPR:$Rn), "\t$Rd, $Rm, $Rn">;
+def t2QSUB16 : T2I_pam<0b101, 0b0001, "qsub16">;
+def t2QSUB8 : T2I_pam<0b100, 0b0001, "qsub8">;
+def t2UQADD16 : T2I_pam<0b001, 0b0101, "uqadd16">;
+def t2UQADD8 : T2I_pam<0b000, 0b0101, "uqadd8">;
+def t2UQASX : T2I_pam<0b010, 0b0101, "uqasx">;
+def t2UQSAX : T2I_pam<0b110, 0b0101, "uqsax">;
+def t2UQSUB16 : T2I_pam<0b101, 0b0101, "uqsub16">;
+def t2UQSUB8 : T2I_pam<0b100, 0b0101, "uqsub8">;
+
+// Signed/Unsigned add/subtract -- for disassembly only
+
+def t2SASX : T2I_pam<0b010, 0b0000, "sasx">;
+def t2SADD16 : T2I_pam<0b001, 0b0000, "sadd16">;
+def t2SADD8 : T2I_pam<0b000, 0b0000, "sadd8">;
+def t2SSAX : T2I_pam<0b110, 0b0000, "ssax">;
+def t2SSUB16 : T2I_pam<0b101, 0b0000, "ssub16">;
+def t2SSUB8 : T2I_pam<0b100, 0b0000, "ssub8">;
+def t2UASX : T2I_pam<0b010, 0b0100, "uasx">;
+def t2UADD16 : T2I_pam<0b001, 0b0100, "uadd16">;
+def t2UADD8 : T2I_pam<0b000, 0b0100, "uadd8">;
+def t2USAX : T2I_pam<0b110, 0b0100, "usax">;
+def t2USUB16 : T2I_pam<0b101, 0b0100, "usub16">;
+def t2USUB8 : T2I_pam<0b100, 0b0100, "usub8">;
+
+// Signed/Unsigned halving add/subtract -- for disassembly only
+
+def t2SHASX : T2I_pam<0b010, 0b0010, "shasx">;
+def t2SHADD16 : T2I_pam<0b001, 0b0010, "shadd16">;
+def t2SHADD8 : T2I_pam<0b000, 0b0010, "shadd8">;
+def t2SHSAX : T2I_pam<0b110, 0b0010, "shsax">;
+def t2SHSUB16 : T2I_pam<0b101, 0b0010, "shsub16">;
+def t2SHSUB8 : T2I_pam<0b100, 0b0010, "shsub8">;
+def t2UHASX : T2I_pam<0b010, 0b0110, "uhasx">;
+def t2UHADD16 : T2I_pam<0b001, 0b0110, "uhadd16">;
+def t2UHADD8 : T2I_pam<0b000, 0b0110, "uhadd8">;
+def t2UHSAX : T2I_pam<0b110, 0b0110, "uhsax">;
+def t2UHSUB16 : T2I_pam<0b101, 0b0110, "uhsub16">;
+def t2UHSUB8 : T2I_pam<0b100, 0b0110, "uhsub8">;
+
+// Helper class for disassembly only
+// A6.3.16 & A6.3.17
+// T2Imac - Thumb2 multiply [accumulate, and absolute difference] instructions.
+class T2ThreeReg_mac<bit long, bits<3> op22_20, bits<4> op7_4, dag oops,
+ dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : T2ThreeReg<oops, iops, itin, opc, asm, pattern> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-24} = 0b011;
+ let Inst{23} = long;
+ let Inst{22-20} = op22_20;
+ let Inst{7-4} = op7_4;
+}
+
+class T2FourReg_mac<bit long, bits<3> op22_20, bits<4> op7_4, dag oops,
+ dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : T2FourReg<oops, iops, itin, opc, asm, pattern> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-24} = 0b011;
+ let Inst{23} = long;
+ let Inst{22-20} = op22_20;
+ let Inst{7-4} = op7_4;
+}
+
+// Unsigned Sum of Absolute Differences [and Accumulate].
+def t2USAD8 : T2ThreeReg_mac<0, 0b111, 0b0000, (outs rGPR:$Rd),
+ (ins rGPR:$Rn, rGPR:$Rm),
+ NoItinerary, "usad8", "\t$Rd, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{15-12} = 0b1111;
+}
+def t2USADA8 : T2FourReg_mac<0, 0b111, 0b0000, (outs rGPR:$Rd),
+ (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), NoItinerary,
+ "usada8", "\t$Rd, $Rn, $Rm, $Ra", []>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+
+// Signed/Unsigned saturate.
+class T2SatI<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<4> Rn;
+ bits<5> sat_imm;
+ bits<7> sh;
+
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = Rn;
+ let Inst{4-0} = sat_imm;
+ let Inst{21} = sh{5};
+ let Inst{14-12} = sh{4-2};
+ let Inst{7-6} = sh{1-0};
+}
+
+def t2SSAT: T2SatI<
+ (outs rGPR:$Rd),
+ (ins imm1_32:$sat_imm, rGPR:$Rn, t2_shift_imm:$sh),
+ NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25-22} = 0b1100;
+ let Inst{20} = 0;
+ let Inst{15} = 0;
+ let Inst{5} = 0;
+}
+
+def t2SSAT16: T2SatI<
+ (outs rGPR:$Rd), (ins imm1_16:$sat_imm, rGPR:$Rn), NoItinerary,
+ "ssat16", "\t$Rd, $sat_imm, $Rn", []>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25-22} = 0b1100;
+ let Inst{20} = 0;
+ let Inst{15} = 0;
+ let Inst{21} = 1; // sh = '1'
+ let Inst{14-12} = 0b000; // imm3 = '000'
+ let Inst{7-6} = 0b00; // imm2 = '00'
+ let Inst{5-4} = 0b00;
+}
+
+def t2USAT: T2SatI<
+ (outs rGPR:$Rd),
+ (ins imm0_31:$sat_imm, rGPR:$Rn, t2_shift_imm:$sh),
+ NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25-22} = 0b1110;
+ let Inst{20} = 0;
+ let Inst{15} = 0;
+}
+
+def t2USAT16: T2SatI<(outs rGPR:$Rd), (ins imm0_15:$sat_imm, rGPR:$Rn),
+ NoItinerary,
+ "usat16", "\t$Rd, $sat_imm, $Rn", []>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-22} = 0b1111001110;
+ let Inst{20} = 0;
+ let Inst{15} = 0;
+ let Inst{21} = 1; // sh = '1'
+ let Inst{14-12} = 0b000; // imm3 = '000'
+ let Inst{7-6} = 0b00; // imm2 = '00'
+ let Inst{5-4} = 0b00;
+}
+
+def : T2Pat<(int_arm_ssat GPR:$a, imm:$pos), (t2SSAT imm:$pos, GPR:$a, 0)>;
+def : T2Pat<(int_arm_usat GPR:$a, imm:$pos), (t2USAT imm:$pos, GPR:$a, 0)>;
+
+//===----------------------------------------------------------------------===//
+// Shift and rotate Instructions.
+//
+
+defm t2LSL : T2I_sh_ir<0b00, "lsl", imm0_31,
+ BinOpFrag<(shl node:$LHS, node:$RHS)>>;
+defm t2LSR : T2I_sh_ir<0b01, "lsr", imm_sr,
+ BinOpFrag<(srl node:$LHS, node:$RHS)>>;
+defm t2ASR : T2I_sh_ir<0b10, "asr", imm_sr,
+ BinOpFrag<(sra node:$LHS, node:$RHS)>>;
+defm t2ROR : T2I_sh_ir<0b11, "ror", imm0_31,
+ BinOpFrag<(rotr node:$LHS, node:$RHS)>>;
+
+// (rotr x, (and y, 0x...1f)) ==> (ROR x, y)
+def : T2Pat<(rotr rGPR:$lhs, (and rGPR:$rhs, lo5AllOne)),
+ (t2RORrr rGPR:$lhs, rGPR:$rhs)>;
+
+let Uses = [CPSR] in {
+def t2RRX : T2sTwoReg<(outs rGPR:$Rd), (ins rGPR:$Rm), IIC_iMOVsi,
+ "rrx", "\t$Rd, $Rm",
+ [(set rGPR:$Rd, (ARMrrx rGPR:$Rm))]>, Sched<[WriteALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = 0b0010;
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{14-12} = 0b000;
+ let Inst{7-4} = 0b0011;
+}
+}
+
+let isCodeGenOnly = 1, Defs = [CPSR] in {
+def t2MOVsrl_flag : T2TwoRegShiftImm<
+ (outs rGPR:$Rd), (ins rGPR:$Rm), IIC_iMOVsi,
+ "lsrs", ".w\t$Rd, $Rm, #1",
+ [(set rGPR:$Rd, (ARMsrl_flag rGPR:$Rm))]>,
+ Sched<[WriteALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = 0b0010;
+ let Inst{20} = 1; // The S bit.
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{5-4} = 0b01; // Shift type.
+ // Shift amount = Inst{14-12:7-6} = 1.
+ let Inst{14-12} = 0b000;
+ let Inst{7-6} = 0b01;
+}
+def t2MOVsra_flag : T2TwoRegShiftImm<
+ (outs rGPR:$Rd), (ins rGPR:$Rm), IIC_iMOVsi,
+ "asrs", ".w\t$Rd, $Rm, #1",
+ [(set rGPR:$Rd, (ARMsra_flag rGPR:$Rm))]>,
+ Sched<[WriteALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = 0b0010;
+ let Inst{20} = 1; // The S bit.
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{5-4} = 0b10; // Shift type.
+ // Shift amount = Inst{14-12:7-6} = 1.
+ let Inst{14-12} = 0b000;
+ let Inst{7-6} = 0b01;
+}
+}
+
+//===----------------------------------------------------------------------===//
+// Bitwise Instructions.
+//
+
+defm t2AND : T2I_bin_w_irs<0b0000, "and",
+ IIC_iBITi, IIC_iBITr, IIC_iBITsi,
+ BinOpFrag<(and node:$LHS, node:$RHS)>, 1>;
+defm t2ORR : T2I_bin_w_irs<0b0010, "orr",
+ IIC_iBITi, IIC_iBITr, IIC_iBITsi,
+ BinOpFrag<(or node:$LHS, node:$RHS)>, 1>;
+defm t2EOR : T2I_bin_w_irs<0b0100, "eor",
+ IIC_iBITi, IIC_iBITr, IIC_iBITsi,
+ BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>;
+
+defm t2BIC : T2I_bin_w_irs<0b0001, "bic",
+ IIC_iBITi, IIC_iBITr, IIC_iBITsi,
+ BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
+
+class T2BitFI<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rd;
+ bits<5> msb;
+ bits<5> lsb;
+
+ let Inst{11-8} = Rd;
+ let Inst{4-0} = msb{4-0};
+ let Inst{14-12} = lsb{4-2};
+ let Inst{7-6} = lsb{1-0};
+}
+
+class T2TwoRegBitFI<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2BitFI<oops, iops, itin, opc, asm, pattern> {
+ bits<4> Rn;
+
+ let Inst{19-16} = Rn;
+}
+
+let Constraints = "$src = $Rd" in
+def t2BFC : T2BitFI<(outs rGPR:$Rd), (ins rGPR:$src, bf_inv_mask_imm:$imm),
+ IIC_iUNAsi, "bfc", "\t$Rd, $imm",
+ [(set rGPR:$Rd, (and rGPR:$src, bf_inv_mask_imm:$imm))]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{26} = 0; // should be 0.
+ let Inst{25} = 1;
+ let Inst{24-20} = 0b10110;
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{15} = 0;
+ let Inst{5} = 0; // should be 0.
+
+ bits<10> imm;
+ let msb{4-0} = imm{9-5};
+ let lsb{4-0} = imm{4-0};
+}
+
+def t2SBFX: T2TwoRegBitFI<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, imm0_31:$lsb, imm1_32:$msb),
+ IIC_iUNAsi, "sbfx", "\t$Rd, $Rn, $lsb, $msb", []> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 1;
+ let Inst{24-20} = 0b10100;
+ let Inst{15} = 0;
+}
+
+def t2UBFX: T2TwoRegBitFI<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, imm0_31:$lsb, imm1_32:$msb),
+ IIC_iUNAsi, "ubfx", "\t$Rd, $Rn, $lsb, $msb", []> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 1;
+ let Inst{24-20} = 0b11100;
+ let Inst{15} = 0;
+}
+
+// A8.8.247 UDF - Undefined (Encoding T2)
+def t2UDF : T2XI<(outs), (ins imm0_65535:$imm16), IIC_Br, "udf.w\t$imm16",
+ [(int_arm_undefined imm0_65535:$imm16)]> {
+ bits<16> imm16;
+ let Inst{31-29} = 0b111;
+ let Inst{28-27} = 0b10;
+ let Inst{26-20} = 0b1111111;
+ let Inst{19-16} = imm16{15-12};
+ let Inst{15} = 0b1;
+ let Inst{14-12} = 0b010;
+ let Inst{11-0} = imm16{11-0};
+}
+
+// A8.6.18 BFI - Bitfield insert (Encoding T1)
+let Constraints = "$src = $Rd" in {
+ def t2BFI : T2TwoRegBitFI<(outs rGPR:$Rd),
+ (ins rGPR:$src, rGPR:$Rn, bf_inv_mask_imm:$imm),
+ IIC_iBITi, "bfi", "\t$Rd, $Rn, $imm",
+ [(set rGPR:$Rd, (ARMbfi rGPR:$src, rGPR:$Rn,
+ bf_inv_mask_imm:$imm))]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{26} = 0; // should be 0.
+ let Inst{25} = 1;
+ let Inst{24-20} = 0b10110;
+ let Inst{15} = 0;
+ let Inst{5} = 0; // should be 0.
+
+ bits<10> imm;
+ let msb{4-0} = imm{9-5};
+ let lsb{4-0} = imm{4-0};
+ }
+}
+
+defm t2ORN : T2I_bin_irs<0b0011, "orn",
+ IIC_iBITi, IIC_iBITr, IIC_iBITsi,
+ BinOpFrag<(or node:$LHS, (not node:$RHS))>, 0, "">;
+
+/// T2I_un_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a
+/// unary operation that produces a value. These are predicable and can be
+/// changed to modify CPSR.
+multiclass T2I_un_irs<bits<4> opcod, string opc,
+ InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
+ PatFrag opnode,
+ bit Cheap = 0, bit ReMat = 0, bit MoveImm = 0> {
+ // shifted imm
+ def i : T2sOneRegImm<(outs rGPR:$Rd), (ins t2_so_imm:$imm), iii,
+ opc, "\t$Rd, $imm",
+ [(set rGPR:$Rd, (opnode t2_so_imm:$imm))]>, Sched<[WriteALU]> {
+ let isAsCheapAsAMove = Cheap;
+ let isReMaterializable = ReMat;
+ let isMoveImm = MoveImm;
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 0;
+ let Inst{24-21} = opcod;
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{15} = 0;
+ }
+ // register
+ def r : T2sTwoReg<(outs rGPR:$Rd), (ins rGPR:$Rm), iir,
+ opc, ".w\t$Rd, $Rm",
+ [(set rGPR:$Rd, (opnode rGPR:$Rm))]>, Sched<[WriteALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = opcod;
+ let Inst{19-16} = 0b1111; // Rn
+ let Inst{14-12} = 0b000; // imm3
+ let Inst{7-6} = 0b00; // imm2
+ let Inst{5-4} = 0b00; // type
+ }
+ // shifted register
+ def s : T2sOneRegShiftedReg<(outs rGPR:$Rd), (ins t2_so_reg:$ShiftedRm), iis,
+ opc, ".w\t$Rd, $ShiftedRm",
+ [(set rGPR:$Rd, (opnode t2_so_reg:$ShiftedRm))]>,
+ Sched<[WriteALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = opcod;
+ let Inst{19-16} = 0b1111; // Rn
+ }
+}
+
+// Prefer over of t2EORri ra, rb, -1 because mvn has 16-bit version
+let AddedComplexity = 1 in
+defm t2MVN : T2I_un_irs <0b0011, "mvn",
+ IIC_iMVNi, IIC_iMVNr, IIC_iMVNsi,
+ UnOpFrag<(not node:$Src)>, 1, 1, 1>;
+
+let AddedComplexity = 1 in
+def : T2Pat<(and rGPR:$src, t2_so_imm_not:$imm),
+ (t2BICri rGPR:$src, t2_so_imm_not:$imm)>;
+
+// top16Zero - answer true if the upper 16 bits of $src are 0, false otherwise
+def top16Zero: PatLeaf<(i32 rGPR:$src), [{
+ return CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(32, 16));
+ }]>;
+
+// so_imm_notSext is needed instead of so_imm_not, as the value of imm
+// will match the extended, not the original bitWidth for $src.
+def : T2Pat<(and top16Zero:$src, t2_so_imm_notSext:$imm),
+ (t2BICri rGPR:$src, t2_so_imm_notSext:$imm)>;
+
+
+// FIXME: Disable this pattern on Darwin to workaround an assembler bug.
+def : T2Pat<(or rGPR:$src, t2_so_imm_not:$imm),
+ (t2ORNri rGPR:$src, t2_so_imm_not:$imm)>,
+ Requires<[IsThumb2]>;
+
+def : T2Pat<(t2_so_imm_not:$src),
+ (t2MVNi t2_so_imm_not:$src)>;
+
+//===----------------------------------------------------------------------===//
+// Multiply Instructions.
+//
+let isCommutable = 1 in
+def t2MUL: T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL32,
+ "mul", "\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, (mul rGPR:$Rn, rGPR:$Rm))]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b000;
+ let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate)
+ let Inst{7-4} = 0b0000; // Multiply
+}
+
+def t2MLA: T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC32,
+ "mla", "\t$Rd, $Rn, $Rm, $Ra",
+ [(set rGPR:$Rd, (add (mul rGPR:$Rn, rGPR:$Rm), rGPR:$Ra))]>,
+ Requires<[IsThumb2, UseMulOps]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b000;
+ let Inst{7-4} = 0b0000; // Multiply
+}
+
+def t2MLS: T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC32,
+ "mls", "\t$Rd, $Rn, $Rm, $Ra",
+ [(set rGPR:$Rd, (sub rGPR:$Ra, (mul rGPR:$Rn, rGPR:$Rm)))]>,
+ Requires<[IsThumb2, UseMulOps]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b000;
+ let Inst{7-4} = 0b0001; // Multiply and Subtract
+}
+
+// Extra precision multiplies with low / high results
+let neverHasSideEffects = 1 in {
+let isCommutable = 1 in {
+def t2SMULL : T2MulLong<0b000, 0b0000,
+ (outs rGPR:$RdLo, rGPR:$RdHi),
+ (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL64,
+ "smull", "\t$RdLo, $RdHi, $Rn, $Rm", []>;
+
+def t2UMULL : T2MulLong<0b010, 0b0000,
+ (outs rGPR:$RdLo, rGPR:$RdHi),
+ (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL64,
+ "umull", "\t$RdLo, $RdHi, $Rn, $Rm", []>;
+} // isCommutable
+
+// Multiply + accumulate
+def t2SMLAL : T2MlaLong<0b100, 0b0000,
+ (outs rGPR:$RdLo, rGPR:$RdHi),
+ (ins rGPR:$Rn, rGPR:$Rm, rGPR:$RLo, rGPR:$RHi), IIC_iMAC64,
+ "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">;
+
+def t2UMLAL : T2MlaLong<0b110, 0b0000,
+ (outs rGPR:$RdLo, rGPR:$RdHi),
+ (ins rGPR:$Rn, rGPR:$Rm, rGPR:$RLo, rGPR:$RHi), IIC_iMAC64,
+ "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">;
+
+def t2UMAAL : T2MulLong<0b110, 0b0110,
+ (outs rGPR:$RdLo, rGPR:$RdHi),
+ (ins rGPR:$Rn, rGPR:$Rm), IIC_iMAC64,
+ "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+} // neverHasSideEffects
+
+// Rounding variants of the below included for disassembly only
+
+// Most significant word multiply
+def t2SMMUL : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL32,
+ "smmul", "\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, (mulhs rGPR:$Rn, rGPR:$Rm))]>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b101;
+ let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate)
+ let Inst{7-4} = 0b0000; // No Rounding (Inst{4} = 0)
+}
+
+def t2SMMULR : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL32,
+ "smmulr", "\t$Rd, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b101;
+ let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate)
+ let Inst{7-4} = 0b0001; // Rounding (Inst{4} = 1)
+}
+
+def t2SMMLA : T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC32,
+ "smmla", "\t$Rd, $Rn, $Rm, $Ra",
+ [(set rGPR:$Rd, (add (mulhs rGPR:$Rm, rGPR:$Rn), rGPR:$Ra))]>,
+ Requires<[IsThumb2, HasThumb2DSP, UseMulOps]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b101;
+ let Inst{7-4} = 0b0000; // No Rounding (Inst{4} = 0)
+}
+
+def t2SMMLAR: T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC32,
+ "smmlar", "\t$Rd, $Rn, $Rm, $Ra", []>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b101;
+ let Inst{7-4} = 0b0001; // Rounding (Inst{4} = 1)
+}
+
+def t2SMMLS: T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC32,
+ "smmls", "\t$Rd, $Rn, $Rm, $Ra",
+ [(set rGPR:$Rd, (sub rGPR:$Ra, (mulhs rGPR:$Rn, rGPR:$Rm)))]>,
+ Requires<[IsThumb2, HasThumb2DSP, UseMulOps]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b110;
+ let Inst{7-4} = 0b0000; // No Rounding (Inst{4} = 0)
+}
+
+def t2SMMLSR:T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC32,
+ "smmlsr", "\t$Rd, $Rn, $Rm, $Ra", []>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b110;
+ let Inst{7-4} = 0b0001; // Rounding (Inst{4} = 1)
+}
+
+multiclass T2I_smul<string opc, PatFrag opnode> {
+ def BB : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL16,
+ !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, (opnode (sext_inreg rGPR:$Rn, i16),
+ (sext_inreg rGPR:$Rm, i16)))]>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b001;
+ let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate)
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b00;
+ }
+
+ def BT : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL16,
+ !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, (opnode (sext_inreg rGPR:$Rn, i16),
+ (sra rGPR:$Rm, (i32 16))))]>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b001;
+ let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate)
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b01;
+ }
+
+ def TB : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL16,
+ !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, (opnode (sra rGPR:$Rn, (i32 16)),
+ (sext_inreg rGPR:$Rm, i16)))]>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b001;
+ let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate)
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b10;
+ }
+
+ def TT : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL16,
+ !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, (opnode (sra rGPR:$Rn, (i32 16)),
+ (sra rGPR:$Rm, (i32 16))))]>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b001;
+ let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate)
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b11;
+ }
+
+ def WB : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL16,
+ !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, (sra (opnode rGPR:$Rn,
+ (sext_inreg rGPR:$Rm, i16)), (i32 16)))]>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b011;
+ let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate)
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b00;
+ }
+
+ def WT : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL16,
+ !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, (sra (opnode rGPR:$Rn,
+ (sra rGPR:$Rm, (i32 16))), (i32 16)))]>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b011;
+ let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate)
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b01;
+ }
+}
+
+
+multiclass T2I_smla<string opc, PatFrag opnode> {
+ def BB : T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC16,
+ !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set rGPR:$Rd, (add rGPR:$Ra,
+ (opnode (sext_inreg rGPR:$Rn, i16),
+ (sext_inreg rGPR:$Rm, i16))))]>,
+ Requires<[IsThumb2, HasThumb2DSP, UseMulOps]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b001;
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b00;
+ }
+
+ def BT : T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC16,
+ !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set rGPR:$Rd, (add rGPR:$Ra, (opnode (sext_inreg rGPR:$Rn, i16),
+ (sra rGPR:$Rm, (i32 16)))))]>,
+ Requires<[IsThumb2, HasThumb2DSP, UseMulOps]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b001;
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b01;
+ }
+
+ def TB : T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC16,
+ !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set rGPR:$Rd, (add rGPR:$Ra, (opnode (sra rGPR:$Rn, (i32 16)),
+ (sext_inreg rGPR:$Rm, i16))))]>,
+ Requires<[IsThumb2, HasThumb2DSP, UseMulOps]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b001;
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b10;
+ }
+
+ def TT : T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC16,
+ !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set rGPR:$Rd, (add rGPR:$Ra, (opnode (sra rGPR:$Rn, (i32 16)),
+ (sra rGPR:$Rm, (i32 16)))))]>,
+ Requires<[IsThumb2, HasThumb2DSP, UseMulOps]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b001;
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b11;
+ }
+
+ def WB : T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC16,
+ !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set rGPR:$Rd, (add rGPR:$Ra, (sra (opnode rGPR:$Rn,
+ (sext_inreg rGPR:$Rm, i16)), (i32 16))))]>,
+ Requires<[IsThumb2, HasThumb2DSP, UseMulOps]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b011;
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b00;
+ }
+
+ def WT : T2FourReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC16,
+ !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
+ [(set rGPR:$Rd, (add rGPR:$Ra, (sra (opnode rGPR:$Rn,
+ (sra rGPR:$Rm, (i32 16))), (i32 16))))]>,
+ Requires<[IsThumb2, HasThumb2DSP, UseMulOps]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-23} = 0b0110;
+ let Inst{22-20} = 0b011;
+ let Inst{7-6} = 0b00;
+ let Inst{5-4} = 0b01;
+ }
+}
+
+defm t2SMUL : T2I_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
+defm t2SMLA : T2I_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
+
+// Halfword multiple accumulate long: SMLAL<x><y>
+def t2SMLALBB : T2FourReg_mac<1, 0b100, 0b1000, (outs rGPR:$Ra,rGPR:$Rd),
+ (ins rGPR:$Rn,rGPR:$Rm), IIC_iMAC64, "smlalbb", "\t$Ra, $Rd, $Rn, $Rm",
+ [/* For disassembly only; pattern left blank */]>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+def t2SMLALBT : T2FourReg_mac<1, 0b100, 0b1001, (outs rGPR:$Ra,rGPR:$Rd),
+ (ins rGPR:$Rn,rGPR:$Rm), IIC_iMAC64, "smlalbt", "\t$Ra, $Rd, $Rn, $Rm",
+ [/* For disassembly only; pattern left blank */]>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+def t2SMLALTB : T2FourReg_mac<1, 0b100, 0b1010, (outs rGPR:$Ra,rGPR:$Rd),
+ (ins rGPR:$Rn,rGPR:$Rm), IIC_iMAC64, "smlaltb", "\t$Ra, $Rd, $Rn, $Rm",
+ [/* For disassembly only; pattern left blank */]>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+def t2SMLALTT : T2FourReg_mac<1, 0b100, 0b1011, (outs rGPR:$Ra,rGPR:$Rd),
+ (ins rGPR:$Rn,rGPR:$Rm), IIC_iMAC64, "smlaltt", "\t$Ra, $Rd, $Rn, $Rm",
+ [/* For disassembly only; pattern left blank */]>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+
+// Dual halfword multiple: SMUAD, SMUSD, SMLAD, SMLSD, SMLALD, SMLSLD
+def t2SMUAD: T2ThreeReg_mac<
+ 0, 0b010, 0b0000, (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm),
+ IIC_iMAC32, "smuad", "\t$Rd, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{15-12} = 0b1111;
+}
+def t2SMUADX:T2ThreeReg_mac<
+ 0, 0b010, 0b0001, (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm),
+ IIC_iMAC32, "smuadx", "\t$Rd, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{15-12} = 0b1111;
+}
+def t2SMUSD: T2ThreeReg_mac<
+ 0, 0b100, 0b0000, (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm),
+ IIC_iMAC32, "smusd", "\t$Rd, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{15-12} = 0b1111;
+}
+def t2SMUSDX:T2ThreeReg_mac<
+ 0, 0b100, 0b0001, (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm),
+ IIC_iMAC32, "smusdx", "\t$Rd, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]> {
+ let Inst{15-12} = 0b1111;
+}
+def t2SMLAD : T2FourReg_mac<
+ 0, 0b010, 0b0000, (outs rGPR:$Rd),
+ (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC32, "smlad",
+ "\t$Rd, $Rn, $Rm, $Ra", []>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+def t2SMLADX : T2FourReg_mac<
+ 0, 0b010, 0b0001, (outs rGPR:$Rd),
+ (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC32, "smladx",
+ "\t$Rd, $Rn, $Rm, $Ra", []>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+def t2SMLSD : T2FourReg_mac<0, 0b100, 0b0000, (outs rGPR:$Rd),
+ (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC32, "smlsd",
+ "\t$Rd, $Rn, $Rm, $Ra", []>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+def t2SMLSDX : T2FourReg_mac<0, 0b100, 0b0001, (outs rGPR:$Rd),
+ (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC32, "smlsdx",
+ "\t$Rd, $Rn, $Rm, $Ra", []>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+def t2SMLALD : T2FourReg_mac<1, 0b100, 0b1100, (outs rGPR:$Ra,rGPR:$Rd),
+ (ins rGPR:$Rn, rGPR:$Rm), IIC_iMAC64, "smlald",
+ "\t$Ra, $Rd, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+def t2SMLALDX : T2FourReg_mac<1, 0b100, 0b1101, (outs rGPR:$Ra,rGPR:$Rd),
+ (ins rGPR:$Rn,rGPR:$Rm), IIC_iMAC64, "smlaldx",
+ "\t$Ra, $Rd, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+def t2SMLSLD : T2FourReg_mac<1, 0b101, 0b1100, (outs rGPR:$Ra,rGPR:$Rd),
+ (ins rGPR:$Rn,rGPR:$Rm), IIC_iMAC64, "smlsld",
+ "\t$Ra, $Rd, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+def t2SMLSLDX : T2FourReg_mac<1, 0b101, 0b1101, (outs rGPR:$Ra,rGPR:$Rd),
+ (ins rGPR:$Rm,rGPR:$Rn), IIC_iMAC64, "smlsldx",
+ "\t$Ra, $Rd, $Rn, $Rm", []>,
+ Requires<[IsThumb2, HasThumb2DSP]>;
+
+//===----------------------------------------------------------------------===//
+// Division Instructions.
+// Signed and unsigned division on v7-M
+//
+def t2SDIV : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iDIV,
+ "sdiv", "\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, (sdiv rGPR:$Rn, rGPR:$Rm))]>,
+ Requires<[HasDivide, IsThumb2]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-21} = 0b011100;
+ let Inst{20} = 0b1;
+ let Inst{15-12} = 0b1111;
+ let Inst{7-4} = 0b1111;
+}
+
+def t2UDIV : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iDIV,
+ "udiv", "\t$Rd, $Rn, $Rm",
+ [(set rGPR:$Rd, (udiv rGPR:$Rn, rGPR:$Rm))]>,
+ Requires<[HasDivide, IsThumb2]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-21} = 0b011101;
+ let Inst{20} = 0b1;
+ let Inst{15-12} = 0b1111;
+ let Inst{7-4} = 0b1111;
+}
+
+//===----------------------------------------------------------------------===//
+// Misc. Arithmetic Instructions.
+//
+
+class T2I_misc<bits<2> op1, bits<2> op2, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : T2ThreeReg<oops, iops, itin, opc, asm, pattern> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-22} = 0b01010;
+ let Inst{21-20} = op1;
+ let Inst{15-12} = 0b1111;
+ let Inst{7-6} = 0b10;
+ let Inst{5-4} = op2;
+ let Rn{3-0} = Rm;
+}
+
+def t2CLZ : T2I_misc<0b11, 0b00, (outs rGPR:$Rd), (ins rGPR:$Rm), IIC_iUNAr,
+ "clz", "\t$Rd, $Rm", [(set rGPR:$Rd, (ctlz rGPR:$Rm))]>,
+ Sched<[WriteALU]>;
+
+def t2RBIT : T2I_misc<0b01, 0b10, (outs rGPR:$Rd), (ins rGPR:$Rm), IIC_iUNAr,
+ "rbit", "\t$Rd, $Rm",
+ [(set rGPR:$Rd, (ARMrbit rGPR:$Rm))]>,
+ Sched<[WriteALU]>;
+
+def t2REV : T2I_misc<0b01, 0b00, (outs rGPR:$Rd), (ins rGPR:$Rm), IIC_iUNAr,
+ "rev", ".w\t$Rd, $Rm", [(set rGPR:$Rd, (bswap rGPR:$Rm))]>,
+ Sched<[WriteALU]>;
+
+def t2REV16 : T2I_misc<0b01, 0b01, (outs rGPR:$Rd), (ins rGPR:$Rm), IIC_iUNAr,
+ "rev16", ".w\t$Rd, $Rm",
+ [(set rGPR:$Rd, (rotr (bswap rGPR:$Rm), (i32 16)))]>,
+ Sched<[WriteALU]>;
+
+def t2REVSH : T2I_misc<0b01, 0b11, (outs rGPR:$Rd), (ins rGPR:$Rm), IIC_iUNAr,
+ "revsh", ".w\t$Rd, $Rm",
+ [(set rGPR:$Rd, (sra (bswap rGPR:$Rm), (i32 16)))]>,
+ Sched<[WriteALU]>;
+
+def : T2Pat<(or (sra (shl rGPR:$Rm, (i32 24)), (i32 16)),
+ (and (srl rGPR:$Rm, (i32 8)), 0xFF)),
+ (t2REVSH rGPR:$Rm)>;
+
+def t2PKHBT : T2ThreeReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, pkh_lsl_amt:$sh),
+ IIC_iBITsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh",
+ [(set rGPR:$Rd, (or (and rGPR:$Rn, 0xFFFF),
+ (and (shl rGPR:$Rm, pkh_lsl_amt:$sh),
+ 0xFFFF0000)))]>,
+ Requires<[HasT2ExtractPack, IsThumb2]>,
+ Sched<[WriteALUsi, ReadALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-20} = 0b01100;
+ let Inst{5} = 0; // BT form
+ let Inst{4} = 0;
+
+ bits<5> sh;
+ let Inst{14-12} = sh{4-2};
+ let Inst{7-6} = sh{1-0};
+}
+
+// Alternate cases for PKHBT where identities eliminate some nodes.
+def : T2Pat<(or (and rGPR:$src1, 0xFFFF), (and rGPR:$src2, 0xFFFF0000)),
+ (t2PKHBT rGPR:$src1, rGPR:$src2, 0)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+def : T2Pat<(or (and rGPR:$src1, 0xFFFF), (shl rGPR:$src2, imm16_31:$sh)),
+ (t2PKHBT rGPR:$src1, rGPR:$src2, imm16_31:$sh)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+
+// Note: Shifts of 1-15 bits will be transformed to srl instead of sra and
+// will match the pattern below.
+def t2PKHTB : T2ThreeReg<
+ (outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, pkh_asr_amt:$sh),
+ IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh",
+ [(set rGPR:$Rd, (or (and rGPR:$Rn, 0xFFFF0000),
+ (and (sra rGPR:$Rm, pkh_asr_amt:$sh),
+ 0xFFFF)))]>,
+ Requires<[HasT2ExtractPack, IsThumb2]>,
+ Sched<[WriteALUsi, ReadALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-20} = 0b01100;
+ let Inst{5} = 1; // TB form
+ let Inst{4} = 0;
+
+ bits<5> sh;
+ let Inst{14-12} = sh{4-2};
+ let Inst{7-6} = sh{1-0};
+}
+
+// Alternate cases for PKHTB where identities eliminate some nodes. Note that
+// a shift amount of 0 is *not legal* here, it is PKHBT instead.
+// We also can not replace a srl (17..31) by an arithmetic shift we would use in
+// pkhtb src1, src2, asr (17..31).
+def : T2Pat<(or (and rGPR:$src1, 0xFFFF0000), (srl rGPR:$src2, imm16:$sh)),
+ (t2PKHTB rGPR:$src1, rGPR:$src2, imm16:$sh)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+def : T2Pat<(or (and rGPR:$src1, 0xFFFF0000), (sra rGPR:$src2, imm16_31:$sh)),
+ (t2PKHTB rGPR:$src1, rGPR:$src2, imm16_31:$sh)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+def : T2Pat<(or (and rGPR:$src1, 0xFFFF0000),
+ (and (srl rGPR:$src2, imm1_15:$sh), 0xFFFF)),
+ (t2PKHTB rGPR:$src1, rGPR:$src2, imm1_15:$sh)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+
+//===----------------------------------------------------------------------===//
+// CRC32 Instructions
+//
+// Polynomials:
+// + CRC32{B,H,W} 0x04C11DB7
+// + CRC32C{B,H,W} 0x1EDC6F41
+//
+
+class T2I_crc32<bit C, bits<2> sz, string suffix, SDPatternOperator builtin>
+ : T2ThreeRegNoP<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), NoItinerary,
+ !strconcat("crc32", suffix, "\t$Rd, $Rn, $Rm"),
+ [(set rGPR:$Rd, (builtin rGPR:$Rn, rGPR:$Rm))]>,
+ Requires<[IsThumb2, HasV8, HasCRC]> {
+ let Inst{31-27} = 0b11111;
+ let Inst{26-21} = 0b010110;
+ let Inst{20} = C;
+ let Inst{15-12} = 0b1111;
+ let Inst{7-6} = 0b10;
+ let Inst{5-4} = sz;
+}
+
+def t2CRC32B : T2I_crc32<0, 0b00, "b", int_arm_crc32b>;
+def t2CRC32CB : T2I_crc32<1, 0b00, "cb", int_arm_crc32cb>;
+def t2CRC32H : T2I_crc32<0, 0b01, "h", int_arm_crc32h>;
+def t2CRC32CH : T2I_crc32<1, 0b01, "ch", int_arm_crc32ch>;
+def t2CRC32W : T2I_crc32<0, 0b10, "w", int_arm_crc32w>;
+def t2CRC32CW : T2I_crc32<1, 0b10, "cw", int_arm_crc32cw>;
+
+//===----------------------------------------------------------------------===//
+// Comparison Instructions...
+//
+defm t2CMP : T2I_cmp_irs<0b1101, "cmp",
+ IIC_iCMPi, IIC_iCMPr, IIC_iCMPsi,
+ BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>;
+
+def : T2Pat<(ARMcmpZ GPRnopc:$lhs, t2_so_imm:$imm),
+ (t2CMPri GPRnopc:$lhs, t2_so_imm:$imm)>;
+def : T2Pat<(ARMcmpZ GPRnopc:$lhs, rGPR:$rhs),
+ (t2CMPrr GPRnopc:$lhs, rGPR:$rhs)>;
+def : T2Pat<(ARMcmpZ GPRnopc:$lhs, t2_so_reg:$rhs),
+ (t2CMPrs GPRnopc:$lhs, t2_so_reg:$rhs)>;
+
+let isCompare = 1, Defs = [CPSR] in {
+ // shifted imm
+ def t2CMNri : T2OneRegCmpImm<
+ (outs), (ins GPRnopc:$Rn, t2_so_imm:$imm), IIC_iCMPi,
+ "cmn", ".w\t$Rn, $imm",
+ [(ARMcmn GPRnopc:$Rn, (ineg t2_so_imm:$imm))]>,
+ Sched<[WriteCMP, ReadALU]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{25} = 0;
+ let Inst{24-21} = 0b1000;
+ let Inst{20} = 1; // The S bit.
+ let Inst{15} = 0;
+ let Inst{11-8} = 0b1111; // Rd
+ }
+ // register
+ def t2CMNzrr : T2TwoRegCmp<
+ (outs), (ins GPRnopc:$Rn, rGPR:$Rm), IIC_iCMPr,
+ "cmn", ".w\t$Rn, $Rm",
+ [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
+ GPRnopc:$Rn, rGPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = 0b1000;
+ let Inst{20} = 1; // The S bit.
+ let Inst{14-12} = 0b000; // imm3
+ let Inst{11-8} = 0b1111; // Rd
+ let Inst{7-6} = 0b00; // imm2
+ let Inst{5-4} = 0b00; // type
+ }
+ // shifted register
+ def t2CMNzrs : T2OneRegCmpShiftedReg<
+ (outs), (ins GPRnopc:$Rn, t2_so_reg:$ShiftedRm), IIC_iCMPsi,
+ "cmn", ".w\t$Rn, $ShiftedRm",
+ [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
+ GPRnopc:$Rn, t2_so_reg:$ShiftedRm)]>,
+ Sched<[WriteCMPsi, ReadALU, ReadALU]> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-25} = 0b01;
+ let Inst{24-21} = 0b1000;
+ let Inst{20} = 1; // The S bit.
+ let Inst{11-8} = 0b1111; // Rd
+ }
+}
+
+// Assembler aliases w/o the ".w" suffix.
+// No alias here for 'rr' version as not all instantiations of this multiclass
+// want one (CMP in particular, does not).
+def : t2InstAlias<"cmn${p} $Rn, $imm",
+ (t2CMNri GPRnopc:$Rn, t2_so_imm:$imm, pred:$p)>;
+def : t2InstAlias<"cmn${p} $Rn, $shift",
+ (t2CMNzrs GPRnopc:$Rn, t2_so_reg:$shift, pred:$p)>;
+
+def : T2Pat<(ARMcmp GPR:$src, t2_so_imm_neg:$imm),
+ (t2CMNri GPR:$src, t2_so_imm_neg:$imm)>;
+
+def : T2Pat<(ARMcmpZ GPRnopc:$src, t2_so_imm_neg:$imm),
+ (t2CMNri GPRnopc:$src, t2_so_imm_neg:$imm)>;
+
+defm t2TST : T2I_cmp_irs<0b0000, "tst",
+ IIC_iTSTi, IIC_iTSTr, IIC_iTSTsi,
+ BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>>;
+defm t2TEQ : T2I_cmp_irs<0b0100, "teq",
+ IIC_iTSTi, IIC_iTSTr, IIC_iTSTsi,
+ BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>>;
+
+// Conditional moves
+let neverHasSideEffects = 1 in {
+
+let isCommutable = 1, isSelect = 1 in
+def t2MOVCCr : t2PseudoInst<(outs rGPR:$Rd),
+ (ins rGPR:$false, rGPR:$Rm, cmovpred:$p),
+ 4, IIC_iCMOVr,
+ [(set rGPR:$Rd, (ARMcmov rGPR:$false, rGPR:$Rm,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
+
+let isMoveImm = 1 in
+def t2MOVCCi
+ : t2PseudoInst<(outs rGPR:$Rd),
+ (ins rGPR:$false, t2_so_imm:$imm, cmovpred:$p),
+ 4, IIC_iCMOVi,
+ [(set rGPR:$Rd, (ARMcmov rGPR:$false,t2_so_imm:$imm,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
+
+let isCodeGenOnly = 1 in {
+let isMoveImm = 1 in
+def t2MOVCCi16
+ : t2PseudoInst<(outs rGPR:$Rd),
+ (ins rGPR:$false, imm0_65535_expr:$imm, cmovpred:$p),
+ 4, IIC_iCMOVi,
+ [(set rGPR:$Rd, (ARMcmov rGPR:$false, imm0_65535:$imm,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
+
+let isMoveImm = 1 in
+def t2MVNCCi
+ : t2PseudoInst<(outs rGPR:$Rd),
+ (ins rGPR:$false, t2_so_imm:$imm, cmovpred:$p),
+ 4, IIC_iCMOVi,
+ [(set rGPR:$Rd,
+ (ARMcmov rGPR:$false, t2_so_imm_not:$imm,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
+
+class MOVCCShPseudo<SDPatternOperator opnode, Operand ty>
+ : t2PseudoInst<(outs rGPR:$Rd),
+ (ins rGPR:$false, rGPR:$Rm, i32imm:$imm, cmovpred:$p),
+ 4, IIC_iCMOVsi,
+ [(set rGPR:$Rd, (ARMcmov rGPR:$false,
+ (opnode rGPR:$Rm, (i32 ty:$imm)),
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
+
+def t2MOVCClsl : MOVCCShPseudo<shl, imm0_31>;
+def t2MOVCClsr : MOVCCShPseudo<srl, imm_sr>;
+def t2MOVCCasr : MOVCCShPseudo<sra, imm_sr>;
+def t2MOVCCror : MOVCCShPseudo<rotr, imm0_31>;
+
+let isMoveImm = 1 in
+def t2MOVCCi32imm
+ : t2PseudoInst<(outs rGPR:$dst),
+ (ins rGPR:$false, i32imm:$src, cmovpred:$p),
+ 8, IIC_iCMOVix2,
+ [(set rGPR:$dst, (ARMcmov rGPR:$false, imm:$src,
+ cmovpred:$p))]>,
+ RegConstraint<"$false = $dst">;
+} // isCodeGenOnly = 1
+
+} // neverHasSideEffects
+
+//===----------------------------------------------------------------------===//
+// Atomic operations intrinsics
+//
+
+// memory barriers protect the atomic sequences
+let hasSideEffects = 1 in {
+def t2DMB : T2I<(outs), (ins memb_opt:$opt), NoItinerary,
+ "dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>,
+ Requires<[IsThumb, HasDB]> {
+ bits<4> opt;
+ let Inst{31-4} = 0xf3bf8f5;
+ let Inst{3-0} = opt;
+}
+
+def t2DSB : T2I<(outs), (ins memb_opt:$opt), NoItinerary,
+ "dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>,
+ Requires<[IsThumb, HasDB]> {
+ bits<4> opt;
+ let Inst{31-4} = 0xf3bf8f4;
+ let Inst{3-0} = opt;
+}
+
+def t2ISB : T2I<(outs), (ins instsyncb_opt:$opt), NoItinerary,
+ "isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>,
+ Requires<[IsThumb, HasDB]> {
+ bits<4> opt;
+ let Inst{31-4} = 0xf3bf8f6;
+ let Inst{3-0} = opt;
+}
+}
+
+class T2I_ldrex<bits<4> opcod, dag oops, dag iops, AddrMode am, int sz,
+ InstrItinClass itin, string opc, string asm, string cstr,
+ list<dag> pattern, bits<4> rt2 = 0b1111>
+ : Thumb2I<oops, iops, am, sz, itin, opc, asm, cstr, pattern> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-20} = 0b0001101;
+ let Inst{11-8} = rt2;
+ let Inst{7-4} = opcod;
+ let Inst{3-0} = 0b1111;
+
+ bits<4> addr;
+ bits<4> Rt;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = Rt;
+}
+class T2I_strex<bits<4> opcod, dag oops, dag iops, AddrMode am, int sz,
+ InstrItinClass itin, string opc, string asm, string cstr,
+ list<dag> pattern, bits<4> rt2 = 0b1111>
+ : Thumb2I<oops, iops, am, sz, itin, opc, asm, cstr, pattern> {
+ let Inst{31-27} = 0b11101;
+ let Inst{26-20} = 0b0001100;
+ let Inst{11-8} = rt2;
+ let Inst{7-4} = opcod;
+
+ bits<4> Rd;
+ bits<4> addr;
+ bits<4> Rt;
+ let Inst{3-0} = Rd;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = Rt;
+}
+
+let mayLoad = 1 in {
+def t2LDREXB : T2I_ldrex<0b0100, (outs rGPR:$Rt), (ins addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "ldrexb", "\t$Rt, $addr", "",
+ [(set rGPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>;
+def t2LDREXH : T2I_ldrex<0b0101, (outs rGPR:$Rt), (ins addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "ldrexh", "\t$Rt, $addr", "",
+ [(set rGPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>;
+def t2LDREX : Thumb2I<(outs rGPR:$Rt), (ins t2addrmode_imm0_1020s4:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "ldrex", "\t$Rt, $addr", "",
+ [(set rGPR:$Rt, (ldrex_4 t2addrmode_imm0_1020s4:$addr))]> {
+ bits<4> Rt;
+ bits<12> addr;
+ let Inst{31-27} = 0b11101;
+ let Inst{26-20} = 0b0000101;
+ let Inst{19-16} = addr{11-8};
+ let Inst{15-12} = Rt;
+ let Inst{11-8} = 0b1111;
+ let Inst{7-0} = addr{7-0};
+}
+let hasExtraDefRegAllocReq = 1 in
+def t2LDREXD : T2I_ldrex<0b0111, (outs rGPR:$Rt, rGPR:$Rt2),
+ (ins addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "ldrexd", "\t$Rt, $Rt2, $addr", "",
+ [], {?, ?, ?, ?}> {
+ bits<4> Rt2;
+ let Inst{11-8} = Rt2;
+}
+def t2LDAEXB : T2I_ldrex<0b1100, (outs rGPR:$Rt), (ins addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "ldaexb", "\t$Rt, $addr", "",
+ [(set rGPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>,
+ Requires<[IsThumb, HasV8]>;
+def t2LDAEXH : T2I_ldrex<0b1101, (outs rGPR:$Rt), (ins addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "ldaexh", "\t$Rt, $addr", "",
+ [(set rGPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>,
+ Requires<[IsThumb, HasV8]>;
+def t2LDAEX : Thumb2I<(outs rGPR:$Rt), (ins addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "ldaex", "\t$Rt, $addr", "",
+ [(set rGPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>,
+ Requires<[IsThumb, HasV8]> {
+ bits<4> Rt;
+ bits<4> addr;
+ let Inst{31-27} = 0b11101;
+ let Inst{26-20} = 0b0001101;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = Rt;
+ let Inst{11-8} = 0b1111;
+ let Inst{7-0} = 0b11101111;
+}
+let hasExtraDefRegAllocReq = 1 in
+def t2LDAEXD : T2I_ldrex<0b1111, (outs rGPR:$Rt, rGPR:$Rt2),
+ (ins addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "ldaexd", "\t$Rt, $Rt2, $addr", "",
+ [], {?, ?, ?, ?}>, Requires<[IsThumb, HasV8]> {
+ bits<4> Rt2;
+ let Inst{11-8} = Rt2;
+
+ let Inst{7} = 1;
+}
+}
+
+let mayStore = 1, Constraints = "@earlyclobber $Rd" in {
+def t2STREXB : T2I_strex<0b0100, (outs rGPR:$Rd),
+ (ins rGPR:$Rt, addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "strexb", "\t$Rd, $Rt, $addr", "",
+ [(set rGPR:$Rd,
+ (strex_1 rGPR:$Rt, addr_offset_none:$addr))]>;
+def t2STREXH : T2I_strex<0b0101, (outs rGPR:$Rd),
+ (ins rGPR:$Rt, addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "strexh", "\t$Rd, $Rt, $addr", "",
+ [(set rGPR:$Rd,
+ (strex_2 rGPR:$Rt, addr_offset_none:$addr))]>;
+
+def t2STREX : Thumb2I<(outs rGPR:$Rd), (ins rGPR:$Rt,
+ t2addrmode_imm0_1020s4:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "strex", "\t$Rd, $Rt, $addr", "",
+ [(set rGPR:$Rd,
+ (strex_4 rGPR:$Rt, t2addrmode_imm0_1020s4:$addr))]> {
+ bits<4> Rd;
+ bits<4> Rt;
+ bits<12> addr;
+ let Inst{31-27} = 0b11101;
+ let Inst{26-20} = 0b0000100;
+ let Inst{19-16} = addr{11-8};
+ let Inst{15-12} = Rt;
+ let Inst{11-8} = Rd;
+ let Inst{7-0} = addr{7-0};
+}
+let hasExtraSrcRegAllocReq = 1 in
+def t2STREXD : T2I_strex<0b0111, (outs rGPR:$Rd),
+ (ins rGPR:$Rt, rGPR:$Rt2, addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "strexd", "\t$Rd, $Rt, $Rt2, $addr", "", [],
+ {?, ?, ?, ?}> {
+ bits<4> Rt2;
+ let Inst{11-8} = Rt2;
+}
+def t2STLEXB : T2I_strex<0b1100, (outs rGPR:$Rd),
+ (ins rGPR:$Rt, addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "stlexb", "\t$Rd, $Rt, $addr", "",
+ [(set rGPR:$Rd,
+ (stlex_1 rGPR:$Rt, addr_offset_none:$addr))]>,
+ Requires<[IsThumb, HasV8]>;
+
+def t2STLEXH : T2I_strex<0b1101, (outs rGPR:$Rd),
+ (ins rGPR:$Rt, addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "stlexh", "\t$Rd, $Rt, $addr", "",
+ [(set rGPR:$Rd,
+ (stlex_2 rGPR:$Rt, addr_offset_none:$addr))]>,
+ Requires<[IsThumb, HasV8]>;
+
+def t2STLEX : Thumb2I<(outs rGPR:$Rd), (ins rGPR:$Rt,
+ addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "stlex", "\t$Rd, $Rt, $addr", "",
+ [(set rGPR:$Rd,
+ (stlex_4 rGPR:$Rt, addr_offset_none:$addr))]>,
+ Requires<[IsThumb, HasV8]> {
+ bits<4> Rd;
+ bits<4> Rt;
+ bits<4> addr;
+ let Inst{31-27} = 0b11101;
+ let Inst{26-20} = 0b0001100;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = Rt;
+ let Inst{11-4} = 0b11111110;
+ let Inst{3-0} = Rd;
+}
+let hasExtraSrcRegAllocReq = 1 in
+def t2STLEXD : T2I_strex<0b1111, (outs rGPR:$Rd),
+ (ins rGPR:$Rt, rGPR:$Rt2, addr_offset_none:$addr),
+ AddrModeNone, 4, NoItinerary,
+ "stlexd", "\t$Rd, $Rt, $Rt2, $addr", "", [],
+ {?, ?, ?, ?}>, Requires<[IsThumb, HasV8]> {
+ bits<4> Rt2;
+ let Inst{11-8} = Rt2;
+}
+}
+
+def t2CLREX : T2I<(outs), (ins), NoItinerary, "clrex", "", [(int_arm_clrex)]>,
+ Requires<[IsThumb2, HasV7]> {
+ let Inst{31-16} = 0xf3bf;
+ let Inst{15-14} = 0b10;
+ let Inst{13} = 0;
+ let Inst{12} = 0;
+ let Inst{11-8} = 0b1111;
+ let Inst{7-4} = 0b0010;
+ let Inst{3-0} = 0b1111;
+}
+
+def : T2Pat<(and (ldrex_1 addr_offset_none:$addr), 0xff),
+ (t2LDREXB addr_offset_none:$addr)>;
+def : T2Pat<(and (ldrex_2 addr_offset_none:$addr), 0xffff),
+ (t2LDREXH addr_offset_none:$addr)>;
+def : T2Pat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
+ (t2STREXB GPR:$Rt, addr_offset_none:$addr)>;
+def : T2Pat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
+ (t2STREXH GPR:$Rt, addr_offset_none:$addr)>;
+
+def : T2Pat<(and (ldaex_1 addr_offset_none:$addr), 0xff),
+ (t2LDAEXB addr_offset_none:$addr)>;
+def : T2Pat<(and (ldaex_2 addr_offset_none:$addr), 0xffff),
+ (t2LDAEXH addr_offset_none:$addr)>;
+def : T2Pat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
+ (t2STLEXB GPR:$Rt, addr_offset_none:$addr)>;
+def : T2Pat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
+ (t2STLEXH GPR:$Rt, addr_offset_none:$addr)>;
+
+//===----------------------------------------------------------------------===//
+// SJLJ Exception handling intrinsics
+// eh_sjlj_setjmp() is an instruction sequence to store the return
+// address and save #0 in R0 for the non-longjmp case.
+// Since by its nature we may be coming from some other function to get
+// here, and we're using the stack frame for the containing function to
+// save/restore registers, we can't keep anything live in regs across
+// the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
+// when we get here from a longjmp(). We force everything out of registers
+// except for our own input by listing the relevant registers in Defs. By
+// doing so, we also cause the prologue/epilogue code to actively preserve
+// all of the callee-saved resgisters, which is exactly what we want.
+// $val is a scratch register for our use.
+let Defs =
+ [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR,
+ Q0, Q1, Q2, Q3, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15],
+ hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
+ usesCustomInserter = 1 in {
+ def t2Int_eh_sjlj_setjmp : Thumb2XI<(outs), (ins tGPR:$src, tGPR:$val),
+ AddrModeNone, 0, NoItinerary, "", "",
+ [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>,
+ Requires<[IsThumb2, HasVFP2]>;
+}
+
+let Defs =
+ [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR ],
+ hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
+ usesCustomInserter = 1 in {
+ def t2Int_eh_sjlj_setjmp_nofp : Thumb2XI<(outs), (ins tGPR:$src, tGPR:$val),
+ AddrModeNone, 0, NoItinerary, "", "",
+ [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>,
+ Requires<[IsThumb2, NoVFP]>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Control-Flow Instructions
+//
+
+// FIXME: remove when we have a way to marking a MI with these properties.
+// FIXME: Should pc be an implicit operand like PICADD, etc?
+let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
+ hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
+def t2LDMIA_RET: t2PseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p,
+ reglist:$regs, variable_ops),
+ 4, IIC_iLoad_mBr, [],
+ (t2LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>,
+ RegConstraint<"$Rn = $wb">;
+
+let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
+let isPredicable = 1 in
+def t2B : T2I<(outs), (ins uncondbrtarget:$target), IIC_Br,
+ "b", ".w\t$target",
+ [(br bb:$target)]>, Sched<[WriteBr]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{15-14} = 0b10;
+ let Inst{12} = 1;
+
+ bits<24> target;
+ let Inst{26} = target{23};
+ let Inst{13} = target{22};
+ let Inst{11} = target{21};
+ let Inst{25-16} = target{20-11};
+ let Inst{10-0} = target{10-0};
+ let DecoderMethod = "DecodeT2BInstruction";
+ let AsmMatchConverter = "cvtThumbBranches";
+}
+
+let isNotDuplicable = 1, isIndirectBranch = 1 in {
+def t2BR_JT : t2PseudoInst<(outs),
+ (ins GPR:$target, GPR:$index, i32imm:$jt, i32imm:$id),
+ 0, IIC_Br,
+ [(ARMbr2jt GPR:$target, GPR:$index, tjumptable:$jt, imm:$id)]>,
+ Sched<[WriteBr]>;
+
+// FIXME: Add a non-pc based case that can be predicated.
+def t2TBB_JT : t2PseudoInst<(outs),
+ (ins GPR:$index, i32imm:$jt, i32imm:$id), 0, IIC_Br, []>,
+ Sched<[WriteBr]>;
+
+def t2TBH_JT : t2PseudoInst<(outs),
+ (ins GPR:$index, i32imm:$jt, i32imm:$id), 0, IIC_Br, []>,
+ Sched<[WriteBr]>;
+
+def t2TBB : T2I<(outs), (ins addrmode_tbb:$addr), IIC_Br,
+ "tbb", "\t$addr", []>, Sched<[WriteBrTbl]> {
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{31-20} = 0b111010001101;
+ let Inst{19-16} = Rn;
+ let Inst{15-5} = 0b11110000000;
+ let Inst{4} = 0; // B form
+ let Inst{3-0} = Rm;
+
+ let DecoderMethod = "DecodeThumbTableBranch";
+}
+
+def t2TBH : T2I<(outs), (ins addrmode_tbh:$addr), IIC_Br,
+ "tbh", "\t$addr", []>, Sched<[WriteBrTbl]> {
+ bits<4> Rn;
+ bits<4> Rm;
+ let Inst{31-20} = 0b111010001101;
+ let Inst{19-16} = Rn;
+ let Inst{15-5} = 0b11110000000;
+ let Inst{4} = 1; // H form
+ let Inst{3-0} = Rm;
+
+ let DecoderMethod = "DecodeThumbTableBranch";
+}
+} // isNotDuplicable, isIndirectBranch
+
+} // isBranch, isTerminator, isBarrier
+
+// FIXME: should be able to write a pattern for ARMBrcond, but can't use
+// a two-value operand where a dag node expects ", "two operands. :(
+let isBranch = 1, isTerminator = 1 in
+def t2Bcc : T2I<(outs), (ins brtarget:$target), IIC_Br,
+ "b", ".w\t$target",
+ [/*(ARMbrcond bb:$target, imm:$cc)*/]>, Sched<[WriteBr]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{15-14} = 0b10;
+ let Inst{12} = 0;
+
+ bits<4> p;
+ let Inst{25-22} = p;
+
+ bits<21> target;
+ let Inst{26} = target{20};
+ let Inst{11} = target{19};
+ let Inst{13} = target{18};
+ let Inst{21-16} = target{17-12};
+ let Inst{10-0} = target{11-1};
+
+ let DecoderMethod = "DecodeThumb2BCCInstruction";
+ let AsmMatchConverter = "cvtThumbBranches";
+}
+
+// Tail calls. The MachO version of thumb tail calls uses a t2 branch, so
+// it goes here.
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
+ // IOS version.
+ let Uses = [SP] in
+ def tTAILJMPd: tPseudoExpand<(outs),
+ (ins uncondbrtarget:$dst, pred:$p),
+ 4, IIC_Br, [],
+ (t2B uncondbrtarget:$dst, pred:$p)>,
+ Requires<[IsThumb2, IsMachO]>, Sched<[WriteBr]>;
+}
+
+// IT block
+let Defs = [ITSTATE] in
+def t2IT : Thumb2XI<(outs), (ins it_pred:$cc, it_mask:$mask),
+ AddrModeNone, 2, IIC_iALUx,
+ "it$mask\t$cc", "", []>,
+ ComplexDeprecationPredicate<"IT"> {
+ // 16-bit instruction.
+ let Inst{31-16} = 0x0000;
+ let Inst{15-8} = 0b10111111;
+
+ bits<4> cc;
+ bits<4> mask;
+ let Inst{7-4} = cc;
+ let Inst{3-0} = mask;
+
+ let DecoderMethod = "DecodeIT";
+}
+
+// Branch and Exchange Jazelle -- for disassembly only
+// Rm = Inst{19-16}
+def t2BXJ : T2I<(outs), (ins rGPR:$func), NoItinerary, "bxj", "\t$func", []>,
+ Sched<[WriteBr]> {
+ bits<4> func;
+ let Inst{31-27} = 0b11110;
+ let Inst{26} = 0;
+ let Inst{25-20} = 0b111100;
+ let Inst{19-16} = func;
+ let Inst{15-0} = 0b1000111100000000;
+}
+
+// Compare and branch on zero / non-zero
+let isBranch = 1, isTerminator = 1 in {
+ def tCBZ : T1I<(outs), (ins tGPR:$Rn, t_cbtarget:$target), IIC_Br,
+ "cbz\t$Rn, $target", []>,
+ T1Misc<{0,0,?,1,?,?,?}>,
+ Requires<[IsThumb2]>, Sched<[WriteBr]> {
+ // A8.6.27
+ bits<6> target;
+ bits<3> Rn;
+ let Inst{9} = target{5};
+ let Inst{7-3} = target{4-0};
+ let Inst{2-0} = Rn;
+ }
+
+ def tCBNZ : T1I<(outs), (ins tGPR:$Rn, t_cbtarget:$target), IIC_Br,
+ "cbnz\t$Rn, $target", []>,
+ T1Misc<{1,0,?,1,?,?,?}>,
+ Requires<[IsThumb2]>, Sched<[WriteBr]> {
+ // A8.6.27
+ bits<6> target;
+ bits<3> Rn;
+ let Inst{9} = target{5};
+ let Inst{7-3} = target{4-0};
+ let Inst{2-0} = Rn;
+ }
+}
+
+
+// Change Processor State is a system instruction.
+// FIXME: Since the asm parser has currently no clean way to handle optional
+// operands, create 3 versions of the same instruction. Once there's a clean
+// framework to represent optional operands, change this behavior.
+class t2CPS<dag iops, string asm_op> : T2XI<(outs), iops, NoItinerary,
+ !strconcat("cps", asm_op), []> {
+ bits<2> imod;
+ bits<3> iflags;
+ bits<5> mode;
+ bit M;
+
+ let Inst{31-11} = 0b111100111010111110000;
+ let Inst{10-9} = imod;
+ let Inst{8} = M;
+ let Inst{7-5} = iflags;
+ let Inst{4-0} = mode;
+ let DecoderMethod = "DecodeT2CPSInstruction";
+}
+
+let M = 1 in
+ def t2CPS3p : t2CPS<(ins imod_op:$imod, iflags_op:$iflags, i32imm:$mode),
+ "$imod\t$iflags, $mode">;
+let mode = 0, M = 0 in
+ def t2CPS2p : t2CPS<(ins imod_op:$imod, iflags_op:$iflags),
+ "$imod.w\t$iflags">;
+let imod = 0, iflags = 0, M = 1 in
+ def t2CPS1p : t2CPS<(ins imm0_31:$mode), "\t$mode">;
+
+def : t2InstAlias<"cps$imod.w $iflags, $mode",
+ (t2CPS3p imod_op:$imod, iflags_op:$iflags, i32imm:$mode), 0>;
+def : t2InstAlias<"cps.w $mode", (t2CPS1p imm0_31:$mode), 0>;
+
+// A6.3.4 Branches and miscellaneous control
+// Table A6-14 Change Processor State, and hint instructions
+def t2HINT : T2I<(outs), (ins imm0_239:$imm), NoItinerary, "hint", ".w\t$imm",
+ [(int_arm_hint imm0_239:$imm)]> {
+ bits<8> imm;
+ let Inst{31-3} = 0b11110011101011111000000000000;
+ let Inst{7-0} = imm;
+}
+
+def : t2InstAlias<"hint$p $imm", (t2HINT imm0_239:$imm, pred:$p)>;
+def : t2InstAlias<"nop$p.w", (t2HINT 0, pred:$p)>;
+def : t2InstAlias<"yield$p.w", (t2HINT 1, pred:$p)>;
+def : t2InstAlias<"wfe$p.w", (t2HINT 2, pred:$p)>;
+def : t2InstAlias<"wfi$p.w", (t2HINT 3, pred:$p)>;
+def : t2InstAlias<"sev$p.w", (t2HINT 4, pred:$p)>;
+def : t2InstAlias<"sevl$p.w", (t2HINT 5, pred:$p)> {
+ let Predicates = [IsThumb2, HasV8];
+}
+
+def t2DBG : T2I<(outs), (ins imm0_15:$opt), NoItinerary, "dbg", "\t$opt", []> {
+ bits<4> opt;
+ let Inst{31-20} = 0b111100111010;
+ let Inst{19-16} = 0b1111;
+ let Inst{15-8} = 0b10000000;
+ let Inst{7-4} = 0b1111;
+ let Inst{3-0} = opt;
+}
+
+// Secure Monitor Call is a system instruction.
+// Option = Inst{19-16}
+def t2SMC : T2I<(outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt",
+ []>, Requires<[IsThumb2, HasTrustZone]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{26-20} = 0b1111111;
+ let Inst{15-12} = 0b1000;
+
+ bits<4> opt;
+ let Inst{19-16} = opt;
+}
+
+class T2DCPS<bits<2> opt, string opc>
+ : T2I<(outs), (ins), NoItinerary, opc, "", []>, Requires<[IsThumb2, HasV8]> {
+ let Inst{31-27} = 0b11110;
+ let Inst{26-20} = 0b1111000;
+ let Inst{19-16} = 0b1111;
+ let Inst{15-12} = 0b1000;
+ let Inst{11-2} = 0b0000000000;
+ let Inst{1-0} = opt;
+}
+
+def t2DCPS1 : T2DCPS<0b01, "dcps1">;
+def t2DCPS2 : T2DCPS<0b10, "dcps2">;
+def t2DCPS3 : T2DCPS<0b11, "dcps3">;
+
+class T2SRS<bits<2> Op, bit W, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ bits<5> mode;
+ let Inst{31-25} = 0b1110100;
+ let Inst{24-23} = Op;
+ let Inst{22} = 0;
+ let Inst{21} = W;
+ let Inst{20-16} = 0b01101;
+ let Inst{15-5} = 0b11000000000;
+ let Inst{4-0} = mode{4-0};
+}
+
+// Store Return State is a system instruction.
+def t2SRSDB_UPD : T2SRS<0b00, 1, (outs), (ins imm0_31:$mode), NoItinerary,
+ "srsdb", "\tsp!, $mode", []>;
+def t2SRSDB : T2SRS<0b00, 0, (outs), (ins imm0_31:$mode), NoItinerary,
+ "srsdb","\tsp, $mode", []>;
+def t2SRSIA_UPD : T2SRS<0b11, 1, (outs), (ins imm0_31:$mode), NoItinerary,
+ "srsia","\tsp!, $mode", []>;
+def t2SRSIA : T2SRS<0b11, 0, (outs), (ins imm0_31:$mode), NoItinerary,
+ "srsia","\tsp, $mode", []>;
+
+
+def : t2InstAlias<"srsdb${p} $mode", (t2SRSDB imm0_31:$mode, pred:$p)>;
+def : t2InstAlias<"srsdb${p} $mode!", (t2SRSDB_UPD imm0_31:$mode, pred:$p)>;
+
+def : t2InstAlias<"srsia${p} $mode", (t2SRSIA imm0_31:$mode, pred:$p)>;
+def : t2InstAlias<"srsia${p} $mode!", (t2SRSIA_UPD imm0_31:$mode, pred:$p)>;
+
+// Return From Exception is a system instruction.
+class T2RFE<bits<12> op31_20, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : T2I<oops, iops, itin, opc, asm, pattern> {
+ let Inst{31-20} = op31_20{11-0};
+
+ bits<4> Rn;
+ let Inst{19-16} = Rn;
+ let Inst{15-0} = 0xc000;
+}
+
+def t2RFEDBW : T2RFE<0b111010000011,
+ (outs), (ins GPR:$Rn), NoItinerary, "rfedb", "\t$Rn!",
+ [/* For disassembly only; pattern left blank */]>;
+def t2RFEDB : T2RFE<0b111010000001,
+ (outs), (ins GPR:$Rn), NoItinerary, "rfedb", "\t$Rn",
+ [/* For disassembly only; pattern left blank */]>;
+def t2RFEIAW : T2RFE<0b111010011011,
+ (outs), (ins GPR:$Rn), NoItinerary, "rfeia", "\t$Rn!",
+ [/* For disassembly only; pattern left blank */]>;
+def t2RFEIA : T2RFE<0b111010011001,
+ (outs), (ins GPR:$Rn), NoItinerary, "rfeia", "\t$Rn",
+ [/* For disassembly only; pattern left blank */]>;
+
+// B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction.
+// Exception return instruction is "subs pc, lr, #imm".
+let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in
+def t2SUBS_PC_LR : T2I <(outs), (ins imm0_255:$imm), NoItinerary,
+ "subs", "\tpc, lr, $imm",
+ [(ARMintretflag imm0_255:$imm)]>,
+ Requires<[IsThumb2]> {
+ let Inst{31-8} = 0b111100111101111010001111;
+
+ bits<8> imm;
+ let Inst{7-0} = imm;
+}
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//
+
+// 32-bit immediate using movw + movt.
+// This is a single pseudo instruction to make it re-materializable.
+// FIXME: Remove this when we can do generalized remat.
+let isReMaterializable = 1, isMoveImm = 1 in
+def t2MOVi32imm : PseudoInst<(outs rGPR:$dst), (ins i32imm:$src), IIC_iMOVix2,
+ [(set rGPR:$dst, (i32 imm:$src))]>,
+ Requires<[IsThumb, UseMovt]>;
+
+// Pseudo instruction that combines movw + movt + add pc (if pic).
+// It also makes it possible to rematerialize the instructions.
+// FIXME: Remove this when we can do generalized remat and when machine licm
+// can properly the instructions.
+let isReMaterializable = 1 in {
+def t2MOV_ga_pcrel : PseudoInst<(outs rGPR:$dst), (ins i32imm:$addr),
+ IIC_iMOVix2addpc,
+ [(set rGPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>,
+ Requires<[IsThumb2, UseMovt]>;
+
+}
+
+// ConstantPool, GlobalAddress, and JumpTable
+def : T2Pat<(ARMWrapper tconstpool :$dst), (t2LEApcrel tconstpool :$dst)>;
+def : T2Pat<(ARMWrapper tglobaladdr :$dst), (t2MOVi32imm tglobaladdr :$dst)>,
+ Requires<[IsThumb2, UseMovt]>;
+
+def : T2Pat<(ARMWrapperJT tjumptable:$dst, imm:$id),
+ (t2LEApcrelJT tjumptable:$dst, imm:$id)>;
+
+// Pseudo instruction that combines ldr from constpool and add pc. This should
+// be expanded into two instructions late to allow if-conversion and
+// scheduling.
+let canFoldAsLoad = 1, isReMaterializable = 1 in
+def t2LDRpci_pic : PseudoInst<(outs rGPR:$dst), (ins i32imm:$addr, pclabel:$cp),
+ IIC_iLoadiALU,
+ [(set rGPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)),
+ imm:$cp))]>,
+ Requires<[IsThumb2]>;
+
+// Pseudo isntruction that combines movs + predicated rsbmi
+// to implement integer ABS
+let usesCustomInserter = 1, Defs = [CPSR] in {
+def t2ABS : PseudoInst<(outs rGPR:$dst), (ins rGPR:$src),
+ NoItinerary, []>, Requires<[IsThumb2]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Coprocessor load/store -- for disassembly only
+//
+class T2CI<bits<4> op31_28, dag oops, dag iops, string opc, string asm>
+ : T2I<oops, iops, NoItinerary, opc, asm, []> {
+ let Inst{31-28} = op31_28;
+ let Inst{27-25} = 0b110;
+}
+
+multiclass t2LdStCop<bits<4> op31_28, bit load, bit Dbit, string asm> {
+ def _OFFSET : T2CI<op31_28,
+ (outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
+ asm, "\t$cop, $CRd, $addr"> {
+ bits<13> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 1; // P = 1
+ let Inst{23} = addr{8};
+ let Inst{22} = Dbit;
+ let Inst{21} = 0; // W = 0
+ let Inst{20} = load;
+ let Inst{19-16} = addr{12-9};
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = addr{7-0};
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+ def _PRE : T2CI<op31_28,
+ (outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
+ asm, "\t$cop, $CRd, $addr!"> {
+ bits<13> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 1; // P = 1
+ let Inst{23} = addr{8};
+ let Inst{22} = Dbit;
+ let Inst{21} = 1; // W = 1
+ let Inst{20} = load;
+ let Inst{19-16} = addr{12-9};
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = addr{7-0};
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+ def _POST: T2CI<op31_28,
+ (outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
+ postidx_imm8s4:$offset),
+ asm, "\t$cop, $CRd, $addr, $offset"> {
+ bits<9> offset;
+ bits<4> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 0; // P = 0
+ let Inst{23} = offset{8};
+ let Inst{22} = Dbit;
+ let Inst{21} = 1; // W = 1
+ let Inst{20} = load;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = offset{7-0};
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+ def _OPTION : T2CI<op31_28, (outs),
+ (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
+ coproc_option_imm:$option),
+ asm, "\t$cop, $CRd, $addr, $option"> {
+ bits<8> option;
+ bits<4> addr;
+ bits<4> cop;
+ bits<4> CRd;
+ let Inst{24} = 0; // P = 0
+ let Inst{23} = 1; // U = 1
+ let Inst{22} = Dbit;
+ let Inst{21} = 0; // W = 0
+ let Inst{20} = load;
+ let Inst{19-16} = addr;
+ let Inst{15-12} = CRd;
+ let Inst{11-8} = cop;
+ let Inst{7-0} = option;
+ let DecoderMethod = "DecodeCopMemInstruction";
+ }
+}
+
+defm t2LDC : t2LdStCop<0b1110, 1, 0, "ldc">;
+defm t2LDCL : t2LdStCop<0b1110, 1, 1, "ldcl">;
+defm t2STC : t2LdStCop<0b1110, 0, 0, "stc">;
+defm t2STCL : t2LdStCop<0b1110, 0, 1, "stcl">;
+defm t2LDC2 : t2LdStCop<0b1111, 1, 0, "ldc2">, Requires<[PreV8]>;
+defm t2LDC2L : t2LdStCop<0b1111, 1, 1, "ldc2l">, Requires<[PreV8]>;
+defm t2STC2 : t2LdStCop<0b1111, 0, 0, "stc2">, Requires<[PreV8]>;
+defm t2STC2L : t2LdStCop<0b1111, 0, 1, "stc2l">, Requires<[PreV8]>;
+
+
+//===----------------------------------------------------------------------===//
+// Move between special register and ARM core register -- for disassembly only
+//
+// Move to ARM core register from Special Register
+
+// A/R class MRS.
+//
+// A/R class can only move from CPSR or SPSR.
+def t2MRS_AR : T2I<(outs GPR:$Rd), (ins), NoItinerary, "mrs", "\t$Rd, apsr",
+ []>, Requires<[IsThumb2,IsNotMClass]> {
+ bits<4> Rd;
+ let Inst{31-12} = 0b11110011111011111000;
+ let Inst{11-8} = Rd;
+ let Inst{7-0} = 0b0000;
+}
+
+def : t2InstAlias<"mrs${p} $Rd, cpsr", (t2MRS_AR GPR:$Rd, pred:$p)>;
+
+def t2MRSsys_AR: T2I<(outs GPR:$Rd), (ins), NoItinerary, "mrs", "\t$Rd, spsr",
+ []>, Requires<[IsThumb2,IsNotMClass]> {
+ bits<4> Rd;
+ let Inst{31-12} = 0b11110011111111111000;
+ let Inst{11-8} = Rd;
+ let Inst{7-0} = 0b0000;
+}
+
+// M class MRS.
+//
+// This MRS has a mask field in bits 7-0 and can take more values than
+// the A/R class (a full msr_mask).
+def t2MRS_M : T2I<(outs rGPR:$Rd), (ins msr_mask:$mask), NoItinerary,
+ "mrs", "\t$Rd, $mask", []>,
+ Requires<[IsThumb,IsMClass]> {
+ bits<4> Rd;
+ bits<8> mask;
+ let Inst{31-12} = 0b11110011111011111000;
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = 0b1111;
+ let Inst{7-0} = mask;
+}
+
+
+// Move from ARM core register to Special Register
+//
+// A/R class MSR.
+//
+// No need to have both system and application versions, the encodings are the
+// same and the assembly parser has no way to distinguish between them. The mask
+// operand contains the special register (R Bit) in bit 4 and bits 3-0 contains
+// the mask with the fields to be accessed in the special register.
+def t2MSR_AR : T2I<(outs), (ins msr_mask:$mask, rGPR:$Rn),
+ NoItinerary, "msr", "\t$mask, $Rn", []>,
+ Requires<[IsThumb2,IsNotMClass]> {
+ bits<5> mask;
+ bits<4> Rn;
+ let Inst{31-21} = 0b11110011100;
+ let Inst{20} = mask{4}; // R Bit
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = 0b1000;
+ let Inst{11-8} = mask{3-0};
+ let Inst{7-0} = 0;
+}
+
+// M class MSR.
+//
+// Move from ARM core register to Special Register
+def t2MSR_M : T2I<(outs), (ins msr_mask:$SYSm, rGPR:$Rn),
+ NoItinerary, "msr", "\t$SYSm, $Rn", []>,
+ Requires<[IsThumb,IsMClass]> {
+ bits<12> SYSm;
+ bits<4> Rn;
+ let Inst{31-21} = 0b11110011100;
+ let Inst{20} = 0b0;
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = 0b1000;
+ let Inst{11-0} = SYSm;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Move between coprocessor and ARM core register
+//
+
+class t2MovRCopro<bits<4> Op, string opc, bit direction, dag oops, dag iops,
+ list<dag> pattern>
+ : T2Cop<Op, oops, iops, opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2",
+ pattern> {
+ let Inst{27-24} = 0b1110;
+ let Inst{20} = direction;
+ let Inst{4} = 1;
+
+ bits<4> Rt;
+ bits<4> cop;
+ bits<3> opc1;
+ bits<3> opc2;
+ bits<4> CRm;
+ bits<4> CRn;
+
+ let Inst{15-12} = Rt;
+ let Inst{11-8} = cop;
+ let Inst{23-21} = opc1;
+ let Inst{7-5} = opc2;
+ let Inst{3-0} = CRm;
+ let Inst{19-16} = CRn;
+}
+
+class t2MovRRCopro<bits<4> Op, string opc, bit direction,
+ list<dag> pattern = []>
+ : T2Cop<Op, (outs),
+ (ins p_imm:$cop, imm0_15:$opc1, GPR:$Rt, GPR:$Rt2, c_imm:$CRm),
+ opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> {
+ let Inst{27-24} = 0b1100;
+ let Inst{23-21} = 0b010;
+ let Inst{20} = direction;
+
+ bits<4> Rt;
+ bits<4> Rt2;
+ bits<4> cop;
+ bits<4> opc1;
+ bits<4> CRm;
+
+ let Inst{15-12} = Rt;
+ let Inst{19-16} = Rt2;
+ let Inst{11-8} = cop;
+ let Inst{7-4} = opc1;
+ let Inst{3-0} = CRm;
+}
+
+/* from ARM core register to coprocessor */
+def t2MCR : t2MovRCopro<0b1110, "mcr", 0,
+ (outs),
+ (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
+ c_imm:$CRm, imm0_7:$opc2),
+ [(int_arm_mcr imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn,
+ imm:$CRm, imm:$opc2)]>,
+ ComplexDeprecationPredicate<"MCR">;
+def : t2InstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm",
+ (t2MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
+ c_imm:$CRm, 0, pred:$p)>;
+def t2MCR2 : t2MovRCopro<0b1111, "mcr2", 0,
+ (outs), (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
+ c_imm:$CRm, imm0_7:$opc2),
+ [(int_arm_mcr2 imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn,
+ imm:$CRm, imm:$opc2)]> {
+ let Predicates = [IsThumb2, PreV8];
+}
+def : t2InstAlias<"mcr2${p} $cop, $opc1, $Rt, $CRn, $CRm",
+ (t2MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
+ c_imm:$CRm, 0, pred:$p)>;
+
+/* from coprocessor to ARM core register */
+def t2MRC : t2MovRCopro<0b1110, "mrc", 1,
+ (outs GPRwithAPSR:$Rt), (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
+ c_imm:$CRm, imm0_7:$opc2), []>;
+def : t2InstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm",
+ (t2MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
+ c_imm:$CRm, 0, pred:$p)>;
+
+def t2MRC2 : t2MovRCopro<0b1111, "mrc2", 1,
+ (outs GPRwithAPSR:$Rt), (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
+ c_imm:$CRm, imm0_7:$opc2), []> {
+ let Predicates = [IsThumb2, PreV8];
+}
+def : t2InstAlias<"mrc2${p} $cop, $opc1, $Rt, $CRn, $CRm",
+ (t2MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
+ c_imm:$CRm, 0, pred:$p)>;
+
+def : T2v6Pat<(int_arm_mrc imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2),
+ (t2MRC imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>;
+
+def : T2v6Pat<(int_arm_mrc2 imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2),
+ (t2MRC2 imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>;
+
+
+/* from ARM core register to coprocessor */
+def t2MCRR : t2MovRRCopro<0b1110, "mcrr", 0,
+ [(int_arm_mcrr imm:$cop, imm:$opc1, GPR:$Rt, GPR:$Rt2,
+ imm:$CRm)]>;
+def t2MCRR2 : t2MovRRCopro<0b1111, "mcrr2", 0,
+ [(int_arm_mcrr2 imm:$cop, imm:$opc1, GPR:$Rt,
+ GPR:$Rt2, imm:$CRm)]> {
+ let Predicates = [IsThumb2, PreV8];
+}
+
+/* from coprocessor to ARM core register */
+def t2MRRC : t2MovRRCopro<0b1110, "mrrc", 1>;
+
+def t2MRRC2 : t2MovRRCopro<0b1111, "mrrc2", 1> {
+ let Predicates = [IsThumb2, PreV8];
+}
+
+//===----------------------------------------------------------------------===//
+// Other Coprocessor Instructions.
+//
+
+def t2CDP : T2Cop<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
+ c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
+ "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
+ [(int_arm_cdp imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn,
+ imm:$CRm, imm:$opc2)]> {
+ let Inst{27-24} = 0b1110;
+
+ bits<4> opc1;
+ bits<4> CRn;
+ bits<4> CRd;
+ bits<4> cop;
+ bits<3> opc2;
+ bits<4> CRm;
+
+ let Inst{3-0} = CRm;
+ let Inst{4} = 0;
+ let Inst{7-5} = opc2;
+ let Inst{11-8} = cop;
+ let Inst{15-12} = CRd;
+ let Inst{19-16} = CRn;
+ let Inst{23-20} = opc1;
+
+ let Predicates = [IsThumb2, PreV8];
+}
+
+def t2CDP2 : T2Cop<0b1111, (outs), (ins p_imm:$cop, imm0_15:$opc1,
+ c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
+ "cdp2", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
+ [(int_arm_cdp2 imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn,
+ imm:$CRm, imm:$opc2)]> {
+ let Inst{27-24} = 0b1110;
+
+ bits<4> opc1;
+ bits<4> CRn;
+ bits<4> CRd;
+ bits<4> cop;
+ bits<3> opc2;
+ bits<4> CRm;
+
+ let Inst{3-0} = CRm;
+ let Inst{4} = 0;
+ let Inst{7-5} = opc2;
+ let Inst{11-8} = cop;
+ let Inst{15-12} = CRd;
+ let Inst{19-16} = CRn;
+ let Inst{23-20} = opc1;
+
+ let Predicates = [IsThumb2, PreV8];
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//
+
+// SXT/UXT with no rotate
+let AddedComplexity = 16 in {
+def : T2Pat<(and rGPR:$Rm, 0x000000FF), (t2UXTB rGPR:$Rm, 0)>,
+ Requires<[IsThumb2]>;
+def : T2Pat<(and rGPR:$Rm, 0x0000FFFF), (t2UXTH rGPR:$Rm, 0)>,
+ Requires<[IsThumb2]>;
+def : T2Pat<(and rGPR:$Rm, 0x00FF00FF), (t2UXTB16 rGPR:$Rm, 0)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+def : T2Pat<(add rGPR:$Rn, (and rGPR:$Rm, 0x00FF)),
+ (t2UXTAB rGPR:$Rn, rGPR:$Rm, 0)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+def : T2Pat<(add rGPR:$Rn, (and rGPR:$Rm, 0xFFFF)),
+ (t2UXTAH rGPR:$Rn, rGPR:$Rm, 0)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+}
+
+def : T2Pat<(sext_inreg rGPR:$Src, i8), (t2SXTB rGPR:$Src, 0)>,
+ Requires<[IsThumb2]>;
+def : T2Pat<(sext_inreg rGPR:$Src, i16), (t2SXTH rGPR:$Src, 0)>,
+ Requires<[IsThumb2]>;
+def : T2Pat<(add rGPR:$Rn, (sext_inreg rGPR:$Rm, i8)),
+ (t2SXTAB rGPR:$Rn, rGPR:$Rm, 0)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+def : T2Pat<(add rGPR:$Rn, (sext_inreg rGPR:$Rm, i16)),
+ (t2SXTAH rGPR:$Rn, rGPR:$Rm, 0)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+
+// Atomic load/store patterns
+def : T2Pat<(atomic_load_8 t2addrmode_imm12:$addr),
+ (t2LDRBi12 t2addrmode_imm12:$addr)>;
+def : T2Pat<(atomic_load_8 t2addrmode_negimm8:$addr),
+ (t2LDRBi8 t2addrmode_negimm8:$addr)>;
+def : T2Pat<(atomic_load_8 t2addrmode_so_reg:$addr),
+ (t2LDRBs t2addrmode_so_reg:$addr)>;
+def : T2Pat<(atomic_load_16 t2addrmode_imm12:$addr),
+ (t2LDRHi12 t2addrmode_imm12:$addr)>;
+def : T2Pat<(atomic_load_16 t2addrmode_negimm8:$addr),
+ (t2LDRHi8 t2addrmode_negimm8:$addr)>;
+def : T2Pat<(atomic_load_16 t2addrmode_so_reg:$addr),
+ (t2LDRHs t2addrmode_so_reg:$addr)>;
+def : T2Pat<(atomic_load_32 t2addrmode_imm12:$addr),
+ (t2LDRi12 t2addrmode_imm12:$addr)>;
+def : T2Pat<(atomic_load_32 t2addrmode_negimm8:$addr),
+ (t2LDRi8 t2addrmode_negimm8:$addr)>;
+def : T2Pat<(atomic_load_32 t2addrmode_so_reg:$addr),
+ (t2LDRs t2addrmode_so_reg:$addr)>;
+def : T2Pat<(atomic_store_8 t2addrmode_imm12:$addr, GPR:$val),
+ (t2STRBi12 GPR:$val, t2addrmode_imm12:$addr)>;
+def : T2Pat<(atomic_store_8 t2addrmode_negimm8:$addr, GPR:$val),
+ (t2STRBi8 GPR:$val, t2addrmode_negimm8:$addr)>;
+def : T2Pat<(atomic_store_8 t2addrmode_so_reg:$addr, GPR:$val),
+ (t2STRBs GPR:$val, t2addrmode_so_reg:$addr)>;
+def : T2Pat<(atomic_store_16 t2addrmode_imm12:$addr, GPR:$val),
+ (t2STRHi12 GPR:$val, t2addrmode_imm12:$addr)>;
+def : T2Pat<(atomic_store_16 t2addrmode_negimm8:$addr, GPR:$val),
+ (t2STRHi8 GPR:$val, t2addrmode_negimm8:$addr)>;
+def : T2Pat<(atomic_store_16 t2addrmode_so_reg:$addr, GPR:$val),
+ (t2STRHs GPR:$val, t2addrmode_so_reg:$addr)>;
+def : T2Pat<(atomic_store_32 t2addrmode_imm12:$addr, GPR:$val),
+ (t2STRi12 GPR:$val, t2addrmode_imm12:$addr)>;
+def : T2Pat<(atomic_store_32 t2addrmode_negimm8:$addr, GPR:$val),
+ (t2STRi8 GPR:$val, t2addrmode_negimm8:$addr)>;
+def : T2Pat<(atomic_store_32 t2addrmode_so_reg:$addr, GPR:$val),
+ (t2STRs GPR:$val, t2addrmode_so_reg:$addr)>;
+
+let AddedComplexity = 8 in {
+ def : T2Pat<(atomic_load_acquire_8 addr_offset_none:$addr), (t2LDAB addr_offset_none:$addr)>;
+ def : T2Pat<(atomic_load_acquire_16 addr_offset_none:$addr), (t2LDAH addr_offset_none:$addr)>;
+ def : T2Pat<(atomic_load_acquire_32 addr_offset_none:$addr), (t2LDA addr_offset_none:$addr)>;
+ def : T2Pat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val), (t2STLB GPR:$val, addr_offset_none:$addr)>;
+ def : T2Pat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (t2STLH GPR:$val, addr_offset_none:$addr)>;
+ def : T2Pat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (t2STL GPR:$val, addr_offset_none:$addr)>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Assembler aliases
+//
+
+// Aliases for ADC without the ".w" optional width specifier.
+def : t2InstAlias<"adc${s}${p} $Rd, $Rn, $Rm",
+ (t2ADCrr rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"adc${s}${p} $Rd, $Rn, $ShiftedRm",
+ (t2ADCrs rGPR:$Rd, rGPR:$Rn, t2_so_reg:$ShiftedRm,
+ pred:$p, cc_out:$s)>;
+
+// Aliases for SBC without the ".w" optional width specifier.
+def : t2InstAlias<"sbc${s}${p} $Rd, $Rn, $Rm",
+ (t2SBCrr rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"sbc${s}${p} $Rd, $Rn, $ShiftedRm",
+ (t2SBCrs rGPR:$Rd, rGPR:$Rn, t2_so_reg:$ShiftedRm,
+ pred:$p, cc_out:$s)>;
+
+// Aliases for ADD without the ".w" optional width specifier.
+def : t2InstAlias<"add${s}${p} $Rd, $Rn, $imm",
+ (t2ADDri GPRnopc:$Rd, GPRnopc:$Rn, t2_so_imm:$imm, pred:$p,
+ cc_out:$s)>;
+def : t2InstAlias<"add${p} $Rd, $Rn, $imm",
+ (t2ADDri12 GPRnopc:$Rd, GPR:$Rn, imm0_4095:$imm, pred:$p)>;
+def : t2InstAlias<"add${s}${p} $Rd, $Rn, $Rm",
+ (t2ADDrr GPRnopc:$Rd, GPRnopc:$Rn, rGPR:$Rm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"add${s}${p} $Rd, $Rn, $ShiftedRm",
+ (t2ADDrs GPRnopc:$Rd, GPRnopc:$Rn, t2_so_reg:$ShiftedRm,
+ pred:$p, cc_out:$s)>;
+// ... and with the destination and source register combined.
+def : t2InstAlias<"add${s}${p} $Rdn, $imm",
+ (t2ADDri GPRnopc:$Rdn, GPRnopc:$Rdn, t2_so_imm:$imm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"add${p} $Rdn, $imm",
+ (t2ADDri12 GPRnopc:$Rdn, GPRnopc:$Rdn, imm0_4095:$imm, pred:$p)>;
+def : t2InstAlias<"add${s}${p} $Rdn, $Rm",
+ (t2ADDrr GPRnopc:$Rdn, GPRnopc:$Rdn, rGPR:$Rm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"add${s}${p} $Rdn, $ShiftedRm",
+ (t2ADDrs GPRnopc:$Rdn, GPRnopc:$Rdn, t2_so_reg:$ShiftedRm,
+ pred:$p, cc_out:$s)>;
+
+// add w/ negative immediates is just a sub.
+def : t2InstAlias<"add${s}${p} $Rd, $Rn, $imm",
+ (t2SUBri GPRnopc:$Rd, GPRnopc:$Rn, t2_so_imm_neg:$imm, pred:$p,
+ cc_out:$s)>;
+def : t2InstAlias<"add${p} $Rd, $Rn, $imm",
+ (t2SUBri12 GPRnopc:$Rd, GPR:$Rn, imm0_4095_neg:$imm, pred:$p)>;
+def : t2InstAlias<"add${s}${p} $Rdn, $imm",
+ (t2SUBri GPRnopc:$Rdn, GPRnopc:$Rdn, t2_so_imm_neg:$imm, pred:$p,
+ cc_out:$s)>;
+def : t2InstAlias<"add${p} $Rdn, $imm",
+ (t2SUBri12 GPRnopc:$Rdn, GPRnopc:$Rdn, imm0_4095_neg:$imm, pred:$p)>;
+
+def : t2InstAlias<"add${s}${p}.w $Rd, $Rn, $imm",
+ (t2SUBri GPRnopc:$Rd, GPRnopc:$Rn, t2_so_imm_neg:$imm, pred:$p,
+ cc_out:$s)>;
+def : t2InstAlias<"addw${p} $Rd, $Rn, $imm",
+ (t2SUBri12 GPRnopc:$Rd, GPR:$Rn, imm0_4095_neg:$imm, pred:$p)>;
+def : t2InstAlias<"add${s}${p}.w $Rdn, $imm",
+ (t2SUBri GPRnopc:$Rdn, GPRnopc:$Rdn, t2_so_imm_neg:$imm, pred:$p,
+ cc_out:$s)>;
+def : t2InstAlias<"addw${p} $Rdn, $imm",
+ (t2SUBri12 GPRnopc:$Rdn, GPRnopc:$Rdn, imm0_4095_neg:$imm, pred:$p)>;
+
+
+// Aliases for SUB without the ".w" optional width specifier.
+def : t2InstAlias<"sub${s}${p} $Rd, $Rn, $imm",
+ (t2SUBri GPRnopc:$Rd, GPRnopc:$Rn, t2_so_imm:$imm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"sub${p} $Rd, $Rn, $imm",
+ (t2SUBri12 GPRnopc:$Rd, GPR:$Rn, imm0_4095:$imm, pred:$p)>;
+def : t2InstAlias<"sub${s}${p} $Rd, $Rn, $Rm",
+ (t2SUBrr GPRnopc:$Rd, GPRnopc:$Rn, rGPR:$Rm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"sub${s}${p} $Rd, $Rn, $ShiftedRm",
+ (t2SUBrs GPRnopc:$Rd, GPRnopc:$Rn, t2_so_reg:$ShiftedRm,
+ pred:$p, cc_out:$s)>;
+// ... and with the destination and source register combined.
+def : t2InstAlias<"sub${s}${p} $Rdn, $imm",
+ (t2SUBri GPRnopc:$Rdn, GPRnopc:$Rdn, t2_so_imm:$imm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"sub${p} $Rdn, $imm",
+ (t2SUBri12 GPRnopc:$Rdn, GPRnopc:$Rdn, imm0_4095:$imm, pred:$p)>;
+def : t2InstAlias<"sub${s}${p}.w $Rdn, $Rm",
+ (t2SUBrr GPRnopc:$Rdn, GPRnopc:$Rdn, rGPR:$Rm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"sub${s}${p} $Rdn, $Rm",
+ (t2SUBrr GPRnopc:$Rdn, GPRnopc:$Rdn, rGPR:$Rm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"sub${s}${p} $Rdn, $ShiftedRm",
+ (t2SUBrs GPRnopc:$Rdn, GPRnopc:$Rdn, t2_so_reg:$ShiftedRm,
+ pred:$p, cc_out:$s)>;
+
+// Alias for compares without the ".w" optional width specifier.
+def : t2InstAlias<"cmn${p} $Rn, $Rm",
+ (t2CMNzrr GPRnopc:$Rn, rGPR:$Rm, pred:$p)>;
+def : t2InstAlias<"teq${p} $Rn, $Rm",
+ (t2TEQrr GPRnopc:$Rn, rGPR:$Rm, pred:$p)>;
+def : t2InstAlias<"tst${p} $Rn, $Rm",
+ (t2TSTrr GPRnopc:$Rn, rGPR:$Rm, pred:$p)>;
+
+// Memory barriers
+def : InstAlias<"dmb${p}", (t2DMB 0xf, pred:$p)>, Requires<[HasDB]>;
+def : InstAlias<"dsb${p}", (t2DSB 0xf, pred:$p)>, Requires<[HasDB]>;
+def : InstAlias<"isb${p}", (t2ISB 0xf, pred:$p)>, Requires<[HasDB]>;
+
+// Alias for LDR, LDRB, LDRH, LDRSB, and LDRSH without the ".w" optional
+// width specifier.
+def : t2InstAlias<"ldr${p} $Rt, $addr",
+ (t2LDRi12 GPR:$Rt, t2addrmode_imm12:$addr, pred:$p)>;
+def : t2InstAlias<"ldrb${p} $Rt, $addr",
+ (t2LDRBi12 rGPR:$Rt, t2addrmode_imm12:$addr, pred:$p)>;
+def : t2InstAlias<"ldrh${p} $Rt, $addr",
+ (t2LDRHi12 rGPR:$Rt, t2addrmode_imm12:$addr, pred:$p)>;
+def : t2InstAlias<"ldrsb${p} $Rt, $addr",
+ (t2LDRSBi12 rGPR:$Rt, t2addrmode_imm12:$addr, pred:$p)>;
+def : t2InstAlias<"ldrsh${p} $Rt, $addr",
+ (t2LDRSHi12 rGPR:$Rt, t2addrmode_imm12:$addr, pred:$p)>;
+
+def : t2InstAlias<"ldr${p} $Rt, $addr",
+ (t2LDRs GPR:$Rt, t2addrmode_so_reg:$addr, pred:$p)>;
+def : t2InstAlias<"ldrb${p} $Rt, $addr",
+ (t2LDRBs rGPR:$Rt, t2addrmode_so_reg:$addr, pred:$p)>;
+def : t2InstAlias<"ldrh${p} $Rt, $addr",
+ (t2LDRHs rGPR:$Rt, t2addrmode_so_reg:$addr, pred:$p)>;
+def : t2InstAlias<"ldrsb${p} $Rt, $addr",
+ (t2LDRSBs rGPR:$Rt, t2addrmode_so_reg:$addr, pred:$p)>;
+def : t2InstAlias<"ldrsh${p} $Rt, $addr",
+ (t2LDRSHs rGPR:$Rt, t2addrmode_so_reg:$addr, pred:$p)>;
+
+def : t2InstAlias<"ldr${p} $Rt, $addr",
+ (t2LDRpci GPRnopc:$Rt, t2ldrlabel:$addr, pred:$p)>;
+def : t2InstAlias<"ldrb${p} $Rt, $addr",
+ (t2LDRBpci rGPR:$Rt, t2ldrlabel:$addr, pred:$p)>;
+def : t2InstAlias<"ldrh${p} $Rt, $addr",
+ (t2LDRHpci rGPR:$Rt, t2ldrlabel:$addr, pred:$p)>;
+def : t2InstAlias<"ldrsb${p} $Rt, $addr",
+ (t2LDRSBpci rGPR:$Rt, t2ldrlabel:$addr, pred:$p)>;
+def : t2InstAlias<"ldrsh${p} $Rt, $addr",
+ (t2LDRSHpci rGPR:$Rt, t2ldrlabel:$addr, pred:$p)>;
+
+// Alias for MVN with(out) the ".w" optional width specifier.
+def : t2InstAlias<"mvn${s}${p}.w $Rd, $imm",
+ (t2MVNi rGPR:$Rd, t2_so_imm:$imm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"mvn${s}${p} $Rd, $Rm",
+ (t2MVNr rGPR:$Rd, rGPR:$Rm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"mvn${s}${p} $Rd, $ShiftedRm",
+ (t2MVNs rGPR:$Rd, t2_so_reg:$ShiftedRm, pred:$p, cc_out:$s)>;
+
+// PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT when the
+// shift amount is zero (i.e., unspecified).
+def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm",
+ (t2PKHBT rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, 0, pred:$p)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm",
+ (t2PKHBT rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, 0, pred:$p)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+
+// PUSH/POP aliases for STM/LDM
+def : t2InstAlias<"push${p}.w $regs", (t2STMDB_UPD SP, pred:$p, reglist:$regs)>;
+def : t2InstAlias<"push${p} $regs", (t2STMDB_UPD SP, pred:$p, reglist:$regs)>;
+def : t2InstAlias<"pop${p}.w $regs", (t2LDMIA_UPD SP, pred:$p, reglist:$regs)>;
+def : t2InstAlias<"pop${p} $regs", (t2LDMIA_UPD SP, pred:$p, reglist:$regs)>;
+
+// STMIA/STMIA_UPD aliases w/o the optional .w suffix
+def : t2InstAlias<"stm${p} $Rn, $regs",
+ (t2STMIA GPR:$Rn, pred:$p, reglist:$regs)>;
+def : t2InstAlias<"stm${p} $Rn!, $regs",
+ (t2STMIA_UPD GPR:$Rn, pred:$p, reglist:$regs)>;
+
+// LDMIA/LDMIA_UPD aliases w/o the optional .w suffix
+def : t2InstAlias<"ldm${p} $Rn, $regs",
+ (t2LDMIA GPR:$Rn, pred:$p, reglist:$regs)>;
+def : t2InstAlias<"ldm${p} $Rn!, $regs",
+ (t2LDMIA_UPD GPR:$Rn, pred:$p, reglist:$regs)>;
+
+// STMDB/STMDB_UPD aliases w/ the optional .w suffix
+def : t2InstAlias<"stmdb${p}.w $Rn, $regs",
+ (t2STMDB GPR:$Rn, pred:$p, reglist:$regs)>;
+def : t2InstAlias<"stmdb${p}.w $Rn!, $regs",
+ (t2STMDB_UPD GPR:$Rn, pred:$p, reglist:$regs)>;
+
+// LDMDB/LDMDB_UPD aliases w/ the optional .w suffix
+def : t2InstAlias<"ldmdb${p}.w $Rn, $regs",
+ (t2LDMDB GPR:$Rn, pred:$p, reglist:$regs)>;
+def : t2InstAlias<"ldmdb${p}.w $Rn!, $regs",
+ (t2LDMDB_UPD GPR:$Rn, pred:$p, reglist:$regs)>;
+
+// Alias for REV/REV16/REVSH without the ".w" optional width specifier.
+def : t2InstAlias<"rev${p} $Rd, $Rm", (t2REV rGPR:$Rd, rGPR:$Rm, pred:$p)>;
+def : t2InstAlias<"rev16${p} $Rd, $Rm", (t2REV16 rGPR:$Rd, rGPR:$Rm, pred:$p)>;
+def : t2InstAlias<"revsh${p} $Rd, $Rm", (t2REVSH rGPR:$Rd, rGPR:$Rm, pred:$p)>;
+
+
+// Alias for RSB without the ".w" optional width specifier, and with optional
+// implied destination register.
+def : t2InstAlias<"rsb${s}${p} $Rd, $Rn, $imm",
+ (t2RSBri rGPR:$Rd, rGPR:$Rn, t2_so_imm:$imm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"rsb${s}${p} $Rdn, $imm",
+ (t2RSBri rGPR:$Rdn, rGPR:$Rdn, t2_so_imm:$imm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"rsb${s}${p} $Rdn, $Rm",
+ (t2RSBrr rGPR:$Rdn, rGPR:$Rdn, rGPR:$Rm, pred:$p, cc_out:$s)>;
+def : t2InstAlias<"rsb${s}${p} $Rdn, $ShiftedRm",
+ (t2RSBrs rGPR:$Rdn, rGPR:$Rdn, t2_so_reg:$ShiftedRm, pred:$p,
+ cc_out:$s)>;
+
+// SSAT/USAT optional shift operand.
+def : t2InstAlias<"ssat${p} $Rd, $sat_imm, $Rn",
+ (t2SSAT rGPR:$Rd, imm1_32:$sat_imm, rGPR:$Rn, 0, pred:$p)>;
+def : t2InstAlias<"usat${p} $Rd, $sat_imm, $Rn",
+ (t2USAT rGPR:$Rd, imm0_31:$sat_imm, rGPR:$Rn, 0, pred:$p)>;
+
+// STM w/o the .w suffix.
+def : t2InstAlias<"stm${p} $Rn, $regs",
+ (t2STMIA GPR:$Rn, pred:$p, reglist:$regs)>;
+
+// Alias for STR, STRB, and STRH without the ".w" optional
+// width specifier.
+def : t2InstAlias<"str${p} $Rt, $addr",
+ (t2STRi12 GPR:$Rt, t2addrmode_imm12:$addr, pred:$p)>;
+def : t2InstAlias<"strb${p} $Rt, $addr",
+ (t2STRBi12 rGPR:$Rt, t2addrmode_imm12:$addr, pred:$p)>;
+def : t2InstAlias<"strh${p} $Rt, $addr",
+ (t2STRHi12 rGPR:$Rt, t2addrmode_imm12:$addr, pred:$p)>;
+
+def : t2InstAlias<"str${p} $Rt, $addr",
+ (t2STRs GPR:$Rt, t2addrmode_so_reg:$addr, pred:$p)>;
+def : t2InstAlias<"strb${p} $Rt, $addr",
+ (t2STRBs rGPR:$Rt, t2addrmode_so_reg:$addr, pred:$p)>;
+def : t2InstAlias<"strh${p} $Rt, $addr",
+ (t2STRHs rGPR:$Rt, t2addrmode_so_reg:$addr, pred:$p)>;
+
+// Extend instruction optional rotate operand.
+def : t2InstAlias<"sxtab${p} $Rd, $Rn, $Rm",
+ (t2SXTAB rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"sxtah${p} $Rd, $Rn, $Rm",
+ (t2SXTAH rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"sxtab16${p} $Rd, $Rn, $Rm",
+ (t2SXTAB16 rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, 0, pred:$p)>;
+
+def : t2InstAlias<"sxtb${p} $Rd, $Rm",
+ (t2SXTB rGPR:$Rd, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"sxtb16${p} $Rd, $Rm",
+ (t2SXTB16 rGPR:$Rd, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"sxth${p} $Rd, $Rm",
+ (t2SXTH rGPR:$Rd, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"sxtb${p}.w $Rd, $Rm",
+ (t2SXTB rGPR:$Rd, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"sxth${p}.w $Rd, $Rm",
+ (t2SXTH rGPR:$Rd, rGPR:$Rm, 0, pred:$p)>;
+
+def : t2InstAlias<"uxtab${p} $Rd, $Rn, $Rm",
+ (t2UXTAB rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"uxtah${p} $Rd, $Rn, $Rm",
+ (t2UXTAH rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"uxtab16${p} $Rd, $Rn, $Rm",
+ (t2UXTAB16 rGPR:$Rd, rGPR:$Rn, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"uxtb${p} $Rd, $Rm",
+ (t2UXTB rGPR:$Rd, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"uxtb16${p} $Rd, $Rm",
+ (t2UXTB16 rGPR:$Rd, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"uxth${p} $Rd, $Rm",
+ (t2UXTH rGPR:$Rd, rGPR:$Rm, 0, pred:$p)>;
+
+def : t2InstAlias<"uxtb${p}.w $Rd, $Rm",
+ (t2UXTB rGPR:$Rd, rGPR:$Rm, 0, pred:$p)>;
+def : t2InstAlias<"uxth${p}.w $Rd, $Rm",
+ (t2UXTH rGPR:$Rd, rGPR:$Rm, 0, pred:$p)>;
+
+// Extend instruction w/o the ".w" optional width specifier.
+def : t2InstAlias<"uxtb${p} $Rd, $Rm$rot",
+ (t2UXTB rGPR:$Rd, rGPR:$Rm, rot_imm:$rot, pred:$p)>;
+def : t2InstAlias<"uxtb16${p} $Rd, $Rm$rot",
+ (t2UXTB16 rGPR:$Rd, rGPR:$Rm, rot_imm:$rot, pred:$p)>;
+def : t2InstAlias<"uxth${p} $Rd, $Rm$rot",
+ (t2UXTH rGPR:$Rd, rGPR:$Rm, rot_imm:$rot, pred:$p)>;
+
+def : t2InstAlias<"sxtb${p} $Rd, $Rm$rot",
+ (t2SXTB rGPR:$Rd, rGPR:$Rm, rot_imm:$rot, pred:$p)>;
+def : t2InstAlias<"sxtb16${p} $Rd, $Rm$rot",
+ (t2SXTB16 rGPR:$Rd, rGPR:$Rm, rot_imm:$rot, pred:$p)>;
+def : t2InstAlias<"sxth${p} $Rd, $Rm$rot",
+ (t2SXTH rGPR:$Rd, rGPR:$Rm, rot_imm:$rot, pred:$p)>;
+
+
+// "mov Rd, t2_so_imm_not" can be handled via "mvn" in assembly, just like
+// for isel.
+def : t2InstAlias<"mov${p} $Rd, $imm",
+ (t2MVNi rGPR:$Rd, t2_so_imm_not:$imm, pred:$p, zero_reg)>;
+def : t2InstAlias<"mvn${p} $Rd, $imm",
+ (t2MOVi rGPR:$Rd, t2_so_imm_not:$imm, pred:$p, zero_reg)>;
+// Same for AND <--> BIC
+def : t2InstAlias<"bic${s}${p} $Rd, $Rn, $imm",
+ (t2ANDri rGPR:$Rd, rGPR:$Rn, t2_so_imm_not:$imm,
+ pred:$p, cc_out:$s)>;
+def : t2InstAlias<"bic${s}${p} $Rdn, $imm",
+ (t2ANDri rGPR:$Rdn, rGPR:$Rdn, t2_so_imm_not:$imm,
+ pred:$p, cc_out:$s)>;
+def : t2InstAlias<"and${s}${p} $Rd, $Rn, $imm",
+ (t2BICri rGPR:$Rd, rGPR:$Rn, t2_so_imm_not:$imm,
+ pred:$p, cc_out:$s)>;
+def : t2InstAlias<"and${s}${p} $Rdn, $imm",
+ (t2BICri rGPR:$Rdn, rGPR:$Rdn, t2_so_imm_not:$imm,
+ pred:$p, cc_out:$s)>;
+// Likewise, "add Rd, t2_so_imm_neg" -> sub
+def : t2InstAlias<"add${s}${p} $Rd, $Rn, $imm",
+ (t2SUBri GPRnopc:$Rd, GPRnopc:$Rn, t2_so_imm_neg:$imm,
+ pred:$p, cc_out:$s)>;
+def : t2InstAlias<"add${s}${p} $Rd, $imm",
+ (t2SUBri GPRnopc:$Rd, GPRnopc:$Rd, t2_so_imm_neg:$imm,
+ pred:$p, cc_out:$s)>;
+// Same for CMP <--> CMN via t2_so_imm_neg
+def : t2InstAlias<"cmp${p} $Rd, $imm",
+ (t2CMNri rGPR:$Rd, t2_so_imm_neg:$imm, pred:$p)>;
+def : t2InstAlias<"cmn${p} $Rd, $imm",
+ (t2CMPri rGPR:$Rd, t2_so_imm_neg:$imm, pred:$p)>;
+
+
+// Wide 'mul' encoding can be specified with only two operands.
+def : t2InstAlias<"mul${p} $Rn, $Rm",
+ (t2MUL rGPR:$Rn, rGPR:$Rm, rGPR:$Rn, pred:$p)>;
+
+// "neg" is and alias for "rsb rd, rn, #0"
+def : t2InstAlias<"neg${s}${p} $Rd, $Rm",
+ (t2RSBri rGPR:$Rd, rGPR:$Rm, 0, pred:$p, cc_out:$s)>;
+
+// MOV so_reg assembler pseudos. InstAlias isn't expressive enough for
+// these, unfortunately.
+def t2MOVsi: t2AsmPseudo<"mov${p} $Rd, $shift",
+ (ins rGPR:$Rd, t2_so_reg:$shift, pred:$p)>;
+def t2MOVSsi: t2AsmPseudo<"movs${p} $Rd, $shift",
+ (ins rGPR:$Rd, t2_so_reg:$shift, pred:$p)>;
+
+def t2MOVsr: t2AsmPseudo<"mov${p} $Rd, $shift",
+ (ins rGPR:$Rd, so_reg_reg:$shift, pred:$p)>;
+def t2MOVSsr: t2AsmPseudo<"movs${p} $Rd, $shift",
+ (ins rGPR:$Rd, so_reg_reg:$shift, pred:$p)>;
+
+// ADR w/o the .w suffix
+def : t2InstAlias<"adr${p} $Rd, $addr",
+ (t2ADR rGPR:$Rd, t2adrlabel:$addr, pred:$p)>;
+
+// LDR(literal) w/ alternate [pc, #imm] syntax.
+def t2LDRpcrel : t2AsmPseudo<"ldr${p} $Rt, $addr",
+ (ins GPR:$Rt, t2ldr_pcrel_imm12:$addr, pred:$p)>;
+def t2LDRBpcrel : t2AsmPseudo<"ldrb${p} $Rt, $addr",
+ (ins GPRnopc:$Rt, t2ldr_pcrel_imm12:$addr, pred:$p)>;
+def t2LDRHpcrel : t2AsmPseudo<"ldrh${p} $Rt, $addr",
+ (ins GPRnopc:$Rt, t2ldr_pcrel_imm12:$addr, pred:$p)>;
+def t2LDRSBpcrel : t2AsmPseudo<"ldrsb${p} $Rt, $addr",
+ (ins GPRnopc:$Rt, t2ldr_pcrel_imm12:$addr, pred:$p)>;
+def t2LDRSHpcrel : t2AsmPseudo<"ldrsh${p} $Rt, $addr",
+ (ins GPRnopc:$Rt, t2ldr_pcrel_imm12:$addr, pred:$p)>;
+ // Version w/ the .w suffix.
+def : t2InstAlias<"ldr${p}.w $Rt, $addr",
+ (t2LDRpcrel GPR:$Rt, t2ldr_pcrel_imm12:$addr, pred:$p), 0>;
+def : t2InstAlias<"ldrb${p}.w $Rt, $addr",
+ (t2LDRBpcrel GPRnopc:$Rt, t2ldr_pcrel_imm12:$addr, pred:$p)>;
+def : t2InstAlias<"ldrh${p}.w $Rt, $addr",
+ (t2LDRHpcrel GPRnopc:$Rt, t2ldr_pcrel_imm12:$addr, pred:$p)>;
+def : t2InstAlias<"ldrsb${p}.w $Rt, $addr",
+ (t2LDRSBpcrel GPRnopc:$Rt, t2ldr_pcrel_imm12:$addr, pred:$p)>;
+def : t2InstAlias<"ldrsh${p}.w $Rt, $addr",
+ (t2LDRSHpcrel GPRnopc:$Rt, t2ldr_pcrel_imm12:$addr, pred:$p)>;
+
+def : t2InstAlias<"add${p} $Rd, pc, $imm",
+ (t2ADR rGPR:$Rd, imm0_4095:$imm, pred:$p)>;
+
+// PLD/PLDW/PLI with alternate literal form.
+def : t2InstAlias<"pld${p} $addr",
+ (t2PLDpci t2ldr_pcrel_imm12:$addr, pred:$p)>;
+def : InstAlias<"pli${p} $addr",
+ (t2PLIpci t2ldr_pcrel_imm12:$addr, pred:$p)>,
+ Requires<[IsThumb2,HasV7]>;
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrVFP.td b/contrib/llvm/lib/Target/ARM/ARMInstrVFP.td
new file mode 100644
index 0000000..55a6efc
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrVFP.td
@@ -0,0 +1,1782 @@
+//===-- ARMInstrVFP.td - VFP support for ARM ---------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the ARM VFP instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+def SDT_FTOI : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
+def SDT_ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
+def SDT_CMPFP0 : SDTypeProfile<0, 1, [SDTCisFP<0>]>;
+def SDT_VMOVDRR : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1, i32>,
+ SDTCisSameAs<1, 2>]>;
+
+def arm_ftoui : SDNode<"ARMISD::FTOUI", SDT_FTOI>;
+def arm_ftosi : SDNode<"ARMISD::FTOSI", SDT_FTOI>;
+def arm_sitof : SDNode<"ARMISD::SITOF", SDT_ITOF>;
+def arm_uitof : SDNode<"ARMISD::UITOF", SDT_ITOF>;
+def arm_fmstat : SDNode<"ARMISD::FMSTAT", SDTNone, [SDNPInGlue, SDNPOutGlue]>;
+def arm_cmpfp : SDNode<"ARMISD::CMPFP", SDT_ARMCmp, [SDNPOutGlue]>;
+def arm_cmpfp0 : SDNode<"ARMISD::CMPFPw0", SDT_CMPFP0, [SDNPOutGlue]>;
+def arm_fmdrr : SDNode<"ARMISD::VMOVDRR", SDT_VMOVDRR>;
+
+
+//===----------------------------------------------------------------------===//
+// Operand Definitions.
+//
+
+// 8-bit floating-point immediate encodings.
+def FPImmOperand : AsmOperandClass {
+ let Name = "FPImm";
+ let ParserMethod = "parseFPImm";
+}
+
+def vfp_f32imm : Operand<f32>,
+ PatLeaf<(f32 fpimm), [{
+ return ARM_AM::getFP32Imm(N->getValueAPF()) != -1;
+ }], SDNodeXForm<fpimm, [{
+ APFloat InVal = N->getValueAPF();
+ uint32_t enc = ARM_AM::getFP32Imm(InVal);
+ return CurDAG->getTargetConstant(enc, MVT::i32);
+ }]>> {
+ let PrintMethod = "printFPImmOperand";
+ let ParserMatchClass = FPImmOperand;
+}
+
+def vfp_f64imm : Operand<f64>,
+ PatLeaf<(f64 fpimm), [{
+ return ARM_AM::getFP64Imm(N->getValueAPF()) != -1;
+ }], SDNodeXForm<fpimm, [{
+ APFloat InVal = N->getValueAPF();
+ uint32_t enc = ARM_AM::getFP64Imm(InVal);
+ return CurDAG->getTargetConstant(enc, MVT::i32);
+ }]>> {
+ let PrintMethod = "printFPImmOperand";
+ let ParserMatchClass = FPImmOperand;
+}
+
+def alignedload32 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() >= 4;
+}]>;
+
+def alignedstore32 : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getAlignment() >= 4;
+}]>;
+
+// The VCVT to/from fixed-point instructions encode the 'fbits' operand
+// (the number of fixed bits) differently than it appears in the assembly
+// source. It's encoded as "Size - fbits" where Size is the size of the
+// fixed-point representation (32 or 16) and fbits is the value appearing
+// in the assembly source, an integer in [0,16] or (0,32], depending on size.
+def fbits32_asm_operand : AsmOperandClass { let Name = "FBits32"; }
+def fbits32 : Operand<i32> {
+ let PrintMethod = "printFBits32";
+ let ParserMatchClass = fbits32_asm_operand;
+}
+
+def fbits16_asm_operand : AsmOperandClass { let Name = "FBits16"; }
+def fbits16 : Operand<i32> {
+ let PrintMethod = "printFBits16";
+ let ParserMatchClass = fbits16_asm_operand;
+}
+
+//===----------------------------------------------------------------------===//
+// Load / store Instructions.
+//
+
+let canFoldAsLoad = 1, isReMaterializable = 1 in {
+
+def VLDRD : ADI5<0b1101, 0b01, (outs DPR:$Dd), (ins addrmode5:$addr),
+ IIC_fpLoad64, "vldr", "\t$Dd, $addr",
+ [(set DPR:$Dd, (f64 (alignedload32 addrmode5:$addr)))]>;
+
+def VLDRS : ASI5<0b1101, 0b01, (outs SPR:$Sd), (ins addrmode5:$addr),
+ IIC_fpLoad32, "vldr", "\t$Sd, $addr",
+ [(set SPR:$Sd, (load addrmode5:$addr))]> {
+ // Some single precision VFP instructions may be executed on both NEON and VFP
+ // pipelines.
+ let D = VFPNeonDomain;
+}
+
+} // End of 'let canFoldAsLoad = 1, isReMaterializable = 1 in'
+
+def VSTRD : ADI5<0b1101, 0b00, (outs), (ins DPR:$Dd, addrmode5:$addr),
+ IIC_fpStore64, "vstr", "\t$Dd, $addr",
+ [(alignedstore32 (f64 DPR:$Dd), addrmode5:$addr)]>;
+
+def VSTRS : ASI5<0b1101, 0b00, (outs), (ins SPR:$Sd, addrmode5:$addr),
+ IIC_fpStore32, "vstr", "\t$Sd, $addr",
+ [(store SPR:$Sd, addrmode5:$addr)]> {
+ // Some single precision VFP instructions may be executed on both NEON and VFP
+ // pipelines.
+ let D = VFPNeonDomain;
+}
+
+//===----------------------------------------------------------------------===//
+// Load / store multiple Instructions.
+//
+
+multiclass vfp_ldst_mult<string asm, bit L_bit,
+ InstrItinClass itin, InstrItinClass itin_upd> {
+ // Double Precision
+ def DIA :
+ AXDI4<(outs), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
+ IndexModeNone, itin,
+ !strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> {
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{21} = 0; // No writeback
+ let Inst{20} = L_bit;
+ }
+ def DIA_UPD :
+ AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs,
+ variable_ops),
+ IndexModeUpd, itin_upd,
+ !strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+ }
+ def DDB_UPD :
+ AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs,
+ variable_ops),
+ IndexModeUpd, itin_upd,
+ !strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
+ let Inst{24-23} = 0b10; // Decrement Before
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+ }
+
+ // Single Precision
+ def SIA :
+ AXSI4<(outs), (ins GPR:$Rn, pred:$p, spr_reglist:$regs, variable_ops),
+ IndexModeNone, itin,
+ !strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> {
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{21} = 0; // No writeback
+ let Inst{20} = L_bit;
+
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines.
+ let D = VFPNeonDomain;
+ }
+ def SIA_UPD :
+ AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs,
+ variable_ops),
+ IndexModeUpd, itin_upd,
+ !strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines.
+ let D = VFPNeonDomain;
+ }
+ def SDB_UPD :
+ AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs,
+ variable_ops),
+ IndexModeUpd, itin_upd,
+ !strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
+ let Inst{24-23} = 0b10; // Decrement Before
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines.
+ let D = VFPNeonDomain;
+ }
+}
+
+let neverHasSideEffects = 1 in {
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
+defm VLDM : vfp_ldst_mult<"vldm", 1, IIC_fpLoad_m, IIC_fpLoad_mu>;
+
+let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
+defm VSTM : vfp_ldst_mult<"vstm", 0, IIC_fpStore_m, IIC_fpStore_mu>;
+
+} // neverHasSideEffects
+
+def : MnemonicAlias<"vldm", "vldmia">;
+def : MnemonicAlias<"vstm", "vstmia">;
+
+// FLDM/FSTM - Load / Store multiple single / double precision registers for
+// pre-ARMv6 cores.
+// These instructions are deprecated!
+def : VFP2MnemonicAlias<"fldmias", "vldmia">;
+def : VFP2MnemonicAlias<"fldmdbs", "vldmdb">;
+def : VFP2MnemonicAlias<"fldmeas", "vldmdb">;
+def : VFP2MnemonicAlias<"fldmfds", "vldmia">;
+def : VFP2MnemonicAlias<"fldmiad", "vldmia">;
+def : VFP2MnemonicAlias<"fldmdbd", "vldmdb">;
+def : VFP2MnemonicAlias<"fldmead", "vldmdb">;
+def : VFP2MnemonicAlias<"fldmfdd", "vldmia">;
+
+def : VFP2MnemonicAlias<"fstmias", "vstmia">;
+def : VFP2MnemonicAlias<"fstmdbs", "vstmdb">;
+def : VFP2MnemonicAlias<"fstmeas", "vstmia">;
+def : VFP2MnemonicAlias<"fstmfds", "vstmdb">;
+def : VFP2MnemonicAlias<"fstmiad", "vstmia">;
+def : VFP2MnemonicAlias<"fstmdbd", "vstmdb">;
+def : VFP2MnemonicAlias<"fstmead", "vstmia">;
+def : VFP2MnemonicAlias<"fstmfdd", "vstmdb">;
+
+def : InstAlias<"vpush${p} $r", (VSTMDDB_UPD SP, pred:$p, dpr_reglist:$r)>,
+ Requires<[HasVFP2]>;
+def : InstAlias<"vpush${p} $r", (VSTMSDB_UPD SP, pred:$p, spr_reglist:$r)>,
+ Requires<[HasVFP2]>;
+def : InstAlias<"vpop${p} $r", (VLDMDIA_UPD SP, pred:$p, dpr_reglist:$r)>,
+ Requires<[HasVFP2]>;
+def : InstAlias<"vpop${p} $r", (VLDMSIA_UPD SP, pred:$p, spr_reglist:$r)>,
+ Requires<[HasVFP2]>;
+defm : VFPDTAnyInstAlias<"vpush${p}", "$r",
+ (VSTMSDB_UPD SP, pred:$p, spr_reglist:$r)>;
+defm : VFPDTAnyInstAlias<"vpush${p}", "$r",
+ (VSTMDDB_UPD SP, pred:$p, dpr_reglist:$r)>;
+defm : VFPDTAnyInstAlias<"vpop${p}", "$r",
+ (VLDMSIA_UPD SP, pred:$p, spr_reglist:$r)>;
+defm : VFPDTAnyInstAlias<"vpop${p}", "$r",
+ (VLDMDIA_UPD SP, pred:$p, dpr_reglist:$r)>;
+
+// FLDMX, FSTMX - Load and store multiple unknown precision registers for
+// pre-armv6 cores.
+// These instruction are deprecated so we don't want them to get selected.
+multiclass vfp_ldstx_mult<string asm, bit L_bit> {
+ // Unknown precision
+ def XIA :
+ AXXI4<(outs), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
+ IndexModeNone, !strconcat(asm, "iax${p}\t$Rn, $regs"), "", []> {
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{21} = 0; // No writeback
+ let Inst{20} = L_bit;
+ }
+ def XIA_UPD :
+ AXXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
+ IndexModeUpd, !strconcat(asm, "iax${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
+ let Inst{24-23} = 0b01; // Increment After
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+ }
+ def XDB_UPD :
+ AXXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
+ IndexModeUpd, !strconcat(asm, "dbx${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
+ let Inst{24-23} = 0b10; // Decrement Before
+ let Inst{21} = 1; // Writeback
+ let Inst{20} = L_bit;
+ }
+}
+
+defm FLDM : vfp_ldstx_mult<"fldm", 1>;
+defm FSTM : vfp_ldstx_mult<"fstm", 0>;
+
+def : VFP2MnemonicAlias<"fldmeax", "fldmdbx">;
+def : VFP2MnemonicAlias<"fldmfdx", "fldmiax">;
+
+def : VFP2MnemonicAlias<"fstmeax", "fstmiax">;
+def : VFP2MnemonicAlias<"fstmfdx", "fstmdbx">;
+
+//===----------------------------------------------------------------------===//
+// FP Binary Operations.
+//
+
+let TwoOperandAliasConstraint = "$Dn = $Dd" in
+def VADDD : ADbI<0b11100, 0b11, 0, 0,
+ (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
+ IIC_fpALU64, "vadd", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd, (fadd DPR:$Dn, (f64 DPR:$Dm)))]>;
+
+let TwoOperandAliasConstraint = "$Sn = $Sd" in
+def VADDS : ASbIn<0b11100, 0b11, 0, 0,
+ (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
+ IIC_fpALU32, "vadd", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fadd SPR:$Sn, SPR:$Sm))]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+let TwoOperandAliasConstraint = "$Dn = $Dd" in
+def VSUBD : ADbI<0b11100, 0b11, 1, 0,
+ (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
+ IIC_fpALU64, "vsub", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd, (fsub DPR:$Dn, (f64 DPR:$Dm)))]>;
+
+let TwoOperandAliasConstraint = "$Sn = $Sd" in
+def VSUBS : ASbIn<0b11100, 0b11, 1, 0,
+ (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
+ IIC_fpALU32, "vsub", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fsub SPR:$Sn, SPR:$Sm))]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+let TwoOperandAliasConstraint = "$Dn = $Dd" in
+def VDIVD : ADbI<0b11101, 0b00, 0, 0,
+ (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
+ IIC_fpDIV64, "vdiv", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd, (fdiv DPR:$Dn, (f64 DPR:$Dm)))]>;
+
+let TwoOperandAliasConstraint = "$Sn = $Sd" in
+def VDIVS : ASbI<0b11101, 0b00, 0, 0,
+ (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
+ IIC_fpDIV32, "vdiv", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fdiv SPR:$Sn, SPR:$Sm))]>;
+
+let TwoOperandAliasConstraint = "$Dn = $Dd" in
+def VMULD : ADbI<0b11100, 0b10, 0, 0,
+ (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
+ IIC_fpMUL64, "vmul", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd, (fmul DPR:$Dn, (f64 DPR:$Dm)))]>;
+
+let TwoOperandAliasConstraint = "$Sn = $Sd" in
+def VMULS : ASbIn<0b11100, 0b10, 0, 0,
+ (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
+ IIC_fpMUL32, "vmul", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fmul SPR:$Sn, SPR:$Sm))]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def VNMULD : ADbI<0b11100, 0b10, 1, 0,
+ (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
+ IIC_fpMUL64, "vnmul", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd, (fneg (fmul DPR:$Dn, (f64 DPR:$Dm))))]>;
+
+def VNMULS : ASbI<0b11100, 0b10, 1, 0,
+ (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
+ IIC_fpMUL32, "vnmul", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fneg (fmul SPR:$Sn, SPR:$Sm)))]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+multiclass vsel_inst<string op, bits<2> opc, int CC> {
+ let DecoderNamespace = "VFPV8", PostEncoderMethod = "",
+ Uses = [CPSR], AddedComplexity = 4 in {
+ def S : ASbInp<0b11100, opc, 0,
+ (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
+ NoItinerary, !strconcat("vsel", op, ".f32\t$Sd, $Sn, $Sm"),
+ [(set SPR:$Sd, (ARMcmov SPR:$Sm, SPR:$Sn, CC))]>,
+ Requires<[HasFPARMv8]>;
+
+ def D : ADbInp<0b11100, opc, 0,
+ (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
+ NoItinerary, !strconcat("vsel", op, ".f64\t$Dd, $Dn, $Dm"),
+ [(set DPR:$Dd, (ARMcmov (f64 DPR:$Dm), (f64 DPR:$Dn), CC))]>,
+ Requires<[HasFPARMv8, HasDPVFP]>;
+ }
+}
+
+// The CC constants here match ARMCC::CondCodes.
+defm VSELGT : vsel_inst<"gt", 0b11, 12>;
+defm VSELGE : vsel_inst<"ge", 0b10, 10>;
+defm VSELEQ : vsel_inst<"eq", 0b00, 0>;
+defm VSELVS : vsel_inst<"vs", 0b01, 6>;
+
+multiclass vmaxmin_inst<string op, bit opc, SDNode SD> {
+ let DecoderNamespace = "VFPV8", PostEncoderMethod = "" in {
+ def S : ASbInp<0b11101, 0b00, opc,
+ (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
+ NoItinerary, !strconcat(op, ".f32\t$Sd, $Sn, $Sm"),
+ [(set SPR:$Sd, (SD SPR:$Sn, SPR:$Sm))]>,
+ Requires<[HasFPARMv8]>;
+
+ def D : ADbInp<0b11101, 0b00, opc,
+ (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
+ NoItinerary, !strconcat(op, ".f64\t$Dd, $Dn, $Dm"),
+ [(set DPR:$Dd, (f64 (SD (f64 DPR:$Dn), (f64 DPR:$Dm))))]>,
+ Requires<[HasFPARMv8, HasDPVFP]>;
+ }
+}
+
+defm VMAXNM : vmaxmin_inst<"vmaxnm", 0, ARMvmaxnm>;
+defm VMINNM : vmaxmin_inst<"vminnm", 1, ARMvminnm>;
+
+// Match reassociated forms only if not sign dependent rounding.
+def : Pat<(fmul (fneg DPR:$a), (f64 DPR:$b)),
+ (VNMULD DPR:$a, DPR:$b)>,
+ Requires<[NoHonorSignDependentRounding,HasDPVFP]>;
+def : Pat<(fmul (fneg SPR:$a), SPR:$b),
+ (VNMULS SPR:$a, SPR:$b)>, Requires<[NoHonorSignDependentRounding]>;
+
+// These are encoded as unary instructions.
+let Defs = [FPSCR_NZCV] in {
+def VCMPED : ADuI<0b11101, 0b11, 0b0100, 0b11, 0,
+ (outs), (ins DPR:$Dd, DPR:$Dm),
+ IIC_fpCMP64, "vcmpe", ".f64\t$Dd, $Dm",
+ [(arm_cmpfp DPR:$Dd, (f64 DPR:$Dm))]>;
+
+def VCMPES : ASuI<0b11101, 0b11, 0b0100, 0b11, 0,
+ (outs), (ins SPR:$Sd, SPR:$Sm),
+ IIC_fpCMP32, "vcmpe", ".f32\t$Sd, $Sm",
+ [(arm_cmpfp SPR:$Sd, SPR:$Sm)]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+// FIXME: Verify encoding after integrated assembler is working.
+def VCMPD : ADuI<0b11101, 0b11, 0b0100, 0b01, 0,
+ (outs), (ins DPR:$Dd, DPR:$Dm),
+ IIC_fpCMP64, "vcmp", ".f64\t$Dd, $Dm",
+ [/* For disassembly only; pattern left blank */]>;
+
+def VCMPS : ASuI<0b11101, 0b11, 0b0100, 0b01, 0,
+ (outs), (ins SPR:$Sd, SPR:$Sm),
+ IIC_fpCMP32, "vcmp", ".f32\t$Sd, $Sm",
+ [/* For disassembly only; pattern left blank */]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+} // Defs = [FPSCR_NZCV]
+
+//===----------------------------------------------------------------------===//
+// FP Unary Operations.
+//
+
+def VABSD : ADuI<0b11101, 0b11, 0b0000, 0b11, 0,
+ (outs DPR:$Dd), (ins DPR:$Dm),
+ IIC_fpUNA64, "vabs", ".f64\t$Dd, $Dm",
+ [(set DPR:$Dd, (fabs (f64 DPR:$Dm)))]>;
+
+def VABSS : ASuIn<0b11101, 0b11, 0b0000, 0b11, 0,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ IIC_fpUNA32, "vabs", ".f32\t$Sd, $Sm",
+ [(set SPR:$Sd, (fabs SPR:$Sm))]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+let Defs = [FPSCR_NZCV] in {
+def VCMPEZD : ADuI<0b11101, 0b11, 0b0101, 0b11, 0,
+ (outs), (ins DPR:$Dd),
+ IIC_fpCMP64, "vcmpe", ".f64\t$Dd, #0",
+ [(arm_cmpfp0 (f64 DPR:$Dd))]> {
+ let Inst{3-0} = 0b0000;
+ let Inst{5} = 0;
+}
+
+def VCMPEZS : ASuI<0b11101, 0b11, 0b0101, 0b11, 0,
+ (outs), (ins SPR:$Sd),
+ IIC_fpCMP32, "vcmpe", ".f32\t$Sd, #0",
+ [(arm_cmpfp0 SPR:$Sd)]> {
+ let Inst{3-0} = 0b0000;
+ let Inst{5} = 0;
+
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+// FIXME: Verify encoding after integrated assembler is working.
+def VCMPZD : ADuI<0b11101, 0b11, 0b0101, 0b01, 0,
+ (outs), (ins DPR:$Dd),
+ IIC_fpCMP64, "vcmp", ".f64\t$Dd, #0",
+ [/* For disassembly only; pattern left blank */]> {
+ let Inst{3-0} = 0b0000;
+ let Inst{5} = 0;
+}
+
+def VCMPZS : ASuI<0b11101, 0b11, 0b0101, 0b01, 0,
+ (outs), (ins SPR:$Sd),
+ IIC_fpCMP32, "vcmp", ".f32\t$Sd, #0",
+ [/* For disassembly only; pattern left blank */]> {
+ let Inst{3-0} = 0b0000;
+ let Inst{5} = 0;
+
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+} // Defs = [FPSCR_NZCV]
+
+def VCVTDS : ASuI<0b11101, 0b11, 0b0111, 0b11, 0,
+ (outs DPR:$Dd), (ins SPR:$Sm),
+ IIC_fpCVTDS, "vcvt", ".f64.f32\t$Dd, $Sm",
+ [(set DPR:$Dd, (fextend SPR:$Sm))]> {
+ // Instruction operands.
+ bits<5> Dd;
+ bits<5> Sm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Sm{4-1};
+ let Inst{5} = Sm{0};
+ let Inst{15-12} = Dd{3-0};
+ let Inst{22} = Dd{4};
+}
+
+// Special case encoding: bits 11-8 is 0b1011.
+def VCVTSD : VFPAI<(outs SPR:$Sd), (ins DPR:$Dm), VFPUnaryFrm,
+ IIC_fpCVTSD, "vcvt", ".f32.f64\t$Sd, $Dm",
+ [(set SPR:$Sd, (fround DPR:$Dm))]> {
+ // Instruction operands.
+ bits<5> Sd;
+ bits<5> Dm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+ let Inst{15-12} = Sd{4-1};
+ let Inst{22} = Sd{0};
+
+ let Inst{27-23} = 0b11101;
+ let Inst{21-16} = 0b110111;
+ let Inst{11-8} = 0b1011;
+ let Inst{7-6} = 0b11;
+ let Inst{4} = 0;
+
+ let Predicates = [HasVFP2, HasDPVFP];
+}
+
+// Between half, single and double-precision. For disassembly only.
+
+// FIXME: Verify encoding after integrated assembler is working.
+def VCVTBHS: ASuI<0b11101, 0b11, 0b0010, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm),
+ /* FIXME */ IIC_fpCVTSH, "vcvtb", ".f32.f16\t$Sd, $Sm",
+ [/* For disassembly only; pattern left blank */]>;
+
+def VCVTBSH: ASuI<0b11101, 0b11, 0b0011, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm),
+ /* FIXME */ IIC_fpCVTHS, "vcvtb", ".f16.f32\t$Sd, $Sm",
+ [/* For disassembly only; pattern left blank */]>;
+
+def VCVTTHS: ASuI<0b11101, 0b11, 0b0010, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm),
+ /* FIXME */ IIC_fpCVTSH, "vcvtt", ".f32.f16\t$Sd, $Sm",
+ [/* For disassembly only; pattern left blank */]>;
+
+def VCVTTSH: ASuI<0b11101, 0b11, 0b0011, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm),
+ /* FIXME */ IIC_fpCVTHS, "vcvtt", ".f16.f32\t$Sd, $Sm",
+ [/* For disassembly only; pattern left blank */]>;
+
+def VCVTBHD : ADuI<0b11101, 0b11, 0b0010, 0b01, 0,
+ (outs DPR:$Dd), (ins SPR:$Sm),
+ NoItinerary, "vcvtb", ".f64.f16\t$Dd, $Sm",
+ []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ // Instruction operands.
+ bits<5> Sm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Sm{4-1};
+ let Inst{5} = Sm{0};
+}
+
+def VCVTBDH : ADuI<0b11101, 0b11, 0b0011, 0b01, 0,
+ (outs SPR:$Sd), (ins DPR:$Dm),
+ NoItinerary, "vcvtb", ".f16.f64\t$Sd, $Dm",
+ []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ // Instruction operands.
+ bits<5> Sd;
+ bits<5> Dm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+ let Inst{15-12} = Sd{4-1};
+ let Inst{22} = Sd{0};
+}
+
+def VCVTTHD : ADuI<0b11101, 0b11, 0b0010, 0b11, 0,
+ (outs DPR:$Dd), (ins SPR:$Sm),
+ NoItinerary, "vcvtt", ".f64.f16\t$Dd, $Sm",
+ []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ // Instruction operands.
+ bits<5> Sm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Sm{4-1};
+ let Inst{5} = Sm{0};
+}
+
+def VCVTTDH : ADuI<0b11101, 0b11, 0b0011, 0b11, 0,
+ (outs SPR:$Sd), (ins DPR:$Dm),
+ NoItinerary, "vcvtt", ".f16.f64\t$Sd, $Dm",
+ []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ // Instruction operands.
+ bits<5> Sd;
+ bits<5> Dm;
+
+ // Encode instruction operands.
+ let Inst{15-12} = Sd{4-1};
+ let Inst{22} = Sd{0};
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+}
+
+def : Pat<(fp_to_f16 SPR:$a),
+ (i32 (COPY_TO_REGCLASS (VCVTBSH SPR:$a), GPR))>;
+
+def : Pat<(fp_to_f16 (f64 DPR:$a)),
+ (i32 (COPY_TO_REGCLASS (VCVTBDH DPR:$a), GPR))>;
+
+def : Pat<(f16_to_fp GPR:$a),
+ (VCVTBHS (COPY_TO_REGCLASS GPR:$a, SPR))>;
+
+def : Pat<(f64 (f16_to_fp GPR:$a)),
+ (VCVTBHD (COPY_TO_REGCLASS GPR:$a, SPR))>;
+
+
+multiclass vcvt_inst<string opc, bits<2> rm> {
+ let PostEncoderMethod = "", DecoderNamespace = "VFPV8" in {
+ def SS : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ NoItinerary, !strconcat("vcvt", opc, ".s32.f32\t$Sd, $Sm"),
+ []>, Requires<[HasFPARMv8]> {
+ let Inst{17-16} = rm;
+ }
+
+ def US : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ NoItinerary, !strconcat("vcvt", opc, ".u32.f32\t$Sd, $Sm"),
+ []>, Requires<[HasFPARMv8]> {
+ let Inst{17-16} = rm;
+ }
+
+ def SD : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0,
+ (outs SPR:$Sd), (ins DPR:$Dm),
+ NoItinerary, !strconcat("vcvt", opc, ".s32.f64\t$Sd, $Dm"),
+ []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ bits<5> Dm;
+
+ let Inst{17-16} = rm;
+
+ // Encode instruction operands
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+ let Inst{8} = 1;
+ }
+
+ def UD : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0,
+ (outs SPR:$Sd), (ins DPR:$Dm),
+ NoItinerary, !strconcat("vcvt", opc, ".u32.f64\t$Sd, $Dm"),
+ []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ bits<5> Dm;
+
+ let Inst{17-16} = rm;
+
+ // Encode instruction operands
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+ let Inst{8} = 1;
+ }
+ }
+}
+
+defm VCVTA : vcvt_inst<"a", 0b00>;
+defm VCVTN : vcvt_inst<"n", 0b01>;
+defm VCVTP : vcvt_inst<"p", 0b10>;
+defm VCVTM : vcvt_inst<"m", 0b11>;
+
+def VNEGD : ADuI<0b11101, 0b11, 0b0001, 0b01, 0,
+ (outs DPR:$Dd), (ins DPR:$Dm),
+ IIC_fpUNA64, "vneg", ".f64\t$Dd, $Dm",
+ [(set DPR:$Dd, (fneg (f64 DPR:$Dm)))]>;
+
+def VNEGS : ASuIn<0b11101, 0b11, 0b0001, 0b01, 0,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ IIC_fpUNA32, "vneg", ".f32\t$Sd, $Sm",
+ [(set SPR:$Sd, (fneg SPR:$Sm))]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+multiclass vrint_inst_zrx<string opc, bit op, bit op2> {
+ def S : ASuI<0b11101, 0b11, 0b0110, 0b11, 0,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ NoItinerary, !strconcat("vrint", opc), ".f32\t$Sd, $Sm",
+ []>, Requires<[HasFPARMv8]> {
+ let Inst{7} = op2;
+ let Inst{16} = op;
+ }
+ def D : ADuI<0b11101, 0b11, 0b0110, 0b11, 0,
+ (outs DPR:$Dd), (ins DPR:$Dm),
+ NoItinerary, !strconcat("vrint", opc), ".f64\t$Dd, $Dm",
+ []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ let Inst{7} = op2;
+ let Inst{16} = op;
+ }
+
+ def : InstAlias<!strconcat("vrint", opc, "$p.f32.f32\t$Sd, $Sm"),
+ (!cast<Instruction>(NAME#"S") SPR:$Sd, SPR:$Sm, pred:$p)>,
+ Requires<[HasFPARMv8]>;
+ def : InstAlias<!strconcat("vrint", opc, "$p.f64.f64\t$Dd, $Dm"),
+ (!cast<Instruction>(NAME#"D") DPR:$Dd, DPR:$Dm, pred:$p)>,
+ Requires<[HasFPARMv8,HasDPVFP]>;
+}
+
+defm VRINTZ : vrint_inst_zrx<"z", 0, 1>;
+defm VRINTR : vrint_inst_zrx<"r", 0, 0>;
+defm VRINTX : vrint_inst_zrx<"x", 1, 0>;
+
+multiclass vrint_inst_anpm<string opc, bits<2> rm> {
+ let PostEncoderMethod = "", DecoderNamespace = "VFPV8" in {
+ def S : ASuInp<0b11101, 0b11, 0b1000, 0b01, 0,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ NoItinerary, !strconcat("vrint", opc, ".f32\t$Sd, $Sm"),
+ []>, Requires<[HasFPARMv8]> {
+ let Inst{17-16} = rm;
+ }
+ def D : ADuInp<0b11101, 0b11, 0b1000, 0b01, 0,
+ (outs DPR:$Dd), (ins DPR:$Dm),
+ NoItinerary, !strconcat("vrint", opc, ".f64\t$Dd, $Dm"),
+ []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ let Inst{17-16} = rm;
+ }
+ }
+
+ def : InstAlias<!strconcat("vrint", opc, ".f32.f32\t$Sd, $Sm"),
+ (!cast<Instruction>(NAME#"S") SPR:$Sd, SPR:$Sm)>,
+ Requires<[HasFPARMv8]>;
+ def : InstAlias<!strconcat("vrint", opc, ".f64.f64\t$Dd, $Dm"),
+ (!cast<Instruction>(NAME#"D") DPR:$Dd, DPR:$Dm)>,
+ Requires<[HasFPARMv8,HasDPVFP]>;
+}
+
+defm VRINTA : vrint_inst_anpm<"a", 0b00>;
+defm VRINTN : vrint_inst_anpm<"n", 0b01>;
+defm VRINTP : vrint_inst_anpm<"p", 0b10>;
+defm VRINTM : vrint_inst_anpm<"m", 0b11>;
+
+def VSQRTD : ADuI<0b11101, 0b11, 0b0001, 0b11, 0,
+ (outs DPR:$Dd), (ins DPR:$Dm),
+ IIC_fpSQRT64, "vsqrt", ".f64\t$Dd, $Dm",
+ [(set DPR:$Dd, (fsqrt (f64 DPR:$Dm)))]>;
+
+def VSQRTS : ASuI<0b11101, 0b11, 0b0001, 0b11, 0,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ IIC_fpSQRT32, "vsqrt", ".f32\t$Sd, $Sm",
+ [(set SPR:$Sd, (fsqrt SPR:$Sm))]>;
+
+let neverHasSideEffects = 1 in {
+def VMOVD : ADuI<0b11101, 0b11, 0b0000, 0b01, 0,
+ (outs DPR:$Dd), (ins DPR:$Dm),
+ IIC_fpUNA64, "vmov", ".f64\t$Dd, $Dm", []>;
+
+def VMOVS : ASuI<0b11101, 0b11, 0b0000, 0b01, 0,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ IIC_fpUNA32, "vmov", ".f32\t$Sd, $Sm", []>;
+} // neverHasSideEffects
+
+//===----------------------------------------------------------------------===//
+// FP <-> GPR Copies. Int <-> FP Conversions.
+//
+
+def VMOVRS : AVConv2I<0b11100001, 0b1010,
+ (outs GPR:$Rt), (ins SPR:$Sn),
+ IIC_fpMOVSI, "vmov", "\t$Rt, $Sn",
+ [(set GPR:$Rt, (bitconvert SPR:$Sn))]> {
+ // Instruction operands.
+ bits<4> Rt;
+ bits<5> Sn;
+
+ // Encode instruction operands.
+ let Inst{19-16} = Sn{4-1};
+ let Inst{7} = Sn{0};
+ let Inst{15-12} = Rt;
+
+ let Inst{6-5} = 0b00;
+ let Inst{3-0} = 0b0000;
+
+ // Some single precision VFP instructions may be executed on both NEON and VFP
+ // pipelines.
+ let D = VFPNeonDomain;
+}
+
+// Bitcast i32 -> f32. NEON prefers to use VMOVDRR.
+def VMOVSR : AVConv4I<0b11100000, 0b1010,
+ (outs SPR:$Sn), (ins GPR:$Rt),
+ IIC_fpMOVIS, "vmov", "\t$Sn, $Rt",
+ [(set SPR:$Sn, (bitconvert GPR:$Rt))]>,
+ Requires<[HasVFP2, UseVMOVSR]> {
+ // Instruction operands.
+ bits<5> Sn;
+ bits<4> Rt;
+
+ // Encode instruction operands.
+ let Inst{19-16} = Sn{4-1};
+ let Inst{7} = Sn{0};
+ let Inst{15-12} = Rt;
+
+ let Inst{6-5} = 0b00;
+ let Inst{3-0} = 0b0000;
+
+ // Some single precision VFP instructions may be executed on both NEON and VFP
+ // pipelines.
+ let D = VFPNeonDomain;
+}
+
+let neverHasSideEffects = 1 in {
+def VMOVRRD : AVConv3I<0b11000101, 0b1011,
+ (outs GPR:$Rt, GPR:$Rt2), (ins DPR:$Dm),
+ IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $Dm",
+ [/* FIXME: Can't write pattern for multiple result instr*/]> {
+ // Instruction operands.
+ bits<5> Dm;
+ bits<4> Rt;
+ bits<4> Rt2;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+ let Inst{15-12} = Rt;
+ let Inst{19-16} = Rt2;
+
+ let Inst{7-6} = 0b00;
+
+ // Some single precision VFP instructions may be executed on both NEON and VFP
+ // pipelines.
+ let D = VFPNeonDomain;
+}
+
+def VMOVRRS : AVConv3I<0b11000101, 0b1010,
+ (outs GPR:$Rt, GPR:$Rt2), (ins SPR:$src1, SPR:$src2),
+ IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $src1, $src2",
+ [/* For disassembly only; pattern left blank */]> {
+ bits<5> src1;
+ bits<4> Rt;
+ bits<4> Rt2;
+
+ // Encode instruction operands.
+ let Inst{3-0} = src1{4-1};
+ let Inst{5} = src1{0};
+ let Inst{15-12} = Rt;
+ let Inst{19-16} = Rt2;
+
+ let Inst{7-6} = 0b00;
+
+ // Some single precision VFP instructions may be executed on both NEON and VFP
+ // pipelines.
+ let D = VFPNeonDomain;
+ let DecoderMethod = "DecodeVMOVRRS";
+}
+} // neverHasSideEffects
+
+// FMDHR: GPR -> SPR
+// FMDLR: GPR -> SPR
+
+def VMOVDRR : AVConv5I<0b11000100, 0b1011,
+ (outs DPR:$Dm), (ins GPR:$Rt, GPR:$Rt2),
+ IIC_fpMOVID, "vmov", "\t$Dm, $Rt, $Rt2",
+ [(set DPR:$Dm, (arm_fmdrr GPR:$Rt, GPR:$Rt2))]> {
+ // Instruction operands.
+ bits<5> Dm;
+ bits<4> Rt;
+ bits<4> Rt2;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+ let Inst{15-12} = Rt;
+ let Inst{19-16} = Rt2;
+
+ let Inst{7-6} = 0b00;
+
+ // Some single precision VFP instructions may be executed on both NEON and VFP
+ // pipelines.
+ let D = VFPNeonDomain;
+}
+
+let neverHasSideEffects = 1 in
+def VMOVSRR : AVConv5I<0b11000100, 0b1010,
+ (outs SPR:$dst1, SPR:$dst2), (ins GPR:$src1, GPR:$src2),
+ IIC_fpMOVID, "vmov", "\t$dst1, $dst2, $src1, $src2",
+ [/* For disassembly only; pattern left blank */]> {
+ // Instruction operands.
+ bits<5> dst1;
+ bits<4> src1;
+ bits<4> src2;
+
+ // Encode instruction operands.
+ let Inst{3-0} = dst1{4-1};
+ let Inst{5} = dst1{0};
+ let Inst{15-12} = src1;
+ let Inst{19-16} = src2;
+
+ let Inst{7-6} = 0b00;
+
+ // Some single precision VFP instructions may be executed on both NEON and VFP
+ // pipelines.
+ let D = VFPNeonDomain;
+
+ let DecoderMethod = "DecodeVMOVSRR";
+}
+
+// FMRDH: SPR -> GPR
+// FMRDL: SPR -> GPR
+// FMRRS: SPR -> GPR
+// FMRX: SPR system reg -> GPR
+// FMSRR: GPR -> SPR
+// FMXR: GPR -> VFP system reg
+
+
+// Int -> FP:
+
+class AVConv1IDs_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
+ bits<4> opcod4, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm,
+ list<dag> pattern>
+ : AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
+ pattern> {
+ // Instruction operands.
+ bits<5> Dd;
+ bits<5> Sm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Sm{4-1};
+ let Inst{5} = Sm{0};
+ let Inst{15-12} = Dd{3-0};
+ let Inst{22} = Dd{4};
+
+ let Predicates = [HasVFP2, HasDPVFP];
+}
+
+class AVConv1InSs_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
+ bits<4> opcod4, dag oops, dag iops,InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AVConv1In<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
+ pattern> {
+ // Instruction operands.
+ bits<5> Sd;
+ bits<5> Sm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Sm{4-1};
+ let Inst{5} = Sm{0};
+ let Inst{15-12} = Sd{4-1};
+ let Inst{22} = Sd{0};
+}
+
+def VSITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011,
+ (outs DPR:$Dd), (ins SPR:$Sm),
+ IIC_fpCVTID, "vcvt", ".f64.s32\t$Dd, $Sm",
+ [(set DPR:$Dd, (f64 (arm_sitof SPR:$Sm)))]> {
+ let Inst{7} = 1; // s32
+}
+
+def VSITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010,
+ (outs SPR:$Sd),(ins SPR:$Sm),
+ IIC_fpCVTIS, "vcvt", ".f32.s32\t$Sd, $Sm",
+ [(set SPR:$Sd, (arm_sitof SPR:$Sm))]> {
+ let Inst{7} = 1; // s32
+
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def VUITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011,
+ (outs DPR:$Dd), (ins SPR:$Sm),
+ IIC_fpCVTID, "vcvt", ".f64.u32\t$Dd, $Sm",
+ [(set DPR:$Dd, (f64 (arm_uitof SPR:$Sm)))]> {
+ let Inst{7} = 0; // u32
+}
+
+def VUITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ IIC_fpCVTIS, "vcvt", ".f32.u32\t$Sd, $Sm",
+ [(set SPR:$Sd, (arm_uitof SPR:$Sm))]> {
+ let Inst{7} = 0; // u32
+
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+// FP -> Int:
+
+class AVConv1IsD_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
+ bits<4> opcod4, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm,
+ list<dag> pattern>
+ : AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
+ pattern> {
+ // Instruction operands.
+ bits<5> Sd;
+ bits<5> Dm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Dm{3-0};
+ let Inst{5} = Dm{4};
+ let Inst{15-12} = Sd{4-1};
+ let Inst{22} = Sd{0};
+
+ let Predicates = [HasVFP2, HasDPVFP];
+}
+
+class AVConv1InsS_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
+ bits<4> opcod4, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm,
+ list<dag> pattern>
+ : AVConv1In<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
+ pattern> {
+ // Instruction operands.
+ bits<5> Sd;
+ bits<5> Sm;
+
+ // Encode instruction operands.
+ let Inst{3-0} = Sm{4-1};
+ let Inst{5} = Sm{0};
+ let Inst{15-12} = Sd{4-1};
+ let Inst{22} = Sd{0};
+}
+
+// Always set Z bit in the instruction, i.e. "round towards zero" variants.
+def VTOSIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011,
+ (outs SPR:$Sd), (ins DPR:$Dm),
+ IIC_fpCVTDI, "vcvt", ".s32.f64\t$Sd, $Dm",
+ [(set SPR:$Sd, (arm_ftosi (f64 DPR:$Dm)))]> {
+ let Inst{7} = 1; // Z bit
+}
+
+def VTOSIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ IIC_fpCVTSI, "vcvt", ".s32.f32\t$Sd, $Sm",
+ [(set SPR:$Sd, (arm_ftosi SPR:$Sm))]> {
+ let Inst{7} = 1; // Z bit
+
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def VTOUIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011,
+ (outs SPR:$Sd), (ins DPR:$Dm),
+ IIC_fpCVTDI, "vcvt", ".u32.f64\t$Sd, $Dm",
+ [(set SPR:$Sd, (arm_ftoui (f64 DPR:$Dm)))]> {
+ let Inst{7} = 1; // Z bit
+}
+
+def VTOUIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ IIC_fpCVTSI, "vcvt", ".u32.f32\t$Sd, $Sm",
+ [(set SPR:$Sd, (arm_ftoui SPR:$Sm))]> {
+ let Inst{7} = 1; // Z bit
+
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+// And the Z bit '0' variants, i.e. use the rounding mode specified by FPSCR.
+let Uses = [FPSCR] in {
+// FIXME: Verify encoding after integrated assembler is working.
+def VTOSIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011,
+ (outs SPR:$Sd), (ins DPR:$Dm),
+ IIC_fpCVTDI, "vcvtr", ".s32.f64\t$Sd, $Dm",
+ [(set SPR:$Sd, (int_arm_vcvtr (f64 DPR:$Dm)))]>{
+ let Inst{7} = 0; // Z bit
+}
+
+def VTOSIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ IIC_fpCVTSI, "vcvtr", ".s32.f32\t$Sd, $Sm",
+ [(set SPR:$Sd, (int_arm_vcvtr SPR:$Sm))]> {
+ let Inst{7} = 0; // Z bit
+}
+
+def VTOUIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011,
+ (outs SPR:$Sd), (ins DPR:$Dm),
+ IIC_fpCVTDI, "vcvtr", ".u32.f64\t$Sd, $Dm",
+ [(set SPR:$Sd, (int_arm_vcvtru(f64 DPR:$Dm)))]>{
+ let Inst{7} = 0; // Z bit
+}
+
+def VTOUIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010,
+ (outs SPR:$Sd), (ins SPR:$Sm),
+ IIC_fpCVTSI, "vcvtr", ".u32.f32\t$Sd, $Sm",
+ [(set SPR:$Sd, (int_arm_vcvtru SPR:$Sm))]> {
+ let Inst{7} = 0; // Z bit
+}
+}
+
+// Convert between floating-point and fixed-point
+// Data type for fixed-point naming convention:
+// S16 (U=0, sx=0) -> SH
+// U16 (U=1, sx=0) -> UH
+// S32 (U=0, sx=1) -> SL
+// U32 (U=1, sx=1) -> UL
+
+let Constraints = "$a = $dst" in {
+
+// FP to Fixed-Point:
+
+// Single Precision register
+class AVConv1XInsS_Encode<bits<5> op1, bits<2> op2, bits<4> op3, bits<4> op4,
+ bit op5, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AVConv1XI<op1, op2, op3, op4, op5, oops, iops, itin, opc, asm, pattern>,
+ Sched<[WriteCvtFP]> {
+ bits<5> dst;
+ // if dp_operation then UInt(D:Vd) else UInt(Vd:D);
+ let Inst{22} = dst{0};
+ let Inst{15-12} = dst{4-1};
+}
+
+// Double Precision register
+class AVConv1XInsD_Encode<bits<5> op1, bits<2> op2, bits<4> op3, bits<4> op4,
+ bit op5, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AVConv1XI<op1, op2, op3, op4, op5, oops, iops, itin, opc, asm, pattern>,
+ Sched<[WriteCvtFP]> {
+ bits<5> dst;
+ // if dp_operation then UInt(D:Vd) else UInt(Vd:D);
+ let Inst{22} = dst{4};
+ let Inst{15-12} = dst{3-0};
+
+ let Predicates = [HasVFP2, HasDPVFP];
+}
+
+def VTOSHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 0,
+ (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
+ IIC_fpCVTSI, "vcvt", ".s16.f32\t$dst, $a, $fbits", []> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def VTOUHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 0,
+ (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
+ IIC_fpCVTSI, "vcvt", ".u16.f32\t$dst, $a, $fbits", []> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def VTOSLS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 1,
+ (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
+ IIC_fpCVTSI, "vcvt", ".s32.f32\t$dst, $a, $fbits", []> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def VTOULS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 1,
+ (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
+ IIC_fpCVTSI, "vcvt", ".u32.f32\t$dst, $a, $fbits", []> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def VTOSHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 0,
+ (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
+ IIC_fpCVTDI, "vcvt", ".s16.f64\t$dst, $a, $fbits", []>;
+
+def VTOUHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 0,
+ (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
+ IIC_fpCVTDI, "vcvt", ".u16.f64\t$dst, $a, $fbits", []>;
+
+def VTOSLD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 1,
+ (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
+ IIC_fpCVTDI, "vcvt", ".s32.f64\t$dst, $a, $fbits", []>;
+
+def VTOULD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 1,
+ (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
+ IIC_fpCVTDI, "vcvt", ".u32.f64\t$dst, $a, $fbits", []>;
+
+// Fixed-Point to FP:
+
+def VSHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 0,
+ (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
+ IIC_fpCVTIS, "vcvt", ".f32.s16\t$dst, $a, $fbits", []> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def VUHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 0,
+ (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
+ IIC_fpCVTIS, "vcvt", ".f32.u16\t$dst, $a, $fbits", []> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def VSLTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 1,
+ (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
+ IIC_fpCVTIS, "vcvt", ".f32.s32\t$dst, $a, $fbits", []> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def VULTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 1,
+ (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
+ IIC_fpCVTIS, "vcvt", ".f32.u32\t$dst, $a, $fbits", []> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def VSHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 0,
+ (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
+ IIC_fpCVTID, "vcvt", ".f64.s16\t$dst, $a, $fbits", []>;
+
+def VUHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 0,
+ (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
+ IIC_fpCVTID, "vcvt", ".f64.u16\t$dst, $a, $fbits", []>;
+
+def VSLTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 1,
+ (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
+ IIC_fpCVTID, "vcvt", ".f64.s32\t$dst, $a, $fbits", []>;
+
+def VULTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 1,
+ (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
+ IIC_fpCVTID, "vcvt", ".f64.u32\t$dst, $a, $fbits", []>;
+
+} // End of 'let Constraints = "$a = $dst" in'
+
+//===----------------------------------------------------------------------===//
+// FP Multiply-Accumulate Operations.
+//
+
+def VMLAD : ADbI<0b11100, 0b00, 0, 0,
+ (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
+ IIC_fpMAC64, "vmla", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd, (fadd_mlx (fmul_su DPR:$Dn, DPR:$Dm),
+ (f64 DPR:$Ddin)))]>,
+ RegConstraint<"$Ddin = $Dd">,
+ Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
+
+def VMLAS : ASbIn<0b11100, 0b00, 0, 0,
+ (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
+ IIC_fpMAC32, "vmla", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fadd_mlx (fmul_su SPR:$Sn, SPR:$Sm),
+ SPR:$Sdin))]>,
+ RegConstraint<"$Sdin = $Sd">,
+ Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def : Pat<(fadd_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
+ (VMLAD DPR:$dstin, DPR:$a, DPR:$b)>,
+ Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
+def : Pat<(fadd_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
+ (VMLAS SPR:$dstin, SPR:$a, SPR:$b)>,
+ Requires<[HasVFP2,DontUseNEONForFP, UseFPVMLx,DontUseFusedMAC]>;
+
+def VMLSD : ADbI<0b11100, 0b00, 1, 0,
+ (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
+ IIC_fpMAC64, "vmls", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd, (fadd_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
+ (f64 DPR:$Ddin)))]>,
+ RegConstraint<"$Ddin = $Dd">,
+ Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
+
+def VMLSS : ASbIn<0b11100, 0b00, 1, 0,
+ (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
+ IIC_fpMAC32, "vmls", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fadd_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
+ SPR:$Sdin))]>,
+ RegConstraint<"$Sdin = $Sd">,
+ Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def : Pat<(fsub_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
+ (VMLSD DPR:$dstin, DPR:$a, DPR:$b)>,
+ Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
+def : Pat<(fsub_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
+ (VMLSS SPR:$dstin, SPR:$a, SPR:$b)>,
+ Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]>;
+
+def VNMLAD : ADbI<0b11100, 0b01, 1, 0,
+ (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
+ IIC_fpMAC64, "vnmla", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd,(fsub_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
+ (f64 DPR:$Ddin)))]>,
+ RegConstraint<"$Ddin = $Dd">,
+ Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
+
+def VNMLAS : ASbI<0b11100, 0b01, 1, 0,
+ (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
+ IIC_fpMAC32, "vnmla", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fsub_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
+ SPR:$Sdin))]>,
+ RegConstraint<"$Sdin = $Sd">,
+ Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def : Pat<(fsub_mlx (fneg (fmul_su DPR:$a, (f64 DPR:$b))), DPR:$dstin),
+ (VNMLAD DPR:$dstin, DPR:$a, DPR:$b)>,
+ Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
+def : Pat<(fsub_mlx (fneg (fmul_su SPR:$a, SPR:$b)), SPR:$dstin),
+ (VNMLAS SPR:$dstin, SPR:$a, SPR:$b)>,
+ Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]>;
+
+def VNMLSD : ADbI<0b11100, 0b01, 0, 0,
+ (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
+ IIC_fpMAC64, "vnmls", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd, (fsub_mlx (fmul_su DPR:$Dn, DPR:$Dm),
+ (f64 DPR:$Ddin)))]>,
+ RegConstraint<"$Ddin = $Dd">,
+ Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
+
+def VNMLSS : ASbI<0b11100, 0b01, 0, 0,
+ (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
+ IIC_fpMAC32, "vnmls", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fsub_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>,
+ RegConstraint<"$Sdin = $Sd">,
+ Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines on A8.
+ let D = VFPNeonA8Domain;
+}
+
+def : Pat<(fsub_mlx (fmul_su DPR:$a, (f64 DPR:$b)), DPR:$dstin),
+ (VNMLSD DPR:$dstin, DPR:$a, DPR:$b)>,
+ Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
+def : Pat<(fsub_mlx (fmul_su SPR:$a, SPR:$b), SPR:$dstin),
+ (VNMLSS SPR:$dstin, SPR:$a, SPR:$b)>,
+ Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]>;
+
+//===----------------------------------------------------------------------===//
+// Fused FP Multiply-Accumulate Operations.
+//
+def VFMAD : ADbI<0b11101, 0b10, 0, 0,
+ (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
+ IIC_fpFMAC64, "vfma", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd, (fadd_mlx (fmul_su DPR:$Dn, DPR:$Dm),
+ (f64 DPR:$Ddin)))]>,
+ RegConstraint<"$Ddin = $Dd">,
+ Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
+
+def VFMAS : ASbIn<0b11101, 0b10, 0, 0,
+ (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
+ IIC_fpFMAC32, "vfma", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fadd_mlx (fmul_su SPR:$Sn, SPR:$Sm),
+ SPR:$Sdin))]>,
+ RegConstraint<"$Sdin = $Sd">,
+ Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines.
+}
+
+def : Pat<(fadd_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
+ (VFMAD DPR:$dstin, DPR:$a, DPR:$b)>,
+ Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
+def : Pat<(fadd_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
+ (VFMAS SPR:$dstin, SPR:$a, SPR:$b)>,
+ Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
+
+// Match @llvm.fma.* intrinsics
+// (fma x, y, z) -> (vfms z, x, y)
+def : Pat<(f64 (fma DPR:$Dn, DPR:$Dm, DPR:$Ddin)),
+ (VFMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
+ Requires<[HasVFP4,HasDPVFP]>;
+def : Pat<(f32 (fma SPR:$Sn, SPR:$Sm, SPR:$Sdin)),
+ (VFMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
+ Requires<[HasVFP4]>;
+
+def VFMSD : ADbI<0b11101, 0b10, 1, 0,
+ (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
+ IIC_fpFMAC64, "vfms", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd, (fadd_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
+ (f64 DPR:$Ddin)))]>,
+ RegConstraint<"$Ddin = $Dd">,
+ Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
+
+def VFMSS : ASbIn<0b11101, 0b10, 1, 0,
+ (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
+ IIC_fpFMAC32, "vfms", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fadd_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
+ SPR:$Sdin))]>,
+ RegConstraint<"$Sdin = $Sd">,
+ Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines.
+}
+
+def : Pat<(fsub_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
+ (VFMSD DPR:$dstin, DPR:$a, DPR:$b)>,
+ Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
+def : Pat<(fsub_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
+ (VFMSS SPR:$dstin, SPR:$a, SPR:$b)>,
+ Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
+
+// Match @llvm.fma.* intrinsics
+// (fma (fneg x), y, z) -> (vfms z, x, y)
+def : Pat<(f64 (fma (fneg DPR:$Dn), DPR:$Dm, DPR:$Ddin)),
+ (VFMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
+ Requires<[HasVFP4,HasDPVFP]>;
+def : Pat<(f32 (fma (fneg SPR:$Sn), SPR:$Sm, SPR:$Sdin)),
+ (VFMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
+ Requires<[HasVFP4]>;
+// (fma x, (fneg y), z) -> (vfms z, x, y)
+def : Pat<(f64 (fma DPR:$Dn, (fneg DPR:$Dm), DPR:$Ddin)),
+ (VFMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
+ Requires<[HasVFP4,HasDPVFP]>;
+def : Pat<(f32 (fma SPR:$Sn, (fneg SPR:$Sm), SPR:$Sdin)),
+ (VFMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
+ Requires<[HasVFP4]>;
+
+def VFNMAD : ADbI<0b11101, 0b01, 1, 0,
+ (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
+ IIC_fpFMAC64, "vfnma", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd,(fsub_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
+ (f64 DPR:$Ddin)))]>,
+ RegConstraint<"$Ddin = $Dd">,
+ Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
+
+def VFNMAS : ASbI<0b11101, 0b01, 1, 0,
+ (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
+ IIC_fpFMAC32, "vfnma", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fsub_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
+ SPR:$Sdin))]>,
+ RegConstraint<"$Sdin = $Sd">,
+ Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines.
+}
+
+def : Pat<(fsub_mlx (fneg (fmul_su DPR:$a, (f64 DPR:$b))), DPR:$dstin),
+ (VFNMAD DPR:$dstin, DPR:$a, DPR:$b)>,
+ Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
+def : Pat<(fsub_mlx (fneg (fmul_su SPR:$a, SPR:$b)), SPR:$dstin),
+ (VFNMAS SPR:$dstin, SPR:$a, SPR:$b)>,
+ Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
+
+// Match @llvm.fma.* intrinsics
+// (fneg (fma x, y, z)) -> (vfnma z, x, y)
+def : Pat<(fneg (fma (f64 DPR:$Dn), (f64 DPR:$Dm), (f64 DPR:$Ddin))),
+ (VFNMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
+ Requires<[HasVFP4,HasDPVFP]>;
+def : Pat<(fneg (fma (f32 SPR:$Sn), (f32 SPR:$Sm), (f32 SPR:$Sdin))),
+ (VFNMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
+ Requires<[HasVFP4]>;
+// (fma (fneg x), y, (fneg z)) -> (vfnma z, x, y)
+def : Pat<(f64 (fma (fneg DPR:$Dn), DPR:$Dm, (fneg DPR:$Ddin))),
+ (VFNMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
+ Requires<[HasVFP4,HasDPVFP]>;
+def : Pat<(f32 (fma (fneg SPR:$Sn), SPR:$Sm, (fneg SPR:$Sdin))),
+ (VFNMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
+ Requires<[HasVFP4]>;
+
+def VFNMSD : ADbI<0b11101, 0b01, 0, 0,
+ (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
+ IIC_fpFMAC64, "vfnms", ".f64\t$Dd, $Dn, $Dm",
+ [(set DPR:$Dd, (fsub_mlx (fmul_su DPR:$Dn, DPR:$Dm),
+ (f64 DPR:$Ddin)))]>,
+ RegConstraint<"$Ddin = $Dd">,
+ Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
+
+def VFNMSS : ASbI<0b11101, 0b01, 0, 0,
+ (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
+ IIC_fpFMAC32, "vfnms", ".f32\t$Sd, $Sn, $Sm",
+ [(set SPR:$Sd, (fsub_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>,
+ RegConstraint<"$Sdin = $Sd">,
+ Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> {
+ // Some single precision VFP instructions may be executed on both NEON and
+ // VFP pipelines.
+}
+
+def : Pat<(fsub_mlx (fmul_su DPR:$a, (f64 DPR:$b)), DPR:$dstin),
+ (VFNMSD DPR:$dstin, DPR:$a, DPR:$b)>,
+ Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
+def : Pat<(fsub_mlx (fmul_su SPR:$a, SPR:$b), SPR:$dstin),
+ (VFNMSS SPR:$dstin, SPR:$a, SPR:$b)>,
+ Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
+
+// Match @llvm.fma.* intrinsics
+
+// (fma x, y, (fneg z)) -> (vfnms z, x, y))
+def : Pat<(f64 (fma DPR:$Dn, DPR:$Dm, (fneg DPR:$Ddin))),
+ (VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
+ Requires<[HasVFP4,HasDPVFP]>;
+def : Pat<(f32 (fma SPR:$Sn, SPR:$Sm, (fneg SPR:$Sdin))),
+ (VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
+ Requires<[HasVFP4]>;
+// (fneg (fma (fneg x), y, z)) -> (vfnms z, x, y)
+def : Pat<(fneg (f64 (fma (fneg DPR:$Dn), DPR:$Dm, DPR:$Ddin))),
+ (VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
+ Requires<[HasVFP4,HasDPVFP]>;
+def : Pat<(fneg (f32 (fma (fneg SPR:$Sn), SPR:$Sm, SPR:$Sdin))),
+ (VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
+ Requires<[HasVFP4]>;
+// (fneg (fma x, (fneg y), z) -> (vfnms z, x, y)
+def : Pat<(fneg (f64 (fma DPR:$Dn, (fneg DPR:$Dm), DPR:$Ddin))),
+ (VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
+ Requires<[HasVFP4,HasDPVFP]>;
+def : Pat<(fneg (f32 (fma SPR:$Sn, (fneg SPR:$Sm), SPR:$Sdin))),
+ (VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
+ Requires<[HasVFP4]>;
+
+//===----------------------------------------------------------------------===//
+// FP Conditional moves.
+//
+
+let neverHasSideEffects = 1 in {
+def VMOVDcc : PseudoInst<(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm, cmovpred:$p),
+ IIC_fpUNA64,
+ [(set (f64 DPR:$Dd),
+ (ARMcmov DPR:$Dn, DPR:$Dm, cmovpred:$p))]>,
+ RegConstraint<"$Dn = $Dd">, Requires<[HasVFP2,HasDPVFP]>;
+
+def VMOVScc : PseudoInst<(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm, cmovpred:$p),
+ IIC_fpUNA32,
+ [(set (f32 SPR:$Sd),
+ (ARMcmov SPR:$Sn, SPR:$Sm, cmovpred:$p))]>,
+ RegConstraint<"$Sn = $Sd">, Requires<[HasVFP2]>;
+} // neverHasSideEffects
+
+//===----------------------------------------------------------------------===//
+// Move from VFP System Register to ARM core register.
+//
+
+class MovFromVFP<bits<4> opc19_16, dag oops, dag iops, string opc, string asm,
+ list<dag> pattern>:
+ VFPAI<oops, iops, VFPMiscFrm, IIC_fpSTAT, opc, asm, pattern> {
+
+ // Instruction operand.
+ bits<4> Rt;
+
+ let Inst{27-20} = 0b11101111;
+ let Inst{19-16} = opc19_16;
+ let Inst{15-12} = Rt;
+ let Inst{11-8} = 0b1010;
+ let Inst{7} = 0;
+ let Inst{6-5} = 0b00;
+ let Inst{4} = 1;
+ let Inst{3-0} = 0b0000;
+}
+
+// APSR is the application level alias of CPSR. This FPSCR N, Z, C, V flags
+// to APSR.
+let Defs = [CPSR], Uses = [FPSCR_NZCV], Rt = 0b1111 /* apsr_nzcv */ in
+def FMSTAT : MovFromVFP<0b0001 /* fpscr */, (outs), (ins),
+ "vmrs", "\tAPSR_nzcv, fpscr", [(arm_fmstat)]>;
+
+// Application level FPSCR -> GPR
+let hasSideEffects = 1, Uses = [FPSCR] in
+def VMRS : MovFromVFP<0b0001 /* fpscr */, (outs GPR:$Rt), (ins),
+ "vmrs", "\t$Rt, fpscr",
+ [(set GPR:$Rt, (int_arm_get_fpscr))]>;
+
+// System level FPEXC, FPSID -> GPR
+let Uses = [FPSCR] in {
+ def VMRS_FPEXC : MovFromVFP<0b1000 /* fpexc */, (outs GPR:$Rt), (ins),
+ "vmrs", "\t$Rt, fpexc", []>;
+ def VMRS_FPSID : MovFromVFP<0b0000 /* fpsid */, (outs GPR:$Rt), (ins),
+ "vmrs", "\t$Rt, fpsid", []>;
+ def VMRS_MVFR0 : MovFromVFP<0b0111 /* mvfr0 */, (outs GPR:$Rt), (ins),
+ "vmrs", "\t$Rt, mvfr0", []>;
+ def VMRS_MVFR1 : MovFromVFP<0b0110 /* mvfr1 */, (outs GPR:$Rt), (ins),
+ "vmrs", "\t$Rt, mvfr1", []>;
+ def VMRS_MVFR2 : MovFromVFP<0b0101 /* mvfr2 */, (outs GPR:$Rt), (ins),
+ "vmrs", "\t$Rt, mvfr2", []>, Requires<[HasFPARMv8]>;
+ def VMRS_FPINST : MovFromVFP<0b1001 /* fpinst */, (outs GPR:$Rt), (ins),
+ "vmrs", "\t$Rt, fpinst", []>;
+ def VMRS_FPINST2 : MovFromVFP<0b1010 /* fpinst2 */, (outs GPR:$Rt), (ins),
+ "vmrs", "\t$Rt, fpinst2", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Move from ARM core register to VFP System Register.
+//
+
+class MovToVFP<bits<4> opc19_16, dag oops, dag iops, string opc, string asm,
+ list<dag> pattern>:
+ VFPAI<oops, iops, VFPMiscFrm, IIC_fpSTAT, opc, asm, pattern> {
+
+ // Instruction operand.
+ bits<4> src;
+
+ // Encode instruction operand.
+ let Inst{15-12} = src;
+
+ let Inst{27-20} = 0b11101110;
+ let Inst{19-16} = opc19_16;
+ let Inst{11-8} = 0b1010;
+ let Inst{7} = 0;
+ let Inst{4} = 1;
+}
+
+let Defs = [FPSCR] in {
+ // Application level GPR -> FPSCR
+ def VMSR : MovToVFP<0b0001 /* fpscr */, (outs), (ins GPR:$src),
+ "vmsr", "\tfpscr, $src", [(int_arm_set_fpscr GPR:$src)]>;
+ // System level GPR -> FPEXC
+ def VMSR_FPEXC : MovToVFP<0b1000 /* fpexc */, (outs), (ins GPR:$src),
+ "vmsr", "\tfpexc, $src", []>;
+ // System level GPR -> FPSID
+ def VMSR_FPSID : MovToVFP<0b0000 /* fpsid */, (outs), (ins GPR:$src),
+ "vmsr", "\tfpsid, $src", []>;
+
+ def VMSR_FPINST : MovToVFP<0b1001 /* fpinst */, (outs), (ins GPR:$src),
+ "vmsr", "\tfpinst, $src", []>;
+ def VMSR_FPINST2 : MovToVFP<0b1010 /* fpinst2 */, (outs), (ins GPR:$src),
+ "vmsr", "\tfpinst2, $src", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Misc.
+//
+
+// Materialize FP immediates. VFP3 only.
+let isReMaterializable = 1 in {
+def FCONSTD : VFPAI<(outs DPR:$Dd), (ins vfp_f64imm:$imm),
+ VFPMiscFrm, IIC_fpUNA64,
+ "vmov", ".f64\t$Dd, $imm",
+ [(set DPR:$Dd, vfp_f64imm:$imm)]>,
+ Requires<[HasVFP3,HasDPVFP]> {
+ bits<5> Dd;
+ bits<8> imm;
+
+ let Inst{27-23} = 0b11101;
+ let Inst{22} = Dd{4};
+ let Inst{21-20} = 0b11;
+ let Inst{19-16} = imm{7-4};
+ let Inst{15-12} = Dd{3-0};
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 1; // Double precision.
+ let Inst{7-4} = 0b0000;
+ let Inst{3-0} = imm{3-0};
+}
+
+def FCONSTS : VFPAI<(outs SPR:$Sd), (ins vfp_f32imm:$imm),
+ VFPMiscFrm, IIC_fpUNA32,
+ "vmov", ".f32\t$Sd, $imm",
+ [(set SPR:$Sd, vfp_f32imm:$imm)]>, Requires<[HasVFP3]> {
+ bits<5> Sd;
+ bits<8> imm;
+
+ let Inst{27-23} = 0b11101;
+ let Inst{22} = Sd{0};
+ let Inst{21-20} = 0b11;
+ let Inst{19-16} = imm{7-4};
+ let Inst{15-12} = Sd{4-1};
+ let Inst{11-9} = 0b101;
+ let Inst{8} = 0; // Single precision.
+ let Inst{7-4} = 0b0000;
+ let Inst{3-0} = imm{3-0};
+}
+}
+
+//===----------------------------------------------------------------------===//
+// Assembler aliases.
+//
+// A few mnemonic aliases for pre-unifixed syntax. We don't guarantee to
+// support them all, but supporting at least some of the basics is
+// good to be friendly.
+def : VFP2MnemonicAlias<"flds", "vldr">;
+def : VFP2MnemonicAlias<"fldd", "vldr">;
+def : VFP2MnemonicAlias<"fmrs", "vmov">;
+def : VFP2MnemonicAlias<"fmsr", "vmov">;
+def : VFP2MnemonicAlias<"fsqrts", "vsqrt">;
+def : VFP2MnemonicAlias<"fsqrtd", "vsqrt">;
+def : VFP2MnemonicAlias<"fadds", "vadd.f32">;
+def : VFP2MnemonicAlias<"faddd", "vadd.f64">;
+def : VFP2MnemonicAlias<"fmrdd", "vmov">;
+def : VFP2MnemonicAlias<"fmrds", "vmov">;
+def : VFP2MnemonicAlias<"fmrrd", "vmov">;
+def : VFP2MnemonicAlias<"fmdrr", "vmov">;
+def : VFP2MnemonicAlias<"fmuls", "vmul.f32">;
+def : VFP2MnemonicAlias<"fmuld", "vmul.f64">;
+def : VFP2MnemonicAlias<"fnegs", "vneg.f32">;
+def : VFP2MnemonicAlias<"fnegd", "vneg.f64">;
+def : VFP2MnemonicAlias<"ftosizd", "vcvt.s32.f64">;
+def : VFP2MnemonicAlias<"ftosid", "vcvtr.s32.f64">;
+def : VFP2MnemonicAlias<"ftosizs", "vcvt.s32.f32">;
+def : VFP2MnemonicAlias<"ftosis", "vcvtr.s32.f32">;
+def : VFP2MnemonicAlias<"ftouizd", "vcvt.u32.f64">;
+def : VFP2MnemonicAlias<"ftouid", "vcvtr.u32.f64">;
+def : VFP2MnemonicAlias<"ftouizs", "vcvt.u32.f32">;
+def : VFP2MnemonicAlias<"ftouis", "vcvtr.u32.f32">;
+def : VFP2MnemonicAlias<"fsitod", "vcvt.f64.s32">;
+def : VFP2MnemonicAlias<"fsitos", "vcvt.f32.s32">;
+def : VFP2MnemonicAlias<"fuitod", "vcvt.f64.u32">;
+def : VFP2MnemonicAlias<"fuitos", "vcvt.f32.u32">;
+def : VFP2MnemonicAlias<"fsts", "vstr">;
+def : VFP2MnemonicAlias<"fstd", "vstr">;
+def : VFP2MnemonicAlias<"fmacd", "vmla.f64">;
+def : VFP2MnemonicAlias<"fmacs", "vmla.f32">;
+def : VFP2MnemonicAlias<"fcpys", "vmov.f32">;
+def : VFP2MnemonicAlias<"fcpyd", "vmov.f64">;
+def : VFP2MnemonicAlias<"fcmps", "vcmp.f32">;
+def : VFP2MnemonicAlias<"fcmpd", "vcmp.f64">;
+def : VFP2MnemonicAlias<"fdivs", "vdiv.f32">;
+def : VFP2MnemonicAlias<"fdivd", "vdiv.f64">;
+def : VFP2MnemonicAlias<"fmrx", "vmrs">;
+def : VFP2MnemonicAlias<"fmxr", "vmsr">;
+
+// Be friendly and accept the old form of zero-compare
+def : VFP2DPInstAlias<"fcmpzd${p} $val", (VCMPZD DPR:$val, pred:$p)>;
+def : VFP2InstAlias<"fcmpzs${p} $val", (VCMPZS SPR:$val, pred:$p)>;
+
+
+def : VFP2InstAlias<"fmstat${p}", (FMSTAT pred:$p)>;
+def : VFP2InstAlias<"fadds${p} $Sd, $Sn, $Sm",
+ (VADDS SPR:$Sd, SPR:$Sn, SPR:$Sm, pred:$p)>;
+def : VFP2DPInstAlias<"faddd${p} $Dd, $Dn, $Dm",
+ (VADDD DPR:$Dd, DPR:$Dn, DPR:$Dm, pred:$p)>;
+def : VFP2InstAlias<"fsubs${p} $Sd, $Sn, $Sm",
+ (VSUBS SPR:$Sd, SPR:$Sn, SPR:$Sm, pred:$p)>;
+def : VFP2DPInstAlias<"fsubd${p} $Dd, $Dn, $Dm",
+ (VSUBD DPR:$Dd, DPR:$Dn, DPR:$Dm, pred:$p)>;
+
+// No need for the size suffix on VSQRT. It's implied by the register classes.
+def : VFP2InstAlias<"vsqrt${p} $Sd, $Sm", (VSQRTS SPR:$Sd, SPR:$Sm, pred:$p)>;
+def : VFP2DPInstAlias<"vsqrt${p} $Dd, $Dm", (VSQRTD DPR:$Dd, DPR:$Dm, pred:$p)>;
+
+// VLDR/VSTR accept an optional type suffix.
+def : VFP2InstAlias<"vldr${p}.32 $Sd, $addr",
+ (VLDRS SPR:$Sd, addrmode5:$addr, pred:$p)>;
+def : VFP2InstAlias<"vstr${p}.32 $Sd, $addr",
+ (VSTRS SPR:$Sd, addrmode5:$addr, pred:$p)>;
+def : VFP2InstAlias<"vldr${p}.64 $Dd, $addr",
+ (VLDRD DPR:$Dd, addrmode5:$addr, pred:$p)>;
+def : VFP2InstAlias<"vstr${p}.64 $Dd, $addr",
+ (VSTRD DPR:$Dd, addrmode5:$addr, pred:$p)>;
+
+// VMOV can accept optional 32-bit or less data type suffix suffix.
+def : VFP2InstAlias<"vmov${p}.8 $Rt, $Sn",
+ (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>;
+def : VFP2InstAlias<"vmov${p}.16 $Rt, $Sn",
+ (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>;
+def : VFP2InstAlias<"vmov${p}.32 $Rt, $Sn",
+ (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>;
+def : VFP2InstAlias<"vmov${p}.8 $Sn, $Rt",
+ (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>;
+def : VFP2InstAlias<"vmov${p}.16 $Sn, $Rt",
+ (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>;
+def : VFP2InstAlias<"vmov${p}.32 $Sn, $Rt",
+ (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>;
+
+def : VFP2InstAlias<"vmov${p}.f64 $Rt, $Rt2, $Dn",
+ (VMOVRRD GPR:$Rt, GPR:$Rt2, DPR:$Dn, pred:$p)>;
+def : VFP2InstAlias<"vmov${p}.f64 $Dn, $Rt, $Rt2",
+ (VMOVDRR DPR:$Dn, GPR:$Rt, GPR:$Rt2, pred:$p)>;
+
+// VMOVS doesn't need the .f32 to disambiguate from the NEON encoding the way
+// VMOVD does.
+def : VFP2InstAlias<"vmov${p} $Sd, $Sm",
+ (VMOVS SPR:$Sd, SPR:$Sm, pred:$p)>;
+
+// FCONSTD/FCONSTS alias for vmov.f64/vmov.f32
+// These aliases provide added functionality over vmov.f instructions by
+// allowing users to write assembly containing encoded floating point constants
+// (e.g. #0x70 vs #1.0). Without these alises there is no way for the
+// assembler to accept encoded fp constants (but the equivalent fp-literal is
+// accepted directly by vmovf).
+def : VFP3InstAlias<"fconstd${p} $Dd, $val",
+ (FCONSTD DPR:$Dd, vfp_f64imm:$val, pred:$p)>;
+def : VFP3InstAlias<"fconsts${p} $Sd, $val",
+ (FCONSTS SPR:$Sd, vfp_f32imm:$val, pred:$p)>;
diff --git a/contrib/llvm/lib/Target/ARM/ARMJITInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMJITInfo.cpp
new file mode 100644
index 0000000..6d1114d
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMJITInfo.cpp
@@ -0,0 +1,344 @@
+//===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the JIT interfaces for the ARM target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMJITInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMRelocations.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Memory.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdlib>
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
+ report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction");
+}
+
+/// JITCompilerFunction - This contains the address of the JIT function used to
+/// compile a function lazily.
+static TargetJITInfo::JITCompilerFn JITCompilerFunction;
+
+// Get the ASMPREFIX for the current host. This is often '_'.
+#ifndef __USER_LABEL_PREFIX__
+#define __USER_LABEL_PREFIX__
+#endif
+#define GETASMPREFIX2(X) #X
+#define GETASMPREFIX(X) GETASMPREFIX2(X)
+#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
+
+// CompilationCallback stub - We can't use a C function with inline assembly in
+// it, because the prolog/epilog inserted by GCC won't work for us. (We need
+// to preserve more context and manipulate the stack directly). Instead,
+// write our own wrapper, which does things our way, so we have complete
+// control over register saving and restoring.
+extern "C" {
+#if defined(__arm__)
+ void ARMCompilationCallback();
+ asm(
+ ".text\n"
+ ".align 2\n"
+ ".globl " ASMPREFIX "ARMCompilationCallback\n"
+ ASMPREFIX "ARMCompilationCallback:\n"
+ // Save caller saved registers since they may contain stuff
+ // for the real target function right now. We have to act as if this
+ // whole compilation callback doesn't exist as far as the caller is
+ // concerned, so we can't just preserve the callee saved regs.
+ "stmdb sp!, {r0, r1, r2, r3, lr}\n"
+#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
+ "vstmdb sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
+#endif
+ // The LR contains the address of the stub function on entry.
+ // pass it as the argument to the C part of the callback
+ "mov r0, lr\n"
+ "sub sp, sp, #4\n"
+ // Call the C portion of the callback
+ "bl " ASMPREFIX "ARMCompilationCallbackC\n"
+ "add sp, sp, #4\n"
+ // Restoring the LR to the return address of the function that invoked
+ // the stub and de-allocating the stack space for it requires us to
+ // swap the two saved LR values on the stack, as they're backwards
+ // for what we need since the pop instruction has a pre-determined
+ // order for the registers.
+ // +--------+
+ // 0 | LR | Original return address
+ // +--------+
+ // 1 | LR | Stub address (start of stub)
+ // 2-5 | R3..R0 | Saved registers (we need to preserve all regs)
+ // 6-20 | D0..D7 | Saved VFP registers
+ // +--------+
+ //
+#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
+ // Restore VFP caller-saved registers.
+ "vldmia sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
+#endif
+ //
+ // We need to exchange the values in slots 0 and 1 so we can
+ // return to the address in slot 1 with the address in slot 0
+ // restored to the LR.
+ "ldr r0, [sp,#20]\n"
+ "ldr r1, [sp,#16]\n"
+ "str r1, [sp,#20]\n"
+ "str r0, [sp,#16]\n"
+ // Return to the (newly modified) stub to invoke the real function.
+ // The above twiddling of the saved return addresses allows us to
+ // deallocate everything, including the LR the stub saved, with two
+ // updating load instructions.
+ "ldmia sp!, {r0, r1, r2, r3, lr}\n"
+ "ldr pc, [sp], #4\n"
+ );
+#else // Not an ARM host
+ void ARMCompilationCallback() {
+ llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
+ }
+#endif
+}
+
+/// ARMCompilationCallbackC - This is the target-specific function invoked
+/// by the function stub when we did not know the real target of a call.
+/// This function must locate the start of the stub or call site and pass
+/// it into the JIT compiler function.
+extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
+ // Get the address of the compiled code for this function.
+ intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
+
+ // Rewrite the call target... so that we don't end up here every time we
+ // execute the call. We're replacing the first two instructions of the
+ // stub with:
+ // ldr pc, [pc,#-4]
+ // <addr>
+ if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
+ llvm_unreachable("ERROR: Unable to mark stub writable");
+ }
+ *(intptr_t *)StubAddr = 0xe51ff004; // ldr pc, [pc, #-4]
+ *(intptr_t *)(StubAddr+4) = NewVal;
+ if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
+ llvm_unreachable("ERROR: Unable to mark stub executable");
+ }
+}
+
+TargetJITInfo::LazyResolverFn
+ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
+ JITCompilerFunction = F;
+ return ARMCompilationCallback;
+}
+
+void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
+ JITCodeEmitter &JCE) {
+ uint8_t Buffer[4];
+ uint8_t *Cur = Buffer;
+ MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr);
+ void *PtrAddr = JCE.allocIndirectGV(
+ GV, Buffer, sizeof(Buffer), /*Alignment=*/4);
+ addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
+ return PtrAddr;
+}
+
+TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() {
+ // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a
+ // 4-byte address. See emitFunctionStub for details.
+ StubLayout Result = {16, 4};
+ return Result;
+}
+
+void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
+ JITCodeEmitter &JCE) {
+ void *Addr;
+ // If this is just a call to an external function, emit a branch instead of a
+ // call. The code is the same except for one bit of the last instruction.
+ if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
+ // Branch to the corresponding function addr.
+ if (IsPIC) {
+ // The stub is 16-byte size and 4-aligned.
+ intptr_t LazyPtr = getIndirectSymAddr(Fn);
+ if (!LazyPtr) {
+ // In PIC mode, the function stub is loading a lazy-ptr.
+ LazyPtr= (intptr_t)emitGlobalValueIndirectSym((const GlobalValue*)F, Fn, JCE);
+ DEBUG(if (F)
+ errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
+ << "] for GV '" << F->getName() << "'\n";
+ else
+ errs() << "JIT: Stub emitted at [" << LazyPtr
+ << "] for external function at '" << Fn << "'\n");
+ }
+ JCE.emitAlignment(4);
+ Addr = (void*)JCE.getCurrentPCValue();
+ if (!sys::Memory::setRangeWritable(Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub writable");
+ }
+ JCE.emitWordLE(0xe59fc004); // ldr ip, [pc, #+4]
+ JCE.emitWordLE(0xe08fc00c); // L_func$scv: add ip, pc, ip
+ JCE.emitWordLE(0xe59cf000); // ldr pc, [ip]
+ JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8)); // func - (L_func$scv+8)
+ sys::Memory::InvalidateInstructionCache(Addr, 16);
+ if (!sys::Memory::setRangeExecutable(Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub executable");
+ }
+ } else {
+ // The stub is 8-byte size and 4-aligned.
+ JCE.emitAlignment(4);
+ Addr = (void*)JCE.getCurrentPCValue();
+ if (!sys::Memory::setRangeWritable(Addr, 8)) {
+ llvm_unreachable("ERROR: Unable to mark stub writable");
+ }
+ JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
+ JCE.emitWordLE((intptr_t)Fn); // addr of function
+ sys::Memory::InvalidateInstructionCache(Addr, 8);
+ if (!sys::Memory::setRangeExecutable(Addr, 8)) {
+ llvm_unreachable("ERROR: Unable to mark stub executable");
+ }
+ }
+ } else {
+ // The compilation callback will overwrite the first two words of this
+ // stub with indirect branch instructions targeting the compiled code.
+ // This stub sets the return address to restart the stub, so that
+ // the new branch will be invoked when we come back.
+ //
+ // Branch and link to the compilation callback.
+ // The stub is 16-byte size and 4-byte aligned.
+ JCE.emitAlignment(4);
+ Addr = (void*)JCE.getCurrentPCValue();
+ if (!sys::Memory::setRangeWritable(Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub writable");
+ }
+ // Save LR so the callback can determine which stub called it.
+ // The compilation callback is responsible for popping this prior
+ // to returning.
+ JCE.emitWordLE(0xe92d4000); // push {lr}
+ // Set the return address to go back to the start of this stub.
+ JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
+ // Invoke the compilation callback.
+ JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
+ // The address of the compilation callback.
+ JCE.emitWordLE((intptr_t)ARMCompilationCallback);
+ sys::Memory::InvalidateInstructionCache(Addr, 16);
+ if (!sys::Memory::setRangeExecutable(Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub executable");
+ }
+ }
+
+ return Addr;
+}
+
+intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
+ ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
+ switch (RT) {
+ default:
+ return (intptr_t)(MR->getResultPointer());
+ case ARM::reloc_arm_pic_jt:
+ // Destination address - jump table base.
+ return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
+ case ARM::reloc_arm_jt_base:
+ // Jump table base address.
+ return getJumpTableBaseAddr(MR->getJumpTableIndex());
+ case ARM::reloc_arm_cp_entry:
+ case ARM::reloc_arm_vfp_cp_entry:
+ // Constant pool entry address.
+ return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
+ case ARM::reloc_arm_machine_cp_entry: {
+ ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
+ assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
+ "Can't handle this machine constant pool entry yet!");
+ intptr_t Addr = (intptr_t)(MR->getResultPointer());
+ Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
+ return Addr;
+ }
+ }
+}
+
+/// relocate - Before the JIT can run a block of code that has been emitted,
+/// it must rewrite the code to contain the actual addresses of any
+/// referenced global symbols.
+void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
+ unsigned NumRelocs, unsigned char* GOTBase) {
+ for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
+ void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
+ intptr_t ResultPtr = resolveRelocDestAddr(MR);
+ switch ((ARM::RelocationType)MR->getRelocationType()) {
+ case ARM::reloc_arm_cp_entry:
+ case ARM::reloc_arm_vfp_cp_entry:
+ case ARM::reloc_arm_relative: {
+ // It is necessary to calculate the correct PC relative value. We
+ // subtract the base addr from the target addr to form a byte offset.
+ ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
+ // If the result is positive, set bit U(23) to 1.
+ if (ResultPtr >= 0)
+ *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
+ else {
+ // Otherwise, obtain the absolute value and set bit U(23) to 0.
+ *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
+ ResultPtr = - ResultPtr;
+ }
+ // Set the immed value calculated.
+ // VFP immediate offset is multiplied by 4.
+ if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
+ ResultPtr = ResultPtr >> 2;
+ *((intptr_t*)RelocPos) |= ResultPtr;
+ // Set register Rn to PC (which is register 15 on all architectures).
+ // FIXME: This avoids the need for register info in the JIT class.
+ *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift;
+ break;
+ }
+ case ARM::reloc_arm_pic_jt:
+ case ARM::reloc_arm_machine_cp_entry:
+ case ARM::reloc_arm_absolute: {
+ // These addresses have already been resolved.
+ *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
+ break;
+ }
+ case ARM::reloc_arm_branch: {
+ // It is necessary to calculate the correct value of signed_immed_24
+ // field. We subtract the base addr from the target addr to form a
+ // byte offset, which must be inside the range -33554432 and +33554428.
+ // Then, we set the signed_immed_24 field of the instruction to bits
+ // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
+ ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
+ ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
+ assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
+ *((intptr_t*)RelocPos) |= ResultPtr;
+ break;
+ }
+ case ARM::reloc_arm_jt_base: {
+ // JT base - (instruction addr + 8)
+ ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
+ *((intptr_t*)RelocPos) |= ResultPtr;
+ break;
+ }
+ case ARM::reloc_arm_movw: {
+ ResultPtr = ResultPtr & 0xFFFF;
+ *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
+ *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
+ break;
+ }
+ case ARM::reloc_arm_movt: {
+ ResultPtr = (ResultPtr >> 16) & 0xFFFF;
+ *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
+ *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
+ break;
+ }
+ }
+ }
+}
+
+void ARMJITInfo::Initialize(const MachineFunction &MF, bool isPIC) {
+ const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ ConstPoolId2AddrMap.resize(AFI->getNumPICLabels());
+ JumpTableId2AddrMap.resize(AFI->getNumJumpTables());
+ IsPIC = isPIC;
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMJITInfo.h b/contrib/llvm/lib/Target/ARM/ARMJITInfo.h
new file mode 100644
index 0000000..27e2a20
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMJITInfo.h
@@ -0,0 +1,177 @@
+//===-- ARMJITInfo.h - ARM implementation of the JIT interface -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the ARMJITInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMJITINFO_H
+#define ARMJITINFO_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/Target/TargetJITInfo.h"
+
+namespace llvm {
+ class ARMTargetMachine;
+
+ class ARMJITInfo : public TargetJITInfo {
+ // ConstPoolId2AddrMap - A map from constant pool ids to the corresponding
+ // CONSTPOOL_ENTRY addresses.
+ SmallVector<intptr_t, 16> ConstPoolId2AddrMap;
+
+ // JumpTableId2AddrMap - A map from inline jumptable ids to the
+ // corresponding inline jump table bases.
+ SmallVector<intptr_t, 16> JumpTableId2AddrMap;
+
+ // PCLabelMap - A map from PC labels to addresses.
+ DenseMap<unsigned, intptr_t> PCLabelMap;
+
+ // Sym2IndirectSymMap - A map from symbol (GlobalValue and ExternalSymbol)
+ // addresses to their indirect symbol addresses.
+ DenseMap<void*, intptr_t> Sym2IndirectSymMap;
+
+ // IsPIC - True if the relocation model is PIC. This is used to determine
+ // how to codegen function stubs.
+ bool IsPIC;
+
+ public:
+ explicit ARMJITInfo() : IsPIC(false) { useGOT = false; }
+
+ /// replaceMachineCodeForFunction - Make it so that calling the function
+ /// whose machine code is at OLD turns into a call to NEW, perhaps by
+ /// overwriting OLD with a branch to NEW. This is used for self-modifying
+ /// code.
+ ///
+ void replaceMachineCodeForFunction(void *Old, void *New) override;
+
+ /// emitGlobalValueIndirectSym - Use the specified JITCodeEmitter object
+ /// to emit an indirect symbol which contains the address of the specified
+ /// ptr.
+ void *emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr,
+ JITCodeEmitter &JCE) override;
+
+ // getStubLayout - Returns the size and alignment of the largest call stub
+ // on ARM.
+ StubLayout getStubLayout() override;
+
+ /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a
+ /// small native function that simply calls the function at the specified
+ /// address.
+ void *emitFunctionStub(const Function* F, void *Fn,
+ JITCodeEmitter &JCE) override;
+
+ /// getLazyResolverFunction - Expose the lazy resolver to the JIT.
+ LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
+
+ /// relocate - Before the JIT can run a block of code that has been emitted,
+ /// it must rewrite the code to contain the actual addresses of any
+ /// referenced global symbols.
+ void relocate(void *Function, MachineRelocation *MR,
+ unsigned NumRelocs, unsigned char* GOTBase) override;
+
+ /// hasCustomConstantPool - Allows a target to specify that constant
+ /// pool address resolution is handled by the target.
+ bool hasCustomConstantPool() const override { return true; }
+
+ /// hasCustomJumpTables - Allows a target to specify that jumptables
+ /// are emitted by the target.
+ bool hasCustomJumpTables() const override { return true; }
+
+ /// allocateSeparateGVMemory - If true, globals should be placed in
+ /// separately allocated heap memory rather than in the same
+ /// code memory allocated by JITCodeEmitter.
+ bool allocateSeparateGVMemory() const override {
+#ifdef __APPLE__
+ return true;
+#else
+ return false;
+#endif
+ }
+
+ /// Initialize - Initialize internal stage for the function being JITted.
+ /// Resize constant pool ids to CONSTPOOL_ENTRY addresses map; resize
+ /// jump table ids to jump table bases map; remember if codegen relocation
+ /// model is PIC.
+ void Initialize(const MachineFunction &MF, bool isPIC);
+
+ /// getConstantPoolEntryAddr - The ARM target puts all constant
+ /// pool entries into constant islands. This returns the address of the
+ /// constant pool entry of the specified index.
+ intptr_t getConstantPoolEntryAddr(unsigned CPI) const {
+ assert(CPI < ConstPoolId2AddrMap.size());
+ return ConstPoolId2AddrMap[CPI];
+ }
+
+ /// addConstantPoolEntryAddr - Map a Constant Pool Index to the address
+ /// where its associated value is stored. When relocations are processed,
+ /// this value will be used to resolve references to the constant.
+ void addConstantPoolEntryAddr(unsigned CPI, intptr_t Addr) {
+ assert(CPI < ConstPoolId2AddrMap.size());
+ ConstPoolId2AddrMap[CPI] = Addr;
+ }
+
+ /// getJumpTableBaseAddr - The ARM target inline all jump tables within
+ /// text section of the function. This returns the address of the base of
+ /// the jump table of the specified index.
+ intptr_t getJumpTableBaseAddr(unsigned JTI) const {
+ assert(JTI < JumpTableId2AddrMap.size());
+ return JumpTableId2AddrMap[JTI];
+ }
+
+ /// addJumpTableBaseAddr - Map a jump table index to the address where
+ /// the corresponding inline jump table is emitted. When relocations are
+ /// processed, this value will be used to resolve references to the
+ /// jump table.
+ void addJumpTableBaseAddr(unsigned JTI, intptr_t Addr) {
+ assert(JTI < JumpTableId2AddrMap.size());
+ JumpTableId2AddrMap[JTI] = Addr;
+ }
+
+ /// getPCLabelAddr - Retrieve the address of the PC label of the
+ /// specified id.
+ intptr_t getPCLabelAddr(unsigned Id) const {
+ DenseMap<unsigned, intptr_t>::const_iterator I = PCLabelMap.find(Id);
+ assert(I != PCLabelMap.end());
+ return I->second;
+ }
+
+ /// addPCLabelAddr - Remember the address of the specified PC label.
+ void addPCLabelAddr(unsigned Id, intptr_t Addr) {
+ PCLabelMap.insert(std::make_pair(Id, Addr));
+ }
+
+ /// getIndirectSymAddr - Retrieve the address of the indirect symbol of the
+ /// specified symbol located at address. Returns 0 if the indirect symbol
+ /// has not been emitted.
+ intptr_t getIndirectSymAddr(void *Addr) const {
+ DenseMap<void*,intptr_t>::const_iterator I= Sym2IndirectSymMap.find(Addr);
+ if (I != Sym2IndirectSymMap.end())
+ return I->second;
+ return 0;
+ }
+
+ /// addIndirectSymAddr - Add a mapping from address of an emitted symbol to
+ /// its indirect symbol address.
+ void addIndirectSymAddr(void *SymAddr, intptr_t IndSymAddr) {
+ Sym2IndirectSymMap.insert(std::make_pair(SymAddr, IndSymAddr));
+ }
+
+ private:
+ /// resolveRelocDestAddr - Resolve the resulting address of the relocation
+ /// if it's not already solved. Constantpool entries must be resolved by
+ /// ARM target.
+ intptr_t resolveRelocDestAddr(MachineRelocation *MR) const;
+ };
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMLoadStoreOptimizer.cpp b/contrib/llvm/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
new file mode 100644
index 0000000..a03bcdb
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
@@ -0,0 +1,2220 @@
+//===-- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that performs load / store related peephole
+// optimizations. This pass should be run after register allocation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMISelLowering.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMSubtarget.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "Thumb1RegisterInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-ldst-opt"
+
+STATISTIC(NumLDMGened , "Number of ldm instructions generated");
+STATISTIC(NumSTMGened , "Number of stm instructions generated");
+STATISTIC(NumVLDMGened, "Number of vldm instructions generated");
+STATISTIC(NumVSTMGened, "Number of vstm instructions generated");
+STATISTIC(NumLdStMoved, "Number of load / store instructions moved");
+STATISTIC(NumLDRDFormed,"Number of ldrd created before allocation");
+STATISTIC(NumSTRDFormed,"Number of strd created before allocation");
+STATISTIC(NumLDRD2LDM, "Number of ldrd instructions turned back into ldm");
+STATISTIC(NumSTRD2STM, "Number of strd instructions turned back into stm");
+STATISTIC(NumLDRD2LDR, "Number of ldrd instructions turned back into ldr's");
+STATISTIC(NumSTRD2STR, "Number of strd instructions turned back into str's");
+
+/// ARMAllocLoadStoreOpt - Post- register allocation pass the combine
+/// load / store instructions to form ldm / stm instructions.
+
+namespace {
+ struct ARMLoadStoreOpt : public MachineFunctionPass {
+ static char ID;
+ ARMLoadStoreOpt() : MachineFunctionPass(ID) {}
+
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const ARMSubtarget *STI;
+ const TargetLowering *TL;
+ ARMFunctionInfo *AFI;
+ RegScavenger *RS;
+ bool isThumb1, isThumb2;
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "ARM load / store optimization pass";
+ }
+
+ private:
+ struct MemOpQueueEntry {
+ int Offset;
+ unsigned Reg;
+ bool isKill;
+ unsigned Position;
+ MachineBasicBlock::iterator MBBI;
+ bool Merged;
+ MemOpQueueEntry(int o, unsigned r, bool k, unsigned p,
+ MachineBasicBlock::iterator i)
+ : Offset(o), Reg(r), isKill(k), Position(p), MBBI(i), Merged(false) {}
+ };
+ typedef SmallVector<MemOpQueueEntry,8> MemOpQueue;
+ typedef MemOpQueue::iterator MemOpQueueIter;
+
+ void findUsesOfImpDef(SmallVectorImpl<MachineOperand *> &UsesOfImpDefs,
+ const MemOpQueue &MemOps, unsigned DefReg,
+ unsigned RangeBegin, unsigned RangeEnd);
+ void UpdateBaseRegUses(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ DebugLoc dl, unsigned Base, unsigned WordOffset,
+ ARMCC::CondCodes Pred, unsigned PredReg);
+ bool MergeOps(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ int Offset, unsigned Base, bool BaseKill, int Opcode,
+ ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch,
+ DebugLoc dl,
+ ArrayRef<std::pair<unsigned, bool> > Regs,
+ ArrayRef<unsigned> ImpDefs);
+ void MergeOpsUpdate(MachineBasicBlock &MBB,
+ MemOpQueue &MemOps,
+ unsigned memOpsBegin,
+ unsigned memOpsEnd,
+ unsigned insertAfter,
+ int Offset,
+ unsigned Base,
+ bool BaseKill,
+ int Opcode,
+ ARMCC::CondCodes Pred,
+ unsigned PredReg,
+ unsigned Scratch,
+ DebugLoc dl,
+ SmallVectorImpl<MachineBasicBlock::iterator> &Merges);
+ void MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex, unsigned Base,
+ int Opcode, unsigned Size,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ unsigned Scratch, MemOpQueue &MemOps,
+ SmallVectorImpl<MachineBasicBlock::iterator> &Merges);
+ void AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps);
+ bool FixInvalidRegPairOp(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI);
+ bool MergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const TargetInstrInfo *TII,
+ bool &Advance,
+ MachineBasicBlock::iterator &I);
+ bool MergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ bool &Advance,
+ MachineBasicBlock::iterator &I);
+ bool LoadStoreMultipleOpti(MachineBasicBlock &MBB);
+ bool MergeReturnIntoLDM(MachineBasicBlock &MBB);
+ };
+ char ARMLoadStoreOpt::ID = 0;
+}
+
+static int getLoadStoreMultipleOpcode(int Opcode, ARM_AM::AMSubMode Mode) {
+ switch (Opcode) {
+ default: llvm_unreachable("Unhandled opcode!");
+ case ARM::LDRi12:
+ ++NumLDMGened;
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::LDMIA;
+ case ARM_AM::da: return ARM::LDMDA;
+ case ARM_AM::db: return ARM::LDMDB;
+ case ARM_AM::ib: return ARM::LDMIB;
+ }
+ case ARM::STRi12:
+ ++NumSTMGened;
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::STMIA;
+ case ARM_AM::da: return ARM::STMDA;
+ case ARM_AM::db: return ARM::STMDB;
+ case ARM_AM::ib: return ARM::STMIB;
+ }
+ case ARM::tLDRi:
+ // tLDMIA is writeback-only - unless the base register is in the input
+ // reglist.
+ ++NumLDMGened;
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::tLDMIA;
+ }
+ case ARM::tSTRi:
+ // There is no non-writeback tSTMIA either.
+ ++NumSTMGened;
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::tSTMIA_UPD;
+ }
+ case ARM::t2LDRi8:
+ case ARM::t2LDRi12:
+ ++NumLDMGened;
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::t2LDMIA;
+ case ARM_AM::db: return ARM::t2LDMDB;
+ }
+ case ARM::t2STRi8:
+ case ARM::t2STRi12:
+ ++NumSTMGened;
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::t2STMIA;
+ case ARM_AM::db: return ARM::t2STMDB;
+ }
+ case ARM::VLDRS:
+ ++NumVLDMGened;
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::VLDMSIA;
+ case ARM_AM::db: return 0; // Only VLDMSDB_UPD exists.
+ }
+ case ARM::VSTRS:
+ ++NumVSTMGened;
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::VSTMSIA;
+ case ARM_AM::db: return 0; // Only VSTMSDB_UPD exists.
+ }
+ case ARM::VLDRD:
+ ++NumVLDMGened;
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::VLDMDIA;
+ case ARM_AM::db: return 0; // Only VLDMDDB_UPD exists.
+ }
+ case ARM::VSTRD:
+ ++NumVSTMGened;
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::VSTMDIA;
+ case ARM_AM::db: return 0; // Only VSTMDDB_UPD exists.
+ }
+ }
+}
+
+namespace llvm {
+ namespace ARM_AM {
+
+AMSubMode getLoadStoreMultipleSubMode(int Opcode) {
+ switch (Opcode) {
+ default: llvm_unreachable("Unhandled opcode!");
+ case ARM::LDMIA_RET:
+ case ARM::LDMIA:
+ case ARM::LDMIA_UPD:
+ case ARM::STMIA:
+ case ARM::STMIA_UPD:
+ case ARM::tLDMIA:
+ case ARM::tLDMIA_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::t2LDMIA_RET:
+ case ARM::t2LDMIA:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2STMIA:
+ case ARM::t2STMIA_UPD:
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VLDMDIA:
+ case ARM::VLDMDIA_UPD:
+ case ARM::VSTMDIA:
+ case ARM::VSTMDIA_UPD:
+ return ARM_AM::ia;
+
+ case ARM::LDMDA:
+ case ARM::LDMDA_UPD:
+ case ARM::STMDA:
+ case ARM::STMDA_UPD:
+ return ARM_AM::da;
+
+ case ARM::LDMDB:
+ case ARM::LDMDB_UPD:
+ case ARM::STMDB:
+ case ARM::STMDB_UPD:
+ case ARM::t2LDMDB:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMDB:
+ case ARM::t2STMDB_UPD:
+ case ARM::VLDMSDB_UPD:
+ case ARM::VSTMSDB_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VSTMDDB_UPD:
+ return ARM_AM::db;
+
+ case ARM::LDMIB:
+ case ARM::LDMIB_UPD:
+ case ARM::STMIB:
+ case ARM::STMIB_UPD:
+ return ARM_AM::ib;
+ }
+}
+
+ } // end namespace ARM_AM
+} // end namespace llvm
+
+static bool isT1i32Load(unsigned Opc) {
+ return Opc == ARM::tLDRi;
+}
+
+static bool isT2i32Load(unsigned Opc) {
+ return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8;
+}
+
+static bool isi32Load(unsigned Opc) {
+ return Opc == ARM::LDRi12 || isT1i32Load(Opc) || isT2i32Load(Opc) ;
+}
+
+static bool isT1i32Store(unsigned Opc) {
+ return Opc == ARM::tSTRi;
+}
+
+static bool isT2i32Store(unsigned Opc) {
+ return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8;
+}
+
+static bool isi32Store(unsigned Opc) {
+ return Opc == ARM::STRi12 || isT1i32Store(Opc) || isT2i32Store(Opc);
+}
+
+static unsigned getImmScale(unsigned Opc) {
+ switch (Opc) {
+ default: llvm_unreachable("Unhandled opcode!");
+ case ARM::tLDRi:
+ case ARM::tSTRi:
+ return 1;
+ case ARM::tLDRHi:
+ case ARM::tSTRHi:
+ return 2;
+ case ARM::tLDRBi:
+ case ARM::tSTRBi:
+ return 4;
+ }
+}
+
+/// Update future uses of the base register with the offset introduced
+/// due to writeback. This function only works on Thumb1.
+void
+ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ DebugLoc dl, unsigned Base,
+ unsigned WordOffset,
+ ARMCC::CondCodes Pred, unsigned PredReg) {
+ assert(isThumb1 && "Can only update base register uses for Thumb1!");
+
+ // Start updating any instructions with immediate offsets. Insert a sub before
+ // the first non-updateable instruction (if any).
+ for (; MBBI != MBB.end(); ++MBBI) {
+ if (MBBI->readsRegister(Base)) {
+ unsigned Opc = MBBI->getOpcode();
+ int Offset;
+ bool InsertSub = false;
+
+ if (Opc == ARM::tLDRi || Opc == ARM::tSTRi ||
+ Opc == ARM::tLDRHi || Opc == ARM::tSTRHi ||
+ Opc == ARM::tLDRBi || Opc == ARM::tSTRBi) {
+ // Loads and stores with immediate offsets can be updated, but only if
+ // the new offset isn't negative.
+ // The MachineOperand containing the offset immediate is the last one
+ // before predicates.
+ MachineOperand &MO =
+ MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
+ // The offsets are scaled by 1, 2 or 4 depending on the Opcode
+ Offset = MO.getImm() - WordOffset * getImmScale(Opc);
+ if (Offset >= 0)
+ MO.setImm(Offset);
+ else
+ InsertSub = true;
+
+ } else if (Opc == ARM::tSUBi8 || Opc == ARM::tADDi8) {
+ // SUB/ADD using this register. Merge it with the update.
+ // If the merged offset is too large, insert a new sub instead.
+ MachineOperand &MO =
+ MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
+ Offset = (Opc == ARM::tSUBi8) ?
+ MO.getImm() + WordOffset * 4 :
+ MO.getImm() - WordOffset * 4 ;
+ if (TL->isLegalAddImmediate(Offset)) {
+ MO.setImm(Offset);
+ // The base register has now been reset, so exit early.
+ return;
+ } else {
+ InsertSub = true;
+ }
+
+ } else {
+ // Can't update the instruction.
+ InsertSub = true;
+ }
+
+ if (InsertSub) {
+ // An instruction above couldn't be updated, so insert a sub.
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII->get(ARM::tSUBi8), Base))
+ .addReg(Base, getKillRegState(true)).addImm(WordOffset * 4)
+ .addImm(Pred).addReg(PredReg);
+ return;
+ }
+ }
+
+ if (MBBI->killsRegister(Base))
+ // Register got killed. Stop updating.
+ return;
+ }
+
+ // The end of the block was reached. This means register liveness escapes the
+ // block, and it's necessary to insert a sub before the last instruction.
+ if (MBB.succ_size() > 0)
+ // But only insert the SUB if there is actually a successor block.
+ // FIXME: Check more carefully if register is live at this point, e.g. by
+ // also examining the successor block's register liveness information.
+ AddDefaultT1CC(BuildMI(MBB, --MBBI, dl, TII->get(ARM::tSUBi8), Base))
+ .addReg(Base, getKillRegState(true)).addImm(WordOffset * 4)
+ .addImm(Pred).addReg(PredReg);
+}
+
+/// MergeOps - Create and insert a LDM or STM with Base as base register and
+/// registers in Regs as the register operands that would be loaded / stored.
+/// It returns true if the transformation is done.
+bool
+ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ int Offset, unsigned Base, bool BaseKill,
+ int Opcode, ARMCC::CondCodes Pred,
+ unsigned PredReg, unsigned Scratch, DebugLoc dl,
+ ArrayRef<std::pair<unsigned, bool> > Regs,
+ ArrayRef<unsigned> ImpDefs) {
+ // Only a single register to load / store. Don't bother.
+ unsigned NumRegs = Regs.size();
+ if (NumRegs <= 1)
+ return false;
+
+ ARM_AM::AMSubMode Mode = ARM_AM::ia;
+ // VFP and Thumb2 do not support IB or DA modes. Thumb1 only supports IA.
+ bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
+ bool haveIBAndDA = isNotVFP && !isThumb2 && !isThumb1;
+
+ if (Offset == 4 && haveIBAndDA) {
+ Mode = ARM_AM::ib;
+ } else if (Offset == -4 * (int)NumRegs + 4 && haveIBAndDA) {
+ Mode = ARM_AM::da;
+ } else if (Offset == -4 * (int)NumRegs && isNotVFP && !isThumb1) {
+ // VLDM/VSTM do not support DB mode without also updating the base reg.
+ Mode = ARM_AM::db;
+ } else if (Offset != 0) {
+ // Check if this is a supported opcode before inserting instructions to
+ // calculate a new base register.
+ if (!getLoadStoreMultipleOpcode(Opcode, Mode)) return false;
+
+ // If starting offset isn't zero, insert a MI to materialize a new base.
+ // But only do so if it is cost effective, i.e. merging more than two
+ // loads / stores.
+ if (NumRegs <= 2)
+ return false;
+
+ unsigned NewBase;
+ if (isi32Load(Opcode)) {
+ // If it is a load, then just use one of the destination register to
+ // use as the new base.
+ NewBase = Regs[NumRegs-1].first;
+ } else {
+ // Use the scratch register to use as a new base.
+ NewBase = Scratch;
+ if (NewBase == 0)
+ return false;
+ }
+
+ int BaseOpc =
+ isThumb2 ? ARM::t2ADDri :
+ isThumb1 ? ARM::tADDi8 : ARM::ADDri;
+
+ if (Offset < 0) {
+ BaseOpc =
+ isThumb2 ? ARM::t2SUBri :
+ isThumb1 ? ARM::tSUBi8 : ARM::SUBri;
+ Offset = - Offset;
+ }
+
+ if (!TL->isLegalAddImmediate(Offset))
+ // FIXME: Try add with register operand?
+ return false; // Probably not worth it then.
+
+ if (isThumb1) {
+ if (Base != NewBase) {
+ // Need to insert a MOV to the new base first.
+ // FIXME: If the immediate fits in 3 bits, use ADD instead.
+ BuildMI(MBB, MBBI, dl, TII->get(ARM::tMOVr), NewBase)
+ .addReg(Base, getKillRegState(BaseKill))
+ .addImm(Pred).addReg(PredReg);
+ }
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase))
+ .addReg(NewBase, getKillRegState(true)).addImm(Offset)
+ .addImm(Pred).addReg(PredReg);
+ } else {
+ BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase)
+ .addReg(Base, getKillRegState(BaseKill)).addImm(Offset)
+ .addImm(Pred).addReg(PredReg).addReg(0);
+ }
+
+ Base = NewBase;
+ BaseKill = true; // New base is always killed straight away.
+ }
+
+ bool isDef = (isi32Load(Opcode) || Opcode == ARM::VLDRS ||
+ Opcode == ARM::VLDRD);
+
+ // Get LS multiple opcode. Note that for Thumb1 this might be an opcode with
+ // base register writeback.
+ Opcode = getLoadStoreMultipleOpcode(Opcode, Mode);
+ if (!Opcode) return false;
+
+ bool Writeback = isThumb1; // Thumb1 LDM/STM have base reg writeback.
+
+ // Exception: If the base register is in the input reglist, Thumb1 LDM is
+ // non-writeback. Check for this.
+ if (Opcode == ARM::tLDMIA && isThumb1)
+ for (unsigned I = 0; I < NumRegs; ++I)
+ if (Base == Regs[I].first) {
+ Writeback = false;
+ break;
+ }
+
+ MachineInstrBuilder MIB;
+
+ if (Writeback) {
+ if (Opcode == ARM::tLDMIA)
+ // Update tLDMIA with writeback if necessary.
+ Opcode = ARM::tLDMIA_UPD;
+
+ MIB = BuildMI(MBB, MBBI, dl, TII->get(Opcode));
+
+ // Thumb1: we might need to set base writeback when building the MI.
+ MIB.addReg(Base, getDefRegState(true))
+ .addReg(Base, getKillRegState(BaseKill));
+
+ // The base isn't dead after a merged instruction with writeback. Update
+ // future uses of the base with the added offset (if possible), or reset
+ // the base register as necessary.
+ if (!BaseKill)
+ UpdateBaseRegUses(MBB, MBBI, dl, Base, NumRegs, Pred, PredReg);
+ } else {
+ // No writeback, simply build the MachineInstr.
+ MIB = BuildMI(MBB, MBBI, dl, TII->get(Opcode));
+ MIB.addReg(Base, getKillRegState(BaseKill));
+ }
+
+ MIB.addImm(Pred).addReg(PredReg);
+
+ for (unsigned i = 0; i != NumRegs; ++i)
+ MIB = MIB.addReg(Regs[i].first, getDefRegState(isDef)
+ | getKillRegState(Regs[i].second));
+
+ // Add implicit defs for super-registers.
+ for (unsigned i = 0, e = ImpDefs.size(); i != e; ++i)
+ MIB.addReg(ImpDefs[i], RegState::ImplicitDefine);
+
+ return true;
+}
+
+/// \brief Find all instructions using a given imp-def within a range.
+///
+/// We are trying to combine a range of instructions, one of which (located at
+/// position RangeBegin) implicitly defines a register. The final LDM/STM will
+/// be placed at RangeEnd, and so any uses of this definition between RangeStart
+/// and RangeEnd must be modified to use an undefined value.
+///
+/// The live range continues until we find a second definition or one of the
+/// uses we find is a kill. Unfortunately MemOps is not sorted by Position, so
+/// we must consider all uses and decide which are relevant in a second pass.
+void ARMLoadStoreOpt::findUsesOfImpDef(
+ SmallVectorImpl<MachineOperand *> &UsesOfImpDefs, const MemOpQueue &MemOps,
+ unsigned DefReg, unsigned RangeBegin, unsigned RangeEnd) {
+ std::map<unsigned, MachineOperand *> Uses;
+ unsigned LastLivePos = RangeEnd;
+
+ // First we find all uses of this register with Position between RangeBegin
+ // and RangeEnd, any or all of these could be uses of a definition at
+ // RangeBegin. We also record the latest position a definition at RangeBegin
+ // would be considered live.
+ for (unsigned i = 0; i < MemOps.size(); ++i) {
+ MachineInstr &MI = *MemOps[i].MBBI;
+ unsigned MIPosition = MemOps[i].Position;
+ if (MIPosition <= RangeBegin || MIPosition > RangeEnd)
+ continue;
+
+ // If this instruction defines the register, then any later use will be of
+ // that definition rather than ours.
+ if (MI.definesRegister(DefReg))
+ LastLivePos = std::min(LastLivePos, MIPosition);
+
+ MachineOperand *UseOp = MI.findRegisterUseOperand(DefReg);
+ if (!UseOp)
+ continue;
+
+ // If this instruction kills the register then (assuming liveness is
+ // correct when we start) we don't need to think about anything after here.
+ if (UseOp->isKill())
+ LastLivePos = std::min(LastLivePos, MIPosition);
+
+ Uses[MIPosition] = UseOp;
+ }
+
+ // Now we traverse the list of all uses, and append the ones that actually use
+ // our definition to the requested list.
+ for (std::map<unsigned, MachineOperand *>::iterator I = Uses.begin(),
+ E = Uses.end();
+ I != E; ++I) {
+ // List is sorted by position so once we've found one out of range there
+ // will be no more to consider.
+ if (I->first > LastLivePos)
+ break;
+ UsesOfImpDefs.push_back(I->second);
+ }
+}
+
+// MergeOpsUpdate - call MergeOps and update MemOps and merges accordingly on
+// success.
+void ARMLoadStoreOpt::MergeOpsUpdate(MachineBasicBlock &MBB,
+ MemOpQueue &memOps,
+ unsigned memOpsBegin, unsigned memOpsEnd,
+ unsigned insertAfter, int Offset,
+ unsigned Base, bool BaseKill,
+ int Opcode,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ unsigned Scratch,
+ DebugLoc dl,
+ SmallVectorImpl<MachineBasicBlock::iterator> &Merges) {
+ // First calculate which of the registers should be killed by the merged
+ // instruction.
+ const unsigned insertPos = memOps[insertAfter].Position;
+ SmallSet<unsigned, 4> KilledRegs;
+ DenseMap<unsigned, unsigned> Killer;
+ for (unsigned i = 0, e = memOps.size(); i != e; ++i) {
+ if (i == memOpsBegin) {
+ i = memOpsEnd;
+ if (i == e)
+ break;
+ }
+ if (memOps[i].Position < insertPos && memOps[i].isKill) {
+ unsigned Reg = memOps[i].Reg;
+ KilledRegs.insert(Reg);
+ Killer[Reg] = i;
+ }
+ }
+
+ SmallVector<std::pair<unsigned, bool>, 8> Regs;
+ SmallVector<unsigned, 8> ImpDefs;
+ SmallVector<MachineOperand *, 8> UsesOfImpDefs;
+ for (unsigned i = memOpsBegin; i < memOpsEnd; ++i) {
+ unsigned Reg = memOps[i].Reg;
+ // If we are inserting the merged operation after an operation that
+ // uses the same register, make sure to transfer any kill flag.
+ bool isKill = memOps[i].isKill || KilledRegs.count(Reg);
+ Regs.push_back(std::make_pair(Reg, isKill));
+
+ // Collect any implicit defs of super-registers. They must be preserved.
+ for (MIOperands MO(memOps[i].MBBI); MO.isValid(); ++MO) {
+ if (!MO->isReg() || !MO->isDef() || !MO->isImplicit() || MO->isDead())
+ continue;
+ unsigned DefReg = MO->getReg();
+ if (std::find(ImpDefs.begin(), ImpDefs.end(), DefReg) == ImpDefs.end())
+ ImpDefs.push_back(DefReg);
+
+ // There may be other uses of the definition between this instruction and
+ // the eventual LDM/STM position. These should be marked undef if the
+ // merge takes place.
+ findUsesOfImpDef(UsesOfImpDefs, memOps, DefReg, memOps[i].Position,
+ insertPos);
+ }
+ }
+
+ // Try to do the merge.
+ MachineBasicBlock::iterator Loc = memOps[insertAfter].MBBI;
+ ++Loc;
+ if (!MergeOps(MBB, Loc, Offset, Base, BaseKill, Opcode,
+ Pred, PredReg, Scratch, dl, Regs, ImpDefs))
+ return;
+
+ // Merge succeeded, update records.
+ Merges.push_back(std::prev(Loc));
+
+ // In gathering loads together, we may have moved the imp-def of a register
+ // past one of its uses. This is OK, since we know better than the rest of
+ // LLVM what's OK with ARM loads and stores; but we still have to adjust the
+ // affected uses.
+ for (SmallVectorImpl<MachineOperand *>::iterator I = UsesOfImpDefs.begin(),
+ E = UsesOfImpDefs.end();
+ I != E; ++I)
+ (*I)->setIsUndef();
+
+ for (unsigned i = memOpsBegin; i < memOpsEnd; ++i) {
+ // Remove kill flags from any memops that come before insertPos.
+ if (Regs[i-memOpsBegin].second) {
+ unsigned Reg = Regs[i-memOpsBegin].first;
+ if (KilledRegs.count(Reg)) {
+ unsigned j = Killer[Reg];
+ int Idx = memOps[j].MBBI->findRegisterUseOperandIdx(Reg, true);
+ assert(Idx >= 0 && "Cannot find killing operand");
+ memOps[j].MBBI->getOperand(Idx).setIsKill(false);
+ memOps[j].isKill = false;
+ }
+ memOps[i].isKill = true;
+ }
+ MBB.erase(memOps[i].MBBI);
+ // Update this memop to refer to the merged instruction.
+ // We may need to move kill flags again.
+ memOps[i].Merged = true;
+ memOps[i].MBBI = Merges.back();
+ memOps[i].Position = insertPos;
+ }
+}
+
+/// MergeLDR_STR - Merge a number of load / store instructions into one or more
+/// load / store multiple instructions.
+void
+ARMLoadStoreOpt::MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex,
+ unsigned Base, int Opcode, unsigned Size,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ unsigned Scratch, MemOpQueue &MemOps,
+ SmallVectorImpl<MachineBasicBlock::iterator> &Merges) {
+ bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
+ int Offset = MemOps[SIndex].Offset;
+ int SOffset = Offset;
+ unsigned insertAfter = SIndex;
+ MachineBasicBlock::iterator Loc = MemOps[SIndex].MBBI;
+ DebugLoc dl = Loc->getDebugLoc();
+ const MachineOperand &PMO = Loc->getOperand(0);
+ unsigned PReg = PMO.getReg();
+ unsigned PRegNum = PMO.isUndef() ? UINT_MAX : TRI->getEncodingValue(PReg);
+ unsigned Count = 1;
+ unsigned Limit = ~0U;
+
+ // vldm / vstm limit are 32 for S variants, 16 for D variants.
+
+ switch (Opcode) {
+ default: break;
+ case ARM::VSTRS:
+ Limit = 32;
+ break;
+ case ARM::VSTRD:
+ Limit = 16;
+ break;
+ case ARM::VLDRD:
+ Limit = 16;
+ break;
+ case ARM::VLDRS:
+ Limit = 32;
+ break;
+ }
+
+ for (unsigned i = SIndex+1, e = MemOps.size(); i != e; ++i) {
+ int NewOffset = MemOps[i].Offset;
+ const MachineOperand &MO = MemOps[i].MBBI->getOperand(0);
+ unsigned Reg = MO.getReg();
+ unsigned RegNum = MO.isUndef() ? UINT_MAX : TRI->getEncodingValue(Reg);
+ // Register numbers must be in ascending order. For VFP / NEON load and
+ // store multiples, the registers must also be consecutive and within the
+ // limit on the number of registers per instruction.
+ if (Reg != ARM::SP &&
+ NewOffset == Offset + (int)Size &&
+ ((isNotVFP && RegNum > PRegNum) ||
+ ((Count < Limit) && RegNum == PRegNum+1)) &&
+ // On Swift we don't want vldm/vstm to start with a odd register num
+ // because Q register unaligned vldm/vstm need more uops.
+ (!STI->isSwift() || isNotVFP || Count != 1 || !(PRegNum & 0x1))) {
+ Offset += Size;
+ PRegNum = RegNum;
+ ++Count;
+ } else {
+ // Can't merge this in. Try merge the earlier ones first.
+ MergeOpsUpdate(MBB, MemOps, SIndex, i, insertAfter, SOffset,
+ Base, false, Opcode, Pred, PredReg, Scratch, dl, Merges);
+ MergeLDR_STR(MBB, i, Base, Opcode, Size, Pred, PredReg, Scratch,
+ MemOps, Merges);
+ return;
+ }
+
+ if (MemOps[i].Position > MemOps[insertAfter].Position)
+ insertAfter = i;
+ }
+
+ bool BaseKill = Loc->findRegisterUseOperandIdx(Base, true) != -1;
+ MergeOpsUpdate(MBB, MemOps, SIndex, MemOps.size(), insertAfter, SOffset,
+ Base, BaseKill, Opcode, Pred, PredReg, Scratch, dl, Merges);
+}
+
+static bool definesCPSR(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (MO.isDef() && MO.getReg() == ARM::CPSR && !MO.isDead())
+ // If the instruction has live CPSR def, then it's not safe to fold it
+ // into load / store.
+ return true;
+ }
+
+ return false;
+}
+
+static bool isMatchingDecrement(MachineInstr *MI, unsigned Base,
+ unsigned Bytes, unsigned Limit,
+ ARMCC::CondCodes Pred, unsigned PredReg) {
+ unsigned MyPredReg = 0;
+ if (!MI)
+ return false;
+
+ bool CheckCPSRDef = false;
+ switch (MI->getOpcode()) {
+ default: return false;
+ case ARM::tSUBi8:
+ case ARM::t2SUBri:
+ case ARM::SUBri:
+ CheckCPSRDef = true;
+ // fallthrough
+ case ARM::tSUBspi:
+ break;
+ }
+
+ // Make sure the offset fits in 8 bits.
+ if (Bytes == 0 || (Limit && Bytes >= Limit))
+ return false;
+
+ unsigned Scale = (MI->getOpcode() == ARM::tSUBspi ||
+ MI->getOpcode() == ARM::tSUBi8) ? 4 : 1; // FIXME
+ if (!(MI->getOperand(0).getReg() == Base &&
+ MI->getOperand(1).getReg() == Base &&
+ (MI->getOperand(2).getImm() * Scale) == Bytes &&
+ getInstrPredicate(MI, MyPredReg) == Pred &&
+ MyPredReg == PredReg))
+ return false;
+
+ return CheckCPSRDef ? !definesCPSR(MI) : true;
+}
+
+static bool isMatchingIncrement(MachineInstr *MI, unsigned Base,
+ unsigned Bytes, unsigned Limit,
+ ARMCC::CondCodes Pred, unsigned PredReg) {
+ unsigned MyPredReg = 0;
+ if (!MI)
+ return false;
+
+ bool CheckCPSRDef = false;
+ switch (MI->getOpcode()) {
+ default: return false;
+ case ARM::tADDi8:
+ case ARM::t2ADDri:
+ case ARM::ADDri:
+ CheckCPSRDef = true;
+ // fallthrough
+ case ARM::tADDspi:
+ break;
+ }
+
+ if (Bytes == 0 || (Limit && Bytes >= Limit))
+ // Make sure the offset fits in 8 bits.
+ return false;
+
+ unsigned Scale = (MI->getOpcode() == ARM::tADDspi ||
+ MI->getOpcode() == ARM::tADDi8) ? 4 : 1; // FIXME
+ if (!(MI->getOperand(0).getReg() == Base &&
+ MI->getOperand(1).getReg() == Base &&
+ (MI->getOperand(2).getImm() * Scale) == Bytes &&
+ getInstrPredicate(MI, MyPredReg) == Pred &&
+ MyPredReg == PredReg))
+ return false;
+
+ return CheckCPSRDef ? !definesCPSR(MI) : true;
+}
+
+static inline unsigned getLSMultipleTransferSize(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default: return 0;
+ case ARM::LDRi12:
+ case ARM::STRi12:
+ case ARM::tLDRi:
+ case ARM::tSTRi:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRi12:
+ case ARM::t2STRi8:
+ case ARM::t2STRi12:
+ case ARM::VLDRS:
+ case ARM::VSTRS:
+ return 4;
+ case ARM::VLDRD:
+ case ARM::VSTRD:
+ return 8;
+ case ARM::LDMIA:
+ case ARM::LDMDA:
+ case ARM::LDMDB:
+ case ARM::LDMIB:
+ case ARM::STMIA:
+ case ARM::STMDA:
+ case ARM::STMDB:
+ case ARM::STMIB:
+ case ARM::tLDMIA:
+ case ARM::tLDMIA_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB:
+ case ARM::t2STMIA:
+ case ARM::t2STMDB:
+ case ARM::VLDMSIA:
+ case ARM::VSTMSIA:
+ return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 4;
+ case ARM::VLDMDIA:
+ case ARM::VSTMDIA:
+ return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 8;
+ }
+}
+
+static unsigned getUpdatingLSMultipleOpcode(unsigned Opc,
+ ARM_AM::AMSubMode Mode) {
+ switch (Opc) {
+ default: llvm_unreachable("Unhandled opcode!");
+ case ARM::LDMIA:
+ case ARM::LDMDA:
+ case ARM::LDMDB:
+ case ARM::LDMIB:
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::LDMIA_UPD;
+ case ARM_AM::ib: return ARM::LDMIB_UPD;
+ case ARM_AM::da: return ARM::LDMDA_UPD;
+ case ARM_AM::db: return ARM::LDMDB_UPD;
+ }
+ case ARM::STMIA:
+ case ARM::STMDA:
+ case ARM::STMDB:
+ case ARM::STMIB:
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::STMIA_UPD;
+ case ARM_AM::ib: return ARM::STMIB_UPD;
+ case ARM_AM::da: return ARM::STMDA_UPD;
+ case ARM_AM::db: return ARM::STMDB_UPD;
+ }
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB:
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::t2LDMIA_UPD;
+ case ARM_AM::db: return ARM::t2LDMDB_UPD;
+ }
+ case ARM::t2STMIA:
+ case ARM::t2STMDB:
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::t2STMIA_UPD;
+ case ARM_AM::db: return ARM::t2STMDB_UPD;
+ }
+ case ARM::VLDMSIA:
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::VLDMSIA_UPD;
+ case ARM_AM::db: return ARM::VLDMSDB_UPD;
+ }
+ case ARM::VLDMDIA:
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::VLDMDIA_UPD;
+ case ARM_AM::db: return ARM::VLDMDDB_UPD;
+ }
+ case ARM::VSTMSIA:
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::VSTMSIA_UPD;
+ case ARM_AM::db: return ARM::VSTMSDB_UPD;
+ }
+ case ARM::VSTMDIA:
+ switch (Mode) {
+ default: llvm_unreachable("Unhandled submode!");
+ case ARM_AM::ia: return ARM::VSTMDIA_UPD;
+ case ARM_AM::db: return ARM::VSTMDDB_UPD;
+ }
+ }
+}
+
+/// MergeBaseUpdateLSMultiple - Fold proceeding/trailing inc/dec of base
+/// register into the LDM/STM/VLDM{D|S}/VSTM{D|S} op when possible:
+///
+/// stmia rn, <ra, rb, rc>
+/// rn := rn + 4 * 3;
+/// =>
+/// stmia rn!, <ra, rb, rc>
+///
+/// rn := rn - 4 * 3;
+/// ldmia rn, <ra, rb, rc>
+/// =>
+/// ldmdb rn!, <ra, rb, rc>
+bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ bool &Advance,
+ MachineBasicBlock::iterator &I) {
+ // Thumb1 is already using updating loads/stores.
+ if (isThumb1) return false;
+
+ MachineInstr *MI = MBBI;
+ unsigned Base = MI->getOperand(0).getReg();
+ bool BaseKill = MI->getOperand(0).isKill();
+ unsigned Bytes = getLSMultipleTransferSize(MI);
+ unsigned PredReg = 0;
+ ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
+ int Opcode = MI->getOpcode();
+ DebugLoc dl = MI->getDebugLoc();
+
+ // Can't use an updating ld/st if the base register is also a dest
+ // register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined.
+ for (unsigned i = 2, e = MI->getNumOperands(); i != e; ++i)
+ if (MI->getOperand(i).getReg() == Base)
+ return false;
+
+ bool DoMerge = false;
+ ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(Opcode);
+
+ // Try merging with the previous instruction.
+ MachineBasicBlock::iterator BeginMBBI = MBB.begin();
+ if (MBBI != BeginMBBI) {
+ MachineBasicBlock::iterator PrevMBBI = std::prev(MBBI);
+ while (PrevMBBI != BeginMBBI && PrevMBBI->isDebugValue())
+ --PrevMBBI;
+ if (Mode == ARM_AM::ia &&
+ isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) {
+ Mode = ARM_AM::db;
+ DoMerge = true;
+ } else if (Mode == ARM_AM::ib &&
+ isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) {
+ Mode = ARM_AM::da;
+ DoMerge = true;
+ }
+ if (DoMerge)
+ MBB.erase(PrevMBBI);
+ }
+
+ // Try merging with the next instruction.
+ MachineBasicBlock::iterator EndMBBI = MBB.end();
+ if (!DoMerge && MBBI != EndMBBI) {
+ MachineBasicBlock::iterator NextMBBI = std::next(MBBI);
+ while (NextMBBI != EndMBBI && NextMBBI->isDebugValue())
+ ++NextMBBI;
+ if ((Mode == ARM_AM::ia || Mode == ARM_AM::ib) &&
+ isMatchingIncrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) {
+ DoMerge = true;
+ } else if ((Mode == ARM_AM::da || Mode == ARM_AM::db) &&
+ isMatchingDecrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) {
+ DoMerge = true;
+ }
+ if (DoMerge) {
+ if (NextMBBI == I) {
+ Advance = true;
+ ++I;
+ }
+ MBB.erase(NextMBBI);
+ }
+ }
+
+ if (!DoMerge)
+ return false;
+
+ unsigned NewOpc = getUpdatingLSMultipleOpcode(Opcode, Mode);
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII->get(NewOpc))
+ .addReg(Base, getDefRegState(true)) // WB base register
+ .addReg(Base, getKillRegState(BaseKill))
+ .addImm(Pred).addReg(PredReg);
+
+ // Transfer the rest of operands.
+ for (unsigned OpNum = 3, e = MI->getNumOperands(); OpNum != e; ++OpNum)
+ MIB.addOperand(MI->getOperand(OpNum));
+
+ // Transfer memoperands.
+ MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+
+ MBB.erase(MBBI);
+ return true;
+}
+
+static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc,
+ ARM_AM::AddrOpc Mode) {
+ switch (Opc) {
+ case ARM::LDRi12:
+ return ARM::LDR_PRE_IMM;
+ case ARM::STRi12:
+ return ARM::STR_PRE_IMM;
+ case ARM::VLDRS:
+ return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
+ case ARM::VLDRD:
+ return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
+ case ARM::VSTRS:
+ return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
+ case ARM::VSTRD:
+ return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
+ case ARM::t2LDRi8:
+ case ARM::t2LDRi12:
+ return ARM::t2LDR_PRE;
+ case ARM::t2STRi8:
+ case ARM::t2STRi12:
+ return ARM::t2STR_PRE;
+ default: llvm_unreachable("Unhandled opcode!");
+ }
+}
+
+static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc,
+ ARM_AM::AddrOpc Mode) {
+ switch (Opc) {
+ case ARM::LDRi12:
+ return ARM::LDR_POST_IMM;
+ case ARM::STRi12:
+ return ARM::STR_POST_IMM;
+ case ARM::VLDRS:
+ return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
+ case ARM::VLDRD:
+ return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
+ case ARM::VSTRS:
+ return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
+ case ARM::VSTRD:
+ return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
+ case ARM::t2LDRi8:
+ case ARM::t2LDRi12:
+ return ARM::t2LDR_POST;
+ case ARM::t2STRi8:
+ case ARM::t2STRi12:
+ return ARM::t2STR_POST;
+ default: llvm_unreachable("Unhandled opcode!");
+ }
+}
+
+/// MergeBaseUpdateLoadStore - Fold proceeding/trailing inc/dec of base
+/// register into the LDR/STR/FLD{D|S}/FST{D|S} op when possible:
+bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const TargetInstrInfo *TII,
+ bool &Advance,
+ MachineBasicBlock::iterator &I) {
+ // Thumb1 doesn't have updating LDR/STR.
+ // FIXME: Use LDM/STM with single register instead.
+ if (isThumb1) return false;
+
+ MachineInstr *MI = MBBI;
+ unsigned Base = MI->getOperand(1).getReg();
+ bool BaseKill = MI->getOperand(1).isKill();
+ unsigned Bytes = getLSMultipleTransferSize(MI);
+ int Opcode = MI->getOpcode();
+ DebugLoc dl = MI->getDebugLoc();
+ bool isAM5 = (Opcode == ARM::VLDRD || Opcode == ARM::VLDRS ||
+ Opcode == ARM::VSTRD || Opcode == ARM::VSTRS);
+ bool isAM2 = (Opcode == ARM::LDRi12 || Opcode == ARM::STRi12);
+ if (isi32Load(Opcode) || isi32Store(Opcode))
+ if (MI->getOperand(2).getImm() != 0)
+ return false;
+ if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0)
+ return false;
+
+ bool isLd = isi32Load(Opcode) || Opcode == ARM::VLDRS || Opcode == ARM::VLDRD;
+ // Can't do the merge if the destination register is the same as the would-be
+ // writeback register.
+ if (MI->getOperand(0).getReg() == Base)
+ return false;
+
+ unsigned PredReg = 0;
+ ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
+ bool DoMerge = false;
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ unsigned NewOpc = 0;
+ // AM2 - 12 bits, thumb2 - 8 bits.
+ unsigned Limit = isAM5 ? 0 : (isAM2 ? 0x1000 : 0x100);
+
+ // Try merging with the previous instruction.
+ MachineBasicBlock::iterator BeginMBBI = MBB.begin();
+ if (MBBI != BeginMBBI) {
+ MachineBasicBlock::iterator PrevMBBI = std::prev(MBBI);
+ while (PrevMBBI != BeginMBBI && PrevMBBI->isDebugValue())
+ --PrevMBBI;
+ if (isMatchingDecrement(PrevMBBI, Base, Bytes, Limit, Pred, PredReg)) {
+ DoMerge = true;
+ AddSub = ARM_AM::sub;
+ } else if (!isAM5 &&
+ isMatchingIncrement(PrevMBBI, Base, Bytes, Limit,Pred,PredReg)) {
+ DoMerge = true;
+ }
+ if (DoMerge) {
+ NewOpc = getPreIndexedLoadStoreOpcode(Opcode, AddSub);
+ MBB.erase(PrevMBBI);
+ }
+ }
+
+ // Try merging with the next instruction.
+ MachineBasicBlock::iterator EndMBBI = MBB.end();
+ if (!DoMerge && MBBI != EndMBBI) {
+ MachineBasicBlock::iterator NextMBBI = std::next(MBBI);
+ while (NextMBBI != EndMBBI && NextMBBI->isDebugValue())
+ ++NextMBBI;
+ if (!isAM5 &&
+ isMatchingDecrement(NextMBBI, Base, Bytes, Limit, Pred, PredReg)) {
+ DoMerge = true;
+ AddSub = ARM_AM::sub;
+ } else if (isMatchingIncrement(NextMBBI, Base, Bytes, Limit,Pred,PredReg)) {
+ DoMerge = true;
+ }
+ if (DoMerge) {
+ NewOpc = getPostIndexedLoadStoreOpcode(Opcode, AddSub);
+ if (NextMBBI == I) {
+ Advance = true;
+ ++I;
+ }
+ MBB.erase(NextMBBI);
+ }
+ }
+
+ if (!DoMerge)
+ return false;
+
+ if (isAM5) {
+ // VLDM[SD]_UPD, VSTM[SD]_UPD
+ // (There are no base-updating versions of VLDR/VSTR instructions, but the
+ // updating load/store-multiple instructions can be used with only one
+ // register.)
+ MachineOperand &MO = MI->getOperand(0);
+ BuildMI(MBB, MBBI, dl, TII->get(NewOpc))
+ .addReg(Base, getDefRegState(true)) // WB base register
+ .addReg(Base, getKillRegState(isLd ? BaseKill : false))
+ .addImm(Pred).addReg(PredReg)
+ .addReg(MO.getReg(), (isLd ? getDefRegState(true) :
+ getKillRegState(MO.isKill())));
+ } else if (isLd) {
+ if (isAM2) {
+ // LDR_PRE, LDR_POST
+ if (NewOpc == ARM::LDR_PRE_IMM || NewOpc == ARM::LDRB_PRE_IMM) {
+ int Offset = AddSub == ARM_AM::sub ? -Bytes : Bytes;
+ BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg())
+ .addReg(Base, RegState::Define)
+ .addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
+ } else {
+ int Offset = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift);
+ BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg())
+ .addReg(Base, RegState::Define)
+ .addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg);
+ }
+ } else {
+ int Offset = AddSub == ARM_AM::sub ? -Bytes : Bytes;
+ // t2LDR_PRE, t2LDR_POST
+ BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg())
+ .addReg(Base, RegState::Define)
+ .addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
+ }
+ } else {
+ MachineOperand &MO = MI->getOperand(0);
+ // FIXME: post-indexed stores use am2offset_imm, which still encodes
+ // the vestigal zero-reg offset register. When that's fixed, this clause
+ // can be removed entirely.
+ if (isAM2 && NewOpc == ARM::STR_POST_IMM) {
+ int Offset = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift);
+ // STR_PRE, STR_POST
+ BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base)
+ .addReg(MO.getReg(), getKillRegState(MO.isKill()))
+ .addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg);
+ } else {
+ int Offset = AddSub == ARM_AM::sub ? -Bytes : Bytes;
+ // t2STR_PRE, t2STR_POST
+ BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base)
+ .addReg(MO.getReg(), getKillRegState(MO.isKill()))
+ .addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
+ }
+ }
+ MBB.erase(MBBI);
+
+ return true;
+}
+
+/// isMemoryOp - Returns true if instruction is a memory operation that this
+/// pass is capable of operating on.
+static bool isMemoryOp(const MachineInstr *MI) {
+ // When no memory operands are present, conservatively assume unaligned,
+ // volatile, unfoldable.
+ if (!MI->hasOneMemOperand())
+ return false;
+
+ const MachineMemOperand *MMO = *MI->memoperands_begin();
+
+ // Don't touch volatile memory accesses - we may be changing their order.
+ if (MMO->isVolatile())
+ return false;
+
+ // Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is
+ // not.
+ if (MMO->getAlignment() < 4)
+ return false;
+
+ // str <undef> could probably be eliminated entirely, but for now we just want
+ // to avoid making a mess of it.
+ // FIXME: Use str <undef> as a wildcard to enable better stm folding.
+ if (MI->getNumOperands() > 0 && MI->getOperand(0).isReg() &&
+ MI->getOperand(0).isUndef())
+ return false;
+
+ // Likewise don't mess with references to undefined addresses.
+ if (MI->getNumOperands() > 1 && MI->getOperand(1).isReg() &&
+ MI->getOperand(1).isUndef())
+ return false;
+
+ int Opcode = MI->getOpcode();
+ switch (Opcode) {
+ default: break;
+ case ARM::VLDRS:
+ case ARM::VSTRS:
+ return MI->getOperand(1).isReg();
+ case ARM::VLDRD:
+ case ARM::VSTRD:
+ return MI->getOperand(1).isReg();
+ case ARM::LDRi12:
+ case ARM::STRi12:
+ case ARM::tLDRi:
+ case ARM::tSTRi:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRi12:
+ case ARM::t2STRi8:
+ case ARM::t2STRi12:
+ return MI->getOperand(1).isReg();
+ }
+ return false;
+}
+
+/// AdvanceRS - Advance register scavenger to just before the earliest memory
+/// op that is being merged.
+void ARMLoadStoreOpt::AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps) {
+ MachineBasicBlock::iterator Loc = MemOps[0].MBBI;
+ unsigned Position = MemOps[0].Position;
+ for (unsigned i = 1, e = MemOps.size(); i != e; ++i) {
+ if (MemOps[i].Position < Position) {
+ Position = MemOps[i].Position;
+ Loc = MemOps[i].MBBI;
+ }
+ }
+
+ if (Loc != MBB.begin())
+ RS->forward(std::prev(Loc));
+}
+
+static int getMemoryOpOffset(const MachineInstr *MI) {
+ int Opcode = MI->getOpcode();
+ bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD;
+ unsigned NumOperands = MI->getDesc().getNumOperands();
+ unsigned OffField = MI->getOperand(NumOperands-3).getImm();
+
+ if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 ||
+ Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 ||
+ Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 ||
+ Opcode == ARM::LDRi12 || Opcode == ARM::STRi12)
+ return OffField;
+
+ // Thumb1 immediate offsets are scaled by 4
+ if (Opcode == ARM::tLDRi || Opcode == ARM::tSTRi)
+ return OffField * 4;
+
+ int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField)
+ : ARM_AM::getAM5Offset(OffField) * 4;
+ if (isAM3) {
+ if (ARM_AM::getAM3Op(OffField) == ARM_AM::sub)
+ Offset = -Offset;
+ } else {
+ if (ARM_AM::getAM5Op(OffField) == ARM_AM::sub)
+ Offset = -Offset;
+ }
+ return Offset;
+}
+
+static void InsertLDR_STR(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ int Offset, bool isDef,
+ DebugLoc dl, unsigned NewOpc,
+ unsigned Reg, bool RegDeadKill, bool RegUndef,
+ unsigned BaseReg, bool BaseKill, bool BaseUndef,
+ bool OffKill, bool OffUndef,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ const TargetInstrInfo *TII, bool isT2) {
+ if (isDef) {
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
+ TII->get(NewOpc))
+ .addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill))
+ .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
+ MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
+ } else {
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
+ TII->get(NewOpc))
+ .addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef))
+ .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
+ MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
+ }
+}
+
+bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI) {
+ MachineInstr *MI = &*MBBI;
+ unsigned Opcode = MI->getOpcode();
+ if (Opcode == ARM::LDRD || Opcode == ARM::STRD ||
+ Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) {
+ const MachineOperand &BaseOp = MI->getOperand(2);
+ unsigned BaseReg = BaseOp.getReg();
+ unsigned EvenReg = MI->getOperand(0).getReg();
+ unsigned OddReg = MI->getOperand(1).getReg();
+ unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false);
+ unsigned OddRegNum = TRI->getDwarfRegNum(OddReg, false);
+ // ARM errata 602117: LDRD with base in list may result in incorrect base
+ // register when interrupted or faulted.
+ bool Errata602117 = EvenReg == BaseReg && STI->isCortexM3();
+ if (!Errata602117 &&
+ ((EvenRegNum & 1) == 0 && (EvenRegNum + 1) == OddRegNum))
+ return false;
+
+ MachineBasicBlock::iterator NewBBI = MBBI;
+ bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8;
+ bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8;
+ bool EvenDeadKill = isLd ?
+ MI->getOperand(0).isDead() : MI->getOperand(0).isKill();
+ bool EvenUndef = MI->getOperand(0).isUndef();
+ bool OddDeadKill = isLd ?
+ MI->getOperand(1).isDead() : MI->getOperand(1).isKill();
+ bool OddUndef = MI->getOperand(1).isUndef();
+ bool BaseKill = BaseOp.isKill();
+ bool BaseUndef = BaseOp.isUndef();
+ bool OffKill = isT2 ? false : MI->getOperand(3).isKill();
+ bool OffUndef = isT2 ? false : MI->getOperand(3).isUndef();
+ int OffImm = getMemoryOpOffset(MI);
+ unsigned PredReg = 0;
+ ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
+
+ if (OddRegNum > EvenRegNum && OffImm == 0) {
+ // Ascending register numbers and no offset. It's safe to change it to a
+ // ldm or stm.
+ unsigned NewOpc = (isLd)
+ ? (isT2 ? ARM::t2LDMIA : ARM::LDMIA)
+ : (isT2 ? ARM::t2STMIA : ARM::STMIA);
+ if (isLd) {
+ BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
+ .addReg(BaseReg, getKillRegState(BaseKill))
+ .addImm(Pred).addReg(PredReg)
+ .addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill))
+ .addReg(OddReg, getDefRegState(isLd) | getDeadRegState(OddDeadKill));
+ ++NumLDRD2LDM;
+ } else {
+ BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
+ .addReg(BaseReg, getKillRegState(BaseKill))
+ .addImm(Pred).addReg(PredReg)
+ .addReg(EvenReg,
+ getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef))
+ .addReg(OddReg,
+ getKillRegState(OddDeadKill) | getUndefRegState(OddUndef));
+ ++NumSTRD2STM;
+ }
+ NewBBI = std::prev(MBBI);
+ } else {
+ // Split into two instructions.
+ unsigned NewOpc = (isLd)
+ ? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12)
+ : (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12);
+ // Be extra careful for thumb2. t2LDRi8 can't reference a zero offset,
+ // so adjust and use t2LDRi12 here for that.
+ unsigned NewOpc2 = (isLd)
+ ? (isT2 ? (OffImm+4 < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12)
+ : (isT2 ? (OffImm+4 < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12);
+ DebugLoc dl = MBBI->getDebugLoc();
+ // If this is a load and base register is killed, it may have been
+ // re-defed by the load, make sure the first load does not clobber it.
+ if (isLd &&
+ (BaseKill || OffKill) &&
+ (TRI->regsOverlap(EvenReg, BaseReg))) {
+ assert(!TRI->regsOverlap(OddReg, BaseReg));
+ InsertLDR_STR(MBB, MBBI, OffImm+4, isLd, dl, NewOpc2,
+ OddReg, OddDeadKill, false,
+ BaseReg, false, BaseUndef, false, OffUndef,
+ Pred, PredReg, TII, isT2);
+ NewBBI = std::prev(MBBI);
+ InsertLDR_STR(MBB, MBBI, OffImm, isLd, dl, NewOpc,
+ EvenReg, EvenDeadKill, false,
+ BaseReg, BaseKill, BaseUndef, OffKill, OffUndef,
+ Pred, PredReg, TII, isT2);
+ } else {
+ if (OddReg == EvenReg && EvenDeadKill) {
+ // If the two source operands are the same, the kill marker is
+ // probably on the first one. e.g.
+ // t2STRDi8 %R5<kill>, %R5, %R9<kill>, 0, 14, %reg0
+ EvenDeadKill = false;
+ OddDeadKill = true;
+ }
+ // Never kill the base register in the first instruction.
+ if (EvenReg == BaseReg)
+ EvenDeadKill = false;
+ InsertLDR_STR(MBB, MBBI, OffImm, isLd, dl, NewOpc,
+ EvenReg, EvenDeadKill, EvenUndef,
+ BaseReg, false, BaseUndef, false, OffUndef,
+ Pred, PredReg, TII, isT2);
+ NewBBI = std::prev(MBBI);
+ InsertLDR_STR(MBB, MBBI, OffImm+4, isLd, dl, NewOpc2,
+ OddReg, OddDeadKill, OddUndef,
+ BaseReg, BaseKill, BaseUndef, OffKill, OffUndef,
+ Pred, PredReg, TII, isT2);
+ }
+ if (isLd)
+ ++NumLDRD2LDR;
+ else
+ ++NumSTRD2STR;
+ }
+
+ MBB.erase(MI);
+ MBBI = NewBBI;
+ return true;
+ }
+ return false;
+}
+
+/// LoadStoreMultipleOpti - An optimization pass to turn multiple LDR / STR
+/// ops of the same base and incrementing offset into LDM / STM ops.
+bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
+ unsigned NumMerges = 0;
+ unsigned NumMemOps = 0;
+ MemOpQueue MemOps;
+ unsigned CurrBase = 0;
+ int CurrOpc = -1;
+ unsigned CurrSize = 0;
+ ARMCC::CondCodes CurrPred = ARMCC::AL;
+ unsigned CurrPredReg = 0;
+ unsigned Position = 0;
+ SmallVector<MachineBasicBlock::iterator,4> Merges;
+
+ RS->enterBasicBlock(&MBB);
+ MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
+ while (MBBI != E) {
+ if (FixInvalidRegPairOp(MBB, MBBI))
+ continue;
+
+ bool Advance = false;
+ bool TryMerge = false;
+ bool Clobber = false;
+
+ bool isMemOp = isMemoryOp(MBBI);
+ if (isMemOp) {
+ int Opcode = MBBI->getOpcode();
+ unsigned Size = getLSMultipleTransferSize(MBBI);
+ const MachineOperand &MO = MBBI->getOperand(0);
+ unsigned Reg = MO.getReg();
+ bool isKill = MO.isDef() ? false : MO.isKill();
+ unsigned Base = MBBI->getOperand(1).getReg();
+ unsigned PredReg = 0;
+ ARMCC::CondCodes Pred = getInstrPredicate(MBBI, PredReg);
+ int Offset = getMemoryOpOffset(MBBI);
+ // Watch out for:
+ // r4 := ldr [r5]
+ // r5 := ldr [r5, #4]
+ // r6 := ldr [r5, #8]
+ //
+ // The second ldr has effectively broken the chain even though it
+ // looks like the later ldr(s) use the same base register. Try to
+ // merge the ldr's so far, including this one. But don't try to
+ // combine the following ldr(s).
+ Clobber = (isi32Load(Opcode) && Base == MBBI->getOperand(0).getReg());
+
+ // Watch out for:
+ // r4 := ldr [r0, #8]
+ // r4 := ldr [r0, #4]
+ //
+ // The optimization may reorder the second ldr in front of the first
+ // ldr, which violates write after write(WAW) dependence. The same as
+ // str. Try to merge inst(s) already in MemOps.
+ bool Overlap = false;
+ for (MemOpQueueIter I = MemOps.begin(), E = MemOps.end(); I != E; ++I) {
+ if (TRI->regsOverlap(Reg, I->MBBI->getOperand(0).getReg())) {
+ Overlap = true;
+ break;
+ }
+ }
+
+ if (CurrBase == 0 && !Clobber) {
+ // Start of a new chain.
+ CurrBase = Base;
+ CurrOpc = Opcode;
+ CurrSize = Size;
+ CurrPred = Pred;
+ CurrPredReg = PredReg;
+ MemOps.push_back(MemOpQueueEntry(Offset, Reg, isKill, Position, MBBI));
+ ++NumMemOps;
+ Advance = true;
+ } else if (!Overlap) {
+ if (Clobber) {
+ TryMerge = true;
+ Advance = true;
+ }
+
+ if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) {
+ // No need to match PredReg.
+ // Continue adding to the queue.
+ if (Offset > MemOps.back().Offset) {
+ MemOps.push_back(MemOpQueueEntry(Offset, Reg, isKill,
+ Position, MBBI));
+ ++NumMemOps;
+ Advance = true;
+ } else {
+ for (MemOpQueueIter I = MemOps.begin(), E = MemOps.end();
+ I != E; ++I) {
+ if (Offset < I->Offset) {
+ MemOps.insert(I, MemOpQueueEntry(Offset, Reg, isKill,
+ Position, MBBI));
+ ++NumMemOps;
+ Advance = true;
+ break;
+ } else if (Offset == I->Offset) {
+ // Collision! This can't be merged!
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if (MBBI->isDebugValue()) {
+ ++MBBI;
+ if (MBBI == E)
+ // Reach the end of the block, try merging the memory instructions.
+ TryMerge = true;
+ } else if (Advance) {
+ ++Position;
+ ++MBBI;
+ if (MBBI == E)
+ // Reach the end of the block, try merging the memory instructions.
+ TryMerge = true;
+ } else {
+ TryMerge = true;
+ }
+
+ if (TryMerge) {
+ if (NumMemOps > 1) {
+ // Try to find a free register to use as a new base in case it's needed.
+ // First advance to the instruction just before the start of the chain.
+ AdvanceRS(MBB, MemOps);
+
+ // Find a scratch register.
+ unsigned Scratch =
+ RS->FindUnusedReg(isThumb1 ? &ARM::tGPRRegClass : &ARM::GPRRegClass);
+
+ // Process the load / store instructions.
+ RS->forward(std::prev(MBBI));
+
+ // Merge ops.
+ Merges.clear();
+ MergeLDR_STR(MBB, 0, CurrBase, CurrOpc, CurrSize,
+ CurrPred, CurrPredReg, Scratch, MemOps, Merges);
+
+ // Try folding preceding/trailing base inc/dec into the generated
+ // LDM/STM ops.
+ for (unsigned i = 0, e = Merges.size(); i < e; ++i)
+ if (MergeBaseUpdateLSMultiple(MBB, Merges[i], Advance, MBBI))
+ ++NumMerges;
+ NumMerges += Merges.size();
+
+ // Try folding preceding/trailing base inc/dec into those load/store
+ // that were not merged to form LDM/STM ops.
+ for (unsigned i = 0; i != NumMemOps; ++i)
+ if (!MemOps[i].Merged)
+ if (MergeBaseUpdateLoadStore(MBB, MemOps[i].MBBI, TII,Advance,MBBI))
+ ++NumMerges;
+
+ // RS may be pointing to an instruction that's deleted.
+ RS->skipTo(std::prev(MBBI));
+ } else if (NumMemOps == 1) {
+ // Try folding preceding/trailing base inc/dec into the single
+ // load/store.
+ if (MergeBaseUpdateLoadStore(MBB, MemOps[0].MBBI, TII, Advance, MBBI)) {
+ ++NumMerges;
+ RS->forward(std::prev(MBBI));
+ }
+ }
+
+ CurrBase = 0;
+ CurrOpc = -1;
+ CurrSize = 0;
+ CurrPred = ARMCC::AL;
+ CurrPredReg = 0;
+ if (NumMemOps) {
+ MemOps.clear();
+ NumMemOps = 0;
+ }
+
+ // If iterator hasn't been advanced and this is not a memory op, skip it.
+ // It can't start a new chain anyway.
+ if (!Advance && !isMemOp && MBBI != E) {
+ ++Position;
+ ++MBBI;
+ }
+ }
+ }
+ return NumMerges > 0;
+}
+
+/// MergeReturnIntoLDM - If this is a exit BB, try merging the return ops
+/// ("bx lr" and "mov pc, lr") into the preceding stack restore so it
+/// directly restore the value of LR into pc.
+/// ldmfd sp!, {..., lr}
+/// bx lr
+/// or
+/// ldmfd sp!, {..., lr}
+/// mov pc, lr
+/// =>
+/// ldmfd sp!, {..., pc}
+bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) {
+ // Thumb1 LDM doesn't allow high registers.
+ if (isThumb1) return false;
+ if (MBB.empty()) return false;
+
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ if (MBBI != MBB.begin() &&
+ (MBBI->getOpcode() == ARM::BX_RET ||
+ MBBI->getOpcode() == ARM::tBX_RET ||
+ MBBI->getOpcode() == ARM::MOVPCLR)) {
+ MachineInstr *PrevMI = std::prev(MBBI);
+ unsigned Opcode = PrevMI->getOpcode();
+ if (Opcode == ARM::LDMIA_UPD || Opcode == ARM::LDMDA_UPD ||
+ Opcode == ARM::LDMDB_UPD || Opcode == ARM::LDMIB_UPD ||
+ Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
+ MachineOperand &MO = PrevMI->getOperand(PrevMI->getNumOperands()-1);
+ if (MO.getReg() != ARM::LR)
+ return false;
+ unsigned NewOpc = (isThumb2 ? ARM::t2LDMIA_RET : ARM::LDMIA_RET);
+ assert(((isThumb2 && Opcode == ARM::t2LDMIA_UPD) ||
+ Opcode == ARM::LDMIA_UPD) && "Unsupported multiple load-return!");
+ PrevMI->setDesc(TII->get(NewOpc));
+ MO.setReg(ARM::PC);
+ PrevMI->copyImplicitOps(*MBB.getParent(), &*MBBI);
+ MBB.erase(MBBI);
+ return true;
+ }
+ }
+ return false;
+}
+
+bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
+ const TargetMachine &TM = Fn.getTarget();
+ TL = TM.getTargetLowering();
+ AFI = Fn.getInfo<ARMFunctionInfo>();
+ TII = TM.getInstrInfo();
+ TRI = TM.getRegisterInfo();
+ STI = &TM.getSubtarget<ARMSubtarget>();
+ RS = new RegScavenger();
+ isThumb2 = AFI->isThumb2Function();
+ isThumb1 = AFI->isThumbFunction() && !isThumb2;
+
+ // FIXME: Temporarily disabling for Thumb-1 due to miscompiles
+ if (isThumb1) {
+ delete RS;
+ return false;
+ }
+
+ bool Modified = false;
+ for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
+ ++MFI) {
+ MachineBasicBlock &MBB = *MFI;
+ Modified |= LoadStoreMultipleOpti(MBB);
+ if (TM.getSubtarget<ARMSubtarget>().hasV5TOps())
+ Modified |= MergeReturnIntoLDM(MBB);
+ }
+
+ delete RS;
+ return Modified;
+}
+
+
+/// ARMPreAllocLoadStoreOpt - Pre- register allocation pass that move
+/// load / stores from consecutive locations close to make it more
+/// likely they will be combined later.
+
+namespace {
+ struct ARMPreAllocLoadStoreOpt : public MachineFunctionPass{
+ static char ID;
+ ARMPreAllocLoadStoreOpt() : MachineFunctionPass(ID) {}
+
+ const DataLayout *TD;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const ARMSubtarget *STI;
+ MachineRegisterInfo *MRI;
+ MachineFunction *MF;
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "ARM pre- register allocation load / store optimization pass";
+ }
+
+ private:
+ bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl,
+ unsigned &NewOpc, unsigned &EvenReg,
+ unsigned &OddReg, unsigned &BaseReg,
+ int &Offset,
+ unsigned &PredReg, ARMCC::CondCodes &Pred,
+ bool &isT2);
+ bool RescheduleOps(MachineBasicBlock *MBB,
+ SmallVectorImpl<MachineInstr *> &Ops,
+ unsigned Base, bool isLd,
+ DenseMap<MachineInstr*, unsigned> &MI2LocMap);
+ bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB);
+ };
+ char ARMPreAllocLoadStoreOpt::ID = 0;
+}
+
+bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
+ TD = Fn.getTarget().getDataLayout();
+ TII = Fn.getTarget().getInstrInfo();
+ TRI = Fn.getTarget().getRegisterInfo();
+ STI = &Fn.getTarget().getSubtarget<ARMSubtarget>();
+ MRI = &Fn.getRegInfo();
+ MF = &Fn;
+
+ bool Modified = false;
+ for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
+ ++MFI)
+ Modified |= RescheduleLoadStoreInstrs(MFI);
+
+ return Modified;
+}
+
+static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base,
+ MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator E,
+ SmallPtrSet<MachineInstr*, 4> &MemOps,
+ SmallSet<unsigned, 4> &MemRegs,
+ const TargetRegisterInfo *TRI) {
+ // Are there stores / loads / calls between them?
+ // FIXME: This is overly conservative. We should make use of alias information
+ // some day.
+ SmallSet<unsigned, 4> AddedRegPressure;
+ while (++I != E) {
+ if (I->isDebugValue() || MemOps.count(&*I))
+ continue;
+ if (I->isCall() || I->isTerminator() || I->hasUnmodeledSideEffects())
+ return false;
+ if (isLd && I->mayStore())
+ return false;
+ if (!isLd) {
+ if (I->mayLoad())
+ return false;
+ // It's not safe to move the first 'str' down.
+ // str r1, [r0]
+ // strh r5, [r0]
+ // str r4, [r0, #+4]
+ if (I->mayStore())
+ return false;
+ }
+ for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) {
+ MachineOperand &MO = I->getOperand(j);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (MO.isDef() && TRI->regsOverlap(Reg, Base))
+ return false;
+ if (Reg != Base && !MemRegs.count(Reg))
+ AddedRegPressure.insert(Reg);
+ }
+ }
+
+ // Estimate register pressure increase due to the transformation.
+ if (MemRegs.size() <= 4)
+ // Ok if we are moving small number of instructions.
+ return true;
+ return AddedRegPressure.size() <= MemRegs.size() * 2;
+}
+
+
+/// Copy Op0 and Op1 operands into a new array assigned to MI.
+static void concatenateMemOperands(MachineInstr *MI, MachineInstr *Op0,
+ MachineInstr *Op1) {
+ assert(MI->memoperands_empty() && "expected a new machineinstr");
+ size_t numMemRefs = (Op0->memoperands_end() - Op0->memoperands_begin())
+ + (Op1->memoperands_end() - Op1->memoperands_begin());
+
+ MachineFunction *MF = MI->getParent()->getParent();
+ MachineSDNode::mmo_iterator MemBegin = MF->allocateMemRefsArray(numMemRefs);
+ MachineSDNode::mmo_iterator MemEnd =
+ std::copy(Op0->memoperands_begin(), Op0->memoperands_end(), MemBegin);
+ MemEnd =
+ std::copy(Op1->memoperands_begin(), Op1->memoperands_end(), MemEnd);
+ MI->setMemRefs(MemBegin, MemEnd);
+}
+
+bool
+ARMPreAllocLoadStoreOpt::CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1,
+ DebugLoc &dl,
+ unsigned &NewOpc, unsigned &EvenReg,
+ unsigned &OddReg, unsigned &BaseReg,
+ int &Offset, unsigned &PredReg,
+ ARMCC::CondCodes &Pred,
+ bool &isT2) {
+ // Make sure we're allowed to generate LDRD/STRD.
+ if (!STI->hasV5TEOps())
+ return false;
+
+ // FIXME: VLDRS / VSTRS -> VLDRD / VSTRD
+ unsigned Scale = 1;
+ unsigned Opcode = Op0->getOpcode();
+ if (Opcode == ARM::LDRi12) {
+ NewOpc = ARM::LDRD;
+ } else if (Opcode == ARM::STRi12) {
+ NewOpc = ARM::STRD;
+ } else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) {
+ NewOpc = ARM::t2LDRDi8;
+ Scale = 4;
+ isT2 = true;
+ } else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) {
+ NewOpc = ARM::t2STRDi8;
+ Scale = 4;
+ isT2 = true;
+ } else {
+ return false;
+ }
+
+ // Make sure the base address satisfies i64 ld / st alignment requirement.
+ // At the moment, we ignore the memoryoperand's value.
+ // If we want to use AliasAnalysis, we should check it accordingly.
+ if (!Op0->hasOneMemOperand() ||
+ (*Op0->memoperands_begin())->isVolatile())
+ return false;
+
+ unsigned Align = (*Op0->memoperands_begin())->getAlignment();
+ const Function *Func = MF->getFunction();
+ unsigned ReqAlign = STI->hasV6Ops()
+ ? TD->getABITypeAlignment(Type::getInt64Ty(Func->getContext()))
+ : 8; // Pre-v6 need 8-byte align
+ if (Align < ReqAlign)
+ return false;
+
+ // Then make sure the immediate offset fits.
+ int OffImm = getMemoryOpOffset(Op0);
+ if (isT2) {
+ int Limit = (1 << 8) * Scale;
+ if (OffImm >= Limit || (OffImm <= -Limit) || (OffImm & (Scale-1)))
+ return false;
+ Offset = OffImm;
+ } else {
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (OffImm < 0) {
+ AddSub = ARM_AM::sub;
+ OffImm = - OffImm;
+ }
+ int Limit = (1 << 8) * Scale;
+ if (OffImm >= Limit || (OffImm & (Scale-1)))
+ return false;
+ Offset = ARM_AM::getAM3Opc(AddSub, OffImm);
+ }
+ EvenReg = Op0->getOperand(0).getReg();
+ OddReg = Op1->getOperand(0).getReg();
+ if (EvenReg == OddReg)
+ return false;
+ BaseReg = Op0->getOperand(1).getReg();
+ Pred = getInstrPredicate(Op0, PredReg);
+ dl = Op0->getDebugLoc();
+ return true;
+}
+
+bool ARMPreAllocLoadStoreOpt::RescheduleOps(MachineBasicBlock *MBB,
+ SmallVectorImpl<MachineInstr *> &Ops,
+ unsigned Base, bool isLd,
+ DenseMap<MachineInstr*, unsigned> &MI2LocMap) {
+ bool RetVal = false;
+
+ // Sort by offset (in reverse order).
+ std::sort(Ops.begin(), Ops.end(),
+ [](const MachineInstr *LHS, const MachineInstr *RHS) {
+ int LOffset = getMemoryOpOffset(LHS);
+ int ROffset = getMemoryOpOffset(RHS);
+ assert(LHS == RHS || LOffset != ROffset);
+ return LOffset > ROffset;
+ });
+
+ // The loads / stores of the same base are in order. Scan them from first to
+ // last and check for the following:
+ // 1. Any def of base.
+ // 2. Any gaps.
+ while (Ops.size() > 1) {
+ unsigned FirstLoc = ~0U;
+ unsigned LastLoc = 0;
+ MachineInstr *FirstOp = nullptr;
+ MachineInstr *LastOp = nullptr;
+ int LastOffset = 0;
+ unsigned LastOpcode = 0;
+ unsigned LastBytes = 0;
+ unsigned NumMove = 0;
+ for (int i = Ops.size() - 1; i >= 0; --i) {
+ MachineInstr *Op = Ops[i];
+ unsigned Loc = MI2LocMap[Op];
+ if (Loc <= FirstLoc) {
+ FirstLoc = Loc;
+ FirstOp = Op;
+ }
+ if (Loc >= LastLoc) {
+ LastLoc = Loc;
+ LastOp = Op;
+ }
+
+ unsigned LSMOpcode
+ = getLoadStoreMultipleOpcode(Op->getOpcode(), ARM_AM::ia);
+ if (LastOpcode && LSMOpcode != LastOpcode)
+ break;
+
+ int Offset = getMemoryOpOffset(Op);
+ unsigned Bytes = getLSMultipleTransferSize(Op);
+ if (LastBytes) {
+ if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes))
+ break;
+ }
+ LastOffset = Offset;
+ LastBytes = Bytes;
+ LastOpcode = LSMOpcode;
+ if (++NumMove == 8) // FIXME: Tune this limit.
+ break;
+ }
+
+ if (NumMove <= 1)
+ Ops.pop_back();
+ else {
+ SmallPtrSet<MachineInstr*, 4> MemOps;
+ SmallSet<unsigned, 4> MemRegs;
+ for (int i = NumMove-1; i >= 0; --i) {
+ MemOps.insert(Ops[i]);
+ MemRegs.insert(Ops[i]->getOperand(0).getReg());
+ }
+
+ // Be conservative, if the instructions are too far apart, don't
+ // move them. We want to limit the increase of register pressure.
+ bool DoMove = (LastLoc - FirstLoc) <= NumMove*4; // FIXME: Tune this.
+ if (DoMove)
+ DoMove = IsSafeAndProfitableToMove(isLd, Base, FirstOp, LastOp,
+ MemOps, MemRegs, TRI);
+ if (!DoMove) {
+ for (unsigned i = 0; i != NumMove; ++i)
+ Ops.pop_back();
+ } else {
+ // This is the new location for the loads / stores.
+ MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp;
+ while (InsertPos != MBB->end()
+ && (MemOps.count(InsertPos) || InsertPos->isDebugValue()))
+ ++InsertPos;
+
+ // If we are moving a pair of loads / stores, see if it makes sense
+ // to try to allocate a pair of registers that can form register pairs.
+ MachineInstr *Op0 = Ops.back();
+ MachineInstr *Op1 = Ops[Ops.size()-2];
+ unsigned EvenReg = 0, OddReg = 0;
+ unsigned BaseReg = 0, PredReg = 0;
+ ARMCC::CondCodes Pred = ARMCC::AL;
+ bool isT2 = false;
+ unsigned NewOpc = 0;
+ int Offset = 0;
+ DebugLoc dl;
+ if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc,
+ EvenReg, OddReg, BaseReg,
+ Offset, PredReg, Pred, isT2)) {
+ Ops.pop_back();
+ Ops.pop_back();
+
+ const MCInstrDesc &MCID = TII->get(NewOpc);
+ const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF);
+ MRI->constrainRegClass(EvenReg, TRC);
+ MRI->constrainRegClass(OddReg, TRC);
+
+ // Form the pair instruction.
+ if (isLd) {
+ MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
+ .addReg(EvenReg, RegState::Define)
+ .addReg(OddReg, RegState::Define)
+ .addReg(BaseReg);
+ // FIXME: We're converting from LDRi12 to an insn that still
+ // uses addrmode2, so we need an explicit offset reg. It should
+ // always by reg0 since we're transforming LDRi12s.
+ if (!isT2)
+ MIB.addReg(0);
+ MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
+ concatenateMemOperands(MIB, Op0, Op1);
+ DEBUG(dbgs() << "Formed " << *MIB << "\n");
+ ++NumLDRDFormed;
+ } else {
+ MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
+ .addReg(EvenReg)
+ .addReg(OddReg)
+ .addReg(BaseReg);
+ // FIXME: We're converting from LDRi12 to an insn that still
+ // uses addrmode2, so we need an explicit offset reg. It should
+ // always by reg0 since we're transforming STRi12s.
+ if (!isT2)
+ MIB.addReg(0);
+ MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
+ concatenateMemOperands(MIB, Op0, Op1);
+ DEBUG(dbgs() << "Formed " << *MIB << "\n");
+ ++NumSTRDFormed;
+ }
+ MBB->erase(Op0);
+ MBB->erase(Op1);
+
+ // Add register allocation hints to form register pairs.
+ MRI->setRegAllocationHint(EvenReg, ARMRI::RegPairEven, OddReg);
+ MRI->setRegAllocationHint(OddReg, ARMRI::RegPairOdd, EvenReg);
+ } else {
+ for (unsigned i = 0; i != NumMove; ++i) {
+ MachineInstr *Op = Ops.back();
+ Ops.pop_back();
+ MBB->splice(InsertPos, MBB, Op);
+ }
+ }
+
+ NumLdStMoved += NumMove;
+ RetVal = true;
+ }
+ }
+ }
+
+ return RetVal;
+}
+
+bool
+ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) {
+ bool RetVal = false;
+
+ DenseMap<MachineInstr*, unsigned> MI2LocMap;
+ DenseMap<unsigned, SmallVector<MachineInstr*, 4> > Base2LdsMap;
+ DenseMap<unsigned, SmallVector<MachineInstr*, 4> > Base2StsMap;
+ SmallVector<unsigned, 4> LdBases;
+ SmallVector<unsigned, 4> StBases;
+
+ unsigned Loc = 0;
+ MachineBasicBlock::iterator MBBI = MBB->begin();
+ MachineBasicBlock::iterator E = MBB->end();
+ while (MBBI != E) {
+ for (; MBBI != E; ++MBBI) {
+ MachineInstr *MI = MBBI;
+ if (MI->isCall() || MI->isTerminator()) {
+ // Stop at barriers.
+ ++MBBI;
+ break;
+ }
+
+ if (!MI->isDebugValue())
+ MI2LocMap[MI] = ++Loc;
+
+ if (!isMemoryOp(MI))
+ continue;
+ unsigned PredReg = 0;
+ if (getInstrPredicate(MI, PredReg) != ARMCC::AL)
+ continue;
+
+ int Opc = MI->getOpcode();
+ bool isLd = isi32Load(Opc) || Opc == ARM::VLDRS || Opc == ARM::VLDRD;
+ unsigned Base = MI->getOperand(1).getReg();
+ int Offset = getMemoryOpOffset(MI);
+
+ bool StopHere = false;
+ if (isLd) {
+ DenseMap<unsigned, SmallVector<MachineInstr*, 4> >::iterator BI =
+ Base2LdsMap.find(Base);
+ if (BI != Base2LdsMap.end()) {
+ for (unsigned i = 0, e = BI->second.size(); i != e; ++i) {
+ if (Offset == getMemoryOpOffset(BI->second[i])) {
+ StopHere = true;
+ break;
+ }
+ }
+ if (!StopHere)
+ BI->second.push_back(MI);
+ } else {
+ Base2LdsMap[Base].push_back(MI);
+ LdBases.push_back(Base);
+ }
+ } else {
+ DenseMap<unsigned, SmallVector<MachineInstr*, 4> >::iterator BI =
+ Base2StsMap.find(Base);
+ if (BI != Base2StsMap.end()) {
+ for (unsigned i = 0, e = BI->second.size(); i != e; ++i) {
+ if (Offset == getMemoryOpOffset(BI->second[i])) {
+ StopHere = true;
+ break;
+ }
+ }
+ if (!StopHere)
+ BI->second.push_back(MI);
+ } else {
+ Base2StsMap[Base].push_back(MI);
+ StBases.push_back(Base);
+ }
+ }
+
+ if (StopHere) {
+ // Found a duplicate (a base+offset combination that's seen earlier).
+ // Backtrack.
+ --Loc;
+ break;
+ }
+ }
+
+ // Re-schedule loads.
+ for (unsigned i = 0, e = LdBases.size(); i != e; ++i) {
+ unsigned Base = LdBases[i];
+ SmallVectorImpl<MachineInstr *> &Lds = Base2LdsMap[Base];
+ if (Lds.size() > 1)
+ RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap);
+ }
+
+ // Re-schedule stores.
+ for (unsigned i = 0, e = StBases.size(); i != e; ++i) {
+ unsigned Base = StBases[i];
+ SmallVectorImpl<MachineInstr *> &Sts = Base2StsMap[Base];
+ if (Sts.size() > 1)
+ RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap);
+ }
+
+ if (MBBI != E) {
+ Base2LdsMap.clear();
+ Base2StsMap.clear();
+ LdBases.clear();
+ StBases.clear();
+ }
+ }
+
+ return RetVal;
+}
+
+
+/// createARMLoadStoreOptimizationPass - returns an instance of the load / store
+/// optimization pass.
+FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) {
+ if (PreAlloc)
+ return new ARMPreAllocLoadStoreOpt();
+ return new ARMLoadStoreOpt();
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMMCInstLower.cpp b/contrib/llvm/lib/Target/ARM/ARMMCInstLower.cpp
new file mode 100644
index 0000000..023f5f8
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMMCInstLower.cpp
@@ -0,0 +1,129 @@
+//===-- ARMMCInstLower.cpp - Convert ARM MachineInstr to an MCInst --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code to lower ARM MachineInstrs to their corresponding
+// MCInst records.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMAsmPrinter.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "MCTargetDesc/ARMMCExpr.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+using namespace llvm;
+
+
+MCOperand ARMAsmPrinter::GetSymbolRef(const MachineOperand &MO,
+ const MCSymbol *Symbol) {
+ const MCExpr *Expr;
+ unsigned Option = MO.getTargetFlags() & ARMII::MO_OPTION_MASK;
+ switch (Option) {
+ default: {
+ Expr = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None,
+ OutContext);
+ switch (Option) {
+ default: llvm_unreachable("Unknown target flag on symbol operand");
+ case ARMII::MO_NO_FLAG:
+ break;
+ case ARMII::MO_LO16:
+ Expr = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None,
+ OutContext);
+ Expr = ARMMCExpr::CreateLower16(Expr, OutContext);
+ break;
+ case ARMII::MO_HI16:
+ Expr = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None,
+ OutContext);
+ Expr = ARMMCExpr::CreateUpper16(Expr, OutContext);
+ break;
+ }
+ break;
+ }
+
+ case ARMII::MO_PLT:
+ Expr = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_PLT,
+ OutContext);
+ break;
+ }
+
+ if (!MO.isJTI() && MO.getOffset())
+ Expr = MCBinaryExpr::CreateAdd(Expr,
+ MCConstantExpr::Create(MO.getOffset(),
+ OutContext),
+ OutContext);
+ return MCOperand::CreateExpr(Expr);
+
+}
+
+bool ARMAsmPrinter::lowerOperand(const MachineOperand &MO,
+ MCOperand &MCOp) {
+ switch (MO.getType()) {
+ default: llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ // Ignore all non-CPSR implicit register operands.
+ if (MO.isImplicit() && MO.getReg() != ARM::CPSR)
+ return false;
+ assert(!MO.getSubReg() && "Subregs should be eliminated!");
+ MCOp = MCOperand::CreateReg(MO.getReg());
+ break;
+ case MachineOperand::MO_Immediate:
+ MCOp = MCOperand::CreateImm(MO.getImm());
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
+ MO.getMBB()->getSymbol(), OutContext));
+ break;
+ case MachineOperand::MO_GlobalAddress: {
+ MCOp = GetSymbolRef(MO,
+ GetARMGVSymbol(MO.getGlobal(), MO.getTargetFlags()));
+ break;
+ }
+ case MachineOperand::MO_ExternalSymbol:
+ MCOp = GetSymbolRef(MO,
+ GetExternalSymbolSymbol(MO.getSymbolName()));
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ MCOp = GetSymbolRef(MO, GetJTISymbol(MO.getIndex()));
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ MCOp = GetSymbolRef(MO, GetCPISymbol(MO.getIndex()));
+ break;
+ case MachineOperand::MO_BlockAddress:
+ MCOp = GetSymbolRef(MO, GetBlockAddressSymbol(MO.getBlockAddress()));
+ break;
+ case MachineOperand::MO_FPImmediate: {
+ APFloat Val = MO.getFPImm()->getValueAPF();
+ bool ignored;
+ Val.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored);
+ MCOp = MCOperand::CreateFPImm(Val.convertToDouble());
+ break;
+ }
+ case MachineOperand::MO_RegisterMask:
+ // Ignore call clobbers.
+ return false;
+ }
+ return true;
+}
+
+void llvm::LowerARMMachineInstrToMCInst(const MachineInstr *MI, MCInst &OutMI,
+ ARMAsmPrinter &AP) {
+ OutMI.setOpcode(MI->getOpcode());
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+
+ MCOperand MCOp;
+ if (AP.lowerOperand(MO, MCOp))
+ OutMI.addOperand(MCOp);
+ }
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.cpp
new file mode 100644
index 0000000..892b269
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.cpp
@@ -0,0 +1,24 @@
+//===-- ARMMachineFuctionInfo.cpp - ARM machine function info -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMMachineFunctionInfo.h"
+
+using namespace llvm;
+
+void ARMFunctionInfo::anchor() { }
+
+ARMFunctionInfo::ARMFunctionInfo(MachineFunction &MF)
+ : isThumb(MF.getTarget().getSubtarget<ARMSubtarget>().isThumb()),
+ hasThumb2(MF.getTarget().getSubtarget<ARMSubtarget>().hasThumb2()),
+ StByValParamsPadding(0), ArgRegsSaveSize(0), HasStackFrame(false),
+ RestoreSPFromFP(false), LRSpilledForFarJump(false),
+ FramePtrSpillOffset(0), GPRCS1Offset(0), GPRCS2Offset(0), DPRCSOffset(0),
+ GPRCS1Size(0), GPRCS2Size(0), DPRCSSize(0), JumpTableUId(0),
+ PICLabelUId(0), VarArgsFrameIndex(0), HasITBlocks(false),
+ GlobalBaseReg(0) {}
diff --git a/contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.h b/contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.h
new file mode 100644
index 0000000..d3fabc3
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.h
@@ -0,0 +1,241 @@
+//===-- ARMMachineFuctionInfo.h - ARM machine function info -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares ARM-specific per-machine-function information.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMMACHINEFUNCTIONINFO_H
+#define ARMMACHINEFUNCTIONINFO_H
+
+#include "ARMSubtarget.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/ADT/DenseMap.h"
+
+namespace llvm {
+
+/// ARMFunctionInfo - This class is derived from MachineFunctionInfo and
+/// contains private ARM-specific information for each MachineFunction.
+class ARMFunctionInfo : public MachineFunctionInfo {
+ virtual void anchor();
+
+ /// isThumb - True if this function is compiled under Thumb mode.
+ /// Used to initialized Align, so must precede it.
+ bool isThumb;
+
+ /// hasThumb2 - True if the target architecture supports Thumb2. Do not use
+ /// to determine if function is compiled under Thumb mode, for that use
+ /// 'isThumb'.
+ bool hasThumb2;
+
+ /// StByValParamsPadding - For parameter that is split between
+ /// GPRs and memory; while recovering GPRs part, when
+ /// StackAlignment > 4, and GPRs-part-size mod StackAlignment != 0,
+ /// we need to insert gap before parameter start address. It allows to
+ /// "attach" GPR-part to the part that was passed via stack.
+ unsigned StByValParamsPadding;
+
+ /// VarArgsRegSaveSize - Size of the register save area for vararg functions.
+ ///
+ unsigned ArgRegsSaveSize;
+
+ /// HasStackFrame - True if this function has a stack frame. Set by
+ /// processFunctionBeforeCalleeSavedScan().
+ bool HasStackFrame;
+
+ /// RestoreSPFromFP - True if epilogue should restore SP from FP. Set by
+ /// emitPrologue.
+ bool RestoreSPFromFP;
+
+ /// LRSpilledForFarJump - True if the LR register has been for spilled to
+ /// enable far jump.
+ bool LRSpilledForFarJump;
+
+ /// FramePtrSpillOffset - If HasStackFrame, this records the frame pointer
+ /// spill stack offset.
+ unsigned FramePtrSpillOffset;
+
+ /// GPRCS1Offset, GPRCS2Offset, DPRCSOffset - Starting offset of callee saved
+ /// register spills areas. For Mac OS X:
+ ///
+ /// GPR callee-saved (1) : r4, r5, r6, r7, lr
+ /// --------------------------------------------
+ /// GPR callee-saved (2) : r8, r10, r11
+ /// --------------------------------------------
+ /// DPR callee-saved : d8 - d15
+ ///
+ /// Also see AlignedDPRCSRegs below. Not all D-regs need to go in area 3.
+ /// Some may be spilled after the stack has been realigned.
+ unsigned GPRCS1Offset;
+ unsigned GPRCS2Offset;
+ unsigned DPRCSOffset;
+
+ /// GPRCS1Size, GPRCS2Size, DPRCSSize - Sizes of callee saved register spills
+ /// areas.
+ unsigned GPRCS1Size;
+ unsigned GPRCS2Size;
+ unsigned DPRCSSize;
+
+ /// NumAlignedDPRCS2Regs - The number of callee-saved DPRs that are saved in
+ /// the aligned portion of the stack frame. This is always a contiguous
+ /// sequence of D-registers starting from d8.
+ ///
+ /// We do not keep track of the frame indices used for these registers - they
+ /// behave like any other frame index in the aligned stack frame. These
+ /// registers also aren't included in DPRCSSize above.
+ unsigned NumAlignedDPRCS2Regs;
+
+ /// JumpTableUId - Unique id for jumptables.
+ ///
+ unsigned JumpTableUId;
+
+ unsigned PICLabelUId;
+
+ /// VarArgsFrameIndex - FrameIndex for start of varargs area.
+ int VarArgsFrameIndex;
+
+ /// HasITBlocks - True if IT blocks have been inserted.
+ bool HasITBlocks;
+
+ /// CPEClones - Track constant pool entries clones created by Constant Island
+ /// pass.
+ DenseMap<unsigned, unsigned> CPEClones;
+
+ /// GlobalBaseReg - keeps track of the virtual register initialized for
+ /// use as the global base register. This is used for PIC in some PIC
+ /// relocation models.
+ unsigned GlobalBaseReg;
+
+ /// ArgumentStackSize - amount of bytes on stack consumed by the arguments
+ /// being passed on the stack
+ unsigned ArgumentStackSize;
+
+ /// CoalescedWeights - mapping of basic blocks to the rolling counter of
+ /// coalesced weights.
+ DenseMap<const MachineBasicBlock*, unsigned> CoalescedWeights;
+
+public:
+ ARMFunctionInfo() :
+ isThumb(false),
+ hasThumb2(false),
+ ArgRegsSaveSize(0), HasStackFrame(false), RestoreSPFromFP(false),
+ LRSpilledForFarJump(false),
+ FramePtrSpillOffset(0), GPRCS1Offset(0), GPRCS2Offset(0), DPRCSOffset(0),
+ GPRCS1Size(0), GPRCS2Size(0), DPRCSSize(0),
+ NumAlignedDPRCS2Regs(0),
+ JumpTableUId(0), PICLabelUId(0),
+ VarArgsFrameIndex(0), HasITBlocks(false), GlobalBaseReg(0) {}
+
+ explicit ARMFunctionInfo(MachineFunction &MF);
+
+ bool isThumbFunction() const { return isThumb; }
+ bool isThumb1OnlyFunction() const { return isThumb && !hasThumb2; }
+ bool isThumb2Function() const { return isThumb && hasThumb2; }
+
+ unsigned getStoredByValParamsPadding() const { return StByValParamsPadding; }
+ void setStoredByValParamsPadding(unsigned p) { StByValParamsPadding = p; }
+
+ unsigned getArgRegsSaveSize(unsigned Align = 0) const {
+ if (!Align)
+ return ArgRegsSaveSize;
+ return (ArgRegsSaveSize + Align - 1) & ~(Align - 1);
+ }
+ void setArgRegsSaveSize(unsigned s) { ArgRegsSaveSize = s; }
+
+ bool hasStackFrame() const { return HasStackFrame; }
+ void setHasStackFrame(bool s) { HasStackFrame = s; }
+
+ bool shouldRestoreSPFromFP() const { return RestoreSPFromFP; }
+ void setShouldRestoreSPFromFP(bool s) { RestoreSPFromFP = s; }
+
+ bool isLRSpilledForFarJump() const { return LRSpilledForFarJump; }
+ void setLRIsSpilledForFarJump(bool s) { LRSpilledForFarJump = s; }
+
+ unsigned getFramePtrSpillOffset() const { return FramePtrSpillOffset; }
+ void setFramePtrSpillOffset(unsigned o) { FramePtrSpillOffset = o; }
+
+ unsigned getNumAlignedDPRCS2Regs() const { return NumAlignedDPRCS2Regs; }
+ void setNumAlignedDPRCS2Regs(unsigned n) { NumAlignedDPRCS2Regs = n; }
+
+ unsigned getGPRCalleeSavedArea1Offset() const { return GPRCS1Offset; }
+ unsigned getGPRCalleeSavedArea2Offset() const { return GPRCS2Offset; }
+ unsigned getDPRCalleeSavedAreaOffset() const { return DPRCSOffset; }
+
+ void setGPRCalleeSavedArea1Offset(unsigned o) { GPRCS1Offset = o; }
+ void setGPRCalleeSavedArea2Offset(unsigned o) { GPRCS2Offset = o; }
+ void setDPRCalleeSavedAreaOffset(unsigned o) { DPRCSOffset = o; }
+
+ unsigned getGPRCalleeSavedArea1Size() const { return GPRCS1Size; }
+ unsigned getGPRCalleeSavedArea2Size() const { return GPRCS2Size; }
+ unsigned getDPRCalleeSavedAreaSize() const { return DPRCSSize; }
+
+ void setGPRCalleeSavedArea1Size(unsigned s) { GPRCS1Size = s; }
+ void setGPRCalleeSavedArea2Size(unsigned s) { GPRCS2Size = s; }
+ void setDPRCalleeSavedAreaSize(unsigned s) { DPRCSSize = s; }
+
+ unsigned getArgumentStackSize() const { return ArgumentStackSize; }
+ void setArgumentStackSize(unsigned size) { ArgumentStackSize = size; }
+
+ unsigned createJumpTableUId() {
+ return JumpTableUId++;
+ }
+
+ unsigned getNumJumpTables() const {
+ return JumpTableUId;
+ }
+
+ void initPICLabelUId(unsigned UId) {
+ PICLabelUId = UId;
+ }
+
+ unsigned getNumPICLabels() const {
+ return PICLabelUId;
+ }
+
+ unsigned createPICLabelUId() {
+ return PICLabelUId++;
+ }
+
+ int getVarArgsFrameIndex() const { return VarArgsFrameIndex; }
+ void setVarArgsFrameIndex(int Index) { VarArgsFrameIndex = Index; }
+
+ bool hasITBlocks() const { return HasITBlocks; }
+ void setHasITBlocks(bool h) { HasITBlocks = h; }
+
+ unsigned getGlobalBaseReg() const { return GlobalBaseReg; }
+ void setGlobalBaseReg(unsigned Reg) { GlobalBaseReg = Reg; }
+
+ void recordCPEClone(unsigned CPIdx, unsigned CPCloneIdx) {
+ if (!CPEClones.insert(std::make_pair(CPCloneIdx, CPIdx)).second)
+ llvm_unreachable("Duplicate entries!");
+ }
+
+ unsigned getOriginalCPIdx(unsigned CloneIdx) const {
+ DenseMap<unsigned, unsigned>::const_iterator I = CPEClones.find(CloneIdx);
+ if (I != CPEClones.end())
+ return I->second;
+ else
+ return -1U;
+ }
+
+ DenseMap<const MachineBasicBlock*, unsigned>::iterator getCoalescedWeight(
+ MachineBasicBlock* MBB) {
+ auto It = CoalescedWeights.find(MBB);
+ if (It == CoalescedWeights.end()) {
+ It = CoalescedWeights.insert(std::make_pair(MBB, 0)).first;
+ }
+ return It;
+ }
+};
+} // End llvm namespace
+
+#endif // ARMMACHINEFUNCTIONINFO_H
diff --git a/contrib/llvm/lib/Target/ARM/ARMOptimizeBarriersPass.cpp b/contrib/llvm/lib/Target/ARM/ARMOptimizeBarriersPass.cpp
new file mode 100644
index 0000000..2a49255
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMOptimizeBarriersPass.cpp
@@ -0,0 +1,101 @@
+//===-- ARMOptimizeBarriersPass - two DMBs without a memory access in between,
+//removed one -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===------------------------------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMInstrInfo.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "double barriers"
+
+STATISTIC(NumDMBsRemoved, "Number of DMBs removed");
+
+namespace {
+class ARMOptimizeBarriersPass : public MachineFunctionPass {
+public:
+ static char ID;
+ ARMOptimizeBarriersPass() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "optimise barriers pass";
+ }
+
+private:
+};
+char ARMOptimizeBarriersPass::ID = 0;
+}
+
+// Returns whether the instruction can safely move past a DMB instruction
+// The current implementation allows this iif MI does not have any possible
+// memory access
+static bool CanMovePastDMB(const MachineInstr *MI) {
+ return !(MI->mayLoad() ||
+ MI->mayStore() ||
+ MI->hasUnmodeledSideEffects() ||
+ MI->isCall() ||
+ MI->isReturn());
+}
+
+bool ARMOptimizeBarriersPass::runOnMachineFunction(MachineFunction &MF) {
+ // Vector to store the DMBs we will remove after the first iteration
+ std::vector<MachineInstr *> ToRemove;
+ // DMBType is the Imm value of the first operand. It determines whether it's a
+ // DMB ish, dmb sy, dmb osh, etc
+ int64_t DMBType = -1;
+
+ // Find a dmb. If we can move it until the next dmb, tag the second one for
+ // removal
+ for (auto &MBB : MF) {
+ // Will be true when we have seen a DMB, and not seen any instruction since
+ // that cannot move past a DMB
+ bool IsRemovableNextDMB = false;
+ for (auto &MI : MBB) {
+ if (MI.getOpcode() == ARM::DMB) {
+ if (IsRemovableNextDMB) {
+ // If the Imm of this DMB is the same as that of the last DMB, we can
+ // tag this second DMB for removal
+ if (MI.getOperand(0).getImm() == DMBType) {
+ ToRemove.push_back(&MI);
+ } else {
+ // If it has a different DMBType, we cannot remove it, but will scan
+ // for the next DMB, recording this DMB's type as last seen DMB type
+ DMBType = MI.getOperand(0).getImm();
+ }
+ } else {
+ // After we see a DMB, a next one is removable
+ IsRemovableNextDMB = true;
+ DMBType = MI.getOperand(0).getImm();
+ }
+ } else if (!CanMovePastDMB(&MI)) {
+ // If we find an instruction unable to pass past a DMB, a next DMB is
+ // not removable
+ IsRemovableNextDMB = false;
+ }
+ }
+ }
+ // Remove the tagged DMB
+ for (auto MI : ToRemove) {
+ MI->eraseFromParent();
+ ++NumDMBsRemoved;
+ }
+
+ return NumDMBsRemoved > 0;
+}
+
+/// createARMOptimizeBarriersPass - Returns an instance of the remove double
+/// barriers
+/// pass.
+FunctionPass *llvm::createARMOptimizeBarriersPass() {
+ return new ARMOptimizeBarriersPass();
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMPerfectShuffle.h b/contrib/llvm/lib/Target/ARM/ARMPerfectShuffle.h
new file mode 100644
index 0000000..efa22fb
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMPerfectShuffle.h
@@ -0,0 +1,6586 @@
+//===-- ARMPerfectShuffle.h - NEON Perfect Shuffle Table --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file, which was autogenerated by llvm-PerfectShuffle, contains data
+// for the optimal way to build a perfect shuffle using neon instructions.
+//
+//===----------------------------------------------------------------------===//
+
+// 31 entries have cost 0
+// 242 entries have cost 1
+// 1447 entries have cost 2
+// 3602 entries have cost 3
+// 1237 entries have cost 4
+// 2 entries have cost 5
+
+// This table is 6561*4 = 26244 bytes in size.
+static const unsigned PerfectShuffleTable[6561+1] = {
+ 135053414U, // <0,0,0,0>: Cost 1 vdup0 LHS
+ 1543503974U, // <0,0,0,1>: Cost 2 vext2 <0,0,0,0>, LHS
+ 2618572962U, // <0,0,0,2>: Cost 3 vext2 <0,2,0,0>, <0,2,0,0>
+ 2568054923U, // <0,0,0,3>: Cost 3 vext1 <3,0,0,0>, <3,0,0,0>
+ 1476398390U, // <0,0,0,4>: Cost 2 vext1 <0,0,0,0>, RHS
+ 2550140624U, // <0,0,0,5>: Cost 3 vext1 <0,0,0,0>, <5,1,7,3>
+ 2550141434U, // <0,0,0,6>: Cost 3 vext1 <0,0,0,0>, <6,2,7,3>
+ 2591945711U, // <0,0,0,7>: Cost 3 vext1 <7,0,0,0>, <7,0,0,0>
+ 135053414U, // <0,0,0,u>: Cost 1 vdup0 LHS
+ 2886516736U, // <0,0,1,0>: Cost 3 vzipl LHS, <0,0,0,0>
+ 1812775014U, // <0,0,1,1>: Cost 2 vzipl LHS, LHS
+ 1618133094U, // <0,0,1,2>: Cost 2 vext3 <1,2,3,0>, LHS
+ 2625209292U, // <0,0,1,3>: Cost 3 vext2 <1,3,0,0>, <1,3,0,0>
+ 2886558034U, // <0,0,1,4>: Cost 3 vzipl LHS, <0,4,1,5>
+ 2617246864U, // <0,0,1,5>: Cost 3 vext2 <0,0,0,0>, <1,5,3,7>
+ 3659723031U, // <0,0,1,6>: Cost 4 vext1 <6,0,0,1>, <6,0,0,1>
+ 2591953904U, // <0,0,1,7>: Cost 3 vext1 <7,0,0,1>, <7,0,0,1>
+ 1812775581U, // <0,0,1,u>: Cost 2 vzipl LHS, LHS
+ 3020734464U, // <0,0,2,0>: Cost 3 vtrnl LHS, <0,0,0,0>
+ 3020734474U, // <0,0,2,1>: Cost 3 vtrnl LHS, <0,0,1,1>
+ 1946992742U, // <0,0,2,2>: Cost 2 vtrnl LHS, LHS
+ 2631181989U, // <0,0,2,3>: Cost 3 vext2 <2,3,0,0>, <2,3,0,0>
+ 3020734668U, // <0,0,2,4>: Cost 3 vtrnl LHS, <0,2,4,6>
+ 3826550569U, // <0,0,2,5>: Cost 4 vuzpl <0,2,0,2>, <2,4,5,6>
+ 2617247674U, // <0,0,2,6>: Cost 3 vext2 <0,0,0,0>, <2,6,3,7>
+ 2591962097U, // <0,0,2,7>: Cost 3 vext1 <7,0,0,2>, <7,0,0,2>
+ 1946992796U, // <0,0,2,u>: Cost 2 vtrnl LHS, LHS
+ 2635163787U, // <0,0,3,0>: Cost 3 vext2 <3,0,0,0>, <3,0,0,0>
+ 2686419196U, // <0,0,3,1>: Cost 3 vext3 <0,3,1,0>, <0,3,1,0>
+ 2686492933U, // <0,0,3,2>: Cost 3 vext3 <0,3,2,0>, <0,3,2,0>
+ 2617248156U, // <0,0,3,3>: Cost 3 vext2 <0,0,0,0>, <3,3,3,3>
+ 2617248258U, // <0,0,3,4>: Cost 3 vext2 <0,0,0,0>, <3,4,5,6>
+ 3826551298U, // <0,0,3,5>: Cost 4 vuzpl <0,2,0,2>, <3,4,5,6>
+ 3690990200U, // <0,0,3,6>: Cost 4 vext2 <0,0,0,0>, <3,6,0,7>
+ 3713551042U, // <0,0,3,7>: Cost 4 vext2 <3,7,0,0>, <3,7,0,0>
+ 2635163787U, // <0,0,3,u>: Cost 3 vext2 <3,0,0,0>, <3,0,0,0>
+ 2617248658U, // <0,0,4,0>: Cost 3 vext2 <0,0,0,0>, <4,0,5,1>
+ 2888450150U, // <0,0,4,1>: Cost 3 vzipl <0,4,1,5>, LHS
+ 3021570150U, // <0,0,4,2>: Cost 3 vtrnl <0,2,4,6>, LHS
+ 3641829519U, // <0,0,4,3>: Cost 4 vext1 <3,0,0,4>, <3,0,0,4>
+ 3021570252U, // <0,0,4,4>: Cost 3 vtrnl <0,2,4,6>, <0,2,4,6>
+ 1543507254U, // <0,0,4,5>: Cost 2 vext2 <0,0,0,0>, RHS
+ 2752810294U, // <0,0,4,6>: Cost 3 vuzpl <0,2,0,2>, RHS
+ 3786998152U, // <0,0,4,7>: Cost 4 vext3 <4,7,5,0>, <0,4,7,5>
+ 1543507497U, // <0,0,4,u>: Cost 2 vext2 <0,0,0,0>, RHS
+ 2684354972U, // <0,0,5,0>: Cost 3 vext3 <0,0,0,0>, <0,5,0,7>
+ 2617249488U, // <0,0,5,1>: Cost 3 vext2 <0,0,0,0>, <5,1,7,3>
+ 3765617070U, // <0,0,5,2>: Cost 4 vext3 <1,2,3,0>, <0,5,2,7>
+ 3635865780U, // <0,0,5,3>: Cost 4 vext1 <2,0,0,5>, <3,0,4,5>
+ 2617249734U, // <0,0,5,4>: Cost 3 vext2 <0,0,0,0>, <5,4,7,6>
+ 2617249796U, // <0,0,5,5>: Cost 3 vext2 <0,0,0,0>, <5,5,5,5>
+ 2718712274U, // <0,0,5,6>: Cost 3 vext3 <5,6,7,0>, <0,5,6,7>
+ 2617249960U, // <0,0,5,7>: Cost 3 vext2 <0,0,0,0>, <5,7,5,7>
+ 2720039396U, // <0,0,5,u>: Cost 3 vext3 <5,u,7,0>, <0,5,u,7>
+ 2684355053U, // <0,0,6,0>: Cost 3 vext3 <0,0,0,0>, <0,6,0,7>
+ 3963609190U, // <0,0,6,1>: Cost 4 vzipl <0,6,2,7>, LHS
+ 2617250298U, // <0,0,6,2>: Cost 3 vext2 <0,0,0,0>, <6,2,7,3>
+ 3796435464U, // <0,0,6,3>: Cost 4 vext3 <6,3,7,0>, <0,6,3,7>
+ 3659762998U, // <0,0,6,4>: Cost 4 vext1 <6,0,0,6>, RHS
+ 3659763810U, // <0,0,6,5>: Cost 4 vext1 <6,0,0,6>, <5,6,7,0>
+ 2617250616U, // <0,0,6,6>: Cost 3 vext2 <0,0,0,0>, <6,6,6,6>
+ 2657727309U, // <0,0,6,7>: Cost 3 vext2 <6,7,0,0>, <6,7,0,0>
+ 2658390942U, // <0,0,6,u>: Cost 3 vext2 <6,u,0,0>, <6,u,0,0>
+ 2659054575U, // <0,0,7,0>: Cost 3 vext2 <7,0,0,0>, <7,0,0,0>
+ 3635880854U, // <0,0,7,1>: Cost 4 vext1 <2,0,0,7>, <1,2,3,0>
+ 3635881401U, // <0,0,7,2>: Cost 4 vext1 <2,0,0,7>, <2,0,0,7>
+ 3734787298U, // <0,0,7,3>: Cost 4 vext2 <7,3,0,0>, <7,3,0,0>
+ 2617251174U, // <0,0,7,4>: Cost 3 vext2 <0,0,0,0>, <7,4,5,6>
+ 3659772002U, // <0,0,7,5>: Cost 4 vext1 <6,0,0,7>, <5,6,7,0>
+ 3659772189U, // <0,0,7,6>: Cost 4 vext1 <6,0,0,7>, <6,0,0,7>
+ 2617251436U, // <0,0,7,7>: Cost 3 vext2 <0,0,0,0>, <7,7,7,7>
+ 2659054575U, // <0,0,7,u>: Cost 3 vext2 <7,0,0,0>, <7,0,0,0>
+ 135053414U, // <0,0,u,0>: Cost 1 vdup0 LHS
+ 1817419878U, // <0,0,u,1>: Cost 2 vzipl LHS, LHS
+ 1947435110U, // <0,0,u,2>: Cost 2 vtrnl LHS, LHS
+ 2568120467U, // <0,0,u,3>: Cost 3 vext1 <3,0,0,u>, <3,0,0,u>
+ 1476463926U, // <0,0,u,4>: Cost 2 vext1 <0,0,0,u>, RHS
+ 1543510170U, // <0,0,u,5>: Cost 2 vext2 <0,0,0,0>, RHS
+ 2752813210U, // <0,0,u,6>: Cost 3 vuzpl <0,2,0,2>, RHS
+ 2592011255U, // <0,0,u,7>: Cost 3 vext1 <7,0,0,u>, <7,0,0,u>
+ 135053414U, // <0,0,u,u>: Cost 1 vdup0 LHS
+ 2618581002U, // <0,1,0,0>: Cost 3 vext2 <0,2,0,1>, <0,0,1,1>
+ 1557446758U, // <0,1,0,1>: Cost 2 vext2 <2,3,0,1>, LHS
+ 2618581155U, // <0,1,0,2>: Cost 3 vext2 <0,2,0,1>, <0,2,0,1>
+ 2690548468U, // <0,1,0,3>: Cost 3 vext3 <1,0,3,0>, <1,0,3,0>
+ 2626543954U, // <0,1,0,4>: Cost 3 vext2 <1,5,0,1>, <0,4,1,5>
+ 4094985216U, // <0,1,0,5>: Cost 4 vtrnl <0,2,0,2>, <1,3,5,7>
+ 2592019278U, // <0,1,0,6>: Cost 3 vext1 <7,0,1,0>, <6,7,0,1>
+ 2592019448U, // <0,1,0,7>: Cost 3 vext1 <7,0,1,0>, <7,0,1,0>
+ 1557447325U, // <0,1,0,u>: Cost 2 vext2 <2,3,0,1>, LHS
+ 1476476938U, // <0,1,1,0>: Cost 2 vext1 <0,0,1,1>, <0,0,1,1>
+ 2886517556U, // <0,1,1,1>: Cost 3 vzipl LHS, <1,1,1,1>
+ 2886517654U, // <0,1,1,2>: Cost 3 vzipl LHS, <1,2,3,0>
+ 2886517720U, // <0,1,1,3>: Cost 3 vzipl LHS, <1,3,1,3>
+ 1476480310U, // <0,1,1,4>: Cost 2 vext1 <0,0,1,1>, RHS
+ 2886558864U, // <0,1,1,5>: Cost 3 vzipl LHS, <1,5,3,7>
+ 2550223354U, // <0,1,1,6>: Cost 3 vext1 <0,0,1,1>, <6,2,7,3>
+ 2550223856U, // <0,1,1,7>: Cost 3 vext1 <0,0,1,1>, <7,0,0,1>
+ 1476482862U, // <0,1,1,u>: Cost 2 vext1 <0,0,1,1>, LHS
+ 1494401126U, // <0,1,2,0>: Cost 2 vext1 <3,0,1,2>, LHS
+ 3020735284U, // <0,1,2,1>: Cost 3 vtrnl LHS, <1,1,1,1>
+ 2562172349U, // <0,1,2,2>: Cost 3 vext1 <2,0,1,2>, <2,0,1,2>
+ 835584U, // <0,1,2,3>: Cost 0 copy LHS
+ 1494404406U, // <0,1,2,4>: Cost 2 vext1 <3,0,1,2>, RHS
+ 3020735488U, // <0,1,2,5>: Cost 3 vtrnl LHS, <1,3,5,7>
+ 2631190458U, // <0,1,2,6>: Cost 3 vext2 <2,3,0,1>, <2,6,3,7>
+ 1518294010U, // <0,1,2,7>: Cost 2 vext1 <7,0,1,2>, <7,0,1,2>
+ 835584U, // <0,1,2,u>: Cost 0 copy LHS
+ 2692318156U, // <0,1,3,0>: Cost 3 vext3 <1,3,0,0>, <1,3,0,0>
+ 2691875800U, // <0,1,3,1>: Cost 3 vext3 <1,2,3,0>, <1,3,1,3>
+ 2691875806U, // <0,1,3,2>: Cost 3 vext3 <1,2,3,0>, <1,3,2,0>
+ 2692539367U, // <0,1,3,3>: Cost 3 vext3 <1,3,3,0>, <1,3,3,0>
+ 2562182454U, // <0,1,3,4>: Cost 3 vext1 <2,0,1,3>, RHS
+ 2691875840U, // <0,1,3,5>: Cost 3 vext3 <1,2,3,0>, <1,3,5,7>
+ 2692760578U, // <0,1,3,6>: Cost 3 vext3 <1,3,6,0>, <1,3,6,0>
+ 2639817411U, // <0,1,3,7>: Cost 3 vext2 <3,7,0,1>, <3,7,0,1>
+ 2691875863U, // <0,1,3,u>: Cost 3 vext3 <1,2,3,0>, <1,3,u,3>
+ 2568159334U, // <0,1,4,0>: Cost 3 vext1 <3,0,1,4>, LHS
+ 4095312692U, // <0,1,4,1>: Cost 4 vtrnl <0,2,4,6>, <1,1,1,1>
+ 2568160934U, // <0,1,4,2>: Cost 3 vext1 <3,0,1,4>, <2,3,0,1>
+ 2568161432U, // <0,1,4,3>: Cost 3 vext1 <3,0,1,4>, <3,0,1,4>
+ 2568162614U, // <0,1,4,4>: Cost 3 vext1 <3,0,1,4>, RHS
+ 1557450038U, // <0,1,4,5>: Cost 2 vext2 <2,3,0,1>, RHS
+ 2754235702U, // <0,1,4,6>: Cost 3 vuzpl <0,4,1,5>, RHS
+ 2592052220U, // <0,1,4,7>: Cost 3 vext1 <7,0,1,4>, <7,0,1,4>
+ 1557450281U, // <0,1,4,u>: Cost 2 vext2 <2,3,0,1>, RHS
+ 3765617775U, // <0,1,5,0>: Cost 4 vext3 <1,2,3,0>, <1,5,0,1>
+ 2647781007U, // <0,1,5,1>: Cost 3 vext2 <5,1,0,1>, <5,1,0,1>
+ 3704934138U, // <0,1,5,2>: Cost 4 vext2 <2,3,0,1>, <5,2,3,0>
+ 2691875984U, // <0,1,5,3>: Cost 3 vext3 <1,2,3,0>, <1,5,3,7>
+ 2657734598U, // <0,1,5,4>: Cost 3 vext2 <6,7,0,1>, <5,4,7,6>
+ 2650435539U, // <0,1,5,5>: Cost 3 vext2 <5,5,0,1>, <5,5,0,1>
+ 2651099172U, // <0,1,5,6>: Cost 3 vext2 <5,6,0,1>, <5,6,0,1>
+ 2651762805U, // <0,1,5,7>: Cost 3 vext2 <5,7,0,1>, <5,7,0,1>
+ 2691876029U, // <0,1,5,u>: Cost 3 vext3 <1,2,3,0>, <1,5,u,7>
+ 2592063590U, // <0,1,6,0>: Cost 3 vext1 <7,0,1,6>, LHS
+ 3765617871U, // <0,1,6,1>: Cost 4 vext3 <1,2,3,0>, <1,6,1,7>
+ 2654417337U, // <0,1,6,2>: Cost 3 vext2 <6,2,0,1>, <6,2,0,1>
+ 3765617889U, // <0,1,6,3>: Cost 4 vext3 <1,2,3,0>, <1,6,3,7>
+ 2592066870U, // <0,1,6,4>: Cost 3 vext1 <7,0,1,6>, RHS
+ 3765617907U, // <0,1,6,5>: Cost 4 vext3 <1,2,3,0>, <1,6,5,7>
+ 2657071869U, // <0,1,6,6>: Cost 3 vext2 <6,6,0,1>, <6,6,0,1>
+ 1583993678U, // <0,1,6,7>: Cost 2 vext2 <6,7,0,1>, <6,7,0,1>
+ 1584657311U, // <0,1,6,u>: Cost 2 vext2 <6,u,0,1>, <6,u,0,1>
+ 2657735672U, // <0,1,7,0>: Cost 3 vext2 <6,7,0,1>, <7,0,1,0>
+ 2657735808U, // <0,1,7,1>: Cost 3 vext2 <6,7,0,1>, <7,1,7,1>
+ 2631193772U, // <0,1,7,2>: Cost 3 vext2 <2,3,0,1>, <7,2,3,0>
+ 2661053667U, // <0,1,7,3>: Cost 3 vext2 <7,3,0,1>, <7,3,0,1>
+ 2657736038U, // <0,1,7,4>: Cost 3 vext2 <6,7,0,1>, <7,4,5,6>
+ 3721524621U, // <0,1,7,5>: Cost 4 vext2 <5,1,0,1>, <7,5,1,0>
+ 2657736158U, // <0,1,7,6>: Cost 3 vext2 <6,7,0,1>, <7,6,1,0>
+ 2657736300U, // <0,1,7,7>: Cost 3 vext2 <6,7,0,1>, <7,7,7,7>
+ 2657736322U, // <0,1,7,u>: Cost 3 vext2 <6,7,0,1>, <7,u,1,2>
+ 1494450278U, // <0,1,u,0>: Cost 2 vext1 <3,0,1,u>, LHS
+ 1557452590U, // <0,1,u,1>: Cost 2 vext2 <2,3,0,1>, LHS
+ 2754238254U, // <0,1,u,2>: Cost 3 vuzpl <0,4,1,5>, LHS
+ 835584U, // <0,1,u,3>: Cost 0 copy LHS
+ 1494453558U, // <0,1,u,4>: Cost 2 vext1 <3,0,1,u>, RHS
+ 1557452954U, // <0,1,u,5>: Cost 2 vext2 <2,3,0,1>, RHS
+ 2754238618U, // <0,1,u,6>: Cost 3 vuzpl <0,4,1,5>, RHS
+ 1518343168U, // <0,1,u,7>: Cost 2 vext1 <7,0,1,u>, <7,0,1,u>
+ 835584U, // <0,1,u,u>: Cost 0 copy LHS
+ 2752299008U, // <0,2,0,0>: Cost 3 vuzpl LHS, <0,0,0,0>
+ 1544847462U, // <0,2,0,1>: Cost 2 vext2 <0,2,0,2>, LHS
+ 1678557286U, // <0,2,0,2>: Cost 2 vuzpl LHS, LHS
+ 2696521165U, // <0,2,0,3>: Cost 3 vext3 <2,0,3,0>, <2,0,3,0>
+ 2752340172U, // <0,2,0,4>: Cost 3 vuzpl LHS, <0,2,4,6>
+ 2691876326U, // <0,2,0,5>: Cost 3 vext3 <1,2,3,0>, <2,0,5,7>
+ 2618589695U, // <0,2,0,6>: Cost 3 vext2 <0,2,0,2>, <0,6,2,7>
+ 2592093185U, // <0,2,0,7>: Cost 3 vext1 <7,0,2,0>, <7,0,2,0>
+ 1678557340U, // <0,2,0,u>: Cost 2 vuzpl LHS, LHS
+ 2618589942U, // <0,2,1,0>: Cost 3 vext2 <0,2,0,2>, <1,0,3,2>
+ 2752299828U, // <0,2,1,1>: Cost 3 vuzpl LHS, <1,1,1,1>
+ 2886518376U, // <0,2,1,2>: Cost 3 vzipl LHS, <2,2,2,2>
+ 2752299766U, // <0,2,1,3>: Cost 3 vuzpl LHS, <1,0,3,2>
+ 2550295862U, // <0,2,1,4>: Cost 3 vext1 <0,0,2,1>, RHS
+ 2752340992U, // <0,2,1,5>: Cost 3 vuzpl LHS, <1,3,5,7>
+ 2886559674U, // <0,2,1,6>: Cost 3 vzipl LHS, <2,6,3,7>
+ 3934208106U, // <0,2,1,7>: Cost 4 vuzpr <7,0,1,2>, <0,1,2,7>
+ 2752340771U, // <0,2,1,u>: Cost 3 vuzpl LHS, <1,0,u,2>
+ 1476558868U, // <0,2,2,0>: Cost 2 vext1 <0,0,2,2>, <0,0,2,2>
+ 2226628029U, // <0,2,2,1>: Cost 3 vrev <2,0,1,2>
+ 2752300648U, // <0,2,2,2>: Cost 3 vuzpl LHS, <2,2,2,2>
+ 3020736114U, // <0,2,2,3>: Cost 3 vtrnl LHS, <2,2,3,3>
+ 1476562230U, // <0,2,2,4>: Cost 2 vext1 <0,0,2,2>, RHS
+ 2550304464U, // <0,2,2,5>: Cost 3 vext1 <0,0,2,2>, <5,1,7,3>
+ 2618591162U, // <0,2,2,6>: Cost 3 vext2 <0,2,0,2>, <2,6,3,7>
+ 2550305777U, // <0,2,2,7>: Cost 3 vext1 <0,0,2,2>, <7,0,0,2>
+ 1476564782U, // <0,2,2,u>: Cost 2 vext1 <0,0,2,2>, LHS
+ 2618591382U, // <0,2,3,0>: Cost 3 vext2 <0,2,0,2>, <3,0,1,2>
+ 2752301206U, // <0,2,3,1>: Cost 3 vuzpl LHS, <3,0,1,2>
+ 3826043121U, // <0,2,3,2>: Cost 4 vuzpl LHS, <3,1,2,3>
+ 2752301468U, // <0,2,3,3>: Cost 3 vuzpl LHS, <3,3,3,3>
+ 2618591746U, // <0,2,3,4>: Cost 3 vext2 <0,2,0,2>, <3,4,5,6>
+ 2752301570U, // <0,2,3,5>: Cost 3 vuzpl LHS, <3,4,5,6>
+ 3830688102U, // <0,2,3,6>: Cost 4 vuzpl LHS, <3,2,6,3>
+ 2698807012U, // <0,2,3,7>: Cost 3 vext3 <2,3,7,0>, <2,3,7,0>
+ 2752301269U, // <0,2,3,u>: Cost 3 vuzpl LHS, <3,0,u,2>
+ 2562261094U, // <0,2,4,0>: Cost 3 vext1 <2,0,2,4>, LHS
+ 4095313828U, // <0,2,4,1>: Cost 4 vtrnl <0,2,4,6>, <2,6,1,3>
+ 2226718152U, // <0,2,4,2>: Cost 3 vrev <2,0,2,4>
+ 2568235169U, // <0,2,4,3>: Cost 3 vext1 <3,0,2,4>, <3,0,2,4>
+ 2562264374U, // <0,2,4,4>: Cost 3 vext1 <2,0,2,4>, RHS
+ 1544850742U, // <0,2,4,5>: Cost 2 vext2 <0,2,0,2>, RHS
+ 1678560566U, // <0,2,4,6>: Cost 2 vuzpl LHS, RHS
+ 2592125957U, // <0,2,4,7>: Cost 3 vext1 <7,0,2,4>, <7,0,2,4>
+ 1678560584U, // <0,2,4,u>: Cost 2 vuzpl LHS, RHS
+ 2691876686U, // <0,2,5,0>: Cost 3 vext3 <1,2,3,0>, <2,5,0,7>
+ 2618592976U, // <0,2,5,1>: Cost 3 vext2 <0,2,0,2>, <5,1,7,3>
+ 3765618528U, // <0,2,5,2>: Cost 4 vext3 <1,2,3,0>, <2,5,2,7>
+ 3765618536U, // <0,2,5,3>: Cost 4 vext3 <1,2,3,0>, <2,5,3,6>
+ 2618593222U, // <0,2,5,4>: Cost 3 vext2 <0,2,0,2>, <5,4,7,6>
+ 2752303108U, // <0,2,5,5>: Cost 3 vuzpl LHS, <5,5,5,5>
+ 2618593378U, // <0,2,5,6>: Cost 3 vext2 <0,2,0,2>, <5,6,7,0>
+ 2824785206U, // <0,2,5,7>: Cost 3 vuzpr <1,0,3,2>, RHS
+ 2824785207U, // <0,2,5,u>: Cost 3 vuzpr <1,0,3,2>, RHS
+ 2752303950U, // <0,2,6,0>: Cost 3 vuzpl LHS, <6,7,0,1>
+ 3830690081U, // <0,2,6,1>: Cost 4 vuzpl LHS, <6,0,1,2>
+ 2618593786U, // <0,2,6,2>: Cost 3 vext2 <0,2,0,2>, <6,2,7,3>
+ 2691876794U, // <0,2,6,3>: Cost 3 vext3 <1,2,3,0>, <2,6,3,7>
+ 2752303990U, // <0,2,6,4>: Cost 3 vuzpl LHS, <6,7,4,5>
+ 3830690445U, // <0,2,6,5>: Cost 4 vuzpl LHS, <6,4,5,6>
+ 2752303928U, // <0,2,6,6>: Cost 3 vuzpl LHS, <6,6,6,6>
+ 2657743695U, // <0,2,6,7>: Cost 3 vext2 <6,7,0,2>, <6,7,0,2>
+ 2691876839U, // <0,2,6,u>: Cost 3 vext3 <1,2,3,0>, <2,6,u,7>
+ 2659070961U, // <0,2,7,0>: Cost 3 vext2 <7,0,0,2>, <7,0,0,2>
+ 2659734594U, // <0,2,7,1>: Cost 3 vext2 <7,1,0,2>, <7,1,0,2>
+ 3734140051U, // <0,2,7,2>: Cost 4 vext2 <7,2,0,2>, <7,2,0,2>
+ 2701166596U, // <0,2,7,3>: Cost 3 vext3 <2,7,3,0>, <2,7,3,0>
+ 2662389094U, // <0,2,7,4>: Cost 3 vext2 <7,5,0,2>, <7,4,5,6>
+ 2662389126U, // <0,2,7,5>: Cost 3 vext2 <7,5,0,2>, <7,5,0,2>
+ 3736794583U, // <0,2,7,6>: Cost 4 vext2 <7,6,0,2>, <7,6,0,2>
+ 2752304748U, // <0,2,7,7>: Cost 3 vuzpl LHS, <7,7,7,7>
+ 2659070961U, // <0,2,7,u>: Cost 3 vext2 <7,0,0,2>, <7,0,0,2>
+ 1476608026U, // <0,2,u,0>: Cost 2 vext1 <0,0,2,u>, <0,0,2,u>
+ 1544853294U, // <0,2,u,1>: Cost 2 vext2 <0,2,0,2>, LHS
+ 1678563118U, // <0,2,u,2>: Cost 2 vuzpl LHS, LHS
+ 3021178482U, // <0,2,u,3>: Cost 3 vtrnl LHS, <2,2,3,3>
+ 1476611382U, // <0,2,u,4>: Cost 2 vext1 <0,0,2,u>, RHS
+ 1544853658U, // <0,2,u,5>: Cost 2 vext2 <0,2,0,2>, RHS
+ 1678563482U, // <0,2,u,6>: Cost 2 vuzpl LHS, RHS
+ 2824785449U, // <0,2,u,7>: Cost 3 vuzpr <1,0,3,2>, RHS
+ 1678563172U, // <0,2,u,u>: Cost 2 vuzpl LHS, LHS
+ 2556329984U, // <0,3,0,0>: Cost 3 vext1 <1,0,3,0>, <0,0,0,0>
+ 2686421142U, // <0,3,0,1>: Cost 3 vext3 <0,3,1,0>, <3,0,1,2>
+ 2562303437U, // <0,3,0,2>: Cost 3 vext1 <2,0,3,0>, <2,0,3,0>
+ 4094986652U, // <0,3,0,3>: Cost 4 vtrnl <0,2,0,2>, <3,3,3,3>
+ 2556333366U, // <0,3,0,4>: Cost 3 vext1 <1,0,3,0>, RHS
+ 4094986754U, // <0,3,0,5>: Cost 4 vtrnl <0,2,0,2>, <3,4,5,6>
+ 3798796488U, // <0,3,0,6>: Cost 4 vext3 <6,7,3,0>, <3,0,6,7>
+ 3776530634U, // <0,3,0,7>: Cost 4 vext3 <3,0,7,0>, <3,0,7,0>
+ 2556335918U, // <0,3,0,u>: Cost 3 vext1 <1,0,3,0>, LHS
+ 2886518934U, // <0,3,1,0>: Cost 3 vzipl LHS, <3,0,1,2>
+ 2556338933U, // <0,3,1,1>: Cost 3 vext1 <1,0,3,1>, <1,0,3,1>
+ 2691877105U, // <0,3,1,2>: Cost 3 vext3 <1,2,3,0>, <3,1,2,3>
+ 2886519196U, // <0,3,1,3>: Cost 3 vzipl LHS, <3,3,3,3>
+ 2886519298U, // <0,3,1,4>: Cost 3 vzipl LHS, <3,4,5,6>
+ 4095740418U, // <0,3,1,5>: Cost 4 vtrnl <0,3,1,4>, <3,4,5,6>
+ 3659944242U, // <0,3,1,6>: Cost 4 vext1 <6,0,3,1>, <6,0,3,1>
+ 3769600286U, // <0,3,1,7>: Cost 4 vext3 <1,u,3,0>, <3,1,7,3>
+ 2886519582U, // <0,3,1,u>: Cost 3 vzipl LHS, <3,u,1,2>
+ 1482604646U, // <0,3,2,0>: Cost 2 vext1 <1,0,3,2>, LHS
+ 1482605302U, // <0,3,2,1>: Cost 2 vext1 <1,0,3,2>, <1,0,3,2>
+ 2556348008U, // <0,3,2,2>: Cost 3 vext1 <1,0,3,2>, <2,2,2,2>
+ 3020736924U, // <0,3,2,3>: Cost 3 vtrnl LHS, <3,3,3,3>
+ 1482607926U, // <0,3,2,4>: Cost 2 vext1 <1,0,3,2>, RHS
+ 3020737026U, // <0,3,2,5>: Cost 3 vtrnl LHS, <3,4,5,6>
+ 2598154746U, // <0,3,2,6>: Cost 3 vext1 <u,0,3,2>, <6,2,7,3>
+ 2598155258U, // <0,3,2,7>: Cost 3 vext1 <u,0,3,2>, <7,0,1,2>
+ 1482610478U, // <0,3,2,u>: Cost 2 vext1 <1,0,3,2>, LHS
+ 3692341398U, // <0,3,3,0>: Cost 4 vext2 <0,2,0,3>, <3,0,1,2>
+ 2635851999U, // <0,3,3,1>: Cost 3 vext2 <3,1,0,3>, <3,1,0,3>
+ 3636069840U, // <0,3,3,2>: Cost 4 vext1 <2,0,3,3>, <2,0,3,3>
+ 2691877276U, // <0,3,3,3>: Cost 3 vext3 <1,2,3,0>, <3,3,3,3>
+ 3961522690U, // <0,3,3,4>: Cost 4 vzipl <0,3,1,4>, <3,4,5,6>
+ 3826797058U, // <0,3,3,5>: Cost 4 vuzpl <0,2,3,5>, <3,4,5,6>
+ 3703622282U, // <0,3,3,6>: Cost 4 vext2 <2,1,0,3>, <3,6,2,7>
+ 3769600452U, // <0,3,3,7>: Cost 4 vext3 <1,u,3,0>, <3,3,7,7>
+ 2640497430U, // <0,3,3,u>: Cost 3 vext2 <3,u,0,3>, <3,u,0,3>
+ 3962194070U, // <0,3,4,0>: Cost 4 vzipl <0,4,1,5>, <3,0,1,2>
+ 2232617112U, // <0,3,4,1>: Cost 3 vrev <3,0,1,4>
+ 2232690849U, // <0,3,4,2>: Cost 3 vrev <3,0,2,4>
+ 4095314332U, // <0,3,4,3>: Cost 4 vtrnl <0,2,4,6>, <3,3,3,3>
+ 3962194434U, // <0,3,4,4>: Cost 4 vzipl <0,4,1,5>, <3,4,5,6>
+ 2691877378U, // <0,3,4,5>: Cost 3 vext3 <1,2,3,0>, <3,4,5,6>
+ 3826765110U, // <0,3,4,6>: Cost 4 vuzpl <0,2,3,1>, RHS
+ 3665941518U, // <0,3,4,7>: Cost 4 vext1 <7,0,3,4>, <7,0,3,4>
+ 2691877405U, // <0,3,4,u>: Cost 3 vext3 <1,2,3,0>, <3,4,u,6>
+ 3630112870U, // <0,3,5,0>: Cost 4 vext1 <1,0,3,5>, LHS
+ 3630113526U, // <0,3,5,1>: Cost 4 vext1 <1,0,3,5>, <1,0,3,2>
+ 4035199734U, // <0,3,5,2>: Cost 4 vzipr <1,4,0,5>, <1,0,3,2>
+ 3769600578U, // <0,3,5,3>: Cost 4 vext3 <1,u,3,0>, <3,5,3,7>
+ 2232846516U, // <0,3,5,4>: Cost 3 vrev <3,0,4,5>
+ 3779037780U, // <0,3,5,5>: Cost 4 vext3 <3,4,5,0>, <3,5,5,7>
+ 2718714461U, // <0,3,5,6>: Cost 3 vext3 <5,6,7,0>, <3,5,6,7>
+ 2706106975U, // <0,3,5,7>: Cost 3 vext3 <3,5,7,0>, <3,5,7,0>
+ 2233141464U, // <0,3,5,u>: Cost 3 vrev <3,0,u,5>
+ 2691877496U, // <0,3,6,0>: Cost 3 vext3 <1,2,3,0>, <3,6,0,7>
+ 3727511914U, // <0,3,6,1>: Cost 4 vext2 <6,1,0,3>, <6,1,0,3>
+ 3765619338U, // <0,3,6,2>: Cost 4 vext3 <1,2,3,0>, <3,6,2,7>
+ 3765619347U, // <0,3,6,3>: Cost 4 vext3 <1,2,3,0>, <3,6,3,7>
+ 3765987996U, // <0,3,6,4>: Cost 4 vext3 <1,2,u,0>, <3,6,4,7>
+ 3306670270U, // <0,3,6,5>: Cost 4 vrev <3,0,5,6>
+ 3792456365U, // <0,3,6,6>: Cost 4 vext3 <5,6,7,0>, <3,6,6,6>
+ 2706770608U, // <0,3,6,7>: Cost 3 vext3 <3,6,7,0>, <3,6,7,0>
+ 2706844345U, // <0,3,6,u>: Cost 3 vext3 <3,6,u,0>, <3,6,u,0>
+ 3769600707U, // <0,3,7,0>: Cost 4 vext3 <1,u,3,0>, <3,7,0,1>
+ 2659742787U, // <0,3,7,1>: Cost 3 vext2 <7,1,0,3>, <7,1,0,3>
+ 3636102612U, // <0,3,7,2>: Cost 4 vext1 <2,0,3,7>, <2,0,3,7>
+ 3769600740U, // <0,3,7,3>: Cost 4 vext3 <1,u,3,0>, <3,7,3,7>
+ 3769600747U, // <0,3,7,4>: Cost 4 vext3 <1,u,3,0>, <3,7,4,5>
+ 3769600758U, // <0,3,7,5>: Cost 4 vext3 <1,u,3,0>, <3,7,5,7>
+ 3659993400U, // <0,3,7,6>: Cost 4 vext1 <6,0,3,7>, <6,0,3,7>
+ 3781176065U, // <0,3,7,7>: Cost 4 vext3 <3,7,7,0>, <3,7,7,0>
+ 2664388218U, // <0,3,7,u>: Cost 3 vext2 <7,u,0,3>, <7,u,0,3>
+ 1482653798U, // <0,3,u,0>: Cost 2 vext1 <1,0,3,u>, LHS
+ 1482654460U, // <0,3,u,1>: Cost 2 vext1 <1,0,3,u>, <1,0,3,u>
+ 2556397160U, // <0,3,u,2>: Cost 3 vext1 <1,0,3,u>, <2,2,2,2>
+ 3021179292U, // <0,3,u,3>: Cost 3 vtrnl LHS, <3,3,3,3>
+ 1482657078U, // <0,3,u,4>: Cost 2 vext1 <1,0,3,u>, RHS
+ 3021179394U, // <0,3,u,5>: Cost 3 vtrnl LHS, <3,4,5,6>
+ 2598203898U, // <0,3,u,6>: Cost 3 vext1 <u,0,3,u>, <6,2,7,3>
+ 2708097874U, // <0,3,u,7>: Cost 3 vext3 <3,u,7,0>, <3,u,7,0>
+ 1482659630U, // <0,3,u,u>: Cost 2 vext1 <1,0,3,u>, LHS
+ 2617278468U, // <0,4,0,0>: Cost 3 vext2 <0,0,0,4>, <0,0,0,4>
+ 2618605670U, // <0,4,0,1>: Cost 3 vext2 <0,2,0,4>, LHS
+ 2618605734U, // <0,4,0,2>: Cost 3 vext2 <0,2,0,4>, <0,2,0,4>
+ 3642091695U, // <0,4,0,3>: Cost 4 vext1 <3,0,4,0>, <3,0,4,0>
+ 2753134796U, // <0,4,0,4>: Cost 3 vuzpl <0,2,4,6>, <0,2,4,6>
+ 2718714770U, // <0,4,0,5>: Cost 3 vext3 <5,6,7,0>, <4,0,5,1>
+ 3021245750U, // <0,4,0,6>: Cost 3 vtrnl <0,2,0,2>, RHS
+ 3665982483U, // <0,4,0,7>: Cost 4 vext1 <7,0,4,0>, <7,0,4,0>
+ 3021245768U, // <0,4,0,u>: Cost 3 vtrnl <0,2,0,2>, RHS
+ 2568355942U, // <0,4,1,0>: Cost 3 vext1 <3,0,4,1>, LHS
+ 3692348212U, // <0,4,1,1>: Cost 4 vext2 <0,2,0,4>, <1,1,1,1>
+ 3692348310U, // <0,4,1,2>: Cost 4 vext2 <0,2,0,4>, <1,2,3,0>
+ 2568358064U, // <0,4,1,3>: Cost 3 vext1 <3,0,4,1>, <3,0,4,1>
+ 2568359222U, // <0,4,1,4>: Cost 3 vext1 <3,0,4,1>, RHS
+ 1812778294U, // <0,4,1,5>: Cost 2 vzipl LHS, RHS
+ 3022671158U, // <0,4,1,6>: Cost 3 vtrnl <0,4,1,5>, RHS
+ 2592248852U, // <0,4,1,7>: Cost 3 vext1 <7,0,4,1>, <7,0,4,1>
+ 1812778537U, // <0,4,1,u>: Cost 2 vzipl LHS, RHS
+ 2568364134U, // <0,4,2,0>: Cost 3 vext1 <3,0,4,2>, LHS
+ 2238573423U, // <0,4,2,1>: Cost 3 vrev <4,0,1,2>
+ 3692349032U, // <0,4,2,2>: Cost 4 vext2 <0,2,0,4>, <2,2,2,2>
+ 2631214761U, // <0,4,2,3>: Cost 3 vext2 <2,3,0,4>, <2,3,0,4>
+ 2568367414U, // <0,4,2,4>: Cost 3 vext1 <3,0,4,2>, RHS
+ 2887028022U, // <0,4,2,5>: Cost 3 vzipl <0,2,0,2>, RHS
+ 1946996022U, // <0,4,2,6>: Cost 2 vtrnl LHS, RHS
+ 2592257045U, // <0,4,2,7>: Cost 3 vext1 <7,0,4,2>, <7,0,4,2>
+ 1946996040U, // <0,4,2,u>: Cost 2 vtrnl LHS, RHS
+ 3692349590U, // <0,4,3,0>: Cost 4 vext2 <0,2,0,4>, <3,0,1,2>
+ 3826878614U, // <0,4,3,1>: Cost 4 vuzpl <0,2,4,6>, <3,0,1,2>
+ 3826878625U, // <0,4,3,2>: Cost 4 vuzpl <0,2,4,6>, <3,0,2,4>
+ 3692349852U, // <0,4,3,3>: Cost 4 vext2 <0,2,0,4>, <3,3,3,3>
+ 3692349954U, // <0,4,3,4>: Cost 4 vext2 <0,2,0,4>, <3,4,5,6>
+ 3826878978U, // <0,4,3,5>: Cost 4 vuzpl <0,2,4,6>, <3,4,5,6>
+ 4095200566U, // <0,4,3,6>: Cost 4 vtrnl <0,2,3,1>, RHS
+ 3713583814U, // <0,4,3,7>: Cost 4 vext2 <3,7,0,4>, <3,7,0,4>
+ 3692350238U, // <0,4,3,u>: Cost 4 vext2 <0,2,0,4>, <3,u,1,2>
+ 2550464552U, // <0,4,4,0>: Cost 3 vext1 <0,0,4,4>, <0,0,4,4>
+ 3962194914U, // <0,4,4,1>: Cost 4 vzipl <0,4,1,5>, <4,1,5,0>
+ 3693677631U, // <0,4,4,2>: Cost 4 vext2 <0,4,0,4>, <4,2,6,3>
+ 3642124467U, // <0,4,4,3>: Cost 4 vext1 <3,0,4,4>, <3,0,4,4>
+ 2718715088U, // <0,4,4,4>: Cost 3 vext3 <5,6,7,0>, <4,4,4,4>
+ 2618608950U, // <0,4,4,5>: Cost 3 vext2 <0,2,0,4>, RHS
+ 2753137974U, // <0,4,4,6>: Cost 3 vuzpl <0,2,4,6>, RHS
+ 3666015255U, // <0,4,4,7>: Cost 4 vext1 <7,0,4,4>, <7,0,4,4>
+ 2618609193U, // <0,4,4,u>: Cost 3 vext2 <0,2,0,4>, RHS
+ 2568388710U, // <0,4,5,0>: Cost 3 vext1 <3,0,4,5>, LHS
+ 2568389526U, // <0,4,5,1>: Cost 3 vext1 <3,0,4,5>, <1,2,3,0>
+ 3636159963U, // <0,4,5,2>: Cost 4 vext1 <2,0,4,5>, <2,0,4,5>
+ 2568390836U, // <0,4,5,3>: Cost 3 vext1 <3,0,4,5>, <3,0,4,5>
+ 2568391990U, // <0,4,5,4>: Cost 3 vext1 <3,0,4,5>, RHS
+ 2718715180U, // <0,4,5,5>: Cost 3 vext3 <5,6,7,0>, <4,5,5,6>
+ 1618136374U, // <0,4,5,6>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2592281624U, // <0,4,5,7>: Cost 3 vext1 <7,0,4,5>, <7,0,4,5>
+ 1618136392U, // <0,4,5,u>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2550480938U, // <0,4,6,0>: Cost 3 vext1 <0,0,4,6>, <0,0,4,6>
+ 3826880801U, // <0,4,6,1>: Cost 4 vuzpl <0,2,4,6>, <6,0,1,2>
+ 2562426332U, // <0,4,6,2>: Cost 3 vext1 <2,0,4,6>, <2,0,4,6>
+ 3786190181U, // <0,4,6,3>: Cost 4 vext3 <4,6,3,0>, <4,6,3,0>
+ 2718715252U, // <0,4,6,4>: Cost 3 vext3 <5,6,7,0>, <4,6,4,6>
+ 3826881165U, // <0,4,6,5>: Cost 4 vuzpl <0,2,4,6>, <6,4,5,6>
+ 2712669568U, // <0,4,6,6>: Cost 3 vext3 <4,6,6,0>, <4,6,6,0>
+ 2657760081U, // <0,4,6,7>: Cost 3 vext2 <6,7,0,4>, <6,7,0,4>
+ 2718715284U, // <0,4,6,u>: Cost 3 vext3 <5,6,7,0>, <4,6,u,2>
+ 3654090854U, // <0,4,7,0>: Cost 4 vext1 <5,0,4,7>, LHS
+ 3934229326U, // <0,4,7,1>: Cost 4 vuzpr <7,0,1,4>, <6,7,0,1>
+ 3734156437U, // <0,4,7,2>: Cost 4 vext2 <7,2,0,4>, <7,2,0,4>
+ 3734820070U, // <0,4,7,3>: Cost 4 vext2 <7,3,0,4>, <7,3,0,4>
+ 3654094134U, // <0,4,7,4>: Cost 4 vext1 <5,0,4,7>, RHS
+ 2713259464U, // <0,4,7,5>: Cost 3 vext3 <4,7,5,0>, <4,7,5,0>
+ 2713333201U, // <0,4,7,6>: Cost 3 vext3 <4,7,6,0>, <4,7,6,0>
+ 3654095866U, // <0,4,7,7>: Cost 4 vext1 <5,0,4,7>, <7,0,1,2>
+ 2713259464U, // <0,4,7,u>: Cost 3 vext3 <4,7,5,0>, <4,7,5,0>
+ 2568413286U, // <0,4,u,0>: Cost 3 vext1 <3,0,4,u>, LHS
+ 2618611502U, // <0,4,u,1>: Cost 3 vext2 <0,2,0,4>, LHS
+ 2753140526U, // <0,4,u,2>: Cost 3 vuzpl <0,2,4,6>, LHS
+ 2568415415U, // <0,4,u,3>: Cost 3 vext1 <3,0,4,u>, <3,0,4,u>
+ 2568416566U, // <0,4,u,4>: Cost 3 vext1 <3,0,4,u>, RHS
+ 1817423158U, // <0,4,u,5>: Cost 2 vzipl LHS, RHS
+ 1947438390U, // <0,4,u,6>: Cost 2 vtrnl LHS, RHS
+ 2592306203U, // <0,4,u,7>: Cost 3 vext1 <7,0,4,u>, <7,0,4,u>
+ 1947438408U, // <0,4,u,u>: Cost 2 vtrnl LHS, RHS
+ 3630219264U, // <0,5,0,0>: Cost 4 vext1 <1,0,5,0>, <0,0,0,0>
+ 2625912934U, // <0,5,0,1>: Cost 3 vext2 <1,4,0,5>, LHS
+ 3692355748U, // <0,5,0,2>: Cost 4 vext2 <0,2,0,5>, <0,2,0,2>
+ 3693019384U, // <0,5,0,3>: Cost 4 vext2 <0,3,0,5>, <0,3,0,5>
+ 3630222646U, // <0,5,0,4>: Cost 4 vext1 <1,0,5,0>, RHS
+ 3699655062U, // <0,5,0,5>: Cost 4 vext2 <1,4,0,5>, <0,5,0,1>
+ 2718715508U, // <0,5,0,6>: Cost 3 vext3 <5,6,7,0>, <5,0,6,1>
+ 3087011126U, // <0,5,0,7>: Cost 3 vtrnr <0,0,0,0>, RHS
+ 2625913501U, // <0,5,0,u>: Cost 3 vext2 <1,4,0,5>, LHS
+ 1500659814U, // <0,5,1,0>: Cost 2 vext1 <4,0,5,1>, LHS
+ 2886520528U, // <0,5,1,1>: Cost 3 vzipl LHS, <5,1,7,3>
+ 2574403176U, // <0,5,1,2>: Cost 3 vext1 <4,0,5,1>, <2,2,2,2>
+ 2574403734U, // <0,5,1,3>: Cost 3 vext1 <4,0,5,1>, <3,0,1,2>
+ 1500662674U, // <0,5,1,4>: Cost 2 vext1 <4,0,5,1>, <4,0,5,1>
+ 2886520836U, // <0,5,1,5>: Cost 3 vzipl LHS, <5,5,5,5>
+ 2886520930U, // <0,5,1,6>: Cost 3 vzipl LHS, <5,6,7,0>
+ 2718715600U, // <0,5,1,7>: Cost 3 vext3 <5,6,7,0>, <5,1,7,3>
+ 1500665646U, // <0,5,1,u>: Cost 2 vext1 <4,0,5,1>, LHS
+ 2556493926U, // <0,5,2,0>: Cost 3 vext1 <1,0,5,2>, LHS
+ 2244546120U, // <0,5,2,1>: Cost 3 vrev <5,0,1,2>
+ 3692357256U, // <0,5,2,2>: Cost 4 vext2 <0,2,0,5>, <2,2,5,7>
+ 2568439994U, // <0,5,2,3>: Cost 3 vext1 <3,0,5,2>, <3,0,5,2>
+ 2556497206U, // <0,5,2,4>: Cost 3 vext1 <1,0,5,2>, RHS
+ 3020738564U, // <0,5,2,5>: Cost 3 vtrnl LHS, <5,5,5,5>
+ 4027877161U, // <0,5,2,6>: Cost 4 vzipr <0,2,0,2>, <2,4,5,6>
+ 3093220662U, // <0,5,2,7>: Cost 3 vtrnr <1,0,3,2>, RHS
+ 3093220663U, // <0,5,2,u>: Cost 3 vtrnr <1,0,3,2>, RHS
+ 3699656854U, // <0,5,3,0>: Cost 4 vext2 <1,4,0,5>, <3,0,1,2>
+ 3699656927U, // <0,5,3,1>: Cost 4 vext2 <1,4,0,5>, <3,1,0,3>
+ 3699657006U, // <0,5,3,2>: Cost 4 vext2 <1,4,0,5>, <3,2,0,1>
+ 3699657116U, // <0,5,3,3>: Cost 4 vext2 <1,4,0,5>, <3,3,3,3>
+ 2637859284U, // <0,5,3,4>: Cost 3 vext2 <3,4,0,5>, <3,4,0,5>
+ 3790319453U, // <0,5,3,5>: Cost 4 vext3 <5,3,5,0>, <5,3,5,0>
+ 3699657354U, // <0,5,3,6>: Cost 4 vext2 <1,4,0,5>, <3,6,2,7>
+ 2716725103U, // <0,5,3,7>: Cost 3 vext3 <5,3,7,0>, <5,3,7,0>
+ 2716798840U, // <0,5,3,u>: Cost 3 vext3 <5,3,u,0>, <5,3,u,0>
+ 2661747602U, // <0,5,4,0>: Cost 3 vext2 <7,4,0,5>, <4,0,5,1>
+ 3630252810U, // <0,5,4,1>: Cost 4 vext1 <1,0,5,4>, <1,0,5,4>
+ 3636225507U, // <0,5,4,2>: Cost 4 vext1 <2,0,5,4>, <2,0,5,4>
+ 3716910172U, // <0,5,4,3>: Cost 4 vext2 <4,3,0,5>, <4,3,0,5>
+ 3962195892U, // <0,5,4,4>: Cost 4 vzipl <0,4,1,5>, <5,4,5,6>
+ 2625916214U, // <0,5,4,5>: Cost 3 vext2 <1,4,0,5>, RHS
+ 3718901071U, // <0,5,4,6>: Cost 4 vext2 <4,6,0,5>, <4,6,0,5>
+ 2718715846U, // <0,5,4,7>: Cost 3 vext3 <5,6,7,0>, <5,4,7,6>
+ 2625916457U, // <0,5,4,u>: Cost 3 vext2 <1,4,0,5>, RHS
+ 3791278034U, // <0,5,5,0>: Cost 4 vext3 <5,5,0,0>, <5,5,0,0>
+ 3791351771U, // <0,5,5,1>: Cost 4 vext3 <5,5,1,0>, <5,5,1,0>
+ 3318386260U, // <0,5,5,2>: Cost 4 vrev <5,0,2,5>
+ 3791499245U, // <0,5,5,3>: Cost 4 vext3 <5,5,3,0>, <5,5,3,0>
+ 3318533734U, // <0,5,5,4>: Cost 4 vrev <5,0,4,5>
+ 2718715908U, // <0,5,5,5>: Cost 3 vext3 <5,6,7,0>, <5,5,5,5>
+ 2657767522U, // <0,5,5,6>: Cost 3 vext2 <6,7,0,5>, <5,6,7,0>
+ 2718715928U, // <0,5,5,7>: Cost 3 vext3 <5,6,7,0>, <5,5,7,7>
+ 2718715937U, // <0,5,5,u>: Cost 3 vext3 <5,6,7,0>, <5,5,u,7>
+ 2592358502U, // <0,5,6,0>: Cost 3 vext1 <7,0,5,6>, LHS
+ 3792015404U, // <0,5,6,1>: Cost 4 vext3 <5,6,1,0>, <5,6,1,0>
+ 3731509754U, // <0,5,6,2>: Cost 4 vext2 <6,7,0,5>, <6,2,7,3>
+ 3785748546U, // <0,5,6,3>: Cost 4 vext3 <4,5,6,0>, <5,6,3,4>
+ 2592361782U, // <0,5,6,4>: Cost 3 vext1 <7,0,5,6>, RHS
+ 2592362594U, // <0,5,6,5>: Cost 3 vext1 <7,0,5,6>, <5,6,7,0>
+ 3785748576U, // <0,5,6,6>: Cost 4 vext3 <4,5,6,0>, <5,6,6,7>
+ 1644974178U, // <0,5,6,7>: Cost 2 vext3 <5,6,7,0>, <5,6,7,0>
+ 1645047915U, // <0,5,6,u>: Cost 2 vext3 <5,6,u,0>, <5,6,u,0>
+ 2562506854U, // <0,5,7,0>: Cost 3 vext1 <2,0,5,7>, LHS
+ 2562507670U, // <0,5,7,1>: Cost 3 vext1 <2,0,5,7>, <1,2,3,0>
+ 2562508262U, // <0,5,7,2>: Cost 3 vext1 <2,0,5,7>, <2,0,5,7>
+ 3636250774U, // <0,5,7,3>: Cost 4 vext1 <2,0,5,7>, <3,0,1,2>
+ 2562510134U, // <0,5,7,4>: Cost 3 vext1 <2,0,5,7>, RHS
+ 2718716072U, // <0,5,7,5>: Cost 3 vext3 <5,6,7,0>, <5,7,5,7>
+ 2718716074U, // <0,5,7,6>: Cost 3 vext3 <5,6,7,0>, <5,7,6,0>
+ 2719379635U, // <0,5,7,7>: Cost 3 vext3 <5,7,7,0>, <5,7,7,0>
+ 2562512686U, // <0,5,7,u>: Cost 3 vext1 <2,0,5,7>, LHS
+ 1500717158U, // <0,5,u,0>: Cost 2 vext1 <4,0,5,u>, LHS
+ 2625918766U, // <0,5,u,1>: Cost 3 vext2 <1,4,0,5>, LHS
+ 2719674583U, // <0,5,u,2>: Cost 3 vext3 <5,u,2,0>, <5,u,2,0>
+ 2568489152U, // <0,5,u,3>: Cost 3 vext1 <3,0,5,u>, <3,0,5,u>
+ 1500720025U, // <0,5,u,4>: Cost 2 vext1 <4,0,5,u>, <4,0,5,u>
+ 2625919130U, // <0,5,u,5>: Cost 3 vext2 <1,4,0,5>, RHS
+ 2586407243U, // <0,5,u,6>: Cost 3 vext1 <6,0,5,u>, <6,0,5,u>
+ 1646301444U, // <0,5,u,7>: Cost 2 vext3 <5,u,7,0>, <5,u,7,0>
+ 1646375181U, // <0,5,u,u>: Cost 2 vext3 <5,u,u,0>, <5,u,u,0>
+ 2586411110U, // <0,6,0,0>: Cost 3 vext1 <6,0,6,0>, LHS
+ 2619949158U, // <0,6,0,1>: Cost 3 vext2 <0,4,0,6>, LHS
+ 2619949220U, // <0,6,0,2>: Cost 3 vext2 <0,4,0,6>, <0,2,0,2>
+ 3785748789U, // <0,6,0,3>: Cost 4 vext3 <4,5,6,0>, <6,0,3,4>
+ 2619949386U, // <0,6,0,4>: Cost 3 vext2 <0,4,0,6>, <0,4,0,6>
+ 2586415202U, // <0,6,0,5>: Cost 3 vext1 <6,0,6,0>, <5,6,7,0>
+ 2586415436U, // <0,6,0,6>: Cost 3 vext1 <6,0,6,0>, <6,0,6,0>
+ 2952793398U, // <0,6,0,7>: Cost 3 vzipr <0,0,0,0>, RHS
+ 2619949725U, // <0,6,0,u>: Cost 3 vext2 <0,4,0,6>, LHS
+ 2562531430U, // <0,6,1,0>: Cost 3 vext1 <2,0,6,1>, LHS
+ 3693691700U, // <0,6,1,1>: Cost 4 vext2 <0,4,0,6>, <1,1,1,1>
+ 2886521338U, // <0,6,1,2>: Cost 3 vzipl LHS, <6,2,7,3>
+ 3693691864U, // <0,6,1,3>: Cost 4 vext2 <0,4,0,6>, <1,3,1,3>
+ 2562534710U, // <0,6,1,4>: Cost 3 vext1 <2,0,6,1>, RHS
+ 2580450932U, // <0,6,1,5>: Cost 3 vext1 <5,0,6,1>, <5,0,6,1>
+ 2886521656U, // <0,6,1,6>: Cost 3 vzipl LHS, <6,6,6,6>
+ 2966736182U, // <0,6,1,7>: Cost 3 vzipr <2,3,0,1>, RHS
+ 2966736183U, // <0,6,1,u>: Cost 3 vzipr <2,3,0,1>, RHS
+ 1500741734U, // <0,6,2,0>: Cost 2 vext1 <4,0,6,2>, LHS
+ 2250518817U, // <0,6,2,1>: Cost 3 vrev <6,0,1,2>
+ 2574485096U, // <0,6,2,2>: Cost 3 vext1 <4,0,6,2>, <2,2,2,2>
+ 2631894694U, // <0,6,2,3>: Cost 3 vext2 <2,4,0,6>, <2,3,0,1>
+ 1500744604U, // <0,6,2,4>: Cost 2 vext1 <4,0,6,2>, <4,0,6,2>
+ 2574487248U, // <0,6,2,5>: Cost 3 vext1 <4,0,6,2>, <5,1,7,3>
+ 3020739384U, // <0,6,2,6>: Cost 3 vtrnl LHS, <6,6,6,6>
+ 2954136886U, // <0,6,2,7>: Cost 3 vzipr <0,2,0,2>, RHS
+ 1500747566U, // <0,6,2,u>: Cost 2 vext1 <4,0,6,2>, LHS
+ 3693693078U, // <0,6,3,0>: Cost 4 vext2 <0,4,0,6>, <3,0,1,2>
+ 3705637136U, // <0,6,3,1>: Cost 4 vext2 <2,4,0,6>, <3,1,5,7>
+ 3705637192U, // <0,6,3,2>: Cost 4 vext2 <2,4,0,6>, <3,2,3,0>
+ 3693693340U, // <0,6,3,3>: Cost 4 vext2 <0,4,0,6>, <3,3,3,3>
+ 2637867477U, // <0,6,3,4>: Cost 3 vext2 <3,4,0,6>, <3,4,0,6>
+ 3705637424U, // <0,6,3,5>: Cost 4 vext2 <2,4,0,6>, <3,5,1,7>
+ 3666154056U, // <0,6,3,6>: Cost 4 vext1 <7,0,6,3>, <6,3,7,0>
+ 2722697800U, // <0,6,3,7>: Cost 3 vext3 <6,3,7,0>, <6,3,7,0>
+ 2722771537U, // <0,6,3,u>: Cost 3 vext3 <6,3,u,0>, <6,3,u,0>
+ 2562556006U, // <0,6,4,0>: Cost 3 vext1 <2,0,6,4>, LHS
+ 4095316257U, // <0,6,4,1>: Cost 4 vtrnl <0,2,4,6>, <6,0,1,2>
+ 2562557420U, // <0,6,4,2>: Cost 3 vext1 <2,0,6,4>, <2,0,6,4>
+ 3636299926U, // <0,6,4,3>: Cost 4 vext1 <2,0,6,4>, <3,0,1,2>
+ 2562559286U, // <0,6,4,4>: Cost 3 vext1 <2,0,6,4>, RHS
+ 2619952438U, // <0,6,4,5>: Cost 3 vext2 <0,4,0,6>, RHS
+ 2723287696U, // <0,6,4,6>: Cost 3 vext3 <6,4,6,0>, <6,4,6,0>
+ 4027895094U, // <0,6,4,7>: Cost 4 vzipr <0,2,0,4>, RHS
+ 2619952681U, // <0,6,4,u>: Cost 3 vext2 <0,4,0,6>, RHS
+ 2718716594U, // <0,6,5,0>: Cost 3 vext3 <5,6,7,0>, <6,5,0,7>
+ 3648250774U, // <0,6,5,1>: Cost 4 vext1 <4,0,6,5>, <1,2,3,0>
+ 3792458436U, // <0,6,5,2>: Cost 4 vext3 <5,6,7,0>, <6,5,2,7>
+ 3705638767U, // <0,6,5,3>: Cost 5 vext2 <2,4,0,6>, <5,3,7,0>
+ 3648252831U, // <0,6,5,4>: Cost 4 vext1 <4,0,6,5>, <4,0,6,5>
+ 3797619416U, // <0,6,5,5>: Cost 4 vext3 <6,5,5,0>, <6,5,5,0>
+ 3792458472U, // <0,6,5,6>: Cost 4 vext3 <5,6,7,0>, <6,5,6,7>
+ 4035202358U, // <0,6,5,7>: Cost 4 vzipr <1,4,0,5>, RHS
+ 2718716594U, // <0,6,5,u>: Cost 3 vext3 <5,6,7,0>, <6,5,0,7>
+ 3786412796U, // <0,6,6,0>: Cost 4 vext3 <4,6,6,0>, <6,6,0,0>
+ 3792458504U, // <0,6,6,1>: Cost 4 vext3 <5,6,7,0>, <6,6,1,3>
+ 3728200126U, // <0,6,6,2>: Cost 4 vext2 <6,2,0,6>, <6,2,0,6>
+ 3798135575U, // <0,6,6,3>: Cost 4 vext3 <6,6,3,0>, <6,6,3,0>
+ 3786412836U, // <0,6,6,4>: Cost 4 vext3 <4,6,6,0>, <6,6,4,4>
+ 3792458543U, // <0,6,6,5>: Cost 4 vext3 <5,6,7,0>, <6,6,5,6>
+ 2718716728U, // <0,6,6,6>: Cost 3 vext3 <5,6,7,0>, <6,6,6,6>
+ 2718716738U, // <0,6,6,7>: Cost 3 vext3 <5,6,7,0>, <6,6,7,7>
+ 2718716747U, // <0,6,6,u>: Cost 3 vext3 <5,6,7,0>, <6,6,u,7>
+ 2718716750U, // <0,6,7,0>: Cost 3 vext3 <5,6,7,0>, <6,7,0,1>
+ 2724909910U, // <0,6,7,1>: Cost 3 vext3 <6,7,1,0>, <6,7,1,0>
+ 3636323823U, // <0,6,7,2>: Cost 4 vext1 <2,0,6,7>, <2,0,6,7>
+ 2725057384U, // <0,6,7,3>: Cost 3 vext3 <6,7,3,0>, <6,7,3,0>
+ 2718716790U, // <0,6,7,4>: Cost 3 vext3 <5,6,7,0>, <6,7,4,5>
+ 2718716800U, // <0,6,7,5>: Cost 3 vext3 <5,6,7,0>, <6,7,5,6>
+ 3792458629U, // <0,6,7,6>: Cost 4 vext3 <5,6,7,0>, <6,7,6,2>
+ 2725352332U, // <0,6,7,7>: Cost 3 vext3 <6,7,7,0>, <6,7,7,0>
+ 2718716822U, // <0,6,7,u>: Cost 3 vext3 <5,6,7,0>, <6,7,u,1>
+ 1500790886U, // <0,6,u,0>: Cost 2 vext1 <4,0,6,u>, LHS
+ 2619954990U, // <0,6,u,1>: Cost 3 vext2 <0,4,0,6>, LHS
+ 2562590192U, // <0,6,u,2>: Cost 3 vext1 <2,0,6,u>, <2,0,6,u>
+ 2725721017U, // <0,6,u,3>: Cost 3 vext3 <6,u,3,0>, <6,u,3,0>
+ 1500793762U, // <0,6,u,4>: Cost 2 vext1 <4,0,6,u>, <4,0,6,u>
+ 2619955354U, // <0,6,u,5>: Cost 3 vext2 <0,4,0,6>, RHS
+ 2725942228U, // <0,6,u,6>: Cost 3 vext3 <6,u,6,0>, <6,u,6,0>
+ 2954186038U, // <0,6,u,7>: Cost 3 vzipr <0,2,0,u>, RHS
+ 1500796718U, // <0,6,u,u>: Cost 2 vext1 <4,0,6,u>, LHS
+ 2256401391U, // <0,7,0,0>: Cost 3 vrev <7,0,0,0>
+ 2632564838U, // <0,7,0,1>: Cost 3 vext2 <2,5,0,7>, LHS
+ 2256548865U, // <0,7,0,2>: Cost 3 vrev <7,0,2,0>
+ 3700998396U, // <0,7,0,3>: Cost 4 vext2 <1,6,0,7>, <0,3,1,0>
+ 2718716952U, // <0,7,0,4>: Cost 3 vext3 <5,6,7,0>, <7,0,4,5>
+ 2718716962U, // <0,7,0,5>: Cost 3 vext3 <5,6,7,0>, <7,0,5,6>
+ 2621284845U, // <0,7,0,6>: Cost 3 vext2 <0,6,0,7>, <0,6,0,7>
+ 3904685542U, // <0,7,0,7>: Cost 4 vuzpr <2,0,5,7>, <2,0,5,7>
+ 2632565405U, // <0,7,0,u>: Cost 3 vext2 <2,5,0,7>, LHS
+ 2256409584U, // <0,7,1,0>: Cost 3 vrev <7,0,0,1>
+ 3706307380U, // <0,7,1,1>: Cost 4 vext2 <2,5,0,7>, <1,1,1,1>
+ 2632565654U, // <0,7,1,2>: Cost 3 vext2 <2,5,0,7>, <1,2,3,0>
+ 3769603168U, // <0,7,1,3>: Cost 4 vext3 <1,u,3,0>, <7,1,3,5>
+ 2256704532U, // <0,7,1,4>: Cost 3 vrev <7,0,4,1>
+ 3769603184U, // <0,7,1,5>: Cost 4 vext3 <1,u,3,0>, <7,1,5,3>
+ 3700999366U, // <0,7,1,6>: Cost 4 vext2 <1,6,0,7>, <1,6,0,7>
+ 2886522476U, // <0,7,1,7>: Cost 3 vzipl LHS, <7,7,7,7>
+ 2256999480U, // <0,7,1,u>: Cost 3 vrev <7,0,u,1>
+ 2586501222U, // <0,7,2,0>: Cost 3 vext1 <6,0,7,2>, LHS
+ 1182749690U, // <0,7,2,1>: Cost 2 vrev <7,0,1,2>
+ 3636356595U, // <0,7,2,2>: Cost 4 vext1 <2,0,7,2>, <2,0,7,2>
+ 2727711916U, // <0,7,2,3>: Cost 3 vext3 <7,2,3,0>, <7,2,3,0>
+ 2586504502U, // <0,7,2,4>: Cost 3 vext1 <6,0,7,2>, RHS
+ 2632566606U, // <0,7,2,5>: Cost 3 vext2 <2,5,0,7>, <2,5,0,7>
+ 2586505559U, // <0,7,2,6>: Cost 3 vext1 <6,0,7,2>, <6,0,7,2>
+ 3020740204U, // <0,7,2,7>: Cost 3 vtrnl LHS, <7,7,7,7>
+ 1183265849U, // <0,7,2,u>: Cost 2 vrev <7,0,u,2>
+ 3701000342U, // <0,7,3,0>: Cost 4 vext2 <1,6,0,7>, <3,0,1,2>
+ 3706308849U, // <0,7,3,1>: Cost 4 vext2 <2,5,0,7>, <3,1,2,3>
+ 3330315268U, // <0,7,3,2>: Cost 4 vrev <7,0,2,3>
+ 3706309020U, // <0,7,3,3>: Cost 4 vext2 <2,5,0,7>, <3,3,3,3>
+ 3706309122U, // <0,7,3,4>: Cost 4 vext2 <2,5,0,7>, <3,4,5,6>
+ 3712281127U, // <0,7,3,5>: Cost 4 vext2 <3,5,0,7>, <3,5,0,7>
+ 2639202936U, // <0,7,3,6>: Cost 3 vext2 <3,6,0,7>, <3,6,0,7>
+ 3802412321U, // <0,7,3,7>: Cost 4 vext3 <7,3,7,0>, <7,3,7,0>
+ 2640530202U, // <0,7,3,u>: Cost 3 vext2 <3,u,0,7>, <3,u,0,7>
+ 3654287462U, // <0,7,4,0>: Cost 4 vext1 <5,0,7,4>, LHS
+ 2256507900U, // <0,7,4,1>: Cost 3 vrev <7,0,1,4>
+ 2256581637U, // <0,7,4,2>: Cost 3 vrev <7,0,2,4>
+ 3660262008U, // <0,7,4,3>: Cost 4 vext1 <6,0,7,4>, <3,6,0,7>
+ 3786413405U, // <0,7,4,4>: Cost 4 vext3 <4,6,6,0>, <7,4,4,6>
+ 2632568118U, // <0,7,4,5>: Cost 3 vext2 <2,5,0,7>, RHS
+ 3718917457U, // <0,7,4,6>: Cost 4 vext2 <4,6,0,7>, <4,6,0,7>
+ 3787003255U, // <0,7,4,7>: Cost 4 vext3 <4,7,5,0>, <7,4,7,5>
+ 2632568361U, // <0,7,4,u>: Cost 3 vext2 <2,5,0,7>, RHS
+ 3706310268U, // <0,7,5,0>: Cost 4 vext2 <2,5,0,7>, <5,0,7,0>
+ 3792459156U, // <0,7,5,1>: Cost 4 vext3 <5,6,7,0>, <7,5,1,7>
+ 3330331654U, // <0,7,5,2>: Cost 4 vrev <7,0,2,5>
+ 3722899255U, // <0,7,5,3>: Cost 4 vext2 <5,3,0,7>, <5,3,0,7>
+ 2256737304U, // <0,7,5,4>: Cost 3 vrev <7,0,4,5>
+ 3724226521U, // <0,7,5,5>: Cost 4 vext2 <5,5,0,7>, <5,5,0,7>
+ 2718717377U, // <0,7,5,6>: Cost 3 vext3 <5,6,7,0>, <7,5,6,7>
+ 2729997763U, // <0,7,5,7>: Cost 3 vext3 <7,5,7,0>, <7,5,7,0>
+ 2720044499U, // <0,7,5,u>: Cost 3 vext3 <5,u,7,0>, <7,5,u,7>
+ 3712946517U, // <0,7,6,0>: Cost 4 vext2 <3,6,0,7>, <6,0,7,0>
+ 2256524286U, // <0,7,6,1>: Cost 3 vrev <7,0,1,6>
+ 3792459246U, // <0,7,6,2>: Cost 4 vext3 <5,6,7,0>, <7,6,2,7>
+ 3796440567U, // <0,7,6,3>: Cost 4 vext3 <6,3,7,0>, <7,6,3,7>
+ 3654307126U, // <0,7,6,4>: Cost 4 vext1 <5,0,7,6>, RHS
+ 2656457394U, // <0,7,6,5>: Cost 3 vext2 <6,5,0,7>, <6,5,0,7>
+ 3792459281U, // <0,7,6,6>: Cost 4 vext3 <5,6,7,0>, <7,6,6,6>
+ 2730661396U, // <0,7,6,7>: Cost 3 vext3 <7,6,7,0>, <7,6,7,0>
+ 2658448293U, // <0,7,6,u>: Cost 3 vext2 <6,u,0,7>, <6,u,0,7>
+ 3787003431U, // <0,7,7,0>: Cost 4 vext3 <4,7,5,0>, <7,7,0,1>
+ 3654312854U, // <0,7,7,1>: Cost 4 vext1 <5,0,7,7>, <1,2,3,0>
+ 3654313446U, // <0,7,7,2>: Cost 4 vext1 <5,0,7,7>, <2,0,5,7>
+ 3804771905U, // <0,7,7,3>: Cost 4 vext3 <7,7,3,0>, <7,7,3,0>
+ 3654315318U, // <0,7,7,4>: Cost 4 vext1 <5,0,7,7>, RHS
+ 3654315651U, // <0,7,7,5>: Cost 4 vext1 <5,0,7,7>, <5,0,7,7>
+ 3660288348U, // <0,7,7,6>: Cost 4 vext1 <6,0,7,7>, <6,0,7,7>
+ 2718717548U, // <0,7,7,7>: Cost 3 vext3 <5,6,7,0>, <7,7,7,7>
+ 2664420990U, // <0,7,7,u>: Cost 3 vext2 <7,u,0,7>, <7,u,0,7>
+ 2256466935U, // <0,7,u,0>: Cost 3 vrev <7,0,0,u>
+ 1182798848U, // <0,7,u,1>: Cost 2 vrev <7,0,1,u>
+ 2256614409U, // <0,7,u,2>: Cost 3 vrev <7,0,2,u>
+ 2731693714U, // <0,7,u,3>: Cost 3 vext3 <7,u,3,0>, <7,u,3,0>
+ 2256761883U, // <0,7,u,4>: Cost 3 vrev <7,0,4,u>
+ 2632571034U, // <0,7,u,5>: Cost 3 vext2 <2,5,0,7>, RHS
+ 2669066421U, // <0,7,u,6>: Cost 3 vext2 <u,6,0,7>, <u,6,0,7>
+ 2731988662U, // <0,7,u,7>: Cost 3 vext3 <7,u,7,0>, <7,u,7,0>
+ 1183315007U, // <0,7,u,u>: Cost 2 vrev <7,0,u,u>
+ 135053414U, // <0,u,0,0>: Cost 1 vdup0 LHS
+ 1544896614U, // <0,u,0,1>: Cost 2 vext2 <0,2,0,u>, LHS
+ 1678999654U, // <0,u,0,2>: Cost 2 vuzpl LHS, LHS
+ 2691880677U, // <0,u,0,3>: Cost 3 vext3 <1,2,3,0>, <u,0,3,2>
+ 1476988214U, // <0,u,0,4>: Cost 2 vext1 <0,0,u,0>, RHS
+ 2718791419U, // <0,u,0,5>: Cost 3 vext3 <5,6,u,0>, <u,0,5,6>
+ 3021248666U, // <0,u,0,6>: Cost 3 vtrnl <0,2,0,2>, RHS
+ 2592535607U, // <0,u,0,7>: Cost 3 vext1 <7,0,u,0>, <7,0,u,0>
+ 135053414U, // <0,u,0,u>: Cost 1 vdup0 LHS
+ 1476993097U, // <0,u,1,0>: Cost 2 vext1 <0,0,u,1>, <0,0,u,1>
+ 1812780846U, // <0,u,1,1>: Cost 2 vzipl LHS, LHS
+ 1618138926U, // <0,u,1,2>: Cost 2 vext3 <1,2,3,0>, LHS
+ 2752742134U, // <0,u,1,3>: Cost 3 vuzpl LHS, <1,0,3,2>
+ 1476996406U, // <0,u,1,4>: Cost 2 vext1 <0,0,u,1>, RHS
+ 1812781210U, // <0,u,1,5>: Cost 2 vzipl LHS, RHS
+ 2887006416U, // <0,u,1,6>: Cost 3 vzipl LHS, <u,6,3,7>
+ 2966736200U, // <0,u,1,7>: Cost 3 vzipr <2,3,0,1>, RHS
+ 1812781413U, // <0,u,1,u>: Cost 2 vzipl LHS, LHS
+ 1482973286U, // <0,u,2,0>: Cost 2 vext1 <1,0,u,2>, LHS
+ 1482973987U, // <0,u,2,1>: Cost 2 vext1 <1,0,u,2>, <1,0,u,2>
+ 1946998574U, // <0,u,2,2>: Cost 2 vtrnl LHS, LHS
+ 835584U, // <0,u,2,3>: Cost 0 copy LHS
+ 1482976566U, // <0,u,2,4>: Cost 2 vext1 <1,0,u,2>, RHS
+ 3020781631U, // <0,u,2,5>: Cost 3 vtrnl LHS, <u,4,5,6>
+ 1946998938U, // <0,u,2,6>: Cost 2 vtrnl LHS, RHS
+ 1518810169U, // <0,u,2,7>: Cost 2 vext1 <7,0,u,2>, <7,0,u,2>
+ 835584U, // <0,u,2,u>: Cost 0 copy LHS
+ 2618640534U, // <0,u,3,0>: Cost 3 vext2 <0,2,0,u>, <3,0,1,2>
+ 2752743574U, // <0,u,3,1>: Cost 3 vuzpl LHS, <3,0,1,2>
+ 2636556597U, // <0,u,3,2>: Cost 3 vext2 <3,2,0,u>, <3,2,0,u>
+ 2752743836U, // <0,u,3,3>: Cost 3 vuzpl LHS, <3,3,3,3>
+ 2618640898U, // <0,u,3,4>: Cost 3 vext2 <0,2,0,u>, <3,4,5,6>
+ 2752743938U, // <0,u,3,5>: Cost 3 vuzpl LHS, <3,4,5,6>
+ 2639202936U, // <0,u,3,6>: Cost 3 vext2 <3,6,0,7>, <3,6,0,7>
+ 2639874762U, // <0,u,3,7>: Cost 3 vext2 <3,7,0,u>, <3,7,0,u>
+ 2752743637U, // <0,u,3,u>: Cost 3 vuzpl LHS, <3,0,u,2>
+ 2562703462U, // <0,u,4,0>: Cost 3 vext1 <2,0,u,4>, LHS
+ 2888455982U, // <0,u,4,1>: Cost 3 vzipl <0,4,1,5>, LHS
+ 3021575982U, // <0,u,4,2>: Cost 3 vtrnl <0,2,4,6>, LHS
+ 2568677591U, // <0,u,4,3>: Cost 3 vext1 <3,0,u,4>, <3,0,u,4>
+ 2562706742U, // <0,u,4,4>: Cost 3 vext1 <2,0,u,4>, RHS
+ 1544899894U, // <0,u,4,5>: Cost 2 vext2 <0,2,0,u>, RHS
+ 1679002934U, // <0,u,4,6>: Cost 2 vuzpl LHS, RHS
+ 2718718033U, // <0,u,4,7>: Cost 3 vext3 <5,6,7,0>, <u,4,7,6>
+ 1679002952U, // <0,u,4,u>: Cost 2 vuzpl LHS, RHS
+ 2568683622U, // <0,u,5,0>: Cost 3 vext1 <3,0,u,5>, LHS
+ 2568684438U, // <0,u,5,1>: Cost 3 vext1 <3,0,u,5>, <1,2,3,0>
+ 3765622902U, // <0,u,5,2>: Cost 4 vext3 <1,2,3,0>, <u,5,2,7>
+ 2691881087U, // <0,u,5,3>: Cost 3 vext3 <1,2,3,0>, <u,5,3,7>
+ 2568686902U, // <0,u,5,4>: Cost 3 vext1 <3,0,u,5>, RHS
+ 2650492890U, // <0,u,5,5>: Cost 3 vext2 <5,5,0,u>, <5,5,0,u>
+ 1618139290U, // <0,u,5,6>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2824834358U, // <0,u,5,7>: Cost 3 vuzpr <1,0,3,u>, RHS
+ 1618139308U, // <0,u,5,u>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2592579686U, // <0,u,6,0>: Cost 3 vext1 <7,0,u,6>, LHS
+ 2262496983U, // <0,u,6,1>: Cost 3 vrev <u,0,1,6>
+ 2654474688U, // <0,u,6,2>: Cost 3 vext2 <6,2,0,u>, <6,2,0,u>
+ 2691881168U, // <0,u,6,3>: Cost 3 vext3 <1,2,3,0>, <u,6,3,7>
+ 2592582966U, // <0,u,6,4>: Cost 3 vext1 <7,0,u,6>, RHS
+ 2656465587U, // <0,u,6,5>: Cost 3 vext2 <6,5,0,u>, <6,5,0,u>
+ 2657129220U, // <0,u,6,6>: Cost 3 vext2 <6,6,0,u>, <6,6,0,u>
+ 1584051029U, // <0,u,6,7>: Cost 2 vext2 <6,7,0,u>, <6,7,0,u>
+ 1584714662U, // <0,u,6,u>: Cost 2 vext2 <6,u,0,u>, <6,u,0,u>
+ 2562728038U, // <0,u,7,0>: Cost 3 vext1 <2,0,u,7>, LHS
+ 2562728854U, // <0,u,7,1>: Cost 3 vext1 <2,0,u,7>, <1,2,3,0>
+ 2562729473U, // <0,u,7,2>: Cost 3 vext1 <2,0,u,7>, <2,0,u,7>
+ 2661111018U, // <0,u,7,3>: Cost 3 vext2 <7,3,0,u>, <7,3,0,u>
+ 2562731318U, // <0,u,7,4>: Cost 3 vext1 <2,0,u,7>, RHS
+ 2718718258U, // <0,u,7,5>: Cost 3 vext3 <5,6,7,0>, <u,7,5,6>
+ 2586620261U, // <0,u,7,6>: Cost 3 vext1 <6,0,u,7>, <6,0,u,7>
+ 2657793644U, // <0,u,7,7>: Cost 3 vext2 <6,7,0,u>, <7,7,7,7>
+ 2562733870U, // <0,u,7,u>: Cost 3 vext1 <2,0,u,7>, LHS
+ 135053414U, // <0,u,u,0>: Cost 1 vdup0 LHS
+ 1544902446U, // <0,u,u,1>: Cost 2 vext2 <0,2,0,u>, LHS
+ 1679005486U, // <0,u,u,2>: Cost 2 vuzpl LHS, LHS
+ 835584U, // <0,u,u,3>: Cost 0 copy LHS
+ 1483025718U, // <0,u,u,4>: Cost 2 vext1 <1,0,u,u>, RHS
+ 1544902810U, // <0,u,u,5>: Cost 2 vext2 <0,2,0,u>, RHS
+ 1679005850U, // <0,u,u,6>: Cost 2 vuzpl LHS, RHS
+ 1518859327U, // <0,u,u,7>: Cost 2 vext1 <7,0,u,u>, <7,0,u,u>
+ 835584U, // <0,u,u,u>: Cost 0 copy LHS
+ 2689744896U, // <1,0,0,0>: Cost 3 vext3 <0,u,1,1>, <0,0,0,0>
+ 1610694666U, // <1,0,0,1>: Cost 2 vext3 <0,0,1,1>, <0,0,1,1>
+ 2689744916U, // <1,0,0,2>: Cost 3 vext3 <0,u,1,1>, <0,0,2,2>
+ 2619310332U, // <1,0,0,3>: Cost 3 vext2 <0,3,1,0>, <0,3,1,0>
+ 2684657701U, // <1,0,0,4>: Cost 3 vext3 <0,0,4,1>, <0,0,4,1>
+ 2620637598U, // <1,0,0,5>: Cost 3 vext2 <0,5,1,0>, <0,5,1,0>
+ 3708977654U, // <1,0,0,6>: Cost 4 vext2 <3,0,1,0>, <0,6,1,7>
+ 3666351168U, // <1,0,0,7>: Cost 4 vext1 <7,1,0,0>, <7,1,0,0>
+ 1611210825U, // <1,0,0,u>: Cost 2 vext3 <0,0,u,1>, <0,0,u,1>
+ 2556780646U, // <1,0,1,0>: Cost 3 vext1 <1,1,0,1>, LHS
+ 2556781355U, // <1,0,1,1>: Cost 3 vext1 <1,1,0,1>, <1,1,0,1>
+ 1616003174U, // <1,0,1,2>: Cost 2 vext3 <0,u,1,1>, LHS
+ 3693052888U, // <1,0,1,3>: Cost 4 vext2 <0,3,1,0>, <1,3,1,3>
+ 2556783926U, // <1,0,1,4>: Cost 3 vext1 <1,1,0,1>, RHS
+ 2580672143U, // <1,0,1,5>: Cost 3 vext1 <5,1,0,1>, <5,1,0,1>
+ 2724839566U, // <1,0,1,6>: Cost 3 vext3 <6,7,0,1>, <0,1,6,7>
+ 3654415354U, // <1,0,1,7>: Cost 4 vext1 <5,1,0,1>, <7,0,1,2>
+ 1616003228U, // <1,0,1,u>: Cost 2 vext3 <0,u,1,1>, LHS
+ 2685690019U, // <1,0,2,0>: Cost 3 vext3 <0,2,0,1>, <0,2,0,1>
+ 2685763756U, // <1,0,2,1>: Cost 3 vext3 <0,2,1,1>, <0,2,1,1>
+ 2698297524U, // <1,0,2,2>: Cost 3 vext3 <2,3,0,1>, <0,2,2,0>
+ 2685911230U, // <1,0,2,3>: Cost 3 vext3 <0,2,3,1>, <0,2,3,1>
+ 2689745100U, // <1,0,2,4>: Cost 3 vext3 <0,u,1,1>, <0,2,4,6>
+ 3764814038U, // <1,0,2,5>: Cost 4 vext3 <1,1,1,1>, <0,2,5,7>
+ 2724839640U, // <1,0,2,6>: Cost 3 vext3 <6,7,0,1>, <0,2,6,0>
+ 2592625658U, // <1,0,2,7>: Cost 3 vext1 <7,1,0,2>, <7,0,1,2>
+ 2686279915U, // <1,0,2,u>: Cost 3 vext3 <0,2,u,1>, <0,2,u,1>
+ 3087843328U, // <1,0,3,0>: Cost 3 vtrnr LHS, <0,0,0,0>
+ 3087843338U, // <1,0,3,1>: Cost 3 vtrnr LHS, <0,0,1,1>
+ 67944550U, // <1,0,3,2>: Cost 1 vrev LHS
+ 2568743135U, // <1,0,3,3>: Cost 3 vext1 <3,1,0,3>, <3,1,0,3>
+ 2562772278U, // <1,0,3,4>: Cost 3 vext1 <2,1,0,3>, RHS
+ 4099850454U, // <1,0,3,5>: Cost 4 vtrnl <1,0,3,2>, <0,2,5,7>
+ 3704998538U, // <1,0,3,6>: Cost 4 vext2 <2,3,1,0>, <3,6,2,7>
+ 2592633923U, // <1,0,3,7>: Cost 3 vext1 <7,1,0,3>, <7,1,0,3>
+ 68386972U, // <1,0,3,u>: Cost 1 vrev LHS
+ 2620640146U, // <1,0,4,0>: Cost 3 vext2 <0,5,1,0>, <4,0,5,1>
+ 2689745234U, // <1,0,4,1>: Cost 3 vext3 <0,u,1,1>, <0,4,1,5>
+ 2689745244U, // <1,0,4,2>: Cost 3 vext3 <0,u,1,1>, <0,4,2,6>
+ 3760980320U, // <1,0,4,3>: Cost 4 vext3 <0,4,3,1>, <0,4,3,1>
+ 3761054057U, // <1,0,4,4>: Cost 4 vext3 <0,4,4,1>, <0,4,4,1>
+ 2619313462U, // <1,0,4,5>: Cost 3 vext2 <0,3,1,0>, RHS
+ 3761201531U, // <1,0,4,6>: Cost 4 vext3 <0,4,6,1>, <0,4,6,1>
+ 3666383940U, // <1,0,4,7>: Cost 4 vext1 <7,1,0,4>, <7,1,0,4>
+ 2619313705U, // <1,0,4,u>: Cost 3 vext2 <0,3,1,0>, RHS
+ 4029300736U, // <1,0,5,0>: Cost 4 vzipr <0,4,1,5>, <0,0,0,0>
+ 2895249510U, // <1,0,5,1>: Cost 3 vzipl <1,5,3,7>, LHS
+ 3028287590U, // <1,0,5,2>: Cost 3 vtrnl <1,3,5,7>, LHS
+ 3642501345U, // <1,0,5,3>: Cost 4 vext1 <3,1,0,5>, <3,1,0,5>
+ 2215592058U, // <1,0,5,4>: Cost 3 vrev <0,1,4,5>
+ 3724242907U, // <1,0,5,5>: Cost 4 vext2 <5,5,1,0>, <5,5,1,0>
+ 3724906540U, // <1,0,5,6>: Cost 4 vext2 <5,6,1,0>, <5,6,1,0>
+ 3911118134U, // <1,0,5,7>: Cost 4 vuzpr <3,1,3,0>, RHS
+ 3028287644U, // <1,0,5,u>: Cost 3 vtrnl <1,3,5,7>, LHS
+ 3762086375U, // <1,0,6,0>: Cost 4 vext3 <0,6,0,1>, <0,6,0,1>
+ 2698297846U, // <1,0,6,1>: Cost 3 vext3 <2,3,0,1>, <0,6,1,7>
+ 3760022015U, // <1,0,6,2>: Cost 4 vext3 <0,2,u,1>, <0,6,2,7>
+ 3642509538U, // <1,0,6,3>: Cost 4 vext1 <3,1,0,6>, <3,1,0,6>
+ 3762381323U, // <1,0,6,4>: Cost 4 vext3 <0,6,4,1>, <0,6,4,1>
+ 3730215604U, // <1,0,6,5>: Cost 4 vext2 <6,5,1,0>, <6,5,1,0>
+ 3730879237U, // <1,0,6,6>: Cost 4 vext2 <6,6,1,0>, <6,6,1,0>
+ 2657801046U, // <1,0,6,7>: Cost 3 vext2 <6,7,1,0>, <6,7,1,0>
+ 2658464679U, // <1,0,6,u>: Cost 3 vext2 <6,u,1,0>, <6,u,1,0>
+ 2659128312U, // <1,0,7,0>: Cost 3 vext2 <7,0,1,0>, <7,0,1,0>
+ 4047898278U, // <1,0,7,1>: Cost 4 vzipr <3,5,1,7>, <2,3,0,1>
+ 2215460970U, // <1,0,7,2>: Cost 3 vrev <0,1,2,7>
+ 3734861035U, // <1,0,7,3>: Cost 4 vext2 <7,3,1,0>, <7,3,1,0>
+ 3731543398U, // <1,0,7,4>: Cost 4 vext2 <6,7,1,0>, <7,4,5,6>
+ 3736188301U, // <1,0,7,5>: Cost 4 vext2 <7,5,1,0>, <7,5,1,0>
+ 2663110110U, // <1,0,7,6>: Cost 3 vext2 <7,6,1,0>, <7,6,1,0>
+ 3731543660U, // <1,0,7,7>: Cost 4 vext2 <6,7,1,0>, <7,7,7,7>
+ 2664437376U, // <1,0,7,u>: Cost 3 vext2 <7,u,1,0>, <7,u,1,0>
+ 3087884288U, // <1,0,u,0>: Cost 3 vtrnr LHS, <0,0,0,0>
+ 1616003730U, // <1,0,u,1>: Cost 2 vext3 <0,u,1,1>, <0,u,1,1>
+ 67985515U, // <1,0,u,2>: Cost 1 vrev LHS
+ 2689893028U, // <1,0,u,3>: Cost 3 vext3 <0,u,3,1>, <0,u,3,1>
+ 2689745586U, // <1,0,u,4>: Cost 3 vext3 <0,u,1,1>, <0,u,4,6>
+ 2619316378U, // <1,0,u,5>: Cost 3 vext2 <0,3,1,0>, RHS
+ 2669082807U, // <1,0,u,6>: Cost 3 vext2 <u,6,1,0>, <u,6,1,0>
+ 2592674888U, // <1,0,u,7>: Cost 3 vext1 <7,1,0,u>, <7,1,0,u>
+ 68427937U, // <1,0,u,u>: Cost 1 vrev LHS
+ 1543585802U, // <1,1,0,0>: Cost 2 vext2 <0,0,1,1>, <0,0,1,1>
+ 1548894310U, // <1,1,0,1>: Cost 2 vext2 <0,u,1,1>, LHS
+ 2618654892U, // <1,1,0,2>: Cost 3 vext2 <0,2,1,1>, <0,2,1,1>
+ 2689745654U, // <1,1,0,3>: Cost 3 vext3 <0,u,1,1>, <1,0,3,2>
+ 2622636370U, // <1,1,0,4>: Cost 3 vext2 <0,u,1,1>, <0,4,1,5>
+ 2620645791U, // <1,1,0,5>: Cost 3 vext2 <0,5,1,1>, <0,5,1,1>
+ 3696378367U, // <1,1,0,6>: Cost 4 vext2 <0,u,1,1>, <0,6,2,7>
+ 3666424905U, // <1,1,0,7>: Cost 4 vext1 <7,1,1,0>, <7,1,1,0>
+ 1548894866U, // <1,1,0,u>: Cost 2 vext2 <0,u,1,1>, <0,u,1,1>
+ 1483112550U, // <1,1,1,0>: Cost 2 vext1 <1,1,1,1>, LHS
+ 202162278U, // <1,1,1,1>: Cost 1 vdup1 LHS
+ 2622636950U, // <1,1,1,2>: Cost 3 vext2 <0,u,1,1>, <1,2,3,0>
+ 2622637016U, // <1,1,1,3>: Cost 3 vext2 <0,u,1,1>, <1,3,1,3>
+ 1483115830U, // <1,1,1,4>: Cost 2 vext1 <1,1,1,1>, RHS
+ 2622637200U, // <1,1,1,5>: Cost 3 vext2 <0,u,1,1>, <1,5,3,7>
+ 2622637263U, // <1,1,1,6>: Cost 3 vext2 <0,u,1,1>, <1,6,1,7>
+ 2592691274U, // <1,1,1,7>: Cost 3 vext1 <7,1,1,1>, <7,1,1,1>
+ 202162278U, // <1,1,1,u>: Cost 1 vdup1 LHS
+ 2550890588U, // <1,1,2,0>: Cost 3 vext1 <0,1,1,2>, <0,1,1,2>
+ 2617329183U, // <1,1,2,1>: Cost 3 vext2 <0,0,1,1>, <2,1,3,1>
+ 2622637672U, // <1,1,2,2>: Cost 3 vext2 <0,u,1,1>, <2,2,2,2>
+ 2622637734U, // <1,1,2,3>: Cost 3 vext2 <0,u,1,1>, <2,3,0,1>
+ 2550893878U, // <1,1,2,4>: Cost 3 vext1 <0,1,1,2>, RHS
+ 3696379744U, // <1,1,2,5>: Cost 4 vext2 <0,u,1,1>, <2,5,2,7>
+ 2622638010U, // <1,1,2,6>: Cost 3 vext2 <0,u,1,1>, <2,6,3,7>
+ 3804554170U, // <1,1,2,7>: Cost 4 vext3 <7,7,0,1>, <1,2,7,0>
+ 2622638139U, // <1,1,2,u>: Cost 3 vext2 <0,u,1,1>, <2,u,0,1>
+ 2622638230U, // <1,1,3,0>: Cost 3 vext2 <0,u,1,1>, <3,0,1,2>
+ 3087844148U, // <1,1,3,1>: Cost 3 vtrnr LHS, <1,1,1,1>
+ 4161585244U, // <1,1,3,2>: Cost 4 vtrnr LHS, <0,1,1,2>
+ 2014101606U, // <1,1,3,3>: Cost 2 vtrnr LHS, LHS
+ 2622638594U, // <1,1,3,4>: Cost 3 vext2 <0,u,1,1>, <3,4,5,6>
+ 2689745920U, // <1,1,3,5>: Cost 3 vext3 <0,u,1,1>, <1,3,5,7>
+ 3763487753U, // <1,1,3,6>: Cost 4 vext3 <0,u,1,1>, <1,3,6,7>
+ 2592707660U, // <1,1,3,7>: Cost 3 vext1 <7,1,1,3>, <7,1,1,3>
+ 2014101611U, // <1,1,3,u>: Cost 2 vtrnr LHS, LHS
+ 2556878950U, // <1,1,4,0>: Cost 3 vext1 <1,1,1,4>, LHS
+ 2221335351U, // <1,1,4,1>: Cost 3 vrev <1,1,1,4>
+ 3696380988U, // <1,1,4,2>: Cost 4 vext2 <0,u,1,1>, <4,2,6,0>
+ 3763487805U, // <1,1,4,3>: Cost 4 vext3 <0,u,1,1>, <1,4,3,5>
+ 2556882230U, // <1,1,4,4>: Cost 3 vext1 <1,1,1,4>, RHS
+ 1548897590U, // <1,1,4,5>: Cost 2 vext2 <0,u,1,1>, RHS
+ 2758184246U, // <1,1,4,6>: Cost 3 vuzpl <1,1,1,1>, RHS
+ 3666457677U, // <1,1,4,7>: Cost 4 vext1 <7,1,1,4>, <7,1,1,4>
+ 1548897833U, // <1,1,4,u>: Cost 2 vext2 <0,u,1,1>, RHS
+ 2693653615U, // <1,1,5,0>: Cost 3 vext3 <1,5,0,1>, <1,5,0,1>
+ 2617331408U, // <1,1,5,1>: Cost 3 vext2 <0,0,1,1>, <5,1,7,3>
+ 4029302934U, // <1,1,5,2>: Cost 4 vzipr <0,4,1,5>, <3,0,1,2>
+ 2689746064U, // <1,1,5,3>: Cost 3 vext3 <0,u,1,1>, <1,5,3,7>
+ 2221564755U, // <1,1,5,4>: Cost 3 vrev <1,1,4,5>
+ 2955559250U, // <1,1,5,5>: Cost 3 vzipr <0,4,1,5>, <0,4,1,5>
+ 2617331810U, // <1,1,5,6>: Cost 3 vext2 <0,0,1,1>, <5,6,7,0>
+ 2825293110U, // <1,1,5,7>: Cost 3 vuzpr <1,1,1,1>, RHS
+ 2689746109U, // <1,1,5,u>: Cost 3 vext3 <0,u,1,1>, <1,5,u,7>
+ 3696382241U, // <1,1,6,0>: Cost 4 vext2 <0,u,1,1>, <6,0,1,2>
+ 2689746127U, // <1,1,6,1>: Cost 3 vext3 <0,u,1,1>, <1,6,1,7>
+ 2617332218U, // <1,1,6,2>: Cost 3 vext2 <0,0,1,1>, <6,2,7,3>
+ 3763487969U, // <1,1,6,3>: Cost 4 vext3 <0,u,1,1>, <1,6,3,7>
+ 3696382605U, // <1,1,6,4>: Cost 4 vext2 <0,u,1,1>, <6,4,5,6>
+ 4029309266U, // <1,1,6,5>: Cost 4 vzipr <0,4,1,6>, <0,4,1,5>
+ 2617332536U, // <1,1,6,6>: Cost 3 vext2 <0,0,1,1>, <6,6,6,6>
+ 2724840702U, // <1,1,6,7>: Cost 3 vext3 <6,7,0,1>, <1,6,7,0>
+ 2725504263U, // <1,1,6,u>: Cost 3 vext3 <6,u,0,1>, <1,6,u,0>
+ 2617332720U, // <1,1,7,0>: Cost 3 vext2 <0,0,1,1>, <7,0,0,1>
+ 2659800138U, // <1,1,7,1>: Cost 3 vext2 <7,1,1,1>, <7,1,1,1>
+ 3691074717U, // <1,1,7,2>: Cost 4 vext2 <0,0,1,1>, <7,2,1,3>
+ 4167811174U, // <1,1,7,3>: Cost 4 vtrnr <1,1,5,7>, LHS
+ 2617333094U, // <1,1,7,4>: Cost 3 vext2 <0,0,1,1>, <7,4,5,6>
+ 3295396702U, // <1,1,7,5>: Cost 4 vrev <1,1,5,7>
+ 3803891014U, // <1,1,7,6>: Cost 4 vext3 <7,6,0,1>, <1,7,6,0>
+ 2617333356U, // <1,1,7,7>: Cost 3 vext2 <0,0,1,1>, <7,7,7,7>
+ 2659800138U, // <1,1,7,u>: Cost 3 vext2 <7,1,1,1>, <7,1,1,1>
+ 1483112550U, // <1,1,u,0>: Cost 2 vext1 <1,1,1,1>, LHS
+ 202162278U, // <1,1,u,1>: Cost 1 vdup1 LHS
+ 2622642056U, // <1,1,u,2>: Cost 3 vext2 <0,u,1,1>, <u,2,3,3>
+ 2014142566U, // <1,1,u,3>: Cost 2 vtrnr LHS, LHS
+ 1483115830U, // <1,1,u,4>: Cost 2 vext1 <1,1,1,1>, RHS
+ 1548900506U, // <1,1,u,5>: Cost 2 vext2 <0,u,1,1>, RHS
+ 2622642384U, // <1,1,u,6>: Cost 3 vext2 <0,u,1,1>, <u,6,3,7>
+ 2825293353U, // <1,1,u,7>: Cost 3 vuzpr <1,1,1,1>, RHS
+ 202162278U, // <1,1,u,u>: Cost 1 vdup1 LHS
+ 2635251712U, // <1,2,0,0>: Cost 3 vext2 <3,0,1,2>, <0,0,0,0>
+ 1561509990U, // <1,2,0,1>: Cost 2 vext2 <3,0,1,2>, LHS
+ 2618663085U, // <1,2,0,2>: Cost 3 vext2 <0,2,1,2>, <0,2,1,2>
+ 2696529358U, // <1,2,0,3>: Cost 3 vext3 <2,0,3,1>, <2,0,3,1>
+ 2635252050U, // <1,2,0,4>: Cost 3 vext2 <3,0,1,2>, <0,4,1,5>
+ 3769533926U, // <1,2,0,5>: Cost 4 vext3 <1,u,2,1>, <2,0,5,7>
+ 2621317617U, // <1,2,0,6>: Cost 3 vext2 <0,6,1,2>, <0,6,1,2>
+ 2659140170U, // <1,2,0,7>: Cost 3 vext2 <7,0,1,2>, <0,7,2,1>
+ 1561510557U, // <1,2,0,u>: Cost 2 vext2 <3,0,1,2>, LHS
+ 2623308516U, // <1,2,1,0>: Cost 3 vext2 <1,0,1,2>, <1,0,1,2>
+ 2635252532U, // <1,2,1,1>: Cost 3 vext2 <3,0,1,2>, <1,1,1,1>
+ 2631271318U, // <1,2,1,2>: Cost 3 vext2 <2,3,1,2>, <1,2,3,0>
+ 2958180454U, // <1,2,1,3>: Cost 3 vzipr <0,u,1,1>, LHS
+ 2550959414U, // <1,2,1,4>: Cost 3 vext1 <0,1,2,1>, RHS
+ 2635252880U, // <1,2,1,5>: Cost 3 vext2 <3,0,1,2>, <1,5,3,7>
+ 2635252952U, // <1,2,1,6>: Cost 3 vext2 <3,0,1,2>, <1,6,2,7>
+ 3732882731U, // <1,2,1,7>: Cost 4 vext2 <7,0,1,2>, <1,7,3,0>
+ 2958180459U, // <1,2,1,u>: Cost 3 vzipr <0,u,1,1>, LHS
+ 2629281213U, // <1,2,2,0>: Cost 3 vext2 <2,0,1,2>, <2,0,1,2>
+ 2635253280U, // <1,2,2,1>: Cost 3 vext2 <3,0,1,2>, <2,1,3,2>
+ 2618664552U, // <1,2,2,2>: Cost 3 vext2 <0,2,1,2>, <2,2,2,2>
+ 2689746546U, // <1,2,2,3>: Cost 3 vext3 <0,u,1,1>, <2,2,3,3>
+ 3764815485U, // <1,2,2,4>: Cost 4 vext3 <1,1,1,1>, <2,2,4,5>
+ 3760023176U, // <1,2,2,5>: Cost 4 vext3 <0,2,u,1>, <2,2,5,7>
+ 2635253690U, // <1,2,2,6>: Cost 3 vext2 <3,0,1,2>, <2,6,3,7>
+ 2659141610U, // <1,2,2,7>: Cost 3 vext2 <7,0,1,2>, <2,7,0,1>
+ 2689746591U, // <1,2,2,u>: Cost 3 vext3 <0,u,1,1>, <2,2,u,3>
+ 403488870U, // <1,2,3,0>: Cost 1 vext1 LHS, LHS
+ 1477231350U, // <1,2,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 1477232232U, // <1,2,3,2>: Cost 2 vext1 LHS, <2,2,2,2>
+ 1477233052U, // <1,2,3,3>: Cost 2 vext1 LHS, <3,3,3,3>
+ 403492150U, // <1,2,3,4>: Cost 1 vext1 LHS, RHS
+ 1525010128U, // <1,2,3,5>: Cost 2 vext1 LHS, <5,1,7,3>
+ 1525010938U, // <1,2,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1525011450U, // <1,2,3,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 403494702U, // <1,2,3,u>: Cost 1 vext1 LHS, LHS
+ 2641226607U, // <1,2,4,0>: Cost 3 vext2 <4,0,1,2>, <4,0,1,2>
+ 3624723446U, // <1,2,4,1>: Cost 4 vext1 <0,1,2,4>, <1,3,4,6>
+ 3301123609U, // <1,2,4,2>: Cost 4 vrev <2,1,2,4>
+ 2598759198U, // <1,2,4,3>: Cost 3 vext1 <u,1,2,4>, <3,u,1,2>
+ 2659142864U, // <1,2,4,4>: Cost 3 vext2 <7,0,1,2>, <4,4,4,4>
+ 1561513270U, // <1,2,4,5>: Cost 2 vext2 <3,0,1,2>, RHS
+ 2659143028U, // <1,2,4,6>: Cost 3 vext2 <7,0,1,2>, <4,6,4,6>
+ 2659143112U, // <1,2,4,7>: Cost 3 vext2 <7,0,1,2>, <4,7,5,0>
+ 1561513513U, // <1,2,4,u>: Cost 2 vext2 <3,0,1,2>, RHS
+ 2550988902U, // <1,2,5,0>: Cost 3 vext1 <0,1,2,5>, LHS
+ 2550989824U, // <1,2,5,1>: Cost 3 vext1 <0,1,2,5>, <1,3,5,7>
+ 3624732264U, // <1,2,5,2>: Cost 4 vext1 <0,1,2,5>, <2,2,2,2>
+ 2955559014U, // <1,2,5,3>: Cost 3 vzipr <0,4,1,5>, LHS
+ 2550992182U, // <1,2,5,4>: Cost 3 vext1 <0,1,2,5>, RHS
+ 2659143684U, // <1,2,5,5>: Cost 3 vext2 <7,0,1,2>, <5,5,5,5>
+ 2659143778U, // <1,2,5,6>: Cost 3 vext2 <7,0,1,2>, <5,6,7,0>
+ 2659143848U, // <1,2,5,7>: Cost 3 vext2 <7,0,1,2>, <5,7,5,7>
+ 2550994734U, // <1,2,5,u>: Cost 3 vext1 <0,1,2,5>, LHS
+ 2700289945U, // <1,2,6,0>: Cost 3 vext3 <2,6,0,1>, <2,6,0,1>
+ 2635256232U, // <1,2,6,1>: Cost 3 vext2 <3,0,1,2>, <6,1,7,2>
+ 2659144186U, // <1,2,6,2>: Cost 3 vext2 <7,0,1,2>, <6,2,7,3>
+ 2689746874U, // <1,2,6,3>: Cost 3 vext3 <0,u,1,1>, <2,6,3,7>
+ 3763488705U, // <1,2,6,4>: Cost 4 vext3 <0,u,1,1>, <2,6,4,5>
+ 3763488716U, // <1,2,6,5>: Cost 4 vext3 <0,u,1,1>, <2,6,5,7>
+ 2659144504U, // <1,2,6,6>: Cost 3 vext2 <7,0,1,2>, <6,6,6,6>
+ 2657817432U, // <1,2,6,7>: Cost 3 vext2 <6,7,1,2>, <6,7,1,2>
+ 2689746919U, // <1,2,6,u>: Cost 3 vext3 <0,u,1,1>, <2,6,u,7>
+ 1585402874U, // <1,2,7,0>: Cost 2 vext2 <7,0,1,2>, <7,0,1,2>
+ 2659144770U, // <1,2,7,1>: Cost 3 vext2 <7,0,1,2>, <7,1,0,2>
+ 3708998858U, // <1,2,7,2>: Cost 4 vext2 <3,0,1,2>, <7,2,6,3>
+ 2635257059U, // <1,2,7,3>: Cost 3 vext2 <3,0,1,2>, <7,3,0,1>
+ 2659145062U, // <1,2,7,4>: Cost 3 vext2 <7,0,1,2>, <7,4,5,6>
+ 3732886916U, // <1,2,7,5>: Cost 4 vext2 <7,0,1,2>, <7,5,0,0>
+ 3732886998U, // <1,2,7,6>: Cost 4 vext2 <7,0,1,2>, <7,6,0,1>
+ 2659145255U, // <1,2,7,7>: Cost 3 vext2 <7,0,1,2>, <7,7,0,1>
+ 1590711938U, // <1,2,7,u>: Cost 2 vext2 <7,u,1,2>, <7,u,1,2>
+ 403529835U, // <1,2,u,0>: Cost 1 vext1 LHS, LHS
+ 1477272310U, // <1,2,u,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 1477273192U, // <1,2,u,2>: Cost 2 vext1 LHS, <2,2,2,2>
+ 1477273750U, // <1,2,u,3>: Cost 2 vext1 LHS, <3,0,1,2>
+ 403533110U, // <1,2,u,4>: Cost 1 vext1 LHS, RHS
+ 1561516186U, // <1,2,u,5>: Cost 2 vext2 <3,0,1,2>, RHS
+ 1525051898U, // <1,2,u,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1525052410U, // <1,2,u,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 403535662U, // <1,2,u,u>: Cost 1 vext1 LHS, LHS
+ 2819407872U, // <1,3,0,0>: Cost 3 vuzpr LHS, <0,0,0,0>
+ 1551564902U, // <1,3,0,1>: Cost 2 vext2 <1,3,1,3>, LHS
+ 2819408630U, // <1,3,0,2>: Cost 3 vuzpr LHS, <1,0,3,2>
+ 2619334911U, // <1,3,0,3>: Cost 3 vext2 <0,3,1,3>, <0,3,1,3>
+ 2625306962U, // <1,3,0,4>: Cost 3 vext2 <1,3,1,3>, <0,4,1,5>
+ 3832725879U, // <1,3,0,5>: Cost 4 vuzpl <1,2,3,0>, <0,4,5,6>
+ 3699048959U, // <1,3,0,6>: Cost 4 vext2 <1,3,1,3>, <0,6,2,7>
+ 3776538827U, // <1,3,0,7>: Cost 4 vext3 <3,0,7,1>, <3,0,7,1>
+ 1551565469U, // <1,3,0,u>: Cost 2 vext2 <1,3,1,3>, LHS
+ 2618671862U, // <1,3,1,0>: Cost 3 vext2 <0,2,1,3>, <1,0,3,2>
+ 2819408692U, // <1,3,1,1>: Cost 3 vuzpr LHS, <1,1,1,1>
+ 2624643975U, // <1,3,1,2>: Cost 3 vext2 <1,2,1,3>, <1,2,1,3>
+ 1745666150U, // <1,3,1,3>: Cost 2 vuzpr LHS, LHS
+ 2557005110U, // <1,3,1,4>: Cost 3 vext1 <1,1,3,1>, RHS
+ 2625307792U, // <1,3,1,5>: Cost 3 vext2 <1,3,1,3>, <1,5,3,7>
+ 3698386127U, // <1,3,1,6>: Cost 4 vext2 <1,2,1,3>, <1,6,1,7>
+ 2592838748U, // <1,3,1,7>: Cost 3 vext1 <7,1,3,1>, <7,1,3,1>
+ 1745666155U, // <1,3,1,u>: Cost 2 vuzpr LHS, LHS
+ 2819408790U, // <1,3,2,0>: Cost 3 vuzpr LHS, <1,2,3,0>
+ 2625308193U, // <1,3,2,1>: Cost 3 vext2 <1,3,1,3>, <2,1,3,3>
+ 2819408036U, // <1,3,2,2>: Cost 3 vuzpr LHS, <0,2,0,2>
+ 2819851890U, // <1,3,2,3>: Cost 3 vuzpr LHS, <2,2,3,3>
+ 2819408794U, // <1,3,2,4>: Cost 3 vuzpr LHS, <1,2,3,4>
+ 3893149890U, // <1,3,2,5>: Cost 4 vuzpr LHS, <0,2,3,5>
+ 2819408076U, // <1,3,2,6>: Cost 3 vuzpr LHS, <0,2,4,6>
+ 3772041583U, // <1,3,2,7>: Cost 4 vext3 <2,3,0,1>, <3,2,7,3>
+ 2819408042U, // <1,3,2,u>: Cost 3 vuzpr LHS, <0,2,0,u>
+ 1483276390U, // <1,3,3,0>: Cost 2 vext1 <1,1,3,3>, LHS
+ 1483277128U, // <1,3,3,1>: Cost 2 vext1 <1,1,3,3>, <1,1,3,3>
+ 2557019752U, // <1,3,3,2>: Cost 3 vext1 <1,1,3,3>, <2,2,2,2>
+ 2819408856U, // <1,3,3,3>: Cost 3 vuzpr LHS, <1,3,1,3>
+ 1483279670U, // <1,3,3,4>: Cost 2 vext1 <1,1,3,3>, RHS
+ 2819409614U, // <1,3,3,5>: Cost 3 vuzpr LHS, <2,3,4,5>
+ 2598826490U, // <1,3,3,6>: Cost 3 vext1 <u,1,3,3>, <6,2,7,3>
+ 3087844352U, // <1,3,3,7>: Cost 3 vtrnr LHS, <1,3,5,7>
+ 1483282222U, // <1,3,3,u>: Cost 2 vext1 <1,1,3,3>, LHS
+ 2568970342U, // <1,3,4,0>: Cost 3 vext1 <3,1,3,4>, LHS
+ 2568971224U, // <1,3,4,1>: Cost 3 vext1 <3,1,3,4>, <1,3,1,3>
+ 3832761290U, // <1,3,4,2>: Cost 4 vuzpl <1,2,3,4>, <4,1,2,3>
+ 2233428219U, // <1,3,4,3>: Cost 3 vrev <3,1,3,4>
+ 2568973622U, // <1,3,4,4>: Cost 3 vext1 <3,1,3,4>, RHS
+ 1551568182U, // <1,3,4,5>: Cost 2 vext2 <1,3,1,3>, RHS
+ 2819410434U, // <1,3,4,6>: Cost 3 vuzpr LHS, <3,4,5,6>
+ 3666605151U, // <1,3,4,7>: Cost 4 vext1 <7,1,3,4>, <7,1,3,4>
+ 1551568425U, // <1,3,4,u>: Cost 2 vext2 <1,3,1,3>, RHS
+ 2563006566U, // <1,3,5,0>: Cost 3 vext1 <2,1,3,5>, LHS
+ 2568979456U, // <1,3,5,1>: Cost 3 vext1 <3,1,3,5>, <1,3,5,7>
+ 2563008035U, // <1,3,5,2>: Cost 3 vext1 <2,1,3,5>, <2,1,3,5>
+ 2233436412U, // <1,3,5,3>: Cost 3 vrev <3,1,3,5>
+ 2563009846U, // <1,3,5,4>: Cost 3 vext1 <2,1,3,5>, RHS
+ 2867187716U, // <1,3,5,5>: Cost 3 vuzpr LHS, <5,5,5,5>
+ 2655834214U, // <1,3,5,6>: Cost 3 vext2 <6,4,1,3>, <5,6,7,4>
+ 1745669430U, // <1,3,5,7>: Cost 2 vuzpr LHS, RHS
+ 1745669431U, // <1,3,5,u>: Cost 2 vuzpr LHS, RHS
+ 2867187810U, // <1,3,6,0>: Cost 3 vuzpr LHS, <5,6,7,0>
+ 3699052931U, // <1,3,6,1>: Cost 4 vext2 <1,3,1,3>, <6,1,3,1>
+ 2654507460U, // <1,3,6,2>: Cost 3 vext2 <6,2,1,3>, <6,2,1,3>
+ 3766291091U, // <1,3,6,3>: Cost 4 vext3 <1,3,3,1>, <3,6,3,7>
+ 2655834726U, // <1,3,6,4>: Cost 3 vext2 <6,4,1,3>, <6,4,1,3>
+ 3923384562U, // <1,3,6,5>: Cost 4 vuzpr <5,1,7,3>, <u,6,7,5>
+ 2657161992U, // <1,3,6,6>: Cost 3 vext2 <6,6,1,3>, <6,6,1,3>
+ 2819852218U, // <1,3,6,7>: Cost 3 vuzpr LHS, <2,6,3,7>
+ 2819852219U, // <1,3,6,u>: Cost 3 vuzpr LHS, <2,6,3,u>
+ 2706926275U, // <1,3,7,0>: Cost 3 vext3 <3,7,0,1>, <3,7,0,1>
+ 2659816524U, // <1,3,7,1>: Cost 3 vext2 <7,1,1,3>, <7,1,1,3>
+ 3636766245U, // <1,3,7,2>: Cost 4 vext1 <2,1,3,7>, <2,1,3,7>
+ 2867187903U, // <1,3,7,3>: Cost 3 vuzpr LHS, <5,7,u,3>
+ 2625312102U, // <1,3,7,4>: Cost 3 vext2 <1,3,1,3>, <7,4,5,6>
+ 2867188598U, // <1,3,7,5>: Cost 3 vuzpr LHS, <6,7,4,5>
+ 3728250344U, // <1,3,7,6>: Cost 4 vext2 <6,2,1,3>, <7,6,2,1>
+ 2867187880U, // <1,3,7,7>: Cost 3 vuzpr LHS, <5,7,5,7>
+ 2707516171U, // <1,3,7,u>: Cost 3 vext3 <3,7,u,1>, <3,7,u,1>
+ 1483317350U, // <1,3,u,0>: Cost 2 vext1 <1,1,3,u>, LHS
+ 1483318093U, // <1,3,u,1>: Cost 2 vext1 <1,1,3,u>, <1,1,3,u>
+ 2819410718U, // <1,3,u,2>: Cost 3 vuzpr LHS, <3,u,1,2>
+ 1745666717U, // <1,3,u,3>: Cost 2 vuzpr LHS, LHS
+ 1483320630U, // <1,3,u,4>: Cost 2 vext1 <1,1,3,u>, RHS
+ 1551571098U, // <1,3,u,5>: Cost 2 vext2 <1,3,1,3>, RHS
+ 2819410758U, // <1,3,u,6>: Cost 3 vuzpr LHS, <3,u,5,6>
+ 1745669673U, // <1,3,u,7>: Cost 2 vuzpr LHS, RHS
+ 1745666722U, // <1,3,u,u>: Cost 2 vuzpr LHS, LHS
+ 2617352205U, // <1,4,0,0>: Cost 3 vext2 <0,0,1,4>, <0,0,1,4>
+ 2619342950U, // <1,4,0,1>: Cost 3 vext2 <0,3,1,4>, LHS
+ 3692421295U, // <1,4,0,2>: Cost 4 vext2 <0,2,1,4>, <0,2,1,4>
+ 2619343104U, // <1,4,0,3>: Cost 3 vext2 <0,3,1,4>, <0,3,1,4>
+ 2617352530U, // <1,4,0,4>: Cost 3 vext2 <0,0,1,4>, <0,4,1,5>
+ 1634880402U, // <1,4,0,5>: Cost 2 vext3 <4,0,5,1>, <4,0,5,1>
+ 2713930652U, // <1,4,0,6>: Cost 3 vext3 <4,u,5,1>, <4,0,6,2>
+ 3732898396U, // <1,4,0,7>: Cost 4 vext2 <7,0,1,4>, <0,7,4,1>
+ 1635101613U, // <1,4,0,u>: Cost 2 vext3 <4,0,u,1>, <4,0,u,1>
+ 3693085430U, // <1,4,1,0>: Cost 4 vext2 <0,3,1,4>, <1,0,3,2>
+ 2623988535U, // <1,4,1,1>: Cost 3 vext2 <1,1,1,4>, <1,1,1,4>
+ 3693085590U, // <1,4,1,2>: Cost 4 vext2 <0,3,1,4>, <1,2,3,0>
+ 3692422134U, // <1,4,1,3>: Cost 4 vext2 <0,2,1,4>, <1,3,4,6>
+ 3693085726U, // <1,4,1,4>: Cost 4 vext2 <0,3,1,4>, <1,4,0,1>
+ 2892401974U, // <1,4,1,5>: Cost 3 vzipl <1,1,1,1>, RHS
+ 3026619702U, // <1,4,1,6>: Cost 3 vtrnl <1,1,1,1>, RHS
+ 3800206324U, // <1,4,1,7>: Cost 4 vext3 <7,0,4,1>, <4,1,7,0>
+ 2892402217U, // <1,4,1,u>: Cost 3 vzipl <1,1,1,1>, RHS
+ 3966978927U, // <1,4,2,0>: Cost 4 vzipl <1,2,3,4>, <4,0,1,2>
+ 3966979018U, // <1,4,2,1>: Cost 4 vzipl <1,2,3,4>, <4,1,2,3>
+ 3693086312U, // <1,4,2,2>: Cost 4 vext2 <0,3,1,4>, <2,2,2,2>
+ 2635269798U, // <1,4,2,3>: Cost 3 vext2 <3,0,1,4>, <2,3,0,1>
+ 3966979280U, // <1,4,2,4>: Cost 4 vzipl <1,2,3,4>, <4,4,4,4>
+ 2893204790U, // <1,4,2,5>: Cost 3 vzipl <1,2,3,0>, RHS
+ 3693086650U, // <1,4,2,6>: Cost 4 vext2 <0,3,1,4>, <2,6,3,7>
+ 3666662502U, // <1,4,2,7>: Cost 4 vext1 <7,1,4,2>, <7,1,4,2>
+ 2893205033U, // <1,4,2,u>: Cost 3 vzipl <1,2,3,0>, RHS
+ 2563063910U, // <1,4,3,0>: Cost 3 vext1 <2,1,4,3>, LHS
+ 2563064730U, // <1,4,3,1>: Cost 3 vext1 <2,1,4,3>, <1,2,3,4>
+ 2563065386U, // <1,4,3,2>: Cost 3 vext1 <2,1,4,3>, <2,1,4,3>
+ 3693087132U, // <1,4,3,3>: Cost 4 vext2 <0,3,1,4>, <3,3,3,3>
+ 2619345410U, // <1,4,3,4>: Cost 3 vext2 <0,3,1,4>, <3,4,5,6>
+ 3087843666U, // <1,4,3,5>: Cost 3 vtrnr LHS, <0,4,1,5>
+ 3087843676U, // <1,4,3,6>: Cost 3 vtrnr LHS, <0,4,2,6>
+ 3666670695U, // <1,4,3,7>: Cost 4 vext1 <7,1,4,3>, <7,1,4,3>
+ 3087843669U, // <1,4,3,u>: Cost 3 vtrnr LHS, <0,4,1,u>
+ 2620672914U, // <1,4,4,0>: Cost 3 vext2 <0,5,1,4>, <4,0,5,1>
+ 3630842706U, // <1,4,4,1>: Cost 4 vext1 <1,1,4,4>, <1,1,4,4>
+ 3313069003U, // <1,4,4,2>: Cost 4 vrev <4,1,2,4>
+ 3642788100U, // <1,4,4,3>: Cost 4 vext1 <3,1,4,4>, <3,1,4,4>
+ 2713930960U, // <1,4,4,4>: Cost 3 vext3 <4,u,5,1>, <4,4,4,4>
+ 2619346230U, // <1,4,4,5>: Cost 3 vext2 <0,3,1,4>, RHS
+ 2713930980U, // <1,4,4,6>: Cost 3 vext3 <4,u,5,1>, <4,4,6,6>
+ 3736882642U, // <1,4,4,7>: Cost 4 vext2 <7,6,1,4>, <4,7,6,1>
+ 2619346473U, // <1,4,4,u>: Cost 3 vext2 <0,3,1,4>, RHS
+ 2557108326U, // <1,4,5,0>: Cost 3 vext1 <1,1,4,5>, LHS
+ 2557109075U, // <1,4,5,1>: Cost 3 vext1 <1,1,4,5>, <1,1,4,5>
+ 2598913774U, // <1,4,5,2>: Cost 3 vext1 <u,1,4,5>, <2,3,u,1>
+ 3630852246U, // <1,4,5,3>: Cost 4 vext1 <1,1,4,5>, <3,0,1,2>
+ 2557111606U, // <1,4,5,4>: Cost 3 vext1 <1,1,4,5>, RHS
+ 2895252790U, // <1,4,5,5>: Cost 3 vzipl <1,5,3,7>, RHS
+ 1616006454U, // <1,4,5,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 3899059510U, // <1,4,5,7>: Cost 4 vuzpr <1,1,1,4>, RHS
+ 1616006472U, // <1,4,5,u>: Cost 2 vext3 <0,u,1,1>, RHS
+ 2557116518U, // <1,4,6,0>: Cost 3 vext1 <1,1,4,6>, LHS
+ 2557117236U, // <1,4,6,1>: Cost 3 vext1 <1,1,4,6>, <1,1,1,1>
+ 3630859880U, // <1,4,6,2>: Cost 4 vext1 <1,1,4,6>, <2,2,2,2>
+ 2569062550U, // <1,4,6,3>: Cost 3 vext1 <3,1,4,6>, <3,0,1,2>
+ 2557119798U, // <1,4,6,4>: Cost 3 vext1 <1,1,4,6>, RHS
+ 3763490174U, // <1,4,6,5>: Cost 4 vext3 <0,u,1,1>, <4,6,5,7>
+ 3763490183U, // <1,4,6,6>: Cost 4 vext3 <0,u,1,1>, <4,6,6,7>
+ 2712751498U, // <1,4,6,7>: Cost 3 vext3 <4,6,7,1>, <4,6,7,1>
+ 2557122350U, // <1,4,6,u>: Cost 3 vext1 <1,1,4,6>, LHS
+ 2659161084U, // <1,4,7,0>: Cost 3 vext2 <7,0,1,4>, <7,0,1,4>
+ 3732903040U, // <1,4,7,1>: Cost 4 vext2 <7,0,1,4>, <7,1,7,1>
+ 3734230174U, // <1,4,7,2>: Cost 4 vext2 <7,2,1,4>, <7,2,1,4>
+ 3734893807U, // <1,4,7,3>: Cost 4 vext2 <7,3,1,4>, <7,3,1,4>
+ 3660729654U, // <1,4,7,4>: Cost 4 vext1 <6,1,4,7>, RHS
+ 3786493384U, // <1,4,7,5>: Cost 4 vext3 <4,6,7,1>, <4,7,5,0>
+ 2713341394U, // <1,4,7,6>: Cost 3 vext3 <4,7,6,1>, <4,7,6,1>
+ 3660731386U, // <1,4,7,7>: Cost 4 vext1 <6,1,4,7>, <7,0,1,2>
+ 2664470148U, // <1,4,7,u>: Cost 3 vext2 <7,u,1,4>, <7,u,1,4>
+ 2557132902U, // <1,4,u,0>: Cost 3 vext1 <1,1,4,u>, LHS
+ 2619348782U, // <1,4,u,1>: Cost 3 vext2 <0,3,1,4>, LHS
+ 2563106351U, // <1,4,u,2>: Cost 3 vext1 <2,1,4,u>, <2,1,4,u>
+ 2713783816U, // <1,4,u,3>: Cost 3 vext3 <4,u,3,1>, <4,u,3,1>
+ 2622666815U, // <1,4,u,4>: Cost 3 vext2 <0,u,1,4>, <u,4,5,6>
+ 1640189466U, // <1,4,u,5>: Cost 2 vext3 <4,u,5,1>, <4,u,5,1>
+ 1616006697U, // <1,4,u,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 2712751498U, // <1,4,u,7>: Cost 3 vext3 <4,6,7,1>, <4,6,7,1>
+ 1616006715U, // <1,4,u,u>: Cost 2 vext3 <0,u,1,1>, RHS
+ 2620014592U, // <1,5,0,0>: Cost 3 vext2 <0,4,1,5>, <0,0,0,0>
+ 1546272870U, // <1,5,0,1>: Cost 2 vext2 <0,4,1,5>, LHS
+ 2618687664U, // <1,5,0,2>: Cost 3 vext2 <0,2,1,5>, <0,2,1,5>
+ 3693093120U, // <1,5,0,3>: Cost 4 vext2 <0,3,1,5>, <0,3,1,4>
+ 1546273106U, // <1,5,0,4>: Cost 2 vext2 <0,4,1,5>, <0,4,1,5>
+ 2620678563U, // <1,5,0,5>: Cost 3 vext2 <0,5,1,5>, <0,5,1,5>
+ 2714668660U, // <1,5,0,6>: Cost 3 vext3 <5,0,6,1>, <5,0,6,1>
+ 3772042877U, // <1,5,0,7>: Cost 4 vext3 <2,3,0,1>, <5,0,7,1>
+ 1546273437U, // <1,5,0,u>: Cost 2 vext2 <0,4,1,5>, LHS
+ 2620015350U, // <1,5,1,0>: Cost 3 vext2 <0,4,1,5>, <1,0,3,2>
+ 2620015412U, // <1,5,1,1>: Cost 3 vext2 <0,4,1,5>, <1,1,1,1>
+ 2620015510U, // <1,5,1,2>: Cost 3 vext2 <0,4,1,5>, <1,2,3,0>
+ 2618688512U, // <1,5,1,3>: Cost 3 vext2 <0,2,1,5>, <1,3,5,7>
+ 2620015677U, // <1,5,1,4>: Cost 3 vext2 <0,4,1,5>, <1,4,3,5>
+ 2620015727U, // <1,5,1,5>: Cost 3 vext2 <0,4,1,5>, <1,5,0,1>
+ 2620015859U, // <1,5,1,6>: Cost 3 vext2 <0,4,1,5>, <1,6,5,7>
+ 3093728566U, // <1,5,1,7>: Cost 3 vtrnr <1,1,1,1>, RHS
+ 2620015981U, // <1,5,1,u>: Cost 3 vext2 <0,4,1,5>, <1,u,1,3>
+ 3692430816U, // <1,5,2,0>: Cost 4 vext2 <0,2,1,5>, <2,0,5,1>
+ 2620016163U, // <1,5,2,1>: Cost 3 vext2 <0,4,1,5>, <2,1,3,5>
+ 2620016232U, // <1,5,2,2>: Cost 3 vext2 <0,4,1,5>, <2,2,2,2>
+ 2620016294U, // <1,5,2,3>: Cost 3 vext2 <0,4,1,5>, <2,3,0,1>
+ 3693758221U, // <1,5,2,4>: Cost 4 vext2 <0,4,1,5>, <2,4,2,5>
+ 3692431209U, // <1,5,2,5>: Cost 4 vext2 <0,2,1,5>, <2,5,3,7>
+ 2620016570U, // <1,5,2,6>: Cost 3 vext2 <0,4,1,5>, <2,6,3,7>
+ 4173598006U, // <1,5,2,7>: Cost 4 vtrnr <2,1,3,2>, RHS
+ 2620016699U, // <1,5,2,u>: Cost 3 vext2 <0,4,1,5>, <2,u,0,1>
+ 2620016790U, // <1,5,3,0>: Cost 3 vext2 <0,4,1,5>, <3,0,1,2>
+ 2569110672U, // <1,5,3,1>: Cost 3 vext1 <3,1,5,3>, <1,5,3,7>
+ 3693758785U, // <1,5,3,2>: Cost 4 vext2 <0,4,1,5>, <3,2,2,2>
+ 2620017052U, // <1,5,3,3>: Cost 3 vext2 <0,4,1,5>, <3,3,3,3>
+ 2620017154U, // <1,5,3,4>: Cost 3 vext2 <0,4,1,5>, <3,4,5,6>
+ 3135623172U, // <1,5,3,5>: Cost 3 vtrnr LHS, <5,5,5,5>
+ 4161587048U, // <1,5,3,6>: Cost 4 vtrnr LHS, <2,5,3,6>
+ 2014104886U, // <1,5,3,7>: Cost 2 vtrnr LHS, RHS
+ 2014104887U, // <1,5,3,u>: Cost 2 vtrnr LHS, RHS
+ 2620017554U, // <1,5,4,0>: Cost 3 vext2 <0,4,1,5>, <4,0,5,1>
+ 2620017634U, // <1,5,4,1>: Cost 3 vext2 <0,4,1,5>, <4,1,5,0>
+ 3693759551U, // <1,5,4,2>: Cost 4 vext2 <0,4,1,5>, <4,2,6,3>
+ 3642861837U, // <1,5,4,3>: Cost 4 vext1 <3,1,5,4>, <3,1,5,4>
+ 2575092710U, // <1,5,4,4>: Cost 3 vext1 <4,1,5,4>, <4,1,5,4>
+ 1546276150U, // <1,5,4,5>: Cost 2 vext2 <0,4,1,5>, RHS
+ 2759855414U, // <1,5,4,6>: Cost 3 vuzpl <1,3,5,7>, RHS
+ 2713931718U, // <1,5,4,7>: Cost 3 vext3 <4,u,5,1>, <5,4,7,6>
+ 1546276393U, // <1,5,4,u>: Cost 2 vext2 <0,4,1,5>, RHS
+ 2557182054U, // <1,5,5,0>: Cost 3 vext1 <1,1,5,5>, LHS
+ 2557182812U, // <1,5,5,1>: Cost 3 vext1 <1,1,5,5>, <1,1,5,5>
+ 3630925347U, // <1,5,5,2>: Cost 4 vext1 <1,1,5,5>, <2,1,3,5>
+ 4029301675U, // <1,5,5,3>: Cost 4 vzipr <0,4,1,5>, <1,2,5,3>
+ 2557185334U, // <1,5,5,4>: Cost 3 vext1 <1,1,5,5>, RHS
+ 2713931780U, // <1,5,5,5>: Cost 3 vext3 <4,u,5,1>, <5,5,5,5>
+ 2667794530U, // <1,5,5,6>: Cost 3 vext2 <u,4,1,5>, <5,6,7,0>
+ 2713931800U, // <1,5,5,7>: Cost 3 vext3 <4,u,5,1>, <5,5,7,7>
+ 2557187886U, // <1,5,5,u>: Cost 3 vext1 <1,1,5,5>, LHS
+ 2718208036U, // <1,5,6,0>: Cost 3 vext3 <5,6,0,1>, <5,6,0,1>
+ 2620019115U, // <1,5,6,1>: Cost 3 vext2 <0,4,1,5>, <6,1,7,5>
+ 2667794938U, // <1,5,6,2>: Cost 3 vext2 <u,4,1,5>, <6,2,7,3>
+ 3787673666U, // <1,5,6,3>: Cost 4 vext3 <4,u,5,1>, <5,6,3,4>
+ 3693761165U, // <1,5,6,4>: Cost 4 vext2 <0,4,1,5>, <6,4,5,6>
+ 3319279297U, // <1,5,6,5>: Cost 4 vrev <5,1,5,6>
+ 2667795256U, // <1,5,6,6>: Cost 3 vext2 <u,4,1,5>, <6,6,6,6>
+ 2713931874U, // <1,5,6,7>: Cost 3 vext3 <4,u,5,1>, <5,6,7,0>
+ 2713931883U, // <1,5,6,u>: Cost 3 vext3 <4,u,5,1>, <5,6,u,0>
+ 2557198438U, // <1,5,7,0>: Cost 3 vext1 <1,1,5,7>, LHS
+ 2557199156U, // <1,5,7,1>: Cost 3 vext1 <1,1,5,7>, <1,1,1,1>
+ 2569143974U, // <1,5,7,2>: Cost 3 vext1 <3,1,5,7>, <2,3,0,1>
+ 2569144592U, // <1,5,7,3>: Cost 3 vext1 <3,1,5,7>, <3,1,5,7>
+ 2557201718U, // <1,5,7,4>: Cost 3 vext1 <1,1,5,7>, RHS
+ 2713931944U, // <1,5,7,5>: Cost 3 vext3 <4,u,5,1>, <5,7,5,7>
+ 3787673770U, // <1,5,7,6>: Cost 4 vext3 <4,u,5,1>, <5,7,6,0>
+ 2719387828U, // <1,5,7,7>: Cost 3 vext3 <5,7,7,1>, <5,7,7,1>
+ 2557204270U, // <1,5,7,u>: Cost 3 vext1 <1,1,5,7>, LHS
+ 2620020435U, // <1,5,u,0>: Cost 3 vext2 <0,4,1,5>, <u,0,1,2>
+ 1546278702U, // <1,5,u,1>: Cost 2 vext2 <0,4,1,5>, LHS
+ 2620020616U, // <1,5,u,2>: Cost 3 vext2 <0,4,1,5>, <u,2,3,3>
+ 2620020668U, // <1,5,u,3>: Cost 3 vext2 <0,4,1,5>, <u,3,0,1>
+ 1594054682U, // <1,5,u,4>: Cost 2 vext2 <u,4,1,5>, <u,4,1,5>
+ 1546279066U, // <1,5,u,5>: Cost 2 vext2 <0,4,1,5>, RHS
+ 2620020944U, // <1,5,u,6>: Cost 3 vext2 <0,4,1,5>, <u,6,3,7>
+ 2014145846U, // <1,5,u,7>: Cost 2 vtrnr LHS, RHS
+ 2014145847U, // <1,5,u,u>: Cost 2 vtrnr LHS, RHS
+ 3692437504U, // <1,6,0,0>: Cost 4 vext2 <0,2,1,6>, <0,0,0,0>
+ 2618695782U, // <1,6,0,1>: Cost 3 vext2 <0,2,1,6>, LHS
+ 2618695857U, // <1,6,0,2>: Cost 3 vext2 <0,2,1,6>, <0,2,1,6>
+ 3794161970U, // <1,6,0,3>: Cost 4 vext3 <6,0,3,1>, <6,0,3,1>
+ 2620023122U, // <1,6,0,4>: Cost 3 vext2 <0,4,1,6>, <0,4,1,5>
+ 2620686756U, // <1,6,0,5>: Cost 3 vext2 <0,5,1,6>, <0,5,1,6>
+ 2621350389U, // <1,6,0,6>: Cost 3 vext2 <0,6,1,6>, <0,6,1,6>
+ 4028599606U, // <1,6,0,7>: Cost 4 vzipr <0,3,1,0>, RHS
+ 2618696349U, // <1,6,0,u>: Cost 3 vext2 <0,2,1,6>, LHS
+ 3692438262U, // <1,6,1,0>: Cost 4 vext2 <0,2,1,6>, <1,0,3,2>
+ 2625995572U, // <1,6,1,1>: Cost 3 vext2 <1,4,1,6>, <1,1,1,1>
+ 3692438422U, // <1,6,1,2>: Cost 4 vext2 <0,2,1,6>, <1,2,3,0>
+ 3692438488U, // <1,6,1,3>: Cost 4 vext2 <0,2,1,6>, <1,3,1,3>
+ 2625995820U, // <1,6,1,4>: Cost 3 vext2 <1,4,1,6>, <1,4,1,6>
+ 3692438672U, // <1,6,1,5>: Cost 4 vext2 <0,2,1,6>, <1,5,3,7>
+ 3692438720U, // <1,6,1,6>: Cost 4 vext2 <0,2,1,6>, <1,6,0,1>
+ 2958183734U, // <1,6,1,7>: Cost 3 vzipr <0,u,1,1>, RHS
+ 2958183735U, // <1,6,1,u>: Cost 3 vzipr <0,u,1,1>, RHS
+ 2721526201U, // <1,6,2,0>: Cost 3 vext3 <6,2,0,1>, <6,2,0,1>
+ 3692439097U, // <1,6,2,1>: Cost 4 vext2 <0,2,1,6>, <2,1,6,0>
+ 3692439144U, // <1,6,2,2>: Cost 4 vext2 <0,2,1,6>, <2,2,2,2>
+ 3692439206U, // <1,6,2,3>: Cost 4 vext2 <0,2,1,6>, <2,3,0,1>
+ 3636948278U, // <1,6,2,4>: Cost 4 vext1 <2,1,6,2>, RHS
+ 3787674092U, // <1,6,2,5>: Cost 4 vext3 <4,u,5,1>, <6,2,5,7>
+ 2618697658U, // <1,6,2,6>: Cost 3 vext2 <0,2,1,6>, <2,6,3,7>
+ 2970799414U, // <1,6,2,7>: Cost 3 vzipr <3,0,1,2>, RHS
+ 2970799415U, // <1,6,2,u>: Cost 3 vzipr <3,0,1,2>, RHS
+ 2563211366U, // <1,6,3,0>: Cost 3 vext1 <2,1,6,3>, LHS
+ 3699738854U, // <1,6,3,1>: Cost 4 vext2 <1,4,1,6>, <3,1,1,1>
+ 2563212860U, // <1,6,3,2>: Cost 3 vext1 <2,1,6,3>, <2,1,6,3>
+ 3692439964U, // <1,6,3,3>: Cost 4 vext2 <0,2,1,6>, <3,3,3,3>
+ 2563214646U, // <1,6,3,4>: Cost 3 vext1 <2,1,6,3>, RHS
+ 4191820018U, // <1,6,3,5>: Cost 4 vtrnr <5,1,7,3>, <u,6,7,5>
+ 2587103648U, // <1,6,3,6>: Cost 3 vext1 <6,1,6,3>, <6,1,6,3>
+ 3087845306U, // <1,6,3,7>: Cost 3 vtrnr LHS, <2,6,3,7>
+ 3087845307U, // <1,6,3,u>: Cost 3 vtrnr LHS, <2,6,3,u>
+ 3693767570U, // <1,6,4,0>: Cost 4 vext2 <0,4,1,6>, <4,0,5,1>
+ 3693767650U, // <1,6,4,1>: Cost 4 vext2 <0,4,1,6>, <4,1,5,0>
+ 3636962877U, // <1,6,4,2>: Cost 4 vext1 <2,1,6,4>, <2,1,6,4>
+ 3325088134U, // <1,6,4,3>: Cost 4 vrev <6,1,3,4>
+ 3693767898U, // <1,6,4,4>: Cost 4 vext2 <0,4,1,6>, <4,4,5,5>
+ 2618699062U, // <1,6,4,5>: Cost 3 vext2 <0,2,1,6>, RHS
+ 3833670966U, // <1,6,4,6>: Cost 4 vuzpl <1,3,6,7>, RHS
+ 4028632374U, // <1,6,4,7>: Cost 4 vzipr <0,3,1,4>, RHS
+ 2618699305U, // <1,6,4,u>: Cost 3 vext2 <0,2,1,6>, RHS
+ 3693768264U, // <1,6,5,0>: Cost 4 vext2 <0,4,1,6>, <5,0,1,2>
+ 3630998373U, // <1,6,5,1>: Cost 4 vext1 <1,1,6,5>, <1,1,6,5>
+ 3636971070U, // <1,6,5,2>: Cost 4 vext1 <2,1,6,5>, <2,1,6,5>
+ 3642943767U, // <1,6,5,3>: Cost 4 vext1 <3,1,6,5>, <3,1,6,5>
+ 3693768628U, // <1,6,5,4>: Cost 4 vext2 <0,4,1,6>, <5,4,5,6>
+ 3732918276U, // <1,6,5,5>: Cost 4 vext2 <7,0,1,6>, <5,5,5,5>
+ 2620690530U, // <1,6,5,6>: Cost 3 vext2 <0,5,1,6>, <5,6,7,0>
+ 2955562294U, // <1,6,5,7>: Cost 3 vzipr <0,4,1,5>, RHS
+ 2955562295U, // <1,6,5,u>: Cost 3 vzipr <0,4,1,5>, RHS
+ 2724180733U, // <1,6,6,0>: Cost 3 vext3 <6,6,0,1>, <6,6,0,1>
+ 3631006566U, // <1,6,6,1>: Cost 4 vext1 <1,1,6,6>, <1,1,6,6>
+ 3631007674U, // <1,6,6,2>: Cost 4 vext1 <1,1,6,6>, <2,6,3,7>
+ 3692442184U, // <1,6,6,3>: Cost 4 vext2 <0,2,1,6>, <6,3,7,0>
+ 3631009078U, // <1,6,6,4>: Cost 4 vext1 <1,1,6,6>, RHS
+ 3787674416U, // <1,6,6,5>: Cost 4 vext3 <4,u,5,1>, <6,6,5,7>
+ 2713932600U, // <1,6,6,6>: Cost 3 vext3 <4,u,5,1>, <6,6,6,6>
+ 2713932610U, // <1,6,6,7>: Cost 3 vext3 <4,u,5,1>, <6,6,7,7>
+ 2713932619U, // <1,6,6,u>: Cost 3 vext3 <4,u,5,1>, <6,6,u,7>
+ 1651102542U, // <1,6,7,0>: Cost 2 vext3 <6,7,0,1>, <6,7,0,1>
+ 2724918103U, // <1,6,7,1>: Cost 3 vext3 <6,7,1,1>, <6,7,1,1>
+ 2698302306U, // <1,6,7,2>: Cost 3 vext3 <2,3,0,1>, <6,7,2,3>
+ 3642960153U, // <1,6,7,3>: Cost 4 vext1 <3,1,6,7>, <3,1,6,7>
+ 2713932662U, // <1,6,7,4>: Cost 3 vext3 <4,u,5,1>, <6,7,4,5>
+ 2725213051U, // <1,6,7,5>: Cost 3 vext3 <6,7,5,1>, <6,7,5,1>
+ 2724844426U, // <1,6,7,6>: Cost 3 vext3 <6,7,0,1>, <6,7,6,7>
+ 4035956022U, // <1,6,7,7>: Cost 4 vzipr <1,5,1,7>, RHS
+ 1651692438U, // <1,6,7,u>: Cost 2 vext3 <6,7,u,1>, <6,7,u,1>
+ 1651766175U, // <1,6,u,0>: Cost 2 vext3 <6,u,0,1>, <6,u,0,1>
+ 2618701614U, // <1,6,u,1>: Cost 3 vext2 <0,2,1,6>, LHS
+ 3135663508U, // <1,6,u,2>: Cost 3 vtrnr LHS, <4,6,u,2>
+ 3692443580U, // <1,6,u,3>: Cost 4 vext2 <0,2,1,6>, <u,3,0,1>
+ 2713932743U, // <1,6,u,4>: Cost 3 vext3 <4,u,5,1>, <6,u,4,5>
+ 2618701978U, // <1,6,u,5>: Cost 3 vext2 <0,2,1,6>, RHS
+ 2622683344U, // <1,6,u,6>: Cost 3 vext2 <0,u,1,6>, <u,6,3,7>
+ 3087886266U, // <1,6,u,7>: Cost 3 vtrnr LHS, <2,6,3,7>
+ 1652356071U, // <1,6,u,u>: Cost 2 vext3 <6,u,u,1>, <6,u,u,1>
+ 2726171632U, // <1,7,0,0>: Cost 3 vext3 <7,0,0,1>, <7,0,0,1>
+ 2626666598U, // <1,7,0,1>: Cost 3 vext2 <1,5,1,7>, LHS
+ 3695100067U, // <1,7,0,2>: Cost 4 vext2 <0,6,1,7>, <0,2,0,1>
+ 3707044102U, // <1,7,0,3>: Cost 4 vext2 <2,6,1,7>, <0,3,2,1>
+ 2726466580U, // <1,7,0,4>: Cost 3 vext3 <7,0,4,1>, <7,0,4,1>
+ 3654921933U, // <1,7,0,5>: Cost 4 vext1 <5,1,7,0>, <5,1,7,0>
+ 2621358582U, // <1,7,0,6>: Cost 3 vext2 <0,6,1,7>, <0,6,1,7>
+ 2622022215U, // <1,7,0,7>: Cost 3 vext2 <0,7,1,7>, <0,7,1,7>
+ 2626667165U, // <1,7,0,u>: Cost 3 vext2 <1,5,1,7>, LHS
+ 2593128550U, // <1,7,1,0>: Cost 3 vext1 <7,1,7,1>, LHS
+ 2626667316U, // <1,7,1,1>: Cost 3 vext2 <1,5,1,7>, <1,1,1,1>
+ 3700409238U, // <1,7,1,2>: Cost 4 vext2 <1,5,1,7>, <1,2,3,0>
+ 2257294428U, // <1,7,1,3>: Cost 3 vrev <7,1,3,1>
+ 2593131830U, // <1,7,1,4>: Cost 3 vext1 <7,1,7,1>, RHS
+ 2626667646U, // <1,7,1,5>: Cost 3 vext2 <1,5,1,7>, <1,5,1,7>
+ 2627331279U, // <1,7,1,6>: Cost 3 vext2 <1,6,1,7>, <1,6,1,7>
+ 2593133696U, // <1,7,1,7>: Cost 3 vext1 <7,1,7,1>, <7,1,7,1>
+ 2628658545U, // <1,7,1,u>: Cost 3 vext2 <1,u,1,7>, <1,u,1,7>
+ 2587164774U, // <1,7,2,0>: Cost 3 vext1 <6,1,7,2>, LHS
+ 3701073445U, // <1,7,2,1>: Cost 4 vext2 <1,6,1,7>, <2,1,3,7>
+ 3700409960U, // <1,7,2,2>: Cost 4 vext2 <1,5,1,7>, <2,2,2,2>
+ 2638612134U, // <1,7,2,3>: Cost 3 vext2 <3,5,1,7>, <2,3,0,1>
+ 2587168054U, // <1,7,2,4>: Cost 3 vext1 <6,1,7,2>, RHS
+ 3706382167U, // <1,7,2,5>: Cost 4 vext2 <2,5,1,7>, <2,5,1,7>
+ 2587169192U, // <1,7,2,6>: Cost 3 vext1 <6,1,7,2>, <6,1,7,2>
+ 3660911610U, // <1,7,2,7>: Cost 4 vext1 <6,1,7,2>, <7,0,1,2>
+ 2587170606U, // <1,7,2,u>: Cost 3 vext1 <6,1,7,2>, LHS
+ 1507459174U, // <1,7,3,0>: Cost 2 vext1 <5,1,7,3>, LHS
+ 2569257984U, // <1,7,3,1>: Cost 3 vext1 <3,1,7,3>, <1,3,5,7>
+ 2581202536U, // <1,7,3,2>: Cost 3 vext1 <5,1,7,3>, <2,2,2,2>
+ 2569259294U, // <1,7,3,3>: Cost 3 vext1 <3,1,7,3>, <3,1,7,3>
+ 1507462454U, // <1,7,3,4>: Cost 2 vext1 <5,1,7,3>, RHS
+ 1507462864U, // <1,7,3,5>: Cost 2 vext1 <5,1,7,3>, <5,1,7,3>
+ 2581205498U, // <1,7,3,6>: Cost 3 vext1 <5,1,7,3>, <6,2,7,3>
+ 2581206010U, // <1,7,3,7>: Cost 3 vext1 <5,1,7,3>, <7,0,1,2>
+ 1507465006U, // <1,7,3,u>: Cost 2 vext1 <5,1,7,3>, LHS
+ 2728826164U, // <1,7,4,0>: Cost 3 vext3 <7,4,0,1>, <7,4,0,1>
+ 3654951732U, // <1,7,4,1>: Cost 4 vext1 <5,1,7,4>, <1,1,1,1>
+ 3330987094U, // <1,7,4,2>: Cost 4 vrev <7,1,2,4>
+ 3331060831U, // <1,7,4,3>: Cost 4 vrev <7,1,3,4>
+ 3787674971U, // <1,7,4,4>: Cost 4 vext3 <4,u,5,1>, <7,4,4,4>
+ 2626669878U, // <1,7,4,5>: Cost 3 vext2 <1,5,1,7>, RHS
+ 3785979241U, // <1,7,4,6>: Cost 4 vext3 <4,6,0,1>, <7,4,6,0>
+ 3787085176U, // <1,7,4,7>: Cost 4 vext3 <4,7,6,1>, <7,4,7,6>
+ 2626670121U, // <1,7,4,u>: Cost 3 vext2 <1,5,1,7>, RHS
+ 2569273446U, // <1,7,5,0>: Cost 3 vext1 <3,1,7,5>, LHS
+ 2569274368U, // <1,7,5,1>: Cost 3 vext1 <3,1,7,5>, <1,3,5,7>
+ 3643016808U, // <1,7,5,2>: Cost 4 vext1 <3,1,7,5>, <2,2,2,2>
+ 2569275680U, // <1,7,5,3>: Cost 3 vext1 <3,1,7,5>, <3,1,7,5>
+ 2569276726U, // <1,7,5,4>: Cost 3 vext1 <3,1,7,5>, RHS
+ 4102034790U, // <1,7,5,5>: Cost 4 vtrnl <1,3,5,7>, <7,4,5,6>
+ 2651222067U, // <1,7,5,6>: Cost 3 vext2 <5,6,1,7>, <5,6,1,7>
+ 3899378998U, // <1,7,5,7>: Cost 4 vuzpr <1,1,5,7>, RHS
+ 2569279278U, // <1,7,5,u>: Cost 3 vext1 <3,1,7,5>, LHS
+ 2730153430U, // <1,7,6,0>: Cost 3 vext3 <7,6,0,1>, <7,6,0,1>
+ 2724845022U, // <1,7,6,1>: Cost 3 vext3 <6,7,0,1>, <7,6,1,0>
+ 3643025338U, // <1,7,6,2>: Cost 4 vext1 <3,1,7,6>, <2,6,3,7>
+ 3643025697U, // <1,7,6,3>: Cost 4 vext1 <3,1,7,6>, <3,1,7,6>
+ 3643026742U, // <1,7,6,4>: Cost 4 vext1 <3,1,7,6>, RHS
+ 3654971091U, // <1,7,6,5>: Cost 4 vext1 <5,1,7,6>, <5,1,7,6>
+ 3787675153U, // <1,7,6,6>: Cost 4 vext3 <4,u,5,1>, <7,6,6,6>
+ 2724845076U, // <1,7,6,7>: Cost 3 vext3 <6,7,0,1>, <7,6,7,0>
+ 2725508637U, // <1,7,6,u>: Cost 3 vext3 <6,u,0,1>, <7,6,u,0>
+ 2730817063U, // <1,7,7,0>: Cost 3 vext3 <7,7,0,1>, <7,7,0,1>
+ 3631088436U, // <1,7,7,1>: Cost 4 vext1 <1,1,7,7>, <1,1,1,1>
+ 3660949158U, // <1,7,7,2>: Cost 4 vext1 <6,1,7,7>, <2,3,0,1>
+ 3801904705U, // <1,7,7,3>: Cost 4 vext3 <7,3,0,1>, <7,7,3,0>
+ 3631090998U, // <1,7,7,4>: Cost 4 vext1 <1,1,7,7>, RHS
+ 2662503828U, // <1,7,7,5>: Cost 3 vext2 <7,5,1,7>, <7,5,1,7>
+ 3660951981U, // <1,7,7,6>: Cost 4 vext1 <6,1,7,7>, <6,1,7,7>
+ 2713933420U, // <1,7,7,7>: Cost 3 vext3 <4,u,5,1>, <7,7,7,7>
+ 2731406959U, // <1,7,7,u>: Cost 3 vext3 <7,7,u,1>, <7,7,u,1>
+ 1507500134U, // <1,7,u,0>: Cost 2 vext1 <5,1,7,u>, LHS
+ 2626672430U, // <1,7,u,1>: Cost 3 vext2 <1,5,1,7>, LHS
+ 2581243496U, // <1,7,u,2>: Cost 3 vext1 <5,1,7,u>, <2,2,2,2>
+ 2569300259U, // <1,7,u,3>: Cost 3 vext1 <3,1,7,u>, <3,1,7,u>
+ 1507503414U, // <1,7,u,4>: Cost 2 vext1 <5,1,7,u>, RHS
+ 1507503829U, // <1,7,u,5>: Cost 2 vext1 <5,1,7,u>, <5,1,7,u>
+ 2581246458U, // <1,7,u,6>: Cost 3 vext1 <5,1,7,u>, <6,2,7,3>
+ 2581246970U, // <1,7,u,7>: Cost 3 vext1 <5,1,7,u>, <7,0,1,2>
+ 1507505966U, // <1,7,u,u>: Cost 2 vext1 <5,1,7,u>, LHS
+ 1543643153U, // <1,u,0,0>: Cost 2 vext2 <0,0,1,u>, <0,0,1,u>
+ 1546297446U, // <1,u,0,1>: Cost 2 vext2 <0,4,1,u>, LHS
+ 2819448852U, // <1,u,0,2>: Cost 3 vuzpr LHS, <0,0,2,2>
+ 2619375876U, // <1,u,0,3>: Cost 3 vext2 <0,3,1,u>, <0,3,1,u>
+ 1546297685U, // <1,u,0,4>: Cost 2 vext2 <0,4,1,u>, <0,4,1,u>
+ 1658771190U, // <1,u,0,5>: Cost 2 vext3 <u,0,5,1>, <u,0,5,1>
+ 2736789248U, // <1,u,0,6>: Cost 3 vext3 <u,7,0,1>, <u,0,6,2>
+ 2659189376U, // <1,u,0,7>: Cost 3 vext2 <7,0,1,u>, <0,7,u,1>
+ 1546298013U, // <1,u,0,u>: Cost 2 vext2 <0,4,1,u>, LHS
+ 1483112550U, // <1,u,1,0>: Cost 2 vext1 <1,1,1,1>, LHS
+ 202162278U, // <1,u,1,1>: Cost 1 vdup1 LHS
+ 1616009006U, // <1,u,1,2>: Cost 2 vext3 <0,u,1,1>, LHS
+ 1745707110U, // <1,u,1,3>: Cost 2 vuzpr LHS, LHS
+ 1483115830U, // <1,u,1,4>: Cost 2 vext1 <1,1,1,1>, RHS
+ 2620040336U, // <1,u,1,5>: Cost 3 vext2 <0,4,1,u>, <1,5,3,7>
+ 3026622618U, // <1,u,1,6>: Cost 3 vtrnl <1,1,1,1>, RHS
+ 2958183752U, // <1,u,1,7>: Cost 3 vzipr <0,u,1,1>, RHS
+ 202162278U, // <1,u,1,u>: Cost 1 vdup1 LHS
+ 2819449750U, // <1,u,2,0>: Cost 3 vuzpr LHS, <1,2,3,0>
+ 2893207342U, // <1,u,2,1>: Cost 3 vzipl <1,2,3,0>, LHS
+ 2819448996U, // <1,u,2,2>: Cost 3 vuzpr LHS, <0,2,0,2>
+ 2819450482U, // <1,u,2,3>: Cost 3 vuzpr LHS, <2,2,3,3>
+ 2819449754U, // <1,u,2,4>: Cost 3 vuzpr LHS, <1,2,3,4>
+ 2893207706U, // <1,u,2,5>: Cost 3 vzipl <1,2,3,0>, RHS
+ 2819449036U, // <1,u,2,6>: Cost 3 vuzpr LHS, <0,2,4,6>
+ 2970799432U, // <1,u,2,7>: Cost 3 vzipr <3,0,1,2>, RHS
+ 2819449002U, // <1,u,2,u>: Cost 3 vuzpr LHS, <0,2,0,u>
+ 403931292U, // <1,u,3,0>: Cost 1 vext1 LHS, LHS
+ 1477673718U, // <1,u,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 115726126U, // <1,u,3,2>: Cost 1 vrev LHS
+ 2014102173U, // <1,u,3,3>: Cost 2 vtrnr LHS, LHS
+ 403934518U, // <1,u,3,4>: Cost 1 vext1 LHS, RHS
+ 1507536601U, // <1,u,3,5>: Cost 2 vext1 <5,1,u,3>, <5,1,u,3>
+ 1525453306U, // <1,u,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 2014105129U, // <1,u,3,7>: Cost 2 vtrnr LHS, RHS
+ 403937070U, // <1,u,3,u>: Cost 1 vext1 LHS, LHS
+ 2620042157U, // <1,u,4,0>: Cost 3 vext2 <0,4,1,u>, <4,0,u,1>
+ 2620042237U, // <1,u,4,1>: Cost 3 vext2 <0,4,1,u>, <4,1,u,0>
+ 2263217967U, // <1,u,4,2>: Cost 3 vrev <u,1,2,4>
+ 2569341224U, // <1,u,4,3>: Cost 3 vext1 <3,1,u,4>, <3,1,u,4>
+ 2569342262U, // <1,u,4,4>: Cost 3 vext1 <3,1,u,4>, RHS
+ 1546300726U, // <1,u,4,5>: Cost 2 vext2 <0,4,1,u>, RHS
+ 2819449180U, // <1,u,4,6>: Cost 3 vuzpr LHS, <0,4,2,6>
+ 2724845649U, // <1,u,4,7>: Cost 3 vext3 <6,7,0,1>, <u,4,7,6>
+ 1546300969U, // <1,u,4,u>: Cost 2 vext2 <0,4,1,u>, RHS
+ 2551431270U, // <1,u,5,0>: Cost 3 vext1 <0,1,u,5>, LHS
+ 2551432192U, // <1,u,5,1>: Cost 3 vext1 <0,1,u,5>, <1,3,5,7>
+ 3028293422U, // <1,u,5,2>: Cost 3 vtrnl <1,3,5,7>, LHS
+ 2955559068U, // <1,u,5,3>: Cost 3 vzipr <0,4,1,5>, LHS
+ 2551434550U, // <1,u,5,4>: Cost 3 vext1 <0,1,u,5>, RHS
+ 2895255706U, // <1,u,5,5>: Cost 3 vzipl <1,5,3,7>, RHS
+ 1616009370U, // <1,u,5,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 1745710390U, // <1,u,5,7>: Cost 2 vuzpr LHS, RHS
+ 1745710391U, // <1,u,5,u>: Cost 2 vuzpr LHS, RHS
+ 2653221159U, // <1,u,6,0>: Cost 3 vext2 <6,0,1,u>, <6,0,1,u>
+ 2725509303U, // <1,u,6,1>: Cost 3 vext3 <6,u,0,1>, <u,6,1,0>
+ 2659193338U, // <1,u,6,2>: Cost 3 vext2 <7,0,1,u>, <6,2,7,3>
+ 2689751248U, // <1,u,6,3>: Cost 3 vext3 <0,u,1,1>, <u,6,3,7>
+ 2867228774U, // <1,u,6,4>: Cost 3 vuzpr LHS, <5,6,7,4>
+ 3764820194U, // <1,u,6,5>: Cost 4 vext3 <1,1,1,1>, <u,6,5,7>
+ 2657202957U, // <1,u,6,6>: Cost 3 vext2 <6,6,1,u>, <6,6,1,u>
+ 2819450810U, // <1,u,6,7>: Cost 3 vuzpr LHS, <2,6,3,7>
+ 2819450811U, // <1,u,6,u>: Cost 3 vuzpr LHS, <2,6,3,u>
+ 1585452032U, // <1,u,7,0>: Cost 2 vext2 <7,0,1,u>, <7,0,1,u>
+ 2557420340U, // <1,u,7,1>: Cost 3 vext1 <1,1,u,7>, <1,1,1,1>
+ 2569365158U, // <1,u,7,2>: Cost 3 vext1 <3,1,u,7>, <2,3,0,1>
+ 2569365803U, // <1,u,7,3>: Cost 3 vext1 <3,1,u,7>, <3,1,u,7>
+ 2557422902U, // <1,u,7,4>: Cost 3 vext1 <1,1,u,7>, RHS
+ 2662512021U, // <1,u,7,5>: Cost 3 vext2 <7,5,1,u>, <7,5,1,u>
+ 2724845884U, // <1,u,7,6>: Cost 3 vext3 <6,7,0,1>, <u,7,6,7>
+ 2659194476U, // <1,u,7,7>: Cost 3 vext2 <7,0,1,u>, <7,7,7,7>
+ 1590761096U, // <1,u,7,u>: Cost 2 vext2 <7,u,1,u>, <7,u,1,u>
+ 403972257U, // <1,u,u,0>: Cost 1 vext1 LHS, LHS
+ 202162278U, // <1,u,u,1>: Cost 1 vdup1 LHS
+ 115767091U, // <1,u,u,2>: Cost 1 vrev LHS
+ 1745707677U, // <1,u,u,3>: Cost 2 vuzpr LHS, LHS
+ 403975478U, // <1,u,u,4>: Cost 1 vext1 LHS, RHS
+ 1546303642U, // <1,u,u,5>: Cost 2 vext2 <0,4,1,u>, RHS
+ 1616009613U, // <1,u,u,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 1745710633U, // <1,u,u,7>: Cost 2 vuzpr LHS, RHS
+ 403978030U, // <1,u,u,u>: Cost 1 vext1 LHS, LHS
+ 2551463936U, // <2,0,0,0>: Cost 3 vext1 <0,2,0,0>, <0,0,0,0>
+ 2685698058U, // <2,0,0,1>: Cost 3 vext3 <0,2,0,2>, <0,0,1,1>
+ 1610776596U, // <2,0,0,2>: Cost 2 vext3 <0,0,2,2>, <0,0,2,2>
+ 2619384069U, // <2,0,0,3>: Cost 3 vext2 <0,3,2,0>, <0,3,2,0>
+ 2551467318U, // <2,0,0,4>: Cost 3 vext1 <0,2,0,0>, RHS
+ 3899836596U, // <2,0,0,5>: Cost 4 vuzpr <1,2,3,0>, <3,0,4,5>
+ 2621374968U, // <2,0,0,6>: Cost 3 vext2 <0,6,2,0>, <0,6,2,0>
+ 4168271334U, // <2,0,0,7>: Cost 4 vtrnr <1,2,3,0>, <2,0,5,7>
+ 1611219018U, // <2,0,0,u>: Cost 2 vext3 <0,0,u,2>, <0,0,u,2>
+ 2551472138U, // <2,0,1,0>: Cost 3 vext1 <0,2,0,1>, <0,0,1,1>
+ 2690564186U, // <2,0,1,1>: Cost 3 vext3 <1,0,3,2>, <0,1,1,0>
+ 1611956326U, // <2,0,1,2>: Cost 2 vext3 <0,2,0,2>, LHS
+ 2826092646U, // <2,0,1,3>: Cost 3 vuzpr <1,2,3,0>, LHS
+ 2551475510U, // <2,0,1,4>: Cost 3 vext1 <0,2,0,1>, RHS
+ 3692463248U, // <2,0,1,5>: Cost 4 vext2 <0,2,2,0>, <1,5,3,7>
+ 2587308473U, // <2,0,1,6>: Cost 3 vext1 <6,2,0,1>, <6,2,0,1>
+ 3661050874U, // <2,0,1,7>: Cost 4 vext1 <6,2,0,1>, <7,0,1,2>
+ 1611956380U, // <2,0,1,u>: Cost 2 vext3 <0,2,0,2>, LHS
+ 1477738598U, // <2,0,2,0>: Cost 2 vext1 <0,2,0,2>, LHS
+ 2551481078U, // <2,0,2,1>: Cost 3 vext1 <0,2,0,2>, <1,0,3,2>
+ 2551481796U, // <2,0,2,2>: Cost 3 vext1 <0,2,0,2>, <2,0,2,0>
+ 2551482518U, // <2,0,2,3>: Cost 3 vext1 <0,2,0,2>, <3,0,1,2>
+ 1477741878U, // <2,0,2,4>: Cost 2 vext1 <0,2,0,2>, RHS
+ 2551484112U, // <2,0,2,5>: Cost 3 vext1 <0,2,0,2>, <5,1,7,3>
+ 2551484759U, // <2,0,2,6>: Cost 3 vext1 <0,2,0,2>, <6,0,7,2>
+ 2551485434U, // <2,0,2,7>: Cost 3 vext1 <0,2,0,2>, <7,0,1,2>
+ 1477744430U, // <2,0,2,u>: Cost 2 vext1 <0,2,0,2>, LHS
+ 2953625600U, // <2,0,3,0>: Cost 3 vzipr LHS, <0,0,0,0>
+ 2953627302U, // <2,0,3,1>: Cost 3 vzipr LHS, <2,3,0,1>
+ 2953625764U, // <2,0,3,2>: Cost 3 vzipr LHS, <0,2,0,2>
+ 4027369695U, // <2,0,3,3>: Cost 4 vzipr LHS, <3,1,0,3>
+ 3625233718U, // <2,0,3,4>: Cost 4 vext1 <0,2,0,3>, RHS
+ 3899836110U, // <2,0,3,5>: Cost 4 vuzpr <1,2,3,0>, <2,3,4,5>
+ 4032012618U, // <2,0,3,6>: Cost 4 vzipr LHS, <0,4,0,6>
+ 3899835392U, // <2,0,3,7>: Cost 4 vuzpr <1,2,3,0>, <1,3,5,7>
+ 2953625770U, // <2,0,3,u>: Cost 3 vzipr LHS, <0,2,0,u>
+ 2551496806U, // <2,0,4,0>: Cost 3 vext1 <0,2,0,4>, LHS
+ 2685698386U, // <2,0,4,1>: Cost 3 vext3 <0,2,0,2>, <0,4,1,5>
+ 2685698396U, // <2,0,4,2>: Cost 3 vext3 <0,2,0,2>, <0,4,2,6>
+ 3625240726U, // <2,0,4,3>: Cost 4 vext1 <0,2,0,4>, <3,0,1,2>
+ 2551500086U, // <2,0,4,4>: Cost 3 vext1 <0,2,0,4>, RHS
+ 2618723638U, // <2,0,4,5>: Cost 3 vext2 <0,2,2,0>, RHS
+ 2765409590U, // <2,0,4,6>: Cost 3 vuzpl <2,3,0,1>, RHS
+ 3799990664U, // <2,0,4,7>: Cost 4 vext3 <7,0,1,2>, <0,4,7,5>
+ 2685698450U, // <2,0,4,u>: Cost 3 vext3 <0,2,0,2>, <0,4,u,6>
+ 3625246822U, // <2,0,5,0>: Cost 4 vext1 <0,2,0,5>, LHS
+ 3289776304U, // <2,0,5,1>: Cost 4 vrev <0,2,1,5>
+ 2690564526U, // <2,0,5,2>: Cost 3 vext3 <1,0,3,2>, <0,5,2,7>
+ 3289923778U, // <2,0,5,3>: Cost 4 vrev <0,2,3,5>
+ 2216255691U, // <2,0,5,4>: Cost 3 vrev <0,2,4,5>
+ 3726307332U, // <2,0,5,5>: Cost 4 vext2 <5,u,2,0>, <5,5,5,5>
+ 3726307426U, // <2,0,5,6>: Cost 4 vext2 <5,u,2,0>, <5,6,7,0>
+ 2826095926U, // <2,0,5,7>: Cost 3 vuzpr <1,2,3,0>, RHS
+ 2216550639U, // <2,0,5,u>: Cost 3 vrev <0,2,u,5>
+ 4162420736U, // <2,0,6,0>: Cost 4 vtrnr <0,2,4,6>, <0,0,0,0>
+ 2901885030U, // <2,0,6,1>: Cost 3 vzipl <2,6,3,7>, LHS
+ 2685698559U, // <2,0,6,2>: Cost 3 vext3 <0,2,0,2>, <0,6,2,7>
+ 3643173171U, // <2,0,6,3>: Cost 4 vext1 <3,2,0,6>, <3,2,0,6>
+ 2216263884U, // <2,0,6,4>: Cost 3 vrev <0,2,4,6>
+ 3730289341U, // <2,0,6,5>: Cost 4 vext2 <6,5,2,0>, <6,5,2,0>
+ 3726308152U, // <2,0,6,6>: Cost 4 vext2 <5,u,2,0>, <6,6,6,6>
+ 3899836346U, // <2,0,6,7>: Cost 4 vuzpr <1,2,3,0>, <2,6,3,7>
+ 2216558832U, // <2,0,6,u>: Cost 3 vrev <0,2,u,6>
+ 2659202049U, // <2,0,7,0>: Cost 3 vext2 <7,0,2,0>, <7,0,2,0>
+ 3726308437U, // <2,0,7,1>: Cost 4 vext2 <5,u,2,0>, <7,1,2,3>
+ 2726249034U, // <2,0,7,2>: Cost 3 vext3 <7,0,1,2>, <0,7,2,1>
+ 3734934772U, // <2,0,7,3>: Cost 4 vext2 <7,3,2,0>, <7,3,2,0>
+ 3726308710U, // <2,0,7,4>: Cost 4 vext2 <5,u,2,0>, <7,4,5,6>
+ 3726308814U, // <2,0,7,5>: Cost 4 vext2 <5,u,2,0>, <7,5,u,2>
+ 3736925671U, // <2,0,7,6>: Cost 4 vext2 <7,6,2,0>, <7,6,2,0>
+ 3726308972U, // <2,0,7,7>: Cost 4 vext2 <5,u,2,0>, <7,7,7,7>
+ 2659202049U, // <2,0,7,u>: Cost 3 vext2 <7,0,2,0>, <7,0,2,0>
+ 1477787750U, // <2,0,u,0>: Cost 2 vext1 <0,2,0,u>, LHS
+ 2953668262U, // <2,0,u,1>: Cost 3 vzipr LHS, <2,3,0,1>
+ 1611956893U, // <2,0,u,2>: Cost 2 vext3 <0,2,0,2>, LHS
+ 2551531670U, // <2,0,u,3>: Cost 3 vext1 <0,2,0,u>, <3,0,1,2>
+ 1477791030U, // <2,0,u,4>: Cost 2 vext1 <0,2,0,u>, RHS
+ 2618726554U, // <2,0,u,5>: Cost 3 vext2 <0,2,2,0>, RHS
+ 2765412506U, // <2,0,u,6>: Cost 3 vuzpl <2,3,0,1>, RHS
+ 2826096169U, // <2,0,u,7>: Cost 3 vuzpr <1,2,3,0>, RHS
+ 1611956947U, // <2,0,u,u>: Cost 2 vext3 <0,2,0,2>, LHS
+ 2569453670U, // <2,1,0,0>: Cost 3 vext1 <3,2,1,0>, LHS
+ 2619392102U, // <2,1,0,1>: Cost 3 vext2 <0,3,2,1>, LHS
+ 3759440619U, // <2,1,0,2>: Cost 4 vext3 <0,2,0,2>, <1,0,2,0>
+ 1616823030U, // <2,1,0,3>: Cost 2 vext3 <1,0,3,2>, <1,0,3,2>
+ 2569456950U, // <2,1,0,4>: Cost 3 vext1 <3,2,1,0>, RHS
+ 2690712328U, // <2,1,0,5>: Cost 3 vext3 <1,0,5,2>, <1,0,5,2>
+ 3661115841U, // <2,1,0,6>: Cost 4 vext1 <6,2,1,0>, <6,2,1,0>
+ 2622046794U, // <2,1,0,7>: Cost 3 vext2 <0,7,2,1>, <0,7,2,1>
+ 1617191715U, // <2,1,0,u>: Cost 2 vext3 <1,0,u,2>, <1,0,u,2>
+ 2551545958U, // <2,1,1,0>: Cost 3 vext1 <0,2,1,1>, LHS
+ 2685698868U, // <2,1,1,1>: Cost 3 vext3 <0,2,0,2>, <1,1,1,1>
+ 2628682646U, // <2,1,1,2>: Cost 3 vext2 <1,u,2,1>, <1,2,3,0>
+ 2685698888U, // <2,1,1,3>: Cost 3 vext3 <0,2,0,2>, <1,1,3,3>
+ 2551549238U, // <2,1,1,4>: Cost 3 vext1 <0,2,1,1>, RHS
+ 3693134992U, // <2,1,1,5>: Cost 4 vext2 <0,3,2,1>, <1,5,3,7>
+ 3661124034U, // <2,1,1,6>: Cost 4 vext1 <6,2,1,1>, <6,2,1,1>
+ 3625292794U, // <2,1,1,7>: Cost 4 vext1 <0,2,1,1>, <7,0,1,2>
+ 2685698933U, // <2,1,1,u>: Cost 3 vext3 <0,2,0,2>, <1,1,u,3>
+ 2551554150U, // <2,1,2,0>: Cost 3 vext1 <0,2,1,2>, LHS
+ 3893649571U, // <2,1,2,1>: Cost 4 vuzpr <0,2,0,1>, <0,2,0,1>
+ 2551555688U, // <2,1,2,2>: Cost 3 vext1 <0,2,1,2>, <2,2,2,2>
+ 2685698966U, // <2,1,2,3>: Cost 3 vext3 <0,2,0,2>, <1,2,3,0>
+ 2551557430U, // <2,1,2,4>: Cost 3 vext1 <0,2,1,2>, RHS
+ 3763422123U, // <2,1,2,5>: Cost 4 vext3 <0,u,0,2>, <1,2,5,3>
+ 3693135802U, // <2,1,2,6>: Cost 4 vext2 <0,3,2,1>, <2,6,3,7>
+ 2726249402U, // <2,1,2,7>: Cost 3 vext3 <7,0,1,2>, <1,2,7,0>
+ 2685699011U, // <2,1,2,u>: Cost 3 vext3 <0,2,0,2>, <1,2,u,0>
+ 2551562342U, // <2,1,3,0>: Cost 3 vext1 <0,2,1,3>, LHS
+ 2953625610U, // <2,1,3,1>: Cost 3 vzipr LHS, <0,0,1,1>
+ 2953627798U, // <2,1,3,2>: Cost 3 vzipr LHS, <3,0,1,2>
+ 2953626584U, // <2,1,3,3>: Cost 3 vzipr LHS, <1,3,1,3>
+ 2551565622U, // <2,1,3,4>: Cost 3 vext1 <0,2,1,3>, RHS
+ 2953625938U, // <2,1,3,5>: Cost 3 vzipr LHS, <0,4,1,5>
+ 2587398596U, // <2,1,3,6>: Cost 3 vext1 <6,2,1,3>, <6,2,1,3>
+ 4032013519U, // <2,1,3,7>: Cost 4 vzipr LHS, <1,6,1,7>
+ 2953625617U, // <2,1,3,u>: Cost 3 vzipr LHS, <0,0,1,u>
+ 2690565154U, // <2,1,4,0>: Cost 3 vext3 <1,0,3,2>, <1,4,0,5>
+ 3625313270U, // <2,1,4,1>: Cost 4 vext1 <0,2,1,4>, <1,3,4,6>
+ 3771532340U, // <2,1,4,2>: Cost 4 vext3 <2,2,2,2>, <1,4,2,5>
+ 1148404634U, // <2,1,4,3>: Cost 2 vrev <1,2,3,4>
+ 3625315638U, // <2,1,4,4>: Cost 4 vext1 <0,2,1,4>, RHS
+ 2619395382U, // <2,1,4,5>: Cost 3 vext2 <0,3,2,1>, RHS
+ 3837242678U, // <2,1,4,6>: Cost 4 vuzpl <2,0,1,2>, RHS
+ 3799991394U, // <2,1,4,7>: Cost 4 vext3 <7,0,1,2>, <1,4,7,6>
+ 1148773319U, // <2,1,4,u>: Cost 2 vrev <1,2,u,4>
+ 2551578726U, // <2,1,5,0>: Cost 3 vext1 <0,2,1,5>, LHS
+ 2551579648U, // <2,1,5,1>: Cost 3 vext1 <0,2,1,5>, <1,3,5,7>
+ 3625321952U, // <2,1,5,2>: Cost 4 vext1 <0,2,1,5>, <2,0,5,1>
+ 2685699216U, // <2,1,5,3>: Cost 3 vext3 <0,2,0,2>, <1,5,3,7>
+ 2551582006U, // <2,1,5,4>: Cost 3 vext1 <0,2,1,5>, RHS
+ 3740913668U, // <2,1,5,5>: Cost 4 vext2 <u,3,2,1>, <5,5,5,5>
+ 3661156806U, // <2,1,5,6>: Cost 4 vext1 <6,2,1,5>, <6,2,1,5>
+ 3893652790U, // <2,1,5,7>: Cost 4 vuzpr <0,2,0,1>, RHS
+ 2685699261U, // <2,1,5,u>: Cost 3 vext3 <0,2,0,2>, <1,5,u,7>
+ 2551586918U, // <2,1,6,0>: Cost 3 vext1 <0,2,1,6>, LHS
+ 3625329398U, // <2,1,6,1>: Cost 4 vext1 <0,2,1,6>, <1,0,3,2>
+ 2551588794U, // <2,1,6,2>: Cost 3 vext1 <0,2,1,6>, <2,6,3,7>
+ 3088679014U, // <2,1,6,3>: Cost 3 vtrnr <0,2,4,6>, LHS
+ 2551590198U, // <2,1,6,4>: Cost 3 vext1 <0,2,1,6>, RHS
+ 4029382994U, // <2,1,6,5>: Cost 4 vzipr <0,4,2,6>, <0,4,1,5>
+ 3625333560U, // <2,1,6,6>: Cost 4 vext1 <0,2,1,6>, <6,6,6,6>
+ 3731624800U, // <2,1,6,7>: Cost 4 vext2 <6,7,2,1>, <6,7,2,1>
+ 2551592750U, // <2,1,6,u>: Cost 3 vext1 <0,2,1,6>, LHS
+ 2622051322U, // <2,1,7,0>: Cost 3 vext2 <0,7,2,1>, <7,0,1,2>
+ 3733615699U, // <2,1,7,1>: Cost 4 vext2 <7,1,2,1>, <7,1,2,1>
+ 3795125538U, // <2,1,7,2>: Cost 4 vext3 <6,1,7,2>, <1,7,2,0>
+ 2222171037U, // <2,1,7,3>: Cost 3 vrev <1,2,3,7>
+ 3740915046U, // <2,1,7,4>: Cost 4 vext2 <u,3,2,1>, <7,4,5,6>
+ 3296060335U, // <2,1,7,5>: Cost 4 vrev <1,2,5,7>
+ 3736933864U, // <2,1,7,6>: Cost 4 vext2 <7,6,2,1>, <7,6,2,1>
+ 3805300055U, // <2,1,7,7>: Cost 4 vext3 <7,u,1,2>, <1,7,7,u>
+ 2669827714U, // <2,1,7,u>: Cost 3 vext2 <u,7,2,1>, <7,u,1,2>
+ 2551603302U, // <2,1,u,0>: Cost 3 vext1 <0,2,1,u>, LHS
+ 2953666570U, // <2,1,u,1>: Cost 3 vzipr LHS, <0,0,1,1>
+ 2953668758U, // <2,1,u,2>: Cost 3 vzipr LHS, <3,0,1,2>
+ 1148437406U, // <2,1,u,3>: Cost 2 vrev <1,2,3,u>
+ 2551606582U, // <2,1,u,4>: Cost 3 vext1 <0,2,1,u>, RHS
+ 2953666898U, // <2,1,u,5>: Cost 3 vzipr LHS, <0,4,1,5>
+ 2587398596U, // <2,1,u,6>: Cost 3 vext1 <6,2,1,3>, <6,2,1,3>
+ 2669828370U, // <2,1,u,7>: Cost 3 vext2 <u,7,2,1>, <u,7,2,1>
+ 1148806091U, // <2,1,u,u>: Cost 2 vrev <1,2,u,u>
+ 1543667732U, // <2,2,0,0>: Cost 2 vext2 <0,0,2,2>, <0,0,2,2>
+ 1548976230U, // <2,2,0,1>: Cost 2 vext2 <0,u,2,2>, LHS
+ 2685699524U, // <2,2,0,2>: Cost 3 vext3 <0,2,0,2>, <2,0,2,0>
+ 2685699535U, // <2,2,0,3>: Cost 3 vext3 <0,2,0,2>, <2,0,3,2>
+ 2551614774U, // <2,2,0,4>: Cost 3 vext1 <0,2,2,0>, RHS
+ 3704422830U, // <2,2,0,5>: Cost 4 vext2 <2,2,2,2>, <0,5,2,7>
+ 3893657642U, // <2,2,0,6>: Cost 4 vuzpr <0,2,0,2>, <0,0,4,6>
+ 3770574323U, // <2,2,0,7>: Cost 4 vext3 <2,0,7,2>, <2,0,7,2>
+ 1548976796U, // <2,2,0,u>: Cost 2 vext2 <0,u,2,2>, <0,u,2,2>
+ 2622718710U, // <2,2,1,0>: Cost 3 vext2 <0,u,2,2>, <1,0,3,2>
+ 2622718772U, // <2,2,1,1>: Cost 3 vext2 <0,u,2,2>, <1,1,1,1>
+ 2622718870U, // <2,2,1,2>: Cost 3 vext2 <0,u,2,2>, <1,2,3,0>
+ 2819915878U, // <2,2,1,3>: Cost 3 vuzpr <0,2,0,2>, LHS
+ 3625364790U, // <2,2,1,4>: Cost 4 vext1 <0,2,2,1>, RHS
+ 2622719120U, // <2,2,1,5>: Cost 3 vext2 <0,u,2,2>, <1,5,3,7>
+ 3760031292U, // <2,2,1,6>: Cost 4 vext3 <0,2,u,2>, <2,1,6,3>
+ 3667170468U, // <2,2,1,7>: Cost 4 vext1 <7,2,2,1>, <7,2,2,1>
+ 2819915883U, // <2,2,1,u>: Cost 3 vuzpr <0,2,0,2>, LHS
+ 1489829990U, // <2,2,2,0>: Cost 2 vext1 <2,2,2,2>, LHS
+ 2563572470U, // <2,2,2,1>: Cost 3 vext1 <2,2,2,2>, <1,0,3,2>
+ 269271142U, // <2,2,2,2>: Cost 1 vdup2 LHS
+ 2685699698U, // <2,2,2,3>: Cost 3 vext3 <0,2,0,2>, <2,2,3,3>
+ 1489833270U, // <2,2,2,4>: Cost 2 vext1 <2,2,2,2>, RHS
+ 2685699720U, // <2,2,2,5>: Cost 3 vext3 <0,2,0,2>, <2,2,5,7>
+ 2622719930U, // <2,2,2,6>: Cost 3 vext2 <0,u,2,2>, <2,6,3,7>
+ 2593436837U, // <2,2,2,7>: Cost 3 vext1 <7,2,2,2>, <7,2,2,2>
+ 269271142U, // <2,2,2,u>: Cost 1 vdup2 LHS
+ 2685699750U, // <2,2,3,0>: Cost 3 vext3 <0,2,0,2>, <2,3,0,1>
+ 2690565806U, // <2,2,3,1>: Cost 3 vext3 <1,0,3,2>, <2,3,1,0>
+ 2953627240U, // <2,2,3,2>: Cost 3 vzipr LHS, <2,2,2,2>
+ 1879883878U, // <2,2,3,3>: Cost 2 vzipr LHS, LHS
+ 2685699790U, // <2,2,3,4>: Cost 3 vext3 <0,2,0,2>, <2,3,4,5>
+ 3893659342U, // <2,2,3,5>: Cost 4 vuzpr <0,2,0,2>, <2,3,4,5>
+ 2958270812U, // <2,2,3,6>: Cost 3 vzipr LHS, <0,4,2,6>
+ 2593445030U, // <2,2,3,7>: Cost 3 vext1 <7,2,2,3>, <7,2,2,3>
+ 1879883883U, // <2,2,3,u>: Cost 2 vzipr LHS, LHS
+ 2551644262U, // <2,2,4,0>: Cost 3 vext1 <0,2,2,4>, LHS
+ 3625386742U, // <2,2,4,1>: Cost 4 vext1 <0,2,2,4>, <1,0,3,2>
+ 2551645902U, // <2,2,4,2>: Cost 3 vext1 <0,2,2,4>, <2,3,4,5>
+ 3759441686U, // <2,2,4,3>: Cost 4 vext3 <0,2,0,2>, <2,4,3,5>
+ 2551647542U, // <2,2,4,4>: Cost 3 vext1 <0,2,2,4>, RHS
+ 1548979510U, // <2,2,4,5>: Cost 2 vext2 <0,u,2,2>, RHS
+ 2764901686U, // <2,2,4,6>: Cost 3 vuzpl <2,2,2,2>, RHS
+ 3667195047U, // <2,2,4,7>: Cost 4 vext1 <7,2,2,4>, <7,2,2,4>
+ 1548979753U, // <2,2,4,u>: Cost 2 vext2 <0,u,2,2>, RHS
+ 3696463432U, // <2,2,5,0>: Cost 4 vext2 <0,u,2,2>, <5,0,1,2>
+ 2617413328U, // <2,2,5,1>: Cost 3 vext2 <0,0,2,2>, <5,1,7,3>
+ 2685699936U, // <2,2,5,2>: Cost 3 vext3 <0,2,0,2>, <2,5,2,7>
+ 4027383910U, // <2,2,5,3>: Cost 4 vzipr <0,1,2,5>, LHS
+ 2228201085U, // <2,2,5,4>: Cost 3 vrev <2,2,4,5>
+ 2617413636U, // <2,2,5,5>: Cost 3 vext2 <0,0,2,2>, <5,5,5,5>
+ 2617413730U, // <2,2,5,6>: Cost 3 vext2 <0,0,2,2>, <5,6,7,0>
+ 2819919158U, // <2,2,5,7>: Cost 3 vuzpr <0,2,0,2>, RHS
+ 2819919159U, // <2,2,5,u>: Cost 3 vuzpr <0,2,0,2>, RHS
+ 3625402554U, // <2,2,6,0>: Cost 4 vext1 <0,2,2,6>, <0,2,2,6>
+ 3760031652U, // <2,2,6,1>: Cost 4 vext3 <0,2,u,2>, <2,6,1,3>
+ 2617414138U, // <2,2,6,2>: Cost 3 vext2 <0,0,2,2>, <6,2,7,3>
+ 2685700026U, // <2,2,6,3>: Cost 3 vext3 <0,2,0,2>, <2,6,3,7>
+ 3625405750U, // <2,2,6,4>: Cost 4 vext1 <0,2,2,6>, RHS
+ 3760031692U, // <2,2,6,5>: Cost 4 vext3 <0,2,u,2>, <2,6,5,7>
+ 3088679116U, // <2,2,6,6>: Cost 3 vtrnr <0,2,4,6>, <0,2,4,6>
+ 2657891169U, // <2,2,6,7>: Cost 3 vext2 <6,7,2,2>, <6,7,2,2>
+ 2685700071U, // <2,2,6,u>: Cost 3 vext3 <0,2,0,2>, <2,6,u,7>
+ 2726250474U, // <2,2,7,0>: Cost 3 vext3 <7,0,1,2>, <2,7,0,1>
+ 3704427616U, // <2,2,7,1>: Cost 4 vext2 <2,2,2,2>, <7,1,3,5>
+ 2660545701U, // <2,2,7,2>: Cost 3 vext2 <7,2,2,2>, <7,2,2,2>
+ 4030718054U, // <2,2,7,3>: Cost 4 vzipr <0,6,2,7>, LHS
+ 2617415014U, // <2,2,7,4>: Cost 3 vext2 <0,0,2,2>, <7,4,5,6>
+ 3302033032U, // <2,2,7,5>: Cost 4 vrev <2,2,5,7>
+ 3661246929U, // <2,2,7,6>: Cost 4 vext1 <6,2,2,7>, <6,2,2,7>
+ 2617415276U, // <2,2,7,7>: Cost 3 vext2 <0,0,2,2>, <7,7,7,7>
+ 2731558962U, // <2,2,7,u>: Cost 3 vext3 <7,u,1,2>, <2,7,u,1>
+ 1489829990U, // <2,2,u,0>: Cost 2 vext1 <2,2,2,2>, LHS
+ 1548982062U, // <2,2,u,1>: Cost 2 vext2 <0,u,2,2>, LHS
+ 269271142U, // <2,2,u,2>: Cost 1 vdup2 LHS
+ 1879924838U, // <2,2,u,3>: Cost 2 vzipr LHS, LHS
+ 1489833270U, // <2,2,u,4>: Cost 2 vext1 <2,2,2,2>, RHS
+ 1548982426U, // <2,2,u,5>: Cost 2 vext2 <0,u,2,2>, RHS
+ 2953666908U, // <2,2,u,6>: Cost 3 vzipr LHS, <0,4,2,6>
+ 2819919401U, // <2,2,u,7>: Cost 3 vuzpr <0,2,0,2>, RHS
+ 269271142U, // <2,2,u,u>: Cost 1 vdup2 LHS
+ 1544339456U, // <2,3,0,0>: Cost 2 vext2 LHS, <0,0,0,0>
+ 470597734U, // <2,3,0,1>: Cost 1 vext2 LHS, LHS
+ 1548984484U, // <2,3,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 2619408648U, // <2,3,0,3>: Cost 3 vext2 <0,3,2,3>, <0,3,2,3>
+ 1548984658U, // <2,3,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 2665857454U, // <2,3,0,5>: Cost 3 vext2 LHS, <0,5,2,7>
+ 2622726655U, // <2,3,0,6>: Cost 3 vext2 LHS, <0,6,2,7>
+ 2593494188U, // <2,3,0,7>: Cost 3 vext1 <7,2,3,0>, <7,2,3,0>
+ 470598301U, // <2,3,0,u>: Cost 1 vext2 LHS, LHS
+ 1544340214U, // <2,3,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 1544340276U, // <2,3,1,1>: Cost 2 vext2 LHS, <1,1,1,1>
+ 1544340374U, // <2,3,1,2>: Cost 2 vext2 LHS, <1,2,3,0>
+ 1548985304U, // <2,3,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 2551696694U, // <2,3,1,4>: Cost 3 vext1 <0,2,3,1>, RHS
+ 1548985488U, // <2,3,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 2622727375U, // <2,3,1,6>: Cost 3 vext2 LHS, <1,6,1,7>
+ 2665858347U, // <2,3,1,7>: Cost 3 vext2 LHS, <1,7,3,0>
+ 1548985709U, // <2,3,1,u>: Cost 2 vext2 LHS, <1,u,1,3>
+ 2622727613U, // <2,3,2,0>: Cost 3 vext2 LHS, <2,0,1,2>
+ 2622727711U, // <2,3,2,1>: Cost 3 vext2 LHS, <2,1,3,1>
+ 1544341096U, // <2,3,2,2>: Cost 2 vext2 LHS, <2,2,2,2>
+ 1544341158U, // <2,3,2,3>: Cost 2 vext2 LHS, <2,3,0,1>
+ 2622727958U, // <2,3,2,4>: Cost 3 vext2 LHS, <2,4,3,5>
+ 2622728032U, // <2,3,2,5>: Cost 3 vext2 LHS, <2,5,2,7>
+ 1548986298U, // <2,3,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 2665859050U, // <2,3,2,7>: Cost 3 vext2 LHS, <2,7,0,1>
+ 1548986427U, // <2,3,2,u>: Cost 2 vext2 LHS, <2,u,0,1>
+ 1548986518U, // <2,3,3,0>: Cost 2 vext2 LHS, <3,0,1,2>
+ 2622728415U, // <2,3,3,1>: Cost 3 vext2 LHS, <3,1,0,3>
+ 1489913458U, // <2,3,3,2>: Cost 2 vext1 <2,2,3,3>, <2,2,3,3>
+ 1544341916U, // <2,3,3,3>: Cost 2 vext2 LHS, <3,3,3,3>
+ 1548986882U, // <2,3,3,4>: Cost 2 vext2 LHS, <3,4,5,6>
+ 2665859632U, // <2,3,3,5>: Cost 3 vext2 LHS, <3,5,1,7>
+ 2234304870U, // <2,3,3,6>: Cost 3 vrev <3,2,6,3>
+ 2958271632U, // <2,3,3,7>: Cost 3 vzipr LHS, <1,5,3,7>
+ 1548987166U, // <2,3,3,u>: Cost 2 vext2 LHS, <3,u,1,2>
+ 1483948134U, // <2,3,4,0>: Cost 2 vext1 <1,2,3,4>, LHS
+ 1483948954U, // <2,3,4,1>: Cost 2 vext1 <1,2,3,4>, <1,2,3,4>
+ 2622729276U, // <2,3,4,2>: Cost 3 vext2 LHS, <4,2,6,0>
+ 2557692054U, // <2,3,4,3>: Cost 3 vext1 <1,2,3,4>, <3,0,1,2>
+ 1483951414U, // <2,3,4,4>: Cost 2 vext1 <1,2,3,4>, RHS
+ 470601014U, // <2,3,4,5>: Cost 1 vext2 LHS, RHS
+ 1592118644U, // <2,3,4,6>: Cost 2 vext2 LHS, <4,6,4,6>
+ 2593526960U, // <2,3,4,7>: Cost 3 vext1 <7,2,3,4>, <7,2,3,4>
+ 470601257U, // <2,3,4,u>: Cost 1 vext2 LHS, RHS
+ 2551726182U, // <2,3,5,0>: Cost 3 vext1 <0,2,3,5>, LHS
+ 1592118992U, // <2,3,5,1>: Cost 2 vext2 LHS, <5,1,7,3>
+ 2665860862U, // <2,3,5,2>: Cost 3 vext2 LHS, <5,2,3,4>
+ 2551728642U, // <2,3,5,3>: Cost 3 vext1 <0,2,3,5>, <3,4,5,6>
+ 1592119238U, // <2,3,5,4>: Cost 2 vext2 LHS, <5,4,7,6>
+ 1592119300U, // <2,3,5,5>: Cost 2 vext2 LHS, <5,5,5,5>
+ 1592119394U, // <2,3,5,6>: Cost 2 vext2 LHS, <5,6,7,0>
+ 1592119464U, // <2,3,5,7>: Cost 2 vext2 LHS, <5,7,5,7>
+ 1592119545U, // <2,3,5,u>: Cost 2 vext2 LHS, <5,u,5,7>
+ 2622730529U, // <2,3,6,0>: Cost 3 vext2 LHS, <6,0,1,2>
+ 2557707164U, // <2,3,6,1>: Cost 3 vext1 <1,2,3,6>, <1,2,3,6>
+ 1592119802U, // <2,3,6,2>: Cost 2 vext2 LHS, <6,2,7,3>
+ 2665861682U, // <2,3,6,3>: Cost 3 vext2 LHS, <6,3,4,5>
+ 2622730893U, // <2,3,6,4>: Cost 3 vext2 LHS, <6,4,5,6>
+ 2665861810U, // <2,3,6,5>: Cost 3 vext2 LHS, <6,5,0,7>
+ 1592120120U, // <2,3,6,6>: Cost 2 vext2 LHS, <6,6,6,6>
+ 1592120142U, // <2,3,6,7>: Cost 2 vext2 LHS, <6,7,0,1>
+ 1592120223U, // <2,3,6,u>: Cost 2 vext2 LHS, <6,u,0,1>
+ 1592120314U, // <2,3,7,0>: Cost 2 vext2 LHS, <7,0,1,2>
+ 2659890261U, // <2,3,7,1>: Cost 3 vext2 <7,1,2,3>, <7,1,2,3>
+ 2660553894U, // <2,3,7,2>: Cost 3 vext2 <7,2,2,3>, <7,2,2,3>
+ 2665862371U, // <2,3,7,3>: Cost 3 vext2 LHS, <7,3,0,1>
+ 1592120678U, // <2,3,7,4>: Cost 2 vext2 LHS, <7,4,5,6>
+ 2665862534U, // <2,3,7,5>: Cost 3 vext2 LHS, <7,5,0,2>
+ 2665862614U, // <2,3,7,6>: Cost 3 vext2 LHS, <7,6,0,1>
+ 1592120940U, // <2,3,7,7>: Cost 2 vext2 LHS, <7,7,7,7>
+ 1592120962U, // <2,3,7,u>: Cost 2 vext2 LHS, <7,u,1,2>
+ 1548990163U, // <2,3,u,0>: Cost 2 vext2 LHS, <u,0,1,2>
+ 470603566U, // <2,3,u,1>: Cost 1 vext2 LHS, LHS
+ 1548990341U, // <2,3,u,2>: Cost 2 vext2 LHS, <u,2,3,0>
+ 1548990396U, // <2,3,u,3>: Cost 2 vext2 LHS, <u,3,0,1>
+ 1548990527U, // <2,3,u,4>: Cost 2 vext2 LHS, <u,4,5,6>
+ 470603930U, // <2,3,u,5>: Cost 1 vext2 LHS, RHS
+ 1548990672U, // <2,3,u,6>: Cost 2 vext2 LHS, <u,6,3,7>
+ 1592121600U, // <2,3,u,7>: Cost 2 vext2 LHS, <u,7,0,1>
+ 470604133U, // <2,3,u,u>: Cost 1 vext2 LHS, LHS
+ 2617425942U, // <2,4,0,0>: Cost 3 vext2 <0,0,2,4>, <0,0,2,4>
+ 2618753126U, // <2,4,0,1>: Cost 3 vext2 <0,2,2,4>, LHS
+ 2618753208U, // <2,4,0,2>: Cost 3 vext2 <0,2,2,4>, <0,2,2,4>
+ 2619416841U, // <2,4,0,3>: Cost 3 vext2 <0,3,2,4>, <0,3,2,4>
+ 2587593628U, // <2,4,0,4>: Cost 3 vext1 <6,2,4,0>, <4,0,6,2>
+ 2712832914U, // <2,4,0,5>: Cost 3 vext3 <4,6,u,2>, <4,0,5,1>
+ 1634962332U, // <2,4,0,6>: Cost 2 vext3 <4,0,6,2>, <4,0,6,2>
+ 3799993252U, // <2,4,0,7>: Cost 4 vext3 <7,0,1,2>, <4,0,7,1>
+ 1634962332U, // <2,4,0,u>: Cost 2 vext3 <4,0,6,2>, <4,0,6,2>
+ 2619417334U, // <2,4,1,0>: Cost 3 vext2 <0,3,2,4>, <1,0,3,2>
+ 3692495668U, // <2,4,1,1>: Cost 4 vext2 <0,2,2,4>, <1,1,1,1>
+ 2625389466U, // <2,4,1,2>: Cost 3 vext2 <1,3,2,4>, <1,2,3,4>
+ 2826125414U, // <2,4,1,3>: Cost 3 vuzpr <1,2,3,4>, LHS
+ 3699794995U, // <2,4,1,4>: Cost 4 vext2 <1,4,2,4>, <1,4,2,4>
+ 3692496016U, // <2,4,1,5>: Cost 4 vext2 <0,2,2,4>, <1,5,3,7>
+ 3763424238U, // <2,4,1,6>: Cost 4 vext3 <0,u,0,2>, <4,1,6,3>
+ 3667317942U, // <2,4,1,7>: Cost 4 vext1 <7,2,4,1>, <7,2,4,1>
+ 2826125419U, // <2,4,1,u>: Cost 3 vuzpr <1,2,3,4>, LHS
+ 2629371336U, // <2,4,2,0>: Cost 3 vext2 <2,0,2,4>, <2,0,2,4>
+ 3699131946U, // <2,4,2,1>: Cost 4 vext2 <1,3,2,4>, <2,1,4,3>
+ 2630698602U, // <2,4,2,2>: Cost 3 vext2 <2,2,2,4>, <2,2,2,4>
+ 2618754766U, // <2,4,2,3>: Cost 3 vext2 <0,2,2,4>, <2,3,4,5>
+ 2826126234U, // <2,4,2,4>: Cost 3 vuzpr <1,2,3,4>, <1,2,3,4>
+ 2899119414U, // <2,4,2,5>: Cost 3 vzipl <2,2,2,2>, RHS
+ 3033337142U, // <2,4,2,6>: Cost 3 vtrnl <2,2,2,2>, RHS
+ 3800214597U, // <2,4,2,7>: Cost 4 vext3 <7,0,4,2>, <4,2,7,0>
+ 2899119657U, // <2,4,2,u>: Cost 3 vzipl <2,2,2,2>, RHS
+ 2635344033U, // <2,4,3,0>: Cost 3 vext2 <3,0,2,4>, <3,0,2,4>
+ 4032012325U, // <2,4,3,1>: Cost 4 vzipr LHS, <0,0,4,1>
+ 3692497228U, // <2,4,3,2>: Cost 4 vext2 <0,2,2,4>, <3,2,3,4>
+ 3692497308U, // <2,4,3,3>: Cost 4 vext2 <0,2,2,4>, <3,3,3,3>
+ 3001404624U, // <2,4,3,4>: Cost 3 vzipr LHS, <4,4,4,4>
+ 2953627342U, // <2,4,3,5>: Cost 3 vzipr LHS, <2,3,4,5>
+ 2953625804U, // <2,4,3,6>: Cost 3 vzipr LHS, <0,2,4,6>
+ 3899868160U, // <2,4,3,7>: Cost 4 vuzpr <1,2,3,4>, <1,3,5,7>
+ 2953625806U, // <2,4,3,u>: Cost 3 vzipr LHS, <0,2,4,u>
+ 2710916266U, // <2,4,4,0>: Cost 3 vext3 <4,4,0,2>, <4,4,0,2>
+ 3899869648U, // <2,4,4,1>: Cost 4 vuzpr <1,2,3,4>, <3,4,0,1>
+ 3899869658U, // <2,4,4,2>: Cost 4 vuzpr <1,2,3,4>, <3,4,1,2>
+ 3899868930U, // <2,4,4,3>: Cost 4 vuzpr <1,2,3,4>, <2,4,1,3>
+ 2712833232U, // <2,4,4,4>: Cost 3 vext3 <4,6,u,2>, <4,4,4,4>
+ 2618756406U, // <2,4,4,5>: Cost 3 vext2 <0,2,2,4>, RHS
+ 2765737270U, // <2,4,4,6>: Cost 3 vuzpl <2,3,4,5>, RHS
+ 4168304426U, // <2,4,4,7>: Cost 4 vtrnr <1,2,3,4>, <2,4,5,7>
+ 2618756649U, // <2,4,4,u>: Cost 3 vext2 <0,2,2,4>, RHS
+ 2551800011U, // <2,4,5,0>: Cost 3 vext1 <0,2,4,5>, <0,2,4,5>
+ 2569716470U, // <2,4,5,1>: Cost 3 vext1 <3,2,4,5>, <1,0,3,2>
+ 2563745405U, // <2,4,5,2>: Cost 3 vext1 <2,2,4,5>, <2,2,4,5>
+ 2569718102U, // <2,4,5,3>: Cost 3 vext1 <3,2,4,5>, <3,2,4,5>
+ 2551803190U, // <2,4,5,4>: Cost 3 vext1 <0,2,4,5>, RHS
+ 3625545732U, // <2,4,5,5>: Cost 4 vext1 <0,2,4,5>, <5,5,5,5>
+ 1611959606U, // <2,4,5,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 2826128694U, // <2,4,5,7>: Cost 3 vuzpr <1,2,3,4>, RHS
+ 1611959624U, // <2,4,5,u>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1478066278U, // <2,4,6,0>: Cost 2 vext1 <0,2,4,6>, LHS
+ 2551808758U, // <2,4,6,1>: Cost 3 vext1 <0,2,4,6>, <1,0,3,2>
+ 2551809516U, // <2,4,6,2>: Cost 3 vext1 <0,2,4,6>, <2,0,6,4>
+ 2551810198U, // <2,4,6,3>: Cost 3 vext1 <0,2,4,6>, <3,0,1,2>
+ 1478069558U, // <2,4,6,4>: Cost 2 vext1 <0,2,4,6>, RHS
+ 2901888310U, // <2,4,6,5>: Cost 3 vzipl <2,6,3,7>, RHS
+ 2551812920U, // <2,4,6,6>: Cost 3 vext1 <0,2,4,6>, <6,6,6,6>
+ 2726251914U, // <2,4,6,7>: Cost 3 vext3 <7,0,1,2>, <4,6,7,1>
+ 1478072110U, // <2,4,6,u>: Cost 2 vext1 <0,2,4,6>, LHS
+ 2659234821U, // <2,4,7,0>: Cost 3 vext2 <7,0,2,4>, <7,0,2,4>
+ 3786722726U, // <2,4,7,1>: Cost 4 vext3 <4,7,1,2>, <4,7,1,2>
+ 3734303911U, // <2,4,7,2>: Cost 4 vext2 <7,2,2,4>, <7,2,2,4>
+ 3734967544U, // <2,4,7,3>: Cost 4 vext2 <7,3,2,4>, <7,3,2,4>
+ 3727005030U, // <2,4,7,4>: Cost 4 vext2 <6,0,2,4>, <7,4,5,6>
+ 2726251976U, // <2,4,7,5>: Cost 3 vext3 <7,0,1,2>, <4,7,5,0>
+ 2726251986U, // <2,4,7,6>: Cost 3 vext3 <7,0,1,2>, <4,7,6,1>
+ 3727005292U, // <2,4,7,7>: Cost 4 vext2 <6,0,2,4>, <7,7,7,7>
+ 2659234821U, // <2,4,7,u>: Cost 3 vext2 <7,0,2,4>, <7,0,2,4>
+ 1478082662U, // <2,4,u,0>: Cost 2 vext1 <0,2,4,u>, LHS
+ 2618758958U, // <2,4,u,1>: Cost 3 vext2 <0,2,2,4>, LHS
+ 2551826024U, // <2,4,u,2>: Cost 3 vext1 <0,2,4,u>, <2,2,2,2>
+ 2551826582U, // <2,4,u,3>: Cost 3 vext1 <0,2,4,u>, <3,0,1,2>
+ 1478085942U, // <2,4,u,4>: Cost 2 vext1 <0,2,4,u>, RHS
+ 2953668302U, // <2,4,u,5>: Cost 3 vzipr LHS, <2,3,4,5>
+ 1611959849U, // <2,4,u,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 2826128937U, // <2,4,u,7>: Cost 3 vuzpr <1,2,3,4>, RHS
+ 1611959867U, // <2,4,u,u>: Cost 2 vext3 <0,2,0,2>, RHS
+ 3691839488U, // <2,5,0,0>: Cost 4 vext2 <0,1,2,5>, <0,0,0,0>
+ 2618097766U, // <2,5,0,1>: Cost 3 vext2 <0,1,2,5>, LHS
+ 2620088484U, // <2,5,0,2>: Cost 3 vext2 <0,4,2,5>, <0,2,0,2>
+ 2619425034U, // <2,5,0,3>: Cost 3 vext2 <0,3,2,5>, <0,3,2,5>
+ 2620088667U, // <2,5,0,4>: Cost 3 vext2 <0,4,2,5>, <0,4,2,5>
+ 2620752300U, // <2,5,0,5>: Cost 3 vext2 <0,5,2,5>, <0,5,2,5>
+ 3693830655U, // <2,5,0,6>: Cost 4 vext2 <0,4,2,5>, <0,6,2,7>
+ 3094531382U, // <2,5,0,7>: Cost 3 vtrnr <1,2,3,0>, RHS
+ 2618098333U, // <2,5,0,u>: Cost 3 vext2 <0,1,2,5>, LHS
+ 3691840246U, // <2,5,1,0>: Cost 4 vext2 <0,1,2,5>, <1,0,3,2>
+ 3691840308U, // <2,5,1,1>: Cost 4 vext2 <0,1,2,5>, <1,1,1,1>
+ 2626061206U, // <2,5,1,2>: Cost 3 vext2 <1,4,2,5>, <1,2,3,0>
+ 2618098688U, // <2,5,1,3>: Cost 3 vext2 <0,1,2,5>, <1,3,5,7>
+ 2626061364U, // <2,5,1,4>: Cost 3 vext2 <1,4,2,5>, <1,4,2,5>
+ 3691840656U, // <2,5,1,5>: Cost 4 vext2 <0,1,2,5>, <1,5,3,7>
+ 3789082310U, // <2,5,1,6>: Cost 4 vext3 <5,1,6,2>, <5,1,6,2>
+ 2712833744U, // <2,5,1,7>: Cost 3 vext3 <4,6,u,2>, <5,1,7,3>
+ 2628715896U, // <2,5,1,u>: Cost 3 vext2 <1,u,2,5>, <1,u,2,5>
+ 3693831613U, // <2,5,2,0>: Cost 4 vext2 <0,4,2,5>, <2,0,1,2>
+ 4026698642U, // <2,5,2,1>: Cost 4 vzipr <0,0,2,2>, <4,0,5,1>
+ 2632033896U, // <2,5,2,2>: Cost 3 vext2 <2,4,2,5>, <2,2,2,2>
+ 3691841190U, // <2,5,2,3>: Cost 4 vext2 <0,1,2,5>, <2,3,0,1>
+ 2632034061U, // <2,5,2,4>: Cost 3 vext2 <2,4,2,5>, <2,4,2,5>
+ 3691841352U, // <2,5,2,5>: Cost 4 vext2 <0,1,2,5>, <2,5,0,1>
+ 3691841466U, // <2,5,2,6>: Cost 4 vext2 <0,1,2,5>, <2,6,3,7>
+ 3088354614U, // <2,5,2,7>: Cost 3 vtrnr <0,2,0,2>, RHS
+ 3088354615U, // <2,5,2,u>: Cost 3 vtrnr <0,2,0,2>, RHS
+ 2557829222U, // <2,5,3,0>: Cost 3 vext1 <1,2,5,3>, LHS
+ 2557830059U, // <2,5,3,1>: Cost 3 vext1 <1,2,5,3>, <1,2,5,3>
+ 2575746766U, // <2,5,3,2>: Cost 3 vext1 <4,2,5,3>, <2,3,4,5>
+ 3691841948U, // <2,5,3,3>: Cost 4 vext2 <0,1,2,5>, <3,3,3,3>
+ 2619427330U, // <2,5,3,4>: Cost 3 vext2 <0,3,2,5>, <3,4,5,6>
+ 2581720847U, // <2,5,3,5>: Cost 3 vext1 <5,2,5,3>, <5,2,5,3>
+ 2953628162U, // <2,5,3,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 2953626624U, // <2,5,3,7>: Cost 3 vzipr LHS, <1,3,5,7>
+ 2953626625U, // <2,5,3,u>: Cost 3 vzipr LHS, <1,3,5,u>
+ 2569781350U, // <2,5,4,0>: Cost 3 vext1 <3,2,5,4>, LHS
+ 3631580076U, // <2,5,4,1>: Cost 4 vext1 <1,2,5,4>, <1,2,5,4>
+ 2569782990U, // <2,5,4,2>: Cost 3 vext1 <3,2,5,4>, <2,3,4,5>
+ 2569783646U, // <2,5,4,3>: Cost 3 vext1 <3,2,5,4>, <3,2,5,4>
+ 2569784630U, // <2,5,4,4>: Cost 3 vext1 <3,2,5,4>, RHS
+ 2618101046U, // <2,5,4,5>: Cost 3 vext2 <0,1,2,5>, RHS
+ 3893905922U, // <2,5,4,6>: Cost 4 vuzpr <0,2,3,5>, <3,4,5,6>
+ 3094564150U, // <2,5,4,7>: Cost 3 vtrnr <1,2,3,4>, RHS
+ 2618101289U, // <2,5,4,u>: Cost 3 vext2 <0,1,2,5>, RHS
+ 2551873638U, // <2,5,5,0>: Cost 3 vext1 <0,2,5,5>, LHS
+ 3637560320U, // <2,5,5,1>: Cost 4 vext1 <2,2,5,5>, <1,3,5,7>
+ 3637560966U, // <2,5,5,2>: Cost 4 vext1 <2,2,5,5>, <2,2,5,5>
+ 3723030343U, // <2,5,5,3>: Cost 4 vext2 <5,3,2,5>, <5,3,2,5>
+ 2551876918U, // <2,5,5,4>: Cost 3 vext1 <0,2,5,5>, RHS
+ 2712834052U, // <2,5,5,5>: Cost 3 vext3 <4,6,u,2>, <5,5,5,5>
+ 4028713474U, // <2,5,5,6>: Cost 4 vzipr <0,3,2,5>, <3,4,5,6>
+ 2712834072U, // <2,5,5,7>: Cost 3 vext3 <4,6,u,2>, <5,5,7,7>
+ 2712834081U, // <2,5,5,u>: Cost 3 vext3 <4,6,u,2>, <5,5,u,7>
+ 2575769702U, // <2,5,6,0>: Cost 3 vext1 <4,2,5,6>, LHS
+ 3631596462U, // <2,5,6,1>: Cost 4 vext1 <1,2,5,6>, <1,2,5,6>
+ 2655924730U, // <2,5,6,2>: Cost 3 vext2 <6,4,2,5>, <6,2,7,3>
+ 3643541856U, // <2,5,6,3>: Cost 4 vext1 <3,2,5,6>, <3,2,5,6>
+ 2655924849U, // <2,5,6,4>: Cost 3 vext2 <6,4,2,5>, <6,4,2,5>
+ 3787755607U, // <2,5,6,5>: Cost 4 vext3 <4,u,6,2>, <5,6,5,7>
+ 4029385218U, // <2,5,6,6>: Cost 4 vzipr <0,4,2,6>, <3,4,5,6>
+ 3088682294U, // <2,5,6,7>: Cost 3 vtrnr <0,2,4,6>, RHS
+ 3088682295U, // <2,5,6,u>: Cost 3 vtrnr <0,2,4,6>, RHS
+ 2563833958U, // <2,5,7,0>: Cost 3 vext1 <2,2,5,7>, LHS
+ 2551890678U, // <2,5,7,1>: Cost 3 vext1 <0,2,5,7>, <1,0,3,2>
+ 2563835528U, // <2,5,7,2>: Cost 3 vext1 <2,2,5,7>, <2,2,5,7>
+ 3637577878U, // <2,5,7,3>: Cost 4 vext1 <2,2,5,7>, <3,0,1,2>
+ 2563837238U, // <2,5,7,4>: Cost 3 vext1 <2,2,5,7>, RHS
+ 2712834216U, // <2,5,7,5>: Cost 3 vext3 <4,6,u,2>, <5,7,5,7>
+ 2712834220U, // <2,5,7,6>: Cost 3 vext3 <4,6,u,2>, <5,7,6,2>
+ 4174449974U, // <2,5,7,7>: Cost 4 vtrnr <2,2,5,7>, RHS
+ 2563839790U, // <2,5,7,u>: Cost 3 vext1 <2,2,5,7>, LHS
+ 2563842150U, // <2,5,u,0>: Cost 3 vext1 <2,2,5,u>, LHS
+ 2618103598U, // <2,5,u,1>: Cost 3 vext2 <0,1,2,5>, LHS
+ 2563843721U, // <2,5,u,2>: Cost 3 vext1 <2,2,5,u>, <2,2,5,u>
+ 2569816418U, // <2,5,u,3>: Cost 3 vext1 <3,2,5,u>, <3,2,5,u>
+ 2622748735U, // <2,5,u,4>: Cost 3 vext2 <0,u,2,5>, <u,4,5,6>
+ 2618103962U, // <2,5,u,5>: Cost 3 vext2 <0,1,2,5>, RHS
+ 2953669122U, // <2,5,u,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 2953667584U, // <2,5,u,7>: Cost 3 vzipr LHS, <1,3,5,7>
+ 2618104165U, // <2,5,u,u>: Cost 3 vext2 <0,1,2,5>, LHS
+ 2620096512U, // <2,6,0,0>: Cost 3 vext2 <0,4,2,6>, <0,0,0,0>
+ 1546354790U, // <2,6,0,1>: Cost 2 vext2 <0,4,2,6>, LHS
+ 2620096676U, // <2,6,0,2>: Cost 3 vext2 <0,4,2,6>, <0,2,0,2>
+ 3693838588U, // <2,6,0,3>: Cost 4 vext2 <0,4,2,6>, <0,3,1,0>
+ 1546355036U, // <2,6,0,4>: Cost 2 vext2 <0,4,2,6>, <0,4,2,6>
+ 3694502317U, // <2,6,0,5>: Cost 4 vext2 <0,5,2,6>, <0,5,2,6>
+ 2551911246U, // <2,6,0,6>: Cost 3 vext1 <0,2,6,0>, <6,7,0,1>
+ 2720723287U, // <2,6,0,7>: Cost 3 vext3 <6,0,7,2>, <6,0,7,2>
+ 1546355357U, // <2,6,0,u>: Cost 2 vext2 <0,4,2,6>, LHS
+ 2620097270U, // <2,6,1,0>: Cost 3 vext2 <0,4,2,6>, <1,0,3,2>
+ 2620097332U, // <2,6,1,1>: Cost 3 vext2 <0,4,2,6>, <1,1,1,1>
+ 2620097430U, // <2,6,1,2>: Cost 3 vext2 <0,4,2,6>, <1,2,3,0>
+ 2820243558U, // <2,6,1,3>: Cost 3 vuzpr <0,2,4,6>, LHS
+ 2620097598U, // <2,6,1,4>: Cost 3 vext2 <0,4,2,6>, <1,4,3,6>
+ 2620097680U, // <2,6,1,5>: Cost 3 vext2 <0,4,2,6>, <1,5,3,7>
+ 3693839585U, // <2,6,1,6>: Cost 4 vext2 <0,4,2,6>, <1,6,3,7>
+ 2721386920U, // <2,6,1,7>: Cost 3 vext3 <6,1,7,2>, <6,1,7,2>
+ 2820243563U, // <2,6,1,u>: Cost 3 vuzpr <0,2,4,6>, LHS
+ 2714014137U, // <2,6,2,0>: Cost 3 vext3 <4,u,6,2>, <6,2,0,1>
+ 2712834500U, // <2,6,2,1>: Cost 3 vext3 <4,6,u,2>, <6,2,1,3>
+ 2620098152U, // <2,6,2,2>: Cost 3 vext2 <0,4,2,6>, <2,2,2,2>
+ 2620098214U, // <2,6,2,3>: Cost 3 vext2 <0,4,2,6>, <2,3,0,1>
+ 2632042254U, // <2,6,2,4>: Cost 3 vext2 <2,4,2,6>, <2,4,2,6>
+ 2712834540U, // <2,6,2,5>: Cost 3 vext3 <4,6,u,2>, <6,2,5,7>
+ 2820243660U, // <2,6,2,6>: Cost 3 vuzpr <0,2,4,6>, <0,2,4,6>
+ 2958265654U, // <2,6,2,7>: Cost 3 vzipr <0,u,2,2>, RHS
+ 2620098619U, // <2,6,2,u>: Cost 3 vext2 <0,4,2,6>, <2,u,0,1>
+ 2620098710U, // <2,6,3,0>: Cost 3 vext2 <0,4,2,6>, <3,0,1,2>
+ 3893986982U, // <2,6,3,1>: Cost 4 vuzpr <0,2,4,6>, <2,3,0,1>
+ 2569848762U, // <2,6,3,2>: Cost 3 vext1 <3,2,6,3>, <2,6,3,7>
+ 2620098972U, // <2,6,3,3>: Cost 3 vext2 <0,4,2,6>, <3,3,3,3>
+ 2620099074U, // <2,6,3,4>: Cost 3 vext2 <0,4,2,6>, <3,4,5,6>
+ 3893987022U, // <2,6,3,5>: Cost 4 vuzpr <0,2,4,6>, <2,3,4,5>
+ 3001404644U, // <2,6,3,6>: Cost 3 vzipr LHS, <4,4,6,6>
+ 1879887158U, // <2,6,3,7>: Cost 2 vzipr LHS, RHS
+ 1879887159U, // <2,6,3,u>: Cost 2 vzipr LHS, RHS
+ 2620099484U, // <2,6,4,0>: Cost 3 vext2 <0,4,2,6>, <4,0,6,2>
+ 2620099566U, // <2,6,4,1>: Cost 3 vext2 <0,4,2,6>, <4,1,6,3>
+ 2620099644U, // <2,6,4,2>: Cost 3 vext2 <0,4,2,6>, <4,2,6,0>
+ 3643599207U, // <2,6,4,3>: Cost 4 vext1 <3,2,6,4>, <3,2,6,4>
+ 2575830080U, // <2,6,4,4>: Cost 3 vext1 <4,2,6,4>, <4,2,6,4>
+ 1546358070U, // <2,6,4,5>: Cost 2 vext2 <0,4,2,6>, RHS
+ 2667875700U, // <2,6,4,6>: Cost 3 vext2 <u,4,2,6>, <4,6,4,6>
+ 4028042550U, // <2,6,4,7>: Cost 4 vzipr <0,2,2,4>, RHS
+ 1546358313U, // <2,6,4,u>: Cost 2 vext2 <0,4,2,6>, RHS
+ 3693841992U, // <2,6,5,0>: Cost 4 vext2 <0,4,2,6>, <5,0,1,2>
+ 2667876048U, // <2,6,5,1>: Cost 3 vext2 <u,4,2,6>, <5,1,7,3>
+ 2712834756U, // <2,6,5,2>: Cost 3 vext3 <4,6,u,2>, <6,5,2,7>
+ 3643607400U, // <2,6,5,3>: Cost 4 vext1 <3,2,6,5>, <3,2,6,5>
+ 2252091873U, // <2,6,5,4>: Cost 3 vrev <6,2,4,5>
+ 2667876356U, // <2,6,5,5>: Cost 3 vext2 <u,4,2,6>, <5,5,5,5>
+ 2667876450U, // <2,6,5,6>: Cost 3 vext2 <u,4,2,6>, <5,6,7,0>
+ 2820246838U, // <2,6,5,7>: Cost 3 vuzpr <0,2,4,6>, RHS
+ 2820246839U, // <2,6,5,u>: Cost 3 vuzpr <0,2,4,6>, RHS
+ 2563899494U, // <2,6,6,0>: Cost 3 vext1 <2,2,6,6>, LHS
+ 3893988683U, // <2,6,6,1>: Cost 4 vuzpr <0,2,4,6>, <4,6,0,1>
+ 2563901072U, // <2,6,6,2>: Cost 3 vext1 <2,2,6,6>, <2,2,6,6>
+ 3893987236U, // <2,6,6,3>: Cost 4 vuzpr <0,2,4,6>, <2,6,1,3>
+ 2563902774U, // <2,6,6,4>: Cost 3 vext1 <2,2,6,6>, RHS
+ 3893988723U, // <2,6,6,5>: Cost 4 vuzpr <0,2,4,6>, <4,6,4,5>
+ 2712834872U, // <2,6,6,6>: Cost 3 vext3 <4,6,u,2>, <6,6,6,6>
+ 2955644214U, // <2,6,6,7>: Cost 3 vzipr <0,4,2,6>, RHS
+ 2955644215U, // <2,6,6,u>: Cost 3 vzipr <0,4,2,6>, RHS
+ 2712834894U, // <2,6,7,0>: Cost 3 vext3 <4,6,u,2>, <6,7,0,1>
+ 2724926296U, // <2,6,7,1>: Cost 3 vext3 <6,7,1,2>, <6,7,1,2>
+ 2725000033U, // <2,6,7,2>: Cost 3 vext3 <6,7,2,2>, <6,7,2,2>
+ 2702365544U, // <2,6,7,3>: Cost 3 vext3 <3,0,1,2>, <6,7,3,0>
+ 2712834934U, // <2,6,7,4>: Cost 3 vext3 <4,6,u,2>, <6,7,4,5>
+ 3776107393U, // <2,6,7,5>: Cost 4 vext3 <3,0,1,2>, <6,7,5,7>
+ 2725294981U, // <2,6,7,6>: Cost 3 vext3 <6,7,6,2>, <6,7,6,2>
+ 2726253452U, // <2,6,7,7>: Cost 3 vext3 <7,0,1,2>, <6,7,7,0>
+ 2712834966U, // <2,6,7,u>: Cost 3 vext3 <4,6,u,2>, <6,7,u,1>
+ 2620102355U, // <2,6,u,0>: Cost 3 vext2 <0,4,2,6>, <u,0,1,2>
+ 1546360622U, // <2,6,u,1>: Cost 2 vext2 <0,4,2,6>, LHS
+ 2620102536U, // <2,6,u,2>: Cost 3 vext2 <0,4,2,6>, <u,2,3,3>
+ 2820244125U, // <2,6,u,3>: Cost 3 vuzpr <0,2,4,6>, LHS
+ 1594136612U, // <2,6,u,4>: Cost 2 vext2 <u,4,2,6>, <u,4,2,6>
+ 1546360986U, // <2,6,u,5>: Cost 2 vext2 <0,4,2,6>, RHS
+ 2620102864U, // <2,6,u,6>: Cost 3 vext2 <0,4,2,6>, <u,6,3,7>
+ 1879928118U, // <2,6,u,7>: Cost 2 vzipr LHS, RHS
+ 1879928119U, // <2,6,u,u>: Cost 2 vzipr LHS, RHS
+ 2726179825U, // <2,7,0,0>: Cost 3 vext3 <7,0,0,2>, <7,0,0,2>
+ 1652511738U, // <2,7,0,1>: Cost 2 vext3 <7,0,1,2>, <7,0,1,2>
+ 2621431972U, // <2,7,0,2>: Cost 3 vext2 <0,6,2,7>, <0,2,0,2>
+ 2257949868U, // <2,7,0,3>: Cost 3 vrev <7,2,3,0>
+ 2726474773U, // <2,7,0,4>: Cost 3 vext3 <7,0,4,2>, <7,0,4,2>
+ 2620768686U, // <2,7,0,5>: Cost 3 vext2 <0,5,2,7>, <0,5,2,7>
+ 2621432319U, // <2,7,0,6>: Cost 3 vext2 <0,6,2,7>, <0,6,2,7>
+ 2599760953U, // <2,7,0,7>: Cost 3 vext1 <u,2,7,0>, <7,0,u,2>
+ 1653027897U, // <2,7,0,u>: Cost 2 vext3 <7,0,u,2>, <7,0,u,2>
+ 2639348470U, // <2,7,1,0>: Cost 3 vext2 <3,6,2,7>, <1,0,3,2>
+ 3695174452U, // <2,7,1,1>: Cost 4 vext2 <0,6,2,7>, <1,1,1,1>
+ 3695174550U, // <2,7,1,2>: Cost 4 vext2 <0,6,2,7>, <1,2,3,0>
+ 3694511104U, // <2,7,1,3>: Cost 4 vext2 <0,5,2,7>, <1,3,5,7>
+ 3713090594U, // <2,7,1,4>: Cost 4 vext2 <3,6,2,7>, <1,4,0,5>
+ 3693184144U, // <2,7,1,5>: Cost 4 vext2 <0,3,2,7>, <1,5,3,7>
+ 2627405016U, // <2,7,1,6>: Cost 3 vext2 <1,6,2,7>, <1,6,2,7>
+ 3799995519U, // <2,7,1,7>: Cost 4 vext3 <7,0,1,2>, <7,1,7,0>
+ 2639348470U, // <2,7,1,u>: Cost 3 vext2 <3,6,2,7>, <1,0,3,2>
+ 3695175101U, // <2,7,2,0>: Cost 4 vext2 <0,6,2,7>, <2,0,1,2>
+ 3643655168U, // <2,7,2,1>: Cost 4 vext1 <3,2,7,2>, <1,3,5,7>
+ 2257892517U, // <2,7,2,2>: Cost 3 vrev <7,2,2,2>
+ 3695175334U, // <2,7,2,3>: Cost 4 vext2 <0,6,2,7>, <2,3,0,1>
+ 3695175465U, // <2,7,2,4>: Cost 4 vext2 <0,6,2,7>, <2,4,5,6>
+ 2632714080U, // <2,7,2,5>: Cost 3 vext2 <2,5,2,7>, <2,5,2,7>
+ 2633377713U, // <2,7,2,6>: Cost 3 vext2 <2,6,2,7>, <2,6,2,7>
+ 3695175658U, // <2,7,2,7>: Cost 4 vext2 <0,6,2,7>, <2,7,0,1>
+ 2634704979U, // <2,7,2,u>: Cost 3 vext2 <2,u,2,7>, <2,u,2,7>
+ 1514094694U, // <2,7,3,0>: Cost 2 vext1 <6,2,7,3>, LHS
+ 2569921680U, // <2,7,3,1>: Cost 3 vext1 <3,2,7,3>, <1,5,3,7>
+ 2587838056U, // <2,7,3,2>: Cost 3 vext1 <6,2,7,3>, <2,2,2,2>
+ 2569922927U, // <2,7,3,3>: Cost 3 vext1 <3,2,7,3>, <3,2,7,3>
+ 1514097974U, // <2,7,3,4>: Cost 2 vext1 <6,2,7,3>, RHS
+ 2581868321U, // <2,7,3,5>: Cost 3 vext1 <5,2,7,3>, <5,2,7,3>
+ 1514099194U, // <2,7,3,6>: Cost 2 vext1 <6,2,7,3>, <6,2,7,3>
+ 2587841530U, // <2,7,3,7>: Cost 3 vext1 <6,2,7,3>, <7,0,1,2>
+ 1514100526U, // <2,7,3,u>: Cost 2 vext1 <6,2,7,3>, LHS
+ 2708706617U, // <2,7,4,0>: Cost 3 vext3 <4,0,6,2>, <7,4,0,6>
+ 3649643418U, // <2,7,4,1>: Cost 4 vext1 <4,2,7,4>, <1,2,3,4>
+ 3649644330U, // <2,7,4,2>: Cost 4 vext1 <4,2,7,4>, <2,4,5,7>
+ 2257982640U, // <2,7,4,3>: Cost 3 vrev <7,2,3,4>
+ 3649645641U, // <2,7,4,4>: Cost 4 vext1 <4,2,7,4>, <4,2,7,4>
+ 2621435190U, // <2,7,4,5>: Cost 3 vext2 <0,6,2,7>, RHS
+ 2712835441U, // <2,7,4,6>: Cost 3 vext3 <4,6,u,2>, <7,4,6,u>
+ 3799995762U, // <2,7,4,7>: Cost 4 vext3 <7,0,1,2>, <7,4,7,0>
+ 2621435433U, // <2,7,4,u>: Cost 3 vext2 <0,6,2,7>, RHS
+ 2729497990U, // <2,7,5,0>: Cost 3 vext3 <7,5,0,2>, <7,5,0,2>
+ 3643679744U, // <2,7,5,1>: Cost 4 vext1 <3,2,7,5>, <1,3,5,7>
+ 3637708424U, // <2,7,5,2>: Cost 4 vext1 <2,2,7,5>, <2,2,5,7>
+ 3643681137U, // <2,7,5,3>: Cost 4 vext1 <3,2,7,5>, <3,2,7,5>
+ 2599800118U, // <2,7,5,4>: Cost 3 vext1 <u,2,7,5>, RHS
+ 3786577334U, // <2,7,5,5>: Cost 4 vext3 <4,6,u,2>, <7,5,5,5>
+ 3786577345U, // <2,7,5,6>: Cost 4 vext3 <4,6,u,2>, <7,5,6,7>
+ 2599802214U, // <2,7,5,7>: Cost 3 vext1 <u,2,7,5>, <7,4,5,6>
+ 2599802670U, // <2,7,5,u>: Cost 3 vext1 <u,2,7,5>, LHS
+ 2581889126U, // <2,7,6,0>: Cost 3 vext1 <5,2,7,6>, LHS
+ 3643687936U, // <2,7,6,1>: Cost 4 vext1 <3,2,7,6>, <1,3,5,7>
+ 2663240186U, // <2,7,6,2>: Cost 3 vext2 <7,6,2,7>, <6,2,7,3>
+ 3643689330U, // <2,7,6,3>: Cost 4 vext1 <3,2,7,6>, <3,2,7,6>
+ 2581892406U, // <2,7,6,4>: Cost 3 vext1 <5,2,7,6>, RHS
+ 2581892900U, // <2,7,6,5>: Cost 3 vext1 <5,2,7,6>, <5,2,7,6>
+ 2587865597U, // <2,7,6,6>: Cost 3 vext1 <6,2,7,6>, <6,2,7,6>
+ 3786577428U, // <2,7,6,7>: Cost 4 vext3 <4,6,u,2>, <7,6,7,0>
+ 2581894958U, // <2,7,6,u>: Cost 3 vext1 <5,2,7,6>, LHS
+ 2726254119U, // <2,7,7,0>: Cost 3 vext3 <7,0,1,2>, <7,7,0,1>
+ 3804640817U, // <2,7,7,1>: Cost 4 vext3 <7,7,1,2>, <7,7,1,2>
+ 3637724826U, // <2,7,7,2>: Cost 4 vext1 <2,2,7,7>, <2,2,7,7>
+ 3734992123U, // <2,7,7,3>: Cost 4 vext2 <7,3,2,7>, <7,3,2,7>
+ 2552040758U, // <2,7,7,4>: Cost 3 vext1 <0,2,7,7>, RHS
+ 3799995992U, // <2,7,7,5>: Cost 4 vext3 <7,0,1,2>, <7,7,5,5>
+ 2663241198U, // <2,7,7,6>: Cost 3 vext2 <7,6,2,7>, <7,6,2,7>
+ 2712835692U, // <2,7,7,7>: Cost 3 vext3 <4,6,u,2>, <7,7,7,7>
+ 2731562607U, // <2,7,7,u>: Cost 3 vext3 <7,u,1,2>, <7,7,u,1>
+ 1514135654U, // <2,7,u,0>: Cost 2 vext1 <6,2,7,u>, LHS
+ 1657820802U, // <2,7,u,1>: Cost 2 vext3 <7,u,1,2>, <7,u,1,2>
+ 2587879016U, // <2,7,u,2>: Cost 3 vext1 <6,2,7,u>, <2,2,2,2>
+ 2569963892U, // <2,7,u,3>: Cost 3 vext1 <3,2,7,u>, <3,2,7,u>
+ 1514138934U, // <2,7,u,4>: Cost 2 vext1 <6,2,7,u>, RHS
+ 2621438106U, // <2,7,u,5>: Cost 3 vext2 <0,6,2,7>, RHS
+ 1514140159U, // <2,7,u,6>: Cost 2 vext1 <6,2,7,u>, <6,2,7,u>
+ 2587882490U, // <2,7,u,7>: Cost 3 vext1 <6,2,7,u>, <7,0,1,2>
+ 1514141486U, // <2,7,u,u>: Cost 2 vext1 <6,2,7,u>, LHS
+ 1544380416U, // <2,u,0,0>: Cost 2 vext2 LHS, <0,0,0,0>
+ 470638699U, // <2,u,0,1>: Cost 1 vext2 LHS, LHS
+ 1544380580U, // <2,u,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 1658631909U, // <2,u,0,3>: Cost 2 vext3 <u,0,3,2>, <u,0,3,2>
+ 1544380754U, // <2,u,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 2665898414U, // <2,u,0,5>: Cost 3 vext2 LHS, <0,5,2,7>
+ 1658853120U, // <2,u,0,6>: Cost 2 vext3 <u,0,6,2>, <u,0,6,2>
+ 3094531625U, // <2,u,0,7>: Cost 3 vtrnr <1,2,3,0>, RHS
+ 470639261U, // <2,u,0,u>: Cost 1 vext2 LHS, LHS
+ 1544381174U, // <2,u,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 1544381236U, // <2,u,1,1>: Cost 2 vext2 LHS, <1,1,1,1>
+ 1544381334U, // <2,u,1,2>: Cost 2 vext2 LHS, <1,2,3,0>
+ 1544381400U, // <2,u,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 2618123325U, // <2,u,1,4>: Cost 3 vext2 LHS, <1,4,3,5>
+ 1544381584U, // <2,u,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 2618123489U, // <2,u,1,6>: Cost 3 vext2 LHS, <1,6,3,7>
+ 2726254427U, // <2,u,1,7>: Cost 3 vext3 <7,0,1,2>, <u,1,7,3>
+ 1544381823U, // <2,u,1,u>: Cost 2 vext2 LHS, <1,u,3,3>
+ 1478328422U, // <2,u,2,0>: Cost 2 vext1 <0,2,u,2>, LHS
+ 2618123807U, // <2,u,2,1>: Cost 3 vext2 LHS, <2,1,3,1>
+ 269271142U, // <2,u,2,2>: Cost 1 vdup2 LHS
+ 1544382118U, // <2,u,2,3>: Cost 2 vext2 LHS, <2,3,0,1>
+ 1478331702U, // <2,u,2,4>: Cost 2 vext1 <0,2,u,2>, RHS
+ 2618124136U, // <2,u,2,5>: Cost 3 vext2 LHS, <2,5,3,6>
+ 1544382394U, // <2,u,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 3088354857U, // <2,u,2,7>: Cost 3 vtrnr <0,2,0,2>, RHS
+ 269271142U, // <2,u,2,u>: Cost 1 vdup2 LHS
+ 1544382614U, // <2,u,3,0>: Cost 2 vext2 LHS, <3,0,1,2>
+ 2953627374U, // <2,u,3,1>: Cost 3 vzipr LHS, <2,3,u,1>
+ 1490282143U, // <2,u,3,2>: Cost 2 vext1 <2,2,u,3>, <2,2,u,3>
+ 1879883932U, // <2,u,3,3>: Cost 2 vzipr LHS, LHS
+ 1544382978U, // <2,u,3,4>: Cost 2 vext2 LHS, <3,4,5,6>
+ 2953627378U, // <2,u,3,5>: Cost 3 vzipr LHS, <2,3,u,5>
+ 1514172931U, // <2,u,3,6>: Cost 2 vext1 <6,2,u,3>, <6,2,u,3>
+ 1879887176U, // <2,u,3,7>: Cost 2 vzipr LHS, RHS
+ 1879883937U, // <2,u,3,u>: Cost 2 vzipr LHS, LHS
+ 1484316774U, // <2,u,4,0>: Cost 2 vext1 <1,2,u,4>, LHS
+ 1484317639U, // <2,u,4,1>: Cost 2 vext1 <1,2,u,4>, <1,2,u,4>
+ 2552088270U, // <2,u,4,2>: Cost 3 vext1 <0,2,u,4>, <2,3,4,5>
+ 1190213513U, // <2,u,4,3>: Cost 2 vrev <u,2,3,4>
+ 1484320054U, // <2,u,4,4>: Cost 2 vext1 <1,2,u,4>, RHS
+ 470641974U, // <2,u,4,5>: Cost 1 vext2 LHS, RHS
+ 1592159604U, // <2,u,4,6>: Cost 2 vext2 LHS, <4,6,4,6>
+ 3094564393U, // <2,u,4,7>: Cost 3 vtrnr <1,2,3,4>, RHS
+ 470642217U, // <2,u,4,u>: Cost 1 vext2 LHS, RHS
+ 2552094959U, // <2,u,5,0>: Cost 3 vext1 <0,2,u,5>, <0,2,u,5>
+ 1592159952U, // <2,u,5,1>: Cost 2 vext2 LHS, <5,1,7,3>
+ 2564040353U, // <2,u,5,2>: Cost 3 vext1 <2,2,u,5>, <2,2,u,5>
+ 2690275455U, // <2,u,5,3>: Cost 3 vext3 <0,u,u,2>, <u,5,3,7>
+ 1592160198U, // <2,u,5,4>: Cost 2 vext2 LHS, <5,4,7,6>
+ 1592160260U, // <2,u,5,5>: Cost 2 vext2 LHS, <5,5,5,5>
+ 1611962522U, // <2,u,5,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1592160424U, // <2,u,5,7>: Cost 2 vext2 LHS, <5,7,5,7>
+ 1611962540U, // <2,u,5,u>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1478361190U, // <2,u,6,0>: Cost 2 vext1 <0,2,u,6>, LHS
+ 2552103670U, // <2,u,6,1>: Cost 3 vext1 <0,2,u,6>, <1,0,3,2>
+ 1592160762U, // <2,u,6,2>: Cost 2 vext2 LHS, <6,2,7,3>
+ 2685704400U, // <2,u,6,3>: Cost 3 vext3 <0,2,0,2>, <u,6,3,7>
+ 1478364470U, // <2,u,6,4>: Cost 2 vext1 <0,2,u,6>, RHS
+ 2901891226U, // <2,u,6,5>: Cost 3 vzipl <2,6,3,7>, RHS
+ 1592161080U, // <2,u,6,6>: Cost 2 vext2 LHS, <6,6,6,6>
+ 1592161102U, // <2,u,6,7>: Cost 2 vext2 LHS, <6,7,0,1>
+ 1478367022U, // <2,u,6,u>: Cost 2 vext1 <0,2,u,6>, LHS
+ 1592161274U, // <2,u,7,0>: Cost 2 vext2 LHS, <7,0,1,2>
+ 2659931226U, // <2,u,7,1>: Cost 3 vext2 <7,1,2,u>, <7,1,2,u>
+ 2564056739U, // <2,u,7,2>: Cost 3 vext1 <2,2,u,7>, <2,2,u,7>
+ 2665903331U, // <2,u,7,3>: Cost 3 vext2 LHS, <7,3,0,1>
+ 1592161638U, // <2,u,7,4>: Cost 2 vext2 LHS, <7,4,5,6>
+ 2665903494U, // <2,u,7,5>: Cost 3 vext2 LHS, <7,5,0,2>
+ 2587947527U, // <2,u,7,6>: Cost 3 vext1 <6,2,u,7>, <6,2,u,7>
+ 1592161900U, // <2,u,7,7>: Cost 2 vext2 LHS, <7,7,7,7>
+ 1592161922U, // <2,u,7,u>: Cost 2 vext2 LHS, <7,u,1,2>
+ 1478377574U, // <2,u,u,0>: Cost 2 vext1 <0,2,u,u>, LHS
+ 470644526U, // <2,u,u,1>: Cost 1 vext2 LHS, LHS
+ 269271142U, // <2,u,u,2>: Cost 1 vdup2 LHS
+ 1879924892U, // <2,u,u,3>: Cost 2 vzipr LHS, LHS
+ 1478380854U, // <2,u,u,4>: Cost 2 vext1 <0,2,u,u>, RHS
+ 470644890U, // <2,u,u,5>: Cost 1 vext2 LHS, RHS
+ 1611962765U, // <2,u,u,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1879928136U, // <2,u,u,7>: Cost 2 vzipr LHS, RHS
+ 470645093U, // <2,u,u,u>: Cost 1 vext2 LHS, LHS
+ 1611448320U, // <3,0,0,0>: Cost 2 vext3 LHS, <0,0,0,0>
+ 1611890698U, // <3,0,0,1>: Cost 2 vext3 LHS, <0,0,1,1>
+ 1611890708U, // <3,0,0,2>: Cost 2 vext3 LHS, <0,0,2,2>
+ 3763576860U, // <3,0,0,3>: Cost 4 vext3 LHS, <0,0,3,1>
+ 2689835045U, // <3,0,0,4>: Cost 3 vext3 LHS, <0,0,4,1>
+ 3698508206U, // <3,0,0,5>: Cost 4 vext2 <1,2,3,0>, <0,5,2,7>
+ 3763576887U, // <3,0,0,6>: Cost 4 vext3 LHS, <0,0,6,1>
+ 3667678434U, // <3,0,0,7>: Cost 4 vext1 <7,3,0,0>, <7,3,0,0>
+ 1616093258U, // <3,0,0,u>: Cost 2 vext3 LHS, <0,0,u,2>
+ 1490337894U, // <3,0,1,0>: Cost 2 vext1 <2,3,0,1>, LHS
+ 2685632602U, // <3,0,1,1>: Cost 3 vext3 LHS, <0,1,1,0>
+ 537706598U, // <3,0,1,2>: Cost 1 vext3 LHS, LHS
+ 2624766936U, // <3,0,1,3>: Cost 3 vext2 <1,2,3,0>, <1,3,1,3>
+ 1490341174U, // <3,0,1,4>: Cost 2 vext1 <2,3,0,1>, RHS
+ 2624767120U, // <3,0,1,5>: Cost 3 vext2 <1,2,3,0>, <1,5,3,7>
+ 2732966030U, // <3,0,1,6>: Cost 3 vext3 LHS, <0,1,6,7>
+ 2593944803U, // <3,0,1,7>: Cost 3 vext1 <7,3,0,1>, <7,3,0,1>
+ 537706652U, // <3,0,1,u>: Cost 1 vext3 LHS, LHS
+ 1611890852U, // <3,0,2,0>: Cost 2 vext3 LHS, <0,2,0,2>
+ 2685632684U, // <3,0,2,1>: Cost 3 vext3 LHS, <0,2,1,1>
+ 2685632692U, // <3,0,2,2>: Cost 3 vext3 LHS, <0,2,2,0>
+ 2685632702U, // <3,0,2,3>: Cost 3 vext3 LHS, <0,2,3,1>
+ 1611890892U, // <3,0,2,4>: Cost 2 vext3 LHS, <0,2,4,6>
+ 2732966102U, // <3,0,2,5>: Cost 3 vext3 LHS, <0,2,5,7>
+ 2624767930U, // <3,0,2,6>: Cost 3 vext2 <1,2,3,0>, <2,6,3,7>
+ 2685632744U, // <3,0,2,7>: Cost 3 vext3 LHS, <0,2,7,7>
+ 1611890924U, // <3,0,2,u>: Cost 2 vext3 LHS, <0,2,u,2>
+ 2624768150U, // <3,0,3,0>: Cost 3 vext2 <1,2,3,0>, <3,0,1,2>
+ 2685632764U, // <3,0,3,1>: Cost 3 vext3 LHS, <0,3,1,0>
+ 2685632774U, // <3,0,3,2>: Cost 3 vext3 LHS, <0,3,2,1>
+ 2624768412U, // <3,0,3,3>: Cost 3 vext2 <1,2,3,0>, <3,3,3,3>
+ 2624768514U, // <3,0,3,4>: Cost 3 vext2 <1,2,3,0>, <3,4,5,6>
+ 3702491714U, // <3,0,3,5>: Cost 4 vext2 <1,u,3,0>, <3,5,3,7>
+ 2624768632U, // <3,0,3,6>: Cost 3 vext2 <1,2,3,0>, <3,6,0,7>
+ 3702491843U, // <3,0,3,7>: Cost 4 vext2 <1,u,3,0>, <3,7,0,1>
+ 2686959934U, // <3,0,3,u>: Cost 3 vext3 <0,3,u,3>, <0,3,u,3>
+ 2689835336U, // <3,0,4,0>: Cost 3 vext3 LHS, <0,4,0,4>
+ 1611891026U, // <3,0,4,1>: Cost 2 vext3 LHS, <0,4,1,5>
+ 1611891036U, // <3,0,4,2>: Cost 2 vext3 LHS, <0,4,2,6>
+ 3763577184U, // <3,0,4,3>: Cost 4 vext3 LHS, <0,4,3,1>
+ 2689835374U, // <3,0,4,4>: Cost 3 vext3 LHS, <0,4,4,6>
+ 1551027510U, // <3,0,4,5>: Cost 2 vext2 <1,2,3,0>, RHS
+ 2666573172U, // <3,0,4,6>: Cost 3 vext2 <u,2,3,0>, <4,6,4,6>
+ 3667711206U, // <3,0,4,7>: Cost 4 vext1 <7,3,0,4>, <7,3,0,4>
+ 1616093586U, // <3,0,4,u>: Cost 2 vext3 LHS, <0,4,u,6>
+ 2685190556U, // <3,0,5,0>: Cost 3 vext3 LHS, <0,5,0,7>
+ 2666573520U, // <3,0,5,1>: Cost 3 vext2 <u,2,3,0>, <5,1,7,3>
+ 3040886886U, // <3,0,5,2>: Cost 3 vtrnl <3,4,5,6>, LHS
+ 3625912834U, // <3,0,5,3>: Cost 4 vext1 <0,3,0,5>, <3,4,5,6>
+ 2666573766U, // <3,0,5,4>: Cost 3 vext2 <u,2,3,0>, <5,4,7,6>
+ 2666573828U, // <3,0,5,5>: Cost 3 vext2 <u,2,3,0>, <5,5,5,5>
+ 2732966354U, // <3,0,5,6>: Cost 3 vext3 LHS, <0,5,6,7>
+ 2666573992U, // <3,0,5,7>: Cost 3 vext2 <u,2,3,0>, <5,7,5,7>
+ 3040886940U, // <3,0,5,u>: Cost 3 vtrnl <3,4,5,6>, LHS
+ 2685190637U, // <3,0,6,0>: Cost 3 vext3 LHS, <0,6,0,7>
+ 2732966390U, // <3,0,6,1>: Cost 3 vext3 LHS, <0,6,1,7>
+ 2689835519U, // <3,0,6,2>: Cost 3 vext3 LHS, <0,6,2,7>
+ 3667724438U, // <3,0,6,3>: Cost 4 vext1 <7,3,0,6>, <3,0,1,2>
+ 3763577355U, // <3,0,6,4>: Cost 4 vext3 LHS, <0,6,4,1>
+ 3806708243U, // <3,0,6,5>: Cost 4 vext3 LHS, <0,6,5,0>
+ 2666574648U, // <3,0,6,6>: Cost 3 vext2 <u,2,3,0>, <6,6,6,6>
+ 2657948520U, // <3,0,6,7>: Cost 3 vext2 <6,7,3,0>, <6,7,3,0>
+ 2689835573U, // <3,0,6,u>: Cost 3 vext3 LHS, <0,6,u,7>
+ 2666574842U, // <3,0,7,0>: Cost 3 vext2 <u,2,3,0>, <7,0,1,2>
+ 2685633095U, // <3,0,7,1>: Cost 3 vext3 LHS, <0,7,1,7>
+ 2660603052U, // <3,0,7,2>: Cost 3 vext2 <7,2,3,0>, <7,2,3,0>
+ 3643844997U, // <3,0,7,3>: Cost 4 vext1 <3,3,0,7>, <3,3,0,7>
+ 2666575206U, // <3,0,7,4>: Cost 3 vext2 <u,2,3,0>, <7,4,5,6>
+ 3655790391U, // <3,0,7,5>: Cost 4 vext1 <5,3,0,7>, <5,3,0,7>
+ 3731690968U, // <3,0,7,6>: Cost 4 vext2 <6,7,3,0>, <7,6,0,3>
+ 2666575468U, // <3,0,7,7>: Cost 3 vext2 <u,2,3,0>, <7,7,7,7>
+ 2664584850U, // <3,0,7,u>: Cost 3 vext2 <7,u,3,0>, <7,u,3,0>
+ 1616093834U, // <3,0,u,0>: Cost 2 vext3 LHS, <0,u,0,2>
+ 1611891346U, // <3,0,u,1>: Cost 2 vext3 LHS, <0,u,1,1>
+ 537707165U, // <3,0,u,2>: Cost 1 vext3 LHS, LHS
+ 2689835684U, // <3,0,u,3>: Cost 3 vext3 LHS, <0,u,3,1>
+ 1616093874U, // <3,0,u,4>: Cost 2 vext3 LHS, <0,u,4,6>
+ 1551030426U, // <3,0,u,5>: Cost 2 vext2 <1,2,3,0>, RHS
+ 2624772304U, // <3,0,u,6>: Cost 3 vext2 <1,2,3,0>, <u,6,3,7>
+ 2594002154U, // <3,0,u,7>: Cost 3 vext1 <7,3,0,u>, <7,3,0,u>
+ 537707219U, // <3,0,u,u>: Cost 1 vext3 LHS, LHS
+ 2552201318U, // <3,1,0,0>: Cost 3 vext1 <0,3,1,0>, LHS
+ 2618802278U, // <3,1,0,1>: Cost 3 vext2 <0,2,3,1>, LHS
+ 2618802366U, // <3,1,0,2>: Cost 3 vext2 <0,2,3,1>, <0,2,3,1>
+ 1611449078U, // <3,1,0,3>: Cost 2 vext3 LHS, <1,0,3,2>
+ 2552204598U, // <3,1,0,4>: Cost 3 vext1 <0,3,1,0>, RHS
+ 2732966663U, // <3,1,0,5>: Cost 3 vext3 LHS, <1,0,5,1>
+ 3906258396U, // <3,1,0,6>: Cost 4 vuzpr <2,3,0,1>, <2,0,4,6>
+ 3667752171U, // <3,1,0,7>: Cost 4 vext1 <7,3,1,0>, <7,3,1,0>
+ 1611891491U, // <3,1,0,u>: Cost 2 vext3 LHS, <1,0,u,2>
+ 2689835819U, // <3,1,1,0>: Cost 3 vext3 LHS, <1,1,0,1>
+ 1611449140U, // <3,1,1,1>: Cost 2 vext3 LHS, <1,1,1,1>
+ 2624775063U, // <3,1,1,2>: Cost 3 vext2 <1,2,3,1>, <1,2,3,1>
+ 1611891528U, // <3,1,1,3>: Cost 2 vext3 LHS, <1,1,3,3>
+ 2689835859U, // <3,1,1,4>: Cost 3 vext3 LHS, <1,1,4,5>
+ 2689835868U, // <3,1,1,5>: Cost 3 vext3 LHS, <1,1,5,5>
+ 3763577701U, // <3,1,1,6>: Cost 4 vext3 LHS, <1,1,6,5>
+ 3765273452U, // <3,1,1,7>: Cost 4 vext3 <1,1,7,3>, <1,1,7,3>
+ 1611891573U, // <3,1,1,u>: Cost 2 vext3 LHS, <1,1,u,3>
+ 2629420494U, // <3,1,2,0>: Cost 3 vext2 <2,0,3,1>, <2,0,3,1>
+ 2689835911U, // <3,1,2,1>: Cost 3 vext3 LHS, <1,2,1,3>
+ 2564163248U, // <3,1,2,2>: Cost 3 vext1 <2,3,1,2>, <2,3,1,2>
+ 1611449238U, // <3,1,2,3>: Cost 2 vext3 LHS, <1,2,3,0>
+ 2564164918U, // <3,1,2,4>: Cost 3 vext1 <2,3,1,2>, RHS
+ 2689835947U, // <3,1,2,5>: Cost 3 vext3 LHS, <1,2,5,3>
+ 3692545978U, // <3,1,2,6>: Cost 4 vext2 <0,2,3,1>, <2,6,3,7>
+ 2732966842U, // <3,1,2,7>: Cost 3 vext3 LHS, <1,2,7,0>
+ 1611891651U, // <3,1,2,u>: Cost 2 vext3 LHS, <1,2,u,0>
+ 1484456038U, // <3,1,3,0>: Cost 2 vext1 <1,3,1,3>, LHS
+ 1611891672U, // <3,1,3,1>: Cost 2 vext3 LHS, <1,3,1,3>
+ 2685633502U, // <3,1,3,2>: Cost 3 vext3 LHS, <1,3,2,0>
+ 2685633512U, // <3,1,3,3>: Cost 3 vext3 LHS, <1,3,3,1>
+ 1484459318U, // <3,1,3,4>: Cost 2 vext1 <1,3,1,3>, RHS
+ 1611891712U, // <3,1,3,5>: Cost 2 vext3 LHS, <1,3,5,7>
+ 2689836041U, // <3,1,3,6>: Cost 3 vext3 LHS, <1,3,6,7>
+ 2733409294U, // <3,1,3,7>: Cost 3 vext3 LHS, <1,3,7,3>
+ 1611891735U, // <3,1,3,u>: Cost 2 vext3 LHS, <1,3,u,3>
+ 2552234086U, // <3,1,4,0>: Cost 3 vext1 <0,3,1,4>, LHS
+ 2732966955U, // <3,1,4,1>: Cost 3 vext3 LHS, <1,4,1,5>
+ 2732966964U, // <3,1,4,2>: Cost 3 vext3 LHS, <1,4,2,5>
+ 2685633597U, // <3,1,4,3>: Cost 3 vext3 LHS, <1,4,3,5>
+ 2552237366U, // <3,1,4,4>: Cost 3 vext1 <0,3,1,4>, RHS
+ 2618805558U, // <3,1,4,5>: Cost 3 vext2 <0,2,3,1>, RHS
+ 2769472822U, // <3,1,4,6>: Cost 3 vuzpl <3,0,1,2>, RHS
+ 3667784943U, // <3,1,4,7>: Cost 4 vext1 <7,3,1,4>, <7,3,1,4>
+ 2685633642U, // <3,1,4,u>: Cost 3 vext3 LHS, <1,4,u,5>
+ 2689836143U, // <3,1,5,0>: Cost 3 vext3 LHS, <1,5,0,1>
+ 2564187280U, // <3,1,5,1>: Cost 3 vext1 <2,3,1,5>, <1,5,3,7>
+ 2564187827U, // <3,1,5,2>: Cost 3 vext1 <2,3,1,5>, <2,3,1,5>
+ 1611891856U, // <3,1,5,3>: Cost 2 vext3 LHS, <1,5,3,7>
+ 2689836183U, // <3,1,5,4>: Cost 3 vext3 LHS, <1,5,4,5>
+ 3759375522U, // <3,1,5,5>: Cost 4 vext3 LHS, <1,5,5,7>
+ 3720417378U, // <3,1,5,6>: Cost 4 vext2 <4,u,3,1>, <5,6,7,0>
+ 2832518454U, // <3,1,5,7>: Cost 3 vuzpr <2,3,0,1>, RHS
+ 1611891901U, // <3,1,5,u>: Cost 2 vext3 LHS, <1,5,u,7>
+ 3763578048U, // <3,1,6,0>: Cost 4 vext3 LHS, <1,6,0,1>
+ 2689836239U, // <3,1,6,1>: Cost 3 vext3 LHS, <1,6,1,7>
+ 2732967128U, // <3,1,6,2>: Cost 3 vext3 LHS, <1,6,2,7>
+ 2685633761U, // <3,1,6,3>: Cost 3 vext3 LHS, <1,6,3,7>
+ 3763578088U, // <3,1,6,4>: Cost 4 vext3 LHS, <1,6,4,5>
+ 2689836275U, // <3,1,6,5>: Cost 3 vext3 LHS, <1,6,5,7>
+ 3763578108U, // <3,1,6,6>: Cost 4 vext3 LHS, <1,6,6,7>
+ 2732967166U, // <3,1,6,7>: Cost 3 vext3 LHS, <1,6,7,0>
+ 2685633806U, // <3,1,6,u>: Cost 3 vext3 LHS, <1,6,u,7>
+ 3631972454U, // <3,1,7,0>: Cost 4 vext1 <1,3,1,7>, LHS
+ 2659947612U, // <3,1,7,1>: Cost 3 vext2 <7,1,3,1>, <7,1,3,1>
+ 4036102294U, // <3,1,7,2>: Cost 4 vzipr <1,5,3,7>, <3,0,1,2>
+ 3095396454U, // <3,1,7,3>: Cost 3 vtrnr <1,3,5,7>, LHS
+ 3631975734U, // <3,1,7,4>: Cost 4 vext1 <1,3,1,7>, RHS
+ 2222982144U, // <3,1,7,5>: Cost 3 vrev <1,3,5,7>
+ 3296797705U, // <3,1,7,6>: Cost 4 vrev <1,3,6,7>
+ 3720418924U, // <3,1,7,7>: Cost 4 vext2 <4,u,3,1>, <7,7,7,7>
+ 3095396459U, // <3,1,7,u>: Cost 3 vtrnr <1,3,5,7>, LHS
+ 1484496998U, // <3,1,u,0>: Cost 2 vext1 <1,3,1,u>, LHS
+ 1611892077U, // <3,1,u,1>: Cost 2 vext3 LHS, <1,u,1,3>
+ 2685633907U, // <3,1,u,2>: Cost 3 vext3 LHS, <1,u,2,0>
+ 1611892092U, // <3,1,u,3>: Cost 2 vext3 LHS, <1,u,3,0>
+ 1484500278U, // <3,1,u,4>: Cost 2 vext1 <1,3,1,u>, RHS
+ 1611892117U, // <3,1,u,5>: Cost 2 vext3 LHS, <1,u,5,7>
+ 2685633950U, // <3,1,u,6>: Cost 3 vext3 LHS, <1,u,6,7>
+ 2832518697U, // <3,1,u,7>: Cost 3 vuzpr <2,3,0,1>, RHS
+ 1611892140U, // <3,1,u,u>: Cost 2 vext3 LHS, <1,u,u,3>
+ 2623455232U, // <3,2,0,0>: Cost 3 vext2 <1,0,3,2>, <0,0,0,0>
+ 1549713510U, // <3,2,0,1>: Cost 2 vext2 <1,0,3,2>, LHS
+ 2689836484U, // <3,2,0,2>: Cost 3 vext3 LHS, <2,0,2,0>
+ 2685633997U, // <3,2,0,3>: Cost 3 vext3 LHS, <2,0,3,0>
+ 2623455570U, // <3,2,0,4>: Cost 3 vext2 <1,0,3,2>, <0,4,1,5>
+ 2732967398U, // <3,2,0,5>: Cost 3 vext3 LHS, <2,0,5,7>
+ 2689836524U, // <3,2,0,6>: Cost 3 vext3 LHS, <2,0,6,4>
+ 2229044964U, // <3,2,0,7>: Cost 3 vrev <2,3,7,0>
+ 1549714077U, // <3,2,0,u>: Cost 2 vext2 <1,0,3,2>, LHS
+ 1549714166U, // <3,2,1,0>: Cost 2 vext2 <1,0,3,2>, <1,0,3,2>
+ 2623456052U, // <3,2,1,1>: Cost 3 vext2 <1,0,3,2>, <1,1,1,1>
+ 2623456150U, // <3,2,1,2>: Cost 3 vext2 <1,0,3,2>, <1,2,3,0>
+ 2685634079U, // <3,2,1,3>: Cost 3 vext3 LHS, <2,1,3,1>
+ 2552286518U, // <3,2,1,4>: Cost 3 vext1 <0,3,2,1>, RHS
+ 2623456400U, // <3,2,1,5>: Cost 3 vext2 <1,0,3,2>, <1,5,3,7>
+ 2689836604U, // <3,2,1,6>: Cost 3 vext3 LHS, <2,1,6,3>
+ 3667834101U, // <3,2,1,7>: Cost 4 vext1 <7,3,2,1>, <7,3,2,1>
+ 1155385070U, // <3,2,1,u>: Cost 2 vrev <2,3,u,1>
+ 2689836629U, // <3,2,2,0>: Cost 3 vext3 LHS, <2,2,0,1>
+ 2689836640U, // <3,2,2,1>: Cost 3 vext3 LHS, <2,2,1,3>
+ 1611449960U, // <3,2,2,2>: Cost 2 vext3 LHS, <2,2,2,2>
+ 1611892338U, // <3,2,2,3>: Cost 2 vext3 LHS, <2,2,3,3>
+ 2689836669U, // <3,2,2,4>: Cost 3 vext3 LHS, <2,2,4,5>
+ 2689836680U, // <3,2,2,5>: Cost 3 vext3 LHS, <2,2,5,7>
+ 2689836688U, // <3,2,2,6>: Cost 3 vext3 LHS, <2,2,6,6>
+ 3763578518U, // <3,2,2,7>: Cost 4 vext3 LHS, <2,2,7,3>
+ 1611892383U, // <3,2,2,u>: Cost 2 vext3 LHS, <2,2,u,3>
+ 1611450022U, // <3,2,3,0>: Cost 2 vext3 LHS, <2,3,0,1>
+ 2685191854U, // <3,2,3,1>: Cost 3 vext3 LHS, <2,3,1,0>
+ 2685191865U, // <3,2,3,2>: Cost 3 vext3 LHS, <2,3,2,2>
+ 2685191875U, // <3,2,3,3>: Cost 3 vext3 LHS, <2,3,3,3>
+ 1611450062U, // <3,2,3,4>: Cost 2 vext3 LHS, <2,3,4,5>
+ 2732967635U, // <3,2,3,5>: Cost 3 vext3 LHS, <2,3,5,1>
+ 2732967645U, // <3,2,3,6>: Cost 3 vext3 LHS, <2,3,6,2>
+ 2732967652U, // <3,2,3,7>: Cost 3 vext3 LHS, <2,3,7,0>
+ 1611450094U, // <3,2,3,u>: Cost 2 vext3 LHS, <2,3,u,1>
+ 2558279782U, // <3,2,4,0>: Cost 3 vext1 <1,3,2,4>, LHS
+ 2558280602U, // <3,2,4,1>: Cost 3 vext1 <1,3,2,4>, <1,2,3,4>
+ 2732967692U, // <3,2,4,2>: Cost 3 vext3 LHS, <2,4,2,4>
+ 2685634326U, // <3,2,4,3>: Cost 3 vext3 LHS, <2,4,3,5>
+ 2558283062U, // <3,2,4,4>: Cost 3 vext1 <1,3,2,4>, RHS
+ 1549716790U, // <3,2,4,5>: Cost 2 vext2 <1,0,3,2>, RHS
+ 2689836844U, // <3,2,4,6>: Cost 3 vext3 LHS, <2,4,6,0>
+ 2229077736U, // <3,2,4,7>: Cost 3 vrev <2,3,7,4>
+ 1549717033U, // <3,2,4,u>: Cost 2 vext2 <1,0,3,2>, RHS
+ 2552316006U, // <3,2,5,0>: Cost 3 vext1 <0,3,2,5>, LHS
+ 2228643507U, // <3,2,5,1>: Cost 3 vrev <2,3,1,5>
+ 2689836896U, // <3,2,5,2>: Cost 3 vext3 LHS, <2,5,2,7>
+ 2685634408U, // <3,2,5,3>: Cost 3 vext3 LHS, <2,5,3,6>
+ 1155122894U, // <3,2,5,4>: Cost 2 vrev <2,3,4,5>
+ 2665263108U, // <3,2,5,5>: Cost 3 vext2 <u,0,3,2>, <5,5,5,5>
+ 2689836932U, // <3,2,5,6>: Cost 3 vext3 LHS, <2,5,6,7>
+ 2665263272U, // <3,2,5,7>: Cost 3 vext2 <u,0,3,2>, <5,7,5,7>
+ 1155417842U, // <3,2,5,u>: Cost 2 vrev <2,3,u,5>
+ 2689836953U, // <3,2,6,0>: Cost 3 vext3 LHS, <2,6,0,1>
+ 2689836964U, // <3,2,6,1>: Cost 3 vext3 LHS, <2,6,1,3>
+ 2689836976U, // <3,2,6,2>: Cost 3 vext3 LHS, <2,6,2,6>
+ 1611892666U, // <3,2,6,3>: Cost 2 vext3 LHS, <2,6,3,7>
+ 2689836993U, // <3,2,6,4>: Cost 3 vext3 LHS, <2,6,4,5>
+ 2689837004U, // <3,2,6,5>: Cost 3 vext3 LHS, <2,6,5,7>
+ 2689837013U, // <3,2,6,6>: Cost 3 vext3 LHS, <2,6,6,7>
+ 2665263950U, // <3,2,6,7>: Cost 3 vext2 <u,0,3,2>, <6,7,0,1>
+ 1611892711U, // <3,2,6,u>: Cost 2 vext3 LHS, <2,6,u,7>
+ 2665264122U, // <3,2,7,0>: Cost 3 vext2 <u,0,3,2>, <7,0,1,2>
+ 2623460419U, // <3,2,7,1>: Cost 3 vext2 <1,0,3,2>, <7,1,0,3>
+ 4169138340U, // <3,2,7,2>: Cost 4 vtrnr <1,3,5,7>, <0,2,0,2>
+ 2962358374U, // <3,2,7,3>: Cost 3 vzipr <1,5,3,7>, LHS
+ 2665264486U, // <3,2,7,4>: Cost 3 vext2 <u,0,3,2>, <7,4,5,6>
+ 2228954841U, // <3,2,7,5>: Cost 3 vrev <2,3,5,7>
+ 2229028578U, // <3,2,7,6>: Cost 3 vrev <2,3,6,7>
+ 2665264748U, // <3,2,7,7>: Cost 3 vext2 <u,0,3,2>, <7,7,7,7>
+ 2962358379U, // <3,2,7,u>: Cost 3 vzipr <1,5,3,7>, LHS
+ 1611892795U, // <3,2,u,0>: Cost 2 vext3 LHS, <2,u,0,1>
+ 1549719342U, // <3,2,u,1>: Cost 2 vext2 <1,0,3,2>, LHS
+ 1611449960U, // <3,2,u,2>: Cost 2 vext3 LHS, <2,2,2,2>
+ 1611892824U, // <3,2,u,3>: Cost 2 vext3 LHS, <2,u,3,3>
+ 1611892835U, // <3,2,u,4>: Cost 2 vext3 LHS, <2,u,4,5>
+ 1549719706U, // <3,2,u,5>: Cost 2 vext2 <1,0,3,2>, RHS
+ 2689837168U, // <3,2,u,6>: Cost 3 vext3 LHS, <2,u,6,0>
+ 2665265408U, // <3,2,u,7>: Cost 3 vext2 <u,0,3,2>, <u,7,0,1>
+ 1611892867U, // <3,2,u,u>: Cost 2 vext3 LHS, <2,u,u,1>
+ 2685192331U, // <3,3,0,0>: Cost 3 vext3 LHS, <3,0,0,0>
+ 1611450518U, // <3,3,0,1>: Cost 2 vext3 LHS, <3,0,1,2>
+ 2685634717U, // <3,3,0,2>: Cost 3 vext3 LHS, <3,0,2,0>
+ 2564294806U, // <3,3,0,3>: Cost 3 vext1 <2,3,3,0>, <3,0,1,2>
+ 2685634736U, // <3,3,0,4>: Cost 3 vext3 LHS, <3,0,4,1>
+ 2732968122U, // <3,3,0,5>: Cost 3 vext3 LHS, <3,0,5,2>
+ 3763579075U, // <3,3,0,6>: Cost 4 vext3 LHS, <3,0,6,2>
+ 4034053264U, // <3,3,0,7>: Cost 4 vzipr <1,2,3,0>, <1,5,3,7>
+ 1611450581U, // <3,3,0,u>: Cost 2 vext3 LHS, <3,0,u,2>
+ 2685192415U, // <3,3,1,0>: Cost 3 vext3 LHS, <3,1,0,3>
+ 1550385992U, // <3,3,1,1>: Cost 2 vext2 <1,1,3,3>, <1,1,3,3>
+ 2685192433U, // <3,3,1,2>: Cost 3 vext3 LHS, <3,1,2,3>
+ 2685634808U, // <3,3,1,3>: Cost 3 vext3 LHS, <3,1,3,1>
+ 2558332214U, // <3,3,1,4>: Cost 3 vext1 <1,3,3,1>, RHS
+ 2685634828U, // <3,3,1,5>: Cost 3 vext3 LHS, <3,1,5,3>
+ 3759376661U, // <3,3,1,6>: Cost 4 vext3 LHS, <3,1,6,3>
+ 2703477022U, // <3,3,1,7>: Cost 3 vext3 <3,1,7,3>, <3,1,7,3>
+ 1555031423U, // <3,3,1,u>: Cost 2 vext2 <1,u,3,3>, <1,u,3,3>
+ 2564309094U, // <3,3,2,0>: Cost 3 vext1 <2,3,3,2>, LHS
+ 2630100513U, // <3,3,2,1>: Cost 3 vext2 <2,1,3,3>, <2,1,3,3>
+ 1557022322U, // <3,3,2,2>: Cost 2 vext2 <2,2,3,3>, <2,2,3,3>
+ 2685192520U, // <3,3,2,3>: Cost 3 vext3 LHS, <3,2,3,0>
+ 2564312374U, // <3,3,2,4>: Cost 3 vext1 <2,3,3,2>, RHS
+ 2732968286U, // <3,3,2,5>: Cost 3 vext3 LHS, <3,2,5,4>
+ 2685634918U, // <3,3,2,6>: Cost 3 vext3 LHS, <3,2,6,3>
+ 2704140655U, // <3,3,2,7>: Cost 3 vext3 <3,2,7,3>, <3,2,7,3>
+ 1561004120U, // <3,3,2,u>: Cost 2 vext2 <2,u,3,3>, <2,u,3,3>
+ 1496547430U, // <3,3,3,0>: Cost 2 vext1 <3,3,3,3>, LHS
+ 2624129256U, // <3,3,3,1>: Cost 3 vext2 <1,1,3,3>, <3,1,1,3>
+ 2630764866U, // <3,3,3,2>: Cost 3 vext2 <2,2,3,3>, <3,2,2,3>
+ 336380006U, // <3,3,3,3>: Cost 1 vdup3 LHS
+ 1496550710U, // <3,3,3,4>: Cost 2 vext1 <3,3,3,3>, RHS
+ 2732968368U, // <3,3,3,5>: Cost 3 vext3 LHS, <3,3,5,5>
+ 2624129683U, // <3,3,3,6>: Cost 3 vext2 <1,1,3,3>, <3,6,3,7>
+ 2594182400U, // <3,3,3,7>: Cost 3 vext1 <7,3,3,3>, <7,3,3,3>
+ 336380006U, // <3,3,3,u>: Cost 1 vdup3 LHS
+ 2558353510U, // <3,3,4,0>: Cost 3 vext1 <1,3,3,4>, LHS
+ 2558354411U, // <3,3,4,1>: Cost 3 vext1 <1,3,3,4>, <1,3,3,4>
+ 2564327108U, // <3,3,4,2>: Cost 3 vext1 <2,3,3,4>, <2,3,3,4>
+ 2564327938U, // <3,3,4,3>: Cost 3 vext1 <2,3,3,4>, <3,4,5,6>
+ 2960343962U, // <3,3,4,4>: Cost 3 vzipr <1,2,3,4>, <1,2,3,4>
+ 1611893250U, // <3,3,4,5>: Cost 2 vext3 LHS, <3,4,5,6>
+ 2771619126U, // <3,3,4,6>: Cost 3 vuzpl <3,3,3,3>, RHS
+ 4034086032U, // <3,3,4,7>: Cost 4 vzipr <1,2,3,4>, <1,5,3,7>
+ 1611893277U, // <3,3,4,u>: Cost 2 vext3 LHS, <3,4,u,6>
+ 2558361702U, // <3,3,5,0>: Cost 3 vext1 <1,3,3,5>, LHS
+ 2558362604U, // <3,3,5,1>: Cost 3 vext1 <1,3,3,5>, <1,3,3,5>
+ 2558363342U, // <3,3,5,2>: Cost 3 vext1 <1,3,3,5>, <2,3,4,5>
+ 2732968512U, // <3,3,5,3>: Cost 3 vext3 LHS, <3,5,3,5>
+ 2558364982U, // <3,3,5,4>: Cost 3 vext1 <1,3,3,5>, RHS
+ 3101279950U, // <3,3,5,5>: Cost 3 vtrnr <2,3,4,5>, <2,3,4,5>
+ 2665934946U, // <3,3,5,6>: Cost 3 vext2 <u,1,3,3>, <5,6,7,0>
+ 2826636598U, // <3,3,5,7>: Cost 3 vuzpr <1,3,1,3>, RHS
+ 2826636599U, // <3,3,5,u>: Cost 3 vuzpr <1,3,1,3>, RHS
+ 2732968568U, // <3,3,6,0>: Cost 3 vext3 LHS, <3,6,0,7>
+ 3763579521U, // <3,3,6,1>: Cost 4 vext3 LHS, <3,6,1,7>
+ 2732968586U, // <3,3,6,2>: Cost 3 vext3 LHS, <3,6,2,7>
+ 2732968595U, // <3,3,6,3>: Cost 3 vext3 LHS, <3,6,3,7>
+ 2732968604U, // <3,3,6,4>: Cost 3 vext3 LHS, <3,6,4,7>
+ 3763579557U, // <3,3,6,5>: Cost 4 vext3 LHS, <3,6,5,7>
+ 2732968621U, // <3,3,6,6>: Cost 3 vext3 LHS, <3,6,6,6>
+ 2657973099U, // <3,3,6,7>: Cost 3 vext2 <6,7,3,3>, <6,7,3,3>
+ 2658636732U, // <3,3,6,u>: Cost 3 vext2 <6,u,3,3>, <6,u,3,3>
+ 2558378086U, // <3,3,7,0>: Cost 3 vext1 <1,3,3,7>, LHS
+ 2558378990U, // <3,3,7,1>: Cost 3 vext1 <1,3,3,7>, <1,3,3,7>
+ 2564351687U, // <3,3,7,2>: Cost 3 vext1 <2,3,3,7>, <2,3,3,7>
+ 2661291264U, // <3,3,7,3>: Cost 3 vext2 <7,3,3,3>, <7,3,3,3>
+ 2558381366U, // <3,3,7,4>: Cost 3 vext1 <1,3,3,7>, RHS
+ 2732968694U, // <3,3,7,5>: Cost 3 vext3 LHS, <3,7,5,7>
+ 3781126907U, // <3,3,7,6>: Cost 4 vext3 <3,7,6,3>, <3,7,6,3>
+ 3095397376U, // <3,3,7,7>: Cost 3 vtrnr <1,3,5,7>, <1,3,5,7>
+ 2558383918U, // <3,3,7,u>: Cost 3 vext1 <1,3,3,7>, LHS
+ 1496547430U, // <3,3,u,0>: Cost 2 vext1 <3,3,3,3>, LHS
+ 1611893534U, // <3,3,u,1>: Cost 2 vext3 LHS, <3,u,1,2>
+ 1592858504U, // <3,3,u,2>: Cost 2 vext2 <u,2,3,3>, <u,2,3,3>
+ 336380006U, // <3,3,u,3>: Cost 1 vdup3 LHS
+ 1496550710U, // <3,3,u,4>: Cost 2 vext1 <3,3,3,3>, RHS
+ 1611893574U, // <3,3,u,5>: Cost 2 vext3 LHS, <3,u,5,6>
+ 2690280268U, // <3,3,u,6>: Cost 3 vext3 LHS, <3,u,6,3>
+ 2826636841U, // <3,3,u,7>: Cost 3 vuzpr <1,3,1,3>, RHS
+ 336380006U, // <3,3,u,u>: Cost 1 vdup3 LHS
+ 2624798720U, // <3,4,0,0>: Cost 3 vext2 <1,2,3,4>, <0,0,0,0>
+ 1551056998U, // <3,4,0,1>: Cost 2 vext2 <1,2,3,4>, LHS
+ 2624798884U, // <3,4,0,2>: Cost 3 vext2 <1,2,3,4>, <0,2,0,2>
+ 3693232384U, // <3,4,0,3>: Cost 4 vext2 <0,3,3,4>, <0,3,1,4>
+ 2624799058U, // <3,4,0,4>: Cost 3 vext2 <1,2,3,4>, <0,4,1,5>
+ 1659227026U, // <3,4,0,5>: Cost 2 vext3 LHS, <4,0,5,1>
+ 1659227036U, // <3,4,0,6>: Cost 2 vext3 LHS, <4,0,6,2>
+ 3667973382U, // <3,4,0,7>: Cost 4 vext1 <7,3,4,0>, <7,3,4,0>
+ 1551057565U, // <3,4,0,u>: Cost 2 vext2 <1,2,3,4>, LHS
+ 2624799478U, // <3,4,1,0>: Cost 3 vext2 <1,2,3,4>, <1,0,3,2>
+ 2624799540U, // <3,4,1,1>: Cost 3 vext2 <1,2,3,4>, <1,1,1,1>
+ 1551057818U, // <3,4,1,2>: Cost 2 vext2 <1,2,3,4>, <1,2,3,4>
+ 2624799704U, // <3,4,1,3>: Cost 3 vext2 <1,2,3,4>, <1,3,1,3>
+ 2564377910U, // <3,4,1,4>: Cost 3 vext1 <2,3,4,1>, RHS
+ 2689838050U, // <3,4,1,5>: Cost 3 vext3 LHS, <4,1,5,0>
+ 2689838062U, // <3,4,1,6>: Cost 3 vext3 LHS, <4,1,6,3>
+ 2628117807U, // <3,4,1,7>: Cost 3 vext2 <1,7,3,4>, <1,7,3,4>
+ 1555039616U, // <3,4,1,u>: Cost 2 vext2 <1,u,3,4>, <1,u,3,4>
+ 3626180710U, // <3,4,2,0>: Cost 4 vext1 <0,3,4,2>, LHS
+ 2624800298U, // <3,4,2,1>: Cost 3 vext2 <1,2,3,4>, <2,1,4,3>
+ 2624800360U, // <3,4,2,2>: Cost 3 vext2 <1,2,3,4>, <2,2,2,2>
+ 2624800422U, // <3,4,2,3>: Cost 3 vext2 <1,2,3,4>, <2,3,0,1>
+ 2624800514U, // <3,4,2,4>: Cost 3 vext2 <1,2,3,4>, <2,4,1,3>
+ 2709965878U, // <3,4,2,5>: Cost 3 vext3 <4,2,5,3>, <4,2,5,3>
+ 2689838140U, // <3,4,2,6>: Cost 3 vext3 LHS, <4,2,6,0>
+ 2634090504U, // <3,4,2,7>: Cost 3 vext2 <2,7,3,4>, <2,7,3,4>
+ 2689838158U, // <3,4,2,u>: Cost 3 vext3 LHS, <4,2,u,0>
+ 2624800918U, // <3,4,3,0>: Cost 3 vext2 <1,2,3,4>, <3,0,1,2>
+ 2636081403U, // <3,4,3,1>: Cost 3 vext2 <3,1,3,4>, <3,1,3,4>
+ 2636745036U, // <3,4,3,2>: Cost 3 vext2 <3,2,3,4>, <3,2,3,4>
+ 2624801180U, // <3,4,3,3>: Cost 3 vext2 <1,2,3,4>, <3,3,3,3>
+ 2624801232U, // <3,4,3,4>: Cost 3 vext2 <1,2,3,4>, <3,4,0,1>
+ 2905836854U, // <3,4,3,5>: Cost 3 vzipl <3,3,3,3>, RHS
+ 3040054582U, // <3,4,3,6>: Cost 3 vtrnl <3,3,3,3>, RHS
+ 3702524611U, // <3,4,3,7>: Cost 4 vext2 <1,u,3,4>, <3,7,0,1>
+ 2624801566U, // <3,4,3,u>: Cost 3 vext2 <1,2,3,4>, <3,u,1,2>
+ 2564399206U, // <3,4,4,0>: Cost 3 vext1 <2,3,4,4>, LHS
+ 2564400026U, // <3,4,4,1>: Cost 3 vext1 <2,3,4,4>, <1,2,3,4>
+ 2564400845U, // <3,4,4,2>: Cost 3 vext1 <2,3,4,4>, <2,3,4,4>
+ 2570373542U, // <3,4,4,3>: Cost 3 vext1 <3,3,4,4>, <3,3,4,4>
+ 1659227344U, // <3,4,4,4>: Cost 2 vext3 LHS, <4,4,4,4>
+ 1551060278U, // <3,4,4,5>: Cost 2 vext2 <1,2,3,4>, RHS
+ 1659227364U, // <3,4,4,6>: Cost 2 vext3 LHS, <4,4,6,6>
+ 3668006154U, // <3,4,4,7>: Cost 4 vext1 <7,3,4,4>, <7,3,4,4>
+ 1551060521U, // <3,4,4,u>: Cost 2 vext2 <1,2,3,4>, RHS
+ 1490665574U, // <3,4,5,0>: Cost 2 vext1 <2,3,4,5>, LHS
+ 2689838341U, // <3,4,5,1>: Cost 3 vext3 LHS, <4,5,1,3>
+ 1490667214U, // <3,4,5,2>: Cost 2 vext1 <2,3,4,5>, <2,3,4,5>
+ 2564409494U, // <3,4,5,3>: Cost 3 vext1 <2,3,4,5>, <3,0,1,2>
+ 1490668854U, // <3,4,5,4>: Cost 2 vext1 <2,3,4,5>, RHS
+ 2689838381U, // <3,4,5,5>: Cost 3 vext3 LHS, <4,5,5,7>
+ 537709878U, // <3,4,5,6>: Cost 1 vext3 LHS, RHS
+ 2594272523U, // <3,4,5,7>: Cost 3 vext1 <7,3,4,5>, <7,3,4,5>
+ 537709896U, // <3,4,5,u>: Cost 1 vext3 LHS, RHS
+ 2689838411U, // <3,4,6,0>: Cost 3 vext3 LHS, <4,6,0,1>
+ 2558444534U, // <3,4,6,1>: Cost 3 vext1 <1,3,4,6>, <1,3,4,6>
+ 2666607098U, // <3,4,6,2>: Cost 3 vext2 <u,2,3,4>, <6,2,7,3>
+ 2558446082U, // <3,4,6,3>: Cost 3 vext1 <1,3,4,6>, <3,4,5,6>
+ 1659227508U, // <3,4,6,4>: Cost 2 vext3 LHS, <4,6,4,6>
+ 2689838462U, // <3,4,6,5>: Cost 3 vext3 LHS, <4,6,5,7>
+ 2689838471U, // <3,4,6,6>: Cost 3 vext3 LHS, <4,6,6,7>
+ 2657981292U, // <3,4,6,7>: Cost 3 vext2 <6,7,3,4>, <6,7,3,4>
+ 1659227540U, // <3,4,6,u>: Cost 2 vext3 LHS, <4,6,u,2>
+ 2666607610U, // <3,4,7,0>: Cost 3 vext2 <u,2,3,4>, <7,0,1,2>
+ 3702527072U, // <3,4,7,1>: Cost 4 vext2 <1,u,3,4>, <7,1,3,5>
+ 2660635824U, // <3,4,7,2>: Cost 3 vext2 <7,2,3,4>, <7,2,3,4>
+ 3644139945U, // <3,4,7,3>: Cost 4 vext1 <3,3,4,7>, <3,3,4,7>
+ 2666607974U, // <3,4,7,4>: Cost 3 vext2 <u,2,3,4>, <7,4,5,6>
+ 2732969416U, // <3,4,7,5>: Cost 3 vext3 LHS, <4,7,5,0>
+ 2732969425U, // <3,4,7,6>: Cost 3 vext3 LHS, <4,7,6,0>
+ 2666608236U, // <3,4,7,7>: Cost 3 vext2 <u,2,3,4>, <7,7,7,7>
+ 2664617622U, // <3,4,7,u>: Cost 3 vext2 <7,u,3,4>, <7,u,3,4>
+ 1490690150U, // <3,4,u,0>: Cost 2 vext1 <2,3,4,u>, LHS
+ 1551062830U, // <3,4,u,1>: Cost 2 vext2 <1,2,3,4>, LHS
+ 1490691793U, // <3,4,u,2>: Cost 2 vext1 <2,3,4,u>, <2,3,4,u>
+ 2624804796U, // <3,4,u,3>: Cost 3 vext2 <1,2,3,4>, <u,3,0,1>
+ 1490693430U, // <3,4,u,4>: Cost 2 vext1 <2,3,4,u>, RHS
+ 1551063194U, // <3,4,u,5>: Cost 2 vext2 <1,2,3,4>, RHS
+ 537710121U, // <3,4,u,6>: Cost 1 vext3 LHS, RHS
+ 2594297102U, // <3,4,u,7>: Cost 3 vext1 <7,3,4,u>, <7,3,4,u>
+ 537710139U, // <3,4,u,u>: Cost 1 vext3 LHS, RHS
+ 3692576768U, // <3,5,0,0>: Cost 4 vext2 <0,2,3,5>, <0,0,0,0>
+ 2618835046U, // <3,5,0,1>: Cost 3 vext2 <0,2,3,5>, LHS
+ 2618835138U, // <3,5,0,2>: Cost 3 vext2 <0,2,3,5>, <0,2,3,5>
+ 3692577024U, // <3,5,0,3>: Cost 4 vext2 <0,2,3,5>, <0,3,1,4>
+ 2689838690U, // <3,5,0,4>: Cost 3 vext3 LHS, <5,0,4,1>
+ 2732969579U, // <3,5,0,5>: Cost 3 vext3 LHS, <5,0,5,1>
+ 2732969588U, // <3,5,0,6>: Cost 3 vext3 LHS, <5,0,6,1>
+ 2246963055U, // <3,5,0,7>: Cost 3 vrev <5,3,7,0>
+ 2618835613U, // <3,5,0,u>: Cost 3 vext2 <0,2,3,5>, LHS
+ 2594308198U, // <3,5,1,0>: Cost 3 vext1 <7,3,5,1>, LHS
+ 3692577588U, // <3,5,1,1>: Cost 4 vext2 <0,2,3,5>, <1,1,1,1>
+ 2624807835U, // <3,5,1,2>: Cost 3 vext2 <1,2,3,5>, <1,2,3,5>
+ 2625471468U, // <3,5,1,3>: Cost 3 vext2 <1,3,3,5>, <1,3,3,5>
+ 2626135101U, // <3,5,1,4>: Cost 3 vext2 <1,4,3,5>, <1,4,3,5>
+ 2594311888U, // <3,5,1,5>: Cost 3 vext1 <7,3,5,1>, <5,1,7,3>
+ 3699877107U, // <3,5,1,6>: Cost 4 vext2 <1,4,3,5>, <1,6,5,7>
+ 1641680592U, // <3,5,1,7>: Cost 2 vext3 <5,1,7,3>, <5,1,7,3>
+ 1641754329U, // <3,5,1,u>: Cost 2 vext3 <5,1,u,3>, <5,1,u,3>
+ 3692578274U, // <3,5,2,0>: Cost 4 vext2 <0,2,3,5>, <2,0,5,3>
+ 2630116899U, // <3,5,2,1>: Cost 3 vext2 <2,1,3,5>, <2,1,3,5>
+ 3692578408U, // <3,5,2,2>: Cost 4 vext2 <0,2,3,5>, <2,2,2,2>
+ 2625472206U, // <3,5,2,3>: Cost 3 vext2 <1,3,3,5>, <2,3,4,5>
+ 2632107798U, // <3,5,2,4>: Cost 3 vext2 <2,4,3,5>, <2,4,3,5>
+ 2715938575U, // <3,5,2,5>: Cost 3 vext3 <5,2,5,3>, <5,2,5,3>
+ 3692578746U, // <3,5,2,6>: Cost 4 vext2 <0,2,3,5>, <2,6,3,7>
+ 2716086049U, // <3,5,2,7>: Cost 3 vext3 <5,2,7,3>, <5,2,7,3>
+ 2634762330U, // <3,5,2,u>: Cost 3 vext2 <2,u,3,5>, <2,u,3,5>
+ 3692578966U, // <3,5,3,0>: Cost 4 vext2 <0,2,3,5>, <3,0,1,2>
+ 2636089596U, // <3,5,3,1>: Cost 3 vext2 <3,1,3,5>, <3,1,3,5>
+ 3699214668U, // <3,5,3,2>: Cost 4 vext2 <1,3,3,5>, <3,2,3,4>
+ 2638080412U, // <3,5,3,3>: Cost 3 vext2 <3,4,3,5>, <3,3,3,3>
+ 2618837506U, // <3,5,3,4>: Cost 3 vext2 <0,2,3,5>, <3,4,5,6>
+ 2832844494U, // <3,5,3,5>: Cost 3 vuzpr <2,3,4,5>, <2,3,4,5>
+ 4033415682U, // <3,5,3,6>: Cost 4 vzipr <1,1,3,3>, <3,4,5,6>
+ 3095072054U, // <3,5,3,7>: Cost 3 vtrnr <1,3,1,3>, RHS
+ 3095072055U, // <3,5,3,u>: Cost 3 vtrnr <1,3,1,3>, RHS
+ 2600304742U, // <3,5,4,0>: Cost 3 vext1 <u,3,5,4>, LHS
+ 3763580815U, // <3,5,4,1>: Cost 4 vext3 LHS, <5,4,1,5>
+ 2564474582U, // <3,5,4,2>: Cost 3 vext1 <2,3,5,4>, <2,3,5,4>
+ 3699879044U, // <3,5,4,3>: Cost 4 vext2 <1,4,3,5>, <4,3,5,0>
+ 2600308022U, // <3,5,4,4>: Cost 3 vext1 <u,3,5,4>, RHS
+ 2618838326U, // <3,5,4,5>: Cost 3 vext2 <0,2,3,5>, RHS
+ 2772454710U, // <3,5,4,6>: Cost 3 vuzpl <3,4,5,6>, RHS
+ 1659228102U, // <3,5,4,7>: Cost 2 vext3 LHS, <5,4,7,6>
+ 1659228111U, // <3,5,4,u>: Cost 2 vext3 LHS, <5,4,u,6>
+ 2570453094U, // <3,5,5,0>: Cost 3 vext1 <3,3,5,5>, LHS
+ 2624810704U, // <3,5,5,1>: Cost 3 vext2 <1,2,3,5>, <5,1,7,3>
+ 2570454734U, // <3,5,5,2>: Cost 3 vext1 <3,3,5,5>, <2,3,4,5>
+ 2570455472U, // <3,5,5,3>: Cost 3 vext1 <3,3,5,5>, <3,3,5,5>
+ 2570456374U, // <3,5,5,4>: Cost 3 vext1 <3,3,5,5>, RHS
+ 1659228164U, // <3,5,5,5>: Cost 2 vext3 LHS, <5,5,5,5>
+ 2732969998U, // <3,5,5,6>: Cost 3 vext3 LHS, <5,5,6,6>
+ 1659228184U, // <3,5,5,7>: Cost 2 vext3 LHS, <5,5,7,7>
+ 1659228193U, // <3,5,5,u>: Cost 2 vext3 LHS, <5,5,u,7>
+ 2732970020U, // <3,5,6,0>: Cost 3 vext3 LHS, <5,6,0,1>
+ 2732970035U, // <3,5,6,1>: Cost 3 vext3 LHS, <5,6,1,7>
+ 2564490968U, // <3,5,6,2>: Cost 3 vext1 <2,3,5,6>, <2,3,5,6>
+ 2732970050U, // <3,5,6,3>: Cost 3 vext3 LHS, <5,6,3,4>
+ 2732970060U, // <3,5,6,4>: Cost 3 vext3 LHS, <5,6,4,5>
+ 2732970071U, // <3,5,6,5>: Cost 3 vext3 LHS, <5,6,5,7>
+ 2732970080U, // <3,5,6,6>: Cost 3 vext3 LHS, <5,6,6,7>
+ 1659228258U, // <3,5,6,7>: Cost 2 vext3 LHS, <5,6,7,0>
+ 1659228267U, // <3,5,6,u>: Cost 2 vext3 LHS, <5,6,u,0>
+ 1484783718U, // <3,5,7,0>: Cost 2 vext1 <1,3,5,7>, LHS
+ 1484784640U, // <3,5,7,1>: Cost 2 vext1 <1,3,5,7>, <1,3,5,7>
+ 2558527080U, // <3,5,7,2>: Cost 3 vext1 <1,3,5,7>, <2,2,2,2>
+ 2558527638U, // <3,5,7,3>: Cost 3 vext1 <1,3,5,7>, <3,0,1,2>
+ 1484786998U, // <3,5,7,4>: Cost 2 vext1 <1,3,5,7>, RHS
+ 1659228328U, // <3,5,7,5>: Cost 2 vext3 LHS, <5,7,5,7>
+ 2732970154U, // <3,5,7,6>: Cost 3 vext3 LHS, <5,7,6,0>
+ 2558531180U, // <3,5,7,7>: Cost 3 vext1 <1,3,5,7>, <7,7,7,7>
+ 1484789550U, // <3,5,7,u>: Cost 2 vext1 <1,3,5,7>, LHS
+ 1484791910U, // <3,5,u,0>: Cost 2 vext1 <1,3,5,u>, LHS
+ 1484792833U, // <3,5,u,1>: Cost 2 vext1 <1,3,5,u>, <1,3,5,u>
+ 2558535272U, // <3,5,u,2>: Cost 3 vext1 <1,3,5,u>, <2,2,2,2>
+ 2558535830U, // <3,5,u,3>: Cost 3 vext1 <1,3,5,u>, <3,0,1,2>
+ 1484795190U, // <3,5,u,4>: Cost 2 vext1 <1,3,5,u>, RHS
+ 1659228409U, // <3,5,u,5>: Cost 2 vext3 LHS, <5,u,5,7>
+ 2772457626U, // <3,5,u,6>: Cost 3 vuzpl <3,4,5,6>, RHS
+ 1646326023U, // <3,5,u,7>: Cost 2 vext3 <5,u,7,3>, <5,u,7,3>
+ 1484797742U, // <3,5,u,u>: Cost 2 vext1 <1,3,5,u>, LHS
+ 2558541926U, // <3,6,0,0>: Cost 3 vext1 <1,3,6,0>, LHS
+ 2689839393U, // <3,6,0,1>: Cost 3 vext3 LHS, <6,0,1,2>
+ 2689839404U, // <3,6,0,2>: Cost 3 vext3 LHS, <6,0,2,4>
+ 3706519808U, // <3,6,0,3>: Cost 4 vext2 <2,5,3,6>, <0,3,1,4>
+ 2689839420U, // <3,6,0,4>: Cost 3 vext3 LHS, <6,0,4,2>
+ 2732970314U, // <3,6,0,5>: Cost 3 vext3 LHS, <6,0,5,7>
+ 2732970316U, // <3,6,0,6>: Cost 3 vext3 LHS, <6,0,6,0>
+ 2960313654U, // <3,6,0,7>: Cost 3 vzipr <1,2,3,0>, RHS
+ 2689839456U, // <3,6,0,u>: Cost 3 vext3 LHS, <6,0,u,2>
+ 3763581290U, // <3,6,1,0>: Cost 4 vext3 LHS, <6,1,0,3>
+ 3763581297U, // <3,6,1,1>: Cost 4 vext3 LHS, <6,1,1,1>
+ 2624816028U, // <3,6,1,2>: Cost 3 vext2 <1,2,3,6>, <1,2,3,6>
+ 3763581315U, // <3,6,1,3>: Cost 4 vext3 LHS, <6,1,3,1>
+ 2626143294U, // <3,6,1,4>: Cost 3 vext2 <1,4,3,6>, <1,4,3,6>
+ 3763581335U, // <3,6,1,5>: Cost 4 vext3 LHS, <6,1,5,3>
+ 2721321376U, // <3,6,1,6>: Cost 3 vext3 <6,1,6,3>, <6,1,6,3>
+ 2721395113U, // <3,6,1,7>: Cost 3 vext3 <6,1,7,3>, <6,1,7,3>
+ 2628797826U, // <3,6,1,u>: Cost 3 vext2 <1,u,3,6>, <1,u,3,6>
+ 2594390118U, // <3,6,2,0>: Cost 3 vext1 <7,3,6,2>, LHS
+ 2721616324U, // <3,6,2,1>: Cost 3 vext3 <6,2,1,3>, <6,2,1,3>
+ 2630788725U, // <3,6,2,2>: Cost 3 vext2 <2,2,3,6>, <2,2,3,6>
+ 3763581395U, // <3,6,2,3>: Cost 4 vext3 LHS, <6,2,3,0>
+ 2632115991U, // <3,6,2,4>: Cost 3 vext2 <2,4,3,6>, <2,4,3,6>
+ 2632779624U, // <3,6,2,5>: Cost 3 vext2 <2,5,3,6>, <2,5,3,6>
+ 2594394618U, // <3,6,2,6>: Cost 3 vext1 <7,3,6,2>, <6,2,7,3>
+ 1648316922U, // <3,6,2,7>: Cost 2 vext3 <6,2,7,3>, <6,2,7,3>
+ 1648390659U, // <3,6,2,u>: Cost 2 vext3 <6,2,u,3>, <6,2,u,3>
+ 3693914262U, // <3,6,3,0>: Cost 4 vext2 <0,4,3,6>, <3,0,1,2>
+ 3638281176U, // <3,6,3,1>: Cost 4 vext1 <2,3,6,3>, <1,3,1,3>
+ 3696568678U, // <3,6,3,2>: Cost 4 vext2 <0,u,3,6>, <3,2,6,3>
+ 2638088604U, // <3,6,3,3>: Cost 3 vext2 <3,4,3,6>, <3,3,3,3>
+ 2632780290U, // <3,6,3,4>: Cost 3 vext2 <2,5,3,6>, <3,4,5,6>
+ 3712494145U, // <3,6,3,5>: Cost 4 vext2 <3,5,3,6>, <3,5,3,6>
+ 3698559612U, // <3,6,3,6>: Cost 4 vext2 <1,2,3,6>, <3,6,1,2>
+ 2959674678U, // <3,6,3,7>: Cost 3 vzipr <1,1,3,3>, RHS
+ 2959674679U, // <3,6,3,u>: Cost 3 vzipr <1,1,3,3>, RHS
+ 3763581536U, // <3,6,4,0>: Cost 4 vext3 LHS, <6,4,0,6>
+ 2722943590U, // <3,6,4,1>: Cost 3 vext3 <6,4,1,3>, <6,4,1,3>
+ 2732970609U, // <3,6,4,2>: Cost 3 vext3 LHS, <6,4,2,5>
+ 3698560147U, // <3,6,4,3>: Cost 4 vext2 <1,2,3,6>, <4,3,6,6>
+ 2732970628U, // <3,6,4,4>: Cost 3 vext3 LHS, <6,4,4,6>
+ 2689839757U, // <3,6,4,5>: Cost 3 vext3 LHS, <6,4,5,6>
+ 2732970640U, // <3,6,4,6>: Cost 3 vext3 LHS, <6,4,6,0>
+ 2960346422U, // <3,6,4,7>: Cost 3 vzipr <1,2,3,4>, RHS
+ 2689839784U, // <3,6,4,u>: Cost 3 vext3 LHS, <6,4,u,6>
+ 2576498790U, // <3,6,5,0>: Cost 3 vext1 <4,3,6,5>, LHS
+ 3650241270U, // <3,6,5,1>: Cost 4 vext1 <4,3,6,5>, <1,0,3,2>
+ 2732970692U, // <3,6,5,2>: Cost 3 vext3 LHS, <6,5,2,7>
+ 2576501250U, // <3,6,5,3>: Cost 3 vext1 <4,3,6,5>, <3,4,5,6>
+ 2576501906U, // <3,6,5,4>: Cost 3 vext1 <4,3,6,5>, <4,3,6,5>
+ 3650244622U, // <3,6,5,5>: Cost 4 vext1 <4,3,6,5>, <5,5,6,6>
+ 4114633528U, // <3,6,5,6>: Cost 4 vtrnl <3,4,5,6>, <6,6,6,6>
+ 2732970735U, // <3,6,5,7>: Cost 3 vext3 LHS, <6,5,7,5>
+ 2576504622U, // <3,6,5,u>: Cost 3 vext1 <4,3,6,5>, LHS
+ 2732970749U, // <3,6,6,0>: Cost 3 vext3 LHS, <6,6,0,1>
+ 2724270856U, // <3,6,6,1>: Cost 3 vext3 <6,6,1,3>, <6,6,1,3>
+ 2624819706U, // <3,6,6,2>: Cost 3 vext2 <1,2,3,6>, <6,2,7,3>
+ 3656223234U, // <3,6,6,3>: Cost 4 vext1 <5,3,6,6>, <3,4,5,6>
+ 2732970788U, // <3,6,6,4>: Cost 3 vext3 LHS, <6,6,4,4>
+ 2732970800U, // <3,6,6,5>: Cost 3 vext3 LHS, <6,6,5,7>
+ 1659228984U, // <3,6,6,6>: Cost 2 vext3 LHS, <6,6,6,6>
+ 1659228994U, // <3,6,6,7>: Cost 2 vext3 LHS, <6,6,7,7>
+ 1659229003U, // <3,6,6,u>: Cost 2 vext3 LHS, <6,6,u,7>
+ 1659229006U, // <3,6,7,0>: Cost 2 vext3 LHS, <6,7,0,1>
+ 2558600201U, // <3,6,7,1>: Cost 3 vext1 <1,3,6,7>, <1,3,6,7>
+ 2558601146U, // <3,6,7,2>: Cost 3 vext1 <1,3,6,7>, <2,6,3,7>
+ 2725081963U, // <3,6,7,3>: Cost 3 vext3 <6,7,3,3>, <6,7,3,3>
+ 1659229046U, // <3,6,7,4>: Cost 2 vext3 LHS, <6,7,4,5>
+ 2715423611U, // <3,6,7,5>: Cost 3 vext3 <5,1,7,3>, <6,7,5,1>
+ 2722059141U, // <3,6,7,6>: Cost 3 vext3 <6,2,7,3>, <6,7,6,2>
+ 2962361654U, // <3,6,7,7>: Cost 3 vzipr <1,5,3,7>, RHS
+ 1659229078U, // <3,6,7,u>: Cost 2 vext3 LHS, <6,7,u,1>
+ 1659229087U, // <3,6,u,0>: Cost 2 vext3 LHS, <6,u,0,1>
+ 2689840041U, // <3,6,u,1>: Cost 3 vext3 LHS, <6,u,1,2>
+ 2558609339U, // <3,6,u,2>: Cost 3 vext1 <1,3,6,u>, <2,6,3,u>
+ 2576525853U, // <3,6,u,3>: Cost 3 vext1 <4,3,6,u>, <3,4,u,6>
+ 1659229127U, // <3,6,u,4>: Cost 2 vext3 LHS, <6,u,4,5>
+ 2689840081U, // <3,6,u,5>: Cost 3 vext3 LHS, <6,u,5,6>
+ 1659228984U, // <3,6,u,6>: Cost 2 vext3 LHS, <6,6,6,6>
+ 1652298720U, // <3,6,u,7>: Cost 2 vext3 <6,u,7,3>, <6,u,7,3>
+ 1659229159U, // <3,6,u,u>: Cost 2 vext3 LHS, <6,u,u,1>
+ 2626813952U, // <3,7,0,0>: Cost 3 vext2 <1,5,3,7>, <0,0,0,0>
+ 1553072230U, // <3,7,0,1>: Cost 2 vext2 <1,5,3,7>, LHS
+ 2626814116U, // <3,7,0,2>: Cost 3 vext2 <1,5,3,7>, <0,2,0,2>
+ 3700556028U, // <3,7,0,3>: Cost 4 vext2 <1,5,3,7>, <0,3,1,0>
+ 2626814290U, // <3,7,0,4>: Cost 3 vext2 <1,5,3,7>, <0,4,1,5>
+ 2582507375U, // <3,7,0,5>: Cost 3 vext1 <5,3,7,0>, <5,3,7,0>
+ 2588480072U, // <3,7,0,6>: Cost 3 vext1 <6,3,7,0>, <6,3,7,0>
+ 2732971055U, // <3,7,0,7>: Cost 3 vext3 LHS, <7,0,7,1>
+ 1553072797U, // <3,7,0,u>: Cost 2 vext2 <1,5,3,7>, LHS
+ 2626814710U, // <3,7,1,0>: Cost 3 vext2 <1,5,3,7>, <1,0,3,2>
+ 2626814772U, // <3,7,1,1>: Cost 3 vext2 <1,5,3,7>, <1,1,1,1>
+ 2626814870U, // <3,7,1,2>: Cost 3 vext2 <1,5,3,7>, <1,2,3,0>
+ 2625487854U, // <3,7,1,3>: Cost 3 vext2 <1,3,3,7>, <1,3,3,7>
+ 2582514998U, // <3,7,1,4>: Cost 3 vext1 <5,3,7,1>, RHS
+ 1553073296U, // <3,7,1,5>: Cost 2 vext2 <1,5,3,7>, <1,5,3,7>
+ 2627478753U, // <3,7,1,6>: Cost 3 vext2 <1,6,3,7>, <1,6,3,7>
+ 2727367810U, // <3,7,1,7>: Cost 3 vext3 <7,1,7,3>, <7,1,7,3>
+ 1555064195U, // <3,7,1,u>: Cost 2 vext2 <1,u,3,7>, <1,u,3,7>
+ 2588491878U, // <3,7,2,0>: Cost 3 vext1 <6,3,7,2>, LHS
+ 3700557318U, // <3,7,2,1>: Cost 4 vext2 <1,5,3,7>, <2,1,0,3>
+ 2626815592U, // <3,7,2,2>: Cost 3 vext2 <1,5,3,7>, <2,2,2,2>
+ 2626815654U, // <3,7,2,3>: Cost 3 vext2 <1,5,3,7>, <2,3,0,1>
+ 2588495158U, // <3,7,2,4>: Cost 3 vext1 <6,3,7,2>, RHS
+ 2632787817U, // <3,7,2,5>: Cost 3 vext2 <2,5,3,7>, <2,5,3,7>
+ 1559709626U, // <3,7,2,6>: Cost 2 vext2 <2,6,3,7>, <2,6,3,7>
+ 2728031443U, // <3,7,2,7>: Cost 3 vext3 <7,2,7,3>, <7,2,7,3>
+ 1561036892U, // <3,7,2,u>: Cost 2 vext2 <2,u,3,7>, <2,u,3,7>
+ 2626816150U, // <3,7,3,0>: Cost 3 vext2 <1,5,3,7>, <3,0,1,2>
+ 2626816268U, // <3,7,3,1>: Cost 3 vext2 <1,5,3,7>, <3,1,5,3>
+ 2633451878U, // <3,7,3,2>: Cost 3 vext2 <2,6,3,7>, <3,2,6,3>
+ 2626816412U, // <3,7,3,3>: Cost 3 vext2 <1,5,3,7>, <3,3,3,3>
+ 2626816514U, // <3,7,3,4>: Cost 3 vext2 <1,5,3,7>, <3,4,5,6>
+ 2638760514U, // <3,7,3,5>: Cost 3 vext2 <3,5,3,7>, <3,5,3,7>
+ 2639424147U, // <3,7,3,6>: Cost 3 vext2 <3,6,3,7>, <3,6,3,7>
+ 2826961920U, // <3,7,3,7>: Cost 3 vuzpr <1,3,5,7>, <1,3,5,7>
+ 2626816798U, // <3,7,3,u>: Cost 3 vext2 <1,5,3,7>, <3,u,1,2>
+ 2582536294U, // <3,7,4,0>: Cost 3 vext1 <5,3,7,4>, LHS
+ 2582537360U, // <3,7,4,1>: Cost 3 vext1 <5,3,7,4>, <1,5,3,7>
+ 2588510138U, // <3,7,4,2>: Cost 3 vext1 <6,3,7,4>, <2,6,3,7>
+ 3700558996U, // <3,7,4,3>: Cost 4 vext2 <1,5,3,7>, <4,3,6,7>
+ 2582539574U, // <3,7,4,4>: Cost 3 vext1 <5,3,7,4>, RHS
+ 1553075510U, // <3,7,4,5>: Cost 2 vext2 <1,5,3,7>, RHS
+ 2588512844U, // <3,7,4,6>: Cost 3 vext1 <6,3,7,4>, <6,3,7,4>
+ 2564625766U, // <3,7,4,7>: Cost 3 vext1 <2,3,7,4>, <7,4,5,6>
+ 1553075753U, // <3,7,4,u>: Cost 2 vext2 <1,5,3,7>, RHS
+ 2732971398U, // <3,7,5,0>: Cost 3 vext3 LHS, <7,5,0,2>
+ 2626817744U, // <3,7,5,1>: Cost 3 vext2 <1,5,3,7>, <5,1,7,3>
+ 3700559649U, // <3,7,5,2>: Cost 4 vext2 <1,5,3,7>, <5,2,7,3>
+ 2626817903U, // <3,7,5,3>: Cost 3 vext2 <1,5,3,7>, <5,3,7,0>
+ 2258728203U, // <3,7,5,4>: Cost 3 vrev <7,3,4,5>
+ 2732971446U, // <3,7,5,5>: Cost 3 vext3 LHS, <7,5,5,5>
+ 2732971457U, // <3,7,5,6>: Cost 3 vext3 LHS, <7,5,6,7>
+ 2826964278U, // <3,7,5,7>: Cost 3 vuzpr <1,3,5,7>, RHS
+ 2826964279U, // <3,7,5,u>: Cost 3 vuzpr <1,3,5,7>, RHS
+ 2732971478U, // <3,7,6,0>: Cost 3 vext3 LHS, <7,6,0,1>
+ 2732971486U, // <3,7,6,1>: Cost 3 vext3 LHS, <7,6,1,0>
+ 2633454074U, // <3,7,6,2>: Cost 3 vext2 <2,6,3,7>, <6,2,7,3>
+ 2633454152U, // <3,7,6,3>: Cost 3 vext2 <2,6,3,7>, <6,3,7,0>
+ 2732971518U, // <3,7,6,4>: Cost 3 vext3 LHS, <7,6,4,5>
+ 2732971526U, // <3,7,6,5>: Cost 3 vext3 LHS, <7,6,5,4>
+ 2732971537U, // <3,7,6,6>: Cost 3 vext3 LHS, <7,6,6,6>
+ 2732971540U, // <3,7,6,7>: Cost 3 vext3 LHS, <7,6,7,0>
+ 2726041124U, // <3,7,6,u>: Cost 3 vext3 <6,u,7,3>, <7,6,u,7>
+ 2570616934U, // <3,7,7,0>: Cost 3 vext1 <3,3,7,7>, LHS
+ 2570617856U, // <3,7,7,1>: Cost 3 vext1 <3,3,7,7>, <1,3,5,7>
+ 2564646635U, // <3,7,7,2>: Cost 3 vext1 <2,3,7,7>, <2,3,7,7>
+ 2570619332U, // <3,7,7,3>: Cost 3 vext1 <3,3,7,7>, <3,3,7,7>
+ 2570620214U, // <3,7,7,4>: Cost 3 vext1 <3,3,7,7>, RHS
+ 2582564726U, // <3,7,7,5>: Cost 3 vext1 <5,3,7,7>, <5,3,7,7>
+ 2588537423U, // <3,7,7,6>: Cost 3 vext1 <6,3,7,7>, <6,3,7,7>
+ 1659229804U, // <3,7,7,7>: Cost 2 vext3 LHS, <7,7,7,7>
+ 1659229804U, // <3,7,7,u>: Cost 2 vext3 LHS, <7,7,7,7>
+ 2626819795U, // <3,7,u,0>: Cost 3 vext2 <1,5,3,7>, <u,0,1,2>
+ 1553078062U, // <3,7,u,1>: Cost 2 vext2 <1,5,3,7>, LHS
+ 2626819973U, // <3,7,u,2>: Cost 3 vext2 <1,5,3,7>, <u,2,3,0>
+ 2826961565U, // <3,7,u,3>: Cost 3 vuzpr <1,3,5,7>, LHS
+ 2626820159U, // <3,7,u,4>: Cost 3 vext2 <1,5,3,7>, <u,4,5,6>
+ 1553078426U, // <3,7,u,5>: Cost 2 vext2 <1,5,3,7>, RHS
+ 1595545808U, // <3,7,u,6>: Cost 2 vext2 <u,6,3,7>, <u,6,3,7>
+ 1659229804U, // <3,7,u,7>: Cost 2 vext3 LHS, <7,7,7,7>
+ 1553078629U, // <3,7,u,u>: Cost 2 vext2 <1,5,3,7>, LHS
+ 1611448320U, // <3,u,0,0>: Cost 2 vext3 LHS, <0,0,0,0>
+ 1611896531U, // <3,u,0,1>: Cost 2 vext3 LHS, <u,0,1,2>
+ 1659672284U, // <3,u,0,2>: Cost 2 vext3 LHS, <u,0,2,2>
+ 1616099045U, // <3,u,0,3>: Cost 2 vext3 LHS, <u,0,3,2>
+ 2685638381U, // <3,u,0,4>: Cost 3 vext3 LHS, <u,0,4,1>
+ 1663874806U, // <3,u,0,5>: Cost 2 vext3 LHS, <u,0,5,1>
+ 1663874816U, // <3,u,0,6>: Cost 2 vext3 LHS, <u,0,6,2>
+ 2960313672U, // <3,u,0,7>: Cost 3 vzipr <1,2,3,0>, RHS
+ 1611896594U, // <3,u,0,u>: Cost 2 vext3 LHS, <u,0,u,2>
+ 1549763324U, // <3,u,1,0>: Cost 2 vext2 <1,0,3,u>, <1,0,3,u>
+ 1550426957U, // <3,u,1,1>: Cost 2 vext2 <1,1,3,u>, <1,1,3,u>
+ 537712430U, // <3,u,1,2>: Cost 1 vext3 LHS, LHS
+ 1616541495U, // <3,u,1,3>: Cost 2 vext3 LHS, <u,1,3,3>
+ 1490930998U, // <3,u,1,4>: Cost 2 vext1 <2,3,u,1>, RHS
+ 1553081489U, // <3,u,1,5>: Cost 2 vext2 <1,5,3,u>, <1,5,3,u>
+ 2627486946U, // <3,u,1,6>: Cost 3 vext2 <1,6,3,u>, <1,6,3,u>
+ 1659230043U, // <3,u,1,7>: Cost 2 vext3 LHS, <u,1,7,3>
+ 537712484U, // <3,u,1,u>: Cost 1 vext3 LHS, LHS
+ 1611890852U, // <3,u,2,0>: Cost 2 vext3 LHS, <0,2,0,2>
+ 2624833102U, // <3,u,2,1>: Cost 3 vext2 <1,2,3,u>, <2,1,u,3>
+ 1557063287U, // <3,u,2,2>: Cost 2 vext2 <2,2,3,u>, <2,2,3,u>
+ 1616099205U, // <3,u,2,3>: Cost 2 vext3 LHS, <u,2,3,0>
+ 1611890892U, // <3,u,2,4>: Cost 2 vext3 LHS, <0,2,4,6>
+ 2689841054U, // <3,u,2,5>: Cost 3 vext3 LHS, <u,2,5,7>
+ 1559717819U, // <3,u,2,6>: Cost 2 vext2 <2,6,3,u>, <2,6,3,u>
+ 1659230124U, // <3,u,2,7>: Cost 2 vext3 LHS, <u,2,7,3>
+ 1616541618U, // <3,u,2,u>: Cost 2 vext3 LHS, <u,2,u,0>
+ 1611896764U, // <3,u,3,0>: Cost 2 vext3 LHS, <u,3,0,1>
+ 1484973079U, // <3,u,3,1>: Cost 2 vext1 <1,3,u,3>, <1,3,u,3>
+ 2685638607U, // <3,u,3,2>: Cost 3 vext3 LHS, <u,3,2,2>
+ 336380006U, // <3,u,3,3>: Cost 1 vdup3 LHS
+ 1611896804U, // <3,u,3,4>: Cost 2 vext3 LHS, <u,3,4,5>
+ 1616541679U, // <3,u,3,5>: Cost 2 vext3 LHS, <u,3,5,7>
+ 2690283512U, // <3,u,3,6>: Cost 3 vext3 LHS, <u,3,6,7>
+ 2959674696U, // <3,u,3,7>: Cost 3 vzipr <1,1,3,3>, RHS
+ 336380006U, // <3,u,3,u>: Cost 1 vdup3 LHS
+ 2558722150U, // <3,u,4,0>: Cost 3 vext1 <1,3,u,4>, LHS
+ 1659672602U, // <3,u,4,1>: Cost 2 vext3 LHS, <u,4,1,5>
+ 1659672612U, // <3,u,4,2>: Cost 2 vext3 LHS, <u,4,2,6>
+ 2689841196U, // <3,u,4,3>: Cost 3 vext3 LHS, <u,4,3,5>
+ 1659227344U, // <3,u,4,4>: Cost 2 vext3 LHS, <4,4,4,4>
+ 1611896895U, // <3,u,4,5>: Cost 2 vext3 LHS, <u,4,5,6>
+ 1663875144U, // <3,u,4,6>: Cost 2 vext3 LHS, <u,4,6,6>
+ 1659230289U, // <3,u,4,7>: Cost 2 vext3 LHS, <u,4,7,6>
+ 1611896922U, // <3,u,4,u>: Cost 2 vext3 LHS, <u,4,u,6>
+ 1490960486U, // <3,u,5,0>: Cost 2 vext1 <2,3,u,5>, LHS
+ 2689841261U, // <3,u,5,1>: Cost 3 vext3 LHS, <u,5,1,7>
+ 1490962162U, // <3,u,5,2>: Cost 2 vext1 <2,3,u,5>, <2,3,u,5>
+ 1616541823U, // <3,u,5,3>: Cost 2 vext3 LHS, <u,5,3,7>
+ 1490963766U, // <3,u,5,4>: Cost 2 vext1 <2,3,u,5>, RHS
+ 1659228164U, // <3,u,5,5>: Cost 2 vext3 LHS, <5,5,5,5>
+ 537712794U, // <3,u,5,6>: Cost 1 vext3 LHS, RHS
+ 1659230371U, // <3,u,5,7>: Cost 2 vext3 LHS, <u,5,7,7>
+ 537712812U, // <3,u,5,u>: Cost 1 vext3 LHS, RHS
+ 2689841327U, // <3,u,6,0>: Cost 3 vext3 LHS, <u,6,0,1>
+ 2558739482U, // <3,u,6,1>: Cost 3 vext1 <1,3,u,6>, <1,3,u,6>
+ 2689841351U, // <3,u,6,2>: Cost 3 vext3 LHS, <u,6,2,7>
+ 1616099536U, // <3,u,6,3>: Cost 2 vext3 LHS, <u,6,3,7>
+ 1659227508U, // <3,u,6,4>: Cost 2 vext3 LHS, <4,6,4,6>
+ 2690283746U, // <3,u,6,5>: Cost 3 vext3 LHS, <u,6,5,7>
+ 1659228984U, // <3,u,6,6>: Cost 2 vext3 LHS, <6,6,6,6>
+ 1659230445U, // <3,u,6,7>: Cost 2 vext3 LHS, <u,6,7,0>
+ 1616099581U, // <3,u,6,u>: Cost 2 vext3 LHS, <u,6,u,7>
+ 1485004902U, // <3,u,7,0>: Cost 2 vext1 <1,3,u,7>, LHS
+ 1485005851U, // <3,u,7,1>: Cost 2 vext1 <1,3,u,7>, <1,3,u,7>
+ 2558748264U, // <3,u,7,2>: Cost 3 vext1 <1,3,u,7>, <2,2,2,2>
+ 3095397021U, // <3,u,7,3>: Cost 3 vtrnr <1,3,5,7>, LHS
+ 1485008182U, // <3,u,7,4>: Cost 2 vext1 <1,3,u,7>, RHS
+ 1659228328U, // <3,u,7,5>: Cost 2 vext3 LHS, <5,7,5,7>
+ 2722060599U, // <3,u,7,6>: Cost 3 vext3 <6,2,7,3>, <u,7,6,2>
+ 1659229804U, // <3,u,7,7>: Cost 2 vext3 LHS, <7,7,7,7>
+ 1485010734U, // <3,u,7,u>: Cost 2 vext1 <1,3,u,7>, LHS
+ 1616099665U, // <3,u,u,0>: Cost 2 vext3 LHS, <u,u,0,1>
+ 1611897179U, // <3,u,u,1>: Cost 2 vext3 LHS, <u,u,1,2>
+ 537712997U, // <3,u,u,2>: Cost 1 vext3 LHS, LHS
+ 336380006U, // <3,u,u,3>: Cost 1 vdup3 LHS
+ 1616099705U, // <3,u,u,4>: Cost 2 vext3 LHS, <u,u,4,5>
+ 1611897219U, // <3,u,u,5>: Cost 2 vext3 LHS, <u,u,5,6>
+ 537713037U, // <3,u,u,6>: Cost 1 vext3 LHS, RHS
+ 1659230607U, // <3,u,u,7>: Cost 2 vext3 LHS, <u,u,7,0>
+ 537713051U, // <3,u,u,u>: Cost 1 vext3 LHS, LHS
+ 2691907584U, // <4,0,0,0>: Cost 3 vext3 <1,2,3,4>, <0,0,0,0>
+ 2691907594U, // <4,0,0,1>: Cost 3 vext3 <1,2,3,4>, <0,0,1,1>
+ 2691907604U, // <4,0,0,2>: Cost 3 vext3 <1,2,3,4>, <0,0,2,2>
+ 3709862144U, // <4,0,0,3>: Cost 4 vext2 <3,1,4,0>, <0,3,1,4>
+ 2684682280U, // <4,0,0,4>: Cost 3 vext3 <0,0,4,4>, <0,0,4,4>
+ 3694600633U, // <4,0,0,5>: Cost 4 vext2 <0,5,4,0>, <0,5,4,0>
+ 3291431290U, // <4,0,0,6>: Cost 4 vrev <0,4,6,0>
+ 3668342067U, // <4,0,0,7>: Cost 4 vext1 <7,4,0,0>, <7,4,0,0>
+ 2691907657U, // <4,0,0,u>: Cost 3 vext3 <1,2,3,4>, <0,0,u,1>
+ 2570715238U, // <4,0,1,0>: Cost 3 vext1 <3,4,0,1>, LHS
+ 2570716058U, // <4,0,1,1>: Cost 3 vext1 <3,4,0,1>, <1,2,3,4>
+ 1618165862U, // <4,0,1,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2570717648U, // <4,0,1,3>: Cost 3 vext1 <3,4,0,1>, <3,4,0,1>
+ 2570718518U, // <4,0,1,4>: Cost 3 vext1 <3,4,0,1>, RHS
+ 2594607206U, // <4,0,1,5>: Cost 3 vext1 <7,4,0,1>, <5,6,7,4>
+ 3662377563U, // <4,0,1,6>: Cost 4 vext1 <6,4,0,1>, <6,4,0,1>
+ 2594608436U, // <4,0,1,7>: Cost 3 vext1 <7,4,0,1>, <7,4,0,1>
+ 1618165916U, // <4,0,1,u>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2685714598U, // <4,0,2,0>: Cost 3 vext3 <0,2,0,4>, <0,2,0,4>
+ 3759530159U, // <4,0,2,1>: Cost 4 vext3 <0,2,1,4>, <0,2,1,4>
+ 2685862072U, // <4,0,2,2>: Cost 3 vext3 <0,2,2,4>, <0,2,2,4>
+ 2631476937U, // <4,0,2,3>: Cost 3 vext2 <2,3,4,0>, <2,3,4,0>
+ 2685714636U, // <4,0,2,4>: Cost 3 vext3 <0,2,0,4>, <0,2,4,6>
+ 3765649622U, // <4,0,2,5>: Cost 4 vext3 <1,2,3,4>, <0,2,5,7>
+ 2686157020U, // <4,0,2,6>: Cost 3 vext3 <0,2,6,4>, <0,2,6,4>
+ 3668358453U, // <4,0,2,7>: Cost 4 vext1 <7,4,0,2>, <7,4,0,2>
+ 2686304494U, // <4,0,2,u>: Cost 3 vext3 <0,2,u,4>, <0,2,u,4>
+ 3632529510U, // <4,0,3,0>: Cost 4 vext1 <1,4,0,3>, LHS
+ 2686451968U, // <4,0,3,1>: Cost 3 vext3 <0,3,1,4>, <0,3,1,4>
+ 2686525705U, // <4,0,3,2>: Cost 3 vext3 <0,3,2,4>, <0,3,2,4>
+ 3760341266U, // <4,0,3,3>: Cost 4 vext3 <0,3,3,4>, <0,3,3,4>
+ 3632532790U, // <4,0,3,4>: Cost 4 vext1 <1,4,0,3>, RHS
+ 3913254606U, // <4,0,3,5>: Cost 4 vuzpr <3,4,5,0>, <2,3,4,5>
+ 3705219740U, // <4,0,3,6>: Cost 4 vext2 <2,3,4,0>, <3,6,4,7>
+ 3713845990U, // <4,0,3,7>: Cost 4 vext2 <3,7,4,0>, <3,7,4,0>
+ 2686451968U, // <4,0,3,u>: Cost 3 vext3 <0,3,1,4>, <0,3,1,4>
+ 2552823910U, // <4,0,4,0>: Cost 3 vext1 <0,4,0,4>, LHS
+ 2691907922U, // <4,0,4,1>: Cost 3 vext3 <1,2,3,4>, <0,4,1,5>
+ 2691907932U, // <4,0,4,2>: Cost 3 vext3 <1,2,3,4>, <0,4,2,6>
+ 3626567830U, // <4,0,4,3>: Cost 4 vext1 <0,4,0,4>, <3,0,1,2>
+ 2552827190U, // <4,0,4,4>: Cost 3 vext1 <0,4,0,4>, RHS
+ 2631478582U, // <4,0,4,5>: Cost 3 vext2 <2,3,4,0>, RHS
+ 3626570017U, // <4,0,4,6>: Cost 4 vext1 <0,4,0,4>, <6,0,1,2>
+ 3668374839U, // <4,0,4,7>: Cost 4 vext1 <7,4,0,4>, <7,4,0,4>
+ 2552829742U, // <4,0,4,u>: Cost 3 vext1 <0,4,0,4>, LHS
+ 2558804070U, // <4,0,5,0>: Cost 3 vext1 <1,4,0,5>, LHS
+ 1839644774U, // <4,0,5,1>: Cost 2 vzipl RHS, LHS
+ 2913386660U, // <4,0,5,2>: Cost 3 vzipl RHS, <0,2,0,2>
+ 2570750420U, // <4,0,5,3>: Cost 3 vext1 <3,4,0,5>, <3,4,0,5>
+ 2558807350U, // <4,0,5,4>: Cost 3 vext1 <1,4,0,5>, RHS
+ 3987128750U, // <4,0,5,5>: Cost 4 vzipl RHS, <0,5,2,7>
+ 3987128822U, // <4,0,5,6>: Cost 4 vzipl RHS, <0,6,1,7>
+ 2594641208U, // <4,0,5,7>: Cost 3 vext1 <7,4,0,5>, <7,4,0,5>
+ 1839645341U, // <4,0,5,u>: Cost 2 vzipl RHS, LHS
+ 2552840294U, // <4,0,6,0>: Cost 3 vext1 <0,4,0,6>, LHS
+ 3047604234U, // <4,0,6,1>: Cost 3 vtrnl RHS, <0,0,1,1>
+ 1973862502U, // <4,0,6,2>: Cost 2 vtrnl RHS, LHS
+ 2570758613U, // <4,0,6,3>: Cost 3 vext1 <3,4,0,6>, <3,4,0,6>
+ 2552843574U, // <4,0,6,4>: Cost 3 vext1 <0,4,0,6>, RHS
+ 2217664887U, // <4,0,6,5>: Cost 3 vrev <0,4,5,6>
+ 3662418528U, // <4,0,6,6>: Cost 4 vext1 <6,4,0,6>, <6,4,0,6>
+ 2658022257U, // <4,0,6,7>: Cost 3 vext2 <6,7,4,0>, <6,7,4,0>
+ 1973862556U, // <4,0,6,u>: Cost 2 vtrnl RHS, LHS
+ 3731764218U, // <4,0,7,0>: Cost 4 vext2 <6,7,4,0>, <7,0,1,2>
+ 3988324454U, // <4,0,7,1>: Cost 4 vzipl <4,7,5,0>, LHS
+ 4122034278U, // <4,0,7,2>: Cost 4 vtrnl <4,6,7,1>, LHS
+ 3735082246U, // <4,0,7,3>: Cost 4 vext2 <7,3,4,0>, <7,3,4,0>
+ 3731764536U, // <4,0,7,4>: Cost 4 vext2 <6,7,4,0>, <7,4,0,5>
+ 3937145718U, // <4,0,7,5>: Cost 4 vuzpr <7,4,5,0>, <6,7,4,5>
+ 3737073145U, // <4,0,7,6>: Cost 4 vext2 <7,6,4,0>, <7,6,4,0>
+ 3731764844U, // <4,0,7,7>: Cost 4 vext2 <6,7,4,0>, <7,7,7,7>
+ 4122034332U, // <4,0,7,u>: Cost 4 vtrnl <4,6,7,1>, LHS
+ 2552856678U, // <4,0,u,0>: Cost 3 vext1 <0,4,0,u>, LHS
+ 1841635430U, // <4,0,u,1>: Cost 2 vzipl RHS, LHS
+ 1618166429U, // <4,0,u,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2570774999U, // <4,0,u,3>: Cost 3 vext1 <3,4,0,u>, <3,4,0,u>
+ 2552859958U, // <4,0,u,4>: Cost 3 vext1 <0,4,0,u>, RHS
+ 2631481498U, // <4,0,u,5>: Cost 3 vext2 <2,3,4,0>, RHS
+ 2686157020U, // <4,0,u,6>: Cost 3 vext3 <0,2,6,4>, <0,2,6,4>
+ 2594665787U, // <4,0,u,7>: Cost 3 vext1 <7,4,0,u>, <7,4,0,u>
+ 1618166483U, // <4,0,u,u>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2617548837U, // <4,1,0,0>: Cost 3 vext2 <0,0,4,1>, <0,0,4,1>
+ 2622857318U, // <4,1,0,1>: Cost 3 vext2 <0,u,4,1>, LHS
+ 3693281484U, // <4,1,0,2>: Cost 4 vext2 <0,3,4,1>, <0,2,4,6>
+ 2691908342U, // <4,1,0,3>: Cost 3 vext3 <1,2,3,4>, <1,0,3,2>
+ 2622857554U, // <4,1,0,4>: Cost 3 vext2 <0,u,4,1>, <0,4,1,5>
+ 3764470538U, // <4,1,0,5>: Cost 4 vext3 <1,0,5,4>, <1,0,5,4>
+ 3695272459U, // <4,1,0,6>: Cost 4 vext2 <0,6,4,1>, <0,6,4,1>
+ 3733094980U, // <4,1,0,7>: Cost 4 vext2 <7,0,4,1>, <0,7,1,4>
+ 2622857885U, // <4,1,0,u>: Cost 3 vext2 <0,u,4,1>, LHS
+ 3696599798U, // <4,1,1,0>: Cost 4 vext2 <0,u,4,1>, <1,0,3,2>
+ 2691097399U, // <4,1,1,1>: Cost 3 vext3 <1,1,1,4>, <1,1,1,4>
+ 2631484314U, // <4,1,1,2>: Cost 3 vext2 <2,3,4,1>, <1,2,3,4>
+ 2691908424U, // <4,1,1,3>: Cost 3 vext3 <1,2,3,4>, <1,1,3,3>
+ 3696600125U, // <4,1,1,4>: Cost 4 vext2 <0,u,4,1>, <1,4,3,5>
+ 3696600175U, // <4,1,1,5>: Cost 4 vext2 <0,u,4,1>, <1,5,0,1>
+ 3696600307U, // <4,1,1,6>: Cost 4 vext2 <0,u,4,1>, <1,6,5,7>
+ 3668423997U, // <4,1,1,7>: Cost 4 vext1 <7,4,1,1>, <7,4,1,1>
+ 2691908469U, // <4,1,1,u>: Cost 3 vext3 <1,2,3,4>, <1,1,u,3>
+ 2570797158U, // <4,1,2,0>: Cost 3 vext1 <3,4,1,2>, LHS
+ 2570797978U, // <4,1,2,1>: Cost 3 vext1 <3,4,1,2>, <1,2,3,4>
+ 3696600680U, // <4,1,2,2>: Cost 4 vext2 <0,u,4,1>, <2,2,2,2>
+ 1618166682U, // <4,1,2,3>: Cost 2 vext3 <1,2,3,4>, <1,2,3,4>
+ 2570800438U, // <4,1,2,4>: Cost 3 vext1 <3,4,1,2>, RHS
+ 3765650347U, // <4,1,2,5>: Cost 4 vext3 <1,2,3,4>, <1,2,5,3>
+ 3696601018U, // <4,1,2,6>: Cost 4 vext2 <0,u,4,1>, <2,6,3,7>
+ 3668432190U, // <4,1,2,7>: Cost 4 vext1 <7,4,1,2>, <7,4,1,2>
+ 1618535367U, // <4,1,2,u>: Cost 2 vext3 <1,2,u,4>, <1,2,u,4>
+ 2564833382U, // <4,1,3,0>: Cost 3 vext1 <2,4,1,3>, LHS
+ 2691908568U, // <4,1,3,1>: Cost 3 vext3 <1,2,3,4>, <1,3,1,3>
+ 2691908578U, // <4,1,3,2>: Cost 3 vext3 <1,2,3,4>, <1,3,2,4>
+ 2692572139U, // <4,1,3,3>: Cost 3 vext3 <1,3,3,4>, <1,3,3,4>
+ 2564836662U, // <4,1,3,4>: Cost 3 vext1 <2,4,1,3>, RHS
+ 2691908608U, // <4,1,3,5>: Cost 3 vext3 <1,2,3,4>, <1,3,5,7>
+ 2588725862U, // <4,1,3,6>: Cost 3 vext1 <6,4,1,3>, <6,4,1,3>
+ 3662468090U, // <4,1,3,7>: Cost 4 vext1 <6,4,1,3>, <7,0,1,2>
+ 2691908631U, // <4,1,3,u>: Cost 3 vext3 <1,2,3,4>, <1,3,u,3>
+ 3760194590U, // <4,1,4,0>: Cost 4 vext3 <0,3,1,4>, <1,4,0,1>
+ 3693947874U, // <4,1,4,1>: Cost 4 vext2 <0,4,4,1>, <4,1,5,0>
+ 3765650484U, // <4,1,4,2>: Cost 4 vext3 <1,2,3,4>, <1,4,2,5>
+ 3113877606U, // <4,1,4,3>: Cost 3 vtrnr <4,4,4,4>, LHS
+ 3760194630U, // <4,1,4,4>: Cost 4 vext3 <0,3,1,4>, <1,4,4,5>
+ 2622860598U, // <4,1,4,5>: Cost 3 vext2 <0,u,4,1>, RHS
+ 3297436759U, // <4,1,4,6>: Cost 4 vrev <1,4,6,4>
+ 3800007772U, // <4,1,4,7>: Cost 4 vext3 <7,0,1,4>, <1,4,7,0>
+ 2622860841U, // <4,1,4,u>: Cost 3 vext2 <0,u,4,1>, RHS
+ 1479164006U, // <4,1,5,0>: Cost 2 vext1 <0,4,1,5>, LHS
+ 2552906486U, // <4,1,5,1>: Cost 3 vext1 <0,4,1,5>, <1,0,3,2>
+ 2552907299U, // <4,1,5,2>: Cost 3 vext1 <0,4,1,5>, <2,1,3,5>
+ 2552907926U, // <4,1,5,3>: Cost 3 vext1 <0,4,1,5>, <3,0,1,2>
+ 1479167286U, // <4,1,5,4>: Cost 2 vext1 <0,4,1,5>, RHS
+ 2913387664U, // <4,1,5,5>: Cost 3 vzipl RHS, <1,5,3,7>
+ 2600686074U, // <4,1,5,6>: Cost 3 vext1 <u,4,1,5>, <6,2,7,3>
+ 2600686586U, // <4,1,5,7>: Cost 3 vext1 <u,4,1,5>, <7,0,1,2>
+ 1479169838U, // <4,1,5,u>: Cost 2 vext1 <0,4,1,5>, LHS
+ 2552914022U, // <4,1,6,0>: Cost 3 vext1 <0,4,1,6>, LHS
+ 2558886708U, // <4,1,6,1>: Cost 3 vext1 <1,4,1,6>, <1,1,1,1>
+ 4028205206U, // <4,1,6,2>: Cost 4 vzipr <0,2,4,6>, <3,0,1,2>
+ 3089858662U, // <4,1,6,3>: Cost 3 vtrnr <0,4,2,6>, LHS
+ 2552917302U, // <4,1,6,4>: Cost 3 vext1 <0,4,1,6>, RHS
+ 2223637584U, // <4,1,6,5>: Cost 3 vrev <1,4,5,6>
+ 4121347081U, // <4,1,6,6>: Cost 4 vtrnl RHS, <1,3,6,7>
+ 3721155406U, // <4,1,6,7>: Cost 4 vext2 <5,0,4,1>, <6,7,0,1>
+ 2552919854U, // <4,1,6,u>: Cost 3 vext1 <0,4,1,6>, LHS
+ 2659357716U, // <4,1,7,0>: Cost 3 vext2 <7,0,4,1>, <7,0,4,1>
+ 3733763173U, // <4,1,7,1>: Cost 4 vext2 <7,1,4,1>, <7,1,4,1>
+ 3734426806U, // <4,1,7,2>: Cost 4 vext2 <7,2,4,1>, <7,2,4,1>
+ 2695226671U, // <4,1,7,3>: Cost 3 vext3 <1,7,3,4>, <1,7,3,4>
+ 3721155942U, // <4,1,7,4>: Cost 4 vext2 <5,0,4,1>, <7,4,5,6>
+ 3721155976U, // <4,1,7,5>: Cost 4 vext2 <5,0,4,1>, <7,5,0,4>
+ 3662500458U, // <4,1,7,6>: Cost 4 vext1 <6,4,1,7>, <6,4,1,7>
+ 3721156204U, // <4,1,7,7>: Cost 4 vext2 <5,0,4,1>, <7,7,7,7>
+ 2659357716U, // <4,1,7,u>: Cost 3 vext2 <7,0,4,1>, <7,0,4,1>
+ 1479188582U, // <4,1,u,0>: Cost 2 vext1 <0,4,1,u>, LHS
+ 2552931062U, // <4,1,u,1>: Cost 3 vext1 <0,4,1,u>, <1,0,3,2>
+ 2552931944U, // <4,1,u,2>: Cost 3 vext1 <0,4,1,u>, <2,2,2,2>
+ 1622148480U, // <4,1,u,3>: Cost 2 vext3 <1,u,3,4>, <1,u,3,4>
+ 1479191862U, // <4,1,u,4>: Cost 2 vext1 <0,4,1,u>, RHS
+ 2622863514U, // <4,1,u,5>: Cost 3 vext2 <0,u,4,1>, RHS
+ 2588725862U, // <4,1,u,6>: Cost 3 vext1 <6,4,1,3>, <6,4,1,3>
+ 2600686586U, // <4,1,u,7>: Cost 3 vext1 <u,4,1,5>, <7,0,1,2>
+ 1479194414U, // <4,1,u,u>: Cost 2 vext1 <0,4,1,u>, LHS
+ 2617557030U, // <4,2,0,0>: Cost 3 vext2 <0,0,4,2>, <0,0,4,2>
+ 2622865510U, // <4,2,0,1>: Cost 3 vext2 <0,u,4,2>, LHS
+ 2622865612U, // <4,2,0,2>: Cost 3 vext2 <0,u,4,2>, <0,2,4,6>
+ 3693289753U, // <4,2,0,3>: Cost 4 vext2 <0,3,4,2>, <0,3,4,2>
+ 2635473244U, // <4,2,0,4>: Cost 3 vext2 <3,0,4,2>, <0,4,2,6>
+ 3765650918U, // <4,2,0,5>: Cost 4 vext3 <1,2,3,4>, <2,0,5,7>
+ 2696775148U, // <4,2,0,6>: Cost 3 vext3 <2,0,6,4>, <2,0,6,4>
+ 3695944285U, // <4,2,0,7>: Cost 4 vext2 <0,7,4,2>, <0,7,4,2>
+ 2622866077U, // <4,2,0,u>: Cost 3 vext2 <0,u,4,2>, LHS
+ 3696607990U, // <4,2,1,0>: Cost 4 vext2 <0,u,4,2>, <1,0,3,2>
+ 3696608052U, // <4,2,1,1>: Cost 4 vext2 <0,u,4,2>, <1,1,1,1>
+ 3696608150U, // <4,2,1,2>: Cost 4 vext2 <0,u,4,2>, <1,2,3,0>
+ 3895574630U, // <4,2,1,3>: Cost 4 vuzpr <0,4,u,2>, LHS
+ 2691909162U, // <4,2,1,4>: Cost 3 vext3 <1,2,3,4>, <2,1,4,3>
+ 3696608400U, // <4,2,1,5>: Cost 4 vext2 <0,u,4,2>, <1,5,3,7>
+ 3760784956U, // <4,2,1,6>: Cost 4 vext3 <0,4,0,4>, <2,1,6,3>
+ 3773908549U, // <4,2,1,7>: Cost 5 vext3 <2,5,7,4>, <2,1,7,3>
+ 2691909162U, // <4,2,1,u>: Cost 3 vext3 <1,2,3,4>, <2,1,4,3>
+ 3696608748U, // <4,2,2,0>: Cost 4 vext2 <0,u,4,2>, <2,0,6,4>
+ 3696608828U, // <4,2,2,1>: Cost 4 vext2 <0,u,4,2>, <2,1,6,3>
+ 2691909224U, // <4,2,2,2>: Cost 3 vext3 <1,2,3,4>, <2,2,2,2>
+ 2691909234U, // <4,2,2,3>: Cost 3 vext3 <1,2,3,4>, <2,2,3,3>
+ 3759605368U, // <4,2,2,4>: Cost 4 vext3 <0,2,2,4>, <2,2,4,0>
+ 3696609156U, // <4,2,2,5>: Cost 4 vext2 <0,u,4,2>, <2,5,6,7>
+ 3760785040U, // <4,2,2,6>: Cost 4 vext3 <0,4,0,4>, <2,2,6,6>
+ 3668505927U, // <4,2,2,7>: Cost 4 vext1 <7,4,2,2>, <7,4,2,2>
+ 2691909279U, // <4,2,2,u>: Cost 3 vext3 <1,2,3,4>, <2,2,u,3>
+ 2691909286U, // <4,2,3,0>: Cost 3 vext3 <1,2,3,4>, <2,3,0,1>
+ 3764840111U, // <4,2,3,1>: Cost 4 vext3 <1,1,1,4>, <2,3,1,1>
+ 3765651129U, // <4,2,3,2>: Cost 4 vext3 <1,2,3,4>, <2,3,2,2>
+ 2698544836U, // <4,2,3,3>: Cost 3 vext3 <2,3,3,4>, <2,3,3,4>
+ 2685863630U, // <4,2,3,4>: Cost 3 vext3 <0,2,2,4>, <2,3,4,5>
+ 2698692310U, // <4,2,3,5>: Cost 3 vext3 <2,3,5,4>, <2,3,5,4>
+ 3772507871U, // <4,2,3,6>: Cost 4 vext3 <2,3,6,4>, <2,3,6,4>
+ 2698839784U, // <4,2,3,7>: Cost 3 vext3 <2,3,7,4>, <2,3,7,4>
+ 2691909358U, // <4,2,3,u>: Cost 3 vext3 <1,2,3,4>, <2,3,u,1>
+ 2564915302U, // <4,2,4,0>: Cost 3 vext1 <2,4,2,4>, LHS
+ 2564916122U, // <4,2,4,1>: Cost 3 vext1 <2,4,2,4>, <1,2,3,4>
+ 2564917004U, // <4,2,4,2>: Cost 3 vext1 <2,4,2,4>, <2,4,2,4>
+ 2699208469U, // <4,2,4,3>: Cost 3 vext3 <2,4,3,4>, <2,4,3,4>
+ 2564918582U, // <4,2,4,4>: Cost 3 vext1 <2,4,2,4>, RHS
+ 2622868790U, // <4,2,4,5>: Cost 3 vext2 <0,u,4,2>, RHS
+ 2229667632U, // <4,2,4,6>: Cost 3 vrev <2,4,6,4>
+ 3800082229U, // <4,2,4,7>: Cost 4 vext3 <7,0,2,4>, <2,4,7,0>
+ 2622869033U, // <4,2,4,u>: Cost 3 vext2 <0,u,4,2>, RHS
+ 2552979558U, // <4,2,5,0>: Cost 3 vext1 <0,4,2,5>, LHS
+ 2558952342U, // <4,2,5,1>: Cost 3 vext1 <1,4,2,5>, <1,2,3,0>
+ 2564925032U, // <4,2,5,2>: Cost 3 vext1 <2,4,2,5>, <2,2,2,2>
+ 2967060582U, // <4,2,5,3>: Cost 3 vzipr <2,3,4,5>, LHS
+ 2552982838U, // <4,2,5,4>: Cost 3 vext1 <0,4,2,5>, RHS
+ 3987130190U, // <4,2,5,5>: Cost 4 vzipl RHS, <2,5,0,7>
+ 2913388474U, // <4,2,5,6>: Cost 3 vzipl RHS, <2,6,3,7>
+ 3895577910U, // <4,2,5,7>: Cost 4 vuzpr <0,4,u,2>, RHS
+ 2552985390U, // <4,2,5,u>: Cost 3 vext1 <0,4,2,5>, LHS
+ 1479245926U, // <4,2,6,0>: Cost 2 vext1 <0,4,2,6>, LHS
+ 2552988406U, // <4,2,6,1>: Cost 3 vext1 <0,4,2,6>, <1,0,3,2>
+ 2552989288U, // <4,2,6,2>: Cost 3 vext1 <0,4,2,6>, <2,2,2,2>
+ 2954461286U, // <4,2,6,3>: Cost 3 vzipr <0,2,4,6>, LHS
+ 1479249206U, // <4,2,6,4>: Cost 2 vext1 <0,4,2,6>, RHS
+ 2229610281U, // <4,2,6,5>: Cost 3 vrev <2,4,5,6>
+ 2600767994U, // <4,2,6,6>: Cost 3 vext1 <u,4,2,6>, <6,2,7,3>
+ 2600768506U, // <4,2,6,7>: Cost 3 vext1 <u,4,2,6>, <7,0,1,2>
+ 1479251758U, // <4,2,6,u>: Cost 2 vext1 <0,4,2,6>, LHS
+ 2659365909U, // <4,2,7,0>: Cost 3 vext2 <7,0,4,2>, <7,0,4,2>
+ 3733771366U, // <4,2,7,1>: Cost 4 vext2 <7,1,4,2>, <7,1,4,2>
+ 3734434999U, // <4,2,7,2>: Cost 4 vext2 <7,2,4,2>, <7,2,4,2>
+ 2701199368U, // <4,2,7,3>: Cost 3 vext3 <2,7,3,4>, <2,7,3,4>
+ 4175774618U, // <4,2,7,4>: Cost 4 vtrnr <2,4,5,7>, <1,2,3,4>
+ 3303360298U, // <4,2,7,5>: Cost 4 vrev <2,4,5,7>
+ 3727136217U, // <4,2,7,6>: Cost 4 vext2 <6,0,4,2>, <7,6,0,4>
+ 3727136364U, // <4,2,7,7>: Cost 4 vext2 <6,0,4,2>, <7,7,7,7>
+ 2659365909U, // <4,2,7,u>: Cost 3 vext2 <7,0,4,2>, <7,0,4,2>
+ 1479262310U, // <4,2,u,0>: Cost 2 vext1 <0,4,2,u>, LHS
+ 2553004790U, // <4,2,u,1>: Cost 3 vext1 <0,4,2,u>, <1,0,3,2>
+ 2553005672U, // <4,2,u,2>: Cost 3 vext1 <0,4,2,u>, <2,2,2,2>
+ 2954477670U, // <4,2,u,3>: Cost 3 vzipr <0,2,4,u>, LHS
+ 1479265590U, // <4,2,u,4>: Cost 2 vext1 <0,4,2,u>, RHS
+ 2622871706U, // <4,2,u,5>: Cost 3 vext2 <0,u,4,2>, RHS
+ 2229700404U, // <4,2,u,6>: Cost 3 vrev <2,4,6,u>
+ 2600784890U, // <4,2,u,7>: Cost 3 vext1 <u,4,2,u>, <7,0,1,2>
+ 1479268142U, // <4,2,u,u>: Cost 2 vext1 <0,4,2,u>, LHS
+ 3765651595U, // <4,3,0,0>: Cost 4 vext3 <1,2,3,4>, <3,0,0,0>
+ 2691909782U, // <4,3,0,1>: Cost 3 vext3 <1,2,3,4>, <3,0,1,2>
+ 2702452897U, // <4,3,0,2>: Cost 3 vext3 <3,0,2,4>, <3,0,2,4>
+ 3693297946U, // <4,3,0,3>: Cost 4 vext2 <0,3,4,3>, <0,3,4,3>
+ 3760711856U, // <4,3,0,4>: Cost 4 vext3 <0,3,u,4>, <3,0,4,1>
+ 2235533820U, // <4,3,0,5>: Cost 3 vrev <3,4,5,0>
+ 3309349381U, // <4,3,0,6>: Cost 4 vrev <3,4,6,0>
+ 3668563278U, // <4,3,0,7>: Cost 4 vext1 <7,4,3,0>, <7,4,3,0>
+ 2691909845U, // <4,3,0,u>: Cost 3 vext3 <1,2,3,4>, <3,0,u,2>
+ 2235173328U, // <4,3,1,0>: Cost 3 vrev <3,4,0,1>
+ 3764840678U, // <4,3,1,1>: Cost 4 vext3 <1,1,1,4>, <3,1,1,1>
+ 2630173594U, // <4,3,1,2>: Cost 3 vext2 <2,1,4,3>, <1,2,3,4>
+ 2703190267U, // <4,3,1,3>: Cost 3 vext3 <3,1,3,4>, <3,1,3,4>
+ 3760195840U, // <4,3,1,4>: Cost 4 vext3 <0,3,1,4>, <3,1,4,0>
+ 3765651724U, // <4,3,1,5>: Cost 4 vext3 <1,2,3,4>, <3,1,5,3>
+ 3309357574U, // <4,3,1,6>: Cost 4 vrev <3,4,6,1>
+ 3769633054U, // <4,3,1,7>: Cost 4 vext3 <1,u,3,4>, <3,1,7,3>
+ 2703558952U, // <4,3,1,u>: Cost 3 vext3 <3,1,u,4>, <3,1,u,4>
+ 3626770534U, // <4,3,2,0>: Cost 4 vext1 <0,4,3,2>, LHS
+ 2630174250U, // <4,3,2,1>: Cost 3 vext2 <2,1,4,3>, <2,1,4,3>
+ 3765651777U, // <4,3,2,2>: Cost 4 vext3 <1,2,3,4>, <3,2,2,2>
+ 2703853900U, // <4,3,2,3>: Cost 3 vext3 <3,2,3,4>, <3,2,3,4>
+ 3626773814U, // <4,3,2,4>: Cost 4 vext1 <0,4,3,2>, RHS
+ 2704001374U, // <4,3,2,5>: Cost 3 vext3 <3,2,5,4>, <3,2,5,4>
+ 3765651814U, // <4,3,2,6>: Cost 4 vext3 <1,2,3,4>, <3,2,6,3>
+ 3769633135U, // <4,3,2,7>: Cost 4 vext3 <1,u,3,4>, <3,2,7,3>
+ 2634819681U, // <4,3,2,u>: Cost 3 vext2 <2,u,4,3>, <2,u,4,3>
+ 3765651839U, // <4,3,3,0>: Cost 4 vext3 <1,2,3,4>, <3,3,0,1>
+ 3765651848U, // <4,3,3,1>: Cost 4 vext3 <1,2,3,4>, <3,3,1,1>
+ 3710552404U, // <4,3,3,2>: Cost 4 vext2 <3,2,4,3>, <3,2,4,3>
+ 2691910044U, // <4,3,3,3>: Cost 3 vext3 <1,2,3,4>, <3,3,3,3>
+ 2704591270U, // <4,3,3,4>: Cost 3 vext3 <3,3,4,4>, <3,3,4,4>
+ 3769633202U, // <4,3,3,5>: Cost 4 vext3 <1,u,3,4>, <3,3,5,7>
+ 3703917212U, // <4,3,3,6>: Cost 4 vext2 <2,1,4,3>, <3,6,4,7>
+ 3769633220U, // <4,3,3,7>: Cost 4 vext3 <1,u,3,4>, <3,3,7,7>
+ 2691910044U, // <4,3,3,u>: Cost 3 vext3 <1,2,3,4>, <3,3,3,3>
+ 2691910096U, // <4,3,4,0>: Cost 3 vext3 <1,2,3,4>, <3,4,0,1>
+ 2691910106U, // <4,3,4,1>: Cost 3 vext3 <1,2,3,4>, <3,4,1,2>
+ 2564990741U, // <4,3,4,2>: Cost 3 vext1 <2,4,3,4>, <2,4,3,4>
+ 3765651946U, // <4,3,4,3>: Cost 4 vext3 <1,2,3,4>, <3,4,3,0>
+ 2691910136U, // <4,3,4,4>: Cost 3 vext3 <1,2,3,4>, <3,4,4,5>
+ 2686454274U, // <4,3,4,5>: Cost 3 vext3 <0,3,1,4>, <3,4,5,6>
+ 2235640329U, // <4,3,4,6>: Cost 3 vrev <3,4,6,4>
+ 3801483792U, // <4,3,4,7>: Cost 4 vext3 <7,2,3,4>, <3,4,7,2>
+ 2691910168U, // <4,3,4,u>: Cost 3 vext3 <1,2,3,4>, <3,4,u,1>
+ 2559025254U, // <4,3,5,0>: Cost 3 vext1 <1,4,3,5>, LHS
+ 2559026237U, // <4,3,5,1>: Cost 3 vext1 <1,4,3,5>, <1,4,3,5>
+ 2564998862U, // <4,3,5,2>: Cost 3 vext1 <2,4,3,5>, <2,3,4,5>
+ 2570971548U, // <4,3,5,3>: Cost 3 vext1 <3,4,3,5>, <3,3,3,3>
+ 2559028534U, // <4,3,5,4>: Cost 3 vext1 <1,4,3,5>, RHS
+ 4163519477U, // <4,3,5,5>: Cost 4 vtrnr <0,4,1,5>, <1,3,4,5>
+ 3309390346U, // <4,3,5,6>: Cost 4 vrev <3,4,6,5>
+ 2706139747U, // <4,3,5,7>: Cost 3 vext3 <3,5,7,4>, <3,5,7,4>
+ 2559031086U, // <4,3,5,u>: Cost 3 vext1 <1,4,3,5>, LHS
+ 2559033446U, // <4,3,6,0>: Cost 3 vext1 <1,4,3,6>, LHS
+ 2559034430U, // <4,3,6,1>: Cost 3 vext1 <1,4,3,6>, <1,4,3,6>
+ 2565007127U, // <4,3,6,2>: Cost 3 vext1 <2,4,3,6>, <2,4,3,6>
+ 2570979740U, // <4,3,6,3>: Cost 3 vext1 <3,4,3,6>, <3,3,3,3>
+ 2559036726U, // <4,3,6,4>: Cost 3 vext1 <1,4,3,6>, RHS
+ 1161841154U, // <4,3,6,5>: Cost 2 vrev <3,4,5,6>
+ 4028203932U, // <4,3,6,6>: Cost 4 vzipr <0,2,4,6>, <1,2,3,6>
+ 2706803380U, // <4,3,6,7>: Cost 3 vext3 <3,6,7,4>, <3,6,7,4>
+ 1162062365U, // <4,3,6,u>: Cost 2 vrev <3,4,u,6>
+ 3769633475U, // <4,3,7,0>: Cost 4 vext3 <1,u,3,4>, <3,7,0,1>
+ 3769633488U, // <4,3,7,1>: Cost 4 vext3 <1,u,3,4>, <3,7,1,5>
+ 3638757144U, // <4,3,7,2>: Cost 4 vext1 <2,4,3,7>, <2,4,3,7>
+ 3769633508U, // <4,3,7,3>: Cost 4 vext3 <1,u,3,4>, <3,7,3,7>
+ 3769633515U, // <4,3,7,4>: Cost 4 vext3 <1,u,3,4>, <3,7,4,5>
+ 3769633526U, // <4,3,7,5>: Cost 4 vext3 <1,u,3,4>, <3,7,5,7>
+ 3662647932U, // <4,3,7,6>: Cost 4 vext1 <6,4,3,7>, <6,4,3,7>
+ 3781208837U, // <4,3,7,7>: Cost 4 vext3 <3,7,7,4>, <3,7,7,4>
+ 3769633547U, // <4,3,7,u>: Cost 4 vext3 <1,u,3,4>, <3,7,u,1>
+ 2559049830U, // <4,3,u,0>: Cost 3 vext1 <1,4,3,u>, LHS
+ 2691910430U, // <4,3,u,1>: Cost 3 vext3 <1,2,3,4>, <3,u,1,2>
+ 2565023513U, // <4,3,u,2>: Cost 3 vext1 <2,4,3,u>, <2,4,3,u>
+ 2707835698U, // <4,3,u,3>: Cost 3 vext3 <3,u,3,4>, <3,u,3,4>
+ 2559053110U, // <4,3,u,4>: Cost 3 vext1 <1,4,3,u>, RHS
+ 1161857540U, // <4,3,u,5>: Cost 2 vrev <3,4,5,u>
+ 2235673101U, // <4,3,u,6>: Cost 3 vrev <3,4,6,u>
+ 2708130646U, // <4,3,u,7>: Cost 3 vext3 <3,u,7,4>, <3,u,7,4>
+ 1162078751U, // <4,3,u,u>: Cost 2 vrev <3,4,u,u>
+ 2617573416U, // <4,4,0,0>: Cost 3 vext2 <0,0,4,4>, <0,0,4,4>
+ 1570373734U, // <4,4,0,1>: Cost 2 vext2 <4,4,4,4>, LHS
+ 2779676774U, // <4,4,0,2>: Cost 3 vuzpl <4,6,4,6>, LHS
+ 3760196480U, // <4,4,0,3>: Cost 4 vext3 <0,3,1,4>, <4,0,3,1>
+ 2576977100U, // <4,4,0,4>: Cost 3 vext1 <4,4,4,0>, <4,4,4,0>
+ 2718747538U, // <4,4,0,5>: Cost 3 vext3 <5,6,7,4>, <4,0,5,1>
+ 2718747548U, // <4,4,0,6>: Cost 3 vext3 <5,6,7,4>, <4,0,6,2>
+ 3668637015U, // <4,4,0,7>: Cost 4 vext1 <7,4,4,0>, <7,4,4,0>
+ 1570374301U, // <4,4,0,u>: Cost 2 vext2 <4,4,4,4>, LHS
+ 2644116214U, // <4,4,1,0>: Cost 3 vext2 <4,4,4,4>, <1,0,3,2>
+ 2644116276U, // <4,4,1,1>: Cost 3 vext2 <4,4,4,4>, <1,1,1,1>
+ 2691910602U, // <4,4,1,2>: Cost 3 vext3 <1,2,3,4>, <4,1,2,3>
+ 2644116440U, // <4,4,1,3>: Cost 3 vext2 <4,4,4,4>, <1,3,1,3>
+ 2711227356U, // <4,4,1,4>: Cost 3 vext3 <4,4,4,4>, <4,1,4,3>
+ 2709310438U, // <4,4,1,5>: Cost 3 vext3 <4,1,5,4>, <4,1,5,4>
+ 3765652462U, // <4,4,1,6>: Cost 4 vext3 <1,2,3,4>, <4,1,6,3>
+ 3768970231U, // <4,4,1,7>: Cost 4 vext3 <1,7,3,4>, <4,1,7,3>
+ 2695891968U, // <4,4,1,u>: Cost 3 vext3 <1,u,3,4>, <4,1,u,3>
+ 3703260634U, // <4,4,2,0>: Cost 4 vext2 <2,0,4,4>, <2,0,4,4>
+ 3765652499U, // <4,4,2,1>: Cost 4 vext3 <1,2,3,4>, <4,2,1,4>
+ 2644117096U, // <4,4,2,2>: Cost 3 vext2 <4,4,4,4>, <2,2,2,2>
+ 2631509709U, // <4,4,2,3>: Cost 3 vext2 <2,3,4,4>, <2,3,4,4>
+ 2644117269U, // <4,4,2,4>: Cost 3 vext2 <4,4,4,4>, <2,4,3,4>
+ 3705251698U, // <4,4,2,5>: Cost 4 vext2 <2,3,4,4>, <2,5,4,7>
+ 2710047808U, // <4,4,2,6>: Cost 3 vext3 <4,2,6,4>, <4,2,6,4>
+ 3783863369U, // <4,4,2,7>: Cost 4 vext3 <4,2,7,4>, <4,2,7,4>
+ 2634827874U, // <4,4,2,u>: Cost 3 vext2 <2,u,4,4>, <2,u,4,4>
+ 2644117654U, // <4,4,3,0>: Cost 3 vext2 <4,4,4,4>, <3,0,1,2>
+ 3638797210U, // <4,4,3,1>: Cost 4 vext1 <2,4,4,3>, <1,2,3,4>
+ 3638798082U, // <4,4,3,2>: Cost 4 vext1 <2,4,4,3>, <2,4,1,3>
+ 2637482406U, // <4,4,3,3>: Cost 3 vext2 <3,3,4,4>, <3,3,4,4>
+ 2638146039U, // <4,4,3,4>: Cost 3 vext2 <3,4,4,4>, <3,4,4,4>
+ 3913287374U, // <4,4,3,5>: Cost 4 vuzpr <3,4,5,4>, <2,3,4,5>
+ 3765652625U, // <4,4,3,6>: Cost 4 vext3 <1,2,3,4>, <4,3,6,4>
+ 3713878762U, // <4,4,3,7>: Cost 4 vext2 <3,7,4,4>, <3,7,4,4>
+ 2637482406U, // <4,4,3,u>: Cost 3 vext2 <3,3,4,4>, <3,3,4,4>
+ 1503264870U, // <4,4,4,0>: Cost 2 vext1 <4,4,4,4>, LHS
+ 2577007514U, // <4,4,4,1>: Cost 3 vext1 <4,4,4,4>, <1,2,3,4>
+ 2577008232U, // <4,4,4,2>: Cost 3 vext1 <4,4,4,4>, <2,2,2,2>
+ 2571037175U, // <4,4,4,3>: Cost 3 vext1 <3,4,4,4>, <3,4,4,4>
+ 161926454U, // <4,4,4,4>: Cost 1 vdup0 RHS
+ 1570377014U, // <4,4,4,5>: Cost 2 vext2 <4,4,4,4>, RHS
+ 2779680054U, // <4,4,4,6>: Cost 3 vuzpl <4,6,4,6>, RHS
+ 2594927963U, // <4,4,4,7>: Cost 3 vext1 <7,4,4,4>, <7,4,4,4>
+ 161926454U, // <4,4,4,u>: Cost 1 vdup0 RHS
+ 2571042918U, // <4,4,5,0>: Cost 3 vext1 <3,4,4,5>, LHS
+ 2571043738U, // <4,4,5,1>: Cost 3 vext1 <3,4,4,5>, <1,2,3,4>
+ 3638814495U, // <4,4,5,2>: Cost 4 vext1 <2,4,4,5>, <2,4,4,5>
+ 2571045368U, // <4,4,5,3>: Cost 3 vext1 <3,4,4,5>, <3,4,4,5>
+ 2571046198U, // <4,4,5,4>: Cost 3 vext1 <3,4,4,5>, RHS
+ 1839648054U, // <4,4,5,5>: Cost 2 vzipl RHS, RHS
+ 1618169142U, // <4,4,5,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 2594936156U, // <4,4,5,7>: Cost 3 vext1 <7,4,4,5>, <7,4,4,5>
+ 1618169160U, // <4,4,5,u>: Cost 2 vext3 <1,2,3,4>, RHS
+ 2553135206U, // <4,4,6,0>: Cost 3 vext1 <0,4,4,6>, LHS
+ 3626877686U, // <4,4,6,1>: Cost 4 vext1 <0,4,4,6>, <1,0,3,2>
+ 2565080782U, // <4,4,6,2>: Cost 3 vext1 <2,4,4,6>, <2,3,4,5>
+ 2571053561U, // <4,4,6,3>: Cost 3 vext1 <3,4,4,6>, <3,4,4,6>
+ 2553138486U, // <4,4,6,4>: Cost 3 vext1 <0,4,4,6>, RHS
+ 2241555675U, // <4,4,6,5>: Cost 3 vrev <4,4,5,6>
+ 1973865782U, // <4,4,6,6>: Cost 2 vtrnl RHS, RHS
+ 2658055029U, // <4,4,6,7>: Cost 3 vext2 <6,7,4,4>, <6,7,4,4>
+ 1973865800U, // <4,4,6,u>: Cost 2 vtrnl RHS, RHS
+ 2644120570U, // <4,4,7,0>: Cost 3 vext2 <4,4,4,4>, <7,0,1,2>
+ 3638829978U, // <4,4,7,1>: Cost 4 vext1 <2,4,4,7>, <1,2,3,4>
+ 3638830881U, // <4,4,7,2>: Cost 4 vext1 <2,4,4,7>, <2,4,4,7>
+ 3735115018U, // <4,4,7,3>: Cost 4 vext2 <7,3,4,4>, <7,3,4,4>
+ 2662036827U, // <4,4,7,4>: Cost 3 vext2 <7,4,4,4>, <7,4,4,4>
+ 2713292236U, // <4,4,7,5>: Cost 3 vext3 <4,7,5,4>, <4,7,5,4>
+ 2713365973U, // <4,4,7,6>: Cost 3 vext3 <4,7,6,4>, <4,7,6,4>
+ 2644121196U, // <4,4,7,7>: Cost 3 vext2 <4,4,4,4>, <7,7,7,7>
+ 2662036827U, // <4,4,7,u>: Cost 3 vext2 <7,4,4,4>, <7,4,4,4>
+ 1503297638U, // <4,4,u,0>: Cost 2 vext1 <4,4,4,u>, LHS
+ 1570379566U, // <4,4,u,1>: Cost 2 vext2 <4,4,4,4>, LHS
+ 2779682606U, // <4,4,u,2>: Cost 3 vuzpl <4,6,4,6>, LHS
+ 2571069947U, // <4,4,u,3>: Cost 3 vext1 <3,4,4,u>, <3,4,4,u>
+ 161926454U, // <4,4,u,4>: Cost 1 vdup0 RHS
+ 1841638710U, // <4,4,u,5>: Cost 2 vzipl RHS, RHS
+ 1618169385U, // <4,4,u,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 2594960735U, // <4,4,u,7>: Cost 3 vext1 <7,4,4,u>, <7,4,4,u>
+ 161926454U, // <4,4,u,u>: Cost 1 vdup0 RHS
+ 2631516160U, // <4,5,0,0>: Cost 3 vext2 <2,3,4,5>, <0,0,0,0>
+ 1557774438U, // <4,5,0,1>: Cost 2 vext2 <2,3,4,5>, LHS
+ 2618908875U, // <4,5,0,2>: Cost 3 vext2 <0,2,4,5>, <0,2,4,5>
+ 2571078140U, // <4,5,0,3>: Cost 3 vext1 <3,4,5,0>, <3,4,5,0>
+ 2626871634U, // <4,5,0,4>: Cost 3 vext2 <1,5,4,5>, <0,4,1,5>
+ 3705258414U, // <4,5,0,5>: Cost 4 vext2 <2,3,4,5>, <0,5,2,7>
+ 2594968438U, // <4,5,0,6>: Cost 3 vext1 <7,4,5,0>, <6,7,4,5>
+ 2594968928U, // <4,5,0,7>: Cost 3 vext1 <7,4,5,0>, <7,4,5,0>
+ 1557775005U, // <4,5,0,u>: Cost 2 vext2 <2,3,4,5>, LHS
+ 2631516918U, // <4,5,1,0>: Cost 3 vext2 <2,3,4,5>, <1,0,3,2>
+ 2624217939U, // <4,5,1,1>: Cost 3 vext2 <1,1,4,5>, <1,1,4,5>
+ 2631517078U, // <4,5,1,2>: Cost 3 vext2 <2,3,4,5>, <1,2,3,0>
+ 2821341286U, // <4,5,1,3>: Cost 3 vuzpr <0,4,1,5>, LHS
+ 3895086054U, // <4,5,1,4>: Cost 4 vuzpr <0,4,1,5>, <4,1,5,4>
+ 2626872471U, // <4,5,1,5>: Cost 3 vext2 <1,5,4,5>, <1,5,4,5>
+ 3895083131U, // <4,5,1,6>: Cost 4 vuzpr <0,4,1,5>, <0,1,4,6>
+ 2718748368U, // <4,5,1,7>: Cost 3 vext3 <5,6,7,4>, <5,1,7,3>
+ 2821341291U, // <4,5,1,u>: Cost 3 vuzpr <0,4,1,5>, LHS
+ 2571092070U, // <4,5,2,0>: Cost 3 vext1 <3,4,5,2>, LHS
+ 3699287585U, // <4,5,2,1>: Cost 4 vext2 <1,3,4,5>, <2,1,3,3>
+ 2630854269U, // <4,5,2,2>: Cost 3 vext2 <2,2,4,5>, <2,2,4,5>
+ 1557776078U, // <4,5,2,3>: Cost 2 vext2 <2,3,4,5>, <2,3,4,5>
+ 2631517974U, // <4,5,2,4>: Cost 3 vext2 <2,3,4,5>, <2,4,3,5>
+ 3692652384U, // <4,5,2,5>: Cost 4 vext2 <0,2,4,5>, <2,5,2,7>
+ 2631518138U, // <4,5,2,6>: Cost 3 vext2 <2,3,4,5>, <2,6,3,7>
+ 4164013366U, // <4,5,2,7>: Cost 4 vtrnr <0,4,u,2>, RHS
+ 1561094243U, // <4,5,2,u>: Cost 2 vext2 <2,u,4,5>, <2,u,4,5>
+ 2631518358U, // <4,5,3,0>: Cost 3 vext2 <2,3,4,5>, <3,0,1,2>
+ 3895084710U, // <4,5,3,1>: Cost 4 vuzpr <0,4,1,5>, <2,3,0,1>
+ 2631518540U, // <4,5,3,2>: Cost 3 vext2 <2,3,4,5>, <3,2,3,4>
+ 2631518620U, // <4,5,3,3>: Cost 3 vext2 <2,3,4,5>, <3,3,3,3>
+ 2631518716U, // <4,5,3,4>: Cost 3 vext2 <2,3,4,5>, <3,4,5,0>
+ 2631518784U, // <4,5,3,5>: Cost 3 vext2 <2,3,4,5>, <3,5,3,5>
+ 2658060980U, // <4,5,3,6>: Cost 3 vext2 <6,7,4,5>, <3,6,7,4>
+ 2640145131U, // <4,5,3,7>: Cost 3 vext2 <3,7,4,5>, <3,7,4,5>
+ 2631519006U, // <4,5,3,u>: Cost 3 vext2 <2,3,4,5>, <3,u,1,2>
+ 2571108454U, // <4,5,4,0>: Cost 3 vext1 <3,4,5,4>, LHS
+ 3632907342U, // <4,5,4,1>: Cost 4 vext1 <1,4,5,4>, <1,4,5,4>
+ 2571110094U, // <4,5,4,2>: Cost 3 vext1 <3,4,5,4>, <2,3,4,5>
+ 2571110912U, // <4,5,4,3>: Cost 3 vext1 <3,4,5,4>, <3,4,5,4>
+ 2571111734U, // <4,5,4,4>: Cost 3 vext1 <3,4,5,4>, RHS
+ 1557777718U, // <4,5,4,5>: Cost 2 vext2 <2,3,4,5>, RHS
+ 2645454195U, // <4,5,4,6>: Cost 3 vext2 <4,6,4,5>, <4,6,4,5>
+ 2718748614U, // <4,5,4,7>: Cost 3 vext3 <5,6,7,4>, <5,4,7,6>
+ 1557777961U, // <4,5,4,u>: Cost 2 vext2 <2,3,4,5>, RHS
+ 1503346790U, // <4,5,5,0>: Cost 2 vext1 <4,4,5,5>, LHS
+ 2913398480U, // <4,5,5,1>: Cost 3 vzipl RHS, <5,1,7,3>
+ 2631519998U, // <4,5,5,2>: Cost 3 vext2 <2,3,4,5>, <5,2,3,4>
+ 2577090710U, // <4,5,5,3>: Cost 3 vext1 <4,4,5,5>, <3,0,1,2>
+ 1503349978U, // <4,5,5,4>: Cost 2 vext1 <4,4,5,5>, <4,4,5,5>
+ 2631520260U, // <4,5,5,5>: Cost 3 vext2 <2,3,4,5>, <5,5,5,5>
+ 2913390690U, // <4,5,5,6>: Cost 3 vzipl RHS, <5,6,7,0>
+ 2821344566U, // <4,5,5,7>: Cost 3 vuzpr <0,4,1,5>, RHS
+ 1503352622U, // <4,5,5,u>: Cost 2 vext1 <4,4,5,5>, LHS
+ 1497383014U, // <4,5,6,0>: Cost 2 vext1 <3,4,5,6>, LHS
+ 2559181904U, // <4,5,6,1>: Cost 3 vext1 <1,4,5,6>, <1,4,5,6>
+ 2565154601U, // <4,5,6,2>: Cost 3 vext1 <2,4,5,6>, <2,4,5,6>
+ 1497385474U, // <4,5,6,3>: Cost 2 vext1 <3,4,5,6>, <3,4,5,6>
+ 1497386294U, // <4,5,6,4>: Cost 2 vext1 <3,4,5,6>, RHS
+ 3047608324U, // <4,5,6,5>: Cost 3 vtrnl RHS, <5,5,5,5>
+ 2571129656U, // <4,5,6,6>: Cost 3 vext1 <3,4,5,6>, <6,6,6,6>
+ 27705344U, // <4,5,6,7>: Cost 0 copy RHS
+ 27705344U, // <4,5,6,u>: Cost 0 copy RHS
+ 2565161062U, // <4,5,7,0>: Cost 3 vext1 <2,4,5,7>, LHS
+ 2565161882U, // <4,5,7,1>: Cost 3 vext1 <2,4,5,7>, <1,2,3,4>
+ 2565162794U, // <4,5,7,2>: Cost 3 vext1 <2,4,5,7>, <2,4,5,7>
+ 2661381387U, // <4,5,7,3>: Cost 3 vext2 <7,3,4,5>, <7,3,4,5>
+ 2565164342U, // <4,5,7,4>: Cost 3 vext1 <2,4,5,7>, RHS
+ 2718748840U, // <4,5,7,5>: Cost 3 vext3 <5,6,7,4>, <5,7,5,7>
+ 2718748846U, // <4,5,7,6>: Cost 3 vext3 <5,6,7,4>, <5,7,6,4>
+ 2719412407U, // <4,5,7,7>: Cost 3 vext3 <5,7,7,4>, <5,7,7,4>
+ 2565166894U, // <4,5,7,u>: Cost 3 vext1 <2,4,5,7>, LHS
+ 1497399398U, // <4,5,u,0>: Cost 2 vext1 <3,4,5,u>, LHS
+ 1557780270U, // <4,5,u,1>: Cost 2 vext2 <2,3,4,5>, LHS
+ 2631522181U, // <4,5,u,2>: Cost 3 vext2 <2,3,4,5>, <u,2,3,0>
+ 1497401860U, // <4,5,u,3>: Cost 2 vext1 <3,4,5,u>, <3,4,5,u>
+ 1497402678U, // <4,5,u,4>: Cost 2 vext1 <3,4,5,u>, RHS
+ 1557780634U, // <4,5,u,5>: Cost 2 vext2 <2,3,4,5>, RHS
+ 2631522512U, // <4,5,u,6>: Cost 3 vext2 <2,3,4,5>, <u,6,3,7>
+ 27705344U, // <4,5,u,7>: Cost 0 copy RHS
+ 27705344U, // <4,5,u,u>: Cost 0 copy RHS
+ 2618916864U, // <4,6,0,0>: Cost 3 vext2 <0,2,4,6>, <0,0,0,0>
+ 1545175142U, // <4,6,0,1>: Cost 2 vext2 <0,2,4,6>, LHS
+ 1545175244U, // <4,6,0,2>: Cost 2 vext2 <0,2,4,6>, <0,2,4,6>
+ 3692658940U, // <4,6,0,3>: Cost 4 vext2 <0,2,4,6>, <0,3,1,0>
+ 2618917202U, // <4,6,0,4>: Cost 3 vext2 <0,2,4,6>, <0,4,1,5>
+ 3852910806U, // <4,6,0,5>: Cost 4 vuzpl RHS, <0,2,5,7>
+ 2253525648U, // <4,6,0,6>: Cost 3 vrev <6,4,6,0>
+ 4040764726U, // <4,6,0,7>: Cost 4 vzipr <2,3,4,0>, RHS
+ 1545175709U, // <4,6,0,u>: Cost 2 vext2 <0,2,4,6>, LHS
+ 2618917622U, // <4,6,1,0>: Cost 3 vext2 <0,2,4,6>, <1,0,3,2>
+ 2618917684U, // <4,6,1,1>: Cost 3 vext2 <0,2,4,6>, <1,1,1,1>
+ 2618917782U, // <4,6,1,2>: Cost 3 vext2 <0,2,4,6>, <1,2,3,0>
+ 2618917848U, // <4,6,1,3>: Cost 3 vext2 <0,2,4,6>, <1,3,1,3>
+ 3692659773U, // <4,6,1,4>: Cost 4 vext2 <0,2,4,6>, <1,4,3,5>
+ 2618918032U, // <4,6,1,5>: Cost 3 vext2 <0,2,4,6>, <1,5,3,7>
+ 3692659937U, // <4,6,1,6>: Cost 4 vext2 <0,2,4,6>, <1,6,3,7>
+ 4032146742U, // <4,6,1,7>: Cost 4 vzipr <0,u,4,1>, RHS
+ 2618918253U, // <4,6,1,u>: Cost 3 vext2 <0,2,4,6>, <1,u,1,3>
+ 2618918380U, // <4,6,2,0>: Cost 3 vext2 <0,2,4,6>, <2,0,6,4>
+ 2618918460U, // <4,6,2,1>: Cost 3 vext2 <0,2,4,6>, <2,1,6,3>
+ 2618918504U, // <4,6,2,2>: Cost 3 vext2 <0,2,4,6>, <2,2,2,2>
+ 2618918566U, // <4,6,2,3>: Cost 3 vext2 <0,2,4,6>, <2,3,0,1>
+ 2618918679U, // <4,6,2,4>: Cost 3 vext2 <0,2,4,6>, <2,4,3,6>
+ 2618918788U, // <4,6,2,5>: Cost 3 vext2 <0,2,4,6>, <2,5,6,7>
+ 2618918842U, // <4,6,2,6>: Cost 3 vext2 <0,2,4,6>, <2,6,3,7>
+ 2718749178U, // <4,6,2,7>: Cost 3 vext3 <5,6,7,4>, <6,2,7,3>
+ 2618918971U, // <4,6,2,u>: Cost 3 vext2 <0,2,4,6>, <2,u,0,1>
+ 2618919062U, // <4,6,3,0>: Cost 3 vext2 <0,2,4,6>, <3,0,1,2>
+ 2636171526U, // <4,6,3,1>: Cost 3 vext2 <3,1,4,6>, <3,1,4,6>
+ 3692661057U, // <4,6,3,2>: Cost 4 vext2 <0,2,4,6>, <3,2,2,2>
+ 2618919324U, // <4,6,3,3>: Cost 3 vext2 <0,2,4,6>, <3,3,3,3>
+ 2618919426U, // <4,6,3,4>: Cost 3 vext2 <0,2,4,6>, <3,4,5,6>
+ 2638826058U, // <4,6,3,5>: Cost 3 vext2 <3,5,4,6>, <3,5,4,6>
+ 3913303030U, // <4,6,3,6>: Cost 4 vuzpr <3,4,5,6>, <1,3,4,6>
+ 2722730572U, // <4,6,3,7>: Cost 3 vext3 <6,3,7,4>, <6,3,7,4>
+ 2618919710U, // <4,6,3,u>: Cost 3 vext2 <0,2,4,6>, <3,u,1,2>
+ 2565210214U, // <4,6,4,0>: Cost 3 vext1 <2,4,6,4>, LHS
+ 2718749286U, // <4,6,4,1>: Cost 3 vext3 <5,6,7,4>, <6,4,1,3>
+ 2565211952U, // <4,6,4,2>: Cost 3 vext1 <2,4,6,4>, <2,4,6,4>
+ 2571184649U, // <4,6,4,3>: Cost 3 vext1 <3,4,6,4>, <3,4,6,4>
+ 2565213494U, // <4,6,4,4>: Cost 3 vext1 <2,4,6,4>, RHS
+ 1545178422U, // <4,6,4,5>: Cost 2 vext2 <0,2,4,6>, RHS
+ 1705430326U, // <4,6,4,6>: Cost 2 vuzpl RHS, RHS
+ 2595075437U, // <4,6,4,7>: Cost 3 vext1 <7,4,6,4>, <7,4,6,4>
+ 1545178665U, // <4,6,4,u>: Cost 2 vext2 <0,2,4,6>, RHS
+ 2565218406U, // <4,6,5,0>: Cost 3 vext1 <2,4,6,5>, LHS
+ 2645462736U, // <4,6,5,1>: Cost 3 vext2 <4,6,4,6>, <5,1,7,3>
+ 2913399290U, // <4,6,5,2>: Cost 3 vzipl RHS, <6,2,7,3>
+ 3913305394U, // <4,6,5,3>: Cost 4 vuzpr <3,4,5,6>, <4,5,6,3>
+ 2645462982U, // <4,6,5,4>: Cost 3 vext2 <4,6,4,6>, <5,4,7,6>
+ 2779172868U, // <4,6,5,5>: Cost 3 vuzpl RHS, <5,5,5,5>
+ 2913391416U, // <4,6,5,6>: Cost 3 vzipl RHS, <6,6,6,6>
+ 2821426486U, // <4,6,5,7>: Cost 3 vuzpr <0,4,2,6>, RHS
+ 2821426487U, // <4,6,5,u>: Cost 3 vuzpr <0,4,2,6>, RHS
+ 1503428710U, // <4,6,6,0>: Cost 2 vext1 <4,4,6,6>, LHS
+ 2577171190U, // <4,6,6,1>: Cost 3 vext1 <4,4,6,6>, <1,0,3,2>
+ 2645463546U, // <4,6,6,2>: Cost 3 vext2 <4,6,4,6>, <6,2,7,3>
+ 2577172630U, // <4,6,6,3>: Cost 3 vext1 <4,4,6,6>, <3,0,1,2>
+ 1503431908U, // <4,6,6,4>: Cost 2 vext1 <4,4,6,6>, <4,4,6,6>
+ 2253501069U, // <4,6,6,5>: Cost 3 vrev <6,4,5,6>
+ 2618921784U, // <4,6,6,6>: Cost 3 vext2 <0,2,4,6>, <6,6,6,6>
+ 2954464566U, // <4,6,6,7>: Cost 3 vzipr <0,2,4,6>, RHS
+ 1503434542U, // <4,6,6,u>: Cost 2 vext1 <4,4,6,6>, LHS
+ 2645464058U, // <4,6,7,0>: Cost 3 vext2 <4,6,4,6>, <7,0,1,2>
+ 2779173882U, // <4,6,7,1>: Cost 3 vuzpl RHS, <7,0,1,2>
+ 3638978355U, // <4,6,7,2>: Cost 4 vext1 <2,4,6,7>, <2,4,6,7>
+ 2725090156U, // <4,6,7,3>: Cost 3 vext3 <6,7,3,4>, <6,7,3,4>
+ 2645464422U, // <4,6,7,4>: Cost 3 vext2 <4,6,4,6>, <7,4,5,6>
+ 2779174246U, // <4,6,7,5>: Cost 3 vuzpl RHS, <7,4,5,6>
+ 3852915914U, // <4,6,7,6>: Cost 4 vuzpl RHS, <7,2,6,3>
+ 2779174508U, // <4,6,7,7>: Cost 3 vuzpl RHS, <7,7,7,7>
+ 2779173945U, // <4,6,7,u>: Cost 3 vuzpl RHS, <7,0,u,2>
+ 1503445094U, // <4,6,u,0>: Cost 2 vext1 <4,4,6,u>, LHS
+ 1545180974U, // <4,6,u,1>: Cost 2 vext2 <0,2,4,6>, LHS
+ 1705432878U, // <4,6,u,2>: Cost 2 vuzpl RHS, LHS
+ 2618922940U, // <4,6,u,3>: Cost 3 vext2 <0,2,4,6>, <u,3,0,1>
+ 1503448294U, // <4,6,u,4>: Cost 2 vext1 <4,4,6,u>, <4,4,6,u>
+ 1545181338U, // <4,6,u,5>: Cost 2 vext2 <0,2,4,6>, RHS
+ 1705433242U, // <4,6,u,6>: Cost 2 vuzpl RHS, RHS
+ 2954480950U, // <4,6,u,7>: Cost 3 vzipr <0,2,4,u>, RHS
+ 1545181541U, // <4,6,u,u>: Cost 2 vext2 <0,2,4,6>, LHS
+ 3706601472U, // <4,7,0,0>: Cost 4 vext2 <2,5,4,7>, <0,0,0,0>
+ 2632859750U, // <4,7,0,1>: Cost 3 vext2 <2,5,4,7>, LHS
+ 2726343685U, // <4,7,0,2>: Cost 3 vext3 <7,0,2,4>, <7,0,2,4>
+ 3701293312U, // <4,7,0,3>: Cost 4 vext2 <1,6,4,7>, <0,3,1,4>
+ 3706601810U, // <4,7,0,4>: Cost 4 vext2 <2,5,4,7>, <0,4,1,5>
+ 2259424608U, // <4,7,0,5>: Cost 3 vrev <7,4,5,0>
+ 3695321617U, // <4,7,0,6>: Cost 4 vext2 <0,6,4,7>, <0,6,4,7>
+ 3800454194U, // <4,7,0,7>: Cost 4 vext3 <7,0,7,4>, <7,0,7,4>
+ 2632860317U, // <4,7,0,u>: Cost 3 vext2 <2,5,4,7>, LHS
+ 2259064116U, // <4,7,1,0>: Cost 3 vrev <7,4,0,1>
+ 3700630324U, // <4,7,1,1>: Cost 4 vext2 <1,5,4,7>, <1,1,1,1>
+ 2632860570U, // <4,7,1,2>: Cost 3 vext2 <2,5,4,7>, <1,2,3,4>
+ 3769635936U, // <4,7,1,3>: Cost 4 vext3 <1,u,3,4>, <7,1,3,5>
+ 3656920374U, // <4,7,1,4>: Cost 4 vext1 <5,4,7,1>, RHS
+ 3700630681U, // <4,7,1,5>: Cost 4 vext2 <1,5,4,7>, <1,5,4,7>
+ 3701294314U, // <4,7,1,6>: Cost 4 vext2 <1,6,4,7>, <1,6,4,7>
+ 3793818754U, // <4,7,1,7>: Cost 4 vext3 <5,u,7,4>, <7,1,7,3>
+ 2259654012U, // <4,7,1,u>: Cost 3 vrev <7,4,u,1>
+ 3656925286U, // <4,7,2,0>: Cost 4 vext1 <5,4,7,2>, LHS
+ 3706603050U, // <4,7,2,1>: Cost 4 vext2 <2,5,4,7>, <2,1,4,3>
+ 3706603112U, // <4,7,2,2>: Cost 4 vext2 <2,5,4,7>, <2,2,2,2>
+ 2727744688U, // <4,7,2,3>: Cost 3 vext3 <7,2,3,4>, <7,2,3,4>
+ 3705939745U, // <4,7,2,4>: Cost 4 vext2 <2,4,4,7>, <2,4,4,7>
+ 2632861554U, // <4,7,2,5>: Cost 3 vext2 <2,5,4,7>, <2,5,4,7>
+ 3706603450U, // <4,7,2,6>: Cost 4 vext2 <2,5,4,7>, <2,6,3,7>
+ 3792491731U, // <4,7,2,7>: Cost 4 vext3 <5,6,7,4>, <7,2,7,3>
+ 2634852453U, // <4,7,2,u>: Cost 3 vext2 <2,u,4,7>, <2,u,4,7>
+ 3706603670U, // <4,7,3,0>: Cost 4 vext2 <2,5,4,7>, <3,0,1,2>
+ 3662906266U, // <4,7,3,1>: Cost 4 vext1 <6,4,7,3>, <1,2,3,4>
+ 3725183326U, // <4,7,3,2>: Cost 4 vext2 <5,6,4,7>, <3,2,5,4>
+ 3706603932U, // <4,7,3,3>: Cost 4 vext2 <2,5,4,7>, <3,3,3,3>
+ 3701295618U, // <4,7,3,4>: Cost 4 vext2 <1,6,4,7>, <3,4,5,6>
+ 2638834251U, // <4,7,3,5>: Cost 3 vext2 <3,5,4,7>, <3,5,4,7>
+ 2639497884U, // <4,7,3,6>: Cost 3 vext2 <3,6,4,7>, <3,6,4,7>
+ 3802445093U, // <4,7,3,7>: Cost 4 vext3 <7,3,7,4>, <7,3,7,4>
+ 2640825150U, // <4,7,3,u>: Cost 3 vext2 <3,u,4,7>, <3,u,4,7>
+ 2718750004U, // <4,7,4,0>: Cost 3 vext3 <5,6,7,4>, <7,4,0,1>
+ 3706604490U, // <4,7,4,1>: Cost 4 vext2 <2,5,4,7>, <4,1,2,3>
+ 3656943474U, // <4,7,4,2>: Cost 4 vext1 <5,4,7,4>, <2,5,4,7>
+ 3779884371U, // <4,7,4,3>: Cost 4 vext3 <3,5,7,4>, <7,4,3,5>
+ 2259383643U, // <4,7,4,4>: Cost 3 vrev <7,4,4,4>
+ 2632863030U, // <4,7,4,5>: Cost 3 vext2 <2,5,4,7>, RHS
+ 2259531117U, // <4,7,4,6>: Cost 3 vrev <7,4,6,4>
+ 3907340074U, // <4,7,4,7>: Cost 4 vuzpr <2,4,5,7>, <2,4,5,7>
+ 2632863273U, // <4,7,4,u>: Cost 3 vext2 <2,5,4,7>, RHS
+ 2913391610U, // <4,7,5,0>: Cost 3 vzipl RHS, <7,0,1,2>
+ 3645006848U, // <4,7,5,1>: Cost 4 vext1 <3,4,7,5>, <1,3,5,7>
+ 2589181646U, // <4,7,5,2>: Cost 3 vext1 <6,4,7,5>, <2,3,4,5>
+ 3645008403U, // <4,7,5,3>: Cost 4 vext1 <3,4,7,5>, <3,4,7,5>
+ 2913391974U, // <4,7,5,4>: Cost 3 vzipl RHS, <7,4,5,6>
+ 2583211973U, // <4,7,5,5>: Cost 3 vext1 <5,4,7,5>, <5,4,7,5>
+ 2589184670U, // <4,7,5,6>: Cost 3 vext1 <6,4,7,5>, <6,4,7,5>
+ 2913392236U, // <4,7,5,7>: Cost 3 vzipl RHS, <7,7,7,7>
+ 2913392258U, // <4,7,5,u>: Cost 3 vzipl RHS, <7,u,1,2>
+ 1509474406U, // <4,7,6,0>: Cost 2 vext1 <5,4,7,6>, LHS
+ 3047609338U, // <4,7,6,1>: Cost 3 vtrnl RHS, <7,0,1,2>
+ 2583217768U, // <4,7,6,2>: Cost 3 vext1 <5,4,7,6>, <2,2,2,2>
+ 2583218326U, // <4,7,6,3>: Cost 3 vext1 <5,4,7,6>, <3,0,1,2>
+ 1509477686U, // <4,7,6,4>: Cost 2 vext1 <5,4,7,6>, RHS
+ 1509478342U, // <4,7,6,5>: Cost 2 vext1 <5,4,7,6>, <5,4,7,6>
+ 2583220730U, // <4,7,6,6>: Cost 3 vext1 <5,4,7,6>, <6,2,7,3>
+ 3047609964U, // <4,7,6,7>: Cost 3 vtrnl RHS, <7,7,7,7>
+ 1509480238U, // <4,7,6,u>: Cost 2 vext1 <5,4,7,6>, LHS
+ 3650994278U, // <4,7,7,0>: Cost 4 vext1 <4,4,7,7>, LHS
+ 3650995098U, // <4,7,7,1>: Cost 4 vext1 <4,4,7,7>, <1,2,3,4>
+ 3650996010U, // <4,7,7,2>: Cost 4 vext1 <4,4,7,7>, <2,4,5,7>
+ 3804804677U, // <4,7,7,3>: Cost 4 vext3 <7,7,3,4>, <7,7,3,4>
+ 3650997486U, // <4,7,7,4>: Cost 4 vext1 <4,4,7,7>, <4,4,7,7>
+ 2662725039U, // <4,7,7,5>: Cost 3 vext2 <7,5,4,7>, <7,5,4,7>
+ 3662942880U, // <4,7,7,6>: Cost 4 vext1 <6,4,7,7>, <6,4,7,7>
+ 2718750316U, // <4,7,7,7>: Cost 3 vext3 <5,6,7,4>, <7,7,7,7>
+ 2664715938U, // <4,7,7,u>: Cost 3 vext2 <7,u,4,7>, <7,u,4,7>
+ 1509490790U, // <4,7,u,0>: Cost 2 vext1 <5,4,7,u>, LHS
+ 2632865582U, // <4,7,u,1>: Cost 3 vext2 <2,5,4,7>, LHS
+ 2583234152U, // <4,7,u,2>: Cost 3 vext1 <5,4,7,u>, <2,2,2,2>
+ 2583234710U, // <4,7,u,3>: Cost 3 vext1 <5,4,7,u>, <3,0,1,2>
+ 1509494070U, // <4,7,u,4>: Cost 2 vext1 <5,4,7,u>, RHS
+ 1509494728U, // <4,7,u,5>: Cost 2 vext1 <5,4,7,u>, <5,4,7,u>
+ 2583237114U, // <4,7,u,6>: Cost 3 vext1 <5,4,7,u>, <6,2,7,3>
+ 3047757420U, // <4,7,u,7>: Cost 3 vtrnl RHS, <7,7,7,7>
+ 1509496622U, // <4,7,u,u>: Cost 2 vext1 <5,4,7,u>, LHS
+ 2618933248U, // <4,u,0,0>: Cost 3 vext2 <0,2,4,u>, <0,0,0,0>
+ 1545191526U, // <4,u,0,1>: Cost 2 vext2 <0,2,4,u>, LHS
+ 1545191630U, // <4,u,0,2>: Cost 2 vext2 <0,2,4,u>, <0,2,4,u>
+ 2691913445U, // <4,u,0,3>: Cost 3 vext3 <1,2,3,4>, <u,0,3,2>
+ 2618933586U, // <4,u,0,4>: Cost 3 vext2 <0,2,4,u>, <0,4,1,5>
+ 2265397305U, // <4,u,0,5>: Cost 3 vrev <u,4,5,0>
+ 2595189625U, // <4,u,0,6>: Cost 3 vext1 <7,4,u,0>, <6,7,4,u>
+ 2595190139U, // <4,u,0,7>: Cost 3 vext1 <7,4,u,0>, <7,4,u,0>
+ 1545192093U, // <4,u,0,u>: Cost 2 vext2 <0,2,4,u>, LHS
+ 2618934006U, // <4,u,1,0>: Cost 3 vext2 <0,2,4,u>, <1,0,3,2>
+ 2618934068U, // <4,u,1,1>: Cost 3 vext2 <0,2,4,u>, <1,1,1,1>
+ 1618171694U, // <4,u,1,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2618934232U, // <4,u,1,3>: Cost 3 vext2 <0,2,4,u>, <1,3,1,3>
+ 2695894848U, // <4,u,1,4>: Cost 3 vext3 <1,u,3,4>, <u,1,4,3>
+ 2618934416U, // <4,u,1,5>: Cost 3 vext2 <0,2,4,u>, <1,5,3,7>
+ 3692676321U, // <4,u,1,6>: Cost 4 vext2 <0,2,4,u>, <1,6,3,7>
+ 2718750555U, // <4,u,1,7>: Cost 3 vext3 <5,6,7,4>, <u,1,7,3>
+ 1618171748U, // <4,u,1,u>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2553397350U, // <4,u,2,0>: Cost 3 vext1 <0,4,u,2>, LHS
+ 2630215215U, // <4,u,2,1>: Cost 3 vext2 <2,1,4,u>, <2,1,4,u>
+ 2618934888U, // <4,u,2,2>: Cost 3 vext2 <0,2,4,u>, <2,2,2,2>
+ 1557800657U, // <4,u,2,3>: Cost 2 vext2 <2,3,4,u>, <2,3,4,u>
+ 2618935065U, // <4,u,2,4>: Cost 3 vext2 <0,2,4,u>, <2,4,3,u>
+ 2733864859U, // <4,u,2,5>: Cost 3 vext3 <u,2,5,4>, <u,2,5,4>
+ 2618935226U, // <4,u,2,6>: Cost 3 vext2 <0,2,4,u>, <2,6,3,7>
+ 2718750636U, // <4,u,2,7>: Cost 3 vext3 <5,6,7,4>, <u,2,7,3>
+ 1561118822U, // <4,u,2,u>: Cost 2 vext2 <2,u,4,u>, <2,u,4,u>
+ 2618935446U, // <4,u,3,0>: Cost 3 vext2 <0,2,4,u>, <3,0,1,2>
+ 2779318422U, // <4,u,3,1>: Cost 3 vuzpl RHS, <3,0,1,2>
+ 2636851545U, // <4,u,3,2>: Cost 3 vext2 <3,2,4,u>, <3,2,4,u>
+ 2618935708U, // <4,u,3,3>: Cost 3 vext2 <0,2,4,u>, <3,3,3,3>
+ 2618935810U, // <4,u,3,4>: Cost 3 vext2 <0,2,4,u>, <3,4,5,6>
+ 2691913711U, // <4,u,3,5>: Cost 3 vext3 <1,2,3,4>, <u,3,5,7>
+ 2588725862U, // <4,u,3,6>: Cost 3 vext1 <6,4,1,3>, <6,4,1,3>
+ 2640169710U, // <4,u,3,7>: Cost 3 vext2 <3,7,4,u>, <3,7,4,u>
+ 2618936094U, // <4,u,3,u>: Cost 3 vext2 <0,2,4,u>, <3,u,1,2>
+ 1503559782U, // <4,u,4,0>: Cost 2 vext1 <4,4,u,4>, LHS
+ 2692282391U, // <4,u,4,1>: Cost 3 vext3 <1,2,u,4>, <u,4,1,2>
+ 2565359426U, // <4,u,4,2>: Cost 3 vext1 <2,4,u,4>, <2,4,u,4>
+ 2571332123U, // <4,u,4,3>: Cost 3 vext1 <3,4,u,4>, <3,4,u,4>
+ 161926454U, // <4,u,4,4>: Cost 1 vdup0 RHS
+ 1545194806U, // <4,u,4,5>: Cost 2 vext2 <0,2,4,u>, RHS
+ 1705577782U, // <4,u,4,6>: Cost 2 vuzpl RHS, RHS
+ 2718750801U, // <4,u,4,7>: Cost 3 vext3 <5,6,7,4>, <u,4,7,6>
+ 161926454U, // <4,u,4,u>: Cost 1 vdup0 RHS
+ 1479164006U, // <4,u,5,0>: Cost 2 vext1 <0,4,1,5>, LHS
+ 1839650606U, // <4,u,5,1>: Cost 2 vzipl RHS, LHS
+ 2565367502U, // <4,u,5,2>: Cost 3 vext1 <2,4,u,5>, <2,3,4,5>
+ 3089777309U, // <4,u,5,3>: Cost 3 vtrnr <0,4,1,5>, LHS
+ 1479167286U, // <4,u,5,4>: Cost 2 vext1 <0,4,1,5>, RHS
+ 1839650970U, // <4,u,5,5>: Cost 2 vzipl RHS, RHS
+ 1618172058U, // <4,u,5,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 3089780265U, // <4,u,5,7>: Cost 3 vtrnr <0,4,1,5>, RHS
+ 1618172076U, // <4,u,5,u>: Cost 2 vext3 <1,2,3,4>, RHS
+ 1479688294U, // <4,u,6,0>: Cost 2 vext1 <0,4,u,6>, LHS
+ 2553430774U, // <4,u,6,1>: Cost 3 vext1 <0,4,u,6>, <1,0,3,2>
+ 1973868334U, // <4,u,6,2>: Cost 2 vtrnl RHS, LHS
+ 1497606685U, // <4,u,6,3>: Cost 2 vext1 <3,4,u,6>, <3,4,u,6>
+ 1479691574U, // <4,u,6,4>: Cost 2 vext1 <0,4,u,6>, RHS
+ 1509552079U, // <4,u,6,5>: Cost 2 vext1 <5,4,u,6>, <5,4,u,6>
+ 1973868698U, // <4,u,6,6>: Cost 2 vtrnl RHS, RHS
+ 27705344U, // <4,u,6,7>: Cost 0 copy RHS
+ 27705344U, // <4,u,6,u>: Cost 0 copy RHS
+ 2565382246U, // <4,u,7,0>: Cost 3 vext1 <2,4,u,7>, LHS
+ 2565383066U, // <4,u,7,1>: Cost 3 vext1 <2,4,u,7>, <1,2,3,4>
+ 2565384005U, // <4,u,7,2>: Cost 3 vext1 <2,4,u,7>, <2,4,u,7>
+ 2661405966U, // <4,u,7,3>: Cost 3 vext2 <7,3,4,u>, <7,3,4,u>
+ 2565385526U, // <4,u,7,4>: Cost 3 vext1 <2,4,u,7>, RHS
+ 2779321702U, // <4,u,7,5>: Cost 3 vuzpl RHS, <7,4,5,6>
+ 2589274793U, // <4,u,7,6>: Cost 3 vext1 <6,4,u,7>, <6,4,u,7>
+ 2779321964U, // <4,u,7,7>: Cost 3 vuzpl RHS, <7,7,7,7>
+ 2565388078U, // <4,u,7,u>: Cost 3 vext1 <2,4,u,7>, LHS
+ 1479704678U, // <4,u,u,0>: Cost 2 vext1 <0,4,u,u>, LHS
+ 1545197358U, // <4,u,u,1>: Cost 2 vext2 <0,2,4,u>, LHS
+ 1618172261U, // <4,u,u,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 1497623071U, // <4,u,u,3>: Cost 2 vext1 <3,4,u,u>, <3,4,u,u>
+ 161926454U, // <4,u,u,4>: Cost 1 vdup0 RHS
+ 1545197722U, // <4,u,u,5>: Cost 2 vext2 <0,2,4,u>, RHS
+ 1618172301U, // <4,u,u,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 27705344U, // <4,u,u,7>: Cost 0 copy RHS
+ 27705344U, // <4,u,u,u>: Cost 0 copy RHS
+ 2687123456U, // <5,0,0,0>: Cost 3 vext3 <0,4,1,5>, <0,0,0,0>
+ 2687123466U, // <5,0,0,1>: Cost 3 vext3 <0,4,1,5>, <0,0,1,1>
+ 2687123476U, // <5,0,0,2>: Cost 3 vext3 <0,4,1,5>, <0,0,2,2>
+ 3710599434U, // <5,0,0,3>: Cost 4 vext2 <3,2,5,0>, <0,3,2,5>
+ 2642166098U, // <5,0,0,4>: Cost 3 vext2 <4,1,5,0>, <0,4,1,5>
+ 3657060306U, // <5,0,0,5>: Cost 4 vext1 <5,5,0,0>, <5,5,0,0>
+ 3292094923U, // <5,0,0,6>: Cost 4 vrev <0,5,6,0>
+ 3669005700U, // <5,0,0,7>: Cost 4 vext1 <7,5,0,0>, <7,5,0,0>
+ 2687123530U, // <5,0,0,u>: Cost 3 vext3 <0,4,1,5>, <0,0,u,2>
+ 2559434854U, // <5,0,1,0>: Cost 3 vext1 <1,5,0,1>, LHS
+ 2559435887U, // <5,0,1,1>: Cost 3 vext1 <1,5,0,1>, <1,5,0,1>
+ 1613381734U, // <5,0,1,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 3698656256U, // <5,0,1,3>: Cost 4 vext2 <1,2,5,0>, <1,3,5,7>
+ 2559438134U, // <5,0,1,4>: Cost 3 vext1 <1,5,0,1>, RHS
+ 2583326675U, // <5,0,1,5>: Cost 3 vext1 <5,5,0,1>, <5,5,0,1>
+ 3715908851U, // <5,0,1,6>: Cost 4 vext2 <4,1,5,0>, <1,6,5,7>
+ 3657069562U, // <5,0,1,7>: Cost 4 vext1 <5,5,0,1>, <7,0,1,2>
+ 1613381788U, // <5,0,1,u>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2686017700U, // <5,0,2,0>: Cost 3 vext3 <0,2,4,5>, <0,2,0,2>
+ 2685796528U, // <5,0,2,1>: Cost 3 vext3 <0,2,1,5>, <0,2,1,5>
+ 2698625208U, // <5,0,2,2>: Cost 3 vext3 <2,3,4,5>, <0,2,2,4>
+ 2685944002U, // <5,0,2,3>: Cost 3 vext3 <0,2,3,5>, <0,2,3,5>
+ 2686017739U, // <5,0,2,4>: Cost 3 vext3 <0,2,4,5>, <0,2,4,5>
+ 2686091476U, // <5,0,2,5>: Cost 3 vext3 <0,2,5,5>, <0,2,5,5>
+ 2725167324U, // <5,0,2,6>: Cost 3 vext3 <6,7,4,5>, <0,2,6,4>
+ 2595280230U, // <5,0,2,7>: Cost 3 vext1 <7,5,0,2>, <7,4,5,6>
+ 2686312687U, // <5,0,2,u>: Cost 3 vext3 <0,2,u,5>, <0,2,u,5>
+ 3760128248U, // <5,0,3,0>: Cost 4 vext3 <0,3,0,5>, <0,3,0,5>
+ 3759685888U, // <5,0,3,1>: Cost 4 vext3 <0,2,3,5>, <0,3,1,4>
+ 2686533898U, // <5,0,3,2>: Cost 3 vext3 <0,3,2,5>, <0,3,2,5>
+ 3760349459U, // <5,0,3,3>: Cost 4 vext3 <0,3,3,5>, <0,3,3,5>
+ 2638187004U, // <5,0,3,4>: Cost 3 vext2 <3,4,5,0>, <3,4,5,0>
+ 3776348452U, // <5,0,3,5>: Cost 4 vext3 <3,0,4,5>, <0,3,5,4>
+ 3713256094U, // <5,0,3,6>: Cost 4 vext2 <3,6,5,0>, <3,6,5,0>
+ 3914064896U, // <5,0,3,7>: Cost 4 vuzpr <3,5,7,0>, <1,3,5,7>
+ 2686976320U, // <5,0,3,u>: Cost 3 vext3 <0,3,u,5>, <0,3,u,5>
+ 2559459430U, // <5,0,4,0>: Cost 3 vext1 <1,5,0,4>, LHS
+ 1613381970U, // <5,0,4,1>: Cost 2 vext3 <0,4,1,5>, <0,4,1,5>
+ 2687123804U, // <5,0,4,2>: Cost 3 vext3 <0,4,1,5>, <0,4,2,6>
+ 3761013092U, // <5,0,4,3>: Cost 4 vext3 <0,4,3,5>, <0,4,3,5>
+ 2559462710U, // <5,0,4,4>: Cost 3 vext1 <1,5,0,4>, RHS
+ 2638187830U, // <5,0,4,5>: Cost 3 vext2 <3,4,5,0>, RHS
+ 3761234303U, // <5,0,4,6>: Cost 4 vext3 <0,4,6,5>, <0,4,6,5>
+ 2646150600U, // <5,0,4,7>: Cost 3 vext2 <4,7,5,0>, <4,7,5,0>
+ 1613381970U, // <5,0,4,u>: Cost 2 vext3 <0,4,1,5>, <0,4,1,5>
+ 3766763926U, // <5,0,5,0>: Cost 4 vext3 <1,4,0,5>, <0,5,0,1>
+ 2919268454U, // <5,0,5,1>: Cost 3 vzipl <5,5,5,5>, LHS
+ 3053486182U, // <5,0,5,2>: Cost 3 vtrnl <5,5,5,5>, LHS
+ 3723210589U, // <5,0,5,3>: Cost 4 vext2 <5,3,5,0>, <5,3,5,0>
+ 3766763966U, // <5,0,5,4>: Cost 4 vext3 <1,4,0,5>, <0,5,4,5>
+ 2650796031U, // <5,0,5,5>: Cost 3 vext2 <5,5,5,0>, <5,5,5,0>
+ 3719893090U, // <5,0,5,6>: Cost 4 vext2 <4,7,5,0>, <5,6,7,0>
+ 3914067254U, // <5,0,5,7>: Cost 4 vuzpr <3,5,7,0>, RHS
+ 2919269021U, // <5,0,5,u>: Cost 3 vzipl <5,5,5,5>, LHS
+ 4047519744U, // <5,0,6,0>: Cost 4 vzipr <3,4,5,6>, <0,0,0,0>
+ 2920038502U, // <5,0,6,1>: Cost 3 vzipl <5,6,7,0>, LHS
+ 3759759871U, // <5,0,6,2>: Cost 4 vext3 <0,2,4,5>, <0,6,2,7>
+ 3645164070U, // <5,0,6,3>: Cost 4 vext1 <3,5,0,6>, <3,5,0,6>
+ 3762414095U, // <5,0,6,4>: Cost 4 vext3 <0,6,4,5>, <0,6,4,5>
+ 3993780690U, // <5,0,6,5>: Cost 4 vzipl <5,6,7,0>, <0,5,6,7>
+ 3719893816U, // <5,0,6,6>: Cost 4 vext2 <4,7,5,0>, <6,6,6,6>
+ 2662077302U, // <5,0,6,7>: Cost 3 vext2 <7,4,5,0>, <6,7,4,5>
+ 2920039069U, // <5,0,6,u>: Cost 3 vzipl <5,6,7,0>, LHS
+ 2565455974U, // <5,0,7,0>: Cost 3 vext1 <2,5,0,7>, LHS
+ 2565456790U, // <5,0,7,1>: Cost 3 vext1 <2,5,0,7>, <1,2,3,0>
+ 2565457742U, // <5,0,7,2>: Cost 3 vext1 <2,5,0,7>, <2,5,0,7>
+ 3639199894U, // <5,0,7,3>: Cost 4 vext1 <2,5,0,7>, <3,0,1,2>
+ 2565459254U, // <5,0,7,4>: Cost 3 vext1 <2,5,0,7>, RHS
+ 2589347938U, // <5,0,7,5>: Cost 3 vext1 <6,5,0,7>, <5,6,7,0>
+ 2589348530U, // <5,0,7,6>: Cost 3 vext1 <6,5,0,7>, <6,5,0,7>
+ 4188456422U, // <5,0,7,7>: Cost 4 vtrnr RHS, <2,0,5,7>
+ 2565461806U, // <5,0,7,u>: Cost 3 vext1 <2,5,0,7>, LHS
+ 2687124106U, // <5,0,u,0>: Cost 3 vext3 <0,4,1,5>, <0,u,0,2>
+ 1616036502U, // <5,0,u,1>: Cost 2 vext3 <0,u,1,5>, <0,u,1,5>
+ 1613382301U, // <5,0,u,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2689925800U, // <5,0,u,3>: Cost 3 vext3 <0,u,3,5>, <0,u,3,5>
+ 2687124146U, // <5,0,u,4>: Cost 3 vext3 <0,4,1,5>, <0,u,4,6>
+ 2638190746U, // <5,0,u,5>: Cost 3 vext2 <3,4,5,0>, RHS
+ 2589356723U, // <5,0,u,6>: Cost 3 vext1 <6,5,0,u>, <6,5,0,u>
+ 2595280230U, // <5,0,u,7>: Cost 3 vext1 <7,5,0,2>, <7,4,5,6>
+ 1613382355U, // <5,0,u,u>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2646818816U, // <5,1,0,0>: Cost 3 vext2 <4,u,5,1>, <0,0,0,0>
+ 1573077094U, // <5,1,0,1>: Cost 2 vext2 <4,u,5,1>, LHS
+ 2646818980U, // <5,1,0,2>: Cost 3 vext2 <4,u,5,1>, <0,2,0,2>
+ 2687124214U, // <5,1,0,3>: Cost 3 vext3 <0,4,1,5>, <1,0,3,2>
+ 2641510738U, // <5,1,0,4>: Cost 3 vext2 <4,0,5,1>, <0,4,1,5>
+ 2641510814U, // <5,1,0,5>: Cost 3 vext2 <4,0,5,1>, <0,5,1,0>
+ 3720561142U, // <5,1,0,6>: Cost 4 vext2 <4,u,5,1>, <0,6,1,7>
+ 3298141357U, // <5,1,0,7>: Cost 4 vrev <1,5,7,0>
+ 1573077661U, // <5,1,0,u>: Cost 2 vext2 <4,u,5,1>, LHS
+ 2223891567U, // <5,1,1,0>: Cost 3 vrev <1,5,0,1>
+ 2687124276U, // <5,1,1,1>: Cost 3 vext3 <0,4,1,5>, <1,1,1,1>
+ 2646819734U, // <5,1,1,2>: Cost 3 vext2 <4,u,5,1>, <1,2,3,0>
+ 2687124296U, // <5,1,1,3>: Cost 3 vext3 <0,4,1,5>, <1,1,3,3>
+ 2691326803U, // <5,1,1,4>: Cost 3 vext3 <1,1,4,5>, <1,1,4,5>
+ 2691400540U, // <5,1,1,5>: Cost 3 vext3 <1,1,5,5>, <1,1,5,5>
+ 3765216101U, // <5,1,1,6>: Cost 4 vext3 <1,1,6,5>, <1,1,6,5>
+ 3765289838U, // <5,1,1,7>: Cost 4 vext3 <1,1,7,5>, <1,1,7,5>
+ 2687124341U, // <5,1,1,u>: Cost 3 vext3 <0,4,1,5>, <1,1,u,3>
+ 3297641584U, // <5,1,2,0>: Cost 4 vrev <1,5,0,2>
+ 3763520391U, // <5,1,2,1>: Cost 4 vext3 <0,u,1,5>, <1,2,1,3>
+ 2646820456U, // <5,1,2,2>: Cost 3 vext2 <4,u,5,1>, <2,2,2,2>
+ 2687124374U, // <5,1,2,3>: Cost 3 vext3 <0,4,1,5>, <1,2,3,0>
+ 2691990436U, // <5,1,2,4>: Cost 3 vext3 <1,2,4,5>, <1,2,4,5>
+ 2687124395U, // <5,1,2,5>: Cost 3 vext3 <0,4,1,5>, <1,2,5,3>
+ 2646820794U, // <5,1,2,6>: Cost 3 vext2 <4,u,5,1>, <2,6,3,7>
+ 3808199610U, // <5,1,2,7>: Cost 4 vext3 <u,3,4,5>, <1,2,7,0>
+ 2687124419U, // <5,1,2,u>: Cost 3 vext3 <0,4,1,5>, <1,2,u,0>
+ 2577440870U, // <5,1,3,0>: Cost 3 vext1 <4,5,1,3>, LHS
+ 2687124440U, // <5,1,3,1>: Cost 3 vext3 <0,4,1,5>, <1,3,1,3>
+ 3759686627U, // <5,1,3,2>: Cost 4 vext3 <0,2,3,5>, <1,3,2,5>
+ 2692580332U, // <5,1,3,3>: Cost 3 vext3 <1,3,3,5>, <1,3,3,5>
+ 2687124469U, // <5,1,3,4>: Cost 3 vext3 <0,4,1,5>, <1,3,4,5>
+ 2685207552U, // <5,1,3,5>: Cost 3 vext3 <0,1,2,5>, <1,3,5,7>
+ 3760866313U, // <5,1,3,6>: Cost 4 vext3 <0,4,1,5>, <1,3,6,7>
+ 2692875280U, // <5,1,3,7>: Cost 3 vext3 <1,3,7,5>, <1,3,7,5>
+ 2687124503U, // <5,1,3,u>: Cost 3 vext3 <0,4,1,5>, <1,3,u,3>
+ 1567771538U, // <5,1,4,0>: Cost 2 vext2 <4,0,5,1>, <4,0,5,1>
+ 2693096491U, // <5,1,4,1>: Cost 3 vext3 <1,4,1,5>, <1,4,1,5>
+ 2693170228U, // <5,1,4,2>: Cost 3 vext3 <1,4,2,5>, <1,4,2,5>
+ 2687124541U, // <5,1,4,3>: Cost 3 vext3 <0,4,1,5>, <1,4,3,5>
+ 2646822096U, // <5,1,4,4>: Cost 3 vext2 <4,u,5,1>, <4,4,4,4>
+ 1573080374U, // <5,1,4,5>: Cost 2 vext2 <4,u,5,1>, RHS
+ 2646822260U, // <5,1,4,6>: Cost 3 vext2 <4,u,5,1>, <4,6,4,6>
+ 3298174129U, // <5,1,4,7>: Cost 4 vrev <1,5,7,4>
+ 1573080602U, // <5,1,4,u>: Cost 2 vext2 <4,u,5,1>, <4,u,5,1>
+ 2687124591U, // <5,1,5,0>: Cost 3 vext3 <0,4,1,5>, <1,5,0,1>
+ 2646822543U, // <5,1,5,1>: Cost 3 vext2 <4,u,5,1>, <5,1,0,1>
+ 3760866433U, // <5,1,5,2>: Cost 4 vext3 <0,4,1,5>, <1,5,2,1>
+ 2687124624U, // <5,1,5,3>: Cost 3 vext3 <0,4,1,5>, <1,5,3,7>
+ 2687124631U, // <5,1,5,4>: Cost 3 vext3 <0,4,1,5>, <1,5,4,5>
+ 2646822916U, // <5,1,5,5>: Cost 3 vext2 <4,u,5,1>, <5,5,5,5>
+ 2646823010U, // <5,1,5,6>: Cost 3 vext2 <4,u,5,1>, <5,6,7,0>
+ 2646823080U, // <5,1,5,7>: Cost 3 vext2 <4,u,5,1>, <5,7,5,7>
+ 2687124663U, // <5,1,5,u>: Cost 3 vext3 <0,4,1,5>, <1,5,u,1>
+ 2553577574U, // <5,1,6,0>: Cost 3 vext1 <0,5,1,6>, LHS
+ 3763520719U, // <5,1,6,1>: Cost 4 vext3 <0,u,1,5>, <1,6,1,7>
+ 2646823418U, // <5,1,6,2>: Cost 3 vext2 <4,u,5,1>, <6,2,7,3>
+ 3760866529U, // <5,1,6,3>: Cost 4 vext3 <0,4,1,5>, <1,6,3,7>
+ 2553580854U, // <5,1,6,4>: Cost 3 vext1 <0,5,1,6>, RHS
+ 2687124723U, // <5,1,6,5>: Cost 3 vext3 <0,4,1,5>, <1,6,5,7>
+ 2646823736U, // <5,1,6,6>: Cost 3 vext2 <4,u,5,1>, <6,6,6,6>
+ 2646823758U, // <5,1,6,7>: Cost 3 vext2 <4,u,5,1>, <6,7,0,1>
+ 2646823839U, // <5,1,6,u>: Cost 3 vext2 <4,u,5,1>, <6,u,0,1>
+ 2559557734U, // <5,1,7,0>: Cost 3 vext1 <1,5,1,7>, LHS
+ 2559558452U, // <5,1,7,1>: Cost 3 vext1 <1,5,1,7>, <1,1,1,1>
+ 2571503270U, // <5,1,7,2>: Cost 3 vext1 <3,5,1,7>, <2,3,0,1>
+ 2040971366U, // <5,1,7,3>: Cost 2 vtrnr RHS, LHS
+ 2559561014U, // <5,1,7,4>: Cost 3 vext1 <1,5,1,7>, RHS
+ 2595393232U, // <5,1,7,5>: Cost 3 vext1 <7,5,1,7>, <5,1,7,3>
+ 4188455035U, // <5,1,7,6>: Cost 4 vtrnr RHS, <0,1,4,6>
+ 2646824556U, // <5,1,7,7>: Cost 3 vext2 <4,u,5,1>, <7,7,7,7>
+ 2040971371U, // <5,1,7,u>: Cost 2 vtrnr RHS, LHS
+ 1591662326U, // <5,1,u,0>: Cost 2 vext2 <u,0,5,1>, <u,0,5,1>
+ 1573082926U, // <5,1,u,1>: Cost 2 vext2 <4,u,5,1>, LHS
+ 2695824760U, // <5,1,u,2>: Cost 3 vext3 <1,u,2,5>, <1,u,2,5>
+ 2040979558U, // <5,1,u,3>: Cost 2 vtrnr RHS, LHS
+ 2687124874U, // <5,1,u,4>: Cost 3 vext3 <0,4,1,5>, <1,u,4,5>
+ 1573083290U, // <5,1,u,5>: Cost 2 vext2 <4,u,5,1>, RHS
+ 2646825168U, // <5,1,u,6>: Cost 3 vext2 <4,u,5,1>, <u,6,3,7>
+ 2646825216U, // <5,1,u,7>: Cost 3 vext2 <4,u,5,1>, <u,7,0,1>
+ 2040979563U, // <5,1,u,u>: Cost 2 vtrnr RHS, LHS
+ 3702652928U, // <5,2,0,0>: Cost 4 vext2 <1,u,5,2>, <0,0,0,0>
+ 2628911206U, // <5,2,0,1>: Cost 3 vext2 <1,u,5,2>, LHS
+ 2641518756U, // <5,2,0,2>: Cost 3 vext2 <4,0,5,2>, <0,2,0,2>
+ 3759760847U, // <5,2,0,3>: Cost 4 vext3 <0,2,4,5>, <2,0,3,2>
+ 3760866775U, // <5,2,0,4>: Cost 4 vext3 <0,4,1,5>, <2,0,4,1>
+ 3759539680U, // <5,2,0,5>: Cost 4 vext3 <0,2,1,5>, <2,0,5,1>
+ 3760866796U, // <5,2,0,6>: Cost 4 vext3 <0,4,1,5>, <2,0,6,4>
+ 3304114054U, // <5,2,0,7>: Cost 4 vrev <2,5,7,0>
+ 2628911773U, // <5,2,0,u>: Cost 3 vext2 <1,u,5,2>, LHS
+ 2623603464U, // <5,2,1,0>: Cost 3 vext2 <1,0,5,2>, <1,0,5,2>
+ 3698008921U, // <5,2,1,1>: Cost 4 vext2 <1,1,5,2>, <1,1,5,2>
+ 3633325603U, // <5,2,1,2>: Cost 4 vext1 <1,5,2,1>, <2,1,3,5>
+ 2687125027U, // <5,2,1,3>: Cost 3 vext3 <0,4,1,5>, <2,1,3,5>
+ 3633327414U, // <5,2,1,4>: Cost 4 vext1 <1,5,2,1>, RHS
+ 3759539760U, // <5,2,1,5>: Cost 4 vext3 <0,2,1,5>, <2,1,5,0>
+ 3760866876U, // <5,2,1,6>: Cost 4 vext3 <0,4,1,5>, <2,1,6,3>
+ 3304122247U, // <5,2,1,7>: Cost 4 vrev <2,5,7,1>
+ 2687125072U, // <5,2,1,u>: Cost 3 vext3 <0,4,1,5>, <2,1,u,5>
+ 3633332326U, // <5,2,2,0>: Cost 4 vext1 <1,5,2,2>, LHS
+ 3759760992U, // <5,2,2,1>: Cost 4 vext3 <0,2,4,5>, <2,2,1,3>
+ 2687125096U, // <5,2,2,2>: Cost 3 vext3 <0,4,1,5>, <2,2,2,2>
+ 2687125106U, // <5,2,2,3>: Cost 3 vext3 <0,4,1,5>, <2,2,3,3>
+ 2697963133U, // <5,2,2,4>: Cost 3 vext3 <2,2,4,5>, <2,2,4,5>
+ 3759466120U, // <5,2,2,5>: Cost 4 vext3 <0,2,0,5>, <2,2,5,7>
+ 3760866960U, // <5,2,2,6>: Cost 4 vext3 <0,4,1,5>, <2,2,6,6>
+ 3771926168U, // <5,2,2,7>: Cost 4 vext3 <2,2,7,5>, <2,2,7,5>
+ 2687125151U, // <5,2,2,u>: Cost 3 vext3 <0,4,1,5>, <2,2,u,3>
+ 2687125158U, // <5,2,3,0>: Cost 3 vext3 <0,4,1,5>, <2,3,0,1>
+ 2698405555U, // <5,2,3,1>: Cost 3 vext3 <2,3,1,5>, <2,3,1,5>
+ 2577516238U, // <5,2,3,2>: Cost 3 vext1 <4,5,2,3>, <2,3,4,5>
+ 3759687365U, // <5,2,3,3>: Cost 4 vext3 <0,2,3,5>, <2,3,3,5>
+ 1624884942U, // <5,2,3,4>: Cost 2 vext3 <2,3,4,5>, <2,3,4,5>
+ 2698700503U, // <5,2,3,5>: Cost 3 vext3 <2,3,5,5>, <2,3,5,5>
+ 3772368608U, // <5,2,3,6>: Cost 4 vext3 <2,3,4,5>, <2,3,6,5>
+ 3702655716U, // <5,2,3,7>: Cost 4 vext2 <1,u,5,2>, <3,7,3,7>
+ 1625179890U, // <5,2,3,u>: Cost 2 vext3 <2,3,u,5>, <2,3,u,5>
+ 2641521555U, // <5,2,4,0>: Cost 3 vext2 <4,0,5,2>, <4,0,5,2>
+ 3772368642U, // <5,2,4,1>: Cost 4 vext3 <2,3,4,5>, <2,4,1,3>
+ 2699142925U, // <5,2,4,2>: Cost 3 vext3 <2,4,2,5>, <2,4,2,5>
+ 2698626838U, // <5,2,4,3>: Cost 3 vext3 <2,3,4,5>, <2,4,3,5>
+ 2698626848U, // <5,2,4,4>: Cost 3 vext3 <2,3,4,5>, <2,4,4,6>
+ 2628914486U, // <5,2,4,5>: Cost 3 vext2 <1,u,5,2>, RHS
+ 2645503353U, // <5,2,4,6>: Cost 3 vext2 <4,6,5,2>, <4,6,5,2>
+ 3304146826U, // <5,2,4,7>: Cost 4 vrev <2,5,7,4>
+ 2628914729U, // <5,2,4,u>: Cost 3 vext2 <1,u,5,2>, RHS
+ 2553643110U, // <5,2,5,0>: Cost 3 vext1 <0,5,2,5>, LHS
+ 3758950227U, // <5,2,5,1>: Cost 4 vext3 <0,1,2,5>, <2,5,1,3>
+ 3759761248U, // <5,2,5,2>: Cost 4 vext3 <0,2,4,5>, <2,5,2,7>
+ 2982396006U, // <5,2,5,3>: Cost 3 vzipr <4,u,5,5>, LHS
+ 2553646390U, // <5,2,5,4>: Cost 3 vext1 <0,5,2,5>, RHS
+ 2553647108U, // <5,2,5,5>: Cost 3 vext1 <0,5,2,5>, <5,5,5,5>
+ 3760867204U, // <5,2,5,6>: Cost 4 vext3 <0,4,1,5>, <2,5,6,7>
+ 3702657141U, // <5,2,5,7>: Cost 4 vext2 <1,u,5,2>, <5,7,0,1>
+ 2982396011U, // <5,2,5,u>: Cost 3 vzipr <4,u,5,5>, LHS
+ 3627393126U, // <5,2,6,0>: Cost 4 vext1 <0,5,2,6>, LHS
+ 3760867236U, // <5,2,6,1>: Cost 4 vext3 <0,4,1,5>, <2,6,1,3>
+ 2645504506U, // <5,2,6,2>: Cost 3 vext2 <4,6,5,2>, <6,2,7,3>
+ 2687125434U, // <5,2,6,3>: Cost 3 vext3 <0,4,1,5>, <2,6,3,7>
+ 2700617665U, // <5,2,6,4>: Cost 3 vext3 <2,6,4,5>, <2,6,4,5>
+ 3760867276U, // <5,2,6,5>: Cost 4 vext3 <0,4,1,5>, <2,6,5,7>
+ 3763521493U, // <5,2,6,6>: Cost 4 vext3 <0,u,1,5>, <2,6,6,7>
+ 3719246670U, // <5,2,6,7>: Cost 4 vext2 <4,6,5,2>, <6,7,0,1>
+ 2687125479U, // <5,2,6,u>: Cost 3 vext3 <0,4,1,5>, <2,6,u,7>
+ 2565603430U, // <5,2,7,0>: Cost 3 vext1 <2,5,2,7>, LHS
+ 2553660150U, // <5,2,7,1>: Cost 3 vext1 <0,5,2,7>, <1,0,3,2>
+ 2565605216U, // <5,2,7,2>: Cost 3 vext1 <2,5,2,7>, <2,5,2,7>
+ 2961178726U, // <5,2,7,3>: Cost 3 vzipr <1,3,5,7>, LHS
+ 2565606710U, // <5,2,7,4>: Cost 3 vext1 <2,5,2,7>, RHS
+ 4034920552U, // <5,2,7,5>: Cost 4 vzipr <1,3,5,7>, <0,1,2,5>
+ 3114713292U, // <5,2,7,6>: Cost 3 vtrnr RHS, <0,2,4,6>
+ 3702658668U, // <5,2,7,7>: Cost 4 vext2 <1,u,5,2>, <7,7,7,7>
+ 2961178731U, // <5,2,7,u>: Cost 3 vzipr <1,3,5,7>, LHS
+ 2687125563U, // <5,2,u,0>: Cost 3 vext3 <0,4,1,5>, <2,u,0,1>
+ 2628917038U, // <5,2,u,1>: Cost 3 vext2 <1,u,5,2>, LHS
+ 2565613409U, // <5,2,u,2>: Cost 3 vext1 <2,5,2,u>, <2,5,2,u>
+ 2687125592U, // <5,2,u,3>: Cost 3 vext3 <0,4,1,5>, <2,u,3,3>
+ 1628203107U, // <5,2,u,4>: Cost 2 vext3 <2,u,4,5>, <2,u,4,5>
+ 2628917402U, // <5,2,u,5>: Cost 3 vext2 <1,u,5,2>, RHS
+ 2702092405U, // <5,2,u,6>: Cost 3 vext3 <2,u,6,5>, <2,u,6,5>
+ 3304179598U, // <5,2,u,7>: Cost 4 vrev <2,5,7,u>
+ 1628498055U, // <5,2,u,u>: Cost 2 vext3 <2,u,u,5>, <2,u,u,5>
+ 3760867467U, // <5,3,0,0>: Cost 4 vext3 <0,4,1,5>, <3,0,0,0>
+ 2687125654U, // <5,3,0,1>: Cost 3 vext3 <0,4,1,5>, <3,0,1,2>
+ 3759761565U, // <5,3,0,2>: Cost 4 vext3 <0,2,4,5>, <3,0,2,0>
+ 3633391766U, // <5,3,0,3>: Cost 4 vext1 <1,5,3,0>, <3,0,1,2>
+ 2687125680U, // <5,3,0,4>: Cost 3 vext3 <0,4,1,5>, <3,0,4,1>
+ 3760277690U, // <5,3,0,5>: Cost 4 vext3 <0,3,2,5>, <3,0,5,2>
+ 3310013014U, // <5,3,0,6>: Cost 4 vrev <3,5,6,0>
+ 2236344927U, // <5,3,0,7>: Cost 3 vrev <3,5,7,0>
+ 2687125717U, // <5,3,0,u>: Cost 3 vext3 <0,4,1,5>, <3,0,u,2>
+ 3760867551U, // <5,3,1,0>: Cost 4 vext3 <0,4,1,5>, <3,1,0,3>
+ 3760867558U, // <5,3,1,1>: Cost 4 vext3 <0,4,1,5>, <3,1,1,1>
+ 2624938923U, // <5,3,1,2>: Cost 3 vext2 <1,2,5,3>, <1,2,5,3>
+ 2703198460U, // <5,3,1,3>: Cost 3 vext3 <3,1,3,5>, <3,1,3,5>
+ 3760867587U, // <5,3,1,4>: Cost 4 vext3 <0,4,1,5>, <3,1,4,3>
+ 2636219536U, // <5,3,1,5>: Cost 3 vext2 <3,1,5,3>, <1,5,3,7>
+ 3698681075U, // <5,3,1,6>: Cost 4 vext2 <1,2,5,3>, <1,6,5,7>
+ 2703493408U, // <5,3,1,7>: Cost 3 vext3 <3,1,7,5>, <3,1,7,5>
+ 2628920721U, // <5,3,1,u>: Cost 3 vext2 <1,u,5,3>, <1,u,5,3>
+ 3766765870U, // <5,3,2,0>: Cost 4 vext3 <1,4,0,5>, <3,2,0,1>
+ 3698681379U, // <5,3,2,1>: Cost 4 vext2 <1,2,5,3>, <2,1,3,5>
+ 3760867649U, // <5,3,2,2>: Cost 4 vext3 <0,4,1,5>, <3,2,2,2>
+ 2698627404U, // <5,3,2,3>: Cost 3 vext3 <2,3,4,5>, <3,2,3,4>
+ 2703935830U, // <5,3,2,4>: Cost 3 vext3 <3,2,4,5>, <3,2,4,5>
+ 2698627422U, // <5,3,2,5>: Cost 3 vext3 <2,3,4,5>, <3,2,5,4>
+ 3760867686U, // <5,3,2,6>: Cost 4 vext3 <0,4,1,5>, <3,2,6,3>
+ 3769788783U, // <5,3,2,7>: Cost 4 vext3 <1,u,5,5>, <3,2,7,3>
+ 2701945209U, // <5,3,2,u>: Cost 3 vext3 <2,u,4,5>, <3,2,u,4>
+ 3760867711U, // <5,3,3,0>: Cost 4 vext3 <0,4,1,5>, <3,3,0,1>
+ 2636220684U, // <5,3,3,1>: Cost 3 vext2 <3,1,5,3>, <3,1,5,3>
+ 3772369298U, // <5,3,3,2>: Cost 4 vext3 <2,3,4,5>, <3,3,2,2>
+ 2687125916U, // <5,3,3,3>: Cost 3 vext3 <0,4,1,5>, <3,3,3,3>
+ 2704599463U, // <5,3,3,4>: Cost 3 vext3 <3,3,4,5>, <3,3,4,5>
+ 2704673200U, // <5,3,3,5>: Cost 3 vext3 <3,3,5,5>, <3,3,5,5>
+ 3709962935U, // <5,3,3,6>: Cost 4 vext2 <3,1,5,3>, <3,6,7,7>
+ 3772369346U, // <5,3,3,7>: Cost 4 vext3 <2,3,4,5>, <3,3,7,5>
+ 2704894411U, // <5,3,3,u>: Cost 3 vext3 <3,3,u,5>, <3,3,u,5>
+ 2704968148U, // <5,3,4,0>: Cost 3 vext3 <3,4,0,5>, <3,4,0,5>
+ 3698682850U, // <5,3,4,1>: Cost 4 vext2 <1,2,5,3>, <4,1,5,0>
+ 2642857014U, // <5,3,4,2>: Cost 3 vext2 <4,2,5,3>, <4,2,5,3>
+ 2705189359U, // <5,3,4,3>: Cost 3 vext3 <3,4,3,5>, <3,4,3,5>
+ 2705263096U, // <5,3,4,4>: Cost 3 vext3 <3,4,4,5>, <3,4,4,5>
+ 2685946370U, // <5,3,4,5>: Cost 3 vext3 <0,2,3,5>, <3,4,5,6>
+ 3779152394U, // <5,3,4,6>: Cost 4 vext3 <3,4,6,5>, <3,4,6,5>
+ 2236377699U, // <5,3,4,7>: Cost 3 vrev <3,5,7,4>
+ 2687126045U, // <5,3,4,u>: Cost 3 vext3 <0,4,1,5>, <3,4,u,6>
+ 2571632742U, // <5,3,5,0>: Cost 3 vext1 <3,5,3,5>, LHS
+ 2559689870U, // <5,3,5,1>: Cost 3 vext1 <1,5,3,5>, <1,5,3,5>
+ 2571634382U, // <5,3,5,2>: Cost 3 vext1 <3,5,3,5>, <2,3,4,5>
+ 2571635264U, // <5,3,5,3>: Cost 3 vext1 <3,5,3,5>, <3,5,3,5>
+ 2571636022U, // <5,3,5,4>: Cost 3 vext1 <3,5,3,5>, RHS
+ 2559692804U, // <5,3,5,5>: Cost 3 vext1 <1,5,3,5>, <5,5,5,5>
+ 3720581218U, // <5,3,5,6>: Cost 4 vext2 <4,u,5,3>, <5,6,7,0>
+ 2236385892U, // <5,3,5,7>: Cost 3 vrev <3,5,7,5>
+ 2571638574U, // <5,3,5,u>: Cost 3 vext1 <3,5,3,5>, LHS
+ 2565668966U, // <5,3,6,0>: Cost 3 vext1 <2,5,3,6>, LHS
+ 3633439887U, // <5,3,6,1>: Cost 4 vext1 <1,5,3,6>, <1,5,3,6>
+ 2565670760U, // <5,3,6,2>: Cost 3 vext1 <2,5,3,6>, <2,5,3,6>
+ 2565671426U, // <5,3,6,3>: Cost 3 vext1 <2,5,3,6>, <3,4,5,6>
+ 2565672246U, // <5,3,6,4>: Cost 3 vext1 <2,5,3,6>, RHS
+ 3639414630U, // <5,3,6,5>: Cost 4 vext1 <2,5,3,6>, <5,3,6,0>
+ 4047521640U, // <5,3,6,6>: Cost 4 vzipr <3,4,5,6>, <2,5,3,6>
+ 2725169844U, // <5,3,6,7>: Cost 3 vext3 <6,7,4,5>, <3,6,7,4>
+ 2565674798U, // <5,3,6,u>: Cost 3 vext1 <2,5,3,6>, LHS
+ 1485963366U, // <5,3,7,0>: Cost 2 vext1 <1,5,3,7>, LHS
+ 1485964432U, // <5,3,7,1>: Cost 2 vext1 <1,5,3,7>, <1,5,3,7>
+ 2559706728U, // <5,3,7,2>: Cost 3 vext1 <1,5,3,7>, <2,2,2,2>
+ 2559707286U, // <5,3,7,3>: Cost 3 vext1 <1,5,3,7>, <3,0,1,2>
+ 1485966646U, // <5,3,7,4>: Cost 2 vext1 <1,5,3,7>, RHS
+ 2559708880U, // <5,3,7,5>: Cost 3 vext1 <1,5,3,7>, <5,1,7,3>
+ 2601513466U, // <5,3,7,6>: Cost 3 vext1 <u,5,3,7>, <6,2,7,3>
+ 3114714112U, // <5,3,7,7>: Cost 3 vtrnr RHS, <1,3,5,7>
+ 1485969198U, // <5,3,7,u>: Cost 2 vext1 <1,5,3,7>, LHS
+ 1485971558U, // <5,3,u,0>: Cost 2 vext1 <1,5,3,u>, LHS
+ 1485972625U, // <5,3,u,1>: Cost 2 vext1 <1,5,3,u>, <1,5,3,u>
+ 2559714920U, // <5,3,u,2>: Cost 3 vext1 <1,5,3,u>, <2,2,2,2>
+ 2559715478U, // <5,3,u,3>: Cost 3 vext1 <1,5,3,u>, <3,0,1,2>
+ 1485974838U, // <5,3,u,4>: Cost 2 vext1 <1,5,3,u>, RHS
+ 2687126342U, // <5,3,u,5>: Cost 3 vext3 <0,4,1,5>, <3,u,5,6>
+ 2601521658U, // <5,3,u,6>: Cost 3 vext1 <u,5,3,u>, <6,2,7,3>
+ 2236410471U, // <5,3,u,7>: Cost 3 vrev <3,5,7,u>
+ 1485977390U, // <5,3,u,u>: Cost 2 vext1 <1,5,3,u>, LHS
+ 3627491430U, // <5,4,0,0>: Cost 4 vext1 <0,5,4,0>, LHS
+ 2636890214U, // <5,4,0,1>: Cost 3 vext2 <3,2,5,4>, LHS
+ 3703333028U, // <5,4,0,2>: Cost 4 vext2 <2,0,5,4>, <0,2,0,2>
+ 3782249348U, // <5,4,0,3>: Cost 4 vext3 <4,0,3,5>, <4,0,3,5>
+ 2642198866U, // <5,4,0,4>: Cost 3 vext2 <4,1,5,4>, <0,4,1,5>
+ 2687126418U, // <5,4,0,5>: Cost 3 vext3 <0,4,1,5>, <4,0,5,1>
+ 2242243887U, // <5,4,0,6>: Cost 3 vrev <4,5,6,0>
+ 3316059448U, // <5,4,0,7>: Cost 4 vrev <4,5,7,0>
+ 2636890781U, // <5,4,0,u>: Cost 3 vext2 <3,2,5,4>, LHS
+ 2241809658U, // <5,4,1,0>: Cost 3 vrev <4,5,0,1>
+ 3698025307U, // <5,4,1,1>: Cost 4 vext2 <1,1,5,4>, <1,1,5,4>
+ 3698688940U, // <5,4,1,2>: Cost 4 vext2 <1,2,5,4>, <1,2,5,4>
+ 3698689024U, // <5,4,1,3>: Cost 4 vext2 <1,2,5,4>, <1,3,5,7>
+ 3700016206U, // <5,4,1,4>: Cost 4 vext2 <1,4,5,4>, <1,4,5,4>
+ 2687126498U, // <5,4,1,5>: Cost 3 vext3 <0,4,1,5>, <4,1,5,0>
+ 3760868336U, // <5,4,1,6>: Cost 4 vext3 <0,4,1,5>, <4,1,6,5>
+ 3316067641U, // <5,4,1,7>: Cost 4 vrev <4,5,7,1>
+ 2242399554U, // <5,4,1,u>: Cost 3 vrev <4,5,u,1>
+ 3703334371U, // <5,4,2,0>: Cost 4 vext2 <2,0,5,4>, <2,0,5,4>
+ 3703998004U, // <5,4,2,1>: Cost 4 vext2 <2,1,5,4>, <2,1,5,4>
+ 3704661637U, // <5,4,2,2>: Cost 4 vext2 <2,2,5,4>, <2,2,5,4>
+ 2636891854U, // <5,4,2,3>: Cost 3 vext2 <3,2,5,4>, <2,3,4,5>
+ 3705988903U, // <5,4,2,4>: Cost 4 vext2 <2,4,5,4>, <2,4,5,4>
+ 2698628150U, // <5,4,2,5>: Cost 3 vext3 <2,3,4,5>, <4,2,5,3>
+ 3760868415U, // <5,4,2,6>: Cost 4 vext3 <0,4,1,5>, <4,2,6,3>
+ 3783871562U, // <5,4,2,7>: Cost 4 vext3 <4,2,7,5>, <4,2,7,5>
+ 2666752099U, // <5,4,2,u>: Cost 3 vext2 <u,2,5,4>, <2,u,4,5>
+ 3639459942U, // <5,4,3,0>: Cost 4 vext1 <2,5,4,3>, LHS
+ 3709970701U, // <5,4,3,1>: Cost 4 vext2 <3,1,5,4>, <3,1,5,4>
+ 2636892510U, // <5,4,3,2>: Cost 3 vext2 <3,2,5,4>, <3,2,5,4>
+ 3710634396U, // <5,4,3,3>: Cost 4 vext2 <3,2,5,4>, <3,3,3,3>
+ 2638219776U, // <5,4,3,4>: Cost 3 vext2 <3,4,5,4>, <3,4,5,4>
+ 3766987908U, // <5,4,3,5>: Cost 4 vext3 <1,4,3,5>, <4,3,5,0>
+ 2710719634U, // <5,4,3,6>: Cost 3 vext3 <4,3,6,5>, <4,3,6,5>
+ 3914097664U, // <5,4,3,7>: Cost 4 vuzpr <3,5,7,4>, <1,3,5,7>
+ 2640874308U, // <5,4,3,u>: Cost 3 vext2 <3,u,5,4>, <3,u,5,4>
+ 2583642214U, // <5,4,4,0>: Cost 3 vext1 <5,5,4,4>, LHS
+ 2642201574U, // <5,4,4,1>: Cost 3 vext2 <4,1,5,4>, <4,1,5,4>
+ 3710635062U, // <5,4,4,2>: Cost 4 vext2 <3,2,5,4>, <4,2,5,3>
+ 3717270664U, // <5,4,4,3>: Cost 4 vext2 <4,3,5,4>, <4,3,5,4>
+ 2713963728U, // <5,4,4,4>: Cost 3 vext3 <4,u,5,5>, <4,4,4,4>
+ 1637567706U, // <5,4,4,5>: Cost 2 vext3 <4,4,5,5>, <4,4,5,5>
+ 2242276659U, // <5,4,4,6>: Cost 3 vrev <4,5,6,4>
+ 2646183372U, // <5,4,4,7>: Cost 3 vext2 <4,7,5,4>, <4,7,5,4>
+ 1637788917U, // <5,4,4,u>: Cost 2 vext3 <4,4,u,5>, <4,4,u,5>
+ 2559762534U, // <5,4,5,0>: Cost 3 vext1 <1,5,4,5>, LHS
+ 2559763607U, // <5,4,5,1>: Cost 3 vext1 <1,5,4,5>, <1,5,4,5>
+ 2698628366U, // <5,4,5,2>: Cost 3 vext3 <2,3,4,5>, <4,5,2,3>
+ 3633506454U, // <5,4,5,3>: Cost 4 vext1 <1,5,4,5>, <3,0,1,2>
+ 2559765814U, // <5,4,5,4>: Cost 3 vext1 <1,5,4,5>, RHS
+ 2583654395U, // <5,4,5,5>: Cost 3 vext1 <5,5,4,5>, <5,5,4,5>
+ 1613385014U, // <5,4,5,6>: Cost 2 vext3 <0,4,1,5>, RHS
+ 3901639990U, // <5,4,5,7>: Cost 4 vuzpr <1,5,0,4>, RHS
+ 1613385032U, // <5,4,5,u>: Cost 2 vext3 <0,4,1,5>, RHS
+ 2559770726U, // <5,4,6,0>: Cost 3 vext1 <1,5,4,6>, LHS
+ 2559771648U, // <5,4,6,1>: Cost 3 vext1 <1,5,4,6>, <1,3,5,7>
+ 3633514088U, // <5,4,6,2>: Cost 4 vext1 <1,5,4,6>, <2,2,2,2>
+ 2571717122U, // <5,4,6,3>: Cost 3 vext1 <3,5,4,6>, <3,4,5,6>
+ 2559774006U, // <5,4,6,4>: Cost 3 vext1 <1,5,4,6>, RHS
+ 2712636796U, // <5,4,6,5>: Cost 3 vext3 <4,6,5,5>, <4,6,5,5>
+ 3760868743U, // <5,4,6,6>: Cost 4 vext3 <0,4,1,5>, <4,6,6,7>
+ 2712784270U, // <5,4,6,7>: Cost 3 vext3 <4,6,7,5>, <4,6,7,5>
+ 2559776558U, // <5,4,6,u>: Cost 3 vext1 <1,5,4,6>, LHS
+ 2565750886U, // <5,4,7,0>: Cost 3 vext1 <2,5,4,7>, LHS
+ 2565751706U, // <5,4,7,1>: Cost 3 vext1 <2,5,4,7>, <1,2,3,4>
+ 2565752690U, // <5,4,7,2>: Cost 3 vext1 <2,5,4,7>, <2,5,4,7>
+ 2571725387U, // <5,4,7,3>: Cost 3 vext1 <3,5,4,7>, <3,5,4,7>
+ 2565754166U, // <5,4,7,4>: Cost 3 vext1 <2,5,4,7>, RHS
+ 3114713426U, // <5,4,7,5>: Cost 3 vtrnr RHS, <0,4,1,5>
+ 94817590U, // <5,4,7,6>: Cost 1 vrev RHS
+ 2595616175U, // <5,4,7,7>: Cost 3 vext1 <7,5,4,7>, <7,5,4,7>
+ 94965064U, // <5,4,7,u>: Cost 1 vrev RHS
+ 2559787110U, // <5,4,u,0>: Cost 3 vext1 <1,5,4,u>, LHS
+ 2559788186U, // <5,4,u,1>: Cost 3 vext1 <1,5,4,u>, <1,5,4,u>
+ 2242014483U, // <5,4,u,2>: Cost 3 vrev <4,5,2,u>
+ 2667419628U, // <5,4,u,3>: Cost 3 vext2 <u,3,5,4>, <u,3,5,4>
+ 2559790390U, // <5,4,u,4>: Cost 3 vext1 <1,5,4,u>, RHS
+ 1640222238U, // <5,4,u,5>: Cost 2 vext3 <4,u,5,5>, <4,u,5,5>
+ 94825783U, // <5,4,u,6>: Cost 1 vrev RHS
+ 2714111536U, // <5,4,u,7>: Cost 3 vext3 <4,u,7,5>, <4,u,7,5>
+ 94973257U, // <5,4,u,u>: Cost 1 vrev RHS
+ 2646851584U, // <5,5,0,0>: Cost 3 vext2 <4,u,5,5>, <0,0,0,0>
+ 1573109862U, // <5,5,0,1>: Cost 2 vext2 <4,u,5,5>, LHS
+ 2646851748U, // <5,5,0,2>: Cost 3 vext2 <4,u,5,5>, <0,2,0,2>
+ 3760279130U, // <5,5,0,3>: Cost 4 vext3 <0,3,2,5>, <5,0,3,2>
+ 2687127138U, // <5,5,0,4>: Cost 3 vext3 <0,4,1,5>, <5,0,4,1>
+ 2248142847U, // <5,5,0,5>: Cost 3 vrev <5,5,5,0>
+ 3720593910U, // <5,5,0,6>: Cost 4 vext2 <4,u,5,5>, <0,6,1,7>
+ 4182502710U, // <5,5,0,7>: Cost 4 vtrnr <3,5,7,0>, RHS
+ 1573110429U, // <5,5,0,u>: Cost 2 vext2 <4,u,5,5>, LHS
+ 2646852342U, // <5,5,1,0>: Cost 3 vext2 <4,u,5,5>, <1,0,3,2>
+ 2624291676U, // <5,5,1,1>: Cost 3 vext2 <1,1,5,5>, <1,1,5,5>
+ 2646852502U, // <5,5,1,2>: Cost 3 vext2 <4,u,5,5>, <1,2,3,0>
+ 2646852568U, // <5,5,1,3>: Cost 3 vext2 <4,u,5,5>, <1,3,1,3>
+ 2715217591U, // <5,5,1,4>: Cost 3 vext3 <5,1,4,5>, <5,1,4,5>
+ 2628936848U, // <5,5,1,5>: Cost 3 vext2 <1,u,5,5>, <1,5,3,7>
+ 3698033907U, // <5,5,1,6>: Cost 4 vext2 <1,1,5,5>, <1,6,5,7>
+ 2713964240U, // <5,5,1,7>: Cost 3 vext3 <4,u,5,5>, <5,1,7,3>
+ 2628937107U, // <5,5,1,u>: Cost 3 vext2 <1,u,5,5>, <1,u,5,5>
+ 3645497446U, // <5,5,2,0>: Cost 4 vext1 <3,5,5,2>, LHS
+ 3760869099U, // <5,5,2,1>: Cost 4 vext3 <0,4,1,5>, <5,2,1,3>
+ 2646853224U, // <5,5,2,2>: Cost 3 vext2 <4,u,5,5>, <2,2,2,2>
+ 2698628862U, // <5,5,2,3>: Cost 3 vext3 <2,3,4,5>, <5,2,3,4>
+ 3772370694U, // <5,5,2,4>: Cost 4 vext3 <2,3,4,5>, <5,2,4,3>
+ 2713964303U, // <5,5,2,5>: Cost 3 vext3 <4,u,5,5>, <5,2,5,3>
+ 2646853562U, // <5,5,2,6>: Cost 3 vext2 <4,u,5,5>, <2,6,3,7>
+ 4038198272U, // <5,5,2,7>: Cost 4 vzipr <1,u,5,2>, <1,3,5,7>
+ 2701946667U, // <5,5,2,u>: Cost 3 vext3 <2,u,4,5>, <5,2,u,4>
+ 2646853782U, // <5,5,3,0>: Cost 3 vext2 <4,u,5,5>, <3,0,1,2>
+ 3698034922U, // <5,5,3,1>: Cost 4 vext2 <1,1,5,5>, <3,1,1,5>
+ 3702679919U, // <5,5,3,2>: Cost 4 vext2 <1,u,5,5>, <3,2,7,3>
+ 2637564336U, // <5,5,3,3>: Cost 3 vext2 <3,3,5,5>, <3,3,5,5>
+ 2646854146U, // <5,5,3,4>: Cost 3 vext2 <4,u,5,5>, <3,4,5,6>
+ 2638891602U, // <5,5,3,5>: Cost 3 vext2 <3,5,5,5>, <3,5,5,5>
+ 3702680247U, // <5,5,3,6>: Cost 4 vext2 <1,u,5,5>, <3,6,7,7>
+ 3702680259U, // <5,5,3,7>: Cost 4 vext2 <1,u,5,5>, <3,7,0,1>
+ 2646854430U, // <5,5,3,u>: Cost 3 vext2 <4,u,5,5>, <3,u,1,2>
+ 2646854546U, // <5,5,4,0>: Cost 3 vext2 <4,u,5,5>, <4,0,5,1>
+ 2642209767U, // <5,5,4,1>: Cost 3 vext2 <4,1,5,5>, <4,1,5,5>
+ 3711306806U, // <5,5,4,2>: Cost 4 vext2 <3,3,5,5>, <4,2,5,3>
+ 3645516369U, // <5,5,4,3>: Cost 4 vext1 <3,5,5,4>, <3,5,5,4>
+ 1570458842U, // <5,5,4,4>: Cost 2 vext2 <4,4,5,5>, <4,4,5,5>
+ 1573113142U, // <5,5,4,5>: Cost 2 vext2 <4,u,5,5>, RHS
+ 2645527932U, // <5,5,4,6>: Cost 3 vext2 <4,6,5,5>, <4,6,5,5>
+ 2713964486U, // <5,5,4,7>: Cost 3 vext3 <4,u,5,5>, <5,4,7,6>
+ 1573113374U, // <5,5,4,u>: Cost 2 vext2 <4,u,5,5>, <4,u,5,5>
+ 1509982310U, // <5,5,5,0>: Cost 2 vext1 <5,5,5,5>, LHS
+ 2646855376U, // <5,5,5,1>: Cost 3 vext2 <4,u,5,5>, <5,1,7,3>
+ 2583725672U, // <5,5,5,2>: Cost 3 vext1 <5,5,5,5>, <2,2,2,2>
+ 2583726230U, // <5,5,5,3>: Cost 3 vext1 <5,5,5,5>, <3,0,1,2>
+ 1509985590U, // <5,5,5,4>: Cost 2 vext1 <5,5,5,5>, RHS
+ 229035318U, // <5,5,5,5>: Cost 1 vdup1 RHS
+ 2646855778U, // <5,5,5,6>: Cost 3 vext2 <4,u,5,5>, <5,6,7,0>
+ 2646855848U, // <5,5,5,7>: Cost 3 vext2 <4,u,5,5>, <5,7,5,7>
+ 229035318U, // <5,5,5,u>: Cost 1 vdup1 RHS
+ 2577760358U, // <5,5,6,0>: Cost 3 vext1 <4,5,5,6>, LHS
+ 3633587361U, // <5,5,6,1>: Cost 4 vext1 <1,5,5,6>, <1,5,5,6>
+ 2646856186U, // <5,5,6,2>: Cost 3 vext2 <4,u,5,5>, <6,2,7,3>
+ 3633588738U, // <5,5,6,3>: Cost 4 vext1 <1,5,5,6>, <3,4,5,6>
+ 2718535756U, // <5,5,6,4>: Cost 3 vext3 <5,6,4,5>, <5,6,4,5>
+ 2644202223U, // <5,5,6,5>: Cost 3 vext2 <4,4,5,5>, <6,5,7,5>
+ 2973780482U, // <5,5,6,6>: Cost 3 vzipr <3,4,5,6>, <3,4,5,6>
+ 2646856526U, // <5,5,6,7>: Cost 3 vext2 <4,u,5,5>, <6,7,0,1>
+ 2646856607U, // <5,5,6,u>: Cost 3 vext2 <4,u,5,5>, <6,u,0,1>
+ 2571796582U, // <5,5,7,0>: Cost 3 vext1 <3,5,5,7>, LHS
+ 3633595392U, // <5,5,7,1>: Cost 4 vext1 <1,5,5,7>, <1,3,5,7>
+ 2571798222U, // <5,5,7,2>: Cost 3 vext1 <3,5,5,7>, <2,3,4,5>
+ 2571799124U, // <5,5,7,3>: Cost 3 vext1 <3,5,5,7>, <3,5,5,7>
+ 2571799862U, // <5,5,7,4>: Cost 3 vext1 <3,5,5,7>, RHS
+ 3114717188U, // <5,5,7,5>: Cost 3 vtrnr RHS, <5,5,5,5>
+ 4034923010U, // <5,5,7,6>: Cost 4 vzipr <1,3,5,7>, <3,4,5,6>
+ 2040974646U, // <5,5,7,7>: Cost 2 vtrnr RHS, RHS
+ 2040974647U, // <5,5,7,u>: Cost 2 vtrnr RHS, RHS
+ 1509982310U, // <5,5,u,0>: Cost 2 vext1 <5,5,5,5>, LHS
+ 1573115694U, // <5,5,u,1>: Cost 2 vext2 <4,u,5,5>, LHS
+ 2571806414U, // <5,5,u,2>: Cost 3 vext1 <3,5,5,u>, <2,3,4,5>
+ 2571807317U, // <5,5,u,3>: Cost 3 vext1 <3,5,5,u>, <3,5,5,u>
+ 1509985590U, // <5,5,u,4>: Cost 2 vext1 <5,5,5,5>, RHS
+ 229035318U, // <5,5,u,5>: Cost 1 vdup1 RHS
+ 2646857936U, // <5,5,u,6>: Cost 3 vext2 <4,u,5,5>, <u,6,3,7>
+ 2040982838U, // <5,5,u,7>: Cost 2 vtrnr RHS, RHS
+ 229035318U, // <5,5,u,u>: Cost 1 vdup1 RHS
+ 2638233600U, // <5,6,0,0>: Cost 3 vext2 <3,4,5,6>, <0,0,0,0>
+ 1564491878U, // <5,6,0,1>: Cost 2 vext2 <3,4,5,6>, LHS
+ 2632261796U, // <5,6,0,2>: Cost 3 vext2 <2,4,5,6>, <0,2,0,2>
+ 2638233856U, // <5,6,0,3>: Cost 3 vext2 <3,4,5,6>, <0,3,1,4>
+ 2638233938U, // <5,6,0,4>: Cost 3 vext2 <3,4,5,6>, <0,4,1,5>
+ 3706003885U, // <5,6,0,5>: Cost 4 vext2 <2,4,5,6>, <0,5,2,6>
+ 3706003967U, // <5,6,0,6>: Cost 4 vext2 <2,4,5,6>, <0,6,2,7>
+ 4047473974U, // <5,6,0,7>: Cost 4 vzipr <3,4,5,0>, RHS
+ 1564492445U, // <5,6,0,u>: Cost 2 vext2 <3,4,5,6>, LHS
+ 2638234358U, // <5,6,1,0>: Cost 3 vext2 <3,4,5,6>, <1,0,3,2>
+ 2638234420U, // <5,6,1,1>: Cost 3 vext2 <3,4,5,6>, <1,1,1,1>
+ 2638234518U, // <5,6,1,2>: Cost 3 vext2 <3,4,5,6>, <1,2,3,0>
+ 2638234584U, // <5,6,1,3>: Cost 3 vext2 <3,4,5,6>, <1,3,1,3>
+ 2626290768U, // <5,6,1,4>: Cost 3 vext2 <1,4,5,6>, <1,4,5,6>
+ 2638234768U, // <5,6,1,5>: Cost 3 vext2 <3,4,5,6>, <1,5,3,7>
+ 3700032719U, // <5,6,1,6>: Cost 4 vext2 <1,4,5,6>, <1,6,1,7>
+ 2982366518U, // <5,6,1,7>: Cost 3 vzipr <4,u,5,1>, RHS
+ 2628945300U, // <5,6,1,u>: Cost 3 vext2 <1,u,5,6>, <1,u,5,6>
+ 3706004925U, // <5,6,2,0>: Cost 4 vext2 <2,4,5,6>, <2,0,1,2>
+ 3711976966U, // <5,6,2,1>: Cost 4 vext2 <3,4,5,6>, <2,1,0,3>
+ 2638235240U, // <5,6,2,2>: Cost 3 vext2 <3,4,5,6>, <2,2,2,2>
+ 2638235302U, // <5,6,2,3>: Cost 3 vext2 <3,4,5,6>, <2,3,0,1>
+ 2632263465U, // <5,6,2,4>: Cost 3 vext2 <2,4,5,6>, <2,4,5,6>
+ 2638235496U, // <5,6,2,5>: Cost 3 vext2 <3,4,5,6>, <2,5,3,6>
+ 2638235578U, // <5,6,2,6>: Cost 3 vext2 <3,4,5,6>, <2,6,3,7>
+ 2713965050U, // <5,6,2,7>: Cost 3 vext3 <4,u,5,5>, <6,2,7,3>
+ 2634917997U, // <5,6,2,u>: Cost 3 vext2 <2,u,5,6>, <2,u,5,6>
+ 2638235798U, // <5,6,3,0>: Cost 3 vext2 <3,4,5,6>, <3,0,1,2>
+ 3711977695U, // <5,6,3,1>: Cost 4 vext2 <3,4,5,6>, <3,1,0,3>
+ 3710650720U, // <5,6,3,2>: Cost 4 vext2 <3,2,5,6>, <3,2,5,6>
+ 2638236060U, // <5,6,3,3>: Cost 3 vext2 <3,4,5,6>, <3,3,3,3>
+ 1564494338U, // <5,6,3,4>: Cost 2 vext2 <3,4,5,6>, <3,4,5,6>
+ 2638236234U, // <5,6,3,5>: Cost 3 vext2 <3,4,5,6>, <3,5,4,6>
+ 3711978104U, // <5,6,3,6>: Cost 4 vext2 <3,4,5,6>, <3,6,0,7>
+ 4034227510U, // <5,6,3,7>: Cost 4 vzipr <1,2,5,3>, RHS
+ 1567148870U, // <5,6,3,u>: Cost 2 vext2 <3,u,5,6>, <3,u,5,6>
+ 2577817702U, // <5,6,4,0>: Cost 3 vext1 <4,5,6,4>, LHS
+ 3700034544U, // <5,6,4,1>: Cost 4 vext2 <1,4,5,6>, <4,1,6,5>
+ 2723033713U, // <5,6,4,2>: Cost 3 vext3 <6,4,2,5>, <6,4,2,5>
+ 2638236818U, // <5,6,4,3>: Cost 3 vext2 <3,4,5,6>, <4,3,6,5>
+ 2644208859U, // <5,6,4,4>: Cost 3 vext2 <4,4,5,6>, <4,4,5,6>
+ 1564495158U, // <5,6,4,5>: Cost 2 vext2 <3,4,5,6>, RHS
+ 2645536125U, // <5,6,4,6>: Cost 3 vext2 <4,6,5,6>, <4,6,5,6>
+ 2723402398U, // <5,6,4,7>: Cost 3 vext3 <6,4,7,5>, <6,4,7,5>
+ 1564495401U, // <5,6,4,u>: Cost 2 vext2 <3,4,5,6>, RHS
+ 2577825894U, // <5,6,5,0>: Cost 3 vext1 <4,5,6,5>, LHS
+ 2662125264U, // <5,6,5,1>: Cost 3 vext2 <7,4,5,6>, <5,1,7,3>
+ 3775836867U, // <5,6,5,2>: Cost 4 vext3 <2,u,6,5>, <6,5,2,6>
+ 3711979343U, // <5,6,5,3>: Cost 4 vext2 <3,4,5,6>, <5,3,3,4>
+ 2650181556U, // <5,6,5,4>: Cost 3 vext2 <5,4,5,6>, <5,4,5,6>
+ 2662125572U, // <5,6,5,5>: Cost 3 vext2 <7,4,5,6>, <5,5,5,5>
+ 2638237732U, // <5,6,5,6>: Cost 3 vext2 <3,4,5,6>, <5,6,0,1>
+ 2982399286U, // <5,6,5,7>: Cost 3 vzipr <4,u,5,5>, RHS
+ 2982399287U, // <5,6,5,u>: Cost 3 vzipr <4,u,5,5>, RHS
+ 2583806054U, // <5,6,6,0>: Cost 3 vext1 <5,5,6,6>, LHS
+ 3711979910U, // <5,6,6,1>: Cost 4 vext2 <3,4,5,6>, <6,1,3,4>
+ 2662126074U, // <5,6,6,2>: Cost 3 vext2 <7,4,5,6>, <6,2,7,3>
+ 2583808514U, // <5,6,6,3>: Cost 3 vext1 <5,5,6,6>, <3,4,5,6>
+ 2583809334U, // <5,6,6,4>: Cost 3 vext1 <5,5,6,6>, RHS
+ 2583810062U, // <5,6,6,5>: Cost 3 vext1 <5,5,6,6>, <5,5,6,6>
+ 2638238520U, // <5,6,6,6>: Cost 3 vext2 <3,4,5,6>, <6,6,6,6>
+ 2973781302U, // <5,6,6,7>: Cost 3 vzipr <3,4,5,6>, RHS
+ 2973781303U, // <5,6,6,u>: Cost 3 vzipr <3,4,5,6>, RHS
+ 430358630U, // <5,6,7,0>: Cost 1 vext1 RHS, LHS
+ 1504101110U, // <5,6,7,1>: Cost 2 vext1 RHS, <1,0,3,2>
+ 1504101992U, // <5,6,7,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1504102550U, // <5,6,7,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 430361910U, // <5,6,7,4>: Cost 1 vext1 RHS, RHS
+ 1504104390U, // <5,6,7,5>: Cost 2 vext1 RHS, <5,4,7,6>
+ 1504105272U, // <5,6,7,6>: Cost 2 vext1 RHS, <6,6,6,6>
+ 1504106092U, // <5,6,7,7>: Cost 2 vext1 RHS, <7,7,7,7>
+ 430364462U, // <5,6,7,u>: Cost 1 vext1 RHS, LHS
+ 430366822U, // <5,6,u,0>: Cost 1 vext1 RHS, LHS
+ 1564497710U, // <5,6,u,1>: Cost 2 vext2 <3,4,5,6>, LHS
+ 1504110184U, // <5,6,u,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1504110742U, // <5,6,u,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 430370103U, // <5,6,u,4>: Cost 1 vext1 RHS, RHS
+ 1564498074U, // <5,6,u,5>: Cost 2 vext2 <3,4,5,6>, RHS
+ 1504113146U, // <5,6,u,6>: Cost 2 vext1 RHS, <6,2,7,3>
+ 1504113658U, // <5,6,u,7>: Cost 2 vext1 RHS, <7,0,1,2>
+ 430372654U, // <5,6,u,u>: Cost 1 vext1 RHS, LHS
+ 2625634304U, // <5,7,0,0>: Cost 3 vext2 <1,3,5,7>, <0,0,0,0>
+ 1551892582U, // <5,7,0,1>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625634468U, // <5,7,0,2>: Cost 3 vext2 <1,3,5,7>, <0,2,0,2>
+ 2571889247U, // <5,7,0,3>: Cost 3 vext1 <3,5,7,0>, <3,5,7,0>
+ 2625634642U, // <5,7,0,4>: Cost 3 vext2 <1,3,5,7>, <0,4,1,5>
+ 2595778728U, // <5,7,0,5>: Cost 3 vext1 <7,5,7,0>, <5,7,5,7>
+ 3699376639U, // <5,7,0,6>: Cost 4 vext2 <1,3,5,7>, <0,6,2,7>
+ 2260235715U, // <5,7,0,7>: Cost 3 vrev <7,5,7,0>
+ 1551893149U, // <5,7,0,u>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625635062U, // <5,7,1,0>: Cost 3 vext2 <1,3,5,7>, <1,0,3,2>
+ 2624308020U, // <5,7,1,1>: Cost 3 vext2 <1,1,5,7>, <1,1,1,1>
+ 2625635222U, // <5,7,1,2>: Cost 3 vext2 <1,3,5,7>, <1,2,3,0>
+ 1551893504U, // <5,7,1,3>: Cost 2 vext2 <1,3,5,7>, <1,3,5,7>
+ 2571898166U, // <5,7,1,4>: Cost 3 vext1 <3,5,7,1>, RHS
+ 2625635472U, // <5,7,1,5>: Cost 3 vext2 <1,3,5,7>, <1,5,3,7>
+ 2627626227U, // <5,7,1,6>: Cost 3 vext2 <1,6,5,7>, <1,6,5,7>
+ 3702031684U, // <5,7,1,7>: Cost 4 vext2 <1,7,5,7>, <1,7,5,7>
+ 1555211669U, // <5,7,1,u>: Cost 2 vext2 <1,u,5,7>, <1,u,5,7>
+ 2629617126U, // <5,7,2,0>: Cost 3 vext2 <2,0,5,7>, <2,0,5,7>
+ 3699377670U, // <5,7,2,1>: Cost 4 vext2 <1,3,5,7>, <2,1,0,3>
+ 2625635944U, // <5,7,2,2>: Cost 3 vext2 <1,3,5,7>, <2,2,2,2>
+ 2625636006U, // <5,7,2,3>: Cost 3 vext2 <1,3,5,7>, <2,3,0,1>
+ 2632271658U, // <5,7,2,4>: Cost 3 vext2 <2,4,5,7>, <2,4,5,7>
+ 2625636201U, // <5,7,2,5>: Cost 3 vext2 <1,3,5,7>, <2,5,3,7>
+ 2625636282U, // <5,7,2,6>: Cost 3 vext2 <1,3,5,7>, <2,6,3,7>
+ 3708004381U, // <5,7,2,7>: Cost 4 vext2 <2,7,5,7>, <2,7,5,7>
+ 2625636411U, // <5,7,2,u>: Cost 3 vext2 <1,3,5,7>, <2,u,0,1>
+ 2625636502U, // <5,7,3,0>: Cost 3 vext2 <1,3,5,7>, <3,0,1,2>
+ 2625636604U, // <5,7,3,1>: Cost 3 vext2 <1,3,5,7>, <3,1,3,5>
+ 3699378478U, // <5,7,3,2>: Cost 4 vext2 <1,3,5,7>, <3,2,0,1>
+ 2625636764U, // <5,7,3,3>: Cost 3 vext2 <1,3,5,7>, <3,3,3,3>
+ 2625636866U, // <5,7,3,4>: Cost 3 vext2 <1,3,5,7>, <3,4,5,6>
+ 2625636959U, // <5,7,3,5>: Cost 3 vext2 <1,3,5,7>, <3,5,7,0>
+ 3699378808U, // <5,7,3,6>: Cost 4 vext2 <1,3,5,7>, <3,6,0,7>
+ 2640235254U, // <5,7,3,7>: Cost 3 vext2 <3,7,5,7>, <3,7,5,7>
+ 2625637150U, // <5,7,3,u>: Cost 3 vext2 <1,3,5,7>, <3,u,1,2>
+ 2571919462U, // <5,7,4,0>: Cost 3 vext1 <3,5,7,4>, LHS
+ 2571920384U, // <5,7,4,1>: Cost 3 vext1 <3,5,7,4>, <1,3,5,7>
+ 3699379260U, // <5,7,4,2>: Cost 4 vext2 <1,3,5,7>, <4,2,6,0>
+ 2571922019U, // <5,7,4,3>: Cost 3 vext1 <3,5,7,4>, <3,5,7,4>
+ 2571922742U, // <5,7,4,4>: Cost 3 vext1 <3,5,7,4>, RHS
+ 1551895862U, // <5,7,4,5>: Cost 2 vext2 <1,3,5,7>, RHS
+ 2846277980U, // <5,7,4,6>: Cost 3 vuzpr RHS, <0,4,2,6>
+ 2646207951U, // <5,7,4,7>: Cost 3 vext2 <4,7,5,7>, <4,7,5,7>
+ 1551896105U, // <5,7,4,u>: Cost 2 vext2 <1,3,5,7>, RHS
+ 2583871590U, // <5,7,5,0>: Cost 3 vext1 <5,5,7,5>, LHS
+ 2652180176U, // <5,7,5,1>: Cost 3 vext2 <5,7,5,7>, <5,1,7,3>
+ 2625638177U, // <5,7,5,2>: Cost 3 vext2 <1,3,5,7>, <5,2,7,3>
+ 2625638262U, // <5,7,5,3>: Cost 3 vext2 <1,3,5,7>, <5,3,7,7>
+ 2583874870U, // <5,7,5,4>: Cost 3 vext1 <5,5,7,5>, RHS
+ 2846281732U, // <5,7,5,5>: Cost 3 vuzpr RHS, <5,5,5,5>
+ 2651517015U, // <5,7,5,6>: Cost 3 vext2 <5,6,5,7>, <5,6,5,7>
+ 1772539190U, // <5,7,5,7>: Cost 2 vuzpr RHS, RHS
+ 1772539191U, // <5,7,5,u>: Cost 2 vuzpr RHS, RHS
+ 2846281826U, // <5,7,6,0>: Cost 3 vuzpr RHS, <5,6,7,0>
+ 3699380615U, // <5,7,6,1>: Cost 4 vext2 <1,3,5,7>, <6,1,3,5>
+ 2846281108U, // <5,7,6,2>: Cost 3 vuzpr RHS, <4,6,u,2>
+ 2589854210U, // <5,7,6,3>: Cost 3 vext1 <6,5,7,6>, <3,4,5,6>
+ 2846281830U, // <5,7,6,4>: Cost 3 vuzpr RHS, <5,6,7,4>
+ 2725467658U, // <5,7,6,5>: Cost 3 vext3 <6,7,u,5>, <7,6,5,u>
+ 2846281076U, // <5,7,6,6>: Cost 3 vuzpr RHS, <4,6,4,6>
+ 2846279610U, // <5,7,6,7>: Cost 3 vuzpr RHS, <2,6,3,7>
+ 2846279611U, // <5,7,6,u>: Cost 3 vuzpr RHS, <2,6,3,u>
+ 1510146150U, // <5,7,7,0>: Cost 2 vext1 <5,5,7,7>, LHS
+ 2846282574U, // <5,7,7,1>: Cost 3 vuzpr RHS, <6,7,0,1>
+ 2583889512U, // <5,7,7,2>: Cost 3 vext1 <5,5,7,7>, <2,2,2,2>
+ 2846281919U, // <5,7,7,3>: Cost 3 vuzpr RHS, <5,7,u,3>
+ 1510149430U, // <5,7,7,4>: Cost 2 vext1 <5,5,7,7>, RHS
+ 1510150168U, // <5,7,7,5>: Cost 2 vext1 <5,5,7,7>, <5,5,7,7>
+ 2583892474U, // <5,7,7,6>: Cost 3 vext1 <5,5,7,7>, <6,2,7,3>
+ 2625640044U, // <5,7,7,7>: Cost 3 vext2 <1,3,5,7>, <7,7,7,7>
+ 1510151982U, // <5,7,7,u>: Cost 2 vext1 <5,5,7,7>, LHS
+ 1510154342U, // <5,7,u,0>: Cost 2 vext1 <5,5,7,u>, LHS
+ 1551898414U, // <5,7,u,1>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625640325U, // <5,7,u,2>: Cost 3 vext2 <1,3,5,7>, <u,2,3,0>
+ 1772536477U, // <5,7,u,3>: Cost 2 vuzpr RHS, LHS
+ 1510157622U, // <5,7,u,4>: Cost 2 vext1 <5,5,7,u>, RHS
+ 1551898778U, // <5,7,u,5>: Cost 2 vext2 <1,3,5,7>, RHS
+ 2625640656U, // <5,7,u,6>: Cost 3 vext2 <1,3,5,7>, <u,6,3,7>
+ 1772539433U, // <5,7,u,7>: Cost 2 vuzpr RHS, RHS
+ 1551898981U, // <5,7,u,u>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625642496U, // <5,u,0,0>: Cost 3 vext2 <1,3,5,u>, <0,0,0,0>
+ 1551900774U, // <5,u,0,1>: Cost 2 vext2 <1,3,5,u>, LHS
+ 2625642660U, // <5,u,0,2>: Cost 3 vext2 <1,3,5,u>, <0,2,0,2>
+ 2698630885U, // <5,u,0,3>: Cost 3 vext3 <2,3,4,5>, <u,0,3,2>
+ 2687129325U, // <5,u,0,4>: Cost 3 vext3 <0,4,1,5>, <u,0,4,1>
+ 2689783542U, // <5,u,0,5>: Cost 3 vext3 <0,u,1,5>, <u,0,5,1>
+ 2266134675U, // <5,u,0,6>: Cost 3 vrev <u,5,6,0>
+ 2595853772U, // <5,u,0,7>: Cost 3 vext1 <7,5,u,0>, <7,5,u,0>
+ 1551901341U, // <5,u,0,u>: Cost 2 vext2 <1,3,5,u>, LHS
+ 2625643254U, // <5,u,1,0>: Cost 3 vext2 <1,3,5,u>, <1,0,3,2>
+ 2625643316U, // <5,u,1,1>: Cost 3 vext2 <1,3,5,u>, <1,1,1,1>
+ 1613387566U, // <5,u,1,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 1551901697U, // <5,u,1,3>: Cost 2 vext2 <1,3,5,u>, <1,3,5,u>
+ 2626307154U, // <5,u,1,4>: Cost 3 vext2 <1,4,5,u>, <1,4,5,u>
+ 2689783622U, // <5,u,1,5>: Cost 3 vext3 <0,u,1,5>, <u,1,5,0>
+ 2627634420U, // <5,u,1,6>: Cost 3 vext2 <1,6,5,u>, <1,6,5,u>
+ 2982366536U, // <5,u,1,7>: Cost 3 vzipr <4,u,5,1>, RHS
+ 1613387620U, // <5,u,1,u>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2846286742U, // <5,u,2,0>: Cost 3 vuzpr RHS, <1,2,3,0>
+ 2685796528U, // <5,u,2,1>: Cost 3 vext3 <0,2,1,5>, <0,2,1,5>
+ 2625644136U, // <5,u,2,2>: Cost 3 vext2 <1,3,5,u>, <2,2,2,2>
+ 2687129480U, // <5,u,2,3>: Cost 3 vext3 <0,4,1,5>, <u,2,3,3>
+ 2632279851U, // <5,u,2,4>: Cost 3 vext2 <2,4,5,u>, <2,4,5,u>
+ 2625644394U, // <5,u,2,5>: Cost 3 vext2 <1,3,5,u>, <2,5,3,u>
+ 2625644474U, // <5,u,2,6>: Cost 3 vext2 <1,3,5,u>, <2,6,3,7>
+ 2713966508U, // <5,u,2,7>: Cost 3 vext3 <4,u,5,5>, <u,2,7,3>
+ 2625644603U, // <5,u,2,u>: Cost 3 vext2 <1,3,5,u>, <2,u,0,1>
+ 2687129532U, // <5,u,3,0>: Cost 3 vext3 <0,4,1,5>, <u,3,0,1>
+ 2636261649U, // <5,u,3,1>: Cost 3 vext2 <3,1,5,u>, <3,1,5,u>
+ 2636925282U, // <5,u,3,2>: Cost 3 vext2 <3,2,5,u>, <3,2,5,u>
+ 2625644956U, // <5,u,3,3>: Cost 3 vext2 <1,3,5,u>, <3,3,3,3>
+ 1564510724U, // <5,u,3,4>: Cost 2 vext2 <3,4,5,u>, <3,4,5,u>
+ 2625645160U, // <5,u,3,5>: Cost 3 vext2 <1,3,5,u>, <3,5,u,0>
+ 2734610422U, // <5,u,3,6>: Cost 3 vext3 <u,3,6,5>, <u,3,6,5>
+ 2640243447U, // <5,u,3,7>: Cost 3 vext2 <3,7,5,u>, <3,7,5,u>
+ 1567165256U, // <5,u,3,u>: Cost 2 vext2 <3,u,5,u>, <3,u,5,u>
+ 1567828889U, // <5,u,4,0>: Cost 2 vext2 <4,0,5,u>, <4,0,5,u>
+ 1661163546U, // <5,u,4,1>: Cost 2 vext3 <u,4,1,5>, <u,4,1,5>
+ 2734463012U, // <5,u,4,2>: Cost 3 vext3 <u,3,4,5>, <u,4,2,6>
+ 2698631212U, // <5,u,4,3>: Cost 3 vext3 <2,3,4,5>, <u,4,3,5>
+ 1570458842U, // <5,u,4,4>: Cost 2 vext2 <4,4,5,5>, <4,4,5,5>
+ 1551904054U, // <5,u,4,5>: Cost 2 vext2 <1,3,5,u>, RHS
+ 2846286172U, // <5,u,4,6>: Cost 3 vuzpr RHS, <0,4,2,6>
+ 2646216144U, // <5,u,4,7>: Cost 3 vext2 <4,7,5,u>, <4,7,5,u>
+ 1551904297U, // <5,u,4,u>: Cost 2 vext2 <1,3,5,u>, RHS
+ 1509982310U, // <5,u,5,0>: Cost 2 vext1 <5,5,5,5>, LHS
+ 2560058555U, // <5,u,5,1>: Cost 3 vext1 <1,5,u,5>, <1,5,u,5>
+ 2698926194U, // <5,u,5,2>: Cost 3 vext3 <2,3,u,5>, <u,5,2,3>
+ 2698631295U, // <5,u,5,3>: Cost 3 vext3 <2,3,4,5>, <u,5,3,7>
+ 1509985590U, // <5,u,5,4>: Cost 2 vext1 <5,5,5,5>, RHS
+ 229035318U, // <5,u,5,5>: Cost 1 vdup1 RHS
+ 1613387930U, // <5,u,5,6>: Cost 2 vext3 <0,4,1,5>, RHS
+ 1772547382U, // <5,u,5,7>: Cost 2 vuzpr RHS, RHS
+ 229035318U, // <5,u,5,u>: Cost 1 vdup1 RHS
+ 2566037606U, // <5,u,6,0>: Cost 3 vext1 <2,5,u,6>, LHS
+ 2920044334U, // <5,u,6,1>: Cost 3 vzipl <5,6,7,0>, LHS
+ 2566039445U, // <5,u,6,2>: Cost 3 vext1 <2,5,u,6>, <2,5,u,6>
+ 2687129808U, // <5,u,6,3>: Cost 3 vext3 <0,4,1,5>, <u,6,3,7>
+ 2566040886U, // <5,u,6,4>: Cost 3 vext1 <2,5,u,6>, RHS
+ 2920044698U, // <5,u,6,5>: Cost 3 vzipl <5,6,7,0>, RHS
+ 2846289268U, // <5,u,6,6>: Cost 3 vuzpr RHS, <4,6,4,6>
+ 2973781320U, // <5,u,6,7>: Cost 3 vzipr <3,4,5,6>, RHS
+ 2687129853U, // <5,u,6,u>: Cost 3 vext3 <0,4,1,5>, <u,6,u,7>
+ 430506086U, // <5,u,7,0>: Cost 1 vext1 RHS, LHS
+ 1486333117U, // <5,u,7,1>: Cost 2 vext1 <1,5,u,7>, <1,5,u,7>
+ 1504249448U, // <5,u,7,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 2040971933U, // <5,u,7,3>: Cost 2 vtrnr RHS, LHS
+ 430509384U, // <5,u,7,4>: Cost 1 vext1 RHS, RHS
+ 1504251600U, // <5,u,7,5>: Cost 2 vext1 RHS, <5,1,7,3>
+ 118708378U, // <5,u,7,6>: Cost 1 vrev RHS
+ 2040974889U, // <5,u,7,7>: Cost 2 vtrnr RHS, RHS
+ 430511918U, // <5,u,7,u>: Cost 1 vext1 RHS, LHS
+ 430514278U, // <5,u,u,0>: Cost 1 vext1 RHS, LHS
+ 1551906606U, // <5,u,u,1>: Cost 2 vext2 <1,3,5,u>, LHS
+ 1613388133U, // <5,u,u,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 1772544669U, // <5,u,u,3>: Cost 2 vuzpr RHS, LHS
+ 430517577U, // <5,u,u,4>: Cost 1 vext1 RHS, RHS
+ 229035318U, // <5,u,u,5>: Cost 1 vdup1 RHS
+ 118716571U, // <5,u,u,6>: Cost 1 vrev RHS
+ 1772547625U, // <5,u,u,7>: Cost 2 vuzpr RHS, RHS
+ 430520110U, // <5,u,u,u>: Cost 1 vext1 RHS, LHS
+ 2686025728U, // <6,0,0,0>: Cost 3 vext3 <0,2,4,6>, <0,0,0,0>
+ 2686025738U, // <6,0,0,1>: Cost 3 vext3 <0,2,4,6>, <0,0,1,1>
+ 2686025748U, // <6,0,0,2>: Cost 3 vext3 <0,2,4,6>, <0,0,2,2>
+ 3779084320U, // <6,0,0,3>: Cost 4 vext3 <3,4,5,6>, <0,0,3,5>
+ 2642903388U, // <6,0,0,4>: Cost 3 vext2 <4,2,6,0>, <0,4,2,6>
+ 3657723939U, // <6,0,0,5>: Cost 4 vext1 <5,6,0,0>, <5,6,0,0>
+ 3926676514U, // <6,0,0,6>: Cost 4 vuzpr <5,6,7,0>, <7,0,5,6>
+ 3926675786U, // <6,0,0,7>: Cost 4 vuzpr <5,6,7,0>, <6,0,5,7>
+ 2686025802U, // <6,0,0,u>: Cost 3 vext3 <0,2,4,6>, <0,0,u,2>
+ 2566070374U, // <6,0,1,0>: Cost 3 vext1 <2,6,0,1>, LHS
+ 3759767642U, // <6,0,1,1>: Cost 4 vext3 <0,2,4,6>, <0,1,1,0>
+ 1612284006U, // <6,0,1,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2583988738U, // <6,0,1,3>: Cost 3 vext1 <5,6,0,1>, <3,4,5,6>
+ 2566073654U, // <6,0,1,4>: Cost 3 vext1 <2,6,0,1>, RHS
+ 2583990308U, // <6,0,1,5>: Cost 3 vext1 <5,6,0,1>, <5,6,0,1>
+ 2589963005U, // <6,0,1,6>: Cost 3 vext1 <6,6,0,1>, <6,6,0,1>
+ 2595935702U, // <6,0,1,7>: Cost 3 vext1 <7,6,0,1>, <7,6,0,1>
+ 1612284060U, // <6,0,1,u>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2686025892U, // <6,0,2,0>: Cost 3 vext3 <0,2,4,6>, <0,2,0,2>
+ 2685804721U, // <6,0,2,1>: Cost 3 vext3 <0,2,1,6>, <0,2,1,6>
+ 3759620282U, // <6,0,2,2>: Cost 4 vext3 <0,2,2,6>, <0,2,2,6>
+ 2705342658U, // <6,0,2,3>: Cost 3 vext3 <3,4,5,6>, <0,2,3,5>
+ 1612284108U, // <6,0,2,4>: Cost 2 vext3 <0,2,4,6>, <0,2,4,6>
+ 3706029956U, // <6,0,2,5>: Cost 4 vext2 <2,4,6,0>, <2,5,6,7>
+ 2686173406U, // <6,0,2,6>: Cost 3 vext3 <0,2,6,6>, <0,2,6,6>
+ 3651769338U, // <6,0,2,7>: Cost 4 vext1 <4,6,0,2>, <7,0,1,2>
+ 1612579056U, // <6,0,2,u>: Cost 2 vext3 <0,2,u,6>, <0,2,u,6>
+ 3706030230U, // <6,0,3,0>: Cost 4 vext2 <2,4,6,0>, <3,0,1,2>
+ 2705342720U, // <6,0,3,1>: Cost 3 vext3 <3,4,5,6>, <0,3,1,4>
+ 2705342730U, // <6,0,3,2>: Cost 3 vext3 <3,4,5,6>, <0,3,2,5>
+ 3706030492U, // <6,0,3,3>: Cost 4 vext2 <2,4,6,0>, <3,3,3,3>
+ 2644896258U, // <6,0,3,4>: Cost 3 vext2 <4,5,6,0>, <3,4,5,6>
+ 3718638154U, // <6,0,3,5>: Cost 4 vext2 <4,5,6,0>, <3,5,4,6>
+ 3729918619U, // <6,0,3,6>: Cost 4 vext2 <6,4,6,0>, <3,6,4,6>
+ 3926672384U, // <6,0,3,7>: Cost 4 vuzpr <5,6,7,0>, <1,3,5,7>
+ 2705342784U, // <6,0,3,u>: Cost 3 vext3 <3,4,5,6>, <0,3,u,5>
+ 2687058250U, // <6,0,4,0>: Cost 3 vext3 <0,4,0,6>, <0,4,0,6>
+ 2686026066U, // <6,0,4,1>: Cost 3 vext3 <0,2,4,6>, <0,4,1,5>
+ 1613463900U, // <6,0,4,2>: Cost 2 vext3 <0,4,2,6>, <0,4,2,6>
+ 3761021285U, // <6,0,4,3>: Cost 4 vext3 <0,4,3,6>, <0,4,3,6>
+ 2687353198U, // <6,0,4,4>: Cost 3 vext3 <0,4,4,6>, <0,4,4,6>
+ 2632289590U, // <6,0,4,5>: Cost 3 vext2 <2,4,6,0>, RHS
+ 2645560704U, // <6,0,4,6>: Cost 3 vext2 <4,6,6,0>, <4,6,6,0>
+ 2646224337U, // <6,0,4,7>: Cost 3 vext2 <4,7,6,0>, <4,7,6,0>
+ 1613906322U, // <6,0,4,u>: Cost 2 vext3 <0,4,u,6>, <0,4,u,6>
+ 3651788902U, // <6,0,5,0>: Cost 4 vext1 <4,6,0,5>, LHS
+ 2687795620U, // <6,0,5,1>: Cost 3 vext3 <0,5,1,6>, <0,5,1,6>
+ 3761611181U, // <6,0,5,2>: Cost 4 vext3 <0,5,2,6>, <0,5,2,6>
+ 3723284326U, // <6,0,5,3>: Cost 4 vext2 <5,3,6,0>, <5,3,6,0>
+ 2646224838U, // <6,0,5,4>: Cost 3 vext2 <4,7,6,0>, <5,4,7,6>
+ 3718639630U, // <6,0,5,5>: Cost 4 vext2 <4,5,6,0>, <5,5,6,6>
+ 2652196962U, // <6,0,5,6>: Cost 3 vext2 <5,7,6,0>, <5,6,7,0>
+ 2852932918U, // <6,0,5,7>: Cost 3 vuzpr <5,6,7,0>, RHS
+ 2852932919U, // <6,0,5,u>: Cost 3 vuzpr <5,6,7,0>, RHS
+ 2852933730U, // <6,0,6,0>: Cost 3 vuzpr <5,6,7,0>, <5,6,7,0>
+ 2925985894U, // <6,0,6,1>: Cost 3 vzipl <6,6,6,6>, LHS
+ 3060203622U, // <6,0,6,2>: Cost 3 vtrnl <6,6,6,6>, LHS
+ 3718640178U, // <6,0,6,3>: Cost 4 vext2 <4,5,6,0>, <6,3,4,5>
+ 2656178832U, // <6,0,6,4>: Cost 3 vext2 <6,4,6,0>, <6,4,6,0>
+ 3725939378U, // <6,0,6,5>: Cost 4 vext2 <5,7,6,0>, <6,5,0,7>
+ 2657506098U, // <6,0,6,6>: Cost 3 vext2 <6,6,6,0>, <6,6,6,0>
+ 2619020110U, // <6,0,6,7>: Cost 3 vext2 <0,2,6,0>, <6,7,0,1>
+ 2925986461U, // <6,0,6,u>: Cost 3 vzipl <6,6,6,6>, LHS
+ 2572091494U, // <6,0,7,0>: Cost 3 vext1 <3,6,0,7>, LHS
+ 2572092310U, // <6,0,7,1>: Cost 3 vext1 <3,6,0,7>, <1,2,3,0>
+ 2980495524U, // <6,0,7,2>: Cost 3 vzipr RHS, <0,2,0,2>
+ 2572094072U, // <6,0,7,3>: Cost 3 vext1 <3,6,0,7>, <3,6,0,7>
+ 2572094774U, // <6,0,7,4>: Cost 3 vext1 <3,6,0,7>, RHS
+ 4054238242U, // <6,0,7,5>: Cost 4 vzipr RHS, <1,4,0,5>
+ 3645837653U, // <6,0,7,6>: Cost 4 vext1 <3,6,0,7>, <6,0,7,0>
+ 4054239054U, // <6,0,7,7>: Cost 4 vzipr RHS, <2,5,0,7>
+ 2572097326U, // <6,0,7,u>: Cost 3 vext1 <3,6,0,7>, LHS
+ 2686026378U, // <6,0,u,0>: Cost 3 vext3 <0,2,4,6>, <0,u,0,2>
+ 2686026386U, // <6,0,u,1>: Cost 3 vext3 <0,2,4,6>, <0,u,1,1>
+ 1612284573U, // <6,0,u,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2705343144U, // <6,0,u,3>: Cost 3 vext3 <3,4,5,6>, <0,u,3,5>
+ 1616265906U, // <6,0,u,4>: Cost 2 vext3 <0,u,4,6>, <0,u,4,6>
+ 2632292506U, // <6,0,u,5>: Cost 3 vext2 <2,4,6,0>, RHS
+ 2590020356U, // <6,0,u,6>: Cost 3 vext1 <6,6,0,u>, <6,6,0,u>
+ 2852933161U, // <6,0,u,7>: Cost 3 vuzpr <5,6,7,0>, RHS
+ 1612284627U, // <6,0,u,u>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2595995750U, // <6,1,0,0>: Cost 3 vext1 <7,6,1,0>, LHS
+ 2646229094U, // <6,1,0,1>: Cost 3 vext2 <4,7,6,1>, LHS
+ 3694092492U, // <6,1,0,2>: Cost 4 vext2 <0,4,6,1>, <0,2,4,6>
+ 2686026486U, // <6,1,0,3>: Cost 3 vext3 <0,2,4,6>, <1,0,3,2>
+ 2595999030U, // <6,1,0,4>: Cost 3 vext1 <7,6,1,0>, RHS
+ 3767730952U, // <6,1,0,5>: Cost 4 vext3 <1,5,4,6>, <1,0,5,2>
+ 2596000590U, // <6,1,0,6>: Cost 3 vext1 <7,6,1,0>, <6,7,0,1>
+ 2596001246U, // <6,1,0,7>: Cost 3 vext1 <7,6,1,0>, <7,6,1,0>
+ 2686026531U, // <6,1,0,u>: Cost 3 vext3 <0,2,4,6>, <1,0,u,2>
+ 3763602219U, // <6,1,1,0>: Cost 4 vext3 <0,u,2,6>, <1,1,0,1>
+ 2686026548U, // <6,1,1,1>: Cost 3 vext3 <0,2,4,6>, <1,1,1,1>
+ 3764929346U, // <6,1,1,2>: Cost 4 vext3 <1,1,2,6>, <1,1,2,6>
+ 2686026568U, // <6,1,1,3>: Cost 3 vext3 <0,2,4,6>, <1,1,3,3>
+ 2691334996U, // <6,1,1,4>: Cost 3 vext3 <1,1,4,6>, <1,1,4,6>
+ 3760874332U, // <6,1,1,5>: Cost 4 vext3 <0,4,1,6>, <1,1,5,5>
+ 3765224294U, // <6,1,1,6>: Cost 4 vext3 <1,1,6,6>, <1,1,6,6>
+ 3669751263U, // <6,1,1,7>: Cost 4 vext1 <7,6,1,1>, <7,6,1,1>
+ 2686026613U, // <6,1,1,u>: Cost 3 vext3 <0,2,4,6>, <1,1,u,3>
+ 2554208358U, // <6,1,2,0>: Cost 3 vext1 <0,6,1,2>, LHS
+ 3763602311U, // <6,1,2,1>: Cost 4 vext3 <0,u,2,6>, <1,2,1,3>
+ 3639895971U, // <6,1,2,2>: Cost 4 vext1 <2,6,1,2>, <2,6,1,2>
+ 2686026646U, // <6,1,2,3>: Cost 3 vext3 <0,2,4,6>, <1,2,3,0>
+ 2554211638U, // <6,1,2,4>: Cost 3 vext1 <0,6,1,2>, RHS
+ 3760874411U, // <6,1,2,5>: Cost 4 vext3 <0,4,1,6>, <1,2,5,3>
+ 2554212858U, // <6,1,2,6>: Cost 3 vext1 <0,6,1,2>, <6,2,7,3>
+ 3802973114U, // <6,1,2,7>: Cost 4 vext3 <7,4,5,6>, <1,2,7,0>
+ 2686026691U, // <6,1,2,u>: Cost 3 vext3 <0,2,4,6>, <1,2,u,0>
+ 2566160486U, // <6,1,3,0>: Cost 3 vext1 <2,6,1,3>, LHS
+ 2686026712U, // <6,1,3,1>: Cost 3 vext3 <0,2,4,6>, <1,3,1,3>
+ 2686026724U, // <6,1,3,2>: Cost 3 vext3 <0,2,4,6>, <1,3,2,6>
+ 3759768552U, // <6,1,3,3>: Cost 4 vext3 <0,2,4,6>, <1,3,3,1>
+ 2692662262U, // <6,1,3,4>: Cost 3 vext3 <1,3,4,6>, <1,3,4,6>
+ 2686026752U, // <6,1,3,5>: Cost 3 vext3 <0,2,4,6>, <1,3,5,7>
+ 2590053128U, // <6,1,3,6>: Cost 3 vext1 <6,6,1,3>, <6,6,1,3>
+ 3663795194U, // <6,1,3,7>: Cost 4 vext1 <6,6,1,3>, <7,0,1,2>
+ 2686026775U, // <6,1,3,u>: Cost 3 vext3 <0,2,4,6>, <1,3,u,3>
+ 2641587099U, // <6,1,4,0>: Cost 3 vext2 <4,0,6,1>, <4,0,6,1>
+ 2693104684U, // <6,1,4,1>: Cost 3 vext3 <1,4,1,6>, <1,4,1,6>
+ 3639912357U, // <6,1,4,2>: Cost 4 vext1 <2,6,1,4>, <2,6,1,4>
+ 2687206462U, // <6,1,4,3>: Cost 3 vext3 <0,4,2,6>, <1,4,3,6>
+ 3633941814U, // <6,1,4,4>: Cost 4 vext1 <1,6,1,4>, RHS
+ 2693399632U, // <6,1,4,5>: Cost 3 vext3 <1,4,5,6>, <1,4,5,6>
+ 3765077075U, // <6,1,4,6>: Cost 4 vext3 <1,1,4,6>, <1,4,6,0>
+ 2646232530U, // <6,1,4,7>: Cost 3 vext2 <4,7,6,1>, <4,7,6,1>
+ 2687206507U, // <6,1,4,u>: Cost 3 vext3 <0,4,2,6>, <1,4,u,6>
+ 2647559796U, // <6,1,5,0>: Cost 3 vext2 <5,0,6,1>, <5,0,6,1>
+ 3765077118U, // <6,1,5,1>: Cost 4 vext3 <1,1,4,6>, <1,5,1,7>
+ 3767583878U, // <6,1,5,2>: Cost 4 vext3 <1,5,2,6>, <1,5,2,6>
+ 2686026896U, // <6,1,5,3>: Cost 3 vext3 <0,2,4,6>, <1,5,3,7>
+ 2693989528U, // <6,1,5,4>: Cost 3 vext3 <1,5,4,6>, <1,5,4,6>
+ 3767805089U, // <6,1,5,5>: Cost 4 vext3 <1,5,5,6>, <1,5,5,6>
+ 2652868706U, // <6,1,5,6>: Cost 3 vext2 <5,u,6,1>, <5,6,7,0>
+ 3908250934U, // <6,1,5,7>: Cost 4 vuzpr <2,6,0,1>, RHS
+ 2686026941U, // <6,1,5,u>: Cost 3 vext3 <0,2,4,6>, <1,5,u,7>
+ 2554241126U, // <6,1,6,0>: Cost 3 vext1 <0,6,1,6>, LHS
+ 3763602639U, // <6,1,6,1>: Cost 4 vext3 <0,u,2,6>, <1,6,1,7>
+ 3759547607U, // <6,1,6,2>: Cost 4 vext3 <0,2,1,6>, <1,6,2,6>
+ 3115221094U, // <6,1,6,3>: Cost 3 vtrnr <4,6,4,6>, LHS
+ 2554244406U, // <6,1,6,4>: Cost 3 vext1 <0,6,1,6>, RHS
+ 3760874739U, // <6,1,6,5>: Cost 4 vext3 <0,4,1,6>, <1,6,5,7>
+ 2554245944U, // <6,1,6,6>: Cost 3 vext1 <0,6,1,6>, <6,6,6,6>
+ 3719975758U, // <6,1,6,7>: Cost 4 vext2 <4,7,6,1>, <6,7,0,1>
+ 3115221099U, // <6,1,6,u>: Cost 3 vtrnr <4,6,4,6>, LHS
+ 2560221286U, // <6,1,7,0>: Cost 3 vext1 <1,6,1,7>, LHS
+ 2560222415U, // <6,1,7,1>: Cost 3 vext1 <1,6,1,7>, <1,6,1,7>
+ 2980497558U, // <6,1,7,2>: Cost 3 vzipr RHS, <3,0,1,2>
+ 3103211622U, // <6,1,7,3>: Cost 3 vtrnr <2,6,3,7>, LHS
+ 2560224566U, // <6,1,7,4>: Cost 3 vext1 <1,6,1,7>, RHS
+ 2980495698U, // <6,1,7,5>: Cost 3 vzipr RHS, <0,4,1,5>
+ 3633967526U, // <6,1,7,6>: Cost 4 vext1 <1,6,1,7>, <6,1,7,0>
+ 4054237686U, // <6,1,7,7>: Cost 4 vzipr RHS, <0,6,1,7>
+ 2560227118U, // <6,1,7,u>: Cost 3 vext1 <1,6,1,7>, LHS
+ 2560229478U, // <6,1,u,0>: Cost 3 vext1 <1,6,1,u>, LHS
+ 2686027117U, // <6,1,u,1>: Cost 3 vext3 <0,2,4,6>, <1,u,1,3>
+ 2686027129U, // <6,1,u,2>: Cost 3 vext3 <0,2,4,6>, <1,u,2,6>
+ 2686027132U, // <6,1,u,3>: Cost 3 vext3 <0,2,4,6>, <1,u,3,0>
+ 2687206795U, // <6,1,u,4>: Cost 3 vext3 <0,4,2,6>, <1,u,4,6>
+ 2686027157U, // <6,1,u,5>: Cost 3 vext3 <0,2,4,6>, <1,u,5,7>
+ 2590094093U, // <6,1,u,6>: Cost 3 vext1 <6,6,1,u>, <6,6,1,u>
+ 2596066790U, // <6,1,u,7>: Cost 3 vext1 <7,6,1,u>, <7,6,1,u>
+ 2686027177U, // <6,1,u,u>: Cost 3 vext3 <0,2,4,6>, <1,u,u,0>
+ 2646900736U, // <6,2,0,0>: Cost 3 vext2 <4,u,6,2>, <0,0,0,0>
+ 1573159014U, // <6,2,0,1>: Cost 2 vext2 <4,u,6,2>, LHS
+ 2646900900U, // <6,2,0,2>: Cost 3 vext2 <4,u,6,2>, <0,2,0,2>
+ 3759769037U, // <6,2,0,3>: Cost 4 vext3 <0,2,4,6>, <2,0,3,0>
+ 2641592668U, // <6,2,0,4>: Cost 3 vext2 <4,0,6,2>, <0,4,2,6>
+ 3779085794U, // <6,2,0,5>: Cost 4 vext3 <3,4,5,6>, <2,0,5,3>
+ 2686027244U, // <6,2,0,6>: Cost 3 vext3 <0,2,4,6>, <2,0,6,4>
+ 3669816807U, // <6,2,0,7>: Cost 4 vext1 <7,6,2,0>, <7,6,2,0>
+ 1573159581U, // <6,2,0,u>: Cost 2 vext2 <4,u,6,2>, LHS
+ 2230527897U, // <6,2,1,0>: Cost 3 vrev <2,6,0,1>
+ 2646901556U, // <6,2,1,1>: Cost 3 vext2 <4,u,6,2>, <1,1,1,1>
+ 2646901654U, // <6,2,1,2>: Cost 3 vext2 <4,u,6,2>, <1,2,3,0>
+ 2847047782U, // <6,2,1,3>: Cost 3 vuzpr <4,6,u,2>, LHS
+ 3771049517U, // <6,2,1,4>: Cost 4 vext3 <2,1,4,6>, <2,1,4,6>
+ 2646901904U, // <6,2,1,5>: Cost 3 vext2 <4,u,6,2>, <1,5,3,7>
+ 2686027324U, // <6,2,1,6>: Cost 3 vext3 <0,2,4,6>, <2,1,6,3>
+ 3669825000U, // <6,2,1,7>: Cost 4 vext1 <7,6,2,1>, <7,6,2,1>
+ 2231117793U, // <6,2,1,u>: Cost 3 vrev <2,6,u,1>
+ 3763603029U, // <6,2,2,0>: Cost 4 vext3 <0,u,2,6>, <2,2,0,1>
+ 3759769184U, // <6,2,2,1>: Cost 4 vext3 <0,2,4,6>, <2,2,1,3>
+ 2686027368U, // <6,2,2,2>: Cost 3 vext3 <0,2,4,6>, <2,2,2,2>
+ 2686027378U, // <6,2,2,3>: Cost 3 vext3 <0,2,4,6>, <2,2,3,3>
+ 2697971326U, // <6,2,2,4>: Cost 3 vext3 <2,2,4,6>, <2,2,4,6>
+ 3759769224U, // <6,2,2,5>: Cost 4 vext3 <0,2,4,6>, <2,2,5,7>
+ 2698118800U, // <6,2,2,6>: Cost 3 vext3 <2,2,6,6>, <2,2,6,6>
+ 3920794092U, // <6,2,2,7>: Cost 4 vuzpr <4,6,u,2>, <6,2,5,7>
+ 2686027423U, // <6,2,2,u>: Cost 3 vext3 <0,2,4,6>, <2,2,u,3>
+ 2686027430U, // <6,2,3,0>: Cost 3 vext3 <0,2,4,6>, <2,3,0,1>
+ 3759769262U, // <6,2,3,1>: Cost 4 vext3 <0,2,4,6>, <2,3,1,0>
+ 2698487485U, // <6,2,3,2>: Cost 3 vext3 <2,3,2,6>, <2,3,2,6>
+ 2705344196U, // <6,2,3,3>: Cost 3 vext3 <3,4,5,6>, <2,3,3,4>
+ 2686027470U, // <6,2,3,4>: Cost 3 vext3 <0,2,4,6>, <2,3,4,5>
+ 2698708696U, // <6,2,3,5>: Cost 3 vext3 <2,3,5,6>, <2,3,5,6>
+ 2724660961U, // <6,2,3,6>: Cost 3 vext3 <6,6,6,6>, <2,3,6,6>
+ 2729232104U, // <6,2,3,7>: Cost 3 vext3 <7,4,5,6>, <2,3,7,4>
+ 2686027502U, // <6,2,3,u>: Cost 3 vext3 <0,2,4,6>, <2,3,u,1>
+ 1567853468U, // <6,2,4,0>: Cost 2 vext2 <4,0,6,2>, <4,0,6,2>
+ 3759769351U, // <6,2,4,1>: Cost 4 vext3 <0,2,4,6>, <2,4,1,u>
+ 2699151118U, // <6,2,4,2>: Cost 3 vext3 <2,4,2,6>, <2,4,2,6>
+ 2686027543U, // <6,2,4,3>: Cost 3 vext3 <0,2,4,6>, <2,4,3,6>
+ 2699298592U, // <6,2,4,4>: Cost 3 vext3 <2,4,4,6>, <2,4,4,6>
+ 1573162294U, // <6,2,4,5>: Cost 2 vext2 <4,u,6,2>, RHS
+ 2686027564U, // <6,2,4,6>: Cost 3 vext3 <0,2,4,6>, <2,4,6,0>
+ 3719982547U, // <6,2,4,7>: Cost 4 vext2 <4,7,6,2>, <4,7,6,2>
+ 1573162532U, // <6,2,4,u>: Cost 2 vext2 <4,u,6,2>, <4,u,6,2>
+ 3779086154U, // <6,2,5,0>: Cost 4 vext3 <3,4,5,6>, <2,5,0,3>
+ 2646904528U, // <6,2,5,1>: Cost 3 vext2 <4,u,6,2>, <5,1,7,3>
+ 3759769440U, // <6,2,5,2>: Cost 4 vext3 <0,2,4,6>, <2,5,2,7>
+ 2699888488U, // <6,2,5,3>: Cost 3 vext3 <2,5,3,6>, <2,5,3,6>
+ 2230855617U, // <6,2,5,4>: Cost 3 vrev <2,6,4,5>
+ 2646904836U, // <6,2,5,5>: Cost 3 vext2 <4,u,6,2>, <5,5,5,5>
+ 2646904930U, // <6,2,5,6>: Cost 3 vext2 <4,u,6,2>, <5,6,7,0>
+ 2847051062U, // <6,2,5,7>: Cost 3 vuzpr <4,6,u,2>, RHS
+ 2700257173U, // <6,2,5,u>: Cost 3 vext3 <2,5,u,6>, <2,5,u,6>
+ 2687207321U, // <6,2,6,0>: Cost 3 vext3 <0,4,2,6>, <2,6,0,1>
+ 2686027684U, // <6,2,6,1>: Cost 3 vext3 <0,2,4,6>, <2,6,1,3>
+ 2566260656U, // <6,2,6,2>: Cost 3 vext1 <2,6,2,6>, <2,6,2,6>
+ 2685806522U, // <6,2,6,3>: Cost 3 vext3 <0,2,1,6>, <2,6,3,7>
+ 2687207361U, // <6,2,6,4>: Cost 3 vext3 <0,4,2,6>, <2,6,4,5>
+ 2686027724U, // <6,2,6,5>: Cost 3 vext3 <0,2,4,6>, <2,6,5,7>
+ 2646905656U, // <6,2,6,6>: Cost 3 vext2 <4,u,6,2>, <6,6,6,6>
+ 2646905678U, // <6,2,6,7>: Cost 3 vext2 <4,u,6,2>, <6,7,0,1>
+ 2686027751U, // <6,2,6,u>: Cost 3 vext3 <0,2,4,6>, <2,6,u,7>
+ 2554323046U, // <6,2,7,0>: Cost 3 vext1 <0,6,2,7>, LHS
+ 2572239606U, // <6,2,7,1>: Cost 3 vext1 <3,6,2,7>, <1,0,3,2>
+ 2566268849U, // <6,2,7,2>: Cost 3 vext1 <2,6,2,7>, <2,6,2,7>
+ 1906753638U, // <6,2,7,3>: Cost 2 vzipr RHS, LHS
+ 2554326326U, // <6,2,7,4>: Cost 3 vext1 <0,6,2,7>, RHS
+ 3304687564U, // <6,2,7,5>: Cost 4 vrev <2,6,5,7>
+ 2980495708U, // <6,2,7,6>: Cost 3 vzipr RHS, <0,4,2,6>
+ 2646906476U, // <6,2,7,7>: Cost 3 vext2 <4,u,6,2>, <7,7,7,7>
+ 1906753643U, // <6,2,7,u>: Cost 2 vzipr RHS, LHS
+ 1591744256U, // <6,2,u,0>: Cost 2 vext2 <u,0,6,2>, <u,0,6,2>
+ 1573164846U, // <6,2,u,1>: Cost 2 vext2 <4,u,6,2>, LHS
+ 2701805650U, // <6,2,u,2>: Cost 3 vext3 <2,u,2,6>, <2,u,2,6>
+ 1906761830U, // <6,2,u,3>: Cost 2 vzipr RHS, LHS
+ 2686027875U, // <6,2,u,4>: Cost 3 vext3 <0,2,4,6>, <2,u,4,5>
+ 1573165210U, // <6,2,u,5>: Cost 2 vext2 <4,u,6,2>, RHS
+ 2686322800U, // <6,2,u,6>: Cost 3 vext3 <0,2,u,6>, <2,u,6,0>
+ 2847051305U, // <6,2,u,7>: Cost 3 vuzpr <4,6,u,2>, RHS
+ 1906761835U, // <6,2,u,u>: Cost 2 vzipr RHS, LHS
+ 3759769739U, // <6,3,0,0>: Cost 4 vext3 <0,2,4,6>, <3,0,0,0>
+ 2686027926U, // <6,3,0,1>: Cost 3 vext3 <0,2,4,6>, <3,0,1,2>
+ 2686027937U, // <6,3,0,2>: Cost 3 vext3 <0,2,4,6>, <3,0,2,4>
+ 3640027286U, // <6,3,0,3>: Cost 4 vext1 <2,6,3,0>, <3,0,1,2>
+ 2687207601U, // <6,3,0,4>: Cost 3 vext3 <0,4,2,6>, <3,0,4,2>
+ 2705344698U, // <6,3,0,5>: Cost 3 vext3 <3,4,5,6>, <3,0,5,2>
+ 3663917847U, // <6,3,0,6>: Cost 4 vext1 <6,6,3,0>, <6,6,3,0>
+ 2237008560U, // <6,3,0,7>: Cost 3 vrev <3,6,7,0>
+ 2686027989U, // <6,3,0,u>: Cost 3 vext3 <0,2,4,6>, <3,0,u,2>
+ 3759769823U, // <6,3,1,0>: Cost 4 vext3 <0,2,4,6>, <3,1,0,3>
+ 3759769830U, // <6,3,1,1>: Cost 4 vext3 <0,2,4,6>, <3,1,1,1>
+ 3759769841U, // <6,3,1,2>: Cost 4 vext3 <0,2,4,6>, <3,1,2,3>
+ 3759769848U, // <6,3,1,3>: Cost 4 vext3 <0,2,4,6>, <3,1,3,1>
+ 2703280390U, // <6,3,1,4>: Cost 3 vext3 <3,1,4,6>, <3,1,4,6>
+ 3759769868U, // <6,3,1,5>: Cost 4 vext3 <0,2,4,6>, <3,1,5,3>
+ 3704063194U, // <6,3,1,6>: Cost 4 vext2 <2,1,6,3>, <1,6,3,0>
+ 3767732510U, // <6,3,1,7>: Cost 4 vext3 <1,5,4,6>, <3,1,7,3>
+ 2703280390U, // <6,3,1,u>: Cost 3 vext3 <3,1,4,6>, <3,1,4,6>
+ 3704063468U, // <6,3,2,0>: Cost 4 vext2 <2,1,6,3>, <2,0,6,4>
+ 2630321724U, // <6,3,2,1>: Cost 3 vext2 <2,1,6,3>, <2,1,6,3>
+ 3759769921U, // <6,3,2,2>: Cost 4 vext3 <0,2,4,6>, <3,2,2,2>
+ 3759769928U, // <6,3,2,3>: Cost 4 vext3 <0,2,4,6>, <3,2,3,0>
+ 3704063767U, // <6,3,2,4>: Cost 4 vext2 <2,1,6,3>, <2,4,3,6>
+ 3704063876U, // <6,3,2,5>: Cost 4 vext2 <2,1,6,3>, <2,5,6,7>
+ 2636957626U, // <6,3,2,6>: Cost 3 vext2 <3,2,6,3>, <2,6,3,7>
+ 3777907058U, // <6,3,2,7>: Cost 4 vext3 <3,2,7,6>, <3,2,7,6>
+ 2630321724U, // <6,3,2,u>: Cost 3 vext2 <2,1,6,3>, <2,1,6,3>
+ 3759769983U, // <6,3,3,0>: Cost 4 vext3 <0,2,4,6>, <3,3,0,1>
+ 3710036245U, // <6,3,3,1>: Cost 4 vext2 <3,1,6,3>, <3,1,6,3>
+ 2636958054U, // <6,3,3,2>: Cost 3 vext2 <3,2,6,3>, <3,2,6,3>
+ 2686028188U, // <6,3,3,3>: Cost 3 vext3 <0,2,4,6>, <3,3,3,3>
+ 2704607656U, // <6,3,3,4>: Cost 3 vext3 <3,3,4,6>, <3,3,4,6>
+ 3773041072U, // <6,3,3,5>: Cost 4 vext3 <2,4,4,6>, <3,3,5,5>
+ 3711363731U, // <6,3,3,6>: Cost 4 vext2 <3,3,6,3>, <3,6,3,7>
+ 3767732676U, // <6,3,3,7>: Cost 4 vext3 <1,5,4,6>, <3,3,7,7>
+ 2707999179U, // <6,3,3,u>: Cost 3 vext3 <3,u,5,6>, <3,3,u,5>
+ 2584232038U, // <6,3,4,0>: Cost 3 vext1 <5,6,3,4>, LHS
+ 2642267118U, // <6,3,4,1>: Cost 3 vext2 <4,1,6,3>, <4,1,6,3>
+ 2642930751U, // <6,3,4,2>: Cost 3 vext2 <4,2,6,3>, <4,2,6,3>
+ 2705197552U, // <6,3,4,3>: Cost 3 vext3 <3,4,3,6>, <3,4,3,6>
+ 2584235318U, // <6,3,4,4>: Cost 3 vext1 <5,6,3,4>, RHS
+ 1631603202U, // <6,3,4,5>: Cost 2 vext3 <3,4,5,6>, <3,4,5,6>
+ 2654211444U, // <6,3,4,6>: Cost 3 vext2 <6,1,6,3>, <4,6,4,6>
+ 2237041332U, // <6,3,4,7>: Cost 3 vrev <3,6,7,4>
+ 1631824413U, // <6,3,4,u>: Cost 2 vext3 <3,4,u,6>, <3,4,u,6>
+ 3640066150U, // <6,3,5,0>: Cost 4 vext1 <2,6,3,5>, LHS
+ 3772746288U, // <6,3,5,1>: Cost 4 vext3 <2,4,0,6>, <3,5,1,7>
+ 3640067790U, // <6,3,5,2>: Cost 4 vext1 <2,6,3,5>, <2,3,4,5>
+ 3773041216U, // <6,3,5,3>: Cost 4 vext3 <2,4,4,6>, <3,5,3,5>
+ 2705934922U, // <6,3,5,4>: Cost 3 vext3 <3,5,4,6>, <3,5,4,6>
+ 3773041236U, // <6,3,5,5>: Cost 4 vext3 <2,4,4,6>, <3,5,5,7>
+ 3779086940U, // <6,3,5,6>: Cost 4 vext3 <3,4,5,6>, <3,5,6,6>
+ 3767732831U, // <6,3,5,7>: Cost 4 vext3 <1,5,4,6>, <3,5,7,0>
+ 2706229870U, // <6,3,5,u>: Cost 3 vext3 <3,5,u,6>, <3,5,u,6>
+ 2602164326U, // <6,3,6,0>: Cost 3 vext1 <u,6,3,6>, LHS
+ 2654212512U, // <6,3,6,1>: Cost 3 vext2 <6,1,6,3>, <6,1,6,3>
+ 2566334393U, // <6,3,6,2>: Cost 3 vext1 <2,6,3,6>, <2,6,3,6>
+ 3704066588U, // <6,3,6,3>: Cost 4 vext2 <2,1,6,3>, <6,3,2,1>
+ 2602167524U, // <6,3,6,4>: Cost 3 vext1 <u,6,3,6>, <4,4,6,6>
+ 3710702321U, // <6,3,6,5>: Cost 4 vext2 <3,2,6,3>, <6,5,7,7>
+ 2724661933U, // <6,3,6,6>: Cost 3 vext3 <6,6,6,6>, <3,6,6,6>
+ 3710702465U, // <6,3,6,7>: Cost 4 vext2 <3,2,6,3>, <6,7,5,7>
+ 2602170158U, // <6,3,6,u>: Cost 3 vext1 <u,6,3,6>, LHS
+ 1492598886U, // <6,3,7,0>: Cost 2 vext1 <2,6,3,7>, LHS
+ 2560369889U, // <6,3,7,1>: Cost 3 vext1 <1,6,3,7>, <1,6,3,7>
+ 1492600762U, // <6,3,7,2>: Cost 2 vext1 <2,6,3,7>, <2,6,3,7>
+ 2566342806U, // <6,3,7,3>: Cost 3 vext1 <2,6,3,7>, <3,0,1,2>
+ 1492602166U, // <6,3,7,4>: Cost 2 vext1 <2,6,3,7>, RHS
+ 2602176208U, // <6,3,7,5>: Cost 3 vext1 <u,6,3,7>, <5,1,7,3>
+ 2566345210U, // <6,3,7,6>: Cost 3 vext1 <2,6,3,7>, <6,2,7,3>
+ 2980496528U, // <6,3,7,7>: Cost 3 vzipr RHS, <1,5,3,7>
+ 1492604718U, // <6,3,7,u>: Cost 2 vext1 <2,6,3,7>, LHS
+ 1492607078U, // <6,3,u,0>: Cost 2 vext1 <2,6,3,u>, LHS
+ 2686028574U, // <6,3,u,1>: Cost 3 vext3 <0,2,4,6>, <3,u,1,2>
+ 1492608955U, // <6,3,u,2>: Cost 2 vext1 <2,6,3,u>, <2,6,3,u>
+ 2566350998U, // <6,3,u,3>: Cost 3 vext1 <2,6,3,u>, <3,0,1,2>
+ 1492610358U, // <6,3,u,4>: Cost 2 vext1 <2,6,3,u>, RHS
+ 1634257734U, // <6,3,u,5>: Cost 2 vext3 <3,u,5,6>, <3,u,5,6>
+ 2566353489U, // <6,3,u,6>: Cost 3 vext1 <2,6,3,u>, <6,3,u,0>
+ 2980504720U, // <6,3,u,7>: Cost 3 vzipr RHS, <1,5,3,7>
+ 1492612910U, // <6,3,u,u>: Cost 2 vext1 <2,6,3,u>, LHS
+ 3703406592U, // <6,4,0,0>: Cost 4 vext2 <2,0,6,4>, <0,0,0,0>
+ 2629664870U, // <6,4,0,1>: Cost 3 vext2 <2,0,6,4>, LHS
+ 2629664972U, // <6,4,0,2>: Cost 3 vext2 <2,0,6,4>, <0,2,4,6>
+ 3779087232U, // <6,4,0,3>: Cost 4 vext3 <3,4,5,6>, <4,0,3,1>
+ 2642936156U, // <6,4,0,4>: Cost 3 vext2 <4,2,6,4>, <0,4,2,6>
+ 2712570770U, // <6,4,0,5>: Cost 3 vext3 <4,6,4,6>, <4,0,5,1>
+ 2687208348U, // <6,4,0,6>: Cost 3 vext3 <0,4,2,6>, <4,0,6,2>
+ 3316723081U, // <6,4,0,7>: Cost 4 vrev <4,6,7,0>
+ 2629665437U, // <6,4,0,u>: Cost 3 vext2 <2,0,6,4>, LHS
+ 2242473291U, // <6,4,1,0>: Cost 3 vrev <4,6,0,1>
+ 3700089652U, // <6,4,1,1>: Cost 4 vext2 <1,4,6,4>, <1,1,1,1>
+ 3703407510U, // <6,4,1,2>: Cost 4 vext2 <2,0,6,4>, <1,2,3,0>
+ 2852962406U, // <6,4,1,3>: Cost 3 vuzpr <5,6,7,4>, LHS
+ 3628166454U, // <6,4,1,4>: Cost 4 vext1 <0,6,4,1>, RHS
+ 3760876514U, // <6,4,1,5>: Cost 4 vext3 <0,4,1,6>, <4,1,5,0>
+ 2687208430U, // <6,4,1,6>: Cost 3 vext3 <0,4,2,6>, <4,1,6,3>
+ 3316731274U, // <6,4,1,7>: Cost 4 vrev <4,6,7,1>
+ 2243063187U, // <6,4,1,u>: Cost 3 vrev <4,6,u,1>
+ 2629666284U, // <6,4,2,0>: Cost 3 vext2 <2,0,6,4>, <2,0,6,4>
+ 3703408188U, // <6,4,2,1>: Cost 4 vext2 <2,0,6,4>, <2,1,6,3>
+ 3703408232U, // <6,4,2,2>: Cost 4 vext2 <2,0,6,4>, <2,2,2,2>
+ 3703408294U, // <6,4,2,3>: Cost 4 vext2 <2,0,6,4>, <2,3,0,1>
+ 2632320816U, // <6,4,2,4>: Cost 3 vext2 <2,4,6,4>, <2,4,6,4>
+ 2923384118U, // <6,4,2,5>: Cost 3 vzipl <6,2,7,3>, RHS
+ 2687208508U, // <6,4,2,6>: Cost 3 vext3 <0,4,2,6>, <4,2,6,0>
+ 3760950341U, // <6,4,2,7>: Cost 4 vext3 <0,4,2,6>, <4,2,7,0>
+ 2634975348U, // <6,4,2,u>: Cost 3 vext2 <2,u,6,4>, <2,u,6,4>
+ 3703408790U, // <6,4,3,0>: Cost 4 vext2 <2,0,6,4>, <3,0,1,2>
+ 3316305238U, // <6,4,3,1>: Cost 4 vrev <4,6,1,3>
+ 3703408947U, // <6,4,3,2>: Cost 4 vext2 <2,0,6,4>, <3,2,0,6>
+ 3703409052U, // <6,4,3,3>: Cost 4 vext2 <2,0,6,4>, <3,3,3,3>
+ 2644929026U, // <6,4,3,4>: Cost 3 vext2 <4,5,6,4>, <3,4,5,6>
+ 3718670922U, // <6,4,3,5>: Cost 4 vext2 <4,5,6,4>, <3,5,4,6>
+ 2705345682U, // <6,4,3,6>: Cost 3 vext3 <3,4,5,6>, <4,3,6,5>
+ 3926705152U, // <6,4,3,7>: Cost 4 vuzpr <5,6,7,4>, <1,3,5,7>
+ 2668817222U, // <6,4,3,u>: Cost 3 vext2 <u,5,6,4>, <3,u,5,6>
+ 2590277734U, // <6,4,4,0>: Cost 3 vext1 <6,6,4,4>, LHS
+ 3716017135U, // <6,4,4,1>: Cost 4 vext2 <4,1,6,4>, <4,1,6,4>
+ 2642938944U, // <6,4,4,2>: Cost 3 vext2 <4,2,6,4>, <4,2,6,4>
+ 3717344401U, // <6,4,4,3>: Cost 4 vext2 <4,3,6,4>, <4,3,6,4>
+ 2712571088U, // <6,4,4,4>: Cost 3 vext3 <4,6,4,6>, <4,4,4,4>
+ 2629668150U, // <6,4,4,5>: Cost 3 vext2 <2,0,6,4>, RHS
+ 1637649636U, // <6,4,4,6>: Cost 2 vext3 <4,4,6,6>, <4,4,6,6>
+ 2646257109U, // <6,4,4,7>: Cost 3 vext2 <4,7,6,4>, <4,7,6,4>
+ 1637649636U, // <6,4,4,u>: Cost 2 vext3 <4,4,6,6>, <4,4,6,6>
+ 2566398054U, // <6,4,5,0>: Cost 3 vext1 <2,6,4,5>, LHS
+ 3760876805U, // <6,4,5,1>: Cost 4 vext3 <0,4,1,6>, <4,5,1,3>
+ 2566399937U, // <6,4,5,2>: Cost 3 vext1 <2,6,4,5>, <2,6,4,5>
+ 2584316418U, // <6,4,5,3>: Cost 3 vext1 <5,6,4,5>, <3,4,5,6>
+ 2566401334U, // <6,4,5,4>: Cost 3 vext1 <2,6,4,5>, RHS
+ 2584318028U, // <6,4,5,5>: Cost 3 vext1 <5,6,4,5>, <5,6,4,5>
+ 1612287286U, // <6,4,5,6>: Cost 2 vext3 <0,2,4,6>, RHS
+ 2852965686U, // <6,4,5,7>: Cost 3 vuzpr <5,6,7,4>, RHS
+ 1612287304U, // <6,4,5,u>: Cost 2 vext3 <0,2,4,6>, RHS
+ 1504608358U, // <6,4,6,0>: Cost 2 vext1 <4,6,4,6>, LHS
+ 2578350838U, // <6,4,6,1>: Cost 3 vext1 <4,6,4,6>, <1,0,3,2>
+ 2578351720U, // <6,4,6,2>: Cost 3 vext1 <4,6,4,6>, <2,2,2,2>
+ 2578352278U, // <6,4,6,3>: Cost 3 vext1 <4,6,4,6>, <3,0,1,2>
+ 1504611638U, // <6,4,6,4>: Cost 2 vext1 <4,6,4,6>, RHS
+ 2578353872U, // <6,4,6,5>: Cost 3 vext1 <4,6,4,6>, <5,1,7,3>
+ 2578354682U, // <6,4,6,6>: Cost 3 vext1 <4,6,4,6>, <6,2,7,3>
+ 2578355194U, // <6,4,6,7>: Cost 3 vext1 <4,6,4,6>, <7,0,1,2>
+ 1504614190U, // <6,4,6,u>: Cost 2 vext1 <4,6,4,6>, LHS
+ 2572386406U, // <6,4,7,0>: Cost 3 vext1 <3,6,4,7>, LHS
+ 2572387226U, // <6,4,7,1>: Cost 3 vext1 <3,6,4,7>, <1,2,3,4>
+ 3640157902U, // <6,4,7,2>: Cost 4 vext1 <2,6,4,7>, <2,3,4,5>
+ 2572389020U, // <6,4,7,3>: Cost 3 vext1 <3,6,4,7>, <3,6,4,7>
+ 2572389686U, // <6,4,7,4>: Cost 3 vext1 <3,6,4,7>, RHS
+ 2980497102U, // <6,4,7,5>: Cost 3 vzipr RHS, <2,3,4,5>
+ 2980495564U, // <6,4,7,6>: Cost 3 vzipr RHS, <0,2,4,6>
+ 4054239090U, // <6,4,7,7>: Cost 4 vzipr RHS, <2,5,4,7>
+ 2572392238U, // <6,4,7,u>: Cost 3 vext1 <3,6,4,7>, LHS
+ 1504608358U, // <6,4,u,0>: Cost 2 vext1 <4,6,4,6>, LHS
+ 2629670702U, // <6,4,u,1>: Cost 3 vext2 <2,0,6,4>, LHS
+ 2566424516U, // <6,4,u,2>: Cost 3 vext1 <2,6,4,u>, <2,6,4,u>
+ 2584340994U, // <6,4,u,3>: Cost 3 vext1 <5,6,4,u>, <3,4,5,6>
+ 1640156694U, // <6,4,u,4>: Cost 2 vext3 <4,u,4,6>, <4,u,4,6>
+ 2629671066U, // <6,4,u,5>: Cost 3 vext2 <2,0,6,4>, RHS
+ 1612287529U, // <6,4,u,6>: Cost 2 vext3 <0,2,4,6>, RHS
+ 2852965929U, // <6,4,u,7>: Cost 3 vuzpr <5,6,7,4>, RHS
+ 1612287547U, // <6,4,u,u>: Cost 2 vext3 <0,2,4,6>, RHS
+ 3708723200U, // <6,5,0,0>: Cost 4 vext2 <2,u,6,5>, <0,0,0,0>
+ 2634981478U, // <6,5,0,1>: Cost 3 vext2 <2,u,6,5>, LHS
+ 3694125260U, // <6,5,0,2>: Cost 4 vext2 <0,4,6,5>, <0,2,4,6>
+ 3779087962U, // <6,5,0,3>: Cost 4 vext3 <3,4,5,6>, <5,0,3,2>
+ 3760877154U, // <6,5,0,4>: Cost 4 vext3 <0,4,1,6>, <5,0,4,1>
+ 4195110916U, // <6,5,0,5>: Cost 4 vtrnr <5,6,7,0>, <5,5,5,5>
+ 3696779775U, // <6,5,0,6>: Cost 4 vext2 <0,u,6,5>, <0,6,2,7>
+ 1175212130U, // <6,5,0,7>: Cost 2 vrev <5,6,7,0>
+ 1175285867U, // <6,5,0,u>: Cost 2 vrev <5,6,u,0>
+ 2248445988U, // <6,5,1,0>: Cost 3 vrev <5,6,0,1>
+ 3698107237U, // <6,5,1,1>: Cost 4 vext2 <1,1,6,5>, <1,1,6,5>
+ 3708724118U, // <6,5,1,2>: Cost 4 vext2 <2,u,6,5>, <1,2,3,0>
+ 3908575334U, // <6,5,1,3>: Cost 4 vuzpr <2,6,4,5>, LHS
+ 3716023376U, // <6,5,1,4>: Cost 4 vext2 <4,1,6,5>, <1,4,5,6>
+ 3708724368U, // <6,5,1,5>: Cost 4 vext2 <2,u,6,5>, <1,5,3,7>
+ 3767733960U, // <6,5,1,6>: Cost 4 vext3 <1,5,4,6>, <5,1,6,4>
+ 2712571600U, // <6,5,1,7>: Cost 3 vext3 <4,6,4,6>, <5,1,7,3>
+ 2712571609U, // <6,5,1,u>: Cost 3 vext3 <4,6,4,6>, <5,1,u,3>
+ 2578391142U, // <6,5,2,0>: Cost 3 vext1 <4,6,5,2>, LHS
+ 3704079934U, // <6,5,2,1>: Cost 4 vext2 <2,1,6,5>, <2,1,6,5>
+ 3708724840U, // <6,5,2,2>: Cost 4 vext2 <2,u,6,5>, <2,2,2,2>
+ 3705407182U, // <6,5,2,3>: Cost 4 vext2 <2,3,6,5>, <2,3,4,5>
+ 2578394422U, // <6,5,2,4>: Cost 3 vext1 <4,6,5,2>, RHS
+ 3717351272U, // <6,5,2,5>: Cost 4 vext2 <4,3,6,5>, <2,5,3,6>
+ 2634983354U, // <6,5,2,6>: Cost 3 vext2 <2,u,6,5>, <2,6,3,7>
+ 3115486518U, // <6,5,2,7>: Cost 3 vtrnr <4,6,u,2>, RHS
+ 2634983541U, // <6,5,2,u>: Cost 3 vext2 <2,u,6,5>, <2,u,6,5>
+ 3708725398U, // <6,5,3,0>: Cost 4 vext2 <2,u,6,5>, <3,0,1,2>
+ 3710052631U, // <6,5,3,1>: Cost 4 vext2 <3,1,6,5>, <3,1,6,5>
+ 3708725606U, // <6,5,3,2>: Cost 4 vext2 <2,u,6,5>, <3,2,6,3>
+ 3708725660U, // <6,5,3,3>: Cost 4 vext2 <2,u,6,5>, <3,3,3,3>
+ 2643610114U, // <6,5,3,4>: Cost 3 vext2 <4,3,6,5>, <3,4,5,6>
+ 3717352010U, // <6,5,3,5>: Cost 4 vext2 <4,3,6,5>, <3,5,4,6>
+ 3773632358U, // <6,5,3,6>: Cost 4 vext3 <2,5,3,6>, <5,3,6,0>
+ 2248978533U, // <6,5,3,7>: Cost 3 vrev <5,6,7,3>
+ 2249052270U, // <6,5,3,u>: Cost 3 vrev <5,6,u,3>
+ 2596323430U, // <6,5,4,0>: Cost 3 vext1 <7,6,5,4>, LHS
+ 3716025328U, // <6,5,4,1>: Cost 4 vext2 <4,1,6,5>, <4,1,6,5>
+ 3716688961U, // <6,5,4,2>: Cost 4 vext2 <4,2,6,5>, <4,2,6,5>
+ 2643610770U, // <6,5,4,3>: Cost 3 vext2 <4,3,6,5>, <4,3,6,5>
+ 2596326710U, // <6,5,4,4>: Cost 3 vext1 <7,6,5,4>, RHS
+ 2634984758U, // <6,5,4,5>: Cost 3 vext2 <2,u,6,5>, RHS
+ 3767734199U, // <6,5,4,6>: Cost 4 vext3 <1,5,4,6>, <5,4,6,0>
+ 1643696070U, // <6,5,4,7>: Cost 2 vext3 <5,4,7,6>, <5,4,7,6>
+ 1643769807U, // <6,5,4,u>: Cost 2 vext3 <5,4,u,6>, <5,4,u,6>
+ 2578415718U, // <6,5,5,0>: Cost 3 vext1 <4,6,5,5>, LHS
+ 3652158198U, // <6,5,5,1>: Cost 4 vext1 <4,6,5,5>, <1,0,3,2>
+ 3652159080U, // <6,5,5,2>: Cost 4 vext1 <4,6,5,5>, <2,2,2,2>
+ 3652159638U, // <6,5,5,3>: Cost 4 vext1 <4,6,5,5>, <3,0,1,2>
+ 2578418998U, // <6,5,5,4>: Cost 3 vext1 <4,6,5,5>, RHS
+ 2712571908U, // <6,5,5,5>: Cost 3 vext3 <4,6,4,6>, <5,5,5,5>
+ 2718027790U, // <6,5,5,6>: Cost 3 vext3 <5,5,6,6>, <5,5,6,6>
+ 2712571928U, // <6,5,5,7>: Cost 3 vext3 <4,6,4,6>, <5,5,7,7>
+ 2712571937U, // <6,5,5,u>: Cost 3 vext3 <4,6,4,6>, <5,5,u,7>
+ 2705346596U, // <6,5,6,0>: Cost 3 vext3 <3,4,5,6>, <5,6,0,1>
+ 3767144496U, // <6,5,6,1>: Cost 4 vext3 <1,4,5,6>, <5,6,1,4>
+ 3773116473U, // <6,5,6,2>: Cost 4 vext3 <2,4,5,6>, <5,6,2,4>
+ 2705346626U, // <6,5,6,3>: Cost 3 vext3 <3,4,5,6>, <5,6,3,4>
+ 2705346636U, // <6,5,6,4>: Cost 3 vext3 <3,4,5,6>, <5,6,4,5>
+ 3908577217U, // <6,5,6,5>: Cost 4 vuzpr <2,6,4,5>, <2,6,4,5>
+ 2578428728U, // <6,5,6,6>: Cost 3 vext1 <4,6,5,6>, <6,6,6,6>
+ 2712572002U, // <6,5,6,7>: Cost 3 vext3 <4,6,4,6>, <5,6,7,0>
+ 2705346668U, // <6,5,6,u>: Cost 3 vext3 <3,4,5,6>, <5,6,u,1>
+ 2560516198U, // <6,5,7,0>: Cost 3 vext1 <1,6,5,7>, LHS
+ 2560517363U, // <6,5,7,1>: Cost 3 vext1 <1,6,5,7>, <1,6,5,7>
+ 2566490060U, // <6,5,7,2>: Cost 3 vext1 <2,6,5,7>, <2,6,5,7>
+ 3634260118U, // <6,5,7,3>: Cost 4 vext1 <1,6,5,7>, <3,0,1,2>
+ 2560519478U, // <6,5,7,4>: Cost 3 vext1 <1,6,5,7>, RHS
+ 2980498650U, // <6,5,7,5>: Cost 3 vzipr RHS, <4,4,5,5>
+ 2980497922U, // <6,5,7,6>: Cost 3 vzipr RHS, <3,4,5,6>
+ 3103214902U, // <6,5,7,7>: Cost 3 vtrnr <2,6,3,7>, RHS
+ 2560522030U, // <6,5,7,u>: Cost 3 vext1 <1,6,5,7>, LHS
+ 2560524390U, // <6,5,u,0>: Cost 3 vext1 <1,6,5,u>, LHS
+ 2560525556U, // <6,5,u,1>: Cost 3 vext1 <1,6,5,u>, <1,6,5,u>
+ 2566498253U, // <6,5,u,2>: Cost 3 vext1 <2,6,5,u>, <2,6,5,u>
+ 2646931439U, // <6,5,u,3>: Cost 3 vext2 <4,u,6,5>, <u,3,5,7>
+ 2560527670U, // <6,5,u,4>: Cost 3 vext1 <1,6,5,u>, RHS
+ 2634987674U, // <6,5,u,5>: Cost 3 vext2 <2,u,6,5>, RHS
+ 2980506114U, // <6,5,u,6>: Cost 3 vzipr RHS, <3,4,5,6>
+ 1175277674U, // <6,5,u,7>: Cost 2 vrev <5,6,7,u>
+ 1175351411U, // <6,5,u,u>: Cost 2 vrev <5,6,u,u>
+ 2578448486U, // <6,6,0,0>: Cost 3 vext1 <4,6,6,0>, LHS
+ 1573191782U, // <6,6,0,1>: Cost 2 vext2 <4,u,6,6>, LHS
+ 2686030124U, // <6,6,0,2>: Cost 3 vext3 <0,2,4,6>, <6,0,2,4>
+ 3779088690U, // <6,6,0,3>: Cost 4 vext3 <3,4,5,6>, <6,0,3,1>
+ 2687209788U, // <6,6,0,4>: Cost 3 vext3 <0,4,2,6>, <6,0,4,2>
+ 3652194000U, // <6,6,0,5>: Cost 4 vext1 <4,6,6,0>, <5,1,7,3>
+ 2254852914U, // <6,6,0,6>: Cost 3 vrev <6,6,6,0>
+ 4041575734U, // <6,6,0,7>: Cost 4 vzipr <2,4,6,0>, RHS
+ 1573192349U, // <6,6,0,u>: Cost 2 vext2 <4,u,6,6>, LHS
+ 2646934262U, // <6,6,1,0>: Cost 3 vext2 <4,u,6,6>, <1,0,3,2>
+ 2646934324U, // <6,6,1,1>: Cost 3 vext2 <4,u,6,6>, <1,1,1,1>
+ 2646934422U, // <6,6,1,2>: Cost 3 vext2 <4,u,6,6>, <1,2,3,0>
+ 2846785638U, // <6,6,1,3>: Cost 3 vuzpr <4,6,4,6>, LHS
+ 3760951694U, // <6,6,1,4>: Cost 4 vext3 <0,4,2,6>, <6,1,4,3>
+ 2646934672U, // <6,6,1,5>: Cost 3 vext2 <4,u,6,6>, <1,5,3,7>
+ 2712572320U, // <6,6,1,6>: Cost 3 vext3 <4,6,4,6>, <6,1,6,3>
+ 3775549865U, // <6,6,1,7>: Cost 4 vext3 <2,u,2,6>, <6,1,7,3>
+ 2846785643U, // <6,6,1,u>: Cost 3 vuzpr <4,6,4,6>, LHS
+ 3759772094U, // <6,6,2,0>: Cost 4 vext3 <0,2,4,6>, <6,2,0,6>
+ 3704751676U, // <6,6,2,1>: Cost 4 vext2 <2,2,6,6>, <2,1,6,3>
+ 2631009936U, // <6,6,2,2>: Cost 3 vext2 <2,2,6,6>, <2,2,6,6>
+ 2646935206U, // <6,6,2,3>: Cost 3 vext2 <4,u,6,6>, <2,3,0,1>
+ 3759772127U, // <6,6,2,4>: Cost 4 vext3 <0,2,4,6>, <6,2,4,3>
+ 3704752004U, // <6,6,2,5>: Cost 4 vext2 <2,2,6,6>, <2,5,6,7>
+ 2646935482U, // <6,6,2,6>: Cost 3 vext2 <4,u,6,6>, <2,6,3,7>
+ 2712572410U, // <6,6,2,7>: Cost 3 vext3 <4,6,4,6>, <6,2,7,3>
+ 2712572419U, // <6,6,2,u>: Cost 3 vext3 <4,6,4,6>, <6,2,u,3>
+ 2646935702U, // <6,6,3,0>: Cost 3 vext2 <4,u,6,6>, <3,0,1,2>
+ 3777024534U, // <6,6,3,1>: Cost 4 vext3 <3,1,4,6>, <6,3,1,4>
+ 3704752453U, // <6,6,3,2>: Cost 4 vext2 <2,2,6,6>, <3,2,2,6>
+ 2646935964U, // <6,6,3,3>: Cost 3 vext2 <4,u,6,6>, <3,3,3,3>
+ 2705347122U, // <6,6,3,4>: Cost 3 vext3 <3,4,5,6>, <6,3,4,5>
+ 3779678778U, // <6,6,3,5>: Cost 4 vext3 <3,5,4,6>, <6,3,5,4>
+ 2657553069U, // <6,6,3,6>: Cost 3 vext2 <6,6,6,6>, <3,6,6,6>
+ 4039609654U, // <6,6,3,7>: Cost 4 vzipr <2,1,6,3>, RHS
+ 2708001366U, // <6,6,3,u>: Cost 3 vext3 <3,u,5,6>, <6,3,u,5>
+ 2578481254U, // <6,6,4,0>: Cost 3 vext1 <4,6,6,4>, LHS
+ 3652223734U, // <6,6,4,1>: Cost 4 vext1 <4,6,6,4>, <1,0,3,2>
+ 3760951922U, // <6,6,4,2>: Cost 4 vext3 <0,4,2,6>, <6,4,2,6>
+ 3779089019U, // <6,6,4,3>: Cost 4 vext3 <3,4,5,6>, <6,4,3,6>
+ 1570540772U, // <6,6,4,4>: Cost 2 vext2 <4,4,6,6>, <4,4,6,6>
+ 1573195062U, // <6,6,4,5>: Cost 2 vext2 <4,u,6,6>, RHS
+ 2712572560U, // <6,6,4,6>: Cost 3 vext3 <4,6,4,6>, <6,4,6,0>
+ 2723410591U, // <6,6,4,7>: Cost 3 vext3 <6,4,7,6>, <6,4,7,6>
+ 1573195304U, // <6,6,4,u>: Cost 2 vext2 <4,u,6,6>, <4,u,6,6>
+ 3640287334U, // <6,6,5,0>: Cost 4 vext1 <2,6,6,5>, LHS
+ 2646937296U, // <6,6,5,1>: Cost 3 vext2 <4,u,6,6>, <5,1,7,3>
+ 3640289235U, // <6,6,5,2>: Cost 4 vext1 <2,6,6,5>, <2,6,6,5>
+ 3720679279U, // <6,6,5,3>: Cost 4 vext2 <4,u,6,6>, <5,3,7,0>
+ 2646937542U, // <6,6,5,4>: Cost 3 vext2 <4,u,6,6>, <5,4,7,6>
+ 2646937604U, // <6,6,5,5>: Cost 3 vext2 <4,u,6,6>, <5,5,5,5>
+ 2646937698U, // <6,6,5,6>: Cost 3 vext2 <4,u,6,6>, <5,6,7,0>
+ 2846788918U, // <6,6,5,7>: Cost 3 vuzpr <4,6,4,6>, RHS
+ 2846788919U, // <6,6,5,u>: Cost 3 vuzpr <4,6,4,6>, RHS
+ 1516699750U, // <6,6,6,0>: Cost 2 vext1 <6,6,6,6>, LHS
+ 2590442230U, // <6,6,6,1>: Cost 3 vext1 <6,6,6,6>, <1,0,3,2>
+ 2646938106U, // <6,6,6,2>: Cost 3 vext2 <4,u,6,6>, <6,2,7,3>
+ 2590443670U, // <6,6,6,3>: Cost 3 vext1 <6,6,6,6>, <3,0,1,2>
+ 1516703030U, // <6,6,6,4>: Cost 2 vext1 <6,6,6,6>, RHS
+ 2590445264U, // <6,6,6,5>: Cost 3 vext1 <6,6,6,6>, <5,1,7,3>
+ 296144182U, // <6,6,6,6>: Cost 1 vdup2 RHS
+ 2712572738U, // <6,6,6,7>: Cost 3 vext3 <4,6,4,6>, <6,6,7,7>
+ 296144182U, // <6,6,6,u>: Cost 1 vdup2 RHS
+ 2566561894U, // <6,6,7,0>: Cost 3 vext1 <2,6,6,7>, LHS
+ 3634332924U, // <6,6,7,1>: Cost 4 vext1 <1,6,6,7>, <1,6,6,7>
+ 2566563797U, // <6,6,7,2>: Cost 3 vext1 <2,6,6,7>, <2,6,6,7>
+ 2584480258U, // <6,6,7,3>: Cost 3 vext1 <5,6,6,7>, <3,4,5,6>
+ 2566565174U, // <6,6,7,4>: Cost 3 vext1 <2,6,6,7>, RHS
+ 2717438846U, // <6,6,7,5>: Cost 3 vext3 <5,4,7,6>, <6,7,5,4>
+ 2980500280U, // <6,6,7,6>: Cost 3 vzipr RHS, <6,6,6,6>
+ 1906756918U, // <6,6,7,7>: Cost 2 vzipr RHS, RHS
+ 1906756919U, // <6,6,7,u>: Cost 2 vzipr RHS, RHS
+ 1516699750U, // <6,6,u,0>: Cost 2 vext1 <6,6,6,6>, LHS
+ 1573197614U, // <6,6,u,1>: Cost 2 vext2 <4,u,6,6>, LHS
+ 2566571990U, // <6,6,u,2>: Cost 3 vext1 <2,6,6,u>, <2,6,6,u>
+ 2846786205U, // <6,6,u,3>: Cost 3 vuzpr <4,6,4,6>, LHS
+ 1516703030U, // <6,6,u,4>: Cost 2 vext1 <6,6,6,6>, RHS
+ 1573197978U, // <6,6,u,5>: Cost 2 vext2 <4,u,6,6>, RHS
+ 296144182U, // <6,6,u,6>: Cost 1 vdup2 RHS
+ 1906765110U, // <6,6,u,7>: Cost 2 vzipr RHS, RHS
+ 296144182U, // <6,6,u,u>: Cost 1 vdup2 RHS
+ 1571209216U, // <6,7,0,0>: Cost 2 vext2 RHS, <0,0,0,0>
+ 497467494U, // <6,7,0,1>: Cost 1 vext2 RHS, LHS
+ 1571209380U, // <6,7,0,2>: Cost 2 vext2 RHS, <0,2,0,2>
+ 2644951292U, // <6,7,0,3>: Cost 3 vext2 RHS, <0,3,1,0>
+ 1571209554U, // <6,7,0,4>: Cost 2 vext2 RHS, <0,4,1,5>
+ 1510756450U, // <6,7,0,5>: Cost 2 vext1 <5,6,7,0>, <5,6,7,0>
+ 2644951542U, // <6,7,0,6>: Cost 3 vext2 RHS, <0,6,1,7>
+ 2584499194U, // <6,7,0,7>: Cost 3 vext1 <5,6,7,0>, <7,0,1,2>
+ 497468061U, // <6,7,0,u>: Cost 1 vext2 RHS, LHS
+ 1571209974U, // <6,7,1,0>: Cost 2 vext2 RHS, <1,0,3,2>
+ 1571210036U, // <6,7,1,1>: Cost 2 vext2 RHS, <1,1,1,1>
+ 1571210134U, // <6,7,1,2>: Cost 2 vext2 RHS, <1,2,3,0>
+ 1571210200U, // <6,7,1,3>: Cost 2 vext2 RHS, <1,3,1,3>
+ 2644952098U, // <6,7,1,4>: Cost 3 vext2 RHS, <1,4,0,5>
+ 1571210384U, // <6,7,1,5>: Cost 2 vext2 RHS, <1,5,3,7>
+ 2644952271U, // <6,7,1,6>: Cost 3 vext2 RHS, <1,6,1,7>
+ 2578535418U, // <6,7,1,7>: Cost 3 vext1 <4,6,7,1>, <7,0,1,2>
+ 1571210605U, // <6,7,1,u>: Cost 2 vext2 RHS, <1,u,1,3>
+ 2644952509U, // <6,7,2,0>: Cost 3 vext2 RHS, <2,0,1,2>
+ 2644952582U, // <6,7,2,1>: Cost 3 vext2 RHS, <2,1,0,3>
+ 1571210856U, // <6,7,2,2>: Cost 2 vext2 RHS, <2,2,2,2>
+ 1571210918U, // <6,7,2,3>: Cost 2 vext2 RHS, <2,3,0,1>
+ 2644952828U, // <6,7,2,4>: Cost 3 vext2 RHS, <2,4,0,6>
+ 2633009028U, // <6,7,2,5>: Cost 3 vext2 <2,5,6,7>, <2,5,6,7>
+ 1571211194U, // <6,7,2,6>: Cost 2 vext2 RHS, <2,6,3,7>
+ 2668840938U, // <6,7,2,7>: Cost 3 vext2 RHS, <2,7,0,1>
+ 1571211323U, // <6,7,2,u>: Cost 2 vext2 RHS, <2,u,0,1>
+ 1571211414U, // <6,7,3,0>: Cost 2 vext2 RHS, <3,0,1,2>
+ 2644953311U, // <6,7,3,1>: Cost 3 vext2 RHS, <3,1,0,3>
+ 2644953390U, // <6,7,3,2>: Cost 3 vext2 RHS, <3,2,0,1>
+ 1571211676U, // <6,7,3,3>: Cost 2 vext2 RHS, <3,3,3,3>
+ 1571211778U, // <6,7,3,4>: Cost 2 vext2 RHS, <3,4,5,6>
+ 2644953648U, // <6,7,3,5>: Cost 3 vext2 RHS, <3,5,1,7>
+ 2644953720U, // <6,7,3,6>: Cost 3 vext2 RHS, <3,6,0,7>
+ 2644953795U, // <6,7,3,7>: Cost 3 vext2 RHS, <3,7,0,1>
+ 1571212062U, // <6,7,3,u>: Cost 2 vext2 RHS, <3,u,1,2>
+ 1573202834U, // <6,7,4,0>: Cost 2 vext2 RHS, <4,0,5,1>
+ 2644954058U, // <6,7,4,1>: Cost 3 vext2 RHS, <4,1,2,3>
+ 2644954166U, // <6,7,4,2>: Cost 3 vext2 RHS, <4,2,5,3>
+ 2644954258U, // <6,7,4,3>: Cost 3 vext2 RHS, <4,3,6,5>
+ 1571212496U, // <6,7,4,4>: Cost 2 vext2 RHS, <4,4,4,4>
+ 497470774U, // <6,7,4,5>: Cost 1 vext2 RHS, RHS
+ 1573203316U, // <6,7,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 2646281688U, // <6,7,4,7>: Cost 3 vext2 <4,7,6,7>, <4,7,6,7>
+ 497471017U, // <6,7,4,u>: Cost 1 vext2 RHS, RHS
+ 2644954696U, // <6,7,5,0>: Cost 3 vext2 RHS, <5,0,1,2>
+ 1573203664U, // <6,7,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 2644954878U, // <6,7,5,2>: Cost 3 vext2 RHS, <5,2,3,4>
+ 2644954991U, // <6,7,5,3>: Cost 3 vext2 RHS, <5,3,7,0>
+ 1571213254U, // <6,7,5,4>: Cost 2 vext2 RHS, <5,4,7,6>
+ 1571213316U, // <6,7,5,5>: Cost 2 vext2 RHS, <5,5,5,5>
+ 1571213410U, // <6,7,5,6>: Cost 2 vext2 RHS, <5,6,7,0>
+ 1573204136U, // <6,7,5,7>: Cost 2 vext2 RHS, <5,7,5,7>
+ 1573204217U, // <6,7,5,u>: Cost 2 vext2 RHS, <5,u,5,7>
+ 2644955425U, // <6,7,6,0>: Cost 3 vext2 RHS, <6,0,1,2>
+ 2644955561U, // <6,7,6,1>: Cost 3 vext2 RHS, <6,1,7,3>
+ 1573204474U, // <6,7,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 2644955698U, // <6,7,6,3>: Cost 3 vext2 RHS, <6,3,4,5>
+ 2644955789U, // <6,7,6,4>: Cost 3 vext2 RHS, <6,4,5,6>
+ 2644955889U, // <6,7,6,5>: Cost 3 vext2 RHS, <6,5,7,7>
+ 1571214136U, // <6,7,6,6>: Cost 2 vext2 RHS, <6,6,6,6>
+ 1571214158U, // <6,7,6,7>: Cost 2 vext2 RHS, <6,7,0,1>
+ 1573204895U, // <6,7,6,u>: Cost 2 vext2 RHS, <6,u,0,1>
+ 1573204986U, // <6,7,7,0>: Cost 2 vext2 RHS, <7,0,1,2>
+ 2572608656U, // <6,7,7,1>: Cost 3 vext1 <3,6,7,7>, <1,5,3,7>
+ 2644956362U, // <6,7,7,2>: Cost 3 vext2 RHS, <7,2,6,3>
+ 2572610231U, // <6,7,7,3>: Cost 3 vext1 <3,6,7,7>, <3,6,7,7>
+ 1573205350U, // <6,7,7,4>: Cost 2 vext2 RHS, <7,4,5,6>
+ 2646947220U, // <6,7,7,5>: Cost 3 vext2 RHS, <7,5,1,7>
+ 1516786498U, // <6,7,7,6>: Cost 2 vext1 <6,6,7,7>, <6,6,7,7>
+ 1571214956U, // <6,7,7,7>: Cost 2 vext2 RHS, <7,7,7,7>
+ 1573205634U, // <6,7,7,u>: Cost 2 vext2 RHS, <7,u,1,2>
+ 1571215059U, // <6,7,u,0>: Cost 2 vext2 RHS, <u,0,1,2>
+ 497473326U, // <6,7,u,1>: Cost 1 vext2 RHS, LHS
+ 1571215237U, // <6,7,u,2>: Cost 2 vext2 RHS, <u,2,3,0>
+ 1571215292U, // <6,7,u,3>: Cost 2 vext2 RHS, <u,3,0,1>
+ 1571215423U, // <6,7,u,4>: Cost 2 vext2 RHS, <u,4,5,6>
+ 497473690U, // <6,7,u,5>: Cost 1 vext2 RHS, RHS
+ 1571215568U, // <6,7,u,6>: Cost 2 vext2 RHS, <u,6,3,7>
+ 1573206272U, // <6,7,u,7>: Cost 2 vext2 RHS, <u,7,0,1>
+ 497473893U, // <6,7,u,u>: Cost 1 vext2 RHS, LHS
+ 1571217408U, // <6,u,0,0>: Cost 2 vext2 RHS, <0,0,0,0>
+ 497475686U, // <6,u,0,1>: Cost 1 vext2 RHS, LHS
+ 1571217572U, // <6,u,0,2>: Cost 2 vext2 RHS, <0,2,0,2>
+ 2689865445U, // <6,u,0,3>: Cost 3 vext3 <0,u,2,6>, <u,0,3,2>
+ 1571217746U, // <6,u,0,4>: Cost 2 vext2 RHS, <0,4,1,5>
+ 1510830187U, // <6,u,0,5>: Cost 2 vext1 <5,6,u,0>, <5,6,u,0>
+ 2644959734U, // <6,u,0,6>: Cost 3 vext2 RHS, <0,6,1,7>
+ 1193130221U, // <6,u,0,7>: Cost 2 vrev <u,6,7,0>
+ 497476253U, // <6,u,0,u>: Cost 1 vext2 RHS, LHS
+ 1571218166U, // <6,u,1,0>: Cost 2 vext2 RHS, <1,0,3,2>
+ 1571218228U, // <6,u,1,1>: Cost 2 vext2 RHS, <1,1,1,1>
+ 1612289838U, // <6,u,1,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 1571218392U, // <6,u,1,3>: Cost 2 vext2 RHS, <1,3,1,3>
+ 2566663478U, // <6,u,1,4>: Cost 3 vext1 <2,6,u,1>, RHS
+ 1571218576U, // <6,u,1,5>: Cost 2 vext2 RHS, <1,5,3,7>
+ 2644960463U, // <6,u,1,6>: Cost 3 vext2 RHS, <1,6,1,7>
+ 2717439835U, // <6,u,1,7>: Cost 3 vext3 <5,4,7,6>, <u,1,7,3>
+ 1612289892U, // <6,u,1,u>: Cost 2 vext3 <0,2,4,6>, LHS
+ 1504870502U, // <6,u,2,0>: Cost 2 vext1 <4,6,u,2>, LHS
+ 2644960774U, // <6,u,2,1>: Cost 3 vext2 RHS, <2,1,0,3>
+ 1571219048U, // <6,u,2,2>: Cost 2 vext2 RHS, <2,2,2,2>
+ 1571219110U, // <6,u,2,3>: Cost 2 vext2 RHS, <2,3,0,1>
+ 1504873782U, // <6,u,2,4>: Cost 2 vext1 <4,6,u,2>, RHS
+ 2633017221U, // <6,u,2,5>: Cost 3 vext2 <2,5,6,u>, <2,5,6,u>
+ 1571219386U, // <6,u,2,6>: Cost 2 vext2 RHS, <2,6,3,7>
+ 2712573868U, // <6,u,2,7>: Cost 3 vext3 <4,6,4,6>, <u,2,7,3>
+ 1571219515U, // <6,u,2,u>: Cost 2 vext2 RHS, <2,u,0,1>
+ 1571219606U, // <6,u,3,0>: Cost 2 vext2 RHS, <3,0,1,2>
+ 2644961503U, // <6,u,3,1>: Cost 3 vext2 RHS, <3,1,0,3>
+ 2566678499U, // <6,u,3,2>: Cost 3 vext1 <2,6,u,3>, <2,6,u,3>
+ 1571219868U, // <6,u,3,3>: Cost 2 vext2 RHS, <3,3,3,3>
+ 1571219970U, // <6,u,3,4>: Cost 2 vext2 RHS, <3,4,5,6>
+ 2689865711U, // <6,u,3,5>: Cost 3 vext3 <0,u,2,6>, <u,3,5,7>
+ 2708002806U, // <6,u,3,6>: Cost 3 vext3 <3,u,5,6>, <u,3,6,5>
+ 2644961987U, // <6,u,3,7>: Cost 3 vext2 RHS, <3,7,0,1>
+ 1571220254U, // <6,u,3,u>: Cost 2 vext2 RHS, <3,u,1,2>
+ 1571220370U, // <6,u,4,0>: Cost 2 vext2 RHS, <4,0,5,1>
+ 2644962250U, // <6,u,4,1>: Cost 3 vext2 RHS, <4,1,2,3>
+ 1661245476U, // <6,u,4,2>: Cost 2 vext3 <u,4,2,6>, <u,4,2,6>
+ 2686031917U, // <6,u,4,3>: Cost 3 vext3 <0,2,4,6>, <u,4,3,6>
+ 1571220688U, // <6,u,4,4>: Cost 2 vext2 RHS, <4,4,4,4>
+ 497478967U, // <6,u,4,5>: Cost 1 vext2 RHS, RHS
+ 1571220852U, // <6,u,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 1661614161U, // <6,u,4,7>: Cost 2 vext3 <u,4,7,6>, <u,4,7,6>
+ 497479209U, // <6,u,4,u>: Cost 1 vext2 RHS, RHS
+ 2566692966U, // <6,u,5,0>: Cost 3 vext1 <2,6,u,5>, LHS
+ 1571221200U, // <6,u,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 2566694885U, // <6,u,5,2>: Cost 3 vext1 <2,6,u,5>, <2,6,u,5>
+ 2689865855U, // <6,u,5,3>: Cost 3 vext3 <0,u,2,6>, <u,5,3,7>
+ 1571221446U, // <6,u,5,4>: Cost 2 vext2 RHS, <5,4,7,6>
+ 1571221508U, // <6,u,5,5>: Cost 2 vext2 RHS, <5,5,5,5>
+ 1612290202U, // <6,u,5,6>: Cost 2 vext3 <0,2,4,6>, RHS
+ 1571221672U, // <6,u,5,7>: Cost 2 vext2 RHS, <5,7,5,7>
+ 1612290220U, // <6,u,5,u>: Cost 2 vext3 <0,2,4,6>, RHS
+ 1504903270U, // <6,u,6,0>: Cost 2 vext1 <4,6,u,6>, LHS
+ 2644963752U, // <6,u,6,1>: Cost 3 vext2 RHS, <6,1,7,2>
+ 1571222010U, // <6,u,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 2686032080U, // <6,u,6,3>: Cost 3 vext3 <0,2,4,6>, <u,6,3,7>
+ 1504906550U, // <6,u,6,4>: Cost 2 vext1 <4,6,u,6>, RHS
+ 2644964079U, // <6,u,6,5>: Cost 3 vext2 RHS, <6,5,7,5>
+ 296144182U, // <6,u,6,6>: Cost 1 vdup2 RHS
+ 1571222350U, // <6,u,6,7>: Cost 2 vext2 RHS, <6,7,0,1>
+ 296144182U, // <6,u,6,u>: Cost 1 vdup2 RHS
+ 1492967526U, // <6,u,7,0>: Cost 2 vext1 <2,6,u,7>, LHS
+ 2560738574U, // <6,u,7,1>: Cost 3 vext1 <1,6,u,7>, <1,6,u,7>
+ 1492969447U, // <6,u,7,2>: Cost 2 vext1 <2,6,u,7>, <2,6,u,7>
+ 1906753692U, // <6,u,7,3>: Cost 2 vzipr RHS, LHS
+ 1492970806U, // <6,u,7,4>: Cost 2 vext1 <2,6,u,7>, RHS
+ 2980495761U, // <6,u,7,5>: Cost 3 vzipr RHS, <0,4,u,5>
+ 1516860235U, // <6,u,7,6>: Cost 2 vext1 <6,6,u,7>, <6,6,u,7>
+ 1906756936U, // <6,u,7,7>: Cost 2 vzipr RHS, RHS
+ 1492973358U, // <6,u,7,u>: Cost 2 vext1 <2,6,u,7>, LHS
+ 1492975718U, // <6,u,u,0>: Cost 2 vext1 <2,6,u,u>, LHS
+ 497481518U, // <6,u,u,1>: Cost 1 vext2 RHS, LHS
+ 1612290405U, // <6,u,u,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 1571223484U, // <6,u,u,3>: Cost 2 vext2 RHS, <u,3,0,1>
+ 1492978998U, // <6,u,u,4>: Cost 2 vext1 <2,6,u,u>, RHS
+ 497481882U, // <6,u,u,5>: Cost 1 vext2 RHS, RHS
+ 296144182U, // <6,u,u,6>: Cost 1 vdup2 RHS
+ 1906765128U, // <6,u,u,7>: Cost 2 vzipr RHS, RHS
+ 497482085U, // <6,u,u,u>: Cost 1 vext2 RHS, LHS
+ 1638318080U, // <7,0,0,0>: Cost 2 vext3 RHS, <0,0,0,0>
+ 1638318090U, // <7,0,0,1>: Cost 2 vext3 RHS, <0,0,1,1>
+ 1638318100U, // <7,0,0,2>: Cost 2 vext3 RHS, <0,0,2,2>
+ 3646442178U, // <7,0,0,3>: Cost 4 vext1 <3,7,0,0>, <3,7,0,0>
+ 2712059941U, // <7,0,0,4>: Cost 3 vext3 RHS, <0,0,4,1>
+ 2651603364U, // <7,0,0,5>: Cost 3 vext2 <5,6,7,0>, <0,5,1,6>
+ 2590618445U, // <7,0,0,6>: Cost 3 vext1 <6,7,0,0>, <6,7,0,0>
+ 3785801798U, // <7,0,0,7>: Cost 4 vext3 RHS, <0,0,7,7>
+ 1638318153U, // <7,0,0,u>: Cost 2 vext3 RHS, <0,0,u,1>
+ 1516879974U, // <7,0,1,0>: Cost 2 vext1 <6,7,0,1>, LHS
+ 2693922911U, // <7,0,1,1>: Cost 3 vext3 <1,5,3,7>, <0,1,1,5>
+ 564576358U, // <7,0,1,2>: Cost 1 vext3 RHS, LHS
+ 2638996480U, // <7,0,1,3>: Cost 3 vext2 <3,5,7,0>, <1,3,5,7>
+ 1516883254U, // <7,0,1,4>: Cost 2 vext1 <6,7,0,1>, RHS
+ 2649613456U, // <7,0,1,5>: Cost 3 vext2 <5,3,7,0>, <1,5,3,7>
+ 1516884814U, // <7,0,1,6>: Cost 2 vext1 <6,7,0,1>, <6,7,0,1>
+ 2590626808U, // <7,0,1,7>: Cost 3 vext1 <6,7,0,1>, <7,0,1,0>
+ 564576412U, // <7,0,1,u>: Cost 1 vext3 RHS, LHS
+ 1638318244U, // <7,0,2,0>: Cost 2 vext3 RHS, <0,2,0,2>
+ 2692743344U, // <7,0,2,1>: Cost 3 vext3 <1,3,5,7>, <0,2,1,5>
+ 2712060084U, // <7,0,2,2>: Cost 3 vext3 RHS, <0,2,2,0>
+ 2712060094U, // <7,0,2,3>: Cost 3 vext3 RHS, <0,2,3,1>
+ 1638318284U, // <7,0,2,4>: Cost 2 vext3 RHS, <0,2,4,6>
+ 2712060118U, // <7,0,2,5>: Cost 3 vext3 RHS, <0,2,5,7>
+ 2651604922U, // <7,0,2,6>: Cost 3 vext2 <5,6,7,0>, <2,6,3,7>
+ 2686255336U, // <7,0,2,7>: Cost 3 vext3 <0,2,7,7>, <0,2,7,7>
+ 1638318316U, // <7,0,2,u>: Cost 2 vext3 RHS, <0,2,u,2>
+ 2651605142U, // <7,0,3,0>: Cost 3 vext2 <5,6,7,0>, <3,0,1,2>
+ 2712060156U, // <7,0,3,1>: Cost 3 vext3 RHS, <0,3,1,0>
+ 2712060165U, // <7,0,3,2>: Cost 3 vext3 RHS, <0,3,2,0>
+ 2651605404U, // <7,0,3,3>: Cost 3 vext2 <5,6,7,0>, <3,3,3,3>
+ 2651605506U, // <7,0,3,4>: Cost 3 vext2 <5,6,7,0>, <3,4,5,6>
+ 2638998111U, // <7,0,3,5>: Cost 3 vext2 <3,5,7,0>, <3,5,7,0>
+ 2639661744U, // <7,0,3,6>: Cost 3 vext2 <3,6,7,0>, <3,6,7,0>
+ 3712740068U, // <7,0,3,7>: Cost 4 vext2 <3,5,7,0>, <3,7,3,7>
+ 2640989010U, // <7,0,3,u>: Cost 3 vext2 <3,u,7,0>, <3,u,7,0>
+ 2712060232U, // <7,0,4,0>: Cost 3 vext3 RHS, <0,4,0,4>
+ 1638318418U, // <7,0,4,1>: Cost 2 vext3 RHS, <0,4,1,5>
+ 1638318428U, // <7,0,4,2>: Cost 2 vext3 RHS, <0,4,2,6>
+ 3646474950U, // <7,0,4,3>: Cost 4 vext1 <3,7,0,4>, <3,7,0,4>
+ 2712060270U, // <7,0,4,4>: Cost 3 vext3 RHS, <0,4,4,6>
+ 1577864502U, // <7,0,4,5>: Cost 2 vext2 <5,6,7,0>, RHS
+ 2651606388U, // <7,0,4,6>: Cost 3 vext2 <5,6,7,0>, <4,6,4,6>
+ 3787792776U, // <7,0,4,7>: Cost 4 vext3 RHS, <0,4,7,5>
+ 1638318481U, // <7,0,4,u>: Cost 2 vext3 RHS, <0,4,u,5>
+ 2590654566U, // <7,0,5,0>: Cost 3 vext1 <6,7,0,5>, LHS
+ 2651606736U, // <7,0,5,1>: Cost 3 vext2 <5,6,7,0>, <5,1,7,3>
+ 2712060334U, // <7,0,5,2>: Cost 3 vext3 RHS, <0,5,2,7>
+ 2649616239U, // <7,0,5,3>: Cost 3 vext2 <5,3,7,0>, <5,3,7,0>
+ 2651606982U, // <7,0,5,4>: Cost 3 vext2 <5,6,7,0>, <5,4,7,6>
+ 2651607044U, // <7,0,5,5>: Cost 3 vext2 <5,6,7,0>, <5,5,5,5>
+ 1577865314U, // <7,0,5,6>: Cost 2 vext2 <5,6,7,0>, <5,6,7,0>
+ 2651607208U, // <7,0,5,7>: Cost 3 vext2 <5,6,7,0>, <5,7,5,7>
+ 1579192580U, // <7,0,5,u>: Cost 2 vext2 <5,u,7,0>, <5,u,7,0>
+ 2688393709U, // <7,0,6,0>: Cost 3 vext3 <0,6,0,7>, <0,6,0,7>
+ 2712060406U, // <7,0,6,1>: Cost 3 vext3 RHS, <0,6,1,7>
+ 2688541183U, // <7,0,6,2>: Cost 3 vext3 <0,6,2,7>, <0,6,2,7>
+ 2655588936U, // <7,0,6,3>: Cost 3 vext2 <6,3,7,0>, <6,3,7,0>
+ 3762430481U, // <7,0,6,4>: Cost 4 vext3 <0,6,4,7>, <0,6,4,7>
+ 2651607730U, // <7,0,6,5>: Cost 3 vext2 <5,6,7,0>, <6,5,0,7>
+ 2651607864U, // <7,0,6,6>: Cost 3 vext2 <5,6,7,0>, <6,6,6,6>
+ 2651607886U, // <7,0,6,7>: Cost 3 vext2 <5,6,7,0>, <6,7,0,1>
+ 2688983605U, // <7,0,6,u>: Cost 3 vext3 <0,6,u,7>, <0,6,u,7>
+ 2651608058U, // <7,0,7,0>: Cost 3 vext2 <5,6,7,0>, <7,0,1,2>
+ 2932703334U, // <7,0,7,1>: Cost 3 vzipl <7,7,7,7>, LHS
+ 3066921062U, // <7,0,7,2>: Cost 3 vtrnl <7,7,7,7>, LHS
+ 3712742678U, // <7,0,7,3>: Cost 4 vext2 <3,5,7,0>, <7,3,5,7>
+ 2651608422U, // <7,0,7,4>: Cost 3 vext2 <5,6,7,0>, <7,4,5,6>
+ 2651608513U, // <7,0,7,5>: Cost 3 vext2 <5,6,7,0>, <7,5,6,7>
+ 2663552532U, // <7,0,7,6>: Cost 3 vext2 <7,6,7,0>, <7,6,7,0>
+ 2651608684U, // <7,0,7,7>: Cost 3 vext2 <5,6,7,0>, <7,7,7,7>
+ 2651608706U, // <7,0,7,u>: Cost 3 vext2 <5,6,7,0>, <7,u,1,2>
+ 1638318730U, // <7,0,u,0>: Cost 2 vext3 RHS, <0,u,0,2>
+ 1638318738U, // <7,0,u,1>: Cost 2 vext3 RHS, <0,u,1,1>
+ 564576925U, // <7,0,u,2>: Cost 1 vext3 RHS, LHS
+ 2572765898U, // <7,0,u,3>: Cost 3 vext1 <3,7,0,u>, <3,7,0,u>
+ 1638318770U, // <7,0,u,4>: Cost 2 vext3 RHS, <0,u,4,6>
+ 1577867418U, // <7,0,u,5>: Cost 2 vext2 <5,6,7,0>, RHS
+ 1516942165U, // <7,0,u,6>: Cost 2 vext1 <6,7,0,u>, <6,7,0,u>
+ 2651609344U, // <7,0,u,7>: Cost 3 vext2 <5,6,7,0>, <u,7,0,1>
+ 564576979U, // <7,0,u,u>: Cost 1 vext3 RHS, LHS
+ 2590687334U, // <7,1,0,0>: Cost 3 vext1 <6,7,1,0>, LHS
+ 2639003750U, // <7,1,0,1>: Cost 3 vext2 <3,5,7,1>, LHS
+ 2793357414U, // <7,1,0,2>: Cost 3 vuzpl <7,0,1,2>, LHS
+ 1638318838U, // <7,1,0,3>: Cost 2 vext3 RHS, <1,0,3,2>
+ 2590690614U, // <7,1,0,4>: Cost 3 vext1 <6,7,1,0>, RHS
+ 2712060679U, // <7,1,0,5>: Cost 3 vext3 RHS, <1,0,5,1>
+ 2590692182U, // <7,1,0,6>: Cost 3 vext1 <6,7,1,0>, <6,7,1,0>
+ 3785802521U, // <7,1,0,7>: Cost 4 vext3 RHS, <1,0,7,1>
+ 1638318883U, // <7,1,0,u>: Cost 2 vext3 RHS, <1,0,u,2>
+ 2712060715U, // <7,1,1,0>: Cost 3 vext3 RHS, <1,1,0,1>
+ 1638318900U, // <7,1,1,1>: Cost 2 vext3 RHS, <1,1,1,1>
+ 3774300994U, // <7,1,1,2>: Cost 4 vext3 <2,6,3,7>, <1,1,2,6>
+ 1638318920U, // <7,1,1,3>: Cost 2 vext3 RHS, <1,1,3,3>
+ 2712060755U, // <7,1,1,4>: Cost 3 vext3 RHS, <1,1,4,5>
+ 2691416926U, // <7,1,1,5>: Cost 3 vext3 <1,1,5,7>, <1,1,5,7>
+ 2590700375U, // <7,1,1,6>: Cost 3 vext1 <6,7,1,1>, <6,7,1,1>
+ 3765158766U, // <7,1,1,7>: Cost 4 vext3 <1,1,5,7>, <1,1,7,5>
+ 1638318965U, // <7,1,1,u>: Cost 2 vext3 RHS, <1,1,u,3>
+ 2712060796U, // <7,1,2,0>: Cost 3 vext3 RHS, <1,2,0,1>
+ 2712060807U, // <7,1,2,1>: Cost 3 vext3 RHS, <1,2,1,3>
+ 3712747112U, // <7,1,2,2>: Cost 4 vext2 <3,5,7,1>, <2,2,2,2>
+ 1638318998U, // <7,1,2,3>: Cost 2 vext3 RHS, <1,2,3,0>
+ 2712060836U, // <7,1,2,4>: Cost 3 vext3 RHS, <1,2,4,5>
+ 2712060843U, // <7,1,2,5>: Cost 3 vext3 RHS, <1,2,5,3>
+ 2590708568U, // <7,1,2,6>: Cost 3 vext1 <6,7,1,2>, <6,7,1,2>
+ 2735948730U, // <7,1,2,7>: Cost 3 vext3 RHS, <1,2,7,0>
+ 1638319043U, // <7,1,2,u>: Cost 2 vext3 RHS, <1,2,u,0>
+ 2712060876U, // <7,1,3,0>: Cost 3 vext3 RHS, <1,3,0,0>
+ 1638319064U, // <7,1,3,1>: Cost 2 vext3 RHS, <1,3,1,3>
+ 2712060894U, // <7,1,3,2>: Cost 3 vext3 RHS, <1,3,2,0>
+ 2692596718U, // <7,1,3,3>: Cost 3 vext3 <1,3,3,7>, <1,3,3,7>
+ 2712060917U, // <7,1,3,4>: Cost 3 vext3 RHS, <1,3,4,5>
+ 1619002368U, // <7,1,3,5>: Cost 2 vext3 <1,3,5,7>, <1,3,5,7>
+ 2692817929U, // <7,1,3,6>: Cost 3 vext3 <1,3,6,7>, <1,3,6,7>
+ 2735948814U, // <7,1,3,7>: Cost 3 vext3 RHS, <1,3,7,3>
+ 1619223579U, // <7,1,3,u>: Cost 2 vext3 <1,3,u,7>, <1,3,u,7>
+ 2712060962U, // <7,1,4,0>: Cost 3 vext3 RHS, <1,4,0,5>
+ 2712060971U, // <7,1,4,1>: Cost 3 vext3 RHS, <1,4,1,5>
+ 2712060980U, // <7,1,4,2>: Cost 3 vext3 RHS, <1,4,2,5>
+ 2712060989U, // <7,1,4,3>: Cost 3 vext3 RHS, <1,4,3,5>
+ 3785802822U, // <7,1,4,4>: Cost 4 vext3 RHS, <1,4,4,5>
+ 2639007030U, // <7,1,4,5>: Cost 3 vext2 <3,5,7,1>, RHS
+ 2645642634U, // <7,1,4,6>: Cost 3 vext2 <4,6,7,1>, <4,6,7,1>
+ 3719384520U, // <7,1,4,7>: Cost 4 vext2 <4,6,7,1>, <4,7,5,0>
+ 2639007273U, // <7,1,4,u>: Cost 3 vext2 <3,5,7,1>, RHS
+ 2572812390U, // <7,1,5,0>: Cost 3 vext1 <3,7,1,5>, LHS
+ 2693776510U, // <7,1,5,1>: Cost 3 vext3 <1,5,1,7>, <1,5,1,7>
+ 3774301318U, // <7,1,5,2>: Cost 4 vext3 <2,6,3,7>, <1,5,2,6>
+ 1620182160U, // <7,1,5,3>: Cost 2 vext3 <1,5,3,7>, <1,5,3,7>
+ 2572815670U, // <7,1,5,4>: Cost 3 vext1 <3,7,1,5>, RHS
+ 3766486178U, // <7,1,5,5>: Cost 4 vext3 <1,3,5,7>, <1,5,5,7>
+ 2651615331U, // <7,1,5,6>: Cost 3 vext2 <5,6,7,1>, <5,6,7,1>
+ 2652278964U, // <7,1,5,7>: Cost 3 vext2 <5,7,7,1>, <5,7,7,1>
+ 1620550845U, // <7,1,5,u>: Cost 2 vext3 <1,5,u,7>, <1,5,u,7>
+ 3768108230U, // <7,1,6,0>: Cost 4 vext3 <1,6,0,7>, <1,6,0,7>
+ 2694440143U, // <7,1,6,1>: Cost 3 vext3 <1,6,1,7>, <1,6,1,7>
+ 2712061144U, // <7,1,6,2>: Cost 3 vext3 RHS, <1,6,2,7>
+ 2694587617U, // <7,1,6,3>: Cost 3 vext3 <1,6,3,7>, <1,6,3,7>
+ 3768403178U, // <7,1,6,4>: Cost 4 vext3 <1,6,4,7>, <1,6,4,7>
+ 2694735091U, // <7,1,6,5>: Cost 3 vext3 <1,6,5,7>, <1,6,5,7>
+ 3768550652U, // <7,1,6,6>: Cost 4 vext3 <1,6,6,7>, <1,6,6,7>
+ 2652279630U, // <7,1,6,7>: Cost 3 vext2 <5,7,7,1>, <6,7,0,1>
+ 2694956302U, // <7,1,6,u>: Cost 3 vext3 <1,6,u,7>, <1,6,u,7>
+ 2645644282U, // <7,1,7,0>: Cost 3 vext2 <4,6,7,1>, <7,0,1,2>
+ 2859062094U, // <7,1,7,1>: Cost 3 vuzpr <6,7,0,1>, <6,7,0,1>
+ 3779462437U, // <7,1,7,2>: Cost 4 vext3 <3,5,1,7>, <1,7,2,3>
+ 3121938534U, // <7,1,7,3>: Cost 3 vtrnr <5,7,5,7>, LHS
+ 2554916150U, // <7,1,7,4>: Cost 3 vext1 <0,7,1,7>, RHS
+ 3769140548U, // <7,1,7,5>: Cost 4 vext3 <1,7,5,7>, <1,7,5,7>
+ 3726022164U, // <7,1,7,6>: Cost 4 vext2 <5,7,7,1>, <7,6,7,0>
+ 2554918508U, // <7,1,7,7>: Cost 3 vext1 <0,7,1,7>, <7,7,7,7>
+ 3121938539U, // <7,1,7,u>: Cost 3 vtrnr <5,7,5,7>, LHS
+ 2572836966U, // <7,1,u,0>: Cost 3 vext1 <3,7,1,u>, LHS
+ 1638319469U, // <7,1,u,1>: Cost 2 vext3 RHS, <1,u,1,3>
+ 2712061299U, // <7,1,u,2>: Cost 3 vext3 RHS, <1,u,2,0>
+ 1622173059U, // <7,1,u,3>: Cost 2 vext3 <1,u,3,7>, <1,u,3,7>
+ 2572840246U, // <7,1,u,4>: Cost 3 vext1 <3,7,1,u>, RHS
+ 1622320533U, // <7,1,u,5>: Cost 2 vext3 <1,u,5,7>, <1,u,5,7>
+ 2696136094U, // <7,1,u,6>: Cost 3 vext3 <1,u,6,7>, <1,u,6,7>
+ 2859060777U, // <7,1,u,7>: Cost 3 vuzpr <6,7,0,1>, RHS
+ 1622541744U, // <7,1,u,u>: Cost 2 vext3 <1,u,u,7>, <1,u,u,7>
+ 2712061364U, // <7,2,0,0>: Cost 3 vext3 RHS, <2,0,0,2>
+ 2712061373U, // <7,2,0,1>: Cost 3 vext3 RHS, <2,0,1,2>
+ 2712061380U, // <7,2,0,2>: Cost 3 vext3 RHS, <2,0,2,0>
+ 2712061389U, // <7,2,0,3>: Cost 3 vext3 RHS, <2,0,3,0>
+ 2712061404U, // <7,2,0,4>: Cost 3 vext3 RHS, <2,0,4,6>
+ 2696725990U, // <7,2,0,5>: Cost 3 vext3 <2,0,5,7>, <2,0,5,7>
+ 2712061417U, // <7,2,0,6>: Cost 3 vext3 RHS, <2,0,6,1>
+ 3785803251U, // <7,2,0,7>: Cost 4 vext3 RHS, <2,0,7,2>
+ 2696947201U, // <7,2,0,u>: Cost 3 vext3 <2,0,u,7>, <2,0,u,7>
+ 2712061446U, // <7,2,1,0>: Cost 3 vext3 RHS, <2,1,0,3>
+ 3785803276U, // <7,2,1,1>: Cost 4 vext3 RHS, <2,1,1,0>
+ 3785803285U, // <7,2,1,2>: Cost 4 vext3 RHS, <2,1,2,0>
+ 2712061471U, // <7,2,1,3>: Cost 3 vext3 RHS, <2,1,3,1>
+ 2712061482U, // <7,2,1,4>: Cost 3 vext3 RHS, <2,1,4,3>
+ 3766486576U, // <7,2,1,5>: Cost 4 vext3 <1,3,5,7>, <2,1,5,0>
+ 2712061500U, // <7,2,1,6>: Cost 3 vext3 RHS, <2,1,6,3>
+ 2602718850U, // <7,2,1,7>: Cost 3 vext1 <u,7,2,1>, <7,u,1,2>
+ 2712061516U, // <7,2,1,u>: Cost 3 vext3 RHS, <2,1,u,1>
+ 2712061525U, // <7,2,2,0>: Cost 3 vext3 RHS, <2,2,0,1>
+ 2712061536U, // <7,2,2,1>: Cost 3 vext3 RHS, <2,2,1,3>
+ 1638319720U, // <7,2,2,2>: Cost 2 vext3 RHS, <2,2,2,2>
+ 1638319730U, // <7,2,2,3>: Cost 2 vext3 RHS, <2,2,3,3>
+ 2712061565U, // <7,2,2,4>: Cost 3 vext3 RHS, <2,2,4,5>
+ 2698053256U, // <7,2,2,5>: Cost 3 vext3 <2,2,5,7>, <2,2,5,7>
+ 2712061584U, // <7,2,2,6>: Cost 3 vext3 RHS, <2,2,6,6>
+ 3771795096U, // <7,2,2,7>: Cost 4 vext3 <2,2,5,7>, <2,2,7,5>
+ 1638319775U, // <7,2,2,u>: Cost 2 vext3 RHS, <2,2,u,3>
+ 1638319782U, // <7,2,3,0>: Cost 2 vext3 RHS, <2,3,0,1>
+ 2693924531U, // <7,2,3,1>: Cost 3 vext3 <1,5,3,7>, <2,3,1,5>
+ 2700560061U, // <7,2,3,2>: Cost 3 vext3 <2,6,3,7>, <2,3,2,6>
+ 2693924551U, // <7,2,3,3>: Cost 3 vext3 <1,5,3,7>, <2,3,3,7>
+ 1638319822U, // <7,2,3,4>: Cost 2 vext3 RHS, <2,3,4,5>
+ 2698716889U, // <7,2,3,5>: Cost 3 vext3 <2,3,5,7>, <2,3,5,7>
+ 2712061665U, // <7,2,3,6>: Cost 3 vext3 RHS, <2,3,6,6>
+ 2735949540U, // <7,2,3,7>: Cost 3 vext3 RHS, <2,3,7,0>
+ 1638319854U, // <7,2,3,u>: Cost 2 vext3 RHS, <2,3,u,1>
+ 2712061692U, // <7,2,4,0>: Cost 3 vext3 RHS, <2,4,0,6>
+ 2712061698U, // <7,2,4,1>: Cost 3 vext3 RHS, <2,4,1,3>
+ 2712061708U, // <7,2,4,2>: Cost 3 vext3 RHS, <2,4,2,4>
+ 2712061718U, // <7,2,4,3>: Cost 3 vext3 RHS, <2,4,3,5>
+ 2712061728U, // <7,2,4,4>: Cost 3 vext3 RHS, <2,4,4,6>
+ 2699380522U, // <7,2,4,5>: Cost 3 vext3 <2,4,5,7>, <2,4,5,7>
+ 2712061740U, // <7,2,4,6>: Cost 3 vext3 RHS, <2,4,6,0>
+ 3809691445U, // <7,2,4,7>: Cost 4 vext3 RHS, <2,4,7,0>
+ 2699601733U, // <7,2,4,u>: Cost 3 vext3 <2,4,u,7>, <2,4,u,7>
+ 2699675470U, // <7,2,5,0>: Cost 3 vext3 <2,5,0,7>, <2,5,0,7>
+ 3766486867U, // <7,2,5,1>: Cost 4 vext3 <1,3,5,7>, <2,5,1,3>
+ 2699822944U, // <7,2,5,2>: Cost 3 vext3 <2,5,2,7>, <2,5,2,7>
+ 2692745065U, // <7,2,5,3>: Cost 3 vext3 <1,3,5,7>, <2,5,3,7>
+ 2699970418U, // <7,2,5,4>: Cost 3 vext3 <2,5,4,7>, <2,5,4,7>
+ 3766486907U, // <7,2,5,5>: Cost 4 vext3 <1,3,5,7>, <2,5,5,7>
+ 2700117892U, // <7,2,5,6>: Cost 3 vext3 <2,5,6,7>, <2,5,6,7>
+ 3771795334U, // <7,2,5,7>: Cost 4 vext3 <2,2,5,7>, <2,5,7,0>
+ 2692745110U, // <7,2,5,u>: Cost 3 vext3 <1,3,5,7>, <2,5,u,7>
+ 2572894310U, // <7,2,6,0>: Cost 3 vext1 <3,7,2,6>, LHS
+ 2712061860U, // <7,2,6,1>: Cost 3 vext3 RHS, <2,6,1,3>
+ 2700486577U, // <7,2,6,2>: Cost 3 vext3 <2,6,2,7>, <2,6,2,7>
+ 1626818490U, // <7,2,6,3>: Cost 2 vext3 <2,6,3,7>, <2,6,3,7>
+ 2572897590U, // <7,2,6,4>: Cost 3 vext1 <3,7,2,6>, RHS
+ 2700707788U, // <7,2,6,5>: Cost 3 vext3 <2,6,5,7>, <2,6,5,7>
+ 2700781525U, // <7,2,6,6>: Cost 3 vext3 <2,6,6,7>, <2,6,6,7>
+ 3774597086U, // <7,2,6,7>: Cost 4 vext3 <2,6,7,7>, <2,6,7,7>
+ 1627187175U, // <7,2,6,u>: Cost 2 vext3 <2,6,u,7>, <2,6,u,7>
+ 2735949802U, // <7,2,7,0>: Cost 3 vext3 RHS, <2,7,0,1>
+ 3780200434U, // <7,2,7,1>: Cost 4 vext3 <3,6,2,7>, <2,7,1,0>
+ 3773564928U, // <7,2,7,2>: Cost 4 vext3 <2,5,2,7>, <2,7,2,5>
+ 2986541158U, // <7,2,7,3>: Cost 3 vzipr <5,5,7,7>, LHS
+ 2554989878U, // <7,2,7,4>: Cost 3 vext1 <0,7,2,7>, RHS
+ 3775113245U, // <7,2,7,5>: Cost 4 vext3 <2,7,5,7>, <2,7,5,7>
+ 4060283228U, // <7,2,7,6>: Cost 4 vzipr <5,5,7,7>, <0,4,2,6>
+ 2554992236U, // <7,2,7,7>: Cost 3 vext1 <0,7,2,7>, <7,7,7,7>
+ 2986541163U, // <7,2,7,u>: Cost 3 vzipr <5,5,7,7>, LHS
+ 1638320187U, // <7,2,u,0>: Cost 2 vext3 RHS, <2,u,0,1>
+ 2693924936U, // <7,2,u,1>: Cost 3 vext3 <1,5,3,7>, <2,u,1,5>
+ 1638319720U, // <7,2,u,2>: Cost 2 vext3 RHS, <2,2,2,2>
+ 1628145756U, // <7,2,u,3>: Cost 2 vext3 <2,u,3,7>, <2,u,3,7>
+ 1638320227U, // <7,2,u,4>: Cost 2 vext3 RHS, <2,u,4,5>
+ 2702035054U, // <7,2,u,5>: Cost 3 vext3 <2,u,5,7>, <2,u,5,7>
+ 2702108791U, // <7,2,u,6>: Cost 3 vext3 <2,u,6,7>, <2,u,6,7>
+ 2735949945U, // <7,2,u,7>: Cost 3 vext3 RHS, <2,u,7,0>
+ 1628514441U, // <7,2,u,u>: Cost 2 vext3 <2,u,u,7>, <2,u,u,7>
+ 2712062091U, // <7,3,0,0>: Cost 3 vext3 RHS, <3,0,0,0>
+ 1638320278U, // <7,3,0,1>: Cost 2 vext3 RHS, <3,0,1,2>
+ 2712062109U, // <7,3,0,2>: Cost 3 vext3 RHS, <3,0,2,0>
+ 2590836886U, // <7,3,0,3>: Cost 3 vext1 <6,7,3,0>, <3,0,1,2>
+ 2712062128U, // <7,3,0,4>: Cost 3 vext3 RHS, <3,0,4,1>
+ 2712062138U, // <7,3,0,5>: Cost 3 vext3 RHS, <3,0,5,2>
+ 2590839656U, // <7,3,0,6>: Cost 3 vext1 <6,7,3,0>, <6,7,3,0>
+ 3311414017U, // <7,3,0,7>: Cost 4 vrev <3,7,7,0>
+ 1638320341U, // <7,3,0,u>: Cost 2 vext3 RHS, <3,0,u,2>
+ 2237164227U, // <7,3,1,0>: Cost 3 vrev <3,7,0,1>
+ 2712062182U, // <7,3,1,1>: Cost 3 vext3 RHS, <3,1,1,1>
+ 2712062193U, // <7,3,1,2>: Cost 3 vext3 RHS, <3,1,2,3>
+ 2692745468U, // <7,3,1,3>: Cost 3 vext3 <1,3,5,7>, <3,1,3,5>
+ 2712062214U, // <7,3,1,4>: Cost 3 vext3 RHS, <3,1,4,6>
+ 2693925132U, // <7,3,1,5>: Cost 3 vext3 <1,5,3,7>, <3,1,5,3>
+ 3768183059U, // <7,3,1,6>: Cost 4 vext3 <1,6,1,7>, <3,1,6,1>
+ 2692745504U, // <7,3,1,7>: Cost 3 vext3 <1,3,5,7>, <3,1,7,5>
+ 2696063273U, // <7,3,1,u>: Cost 3 vext3 <1,u,5,7>, <3,1,u,5>
+ 2712062254U, // <7,3,2,0>: Cost 3 vext3 RHS, <3,2,0,1>
+ 2712062262U, // <7,3,2,1>: Cost 3 vext3 RHS, <3,2,1,0>
+ 2712062273U, // <7,3,2,2>: Cost 3 vext3 RHS, <3,2,2,2>
+ 2712062280U, // <7,3,2,3>: Cost 3 vext3 RHS, <3,2,3,0>
+ 2712062294U, // <7,3,2,4>: Cost 3 vext3 RHS, <3,2,4,5>
+ 2712062302U, // <7,3,2,5>: Cost 3 vext3 RHS, <3,2,5,4>
+ 2700560742U, // <7,3,2,6>: Cost 3 vext3 <2,6,3,7>, <3,2,6,3>
+ 2712062319U, // <7,3,2,7>: Cost 3 vext3 RHS, <3,2,7,3>
+ 2712062325U, // <7,3,2,u>: Cost 3 vext3 RHS, <3,2,u,0>
+ 2712062335U, // <7,3,3,0>: Cost 3 vext3 RHS, <3,3,0,1>
+ 2636368158U, // <7,3,3,1>: Cost 3 vext2 <3,1,7,3>, <3,1,7,3>
+ 2637031791U, // <7,3,3,2>: Cost 3 vext2 <3,2,7,3>, <3,2,7,3>
+ 1638320540U, // <7,3,3,3>: Cost 2 vext3 RHS, <3,3,3,3>
+ 2712062374U, // <7,3,3,4>: Cost 3 vext3 RHS, <3,3,4,4>
+ 2704689586U, // <7,3,3,5>: Cost 3 vext3 <3,3,5,7>, <3,3,5,7>
+ 2590864235U, // <7,3,3,6>: Cost 3 vext1 <6,7,3,3>, <6,7,3,3>
+ 2704837060U, // <7,3,3,7>: Cost 3 vext3 <3,3,7,7>, <3,3,7,7>
+ 1638320540U, // <7,3,3,u>: Cost 2 vext3 RHS, <3,3,3,3>
+ 2712062416U, // <7,3,4,0>: Cost 3 vext3 RHS, <3,4,0,1>
+ 2712062426U, // <7,3,4,1>: Cost 3 vext3 RHS, <3,4,1,2>
+ 2566981640U, // <7,3,4,2>: Cost 3 vext1 <2,7,3,4>, <2,7,3,4>
+ 2712062447U, // <7,3,4,3>: Cost 3 vext3 RHS, <3,4,3,5>
+ 2712062456U, // <7,3,4,4>: Cost 3 vext3 RHS, <3,4,4,5>
+ 1638320642U, // <7,3,4,5>: Cost 2 vext3 RHS, <3,4,5,6>
+ 2648313204U, // <7,3,4,6>: Cost 3 vext2 <5,1,7,3>, <4,6,4,6>
+ 3311446789U, // <7,3,4,7>: Cost 4 vrev <3,7,7,4>
+ 1638320669U, // <7,3,4,u>: Cost 2 vext3 RHS, <3,4,u,6>
+ 2602819686U, // <7,3,5,0>: Cost 3 vext1 <u,7,3,5>, LHS
+ 1574571728U, // <7,3,5,1>: Cost 2 vext2 <5,1,7,3>, <5,1,7,3>
+ 2648977185U, // <7,3,5,2>: Cost 3 vext2 <5,2,7,3>, <5,2,7,3>
+ 2705869378U, // <7,3,5,3>: Cost 3 vext3 <3,5,3,7>, <3,5,3,7>
+ 2237491947U, // <7,3,5,4>: Cost 3 vrev <3,7,4,5>
+ 2706016852U, // <7,3,5,5>: Cost 3 vext3 <3,5,5,7>, <3,5,5,7>
+ 2648313954U, // <7,3,5,6>: Cost 3 vext2 <5,1,7,3>, <5,6,7,0>
+ 2692745823U, // <7,3,5,7>: Cost 3 vext3 <1,3,5,7>, <3,5,7,0>
+ 1579217159U, // <7,3,5,u>: Cost 2 vext2 <5,u,7,3>, <5,u,7,3>
+ 2706311800U, // <7,3,6,0>: Cost 3 vext3 <3,6,0,7>, <3,6,0,7>
+ 2654286249U, // <7,3,6,1>: Cost 3 vext2 <6,1,7,3>, <6,1,7,3>
+ 1581208058U, // <7,3,6,2>: Cost 2 vext2 <6,2,7,3>, <6,2,7,3>
+ 2706533011U, // <7,3,6,3>: Cost 3 vext3 <3,6,3,7>, <3,6,3,7>
+ 2706606748U, // <7,3,6,4>: Cost 3 vext3 <3,6,4,7>, <3,6,4,7>
+ 3780422309U, // <7,3,6,5>: Cost 4 vext3 <3,6,5,7>, <3,6,5,7>
+ 2712062637U, // <7,3,6,6>: Cost 3 vext3 RHS, <3,6,6,6>
+ 2706827959U, // <7,3,6,7>: Cost 3 vext3 <3,6,7,7>, <3,6,7,7>
+ 1585189856U, // <7,3,6,u>: Cost 2 vext2 <6,u,7,3>, <6,u,7,3>
+ 2693925571U, // <7,3,7,0>: Cost 3 vext3 <1,5,3,7>, <3,7,0,1>
+ 2693925584U, // <7,3,7,1>: Cost 3 vext3 <1,5,3,7>, <3,7,1,5>
+ 2700561114U, // <7,3,7,2>: Cost 3 vext3 <2,6,3,7>, <3,7,2,6>
+ 2572978916U, // <7,3,7,3>: Cost 3 vext1 <3,7,3,7>, <3,7,3,7>
+ 2693925611U, // <7,3,7,4>: Cost 3 vext3 <1,5,3,7>, <3,7,4,5>
+ 2707344118U, // <7,3,7,5>: Cost 3 vext3 <3,7,5,7>, <3,7,5,7>
+ 2654950894U, // <7,3,7,6>: Cost 3 vext2 <6,2,7,3>, <7,6,2,7>
+ 2648315500U, // <7,3,7,7>: Cost 3 vext2 <5,1,7,3>, <7,7,7,7>
+ 2693925643U, // <7,3,7,u>: Cost 3 vext3 <1,5,3,7>, <3,7,u,1>
+ 2237221578U, // <7,3,u,0>: Cost 3 vrev <3,7,0,u>
+ 1638320926U, // <7,3,u,1>: Cost 2 vext3 RHS, <3,u,1,2>
+ 1593153452U, // <7,3,u,2>: Cost 2 vext2 <u,2,7,3>, <u,2,7,3>
+ 1638320540U, // <7,3,u,3>: Cost 2 vext3 RHS, <3,3,3,3>
+ 2237516526U, // <7,3,u,4>: Cost 3 vrev <3,7,4,u>
+ 1638320966U, // <7,3,u,5>: Cost 2 vext3 RHS, <3,u,5,6>
+ 2712062796U, // <7,3,u,6>: Cost 3 vext3 RHS, <3,u,6,3>
+ 2692967250U, // <7,3,u,7>: Cost 3 vext3 <1,3,u,7>, <3,u,7,0>
+ 1638320989U, // <7,3,u,u>: Cost 2 vext3 RHS, <3,u,u,2>
+ 2651635712U, // <7,4,0,0>: Cost 3 vext2 <5,6,7,4>, <0,0,0,0>
+ 1577893990U, // <7,4,0,1>: Cost 2 vext2 <5,6,7,4>, LHS
+ 2651635876U, // <7,4,0,2>: Cost 3 vext2 <5,6,7,4>, <0,2,0,2>
+ 3785804672U, // <7,4,0,3>: Cost 4 vext3 RHS, <4,0,3,1>
+ 2651636050U, // <7,4,0,4>: Cost 3 vext2 <5,6,7,4>, <0,4,1,5>
+ 1638468498U, // <7,4,0,5>: Cost 2 vext3 RHS, <4,0,5,1>
+ 1638468508U, // <7,4,0,6>: Cost 2 vext3 RHS, <4,0,6,2>
+ 3787795364U, // <7,4,0,7>: Cost 4 vext3 RHS, <4,0,7,1>
+ 1640459181U, // <7,4,0,u>: Cost 2 vext3 RHS, <4,0,u,1>
+ 2651636470U, // <7,4,1,0>: Cost 3 vext2 <5,6,7,4>, <1,0,3,2>
+ 2651636532U, // <7,4,1,1>: Cost 3 vext2 <5,6,7,4>, <1,1,1,1>
+ 2712062922U, // <7,4,1,2>: Cost 3 vext3 RHS, <4,1,2,3>
+ 2639029248U, // <7,4,1,3>: Cost 3 vext2 <3,5,7,4>, <1,3,5,7>
+ 2712062940U, // <7,4,1,4>: Cost 3 vext3 RHS, <4,1,4,3>
+ 2712062946U, // <7,4,1,5>: Cost 3 vext3 RHS, <4,1,5,0>
+ 2712062958U, // <7,4,1,6>: Cost 3 vext3 RHS, <4,1,6,3>
+ 3785804791U, // <7,4,1,7>: Cost 4 vext3 RHS, <4,1,7,3>
+ 2712062973U, // <7,4,1,u>: Cost 3 vext3 RHS, <4,1,u,0>
+ 3785804807U, // <7,4,2,0>: Cost 4 vext3 RHS, <4,2,0,1>
+ 3785804818U, // <7,4,2,1>: Cost 4 vext3 RHS, <4,2,1,3>
+ 2651637352U, // <7,4,2,2>: Cost 3 vext2 <5,6,7,4>, <2,2,2,2>
+ 2651637414U, // <7,4,2,3>: Cost 3 vext2 <5,6,7,4>, <2,3,0,1>
+ 3716753194U, // <7,4,2,4>: Cost 4 vext2 <4,2,7,4>, <2,4,5,7>
+ 2712063030U, // <7,4,2,5>: Cost 3 vext3 RHS, <4,2,5,3>
+ 2712063036U, // <7,4,2,6>: Cost 3 vext3 RHS, <4,2,6,0>
+ 3773123658U, // <7,4,2,7>: Cost 4 vext3 <2,4,5,7>, <4,2,7,5>
+ 2712063054U, // <7,4,2,u>: Cost 3 vext3 RHS, <4,2,u,0>
+ 2651637910U, // <7,4,3,0>: Cost 3 vext2 <5,6,7,4>, <3,0,1,2>
+ 3712772348U, // <7,4,3,1>: Cost 4 vext2 <3,5,7,4>, <3,1,3,5>
+ 3785804906U, // <7,4,3,2>: Cost 4 vext3 RHS, <4,3,2,1>
+ 2651638172U, // <7,4,3,3>: Cost 3 vext2 <5,6,7,4>, <3,3,3,3>
+ 2651638274U, // <7,4,3,4>: Cost 3 vext2 <5,6,7,4>, <3,4,5,6>
+ 2639030883U, // <7,4,3,5>: Cost 3 vext2 <3,5,7,4>, <3,5,7,4>
+ 2712063122U, // <7,4,3,6>: Cost 3 vext3 RHS, <4,3,6,5>
+ 3712772836U, // <7,4,3,7>: Cost 4 vext2 <3,5,7,4>, <3,7,3,7>
+ 2641021782U, // <7,4,3,u>: Cost 3 vext2 <3,u,7,4>, <3,u,7,4>
+ 2714053802U, // <7,4,4,0>: Cost 3 vext3 RHS, <4,4,0,2>
+ 3785804978U, // <7,4,4,1>: Cost 4 vext3 RHS, <4,4,1,1>
+ 3716754505U, // <7,4,4,2>: Cost 4 vext2 <4,2,7,4>, <4,2,7,4>
+ 3785804998U, // <7,4,4,3>: Cost 4 vext3 RHS, <4,4,3,3>
+ 1638321360U, // <7,4,4,4>: Cost 2 vext3 RHS, <4,4,4,4>
+ 1638468826U, // <7,4,4,5>: Cost 2 vext3 RHS, <4,4,5,5>
+ 1638468836U, // <7,4,4,6>: Cost 2 vext3 RHS, <4,4,6,6>
+ 3785215214U, // <7,4,4,7>: Cost 4 vext3 <4,4,7,7>, <4,4,7,7>
+ 1640459509U, // <7,4,4,u>: Cost 2 vext3 RHS, <4,4,u,5>
+ 1517207654U, // <7,4,5,0>: Cost 2 vext1 <6,7,4,5>, LHS
+ 2573034640U, // <7,4,5,1>: Cost 3 vext1 <3,7,4,5>, <1,5,3,7>
+ 2712063246U, // <7,4,5,2>: Cost 3 vext3 RHS, <4,5,2,3>
+ 2573036267U, // <7,4,5,3>: Cost 3 vext1 <3,7,4,5>, <3,7,4,5>
+ 1517210934U, // <7,4,5,4>: Cost 2 vext1 <6,7,4,5>, RHS
+ 2711989549U, // <7,4,5,5>: Cost 3 vext3 <4,5,5,7>, <4,5,5,7>
+ 564579638U, // <7,4,5,6>: Cost 1 vext3 RHS, RHS
+ 2651639976U, // <7,4,5,7>: Cost 3 vext2 <5,6,7,4>, <5,7,5,7>
+ 564579656U, // <7,4,5,u>: Cost 1 vext3 RHS, RHS
+ 2712063307U, // <7,4,6,0>: Cost 3 vext3 RHS, <4,6,0,1>
+ 3767668056U, // <7,4,6,1>: Cost 4 vext3 <1,5,3,7>, <4,6,1,5>
+ 2651640314U, // <7,4,6,2>: Cost 3 vext2 <5,6,7,4>, <6,2,7,3>
+ 2655621708U, // <7,4,6,3>: Cost 3 vext2 <6,3,7,4>, <6,3,7,4>
+ 1638468980U, // <7,4,6,4>: Cost 2 vext3 RHS, <4,6,4,6>
+ 2712063358U, // <7,4,6,5>: Cost 3 vext3 RHS, <4,6,5,7>
+ 2712063367U, // <7,4,6,6>: Cost 3 vext3 RHS, <4,6,6,7>
+ 2712210826U, // <7,4,6,7>: Cost 3 vext3 RHS, <4,6,7,1>
+ 1638469012U, // <7,4,6,u>: Cost 2 vext3 RHS, <4,6,u,2>
+ 2651640826U, // <7,4,7,0>: Cost 3 vext2 <5,6,7,4>, <7,0,1,2>
+ 3773713830U, // <7,4,7,1>: Cost 4 vext3 <2,5,4,7>, <4,7,1,2>
+ 3773713842U, // <7,4,7,2>: Cost 4 vext3 <2,5,4,7>, <4,7,2,5>
+ 3780349372U, // <7,4,7,3>: Cost 4 vext3 <3,6,4,7>, <4,7,3,6>
+ 2651641140U, // <7,4,7,4>: Cost 3 vext2 <5,6,7,4>, <7,4,0,1>
+ 2712210888U, // <7,4,7,5>: Cost 3 vext3 RHS, <4,7,5,0>
+ 2712210898U, // <7,4,7,6>: Cost 3 vext3 RHS, <4,7,6,1>
+ 2651641452U, // <7,4,7,7>: Cost 3 vext2 <5,6,7,4>, <7,7,7,7>
+ 2713538026U, // <7,4,7,u>: Cost 3 vext3 <4,7,u,7>, <4,7,u,7>
+ 1517232230U, // <7,4,u,0>: Cost 2 vext1 <6,7,4,u>, LHS
+ 1577899822U, // <7,4,u,1>: Cost 2 vext2 <5,6,7,4>, LHS
+ 2712063489U, // <7,4,u,2>: Cost 3 vext3 RHS, <4,u,2,3>
+ 2573060846U, // <7,4,u,3>: Cost 3 vext1 <3,7,4,u>, <3,7,4,u>
+ 1640312342U, // <7,4,u,4>: Cost 2 vext3 RHS, <4,u,4,6>
+ 1638469146U, // <7,4,u,5>: Cost 2 vext3 RHS, <4,u,5,1>
+ 564579881U, // <7,4,u,6>: Cost 1 vext3 RHS, RHS
+ 2714054192U, // <7,4,u,7>: Cost 3 vext3 RHS, <4,u,7,5>
+ 564579899U, // <7,4,u,u>: Cost 1 vext3 RHS, RHS
+ 2579038310U, // <7,5,0,0>: Cost 3 vext1 <4,7,5,0>, LHS
+ 2636382310U, // <7,5,0,1>: Cost 3 vext2 <3,1,7,5>, LHS
+ 2796339302U, // <7,5,0,2>: Cost 3 vuzpl <7,4,5,6>, LHS
+ 3646810719U, // <7,5,0,3>: Cost 4 vext1 <3,7,5,0>, <3,5,7,0>
+ 2712063586U, // <7,5,0,4>: Cost 3 vext3 RHS, <5,0,4,1>
+ 2735951467U, // <7,5,0,5>: Cost 3 vext3 RHS, <5,0,5,1>
+ 2735951476U, // <7,5,0,6>: Cost 3 vext3 RHS, <5,0,6,1>
+ 2579043322U, // <7,5,0,7>: Cost 3 vext1 <4,7,5,0>, <7,0,1,2>
+ 2636382877U, // <7,5,0,u>: Cost 3 vext2 <3,1,7,5>, LHS
+ 2712211087U, // <7,5,1,0>: Cost 3 vext3 RHS, <5,1,0,1>
+ 3698180916U, // <7,5,1,1>: Cost 4 vext2 <1,1,7,5>, <1,1,1,1>
+ 3710124950U, // <7,5,1,2>: Cost 4 vext2 <3,1,7,5>, <1,2,3,0>
+ 2636383232U, // <7,5,1,3>: Cost 3 vext2 <3,1,7,5>, <1,3,5,7>
+ 2712211127U, // <7,5,1,4>: Cost 3 vext3 RHS, <5,1,4,5>
+ 2590994128U, // <7,5,1,5>: Cost 3 vext1 <6,7,5,1>, <5,1,7,3>
+ 2590995323U, // <7,5,1,6>: Cost 3 vext1 <6,7,5,1>, <6,7,5,1>
+ 1638469328U, // <7,5,1,7>: Cost 2 vext3 RHS, <5,1,7,3>
+ 1638469337U, // <7,5,1,u>: Cost 2 vext3 RHS, <5,1,u,3>
+ 3785805536U, // <7,5,2,0>: Cost 4 vext3 RHS, <5,2,0,1>
+ 3785805544U, // <7,5,2,1>: Cost 4 vext3 RHS, <5,2,1,0>
+ 3704817288U, // <7,5,2,2>: Cost 4 vext2 <2,2,7,5>, <2,2,5,7>
+ 2712063742U, // <7,5,2,3>: Cost 3 vext3 RHS, <5,2,3,4>
+ 3716761386U, // <7,5,2,4>: Cost 4 vext2 <4,2,7,5>, <2,4,5,7>
+ 2714054415U, // <7,5,2,5>: Cost 3 vext3 RHS, <5,2,5,3>
+ 3774304024U, // <7,5,2,6>: Cost 4 vext3 <2,6,3,7>, <5,2,6,3>
+ 2712063777U, // <7,5,2,7>: Cost 3 vext3 RHS, <5,2,7,3>
+ 2712063787U, // <7,5,2,u>: Cost 3 vext3 RHS, <5,2,u,4>
+ 3634888806U, // <7,5,3,0>: Cost 4 vext1 <1,7,5,3>, LHS
+ 2636384544U, // <7,5,3,1>: Cost 3 vext2 <3,1,7,5>, <3,1,7,5>
+ 3710790001U, // <7,5,3,2>: Cost 4 vext2 <3,2,7,5>, <3,2,7,5>
+ 3710126492U, // <7,5,3,3>: Cost 4 vext2 <3,1,7,5>, <3,3,3,3>
+ 3634892086U, // <7,5,3,4>: Cost 4 vext1 <1,7,5,3>, RHS
+ 2639039076U, // <7,5,3,5>: Cost 3 vext2 <3,5,7,5>, <3,5,7,5>
+ 3713444533U, // <7,5,3,6>: Cost 4 vext2 <3,6,7,5>, <3,6,7,5>
+ 2693926767U, // <7,5,3,7>: Cost 3 vext3 <1,5,3,7>, <5,3,7,0>
+ 2712063864U, // <7,5,3,u>: Cost 3 vext3 RHS, <5,3,u,0>
+ 2579071078U, // <7,5,4,0>: Cost 3 vext1 <4,7,5,4>, LHS
+ 3646841856U, // <7,5,4,1>: Cost 4 vext1 <3,7,5,4>, <1,3,5,7>
+ 3716762698U, // <7,5,4,2>: Cost 4 vext2 <4,2,7,5>, <4,2,7,5>
+ 3646843491U, // <7,5,4,3>: Cost 4 vext1 <3,7,5,4>, <3,5,7,4>
+ 2579074358U, // <7,5,4,4>: Cost 3 vext1 <4,7,5,4>, RHS
+ 2636385590U, // <7,5,4,5>: Cost 3 vext2 <3,1,7,5>, RHS
+ 2645675406U, // <7,5,4,6>: Cost 3 vext2 <4,6,7,5>, <4,6,7,5>
+ 1638322118U, // <7,5,4,7>: Cost 2 vext3 RHS, <5,4,7,6>
+ 1638469583U, // <7,5,4,u>: Cost 2 vext3 RHS, <5,4,u,6>
+ 2714054611U, // <7,5,5,0>: Cost 3 vext3 RHS, <5,5,0,1>
+ 2652974800U, // <7,5,5,1>: Cost 3 vext2 <5,u,7,5>, <5,1,7,3>
+ 3710127905U, // <7,5,5,2>: Cost 4 vext2 <3,1,7,5>, <5,2,7,3>
+ 3785805808U, // <7,5,5,3>: Cost 4 vext3 RHS, <5,5,3,3>
+ 2712211450U, // <7,5,5,4>: Cost 3 vext3 RHS, <5,5,4,4>
+ 1638322180U, // <7,5,5,5>: Cost 2 vext3 RHS, <5,5,5,5>
+ 2712064014U, // <7,5,5,6>: Cost 3 vext3 RHS, <5,5,6,6>
+ 1638469656U, // <7,5,5,7>: Cost 2 vext3 RHS, <5,5,7,7>
+ 1638469665U, // <7,5,5,u>: Cost 2 vext3 RHS, <5,5,u,7>
+ 2712064036U, // <7,5,6,0>: Cost 3 vext3 RHS, <5,6,0,1>
+ 2714054707U, // <7,5,6,1>: Cost 3 vext3 RHS, <5,6,1,7>
+ 3785805879U, // <7,5,6,2>: Cost 4 vext3 RHS, <5,6,2,2>
+ 2712064066U, // <7,5,6,3>: Cost 3 vext3 RHS, <5,6,3,4>
+ 2712064076U, // <7,5,6,4>: Cost 3 vext3 RHS, <5,6,4,5>
+ 2714054743U, // <7,5,6,5>: Cost 3 vext3 RHS, <5,6,5,7>
+ 2712064096U, // <7,5,6,6>: Cost 3 vext3 RHS, <5,6,6,7>
+ 1638322274U, // <7,5,6,7>: Cost 2 vext3 RHS, <5,6,7,0>
+ 1638469739U, // <7,5,6,u>: Cost 2 vext3 RHS, <5,6,u,0>
+ 1511325798U, // <7,5,7,0>: Cost 2 vext1 <5,7,5,7>, LHS
+ 2692747392U, // <7,5,7,1>: Cost 3 vext3 <1,3,5,7>, <5,7,1,3>
+ 2585069160U, // <7,5,7,2>: Cost 3 vext1 <5,7,5,7>, <2,2,2,2>
+ 2573126390U, // <7,5,7,3>: Cost 3 vext1 <3,7,5,7>, <3,7,5,7>
+ 1511329078U, // <7,5,7,4>: Cost 2 vext1 <5,7,5,7>, RHS
+ 1638469800U, // <7,5,7,5>: Cost 2 vext3 RHS, <5,7,5,7>
+ 2712211626U, // <7,5,7,6>: Cost 3 vext3 RHS, <5,7,6,0>
+ 2712211636U, // <7,5,7,7>: Cost 3 vext3 RHS, <5,7,7,1>
+ 1638469823U, // <7,5,7,u>: Cost 2 vext3 RHS, <5,7,u,3>
+ 1511333990U, // <7,5,u,0>: Cost 2 vext1 <5,7,5,u>, LHS
+ 2636388142U, // <7,5,u,1>: Cost 3 vext2 <3,1,7,5>, LHS
+ 2712211671U, // <7,5,u,2>: Cost 3 vext3 RHS, <5,u,2,0>
+ 2573134583U, // <7,5,u,3>: Cost 3 vext1 <3,7,5,u>, <3,7,5,u>
+ 1511337270U, // <7,5,u,4>: Cost 2 vext1 <5,7,5,u>, RHS
+ 1638469881U, // <7,5,u,5>: Cost 2 vext3 RHS, <5,u,5,7>
+ 2712064258U, // <7,5,u,6>: Cost 3 vext3 RHS, <5,u,6,7>
+ 1638469892U, // <7,5,u,7>: Cost 2 vext3 RHS, <5,u,7,0>
+ 1638469904U, // <7,5,u,u>: Cost 2 vext3 RHS, <5,u,u,3>
+ 2650324992U, // <7,6,0,0>: Cost 3 vext2 <5,4,7,6>, <0,0,0,0>
+ 1576583270U, // <7,6,0,1>: Cost 2 vext2 <5,4,7,6>, LHS
+ 2712064300U, // <7,6,0,2>: Cost 3 vext3 RHS, <6,0,2,4>
+ 2255295336U, // <7,6,0,3>: Cost 3 vrev <6,7,3,0>
+ 2712064316U, // <7,6,0,4>: Cost 3 vext3 RHS, <6,0,4,2>
+ 2585088098U, // <7,6,0,5>: Cost 3 vext1 <5,7,6,0>, <5,6,7,0>
+ 2735952204U, // <7,6,0,6>: Cost 3 vext3 RHS, <6,0,6,0>
+ 2712211799U, // <7,6,0,7>: Cost 3 vext3 RHS, <6,0,7,2>
+ 1576583837U, // <7,6,0,u>: Cost 2 vext2 <5,4,7,6>, LHS
+ 1181340494U, // <7,6,1,0>: Cost 2 vrev <6,7,0,1>
+ 2650325812U, // <7,6,1,1>: Cost 3 vext2 <5,4,7,6>, <1,1,1,1>
+ 2650325910U, // <7,6,1,2>: Cost 3 vext2 <5,4,7,6>, <1,2,3,0>
+ 2650325976U, // <7,6,1,3>: Cost 3 vext2 <5,4,7,6>, <1,3,1,3>
+ 2579123510U, // <7,6,1,4>: Cost 3 vext1 <4,7,6,1>, RHS
+ 2650326160U, // <7,6,1,5>: Cost 3 vext2 <5,4,7,6>, <1,5,3,7>
+ 2714055072U, // <7,6,1,6>: Cost 3 vext3 RHS, <6,1,6,3>
+ 2712064425U, // <7,6,1,7>: Cost 3 vext3 RHS, <6,1,7,3>
+ 1181930390U, // <7,6,1,u>: Cost 2 vrev <6,7,u,1>
+ 2712211897U, // <7,6,2,0>: Cost 3 vext3 RHS, <6,2,0,1>
+ 2714055108U, // <7,6,2,1>: Cost 3 vext3 RHS, <6,2,1,3>
+ 2650326632U, // <7,6,2,2>: Cost 3 vext2 <5,4,7,6>, <2,2,2,2>
+ 2650326694U, // <7,6,2,3>: Cost 3 vext2 <5,4,7,6>, <2,3,0,1>
+ 2714055137U, // <7,6,2,4>: Cost 3 vext3 RHS, <6,2,4,5>
+ 2714055148U, // <7,6,2,5>: Cost 3 vext3 RHS, <6,2,5,7>
+ 2650326970U, // <7,6,2,6>: Cost 3 vext2 <5,4,7,6>, <2,6,3,7>
+ 1638470138U, // <7,6,2,7>: Cost 2 vext3 RHS, <6,2,7,3>
+ 1638470147U, // <7,6,2,u>: Cost 2 vext3 RHS, <6,2,u,3>
+ 2650327190U, // <7,6,3,0>: Cost 3 vext2 <5,4,7,6>, <3,0,1,2>
+ 2255172441U, // <7,6,3,1>: Cost 3 vrev <6,7,1,3>
+ 2255246178U, // <7,6,3,2>: Cost 3 vrev <6,7,2,3>
+ 2650327452U, // <7,6,3,3>: Cost 3 vext2 <5,4,7,6>, <3,3,3,3>
+ 2712064562U, // <7,6,3,4>: Cost 3 vext3 RHS, <6,3,4,5>
+ 2650327627U, // <7,6,3,5>: Cost 3 vext2 <5,4,7,6>, <3,5,4,7>
+ 3713452726U, // <7,6,3,6>: Cost 4 vext2 <3,6,7,6>, <3,6,7,6>
+ 2700563016U, // <7,6,3,7>: Cost 3 vext3 <2,6,3,7>, <6,3,7,0>
+ 2712064593U, // <7,6,3,u>: Cost 3 vext3 RHS, <6,3,u,0>
+ 2650327954U, // <7,6,4,0>: Cost 3 vext2 <5,4,7,6>, <4,0,5,1>
+ 2735952486U, // <7,6,4,1>: Cost 3 vext3 RHS, <6,4,1,3>
+ 2735952497U, // <7,6,4,2>: Cost 3 vext3 RHS, <6,4,2,5>
+ 2255328108U, // <7,6,4,3>: Cost 3 vrev <6,7,3,4>
+ 2712212100U, // <7,6,4,4>: Cost 3 vext3 RHS, <6,4,4,6>
+ 1576586550U, // <7,6,4,5>: Cost 2 vext2 <5,4,7,6>, RHS
+ 2714055312U, // <7,6,4,6>: Cost 3 vext3 RHS, <6,4,6,0>
+ 2712212126U, // <7,6,4,7>: Cost 3 vext3 RHS, <6,4,7,5>
+ 1576586793U, // <7,6,4,u>: Cost 2 vext2 <5,4,7,6>, RHS
+ 2579152998U, // <7,6,5,0>: Cost 3 vext1 <4,7,6,5>, LHS
+ 2650328784U, // <7,6,5,1>: Cost 3 vext2 <5,4,7,6>, <5,1,7,3>
+ 2714055364U, // <7,6,5,2>: Cost 3 vext3 RHS, <6,5,2,7>
+ 3785806538U, // <7,6,5,3>: Cost 4 vext3 RHS, <6,5,3,4>
+ 1576587206U, // <7,6,5,4>: Cost 2 vext2 <5,4,7,6>, <5,4,7,6>
+ 2650329092U, // <7,6,5,5>: Cost 3 vext2 <5,4,7,6>, <5,5,5,5>
+ 2650329186U, // <7,6,5,6>: Cost 3 vext2 <5,4,7,6>, <5,6,7,0>
+ 2712064753U, // <7,6,5,7>: Cost 3 vext3 RHS, <6,5,7,7>
+ 1181963162U, // <7,6,5,u>: Cost 2 vrev <6,7,u,5>
+ 2714055421U, // <7,6,6,0>: Cost 3 vext3 RHS, <6,6,0,1>
+ 2714055432U, // <7,6,6,1>: Cost 3 vext3 RHS, <6,6,1,3>
+ 2650329594U, // <7,6,6,2>: Cost 3 vext2 <5,4,7,6>, <6,2,7,3>
+ 3785806619U, // <7,6,6,3>: Cost 4 vext3 RHS, <6,6,3,4>
+ 2712212260U, // <7,6,6,4>: Cost 3 vext3 RHS, <6,6,4,4>
+ 2714055472U, // <7,6,6,5>: Cost 3 vext3 RHS, <6,6,5,7>
+ 1638323000U, // <7,6,6,6>: Cost 2 vext3 RHS, <6,6,6,6>
+ 1638470466U, // <7,6,6,7>: Cost 2 vext3 RHS, <6,6,7,7>
+ 1638470475U, // <7,6,6,u>: Cost 2 vext3 RHS, <6,6,u,7>
+ 1638323022U, // <7,6,7,0>: Cost 2 vext3 RHS, <6,7,0,1>
+ 2712064854U, // <7,6,7,1>: Cost 3 vext3 RHS, <6,7,1,0>
+ 2712064865U, // <7,6,7,2>: Cost 3 vext3 RHS, <6,7,2,2>
+ 2712064872U, // <7,6,7,3>: Cost 3 vext3 RHS, <6,7,3,0>
+ 1638323062U, // <7,6,7,4>: Cost 2 vext3 RHS, <6,7,4,5>
+ 2712064894U, // <7,6,7,5>: Cost 3 vext3 RHS, <6,7,5,4>
+ 2712064905U, // <7,6,7,6>: Cost 3 vext3 RHS, <6,7,6,6>
+ 2712064915U, // <7,6,7,7>: Cost 3 vext3 RHS, <6,7,7,7>
+ 1638323094U, // <7,6,7,u>: Cost 2 vext3 RHS, <6,7,u,1>
+ 1638470559U, // <7,6,u,0>: Cost 2 vext3 RHS, <6,u,0,1>
+ 1576589102U, // <7,6,u,1>: Cost 2 vext2 <5,4,7,6>, LHS
+ 2712212402U, // <7,6,u,2>: Cost 3 vext3 RHS, <6,u,2,2>
+ 2712212409U, // <7,6,u,3>: Cost 3 vext3 RHS, <6,u,3,0>
+ 1638470599U, // <7,6,u,4>: Cost 2 vext3 RHS, <6,u,4,5>
+ 1576589466U, // <7,6,u,5>: Cost 2 vext2 <5,4,7,6>, RHS
+ 1638323000U, // <7,6,u,6>: Cost 2 vext3 RHS, <6,6,6,6>
+ 1638470624U, // <7,6,u,7>: Cost 2 vext3 RHS, <6,u,7,3>
+ 1638470631U, // <7,6,u,u>: Cost 2 vext3 RHS, <6,u,u,1>
+ 2712065007U, // <7,7,0,0>: Cost 3 vext3 RHS, <7,0,0,0>
+ 1638323194U, // <7,7,0,1>: Cost 2 vext3 RHS, <7,0,1,2>
+ 2712065025U, // <7,7,0,2>: Cost 3 vext3 RHS, <7,0,2,0>
+ 3646958337U, // <7,7,0,3>: Cost 4 vext1 <3,7,7,0>, <3,7,7,0>
+ 2712065044U, // <7,7,0,4>: Cost 3 vext3 RHS, <7,0,4,1>
+ 2585161907U, // <7,7,0,5>: Cost 3 vext1 <5,7,7,0>, <5,7,7,0>
+ 2591134604U, // <7,7,0,6>: Cost 3 vext1 <6,7,7,0>, <6,7,7,0>
+ 2591134714U, // <7,7,0,7>: Cost 3 vext1 <6,7,7,0>, <7,0,1,2>
+ 1638323257U, // <7,7,0,u>: Cost 2 vext3 RHS, <7,0,u,2>
+ 2712065091U, // <7,7,1,0>: Cost 3 vext3 RHS, <7,1,0,3>
+ 2712065098U, // <7,7,1,1>: Cost 3 vext3 RHS, <7,1,1,1>
+ 2712065109U, // <7,7,1,2>: Cost 3 vext3 RHS, <7,1,2,3>
+ 2692748384U, // <7,7,1,3>: Cost 3 vext3 <1,3,5,7>, <7,1,3,5>
+ 2585169206U, // <7,7,1,4>: Cost 3 vext1 <5,7,7,1>, RHS
+ 2693928048U, // <7,7,1,5>: Cost 3 vext3 <1,5,3,7>, <7,1,5,3>
+ 2585170766U, // <7,7,1,6>: Cost 3 vext1 <5,7,7,1>, <6,7,0,1>
+ 2735953024U, // <7,7,1,7>: Cost 3 vext3 RHS, <7,1,7,1>
+ 2695918731U, // <7,7,1,u>: Cost 3 vext3 <1,u,3,7>, <7,1,u,3>
+ 3770471574U, // <7,7,2,0>: Cost 4 vext3 <2,0,5,7>, <7,2,0,5>
+ 3785807002U, // <7,7,2,1>: Cost 4 vext3 RHS, <7,2,1,0>
+ 2712065189U, // <7,7,2,2>: Cost 3 vext3 RHS, <7,2,2,2>
+ 2712065196U, // <7,7,2,3>: Cost 3 vext3 RHS, <7,2,3,0>
+ 3773125818U, // <7,7,2,4>: Cost 4 vext3 <2,4,5,7>, <7,2,4,5>
+ 3766490305U, // <7,7,2,5>: Cost 4 vext3 <1,3,5,7>, <7,2,5,3>
+ 2700563658U, // <7,7,2,6>: Cost 3 vext3 <2,6,3,7>, <7,2,6,3>
+ 2735953107U, // <7,7,2,7>: Cost 3 vext3 RHS, <7,2,7,3>
+ 2701890780U, // <7,7,2,u>: Cost 3 vext3 <2,u,3,7>, <7,2,u,3>
+ 2712065251U, // <7,7,3,0>: Cost 3 vext3 RHS, <7,3,0,1>
+ 3766490350U, // <7,7,3,1>: Cost 4 vext3 <1,3,5,7>, <7,3,1,3>
+ 3774305530U, // <7,7,3,2>: Cost 4 vext3 <2,6,3,7>, <7,3,2,6>
+ 2637728196U, // <7,7,3,3>: Cost 3 vext2 <3,3,7,7>, <3,3,7,7>
+ 2712065291U, // <7,7,3,4>: Cost 3 vext3 RHS, <7,3,4,5>
+ 2585186486U, // <7,7,3,5>: Cost 3 vext1 <5,7,7,3>, <5,7,7,3>
+ 2639719095U, // <7,7,3,6>: Cost 3 vext2 <3,6,7,7>, <3,6,7,7>
+ 2640382728U, // <7,7,3,7>: Cost 3 vext2 <3,7,7,7>, <3,7,7,7>
+ 2641046361U, // <7,7,3,u>: Cost 3 vext2 <3,u,7,7>, <3,u,7,7>
+ 2712212792U, // <7,7,4,0>: Cost 3 vext3 RHS, <7,4,0,5>
+ 3646989312U, // <7,7,4,1>: Cost 4 vext1 <3,7,7,4>, <1,3,5,7>
+ 3785807176U, // <7,7,4,2>: Cost 4 vext3 RHS, <7,4,2,3>
+ 3646991109U, // <7,7,4,3>: Cost 4 vext1 <3,7,7,4>, <3,7,7,4>
+ 2712065371U, // <7,7,4,4>: Cost 3 vext3 RHS, <7,4,4,4>
+ 1638323558U, // <7,7,4,5>: Cost 2 vext3 RHS, <7,4,5,6>
+ 2712212845U, // <7,7,4,6>: Cost 3 vext3 RHS, <7,4,6,4>
+ 2591167846U, // <7,7,4,7>: Cost 3 vext1 <6,7,7,4>, <7,4,5,6>
+ 1638323585U, // <7,7,4,u>: Cost 2 vext3 RHS, <7,4,u,6>
+ 2585198694U, // <7,7,5,0>: Cost 3 vext1 <5,7,7,5>, LHS
+ 2712212884U, // <7,7,5,1>: Cost 3 vext3 RHS, <7,5,1,7>
+ 3711471393U, // <7,7,5,2>: Cost 4 vext2 <3,3,7,7>, <5,2,7,3>
+ 2649673590U, // <7,7,5,3>: Cost 3 vext2 <5,3,7,7>, <5,3,7,7>
+ 2712065455U, // <7,7,5,4>: Cost 3 vext3 RHS, <7,5,4,7>
+ 1577259032U, // <7,7,5,5>: Cost 2 vext2 <5,5,7,7>, <5,5,7,7>
+ 2712065473U, // <7,7,5,6>: Cost 3 vext3 RHS, <7,5,6,7>
+ 2712212936U, // <7,7,5,7>: Cost 3 vext3 RHS, <7,5,7,5>
+ 1579249931U, // <7,7,5,u>: Cost 2 vext2 <5,u,7,7>, <5,u,7,7>
+ 2591178854U, // <7,7,6,0>: Cost 3 vext1 <6,7,7,6>, LHS
+ 2735953374U, // <7,7,6,1>: Cost 3 vext3 RHS, <7,6,1,0>
+ 2712212974U, // <7,7,6,2>: Cost 3 vext3 RHS, <7,6,2,7>
+ 2655646287U, // <7,7,6,3>: Cost 3 vext2 <6,3,7,7>, <6,3,7,7>
+ 2591182134U, // <7,7,6,4>: Cost 3 vext1 <6,7,7,6>, RHS
+ 2656973553U, // <7,7,6,5>: Cost 3 vext2 <6,5,7,7>, <6,5,7,7>
+ 1583895362U, // <7,7,6,6>: Cost 2 vext2 <6,6,7,7>, <6,6,7,7>
+ 2712065556U, // <7,7,6,7>: Cost 3 vext3 RHS, <7,6,7,0>
+ 1585222628U, // <7,7,6,u>: Cost 2 vext2 <6,u,7,7>, <6,u,7,7>
+ 1523417190U, // <7,7,7,0>: Cost 2 vext1 <7,7,7,7>, LHS
+ 2597159670U, // <7,7,7,1>: Cost 3 vext1 <7,7,7,7>, <1,0,3,2>
+ 2597160552U, // <7,7,7,2>: Cost 3 vext1 <7,7,7,7>, <2,2,2,2>
+ 2597161110U, // <7,7,7,3>: Cost 3 vext1 <7,7,7,7>, <3,0,1,2>
+ 1523420470U, // <7,7,7,4>: Cost 2 vext1 <7,7,7,7>, RHS
+ 2651002296U, // <7,7,7,5>: Cost 3 vext2 <5,5,7,7>, <7,5,5,7>
+ 2657637906U, // <7,7,7,6>: Cost 3 vext2 <6,6,7,7>, <7,6,6,7>
+ 363253046U, // <7,7,7,7>: Cost 1 vdup3 RHS
+ 363253046U, // <7,7,7,u>: Cost 1 vdup3 RHS
+ 1523417190U, // <7,7,u,0>: Cost 2 vext1 <7,7,7,7>, LHS
+ 1638471298U, // <7,7,u,1>: Cost 2 vext3 RHS, <7,u,1,2>
+ 2712213132U, // <7,7,u,2>: Cost 3 vext3 RHS, <7,u,2,3>
+ 2712213138U, // <7,7,u,3>: Cost 3 vext3 RHS, <7,u,3,0>
+ 1523420470U, // <7,7,u,4>: Cost 2 vext1 <7,7,7,7>, RHS
+ 1638471338U, // <7,7,u,5>: Cost 2 vext3 RHS, <7,u,5,6>
+ 1595840756U, // <7,7,u,6>: Cost 2 vext2 <u,6,7,7>, <u,6,7,7>
+ 363253046U, // <7,7,u,7>: Cost 1 vdup3 RHS
+ 363253046U, // <7,7,u,u>: Cost 1 vdup3 RHS
+ 1638318080U, // <7,u,0,0>: Cost 2 vext3 RHS, <0,0,0,0>
+ 1638323923U, // <7,u,0,1>: Cost 2 vext3 RHS, <u,0,1,2>
+ 1662211804U, // <7,u,0,2>: Cost 2 vext3 RHS, <u,0,2,2>
+ 1638323941U, // <7,u,0,3>: Cost 2 vext3 RHS, <u,0,3,2>
+ 2712065773U, // <7,u,0,4>: Cost 3 vext3 RHS, <u,0,4,1>
+ 1662359286U, // <7,u,0,5>: Cost 2 vext3 RHS, <u,0,5,1>
+ 1662359296U, // <7,u,0,6>: Cost 2 vext3 RHS, <u,0,6,2>
+ 2987150664U, // <7,u,0,7>: Cost 3 vzipr <5,6,7,0>, RHS
+ 1638323986U, // <7,u,0,u>: Cost 2 vext3 RHS, <u,0,u,2>
+ 1517469798U, // <7,u,1,0>: Cost 2 vext1 <6,7,u,1>, LHS
+ 1638318900U, // <7,u,1,1>: Cost 2 vext3 RHS, <1,1,1,1>
+ 564582190U, // <7,u,1,2>: Cost 1 vext3 RHS, LHS
+ 1638324023U, // <7,u,1,3>: Cost 2 vext3 RHS, <u,1,3,3>
+ 1517473078U, // <7,u,1,4>: Cost 2 vext1 <6,7,u,1>, RHS
+ 2693928777U, // <7,u,1,5>: Cost 3 vext3 <1,5,3,7>, <u,1,5,3>
+ 1517474710U, // <7,u,1,6>: Cost 2 vext1 <6,7,u,1>, <6,7,u,1>
+ 1640462171U, // <7,u,1,7>: Cost 2 vext3 RHS, <u,1,7,3>
+ 564582244U, // <7,u,1,u>: Cost 1 vext3 RHS, LHS
+ 1638318244U, // <7,u,2,0>: Cost 2 vext3 RHS, <0,2,0,2>
+ 2712065907U, // <7,u,2,1>: Cost 3 vext3 RHS, <u,2,1,0>
+ 1638319720U, // <7,u,2,2>: Cost 2 vext3 RHS, <2,2,2,2>
+ 1638324101U, // <7,u,2,3>: Cost 2 vext3 RHS, <u,2,3,0>
+ 1638318284U, // <7,u,2,4>: Cost 2 vext3 RHS, <0,2,4,6>
+ 2712065947U, // <7,u,2,5>: Cost 3 vext3 RHS, <u,2,5,4>
+ 2700564387U, // <7,u,2,6>: Cost 3 vext3 <2,6,3,7>, <u,2,6,3>
+ 1640314796U, // <7,u,2,7>: Cost 2 vext3 RHS, <u,2,7,3>
+ 1638324146U, // <7,u,2,u>: Cost 2 vext3 RHS, <u,2,u,0>
+ 1638324156U, // <7,u,3,0>: Cost 2 vext3 RHS, <u,3,0,1>
+ 1638319064U, // <7,u,3,1>: Cost 2 vext3 RHS, <1,3,1,3>
+ 2700564435U, // <7,u,3,2>: Cost 3 vext3 <2,6,3,7>, <u,3,2,6>
+ 1638320540U, // <7,u,3,3>: Cost 2 vext3 RHS, <3,3,3,3>
+ 1638324196U, // <7,u,3,4>: Cost 2 vext3 RHS, <u,3,4,5>
+ 1638324207U, // <7,u,3,5>: Cost 2 vext3 RHS, <u,3,5,7>
+ 2700564472U, // <7,u,3,6>: Cost 3 vext3 <2,6,3,7>, <u,3,6,7>
+ 2695919610U, // <7,u,3,7>: Cost 3 vext3 <1,u,3,7>, <u,3,7,0>
+ 1638324228U, // <7,u,3,u>: Cost 2 vext3 RHS, <u,3,u,1>
+ 2712066061U, // <7,u,4,0>: Cost 3 vext3 RHS, <u,4,0,1>
+ 1662212122U, // <7,u,4,1>: Cost 2 vext3 RHS, <u,4,1,5>
+ 1662212132U, // <7,u,4,2>: Cost 2 vext3 RHS, <u,4,2,6>
+ 2712066092U, // <7,u,4,3>: Cost 3 vext3 RHS, <u,4,3,5>
+ 1638321360U, // <7,u,4,4>: Cost 2 vext3 RHS, <4,4,4,4>
+ 1638324287U, // <7,u,4,5>: Cost 2 vext3 RHS, <u,4,5,6>
+ 1662359624U, // <7,u,4,6>: Cost 2 vext3 RHS, <u,4,6,6>
+ 1640314961U, // <7,u,4,7>: Cost 2 vext3 RHS, <u,4,7,6>
+ 1638324314U, // <7,u,4,u>: Cost 2 vext3 RHS, <u,4,u,6>
+ 1517502566U, // <7,u,5,0>: Cost 2 vext1 <6,7,u,5>, LHS
+ 1574612693U, // <7,u,5,1>: Cost 2 vext2 <5,1,7,u>, <5,1,7,u>
+ 2712066162U, // <7,u,5,2>: Cost 3 vext3 RHS, <u,5,2,3>
+ 1638324351U, // <7,u,5,3>: Cost 2 vext3 RHS, <u,5,3,7>
+ 1576603592U, // <7,u,5,4>: Cost 2 vext2 <5,4,7,u>, <5,4,7,u>
+ 1577267225U, // <7,u,5,5>: Cost 2 vext2 <5,5,7,u>, <5,5,7,u>
+ 564582554U, // <7,u,5,6>: Cost 1 vext3 RHS, RHS
+ 1640462499U, // <7,u,5,7>: Cost 2 vext3 RHS, <u,5,7,7>
+ 564582572U, // <7,u,5,u>: Cost 1 vext3 RHS, RHS
+ 2712066223U, // <7,u,6,0>: Cost 3 vext3 RHS, <u,6,0,1>
+ 2712066238U, // <7,u,6,1>: Cost 3 vext3 RHS, <u,6,1,7>
+ 1581249023U, // <7,u,6,2>: Cost 2 vext2 <6,2,7,u>, <6,2,7,u>
+ 1638324432U, // <7,u,6,3>: Cost 2 vext3 RHS, <u,6,3,7>
+ 1638468980U, // <7,u,6,4>: Cost 2 vext3 RHS, <4,6,4,6>
+ 2712066274U, // <7,u,6,5>: Cost 3 vext3 RHS, <u,6,5,7>
+ 1583903555U, // <7,u,6,6>: Cost 2 vext2 <6,6,7,u>, <6,6,7,u>
+ 1640315117U, // <7,u,6,7>: Cost 2 vext3 RHS, <u,6,7,0>
+ 1638324477U, // <7,u,6,u>: Cost 2 vext3 RHS, <u,6,u,7>
+ 1638471936U, // <7,u,7,0>: Cost 2 vext3 RHS, <u,7,0,1>
+ 2692970763U, // <7,u,7,1>: Cost 3 vext3 <1,3,u,7>, <u,7,1,3>
+ 2700933399U, // <7,u,7,2>: Cost 3 vext3 <2,6,u,7>, <u,7,2,6>
+ 2573347601U, // <7,u,7,3>: Cost 3 vext1 <3,7,u,7>, <3,7,u,7>
+ 1638471976U, // <7,u,7,4>: Cost 2 vext3 RHS, <u,7,4,5>
+ 1511551171U, // <7,u,7,5>: Cost 2 vext1 <5,7,u,7>, <5,7,u,7>
+ 2712213815U, // <7,u,7,6>: Cost 3 vext3 RHS, <u,7,6,2>
+ 363253046U, // <7,u,7,7>: Cost 1 vdup3 RHS
+ 363253046U, // <7,u,7,u>: Cost 1 vdup3 RHS
+ 1638324561U, // <7,u,u,0>: Cost 2 vext3 RHS, <u,u,0,1>
+ 1638324571U, // <7,u,u,1>: Cost 2 vext3 RHS, <u,u,1,2>
+ 564582757U, // <7,u,u,2>: Cost 1 vext3 RHS, LHS
+ 1638324587U, // <7,u,u,3>: Cost 2 vext3 RHS, <u,u,3,0>
+ 1638324601U, // <7,u,u,4>: Cost 2 vext3 RHS, <u,u,4,5>
+ 1638324611U, // <7,u,u,5>: Cost 2 vext3 RHS, <u,u,5,6>
+ 564582797U, // <7,u,u,6>: Cost 1 vext3 RHS, RHS
+ 363253046U, // <7,u,u,7>: Cost 1 vdup3 RHS
+ 564582811U, // <7,u,u,u>: Cost 1 vext3 RHS, LHS
+ 135053414U, // <u,0,0,0>: Cost 1 vdup0 LHS
+ 1611489290U, // <u,0,0,1>: Cost 2 vext3 LHS, <0,0,1,1>
+ 1611489300U, // <u,0,0,2>: Cost 2 vext3 LHS, <0,0,2,2>
+ 2568054923U, // <u,0,0,3>: Cost 3 vext1 <3,0,0,0>, <3,0,0,0>
+ 1481706806U, // <u,0,0,4>: Cost 2 vext1 <0,u,0,0>, RHS
+ 2555449040U, // <u,0,0,5>: Cost 3 vext1 <0,u,0,0>, <5,1,7,3>
+ 2591282078U, // <u,0,0,6>: Cost 3 vext1 <6,u,0,0>, <6,u,0,0>
+ 2591945711U, // <u,0,0,7>: Cost 3 vext1 <7,0,0,0>, <7,0,0,0>
+ 135053414U, // <u,0,0,u>: Cost 1 vdup0 LHS
+ 1493655654U, // <u,0,1,0>: Cost 2 vext1 <2,u,0,1>, LHS
+ 1860550758U, // <u,0,1,1>: Cost 2 vzipl LHS, LHS
+ 537747563U, // <u,0,1,2>: Cost 1 vext3 LHS, LHS
+ 2625135576U, // <u,0,1,3>: Cost 3 vext2 <1,2,u,0>, <1,3,1,3>
+ 1493658934U, // <u,0,1,4>: Cost 2 vext1 <2,u,0,1>, RHS
+ 2625135760U, // <u,0,1,5>: Cost 3 vext2 <1,2,u,0>, <1,5,3,7>
+ 1517548447U, // <u,0,1,6>: Cost 2 vext1 <6,u,0,1>, <6,u,0,1>
+ 2591290362U, // <u,0,1,7>: Cost 3 vext1 <6,u,0,1>, <7,0,1,2>
+ 537747612U, // <u,0,1,u>: Cost 1 vext3 LHS, LHS
+ 1611489444U, // <u,0,2,0>: Cost 2 vext3 LHS, <0,2,0,2>
+ 2685231276U, // <u,0,2,1>: Cost 3 vext3 LHS, <0,2,1,1>
+ 1994768486U, // <u,0,2,2>: Cost 2 vtrnl LHS, LHS
+ 2685231294U, // <u,0,2,3>: Cost 3 vext3 LHS, <0,2,3,1>
+ 1611489484U, // <u,0,2,4>: Cost 2 vext3 LHS, <0,2,4,6>
+ 2712068310U, // <u,0,2,5>: Cost 3 vext3 RHS, <0,2,5,7>
+ 2625136570U, // <u,0,2,6>: Cost 3 vext2 <1,2,u,0>, <2,6,3,7>
+ 2591962097U, // <u,0,2,7>: Cost 3 vext1 <7,0,0,2>, <7,0,0,2>
+ 1611489516U, // <u,0,2,u>: Cost 2 vext3 LHS, <0,2,u,2>
+ 2954067968U, // <u,0,3,0>: Cost 3 vzipr LHS, <0,0,0,0>
+ 2685231356U, // <u,0,3,1>: Cost 3 vext3 LHS, <0,3,1,0>
+ 72589981U, // <u,0,3,2>: Cost 1 vrev LHS
+ 2625137052U, // <u,0,3,3>: Cost 3 vext2 <1,2,u,0>, <3,3,3,3>
+ 2625137154U, // <u,0,3,4>: Cost 3 vext2 <1,2,u,0>, <3,4,5,6>
+ 2639071848U, // <u,0,3,5>: Cost 3 vext2 <3,5,u,0>, <3,5,u,0>
+ 2639735481U, // <u,0,3,6>: Cost 3 vext2 <3,6,u,0>, <3,6,u,0>
+ 2597279354U, // <u,0,3,7>: Cost 3 vext1 <7,u,0,3>, <7,u,0,3>
+ 73032403U, // <u,0,3,u>: Cost 1 vrev LHS
+ 2687074636U, // <u,0,4,0>: Cost 3 vext3 <0,4,0,u>, <0,4,0,u>
+ 1611489618U, // <u,0,4,1>: Cost 2 vext3 LHS, <0,4,1,5>
+ 1611489628U, // <u,0,4,2>: Cost 2 vext3 LHS, <0,4,2,6>
+ 3629222038U, // <u,0,4,3>: Cost 4 vext1 <0,u,0,4>, <3,0,1,2>
+ 2555481398U, // <u,0,4,4>: Cost 3 vext1 <0,u,0,4>, RHS
+ 1551396150U, // <u,0,4,5>: Cost 2 vext2 <1,2,u,0>, RHS
+ 2651680116U, // <u,0,4,6>: Cost 3 vext2 <5,6,u,0>, <4,6,4,6>
+ 2646150600U, // <u,0,4,7>: Cost 3 vext2 <4,7,5,0>, <4,7,5,0>
+ 1611932050U, // <u,0,4,u>: Cost 2 vext3 LHS, <0,4,u,6>
+ 2561458278U, // <u,0,5,0>: Cost 3 vext1 <1,u,0,5>, LHS
+ 1863532646U, // <u,0,5,1>: Cost 2 vzipl RHS, LHS
+ 2712068526U, // <u,0,5,2>: Cost 3 vext3 RHS, <0,5,2,7>
+ 2649689976U, // <u,0,5,3>: Cost 3 vext2 <5,3,u,0>, <5,3,u,0>
+ 2220237489U, // <u,0,5,4>: Cost 3 vrev <0,u,4,5>
+ 2651680772U, // <u,0,5,5>: Cost 3 vext2 <5,6,u,0>, <5,5,5,5>
+ 1577939051U, // <u,0,5,6>: Cost 2 vext2 <5,6,u,0>, <5,6,u,0>
+ 2830077238U, // <u,0,5,7>: Cost 3 vuzpr <1,u,3,0>, RHS
+ 1579266317U, // <u,0,5,u>: Cost 2 vext2 <5,u,u,0>, <5,u,u,0>
+ 2555494502U, // <u,0,6,0>: Cost 3 vext1 <0,u,0,6>, LHS
+ 2712068598U, // <u,0,6,1>: Cost 3 vext3 RHS, <0,6,1,7>
+ 1997750374U, // <u,0,6,2>: Cost 2 vtrnl RHS, LHS
+ 2655662673U, // <u,0,6,3>: Cost 3 vext2 <6,3,u,0>, <6,3,u,0>
+ 2555497782U, // <u,0,6,4>: Cost 3 vext1 <0,u,0,6>, RHS
+ 2651681459U, // <u,0,6,5>: Cost 3 vext2 <5,6,u,0>, <6,5,0,u>
+ 2651681592U, // <u,0,6,6>: Cost 3 vext2 <5,6,u,0>, <6,6,6,6>
+ 2651681614U, // <u,0,6,7>: Cost 3 vext2 <5,6,u,0>, <6,7,0,1>
+ 1997750428U, // <u,0,6,u>: Cost 2 vtrnl RHS, LHS
+ 2567446630U, // <u,0,7,0>: Cost 3 vext1 <2,u,0,7>, LHS
+ 2567447446U, // <u,0,7,1>: Cost 3 vext1 <2,u,0,7>, <1,2,3,0>
+ 2567448641U, // <u,0,7,2>: Cost 3 vext1 <2,u,0,7>, <2,u,0,7>
+ 2573421338U, // <u,0,7,3>: Cost 3 vext1 <3,u,0,7>, <3,u,0,7>
+ 2567449910U, // <u,0,7,4>: Cost 3 vext1 <2,u,0,7>, RHS
+ 2651682242U, // <u,0,7,5>: Cost 3 vext2 <5,6,u,0>, <7,5,6,u>
+ 2591339429U, // <u,0,7,6>: Cost 3 vext1 <6,u,0,7>, <6,u,0,7>
+ 2651682412U, // <u,0,7,7>: Cost 3 vext2 <5,6,u,0>, <7,7,7,7>
+ 2567452462U, // <u,0,7,u>: Cost 3 vext1 <2,u,0,7>, LHS
+ 135053414U, // <u,0,u,0>: Cost 1 vdup0 LHS
+ 1611489938U, // <u,0,u,1>: Cost 2 vext3 LHS, <0,u,1,1>
+ 537748125U, // <u,0,u,2>: Cost 1 vext3 LHS, LHS
+ 2685674148U, // <u,0,u,3>: Cost 3 vext3 LHS, <0,u,3,1>
+ 1611932338U, // <u,0,u,4>: Cost 2 vext3 LHS, <0,u,4,6>
+ 1551399066U, // <u,0,u,5>: Cost 2 vext2 <1,2,u,0>, RHS
+ 1517605798U, // <u,0,u,6>: Cost 2 vext1 <6,u,0,u>, <6,u,0,u>
+ 2830077481U, // <u,0,u,7>: Cost 3 vuzpr <1,u,3,0>, RHS
+ 537748179U, // <u,0,u,u>: Cost 1 vext3 LHS, LHS
+ 1544101961U, // <u,1,0,0>: Cost 2 vext2 <0,0,u,1>, <0,0,u,1>
+ 1558036582U, // <u,1,0,1>: Cost 2 vext2 <2,3,u,1>, LHS
+ 2619171051U, // <u,1,0,2>: Cost 3 vext2 <0,2,u,1>, <0,2,u,1>
+ 1611490038U, // <u,1,0,3>: Cost 2 vext3 LHS, <1,0,3,2>
+ 2555522358U, // <u,1,0,4>: Cost 3 vext1 <0,u,1,0>, RHS
+ 2712068871U, // <u,1,0,5>: Cost 3 vext3 RHS, <1,0,5,1>
+ 2591355815U, // <u,1,0,6>: Cost 3 vext1 <6,u,1,0>, <6,u,1,0>
+ 2597328512U, // <u,1,0,7>: Cost 3 vext1 <7,u,1,0>, <7,u,1,0>
+ 1611490083U, // <u,1,0,u>: Cost 2 vext3 LHS, <1,0,u,2>
+ 1481785446U, // <u,1,1,0>: Cost 2 vext1 <0,u,1,1>, LHS
+ 202162278U, // <u,1,1,1>: Cost 1 vdup1 LHS
+ 2555528808U, // <u,1,1,2>: Cost 3 vext1 <0,u,1,1>, <2,2,2,2>
+ 1611490120U, // <u,1,1,3>: Cost 2 vext3 LHS, <1,1,3,3>
+ 1481788726U, // <u,1,1,4>: Cost 2 vext1 <0,u,1,1>, RHS
+ 2689876828U, // <u,1,1,5>: Cost 3 vext3 LHS, <1,1,5,5>
+ 2591364008U, // <u,1,1,6>: Cost 3 vext1 <6,u,1,1>, <6,u,1,1>
+ 2592691274U, // <u,1,1,7>: Cost 3 vext1 <7,1,1,1>, <7,1,1,1>
+ 202162278U, // <u,1,1,u>: Cost 1 vdup1 LHS
+ 1499709542U, // <u,1,2,0>: Cost 2 vext1 <3,u,1,2>, LHS
+ 2689876871U, // <u,1,2,1>: Cost 3 vext3 LHS, <1,2,1,3>
+ 2631116445U, // <u,1,2,2>: Cost 3 vext2 <2,2,u,1>, <2,2,u,1>
+ 835584U, // <u,1,2,3>: Cost 0 copy LHS
+ 1499712822U, // <u,1,2,4>: Cost 2 vext1 <3,u,1,2>, RHS
+ 2689876907U, // <u,1,2,5>: Cost 3 vext3 LHS, <1,2,5,3>
+ 2631780282U, // <u,1,2,6>: Cost 3 vext2 <2,3,u,1>, <2,6,3,7>
+ 1523603074U, // <u,1,2,7>: Cost 2 vext1 <7,u,1,2>, <7,u,1,2>
+ 835584U, // <u,1,2,u>: Cost 0 copy LHS
+ 1487773798U, // <u,1,3,0>: Cost 2 vext1 <1,u,1,3>, LHS
+ 1611490264U, // <u,1,3,1>: Cost 2 vext3 LHS, <1,3,1,3>
+ 2685232094U, // <u,1,3,2>: Cost 3 vext3 LHS, <1,3,2,0>
+ 2018746470U, // <u,1,3,3>: Cost 2 vtrnr LHS, LHS
+ 1487777078U, // <u,1,3,4>: Cost 2 vext1 <1,u,1,3>, RHS
+ 1611490304U, // <u,1,3,5>: Cost 2 vext3 LHS, <1,3,5,7>
+ 2685674505U, // <u,1,3,6>: Cost 3 vext3 LHS, <1,3,6,7>
+ 2640407307U, // <u,1,3,7>: Cost 3 vext2 <3,7,u,1>, <3,7,u,1>
+ 1611490327U, // <u,1,3,u>: Cost 2 vext3 LHS, <1,3,u,3>
+ 1567992749U, // <u,1,4,0>: Cost 2 vext2 <4,0,u,1>, <4,0,u,1>
+ 2693121070U, // <u,1,4,1>: Cost 3 vext3 <1,4,1,u>, <1,4,1,u>
+ 2693194807U, // <u,1,4,2>: Cost 3 vext3 <1,4,2,u>, <1,4,2,u>
+ 1152386432U, // <u,1,4,3>: Cost 2 vrev <1,u,3,4>
+ 2555555126U, // <u,1,4,4>: Cost 3 vext1 <0,u,1,4>, RHS
+ 1558039862U, // <u,1,4,5>: Cost 2 vext2 <2,3,u,1>, RHS
+ 2645716371U, // <u,1,4,6>: Cost 3 vext2 <4,6,u,1>, <4,6,u,1>
+ 2597361284U, // <u,1,4,7>: Cost 3 vext1 <7,u,1,4>, <7,u,1,4>
+ 1152755117U, // <u,1,4,u>: Cost 2 vrev <1,u,u,4>
+ 1481818214U, // <u,1,5,0>: Cost 2 vext1 <0,u,1,5>, LHS
+ 2555560694U, // <u,1,5,1>: Cost 3 vext1 <0,u,1,5>, <1,0,3,2>
+ 2555561576U, // <u,1,5,2>: Cost 3 vext1 <0,u,1,5>, <2,2,2,2>
+ 1611490448U, // <u,1,5,3>: Cost 2 vext3 LHS, <1,5,3,7>
+ 1481821494U, // <u,1,5,4>: Cost 2 vext1 <0,u,1,5>, RHS
+ 2651025435U, // <u,1,5,5>: Cost 3 vext2 <5,5,u,1>, <5,5,u,1>
+ 2651689068U, // <u,1,5,6>: Cost 3 vext2 <5,6,u,1>, <5,6,u,1>
+ 2823966006U, // <u,1,5,7>: Cost 3 vuzpr <0,u,1,1>, RHS
+ 1611932861U, // <u,1,5,u>: Cost 2 vext3 LHS, <1,5,u,7>
+ 2555568230U, // <u,1,6,0>: Cost 3 vext1 <0,u,1,6>, LHS
+ 2689877199U, // <u,1,6,1>: Cost 3 vext3 LHS, <1,6,1,7>
+ 2712069336U, // <u,1,6,2>: Cost 3 vext3 RHS, <1,6,2,7>
+ 2685232353U, // <u,1,6,3>: Cost 3 vext3 LHS, <1,6,3,7>
+ 2555571510U, // <u,1,6,4>: Cost 3 vext1 <0,u,1,6>, RHS
+ 2689877235U, // <u,1,6,5>: Cost 3 vext3 LHS, <1,6,5,7>
+ 2657661765U, // <u,1,6,6>: Cost 3 vext2 <6,6,u,1>, <6,6,u,1>
+ 1584583574U, // <u,1,6,7>: Cost 2 vext2 <6,7,u,1>, <6,7,u,1>
+ 1585247207U, // <u,1,6,u>: Cost 2 vext2 <6,u,u,1>, <6,u,u,1>
+ 2561548390U, // <u,1,7,0>: Cost 3 vext1 <1,u,1,7>, LHS
+ 2561549681U, // <u,1,7,1>: Cost 3 vext1 <1,u,1,7>, <1,u,1,7>
+ 2573493926U, // <u,1,7,2>: Cost 3 vext1 <3,u,1,7>, <2,3,0,1>
+ 2042962022U, // <u,1,7,3>: Cost 2 vtrnr RHS, LHS
+ 2561551670U, // <u,1,7,4>: Cost 3 vext1 <1,u,1,7>, RHS
+ 2226300309U, // <u,1,7,5>: Cost 3 vrev <1,u,5,7>
+ 2658325990U, // <u,1,7,6>: Cost 3 vext2 <6,7,u,1>, <7,6,1,u>
+ 2658326124U, // <u,1,7,7>: Cost 3 vext2 <6,7,u,1>, <7,7,7,7>
+ 2042962027U, // <u,1,7,u>: Cost 2 vtrnr RHS, LHS
+ 1481842790U, // <u,1,u,0>: Cost 2 vext1 <0,u,1,u>, LHS
+ 202162278U, // <u,1,u,1>: Cost 1 vdup1 LHS
+ 2685674867U, // <u,1,u,2>: Cost 3 vext3 LHS, <1,u,2,0>
+ 835584U, // <u,1,u,3>: Cost 0 copy LHS
+ 1481846070U, // <u,1,u,4>: Cost 2 vext1 <0,u,1,u>, RHS
+ 1611933077U, // <u,1,u,5>: Cost 2 vext3 LHS, <1,u,5,7>
+ 2685674910U, // <u,1,u,6>: Cost 3 vext3 LHS, <1,u,6,7>
+ 1523652232U, // <u,1,u,7>: Cost 2 vext1 <7,u,1,u>, <7,u,1,u>
+ 835584U, // <u,1,u,u>: Cost 0 copy LHS
+ 1544110154U, // <u,2,0,0>: Cost 2 vext2 <0,0,u,2>, <0,0,u,2>
+ 1545437286U, // <u,2,0,1>: Cost 2 vext2 <0,2,u,2>, LHS
+ 1545437420U, // <u,2,0,2>: Cost 2 vext2 <0,2,u,2>, <0,2,u,2>
+ 2685232589U, // <u,2,0,3>: Cost 3 vext3 LHS, <2,0,3,0>
+ 2619179346U, // <u,2,0,4>: Cost 3 vext2 <0,2,u,2>, <0,4,1,5>
+ 2712069606U, // <u,2,0,5>: Cost 3 vext3 RHS, <2,0,5,7>
+ 2689877484U, // <u,2,0,6>: Cost 3 vext3 LHS, <2,0,6,4>
+ 2659656273U, // <u,2,0,7>: Cost 3 vext2 <7,0,u,2>, <0,7,2,u>
+ 1545437853U, // <u,2,0,u>: Cost 2 vext2 <0,2,u,2>, LHS
+ 1550082851U, // <u,2,1,0>: Cost 2 vext2 <1,0,u,2>, <1,0,u,2>
+ 2619179828U, // <u,2,1,1>: Cost 3 vext2 <0,2,u,2>, <1,1,1,1>
+ 2619179926U, // <u,2,1,2>: Cost 3 vext2 <0,2,u,2>, <1,2,3,0>
+ 2685232671U, // <u,2,1,3>: Cost 3 vext3 LHS, <2,1,3,1>
+ 2555604278U, // <u,2,1,4>: Cost 3 vext1 <0,u,2,1>, RHS
+ 2619180176U, // <u,2,1,5>: Cost 3 vext2 <0,2,u,2>, <1,5,3,7>
+ 2689877564U, // <u,2,1,6>: Cost 3 vext3 LHS, <2,1,6,3>
+ 2602718850U, // <u,2,1,7>: Cost 3 vext1 <u,7,2,1>, <7,u,1,2>
+ 1158703235U, // <u,2,1,u>: Cost 2 vrev <2,u,u,1>
+ 1481867366U, // <u,2,2,0>: Cost 2 vext1 <0,u,2,2>, LHS
+ 2555609846U, // <u,2,2,1>: Cost 3 vext1 <0,u,2,2>, <1,0,3,2>
+ 269271142U, // <u,2,2,2>: Cost 1 vdup2 LHS
+ 1611490930U, // <u,2,2,3>: Cost 2 vext3 LHS, <2,2,3,3>
+ 1481870646U, // <u,2,2,4>: Cost 2 vext1 <0,u,2,2>, RHS
+ 2689877640U, // <u,2,2,5>: Cost 3 vext3 LHS, <2,2,5,7>
+ 2619180986U, // <u,2,2,6>: Cost 3 vext2 <0,2,u,2>, <2,6,3,7>
+ 2593436837U, // <u,2,2,7>: Cost 3 vext1 <7,2,2,2>, <7,2,2,2>
+ 269271142U, // <u,2,2,u>: Cost 1 vdup2 LHS
+ 408134301U, // <u,2,3,0>: Cost 1 vext1 LHS, LHS
+ 1481876214U, // <u,2,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 1481877096U, // <u,2,3,2>: Cost 2 vext1 LHS, <2,2,2,2>
+ 1880326246U, // <u,2,3,3>: Cost 2 vzipr LHS, LHS
+ 408137014U, // <u,2,3,4>: Cost 1 vext1 LHS, RHS
+ 1529654992U, // <u,2,3,5>: Cost 2 vext1 LHS, <5,1,7,3>
+ 1529655802U, // <u,2,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1529656314U, // <u,2,3,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 408139566U, // <u,2,3,u>: Cost 1 vext1 LHS, LHS
+ 1567853468U, // <u,2,4,0>: Cost 2 vext2 <4,0,6,2>, <4,0,6,2>
+ 2561598362U, // <u,2,4,1>: Cost 3 vext1 <1,u,2,4>, <1,2,3,4>
+ 2555627214U, // <u,2,4,2>: Cost 3 vext1 <0,u,2,4>, <2,3,4,5>
+ 2685232918U, // <u,2,4,3>: Cost 3 vext3 LHS, <2,4,3,5>
+ 2555628854U, // <u,2,4,4>: Cost 3 vext1 <0,u,2,4>, RHS
+ 1545440566U, // <u,2,4,5>: Cost 2 vext2 <0,2,u,2>, RHS
+ 1571982740U, // <u,2,4,6>: Cost 2 vext2 <4,6,u,2>, <4,6,u,2>
+ 2592125957U, // <u,2,4,7>: Cost 3 vext1 <7,0,2,4>, <7,0,2,4>
+ 1545440809U, // <u,2,4,u>: Cost 2 vext2 <0,2,u,2>, RHS
+ 2555633766U, // <u,2,5,0>: Cost 3 vext1 <0,u,2,5>, LHS
+ 2561606550U, // <u,2,5,1>: Cost 3 vext1 <1,u,2,5>, <1,2,3,0>
+ 2689877856U, // <u,2,5,2>: Cost 3 vext3 LHS, <2,5,2,7>
+ 2685233000U, // <u,2,5,3>: Cost 3 vext3 LHS, <2,5,3,6>
+ 1158441059U, // <u,2,5,4>: Cost 2 vrev <2,u,4,5>
+ 2645725188U, // <u,2,5,5>: Cost 3 vext2 <4,6,u,2>, <5,5,5,5>
+ 2689877892U, // <u,2,5,6>: Cost 3 vext3 LHS, <2,5,6,7>
+ 2823900470U, // <u,2,5,7>: Cost 3 vuzpr <0,u,0,2>, RHS
+ 1158736007U, // <u,2,5,u>: Cost 2 vrev <2,u,u,5>
+ 1481900134U, // <u,2,6,0>: Cost 2 vext1 <0,u,2,6>, LHS
+ 2555642614U, // <u,2,6,1>: Cost 3 vext1 <0,u,2,6>, <1,0,3,2>
+ 2555643496U, // <u,2,6,2>: Cost 3 vext1 <0,u,2,6>, <2,2,2,2>
+ 1611491258U, // <u,2,6,3>: Cost 2 vext3 LHS, <2,6,3,7>
+ 1481903414U, // <u,2,6,4>: Cost 2 vext1 <0,u,2,6>, RHS
+ 2689877964U, // <u,2,6,5>: Cost 3 vext3 LHS, <2,6,5,7>
+ 2689877973U, // <u,2,6,6>: Cost 3 vext3 LHS, <2,6,6,7>
+ 2645726030U, // <u,2,6,7>: Cost 3 vext2 <4,6,u,2>, <6,7,0,1>
+ 1611933671U, // <u,2,6,u>: Cost 2 vext3 LHS, <2,6,u,7>
+ 1585919033U, // <u,2,7,0>: Cost 2 vext2 <7,0,u,2>, <7,0,u,2>
+ 2573566710U, // <u,2,7,1>: Cost 3 vext1 <3,u,2,7>, <1,0,3,2>
+ 2567596115U, // <u,2,7,2>: Cost 3 vext1 <2,u,2,7>, <2,u,2,7>
+ 1906901094U, // <u,2,7,3>: Cost 2 vzipr RHS, LHS
+ 2555653430U, // <u,2,7,4>: Cost 3 vext1 <0,u,2,7>, RHS
+ 2800080230U, // <u,2,7,5>: Cost 3 vuzpl LHS, <7,4,5,6>
+ 2980643164U, // <u,2,7,6>: Cost 3 vzipr RHS, <0,4,2,6>
+ 2645726828U, // <u,2,7,7>: Cost 3 vext2 <4,6,u,2>, <7,7,7,7>
+ 1906901099U, // <u,2,7,u>: Cost 2 vzipr RHS, LHS
+ 408175266U, // <u,2,u,0>: Cost 1 vext1 LHS, LHS
+ 1545443118U, // <u,2,u,1>: Cost 2 vext2 <0,2,u,2>, LHS
+ 269271142U, // <u,2,u,2>: Cost 1 vdup2 LHS
+ 1611491416U, // <u,2,u,3>: Cost 2 vext3 LHS, <2,u,3,3>
+ 408177974U, // <u,2,u,4>: Cost 1 vext1 LHS, RHS
+ 1545443482U, // <u,2,u,5>: Cost 2 vext2 <0,2,u,2>, RHS
+ 1726339226U, // <u,2,u,6>: Cost 2 vuzpl LHS, RHS
+ 1529697274U, // <u,2,u,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 408180526U, // <u,2,u,u>: Cost 1 vext1 LHS, LHS
+ 1544781824U, // <u,3,0,0>: Cost 2 vext2 LHS, <0,0,0,0>
+ 471040156U, // <u,3,0,1>: Cost 1 vext2 LHS, LHS
+ 1544781988U, // <u,3,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 2618523900U, // <u,3,0,3>: Cost 3 vext2 LHS, <0,3,1,0>
+ 1544782162U, // <u,3,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 2238188352U, // <u,3,0,5>: Cost 3 vrev <3,u,5,0>
+ 2623169023U, // <u,3,0,6>: Cost 3 vext2 LHS, <0,6,2,7>
+ 2238335826U, // <u,3,0,7>: Cost 3 vrev <3,u,7,0>
+ 471040669U, // <u,3,0,u>: Cost 1 vext2 LHS, LHS
+ 1544782582U, // <u,3,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 1544782644U, // <u,3,1,1>: Cost 2 vext2 LHS, <1,1,1,1>
+ 1544782742U, // <u,3,1,2>: Cost 2 vext2 LHS, <1,2,3,0>
+ 1544782808U, // <u,3,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 2618524733U, // <u,3,1,4>: Cost 3 vext2 LHS, <1,4,3,5>
+ 1544782992U, // <u,3,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 2618524897U, // <u,3,1,6>: Cost 3 vext2 LHS, <1,6,3,7>
+ 2703517987U, // <u,3,1,7>: Cost 3 vext3 <3,1,7,u>, <3,1,7,u>
+ 1544783213U, // <u,3,1,u>: Cost 2 vext2 LHS, <1,u,1,3>
+ 1529716838U, // <u,3,2,0>: Cost 2 vext1 <u,u,3,2>, LHS
+ 1164167966U, // <u,3,2,1>: Cost 2 vrev <3,u,1,2>
+ 1544783464U, // <u,3,2,2>: Cost 2 vext2 LHS, <2,2,2,2>
+ 1544783526U, // <u,3,2,3>: Cost 2 vext2 LHS, <2,3,0,1>
+ 1529720118U, // <u,3,2,4>: Cost 2 vext1 <u,u,3,2>, RHS
+ 2618525544U, // <u,3,2,5>: Cost 3 vext2 LHS, <2,5,3,6>
+ 1544783802U, // <u,3,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 2704181620U, // <u,3,2,7>: Cost 3 vext3 <3,2,7,u>, <3,2,7,u>
+ 1544783931U, // <u,3,2,u>: Cost 2 vext2 LHS, <2,u,0,1>
+ 1544784022U, // <u,3,3,0>: Cost 2 vext2 LHS, <3,0,1,2>
+ 1487922559U, // <u,3,3,1>: Cost 2 vext1 <1,u,3,3>, <1,u,3,3>
+ 1493895256U, // <u,3,3,2>: Cost 2 vext1 <2,u,3,3>, <2,u,3,3>
+ 336380006U, // <u,3,3,3>: Cost 1 vdup3 LHS
+ 1544784386U, // <u,3,3,4>: Cost 2 vext2 LHS, <3,4,5,6>
+ 2824054478U, // <u,3,3,5>: Cost 3 vuzpr LHS, <2,3,4,5>
+ 2238286668U, // <u,3,3,6>: Cost 3 vrev <3,u,6,3>
+ 2954069136U, // <u,3,3,7>: Cost 3 vzipr LHS, <1,5,3,7>
+ 336380006U, // <u,3,3,u>: Cost 1 vdup3 LHS
+ 1487929446U, // <u,3,4,0>: Cost 2 vext1 <1,u,3,4>, LHS
+ 1487930752U, // <u,3,4,1>: Cost 2 vext1 <1,u,3,4>, <1,u,3,4>
+ 2623171644U, // <u,3,4,2>: Cost 3 vext2 LHS, <4,2,6,0>
+ 2561673366U, // <u,3,4,3>: Cost 3 vext1 <1,u,3,4>, <3,0,1,2>
+ 1487932726U, // <u,3,4,4>: Cost 2 vext1 <1,u,3,4>, RHS
+ 471043382U, // <u,3,4,5>: Cost 1 vext2 LHS, RHS
+ 1592561012U, // <u,3,4,6>: Cost 2 vext2 LHS, <4,6,4,6>
+ 2238368598U, // <u,3,4,7>: Cost 3 vrev <3,u,7,4>
+ 471043625U, // <u,3,4,u>: Cost 1 vext2 LHS, RHS
+ 2555707494U, // <u,3,5,0>: Cost 3 vext1 <0,u,3,5>, LHS
+ 1574645465U, // <u,3,5,1>: Cost 2 vext2 <5,1,u,3>, <5,1,u,3>
+ 2567653106U, // <u,3,5,2>: Cost 3 vext1 <2,u,3,5>, <2,3,u,5>
+ 2555709954U, // <u,3,5,3>: Cost 3 vext1 <0,u,3,5>, <3,4,5,6>
+ 1592561606U, // <u,3,5,4>: Cost 2 vext2 LHS, <5,4,7,6>
+ 1592561668U, // <u,3,5,5>: Cost 2 vext2 LHS, <5,5,5,5>
+ 1592561762U, // <u,3,5,6>: Cost 2 vext2 LHS, <5,6,7,0>
+ 1750314294U, // <u,3,5,7>: Cost 2 vuzpr LHS, RHS
+ 1750314295U, // <u,3,5,u>: Cost 2 vuzpr LHS, RHS
+ 2623172897U, // <u,3,6,0>: Cost 3 vext2 LHS, <6,0,1,2>
+ 2561688962U, // <u,3,6,1>: Cost 3 vext1 <1,u,3,6>, <1,u,3,6>
+ 1581281795U, // <u,3,6,2>: Cost 2 vext2 <6,2,u,3>, <6,2,u,3>
+ 2706541204U, // <u,3,6,3>: Cost 3 vext3 <3,6,3,u>, <3,6,3,u>
+ 2623173261U, // <u,3,6,4>: Cost 3 vext2 LHS, <6,4,5,6>
+ 1164495686U, // <u,3,6,5>: Cost 2 vrev <3,u,5,6>
+ 1592562488U, // <u,3,6,6>: Cost 2 vext2 LHS, <6,6,6,6>
+ 1592562510U, // <u,3,6,7>: Cost 2 vext2 LHS, <6,7,0,1>
+ 1164716897U, // <u,3,6,u>: Cost 2 vrev <3,u,u,6>
+ 1487954022U, // <u,3,7,0>: Cost 2 vext1 <1,u,3,7>, LHS
+ 1487955331U, // <u,3,7,1>: Cost 2 vext1 <1,u,3,7>, <1,u,3,7>
+ 1493928028U, // <u,3,7,2>: Cost 2 vext1 <2,u,3,7>, <2,u,3,7>
+ 2561697942U, // <u,3,7,3>: Cost 3 vext1 <1,u,3,7>, <3,0,1,2>
+ 1487957302U, // <u,3,7,4>: Cost 2 vext1 <1,u,3,7>, RHS
+ 2707352311U, // <u,3,7,5>: Cost 3 vext3 <3,7,5,u>, <3,7,5,u>
+ 2655024623U, // <u,3,7,6>: Cost 3 vext2 <6,2,u,3>, <7,6,2,u>
+ 1592563308U, // <u,3,7,7>: Cost 2 vext2 LHS, <7,7,7,7>
+ 1487959854U, // <u,3,7,u>: Cost 2 vext1 <1,u,3,7>, LHS
+ 1544787667U, // <u,3,u,0>: Cost 2 vext2 LHS, <u,0,1,2>
+ 471045934U, // <u,3,u,1>: Cost 1 vext2 LHS, LHS
+ 1549432709U, // <u,3,u,2>: Cost 2 vext2 LHS, <u,2,3,0>
+ 336380006U, // <u,3,u,3>: Cost 1 vdup3 LHS
+ 1544788031U, // <u,3,u,4>: Cost 2 vext2 LHS, <u,4,5,6>
+ 471046298U, // <u,3,u,5>: Cost 1 vext2 LHS, RHS
+ 1549433040U, // <u,3,u,6>: Cost 2 vext2 LHS, <u,6,3,7>
+ 1750314537U, // <u,3,u,7>: Cost 2 vuzpr LHS, RHS
+ 471046501U, // <u,3,u,u>: Cost 1 vext2 LHS, LHS
+ 2625167360U, // <u,4,0,0>: Cost 3 vext2 <1,2,u,4>, <0,0,0,0>
+ 1551425638U, // <u,4,0,1>: Cost 2 vext2 <1,2,u,4>, LHS
+ 2619195630U, // <u,4,0,2>: Cost 3 vext2 <0,2,u,4>, <0,2,u,4>
+ 2619343104U, // <u,4,0,3>: Cost 3 vext2 <0,3,1,4>, <0,3,1,4>
+ 2625167698U, // <u,4,0,4>: Cost 3 vext2 <1,2,u,4>, <0,4,1,5>
+ 1638329234U, // <u,4,0,5>: Cost 2 vext3 RHS, <4,0,5,1>
+ 1638329244U, // <u,4,0,6>: Cost 2 vext3 RHS, <4,0,6,2>
+ 3787803556U, // <u,4,0,7>: Cost 4 vext3 RHS, <4,0,7,1>
+ 1551426205U, // <u,4,0,u>: Cost 2 vext2 <1,2,u,4>, LHS
+ 2555748454U, // <u,4,1,0>: Cost 3 vext1 <0,u,4,1>, LHS
+ 2625168180U, // <u,4,1,1>: Cost 3 vext2 <1,2,u,4>, <1,1,1,1>
+ 1551426503U, // <u,4,1,2>: Cost 2 vext2 <1,2,u,4>, <1,2,u,4>
+ 2625168344U, // <u,4,1,3>: Cost 3 vext2 <1,2,u,4>, <1,3,1,3>
+ 2555751734U, // <u,4,1,4>: Cost 3 vext1 <0,u,4,1>, RHS
+ 1860554038U, // <u,4,1,5>: Cost 2 vzipl LHS, RHS
+ 2689879022U, // <u,4,1,6>: Cost 3 vext3 LHS, <4,1,6,3>
+ 2592248852U, // <u,4,1,7>: Cost 3 vext1 <7,0,4,1>, <7,0,4,1>
+ 1555408301U, // <u,4,1,u>: Cost 2 vext2 <1,u,u,4>, <1,u,u,4>
+ 2555756646U, // <u,4,2,0>: Cost 3 vext1 <0,u,4,2>, LHS
+ 2625168943U, // <u,4,2,1>: Cost 3 vext2 <1,2,u,4>, <2,1,4,u>
+ 2625169000U, // <u,4,2,2>: Cost 3 vext2 <1,2,u,4>, <2,2,2,2>
+ 2619197134U, // <u,4,2,3>: Cost 3 vext2 <0,2,u,4>, <2,3,4,5>
+ 2555759926U, // <u,4,2,4>: Cost 3 vext1 <0,u,4,2>, RHS
+ 2712071222U, // <u,4,2,5>: Cost 3 vext3 RHS, <4,2,5,3>
+ 1994771766U, // <u,4,2,6>: Cost 2 vtrnl LHS, RHS
+ 2592257045U, // <u,4,2,7>: Cost 3 vext1 <7,0,4,2>, <7,0,4,2>
+ 1994771784U, // <u,4,2,u>: Cost 2 vtrnl LHS, RHS
+ 2625169558U, // <u,4,3,0>: Cost 3 vext2 <1,2,u,4>, <3,0,1,2>
+ 2567709594U, // <u,4,3,1>: Cost 3 vext1 <2,u,4,3>, <1,2,3,4>
+ 2567710817U, // <u,4,3,2>: Cost 3 vext1 <2,u,4,3>, <2,u,4,3>
+ 2625169820U, // <u,4,3,3>: Cost 3 vext2 <1,2,u,4>, <3,3,3,3>
+ 2625169922U, // <u,4,3,4>: Cost 3 vext2 <1,2,u,4>, <3,4,5,6>
+ 2954069710U, // <u,4,3,5>: Cost 3 vzipr LHS, <2,3,4,5>
+ 2954068172U, // <u,4,3,6>: Cost 3 vzipr LHS, <0,2,4,6>
+ 3903849472U, // <u,4,3,7>: Cost 4 vuzpr <1,u,3,4>, <1,3,5,7>
+ 2954068174U, // <u,4,3,u>: Cost 3 vzipr LHS, <0,2,4,u>
+ 1505919078U, // <u,4,4,0>: Cost 2 vext1 <4,u,4,4>, LHS
+ 2567717831U, // <u,4,4,1>: Cost 3 vext1 <2,u,4,4>, <1,2,u,4>
+ 2567719010U, // <u,4,4,2>: Cost 3 vext1 <2,u,4,4>, <2,u,4,4>
+ 2570373542U, // <u,4,4,3>: Cost 3 vext1 <3,3,4,4>, <3,3,4,4>
+ 161926454U, // <u,4,4,4>: Cost 1 vdup0 RHS
+ 1551428918U, // <u,4,4,5>: Cost 2 vext2 <1,2,u,4>, RHS
+ 1638329572U, // <u,4,4,6>: Cost 2 vext3 RHS, <4,4,6,6>
+ 2594927963U, // <u,4,4,7>: Cost 3 vext1 <7,4,4,4>, <7,4,4,4>
+ 161926454U, // <u,4,4,u>: Cost 1 vdup0 RHS
+ 1493983334U, // <u,4,5,0>: Cost 2 vext1 <2,u,4,5>, LHS
+ 2689879301U, // <u,4,5,1>: Cost 3 vext3 LHS, <4,5,1,3>
+ 1493985379U, // <u,4,5,2>: Cost 2 vext1 <2,u,4,5>, <2,u,4,5>
+ 2567727254U, // <u,4,5,3>: Cost 3 vext1 <2,u,4,5>, <3,0,1,2>
+ 1493986614U, // <u,4,5,4>: Cost 2 vext1 <2,u,4,5>, RHS
+ 1863535926U, // <u,4,5,5>: Cost 2 vzipl RHS, RHS
+ 537750838U, // <u,4,5,6>: Cost 1 vext3 LHS, RHS
+ 2830110006U, // <u,4,5,7>: Cost 3 vuzpr <1,u,3,4>, RHS
+ 537750856U, // <u,4,5,u>: Cost 1 vext3 LHS, RHS
+ 1482047590U, // <u,4,6,0>: Cost 2 vext1 <0,u,4,6>, LHS
+ 2555790070U, // <u,4,6,1>: Cost 3 vext1 <0,u,4,6>, <1,0,3,2>
+ 2555790952U, // <u,4,6,2>: Cost 3 vext1 <0,u,4,6>, <2,2,2,2>
+ 2555791510U, // <u,4,6,3>: Cost 3 vext1 <0,u,4,6>, <3,0,1,2>
+ 1482050870U, // <u,4,6,4>: Cost 2 vext1 <0,u,4,6>, RHS
+ 2689879422U, // <u,4,6,5>: Cost 3 vext3 LHS, <4,6,5,7>
+ 1997753654U, // <u,4,6,6>: Cost 2 vtrnl RHS, RHS
+ 2712071562U, // <u,4,6,7>: Cost 3 vext3 RHS, <4,6,7,1>
+ 1482053422U, // <u,4,6,u>: Cost 2 vext1 <0,u,4,6>, LHS
+ 2567741542U, // <u,4,7,0>: Cost 3 vext1 <2,u,4,7>, LHS
+ 2567742362U, // <u,4,7,1>: Cost 3 vext1 <2,u,4,7>, <1,2,3,4>
+ 2567743589U, // <u,4,7,2>: Cost 3 vext1 <2,u,4,7>, <2,u,4,7>
+ 2573716286U, // <u,4,7,3>: Cost 3 vext1 <3,u,4,7>, <3,u,4,7>
+ 2567744822U, // <u,4,7,4>: Cost 3 vext1 <2,u,4,7>, RHS
+ 2712071624U, // <u,4,7,5>: Cost 3 vext3 RHS, <4,7,5,0>
+ 96808489U, // <u,4,7,6>: Cost 1 vrev RHS
+ 2651715180U, // <u,4,7,7>: Cost 3 vext2 <5,6,u,4>, <7,7,7,7>
+ 96955963U, // <u,4,7,u>: Cost 1 vrev RHS
+ 1482063974U, // <u,4,u,0>: Cost 2 vext1 <0,u,4,u>, LHS
+ 1551431470U, // <u,4,u,1>: Cost 2 vext2 <1,2,u,4>, LHS
+ 1494009958U, // <u,4,u,2>: Cost 2 vext1 <2,u,4,u>, <2,u,4,u>
+ 2555807894U, // <u,4,u,3>: Cost 3 vext1 <0,u,4,u>, <3,0,1,2>
+ 161926454U, // <u,4,u,4>: Cost 1 vdup0 RHS
+ 1551431834U, // <u,4,u,5>: Cost 2 vext2 <1,2,u,4>, RHS
+ 537751081U, // <u,4,u,6>: Cost 1 vext3 LHS, RHS
+ 2830110249U, // <u,4,u,7>: Cost 3 vuzpr <1,u,3,4>, RHS
+ 537751099U, // <u,4,u,u>: Cost 1 vext3 LHS, RHS
+ 2631811072U, // <u,5,0,0>: Cost 3 vext2 <2,3,u,5>, <0,0,0,0>
+ 1558069350U, // <u,5,0,1>: Cost 2 vext2 <2,3,u,5>, LHS
+ 2619203823U, // <u,5,0,2>: Cost 3 vext2 <0,2,u,5>, <0,2,u,5>
+ 2619867456U, // <u,5,0,3>: Cost 3 vext2 <0,3,u,5>, <0,3,u,5>
+ 1546273106U, // <u,5,0,4>: Cost 2 vext2 <0,4,1,5>, <0,4,1,5>
+ 2733010539U, // <u,5,0,5>: Cost 3 vext3 LHS, <5,0,5,1>
+ 2597622682U, // <u,5,0,6>: Cost 3 vext1 <7,u,5,0>, <6,7,u,5>
+ 1176539396U, // <u,5,0,7>: Cost 2 vrev <5,u,7,0>
+ 1558069917U, // <u,5,0,u>: Cost 2 vext2 <2,3,u,5>, LHS
+ 1505968230U, // <u,5,1,0>: Cost 2 vext1 <4,u,5,1>, LHS
+ 2624512887U, // <u,5,1,1>: Cost 3 vext2 <1,1,u,5>, <1,1,u,5>
+ 2631811990U, // <u,5,1,2>: Cost 3 vext2 <2,3,u,5>, <1,2,3,0>
+ 2618541056U, // <u,5,1,3>: Cost 3 vext2 <0,1,u,5>, <1,3,5,7>
+ 1505971510U, // <u,5,1,4>: Cost 2 vext1 <4,u,5,1>, RHS
+ 2627167419U, // <u,5,1,5>: Cost 3 vext2 <1,5,u,5>, <1,5,u,5>
+ 2579714554U, // <u,5,1,6>: Cost 3 vext1 <4,u,5,1>, <6,2,7,3>
+ 1638330064U, // <u,5,1,7>: Cost 2 vext3 RHS, <5,1,7,3>
+ 1638477529U, // <u,5,1,u>: Cost 2 vext3 RHS, <5,1,u,3>
+ 2561802342U, // <u,5,2,0>: Cost 3 vext1 <1,u,5,2>, LHS
+ 2561803264U, // <u,5,2,1>: Cost 3 vext1 <1,u,5,2>, <1,3,5,7>
+ 2631149217U, // <u,5,2,2>: Cost 3 vext2 <2,2,u,5>, <2,2,u,5>
+ 1558071026U, // <u,5,2,3>: Cost 2 vext2 <2,3,u,5>, <2,3,u,5>
+ 2561805622U, // <u,5,2,4>: Cost 3 vext1 <1,u,5,2>, RHS
+ 2714062607U, // <u,5,2,5>: Cost 3 vext3 RHS, <5,2,5,3>
+ 2631813050U, // <u,5,2,6>: Cost 3 vext2 <2,3,u,5>, <2,6,3,7>
+ 3092335926U, // <u,5,2,7>: Cost 3 vtrnr <0,u,0,2>, RHS
+ 1561389191U, // <u,5,2,u>: Cost 2 vext2 <2,u,u,5>, <2,u,u,5>
+ 2561810534U, // <u,5,3,0>: Cost 3 vext1 <1,u,5,3>, LHS
+ 2561811857U, // <u,5,3,1>: Cost 3 vext1 <1,u,5,3>, <1,u,5,3>
+ 2631813474U, // <u,5,3,2>: Cost 3 vext2 <2,3,u,5>, <3,2,5,u>
+ 2631813532U, // <u,5,3,3>: Cost 3 vext2 <2,3,u,5>, <3,3,3,3>
+ 2619869698U, // <u,5,3,4>: Cost 3 vext2 <0,3,u,5>, <3,4,5,6>
+ 3001847002U, // <u,5,3,5>: Cost 3 vzipr LHS, <4,4,5,5>
+ 2954070530U, // <u,5,3,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 2018749750U, // <u,5,3,7>: Cost 2 vtrnr LHS, RHS
+ 2018749751U, // <u,5,3,u>: Cost 2 vtrnr LHS, RHS
+ 2573762662U, // <u,5,4,0>: Cost 3 vext1 <3,u,5,4>, LHS
+ 2620017634U, // <u,5,4,1>: Cost 3 vext2 <0,4,1,5>, <4,1,5,0>
+ 2573764338U, // <u,5,4,2>: Cost 3 vext1 <3,u,5,4>, <2,3,u,5>
+ 2573765444U, // <u,5,4,3>: Cost 3 vext1 <3,u,5,4>, <3,u,5,4>
+ 1570680053U, // <u,5,4,4>: Cost 2 vext2 <4,4,u,5>, <4,4,u,5>
+ 1558072630U, // <u,5,4,5>: Cost 2 vext2 <2,3,u,5>, RHS
+ 2645749143U, // <u,5,4,6>: Cost 3 vext2 <4,6,u,5>, <4,6,u,5>
+ 1638330310U, // <u,5,4,7>: Cost 2 vext3 RHS, <5,4,7,6>
+ 1558072873U, // <u,5,4,u>: Cost 2 vext2 <2,3,u,5>, RHS
+ 1506000998U, // <u,5,5,0>: Cost 2 vext1 <4,u,5,5>, LHS
+ 2561827984U, // <u,5,5,1>: Cost 3 vext1 <1,u,5,5>, <1,5,3,7>
+ 2579744360U, // <u,5,5,2>: Cost 3 vext1 <4,u,5,5>, <2,2,2,2>
+ 2579744918U, // <u,5,5,3>: Cost 3 vext1 <4,u,5,5>, <3,0,1,2>
+ 1506004278U, // <u,5,5,4>: Cost 2 vext1 <4,u,5,5>, RHS
+ 229035318U, // <u,5,5,5>: Cost 1 vdup1 RHS
+ 2712072206U, // <u,5,5,6>: Cost 3 vext3 RHS, <5,5,6,6>
+ 1638330392U, // <u,5,5,7>: Cost 2 vext3 RHS, <5,5,7,7>
+ 229035318U, // <u,5,5,u>: Cost 1 vdup1 RHS
+ 1500037222U, // <u,5,6,0>: Cost 2 vext1 <3,u,5,6>, LHS
+ 2561836436U, // <u,5,6,1>: Cost 3 vext1 <1,u,5,6>, <1,u,5,6>
+ 2567809133U, // <u,5,6,2>: Cost 3 vext1 <2,u,5,6>, <2,u,5,6>
+ 1500040006U, // <u,5,6,3>: Cost 2 vext1 <3,u,5,6>, <3,u,5,6>
+ 1500040502U, // <u,5,6,4>: Cost 2 vext1 <3,u,5,6>, RHS
+ 2714062935U, // <u,5,6,5>: Cost 3 vext3 RHS, <5,6,5,7>
+ 2712072288U, // <u,5,6,6>: Cost 3 vext3 RHS, <5,6,6,7>
+ 27705344U, // <u,5,6,7>: Cost 0 copy RHS
+ 27705344U, // <u,5,6,u>: Cost 0 copy RHS
+ 1488101478U, // <u,5,7,0>: Cost 2 vext1 <1,u,5,7>, LHS
+ 1488102805U, // <u,5,7,1>: Cost 2 vext1 <1,u,5,7>, <1,u,5,7>
+ 2561844840U, // <u,5,7,2>: Cost 3 vext1 <1,u,5,7>, <2,2,2,2>
+ 2561845398U, // <u,5,7,3>: Cost 3 vext1 <1,u,5,7>, <3,0,1,2>
+ 1488104758U, // <u,5,7,4>: Cost 2 vext1 <1,u,5,7>, RHS
+ 1638330536U, // <u,5,7,5>: Cost 2 vext3 RHS, <5,7,5,7>
+ 2712072362U, // <u,5,7,6>: Cost 3 vext3 RHS, <5,7,6,0>
+ 2042965302U, // <u,5,7,7>: Cost 2 vtrnr RHS, RHS
+ 1488107310U, // <u,5,7,u>: Cost 2 vext1 <1,u,5,7>, LHS
+ 1488109670U, // <u,5,u,0>: Cost 2 vext1 <1,u,5,u>, LHS
+ 1488110998U, // <u,5,u,1>: Cost 2 vext1 <1,u,5,u>, <1,u,5,u>
+ 2561853032U, // <u,5,u,2>: Cost 3 vext1 <1,u,5,u>, <2,2,2,2>
+ 1500056392U, // <u,5,u,3>: Cost 2 vext1 <3,u,5,u>, <3,u,5,u>
+ 1488112950U, // <u,5,u,4>: Cost 2 vext1 <1,u,5,u>, RHS
+ 229035318U, // <u,5,u,5>: Cost 1 vdup1 RHS
+ 2954111490U, // <u,5,u,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 27705344U, // <u,5,u,7>: Cost 0 copy RHS
+ 27705344U, // <u,5,u,u>: Cost 0 copy RHS
+ 2619211776U, // <u,6,0,0>: Cost 3 vext2 <0,2,u,6>, <0,0,0,0>
+ 1545470054U, // <u,6,0,1>: Cost 2 vext2 <0,2,u,6>, LHS
+ 1545470192U, // <u,6,0,2>: Cost 2 vext2 <0,2,u,6>, <0,2,u,6>
+ 2255958969U, // <u,6,0,3>: Cost 3 vrev <6,u,3,0>
+ 1546797458U, // <u,6,0,4>: Cost 2 vext2 <0,4,u,6>, <0,4,u,6>
+ 2720624971U, // <u,6,0,5>: Cost 3 vext3 <6,0,5,u>, <6,0,5,u>
+ 2256180180U, // <u,6,0,6>: Cost 3 vrev <6,u,6,0>
+ 2960682294U, // <u,6,0,7>: Cost 3 vzipr <1,2,u,0>, RHS
+ 1545470621U, // <u,6,0,u>: Cost 2 vext2 <0,2,u,6>, LHS
+ 1182004127U, // <u,6,1,0>: Cost 2 vrev <6,u,0,1>
+ 2619212596U, // <u,6,1,1>: Cost 3 vext2 <0,2,u,6>, <1,1,1,1>
+ 2619212694U, // <u,6,1,2>: Cost 3 vext2 <0,2,u,6>, <1,2,3,0>
+ 2619212760U, // <u,6,1,3>: Cost 3 vext2 <0,2,u,6>, <1,3,1,3>
+ 2626511979U, // <u,6,1,4>: Cost 3 vext2 <1,4,u,6>, <1,4,u,6>
+ 2619212944U, // <u,6,1,5>: Cost 3 vext2 <0,2,u,6>, <1,5,3,7>
+ 2714063264U, // <u,6,1,6>: Cost 3 vext3 RHS, <6,1,6,3>
+ 2967326006U, // <u,6,1,7>: Cost 3 vzipr <2,3,u,1>, RHS
+ 1182594023U, // <u,6,1,u>: Cost 2 vrev <6,u,u,1>
+ 1506050150U, // <u,6,2,0>: Cost 2 vext1 <4,u,6,2>, LHS
+ 2579792630U, // <u,6,2,1>: Cost 3 vext1 <4,u,6,2>, <1,0,3,2>
+ 2619213416U, // <u,6,2,2>: Cost 3 vext2 <0,2,u,6>, <2,2,2,2>
+ 2619213478U, // <u,6,2,3>: Cost 3 vext2 <0,2,u,6>, <2,3,0,1>
+ 1506053430U, // <u,6,2,4>: Cost 2 vext1 <4,u,6,2>, RHS
+ 2633148309U, // <u,6,2,5>: Cost 3 vext2 <2,5,u,6>, <2,5,u,6>
+ 2619213754U, // <u,6,2,6>: Cost 3 vext2 <0,2,u,6>, <2,6,3,7>
+ 1638330874U, // <u,6,2,7>: Cost 2 vext3 RHS, <6,2,7,3>
+ 1638478339U, // <u,6,2,u>: Cost 2 vext3 RHS, <6,2,u,3>
+ 2619213974U, // <u,6,3,0>: Cost 3 vext2 <0,2,u,6>, <3,0,1,2>
+ 2255836074U, // <u,6,3,1>: Cost 3 vrev <6,u,1,3>
+ 2255909811U, // <u,6,3,2>: Cost 3 vrev <6,u,2,3>
+ 2619214236U, // <u,6,3,3>: Cost 3 vext2 <0,2,u,6>, <3,3,3,3>
+ 1564715549U, // <u,6,3,4>: Cost 2 vext2 <3,4,u,6>, <3,4,u,6>
+ 2639121006U, // <u,6,3,5>: Cost 3 vext2 <3,5,u,6>, <3,5,u,6>
+ 3001847012U, // <u,6,3,6>: Cost 3 vzipr LHS, <4,4,6,6>
+ 1880329526U, // <u,6,3,7>: Cost 2 vzipr LHS, RHS
+ 1880329527U, // <u,6,3,u>: Cost 2 vzipr LHS, RHS
+ 2567864422U, // <u,6,4,0>: Cost 3 vext1 <2,u,6,4>, LHS
+ 2733011558U, // <u,6,4,1>: Cost 3 vext3 LHS, <6,4,1,3>
+ 2567866484U, // <u,6,4,2>: Cost 3 vext1 <2,u,6,4>, <2,u,6,4>
+ 2638458005U, // <u,6,4,3>: Cost 3 vext2 <3,4,u,6>, <4,3,6,u>
+ 1570540772U, // <u,6,4,4>: Cost 2 vext2 <4,4,6,6>, <4,4,6,6>
+ 1545473334U, // <u,6,4,5>: Cost 2 vext2 <0,2,u,6>, RHS
+ 1572015512U, // <u,6,4,6>: Cost 2 vext2 <4,6,u,6>, <4,6,u,6>
+ 2960715062U, // <u,6,4,7>: Cost 3 vzipr <1,2,u,4>, RHS
+ 1545473577U, // <u,6,4,u>: Cost 2 vext2 <0,2,u,6>, RHS
+ 2567872614U, // <u,6,5,0>: Cost 3 vext1 <2,u,6,5>, LHS
+ 2645757648U, // <u,6,5,1>: Cost 3 vext2 <4,6,u,6>, <5,1,7,3>
+ 2567874490U, // <u,6,5,2>: Cost 3 vext1 <2,u,6,5>, <2,6,3,7>
+ 2576501250U, // <u,6,5,3>: Cost 3 vext1 <4,3,6,5>, <3,4,5,6>
+ 1576660943U, // <u,6,5,4>: Cost 2 vext2 <5,4,u,6>, <5,4,u,6>
+ 2645757956U, // <u,6,5,5>: Cost 3 vext2 <4,6,u,6>, <5,5,5,5>
+ 2645758050U, // <u,6,5,6>: Cost 3 vext2 <4,6,u,6>, <5,6,7,0>
+ 2824080694U, // <u,6,5,7>: Cost 3 vuzpr <0,u,2,6>, RHS
+ 1182626795U, // <u,6,5,u>: Cost 2 vrev <6,u,u,5>
+ 1506082918U, // <u,6,6,0>: Cost 2 vext1 <4,u,6,6>, LHS
+ 2579825398U, // <u,6,6,1>: Cost 3 vext1 <4,u,6,6>, <1,0,3,2>
+ 2645758458U, // <u,6,6,2>: Cost 3 vext2 <4,6,u,6>, <6,2,7,3>
+ 2579826838U, // <u,6,6,3>: Cost 3 vext1 <4,u,6,6>, <3,0,1,2>
+ 1506086198U, // <u,6,6,4>: Cost 2 vext1 <4,u,6,6>, RHS
+ 2579828432U, // <u,6,6,5>: Cost 3 vext1 <4,u,6,6>, <5,1,7,3>
+ 296144182U, // <u,6,6,6>: Cost 1 vdup2 RHS
+ 1638331202U, // <u,6,6,7>: Cost 2 vext3 RHS, <6,6,7,7>
+ 296144182U, // <u,6,6,u>: Cost 1 vdup2 RHS
+ 432349286U, // <u,6,7,0>: Cost 1 vext1 RHS, LHS
+ 1506091766U, // <u,6,7,1>: Cost 2 vext1 RHS, <1,0,3,2>
+ 1506092648U, // <u,6,7,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1506093206U, // <u,6,7,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 432352809U, // <u,6,7,4>: Cost 1 vext1 RHS, RHS
+ 1506094800U, // <u,6,7,5>: Cost 2 vext1 RHS, <5,1,7,3>
+ 1506095610U, // <u,6,7,6>: Cost 2 vext1 RHS, <6,2,7,3>
+ 1906904374U, // <u,6,7,7>: Cost 2 vzipr RHS, RHS
+ 432355118U, // <u,6,7,u>: Cost 1 vext1 RHS, LHS
+ 432357478U, // <u,6,u,0>: Cost 1 vext1 RHS, LHS
+ 1545475886U, // <u,6,u,1>: Cost 2 vext2 <0,2,u,6>, LHS
+ 1506100840U, // <u,6,u,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1506101398U, // <u,6,u,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 432361002U, // <u,6,u,4>: Cost 1 vext1 RHS, RHS
+ 1545476250U, // <u,6,u,5>: Cost 2 vext2 <0,2,u,6>, RHS
+ 296144182U, // <u,6,u,6>: Cost 1 vdup2 RHS
+ 1880370486U, // <u,6,u,7>: Cost 2 vzipr LHS, RHS
+ 432363310U, // <u,6,u,u>: Cost 1 vext1 RHS, LHS
+ 1571356672U, // <u,7,0,0>: Cost 2 vext2 RHS, <0,0,0,0>
+ 497614950U, // <u,7,0,1>: Cost 1 vext2 RHS, LHS
+ 1571356836U, // <u,7,0,2>: Cost 2 vext2 RHS, <0,2,0,2>
+ 2573880146U, // <u,7,0,3>: Cost 3 vext1 <3,u,7,0>, <3,u,7,0>
+ 1571357010U, // <u,7,0,4>: Cost 2 vext2 RHS, <0,4,1,5>
+ 1512083716U, // <u,7,0,5>: Cost 2 vext1 <5,u,7,0>, <5,u,7,0>
+ 2621874741U, // <u,7,0,6>: Cost 3 vext2 <0,6,u,7>, <0,6,u,7>
+ 2585826298U, // <u,7,0,7>: Cost 3 vext1 <5,u,7,0>, <7,0,1,2>
+ 497615517U, // <u,7,0,u>: Cost 1 vext2 RHS, LHS
+ 1571357430U, // <u,7,1,0>: Cost 2 vext2 RHS, <1,0,3,2>
+ 1571357492U, // <u,7,1,1>: Cost 2 vext2 RHS, <1,1,1,1>
+ 1571357590U, // <u,7,1,2>: Cost 2 vext2 RHS, <1,2,3,0>
+ 1552114715U, // <u,7,1,3>: Cost 2 vext2 <1,3,u,7>, <1,3,u,7>
+ 2573888822U, // <u,7,1,4>: Cost 3 vext1 <3,u,7,1>, RHS
+ 1553441981U, // <u,7,1,5>: Cost 2 vext2 <1,5,u,7>, <1,5,u,7>
+ 2627847438U, // <u,7,1,6>: Cost 3 vext2 <1,6,u,7>, <1,6,u,7>
+ 2727408775U, // <u,7,1,7>: Cost 3 vext3 <7,1,7,u>, <7,1,7,u>
+ 1555432880U, // <u,7,1,u>: Cost 2 vext2 <1,u,u,7>, <1,u,u,7>
+ 2629838337U, // <u,7,2,0>: Cost 3 vext2 <2,0,u,7>, <2,0,u,7>
+ 1188058754U, // <u,7,2,1>: Cost 2 vrev <7,u,1,2>
+ 1571358312U, // <u,7,2,2>: Cost 2 vext2 RHS, <2,2,2,2>
+ 1571358374U, // <u,7,2,3>: Cost 2 vext2 RHS, <2,3,0,1>
+ 2632492869U, // <u,7,2,4>: Cost 3 vext2 <2,4,u,7>, <2,4,u,7>
+ 2633156502U, // <u,7,2,5>: Cost 3 vext2 <2,5,u,7>, <2,5,u,7>
+ 1560078311U, // <u,7,2,6>: Cost 2 vext2 <2,6,u,7>, <2,6,u,7>
+ 2728072408U, // <u,7,2,7>: Cost 3 vext3 <7,2,7,u>, <7,2,7,u>
+ 1561405577U, // <u,7,2,u>: Cost 2 vext2 <2,u,u,7>, <2,u,u,7>
+ 1571358870U, // <u,7,3,0>: Cost 2 vext2 RHS, <3,0,1,2>
+ 2627184913U, // <u,7,3,1>: Cost 3 vext2 <1,5,u,7>, <3,1,5,u>
+ 2633820523U, // <u,7,3,2>: Cost 3 vext2 <2,6,u,7>, <3,2,6,u>
+ 1571359132U, // <u,7,3,3>: Cost 2 vext2 RHS, <3,3,3,3>
+ 1571359234U, // <u,7,3,4>: Cost 2 vext2 RHS, <3,4,5,6>
+ 1512108295U, // <u,7,3,5>: Cost 2 vext1 <5,u,7,3>, <5,u,7,3>
+ 1518080992U, // <u,7,3,6>: Cost 2 vext1 <6,u,7,3>, <6,u,7,3>
+ 2640456465U, // <u,7,3,7>: Cost 3 vext2 <3,7,u,7>, <3,7,u,7>
+ 1571359518U, // <u,7,3,u>: Cost 2 vext2 RHS, <3,u,1,2>
+ 1571359634U, // <u,7,4,0>: Cost 2 vext2 RHS, <4,0,5,1>
+ 2573911067U, // <u,7,4,1>: Cost 3 vext1 <3,u,7,4>, <1,3,u,7>
+ 2645101622U, // <u,7,4,2>: Cost 3 vext2 RHS, <4,2,5,3>
+ 2573912918U, // <u,7,4,3>: Cost 3 vext1 <3,u,7,4>, <3,u,7,4>
+ 1571359952U, // <u,7,4,4>: Cost 2 vext2 RHS, <4,4,4,4>
+ 497618248U, // <u,7,4,5>: Cost 1 vext2 RHS, RHS
+ 1571360116U, // <u,7,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 2645102024U, // <u,7,4,7>: Cost 3 vext2 RHS, <4,7,5,0>
+ 497618473U, // <u,7,4,u>: Cost 1 vext2 RHS, RHS
+ 2645102152U, // <u,7,5,0>: Cost 3 vext2 RHS, <5,0,1,2>
+ 1571360464U, // <u,7,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 2645102334U, // <u,7,5,2>: Cost 3 vext2 RHS, <5,2,3,4>
+ 2645102447U, // <u,7,5,3>: Cost 3 vext2 RHS, <5,3,7,0>
+ 1571360710U, // <u,7,5,4>: Cost 2 vext2 RHS, <5,4,7,6>
+ 1571360772U, // <u,7,5,5>: Cost 2 vext2 RHS, <5,5,5,5>
+ 1571360866U, // <u,7,5,6>: Cost 2 vext2 RHS, <5,6,7,0>
+ 1571360936U, // <u,7,5,7>: Cost 2 vext2 RHS, <5,7,5,7>
+ 1571361017U, // <u,7,5,u>: Cost 2 vext2 RHS, <5,u,5,7>
+ 1530044518U, // <u,7,6,0>: Cost 2 vext1 <u,u,7,6>, LHS
+ 2645103016U, // <u,7,6,1>: Cost 3 vext2 RHS, <6,1,7,2>
+ 1571361274U, // <u,7,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 2645103154U, // <u,7,6,3>: Cost 3 vext2 RHS, <6,3,4,5>
+ 1530047798U, // <u,7,6,4>: Cost 2 vext1 <u,u,7,6>, RHS
+ 1188386474U, // <u,7,6,5>: Cost 2 vrev <7,u,5,6>
+ 1571361592U, // <u,7,6,6>: Cost 2 vext2 RHS, <6,6,6,6>
+ 1571361614U, // <u,7,6,7>: Cost 2 vext2 RHS, <6,7,0,1>
+ 1571361695U, // <u,7,6,u>: Cost 2 vext2 RHS, <6,u,0,1>
+ 1571361786U, // <u,7,7,0>: Cost 2 vext2 RHS, <7,0,1,2>
+ 2573935616U, // <u,7,7,1>: Cost 3 vext1 <3,u,7,7>, <1,3,5,7>
+ 2645103781U, // <u,7,7,2>: Cost 3 vext2 RHS, <7,2,2,2>
+ 2573937497U, // <u,7,7,3>: Cost 3 vext1 <3,u,7,7>, <3,u,7,7>
+ 1571362150U, // <u,7,7,4>: Cost 2 vext2 RHS, <7,4,5,6>
+ 1512141067U, // <u,7,7,5>: Cost 2 vext1 <5,u,7,7>, <5,u,7,7>
+ 1518113764U, // <u,7,7,6>: Cost 2 vext1 <6,u,7,7>, <6,u,7,7>
+ 363253046U, // <u,7,7,7>: Cost 1 vdup3 RHS
+ 363253046U, // <u,7,7,u>: Cost 1 vdup3 RHS
+ 1571362515U, // <u,7,u,0>: Cost 2 vext2 RHS, <u,0,1,2>
+ 497620782U, // <u,7,u,1>: Cost 1 vext2 RHS, LHS
+ 1571362693U, // <u,7,u,2>: Cost 2 vext2 RHS, <u,2,3,0>
+ 1571362748U, // <u,7,u,3>: Cost 2 vext2 RHS, <u,3,0,1>
+ 1571362879U, // <u,7,u,4>: Cost 2 vext2 RHS, <u,4,5,6>
+ 497621146U, // <u,7,u,5>: Cost 1 vext2 RHS, RHS
+ 1571363024U, // <u,7,u,6>: Cost 2 vext2 RHS, <u,6,3,7>
+ 363253046U, // <u,7,u,7>: Cost 1 vdup3 RHS
+ 497621349U, // <u,7,u,u>: Cost 1 vext2 RHS, LHS
+ 135053414U, // <u,u,0,0>: Cost 1 vdup0 LHS
+ 471081121U, // <u,u,0,1>: Cost 1 vext2 LHS, LHS
+ 1544822948U, // <u,u,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 1616140005U, // <u,u,0,3>: Cost 2 vext3 LHS, <u,0,3,2>
+ 1544823122U, // <u,u,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 1512157453U, // <u,u,0,5>: Cost 2 vext1 <5,u,u,0>, <5,u,u,0>
+ 1662220032U, // <u,u,0,6>: Cost 2 vext3 RHS, <u,0,6,2>
+ 1194457487U, // <u,u,0,7>: Cost 2 vrev <u,u,7,0>
+ 471081629U, // <u,u,0,u>: Cost 1 vext2 LHS, LHS
+ 1544823542U, // <u,u,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 202162278U, // <u,u,1,1>: Cost 1 vdup1 LHS
+ 537753390U, // <u,u,1,2>: Cost 1 vext3 LHS, LHS
+ 1544823768U, // <u,u,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 1494248758U, // <u,u,1,4>: Cost 2 vext1 <2,u,u,1>, RHS
+ 1544823952U, // <u,u,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 1518138343U, // <u,u,1,6>: Cost 2 vext1 <6,u,u,1>, <6,u,u,1>
+ 1640322907U, // <u,u,1,7>: Cost 2 vext3 RHS, <u,1,7,3>
+ 537753444U, // <u,u,1,u>: Cost 1 vext3 LHS, LHS
+ 1482309734U, // <u,u,2,0>: Cost 2 vext1 <0,u,u,2>, LHS
+ 1194031451U, // <u,u,2,1>: Cost 2 vrev <u,u,1,2>
+ 269271142U, // <u,u,2,2>: Cost 1 vdup2 LHS
+ 835584U, // <u,u,2,3>: Cost 0 copy LHS
+ 1482313014U, // <u,u,2,4>: Cost 2 vext1 <0,u,u,2>, RHS
+ 2618566504U, // <u,u,2,5>: Cost 3 vext2 LHS, <2,5,3,6>
+ 1544824762U, // <u,u,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 1638479788U, // <u,u,2,7>: Cost 2 vext3 RHS, <u,2,7,3>
+ 835584U, // <u,u,2,u>: Cost 0 copy LHS
+ 408576723U, // <u,u,3,0>: Cost 1 vext1 LHS, LHS
+ 1482318582U, // <u,u,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 120371557U, // <u,u,3,2>: Cost 1 vrev LHS
+ 336380006U, // <u,u,3,3>: Cost 1 vdup3 LHS
+ 408579382U, // <u,u,3,4>: Cost 1 vext1 LHS, RHS
+ 1616140271U, // <u,u,3,5>: Cost 2 vext3 LHS, <u,3,5,7>
+ 1530098170U, // <u,u,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1880329544U, // <u,u,3,7>: Cost 2 vzipr LHS, RHS
+ 408581934U, // <u,u,3,u>: Cost 1 vext1 LHS, LHS
+ 1488298086U, // <u,u,4,0>: Cost 2 vext1 <1,u,u,4>, LHS
+ 1488299437U, // <u,u,4,1>: Cost 2 vext1 <1,u,u,4>, <1,u,u,4>
+ 1659271204U, // <u,u,4,2>: Cost 2 vext3 LHS, <u,4,2,6>
+ 1194195311U, // <u,u,4,3>: Cost 2 vrev <u,u,3,4>
+ 161926454U, // <u,u,4,4>: Cost 1 vdup0 RHS
+ 471084342U, // <u,u,4,5>: Cost 1 vext2 LHS, RHS
+ 1571368308U, // <u,u,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 1640323153U, // <u,u,4,7>: Cost 2 vext3 RHS, <u,4,7,6>
+ 471084585U, // <u,u,4,u>: Cost 1 vext2 LHS, RHS
+ 1494278246U, // <u,u,5,0>: Cost 2 vext1 <2,u,u,5>, LHS
+ 1571368656U, // <u,u,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 1494280327U, // <u,u,5,2>: Cost 2 vext1 <2,u,u,5>, <2,u,u,5>
+ 1616140415U, // <u,u,5,3>: Cost 2 vext3 LHS, <u,5,3,7>
+ 1494281526U, // <u,u,5,4>: Cost 2 vext1 <2,u,u,5>, RHS
+ 229035318U, // <u,u,5,5>: Cost 1 vdup1 RHS
+ 537753754U, // <u,u,5,6>: Cost 1 vext3 LHS, RHS
+ 1750355254U, // <u,u,5,7>: Cost 2 vuzpr LHS, RHS
+ 537753772U, // <u,u,5,u>: Cost 1 vext3 LHS, RHS
+ 1482342502U, // <u,u,6,0>: Cost 2 vext1 <0,u,u,6>, LHS
+ 2556084982U, // <u,u,6,1>: Cost 3 vext1 <0,u,u,6>, <1,0,3,2>
+ 1571369466U, // <u,u,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 1611938000U, // <u,u,6,3>: Cost 2 vext3 LHS, <u,6,3,7>
+ 1482345782U, // <u,u,6,4>: Cost 2 vext1 <0,u,u,6>, RHS
+ 1194359171U, // <u,u,6,5>: Cost 2 vrev <u,u,5,6>
+ 296144182U, // <u,u,6,6>: Cost 1 vdup2 RHS
+ 27705344U, // <u,u,6,7>: Cost 0 copy RHS
+ 27705344U, // <u,u,6,u>: Cost 0 copy RHS
+ 432496742U, // <u,u,7,0>: Cost 1 vext1 RHS, LHS
+ 1488324016U, // <u,u,7,1>: Cost 2 vext1 <1,u,u,7>, <1,u,u,7>
+ 1494296713U, // <u,u,7,2>: Cost 2 vext1 <2,u,u,7>, <2,u,u,7>
+ 1906901148U, // <u,u,7,3>: Cost 2 vzipr RHS, LHS
+ 432500283U, // <u,u,7,4>: Cost 1 vext1 RHS, RHS
+ 1506242256U, // <u,u,7,5>: Cost 2 vext1 RHS, <5,1,7,3>
+ 120699277U, // <u,u,7,6>: Cost 1 vrev RHS
+ 363253046U, // <u,u,7,7>: Cost 1 vdup3 RHS
+ 432502574U, // <u,u,7,u>: Cost 1 vext1 RHS, LHS
+ 408617688U, // <u,u,u,0>: Cost 1 vext1 LHS, LHS
+ 471086894U, // <u,u,u,1>: Cost 1 vext2 LHS, LHS
+ 537753957U, // <u,u,u,2>: Cost 1 vext3 LHS, LHS
+ 835584U, // <u,u,u,3>: Cost 0 copy LHS
+ 408620342U, // <u,u,u,4>: Cost 1 vext1 LHS, RHS
+ 471087258U, // <u,u,u,5>: Cost 1 vext2 LHS, RHS
+ 537753997U, // <u,u,u,6>: Cost 1 vext3 LHS, RHS
+ 27705344U, // <u,u,u,7>: Cost 0 copy RHS
+ 835584U, // <u,u,u,u>: Cost 0 copy LHS
+ 0
+};
diff --git a/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.cpp
new file mode 100644
index 0000000..80b4b48
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.cpp
@@ -0,0 +1,21 @@
+//===-- ARMRegisterInfo.cpp - ARM Register Information --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the ARM implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMRegisterInfo.h"
+using namespace llvm;
+
+void ARMRegisterInfo::anchor() { }
+
+ARMRegisterInfo::ARMRegisterInfo(const ARMSubtarget &sti)
+ : ARMBaseRegisterInfo(sti) {
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.h b/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.h
new file mode 100644
index 0000000..3e6af3f
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.h
@@ -0,0 +1,31 @@
+//===-- ARMRegisterInfo.h - ARM Register Information Impl -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the ARM implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMREGISTERINFO_H
+#define ARMREGISTERINFO_H
+
+#include "ARMBaseRegisterInfo.h"
+
+namespace llvm {
+
+class ARMSubtarget;
+
+struct ARMRegisterInfo : public ARMBaseRegisterInfo {
+ virtual void anchor();
+public:
+ ARMRegisterInfo(const ARMSubtarget &STI);
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.td b/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.td
new file mode 100644
index 0000000..b290e7f
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.td
@@ -0,0 +1,419 @@
+//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Declarations that describe the ARM register file
+//===----------------------------------------------------------------------===//
+
+// Registers are identified with 4-bit ID numbers.
+class ARMReg<bits<16> Enc, string n, list<Register> subregs = []> : Register<n> {
+ let HWEncoding = Enc;
+ let Namespace = "ARM";
+ let SubRegs = subregs;
+ // All bits of ARM registers with sub-registers are covered by sub-registers.
+ let CoveredBySubRegs = 1;
+}
+
+class ARMFReg<bits<16> Enc, string n> : Register<n> {
+ let HWEncoding = Enc;
+ let Namespace = "ARM";
+}
+
+// Subregister indices.
+let Namespace = "ARM" in {
+def qqsub_0 : SubRegIndex<256>;
+def qqsub_1 : SubRegIndex<256, 256>;
+
+// Note: Code depends on these having consecutive numbers.
+def qsub_0 : SubRegIndex<128>;
+def qsub_1 : SubRegIndex<128, 128>;
+def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>;
+def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>;
+
+def dsub_0 : SubRegIndex<64>;
+def dsub_1 : SubRegIndex<64, 64>;
+def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>;
+def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>;
+def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>;
+def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>;
+def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>;
+def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>;
+
+def ssub_0 : SubRegIndex<32>;
+def ssub_1 : SubRegIndex<32, 32>;
+def ssub_2 : ComposedSubRegIndex<dsub_1, ssub_0>;
+def ssub_3 : ComposedSubRegIndex<dsub_1, ssub_1>;
+
+def gsub_0 : SubRegIndex<32>;
+def gsub_1 : SubRegIndex<32, 32>;
+// Let TableGen synthesize the remaining 12 ssub_* indices.
+// We don't need to name them.
+}
+
+// Integer registers
+def R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>;
+def R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>;
+def R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>;
+def R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>;
+def R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>;
+def R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>;
+def R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>;
+def R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>;
+// These require 32-bit instructions.
+let CostPerUse = 1 in {
+def R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>;
+def R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>;
+def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
+def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
+def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
+def SP : ARMReg<13, "sp">, DwarfRegNum<[13]>;
+def LR : ARMReg<14, "lr">, DwarfRegNum<[14]>;
+def PC : ARMReg<15, "pc">, DwarfRegNum<[15]>;
+}
+
+// Float registers
+def S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">;
+def S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">;
+def S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">;
+def S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">;
+def S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">;
+def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
+def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
+def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
+def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
+def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
+def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
+def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
+def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
+def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
+def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
+def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
+
+// Aliases of the F* registers used to hold 64-bit fp values (doubles)
+let SubRegIndices = [ssub_0, ssub_1] in {
+def D0 : ARMReg< 0, "d0", [S0, S1]>, DwarfRegNum<[256]>;
+def D1 : ARMReg< 1, "d1", [S2, S3]>, DwarfRegNum<[257]>;
+def D2 : ARMReg< 2, "d2", [S4, S5]>, DwarfRegNum<[258]>;
+def D3 : ARMReg< 3, "d3", [S6, S7]>, DwarfRegNum<[259]>;
+def D4 : ARMReg< 4, "d4", [S8, S9]>, DwarfRegNum<[260]>;
+def D5 : ARMReg< 5, "d5", [S10, S11]>, DwarfRegNum<[261]>;
+def D6 : ARMReg< 6, "d6", [S12, S13]>, DwarfRegNum<[262]>;
+def D7 : ARMReg< 7, "d7", [S14, S15]>, DwarfRegNum<[263]>;
+def D8 : ARMReg< 8, "d8", [S16, S17]>, DwarfRegNum<[264]>;
+def D9 : ARMReg< 9, "d9", [S18, S19]>, DwarfRegNum<[265]>;
+def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
+def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
+def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
+def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
+def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
+def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
+}
+
+// VFP3 defines 16 additional double registers
+def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>;
+def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
+def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
+def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
+def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
+def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
+def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>;
+def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
+def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
+def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
+def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
+def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
+def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
+def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
+def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
+def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;
+
+// Advanced SIMD (NEON) defines 16 quad-word aliases
+let SubRegIndices = [dsub_0, dsub_1] in {
+def Q0 : ARMReg< 0, "q0", [D0, D1]>;
+def Q1 : ARMReg< 1, "q1", [D2, D3]>;
+def Q2 : ARMReg< 2, "q2", [D4, D5]>;
+def Q3 : ARMReg< 3, "q3", [D6, D7]>;
+def Q4 : ARMReg< 4, "q4", [D8, D9]>;
+def Q5 : ARMReg< 5, "q5", [D10, D11]>;
+def Q6 : ARMReg< 6, "q6", [D12, D13]>;
+def Q7 : ARMReg< 7, "q7", [D14, D15]>;
+}
+let SubRegIndices = [dsub_0, dsub_1] in {
+def Q8 : ARMReg< 8, "q8", [D16, D17]>;
+def Q9 : ARMReg< 9, "q9", [D18, D19]>;
+def Q10 : ARMReg<10, "q10", [D20, D21]>;
+def Q11 : ARMReg<11, "q11", [D22, D23]>;
+def Q12 : ARMReg<12, "q12", [D24, D25]>;
+def Q13 : ARMReg<13, "q13", [D26, D27]>;
+def Q14 : ARMReg<14, "q14", [D28, D29]>;
+def Q15 : ARMReg<15, "q15", [D30, D31]>;
+}
+
+// Current Program Status Register.
+// We model fpscr with two registers: FPSCR models the control bits and will be
+// reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV
+// models the APSR when it's accessed by some special instructions. In such cases
+// it has the same encoding as PC.
+def CPSR : ARMReg<0, "cpsr">;
+def APSR : ARMReg<1, "apsr">;
+def APSR_NZCV : ARMReg<15, "apsr_nzcv">;
+def SPSR : ARMReg<2, "spsr">;
+def FPSCR : ARMReg<3, "fpscr">;
+def FPSCR_NZCV : ARMReg<3, "fpscr_nzcv"> {
+ let Aliases = [FPSCR];
+}
+def ITSTATE : ARMReg<4, "itstate">;
+
+// Special Registers - only available in privileged mode.
+def FPSID : ARMReg<0, "fpsid">;
+def MVFR2 : ARMReg<5, "mvfr2">;
+def MVFR1 : ARMReg<6, "mvfr1">;
+def MVFR0 : ARMReg<7, "mvfr0">;
+def FPEXC : ARMReg<8, "fpexc">;
+def FPINST : ARMReg<9, "fpinst">;
+def FPINST2 : ARMReg<10, "fpinst2">;
+
+// Register classes.
+//
+// pc == Program Counter
+// lr == Link Register
+// sp == Stack Pointer
+// r12 == ip (scratch)
+// r7 == Frame Pointer (thumb-style backtraces)
+// r9 == May be reserved as Thread Register
+// r11 == Frame Pointer (arm-style backtraces)
+// r10 == Stack Limit
+//
+def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12),
+ SP, LR, PC)> {
+ // Allocate LR as the first CSR since it is always saved anyway.
+ // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
+ // know how to spill them. If we make our prologue/epilogue code smarter at
+ // some point, we can go back to using the above allocation orders for the
+ // Thumb1 instructions that know how to use hi regs.
+ let AltOrders = [(add LR, GPR), (trunc GPR, 8)];
+ let AltOrderSelect = [{
+ return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
+ }];
+}
+
+// GPRs without the PC. Some ARM instructions do not allow the PC in
+// certain operand slots, particularly as the destination. Primarily
+// useful for disassembly.
+def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> {
+ let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
+ let AltOrderSelect = [{
+ return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
+ }];
+}
+
+// GPRs without the PC but with APSR. Some instructions allow accessing the
+// APSR, while actually encoding PC in the register field. This is useful
+// for assembly and disassembly only.
+def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> {
+ let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
+ let AltOrderSelect = [{
+ return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
+ }];
+}
+
+// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the
+// implied SP argument list.
+// FIXME: It would be better to not use this at all and refactor the
+// instructions to not have SP an an explicit argument. That makes
+// frame index resolution a bit trickier, though.
+def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)>;
+
+// restricted GPR register class. Many Thumb2 instructions allow the full
+// register range for operands, but have undefined behaviours when PC
+// or SP (R13 or R15) are used. The ARM ISA refers to these operands
+// via the BadReg() pseudo-code description.
+def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> {
+ let AltOrders = [(add LR, rGPR), (trunc rGPR, 8)];
+ let AltOrderSelect = [{
+ return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
+ }];
+}
+
+// Thumb registers are R0-R7 normally. Some instructions can still use
+// the general GPR register class above (MOV, e.g.)
+def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)>;
+
+// The high registers in thumb mode, R8-R15.
+def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)>;
+
+// For tail calls, we can't use callee-saved registers, as they are restored
+// to the saved value before the tail call, which would clobber a call address.
+// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
+// this class and the preceding one(!) This is what we want.
+def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> {
+ let AltOrders = [(and tcGPR, tGPR)];
+ let AltOrderSelect = [{
+ return MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
+ }];
+}
+
+// Condition code registers.
+def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> {
+ let CopyCost = -1; // Don't allow copying of status registers.
+ let isAllocatable = 0;
+}
+
+// Scalar single precision floating point register class..
+// FIXME: Allocation order changed to s0, s2, s4, ... as a quick hack to
+// avoid partial-write dependencies on D registers (S registers are
+// renamed as portions of D registers).
+def SPR : RegisterClass<"ARM", [f32], 32, (add (decimate
+ (sequence "S%u", 0, 31), 2),
+ (sequence "S%u", 0, 31))>;
+
+// Subset of SPR which can be used as a source of NEON scalars for 16-bit
+// operations
+def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)>;
+
+// Scalar double precision floating point / generic 64-bit vector register
+// class.
+// ARM requires only word alignment for double. It's more performant if it
+// is double-word alignment though.
+def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
+ (sequence "D%u", 0, 31)> {
+ // Allocate non-VFP2 registers D16-D31 first.
+ let AltOrders = [(rotl DPR, 16)];
+ let AltOrderSelect = [{ return 1; }];
+}
+
+// Subset of DPR that are accessible with VFP2 (and so that also have
+// 32-bit SPR subregs).
+def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
+ (trunc DPR, 16)>;
+
+// Subset of DPR which can be used as a source of NEON scalars for 16-bit
+// operations
+def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
+ (trunc DPR, 8)>;
+
+// Generic 128-bit vector register class.
+def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
+ (sequence "Q%u", 0, 15)> {
+ // Allocate non-VFP2 aliases Q8-Q15 first.
+ let AltOrders = [(rotl QPR, 8)];
+ let AltOrderSelect = [{ return 1; }];
+}
+
+// Subset of QPR that have 32-bit SPR subregs.
+def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ 128, (trunc QPR, 8)>;
+
+// Subset of QPR that have DPR_8 and SPR_8 subregs.
+def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ 128, (trunc QPR, 4)>;
+
+// Pseudo-registers representing odd-even pairs of D registers. The even-odd
+// pairs are already represented by the Q registers.
+// These are needed by NEON instructions requiring two consecutive D registers.
+// There is no D31_D0 register as that is always an UNPREDICTABLE encoding.
+def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1],
+ [(decimate (shl DPR, 1), 2),
+ (decimate (shl DPR, 2), 2)]>;
+
+// Register class representing a pair of consecutive D registers.
+// Use the Q registers for the even-odd pairs.
+def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ 128, (interleave QPR, TuplesOE2D)> {
+ // Allocate starting at non-VFP2 registers D16-D31 first.
+ // Prefer even-odd pairs as they are easier to copy.
+ let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16))];
+ let AltOrderSelect = [{ return 1; }];
+}
+
+// Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP.
+// These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs.
+def Tuples2R : RegisterTuples<[gsub_0, gsub_1],
+ [(add R0, R2, R4, R6, R8, R10, R12),
+ (add R1, R3, R5, R7, R9, R11, SP)]>;
+
+// Register class representing a pair of even-odd GPRs.
+def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2R)> {
+ let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
+}
+
+// Pseudo-registers representing 3 consecutive D registers.
+def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2],
+ [(shl DPR, 0),
+ (shl DPR, 1),
+ (shl DPR, 2)]>;
+
+// 3 consecutive D registers.
+def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> {
+ let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
+}
+
+// Pseudo 256-bit registers to represent pairs of Q registers. These should
+// never be present in the emitted code.
+// These are used for NEON load / store instructions, e.g., vld4, vst3.
+def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>;
+
+// Pseudo 256-bit vector register class to model pairs of Q registers
+// (4 consecutive D registers).
+def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> {
+ // Allocate non-VFP2 aliases first.
+ let AltOrders = [(rotl QQPR, 8)];
+ let AltOrderSelect = [{ return 1; }];
+}
+
+// Tuples of 4 D regs that isn't also a pair of Q regs.
+def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3],
+ [(decimate (shl DPR, 1), 2),
+ (decimate (shl DPR, 2), 2),
+ (decimate (shl DPR, 3), 2),
+ (decimate (shl DPR, 4), 2)]>;
+
+// 4 consecutive D registers.
+def DQuad : RegisterClass<"ARM", [v4i64], 256,
+ (interleave Tuples2Q, TuplesOE4D)>;
+
+// Pseudo 512-bit registers to represent four consecutive Q registers.
+def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1],
+ [(shl QQPR, 0), (shl QQPR, 2)]>;
+
+// Pseudo 512-bit vector register class to model 4 consecutive Q registers
+// (8 consecutive D registers).
+def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> {
+ // Allocate non-VFP2 aliases first.
+ let AltOrders = [(rotl QQQQPR, 8)];
+ let AltOrderSelect = [{ return 1; }];
+}
+
+
+// Pseudo-registers representing 2-spaced consecutive D registers.
+def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2],
+ [(shl DPR, 0),
+ (shl DPR, 2)]>;
+
+// Spaced pairs of D registers.
+def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>;
+
+def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4],
+ [(shl DPR, 0),
+ (shl DPR, 2),
+ (shl DPR, 4)]>;
+
+// Spaced triples of D registers.
+def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> {
+ let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
+}
+
+def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6],
+ [(shl DPR, 0),
+ (shl DPR, 2),
+ (shl DPR, 4),
+ (shl DPR, 6)]>;
+
+// Spaced quads of D registers.
+def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>;
diff --git a/contrib/llvm/lib/Target/ARM/ARMRelocations.h b/contrib/llvm/lib/Target/ARM/ARMRelocations.h
new file mode 100644
index 0000000..21877fd
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMRelocations.h
@@ -0,0 +1,62 @@
+//===-- ARMRelocations.h - ARM Code Relocations -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ARM target-specific relocation types.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMRELOCATIONS_H
+#define ARMRELOCATIONS_H
+
+#include "llvm/CodeGen/MachineRelocation.h"
+
+namespace llvm {
+ namespace ARM {
+ enum RelocationType {
+ // reloc_arm_absolute - Absolute relocation, just add the relocated value
+ // to the value already in memory.
+ reloc_arm_absolute,
+
+ // reloc_arm_relative - PC relative relocation, add the relocated value to
+ // the value already in memory, after we adjust it for where the PC is.
+ reloc_arm_relative,
+
+ // reloc_arm_cp_entry - PC relative relocation for constpool_entry's whose
+ // addresses are kept locally in a map.
+ reloc_arm_cp_entry,
+
+ // reloc_arm_vfp_cp_entry - Same as reloc_arm_cp_entry except the offset
+ // should be divided by 4.
+ reloc_arm_vfp_cp_entry,
+
+ // reloc_arm_machine_cp_entry - Relocation of a ARM machine constantpool
+ // entry.
+ reloc_arm_machine_cp_entry,
+
+ // reloc_arm_jt_base - PC relative relocation for jump tables whose
+ // addresses are kept locally in a map.
+ reloc_arm_jt_base,
+
+ // reloc_arm_pic_jt - PIC jump table entry relocation: dest bb - jt base.
+ reloc_arm_pic_jt,
+
+ // reloc_arm_branch - Branch address relocation.
+ reloc_arm_branch,
+
+ // reloc_arm_movt - MOVT immediate relocation.
+ reloc_arm_movt,
+
+ // reloc_arm_movw - MOVW immediate relocation.
+ reloc_arm_movw
+ };
+ }
+}
+
+#endif
+
diff --git a/contrib/llvm/lib/Target/ARM/ARMSchedule.td b/contrib/llvm/lib/Target/ARM/ARMSchedule.td
new file mode 100644
index 0000000..528c4ec
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMSchedule.td
@@ -0,0 +1,354 @@
+//===-- ARMSchedule.td - ARM Scheduling Definitions --------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// Instruction scheduling annotations for out-of-order CPUs.
+// These annotations are independent of the itinerary class defined below.
+// Here we define the subtarget independent read/write per-operand resources.
+// The subtarget schedule definitions will then map these to the subtarget's
+// resource usages.
+// For example:
+// The instruction cycle timings table might contain an entry for an operation
+// like the following:
+// Rd <- ADD Rn, Rm, <shift> Rs
+// Uops | Latency from register | Uops - resource requirements - latency
+// 2 | Rn: 1 Rm: 4 Rs: 4 | uop T0, Rm, Rs - P01 - 3
+// | | uopc Rd, Rn, T0 - P01 - 1
+// This is telling us that the result will be available in destination register
+// Rd after a minimum of three cycles after the result in Rm and Rs is available
+// and one cycle after the result in Rn is available. The micro-ops can execute
+// on resource P01.
+// To model this, we need to express that we need to dispatch two micro-ops,
+// that the resource P01 is needed and that the latency to Rn is different than
+// the latency to Rm and Rs. The scheduler can decrease Rn's producer latency by
+// two.
+// We will do this by assigning (abstract) resources to register defs/uses.
+// ARMSchedule.td:
+// def WriteALUsr : SchedWrite;
+// def ReadAdvanceALUsr : ScheRead;
+//
+// ARMInstrInfo.td:
+// def ADDrs : I<>, Sched<[WriteALUsr, ReadAdvanceALUsr, ReadDefault,
+// ReadDefault]> { ...}
+// ReadAdvance read resources allow us to define "pipeline by-passes" or
+// shorter latencies to certain registers as needed in the example above.
+// The "ReadDefault" can be omitted.
+// Next, the subtarget td file assigns resources to the abstract resources
+// defined here.
+// ARMScheduleSubtarget.td:
+// // Resources.
+// def P01 : ProcResource<3>; // ALU unit (3 of it).
+// ...
+// // Resource usages.
+// def : WriteRes<WriteALUsr, [P01, P01]> {
+// Latency = 4; // Latency of 4.
+// NumMicroOps = 2; // Dispatch 2 micro-ops.
+// // The two instances of resource P01 are occupied for one cycle. It is one
+// // cycle because these resources happen to be pipelined.
+// ResourceCycles = [1, 1];
+// }
+// def : ReadAdvance<ReadAdvanceALUsr, 3>;
+
+// Basic ALU operation.
+def WriteALU : SchedWrite;
+def ReadALU : SchedRead;
+
+// Basic ALU with shifts.
+def WriteALUsi : SchedWrite; // Shift by immediate.
+def WriteALUsr : SchedWrite; // Shift by register.
+def WriteALUSsr : SchedWrite; // Shift by register (flag setting).
+def ReadALUsr : SchedRead; // Some operands are read later.
+
+// Compares.
+def WriteCMP : SchedWrite;
+def WriteCMPsi : SchedWrite;
+def WriteCMPsr : SchedWrite;
+
+// Division.
+def WriteDiv : SchedWrite;
+
+// Loads.
+def WriteLd : SchedWrite;
+def WritePreLd : SchedWrite;
+
+// Branches.
+def WriteBr : SchedWrite;
+def WriteBrL : SchedWrite;
+def WriteBrTbl : SchedWrite;
+
+// Fixpoint conversions.
+def WriteCvtFP : SchedWrite;
+
+// Noop.
+def WriteNoop : SchedWrite;
+
+// Define TII for use in SchedVariant Predicates.
+def : PredicateProlog<[{
+ const ARMBaseInstrInfo *TII =
+ static_cast<const ARMBaseInstrInfo*>(SchedModel->getInstrInfo());
+ (void)TII;
+}]>;
+
+def IsPredicatedPred : SchedPredicate<[{TII->isPredicated(MI)}]>;
+
+//===----------------------------------------------------------------------===//
+// Instruction Itinerary classes used for ARM
+//
+def IIC_iALUx : InstrItinClass;
+def IIC_iALUi : InstrItinClass;
+def IIC_iALUr : InstrItinClass;
+def IIC_iALUsi : InstrItinClass;
+def IIC_iALUsir : InstrItinClass;
+def IIC_iALUsr : InstrItinClass;
+def IIC_iBITi : InstrItinClass;
+def IIC_iBITr : InstrItinClass;
+def IIC_iBITsi : InstrItinClass;
+def IIC_iBITsr : InstrItinClass;
+def IIC_iUNAr : InstrItinClass;
+def IIC_iUNAsi : InstrItinClass;
+def IIC_iEXTr : InstrItinClass;
+def IIC_iEXTAr : InstrItinClass;
+def IIC_iEXTAsr : InstrItinClass;
+def IIC_iCMPi : InstrItinClass;
+def IIC_iCMPr : InstrItinClass;
+def IIC_iCMPsi : InstrItinClass;
+def IIC_iCMPsr : InstrItinClass;
+def IIC_iTSTi : InstrItinClass;
+def IIC_iTSTr : InstrItinClass;
+def IIC_iTSTsi : InstrItinClass;
+def IIC_iTSTsr : InstrItinClass;
+def IIC_iMOVi : InstrItinClass;
+def IIC_iMOVr : InstrItinClass;
+def IIC_iMOVsi : InstrItinClass;
+def IIC_iMOVsr : InstrItinClass;
+def IIC_iMOVix2 : InstrItinClass;
+def IIC_iMOVix2addpc : InstrItinClass;
+def IIC_iMOVix2ld : InstrItinClass;
+def IIC_iMVNi : InstrItinClass;
+def IIC_iMVNr : InstrItinClass;
+def IIC_iMVNsi : InstrItinClass;
+def IIC_iMVNsr : InstrItinClass;
+def IIC_iCMOVi : InstrItinClass;
+def IIC_iCMOVr : InstrItinClass;
+def IIC_iCMOVsi : InstrItinClass;
+def IIC_iCMOVsr : InstrItinClass;
+def IIC_iCMOVix2 : InstrItinClass;
+def IIC_iMUL16 : InstrItinClass;
+def IIC_iMAC16 : InstrItinClass;
+def IIC_iMUL32 : InstrItinClass;
+def IIC_iMAC32 : InstrItinClass;
+def IIC_iMUL64 : InstrItinClass;
+def IIC_iMAC64 : InstrItinClass;
+def IIC_iDIV : InstrItinClass;
+def IIC_iLoad_i : InstrItinClass;
+def IIC_iLoad_r : InstrItinClass;
+def IIC_iLoad_si : InstrItinClass;
+def IIC_iLoad_iu : InstrItinClass;
+def IIC_iLoad_ru : InstrItinClass;
+def IIC_iLoad_siu : InstrItinClass;
+def IIC_iLoad_bh_i : InstrItinClass;
+def IIC_iLoad_bh_r : InstrItinClass;
+def IIC_iLoad_bh_si : InstrItinClass;
+def IIC_iLoad_bh_iu : InstrItinClass;
+def IIC_iLoad_bh_ru : InstrItinClass;
+def IIC_iLoad_bh_siu : InstrItinClass;
+def IIC_iLoad_d_i : InstrItinClass;
+def IIC_iLoad_d_r : InstrItinClass;
+def IIC_iLoad_d_ru : InstrItinClass;
+def IIC_iLoad_m : InstrItinClass;
+def IIC_iLoad_mu : InstrItinClass;
+def IIC_iLoad_mBr : InstrItinClass;
+def IIC_iPop : InstrItinClass;
+def IIC_iPop_Br : InstrItinClass;
+def IIC_iLoadiALU : InstrItinClass;
+def IIC_iStore_i : InstrItinClass;
+def IIC_iStore_r : InstrItinClass;
+def IIC_iStore_si : InstrItinClass;
+def IIC_iStore_iu : InstrItinClass;
+def IIC_iStore_ru : InstrItinClass;
+def IIC_iStore_siu : InstrItinClass;
+def IIC_iStore_bh_i : InstrItinClass;
+def IIC_iStore_bh_r : InstrItinClass;
+def IIC_iStore_bh_si : InstrItinClass;
+def IIC_iStore_bh_iu : InstrItinClass;
+def IIC_iStore_bh_ru : InstrItinClass;
+def IIC_iStore_bh_siu : InstrItinClass;
+def IIC_iStore_d_i : InstrItinClass;
+def IIC_iStore_d_r : InstrItinClass;
+def IIC_iStore_d_ru : InstrItinClass;
+def IIC_iStore_m : InstrItinClass;
+def IIC_iStore_mu : InstrItinClass;
+def IIC_Preload : InstrItinClass;
+def IIC_Br : InstrItinClass;
+def IIC_fpSTAT : InstrItinClass;
+def IIC_fpUNA32 : InstrItinClass;
+def IIC_fpUNA64 : InstrItinClass;
+def IIC_fpCMP32 : InstrItinClass;
+def IIC_fpCMP64 : InstrItinClass;
+def IIC_fpCVTSD : InstrItinClass;
+def IIC_fpCVTDS : InstrItinClass;
+def IIC_fpCVTSH : InstrItinClass;
+def IIC_fpCVTHS : InstrItinClass;
+def IIC_fpCVTIS : InstrItinClass;
+def IIC_fpCVTID : InstrItinClass;
+def IIC_fpCVTSI : InstrItinClass;
+def IIC_fpCVTDI : InstrItinClass;
+def IIC_fpMOVIS : InstrItinClass;
+def IIC_fpMOVID : InstrItinClass;
+def IIC_fpMOVSI : InstrItinClass;
+def IIC_fpMOVDI : InstrItinClass;
+def IIC_fpALU32 : InstrItinClass;
+def IIC_fpALU64 : InstrItinClass;
+def IIC_fpMUL32 : InstrItinClass;
+def IIC_fpMUL64 : InstrItinClass;
+def IIC_fpMAC32 : InstrItinClass;
+def IIC_fpMAC64 : InstrItinClass;
+def IIC_fpFMAC32 : InstrItinClass;
+def IIC_fpFMAC64 : InstrItinClass;
+def IIC_fpDIV32 : InstrItinClass;
+def IIC_fpDIV64 : InstrItinClass;
+def IIC_fpSQRT32 : InstrItinClass;
+def IIC_fpSQRT64 : InstrItinClass;
+def IIC_fpLoad32 : InstrItinClass;
+def IIC_fpLoad64 : InstrItinClass;
+def IIC_fpLoad_m : InstrItinClass;
+def IIC_fpLoad_mu : InstrItinClass;
+def IIC_fpStore32 : InstrItinClass;
+def IIC_fpStore64 : InstrItinClass;
+def IIC_fpStore_m : InstrItinClass;
+def IIC_fpStore_mu : InstrItinClass;
+def IIC_VLD1 : InstrItinClass;
+def IIC_VLD1x2 : InstrItinClass;
+def IIC_VLD1x3 : InstrItinClass;
+def IIC_VLD1x4 : InstrItinClass;
+def IIC_VLD1u : InstrItinClass;
+def IIC_VLD1x2u : InstrItinClass;
+def IIC_VLD1x3u : InstrItinClass;
+def IIC_VLD1x4u : InstrItinClass;
+def IIC_VLD1ln : InstrItinClass;
+def IIC_VLD1lnu : InstrItinClass;
+def IIC_VLD1dup : InstrItinClass;
+def IIC_VLD1dupu : InstrItinClass;
+def IIC_VLD2 : InstrItinClass;
+def IIC_VLD2x2 : InstrItinClass;
+def IIC_VLD2u : InstrItinClass;
+def IIC_VLD2x2u : InstrItinClass;
+def IIC_VLD2ln : InstrItinClass;
+def IIC_VLD2lnu : InstrItinClass;
+def IIC_VLD2dup : InstrItinClass;
+def IIC_VLD2dupu : InstrItinClass;
+def IIC_VLD3 : InstrItinClass;
+def IIC_VLD3ln : InstrItinClass;
+def IIC_VLD3u : InstrItinClass;
+def IIC_VLD3lnu : InstrItinClass;
+def IIC_VLD3dup : InstrItinClass;
+def IIC_VLD3dupu : InstrItinClass;
+def IIC_VLD4 : InstrItinClass;
+def IIC_VLD4ln : InstrItinClass;
+def IIC_VLD4u : InstrItinClass;
+def IIC_VLD4lnu : InstrItinClass;
+def IIC_VLD4dup : InstrItinClass;
+def IIC_VLD4dupu : InstrItinClass;
+def IIC_VST1 : InstrItinClass;
+def IIC_VST1x2 : InstrItinClass;
+def IIC_VST1x3 : InstrItinClass;
+def IIC_VST1x4 : InstrItinClass;
+def IIC_VST1u : InstrItinClass;
+def IIC_VST1x2u : InstrItinClass;
+def IIC_VST1x3u : InstrItinClass;
+def IIC_VST1x4u : InstrItinClass;
+def IIC_VST1ln : InstrItinClass;
+def IIC_VST1lnu : InstrItinClass;
+def IIC_VST2 : InstrItinClass;
+def IIC_VST2x2 : InstrItinClass;
+def IIC_VST2u : InstrItinClass;
+def IIC_VST2x2u : InstrItinClass;
+def IIC_VST2ln : InstrItinClass;
+def IIC_VST2lnu : InstrItinClass;
+def IIC_VST3 : InstrItinClass;
+def IIC_VST3u : InstrItinClass;
+def IIC_VST3ln : InstrItinClass;
+def IIC_VST3lnu : InstrItinClass;
+def IIC_VST4 : InstrItinClass;
+def IIC_VST4u : InstrItinClass;
+def IIC_VST4ln : InstrItinClass;
+def IIC_VST4lnu : InstrItinClass;
+def IIC_VUNAD : InstrItinClass;
+def IIC_VUNAQ : InstrItinClass;
+def IIC_VBIND : InstrItinClass;
+def IIC_VBINQ : InstrItinClass;
+def IIC_VPBIND : InstrItinClass;
+def IIC_VFMULD : InstrItinClass;
+def IIC_VFMULQ : InstrItinClass;
+def IIC_VMOV : InstrItinClass;
+def IIC_VMOVImm : InstrItinClass;
+def IIC_VMOVD : InstrItinClass;
+def IIC_VMOVQ : InstrItinClass;
+def IIC_VMOVIS : InstrItinClass;
+def IIC_VMOVID : InstrItinClass;
+def IIC_VMOVISL : InstrItinClass;
+def IIC_VMOVSI : InstrItinClass;
+def IIC_VMOVDI : InstrItinClass;
+def IIC_VMOVN : InstrItinClass;
+def IIC_VPERMD : InstrItinClass;
+def IIC_VPERMQ : InstrItinClass;
+def IIC_VPERMQ3 : InstrItinClass;
+def IIC_VMACD : InstrItinClass;
+def IIC_VMACQ : InstrItinClass;
+def IIC_VFMACD : InstrItinClass;
+def IIC_VFMACQ : InstrItinClass;
+def IIC_VRECSD : InstrItinClass;
+def IIC_VRECSQ : InstrItinClass;
+def IIC_VCNTiD : InstrItinClass;
+def IIC_VCNTiQ : InstrItinClass;
+def IIC_VUNAiD : InstrItinClass;
+def IIC_VUNAiQ : InstrItinClass;
+def IIC_VQUNAiD : InstrItinClass;
+def IIC_VQUNAiQ : InstrItinClass;
+def IIC_VBINiD : InstrItinClass;
+def IIC_VBINiQ : InstrItinClass;
+def IIC_VSUBiD : InstrItinClass;
+def IIC_VSUBiQ : InstrItinClass;
+def IIC_VBINi4D : InstrItinClass;
+def IIC_VBINi4Q : InstrItinClass;
+def IIC_VSUBi4D : InstrItinClass;
+def IIC_VSUBi4Q : InstrItinClass;
+def IIC_VABAD : InstrItinClass;
+def IIC_VABAQ : InstrItinClass;
+def IIC_VSHLiD : InstrItinClass;
+def IIC_VSHLiQ : InstrItinClass;
+def IIC_VSHLi4D : InstrItinClass;
+def IIC_VSHLi4Q : InstrItinClass;
+def IIC_VPALiD : InstrItinClass;
+def IIC_VPALiQ : InstrItinClass;
+def IIC_VMULi16D : InstrItinClass;
+def IIC_VMULi32D : InstrItinClass;
+def IIC_VMULi16Q : InstrItinClass;
+def IIC_VMULi32Q : InstrItinClass;
+def IIC_VMACi16D : InstrItinClass;
+def IIC_VMACi32D : InstrItinClass;
+def IIC_VMACi16Q : InstrItinClass;
+def IIC_VMACi32Q : InstrItinClass;
+def IIC_VEXTD : InstrItinClass;
+def IIC_VEXTQ : InstrItinClass;
+def IIC_VTB1 : InstrItinClass;
+def IIC_VTB2 : InstrItinClass;
+def IIC_VTB3 : InstrItinClass;
+def IIC_VTB4 : InstrItinClass;
+def IIC_VTBX1 : InstrItinClass;
+def IIC_VTBX2 : InstrItinClass;
+def IIC_VTBX3 : InstrItinClass;
+def IIC_VTBX4 : InstrItinClass;
+
+//===----------------------------------------------------------------------===//
+// Processor instruction itineraries.
+
+include "ARMScheduleV6.td"
+include "ARMScheduleA8.td"
+include "ARMScheduleA9.td"
+include "ARMScheduleSwift.td"
diff --git a/contrib/llvm/lib/Target/ARM/ARMScheduleA8.td b/contrib/llvm/lib/Target/ARM/ARMScheduleA8.td
new file mode 100644
index 0000000..2c63825
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMScheduleA8.td
@@ -0,0 +1,1075 @@
+//=- ARMScheduleA8.td - ARM Cortex-A8 Scheduling Definitions -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the ARM Cortex A8 processors.
+//
+//===----------------------------------------------------------------------===//
+
+//
+// Scheduling information derived from "Cortex-A8 Technical Reference Manual".
+// Functional Units.
+def A8_Pipe0 : FuncUnit; // pipeline 0
+def A8_Pipe1 : FuncUnit; // pipeline 1
+def A8_LSPipe : FuncUnit; // Load / store pipeline
+def A8_NPipe : FuncUnit; // NEON ALU/MUL pipe
+def A8_NLSPipe : FuncUnit; // NEON LS pipe
+//
+// Dual issue pipeline represented by A8_Pipe0 | A8_Pipe1
+//
+def CortexA8Itineraries : ProcessorItineraries<
+ [A8_Pipe0, A8_Pipe1, A8_LSPipe, A8_NPipe, A8_NLSPipe],
+ [], [
+ // Two fully-pipelined integer ALU pipelines
+ //
+ // No operand cycles
+ InstrItinData<IIC_iALUx , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>]>,
+ //
+ // Binary Instructions that produce a result
+ InstrItinData<IIC_iALUi ,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2]>,
+ InstrItinData<IIC_iALUr ,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2, 2]>,
+ InstrItinData<IIC_iALUsi,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2, 1]>,
+ InstrItinData<IIC_iALUsir,[InstrStage<1,[A8_Pipe0, A8_Pipe1]>], [2, 1, 2]>,
+ InstrItinData<IIC_iALUsr,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2, 1, 1]>,
+ //
+ // Bitwise Instructions that produce a result
+ InstrItinData<IIC_iBITi ,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2]>,
+ InstrItinData<IIC_iBITr ,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2, 2]>,
+ InstrItinData<IIC_iBITsi,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2, 1]>,
+ InstrItinData<IIC_iBITsr,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2, 1, 1]>,
+ //
+ // Unary Instructions that produce a result
+ InstrItinData<IIC_iUNAr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2]>,
+ InstrItinData<IIC_iUNAsi, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1]>,
+ //
+ // Zero and sign extension instructions
+ InstrItinData<IIC_iEXTr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1, 1]>,
+ InstrItinData<IIC_iEXTAr, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2, 1]>,
+ InstrItinData<IIC_iEXTAsr,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>],[2, 2, 1, 1]>,
+ //
+ // Compare instructions
+ InstrItinData<IIC_iCMPi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2]>,
+ InstrItinData<IIC_iCMPr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2]>,
+ InstrItinData<IIC_iCMPsi, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1]>,
+ InstrItinData<IIC_iCMPsr, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1, 1]>,
+ //
+ // Test instructions
+ InstrItinData<IIC_iTSTi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2]>,
+ InstrItinData<IIC_iTSTr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2]>,
+ InstrItinData<IIC_iTSTsi, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1]>,
+ InstrItinData<IIC_iTSTsr, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1, 1]>,
+ //
+ // Move instructions, unconditional
+ InstrItinData<IIC_iMOVi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1]>,
+ InstrItinData<IIC_iMOVr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1, 1]>,
+ InstrItinData<IIC_iMOVsi, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1, 1]>,
+ InstrItinData<IIC_iMOVsr, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1, 1, 1]>,
+ InstrItinData<IIC_iMOVix2,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2]>,
+ InstrItinData<IIC_iMOVix2addpc,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [3]>,
+ InstrItinData<IIC_iMOVix2ld,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<1, [A8_LSPipe]>], [5]>,
+ //
+ // Move instructions, conditional
+ InstrItinData<IIC_iCMOVi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2]>,
+ InstrItinData<IIC_iCMOVr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1]>,
+ InstrItinData<IIC_iCMOVsi, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1]>,
+ InstrItinData<IIC_iCMOVsr, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 1, 1]>,
+ InstrItinData<IIC_iCMOVix2,[InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [3, 1]>,
+ //
+ // MVN instructions
+ InstrItinData<IIC_iMVNi , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1]>,
+ InstrItinData<IIC_iMVNr , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1, 1]>,
+ InstrItinData<IIC_iMVNsi, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1, 1]>,
+ InstrItinData<IIC_iMVNsr, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [1, 1, 1]>,
+
+ // Integer multiply pipeline
+ // Result written in E5, but that is relative to the last cycle of multicycle,
+ // so we use 6 for those cases
+ //
+ InstrItinData<IIC_iMUL16 , [InstrStage<1, [A8_Pipe0]>], [5, 1, 1]>,
+ InstrItinData<IIC_iMAC16 , [InstrStage<2, [A8_Pipe0]>], [6, 1, 1, 4]>,
+ InstrItinData<IIC_iMUL32 , [InstrStage<2, [A8_Pipe0]>], [6, 1, 1]>,
+ InstrItinData<IIC_iMAC32 , [InstrStage<2, [A8_Pipe0]>], [6, 1, 1, 4]>,
+ InstrItinData<IIC_iMUL64 , [InstrStage<3, [A8_Pipe0]>], [6, 6, 1, 1]>,
+ InstrItinData<IIC_iMAC64 , [InstrStage<3, [A8_Pipe0]>], [6, 6, 1, 1]>,
+
+ // Integer load pipeline
+ //
+ // Immediate offset
+ InstrItinData<IIC_iLoad_i , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1]>,
+ InstrItinData<IIC_iLoad_bh_i, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1]>,
+ InstrItinData<IIC_iLoad_d_i, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1]>,
+ //
+ // Register offset
+ InstrItinData<IIC_iLoad_r , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1, 1]>,
+ InstrItinData<IIC_iLoad_bh_r, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1, 1]>,
+ InstrItinData<IIC_iLoad_d_r , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1, 1]>,
+ //
+ // Scaled register offset, issues over 2 cycles
+ // FIXME: lsl by 2 takes 1 cycle.
+ InstrItinData<IIC_iLoad_si , [InstrStage<2, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [4, 1, 1]>,
+ InstrItinData<IIC_iLoad_bh_si,[InstrStage<2, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [4, 1, 1]>,
+ //
+ // Immediate offset with update
+ InstrItinData<IIC_iLoad_iu , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 2, 1]>,
+ InstrItinData<IIC_iLoad_bh_iu,[InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 2, 1]>,
+ //
+ // Register offset with update
+ InstrItinData<IIC_iLoad_ru , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 2, 1, 1]>,
+ InstrItinData<IIC_iLoad_bh_ru,[InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 2, 1, 1]>,
+ InstrItinData<IIC_iLoad_d_ru, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 2, 1, 1]>,
+ //
+ // Scaled register offset with update, issues over 2 cycles
+ InstrItinData<IIC_iLoad_siu , [InstrStage<2, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_LSPipe]>], [4, 3, 1, 1]>,
+ InstrItinData<IIC_iLoad_bh_siu,[InstrStage<2, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_LSPipe]>], [4, 3, 1, 1]>,
+ //
+ // Load multiple, def is the 5th operand. Pipeline 0 only.
+ // FIXME: A8_LSPipe cycle time is dynamic, this assumes 3 to 4 registers.
+ InstrItinData<IIC_iLoad_m , [InstrStage<2, [A8_Pipe0], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [1, 1, 1, 1, 3], [], -1>, // dynamic uops
+ //
+ // Load multiple + update, defs are the 1st and 5th operands.
+ InstrItinData<IIC_iLoad_mu , [InstrStage<3, [A8_Pipe0], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 1, 1, 1, 3], [], -1>, // dynamic uops
+ //
+ // Load multiple plus branch
+ InstrItinData<IIC_iLoad_mBr, [InstrStage<3, [A8_Pipe0], 0>,
+ InstrStage<3, [A8_LSPipe]>,
+ InstrStage<1, [A8_Pipe0, A8_Pipe1]>],
+ [1, 2, 1, 1, 3], [], -1>, // dynamic uops
+ //
+ // Pop, def is the 3rd operand.
+ InstrItinData<IIC_iPop , [InstrStage<3, [A8_Pipe0], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [1, 1, 3], [], -1>, // dynamic uops
+ //
+ // Push, def is the 3th operand.
+ InstrItinData<IIC_iPop_Br, [InstrStage<3, [A8_Pipe0], 0>,
+ InstrStage<3, [A8_LSPipe]>,
+ InstrStage<1, [A8_Pipe0, A8_Pipe1]>],
+ [1, 1, 3], [], -1>, // dynamic uops
+ //
+ // iLoadi + iALUr for t2LDRpci_pic.
+ InstrItinData<IIC_iLoadiALU, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>,
+ InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [4, 1]>,
+
+
+ // Integer store pipeline
+ //
+ // Immediate offset
+ InstrItinData<IIC_iStore_i , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1]>,
+ InstrItinData<IIC_iStore_bh_i,[InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1]>,
+ InstrItinData<IIC_iStore_d_i, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1]>,
+ //
+ // Register offset
+ InstrItinData<IIC_iStore_r , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_r,[InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1, 1]>,
+ InstrItinData<IIC_iStore_d_r, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [3, 1, 1]>,
+ //
+ // Scaled register offset, issues over 2 cycles
+ InstrItinData<IIC_iStore_si , [InstrStage<2, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_LSPipe]>], [3, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_si,[InstrStage<2, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_LSPipe]>], [3, 1, 1]>,
+ //
+ // Immediate offset with update
+ InstrItinData<IIC_iStore_iu , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [2, 3, 1]>,
+ InstrItinData<IIC_iStore_bh_iu,[InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [2, 3, 1]>,
+ //
+ // Register offset with update
+ InstrItinData<IIC_iStore_ru , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [2, 3, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_ru,[InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [2, 3, 1, 1]>,
+ InstrItinData<IIC_iStore_d_ru, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_LSPipe]>], [2, 3, 1, 1]>,
+ //
+ // Scaled register offset with update, issues over 2 cycles
+ InstrItinData<IIC_iStore_siu, [InstrStage<2, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_LSPipe]>], [3, 3, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_siu,[InstrStage<2, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_LSPipe]>], [3, 3, 1, 1]>,
+ //
+ // Store multiple. Pipeline 0 only.
+ // FIXME: A8_LSPipe cycle time is dynamic, this assumes 3 to 4 registers.
+ InstrItinData<IIC_iStore_m , [InstrStage<2, [A8_Pipe0], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [], [], -1>, // dynamic uops
+ //
+ // Store multiple + update
+ InstrItinData<IIC_iStore_mu, [InstrStage<2, [A8_Pipe0], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2], [], -1>, // dynamic uops
+ //
+ // Preload
+ InstrItinData<IIC_Preload, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>], [2, 2]>,
+
+ // Branch
+ //
+ // no delay slots, so the latency of a branch is unimportant
+ InstrItinData<IIC_Br , [InstrStage<1, [A8_Pipe0, A8_Pipe1]>]>,
+
+ // VFP
+ // Issue through integer pipeline, and execute in NEON unit. We assume
+ // RunFast mode so that NFP pipeline is used for single-precision when
+ // possible.
+ //
+ // FP Special Register to Integer Register File Move
+ InstrItinData<IIC_fpSTAT , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>], [20]>,
+ //
+ // Single-precision FP Unary
+ InstrItinData<IIC_fpUNA32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [7, 1]>,
+ //
+ // Double-precision FP Unary
+ InstrItinData<IIC_fpUNA64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NPipe], 0>,
+ InstrStage<4, [A8_NLSPipe]>], [4, 1]>,
+ //
+ // Single-precision FP Compare
+ InstrItinData<IIC_fpCMP32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [1, 1]>,
+ //
+ // Double-precision FP Compare
+ InstrItinData<IIC_fpCMP64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NPipe], 0>,
+ InstrStage<4, [A8_NLSPipe]>], [4, 1]>,
+ //
+ // Single to Double FP Convert
+ InstrItinData<IIC_fpCVTSD , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<7, [A8_NPipe], 0>,
+ InstrStage<7, [A8_NLSPipe]>], [7, 1]>,
+ //
+ // Double to Single FP Convert
+ InstrItinData<IIC_fpCVTDS , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<5, [A8_NPipe], 0>,
+ InstrStage<5, [A8_NLSPipe]>], [5, 1]>,
+ //
+ // Single-Precision FP to Integer Convert
+ InstrItinData<IIC_fpCVTSI , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [7, 1]>,
+ //
+ // Double-Precision FP to Integer Convert
+ InstrItinData<IIC_fpCVTDI , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<8, [A8_NPipe], 0>,
+ InstrStage<8, [A8_NLSPipe]>], [8, 1]>,
+ //
+ // Integer to Single-Precision FP Convert
+ InstrItinData<IIC_fpCVTIS , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [7, 1]>,
+ //
+ // Integer to Double-Precision FP Convert
+ InstrItinData<IIC_fpCVTID , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<8, [A8_NPipe], 0>,
+ InstrStage<8, [A8_NLSPipe]>], [8, 1]>,
+ //
+ // Single-precision FP ALU
+ InstrItinData<IIC_fpALU32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [7, 1, 1]>,
+ //
+ // Double-precision FP ALU
+ InstrItinData<IIC_fpALU64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<9, [A8_NPipe], 0>,
+ InstrStage<9, [A8_NLSPipe]>], [9, 1, 1]>,
+ //
+ // Single-precision FP Multiply
+ InstrItinData<IIC_fpMUL32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [7, 1, 1]>,
+ //
+ // Double-precision FP Multiply
+ InstrItinData<IIC_fpMUL64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<11, [A8_NPipe], 0>,
+ InstrStage<11, [A8_NLSPipe]>], [11, 1, 1]>,
+ //
+ // Single-precision FP MAC
+ InstrItinData<IIC_fpMAC32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [7, 2, 1, 1]>,
+ //
+ // Double-precision FP MAC
+ InstrItinData<IIC_fpMAC64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<19, [A8_NPipe], 0>,
+ InstrStage<19, [A8_NLSPipe]>], [19, 2, 1, 1]>,
+ //
+ // Single-precision Fused FP MAC
+ InstrItinData<IIC_fpFMAC32, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [7, 2, 1, 1]>,
+ //
+ // Double-precision Fused FP MAC
+ InstrItinData<IIC_fpFMAC64, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<19, [A8_NPipe], 0>,
+ InstrStage<19, [A8_NLSPipe]>], [19, 2, 1, 1]>,
+ //
+ // Single-precision FP DIV
+ InstrItinData<IIC_fpDIV32 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<20, [A8_NPipe], 0>,
+ InstrStage<20, [A8_NLSPipe]>], [20, 1, 1]>,
+ //
+ // Double-precision FP DIV
+ InstrItinData<IIC_fpDIV64 , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<29, [A8_NPipe], 0>,
+ InstrStage<29, [A8_NLSPipe]>], [29, 1, 1]>,
+ //
+ // Single-precision FP SQRT
+ InstrItinData<IIC_fpSQRT32, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<19, [A8_NPipe], 0>,
+ InstrStage<19, [A8_NLSPipe]>], [19, 1]>,
+ //
+ // Double-precision FP SQRT
+ InstrItinData<IIC_fpSQRT64, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<29, [A8_NPipe], 0>,
+ InstrStage<29, [A8_NLSPipe]>], [29, 1]>,
+
+ //
+ // Integer to Single-precision Move
+ InstrItinData<IIC_fpMOVIS, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>],
+ [2, 1]>,
+ //
+ // Integer to Double-precision Move
+ InstrItinData<IIC_fpMOVID, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>],
+ [2, 1, 1]>,
+ //
+ // Single-precision to Integer Move
+ InstrItinData<IIC_fpMOVSI, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>],
+ [20, 1]>,
+ //
+ // Double-precision to Integer Move
+ InstrItinData<IIC_fpMOVDI, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>],
+ [20, 20, 1]>,
+
+ //
+ // Single-precision FP Load
+ InstrItinData<IIC_fpLoad32, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>],
+ [2, 1]>,
+ //
+ // Double-precision FP Load
+ InstrItinData<IIC_fpLoad64, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>],
+ [2, 1]>,
+ //
+ // FP Load Multiple
+ // FIXME: A8_LSPipe cycle time is dynamic, this assumes 3 to 4 registers.
+ InstrItinData<IIC_fpLoad_m, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>],
+ [1, 1, 1, 2], [], -1>, // dynamic uops
+ //
+ // FP Load Multiple + update
+ InstrItinData<IIC_fpLoad_mu,[InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>],
+ [2, 1, 1, 1, 2], [], -1>, // dynamic uops
+ //
+ // Single-precision FP Store
+ InstrItinData<IIC_fpStore32,[InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>],
+ [1, 1]>,
+ //
+ // Double-precision FP Store
+ InstrItinData<IIC_fpStore64,[InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>],
+ [1, 1]>,
+ //
+ // FP Store Multiple
+ InstrItinData<IIC_fpStore_m,[InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>],
+ [1, 1, 1, 1], [], -1>, // dynamic uops
+ //
+ // FP Store Multiple + update
+ InstrItinData<IIC_fpStore_mu,[InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>,
+ InstrStage<1, [A8_NLSPipe], 0>,
+ InstrStage<1, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1], [], -1>, // dynamic uops
+ // NEON
+ // Issue through integer pipeline, and execute in NEON unit.
+ //
+ // VLD1
+ InstrItinData<IIC_VLD1, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 1]>,
+ // VLD1x2
+ InstrItinData<IIC_VLD1x2, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 2, 1]>,
+ //
+ // VLD1x3
+ InstrItinData<IIC_VLD1x3, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 2, 3, 1]>,
+ //
+ // VLD1x4
+ InstrItinData<IIC_VLD1x4, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 2, 3, 3, 1]>,
+ //
+ // VLD1u
+ InstrItinData<IIC_VLD1u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 2, 1]>,
+ //
+ // VLD1x2u
+ InstrItinData<IIC_VLD1x2u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 2, 2, 1]>,
+ //
+ // VLD1x3u
+ InstrItinData<IIC_VLD1x3u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 2, 3, 2, 1]>,
+ //
+ // VLD1x4u
+ InstrItinData<IIC_VLD1x4u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 2, 3, 3, 2, 1]>,
+ //
+ // VLD1ln
+ InstrItinData<IIC_VLD1ln, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [3, 1, 1, 1]>,
+ //
+ // VLD1lnu
+ InstrItinData<IIC_VLD1lnu, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [3, 2, 1, 1, 1, 1]>,
+ //
+ // VLD1dup
+ InstrItinData<IIC_VLD1dup, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 1]>,
+ //
+ // VLD1dupu
+ InstrItinData<IIC_VLD1dupu, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 2, 1, 1]>,
+ //
+ // VLD2
+ InstrItinData<IIC_VLD2, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 2, 1]>,
+ //
+ // VLD2x2
+ InstrItinData<IIC_VLD2x2, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 2, 3, 3, 1]>,
+ //
+ // VLD2ln
+ InstrItinData<IIC_VLD2ln, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [3, 3, 1, 1, 1, 1]>,
+ //
+ // VLD2u
+ InstrItinData<IIC_VLD2u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 2, 2, 1, 1, 1]>,
+ //
+ // VLD2x2u
+ InstrItinData<IIC_VLD2x2u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 2, 3, 3, 2, 1]>,
+ //
+ // VLD2lnu
+ InstrItinData<IIC_VLD2lnu, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [3, 3, 2, 1, 1, 1, 1, 1]>,
+ //
+ // VLD2dup
+ InstrItinData<IIC_VLD2dup, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 2, 1]>,
+ //
+ // VLD2dupu
+ InstrItinData<IIC_VLD2dupu, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 2, 2, 1, 1]>,
+ //
+ // VLD3
+ InstrItinData<IIC_VLD3, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NLSPipe], 0>,
+ InstrStage<4, [A8_LSPipe]>],
+ [3, 3, 4, 1]>,
+ //
+ // VLD3ln
+ InstrItinData<IIC_VLD3ln, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<5, [A8_NLSPipe], 0>,
+ InstrStage<5, [A8_LSPipe]>],
+ [4, 4, 5, 1, 1, 1, 1, 2]>,
+ //
+ // VLD3u
+ InstrItinData<IIC_VLD3u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NLSPipe], 0>,
+ InstrStage<4, [A8_LSPipe]>],
+ [3, 3, 4, 2, 1]>,
+ //
+ // VLD3lnu
+ InstrItinData<IIC_VLD3lnu, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<5, [A8_NLSPipe], 0>,
+ InstrStage<5, [A8_LSPipe]>],
+ [4, 4, 5, 2, 1, 1, 1, 1, 1, 2]>,
+ //
+ // VLD3dup
+ InstrItinData<IIC_VLD3dup, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 2, 3, 1]>,
+ //
+ // VLD3dupu
+ InstrItinData<IIC_VLD3dupu, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 2, 3, 2, 1, 1]>,
+ //
+ // VLD4
+ InstrItinData<IIC_VLD4, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NLSPipe], 0>,
+ InstrStage<4, [A8_LSPipe]>],
+ [3, 3, 4, 4, 1]>,
+ //
+ // VLD4ln
+ InstrItinData<IIC_VLD4ln, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<5, [A8_NLSPipe], 0>,
+ InstrStage<5, [A8_LSPipe]>],
+ [4, 4, 5, 5, 1, 1, 1, 1, 2, 2]>,
+ //
+ // VLD4u
+ InstrItinData<IIC_VLD4u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NLSPipe], 0>,
+ InstrStage<4, [A8_LSPipe]>],
+ [3, 3, 4, 4, 2, 1]>,
+ //
+ // VLD4lnu
+ InstrItinData<IIC_VLD4lnu, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<5, [A8_NLSPipe], 0>,
+ InstrStage<5, [A8_LSPipe]>],
+ [4, 4, 5, 5, 2, 1, 1, 1, 1, 1, 2, 2]>,
+ //
+ // VLD4dup
+ InstrItinData<IIC_VLD4dup, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 2, 3, 3, 1]>,
+ //
+ // VLD4dupu
+ InstrItinData<IIC_VLD4dupu, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 2, 3, 3, 2, 1, 1]>,
+ //
+ // VST1
+ InstrItinData<IIC_VST1, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [1, 1, 1]>,
+ //
+ // VST1x2
+ InstrItinData<IIC_VST1x2, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [1, 1, 1, 1]>,
+ //
+ // VST1x3
+ InstrItinData<IIC_VST1x3, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [1, 1, 1, 1, 2]>,
+ //
+ // VST1x4
+ InstrItinData<IIC_VST1x4, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [1, 1, 1, 1, 2, 2]>,
+ //
+ // VST1u
+ InstrItinData<IIC_VST1u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1]>,
+ //
+ // VST1x2u
+ InstrItinData<IIC_VST1x2u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1, 1]>,
+ //
+ // VST1x3u
+ InstrItinData<IIC_VST1x3u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1, 1, 2]>,
+ //
+ // VST1x4u
+ InstrItinData<IIC_VST1x4u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1, 1, 2, 2]>,
+ //
+ // VST1ln
+ InstrItinData<IIC_VST1ln, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [1, 1, 1]>,
+ //
+ // VST1lnu
+ InstrItinData<IIC_VST1lnu, [InstrStage<1, [A8_Pipe0, A8_Pipe1]>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1]>,
+ //
+ // VST2
+ InstrItinData<IIC_VST2, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [1, 1, 1, 1]>,
+ //
+ // VST2x2
+ InstrItinData<IIC_VST2x2, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NLSPipe], 0>,
+ InstrStage<4, [A8_LSPipe]>],
+ [1, 1, 1, 1, 2, 2]>,
+ //
+ // VST2u
+ InstrItinData<IIC_VST2u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1, 1]>,
+ //
+ // VST2x2u
+ InstrItinData<IIC_VST2x2u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NLSPipe], 0>,
+ InstrStage<4, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1, 1, 2, 2]>,
+ //
+ // VST2ln
+ InstrItinData<IIC_VST2ln, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [1, 1, 1, 1]>,
+ //
+ // VST2lnu
+ InstrItinData<IIC_VST2lnu, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<2, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1, 1]>,
+ //
+ // VST3
+ InstrItinData<IIC_VST3, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [1, 1, 1, 1, 2]>,
+ //
+ // VST3u
+ InstrItinData<IIC_VST3u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1, 1, 2]>,
+ //
+ // VST3ln
+ InstrItinData<IIC_VST3ln, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [1, 1, 1, 1, 2]>,
+ //
+ // VST3lnu
+ InstrItinData<IIC_VST3lnu, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<3, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1, 1, 2]>,
+ //
+ // VST4
+ InstrItinData<IIC_VST4, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NLSPipe], 0>,
+ InstrStage<4, [A8_LSPipe]>],
+ [1, 1, 1, 1, 2, 2]>,
+ //
+ // VST4u
+ InstrItinData<IIC_VST4u, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NLSPipe], 0>,
+ InstrStage<4, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1, 1, 2, 2]>,
+ //
+ // VST4ln
+ InstrItinData<IIC_VST4ln, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NLSPipe], 0>,
+ InstrStage<4, [A8_LSPipe]>],
+ [1, 1, 1, 1, 2, 2]>,
+ //
+ // VST4lnu
+ InstrItinData<IIC_VST4lnu, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<4, [A8_NLSPipe], 0>,
+ InstrStage<4, [A8_LSPipe]>],
+ [2, 1, 1, 1, 1, 1, 2, 2]>,
+ //
+ // Double-register FP Unary
+ InstrItinData<IIC_VUNAD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [5, 2]>,
+ //
+ // Quad-register FP Unary
+ // Result written in N5, but that is relative to the last cycle of multicycle,
+ // so we use 6 for those cases
+ InstrItinData<IIC_VUNAQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [6, 2]>,
+ //
+ // Double-register FP Binary
+ InstrItinData<IIC_VBIND, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [5, 2, 2]>,
+ //
+ // VPADD, etc.
+ InstrItinData<IIC_VPBIND, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [5, 2, 2]>,
+ //
+ // Double-register FP VMUL
+ InstrItinData<IIC_VFMULD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [5, 2, 1]>,
+
+ //
+ // Quad-register FP Binary
+ // Result written in N5, but that is relative to the last cycle of multicycle,
+ // so we use 6 for those cases
+ InstrItinData<IIC_VBINQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [6, 2, 2]>,
+ //
+ // Quad-register FP VMUL
+ InstrItinData<IIC_VFMULQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [6, 2, 1]>,
+ //
+ // Move
+ InstrItinData<IIC_VMOV, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [1, 1]>,
+ //
+ // Move Immediate
+ InstrItinData<IIC_VMOVImm, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [3]>,
+ //
+ // Double-register Permute Move
+ InstrItinData<IIC_VMOVD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>], [2, 1]>,
+ //
+ // Quad-register Permute Move
+ // Result written in N2, but that is relative to the last cycle of multicycle,
+ // so we use 3 for those cases
+ InstrItinData<IIC_VMOVQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe]>], [3, 1]>,
+ //
+ // Integer to Single-precision Move
+ InstrItinData<IIC_VMOVIS , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>], [2, 1]>,
+ //
+ // Integer to Double-precision Move
+ InstrItinData<IIC_VMOVID , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>], [2, 1, 1]>,
+ //
+ // Single-precision to Integer Move
+ InstrItinData<IIC_VMOVSI , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>], [20, 1]>,
+ //
+ // Double-precision to Integer Move
+ InstrItinData<IIC_VMOVDI , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>], [20, 20, 1]>,
+ //
+ // Integer to Lane Move
+ InstrItinData<IIC_VMOVISL , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe]>], [3, 1, 1]>,
+ //
+ // Vector narrow move
+ InstrItinData<IIC_VMOVN , [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [2, 1]>,
+ //
+ // Double-register Permute
+ InstrItinData<IIC_VPERMD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>], [2, 2, 1, 1]>,
+ //
+ // Quad-register Permute
+ // Result written in N2, but that is relative to the last cycle of multicycle,
+ // so we use 3 for those cases
+ InstrItinData<IIC_VPERMQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe]>], [3, 3, 1, 1]>,
+ //
+ // Quad-register Permute (3 cycle issue)
+ // Result written in N2, but that is relative to the last cycle of multicycle,
+ // so we use 4 for those cases
+ InstrItinData<IIC_VPERMQ3, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>,
+ InstrStage<1, [A8_NPipe], 0>,
+ InstrStage<2, [A8_NLSPipe]>], [4, 4, 1, 1]>,
+ //
+ // Double-register FP Multiple-Accumulate
+ InstrItinData<IIC_VMACD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [9, 3, 2, 2]>,
+ //
+ // Quad-register FP Multiple-Accumulate
+ // Result written in N9, but that is relative to the last cycle of multicycle,
+ // so we use 10 for those cases
+ InstrItinData<IIC_VMACQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [10, 3, 2, 2]>,
+ //
+ // Double-register Fused FP Multiple-Accumulate
+ InstrItinData<IIC_VFMACD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [9, 3, 2, 2]>,
+ //
+ // Quad-register Fused FP Multiple-Accumulate
+ // Result written in N9, but that is relative to the last cycle of multicycle,
+ // so we use 10 for those cases
+ InstrItinData<IIC_VFMACQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [10, 3, 2, 2]>,
+ //
+ // Double-register Reciprical Step
+ InstrItinData<IIC_VRECSD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [9, 2, 2]>,
+ //
+ // Quad-register Reciprical Step
+ InstrItinData<IIC_VRECSQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [10, 2, 2]>,
+ //
+ // Double-register Integer Count
+ InstrItinData<IIC_VCNTiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [3, 2, 2]>,
+ //
+ // Quad-register Integer Count
+ // Result written in N3, but that is relative to the last cycle of multicycle,
+ // so we use 4 for those cases
+ InstrItinData<IIC_VCNTiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [4, 2, 2]>,
+ //
+ // Double-register Integer Unary
+ InstrItinData<IIC_VUNAiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [4, 2]>,
+ //
+ // Quad-register Integer Unary
+ InstrItinData<IIC_VUNAiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [4, 2]>,
+ //
+ // Double-register Integer Q-Unary
+ InstrItinData<IIC_VQUNAiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [4, 1]>,
+ //
+ // Quad-register Integer CountQ-Unary
+ InstrItinData<IIC_VQUNAiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [4, 1]>,
+ //
+ // Double-register Integer Binary
+ InstrItinData<IIC_VBINiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [3, 2, 2]>,
+ //
+ // Quad-register Integer Binary
+ InstrItinData<IIC_VBINiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [3, 2, 2]>,
+ //
+ // Double-register Integer Binary (4 cycle)
+ InstrItinData<IIC_VBINi4D, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [4, 2, 1]>,
+ //
+ // Quad-register Integer Binary (4 cycle)
+ InstrItinData<IIC_VBINi4Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [4, 2, 1]>,
+
+ //
+ // Double-register Integer Subtract
+ InstrItinData<IIC_VSUBiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [3, 2, 1]>,
+ //
+ // Quad-register Integer Subtract
+ InstrItinData<IIC_VSUBiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [3, 2, 1]>,
+ //
+ // Double-register Integer Subtract
+ InstrItinData<IIC_VSUBi4D, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [4, 2, 1]>,
+ //
+ // Quad-register Integer Subtract
+ InstrItinData<IIC_VSUBi4Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [4, 2, 1]>,
+ //
+ // Double-register Integer Shift
+ InstrItinData<IIC_VSHLiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [3, 1, 1]>,
+ //
+ // Quad-register Integer Shift
+ InstrItinData<IIC_VSHLiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [4, 1, 1]>,
+ //
+ // Double-register Integer Shift (4 cycle)
+ InstrItinData<IIC_VSHLi4D, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [4, 1, 1]>,
+ //
+ // Quad-register Integer Shift (4 cycle)
+ InstrItinData<IIC_VSHLi4Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [5, 1, 1]>,
+ //
+ // Double-register Integer Pair Add Long
+ InstrItinData<IIC_VPALiD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [6, 3, 1]>,
+ //
+ // Quad-register Integer Pair Add Long
+ InstrItinData<IIC_VPALiQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [7, 3, 1]>,
+ //
+ // Double-register Absolute Difference and Accumulate
+ InstrItinData<IIC_VABAD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [6, 3, 2, 1]>,
+ //
+ // Quad-register Absolute Difference and Accumulate
+ InstrItinData<IIC_VABAQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [6, 3, 2, 1]>,
+
+ //
+ // Double-register Integer Multiply (.8, .16)
+ InstrItinData<IIC_VMULi16D, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [6, 2, 2]>,
+ //
+ // Double-register Integer Multiply (.32)
+ InstrItinData<IIC_VMULi32D, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [7, 2, 1]>,
+ //
+ // Quad-register Integer Multiply (.8, .16)
+ InstrItinData<IIC_VMULi16Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [7, 2, 2]>,
+ //
+ // Quad-register Integer Multiply (.32)
+ InstrItinData<IIC_VMULi32Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_NPipe]>], [9, 2, 1]>,
+ //
+ // Double-register Integer Multiply-Accumulate (.8, .16)
+ InstrItinData<IIC_VMACi16D, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>], [6, 3, 2, 2]>,
+ //
+ // Double-register Integer Multiply-Accumulate (.32)
+ InstrItinData<IIC_VMACi32D, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [7, 3, 2, 1]>,
+ //
+ // Quad-register Integer Multiply-Accumulate (.8, .16)
+ InstrItinData<IIC_VMACi16Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NPipe]>], [7, 3, 2, 2]>,
+ //
+ // Quad-register Integer Multiply-Accumulate (.32)
+ InstrItinData<IIC_VMACi32Q, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NPipe]>,
+ InstrStage<2, [A8_NLSPipe], 0>,
+ InstrStage<3, [A8_NPipe]>], [9, 3, 2, 1]>,
+ //
+ // Double-register VEXT
+ InstrItinData<IIC_VEXTD, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>], [2, 1, 1]>,
+ //
+ // Quad-register VEXT
+ InstrItinData<IIC_VEXTQ, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe]>], [3, 1, 1]>,
+ //
+ // VTB
+ InstrItinData<IIC_VTB1, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe]>], [3, 2, 1]>,
+ InstrItinData<IIC_VTB2, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe]>], [3, 2, 2, 1]>,
+ InstrItinData<IIC_VTB3, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>,
+ InstrStage<1, [A8_NPipe], 0>,
+ InstrStage<2, [A8_NLSPipe]>], [4, 2, 2, 3, 1]>,
+ InstrItinData<IIC_VTB4, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>,
+ InstrStage<1, [A8_NPipe], 0>,
+ InstrStage<2, [A8_NLSPipe]>],[4, 2, 2, 3, 3, 1]>,
+ //
+ // VTBX
+ InstrItinData<IIC_VTBX1, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe]>], [3, 1, 2, 1]>,
+ InstrItinData<IIC_VTBX2, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<2, [A8_NLSPipe]>], [3, 1, 2, 2, 1]>,
+ InstrItinData<IIC_VTBX3, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>,
+ InstrStage<1, [A8_NPipe], 0>,
+ InstrStage<2, [A8_NLSPipe]>],[4, 1, 2, 2, 3, 1]>,
+ InstrItinData<IIC_VTBX4, [InstrStage<1, [A8_Pipe0, A8_Pipe1], 0>,
+ InstrStage<1, [A8_NLSPipe]>,
+ InstrStage<1, [A8_NPipe], 0>,
+ InstrStage<2, [A8_NLSPipe]>], [4, 1, 2, 2, 3, 3, 1]>
+]>;
+
+// ===---------------------------------------------------------------------===//
+// This following definitions describe the simple machine model which
+// will replace itineraries.
+
+// Cortex-A8 machine model for scheduling and other instruction cost heuristics.
+def CortexA8Model : SchedMachineModel {
+ let IssueWidth = 2; // 2 micro-ops are dispatched per cycle.
+ let MinLatency = -1; // OperandCycles are interpreted as MinLatency.
+ let LoadLatency = 2; // Optimistic load latency assuming bypass.
+ // This is overriden by OperandCycles if the
+ // Itineraries are queried instead.
+ let MispredictPenalty = 13; // Based on estimate of pipeline depth.
+
+ let Itineraries = CortexA8Itineraries;
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMScheduleA9.td b/contrib/llvm/lib/Target/ARM/ARMScheduleA9.td
new file mode 100644
index 0000000..9a1d222
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMScheduleA9.td
@@ -0,0 +1,2529 @@
+//=- ARMScheduleA9.td - ARM Cortex-A9 Scheduling Definitions -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the ARM Cortex A9 processors.
+//
+//===----------------------------------------------------------------------===//
+
+// ===---------------------------------------------------------------------===//
+// This section contains legacy support for itineraries. This is
+// required until SD and PostRA schedulers are replaced by MachineScheduler.
+
+//
+// Ad-hoc scheduling information derived from pretty vague "Cortex-A9 Technical
+// Reference Manual".
+//
+// Functional units
+def A9_Issue0 : FuncUnit; // Issue 0
+def A9_Issue1 : FuncUnit; // Issue 1
+def A9_Branch : FuncUnit; // Branch
+def A9_ALU0 : FuncUnit; // ALU / MUL pipeline 0
+def A9_ALU1 : FuncUnit; // ALU pipeline 1
+def A9_AGU : FuncUnit; // Address generation unit for ld / st
+def A9_NPipe : FuncUnit; // NEON pipeline
+def A9_MUX0 : FuncUnit; // AGU + NEON/FPU multiplexer
+def A9_LSUnit : FuncUnit; // L/S Unit
+def A9_DRegsVFP: FuncUnit; // FP register set, VFP side
+def A9_DRegsN : FuncUnit; // FP register set, NEON side
+
+// Bypasses
+def A9_LdBypass : Bypass;
+
+def CortexA9Itineraries : ProcessorItineraries<
+ [A9_Issue0, A9_Issue1, A9_Branch, A9_ALU0, A9_ALU1, A9_AGU, A9_NPipe, A9_MUX0,
+ A9_LSUnit, A9_DRegsVFP, A9_DRegsN],
+ [A9_LdBypass], [
+ // Two fully-pipelined integer ALU pipelines
+
+ //
+ // Move instructions, unconditional
+ InstrItinData<IIC_iMOVi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [1]>,
+ InstrItinData<IIC_iMOVr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [1, 1]>,
+ InstrItinData<IIC_iMOVsi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [1, 1]>,
+ InstrItinData<IIC_iMOVsr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0, A9_ALU1]>], [2, 1, 1]>,
+ InstrItinData<IIC_iMOVix2 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [2]>,
+ InstrItinData<IIC_iMOVix2addpc,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [3]>,
+ InstrItinData<IIC_iMOVix2ld,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>], [5]>,
+ //
+ // MVN instructions
+ InstrItinData<IIC_iMVNi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>],
+ [1]>,
+ InstrItinData<IIC_iMVNr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>],
+ [1, 1], [NoBypass, A9_LdBypass]>,
+ InstrItinData<IIC_iMVNsi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0, A9_ALU1]>],
+ [2, 1]>,
+ InstrItinData<IIC_iMVNsr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<3, [A9_ALU0, A9_ALU1]>],
+ [3, 1, 1]>,
+ //
+ // No operand cycles
+ InstrItinData<IIC_iALUx , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>]>,
+ //
+ // Binary Instructions that produce a result
+ InstrItinData<IIC_iALUi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>],
+ [1, 1], [NoBypass, A9_LdBypass]>,
+ InstrItinData<IIC_iALUr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>],
+ [1, 1, 1], [NoBypass, A9_LdBypass, A9_LdBypass]>,
+ InstrItinData<IIC_iALUsi, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0, A9_ALU1]>],
+ [2, 1, 1], [NoBypass, A9_LdBypass, NoBypass]>,
+ InstrItinData<IIC_iALUsir,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0, A9_ALU1]>],
+ [2, 1, 1], [NoBypass, NoBypass, A9_LdBypass]>,
+ InstrItinData<IIC_iALUsr, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<3, [A9_ALU0, A9_ALU1]>],
+ [3, 1, 1, 1],
+ [NoBypass, A9_LdBypass, NoBypass, NoBypass]>,
+ //
+ // Bitwise Instructions that produce a result
+ InstrItinData<IIC_iBITi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [1, 1]>,
+ InstrItinData<IIC_iBITr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [1, 1, 1]>,
+ InstrItinData<IIC_iBITsi, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0, A9_ALU1]>], [2, 1, 1]>,
+ InstrItinData<IIC_iBITsr, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<3, [A9_ALU0, A9_ALU1]>], [3, 1, 1, 1]>,
+ //
+ // Unary Instructions that produce a result
+
+ // CLZ, RBIT, etc.
+ InstrItinData<IIC_iUNAr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [1, 1]>,
+
+ // BFC, BFI, UBFX, SBFX
+ InstrItinData<IIC_iUNAsi, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0, A9_ALU1]>], [2, 1]>,
+
+ //
+ // Zero and sign extension instructions
+ InstrItinData<IIC_iEXTr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [2, 1]>,
+ InstrItinData<IIC_iEXTAr, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0, A9_ALU1]>], [3, 1, 1]>,
+ InstrItinData<IIC_iEXTAsr,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<3, [A9_ALU0, A9_ALU1]>], [3, 1, 1, 1]>,
+ //
+ // Compare instructions
+ InstrItinData<IIC_iCMPi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>],
+ [1], [A9_LdBypass]>,
+ InstrItinData<IIC_iCMPr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>],
+ [1, 1], [A9_LdBypass, A9_LdBypass]>,
+ InstrItinData<IIC_iCMPsi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0, A9_ALU1]>],
+ [1, 1], [A9_LdBypass, NoBypass]>,
+ InstrItinData<IIC_iCMPsr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<3, [A9_ALU0, A9_ALU1]>],
+ [1, 1, 1], [A9_LdBypass, NoBypass, NoBypass]>,
+ //
+ // Test instructions
+ InstrItinData<IIC_iTSTi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [1]>,
+ InstrItinData<IIC_iTSTr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [1, 1]>,
+ InstrItinData<IIC_iTSTsi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0, A9_ALU1]>], [1, 1]>,
+ InstrItinData<IIC_iTSTsr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<3, [A9_ALU0, A9_ALU1]>], [1, 1, 1]>,
+ //
+ // Move instructions, conditional
+ // FIXME: Correctly model the extra input dep on the destination.
+ InstrItinData<IIC_iCMOVi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [1]>,
+ InstrItinData<IIC_iCMOVr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [1, 1]>,
+ InstrItinData<IIC_iCMOVsi , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [1, 1]>,
+ InstrItinData<IIC_iCMOVsr , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0, A9_ALU1]>], [2, 1, 1]>,
+ InstrItinData<IIC_iCMOVix2, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>,
+ InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>], [2]>,
+
+ // Integer multiply pipeline
+ //
+ InstrItinData<IIC_iMUL16 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0]>], [3, 1, 1]>,
+ InstrItinData<IIC_iMAC16 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0]>],
+ [3, 1, 1, 1]>,
+ InstrItinData<IIC_iMUL32 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0]>], [4, 1, 1]>,
+ InstrItinData<IIC_iMAC32 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<2, [A9_ALU0]>],
+ [4, 1, 1, 1]>,
+ InstrItinData<IIC_iMUL64 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<3, [A9_ALU0]>], [4, 5, 1, 1]>,
+ InstrItinData<IIC_iMAC64 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<3, [A9_ALU0]>],
+ [4, 5, 1, 1]>,
+ // Integer load pipeline
+ // FIXME: The timings are some rough approximations
+ //
+ // Immediate offset
+ InstrItinData<IIC_iLoad_i , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [3, 1], [A9_LdBypass]>,
+ InstrItinData<IIC_iLoad_bh_i, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [4, 1], [A9_LdBypass]>,
+ // FIXME: If address is 64-bit aligned, AGU cycles is 1.
+ InstrItinData<IIC_iLoad_d_i , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [3, 3, 1], [A9_LdBypass]>,
+ //
+ // Register offset
+ InstrItinData<IIC_iLoad_r , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [3, 1, 1], [A9_LdBypass]>,
+ InstrItinData<IIC_iLoad_bh_r, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [4, 1, 1], [A9_LdBypass]>,
+ InstrItinData<IIC_iLoad_d_r , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [3, 3, 1, 1], [A9_LdBypass]>,
+ //
+ // Scaled register offset
+ InstrItinData<IIC_iLoad_si , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit], 0>],
+ [4, 1, 1], [A9_LdBypass]>,
+ InstrItinData<IIC_iLoad_bh_si,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [5, 1, 1], [A9_LdBypass]>,
+ //
+ // Immediate offset with update
+ InstrItinData<IIC_iLoad_iu , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [3, 2, 1], [A9_LdBypass]>,
+ InstrItinData<IIC_iLoad_bh_iu,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [4, 3, 1], [A9_LdBypass]>,
+ //
+ // Register offset with update
+ InstrItinData<IIC_iLoad_ru , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [3, 2, 1, 1], [A9_LdBypass]>,
+ InstrItinData<IIC_iLoad_bh_ru,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [4, 3, 1, 1], [A9_LdBypass]>,
+ InstrItinData<IIC_iLoad_d_ru, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [3, 3, 1, 1], [A9_LdBypass]>,
+ //
+ // Scaled register offset with update
+ InstrItinData<IIC_iLoad_siu , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [4, 3, 1, 1], [A9_LdBypass]>,
+ InstrItinData<IIC_iLoad_bh_siu,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [5, 4, 1, 1], [A9_LdBypass]>,
+ //
+ // Load multiple, def is the 5th operand.
+ // FIXME: This assumes 3 to 4 registers.
+ InstrItinData<IIC_iLoad_m , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 1, 1, 3],
+ [NoBypass, NoBypass, NoBypass, NoBypass, A9_LdBypass],
+ -1>, // dynamic uops
+ //
+ // Load multiple + update, defs are the 1st and 5th operands.
+ InstrItinData<IIC_iLoad_mu , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 1, 1, 1, 3],
+ [NoBypass, NoBypass, NoBypass, NoBypass, A9_LdBypass],
+ -1>, // dynamic uops
+ //
+ // Load multiple plus branch
+ InstrItinData<IIC_iLoad_mBr, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 1>,
+ InstrStage<2, [A9_LSUnit]>,
+ InstrStage<1, [A9_Branch]>],
+ [1, 2, 1, 1, 3],
+ [NoBypass, NoBypass, NoBypass, NoBypass, A9_LdBypass],
+ -1>, // dynamic uops
+ //
+ // Pop, def is the 3rd operand.
+ InstrItinData<IIC_iPop , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 3],
+ [NoBypass, NoBypass, A9_LdBypass],
+ -1>, // dynamic uops
+ //
+ // Pop + branch, def is the 3rd operand.
+ InstrItinData<IIC_iPop_Br, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<2, [A9_LSUnit]>,
+ InstrStage<1, [A9_Branch]>],
+ [1, 1, 3],
+ [NoBypass, NoBypass, A9_LdBypass],
+ -1>, // dynamic uops
+ //
+ // iLoadi + iALUr for t2LDRpci_pic.
+ InstrItinData<IIC_iLoadiALU, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>,
+ InstrStage<1, [A9_ALU0, A9_ALU1]>],
+ [2, 1]>,
+
+ // Integer store pipeline
+ ///
+ // Immediate offset
+ InstrItinData<IIC_iStore_i , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>], [1, 1]>,
+ InstrItinData<IIC_iStore_bh_i,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<1, [A9_LSUnit]>], [1, 1]>,
+ // FIXME: If address is 64-bit aligned, AGU cycles is 1.
+ InstrItinData<IIC_iStore_d_i, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<1, [A9_LSUnit]>], [1, 1]>,
+ //
+ // Register offset
+ InstrItinData<IIC_iStore_r , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>], [1, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_r,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<1, [A9_LSUnit]>], [1, 1, 1]>,
+ InstrItinData<IIC_iStore_d_r, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<1, [A9_LSUnit]>], [1, 1, 1]>,
+ //
+ // Scaled register offset
+ InstrItinData<IIC_iStore_si , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>], [1, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_si,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<1, [A9_LSUnit]>], [1, 1, 1]>,
+ //
+ // Immediate offset with update
+ InstrItinData<IIC_iStore_iu , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>], [2, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_iu,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<1, [A9_LSUnit]>], [3, 1, 1]>,
+ //
+ // Register offset with update
+ InstrItinData<IIC_iStore_ru , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 1, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_ru,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<1, [A9_LSUnit]>],
+ [3, 1, 1, 1]>,
+ InstrItinData<IIC_iStore_d_ru, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<1, [A9_LSUnit]>],
+ [3, 1, 1, 1]>,
+ //
+ // Scaled register offset with update
+ InstrItinData<IIC_iStore_siu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 1, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_siu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_AGU], 1>,
+ InstrStage<1, [A9_LSUnit]>],
+ [3, 1, 1, 1]>,
+ //
+ // Store multiple
+ InstrItinData<IIC_iStore_m , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [], [], -1>, // dynamic uops
+ //
+ // Store multiple + update
+ InstrItinData<IIC_iStore_mu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_AGU], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2], [], -1>, // dynamic uops
+ //
+ // Preload
+ InstrItinData<IIC_Preload, [InstrStage<1, [A9_Issue0, A9_Issue1]>], [1, 1]>,
+
+ // Branch
+ //
+ // no delay slots, so the latency of a branch is unimportant
+ InstrItinData<IIC_Br , [InstrStage<1, [A9_Issue0], 0>,
+ InstrStage<1, [A9_Issue1], 0>,
+ InstrStage<1, [A9_Branch]>]>,
+
+ // VFP and NEON shares the same register file. This means that every VFP
+ // instruction should wait for full completion of the consecutive NEON
+ // instruction and vice-versa. We model this behavior with two artificial FUs:
+ // DRegsVFP and DRegsVFP.
+ //
+ // Every VFP instruction:
+ // - Acquires DRegsVFP resource for 1 cycle
+ // - Reserves DRegsN resource for the whole duration (including time to
+ // register file writeback!).
+ // Every NEON instruction does the same but with FUs swapped.
+ //
+ // Since the reserved FU cannot be acquired, this models precisely
+ // "cross-domain" stalls.
+
+ // VFP
+ // Issue through integer pipeline, and execute in NEON unit.
+
+ // FP Special Register to Integer Register File Move
+ InstrItinData<IIC_fpSTAT , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<2, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [1]>,
+ //
+ // Single-precision FP Unary
+ InstrItinData<IIC_fpUNA32 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ // Extra latency cycles since wbck is 2 cycles
+ InstrStage<3, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [1, 1]>,
+ //
+ // Double-precision FP Unary
+ InstrItinData<IIC_fpUNA64 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ // Extra latency cycles since wbck is 2 cycles
+ InstrStage<3, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [1, 1]>,
+
+ //
+ // Single-precision FP Compare
+ InstrItinData<IIC_fpCMP32 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ // Extra latency cycles since wbck is 4 cycles
+ InstrStage<5, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [1, 1]>,
+ //
+ // Double-precision FP Compare
+ InstrItinData<IIC_fpCMP64 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ // Extra latency cycles since wbck is 4 cycles
+ InstrStage<5, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [1, 1]>,
+ //
+ // Single to Double FP Convert
+ InstrItinData<IIC_fpCVTSD , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<5, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1]>,
+ //
+ // Double to Single FP Convert
+ InstrItinData<IIC_fpCVTDS , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<5, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1]>,
+
+ //
+ // Single to Half FP Convert
+ InstrItinData<IIC_fpCVTSH , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<5, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1]>,
+ //
+ // Half to Single FP Convert
+ InstrItinData<IIC_fpCVTHS , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<3, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [2, 1]>,
+
+ //
+ // Single-Precision FP to Integer Convert
+ InstrItinData<IIC_fpCVTSI , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<5, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1]>,
+ //
+ // Double-Precision FP to Integer Convert
+ InstrItinData<IIC_fpCVTDI , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<5, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1]>,
+ //
+ // Integer to Single-Precision FP Convert
+ InstrItinData<IIC_fpCVTIS , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<5, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1]>,
+ //
+ // Integer to Double-Precision FP Convert
+ InstrItinData<IIC_fpCVTID , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<5, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1]>,
+ //
+ // Single-precision FP ALU
+ InstrItinData<IIC_fpALU32 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<5, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1, 1]>,
+ //
+ // Double-precision FP ALU
+ InstrItinData<IIC_fpALU64 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<5, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1, 1]>,
+ //
+ // Single-precision FP Multiply
+ InstrItinData<IIC_fpMUL32 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<6, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [5, 1, 1]>,
+ //
+ // Double-precision FP Multiply
+ InstrItinData<IIC_fpMUL64 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<7, [A9_DRegsN], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [6, 1, 1]>,
+ //
+ // Single-precision FP MAC
+ InstrItinData<IIC_fpMAC32 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<9, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [8, 1, 1, 1]>,
+ //
+ // Double-precision FP MAC
+ InstrItinData<IIC_fpMAC64 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<10, [A9_DRegsN], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [9, 1, 1, 1]>,
+ //
+ // Single-precision Fused FP MAC
+ InstrItinData<IIC_fpFMAC32, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<9, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [8, 1, 1, 1]>,
+ //
+ // Double-precision Fused FP MAC
+ InstrItinData<IIC_fpFMAC64, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<10, [A9_DRegsN], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [9, 1, 1, 1]>,
+ //
+ // Single-precision FP DIV
+ InstrItinData<IIC_fpDIV32 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<16, [A9_DRegsN], 0, Reserved>,
+ InstrStage<10, [A9_NPipe]>],
+ [15, 1, 1]>,
+ //
+ // Double-precision FP DIV
+ InstrItinData<IIC_fpDIV64 , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<26, [A9_DRegsN], 0, Reserved>,
+ InstrStage<20, [A9_NPipe]>],
+ [25, 1, 1]>,
+ //
+ // Single-precision FP SQRT
+ InstrItinData<IIC_fpSQRT32, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<18, [A9_DRegsN], 0, Reserved>,
+ InstrStage<13, [A9_NPipe]>],
+ [17, 1]>,
+ //
+ // Double-precision FP SQRT
+ InstrItinData<IIC_fpSQRT64, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<33, [A9_DRegsN], 0, Reserved>,
+ InstrStage<28, [A9_NPipe]>],
+ [32, 1]>,
+
+ //
+ // Integer to Single-precision Move
+ InstrItinData<IIC_fpMOVIS, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ // Extra 1 latency cycle since wbck is 2 cycles
+ InstrStage<3, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [1, 1]>,
+ //
+ // Integer to Double-precision Move
+ InstrItinData<IIC_fpMOVID, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ // Extra 1 latency cycle since wbck is 2 cycles
+ InstrStage<3, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [1, 1, 1]>,
+ //
+ // Single-precision to Integer Move
+ //
+ // On A9 move-from-VFP is free to issue with no stall if other VFP
+ // operations are in flight. I assume it still can't dual-issue though.
+ InstrItinData<IIC_fpMOVSI, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>],
+ [2, 1]>,
+ //
+ // Double-precision to Integer Move
+ //
+ // On A9 move-from-VFP is free to issue with no stall if other VFP
+ // operations are in flight. I assume it still can't dual-issue though.
+ InstrItinData<IIC_fpMOVDI, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>],
+ [2, 1, 1]>,
+ //
+ // Single-precision FP Load
+ InstrItinData<IIC_fpLoad32, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<2, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 1]>,
+ //
+ // Double-precision FP Load
+ // FIXME: Result latency is 1 if address is 64-bit aligned.
+ InstrItinData<IIC_fpLoad64, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<2, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 1]>,
+ //
+ // FP Load Multiple
+ // FIXME: assumes 2 doubles which requires 2 LS cycles.
+ InstrItinData<IIC_fpLoad_m, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<2, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 1, 1], [], -1>, // dynamic uops
+ //
+ // FP Load Multiple + update
+ // FIXME: assumes 2 doubles which requires 2 LS cycles.
+ InstrItinData<IIC_fpLoad_mu,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<2, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 1, 1, 1], [], -1>, // dynamic uops
+ //
+ // Single-precision FP Store
+ InstrItinData<IIC_fpStore32,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<2, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 1]>,
+ //
+ // Double-precision FP Store
+ InstrItinData<IIC_fpStore64,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<2, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 1]>,
+ //
+ // FP Store Multiple
+ // FIXME: assumes 2 doubles which requires 2 LS cycles.
+ InstrItinData<IIC_fpStore_m,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<2, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 1, 1], [], -1>, // dynamic uops
+ //
+ // FP Store Multiple + update
+ // FIXME: assumes 2 doubles which requires 2 LS cycles.
+ InstrItinData<IIC_fpStore_mu,[InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsVFP], 0, Required>,
+ InstrStage<2, [A9_DRegsN], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 1, 1, 1], [], -1>, // dynamic uops
+ // NEON
+ // VLD1
+ InstrItinData<IIC_VLD1, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 1]>,
+ // VLD1x2
+ InstrItinData<IIC_VLD1x2, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 1, 1]>,
+ // VLD1x3
+ InstrItinData<IIC_VLD1x3, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 2, 1]>,
+ // VLD1x4
+ InstrItinData<IIC_VLD1x4, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 2, 2, 1]>,
+ // VLD1u
+ InstrItinData<IIC_VLD1u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 2, 1]>,
+ // VLD1x2u
+ InstrItinData<IIC_VLD1x2u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 1, 2, 1]>,
+ // VLD1x3u
+ InstrItinData<IIC_VLD1x3u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 2, 2, 1]>,
+ // VLD1x4u
+ InstrItinData<IIC_VLD1x4u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 2, 2, 2, 1]>,
+ //
+ // VLD1ln
+ InstrItinData<IIC_VLD1ln, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [3, 1, 1, 1]>,
+ //
+ // VLD1lnu
+ InstrItinData<IIC_VLD1lnu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [3, 2, 1, 1, 1, 1]>,
+ //
+ // VLD1dup
+ InstrItinData<IIC_VLD1dup, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 1]>,
+ //
+ // VLD1dupu
+ InstrItinData<IIC_VLD1dupu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 2, 1, 1]>,
+ //
+ // VLD2
+ InstrItinData<IIC_VLD2, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 2, 1]>,
+ //
+ // VLD2x2
+ InstrItinData<IIC_VLD2x2, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 3, 2, 3, 1]>,
+ //
+ // VLD2ln
+ InstrItinData<IIC_VLD2ln, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [3, 3, 1, 1, 1, 1]>,
+ //
+ // VLD2u
+ InstrItinData<IIC_VLD2u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 2, 2, 1, 1, 1]>,
+ //
+ // VLD2x2u
+ InstrItinData<IIC_VLD2x2u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 3, 2, 3, 2, 1]>,
+ //
+ // VLD2lnu
+ InstrItinData<IIC_VLD2lnu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [3, 3, 2, 1, 1, 1, 1, 1]>,
+ //
+ // VLD2dup
+ InstrItinData<IIC_VLD2dup, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 2, 1]>,
+ //
+ // VLD2dupu
+ InstrItinData<IIC_VLD2dupu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 2, 2, 1, 1]>,
+ //
+ // VLD3
+ InstrItinData<IIC_VLD3, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<9,[A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe], 0>,
+ InstrStage<3, [A9_LSUnit]>],
+ [3, 3, 4, 1]>,
+ //
+ // VLD3ln
+ InstrItinData<IIC_VLD3ln, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<11,[A9_DRegsVFP], 0, Reserved>,
+ InstrStage<5, [A9_NPipe], 0>,
+ InstrStage<5, [A9_LSUnit]>],
+ [5, 5, 6, 1, 1, 1, 1, 2]>,
+ //
+ // VLD3u
+ InstrItinData<IIC_VLD3u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<9,[A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe], 0>,
+ InstrStage<3, [A9_LSUnit]>],
+ [3, 3, 4, 2, 1]>,
+ //
+ // VLD3lnu
+ InstrItinData<IIC_VLD3lnu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<11,[A9_DRegsVFP], 0, Reserved>,
+ InstrStage<5, [A9_NPipe], 0>,
+ InstrStage<5, [A9_LSUnit]>],
+ [5, 5, 6, 2, 1, 1, 1, 1, 1, 2]>,
+ //
+ // VLD3dup
+ InstrItinData<IIC_VLD3dup, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<9, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe], 0>,
+ InstrStage<3, [A9_LSUnit]>],
+ [3, 3, 4, 1]>,
+ //
+ // VLD3dupu
+ InstrItinData<IIC_VLD3dupu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<9, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe], 0>,
+ InstrStage<3, [A9_LSUnit]>],
+ [3, 3, 4, 2, 1, 1]>,
+ //
+ // VLD4
+ InstrItinData<IIC_VLD4, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<9,[A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe], 0>,
+ InstrStage<3, [A9_LSUnit]>],
+ [3, 3, 4, 4, 1]>,
+ //
+ // VLD4ln
+ InstrItinData<IIC_VLD4ln, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<10,[A9_DRegsVFP], 0, Reserved>,
+ InstrStage<4, [A9_NPipe], 0>,
+ InstrStage<4, [A9_LSUnit]>],
+ [4, 4, 5, 5, 1, 1, 1, 1, 2, 2]>,
+ //
+ // VLD4u
+ InstrItinData<IIC_VLD4u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<9,[A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe], 0>,
+ InstrStage<3, [A9_LSUnit]>],
+ [3, 3, 4, 4, 2, 1]>,
+ //
+ // VLD4lnu
+ InstrItinData<IIC_VLD4lnu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<10,[A9_DRegsVFP], 0, Reserved>,
+ InstrStage<4, [A9_NPipe], 0>,
+ InstrStage<4, [A9_LSUnit]>],
+ [4, 4, 5, 5, 2, 1, 1, 1, 1, 1, 2, 2]>,
+ //
+ // VLD4dup
+ InstrItinData<IIC_VLD4dup, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 2, 3, 3, 1]>,
+ //
+ // VLD4dupu
+ InstrItinData<IIC_VLD4dupu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 2, 3, 3, 2, 1, 1]>,
+ //
+ // VST1
+ InstrItinData<IIC_VST1, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<1, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 1, 1]>,
+ //
+ // VST1x2
+ InstrItinData<IIC_VST1x2, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<1, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 1, 1, 1]>,
+ //
+ // VST1x3
+ InstrItinData<IIC_VST1x3, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<2, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 1, 1, 2]>,
+ //
+ // VST1x4
+ InstrItinData<IIC_VST1x4, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<2, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 1, 1, 2, 2]>,
+ //
+ // VST1u
+ InstrItinData<IIC_VST1u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<1, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1]>,
+ //
+ // VST1x2u
+ InstrItinData<IIC_VST1x2u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<1, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1, 1]>,
+ //
+ // VST1x3u
+ InstrItinData<IIC_VST1x3u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<2, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1, 1, 2]>,
+ //
+ // VST1x4u
+ InstrItinData<IIC_VST1x4u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<2, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1, 1, 2, 2]>,
+ //
+ // VST1ln
+ InstrItinData<IIC_VST1ln, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<1, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 1, 1]>,
+ //
+ // VST1lnu
+ InstrItinData<IIC_VST1lnu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<1, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1]>,
+ //
+ // VST2
+ InstrItinData<IIC_VST2, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<1, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 1, 1, 1]>,
+ //
+ // VST2x2
+ InstrItinData<IIC_VST2x2, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<3, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe], 0>,
+ InstrStage<3, [A9_LSUnit]>],
+ [1, 1, 1, 1, 2, 2]>,
+ //
+ // VST2u
+ InstrItinData<IIC_VST2u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<1, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1, 1]>,
+ //
+ // VST2x2u
+ InstrItinData<IIC_VST2x2u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<3, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe], 0>,
+ InstrStage<3, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1, 1, 2, 2]>,
+ //
+ // VST2ln
+ InstrItinData<IIC_VST2ln, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<1, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [1, 1, 1, 1]>,
+ //
+ // VST2lnu
+ InstrItinData<IIC_VST2lnu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<1, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe], 0>,
+ InstrStage<1, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1, 1]>,
+ //
+ // VST3
+ InstrItinData<IIC_VST3, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<2, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 1, 1, 2]>,
+ //
+ // VST3u
+ InstrItinData<IIC_VST3u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<2, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1, 1, 2]>,
+ //
+ // VST3ln
+ InstrItinData<IIC_VST3ln, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<3, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe], 0>,
+ InstrStage<3, [A9_LSUnit]>],
+ [1, 1, 1, 1, 2]>,
+ //
+ // VST3lnu
+ InstrItinData<IIC_VST3lnu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<3, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe], 0>,
+ InstrStage<3, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1, 1, 2]>,
+ //
+ // VST4
+ InstrItinData<IIC_VST4, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<2, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 1, 1, 2, 2]>,
+ //
+ // VST4u
+ InstrItinData<IIC_VST4u, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<2, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1, 1, 2, 2]>,
+ //
+ // VST4ln
+ InstrItinData<IIC_VST4ln, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<2, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [1, 1, 1, 1, 2, 2]>,
+ //
+ // VST4lnu
+ InstrItinData<IIC_VST4lnu, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<2, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe], 0>,
+ InstrStage<2, [A9_LSUnit]>],
+ [2, 1, 1, 1, 1, 1, 2, 2]>,
+
+ //
+ // Double-register Integer Unary
+ InstrItinData<IIC_VUNAiD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 2]>,
+ //
+ // Quad-register Integer Unary
+ InstrItinData<IIC_VUNAiQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 2]>,
+ //
+ // Double-register Integer Q-Unary
+ InstrItinData<IIC_VQUNAiD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1]>,
+ //
+ // Quad-register Integer CountQ-Unary
+ InstrItinData<IIC_VQUNAiQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1]>,
+ //
+ // Double-register Integer Binary
+ InstrItinData<IIC_VBINiD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [3, 2, 2]>,
+ //
+ // Quad-register Integer Binary
+ InstrItinData<IIC_VBINiQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [3, 2, 2]>,
+ //
+ // Double-register Integer Subtract
+ InstrItinData<IIC_VSUBiD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [3, 2, 1]>,
+ //
+ // Quad-register Integer Subtract
+ InstrItinData<IIC_VSUBiQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [3, 2, 1]>,
+ //
+ // Double-register Integer Shift
+ InstrItinData<IIC_VSHLiD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [3, 1, 1]>,
+ //
+ // Quad-register Integer Shift
+ InstrItinData<IIC_VSHLiQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [3, 1, 1]>,
+ //
+ // Double-register Integer Shift (4 cycle)
+ InstrItinData<IIC_VSHLi4D, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1, 1]>,
+ //
+ // Quad-register Integer Shift (4 cycle)
+ InstrItinData<IIC_VSHLi4Q, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 1, 1]>,
+ //
+ // Double-register Integer Binary (4 cycle)
+ InstrItinData<IIC_VBINi4D, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 2, 2]>,
+ //
+ // Quad-register Integer Binary (4 cycle)
+ InstrItinData<IIC_VBINi4Q, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 2, 2]>,
+ //
+ // Double-register Integer Subtract (4 cycle)
+ InstrItinData<IIC_VSUBi4D, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 2, 1]>,
+ //
+ // Quad-register Integer Subtract (4 cycle)
+ InstrItinData<IIC_VSUBi4Q, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [4, 2, 1]>,
+
+ //
+ // Double-register Integer Count
+ InstrItinData<IIC_VCNTiD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [3, 2, 2]>,
+ //
+ // Quad-register Integer Count
+ // Result written in N3, but that is relative to the last cycle of multicycle,
+ // so we use 4 for those cases
+ InstrItinData<IIC_VCNTiQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [4, 2, 2]>,
+ //
+ // Double-register Absolute Difference and Accumulate
+ InstrItinData<IIC_VABAD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [6, 3, 2, 1]>,
+ //
+ // Quad-register Absolute Difference and Accumulate
+ InstrItinData<IIC_VABAQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [6, 3, 2, 1]>,
+ //
+ // Double-register Integer Pair Add Long
+ InstrItinData<IIC_VPALiD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [6, 3, 1]>,
+ //
+ // Quad-register Integer Pair Add Long
+ InstrItinData<IIC_VPALiQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [6, 3, 1]>,
+
+ //
+ // Double-register Integer Multiply (.8, .16)
+ InstrItinData<IIC_VMULi16D, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [6, 2, 2]>,
+ //
+ // Quad-register Integer Multiply (.8, .16)
+ InstrItinData<IIC_VMULi16Q, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [7, 2, 2]>,
+
+ //
+ // Double-register Integer Multiply (.32)
+ InstrItinData<IIC_VMULi32D, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [7, 2, 1]>,
+ //
+ // Quad-register Integer Multiply (.32)
+ InstrItinData<IIC_VMULi32Q, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 9 cycles
+ InstrStage<10, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<4, [A9_NPipe]>],
+ [9, 2, 1]>,
+ //
+ // Double-register Integer Multiply-Accumulate (.8, .16)
+ InstrItinData<IIC_VMACi16D, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [6, 3, 2, 2]>,
+ //
+ // Double-register Integer Multiply-Accumulate (.32)
+ InstrItinData<IIC_VMACi32D, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [7, 3, 2, 1]>,
+ //
+ // Quad-register Integer Multiply-Accumulate (.8, .16)
+ InstrItinData<IIC_VMACi16Q, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [7, 3, 2, 2]>,
+ //
+ // Quad-register Integer Multiply-Accumulate (.32)
+ InstrItinData<IIC_VMACi32Q, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 9 cycles
+ InstrStage<10, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<4, [A9_NPipe]>],
+ [9, 3, 2, 1]>,
+
+ //
+ // Move
+ InstrItinData<IIC_VMOV, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<1, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [1,1]>,
+ //
+ // Move Immediate
+ InstrItinData<IIC_VMOVImm, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [3]>,
+ //
+ // Double-register Permute Move
+ InstrItinData<IIC_VMOVD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [2, 1]>,
+ //
+ // Quad-register Permute Move
+ InstrItinData<IIC_VMOVQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [2, 1]>,
+ //
+ // Integer to Single-precision Move
+ InstrItinData<IIC_VMOVIS , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<3, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [1, 1]>,
+ //
+ // Integer to Double-precision Move
+ InstrItinData<IIC_VMOVID , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<3, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [1, 1, 1]>,
+ //
+ // Single-precision to Integer Move
+ InstrItinData<IIC_VMOVSI , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<3, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [2, 1]>,
+ //
+ // Double-precision to Integer Move
+ InstrItinData<IIC_VMOVDI , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<3, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [2, 2, 1]>,
+ //
+ // Integer to Lane Move
+ InstrItinData<IIC_VMOVISL , [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ InstrStage<4, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [3, 1, 1]>,
+
+ //
+ // Vector narrow move
+ InstrItinData<IIC_VMOVN, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [3, 1]>,
+ //
+ // Double-register FP Unary
+ InstrItinData<IIC_VUNAD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [5, 2]>,
+ //
+ // Quad-register FP Unary
+ // Result written in N5, but that is relative to the last cycle of multicycle,
+ // so we use 6 for those cases
+ InstrItinData<IIC_VUNAQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [6, 2]>,
+ //
+ // Double-register FP Binary
+ // FIXME: We're using this itin for many instructions and [2, 2] here is too
+ // optimistic.
+ InstrItinData<IIC_VBIND, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [5, 2, 2]>,
+
+ //
+ // VPADD, etc.
+ InstrItinData<IIC_VPBIND, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [5, 1, 1]>,
+ //
+ // Double-register FP VMUL
+ InstrItinData<IIC_VFMULD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [5, 2, 1]>,
+ //
+ // Quad-register FP Binary
+ // Result written in N5, but that is relative to the last cycle of multicycle,
+ // so we use 6 for those cases
+ // FIXME: We're using this itin for many instructions and [2, 2] here is too
+ // optimistic.
+ InstrItinData<IIC_VBINQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [6, 2, 2]>,
+ //
+ // Quad-register FP VMUL
+ InstrItinData<IIC_VFMULQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [6, 2, 1]>,
+ //
+ // Double-register FP Multiple-Accumulate
+ InstrItinData<IIC_VMACD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [6, 3, 2, 1]>,
+ //
+ // Quad-register FP Multiple-Accumulate
+ // Result written in N9, but that is relative to the last cycle of multicycle,
+ // so we use 10 for those cases
+ InstrItinData<IIC_VMACQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 9 cycles
+ InstrStage<10, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<4, [A9_NPipe]>],
+ [8, 4, 2, 1]>,
+ //
+ // Double-register Fused FP Multiple-Accumulate
+ InstrItinData<IIC_VFMACD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [6, 3, 2, 1]>,
+ //
+ // Quad-register Fused FP Multiple-Accumulate
+ // Result written in N9, but that is relative to the last cycle of multicycle,
+ // so we use 10 for those cases
+ InstrItinData<IIC_VFMACQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 9 cycles
+ InstrStage<10, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<4, [A9_NPipe]>],
+ [8, 4, 2, 1]>,
+ //
+ // Double-register Reciprical Step
+ InstrItinData<IIC_VRECSD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 10 cycles
+ InstrStage<11, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [9, 2, 2]>,
+ //
+ // Quad-register Reciprical Step
+ InstrItinData<IIC_VRECSQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 11 cycles
+ InstrStage<12, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [10, 2, 2]>,
+ //
+ // Double-register Permute
+ InstrItinData<IIC_VPERMD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [2, 2, 1, 1]>,
+ //
+ // Quad-register Permute
+ // Result written in N2, but that is relative to the last cycle of multicycle,
+ // so we use 3 for those cases
+ InstrItinData<IIC_VPERMQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [3, 3, 1, 1]>,
+ //
+ // Quad-register Permute (3 cycle issue)
+ // Result written in N2, but that is relative to the last cycle of multicycle,
+ // so we use 4 for those cases
+ InstrItinData<IIC_VPERMQ3, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 8 cycles
+ InstrStage<9, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe]>],
+ [4, 4, 1, 1]>,
+
+ //
+ // Double-register VEXT
+ InstrItinData<IIC_VEXTD, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 6 cycles
+ InstrStage<7, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<1, [A9_NPipe]>],
+ [2, 1, 1]>,
+ //
+ // Quad-register VEXT
+ InstrItinData<IIC_VEXTQ, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [3, 1, 2]>,
+ //
+ // VTB
+ InstrItinData<IIC_VTB1, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [3, 2, 1]>,
+ InstrItinData<IIC_VTB2, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [3, 2, 2, 1]>,
+ InstrItinData<IIC_VTB3, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<2, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 8 cycles
+ InstrStage<9, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe]>],
+ [4, 2, 2, 3, 1]>,
+ InstrItinData<IIC_VTB4, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 8 cycles
+ InstrStage<9, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe]>],
+ [4, 2, 2, 3, 3, 1]>,
+ //
+ // VTBX
+ InstrItinData<IIC_VTBX1, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [3, 1, 2, 1]>,
+ InstrItinData<IIC_VTBX2, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 7 cycles
+ InstrStage<8, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [3, 1, 2, 2, 1]>,
+ InstrItinData<IIC_VTBX3, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 8 cycles
+ InstrStage<9, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<3, [A9_NPipe]>],
+ [4, 1, 2, 2, 3, 1]>,
+ InstrItinData<IIC_VTBX4, [InstrStage<1, [A9_Issue0, A9_Issue1], 0>,
+ InstrStage<1, [A9_MUX0], 0>,
+ InstrStage<1, [A9_DRegsN], 0, Required>,
+ // Extra latency cycles since wbck is 8 cycles
+ InstrStage<9, [A9_DRegsVFP], 0, Reserved>,
+ InstrStage<2, [A9_NPipe]>],
+ [4, 1, 2, 2, 3, 3, 1]>
+]>;
+
+// ===---------------------------------------------------------------------===//
+// The following definitions describe the simpler per-operand machine model.
+// This works with MachineScheduler and will eventually replace itineraries.
+
+class A9WriteLMOpsListType<list<WriteSequence> writes> {
+ list <WriteSequence> Writes = writes;
+ SchedMachineModel SchedModel = ?;
+}
+
+// Cortex-A9 machine model for scheduling and other instruction cost heuristics.
+def CortexA9Model : SchedMachineModel {
+ let IssueWidth = 2; // 2 micro-ops are dispatched per cycle.
+ let MicroOpBufferSize = 56; // Based on available renamed registers.
+ let LoadLatency = 2; // Optimistic load latency assuming bypass.
+ // This is overriden by OperandCycles if the
+ // Itineraries are queried instead.
+ let MispredictPenalty = 8; // Based on estimate of pipeline depth.
+
+ let Itineraries = CortexA9Itineraries;
+
+ // FIXME: Many vector operations were never given an itinerary. We
+ // haven't mapped these to the new model either.
+ let CompleteModel = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Define each kind of processor resource and number available.
+//
+// The AGU unit has BufferSize=1 so that the latency between operations
+// that use it are considered to stall other operations.
+//
+// The FP unit has BufferSize=0 so that it is a hard dispatch
+// hazard. No instruction may be dispatched while the unit is reserved.
+
+let SchedModel = CortexA9Model in {
+
+def A9UnitALU : ProcResource<2>;
+def A9UnitMul : ProcResource<1> { let Super = A9UnitALU; }
+def A9UnitAGU : ProcResource<1> { let BufferSize = 1; }
+def A9UnitLS : ProcResource<1>;
+def A9UnitFP : ProcResource<1> { let BufferSize = 0; }
+def A9UnitB : ProcResource<1>;
+
+//===----------------------------------------------------------------------===//
+// Define scheduler read/write types with their resources and latency on A9.
+
+// Consume an issue slot, but no processor resources. This is useful when all
+// other writes associated with the operand have NumMicroOps = 0.
+def A9WriteIssue : SchedWriteRes<[]> { let Latency = 0; }
+
+// Write an integer register.
+def A9WriteI : SchedWriteRes<[A9UnitALU]>;
+// Write an integer shifted-by register
+def A9WriteIsr : SchedWriteRes<[A9UnitALU]> { let Latency = 2; }
+
+// Basic ALU.
+def A9WriteALU : SchedWriteRes<[A9UnitALU]>;
+// ALU with operand shifted by immediate.
+def : WriteRes<WriteALUsi, [A9UnitALU]> { let Latency = 2; }
+// ALU with operand shifted by register.
+def A9WriteALUsr : SchedWriteRes<[A9UnitALU]> { let Latency = 3; }
+
+// Multiplication
+def A9WriteM : SchedWriteRes<[A9UnitMul, A9UnitMul]> { let Latency = 4; }
+def A9WriteMHi : SchedWriteRes<[A9UnitMul]> { let Latency = 5;
+ let NumMicroOps = 0; }
+def A9WriteM16 : SchedWriteRes<[A9UnitMul]> { let Latency = 3; }
+def A9WriteM16Hi : SchedWriteRes<[A9UnitMul]> { let Latency = 4;
+ let NumMicroOps = 0; }
+
+// Floating-point
+// Only one FP or AGU instruction may issue per cycle. We model this
+// by having FP instructions consume the AGU resource.
+def A9WriteF : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 4; }
+def A9WriteFMov : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 1; }
+def A9WriteFMulS : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 5; }
+def A9WriteFMulD : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 6; }
+def A9WriteFMAS : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 8; }
+def A9WriteFMAD : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 9; }
+def A9WriteFDivS : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 15; }
+def A9WriteFDivD : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 25; }
+def A9WriteFSqrtS : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 17; }
+def A9WriteFSqrtD : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 32; }
+
+// NEON has an odd mix of latencies. Simply name the write types by latency.
+def A9WriteV1 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 1; }
+def A9WriteV2 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 2; }
+def A9WriteV3 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 3; }
+def A9WriteV4 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 4; }
+def A9WriteV5 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 5; }
+def A9WriteV6 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 6; }
+def A9WriteV7 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 7; }
+def A9WriteV9 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 9; }
+def A9WriteV10 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> { let Latency = 10; }
+
+// Reserve A9UnitFP for 2 consecutive cycles.
+def A9Write2V4 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> {
+ let Latency = 4;
+ let ResourceCycles = [2];
+}
+def A9Write2V7 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> {
+ let Latency = 7;
+ let ResourceCycles = [2];
+}
+def A9Write2V9 : SchedWriteRes<[A9UnitFP, A9UnitAGU]> {
+ let Latency = 9;
+ let ResourceCycles = [2];
+}
+
+// Branches don't have a def operand but still consume resources.
+def A9WriteB : SchedWriteRes<[A9UnitB]>;
+
+// Address generation.
+def A9WriteAdr : SchedWriteRes<[A9UnitAGU]> { let NumMicroOps = 0; }
+
+// Load Integer.
+def A9WriteL : SchedWriteRes<[A9UnitLS]> { let Latency = 3; }
+// Load the upper 32-bits using the same micro-op.
+def A9WriteLHi : SchedWriteRes<[]> { let Latency = 3;
+ let NumMicroOps = 0; }
+// Offset shifted by register.
+def A9WriteLsi : SchedWriteRes<[A9UnitLS]> { let Latency = 4; }
+// Load (and zero extend) a byte.
+def A9WriteLb : SchedWriteRes<[A9UnitLS]> { let Latency = 4; }
+def A9WriteLbsi : SchedWriteRes<[A9UnitLS]> { let Latency = 5; }
+
+// Load or Store Float, aligned.
+def A9WriteLSfp : SchedWriteRes<[A9UnitLS, A9UnitFP]> { let Latency = 1; }
+
+// Store Integer.
+def A9WriteS : SchedWriteRes<[A9UnitLS]>;
+
+//===----------------------------------------------------------------------===//
+// Define resources dynamically for load multiple variants.
+
+// Define helpers for extra latency without consuming resources.
+def A9WriteCycle1 : SchedWriteRes<[]> { let Latency = 1; let NumMicroOps = 0; }
+foreach NumCycles = 2-8 in {
+def A9WriteCycle#NumCycles : WriteSequence<[A9WriteCycle1], NumCycles>;
+} // foreach NumCycles
+
+// Define address generation sequences and predicates for 8 flavors of LDMs.
+foreach NumAddr = 1-8 in {
+
+// Define A9WriteAdr1-8 as a sequence of A9WriteAdr with additive
+// latency for instructions that generate multiple loads or stores.
+def A9WriteAdr#NumAddr : WriteSequence<[A9WriteAdr], NumAddr>;
+
+// Define a predicate to select the LDM based on number of memory addresses.
+def A9LMAdr#NumAddr#Pred :
+ SchedPredicate<"(TII->getNumLDMAddresses(MI)+1)/2 == "#NumAddr>;
+
+} // foreach NumAddr
+
+// Fall-back for unknown LDMs.
+def A9LMUnknownPred : SchedPredicate<"TII->getNumLDMAddresses(MI) == 0">;
+
+// LDM/VLDM/VLDn address generation latency & resources.
+// Dynamically select the A9WriteAdrN sequence using a predicate.
+def A9WriteLMAdr : SchedWriteVariant<[
+ SchedVar<A9LMAdr1Pred, [A9WriteAdr1]>,
+ SchedVar<A9LMAdr2Pred, [A9WriteAdr2]>,
+ SchedVar<A9LMAdr3Pred, [A9WriteAdr3]>,
+ SchedVar<A9LMAdr4Pred, [A9WriteAdr4]>,
+ SchedVar<A9LMAdr5Pred, [A9WriteAdr5]>,
+ SchedVar<A9LMAdr6Pred, [A9WriteAdr6]>,
+ SchedVar<A9LMAdr7Pred, [A9WriteAdr7]>,
+ SchedVar<A9LMAdr8Pred, [A9WriteAdr8]>,
+ // For unknown LDM/VLDM/VSTM, assume 2 32-bit registers.
+ SchedVar<A9LMUnknownPred, [A9WriteAdr2]>]>;
+
+// Define LDM Resources.
+// These take no issue resource, so they can be combined with other
+// writes like WriteB.
+// A9WriteLMLo takes a single LS resource and 2 cycles.
+def A9WriteLMLo : SchedWriteRes<[A9UnitLS]> { let Latency = 2;
+ let NumMicroOps = 0; }
+// Assuming aligned access, the upper half of each pair is free with
+// the same latency.
+def A9WriteLMHi : SchedWriteRes<[]> { let Latency = 2;
+ let NumMicroOps = 0; }
+// Each A9WriteL#N variant adds N cycles of latency without consuming
+// additional resources.
+foreach NumAddr = 1-8 in {
+def A9WriteL#NumAddr : WriteSequence<
+ [A9WriteLMLo, !cast<SchedWrite>("A9WriteCycle"#NumAddr)]>;
+def A9WriteL#NumAddr#Hi : WriteSequence<
+ [A9WriteLMHi, !cast<SchedWrite>("A9WriteCycle"#NumAddr)]>;
+}
+
+//===----------------------------------------------------------------------===//
+// LDM: Load multiple into 32-bit integer registers.
+
+def A9WriteLMOpsList : A9WriteLMOpsListType<
+ [A9WriteL1, A9WriteL1Hi,
+ A9WriteL2, A9WriteL2Hi,
+ A9WriteL3, A9WriteL3Hi,
+ A9WriteL4, A9WriteL4Hi,
+ A9WriteL5, A9WriteL5Hi,
+ A9WriteL6, A9WriteL6Hi,
+ A9WriteL7, A9WriteL7Hi,
+ A9WriteL8, A9WriteL8Hi]>;
+
+// A9WriteLM variants expand into a pair of writes for each 64-bit
+// value loaded. When the number of registers is odd, the last
+// A9WriteLnHi is naturally ignored because the instruction has no
+// following def operands. These variants take no issue resource, so
+// they may need to be part of a WriteSequence that includes A9WriteIssue.
+def A9WriteLM : SchedWriteVariant<[
+ SchedVar<A9LMAdr1Pred, A9WriteLMOpsList.Writes[0-1]>,
+ SchedVar<A9LMAdr2Pred, A9WriteLMOpsList.Writes[0-3]>,
+ SchedVar<A9LMAdr3Pred, A9WriteLMOpsList.Writes[0-5]>,
+ SchedVar<A9LMAdr4Pred, A9WriteLMOpsList.Writes[0-7]>,
+ SchedVar<A9LMAdr5Pred, A9WriteLMOpsList.Writes[0-9]>,
+ SchedVar<A9LMAdr6Pred, A9WriteLMOpsList.Writes[0-11]>,
+ SchedVar<A9LMAdr7Pred, A9WriteLMOpsList.Writes[0-13]>,
+ SchedVar<A9LMAdr8Pred, A9WriteLMOpsList.Writes[0-15]>,
+ // For unknown LDMs, define the maximum number of writes, but only
+ // make the first two consume resources.
+ SchedVar<A9LMUnknownPred, [A9WriteL1, A9WriteL1Hi,
+ A9WriteL2, A9WriteL2Hi,
+ A9WriteL3Hi, A9WriteL3Hi,
+ A9WriteL4Hi, A9WriteL4Hi,
+ A9WriteL5Hi, A9WriteL5Hi,
+ A9WriteL6Hi, A9WriteL6Hi,
+ A9WriteL7Hi, A9WriteL7Hi,
+ A9WriteL8Hi, A9WriteL8Hi]>]> {
+ let Variadic = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// VFP Load/Store Multiple Variants, and NEON VLDn/VSTn support.
+
+// A9WriteLfpOp is the same as A9WriteLSfp but takes no issue resources
+// so can be used in WriteSequences for in single-issue instructions that
+// encapsulate multiple loads.
+def A9WriteLfpOp : SchedWriteRes<[A9UnitLS, A9UnitFP]> {
+ let Latency = 1;
+ let NumMicroOps = 0;
+}
+
+foreach NumAddr = 1-8 in {
+
+// Helper for A9WriteLfp1-8: A sequence of fp loads with no micro-ops.
+def A9WriteLfp#NumAddr#Seq : WriteSequence<[A9WriteLfpOp], NumAddr>;
+
+// A9WriteLfp1-8 definitions are statically expanded into a sequence of
+// A9WriteLfpOps with additive latency that takes a single issue slot.
+// Used directly to describe NEON VLDn.
+def A9WriteLfp#NumAddr : WriteSequence<
+ [A9WriteIssue, !cast<SchedWrite>("A9WriteLfp"#NumAddr#Seq)]>;
+
+// A9WriteLfp1-8Mov adds a cycle of latency and FP resource for
+// permuting loaded values.
+def A9WriteLfp#NumAddr#Mov : WriteSequence<
+ [A9WriteF, !cast<SchedWrite>("A9WriteLfp"#NumAddr#Seq)]>;
+
+} // foreach NumAddr
+
+// Define VLDM/VSTM PreRA resources.
+// A9WriteLMfpPreRA are dynamically expanded into the correct
+// A9WriteLfp1-8 sequence based on a predicate. This supports the
+// preRA VLDM variants in which all 64-bit loads are written to the
+// same tuple of either single or double precision registers.
+def A9WriteLMfpPreRA : SchedWriteVariant<[
+ SchedVar<A9LMAdr1Pred, [A9WriteLfp1]>,
+ SchedVar<A9LMAdr2Pred, [A9WriteLfp2]>,
+ SchedVar<A9LMAdr3Pred, [A9WriteLfp3]>,
+ SchedVar<A9LMAdr4Pred, [A9WriteLfp4]>,
+ SchedVar<A9LMAdr5Pred, [A9WriteLfp5]>,
+ SchedVar<A9LMAdr6Pred, [A9WriteLfp6]>,
+ SchedVar<A9LMAdr7Pred, [A9WriteLfp7]>,
+ SchedVar<A9LMAdr8Pred, [A9WriteLfp8]>,
+ // For unknown VLDM/VSTM PreRA, assume 2xS registers.
+ SchedVar<A9LMUnknownPred, [A9WriteLfp2]>]>;
+
+// Define VLDM/VSTM PostRA Resources.
+// A9WriteLMfpLo takes a LS and FP resource and one issue slot but no latency.
+def A9WriteLMfpLo : SchedWriteRes<[A9UnitLS, A9UnitFP]> { let Latency = 0; }
+
+foreach NumAddr = 1-8 in {
+
+// Each A9WriteL#N variant adds N cycles of latency without consuming
+// additional resources.
+def A9WriteLMfp#NumAddr : WriteSequence<
+ [A9WriteLMfpLo, !cast<SchedWrite>("A9WriteCycle"#NumAddr)]>;
+
+// Assuming aligned access, the upper half of each pair is free with
+// the same latency.
+def A9WriteLMfp#NumAddr#Hi : WriteSequence<
+ [A9WriteLMHi, !cast<SchedWrite>("A9WriteCycle"#NumAddr)]>;
+
+} // foreach NumAddr
+
+// VLDM PostRA Variants. These variants expand A9WriteLMfpPostRA into a
+// pair of writes for each 64-bit data loaded. When the number of
+// registers is odd, the last WriteLMfpnHi is naturally ignored because
+// the instruction has no following def operands.
+
+def A9WriteLMfpPostRAOpsList : A9WriteLMOpsListType<
+ [A9WriteLMfp1, A9WriteLMfp2, // 0-1
+ A9WriteLMfp3, A9WriteLMfp4, // 2-3
+ A9WriteLMfp5, A9WriteLMfp6, // 4-5
+ A9WriteLMfp7, A9WriteLMfp8, // 6-7
+ A9WriteLMfp1Hi, // 8-8
+ A9WriteLMfp2Hi, A9WriteLMfp2Hi, // 9-10
+ A9WriteLMfp3Hi, A9WriteLMfp3Hi, // 11-12
+ A9WriteLMfp4Hi, A9WriteLMfp4Hi, // 13-14
+ A9WriteLMfp5Hi, A9WriteLMfp5Hi, // 15-16
+ A9WriteLMfp6Hi, A9WriteLMfp6Hi, // 17-18
+ A9WriteLMfp7Hi, A9WriteLMfp7Hi, // 19-20
+ A9WriteLMfp8Hi, A9WriteLMfp8Hi]>; // 21-22
+
+def A9WriteLMfpPostRA : SchedWriteVariant<[
+ SchedVar<A9LMAdr1Pred, A9WriteLMfpPostRAOpsList.Writes[0-0, 8-8]>,
+ SchedVar<A9LMAdr2Pred, A9WriteLMfpPostRAOpsList.Writes[0-1, 9-10]>,
+ SchedVar<A9LMAdr3Pred, A9WriteLMfpPostRAOpsList.Writes[0-2, 10-12]>,
+ SchedVar<A9LMAdr4Pred, A9WriteLMfpPostRAOpsList.Writes[0-3, 11-14]>,
+ SchedVar<A9LMAdr5Pred, A9WriteLMfpPostRAOpsList.Writes[0-4, 12-16]>,
+ SchedVar<A9LMAdr6Pred, A9WriteLMfpPostRAOpsList.Writes[0-5, 13-18]>,
+ SchedVar<A9LMAdr7Pred, A9WriteLMfpPostRAOpsList.Writes[0-6, 14-20]>,
+ SchedVar<A9LMAdr8Pred, A9WriteLMfpPostRAOpsList.Writes[0-7, 15-22]>,
+ // For unknown LDMs, define the maximum number of writes, but only
+ // make the first two consume resources. We are optimizing for the case
+ // where the operands are DPRs, and this determines the first eight
+ // types. The remaining eight types are filled to cover the case
+ // where the operands are SPRs.
+ SchedVar<A9LMUnknownPred, [A9WriteLMfp1, A9WriteLMfp2,
+ A9WriteLMfp3Hi, A9WriteLMfp4Hi,
+ A9WriteLMfp5Hi, A9WriteLMfp6Hi,
+ A9WriteLMfp7Hi, A9WriteLMfp8Hi,
+ A9WriteLMfp5Hi, A9WriteLMfp5Hi,
+ A9WriteLMfp6Hi, A9WriteLMfp6Hi,
+ A9WriteLMfp7Hi, A9WriteLMfp7Hi,
+ A9WriteLMfp8Hi, A9WriteLMfp8Hi]>]> {
+ let Variadic = 1;
+}
+
+// Distinguish between our multiple MI-level forms of the same
+// VLDM/VSTM instructions.
+def A9PreRA : SchedPredicate<
+ "TargetRegisterInfo::isVirtualRegister(MI->getOperand(0).getReg())">;
+def A9PostRA : SchedPredicate<
+ "TargetRegisterInfo::isPhysicalRegister(MI->getOperand(0).getReg())">;
+
+// VLDM represents all destination registers as a single register
+// tuple, unlike LDM. So the number of write operands is not variadic.
+def A9WriteLMfp : SchedWriteVariant<[
+ SchedVar<A9PreRA, [A9WriteLMfpPreRA]>,
+ SchedVar<A9PostRA, [A9WriteLMfpPostRA]>]>;
+
+//===----------------------------------------------------------------------===//
+// Resources for other (non-LDM/VLDM) Variants.
+
+// These mov immediate writers are unconditionally expanded with
+// additive latency.
+def A9WriteI2 : WriteSequence<[A9WriteI, A9WriteI]>;
+def A9WriteI2pc : WriteSequence<[A9WriteI, A9WriteI, WriteALU]>;
+def A9WriteI2ld : WriteSequence<[A9WriteI, A9WriteI, A9WriteL]>;
+
+// Some ALU operations can read loaded integer values one cycle early.
+def A9ReadALU : SchedReadAdvance<1,
+ [A9WriteL, A9WriteLHi, A9WriteLsi, A9WriteLb, A9WriteLbsi,
+ A9WriteL1, A9WriteL2, A9WriteL3, A9WriteL4,
+ A9WriteL5, A9WriteL6, A9WriteL7, A9WriteL8,
+ A9WriteL1Hi, A9WriteL2Hi, A9WriteL3Hi, A9WriteL4Hi,
+ A9WriteL5Hi, A9WriteL6Hi, A9WriteL7Hi, A9WriteL8Hi]>;
+
+// Read types for operands that are unconditionally read in cycle N
+// after the instruction issues, decreases producer latency by N-1.
+def A9Read2 : SchedReadAdvance<1>;
+def A9Read3 : SchedReadAdvance<2>;
+def A9Read4 : SchedReadAdvance<3>;
+
+//===----------------------------------------------------------------------===//
+// Map itinerary classes to scheduler read/write resources per operand.
+//
+// For ARM, we piggyback scheduler resources on the Itinerary classes
+// to avoid perturbing the existing instruction definitions.
+
+// This table follows the ARM Cortex-A9 Technical Reference Manuals,
+// mostly in order.
+
+def :ItinRW<[WriteALU], [IIC_iMOVi,IIC_iMOVr,IIC_iMOVsi,
+ IIC_iMVNi,IIC_iMVNsi,
+ IIC_iCMOVi,IIC_iCMOVr,IIC_iCMOVsi]>;
+def :ItinRW<[WriteALU, A9ReadALU],[IIC_iMVNr]>;
+def :ItinRW<[A9WriteIsr], [IIC_iMOVsr,IIC_iMVNsr,IIC_iCMOVsr]>;
+
+def :ItinRW<[A9WriteI2], [IIC_iMOVix2,IIC_iCMOVix2]>;
+def :ItinRW<[A9WriteI2pc], [IIC_iMOVix2addpc]>;
+def :ItinRW<[A9WriteI2ld], [IIC_iMOVix2ld]>;
+
+def :ItinRW<[WriteALU], [IIC_iBITi,IIC_iBITr,IIC_iUNAr,IIC_iTSTi,IIC_iTSTr]>;
+def :ItinRW<[WriteALU, A9ReadALU], [IIC_iALUi, IIC_iCMPi, IIC_iCMPsi]>;
+def :ItinRW<[WriteALU, A9ReadALU, A9ReadALU],[IIC_iALUr,IIC_iCMPr]>;
+def :ItinRW<[WriteALUsi], [IIC_iBITsi,IIC_iUNAsi,IIC_iEXTr,IIC_iTSTsi]>;
+def :ItinRW<[WriteALUsi, A9ReadALU], [IIC_iALUsi]>;
+def :ItinRW<[WriteALUsi, ReadDefault, A9ReadALU], [IIC_iALUsir]>; // RSB
+def :ItinRW<[A9WriteALUsr], [IIC_iBITsr,IIC_iTSTsr,IIC_iEXTAr,IIC_iEXTAsr]>;
+def :ItinRW<[A9WriteALUsr, A9ReadALU], [IIC_iALUsr,IIC_iCMPsr]>;
+
+// A9WriteHi ignored for MUL32.
+def :ItinRW<[A9WriteM, A9WriteMHi], [IIC_iMUL32,IIC_iMAC32,
+ IIC_iMUL64,IIC_iMAC64]>;
+// FIXME: SMLALxx needs itin classes
+def :ItinRW<[A9WriteM16, A9WriteM16Hi], [IIC_iMUL16,IIC_iMAC16]>;
+
+// TODO: For floating-point ops, we model the pipeline forwarding
+// latencies here. WAW latencies are sometimes longer.
+
+def :ItinRW<[A9WriteFMov], [IIC_fpSTAT, IIC_fpMOVIS, IIC_fpMOVID, IIC_fpMOVSI,
+ IIC_fpUNA32, IIC_fpUNA64,
+ IIC_fpCMP32, IIC_fpCMP64]>;
+def :ItinRW<[A9WriteFMov, A9WriteFMov], [IIC_fpMOVDI]>;
+def :ItinRW<[A9WriteF], [IIC_fpCVTSD, IIC_fpCVTDS, IIC_fpCVTSH, IIC_fpCVTHS,
+ IIC_fpCVTIS, IIC_fpCVTID, IIC_fpCVTSI, IIC_fpCVTDI,
+ IIC_fpALU32, IIC_fpALU64]>;
+def :ItinRW<[A9WriteFMulS], [IIC_fpMUL32]>;
+def :ItinRW<[A9WriteFMulD], [IIC_fpMUL64]>;
+def :ItinRW<[A9WriteFMAS], [IIC_fpMAC32]>;
+def :ItinRW<[A9WriteFMAD], [IIC_fpMAC64]>;
+def :ItinRW<[A9WriteFDivS], [IIC_fpDIV32]>;
+def :ItinRW<[A9WriteFDivD], [IIC_fpDIV64]>;
+def :ItinRW<[A9WriteFSqrtS], [IIC_fpSQRT32]>;
+def :ItinRW<[A9WriteFSqrtD], [IIC_fpSQRT64]>;
+
+def :ItinRW<[A9WriteB], [IIC_Br]>;
+
+// A9 PLD is processed in a dedicated unit.
+def :ItinRW<[], [IIC_Preload]>;
+
+// Note: We must assume that loads are aligned, since the machine
+// model cannot know this statically and A9 ignores alignment hints.
+
+// A9WriteAdr consumes AGU regardless address writeback. But it's
+// latency is only relevant for users of an updated address.
+def :ItinRW<[A9WriteL, A9WriteAdr], [IIC_iLoad_i,IIC_iLoad_r,
+ IIC_iLoad_iu,IIC_iLoad_ru]>;
+def :ItinRW<[A9WriteLsi, A9WriteAdr], [IIC_iLoad_si,IIC_iLoad_siu]>;
+def :ItinRW<[A9WriteLb, A9WriteAdr2], [IIC_iLoad_bh_i,IIC_iLoad_bh_r,
+ IIC_iLoad_bh_iu,IIC_iLoad_bh_ru]>;
+def :ItinRW<[A9WriteLbsi, A9WriteAdr2], [IIC_iLoad_bh_si,IIC_iLoad_bh_siu]>;
+def :ItinRW<[A9WriteL, A9WriteLHi, A9WriteAdr], [IIC_iLoad_d_i,IIC_iLoad_d_r,
+ IIC_iLoad_d_ru]>;
+// Store either has no def operands, or the one def for address writeback.
+def :ItinRW<[A9WriteAdr, A9WriteS], [IIC_iStore_i, IIC_iStore_r,
+ IIC_iStore_iu, IIC_iStore_ru,
+ IIC_iStore_d_i, IIC_iStore_d_r,
+ IIC_iStore_d_ru]>;
+def :ItinRW<[A9WriteAdr2, A9WriteS], [IIC_iStore_si, IIC_iStore_siu,
+ IIC_iStore_bh_i, IIC_iStore_bh_r,
+ IIC_iStore_bh_iu, IIC_iStore_bh_ru]>;
+def :ItinRW<[A9WriteAdr3, A9WriteS], [IIC_iStore_bh_si, IIC_iStore_bh_siu]>;
+
+// A9WriteML will be expanded into a separate write for each def
+// operand. Address generation consumes resources, but A9WriteLMAdr
+// is listed after all def operands, so has no effective latency.
+//
+// Note: A9WriteLM expands into an even number of def operands. The
+// actual number of def operands may be less by one.
+def :ItinRW<[A9WriteLM, A9WriteLMAdr, A9WriteIssue], [IIC_iLoad_m, IIC_iPop]>;
+
+// Load multiple with address writeback has an extra def operand in
+// front of the loaded registers.
+//
+// Reuse the load-multiple variants for store-multiple because the
+// resources are identical, For stores only the address writeback
+// has a def operand so the WriteL latencies are unused.
+def :ItinRW<[A9WriteLMAdr, A9WriteLM, A9WriteIssue], [IIC_iLoad_mu,
+ IIC_iStore_m,
+ IIC_iStore_mu]>;
+def :ItinRW<[A9WriteLM, A9WriteLMAdr, A9WriteB], [IIC_iLoad_mBr, IIC_iPop_Br]>;
+def :ItinRW<[A9WriteL, A9WriteAdr, WriteALU], [IIC_iLoadiALU]>;
+
+def :ItinRW<[A9WriteLSfp, A9WriteAdr], [IIC_fpLoad32, IIC_fpLoad64]>;
+
+def :ItinRW<[A9WriteLMfp, A9WriteLMAdr], [IIC_fpLoad_m]>;
+def :ItinRW<[A9WriteLMAdr, A9WriteLMfp], [IIC_fpLoad_mu]>;
+def :ItinRW<[A9WriteAdr, A9WriteLSfp], [IIC_fpStore32, IIC_fpStore64,
+ IIC_fpStore_m, IIC_fpStore_mu]>;
+
+// Note: Unlike VLDM, VLD1 expects the writeback operand after the
+// normal writes.
+def :ItinRW<[A9WriteLfp1, A9WriteAdr1], [IIC_VLD1, IIC_VLD1u,
+ IIC_VLD1x2, IIC_VLD1x2u]>;
+def :ItinRW<[A9WriteLfp2, A9WriteAdr2], [IIC_VLD1x3, IIC_VLD1x3u,
+ IIC_VLD1x4, IIC_VLD1x4u,
+ IIC_VLD4dup, IIC_VLD4dupu]>;
+def :ItinRW<[A9WriteLfp1Mov, A9WriteAdr1], [IIC_VLD1dup, IIC_VLD1dupu,
+ IIC_VLD2, IIC_VLD2u,
+ IIC_VLD2dup, IIC_VLD2dupu]>;
+def :ItinRW<[A9WriteLfp2Mov, A9WriteAdr1], [IIC_VLD1ln, IIC_VLD1lnu,
+ IIC_VLD2x2, IIC_VLD2x2u,
+ IIC_VLD2ln, IIC_VLD2lnu]>;
+def :ItinRW<[A9WriteLfp3Mov, A9WriteAdr3], [IIC_VLD3, IIC_VLD3u,
+ IIC_VLD3dup, IIC_VLD3dupu]>;
+def :ItinRW<[A9WriteLfp4Mov, A9WriteAdr4], [IIC_VLD4, IIC_VLD4u,
+ IIC_VLD4ln, IIC_VLD4lnu]>;
+def :ItinRW<[A9WriteLfp5Mov, A9WriteAdr5], [IIC_VLD3ln, IIC_VLD3lnu]>;
+
+// Vector stores use similar resources to vector loads, so use the
+// same write types. The address write must be first for stores with
+// address writeback.
+def :ItinRW<[A9WriteAdr1, A9WriteLfp1], [IIC_VST1, IIC_VST1u,
+ IIC_VST1x2, IIC_VST1x2u,
+ IIC_VST1ln, IIC_VST1lnu,
+ IIC_VST2, IIC_VST2u,
+ IIC_VST2x2, IIC_VST2x2u,
+ IIC_VST2ln, IIC_VST2lnu]>;
+def :ItinRW<[A9WriteAdr2, A9WriteLfp2], [IIC_VST1x3, IIC_VST1x3u,
+ IIC_VST1x4, IIC_VST1x4u,
+ IIC_VST3, IIC_VST3u,
+ IIC_VST3ln, IIC_VST3lnu,
+ IIC_VST4, IIC_VST4u,
+ IIC_VST4ln, IIC_VST4lnu]>;
+
+// NEON moves.
+def :ItinRW<[A9WriteV2], [IIC_VMOVSI, IIC_VMOVDI, IIC_VMOVD, IIC_VMOVQ]>;
+def :ItinRW<[A9WriteV1], [IIC_VMOV, IIC_VMOVIS, IIC_VMOVID]>;
+def :ItinRW<[A9WriteV3], [IIC_VMOVISL, IIC_VMOVN]>;
+
+// NEON integer arithmetic
+//
+// VADD/VAND/VORR/VEOR/VBIC/VORN/VBIT/VBIF/VBSL
+def :ItinRW<[A9WriteV3, A9Read2, A9Read2], [IIC_VBINiD, IIC_VBINiQ]>;
+// VSUB/VMVN/VCLSD/VCLZD/VCNTD
+def :ItinRW<[A9WriteV3, A9Read2], [IIC_VSUBiD, IIC_VSUBiQ, IIC_VCNTiD]>;
+// VADDL/VSUBL/VNEG are mapped later under IIC_SHLi.
+// ...
+// VHADD/VRHADD/VQADD/VTST/VADH/VRADH
+def :ItinRW<[A9WriteV4, A9Read2, A9Read2], [IIC_VBINi4D, IIC_VBINi4Q]>;
+
+// VSBH/VRSBH/VHSUB/VQSUB/VABD/VCEQ/VCGE/VCGT/VMAX/VMIN/VPMAX/VPMIN/VABDL
+def :ItinRW<[A9WriteV4, A9Read2], [IIC_VSUBi4D, IIC_VSUBi4Q]>;
+// VQNEG/VQABS
+def :ItinRW<[A9WriteV4], [IIC_VQUNAiD, IIC_VQUNAiQ]>;
+// VABS
+def :ItinRW<[A9WriteV4, A9Read2], [IIC_VUNAiD, IIC_VUNAiQ]>;
+// VPADD/VPADDL are mapped later under IIC_SHLi.
+// ...
+// VCLSQ/VCLZQ/VCNTQ, takes two cycles.
+def :ItinRW<[A9Write2V4, A9Read3], [IIC_VCNTiQ]>;
+// VMOVimm/VMVNimm/VORRimm/VBICimm
+def :ItinRW<[A9WriteV3], [IIC_VMOVImm]>;
+def :ItinRW<[A9WriteV6, A9Read3, A9Read2], [IIC_VABAD, IIC_VABAQ]>;
+def :ItinRW<[A9WriteV6, A9Read3], [IIC_VPALiD, IIC_VPALiQ]>;
+
+// NEON integer multiply
+//
+// Note: these don't quite match the timing docs, but they do match
+// the original A9 itinerary.
+def :ItinRW<[A9WriteV6, A9Read2, A9Read2], [IIC_VMULi16D]>;
+def :ItinRW<[A9WriteV7, A9Read2, A9Read2], [IIC_VMULi16Q]>;
+def :ItinRW<[A9Write2V7, A9Read2], [IIC_VMULi32D]>;
+def :ItinRW<[A9Write2V9, A9Read2], [IIC_VMULi32Q]>;
+def :ItinRW<[A9WriteV6, A9Read3, A9Read2, A9Read2], [IIC_VMACi16D]>;
+def :ItinRW<[A9WriteV7, A9Read3, A9Read2, A9Read2], [IIC_VMACi16Q]>;
+def :ItinRW<[A9Write2V7, A9Read3, A9Read2], [IIC_VMACi32D]>;
+def :ItinRW<[A9Write2V9, A9Read3, A9Read2], [IIC_VMACi32Q]>;
+
+// NEON integer shift
+// TODO: Q,Q,Q shifts should actually reserve FP for 2 cycles.
+def :ItinRW<[A9WriteV3], [IIC_VSHLiD, IIC_VSHLiQ]>;
+def :ItinRW<[A9WriteV4], [IIC_VSHLi4D, IIC_VSHLi4Q]>;
+
+// NEON permute
+def :ItinRW<[A9WriteV2, A9WriteV2], [IIC_VPERMD, IIC_VPERMQ, IIC_VEXTD]>;
+def :ItinRW<[A9WriteV3, A9WriteV4, ReadDefault, A9Read2],
+ [IIC_VPERMQ3, IIC_VEXTQ]>;
+def :ItinRW<[A9WriteV3, A9Read2], [IIC_VTB1]>;
+def :ItinRW<[A9WriteV3, A9Read2, A9Read2], [IIC_VTB2]>;
+def :ItinRW<[A9WriteV4, A9Read2, A9Read2, A9Read3], [IIC_VTB3]>;
+def :ItinRW<[A9WriteV4, A9Read2, A9Read2, A9Read3, A9Read3], [IIC_VTB4]>;
+def :ItinRW<[A9WriteV3, ReadDefault, A9Read2], [IIC_VTBX1]>;
+def :ItinRW<[A9WriteV3, ReadDefault, A9Read2, A9Read2], [IIC_VTBX2]>;
+def :ItinRW<[A9WriteV4, ReadDefault, A9Read2, A9Read2, A9Read3], [IIC_VTBX3]>;
+def :ItinRW<[A9WriteV4, ReadDefault, A9Read2, A9Read2, A9Read3, A9Read3],
+ [IIC_VTBX4]>;
+
+// NEON floating-point
+def :ItinRW<[A9WriteV5, A9Read2, A9Read2], [IIC_VBIND]>;
+def :ItinRW<[A9WriteV6, A9Read2, A9Read2], [IIC_VBINQ]>;
+def :ItinRW<[A9WriteV5, A9Read2], [IIC_VUNAD, IIC_VFMULD]>;
+def :ItinRW<[A9WriteV6, A9Read2], [IIC_VUNAQ, IIC_VFMULQ]>;
+def :ItinRW<[A9WriteV9, A9Read3, A9Read2], [IIC_VMACD, IIC_VFMACD]>;
+def :ItinRW<[A9WriteV10, A9Read3, A9Read2], [IIC_VMACQ, IIC_VFMACQ]>;
+def :ItinRW<[A9WriteV9, A9Read2, A9Read2], [IIC_VRECSD]>;
+def :ItinRW<[A9WriteV10, A9Read2, A9Read2], [IIC_VRECSQ]>;
+
+// Map SchedRWs that are identical for cortexa9 to existing resources.
+def : SchedAlias<WriteALU, A9WriteALU>;
+def : SchedAlias<WriteALUsr, A9WriteALUsr>;
+def : SchedAlias<WriteALUSsr, A9WriteALUsr>;
+def : SchedAlias<ReadALU, A9ReadALU>;
+def : SchedAlias<ReadALUsr, A9ReadALU>;
+def : InstRW< [WriteALU],
+ (instregex "ANDri", "ORRri", "EORri", "BICri", "ANDrr", "ORRrr", "EORrr",
+ "BICrr")>;
+def : InstRW< [WriteALUsi], (instregex "ANDrsi", "ORRrsi", "EORrsi", "BICrsi")>;
+def : InstRW< [WriteALUsr], (instregex "ANDrsr", "ORRrsr", "EORrsr", "BICrsr")>;
+
+
+def : SchedAlias<WriteCMP, A9WriteALU>;
+def : SchedAlias<WriteCMPsi, A9WriteALU>;
+def : SchedAlias<WriteCMPsr, A9WriteALU>;
+
+def : InstRW< [A9WriteIsr], (instregex "MOVsr", "MOVsi", "MVNsr", "MOVCCsi",
+ "MOVCCsr")>;
+def : InstRW< [WriteALU, A9ReadALU], (instregex "MVNr")>;
+def : InstRW< [A9WriteI2], (instregex "MOVCCi32imm", "MOVi32imm",
+ "MOV_ga_dyn")>;
+def : InstRW< [A9WriteI2pc], (instregex "MOV_ga_pcrel")>;
+def : InstRW< [A9WriteI2ld], (instregex "MOV_ga_pcrel_ldr")>;
+
+def : InstRW< [WriteALU], (instregex "SEL")>;
+
+def : InstRW< [WriteALUsi], (instregex "BFC", "BFI", "UBFX", "SBFX")>;
+
+def : InstRW< [A9WriteM],
+ (instregex "MUL", "MULv5", "SMMUL", "SMMULR", "MLA", "MLAv5", "MLS",
+ "SMMLA", "SMMLAR", "SMMLS", "SMMLSR")>;
+def : InstRW< [A9WriteM, A9WriteMHi],
+ (instregex "SMULL", "SMULLv5", "UMULL", "UMULLv5", "SMLAL$", "UMLAL",
+ "UMAAL", "SMLALv5", "UMLALv5", "UMAALv5", "SMLALBB", "SMLALBT", "SMLALTB",
+ "SMLALTT")>;
+// FIXME: These instructions used to have NoItinerary. Just copied the one from above.
+def : InstRW< [A9WriteM, A9WriteMHi],
+ (instregex "SMLAD", "SMLADX", "SMLALD", "SMLALDX", "SMLSD", "SMLSDX",
+ "SMLSLD", "SMLLDX", "SMUAD", "SMUADX", "SMUSD", "SMUSDX")>;
+
+def : InstRW<[A9WriteM16, A9WriteM16Hi],
+ (instregex "SMULBB", "SMULBT", "SMULTB", "SMULTT", "SMULWB", "SMULWT")>;
+def : InstRW<[A9WriteM16, A9WriteM16Hi],
+ (instregex "SMLABB", "SMLABT", "SMLATB", "SMLATT", "SMLAWB", "SMLAWT")>;
+
+def : InstRW<[A9WriteL], (instregex "LDRi12", "PICLDR$")>;
+def : InstRW<[A9WriteLsi], (instregex "LDRrs")>;
+def : InstRW<[A9WriteLb],
+ (instregex "LDRBi12", "PICLDRH", "PICLDRB", "PICLDRSH", "PICLDRSB",
+ "LDRH", "LDRSH", "LDRSB")>;
+def : InstRW<[A9WriteLbsi], (instregex "LDRrs")>;
+
+def : WriteRes<WriteDiv, []> { let Latency = 0; }
+
+def : WriteRes<WriteBr, [A9UnitB]>;
+def : WriteRes<WriteBrL, [A9UnitB]>;
+def : WriteRes<WriteBrTbl, [A9UnitB]>;
+def : WriteRes<WritePreLd, []>;
+def : SchedAlias<WriteCvtFP, A9WriteF>;
+def : WriteRes<WriteNoop, []> { let Latency = 0; let NumMicroOps = 0; }
+} // SchedModel = CortexA9Model
diff --git a/contrib/llvm/lib/Target/ARM/ARMScheduleSwift.td b/contrib/llvm/lib/Target/ARM/ARMScheduleSwift.td
new file mode 100644
index 0000000..b03d5ff
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMScheduleSwift.td
@@ -0,0 +1,2076 @@
+//=- ARMScheduleSwift.td - Swift Scheduling Definitions -*- tablegen -*----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the Swift processor..
+//
+//===----------------------------------------------------------------------===//
+
+// ===---------------------------------------------------------------------===//
+// This section contains legacy support for itineraries. This is
+// required until SD and PostRA schedulers are replaced by MachineScheduler.
+
+def SW_DIS0 : FuncUnit;
+def SW_DIS1 : FuncUnit;
+def SW_DIS2 : FuncUnit;
+
+def SW_ALU0 : FuncUnit;
+def SW_ALU1 : FuncUnit;
+def SW_LS : FuncUnit;
+def SW_IDIV : FuncUnit;
+def SW_FDIV : FuncUnit;
+
+// FIXME: Need bypasses.
+// FIXME: Model the multiple stages of IIC_iMOVix2, IIC_iMOVix2addpc, and
+// IIC_iMOVix2ld better.
+// FIXME: Model the special immediate shifts that are not microcoded.
+// FIXME: Do we need to model the fact that uses of r15 in a micro-op force it
+// to issue on pipe 1?
+// FIXME: Model the pipelined behavior of CMP / TST instructions.
+// FIXME: Better model the microcode stages of multiply instructions, especially
+// conditional variants.
+// FIXME: Add preload instruction when it is documented.
+// FIXME: Model non-pipelined nature of FP div / sqrt unit.
+
+def SwiftItineraries : ProcessorItineraries<
+ [SW_DIS0, SW_DIS1, SW_DIS2, SW_ALU0, SW_ALU1, SW_LS, SW_IDIV, SW_FDIV], [], [
+ //
+ // Move instructions, unconditional
+ InstrItinData<IIC_iMOVi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ InstrItinData<IIC_iMOVr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ InstrItinData<IIC_iMOVsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ InstrItinData<IIC_iMOVsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ InstrItinData<IIC_iMOVix2 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2]>,
+ InstrItinData<IIC_iMOVix2addpc,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [3]>,
+ InstrItinData<IIC_iMOVix2ld,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>,
+ InstrStage<1, [SW_LS]>],
+ [5]>,
+ //
+ // MVN instructions
+ InstrItinData<IIC_iMVNi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ InstrItinData<IIC_iMVNr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ InstrItinData<IIC_iMVNsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ InstrItinData<IIC_iMVNsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ //
+ // No operand cycles
+ InstrItinData<IIC_iALUx , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>]>,
+ //
+ // Binary Instructions that produce a result
+ InstrItinData<IIC_iALUi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1]>,
+ InstrItinData<IIC_iALUr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_iALUsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_iALUsir,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_iALUsr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2, 1, 1, 1]>,
+ //
+ // Bitwise Instructions that produce a result
+ InstrItinData<IIC_iBITi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1]>,
+ InstrItinData<IIC_iBITr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_iBITsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_iBITsr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2, 1, 1, 1]>,
+ //
+ // Unary Instructions that produce a result
+
+ // CLZ, RBIT, etc.
+ InstrItinData<IIC_iUNAr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1]>,
+
+ // BFC, BFI, UBFX, SBFX
+ InstrItinData<IIC_iUNAsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2, 1]>,
+
+ //
+ // Zero and sign extension instructions
+ InstrItinData<IIC_iEXTr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1]>,
+ InstrItinData<IIC_iEXTAr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_iEXTAsr,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1, 1, 1]>,
+ //
+ // Compare instructions
+ InstrItinData<IIC_iCMPi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ InstrItinData<IIC_iCMPr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1]>,
+ InstrItinData<IIC_iCMPsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<2, [SW_ALU0, SW_ALU1]>],
+ [1, 1]>,
+ InstrItinData<IIC_iCMPsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<2, [SW_ALU0, SW_ALU1]>],
+ [1, 1, 1]>,
+ //
+ // Test instructions
+ InstrItinData<IIC_iTSTi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ InstrItinData<IIC_iTSTr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1]>,
+ InstrItinData<IIC_iTSTsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<2, [SW_ALU0, SW_ALU1]>],
+ [1, 1]>,
+ InstrItinData<IIC_iTSTsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<2, [SW_ALU0, SW_ALU1]>],
+ [1, 1, 1]>,
+ //
+ // Move instructions, conditional
+ // FIXME: Correctly model the extra input dep on the destination.
+ InstrItinData<IIC_iCMOVi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ InstrItinData<IIC_iCMOVr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1]>,
+ InstrItinData<IIC_iCMOVsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1, 1]>,
+ InstrItinData<IIC_iCMOVsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_iCMOVix2, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2]>,
+
+ // Integer multiply pipeline
+ //
+ InstrItinData<IIC_iMUL16 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_iMAC16 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [3, 1, 1, 1]>,
+ InstrItinData<IIC_iMUL32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+ InstrItinData<IIC_iMAC32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1, 1]>,
+ InstrItinData<IIC_iMUL64 , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0], 1>,
+ InstrStage<1, [SW_ALU0], 3>,
+ InstrStage<1, [SW_ALU0]>],
+ [5, 5, 1, 1]>,
+ InstrItinData<IIC_iMAC64 , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0], 1>,
+ InstrStage<1, [SW_ALU0], 1>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 3>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [5, 6, 1, 1]>,
+ //
+ // Integer divide
+ InstrItinData<IIC_iDIV , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0], 0>,
+ InstrStage<14, [SW_IDIV]>],
+ [14, 1, 1]>,
+
+ // Integer load pipeline
+ // FIXME: The timings are some rough approximations
+ //
+ // Immediate offset
+ InstrItinData<IIC_iLoad_i , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [3, 1]>,
+ InstrItinData<IIC_iLoad_bh_i, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [3, 1]>,
+ InstrItinData<IIC_iLoad_d_i , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_LS], 1>,
+ InstrStage<1, [SW_LS]>],
+ [3, 4, 1]>,
+ //
+ // Register offset
+ InstrItinData<IIC_iLoad_r , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_iLoad_bh_r, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_iLoad_d_r , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_LS], 1>,
+ InstrStage<1, [SW_LS], 3>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [3, 4, 1, 1]>,
+ //
+ // Scaled register offset
+ InstrItinData<IIC_iLoad_si , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
+ InstrStage<1, [SW_LS]>],
+ [5, 1, 1]>,
+ InstrItinData<IIC_iLoad_bh_si,[InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
+ InstrStage<1, [SW_LS]>],
+ [5, 1, 1]>,
+ //
+ // Immediate offset with update
+ InstrItinData<IIC_iLoad_iu , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_iLoad_bh_iu,[InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [3, 1, 1]>,
+ //
+ // Register offset with update
+ InstrItinData<IIC_iLoad_ru , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0], 1>,
+ InstrStage<1, [SW_LS]>],
+ [3, 1, 1, 1]>,
+ InstrItinData<IIC_iLoad_bh_ru,[InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0], 1>,
+ InstrStage<1, [SW_LS]>],
+ [3, 1, 1, 1]>,
+ InstrItinData<IIC_iLoad_d_ru, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 0>,
+ InstrStage<1, [SW_LS], 3>,
+ InstrStage<1, [SW_LS], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [3, 4, 1, 1]>,
+ //
+ // Scaled register offset with update
+ InstrItinData<IIC_iLoad_siu , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
+ InstrStage<1, [SW_LS], 3>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [5, 3, 1, 1]>,
+ InstrItinData<IIC_iLoad_bh_siu,[InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
+ InstrStage<1, [SW_LS], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [5, 3, 1, 1]>,
+ //
+ // Load multiple, def is the 5th operand.
+ // FIXME: This assumes 3 to 4 registers.
+ InstrItinData<IIC_iLoad_m , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1, 1, 3], [], -1>, // dynamic uops
+
+ //
+ // Load multiple + update, defs are the 1st and 5th operands.
+ InstrItinData<IIC_iLoad_mu , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 0>,
+ InstrStage<1, [SW_LS], 3>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2, 1, 1, 1, 3], [], -1>, // dynamic uops
+ //
+ // Load multiple plus branch
+ InstrItinData<IIC_iLoad_mBr, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1, 1, 3], [], -1>, // dynamic uops
+ //
+ // Pop, def is the 3rd operand.
+ InstrItinData<IIC_iPop , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 3], [], -1>, // dynamic uops
+ //
+ // Pop + branch, def is the 3rd operand.
+ InstrItinData<IIC_iPop_Br, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 3], [], -1>, // dynamic uops
+
+ //
+ // iLoadi + iALUr for t2LDRpci_pic.
+ InstrItinData<IIC_iLoadiALU, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS], 3>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [4, 1]>,
+
+ // Integer store pipeline
+ ///
+ // Immediate offset
+ InstrItinData<IIC_iStore_i , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1]>,
+ InstrItinData<IIC_iStore_bh_i,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1]>,
+ InstrItinData<IIC_iStore_d_i, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_LS], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1]>,
+ //
+ // Register offset
+ InstrItinData<IIC_iStore_r , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_r,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_iStore_d_r, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_LS], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1]>,
+ //
+ // Scaled register offset
+ InstrItinData<IIC_iStore_si , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_si,[InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1]>,
+ //
+ // Immediate offset with update
+ InstrItinData<IIC_iStore_iu , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_iu,[InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1]>,
+ //
+ // Register offset with update
+ InstrItinData<IIC_iStore_ru , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_ru,[InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1, 1]>,
+ InstrItinData<IIC_iStore_d_ru, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1, 1]>,
+ //
+ // Scaled register offset with update
+ InstrItinData<IIC_iStore_siu, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
+ InstrStage<1, [SW_LS], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>],
+ [3, 1, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_siu, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
+ InstrStage<1, [SW_LS], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>],
+ [3, 1, 1, 1]>,
+ //
+ // Store multiple
+ InstrItinData<IIC_iStore_m , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS], 1>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS], 1>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [], [], -1>, // dynamic uops
+ //
+ // Store multiple + update
+ InstrItinData<IIC_iStore_mu, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS], 1>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS], 1>,
+ InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
+ InstrStage<1, [SW_LS]>],
+ [2], [], -1>, // dynamic uops
+
+ //
+ // Preload
+ InstrItinData<IIC_Preload, [InstrStage<1, [SW_DIS0], 0>], [1, 1]>,
+
+ // Branch
+ //
+ // no delay slots, so the latency of a branch is unimportant
+ InstrItinData<IIC_Br , [InstrStage<1, [SW_DIS0], 0>]>,
+
+ // FP Special Register to Integer Register File Move
+ InstrItinData<IIC_fpSTAT , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [1]>,
+ //
+ // Single-precision FP Unary
+ //
+ // Most floating-point moves get issued on ALU0.
+ InstrItinData<IIC_fpUNA32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1]>,
+ //
+ // Double-precision FP Unary
+ InstrItinData<IIC_fpUNA64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1]>,
+
+ //
+ // Single-precision FP Compare
+ InstrItinData<IIC_fpCMP32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [1, 1]>,
+ //
+ // Double-precision FP Compare
+ InstrItinData<IIC_fpCMP64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [1, 1]>,
+ //
+ // Single to Double FP Convert
+ InstrItinData<IIC_fpCVTSD , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1]>,
+ //
+ // Double to Single FP Convert
+ InstrItinData<IIC_fpCVTDS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1]>,
+
+ //
+ // Single to Half FP Convert
+ InstrItinData<IIC_fpCVTSH , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU1], 4>,
+ InstrStage<1, [SW_ALU1]>],
+ [6, 1]>,
+ //
+ // Half to Single FP Convert
+ InstrItinData<IIC_fpCVTHS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1]>,
+
+ //
+ // Single-Precision FP to Integer Convert
+ InstrItinData<IIC_fpCVTSI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1]>,
+ //
+ // Double-Precision FP to Integer Convert
+ InstrItinData<IIC_fpCVTDI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1]>,
+ //
+ // Integer to Single-Precision FP Convert
+ InstrItinData<IIC_fpCVTIS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1]>,
+ //
+ // Integer to Double-Precision FP Convert
+ InstrItinData<IIC_fpCVTID , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1]>,
+ //
+ // Single-precision FP ALU
+ InstrItinData<IIC_fpALU32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1, 1]>,
+ //
+ // Double-precision FP ALU
+ InstrItinData<IIC_fpALU64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1, 1]>,
+ //
+ // Single-precision FP Multiply
+ InstrItinData<IIC_fpMUL32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 1]>,
+ //
+ // Double-precision FP Multiply
+ InstrItinData<IIC_fpMUL64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [6, 1, 1]>,
+ //
+ // Single-precision FP MAC
+ InstrItinData<IIC_fpMAC32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [8, 1, 1]>,
+ //
+ // Double-precision FP MAC
+ InstrItinData<IIC_fpMAC64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [12, 1, 1]>,
+ //
+ // Single-precision Fused FP MAC
+ InstrItinData<IIC_fpFMAC32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [8, 1, 1]>,
+ //
+ // Double-precision Fused FP MAC
+ InstrItinData<IIC_fpFMAC64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [12, 1, 1]>,
+ //
+ // Single-precision FP DIV
+ InstrItinData<IIC_fpDIV32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1], 0>,
+ InstrStage<15, [SW_FDIV]>],
+ [17, 1, 1]>,
+ //
+ // Double-precision FP DIV
+ InstrItinData<IIC_fpDIV64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1], 0>,
+ InstrStage<30, [SW_FDIV]>],
+ [32, 1, 1]>,
+ //
+ // Single-precision FP SQRT
+ InstrItinData<IIC_fpSQRT32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1], 0>,
+ InstrStage<15, [SW_FDIV]>],
+ [17, 1]>,
+ //
+ // Double-precision FP SQRT
+ InstrItinData<IIC_fpSQRT64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1], 0>,
+ InstrStage<30, [SW_FDIV]>],
+ [32, 1, 1]>,
+
+ //
+ // Integer to Single-precision Move
+ InstrItinData<IIC_fpMOVIS, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_LS], 4>,
+ InstrStage<1, [SW_ALU0]>],
+ [6, 1]>,
+ //
+ // Integer to Double-precision Move
+ InstrItinData<IIC_fpMOVID, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [4, 1]>,
+ //
+ // Single-precision to Integer Move
+ InstrItinData<IIC_fpMOVSI, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [3, 1]>,
+ //
+ // Double-precision to Integer Move
+ InstrItinData<IIC_fpMOVDI, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_LS], 3>,
+ InstrStage<1, [SW_LS]>],
+ [3, 4, 1]>,
+ //
+ // Single-precision FP Load
+ InstrItinData<IIC_fpLoad32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [4, 1]>,
+ //
+ // Double-precision FP Load
+ InstrItinData<IIC_fpLoad64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [4, 1]>,
+ //
+ // FP Load Multiple
+ // FIXME: Assumes a single Q register.
+ InstrItinData<IIC_fpLoad_m, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1, 4], [], -1>, // dynamic uops
+ //
+ // FP Load Multiple + update
+ // FIXME: Assumes a single Q register.
+ InstrItinData<IIC_fpLoad_mu,[InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_LS], 4>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2, 1, 1, 1, 4], [], -1>, // dynamic uops
+ //
+ // Single-precision FP Store
+ InstrItinData<IIC_fpStore32,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1]>,
+ //
+ // Double-precision FP Store
+ InstrItinData<IIC_fpStore64,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1]>,
+ //
+ // FP Store Multiple
+ // FIXME: Assumes a single Q register.
+ InstrItinData<IIC_fpStore_m,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [1, 1, 1], [], -1>, // dynamic uops
+ //
+ // FP Store Multiple + update
+ // FIXME: Assumes a single Q register.
+ InstrItinData<IIC_fpStore_mu,[InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_LS], 4>,
+ InstrStage<1, [SW_ALU0, SW_ALU1]>],
+ [2, 1, 1, 1], [], -1>, // dynamic uops
+ // NEON
+ //
+ // Double-register Integer Unary
+ InstrItinData<IIC_VUNAiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1]>,
+ //
+ // Quad-register Integer Unary
+ InstrItinData<IIC_VUNAiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1]>,
+ //
+ // Double-register Integer Q-Unary
+ InstrItinData<IIC_VQUNAiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1]>,
+ //
+ // Quad-register Integer CountQ-Unary
+ InstrItinData<IIC_VQUNAiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1]>,
+ //
+ // Double-register Integer Binary
+ InstrItinData<IIC_VBINiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1, 1]>,
+ //
+ // Quad-register Integer Binary
+ InstrItinData<IIC_VBINiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1, 1]>,
+ //
+ // Double-register Integer Subtract
+ InstrItinData<IIC_VSUBiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1, 1]>,
+ //
+ // Quad-register Integer Subtract
+ InstrItinData<IIC_VSUBiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1, 1]>,
+ //
+ // Double-register Integer Shift
+ InstrItinData<IIC_VSHLiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1, 1]>,
+ //
+ // Quad-register Integer Shift
+ InstrItinData<IIC_VSHLiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1, 1]>,
+ //
+ // Double-register Integer Shift (4 cycle)
+ InstrItinData<IIC_VSHLi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+ //
+ // Quad-register Integer Shift (4 cycle)
+ InstrItinData<IIC_VSHLi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+ //
+ // Double-register Integer Binary (4 cycle)
+ InstrItinData<IIC_VBINi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+ //
+ // Quad-register Integer Binary (4 cycle)
+ InstrItinData<IIC_VBINi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+ //
+ // Double-register Integer Subtract (4 cycle)
+ InstrItinData<IIC_VSUBi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+ //
+ // Quad-register Integer Subtract (4 cycle)
+ InstrItinData<IIC_VSUBi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+
+ //
+ // Double-register Integer Count
+ InstrItinData<IIC_VCNTiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1, 1]>,
+ //
+ // Quad-register Integer Count
+ InstrItinData<IIC_VCNTiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1, 1]>,
+ //
+ // Double-register Absolute Difference and Accumulate
+ InstrItinData<IIC_VABAD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1, 1]>,
+ //
+ // Quad-register Absolute Difference and Accumulate
+ InstrItinData<IIC_VABAQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1, 1]>,
+ //
+ // Double-register Integer Pair Add Long
+ InstrItinData<IIC_VPALiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+ //
+ // Quad-register Integer Pair Add Long
+ InstrItinData<IIC_VPALiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+
+ //
+ // Double-register Integer Multiply (.8, .16)
+ InstrItinData<IIC_VMULi16D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 1]>,
+ //
+ // Quad-register Integer Multiply (.8, .16)
+ InstrItinData<IIC_VMULi16Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 1]>,
+
+ //
+ // Double-register Integer Multiply (.32)
+ InstrItinData<IIC_VMULi32D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 1]>,
+ //
+ // Quad-register Integer Multiply (.32)
+ InstrItinData<IIC_VMULi32Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 1]>,
+ //
+ // Double-register Integer Multiply-Accumulate (.8, .16)
+ InstrItinData<IIC_VMACi16D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 1, 1]>,
+ //
+ // Double-register Integer Multiply-Accumulate (.32)
+ InstrItinData<IIC_VMACi32D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 1, 1]>,
+ //
+ // Quad-register Integer Multiply-Accumulate (.8, .16)
+ InstrItinData<IIC_VMACi16Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 1, 1]>,
+ //
+ // Quad-register Integer Multiply-Accumulate (.32)
+ InstrItinData<IIC_VMACi32Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 1, 1]>,
+
+ //
+ // Move
+ InstrItinData<IIC_VMOV, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1]>,
+ //
+ // Move Immediate
+ InstrItinData<IIC_VMOVImm, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2]>,
+ //
+ // Double-register Permute Move
+ InstrItinData<IIC_VMOVD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [2, 1]>,
+ //
+ // Quad-register Permute Move
+ InstrItinData<IIC_VMOVQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [2, 1]>,
+ //
+ // Integer to Single-precision Move
+ InstrItinData<IIC_VMOVIS , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_LS], 4>,
+ InstrStage<1, [SW_ALU0]>],
+ [6, 1]>,
+ //
+ // Integer to Double-precision Move
+ InstrItinData<IIC_VMOVID , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [4, 1, 1]>,
+ //
+ // Single-precision to Integer Move
+ InstrItinData<IIC_VMOVSI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_LS]>],
+ [3, 1]>,
+ //
+ // Double-precision to Integer Move
+ InstrItinData<IIC_VMOVDI , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_LS], 3>,
+ InstrStage<1, [SW_LS]>],
+ [3, 4, 1]>,
+ //
+ // Integer to Lane Move
+ // FIXME: I think this is correct, but it is not clear from the tuning guide.
+ InstrItinData<IIC_VMOVISL , [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_LS], 4>,
+ InstrStage<1, [SW_ALU0]>],
+ [6, 1]>,
+
+ //
+ // Vector narrow move
+ InstrItinData<IIC_VMOVN, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [2, 1]>,
+ //
+ // Double-register FP Unary
+ // FIXME: VRECPE / VRSQRTE has a longer latency than VABS, which is used here,
+ // and they issue on a different pipeline.
+ InstrItinData<IIC_VUNAD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1]>,
+ //
+ // Quad-register FP Unary
+ // FIXME: VRECPE / VRSQRTE has a longer latency than VABS, which is used here,
+ // and they issue on a different pipeline.
+ InstrItinData<IIC_VUNAQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [2, 1]>,
+ //
+ // Double-register FP Binary
+ // FIXME: We're using this itin for many instructions.
+ InstrItinData<IIC_VBIND, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+
+ //
+ // VPADD, etc.
+ InstrItinData<IIC_VPBIND, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+ //
+ // Double-register FP VMUL
+ InstrItinData<IIC_VFMULD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 1]>,
+ //
+ // Quad-register FP Binary
+ InstrItinData<IIC_VBINQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU0]>],
+ [4, 1, 1]>,
+ //
+ // Quad-register FP VMUL
+ InstrItinData<IIC_VFMULQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 1]>,
+ //
+ // Double-register FP Multiple-Accumulate
+ InstrItinData<IIC_VMACD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [8, 1, 1]>,
+ //
+ // Quad-register FP Multiple-Accumulate
+ InstrItinData<IIC_VMACQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [8, 1, 1]>,
+ //
+ // Double-register Fused FP Multiple-Accumulate
+ InstrItinData<IIC_VFMACD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [8, 1, 1]>,
+ //
+ // Quad-register FusedF P Multiple-Accumulate
+ InstrItinData<IIC_VFMACQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [8, 1, 1]>,
+ //
+ // Double-register Reciprical Step
+ InstrItinData<IIC_VRECSD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [8, 1, 1]>,
+ //
+ // Quad-register Reciprical Step
+ InstrItinData<IIC_VRECSQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [8, 1, 1]>,
+ //
+ // Double-register Permute
+ // FIXME: The latencies are unclear from the documentation.
+ InstrItinData<IIC_VPERMD, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1]>],
+ [3, 4, 3, 4]>,
+ //
+ // Quad-register Permute
+ // FIXME: The latencies are unclear from the documentation.
+ InstrItinData<IIC_VPERMQ, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1]>],
+ [3, 4, 3, 4]>,
+ //
+ // Quad-register Permute (3 cycle issue on A9)
+ InstrItinData<IIC_VPERMQ3, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1]>],
+ [3, 4, 3, 4]>,
+
+ //
+ // Double-register VEXT
+ InstrItinData<IIC_VEXTD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [2, 1, 1]>,
+ //
+ // Quad-register VEXT
+ InstrItinData<IIC_VEXTQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [2, 1, 1]>,
+ //
+ // VTB
+ InstrItinData<IIC_VTB1, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_VTB2, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 3, 3]>,
+ InstrItinData<IIC_VTB3, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1]>],
+ [6, 1, 3, 5, 5]>,
+ InstrItinData<IIC_VTB4, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1]>],
+ [8, 1, 3, 5, 7, 7]>,
+ //
+ // VTBX
+ InstrItinData<IIC_VTBX1, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_VTBX2, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1]>],
+ [4, 1, 3, 3]>,
+ InstrItinData<IIC_VTBX3, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1]>],
+ [6, 1, 3, 5, 5]>,
+ InstrItinData<IIC_VTBX4, [InstrStage<1, [SW_DIS0], 0>,
+ InstrStage<1, [SW_DIS1], 0>,
+ InstrStage<1, [SW_DIS2], 0>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1], 2>,
+ InstrStage<1, [SW_ALU1]>],
+ [8, 1, 3, 5, 7, 7]>
+]>;
+
+// ===---------------------------------------------------------------------===//
+// This following definitions describe the simple machine model which
+// will replace itineraries.
+
+// Swift machine model for scheduling and other instruction cost heuristics.
+def SwiftModel : SchedMachineModel {
+ let IssueWidth = 3; // 3 micro-ops are dispatched per cycle.
+ let MicroOpBufferSize = 45; // Based on NEON renamed registers.
+ let LoadLatency = 3;
+ let MispredictPenalty = 14; // A branch direction mispredict.
+
+ let Itineraries = SwiftItineraries;
+}
+
+// Swift predicates.
+def IsFastImmShiftSwiftPred : SchedPredicate<[{TII->isSwiftFastImmShift(MI)}]>;
+
+// Swift resource mapping.
+let SchedModel = SwiftModel in {
+ // Processor resources.
+ def SwiftUnitP01 : ProcResource<2>; // ALU unit.
+ def SwiftUnitP0 : ProcResource<1> { let Super = SwiftUnitP01; } // Mul unit.
+ def SwiftUnitP1 : ProcResource<1> { let Super = SwiftUnitP01; } // Br unit.
+ def SwiftUnitP2 : ProcResource<1>; // LS unit.
+ def SwiftUnitDiv : ProcResource<1>;
+
+ // Generic resource requirements.
+ def SwiftWriteP0OneCycle : SchedWriteRes<[SwiftUnitP0]>;
+ def SwiftWriteP0TwoCycle : SchedWriteRes<[SwiftUnitP0]> { let Latency = 2; }
+ def SwiftWriteP0FourCycle : SchedWriteRes<[SwiftUnitP0]> { let Latency = 4; }
+ def SwiftWriteP0SixCycle : SchedWriteRes<[SwiftUnitP0]> { let Latency = 6; }
+ def SwiftWriteP0P1FourCycle : SchedWriteRes<[SwiftUnitP0, SwiftUnitP1]> {
+ let Latency = 4;
+ }
+ def SwiftWriteP0P1SixCycle : SchedWriteRes<[SwiftUnitP0, SwiftUnitP1]> {
+ let Latency = 6;
+ }
+ def SwiftWriteP01OneCycle : SchedWriteRes<[SwiftUnitP01]>;
+ def SwiftWriteP1TwoCycle : SchedWriteRes<[SwiftUnitP1]> { let Latency = 2; }
+ def SwiftWriteP1FourCycle : SchedWriteRes<[SwiftUnitP1]> { let Latency = 4; }
+ def SwiftWriteP1SixCycle : SchedWriteRes<[SwiftUnitP1]> { let Latency = 6; }
+ def SwiftWriteP1EightCycle : SchedWriteRes<[SwiftUnitP1]> { let Latency = 8; }
+ def SwiftWriteP1TwelveCyc : SchedWriteRes<[SwiftUnitP1]> { let Latency = 12; }
+ def SwiftWriteP01OneCycle2x : WriteSequence<[SwiftWriteP01OneCycle], 2>;
+ def SwiftWriteP01OneCycle3x : WriteSequence<[SwiftWriteP01OneCycle], 3>;
+ def SwiftWriteP01TwoCycle : SchedWriteRes<[SwiftUnitP01]> { let Latency = 2; }
+ def SwiftWriteP01ThreeCycleTwoUops : SchedWriteRes<[SwiftUnitP01,
+ SwiftUnitP01]> {
+ let Latency = 3;
+ let NumMicroOps = 2;
+ }
+ def SwiftWriteP0ThreeCycleThreeUops : SchedWriteRes<[SwiftUnitP0]> {
+ let Latency = 3;
+ let NumMicroOps = 3;
+ let ResourceCycles = [3];
+ }
+ // Plain load without writeback.
+ def SwiftWriteP2ThreeCycle : SchedWriteRes<[SwiftUnitP2]> {
+ let Latency = 3;
+ }
+ def SwiftWriteP2FourCycle : SchedWriteRes<[SwiftUnitP2]> {
+ let Latency = 4;
+ }
+ // A store does not write to a register.
+ def SwiftWriteP2 : SchedWriteRes<[SwiftUnitP2]> {
+ let Latency = 0;
+ }
+ foreach Num = 1-4 in {
+ def SwiftWrite#Num#xP2 : WriteSequence<[SwiftWriteP2], Num>;
+ }
+ def SwiftWriteP01OneCycle2x_load : WriteSequence<[SwiftWriteP01OneCycle,
+ SwiftWriteP01OneCycle,
+ SwiftWriteP2ThreeCycle]>;
+ // 4.2.4 Arithmetic and Logical.
+ // ALU operation register shifted by immediate variant.
+ def SwiftWriteALUsi : SchedWriteVariant<[
+ // lsl #2, lsl #1, or lsr #1.
+ SchedVar<IsFastImmShiftSwiftPred, [SwiftWriteP01TwoCycle]>,
+ SchedVar<NoSchedPred, [WriteALU]>
+ ]>;
+ def SwiftWriteALUsr : SchedWriteVariant<[
+ SchedVar<IsPredicatedPred, [SwiftWriteP01ThreeCycleTwoUops]>,
+ SchedVar<NoSchedPred, [SwiftWriteP01TwoCycle]>
+ ]>;
+ def SwiftWriteALUSsr : SchedWriteVariant<[
+ SchedVar<IsPredicatedPred, [SwiftWriteP0ThreeCycleThreeUops]>,
+ SchedVar<NoSchedPred, [SwiftWriteP01TwoCycle]>
+ ]>;
+ def SwiftReadAdvanceALUsr : SchedReadVariant<[
+ SchedVar<IsPredicatedPred, [SchedReadAdvance<2>]>,
+ SchedVar<NoSchedPred, [NoReadAdvance]>
+ ]>;
+ // ADC,ADD,NEG,RSB,RSC,SBC,SUB,ADR
+ // AND,BIC,EOR,ORN,ORR
+ // CLZ,RBIT,REV,REV16,REVSH,PKH
+ def : WriteRes<WriteALU, [SwiftUnitP01]>;
+ def : SchedAlias<WriteALUsi, SwiftWriteALUsi>;
+ def : SchedAlias<WriteALUsr, SwiftWriteALUsr>;
+ def : SchedAlias<WriteALUSsr, SwiftWriteALUSsr>;
+ def : ReadAdvance<ReadALU, 0>;
+ def : SchedAlias<ReadALUsr, SwiftReadAdvanceALUsr>;
+
+
+ def SwiftChooseShiftKindP01OneOrTwoCycle : SchedWriteVariant<[
+ SchedVar<IsFastImmShiftSwiftPred, [SwiftWriteP01OneCycle]>,
+ SchedVar<NoSchedPred, [SwiftWriteP01TwoCycle]>
+ ]>;
+
+ // 4.2.5 Integer comparison
+ def : WriteRes<WriteCMP, [SwiftUnitP01]>;
+ def : SchedAlias<WriteCMPsi, SwiftChooseShiftKindP01OneOrTwoCycle>;
+ def : SchedAlias<WriteCMPsr, SwiftWriteP01TwoCycle>;
+
+ // 4.2.6 Shift, Move
+ // Shift
+ // ASR,LSL,ROR,RRX
+ // MOV(register-shiftedregister) MVN(register-shiftedregister)
+ // Move
+ // MOV,MVN
+ // MOVT
+ // Sign/Zero extension
+ def : InstRW<[SwiftWriteP01OneCycle],
+ (instregex "SXTB", "SXTH", "SXTB16", "UXTB", "UXTH", "UXTB16",
+ "t2SXTB", "t2SXTH", "t2SXTB16", "t2UXTB", "t2UXTH",
+ "t2UXTB16")>;
+ // Pseudo instructions.
+ def : InstRW<[SwiftWriteP01OneCycle2x],
+ (instregex "MOVCCi32imm", "MOVi32imm", "MOV_ga_dyn", "t2MOVCCi32imm",
+ "t2MOVi32imm", "t2MOV_ga_dyn")>;
+ def : InstRW<[SwiftWriteP01OneCycle3x],
+ (instregex "MOV_ga_pcrel", "t2MOV_ga_pcrel", "t2MOVi16_ga_pcrel")>;
+ def : InstRW<[SwiftWriteP01OneCycle2x_load],
+ (instregex "MOV_ga_pcrel_ldr", "t2MOV_ga_pcrel_ldr")>;
+
+ def SwiftWriteP0TwoCyleTwoUops : WriteSequence<[SwiftWriteP0OneCycle], 2>;
+
+ def SwiftPredP0OneOrTwoCycle : SchedWriteVariant<[
+ SchedVar<IsPredicatedPred, [ SwiftWriteP0TwoCyleTwoUops ]>,
+ SchedVar<NoSchedPred, [ SwiftWriteP0OneCycle ]>
+ ]>;
+
+ // 4.2.7 Select
+ // SEL
+ def : InstRW<[SwiftPredP0OneOrTwoCycle], (instregex "SEL", "t2SEL")>;
+
+ // 4.2.8 Bitfield
+ // BFI,BFC, SBFX,UBFX
+ def : InstRW< [SwiftWriteP01TwoCycle],
+ (instregex "BFC", "BFI", "UBFX", "SBFX", "(t|t2)BFC", "(t|t2)BFI",
+ "(t|t2)UBFX", "(t|t2)SBFX")>;
+
+ // 4.2.9 Saturating arithmetic
+ def : InstRW< [SwiftWriteP01TwoCycle],
+ (instregex "QADD", "QSUB", "QDADD", "QDSUB", "SSAT", "SSAT16", "USAT",
+ "USAT16", "QADD8", "QADD16", "QSUB8", "QSUB16", "QASX", "QSAX",
+ "UQADD8", "UQADD16","UQSUB8","UQSUB16","UQASX","UQSAX", "t2QADD",
+ "t2QSUB", "t2QDADD", "t2QDSUB", "t2SSAT", "t2SSAT16", "t2USAT",
+ "t2QADD8", "t2QADD16", "t2QSUB8", "t2QSUB16", "t2QASX", "t2QSAX",
+ "t2UQADD8", "t2UQADD16","t2UQSUB8","t2UQSUB16","t2UQASX","t2UQSAX")>;
+
+ // 4.2.10 Parallel Arithmetic
+ // Not flag setting.
+ def : InstRW< [SwiftWriteALUsr],
+ (instregex "SADD8", "SADD16", "SSUB8", "SSUB16", "SASX", "SSAX",
+ "UADD8", "UADD16", "USUB8", "USUB16", "UASX", "USAX", "t2SADD8",
+ "t2SADD16", "t2SSUB8", "t2SSUB16", "t2SASX", "t2SSAX", "t2UADD8",
+ "t2UADD16", "t2USUB8", "t2USUB16", "t2UASX", "t2USAX")>;
+ // Flag setting.
+ def : InstRW< [SwiftWriteP01TwoCycle],
+ (instregex "SHADD8", "SHADD16", "SHSUB8", "SHSUB16", "SHASX", "SHSAX",
+ "SXTAB", "SXTAB16", "SXTAH", "UHADD8", "UHADD16", "UHSUB8", "UHSUB16",
+ "UHASX", "UHSAX", "UXTAB", "UXTAB16", "UXTAH", "t2SHADD8", "t2SHADD16",
+ "t2SHSUB8", "t2SHSUB16", "t2SHASX", "t2SHSAX", "t2SXTAB", "t2SXTAB16",
+ "t2SXTAH", "t2UHADD8", "t2UHADD16", "t2UHSUB8", "t2UHSUB16", "t2UHASX",
+ "t2UHSAX", "t2UXTAB", "t2UXTAB16", "t2UXTAH")>;
+
+ // 4.2.11 Sum of Absolute Difference
+ def : InstRW< [SwiftWriteP0P1FourCycle], (instregex "USAD8") >;
+ def : InstRW<[SwiftWriteP0P1FourCycle, ReadALU, ReadALU, SchedReadAdvance<2>],
+ (instregex "USADA8")>;
+
+ // 4.2.12 Integer Multiply (32-bit result)
+ // Two sources.
+ def : InstRW< [SwiftWriteP0FourCycle],
+ (instregex "MULS", "MUL", "SMMUL", "SMMULR", "SMULBB", "SMULBT",
+ "SMULTB", "SMULTT", "SMULWB", "SMULWT", "SMUSD", "SMUSDXi", "t2MUL",
+ "t2SMMUL", "t2SMMULR", "t2SMULBB", "t2SMULBT", "t2SMULTB", "t2SMULTT",
+ "t2SMULWB", "t2SMULWT", "t2SMUSD")>;
+
+ def SwiftWriteP0P01FiveCycleTwoUops :
+ SchedWriteRes<[SwiftUnitP0, SwiftUnitP01]> {
+ let Latency = 5;
+ }
+
+ def SwiftPredP0P01FourFiveCycle : SchedWriteVariant<[
+ SchedVar<IsPredicatedPred, [ SwiftWriteP0P01FiveCycleTwoUops ]>,
+ SchedVar<NoSchedPred, [ SwiftWriteP0FourCycle ]>
+ ]>;
+
+ def SwiftReadAdvanceFourCyclesPred : SchedReadVariant<[
+ SchedVar<IsPredicatedPred, [SchedReadAdvance<4>]>,
+ SchedVar<NoSchedPred, [ReadALU]>
+ ]>;
+
+ // Multiply accumulate, three sources
+ def : InstRW< [SwiftPredP0P01FourFiveCycle, ReadALU, ReadALU,
+ SwiftReadAdvanceFourCyclesPred],
+ (instregex "MLAS", "MLA", "MLS", "SMMLA", "SMMLAR", "SMMLS", "SMMLSR",
+ "t2MLA", "t2MLS", "t2MLAS", "t2SMMLA", "t2SMMLAR", "t2SMMLS",
+ "t2SMMLSR")>;
+
+ // 4.2.13 Integer Multiply (32-bit result, Q flag)
+ def : InstRW< [SwiftWriteP0FourCycle],
+ (instregex "SMUAD", "SMUADX", "t2SMUAD", "t2SMUADX")>;
+ def : InstRW< [SwiftPredP0P01FourFiveCycle, ReadALU, ReadALU,
+ SwiftReadAdvanceFourCyclesPred],
+ (instregex "SMLABB", "SMLABT", "SMLATB", "SMLATT", "SMLSD", "SMLSDX",
+ "SMLAWB", "SMLAWT", "t2SMLABB", "t2SMLABT", "t2SMLATB", "t2SMLATT",
+ "t2SMLSD", "t2SMLSDX", "t2SMLAWB", "t2SMLAWT")>;
+ def : InstRW< [SwiftPredP0P01FourFiveCycle],
+ (instregex "SMLAD", "SMLADX", "t2SMLAD", "t2SMLADX")>;
+
+ def SwiftP0P0P01FiveCycle : SchedWriteRes<[SwiftUnitP0, SwiftUnitP01]> {
+ let Latency = 5;
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+ }
+ def SwiftWrite1Cycle : SchedWriteRes<[]> {
+ let Latency = 1;
+ let NumMicroOps = 0;
+ }
+ def SwiftWrite5Cycle : SchedWriteRes<[]> {
+ let Latency = 5;
+ let NumMicroOps = 0;
+ }
+ def SwiftWrite6Cycle : SchedWriteRes<[]> {
+ let Latency = 6;
+ let NumMicroOps = 0;
+ }
+
+ // 4.2.14 Integer Multiply, Long
+ def : InstRW< [SwiftP0P0P01FiveCycle, SwiftWrite5Cycle],
+ (instregex "SMULL$", "UMULL$", "t2SMULL$", "t2UMULL$")>;
+
+ def Swift2P03P01FiveCycle : SchedWriteRes<[SwiftUnitP0, SwiftUnitP01]> {
+ let Latency = 7;
+ let NumMicroOps = 5;
+ let ResourceCycles = [2, 3];
+ }
+
+ // 4.2.15 Integer Multiply Accumulate, Long
+ // 4.2.16 Integer Multiply Accumulate, Dual
+ // 4.2.17 Integer Multiply Accumulate Accumulate, Long
+ // We are being a bit inaccurate here.
+ def : InstRW< [SwiftWrite5Cycle, Swift2P03P01FiveCycle, ReadALU, ReadALU,
+ SchedReadAdvance<4>, SchedReadAdvance<3>],
+ (instregex "SMLALS", "UMLALS", "SMLAL", "UMLAL", "MLALBB", "SMLALBT",
+ "SMLALTB", "SMLALTT", "SMLALD", "SMLALDX", "SMLSLD", "SMLSLDX",
+ "UMAAL", "t2SMLALS", "t2UMLALS", "t2SMLAL", "t2UMLAL", "t2MLALBB", "t2SMLALBT",
+ "t2SMLALTB", "t2SMLALTT", "t2SMLALD", "t2SMLALDX", "t2SMLSLD", "t2SMLSLDX",
+ "t2UMAAL")>;
+
+ def SwiftDiv : SchedWriteRes<[SwiftUnitP0, SwiftUnitDiv]> {
+ let NumMicroOps = 1;
+ let Latency = 14;
+ let ResourceCycles = [1, 14];
+ }
+ // 4.2.18 Integer Divide
+ def : WriteRes<WriteDiv, [SwiftUnitDiv]>; // Workaround.
+ def : InstRW <[SwiftDiv],
+ (instregex "SDIV", "UDIV", "t2SDIV", "t2UDIV")>;
+
+ // 4.2.19 Integer Load Single Element
+ // 4.2.20 Integer Load Signextended
+ def SwiftWriteP2P01ThreeCycle : SchedWriteRes<[SwiftUnitP2, SwiftUnitP01]> {
+ let Latency = 3;
+ let NumMicroOps = 2;
+ }
+ def SwiftWriteP2P01FourCyle : SchedWriteRes<[SwiftUnitP2, SwiftUnitP01]> {
+ let Latency = 4;
+ let NumMicroOps = 2;
+ }
+ def SwiftWriteP2P01P01FourCycle : SchedWriteRes<[SwiftUnitP2, SwiftUnitP01,
+ SwiftUnitP01]> {
+ let Latency = 4;
+ let NumMicroOps = 3;
+ }
+ def SwiftWriteP2P2ThreeCycle : SchedWriteRes<[SwiftUnitP2, SwiftUnitP2]> {
+ let Latency = 3;
+ let NumMicroOps = 2;
+ }
+ def SwiftWriteP2P2P01ThreeCycle : SchedWriteRes<[SwiftUnitP2, SwiftUnitP2,
+ SwiftUnitP01]> {
+ let Latency = 3;
+ let NumMicroOps = 3;
+ }
+ def SwiftWrBackOne : SchedWriteRes<[]> {
+ let Latency = 1;
+ let NumMicroOps = 0;
+ }
+ def SwiftWriteLdFour : SchedWriteRes<[]> {
+ let Latency = 4;
+ let NumMicroOps = 0;
+ }
+ // Not accurate.
+ def : InstRW<[SwiftWriteP2ThreeCycle],
+ (instregex "LDR(i12|rs)$", "LDRB(i12|rs)$", "t2LDR(i8|i12|s|pci)",
+ "t2LDR(H|B)(i8|i12|s|pci)", "LDREX", "tLDR[BH](r|i|spi|pci|pciASM)",
+ "tLDR(r|i|spi|pci|pciASM)")>;
+ def : InstRW<[SwiftWriteP2ThreeCycle],
+ (instregex "LDRH$", "PICLDR$", "PICLDR(H|B)$", "LDRcp$")>;
+ def : InstRW<[SwiftWriteP2P01FourCyle],
+ (instregex "PICLDRS(H|B)$", "t2LDRS(H|B)(i|r|p|s)", "LDRS(H|B)$",
+ "t2LDRpci_pic", "tLDRS(B|H)")>;
+ def : InstRW<[SwiftWriteP2P01ThreeCycle, SwiftWrBackOne],
+ (instregex "LD(RB|R)(_|T_)(POST|PRE)_(IMM|REG)", "LDRH(_PRE|_POST)",
+ "LDR(T|BT)_POST_(REG|IMM)", "LDRHT(i|r)",
+ "t2LD(R|RB|RH)_(PRE|POST)", "t2LD(R|RB|RH)T")>;
+ def : InstRW<[SwiftWriteP2P01P01FourCycle, SwiftWrBackOne],
+ (instregex "LDR(SH|SB)(_POST|_PRE)", "t2LDR(SH|SB)(_POST|_PRE)",
+ "LDRS(B|H)T(i|r)", "t2LDRS(B|H)T(i|r)", "t2LDRS(B|H)T")>;
+
+ // 4.2.21 Integer Dual Load
+ // Not accurate.
+ def : InstRW<[SwiftWriteP2P2ThreeCycle, SwiftWriteLdFour],
+ (instregex "t2LDRDi8", "LDRD$")>;
+ def : InstRW<[SwiftWriteP2P2P01ThreeCycle, SwiftWriteLdFour, SwiftWrBackOne],
+ (instregex "LDRD_(POST|PRE)", "t2LDRD_(POST|PRE)")>;
+
+ // 4.2.22 Integer Load, Multiple
+ // NumReg = 1 .. 16
+ foreach Lat = 3-25 in {
+ def SwiftWriteLM#Lat#Cy : SchedWriteRes<[SwiftUnitP2]> {
+ let Latency = Lat;
+ }
+ def SwiftWriteLM#Lat#CyNo : SchedWriteRes<[]> {
+ let Latency = Lat;
+ let NumMicroOps = 0;
+ }
+ }
+ // Predicate.
+ foreach NumAddr = 1-16 in {
+ def SwiftLMAddr#NumAddr#Pred : SchedPredicate<"TII->getNumLDMAddresses(MI) == "#NumAddr>;
+ }
+ def SwiftWriteLDMAddrNoWB : SchedWriteRes<[SwiftUnitP01]> { let Latency = 0; }
+ def SwiftWriteLDMAddrWB : SchedWriteRes<[SwiftUnitP01, SwiftUnitP01]>;
+ def SwiftWriteLM : SchedWriteVariant<[
+ SchedVar<SwiftLMAddr2Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy]>,
+ SchedVar<SwiftLMAddr3Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy]>,
+ SchedVar<SwiftLMAddr4Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy]>,
+ SchedVar<SwiftLMAddr5Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy]>,
+ SchedVar<SwiftLMAddr6Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy, SwiftWriteLM8Cy]>,
+ SchedVar<SwiftLMAddr7Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM9Cy]>,
+ SchedVar<SwiftLMAddr8Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM9Cy, SwiftWriteLM10Cy]>,
+ SchedVar<SwiftLMAddr9Pred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM11Cy]>,
+ SchedVar<SwiftLMAddr10Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM11Cy, SwiftWriteLM12Cy]>,
+ SchedVar<SwiftLMAddr11Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM11Cy, SwiftWriteLM12Cy,
+ SwiftWriteLM13Cy]>,
+ SchedVar<SwiftLMAddr12Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM11Cy, SwiftWriteLM12Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM14Cy]>,
+ SchedVar<SwiftLMAddr13Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM11Cy, SwiftWriteLM12Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM14Cy,
+ SwiftWriteLM15Cy]>,
+ SchedVar<SwiftLMAddr14Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM11Cy, SwiftWriteLM12Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM14Cy,
+ SwiftWriteLM15Cy, SwiftWriteLM16Cy]>,
+ SchedVar<SwiftLMAddr15Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM11Cy, SwiftWriteLM12Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM14Cy,
+ SwiftWriteLM15Cy, SwiftWriteLM16Cy,
+ SwiftWriteLM17Cy]>,
+ SchedVar<SwiftLMAddr16Pred,[SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5Cy, SwiftWriteLM6Cy,
+ SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM11Cy, SwiftWriteLM12Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM14Cy,
+ SwiftWriteLM15Cy, SwiftWriteLM16Cy,
+ SwiftWriteLM17Cy, SwiftWriteLM18Cy]>,
+ // Unknow number of registers, just use resources for two registers.
+ SchedVar<NoSchedPred, [SwiftWriteLM3Cy, SwiftWriteLM4Cy,
+ SwiftWriteLM5CyNo, SwiftWriteLM6CyNo,
+ SwiftWriteLM7CyNo, SwiftWriteLM8CyNo,
+ SwiftWriteLM9CyNo, SwiftWriteLM10CyNo,
+ SwiftWriteLM11CyNo, SwiftWriteLM12CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM14CyNo,
+ SwiftWriteLM15CyNo, SwiftWriteLM16CyNo,
+ SwiftWriteLM17CyNo, SwiftWriteLM18CyNo]>
+
+ ]> { let Variadic=1; }
+
+ def : InstRW<[SwiftWriteLM, SwiftWriteLDMAddrNoWB],
+ (instregex "LDM(IA|DA|DB|IB)$", "t2LDM(IA|DA|DB|IB)$",
+ "(t|sys)LDM(IA|DA|DB|IB)$")>;
+ def : InstRW<[SwiftWriteLDMAddrWB, SwiftWriteLM],
+ (instregex /*"t2LDMIA_RET", "tLDMIA_RET", "LDMIA_RET",*/
+ "LDM(IA|DA|DB|IB)_UPD", "(t2|sys|t)LDM(IA|DA|DB|IB)_UPD")>;
+ def : InstRW<[SwiftWriteLDMAddrWB, SwiftWriteLM, SwiftWriteP1TwoCycle],
+ (instregex "LDMIA_RET", "(t|t2)LDMIA_RET", "POP", "tPOP")>;
+ // 4.2.23 Integer Store, Single Element
+ def : InstRW<[SwiftWriteP2],
+ (instregex "PICSTR", "STR(i12|rs)", "STRB(i12|rs)", "STRH$", "STREX",
+ "t2STR(i12|i8|s)$", "t2STR[BH](i12|i8|s)$", "tSTR[BH](i|r)", "tSTR(i|r)", "tSTRspi")>;
+
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWriteP2],
+ (instregex "STR(B_|_|BT_|T_)(PRE_IMM|PRE_REG|POST_REG|POST_IMM)",
+ "STR(i|r)_preidx", "STRB(i|r)_preidx", "STRH_preidx", "STR(H_|HT_)(PRE|POST)",
+ "STR(BT|HT|T)", "t2STR_(PRE|POST)", "t2STR[BH]_(PRE|POST)",
+ "t2STR_preidx", "t2STR[BH]_preidx", "t2ST(RB|RH|R)T")>;
+
+ // 4.2.24 Integer Store, Dual
+ def : InstRW<[SwiftWriteP2, SwiftWriteP2, SwiftWriteP01OneCycle],
+ (instregex "STRD$", "t2STRDi8")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWriteP2, SwiftWriteP2,
+ SwiftWriteP01OneCycle],
+ (instregex "(t2|t)STRD_(POST|PRE)", "STRD_(POST|PRE)")>;
+
+ // 4.2.25 Integer Store, Multiple
+ def SwiftWriteStIncAddr : SchedWriteRes<[SwiftUnitP2, SwiftUnitP01]> {
+ let Latency = 0;
+ let NumMicroOps = 2;
+ }
+ foreach NumAddr = 1-16 in {
+ def SwiftWriteSTM#NumAddr : WriteSequence<[SwiftWriteStIncAddr], NumAddr>;
+ }
+ def SwiftWriteSTM : SchedWriteVariant<[
+ SchedVar<SwiftLMAddr2Pred, [SwiftWriteSTM2]>,
+ SchedVar<SwiftLMAddr3Pred, [SwiftWriteSTM3]>,
+ SchedVar<SwiftLMAddr4Pred, [SwiftWriteSTM4]>,
+ SchedVar<SwiftLMAddr5Pred, [SwiftWriteSTM5]>,
+ SchedVar<SwiftLMAddr6Pred, [SwiftWriteSTM6]>,
+ SchedVar<SwiftLMAddr7Pred, [SwiftWriteSTM7]>,
+ SchedVar<SwiftLMAddr8Pred, [SwiftWriteSTM8]>,
+ SchedVar<SwiftLMAddr9Pred, [SwiftWriteSTM9]>,
+ SchedVar<SwiftLMAddr10Pred,[SwiftWriteSTM10]>,
+ SchedVar<SwiftLMAddr11Pred,[SwiftWriteSTM11]>,
+ SchedVar<SwiftLMAddr12Pred,[SwiftWriteSTM12]>,
+ SchedVar<SwiftLMAddr13Pred,[SwiftWriteSTM13]>,
+ SchedVar<SwiftLMAddr14Pred,[SwiftWriteSTM14]>,
+ SchedVar<SwiftLMAddr15Pred,[SwiftWriteSTM15]>,
+ SchedVar<SwiftLMAddr16Pred,[SwiftWriteSTM16]>,
+ // Unknow number of registers, just use resources for two registers.
+ SchedVar<NoSchedPred, [SwiftWriteSTM2]>
+ ]>;
+ def : InstRW<[SwiftWriteSTM],
+ (instregex "STM(IB|IA|DB|DA)$", "(t2|sys|t)STM(IB|IA|DB|DA)$")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWriteSTM],
+ (instregex "STM(IB|IA|DB|DA)_UPD", "(t2|sys|t)STM(IB|IA|DB|DA)_UPD",
+ "PUSH", "tPUSH")>;
+
+ // 4.2.26 Branch
+ def : WriteRes<WriteBr, [SwiftUnitP1]> { let Latency = 0; }
+ def : WriteRes<WriteBrL, [SwiftUnitP1]> { let Latency = 2; }
+ def : WriteRes<WriteBrTbl, [SwiftUnitP1, SwiftUnitP2]> { let Latency = 0; }
+
+ // 4.2.27 Not issued
+ def : WriteRes<WriteNoop, []> { let Latency = 0; let NumMicroOps = 0; }
+ def : InstRW<[WriteNoop], (instregex "t2IT", "IT", "NOP")>;
+
+ // 4.2.28 Advanced SIMD, Integer, 2 cycle
+ def : InstRW<[SwiftWriteP0TwoCycle],
+ (instregex "VADDv", "VSUBv", "VNEG(s|f|v)", "VADDL", "VSUBL",
+ "VADDW", "VSUBW", "VHADD", "VHSUB", "VRHADD", "VPADDi",
+ "VPADDL", "VAND", "VBIC", "VEOR", "VORN", "VORR", "VTST",
+ "VSHL", "VSHR(s|u)", "VSHLL", "VQSHL", "VQSHLU", "VBIF",
+ "VBIT", "VBSL", "VSLI", "VSRI", "VCLS", "VCLZ", "VCNT")>;
+
+ def : InstRW<[SwiftWriteP1TwoCycle],
+ (instregex "VEXT", "VREV16", "VREV32", "VREV64")>;
+
+ // 4.2.29 Advanced SIMD, Integer, 4 cycle
+ // 4.2.30 Advanced SIMD, Integer with Accumulate
+ def : InstRW<[SwiftWriteP0FourCycle],
+ (instregex "VABA", "VABAL", "VPADAL", "VRSRA", "VSRA", "VACGE", "VACGT",
+ "VACLE", "VACLT", "VCEQ", "VCGE", "VCGT", "VCLE", "VCLT", "VRSHL",
+ "VQRSHL", "VRSHR(u|s)", "VABS(f|v)", "VQABS", "VQNEG", "VQADD",
+ "VQSUB")>;
+ def : InstRW<[SwiftWriteP1FourCycle],
+ (instregex "VRECPE", "VRSQRTE")>;
+
+ // 4.2.31 Advanced SIMD, Add and Shift with Narrow
+ def : InstRW<[SwiftWriteP0P1FourCycle],
+ (instregex "VADDHN", "VSUBHN", "VSHRN")>;
+ def : InstRW<[SwiftWriteP0P1SixCycle],
+ (instregex "VRADDHN", "VRSUBHN", "VRSHRN", "VQSHRN", "VQSHRUN",
+ "VQRSHRN", "VQRSHRUN")>;
+
+ // 4.2.32 Advanced SIMD, Vector Table Lookup
+ foreach Num = 1-4 in {
+ def SwiftWrite#Num#xP1TwoCycle : WriteSequence<[SwiftWriteP1TwoCycle], Num>;
+ }
+ def : InstRW<[SwiftWrite1xP1TwoCycle],
+ (instregex "VTB(L|X)1")>;
+ def : InstRW<[SwiftWrite2xP1TwoCycle],
+ (instregex "VTB(L|X)2")>;
+ def : InstRW<[SwiftWrite3xP1TwoCycle],
+ (instregex "VTB(L|X)3")>;
+ def : InstRW<[SwiftWrite4xP1TwoCycle],
+ (instregex "VTB(L|X)4")>;
+
+ // 4.2.33 Advanced SIMD, Transpose
+ def : InstRW<[SwiftWriteP1FourCycle, SwiftWriteP1FourCycle,
+ SwiftWriteP1TwoCycle/*RsrcOnly*/, SchedReadAdvance<2>],
+ (instregex "VSWP", "VTRN", "VUZP", "VZIP")>;
+
+ // 4.2.34 Advanced SIMD and VFP, Floating Point
+ def : InstRW<[SwiftWriteP0TwoCycle], (instregex "VABS(S|D)$", "VNEG(S|D)$")>;
+ def : InstRW<[SwiftWriteP0FourCycle],
+ (instregex "VCMP(D|S|ZD|ZS)$", "VCMPE(D|S|ZD|ZS)")>;
+ def : InstRW<[SwiftWriteP0FourCycle],
+ (instregex "VADD(S|f)", "VSUB(S|f)", "VABD", "VPADDf", "VMAX", "VMIN", "VPMAX",
+ "VPMIN")>;
+ def : InstRW<[SwiftWriteP0SixCycle], (instregex "VADDD$", "VSUBD$")>;
+ def : InstRW<[SwiftWriteP1EightCycle], (instregex "VRECPS", "VRSQRTS")>;
+
+ // 4.2.35 Advanced SIMD and VFP, Multiply
+ def : InstRW<[SwiftWriteP1FourCycle],
+ (instregex "VMUL(S|v|p|f|s)", "VNMULS", "VQDMULH", "VQRDMULH",
+ "VMULL", "VQDMULL")>;
+ def : InstRW<[SwiftWriteP1SixCycle],
+ (instregex "VMULD", "VNMULD")>;
+ def : InstRW<[SwiftWriteP1FourCycle],
+ (instregex "VMLA", "VMLS", "VNMLA", "VNMLS", "VFMA(S|D)", "VFMS(S|D)",
+ "VFNMA", "VFNMS", "VMLAL", "VMLSL","VQDMLAL", "VQDMLSL")>;
+ def : InstRW<[SwiftWriteP1EightCycle], (instregex "VFMAfd", "VFMSfd")>;
+ def : InstRW<[SwiftWriteP1TwelveCyc], (instregex "VFMAfq", "VFMSfq")>;
+
+ // 4.2.36 Advanced SIMD and VFP, Convert
+ def : InstRW<[SwiftWriteP1FourCycle], (instregex "VCVT", "V(S|U)IT", "VTO(S|U)")>;
+ // Fixpoint conversions.
+ def : WriteRes<WriteCvtFP, [SwiftUnitP1]> { let Latency = 4; }
+
+ // 4.2.37 Advanced SIMD and VFP, Move
+ def : InstRW<[SwiftWriteP0TwoCycle],
+ (instregex "VMOVv", "VMOV(S|D)$", "VMOV(S|D)cc",
+ "VMVNv", "VMVN(d|q)", "VMVN(S|D)cc",
+ "FCONST(D|S)")>;
+ def : InstRW<[SwiftWriteP1TwoCycle], (instregex "VMOVN", "VMOVL")>;
+ def : InstRW<[WriteSequence<[SwiftWriteP0FourCycle, SwiftWriteP1TwoCycle]>],
+ (instregex "VQMOVN")>;
+ def : InstRW<[SwiftWriteP1TwoCycle], (instregex "VDUPLN", "VDUPf")>;
+ def : InstRW<[WriteSequence<[SwiftWriteP2FourCycle, SwiftWriteP1TwoCycle]>],
+ (instregex "VDUP(8|16|32)")>;
+ def : InstRW<[SwiftWriteP2ThreeCycle], (instregex "VMOVRS$")>;
+ def : InstRW<[WriteSequence<[SwiftWriteP2FourCycle, SwiftWriteP0TwoCycle]>],
+ (instregex "VMOVSR$", "VSETLN")>;
+ def : InstRW<[SwiftWriteP2ThreeCycle, SwiftWriteP2FourCycle],
+ (instregex "VMOVRR(D|S)$")>;
+ def : InstRW<[SwiftWriteP2FourCycle], (instregex "VMOVDRR$")>;
+ def : InstRW<[WriteSequence<[SwiftWriteP2FourCycle, SwiftWriteP1TwoCycle]>,
+ WriteSequence<[SwiftWrite1Cycle, SwiftWriteP2FourCycle,
+ SwiftWriteP1TwoCycle]>],
+ (instregex "VMOVSRR$")>;
+ def : InstRW<[WriteSequence<[SwiftWriteP1TwoCycle, SwiftWriteP2ThreeCycle]>],
+ (instregex "VGETLN(u|i)")>;
+ def : InstRW<[WriteSequence<[SwiftWriteP1TwoCycle, SwiftWriteP2ThreeCycle,
+ SwiftWriteP01OneCycle]>],
+ (instregex "VGETLNs")>;
+
+ // 4.2.38 Advanced SIMD and VFP, Move FPSCR
+ // Serializing instructions.
+ def SwiftWaitP0For15Cy : SchedWriteRes<[SwiftUnitP0]> {
+ let Latency = 15;
+ let ResourceCycles = [15];
+ }
+ def SwiftWaitP1For15Cy : SchedWriteRes<[SwiftUnitP1]> {
+ let Latency = 15;
+ let ResourceCycles = [15];
+ }
+ def SwiftWaitP2For15Cy : SchedWriteRes<[SwiftUnitP2]> {
+ let Latency = 15;
+ let ResourceCycles = [15];
+ }
+ def : InstRW<[SwiftWaitP0For15Cy, SwiftWaitP1For15Cy, SwiftWaitP2For15Cy],
+ (instregex "VMRS")>;
+ def : InstRW<[SwiftWaitP0For15Cy, SwiftWaitP1For15Cy, SwiftWaitP2For15Cy],
+ (instregex "VMSR")>;
+ // Not serializing.
+ def : InstRW<[SwiftWriteP0TwoCycle], (instregex "FMSTAT")>;
+
+ // 4.2.39 Advanced SIMD and VFP, Load Single Element
+ def : InstRW<[SwiftWriteLM4Cy], (instregex "VLDRD$", "VLDRS$")>;
+
+ // 4.2.40 Advanced SIMD and VFP, Store Single Element
+ def : InstRW<[SwiftWriteLM4Cy], (instregex "VSTRD$", "VSTRS$")>;
+
+ // 4.2.41 Advanced SIMD and VFP, Load Multiple
+ // 4.2.42 Advanced SIMD and VFP, Store Multiple
+
+ // Resource requirement for permuting, just reserves the resources.
+ foreach Num = 1-28 in {
+ def SwiftVLDMPerm#Num : SchedWriteRes<[SwiftUnitP1]> {
+ let Latency = 0;
+ let NumMicroOps = Num;
+ let ResourceCycles = [Num];
+ }
+ }
+
+ // Pre RA pseudos - load/store to a Q register as a D register pair.
+ def : InstRW<[SwiftWriteLM4Cy], (instregex "VLDMQIA$", "VSTMQIA$")>;
+
+ // Post RA not modelled accurately. We assume that register use of width 64
+ // bit maps to a D register, 128 maps to a Q register. Not all different kinds
+ // are accurately represented.
+ def SwiftWriteVLDM : SchedWriteVariant<[
+ // Load of one S register.
+ SchedVar<SwiftLMAddr1Pred, [SwiftWriteLM4Cy]>,
+ // Load of one D register.
+ SchedVar<SwiftLMAddr2Pred, [SwiftWriteLM4Cy, SwiftWriteLM4CyNo]>,
+ // Load of 3 S register.
+ SchedVar<SwiftLMAddr3Pred, [SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM13CyNo, SwiftWriteP01OneCycle,
+ SwiftVLDMPerm3]>,
+ // Load of a Q register (not necessarily true). We should not be mapping to
+ // 4 S registers, either.
+ SchedVar<SwiftLMAddr4Pred, [SwiftWriteLM4Cy, SwiftWriteLM4CyNo,
+ SwiftWriteLM4CyNo, SwiftWriteLM4CyNo]>,
+ // Load of 5 S registers.
+ SchedVar<SwiftLMAddr5Pred, [SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM13CyNo, SwiftWriteLM14CyNo,
+ SwiftWriteLM17CyNo, SwiftWriteP01OneCycle,
+ SwiftVLDMPerm5]>,
+ // Load of 3 D registers. (Must also be able to handle s register list -
+ // though, not accurate)
+ SchedVar<SwiftLMAddr6Pred, [SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM10Cy, SwiftWriteLM14CyNo,
+ SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
+ SwiftWriteP01OneCycle, SwiftVLDMPerm5]>,
+ // Load of 7 S registers.
+ SchedVar<SwiftLMAddr7Pred, [SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM14CyNo,
+ SwiftWriteLM17CyNo, SwiftWriteLM18CyNo,
+ SwiftWriteLM21CyNo, SwiftWriteP01OneCycle,
+ SwiftVLDMPerm7]>,
+ // Load of two Q registers.
+ SchedVar<SwiftLMAddr8Pred, [SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteP01OneCycle, SwiftVLDMPerm2]>,
+ // Load of 9 S registers.
+ SchedVar<SwiftLMAddr9Pred, [SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM14CyNo,
+ SwiftWriteLM17CyNo, SwiftWriteLM18CyNo,
+ SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM25CyNo, SwiftWriteP01OneCycle,
+ SwiftVLDMPerm9]>,
+ // Load of 5 D registers.
+ SchedVar<SwiftLMAddr10Pred,[SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM10Cy, SwiftWriteLM14Cy,
+ SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
+ SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
+ SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
+ SwiftWriteP01OneCycle, SwiftVLDMPerm5]>,
+ // Inaccurate: reuse describtion from 9 S registers.
+ SchedVar<SwiftLMAddr11Pred,[SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM14CyNo,
+ SwiftWriteLM17CyNo, SwiftWriteLM18CyNo,
+ SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM25CyNo, SwiftWriteP01OneCycle,
+ SwiftVLDMPerm9]>,
+ // Load of three Q registers.
+ SchedVar<SwiftLMAddr12Pred,[SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM11Cy, SwiftWriteLM11Cy,
+ SwiftWriteLM11CyNo, SwiftWriteLM11CyNo,
+ SwiftWriteLM11CyNo, SwiftWriteLM11CyNo,
+ SwiftWriteLM11CyNo, SwiftWriteLM11CyNo,
+ SwiftWriteLM11CyNo, SwiftWriteLM11CyNo,
+ SwiftWriteP01OneCycle, SwiftVLDMPerm3]>,
+ // Inaccurate: reuse describtion from 9 S registers.
+ SchedVar<SwiftLMAddr13Pred, [SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM14CyNo,
+ SwiftWriteLM17CyNo, SwiftWriteLM18CyNo,
+ SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM25CyNo, SwiftWriteP01OneCycle,
+ SwiftVLDMPerm9]>,
+ // Load of 7 D registers inaccurate.
+ SchedVar<SwiftLMAddr14Pred,[SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM10Cy, SwiftWriteLM14Cy,
+ SwiftWriteLM14Cy, SwiftWriteLM14CyNo,
+ SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
+ SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
+ SwiftWriteLM14CyNo, SwiftWriteLM14CyNo,
+ SwiftWriteP01OneCycle, SwiftVLDMPerm7]>,
+ SchedVar<SwiftLMAddr15Pred,[SwiftWriteLM9Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM14Cy,
+ SwiftWriteLM17Cy, SwiftWriteLM18CyNo,
+ SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM21CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM25CyNo, SwiftWriteP01OneCycle,
+ SwiftVLDMPerm9]>,
+ // Load of 4 Q registers.
+ SchedVar<SwiftLMAddr16Pred,[SwiftWriteLM7Cy, SwiftWriteLM10Cy,
+ SwiftWriteLM11Cy, SwiftWriteLM14Cy,
+ SwiftWriteLM15Cy, SwiftWriteLM18CyNo,
+ SwiftWriteLM19CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM19CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM19CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM19CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteLM19CyNo, SwiftWriteLM22CyNo,
+ SwiftWriteP01OneCycle, SwiftVLDMPerm4]>,
+ // Unknow number of registers, just use resources for two registers.
+ SchedVar<NoSchedPred, [SwiftWriteLM7Cy, SwiftWriteLM8Cy,
+ SwiftWriteLM13Cy, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteLM13CyNo, SwiftWriteLM13CyNo,
+ SwiftWriteP01OneCycle, SwiftVLDMPerm2]>
+ ]> { let Variadic = 1; }
+
+ def : InstRW<[SwiftWriteVLDM], (instregex "VLDM[SD](IA|DB)$")>;
+
+ def : InstRW<[SwiftWriteP01OneCycle2x, SwiftWriteVLDM],
+ (instregex "VLDM[SD](IA|DB)_UPD$")>;
+
+ def SwiftWriteVSTM : SchedWriteVariant<[
+ // One S register.
+ SchedVar<SwiftLMAddr1Pred, [SwiftWriteSTM1]>,
+ // One D register.
+ SchedVar<SwiftLMAddr2Pred, [SwiftWriteSTM1]>,
+ // Three S registers.
+ SchedVar<SwiftLMAddr3Pred, [SwiftWriteSTM4]>,
+ // Assume one Q register.
+ SchedVar<SwiftLMAddr4Pred, [SwiftWriteSTM1]>,
+ SchedVar<SwiftLMAddr5Pred, [SwiftWriteSTM6]>,
+ // Assume three D registers.
+ SchedVar<SwiftLMAddr6Pred, [SwiftWriteSTM4]>,
+ SchedVar<SwiftLMAddr7Pred, [SwiftWriteSTM8]>,
+ // Assume two Q registers.
+ SchedVar<SwiftLMAddr8Pred, [SwiftWriteSTM3]>,
+ SchedVar<SwiftLMAddr9Pred, [SwiftWriteSTM10]>,
+ // Assume 5 D registers.
+ SchedVar<SwiftLMAddr10Pred, [SwiftWriteSTM6]>,
+ SchedVar<SwiftLMAddr11Pred, [SwiftWriteSTM12]>,
+ // Assume three Q registers.
+ SchedVar<SwiftLMAddr12Pred, [SwiftWriteSTM4]>,
+ SchedVar<SwiftLMAddr13Pred, [SwiftWriteSTM14]>,
+ // Assume 7 D registers.
+ SchedVar<SwiftLMAddr14Pred, [SwiftWriteSTM8]>,
+ SchedVar<SwiftLMAddr15Pred, [SwiftWriteSTM16]>,
+ // Assume four Q registers.
+ SchedVar<SwiftLMAddr16Pred, [SwiftWriteSTM5]>,
+ // Asumme two Q registers.
+ SchedVar<NoSchedPred, [SwiftWriteSTM3]>
+ ]> { let Variadic = 1; }
+
+ def : InstRW<[SwiftWriteVSTM], (instregex "VSTM[SD](IA|DB)$")>;
+
+ def : InstRW<[SwiftWriteP01OneCycle2x, SwiftWriteVSTM],
+ (instregex "VSTM[SD](IA|DB)_UPD")>;
+
+ // 4.2.43 Advanced SIMD, Element or Structure Load and Store
+ def SwiftWrite2xP2FourCy : SchedWriteRes<[SwiftUnitP2]> {
+ let Latency = 4;
+ let ResourceCycles = [2];
+ }
+ def SwiftWrite3xP2FourCy : SchedWriteRes<[SwiftUnitP2]> {
+ let Latency = 4;
+ let ResourceCycles = [3];
+ }
+ foreach Num = 1-2 in {
+ def SwiftExt#Num#xP0 : SchedWriteRes<[SwiftUnitP0]> {
+ let Latency = 0;
+ let NumMicroOps = Num;
+ let ResourceCycles = [Num];
+ }
+ }
+ // VLDx
+ // Multiple structures.
+ // Single element structure loads.
+ // We assume aligned.
+ // Single/two register.
+ def : InstRW<[SwiftWriteLM4Cy], (instregex "VLD1(d|q)(8|16|32|64)$")>;
+ def : InstRW<[SwiftWriteLM4Cy, SwiftWriteP01OneCycle],
+ (instregex "VLD1(d|q)(8|16|32|64)wb")>;
+ // Three register.
+ def : InstRW<[SwiftWrite3xP2FourCy],
+ (instregex "VLD1(d|q)(8|16|32|64)T$", "VLD1d64TPseudo")>;
+ def : InstRW<[SwiftWrite3xP2FourCy, SwiftWriteP01OneCycle],
+ (instregex "VLD1(d|q)(8|16|32|64)Twb")>;
+ /// Four Register.
+ def : InstRW<[SwiftWrite2xP2FourCy],
+ (instregex "VLD1(d|q)(8|16|32|64)Q$", "VLD1d64QPseudo")>;
+ def : InstRW<[SwiftWrite2xP2FourCy, SwiftWriteP01OneCycle],
+ (instregex "VLD1(d|q)(8|16|32|64)Qwb")>;
+ // Two element structure loads.
+ // Two/four register.
+ def : InstRW<[SwiftWriteLM9Cy, SwiftExt2xP0, SwiftVLDMPerm2],
+ (instregex "VLD2(d|q|b)(8|16|32)$", "VLD2q(8|16|32)Pseudo$")>;
+ def : InstRW<[SwiftWriteLM9Cy, SwiftWriteP01OneCycle, SwiftExt2xP0,
+ SwiftVLDMPerm2],
+ (instregex "VLD2(d|q|b)(8|16|32)wb", "VLD2q(8|16|32)PseudoWB")>;
+ // Three element structure.
+ def : InstRW<[SwiftWriteLM9Cy, SwiftWriteLM9CyNo, SwiftWriteLM9CyNo,
+ SwiftVLDMPerm3, SwiftWrite3xP2FourCy],
+ (instregex "VLD3(d|q)(8|16|32)$")>;
+ def : InstRW<[SwiftWriteLM9Cy, SwiftVLDMPerm3, SwiftWrite3xP2FourCy],
+ (instregex "VLD3(d|q)(8|16|32)(oddP|P)seudo$")>;
+
+ def : InstRW<[SwiftWriteLM9Cy, SwiftWriteLM9CyNo, SwiftWriteLM9CyNo,
+ SwiftWriteP01OneCycle, SwiftVLDMPerm3, SwiftWrite3xP2FourCy],
+ (instregex "VLD3(d|q)(8|16|32)_UPD$")>;
+ def : InstRW<[SwiftWriteLM9Cy, SwiftWriteP01OneCycle, SwiftVLDMPerm3,
+ SwiftWrite3xP2FourCy],
+ (instregex "VLD3(d|q)(8|16|32)(oddP|P)seudo_UPD")>;
+ // Four element structure loads.
+ def : InstRW<[SwiftWriteLM11Cy, SwiftWriteLM11Cy, SwiftWriteLM11Cy,
+ SwiftWriteLM11Cy, SwiftExt2xP0, SwiftVLDMPerm4,
+ SwiftWrite3xP2FourCy],
+ (instregex "VLD4(d|q)(8|16|32)$")>;
+ def : InstRW<[SwiftWriteLM11Cy, SwiftExt2xP0, SwiftVLDMPerm4,
+ SwiftWrite3xP2FourCy],
+ (instregex "VLD4(d|q)(8|16|32)(oddP|P)seudo$")>;
+ def : InstRW<[SwiftWriteLM11Cy, SwiftWriteLM11Cy, SwiftWriteLM11Cy,
+ SwiftWriteLM11Cy, SwiftWriteP01OneCycle, SwiftExt2xP0,
+ SwiftVLDMPerm4, SwiftWrite3xP2FourCy],
+ (instregex "VLD4(d|q)(8|16|32)_UPD")>;
+ def : InstRW<[SwiftWriteLM11Cy, SwiftWriteP01OneCycle, SwiftExt2xP0,
+ SwiftVLDMPerm4, SwiftWrite3xP2FourCy],
+ (instregex "VLD4(d|q)(8|16|32)(oddP|P)seudo_UPD")>;
+
+ // Single all/lane loads.
+ // One element structure.
+ def : InstRW<[SwiftWriteLM6Cy, SwiftVLDMPerm2],
+ (instregex "VLD1(LN|DUP)(d|q)(8|16|32)$", "VLD1(LN|DUP)(d|q)(8|16|32)Pseudo$")>;
+ def : InstRW<[SwiftWriteLM6Cy, SwiftWriteP01OneCycle, SwiftVLDMPerm2],
+ (instregex "VLD1(LN|DUP)(d|q)(8|16|32)(wb|_UPD)",
+ "VLD1LNq(8|16|32)Pseudo_UPD")>;
+ // Two element structure.
+ def : InstRW<[SwiftWriteLM6Cy, SwiftWriteLM6Cy, SwiftExt1xP0, SwiftVLDMPerm2],
+ (instregex "VLD2(DUP|LN)(d|q)(8|16|32|8x2|16x2|32x2)$",
+ "VLD2LN(d|q)(8|16|32)Pseudo$")>;
+ def : InstRW<[SwiftWriteLM6Cy, SwiftWriteLM6Cy, SwiftWriteP01OneCycle,
+ SwiftExt1xP0, SwiftVLDMPerm2],
+ (instregex "VLD2LN(d|q)(8|16|32)_UPD$")>;
+ def : InstRW<[SwiftWriteLM6Cy, SwiftWriteP01OneCycle, SwiftWriteLM6Cy,
+ SwiftExt1xP0, SwiftVLDMPerm2],
+ (instregex "VLD2DUPd(8|16|32|8x2|16x2|32x2)wb")>;
+ def : InstRW<[SwiftWriteLM6Cy, SwiftWriteP01OneCycle, SwiftWriteLM6Cy,
+ SwiftExt1xP0, SwiftVLDMPerm2],
+ (instregex "VLD2LN(d|q)(8|16|32)Pseudo_UPD")>;
+ // Three element structure.
+ def : InstRW<[SwiftWriteLM7Cy, SwiftWriteLM8Cy, SwiftWriteLM8Cy, SwiftExt1xP0,
+ SwiftVLDMPerm3],
+ (instregex "VLD3(DUP|LN)(d|q)(8|16|32)$",
+ "VLD3(LN|DUP)(d|q)(8|16|32)Pseudo$")>;
+ def : InstRW<[SwiftWriteLM7Cy, SwiftWriteLM8Cy, SwiftWriteLM8Cy,
+ SwiftWriteP01OneCycle, SwiftExt1xP0, SwiftVLDMPerm3],
+ (instregex "VLD3(LN|DUP)(d|q)(8|16|32)_UPD")>;
+ def : InstRW<[SwiftWriteLM7Cy, SwiftWriteP01OneCycle, SwiftWriteLM8Cy,
+ SwiftWriteLM8Cy, SwiftExt1xP0, SwiftVLDMPerm3],
+ (instregex "VLD3(LN|DUP)(d|q)(8|16|32)Pseudo_UPD")>;
+ // Four element struture.
+ def : InstRW<[SwiftWriteLM8Cy, SwiftWriteLM9Cy, SwiftWriteLM10CyNo,
+ SwiftWriteLM10CyNo, SwiftExt1xP0, SwiftVLDMPerm5],
+ (instregex "VLD4(LN|DUP)(d|q)(8|16|32)$",
+ "VLD4(LN|DUP)(d|q)(8|16|32)Pseudo$")>;
+ def : InstRW<[SwiftWriteLM8Cy, SwiftWriteLM9Cy, SwiftWriteLM10CyNo,
+ SwiftWriteLM10CyNo, SwiftWriteP01OneCycle, SwiftExt1xP0,
+ SwiftVLDMPerm5],
+ (instregex "VLD4(DUP|LN)(d|q)(8|16|32)_UPD")>;
+ def : InstRW<[SwiftWriteLM8Cy, SwiftWriteP01OneCycle, SwiftWriteLM9Cy,
+ SwiftWriteLM10CyNo, SwiftWriteLM10CyNo, SwiftExt1xP0,
+ SwiftVLDMPerm5],
+ (instregex "VLD4(DUP|LN)(d|q)(8|16|32)Pseudo_UPD")>;
+ // VSTx
+ // Multiple structures.
+ // Single element structure store.
+ def : InstRW<[SwiftWrite1xP2], (instregex "VST1d(8|16|32|64)$")>;
+ def : InstRW<[SwiftWrite2xP2], (instregex "VST1q(8|16|32|64)$")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite1xP2],
+ (instregex "VST1d(8|16|32|64)wb")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite2xP2],
+ (instregex "VST1q(8|16|32|64)wb")>;
+ def : InstRW<[SwiftWrite3xP2],
+ (instregex "VST1d(8|16|32|64)T$", "VST1d64TPseudo$")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite3xP2],
+ (instregex "VST1d(8|16|32|64)Twb", "VST1d64TPseudoWB")>;
+ def : InstRW<[SwiftWrite4xP2],
+ (instregex "VST1d(8|16|32|64)(Q|QPseudo)$")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite4xP2],
+ (instregex "VST1d(8|16|32|64)(Qwb|QPseudoWB)")>;
+ // Two element structure store.
+ def : InstRW<[SwiftWrite1xP2, SwiftVLDMPerm1],
+ (instregex "VST2(d|b)(8|16|32)$")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite1xP2, SwiftVLDMPerm1],
+ (instregex "VST2(b|d)(8|16|32)wb")>;
+ def : InstRW<[SwiftWrite2xP2, SwiftVLDMPerm2],
+ (instregex "VST2q(8|16|32)$", "VST2q(8|16|32)Pseudo$")>;
+ def : InstRW<[SwiftWrite2xP2, SwiftVLDMPerm2],
+ (instregex "VST2q(8|16|32)wb", "VST2q(8|16|32)PseudoWB")>;
+ // Three element structure store.
+ def : InstRW<[SwiftWrite4xP2, SwiftVLDMPerm2],
+ (instregex "VST3(d|q)(8|16|32)$", "VST3(d|q)(8|16|32)(oddP|P)seudo$")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite4xP2, SwiftVLDMPerm2],
+ (instregex "VST3(d|q)(8|16|32)_UPD",
+ "VST3(d|q)(8|16|32)(oddP|P)seudo_UPD$")>;
+ // Four element structure store.
+ def : InstRW<[SwiftWrite4xP2, SwiftVLDMPerm2],
+ (instregex "VST4(d|q)(8|16|32)$", "VST4(d|q)(8|16|32)(oddP|P)seudo$")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite4xP2, SwiftVLDMPerm4],
+ (instregex "VST4(d|q)(8|16|32)_UPD",
+ "VST4(d|q)(8|16|32)(oddP|P)seudo_UPD$")>;
+ // Single/all lane store.
+ // One element structure.
+ def : InstRW<[SwiftWrite1xP2, SwiftVLDMPerm1],
+ (instregex "VST1LNd(8|16|32)$", "VST1LNq(8|16|32)Pseudo$")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite1xP2, SwiftVLDMPerm1],
+ (instregex "VST1LNd(8|16|32)_UPD", "VST1LNq(8|16|32)Pseudo_UPD")>;
+ // Two element structure.
+ def : InstRW<[SwiftWrite1xP2, SwiftVLDMPerm2],
+ (instregex "VST2LN(d|q)(8|16|32)$", "VST2LN(d|q)(8|16|32)Pseudo$")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite1xP2, SwiftVLDMPerm2],
+ (instregex "VST2LN(d|q)(8|16|32)_UPD",
+ "VST2LN(d|q)(8|16|32)Pseudo_UPD")>;
+ // Three element structure.
+ def : InstRW<[SwiftWrite4xP2, SwiftVLDMPerm2],
+ (instregex "VST3LN(d|q)(8|16|32)$", "VST3LN(d|q)(8|16|32)Pseudo$")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite4xP2, SwiftVLDMPerm2],
+ (instregex "VST3LN(d|q)(8|16|32)_UPD",
+ "VST3LN(d|q)(8|16|32)Pseudo_UPD")>;
+ // Four element structure.
+ def : InstRW<[SwiftWrite2xP2, SwiftVLDMPerm2],
+ (instregex "VST4LN(d|q)(8|16|32)$", "VST4LN(d|q)(8|16|32)Pseudo$")>;
+ def : InstRW<[SwiftWriteP01OneCycle, SwiftWrite2xP2, SwiftVLDMPerm2],
+ (instregex "VST4LN(d|q)(8|16|32)_UPD",
+ "VST4LN(d|q)(8|16|32)Pseudo_UPD")>;
+
+ // 4.2.44 VFP, Divide and Square Root
+ def SwiftDiv17 : SchedWriteRes<[SwiftUnitP0, SwiftUnitDiv]> {
+ let NumMicroOps = 1;
+ let Latency = 17;
+ let ResourceCycles = [1, 15];
+ }
+ def SwiftDiv32 : SchedWriteRes<[SwiftUnitP0, SwiftUnitDiv]> {
+ let NumMicroOps = 1;
+ let Latency = 32;
+ let ResourceCycles = [1, 30];
+ }
+ def : InstRW<[SwiftDiv17], (instregex "VDIVS", "VSQRTS")>;
+ def : InstRW<[SwiftDiv32], (instregex "VDIVD", "VSQRTD")>;
+
+ // Not specified.
+ def : InstRW<[SwiftWriteP01OneCycle2x], (instregex "ABS")>;
+ // Preload.
+ def : WriteRes<WritePreLd, [SwiftUnitP2]> { let Latency = 0;
+ let ResourceCycles = [0];
+ }
+
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMScheduleV6.td b/contrib/llvm/lib/Target/ARM/ARMScheduleV6.td
new file mode 100644
index 0000000..57d0bfb
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMScheduleV6.td
@@ -0,0 +1,300 @@
+//===-- ARMScheduleV6.td - ARM v6 Scheduling Definitions ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the ARM v6 processors.
+//
+//===----------------------------------------------------------------------===//
+
+// Model based on ARM1176
+//
+// Functional Units
+def V6_Pipe : FuncUnit; // pipeline
+
+// Scheduling information derived from "ARM1176JZF-S Technical Reference Manual"
+//
+def ARMV6Itineraries : ProcessorItineraries<
+ [V6_Pipe], [], [
+ //
+ // No operand cycles
+ InstrItinData<IIC_iALUx , [InstrStage<1, [V6_Pipe]>]>,
+ //
+ // Binary Instructions that produce a result
+ InstrItinData<IIC_iALUi , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
+ InstrItinData<IIC_iALUr , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>,
+ InstrItinData<IIC_iALUsi , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
+ InstrItinData<IIC_iALUsr , [InstrStage<2, [V6_Pipe]>], [3, 3, 2, 1]>,
+ //
+ // Bitwise Instructions that produce a result
+ InstrItinData<IIC_iBITi , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
+ InstrItinData<IIC_iBITr , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>,
+ InstrItinData<IIC_iBITsi , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
+ InstrItinData<IIC_iBITsr , [InstrStage<2, [V6_Pipe]>], [3, 3, 2, 1]>,
+ //
+ // Unary Instructions that produce a result
+ InstrItinData<IIC_iUNAr , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
+ InstrItinData<IIC_iUNAsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
+ //
+ // Zero and sign extension instructions
+ InstrItinData<IIC_iEXTr , [InstrStage<1, [V6_Pipe]>], [1, 1]>,
+ InstrItinData<IIC_iEXTAr , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
+ InstrItinData<IIC_iEXTAsr , [InstrStage<2, [V6_Pipe]>], [3, 3, 2, 1]>,
+ //
+ // Compare instructions
+ InstrItinData<IIC_iCMPi , [InstrStage<1, [V6_Pipe]>], [2]>,
+ InstrItinData<IIC_iCMPr , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
+ InstrItinData<IIC_iCMPsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
+ InstrItinData<IIC_iCMPsr , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>,
+ //
+ // Test instructions
+ InstrItinData<IIC_iTSTi , [InstrStage<1, [V6_Pipe]>], [2]>,
+ InstrItinData<IIC_iTSTr , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
+ InstrItinData<IIC_iTSTsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
+ InstrItinData<IIC_iTSTsr , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>,
+ //
+ // Move instructions, unconditional
+ InstrItinData<IIC_iMOVi , [InstrStage<1, [V6_Pipe]>], [2]>,
+ InstrItinData<IIC_iMOVr , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
+ InstrItinData<IIC_iMOVsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
+ InstrItinData<IIC_iMOVsr , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>,
+ InstrItinData<IIC_iMOVix2 , [InstrStage<1, [V6_Pipe]>,
+ InstrStage<1, [V6_Pipe]>], [2]>,
+ InstrItinData<IIC_iMOVix2addpc,[InstrStage<1, [V6_Pipe]>,
+ InstrStage<1, [V6_Pipe]>,
+ InstrStage<1, [V6_Pipe]>], [3]>,
+ InstrItinData<IIC_iMOVix2ld , [InstrStage<1, [V6_Pipe]>,
+ InstrStage<1, [V6_Pipe]>,
+ InstrStage<1, [V6_Pipe]>], [5]>,
+ //
+ // Move instructions, conditional
+ InstrItinData<IIC_iCMOVi , [InstrStage<1, [V6_Pipe]>], [3]>,
+ InstrItinData<IIC_iCMOVr , [InstrStage<1, [V6_Pipe]>], [3, 2]>,
+ InstrItinData<IIC_iCMOVsi , [InstrStage<1, [V6_Pipe]>], [3, 1]>,
+ InstrItinData<IIC_iCMOVsr , [InstrStage<1, [V6_Pipe]>], [4, 2, 1]>,
+ InstrItinData<IIC_iCMOVix2 , [InstrStage<1, [V6_Pipe]>,
+ InstrStage<1, [V6_Pipe]>], [4]>,
+ //
+ // MVN instructions
+ InstrItinData<IIC_iMVNi , [InstrStage<1, [V6_Pipe]>], [2]>,
+ InstrItinData<IIC_iMVNr , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
+ InstrItinData<IIC_iMVNsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
+ InstrItinData<IIC_iMVNsr , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>,
+
+ // Integer multiply pipeline
+ //
+ InstrItinData<IIC_iMUL16 , [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>,
+ InstrItinData<IIC_iMAC16 , [InstrStage<1, [V6_Pipe]>], [4, 1, 1, 2]>,
+ InstrItinData<IIC_iMUL32 , [InstrStage<2, [V6_Pipe]>], [5, 1, 1]>,
+ InstrItinData<IIC_iMAC32 , [InstrStage<2, [V6_Pipe]>], [5, 1, 1, 2]>,
+ InstrItinData<IIC_iMUL64 , [InstrStage<3, [V6_Pipe]>], [6, 1, 1]>,
+ InstrItinData<IIC_iMAC64 , [InstrStage<3, [V6_Pipe]>], [6, 1, 1, 2]>,
+
+ // Integer load pipeline
+ //
+ // Immediate offset
+ InstrItinData<IIC_iLoad_i , [InstrStage<1, [V6_Pipe]>], [4, 1]>,
+ InstrItinData<IIC_iLoad_bh_i, [InstrStage<1, [V6_Pipe]>], [4, 1]>,
+ InstrItinData<IIC_iLoad_d_i , [InstrStage<1, [V6_Pipe]>], [4, 1]>,
+ //
+ // Register offset
+ InstrItinData<IIC_iLoad_r , [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>,
+ InstrItinData<IIC_iLoad_bh_r, [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>,
+ InstrItinData<IIC_iLoad_d_r , [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>,
+ //
+ // Scaled register offset, issues over 2 cycles
+ InstrItinData<IIC_iLoad_si , [InstrStage<2, [V6_Pipe]>], [5, 2, 1]>,
+ InstrItinData<IIC_iLoad_bh_si, [InstrStage<2, [V6_Pipe]>], [5, 2, 1]>,
+ //
+ // Immediate offset with update
+ InstrItinData<IIC_iLoad_iu , [InstrStage<1, [V6_Pipe]>], [4, 2, 1]>,
+ InstrItinData<IIC_iLoad_bh_iu, [InstrStage<1, [V6_Pipe]>], [4, 2, 1]>,
+ //
+ // Register offset with update
+ InstrItinData<IIC_iLoad_ru , [InstrStage<1, [V6_Pipe]>], [4, 2, 1, 1]>,
+ InstrItinData<IIC_iLoad_bh_ru, [InstrStage<1, [V6_Pipe]>], [4, 2, 1, 1]>,
+ InstrItinData<IIC_iLoad_d_ru , [InstrStage<1, [V6_Pipe]>], [4, 2, 1, 1]>,
+ //
+ // Scaled register offset with update, issues over 2 cycles
+ InstrItinData<IIC_iLoad_siu, [InstrStage<2, [V6_Pipe]>], [5, 2, 2, 1]>,
+ InstrItinData<IIC_iLoad_bh_siu,[InstrStage<2, [V6_Pipe]>], [5, 2, 2, 1]>,
+
+ //
+ // Load multiple, def is the 5th operand.
+ InstrItinData<IIC_iLoad_m , [InstrStage<3, [V6_Pipe]>], [1, 1, 1, 1, 4]>,
+ //
+ // Load multiple + update, defs are the 1st and 5th operands.
+ InstrItinData<IIC_iLoad_mu , [InstrStage<3, [V6_Pipe]>], [2, 1, 1, 1, 4]>,
+ //
+ // Load multiple plus branch
+ InstrItinData<IIC_iLoad_mBr, [InstrStage<3, [V6_Pipe]>,
+ InstrStage<1, [V6_Pipe]>], [1, 2, 1, 1, 4]>,
+
+ //
+ // iLoadi + iALUr for t2LDRpci_pic.
+ InstrItinData<IIC_iLoadiALU, [InstrStage<1, [V6_Pipe]>,
+ InstrStage<1, [V6_Pipe]>], [3, 1]>,
+
+ //
+ // Pop, def is the 3rd operand.
+ InstrItinData<IIC_iPop , [InstrStage<3, [V6_Pipe]>], [1, 1, 4]>,
+ //
+ // Pop + branch, def is the 3rd operand.
+ InstrItinData<IIC_iPop_Br, [InstrStage<3, [V6_Pipe]>,
+ InstrStage<1, [V6_Pipe]>], [1, 2, 4]>,
+
+ // Integer store pipeline
+ //
+ // Immediate offset
+ InstrItinData<IIC_iStore_i , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
+ InstrItinData<IIC_iStore_bh_i, [InstrStage<1, [V6_Pipe]>], [2, 1]>,
+ InstrItinData<IIC_iStore_d_i , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
+ //
+ // Register offset
+ InstrItinData<IIC_iStore_r , [InstrStage<1, [V6_Pipe]>], [2, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_r, [InstrStage<1, [V6_Pipe]>], [2, 1, 1]>,
+ InstrItinData<IIC_iStore_d_r , [InstrStage<1, [V6_Pipe]>], [2, 1, 1]>,
+ //
+ // Scaled register offset, issues over 2 cycles
+ InstrItinData<IIC_iStore_si , [InstrStage<2, [V6_Pipe]>], [2, 2, 1]>,
+ InstrItinData<IIC_iStore_bh_si, [InstrStage<2, [V6_Pipe]>], [2, 2, 1]>,
+ //
+ // Immediate offset with update
+ InstrItinData<IIC_iStore_iu , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
+ InstrItinData<IIC_iStore_bh_iu, [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
+ //
+ // Register offset with update
+ InstrItinData<IIC_iStore_ru, [InstrStage<1, [V6_Pipe]>], [2, 2, 1, 1]>,
+ InstrItinData<IIC_iStore_bh_ru,[InstrStage<1, [V6_Pipe]>], [2, 2, 1, 1]>,
+ InstrItinData<IIC_iStore_d_ru, [InstrStage<1, [V6_Pipe]>], [2, 2, 1, 1]>,
+ //
+ // Scaled register offset with update, issues over 2 cycles
+ InstrItinData<IIC_iStore_siu, [InstrStage<2, [V6_Pipe]>], [2, 2, 2, 1]>,
+ InstrItinData<IIC_iStore_bh_siu,[InstrStage<2, [V6_Pipe]>], [2, 2, 2, 1]>,
+ //
+ // Store multiple
+ InstrItinData<IIC_iStore_m , [InstrStage<3, [V6_Pipe]>]>,
+ //
+ // Store multiple + update
+ InstrItinData<IIC_iStore_mu , [InstrStage<3, [V6_Pipe]>], [2]>,
+
+ // Branch
+ //
+ // no delay slots, so the latency of a branch is unimportant
+ InstrItinData<IIC_Br , [InstrStage<1, [V6_Pipe]>]>,
+
+ // VFP
+ // Issue through integer pipeline, and execute in NEON unit. We assume
+ // RunFast mode so that NFP pipeline is used for single-precision when
+ // possible.
+ //
+ // FP Special Register to Integer Register File Move
+ InstrItinData<IIC_fpSTAT , [InstrStage<1, [V6_Pipe]>], [3]>,
+ //
+ // Single-precision FP Unary
+ InstrItinData<IIC_fpUNA32 , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
+ //
+ // Double-precision FP Unary
+ InstrItinData<IIC_fpUNA64 , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
+ //
+ // Single-precision FP Compare
+ InstrItinData<IIC_fpCMP32 , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
+ //
+ // Double-precision FP Compare
+ InstrItinData<IIC_fpCMP64 , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
+ //
+ // Single to Double FP Convert
+ InstrItinData<IIC_fpCVTSD , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
+ //
+ // Double to Single FP Convert
+ InstrItinData<IIC_fpCVTDS , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
+ //
+ // Single-Precision FP to Integer Convert
+ InstrItinData<IIC_fpCVTSI , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
+ //
+ // Double-Precision FP to Integer Convert
+ InstrItinData<IIC_fpCVTDI , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
+ //
+ // Integer to Single-Precision FP Convert
+ InstrItinData<IIC_fpCVTIS , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
+ //
+ // Integer to Double-Precision FP Convert
+ InstrItinData<IIC_fpCVTID , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
+ //
+ // Single-precision FP ALU
+ InstrItinData<IIC_fpALU32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>,
+ //
+ // Double-precision FP ALU
+ InstrItinData<IIC_fpALU64 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>,
+ //
+ // Single-precision FP Multiply
+ InstrItinData<IIC_fpMUL32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>,
+ //
+ // Double-precision FP Multiply
+ InstrItinData<IIC_fpMUL64 , [InstrStage<2, [V6_Pipe]>], [9, 2, 2]>,
+ //
+ // Single-precision FP MAC
+ InstrItinData<IIC_fpMAC32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2, 2]>,
+ //
+ // Double-precision FP MAC
+ InstrItinData<IIC_fpMAC64 , [InstrStage<2, [V6_Pipe]>], [9, 2, 2, 2]>,
+ //
+ // Single-precision Fused FP MAC
+ InstrItinData<IIC_fpFMAC32, [InstrStage<1, [V6_Pipe]>], [9, 2, 2, 2]>,
+ //
+ // Double-precision Fused FP MAC
+ InstrItinData<IIC_fpFMAC64, [InstrStage<2, [V6_Pipe]>], [9, 2, 2, 2]>,
+ //
+ // Single-precision FP DIV
+ InstrItinData<IIC_fpDIV32 , [InstrStage<15, [V6_Pipe]>], [20, 2, 2]>,
+ //
+ // Double-precision FP DIV
+ InstrItinData<IIC_fpDIV64 , [InstrStage<29, [V6_Pipe]>], [34, 2, 2]>,
+ //
+ // Single-precision FP SQRT
+ InstrItinData<IIC_fpSQRT32 , [InstrStage<15, [V6_Pipe]>], [20, 2, 2]>,
+ //
+ // Double-precision FP SQRT
+ InstrItinData<IIC_fpSQRT64 , [InstrStage<29, [V6_Pipe]>], [34, 2, 2]>,
+ //
+ // Integer to Single-precision Move
+ InstrItinData<IIC_fpMOVIS, [InstrStage<1, [V6_Pipe]>], [10, 1]>,
+ //
+ // Integer to Double-precision Move
+ InstrItinData<IIC_fpMOVID, [InstrStage<1, [V6_Pipe]>], [10, 1, 1]>,
+ //
+ // Single-precision to Integer Move
+ InstrItinData<IIC_fpMOVSI, [InstrStage<1, [V6_Pipe]>], [10, 1]>,
+ //
+ // Double-precision to Integer Move
+ InstrItinData<IIC_fpMOVDI, [InstrStage<1, [V6_Pipe]>], [10, 10, 1]>,
+ //
+ // Single-precision FP Load
+ InstrItinData<IIC_fpLoad32 , [InstrStage<1, [V6_Pipe]>], [5, 2, 2]>,
+ //
+ // Double-precision FP Load
+ InstrItinData<IIC_fpLoad64 , [InstrStage<1, [V6_Pipe]>], [5, 2, 2]>,
+ //
+ // FP Load Multiple
+ InstrItinData<IIC_fpLoad_m , [InstrStage<3, [V6_Pipe]>], [2, 1, 1, 5]>,
+ //
+ // FP Load Multiple + update
+ InstrItinData<IIC_fpLoad_mu, [InstrStage<3, [V6_Pipe]>], [3, 2, 1, 1, 5]>,
+ //
+ // Single-precision FP Store
+ InstrItinData<IIC_fpStore32 , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>,
+ //
+ // Double-precision FP Store
+ // use FU_Issue to enforce the 1 load/store per cycle limit
+ InstrItinData<IIC_fpStore64 , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>,
+ //
+ // FP Store Multiple
+ InstrItinData<IIC_fpStore_m, [InstrStage<3, [V6_Pipe]>], [2, 2, 2, 2]>,
+ //
+ // FP Store Multiple + update
+ InstrItinData<IIC_fpStore_mu,[InstrStage<3, [V6_Pipe]>], [3, 2, 2, 2, 2]>
+]>;
diff --git a/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.cpp
new file mode 100644
index 0000000..3dcc0df
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.cpp
@@ -0,0 +1,199 @@
+//===-- ARMSelectionDAGInfo.cpp - ARM SelectionDAG Info -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ARMSelectionDAGInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMTargetMachine.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/IR/DerivedTypes.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-selectiondag-info"
+
+ARMSelectionDAGInfo::ARMSelectionDAGInfo(const DataLayout &DL)
+ : TargetSelectionDAGInfo(&DL) {}
+
+ARMSelectionDAGInfo::~ARMSelectionDAGInfo() {
+}
+
+SDValue
+ARMSelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
+ SDValue Chain,
+ SDValue Dst, SDValue Src,
+ SDValue Size, unsigned Align,
+ bool isVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) const {
+ const ARMSubtarget &Subtarget = DAG.getTarget().getSubtarget<ARMSubtarget>();
+ // Do repeated 4-byte loads and stores. To be improved.
+ // This requires 4-byte alignment.
+ if ((Align & 3) != 0)
+ return SDValue();
+ // This requires the copy size to be a constant, preferably
+ // within a subtarget-specific limit.
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ if (!ConstantSize)
+ return SDValue();
+ uint64_t SizeVal = ConstantSize->getZExtValue();
+ if (!AlwaysInline && SizeVal > Subtarget.getMaxInlineSizeThreshold())
+ return SDValue();
+
+ unsigned BytesLeft = SizeVal & 3;
+ unsigned NumMemOps = SizeVal >> 2;
+ unsigned EmittedNumMemOps = 0;
+ EVT VT = MVT::i32;
+ unsigned VTSize = 4;
+ unsigned i = 0;
+ // Emit a maximum of 4 loads in Thumb1 since we have fewer registers
+ const unsigned MAX_LOADS_IN_LDM = Subtarget.isThumb1Only() ? 4 : 6;
+ SDValue TFOps[6];
+ SDValue Loads[6];
+ uint64_t SrcOff = 0, DstOff = 0;
+
+ // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
+ // same number of stores. The loads and stores will get combined into
+ // ldm/stm later on.
+ while (EmittedNumMemOps < NumMemOps) {
+ for (i = 0;
+ i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
+ Loads[i] = DAG.getLoad(VT, dl, Chain,
+ DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
+ DAG.getConstant(SrcOff, MVT::i32)),
+ SrcPtrInfo.getWithOffset(SrcOff), isVolatile,
+ false, false, 0);
+ TFOps[i] = Loads[i].getValue(1);
+ SrcOff += VTSize;
+ }
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ makeArrayRef(TFOps, i));
+
+ for (i = 0;
+ i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
+ TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
+ DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
+ DAG.getConstant(DstOff, MVT::i32)),
+ DstPtrInfo.getWithOffset(DstOff),
+ isVolatile, false, 0);
+ DstOff += VTSize;
+ }
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ makeArrayRef(TFOps, i));
+
+ EmittedNumMemOps += i;
+ }
+
+ if (BytesLeft == 0)
+ return Chain;
+
+ // Issue loads / stores for the trailing (1 - 3) bytes.
+ unsigned BytesLeftSave = BytesLeft;
+ i = 0;
+ while (BytesLeft) {
+ if (BytesLeft >= 2) {
+ VT = MVT::i16;
+ VTSize = 2;
+ } else {
+ VT = MVT::i8;
+ VTSize = 1;
+ }
+
+ Loads[i] = DAG.getLoad(VT, dl, Chain,
+ DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
+ DAG.getConstant(SrcOff, MVT::i32)),
+ SrcPtrInfo.getWithOffset(SrcOff),
+ false, false, false, 0);
+ TFOps[i] = Loads[i].getValue(1);
+ ++i;
+ SrcOff += VTSize;
+ BytesLeft -= VTSize;
+ }
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ makeArrayRef(TFOps, i));
+
+ i = 0;
+ BytesLeft = BytesLeftSave;
+ while (BytesLeft) {
+ if (BytesLeft >= 2) {
+ VT = MVT::i16;
+ VTSize = 2;
+ } else {
+ VT = MVT::i8;
+ VTSize = 1;
+ }
+
+ TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
+ DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
+ DAG.getConstant(DstOff, MVT::i32)),
+ DstPtrInfo.getWithOffset(DstOff), false, false, 0);
+ ++i;
+ DstOff += VTSize;
+ BytesLeft -= VTSize;
+ }
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ makeArrayRef(TFOps, i));
+}
+
+// Adjust parameters for memset, EABI uses format (ptr, size, value),
+// GNU library uses (ptr, value, size)
+// See RTABI section 4.3.4
+SDValue ARMSelectionDAGInfo::
+EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
+ SDValue Chain, SDValue Dst,
+ SDValue Src, SDValue Size,
+ unsigned Align, bool isVolatile,
+ MachinePointerInfo DstPtrInfo) const {
+ const ARMSubtarget &Subtarget = DAG.getTarget().getSubtarget<ARMSubtarget>();
+ // Use default for non-AAPCS (or MachO) subtargets
+ if (!Subtarget.isAAPCS_ABI() || Subtarget.isTargetMachO() ||
+ Subtarget.isTargetWindows())
+ return SDValue();
+
+ const ARMTargetLowering &TLI =
+ *static_cast<const ARMTargetLowering*>(DAG.getTarget().getTargetLowering());
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ // First argument: data pointer
+ Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*DAG.getContext());
+ Entry.Node = Dst;
+ Entry.Ty = IntPtrTy;
+ Args.push_back(Entry);
+
+ // Second argument: buffer size
+ Entry.Node = Size;
+ Entry.Ty = IntPtrTy;
+ Entry.isSExt = false;
+ Args.push_back(Entry);
+
+ // Extend or truncate the argument to be an i32 value for the call.
+ if (Src.getValueType().bitsGT(MVT::i32))
+ Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
+ else
+ Src = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
+
+ // Third argument: value to fill
+ Entry.Node = Src;
+ Entry.Ty = Type::getInt32Ty(*DAG.getContext());
+ Entry.isSExt = true;
+ Args.push_back(Entry);
+
+ // Emit __eabi_memset call
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(Chain)
+ .setCallee(TLI.getLibcallCallingConv(RTLIB::MEMSET),
+ Type::getVoidTy(*DAG.getContext()),
+ DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
+ TLI.getPointerTy()), std::move(Args), 0)
+ .setDiscardResult();
+
+ std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
+ return CallResult.second;
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.h b/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.h
new file mode 100644
index 0000000..13769dc
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.h
@@ -0,0 +1,62 @@
+//===-- ARMSelectionDAGInfo.h - ARM SelectionDAG Info -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ARM subclass for TargetSelectionDAGInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMSELECTIONDAGINFO_H
+#define ARMSELECTIONDAGINFO_H
+
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+namespace ARM_AM {
+ static inline ShiftOpc getShiftOpcForNode(unsigned Opcode) {
+ switch (Opcode) {
+ default: return ARM_AM::no_shift;
+ case ISD::SHL: return ARM_AM::lsl;
+ case ISD::SRL: return ARM_AM::lsr;
+ case ISD::SRA: return ARM_AM::asr;
+ case ISD::ROTR: return ARM_AM::ror;
+ //case ISD::ROTL: // Only if imm -> turn into ROTR.
+ // Can't handle RRX here, because it would require folding a flag into
+ // the addressing mode. :( This causes us to miss certain things.
+ //case ARMISD::RRX: return ARM_AM::rrx;
+ }
+ }
+} // end namespace ARM_AM
+
+class ARMSelectionDAGInfo : public TargetSelectionDAGInfo {
+public:
+ explicit ARMSelectionDAGInfo(const DataLayout &DL);
+ ~ARMSelectionDAGInfo();
+
+ SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
+ SDValue Chain,
+ SDValue Dst, SDValue Src,
+ SDValue Size, unsigned Align,
+ bool isVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) const override;
+
+ // Adjust parameters for memset, see RTABI section 4.3.4
+ SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
+ SDValue Chain,
+ SDValue Op1, SDValue Op2,
+ SDValue Op3, unsigned Align,
+ bool isVolatile,
+ MachinePointerInfo DstPtrInfo) const override;
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMSubtarget.cpp b/contrib/llvm/lib/Target/ARM/ARMSubtarget.cpp
new file mode 100644
index 0000000..c1b4562
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMSubtarget.cpp
@@ -0,0 +1,440 @@
+//===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ARM specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMSubtarget.h"
+#include "ARMFrameLowering.h"
+#include "ARMISelLowering.h"
+#include "ARMInstrInfo.h"
+#include "ARMJITInfo.h"
+#include "ARMSelectionDAGInfo.h"
+#include "ARMSubtarget.h"
+#include "ARMMachineFunctionInfo.h"
+#include "Thumb1FrameLowering.h"
+#include "Thumb1InstrInfo.h"
+#include "Thumb2InstrInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-subtarget"
+
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#include "ARMGenSubtargetInfo.inc"
+
+static cl::opt<bool>
+ReserveR9("arm-reserve-r9", cl::Hidden,
+ cl::desc("Reserve R9, making it unavailable as GPR"));
+
+static cl::opt<bool>
+ArmUseMOVT("arm-use-movt", cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+UseFusedMulOps("arm-use-mulops",
+ cl::init(true), cl::Hidden);
+
+enum AlignMode {
+ DefaultAlign,
+ StrictAlign,
+ NoStrictAlign
+};
+
+static cl::opt<AlignMode>
+Align(cl::desc("Load/store alignment support"),
+ cl::Hidden, cl::init(DefaultAlign),
+ cl::values(
+ clEnumValN(DefaultAlign, "arm-default-align",
+ "Generate unaligned accesses only on hardware/OS "
+ "combinations that are known to support them"),
+ clEnumValN(StrictAlign, "arm-strict-align",
+ "Disallow all unaligned memory accesses"),
+ clEnumValN(NoStrictAlign, "arm-no-strict-align",
+ "Allow unaligned memory accesses"),
+ clEnumValEnd));
+
+enum ITMode {
+ DefaultIT,
+ RestrictedIT,
+ NoRestrictedIT
+};
+
+static cl::opt<ITMode>
+IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
+ cl::ZeroOrMore,
+ cl::values(clEnumValN(DefaultIT, "arm-default-it",
+ "Generate IT block based on arch"),
+ clEnumValN(RestrictedIT, "arm-restrict-it",
+ "Disallow deprecated IT based on ARMv8"),
+ clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
+ "Allow IT blocks based on ARMv7"),
+ clEnumValEnd));
+
+static std::string computeDataLayout(ARMSubtarget &ST) {
+ std::string Ret = "";
+
+ if (ST.isLittle())
+ // Little endian.
+ Ret += "e";
+ else
+ // Big endian.
+ Ret += "E";
+
+ Ret += DataLayout::getManglingComponent(ST.getTargetTriple());
+
+ // Pointers are 32 bits and aligned to 32 bits.
+ Ret += "-p:32:32";
+
+ // On thumb, i16,i18 and i1 have natural aligment requirements, but we try to
+ // align to 32.
+ if (ST.isThumb())
+ Ret += "-i1:8:32-i8:8:32-i16:16:32";
+
+ // ABIs other than APCS have 64 bit integers with natural alignment.
+ if (!ST.isAPCS_ABI())
+ Ret += "-i64:64";
+
+ // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
+ // bits, others to 64 bits. We always try to align to 64 bits.
+ if (ST.isAPCS_ABI())
+ Ret += "-f64:32:64";
+
+ // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
+ // to 64. We always ty to give them natural alignment.
+ if (ST.isAPCS_ABI())
+ Ret += "-v64:32:64-v128:32:128";
+ else
+ Ret += "-v128:64:128";
+
+ // On thumb and APCS, only try to align aggregates to 32 bits (the default is
+ // 64 bits).
+ if (ST.isThumb() || ST.isAPCS_ABI())
+ Ret += "-a:0:32";
+
+ // Integer registers are 32 bits.
+ Ret += "-n32";
+
+ // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
+ // aligned everywhere else.
+ if (ST.isTargetNaCl())
+ Ret += "-S128";
+ else if (ST.isAAPCS_ABI())
+ Ret += "-S64";
+ else
+ Ret += "-S32";
+
+ return Ret;
+}
+
+/// initializeSubtargetDependencies - Initializes using a CPU and feature string
+/// so that we can use initializer lists for subtarget initialization.
+ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
+ StringRef FS) {
+ initializeEnvironment();
+ resetSubtargetFeatures(CPU, FS);
+ return *this;
+}
+
+ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, TargetMachine &TM,
+ bool IsLittle, const TargetOptions &Options)
+ : ARMGenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others),
+ ARMProcClass(None), stackAlignment(4), CPUString(CPU), IsLittle(IsLittle),
+ TargetTriple(TT), Options(Options), TargetABI(ARM_ABI_UNKNOWN),
+ DL(computeDataLayout(initializeSubtargetDependencies(CPU, FS))),
+ TSInfo(DL), JITInfo(),
+ InstrInfo(isThumb1Only()
+ ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
+ : !isThumb()
+ ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
+ : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
+ TLInfo(TM),
+ FrameLowering(!isThumb1Only()
+ ? new ARMFrameLowering(*this)
+ : (ARMFrameLowering *)new Thumb1FrameLowering(*this)) {}
+
+void ARMSubtarget::initializeEnvironment() {
+ HasV4TOps = false;
+ HasV5TOps = false;
+ HasV5TEOps = false;
+ HasV6Ops = false;
+ HasV6MOps = false;
+ HasV6T2Ops = false;
+ HasV7Ops = false;
+ HasV8Ops = false;
+ HasVFPv2 = false;
+ HasVFPv3 = false;
+ HasVFPv4 = false;
+ HasFPARMv8 = false;
+ HasNEON = false;
+ UseNEONForSinglePrecisionFP = false;
+ UseMulOps = UseFusedMulOps;
+ SlowFPVMLx = false;
+ HasVMLxForwarding = false;
+ SlowFPBrcc = false;
+ InThumbMode = false;
+ HasThumb2 = false;
+ NoARM = false;
+ IsR9Reserved = ReserveR9;
+ UseMovt = false;
+ SupportsTailCall = false;
+ HasFP16 = false;
+ HasD16 = false;
+ HasHardwareDivide = false;
+ HasHardwareDivideInARM = false;
+ HasT2ExtractPack = false;
+ HasDataBarrier = false;
+ Pref32BitThumb = false;
+ AvoidCPSRPartialUpdate = false;
+ AvoidMOVsShifterOperand = false;
+ HasRAS = false;
+ HasMPExtension = false;
+ HasVirtualization = false;
+ FPOnlySP = false;
+ HasPerfMon = false;
+ HasTrustZone = false;
+ HasCrypto = false;
+ HasCRC = false;
+ HasZeroCycleZeroing = false;
+ AllowsUnalignedMem = false;
+ Thumb2DSP = false;
+ UseNaClTrap = false;
+ UnsafeFPMath = false;
+}
+
+void ARMSubtarget::resetSubtargetFeatures(const MachineFunction *MF) {
+ AttributeSet FnAttrs = MF->getFunction()->getAttributes();
+ Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
+ "target-cpu");
+ Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
+ "target-features");
+ std::string CPU =
+ !CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : "";
+ std::string FS =
+ !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
+ if (!FS.empty()) {
+ initializeEnvironment();
+ resetSubtargetFeatures(CPU, FS);
+ }
+}
+
+void ARMSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
+ if (CPUString.empty()) {
+ if (isTargetIOS() && TargetTriple.getArchName().endswith("v7s"))
+ // Default to the Swift CPU when targeting armv7s/thumbv7s.
+ CPUString = "swift";
+ else
+ CPUString = "generic";
+ }
+
+ // Insert the architecture feature derived from the target triple into the
+ // feature string. This is important for setting features that are implied
+ // based on the architecture version.
+ std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple.getTriple(),
+ CPUString);
+ if (!FS.empty()) {
+ if (!ArchFS.empty())
+ ArchFS = ArchFS + "," + FS.str();
+ else
+ ArchFS = FS;
+ }
+ ParseSubtargetFeatures(CPUString, ArchFS);
+
+ // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
+ // Assert this for now to make the change obvious.
+ assert(hasV6T2Ops() || !hasThumb2());
+
+ // Keep a pointer to static instruction cost data for the specified CPU.
+ SchedModel = getSchedModelForCPU(CPUString);
+
+ // Initialize scheduling itinerary for the specified CPU.
+ InstrItins = getInstrItineraryForCPU(CPUString);
+
+ if (TargetABI == ARM_ABI_UNKNOWN) {
+ switch (TargetTriple.getEnvironment()) {
+ case Triple::Android:
+ case Triple::EABI:
+ case Triple::EABIHF:
+ case Triple::GNUEABI:
+ case Triple::GNUEABIHF:
+ TargetABI = ARM_ABI_AAPCS;
+ break;
+ default:
+ if ((isTargetIOS() && isMClass()) ||
+ (TargetTriple.isOSBinFormatMachO() &&
+ TargetTriple.getOS() == Triple::UnknownOS))
+ TargetABI = ARM_ABI_AAPCS;
+ else
+ TargetABI = ARM_ABI_APCS;
+ break;
+ }
+ }
+
+ // FIXME: this is invalid for WindowsCE
+ if (isTargetWindows()) {
+ TargetABI = ARM_ABI_AAPCS;
+ NoARM = true;
+ }
+
+ if (isAAPCS_ABI())
+ stackAlignment = 8;
+ if (isTargetNaCl())
+ stackAlignment = 16;
+
+ UseMovt = hasV6T2Ops() && ArmUseMOVT;
+
+ if (isTargetMachO()) {
+ IsR9Reserved = ReserveR9 | !HasV6Ops;
+ SupportsTailCall = !isTargetIOS() || !getTargetTriple().isOSVersionLT(5, 0);
+ } else {
+ IsR9Reserved = ReserveR9;
+ SupportsTailCall = !isThumb1Only();
+ }
+
+ switch (Align) {
+ case DefaultAlign:
+ // Assume pre-ARMv6 doesn't support unaligned accesses.
+ //
+ // ARMv6 may or may not support unaligned accesses depending on the
+ // SCTLR.U bit, which is architecture-specific. We assume ARMv6
+ // Darwin and NetBSD targets support unaligned accesses, and others don't.
+ //
+ // ARMv7 always has SCTLR.U set to 1, but it has a new SCTLR.A bit
+ // which raises an alignment fault on unaligned accesses. Linux
+ // defaults this bit to 0 and handles it as a system-wide (not
+ // per-process) setting. It is therefore safe to assume that ARMv7+
+ // Linux targets support unaligned accesses. The same goes for NaCl.
+ //
+ // The above behavior is consistent with GCC.
+ AllowsUnalignedMem =
+ (hasV7Ops() && (isTargetLinux() || isTargetNaCl() ||
+ isTargetNetBSD())) ||
+ (hasV6Ops() && (isTargetMachO() || isTargetNetBSD()));
+ // The one exception is cortex-m0, which despite being v6, does not
+ // support unaligned accesses. Rather than make the above boolean
+ // expression even more obtuse, just override the value here.
+ if (isThumb1Only() && isMClass())
+ AllowsUnalignedMem = false;
+ break;
+ case StrictAlign:
+ AllowsUnalignedMem = false;
+ break;
+ case NoStrictAlign:
+ AllowsUnalignedMem = true;
+ break;
+ }
+
+ switch (IT) {
+ case DefaultIT:
+ RestrictIT = hasV8Ops() ? true : false;
+ break;
+ case RestrictedIT:
+ RestrictIT = true;
+ break;
+ case NoRestrictedIT:
+ RestrictIT = false;
+ break;
+ }
+
+ // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
+ uint64_t Bits = getFeatureBits();
+ if ((Bits & ARM::ProcA5 || Bits & ARM::ProcA8) && // Where this matters
+ (Options.UnsafeFPMath || isTargetDarwin()))
+ UseNEONForSinglePrecisionFP = true;
+}
+
+/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol.
+bool
+ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV,
+ Reloc::Model RelocM) const {
+ if (RelocM == Reloc::Static)
+ return false;
+
+ // Materializable GVs (in JIT lazy compilation mode) do not require an extra
+ // load from stub.
+ bool isDecl = GV->hasAvailableExternallyLinkage();
+ if (GV->isDeclaration() && !GV->isMaterializable())
+ isDecl = true;
+
+ if (!isTargetMachO()) {
+ // Extra load is needed for all externally visible.
+ if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
+ return false;
+ return true;
+ } else {
+ if (RelocM == Reloc::PIC_) {
+ // If this is a strong reference to a definition, it is definitely not
+ // through a stub.
+ if (!isDecl && !GV->isWeakForLinker())
+ return false;
+
+ // Unless we have a symbol with hidden visibility, we have to go through a
+ // normal $non_lazy_ptr stub because this symbol might be resolved late.
+ if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
+ return true;
+
+ // If symbol visibility is hidden, we have a stub for common symbol
+ // references and external declarations.
+ if (isDecl || GV->hasCommonLinkage())
+ // Hidden $non_lazy_ptr reference.
+ return true;
+
+ return false;
+ } else {
+ // If this is a strong reference to a definition, it is definitely not
+ // through a stub.
+ if (!isDecl && !GV->isWeakForLinker())
+ return false;
+
+ // Unless we have a symbol with hidden visibility, we have to go through a
+ // normal $non_lazy_ptr stub because this symbol might be resolved late.
+ if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
+ return true;
+ }
+ }
+
+ return false;
+}
+
+unsigned ARMSubtarget::getMispredictionPenalty() const {
+ return SchedModel->MispredictPenalty;
+}
+
+bool ARMSubtarget::hasSinCos() const {
+ return getTargetTriple().getOS() == Triple::IOS &&
+ !getTargetTriple().isOSVersionLT(7, 0);
+}
+
+// This overrides the PostRAScheduler bit in the SchedModel for any CPU.
+bool ARMSubtarget::enablePostMachineScheduler() const {
+ return (!isThumb() || hasThumb2());
+}
+
+bool ARMSubtarget::enableAtomicExpandLoadLinked() const {
+ return hasAnyDataBarrier() && !isThumb1Only();
+}
+
+bool ARMSubtarget::useMovt(const MachineFunction &MF) const {
+ // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
+ // immediates as it is inherently position independent, and may be out of
+ // range otherwise.
+ return UseMovt && (isTargetWindows() ||
+ !MF.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::MinSize));
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMSubtarget.h b/contrib/llvm/lib/Target/ARM/ARMSubtarget.h
new file mode 100644
index 0000000..f8283b0
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMSubtarget.h
@@ -0,0 +1,450 @@
+//===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the ARM specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMSUBTARGET_H
+#define ARMSUBTARGET_H
+
+
+#include "ARMFrameLowering.h"
+#include "ARMISelLowering.h"
+#include "ARMInstrInfo.h"
+#include "ARMJITInfo.h"
+#include "ARMSelectionDAGInfo.h"
+#include "ARMSubtarget.h"
+#include "Thumb1FrameLowering.h"
+#include "Thumb1InstrInfo.h"
+#include "Thumb2InstrInfo.h"
+#include "ARMJITInfo.h"
+#include "MCTargetDesc/ARMMCTargetDesc.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "ARMGenSubtargetInfo.inc"
+
+namespace llvm {
+class GlobalValue;
+class StringRef;
+class TargetOptions;
+
+class ARMSubtarget : public ARMGenSubtargetInfo {
+protected:
+ enum ARMProcFamilyEnum {
+ Others, CortexA5, CortexA7, CortexA8, CortexA9, CortexA12, CortexA15,
+ CortexR5, Swift, CortexA53, CortexA57, Krait
+ };
+ enum ARMProcClassEnum {
+ None, AClass, RClass, MClass
+ };
+
+ /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others.
+ ARMProcFamilyEnum ARMProcFamily;
+
+ /// ARMProcClass - ARM processor class: None, AClass, RClass or MClass.
+ ARMProcClassEnum ARMProcClass;
+
+ /// HasV4TOps, HasV5TOps, HasV5TEOps,
+ /// HasV6Ops, HasV6MOps, HasV6T2Ops, HasV7Ops, HasV8Ops -
+ /// Specify whether target support specific ARM ISA variants.
+ bool HasV4TOps;
+ bool HasV5TOps;
+ bool HasV5TEOps;
+ bool HasV6Ops;
+ bool HasV6MOps;
+ bool HasV6T2Ops;
+ bool HasV7Ops;
+ bool HasV8Ops;
+
+ /// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what
+ /// floating point ISAs are supported.
+ bool HasVFPv2;
+ bool HasVFPv3;
+ bool HasVFPv4;
+ bool HasFPARMv8;
+ bool HasNEON;
+
+ /// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been
+ /// specified. Use the method useNEONForSinglePrecisionFP() to
+ /// determine if NEON should actually be used.
+ bool UseNEONForSinglePrecisionFP;
+
+ /// UseMulOps - True if non-microcoded fused integer multiply-add and
+ /// multiply-subtract instructions should be used.
+ bool UseMulOps;
+
+ /// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates
+ /// whether the FP VML[AS] instructions are slow (if so, don't use them).
+ bool SlowFPVMLx;
+
+ /// HasVMLxForwarding - If true, NEON has special multiplier accumulator
+ /// forwarding to allow mul + mla being issued back to back.
+ bool HasVMLxForwarding;
+
+ /// SlowFPBrcc - True if floating point compare + branch is slow.
+ bool SlowFPBrcc;
+
+ /// InThumbMode - True if compiling for Thumb, false for ARM.
+ bool InThumbMode;
+
+ /// HasThumb2 - True if Thumb2 instructions are supported.
+ bool HasThumb2;
+
+ /// NoARM - True if subtarget does not support ARM mode execution.
+ bool NoARM;
+
+ /// IsR9Reserved - True if R9 is a not available as general purpose register.
+ bool IsR9Reserved;
+
+ /// UseMovt - True if MOVT / MOVW pairs are used for materialization of 32-bit
+ /// imms (including global addresses).
+ bool UseMovt;
+
+ /// SupportsTailCall - True if the OS supports tail call. The dynamic linker
+ /// must be able to synthesize call stubs for interworking between ARM and
+ /// Thumb.
+ bool SupportsTailCall;
+
+ /// HasFP16 - True if subtarget supports half-precision FP (We support VFP+HF
+ /// only so far)
+ bool HasFP16;
+
+ /// HasD16 - True if subtarget is limited to 16 double precision
+ /// FP registers for VFPv3.
+ bool HasD16;
+
+ /// HasHardwareDivide - True if subtarget supports [su]div
+ bool HasHardwareDivide;
+
+ /// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode
+ bool HasHardwareDivideInARM;
+
+ /// HasT2ExtractPack - True if subtarget supports thumb2 extract/pack
+ /// instructions.
+ bool HasT2ExtractPack;
+
+ /// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier
+ /// instructions.
+ bool HasDataBarrier;
+
+ /// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions
+ /// over 16-bit ones.
+ bool Pref32BitThumb;
+
+ /// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions
+ /// that partially update CPSR and add false dependency on the previous
+ /// CPSR setting instruction.
+ bool AvoidCPSRPartialUpdate;
+
+ /// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting
+ /// movs with shifter operand (i.e. asr, lsl, lsr).
+ bool AvoidMOVsShifterOperand;
+
+ /// HasRAS - Some processors perform return stack prediction. CodeGen should
+ /// avoid issue "normal" call instructions to callees which do not return.
+ bool HasRAS;
+
+ /// HasMPExtension - True if the subtarget supports Multiprocessing
+ /// extension (ARMv7 only).
+ bool HasMPExtension;
+
+ /// HasVirtualization - True if the subtarget supports the Virtualization
+ /// extension.
+ bool HasVirtualization;
+
+ /// FPOnlySP - If true, the floating point unit only supports single
+ /// precision.
+ bool FPOnlySP;
+
+ /// If true, the processor supports the Performance Monitor Extensions. These
+ /// include a generic cycle-counter as well as more fine-grained (often
+ /// implementation-specific) events.
+ bool HasPerfMon;
+
+ /// HasTrustZone - if true, processor supports TrustZone security extensions
+ bool HasTrustZone;
+
+ /// HasCrypto - if true, processor supports Cryptography extensions
+ bool HasCrypto;
+
+ /// HasCRC - if true, processor supports CRC instructions
+ bool HasCRC;
+
+ /// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are
+ /// particularly effective at zeroing a VFP register.
+ bool HasZeroCycleZeroing;
+
+ /// AllowsUnalignedMem - If true, the subtarget allows unaligned memory
+ /// accesses for some types. For details, see
+ /// ARMTargetLowering::allowsUnalignedMemoryAccesses().
+ bool AllowsUnalignedMem;
+
+ /// RestrictIT - If true, the subtarget disallows generation of deprecated IT
+ /// blocks to conform to ARMv8 rule.
+ bool RestrictIT;
+
+ /// Thumb2DSP - If true, the subtarget supports the v7 DSP (saturating arith
+ /// and such) instructions in Thumb2 code.
+ bool Thumb2DSP;
+
+ /// NaCl TRAP instruction is generated instead of the regular TRAP.
+ bool UseNaClTrap;
+
+ /// Target machine allowed unsafe FP math (such as use of NEON fp)
+ bool UnsafeFPMath;
+
+ /// stackAlignment - The minimum alignment known to hold of the stack frame on
+ /// entry to the function and which must be maintained by every function.
+ unsigned stackAlignment;
+
+ /// CPUString - String name of used CPU.
+ std::string CPUString;
+
+ /// IsLittle - The target is Little Endian
+ bool IsLittle;
+
+ /// TargetTriple - What processor and OS we're targeting.
+ Triple TargetTriple;
+
+ /// SchedModel - Processor specific instruction costs.
+ const MCSchedModel *SchedModel;
+
+ /// Selected instruction itineraries (one entry per itinerary class.)
+ InstrItineraryData InstrItins;
+
+ /// Options passed via command line that could influence the target
+ const TargetOptions &Options;
+
+ public:
+ enum {
+ ARM_ABI_UNKNOWN,
+ ARM_ABI_APCS,
+ ARM_ABI_AAPCS // ARM EABI
+ } TargetABI;
+
+ /// This constructor initializes the data members to match that
+ /// of the specified triple.
+ ///
+ ARMSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, TargetMachine &TM, bool IsLittle,
+ const TargetOptions &Options);
+
+ /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
+ /// that still makes it profitable to inline the call.
+ unsigned getMaxInlineSizeThreshold() const {
+ return 64;
+ }
+ /// ParseSubtargetFeatures - Parses features string setting specified
+ /// subtarget options. Definition of function is auto generated by tblgen.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+
+ /// \brief Reset the features for the ARM target.
+ void resetSubtargetFeatures(const MachineFunction *MF) override;
+
+ /// initializeSubtargetDependencies - Initializes using a CPU and feature string
+ /// so that we can use initializer lists for subtarget initialization.
+ ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
+
+ const DataLayout *getDataLayout() const { return &DL; }
+ const ARMSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+ ARMJITInfo *getJITInfo() { return &JITInfo; }
+ const ARMBaseInstrInfo *getInstrInfo() const { return InstrInfo.get(); }
+ const ARMTargetLowering *getTargetLowering() const { return &TLInfo; }
+ const ARMFrameLowering *getFrameLowering() const { return FrameLowering.get(); }
+ const ARMBaseRegisterInfo *getRegisterInfo() const {
+ return &InstrInfo->getRegisterInfo();
+ }
+
+private:
+ const DataLayout DL;
+ ARMSelectionDAGInfo TSInfo;
+ ARMJITInfo JITInfo;
+ // Either Thumb1InstrInfo or Thumb2InstrInfo.
+ std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
+ ARMTargetLowering TLInfo;
+ // Either Thumb1FrameLowering or ARMFrameLowering.
+ std::unique_ptr<ARMFrameLowering> FrameLowering;
+
+ void initializeEnvironment();
+ void resetSubtargetFeatures(StringRef CPU, StringRef FS);
+public:
+ void computeIssueWidth();
+
+ bool hasV4TOps() const { return HasV4TOps; }
+ bool hasV5TOps() const { return HasV5TOps; }
+ bool hasV5TEOps() const { return HasV5TEOps; }
+ bool hasV6Ops() const { return HasV6Ops; }
+ bool hasV6MOps() const { return HasV6MOps; }
+ bool hasV6T2Ops() const { return HasV6T2Ops; }
+ bool hasV7Ops() const { return HasV7Ops; }
+ bool hasV8Ops() const { return HasV8Ops; }
+
+ bool isCortexA5() const { return ARMProcFamily == CortexA5; }
+ bool isCortexA7() const { return ARMProcFamily == CortexA7; }
+ bool isCortexA8() const { return ARMProcFamily == CortexA8; }
+ bool isCortexA9() const { return ARMProcFamily == CortexA9; }
+ bool isCortexA15() const { return ARMProcFamily == CortexA15; }
+ bool isSwift() const { return ARMProcFamily == Swift; }
+ bool isCortexM3() const { return CPUString == "cortex-m3"; }
+ bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); }
+ bool isCortexR5() const { return ARMProcFamily == CortexR5; }
+ bool isKrait() const { return ARMProcFamily == Krait; }
+
+ bool hasARMOps() const { return !NoARM; }
+
+ bool hasVFP2() const { return HasVFPv2; }
+ bool hasVFP3() const { return HasVFPv3; }
+ bool hasVFP4() const { return HasVFPv4; }
+ bool hasFPARMv8() const { return HasFPARMv8; }
+ bool hasNEON() const { return HasNEON; }
+ bool hasCrypto() const { return HasCrypto; }
+ bool hasCRC() const { return HasCRC; }
+ bool hasVirtualization() const { return HasVirtualization; }
+ bool useNEONForSinglePrecisionFP() const {
+ return hasNEON() && UseNEONForSinglePrecisionFP; }
+
+ bool hasDivide() const { return HasHardwareDivide; }
+ bool hasDivideInARMMode() const { return HasHardwareDivideInARM; }
+ bool hasT2ExtractPack() const { return HasT2ExtractPack; }
+ bool hasDataBarrier() const { return HasDataBarrier; }
+ bool hasAnyDataBarrier() const {
+ return HasDataBarrier || (hasV6Ops() && !isThumb());
+ }
+ bool useMulOps() const { return UseMulOps; }
+ bool useFPVMLx() const { return !SlowFPVMLx; }
+ bool hasVMLxForwarding() const { return HasVMLxForwarding; }
+ bool isFPBrccSlow() const { return SlowFPBrcc; }
+ bool isFPOnlySP() const { return FPOnlySP; }
+ bool hasPerfMon() const { return HasPerfMon; }
+ bool hasTrustZone() const { return HasTrustZone; }
+ bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; }
+ bool prefers32BitThumb() const { return Pref32BitThumb; }
+ bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; }
+ bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; }
+ bool hasRAS() const { return HasRAS; }
+ bool hasMPExtension() const { return HasMPExtension; }
+ bool hasThumb2DSP() const { return Thumb2DSP; }
+ bool useNaClTrap() const { return UseNaClTrap; }
+
+ bool hasFP16() const { return HasFP16; }
+ bool hasD16() const { return HasD16; }
+
+ const Triple &getTargetTriple() const { return TargetTriple; }
+
+ bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
+ bool isTargetIOS() const { return TargetTriple.isiOS(); }
+ bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
+ bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
+ bool isTargetNetBSD() const { return TargetTriple.getOS() == Triple::NetBSD; }
+ bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
+
+ bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
+ bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
+ bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
+
+ // ARM EABI is the bare-metal EABI described in ARM ABI documents and
+ // can be accessed via -target arm-none-eabi. This is NOT GNUEABI.
+ // FIXME: Add a flag for bare-metal for that target and set Triple::EABI
+ // even for GNUEABI, so we can make a distinction here and still conform to
+ // the EABI on GNU (and Android) mode. This requires change in Clang, too.
+ // FIXME: The Darwin exception is temporary, while we move users to
+ // "*-*-*-macho" triples as quickly as possible.
+ bool isTargetAEABI() const {
+ return (TargetTriple.getEnvironment() == Triple::EABI ||
+ TargetTriple.getEnvironment() == Triple::EABIHF) &&
+ !isTargetDarwin() && !isTargetWindows();
+ }
+
+ // ARM Targets that support EHABI exception handling standard
+ // Darwin uses SjLj. Other targets might need more checks.
+ bool isTargetEHABICompatible() const {
+ return (TargetTriple.getEnvironment() == Triple::EABI ||
+ TargetTriple.getEnvironment() == Triple::GNUEABI ||
+ TargetTriple.getEnvironment() == Triple::EABIHF ||
+ TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
+ TargetTriple.getEnvironment() == Triple::Android) &&
+ !isTargetDarwin() && !isTargetWindows();
+ }
+
+ bool isTargetHardFloat() const {
+ // FIXME: this is invalid for WindowsCE
+ return TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
+ TargetTriple.getEnvironment() == Triple::EABIHF ||
+ isTargetWindows();
+ }
+ bool isTargetAndroid() const {
+ return TargetTriple.getEnvironment() == Triple::Android;
+ }
+
+ bool isAPCS_ABI() const {
+ assert(TargetABI != ARM_ABI_UNKNOWN);
+ return TargetABI == ARM_ABI_APCS;
+ }
+ bool isAAPCS_ABI() const {
+ assert(TargetABI != ARM_ABI_UNKNOWN);
+ return TargetABI == ARM_ABI_AAPCS;
+ }
+
+ bool isThumb() const { return InThumbMode; }
+ bool isThumb1Only() const { return InThumbMode && !HasThumb2; }
+ bool isThumb2() const { return InThumbMode && HasThumb2; }
+ bool hasThumb2() const { return HasThumb2; }
+ bool isMClass() const { return ARMProcClass == MClass; }
+ bool isRClass() const { return ARMProcClass == RClass; }
+ bool isAClass() const { return ARMProcClass == AClass; }
+
+ bool isR9Reserved() const { return IsR9Reserved; }
+
+ bool useMovt(const MachineFunction &MF) const;
+
+ bool supportsTailCall() const { return SupportsTailCall; }
+
+ bool allowsUnalignedMem() const { return AllowsUnalignedMem; }
+
+ bool restrictIT() const { return RestrictIT; }
+
+ const std::string & getCPUString() const { return CPUString; }
+
+ bool isLittle() const { return IsLittle; }
+
+ unsigned getMispredictionPenalty() const;
+
+ /// This function returns true if the target has sincos() routine in its
+ /// compiler runtime or math libraries.
+ bool hasSinCos() const;
+
+ /// True for some subtargets at > -O0.
+ bool enablePostMachineScheduler() const override;
+
+ // enableAtomicExpandLoadLinked - True if we need to expand our atomics.
+ bool enableAtomicExpandLoadLinked() const override;
+
+ /// getInstrItins - Return the instruction itineraies based on subtarget
+ /// selection.
+ const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
+
+ /// getStackAlignment - Returns the minimum alignment known to hold of the
+ /// stack frame on entry to the function and which must be maintained by every
+ /// function for this subtarget.
+ unsigned getStackAlignment() const { return stackAlignment; }
+
+ /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect
+ /// symbol.
+ bool GVIsIndirectSymbol(const GlobalValue *GV, Reloc::Model RelocM) const;
+
+};
+} // End llvm namespace
+
+#endif // ARMSUBTARGET_H
diff --git a/contrib/llvm/lib/Target/ARM/ARMTargetMachine.cpp b/contrib/llvm/lib/Target/ARM/ARMTargetMachine.cpp
new file mode 100644
index 0000000..d85194b
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMTargetMachine.cpp
@@ -0,0 +1,253 @@
+//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMTargetMachine.h"
+#include "ARMFrameLowering.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Transforms/Scalar.h"
+using namespace llvm;
+
+static cl::opt<bool>
+DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
+ cl::desc("Inhibit optimization of S->D register accesses on A15"),
+ cl::init(false));
+
+static cl::opt<bool>
+EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
+ cl::desc("Run SimplifyCFG after expanding atomic operations"
+ " to make use of cmpxchg flow-based information"),
+ cl::init(true));
+
+extern "C" void LLVMInitializeARMTarget() {
+ // Register the target.
+ RegisterTargetMachine<ARMLETargetMachine> X(TheARMLETarget);
+ RegisterTargetMachine<ARMBETargetMachine> Y(TheARMBETarget);
+ RegisterTargetMachine<ThumbLETargetMachine> A(TheThumbLETarget);
+ RegisterTargetMachine<ThumbBETargetMachine> B(TheThumbBETarget);
+}
+
+
+/// TargetMachine ctor - Create an ARM architecture model.
+///
+ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL, bool isLittle)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS, *this, isLittle, Options) {
+
+ // Default to triple-appropriate float ABI
+ if (Options.FloatABIType == FloatABI::Default)
+ this->Options.FloatABIType =
+ Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
+}
+
+void ARMBaseTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
+ // Add first the target-independent BasicTTI pass, then our ARM pass. This
+ // allows the ARM pass to delegate to the target independent layer when
+ // appropriate.
+ PM.add(createBasicTargetTransformInfoPass(this));
+ PM.add(createARMTargetTransformInfoPass(this));
+}
+
+
+void ARMTargetMachine::anchor() { }
+
+ARMTargetMachine::ARMTargetMachine(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL, bool isLittle)
+ : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
+ initAsmInfo();
+ if (!Subtarget.hasARMOps())
+ report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
+ "support ARM mode execution!");
+}
+
+void ARMLETargetMachine::anchor() { }
+
+ARMLETargetMachine::ARMLETargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
+
+void ARMBETargetMachine::anchor() { }
+
+ARMBETargetMachine::ARMBETargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
+
+void ThumbTargetMachine::anchor() { }
+
+ThumbTargetMachine::ThumbTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL, bool isLittle)
+ : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL,
+ isLittle) {
+ initAsmInfo();
+}
+
+void ThumbLETargetMachine::anchor() { }
+
+ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
+
+void ThumbBETargetMachine::anchor() { }
+
+ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
+
+namespace {
+/// ARM Code Generator Pass Configuration Options.
+class ARMPassConfig : public TargetPassConfig {
+public:
+ ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ ARMBaseTargetMachine &getARMTargetMachine() const {
+ return getTM<ARMBaseTargetMachine>();
+ }
+
+ const ARMSubtarget &getARMSubtarget() const {
+ return *getARMTargetMachine().getSubtargetImpl();
+ }
+
+ void addIRPasses() override;
+ bool addPreISel() override;
+ bool addInstSelector() override;
+ bool addPreRegAlloc() override;
+ bool addPreSched2() override;
+ bool addPreEmitPass() override;
+};
+} // namespace
+
+TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new ARMPassConfig(this, PM);
+}
+
+void ARMPassConfig::addIRPasses() {
+ addPass(createAtomicExpandLoadLinkedPass(TM));
+
+ // Cmpxchg instructions are often used with a subsequent comparison to
+ // determine whether it succeeded. We can exploit existing control-flow in
+ // ldrex/strex loops to simplify this, but it needs tidying up.
+ const ARMSubtarget *Subtarget = &getARMSubtarget();
+ if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only())
+ if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
+ addPass(createCFGSimplificationPass());
+
+ TargetPassConfig::addIRPasses();
+}
+
+bool ARMPassConfig::addPreISel() {
+ if (TM->getOptLevel() != CodeGenOpt::None)
+ addPass(createGlobalMergePass(TM));
+
+ return false;
+}
+
+bool ARMPassConfig::addInstSelector() {
+ addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
+
+ const ARMSubtarget *Subtarget = &getARMSubtarget();
+ if (Subtarget->isTargetELF() && !Subtarget->isThumb1Only() &&
+ TM->Options.EnableFastISel)
+ addPass(createARMGlobalBaseRegPass());
+ return false;
+}
+
+bool ARMPassConfig::addPreRegAlloc() {
+ if (getOptLevel() != CodeGenOpt::None)
+ addPass(createARMLoadStoreOptimizationPass(true));
+ if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA9())
+ addPass(createMLxExpansionPass());
+ // Since the A15SDOptimizer pass can insert VDUP instructions, it can only be
+ // enabled when NEON is available.
+ if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA15() &&
+ getARMSubtarget().hasNEON() && !DisableA15SDOptimization) {
+ addPass(createA15SDOptimizerPass());
+ }
+ return true;
+}
+
+bool ARMPassConfig::addPreSched2() {
+ if (getOptLevel() != CodeGenOpt::None) {
+ addPass(createARMLoadStoreOptimizationPass());
+ printAndVerify("After ARM load / store optimizer");
+
+ if (getARMSubtarget().hasNEON())
+ addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
+ }
+
+ // Expand some pseudo instructions into multiple instructions to allow
+ // proper scheduling.
+ addPass(createARMExpandPseudoPass());
+
+ if (getOptLevel() != CodeGenOpt::None) {
+ if (!getARMSubtarget().isThumb1Only()) {
+ // in v8, IfConversion depends on Thumb instruction widths
+ if (getARMSubtarget().restrictIT() &&
+ !getARMSubtarget().prefers32BitThumb())
+ addPass(createThumb2SizeReductionPass());
+ addPass(&IfConverterID);
+ }
+ }
+ if (getARMSubtarget().isThumb2())
+ addPass(createThumb2ITBlockPass());
+
+ return true;
+}
+
+bool ARMPassConfig::addPreEmitPass() {
+ if (getARMSubtarget().isThumb2()) {
+ if (!getARMSubtarget().prefers32BitThumb())
+ addPass(createThumb2SizeReductionPass());
+
+ // Constant island pass work on unbundled instructions.
+ addPass(&UnpackMachineBundlesID);
+ }
+
+ addPass(createARMOptimizeBarriersPass());
+ addPass(createARMConstantIslandPass());
+
+ return true;
+}
+
+bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM,
+ JITCodeEmitter &JCE) {
+ // Machine code emitter pass for ARM.
+ PM.add(createARMJITCodeEmitterPass(*this, JCE));
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMTargetMachine.h b/contrib/llvm/lib/Target/ARM/ARMTargetMachine.h
new file mode 100644
index 0000000..b72b1df
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMTargetMachine.h
@@ -0,0 +1,135 @@
+//===-- ARMTargetMachine.h - Define TargetMachine for ARM -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the ARM specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMTARGETMACHINE_H
+#define ARMTARGETMACHINE_H
+
+#include "ARMInstrInfo.h"
+#include "ARMSubtarget.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+class ARMBaseTargetMachine : public LLVMTargetMachine {
+protected:
+ ARMSubtarget Subtarget;
+public:
+ ARMBaseTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL,
+ bool isLittle);
+
+ const ARMSubtarget *getSubtargetImpl() const override { return &Subtarget; }
+ const ARMBaseRegisterInfo *getRegisterInfo() const override {
+ return getSubtargetImpl()->getRegisterInfo();
+ }
+ const ARMTargetLowering *getTargetLowering() const override {
+ return getSubtargetImpl()->getTargetLowering();
+ }
+ const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return getSubtargetImpl()->getSelectionDAGInfo();
+ }
+ const ARMBaseInstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const ARMFrameLowering *getFrameLowering() const override {
+ return getSubtargetImpl()->getFrameLowering();
+ }
+ const InstrItineraryData *getInstrItineraryData() const override {
+ return &getSubtargetImpl()->getInstrItineraryData();
+ }
+ const DataLayout *getDataLayout() const override {
+ return getSubtargetImpl()->getDataLayout();
+ }
+ ARMJITInfo *getJITInfo() override { return Subtarget.getJITInfo(); }
+
+ /// \brief Register ARM analysis passes with a pass manager.
+ void addAnalysisPasses(PassManagerBase &PM) override;
+
+ // Pass Pipeline Configuration
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+
+ bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &MCE) override;
+};
+
+/// ARMTargetMachine - ARM target machine.
+///
+class ARMTargetMachine : public ARMBaseTargetMachine {
+ virtual void anchor();
+ public:
+ ARMTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS,
+ const TargetOptions &Options, Reloc::Model RM,
+ CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle);
+};
+
+/// ARMLETargetMachine - ARM little endian target machine.
+///
+class ARMLETargetMachine : public ARMTargetMachine {
+ void anchor() override;
+public:
+ ARMLETargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+/// ARMBETargetMachine - ARM big endian target machine.
+///
+class ARMBETargetMachine : public ARMTargetMachine {
+ void anchor() override;
+public:
+ ARMBETargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS,
+ const TargetOptions &Options, Reloc::Model RM,
+ CodeModel::Model CM, CodeGenOpt::Level OL);
+};
+
+/// ThumbTargetMachine - Thumb target machine.
+/// Due to the way architectures are handled, this represents both
+/// Thumb-1 and Thumb-2.
+///
+class ThumbTargetMachine : public ARMBaseTargetMachine {
+ virtual void anchor();
+public:
+ ThumbTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS,
+ const TargetOptions &Options, Reloc::Model RM,
+ CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle);
+};
+
+/// ThumbLETargetMachine - Thumb little endian target machine.
+///
+class ThumbLETargetMachine : public ThumbTargetMachine {
+ void anchor() override;
+public:
+ ThumbLETargetMachine(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+/// ThumbBETargetMachine - Thumb big endian target machine.
+///
+class ThumbBETargetMachine : public ThumbTargetMachine {
+ void anchor() override;
+public:
+ ThumbBETargetMachine(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.cpp b/contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.cpp
new file mode 100644
index 0000000..48238bf
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.cpp
@@ -0,0 +1,63 @@
+//===-- llvm/Target/ARMTargetObjectFile.cpp - ARM Object Info Impl --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMTargetObjectFile.h"
+#include "ARMSubtarget.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+using namespace dwarf;
+
+//===----------------------------------------------------------------------===//
+// ELF Target
+//===----------------------------------------------------------------------===//
+
+void ARMElfTargetObjectFile::Initialize(MCContext &Ctx,
+ const TargetMachine &TM) {
+ bool isAAPCS_ABI = TM.getSubtarget<ARMSubtarget>().isAAPCS_ABI();
+ TargetLoweringObjectFileELF::Initialize(Ctx, TM);
+ InitializeELF(isAAPCS_ABI);
+
+ if (isAAPCS_ABI) {
+ LSDASection = nullptr;
+ }
+
+ AttributesSection =
+ getContext().getELFSection(".ARM.attributes",
+ ELF::SHT_ARM_ATTRIBUTES,
+ 0,
+ SectionKind::getMetadata());
+}
+
+const MCExpr *ARMElfTargetObjectFile::getTTypeGlobalReference(
+ const GlobalValue *GV, unsigned Encoding, Mangler &Mang,
+ const TargetMachine &TM, MachineModuleInfo *MMI,
+ MCStreamer &Streamer) const {
+ if (TM.getMCAsmInfo()->getExceptionHandlingType() != ExceptionHandling::ARM)
+ return TargetLoweringObjectFileELF::getTTypeGlobalReference(
+ GV, Encoding, Mang, TM, MMI, Streamer);
+
+ assert(Encoding == DW_EH_PE_absptr && "Can handle absptr encoding only");
+
+ return MCSymbolRefExpr::Create(TM.getSymbol(GV, Mang),
+ MCSymbolRefExpr::VK_ARM_TARGET2, getContext());
+}
+
+const MCExpr *ARMElfTargetObjectFile::
+getDebugThreadLocalSymbol(const MCSymbol *Sym) const {
+ return MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_ARM_TLSLDO,
+ getContext());
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.h b/contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.h
new file mode 100644
index 0000000..c926421
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.h
@@ -0,0 +1,43 @@
+//===-- llvm/Target/ARMTargetObjectFile.h - ARM Object Info -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_ARM_TARGETOBJECTFILE_H
+#define LLVM_TARGET_ARM_TARGETOBJECTFILE_H
+
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+
+namespace llvm {
+
+class MCContext;
+class TargetMachine;
+
+class ARMElfTargetObjectFile : public TargetLoweringObjectFileELF {
+protected:
+ const MCSection *AttributesSection;
+public:
+ ARMElfTargetObjectFile() :
+ TargetLoweringObjectFileELF(),
+ AttributesSection(nullptr)
+ {}
+
+ void Initialize(MCContext &Ctx, const TargetMachine &TM) override;
+
+ const MCExpr *
+ getTTypeGlobalReference(const GlobalValue *GV, unsigned Encoding,
+ Mangler &Mang, const TargetMachine &TM,
+ MachineModuleInfo *MMI,
+ MCStreamer &Streamer) const override;
+
+ /// \brief Describe a TLS variable address within debug info.
+ const MCExpr *getDebugThreadLocalSymbol(const MCSymbol *Sym) const override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp
new file mode 100644
index 0000000..a2ace62
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp
@@ -0,0 +1,586 @@
+//===-- ARMTargetTransformInfo.cpp - ARM specific TTI pass ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements a TargetTransformInfo analysis pass specific to the
+/// ARM target machine. It uses the target's detailed information to provide
+/// more precise answers to certain TTI queries, while letting the target
+/// independent and default TTI implementations handle the rest.
+///
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMTargetMachine.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/CostTable.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "armtti"
+
+// Declare the pass initialization routine locally as target-specific passes
+// don't have a target-wide initialization entry point, and so we rely on the
+// pass constructor initialization.
+namespace llvm {
+void initializeARMTTIPass(PassRegistry &);
+}
+
+namespace {
+
+class ARMTTI final : public ImmutablePass, public TargetTransformInfo {
+ const ARMBaseTargetMachine *TM;
+ const ARMSubtarget *ST;
+ const ARMTargetLowering *TLI;
+
+ /// Estimate the overhead of scalarizing an instruction. Insert and Extract
+ /// are set if the result needs to be inserted and/or extracted from vectors.
+ unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
+
+public:
+ ARMTTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
+ llvm_unreachable("This pass cannot be directly constructed");
+ }
+
+ ARMTTI(const ARMBaseTargetMachine *TM)
+ : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
+ TLI(TM->getTargetLowering()) {
+ initializeARMTTIPass(*PassRegistry::getPassRegistry());
+ }
+
+ void initializePass() override {
+ pushTTIStack(this);
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ TargetTransformInfo::getAnalysisUsage(AU);
+ }
+
+ /// Pass identification.
+ static char ID;
+
+ /// Provide necessary pointer adjustments for the two base classes.
+ void *getAdjustedAnalysisPointer(const void *ID) override {
+ if (ID == &TargetTransformInfo::ID)
+ return (TargetTransformInfo*)this;
+ return this;
+ }
+
+ /// \name Scalar TTI Implementations
+ /// @{
+ using TargetTransformInfo::getIntImmCost;
+ unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
+
+ /// @}
+
+
+ /// \name Vector TTI Implementations
+ /// @{
+
+ unsigned getNumberOfRegisters(bool Vector) const override {
+ if (Vector) {
+ if (ST->hasNEON())
+ return 16;
+ return 0;
+ }
+
+ if (ST->isThumb1Only())
+ return 8;
+ return 13;
+ }
+
+ unsigned getRegisterBitWidth(bool Vector) const override {
+ if (Vector) {
+ if (ST->hasNEON())
+ return 128;
+ return 0;
+ }
+
+ return 32;
+ }
+
+ unsigned getMaximumUnrollFactor() const override {
+ // These are out of order CPUs:
+ if (ST->isCortexA15() || ST->isSwift())
+ return 2;
+ return 1;
+ }
+
+ unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
+ int Index, Type *SubTp) const override;
+
+ unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
+ Type *Src) const override;
+
+ unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) const override;
+
+ unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) const override;
+
+ unsigned getAddressComputationCost(Type *Val,
+ bool IsComplex) const override;
+
+ unsigned
+ getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ OperandValueKind Op1Info = OK_AnyValue,
+ OperandValueKind Op2Info = OK_AnyValue) const override;
+
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const override;
+ /// @}
+};
+
+} // end anonymous namespace
+
+INITIALIZE_AG_PASS(ARMTTI, TargetTransformInfo, "armtti",
+ "ARM Target Transform Info", true, true, false)
+char ARMTTI::ID = 0;
+
+ImmutablePass *
+llvm::createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM) {
+ return new ARMTTI(TM);
+}
+
+
+unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned Bits = Ty->getPrimitiveSizeInBits();
+ if (Bits == 0 || Bits > 32)
+ return 4;
+
+ int32_t SImmVal = Imm.getSExtValue();
+ uint32_t ZImmVal = Imm.getZExtValue();
+ if (!ST->isThumb()) {
+ if ((SImmVal >= 0 && SImmVal < 65536) ||
+ (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
+ (ARM_AM::getSOImmVal(~ZImmVal) != -1))
+ return 1;
+ return ST->hasV6T2Ops() ? 2 : 3;
+ }
+ if (ST->isThumb2()) {
+ if ((SImmVal >= 0 && SImmVal < 65536) ||
+ (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
+ (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
+ return 1;
+ return ST->hasV6T2Ops() ? 2 : 3;
+ }
+ // Thumb1.
+ if (SImmVal >= 0 && SImmVal < 256)
+ return 1;
+ if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
+ return 2;
+ // Load from constantpool.
+ return 3;
+}
+
+unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
+ Type *Src) const {
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // Single to/from double precision conversions.
+ static const CostTblEntry<MVT::SimpleValueType> NEONFltDblTbl[] = {
+ // Vector fptrunc/fpext conversions.
+ { ISD::FP_ROUND, MVT::v2f64, 2 },
+ { ISD::FP_EXTEND, MVT::v2f32, 2 },
+ { ISD::FP_EXTEND, MVT::v4f32, 4 }
+ };
+
+ if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
+ ISD == ISD::FP_EXTEND)) {
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
+ int Idx = CostTableLookup(NEONFltDblTbl, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * NEONFltDblTbl[Idx].Cost;
+ }
+
+ EVT SrcTy = TLI->getValueType(Src);
+ EVT DstTy = TLI->getValueType(Dst);
+
+ if (!SrcTy.isSimple() || !DstTy.isSimple())
+ return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
+
+ // Some arithmetic, load and store operations have specific instructions
+ // to cast up/down their types automatically at no extra cost.
+ // TODO: Get these tables to know at least what the related operations are.
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ NEONVectorConversionTbl[] = {
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
+ { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
+ { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
+
+ // The number of vmovl instructions for the extension.
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
+
+ // Operations that we legalize using splitting.
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
+
+ // Vector float <-> i32 conversions.
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
+
+ { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
+ { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
+ { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
+
+ // Vector double <-> i32 conversions.
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+
+ { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
+ { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
+ { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
+ { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
+ { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
+ };
+
+ if (SrcTy.isVector() && ST->hasNEON()) {
+ int Idx = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
+ DstTy.getSimpleVT(), SrcTy.getSimpleVT());
+ if (Idx != -1)
+ return NEONVectorConversionTbl[Idx].Cost;
+ }
+
+ // Scalar float to integer conversions.
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ NEONFloatConversionTbl[] = {
+ { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
+ { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
+ { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
+ { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
+ { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
+ { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
+ { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
+ { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
+ { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
+ { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
+ { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
+ { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
+ { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
+ { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
+ { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
+ { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
+ { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
+ { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
+ { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
+ { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
+ };
+ if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
+ int Idx = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
+ DstTy.getSimpleVT(), SrcTy.getSimpleVT());
+ if (Idx != -1)
+ return NEONFloatConversionTbl[Idx].Cost;
+ }
+
+ // Scalar integer to float conversions.
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ NEONIntegerConversionTbl[] = {
+ { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
+ { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
+ { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
+ { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
+ { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
+ { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
+ { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
+ { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
+ { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
+ { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
+ };
+
+ if (SrcTy.isInteger() && ST->hasNEON()) {
+ int Idx = ConvertCostTableLookup(NEONIntegerConversionTbl, ISD,
+ DstTy.getSimpleVT(), SrcTy.getSimpleVT());
+ if (Idx != -1)
+ return NEONIntegerConversionTbl[Idx].Cost;
+ }
+
+ // Scalar integer conversion costs.
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ ARMIntegerConversionTbl[] = {
+ // i16 -> i64 requires two dependent operations.
+ { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
+
+ // Truncates on i64 are assumed to be free.
+ { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
+ { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
+ { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
+ { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
+ };
+
+ if (SrcTy.isInteger()) {
+ int Idx = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
+ DstTy.getSimpleVT(), SrcTy.getSimpleVT());
+ if (Idx != -1)
+ return ARMIntegerConversionTbl[Idx].Cost;
+ }
+
+ return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
+}
+
+unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy,
+ unsigned Index) const {
+ // Penalize inserting into an D-subregister. We end up with a three times
+ // lower estimated throughput on swift.
+ if (ST->isSwift() &&
+ Opcode == Instruction::InsertElement &&
+ ValTy->isVectorTy() &&
+ ValTy->getScalarSizeInBits() <= 32)
+ return 3;
+
+ return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index);
+}
+
+unsigned ARMTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) const {
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ // On NEON a a vector select gets lowered to vbsl.
+ if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
+ // Lowering of some vector selects is currently far from perfect.
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ NEONVectorSelectTbl[] = {
+ { ISD::SELECT, MVT::v16i1, MVT::v16i16, 2*16 + 1 + 3*1 + 4*1 },
+ { ISD::SELECT, MVT::v8i1, MVT::v8i32, 4*8 + 1*3 + 1*4 + 1*2 },
+ { ISD::SELECT, MVT::v16i1, MVT::v16i32, 4*16 + 1*6 + 1*8 + 1*4 },
+ { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
+ { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
+ { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
+ };
+
+ EVT SelCondTy = TLI->getValueType(CondTy);
+ EVT SelValTy = TLI->getValueType(ValTy);
+ if (SelCondTy.isSimple() && SelValTy.isSimple()) {
+ int Idx = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
+ SelCondTy.getSimpleVT(),
+ SelValTy.getSimpleVT());
+ if (Idx != -1)
+ return NEONVectorSelectTbl[Idx].Cost;
+ }
+
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
+ return LT.first;
+ }
+
+ return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
+}
+
+unsigned ARMTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
+ // Address computations in vectorized code with non-consecutive addresses will
+ // likely result in more instructions compared to scalar code where the
+ // computation can more often be merged into the index mode. The resulting
+ // extra micro-ops can significantly decrease throughput.
+ unsigned NumVectorInstToHideOverhead = 10;
+
+ if (Ty->isVectorTy() && IsComplex)
+ return NumVectorInstToHideOverhead;
+
+ // In many cases the address computation is not merged into the instruction
+ // addressing mode.
+ return 1;
+}
+
+unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) const {
+ // We only handle costs of reverse and alternate shuffles for now.
+ if (Kind != SK_Reverse && Kind != SK_Alternate)
+ return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
+
+ if (Kind == SK_Reverse) {
+ static const CostTblEntry<MVT::SimpleValueType> NEONShuffleTbl[] = {
+ // Reverse shuffle cost one instruction if we are shuffling within a
+ // double word (vrev) or two if we shuffle a quad word (vrev, vext).
+ {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
+
+ {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
+
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
+
+ int Idx = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
+ if (Idx == -1)
+ return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
+
+ return LT.first * NEONShuffleTbl[Idx].Cost;
+ }
+ if (Kind == SK_Alternate) {
+ static const CostTblEntry<MVT::SimpleValueType> NEONAltShuffleTbl[] = {
+ // Alt shuffle cost table for ARM. Cost is the number of instructions
+ // required to create the shuffled vector.
+
+ {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
+
+ {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
+
+ {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
+
+ {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
+
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
+ int Idx =
+ CostTableLookup(NEONAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
+ if (Idx == -1)
+ return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
+ return LT.first * NEONAltShuffleTbl[Idx].Cost;
+ }
+ return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
+}
+
+unsigned ARMTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ OperandValueKind Op1Info,
+ OperandValueKind Op2Info) const {
+
+ int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
+
+ const unsigned FunctionCallDivCost = 20;
+ const unsigned ReciprocalDivCost = 10;
+ static const CostTblEntry<MVT::SimpleValueType> CostTbl[] = {
+ // Division.
+ // These costs are somewhat random. Choose a cost of 20 to indicate that
+ // vectorizing devision (added function call) is going to be very expensive.
+ // Double registers types.
+ { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
+ { ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
+ { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
+ { ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
+ { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
+ // Quad register types.
+ { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
+ // Multiplication.
+ };
+
+ int Idx = -1;
+
+ if (ST->hasNEON())
+ Idx = CostTableLookup(CostTbl, ISDOpcode, LT.second);
+
+ if (Idx != -1)
+ return LT.first * CostTbl[Idx].Cost;
+
+ unsigned Cost =
+ TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
+
+ // This is somewhat of a hack. The problem that we are facing is that SROA
+ // creates a sequence of shift, and, or instructions to construct values.
+ // These sequences are recognized by the ISel and have zero-cost. Not so for
+ // the vectorized code. Because we have support for v2i64 but not i64 those
+ // sequences look particularly beneficial to vectorize.
+ // To work around this we increase the cost of v2i64 operations to make them
+ // seem less beneficial.
+ if (LT.second == MVT::v2i64 &&
+ Op2Info == TargetTransformInfo::OK_UniformConstantValue)
+ Cost += 4;
+
+ return Cost;
+}
+
+unsigned ARMTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const {
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
+
+ if (Src->isVectorTy() && Alignment != 16 &&
+ Src->getVectorElementType()->isDoubleTy()) {
+ // Unaligned loads/stores are extremely inefficient.
+ // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
+ return LT.first * 4;
+ }
+ return LT.first;
+}
diff --git a/contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp b/contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
new file mode 100644
index 0000000..b62706c
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
@@ -0,0 +1,9461 @@
+//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMFPUName.h"
+#include "ARMFeatures.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "MCTargetDesc/ARMArchName.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "MCTargetDesc/ARMMCExpr.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDisassembler.h"
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/ARMBuildAttributes.h"
+#include "llvm/Support/ARMEHABI.h"
+#include "llvm/Support/COFF.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+namespace {
+
+class ARMOperand;
+
+enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
+
+class UnwindContext {
+ MCAsmParser &Parser;
+
+ typedef SmallVector<SMLoc, 4> Locs;
+
+ Locs FnStartLocs;
+ Locs CantUnwindLocs;
+ Locs PersonalityLocs;
+ Locs PersonalityIndexLocs;
+ Locs HandlerDataLocs;
+ int FPReg;
+
+public:
+ UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
+
+ bool hasFnStart() const { return !FnStartLocs.empty(); }
+ bool cantUnwind() const { return !CantUnwindLocs.empty(); }
+ bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
+ bool hasPersonality() const {
+ return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
+ }
+
+ void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
+ void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
+ void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
+ void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
+ void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
+
+ void saveFPReg(int Reg) { FPReg = Reg; }
+ int getFPReg() const { return FPReg; }
+
+ void emitFnStartLocNotes() const {
+ for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
+ FI != FE; ++FI)
+ Parser.Note(*FI, ".fnstart was specified here");
+ }
+ void emitCantUnwindLocNotes() const {
+ for (Locs::const_iterator UI = CantUnwindLocs.begin(),
+ UE = CantUnwindLocs.end(); UI != UE; ++UI)
+ Parser.Note(*UI, ".cantunwind was specified here");
+ }
+ void emitHandlerDataLocNotes() const {
+ for (Locs::const_iterator HI = HandlerDataLocs.begin(),
+ HE = HandlerDataLocs.end(); HI != HE; ++HI)
+ Parser.Note(*HI, ".handlerdata was specified here");
+ }
+ void emitPersonalityLocNotes() const {
+ for (Locs::const_iterator PI = PersonalityLocs.begin(),
+ PE = PersonalityLocs.end(),
+ PII = PersonalityIndexLocs.begin(),
+ PIE = PersonalityIndexLocs.end();
+ PI != PE || PII != PIE;) {
+ if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
+ Parser.Note(*PI++, ".personality was specified here");
+ else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
+ Parser.Note(*PII++, ".personalityindex was specified here");
+ else
+ llvm_unreachable(".personality and .personalityindex cannot be "
+ "at the same location");
+ }
+ }
+
+ void reset() {
+ FnStartLocs = Locs();
+ CantUnwindLocs = Locs();
+ PersonalityLocs = Locs();
+ HandlerDataLocs = Locs();
+ PersonalityIndexLocs = Locs();
+ FPReg = ARM::SP;
+ }
+};
+
+class ARMAsmParser : public MCTargetAsmParser {
+ MCSubtargetInfo &STI;
+ MCAsmParser &Parser;
+ const MCInstrInfo &MII;
+ const MCRegisterInfo *MRI;
+ UnwindContext UC;
+
+ ARMTargetStreamer &getTargetStreamer() {
+ MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
+ return static_cast<ARMTargetStreamer &>(TS);
+ }
+
+ // Map of register aliases registers via the .req directive.
+ StringMap<unsigned> RegisterReqs;
+
+ bool NextSymbolIsThumb;
+
+ struct {
+ ARMCC::CondCodes Cond; // Condition for IT block.
+ unsigned Mask:4; // Condition mask for instructions.
+ // Starting at first 1 (from lsb).
+ // '1' condition as indicated in IT.
+ // '0' inverse of condition (else).
+ // Count of instructions in IT block is
+ // 4 - trailingzeroes(mask)
+
+ bool FirstCond; // Explicit flag for when we're parsing the
+ // First instruction in the IT block. It's
+ // implied in the mask, so needs special
+ // handling.
+
+ unsigned CurPosition; // Current position in parsing of IT
+ // block. In range [0,3]. Initialized
+ // according to count of instructions in block.
+ // ~0U if no active IT block.
+ } ITState;
+ bool inITBlock() { return ITState.CurPosition != ~0U;}
+ void forwardITPosition() {
+ if (!inITBlock()) return;
+ // Move to the next instruction in the IT block, if there is one. If not,
+ // mark the block as done.
+ unsigned TZ = countTrailingZeros(ITState.Mask);
+ if (++ITState.CurPosition == 5 - TZ)
+ ITState.CurPosition = ~0U; // Done with the IT block after this.
+ }
+
+
+ MCAsmParser &getParser() const { return Parser; }
+ MCAsmLexer &getLexer() const { return Parser.getLexer(); }
+
+ void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) {
+ return Parser.Note(L, Msg, Ranges);
+ }
+ bool Warning(SMLoc L, const Twine &Msg,
+ ArrayRef<SMRange> Ranges = None) {
+ return Parser.Warning(L, Msg, Ranges);
+ }
+ bool Error(SMLoc L, const Twine &Msg,
+ ArrayRef<SMRange> Ranges = None) {
+ return Parser.Error(L, Msg, Ranges);
+ }
+
+ int tryParseRegister();
+ bool tryParseRegisterWithWriteBack(OperandVector &);
+ int tryParseShiftRegister(OperandVector &);
+ bool parseRegisterList(OperandVector &);
+ bool parseMemory(OperandVector &);
+ bool parseOperand(OperandVector &, StringRef Mnemonic);
+ bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
+ bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
+ unsigned &ShiftAmount);
+ bool parseLiteralValues(unsigned Size, SMLoc L);
+ bool parseDirectiveThumb(SMLoc L);
+ bool parseDirectiveARM(SMLoc L);
+ bool parseDirectiveThumbFunc(SMLoc L);
+ bool parseDirectiveCode(SMLoc L);
+ bool parseDirectiveSyntax(SMLoc L);
+ bool parseDirectiveReq(StringRef Name, SMLoc L);
+ bool parseDirectiveUnreq(SMLoc L);
+ bool parseDirectiveArch(SMLoc L);
+ bool parseDirectiveEabiAttr(SMLoc L);
+ bool parseDirectiveCPU(SMLoc L);
+ bool parseDirectiveFPU(SMLoc L);
+ bool parseDirectiveFnStart(SMLoc L);
+ bool parseDirectiveFnEnd(SMLoc L);
+ bool parseDirectiveCantUnwind(SMLoc L);
+ bool parseDirectivePersonality(SMLoc L);
+ bool parseDirectiveHandlerData(SMLoc L);
+ bool parseDirectiveSetFP(SMLoc L);
+ bool parseDirectivePad(SMLoc L);
+ bool parseDirectiveRegSave(SMLoc L, bool IsVector);
+ bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
+ bool parseDirectiveLtorg(SMLoc L);
+ bool parseDirectiveEven(SMLoc L);
+ bool parseDirectivePersonalityIndex(SMLoc L);
+ bool parseDirectiveUnwindRaw(SMLoc L);
+ bool parseDirectiveTLSDescSeq(SMLoc L);
+ bool parseDirectiveMovSP(SMLoc L);
+ bool parseDirectiveObjectArch(SMLoc L);
+ bool parseDirectiveArchExtension(SMLoc L);
+ bool parseDirectiveAlign(SMLoc L);
+ bool parseDirectiveThumbSet(SMLoc L);
+
+ StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
+ bool &CarrySetting, unsigned &ProcessorIMod,
+ StringRef &ITMask);
+ void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
+ bool &CanAcceptCarrySet,
+ bool &CanAcceptPredicationCode);
+
+ bool isThumb() const {
+ // FIXME: Can tablegen auto-generate this?
+ return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
+ }
+ bool isThumbOne() const {
+ return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
+ }
+ bool isThumbTwo() const {
+ return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
+ }
+ bool hasThumb() const {
+ return STI.getFeatureBits() & ARM::HasV4TOps;
+ }
+ bool hasV6Ops() const {
+ return STI.getFeatureBits() & ARM::HasV6Ops;
+ }
+ bool hasV6MOps() const {
+ return STI.getFeatureBits() & ARM::HasV6MOps;
+ }
+ bool hasV7Ops() const {
+ return STI.getFeatureBits() & ARM::HasV7Ops;
+ }
+ bool hasV8Ops() const {
+ return STI.getFeatureBits() & ARM::HasV8Ops;
+ }
+ bool hasARM() const {
+ return !(STI.getFeatureBits() & ARM::FeatureNoARM);
+ }
+
+ void SwitchMode() {
+ unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
+ setAvailableFeatures(FB);
+ }
+ bool isMClass() const {
+ return STI.getFeatureBits() & ARM::FeatureMClass;
+ }
+
+ /// @name Auto-generated Match Functions
+ /// {
+
+#define GET_ASSEMBLER_HEADER
+#include "ARMGenAsmMatcher.inc"
+
+ /// }
+
+ OperandMatchResultTy parseITCondCode(OperandVector &);
+ OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
+ OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
+ OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
+ OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
+ OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
+ OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
+ OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
+ OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
+ int High);
+ OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
+ return parsePKHImm(O, "lsl", 0, 31);
+ }
+ OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
+ return parsePKHImm(O, "asr", 1, 32);
+ }
+ OperandMatchResultTy parseSetEndImm(OperandVector &);
+ OperandMatchResultTy parseShifterImm(OperandVector &);
+ OperandMatchResultTy parseRotImm(OperandVector &);
+ OperandMatchResultTy parseBitfield(OperandVector &);
+ OperandMatchResultTy parsePostIdxReg(OperandVector &);
+ OperandMatchResultTy parseAM3Offset(OperandVector &);
+ OperandMatchResultTy parseFPImm(OperandVector &);
+ OperandMatchResultTy parseVectorList(OperandVector &);
+ OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
+ SMLoc &EndLoc);
+
+ // Asm Match Converter Methods
+ void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
+ void cvtThumbBranches(MCInst &Inst, const OperandVector &);
+
+ bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
+ bool processInstruction(MCInst &Inst, const OperandVector &Ops);
+ bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
+ bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
+
+public:
+ enum ARMMatchResultTy {
+ Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
+ Match_RequiresNotITBlock,
+ Match_RequiresV6,
+ Match_RequiresThumb2,
+#define GET_OPERAND_DIAGNOSTIC_TYPES
+#include "ARMGenAsmMatcher.inc"
+
+ };
+
+ ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
+ const MCInstrInfo &MII,
+ const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(_STI), Parser(_Parser), MII(MII), UC(_Parser) {
+ MCAsmParserExtension::Initialize(_Parser);
+
+ // Cache the MCRegisterInfo.
+ MRI = getContext().getRegisterInfo();
+
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+
+ // Not in an ITBlock to start with.
+ ITState.CurPosition = ~0U;
+
+ NextSymbolIsThumb = false;
+ }
+
+ // Implementation of the MCTargetAsmParser interface:
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+ bool ParseDirective(AsmToken DirectiveID) override;
+
+ unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
+ unsigned Kind) override;
+ unsigned checkTargetMatchPredicate(MCInst &Inst) override;
+
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ unsigned &ErrorInfo,
+ bool MatchingInlineAsm) override;
+ void onLabelParsed(MCSymbol *Symbol) override;
+};
+} // end anonymous namespace
+
+namespace {
+
+/// ARMOperand - Instances of this class represent a parsed ARM machine
+/// operand.
+class ARMOperand : public MCParsedAsmOperand {
+ enum KindTy {
+ k_CondCode,
+ k_CCOut,
+ k_ITCondMask,
+ k_CoprocNum,
+ k_CoprocReg,
+ k_CoprocOption,
+ k_Immediate,
+ k_MemBarrierOpt,
+ k_InstSyncBarrierOpt,
+ k_Memory,
+ k_PostIndexRegister,
+ k_MSRMask,
+ k_ProcIFlags,
+ k_VectorIndex,
+ k_Register,
+ k_RegisterList,
+ k_DPRRegisterList,
+ k_SPRRegisterList,
+ k_VectorList,
+ k_VectorListAllLanes,
+ k_VectorListIndexed,
+ k_ShiftedRegister,
+ k_ShiftedImmediate,
+ k_ShifterImmediate,
+ k_RotateImmediate,
+ k_BitfieldDescriptor,
+ k_Token
+ } Kind;
+
+ SMLoc StartLoc, EndLoc, AlignmentLoc;
+ SmallVector<unsigned, 8> Registers;
+
+ struct CCOp {
+ ARMCC::CondCodes Val;
+ };
+
+ struct CopOp {
+ unsigned Val;
+ };
+
+ struct CoprocOptionOp {
+ unsigned Val;
+ };
+
+ struct ITMaskOp {
+ unsigned Mask:4;
+ };
+
+ struct MBOptOp {
+ ARM_MB::MemBOpt Val;
+ };
+
+ struct ISBOptOp {
+ ARM_ISB::InstSyncBOpt Val;
+ };
+
+ struct IFlagsOp {
+ ARM_PROC::IFlags Val;
+ };
+
+ struct MMaskOp {
+ unsigned Val;
+ };
+
+ struct TokOp {
+ const char *Data;
+ unsigned Length;
+ };
+
+ struct RegOp {
+ unsigned RegNum;
+ };
+
+ // A vector register list is a sequential list of 1 to 4 registers.
+ struct VectorListOp {
+ unsigned RegNum;
+ unsigned Count;
+ unsigned LaneIndex;
+ bool isDoubleSpaced;
+ };
+
+ struct VectorIndexOp {
+ unsigned Val;
+ };
+
+ struct ImmOp {
+ const MCExpr *Val;
+ };
+
+ /// Combined record for all forms of ARM address expressions.
+ struct MemoryOp {
+ unsigned BaseRegNum;
+ // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
+ // was specified.
+ const MCConstantExpr *OffsetImm; // Offset immediate value
+ unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
+ ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
+ unsigned ShiftImm; // shift for OffsetReg.
+ unsigned Alignment; // 0 = no alignment specified
+ // n = alignment in bytes (2, 4, 8, 16, or 32)
+ unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
+ };
+
+ struct PostIdxRegOp {
+ unsigned RegNum;
+ bool isAdd;
+ ARM_AM::ShiftOpc ShiftTy;
+ unsigned ShiftImm;
+ };
+
+ struct ShifterImmOp {
+ bool isASR;
+ unsigned Imm;
+ };
+
+ struct RegShiftedRegOp {
+ ARM_AM::ShiftOpc ShiftTy;
+ unsigned SrcReg;
+ unsigned ShiftReg;
+ unsigned ShiftImm;
+ };
+
+ struct RegShiftedImmOp {
+ ARM_AM::ShiftOpc ShiftTy;
+ unsigned SrcReg;
+ unsigned ShiftImm;
+ };
+
+ struct RotImmOp {
+ unsigned Imm;
+ };
+
+ struct BitfieldOp {
+ unsigned LSB;
+ unsigned Width;
+ };
+
+ union {
+ struct CCOp CC;
+ struct CopOp Cop;
+ struct CoprocOptionOp CoprocOption;
+ struct MBOptOp MBOpt;
+ struct ISBOptOp ISBOpt;
+ struct ITMaskOp ITMask;
+ struct IFlagsOp IFlags;
+ struct MMaskOp MMask;
+ struct TokOp Tok;
+ struct RegOp Reg;
+ struct VectorListOp VectorList;
+ struct VectorIndexOp VectorIndex;
+ struct ImmOp Imm;
+ struct MemoryOp Memory;
+ struct PostIdxRegOp PostIdxReg;
+ struct ShifterImmOp ShifterImm;
+ struct RegShiftedRegOp RegShiftedReg;
+ struct RegShiftedImmOp RegShiftedImm;
+ struct RotImmOp RotImm;
+ struct BitfieldOp Bitfield;
+ };
+
+public:
+ ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
+ ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
+ Kind = o.Kind;
+ StartLoc = o.StartLoc;
+ EndLoc = o.EndLoc;
+ switch (Kind) {
+ case k_CondCode:
+ CC = o.CC;
+ break;
+ case k_ITCondMask:
+ ITMask = o.ITMask;
+ break;
+ case k_Token:
+ Tok = o.Tok;
+ break;
+ case k_CCOut:
+ case k_Register:
+ Reg = o.Reg;
+ break;
+ case k_RegisterList:
+ case k_DPRRegisterList:
+ case k_SPRRegisterList:
+ Registers = o.Registers;
+ break;
+ case k_VectorList:
+ case k_VectorListAllLanes:
+ case k_VectorListIndexed:
+ VectorList = o.VectorList;
+ break;
+ case k_CoprocNum:
+ case k_CoprocReg:
+ Cop = o.Cop;
+ break;
+ case k_CoprocOption:
+ CoprocOption = o.CoprocOption;
+ break;
+ case k_Immediate:
+ Imm = o.Imm;
+ break;
+ case k_MemBarrierOpt:
+ MBOpt = o.MBOpt;
+ break;
+ case k_InstSyncBarrierOpt:
+ ISBOpt = o.ISBOpt;
+ case k_Memory:
+ Memory = o.Memory;
+ break;
+ case k_PostIndexRegister:
+ PostIdxReg = o.PostIdxReg;
+ break;
+ case k_MSRMask:
+ MMask = o.MMask;
+ break;
+ case k_ProcIFlags:
+ IFlags = o.IFlags;
+ break;
+ case k_ShifterImmediate:
+ ShifterImm = o.ShifterImm;
+ break;
+ case k_ShiftedRegister:
+ RegShiftedReg = o.RegShiftedReg;
+ break;
+ case k_ShiftedImmediate:
+ RegShiftedImm = o.RegShiftedImm;
+ break;
+ case k_RotateImmediate:
+ RotImm = o.RotImm;
+ break;
+ case k_BitfieldDescriptor:
+ Bitfield = o.Bitfield;
+ break;
+ case k_VectorIndex:
+ VectorIndex = o.VectorIndex;
+ break;
+ }
+ }
+
+ /// getStartLoc - Get the location of the first token of this operand.
+ SMLoc getStartLoc() const override { return StartLoc; }
+ /// getEndLoc - Get the location of the last token of this operand.
+ SMLoc getEndLoc() const override { return EndLoc; }
+ /// getLocRange - Get the range between the first and last token of this
+ /// operand.
+ SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
+
+ /// getAlignmentLoc - Get the location of the Alignment token of this operand.
+ SMLoc getAlignmentLoc() const {
+ assert(Kind == k_Memory && "Invalid access!");
+ return AlignmentLoc;
+ }
+
+ ARMCC::CondCodes getCondCode() const {
+ assert(Kind == k_CondCode && "Invalid access!");
+ return CC.Val;
+ }
+
+ unsigned getCoproc() const {
+ assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
+ return Cop.Val;
+ }
+
+ StringRef getToken() const {
+ assert(Kind == k_Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+
+ unsigned getReg() const override {
+ assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
+ return Reg.RegNum;
+ }
+
+ const SmallVectorImpl<unsigned> &getRegList() const {
+ assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
+ Kind == k_SPRRegisterList) && "Invalid access!");
+ return Registers;
+ }
+
+ const MCExpr *getImm() const {
+ assert(isImm() && "Invalid access!");
+ return Imm.Val;
+ }
+
+ unsigned getVectorIndex() const {
+ assert(Kind == k_VectorIndex && "Invalid access!");
+ return VectorIndex.Val;
+ }
+
+ ARM_MB::MemBOpt getMemBarrierOpt() const {
+ assert(Kind == k_MemBarrierOpt && "Invalid access!");
+ return MBOpt.Val;
+ }
+
+ ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
+ assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
+ return ISBOpt.Val;
+ }
+
+ ARM_PROC::IFlags getProcIFlags() const {
+ assert(Kind == k_ProcIFlags && "Invalid access!");
+ return IFlags.Val;
+ }
+
+ unsigned getMSRMask() const {
+ assert(Kind == k_MSRMask && "Invalid access!");
+ return MMask.Val;
+ }
+
+ bool isCoprocNum() const { return Kind == k_CoprocNum; }
+ bool isCoprocReg() const { return Kind == k_CoprocReg; }
+ bool isCoprocOption() const { return Kind == k_CoprocOption; }
+ bool isCondCode() const { return Kind == k_CondCode; }
+ bool isCCOut() const { return Kind == k_CCOut; }
+ bool isITMask() const { return Kind == k_ITCondMask; }
+ bool isITCondCode() const { return Kind == k_CondCode; }
+ bool isImm() const override { return Kind == k_Immediate; }
+ // checks whether this operand is an unsigned offset which fits is a field
+ // of specified width and scaled by a specific number of bits
+ template<unsigned width, unsigned scale>
+ bool isUnsignedOffset() const {
+ if (!isImm()) return false;
+ if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
+ int64_t Val = CE->getValue();
+ int64_t Align = 1LL << scale;
+ int64_t Max = Align * ((1LL << width) - 1);
+ return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
+ }
+ return false;
+ }
+ // checks whether this operand is an signed offset which fits is a field
+ // of specified width and scaled by a specific number of bits
+ template<unsigned width, unsigned scale>
+ bool isSignedOffset() const {
+ if (!isImm()) return false;
+ if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
+ int64_t Val = CE->getValue();
+ int64_t Align = 1LL << scale;
+ int64_t Max = Align * ((1LL << (width-1)) - 1);
+ int64_t Min = -Align * (1LL << (width-1));
+ return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
+ }
+ return false;
+ }
+
+ // checks whether this operand is a memory operand computed as an offset
+ // applied to PC. the offset may have 8 bits of magnitude and is represented
+ // with two bits of shift. textually it may be either [pc, #imm], #imm or
+ // relocable expression...
+ bool isThumbMemPC() const {
+ int64_t Val = 0;
+ if (isImm()) {
+ if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
+ if (!CE) return false;
+ Val = CE->getValue();
+ }
+ else if (isMem()) {
+ if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
+ if(Memory.BaseRegNum != ARM::PC) return false;
+ Val = Memory.OffsetImm->getValue();
+ }
+ else return false;
+ return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
+ }
+ bool isFPImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
+ return Val != -1;
+ }
+ bool isFBits16() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value <= 16;
+ }
+ bool isFBits32() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 1 && Value <= 32;
+ }
+ bool isImm8s4() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
+ }
+ bool isImm0_1020s4() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
+ }
+ bool isImm0_508s4() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
+ }
+ bool isImm0_508s4Neg() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = -CE->getValue();
+ // explicitly exclude zero. we want that to use the normal 0_508 version.
+ return ((Value & 3) == 0) && Value > 0 && Value <= 508;
+ }
+ bool isImm0_239() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 240;
+ }
+ bool isImm0_255() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 256;
+ }
+ bool isImm0_4095() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 4096;
+ }
+ bool isImm0_4095Neg() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = -CE->getValue();
+ return Value > 0 && Value < 4096;
+ }
+ bool isImm0_1() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 2;
+ }
+ bool isImm0_3() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 4;
+ }
+ bool isImm0_7() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 8;
+ }
+ bool isImm0_15() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 16;
+ }
+ bool isImm0_31() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 32;
+ }
+ bool isImm0_63() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 64;
+ }
+ bool isImm8() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value == 8;
+ }
+ bool isImm16() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value == 16;
+ }
+ bool isImm32() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value == 32;
+ }
+ bool isShrImm8() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value <= 8;
+ }
+ bool isShrImm16() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value <= 16;
+ }
+ bool isShrImm32() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value <= 32;
+ }
+ bool isShrImm64() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value <= 64;
+ }
+ bool isImm1_7() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 8;
+ }
+ bool isImm1_15() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 16;
+ }
+ bool isImm1_31() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 32;
+ }
+ bool isImm1_16() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 17;
+ }
+ bool isImm1_32() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 33;
+ }
+ bool isImm0_32() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 33;
+ }
+ bool isImm0_65535() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 65536;
+ }
+ bool isImm256_65535Expr() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // If it's not a constant expression, it'll generate a fixup and be
+ // handled later.
+ if (!CE) return true;
+ int64_t Value = CE->getValue();
+ return Value >= 256 && Value < 65536;
+ }
+ bool isImm0_65535Expr() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // If it's not a constant expression, it'll generate a fixup and be
+ // handled later.
+ if (!CE) return true;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 65536;
+ }
+ bool isImm24bit() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value <= 0xffffff;
+ }
+ bool isImmThumbSR() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 33;
+ }
+ bool isPKHLSLImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 32;
+ }
+ bool isPKHASRImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value <= 32;
+ }
+ bool isAdrLabel() const {
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, but it can't fit
+ // into shift immediate encoding, we reject it.
+ if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
+ else return (isARMSOImm() || isARMSOImmNeg());
+ }
+ bool isARMSOImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ARM_AM::getSOImmVal(Value) != -1;
+ }
+ bool isARMSOImmNot() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ARM_AM::getSOImmVal(~Value) != -1;
+ }
+ bool isARMSOImmNeg() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ // Only use this when not representable as a plain so_imm.
+ return ARM_AM::getSOImmVal(Value) == -1 &&
+ ARM_AM::getSOImmVal(-Value) != -1;
+ }
+ bool isT2SOImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ARM_AM::getT2SOImmVal(Value) != -1;
+ }
+ bool isT2SOImmNot() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ARM_AM::getT2SOImmVal(Value) == -1 &&
+ ARM_AM::getT2SOImmVal(~Value) != -1;
+ }
+ bool isT2SOImmNeg() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ // Only use this when not representable as a plain so_imm.
+ return ARM_AM::getT2SOImmVal(Value) == -1 &&
+ ARM_AM::getT2SOImmVal(-Value) != -1;
+ }
+ bool isSetEndImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value == 1 || Value == 0;
+ }
+ bool isReg() const override { return Kind == k_Register; }
+ bool isRegList() const { return Kind == k_RegisterList; }
+ bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
+ bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
+ bool isToken() const override { return Kind == k_Token; }
+ bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
+ bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
+ bool isMem() const override { return Kind == k_Memory; }
+ bool isShifterImm() const { return Kind == k_ShifterImmediate; }
+ bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
+ bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
+ bool isRotImm() const { return Kind == k_RotateImmediate; }
+ bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
+ bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
+ bool isPostIdxReg() const {
+ return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
+ }
+ bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
+ if (!isMem())
+ return false;
+ // No offset of any kind.
+ return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
+ (alignOK || Memory.Alignment == Alignment);
+ }
+ bool isMemPCRelImm12() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Base register must be PC.
+ if (Memory.BaseRegNum != ARM::PC)
+ return false;
+ // Immediate offset in range [-4095, 4095].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
+ }
+ bool isAlignedMemory() const {
+ return isMemNoOffset(true);
+ }
+ bool isAlignedMemoryNone() const {
+ return isMemNoOffset(false, 0);
+ }
+ bool isDupAlignedMemoryNone() const {
+ return isMemNoOffset(false, 0);
+ }
+ bool isAlignedMemory16() const {
+ if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
+ return true;
+ return isMemNoOffset(false, 0);
+ }
+ bool isDupAlignedMemory16() const {
+ if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
+ return true;
+ return isMemNoOffset(false, 0);
+ }
+ bool isAlignedMemory32() const {
+ if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
+ return true;
+ return isMemNoOffset(false, 0);
+ }
+ bool isDupAlignedMemory32() const {
+ if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
+ return true;
+ return isMemNoOffset(false, 0);
+ }
+ bool isAlignedMemory64() const {
+ if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
+ return true;
+ return isMemNoOffset(false, 0);
+ }
+ bool isDupAlignedMemory64() const {
+ if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
+ return true;
+ return isMemNoOffset(false, 0);
+ }
+ bool isAlignedMemory64or128() const {
+ if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
+ return true;
+ if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
+ return true;
+ return isMemNoOffset(false, 0);
+ }
+ bool isDupAlignedMemory64or128() const {
+ if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
+ return true;
+ if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
+ return true;
+ return isMemNoOffset(false, 0);
+ }
+ bool isAlignedMemory64or128or256() const {
+ if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
+ return true;
+ if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
+ return true;
+ if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
+ return true;
+ return isMemNoOffset(false, 0);
+ }
+ bool isAddrMode2() const {
+ if (!isMem() || Memory.Alignment != 0) return false;
+ // Check for register offset.
+ if (Memory.OffsetRegNum) return true;
+ // Immediate offset in range [-4095, 4095].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val > -4096 && Val < 4096;
+ }
+ bool isAM2OffsetImm() const {
+ if (!isImm()) return false;
+ // Immediate offset in range [-4095, 4095].
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Val = CE->getValue();
+ return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
+ }
+ bool isAddrMode3() const {
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm() && !isa<MCConstantExpr>(getImm()))
+ return true;
+ if (!isMem() || Memory.Alignment != 0) return false;
+ // No shifts are legal for AM3.
+ if (Memory.ShiftType != ARM_AM::no_shift) return false;
+ // Check for register offset.
+ if (Memory.OffsetRegNum) return true;
+ // Immediate offset in range [-255, 255].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ // The #-0 offset is encoded as INT32_MIN, and we have to check
+ // for this too.
+ return (Val > -256 && Val < 256) || Val == INT32_MIN;
+ }
+ bool isAM3Offset() const {
+ if (Kind != k_Immediate && Kind != k_PostIndexRegister)
+ return false;
+ if (Kind == k_PostIndexRegister)
+ return PostIdxReg.ShiftTy == ARM_AM::no_shift;
+ // Immediate offset in range [-255, 255].
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Val = CE->getValue();
+ // Special case, #-0 is INT32_MIN.
+ return (Val > -256 && Val < 256) || Val == INT32_MIN;
+ }
+ bool isAddrMode5() const {
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm() && !isa<MCConstantExpr>(getImm()))
+ return true;
+ if (!isMem() || Memory.Alignment != 0) return false;
+ // Check for register offset.
+ if (Memory.OffsetRegNum) return false;
+ // Immediate offset in range [-1020, 1020] and a multiple of 4.
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
+ Val == INT32_MIN;
+ }
+ bool isMemTBB() const {
+ if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
+ Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
+ return false;
+ return true;
+ }
+ bool isMemTBH() const {
+ if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
+ Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
+ Memory.Alignment != 0 )
+ return false;
+ return true;
+ }
+ bool isMemRegOffset() const {
+ if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
+ return false;
+ return true;
+ }
+ bool isT2MemRegOffset() const {
+ if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
+ Memory.Alignment != 0)
+ return false;
+ // Only lsl #{0, 1, 2, 3} allowed.
+ if (Memory.ShiftType == ARM_AM::no_shift)
+ return true;
+ if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
+ return false;
+ return true;
+ }
+ bool isMemThumbRR() const {
+ // Thumb reg+reg addressing is simple. Just two registers, a base and
+ // an offset. No shifts, negations or any other complicating factors.
+ if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
+ Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
+ return false;
+ return isARMLowRegister(Memory.BaseRegNum) &&
+ (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
+ }
+ bool isMemThumbRIs4() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 ||
+ !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
+ return false;
+ // Immediate offset, multiple of 4 in range [0, 124].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val <= 124 && (Val % 4) == 0;
+ }
+ bool isMemThumbRIs2() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 ||
+ !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
+ return false;
+ // Immediate offset, multiple of 4 in range [0, 62].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val <= 62 && (Val % 2) == 0;
+ }
+ bool isMemThumbRIs1() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 ||
+ !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
+ return false;
+ // Immediate offset in range [0, 31].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val <= 31;
+ }
+ bool isMemThumbSPI() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 ||
+ Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
+ return false;
+ // Immediate offset, multiple of 4 in range [0, 1020].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
+ }
+ bool isMemImm8s4Offset() const {
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm() && !isa<MCConstantExpr>(getImm()))
+ return true;
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Immediate offset a multiple of 4 in range [-1020, 1020].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ // Special case, #-0 is INT32_MIN.
+ return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
+ }
+ bool isMemImm0_1020s4Offset() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Immediate offset a multiple of 4 in range [0, 1020].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
+ }
+ bool isMemImm8Offset() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Base reg of PC isn't allowed for these encodings.
+ if (Memory.BaseRegNum == ARM::PC) return false;
+ // Immediate offset in range [-255, 255].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val == INT32_MIN) || (Val > -256 && Val < 256);
+ }
+ bool isMemPosImm8Offset() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Immediate offset in range [0, 255].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val < 256;
+ }
+ bool isMemNegImm8Offset() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Base reg of PC isn't allowed for these encodings.
+ if (Memory.BaseRegNum == ARM::PC) return false;
+ // Immediate offset in range [-255, -1].
+ if (!Memory.OffsetImm) return false;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val == INT32_MIN) || (Val > -256 && Val < 0);
+ }
+ bool isMemUImm12Offset() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Immediate offset in range [0, 4095].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val >= 0 && Val < 4096);
+ }
+ bool isMemImm12Offset() const {
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm() && !isa<MCConstantExpr>(getImm()))
+ return true;
+
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Immediate offset in range [-4095, 4095].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
+ }
+ bool isPostIdxImm8() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Val = CE->getValue();
+ return (Val > -256 && Val < 256) || (Val == INT32_MIN);
+ }
+ bool isPostIdxImm8s4() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Val = CE->getValue();
+ return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
+ (Val == INT32_MIN);
+ }
+
+ bool isMSRMask() const { return Kind == k_MSRMask; }
+ bool isProcIFlags() const { return Kind == k_ProcIFlags; }
+
+ // NEON operands.
+ bool isSingleSpacedVectorList() const {
+ return Kind == k_VectorList && !VectorList.isDoubleSpaced;
+ }
+ bool isDoubleSpacedVectorList() const {
+ return Kind == k_VectorList && VectorList.isDoubleSpaced;
+ }
+ bool isVecListOneD() const {
+ if (!isSingleSpacedVectorList()) return false;
+ return VectorList.Count == 1;
+ }
+
+ bool isVecListDPair() const {
+ if (!isSingleSpacedVectorList()) return false;
+ return (ARMMCRegisterClasses[ARM::DPairRegClassID]
+ .contains(VectorList.RegNum));
+ }
+
+ bool isVecListThreeD() const {
+ if (!isSingleSpacedVectorList()) return false;
+ return VectorList.Count == 3;
+ }
+
+ bool isVecListFourD() const {
+ if (!isSingleSpacedVectorList()) return false;
+ return VectorList.Count == 4;
+ }
+
+ bool isVecListDPairSpaced() const {
+ if (Kind != k_VectorList) return false;
+ if (isSingleSpacedVectorList()) return false;
+ return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
+ .contains(VectorList.RegNum));
+ }
+
+ bool isVecListThreeQ() const {
+ if (!isDoubleSpacedVectorList()) return false;
+ return VectorList.Count == 3;
+ }
+
+ bool isVecListFourQ() const {
+ if (!isDoubleSpacedVectorList()) return false;
+ return VectorList.Count == 4;
+ }
+
+ bool isSingleSpacedVectorAllLanes() const {
+ return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
+ }
+ bool isDoubleSpacedVectorAllLanes() const {
+ return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
+ }
+ bool isVecListOneDAllLanes() const {
+ if (!isSingleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 1;
+ }
+
+ bool isVecListDPairAllLanes() const {
+ if (!isSingleSpacedVectorAllLanes()) return false;
+ return (ARMMCRegisterClasses[ARM::DPairRegClassID]
+ .contains(VectorList.RegNum));
+ }
+
+ bool isVecListDPairSpacedAllLanes() const {
+ if (!isDoubleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 2;
+ }
+
+ bool isVecListThreeDAllLanes() const {
+ if (!isSingleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 3;
+ }
+
+ bool isVecListThreeQAllLanes() const {
+ if (!isDoubleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 3;
+ }
+
+ bool isVecListFourDAllLanes() const {
+ if (!isSingleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 4;
+ }
+
+ bool isVecListFourQAllLanes() const {
+ if (!isDoubleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 4;
+ }
+
+ bool isSingleSpacedVectorIndexed() const {
+ return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
+ }
+ bool isDoubleSpacedVectorIndexed() const {
+ return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
+ }
+ bool isVecListOneDByteIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
+ }
+
+ bool isVecListOneDHWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListOneDWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListTwoDByteIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
+ }
+
+ bool isVecListTwoDHWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListTwoQWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListTwoQHWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListTwoDWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListThreeDByteIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
+ }
+
+ bool isVecListThreeDHWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListThreeQWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListThreeQHWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListThreeDWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListFourDByteIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
+ }
+
+ bool isVecListFourDHWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListFourQWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListFourQHWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListFourDWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVectorIndex8() const {
+ if (Kind != k_VectorIndex) return false;
+ return VectorIndex.Val < 8;
+ }
+ bool isVectorIndex16() const {
+ if (Kind != k_VectorIndex) return false;
+ return VectorIndex.Val < 4;
+ }
+ bool isVectorIndex32() const {
+ if (Kind != k_VectorIndex) return false;
+ return VectorIndex.Val < 2;
+ }
+
+ bool isNEONi8splat() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ // i8 value splatted across 8 bytes. The immediate is just the 8 byte
+ // value.
+ return Value >= 0 && Value < 256;
+ }
+
+ bool isNEONi16splat() const {
+ if (isNEONByteReplicate(2))
+ return false; // Leave that for bytes replication and forbid by default.
+ if (!isImm())
+ return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ // i16 value in the range [0,255] or [0x0100, 0xff00]
+ return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
+ }
+
+ bool isNEONi32splat() const {
+ if (isNEONByteReplicate(4))
+ return false; // Leave that for bytes replication and forbid by default.
+ if (!isImm())
+ return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
+ return (Value >= 0 && Value < 256) ||
+ (Value >= 0x0100 && Value <= 0xff00) ||
+ (Value >= 0x010000 && Value <= 0xff0000) ||
+ (Value >= 0x01000000 && Value <= 0xff000000);
+ }
+
+ bool isNEONByteReplicate(unsigned NumBytes) const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE)
+ return false;
+ int64_t Value = CE->getValue();
+ if (!Value)
+ return false; // Don't bother with zero.
+
+ unsigned char B = Value & 0xff;
+ for (unsigned i = 1; i < NumBytes; ++i) {
+ Value >>= 8;
+ if ((Value & 0xff) != B)
+ return false;
+ }
+ return true;
+ }
+ bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); }
+ bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); }
+ bool isNEONi32vmov() const {
+ if (isNEONByteReplicate(4))
+ return false; // Let it to be classified as byte-replicate case.
+ if (!isImm())
+ return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE)
+ return false;
+ int64_t Value = CE->getValue();
+ // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
+ // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
+ return (Value >= 0 && Value < 256) ||
+ (Value >= 0x0100 && Value <= 0xff00) ||
+ (Value >= 0x010000 && Value <= 0xff0000) ||
+ (Value >= 0x01000000 && Value <= 0xff000000) ||
+ (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
+ (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
+ }
+ bool isNEONi32vmovNeg() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ int64_t Value = ~CE->getValue();
+ // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
+ // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
+ return (Value >= 0 && Value < 256) ||
+ (Value >= 0x0100 && Value <= 0xff00) ||
+ (Value >= 0x010000 && Value <= 0xff0000) ||
+ (Value >= 0x01000000 && Value <= 0xff000000) ||
+ (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
+ (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
+ }
+
+ bool isNEONi64splat() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ uint64_t Value = CE->getValue();
+ // i64 value with each byte being either 0 or 0xff.
+ for (unsigned i = 0; i < 8; ++i)
+ if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
+ return true;
+ }
+
+ void addExpr(MCInst &Inst, const MCExpr *Expr) const {
+ // Add as immediates when possible. Null MCExpr = 0.
+ if (!Expr)
+ Inst.addOperand(MCOperand::CreateImm(0));
+ else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(Expr));
+ }
+
+ void addCondCodeOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
+ unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
+ Inst.addOperand(MCOperand::CreateReg(RegNum));
+ }
+
+ void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getCoproc()));
+ }
+
+ void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getCoproc()));
+ }
+
+ void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
+ }
+
+ void addITMaskOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
+ }
+
+ void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
+ }
+
+ void addCCOutOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+
+ void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands!");
+ assert(isRegShiftedReg() &&
+ "addRegShiftedRegOperands() on non-RegShiftedReg!");
+ Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
+ Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
+ Inst.addOperand(MCOperand::CreateImm(
+ ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
+ }
+
+ void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ assert(isRegShiftedImm() &&
+ "addRegShiftedImmOperands() on non-RegShiftedImm!");
+ Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
+ // Shift of #32 is encoded as 0 where permitted
+ unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
+ Inst.addOperand(MCOperand::CreateImm(
+ ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
+ }
+
+ void addShifterImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
+ ShifterImm.Imm));
+ }
+
+ void addRegListOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const SmallVectorImpl<unsigned> &RegList = getRegList();
+ for (SmallVectorImpl<unsigned>::const_iterator
+ I = RegList.begin(), E = RegList.end(); I != E; ++I)
+ Inst.addOperand(MCOperand::CreateReg(*I));
+ }
+
+ void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
+ addRegListOperands(Inst, N);
+ }
+
+ void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
+ addRegListOperands(Inst, N);
+ }
+
+ void addRotImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // Encoded as val>>3. The printer handles display as 8, 16, 24.
+ Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
+ }
+
+ void addBitfieldOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // Munge the lsb/width into a bitfield mask.
+ unsigned lsb = Bitfield.LSB;
+ unsigned width = Bitfield.Width;
+ // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
+ uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
+ (32 - (lsb + width)));
+ Inst.addOperand(MCOperand::CreateImm(Mask));
+ }
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ addExpr(Inst, getImm());
+ }
+
+ void addFBits16Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
+ }
+
+ void addFBits32Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
+ }
+
+ void addFPImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addImm8s4Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // FIXME: We really want to scale the value here, but the LDRD/STRD
+ // instruction don't encode operands that way yet.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ }
+
+ void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate is scaled by four in the encoding and is stored
+ // in the MCInst as such. Lop off the low two bits here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
+ }
+
+ void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate is scaled by four in the encoding and is stored
+ // in the MCInst as such. Lop off the low two bits here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
+ }
+
+ void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate is scaled by four in the encoding and is stored
+ // in the MCInst as such. Lop off the low two bits here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
+ }
+
+ void addImm1_16Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The constant encodes as the immediate-1, and we store in the instruction
+ // the bits as encoded, so subtract off one here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
+ }
+
+ void addImm1_32Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The constant encodes as the immediate-1, and we store in the instruction
+ // the bits as encoded, so subtract off one here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
+ }
+
+ void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The constant encodes as the immediate, except for 32, which encodes as
+ // zero.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Imm = CE->getValue();
+ Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
+ }
+
+ void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // An ASR value of 32 encodes as 0, so that's how we want to add it to
+ // the instruction as well.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ int Val = CE->getValue();
+ Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
+ }
+
+ void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The operand is actually a t2_so_imm, but we have its bitwise
+ // negation in the assembly source, so twiddle it here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
+ }
+
+ void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The operand is actually a t2_so_imm, but we have its
+ // negation in the assembly source, so twiddle it here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
+ }
+
+ void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The operand is actually an imm0_4095, but we have its
+ // negation in the assembly source, so twiddle it here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
+ }
+
+ void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
+ if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2));
+ return;
+ }
+
+ const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
+ assert(SR && "Unknown value type!");
+ Inst.addOperand(MCOperand::CreateExpr(SR));
+ }
+
+ void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ if (isImm()) {
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (CE) {
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ return;
+ }
+
+ const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
+ assert(SR && "Unknown value type!");
+ Inst.addOperand(MCOperand::CreateExpr(SR));
+ return;
+ }
+
+ assert(isMem() && "Unknown value type!");
+ assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
+ Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue()));
+ }
+
+ void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The operand is actually a so_imm, but we have its bitwise
+ // negation in the assembly source, so twiddle it here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
+ }
+
+ void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The operand is actually a so_imm, but we have its
+ // negation in the assembly source, so twiddle it here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
+ }
+
+ void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
+ }
+
+ void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt())));
+ }
+
+ void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ }
+
+ void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ int32_t Imm = Memory.OffsetImm->getValue();
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ assert(isImm() && "Not an immediate!");
+
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup.
+ if (!isa<MCConstantExpr>(getImm())) {
+ Inst.addOperand(MCOperand::CreateExpr(getImm()));
+ return;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ int Val = CE->getValue();
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
+ }
+
+ void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
+ addAlignedMemoryOperands(Inst, N);
+ }
+
+ void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
+ addAlignedMemoryOperands(Inst, N);
+ }
+
+ void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
+ addAlignedMemoryOperands(Inst, N);
+ }
+
+ void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
+ addAlignedMemoryOperands(Inst, N);
+ }
+
+ void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
+ addAlignedMemoryOperands(Inst, N);
+ }
+
+ void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
+ addAlignedMemoryOperands(Inst, N);
+ }
+
+ void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
+ addAlignedMemoryOperands(Inst, N);
+ }
+
+ void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
+ addAlignedMemoryOperands(Inst, N);
+ }
+
+ void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
+ addAlignedMemoryOperands(Inst, N);
+ }
+
+ void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
+ addAlignedMemoryOperands(Inst, N);
+ }
+
+ void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
+ addAlignedMemoryOperands(Inst, N);
+ }
+
+ void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands!");
+ int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ if (!Memory.OffsetRegNum) {
+ ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
+ // Special case for #-0
+ if (Val == INT32_MIN) Val = 0;
+ if (Val < 0) Val = -Val;
+ Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
+ } else {
+ // For register offset, we encode the shift type and negation flag
+ // here.
+ Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
+ Memory.ShiftImm, Memory.ShiftType);
+ }
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ assert(CE && "non-constant AM2OffsetImm operand!");
+ int32_t Val = CE->getValue();
+ ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
+ // Special case for #-0
+ if (Val == INT32_MIN) Val = 0;
+ if (Val < 0) Val = -Val;
+ Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
+ Inst.addOperand(MCOperand::CreateReg(0));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands!");
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm()) {
+ Inst.addOperand(MCOperand::CreateExpr(getImm()));
+ Inst.addOperand(MCOperand::CreateReg(0));
+ Inst.addOperand(MCOperand::CreateImm(0));
+ return;
+ }
+
+ int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ if (!Memory.OffsetRegNum) {
+ ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
+ // Special case for #-0
+ if (Val == INT32_MIN) Val = 0;
+ if (Val < 0) Val = -Val;
+ Val = ARM_AM::getAM3Opc(AddSub, Val);
+ } else {
+ // For register offset, we encode the shift type and negation flag
+ // here.
+ Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
+ }
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ if (Kind == k_PostIndexRegister) {
+ int32_t Val =
+ ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
+ Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return;
+ }
+
+ // Constant offset.
+ const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
+ int32_t Val = CE->getValue();
+ ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
+ // Special case for #-0
+ if (Val == INT32_MIN) Val = 0;
+ if (Val < 0) Val = -Val;
+ Val = ARM_AM::getAM3Opc(AddSub, Val);
+ Inst.addOperand(MCOperand::CreateReg(0));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm()) {
+ Inst.addOperand(MCOperand::CreateExpr(getImm()));
+ Inst.addOperand(MCOperand::CreateImm(0));
+ return;
+ }
+
+ // The lower two bits are always zero and as such are not encoded.
+ int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
+ ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
+ // Special case for #-0
+ if (Val == INT32_MIN) Val = 0;
+ if (Val < 0) Val = -Val;
+ Val = ARM_AM::getAM5Opc(AddSub, Val);
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm()) {
+ Inst.addOperand(MCOperand::CreateExpr(getImm()));
+ Inst.addOperand(MCOperand::CreateImm(0));
+ return;
+ }
+
+ int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ // The lower two bits are always zero and as such are not encoded.
+ int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
+ addMemImm8OffsetOperands(Inst, N);
+ }
+
+ void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
+ addMemImm8OffsetOperands(Inst, N);
+ }
+
+ void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ // If this is an immediate, it's a label reference.
+ if (isImm()) {
+ addExpr(Inst, getImm());
+ Inst.addOperand(MCOperand::CreateImm(0));
+ return;
+ }
+
+ // Otherwise, it's a normal memory reg+offset.
+ int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ // If this is an immediate, it's a label reference.
+ if (isImm()) {
+ addExpr(Inst, getImm());
+ Inst.addOperand(MCOperand::CreateImm(0));
+ return;
+ }
+
+ // Otherwise, it's a normal memory reg+offset.
+ int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemTBBOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ }
+
+ void addMemTBHOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ }
+
+ void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands!");
+ unsigned Val =
+ ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
+ Memory.ShiftImm, Memory.ShiftType);
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
+ }
+
+ void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ }
+
+ void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ assert(CE && "non-constant post-idx-imm8 operand!");
+ int Imm = CE->getValue();
+ bool isAdd = Imm >= 0;
+ if (Imm == INT32_MIN) Imm = 0;
+ Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ assert(CE && "non-constant post-idx-imm8s4 operand!");
+ int Imm = CE->getValue();
+ bool isAdd = Imm >= 0;
+ if (Imm == INT32_MIN) Imm = 0;
+ // Immediate is scaled by 4.
+ Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
+ Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
+ }
+
+ void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
+ // The sign, shift type, and shift amount are encoded in a single operand
+ // using the AM2 encoding helpers.
+ ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
+ unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
+ PostIdxReg.ShiftTy);
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
+ }
+
+ void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
+ }
+
+ void addVecListOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
+ }
+
+ void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
+ Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
+ }
+
+ void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
+ }
+
+ void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
+ }
+
+ void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
+ }
+
+ void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ // Mask in that this is an i8 splat.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
+ }
+
+ void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = CE->getValue();
+ if (Value >= 256)
+ Value = (Value >> 8) | 0xa00;
+ else
+ Value |= 0x800;
+ Inst.addOperand(MCOperand::CreateImm(Value));
+ }
+
+ void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = CE->getValue();
+ if (Value >= 256 && Value <= 0xff00)
+ Value = (Value >> 8) | 0x200;
+ else if (Value > 0xffff && Value <= 0xff0000)
+ Value = (Value >> 16) | 0x400;
+ else if (Value > 0xffffff)
+ Value = (Value >> 24) | 0x600;
+ Inst.addOperand(MCOperand::CreateImm(Value));
+ }
+
+ void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = CE->getValue();
+ assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
+ Inst.getOpcode() == ARM::VMOVv16i8) &&
+ "All vmvn instructions that wants to replicate non-zero byte "
+ "always must be replaced with VMOVv8i8 or VMOVv16i8.");
+ unsigned B = ((~Value) & 0xff);
+ B |= 0xe00; // cmode = 0b1110
+ Inst.addOperand(MCOperand::CreateImm(B));
+ }
+ void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = CE->getValue();
+ if (Value >= 256 && Value <= 0xffff)
+ Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
+ else if (Value > 0xffff && Value <= 0xffffff)
+ Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
+ else if (Value > 0xffffff)
+ Value = (Value >> 24) | 0x600;
+ Inst.addOperand(MCOperand::CreateImm(Value));
+ }
+
+ void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = CE->getValue();
+ assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
+ Inst.getOpcode() == ARM::VMOVv16i8) &&
+ "All instructions that wants to replicate non-zero byte "
+ "always must be replaced with VMOVv8i8 or VMOVv16i8.");
+ unsigned B = Value & 0xff;
+ B |= 0xe00; // cmode = 0b1110
+ Inst.addOperand(MCOperand::CreateImm(B));
+ }
+ void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = ~CE->getValue();
+ if (Value >= 256 && Value <= 0xffff)
+ Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
+ else if (Value > 0xffff && Value <= 0xffffff)
+ Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
+ else if (Value > 0xffffff)
+ Value = (Value >> 24) | 0x600;
+ Inst.addOperand(MCOperand::CreateImm(Value));
+ }
+
+ void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ uint64_t Value = CE->getValue();
+ unsigned Imm = 0;
+ for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
+ Imm |= (Value & 1) << i;
+ }
+ Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
+ }
+
+ void print(raw_ostream &OS) const override;
+
+ static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
+ auto Op = make_unique<ARMOperand>(k_ITCondMask);
+ Op->ITMask.Mask = Mask;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
+ SMLoc S) {
+ auto Op = make_unique<ARMOperand>(k_CondCode);
+ Op->CC.Val = CC;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
+ auto Op = make_unique<ARMOperand>(k_CoprocNum);
+ Op->Cop.Val = CopVal;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
+ auto Op = make_unique<ARMOperand>(k_CoprocReg);
+ Op->Cop.Val = CopVal;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
+ SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_CoprocOption);
+ Op->Cop.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
+ auto Op = make_unique<ARMOperand>(k_CCOut);
+ Op->Reg.RegNum = RegNum;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
+ auto Op = make_unique<ARMOperand>(k_Token);
+ Op->Tok.Data = Str.data();
+ Op->Tok.Length = Str.size();
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
+ SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_Register);
+ Op->Reg.RegNum = RegNum;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand>
+ CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
+ unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
+ SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
+ Op->RegShiftedReg.ShiftTy = ShTy;
+ Op->RegShiftedReg.SrcReg = SrcReg;
+ Op->RegShiftedReg.ShiftReg = ShiftReg;
+ Op->RegShiftedReg.ShiftImm = ShiftImm;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand>
+ CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
+ unsigned ShiftImm, SMLoc S, SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
+ Op->RegShiftedImm.ShiftTy = ShTy;
+ Op->RegShiftedImm.SrcReg = SrcReg;
+ Op->RegShiftedImm.ShiftImm = ShiftImm;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
+ SMLoc S, SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
+ Op->ShifterImm.isASR = isASR;
+ Op->ShifterImm.Imm = Imm;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
+ SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_RotateImmediate);
+ Op->RotImm.Imm = Imm;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand>
+ CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
+ Op->Bitfield.LSB = LSB;
+ Op->Bitfield.Width = Width;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand>
+ CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
+ SMLoc StartLoc, SMLoc EndLoc) {
+ assert (Regs.size() > 0 && "RegList contains no registers?");
+ KindTy Kind = k_RegisterList;
+
+ if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
+ Kind = k_DPRRegisterList;
+ else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
+ contains(Regs.front().second))
+ Kind = k_SPRRegisterList;
+
+ // Sort based on the register encoding values.
+ array_pod_sort(Regs.begin(), Regs.end());
+
+ auto Op = make_unique<ARMOperand>(Kind);
+ for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator
+ I = Regs.begin(), E = Regs.end(); I != E; ++I)
+ Op->Registers.push_back(I->second);
+ Op->StartLoc = StartLoc;
+ Op->EndLoc = EndLoc;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
+ unsigned Count,
+ bool isDoubleSpaced,
+ SMLoc S, SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_VectorList);
+ Op->VectorList.RegNum = RegNum;
+ Op->VectorList.Count = Count;
+ Op->VectorList.isDoubleSpaced = isDoubleSpaced;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand>
+ CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
+ SMLoc S, SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
+ Op->VectorList.RegNum = RegNum;
+ Op->VectorList.Count = Count;
+ Op->VectorList.isDoubleSpaced = isDoubleSpaced;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand>
+ CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
+ bool isDoubleSpaced, SMLoc S, SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
+ Op->VectorList.RegNum = RegNum;
+ Op->VectorList.Count = Count;
+ Op->VectorList.LaneIndex = Index;
+ Op->VectorList.isDoubleSpaced = isDoubleSpaced;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand>
+ CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<ARMOperand>(k_VectorIndex);
+ Op->VectorIndex.Val = Idx;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
+ SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_Immediate);
+ Op->Imm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand>
+ CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
+ unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
+ unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
+ SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
+ auto Op = make_unique<ARMOperand>(k_Memory);
+ Op->Memory.BaseRegNum = BaseRegNum;
+ Op->Memory.OffsetImm = OffsetImm;
+ Op->Memory.OffsetRegNum = OffsetRegNum;
+ Op->Memory.ShiftType = ShiftType;
+ Op->Memory.ShiftImm = ShiftImm;
+ Op->Memory.Alignment = Alignment;
+ Op->Memory.isNegative = isNegative;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ Op->AlignmentLoc = AlignmentLoc;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand>
+ CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
+ unsigned ShiftImm, SMLoc S, SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
+ Op->PostIdxReg.RegNum = RegNum;
+ Op->PostIdxReg.isAdd = isAdd;
+ Op->PostIdxReg.ShiftTy = ShiftTy;
+ Op->PostIdxReg.ShiftImm = ShiftImm;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
+ SMLoc S) {
+ auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
+ Op->MBOpt.Val = Opt;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand>
+ CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
+ auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
+ Op->ISBOpt.Val = Opt;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
+ SMLoc S) {
+ auto Op = make_unique<ARMOperand>(k_ProcIFlags);
+ Op->IFlags.Val = IFlags;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
+ auto Op = make_unique<ARMOperand>(k_MSRMask);
+ Op->MMask.Val = MMask;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+};
+
+} // end anonymous namespace.
+
+void ARMOperand::print(raw_ostream &OS) const {
+ switch (Kind) {
+ case k_CondCode:
+ OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
+ break;
+ case k_CCOut:
+ OS << "<ccout " << getReg() << ">";
+ break;
+ case k_ITCondMask: {
+ static const char *const MaskStr[] = {
+ "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
+ "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
+ };
+ assert((ITMask.Mask & 0xf) == ITMask.Mask);
+ OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
+ break;
+ }
+ case k_CoprocNum:
+ OS << "<coprocessor number: " << getCoproc() << ">";
+ break;
+ case k_CoprocReg:
+ OS << "<coprocessor register: " << getCoproc() << ">";
+ break;
+ case k_CoprocOption:
+ OS << "<coprocessor option: " << CoprocOption.Val << ">";
+ break;
+ case k_MSRMask:
+ OS << "<mask: " << getMSRMask() << ">";
+ break;
+ case k_Immediate:
+ getImm()->print(OS);
+ break;
+ case k_MemBarrierOpt:
+ OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
+ break;
+ case k_InstSyncBarrierOpt:
+ OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
+ break;
+ case k_Memory:
+ OS << "<memory "
+ << " base:" << Memory.BaseRegNum;
+ OS << ">";
+ break;
+ case k_PostIndexRegister:
+ OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
+ << PostIdxReg.RegNum;
+ if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
+ OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
+ << PostIdxReg.ShiftImm;
+ OS << ">";
+ break;
+ case k_ProcIFlags: {
+ OS << "<ARM_PROC::";
+ unsigned IFlags = getProcIFlags();
+ for (int i=2; i >= 0; --i)
+ if (IFlags & (1 << i))
+ OS << ARM_PROC::IFlagsToString(1 << i);
+ OS << ">";
+ break;
+ }
+ case k_Register:
+ OS << "<register " << getReg() << ">";
+ break;
+ case k_ShifterImmediate:
+ OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
+ << " #" << ShifterImm.Imm << ">";
+ break;
+ case k_ShiftedRegister:
+ OS << "<so_reg_reg "
+ << RegShiftedReg.SrcReg << " "
+ << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
+ << " " << RegShiftedReg.ShiftReg << ">";
+ break;
+ case k_ShiftedImmediate:
+ OS << "<so_reg_imm "
+ << RegShiftedImm.SrcReg << " "
+ << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
+ << " #" << RegShiftedImm.ShiftImm << ">";
+ break;
+ case k_RotateImmediate:
+ OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
+ break;
+ case k_BitfieldDescriptor:
+ OS << "<bitfield " << "lsb: " << Bitfield.LSB
+ << ", width: " << Bitfield.Width << ">";
+ break;
+ case k_RegisterList:
+ case k_DPRRegisterList:
+ case k_SPRRegisterList: {
+ OS << "<register_list ";
+
+ const SmallVectorImpl<unsigned> &RegList = getRegList();
+ for (SmallVectorImpl<unsigned>::const_iterator
+ I = RegList.begin(), E = RegList.end(); I != E; ) {
+ OS << *I;
+ if (++I < E) OS << ", ";
+ }
+
+ OS << ">";
+ break;
+ }
+ case k_VectorList:
+ OS << "<vector_list " << VectorList.Count << " * "
+ << VectorList.RegNum << ">";
+ break;
+ case k_VectorListAllLanes:
+ OS << "<vector_list(all lanes) " << VectorList.Count << " * "
+ << VectorList.RegNum << ">";
+ break;
+ case k_VectorListIndexed:
+ OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
+ << VectorList.Count << " * " << VectorList.RegNum << ">";
+ break;
+ case k_Token:
+ OS << "'" << getToken() << "'";
+ break;
+ case k_VectorIndex:
+ OS << "<vectorindex " << getVectorIndex() << ">";
+ break;
+ }
+}
+
+/// @name Auto-generated Match Functions
+/// {
+
+static unsigned MatchRegisterName(StringRef Name);
+
+/// }
+
+bool ARMAsmParser::ParseRegister(unsigned &RegNo,
+ SMLoc &StartLoc, SMLoc &EndLoc) {
+ StartLoc = Parser.getTok().getLoc();
+ EndLoc = Parser.getTok().getEndLoc();
+ RegNo = tryParseRegister();
+
+ return (RegNo == (unsigned)-1);
+}
+
+/// Try to parse a register name. The token must be an Identifier when called,
+/// and if it is a register name the token is eaten and the register number is
+/// returned. Otherwise return -1.
+///
+int ARMAsmParser::tryParseRegister() {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier)) return -1;
+
+ std::string lowerCase = Tok.getString().lower();
+ unsigned RegNum = MatchRegisterName(lowerCase);
+ if (!RegNum) {
+ RegNum = StringSwitch<unsigned>(lowerCase)
+ .Case("r13", ARM::SP)
+ .Case("r14", ARM::LR)
+ .Case("r15", ARM::PC)
+ .Case("ip", ARM::R12)
+ // Additional register name aliases for 'gas' compatibility.
+ .Case("a1", ARM::R0)
+ .Case("a2", ARM::R1)
+ .Case("a3", ARM::R2)
+ .Case("a4", ARM::R3)
+ .Case("v1", ARM::R4)
+ .Case("v2", ARM::R5)
+ .Case("v3", ARM::R6)
+ .Case("v4", ARM::R7)
+ .Case("v5", ARM::R8)
+ .Case("v6", ARM::R9)
+ .Case("v7", ARM::R10)
+ .Case("v8", ARM::R11)
+ .Case("sb", ARM::R9)
+ .Case("sl", ARM::R10)
+ .Case("fp", ARM::R11)
+ .Default(0);
+ }
+ if (!RegNum) {
+ // Check for aliases registered via .req. Canonicalize to lower case.
+ // That's more consistent since register names are case insensitive, and
+ // it's how the original entry was passed in from MC/MCParser/AsmParser.
+ StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
+ // If no match, return failure.
+ if (Entry == RegisterReqs.end())
+ return -1;
+ Parser.Lex(); // Eat identifier token.
+ return Entry->getValue();
+ }
+
+ Parser.Lex(); // Eat identifier token.
+
+ return RegNum;
+}
+
+// Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
+// If a recoverable error occurs, return 1. If an irrecoverable error
+// occurs, return -1. An irrecoverable error is one where tokens have been
+// consumed in the process of trying to parse the shifter (i.e., when it is
+// indeed a shifter operand, but malformed).
+int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier))
+ return -1;
+
+ std::string lowerCase = Tok.getString().lower();
+ ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
+ .Case("asl", ARM_AM::lsl)
+ .Case("lsl", ARM_AM::lsl)
+ .Case("lsr", ARM_AM::lsr)
+ .Case("asr", ARM_AM::asr)
+ .Case("ror", ARM_AM::ror)
+ .Case("rrx", ARM_AM::rrx)
+ .Default(ARM_AM::no_shift);
+
+ if (ShiftTy == ARM_AM::no_shift)
+ return 1;
+
+ Parser.Lex(); // Eat the operator.
+
+ // The source register for the shift has already been added to the
+ // operand list, so we need to pop it off and combine it into the shifted
+ // register operand instead.
+ std::unique_ptr<ARMOperand> PrevOp(
+ (ARMOperand *)Operands.pop_back_val().release());
+ if (!PrevOp->isReg())
+ return Error(PrevOp->getStartLoc(), "shift must be of a register");
+ int SrcReg = PrevOp->getReg();
+
+ SMLoc EndLoc;
+ int64_t Imm = 0;
+ int ShiftReg = 0;
+ if (ShiftTy == ARM_AM::rrx) {
+ // RRX Doesn't have an explicit shift amount. The encoder expects
+ // the shift register to be the same as the source register. Seems odd,
+ // but OK.
+ ShiftReg = SrcReg;
+ } else {
+ // Figure out if this is shifted by a constant or a register (for non-RRX).
+ if (Parser.getTok().is(AsmToken::Hash) ||
+ Parser.getTok().is(AsmToken::Dollar)) {
+ Parser.Lex(); // Eat hash.
+ SMLoc ImmLoc = Parser.getTok().getLoc();
+ const MCExpr *ShiftExpr = nullptr;
+ if (getParser().parseExpression(ShiftExpr, EndLoc)) {
+ Error(ImmLoc, "invalid immediate shift value");
+ return -1;
+ }
+ // The expression must be evaluatable as an immediate.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
+ if (!CE) {
+ Error(ImmLoc, "invalid immediate shift value");
+ return -1;
+ }
+ // Range check the immediate.
+ // lsl, ror: 0 <= imm <= 31
+ // lsr, asr: 0 <= imm <= 32
+ Imm = CE->getValue();
+ if (Imm < 0 ||
+ ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
+ ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
+ Error(ImmLoc, "immediate shift value out of range");
+ return -1;
+ }
+ // shift by zero is a nop. Always send it through as lsl.
+ // ('as' compatibility)
+ if (Imm == 0)
+ ShiftTy = ARM_AM::lsl;
+ } else if (Parser.getTok().is(AsmToken::Identifier)) {
+ SMLoc L = Parser.getTok().getLoc();
+ EndLoc = Parser.getTok().getEndLoc();
+ ShiftReg = tryParseRegister();
+ if (ShiftReg == -1) {
+ Error(L, "expected immediate or register in shift operand");
+ return -1;
+ }
+ } else {
+ Error(Parser.getTok().getLoc(),
+ "expected immediate or register in shift operand");
+ return -1;
+ }
+ }
+
+ if (ShiftReg && ShiftTy != ARM_AM::rrx)
+ Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
+ ShiftReg, Imm,
+ S, EndLoc));
+ else
+ Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
+ S, EndLoc));
+
+ return 0;
+}
+
+
+/// Try to parse a register name. The token must be an Identifier when called.
+/// If it's a register, an AsmOperand is created. Another AsmOperand is created
+/// if there is a "writeback". 'true' if it's not a register.
+///
+/// TODO this is likely to change to allow different register types and or to
+/// parse for a specific register type.
+bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
+ const AsmToken &RegTok = Parser.getTok();
+ int RegNo = tryParseRegister();
+ if (RegNo == -1)
+ return true;
+
+ Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
+ RegTok.getEndLoc()));
+
+ const AsmToken &ExclaimTok = Parser.getTok();
+ if (ExclaimTok.is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
+ ExclaimTok.getLoc()));
+ Parser.Lex(); // Eat exclaim token
+ return false;
+ }
+
+ // Also check for an index operand. This is only legal for vector registers,
+ // but that'll get caught OK in operand matching, so we don't need to
+ // explicitly filter everything else out here.
+ if (Parser.getTok().is(AsmToken::LBrac)) {
+ SMLoc SIdx = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat left bracket token.
+
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal))
+ return true;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE)
+ return TokError("immediate value expected for vector index");
+
+ if (Parser.getTok().isNot(AsmToken::RBrac))
+ return Error(Parser.getTok().getLoc(), "']' expected");
+
+ SMLoc E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat right bracket token.
+
+ Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
+ SIdx, E,
+ getContext()));
+ }
+
+ return false;
+}
+
+/// MatchCoprocessorOperandName - Try to parse an coprocessor related
+/// instruction with a symbolic operand name.
+/// We accept "crN" syntax for GAS compatibility.
+/// <operand-name> ::= <prefix><number>
+/// If CoprocOp is 'c', then:
+/// <prefix> ::= c | cr
+/// If CoprocOp is 'p', then :
+/// <prefix> ::= p
+/// <number> ::= integer in range [0, 15]
+static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
+ // Use the same layout as the tablegen'erated register name matcher. Ugly,
+ // but efficient.
+ if (Name.size() < 2 || Name[0] != CoprocOp)
+ return -1;
+ Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
+
+ switch (Name.size()) {
+ default: return -1;
+ case 1:
+ switch (Name[0]) {
+ default: return -1;
+ case '0': return 0;
+ case '1': return 1;
+ case '2': return 2;
+ case '3': return 3;
+ case '4': return 4;
+ case '5': return 5;
+ case '6': return 6;
+ case '7': return 7;
+ case '8': return 8;
+ case '9': return 9;
+ }
+ case 2:
+ if (Name[0] != '1')
+ return -1;
+ switch (Name[1]) {
+ default: return -1;
+ // p10 and p11 are invalid for coproc instructions (reserved for FP/NEON)
+ case '0': return CoprocOp == 'p'? -1: 10;
+ case '1': return CoprocOp == 'p'? -1: 11;
+ case '2': return 12;
+ case '3': return 13;
+ case '4': return 14;
+ case '5': return 15;
+ }
+ }
+}
+
+/// parseITCondCode - Try to parse a condition code for an IT instruction.
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseITCondCode(OperandVector &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+ unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
+ .Case("eq", ARMCC::EQ)
+ .Case("ne", ARMCC::NE)
+ .Case("hs", ARMCC::HS)
+ .Case("cs", ARMCC::HS)
+ .Case("lo", ARMCC::LO)
+ .Case("cc", ARMCC::LO)
+ .Case("mi", ARMCC::MI)
+ .Case("pl", ARMCC::PL)
+ .Case("vs", ARMCC::VS)
+ .Case("vc", ARMCC::VC)
+ .Case("hi", ARMCC::HI)
+ .Case("ls", ARMCC::LS)
+ .Case("ge", ARMCC::GE)
+ .Case("lt", ARMCC::LT)
+ .Case("gt", ARMCC::GT)
+ .Case("le", ARMCC::LE)
+ .Case("al", ARMCC::AL)
+ .Default(~0U);
+ if (CC == ~0U)
+ return MatchOperand_NoMatch;
+ Parser.Lex(); // Eat the token.
+
+ Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
+
+ return MatchOperand_Success;
+}
+
+/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
+/// token must be an Identifier when called, and if it is a coprocessor
+/// number, the token is eaten and the operand is added to the operand list.
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+
+ int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
+ if (Num == -1)
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
+ return MatchOperand_Success;
+}
+
+/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
+/// token must be an Identifier when called, and if it is a coprocessor
+/// number, the token is eaten and the operand is added to the operand list.
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+
+ int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
+ if (Reg == -1)
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
+ return MatchOperand_Success;
+}
+
+/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
+/// coproc_option : '{' imm0_255 '}'
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+
+ // If this isn't a '{', this isn't a coprocessor immediate operand.
+ if (Parser.getTok().isNot(AsmToken::LCurly))
+ return MatchOperand_NoMatch;
+ Parser.Lex(); // Eat the '{'
+
+ const MCExpr *Expr;
+ SMLoc Loc = Parser.getTok().getLoc();
+ if (getParser().parseExpression(Expr)) {
+ Error(Loc, "illegal expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
+ if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
+ Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
+ return MatchOperand_ParseFail;
+ }
+ int Val = CE->getValue();
+
+ // Check for and consume the closing '}'
+ if (Parser.getTok().isNot(AsmToken::RCurly))
+ return MatchOperand_ParseFail;
+ SMLoc E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat the '}'
+
+ Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
+ return MatchOperand_Success;
+}
+
+// For register list parsing, we need to map from raw GPR register numbering
+// to the enumeration values. The enumeration values aren't sorted by
+// register number due to our using "sp", "lr" and "pc" as canonical names.
+static unsigned getNextRegister(unsigned Reg) {
+ // If this is a GPR, we need to do it manually, otherwise we can rely
+ // on the sort ordering of the enumeration since the other reg-classes
+ // are sane.
+ if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
+ return Reg + 1;
+ switch(Reg) {
+ default: llvm_unreachable("Invalid GPR number!");
+ case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
+ case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
+ case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
+ case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
+ case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
+ case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
+ case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
+ case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
+ }
+}
+
+// Return the low-subreg of a given Q register.
+static unsigned getDRegFromQReg(unsigned QReg) {
+ switch (QReg) {
+ default: llvm_unreachable("expected a Q register!");
+ case ARM::Q0: return ARM::D0;
+ case ARM::Q1: return ARM::D2;
+ case ARM::Q2: return ARM::D4;
+ case ARM::Q3: return ARM::D6;
+ case ARM::Q4: return ARM::D8;
+ case ARM::Q5: return ARM::D10;
+ case ARM::Q6: return ARM::D12;
+ case ARM::Q7: return ARM::D14;
+ case ARM::Q8: return ARM::D16;
+ case ARM::Q9: return ARM::D18;
+ case ARM::Q10: return ARM::D20;
+ case ARM::Q11: return ARM::D22;
+ case ARM::Q12: return ARM::D24;
+ case ARM::Q13: return ARM::D26;
+ case ARM::Q14: return ARM::D28;
+ case ARM::Q15: return ARM::D30;
+ }
+}
+
+/// Parse a register list.
+bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
+ assert(Parser.getTok().is(AsmToken::LCurly) &&
+ "Token is not a Left Curly Brace");
+ SMLoc S = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat '{' token.
+ SMLoc RegLoc = Parser.getTok().getLoc();
+
+ // Check the first register in the list to see what register class
+ // this is a list of.
+ int Reg = tryParseRegister();
+ if (Reg == -1)
+ return Error(RegLoc, "register expected");
+
+ // The reglist instructions have at most 16 registers, so reserve
+ // space for that many.
+ int EReg = 0;
+ SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
+
+ // Allow Q regs and just interpret them as the two D sub-registers.
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
+ Reg = getDRegFromQReg(Reg);
+ EReg = MRI->getEncodingValue(Reg);
+ Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
+ ++Reg;
+ }
+ const MCRegisterClass *RC;
+ if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
+ RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
+ else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
+ RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
+ else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
+ RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
+ else
+ return Error(RegLoc, "invalid register in register list");
+
+ // Store the register.
+ EReg = MRI->getEncodingValue(Reg);
+ Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
+
+ // This starts immediately after the first register token in the list,
+ // so we can see either a comma or a minus (range separator) as a legal
+ // next token.
+ while (Parser.getTok().is(AsmToken::Comma) ||
+ Parser.getTok().is(AsmToken::Minus)) {
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ Parser.Lex(); // Eat the minus.
+ SMLoc AfterMinusLoc = Parser.getTok().getLoc();
+ int EndReg = tryParseRegister();
+ if (EndReg == -1)
+ return Error(AfterMinusLoc, "register expected");
+ // Allow Q regs and just interpret them as the two D sub-registers.
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
+ EndReg = getDRegFromQReg(EndReg) + 1;
+ // If the register is the same as the start reg, there's nothing
+ // more to do.
+ if (Reg == EndReg)
+ continue;
+ // The register must be in the same register class as the first.
+ if (!RC->contains(EndReg))
+ return Error(AfterMinusLoc, "invalid register in register list");
+ // Ranges must go from low to high.
+ if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
+ return Error(AfterMinusLoc, "bad range in register list");
+
+ // Add all the registers in the range to the register list.
+ while (Reg != EndReg) {
+ Reg = getNextRegister(Reg);
+ EReg = MRI->getEncodingValue(Reg);
+ Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
+ }
+ continue;
+ }
+ Parser.Lex(); // Eat the comma.
+ RegLoc = Parser.getTok().getLoc();
+ int OldReg = Reg;
+ const AsmToken RegTok = Parser.getTok();
+ Reg = tryParseRegister();
+ if (Reg == -1)
+ return Error(RegLoc, "register expected");
+ // Allow Q regs and just interpret them as the two D sub-registers.
+ bool isQReg = false;
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
+ Reg = getDRegFromQReg(Reg);
+ isQReg = true;
+ }
+ // The register must be in the same register class as the first.
+ if (!RC->contains(Reg))
+ return Error(RegLoc, "invalid register in register list");
+ // List must be monotonically increasing.
+ if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
+ if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
+ Warning(RegLoc, "register list not in ascending order");
+ else
+ return Error(RegLoc, "register list not in ascending order");
+ }
+ if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
+ Warning(RegLoc, "duplicated register (" + RegTok.getString() +
+ ") in register list");
+ continue;
+ }
+ // VFP register lists must also be contiguous.
+ if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
+ Reg != OldReg + 1)
+ return Error(RegLoc, "non-contiguous register range");
+ EReg = MRI->getEncodingValue(Reg);
+ Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
+ if (isQReg) {
+ EReg = MRI->getEncodingValue(++Reg);
+ Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
+ }
+ }
+
+ if (Parser.getTok().isNot(AsmToken::RCurly))
+ return Error(Parser.getTok().getLoc(), "'}' expected");
+ SMLoc E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat '}' token.
+
+ // Push the register list operand.
+ Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
+
+ // The ARM system instruction variants for LDM/STM have a '^' token here.
+ if (Parser.getTok().is(AsmToken::Caret)) {
+ Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat '^' token.
+ }
+
+ return false;
+}
+
+// Helper function to parse the lane index for vector lists.
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
+ Index = 0; // Always return a defined index value.
+ if (Parser.getTok().is(AsmToken::LBrac)) {
+ Parser.Lex(); // Eat the '['.
+ if (Parser.getTok().is(AsmToken::RBrac)) {
+ // "Dn[]" is the 'all lanes' syntax.
+ LaneKind = AllLanes;
+ EndLoc = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat the ']'.
+ return MatchOperand_Success;
+ }
+
+ // There's an optional '#' token here. Normally there wouldn't be, but
+ // inline assemble puts one in, and it's friendly to accept that.
+ if (Parser.getTok().is(AsmToken::Hash))
+ Parser.Lex(); // Eat '#' or '$'.
+
+ const MCExpr *LaneIndex;
+ SMLoc Loc = Parser.getTok().getLoc();
+ if (getParser().parseExpression(LaneIndex)) {
+ Error(Loc, "illegal expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
+ if (!CE) {
+ Error(Loc, "lane index must be empty or an integer");
+ return MatchOperand_ParseFail;
+ }
+ if (Parser.getTok().isNot(AsmToken::RBrac)) {
+ Error(Parser.getTok().getLoc(), "']' expected");
+ return MatchOperand_ParseFail;
+ }
+ EndLoc = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat the ']'.
+ int64_t Val = CE->getValue();
+
+ // FIXME: Make this range check context sensitive for .8, .16, .32.
+ if (Val < 0 || Val > 7) {
+ Error(Parser.getTok().getLoc(), "lane index out of range");
+ return MatchOperand_ParseFail;
+ }
+ Index = Val;
+ LaneKind = IndexedLane;
+ return MatchOperand_Success;
+ }
+ LaneKind = NoLanes;
+ return MatchOperand_Success;
+}
+
+// parse a vector register list
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseVectorList(OperandVector &Operands) {
+ VectorLaneTy LaneKind;
+ unsigned LaneIndex;
+ SMLoc S = Parser.getTok().getLoc();
+ // As an extension (to match gas), support a plain D register or Q register
+ // (without encosing curly braces) as a single or double entry list,
+ // respectively.
+ if (Parser.getTok().is(AsmToken::Identifier)) {
+ SMLoc E = Parser.getTok().getEndLoc();
+ int Reg = tryParseRegister();
+ if (Reg == -1)
+ return MatchOperand_NoMatch;
+ if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
+ OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
+ if (Res != MatchOperand_Success)
+ return Res;
+ switch (LaneKind) {
+ case NoLanes:
+ Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
+ break;
+ case AllLanes:
+ Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
+ S, E));
+ break;
+ case IndexedLane:
+ Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
+ LaneIndex,
+ false, S, E));
+ break;
+ }
+ return MatchOperand_Success;
+ }
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
+ Reg = getDRegFromQReg(Reg);
+ OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
+ if (Res != MatchOperand_Success)
+ return Res;
+ switch (LaneKind) {
+ case NoLanes:
+ Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
+ &ARMMCRegisterClasses[ARM::DPairRegClassID]);
+ Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
+ break;
+ case AllLanes:
+ Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
+ &ARMMCRegisterClasses[ARM::DPairRegClassID]);
+ Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
+ S, E));
+ break;
+ case IndexedLane:
+ Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
+ LaneIndex,
+ false, S, E));
+ break;
+ }
+ return MatchOperand_Success;
+ }
+ Error(S, "vector register expected");
+ return MatchOperand_ParseFail;
+ }
+
+ if (Parser.getTok().isNot(AsmToken::LCurly))
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat '{' token.
+ SMLoc RegLoc = Parser.getTok().getLoc();
+
+ int Reg = tryParseRegister();
+ if (Reg == -1) {
+ Error(RegLoc, "register expected");
+ return MatchOperand_ParseFail;
+ }
+ unsigned Count = 1;
+ int Spacing = 0;
+ unsigned FirstReg = Reg;
+ // The list is of D registers, but we also allow Q regs and just interpret
+ // them as the two D sub-registers.
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
+ FirstReg = Reg = getDRegFromQReg(Reg);
+ Spacing = 1; // double-spacing requires explicit D registers, otherwise
+ // it's ambiguous with four-register single spaced.
+ ++Reg;
+ ++Count;
+ }
+
+ SMLoc E;
+ if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
+ return MatchOperand_ParseFail;
+
+ while (Parser.getTok().is(AsmToken::Comma) ||
+ Parser.getTok().is(AsmToken::Minus)) {
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ if (!Spacing)
+ Spacing = 1; // Register range implies a single spaced list.
+ else if (Spacing == 2) {
+ Error(Parser.getTok().getLoc(),
+ "sequential registers in double spaced list");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat the minus.
+ SMLoc AfterMinusLoc = Parser.getTok().getLoc();
+ int EndReg = tryParseRegister();
+ if (EndReg == -1) {
+ Error(AfterMinusLoc, "register expected");
+ return MatchOperand_ParseFail;
+ }
+ // Allow Q regs and just interpret them as the two D sub-registers.
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
+ EndReg = getDRegFromQReg(EndReg) + 1;
+ // If the register is the same as the start reg, there's nothing
+ // more to do.
+ if (Reg == EndReg)
+ continue;
+ // The register must be in the same register class as the first.
+ if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
+ Error(AfterMinusLoc, "invalid register in register list");
+ return MatchOperand_ParseFail;
+ }
+ // Ranges must go from low to high.
+ if (Reg > EndReg) {
+ Error(AfterMinusLoc, "bad range in register list");
+ return MatchOperand_ParseFail;
+ }
+ // Parse the lane specifier if present.
+ VectorLaneTy NextLaneKind;
+ unsigned NextLaneIndex;
+ if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
+ MatchOperand_Success)
+ return MatchOperand_ParseFail;
+ if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
+ Error(AfterMinusLoc, "mismatched lane index in register list");
+ return MatchOperand_ParseFail;
+ }
+
+ // Add all the registers in the range to the register list.
+ Count += EndReg - Reg;
+ Reg = EndReg;
+ continue;
+ }
+ Parser.Lex(); // Eat the comma.
+ RegLoc = Parser.getTok().getLoc();
+ int OldReg = Reg;
+ Reg = tryParseRegister();
+ if (Reg == -1) {
+ Error(RegLoc, "register expected");
+ return MatchOperand_ParseFail;
+ }
+ // vector register lists must be contiguous.
+ // It's OK to use the enumeration values directly here rather, as the
+ // VFP register classes have the enum sorted properly.
+ //
+ // The list is of D registers, but we also allow Q regs and just interpret
+ // them as the two D sub-registers.
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
+ if (!Spacing)
+ Spacing = 1; // Register range implies a single spaced list.
+ else if (Spacing == 2) {
+ Error(RegLoc,
+ "invalid register in double-spaced list (must be 'D' register')");
+ return MatchOperand_ParseFail;
+ }
+ Reg = getDRegFromQReg(Reg);
+ if (Reg != OldReg + 1) {
+ Error(RegLoc, "non-contiguous register range");
+ return MatchOperand_ParseFail;
+ }
+ ++Reg;
+ Count += 2;
+ // Parse the lane specifier if present.
+ VectorLaneTy NextLaneKind;
+ unsigned NextLaneIndex;
+ SMLoc LaneLoc = Parser.getTok().getLoc();
+ if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
+ MatchOperand_Success)
+ return MatchOperand_ParseFail;
+ if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
+ Error(LaneLoc, "mismatched lane index in register list");
+ return MatchOperand_ParseFail;
+ }
+ continue;
+ }
+ // Normal D register.
+ // Figure out the register spacing (single or double) of the list if
+ // we don't know it already.
+ if (!Spacing)
+ Spacing = 1 + (Reg == OldReg + 2);
+
+ // Just check that it's contiguous and keep going.
+ if (Reg != OldReg + Spacing) {
+ Error(RegLoc, "non-contiguous register range");
+ return MatchOperand_ParseFail;
+ }
+ ++Count;
+ // Parse the lane specifier if present.
+ VectorLaneTy NextLaneKind;
+ unsigned NextLaneIndex;
+ SMLoc EndLoc = Parser.getTok().getLoc();
+ if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
+ return MatchOperand_ParseFail;
+ if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
+ Error(EndLoc, "mismatched lane index in register list");
+ return MatchOperand_ParseFail;
+ }
+ }
+
+ if (Parser.getTok().isNot(AsmToken::RCurly)) {
+ Error(Parser.getTok().getLoc(), "'}' expected");
+ return MatchOperand_ParseFail;
+ }
+ E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat '}' token.
+
+ switch (LaneKind) {
+ case NoLanes:
+ // Two-register operands have been converted to the
+ // composite register classes.
+ if (Count == 2) {
+ const MCRegisterClass *RC = (Spacing == 1) ?
+ &ARMMCRegisterClasses[ARM::DPairRegClassID] :
+ &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
+ FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
+ }
+
+ Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
+ (Spacing == 2), S, E));
+ break;
+ case AllLanes:
+ // Two-register operands have been converted to the
+ // composite register classes.
+ if (Count == 2) {
+ const MCRegisterClass *RC = (Spacing == 1) ?
+ &ARMMCRegisterClasses[ARM::DPairRegClassID] :
+ &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
+ FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
+ }
+ Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
+ (Spacing == 2),
+ S, E));
+ break;
+ case IndexedLane:
+ Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
+ LaneIndex,
+ (Spacing == 2),
+ S, E));
+ break;
+ }
+ return MatchOperand_Success;
+}
+
+/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ unsigned Opt;
+
+ if (Tok.is(AsmToken::Identifier)) {
+ StringRef OptStr = Tok.getString();
+
+ Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
+ .Case("sy", ARM_MB::SY)
+ .Case("st", ARM_MB::ST)
+ .Case("ld", ARM_MB::LD)
+ .Case("sh", ARM_MB::ISH)
+ .Case("ish", ARM_MB::ISH)
+ .Case("shst", ARM_MB::ISHST)
+ .Case("ishst", ARM_MB::ISHST)
+ .Case("ishld", ARM_MB::ISHLD)
+ .Case("nsh", ARM_MB::NSH)
+ .Case("un", ARM_MB::NSH)
+ .Case("nshst", ARM_MB::NSHST)
+ .Case("nshld", ARM_MB::NSHLD)
+ .Case("unst", ARM_MB::NSHST)
+ .Case("osh", ARM_MB::OSH)
+ .Case("oshst", ARM_MB::OSHST)
+ .Case("oshld", ARM_MB::OSHLD)
+ .Default(~0U);
+
+ // ishld, oshld, nshld and ld are only available from ARMv8.
+ if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
+ Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
+ Opt = ~0U;
+
+ if (Opt == ~0U)
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat identifier token.
+ } else if (Tok.is(AsmToken::Hash) ||
+ Tok.is(AsmToken::Dollar) ||
+ Tok.is(AsmToken::Integer)) {
+ if (Parser.getTok().isNot(AsmToken::Integer))
+ Parser.Lex(); // Eat '#' or '$'.
+ SMLoc Loc = Parser.getTok().getLoc();
+
+ const MCExpr *MemBarrierID;
+ if (getParser().parseExpression(MemBarrierID)) {
+ Error(Loc, "illegal expression");
+ return MatchOperand_ParseFail;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
+ if (!CE) {
+ Error(Loc, "constant expression expected");
+ return MatchOperand_ParseFail;
+ }
+
+ int Val = CE->getValue();
+ if (Val & ~0xf) {
+ Error(Loc, "immediate value out of range");
+ return MatchOperand_ParseFail;
+ }
+
+ Opt = ARM_MB::RESERVED_0 + Val;
+ } else
+ return MatchOperand_ParseFail;
+
+ Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
+ return MatchOperand_Success;
+}
+
+/// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ unsigned Opt;
+
+ if (Tok.is(AsmToken::Identifier)) {
+ StringRef OptStr = Tok.getString();
+
+ if (OptStr.equals_lower("sy"))
+ Opt = ARM_ISB::SY;
+ else
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat identifier token.
+ } else if (Tok.is(AsmToken::Hash) ||
+ Tok.is(AsmToken::Dollar) ||
+ Tok.is(AsmToken::Integer)) {
+ if (Parser.getTok().isNot(AsmToken::Integer))
+ Parser.Lex(); // Eat '#' or '$'.
+ SMLoc Loc = Parser.getTok().getLoc();
+
+ const MCExpr *ISBarrierID;
+ if (getParser().parseExpression(ISBarrierID)) {
+ Error(Loc, "illegal expression");
+ return MatchOperand_ParseFail;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
+ if (!CE) {
+ Error(Loc, "constant expression expected");
+ return MatchOperand_ParseFail;
+ }
+
+ int Val = CE->getValue();
+ if (Val & ~0xf) {
+ Error(Loc, "immediate value out of range");
+ return MatchOperand_ParseFail;
+ }
+
+ Opt = ARM_ISB::RESERVED_0 + Val;
+ } else
+ return MatchOperand_ParseFail;
+
+ Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
+ (ARM_ISB::InstSyncBOpt)Opt, S));
+ return MatchOperand_Success;
+}
+
+
+/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+ StringRef IFlagsStr = Tok.getString();
+
+ // An iflags string of "none" is interpreted to mean that none of the AIF
+ // bits are set. Not a terribly useful instruction, but a valid encoding.
+ unsigned IFlags = 0;
+ if (IFlagsStr != "none") {
+ for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
+ unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
+ .Case("a", ARM_PROC::A)
+ .Case("i", ARM_PROC::I)
+ .Case("f", ARM_PROC::F)
+ .Default(~0U);
+
+ // If some specific iflag is already set, it means that some letter is
+ // present more than once, this is not acceptable.
+ if (Flag == ~0U || (IFlags & Flag))
+ return MatchOperand_NoMatch;
+
+ IFlags |= Flag;
+ }
+ }
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
+ return MatchOperand_Success;
+}
+
+/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+ StringRef Mask = Tok.getString();
+
+ if (isMClass()) {
+ // See ARMv6-M 10.1.1
+ std::string Name = Mask.lower();
+ unsigned FlagsVal = StringSwitch<unsigned>(Name)
+ // Note: in the documentation:
+ // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
+ // for MSR APSR_nzcvq.
+ // but we do make it an alias here. This is so to get the "mask encoding"
+ // bits correct on MSR APSR writes.
+ //
+ // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
+ // should really only be allowed when writing a special register. Note
+ // they get dropped in the MRS instruction reading a special register as
+ // the SYSm field is only 8 bits.
+ //
+ // FIXME: the _g and _nzcvqg versions are only allowed if the processor
+ // includes the DSP extension but that is not checked.
+ .Case("apsr", 0x800)
+ .Case("apsr_nzcvq", 0x800)
+ .Case("apsr_g", 0x400)
+ .Case("apsr_nzcvqg", 0xc00)
+ .Case("iapsr", 0x801)
+ .Case("iapsr_nzcvq", 0x801)
+ .Case("iapsr_g", 0x401)
+ .Case("iapsr_nzcvqg", 0xc01)
+ .Case("eapsr", 0x802)
+ .Case("eapsr_nzcvq", 0x802)
+ .Case("eapsr_g", 0x402)
+ .Case("eapsr_nzcvqg", 0xc02)
+ .Case("xpsr", 0x803)
+ .Case("xpsr_nzcvq", 0x803)
+ .Case("xpsr_g", 0x403)
+ .Case("xpsr_nzcvqg", 0xc03)
+ .Case("ipsr", 0x805)
+ .Case("epsr", 0x806)
+ .Case("iepsr", 0x807)
+ .Case("msp", 0x808)
+ .Case("psp", 0x809)
+ .Case("primask", 0x810)
+ .Case("basepri", 0x811)
+ .Case("basepri_max", 0x812)
+ .Case("faultmask", 0x813)
+ .Case("control", 0x814)
+ .Default(~0U);
+
+ if (FlagsVal == ~0U)
+ return MatchOperand_NoMatch;
+
+ if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
+ // basepri, basepri_max and faultmask only valid for V7m.
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
+ return MatchOperand_Success;
+ }
+
+ // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
+ size_t Start = 0, Next = Mask.find('_');
+ StringRef Flags = "";
+ std::string SpecReg = Mask.slice(Start, Next).lower();
+ if (Next != StringRef::npos)
+ Flags = Mask.slice(Next+1, Mask.size());
+
+ // FlagsVal contains the complete mask:
+ // 3-0: Mask
+ // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
+ unsigned FlagsVal = 0;
+
+ if (SpecReg == "apsr") {
+ FlagsVal = StringSwitch<unsigned>(Flags)
+ .Case("nzcvq", 0x8) // same as CPSR_f
+ .Case("g", 0x4) // same as CPSR_s
+ .Case("nzcvqg", 0xc) // same as CPSR_fs
+ .Default(~0U);
+
+ if (FlagsVal == ~0U) {
+ if (!Flags.empty())
+ return MatchOperand_NoMatch;
+ else
+ FlagsVal = 8; // No flag
+ }
+ } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
+ // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
+ if (Flags == "all" || Flags == "")
+ Flags = "fc";
+ for (int i = 0, e = Flags.size(); i != e; ++i) {
+ unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
+ .Case("c", 1)
+ .Case("x", 2)
+ .Case("s", 4)
+ .Case("f", 8)
+ .Default(~0U);
+
+ // If some specific flag is already set, it means that some letter is
+ // present more than once, this is not acceptable.
+ if (FlagsVal == ~0U || (FlagsVal & Flag))
+ return MatchOperand_NoMatch;
+ FlagsVal |= Flag;
+ }
+ } else // No match for special register.
+ return MatchOperand_NoMatch;
+
+ // Special register without flags is NOT equivalent to "fc" flags.
+ // NOTE: This is a divergence from gas' behavior. Uncommenting the following
+ // two lines would enable gas compatibility at the expense of breaking
+ // round-tripping.
+ //
+ // if (!FlagsVal)
+ // FlagsVal = 0x9;
+
+ // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
+ if (SpecReg == "spsr")
+ FlagsVal |= 16;
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
+ return MatchOperand_Success;
+}
+
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
+ int High) {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier)) {
+ Error(Parser.getTok().getLoc(), Op + " operand expected.");
+ return MatchOperand_ParseFail;
+ }
+ StringRef ShiftName = Tok.getString();
+ std::string LowerOp = Op.lower();
+ std::string UpperOp = Op.upper();
+ if (ShiftName != LowerOp && ShiftName != UpperOp) {
+ Error(Parser.getTok().getLoc(), Op + " operand expected.");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat shift type token.
+
+ // There must be a '#' and a shift amount.
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+
+ const MCExpr *ShiftAmount;
+ SMLoc Loc = Parser.getTok().getLoc();
+ SMLoc EndLoc;
+ if (getParser().parseExpression(ShiftAmount, EndLoc)) {
+ Error(Loc, "illegal expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
+ if (!CE) {
+ Error(Loc, "constant expression expected");
+ return MatchOperand_ParseFail;
+ }
+ int Val = CE->getValue();
+ if (Val < Low || Val > High) {
+ Error(Loc, "immediate value out of range");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
+
+ return MatchOperand_Success;
+}
+
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc S = Tok.getLoc();
+ if (Tok.isNot(AsmToken::Identifier)) {
+ Error(S, "'be' or 'le' operand expected");
+ return MatchOperand_ParseFail;
+ }
+ int Val = StringSwitch<int>(Tok.getString().lower())
+ .Case("be", 1)
+ .Case("le", 0)
+ .Default(-1);
+ Parser.Lex(); // Eat the token.
+
+ if (Val == -1) {
+ Error(S, "'be' or 'le' operand expected");
+ return MatchOperand_ParseFail;
+ }
+ Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
+ getContext()),
+ S, Tok.getEndLoc()));
+ return MatchOperand_Success;
+}
+
+/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
+/// instructions. Legal values are:
+/// lsl #n 'n' in [0,31]
+/// asr #n 'n' in [1,32]
+/// n == 32 encoded as n == 0.
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseShifterImm(OperandVector &Operands) {
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc S = Tok.getLoc();
+ if (Tok.isNot(AsmToken::Identifier)) {
+ Error(S, "shift operator 'asr' or 'lsl' expected");
+ return MatchOperand_ParseFail;
+ }
+ StringRef ShiftName = Tok.getString();
+ bool isASR;
+ if (ShiftName == "lsl" || ShiftName == "LSL")
+ isASR = false;
+ else if (ShiftName == "asr" || ShiftName == "ASR")
+ isASR = true;
+ else {
+ Error(S, "shift operator 'asr' or 'lsl' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat the operator.
+
+ // A '#' and a shift amount.
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+ SMLoc ExLoc = Parser.getTok().getLoc();
+
+ const MCExpr *ShiftAmount;
+ SMLoc EndLoc;
+ if (getParser().parseExpression(ShiftAmount, EndLoc)) {
+ Error(ExLoc, "malformed shift expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
+ if (!CE) {
+ Error(ExLoc, "shift amount must be an immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ int64_t Val = CE->getValue();
+ if (isASR) {
+ // Shift amount must be in [1,32]
+ if (Val < 1 || Val > 32) {
+ Error(ExLoc, "'asr' shift amount must be in range [1,32]");
+ return MatchOperand_ParseFail;
+ }
+ // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
+ if (isThumb() && Val == 32) {
+ Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
+ return MatchOperand_ParseFail;
+ }
+ if (Val == 32) Val = 0;
+ } else {
+ // Shift amount must be in [1,32]
+ if (Val < 0 || Val > 31) {
+ Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
+ return MatchOperand_ParseFail;
+ }
+ }
+
+ Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
+
+ return MatchOperand_Success;
+}
+
+/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
+/// of instructions. Legal values are:
+/// ror #n 'n' in {0, 8, 16, 24}
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseRotImm(OperandVector &Operands) {
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc S = Tok.getLoc();
+ if (Tok.isNot(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+ StringRef ShiftName = Tok.getString();
+ if (ShiftName != "ror" && ShiftName != "ROR")
+ return MatchOperand_NoMatch;
+ Parser.Lex(); // Eat the operator.
+
+ // A '#' and a rotate amount.
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+ SMLoc ExLoc = Parser.getTok().getLoc();
+
+ const MCExpr *ShiftAmount;
+ SMLoc EndLoc;
+ if (getParser().parseExpression(ShiftAmount, EndLoc)) {
+ Error(ExLoc, "malformed rotate expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
+ if (!CE) {
+ Error(ExLoc, "rotate amount must be an immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ int64_t Val = CE->getValue();
+ // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
+ // normally, zero is represented in asm by omitting the rotate operand
+ // entirely.
+ if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
+ Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
+
+ return MatchOperand_Success;
+}
+
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseBitfield(OperandVector &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ // The bitfield descriptor is really two operands, the LSB and the width.
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+
+ const MCExpr *LSBExpr;
+ SMLoc E = Parser.getTok().getLoc();
+ if (getParser().parseExpression(LSBExpr)) {
+ Error(E, "malformed immediate expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
+ if (!CE) {
+ Error(E, "'lsb' operand must be an immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ int64_t LSB = CE->getValue();
+ // The LSB must be in the range [0,31]
+ if (LSB < 0 || LSB > 31) {
+ Error(E, "'lsb' operand must be in the range [0,31]");
+ return MatchOperand_ParseFail;
+ }
+ E = Parser.getTok().getLoc();
+
+ // Expect another immediate operand.
+ if (Parser.getTok().isNot(AsmToken::Comma)) {
+ Error(Parser.getTok().getLoc(), "too few operands");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+
+ const MCExpr *WidthExpr;
+ SMLoc EndLoc;
+ if (getParser().parseExpression(WidthExpr, EndLoc)) {
+ Error(E, "malformed immediate expression");
+ return MatchOperand_ParseFail;
+ }
+ CE = dyn_cast<MCConstantExpr>(WidthExpr);
+ if (!CE) {
+ Error(E, "'width' operand must be an immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ int64_t Width = CE->getValue();
+ // The LSB must be in the range [1,32-lsb]
+ if (Width < 1 || Width > 32 - LSB) {
+ Error(E, "'width' operand must be in the range [1,32-lsb]");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
+
+ return MatchOperand_Success;
+}
+
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
+ // Check for a post-index addressing register operand. Specifically:
+ // postidx_reg := '+' register {, shift}
+ // | '-' register {, shift}
+ // | register {, shift}
+
+ // This method must return MatchOperand_NoMatch without consuming any tokens
+ // in the case where there is no match, as other alternatives take other
+ // parse methods.
+ AsmToken Tok = Parser.getTok();
+ SMLoc S = Tok.getLoc();
+ bool haveEaten = false;
+ bool isAdd = true;
+ if (Tok.is(AsmToken::Plus)) {
+ Parser.Lex(); // Eat the '+' token.
+ haveEaten = true;
+ } else if (Tok.is(AsmToken::Minus)) {
+ Parser.Lex(); // Eat the '-' token.
+ isAdd = false;
+ haveEaten = true;
+ }
+
+ SMLoc E = Parser.getTok().getEndLoc();
+ int Reg = tryParseRegister();
+ if (Reg == -1) {
+ if (!haveEaten)
+ return MatchOperand_NoMatch;
+ Error(Parser.getTok().getLoc(), "register expected");
+ return MatchOperand_ParseFail;
+ }
+
+ ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
+ unsigned ShiftImm = 0;
+ if (Parser.getTok().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the ','.
+ if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
+ return MatchOperand_ParseFail;
+
+ // FIXME: Only approximates end...may include intervening whitespace.
+ E = Parser.getTok().getLoc();
+ }
+
+ Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
+ ShiftImm, S, E));
+
+ return MatchOperand_Success;
+}
+
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
+ // Check for a post-index addressing register operand. Specifically:
+ // am3offset := '+' register
+ // | '-' register
+ // | register
+ // | # imm
+ // | # + imm
+ // | # - imm
+
+ // This method must return MatchOperand_NoMatch without consuming any tokens
+ // in the case where there is no match, as other alternatives take other
+ // parse methods.
+ AsmToken Tok = Parser.getTok();
+ SMLoc S = Tok.getLoc();
+
+ // Do immediates first, as we always parse those if we have a '#'.
+ if (Parser.getTok().is(AsmToken::Hash) ||
+ Parser.getTok().is(AsmToken::Dollar)) {
+ Parser.Lex(); // Eat '#' or '$'.
+ // Explicitly look for a '-', as we need to encode negative zero
+ // differently.
+ bool isNegative = Parser.getTok().is(AsmToken::Minus);
+ const MCExpr *Offset;
+ SMLoc E;
+ if (getParser().parseExpression(Offset, E))
+ return MatchOperand_ParseFail;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
+ if (!CE) {
+ Error(S, "constant expression expected");
+ return MatchOperand_ParseFail;
+ }
+ // Negative zero is encoded as the flag value INT32_MIN.
+ int32_t Val = CE->getValue();
+ if (isNegative && Val == 0)
+ Val = INT32_MIN;
+
+ Operands.push_back(
+ ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
+
+ return MatchOperand_Success;
+ }
+
+
+ bool haveEaten = false;
+ bool isAdd = true;
+ if (Tok.is(AsmToken::Plus)) {
+ Parser.Lex(); // Eat the '+' token.
+ haveEaten = true;
+ } else if (Tok.is(AsmToken::Minus)) {
+ Parser.Lex(); // Eat the '-' token.
+ isAdd = false;
+ haveEaten = true;
+ }
+
+ Tok = Parser.getTok();
+ int Reg = tryParseRegister();
+ if (Reg == -1) {
+ if (!haveEaten)
+ return MatchOperand_NoMatch;
+ Error(Tok.getLoc(), "register expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
+ 0, S, Tok.getEndLoc()));
+
+ return MatchOperand_Success;
+}
+
+/// Convert parsed operands to MCInst. Needed here because this instruction
+/// only has two register operands, but multiplication is commutative so
+/// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
+void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
+ const OperandVector &Operands) {
+ ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
+ ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
+ // If we have a three-operand form, make sure to set Rn to be the operand
+ // that isn't the same as Rd.
+ unsigned RegOp = 4;
+ if (Operands.size() == 6 &&
+ ((ARMOperand &)*Operands[4]).getReg() ==
+ ((ARMOperand &)*Operands[3]).getReg())
+ RegOp = 5;
+ ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
+ Inst.addOperand(Inst.getOperand(0));
+ ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
+}
+
+void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
+ const OperandVector &Operands) {
+ int CondOp = -1, ImmOp = -1;
+ switch(Inst.getOpcode()) {
+ case ARM::tB:
+ case ARM::tBcc: CondOp = 1; ImmOp = 2; break;
+
+ case ARM::t2B:
+ case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
+
+ default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
+ }
+ // first decide whether or not the branch should be conditional
+ // by looking at it's location relative to an IT block
+ if(inITBlock()) {
+ // inside an IT block we cannot have any conditional branches. any
+ // such instructions needs to be converted to unconditional form
+ switch(Inst.getOpcode()) {
+ case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
+ case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
+ }
+ } else {
+ // outside IT blocks we can only have unconditional branches with AL
+ // condition code or conditional branches with non-AL condition code
+ unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
+ switch(Inst.getOpcode()) {
+ case ARM::tB:
+ case ARM::tBcc:
+ Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
+ break;
+ case ARM::t2B:
+ case ARM::t2Bcc:
+ Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
+ break;
+ }
+ }
+
+ // now decide on encoding size based on branch target range
+ switch(Inst.getOpcode()) {
+ // classify tB as either t2B or t1B based on range of immediate operand
+ case ARM::tB: {
+ ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
+ if (!op.isSignedOffset<11, 1>() && isThumbTwo())
+ Inst.setOpcode(ARM::t2B);
+ break;
+ }
+ // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
+ case ARM::tBcc: {
+ ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
+ if (!op.isSignedOffset<8, 1>() && isThumbTwo())
+ Inst.setOpcode(ARM::t2Bcc);
+ break;
+ }
+ }
+ ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
+ ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
+}
+
+/// Parse an ARM memory expression, return false if successful else return true
+/// or an error. The first token must be a '[' when called.
+bool ARMAsmParser::parseMemory(OperandVector &Operands) {
+ SMLoc S, E;
+ assert(Parser.getTok().is(AsmToken::LBrac) &&
+ "Token is not a Left Bracket");
+ S = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat left bracket token.
+
+ const AsmToken &BaseRegTok = Parser.getTok();
+ int BaseRegNum = tryParseRegister();
+ if (BaseRegNum == -1)
+ return Error(BaseRegTok.getLoc(), "register expected");
+
+ // The next token must either be a comma, a colon or a closing bracket.
+ const AsmToken &Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
+ !Tok.is(AsmToken::RBrac))
+ return Error(Tok.getLoc(), "malformed memory operand");
+
+ if (Tok.is(AsmToken::RBrac)) {
+ E = Tok.getEndLoc();
+ Parser.Lex(); // Eat right bracket token.
+
+ Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
+ ARM_AM::no_shift, 0, 0, false,
+ S, E));
+
+ // If there's a pre-indexing writeback marker, '!', just add it as a token
+ // operand. It's rather odd, but syntactically valid.
+ if (Parser.getTok().is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat the '!'.
+ }
+
+ return false;
+ }
+
+ assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
+ "Lost colon or comma in memory operand?!");
+ if (Tok.is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma.
+ }
+
+ // If we have a ':', it's an alignment specifier.
+ if (Parser.getTok().is(AsmToken::Colon)) {
+ Parser.Lex(); // Eat the ':'.
+ E = Parser.getTok().getLoc();
+ SMLoc AlignmentLoc = Tok.getLoc();
+
+ const MCExpr *Expr;
+ if (getParser().parseExpression(Expr))
+ return true;
+
+ // The expression has to be a constant. Memory references with relocations
+ // don't come through here, as they use the <label> forms of the relevant
+ // instructions.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
+ if (!CE)
+ return Error (E, "constant expression expected");
+
+ unsigned Align = 0;
+ switch (CE->getValue()) {
+ default:
+ return Error(E,
+ "alignment specifier must be 16, 32, 64, 128, or 256 bits");
+ case 16: Align = 2; break;
+ case 32: Align = 4; break;
+ case 64: Align = 8; break;
+ case 128: Align = 16; break;
+ case 256: Align = 32; break;
+ }
+
+ // Now we should have the closing ']'
+ if (Parser.getTok().isNot(AsmToken::RBrac))
+ return Error(Parser.getTok().getLoc(), "']' expected");
+ E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat right bracket token.
+
+ // Don't worry about range checking the value here. That's handled by
+ // the is*() predicates.
+ Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
+ ARM_AM::no_shift, 0, Align,
+ false, S, E, AlignmentLoc));
+
+ // If there's a pre-indexing writeback marker, '!', just add it as a token
+ // operand.
+ if (Parser.getTok().is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat the '!'.
+ }
+
+ return false;
+ }
+
+ // If we have a '#', it's an immediate offset, else assume it's a register
+ // offset. Be friendly and also accept a plain integer (without a leading
+ // hash) for gas compatibility.
+ if (Parser.getTok().is(AsmToken::Hash) ||
+ Parser.getTok().is(AsmToken::Dollar) ||
+ Parser.getTok().is(AsmToken::Integer)) {
+ if (Parser.getTok().isNot(AsmToken::Integer))
+ Parser.Lex(); // Eat '#' or '$'.
+ E = Parser.getTok().getLoc();
+
+ bool isNegative = getParser().getTok().is(AsmToken::Minus);
+ const MCExpr *Offset;
+ if (getParser().parseExpression(Offset))
+ return true;
+
+ // The expression has to be a constant. Memory references with relocations
+ // don't come through here, as they use the <label> forms of the relevant
+ // instructions.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
+ if (!CE)
+ return Error (E, "constant expression expected");
+
+ // If the constant was #-0, represent it as INT32_MIN.
+ int32_t Val = CE->getValue();
+ if (isNegative && Val == 0)
+ CE = MCConstantExpr::Create(INT32_MIN, getContext());
+
+ // Now we should have the closing ']'
+ if (Parser.getTok().isNot(AsmToken::RBrac))
+ return Error(Parser.getTok().getLoc(), "']' expected");
+ E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat right bracket token.
+
+ // Don't worry about range checking the value here. That's handled by
+ // the is*() predicates.
+ Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
+ ARM_AM::no_shift, 0, 0,
+ false, S, E));
+
+ // If there's a pre-indexing writeback marker, '!', just add it as a token
+ // operand.
+ if (Parser.getTok().is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat the '!'.
+ }
+
+ return false;
+ }
+
+ // The register offset is optionally preceded by a '+' or '-'
+ bool isNegative = false;
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ isNegative = true;
+ Parser.Lex(); // Eat the '-'.
+ } else if (Parser.getTok().is(AsmToken::Plus)) {
+ // Nothing to do.
+ Parser.Lex(); // Eat the '+'.
+ }
+
+ E = Parser.getTok().getLoc();
+ int OffsetRegNum = tryParseRegister();
+ if (OffsetRegNum == -1)
+ return Error(E, "register expected");
+
+ // If there's a shift operator, handle it.
+ ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
+ unsigned ShiftImm = 0;
+ if (Parser.getTok().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the ','.
+ if (parseMemRegOffsetShift(ShiftType, ShiftImm))
+ return true;
+ }
+
+ // Now we should have the closing ']'
+ if (Parser.getTok().isNot(AsmToken::RBrac))
+ return Error(Parser.getTok().getLoc(), "']' expected");
+ E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat right bracket token.
+
+ Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
+ ShiftType, ShiftImm, 0, isNegative,
+ S, E));
+
+ // If there's a pre-indexing writeback marker, '!', just add it as a token
+ // operand.
+ if (Parser.getTok().is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat the '!'.
+ }
+
+ return false;
+}
+
+/// parseMemRegOffsetShift - one of these two:
+/// ( lsl | lsr | asr | ror ) , # shift_amount
+/// rrx
+/// return true if it parses a shift otherwise it returns false.
+bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
+ unsigned &Amount) {
+ SMLoc Loc = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier))
+ return true;
+ StringRef ShiftName = Tok.getString();
+ if (ShiftName == "lsl" || ShiftName == "LSL" ||
+ ShiftName == "asl" || ShiftName == "ASL")
+ St = ARM_AM::lsl;
+ else if (ShiftName == "lsr" || ShiftName == "LSR")
+ St = ARM_AM::lsr;
+ else if (ShiftName == "asr" || ShiftName == "ASR")
+ St = ARM_AM::asr;
+ else if (ShiftName == "ror" || ShiftName == "ROR")
+ St = ARM_AM::ror;
+ else if (ShiftName == "rrx" || ShiftName == "RRX")
+ St = ARM_AM::rrx;
+ else
+ return Error(Loc, "illegal shift operator");
+ Parser.Lex(); // Eat shift type token.
+
+ // rrx stands alone.
+ Amount = 0;
+ if (St != ARM_AM::rrx) {
+ Loc = Parser.getTok().getLoc();
+ // A '#' and a shift amount.
+ const AsmToken &HashTok = Parser.getTok();
+ if (HashTok.isNot(AsmToken::Hash) &&
+ HashTok.isNot(AsmToken::Dollar))
+ return Error(HashTok.getLoc(), "'#' expected");
+ Parser.Lex(); // Eat hash token.
+
+ const MCExpr *Expr;
+ if (getParser().parseExpression(Expr))
+ return true;
+ // Range check the immediate.
+ // lsl, ror: 0 <= imm <= 31
+ // lsr, asr: 0 <= imm <= 32
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
+ if (!CE)
+ return Error(Loc, "shift amount must be an immediate");
+ int64_t Imm = CE->getValue();
+ if (Imm < 0 ||
+ ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
+ ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
+ return Error(Loc, "immediate shift value out of range");
+ // If <ShiftTy> #0, turn it into a no_shift.
+ if (Imm == 0)
+ St = ARM_AM::lsl;
+ // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
+ if (Imm == 32)
+ Imm = 0;
+ Amount = Imm;
+ }
+
+ return false;
+}
+
+/// parseFPImm - A floating point immediate expression operand.
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseFPImm(OperandVector &Operands) {
+ // Anything that can accept a floating point constant as an operand
+ // needs to go through here, as the regular parseExpression is
+ // integer only.
+ //
+ // This routine still creates a generic Immediate operand, containing
+ // a bitcast of the 64-bit floating point value. The various operands
+ // that accept floats can check whether the value is valid for them
+ // via the standard is*() predicates.
+
+ SMLoc S = Parser.getTok().getLoc();
+
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar))
+ return MatchOperand_NoMatch;
+
+ // Disambiguate the VMOV forms that can accept an FP immediate.
+ // vmov.f32 <sreg>, #imm
+ // vmov.f64 <dreg>, #imm
+ // vmov.f32 <dreg>, #imm @ vector f32x2
+ // vmov.f32 <qreg>, #imm @ vector f32x4
+ //
+ // There are also the NEON VMOV instructions which expect an
+ // integer constant. Make sure we don't try to parse an FPImm
+ // for these:
+ // vmov.i{8|16|32|64} <dreg|qreg>, #imm
+ ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
+ bool isVmovf = TyOp.isToken() &&
+ (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64");
+ ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
+ bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
+ Mnemonic.getToken() == "fconsts");
+ if (!(isVmovf || isFconst))
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat '#' or '$'.
+
+ // Handle negation, as that still comes through as a separate token.
+ bool isNegative = false;
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ isNegative = true;
+ Parser.Lex();
+ }
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc Loc = Tok.getLoc();
+ if (Tok.is(AsmToken::Real) && isVmovf) {
+ APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
+ uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
+ // If we had a '-' in front, toggle the sign bit.
+ IntVal ^= (uint64_t)isNegative << 31;
+ Parser.Lex(); // Eat the token.
+ Operands.push_back(ARMOperand::CreateImm(
+ MCConstantExpr::Create(IntVal, getContext()),
+ S, Parser.getTok().getLoc()));
+ return MatchOperand_Success;
+ }
+ // Also handle plain integers. Instructions which allow floating point
+ // immediates also allow a raw encoded 8-bit value.
+ if (Tok.is(AsmToken::Integer) && isFconst) {
+ int64_t Val = Tok.getIntVal();
+ Parser.Lex(); // Eat the token.
+ if (Val > 255 || Val < 0) {
+ Error(Loc, "encoded floating point value out of range");
+ return MatchOperand_ParseFail;
+ }
+ float RealVal = ARM_AM::getFPImmFloat(Val);
+ Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
+
+ Operands.push_back(ARMOperand::CreateImm(
+ MCConstantExpr::Create(Val, getContext()), S,
+ Parser.getTok().getLoc()));
+ return MatchOperand_Success;
+ }
+
+ Error(Loc, "invalid floating point immediate");
+ return MatchOperand_ParseFail;
+}
+
+/// Parse a arm instruction operand. For now this parses the operand regardless
+/// of the mnemonic.
+bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
+ SMLoc S, E;
+
+ // Check if the current operand has a custom associated parser, if so, try to
+ // custom parse the operand, or fallback to the general approach.
+ OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
+ if (ResTy == MatchOperand_Success)
+ return false;
+ // If there wasn't a custom match, try the generic matcher below. Otherwise,
+ // there was a match, but an error occurred, in which case, just return that
+ // the operand parsing failed.
+ if (ResTy == MatchOperand_ParseFail)
+ return true;
+
+ switch (getLexer().getKind()) {
+ default:
+ Error(Parser.getTok().getLoc(), "unexpected token in operand");
+ return true;
+ case AsmToken::Identifier: {
+ // If we've seen a branch mnemonic, the next operand must be a label. This
+ // is true even if the label is a register name. So "br r1" means branch to
+ // label "r1".
+ bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
+ if (!ExpectLabel) {
+ if (!tryParseRegisterWithWriteBack(Operands))
+ return false;
+ int Res = tryParseShiftRegister(Operands);
+ if (Res == 0) // success
+ return false;
+ else if (Res == -1) // irrecoverable error
+ return true;
+ // If this is VMRS, check for the apsr_nzcv operand.
+ if (Mnemonic == "vmrs" &&
+ Parser.getTok().getString().equals_lower("apsr_nzcv")) {
+ S = Parser.getTok().getLoc();
+ Parser.Lex();
+ Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
+ return false;
+ }
+ }
+
+ // Fall though for the Identifier case that is not a register or a
+ // special name.
+ }
+ case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
+ case AsmToken::Integer: // things like 1f and 2b as a branch targets
+ case AsmToken::String: // quoted label names.
+ case AsmToken::Dot: { // . as a branch target
+ // This was not a register so parse other operands that start with an
+ // identifier (like labels) as expressions and create them as immediates.
+ const MCExpr *IdVal;
+ S = Parser.getTok().getLoc();
+ if (getParser().parseExpression(IdVal))
+ return true;
+ E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
+ return false;
+ }
+ case AsmToken::LBrac:
+ return parseMemory(Operands);
+ case AsmToken::LCurly:
+ return parseRegisterList(Operands);
+ case AsmToken::Dollar:
+ case AsmToken::Hash: {
+ // #42 -> immediate.
+ S = Parser.getTok().getLoc();
+ Parser.Lex();
+
+ if (Parser.getTok().isNot(AsmToken::Colon)) {
+ bool isNegative = Parser.getTok().is(AsmToken::Minus);
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal))
+ return true;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (CE) {
+ int32_t Val = CE->getValue();
+ if (isNegative && Val == 0)
+ ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
+ }
+ E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
+
+ // There can be a trailing '!' on operands that we want as a separate
+ // '!' Token operand. Handle that here. For example, the compatibility
+ // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
+ if (Parser.getTok().is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
+ Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat exclaim token
+ }
+ return false;
+ }
+ // w/ a ':' after the '#', it's just like a plain ':'.
+ // FALLTHROUGH
+ }
+ case AsmToken::Colon: {
+ // ":lower16:" and ":upper16:" expression prefixes
+ // FIXME: Check it's an expression prefix,
+ // e.g. (FOO - :lower16:BAR) isn't legal.
+ ARMMCExpr::VariantKind RefKind;
+ if (parsePrefix(RefKind))
+ return true;
+
+ const MCExpr *SubExprVal;
+ if (getParser().parseExpression(SubExprVal))
+ return true;
+
+ const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
+ getContext());
+ E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
+ return false;
+ }
+ case AsmToken::Equal: {
+ if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
+ return Error(Parser.getTok().getLoc(), "unexpected token in operand");
+
+ Parser.Lex(); // Eat '='
+ const MCExpr *SubExprVal;
+ if (getParser().parseExpression(SubExprVal))
+ return true;
+ E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+
+ const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal);
+ Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E));
+ return false;
+ }
+ }
+}
+
+// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
+// :lower16: and :upper16:.
+bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
+ RefKind = ARMMCExpr::VK_ARM_None;
+
+ // consume an optional '#' (GNU compatibility)
+ if (getLexer().is(AsmToken::Hash))
+ Parser.Lex();
+
+ // :lower16: and :upper16: modifiers
+ assert(getLexer().is(AsmToken::Colon) && "expected a :");
+ Parser.Lex(); // Eat ':'
+
+ if (getLexer().isNot(AsmToken::Identifier)) {
+ Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
+ return true;
+ }
+
+ StringRef IDVal = Parser.getTok().getIdentifier();
+ if (IDVal == "lower16") {
+ RefKind = ARMMCExpr::VK_ARM_LO16;
+ } else if (IDVal == "upper16") {
+ RefKind = ARMMCExpr::VK_ARM_HI16;
+ } else {
+ Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
+ return true;
+ }
+ Parser.Lex();
+
+ if (getLexer().isNot(AsmToken::Colon)) {
+ Error(Parser.getTok().getLoc(), "unexpected token after prefix");
+ return true;
+ }
+ Parser.Lex(); // Eat the last ':'
+ return false;
+}
+
+/// \brief Given a mnemonic, split out possible predication code and carry
+/// setting letters to form a canonical mnemonic and flags.
+//
+// FIXME: Would be nice to autogen this.
+// FIXME: This is a bit of a maze of special cases.
+StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
+ unsigned &PredicationCode,
+ bool &CarrySetting,
+ unsigned &ProcessorIMod,
+ StringRef &ITMask) {
+ PredicationCode = ARMCC::AL;
+ CarrySetting = false;
+ ProcessorIMod = 0;
+
+ // Ignore some mnemonics we know aren't predicated forms.
+ //
+ // FIXME: Would be nice to autogen this.
+ if ((Mnemonic == "movs" && isThumb()) ||
+ Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
+ Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
+ Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
+ Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
+ Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" ||
+ Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
+ Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
+ Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
+ Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
+ Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
+ Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
+ Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic.startswith("vsel"))
+ return Mnemonic;
+
+ // First, split out any predication code. Ignore mnemonics we know aren't
+ // predicated but do have a carry-set and so weren't caught above.
+ if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
+ Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
+ Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
+ Mnemonic != "sbcs" && Mnemonic != "rscs") {
+ unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
+ .Case("eq", ARMCC::EQ)
+ .Case("ne", ARMCC::NE)
+ .Case("hs", ARMCC::HS)
+ .Case("cs", ARMCC::HS)
+ .Case("lo", ARMCC::LO)
+ .Case("cc", ARMCC::LO)
+ .Case("mi", ARMCC::MI)
+ .Case("pl", ARMCC::PL)
+ .Case("vs", ARMCC::VS)
+ .Case("vc", ARMCC::VC)
+ .Case("hi", ARMCC::HI)
+ .Case("ls", ARMCC::LS)
+ .Case("ge", ARMCC::GE)
+ .Case("lt", ARMCC::LT)
+ .Case("gt", ARMCC::GT)
+ .Case("le", ARMCC::LE)
+ .Case("al", ARMCC::AL)
+ .Default(~0U);
+ if (CC != ~0U) {
+ Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
+ PredicationCode = CC;
+ }
+ }
+
+ // Next, determine if we have a carry setting bit. We explicitly ignore all
+ // the instructions we know end in 's'.
+ if (Mnemonic.endswith("s") &&
+ !(Mnemonic == "cps" || Mnemonic == "mls" ||
+ Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
+ Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
+ Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
+ Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
+ Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
+ Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
+ Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
+ Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
+ (Mnemonic == "movs" && isThumb()))) {
+ Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
+ CarrySetting = true;
+ }
+
+ // The "cps" instruction can have a interrupt mode operand which is glued into
+ // the mnemonic. Check if this is the case, split it and parse the imod op
+ if (Mnemonic.startswith("cps")) {
+ // Split out any imod code.
+ unsigned IMod =
+ StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
+ .Case("ie", ARM_PROC::IE)
+ .Case("id", ARM_PROC::ID)
+ .Default(~0U);
+ if (IMod != ~0U) {
+ Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
+ ProcessorIMod = IMod;
+ }
+ }
+
+ // The "it" instruction has the condition mask on the end of the mnemonic.
+ if (Mnemonic.startswith("it")) {
+ ITMask = Mnemonic.slice(2, Mnemonic.size());
+ Mnemonic = Mnemonic.slice(0, 2);
+ }
+
+ return Mnemonic;
+}
+
+/// \brief Given a canonical mnemonic, determine if the instruction ever allows
+/// inclusion of carry set or predication code operands.
+//
+// FIXME: It would be nice to autogen this.
+void ARMAsmParser::
+getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
+ bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode) {
+ if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
+ Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
+ Mnemonic == "add" || Mnemonic == "adc" ||
+ Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
+ Mnemonic == "orr" || Mnemonic == "mvn" ||
+ Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
+ Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
+ Mnemonic == "vfm" || Mnemonic == "vfnm" ||
+ (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
+ Mnemonic == "mla" || Mnemonic == "smlal" ||
+ Mnemonic == "umlal" || Mnemonic == "umull"))) {
+ CanAcceptCarrySet = true;
+ } else
+ CanAcceptCarrySet = false;
+
+ if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
+ Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
+ Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
+ Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
+ Mnemonic.startswith("vsel") ||
+ Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" ||
+ Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" ||
+ Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" ||
+ Mnemonic == "vrintm" || Mnemonic.startswith("aes") ||
+ Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
+ (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) {
+ // These mnemonics are never predicable
+ CanAcceptPredicationCode = false;
+ } else if (!isThumb()) {
+ // Some instructions are only predicable in Thumb mode
+ CanAcceptPredicationCode
+ = Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
+ Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
+ Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" &&
+ Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" &&
+ Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
+ Mnemonic != "stc2" && Mnemonic != "stc2l" &&
+ !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
+ } else if (isThumbOne()) {
+ if (hasV6MOps())
+ CanAcceptPredicationCode = Mnemonic != "movs";
+ else
+ CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
+ } else
+ CanAcceptPredicationCode = true;
+}
+
+bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
+ OperandVector &Operands) {
+ // FIXME: This is all horribly hacky. We really need a better way to deal
+ // with optional operands like this in the matcher table.
+
+ // The 'mov' mnemonic is special. One variant has a cc_out operand, while
+ // another does not. Specifically, the MOVW instruction does not. So we
+ // special case it here and remove the defaulted (non-setting) cc_out
+ // operand if that's the instruction we're trying to match.
+ //
+ // We do this as post-processing of the explicit operands rather than just
+ // conditionally adding the cc_out in the first place because we need
+ // to check the type of the parsed immediate operand.
+ if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
+ !static_cast<ARMOperand &>(*Operands[4]).isARMSOImm() &&
+ static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
+ static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
+ return true;
+
+ // Register-register 'add' for thumb does not have a cc_out operand
+ // when there are only two register operands.
+ if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
+ static_cast<ARMOperand &>(*Operands[3]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[4]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
+ return true;
+ // Register-register 'add' for thumb does not have a cc_out operand
+ // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
+ // have to check the immediate range here since Thumb2 has a variant
+ // that can handle a different range and has a cc_out operand.
+ if (((isThumb() && Mnemonic == "add") ||
+ (isThumbTwo() && Mnemonic == "sub")) &&
+ Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[4]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
+ static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
+ ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
+ static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
+ return true;
+ // For Thumb2, add/sub immediate does not have a cc_out operand for the
+ // imm0_4095 variant. That's the least-preferred variant when
+ // selecting via the generic "add" mnemonic, so to know that we
+ // should remove the cc_out operand, we have to explicitly check that
+ // it's not one of the other variants. Ugh.
+ if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
+ Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[4]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[5]).isImm()) {
+ // Nest conditions rather than one big 'if' statement for readability.
+ //
+ // If both registers are low, we're in an IT block, and the immediate is
+ // in range, we should use encoding T1 instead, which has a cc_out.
+ if (inITBlock() &&
+ isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
+ isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
+ static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
+ return false;
+ // Check against T3. If the second register is the PC, this is an
+ // alternate form of ADR, which uses encoding T4, so check for that too.
+ if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
+ static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
+ return false;
+
+ // Otherwise, we use encoding T4, which does not have a cc_out
+ // operand.
+ return true;
+ }
+
+ // The thumb2 multiply instruction doesn't have a CCOut register, so
+ // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
+ // use the 16-bit encoding or not.
+ if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
+ static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
+ static_cast<ARMOperand &>(*Operands[3]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[4]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[5]).isReg() &&
+ // If the registers aren't low regs, the destination reg isn't the
+ // same as one of the source regs, or the cc_out operand is zero
+ // outside of an IT block, we have to use the 32-bit encoding, so
+ // remove the cc_out operand.
+ (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
+ !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
+ !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
+ !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
+ static_cast<ARMOperand &>(*Operands[5]).getReg() &&
+ static_cast<ARMOperand &>(*Operands[3]).getReg() !=
+ static_cast<ARMOperand &>(*Operands[4]).getReg())))
+ return true;
+
+ // Also check the 'mul' syntax variant that doesn't specify an explicit
+ // destination register.
+ if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
+ static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
+ static_cast<ARMOperand &>(*Operands[3]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[4]).isReg() &&
+ // If the registers aren't low regs or the cc_out operand is zero
+ // outside of an IT block, we have to use the 32-bit encoding, so
+ // remove the cc_out operand.
+ (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
+ !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
+ !inITBlock()))
+ return true;
+
+
+
+ // Register-register 'add/sub' for thumb does not have a cc_out operand
+ // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
+ // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
+ // right, this will result in better diagnostics (which operand is off)
+ // anyway.
+ if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
+ (Operands.size() == 5 || Operands.size() == 6) &&
+ static_cast<ARMOperand &>(*Operands[3]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
+ static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
+ (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
+ (Operands.size() == 6 &&
+ static_cast<ARMOperand &>(*Operands[5]).isImm())))
+ return true;
+
+ return false;
+}
+
+bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
+ OperandVector &Operands) {
+ // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON
+ unsigned RegIdx = 3;
+ if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") &&
+ static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32") {
+ if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
+ static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32")
+ RegIdx = 4;
+
+ if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
+ (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
+ static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
+ ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
+ static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
+ return true;
+ }
+ return false;
+}
+
+static bool isDataTypeToken(StringRef Tok) {
+ return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
+ Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
+ Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
+ Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
+ Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
+ Tok == ".f" || Tok == ".d";
+}
+
+// FIXME: This bit should probably be handled via an explicit match class
+// in the .td files that matches the suffix instead of having it be
+// a literal string token the way it is now.
+static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
+ return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
+}
+static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
+ unsigned VariantID);
+
+static bool RequiresVFPRegListValidation(StringRef Inst,
+ bool &AcceptSinglePrecisionOnly,
+ bool &AcceptDoublePrecisionOnly) {
+ if (Inst.size() < 7)
+ return false;
+
+ if (Inst.startswith("fldm") || Inst.startswith("fstm")) {
+ StringRef AddressingMode = Inst.substr(4, 2);
+ if (AddressingMode == "ia" || AddressingMode == "db" ||
+ AddressingMode == "ea" || AddressingMode == "fd") {
+ AcceptSinglePrecisionOnly = Inst[6] == 's';
+ AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x';
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// Parse an arm instruction mnemonic followed by its operands.
+bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) {
+ // FIXME: Can this be done via tablegen in some fashion?
+ bool RequireVFPRegisterListCheck;
+ bool AcceptSinglePrecisionOnly;
+ bool AcceptDoublePrecisionOnly;
+ RequireVFPRegisterListCheck =
+ RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly,
+ AcceptDoublePrecisionOnly);
+
+ // Apply mnemonic aliases before doing anything else, as the destination
+ // mnemonic may include suffices and we want to handle them normally.
+ // The generic tblgen'erated code does this later, at the start of
+ // MatchInstructionImpl(), but that's too late for aliases that include
+ // any sort of suffix.
+ unsigned AvailableFeatures = getAvailableFeatures();
+ unsigned AssemblerDialect = getParser().getAssemblerDialect();
+ applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
+
+ // First check for the ARM-specific .req directive.
+ if (Parser.getTok().is(AsmToken::Identifier) &&
+ Parser.getTok().getIdentifier() == ".req") {
+ parseDirectiveReq(Name, NameLoc);
+ // We always return 'error' for this, as we're done with this
+ // statement and don't need to match the 'instruction."
+ return true;
+ }
+
+ // Create the leading tokens for the mnemonic, split by '.' characters.
+ size_t Start = 0, Next = Name.find('.');
+ StringRef Mnemonic = Name.slice(Start, Next);
+
+ // Split out the predication code and carry setting flag from the mnemonic.
+ unsigned PredicationCode;
+ unsigned ProcessorIMod;
+ bool CarrySetting;
+ StringRef ITMask;
+ Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
+ ProcessorIMod, ITMask);
+
+ // In Thumb1, only the branch (B) instruction can be predicated.
+ if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
+ Parser.eatToEndOfStatement();
+ return Error(NameLoc, "conditional execution not supported in Thumb1");
+ }
+
+ Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
+
+ // Handle the IT instruction ITMask. Convert it to a bitmask. This
+ // is the mask as it will be for the IT encoding if the conditional
+ // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
+ // where the conditional bit0 is zero, the instruction post-processing
+ // will adjust the mask accordingly.
+ if (Mnemonic == "it") {
+ SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
+ if (ITMask.size() > 3) {
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "too many conditions on IT instruction");
+ }
+ unsigned Mask = 8;
+ for (unsigned i = ITMask.size(); i != 0; --i) {
+ char pos = ITMask[i - 1];
+ if (pos != 't' && pos != 'e') {
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
+ }
+ Mask >>= 1;
+ if (ITMask[i - 1] == 't')
+ Mask |= 8;
+ }
+ Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
+ }
+
+ // FIXME: This is all a pretty gross hack. We should automatically handle
+ // optional operands like this via tblgen.
+
+ // Next, add the CCOut and ConditionCode operands, if needed.
+ //
+ // For mnemonics which can ever incorporate a carry setting bit or predication
+ // code, our matching model involves us always generating CCOut and
+ // ConditionCode operands to match the mnemonic "as written" and then we let
+ // the matcher deal with finding the right instruction or generating an
+ // appropriate error.
+ bool CanAcceptCarrySet, CanAcceptPredicationCode;
+ getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
+
+ // If we had a carry-set on an instruction that can't do that, issue an
+ // error.
+ if (!CanAcceptCarrySet && CarrySetting) {
+ Parser.eatToEndOfStatement();
+ return Error(NameLoc, "instruction '" + Mnemonic +
+ "' can not set flags, but 's' suffix specified");
+ }
+ // If we had a predication code on an instruction that can't do that, issue an
+ // error.
+ if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
+ Parser.eatToEndOfStatement();
+ return Error(NameLoc, "instruction '" + Mnemonic +
+ "' is not predicable, but condition code specified");
+ }
+
+ // Add the carry setting operand, if necessary.
+ if (CanAcceptCarrySet) {
+ SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
+ Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
+ Loc));
+ }
+
+ // Add the predication code operand, if necessary.
+ if (CanAcceptPredicationCode) {
+ SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
+ CarrySetting);
+ Operands.push_back(ARMOperand::CreateCondCode(
+ ARMCC::CondCodes(PredicationCode), Loc));
+ }
+
+ // Add the processor imod operand, if necessary.
+ if (ProcessorIMod) {
+ Operands.push_back(ARMOperand::CreateImm(
+ MCConstantExpr::Create(ProcessorIMod, getContext()),
+ NameLoc, NameLoc));
+ }
+
+ // Add the remaining tokens in the mnemonic.
+ while (Next != StringRef::npos) {
+ Start = Next;
+ Next = Name.find('.', Start + 1);
+ StringRef ExtraToken = Name.slice(Start, Next);
+
+ // Some NEON instructions have an optional datatype suffix that is
+ // completely ignored. Check for that.
+ if (isDataTypeToken(ExtraToken) &&
+ doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
+ continue;
+
+ // For for ARM mode generate an error if the .n qualifier is used.
+ if (ExtraToken == ".n" && !isThumb()) {
+ SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
+ "arm mode");
+ }
+
+ // The .n qualifier is always discarded as that is what the tables
+ // and matcher expect. In ARM mode the .w qualifier has no effect,
+ // so discard it to avoid errors that can be caused by the matcher.
+ if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
+ SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
+ Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
+ }
+ }
+
+ // Read the remaining operands.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ // Read the first operand.
+ if (parseOperand(Operands, Mnemonic)) {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+
+ while (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma.
+
+ // Parse and remember the operand.
+ if (parseOperand(Operands, Mnemonic)) {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+ }
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+
+ Parser.Lex(); // Consume the EndOfStatement
+
+ if (RequireVFPRegisterListCheck) {
+ ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back());
+ if (AcceptSinglePrecisionOnly && !Op.isSPRRegList())
+ return Error(Op.getStartLoc(),
+ "VFP/Neon single precision register expected");
+ if (AcceptDoublePrecisionOnly && !Op.isDPRRegList())
+ return Error(Op.getStartLoc(),
+ "VFP/Neon double precision register expected");
+ }
+
+ // Some instructions, mostly Thumb, have forms for the same mnemonic that
+ // do and don't have a cc_out optional-def operand. With some spot-checks
+ // of the operand list, we can figure out which variant we're trying to
+ // parse and adjust accordingly before actually matching. We shouldn't ever
+ // try to remove a cc_out operand that was explicitly set on the the
+ // mnemonic, of course (CarrySetting == true). Reason number #317 the
+ // table driven matcher doesn't fit well with the ARM instruction set.
+ if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
+ Operands.erase(Operands.begin() + 1);
+
+ // Some instructions have the same mnemonic, but don't always
+ // have a predicate. Distinguish them here and delete the
+ // predicate if needed.
+ if (shouldOmitPredicateOperand(Mnemonic, Operands))
+ Operands.erase(Operands.begin() + 1);
+
+ // ARM mode 'blx' need special handling, as the register operand version
+ // is predicable, but the label operand version is not. So, we can't rely
+ // on the Mnemonic based checking to correctly figure out when to put
+ // a k_CondCode operand in the list. If we're trying to match the label
+ // version, remove the k_CondCode operand here.
+ if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
+ static_cast<ARMOperand &>(*Operands[2]).isImm())
+ Operands.erase(Operands.begin() + 1);
+
+ // Adjust operands of ldrexd/strexd to MCK_GPRPair.
+ // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
+ // a single GPRPair reg operand is used in the .td file to replace the two
+ // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
+ // expressed as a GPRPair, so we have to manually merge them.
+ // FIXME: We would really like to be able to tablegen'erate this.
+ if (!isThumb() && Operands.size() > 4 &&
+ (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
+ Mnemonic == "stlexd")) {
+ bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
+ unsigned Idx = isLoad ? 2 : 3;
+ ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
+ ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
+
+ const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
+ // Adjust only if Op1 and Op2 are GPRs.
+ if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
+ MRC.contains(Op2.getReg())) {
+ unsigned Reg1 = Op1.getReg();
+ unsigned Reg2 = Op2.getReg();
+ unsigned Rt = MRI->getEncodingValue(Reg1);
+ unsigned Rt2 = MRI->getEncodingValue(Reg2);
+
+ // Rt2 must be Rt + 1 and Rt must be even.
+ if (Rt + 1 != Rt2 || (Rt & 1)) {
+ Error(Op2.getStartLoc(), isLoad
+ ? "destination operands must be sequential"
+ : "source operands must be sequential");
+ return true;
+ }
+ unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
+ &(MRI->getRegClass(ARM::GPRPairRegClassID)));
+ Operands[Idx] =
+ ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
+ Operands.erase(Operands.begin() + Idx + 1);
+ }
+ }
+
+ // GNU Assembler extension (compatibility)
+ if ((Mnemonic == "ldrd" || Mnemonic == "strd")) {
+ ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
+ ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
+ if (Op3.isMem()) {
+ assert(Op2.isReg() && "expected register argument");
+
+ unsigned SuperReg = MRI->getMatchingSuperReg(
+ Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID));
+
+ assert(SuperReg && "expected register pair");
+
+ unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1);
+
+ Operands.insert(
+ Operands.begin() + 3,
+ ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
+ }
+ }
+
+ // FIXME: As said above, this is all a pretty gross hack. This instruction
+ // does not fit with other "subs" and tblgen.
+ // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
+ // so the Mnemonic is the original name "subs" and delete the predicate
+ // operand so it will match the table entry.
+ if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
+ static_cast<ARMOperand &>(*Operands[3]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
+ static_cast<ARMOperand &>(*Operands[4]).isReg() &&
+ static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
+ static_cast<ARMOperand &>(*Operands[5]).isImm()) {
+ Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
+ Operands.erase(Operands.begin() + 1);
+ }
+ return false;
+}
+
+// Validate context-sensitive operand constraints.
+
+// return 'true' if register list contains non-low GPR registers,
+// 'false' otherwise. If Reg is in the register list or is HiReg, set
+// 'containsReg' to true.
+static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
+ unsigned HiReg, bool &containsReg) {
+ containsReg = false;
+ for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
+ unsigned OpReg = Inst.getOperand(i).getReg();
+ if (OpReg == Reg)
+ containsReg = true;
+ // Anything other than a low register isn't legal here.
+ if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
+ return true;
+ }
+ return false;
+}
+
+// Check if the specified regisgter is in the register list of the inst,
+// starting at the indicated operand number.
+static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
+ for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
+ unsigned OpReg = Inst.getOperand(i).getReg();
+ if (OpReg == Reg)
+ return true;
+ }
+ return false;
+}
+
+// Return true if instruction has the interesting property of being
+// allowed in IT blocks, but not being predicable.
+static bool instIsBreakpoint(const MCInst &Inst) {
+ return Inst.getOpcode() == ARM::tBKPT ||
+ Inst.getOpcode() == ARM::BKPT ||
+ Inst.getOpcode() == ARM::tHLT ||
+ Inst.getOpcode() == ARM::HLT;
+
+}
+
+// FIXME: We would really like to be able to tablegen'erate this.
+bool ARMAsmParser::validateInstruction(MCInst &Inst,
+ const OperandVector &Operands) {
+ const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
+ SMLoc Loc = Operands[0]->getStartLoc();
+
+ // Check the IT block state first.
+ // NOTE: BKPT and HLT instructions have the interesting property of being
+ // allowed in IT blocks, but not being predicable. They just always execute.
+ if (inITBlock() && !instIsBreakpoint(Inst)) {
+ unsigned Bit = 1;
+ if (ITState.FirstCond)
+ ITState.FirstCond = false;
+ else
+ Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
+ // The instruction must be predicable.
+ if (!MCID.isPredicable())
+ return Error(Loc, "instructions in IT block must be predicable");
+ unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
+ unsigned ITCond = Bit ? ITState.Cond :
+ ARMCC::getOppositeCondition(ITState.Cond);
+ if (Cond != ITCond) {
+ // Find the condition code Operand to get its SMLoc information.
+ SMLoc CondLoc;
+ for (unsigned I = 1; I < Operands.size(); ++I)
+ if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
+ CondLoc = Operands[I]->getStartLoc();
+ return Error(CondLoc, "incorrect condition in IT block; got '" +
+ StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
+ "', but expected '" +
+ ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
+ }
+ // Check for non-'al' condition codes outside of the IT block.
+ } else if (isThumbTwo() && MCID.isPredicable() &&
+ Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
+ ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
+ Inst.getOpcode() != ARM::t2Bcc)
+ return Error(Loc, "predicated instructions must be in IT block");
+
+ const unsigned Opcode = Inst.getOpcode();
+ switch (Opcode) {
+ case ARM::LDRD:
+ case ARM::LDRD_PRE:
+ case ARM::LDRD_POST: {
+ const unsigned RtReg = Inst.getOperand(0).getReg();
+
+ // Rt can't be R14.
+ if (RtReg == ARM::LR)
+ return Error(Operands[3]->getStartLoc(),
+ "Rt can't be R14");
+
+ const unsigned Rt = MRI->getEncodingValue(RtReg);
+ // Rt must be even-numbered.
+ if ((Rt & 1) == 1)
+ return Error(Operands[3]->getStartLoc(),
+ "Rt must be even-numbered");
+
+ // Rt2 must be Rt + 1.
+ const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
+ if (Rt2 != Rt + 1)
+ return Error(Operands[3]->getStartLoc(),
+ "destination operands must be sequential");
+
+ if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) {
+ const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
+ // For addressing modes with writeback, the base register needs to be
+ // different from the destination registers.
+ if (Rn == Rt || Rn == Rt2)
+ return Error(Operands[3]->getStartLoc(),
+ "base register needs to be different from destination "
+ "registers");
+ }
+
+ return false;
+ }
+ case ARM::t2LDRDi8:
+ case ARM::t2LDRD_PRE:
+ case ARM::t2LDRD_POST: {
+ // Rt2 must be different from Rt.
+ unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
+ unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
+ if (Rt2 == Rt)
+ return Error(Operands[3]->getStartLoc(),
+ "destination operands can't be identical");
+ return false;
+ }
+ case ARM::STRD: {
+ // Rt2 must be Rt + 1.
+ unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
+ unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
+ if (Rt2 != Rt + 1)
+ return Error(Operands[3]->getStartLoc(),
+ "source operands must be sequential");
+ return false;
+ }
+ case ARM::STRD_PRE:
+ case ARM::STRD_POST: {
+ // Rt2 must be Rt + 1.
+ unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
+ unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
+ if (Rt2 != Rt + 1)
+ return Error(Operands[3]->getStartLoc(),
+ "source operands must be sequential");
+ return false;
+ }
+ case ARM::SBFX:
+ case ARM::UBFX: {
+ // Width must be in range [1, 32-lsb].
+ unsigned LSB = Inst.getOperand(2).getImm();
+ unsigned Widthm1 = Inst.getOperand(3).getImm();
+ if (Widthm1 >= 32 - LSB)
+ return Error(Operands[5]->getStartLoc(),
+ "bitfield width must be in range [1,32-lsb]");
+ return false;
+ }
+ // Notionally handles ARM::tLDMIA_UPD too.
+ case ARM::tLDMIA: {
+ // If we're parsing Thumb2, the .w variant is available and handles
+ // most cases that are normally illegal for a Thumb1 LDM instruction.
+ // We'll make the transformation in processInstruction() if necessary.
+ //
+ // Thumb LDM instructions are writeback iff the base register is not
+ // in the register list.
+ unsigned Rn = Inst.getOperand(0).getReg();
+ bool HasWritebackToken =
+ (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
+ static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
+ bool ListContainsBase;
+ if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
+ return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
+ "registers must be in range r0-r7");
+ // If we should have writeback, then there should be a '!' token.
+ if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
+ return Error(Operands[2]->getStartLoc(),
+ "writeback operator '!' expected");
+ // If we should not have writeback, there must not be a '!'. This is
+ // true even for the 32-bit wide encodings.
+ if (ListContainsBase && HasWritebackToken)
+ return Error(Operands[3]->getStartLoc(),
+ "writeback operator '!' not allowed when base register "
+ "in register list");
+
+ break;
+ }
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::LDMDA_UPD:
+ // ARM variants loading and updating the same register are only officially
+ // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
+ if (!hasV7Ops())
+ break;
+ // Fallthrough
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD: {
+ if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
+ return Error(Operands.back()->getStartLoc(),
+ "writeback register not allowed in register list");
+ break;
+ }
+ case ARM::sysLDMIA_UPD:
+ case ARM::sysLDMDA_UPD:
+ case ARM::sysLDMDB_UPD:
+ case ARM::sysLDMIB_UPD:
+ if (!listContainsReg(Inst, 3, ARM::PC))
+ return Error(Operands[4]->getStartLoc(),
+ "writeback register only allowed on system LDM "
+ "if PC in register-list");
+ break;
+ case ARM::sysSTMIA_UPD:
+ case ARM::sysSTMDA_UPD:
+ case ARM::sysSTMDB_UPD:
+ case ARM::sysSTMIB_UPD:
+ return Error(Operands[2]->getStartLoc(),
+ "system STM cannot have writeback register");
+ case ARM::tMUL: {
+ // The second source operand must be the same register as the destination
+ // operand.
+ //
+ // In this case, we must directly check the parsed operands because the
+ // cvtThumbMultiply() function is written in such a way that it guarantees
+ // this first statement is always true for the new Inst. Essentially, the
+ // destination is unconditionally copied into the second source operand
+ // without checking to see if it matches what we actually parsed.
+ if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
+ ((ARMOperand &)*Operands[5]).getReg()) &&
+ (((ARMOperand &)*Operands[3]).getReg() !=
+ ((ARMOperand &)*Operands[4]).getReg())) {
+ return Error(Operands[3]->getStartLoc(),
+ "destination register must match source register");
+ }
+ break;
+ }
+ // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
+ // so only issue a diagnostic for thumb1. The instructions will be
+ // switched to the t2 encodings in processInstruction() if necessary.
+ case ARM::tPOP: {
+ bool ListContainsBase;
+ if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
+ !isThumbTwo())
+ return Error(Operands[2]->getStartLoc(),
+ "registers must be in range r0-r7 or pc");
+ break;
+ }
+ case ARM::tPUSH: {
+ bool ListContainsBase;
+ if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
+ !isThumbTwo())
+ return Error(Operands[2]->getStartLoc(),
+ "registers must be in range r0-r7 or lr");
+ break;
+ }
+ case ARM::tSTMIA_UPD: {
+ bool ListContainsBase, InvalidLowList;
+ InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
+ 0, ListContainsBase);
+ if (InvalidLowList && !isThumbTwo())
+ return Error(Operands[4]->getStartLoc(),
+ "registers must be in range r0-r7");
+
+ // This would be converted to a 32-bit stm, but that's not valid if the
+ // writeback register is in the list.
+ if (InvalidLowList && ListContainsBase)
+ return Error(Operands[4]->getStartLoc(),
+ "writeback operator '!' not allowed when base register "
+ "in register list");
+ break;
+ }
+ case ARM::tADDrSP: {
+ // If the non-SP source operand and the destination operand are not the
+ // same, we need thumb2 (for the wide encoding), or we have an error.
+ if (!isThumbTwo() &&
+ Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
+ return Error(Operands[4]->getStartLoc(),
+ "source register must be the same as destination");
+ }
+ break;
+ }
+ // Final range checking for Thumb unconditional branch instructions.
+ case ARM::tB:
+ if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
+ return Error(Operands[2]->getStartLoc(), "branch target out of range");
+ break;
+ case ARM::t2B: {
+ int op = (Operands[2]->isImm()) ? 2 : 3;
+ if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
+ return Error(Operands[op]->getStartLoc(), "branch target out of range");
+ break;
+ }
+ // Final range checking for Thumb conditional branch instructions.
+ case ARM::tBcc:
+ if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
+ return Error(Operands[2]->getStartLoc(), "branch target out of range");
+ break;
+ case ARM::t2Bcc: {
+ int Op = (Operands[2]->isImm()) ? 2 : 3;
+ if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
+ return Error(Operands[Op]->getStartLoc(), "branch target out of range");
+ break;
+ }
+ case ARM::MOVi16:
+ case ARM::t2MOVi16:
+ case ARM::t2MOVTi16:
+ {
+ // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
+ // especially when we turn it into a movw and the expression <symbol> does
+ // not have a :lower16: or :upper16 as part of the expression. We don't
+ // want the behavior of silently truncating, which can be unexpected and
+ // lead to bugs that are difficult to find since this is an easy mistake
+ // to make.
+ int i = (Operands[3]->isImm()) ? 3 : 4;
+ ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
+ if (CE) break;
+ const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
+ if (!E) break;
+ const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
+ if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
+ ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
+ return Error(
+ Op.getStartLoc(),
+ "immediate expression for mov requires :lower16: or :upper16");
+ break;
+ }
+ }
+
+ return false;
+}
+
+static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
+ switch(Opc) {
+ default: llvm_unreachable("unexpected opcode!");
+ // VST1LN
+ case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
+ case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
+ case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
+ case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
+ case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
+ case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
+ case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
+ case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
+ case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
+
+ // VST2LN
+ case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
+ case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
+ case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
+ case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
+ case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
+
+ case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
+ case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
+ case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
+ case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
+ case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
+
+ case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
+ case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
+ case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
+ case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
+ case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
+
+ // VST3LN
+ case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
+ case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
+ case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
+ case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
+ case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
+ case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
+ case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
+ case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
+ case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
+ case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
+ case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
+ case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
+ case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
+ case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
+ case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
+
+ // VST3
+ case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
+ case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
+ case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
+ case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
+ case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
+ case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
+ case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
+ case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
+ case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
+ case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
+ case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
+ case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
+ case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
+ case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
+ case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
+ case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
+ case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
+ case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
+
+ // VST4LN
+ case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
+ case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
+ case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
+ case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
+ case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
+ case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
+ case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
+ case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
+ case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
+ case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
+ case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
+ case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
+ case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
+ case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
+ case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
+
+ // VST4
+ case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
+ case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
+ case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
+ case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
+ case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
+ case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
+ case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
+ case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
+ case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
+ case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
+ case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
+ case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
+ case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
+ case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
+ case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
+ case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
+ case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
+ case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
+ }
+}
+
+static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
+ switch(Opc) {
+ default: llvm_unreachable("unexpected opcode!");
+ // VLD1LN
+ case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
+ case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
+ case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
+ case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
+ case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
+ case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
+ case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
+ case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
+ case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
+
+ // VLD2LN
+ case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
+ case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
+ case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
+ case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
+ case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
+ case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
+ case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
+ case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
+ case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
+ case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
+ case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
+ case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
+ case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
+ case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
+ case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
+
+ // VLD3DUP
+ case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
+ case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
+ case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
+ case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
+ case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
+ case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
+ case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
+ case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
+ case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
+ case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
+ case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
+ case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
+ case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
+ case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
+ case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
+ case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
+ case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
+ case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
+
+ // VLD3LN
+ case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
+ case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
+ case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
+ case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
+ case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
+ case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
+ case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
+ case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
+ case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
+ case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
+ case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
+ case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
+ case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
+ case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
+ case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
+
+ // VLD3
+ case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
+ case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
+ case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
+ case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
+ case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
+ case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
+ case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
+ case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
+ case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
+ case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
+ case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
+ case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
+ case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
+ case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
+ case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
+ case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
+ case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
+ case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
+
+ // VLD4LN
+ case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
+ case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
+ case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
+ case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
+ case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
+ case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
+ case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
+ case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
+ case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
+ case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
+ case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
+ case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
+ case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
+ case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
+ case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
+
+ // VLD4DUP
+ case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
+ case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
+ case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
+ case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
+ case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
+ case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
+ case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
+ case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
+ case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
+ case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
+ case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
+ case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
+ case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
+ case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
+ case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
+ case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
+ case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
+ case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
+
+ // VLD4
+ case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
+ case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
+ case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
+ case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
+ case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
+ case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
+ case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
+ case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
+ case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
+ case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
+ case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
+ case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
+ case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
+ case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
+ case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
+ case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
+ case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
+ case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
+ }
+}
+
+bool ARMAsmParser::processInstruction(MCInst &Inst,
+ const OperandVector &Operands) {
+ switch (Inst.getOpcode()) {
+ // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
+ case ARM::LDRT_POST:
+ case ARM::LDRBT_POST: {
+ const unsigned Opcode =
+ (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
+ : ARM::LDRBT_POST_IMM;
+ MCInst TmpInst;
+ TmpInst.setOpcode(Opcode);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateReg(0));
+ TmpInst.addOperand(MCOperand::CreateImm(0));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
+ case ARM::STRT_POST:
+ case ARM::STRBT_POST: {
+ const unsigned Opcode =
+ (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
+ : ARM::STRBT_POST_IMM;
+ MCInst TmpInst;
+ TmpInst.setOpcode(Opcode);
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateReg(0));
+ TmpInst.addOperand(MCOperand::CreateImm(0));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ // Alias for alternate form of 'ADR Rd, #imm' instruction.
+ case ARM::ADDri: {
+ if (Inst.getOperand(1).getReg() != ARM::PC ||
+ Inst.getOperand(5).getReg() != 0)
+ return false;
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::ADR);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ // Aliases for alternate PC+imm syntax of LDR instructions.
+ case ARM::t2LDRpcrel:
+ // Select the narrow version if the immediate will fit.
+ if (Inst.getOperand(1).getImm() > 0 &&
+ Inst.getOperand(1).getImm() <= 0xff &&
+ !(static_cast<ARMOperand &>(*Operands[2]).isToken() &&
+ static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w"))
+ Inst.setOpcode(ARM::tLDRpci);
+ else
+ Inst.setOpcode(ARM::t2LDRpci);
+ return true;
+ case ARM::t2LDRBpcrel:
+ Inst.setOpcode(ARM::t2LDRBpci);
+ return true;
+ case ARM::t2LDRHpcrel:
+ Inst.setOpcode(ARM::t2LDRHpci);
+ return true;
+ case ARM::t2LDRSBpcrel:
+ Inst.setOpcode(ARM::t2LDRSBpci);
+ return true;
+ case ARM::t2LDRSHpcrel:
+ Inst.setOpcode(ARM::t2LDRSHpci);
+ return true;
+ // Handle NEON VST complex aliases.
+ case ARM::VST1LNdWB_register_Asm_8:
+ case ARM::VST1LNdWB_register_Asm_16:
+ case ARM::VST1LNdWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST2LNdWB_register_Asm_8:
+ case ARM::VST2LNdWB_register_Asm_16:
+ case ARM::VST2LNdWB_register_Asm_32:
+ case ARM::VST2LNqWB_register_Asm_16:
+ case ARM::VST2LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST3LNdWB_register_Asm_8:
+ case ARM::VST3LNdWB_register_Asm_16:
+ case ARM::VST3LNdWB_register_Asm_32:
+ case ARM::VST3LNqWB_register_Asm_16:
+ case ARM::VST3LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST4LNdWB_register_Asm_8:
+ case ARM::VST4LNdWB_register_Asm_16:
+ case ARM::VST4LNdWB_register_Asm_32:
+ case ARM::VST4LNqWB_register_Asm_16:
+ case ARM::VST4LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST1LNdWB_fixed_Asm_8:
+ case ARM::VST1LNdWB_fixed_Asm_16:
+ case ARM::VST1LNdWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST2LNdWB_fixed_Asm_8:
+ case ARM::VST2LNdWB_fixed_Asm_16:
+ case ARM::VST2LNdWB_fixed_Asm_32:
+ case ARM::VST2LNqWB_fixed_Asm_16:
+ case ARM::VST2LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST3LNdWB_fixed_Asm_8:
+ case ARM::VST3LNdWB_fixed_Asm_16:
+ case ARM::VST3LNdWB_fixed_Asm_32:
+ case ARM::VST3LNqWB_fixed_Asm_16:
+ case ARM::VST3LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST4LNdWB_fixed_Asm_8:
+ case ARM::VST4LNdWB_fixed_Asm_16:
+ case ARM::VST4LNdWB_fixed_Asm_32:
+ case ARM::VST4LNqWB_fixed_Asm_16:
+ case ARM::VST4LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST1LNdAsm_8:
+ case ARM::VST1LNdAsm_16:
+ case ARM::VST1LNdAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST2LNdAsm_8:
+ case ARM::VST2LNdAsm_16:
+ case ARM::VST2LNdAsm_32:
+ case ARM::VST2LNqAsm_16:
+ case ARM::VST2LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST3LNdAsm_8:
+ case ARM::VST3LNdAsm_16:
+ case ARM::VST3LNdAsm_32:
+ case ARM::VST3LNqAsm_16:
+ case ARM::VST3LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST4LNdAsm_8:
+ case ARM::VST4LNdAsm_16:
+ case ARM::VST4LNdAsm_32:
+ case ARM::VST4LNqAsm_16:
+ case ARM::VST4LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // Handle NEON VLD complex aliases.
+ case ARM::VLD1LNdWB_register_Asm_8:
+ case ARM::VLD1LNdWB_register_Asm_16:
+ case ARM::VLD1LNdWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD2LNdWB_register_Asm_8:
+ case ARM::VLD2LNdWB_register_Asm_16:
+ case ARM::VLD2LNdWB_register_Asm_32:
+ case ARM::VLD2LNqWB_register_Asm_16:
+ case ARM::VLD2LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3LNdWB_register_Asm_8:
+ case ARM::VLD3LNdWB_register_Asm_16:
+ case ARM::VLD3LNdWB_register_Asm_32:
+ case ARM::VLD3LNqWB_register_Asm_16:
+ case ARM::VLD3LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4LNdWB_register_Asm_8:
+ case ARM::VLD4LNdWB_register_Asm_16:
+ case ARM::VLD4LNdWB_register_Asm_32:
+ case ARM::VLD4LNqWB_register_Asm_16:
+ case ARM::VLD4LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD1LNdWB_fixed_Asm_8:
+ case ARM::VLD1LNdWB_fixed_Asm_16:
+ case ARM::VLD1LNdWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD2LNdWB_fixed_Asm_8:
+ case ARM::VLD2LNdWB_fixed_Asm_16:
+ case ARM::VLD2LNdWB_fixed_Asm_32:
+ case ARM::VLD2LNqWB_fixed_Asm_16:
+ case ARM::VLD2LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3LNdWB_fixed_Asm_8:
+ case ARM::VLD3LNdWB_fixed_Asm_16:
+ case ARM::VLD3LNdWB_fixed_Asm_32:
+ case ARM::VLD3LNqWB_fixed_Asm_16:
+ case ARM::VLD3LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4LNdWB_fixed_Asm_8:
+ case ARM::VLD4LNdWB_fixed_Asm_16:
+ case ARM::VLD4LNdWB_fixed_Asm_32:
+ case ARM::VLD4LNqWB_fixed_Asm_16:
+ case ARM::VLD4LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD1LNdAsm_8:
+ case ARM::VLD1LNdAsm_16:
+ case ARM::VLD1LNdAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD2LNdAsm_8:
+ case ARM::VLD2LNdAsm_16:
+ case ARM::VLD2LNdAsm_32:
+ case ARM::VLD2LNqAsm_16:
+ case ARM::VLD2LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3LNdAsm_8:
+ case ARM::VLD3LNdAsm_16:
+ case ARM::VLD3LNdAsm_32:
+ case ARM::VLD3LNqAsm_16:
+ case ARM::VLD3LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4LNdAsm_8:
+ case ARM::VLD4LNdAsm_16:
+ case ARM::VLD4LNdAsm_32:
+ case ARM::VLD4LNqAsm_16:
+ case ARM::VLD4LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VLD3DUP single 3-element structure to all lanes instructions.
+ case ARM::VLD3DUPdAsm_8:
+ case ARM::VLD3DUPdAsm_16:
+ case ARM::VLD3DUPdAsm_32:
+ case ARM::VLD3DUPqAsm_8:
+ case ARM::VLD3DUPqAsm_16:
+ case ARM::VLD3DUPqAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3DUPdWB_fixed_Asm_8:
+ case ARM::VLD3DUPdWB_fixed_Asm_16:
+ case ARM::VLD3DUPdWB_fixed_Asm_32:
+ case ARM::VLD3DUPqWB_fixed_Asm_8:
+ case ARM::VLD3DUPqWB_fixed_Asm_16:
+ case ARM::VLD3DUPqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3DUPdWB_register_Asm_8:
+ case ARM::VLD3DUPdWB_register_Asm_16:
+ case ARM::VLD3DUPdWB_register_Asm_32:
+ case ARM::VLD3DUPqWB_register_Asm_8:
+ case ARM::VLD3DUPqWB_register_Asm_16:
+ case ARM::VLD3DUPqWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VLD3 multiple 3-element structure instructions.
+ case ARM::VLD3dAsm_8:
+ case ARM::VLD3dAsm_16:
+ case ARM::VLD3dAsm_32:
+ case ARM::VLD3qAsm_8:
+ case ARM::VLD3qAsm_16:
+ case ARM::VLD3qAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3dWB_fixed_Asm_8:
+ case ARM::VLD3dWB_fixed_Asm_16:
+ case ARM::VLD3dWB_fixed_Asm_32:
+ case ARM::VLD3qWB_fixed_Asm_8:
+ case ARM::VLD3qWB_fixed_Asm_16:
+ case ARM::VLD3qWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3dWB_register_Asm_8:
+ case ARM::VLD3dWB_register_Asm_16:
+ case ARM::VLD3dWB_register_Asm_32:
+ case ARM::VLD3qWB_register_Asm_8:
+ case ARM::VLD3qWB_register_Asm_16:
+ case ARM::VLD3qWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VLD4DUP single 3-element structure to all lanes instructions.
+ case ARM::VLD4DUPdAsm_8:
+ case ARM::VLD4DUPdAsm_16:
+ case ARM::VLD4DUPdAsm_32:
+ case ARM::VLD4DUPqAsm_8:
+ case ARM::VLD4DUPqAsm_16:
+ case ARM::VLD4DUPqAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4DUPdWB_fixed_Asm_8:
+ case ARM::VLD4DUPdWB_fixed_Asm_16:
+ case ARM::VLD4DUPdWB_fixed_Asm_32:
+ case ARM::VLD4DUPqWB_fixed_Asm_8:
+ case ARM::VLD4DUPqWB_fixed_Asm_16:
+ case ARM::VLD4DUPqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4DUPdWB_register_Asm_8:
+ case ARM::VLD4DUPdWB_register_Asm_16:
+ case ARM::VLD4DUPdWB_register_Asm_32:
+ case ARM::VLD4DUPqWB_register_Asm_8:
+ case ARM::VLD4DUPqWB_register_Asm_16:
+ case ARM::VLD4DUPqWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VLD4 multiple 4-element structure instructions.
+ case ARM::VLD4dAsm_8:
+ case ARM::VLD4dAsm_16:
+ case ARM::VLD4dAsm_32:
+ case ARM::VLD4qAsm_8:
+ case ARM::VLD4qAsm_16:
+ case ARM::VLD4qAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4dWB_fixed_Asm_8:
+ case ARM::VLD4dWB_fixed_Asm_16:
+ case ARM::VLD4dWB_fixed_Asm_32:
+ case ARM::VLD4qWB_fixed_Asm_8:
+ case ARM::VLD4qWB_fixed_Asm_16:
+ case ARM::VLD4qWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4dWB_register_Asm_8:
+ case ARM::VLD4dWB_register_Asm_16:
+ case ARM::VLD4dWB_register_Asm_32:
+ case ARM::VLD4qWB_register_Asm_8:
+ case ARM::VLD4qWB_register_Asm_16:
+ case ARM::VLD4qWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VST3 multiple 3-element structure instructions.
+ case ARM::VST3dAsm_8:
+ case ARM::VST3dAsm_16:
+ case ARM::VST3dAsm_32:
+ case ARM::VST3qAsm_8:
+ case ARM::VST3qAsm_16:
+ case ARM::VST3qAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST3dWB_fixed_Asm_8:
+ case ARM::VST3dWB_fixed_Asm_16:
+ case ARM::VST3dWB_fixed_Asm_32:
+ case ARM::VST3qWB_fixed_Asm_8:
+ case ARM::VST3qWB_fixed_Asm_16:
+ case ARM::VST3qWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST3dWB_register_Asm_8:
+ case ARM::VST3dWB_register_Asm_16:
+ case ARM::VST3dWB_register_Asm_32:
+ case ARM::VST3qWB_register_Asm_8:
+ case ARM::VST3qWB_register_Asm_16:
+ case ARM::VST3qWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VST4 multiple 3-element structure instructions.
+ case ARM::VST4dAsm_8:
+ case ARM::VST4dAsm_16:
+ case ARM::VST4dAsm_32:
+ case ARM::VST4qAsm_8:
+ case ARM::VST4qAsm_16:
+ case ARM::VST4qAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST4dWB_fixed_Asm_8:
+ case ARM::VST4dWB_fixed_Asm_16:
+ case ARM::VST4dWB_fixed_Asm_32:
+ case ARM::VST4qWB_fixed_Asm_8:
+ case ARM::VST4qWB_fixed_Asm_16:
+ case ARM::VST4qWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST4dWB_register_Asm_8:
+ case ARM::VST4dWB_register_Asm_16:
+ case ARM::VST4dWB_register_Asm_32:
+ case ARM::VST4qWB_register_Asm_8:
+ case ARM::VST4qWB_register_Asm_16:
+ case ARM::VST4qWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // Handle encoding choice for the shift-immediate instructions.
+ case ARM::t2LSLri:
+ case ARM::t2LSRri:
+ case ARM::t2ASRri: {
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
+ Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
+ !(static_cast<ARMOperand &>(*Operands[3]).isToken() &&
+ static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) {
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
+ case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
+ case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
+ }
+ // The Thumb1 operands aren't in the same order. Awesome, eh?
+ MCInst TmpInst;
+ TmpInst.setOpcode(NewOpc);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(5));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ return false;
+ }
+
+ // Handle the Thumb2 mode MOV complex aliases.
+ case ARM::t2MOVsr:
+ case ARM::t2MOVSsr: {
+ // Which instruction to expand to depends on the CCOut operand and
+ // whether we're in an IT block if the register operands are low
+ // registers.
+ bool isNarrow = false;
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ isARMLowRegister(Inst.getOperand(2).getReg()) &&
+ Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
+ inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
+ isNarrow = true;
+ MCInst TmpInst;
+ unsigned newOpc;
+ switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
+ case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
+ case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
+ case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
+ }
+ TmpInst.setOpcode(newOpc);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rd
+ if (isNarrow)
+ TmpInst.addOperand(MCOperand::CreateReg(
+ Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // Rm
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ if (!isNarrow)
+ TmpInst.addOperand(MCOperand::CreateReg(
+ Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::t2MOVsi:
+ case ARM::t2MOVSsi: {
+ // Which instruction to expand to depends on the CCOut operand and
+ // whether we're in an IT block if the register operands are low
+ // registers.
+ bool isNarrow = false;
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
+ isNarrow = true;
+ MCInst TmpInst;
+ unsigned newOpc;
+ switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
+ case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
+ case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
+ case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
+ case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
+ }
+ unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
+ if (Amount == 32) Amount = 0;
+ TmpInst.setOpcode(newOpc);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rd
+ if (isNarrow)
+ TmpInst.addOperand(MCOperand::CreateReg(
+ Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ if (newOpc != ARM::t2RRX)
+ TmpInst.addOperand(MCOperand::CreateImm(Amount));
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ if (!isNarrow)
+ TmpInst.addOperand(MCOperand::CreateReg(
+ Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
+ Inst = TmpInst;
+ return true;
+ }
+ // Handle the ARM mode MOV complex aliases.
+ case ARM::ASRr:
+ case ARM::LSRr:
+ case ARM::LSLr:
+ case ARM::RORr: {
+ ARM_AM::ShiftOpc ShiftTy;
+ switch(Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
+ case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
+ case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
+ case ARM::RORr: ShiftTy = ARM_AM::ror; break;
+ }
+ unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::MOVsr);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rd
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // Rm
+ TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ TmpInst.addOperand(Inst.getOperand(5)); // cc_out
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::ASRi:
+ case ARM::LSRi:
+ case ARM::LSLi:
+ case ARM::RORi: {
+ ARM_AM::ShiftOpc ShiftTy;
+ switch(Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
+ case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
+ case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
+ case ARM::RORi: ShiftTy = ARM_AM::ror; break;
+ }
+ // A shift by zero is a plain MOVr, not a MOVsi.
+ unsigned Amt = Inst.getOperand(2).getImm();
+ unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
+ // A shift by 32 should be encoded as 0 when permitted
+ if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
+ Amt = 0;
+ unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
+ MCInst TmpInst;
+ TmpInst.setOpcode(Opc);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rd
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ if (Opc == ARM::MOVsi)
+ TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ TmpInst.addOperand(Inst.getOperand(5)); // cc_out
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::RRXi: {
+ unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::MOVsi);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rd
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
+ TmpInst.addOperand(Inst.getOperand(2)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4)); // cc_out
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::t2LDMIA_UPD: {
+ // If this is a load of a single register, then we should use
+ // a post-indexed LDR instruction instead, per the ARM ARM.
+ if (Inst.getNumOperands() != 5)
+ return false;
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::t2LDR_POST);
+ TmpInst.addOperand(Inst.getOperand(4)); // Rt
+ TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(MCOperand::CreateImm(4));
+ TmpInst.addOperand(Inst.getOperand(2)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::t2STMDB_UPD: {
+ // If this is a store of a single register, then we should use
+ // a pre-indexed STR instruction instead, per the ARM ARM.
+ if (Inst.getNumOperands() != 5)
+ return false;
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::t2STR_PRE);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(4)); // Rt
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(MCOperand::CreateImm(-4));
+ TmpInst.addOperand(Inst.getOperand(2)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::LDMIA_UPD:
+ // If this is a load of a single register via a 'pop', then we should use
+ // a post-indexed LDR instruction instead, per the ARM ARM.
+ if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
+ Inst.getNumOperands() == 5) {
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::LDR_POST_IMM);
+ TmpInst.addOperand(Inst.getOperand(4)); // Rt
+ TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // am2offset
+ TmpInst.addOperand(MCOperand::CreateImm(4));
+ TmpInst.addOperand(Inst.getOperand(2)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ break;
+ case ARM::STMDB_UPD:
+ // If this is a store of a single register via a 'push', then we should use
+ // a pre-indexed STR instruction instead, per the ARM ARM.
+ if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
+ Inst.getNumOperands() == 5) {
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::STR_PRE_IMM);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(4)); // Rt
+ TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
+ TmpInst.addOperand(MCOperand::CreateImm(-4));
+ TmpInst.addOperand(Inst.getOperand(2)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ }
+ break;
+ case ARM::t2ADDri12:
+ // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
+ // mnemonic was used (not "addw"), encoding T3 is preferred.
+ if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
+ ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
+ break;
+ Inst.setOpcode(ARM::t2ADDri);
+ Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
+ break;
+ case ARM::t2SUBri12:
+ // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
+ // mnemonic was used (not "subw"), encoding T3 is preferred.
+ if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
+ ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
+ break;
+ Inst.setOpcode(ARM::t2SUBri);
+ Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
+ break;
+ case ARM::tADDi8:
+ // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
+ // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
+ // to encoding T2 if <Rd> is specified and encoding T2 is preferred
+ // to encoding T1 if <Rd> is omitted."
+ if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
+ Inst.setOpcode(ARM::tADDi3);
+ return true;
+ }
+ break;
+ case ARM::tSUBi8:
+ // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
+ // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
+ // to encoding T2 if <Rd> is specified and encoding T2 is preferred
+ // to encoding T1 if <Rd> is omitted."
+ if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
+ Inst.setOpcode(ARM::tSUBi3);
+ return true;
+ }
+ break;
+ case ARM::t2ADDri:
+ case ARM::t2SUBri: {
+ // If the destination and first source operand are the same, and
+ // the flags are compatible with the current IT status, use encoding T2
+ // instead of T3. For compatibility with the system 'as'. Make sure the
+ // wide encoding wasn't explicit.
+ if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
+ !isARMLowRegister(Inst.getOperand(0).getReg()) ||
+ (unsigned)Inst.getOperand(2).getImm() > 255 ||
+ ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
+ (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
+ (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
+ static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w"))
+ break;
+ MCInst TmpInst;
+ TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
+ ARM::tADDi8 : ARM::tSUBi8);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(5));
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::t2ADDrr: {
+ // If the destination and first source operand are the same, and
+ // there's no setting of the flags, use encoding T2 instead of T3.
+ // Note that this is only for ADD, not SUB. This mirrors the system
+ // 'as' behaviour. Make sure the wide encoding wasn't explicit.
+ if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
+ Inst.getOperand(5).getReg() != 0 ||
+ (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
+ static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w"))
+ break;
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::tADDhirr);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::tADDrSP: {
+ // If the non-SP source operand and the destination operand are not the
+ // same, we need to use the 32-bit encoding if it's available.
+ if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
+ Inst.setOpcode(ARM::t2ADDrr);
+ Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
+ return true;
+ }
+ break;
+ }
+ case ARM::tB:
+ // A Thumb conditional branch outside of an IT block is a tBcc.
+ if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
+ Inst.setOpcode(ARM::tBcc);
+ return true;
+ }
+ break;
+ case ARM::t2B:
+ // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
+ if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
+ Inst.setOpcode(ARM::t2Bcc);
+ return true;
+ }
+ break;
+ case ARM::t2Bcc:
+ // If the conditional is AL or we're in an IT block, we really want t2B.
+ if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
+ Inst.setOpcode(ARM::t2B);
+ return true;
+ }
+ break;
+ case ARM::tBcc:
+ // If the conditional is AL, we really want tB.
+ if (Inst.getOperand(1).getImm() == ARMCC::AL) {
+ Inst.setOpcode(ARM::tB);
+ return true;
+ }
+ break;
+ case ARM::tLDMIA: {
+ // If the register list contains any high registers, or if the writeback
+ // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
+ // instead if we're in Thumb2. Otherwise, this should have generated
+ // an error in validateInstruction().
+ unsigned Rn = Inst.getOperand(0).getReg();
+ bool hasWritebackToken =
+ (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
+ static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
+ bool listContainsBase;
+ if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
+ (!listContainsBase && !hasWritebackToken) ||
+ (listContainsBase && hasWritebackToken)) {
+ // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
+ assert (isThumbTwo());
+ Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
+ // If we're switching to the updating version, we need to insert
+ // the writeback tied operand.
+ if (hasWritebackToken)
+ Inst.insert(Inst.begin(),
+ MCOperand::CreateReg(Inst.getOperand(0).getReg()));
+ return true;
+ }
+ break;
+ }
+ case ARM::tSTMIA_UPD: {
+ // If the register list contains any high registers, we need to use
+ // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
+ // should have generated an error in validateInstruction().
+ unsigned Rn = Inst.getOperand(0).getReg();
+ bool listContainsBase;
+ if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
+ // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
+ assert (isThumbTwo());
+ Inst.setOpcode(ARM::t2STMIA_UPD);
+ return true;
+ }
+ break;
+ }
+ case ARM::tPOP: {
+ bool listContainsBase;
+ // If the register list contains any high registers, we need to use
+ // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
+ // should have generated an error in validateInstruction().
+ if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
+ return false;
+ assert (isThumbTwo());
+ Inst.setOpcode(ARM::t2LDMIA_UPD);
+ // Add the base register and writeback operands.
+ Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
+ Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
+ return true;
+ }
+ case ARM::tPUSH: {
+ bool listContainsBase;
+ if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
+ return false;
+ assert (isThumbTwo());
+ Inst.setOpcode(ARM::t2STMDB_UPD);
+ // Add the base register and writeback operands.
+ Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
+ Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
+ return true;
+ }
+ case ARM::t2MOVi: {
+ // If we can use the 16-bit encoding and the user didn't explicitly
+ // request the 32-bit variant, transform it here.
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ (unsigned)Inst.getOperand(1).getImm() <= 255 &&
+ ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
+ Inst.getOperand(4).getReg() == ARM::CPSR) ||
+ (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
+ (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
+ static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
+ // The operands aren't in the same order for tMOVi8...
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::tMOVi8);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(4));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ break;
+ }
+ case ARM::t2MOVr: {
+ // If we can use the 16-bit encoding and the user didn't explicitly
+ // request the 32-bit variant, transform it here.
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ Inst.getOperand(2).getImm() == ARMCC::AL &&
+ Inst.getOperand(4).getReg() == ARM::CPSR &&
+ (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
+ static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
+ // The operands aren't the same for tMOV[S]r... (no cc_out)
+ MCInst TmpInst;
+ TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ break;
+ }
+ case ARM::t2SXTH:
+ case ARM::t2SXTB:
+ case ARM::t2UXTH:
+ case ARM::t2UXTB: {
+ // If we can use the 16-bit encoding and the user didn't explicitly
+ // request the 32-bit variant, transform it here.
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ Inst.getOperand(2).getImm() == 0 &&
+ (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
+ static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("Illegal opcode!");
+ case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
+ case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
+ case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
+ case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
+ }
+ // The operands aren't the same for thumb1 (no rotate operand).
+ MCInst TmpInst;
+ TmpInst.setOpcode(NewOpc);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ break;
+ }
+ case ARM::MOVsi: {
+ ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
+ // rrx shifts and asr/lsr of #32 is encoded as 0
+ if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
+ return false;
+ if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
+ // Shifting by zero is accepted as a vanilla 'MOVr'
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::MOVr);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+ return false;
+ }
+ case ARM::ANDrsi:
+ case ARM::ORRrsi:
+ case ARM::EORrsi:
+ case ARM::BICrsi:
+ case ARM::SUBrsi:
+ case ARM::ADDrsi: {
+ unsigned newOpc;
+ ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
+ if (SOpc == ARM_AM::rrx) return false;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
+ case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
+ case ARM::EORrsi: newOpc = ARM::EORrr; break;
+ case ARM::BICrsi: newOpc = ARM::BICrr; break;
+ case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
+ case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
+ }
+ // If the shift is by zero, use the non-shifted instruction definition.
+ // The exception is for right shifts, where 0 == 32
+ if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
+ !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
+ MCInst TmpInst;
+ TmpInst.setOpcode(newOpc);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(4));
+ TmpInst.addOperand(Inst.getOperand(5));
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+ return false;
+ }
+ case ARM::ITasm:
+ case ARM::t2IT: {
+ // The mask bits for all but the first condition are represented as
+ // the low bit of the condition code value implies 't'. We currently
+ // always have 1 implies 't', so XOR toggle the bits if the low bit
+ // of the condition code is zero.
+ MCOperand &MO = Inst.getOperand(1);
+ unsigned Mask = MO.getImm();
+ unsigned OrigMask = Mask;
+ unsigned TZ = countTrailingZeros(Mask);
+ if ((Inst.getOperand(0).getImm() & 1) == 0) {
+ assert(Mask && TZ <= 3 && "illegal IT mask value!");
+ Mask ^= (0xE << TZ) & 0xF;
+ }
+ MO.setImm(Mask);
+
+ // Set up the IT block state according to the IT instruction we just
+ // matched.
+ assert(!inITBlock() && "nested IT blocks?!");
+ ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
+ ITState.Mask = OrigMask; // Use the original mask, not the updated one.
+ ITState.CurPosition = 0;
+ ITState.FirstCond = true;
+ break;
+ }
+ case ARM::t2LSLrr:
+ case ARM::t2LSRrr:
+ case ARM::t2ASRrr:
+ case ARM::t2SBCrr:
+ case ARM::t2RORrr:
+ case ARM::t2BICrr:
+ {
+ // Assemblers should use the narrow encodings of these instructions when permissible.
+ if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ isARMLowRegister(Inst.getOperand(2).getReg())) &&
+ Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
+ ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
+ (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
+ (!static_cast<ARMOperand &>(*Operands[3]).isToken() ||
+ !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower(
+ ".w"))) {
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
+ case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
+ case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
+ case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
+ case ARM::t2RORrr: NewOpc = ARM::tROR; break;
+ case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
+ }
+ MCInst TmpInst;
+ TmpInst.setOpcode(NewOpc);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(5));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ return false;
+ }
+ case ARM::t2ANDrr:
+ case ARM::t2EORrr:
+ case ARM::t2ADCrr:
+ case ARM::t2ORRrr:
+ {
+ // Assemblers should use the narrow encodings of these instructions when permissible.
+ // These instructions are special in that they are commutable, so shorter encodings
+ // are available more often.
+ if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ isARMLowRegister(Inst.getOperand(2).getReg())) &&
+ (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
+ Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
+ ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
+ (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
+ (!static_cast<ARMOperand &>(*Operands[3]).isToken() ||
+ !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower(
+ ".w"))) {
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
+ case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
+ case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
+ case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
+ }
+ MCInst TmpInst;
+ TmpInst.setOpcode(NewOpc);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(5));
+ if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ } else {
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(1));
+ }
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ return false;
+ }
+ }
+ return false;
+}
+
+unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
+ // 16-bit thumb arithmetic instructions either require or preclude the 'S'
+ // suffix depending on whether they're in an IT block or not.
+ unsigned Opc = Inst.getOpcode();
+ const MCInstrDesc &MCID = MII.get(Opc);
+ if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
+ assert(MCID.hasOptionalDef() &&
+ "optionally flag setting instruction missing optional def operand");
+ assert(MCID.NumOperands == Inst.getNumOperands() &&
+ "operand count mismatch!");
+ // Find the optional-def operand (cc_out).
+ unsigned OpNo;
+ for (OpNo = 0;
+ !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
+ ++OpNo)
+ ;
+ // If we're parsing Thumb1, reject it completely.
+ if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
+ return Match_MnemonicFail;
+ // If we're parsing Thumb2, which form is legal depends on whether we're
+ // in an IT block.
+ if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
+ !inITBlock())
+ return Match_RequiresITBlock;
+ if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
+ inITBlock())
+ return Match_RequiresNotITBlock;
+ }
+ // Some high-register supporting Thumb1 encodings only allow both registers
+ // to be from r0-r7 when in Thumb2.
+ else if (Opc == ARM::tADDhirr && isThumbOne() &&
+ isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ isARMLowRegister(Inst.getOperand(2).getReg()))
+ return Match_RequiresThumb2;
+ // Others only require ARMv6 or later.
+ else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
+ isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ isARMLowRegister(Inst.getOperand(1).getReg()))
+ return Match_RequiresV6;
+ return Match_Success;
+}
+
+namespace llvm {
+template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) {
+ return true; // In an assembly source, no need to second-guess
+}
+}
+
+static const char *getSubtargetFeatureName(unsigned Val);
+bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out, unsigned &ErrorInfo,
+ bool MatchingInlineAsm) {
+ MCInst Inst;
+ unsigned MatchResult;
+
+ MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
+ MatchingInlineAsm);
+ switch (MatchResult) {
+ default: break;
+ case Match_Success:
+ // Context sensitive operand constraints aren't handled by the matcher,
+ // so check them here.
+ if (validateInstruction(Inst, Operands)) {
+ // Still progress the IT block, otherwise one wrong condition causes
+ // nasty cascading errors.
+ forwardITPosition();
+ return true;
+ }
+
+ { // processInstruction() updates inITBlock state, we need to save it away
+ bool wasInITBlock = inITBlock();
+
+ // Some instructions need post-processing to, for example, tweak which
+ // encoding is selected. Loop on it while changes happen so the
+ // individual transformations can chain off each other. E.g.,
+ // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
+ while (processInstruction(Inst, Operands))
+ ;
+
+ // Only after the instruction is fully processed, we can validate it
+ if (wasInITBlock && hasV8Ops() && isThumb() &&
+ !isV8EligibleForIT(&Inst)) {
+ Warning(IDLoc, "deprecated instruction in IT block");
+ }
+ }
+
+ // Only move forward at the very end so that everything in validate
+ // and process gets a consistent answer about whether we're in an IT
+ // block.
+ forwardITPosition();
+
+ // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
+ // doesn't actually encode.
+ if (Inst.getOpcode() == ARM::ITasm)
+ return false;
+
+ Inst.setLoc(IDLoc);
+ Out.EmitInstruction(Inst, STI);
+ return false;
+ case Match_MissingFeature: {
+ assert(ErrorInfo && "Unknown missing feature!");
+ // Special case the error message for the very common case where only
+ // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
+ std::string Msg = "instruction requires:";
+ unsigned Mask = 1;
+ for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
+ if (ErrorInfo & Mask) {
+ Msg += " ";
+ Msg += getSubtargetFeatureName(ErrorInfo & Mask);
+ }
+ Mask <<= 1;
+ }
+ return Error(IDLoc, Msg);
+ }
+ case Match_InvalidOperand: {
+ SMLoc ErrorLoc = IDLoc;
+ if (ErrorInfo != ~0U) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
+ }
+
+ return Error(ErrorLoc, "invalid operand for instruction");
+ }
+ case Match_MnemonicFail:
+ return Error(IDLoc, "invalid instruction",
+ ((ARMOperand &)*Operands[0]).getLocRange());
+ case Match_RequiresNotITBlock:
+ return Error(IDLoc, "flag setting instruction only valid outside IT block");
+ case Match_RequiresITBlock:
+ return Error(IDLoc, "instruction only valid inside IT block");
+ case Match_RequiresV6:
+ return Error(IDLoc, "instruction variant requires ARMv6 or later");
+ case Match_RequiresThumb2:
+ return Error(IDLoc, "instruction variant requires Thumb2");
+ case Match_ImmRange0_15: {
+ SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
+ return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
+ }
+ case Match_ImmRange0_239: {
+ SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
+ return Error(ErrorLoc, "immediate operand must be in the range [0,239]");
+ }
+ case Match_AlignedMemoryRequiresNone:
+ case Match_DupAlignedMemoryRequiresNone:
+ case Match_AlignedMemoryRequires16:
+ case Match_DupAlignedMemoryRequires16:
+ case Match_AlignedMemoryRequires32:
+ case Match_DupAlignedMemoryRequires32:
+ case Match_AlignedMemoryRequires64:
+ case Match_DupAlignedMemoryRequires64:
+ case Match_AlignedMemoryRequires64or128:
+ case Match_DupAlignedMemoryRequires64or128:
+ case Match_AlignedMemoryRequires64or128or256:
+ {
+ SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc();
+ if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
+ switch (MatchResult) {
+ default:
+ llvm_unreachable("Missing Match_Aligned type");
+ case Match_AlignedMemoryRequiresNone:
+ case Match_DupAlignedMemoryRequiresNone:
+ return Error(ErrorLoc, "alignment must be omitted");
+ case Match_AlignedMemoryRequires16:
+ case Match_DupAlignedMemoryRequires16:
+ return Error(ErrorLoc, "alignment must be 16 or omitted");
+ case Match_AlignedMemoryRequires32:
+ case Match_DupAlignedMemoryRequires32:
+ return Error(ErrorLoc, "alignment must be 32 or omitted");
+ case Match_AlignedMemoryRequires64:
+ case Match_DupAlignedMemoryRequires64:
+ return Error(ErrorLoc, "alignment must be 64 or omitted");
+ case Match_AlignedMemoryRequires64or128:
+ case Match_DupAlignedMemoryRequires64or128:
+ return Error(ErrorLoc, "alignment must be 64, 128 or omitted");
+ case Match_AlignedMemoryRequires64or128or256:
+ return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted");
+ }
+ }
+ }
+
+ llvm_unreachable("Implement any new match types added!");
+}
+
+/// parseDirective parses the arm specific directives
+bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
+ const MCObjectFileInfo::Environment Format =
+ getContext().getObjectFileInfo()->getObjectFileType();
+ bool IsMachO = Format == MCObjectFileInfo::IsMachO;
+
+ StringRef IDVal = DirectiveID.getIdentifier();
+ if (IDVal == ".word")
+ return parseLiteralValues(4, DirectiveID.getLoc());
+ else if (IDVal == ".short" || IDVal == ".hword")
+ return parseLiteralValues(2, DirectiveID.getLoc());
+ else if (IDVal == ".thumb")
+ return parseDirectiveThumb(DirectiveID.getLoc());
+ else if (IDVal == ".arm")
+ return parseDirectiveARM(DirectiveID.getLoc());
+ else if (IDVal == ".thumb_func")
+ return parseDirectiveThumbFunc(DirectiveID.getLoc());
+ else if (IDVal == ".code")
+ return parseDirectiveCode(DirectiveID.getLoc());
+ else if (IDVal == ".syntax")
+ return parseDirectiveSyntax(DirectiveID.getLoc());
+ else if (IDVal == ".unreq")
+ return parseDirectiveUnreq(DirectiveID.getLoc());
+ else if (IDVal == ".fnend")
+ return parseDirectiveFnEnd(DirectiveID.getLoc());
+ else if (IDVal == ".cantunwind")
+ return parseDirectiveCantUnwind(DirectiveID.getLoc());
+ else if (IDVal == ".personality")
+ return parseDirectivePersonality(DirectiveID.getLoc());
+ else if (IDVal == ".handlerdata")
+ return parseDirectiveHandlerData(DirectiveID.getLoc());
+ else if (IDVal == ".setfp")
+ return parseDirectiveSetFP(DirectiveID.getLoc());
+ else if (IDVal == ".pad")
+ return parseDirectivePad(DirectiveID.getLoc());
+ else if (IDVal == ".save")
+ return parseDirectiveRegSave(DirectiveID.getLoc(), false);
+ else if (IDVal == ".vsave")
+ return parseDirectiveRegSave(DirectiveID.getLoc(), true);
+ else if (IDVal == ".ltorg" || IDVal == ".pool")
+ return parseDirectiveLtorg(DirectiveID.getLoc());
+ else if (IDVal == ".even")
+ return parseDirectiveEven(DirectiveID.getLoc());
+ else if (IDVal == ".personalityindex")
+ return parseDirectivePersonalityIndex(DirectiveID.getLoc());
+ else if (IDVal == ".unwind_raw")
+ return parseDirectiveUnwindRaw(DirectiveID.getLoc());
+ else if (IDVal == ".movsp")
+ return parseDirectiveMovSP(DirectiveID.getLoc());
+ else if (IDVal == ".arch_extension")
+ return parseDirectiveArchExtension(DirectiveID.getLoc());
+ else if (IDVal == ".align")
+ return parseDirectiveAlign(DirectiveID.getLoc());
+ else if (IDVal == ".thumb_set")
+ return parseDirectiveThumbSet(DirectiveID.getLoc());
+
+ if (!IsMachO) {
+ if (IDVal == ".arch")
+ return parseDirectiveArch(DirectiveID.getLoc());
+ else if (IDVal == ".cpu")
+ return parseDirectiveCPU(DirectiveID.getLoc());
+ else if (IDVal == ".eabi_attribute")
+ return parseDirectiveEabiAttr(DirectiveID.getLoc());
+ else if (IDVal == ".fpu")
+ return parseDirectiveFPU(DirectiveID.getLoc());
+ else if (IDVal == ".fnstart")
+ return parseDirectiveFnStart(DirectiveID.getLoc());
+ else if (IDVal == ".inst")
+ return parseDirectiveInst(DirectiveID.getLoc());
+ else if (IDVal == ".inst.n")
+ return parseDirectiveInst(DirectiveID.getLoc(), 'n');
+ else if (IDVal == ".inst.w")
+ return parseDirectiveInst(DirectiveID.getLoc(), 'w');
+ else if (IDVal == ".object_arch")
+ return parseDirectiveObjectArch(DirectiveID.getLoc());
+ else if (IDVal == ".tlsdescseq")
+ return parseDirectiveTLSDescSeq(DirectiveID.getLoc());
+ }
+
+ return true;
+}
+
+/// parseLiteralValues
+/// ::= .hword expression [, expression]*
+/// ::= .short expression [, expression]*
+/// ::= .word expression [, expression]*
+bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ for (;;) {
+ const MCExpr *Value;
+ if (getParser().parseExpression(Value)) {
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ getParser().getStreamer().EmitValue(Value, Size);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ // FIXME: Improve diagnostic.
+ if (getLexer().isNot(AsmToken::Comma)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+ Parser.Lex();
+ }
+ }
+
+ Parser.Lex();
+ return false;
+}
+
+/// parseDirectiveThumb
+/// ::= .thumb
+bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+ Parser.Lex();
+
+ if (!hasThumb()) {
+ Error(L, "target does not support Thumb mode");
+ return false;
+ }
+
+ if (!isThumb())
+ SwitchMode();
+
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
+ return false;
+}
+
+/// parseDirectiveARM
+/// ::= .arm
+bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+ Parser.Lex();
+
+ if (!hasARM()) {
+ Error(L, "target does not support ARM mode");
+ return false;
+ }
+
+ if (isThumb())
+ SwitchMode();
+
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
+ return false;
+}
+
+void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
+ if (NextSymbolIsThumb) {
+ getParser().getStreamer().EmitThumbFunc(Symbol);
+ NextSymbolIsThumb = false;
+ }
+}
+
+/// parseDirectiveThumbFunc
+/// ::= .thumbfunc symbol_name
+bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
+ const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
+ bool isMachO = MAI->hasSubsectionsViaSymbols();
+
+ // Darwin asm has (optionally) function name after .thumb_func direction
+ // ELF doesn't
+ if (isMachO) {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::EndOfStatement)) {
+ if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) {
+ Error(L, "unexpected token in .thumb_func directive");
+ return false;
+ }
+
+ MCSymbol *Func =
+ getParser().getContext().GetOrCreateSymbol(Tok.getIdentifier());
+ getParser().getStreamer().EmitThumbFunc(Func);
+ Parser.Lex(); // Consume the identifier token.
+ return false;
+ }
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+
+ NextSymbolIsThumb = true;
+ return false;
+}
+
+/// parseDirectiveSyntax
+/// ::= .syntax unified | divided
+bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier)) {
+ Error(L, "unexpected token in .syntax directive");
+ return false;
+ }
+
+ StringRef Mode = Tok.getString();
+ if (Mode == "unified" || Mode == "UNIFIED") {
+ Parser.Lex();
+ } else if (Mode == "divided" || Mode == "DIVIDED") {
+ Error(L, "'.syntax divided' arm asssembly not supported");
+ return false;
+ } else {
+ Error(L, "unrecognized syntax mode in .syntax directive");
+ return false;
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Error(Parser.getTok().getLoc(), "unexpected token in directive");
+ return false;
+ }
+ Parser.Lex();
+
+ // TODO tell the MC streamer the mode
+ // getParser().getStreamer().Emit???();
+ return false;
+}
+
+/// parseDirectiveCode
+/// ::= .code 16 | 32
+bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Integer)) {
+ Error(L, "unexpected token in .code directive");
+ return false;
+ }
+ int64_t Val = Parser.getTok().getIntVal();
+ if (Val != 16 && Val != 32) {
+ Error(L, "invalid operand to .code directive");
+ return false;
+ }
+ Parser.Lex();
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Error(Parser.getTok().getLoc(), "unexpected token in directive");
+ return false;
+ }
+ Parser.Lex();
+
+ if (Val == 16) {
+ if (!hasThumb()) {
+ Error(L, "target does not support Thumb mode");
+ return false;
+ }
+
+ if (!isThumb())
+ SwitchMode();
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
+ } else {
+ if (!hasARM()) {
+ Error(L, "target does not support ARM mode");
+ return false;
+ }
+
+ if (isThumb())
+ SwitchMode();
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
+ }
+
+ return false;
+}
+
+/// parseDirectiveReq
+/// ::= name .req registername
+bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
+ Parser.Lex(); // Eat the '.req' token.
+ unsigned Reg;
+ SMLoc SRegLoc, ERegLoc;
+ if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
+ Parser.eatToEndOfStatement();
+ Error(SRegLoc, "register name expected");
+ return false;
+ }
+
+ // Shouldn't be anything else.
+ if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
+ Parser.eatToEndOfStatement();
+ Error(Parser.getTok().getLoc(), "unexpected input in .req directive.");
+ return false;
+ }
+
+ Parser.Lex(); // Consume the EndOfStatement
+
+ if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg) {
+ Error(SRegLoc, "redefinition of '" + Name + "' does not match original.");
+ return false;
+ }
+
+ return false;
+}
+
+/// parseDirectiveUneq
+/// ::= .unreq registername
+bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
+ if (Parser.getTok().isNot(AsmToken::Identifier)) {
+ Parser.eatToEndOfStatement();
+ Error(L, "unexpected input in .unreq directive.");
+ return false;
+ }
+ RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
+ Parser.Lex(); // Eat the identifier.
+ return false;
+}
+
+/// parseDirectiveArch
+/// ::= .arch token
+bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
+ StringRef Arch = getParser().parseStringToEndOfStatement().trim();
+
+ unsigned ID = StringSwitch<unsigned>(Arch)
+#define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
+ .Case(NAME, ARM::ID)
+#define ARM_ARCH_ALIAS(NAME, ID) \
+ .Case(NAME, ARM::ID)
+#include "MCTargetDesc/ARMArchName.def"
+ .Default(ARM::INVALID_ARCH);
+
+ if (ID == ARM::INVALID_ARCH) {
+ Error(L, "Unknown arch name");
+ return false;
+ }
+
+ getTargetStreamer().emitArch(ID);
+ return false;
+}
+
+/// parseDirectiveEabiAttr
+/// ::= .eabi_attribute int, int [, "str"]
+/// ::= .eabi_attribute Tag_name, int [, "str"]
+bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
+ int64_t Tag;
+ SMLoc TagLoc;
+ TagLoc = Parser.getTok().getLoc();
+ if (Parser.getTok().is(AsmToken::Identifier)) {
+ StringRef Name = Parser.getTok().getIdentifier();
+ Tag = ARMBuildAttrs::AttrTypeFromString(Name);
+ if (Tag == -1) {
+ Error(TagLoc, "attribute name not recognised: " + Name);
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ Parser.Lex();
+ } else {
+ const MCExpr *AttrExpr;
+
+ TagLoc = Parser.getTok().getLoc();
+ if (Parser.parseExpression(AttrExpr)) {
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
+ if (!CE) {
+ Error(TagLoc, "expected numeric constant");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ Tag = CE->getValue();
+ }
+
+ if (Parser.getTok().isNot(AsmToken::Comma)) {
+ Error(Parser.getTok().getLoc(), "comma expected");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ Parser.Lex(); // skip comma
+
+ StringRef StringValue = "";
+ bool IsStringValue = false;
+
+ int64_t IntegerValue = 0;
+ bool IsIntegerValue = false;
+
+ if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
+ IsStringValue = true;
+ else if (Tag == ARMBuildAttrs::compatibility) {
+ IsStringValue = true;
+ IsIntegerValue = true;
+ } else if (Tag < 32 || Tag % 2 == 0)
+ IsIntegerValue = true;
+ else if (Tag % 2 == 1)
+ IsStringValue = true;
+ else
+ llvm_unreachable("invalid tag type");
+
+ if (IsIntegerValue) {
+ const MCExpr *ValueExpr;
+ SMLoc ValueExprLoc = Parser.getTok().getLoc();
+ if (Parser.parseExpression(ValueExpr)) {
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
+ if (!CE) {
+ Error(ValueExprLoc, "expected numeric constant");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ IntegerValue = CE->getValue();
+ }
+
+ if (Tag == ARMBuildAttrs::compatibility) {
+ if (Parser.getTok().isNot(AsmToken::Comma))
+ IsStringValue = false;
+ else
+ Parser.Lex();
+ }
+
+ if (IsStringValue) {
+ if (Parser.getTok().isNot(AsmToken::String)) {
+ Error(Parser.getTok().getLoc(), "bad string constant");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ StringValue = Parser.getTok().getStringContents();
+ Parser.Lex();
+ }
+
+ if (IsIntegerValue && IsStringValue) {
+ assert(Tag == ARMBuildAttrs::compatibility);
+ getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
+ } else if (IsIntegerValue)
+ getTargetStreamer().emitAttribute(Tag, IntegerValue);
+ else if (IsStringValue)
+ getTargetStreamer().emitTextAttribute(Tag, StringValue);
+ return false;
+}
+
+/// parseDirectiveCPU
+/// ::= .cpu str
+bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
+ StringRef CPU = getParser().parseStringToEndOfStatement().trim();
+ getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
+ return false;
+}
+
+/// parseDirectiveFPU
+/// ::= .fpu str
+bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
+ StringRef FPU = getParser().parseStringToEndOfStatement().trim();
+
+ unsigned ID = StringSwitch<unsigned>(FPU)
+#define ARM_FPU_NAME(NAME, ID) .Case(NAME, ARM::ID)
+#include "ARMFPUName.def"
+ .Default(ARM::INVALID_FPU);
+
+ if (ID == ARM::INVALID_FPU) {
+ Error(L, "Unknown FPU name");
+ return false;
+ }
+
+ getTargetStreamer().emitFPU(ID);
+ return false;
+}
+
+/// parseDirectiveFnStart
+/// ::= .fnstart
+bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
+ if (UC.hasFnStart()) {
+ Error(L, ".fnstart starts before the end of previous one");
+ UC.emitFnStartLocNotes();
+ return false;
+ }
+
+ // Reset the unwind directives parser state
+ UC.reset();
+
+ getTargetStreamer().emitFnStart();
+
+ UC.recordFnStart(L);
+ return false;
+}
+
+/// parseDirectiveFnEnd
+/// ::= .fnend
+bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
+ // Check the ordering of unwind directives
+ if (!UC.hasFnStart()) {
+ Error(L, ".fnstart must precede .fnend directive");
+ return false;
+ }
+
+ // Reset the unwind directives parser state
+ getTargetStreamer().emitFnEnd();
+
+ UC.reset();
+ return false;
+}
+
+/// parseDirectiveCantUnwind
+/// ::= .cantunwind
+bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
+ UC.recordCantUnwind(L);
+
+ // Check the ordering of unwind directives
+ if (!UC.hasFnStart()) {
+ Error(L, ".fnstart must precede .cantunwind directive");
+ return false;
+ }
+ if (UC.hasHandlerData()) {
+ Error(L, ".cantunwind can't be used with .handlerdata directive");
+ UC.emitHandlerDataLocNotes();
+ return false;
+ }
+ if (UC.hasPersonality()) {
+ Error(L, ".cantunwind can't be used with .personality directive");
+ UC.emitPersonalityLocNotes();
+ return false;
+ }
+
+ getTargetStreamer().emitCantUnwind();
+ return false;
+}
+
+/// parseDirectivePersonality
+/// ::= .personality name
+bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
+ bool HasExistingPersonality = UC.hasPersonality();
+
+ UC.recordPersonality(L);
+
+ // Check the ordering of unwind directives
+ if (!UC.hasFnStart()) {
+ Error(L, ".fnstart must precede .personality directive");
+ return false;
+ }
+ if (UC.cantUnwind()) {
+ Error(L, ".personality can't be used with .cantunwind directive");
+ UC.emitCantUnwindLocNotes();
+ return false;
+ }
+ if (UC.hasHandlerData()) {
+ Error(L, ".personality must precede .handlerdata directive");
+ UC.emitHandlerDataLocNotes();
+ return false;
+ }
+ if (HasExistingPersonality) {
+ Parser.eatToEndOfStatement();
+ Error(L, "multiple personality directives");
+ UC.emitPersonalityLocNotes();
+ return false;
+ }
+
+ // Parse the name of the personality routine
+ if (Parser.getTok().isNot(AsmToken::Identifier)) {
+ Parser.eatToEndOfStatement();
+ Error(L, "unexpected input in .personality directive.");
+ return false;
+ }
+ StringRef Name(Parser.getTok().getIdentifier());
+ Parser.Lex();
+
+ MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name);
+ getTargetStreamer().emitPersonality(PR);
+ return false;
+}
+
+/// parseDirectiveHandlerData
+/// ::= .handlerdata
+bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
+ UC.recordHandlerData(L);
+
+ // Check the ordering of unwind directives
+ if (!UC.hasFnStart()) {
+ Error(L, ".fnstart must precede .personality directive");
+ return false;
+ }
+ if (UC.cantUnwind()) {
+ Error(L, ".handlerdata can't be used with .cantunwind directive");
+ UC.emitCantUnwindLocNotes();
+ return false;
+ }
+
+ getTargetStreamer().emitHandlerData();
+ return false;
+}
+
+/// parseDirectiveSetFP
+/// ::= .setfp fpreg, spreg [, offset]
+bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
+ // Check the ordering of unwind directives
+ if (!UC.hasFnStart()) {
+ Error(L, ".fnstart must precede .setfp directive");
+ return false;
+ }
+ if (UC.hasHandlerData()) {
+ Error(L, ".setfp must precede .handlerdata directive");
+ return false;
+ }
+
+ // Parse fpreg
+ SMLoc FPRegLoc = Parser.getTok().getLoc();
+ int FPReg = tryParseRegister();
+ if (FPReg == -1) {
+ Error(FPRegLoc, "frame pointer register expected");
+ return false;
+ }
+
+ // Consume comma
+ if (Parser.getTok().isNot(AsmToken::Comma)) {
+ Error(Parser.getTok().getLoc(), "comma expected");
+ return false;
+ }
+ Parser.Lex(); // skip comma
+
+ // Parse spreg
+ SMLoc SPRegLoc = Parser.getTok().getLoc();
+ int SPReg = tryParseRegister();
+ if (SPReg == -1) {
+ Error(SPRegLoc, "stack pointer register expected");
+ return false;
+ }
+
+ if (SPReg != ARM::SP && SPReg != UC.getFPReg()) {
+ Error(SPRegLoc, "register should be either $sp or the latest fp register");
+ return false;
+ }
+
+ // Update the frame pointer register
+ UC.saveFPReg(FPReg);
+
+ // Parse offset
+ int64_t Offset = 0;
+ if (Parser.getTok().is(AsmToken::Comma)) {
+ Parser.Lex(); // skip comma
+
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return false;
+ }
+ Parser.Lex(); // skip hash token.
+
+ const MCExpr *OffsetExpr;
+ SMLoc ExLoc = Parser.getTok().getLoc();
+ SMLoc EndLoc;
+ if (getParser().parseExpression(OffsetExpr, EndLoc)) {
+ Error(ExLoc, "malformed setfp offset");
+ return false;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
+ if (!CE) {
+ Error(ExLoc, "setfp offset must be an immediate");
+ return false;
+ }
+
+ Offset = CE->getValue();
+ }
+
+ getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
+ static_cast<unsigned>(SPReg), Offset);
+ return false;
+}
+
+/// parseDirective
+/// ::= .pad offset
+bool ARMAsmParser::parseDirectivePad(SMLoc L) {
+ // Check the ordering of unwind directives
+ if (!UC.hasFnStart()) {
+ Error(L, ".fnstart must precede .pad directive");
+ return false;
+ }
+ if (UC.hasHandlerData()) {
+ Error(L, ".pad must precede .handlerdata directive");
+ return false;
+ }
+
+ // Parse the offset
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return false;
+ }
+ Parser.Lex(); // skip hash token.
+
+ const MCExpr *OffsetExpr;
+ SMLoc ExLoc = Parser.getTok().getLoc();
+ SMLoc EndLoc;
+ if (getParser().parseExpression(OffsetExpr, EndLoc)) {
+ Error(ExLoc, "malformed pad offset");
+ return false;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
+ if (!CE) {
+ Error(ExLoc, "pad offset must be an immediate");
+ return false;
+ }
+
+ getTargetStreamer().emitPad(CE->getValue());
+ return false;
+}
+
+/// parseDirectiveRegSave
+/// ::= .save { registers }
+/// ::= .vsave { registers }
+bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
+ // Check the ordering of unwind directives
+ if (!UC.hasFnStart()) {
+ Error(L, ".fnstart must precede .save or .vsave directives");
+ return false;
+ }
+ if (UC.hasHandlerData()) {
+ Error(L, ".save or .vsave must precede .handlerdata directive");
+ return false;
+ }
+
+ // RAII object to make sure parsed operands are deleted.
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
+
+ // Parse the register list
+ if (parseRegisterList(Operands))
+ return false;
+ ARMOperand &Op = (ARMOperand &)*Operands[0];
+ if (!IsVector && !Op.isRegList()) {
+ Error(L, ".save expects GPR registers");
+ return false;
+ }
+ if (IsVector && !Op.isDPRRegList()) {
+ Error(L, ".vsave expects DPR registers");
+ return false;
+ }
+
+ getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
+ return false;
+}
+
+/// parseDirectiveInst
+/// ::= .inst opcode [, ...]
+/// ::= .inst.n opcode [, ...]
+/// ::= .inst.w opcode [, ...]
+bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
+ int Width;
+
+ if (isThumb()) {
+ switch (Suffix) {
+ case 'n':
+ Width = 2;
+ break;
+ case 'w':
+ Width = 4;
+ break;
+ default:
+ Parser.eatToEndOfStatement();
+ Error(Loc, "cannot determine Thumb instruction size, "
+ "use inst.n/inst.w instead");
+ return false;
+ }
+ } else {
+ if (Suffix) {
+ Parser.eatToEndOfStatement();
+ Error(Loc, "width suffixes are invalid in ARM mode");
+ return false;
+ }
+ Width = 4;
+ }
+
+ if (getLexer().is(AsmToken::EndOfStatement)) {
+ Parser.eatToEndOfStatement();
+ Error(Loc, "expected expression following directive");
+ return false;
+ }
+
+ for (;;) {
+ const MCExpr *Expr;
+
+ if (getParser().parseExpression(Expr)) {
+ Error(Loc, "expected expression");
+ return false;
+ }
+
+ const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
+ if (!Value) {
+ Error(Loc, "expected constant expression");
+ return false;
+ }
+
+ switch (Width) {
+ case 2:
+ if (Value->getValue() > 0xffff) {
+ Error(Loc, "inst.n operand is too big, use inst.w instead");
+ return false;
+ }
+ break;
+ case 4:
+ if (Value->getValue() > 0xffffffff) {
+ Error(Loc,
+ StringRef(Suffix ? "inst.w" : "inst") + " operand is too big");
+ return false;
+ }
+ break;
+ default:
+ llvm_unreachable("only supported widths are 2 and 4");
+ }
+
+ getTargetStreamer().emitInst(Value->getValue(), Suffix);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ if (getLexer().isNot(AsmToken::Comma)) {
+ Error(Loc, "unexpected token in directive");
+ return false;
+ }
+
+ Parser.Lex();
+ }
+
+ Parser.Lex();
+ return false;
+}
+
+/// parseDirectiveLtorg
+/// ::= .ltorg | .pool
+bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
+ getTargetStreamer().emitCurrentConstantPool();
+ return false;
+}
+
+bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
+ const MCSection *Section = getStreamer().getCurrentSection().first;
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ TokError("unexpected token in directive");
+ return false;
+ }
+
+ if (!Section) {
+ getStreamer().InitSections();
+ Section = getStreamer().getCurrentSection().first;
+ }
+
+ assert(Section && "must have section to emit alignment");
+ if (Section->UseCodeAlign())
+ getStreamer().EmitCodeAlignment(2);
+ else
+ getStreamer().EmitValueToAlignment(2);
+
+ return false;
+}
+
+/// parseDirectivePersonalityIndex
+/// ::= .personalityindex index
+bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
+ bool HasExistingPersonality = UC.hasPersonality();
+
+ UC.recordPersonalityIndex(L);
+
+ if (!UC.hasFnStart()) {
+ Parser.eatToEndOfStatement();
+ Error(L, ".fnstart must precede .personalityindex directive");
+ return false;
+ }
+ if (UC.cantUnwind()) {
+ Parser.eatToEndOfStatement();
+ Error(L, ".personalityindex cannot be used with .cantunwind");
+ UC.emitCantUnwindLocNotes();
+ return false;
+ }
+ if (UC.hasHandlerData()) {
+ Parser.eatToEndOfStatement();
+ Error(L, ".personalityindex must precede .handlerdata directive");
+ UC.emitHandlerDataLocNotes();
+ return false;
+ }
+ if (HasExistingPersonality) {
+ Parser.eatToEndOfStatement();
+ Error(L, "multiple personality directives");
+ UC.emitPersonalityLocNotes();
+ return false;
+ }
+
+ const MCExpr *IndexExpression;
+ SMLoc IndexLoc = Parser.getTok().getLoc();
+ if (Parser.parseExpression(IndexExpression)) {
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
+ if (!CE) {
+ Parser.eatToEndOfStatement();
+ Error(IndexLoc, "index must be a constant number");
+ return false;
+ }
+ if (CE->getValue() < 0 ||
+ CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) {
+ Parser.eatToEndOfStatement();
+ Error(IndexLoc, "personality routine index should be in range [0-3]");
+ return false;
+ }
+
+ getTargetStreamer().emitPersonalityIndex(CE->getValue());
+ return false;
+}
+
+/// parseDirectiveUnwindRaw
+/// ::= .unwind_raw offset, opcode [, opcode...]
+bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
+ if (!UC.hasFnStart()) {
+ Parser.eatToEndOfStatement();
+ Error(L, ".fnstart must precede .unwind_raw directives");
+ return false;
+ }
+
+ int64_t StackOffset;
+
+ const MCExpr *OffsetExpr;
+ SMLoc OffsetLoc = getLexer().getLoc();
+ if (getLexer().is(AsmToken::EndOfStatement) ||
+ getParser().parseExpression(OffsetExpr)) {
+ Error(OffsetLoc, "expected expression");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
+ if (!CE) {
+ Error(OffsetLoc, "offset must be a constant");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ StackOffset = CE->getValue();
+
+ if (getLexer().isNot(AsmToken::Comma)) {
+ Error(getLexer().getLoc(), "expected comma");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ Parser.Lex();
+
+ SmallVector<uint8_t, 16> Opcodes;
+ for (;;) {
+ const MCExpr *OE;
+
+ SMLoc OpcodeLoc = getLexer().getLoc();
+ if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) {
+ Error(OpcodeLoc, "expected opcode expression");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
+ if (!OC) {
+ Error(OpcodeLoc, "opcode value must be a constant");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ const int64_t Opcode = OC->getValue();
+ if (Opcode & ~0xff) {
+ Error(OpcodeLoc, "invalid opcode");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ Opcodes.push_back(uint8_t(Opcode));
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ if (getLexer().isNot(AsmToken::Comma)) {
+ Error(getLexer().getLoc(), "unexpected token in directive");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ Parser.Lex();
+ }
+
+ getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
+
+ Parser.Lex();
+ return false;
+}
+
+/// parseDirectiveTLSDescSeq
+/// ::= .tlsdescseq tls-variable
+bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
+ if (getLexer().isNot(AsmToken::Identifier)) {
+ TokError("expected variable after '.tlsdescseq' directive");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ const MCSymbolRefExpr *SRE =
+ MCSymbolRefExpr::Create(Parser.getTok().getIdentifier(),
+ MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
+ Lex();
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Error(Parser.getTok().getLoc(), "unexpected token");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
+ return false;
+}
+
+/// parseDirectiveMovSP
+/// ::= .movsp reg [, #offset]
+bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
+ if (!UC.hasFnStart()) {
+ Parser.eatToEndOfStatement();
+ Error(L, ".fnstart must precede .movsp directives");
+ return false;
+ }
+ if (UC.getFPReg() != ARM::SP) {
+ Parser.eatToEndOfStatement();
+ Error(L, "unexpected .movsp directive");
+ return false;
+ }
+
+ SMLoc SPRegLoc = Parser.getTok().getLoc();
+ int SPReg = tryParseRegister();
+ if (SPReg == -1) {
+ Parser.eatToEndOfStatement();
+ Error(SPRegLoc, "register expected");
+ return false;
+ }
+
+ if (SPReg == ARM::SP || SPReg == ARM::PC) {
+ Parser.eatToEndOfStatement();
+ Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
+ return false;
+ }
+
+ int64_t Offset = 0;
+ if (Parser.getTok().is(AsmToken::Comma)) {
+ Parser.Lex();
+
+ if (Parser.getTok().isNot(AsmToken::Hash)) {
+ Error(Parser.getTok().getLoc(), "expected #constant");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ Parser.Lex();
+
+ const MCExpr *OffsetExpr;
+ SMLoc OffsetLoc = Parser.getTok().getLoc();
+ if (Parser.parseExpression(OffsetExpr)) {
+ Parser.eatToEndOfStatement();
+ Error(OffsetLoc, "malformed offset expression");
+ return false;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
+ if (!CE) {
+ Parser.eatToEndOfStatement();
+ Error(OffsetLoc, "offset must be an immediate constant");
+ return false;
+ }
+
+ Offset = CE->getValue();
+ }
+
+ getTargetStreamer().emitMovSP(SPReg, Offset);
+ UC.saveFPReg(SPReg);
+
+ return false;
+}
+
+/// parseDirectiveObjectArch
+/// ::= .object_arch name
+bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
+ if (getLexer().isNot(AsmToken::Identifier)) {
+ Error(getLexer().getLoc(), "unexpected token");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ StringRef Arch = Parser.getTok().getString();
+ SMLoc ArchLoc = Parser.getTok().getLoc();
+ getLexer().Lex();
+
+ unsigned ID = StringSwitch<unsigned>(Arch)
+#define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
+ .Case(NAME, ARM::ID)
+#define ARM_ARCH_ALIAS(NAME, ID) \
+ .Case(NAME, ARM::ID)
+#include "MCTargetDesc/ARMArchName.def"
+#undef ARM_ARCH_NAME
+#undef ARM_ARCH_ALIAS
+ .Default(ARM::INVALID_ARCH);
+
+ if (ID == ARM::INVALID_ARCH) {
+ Error(ArchLoc, "unknown architecture '" + Arch + "'");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ getTargetStreamer().emitObjectArch(ID);
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Error(getLexer().getLoc(), "unexpected token");
+ Parser.eatToEndOfStatement();
+ }
+
+ return false;
+}
+
+/// parseDirectiveAlign
+/// ::= .align
+bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
+ // NOTE: if this is not the end of the statement, fall back to the target
+ // agnostic handling for this directive which will correctly handle this.
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return true;
+
+ // '.align' is target specifically handled to mean 2**2 byte alignment.
+ if (getStreamer().getCurrentSection().first->UseCodeAlign())
+ getStreamer().EmitCodeAlignment(4, 0);
+ else
+ getStreamer().EmitValueToAlignment(4, 0, 1, 0);
+
+ return false;
+}
+
+/// parseDirectiveThumbSet
+/// ::= .thumb_set name, value
+bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
+ StringRef Name;
+ if (Parser.parseIdentifier(Name)) {
+ TokError("expected identifier after '.thumb_set'");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ if (getLexer().isNot(AsmToken::Comma)) {
+ TokError("expected comma after name '" + Name + "'");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ Lex();
+
+ const MCExpr *Value;
+ if (Parser.parseExpression(Value)) {
+ TokError("missing expression");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ TokError("unexpected token");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ Lex();
+
+ MCSymbol *Alias = getContext().GetOrCreateSymbol(Name);
+ getTargetStreamer().emitThumbSet(Alias, Value);
+ return false;
+}
+
+/// Force static initialization.
+extern "C" void LLVMInitializeARMAsmParser() {
+ RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget);
+ RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget);
+ RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget);
+ RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget);
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_SUBTARGET_FEATURE_NAME
+#define GET_MATCHER_IMPLEMENTATION
+#include "ARMGenAsmMatcher.inc"
+
+static const struct ExtMapEntry {
+ const char *Extension;
+ const unsigned ArchCheck;
+ const uint64_t Features;
+} Extensions[] = {
+ { "crc", Feature_HasV8, ARM::FeatureCRC },
+ { "crypto", Feature_HasV8,
+ ARM::FeatureCrypto | ARM::FeatureNEON | ARM::FeatureFPARMv8 },
+ { "fp", Feature_HasV8, ARM::FeatureFPARMv8 },
+ { "idiv", Feature_HasV7 | Feature_IsNotMClass,
+ ARM::FeatureHWDiv | ARM::FeatureHWDivARM },
+ // FIXME: iWMMXT not supported
+ { "iwmmxt", Feature_None, 0 },
+ // FIXME: iWMMXT2 not supported
+ { "iwmmxt2", Feature_None, 0 },
+ // FIXME: Maverick not supported
+ { "maverick", Feature_None, 0 },
+ { "mp", Feature_HasV7 | Feature_IsNotMClass, ARM::FeatureMP },
+ // FIXME: ARMv6-m OS Extensions feature not checked
+ { "os", Feature_None, 0 },
+ // FIXME: Also available in ARMv6-K
+ { "sec", Feature_HasV7, ARM::FeatureTrustZone },
+ { "simd", Feature_HasV8, ARM::FeatureNEON | ARM::FeatureFPARMv8 },
+ // FIXME: Only available in A-class, isel not predicated
+ { "virt", Feature_HasV7, ARM::FeatureVirtualization },
+ // FIXME: xscale not supported
+ { "xscale", Feature_None, 0 },
+};
+
+/// parseDirectiveArchExtension
+/// ::= .arch_extension [no]feature
+bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
+ if (getLexer().isNot(AsmToken::Identifier)) {
+ Error(getLexer().getLoc(), "unexpected token");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ StringRef Extension = Parser.getTok().getString();
+ SMLoc ExtLoc = Parser.getTok().getLoc();
+ getLexer().Lex();
+
+ bool EnableFeature = true;
+ if (Extension.startswith_lower("no")) {
+ EnableFeature = false;
+ Extension = Extension.substr(2);
+ }
+
+ for (unsigned EI = 0, EE = array_lengthof(Extensions); EI != EE; ++EI) {
+ if (Extensions[EI].Extension != Extension)
+ continue;
+
+ unsigned FB = getAvailableFeatures();
+ if ((FB & Extensions[EI].ArchCheck) != Extensions[EI].ArchCheck) {
+ Error(ExtLoc, "architectural extension '" + Extension + "' is not "
+ "allowed for the current base architecture");
+ return false;
+ }
+
+ if (!Extensions[EI].Features)
+ report_fatal_error("unsupported architectural extension: " + Extension);
+
+ if (EnableFeature)
+ FB |= ComputeAvailableFeatures(Extensions[EI].Features);
+ else
+ FB &= ~ComputeAvailableFeatures(Extensions[EI].Features);
+
+ setAvailableFeatures(FB);
+ return false;
+ }
+
+ Error(ExtLoc, "unknown architectural extension: " + Extension);
+ Parser.eatToEndOfStatement();
+ return false;
+}
+
+// Define this matcher function after the auto-generated include so we
+// have the match class enum definitions.
+unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
+ unsigned Kind) {
+ ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
+ // If the kind is a token for a literal immediate, check if our asm
+ // operand matches. This is for InstAliases which have a fixed-value
+ // immediate in the syntax.
+ switch (Kind) {
+ default: break;
+ case MCK__35_0:
+ if (Op.isImm())
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
+ if (CE->getValue() == 0)
+ return Match_Success;
+ break;
+ case MCK_ARMSOImm:
+ if (Op.isImm()) {
+ const MCExpr *SOExpr = Op.getImm();
+ int64_t Value;
+ if (!SOExpr->EvaluateAsAbsolute(Value))
+ return Match_Success;
+ assert((Value >= INT32_MIN && Value <= UINT32_MAX) &&
+ "expression value must be representable in 32 bits");
+ }
+ break;
+ case MCK_GPRPair:
+ if (Op.isReg() &&
+ MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
+ return Match_Success;
+ break;
+ }
+ return Match_InvalidOperand;
+}
diff --git a/contrib/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp b/contrib/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp
new file mode 100644
index 0000000..4d4038d
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp
@@ -0,0 +1,4992 @@
+//===-- ARMDisassembler.cpp - Disassembler for ARM/Thumb ISA --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCDisassembler.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "MCTargetDesc/ARMMCExpr.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCFixedLenDisassembler.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/MemoryObject.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-disassembler"
+
+typedef MCDisassembler::DecodeStatus DecodeStatus;
+
+namespace {
+ // Handles the condition code status of instructions in IT blocks
+ class ITStatus
+ {
+ public:
+ // Returns the condition code for instruction in IT block
+ unsigned getITCC() {
+ unsigned CC = ARMCC::AL;
+ if (instrInITBlock())
+ CC = ITStates.back();
+ return CC;
+ }
+
+ // Advances the IT block state to the next T or E
+ void advanceITState() {
+ ITStates.pop_back();
+ }
+
+ // Returns true if the current instruction is in an IT block
+ bool instrInITBlock() {
+ return !ITStates.empty();
+ }
+
+ // Returns true if current instruction is the last instruction in an IT block
+ bool instrLastInITBlock() {
+ return ITStates.size() == 1;
+ }
+
+ // Called when decoding an IT instruction. Sets the IT state for the following
+ // instructions that for the IT block. Firstcond and Mask correspond to the
+ // fields in the IT instruction encoding.
+ void setITState(char Firstcond, char Mask) {
+ // (3 - the number of trailing zeros) is the number of then / else.
+ unsigned CondBit0 = Firstcond & 1;
+ unsigned NumTZ = countTrailingZeros<uint8_t>(Mask);
+ unsigned char CCBits = static_cast<unsigned char>(Firstcond & 0xf);
+ assert(NumTZ <= 3 && "Invalid IT mask!");
+ // push condition codes onto the stack the correct order for the pops
+ for (unsigned Pos = NumTZ+1; Pos <= 3; ++Pos) {
+ bool T = ((Mask >> Pos) & 1) == CondBit0;
+ if (T)
+ ITStates.push_back(CCBits);
+ else
+ ITStates.push_back(CCBits ^ 1);
+ }
+ ITStates.push_back(CCBits);
+ }
+
+ private:
+ std::vector<unsigned char> ITStates;
+ };
+}
+
+namespace {
+/// ARMDisassembler - ARM disassembler for all ARM platforms.
+class ARMDisassembler : public MCDisassembler {
+public:
+ /// Constructor - Initializes the disassembler.
+ ///
+ ARMDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) :
+ MCDisassembler(STI, Ctx) {
+ }
+
+ ~ARMDisassembler() {
+ }
+
+ /// getInstruction - See MCDisassembler.
+ DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
+ const MemoryObject &region, uint64_t address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const override;
+};
+
+/// ThumbDisassembler - Thumb disassembler for all Thumb platforms.
+class ThumbDisassembler : public MCDisassembler {
+public:
+ /// Constructor - Initializes the disassembler.
+ ///
+ ThumbDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) :
+ MCDisassembler(STI, Ctx) {
+ }
+
+ ~ThumbDisassembler() {
+ }
+
+ /// getInstruction - See MCDisassembler.
+ DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
+ const MemoryObject &region, uint64_t address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const override;
+
+private:
+ mutable ITStatus ITBlock;
+ DecodeStatus AddThumbPredicate(MCInst&) const;
+ void UpdateThumbVFPPredicate(MCInst&) const;
+};
+}
+
+static bool Check(DecodeStatus &Out, DecodeStatus In) {
+ switch (In) {
+ case MCDisassembler::Success:
+ // Out stays the same.
+ return true;
+ case MCDisassembler::SoftFail:
+ Out = In;
+ return true;
+ case MCDisassembler::Fail:
+ Out = In;
+ return false;
+ }
+ llvm_unreachable("Invalid DecodeStatus!");
+}
+
+
+// Forward declare these because the autogenerated code will reference them.
+// Definitions are further down.
+static DecodeStatus DecodeGPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeGPRnopcRegisterClass(MCInst &Inst,
+ unsigned RegNo, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeGPRwithAPSRRegisterClass(MCInst &Inst,
+ unsigned RegNo, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodetGPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodetcGPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecoderGPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeGPRPairRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeSPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeDPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeDPR_8RegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeDPR_VFP2RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeQPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeDPairRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeDPairSpacedRegisterClass(MCInst &Inst,
+ unsigned RegNo, uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodePredicateOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeCCOutOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeSOImmOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeRegListOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeSPRRegListOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeDPRRegListOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+
+static DecodeStatus DecodeBitfieldMaskOperand(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeCopMemInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeAddrMode2IdxInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeSORegMemOperand(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeAddrMode3Instruction(MCInst &Inst,unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeSORegImmOperand(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeSORegRegOperand(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+
+static DecodeStatus DecodeMemMultipleWritebackInstruction(MCInst & Inst,
+ unsigned Insn,
+ uint64_t Adddress,
+ const void *Decoder);
+static DecodeStatus DecodeT2MOVTWInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeArmMOVTWInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeSMLAInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeCPSInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2CPSInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeAddrModeImm12Operand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeAddrMode5Operand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeAddrMode7Operand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2BInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeBranchImmInstruction(MCInst &Inst,unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeAddrMode6Operand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLDST1Instruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLDST2Instruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLDST3Instruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLDST4Instruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLDInstruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVSTInstruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLD1DupInstruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLD2DupInstruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLD3DupInstruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLD4DupInstruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeNEONModImmInstruction(MCInst &Inst,unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVSHLMaxInstruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeShiftRight8Imm(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeShiftRight16Imm(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeShiftRight32Imm(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeShiftRight64Imm(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeTBLInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodePostIdxReg(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeCoprocessor(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeMemBarrierOption(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeInstSyncBarrierOption(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeMSRMask(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeDoubleRegLoad(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeDoubleRegStore(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeLDRPreImm(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeLDRPreReg(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeSTRPreImm(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeSTRPreReg(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLD1LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLD2LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLD3LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVLD4LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVST1LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVST2LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVST3LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVST4LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVMOVSRR(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVMOVRRS(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeSwap(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVCVTD(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeVCVTQ(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+
+
+static DecodeStatus DecodeThumbAddSpecialReg(MCInst &Inst, uint16_t Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbBROperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2BROperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbCmpBROperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbAddrModeRR(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbAddrModeIS(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbAddrModePC(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbAddrModeSP(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2AddrModeSOReg(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2LoadShift(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2LoadImm8(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void* Decoder);
+static DecodeStatus DecodeT2LoadImm12(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void* Decoder);
+static DecodeStatus DecodeT2LoadT(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void* Decoder);
+static DecodeStatus DecodeT2LoadLabel(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void* Decoder);
+static DecodeStatus DecodeT2Imm8S4(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2AddrModeImm8s4(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2AddrModeImm0_1020s4(MCInst &Inst,unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2Imm8(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2AddrModeImm8(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbAddSPImm(MCInst &Inst, uint16_t Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbAddSPReg(MCInst &Inst, uint16_t Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbCPS(MCInst &Inst, uint16_t Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeQADDInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbBLXOffset(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2AddrModeImm12(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbTableBranch(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumb2BCCInstruction(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2SOImm(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbBCCTargetOperand(MCInst &Inst,unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeThumbBLTargetOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeIT(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2LDRDPreInstruction(MCInst &Inst,unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2STRDPreInstruction(MCInst &Inst,unsigned Insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2Adr(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2LdStPre(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeT2ShifterImmOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+
+static DecodeStatus DecodeLDR(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeMRRC2(llvm::MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+#include "ARMGenDisassemblerTables.inc"
+
+static MCDisassembler *createARMDisassembler(const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new ARMDisassembler(STI, Ctx);
+}
+
+static MCDisassembler *createThumbDisassembler(const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new ThumbDisassembler(STI, Ctx);
+}
+
+DecodeStatus ARMDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &os,
+ raw_ostream &cs) const {
+ CommentStream = &cs;
+
+ uint8_t bytes[4];
+
+ assert(!(STI.getFeatureBits() & ARM::ModeThumb) &&
+ "Asked to disassemble an ARM instruction but Subtarget is in Thumb mode!");
+
+ // We want to read exactly 4 bytes of data.
+ if (Region.readBytes(Address, 4, bytes) == -1) {
+ Size = 0;
+ return MCDisassembler::Fail;
+ }
+
+ // Encoded as a small-endian 32-bit word in the stream.
+ uint32_t insn = (bytes[3] << 24) |
+ (bytes[2] << 16) |
+ (bytes[1] << 8) |
+ (bytes[0] << 0);
+
+ // Calling the auto-generated decoder function.
+ DecodeStatus result = decodeInstruction(DecoderTableARM32, MI, insn,
+ Address, this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ return result;
+ }
+
+ // VFP and NEON instructions, similarly, are shared between ARM
+ // and Thumb modes.
+ MI.clear();
+ result = decodeInstruction(DecoderTableVFP32, MI, insn, Address, this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ return result;
+ }
+
+ MI.clear();
+ result = decodeInstruction(DecoderTableVFPV832, MI, insn, Address, this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ return result;
+ }
+
+ MI.clear();
+ result = decodeInstruction(DecoderTableNEONData32, MI, insn, Address,
+ this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ // Add a fake predicate operand, because we share these instruction
+ // definitions with Thumb2 where these instructions are predicable.
+ if (!DecodePredicateOperand(MI, 0xE, Address, this))
+ return MCDisassembler::Fail;
+ return result;
+ }
+
+ MI.clear();
+ result = decodeInstruction(DecoderTableNEONLoadStore32, MI, insn, Address,
+ this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ // Add a fake predicate operand, because we share these instruction
+ // definitions with Thumb2 where these instructions are predicable.
+ if (!DecodePredicateOperand(MI, 0xE, Address, this))
+ return MCDisassembler::Fail;
+ return result;
+ }
+
+ MI.clear();
+ result = decodeInstruction(DecoderTableNEONDup32, MI, insn, Address,
+ this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ // Add a fake predicate operand, because we share these instruction
+ // definitions with Thumb2 where these instructions are predicable.
+ if (!DecodePredicateOperand(MI, 0xE, Address, this))
+ return MCDisassembler::Fail;
+ return result;
+ }
+
+ MI.clear();
+ result = decodeInstruction(DecoderTablev8NEON32, MI, insn, Address,
+ this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ return result;
+ }
+
+ MI.clear();
+ result = decodeInstruction(DecoderTablev8Crypto32, MI, insn, Address,
+ this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ return result;
+ }
+
+ MI.clear();
+ Size = 0;
+ return MCDisassembler::Fail;
+}
+
+namespace llvm {
+extern const MCInstrDesc ARMInsts[];
+}
+
+/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
+/// immediate Value in the MCInst. The immediate Value has had any PC
+/// adjustment made by the caller. If the instruction is a branch instruction
+/// then isBranch is true, else false. If the getOpInfo() function was set as
+/// part of the setupForSymbolicDisassembly() call then that function is called
+/// to get any symbolic information at the Address for this instruction. If
+/// that returns non-zero then the symbolic information it returns is used to
+/// create an MCExpr and that is added as an operand to the MCInst. If
+/// getOpInfo() returns zero and isBranch is true then a symbol look up for
+/// Value is done and if a symbol is found an MCExpr is created with that, else
+/// an MCExpr with Value is created. This function returns true if it adds an
+/// operand to the MCInst and false otherwise.
+static bool tryAddingSymbolicOperand(uint64_t Address, int32_t Value,
+ bool isBranch, uint64_t InstSize,
+ MCInst &MI, const void *Decoder) {
+ const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
+ // FIXME: Does it make sense for value to be negative?
+ return Dis->tryAddingSymbolicOperand(MI, (uint32_t)Value, Address, isBranch,
+ /* Offset */ 0, InstSize);
+}
+
+/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
+/// referenced by a load instruction with the base register that is the Pc.
+/// These can often be values in a literal pool near the Address of the
+/// instruction. The Address of the instruction and its immediate Value are
+/// used as a possible literal pool entry. The SymbolLookUp call back will
+/// return the name of a symbol referenced by the literal pool's entry if
+/// the referenced address is that of a symbol. Or it will return a pointer to
+/// a literal 'C' string if the referenced address of the literal pool's entry
+/// is an address into a section with 'C' string literals.
+static void tryAddingPcLoadReferenceComment(uint64_t Address, int Value,
+ const void *Decoder) {
+ const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
+ Dis->tryAddingPcLoadReferenceComment(Value, Address);
+}
+
+// Thumb1 instructions don't have explicit S bits. Rather, they
+// implicitly set CPSR. Since it's not represented in the encoding, the
+// auto-generated decoder won't inject the CPSR operand. We need to fix
+// that as a post-pass.
+static void AddThumb1SBit(MCInst &MI, bool InITBlock) {
+ const MCOperandInfo *OpInfo = ARMInsts[MI.getOpcode()].OpInfo;
+ unsigned short NumOps = ARMInsts[MI.getOpcode()].NumOperands;
+ MCInst::iterator I = MI.begin();
+ for (unsigned i = 0; i < NumOps; ++i, ++I) {
+ if (I == MI.end()) break;
+ if (OpInfo[i].isOptionalDef() && OpInfo[i].RegClass == ARM::CCRRegClassID) {
+ if (i > 0 && OpInfo[i-1].isPredicate()) continue;
+ MI.insert(I, MCOperand::CreateReg(InITBlock ? 0 : ARM::CPSR));
+ return;
+ }
+ }
+
+ MI.insert(I, MCOperand::CreateReg(InITBlock ? 0 : ARM::CPSR));
+}
+
+// Most Thumb instructions don't have explicit predicates in the
+// encoding, but rather get their predicates from IT context. We need
+// to fix up the predicate operands using this context information as a
+// post-pass.
+MCDisassembler::DecodeStatus
+ThumbDisassembler::AddThumbPredicate(MCInst &MI) const {
+ MCDisassembler::DecodeStatus S = Success;
+
+ // A few instructions actually have predicates encoded in them. Don't
+ // try to overwrite it if we're seeing one of those.
+ switch (MI.getOpcode()) {
+ case ARM::tBcc:
+ case ARM::t2Bcc:
+ case ARM::tCBZ:
+ case ARM::tCBNZ:
+ case ARM::tCPS:
+ case ARM::t2CPS3p:
+ case ARM::t2CPS2p:
+ case ARM::t2CPS1p:
+ case ARM::tMOVSr:
+ case ARM::tSETEND:
+ // Some instructions (mostly conditional branches) are not
+ // allowed in IT blocks.
+ if (ITBlock.instrInITBlock())
+ S = SoftFail;
+ else
+ return Success;
+ break;
+ case ARM::tB:
+ case ARM::t2B:
+ case ARM::t2TBB:
+ case ARM::t2TBH:
+ // Some instructions (mostly unconditional branches) can
+ // only appears at the end of, or outside of, an IT.
+ if (ITBlock.instrInITBlock() && !ITBlock.instrLastInITBlock())
+ S = SoftFail;
+ break;
+ default:
+ break;
+ }
+
+ // If we're in an IT block, base the predicate on that. Otherwise,
+ // assume a predicate of AL.
+ unsigned CC;
+ CC = ITBlock.getITCC();
+ if (CC == 0xF)
+ CC = ARMCC::AL;
+ if (ITBlock.instrInITBlock())
+ ITBlock.advanceITState();
+
+ const MCOperandInfo *OpInfo = ARMInsts[MI.getOpcode()].OpInfo;
+ unsigned short NumOps = ARMInsts[MI.getOpcode()].NumOperands;
+ MCInst::iterator I = MI.begin();
+ for (unsigned i = 0; i < NumOps; ++i, ++I) {
+ if (I == MI.end()) break;
+ if (OpInfo[i].isPredicate()) {
+ I = MI.insert(I, MCOperand::CreateImm(CC));
+ ++I;
+ if (CC == ARMCC::AL)
+ MI.insert(I, MCOperand::CreateReg(0));
+ else
+ MI.insert(I, MCOperand::CreateReg(ARM::CPSR));
+ return S;
+ }
+ }
+
+ I = MI.insert(I, MCOperand::CreateImm(CC));
+ ++I;
+ if (CC == ARMCC::AL)
+ MI.insert(I, MCOperand::CreateReg(0));
+ else
+ MI.insert(I, MCOperand::CreateReg(ARM::CPSR));
+
+ return S;
+}
+
+// Thumb VFP instructions are a special case. Because we share their
+// encodings between ARM and Thumb modes, and they are predicable in ARM
+// mode, the auto-generated decoder will give them an (incorrect)
+// predicate operand. We need to rewrite these operands based on the IT
+// context as a post-pass.
+void ThumbDisassembler::UpdateThumbVFPPredicate(MCInst &MI) const {
+ unsigned CC;
+ CC = ITBlock.getITCC();
+ if (ITBlock.instrInITBlock())
+ ITBlock.advanceITState();
+
+ const MCOperandInfo *OpInfo = ARMInsts[MI.getOpcode()].OpInfo;
+ MCInst::iterator I = MI.begin();
+ unsigned short NumOps = ARMInsts[MI.getOpcode()].NumOperands;
+ for (unsigned i = 0; i < NumOps; ++i, ++I) {
+ if (OpInfo[i].isPredicate() ) {
+ I->setImm(CC);
+ ++I;
+ if (CC == ARMCC::AL)
+ I->setReg(0);
+ else
+ I->setReg(ARM::CPSR);
+ return;
+ }
+ }
+}
+
+DecodeStatus ThumbDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &os,
+ raw_ostream &cs) const {
+ CommentStream = &cs;
+
+ uint8_t bytes[4];
+
+ assert((STI.getFeatureBits() & ARM::ModeThumb) &&
+ "Asked to disassemble in Thumb mode but Subtarget is in ARM mode!");
+
+ // We want to read exactly 2 bytes of data.
+ if (Region.readBytes(Address, 2, bytes) == -1) {
+ Size = 0;
+ return MCDisassembler::Fail;
+ }
+
+ uint16_t insn16 = (bytes[1] << 8) | bytes[0];
+ DecodeStatus result = decodeInstruction(DecoderTableThumb16, MI, insn16,
+ Address, this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 2;
+ Check(result, AddThumbPredicate(MI));
+ return result;
+ }
+
+ MI.clear();
+ result = decodeInstruction(DecoderTableThumbSBit16, MI, insn16,
+ Address, this, STI);
+ if (result) {
+ Size = 2;
+ bool InITBlock = ITBlock.instrInITBlock();
+ Check(result, AddThumbPredicate(MI));
+ AddThumb1SBit(MI, InITBlock);
+ return result;
+ }
+
+ MI.clear();
+ result = decodeInstruction(DecoderTableThumb216, MI, insn16,
+ Address, this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 2;
+
+ // Nested IT blocks are UNPREDICTABLE. Must be checked before we add
+ // the Thumb predicate.
+ if (MI.getOpcode() == ARM::t2IT && ITBlock.instrInITBlock())
+ result = MCDisassembler::SoftFail;
+
+ Check(result, AddThumbPredicate(MI));
+
+ // If we find an IT instruction, we need to parse its condition
+ // code and mask operands so that we can apply them correctly
+ // to the subsequent instructions.
+ if (MI.getOpcode() == ARM::t2IT) {
+
+ unsigned Firstcond = MI.getOperand(0).getImm();
+ unsigned Mask = MI.getOperand(1).getImm();
+ ITBlock.setITState(Firstcond, Mask);
+ }
+
+ return result;
+ }
+
+ // We want to read exactly 4 bytes of data.
+ if (Region.readBytes(Address, 4, bytes) == -1) {
+ Size = 0;
+ return MCDisassembler::Fail;
+ }
+
+ uint32_t insn32 = (bytes[3] << 8) |
+ (bytes[2] << 0) |
+ (bytes[1] << 24) |
+ (bytes[0] << 16);
+ MI.clear();
+ result = decodeInstruction(DecoderTableThumb32, MI, insn32, Address,
+ this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ bool InITBlock = ITBlock.instrInITBlock();
+ Check(result, AddThumbPredicate(MI));
+ AddThumb1SBit(MI, InITBlock);
+ return result;
+ }
+
+ MI.clear();
+ result = decodeInstruction(DecoderTableThumb232, MI, insn32, Address,
+ this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ Check(result, AddThumbPredicate(MI));
+ return result;
+ }
+
+ if (fieldFromInstruction(insn32, 28, 4) == 0xE) {
+ MI.clear();
+ result = decodeInstruction(DecoderTableVFP32, MI, insn32, Address, this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ UpdateThumbVFPPredicate(MI);
+ return result;
+ }
+ }
+
+ MI.clear();
+ result = decodeInstruction(DecoderTableVFPV832, MI, insn32, Address, this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ return result;
+ }
+
+ if (fieldFromInstruction(insn32, 28, 4) == 0xE) {
+ MI.clear();
+ result = decodeInstruction(DecoderTableNEONDup32, MI, insn32, Address,
+ this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ Check(result, AddThumbPredicate(MI));
+ return result;
+ }
+ }
+
+ if (fieldFromInstruction(insn32, 24, 8) == 0xF9) {
+ MI.clear();
+ uint32_t NEONLdStInsn = insn32;
+ NEONLdStInsn &= 0xF0FFFFFF;
+ NEONLdStInsn |= 0x04000000;
+ result = decodeInstruction(DecoderTableNEONLoadStore32, MI, NEONLdStInsn,
+ Address, this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ Check(result, AddThumbPredicate(MI));
+ return result;
+ }
+ }
+
+ if (fieldFromInstruction(insn32, 24, 4) == 0xF) {
+ MI.clear();
+ uint32_t NEONDataInsn = insn32;
+ NEONDataInsn &= 0xF0FFFFFF; // Clear bits 27-24
+ NEONDataInsn |= (NEONDataInsn & 0x10000000) >> 4; // Move bit 28 to bit 24
+ NEONDataInsn |= 0x12000000; // Set bits 28 and 25
+ result = decodeInstruction(DecoderTableNEONData32, MI, NEONDataInsn,
+ Address, this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ Check(result, AddThumbPredicate(MI));
+ return result;
+ }
+
+ MI.clear();
+ uint32_t NEONCryptoInsn = insn32;
+ NEONCryptoInsn &= 0xF0FFFFFF; // Clear bits 27-24
+ NEONCryptoInsn |= (NEONCryptoInsn & 0x10000000) >> 4; // Move bit 28 to bit 24
+ NEONCryptoInsn |= 0x12000000; // Set bits 28 and 25
+ result = decodeInstruction(DecoderTablev8Crypto32, MI, NEONCryptoInsn,
+ Address, this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ return result;
+ }
+
+ MI.clear();
+ uint32_t NEONv8Insn = insn32;
+ NEONv8Insn &= 0xF3FFFFFF; // Clear bits 27-26
+ result = decodeInstruction(DecoderTablev8NEON32, MI, NEONv8Insn, Address,
+ this, STI);
+ if (result != MCDisassembler::Fail) {
+ Size = 4;
+ return result;
+ }
+ }
+
+ MI.clear();
+ Size = 0;
+ return MCDisassembler::Fail;
+}
+
+
+extern "C" void LLVMInitializeARMDisassembler() {
+ TargetRegistry::RegisterMCDisassembler(TheARMLETarget,
+ createARMDisassembler);
+ TargetRegistry::RegisterMCDisassembler(TheARMBETarget,
+ createARMDisassembler);
+ TargetRegistry::RegisterMCDisassembler(TheThumbLETarget,
+ createThumbDisassembler);
+ TargetRegistry::RegisterMCDisassembler(TheThumbBETarget,
+ createThumbDisassembler);
+}
+
+static const uint16_t GPRDecoderTable[] = {
+ ARM::R0, ARM::R1, ARM::R2, ARM::R3,
+ ARM::R4, ARM::R5, ARM::R6, ARM::R7,
+ ARM::R8, ARM::R9, ARM::R10, ARM::R11,
+ ARM::R12, ARM::SP, ARM::LR, ARM::PC
+};
+
+static DecodeStatus DecodeGPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ if (RegNo > 15)
+ return MCDisassembler::Fail;
+
+ unsigned Register = GPRDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus
+DecodeGPRnopcRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ if (RegNo == 15)
+ S = MCDisassembler::SoftFail;
+
+ Check(S, DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder));
+
+ return S;
+}
+
+static DecodeStatus
+DecodeGPRwithAPSRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ if (RegNo == 15)
+ {
+ Inst.addOperand(MCOperand::CreateReg(ARM::APSR_NZCV));
+ return MCDisassembler::Success;
+ }
+
+ Check(S, DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder));
+ return S;
+}
+
+static DecodeStatus DecodetGPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ if (RegNo > 7)
+ return MCDisassembler::Fail;
+ return DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder);
+}
+
+static const uint16_t GPRPairDecoderTable[] = {
+ ARM::R0_R1, ARM::R2_R3, ARM::R4_R5, ARM::R6_R7,
+ ARM::R8_R9, ARM::R10_R11, ARM::R12_SP
+};
+
+static DecodeStatus DecodeGPRPairRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ if (RegNo > 13)
+ return MCDisassembler::Fail;
+
+ if ((RegNo & 1) || RegNo == 0xe)
+ S = MCDisassembler::SoftFail;
+
+ unsigned RegisterPair = GPRPairDecoderTable[RegNo/2];
+ Inst.addOperand(MCOperand::CreateReg(RegisterPair));
+ return S;
+}
+
+static DecodeStatus DecodetcGPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ unsigned Register = 0;
+ switch (RegNo) {
+ case 0:
+ Register = ARM::R0;
+ break;
+ case 1:
+ Register = ARM::R1;
+ break;
+ case 2:
+ Register = ARM::R2;
+ break;
+ case 3:
+ Register = ARM::R3;
+ break;
+ case 9:
+ Register = ARM::R9;
+ break;
+ case 12:
+ Register = ARM::R12;
+ break;
+ default:
+ return MCDisassembler::Fail;
+ }
+
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecoderGPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+ if (RegNo == 13 || RegNo == 15)
+ S = MCDisassembler::SoftFail;
+ Check(S, DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder));
+ return S;
+}
+
+static const uint16_t SPRDecoderTable[] = {
+ ARM::S0, ARM::S1, ARM::S2, ARM::S3,
+ ARM::S4, ARM::S5, ARM::S6, ARM::S7,
+ ARM::S8, ARM::S9, ARM::S10, ARM::S11,
+ ARM::S12, ARM::S13, ARM::S14, ARM::S15,
+ ARM::S16, ARM::S17, ARM::S18, ARM::S19,
+ ARM::S20, ARM::S21, ARM::S22, ARM::S23,
+ ARM::S24, ARM::S25, ARM::S26, ARM::S27,
+ ARM::S28, ARM::S29, ARM::S30, ARM::S31
+};
+
+static DecodeStatus DecodeSPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Register = SPRDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+static const uint16_t DPRDecoderTable[] = {
+ ARM::D0, ARM::D1, ARM::D2, ARM::D3,
+ ARM::D4, ARM::D5, ARM::D6, ARM::D7,
+ ARM::D8, ARM::D9, ARM::D10, ARM::D11,
+ ARM::D12, ARM::D13, ARM::D14, ARM::D15,
+ ARM::D16, ARM::D17, ARM::D18, ARM::D19,
+ ARM::D20, ARM::D21, ARM::D22, ARM::D23,
+ ARM::D24, ARM::D25, ARM::D26, ARM::D27,
+ ARM::D28, ARM::D29, ARM::D30, ARM::D31
+};
+
+static DecodeStatus DecodeDPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Register = DPRDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeDPR_8RegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ if (RegNo > 7)
+ return MCDisassembler::Fail;
+ return DecodeDPRRegisterClass(Inst, RegNo, Address, Decoder);
+}
+
+static DecodeStatus
+DecodeDPR_VFP2RegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ if (RegNo > 15)
+ return MCDisassembler::Fail;
+ return DecodeDPRRegisterClass(Inst, RegNo, Address, Decoder);
+}
+
+static const uint16_t QPRDecoderTable[] = {
+ ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
+ ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7,
+ ARM::Q8, ARM::Q9, ARM::Q10, ARM::Q11,
+ ARM::Q12, ARM::Q13, ARM::Q14, ARM::Q15
+};
+
+
+static DecodeStatus DecodeQPRRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ if (RegNo > 31 || (RegNo & 1) != 0)
+ return MCDisassembler::Fail;
+ RegNo >>= 1;
+
+ unsigned Register = QPRDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+static const uint16_t DPairDecoderTable[] = {
+ ARM::Q0, ARM::D1_D2, ARM::Q1, ARM::D3_D4, ARM::Q2, ARM::D5_D6,
+ ARM::Q3, ARM::D7_D8, ARM::Q4, ARM::D9_D10, ARM::Q5, ARM::D11_D12,
+ ARM::Q6, ARM::D13_D14, ARM::Q7, ARM::D15_D16, ARM::Q8, ARM::D17_D18,
+ ARM::Q9, ARM::D19_D20, ARM::Q10, ARM::D21_D22, ARM::Q11, ARM::D23_D24,
+ ARM::Q12, ARM::D25_D26, ARM::Q13, ARM::D27_D28, ARM::Q14, ARM::D29_D30,
+ ARM::Q15
+};
+
+static DecodeStatus DecodeDPairRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ if (RegNo > 30)
+ return MCDisassembler::Fail;
+
+ unsigned Register = DPairDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+static const uint16_t DPairSpacedDecoderTable[] = {
+ ARM::D0_D2, ARM::D1_D3, ARM::D2_D4, ARM::D3_D5,
+ ARM::D4_D6, ARM::D5_D7, ARM::D6_D8, ARM::D7_D9,
+ ARM::D8_D10, ARM::D9_D11, ARM::D10_D12, ARM::D11_D13,
+ ARM::D12_D14, ARM::D13_D15, ARM::D14_D16, ARM::D15_D17,
+ ARM::D16_D18, ARM::D17_D19, ARM::D18_D20, ARM::D19_D21,
+ ARM::D20_D22, ARM::D21_D23, ARM::D22_D24, ARM::D23_D25,
+ ARM::D24_D26, ARM::D25_D27, ARM::D26_D28, ARM::D27_D29,
+ ARM::D28_D30, ARM::D29_D31
+};
+
+static DecodeStatus DecodeDPairSpacedRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 29)
+ return MCDisassembler::Fail;
+
+ unsigned Register = DPairSpacedDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodePredicateOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ if (Val == 0xF) return MCDisassembler::Fail;
+ // AL predicate is not allowed on Thumb1 branches.
+ if (Inst.getOpcode() == ARM::tBcc && Val == 0xE)
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ if (Val == ARMCC::AL) {
+ Inst.addOperand(MCOperand::CreateReg(0));
+ } else
+ Inst.addOperand(MCOperand::CreateReg(ARM::CPSR));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeCCOutOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ if (Val)
+ Inst.addOperand(MCOperand::CreateReg(ARM::CPSR));
+ else
+ Inst.addOperand(MCOperand::CreateReg(0));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeSOImmOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ uint32_t imm = Val & 0xFF;
+ uint32_t rot = (Val & 0xF00) >> 7;
+ uint32_t rot_imm = (imm >> rot) | (imm << ((32-rot) & 0x1F));
+ Inst.addOperand(MCOperand::CreateImm(rot_imm));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeSORegImmOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rm = fieldFromInstruction(Val, 0, 4);
+ unsigned type = fieldFromInstruction(Val, 5, 2);
+ unsigned imm = fieldFromInstruction(Val, 7, 5);
+
+ // Register-immediate
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ ARM_AM::ShiftOpc Shift = ARM_AM::lsl;
+ switch (type) {
+ case 0:
+ Shift = ARM_AM::lsl;
+ break;
+ case 1:
+ Shift = ARM_AM::lsr;
+ break;
+ case 2:
+ Shift = ARM_AM::asr;
+ break;
+ case 3:
+ Shift = ARM_AM::ror;
+ break;
+ }
+
+ if (Shift == ARM_AM::ror && imm == 0)
+ Shift = ARM_AM::rrx;
+
+ unsigned Op = Shift | (imm << 3);
+ Inst.addOperand(MCOperand::CreateImm(Op));
+
+ return S;
+}
+
+static DecodeStatus DecodeSORegRegOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rm = fieldFromInstruction(Val, 0, 4);
+ unsigned type = fieldFromInstruction(Val, 5, 2);
+ unsigned Rs = fieldFromInstruction(Val, 8, 4);
+
+ // Register-register
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rs, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ ARM_AM::ShiftOpc Shift = ARM_AM::lsl;
+ switch (type) {
+ case 0:
+ Shift = ARM_AM::lsl;
+ break;
+ case 1:
+ Shift = ARM_AM::lsr;
+ break;
+ case 2:
+ Shift = ARM_AM::asr;
+ break;
+ case 3:
+ Shift = ARM_AM::ror;
+ break;
+ }
+
+ Inst.addOperand(MCOperand::CreateImm(Shift));
+
+ return S;
+}
+
+static DecodeStatus DecodeRegListOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ bool NeedDisjointWriteback = false;
+ unsigned WritebackReg = 0;
+ switch (Inst.getOpcode()) {
+ default:
+ break;
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD:
+ NeedDisjointWriteback = true;
+ WritebackReg = Inst.getOperand(0).getReg();
+ break;
+ }
+
+ // Empty register lists are not allowed.
+ if (Val == 0) return MCDisassembler::Fail;
+ for (unsigned i = 0; i < 16; ++i) {
+ if (Val & (1 << i)) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, i, Address, Decoder)))
+ return MCDisassembler::Fail;
+ // Writeback not allowed if Rn is in the target list.
+ if (NeedDisjointWriteback && WritebackReg == Inst.end()[-1].getReg())
+ Check(S, MCDisassembler::SoftFail);
+ }
+ }
+
+ return S;
+}
+
+static DecodeStatus DecodeSPRRegListOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Vd = fieldFromInstruction(Val, 8, 5);
+ unsigned regs = fieldFromInstruction(Val, 0, 8);
+
+ // In case of unpredictable encoding, tweak the operands.
+ if (regs == 0 || (Vd + regs) > 32) {
+ regs = Vd + regs > 32 ? 32 - Vd : regs;
+ regs = std::max( 1u, regs);
+ S = MCDisassembler::SoftFail;
+ }
+
+ if (!Check(S, DecodeSPRRegisterClass(Inst, Vd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ for (unsigned i = 0; i < (regs - 1); ++i) {
+ if (!Check(S, DecodeSPRRegisterClass(Inst, ++Vd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ return S;
+}
+
+static DecodeStatus DecodeDPRRegListOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Vd = fieldFromInstruction(Val, 8, 5);
+ unsigned regs = fieldFromInstruction(Val, 1, 7);
+
+ // In case of unpredictable encoding, tweak the operands.
+ if (regs == 0 || regs > 16 || (Vd + regs) > 32) {
+ regs = Vd + regs > 32 ? 32 - Vd : regs;
+ regs = std::max( 1u, regs);
+ regs = std::min(16u, regs);
+ S = MCDisassembler::SoftFail;
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Vd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ for (unsigned i = 0; i < (regs - 1); ++i) {
+ if (!Check(S, DecodeDPRRegisterClass(Inst, ++Vd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ return S;
+}
+
+static DecodeStatus DecodeBitfieldMaskOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ // This operand encodes a mask of contiguous zeros between a specified MSB
+ // and LSB. To decode it, we create the mask of all bits MSB-and-lower,
+ // the mask of all bits LSB-and-lower, and then xor them to create
+ // the mask of that's all ones on [msb, lsb]. Finally we not it to
+ // create the final mask.
+ unsigned msb = fieldFromInstruction(Val, 5, 5);
+ unsigned lsb = fieldFromInstruction(Val, 0, 5);
+
+ DecodeStatus S = MCDisassembler::Success;
+ if (lsb > msb) {
+ Check(S, MCDisassembler::SoftFail);
+ // The check above will cause the warning for the "potentially undefined
+ // instruction encoding" but we can't build a bad MCOperand value here
+ // with a lsb > msb or else printing the MCInst will cause a crash.
+ lsb = msb;
+ }
+
+ uint32_t msb_mask = 0xFFFFFFFF;
+ if (msb != 31) msb_mask = (1U << (msb+1)) - 1;
+ uint32_t lsb_mask = (1U << lsb) - 1;
+
+ Inst.addOperand(MCOperand::CreateImm(~(msb_mask ^ lsb_mask)));
+ return S;
+}
+
+static DecodeStatus DecodeCopMemInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+ unsigned CRd = fieldFromInstruction(Insn, 12, 4);
+ unsigned coproc = fieldFromInstruction(Insn, 8, 4);
+ unsigned imm = fieldFromInstruction(Insn, 0, 8);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned U = fieldFromInstruction(Insn, 23, 1);
+
+ switch (Inst.getOpcode()) {
+ case ARM::LDC_OFFSET:
+ case ARM::LDC_PRE:
+ case ARM::LDC_POST:
+ case ARM::LDC_OPTION:
+ case ARM::LDCL_OFFSET:
+ case ARM::LDCL_PRE:
+ case ARM::LDCL_POST:
+ case ARM::LDCL_OPTION:
+ case ARM::STC_OFFSET:
+ case ARM::STC_PRE:
+ case ARM::STC_POST:
+ case ARM::STC_OPTION:
+ case ARM::STCL_OFFSET:
+ case ARM::STCL_PRE:
+ case ARM::STCL_POST:
+ case ARM::STCL_OPTION:
+ case ARM::t2LDC_OFFSET:
+ case ARM::t2LDC_PRE:
+ case ARM::t2LDC_POST:
+ case ARM::t2LDC_OPTION:
+ case ARM::t2LDCL_OFFSET:
+ case ARM::t2LDCL_PRE:
+ case ARM::t2LDCL_POST:
+ case ARM::t2LDCL_OPTION:
+ case ARM::t2STC_OFFSET:
+ case ARM::t2STC_PRE:
+ case ARM::t2STC_POST:
+ case ARM::t2STC_OPTION:
+ case ARM::t2STCL_OFFSET:
+ case ARM::t2STCL_PRE:
+ case ARM::t2STCL_POST:
+ case ARM::t2STCL_OPTION:
+ if (coproc == 0xA || coproc == 0xB)
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ uint64_t featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo()
+ .getFeatureBits();
+ if ((featureBits & ARM::HasV8Ops) && (coproc != 14))
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(MCOperand::CreateImm(coproc));
+ Inst.addOperand(MCOperand::CreateImm(CRd));
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ switch (Inst.getOpcode()) {
+ case ARM::t2LDC2_OFFSET:
+ case ARM::t2LDC2L_OFFSET:
+ case ARM::t2LDC2_PRE:
+ case ARM::t2LDC2L_PRE:
+ case ARM::t2STC2_OFFSET:
+ case ARM::t2STC2L_OFFSET:
+ case ARM::t2STC2_PRE:
+ case ARM::t2STC2L_PRE:
+ case ARM::LDC2_OFFSET:
+ case ARM::LDC2L_OFFSET:
+ case ARM::LDC2_PRE:
+ case ARM::LDC2L_PRE:
+ case ARM::STC2_OFFSET:
+ case ARM::STC2L_OFFSET:
+ case ARM::STC2_PRE:
+ case ARM::STC2L_PRE:
+ case ARM::t2LDC_OFFSET:
+ case ARM::t2LDCL_OFFSET:
+ case ARM::t2LDC_PRE:
+ case ARM::t2LDCL_PRE:
+ case ARM::t2STC_OFFSET:
+ case ARM::t2STCL_OFFSET:
+ case ARM::t2STC_PRE:
+ case ARM::t2STCL_PRE:
+ case ARM::LDC_OFFSET:
+ case ARM::LDCL_OFFSET:
+ case ARM::LDC_PRE:
+ case ARM::LDCL_PRE:
+ case ARM::STC_OFFSET:
+ case ARM::STCL_OFFSET:
+ case ARM::STC_PRE:
+ case ARM::STCL_PRE:
+ imm = ARM_AM::getAM5Opc(U ? ARM_AM::add : ARM_AM::sub, imm);
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ break;
+ case ARM::t2LDC2_POST:
+ case ARM::t2LDC2L_POST:
+ case ARM::t2STC2_POST:
+ case ARM::t2STC2L_POST:
+ case ARM::LDC2_POST:
+ case ARM::LDC2L_POST:
+ case ARM::STC2_POST:
+ case ARM::STC2L_POST:
+ case ARM::t2LDC_POST:
+ case ARM::t2LDCL_POST:
+ case ARM::t2STC_POST:
+ case ARM::t2STCL_POST:
+ case ARM::LDC_POST:
+ case ARM::LDCL_POST:
+ case ARM::STC_POST:
+ case ARM::STCL_POST:
+ imm |= U << 8;
+ // fall through.
+ default:
+ // The 'option' variant doesn't encode 'U' in the immediate since
+ // the immediate is unsigned [0,255].
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ break;
+ }
+
+ switch (Inst.getOpcode()) {
+ case ARM::LDC_OFFSET:
+ case ARM::LDC_PRE:
+ case ARM::LDC_POST:
+ case ARM::LDC_OPTION:
+ case ARM::LDCL_OFFSET:
+ case ARM::LDCL_PRE:
+ case ARM::LDCL_POST:
+ case ARM::LDCL_OPTION:
+ case ARM::STC_OFFSET:
+ case ARM::STC_PRE:
+ case ARM::STC_POST:
+ case ARM::STC_OPTION:
+ case ARM::STCL_OFFSET:
+ case ARM::STCL_PRE:
+ case ARM::STCL_POST:
+ case ARM::STCL_OPTION:
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ return S;
+}
+
+static DecodeStatus
+DecodeAddrMode2IdxInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned imm = fieldFromInstruction(Insn, 0, 12);
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+ unsigned reg = fieldFromInstruction(Insn, 25, 1);
+ unsigned P = fieldFromInstruction(Insn, 24, 1);
+ unsigned W = fieldFromInstruction(Insn, 21, 1);
+
+ // On stores, the writeback operand precedes Rt.
+ switch (Inst.getOpcode()) {
+ case ARM::STR_POST_IMM:
+ case ARM::STR_POST_REG:
+ case ARM::STRB_POST_IMM:
+ case ARM::STRB_POST_REG:
+ case ARM::STRT_POST_REG:
+ case ARM::STRT_POST_IMM:
+ case ARM::STRBT_POST_REG:
+ case ARM::STRBT_POST_IMM:
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ // On loads, the writeback operand comes after Rt.
+ switch (Inst.getOpcode()) {
+ case ARM::LDR_POST_IMM:
+ case ARM::LDR_POST_REG:
+ case ARM::LDRB_POST_IMM:
+ case ARM::LDRB_POST_REG:
+ case ARM::LDRBT_POST_REG:
+ case ARM::LDRBT_POST_IMM:
+ case ARM::LDRT_POST_REG:
+ case ARM::LDRT_POST_IMM:
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ ARM_AM::AddrOpc Op = ARM_AM::add;
+ if (!fieldFromInstruction(Insn, 23, 1))
+ Op = ARM_AM::sub;
+
+ bool writeback = (P == 0) || (W == 1);
+ unsigned idx_mode = 0;
+ if (P && writeback)
+ idx_mode = ARMII::IndexModePre;
+ else if (!P && writeback)
+ idx_mode = ARMII::IndexModePost;
+
+ if (writeback && (Rn == 15 || Rn == Rt))
+ S = MCDisassembler::SoftFail; // UNPREDICTABLE
+
+ if (reg) {
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ ARM_AM::ShiftOpc Opc = ARM_AM::lsl;
+ switch( fieldFromInstruction(Insn, 5, 2)) {
+ case 0:
+ Opc = ARM_AM::lsl;
+ break;
+ case 1:
+ Opc = ARM_AM::lsr;
+ break;
+ case 2:
+ Opc = ARM_AM::asr;
+ break;
+ case 3:
+ Opc = ARM_AM::ror;
+ break;
+ default:
+ return MCDisassembler::Fail;
+ }
+ unsigned amt = fieldFromInstruction(Insn, 7, 5);
+ if (Opc == ARM_AM::ror && amt == 0)
+ Opc = ARM_AM::rrx;
+ unsigned imm = ARM_AM::getAM2Opc(Op, amt, Opc, idx_mode);
+
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ } else {
+ Inst.addOperand(MCOperand::CreateReg(0));
+ unsigned tmp = ARM_AM::getAM2Opc(Op, imm, ARM_AM::lsl, idx_mode);
+ Inst.addOperand(MCOperand::CreateImm(tmp));
+ }
+
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeSORegMemOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Val, 13, 4);
+ unsigned Rm = fieldFromInstruction(Val, 0, 4);
+ unsigned type = fieldFromInstruction(Val, 5, 2);
+ unsigned imm = fieldFromInstruction(Val, 7, 5);
+ unsigned U = fieldFromInstruction(Val, 12, 1);
+
+ ARM_AM::ShiftOpc ShOp = ARM_AM::lsl;
+ switch (type) {
+ case 0:
+ ShOp = ARM_AM::lsl;
+ break;
+ case 1:
+ ShOp = ARM_AM::lsr;
+ break;
+ case 2:
+ ShOp = ARM_AM::asr;
+ break;
+ case 3:
+ ShOp = ARM_AM::ror;
+ break;
+ }
+
+ if (ShOp == ARM_AM::ror && imm == 0)
+ ShOp = ARM_AM::rrx;
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ unsigned shift;
+ if (U)
+ shift = ARM_AM::getAM2Opc(ARM_AM::add, imm, ShOp);
+ else
+ shift = ARM_AM::getAM2Opc(ARM_AM::sub, imm, ShOp);
+ Inst.addOperand(MCOperand::CreateImm(shift));
+
+ return S;
+}
+
+static DecodeStatus
+DecodeAddrMode3Instruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned type = fieldFromInstruction(Insn, 22, 1);
+ unsigned imm = fieldFromInstruction(Insn, 8, 4);
+ unsigned U = ((~fieldFromInstruction(Insn, 23, 1)) & 1) << 8;
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+ unsigned W = fieldFromInstruction(Insn, 21, 1);
+ unsigned P = fieldFromInstruction(Insn, 24, 1);
+ unsigned Rt2 = Rt + 1;
+
+ bool writeback = (W == 1) | (P == 0);
+
+ // For {LD,ST}RD, Rt must be even, else undefined.
+ switch (Inst.getOpcode()) {
+ case ARM::STRD:
+ case ARM::STRD_PRE:
+ case ARM::STRD_POST:
+ case ARM::LDRD:
+ case ARM::LDRD_PRE:
+ case ARM::LDRD_POST:
+ if (Rt & 0x1) S = MCDisassembler::SoftFail;
+ break;
+ default:
+ break;
+ }
+ switch (Inst.getOpcode()) {
+ case ARM::STRD:
+ case ARM::STRD_PRE:
+ case ARM::STRD_POST:
+ if (P == 0 && W == 1)
+ S = MCDisassembler::SoftFail;
+
+ if (writeback && (Rn == 15 || Rn == Rt || Rn == Rt2))
+ S = MCDisassembler::SoftFail;
+ if (type && Rm == 15)
+ S = MCDisassembler::SoftFail;
+ if (Rt2 == 15)
+ S = MCDisassembler::SoftFail;
+ if (!type && fieldFromInstruction(Insn, 8, 4))
+ S = MCDisassembler::SoftFail;
+ break;
+ case ARM::STRH:
+ case ARM::STRH_PRE:
+ case ARM::STRH_POST:
+ if (Rt == 15)
+ S = MCDisassembler::SoftFail;
+ if (writeback && (Rn == 15 || Rn == Rt))
+ S = MCDisassembler::SoftFail;
+ if (!type && Rm == 15)
+ S = MCDisassembler::SoftFail;
+ break;
+ case ARM::LDRD:
+ case ARM::LDRD_PRE:
+ case ARM::LDRD_POST:
+ if (type && Rn == 15){
+ if (Rt2 == 15)
+ S = MCDisassembler::SoftFail;
+ break;
+ }
+ if (P == 0 && W == 1)
+ S = MCDisassembler::SoftFail;
+ if (!type && (Rt2 == 15 || Rm == 15 || Rm == Rt || Rm == Rt2))
+ S = MCDisassembler::SoftFail;
+ if (!type && writeback && Rn == 15)
+ S = MCDisassembler::SoftFail;
+ if (writeback && (Rn == Rt || Rn == Rt2))
+ S = MCDisassembler::SoftFail;
+ break;
+ case ARM::LDRH:
+ case ARM::LDRH_PRE:
+ case ARM::LDRH_POST:
+ if (type && Rn == 15){
+ if (Rt == 15)
+ S = MCDisassembler::SoftFail;
+ break;
+ }
+ if (Rt == 15)
+ S = MCDisassembler::SoftFail;
+ if (!type && Rm == 15)
+ S = MCDisassembler::SoftFail;
+ if (!type && writeback && (Rn == 15 || Rn == Rt))
+ S = MCDisassembler::SoftFail;
+ break;
+ case ARM::LDRSH:
+ case ARM::LDRSH_PRE:
+ case ARM::LDRSH_POST:
+ case ARM::LDRSB:
+ case ARM::LDRSB_PRE:
+ case ARM::LDRSB_POST:
+ if (type && Rn == 15){
+ if (Rt == 15)
+ S = MCDisassembler::SoftFail;
+ break;
+ }
+ if (type && (Rt == 15 || (writeback && Rn == Rt)))
+ S = MCDisassembler::SoftFail;
+ if (!type && (Rt == 15 || Rm == 15))
+ S = MCDisassembler::SoftFail;
+ if (!type && writeback && (Rn == 15 || Rn == Rt))
+ S = MCDisassembler::SoftFail;
+ break;
+ default:
+ break;
+ }
+
+ if (writeback) { // Writeback
+ if (P)
+ U |= ARMII::IndexModePre << 9;
+ else
+ U |= ARMII::IndexModePost << 9;
+
+ // On stores, the writeback operand precedes Rt.
+ switch (Inst.getOpcode()) {
+ case ARM::STRD:
+ case ARM::STRD_PRE:
+ case ARM::STRD_POST:
+ case ARM::STRH:
+ case ARM::STRH_PRE:
+ case ARM::STRH_POST:
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ switch (Inst.getOpcode()) {
+ case ARM::STRD:
+ case ARM::STRD_PRE:
+ case ARM::STRD_POST:
+ case ARM::LDRD:
+ case ARM::LDRD_PRE:
+ case ARM::LDRD_POST:
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt+1, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ if (writeback) {
+ // On loads, the writeback operand comes after Rt.
+ switch (Inst.getOpcode()) {
+ case ARM::LDRD:
+ case ARM::LDRD_PRE:
+ case ARM::LDRD_POST:
+ case ARM::LDRH:
+ case ARM::LDRH_PRE:
+ case ARM::LDRH_POST:
+ case ARM::LDRSH:
+ case ARM::LDRSH_PRE:
+ case ARM::LDRSH_POST:
+ case ARM::LDRSB:
+ case ARM::LDRSB_PRE:
+ case ARM::LDRSB_POST:
+ case ARM::LDRHTr:
+ case ARM::LDRSBTr:
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ if (type) {
+ Inst.addOperand(MCOperand::CreateReg(0));
+ Inst.addOperand(MCOperand::CreateImm(U | (imm << 4) | Rm));
+ } else {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(U));
+ }
+
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeRFEInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned mode = fieldFromInstruction(Insn, 23, 2);
+
+ switch (mode) {
+ case 0:
+ mode = ARM_AM::da;
+ break;
+ case 1:
+ mode = ARM_AM::ia;
+ break;
+ case 2:
+ mode = ARM_AM::db;
+ break;
+ case 3:
+ mode = ARM_AM::ib;
+ break;
+ }
+
+ Inst.addOperand(MCOperand::CreateImm(mode));
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeQADDInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+
+ if (pred == 0xF)
+ return DecodeCPSInstruction(Inst, Insn, Address, Decoder);
+
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+ return S;
+}
+
+static DecodeStatus DecodeMemMultipleWritebackInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+ unsigned reglist = fieldFromInstruction(Insn, 0, 16);
+
+ if (pred == 0xF) {
+ // Ambiguous with RFE and SRS
+ switch (Inst.getOpcode()) {
+ case ARM::LDMDA:
+ Inst.setOpcode(ARM::RFEDA);
+ break;
+ case ARM::LDMDA_UPD:
+ Inst.setOpcode(ARM::RFEDA_UPD);
+ break;
+ case ARM::LDMDB:
+ Inst.setOpcode(ARM::RFEDB);
+ break;
+ case ARM::LDMDB_UPD:
+ Inst.setOpcode(ARM::RFEDB_UPD);
+ break;
+ case ARM::LDMIA:
+ Inst.setOpcode(ARM::RFEIA);
+ break;
+ case ARM::LDMIA_UPD:
+ Inst.setOpcode(ARM::RFEIA_UPD);
+ break;
+ case ARM::LDMIB:
+ Inst.setOpcode(ARM::RFEIB);
+ break;
+ case ARM::LDMIB_UPD:
+ Inst.setOpcode(ARM::RFEIB_UPD);
+ break;
+ case ARM::STMDA:
+ Inst.setOpcode(ARM::SRSDA);
+ break;
+ case ARM::STMDA_UPD:
+ Inst.setOpcode(ARM::SRSDA_UPD);
+ break;
+ case ARM::STMDB:
+ Inst.setOpcode(ARM::SRSDB);
+ break;
+ case ARM::STMDB_UPD:
+ Inst.setOpcode(ARM::SRSDB_UPD);
+ break;
+ case ARM::STMIA:
+ Inst.setOpcode(ARM::SRSIA);
+ break;
+ case ARM::STMIA_UPD:
+ Inst.setOpcode(ARM::SRSIA_UPD);
+ break;
+ case ARM::STMIB:
+ Inst.setOpcode(ARM::SRSIB);
+ break;
+ case ARM::STMIB_UPD:
+ Inst.setOpcode(ARM::SRSIB_UPD);
+ break;
+ default:
+ return MCDisassembler::Fail;
+ }
+
+ // For stores (which become SRS's, the only operand is the mode.
+ if (fieldFromInstruction(Insn, 20, 1) == 0) {
+ // Check SRS encoding constraints
+ if (!(fieldFromInstruction(Insn, 22, 1) == 1 &&
+ fieldFromInstruction(Insn, 20, 1) == 0))
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(
+ MCOperand::CreateImm(fieldFromInstruction(Insn, 0, 4)));
+ return S;
+ }
+
+ return DecodeRFEInstruction(Inst, Insn, Address, Decoder);
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail; // Tied
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeRegListOperand(Inst, reglist, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeCPSInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned imod = fieldFromInstruction(Insn, 18, 2);
+ unsigned M = fieldFromInstruction(Insn, 17, 1);
+ unsigned iflags = fieldFromInstruction(Insn, 6, 3);
+ unsigned mode = fieldFromInstruction(Insn, 0, 5);
+
+ DecodeStatus S = MCDisassembler::Success;
+
+ // This decoder is called from multiple location that do not check
+ // the full encoding is valid before they do.
+ if (fieldFromInstruction(Insn, 5, 1) != 0 ||
+ fieldFromInstruction(Insn, 16, 1) != 0 ||
+ fieldFromInstruction(Insn, 20, 8) != 0x10)
+ return MCDisassembler::Fail;
+
+ // imod == '01' --> UNPREDICTABLE
+ // NOTE: Even though this is technically UNPREDICTABLE, we choose to
+ // return failure here. The '01' imod value is unprintable, so there's
+ // nothing useful we could do even if we returned UNPREDICTABLE.
+
+ if (imod == 1) return MCDisassembler::Fail;
+
+ if (imod && M) {
+ Inst.setOpcode(ARM::CPS3p);
+ Inst.addOperand(MCOperand::CreateImm(imod));
+ Inst.addOperand(MCOperand::CreateImm(iflags));
+ Inst.addOperand(MCOperand::CreateImm(mode));
+ } else if (imod && !M) {
+ Inst.setOpcode(ARM::CPS2p);
+ Inst.addOperand(MCOperand::CreateImm(imod));
+ Inst.addOperand(MCOperand::CreateImm(iflags));
+ if (mode) S = MCDisassembler::SoftFail;
+ } else if (!imod && M) {
+ Inst.setOpcode(ARM::CPS1p);
+ Inst.addOperand(MCOperand::CreateImm(mode));
+ if (iflags) S = MCDisassembler::SoftFail;
+ } else {
+ // imod == '00' && M == '0' --> UNPREDICTABLE
+ Inst.setOpcode(ARM::CPS1p);
+ Inst.addOperand(MCOperand::CreateImm(mode));
+ S = MCDisassembler::SoftFail;
+ }
+
+ return S;
+}
+
+static DecodeStatus DecodeT2CPSInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned imod = fieldFromInstruction(Insn, 9, 2);
+ unsigned M = fieldFromInstruction(Insn, 8, 1);
+ unsigned iflags = fieldFromInstruction(Insn, 5, 3);
+ unsigned mode = fieldFromInstruction(Insn, 0, 5);
+
+ DecodeStatus S = MCDisassembler::Success;
+
+ // imod == '01' --> UNPREDICTABLE
+ // NOTE: Even though this is technically UNPREDICTABLE, we choose to
+ // return failure here. The '01' imod value is unprintable, so there's
+ // nothing useful we could do even if we returned UNPREDICTABLE.
+
+ if (imod == 1) return MCDisassembler::Fail;
+
+ if (imod && M) {
+ Inst.setOpcode(ARM::t2CPS3p);
+ Inst.addOperand(MCOperand::CreateImm(imod));
+ Inst.addOperand(MCOperand::CreateImm(iflags));
+ Inst.addOperand(MCOperand::CreateImm(mode));
+ } else if (imod && !M) {
+ Inst.setOpcode(ARM::t2CPS2p);
+ Inst.addOperand(MCOperand::CreateImm(imod));
+ Inst.addOperand(MCOperand::CreateImm(iflags));
+ if (mode) S = MCDisassembler::SoftFail;
+ } else if (!imod && M) {
+ Inst.setOpcode(ARM::t2CPS1p);
+ Inst.addOperand(MCOperand::CreateImm(mode));
+ if (iflags) S = MCDisassembler::SoftFail;
+ } else {
+ // imod == '00' && M == '0' --> this is a HINT instruction
+ int imm = fieldFromInstruction(Insn, 0, 8);
+ // HINT are defined only for immediate in [0..4]
+ if(imm > 4) return MCDisassembler::Fail;
+ Inst.setOpcode(ARM::t2HINT);
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ }
+
+ return S;
+}
+
+static DecodeStatus DecodeT2MOVTWInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 8, 4);
+ unsigned imm = 0;
+
+ imm |= (fieldFromInstruction(Insn, 0, 8) << 0);
+ imm |= (fieldFromInstruction(Insn, 12, 3) << 8);
+ imm |= (fieldFromInstruction(Insn, 16, 4) << 12);
+ imm |= (fieldFromInstruction(Insn, 26, 1) << 11);
+
+ if (Inst.getOpcode() == ARM::t2MOVTi16)
+ if (!Check(S, DecoderGPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecoderGPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ if (!tryAddingSymbolicOperand(Address, imm, false, 4, Inst, Decoder))
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ return S;
+}
+
+static DecodeStatus DecodeArmMOVTWInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+ unsigned imm = 0;
+
+ imm |= (fieldFromInstruction(Insn, 0, 12) << 0);
+ imm |= (fieldFromInstruction(Insn, 16, 4) << 12);
+
+ if (Inst.getOpcode() == ARM::MOVTi16)
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ if (!tryAddingSymbolicOperand(Address, imm, false, 4, Inst, Decoder))
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeSMLAInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 8, 4);
+ unsigned Ra = fieldFromInstruction(Insn, 12, 4);
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+
+ if (pred == 0xF)
+ return DecodeCPSInstruction(Inst, Insn, Address, Decoder);
+
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Ra, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeAddrModeImm12Operand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned add = fieldFromInstruction(Val, 12, 1);
+ unsigned imm = fieldFromInstruction(Val, 0, 12);
+ unsigned Rn = fieldFromInstruction(Val, 13, 4);
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ if (!add) imm *= -1;
+ if (imm == 0 && !add) imm = INT32_MIN;
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ if (Rn == 15)
+ tryAddingPcLoadReferenceComment(Address, Address + imm + 8, Decoder);
+
+ return S;
+}
+
+static DecodeStatus DecodeAddrMode5Operand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Val, 9, 4);
+ unsigned U = fieldFromInstruction(Val, 8, 1);
+ unsigned imm = fieldFromInstruction(Val, 0, 8);
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ if (U)
+ Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::add, imm)));
+ else
+ Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::sub, imm)));
+
+ return S;
+}
+
+static DecodeStatus DecodeAddrMode7Operand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ return DecodeGPRRegisterClass(Inst, Val, Address, Decoder);
+}
+
+static DecodeStatus
+DecodeT2BInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus Status = MCDisassembler::Success;
+
+ // Note the J1 and J2 values are from the encoded instruction. So here
+ // change them to I1 and I2 values via as documented:
+ // I1 = NOT(J1 EOR S);
+ // I2 = NOT(J2 EOR S);
+ // and build the imm32 with one trailing zero as documented:
+ // imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
+ unsigned S = fieldFromInstruction(Insn, 26, 1);
+ unsigned J1 = fieldFromInstruction(Insn, 13, 1);
+ unsigned J2 = fieldFromInstruction(Insn, 11, 1);
+ unsigned I1 = !(J1 ^ S);
+ unsigned I2 = !(J2 ^ S);
+ unsigned imm10 = fieldFromInstruction(Insn, 16, 10);
+ unsigned imm11 = fieldFromInstruction(Insn, 0, 11);
+ unsigned tmp = (S << 23) | (I1 << 22) | (I2 << 21) | (imm10 << 11) | imm11;
+ int imm32 = SignExtend32<25>(tmp << 1);
+ if (!tryAddingSymbolicOperand(Address, Address + imm32 + 4,
+ true, 4, Inst, Decoder))
+ Inst.addOperand(MCOperand::CreateImm(imm32));
+
+ return Status;
+}
+
+static DecodeStatus
+DecodeBranchImmInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+ unsigned imm = fieldFromInstruction(Insn, 0, 24) << 2;
+
+ if (pred == 0xF) {
+ Inst.setOpcode(ARM::BLXi);
+ imm |= fieldFromInstruction(Insn, 24, 1) << 1;
+ if (!tryAddingSymbolicOperand(Address, Address + SignExtend32<26>(imm) + 8,
+ true, 4, Inst, Decoder))
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<26>(imm)));
+ return S;
+ }
+
+ if (!tryAddingSymbolicOperand(Address, Address + SignExtend32<26>(imm) + 8,
+ true, 4, Inst, Decoder))
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<26>(imm)));
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+
+static DecodeStatus DecodeAddrMode6Operand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rm = fieldFromInstruction(Val, 0, 4);
+ unsigned align = fieldFromInstruction(Val, 4, 2);
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!align)
+ Inst.addOperand(MCOperand::CreateImm(0));
+ else
+ Inst.addOperand(MCOperand::CreateImm(4 << align));
+
+ return S;
+}
+
+static DecodeStatus DecodeVLDInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned wb = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ Rn |= fieldFromInstruction(Insn, 4, 2) << 4;
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+
+ // First output register
+ switch (Inst.getOpcode()) {
+ case ARM::VLD1q16: case ARM::VLD1q32: case ARM::VLD1q64: case ARM::VLD1q8:
+ case ARM::VLD1q16wb_fixed: case ARM::VLD1q16wb_register:
+ case ARM::VLD1q32wb_fixed: case ARM::VLD1q32wb_register:
+ case ARM::VLD1q64wb_fixed: case ARM::VLD1q64wb_register:
+ case ARM::VLD1q8wb_fixed: case ARM::VLD1q8wb_register:
+ case ARM::VLD2d16: case ARM::VLD2d32: case ARM::VLD2d8:
+ case ARM::VLD2d16wb_fixed: case ARM::VLD2d16wb_register:
+ case ARM::VLD2d32wb_fixed: case ARM::VLD2d32wb_register:
+ case ARM::VLD2d8wb_fixed: case ARM::VLD2d8wb_register:
+ if (!Check(S, DecodeDPairRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ case ARM::VLD2b16:
+ case ARM::VLD2b32:
+ case ARM::VLD2b8:
+ case ARM::VLD2b16wb_fixed:
+ case ARM::VLD2b16wb_register:
+ case ARM::VLD2b32wb_fixed:
+ case ARM::VLD2b32wb_register:
+ case ARM::VLD2b8wb_fixed:
+ case ARM::VLD2b8wb_register:
+ if (!Check(S, DecodeDPairSpacedRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ // Second output register
+ switch (Inst.getOpcode()) {
+ case ARM::VLD3d8:
+ case ARM::VLD3d16:
+ case ARM::VLD3d32:
+ case ARM::VLD3d8_UPD:
+ case ARM::VLD3d16_UPD:
+ case ARM::VLD3d32_UPD:
+ case ARM::VLD4d8:
+ case ARM::VLD4d16:
+ case ARM::VLD4d32:
+ case ARM::VLD4d8_UPD:
+ case ARM::VLD4d16_UPD:
+ case ARM::VLD4d32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+1)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ case ARM::VLD3q8:
+ case ARM::VLD3q16:
+ case ARM::VLD3q32:
+ case ARM::VLD3q8_UPD:
+ case ARM::VLD3q16_UPD:
+ case ARM::VLD3q32_UPD:
+ case ARM::VLD4q8:
+ case ARM::VLD4q16:
+ case ARM::VLD4q32:
+ case ARM::VLD4q8_UPD:
+ case ARM::VLD4q16_UPD:
+ case ARM::VLD4q32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ default:
+ break;
+ }
+
+ // Third output register
+ switch(Inst.getOpcode()) {
+ case ARM::VLD3d8:
+ case ARM::VLD3d16:
+ case ARM::VLD3d32:
+ case ARM::VLD3d8_UPD:
+ case ARM::VLD3d16_UPD:
+ case ARM::VLD3d32_UPD:
+ case ARM::VLD4d8:
+ case ARM::VLD4d16:
+ case ARM::VLD4d32:
+ case ARM::VLD4d8_UPD:
+ case ARM::VLD4d16_UPD:
+ case ARM::VLD4d32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ case ARM::VLD3q8:
+ case ARM::VLD3q16:
+ case ARM::VLD3q32:
+ case ARM::VLD3q8_UPD:
+ case ARM::VLD3q16_UPD:
+ case ARM::VLD3q32_UPD:
+ case ARM::VLD4q8:
+ case ARM::VLD4q16:
+ case ARM::VLD4q32:
+ case ARM::VLD4q8_UPD:
+ case ARM::VLD4q16_UPD:
+ case ARM::VLD4q32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+4)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ // Fourth output register
+ switch (Inst.getOpcode()) {
+ case ARM::VLD4d8:
+ case ARM::VLD4d16:
+ case ARM::VLD4d32:
+ case ARM::VLD4d8_UPD:
+ case ARM::VLD4d16_UPD:
+ case ARM::VLD4d32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+3)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ case ARM::VLD4q8:
+ case ARM::VLD4q16:
+ case ARM::VLD4q32:
+ case ARM::VLD4q8_UPD:
+ case ARM::VLD4q16_UPD:
+ case ARM::VLD4q32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+6)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ // Writeback operand
+ switch (Inst.getOpcode()) {
+ case ARM::VLD1d8wb_fixed:
+ case ARM::VLD1d16wb_fixed:
+ case ARM::VLD1d32wb_fixed:
+ case ARM::VLD1d64wb_fixed:
+ case ARM::VLD1d8wb_register:
+ case ARM::VLD1d16wb_register:
+ case ARM::VLD1d32wb_register:
+ case ARM::VLD1d64wb_register:
+ case ARM::VLD1q8wb_fixed:
+ case ARM::VLD1q16wb_fixed:
+ case ARM::VLD1q32wb_fixed:
+ case ARM::VLD1q64wb_fixed:
+ case ARM::VLD1q8wb_register:
+ case ARM::VLD1q16wb_register:
+ case ARM::VLD1q32wb_register:
+ case ARM::VLD1q64wb_register:
+ case ARM::VLD1d8Twb_fixed:
+ case ARM::VLD1d8Twb_register:
+ case ARM::VLD1d16Twb_fixed:
+ case ARM::VLD1d16Twb_register:
+ case ARM::VLD1d32Twb_fixed:
+ case ARM::VLD1d32Twb_register:
+ case ARM::VLD1d64Twb_fixed:
+ case ARM::VLD1d64Twb_register:
+ case ARM::VLD1d8Qwb_fixed:
+ case ARM::VLD1d8Qwb_register:
+ case ARM::VLD1d16Qwb_fixed:
+ case ARM::VLD1d16Qwb_register:
+ case ARM::VLD1d32Qwb_fixed:
+ case ARM::VLD1d32Qwb_register:
+ case ARM::VLD1d64Qwb_fixed:
+ case ARM::VLD1d64Qwb_register:
+ case ARM::VLD2d8wb_fixed:
+ case ARM::VLD2d16wb_fixed:
+ case ARM::VLD2d32wb_fixed:
+ case ARM::VLD2q8wb_fixed:
+ case ARM::VLD2q16wb_fixed:
+ case ARM::VLD2q32wb_fixed:
+ case ARM::VLD2d8wb_register:
+ case ARM::VLD2d16wb_register:
+ case ARM::VLD2d32wb_register:
+ case ARM::VLD2q8wb_register:
+ case ARM::VLD2q16wb_register:
+ case ARM::VLD2q32wb_register:
+ case ARM::VLD2b8wb_fixed:
+ case ARM::VLD2b16wb_fixed:
+ case ARM::VLD2b32wb_fixed:
+ case ARM::VLD2b8wb_register:
+ case ARM::VLD2b16wb_register:
+ case ARM::VLD2b32wb_register:
+ Inst.addOperand(MCOperand::CreateImm(0));
+ break;
+ case ARM::VLD3d8_UPD:
+ case ARM::VLD3d16_UPD:
+ case ARM::VLD3d32_UPD:
+ case ARM::VLD3q8_UPD:
+ case ARM::VLD3q16_UPD:
+ case ARM::VLD3q32_UPD:
+ case ARM::VLD4d8_UPD:
+ case ARM::VLD4d16_UPD:
+ case ARM::VLD4d32_UPD:
+ case ARM::VLD4q8_UPD:
+ case ARM::VLD4q16_UPD:
+ case ARM::VLD4q32_UPD:
+ if (!Check(S, DecodeGPRRegisterClass(Inst, wb, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ // AddrMode6 Base (register+alignment)
+ if (!Check(S, DecodeAddrMode6Operand(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ // AddrMode6 Offset (register)
+ switch (Inst.getOpcode()) {
+ default:
+ // The below have been updated to have explicit am6offset split
+ // between fixed and register offset. For those instructions not
+ // yet updated, we need to add an additional reg0 operand for the
+ // fixed variant.
+ //
+ // The fixed offset encodes as Rm == 0xd, so we check for that.
+ if (Rm == 0xd) {
+ Inst.addOperand(MCOperand::CreateReg(0));
+ break;
+ }
+ // Fall through to handle the register offset variant.
+ case ARM::VLD1d8wb_fixed:
+ case ARM::VLD1d16wb_fixed:
+ case ARM::VLD1d32wb_fixed:
+ case ARM::VLD1d64wb_fixed:
+ case ARM::VLD1d8Twb_fixed:
+ case ARM::VLD1d16Twb_fixed:
+ case ARM::VLD1d32Twb_fixed:
+ case ARM::VLD1d64Twb_fixed:
+ case ARM::VLD1d8Qwb_fixed:
+ case ARM::VLD1d16Qwb_fixed:
+ case ARM::VLD1d32Qwb_fixed:
+ case ARM::VLD1d64Qwb_fixed:
+ case ARM::VLD1d8wb_register:
+ case ARM::VLD1d16wb_register:
+ case ARM::VLD1d32wb_register:
+ case ARM::VLD1d64wb_register:
+ case ARM::VLD1q8wb_fixed:
+ case ARM::VLD1q16wb_fixed:
+ case ARM::VLD1q32wb_fixed:
+ case ARM::VLD1q64wb_fixed:
+ case ARM::VLD1q8wb_register:
+ case ARM::VLD1q16wb_register:
+ case ARM::VLD1q32wb_register:
+ case ARM::VLD1q64wb_register:
+ // The fixed offset post-increment encodes Rm == 0xd. The no-writeback
+ // variant encodes Rm == 0xf. Anything else is a register offset post-
+ // increment and we need to add the register operand to the instruction.
+ if (Rm != 0xD && Rm != 0xF &&
+ !Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ case ARM::VLD2d8wb_fixed:
+ case ARM::VLD2d16wb_fixed:
+ case ARM::VLD2d32wb_fixed:
+ case ARM::VLD2b8wb_fixed:
+ case ARM::VLD2b16wb_fixed:
+ case ARM::VLD2b32wb_fixed:
+ case ARM::VLD2q8wb_fixed:
+ case ARM::VLD2q16wb_fixed:
+ case ARM::VLD2q32wb_fixed:
+ break;
+ }
+
+ return S;
+}
+
+static DecodeStatus DecodeVLDST1Instruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned type = fieldFromInstruction(Insn, 8, 4);
+ unsigned align = fieldFromInstruction(Insn, 4, 2);
+ if (type == 6 && (align & 2)) return MCDisassembler::Fail;
+ if (type == 7 && (align & 2)) return MCDisassembler::Fail;
+ if (type == 10 && align == 3) return MCDisassembler::Fail;
+
+ unsigned load = fieldFromInstruction(Insn, 21, 1);
+ return load ? DecodeVLDInstruction(Inst, Insn, Address, Decoder)
+ : DecodeVSTInstruction(Inst, Insn, Address, Decoder);
+}
+
+static DecodeStatus DecodeVLDST2Instruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned size = fieldFromInstruction(Insn, 6, 2);
+ if (size == 3) return MCDisassembler::Fail;
+
+ unsigned type = fieldFromInstruction(Insn, 8, 4);
+ unsigned align = fieldFromInstruction(Insn, 4, 2);
+ if (type == 8 && align == 3) return MCDisassembler::Fail;
+ if (type == 9 && align == 3) return MCDisassembler::Fail;
+
+ unsigned load = fieldFromInstruction(Insn, 21, 1);
+ return load ? DecodeVLDInstruction(Inst, Insn, Address, Decoder)
+ : DecodeVSTInstruction(Inst, Insn, Address, Decoder);
+}
+
+static DecodeStatus DecodeVLDST3Instruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned size = fieldFromInstruction(Insn, 6, 2);
+ if (size == 3) return MCDisassembler::Fail;
+
+ unsigned align = fieldFromInstruction(Insn, 4, 2);
+ if (align & 2) return MCDisassembler::Fail;
+
+ unsigned load = fieldFromInstruction(Insn, 21, 1);
+ return load ? DecodeVLDInstruction(Inst, Insn, Address, Decoder)
+ : DecodeVSTInstruction(Inst, Insn, Address, Decoder);
+}
+
+static DecodeStatus DecodeVLDST4Instruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned size = fieldFromInstruction(Insn, 6, 2);
+ if (size == 3) return MCDisassembler::Fail;
+
+ unsigned load = fieldFromInstruction(Insn, 21, 1);
+ return load ? DecodeVLDInstruction(Inst, Insn, Address, Decoder)
+ : DecodeVSTInstruction(Inst, Insn, Address, Decoder);
+}
+
+static DecodeStatus DecodeVSTInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned wb = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ Rn |= fieldFromInstruction(Insn, 4, 2) << 4;
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+
+ // Writeback Operand
+ switch (Inst.getOpcode()) {
+ case ARM::VST1d8wb_fixed:
+ case ARM::VST1d16wb_fixed:
+ case ARM::VST1d32wb_fixed:
+ case ARM::VST1d64wb_fixed:
+ case ARM::VST1d8wb_register:
+ case ARM::VST1d16wb_register:
+ case ARM::VST1d32wb_register:
+ case ARM::VST1d64wb_register:
+ case ARM::VST1q8wb_fixed:
+ case ARM::VST1q16wb_fixed:
+ case ARM::VST1q32wb_fixed:
+ case ARM::VST1q64wb_fixed:
+ case ARM::VST1q8wb_register:
+ case ARM::VST1q16wb_register:
+ case ARM::VST1q32wb_register:
+ case ARM::VST1q64wb_register:
+ case ARM::VST1d8Twb_fixed:
+ case ARM::VST1d16Twb_fixed:
+ case ARM::VST1d32Twb_fixed:
+ case ARM::VST1d64Twb_fixed:
+ case ARM::VST1d8Twb_register:
+ case ARM::VST1d16Twb_register:
+ case ARM::VST1d32Twb_register:
+ case ARM::VST1d64Twb_register:
+ case ARM::VST1d8Qwb_fixed:
+ case ARM::VST1d16Qwb_fixed:
+ case ARM::VST1d32Qwb_fixed:
+ case ARM::VST1d64Qwb_fixed:
+ case ARM::VST1d8Qwb_register:
+ case ARM::VST1d16Qwb_register:
+ case ARM::VST1d32Qwb_register:
+ case ARM::VST1d64Qwb_register:
+ case ARM::VST2d8wb_fixed:
+ case ARM::VST2d16wb_fixed:
+ case ARM::VST2d32wb_fixed:
+ case ARM::VST2d8wb_register:
+ case ARM::VST2d16wb_register:
+ case ARM::VST2d32wb_register:
+ case ARM::VST2q8wb_fixed:
+ case ARM::VST2q16wb_fixed:
+ case ARM::VST2q32wb_fixed:
+ case ARM::VST2q8wb_register:
+ case ARM::VST2q16wb_register:
+ case ARM::VST2q32wb_register:
+ case ARM::VST2b8wb_fixed:
+ case ARM::VST2b16wb_fixed:
+ case ARM::VST2b32wb_fixed:
+ case ARM::VST2b8wb_register:
+ case ARM::VST2b16wb_register:
+ case ARM::VST2b32wb_register:
+ if (Rm == 0xF)
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(0));
+ break;
+ case ARM::VST3d8_UPD:
+ case ARM::VST3d16_UPD:
+ case ARM::VST3d32_UPD:
+ case ARM::VST3q8_UPD:
+ case ARM::VST3q16_UPD:
+ case ARM::VST3q32_UPD:
+ case ARM::VST4d8_UPD:
+ case ARM::VST4d16_UPD:
+ case ARM::VST4d32_UPD:
+ case ARM::VST4q8_UPD:
+ case ARM::VST4q16_UPD:
+ case ARM::VST4q32_UPD:
+ if (!Check(S, DecodeGPRRegisterClass(Inst, wb, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ // AddrMode6 Base (register+alignment)
+ if (!Check(S, DecodeAddrMode6Operand(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ // AddrMode6 Offset (register)
+ switch (Inst.getOpcode()) {
+ default:
+ if (Rm == 0xD)
+ Inst.addOperand(MCOperand::CreateReg(0));
+ else if (Rm != 0xF) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+ break;
+ case ARM::VST1d8wb_fixed:
+ case ARM::VST1d16wb_fixed:
+ case ARM::VST1d32wb_fixed:
+ case ARM::VST1d64wb_fixed:
+ case ARM::VST1q8wb_fixed:
+ case ARM::VST1q16wb_fixed:
+ case ARM::VST1q32wb_fixed:
+ case ARM::VST1q64wb_fixed:
+ case ARM::VST1d8Twb_fixed:
+ case ARM::VST1d16Twb_fixed:
+ case ARM::VST1d32Twb_fixed:
+ case ARM::VST1d64Twb_fixed:
+ case ARM::VST1d8Qwb_fixed:
+ case ARM::VST1d16Qwb_fixed:
+ case ARM::VST1d32Qwb_fixed:
+ case ARM::VST1d64Qwb_fixed:
+ case ARM::VST2d8wb_fixed:
+ case ARM::VST2d16wb_fixed:
+ case ARM::VST2d32wb_fixed:
+ case ARM::VST2q8wb_fixed:
+ case ARM::VST2q16wb_fixed:
+ case ARM::VST2q32wb_fixed:
+ case ARM::VST2b8wb_fixed:
+ case ARM::VST2b16wb_fixed:
+ case ARM::VST2b32wb_fixed:
+ break;
+ }
+
+
+ // First input register
+ switch (Inst.getOpcode()) {
+ case ARM::VST1q16:
+ case ARM::VST1q32:
+ case ARM::VST1q64:
+ case ARM::VST1q8:
+ case ARM::VST1q16wb_fixed:
+ case ARM::VST1q16wb_register:
+ case ARM::VST1q32wb_fixed:
+ case ARM::VST1q32wb_register:
+ case ARM::VST1q64wb_fixed:
+ case ARM::VST1q64wb_register:
+ case ARM::VST1q8wb_fixed:
+ case ARM::VST1q8wb_register:
+ case ARM::VST2d16:
+ case ARM::VST2d32:
+ case ARM::VST2d8:
+ case ARM::VST2d16wb_fixed:
+ case ARM::VST2d16wb_register:
+ case ARM::VST2d32wb_fixed:
+ case ARM::VST2d32wb_register:
+ case ARM::VST2d8wb_fixed:
+ case ARM::VST2d8wb_register:
+ if (!Check(S, DecodeDPairRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ case ARM::VST2b16:
+ case ARM::VST2b32:
+ case ARM::VST2b8:
+ case ARM::VST2b16wb_fixed:
+ case ARM::VST2b16wb_register:
+ case ARM::VST2b32wb_fixed:
+ case ARM::VST2b32wb_register:
+ case ARM::VST2b8wb_fixed:
+ case ARM::VST2b8wb_register:
+ if (!Check(S, DecodeDPairSpacedRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ // Second input register
+ switch (Inst.getOpcode()) {
+ case ARM::VST3d8:
+ case ARM::VST3d16:
+ case ARM::VST3d32:
+ case ARM::VST3d8_UPD:
+ case ARM::VST3d16_UPD:
+ case ARM::VST3d32_UPD:
+ case ARM::VST4d8:
+ case ARM::VST4d16:
+ case ARM::VST4d32:
+ case ARM::VST4d8_UPD:
+ case ARM::VST4d16_UPD:
+ case ARM::VST4d32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+1)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ case ARM::VST3q8:
+ case ARM::VST3q16:
+ case ARM::VST3q32:
+ case ARM::VST3q8_UPD:
+ case ARM::VST3q16_UPD:
+ case ARM::VST3q32_UPD:
+ case ARM::VST4q8:
+ case ARM::VST4q16:
+ case ARM::VST4q32:
+ case ARM::VST4q8_UPD:
+ case ARM::VST4q16_UPD:
+ case ARM::VST4q32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ // Third input register
+ switch (Inst.getOpcode()) {
+ case ARM::VST3d8:
+ case ARM::VST3d16:
+ case ARM::VST3d32:
+ case ARM::VST3d8_UPD:
+ case ARM::VST3d16_UPD:
+ case ARM::VST3d32_UPD:
+ case ARM::VST4d8:
+ case ARM::VST4d16:
+ case ARM::VST4d32:
+ case ARM::VST4d8_UPD:
+ case ARM::VST4d16_UPD:
+ case ARM::VST4d32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ case ARM::VST3q8:
+ case ARM::VST3q16:
+ case ARM::VST3q32:
+ case ARM::VST3q8_UPD:
+ case ARM::VST3q16_UPD:
+ case ARM::VST3q32_UPD:
+ case ARM::VST4q8:
+ case ARM::VST4q16:
+ case ARM::VST4q32:
+ case ARM::VST4q8_UPD:
+ case ARM::VST4q16_UPD:
+ case ARM::VST4q32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+4)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ // Fourth input register
+ switch (Inst.getOpcode()) {
+ case ARM::VST4d8:
+ case ARM::VST4d16:
+ case ARM::VST4d32:
+ case ARM::VST4d8_UPD:
+ case ARM::VST4d16_UPD:
+ case ARM::VST4d32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+3)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ case ARM::VST4q8:
+ case ARM::VST4q16:
+ case ARM::VST4q32:
+ case ARM::VST4q8_UPD:
+ case ARM::VST4q16_UPD:
+ case ARM::VST4q32_UPD:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+6)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ return S;
+}
+
+static DecodeStatus DecodeVLD1DupInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned align = fieldFromInstruction(Insn, 4, 1);
+ unsigned size = fieldFromInstruction(Insn, 6, 2);
+
+ if (size == 0 && align == 1)
+ return MCDisassembler::Fail;
+ align *= (1 << size);
+
+ switch (Inst.getOpcode()) {
+ case ARM::VLD1DUPq16: case ARM::VLD1DUPq32: case ARM::VLD1DUPq8:
+ case ARM::VLD1DUPq16wb_fixed: case ARM::VLD1DUPq16wb_register:
+ case ARM::VLD1DUPq32wb_fixed: case ARM::VLD1DUPq32wb_register:
+ case ARM::VLD1DUPq8wb_fixed: case ARM::VLD1DUPq8wb_register:
+ if (!Check(S, DecodeDPairRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ }
+ if (Rm != 0xF) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(align));
+
+ // The fixed offset post-increment encodes Rm == 0xd. The no-writeback
+ // variant encodes Rm == 0xf. Anything else is a register offset post-
+ // increment and we need to add the register operand to the instruction.
+ if (Rm != 0xD && Rm != 0xF &&
+ !Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeVLD2DupInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned align = fieldFromInstruction(Insn, 4, 1);
+ unsigned size = 1 << fieldFromInstruction(Insn, 6, 2);
+ align *= 2*size;
+
+ switch (Inst.getOpcode()) {
+ case ARM::VLD2DUPd16: case ARM::VLD2DUPd32: case ARM::VLD2DUPd8:
+ case ARM::VLD2DUPd16wb_fixed: case ARM::VLD2DUPd16wb_register:
+ case ARM::VLD2DUPd32wb_fixed: case ARM::VLD2DUPd32wb_register:
+ case ARM::VLD2DUPd8wb_fixed: case ARM::VLD2DUPd8wb_register:
+ if (!Check(S, DecodeDPairRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ case ARM::VLD2DUPd16x2: case ARM::VLD2DUPd32x2: case ARM::VLD2DUPd8x2:
+ case ARM::VLD2DUPd16x2wb_fixed: case ARM::VLD2DUPd16x2wb_register:
+ case ARM::VLD2DUPd32x2wb_fixed: case ARM::VLD2DUPd32x2wb_register:
+ case ARM::VLD2DUPd8x2wb_fixed: case ARM::VLD2DUPd8x2wb_register:
+ if (!Check(S, DecodeDPairSpacedRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ }
+
+ if (Rm != 0xF)
+ Inst.addOperand(MCOperand::CreateImm(0));
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(align));
+
+ if (Rm != 0xD && Rm != 0xF) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ return S;
+}
+
+static DecodeStatus DecodeVLD3DupInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned inc = fieldFromInstruction(Insn, 5, 1) + 1;
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+inc)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2*inc)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (Rm != 0xF) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(0));
+
+ if (Rm == 0xD)
+ Inst.addOperand(MCOperand::CreateReg(0));
+ else if (Rm != 0xF) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ return S;
+}
+
+static DecodeStatus DecodeVLD4DupInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned size = fieldFromInstruction(Insn, 6, 2);
+ unsigned inc = fieldFromInstruction(Insn, 5, 1) + 1;
+ unsigned align = fieldFromInstruction(Insn, 4, 1);
+
+ if (size == 0x3) {
+ if (align == 0)
+ return MCDisassembler::Fail;
+ size = 4;
+ align = 16;
+ } else {
+ if (size == 2) {
+ size = 1 << size;
+ align *= 8;
+ } else {
+ size = 1 << size;
+ align *= 4*size;
+ }
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+inc)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+2*inc)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, (Rd+3*inc)%32, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (Rm != 0xF) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(align));
+
+ if (Rm == 0xD)
+ Inst.addOperand(MCOperand::CreateReg(0));
+ else if (Rm != 0xF) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ return S;
+}
+
+static DecodeStatus
+DecodeNEONModImmInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned imm = fieldFromInstruction(Insn, 0, 4);
+ imm |= fieldFromInstruction(Insn, 16, 3) << 4;
+ imm |= fieldFromInstruction(Insn, 24, 1) << 7;
+ imm |= fieldFromInstruction(Insn, 8, 4) << 8;
+ imm |= fieldFromInstruction(Insn, 5, 1) << 12;
+ unsigned Q = fieldFromInstruction(Insn, 6, 1);
+
+ if (Q) {
+ if (!Check(S, DecodeQPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ } else {
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ switch (Inst.getOpcode()) {
+ case ARM::VORRiv4i16:
+ case ARM::VORRiv2i32:
+ case ARM::VBICiv4i16:
+ case ARM::VBICiv2i32:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ case ARM::VORRiv8i16:
+ case ARM::VORRiv4i32:
+ case ARM::VBICiv8i16:
+ case ARM::VBICiv4i32:
+ if (!Check(S, DecodeQPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ return S;
+}
+
+static DecodeStatus DecodeVSHLMaxInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ Rm |= fieldFromInstruction(Insn, 5, 1) << 4;
+ unsigned size = fieldFromInstruction(Insn, 18, 2);
+
+ if (!Check(S, DecodeQPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(8 << size));
+
+ return S;
+}
+
+static DecodeStatus DecodeShiftRight8Imm(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(8 - Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeShiftRight16Imm(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(16 - Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeShiftRight32Imm(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(32 - Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeShiftRight64Imm(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(64 - Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeTBLInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ Rn |= fieldFromInstruction(Insn, 7, 1) << 4;
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ Rm |= fieldFromInstruction(Insn, 5, 1) << 4;
+ unsigned op = fieldFromInstruction(Insn, 6, 1);
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (op) {
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail; // Writeback
+ }
+
+ switch (Inst.getOpcode()) {
+ case ARM::VTBL2:
+ case ARM::VTBX2:
+ if (!Check(S, DecodeDPairRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ break;
+ default:
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeThumbAddSpecialReg(MCInst &Inst, uint16_t Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned dst = fieldFromInstruction(Insn, 8, 3);
+ unsigned imm = fieldFromInstruction(Insn, 0, 8);
+
+ if (!Check(S, DecodetGPRRegisterClass(Inst, dst, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ switch(Inst.getOpcode()) {
+ default:
+ return MCDisassembler::Fail;
+ case ARM::tADR:
+ break; // tADR does not explicitly represent the PC as an operand.
+ case ARM::tADDrSPi:
+ Inst.addOperand(MCOperand::CreateReg(ARM::SP));
+ break;
+ }
+
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ return S;
+}
+
+static DecodeStatus DecodeThumbBROperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ if (!tryAddingSymbolicOperand(Address, Address + SignExtend32<12>(Val<<1) + 4,
+ true, 2, Inst, Decoder))
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<12>(Val << 1)));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeT2BROperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ if (!tryAddingSymbolicOperand(Address, Address + SignExtend32<21>(Val) + 4,
+ true, 4, Inst, Decoder))
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<21>(Val)));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeThumbCmpBROperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ if (!tryAddingSymbolicOperand(Address, Address + (Val<<1) + 4,
+ true, 2, Inst, Decoder))
+ Inst.addOperand(MCOperand::CreateImm(Val << 1));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeThumbAddrModeRR(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Val, 0, 3);
+ unsigned Rm = fieldFromInstruction(Val, 3, 3);
+
+ if (!Check(S, DecodetGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodetGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeThumbAddrModeIS(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Val, 0, 3);
+ unsigned imm = fieldFromInstruction(Val, 3, 5);
+
+ if (!Check(S, DecodetGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ return S;
+}
+
+static DecodeStatus DecodeThumbAddrModePC(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ unsigned imm = Val << 2;
+
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ tryAddingPcLoadReferenceComment(Address, (Address & ~2u) + imm + 4, Decoder);
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeThumbAddrModeSP(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateReg(ARM::SP));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeT2AddrModeSOReg(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Val, 6, 4);
+ unsigned Rm = fieldFromInstruction(Val, 2, 4);
+ unsigned imm = fieldFromInstruction(Val, 0, 2);
+
+ // Thumb stores cannot use PC as dest register.
+ switch (Inst.getOpcode()) {
+ case ARM::t2STRHs:
+ case ARM::t2STRBs:
+ case ARM::t2STRs:
+ if (Rn == 15)
+ return MCDisassembler::Fail;
+ default:
+ break;
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecoderGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ return S;
+}
+
+static DecodeStatus DecodeT2LoadShift(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+
+ if (Rn == 15) {
+ switch (Inst.getOpcode()) {
+ case ARM::t2LDRBs:
+ Inst.setOpcode(ARM::t2LDRBpci);
+ break;
+ case ARM::t2LDRHs:
+ Inst.setOpcode(ARM::t2LDRHpci);
+ break;
+ case ARM::t2LDRSHs:
+ Inst.setOpcode(ARM::t2LDRSHpci);
+ break;
+ case ARM::t2LDRSBs:
+ Inst.setOpcode(ARM::t2LDRSBpci);
+ break;
+ case ARM::t2LDRs:
+ Inst.setOpcode(ARM::t2LDRpci);
+ break;
+ case ARM::t2PLDs:
+ Inst.setOpcode(ARM::t2PLDpci);
+ break;
+ case ARM::t2PLIs:
+ Inst.setOpcode(ARM::t2PLIpci);
+ break;
+ default:
+ return MCDisassembler::Fail;
+ }
+
+ return DecodeT2LoadLabel(Inst, Insn, Address, Decoder);
+ }
+
+ if (Rt == 15) {
+ switch (Inst.getOpcode()) {
+ case ARM::t2LDRSHs:
+ return MCDisassembler::Fail;
+ case ARM::t2LDRHs:
+ // FIXME: this instruction is only available with MP extensions,
+ // this should be checked first but we don't have access to the
+ // feature bits here.
+ Inst.setOpcode(ARM::t2PLDWs);
+ break;
+ default:
+ break;
+ }
+ }
+
+ switch (Inst.getOpcode()) {
+ case ARM::t2PLDs:
+ case ARM::t2PLDWs:
+ case ARM::t2PLIs:
+ break;
+ default:
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ unsigned addrmode = fieldFromInstruction(Insn, 4, 2);
+ addrmode |= fieldFromInstruction(Insn, 0, 4) << 2;
+ addrmode |= fieldFromInstruction(Insn, 16, 4) << 6;
+ if (!Check(S, DecodeT2AddrModeSOReg(Inst, addrmode, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeT2LoadImm8(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void* Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned U = fieldFromInstruction(Insn, 9, 1);
+ unsigned imm = fieldFromInstruction(Insn, 0, 8);
+ imm |= (U << 8);
+ imm |= (Rn << 9);
+
+ if (Rn == 15) {
+ switch (Inst.getOpcode()) {
+ case ARM::t2LDRi8:
+ Inst.setOpcode(ARM::t2LDRpci);
+ break;
+ case ARM::t2LDRBi8:
+ Inst.setOpcode(ARM::t2LDRBpci);
+ break;
+ case ARM::t2LDRSBi8:
+ Inst.setOpcode(ARM::t2LDRSBpci);
+ break;
+ case ARM::t2LDRHi8:
+ Inst.setOpcode(ARM::t2LDRHpci);
+ break;
+ case ARM::t2LDRSHi8:
+ Inst.setOpcode(ARM::t2LDRSHpci);
+ break;
+ case ARM::t2PLDi8:
+ Inst.setOpcode(ARM::t2PLDpci);
+ break;
+ case ARM::t2PLIi8:
+ Inst.setOpcode(ARM::t2PLIpci);
+ break;
+ default:
+ return MCDisassembler::Fail;
+ }
+ return DecodeT2LoadLabel(Inst, Insn, Address, Decoder);
+ }
+
+ if (Rt == 15) {
+ switch (Inst.getOpcode()) {
+ case ARM::t2LDRSHi8:
+ return MCDisassembler::Fail;
+ default:
+ break;
+ }
+ }
+
+ switch (Inst.getOpcode()) {
+ case ARM::t2PLDi8:
+ case ARM::t2PLIi8:
+ case ARM::t2PLDWi8:
+ break;
+ default:
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ if (!Check(S, DecodeT2AddrModeImm8(Inst, imm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ return S;
+}
+
+static DecodeStatus DecodeT2LoadImm12(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void* Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned imm = fieldFromInstruction(Insn, 0, 12);
+ imm |= (Rn << 13);
+
+ if (Rn == 15) {
+ switch (Inst.getOpcode()) {
+ case ARM::t2LDRi12:
+ Inst.setOpcode(ARM::t2LDRpci);
+ break;
+ case ARM::t2LDRHi12:
+ Inst.setOpcode(ARM::t2LDRHpci);
+ break;
+ case ARM::t2LDRSHi12:
+ Inst.setOpcode(ARM::t2LDRSHpci);
+ break;
+ case ARM::t2LDRBi12:
+ Inst.setOpcode(ARM::t2LDRBpci);
+ break;
+ case ARM::t2LDRSBi12:
+ Inst.setOpcode(ARM::t2LDRSBpci);
+ break;
+ case ARM::t2PLDi12:
+ Inst.setOpcode(ARM::t2PLDpci);
+ break;
+ case ARM::t2PLIi12:
+ Inst.setOpcode(ARM::t2PLIpci);
+ break;
+ default:
+ return MCDisassembler::Fail;
+ }
+ return DecodeT2LoadLabel(Inst, Insn, Address, Decoder);
+ }
+
+ if (Rt == 15) {
+ switch (Inst.getOpcode()) {
+ case ARM::t2LDRSHi12:
+ return MCDisassembler::Fail;
+ case ARM::t2LDRHi12:
+ Inst.setOpcode(ARM::t2PLDi12);
+ break;
+ default:
+ break;
+ }
+ }
+
+ switch (Inst.getOpcode()) {
+ case ARM::t2PLDi12:
+ case ARM::t2PLDWi12:
+ case ARM::t2PLIi12:
+ break;
+ default:
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ if (!Check(S, DecodeT2AddrModeImm12(Inst, imm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ return S;
+}
+
+static DecodeStatus DecodeT2LoadT(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void* Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned imm = fieldFromInstruction(Insn, 0, 8);
+ imm |= (Rn << 9);
+
+ if (Rn == 15) {
+ switch (Inst.getOpcode()) {
+ case ARM::t2LDRT:
+ Inst.setOpcode(ARM::t2LDRpci);
+ break;
+ case ARM::t2LDRBT:
+ Inst.setOpcode(ARM::t2LDRBpci);
+ break;
+ case ARM::t2LDRHT:
+ Inst.setOpcode(ARM::t2LDRHpci);
+ break;
+ case ARM::t2LDRSBT:
+ Inst.setOpcode(ARM::t2LDRSBpci);
+ break;
+ case ARM::t2LDRSHT:
+ Inst.setOpcode(ARM::t2LDRSHpci);
+ break;
+ default:
+ return MCDisassembler::Fail;
+ }
+ return DecodeT2LoadLabel(Inst, Insn, Address, Decoder);
+ }
+
+ if (!Check(S, DecoderGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeT2AddrModeImm8(Inst, imm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ return S;
+}
+
+static DecodeStatus DecodeT2LoadLabel(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void* Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned U = fieldFromInstruction(Insn, 23, 1);
+ int imm = fieldFromInstruction(Insn, 0, 12);
+
+ if (Rt == 15) {
+ switch (Inst.getOpcode()) {
+ case ARM::t2LDRBpci:
+ case ARM::t2LDRHpci:
+ Inst.setOpcode(ARM::t2PLDpci);
+ break;
+ case ARM::t2LDRSBpci:
+ Inst.setOpcode(ARM::t2PLIpci);
+ break;
+ case ARM::t2LDRSHpci:
+ return MCDisassembler::Fail;
+ default:
+ break;
+ }
+ }
+
+ switch(Inst.getOpcode()) {
+ case ARM::t2PLDpci:
+ case ARM::t2PLIpci:
+ break;
+ default:
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ if (!U) {
+ // Special case for #-0.
+ if (imm == 0)
+ imm = INT32_MIN;
+ else
+ imm = -imm;
+ }
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ return S;
+}
+
+static DecodeStatus DecodeT2Imm8S4(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ if (Val == 0)
+ Inst.addOperand(MCOperand::CreateImm(INT32_MIN));
+ else {
+ int imm = Val & 0xFF;
+
+ if (!(Val & 0x100)) imm *= -1;
+ Inst.addOperand(MCOperand::CreateImm(imm * 4));
+ }
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeT2AddrModeImm8s4(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Val, 9, 4);
+ unsigned imm = fieldFromInstruction(Val, 0, 9);
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeT2Imm8S4(Inst, imm, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeT2AddrModeImm0_1020s4(MCInst &Inst,unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Val, 8, 4);
+ unsigned imm = fieldFromInstruction(Val, 0, 8);
+
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ return S;
+}
+
+static DecodeStatus DecodeT2Imm8(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ int imm = Val & 0xFF;
+ if (Val == 0)
+ imm = INT32_MIN;
+ else if (!(Val & 0x100))
+ imm *= -1;
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ return MCDisassembler::Success;
+}
+
+
+static DecodeStatus DecodeT2AddrModeImm8(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Val, 9, 4);
+ unsigned imm = fieldFromInstruction(Val, 0, 9);
+
+ // Thumb stores cannot use PC as dest register.
+ switch (Inst.getOpcode()) {
+ case ARM::t2STRT:
+ case ARM::t2STRBT:
+ case ARM::t2STRHT:
+ case ARM::t2STRi8:
+ case ARM::t2STRHi8:
+ case ARM::t2STRBi8:
+ if (Rn == 15)
+ return MCDisassembler::Fail;
+ break;
+ default:
+ break;
+ }
+
+ // Some instructions always use an additive offset.
+ switch (Inst.getOpcode()) {
+ case ARM::t2LDRT:
+ case ARM::t2LDRBT:
+ case ARM::t2LDRHT:
+ case ARM::t2LDRSBT:
+ case ARM::t2LDRSHT:
+ case ARM::t2STRT:
+ case ARM::t2STRBT:
+ case ARM::t2STRHT:
+ imm |= 0x100;
+ break;
+ default:
+ break;
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeT2Imm8(Inst, imm, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeT2LdStPre(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned addr = fieldFromInstruction(Insn, 0, 8);
+ addr |= fieldFromInstruction(Insn, 9, 1) << 8;
+ addr |= Rn << 9;
+ unsigned load = fieldFromInstruction(Insn, 20, 1);
+
+ if (Rn == 15) {
+ switch (Inst.getOpcode()) {
+ case ARM::t2LDR_PRE:
+ case ARM::t2LDR_POST:
+ Inst.setOpcode(ARM::t2LDRpci);
+ break;
+ case ARM::t2LDRB_PRE:
+ case ARM::t2LDRB_POST:
+ Inst.setOpcode(ARM::t2LDRBpci);
+ break;
+ case ARM::t2LDRH_PRE:
+ case ARM::t2LDRH_POST:
+ Inst.setOpcode(ARM::t2LDRHpci);
+ break;
+ case ARM::t2LDRSB_PRE:
+ case ARM::t2LDRSB_POST:
+ if (Rt == 15)
+ Inst.setOpcode(ARM::t2PLIpci);
+ else
+ Inst.setOpcode(ARM::t2LDRSBpci);
+ break;
+ case ARM::t2LDRSH_PRE:
+ case ARM::t2LDRSH_POST:
+ Inst.setOpcode(ARM::t2LDRSHpci);
+ break;
+ default:
+ return MCDisassembler::Fail;
+ }
+ return DecodeT2LoadLabel(Inst, Insn, Address, Decoder);
+ }
+
+ if (!load) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ if (load) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ if (!Check(S, DecodeT2AddrModeImm8(Inst, addr, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeT2AddrModeImm12(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Val, 13, 4);
+ unsigned imm = fieldFromInstruction(Val, 0, 12);
+
+ // Thumb stores cannot use PC as dest register.
+ switch (Inst.getOpcode()) {
+ case ARM::t2STRi12:
+ case ARM::t2STRBi12:
+ case ARM::t2STRHi12:
+ if (Rn == 15)
+ return MCDisassembler::Fail;
+ default:
+ break;
+ }
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ return S;
+}
+
+
+static DecodeStatus DecodeThumbAddSPImm(MCInst &Inst, uint16_t Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned imm = fieldFromInstruction(Insn, 0, 7);
+
+ Inst.addOperand(MCOperand::CreateReg(ARM::SP));
+ Inst.addOperand(MCOperand::CreateReg(ARM::SP));
+ Inst.addOperand(MCOperand::CreateImm(imm));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeThumbAddSPReg(MCInst &Inst, uint16_t Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ if (Inst.getOpcode() == ARM::tADDrSP) {
+ unsigned Rdm = fieldFromInstruction(Insn, 0, 3);
+ Rdm |= fieldFromInstruction(Insn, 7, 1) << 3;
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rdm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateReg(ARM::SP));
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rdm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ } else if (Inst.getOpcode() == ARM::tADDspr) {
+ unsigned Rm = fieldFromInstruction(Insn, 3, 4);
+
+ Inst.addOperand(MCOperand::CreateReg(ARM::SP));
+ Inst.addOperand(MCOperand::CreateReg(ARM::SP));
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+
+ return S;
+}
+
+static DecodeStatus DecodeThumbCPS(MCInst &Inst, uint16_t Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned imod = fieldFromInstruction(Insn, 4, 1) | 0x2;
+ unsigned flags = fieldFromInstruction(Insn, 0, 3);
+
+ Inst.addOperand(MCOperand::CreateImm(imod));
+ Inst.addOperand(MCOperand::CreateImm(flags));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodePostIdxReg(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned add = fieldFromInstruction(Insn, 4, 1);
+
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(add));
+
+ return S;
+}
+
+static DecodeStatus DecodeThumbBLXOffset(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ // Val is passed in as S:J1:J2:imm10H:imm10L:'0'
+ // Note only one trailing zero not two. Also the J1 and J2 values are from
+ // the encoded instruction. So here change to I1 and I2 values via:
+ // I1 = NOT(J1 EOR S);
+ // I2 = NOT(J2 EOR S);
+ // and build the imm32 with two trailing zeros as documented:
+ // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:'00', 32);
+ unsigned S = (Val >> 23) & 1;
+ unsigned J1 = (Val >> 22) & 1;
+ unsigned J2 = (Val >> 21) & 1;
+ unsigned I1 = !(J1 ^ S);
+ unsigned I2 = !(J2 ^ S);
+ unsigned tmp = (Val & ~0x600000) | (I1 << 22) | (I2 << 21);
+ int imm32 = SignExtend32<25>(tmp << 1);
+
+ if (!tryAddingSymbolicOperand(Address,
+ (Address & ~2u) + imm32 + 4,
+ true, 4, Inst, Decoder))
+ Inst.addOperand(MCOperand::CreateImm(imm32));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeCoprocessor(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ if (Val == 0xA || Val == 0xB)
+ return MCDisassembler::Fail;
+
+ uint64_t featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo()
+ .getFeatureBits();
+ if ((featureBits & ARM::HasV8Ops) && !(Val == 14 || Val == 15))
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus
+DecodeThumbTableBranch(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+
+ if (Rn == ARM::SP) S = MCDisassembler::SoftFail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecoderGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ return S;
+}
+
+static DecodeStatus
+DecodeThumb2BCCInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned pred = fieldFromInstruction(Insn, 22, 4);
+ if (pred == 0xE || pred == 0xF) {
+ unsigned opc = fieldFromInstruction(Insn, 4, 28);
+ switch (opc) {
+ default:
+ return MCDisassembler::Fail;
+ case 0xf3bf8f4:
+ Inst.setOpcode(ARM::t2DSB);
+ break;
+ case 0xf3bf8f5:
+ Inst.setOpcode(ARM::t2DMB);
+ break;
+ case 0xf3bf8f6:
+ Inst.setOpcode(ARM::t2ISB);
+ break;
+ }
+
+ unsigned imm = fieldFromInstruction(Insn, 0, 4);
+ return DecodeMemBarrierOption(Inst, imm, Address, Decoder);
+ }
+
+ unsigned brtarget = fieldFromInstruction(Insn, 0, 11) << 1;
+ brtarget |= fieldFromInstruction(Insn, 11, 1) << 19;
+ brtarget |= fieldFromInstruction(Insn, 13, 1) << 18;
+ brtarget |= fieldFromInstruction(Insn, 16, 6) << 12;
+ brtarget |= fieldFromInstruction(Insn, 26, 1) << 20;
+
+ if (!Check(S, DecodeT2BROperand(Inst, brtarget, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+// Decode a shifted immediate operand. These basically consist
+// of an 8-bit value, and a 4-bit directive that specifies either
+// a splat operation or a rotation.
+static DecodeStatus DecodeT2SOImm(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ unsigned ctrl = fieldFromInstruction(Val, 10, 2);
+ if (ctrl == 0) {
+ unsigned byte = fieldFromInstruction(Val, 8, 2);
+ unsigned imm = fieldFromInstruction(Val, 0, 8);
+ switch (byte) {
+ case 0:
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ break;
+ case 1:
+ Inst.addOperand(MCOperand::CreateImm((imm << 16) | imm));
+ break;
+ case 2:
+ Inst.addOperand(MCOperand::CreateImm((imm << 24) | (imm << 8)));
+ break;
+ case 3:
+ Inst.addOperand(MCOperand::CreateImm((imm << 24) | (imm << 16) |
+ (imm << 8) | imm));
+ break;
+ }
+ } else {
+ unsigned unrot = fieldFromInstruction(Val, 0, 7) | 0x80;
+ unsigned rot = fieldFromInstruction(Val, 7, 5);
+ unsigned imm = (unrot >> rot) | (unrot << ((32-rot)&31));
+ Inst.addOperand(MCOperand::CreateImm(imm));
+ }
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus
+DecodeThumbBCCTargetOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder){
+ if (!tryAddingSymbolicOperand(Address, Address + SignExtend32<9>(Val<<1) + 4,
+ true, 2, Inst, Decoder))
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<9>(Val << 1)));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeThumbBLTargetOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder){
+ // Val is passed in as S:J1:J2:imm10:imm11
+ // Note no trailing zero after imm11. Also the J1 and J2 values are from
+ // the encoded instruction. So here change to I1 and I2 values via:
+ // I1 = NOT(J1 EOR S);
+ // I2 = NOT(J2 EOR S);
+ // and build the imm32 with one trailing zero as documented:
+ // imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
+ unsigned S = (Val >> 23) & 1;
+ unsigned J1 = (Val >> 22) & 1;
+ unsigned J2 = (Val >> 21) & 1;
+ unsigned I1 = !(J1 ^ S);
+ unsigned I2 = !(J2 ^ S);
+ unsigned tmp = (Val & ~0x600000) | (I1 << 22) | (I2 << 21);
+ int imm32 = SignExtend32<25>(tmp << 1);
+
+ if (!tryAddingSymbolicOperand(Address, Address + imm32 + 4,
+ true, 4, Inst, Decoder))
+ Inst.addOperand(MCOperand::CreateImm(imm32));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMemBarrierOption(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ if (Val & ~0xf)
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeInstSyncBarrierOption(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ if (Val & ~0xf)
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMSRMask(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ if (!Val) return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeDoubleRegLoad(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+
+ if (Rn == 0xF)
+ S = MCDisassembler::SoftFail;
+
+ if (!Check(S, DecodeGPRPairRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeDoubleRegStore(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder){
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rt = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ if (Rn == 0xF || Rd == Rn || Rd == Rt || Rd == Rt+1)
+ S = MCDisassembler::SoftFail;
+
+ if (!Check(S, DecodeGPRPairRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeLDRPreImm(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned imm = fieldFromInstruction(Insn, 0, 12);
+ imm |= fieldFromInstruction(Insn, 16, 4) << 13;
+ imm |= fieldFromInstruction(Insn, 23, 1) << 12;
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+
+ if (Rn == 0xF || Rn == Rt) S = MCDisassembler::SoftFail;
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeAddrModeImm12Operand(Inst, imm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeLDRPreReg(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned imm = fieldFromInstruction(Insn, 0, 12);
+ imm |= fieldFromInstruction(Insn, 16, 4) << 13;
+ imm |= fieldFromInstruction(Insn, 23, 1) << 12;
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+
+ if (Rn == 0xF || Rn == Rt) S = MCDisassembler::SoftFail;
+ if (Rm == 0xF) S = MCDisassembler::SoftFail;
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeSORegMemOperand(Inst, imm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+
+static DecodeStatus DecodeSTRPreImm(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned imm = fieldFromInstruction(Insn, 0, 12);
+ imm |= fieldFromInstruction(Insn, 16, 4) << 13;
+ imm |= fieldFromInstruction(Insn, 23, 1) << 12;
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+
+ if (Rn == 0xF || Rn == Rt) S = MCDisassembler::SoftFail;
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeAddrModeImm12Operand(Inst, imm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeSTRPreReg(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned imm = fieldFromInstruction(Insn, 0, 12);
+ imm |= fieldFromInstruction(Insn, 16, 4) << 13;
+ imm |= fieldFromInstruction(Insn, 23, 1) << 12;
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+
+ if (Rn == 0xF || Rn == Rt) S = MCDisassembler::SoftFail;
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeSORegMemOperand(Inst, imm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeVLD1LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned size = fieldFromInstruction(Insn, 10, 2);
+
+ unsigned align = 0;
+ unsigned index = 0;
+ switch (size) {
+ default:
+ return MCDisassembler::Fail;
+ case 0:
+ if (fieldFromInstruction(Insn, 4, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 5, 3);
+ break;
+ case 1:
+ if (fieldFromInstruction(Insn, 5, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 6, 2);
+ if (fieldFromInstruction(Insn, 4, 1))
+ align = 2;
+ break;
+ case 2:
+ if (fieldFromInstruction(Insn, 6, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 7, 1);
+
+ switch (fieldFromInstruction(Insn, 4, 2)) {
+ case 0 :
+ align = 0; break;
+ case 3:
+ align = 4; break;
+ default:
+ return MCDisassembler::Fail;
+ }
+ break;
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (Rm != 0xF) { // Writeback
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(align));
+ if (Rm != 0xF) {
+ if (Rm != 0xD) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ } else
+ Inst.addOperand(MCOperand::CreateReg(0));
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(index));
+
+ return S;
+}
+
+static DecodeStatus DecodeVST1LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned size = fieldFromInstruction(Insn, 10, 2);
+
+ unsigned align = 0;
+ unsigned index = 0;
+ switch (size) {
+ default:
+ return MCDisassembler::Fail;
+ case 0:
+ if (fieldFromInstruction(Insn, 4, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 5, 3);
+ break;
+ case 1:
+ if (fieldFromInstruction(Insn, 5, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 6, 2);
+ if (fieldFromInstruction(Insn, 4, 1))
+ align = 2;
+ break;
+ case 2:
+ if (fieldFromInstruction(Insn, 6, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 7, 1);
+
+ switch (fieldFromInstruction(Insn, 4, 2)) {
+ case 0:
+ align = 0; break;
+ case 3:
+ align = 4; break;
+ default:
+ return MCDisassembler::Fail;
+ }
+ break;
+ }
+
+ if (Rm != 0xF) { // Writeback
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(align));
+ if (Rm != 0xF) {
+ if (Rm != 0xD) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ } else
+ Inst.addOperand(MCOperand::CreateReg(0));
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(index));
+
+ return S;
+}
+
+
+static DecodeStatus DecodeVLD2LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned size = fieldFromInstruction(Insn, 10, 2);
+
+ unsigned align = 0;
+ unsigned index = 0;
+ unsigned inc = 1;
+ switch (size) {
+ default:
+ return MCDisassembler::Fail;
+ case 0:
+ index = fieldFromInstruction(Insn, 5, 3);
+ if (fieldFromInstruction(Insn, 4, 1))
+ align = 2;
+ break;
+ case 1:
+ index = fieldFromInstruction(Insn, 6, 2);
+ if (fieldFromInstruction(Insn, 4, 1))
+ align = 4;
+ if (fieldFromInstruction(Insn, 5, 1))
+ inc = 2;
+ break;
+ case 2:
+ if (fieldFromInstruction(Insn, 5, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 7, 1);
+ if (fieldFromInstruction(Insn, 4, 1) != 0)
+ align = 8;
+ if (fieldFromInstruction(Insn, 6, 1))
+ inc = 2;
+ break;
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (Rm != 0xF) { // Writeback
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(align));
+ if (Rm != 0xF) {
+ if (Rm != 0xD) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ } else
+ Inst.addOperand(MCOperand::CreateReg(0));
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(index));
+
+ return S;
+}
+
+static DecodeStatus DecodeVST2LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned size = fieldFromInstruction(Insn, 10, 2);
+
+ unsigned align = 0;
+ unsigned index = 0;
+ unsigned inc = 1;
+ switch (size) {
+ default:
+ return MCDisassembler::Fail;
+ case 0:
+ index = fieldFromInstruction(Insn, 5, 3);
+ if (fieldFromInstruction(Insn, 4, 1))
+ align = 2;
+ break;
+ case 1:
+ index = fieldFromInstruction(Insn, 6, 2);
+ if (fieldFromInstruction(Insn, 4, 1))
+ align = 4;
+ if (fieldFromInstruction(Insn, 5, 1))
+ inc = 2;
+ break;
+ case 2:
+ if (fieldFromInstruction(Insn, 5, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 7, 1);
+ if (fieldFromInstruction(Insn, 4, 1) != 0)
+ align = 8;
+ if (fieldFromInstruction(Insn, 6, 1))
+ inc = 2;
+ break;
+ }
+
+ if (Rm != 0xF) { // Writeback
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(align));
+ if (Rm != 0xF) {
+ if (Rm != 0xD) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ } else
+ Inst.addOperand(MCOperand::CreateReg(0));
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(index));
+
+ return S;
+}
+
+
+static DecodeStatus DecodeVLD3LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned size = fieldFromInstruction(Insn, 10, 2);
+
+ unsigned align = 0;
+ unsigned index = 0;
+ unsigned inc = 1;
+ switch (size) {
+ default:
+ return MCDisassembler::Fail;
+ case 0:
+ if (fieldFromInstruction(Insn, 4, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 5, 3);
+ break;
+ case 1:
+ if (fieldFromInstruction(Insn, 4, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 6, 2);
+ if (fieldFromInstruction(Insn, 5, 1))
+ inc = 2;
+ break;
+ case 2:
+ if (fieldFromInstruction(Insn, 4, 2))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 7, 1);
+ if (fieldFromInstruction(Insn, 6, 1))
+ inc = 2;
+ break;
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ if (Rm != 0xF) { // Writeback
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(align));
+ if (Rm != 0xF) {
+ if (Rm != 0xD) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ } else
+ Inst.addOperand(MCOperand::CreateReg(0));
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(index));
+
+ return S;
+}
+
+static DecodeStatus DecodeVST3LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned size = fieldFromInstruction(Insn, 10, 2);
+
+ unsigned align = 0;
+ unsigned index = 0;
+ unsigned inc = 1;
+ switch (size) {
+ default:
+ return MCDisassembler::Fail;
+ case 0:
+ if (fieldFromInstruction(Insn, 4, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 5, 3);
+ break;
+ case 1:
+ if (fieldFromInstruction(Insn, 4, 1))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 6, 2);
+ if (fieldFromInstruction(Insn, 5, 1))
+ inc = 2;
+ break;
+ case 2:
+ if (fieldFromInstruction(Insn, 4, 2))
+ return MCDisassembler::Fail; // UNDEFINED
+ index = fieldFromInstruction(Insn, 7, 1);
+ if (fieldFromInstruction(Insn, 6, 1))
+ inc = 2;
+ break;
+ }
+
+ if (Rm != 0xF) { // Writeback
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(align));
+ if (Rm != 0xF) {
+ if (Rm != 0xD) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ } else
+ Inst.addOperand(MCOperand::CreateReg(0));
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(index));
+
+ return S;
+}
+
+
+static DecodeStatus DecodeVLD4LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned size = fieldFromInstruction(Insn, 10, 2);
+
+ unsigned align = 0;
+ unsigned index = 0;
+ unsigned inc = 1;
+ switch (size) {
+ default:
+ return MCDisassembler::Fail;
+ case 0:
+ if (fieldFromInstruction(Insn, 4, 1))
+ align = 4;
+ index = fieldFromInstruction(Insn, 5, 3);
+ break;
+ case 1:
+ if (fieldFromInstruction(Insn, 4, 1))
+ align = 8;
+ index = fieldFromInstruction(Insn, 6, 2);
+ if (fieldFromInstruction(Insn, 5, 1))
+ inc = 2;
+ break;
+ case 2:
+ switch (fieldFromInstruction(Insn, 4, 2)) {
+ case 0:
+ align = 0; break;
+ case 3:
+ return MCDisassembler::Fail;
+ default:
+ align = 4 << fieldFromInstruction(Insn, 4, 2); break;
+ }
+
+ index = fieldFromInstruction(Insn, 7, 1);
+ if (fieldFromInstruction(Insn, 6, 1))
+ inc = 2;
+ break;
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+3*inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ if (Rm != 0xF) { // Writeback
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(align));
+ if (Rm != 0xF) {
+ if (Rm != 0xD) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ } else
+ Inst.addOperand(MCOperand::CreateReg(0));
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+3*inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(index));
+
+ return S;
+}
+
+static DecodeStatus DecodeVST4LN(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rd = fieldFromInstruction(Insn, 12, 4);
+ Rd |= fieldFromInstruction(Insn, 22, 1) << 4;
+ unsigned size = fieldFromInstruction(Insn, 10, 2);
+
+ unsigned align = 0;
+ unsigned index = 0;
+ unsigned inc = 1;
+ switch (size) {
+ default:
+ return MCDisassembler::Fail;
+ case 0:
+ if (fieldFromInstruction(Insn, 4, 1))
+ align = 4;
+ index = fieldFromInstruction(Insn, 5, 3);
+ break;
+ case 1:
+ if (fieldFromInstruction(Insn, 4, 1))
+ align = 8;
+ index = fieldFromInstruction(Insn, 6, 2);
+ if (fieldFromInstruction(Insn, 5, 1))
+ inc = 2;
+ break;
+ case 2:
+ switch (fieldFromInstruction(Insn, 4, 2)) {
+ case 0:
+ align = 0; break;
+ case 3:
+ return MCDisassembler::Fail;
+ default:
+ align = 4 << fieldFromInstruction(Insn, 4, 2); break;
+ }
+
+ index = fieldFromInstruction(Insn, 7, 1);
+ if (fieldFromInstruction(Insn, 6, 1))
+ inc = 2;
+ break;
+ }
+
+ if (Rm != 0xF) { // Writeback
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ }
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(align));
+ if (Rm != 0xF) {
+ if (Rm != 0xD) {
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ } else
+ Inst.addOperand(MCOperand::CreateReg(0));
+ }
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+2*inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Rd+3*inc, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(index));
+
+ return S;
+}
+
+static DecodeStatus DecodeVMOVSRR(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rt2 = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 5, 1);
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+ Rm |= fieldFromInstruction(Insn, 0, 4) << 1;
+
+ if (Rt == 0xF || Rt2 == 0xF || Rm == 0x1F)
+ S = MCDisassembler::SoftFail;
+
+ if (!Check(S, DecodeSPRRegisterClass(Inst, Rm , Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeSPRRegisterClass(Inst, Rm+1, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt , Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt2 , Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeVMOVRRS(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rt2 = fieldFromInstruction(Insn, 16, 4);
+ unsigned Rm = fieldFromInstruction(Insn, 5, 1);
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+ Rm |= fieldFromInstruction(Insn, 0, 4) << 1;
+
+ if (Rt == 0xF || Rt2 == 0xF || Rm == 0x1F)
+ S = MCDisassembler::SoftFail;
+
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt , Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRRegisterClass(Inst, Rt2 , Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeSPRRegisterClass(Inst, Rm , Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeSPRRegisterClass(Inst, Rm+1, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeIT(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+ unsigned pred = fieldFromInstruction(Insn, 4, 4);
+ unsigned mask = fieldFromInstruction(Insn, 0, 4);
+
+ if (pred == 0xF) {
+ pred = 0xE;
+ S = MCDisassembler::SoftFail;
+ }
+
+ if (mask == 0x0)
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(MCOperand::CreateImm(pred));
+ Inst.addOperand(MCOperand::CreateImm(mask));
+ return S;
+}
+
+static DecodeStatus
+DecodeT2LDRDPreInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rt2 = fieldFromInstruction(Insn, 8, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned addr = fieldFromInstruction(Insn, 0, 8);
+ unsigned W = fieldFromInstruction(Insn, 21, 1);
+ unsigned U = fieldFromInstruction(Insn, 23, 1);
+ unsigned P = fieldFromInstruction(Insn, 24, 1);
+ bool writeback = (W == 1) | (P == 0);
+
+ addr |= (U << 8) | (Rn << 9);
+
+ if (writeback && (Rn == Rt || Rn == Rt2))
+ Check(S, MCDisassembler::SoftFail);
+ if (Rt == Rt2)
+ Check(S, MCDisassembler::SoftFail);
+
+ // Rt
+ if (!Check(S, DecoderGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ // Rt2
+ if (!Check(S, DecoderGPRRegisterClass(Inst, Rt2, Address, Decoder)))
+ return MCDisassembler::Fail;
+ // Writeback operand
+ if (!Check(S, DecoderGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ // addr
+ if (!Check(S, DecodeT2AddrModeImm8s4(Inst, addr, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus
+DecodeT2STRDPreInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rt2 = fieldFromInstruction(Insn, 8, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned addr = fieldFromInstruction(Insn, 0, 8);
+ unsigned W = fieldFromInstruction(Insn, 21, 1);
+ unsigned U = fieldFromInstruction(Insn, 23, 1);
+ unsigned P = fieldFromInstruction(Insn, 24, 1);
+ bool writeback = (W == 1) | (P == 0);
+
+ addr |= (U << 8) | (Rn << 9);
+
+ if (writeback && (Rn == Rt || Rn == Rt2))
+ Check(S, MCDisassembler::SoftFail);
+
+ // Writeback operand
+ if (!Check(S, DecoderGPRRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ // Rt
+ if (!Check(S, DecoderGPRRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ // Rt2
+ if (!Check(S, DecoderGPRRegisterClass(Inst, Rt2, Address, Decoder)))
+ return MCDisassembler::Fail;
+ // addr
+ if (!Check(S, DecodeT2AddrModeImm8s4(Inst, addr, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeT2Adr(MCInst &Inst, uint32_t Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned sign1 = fieldFromInstruction(Insn, 21, 1);
+ unsigned sign2 = fieldFromInstruction(Insn, 23, 1);
+ if (sign1 != sign2) return MCDisassembler::Fail;
+
+ unsigned Val = fieldFromInstruction(Insn, 0, 8);
+ Val |= fieldFromInstruction(Insn, 12, 3) << 8;
+ Val |= fieldFromInstruction(Insn, 26, 1) << 11;
+ Val |= sign1 << 12;
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<13>(Val)));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeT2ShifterImmOperand(MCInst &Inst, uint32_t Val,
+ uint64_t Address,
+ const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ // Shift of "asr #32" is not allowed in Thumb2 mode.
+ if (Val == 0x20) S = MCDisassembler::SoftFail;
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return S;
+}
+
+static DecodeStatus DecodeSwap(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned Rt = fieldFromInstruction(Insn, 12, 4);
+ unsigned Rt2 = fieldFromInstruction(Insn, 0, 4);
+ unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ unsigned pred = fieldFromInstruction(Insn, 28, 4);
+
+ if (pred == 0xF)
+ return DecodeCPSInstruction(Inst, Insn, Address, Decoder);
+
+ DecodeStatus S = MCDisassembler::Success;
+
+ if (Rt == Rn || Rn == Rt2)
+ S = MCDisassembler::SoftFail;
+
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt2, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeVCVTD(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned Vd = (fieldFromInstruction(Insn, 12, 4) << 0);
+ Vd |= (fieldFromInstruction(Insn, 22, 1) << 4);
+ unsigned Vm = (fieldFromInstruction(Insn, 0, 4) << 0);
+ Vm |= (fieldFromInstruction(Insn, 5, 1) << 4);
+ unsigned imm = fieldFromInstruction(Insn, 16, 6);
+ unsigned cmode = fieldFromInstruction(Insn, 8, 4);
+ unsigned op = fieldFromInstruction(Insn, 5, 1);
+
+ DecodeStatus S = MCDisassembler::Success;
+
+ // VMOVv2f32 is ambiguous with these decodings.
+ if (!(imm & 0x38) && cmode == 0xF) {
+ if (op == 1) return MCDisassembler::Fail;
+ Inst.setOpcode(ARM::VMOVv2f32);
+ return DecodeNEONModImmInstruction(Inst, Insn, Address, Decoder);
+ }
+
+ if (!(imm & 0x20)) return MCDisassembler::Fail;
+
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Vd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeDPRRegisterClass(Inst, Vm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(64 - imm));
+
+ return S;
+}
+
+static DecodeStatus DecodeVCVTQ(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned Vd = (fieldFromInstruction(Insn, 12, 4) << 0);
+ Vd |= (fieldFromInstruction(Insn, 22, 1) << 4);
+ unsigned Vm = (fieldFromInstruction(Insn, 0, 4) << 0);
+ Vm |= (fieldFromInstruction(Insn, 5, 1) << 4);
+ unsigned imm = fieldFromInstruction(Insn, 16, 6);
+ unsigned cmode = fieldFromInstruction(Insn, 8, 4);
+ unsigned op = fieldFromInstruction(Insn, 5, 1);
+
+ DecodeStatus S = MCDisassembler::Success;
+
+ // VMOVv4f32 is ambiguous with these decodings.
+ if (!(imm & 0x38) && cmode == 0xF) {
+ if (op == 1) return MCDisassembler::Fail;
+ Inst.setOpcode(ARM::VMOVv4f32);
+ return DecodeNEONModImmInstruction(Inst, Insn, Address, Decoder);
+ }
+
+ if (!(imm & 0x20)) return MCDisassembler::Fail;
+
+ if (!Check(S, DecodeQPRRegisterClass(Inst, Vd, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeQPRRegisterClass(Inst, Vm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(64 - imm));
+
+ return S;
+}
+
+static DecodeStatus DecodeLDR(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned Rn = fieldFromInstruction(Val, 16, 4);
+ unsigned Rt = fieldFromInstruction(Val, 12, 4);
+ unsigned Rm = fieldFromInstruction(Val, 0, 4);
+ Rm |= (fieldFromInstruction(Val, 23, 1) << 4);
+ unsigned Cond = fieldFromInstruction(Val, 28, 4);
+
+ if (fieldFromInstruction(Val, 8, 4) != 0 || Rn == Rt)
+ S = MCDisassembler::SoftFail;
+
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeAddrMode7Operand(Inst, Rn, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePostIdxReg(Inst, Rm, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodePredicateOperand(Inst, Cond, Address, Decoder)))
+ return MCDisassembler::Fail;
+
+ return S;
+}
+
+static DecodeStatus DecodeMRRC2(llvm::MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+
+ DecodeStatus S = MCDisassembler::Success;
+
+ unsigned CRm = fieldFromInstruction(Val, 0, 4);
+ unsigned opc1 = fieldFromInstruction(Val, 4, 4);
+ unsigned cop = fieldFromInstruction(Val, 8, 4);
+ unsigned Rt = fieldFromInstruction(Val, 12, 4);
+ unsigned Rt2 = fieldFromInstruction(Val, 16, 4);
+
+ if ((cop & ~0x1) == 0xa)
+ return MCDisassembler::Fail;
+
+ if (Rt == Rt2)
+ S = MCDisassembler::SoftFail;
+
+ Inst.addOperand(MCOperand::CreateImm(cop));
+ Inst.addOperand(MCOperand::CreateImm(opc1));
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt, Address, Decoder)))
+ return MCDisassembler::Fail;
+ if (!Check(S, DecodeGPRnopcRegisterClass(Inst, Rt2, Address, Decoder)))
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateImm(CRm));
+
+ return S;
+}
+
diff --git a/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.cpp b/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.cpp
new file mode 100644
index 0000000..228fb57
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.cpp
@@ -0,0 +1,1501 @@
+//===-- ARMInstPrinter.cpp - Convert ARM MCInst to assembly syntax --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an ARM MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMInstPrinter.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+#include "ARMGenAsmWriter.inc"
+
+/// translateShiftImm - Convert shift immediate from 0-31 to 1-32 for printing.
+///
+/// getSORegOffset returns an integer from 0-31, representing '32' as 0.
+static unsigned translateShiftImm(unsigned imm) {
+ // lsr #32 and asr #32 exist, but should be encoded as a 0.
+ assert((imm & ~0x1f) == 0 && "Invalid shift encoding");
+
+ if (imm == 0)
+ return 32;
+ return imm;
+}
+
+/// Prints the shift value with an immediate value.
+static void printRegImmShift(raw_ostream &O, ARM_AM::ShiftOpc ShOpc,
+ unsigned ShImm, bool UseMarkup) {
+ if (ShOpc == ARM_AM::no_shift || (ShOpc == ARM_AM::lsl && !ShImm))
+ return;
+ O << ", ";
+
+ assert (!(ShOpc == ARM_AM::ror && !ShImm) && "Cannot have ror #0");
+ O << getShiftOpcStr(ShOpc);
+
+ if (ShOpc != ARM_AM::rrx) {
+ O << " ";
+ if (UseMarkup)
+ O << "<imm:";
+ O << "#" << translateShiftImm(ShImm);
+ if (UseMarkup)
+ O << ">";
+ }
+}
+
+ARMInstPrinter::ARMInstPrinter(const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) :
+ MCInstPrinter(MAI, MII, MRI) {
+ // Initialize the set of available features.
+ setAvailableFeatures(STI.getFeatureBits());
+}
+
+void ARMInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
+ OS << markup("<reg:")
+ << getRegisterName(RegNo)
+ << markup(">");
+}
+
+void ARMInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
+ StringRef Annot) {
+ unsigned Opcode = MI->getOpcode();
+
+ switch(Opcode) {
+
+ // Check for HINT instructions w/ canonical names.
+ case ARM::HINT:
+ case ARM::tHINT:
+ case ARM::t2HINT:
+ switch (MI->getOperand(0).getImm()) {
+ case 0: O << "\tnop"; break;
+ case 1: O << "\tyield"; break;
+ case 2: O << "\twfe"; break;
+ case 3: O << "\twfi"; break;
+ case 4: O << "\tsev"; break;
+ case 5:
+ if ((getAvailableFeatures() & ARM::HasV8Ops)) {
+ O << "\tsevl";
+ break;
+ } // Fallthrough for non-v8
+ default:
+ // Anything else should just print normally.
+ printInstruction(MI, O);
+ printAnnotation(O, Annot);
+ return;
+ }
+ printPredicateOperand(MI, 1, O);
+ if (Opcode == ARM::t2HINT)
+ O << ".w";
+ printAnnotation(O, Annot);
+ return;
+
+ // Check for MOVs and print canonical forms, instead.
+ case ARM::MOVsr: {
+ // FIXME: Thumb variants?
+ const MCOperand &Dst = MI->getOperand(0);
+ const MCOperand &MO1 = MI->getOperand(1);
+ const MCOperand &MO2 = MI->getOperand(2);
+ const MCOperand &MO3 = MI->getOperand(3);
+
+ O << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm()));
+ printSBitModifierOperand(MI, 6, O);
+ printPredicateOperand(MI, 4, O);
+
+ O << '\t';
+ printRegName(O, Dst.getReg());
+ O << ", ";
+ printRegName(O, MO1.getReg());
+
+ O << ", ";
+ printRegName(O, MO2.getReg());
+ assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ case ARM::MOVsi: {
+ // FIXME: Thumb variants?
+ const MCOperand &Dst = MI->getOperand(0);
+ const MCOperand &MO1 = MI->getOperand(1);
+ const MCOperand &MO2 = MI->getOperand(2);
+
+ O << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO2.getImm()));
+ printSBitModifierOperand(MI, 5, O);
+ printPredicateOperand(MI, 3, O);
+
+ O << '\t';
+ printRegName(O, Dst.getReg());
+ O << ", ";
+ printRegName(O, MO1.getReg());
+
+ if (ARM_AM::getSORegShOp(MO2.getImm()) == ARM_AM::rrx) {
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ O << ", "
+ << markup("<imm:")
+ << "#" << translateShiftImm(ARM_AM::getSORegOffset(MO2.getImm()))
+ << markup(">");
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ // A8.6.123 PUSH
+ case ARM::STMDB_UPD:
+ case ARM::t2STMDB_UPD:
+ if (MI->getOperand(0).getReg() == ARM::SP && MI->getNumOperands() > 5) {
+ // Should only print PUSH if there are at least two registers in the list.
+ O << '\t' << "push";
+ printPredicateOperand(MI, 2, O);
+ if (Opcode == ARM::t2STMDB_UPD)
+ O << ".w";
+ O << '\t';
+ printRegisterList(MI, 4, O);
+ printAnnotation(O, Annot);
+ return;
+ } else
+ break;
+
+ case ARM::STR_PRE_IMM:
+ if (MI->getOperand(2).getReg() == ARM::SP &&
+ MI->getOperand(3).getImm() == -4) {
+ O << '\t' << "push";
+ printPredicateOperand(MI, 4, O);
+ O << "\t{";
+ printRegName(O, MI->getOperand(1).getReg());
+ O << "}";
+ printAnnotation(O, Annot);
+ return;
+ } else
+ break;
+
+ // A8.6.122 POP
+ case ARM::LDMIA_UPD:
+ case ARM::t2LDMIA_UPD:
+ if (MI->getOperand(0).getReg() == ARM::SP && MI->getNumOperands() > 5) {
+ // Should only print POP if there are at least two registers in the list.
+ O << '\t' << "pop";
+ printPredicateOperand(MI, 2, O);
+ if (Opcode == ARM::t2LDMIA_UPD)
+ O << ".w";
+ O << '\t';
+ printRegisterList(MI, 4, O);
+ printAnnotation(O, Annot);
+ return;
+ } else
+ break;
+
+ case ARM::LDR_POST_IMM:
+ if (MI->getOperand(2).getReg() == ARM::SP &&
+ MI->getOperand(4).getImm() == 4) {
+ O << '\t' << "pop";
+ printPredicateOperand(MI, 5, O);
+ O << "\t{";
+ printRegName(O, MI->getOperand(0).getReg());
+ O << "}";
+ printAnnotation(O, Annot);
+ return;
+ } else
+ break;
+
+ // A8.6.355 VPUSH
+ case ARM::VSTMSDB_UPD:
+ case ARM::VSTMDDB_UPD:
+ if (MI->getOperand(0).getReg() == ARM::SP) {
+ O << '\t' << "vpush";
+ printPredicateOperand(MI, 2, O);
+ O << '\t';
+ printRegisterList(MI, 4, O);
+ printAnnotation(O, Annot);
+ return;
+ } else
+ break;
+
+ // A8.6.354 VPOP
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMDIA_UPD:
+ if (MI->getOperand(0).getReg() == ARM::SP) {
+ O << '\t' << "vpop";
+ printPredicateOperand(MI, 2, O);
+ O << '\t';
+ printRegisterList(MI, 4, O);
+ printAnnotation(O, Annot);
+ return;
+ } else
+ break;
+
+ case ARM::tLDMIA: {
+ bool Writeback = true;
+ unsigned BaseReg = MI->getOperand(0).getReg();
+ for (unsigned i = 3; i < MI->getNumOperands(); ++i) {
+ if (MI->getOperand(i).getReg() == BaseReg)
+ Writeback = false;
+ }
+
+ O << "\tldm";
+
+ printPredicateOperand(MI, 1, O);
+ O << '\t';
+ printRegName(O, BaseReg);
+ if (Writeback) O << "!";
+ O << ", ";
+ printRegisterList(MI, 3, O);
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ // Combine 2 GPRs from disassember into a GPRPair to match with instr def.
+ // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
+ // a single GPRPair reg operand is used in the .td file to replace the two
+ // GPRs. However, when decoding them, the two GRPs cannot be automatically
+ // expressed as a GPRPair, so we have to manually merge them.
+ // FIXME: We would really like to be able to tablegen'erate this.
+ case ARM::LDREXD: case ARM::STREXD:
+ case ARM::LDAEXD: case ARM::STLEXD:
+ const MCRegisterClass& MRC = MRI.getRegClass(ARM::GPRRegClassID);
+ bool isStore = Opcode == ARM::STREXD || Opcode == ARM::STLEXD;
+ unsigned Reg = MI->getOperand(isStore ? 1 : 0).getReg();
+ if (MRC.contains(Reg)) {
+ MCInst NewMI;
+ MCOperand NewReg;
+ NewMI.setOpcode(Opcode);
+
+ if (isStore)
+ NewMI.addOperand(MI->getOperand(0));
+ NewReg = MCOperand::CreateReg(MRI.getMatchingSuperReg(Reg, ARM::gsub_0,
+ &MRI.getRegClass(ARM::GPRPairRegClassID)));
+ NewMI.addOperand(NewReg);
+
+ // Copy the rest operands into NewMI.
+ for(unsigned i= isStore ? 3 : 2; i < MI->getNumOperands(); ++i)
+ NewMI.addOperand(MI->getOperand(i));
+ printInstruction(&NewMI, O);
+ return;
+ }
+ }
+
+ printInstruction(MI, O);
+ printAnnotation(O, Annot);
+}
+
+void ARMInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ unsigned Reg = Op.getReg();
+ printRegName(O, Reg);
+ } else if (Op.isImm()) {
+ O << markup("<imm:")
+ << '#' << formatImm(Op.getImm())
+ << markup(">");
+ } else {
+ assert(Op.isExpr() && "unknown operand kind in printOperand");
+ const MCExpr *Expr = Op.getExpr();
+ switch (Expr->getKind()) {
+ case MCExpr::Binary:
+ O << '#' << *Expr;
+ break;
+ case MCExpr::Constant: {
+ // If a symbolic branch target was added as a constant expression then
+ // print that address in hex. And only print 32 unsigned bits for the
+ // address.
+ const MCConstantExpr *Constant = cast<MCConstantExpr>(Expr);
+ int64_t TargetAddress;
+ if (!Constant->EvaluateAsAbsolute(TargetAddress)) {
+ O << '#' << *Expr;
+ } else {
+ O << "0x";
+ O.write_hex(static_cast<uint32_t>(TargetAddress));
+ }
+ break;
+ }
+ default:
+ // FIXME: Should we always treat this as if it is a constant literal and
+ // prefix it with '#'?
+ O << *Expr;
+ break;
+ }
+ }
+}
+
+void ARMInstPrinter::printThumbLdrLabelOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ if (MO1.isExpr()) {
+ O << *MO1.getExpr();
+ return;
+ }
+
+ O << markup("<mem:") << "[pc, ";
+
+ int32_t OffImm = (int32_t)MO1.getImm();
+ bool isSub = OffImm < 0;
+
+ // Special value for #-0. All others are normal.
+ if (OffImm == INT32_MIN)
+ OffImm = 0;
+ if (isSub) {
+ O << markup("<imm:")
+ << "#-" << formatImm(-OffImm)
+ << markup(">");
+ } else {
+ O << markup("<imm:")
+ << "#" << formatImm(OffImm)
+ << markup(">");
+ }
+ O << "]" << markup(">");
+}
+
+// so_reg is a 4-operand unit corresponding to register forms of the A5.1
+// "Addressing Mode 1 - Data-processing operands" forms. This includes:
+// REG 0 0 - e.g. R5
+// REG REG 0,SH_OPC - e.g. R5, ROR R3
+// REG 0 IMM,SH_OPC - e.g. R5, LSL #3
+void ARMInstPrinter::printSORegRegOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+ const MCOperand &MO3 = MI->getOperand(OpNum+2);
+
+ printRegName(O, MO1.getReg());
+
+ // Print the shift opc.
+ ARM_AM::ShiftOpc ShOpc = ARM_AM::getSORegShOp(MO3.getImm());
+ O << ", " << ARM_AM::getShiftOpcStr(ShOpc);
+ if (ShOpc == ARM_AM::rrx)
+ return;
+
+ O << ' ';
+ printRegName(O, MO2.getReg());
+ assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
+}
+
+void ARMInstPrinter::printSORegImmOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ printRegName(O, MO1.getReg());
+
+ // Print the shift opc.
+ printRegImmShift(O, ARM_AM::getSORegShOp(MO2.getImm()),
+ ARM_AM::getSORegOffset(MO2.getImm()), UseMarkup);
+}
+
+
+//===--------------------------------------------------------------------===//
+// Addressing Mode #2
+//===--------------------------------------------------------------------===//
+
+void ARMInstPrinter::printAM2PreOrOffsetIndexOp(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op+1);
+ const MCOperand &MO3 = MI->getOperand(Op+2);
+
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+
+ if (!MO2.getReg()) {
+ if (ARM_AM::getAM2Offset(MO3.getImm())) { // Don't print +0.
+ O << ", "
+ << markup("<imm:")
+ << "#"
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
+ << ARM_AM::getAM2Offset(MO3.getImm())
+ << markup(">");
+ }
+ O << "]" << markup(">");
+ return;
+ }
+
+ O << ", ";
+ O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()));
+ printRegName(O, MO2.getReg());
+
+ printRegImmShift(O, ARM_AM::getAM2ShiftOpc(MO3.getImm()),
+ ARM_AM::getAM2Offset(MO3.getImm()), UseMarkup);
+ O << "]" << markup(">");
+}
+
+void ARMInstPrinter::printAddrModeTBB(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op+1);
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+ O << ", ";
+ printRegName(O, MO2.getReg());
+ O << "]" << markup(">");
+}
+
+void ARMInstPrinter::printAddrModeTBH(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op+1);
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+ O << ", ";
+ printRegName(O, MO2.getReg());
+ O << ", lsl " << markup("<imm:") << "#1" << markup(">") << "]" << markup(">");
+}
+
+void ARMInstPrinter::printAddrMode2Operand(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+
+ if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
+ printOperand(MI, Op, O);
+ return;
+ }
+
+#ifndef NDEBUG
+ const MCOperand &MO3 = MI->getOperand(Op+2);
+ unsigned IdxMode = ARM_AM::getAM2IdxMode(MO3.getImm());
+ assert(IdxMode != ARMII::IndexModePost &&
+ "Should be pre or offset index op");
+#endif
+
+ printAM2PreOrOffsetIndexOp(MI, Op, O);
+}
+
+void ARMInstPrinter::printAddrMode2OffsetOperand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ if (!MO1.getReg()) {
+ unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
+ O << markup("<imm:")
+ << '#' << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
+ << ImmOffs
+ << markup(">");
+ return;
+ }
+
+ O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()));
+ printRegName(O, MO1.getReg());
+
+ printRegImmShift(O, ARM_AM::getAM2ShiftOpc(MO2.getImm()),
+ ARM_AM::getAM2Offset(MO2.getImm()), UseMarkup);
+}
+
+//===--------------------------------------------------------------------===//
+// Addressing Mode #3
+//===--------------------------------------------------------------------===//
+
+void ARMInstPrinter::printAM3PostIndexOp(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op+1);
+ const MCOperand &MO3 = MI->getOperand(Op+2);
+
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+ O << "], " << markup(">");
+
+ if (MO2.getReg()) {
+ O << (char)ARM_AM::getAM3Op(MO3.getImm());
+ printRegName(O, MO2.getReg());
+ return;
+ }
+
+ unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm());
+ O << markup("<imm:")
+ << '#'
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()))
+ << ImmOffs
+ << markup(">");
+}
+
+void ARMInstPrinter::printAM3PreOrOffsetIndexOp(const MCInst *MI, unsigned Op,
+ raw_ostream &O,
+ bool AlwaysPrintImm0) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op+1);
+ const MCOperand &MO3 = MI->getOperand(Op+2);
+
+ O << markup("<mem:") << '[';
+ printRegName(O, MO1.getReg());
+
+ if (MO2.getReg()) {
+ O << ", " << getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()));
+ printRegName(O, MO2.getReg());
+ O << ']' << markup(">");
+ return;
+ }
+
+ //If the op is sub we have to print the immediate even if it is 0
+ unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm());
+ ARM_AM::AddrOpc op = ARM_AM::getAM3Op(MO3.getImm());
+
+ if (AlwaysPrintImm0 || ImmOffs || (op == ARM_AM::sub)) {
+ O << ", "
+ << markup("<imm:")
+ << "#"
+ << ARM_AM::getAddrOpcStr(op)
+ << ImmOffs
+ << markup(">");
+ }
+ O << ']' << markup(">");
+}
+
+template <bool AlwaysPrintImm0>
+void ARMInstPrinter::printAddrMode3Operand(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ if (!MO1.isReg()) { // For label symbolic references.
+ printOperand(MI, Op, O);
+ return;
+ }
+
+ const MCOperand &MO3 = MI->getOperand(Op+2);
+ unsigned IdxMode = ARM_AM::getAM3IdxMode(MO3.getImm());
+
+ if (IdxMode == ARMII::IndexModePost) {
+ printAM3PostIndexOp(MI, Op, O);
+ return;
+ }
+ printAM3PreOrOffsetIndexOp(MI, Op, O, AlwaysPrintImm0);
+}
+
+void ARMInstPrinter::printAddrMode3OffsetOperand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ if (MO1.getReg()) {
+ O << getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm()));
+ printRegName(O, MO1.getReg());
+ return;
+ }
+
+ unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
+ O << markup("<imm:")
+ << '#' << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm())) << ImmOffs
+ << markup(">");
+}
+
+void ARMInstPrinter::printPostIdxImm8Operand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+ unsigned Imm = MO.getImm();
+ O << markup("<imm:")
+ << '#' << ((Imm & 256) ? "" : "-") << (Imm & 0xff)
+ << markup(">");
+}
+
+void ARMInstPrinter::printPostIdxRegOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ O << (MO2.getImm() ? "" : "-");
+ printRegName(O, MO1.getReg());
+}
+
+void ARMInstPrinter::printPostIdxImm8s4Operand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+ unsigned Imm = MO.getImm();
+ O << markup("<imm:")
+ << '#' << ((Imm & 256) ? "" : "-") << ((Imm & 0xff) << 2)
+ << markup(">");
+}
+
+
+void ARMInstPrinter::printLdStmModeOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MI->getOperand(OpNum)
+ .getImm());
+ O << ARM_AM::getAMSubModeStr(Mode);
+}
+
+template <bool AlwaysPrintImm0>
+void ARMInstPrinter::printAddrMode5Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
+ printOperand(MI, OpNum, O);
+ return;
+ }
+
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+
+ unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm());
+ unsigned Op = ARM_AM::getAM5Op(MO2.getImm());
+ if (AlwaysPrintImm0 || ImmOffs || Op == ARM_AM::sub) {
+ O << ", "
+ << markup("<imm:")
+ << "#"
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM5Op(MO2.getImm()))
+ << ImmOffs * 4
+ << markup(">");
+ }
+ O << "]" << markup(">");
+}
+
+void ARMInstPrinter::printAddrMode6Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+ if (MO2.getImm()) {
+ O << ":" << (MO2.getImm() << 3);
+ }
+ O << "]" << markup(">");
+}
+
+void ARMInstPrinter::printAddrMode7Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+ O << "]" << markup(">");
+}
+
+void ARMInstPrinter::printAddrMode6OffsetOperand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+ if (MO.getReg() == 0)
+ O << "!";
+ else {
+ O << ", ";
+ printRegName(O, MO.getReg());
+ }
+}
+
+void ARMInstPrinter::printBitfieldInvMaskImmOperand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+ uint32_t v = ~MO.getImm();
+ int32_t lsb = countTrailingZeros(v);
+ int32_t width = (32 - countLeadingZeros (v)) - lsb;
+ assert(MO.isImm() && "Not a valid bf_inv_mask_imm value!");
+ O << markup("<imm:") << '#' << lsb << markup(">")
+ << ", "
+ << markup("<imm:") << '#' << width << markup(">");
+}
+
+void ARMInstPrinter::printMemBOption(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned val = MI->getOperand(OpNum).getImm();
+ O << ARM_MB::MemBOptToString(val, (getAvailableFeatures() & ARM::HasV8Ops));
+}
+
+void ARMInstPrinter::printInstSyncBOption(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned val = MI->getOperand(OpNum).getImm();
+ O << ARM_ISB::InstSyncBOptToString(val);
+}
+
+void ARMInstPrinter::printShiftImmOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned ShiftOp = MI->getOperand(OpNum).getImm();
+ bool isASR = (ShiftOp & (1 << 5)) != 0;
+ unsigned Amt = ShiftOp & 0x1f;
+ if (isASR) {
+ O << ", asr "
+ << markup("<imm:")
+ << "#" << (Amt == 0 ? 32 : Amt)
+ << markup(">");
+ }
+ else if (Amt) {
+ O << ", lsl "
+ << markup("<imm:")
+ << "#" << Amt
+ << markup(">");
+ }
+}
+
+void ARMInstPrinter::printPKHLSLShiftImm(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Imm = MI->getOperand(OpNum).getImm();
+ if (Imm == 0)
+ return;
+ assert(Imm > 0 && Imm < 32 && "Invalid PKH shift immediate value!");
+ O << ", lsl " << markup("<imm:") << "#" << Imm << markup(">");
+}
+
+void ARMInstPrinter::printPKHASRShiftImm(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Imm = MI->getOperand(OpNum).getImm();
+ // A shift amount of 32 is encoded as 0.
+ if (Imm == 0)
+ Imm = 32;
+ assert(Imm > 0 && Imm <= 32 && "Invalid PKH shift immediate value!");
+ O << ", asr " << markup("<imm:") << "#" << Imm << markup(">");
+}
+
+void ARMInstPrinter::printRegisterList(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << "{";
+ for (unsigned i = OpNum, e = MI->getNumOperands(); i != e; ++i) {
+ if (i != OpNum) O << ", ";
+ printRegName(O, MI->getOperand(i).getReg());
+ }
+ O << "}";
+}
+
+void ARMInstPrinter::printGPRPairOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Reg = MI->getOperand(OpNum).getReg();
+ printRegName(O, MRI.getSubReg(Reg, ARM::gsub_0));
+ O << ", ";
+ printRegName(O, MRI.getSubReg(Reg, ARM::gsub_1));
+}
+
+
+void ARMInstPrinter::printSetendOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNum);
+ if (Op.getImm())
+ O << "be";
+ else
+ O << "le";
+}
+
+void ARMInstPrinter::printCPSIMod(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNum);
+ O << ARM_PROC::IModToString(Op.getImm());
+}
+
+void ARMInstPrinter::printCPSIFlag(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNum);
+ unsigned IFlags = Op.getImm();
+ for (int i=2; i >= 0; --i)
+ if (IFlags & (1 << i))
+ O << ARM_PROC::IFlagsToString(1 << i);
+
+ if (IFlags == 0)
+ O << "none";
+}
+
+void ARMInstPrinter::printMSRMaskOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNum);
+ unsigned SpecRegRBit = Op.getImm() >> 4;
+ unsigned Mask = Op.getImm() & 0xf;
+
+ if (getAvailableFeatures() & ARM::FeatureMClass) {
+ unsigned SYSm = Op.getImm();
+ unsigned Opcode = MI->getOpcode();
+ // For reads of the special registers ignore the "mask encoding" bits
+ // which are only for writes.
+ if (Opcode == ARM::t2MRS_M)
+ SYSm &= 0xff;
+ switch (SYSm) {
+ default: llvm_unreachable("Unexpected mask value!");
+ case 0:
+ case 0x800: O << "apsr"; return; // with _nzcvq bits is an alias for aspr
+ case 0x400: O << "apsr_g"; return;
+ case 0xc00: O << "apsr_nzcvqg"; return;
+ case 1:
+ case 0x801: O << "iapsr"; return; // with _nzcvq bits is an alias for iapsr
+ case 0x401: O << "iapsr_g"; return;
+ case 0xc01: O << "iapsr_nzcvqg"; return;
+ case 2:
+ case 0x802: O << "eapsr"; return; // with _nzcvq bits is an alias for eapsr
+ case 0x402: O << "eapsr_g"; return;
+ case 0xc02: O << "eapsr_nzcvqg"; return;
+ case 3:
+ case 0x803: O << "xpsr"; return; // with _nzcvq bits is an alias for xpsr
+ case 0x403: O << "xpsr_g"; return;
+ case 0xc03: O << "xpsr_nzcvqg"; return;
+ case 5:
+ case 0x805: O << "ipsr"; return;
+ case 6:
+ case 0x806: O << "epsr"; return;
+ case 7:
+ case 0x807: O << "iepsr"; return;
+ case 8:
+ case 0x808: O << "msp"; return;
+ case 9:
+ case 0x809: O << "psp"; return;
+ case 0x10:
+ case 0x810: O << "primask"; return;
+ case 0x11:
+ case 0x811: O << "basepri"; return;
+ case 0x12:
+ case 0x812: O << "basepri_max"; return;
+ case 0x13:
+ case 0x813: O << "faultmask"; return;
+ case 0x14:
+ case 0x814: O << "control"; return;
+ }
+ }
+
+ // As special cases, CPSR_f, CPSR_s and CPSR_fs prefer printing as
+ // APSR_nzcvq, APSR_g and APSRnzcvqg, respectively.
+ if (!SpecRegRBit && (Mask == 8 || Mask == 4 || Mask == 12)) {
+ O << "APSR_";
+ switch (Mask) {
+ default: llvm_unreachable("Unexpected mask value!");
+ case 4: O << "g"; return;
+ case 8: O << "nzcvq"; return;
+ case 12: O << "nzcvqg"; return;
+ }
+ }
+
+ if (SpecRegRBit)
+ O << "SPSR";
+ else
+ O << "CPSR";
+
+ if (Mask) {
+ O << '_';
+ if (Mask & 8) O << 'f';
+ if (Mask & 4) O << 's';
+ if (Mask & 2) O << 'x';
+ if (Mask & 1) O << 'c';
+ }
+}
+
+void ARMInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
+ // Handle the undefined 15 CC value here for printing so we don't abort().
+ if ((unsigned)CC == 15)
+ O << "<und>";
+ else if (CC != ARMCC::AL)
+ O << ARMCondCodeToString(CC);
+}
+
+void ARMInstPrinter::printMandatoryPredicateOperand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
+ O << ARMCondCodeToString(CC);
+}
+
+void ARMInstPrinter::printSBitModifierOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ if (MI->getOperand(OpNum).getReg()) {
+ assert(MI->getOperand(OpNum).getReg() == ARM::CPSR &&
+ "Expect ARM CPSR register!");
+ O << 's';
+ }
+}
+
+void ARMInstPrinter::printNoHashImmediate(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << MI->getOperand(OpNum).getImm();
+}
+
+void ARMInstPrinter::printPImmediate(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << "p" << MI->getOperand(OpNum).getImm();
+}
+
+void ARMInstPrinter::printCImmediate(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << "c" << MI->getOperand(OpNum).getImm();
+}
+
+void ARMInstPrinter::printCoprocOptionImm(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << "{" << MI->getOperand(OpNum).getImm() << "}";
+}
+
+void ARMInstPrinter::printPCLabel(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ llvm_unreachable("Unhandled PC-relative pseudo-instruction!");
+}
+
+template<unsigned scale>
+void ARMInstPrinter::printAdrLabelOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+
+ if (MO.isExpr()) {
+ O << *MO.getExpr();
+ return;
+ }
+
+ int32_t OffImm = (int32_t)MO.getImm() << scale;
+
+ O << markup("<imm:");
+ if (OffImm == INT32_MIN)
+ O << "#-0";
+ else if (OffImm < 0)
+ O << "#-" << -OffImm;
+ else
+ O << "#" << OffImm;
+ O << markup(">");
+}
+
+void ARMInstPrinter::printThumbS4ImmOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << markup("<imm:")
+ << "#" << formatImm(MI->getOperand(OpNum).getImm() * 4)
+ << markup(">");
+}
+
+void ARMInstPrinter::printThumbSRImm(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Imm = MI->getOperand(OpNum).getImm();
+ O << markup("<imm:")
+ << "#" << formatImm((Imm == 0 ? 32 : Imm))
+ << markup(">");
+}
+
+void ARMInstPrinter::printThumbITMask(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ // (3 - the number of trailing zeros) is the number of then / else.
+ unsigned Mask = MI->getOperand(OpNum).getImm();
+ unsigned Firstcond = MI->getOperand(OpNum-1).getImm();
+ unsigned CondBit0 = Firstcond & 1;
+ unsigned NumTZ = countTrailingZeros(Mask);
+ assert(NumTZ <= 3 && "Invalid IT mask!");
+ for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
+ bool T = ((Mask >> Pos) & 1) == CondBit0;
+ if (T)
+ O << 't';
+ else
+ O << 'e';
+ }
+}
+
+void ARMInstPrinter::printThumbAddrModeRROperand(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op + 1);
+
+ if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
+ printOperand(MI, Op, O);
+ return;
+ }
+
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+ if (unsigned RegNum = MO2.getReg()) {
+ O << ", ";
+ printRegName(O, RegNum);
+ }
+ O << "]" << markup(">");
+}
+
+void ARMInstPrinter::printThumbAddrModeImm5SOperand(const MCInst *MI,
+ unsigned Op,
+ raw_ostream &O,
+ unsigned Scale) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op + 1);
+
+ if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
+ printOperand(MI, Op, O);
+ return;
+ }
+
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+ if (unsigned ImmOffs = MO2.getImm()) {
+ O << ", "
+ << markup("<imm:")
+ << "#" << formatImm(ImmOffs * Scale)
+ << markup(">");
+ }
+ O << "]" << markup(">");
+}
+
+void ARMInstPrinter::printThumbAddrModeImm5S1Operand(const MCInst *MI,
+ unsigned Op,
+ raw_ostream &O) {
+ printThumbAddrModeImm5SOperand(MI, Op, O, 1);
+}
+
+void ARMInstPrinter::printThumbAddrModeImm5S2Operand(const MCInst *MI,
+ unsigned Op,
+ raw_ostream &O) {
+ printThumbAddrModeImm5SOperand(MI, Op, O, 2);
+}
+
+void ARMInstPrinter::printThumbAddrModeImm5S4Operand(const MCInst *MI,
+ unsigned Op,
+ raw_ostream &O) {
+ printThumbAddrModeImm5SOperand(MI, Op, O, 4);
+}
+
+void ARMInstPrinter::printThumbAddrModeSPOperand(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ printThumbAddrModeImm5SOperand(MI, Op, O, 4);
+}
+
+// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
+// register with shift forms.
+// REG 0 0 - e.g. R5
+// REG IMM, SH_OPC - e.g. R5, LSL #3
+void ARMInstPrinter::printT2SOOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ unsigned Reg = MO1.getReg();
+ printRegName(O, Reg);
+
+ // Print the shift opc.
+ assert(MO2.isImm() && "Not a valid t2_so_reg value!");
+ printRegImmShift(O, ARM_AM::getSORegShOp(MO2.getImm()),
+ ARM_AM::getSORegOffset(MO2.getImm()), UseMarkup);
+}
+
+template <bool AlwaysPrintImm0>
+void ARMInstPrinter::printAddrModeImm12Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
+ printOperand(MI, OpNum, O);
+ return;
+ }
+
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+
+ int32_t OffImm = (int32_t)MO2.getImm();
+ bool isSub = OffImm < 0;
+ // Special value for #-0. All others are normal.
+ if (OffImm == INT32_MIN)
+ OffImm = 0;
+ if (isSub) {
+ O << ", "
+ << markup("<imm:")
+ << "#-" << formatImm(-OffImm)
+ << markup(">");
+ }
+ else if (AlwaysPrintImm0 || OffImm > 0) {
+ O << ", "
+ << markup("<imm:")
+ << "#" << formatImm(OffImm)
+ << markup(">");
+ }
+ O << "]" << markup(">");
+}
+
+template<bool AlwaysPrintImm0>
+void ARMInstPrinter::printT2AddrModeImm8Operand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+
+ int32_t OffImm = (int32_t)MO2.getImm();
+ bool isSub = OffImm < 0;
+ // Don't print +0.
+ if (OffImm == INT32_MIN)
+ OffImm = 0;
+ if (isSub) {
+ O << ", "
+ << markup("<imm:")
+ << "#-" << -OffImm
+ << markup(">");
+ } else if (AlwaysPrintImm0 || OffImm > 0) {
+ O << ", "
+ << markup("<imm:")
+ << "#" << OffImm
+ << markup(">");
+ }
+ O << "]" << markup(">");
+}
+
+template<bool AlwaysPrintImm0>
+void ARMInstPrinter::printT2AddrModeImm8s4Operand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ if (!MO1.isReg()) { // For label symbolic references.
+ printOperand(MI, OpNum, O);
+ return;
+ }
+
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+
+ int32_t OffImm = (int32_t)MO2.getImm();
+ bool isSub = OffImm < 0;
+
+ assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
+
+ // Don't print +0.
+ if (OffImm == INT32_MIN)
+ OffImm = 0;
+ if (isSub) {
+ O << ", "
+ << markup("<imm:")
+ << "#-" << -OffImm
+ << markup(">");
+ } else if (AlwaysPrintImm0 || OffImm > 0) {
+ O << ", "
+ << markup("<imm:")
+ << "#" << OffImm
+ << markup(">");
+ }
+ O << "]" << markup(">");
+}
+
+void ARMInstPrinter::printT2AddrModeImm0_1020s4Operand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+ if (MO2.getImm()) {
+ O << ", "
+ << markup("<imm:")
+ << "#" << formatImm(MO2.getImm() * 4)
+ << markup(">");
+ }
+ O << "]" << markup(">");
+}
+
+void ARMInstPrinter::printT2AddrModeImm8OffsetOperand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ int32_t OffImm = (int32_t)MO1.getImm();
+ O << ", " << markup("<imm:");
+ if (OffImm == INT32_MIN)
+ O << "#-0";
+ else if (OffImm < 0)
+ O << "#-" << -OffImm;
+ else
+ O << "#" << OffImm;
+ O << markup(">");
+}
+
+void ARMInstPrinter::printT2AddrModeImm8s4OffsetOperand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ int32_t OffImm = (int32_t)MO1.getImm();
+
+ assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
+
+ O << ", " << markup("<imm:");
+ if (OffImm == INT32_MIN)
+ O << "#-0";
+ else if (OffImm < 0)
+ O << "#-" << -OffImm;
+ else
+ O << "#" << OffImm;
+ O << markup(">");
+}
+
+void ARMInstPrinter::printT2AddrModeSoRegOperand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+ const MCOperand &MO3 = MI->getOperand(OpNum+2);
+
+ O << markup("<mem:") << "[";
+ printRegName(O, MO1.getReg());
+
+ assert(MO2.getReg() && "Invalid so_reg load / store address!");
+ O << ", ";
+ printRegName(O, MO2.getReg());
+
+ unsigned ShAmt = MO3.getImm();
+ if (ShAmt) {
+ assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
+ O << ", lsl "
+ << markup("<imm:")
+ << "#" << ShAmt
+ << markup(">");
+ }
+ O << "]" << markup(">");
+}
+
+void ARMInstPrinter::printFPImmOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+ O << markup("<imm:")
+ << '#' << ARM_AM::getFPImmFloat(MO.getImm())
+ << markup(">");
+}
+
+void ARMInstPrinter::printNEONModImmOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned EncodedImm = MI->getOperand(OpNum).getImm();
+ unsigned EltBits;
+ uint64_t Val = ARM_AM::decodeNEONModImm(EncodedImm, EltBits);
+ O << markup("<imm:")
+ << "#0x";
+ O.write_hex(Val);
+ O << markup(">");
+}
+
+void ARMInstPrinter::printImmPlusOneOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Imm = MI->getOperand(OpNum).getImm();
+ O << markup("<imm:")
+ << "#" << formatImm(Imm + 1)
+ << markup(">");
+}
+
+void ARMInstPrinter::printRotImmOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Imm = MI->getOperand(OpNum).getImm();
+ if (Imm == 0)
+ return;
+ O << ", ror "
+ << markup("<imm:")
+ << "#";
+ switch (Imm) {
+ default: assert (0 && "illegal ror immediate!");
+ case 1: O << "8"; break;
+ case 2: O << "16"; break;
+ case 3: O << "24"; break;
+ }
+ O << markup(">");
+}
+
+void ARMInstPrinter::printFBits16(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << markup("<imm:")
+ << "#" << 16 - MI->getOperand(OpNum).getImm()
+ << markup(">");
+}
+
+void ARMInstPrinter::printFBits32(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << markup("<imm:")
+ << "#" << 32 - MI->getOperand(OpNum).getImm()
+ << markup(">");
+}
+
+void ARMInstPrinter::printVectorIndex(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << "[" << MI->getOperand(OpNum).getImm() << "]";
+}
+
+void ARMInstPrinter::printVectorListOne(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ O << "{";
+ printRegName(O, MI->getOperand(OpNum).getReg());
+ O << "}";
+}
+
+void ARMInstPrinter::printVectorListTwo(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Reg = MI->getOperand(OpNum).getReg();
+ unsigned Reg0 = MRI.getSubReg(Reg, ARM::dsub_0);
+ unsigned Reg1 = MRI.getSubReg(Reg, ARM::dsub_1);
+ O << "{";
+ printRegName(O, Reg0);
+ O << ", ";
+ printRegName(O, Reg1);
+ O << "}";
+}
+
+void ARMInstPrinter::printVectorListTwoSpaced(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Reg = MI->getOperand(OpNum).getReg();
+ unsigned Reg0 = MRI.getSubReg(Reg, ARM::dsub_0);
+ unsigned Reg1 = MRI.getSubReg(Reg, ARM::dsub_2);
+ O << "{";
+ printRegName(O, Reg0);
+ O << ", ";
+ printRegName(O, Reg1);
+ O << "}";
+}
+
+void ARMInstPrinter::printVectorListThree(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ // Normally, it's not safe to use register enum values directly with
+ // addition to get the next register, but for VFP registers, the
+ // sort order is guaranteed because they're all of the form D<n>.
+ O << "{";
+ printRegName(O, MI->getOperand(OpNum).getReg());
+ O << ", ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 1);
+ O << ", ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 2);
+ O << "}";
+}
+
+void ARMInstPrinter::printVectorListFour(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ // Normally, it's not safe to use register enum values directly with
+ // addition to get the next register, but for VFP registers, the
+ // sort order is guaranteed because they're all of the form D<n>.
+ O << "{";
+ printRegName(O, MI->getOperand(OpNum).getReg());
+ O << ", ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 1);
+ O << ", ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 2);
+ O << ", ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 3);
+ O << "}";
+}
+
+void ARMInstPrinter::printVectorListOneAllLanes(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ O << "{";
+ printRegName(O, MI->getOperand(OpNum).getReg());
+ O << "[]}";
+}
+
+void ARMInstPrinter::printVectorListTwoAllLanes(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Reg = MI->getOperand(OpNum).getReg();
+ unsigned Reg0 = MRI.getSubReg(Reg, ARM::dsub_0);
+ unsigned Reg1 = MRI.getSubReg(Reg, ARM::dsub_1);
+ O << "{";
+ printRegName(O, Reg0);
+ O << "[], ";
+ printRegName(O, Reg1);
+ O << "[]}";
+}
+
+void ARMInstPrinter::printVectorListThreeAllLanes(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ // Normally, it's not safe to use register enum values directly with
+ // addition to get the next register, but for VFP registers, the
+ // sort order is guaranteed because they're all of the form D<n>.
+ O << "{";
+ printRegName(O, MI->getOperand(OpNum).getReg());
+ O << "[], ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 1);
+ O << "[], ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 2);
+ O << "[]}";
+}
+
+void ARMInstPrinter::printVectorListFourAllLanes(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ // Normally, it's not safe to use register enum values directly with
+ // addition to get the next register, but for VFP registers, the
+ // sort order is guaranteed because they're all of the form D<n>.
+ O << "{";
+ printRegName(O, MI->getOperand(OpNum).getReg());
+ O << "[], ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 1);
+ O << "[], ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 2);
+ O << "[], ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 3);
+ O << "[]}";
+}
+
+void ARMInstPrinter::printVectorListTwoSpacedAllLanes(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Reg = MI->getOperand(OpNum).getReg();
+ unsigned Reg0 = MRI.getSubReg(Reg, ARM::dsub_0);
+ unsigned Reg1 = MRI.getSubReg(Reg, ARM::dsub_2);
+ O << "{";
+ printRegName(O, Reg0);
+ O << "[], ";
+ printRegName(O, Reg1);
+ O << "[]}";
+}
+
+void ARMInstPrinter::printVectorListThreeSpacedAllLanes(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ // Normally, it's not safe to use register enum values directly with
+ // addition to get the next register, but for VFP registers, the
+ // sort order is guaranteed because they're all of the form D<n>.
+ O << "{";
+ printRegName(O, MI->getOperand(OpNum).getReg());
+ O << "[], ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 2);
+ O << "[], ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 4);
+ O << "[]}";
+}
+
+void ARMInstPrinter::printVectorListFourSpacedAllLanes(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ // Normally, it's not safe to use register enum values directly with
+ // addition to get the next register, but for VFP registers, the
+ // sort order is guaranteed because they're all of the form D<n>.
+ O << "{";
+ printRegName(O, MI->getOperand(OpNum).getReg());
+ O << "[], ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 2);
+ O << "[], ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 4);
+ O << "[], ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 6);
+ O << "[]}";
+}
+
+void ARMInstPrinter::printVectorListThreeSpaced(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ // Normally, it's not safe to use register enum values directly with
+ // addition to get the next register, but for VFP registers, the
+ // sort order is guaranteed because they're all of the form D<n>.
+ O << "{";
+ printRegName(O, MI->getOperand(OpNum).getReg());
+ O << ", ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 2);
+ O << ", ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 4);
+ O << "}";
+}
+
+void ARMInstPrinter::printVectorListFourSpaced(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ // Normally, it's not safe to use register enum values directly with
+ // addition to get the next register, but for VFP registers, the
+ // sort order is guaranteed because they're all of the form D<n>.
+ O << "{";
+ printRegName(O, MI->getOperand(OpNum).getReg());
+ O << ", ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 2);
+ O << ", ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 4);
+ O << ", ";
+ printRegName(O, MI->getOperand(OpNum).getReg() + 6);
+ O << "}";
+}
diff --git a/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.h b/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.h
new file mode 100644
index 0000000..f671fe4
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.h
@@ -0,0 +1,170 @@
+//===- ARMInstPrinter.h - Convert ARM MCInst to assembly syntax -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an ARM MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMINSTPRINTER_H
+#define ARMINSTPRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+
+namespace llvm {
+
+class MCOperand;
+
+class ARMInstPrinter : public MCInstPrinter {
+public:
+ ARMInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI, const MCSubtargetInfo &STI);
+
+ void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot) override;
+ void printRegName(raw_ostream &OS, unsigned RegNo) const override;
+
+ // Autogenerated by tblgen.
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ static const char *getRegisterName(unsigned RegNo);
+
+
+ void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+
+ void printSORegRegOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printSORegImmOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+
+ void printAddrModeTBB(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printAddrModeTBH(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printAddrMode2Operand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printAM2PostIndexOp(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printAM2PreOrOffsetIndexOp(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printAddrMode2OffsetOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ template <bool AlwaysPrintImm0>
+ void printAddrMode3Operand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printAddrMode3OffsetOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printAM3PostIndexOp(const MCInst *MI, unsigned Op, raw_ostream &O);
+ void printAM3PreOrOffsetIndexOp(const MCInst *MI, unsigned Op, raw_ostream &O,
+ bool AlwaysPrintImm0);
+ void printPostIdxImm8Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printPostIdxRegOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printPostIdxImm8s4Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+
+ void printLdStmModeOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ template <bool AlwaysPrintImm0>
+ void printAddrMode5Operand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printAddrMode6Operand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printAddrMode7Operand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printAddrMode6OffsetOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+
+ void printBitfieldInvMaskImmOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printMemBOption(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printInstSyncBOption(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printShiftImmOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printPKHLSLShiftImm(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printPKHASRShiftImm(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+
+ template <unsigned scale>
+ void printAdrLabelOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printThumbS4ImmOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printThumbSRImm(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printThumbITMask(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printThumbAddrModeRROperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printThumbAddrModeImm5SOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O, unsigned Scale);
+ void printThumbAddrModeImm5S1Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printThumbAddrModeImm5S2Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printThumbAddrModeImm5S4Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printThumbAddrModeSPOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+
+ void printT2SOOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ template<bool AlwaysPrintImm0>
+ void printAddrModeImm12Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ template<bool AlwaysPrintImm0>
+ void printT2AddrModeImm8Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ template<bool AlwaysPrintImm0>
+ void printT2AddrModeImm8s4Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printT2AddrModeImm0_1020s4Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printT2AddrModeImm8OffsetOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printT2AddrModeImm8s4OffsetOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printT2AddrModeSoRegOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+
+ void printSetendOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printCPSIMod(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printCPSIFlag(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printMSRMaskOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printPredicateOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printMandatoryPredicateOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printSBitModifierOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printRegisterList(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printNoHashImmediate(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printPImmediate(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printCImmediate(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printCoprocOptionImm(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printFPImmOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printNEONModImmOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printImmPlusOneOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printRotImmOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printGPRPairOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+
+ void printPCLabel(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printThumbLdrLabelOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printFBits16(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printFBits32(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printVectorIndex(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printVectorListOne(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printVectorListTwo(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printVectorListTwoSpaced(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printVectorListThree(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printVectorListFour(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printVectorListOneAllLanes(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printVectorListTwoAllLanes(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printVectorListThreeAllLanes(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printVectorListFourAllLanes(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printVectorListTwoSpacedAllLanes(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printVectorListThreeSpacedAllLanes(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printVectorListFourSpacedAllLanes(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printVectorListThreeSpaced(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printVectorListFourSpaced(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/LICENSE.TXT b/contrib/llvm/lib/Target/ARM/LICENSE.TXT
new file mode 100755
index 0000000..68afea1
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/LICENSE.TXT
@@ -0,0 +1,47 @@
+ARM Limited
+
+Software Grant License Agreement ("Agreement")
+
+Except for the license granted herein to you, ARM Limited ("ARM") reserves all
+right, title, and interest in and to the Software (defined below).
+
+Definition
+
+"Software" means the code and documentation as well as any original work of
+authorship, including any modifications or additions to an existing work, that
+is intentionally submitted by ARM to llvm.org (http://llvm.org) ("LLVM") for
+inclusion in, or documentation of, any of the products owned or managed by LLVM
+(the "Work"). For the purposes of this definition, "submitted" means any form of
+electronic, verbal, or written communication sent to LLVM or its
+representatives, including but not limited to communication on electronic
+mailing lists, source code control systems, and issue tracking systems that are
+managed by, or on behalf of, LLVM for the purpose of discussing and improving
+the Work, but excluding communication that is conspicuously marked otherwise.
+
+1. Grant of Copyright License. Subject to the terms and conditions of this
+ Agreement, ARM hereby grants to you and to recipients of the Software
+ distributed by LLVM a perpetual, worldwide, non-exclusive, no-charge,
+ royalty-free, irrevocable copyright license to reproduce, prepare derivative
+ works of, publicly display, publicly perform, sublicense, and distribute the
+ Software and such derivative works.
+
+2. Grant of Patent License. Subject to the terms and conditions of this
+ Agreement, ARM hereby grants you and to recipients of the Software
+ distributed by LLVM a perpetual, worldwide, non-exclusive, no-charge,
+ royalty-free, irrevocable (except as stated in this section) patent license
+ to make, have made, use, offer to sell, sell, import, and otherwise transfer
+ the Work, where such license applies only to those patent claims licensable
+ by ARM that are necessarily infringed by ARM's Software alone or by
+ combination of the Software with the Work to which such Software was
+ submitted. If any entity institutes patent litigation against ARM or any
+ other entity (including a cross-claim or counterclaim in a lawsuit) alleging
+ that ARM's Software, or the Work to which ARM has contributed constitutes
+ direct or contributory patent infringement, then any patent licenses granted
+ to that entity under this Agreement for the Software or Work shall terminate
+ as of the date such litigation is filed.
+
+Unless required by applicable law or agreed to in writing, the software is
+provided on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
+either express or implied, including, without limitation, any warranties or
+conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+PARTICULAR PURPOSE.
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h
new file mode 100644
index 0000000..b6c85c2
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h
@@ -0,0 +1,668 @@
+//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the ARM addressing mode implementation stuff.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
+#define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+
+namespace llvm {
+
+/// ARM_AM - ARM Addressing Mode Stuff
+namespace ARM_AM {
+ enum ShiftOpc {
+ no_shift = 0,
+ asr,
+ lsl,
+ lsr,
+ ror,
+ rrx
+ };
+
+ enum AddrOpc {
+ sub = 0,
+ add
+ };
+
+ static inline const char *getAddrOpcStr(AddrOpc Op) {
+ return Op == sub ? "-" : "";
+ }
+
+ static inline const char *getShiftOpcStr(ShiftOpc Op) {
+ switch (Op) {
+ default: llvm_unreachable("Unknown shift opc!");
+ case ARM_AM::asr: return "asr";
+ case ARM_AM::lsl: return "lsl";
+ case ARM_AM::lsr: return "lsr";
+ case ARM_AM::ror: return "ror";
+ case ARM_AM::rrx: return "rrx";
+ }
+ }
+
+ static inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
+ switch (Op) {
+ default: llvm_unreachable("Unknown shift opc!");
+ case ARM_AM::asr: return 2;
+ case ARM_AM::lsl: return 0;
+ case ARM_AM::lsr: return 1;
+ case ARM_AM::ror: return 3;
+ }
+ }
+
+ enum AMSubMode {
+ bad_am_submode = 0,
+ ia,
+ ib,
+ da,
+ db
+ };
+
+ static inline const char *getAMSubModeStr(AMSubMode Mode) {
+ switch (Mode) {
+ default: llvm_unreachable("Unknown addressing sub-mode!");
+ case ARM_AM::ia: return "ia";
+ case ARM_AM::ib: return "ib";
+ case ARM_AM::da: return "da";
+ case ARM_AM::db: return "db";
+ }
+ }
+
+ /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
+ ///
+ static inline unsigned rotr32(unsigned Val, unsigned Amt) {
+ assert(Amt < 32 && "Invalid rotate amount");
+ return (Val >> Amt) | (Val << ((32-Amt)&31));
+ }
+
+ /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
+ ///
+ static inline unsigned rotl32(unsigned Val, unsigned Amt) {
+ assert(Amt < 32 && "Invalid rotate amount");
+ return (Val << Amt) | (Val >> ((32-Amt)&31));
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Addressing Mode #1: shift_operand with registers
+ //===--------------------------------------------------------------------===//
+ //
+ // This 'addressing mode' is used for arithmetic instructions. It can
+ // represent things like:
+ // reg
+ // reg [asr|lsl|lsr|ror|rrx] reg
+ // reg [asr|lsl|lsr|ror|rrx] imm
+ //
+ // This is stored three operands [rega, regb, opc]. The first is the base
+ // reg, the second is the shift amount (or reg0 if not present or imm). The
+ // third operand encodes the shift opcode and the imm if a reg isn't present.
+ //
+ static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
+ return ShOp | (Imm << 3);
+ }
+ static inline unsigned getSORegOffset(unsigned Op) {
+ return Op >> 3;
+ }
+ static inline ShiftOpc getSORegShOp(unsigned Op) {
+ return (ShiftOpc)(Op & 7);
+ }
+
+ /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
+ /// the 8-bit imm value.
+ static inline unsigned getSOImmValImm(unsigned Imm) {
+ return Imm & 0xFF;
+ }
+ /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
+ /// the rotate amount.
+ static inline unsigned getSOImmValRot(unsigned Imm) {
+ return (Imm >> 8) * 2;
+ }
+
+ /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
+ /// computing the rotate amount to use. If this immediate value cannot be
+ /// handled with a single shifter-op, determine a good rotate amount that will
+ /// take a maximal chunk of bits out of the immediate.
+ static inline unsigned getSOImmValRotate(unsigned Imm) {
+ // 8-bit (or less) immediates are trivially shifter_operands with a rotate
+ // of zero.
+ if ((Imm & ~255U) == 0) return 0;
+
+ // Use CTZ to compute the rotate amount.
+ unsigned TZ = countTrailingZeros(Imm);
+
+ // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
+ // not 9.
+ unsigned RotAmt = TZ & ~1;
+
+ // If we can handle this spread, return it.
+ if ((rotr32(Imm, RotAmt) & ~255U) == 0)
+ return (32-RotAmt)&31; // HW rotates right, not left.
+
+ // For values like 0xF000000F, we should ignore the low 6 bits, then
+ // retry the hunt.
+ if (Imm & 63U) {
+ unsigned TZ2 = countTrailingZeros(Imm & ~63U);
+ unsigned RotAmt2 = TZ2 & ~1;
+ if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
+ return (32-RotAmt2)&31; // HW rotates right, not left.
+ }
+
+ // Otherwise, we have no way to cover this span of bits with a single
+ // shifter_op immediate. Return a chunk of bits that will be useful to
+ // handle.
+ return (32-RotAmt)&31; // HW rotates right, not left.
+ }
+
+ /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
+ /// into an shifter_operand immediate operand, return the 12-bit encoding for
+ /// it. If not, return -1.
+ static inline int getSOImmVal(unsigned Arg) {
+ // 8-bit (or less) immediates are trivially shifter_operands with a rotate
+ // of zero.
+ if ((Arg & ~255U) == 0) return Arg;
+
+ unsigned RotAmt = getSOImmValRotate(Arg);
+
+ // If this cannot be handled with a single shifter_op, bail out.
+ if (rotr32(~255U, RotAmt) & Arg)
+ return -1;
+
+ // Encode this correctly.
+ return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
+ }
+
+ /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
+ /// or'ing together two SOImmVal's.
+ static inline bool isSOImmTwoPartVal(unsigned V) {
+ // If this can be handled with a single shifter_op, bail out.
+ V = rotr32(~255U, getSOImmValRotate(V)) & V;
+ if (V == 0)
+ return false;
+
+ // If this can be handled with two shifter_op's, accept.
+ V = rotr32(~255U, getSOImmValRotate(V)) & V;
+ return V == 0;
+ }
+
+ /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
+ /// return the first chunk of it.
+ static inline unsigned getSOImmTwoPartFirst(unsigned V) {
+ return rotr32(255U, getSOImmValRotate(V)) & V;
+ }
+
+ /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
+ /// return the second chunk of it.
+ static inline unsigned getSOImmTwoPartSecond(unsigned V) {
+ // Mask out the first hunk.
+ V = rotr32(~255U, getSOImmValRotate(V)) & V;
+
+ // Take what's left.
+ assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
+ return V;
+ }
+
+ /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
+ /// by a left shift. Returns the shift amount to use.
+ static inline unsigned getThumbImmValShift(unsigned Imm) {
+ // 8-bit (or less) immediates are trivially immediate operand with a shift
+ // of zero.
+ if ((Imm & ~255U) == 0) return 0;
+
+ // Use CTZ to compute the shift amount.
+ return countTrailingZeros(Imm);
+ }
+
+ /// isThumbImmShiftedVal - Return true if the specified value can be obtained
+ /// by left shifting a 8-bit immediate.
+ static inline bool isThumbImmShiftedVal(unsigned V) {
+ // If this can be handled with
+ V = (~255U << getThumbImmValShift(V)) & V;
+ return V == 0;
+ }
+
+ /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
+ /// by a left shift. Returns the shift amount to use.
+ static inline unsigned getThumbImm16ValShift(unsigned Imm) {
+ // 16-bit (or less) immediates are trivially immediate operand with a shift
+ // of zero.
+ if ((Imm & ~65535U) == 0) return 0;
+
+ // Use CTZ to compute the shift amount.
+ return countTrailingZeros(Imm);
+ }
+
+ /// isThumbImm16ShiftedVal - Return true if the specified value can be
+ /// obtained by left shifting a 16-bit immediate.
+ static inline bool isThumbImm16ShiftedVal(unsigned V) {
+ // If this can be handled with
+ V = (~65535U << getThumbImm16ValShift(V)) & V;
+ return V == 0;
+ }
+
+ /// getThumbImmNonShiftedVal - If V is a value that satisfies
+ /// isThumbImmShiftedVal, return the non-shiftd value.
+ static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
+ return V >> getThumbImmValShift(V);
+ }
+
+
+ /// getT2SOImmValSplat - Return the 12-bit encoded representation
+ /// if the specified value can be obtained by splatting the low 8 bits
+ /// into every other byte or every byte of a 32-bit value. i.e.,
+ /// 00000000 00000000 00000000 abcdefgh control = 0
+ /// 00000000 abcdefgh 00000000 abcdefgh control = 1
+ /// abcdefgh 00000000 abcdefgh 00000000 control = 2
+ /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
+ /// Return -1 if none of the above apply.
+ /// See ARM Reference Manual A6.3.2.
+ static inline int getT2SOImmValSplatVal(unsigned V) {
+ unsigned u, Vs, Imm;
+ // control = 0
+ if ((V & 0xffffff00) == 0)
+ return V;
+
+ // If the value is zeroes in the first byte, just shift those off
+ Vs = ((V & 0xff) == 0) ? V >> 8 : V;
+ // Any passing value only has 8 bits of payload, splatted across the word
+ Imm = Vs & 0xff;
+ // Likewise, any passing values have the payload splatted into the 3rd byte
+ u = Imm | (Imm << 16);
+
+ // control = 1 or 2
+ if (Vs == u)
+ return (((Vs == V) ? 1 : 2) << 8) | Imm;
+
+ // control = 3
+ if (Vs == (u | (u << 8)))
+ return (3 << 8) | Imm;
+
+ return -1;
+ }
+
+ /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
+ /// specified value is a rotated 8-bit value. Return -1 if no rotation
+ /// encoding is possible.
+ /// See ARM Reference Manual A6.3.2.
+ static inline int getT2SOImmValRotateVal(unsigned V) {
+ unsigned RotAmt = countLeadingZeros(V);
+ if (RotAmt >= 24)
+ return -1;
+
+ // If 'Arg' can be handled with a single shifter_op return the value.
+ if ((rotr32(0xff000000U, RotAmt) & V) == V)
+ return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
+
+ return -1;
+ }
+
+ /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
+ /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
+ /// encoding for it. If not, return -1.
+ /// See ARM Reference Manual A6.3.2.
+ static inline int getT2SOImmVal(unsigned Arg) {
+ // If 'Arg' is an 8-bit splat, then get the encoded value.
+ int Splat = getT2SOImmValSplatVal(Arg);
+ if (Splat != -1)
+ return Splat;
+
+ // If 'Arg' can be handled with a single shifter_op return the value.
+ int Rot = getT2SOImmValRotateVal(Arg);
+ if (Rot != -1)
+ return Rot;
+
+ return -1;
+ }
+
+ static inline unsigned getT2SOImmValRotate(unsigned V) {
+ if ((V & ~255U) == 0) return 0;
+ // Use CTZ to compute the rotate amount.
+ unsigned RotAmt = countTrailingZeros(V);
+ return (32 - RotAmt) & 31;
+ }
+
+ static inline bool isT2SOImmTwoPartVal (unsigned Imm) {
+ unsigned V = Imm;
+ // Passing values can be any combination of splat values and shifter
+ // values. If this can be handled with a single shifter or splat, bail
+ // out. Those should be handled directly, not with a two-part val.
+ if (getT2SOImmValSplatVal(V) != -1)
+ return false;
+ V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
+ if (V == 0)
+ return false;
+
+ // If this can be handled as an immediate, accept.
+ if (getT2SOImmVal(V) != -1) return true;
+
+ // Likewise, try masking out a splat value first.
+ V = Imm;
+ if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
+ V &= ~0xff00ff00U;
+ else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
+ V &= ~0x00ff00ffU;
+ // If what's left can be handled as an immediate, accept.
+ if (getT2SOImmVal(V) != -1) return true;
+
+ // Otherwise, do not accept.
+ return false;
+ }
+
+ static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
+ assert (isT2SOImmTwoPartVal(Imm) &&
+ "Immedate cannot be encoded as two part immediate!");
+ // Try a shifter operand as one part
+ unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
+ // If the rest is encodable as an immediate, then return it.
+ if (getT2SOImmVal(V) != -1) return V;
+
+ // Try masking out a splat value first.
+ if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
+ return Imm & 0xff00ff00U;
+
+ // The other splat is all that's left as an option.
+ assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
+ return Imm & 0x00ff00ffU;
+ }
+
+ static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
+ // Mask out the first hunk
+ Imm ^= getT2SOImmTwoPartFirst(Imm);
+ // Return what's left
+ assert (getT2SOImmVal(Imm) != -1 &&
+ "Unable to encode second part of T2 two part SO immediate");
+ return Imm;
+ }
+
+
+ //===--------------------------------------------------------------------===//
+ // Addressing Mode #2
+ //===--------------------------------------------------------------------===//
+ //
+ // This is used for most simple load/store instructions.
+ //
+ // addrmode2 := reg +/- reg shop imm
+ // addrmode2 := reg +/- imm12
+ //
+ // The first operand is always a Reg. The second operand is a reg if in
+ // reg/reg form, otherwise it's reg#0. The third field encodes the operation
+ // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
+ // fourth operand 16-17 encodes the index mode.
+ //
+ // If this addressing mode is a frame index (before prolog/epilog insertion
+ // and code rewriting), this operand will have the form: FI#, reg0, <offs>
+ // with no shift amount for the frame offset.
+ //
+ static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
+ unsigned IdxMode = 0) {
+ assert(Imm12 < (1 << 12) && "Imm too large!");
+ bool isSub = Opc == sub;
+ return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
+ }
+ static inline unsigned getAM2Offset(unsigned AM2Opc) {
+ return AM2Opc & ((1 << 12)-1);
+ }
+ static inline AddrOpc getAM2Op(unsigned AM2Opc) {
+ return ((AM2Opc >> 12) & 1) ? sub : add;
+ }
+ static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
+ return (ShiftOpc)((AM2Opc >> 13) & 7);
+ }
+ static inline unsigned getAM2IdxMode(unsigned AM2Opc) {
+ return (AM2Opc >> 16);
+ }
+
+
+ //===--------------------------------------------------------------------===//
+ // Addressing Mode #3
+ //===--------------------------------------------------------------------===//
+ //
+ // This is used for sign-extending loads, and load/store-pair instructions.
+ //
+ // addrmode3 := reg +/- reg
+ // addrmode3 := reg +/- imm8
+ //
+ // The first operand is always a Reg. The second operand is a reg if in
+ // reg/reg form, otherwise it's reg#0. The third field encodes the operation
+ // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
+ // index mode.
+
+ /// getAM3Opc - This function encodes the addrmode3 opc field.
+ static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
+ unsigned IdxMode = 0) {
+ bool isSub = Opc == sub;
+ return ((int)isSub << 8) | Offset | (IdxMode << 9);
+ }
+ static inline unsigned char getAM3Offset(unsigned AM3Opc) {
+ return AM3Opc & 0xFF;
+ }
+ static inline AddrOpc getAM3Op(unsigned AM3Opc) {
+ return ((AM3Opc >> 8) & 1) ? sub : add;
+ }
+ static inline unsigned getAM3IdxMode(unsigned AM3Opc) {
+ return (AM3Opc >> 9);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Addressing Mode #4
+ //===--------------------------------------------------------------------===//
+ //
+ // This is used for load / store multiple instructions.
+ //
+ // addrmode4 := reg, <mode>
+ //
+ // The four modes are:
+ // IA - Increment after
+ // IB - Increment before
+ // DA - Decrement after
+ // DB - Decrement before
+ // For VFP instructions, only the IA and DB modes are valid.
+
+ static inline AMSubMode getAM4SubMode(unsigned Mode) {
+ return (AMSubMode)(Mode & 0x7);
+ }
+
+ static inline unsigned getAM4ModeImm(AMSubMode SubMode) {
+ return (int)SubMode;
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Addressing Mode #5
+ //===--------------------------------------------------------------------===//
+ //
+ // This is used for coprocessor instructions, such as FP load/stores.
+ //
+ // addrmode5 := reg +/- imm8*4
+ //
+ // The first operand is always a Reg. The second operand encodes the
+ // operation in bit 8 and the immediate in bits 0-7.
+
+ /// getAM5Opc - This function encodes the addrmode5 opc field.
+ static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
+ bool isSub = Opc == sub;
+ return ((int)isSub << 8) | Offset;
+ }
+ static inline unsigned char getAM5Offset(unsigned AM5Opc) {
+ return AM5Opc & 0xFF;
+ }
+ static inline AddrOpc getAM5Op(unsigned AM5Opc) {
+ return ((AM5Opc >> 8) & 1) ? sub : add;
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Addressing Mode #6
+ //===--------------------------------------------------------------------===//
+ //
+ // This is used for NEON load / store instructions.
+ //
+ // addrmode6 := reg with optional alignment
+ //
+ // This is stored in two operands [regaddr, align]. The first is the
+ // address register. The second operand is the value of the alignment
+ // specifier in bytes or zero if no explicit alignment.
+ // Valid alignments depend on the specific instruction.
+
+ //===--------------------------------------------------------------------===//
+ // NEON Modified Immediates
+ //===--------------------------------------------------------------------===//
+ //
+ // Several NEON instructions (e.g., VMOV) take a "modified immediate"
+ // vector operand, where a small immediate encoded in the instruction
+ // specifies a full NEON vector value. These modified immediates are
+ // represented here as encoded integers. The low 8 bits hold the immediate
+ // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
+ // the "Cmode" field of the instruction. The interfaces below treat the
+ // Op and Cmode values as a single 5-bit value.
+
+ static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
+ return (OpCmode << 8) | Val;
+ }
+ static inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
+ return (ModImm >> 8) & 0x1f;
+ }
+ static inline unsigned getNEONModImmVal(unsigned ModImm) {
+ return ModImm & 0xff;
+ }
+
+ /// decodeNEONModImm - Decode a NEON modified immediate value into the
+ /// element value and the element size in bits. (If the element size is
+ /// smaller than the vector, it is splatted into all the elements.)
+ static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
+ unsigned OpCmode = getNEONModImmOpCmode(ModImm);
+ unsigned Imm8 = getNEONModImmVal(ModImm);
+ uint64_t Val = 0;
+
+ if (OpCmode == 0xe) {
+ // 8-bit vector elements
+ Val = Imm8;
+ EltBits = 8;
+ } else if ((OpCmode & 0xc) == 0x8) {
+ // 16-bit vector elements
+ unsigned ByteNum = (OpCmode & 0x6) >> 1;
+ Val = Imm8 << (8 * ByteNum);
+ EltBits = 16;
+ } else if ((OpCmode & 0x8) == 0) {
+ // 32-bit vector elements, zero with one byte set
+ unsigned ByteNum = (OpCmode & 0x6) >> 1;
+ Val = Imm8 << (8 * ByteNum);
+ EltBits = 32;
+ } else if ((OpCmode & 0xe) == 0xc) {
+ // 32-bit vector elements, one byte with low bits set
+ unsigned ByteNum = 1 + (OpCmode & 0x1);
+ Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
+ EltBits = 32;
+ } else if (OpCmode == 0x1e) {
+ // 64-bit vector elements
+ for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
+ if ((ModImm >> ByteNum) & 1)
+ Val |= (uint64_t)0xff << (8 * ByteNum);
+ }
+ EltBits = 64;
+ } else {
+ llvm_unreachable("Unsupported NEON immediate");
+ }
+ return Val;
+ }
+
+ AMSubMode getLoadStoreMultipleSubMode(int Opcode);
+
+ //===--------------------------------------------------------------------===//
+ // Floating-point Immediates
+ //
+ static inline float getFPImmFloat(unsigned Imm) {
+ // We expect an 8-bit binary encoding of a floating-point number here.
+ union {
+ uint32_t I;
+ float F;
+ } FPUnion;
+
+ uint8_t Sign = (Imm >> 7) & 0x1;
+ uint8_t Exp = (Imm >> 4) & 0x7;
+ uint8_t Mantissa = Imm & 0xf;
+
+ // 8-bit FP iEEEE Float Encoding
+ // abcd efgh aBbbbbbc defgh000 00000000 00000000
+ //
+ // where B = NOT(b);
+
+ FPUnion.I = 0;
+ FPUnion.I |= Sign << 31;
+ FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
+ FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
+ FPUnion.I |= (Exp & 0x3) << 23;
+ FPUnion.I |= Mantissa << 19;
+ return FPUnion.F;
+ }
+
+ /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
+ /// floating-point value. If the value cannot be represented as an 8-bit
+ /// floating-point value, then return -1.
+ static inline int getFP32Imm(const APInt &Imm) {
+ uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
+ int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
+ int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
+
+ // We can handle 4 bits of mantissa.
+ // mantissa = (16+UInt(e:f:g:h))/16.
+ if (Mantissa & 0x7ffff)
+ return -1;
+ Mantissa >>= 19;
+ if ((Mantissa & 0xf) != Mantissa)
+ return -1;
+
+ // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
+ if (Exp < -3 || Exp > 4)
+ return -1;
+ Exp = ((Exp+3) & 0x7) ^ 4;
+
+ return ((int)Sign << 7) | (Exp << 4) | Mantissa;
+ }
+
+ static inline int getFP32Imm(const APFloat &FPImm) {
+ return getFP32Imm(FPImm.bitcastToAPInt());
+ }
+
+ /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
+ /// floating-point value. If the value cannot be represented as an 8-bit
+ /// floating-point value, then return -1.
+ static inline int getFP64Imm(const APInt &Imm) {
+ uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
+ int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
+ uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
+
+ // We can handle 4 bits of mantissa.
+ // mantissa = (16+UInt(e:f:g:h))/16.
+ if (Mantissa & 0xffffffffffffULL)
+ return -1;
+ Mantissa >>= 48;
+ if ((Mantissa & 0xf) != Mantissa)
+ return -1;
+
+ // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
+ if (Exp < -3 || Exp > 4)
+ return -1;
+ Exp = ((Exp+3) & 0x7) ^ 4;
+
+ return ((int)Sign << 7) | (Exp << 4) | Mantissa;
+ }
+
+ static inline int getFP64Imm(const APFloat &FPImm) {
+ return getFP64Imm(FPImm.bitcastToAPInt());
+ }
+
+} // end namespace ARM_AM
+} // end namespace llvm
+
+#endif
+
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.def b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.def
new file mode 100644
index 0000000..9f007a0
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.def
@@ -0,0 +1,50 @@
+//===-- ARMArchName.def - List of the ARM arch names ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the list of the supported ARM architecture names,
+// i.e. the supported value for -march= option.
+//
+//===----------------------------------------------------------------------===//
+
+// NOTE: NO INCLUDE GUARD DESIRED!
+
+#ifndef ARM_ARCH_NAME
+#error "You must define ARM_ARCH_NAME before including ARMArchName.def"
+#endif
+
+// ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH)
+ARM_ARCH_NAME("armv2", ARMV2, "2", v4)
+ARM_ARCH_NAME("armv2a", ARMV2A, "2A", v4)
+ARM_ARCH_NAME("armv3", ARMV3, "3", v4)
+ARM_ARCH_NAME("armv3m", ARMV3M, "3M", v4)
+ARM_ARCH_NAME("armv4", ARMV4, "4", v4)
+ARM_ARCH_NAME("armv4t", ARMV4T, "4T", v4T)
+ARM_ARCH_NAME("armv5", ARMV5, "5", v5T)
+ARM_ARCH_NAME("armv5t", ARMV5T, "5T", v5T)
+ARM_ARCH_NAME("armv5te", ARMV5TE, "5TE", v5TE)
+ARM_ARCH_NAME("armv6", ARMV6, "6", v6)
+ARM_ARCH_NAME("armv6j", ARMV6J, "6J", v6)
+ARM_ARCH_NAME("armv6t2", ARMV6T2, "6T2", v6T2)
+ARM_ARCH_NAME("armv6z", ARMV6Z, "6Z", v6KZ)
+ARM_ARCH_NAME("armv6zk", ARMV6ZK, "6ZK", v6KZ)
+ARM_ARCH_NAME("armv6-m", ARMV6M, "6-M", v6_M)
+ARM_ARCH_NAME("armv7", ARMV7, "7", v7)
+ARM_ARCH_NAME("armv7-a", ARMV7A, "7-A", v7)
+ARM_ARCH_ALIAS("armv7a", ARMV7A)
+ARM_ARCH_NAME("armv7-r", ARMV7R, "7-R", v7)
+ARM_ARCH_ALIAS("armv7r", ARMV7R)
+ARM_ARCH_NAME("armv7-m", ARMV7M, "7-M", v7)
+ARM_ARCH_ALIAS("armv7m", ARMV7M)
+ARM_ARCH_NAME("armv8-a", ARMV8A, "8-A", v8)
+ARM_ARCH_ALIAS("armv8a", ARMV8A)
+ARM_ARCH_NAME("iwmmxt", IWMMXT, "iwmmxt", v5TE)
+ARM_ARCH_NAME("iwmmxt2", IWMMXT2, "iwmmxt2", v5TE)
+
+#undef ARM_ARCH_NAME
+#undef ARM_ARCH_ALIAS
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.h
new file mode 100644
index 0000000..34b9fc1
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.h
@@ -0,0 +1,27 @@
+//===-- ARMArchName.h - List of the ARM arch names --------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMARCHNAME_H
+#define ARMARCHNAME_H
+
+namespace llvm {
+namespace ARM {
+
+enum ArchKind {
+ INVALID_ARCH = 0
+
+#define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) , ID
+#define ARM_ARCH_ALIAS(NAME, ID) /* empty */
+#include "ARMArchName.def"
+};
+
+} // namespace ARM
+} // namespace llvm
+
+#endif // ARMARCHNAME_H
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp
new file mode 100644
index 0000000..7acd9cc
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp
@@ -0,0 +1,860 @@
+//===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/ARMMCTargetDesc.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "MCTargetDesc/ARMFixupKinds.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDirectives.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCFixupKindInfo.h"
+#include "llvm/MC/MCMachObjectWriter.h"
+#include "llvm/MC/MCObjectWriter.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachO.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+namespace {
+class ARMELFObjectWriter : public MCELFObjectTargetWriter {
+public:
+ ARMELFObjectWriter(uint8_t OSABI)
+ : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
+ /*HasRelocationAddend*/ false) {}
+};
+
+class ARMAsmBackend : public MCAsmBackend {
+ const MCSubtargetInfo* STI;
+ bool isThumbMode; // Currently emitting Thumb code.
+ bool IsLittleEndian; // Big or little endian.
+public:
+ ARMAsmBackend(const Target &T, const StringRef TT, bool IsLittle)
+ : MCAsmBackend(), STI(ARM_MC::createARMMCSubtargetInfo(TT, "", "")),
+ isThumbMode(TT.startswith("thumb")), IsLittleEndian(IsLittle) {}
+
+ ~ARMAsmBackend() {
+ delete STI;
+ }
+
+ unsigned getNumFixupKinds() const override {
+ return ARM::NumTargetFixupKinds;
+ }
+
+ bool hasNOP() const {
+ return (STI->getFeatureBits() & ARM::HasV6T2Ops) != 0;
+ }
+
+ const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
+ const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
+// This table *must* be in the order that the fixup_* kinds are defined in
+// ARMFixupKinds.h.
+//
+// Name Offset (bits) Size (bits) Flags
+{ "fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_t2_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+{ "fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_t2_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+{ "fixup_thumb_adr_pcrel_10",0, 8, MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+{ "fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_t2_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+{ "fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_thumb_cp", 0, 8, MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+{ "fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel },
+// movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 - 19.
+{ "fixup_arm_movt_hi16", 0, 20, 0 },
+{ "fixup_arm_movw_lo16", 0, 20, 0 },
+{ "fixup_t2_movt_hi16", 0, 20, 0 },
+{ "fixup_t2_movw_lo16", 0, 20, 0 },
+ };
+ const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
+// This table *must* be in the order that the fixup_* kinds are defined in
+// ARMFixupKinds.h.
+//
+// Name Offset (bits) Size (bits) Flags
+{ "fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_t2_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+{ "fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_t2_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+{ "fixup_thumb_adr_pcrel_10",8, 8, MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+{ "fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_t2_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+{ "fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+{ "fixup_arm_thumb_cp", 8, 8, MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+{ "fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel },
+// movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 - 19.
+{ "fixup_arm_movt_hi16", 12, 20, 0 },
+{ "fixup_arm_movw_lo16", 12, 20, 0 },
+{ "fixup_t2_movt_hi16", 12, 20, 0 },
+{ "fixup_t2_movw_lo16", 12, 20, 0 },
+ };
+
+ if (Kind < FirstTargetFixupKind)
+ return MCAsmBackend::getFixupKindInfo(Kind);
+
+ assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
+ "Invalid kind!");
+ return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
+ }
+
+ /// processFixupValue - Target hook to process the literal value of a fixup
+ /// if necessary.
+ void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFixup &Fixup, const MCFragment *DF,
+ const MCValue &Target, uint64_t &Value,
+ bool &IsResolved) override;
+
+
+ void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
+ uint64_t Value, bool IsPCRel) const override;
+
+ bool mayNeedRelaxation(const MCInst &Inst) const override;
+
+ bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const override;
+
+ void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
+
+ bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
+
+ void handleAssemblerFlag(MCAssemblerFlag Flag) override {
+ switch (Flag) {
+ default: break;
+ case MCAF_Code16:
+ setIsThumb(true);
+ break;
+ case MCAF_Code32:
+ setIsThumb(false);
+ break;
+ }
+ }
+
+ unsigned getPointerSize() const { return 4; }
+ bool isThumb() const { return isThumbMode; }
+ void setIsThumb(bool it) { isThumbMode = it; }
+ bool isLittle() const { return IsLittleEndian; }
+};
+} // end anonymous namespace
+
+static unsigned getRelaxedOpcode(unsigned Op) {
+ switch (Op) {
+ default: return Op;
+ case ARM::tBcc: return ARM::t2Bcc;
+ case ARM::tLDRpci: return ARM::t2LDRpci;
+ case ARM::tADR: return ARM::t2ADR;
+ case ARM::tB: return ARM::t2B;
+ case ARM::tCBZ: return ARM::tHINT;
+ case ARM::tCBNZ: return ARM::tHINT;
+ }
+}
+
+bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
+ if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
+ return true;
+ return false;
+}
+
+bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
+ uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const {
+ switch ((unsigned)Fixup.getKind()) {
+ case ARM::fixup_arm_thumb_br: {
+ // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
+ // low bit being an implied zero. There's an implied +4 offset for the
+ // branch, so we adjust the other way here to determine what's
+ // encodable.
+ //
+ // Relax if the value is too big for a (signed) i8.
+ int64_t Offset = int64_t(Value) - 4;
+ return Offset > 2046 || Offset < -2048;
+ }
+ case ARM::fixup_arm_thumb_bcc: {
+ // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
+ // low bit being an implied zero. There's an implied +4 offset for the
+ // branch, so we adjust the other way here to determine what's
+ // encodable.
+ //
+ // Relax if the value is too big for a (signed) i8.
+ int64_t Offset = int64_t(Value) - 4;
+ return Offset > 254 || Offset < -256;
+ }
+ case ARM::fixup_thumb_adr_pcrel_10:
+ case ARM::fixup_arm_thumb_cp: {
+ // If the immediate is negative, greater than 1020, or not a multiple
+ // of four, the wide version of the instruction must be used.
+ int64_t Offset = int64_t(Value) - 4;
+ return Offset > 1020 || Offset < 0 || Offset & 3;
+ }
+ case ARM::fixup_arm_thumb_cb:
+ // If we have a Thumb CBZ or CBNZ instruction and its target is the next
+ // instruction it is is actually out of range for the instruction.
+ // It will be changed to a NOP.
+ int64_t Offset = (Value & ~1);
+ return Offset == 2;
+ }
+ llvm_unreachable("Unexpected fixup kind in fixupNeedsRelaxation()!");
+}
+
+void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
+ unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
+
+ // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
+ if (RelaxedOp == Inst.getOpcode()) {
+ SmallString<256> Tmp;
+ raw_svector_ostream OS(Tmp);
+ Inst.dump_pretty(OS);
+ OS << "\n";
+ report_fatal_error("unexpected instruction to relax: " + OS.str());
+ }
+
+ // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
+ // have to change the operands too.
+ if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
+ RelaxedOp == ARM::tHINT) {
+ Res.setOpcode(RelaxedOp);
+ Res.addOperand(MCOperand::CreateImm(0));
+ Res.addOperand(MCOperand::CreateImm(14));
+ Res.addOperand(MCOperand::CreateReg(0));
+ return;
+ }
+
+ // The rest of instructions we're relaxing have the same operands.
+ // We just need to update to the proper opcode.
+ Res = Inst;
+ Res.setOpcode(RelaxedOp);
+}
+
+bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
+ const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
+ const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
+ const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
+ const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
+ if (isThumb()) {
+ const uint16_t nopEncoding = hasNOP() ? Thumb2_16bitNopEncoding
+ : Thumb1_16bitNopEncoding;
+ uint64_t NumNops = Count / 2;
+ for (uint64_t i = 0; i != NumNops; ++i)
+ OW->Write16(nopEncoding);
+ if (Count & 1)
+ OW->Write8(0);
+ return true;
+ }
+ // ARM mode
+ const uint32_t nopEncoding = hasNOP() ? ARMv6T2_NopEncoding
+ : ARMv4_NopEncoding;
+ uint64_t NumNops = Count / 4;
+ for (uint64_t i = 0; i != NumNops; ++i)
+ OW->Write32(nopEncoding);
+ // FIXME: should this function return false when unable to write exactly
+ // 'Count' bytes with NOP encodings?
+ switch (Count % 4) {
+ default: break; // No leftover bytes to write
+ case 1: OW->Write8(0); break;
+ case 2: OW->Write16(0); break;
+ case 3: OW->Write16(0); OW->Write8(0xa0); break;
+ }
+
+ return true;
+}
+
+static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
+ if (IsLittleEndian) {
+ // Note that the halfwords are stored high first and low second in thumb;
+ // so we need to swap the fixup value here to map properly.
+ uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
+ Swapped |= (Value & 0x0000FFFF) << 16;
+ return Swapped;
+ }
+ else
+ return Value;
+}
+
+static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
+ bool IsLittleEndian) {
+ uint32_t Value;
+
+ if (IsLittleEndian) {
+ Value = (SecondHalf & 0xFFFF) << 16;
+ Value |= (FirstHalf & 0xFFFF);
+ } else {
+ Value = (SecondHalf & 0xFFFF);
+ Value |= (FirstHalf & 0xFFFF) << 16;
+ }
+
+ return Value;
+}
+
+static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
+ bool IsPCRel, MCContext *Ctx,
+ bool IsLittleEndian) {
+ unsigned Kind = Fixup.getKind();
+ switch (Kind) {
+ default:
+ llvm_unreachable("Unknown fixup kind!");
+ case FK_Data_1:
+ case FK_Data_2:
+ case FK_Data_4:
+ return Value;
+ case FK_SecRel_2:
+ return Value;
+ case FK_SecRel_4:
+ return Value;
+ case ARM::fixup_arm_movt_hi16:
+ if (!IsPCRel)
+ Value >>= 16;
+ // Fallthrough
+ case ARM::fixup_arm_movw_lo16: {
+ unsigned Hi4 = (Value & 0xF000) >> 12;
+ unsigned Lo12 = Value & 0x0FFF;
+ // inst{19-16} = Hi4;
+ // inst{11-0} = Lo12;
+ Value = (Hi4 << 16) | (Lo12);
+ return Value;
+ }
+ case ARM::fixup_t2_movt_hi16:
+ if (!IsPCRel)
+ Value >>= 16;
+ // Fallthrough
+ case ARM::fixup_t2_movw_lo16: {
+ unsigned Hi4 = (Value & 0xF000) >> 12;
+ unsigned i = (Value & 0x800) >> 11;
+ unsigned Mid3 = (Value & 0x700) >> 8;
+ unsigned Lo8 = Value & 0x0FF;
+ // inst{19-16} = Hi4;
+ // inst{26} = i;
+ // inst{14-12} = Mid3;
+ // inst{7-0} = Lo8;
+ Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
+ return swapHalfWords(Value, IsLittleEndian);
+ }
+ case ARM::fixup_arm_ldst_pcrel_12:
+ // ARM PC-relative values are offset by 8.
+ Value -= 4;
+ // FALLTHROUGH
+ case ARM::fixup_t2_ldst_pcrel_12: {
+ // Offset by 4, adjusted by two due to the half-word ordering of thumb.
+ Value -= 4;
+ bool isAdd = true;
+ if ((int64_t)Value < 0) {
+ Value = -Value;
+ isAdd = false;
+ }
+ if (Ctx && Value >= 4096)
+ Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
+ Value |= isAdd << 23;
+
+ // Same addressing mode as fixup_arm_pcrel_10,
+ // but with 16-bit halfwords swapped.
+ if (Kind == ARM::fixup_t2_ldst_pcrel_12)
+ return swapHalfWords(Value, IsLittleEndian);
+
+ return Value;
+ }
+ case ARM::fixup_thumb_adr_pcrel_10:
+ return ((Value - 4) >> 2) & 0xff;
+ case ARM::fixup_arm_adr_pcrel_12: {
+ // ARM PC-relative values are offset by 8.
+ Value -= 8;
+ unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
+ if ((int64_t)Value < 0) {
+ Value = -Value;
+ opc = 2; // 0b0010
+ }
+ if (Ctx && ARM_AM::getSOImmVal(Value) == -1)
+ Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
+ // Encode the immediate and shift the opcode into place.
+ return ARM_AM::getSOImmVal(Value) | (opc << 21);
+ }
+
+ case ARM::fixup_t2_adr_pcrel_12: {
+ Value -= 4;
+ unsigned opc = 0;
+ if ((int64_t)Value < 0) {
+ Value = -Value;
+ opc = 5;
+ }
+
+ uint32_t out = (opc << 21);
+ out |= (Value & 0x800) << 15;
+ out |= (Value & 0x700) << 4;
+ out |= (Value & 0x0FF);
+
+ return swapHalfWords(out, IsLittleEndian);
+ }
+
+ case ARM::fixup_arm_condbranch:
+ case ARM::fixup_arm_uncondbranch:
+ case ARM::fixup_arm_uncondbl:
+ case ARM::fixup_arm_condbl:
+ case ARM::fixup_arm_blx:
+ // These values don't encode the low two bits since they're always zero.
+ // Offset by 8 just as above.
+ if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
+ if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
+ return 0;
+ return 0xffffff & ((Value - 8) >> 2);
+ case ARM::fixup_t2_uncondbranch: {
+ Value = Value - 4;
+ Value >>= 1; // Low bit is not encoded.
+
+ uint32_t out = 0;
+ bool I = Value & 0x800000;
+ bool J1 = Value & 0x400000;
+ bool J2 = Value & 0x200000;
+ J1 ^= I;
+ J2 ^= I;
+
+ out |= I << 26; // S bit
+ out |= !J1 << 13; // J1 bit
+ out |= !J2 << 11; // J2 bit
+ out |= (Value & 0x1FF800) << 5; // imm6 field
+ out |= (Value & 0x0007FF); // imm11 field
+
+ return swapHalfWords(out, IsLittleEndian);
+ }
+ case ARM::fixup_t2_condbranch: {
+ Value = Value - 4;
+ Value >>= 1; // Low bit is not encoded.
+
+ uint64_t out = 0;
+ out |= (Value & 0x80000) << 7; // S bit
+ out |= (Value & 0x40000) >> 7; // J2 bit
+ out |= (Value & 0x20000) >> 4; // J1 bit
+ out |= (Value & 0x1F800) << 5; // imm6 field
+ out |= (Value & 0x007FF); // imm11 field
+
+ return swapHalfWords(out, IsLittleEndian);
+ }
+ case ARM::fixup_arm_thumb_bl: {
+ // The value doesn't encode the low bit (always zero) and is offset by
+ // four. The 32-bit immediate value is encoded as
+ // imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
+ // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
+ // The value is encoded into disjoint bit positions in the destination
+ // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
+ // J = either J1 or J2 bit
+ //
+ // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
+ //
+ // Note that the halfwords are stored high first, low second; so we need
+ // to transpose the fixup value here to map properly.
+ uint32_t offset = (Value - 4) >> 1;
+ uint32_t signBit = (offset & 0x800000) >> 23;
+ uint32_t I1Bit = (offset & 0x400000) >> 22;
+ uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
+ uint32_t I2Bit = (offset & 0x200000) >> 21;
+ uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
+ uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
+ uint32_t imm11Bits = (offset & 0x000007FF);
+
+ uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
+ uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
+ (uint16_t)imm11Bits);
+ return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
+ }
+ case ARM::fixup_arm_thumb_blx: {
+ // The value doesn't encode the low two bits (always zero) and is offset by
+ // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
+ // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
+ // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
+ // The value is encoded into disjoint bit positions in the destination
+ // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
+ // J = either J1 or J2 bit, 0 = zero.
+ //
+ // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
+ //
+ // Note that the halfwords are stored high first, low second; so we need
+ // to transpose the fixup value here to map properly.
+ uint32_t offset = (Value - 2) >> 2;
+ if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
+ if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
+ offset = 0;
+ uint32_t signBit = (offset & 0x400000) >> 22;
+ uint32_t I1Bit = (offset & 0x200000) >> 21;
+ uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
+ uint32_t I2Bit = (offset & 0x100000) >> 20;
+ uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
+ uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
+ uint32_t imm10LBits = (offset & 0x3FF);
+
+ uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
+ uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
+ ((uint16_t)imm10LBits) << 1);
+ return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
+ }
+ case ARM::fixup_arm_thumb_cp:
+ // Offset by 4, and don't encode the low two bits. Two bytes of that
+ // 'off by 4' is implicitly handled by the half-word ordering of the
+ // Thumb encoding, so we only need to adjust by 2 here.
+ return ((Value - 2) >> 2) & 0xff;
+ case ARM::fixup_arm_thumb_cb: {
+ // Offset by 4 and don't encode the lower bit, which is always 0.
+ uint32_t Binary = (Value - 4) >> 1;
+ return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
+ }
+ case ARM::fixup_arm_thumb_br:
+ // Offset by 4 and don't encode the lower bit, which is always 0.
+ return ((Value - 4) >> 1) & 0x7ff;
+ case ARM::fixup_arm_thumb_bcc:
+ // Offset by 4 and don't encode the lower bit, which is always 0.
+ return ((Value - 4) >> 1) & 0xff;
+ case ARM::fixup_arm_pcrel_10_unscaled: {
+ Value = Value - 8; // ARM fixups offset by an additional word and don't
+ // need to adjust for the half-word ordering.
+ bool isAdd = true;
+ if ((int64_t)Value < 0) {
+ Value = -Value;
+ isAdd = false;
+ }
+ // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
+ if (Ctx && Value >= 256)
+ Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
+ Value = (Value & 0xf) | ((Value & 0xf0) << 4);
+ return Value | (isAdd << 23);
+ }
+ case ARM::fixup_arm_pcrel_10:
+ Value = Value - 4; // ARM fixups offset by an additional word and don't
+ // need to adjust for the half-word ordering.
+ // Fall through.
+ case ARM::fixup_t2_pcrel_10: {
+ // Offset by 4, adjusted by two due to the half-word ordering of thumb.
+ Value = Value - 4;
+ bool isAdd = true;
+ if ((int64_t)Value < 0) {
+ Value = -Value;
+ isAdd = false;
+ }
+ // These values don't encode the low two bits since they're always zero.
+ Value >>= 2;
+ if (Ctx && Value >= 256)
+ Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
+ Value |= isAdd << 23;
+
+ // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
+ // swapped.
+ if (Kind == ARM::fixup_t2_pcrel_10)
+ return swapHalfWords(Value, IsLittleEndian);
+
+ return Value;
+ }
+ }
+}
+
+void ARMAsmBackend::processFixupValue(const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFixup &Fixup,
+ const MCFragment *DF,
+ const MCValue &Target, uint64_t &Value,
+ bool &IsResolved) {
+ const MCSymbolRefExpr *A = Target.getSymA();
+ // Some fixups to thumb function symbols need the low bit (thumb bit)
+ // twiddled.
+ if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 &&
+ (unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 &&
+ (unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 &&
+ (unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 &&
+ (unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 &&
+ (unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) {
+ if (A) {
+ const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
+ if (Asm.isThumbFunc(&Sym))
+ Value |= 1;
+ }
+ }
+ // For Thumb1 BL instruction, it is possible to be a long jump between
+ // the basic blocks of the same function. Thus, we would like to resolve
+ // the offset when the destination has the same MCFragment.
+ if (A && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
+ const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
+ const MCSymbolData &SymData = Asm.getSymbolData(Sym);
+ IsResolved = (SymData.getFragment() == DF);
+ }
+ // We must always generate a relocation for BL/BLX instructions if we have
+ // a symbol to reference, as the linker relies on knowing the destination
+ // symbol's thumb-ness to get interworking right.
+ if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx ||
+ (unsigned)Fixup.getKind() == ARM::fixup_arm_blx ||
+ (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl ||
+ (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl))
+ IsResolved = false;
+
+ // Try to get the encoded value for the fixup as-if we're mapping it into
+ // the instruction. This allows adjustFixupValue() to issue a diagnostic
+ // if the value aren't invalid.
+ (void)adjustFixupValue(Fixup, Value, false, &Asm.getContext(),
+ IsLittleEndian);
+}
+
+/// getFixupKindNumBytes - The number of bytes the fixup may change.
+static unsigned getFixupKindNumBytes(unsigned Kind) {
+ switch (Kind) {
+ default:
+ llvm_unreachable("Unknown fixup kind!");
+
+ case FK_Data_1:
+ case ARM::fixup_arm_thumb_bcc:
+ case ARM::fixup_arm_thumb_cp:
+ case ARM::fixup_thumb_adr_pcrel_10:
+ return 1;
+
+ case FK_Data_2:
+ case ARM::fixup_arm_thumb_br:
+ case ARM::fixup_arm_thumb_cb:
+ return 2;
+
+ case ARM::fixup_arm_pcrel_10_unscaled:
+ case ARM::fixup_arm_ldst_pcrel_12:
+ case ARM::fixup_arm_pcrel_10:
+ case ARM::fixup_arm_adr_pcrel_12:
+ case ARM::fixup_arm_uncondbl:
+ case ARM::fixup_arm_condbl:
+ case ARM::fixup_arm_blx:
+ case ARM::fixup_arm_condbranch:
+ case ARM::fixup_arm_uncondbranch:
+ return 3;
+
+ case FK_Data_4:
+ case ARM::fixup_t2_ldst_pcrel_12:
+ case ARM::fixup_t2_condbranch:
+ case ARM::fixup_t2_uncondbranch:
+ case ARM::fixup_t2_pcrel_10:
+ case ARM::fixup_t2_adr_pcrel_12:
+ case ARM::fixup_arm_thumb_bl:
+ case ARM::fixup_arm_thumb_blx:
+ case ARM::fixup_arm_movt_hi16:
+ case ARM::fixup_arm_movw_lo16:
+ case ARM::fixup_t2_movt_hi16:
+ case ARM::fixup_t2_movw_lo16:
+ return 4;
+
+ case FK_SecRel_2:
+ return 2;
+ case FK_SecRel_4:
+ return 4;
+ }
+}
+
+/// getFixupKindContainerSizeBytes - The number of bytes of the
+/// container involved in big endian.
+static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
+ switch (Kind) {
+ default:
+ llvm_unreachable("Unknown fixup kind!");
+
+ case FK_Data_1:
+ return 1;
+ case FK_Data_2:
+ return 2;
+ case FK_Data_4:
+ return 4;
+
+ case ARM::fixup_arm_thumb_bcc:
+ case ARM::fixup_arm_thumb_cp:
+ case ARM::fixup_thumb_adr_pcrel_10:
+ case ARM::fixup_arm_thumb_br:
+ case ARM::fixup_arm_thumb_cb:
+ // Instruction size is 2 bytes.
+ return 2;
+
+ case ARM::fixup_arm_pcrel_10_unscaled:
+ case ARM::fixup_arm_ldst_pcrel_12:
+ case ARM::fixup_arm_pcrel_10:
+ case ARM::fixup_arm_adr_pcrel_12:
+ case ARM::fixup_arm_uncondbl:
+ case ARM::fixup_arm_condbl:
+ case ARM::fixup_arm_blx:
+ case ARM::fixup_arm_condbranch:
+ case ARM::fixup_arm_uncondbranch:
+ case ARM::fixup_t2_ldst_pcrel_12:
+ case ARM::fixup_t2_condbranch:
+ case ARM::fixup_t2_uncondbranch:
+ case ARM::fixup_t2_pcrel_10:
+ case ARM::fixup_t2_adr_pcrel_12:
+ case ARM::fixup_arm_thumb_bl:
+ case ARM::fixup_arm_thumb_blx:
+ case ARM::fixup_arm_movt_hi16:
+ case ARM::fixup_arm_movw_lo16:
+ case ARM::fixup_t2_movt_hi16:
+ case ARM::fixup_t2_movw_lo16:
+ // Instruction size is 4 bytes.
+ return 4;
+ }
+}
+
+void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
+ unsigned DataSize, uint64_t Value,
+ bool IsPCRel) const {
+ unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
+ Value = adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian);
+ if (!Value) return; // Doesn't change encoding.
+
+ unsigned Offset = Fixup.getOffset();
+ assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
+
+ // Used to point to big endian bytes.
+ unsigned FullSizeBytes;
+ if (!IsLittleEndian) {
+ FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
+ assert((Offset + FullSizeBytes) <= DataSize && "Invalid fixup size!");
+ assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
+ }
+
+ // For each byte of the fragment that the fixup touches, mask in the bits from
+ // the fixup value. The Value has been "split up" into the appropriate
+ // bitfields above.
+ for (unsigned i = 0; i != NumBytes; ++i) {
+ unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i);
+ Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
+ }
+}
+
+namespace {
+// FIXME: This should be in a separate file.
+class ARMWinCOFFAsmBackend : public ARMAsmBackend {
+public:
+ ARMWinCOFFAsmBackend(const Target &T, const StringRef &Triple)
+ : ARMAsmBackend(T, Triple, true) { }
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createARMWinCOFFObjectWriter(OS, /*Is64Bit=*/false);
+ }
+};
+
+// FIXME: This should be in a separate file.
+// ELF is an ELF of course...
+class ELFARMAsmBackend : public ARMAsmBackend {
+public:
+ uint8_t OSABI;
+ ELFARMAsmBackend(const Target &T, const StringRef TT,
+ uint8_t OSABI, bool IsLittle)
+ : ARMAsmBackend(T, TT, IsLittle), OSABI(OSABI) { }
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createARMELFObjectWriter(OS, OSABI, isLittle());
+ }
+};
+
+// FIXME: This should be in a separate file.
+class DarwinARMAsmBackend : public ARMAsmBackend {
+public:
+ const MachO::CPUSubTypeARM Subtype;
+ DarwinARMAsmBackend(const Target &T, const StringRef TT,
+ MachO::CPUSubTypeARM st)
+ : ARMAsmBackend(T, TT, /* IsLittleEndian */ true), Subtype(st) {
+ HasDataInCodeSupport = true;
+ }
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createARMMachObjectWriter(OS, /*Is64Bit=*/false,
+ MachO::CPU_TYPE_ARM,
+ Subtype);
+ }
+};
+
+} // end anonymous namespace
+
+MCAsmBackend *llvm::createARMAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU,
+ bool isLittle) {
+ Triple TheTriple(TT);
+
+ switch (TheTriple.getObjectFormat()) {
+ default: llvm_unreachable("unsupported object format");
+ case Triple::MachO: {
+ MachO::CPUSubTypeARM CS =
+ StringSwitch<MachO::CPUSubTypeARM>(TheTriple.getArchName())
+ .Cases("armv4t", "thumbv4t", MachO::CPU_SUBTYPE_ARM_V4T)
+ .Cases("armv5e", "thumbv5e", MachO::CPU_SUBTYPE_ARM_V5TEJ)
+ .Cases("armv6", "thumbv6", MachO::CPU_SUBTYPE_ARM_V6)
+ .Cases("armv6m", "thumbv6m", MachO::CPU_SUBTYPE_ARM_V6M)
+ .Cases("armv7em", "thumbv7em", MachO::CPU_SUBTYPE_ARM_V7EM)
+ .Cases("armv7k", "thumbv7k", MachO::CPU_SUBTYPE_ARM_V7K)
+ .Cases("armv7m", "thumbv7m", MachO::CPU_SUBTYPE_ARM_V7M)
+ .Cases("armv7s", "thumbv7s", MachO::CPU_SUBTYPE_ARM_V7S)
+ .Default(MachO::CPU_SUBTYPE_ARM_V7);
+
+ return new DarwinARMAsmBackend(T, TT, CS);
+ }
+ case Triple::COFF:
+ assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
+ return new ARMWinCOFFAsmBackend(T, TT);
+ case Triple::ELF:
+ assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS());
+ return new ELFARMAsmBackend(T, TT, OSABI, isLittle);
+ }
+}
+
+MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU) {
+ return createARMAsmBackend(T, MRI, TT, CPU, true);
+}
+
+MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU) {
+ return createARMAsmBackend(T, MRI, TT, CPU, false);
+}
+
+MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU) {
+ return createARMAsmBackend(T, MRI, TT, CPU, true);
+}
+
+MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU) {
+ return createARMAsmBackend(T, MRI, TT, CPU, false);
+}
+
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMBaseInfo.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMBaseInfo.h
new file mode 100644
index 0000000..1686d76
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMBaseInfo.h
@@ -0,0 +1,464 @@
+//===-- ARMBaseInfo.h - Top level definitions for ARM -------- --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains small standalone helper functions and enum definitions for
+// the ARM target useful for the compiler back-end and the MC libraries.
+// As such, it deliberately does not include references to LLVM core
+// code gen types, passes, etc..
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMBASEINFO_H
+#define ARMBASEINFO_H
+
+#include "ARMMCTargetDesc.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace llvm {
+
+// Enums corresponding to ARM condition codes
+namespace ARMCC {
+ // The CondCodes constants map directly to the 4-bit encoding of the
+ // condition field for predicated instructions.
+ enum CondCodes { // Meaning (integer) Meaning (floating-point)
+ EQ, // Equal Equal
+ NE, // Not equal Not equal, or unordered
+ HS, // Carry set >, ==, or unordered
+ LO, // Carry clear Less than
+ MI, // Minus, negative Less than
+ PL, // Plus, positive or zero >, ==, or unordered
+ VS, // Overflow Unordered
+ VC, // No overflow Not unordered
+ HI, // Unsigned higher Greater than, or unordered
+ LS, // Unsigned lower or same Less than or equal
+ GE, // Greater than or equal Greater than or equal
+ LT, // Less than Less than, or unordered
+ GT, // Greater than Greater than
+ LE, // Less than or equal <, ==, or unordered
+ AL // Always (unconditional) Always (unconditional)
+ };
+
+ inline static CondCodes getOppositeCondition(CondCodes CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown condition code");
+ case EQ: return NE;
+ case NE: return EQ;
+ case HS: return LO;
+ case LO: return HS;
+ case MI: return PL;
+ case PL: return MI;
+ case VS: return VC;
+ case VC: return VS;
+ case HI: return LS;
+ case LS: return HI;
+ case GE: return LT;
+ case LT: return GE;
+ case GT: return LE;
+ case LE: return GT;
+ }
+ }
+} // namespace ARMCC
+
+inline static const char *ARMCondCodeToString(ARMCC::CondCodes CC) {
+ switch (CC) {
+ case ARMCC::EQ: return "eq";
+ case ARMCC::NE: return "ne";
+ case ARMCC::HS: return "hs";
+ case ARMCC::LO: return "lo";
+ case ARMCC::MI: return "mi";
+ case ARMCC::PL: return "pl";
+ case ARMCC::VS: return "vs";
+ case ARMCC::VC: return "vc";
+ case ARMCC::HI: return "hi";
+ case ARMCC::LS: return "ls";
+ case ARMCC::GE: return "ge";
+ case ARMCC::LT: return "lt";
+ case ARMCC::GT: return "gt";
+ case ARMCC::LE: return "le";
+ case ARMCC::AL: return "al";
+ }
+ llvm_unreachable("Unknown condition code");
+}
+
+namespace ARM_PROC {
+ enum IMod {
+ IE = 2,
+ ID = 3
+ };
+
+ enum IFlags {
+ F = 1,
+ I = 2,
+ A = 4
+ };
+
+ inline static const char *IFlagsToString(unsigned val) {
+ switch (val) {
+ default: llvm_unreachable("Unknown iflags operand");
+ case F: return "f";
+ case I: return "i";
+ case A: return "a";
+ }
+ }
+
+ inline static const char *IModToString(unsigned val) {
+ switch (val) {
+ default: llvm_unreachable("Unknown imod operand");
+ case IE: return "ie";
+ case ID: return "id";
+ }
+ }
+}
+
+namespace ARM_MB {
+ // The Memory Barrier Option constants map directly to the 4-bit encoding of
+ // the option field for memory barrier operations.
+ enum MemBOpt {
+ RESERVED_0 = 0,
+ OSHLD = 1,
+ OSHST = 2,
+ OSH = 3,
+ RESERVED_4 = 4,
+ NSHLD = 5,
+ NSHST = 6,
+ NSH = 7,
+ RESERVED_8 = 8,
+ ISHLD = 9,
+ ISHST = 10,
+ ISH = 11,
+ RESERVED_12 = 12,
+ LD = 13,
+ ST = 14,
+ SY = 15
+ };
+
+ inline static const char *MemBOptToString(unsigned val, bool HasV8) {
+ switch (val) {
+ default: llvm_unreachable("Unknown memory operation");
+ case SY: return "sy";
+ case ST: return "st";
+ case LD: return HasV8 ? "ld" : "#0xd";
+ case RESERVED_12: return "#0xc";
+ case ISH: return "ish";
+ case ISHST: return "ishst";
+ case ISHLD: return HasV8 ? "ishld" : "#0x9";
+ case RESERVED_8: return "#0x8";
+ case NSH: return "nsh";
+ case NSHST: return "nshst";
+ case NSHLD: return HasV8 ? "nshld" : "#0x5";
+ case RESERVED_4: return "#0x4";
+ case OSH: return "osh";
+ case OSHST: return "oshst";
+ case OSHLD: return HasV8 ? "oshld" : "#0x1";
+ case RESERVED_0: return "#0x0";
+ }
+ }
+} // namespace ARM_MB
+
+namespace ARM_ISB {
+ enum InstSyncBOpt {
+ RESERVED_0 = 0,
+ RESERVED_1 = 1,
+ RESERVED_2 = 2,
+ RESERVED_3 = 3,
+ RESERVED_4 = 4,
+ RESERVED_5 = 5,
+ RESERVED_6 = 6,
+ RESERVED_7 = 7,
+ RESERVED_8 = 8,
+ RESERVED_9 = 9,
+ RESERVED_10 = 10,
+ RESERVED_11 = 11,
+ RESERVED_12 = 12,
+ RESERVED_13 = 13,
+ RESERVED_14 = 14,
+ SY = 15
+ };
+
+ inline static const char *InstSyncBOptToString(unsigned val) {
+ switch (val) {
+ default:
+ llvm_unreachable("Unknown memory operation");
+ case RESERVED_0: return "#0x0";
+ case RESERVED_1: return "#0x1";
+ case RESERVED_2: return "#0x2";
+ case RESERVED_3: return "#0x3";
+ case RESERVED_4: return "#0x4";
+ case RESERVED_5: return "#0x5";
+ case RESERVED_6: return "#0x6";
+ case RESERVED_7: return "#0x7";
+ case RESERVED_8: return "#0x8";
+ case RESERVED_9: return "#0x9";
+ case RESERVED_10: return "#0xa";
+ case RESERVED_11: return "#0xb";
+ case RESERVED_12: return "#0xc";
+ case RESERVED_13: return "#0xd";
+ case RESERVED_14: return "#0xe";
+ case SY: return "sy";
+ }
+ }
+} // namespace ARM_ISB
+
+/// isARMLowRegister - Returns true if the register is a low register (r0-r7).
+///
+static inline bool isARMLowRegister(unsigned Reg) {
+ using namespace ARM;
+ switch (Reg) {
+ case R0: case R1: case R2: case R3:
+ case R4: case R5: case R6: case R7:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// ARMII - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace ARMII {
+
+ /// ARM Index Modes
+ enum IndexMode {
+ IndexModeNone = 0,
+ IndexModePre = 1,
+ IndexModePost = 2,
+ IndexModeUpd = 3
+ };
+
+ /// ARM Addressing Modes
+ enum AddrMode {
+ AddrModeNone = 0,
+ AddrMode1 = 1,
+ AddrMode2 = 2,
+ AddrMode3 = 3,
+ AddrMode4 = 4,
+ AddrMode5 = 5,
+ AddrMode6 = 6,
+ AddrModeT1_1 = 7,
+ AddrModeT1_2 = 8,
+ AddrModeT1_4 = 9,
+ AddrModeT1_s = 10, // i8 * 4 for pc and sp relative data
+ AddrModeT2_i12 = 11,
+ AddrModeT2_i8 = 12,
+ AddrModeT2_so = 13,
+ AddrModeT2_pc = 14, // +/- i12 for pc relative data
+ AddrModeT2_i8s4 = 15, // i8 * 4
+ AddrMode_i12 = 16
+ };
+
+ inline static const char *AddrModeToString(AddrMode addrmode) {
+ switch (addrmode) {
+ case AddrModeNone: return "AddrModeNone";
+ case AddrMode1: return "AddrMode1";
+ case AddrMode2: return "AddrMode2";
+ case AddrMode3: return "AddrMode3";
+ case AddrMode4: return "AddrMode4";
+ case AddrMode5: return "AddrMode5";
+ case AddrMode6: return "AddrMode6";
+ case AddrModeT1_1: return "AddrModeT1_1";
+ case AddrModeT1_2: return "AddrModeT1_2";
+ case AddrModeT1_4: return "AddrModeT1_4";
+ case AddrModeT1_s: return "AddrModeT1_s";
+ case AddrModeT2_i12: return "AddrModeT2_i12";
+ case AddrModeT2_i8: return "AddrModeT2_i8";
+ case AddrModeT2_so: return "AddrModeT2_so";
+ case AddrModeT2_pc: return "AddrModeT2_pc";
+ case AddrModeT2_i8s4: return "AddrModeT2_i8s4";
+ case AddrMode_i12: return "AddrMode_i12";
+ }
+ }
+
+ /// Target Operand Flag enum.
+ enum TOF {
+ //===------------------------------------------------------------------===//
+ // ARM Specific MachineOperand flags.
+
+ MO_NO_FLAG = 0,
+
+ /// MO_LO16 - On a symbol operand, this represents a relocation containing
+ /// lower 16 bit of the address. Used only via movw instruction.
+ MO_LO16 = 0x1,
+
+ /// MO_HI16 - On a symbol operand, this represents a relocation containing
+ /// higher 16 bit of the address. Used only via movt instruction.
+ MO_HI16 = 0x2,
+
+ /// MO_PLT - On a symbol operand, this represents an ELF PLT reference on a
+ /// call operand.
+ MO_PLT = 0x3,
+
+ /// MO_OPTION_MASK - Most flags are mutually exclusive; this mask selects
+ /// just that part of the flag set.
+ MO_OPTION_MASK = 0x3f,
+
+ /// MO_DLLIMPORT - On a symbol operand, this represents that the reference
+ /// to the symbol is for an import stub. This is used for DLL import
+ /// storage class indication on Windows.
+ MO_DLLIMPORT = 0x40,
+
+ /// MO_NONLAZY - This is an independent flag, on a symbol operand "FOO" it
+ /// represents a symbol which, if indirect, will get special Darwin mangling
+ /// as a non-lazy-ptr indirect symbol (i.e. "L_FOO$non_lazy_ptr"). Can be
+ /// combined with MO_LO16, MO_HI16 or MO_NO_FLAG (in a constant-pool, for
+ /// example).
+ MO_NONLAZY = 0x80,
+
+ // It's undefined behaviour if an enum overflows the range between its
+ // smallest and largest values, but since these are |ed together, it can
+ // happen. Put a sentinel in (values of this enum are stored as "unsigned
+ // char").
+ MO_UNUSED_MAXIMUM = 0xff
+ };
+
+ enum {
+ //===------------------------------------------------------------------===//
+ // Instruction Flags.
+
+ //===------------------------------------------------------------------===//
+ // This four-bit field describes the addressing mode used.
+ AddrModeMask = 0x1f, // The AddrMode enums are declared in ARMBaseInfo.h
+
+ // IndexMode - Unindex, pre-indexed, or post-indexed are valid for load
+ // and store ops only. Generic "updating" flag is used for ld/st multiple.
+ // The index mode enums are declared in ARMBaseInfo.h
+ IndexModeShift = 5,
+ IndexModeMask = 3 << IndexModeShift,
+
+ //===------------------------------------------------------------------===//
+ // Instruction encoding formats.
+ //
+ FormShift = 7,
+ FormMask = 0x3f << FormShift,
+
+ // Pseudo instructions
+ Pseudo = 0 << FormShift,
+
+ // Multiply instructions
+ MulFrm = 1 << FormShift,
+
+ // Branch instructions
+ BrFrm = 2 << FormShift,
+ BrMiscFrm = 3 << FormShift,
+
+ // Data Processing instructions
+ DPFrm = 4 << FormShift,
+ DPSoRegFrm = 5 << FormShift,
+
+ // Load and Store
+ LdFrm = 6 << FormShift,
+ StFrm = 7 << FormShift,
+ LdMiscFrm = 8 << FormShift,
+ StMiscFrm = 9 << FormShift,
+ LdStMulFrm = 10 << FormShift,
+
+ LdStExFrm = 11 << FormShift,
+
+ // Miscellaneous arithmetic instructions
+ ArithMiscFrm = 12 << FormShift,
+ SatFrm = 13 << FormShift,
+
+ // Extend instructions
+ ExtFrm = 14 << FormShift,
+
+ // VFP formats
+ VFPUnaryFrm = 15 << FormShift,
+ VFPBinaryFrm = 16 << FormShift,
+ VFPConv1Frm = 17 << FormShift,
+ VFPConv2Frm = 18 << FormShift,
+ VFPConv3Frm = 19 << FormShift,
+ VFPConv4Frm = 20 << FormShift,
+ VFPConv5Frm = 21 << FormShift,
+ VFPLdStFrm = 22 << FormShift,
+ VFPLdStMulFrm = 23 << FormShift,
+ VFPMiscFrm = 24 << FormShift,
+
+ // Thumb format
+ ThumbFrm = 25 << FormShift,
+
+ // Miscelleaneous format
+ MiscFrm = 26 << FormShift,
+
+ // NEON formats
+ NGetLnFrm = 27 << FormShift,
+ NSetLnFrm = 28 << FormShift,
+ NDupFrm = 29 << FormShift,
+ NLdStFrm = 30 << FormShift,
+ N1RegModImmFrm= 31 << FormShift,
+ N2RegFrm = 32 << FormShift,
+ NVCVTFrm = 33 << FormShift,
+ NVDupLnFrm = 34 << FormShift,
+ N2RegVShLFrm = 35 << FormShift,
+ N2RegVShRFrm = 36 << FormShift,
+ N3RegFrm = 37 << FormShift,
+ N3RegVShFrm = 38 << FormShift,
+ NVExtFrm = 39 << FormShift,
+ NVMulSLFrm = 40 << FormShift,
+ NVTBLFrm = 41 << FormShift,
+
+ //===------------------------------------------------------------------===//
+ // Misc flags.
+
+ // UnaryDP - Indicates this is a unary data processing instruction, i.e.
+ // it doesn't have a Rn operand.
+ UnaryDP = 1 << 13,
+
+ // Xform16Bit - Indicates this Thumb2 instruction may be transformed into
+ // a 16-bit Thumb instruction if certain conditions are met.
+ Xform16Bit = 1 << 14,
+
+ // ThumbArithFlagSetting - The instruction is a 16-bit flag setting Thumb
+ // instruction. Used by the parser to determine whether to require the 'S'
+ // suffix on the mnemonic (when not in an IT block) or preclude it (when
+ // in an IT block).
+ ThumbArithFlagSetting = 1 << 18,
+
+ //===------------------------------------------------------------------===//
+ // Code domain.
+ DomainShift = 15,
+ DomainMask = 7 << DomainShift,
+ DomainGeneral = 0 << DomainShift,
+ DomainVFP = 1 << DomainShift,
+ DomainNEON = 2 << DomainShift,
+ DomainNEONA8 = 4 << DomainShift,
+
+ //===------------------------------------------------------------------===//
+ // Field shifts - such shifts are used to set field while generating
+ // machine instructions.
+ //
+ // FIXME: This list will need adjusting/fixing as the MC code emitter
+ // takes shape and the ARMCodeEmitter.cpp bits go away.
+ ShiftTypeShift = 4,
+
+ M_BitShift = 5,
+ ShiftImmShift = 5,
+ ShiftShift = 7,
+ N_BitShift = 7,
+ ImmHiShift = 8,
+ SoRotImmShift = 8,
+ RegRsShift = 8,
+ ExtRotImmShift = 10,
+ RegRdLoShift = 12,
+ RegRdShift = 12,
+ RegRdHiShift = 16,
+ RegRnShift = 16,
+ S_BitShift = 20,
+ W_BitShift = 21,
+ AM3_I_BitShift = 22,
+ D_BitShift = 22,
+ U_BitShift = 23,
+ P_BitShift = 24,
+ I_BitShift = 25,
+ CondShift = 28
+ };
+
+} // end namespace ARMII
+
+} // end namespace llvm;
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFObjectWriter.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFObjectWriter.cpp
new file mode 100644
index 0000000..a86601b
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFObjectWriter.cpp
@@ -0,0 +1,236 @@
+//===-- ARMELFObjectWriter.cpp - ARM ELF Writer ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/ARMMCTargetDesc.h"
+#include "MCTargetDesc/ARMFixupKinds.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+namespace {
+ class ARMELFObjectWriter : public MCELFObjectTargetWriter {
+ enum { DefaultEABIVersion = 0x05000000U };
+ unsigned GetRelocTypeInner(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const;
+
+
+ public:
+ ARMELFObjectWriter(uint8_t OSABI);
+
+ virtual ~ARMELFObjectWriter();
+
+ unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsPCRel) const override;
+
+ bool needsRelocateWithSymbol(const MCSymbolData &SD,
+ unsigned Type) const override;
+ };
+}
+
+ARMELFObjectWriter::ARMELFObjectWriter(uint8_t OSABI)
+ : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI,
+ ELF::EM_ARM,
+ /*HasRelocationAddend*/ false) {}
+
+ARMELFObjectWriter::~ARMELFObjectWriter() {}
+
+bool ARMELFObjectWriter::needsRelocateWithSymbol(const MCSymbolData &SD,
+ unsigned Type) const {
+ // FIXME: This is extremelly conservative. This really needs to use a
+ // whitelist with a clear explanation for why each realocation needs to
+ // point to the symbol, not to the section.
+ switch (Type) {
+ default:
+ return true;
+
+ case ELF::R_ARM_PREL31:
+ case ELF::R_ARM_ABS32:
+ return false;
+ }
+}
+
+// Need to examine the Fixup when determining whether to
+// emit the relocation as an explicit symbol or as a section relative
+// offset
+unsigned ARMELFObjectWriter::GetRelocType(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const {
+ return GetRelocTypeInner(Target, Fixup, IsPCRel);
+}
+
+unsigned ARMELFObjectWriter::GetRelocTypeInner(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const {
+ MCSymbolRefExpr::VariantKind Modifier = Target.getAccessVariant();
+
+ unsigned Type = 0;
+ if (IsPCRel) {
+ switch ((unsigned)Fixup.getKind()) {
+ default: llvm_unreachable("Unimplemented");
+ case FK_Data_4:
+ switch (Modifier) {
+ default: llvm_unreachable("Unsupported Modifier");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_ARM_REL32;
+ break;
+ case MCSymbolRefExpr::VK_TLSGD:
+ llvm_unreachable("unimplemented");
+ case MCSymbolRefExpr::VK_GOTTPOFF:
+ Type = ELF::R_ARM_TLS_IE32;
+ break;
+ case MCSymbolRefExpr::VK_GOTPCREL:
+ Type = ELF::R_ARM_GOT_PREL;
+ break;
+ }
+ break;
+ case ARM::fixup_arm_blx:
+ case ARM::fixup_arm_uncondbl:
+ switch (Modifier) {
+ case MCSymbolRefExpr::VK_PLT:
+ Type = ELF::R_ARM_PLT32;
+ break;
+ case MCSymbolRefExpr::VK_ARM_TLSCALL:
+ Type = ELF::R_ARM_TLS_CALL;
+ break;
+ default:
+ Type = ELF::R_ARM_CALL;
+ break;
+ }
+ break;
+ case ARM::fixup_arm_condbl:
+ case ARM::fixup_arm_condbranch:
+ case ARM::fixup_arm_uncondbranch:
+ Type = ELF::R_ARM_JUMP24;
+ break;
+ case ARM::fixup_t2_condbranch:
+ case ARM::fixup_t2_uncondbranch:
+ Type = ELF::R_ARM_THM_JUMP24;
+ break;
+ case ARM::fixup_arm_movt_hi16:
+ Type = ELF::R_ARM_MOVT_PREL;
+ break;
+ case ARM::fixup_arm_movw_lo16:
+ Type = ELF::R_ARM_MOVW_PREL_NC;
+ break;
+ case ARM::fixup_t2_movt_hi16:
+ Type = ELF::R_ARM_THM_MOVT_PREL;
+ break;
+ case ARM::fixup_t2_movw_lo16:
+ Type = ELF::R_ARM_THM_MOVW_PREL_NC;
+ break;
+ case ARM::fixup_arm_thumb_bl:
+ case ARM::fixup_arm_thumb_blx:
+ switch (Modifier) {
+ case MCSymbolRefExpr::VK_ARM_TLSCALL:
+ Type = ELF::R_ARM_THM_TLS_CALL;
+ break;
+ default:
+ Type = ELF::R_ARM_THM_CALL;
+ break;
+ }
+ break;
+ }
+ } else {
+ switch ((unsigned)Fixup.getKind()) {
+ default: llvm_unreachable("invalid fixup kind!");
+ case FK_Data_4:
+ switch (Modifier) {
+ default: llvm_unreachable("Unsupported Modifier");
+ case MCSymbolRefExpr::VK_ARM_NONE:
+ Type = ELF::R_ARM_NONE;
+ break;
+ case MCSymbolRefExpr::VK_GOT:
+ Type = ELF::R_ARM_GOT_BREL;
+ break;
+ case MCSymbolRefExpr::VK_TLSGD:
+ Type = ELF::R_ARM_TLS_GD32;
+ break;
+ case MCSymbolRefExpr::VK_TPOFF:
+ Type = ELF::R_ARM_TLS_LE32;
+ break;
+ case MCSymbolRefExpr::VK_GOTTPOFF:
+ Type = ELF::R_ARM_TLS_IE32;
+ break;
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_ARM_ABS32;
+ break;
+ case MCSymbolRefExpr::VK_GOTOFF:
+ Type = ELF::R_ARM_GOTOFF32;
+ break;
+ case MCSymbolRefExpr::VK_GOTPCREL:
+ Type = ELF::R_ARM_GOT_PREL;
+ break;
+ case MCSymbolRefExpr::VK_ARM_TARGET1:
+ Type = ELF::R_ARM_TARGET1;
+ break;
+ case MCSymbolRefExpr::VK_ARM_TARGET2:
+ Type = ELF::R_ARM_TARGET2;
+ break;
+ case MCSymbolRefExpr::VK_ARM_PREL31:
+ Type = ELF::R_ARM_PREL31;
+ break;
+ case MCSymbolRefExpr::VK_ARM_TLSLDO:
+ Type = ELF::R_ARM_TLS_LDO32;
+ break;
+ case MCSymbolRefExpr::VK_ARM_TLSCALL:
+ Type = ELF::R_ARM_TLS_CALL;
+ break;
+ case MCSymbolRefExpr::VK_ARM_TLSDESC:
+ Type = ELF::R_ARM_TLS_GOTDESC;
+ break;
+ case MCSymbolRefExpr::VK_ARM_TLSDESCSEQ:
+ Type = ELF::R_ARM_TLS_DESCSEQ;
+ break;
+ }
+ break;
+ case ARM::fixup_arm_ldst_pcrel_12:
+ case ARM::fixup_arm_pcrel_10:
+ case ARM::fixup_arm_adr_pcrel_12:
+ case ARM::fixup_arm_thumb_bl:
+ case ARM::fixup_arm_thumb_cb:
+ case ARM::fixup_arm_thumb_cp:
+ case ARM::fixup_arm_thumb_br:
+ llvm_unreachable("Unimplemented");
+ case ARM::fixup_arm_condbranch:
+ case ARM::fixup_arm_uncondbranch:
+ Type = ELF::R_ARM_JUMP24;
+ break;
+ case ARM::fixup_arm_movt_hi16:
+ Type = ELF::R_ARM_MOVT_ABS;
+ break;
+ case ARM::fixup_arm_movw_lo16:
+ Type = ELF::R_ARM_MOVW_ABS_NC;
+ break;
+ case ARM::fixup_t2_movt_hi16:
+ Type = ELF::R_ARM_THM_MOVT_ABS;
+ break;
+ case ARM::fixup_t2_movw_lo16:
+ Type = ELF::R_ARM_THM_MOVW_ABS_NC;
+ break;
+ }
+ }
+
+ return Type;
+}
+
+MCObjectWriter *llvm::createARMELFObjectWriter(raw_ostream &OS,
+ uint8_t OSABI,
+ bool IsLittleEndian) {
+ MCELFObjectTargetWriter *MOTW = new ARMELFObjectWriter(OSABI);
+ return createELFObjectWriter(MOTW, OS, IsLittleEndian);
+}
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp
new file mode 100644
index 0000000..7b5d8b0
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp
@@ -0,0 +1,1362 @@
+//===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file assembles .s files and emits ARM ELF .o object files. Different
+// from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to
+// delimit regions of data and code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMArchName.h"
+#include "ARMFPUName.h"
+#include "ARMRegisterInfo.h"
+#include "ARMUnwindOpAsm.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCELF.h"
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCELFSymbolFlags.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCObjectStreamer.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ARMBuildAttributes.h"
+#include "llvm/Support/ARMEHABI.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+using namespace llvm;
+
+static std::string GetAEABIUnwindPersonalityName(unsigned Index) {
+ assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX &&
+ "Invalid personality index");
+ return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str();
+}
+
+static const char *GetFPUName(unsigned ID) {
+ switch (ID) {
+ default:
+ llvm_unreachable("Unknown FPU kind");
+ break;
+#define ARM_FPU_NAME(NAME, ID) case ARM::ID: return NAME;
+#include "ARMFPUName.def"
+ }
+ return nullptr;
+}
+
+static const char *GetArchName(unsigned ID) {
+ switch (ID) {
+ default:
+ llvm_unreachable("Unknown ARCH kind");
+ break;
+#define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
+ case ARM::ID: return NAME;
+#define ARM_ARCH_ALIAS(NAME, ID) /* empty */
+#include "ARMArchName.def"
+ }
+ return nullptr;
+}
+
+static const char *GetArchDefaultCPUName(unsigned ID) {
+ switch (ID) {
+ default:
+ llvm_unreachable("Unknown ARCH kind");
+ break;
+#define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
+ case ARM::ID: return DEFAULT_CPU_NAME;
+#define ARM_ARCH_ALIAS(NAME, ID) /* empty */
+#include "ARMArchName.def"
+ }
+ return nullptr;
+}
+
+static unsigned GetArchDefaultCPUArch(unsigned ID) {
+ switch (ID) {
+ default:
+ llvm_unreachable("Unknown ARCH kind");
+ break;
+#define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
+ case ARM::ID: return ARMBuildAttrs::DEFAULT_CPU_ARCH;
+#define ARM_ARCH_ALIAS(NAME, ID) /* empty */
+#include "ARMArchName.def"
+ }
+ return 0;
+}
+
+namespace {
+
+class ARMELFStreamer;
+
+class ARMTargetAsmStreamer : public ARMTargetStreamer {
+ formatted_raw_ostream &OS;
+ MCInstPrinter &InstPrinter;
+ bool IsVerboseAsm;
+
+ void emitFnStart() override;
+ void emitFnEnd() override;
+ void emitCantUnwind() override;
+ void emitPersonality(const MCSymbol *Personality) override;
+ void emitPersonalityIndex(unsigned Index) override;
+ void emitHandlerData() override;
+ void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
+ void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
+ void emitPad(int64_t Offset) override;
+ void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
+ bool isVector) override;
+ void emitUnwindRaw(int64_t Offset,
+ const SmallVectorImpl<uint8_t> &Opcodes) override;
+
+ void switchVendor(StringRef Vendor) override;
+ void emitAttribute(unsigned Attribute, unsigned Value) override;
+ void emitTextAttribute(unsigned Attribute, StringRef String) override;
+ void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
+ StringRef StrinValue) override;
+ void emitArch(unsigned Arch) override;
+ void emitObjectArch(unsigned Arch) override;
+ void emitFPU(unsigned FPU) override;
+ void emitInst(uint32_t Inst, char Suffix = '\0') override;
+ void finishAttributeSection() override;
+
+ void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
+ void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
+
+public:
+ ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS,
+ MCInstPrinter &InstPrinter, bool VerboseAsm);
+};
+
+ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S,
+ formatted_raw_ostream &OS,
+ MCInstPrinter &InstPrinter,
+ bool VerboseAsm)
+ : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter),
+ IsVerboseAsm(VerboseAsm) {}
+void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; }
+void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; }
+void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; }
+void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) {
+ OS << "\t.personality " << Personality->getName() << '\n';
+}
+void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) {
+ OS << "\t.personalityindex " << Index << '\n';
+}
+void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; }
+void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
+ int64_t Offset) {
+ OS << "\t.setfp\t";
+ InstPrinter.printRegName(OS, FpReg);
+ OS << ", ";
+ InstPrinter.printRegName(OS, SpReg);
+ if (Offset)
+ OS << ", #" << Offset;
+ OS << '\n';
+}
+void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
+ assert((Reg != ARM::SP && Reg != ARM::PC) &&
+ "the operand of .movsp cannot be either sp or pc");
+
+ OS << "\t.movsp\t";
+ InstPrinter.printRegName(OS, Reg);
+ if (Offset)
+ OS << ", #" << Offset;
+ OS << '\n';
+}
+void ARMTargetAsmStreamer::emitPad(int64_t Offset) {
+ OS << "\t.pad\t#" << Offset << '\n';
+}
+void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
+ bool isVector) {
+ assert(RegList.size() && "RegList should not be empty");
+ if (isVector)
+ OS << "\t.vsave\t{";
+ else
+ OS << "\t.save\t{";
+
+ InstPrinter.printRegName(OS, RegList[0]);
+
+ for (unsigned i = 1, e = RegList.size(); i != e; ++i) {
+ OS << ", ";
+ InstPrinter.printRegName(OS, RegList[i]);
+ }
+
+ OS << "}\n";
+}
+void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {
+}
+void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
+ OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value);
+ if (IsVerboseAsm) {
+ StringRef Name = ARMBuildAttrs::AttrTypeAsString(Attribute);
+ if (!Name.empty())
+ OS << "\t@ " << Name;
+ }
+ OS << "\n";
+}
+void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute,
+ StringRef String) {
+ switch (Attribute) {
+ case ARMBuildAttrs::CPU_name:
+ OS << "\t.cpu\t" << String.lower();
+ break;
+ default:
+ OS << "\t.eabi_attribute\t" << Attribute << ", \"" << String << "\"";
+ if (IsVerboseAsm) {
+ StringRef Name = ARMBuildAttrs::AttrTypeAsString(Attribute);
+ if (!Name.empty())
+ OS << "\t@ " << Name;
+ }
+ break;
+ }
+ OS << "\n";
+}
+void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute,
+ unsigned IntValue,
+ StringRef StringValue) {
+ switch (Attribute) {
+ default: llvm_unreachable("unsupported multi-value attribute in asm mode");
+ case ARMBuildAttrs::compatibility:
+ OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue;
+ if (!StringValue.empty())
+ OS << ", \"" << StringValue << "\"";
+ if (IsVerboseAsm)
+ OS << "\t@ " << ARMBuildAttrs::AttrTypeAsString(Attribute);
+ break;
+ }
+ OS << "\n";
+}
+void ARMTargetAsmStreamer::emitArch(unsigned Arch) {
+ OS << "\t.arch\t" << GetArchName(Arch) << "\n";
+}
+void ARMTargetAsmStreamer::emitObjectArch(unsigned Arch) {
+ OS << "\t.object_arch\t" << GetArchName(Arch) << '\n';
+}
+void ARMTargetAsmStreamer::emitFPU(unsigned FPU) {
+ OS << "\t.fpu\t" << GetFPUName(FPU) << "\n";
+}
+void ARMTargetAsmStreamer::finishAttributeSection() {
+}
+void
+ARMTargetAsmStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) {
+ OS << "\t.tlsdescseq\t" << S->getSymbol().getName();
+}
+
+void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
+ OS << "\t.thumb_set\t" << *Symbol << ", " << *Value << '\n';
+}
+
+void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) {
+ OS << "\t.inst";
+ if (Suffix)
+ OS << "." << Suffix;
+ OS << "\t0x" << utohexstr(Inst) << "\n";
+}
+
+void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset,
+ const SmallVectorImpl<uint8_t> &Opcodes) {
+ OS << "\t.unwind_raw " << Offset;
+ for (SmallVectorImpl<uint8_t>::const_iterator OCI = Opcodes.begin(),
+ OCE = Opcodes.end();
+ OCI != OCE; ++OCI)
+ OS << ", 0x" << utohexstr(*OCI);
+ OS << '\n';
+}
+
+class ARMTargetELFStreamer : public ARMTargetStreamer {
+private:
+ // This structure holds all attributes, accounting for
+ // their string/numeric value, so we can later emmit them
+ // in declaration order, keeping all in the same vector
+ struct AttributeItem {
+ enum {
+ HiddenAttribute = 0,
+ NumericAttribute,
+ TextAttribute,
+ NumericAndTextAttributes
+ } Type;
+ unsigned Tag;
+ unsigned IntValue;
+ StringRef StringValue;
+
+ static bool LessTag(const AttributeItem &LHS, const AttributeItem &RHS) {
+ return (LHS.Tag < RHS.Tag);
+ }
+ };
+
+ StringRef CurrentVendor;
+ unsigned FPU;
+ unsigned Arch;
+ unsigned EmittedArch;
+ SmallVector<AttributeItem, 64> Contents;
+
+ const MCSection *AttributeSection;
+
+ AttributeItem *getAttributeItem(unsigned Attribute) {
+ for (size_t i = 0; i < Contents.size(); ++i)
+ if (Contents[i].Tag == Attribute)
+ return &Contents[i];
+ return nullptr;
+ }
+
+ void setAttributeItem(unsigned Attribute, unsigned Value,
+ bool OverwriteExisting) {
+ // Look for existing attribute item
+ if (AttributeItem *Item = getAttributeItem(Attribute)) {
+ if (!OverwriteExisting)
+ return;
+ Item->Type = AttributeItem::NumericAttribute;
+ Item->IntValue = Value;
+ return;
+ }
+
+ // Create new attribute item
+ AttributeItem Item = {
+ AttributeItem::NumericAttribute,
+ Attribute,
+ Value,
+ StringRef("")
+ };
+ Contents.push_back(Item);
+ }
+
+ void setAttributeItem(unsigned Attribute, StringRef Value,
+ bool OverwriteExisting) {
+ // Look for existing attribute item
+ if (AttributeItem *Item = getAttributeItem(Attribute)) {
+ if (!OverwriteExisting)
+ return;
+ Item->Type = AttributeItem::TextAttribute;
+ Item->StringValue = Value;
+ return;
+ }
+
+ // Create new attribute item
+ AttributeItem Item = {
+ AttributeItem::TextAttribute,
+ Attribute,
+ 0,
+ Value
+ };
+ Contents.push_back(Item);
+ }
+
+ void setAttributeItems(unsigned Attribute, unsigned IntValue,
+ StringRef StringValue, bool OverwriteExisting) {
+ // Look for existing attribute item
+ if (AttributeItem *Item = getAttributeItem(Attribute)) {
+ if (!OverwriteExisting)
+ return;
+ Item->Type = AttributeItem::NumericAndTextAttributes;
+ Item->IntValue = IntValue;
+ Item->StringValue = StringValue;
+ return;
+ }
+
+ // Create new attribute item
+ AttributeItem Item = {
+ AttributeItem::NumericAndTextAttributes,
+ Attribute,
+ IntValue,
+ StringValue
+ };
+ Contents.push_back(Item);
+ }
+
+ void emitArchDefaultAttributes();
+ void emitFPUDefaultAttributes();
+
+ ARMELFStreamer &getStreamer();
+
+ void emitFnStart() override;
+ void emitFnEnd() override;
+ void emitCantUnwind() override;
+ void emitPersonality(const MCSymbol *Personality) override;
+ void emitPersonalityIndex(unsigned Index) override;
+ void emitHandlerData() override;
+ void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
+ void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
+ void emitPad(int64_t Offset) override;
+ void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
+ bool isVector) override;
+ void emitUnwindRaw(int64_t Offset,
+ const SmallVectorImpl<uint8_t> &Opcodes) override;
+
+ void switchVendor(StringRef Vendor) override;
+ void emitAttribute(unsigned Attribute, unsigned Value) override;
+ void emitTextAttribute(unsigned Attribute, StringRef String) override;
+ void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
+ StringRef StringValue) override;
+ void emitArch(unsigned Arch) override;
+ void emitObjectArch(unsigned Arch) override;
+ void emitFPU(unsigned FPU) override;
+ void emitInst(uint32_t Inst, char Suffix = '\0') override;
+ void finishAttributeSection() override;
+ void emitLabel(MCSymbol *Symbol) override;
+
+ void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
+ void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
+
+ size_t calculateContentSize() const;
+
+public:
+ ARMTargetELFStreamer(MCStreamer &S)
+ : ARMTargetStreamer(S), CurrentVendor("aeabi"), FPU(ARM::INVALID_FPU),
+ Arch(ARM::INVALID_ARCH), EmittedArch(ARM::INVALID_ARCH),
+ AttributeSection(nullptr) {}
+};
+
+/// Extend the generic ELFStreamer class so that it can emit mapping symbols at
+/// the appropriate points in the object files. These symbols are defined in the
+/// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf.
+///
+/// In brief: $a, $t or $d should be emitted at the start of each contiguous
+/// region of ARM code, Thumb code or data in a section. In practice, this
+/// emission does not rely on explicit assembler directives but on inherent
+/// properties of the directives doing the emission (e.g. ".byte" is data, "add
+/// r0, r0, r0" an instruction).
+///
+/// As a result this system is orthogonal to the DataRegion infrastructure used
+/// by MachO. Beware!
+class ARMELFStreamer : public MCELFStreamer {
+public:
+ friend class ARMTargetELFStreamer;
+
+ ARMELFStreamer(MCContext &Context, MCAsmBackend &TAB, raw_ostream &OS,
+ MCCodeEmitter *Emitter, bool IsThumb)
+ : MCELFStreamer(Context, TAB, OS, Emitter), IsThumb(IsThumb),
+ MappingSymbolCounter(0), LastEMS(EMS_None) {
+ Reset();
+ }
+
+ ~ARMELFStreamer() {}
+
+ void FinishImpl() override;
+
+ // ARM exception handling directives
+ void emitFnStart();
+ void emitFnEnd();
+ void emitCantUnwind();
+ void emitPersonality(const MCSymbol *Per);
+ void emitPersonalityIndex(unsigned index);
+ void emitHandlerData();
+ void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0);
+ void emitMovSP(unsigned Reg, int64_t Offset = 0);
+ void emitPad(int64_t Offset);
+ void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector);
+ void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes);
+
+ void ChangeSection(const MCSection *Section,
+ const MCExpr *Subsection) override {
+ // We have to keep track of the mapping symbol state of any sections we
+ // use. Each one should start off as EMS_None, which is provided as the
+ // default constructor by DenseMap::lookup.
+ LastMappingSymbols[getPreviousSection().first] = LastEMS;
+ LastEMS = LastMappingSymbols.lookup(Section);
+
+ MCELFStreamer::ChangeSection(Section, Subsection);
+ }
+
+ /// This function is the one used to emit instruction data into the ELF
+ /// streamer. We override it to add the appropriate mapping symbol if
+ /// necessary.
+ void EmitInstruction(const MCInst& Inst,
+ const MCSubtargetInfo &STI) override {
+ if (IsThumb)
+ EmitThumbMappingSymbol();
+ else
+ EmitARMMappingSymbol();
+
+ MCELFStreamer::EmitInstruction(Inst, STI);
+ }
+
+ void emitInst(uint32_t Inst, char Suffix) {
+ unsigned Size;
+ char Buffer[4];
+ const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian();
+
+ switch (Suffix) {
+ case '\0':
+ Size = 4;
+
+ assert(!IsThumb);
+ EmitARMMappingSymbol();
+ for (unsigned II = 0, IE = Size; II != IE; II++) {
+ const unsigned I = LittleEndian ? (Size - II - 1) : II;
+ Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
+ }
+
+ break;
+ case 'n':
+ case 'w':
+ Size = (Suffix == 'n' ? 2 : 4);
+
+ assert(IsThumb);
+ EmitThumbMappingSymbol();
+ for (unsigned II = 0, IE = Size; II != IE; II = II + 2) {
+ const unsigned I0 = LittleEndian ? II + 0 : (Size - II - 1);
+ const unsigned I1 = LittleEndian ? II + 1 : (Size - II - 2);
+ Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT);
+ Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT);
+ }
+
+ break;
+ default:
+ llvm_unreachable("Invalid Suffix");
+ }
+
+ MCELFStreamer::EmitBytes(StringRef(Buffer, Size));
+ }
+
+ /// This is one of the functions used to emit data into an ELF section, so the
+ /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if
+ /// necessary.
+ void EmitBytes(StringRef Data) override {
+ EmitDataMappingSymbol();
+ MCELFStreamer::EmitBytes(Data);
+ }
+
+ /// This is one of the functions used to emit data into an ELF section, so the
+ /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if
+ /// necessary.
+ void EmitValueImpl(const MCExpr *Value, unsigned Size,
+ const SMLoc &Loc) override {
+ EmitDataMappingSymbol();
+ MCELFStreamer::EmitValueImpl(Value, Size);
+ }
+
+ void EmitAssemblerFlag(MCAssemblerFlag Flag) override {
+ MCELFStreamer::EmitAssemblerFlag(Flag);
+
+ switch (Flag) {
+ case MCAF_SyntaxUnified:
+ return; // no-op here.
+ case MCAF_Code16:
+ IsThumb = true;
+ return; // Change to Thumb mode
+ case MCAF_Code32:
+ IsThumb = false;
+ return; // Change to ARM mode
+ case MCAF_Code64:
+ return;
+ case MCAF_SubsectionsViaSymbols:
+ return;
+ }
+ }
+
+private:
+ enum ElfMappingSymbol {
+ EMS_None,
+ EMS_ARM,
+ EMS_Thumb,
+ EMS_Data
+ };
+
+ void EmitDataMappingSymbol() {
+ if (LastEMS == EMS_Data) return;
+ EmitMappingSymbol("$d");
+ LastEMS = EMS_Data;
+ }
+
+ void EmitThumbMappingSymbol() {
+ if (LastEMS == EMS_Thumb) return;
+ EmitMappingSymbol("$t");
+ LastEMS = EMS_Thumb;
+ }
+
+ void EmitARMMappingSymbol() {
+ if (LastEMS == EMS_ARM) return;
+ EmitMappingSymbol("$a");
+ LastEMS = EMS_ARM;
+ }
+
+ void EmitMappingSymbol(StringRef Name) {
+ MCSymbol *Start = getContext().CreateTempSymbol();
+ EmitLabel(Start);
+
+ MCSymbol *Symbol =
+ getContext().GetOrCreateSymbol(Name + "." +
+ Twine(MappingSymbolCounter++));
+
+ MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
+ MCELF::SetType(SD, ELF::STT_NOTYPE);
+ MCELF::SetBinding(SD, ELF::STB_LOCAL);
+ SD.setExternal(false);
+ AssignSection(Symbol, getCurrentSection().first);
+
+ const MCExpr *Value = MCSymbolRefExpr::Create(Start, getContext());
+ Symbol->setVariableValue(Value);
+ }
+
+ void EmitThumbFunc(MCSymbol *Func) override {
+ getAssembler().setIsThumbFunc(Func);
+ EmitSymbolAttribute(Func, MCSA_ELF_TypeFunction);
+ }
+
+ // Helper functions for ARM exception handling directives
+ void Reset();
+
+ void EmitPersonalityFixup(StringRef Name);
+ void FlushPendingOffset();
+ void FlushUnwindOpcodes(bool NoHandlerData);
+
+ void SwitchToEHSection(const char *Prefix, unsigned Type, unsigned Flags,
+ SectionKind Kind, const MCSymbol &Fn);
+ void SwitchToExTabSection(const MCSymbol &FnStart);
+ void SwitchToExIdxSection(const MCSymbol &FnStart);
+
+ void EmitFixup(const MCExpr *Expr, MCFixupKind Kind);
+
+ bool IsThumb;
+ int64_t MappingSymbolCounter;
+
+ DenseMap<const MCSection *, ElfMappingSymbol> LastMappingSymbols;
+ ElfMappingSymbol LastEMS;
+
+ // ARM Exception Handling Frame Information
+ MCSymbol *ExTab;
+ MCSymbol *FnStart;
+ const MCSymbol *Personality;
+ unsigned PersonalityIndex;
+ unsigned FPReg; // Frame pointer register
+ int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp)
+ int64_t SPOffset; // Offset: (final $sp) - (initial $sp)
+ int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp)
+ bool UsedFP;
+ bool CantUnwind;
+ SmallVector<uint8_t, 64> Opcodes;
+ UnwindOpcodeAssembler UnwindOpAsm;
+};
+} // end anonymous namespace
+
+ARMELFStreamer &ARMTargetELFStreamer::getStreamer() {
+ return static_cast<ARMELFStreamer &>(Streamer);
+}
+
+void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); }
+void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); }
+void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); }
+void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) {
+ getStreamer().emitPersonality(Personality);
+}
+void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) {
+ getStreamer().emitPersonalityIndex(Index);
+}
+void ARMTargetELFStreamer::emitHandlerData() {
+ getStreamer().emitHandlerData();
+}
+void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
+ int64_t Offset) {
+ getStreamer().emitSetFP(FpReg, SpReg, Offset);
+}
+void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
+ getStreamer().emitMovSP(Reg, Offset);
+}
+void ARMTargetELFStreamer::emitPad(int64_t Offset) {
+ getStreamer().emitPad(Offset);
+}
+void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
+ bool isVector) {
+ getStreamer().emitRegSave(RegList, isVector);
+}
+void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset,
+ const SmallVectorImpl<uint8_t> &Opcodes) {
+ getStreamer().emitUnwindRaw(Offset, Opcodes);
+}
+void ARMTargetELFStreamer::switchVendor(StringRef Vendor) {
+ assert(!Vendor.empty() && "Vendor cannot be empty.");
+
+ if (CurrentVendor == Vendor)
+ return;
+
+ if (!CurrentVendor.empty())
+ finishAttributeSection();
+
+ assert(Contents.empty() &&
+ ".ARM.attributes should be flushed before changing vendor");
+ CurrentVendor = Vendor;
+
+}
+void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
+ setAttributeItem(Attribute, Value, /* OverwriteExisting= */ true);
+}
+void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute,
+ StringRef Value) {
+ setAttributeItem(Attribute, Value, /* OverwriteExisting= */ true);
+}
+void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute,
+ unsigned IntValue,
+ StringRef StringValue) {
+ setAttributeItems(Attribute, IntValue, StringValue,
+ /* OverwriteExisting= */ true);
+}
+void ARMTargetELFStreamer::emitArch(unsigned Value) {
+ Arch = Value;
+}
+void ARMTargetELFStreamer::emitObjectArch(unsigned Value) {
+ EmittedArch = Value;
+}
+void ARMTargetELFStreamer::emitArchDefaultAttributes() {
+ using namespace ARMBuildAttrs;
+
+ setAttributeItem(CPU_name, GetArchDefaultCPUName(Arch), false);
+ if (EmittedArch == ARM::INVALID_ARCH)
+ setAttributeItem(CPU_arch, GetArchDefaultCPUArch(Arch), false);
+ else
+ setAttributeItem(CPU_arch, GetArchDefaultCPUArch(EmittedArch), false);
+
+ switch (Arch) {
+ case ARM::ARMV2:
+ case ARM::ARMV2A:
+ case ARM::ARMV3:
+ case ARM::ARMV3M:
+ case ARM::ARMV4:
+ case ARM::ARMV5:
+ setAttributeItem(ARM_ISA_use, Allowed, false);
+ break;
+
+ case ARM::ARMV4T:
+ case ARM::ARMV5T:
+ case ARM::ARMV5TE:
+ case ARM::ARMV6:
+ case ARM::ARMV6J:
+ setAttributeItem(ARM_ISA_use, Allowed, false);
+ setAttributeItem(THUMB_ISA_use, Allowed, false);
+ break;
+
+ case ARM::ARMV6T2:
+ setAttributeItem(ARM_ISA_use, Allowed, false);
+ setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
+ break;
+
+ case ARM::ARMV6Z:
+ case ARM::ARMV6ZK:
+ setAttributeItem(ARM_ISA_use, Allowed, false);
+ setAttributeItem(THUMB_ISA_use, Allowed, false);
+ setAttributeItem(Virtualization_use, AllowTZ, false);
+ break;
+
+ case ARM::ARMV6M:
+ setAttributeItem(THUMB_ISA_use, Allowed, false);
+ break;
+
+ case ARM::ARMV7:
+ setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
+ break;
+
+ case ARM::ARMV7A:
+ setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
+ setAttributeItem(ARM_ISA_use, Allowed, false);
+ setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
+ break;
+
+ case ARM::ARMV7R:
+ setAttributeItem(CPU_arch_profile, RealTimeProfile, false);
+ setAttributeItem(ARM_ISA_use, Allowed, false);
+ setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
+ break;
+
+ case ARM::ARMV7M:
+ setAttributeItem(CPU_arch_profile, MicroControllerProfile, false);
+ setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
+ break;
+
+ case ARM::ARMV8A:
+ setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
+ setAttributeItem(ARM_ISA_use, Allowed, false);
+ setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
+ setAttributeItem(MPextension_use, Allowed, false);
+ setAttributeItem(Virtualization_use, AllowTZVirtualization, false);
+ break;
+
+ case ARM::IWMMXT:
+ setAttributeItem(ARM_ISA_use, Allowed, false);
+ setAttributeItem(THUMB_ISA_use, Allowed, false);
+ setAttributeItem(WMMX_arch, AllowWMMXv1, false);
+ break;
+
+ case ARM::IWMMXT2:
+ setAttributeItem(ARM_ISA_use, Allowed, false);
+ setAttributeItem(THUMB_ISA_use, Allowed, false);
+ setAttributeItem(WMMX_arch, AllowWMMXv2, false);
+ break;
+
+ default:
+ report_fatal_error("Unknown Arch: " + Twine(Arch));
+ break;
+ }
+}
+void ARMTargetELFStreamer::emitFPU(unsigned Value) {
+ FPU = Value;
+}
+void ARMTargetELFStreamer::emitFPUDefaultAttributes() {
+ switch (FPU) {
+ case ARM::VFP:
+ case ARM::VFPV2:
+ setAttributeItem(ARMBuildAttrs::FP_arch,
+ ARMBuildAttrs::AllowFPv2,
+ /* OverwriteExisting= */ false);
+ break;
+
+ case ARM::VFPV3:
+ setAttributeItem(ARMBuildAttrs::FP_arch,
+ ARMBuildAttrs::AllowFPv3A,
+ /* OverwriteExisting= */ false);
+ break;
+
+ case ARM::VFPV3_D16:
+ setAttributeItem(ARMBuildAttrs::FP_arch,
+ ARMBuildAttrs::AllowFPv3B,
+ /* OverwriteExisting= */ false);
+ break;
+
+ case ARM::VFPV4:
+ setAttributeItem(ARMBuildAttrs::FP_arch,
+ ARMBuildAttrs::AllowFPv4A,
+ /* OverwriteExisting= */ false);
+ break;
+
+ case ARM::VFPV4_D16:
+ setAttributeItem(ARMBuildAttrs::FP_arch,
+ ARMBuildAttrs::AllowFPv4B,
+ /* OverwriteExisting= */ false);
+ break;
+
+ case ARM::FP_ARMV8:
+ setAttributeItem(ARMBuildAttrs::FP_arch,
+ ARMBuildAttrs::AllowFPARMv8A,
+ /* OverwriteExisting= */ false);
+ break;
+
+ case ARM::NEON:
+ setAttributeItem(ARMBuildAttrs::FP_arch,
+ ARMBuildAttrs::AllowFPv3A,
+ /* OverwriteExisting= */ false);
+ setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
+ ARMBuildAttrs::AllowNeon,
+ /* OverwriteExisting= */ false);
+ break;
+
+ case ARM::NEON_VFPV4:
+ setAttributeItem(ARMBuildAttrs::FP_arch,
+ ARMBuildAttrs::AllowFPv4A,
+ /* OverwriteExisting= */ false);
+ setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
+ ARMBuildAttrs::AllowNeon2,
+ /* OverwriteExisting= */ false);
+ break;
+
+ case ARM::NEON_FP_ARMV8:
+ case ARM::CRYPTO_NEON_FP_ARMV8:
+ setAttributeItem(ARMBuildAttrs::FP_arch,
+ ARMBuildAttrs::AllowFPARMv8A,
+ /* OverwriteExisting= */ false);
+ setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
+ ARMBuildAttrs::AllowNeonARMv8,
+ /* OverwriteExisting= */ false);
+ break;
+
+ case ARM::SOFTVFP:
+ break;
+
+ default:
+ report_fatal_error("Unknown FPU: " + Twine(FPU));
+ break;
+ }
+}
+size_t ARMTargetELFStreamer::calculateContentSize() const {
+ size_t Result = 0;
+ for (size_t i = 0; i < Contents.size(); ++i) {
+ AttributeItem item = Contents[i];
+ switch (item.Type) {
+ case AttributeItem::HiddenAttribute:
+ break;
+ case AttributeItem::NumericAttribute:
+ Result += getULEB128Size(item.Tag);
+ Result += getULEB128Size(item.IntValue);
+ break;
+ case AttributeItem::TextAttribute:
+ Result += getULEB128Size(item.Tag);
+ Result += item.StringValue.size() + 1; // string + '\0'
+ break;
+ case AttributeItem::NumericAndTextAttributes:
+ Result += getULEB128Size(item.Tag);
+ Result += getULEB128Size(item.IntValue);
+ Result += item.StringValue.size() + 1; // string + '\0';
+ break;
+ }
+ }
+ return Result;
+}
+void ARMTargetELFStreamer::finishAttributeSection() {
+ // <format-version>
+ // [ <section-length> "vendor-name"
+ // [ <file-tag> <size> <attribute>*
+ // | <section-tag> <size> <section-number>* 0 <attribute>*
+ // | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
+ // ]+
+ // ]*
+
+ if (FPU != ARM::INVALID_FPU)
+ emitFPUDefaultAttributes();
+
+ if (Arch != ARM::INVALID_ARCH)
+ emitArchDefaultAttributes();
+
+ if (Contents.empty())
+ return;
+
+ std::sort(Contents.begin(), Contents.end(), AttributeItem::LessTag);
+
+ ARMELFStreamer &Streamer = getStreamer();
+
+ // Switch to .ARM.attributes section
+ if (AttributeSection) {
+ Streamer.SwitchSection(AttributeSection);
+ } else {
+ AttributeSection =
+ Streamer.getContext().getELFSection(".ARM.attributes",
+ ELF::SHT_ARM_ATTRIBUTES,
+ 0,
+ SectionKind::getMetadata());
+ Streamer.SwitchSection(AttributeSection);
+
+ // Format version
+ Streamer.EmitIntValue(0x41, 1);
+ }
+
+ // Vendor size + Vendor name + '\0'
+ const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1;
+
+ // Tag + Tag Size
+ const size_t TagHeaderSize = 1 + 4;
+
+ const size_t ContentsSize = calculateContentSize();
+
+ Streamer.EmitIntValue(VendorHeaderSize + TagHeaderSize + ContentsSize, 4);
+ Streamer.EmitBytes(CurrentVendor);
+ Streamer.EmitIntValue(0, 1); // '\0'
+
+ Streamer.EmitIntValue(ARMBuildAttrs::File, 1);
+ Streamer.EmitIntValue(TagHeaderSize + ContentsSize, 4);
+
+ // Size should have been accounted for already, now
+ // emit each field as its type (ULEB or String)
+ for (size_t i = 0; i < Contents.size(); ++i) {
+ AttributeItem item = Contents[i];
+ Streamer.EmitULEB128IntValue(item.Tag);
+ switch (item.Type) {
+ default: llvm_unreachable("Invalid attribute type");
+ case AttributeItem::NumericAttribute:
+ Streamer.EmitULEB128IntValue(item.IntValue);
+ break;
+ case AttributeItem::TextAttribute:
+ Streamer.EmitBytes(item.StringValue.upper());
+ Streamer.EmitIntValue(0, 1); // '\0'
+ break;
+ case AttributeItem::NumericAndTextAttributes:
+ Streamer.EmitULEB128IntValue(item.IntValue);
+ Streamer.EmitBytes(item.StringValue.upper());
+ Streamer.EmitIntValue(0, 1); // '\0'
+ break;
+ }
+ }
+
+ Contents.clear();
+ FPU = ARM::INVALID_FPU;
+}
+
+void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) {
+ ARMELFStreamer &Streamer = getStreamer();
+ if (!Streamer.IsThumb)
+ return;
+
+ const MCSymbolData &SD = Streamer.getOrCreateSymbolData(Symbol);
+ unsigned Type = MCELF::GetType(SD);
+ if (Type == ELF_STT_Func || Type == ELF_STT_GnuIFunc)
+ Streamer.EmitThumbFunc(Symbol);
+}
+
+void
+ARMTargetELFStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) {
+ getStreamer().EmitFixup(S, FK_Data_4);
+}
+
+void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
+ if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) {
+ const MCSymbol &Sym = SRE->getSymbol();
+ if (!Sym.isDefined()) {
+ getStreamer().EmitAssignment(Symbol, Value);
+ return;
+ }
+ }
+
+ getStreamer().EmitThumbFunc(Symbol);
+ getStreamer().EmitAssignment(Symbol, Value);
+}
+
+void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) {
+ getStreamer().emitInst(Inst, Suffix);
+}
+
+void ARMELFStreamer::FinishImpl() {
+ MCTargetStreamer &TS = *getTargetStreamer();
+ ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
+ ATS.finishAttributeSection();
+
+ MCELFStreamer::FinishImpl();
+}
+
+inline void ARMELFStreamer::SwitchToEHSection(const char *Prefix,
+ unsigned Type,
+ unsigned Flags,
+ SectionKind Kind,
+ const MCSymbol &Fn) {
+ const MCSectionELF &FnSection =
+ static_cast<const MCSectionELF &>(Fn.getSection());
+
+ // Create the name for new section
+ StringRef FnSecName(FnSection.getSectionName());
+ SmallString<128> EHSecName(Prefix);
+ if (FnSecName != ".text") {
+ EHSecName += FnSecName;
+ }
+
+ // Get .ARM.extab or .ARM.exidx section
+ const MCSectionELF *EHSection = nullptr;
+ if (const MCSymbol *Group = FnSection.getGroup()) {
+ EHSection = getContext().getELFSection(
+ EHSecName, Type, Flags | ELF::SHF_GROUP, Kind,
+ FnSection.getEntrySize(), Group->getName());
+ } else {
+ EHSection = getContext().getELFSection(EHSecName, Type, Flags, Kind);
+ }
+ assert(EHSection && "Failed to get the required EH section");
+
+ // Switch to .ARM.extab or .ARM.exidx section
+ SwitchSection(EHSection);
+ EmitCodeAlignment(4);
+}
+
+inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) {
+ SwitchToEHSection(".ARM.extab",
+ ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC,
+ SectionKind::getDataRel(),
+ FnStart);
+}
+
+inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) {
+ SwitchToEHSection(".ARM.exidx",
+ ELF::SHT_ARM_EXIDX,
+ ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER,
+ SectionKind::getDataRel(),
+ FnStart);
+}
+void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) {
+ MCDataFragment *Frag = getOrCreateDataFragment();
+ Frag->getFixups().push_back(MCFixup::Create(Frag->getContents().size(), Expr,
+ Kind));
+}
+
+void ARMELFStreamer::Reset() {
+ ExTab = nullptr;
+ FnStart = nullptr;
+ Personality = nullptr;
+ PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX;
+ FPReg = ARM::SP;
+ FPOffset = 0;
+ SPOffset = 0;
+ PendingOffset = 0;
+ UsedFP = false;
+ CantUnwind = false;
+
+ Opcodes.clear();
+ UnwindOpAsm.Reset();
+}
+
+void ARMELFStreamer::emitFnStart() {
+ assert(FnStart == nullptr);
+ FnStart = getContext().CreateTempSymbol();
+ EmitLabel(FnStart);
+}
+
+void ARMELFStreamer::emitFnEnd() {
+ assert(FnStart && ".fnstart must precedes .fnend");
+
+ // Emit unwind opcodes if there is no .handlerdata directive
+ if (!ExTab && !CantUnwind)
+ FlushUnwindOpcodes(true);
+
+ // Emit the exception index table entry
+ SwitchToExIdxSection(*FnStart);
+
+ if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX)
+ EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex));
+
+ const MCSymbolRefExpr *FnStartRef =
+ MCSymbolRefExpr::Create(FnStart,
+ MCSymbolRefExpr::VK_ARM_PREL31,
+ getContext());
+
+ EmitValue(FnStartRef, 4);
+
+ if (CantUnwind) {
+ EmitIntValue(ARM::EHABI::EXIDX_CANTUNWIND, 4);
+ } else if (ExTab) {
+ // Emit a reference to the unwind opcodes in the ".ARM.extab" section.
+ const MCSymbolRefExpr *ExTabEntryRef =
+ MCSymbolRefExpr::Create(ExTab,
+ MCSymbolRefExpr::VK_ARM_PREL31,
+ getContext());
+ EmitValue(ExTabEntryRef, 4);
+ } else {
+ // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in
+ // the second word of exception index table entry. The size of the unwind
+ // opcodes should always be 4 bytes.
+ assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 &&
+ "Compact model must use __aeabi_unwind_cpp_pr0 as personality");
+ assert(Opcodes.size() == 4u &&
+ "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4");
+ uint64_t Intval = Opcodes[0] |
+ Opcodes[1] << 8 |
+ Opcodes[2] << 16 |
+ Opcodes[3] << 24;
+ EmitIntValue(Intval, Opcodes.size());
+ }
+
+ // Switch to the section containing FnStart
+ SwitchSection(&FnStart->getSection());
+
+ // Clean exception handling frame information
+ Reset();
+}
+
+void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; }
+
+// Add the R_ARM_NONE fixup at the same position
+void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) {
+ const MCSymbol *PersonalitySym = getContext().GetOrCreateSymbol(Name);
+
+ const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::Create(
+ PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext());
+
+ visitUsedExpr(*PersonalityRef);
+ MCDataFragment *DF = getOrCreateDataFragment();
+ DF->getFixups().push_back(MCFixup::Create(DF->getContents().size(),
+ PersonalityRef,
+ MCFixup::getKindForSize(4, false)));
+}
+
+void ARMELFStreamer::FlushPendingOffset() {
+ if (PendingOffset != 0) {
+ UnwindOpAsm.EmitSPOffset(-PendingOffset);
+ PendingOffset = 0;
+ }
+}
+
+void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) {
+ // Emit the unwind opcode to restore $sp.
+ if (UsedFP) {
+ const MCRegisterInfo *MRI = getContext().getRegisterInfo();
+ int64_t LastRegSaveSPOffset = SPOffset - PendingOffset;
+ UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset);
+ UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
+ } else {
+ FlushPendingOffset();
+ }
+
+ // Finalize the unwind opcode sequence
+ UnwindOpAsm.Finalize(PersonalityIndex, Opcodes);
+
+ // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx
+ // section. Thus, we don't have to create an entry in the .ARM.extab
+ // section.
+ if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0)
+ return;
+
+ // Switch to .ARM.extab section.
+ SwitchToExTabSection(*FnStart);
+
+ // Create .ARM.extab label for offset in .ARM.exidx
+ assert(!ExTab);
+ ExTab = getContext().CreateTempSymbol();
+ EmitLabel(ExTab);
+
+ // Emit personality
+ if (Personality) {
+ const MCSymbolRefExpr *PersonalityRef =
+ MCSymbolRefExpr::Create(Personality,
+ MCSymbolRefExpr::VK_ARM_PREL31,
+ getContext());
+
+ EmitValue(PersonalityRef, 4);
+ }
+
+ // Emit unwind opcodes
+ assert((Opcodes.size() % 4) == 0 &&
+ "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4");
+ for (unsigned I = 0; I != Opcodes.size(); I += 4) {
+ uint64_t Intval = Opcodes[I] |
+ Opcodes[I + 1] << 8 |
+ Opcodes[I + 2] << 16 |
+ Opcodes[I + 3] << 24;
+ EmitIntValue(Intval, 4);
+ }
+
+ // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or
+ // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted
+ // after the unwind opcodes. The handler data consists of several 32-bit
+ // words, and should be terminated by zero.
+ //
+ // In case that the .handlerdata directive is not specified by the
+ // programmer, we should emit zero to terminate the handler data.
+ if (NoHandlerData && !Personality)
+ EmitIntValue(0, 4);
+}
+
+void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); }
+
+void ARMELFStreamer::emitPersonality(const MCSymbol *Per) {
+ Personality = Per;
+ UnwindOpAsm.setPersonality(Per);
+}
+
+void ARMELFStreamer::emitPersonalityIndex(unsigned Index) {
+ assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index");
+ PersonalityIndex = Index;
+}
+
+void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg,
+ int64_t Offset) {
+ assert((NewSPReg == ARM::SP || NewSPReg == FPReg) &&
+ "the operand of .setfp directive should be either $sp or $fp");
+
+ UsedFP = true;
+ FPReg = NewFPReg;
+
+ if (NewSPReg == ARM::SP)
+ FPOffset = SPOffset + Offset;
+ else
+ FPOffset += Offset;
+}
+
+void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
+ assert((Reg != ARM::SP && Reg != ARM::PC) &&
+ "the operand of .movsp cannot be either sp or pc");
+ assert(FPReg == ARM::SP && "current FP must be SP");
+
+ FlushPendingOffset();
+
+ FPReg = Reg;
+ FPOffset = SPOffset + Offset;
+
+ const MCRegisterInfo *MRI = getContext().getRegisterInfo();
+ UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
+}
+
+void ARMELFStreamer::emitPad(int64_t Offset) {
+ // Track the change of the $sp offset
+ SPOffset -= Offset;
+
+ // To squash multiple .pad directives, we should delay the unwind opcode
+ // until the .save, .vsave, .handlerdata, or .fnend directives.
+ PendingOffset -= Offset;
+}
+
+void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
+ bool IsVector) {
+ // Collect the registers in the register list
+ unsigned Count = 0;
+ uint32_t Mask = 0;
+ const MCRegisterInfo *MRI = getContext().getRegisterInfo();
+ for (size_t i = 0; i < RegList.size(); ++i) {
+ unsigned Reg = MRI->getEncodingValue(RegList[i]);
+ assert(Reg < (IsVector ? 32U : 16U) && "Register out of range");
+ unsigned Bit = (1u << Reg);
+ if ((Mask & Bit) == 0) {
+ Mask |= Bit;
+ ++Count;
+ }
+ }
+
+ // Track the change the $sp offset: For the .save directive, the
+ // corresponding push instruction will decrease the $sp by (4 * Count).
+ // For the .vsave directive, the corresponding vpush instruction will
+ // decrease $sp by (8 * Count).
+ SPOffset -= Count * (IsVector ? 8 : 4);
+
+ // Emit the opcode
+ FlushPendingOffset();
+ if (IsVector)
+ UnwindOpAsm.EmitVFPRegSave(Mask);
+ else
+ UnwindOpAsm.EmitRegSave(Mask);
+}
+
+void ARMELFStreamer::emitUnwindRaw(int64_t Offset,
+ const SmallVectorImpl<uint8_t> &Opcodes) {
+ FlushPendingOffset();
+ SPOffset = SPOffset - Offset;
+ UnwindOpAsm.EmitRaw(Opcodes);
+}
+
+namespace llvm {
+
+MCStreamer *createMCAsmStreamer(MCContext &Ctx, formatted_raw_ostream &OS,
+ bool isVerboseAsm, bool useDwarfDirectory,
+ MCInstPrinter *InstPrint, MCCodeEmitter *CE,
+ MCAsmBackend *TAB, bool ShowInst) {
+ MCStreamer *S = llvm::createAsmStreamer(
+ Ctx, OS, isVerboseAsm, useDwarfDirectory, InstPrint, CE, TAB, ShowInst);
+ new ARMTargetAsmStreamer(*S, OS, *InstPrint, isVerboseAsm);
+ return S;
+}
+
+MCStreamer *createARMNullStreamer(MCContext &Ctx) {
+ MCStreamer *S = llvm::createNullStreamer(Ctx);
+ new ARMTargetStreamer(*S);
+ return S;
+}
+
+ MCELFStreamer* createARMELFStreamer(MCContext &Context, MCAsmBackend &TAB,
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ bool RelaxAll, bool NoExecStack,
+ bool IsThumb) {
+ ARMELFStreamer *S = new ARMELFStreamer(Context, TAB, OS, Emitter, IsThumb);
+ new ARMTargetELFStreamer(*S);
+ // FIXME: This should eventually end up somewhere else where more
+ // intelligent flag decisions can be made. For now we are just maintaining
+ // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default.
+ S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
+
+ if (RelaxAll)
+ S->getAssembler().setRelaxAll(true);
+ if (NoExecStack)
+ S->getAssembler().setNoExecStack(true);
+ return S;
+ }
+
+}
+
+
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMFixupKinds.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMFixupKinds.h
new file mode 100644
index 0000000..bfd9e33
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMFixupKinds.h
@@ -0,0 +1,110 @@
+//===-- ARMFixupKinds.h - ARM Specific Fixup Entries ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ARM_ARMFIXUPKINDS_H
+#define LLVM_ARM_ARMFIXUPKINDS_H
+
+#include "llvm/MC/MCFixup.h"
+
+namespace llvm {
+namespace ARM {
+enum Fixups {
+ // fixup_arm_ldst_pcrel_12 - 12-bit PC relative relocation for symbol
+ // addresses
+ fixup_arm_ldst_pcrel_12 = FirstTargetFixupKind,
+
+ // fixup_t2_ldst_pcrel_12 - Equivalent to fixup_arm_ldst_pcrel_12, with
+ // the 16-bit halfwords reordered.
+ fixup_t2_ldst_pcrel_12,
+
+ // fixup_arm_pcrel_10_unscaled - 10-bit PC relative relocation for symbol
+ // addresses used in LDRD/LDRH/LDRB/etc. instructions. All bits are encoded.
+ fixup_arm_pcrel_10_unscaled,
+ // fixup_arm_pcrel_10 - 10-bit PC relative relocation for symbol addresses
+ // used in VFP instructions where the lower 2 bits are not encoded
+ // (so it's encoded as an 8-bit immediate).
+ fixup_arm_pcrel_10,
+ // fixup_t2_pcrel_10 - Equivalent to fixup_arm_pcrel_10, accounting for
+ // the short-swapped encoding of Thumb2 instructions.
+ fixup_t2_pcrel_10,
+ // fixup_thumb_adr_pcrel_10 - 10-bit PC relative relocation for symbol
+ // addresses where the lower 2 bits are not encoded (so it's encoded as an
+ // 8-bit immediate).
+ fixup_thumb_adr_pcrel_10,
+ // fixup_arm_adr_pcrel_12 - 12-bit PC relative relocation for the ADR
+ // instruction.
+ fixup_arm_adr_pcrel_12,
+ // fixup_t2_adr_pcrel_12 - 12-bit PC relative relocation for the ADR
+ // instruction.
+ fixup_t2_adr_pcrel_12,
+ // fixup_arm_condbranch - 24-bit PC relative relocation for conditional branch
+ // instructions.
+ fixup_arm_condbranch,
+ // fixup_arm_uncondbranch - 24-bit PC relative relocation for
+ // branch instructions. (unconditional)
+ fixup_arm_uncondbranch,
+ // fixup_t2_condbranch - 20-bit PC relative relocation for Thumb2 direct
+ // uconditional branch instructions.
+ fixup_t2_condbranch,
+ // fixup_t2_uncondbranch - 20-bit PC relative relocation for Thumb2 direct
+ // branch unconditional branch instructions.
+ fixup_t2_uncondbranch,
+
+ // fixup_arm_thumb_br - 12-bit fixup for Thumb B instructions.
+ fixup_arm_thumb_br,
+
+ // The following fixups handle the ARM BL instructions. These can be
+ // conditionalised; however, the ARM ELF ABI requires a different relocation
+ // in that case: R_ARM_JUMP24 instead of R_ARM_CALL. The difference is that
+ // R_ARM_CALL is allowed to change the instruction to a BLX inline, which has
+ // no conditional version; R_ARM_JUMP24 would have to insert a veneer.
+ //
+ // MachO does not draw a distinction between the two cases, so it will treat
+ // fixup_arm_uncondbl and fixup_arm_condbl as identical fixups.
+
+ // fixup_arm_uncondbl - Fixup for unconditional ARM BL instructions.
+ fixup_arm_uncondbl,
+
+ // fixup_arm_condbl - Fixup for ARM BL instructions with nontrivial
+ // conditionalisation.
+ fixup_arm_condbl,
+
+ // fixup_arm_blx - Fixup for ARM BLX instructions.
+ fixup_arm_blx,
+
+ // fixup_arm_thumb_bl - Fixup for Thumb BL instructions.
+ fixup_arm_thumb_bl,
+
+ // fixup_arm_thumb_blx - Fixup for Thumb BLX instructions.
+ fixup_arm_thumb_blx,
+
+ // fixup_arm_thumb_cb - Fixup for Thumb branch instructions.
+ fixup_arm_thumb_cb,
+
+ // fixup_arm_thumb_cp - Fixup for Thumb load/store from constant pool instrs.
+ fixup_arm_thumb_cp,
+
+ // fixup_arm_thumb_bcc - Fixup for Thumb conditional branching instructions.
+ fixup_arm_thumb_bcc,
+
+ // The next two are for the movt/movw pair
+ // the 16bit imm field are split into imm{15-12} and imm{11-0}
+ fixup_arm_movt_hi16, // :upper16:
+ fixup_arm_movw_lo16, // :lower16:
+ fixup_t2_movt_hi16, // :upper16:
+ fixup_t2_movw_lo16, // :lower16:
+
+ // Marker
+ LastTargetFixupKind,
+ NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind
+};
+}
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.cpp
new file mode 100644
index 0000000..7a19208
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.cpp
@@ -0,0 +1,114 @@
+//===-- ARMMCAsmInfo.cpp - ARM asm properties -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the ARMMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMMCAsmInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/ADT/Triple.h"
+
+using namespace llvm;
+
+void ARMMCAsmInfoDarwin::anchor() { }
+
+ARMMCAsmInfoDarwin::ARMMCAsmInfoDarwin(StringRef TT) {
+ Triple TheTriple(TT);
+ if ((TheTriple.getArch() == Triple::armeb) ||
+ (TheTriple.getArch() == Triple::thumbeb))
+ IsLittleEndian = false;
+
+ Data64bitsDirective = nullptr;
+ CommentString = "@";
+ Code16Directive = ".code\t16";
+ Code32Directive = ".code\t32";
+ UseDataRegionDirectives = true;
+
+ SupportsDebugInformation = true;
+
+ // Exceptions handling
+ ExceptionsType = ExceptionHandling::SjLj;
+
+ UseIntegratedAssembler = true;
+}
+
+void ARMELFMCAsmInfo::anchor() { }
+
+ARMELFMCAsmInfo::ARMELFMCAsmInfo(StringRef TT) {
+ Triple TheTriple(TT);
+ if ((TheTriple.getArch() == Triple::armeb) ||
+ (TheTriple.getArch() == Triple::thumbeb))
+ IsLittleEndian = false;
+
+ // ".comm align is in bytes but .align is pow-2."
+ AlignmentIsInBytes = false;
+
+ Data64bitsDirective = nullptr;
+ CommentString = "@";
+ Code16Directive = ".code\t16";
+ Code32Directive = ".code\t32";
+
+ HasLEB128 = true;
+ SupportsDebugInformation = true;
+
+ // Exceptions handling
+ switch (TheTriple.getOS()) {
+ case Triple::NetBSD:
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+ break;
+ default:
+ ExceptionsType = ExceptionHandling::ARM;
+ break;
+ }
+
+ // foo(plt) instead of foo@plt
+ UseParensForSymbolVariant = true;
+
+ UseIntegratedAssembler = true;
+}
+
+void ARMELFMCAsmInfo::setUseIntegratedAssembler(bool Value) {
+ UseIntegratedAssembler = Value;
+ if (!UseIntegratedAssembler) {
+ // gas doesn't handle VFP register names in cfi directives,
+ // so don't use register names with external assembler.
+ // See https://sourceware.org/bugzilla/show_bug.cgi?id=16694
+ DwarfRegNumForCFI = true;
+ }
+}
+
+void ARMCOFFMCAsmInfoMicrosoft::anchor() { }
+
+ARMCOFFMCAsmInfoMicrosoft::ARMCOFFMCAsmInfoMicrosoft() {
+ AlignmentIsInBytes = false;
+
+ PrivateGlobalPrefix = "$M";
+}
+
+void ARMCOFFMCAsmInfoGNU::anchor() { }
+
+ARMCOFFMCAsmInfoGNU::ARMCOFFMCAsmInfoGNU() {
+ AlignmentIsInBytes = false;
+ HasSingleParameterDotFile = true;
+
+ CommentString = "@";
+ Code16Directive = ".code\t16";
+ Code32Directive = ".code\t32";
+ PrivateGlobalPrefix = ".L";
+
+ HasLEB128 = true;
+ SupportsDebugInformation = true;
+ ExceptionsType = ExceptionHandling::None;
+ UseParensForSymbolVariant = true;
+
+ UseIntegratedAssembler = false;
+ DwarfRegNumForCFI = true;
+}
+
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.h
new file mode 100644
index 0000000..51cfa0ad
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.h
@@ -0,0 +1,51 @@
+//===-- ARMMCAsmInfo.h - ARM asm properties --------------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the ARMMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ARMTARGETASMINFO_H
+#define LLVM_ARMTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfoCOFF.h"
+#include "llvm/MC/MCAsmInfoDarwin.h"
+#include "llvm/MC/MCAsmInfoELF.h"
+
+namespace llvm {
+
+ class ARMMCAsmInfoDarwin : public MCAsmInfoDarwin {
+ void anchor() override;
+ public:
+ explicit ARMMCAsmInfoDarwin(StringRef TT);
+ };
+
+ class ARMELFMCAsmInfo : public MCAsmInfoELF {
+ void anchor() override;
+ public:
+ explicit ARMELFMCAsmInfo(StringRef TT);
+
+ void setUseIntegratedAssembler(bool Value) override;
+ };
+
+ class ARMCOFFMCAsmInfoMicrosoft : public MCAsmInfoMicrosoft {
+ void anchor() override;
+ public:
+ explicit ARMCOFFMCAsmInfoMicrosoft();
+ };
+
+ class ARMCOFFMCAsmInfoGNU : public MCAsmInfoGNUCOFF {
+ void anchor() override;
+ public:
+ explicit ARMCOFFMCAsmInfoGNU();
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCCodeEmitter.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCCodeEmitter.cpp
new file mode 100644
index 0000000..b8ee555
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCCodeEmitter.cpp
@@ -0,0 +1,1675 @@
+//===-- ARM/ARMMCCodeEmitter.cpp - Convert ARM code to machine code -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ARMMCCodeEmitter class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/ARMMCTargetDesc.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "MCTargetDesc/ARMFixupKinds.h"
+#include "MCTargetDesc/ARMMCExpr.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mccodeemitter"
+
+STATISTIC(MCNumEmitted, "Number of MC instructions emitted.");
+STATISTIC(MCNumCPRelocations, "Number of constant pool relocations created.");
+
+namespace {
+class ARMMCCodeEmitter : public MCCodeEmitter {
+ ARMMCCodeEmitter(const ARMMCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ void operator=(const ARMMCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ const MCInstrInfo &MCII;
+ const MCContext &CTX;
+ bool IsLittleEndian;
+
+public:
+ ARMMCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx, bool IsLittle)
+ : MCII(mcii), CTX(ctx), IsLittleEndian(IsLittle) {
+ }
+
+ ~ARMMCCodeEmitter() {}
+
+ bool isThumb(const MCSubtargetInfo &STI) const {
+ return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
+ }
+ bool isThumb2(const MCSubtargetInfo &STI) const {
+ return isThumb(STI) && (STI.getFeatureBits() & ARM::FeatureThumb2) != 0;
+ }
+ bool isTargetMachO(const MCSubtargetInfo &STI) const {
+ Triple TT(STI.getTargetTriple());
+ return TT.isOSBinFormatMachO();
+ }
+
+ unsigned getMachineSoImmOpValue(unsigned SoImm) const;
+
+ // getBinaryCodeForInstr - TableGen'erated function for getting the
+ // binary encoding for an instruction.
+ uint64_t getBinaryCodeForInstr(const MCInst &MI,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getMachineOpValue - Return binary encoding of operand. If the machine
+ /// operand requires relocation, record the relocation and return zero.
+ unsigned getMachineOpValue(const MCInst &MI,const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getHiLo16ImmOpValue - Return the encoding for the hi / low 16-bit of
+ /// the specified operand. This is used for operands with :lower16: and
+ /// :upper16: prefixes.
+ uint32_t getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ bool EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx,
+ unsigned &Reg, unsigned &Imm,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getThumbBLTargetOpValue - Return encoding info for Thumb immediate
+ /// BL branch target.
+ uint32_t getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate
+ /// BLX branch target.
+ uint32_t getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getThumbBRTargetOpValue - Return encoding info for Thumb branch target.
+ uint32_t getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target.
+ uint32_t getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getThumbCBTargetOpValue - Return encoding info for Thumb branch target.
+ uint32_t getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getBranchTargetOpValue - Return encoding info for 24-bit immediate
+ /// branch target.
+ uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getUnconditionalBranchTargetOpValue - Return encoding info for 24-bit
+ /// immediate Thumb2 direct branch target.
+ uint32_t getUnconditionalBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getARMBranchTargetOpValue - Return encoding info for 24-bit immediate
+ /// branch target.
+ uint32_t getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint32_t getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint32_t getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getAdrLabelOpValue - Return encoding info for 12-bit immediate
+ /// ADR label target.
+ uint32_t getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint32_t getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint32_t getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+
+ /// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12'
+ /// operand.
+ uint32_t getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getThumbAddrModeRegRegOpValue - Return encoding for 'reg + reg' operand.
+ uint32_t getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getT2AddrModeImm8s4OpValue - Return encoding info for 'reg +/- imm8<<2'
+ /// operand.
+ uint32_t getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getT2AddrModeImm0_1020s4OpValue - Return encoding info for 'reg + imm8<<2'
+ /// operand.
+ uint32_t getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getT2Imm8s4OpValue - Return encoding info for '+/- imm8<<2'
+ /// operand.
+ uint32_t getT2Imm8s4OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+
+ /// getLdStSORegOpValue - Return encoding info for 'reg +/- reg shop imm'
+ /// operand as needed by load/store instructions.
+ uint32_t getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getLdStmModeOpValue - Return encoding for load/store multiple mode.
+ uint32_t getLdStmModeOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ ARM_AM::AMSubMode Mode = (ARM_AM::AMSubMode)MI.getOperand(OpIdx).getImm();
+ switch (Mode) {
+ default: llvm_unreachable("Unknown addressing sub-mode!");
+ case ARM_AM::da: return 0;
+ case ARM_AM::ia: return 1;
+ case ARM_AM::db: return 2;
+ case ARM_AM::ib: return 3;
+ }
+ }
+ /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
+ ///
+ unsigned getShiftOp(ARM_AM::ShiftOpc ShOpc) const {
+ switch (ShOpc) {
+ case ARM_AM::no_shift:
+ case ARM_AM::lsl: return 0;
+ case ARM_AM::lsr: return 1;
+ case ARM_AM::asr: return 2;
+ case ARM_AM::ror:
+ case ARM_AM::rrx: return 3;
+ }
+ llvm_unreachable("Invalid ShiftOpc!");
+ }
+
+ /// getAddrMode2OpValue - Return encoding for addrmode2 operands.
+ uint32_t getAddrMode2OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getAddrMode2OffsetOpValue - Return encoding for am2offset operands.
+ uint32_t getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getPostIdxRegOpValue - Return encoding for postidx_reg operands.
+ uint32_t getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getAddrMode3OffsetOpValue - Return encoding for am3offset operands.
+ uint32_t getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getAddrMode3OpValue - Return encoding for addrmode3 operands.
+ uint32_t getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getAddrModeThumbSPOpValue - Return encoding info for 'reg +/- imm12'
+ /// operand.
+ uint32_t getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getAddrModeISOpValue - Encode the t_addrmode_is# operands.
+ uint32_t getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands.
+ uint32_t getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getAddrMode5OpValue - Return encoding info for 'reg +/- imm8' operand.
+ uint32_t getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getCCOutOpValue - Return encoding of the 's' bit.
+ unsigned getCCOutOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // The operand is either reg0 or CPSR. The 's' bit is encoded as '0' or
+ // '1' respectively.
+ return MI.getOperand(Op).getReg() == ARM::CPSR;
+ }
+
+ /// getSOImmOpValue - Return an encoded 12-bit shifted-immediate value.
+ unsigned getSOImmOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(Op);
+
+ // We expect MO to be an immediate or an expression,
+ // if it is an immediate - that's fine, just encode the value.
+ // Otherwise - create a Fixup.
+ if (MO.isExpr()) {
+ const MCExpr *Expr = MO.getExpr();
+ // In instruction code this value always encoded as lowest 12 bits,
+ // so we don't have to perform any specific adjustments.
+ // Due to requirements of relocatable records we have to use FK_Data_4.
+ // See ARMELFObjectWriter::ExplicitRelSym and
+ // ARMELFObjectWriter::GetRelocTypeInner for more details.
+ MCFixupKind Kind = MCFixupKind(FK_Data_4);
+ Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc()));
+ return 0;
+ }
+
+ unsigned SoImm = MO.getImm();
+ int SoImmVal = ARM_AM::getSOImmVal(SoImm);
+ assert(SoImmVal != -1 && "Not a valid so_imm value!");
+
+ // Encode rotate_imm.
+ unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
+ << ARMII::SoRotImmShift;
+
+ // Encode immed_8.
+ Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
+ return Binary;
+ }
+
+ /// getT2SOImmOpValue - Return an encoded 12-bit shifted-immediate value.
+ unsigned getT2SOImmOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ unsigned SoImm = MI.getOperand(Op).getImm();
+ unsigned Encoded = ARM_AM::getT2SOImmVal(SoImm);
+ assert(Encoded != ~0U && "Not a Thumb2 so_imm value?");
+ return Encoded;
+ }
+
+ unsigned getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getT2AddrModeImm8OpValue(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getT2AddrModeImm12OffsetOpValue(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getSORegOpValue - Return an encoded so_reg shifted register value.
+ unsigned getSORegRegOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getSORegImmOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getT2SORegOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getNEONVcvtImm32OpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ return 64 - MI.getOperand(Op).getImm();
+ }
+
+ unsigned getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getRegisterListOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getShiftRight8Imm(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getShiftRight16Imm(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getShiftRight32Imm(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getShiftRight64Imm(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getThumbSRImmOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned NEONThumb2DataIPostEncoder(const MCInst &MI,
+ unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const;
+ unsigned NEONThumb2LoadStorePostEncoder(const MCInst &MI,
+ unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const;
+ unsigned NEONThumb2DupPostEncoder(const MCInst &MI,
+ unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const;
+ unsigned NEONThumb2V8PostEncoder(const MCInst &MI,
+ unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned VFPThumb2PostEncoder(const MCInst &MI,
+ unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const;
+
+ void EmitByte(unsigned char C, raw_ostream &OS) const {
+ OS << (char)C;
+ }
+
+ void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
+ // Output the constant in little endian byte order.
+ for (unsigned i = 0; i != Size; ++i) {
+ unsigned Shift = IsLittleEndian ? i * 8 : (Size - 1 - i) * 8;
+ EmitByte((Val >> Shift) & 0xff, OS);
+ }
+ }
+
+ void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+};
+
+} // end anonymous namespace
+
+MCCodeEmitter *llvm::createARMLEMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new ARMMCCodeEmitter(MCII, Ctx, true);
+}
+
+MCCodeEmitter *llvm::createARMBEMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new ARMMCCodeEmitter(MCII, Ctx, false);
+}
+
+/// NEONThumb2DataIPostEncoder - Post-process encoded NEON data-processing
+/// instructions, and rewrite them to their Thumb2 form if we are currently in
+/// Thumb2 mode.
+unsigned ARMMCCodeEmitter::NEONThumb2DataIPostEncoder(const MCInst &MI,
+ unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const {
+ if (isThumb2(STI)) {
+ // NEON Thumb2 data-processsing encodings are very simple: bit 24 is moved
+ // to bit 12 of the high half-word (i.e. bit 28), and bits 27-24 are
+ // set to 1111.
+ unsigned Bit24 = EncodedValue & 0x01000000;
+ unsigned Bit28 = Bit24 << 4;
+ EncodedValue &= 0xEFFFFFFF;
+ EncodedValue |= Bit28;
+ EncodedValue |= 0x0F000000;
+ }
+
+ return EncodedValue;
+}
+
+/// NEONThumb2LoadStorePostEncoder - Post-process encoded NEON load/store
+/// instructions, and rewrite them to their Thumb2 form if we are currently in
+/// Thumb2 mode.
+unsigned ARMMCCodeEmitter::NEONThumb2LoadStorePostEncoder(const MCInst &MI,
+ unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const {
+ if (isThumb2(STI)) {
+ EncodedValue &= 0xF0FFFFFF;
+ EncodedValue |= 0x09000000;
+ }
+
+ return EncodedValue;
+}
+
+/// NEONThumb2DupPostEncoder - Post-process encoded NEON vdup
+/// instructions, and rewrite them to their Thumb2 form if we are currently in
+/// Thumb2 mode.
+unsigned ARMMCCodeEmitter::NEONThumb2DupPostEncoder(const MCInst &MI,
+ unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const {
+ if (isThumb2(STI)) {
+ EncodedValue &= 0x00FFFFFF;
+ EncodedValue |= 0xEE000000;
+ }
+
+ return EncodedValue;
+}
+
+/// Post-process encoded NEON v8 instructions, and rewrite them to Thumb2 form
+/// if we are in Thumb2.
+unsigned ARMMCCodeEmitter::NEONThumb2V8PostEncoder(const MCInst &MI,
+ unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const {
+ if (isThumb2(STI)) {
+ EncodedValue |= 0xC000000; // Set bits 27-26
+ }
+
+ return EncodedValue;
+}
+
+/// VFPThumb2PostEncoder - Post-process encoded VFP instructions and rewrite
+/// them to their Thumb2 form if we are currently in Thumb2 mode.
+unsigned ARMMCCodeEmitter::
+VFPThumb2PostEncoder(const MCInst &MI, unsigned EncodedValue,
+ const MCSubtargetInfo &STI) const {
+ if (isThumb2(STI)) {
+ EncodedValue &= 0x0FFFFFFF;
+ EncodedValue |= 0xE0000000;
+ }
+ return EncodedValue;
+}
+
+/// getMachineOpValue - Return binary encoding of operand. If the machine
+/// operand requires relocation, record the relocation and return zero.
+unsigned ARMMCCodeEmitter::
+getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ if (MO.isReg()) {
+ unsigned Reg = MO.getReg();
+ unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg);
+
+ // Q registers are encoded as 2x their register number.
+ switch (Reg) {
+ default:
+ return RegNo;
+ case ARM::Q0: case ARM::Q1: case ARM::Q2: case ARM::Q3:
+ case ARM::Q4: case ARM::Q5: case ARM::Q6: case ARM::Q7:
+ case ARM::Q8: case ARM::Q9: case ARM::Q10: case ARM::Q11:
+ case ARM::Q12: case ARM::Q13: case ARM::Q14: case ARM::Q15:
+ return 2 * RegNo;
+ }
+ } else if (MO.isImm()) {
+ return static_cast<unsigned>(MO.getImm());
+ } else if (MO.isFPImm()) {
+ return static_cast<unsigned>(APFloat(MO.getFPImm())
+ .bitcastToAPInt().getHiBits(32).getLimitedValue());
+ }
+
+ llvm_unreachable("Unable to encode MCOperand!");
+}
+
+/// getAddrModeImmOpValue - Return encoding info for 'reg +/- imm' operand.
+bool ARMMCCodeEmitter::
+EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx, unsigned &Reg,
+ unsigned &Imm, SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
+
+ Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+
+ int32_t SImm = MO1.getImm();
+ bool isAdd = true;
+
+ // Special value for #-0
+ if (SImm == INT32_MIN) {
+ SImm = 0;
+ isAdd = false;
+ }
+
+ // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
+ if (SImm < 0) {
+ SImm = -SImm;
+ isAdd = false;
+ }
+
+ Imm = SImm;
+ return isAdd;
+}
+
+/// getBranchTargetOpValue - Helper function to get the branch target operand,
+/// which is either an immediate or requires a fixup.
+static uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ unsigned FixupKind,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+
+ // If the destination is an immediate, we have nothing to do.
+ if (MO.isImm()) return MO.getImm();
+ assert(MO.isExpr() && "Unexpected branch target type!");
+ const MCExpr *Expr = MO.getExpr();
+ MCFixupKind Kind = MCFixupKind(FixupKind);
+ Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc()));
+
+ // All of the information is in the fixup.
+ return 0;
+}
+
+// Thumb BL and BLX use a strange offset encoding where bits 22 and 21 are
+// determined by negating them and XOR'ing them with bit 23.
+static int32_t encodeThumbBLOffset(int32_t offset) {
+ offset >>= 1;
+ uint32_t S = (offset & 0x800000) >> 23;
+ uint32_t J1 = (offset & 0x400000) >> 22;
+ uint32_t J2 = (offset & 0x200000) >> 21;
+ J1 = (~J1 & 0x1);
+ J2 = (~J2 & 0x1);
+ J1 ^= S;
+ J2 ^= S;
+
+ offset &= ~0x600000;
+ offset |= J1 << 22;
+ offset |= J2 << 21;
+
+ return offset;
+}
+
+/// getThumbBLTargetOpValue - Return encoding info for immediate branch target.
+uint32_t ARMMCCodeEmitter::
+getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr())
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bl,
+ Fixups, STI);
+ return encodeThumbBLOffset(MO.getImm());
+}
+
+/// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate
+/// BLX branch target.
+uint32_t ARMMCCodeEmitter::
+getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr())
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_blx,
+ Fixups, STI);
+ return encodeThumbBLOffset(MO.getImm());
+}
+
+/// getThumbBRTargetOpValue - Return encoding info for Thumb branch target.
+uint32_t ARMMCCodeEmitter::
+getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr())
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_br,
+ Fixups, STI);
+ return (MO.getImm() >> 1);
+}
+
+/// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target.
+uint32_t ARMMCCodeEmitter::
+getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr())
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bcc,
+ Fixups, STI);
+ return (MO.getImm() >> 1);
+}
+
+/// getThumbCBTargetOpValue - Return encoding info for Thumb branch target.
+uint32_t ARMMCCodeEmitter::
+getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr())
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cb, Fixups, STI);
+ return (MO.getImm() >> 1);
+}
+
+/// Return true if this branch has a non-always predication
+static bool HasConditionalBranch(const MCInst &MI) {
+ int NumOp = MI.getNumOperands();
+ if (NumOp >= 2) {
+ for (int i = 0; i < NumOp-1; ++i) {
+ const MCOperand &MCOp1 = MI.getOperand(i);
+ const MCOperand &MCOp2 = MI.getOperand(i + 1);
+ if (MCOp1.isImm() && MCOp2.isReg() &&
+ (MCOp2.getReg() == 0 || MCOp2.getReg() == ARM::CPSR)) {
+ if (ARMCC::CondCodes(MCOp1.getImm()) != ARMCC::AL)
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+/// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch
+/// target.
+uint32_t ARMMCCodeEmitter::
+getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // FIXME: This really, really shouldn't use TargetMachine. We don't want
+ // coupling between MC and TM anywhere we can help it.
+ if (isThumb2(STI))
+ return
+ ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_condbranch, Fixups, STI);
+ return getARMBranchTargetOpValue(MI, OpIdx, Fixups, STI);
+}
+
+/// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch
+/// target.
+uint32_t ARMMCCodeEmitter::
+getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr()) {
+ if (HasConditionalBranch(MI))
+ return ::getBranchTargetOpValue(MI, OpIdx,
+ ARM::fixup_arm_condbranch, Fixups, STI);
+ return ::getBranchTargetOpValue(MI, OpIdx,
+ ARM::fixup_arm_uncondbranch, Fixups, STI);
+ }
+
+ return MO.getImm() >> 2;
+}
+
+uint32_t ARMMCCodeEmitter::
+getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr()) {
+ if (HasConditionalBranch(MI))
+ return ::getBranchTargetOpValue(MI, OpIdx,
+ ARM::fixup_arm_condbl, Fixups, STI);
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_uncondbl, Fixups, STI);
+ }
+
+ return MO.getImm() >> 2;
+}
+
+uint32_t ARMMCCodeEmitter::
+getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr())
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_blx, Fixups, STI);
+
+ return MO.getImm() >> 1;
+}
+
+/// getUnconditionalBranchTargetOpValue - Return encoding info for 24-bit
+/// immediate branch target.
+uint32_t ARMMCCodeEmitter::
+getUnconditionalBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ unsigned Val = 0;
+ const MCOperand MO = MI.getOperand(OpIdx);
+
+ if(MO.isExpr())
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_uncondbranch, Fixups, STI);
+ else
+ Val = MO.getImm() >> 1;
+
+ bool I = (Val & 0x800000);
+ bool J1 = (Val & 0x400000);
+ bool J2 = (Val & 0x200000);
+ if (I ^ J1)
+ Val &= ~0x400000;
+ else
+ Val |= 0x400000;
+
+ if (I ^ J2)
+ Val &= ~0x200000;
+ else
+ Val |= 0x200000;
+
+ return Val;
+}
+
+/// getAdrLabelOpValue - Return encoding info for 12-bit shifted-immediate
+/// ADR label target.
+uint32_t ARMMCCodeEmitter::
+getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr())
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_adr_pcrel_12,
+ Fixups, STI);
+ int64_t offset = MO.getImm();
+ uint32_t Val = 0x2000;
+
+ int SoImmVal;
+ if (offset == INT32_MIN) {
+ Val = 0x1000;
+ SoImmVal = 0;
+ } else if (offset < 0) {
+ Val = 0x1000;
+ offset *= -1;
+ SoImmVal = ARM_AM::getSOImmVal(offset);
+ if(SoImmVal == -1) {
+ Val = 0x2000;
+ offset *= -1;
+ SoImmVal = ARM_AM::getSOImmVal(offset);
+ }
+ } else {
+ SoImmVal = ARM_AM::getSOImmVal(offset);
+ if(SoImmVal == -1) {
+ Val = 0x1000;
+ offset *= -1;
+ SoImmVal = ARM_AM::getSOImmVal(offset);
+ }
+ }
+
+ assert(SoImmVal != -1 && "Not a valid so_imm value!");
+
+ Val |= SoImmVal;
+ return Val;
+}
+
+/// getT2AdrLabelOpValue - Return encoding info for 12-bit immediate ADR label
+/// target.
+uint32_t ARMMCCodeEmitter::
+getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr())
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_adr_pcrel_12,
+ Fixups, STI);
+ int32_t Val = MO.getImm();
+ if (Val == INT32_MIN)
+ Val = 0x1000;
+ else if (Val < 0) {
+ Val *= -1;
+ Val |= 0x1000;
+ }
+ return Val;
+}
+
+/// getThumbAdrLabelOpValue - Return encoding info for 8-bit immediate ADR label
+/// target.
+uint32_t ARMMCCodeEmitter::
+getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr())
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_thumb_adr_pcrel_10,
+ Fixups, STI);
+ return MO.getImm();
+}
+
+/// getThumbAddrModeRegRegOpValue - Return encoding info for 'reg + reg'
+/// operand.
+uint32_t ARMMCCodeEmitter::
+getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &,
+ const MCSubtargetInfo &STI) const {
+ // [Rn, Rm]
+ // {5-3} = Rm
+ // {2-0} = Rn
+ const MCOperand &MO1 = MI.getOperand(OpIdx);
+ const MCOperand &MO2 = MI.getOperand(OpIdx + 1);
+ unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
+ unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO2.getReg());
+ return (Rm << 3) | Rn;
+}
+
+/// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12' operand.
+uint32_t ARMMCCodeEmitter::
+getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // {17-13} = reg
+ // {12} = (U)nsigned (add == '1', sub == '0')
+ // {11-0} = imm12
+ unsigned Reg, Imm12;
+ bool isAdd = true;
+ // If The first operand isn't a register, we have a label reference.
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ if (!MO.isReg()) {
+ Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
+ Imm12 = 0;
+
+ if (MO.isExpr()) {
+ const MCExpr *Expr = MO.getExpr();
+ isAdd = false ; // 'U' bit is set as part of the fixup.
+
+ MCFixupKind Kind;
+ if (isThumb2(STI))
+ Kind = MCFixupKind(ARM::fixup_t2_ldst_pcrel_12);
+ else
+ Kind = MCFixupKind(ARM::fixup_arm_ldst_pcrel_12);
+ Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc()));
+
+ ++MCNumCPRelocations;
+ } else {
+ Reg = ARM::PC;
+ int32_t Offset = MO.getImm();
+ if (Offset == INT32_MIN) {
+ Offset = 0;
+ isAdd = false;
+ } else if (Offset < 0) {
+ Offset *= -1;
+ isAdd = false;
+ }
+ Imm12 = Offset;
+ }
+ } else
+ isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm12, Fixups, STI);
+
+ uint32_t Binary = Imm12 & 0xfff;
+ // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
+ if (isAdd)
+ Binary |= (1 << 12);
+ Binary |= (Reg << 13);
+ return Binary;
+}
+
+/// getT2Imm8s4OpValue - Return encoding info for
+/// '+/- imm8<<2' operand.
+uint32_t ARMMCCodeEmitter::
+getT2Imm8s4OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // FIXME: The immediate operand should have already been encoded like this
+ // before ever getting here. The encoder method should just need to combine
+ // the MI operands for the register and the offset into a single
+ // representation for the complex operand in the .td file. This isn't just
+ // style, unfortunately. As-is, we can't represent the distinct encoding
+ // for #-0.
+
+ // {8} = (U)nsigned (add == '1', sub == '0')
+ // {7-0} = imm8
+ int32_t Imm8 = MI.getOperand(OpIdx).getImm();
+ bool isAdd = Imm8 >= 0;
+
+ // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
+ if (Imm8 < 0)
+ Imm8 = -(uint32_t)Imm8;
+
+ // Scaled by 4.
+ Imm8 /= 4;
+
+ uint32_t Binary = Imm8 & 0xff;
+ // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
+ if (isAdd)
+ Binary |= (1 << 8);
+ return Binary;
+}
+
+/// getT2AddrModeImm8s4OpValue - Return encoding info for
+/// 'reg +/- imm8<<2' operand.
+uint32_t ARMMCCodeEmitter::
+getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // {12-9} = reg
+ // {8} = (U)nsigned (add == '1', sub == '0')
+ // {7-0} = imm8
+ unsigned Reg, Imm8;
+ bool isAdd = true;
+ // If The first operand isn't a register, we have a label reference.
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ if (!MO.isReg()) {
+ Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
+ Imm8 = 0;
+ isAdd = false ; // 'U' bit is set as part of the fixup.
+
+ assert(MO.isExpr() && "Unexpected machine operand type!");
+ const MCExpr *Expr = MO.getExpr();
+ MCFixupKind Kind = MCFixupKind(ARM::fixup_t2_pcrel_10);
+ Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc()));
+
+ ++MCNumCPRelocations;
+ } else
+ isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI);
+
+ // FIXME: The immediate operand should have already been encoded like this
+ // before ever getting here. The encoder method should just need to combine
+ // the MI operands for the register and the offset into a single
+ // representation for the complex operand in the .td file. This isn't just
+ // style, unfortunately. As-is, we can't represent the distinct encoding
+ // for #-0.
+ uint32_t Binary = (Imm8 >> 2) & 0xff;
+ // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
+ if (isAdd)
+ Binary |= (1 << 8);
+ Binary |= (Reg << 9);
+ return Binary;
+}
+
+/// getT2AddrModeImm0_1020s4OpValue - Return encoding info for
+/// 'reg + imm8<<2' operand.
+uint32_t ARMMCCodeEmitter::
+getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // {11-8} = reg
+ // {7-0} = imm8
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
+ unsigned Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+ unsigned Imm8 = MO1.getImm();
+ return (Reg << 8) | Imm8;
+}
+
+uint32_t
+ARMMCCodeEmitter::getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // {20-16} = imm{15-12}
+ // {11-0} = imm{11-0}
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ if (MO.isImm())
+ // Hi / lo 16 bits already extracted during earlier passes.
+ return static_cast<unsigned>(MO.getImm());
+
+ // Handle :upper16: and :lower16: assembly prefixes.
+ const MCExpr *E = MO.getExpr();
+ MCFixupKind Kind;
+ if (E->getKind() == MCExpr::Target) {
+ const ARMMCExpr *ARM16Expr = cast<ARMMCExpr>(E);
+ E = ARM16Expr->getSubExpr();
+
+ if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(E)) {
+ const int64_t Value = MCE->getValue();
+ if (Value > UINT32_MAX)
+ report_fatal_error("constant value truncated (limited to 32-bit)");
+
+ switch (ARM16Expr->getKind()) {
+ case ARMMCExpr::VK_ARM_HI16:
+ return (int32_t(Value) & 0xffff0000) >> 16;
+ case ARMMCExpr::VK_ARM_LO16:
+ return (int32_t(Value) & 0x0000ffff);
+ default: llvm_unreachable("Unsupported ARMFixup");
+ }
+ }
+
+ switch (ARM16Expr->getKind()) {
+ default: llvm_unreachable("Unsupported ARMFixup");
+ case ARMMCExpr::VK_ARM_HI16:
+ Kind = MCFixupKind(isThumb2(STI) ? ARM::fixup_t2_movt_hi16
+ : ARM::fixup_arm_movt_hi16);
+ break;
+ case ARMMCExpr::VK_ARM_LO16:
+ Kind = MCFixupKind(isThumb2(STI) ? ARM::fixup_t2_movw_lo16
+ : ARM::fixup_arm_movw_lo16);
+ break;
+ }
+
+ Fixups.push_back(MCFixup::Create(0, E, Kind, MI.getLoc()));
+ return 0;
+ }
+ // If the expression doesn't have :upper16: or :lower16: on it,
+ // it's just a plain immediate expression, previously those evaluated to
+ // the lower 16 bits of the expression regardless of whether
+ // we have a movt or a movw, but that led to misleadingly results.
+ // This is now disallowed in the the AsmParser in validateInstruction()
+ // so this should never happen.
+ llvm_unreachable("expression without :upper16: or :lower16:");
+}
+
+uint32_t ARMMCCodeEmitter::
+getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx+1);
+ const MCOperand &MO2 = MI.getOperand(OpIdx+2);
+ unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+ unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
+ unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm());
+ bool isAdd = ARM_AM::getAM2Op(MO2.getImm()) == ARM_AM::add;
+ ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(MO2.getImm());
+ unsigned SBits = getShiftOp(ShOp);
+
+ // While "lsr #32" and "asr #32" exist, they are encoded with a 0 in the shift
+ // amount. However, it would be an easy mistake to make so check here.
+ assert((ShImm & ~0x1f) == 0 && "Out of range shift amount");
+
+ // {16-13} = Rn
+ // {12} = isAdd
+ // {11-0} = shifter
+ // {3-0} = Rm
+ // {4} = 0
+ // {6-5} = type
+ // {11-7} = imm
+ uint32_t Binary = Rm;
+ Binary |= Rn << 13;
+ Binary |= SBits << 5;
+ Binary |= ShImm << 7;
+ if (isAdd)
+ Binary |= 1 << 12;
+ return Binary;
+}
+
+uint32_t ARMMCCodeEmitter::
+getAddrMode2OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // {17-14} Rn
+ // {13} 1 == imm12, 0 == Rm
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+ uint32_t Binary = getAddrMode2OffsetOpValue(MI, OpIdx + 1, Fixups, STI);
+ Binary |= Rn << 14;
+ return Binary;
+}
+
+uint32_t ARMMCCodeEmitter::
+getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // {13} 1 == imm12, 0 == Rm
+ // {12} isAdd
+ // {11-0} imm12/Rm
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx+1);
+ unsigned Imm = MO1.getImm();
+ bool isAdd = ARM_AM::getAM2Op(Imm) == ARM_AM::add;
+ bool isReg = MO.getReg() != 0;
+ uint32_t Binary = ARM_AM::getAM2Offset(Imm);
+ // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm12
+ if (isReg) {
+ ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(Imm);
+ Binary <<= 7; // Shift amount is bits [11:7]
+ Binary |= getShiftOp(ShOp) << 5; // Shift type is bits [6:5]
+ Binary |= CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); // Rm is bits [3:0]
+ }
+ return Binary | (isAdd << 12) | (isReg << 13);
+}
+
+uint32_t ARMMCCodeEmitter::
+getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // {4} isAdd
+ // {3-0} Rm
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx+1);
+ bool isAdd = MO1.getImm() != 0;
+ return CTX.getRegisterInfo()->getEncodingValue(MO.getReg()) | (isAdd << 4);
+}
+
+uint32_t ARMMCCodeEmitter::
+getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // {9} 1 == imm8, 0 == Rm
+ // {8} isAdd
+ // {7-4} imm7_4/zero
+ // {3-0} imm3_0/Rm
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx+1);
+ unsigned Imm = MO1.getImm();
+ bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add;
+ bool isImm = MO.getReg() == 0;
+ uint32_t Imm8 = ARM_AM::getAM3Offset(Imm);
+ // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8
+ if (!isImm)
+ Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+ return Imm8 | (isAdd << 8) | (isImm << 9);
+}
+
+uint32_t ARMMCCodeEmitter::
+getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // {13} 1 == imm8, 0 == Rm
+ // {12-9} Rn
+ // {8} isAdd
+ // {7-4} imm7_4/zero
+ // {3-0} imm3_0/Rm
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx+1);
+ const MCOperand &MO2 = MI.getOperand(OpIdx+2);
+
+ // If The first operand isn't a register, we have a label reference.
+ if (!MO.isReg()) {
+ unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
+
+ assert(MO.isExpr() && "Unexpected machine operand type!");
+ const MCExpr *Expr = MO.getExpr();
+ MCFixupKind Kind = MCFixupKind(ARM::fixup_arm_pcrel_10_unscaled);
+ Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc()));
+
+ ++MCNumCPRelocations;
+ return (Rn << 9) | (1 << 13);
+ }
+ unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+ unsigned Imm = MO2.getImm();
+ bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add;
+ bool isImm = MO1.getReg() == 0;
+ uint32_t Imm8 = ARM_AM::getAM3Offset(Imm);
+ // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8
+ if (!isImm)
+ Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
+ return (Rn << 9) | Imm8 | (isAdd << 8) | (isImm << 13);
+}
+
+/// getAddrModeThumbSPOpValue - Encode the t_addrmode_sp operands.
+uint32_t ARMMCCodeEmitter::
+getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // [SP, #imm]
+ // {7-0} = imm8
+ const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
+ assert(MI.getOperand(OpIdx).getReg() == ARM::SP &&
+ "Unexpected base register!");
+
+ // The immediate is already shifted for the implicit zeroes, so no change
+ // here.
+ return MO1.getImm() & 0xff;
+}
+
+/// getAddrModeISOpValue - Encode the t_addrmode_is# operands.
+uint32_t ARMMCCodeEmitter::
+getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // [Rn, #imm]
+ // {7-3} = imm5
+ // {2-0} = Rn
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
+ unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+ unsigned Imm5 = MO1.getImm();
+ return ((Imm5 & 0x1f) << 3) | Rn;
+}
+
+/// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands.
+uint32_t ARMMCCodeEmitter::
+getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand MO = MI.getOperand(OpIdx);
+ if (MO.isExpr())
+ return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cp, Fixups, STI);
+ return (MO.getImm() >> 2);
+}
+
+/// getAddrMode5OpValue - Return encoding info for 'reg +/- imm10' operand.
+uint32_t ARMMCCodeEmitter::
+getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // {12-9} = reg
+ // {8} = (U)nsigned (add == '1', sub == '0')
+ // {7-0} = imm8
+ unsigned Reg, Imm8;
+ bool isAdd;
+ // If The first operand isn't a register, we have a label reference.
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ if (!MO.isReg()) {
+ Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
+ Imm8 = 0;
+ isAdd = false; // 'U' bit is handled as part of the fixup.
+
+ assert(MO.isExpr() && "Unexpected machine operand type!");
+ const MCExpr *Expr = MO.getExpr();
+ MCFixupKind Kind;
+ if (isThumb2(STI))
+ Kind = MCFixupKind(ARM::fixup_t2_pcrel_10);
+ else
+ Kind = MCFixupKind(ARM::fixup_arm_pcrel_10);
+ Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc()));
+
+ ++MCNumCPRelocations;
+ } else {
+ EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI);
+ isAdd = ARM_AM::getAM5Op(Imm8) == ARM_AM::add;
+ }
+
+ uint32_t Binary = ARM_AM::getAM5Offset(Imm8);
+ // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
+ if (isAdd)
+ Binary |= (1 << 8);
+ Binary |= (Reg << 9);
+ return Binary;
+}
+
+unsigned ARMMCCodeEmitter::
+getSORegRegOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Sub-operands are [reg, reg, imm]. The first register is Rm, the reg to be
+ // shifted. The second is Rs, the amount to shift by, and the third specifies
+ // the type of the shift.
+ //
+ // {3-0} = Rm.
+ // {4} = 1
+ // {6-5} = type
+ // {11-8} = Rs
+ // {7} = 0
+
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
+ const MCOperand &MO2 = MI.getOperand(OpIdx + 2);
+ ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
+
+ // Encode Rm.
+ unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+
+ // Encode the shift opcode.
+ unsigned SBits = 0;
+ unsigned Rs = MO1.getReg();
+ if (Rs) {
+ // Set shift operand (bit[7:4]).
+ // LSL - 0001
+ // LSR - 0011
+ // ASR - 0101
+ // ROR - 0111
+ switch (SOpc) {
+ default: llvm_unreachable("Unknown shift opc!");
+ case ARM_AM::lsl: SBits = 0x1; break;
+ case ARM_AM::lsr: SBits = 0x3; break;
+ case ARM_AM::asr: SBits = 0x5; break;
+ case ARM_AM::ror: SBits = 0x7; break;
+ }
+ }
+
+ Binary |= SBits << 4;
+
+ // Encode the shift operation Rs.
+ // Encode Rs bit[11:8].
+ assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
+ return Binary | (CTX.getRegisterInfo()->getEncodingValue(Rs) << ARMII::RegRsShift);
+}
+
+unsigned ARMMCCodeEmitter::
+getSORegImmOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Sub-operands are [reg, imm]. The first register is Rm, the reg to be
+ // shifted. The second is the amount to shift by.
+ //
+ // {3-0} = Rm.
+ // {4} = 0
+ // {6-5} = type
+ // {11-7} = imm
+
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
+ ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm());
+
+ // Encode Rm.
+ unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+
+ // Encode the shift opcode.
+ unsigned SBits = 0;
+
+ // Set shift operand (bit[6:4]).
+ // LSL - 000
+ // LSR - 010
+ // ASR - 100
+ // ROR - 110
+ // RRX - 110 and bit[11:8] clear.
+ switch (SOpc) {
+ default: llvm_unreachable("Unknown shift opc!");
+ case ARM_AM::lsl: SBits = 0x0; break;
+ case ARM_AM::lsr: SBits = 0x2; break;
+ case ARM_AM::asr: SBits = 0x4; break;
+ case ARM_AM::ror: SBits = 0x6; break;
+ case ARM_AM::rrx:
+ Binary |= 0x60;
+ return Binary;
+ }
+
+ // Encode shift_imm bit[11:7].
+ Binary |= SBits << 4;
+ unsigned Offset = ARM_AM::getSORegOffset(MO1.getImm());
+ assert(Offset < 32 && "Offset must be in range 0-31!");
+ return Binary | (Offset << 7);
+}
+
+
+unsigned ARMMCCodeEmitter::
+getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO1 = MI.getOperand(OpNum);
+ const MCOperand &MO2 = MI.getOperand(OpNum+1);
+ const MCOperand &MO3 = MI.getOperand(OpNum+2);
+
+ // Encoded as [Rn, Rm, imm].
+ // FIXME: Needs fixup support.
+ unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
+ Value <<= 4;
+ Value |= CTX.getRegisterInfo()->getEncodingValue(MO2.getReg());
+ Value <<= 2;
+ Value |= MO3.getImm();
+
+ return Value;
+}
+
+unsigned ARMMCCodeEmitter::
+getT2AddrModeImm8OpValue(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO1 = MI.getOperand(OpNum);
+ const MCOperand &MO2 = MI.getOperand(OpNum+1);
+
+ // FIXME: Needs fixup support.
+ unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
+
+ // Even though the immediate is 8 bits long, we need 9 bits in order
+ // to represent the (inverse of the) sign bit.
+ Value <<= 9;
+ int32_t tmp = (int32_t)MO2.getImm();
+ if (tmp < 0)
+ tmp = abs(tmp);
+ else
+ Value |= 256; // Set the ADD bit
+ Value |= tmp & 255;
+ return Value;
+}
+
+unsigned ARMMCCodeEmitter::
+getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO1 = MI.getOperand(OpNum);
+
+ // FIXME: Needs fixup support.
+ unsigned Value = 0;
+ int32_t tmp = (int32_t)MO1.getImm();
+ if (tmp < 0)
+ tmp = abs(tmp);
+ else
+ Value |= 256; // Set the ADD bit
+ Value |= tmp & 255;
+ return Value;
+}
+
+unsigned ARMMCCodeEmitter::
+getT2AddrModeImm12OffsetOpValue(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO1 = MI.getOperand(OpNum);
+
+ // FIXME: Needs fixup support.
+ unsigned Value = 0;
+ int32_t tmp = (int32_t)MO1.getImm();
+ if (tmp < 0)
+ tmp = abs(tmp);
+ else
+ Value |= 4096; // Set the ADD bit
+ Value |= tmp & 4095;
+ return Value;
+}
+
+unsigned ARMMCCodeEmitter::
+getT2SORegOpValue(const MCInst &MI, unsigned OpIdx,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Sub-operands are [reg, imm]. The first register is Rm, the reg to be
+ // shifted. The second is the amount to shift by.
+ //
+ // {3-0} = Rm.
+ // {4} = 0
+ // {6-5} = type
+ // {11-7} = imm
+
+ const MCOperand &MO = MI.getOperand(OpIdx);
+ const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
+ ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm());
+
+ // Encode Rm.
+ unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+
+ // Encode the shift opcode.
+ unsigned SBits = 0;
+ // Set shift operand (bit[6:4]).
+ // LSL - 000
+ // LSR - 010
+ // ASR - 100
+ // ROR - 110
+ switch (SOpc) {
+ default: llvm_unreachable("Unknown shift opc!");
+ case ARM_AM::lsl: SBits = 0x0; break;
+ case ARM_AM::lsr: SBits = 0x2; break;
+ case ARM_AM::asr: SBits = 0x4; break;
+ case ARM_AM::rrx: // FALLTHROUGH
+ case ARM_AM::ror: SBits = 0x6; break;
+ }
+
+ Binary |= SBits << 4;
+ if (SOpc == ARM_AM::rrx)
+ return Binary;
+
+ // Encode shift_imm bit[11:7].
+ return Binary | ARM_AM::getSORegOffset(MO1.getImm()) << 7;
+}
+
+unsigned ARMMCCodeEmitter::
+getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // 10 bits. lower 5 bits are are the lsb of the mask, high five bits are the
+ // msb of the mask.
+ const MCOperand &MO = MI.getOperand(Op);
+ uint32_t v = ~MO.getImm();
+ uint32_t lsb = countTrailingZeros(v);
+ uint32_t msb = (32 - countLeadingZeros (v)) - 1;
+ assert (v != 0 && lsb < 32 && msb < 32 && "Illegal bitfield mask!");
+ return lsb | (msb << 5);
+}
+
+unsigned ARMMCCodeEmitter::
+getRegisterListOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // VLDM/VSTM:
+ // {12-8} = Vd
+ // {7-0} = Number of registers
+ //
+ // LDM/STM:
+ // {15-0} = Bitfield of GPRs.
+ unsigned Reg = MI.getOperand(Op).getReg();
+ bool SPRRegs = ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg);
+ bool DPRRegs = ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg);
+
+ unsigned Binary = 0;
+
+ if (SPRRegs || DPRRegs) {
+ // VLDM/VSTM
+ unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg);
+ unsigned NumRegs = (MI.getNumOperands() - Op) & 0xff;
+ Binary |= (RegNo & 0x1f) << 8;
+ if (SPRRegs)
+ Binary |= NumRegs;
+ else
+ Binary |= NumRegs * 2;
+ } else {
+ for (unsigned I = Op, E = MI.getNumOperands(); I < E; ++I) {
+ unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(MI.getOperand(I).getReg());
+ Binary |= 1 << RegNo;
+ }
+ }
+
+ return Binary;
+}
+
+/// getAddrMode6AddressOpValue - Encode an addrmode6 register number along
+/// with the alignment operand.
+unsigned ARMMCCodeEmitter::
+getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &Reg = MI.getOperand(Op);
+ const MCOperand &Imm = MI.getOperand(Op + 1);
+
+ unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
+ unsigned Align = 0;
+
+ switch (Imm.getImm()) {
+ default: break;
+ case 2:
+ case 4:
+ case 8: Align = 0x01; break;
+ case 16: Align = 0x02; break;
+ case 32: Align = 0x03; break;
+ }
+
+ return RegNo | (Align << 4);
+}
+
+/// getAddrMode6OneLane32AddressOpValue - Encode an addrmode6 register number
+/// along with the alignment operand for use in VST1 and VLD1 with size 32.
+unsigned ARMMCCodeEmitter::
+getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &Reg = MI.getOperand(Op);
+ const MCOperand &Imm = MI.getOperand(Op + 1);
+
+ unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
+ unsigned Align = 0;
+
+ switch (Imm.getImm()) {
+ default: break;
+ case 8:
+ case 16:
+ case 32: // Default '0' value for invalid alignments of 8, 16, 32 bytes.
+ case 2: Align = 0x00; break;
+ case 4: Align = 0x03; break;
+ }
+
+ return RegNo | (Align << 4);
+}
+
+
+/// getAddrMode6DupAddressOpValue - Encode an addrmode6 register number and
+/// alignment operand for use in VLD-dup instructions. This is the same as
+/// getAddrMode6AddressOpValue except for the alignment encoding, which is
+/// different for VLD4-dup.
+unsigned ARMMCCodeEmitter::
+getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &Reg = MI.getOperand(Op);
+ const MCOperand &Imm = MI.getOperand(Op + 1);
+
+ unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
+ unsigned Align = 0;
+
+ switch (Imm.getImm()) {
+ default: break;
+ case 2:
+ case 4:
+ case 8: Align = 0x01; break;
+ case 16: Align = 0x03; break;
+ }
+
+ return RegNo | (Align << 4);
+}
+
+unsigned ARMMCCodeEmitter::
+getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(Op);
+ if (MO.getReg() == 0) return 0x0D;
+ return CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+}
+
+unsigned ARMMCCodeEmitter::
+getShiftRight8Imm(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ return 8 - MI.getOperand(Op).getImm();
+}
+
+unsigned ARMMCCodeEmitter::
+getShiftRight16Imm(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ return 16 - MI.getOperand(Op).getImm();
+}
+
+unsigned ARMMCCodeEmitter::
+getShiftRight32Imm(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ return 32 - MI.getOperand(Op).getImm();
+}
+
+unsigned ARMMCCodeEmitter::
+getShiftRight64Imm(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ return 64 - MI.getOperand(Op).getImm();
+}
+
+void ARMMCCodeEmitter::
+EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Pseudo instructions don't get encoded.
+ const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
+ uint64_t TSFlags = Desc.TSFlags;
+ if ((TSFlags & ARMII::FormMask) == ARMII::Pseudo)
+ return;
+
+ int Size;
+ if (Desc.getSize() == 2 || Desc.getSize() == 4)
+ Size = Desc.getSize();
+ else
+ llvm_unreachable("Unexpected instruction size!");
+
+ uint32_t Binary = getBinaryCodeForInstr(MI, Fixups, STI);
+ // Thumb 32-bit wide instructions need to emit the high order halfword
+ // first.
+ if (isThumb(STI) && Size == 4) {
+ EmitConstant(Binary >> 16, 2, OS);
+ EmitConstant(Binary & 0xffff, 2, OS);
+ } else
+ EmitConstant(Binary, Size, OS);
+ ++MCNumEmitted; // Keep track of the # of mi's emitted.
+}
+
+#include "ARMGenMCCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.cpp
new file mode 100644
index 0000000..e545e3c
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.cpp
@@ -0,0 +1,46 @@
+//===-- ARMMCExpr.cpp - ARM specific MC expression classes ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMMCExpr.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "armmcexpr"
+
+const ARMMCExpr*
+ARMMCExpr::Create(VariantKind Kind, const MCExpr *Expr,
+ MCContext &Ctx) {
+ return new (Ctx) ARMMCExpr(Kind, Expr);
+}
+
+void ARMMCExpr::PrintImpl(raw_ostream &OS) const {
+ switch (Kind) {
+ default: llvm_unreachable("Invalid kind!");
+ case VK_ARM_HI16: OS << ":upper16:"; break;
+ case VK_ARM_LO16: OS << ":lower16:"; break;
+ }
+
+ const MCExpr *Expr = getSubExpr();
+ if (Expr->getKind() != MCExpr::SymbolRef)
+ OS << '(';
+ Expr->print(OS);
+ if (Expr->getKind() != MCExpr::SymbolRef)
+ OS << ')';
+}
+
+bool
+ARMMCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
+ const MCAsmLayout *Layout) const {
+ return false;
+}
+
+void ARMMCExpr::visitUsedExpr(MCStreamer &Streamer) const {
+ Streamer.visitUsedExpr(*getSubExpr());
+}
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.h
new file mode 100644
index 0000000..c5c0b10
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.h
@@ -0,0 +1,76 @@
+//===-- ARMMCExpr.h - ARM specific MC expression classes --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMMCEXPR_H
+#define ARMMCEXPR_H
+
+#include "llvm/MC/MCExpr.h"
+
+namespace llvm {
+
+class ARMMCExpr : public MCTargetExpr {
+public:
+ enum VariantKind {
+ VK_ARM_None,
+ VK_ARM_HI16, // The R_ARM_MOVT_ABS relocation (:upper16: in the .s file)
+ VK_ARM_LO16 // The R_ARM_MOVW_ABS_NC relocation (:lower16: in the .s file)
+ };
+
+private:
+ const VariantKind Kind;
+ const MCExpr *Expr;
+
+ explicit ARMMCExpr(VariantKind _Kind, const MCExpr *_Expr)
+ : Kind(_Kind), Expr(_Expr) {}
+
+public:
+ /// @name Construction
+ /// @{
+
+ static const ARMMCExpr *Create(VariantKind Kind, const MCExpr *Expr,
+ MCContext &Ctx);
+
+ static const ARMMCExpr *CreateUpper16(const MCExpr *Expr, MCContext &Ctx) {
+ return Create(VK_ARM_HI16, Expr, Ctx);
+ }
+
+ static const ARMMCExpr *CreateLower16(const MCExpr *Expr, MCContext &Ctx) {
+ return Create(VK_ARM_LO16, Expr, Ctx);
+ }
+
+ /// @}
+ /// @name Accessors
+ /// @{
+
+ /// getOpcode - Get the kind of this expression.
+ VariantKind getKind() const { return Kind; }
+
+ /// getSubExpr - Get the child of this expression.
+ const MCExpr *getSubExpr() const { return Expr; }
+
+ /// @}
+
+ void PrintImpl(raw_ostream &OS) const override;
+ bool EvaluateAsRelocatableImpl(MCValue &Res,
+ const MCAsmLayout *Layout) const override;
+ void visitUsedExpr(MCStreamer &Streamer) const override;
+ const MCSection *FindAssociatedSection() const override {
+ return getSubExpr()->FindAssociatedSection();
+ }
+
+ // There are no TLS ARMMCExprs at the moment.
+ void fixELFSymbolsInTLSFixups(MCAssembler &Asm) const override {}
+
+ static bool classof(const MCExpr *E) {
+ return E->getKind() == MCExpr::Target;
+ }
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.cpp
new file mode 100644
index 0000000..6a3ec8f
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.cpp
@@ -0,0 +1,447 @@
+//===-- ARMMCTargetDesc.cpp - ARM Target Descriptions ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides ARM specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMBaseInfo.h"
+#include "ARMMCAsmInfo.h"
+#include "ARMMCTargetDesc.h"
+#include "InstPrinter/ARMInstPrinter.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCInstrAnalysis.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_REGINFO_MC_DESC
+#include "ARMGenRegisterInfo.inc"
+
+static bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
+ std::string &Info) {
+ if (STI.getFeatureBits() & llvm::ARM::HasV7Ops &&
+ (MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 15) &&
+ (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) &&
+ // Checks for the deprecated CP15ISB encoding:
+ // mcr p15, #0, rX, c7, c5, #4
+ (MI.getOperand(3).isImm() && MI.getOperand(3).getImm() == 7)) {
+ if ((MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 4)) {
+ if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 5) {
+ Info = "deprecated since v7, use 'isb'";
+ return true;
+ }
+
+ // Checks for the deprecated CP15DSB encoding:
+ // mcr p15, #0, rX, c7, c10, #4
+ if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10) {
+ Info = "deprecated since v7, use 'dsb'";
+ return true;
+ }
+ }
+ // Checks for the deprecated CP15DMB encoding:
+ // mcr p15, #0, rX, c7, c10, #5
+ if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10 &&
+ (MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 5)) {
+ Info = "deprecated since v7, use 'dmb'";
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool getITDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
+ std::string &Info) {
+ if (STI.getFeatureBits() & llvm::ARM::HasV8Ops &&
+ MI.getOperand(1).isImm() && MI.getOperand(1).getImm() != 8) {
+ Info = "applying IT instruction to more than one subsequent instruction is deprecated";
+ return true;
+ }
+
+ return false;
+}
+
+#define GET_INSTRINFO_MC_DESC
+#include "ARMGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "ARMGenSubtargetInfo.inc"
+
+
+std::string ARM_MC::ParseARMTriple(StringRef TT, StringRef CPU) {
+ Triple triple(TT);
+
+ bool isThumb = triple.getArch() == Triple::thumb ||
+ triple.getArch() == Triple::thumbeb;
+
+ bool NoCPU = CPU == "generic" || CPU.empty();
+ std::string ARMArchFeature;
+ switch (triple.getSubArch()) {
+ case Triple::ARMSubArch_v8:
+ if (NoCPU)
+ // v8a: FeatureDB, FeatureFPARMv8, FeatureNEON, FeatureDSPThumb2,
+ // FeatureMP, FeatureHWDiv, FeatureHWDivARM, FeatureTrustZone,
+ // FeatureT2XtPk, FeatureCrypto, FeatureCRC
+ ARMArchFeature = "+v8,+db,+fp-armv8,+neon,+t2dsp,+mp,+hwdiv,+hwdiv-arm,"
+ "+trustzone,+t2xtpk,+crypto,+crc";
+ else
+ // Use CPU to figure out the exact features
+ ARMArchFeature = "+v8";
+ break;
+ case Triple::ARMSubArch_v7m:
+ isThumb = true;
+ if (NoCPU)
+ // v7m: FeatureNoARM, FeatureDB, FeatureHWDiv, FeatureMClass
+ ARMArchFeature = "+v7,+noarm,+db,+hwdiv,+mclass";
+ else
+ // Use CPU to figure out the exact features.
+ ARMArchFeature = "+v7";
+ break;
+ case Triple::ARMSubArch_v7em:
+ if (NoCPU)
+ // v7em: FeatureNoARM, FeatureDB, FeatureHWDiv, FeatureDSPThumb2,
+ // FeatureT2XtPk, FeatureMClass
+ ARMArchFeature = "+v7,+noarm,+db,+hwdiv,+t2dsp,t2xtpk,+mclass";
+ else
+ // Use CPU to figure out the exact features.
+ ARMArchFeature = "+v7";
+ break;
+ case Triple::ARMSubArch_v7s:
+ if (NoCPU)
+ // v7s: FeatureNEON, FeatureDB, FeatureDSPThumb2, FeatureHasRAS
+ // Swift
+ ARMArchFeature = "+v7,+swift,+neon,+db,+t2dsp,+ras";
+ else
+ // Use CPU to figure out the exact features.
+ ARMArchFeature = "+v7";
+ break;
+ case Triple::ARMSubArch_v7:
+ // v7 CPUs have lots of different feature sets. If no CPU is specified,
+ // then assume v7a (e.g. cortex-a8) feature set. Otherwise, return
+ // the "minimum" feature set and use CPU string to figure out the exact
+ // features.
+ if (NoCPU)
+ // v7a: FeatureNEON, FeatureDB, FeatureDSPThumb2, FeatureT2XtPk
+ ARMArchFeature = "+v7,+neon,+db,+t2dsp,+t2xtpk";
+ else
+ // Use CPU to figure out the exact features.
+ ARMArchFeature = "+v7";
+ break;
+ case Triple::ARMSubArch_v6t2:
+ ARMArchFeature = "+v6t2";
+ break;
+ case Triple::ARMSubArch_v6m:
+ isThumb = true;
+ if (NoCPU)
+ // v6m: FeatureNoARM, FeatureMClass
+ ARMArchFeature = "+v6m,+noarm,+mclass";
+ else
+ ARMArchFeature = "+v6";
+ break;
+ case Triple::ARMSubArch_v6:
+ ARMArchFeature = "+v6";
+ break;
+ case Triple::ARMSubArch_v5te:
+ ARMArchFeature = "+v5te";
+ break;
+ case Triple::ARMSubArch_v5:
+ ARMArchFeature = "+v5t";
+ break;
+ case Triple::ARMSubArch_v4t:
+ ARMArchFeature = "+v4t";
+ break;
+ case Triple::NoSubArch:
+ break;
+ }
+
+ if (isThumb) {
+ if (ARMArchFeature.empty())
+ ARMArchFeature = "+thumb-mode";
+ else
+ ARMArchFeature += ",+thumb-mode";
+ }
+
+ if (triple.isOSNaCl()) {
+ if (ARMArchFeature.empty())
+ ARMArchFeature = "+nacl-trap";
+ else
+ ARMArchFeature += ",+nacl-trap";
+ }
+
+ return ARMArchFeature;
+}
+
+MCSubtargetInfo *ARM_MC::createARMMCSubtargetInfo(StringRef TT, StringRef CPU,
+ StringRef FS) {
+ std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
+ if (!FS.empty()) {
+ if (!ArchFS.empty())
+ ArchFS = ArchFS + "," + FS.str();
+ else
+ ArchFS = FS;
+ }
+
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+ InitARMMCSubtargetInfo(X, TT, CPU, ArchFS);
+ return X;
+}
+
+static MCInstrInfo *createARMMCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitARMMCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createARMMCRegisterInfo(StringRef Triple) {
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitARMMCRegisterInfo(X, ARM::LR, 0, 0, ARM::PC);
+ return X;
+}
+
+static MCAsmInfo *createARMMCAsmInfo(const MCRegisterInfo &MRI, StringRef TT) {
+ Triple TheTriple(TT);
+
+ MCAsmInfo *MAI;
+ switch (TheTriple.getOS()) {
+ case llvm::Triple::Darwin:
+ case llvm::Triple::IOS:
+ case llvm::Triple::MacOSX:
+ MAI = new ARMMCAsmInfoDarwin(TT);
+ break;
+ case llvm::Triple::Win32:
+ switch (TheTriple.getEnvironment()) {
+ case llvm::Triple::Itanium:
+ MAI = new ARMCOFFMCAsmInfoGNU();
+ break;
+ case llvm::Triple::MSVC:
+ MAI = new ARMCOFFMCAsmInfoMicrosoft();
+ break;
+ default:
+ llvm_unreachable("invalid environment");
+ }
+ break;
+ default:
+ if (TheTriple.isOSBinFormatMachO())
+ MAI = new ARMMCAsmInfoDarwin(TT);
+ else
+ MAI = new ARMELFMCAsmInfo(TT);
+ break;
+ }
+
+ unsigned Reg = MRI.getDwarfRegNum(ARM::SP, true);
+ MAI->addInitialFrameState(MCCFIInstruction::createDefCfa(nullptr, Reg, 0));
+
+ return MAI;
+}
+
+static MCCodeGenInfo *createARMMCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+ if (RM == Reloc::Default) {
+ Triple TheTriple(TT);
+ // Default relocation model on Darwin is PIC, not DynamicNoPIC.
+ RM = TheTriple.isOSDarwin() ? Reloc::PIC_ : Reloc::DynamicNoPIC;
+ }
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+// This is duplicated code. Refactor this.
+static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
+ MCContext &Ctx, MCAsmBackend &MAB,
+ raw_ostream &OS,
+ MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI,
+ bool RelaxAll,
+ bool NoExecStack) {
+ Triple TheTriple(TT);
+
+ switch (TheTriple.getObjectFormat()) {
+ default: llvm_unreachable("unsupported object format");
+ case Triple::MachO: {
+ MCStreamer *S = createMachOStreamer(Ctx, MAB, OS, Emitter, false);
+ new ARMTargetStreamer(*S);
+ return S;
+ }
+ case Triple::COFF:
+ assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
+ return createARMWinCOFFStreamer(Ctx, MAB, *Emitter, OS);
+ case Triple::ELF:
+ return createARMELFStreamer(Ctx, MAB, OS, Emitter, false, NoExecStack,
+ TheTriple.getArch() == Triple::thumb);
+ }
+}
+
+static MCInstPrinter *createARMMCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ if (SyntaxVariant == 0)
+ return new ARMInstPrinter(MAI, MII, MRI, STI);
+ return nullptr;
+}
+
+static MCRelocationInfo *createARMMCRelocationInfo(StringRef TT,
+ MCContext &Ctx) {
+ Triple TheTriple(TT);
+ if (TheTriple.isOSBinFormatMachO())
+ return createARMMachORelocationInfo(Ctx);
+ // Default to the stock relocation info.
+ return llvm::createMCRelocationInfo(TT, Ctx);
+}
+
+namespace {
+
+class ARMMCInstrAnalysis : public MCInstrAnalysis {
+public:
+ ARMMCInstrAnalysis(const MCInstrInfo *Info) : MCInstrAnalysis(Info) {}
+
+ bool isUnconditionalBranch(const MCInst &Inst) const override {
+ // BCCs with the "always" predicate are unconditional branches.
+ if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
+ return true;
+ return MCInstrAnalysis::isUnconditionalBranch(Inst);
+ }
+
+ bool isConditionalBranch(const MCInst &Inst) const override {
+ // BCCs with the "always" predicate are unconditional branches.
+ if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
+ return false;
+ return MCInstrAnalysis::isConditionalBranch(Inst);
+ }
+
+ bool evaluateBranch(const MCInst &Inst, uint64_t Addr,
+ uint64_t Size, uint64_t &Target) const override {
+ // We only handle PCRel branches for now.
+ if (Info->get(Inst.getOpcode()).OpInfo[0].OperandType!=MCOI::OPERAND_PCREL)
+ return false;
+
+ int64_t Imm = Inst.getOperand(0).getImm();
+ // FIXME: This is not right for thumb.
+ Target = Addr+Imm+8; // In ARM mode the PC is always off by 8 bytes.
+ return true;
+ }
+};
+
+}
+
+static MCInstrAnalysis *createARMMCInstrAnalysis(const MCInstrInfo *Info) {
+ return new ARMMCInstrAnalysis(Info);
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeARMTargetMC() {
+ // Register the MC asm info.
+ RegisterMCAsmInfoFn X(TheARMLETarget, createARMMCAsmInfo);
+ RegisterMCAsmInfoFn Y(TheARMBETarget, createARMMCAsmInfo);
+ RegisterMCAsmInfoFn A(TheThumbLETarget, createARMMCAsmInfo);
+ RegisterMCAsmInfoFn B(TheThumbBETarget, createARMMCAsmInfo);
+
+ // Register the MC codegen info.
+ TargetRegistry::RegisterMCCodeGenInfo(TheARMLETarget, createARMMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheARMBETarget, createARMMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheThumbLETarget, createARMMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheThumbBETarget, createARMMCCodeGenInfo);
+
+ // Register the MC instruction info.
+ TargetRegistry::RegisterMCInstrInfo(TheARMLETarget, createARMMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheARMBETarget, createARMMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheThumbLETarget, createARMMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheThumbBETarget, createARMMCInstrInfo);
+
+ // Register the MC register info.
+ TargetRegistry::RegisterMCRegInfo(TheARMLETarget, createARMMCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheARMBETarget, createARMMCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheThumbLETarget, createARMMCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheThumbBETarget, createARMMCRegisterInfo);
+
+ // Register the MC subtarget info.
+ TargetRegistry::RegisterMCSubtargetInfo(TheARMLETarget,
+ ARM_MC::createARMMCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheARMBETarget,
+ ARM_MC::createARMMCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheThumbLETarget,
+ ARM_MC::createARMMCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheThumbBETarget,
+ ARM_MC::createARMMCSubtargetInfo);
+
+ // Register the MC instruction analyzer.
+ TargetRegistry::RegisterMCInstrAnalysis(TheARMLETarget,
+ createARMMCInstrAnalysis);
+ TargetRegistry::RegisterMCInstrAnalysis(TheARMBETarget,
+ createARMMCInstrAnalysis);
+ TargetRegistry::RegisterMCInstrAnalysis(TheThumbLETarget,
+ createARMMCInstrAnalysis);
+ TargetRegistry::RegisterMCInstrAnalysis(TheThumbBETarget,
+ createARMMCInstrAnalysis);
+
+ // Register the MC Code Emitter
+ TargetRegistry::RegisterMCCodeEmitter(TheARMLETarget,
+ createARMLEMCCodeEmitter);
+ TargetRegistry::RegisterMCCodeEmitter(TheARMBETarget,
+ createARMBEMCCodeEmitter);
+ TargetRegistry::RegisterMCCodeEmitter(TheThumbLETarget,
+ createARMLEMCCodeEmitter);
+ TargetRegistry::RegisterMCCodeEmitter(TheThumbBETarget,
+ createARMBEMCCodeEmitter);
+
+ // Register the asm backend.
+ TargetRegistry::RegisterMCAsmBackend(TheARMLETarget, createARMLEAsmBackend);
+ TargetRegistry::RegisterMCAsmBackend(TheARMBETarget, createARMBEAsmBackend);
+ TargetRegistry::RegisterMCAsmBackend(TheThumbLETarget,
+ createThumbLEAsmBackend);
+ TargetRegistry::RegisterMCAsmBackend(TheThumbBETarget,
+ createThumbBEAsmBackend);
+
+ // Register the object streamer.
+ TargetRegistry::RegisterMCObjectStreamer(TheARMLETarget, createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheARMBETarget, createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheThumbLETarget, createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheThumbBETarget, createMCStreamer);
+
+ // Register the asm streamer.
+ TargetRegistry::RegisterAsmStreamer(TheARMLETarget, createMCAsmStreamer);
+ TargetRegistry::RegisterAsmStreamer(TheARMBETarget, createMCAsmStreamer);
+ TargetRegistry::RegisterAsmStreamer(TheThumbLETarget, createMCAsmStreamer);
+ TargetRegistry::RegisterAsmStreamer(TheThumbBETarget, createMCAsmStreamer);
+
+ // Register the null streamer.
+ TargetRegistry::RegisterNullStreamer(TheARMLETarget, createARMNullStreamer);
+ TargetRegistry::RegisterNullStreamer(TheARMBETarget, createARMNullStreamer);
+ TargetRegistry::RegisterNullStreamer(TheThumbLETarget, createARMNullStreamer);
+ TargetRegistry::RegisterNullStreamer(TheThumbBETarget, createARMNullStreamer);
+
+ // Register the MCInstPrinter.
+ TargetRegistry::RegisterMCInstPrinter(TheARMLETarget, createARMMCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheARMBETarget, createARMMCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheThumbLETarget,
+ createARMMCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheThumbBETarget,
+ createARMMCInstPrinter);
+
+ // Register the MC relocation info.
+ TargetRegistry::RegisterMCRelocationInfo(TheARMLETarget,
+ createARMMCRelocationInfo);
+ TargetRegistry::RegisterMCRelocationInfo(TheARMBETarget,
+ createARMMCRelocationInfo);
+ TargetRegistry::RegisterMCRelocationInfo(TheThumbLETarget,
+ createARMMCRelocationInfo);
+ TargetRegistry::RegisterMCRelocationInfo(TheThumbBETarget,
+ createARMMCRelocationInfo);
+}
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.h
new file mode 100644
index 0000000..5326e56
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.h
@@ -0,0 +1,119 @@
+//===-- ARMMCTargetDesc.h - ARM Target Descriptions -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides ARM specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMMCTARGETDESC_H
+#define ARMMCTARGETDESC_H
+
+#include "llvm/Support/DataTypes.h"
+#include <string>
+
+namespace llvm {
+class formatted_raw_ostream;
+class MCAsmBackend;
+class MCCodeEmitter;
+class MCContext;
+class MCInstrInfo;
+class MCInstPrinter;
+class MCObjectWriter;
+class MCRegisterInfo;
+class MCSubtargetInfo;
+class MCStreamer;
+class MCRelocationInfo;
+class StringRef;
+class Target;
+class raw_ostream;
+
+extern Target TheARMLETarget, TheThumbLETarget;
+extern Target TheARMBETarget, TheThumbBETarget;
+
+namespace ARM_MC {
+ std::string ParseARMTriple(StringRef TT, StringRef CPU);
+
+ /// createARMMCSubtargetInfo - Create a ARM MCSubtargetInfo instance.
+ /// This is exposed so Asm parser, etc. do not need to go through
+ /// TargetRegistry.
+ MCSubtargetInfo *createARMMCSubtargetInfo(StringRef TT, StringRef CPU,
+ StringRef FS);
+}
+
+MCStreamer *createMCAsmStreamer(MCContext &Ctx, formatted_raw_ostream &OS,
+ bool isVerboseAsm, bool useDwarfDirectory,
+ MCInstPrinter *InstPrint, MCCodeEmitter *CE,
+ MCAsmBackend *TAB, bool ShowInst);
+
+MCStreamer *createARMNullStreamer(MCContext &Ctx);
+
+MCCodeEmitter *createARMLEMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+
+MCCodeEmitter *createARMBEMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+
+MCAsmBackend *createARMAsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU,
+ bool IsLittleEndian);
+
+MCAsmBackend *createARMLEAsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU);
+
+MCAsmBackend *createARMBEAsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU);
+
+MCAsmBackend *createThumbLEAsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU);
+
+MCAsmBackend *createThumbBEAsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU);
+
+/// createARMWinCOFFStreamer - Construct a PE/COFF machine code streamer which
+/// will generate a PE/COFF object file.
+MCStreamer *createARMWinCOFFStreamer(MCContext &Context, MCAsmBackend &MAB,
+ MCCodeEmitter &Emitter, raw_ostream &OS);
+
+/// createARMELFObjectWriter - Construct an ELF Mach-O object writer.
+MCObjectWriter *createARMELFObjectWriter(raw_ostream &OS,
+ uint8_t OSABI,
+ bool IsLittleEndian);
+
+/// createARMMachObjectWriter - Construct an ARM Mach-O object writer.
+MCObjectWriter *createARMMachObjectWriter(raw_ostream &OS,
+ bool Is64Bit,
+ uint32_t CPUType,
+ uint32_t CPUSubtype);
+
+/// createARMWinCOFFObjectWriter - Construct an ARM PE/COFF object writer.
+MCObjectWriter *createARMWinCOFFObjectWriter(raw_ostream &OS, bool Is64Bit);
+
+/// createARMMachORelocationInfo - Construct ARM Mach-O relocation info.
+MCRelocationInfo *createARMMachORelocationInfo(MCContext &Ctx);
+} // End llvm namespace
+
+// Defines symbolic names for ARM registers. This defines a mapping from
+// register name to register number.
+//
+#define GET_REGINFO_ENUM
+#include "ARMGenRegisterInfo.inc"
+
+// Defines symbolic names for the ARM instructions.
+//
+#define GET_INSTRINFO_ENUM
+#include "ARMGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "ARMGenSubtargetInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachORelocationInfo.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachORelocationInfo.cpp
new file mode 100644
index 0000000..d4b00e6
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachORelocationInfo.cpp
@@ -0,0 +1,43 @@
+//===-- ARMMachORelocationInfo.cpp ----------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/ARMMCTargetDesc.h"
+#include "ARMMCExpr.h"
+#include "llvm-c/Disassembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCRelocationInfo.h"
+
+using namespace llvm;
+using namespace object;
+
+namespace {
+class ARMMachORelocationInfo : public MCRelocationInfo {
+public:
+ ARMMachORelocationInfo(MCContext &Ctx) : MCRelocationInfo(Ctx) {}
+
+ const MCExpr *createExprForCAPIVariantKind(const MCExpr *SubExpr,
+ unsigned VariantKind) override {
+ switch(VariantKind) {
+ case LLVMDisassembler_VariantKind_ARM_HI16:
+ return ARMMCExpr::CreateUpper16(SubExpr, Ctx);
+ case LLVMDisassembler_VariantKind_ARM_LO16:
+ return ARMMCExpr::CreateLower16(SubExpr, Ctx);
+ default:
+ return MCRelocationInfo::createExprForCAPIVariantKind(SubExpr,
+ VariantKind);
+ }
+ }
+};
+} // End unnamed namespace
+
+/// createARMMachORelocationInfo - Construct an ARM Mach-O RelocationInfo.
+MCRelocationInfo *llvm::createARMMachORelocationInfo(MCContext &Ctx) {
+ return new ARMMachORelocationInfo(Ctx);
+}
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachObjectWriter.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachObjectWriter.cpp
new file mode 100644
index 0000000..186776a
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachObjectWriter.cpp
@@ -0,0 +1,493 @@
+//===-- ARMMachObjectWriter.cpp - ARM Mach Object Writer ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/ARMMCTargetDesc.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "MCTargetDesc/ARMFixupKinds.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCAsmLayout.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCFixup.h"
+#include "llvm/MC/MCFixupKindInfo.h"
+#include "llvm/MC/MCMachOSymbolFlags.h"
+#include "llvm/MC/MCMachObjectWriter.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachO.h"
+using namespace llvm;
+
+namespace {
+class ARMMachObjectWriter : public MCMachObjectTargetWriter {
+ void RecordARMScatteredRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ unsigned Type,
+ unsigned Log2Size,
+ uint64_t &FixedValue);
+ void RecordARMScatteredHalfRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup, MCValue Target,
+ uint64_t &FixedValue);
+
+ bool requiresExternRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCFragment &Fragment,
+ unsigned RelocType, const MCSymbolData *SD,
+ uint64_t FixedValue);
+
+public:
+ ARMMachObjectWriter(bool Is64Bit, uint32_t CPUType,
+ uint32_t CPUSubtype)
+ : MCMachObjectTargetWriter(Is64Bit, CPUType, CPUSubtype,
+ /*UseAggressiveSymbolFolding=*/true) {}
+
+ void RecordRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFragment *Fragment, const MCFixup &Fixup,
+ MCValue Target, uint64_t &FixedValue) override;
+};
+}
+
+static bool getARMFixupKindMachOInfo(unsigned Kind, unsigned &RelocType,
+ unsigned &Log2Size) {
+ RelocType = unsigned(MachO::ARM_RELOC_VANILLA);
+ Log2Size = ~0U;
+
+ switch (Kind) {
+ default:
+ return false;
+
+ case FK_Data_1:
+ Log2Size = llvm::Log2_32(1);
+ return true;
+ case FK_Data_2:
+ Log2Size = llvm::Log2_32(2);
+ return true;
+ case FK_Data_4:
+ Log2Size = llvm::Log2_32(4);
+ return true;
+ case FK_Data_8:
+ Log2Size = llvm::Log2_32(8);
+ return true;
+
+ // These fixups are expected to always be resolvable at assembly time and
+ // have no relocations supported.
+ case ARM::fixup_arm_ldst_pcrel_12:
+ case ARM::fixup_arm_pcrel_10:
+ case ARM::fixup_arm_adr_pcrel_12:
+ return false;
+
+ // Handle 24-bit branch kinds.
+ case ARM::fixup_arm_condbranch:
+ case ARM::fixup_arm_uncondbranch:
+ case ARM::fixup_arm_uncondbl:
+ case ARM::fixup_arm_condbl:
+ case ARM::fixup_arm_blx:
+ RelocType = unsigned(MachO::ARM_RELOC_BR24);
+ // Report as 'long', even though that is not quite accurate.
+ Log2Size = llvm::Log2_32(4);
+ return true;
+
+ // Handle Thumb branches.
+ case ARM::fixup_arm_thumb_br:
+ RelocType = unsigned(MachO::ARM_THUMB_RELOC_BR22);
+ Log2Size = llvm::Log2_32(2);
+ return true;
+
+ case ARM::fixup_t2_uncondbranch:
+ case ARM::fixup_arm_thumb_bl:
+ case ARM::fixup_arm_thumb_blx:
+ RelocType = unsigned(MachO::ARM_THUMB_RELOC_BR22);
+ Log2Size = llvm::Log2_32(4);
+ return true;
+
+ // For movw/movt r_type relocations they always have a pair following them and
+ // the r_length bits are used differently. The encoding of the r_length is as
+ // follows:
+ // low bit of r_length:
+ // 0 - :lower16: for movw instructions
+ // 1 - :upper16: for movt instructions
+ // high bit of r_length:
+ // 0 - arm instructions
+ // 1 - thumb instructions
+ case ARM::fixup_arm_movt_hi16:
+ RelocType = unsigned(MachO::ARM_RELOC_HALF);
+ Log2Size = 1;
+ return true;
+ case ARM::fixup_t2_movt_hi16:
+ RelocType = unsigned(MachO::ARM_RELOC_HALF);
+ Log2Size = 3;
+ return true;
+
+ case ARM::fixup_arm_movw_lo16:
+ RelocType = unsigned(MachO::ARM_RELOC_HALF);
+ Log2Size = 0;
+ return true;
+ case ARM::fixup_t2_movw_lo16:
+ RelocType = unsigned(MachO::ARM_RELOC_HALF);
+ Log2Size = 2;
+ return true;
+ }
+}
+
+void ARMMachObjectWriter::
+RecordARMScatteredHalfRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ uint64_t &FixedValue) {
+ uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
+ unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
+ unsigned Type = MachO::ARM_RELOC_HALF;
+
+ // See <reloc.h>.
+ const MCSymbol *A = &Target.getSymA()->getSymbol();
+ const MCSymbolData *A_SD = &Asm.getSymbolData(*A);
+
+ if (!A_SD->getFragment())
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "symbol '" + A->getName() +
+ "' can not be undefined in a subtraction expression");
+
+ uint32_t Value = Writer->getSymbolAddress(A_SD, Layout);
+ uint32_t Value2 = 0;
+ uint64_t SecAddr =
+ Writer->getSectionAddress(A_SD->getFragment()->getParent());
+ FixedValue += SecAddr;
+
+ if (const MCSymbolRefExpr *B = Target.getSymB()) {
+ const MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());
+
+ if (!B_SD->getFragment())
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "symbol '" + B->getSymbol().getName() +
+ "' can not be undefined in a subtraction expression");
+
+ // Select the appropriate difference relocation type.
+ Type = MachO::ARM_RELOC_HALF_SECTDIFF;
+ Value2 = Writer->getSymbolAddress(B_SD, Layout);
+ FixedValue -= Writer->getSectionAddress(B_SD->getFragment()->getParent());
+ }
+
+ // Relocations are written out in reverse order, so the PAIR comes first.
+ // ARM_RELOC_HALF and ARM_RELOC_HALF_SECTDIFF abuse the r_length field:
+ //
+ // For these two r_type relocations they always have a pair following them and
+ // the r_length bits are used differently. The encoding of the r_length is as
+ // follows:
+ // low bit of r_length:
+ // 0 - :lower16: for movw instructions
+ // 1 - :upper16: for movt instructions
+ // high bit of r_length:
+ // 0 - arm instructions
+ // 1 - thumb instructions
+ // the other half of the relocated expression is in the following pair
+ // relocation entry in the low 16 bits of r_address field.
+ unsigned ThumbBit = 0;
+ unsigned MovtBit = 0;
+ switch ((unsigned)Fixup.getKind()) {
+ default: break;
+ case ARM::fixup_arm_movt_hi16:
+ MovtBit = 1;
+ // The thumb bit shouldn't be set in the 'other-half' bit of the
+ // relocation, but it will be set in FixedValue if the base symbol
+ // is a thumb function. Clear it out here.
+ if (Asm.isThumbFunc(A))
+ FixedValue &= 0xfffffffe;
+ break;
+ case ARM::fixup_t2_movt_hi16:
+ if (Asm.isThumbFunc(A))
+ FixedValue &= 0xfffffffe;
+ MovtBit = 1;
+ // Fallthrough
+ case ARM::fixup_t2_movw_lo16:
+ ThumbBit = 1;
+ break;
+ }
+
+ if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
+ uint32_t OtherHalf = MovtBit
+ ? (FixedValue & 0xffff) : ((FixedValue & 0xffff0000) >> 16);
+
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = ((OtherHalf << 0) |
+ (MachO::ARM_RELOC_PAIR << 24) |
+ (MovtBit << 28) |
+ (ThumbBit << 29) |
+ (IsPCRel << 30) |
+ MachO::R_SCATTERED);
+ MRE.r_word1 = Value2;
+ Writer->addRelocation(Fragment->getParent(), MRE);
+ }
+
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = ((FixupOffset << 0) |
+ (Type << 24) |
+ (MovtBit << 28) |
+ (ThumbBit << 29) |
+ (IsPCRel << 30) |
+ MachO::R_SCATTERED);
+ MRE.r_word1 = Value;
+ Writer->addRelocation(Fragment->getParent(), MRE);
+}
+
+void ARMMachObjectWriter::RecordARMScatteredRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ unsigned Type,
+ unsigned Log2Size,
+ uint64_t &FixedValue) {
+ uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
+ unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
+
+ // See <reloc.h>.
+ const MCSymbol *A = &Target.getSymA()->getSymbol();
+ const MCSymbolData *A_SD = &Asm.getSymbolData(*A);
+
+ if (!A_SD->getFragment())
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "symbol '" + A->getName() +
+ "' can not be undefined in a subtraction expression");
+
+ uint32_t Value = Writer->getSymbolAddress(A_SD, Layout);
+ uint64_t SecAddr = Writer->getSectionAddress(A_SD->getFragment()->getParent());
+ FixedValue += SecAddr;
+ uint32_t Value2 = 0;
+
+ if (const MCSymbolRefExpr *B = Target.getSymB()) {
+ assert(Type == MachO::ARM_RELOC_VANILLA && "invalid reloc for 2 symbols");
+ const MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());
+
+ if (!B_SD->getFragment())
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "symbol '" + B->getSymbol().getName() +
+ "' can not be undefined in a subtraction expression");
+
+ // Select the appropriate difference relocation type.
+ Type = MachO::ARM_RELOC_SECTDIFF;
+ Value2 = Writer->getSymbolAddress(B_SD, Layout);
+ FixedValue -= Writer->getSectionAddress(B_SD->getFragment()->getParent());
+ }
+
+ // Relocations are written out in reverse order, so the PAIR comes first.
+ if (Type == MachO::ARM_RELOC_SECTDIFF ||
+ Type == MachO::ARM_RELOC_LOCAL_SECTDIFF) {
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = ((0 << 0) |
+ (MachO::ARM_RELOC_PAIR << 24) |
+ (Log2Size << 28) |
+ (IsPCRel << 30) |
+ MachO::R_SCATTERED);
+ MRE.r_word1 = Value2;
+ Writer->addRelocation(Fragment->getParent(), MRE);
+ }
+
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = ((FixupOffset << 0) |
+ (Type << 24) |
+ (Log2Size << 28) |
+ (IsPCRel << 30) |
+ MachO::R_SCATTERED);
+ MRE.r_word1 = Value;
+ Writer->addRelocation(Fragment->getParent(), MRE);
+}
+
+bool ARMMachObjectWriter::requiresExternRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCFragment &Fragment,
+ unsigned RelocType,
+ const MCSymbolData *SD,
+ uint64_t FixedValue) {
+ // Most cases can be identified purely from the symbol.
+ if (Writer->doesSymbolRequireExternRelocation(SD))
+ return true;
+ int64_t Value = (int64_t)FixedValue; // The displacement is signed.
+ int64_t Range;
+ switch (RelocType) {
+ default:
+ return false;
+ case MachO::ARM_RELOC_BR24:
+ // PC pre-adjustment of 8 for these instructions.
+ Value -= 8;
+ // ARM BL/BLX has a 25-bit offset.
+ Range = 0x1ffffff;
+ break;
+ case MachO::ARM_THUMB_RELOC_BR22:
+ // PC pre-adjustment of 4 for these instructions.
+ Value -= 4;
+ // Thumb BL/BLX has a 24-bit offset.
+ Range = 0xffffff;
+ }
+ // BL/BLX also use external relocations when an internal relocation
+ // would result in the target being out of range. This gives the linker
+ // enough information to generate a branch island.
+ const MCSectionData &SymSD = Asm.getSectionData(
+ SD->getSymbol().getSection());
+ Value += Writer->getSectionAddress(&SymSD);
+ Value -= Writer->getSectionAddress(Fragment.getParent());
+ // If the resultant value would be out of range for an internal relocation,
+ // use an external instead.
+ if (Value > Range || Value < -(Range + 1))
+ return true;
+ return false;
+}
+
+void ARMMachObjectWriter::RecordRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ uint64_t &FixedValue) {
+ unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
+ unsigned Log2Size;
+ unsigned RelocType = MachO::ARM_RELOC_VANILLA;
+ if (!getARMFixupKindMachOInfo(Fixup.getKind(), RelocType, Log2Size))
+ // If we failed to get fixup kind info, it's because there's no legal
+ // relocation type for the fixup kind. This happens when it's a fixup that's
+ // expected to always be resolvable at assembly time and not have any
+ // relocations needed.
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "unsupported relocation on symbol");
+
+ // If this is a difference or a defined symbol plus an offset, then we need a
+ // scattered relocation entry. Differences always require scattered
+ // relocations.
+ if (Target.getSymB()) {
+ if (RelocType == MachO::ARM_RELOC_HALF)
+ return RecordARMScatteredHalfRelocation(Writer, Asm, Layout, Fragment,
+ Fixup, Target, FixedValue);
+ return RecordARMScatteredRelocation(Writer, Asm, Layout, Fragment, Fixup,
+ Target, RelocType, Log2Size,
+ FixedValue);
+ }
+
+ // Get the symbol data, if any.
+ const MCSymbolData *SD = nullptr;
+ if (Target.getSymA())
+ SD = &Asm.getSymbolData(Target.getSymA()->getSymbol());
+
+ // FIXME: For other platforms, we need to use scattered relocations for
+ // internal relocations with offsets. If this is an internal relocation with
+ // an offset, it also needs a scattered relocation entry.
+ //
+ // Is this right for ARM?
+ uint32_t Offset = Target.getConstant();
+ if (IsPCRel && RelocType == MachO::ARM_RELOC_VANILLA)
+ Offset += 1 << Log2Size;
+ if (Offset && SD && !Writer->doesSymbolRequireExternRelocation(SD))
+ return RecordARMScatteredRelocation(Writer, Asm, Layout, Fragment, Fixup,
+ Target, RelocType, Log2Size,
+ FixedValue);
+
+ // See <reloc.h>.
+ uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
+ unsigned Index = 0;
+ unsigned IsExtern = 0;
+ unsigned Type = 0;
+
+ if (Target.isAbsolute()) { // constant
+ // FIXME!
+ report_fatal_error("FIXME: relocations to absolute targets "
+ "not yet implemented");
+ } else {
+ // Resolve constant variables.
+ if (SD->getSymbol().isVariable()) {
+ int64_t Res;
+ if (SD->getSymbol().getVariableValue()->EvaluateAsAbsolute(
+ Res, Layout, Writer->getSectionAddressMap())) {
+ FixedValue = Res;
+ return;
+ }
+ }
+
+ // Check whether we need an external or internal relocation.
+ if (requiresExternRelocation(Writer, Asm, *Fragment, RelocType, SD,
+ FixedValue)) {
+ IsExtern = 1;
+ Index = SD->getIndex();
+
+ // For external relocations, make sure to offset the fixup value to
+ // compensate for the addend of the symbol address, if it was
+ // undefined. This occurs with weak definitions, for example.
+ if (!SD->Symbol->isUndefined())
+ FixedValue -= Layout.getSymbolOffset(SD);
+ } else {
+ // The index is the section ordinal (1-based).
+ const MCSectionData &SymSD = Asm.getSectionData(
+ SD->getSymbol().getSection());
+ Index = SymSD.getOrdinal() + 1;
+ FixedValue += Writer->getSectionAddress(&SymSD);
+ }
+ if (IsPCRel)
+ FixedValue -= Writer->getSectionAddress(Fragment->getParent());
+
+ // The type is determined by the fixup kind.
+ Type = RelocType;
+ }
+
+ // struct relocation_info (8 bytes)
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = FixupOffset;
+ MRE.r_word1 = ((Index << 0) |
+ (IsPCRel << 24) |
+ (Log2Size << 25) |
+ (IsExtern << 27) |
+ (Type << 28));
+
+ // Even when it's not a scattered relocation, movw/movt always uses
+ // a PAIR relocation.
+ if (Type == MachO::ARM_RELOC_HALF) {
+ // The other-half value only gets populated for the movt and movw
+ // relocation entries.
+ uint32_t Value = 0;
+ switch ((unsigned)Fixup.getKind()) {
+ default: break;
+ case ARM::fixup_arm_movw_lo16:
+ case ARM::fixup_t2_movw_lo16:
+ Value = (FixedValue >> 16) & 0xffff;
+ break;
+ case ARM::fixup_arm_movt_hi16:
+ case ARM::fixup_t2_movt_hi16:
+ Value = FixedValue & 0xffff;
+ break;
+ }
+ MachO::any_relocation_info MREPair;
+ MREPair.r_word0 = Value;
+ MREPair.r_word1 = ((0xffffff << 0) |
+ (Log2Size << 25) |
+ (MachO::ARM_RELOC_PAIR << 28));
+
+ Writer->addRelocation(Fragment->getParent(), MREPair);
+ }
+
+ Writer->addRelocation(Fragment->getParent(), MRE);
+}
+
+MCObjectWriter *llvm::createARMMachObjectWriter(raw_ostream &OS,
+ bool Is64Bit,
+ uint32_t CPUType,
+ uint32_t CPUSubtype) {
+ return createMachObjectWriter(new ARMMachObjectWriter(Is64Bit,
+ CPUType,
+ CPUSubtype),
+ OS, /*IsLittleEndian=*/true);
+}
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMTargetStreamer.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMTargetStreamer.cpp
new file mode 100644
index 0000000..8acd7af
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMTargetStreamer.cpp
@@ -0,0 +1,73 @@
+//===- ARMTargetStreamer.cpp - ARMTargetStreamer class --*- C++ -*---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ARMTargetStreamer class.
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/ADT/MapVector.h"
+#include "llvm/MC/ConstantPools.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCStreamer.h"
+
+using namespace llvm;
+//
+// ARMTargetStreamer Implemenation
+//
+ARMTargetStreamer::ARMTargetStreamer(MCStreamer &S)
+ : MCTargetStreamer(S), ConstantPools(new AssemblerConstantPools()) {}
+
+ARMTargetStreamer::~ARMTargetStreamer() {}
+
+// The constant pool handling is shared by all ARMTargetStreamer
+// implementations.
+const MCExpr *ARMTargetStreamer::addConstantPoolEntry(const MCExpr *Expr) {
+ return ConstantPools->addEntry(Streamer, Expr, 4);
+}
+
+void ARMTargetStreamer::emitCurrentConstantPool() {
+ ConstantPools->emitForCurrentSection(Streamer);
+}
+
+// finish() - write out any non-empty assembler constant pools.
+void ARMTargetStreamer::finish() { ConstantPools->emitAll(Streamer); }
+
+// The remaining callbacks should be handled separately by each
+// streamer.
+void ARMTargetStreamer::emitFnStart() {}
+void ARMTargetStreamer::emitFnEnd() {}
+void ARMTargetStreamer::emitCantUnwind() {}
+void ARMTargetStreamer::emitPersonality(const MCSymbol *Personality) {}
+void ARMTargetStreamer::emitPersonalityIndex(unsigned Index) {}
+void ARMTargetStreamer::emitHandlerData() {}
+void ARMTargetStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
+ int64_t Offset) {}
+void ARMTargetStreamer::emitMovSP(unsigned Reg, int64_t Offset) {}
+void ARMTargetStreamer::emitPad(int64_t Offset) {}
+void ARMTargetStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
+ bool isVector) {}
+void ARMTargetStreamer::emitUnwindRaw(int64_t StackOffset,
+ const SmallVectorImpl<uint8_t> &Opcodes) {
+}
+void ARMTargetStreamer::switchVendor(StringRef Vendor) {}
+void ARMTargetStreamer::emitAttribute(unsigned Attribute, unsigned Value) {}
+void ARMTargetStreamer::emitTextAttribute(unsigned Attribute,
+ StringRef String) {}
+void ARMTargetStreamer::emitIntTextAttribute(unsigned Attribute,
+ unsigned IntValue,
+ StringRef StringValue) {}
+void ARMTargetStreamer::emitArch(unsigned Arch) {}
+void ARMTargetStreamer::emitObjectArch(unsigned Arch) {}
+void ARMTargetStreamer::emitFPU(unsigned FPU) {}
+void ARMTargetStreamer::finishAttributeSection() {}
+void ARMTargetStreamer::emitInst(uint32_t Inst, char Suffix) {}
+void
+ARMTargetStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) {}
+
+void ARMTargetStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {}
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.cpp
new file mode 100644
index 0000000..593fe34
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.cpp
@@ -0,0 +1,226 @@
+//===-- ARMUnwindOpAsm.cpp - ARM Unwind Opcodes Assembler -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the unwind opcode assmebler for ARM exception handling
+// table.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMUnwindOpAsm.h"
+#include "llvm/Support/ARMEHABI.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LEB128.h"
+
+using namespace llvm;
+
+namespace {
+ /// UnwindOpcodeStreamer - The simple wrapper over SmallVector to emit bytes
+ /// with MSB to LSB per uint32_t ordering. For example, the first byte will
+ /// be placed in Vec[3], and the following bytes will be placed in 2, 1, 0,
+ /// 7, 6, 5, 4, 11, 10, 9, 8, and so on.
+ class UnwindOpcodeStreamer {
+ private:
+ SmallVectorImpl<uint8_t> &Vec;
+ size_t Pos;
+
+ public:
+ UnwindOpcodeStreamer(SmallVectorImpl<uint8_t> &V) : Vec(V), Pos(3) {
+ }
+
+ /// Emit the byte in MSB to LSB per uint32_t order.
+ inline void EmitByte(uint8_t elem) {
+ Vec[Pos] = elem;
+ Pos = (((Pos ^ 0x3u) + 1) ^ 0x3u);
+ }
+
+ /// Emit the size prefix.
+ inline void EmitSize(size_t Size) {
+ size_t SizeInWords = (Size + 3) / 4;
+ assert(SizeInWords <= 0x100u &&
+ "Only 256 additional words are allowed for unwind opcodes");
+ EmitByte(static_cast<uint8_t>(SizeInWords - 1));
+ }
+
+ /// Emit the personality index prefix.
+ inline void EmitPersonalityIndex(unsigned PI) {
+ assert(PI < ARM::EHABI::NUM_PERSONALITY_INDEX &&
+ "Invalid personality prefix");
+ EmitByte(ARM::EHABI::EHT_COMPACT | PI);
+ }
+
+ /// Fill the rest of bytes with FINISH opcode.
+ inline void FillFinishOpcode() {
+ while (Pos < Vec.size())
+ EmitByte(ARM::EHABI::UNWIND_OPCODE_FINISH);
+ }
+ };
+}
+
+void UnwindOpcodeAssembler::EmitRegSave(uint32_t RegSave) {
+ if (RegSave == 0u)
+ return;
+
+ // One byte opcode to save register r14 and r11-r4
+ if (RegSave & (1u << 4)) {
+ // The one byte opcode will always save r4, thus we can't use the one byte
+ // opcode when r4 is not in .save directive.
+
+ // Compute the consecutive registers from r4 to r11.
+ uint32_t Range = 0;
+ uint32_t Mask = (1u << 4);
+ for (uint32_t Bit = (1u << 5); Bit < (1u << 12); Bit <<= 1) {
+ if ((RegSave & Bit) == 0u)
+ break;
+ ++Range;
+ Mask |= Bit;
+ }
+
+ // Emit this opcode when the mask covers every registers.
+ uint32_t UnmaskedReg = RegSave & 0xfff0u & (~Mask);
+ if (UnmaskedReg == 0u) {
+ // Pop r[4 : (4 + n)]
+ EmitInt8(ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4 | Range);
+ RegSave &= 0x000fu;
+ } else if (UnmaskedReg == (1u << 14)) {
+ // Pop r[14] + r[4 : (4 + n)]
+ EmitInt8(ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4_R14 | Range);
+ RegSave &= 0x000fu;
+ }
+ }
+
+ // Two bytes opcode to save register r15-r4
+ if ((RegSave & 0xfff0u) != 0)
+ EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK_R4 | (RegSave >> 4));
+
+ // Opcode to save register r3-r0
+ if ((RegSave & 0x000fu) != 0)
+ EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK | (RegSave & 0x000fu));
+}
+
+/// Emit unwind opcodes for .vsave directives
+void UnwindOpcodeAssembler::EmitVFPRegSave(uint32_t VFPRegSave) {
+ size_t i = 32;
+
+ while (i > 16) {
+ uint32_t Bit = 1u << (i - 1);
+ if ((VFPRegSave & Bit) == 0u) {
+ --i;
+ continue;
+ }
+
+ uint32_t Range = 0;
+
+ --i;
+ Bit >>= 1;
+
+ while (i > 16 && (VFPRegSave & Bit)) {
+ --i;
+ ++Range;
+ Bit >>= 1;
+ }
+
+ EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD_D16 |
+ ((i - 16) << 4) | Range);
+ }
+
+ while (i > 0) {
+ uint32_t Bit = 1u << (i - 1);
+ if ((VFPRegSave & Bit) == 0u) {
+ --i;
+ continue;
+ }
+
+ uint32_t Range = 0;
+
+ --i;
+ Bit >>= 1;
+
+ while (i > 0 && (VFPRegSave & Bit)) {
+ --i;
+ ++Range;
+ Bit >>= 1;
+ }
+
+ EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD | (i << 4) |
+ Range);
+ }
+}
+
+/// Emit unwind opcodes to copy address from source register to $sp.
+void UnwindOpcodeAssembler::EmitSetSP(uint16_t Reg) {
+ EmitInt8(ARM::EHABI::UNWIND_OPCODE_SET_VSP | Reg);
+}
+
+/// Emit unwind opcodes to add $sp with an offset.
+void UnwindOpcodeAssembler::EmitSPOffset(int64_t Offset) {
+ if (Offset > 0x200) {
+ uint8_t Buff[16];
+ Buff[0] = ARM::EHABI::UNWIND_OPCODE_INC_VSP_ULEB128;
+ size_t ULEBSize = encodeULEB128((Offset - 0x204) >> 2, Buff + 1);
+ EmitBytes(Buff, ULEBSize + 1);
+ } else if (Offset > 0) {
+ if (Offset > 0x100) {
+ EmitInt8(ARM::EHABI::UNWIND_OPCODE_INC_VSP | 0x3fu);
+ Offset -= 0x100;
+ }
+ EmitInt8(ARM::EHABI::UNWIND_OPCODE_INC_VSP |
+ static_cast<uint8_t>((Offset - 4) >> 2));
+ } else if (Offset < 0) {
+ while (Offset < -0x100) {
+ EmitInt8(ARM::EHABI::UNWIND_OPCODE_DEC_VSP | 0x3fu);
+ Offset += 0x100;
+ }
+ EmitInt8(ARM::EHABI::UNWIND_OPCODE_DEC_VSP |
+ static_cast<uint8_t>(((-Offset) - 4) >> 2));
+ }
+}
+
+void UnwindOpcodeAssembler::Finalize(unsigned &PersonalityIndex,
+ SmallVectorImpl<uint8_t> &Result) {
+
+ UnwindOpcodeStreamer OpStreamer(Result);
+
+ if (HasPersonality) {
+ // User-specifed personality routine: [ SIZE , OP1 , OP2 , ... ]
+ PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX;
+ size_t TotalSize = Ops.size() + 1;
+ size_t RoundUpSize = (TotalSize + 3) / 4 * 4;
+ Result.resize(RoundUpSize);
+ OpStreamer.EmitSize(RoundUpSize);
+ } else {
+ // If no personalityindex is specified, select ane
+ if (PersonalityIndex == ARM::EHABI::NUM_PERSONALITY_INDEX)
+ PersonalityIndex = (Ops.size() <= 3) ? ARM::EHABI::AEABI_UNWIND_CPP_PR0
+ : ARM::EHABI::AEABI_UNWIND_CPP_PR1;
+ if (PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) {
+ // __aeabi_unwind_cpp_pr0: [ 0x80 , OP1 , OP2 , OP3 ]
+ assert(Ops.size() <= 3 && "too many opcodes for __aeabi_unwind_cpp_pr0");
+ Result.resize(4);
+ OpStreamer.EmitPersonalityIndex(PersonalityIndex);
+ } else {
+ // __aeabi_unwind_cpp_pr{1,2}: [ {0x81,0x82} , SIZE , OP1 , OP2 , ... ]
+ size_t TotalSize = Ops.size() + 2;
+ size_t RoundUpSize = (TotalSize + 3) / 4 * 4;
+ Result.resize(RoundUpSize);
+ OpStreamer.EmitPersonalityIndex(PersonalityIndex);
+ OpStreamer.EmitSize(RoundUpSize);
+ }
+ }
+
+ // Copy the unwind opcodes
+ for (size_t i = OpBegins.size() - 1; i > 0; --i)
+ for (size_t j = OpBegins[i - 1], end = OpBegins[i]; j < end; ++j)
+ OpStreamer.EmitByte(Ops[j]);
+
+ // Emit the padding finish opcodes if the size is not multiple of 4.
+ OpStreamer.FillFinishOpcode();
+
+ // Reset the assembler state
+ Reset();
+}
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.h
new file mode 100644
index 0000000..cd58759
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.h
@@ -0,0 +1,93 @@
+//===-- ARMUnwindOpAsm.h - ARM Unwind Opcodes Assembler ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the unwind opcode assmebler for ARM exception handling
+// table.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARM_UNWIND_OP_ASM_H
+#define ARM_UNWIND_OP_ASM_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/ARMEHABI.h"
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+
+class MCSymbol;
+
+class UnwindOpcodeAssembler {
+private:
+ llvm::SmallVector<uint8_t, 32> Ops;
+ llvm::SmallVector<unsigned, 8> OpBegins;
+ bool HasPersonality;
+
+public:
+ UnwindOpcodeAssembler()
+ : HasPersonality(0) {
+ OpBegins.push_back(0);
+ }
+
+ /// Reset the unwind opcode assembler.
+ void Reset() {
+ Ops.clear();
+ OpBegins.clear();
+ OpBegins.push_back(0);
+ HasPersonality = 0;
+ }
+
+ /// Set the personality
+ void setPersonality(const MCSymbol *Per) {
+ HasPersonality = 1;
+ }
+
+ /// Emit unwind opcodes for .save directives
+ void EmitRegSave(uint32_t RegSave);
+
+ /// Emit unwind opcodes for .vsave directives
+ void EmitVFPRegSave(uint32_t VFPRegSave);
+
+ /// Emit unwind opcodes to copy address from source register to $sp.
+ void EmitSetSP(uint16_t Reg);
+
+ /// Emit unwind opcodes to add $sp with an offset.
+ void EmitSPOffset(int64_t Offset);
+
+ /// Emit unwind raw opcodes
+ void EmitRaw(const SmallVectorImpl<uint8_t> &Opcodes) {
+ Ops.insert(Ops.end(), Opcodes.begin(), Opcodes.end());
+ OpBegins.push_back(OpBegins.back() + Opcodes.size());
+ }
+
+ /// Finalize the unwind opcode sequence for EmitBytes()
+ void Finalize(unsigned &PersonalityIndex,
+ SmallVectorImpl<uint8_t> &Result);
+
+private:
+ void EmitInt8(unsigned Opcode) {
+ Ops.push_back(Opcode & 0xff);
+ OpBegins.push_back(OpBegins.back() + 1);
+ }
+
+ void EmitInt16(unsigned Opcode) {
+ Ops.push_back((Opcode >> 8) & 0xff);
+ Ops.push_back(Opcode & 0xff);
+ OpBegins.push_back(OpBegins.back() + 2);
+ }
+
+ void EmitBytes(const uint8_t *Opcode, size_t Size) {
+ Ops.insert(Ops.end(), Opcode, Opcode + Size);
+ OpBegins.push_back(OpBegins.back() + Size);
+ }
+};
+
+} // namespace llvm
+
+#endif // ARM_UNWIND_OP_ASM_H
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMWinCOFFObjectWriter.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMWinCOFFObjectWriter.cpp
new file mode 100644
index 0000000..d31f1f4
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMWinCOFFObjectWriter.cpp
@@ -0,0 +1,82 @@
+//===-- ARMWinCOFFObjectWriter.cpp - ARM Windows COFF Object Writer -- C++ -==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/ARMFixupKinds.h"
+#include "llvm/MC/MCFixup.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/MC/MCWinCOFFObjectWriter.h"
+#include "llvm/Support/COFF.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+namespace {
+class ARMWinCOFFObjectWriter : public MCWinCOFFObjectTargetWriter {
+public:
+ ARMWinCOFFObjectWriter(bool Is64Bit)
+ : MCWinCOFFObjectTargetWriter(COFF::IMAGE_FILE_MACHINE_ARMNT) {
+ assert(!Is64Bit && "AArch64 support not yet implemented");
+ }
+ virtual ~ARMWinCOFFObjectWriter() { }
+
+ unsigned getRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsCrossSection) const override;
+
+ bool recordRelocation(const MCFixup &) const override;
+};
+
+unsigned ARMWinCOFFObjectWriter::getRelocType(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsCrossSection) const {
+ assert(getMachine() == COFF::IMAGE_FILE_MACHINE_ARMNT &&
+ "AArch64 support not yet implemented");
+
+ MCSymbolRefExpr::VariantKind Modifier =
+ Target.isAbsolute() ? MCSymbolRefExpr::VK_None : Target.getSymA()->getKind();
+
+ switch (static_cast<unsigned>(Fixup.getKind())) {
+ default: llvm_unreachable("unsupported relocation type");
+ case FK_Data_4:
+ switch (Modifier) {
+ case MCSymbolRefExpr::VK_COFF_IMGREL32:
+ return COFF::IMAGE_REL_ARM_ADDR32NB;
+ case MCSymbolRefExpr::VK_SECREL:
+ return COFF::IMAGE_REL_ARM_SECREL;
+ default:
+ return COFF::IMAGE_REL_ARM_ADDR32;
+ }
+ case FK_SecRel_2:
+ return COFF::IMAGE_REL_ARM_SECTION;
+ case FK_SecRel_4:
+ return COFF::IMAGE_REL_ARM_SECREL;
+ case ARM::fixup_t2_condbranch:
+ return COFF::IMAGE_REL_ARM_BRANCH20T;
+ case ARM::fixup_t2_uncondbranch:
+ return COFF::IMAGE_REL_ARM_BRANCH24T;
+ case ARM::fixup_arm_thumb_bl:
+ case ARM::fixup_arm_thumb_blx:
+ return COFF::IMAGE_REL_ARM_BLX23T;
+ case ARM::fixup_t2_movw_lo16:
+ case ARM::fixup_t2_movt_hi16:
+ return COFF::IMAGE_REL_ARM_MOV32T;
+ }
+}
+
+bool ARMWinCOFFObjectWriter::recordRelocation(const MCFixup &Fixup) const {
+ return static_cast<unsigned>(Fixup.getKind()) != ARM::fixup_t2_movt_hi16;
+}
+}
+
+namespace llvm {
+MCObjectWriter *createARMWinCOFFObjectWriter(raw_ostream &OS, bool Is64Bit) {
+ MCWinCOFFObjectTargetWriter *MOTW = new ARMWinCOFFObjectWriter(Is64Bit);
+ return createWinCOFFObjectWriter(MOTW, OS);
+}
+}
+
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMWinCOFFStreamer.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMWinCOFFStreamer.cpp
new file mode 100644
index 0000000..b344ced
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMWinCOFFStreamer.cpp
@@ -0,0 +1,46 @@
+//===-- ARMWinCOFFStreamer.cpp - ARM Target WinCOFF Streamer ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMMCTargetDesc.h"
+#include "llvm/MC/MCWinCOFFStreamer.h"
+
+using namespace llvm;
+
+namespace {
+class ARMWinCOFFStreamer : public MCWinCOFFStreamer {
+public:
+ ARMWinCOFFStreamer(MCContext &C, MCAsmBackend &AB, MCCodeEmitter &CE,
+ raw_ostream &OS)
+ : MCWinCOFFStreamer(C, AB, CE, OS) { }
+
+ void EmitAssemblerFlag(MCAssemblerFlag Flag) override;
+ void EmitThumbFunc(MCSymbol *Symbol) override;
+};
+
+void ARMWinCOFFStreamer::EmitAssemblerFlag(MCAssemblerFlag Flag) {
+ switch (Flag) {
+ default: llvm_unreachable("not implemented");
+ case MCAF_SyntaxUnified:
+ case MCAF_Code16:
+ break;
+ }
+}
+
+void ARMWinCOFFStreamer::EmitThumbFunc(MCSymbol *Symbol) {
+ getAssembler().setIsThumbFunc(Symbol);
+}
+}
+
+namespace llvm {
+MCStreamer *createARMWinCOFFStreamer(MCContext &Context, MCAsmBackend &MAB,
+ MCCodeEmitter &Emitter, raw_ostream &OS) {
+ return new ARMWinCOFFStreamer(Context, MAB, Emitter, OS);
+}
+}
+
diff --git a/contrib/llvm/lib/Target/ARM/MLxExpansionPass.cpp b/contrib/llvm/lib/Target/ARM/MLxExpansionPass.cpp
new file mode 100644
index 0000000..f6d24e9e
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MLxExpansionPass.cpp
@@ -0,0 +1,397 @@
+//===-- MLxExpansionPass.cpp - Expand MLx instrs to avoid hazards ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Expand VFP / NEON floating point MLA / MLS instructions (each to a pair of
+// multiple and add / sub instructions) when special VMLx hazards are detected.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMSubtarget.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "mlx-expansion"
+
+static cl::opt<bool>
+ForceExapnd("expand-all-fp-mlx", cl::init(false), cl::Hidden);
+static cl::opt<unsigned>
+ExpandLimit("expand-limit", cl::init(~0U), cl::Hidden);
+
+STATISTIC(NumExpand, "Number of fp MLA / MLS instructions expanded");
+
+namespace {
+ struct MLxExpansion : public MachineFunctionPass {
+ static char ID;
+ MLxExpansion() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "ARM MLA / MLS expansion pass";
+ }
+
+ private:
+ const ARMBaseInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MachineRegisterInfo *MRI;
+
+ bool isLikeA9;
+ bool isSwift;
+ unsigned MIIdx;
+ MachineInstr* LastMIs[4];
+ SmallPtrSet<MachineInstr*, 4> IgnoreStall;
+
+ void clearStack();
+ void pushStack(MachineInstr *MI);
+ MachineInstr *getAccDefMI(MachineInstr *MI) const;
+ unsigned getDefReg(MachineInstr *MI) const;
+ bool hasLoopHazard(MachineInstr *MI) const;
+ bool hasRAWHazard(unsigned Reg, MachineInstr *MI) const;
+ bool FindMLxHazard(MachineInstr *MI);
+ void ExpandFPMLxInstruction(MachineBasicBlock &MBB, MachineInstr *MI,
+ unsigned MulOpc, unsigned AddSubOpc,
+ bool NegAcc, bool HasLane);
+ bool ExpandFPMLxInstructions(MachineBasicBlock &MBB);
+ };
+ char MLxExpansion::ID = 0;
+}
+
+void MLxExpansion::clearStack() {
+ std::fill(LastMIs, LastMIs + 4, nullptr);
+ MIIdx = 0;
+}
+
+void MLxExpansion::pushStack(MachineInstr *MI) {
+ LastMIs[MIIdx] = MI;
+ if (++MIIdx == 4)
+ MIIdx = 0;
+}
+
+MachineInstr *MLxExpansion::getAccDefMI(MachineInstr *MI) const {
+ // Look past COPY and INSERT_SUBREG instructions to find the
+ // real definition MI. This is important for _sfp instructions.
+ unsigned Reg = MI->getOperand(1).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return nullptr;
+
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineInstr *DefMI = MRI->getVRegDef(Reg);
+ while (true) {
+ if (DefMI->getParent() != MBB)
+ break;
+ if (DefMI->isCopyLike()) {
+ Reg = DefMI->getOperand(1).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ DefMI = MRI->getVRegDef(Reg);
+ continue;
+ }
+ } else if (DefMI->isInsertSubreg()) {
+ Reg = DefMI->getOperand(2).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ DefMI = MRI->getVRegDef(Reg);
+ continue;
+ }
+ }
+ break;
+ }
+ return DefMI;
+}
+
+unsigned MLxExpansion::getDefReg(MachineInstr *MI) const {
+ unsigned Reg = MI->getOperand(0).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
+ !MRI->hasOneNonDBGUse(Reg))
+ return Reg;
+
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineInstr *UseMI = &*MRI->use_instr_nodbg_begin(Reg);
+ if (UseMI->getParent() != MBB)
+ return Reg;
+
+ while (UseMI->isCopy() || UseMI->isInsertSubreg()) {
+ Reg = UseMI->getOperand(0).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
+ !MRI->hasOneNonDBGUse(Reg))
+ return Reg;
+ UseMI = &*MRI->use_instr_nodbg_begin(Reg);
+ if (UseMI->getParent() != MBB)
+ return Reg;
+ }
+
+ return Reg;
+}
+
+/// hasLoopHazard - Check whether an MLx instruction is chained to itself across
+/// a single-MBB loop.
+bool MLxExpansion::hasLoopHazard(MachineInstr *MI) const {
+ unsigned Reg = MI->getOperand(1).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return false;
+
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineInstr *DefMI = MRI->getVRegDef(Reg);
+ while (true) {
+outer_continue:
+ if (DefMI->getParent() != MBB)
+ break;
+
+ if (DefMI->isPHI()) {
+ for (unsigned i = 1, e = DefMI->getNumOperands(); i < e; i += 2) {
+ if (DefMI->getOperand(i + 1).getMBB() == MBB) {
+ unsigned SrcReg = DefMI->getOperand(i).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
+ DefMI = MRI->getVRegDef(SrcReg);
+ goto outer_continue;
+ }
+ }
+ }
+ } else if (DefMI->isCopyLike()) {
+ Reg = DefMI->getOperand(1).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ DefMI = MRI->getVRegDef(Reg);
+ continue;
+ }
+ } else if (DefMI->isInsertSubreg()) {
+ Reg = DefMI->getOperand(2).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ DefMI = MRI->getVRegDef(Reg);
+ continue;
+ }
+ }
+
+ break;
+ }
+
+ return DefMI == MI;
+}
+
+bool MLxExpansion::hasRAWHazard(unsigned Reg, MachineInstr *MI) const {
+ // FIXME: Detect integer instructions properly.
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned Domain = MCID.TSFlags & ARMII::DomainMask;
+ if (MI->mayStore())
+ return false;
+ unsigned Opcode = MCID.getOpcode();
+ if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
+ return false;
+ if ((Domain & ARMII::DomainVFP) || (Domain & ARMII::DomainNEON))
+ return MI->readsRegister(Reg, TRI);
+ return false;
+}
+
+static bool isFpMulInstruction(unsigned Opcode) {
+ switch (Opcode) {
+ case ARM::VMULS:
+ case ARM::VMULfd:
+ case ARM::VMULfq:
+ case ARM::VMULD:
+ case ARM::VMULslfd:
+ case ARM::VMULslfq:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool MLxExpansion::FindMLxHazard(MachineInstr *MI) {
+ if (NumExpand >= ExpandLimit)
+ return false;
+
+ if (ForceExapnd)
+ return true;
+
+ MachineInstr *DefMI = getAccDefMI(MI);
+ if (TII->isFpMLxInstruction(DefMI->getOpcode())) {
+ // r0 = vmla
+ // r3 = vmla r0, r1, r2
+ // takes 16 - 17 cycles
+ //
+ // r0 = vmla
+ // r4 = vmul r1, r2
+ // r3 = vadd r0, r4
+ // takes about 14 - 15 cycles even with vmul stalling for 4 cycles.
+ IgnoreStall.insert(DefMI);
+ return true;
+ }
+
+ // On Swift, we mostly care about hazards from multiplication instructions
+ // writing the accumulator and the pipelining of loop iterations by out-of-
+ // order execution.
+ if (isSwift)
+ return isFpMulInstruction(DefMI->getOpcode()) || hasLoopHazard(MI);
+
+ if (IgnoreStall.count(MI))
+ return false;
+
+ // If a VMLA.F is followed by an VADD.F or VMUL.F with no RAW hazard, the
+ // VADD.F or VMUL.F will stall 4 cycles before issue. The 4 cycle stall
+ // preserves the in-order retirement of the instructions.
+ // Look at the next few instructions, if *most* of them can cause hazards,
+ // then the scheduler can't *fix* this, we'd better break up the VMLA.
+ unsigned Limit1 = isLikeA9 ? 1 : 4;
+ unsigned Limit2 = isLikeA9 ? 1 : 4;
+ for (unsigned i = 1; i <= 4; ++i) {
+ int Idx = ((int)MIIdx - i + 4) % 4;
+ MachineInstr *NextMI = LastMIs[Idx];
+ if (!NextMI)
+ continue;
+
+ if (TII->canCauseFpMLxStall(NextMI->getOpcode())) {
+ if (i <= Limit1)
+ return true;
+ }
+
+ // Look for VMLx RAW hazard.
+ if (i <= Limit2 && hasRAWHazard(getDefReg(MI), NextMI))
+ return true;
+ }
+
+ return false;
+}
+
+/// ExpandFPMLxInstructions - Expand a MLA / MLS instruction into a pair
+/// of MUL + ADD / SUB instructions.
+void
+MLxExpansion::ExpandFPMLxInstruction(MachineBasicBlock &MBB, MachineInstr *MI,
+ unsigned MulOpc, unsigned AddSubOpc,
+ bool NegAcc, bool HasLane) {
+ unsigned DstReg = MI->getOperand(0).getReg();
+ bool DstDead = MI->getOperand(0).isDead();
+ unsigned AccReg = MI->getOperand(1).getReg();
+ unsigned Src1Reg = MI->getOperand(2).getReg();
+ unsigned Src2Reg = MI->getOperand(3).getReg();
+ bool Src1Kill = MI->getOperand(2).isKill();
+ bool Src2Kill = MI->getOperand(3).isKill();
+ unsigned LaneImm = HasLane ? MI->getOperand(4).getImm() : 0;
+ unsigned NextOp = HasLane ? 5 : 4;
+ ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NextOp).getImm();
+ unsigned PredReg = MI->getOperand(++NextOp).getReg();
+
+ const MCInstrDesc &MCID1 = TII->get(MulOpc);
+ const MCInstrDesc &MCID2 = TII->get(AddSubOpc);
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ unsigned TmpReg = MRI->createVirtualRegister(
+ TII->getRegClass(MCID1, 0, TRI, MF));
+
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, MI->getDebugLoc(), MCID1, TmpReg)
+ .addReg(Src1Reg, getKillRegState(Src1Kill))
+ .addReg(Src2Reg, getKillRegState(Src2Kill));
+ if (HasLane)
+ MIB.addImm(LaneImm);
+ MIB.addImm(Pred).addReg(PredReg);
+
+ MIB = BuildMI(MBB, MI, MI->getDebugLoc(), MCID2)
+ .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstDead));
+
+ if (NegAcc) {
+ bool AccKill = MRI->hasOneNonDBGUse(AccReg);
+ MIB.addReg(TmpReg, getKillRegState(true))
+ .addReg(AccReg, getKillRegState(AccKill));
+ } else {
+ MIB.addReg(AccReg).addReg(TmpReg, getKillRegState(true));
+ }
+ MIB.addImm(Pred).addReg(PredReg);
+
+ DEBUG({
+ dbgs() << "Expanding: " << *MI;
+ dbgs() << " to:\n";
+ MachineBasicBlock::iterator MII = MI;
+ MII = std::prev(MII);
+ MachineInstr &MI2 = *MII;
+ MII = std::prev(MII);
+ MachineInstr &MI1 = *MII;
+ dbgs() << " " << MI1;
+ dbgs() << " " << MI2;
+ });
+
+ MI->eraseFromParent();
+ ++NumExpand;
+}
+
+bool MLxExpansion::ExpandFPMLxInstructions(MachineBasicBlock &MBB) {
+ bool Changed = false;
+
+ clearStack();
+ IgnoreStall.clear();
+
+ unsigned Skip = 0;
+ MachineBasicBlock::reverse_iterator MII = MBB.rbegin(), E = MBB.rend();
+ while (MII != E) {
+ MachineInstr *MI = &*MII;
+
+ if (MI->isPosition() || MI->isImplicitDef() || MI->isCopy()) {
+ ++MII;
+ continue;
+ }
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MI->isBarrier()) {
+ clearStack();
+ Skip = 0;
+ ++MII;
+ continue;
+ }
+
+ unsigned Domain = MCID.TSFlags & ARMII::DomainMask;
+ if (Domain == ARMII::DomainGeneral) {
+ if (++Skip == 2)
+ // Assume dual issues of non-VFP / NEON instructions.
+ pushStack(nullptr);
+ } else {
+ Skip = 0;
+
+ unsigned MulOpc, AddSubOpc;
+ bool NegAcc, HasLane;
+ if (!TII->isFpMLxInstruction(MCID.getOpcode(),
+ MulOpc, AddSubOpc, NegAcc, HasLane) ||
+ !FindMLxHazard(MI))
+ pushStack(MI);
+ else {
+ ExpandFPMLxInstruction(MBB, MI, MulOpc, AddSubOpc, NegAcc, HasLane);
+ E = MBB.rend(); // May have changed if MI was the 1st instruction.
+ Changed = true;
+ continue;
+ }
+ }
+
+ ++MII;
+ }
+
+ return Changed;
+}
+
+bool MLxExpansion::runOnMachineFunction(MachineFunction &Fn) {
+ TII = static_cast<const ARMBaseInstrInfo*>(Fn.getTarget().getInstrInfo());
+ TRI = Fn.getTarget().getRegisterInfo();
+ MRI = &Fn.getRegInfo();
+ const ARMSubtarget *STI = &Fn.getTarget().getSubtarget<ARMSubtarget>();
+ isLikeA9 = STI->isLikeA9() || STI->isSwift();
+ isSwift = STI->isSwift();
+
+ bool Modified = false;
+ for (MachineBasicBlock &MBB : Fn)
+ Modified |= ExpandFPMLxInstructions(MBB);
+
+ return Modified;
+}
+
+FunctionPass *llvm::createMLxExpansionPass() {
+ return new MLxExpansion();
+}
diff --git a/contrib/llvm/lib/Target/ARM/TargetInfo/ARMTargetInfo.cpp b/contrib/llvm/lib/Target/ARM/TargetInfo/ARMTargetInfo.cpp
new file mode 100644
index 0000000..e464671
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/TargetInfo/ARMTargetInfo.cpp
@@ -0,0 +1,28 @@
+//===-- ARMTargetInfo.cpp - ARM Target Implementation ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/ARMMCTargetDesc.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheARMLETarget, llvm::TheARMBETarget;
+Target llvm::TheThumbLETarget, llvm::TheThumbBETarget;
+
+extern "C" void LLVMInitializeARMTargetInfo() {
+ RegisterTarget<Triple::arm, /*HasJIT=*/true>
+ X(TheARMLETarget, "arm", "ARM");
+ RegisterTarget<Triple::armeb, /*HasJIT=*/true>
+ Y(TheARMBETarget, "armeb", "ARM (big endian)");
+
+ RegisterTarget<Triple::thumb, /*HasJIT=*/true>
+ A(TheThumbLETarget, "thumb", "Thumb");
+ RegisterTarget<Triple::thumbeb, /*HasJIT=*/true>
+ B(TheThumbBETarget, "thumbeb", "Thumb (big endian)");
+}
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.cpp b/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.cpp
new file mode 100644
index 0000000..baa97a7
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.cpp
@@ -0,0 +1,489 @@
+//===-- Thumb1FrameLowering.cpp - Thumb1 Frame Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Thumb1 implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Thumb1FrameLowering.h"
+#include "ARMMachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+Thumb1FrameLowering::Thumb1FrameLowering(const ARMSubtarget &sti)
+ : ARMFrameLowering(sti) {}
+
+bool Thumb1FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const{
+ const MachineFrameInfo *FFI = MF.getFrameInfo();
+ unsigned CFSize = FFI->getMaxCallFrameSize();
+ // It's not always a good idea to include the call frame as part of the
+ // stack frame. ARM (especially Thumb) has small immediate offset to
+ // address the stack frame. So a large call frame can cause poor codegen
+ // and may even makes it impossible to scavenge a register.
+ if (CFSize >= ((1 << 8) - 1) * 4 / 2) // Half of imm8 * 4
+ return false;
+
+ return !MF.getFrameInfo()->hasVarSizedObjects();
+}
+
+static void
+emitSPUpdate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const TargetInstrInfo &TII, DebugLoc dl,
+ const Thumb1RegisterInfo &MRI,
+ int NumBytes, unsigned MIFlags = MachineInstr::NoFlags) {
+ emitThumbRegPlusImmediate(MBB, MBBI, dl, ARM::SP, ARM::SP, NumBytes, TII,
+ MRI, MIFlags);
+}
+
+
+void Thumb1FrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const Thumb1InstrInfo &TII =
+ *static_cast<const Thumb1InstrInfo*>(MF.getTarget().getInstrInfo());
+ const Thumb1RegisterInfo *RegInfo =
+ static_cast<const Thumb1RegisterInfo*>(MF.getTarget().getRegisterInfo());
+ if (!hasReservedCallFrame(MF)) {
+ // If we have alloca, convert as follows:
+ // ADJCALLSTACKDOWN -> sub, sp, sp, amount
+ // ADJCALLSTACKUP -> add, sp, sp, amount
+ MachineInstr *Old = I;
+ DebugLoc dl = Old->getDebugLoc();
+ unsigned Amount = Old->getOperand(0).getImm();
+ if (Amount != 0) {
+ // We need to keep the stack aligned properly. To do this, we round the
+ // amount of space needed for the outgoing arguments up to the next
+ // alignment boundary.
+ unsigned Align = getStackAlignment();
+ Amount = (Amount+Align-1)/Align*Align;
+
+ // Replace the pseudo instruction with a new instruction...
+ unsigned Opc = Old->getOpcode();
+ if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
+ emitSPUpdate(MBB, I, TII, dl, *RegInfo, -Amount);
+ } else {
+ assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
+ emitSPUpdate(MBB, I, TII, dl, *RegInfo, Amount);
+ }
+ }
+ }
+ MBB.erase(I);
+}
+
+void Thumb1FrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front();
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ MachineModuleInfo &MMI = MF.getMMI();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
+ const Thumb1RegisterInfo *RegInfo =
+ static_cast<const Thumb1RegisterInfo*>(MF.getTarget().getRegisterInfo());
+ const Thumb1InstrInfo &TII =
+ *static_cast<const Thumb1InstrInfo*>(MF.getTarget().getInstrInfo());
+
+ unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(Align);
+ unsigned NumBytes = MFI->getStackSize();
+ assert(NumBytes >= ArgRegsSaveSize &&
+ "ArgRegsSaveSize is included in NumBytes");
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+ unsigned FramePtr = RegInfo->getFrameRegister(MF);
+ unsigned BasePtr = RegInfo->getBaseRegister();
+ int CFAOffset = 0;
+
+ // Thumb add/sub sp, imm8 instructions implicitly multiply the offset by 4.
+ NumBytes = (NumBytes + 3) & ~3;
+ MFI->setStackSize(NumBytes);
+
+ // Determine the sizes of each callee-save spill areas and record which frame
+ // belongs to which callee-save spill areas.
+ unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
+ int FramePtrSpillFI = 0;
+
+ if (ArgRegsSaveSize) {
+ emitSPUpdate(MBB, MBBI, TII, dl, *RegInfo, -ArgRegsSaveSize,
+ MachineInstr::FrameSetup);
+ CFAOffset -= ArgRegsSaveSize;
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ if (!AFI->hasStackFrame()) {
+ if (NumBytes - ArgRegsSaveSize != 0) {
+ emitSPUpdate(MBB, MBBI, TII, dl, *RegInfo, -(NumBytes - ArgRegsSaveSize),
+ MachineInstr::FrameSetup);
+ CFAOffset -= NumBytes - ArgRegsSaveSize;
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ return;
+ }
+
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ int FI = CSI[i].getFrameIdx();
+ switch (Reg) {
+ case ARM::R8:
+ case ARM::R9:
+ case ARM::R10:
+ case ARM::R11:
+ if (STI.isTargetMachO()) {
+ GPRCS2Size += 4;
+ break;
+ }
+ // fallthrough
+ case ARM::R4:
+ case ARM::R5:
+ case ARM::R6:
+ case ARM::R7:
+ case ARM::LR:
+ if (Reg == FramePtr)
+ FramePtrSpillFI = FI;
+ GPRCS1Size += 4;
+ break;
+ default:
+ DPRCSSize += 8;
+ }
+ }
+
+ if (MBBI != MBB.end() && MBBI->getOpcode() == ARM::tPUSH) {
+ ++MBBI;
+ if (MBBI != MBB.end())
+ dl = MBBI->getDebugLoc();
+ }
+
+ // Determine starting offsets of spill areas.
+ unsigned DPRCSOffset = NumBytes - ArgRegsSaveSize - (GPRCS1Size + GPRCS2Size + DPRCSSize);
+ unsigned GPRCS2Offset = DPRCSOffset + DPRCSSize;
+ unsigned GPRCS1Offset = GPRCS2Offset + GPRCS2Size;
+ bool HasFP = hasFP(MF);
+ if (HasFP)
+ AFI->setFramePtrSpillOffset(MFI->getObjectOffset(FramePtrSpillFI) +
+ NumBytes);
+ AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
+ AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
+ AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
+ NumBytes = DPRCSOffset;
+
+ int FramePtrOffsetInBlock = 0;
+ unsigned adjustedGPRCS1Size = GPRCS1Size;
+ if (tryFoldSPUpdateIntoPushPop(STI, MF, std::prev(MBBI), NumBytes)) {
+ FramePtrOffsetInBlock = NumBytes;
+ adjustedGPRCS1Size += NumBytes;
+ NumBytes = 0;
+ }
+
+ if (adjustedGPRCS1Size) {
+ CFAOffset -= adjustedGPRCS1Size;
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
+ E = CSI.end(); I != E; ++I) {
+ unsigned Reg = I->getReg();
+ int FI = I->getFrameIdx();
+ switch (Reg) {
+ case ARM::R8:
+ case ARM::R9:
+ case ARM::R10:
+ case ARM::R11:
+ case ARM::R12:
+ if (STI.isTargetMachO())
+ break;
+ // fallthough
+ case ARM::R0:
+ case ARM::R1:
+ case ARM::R2:
+ case ARM::R3:
+ case ARM::R4:
+ case ARM::R5:
+ case ARM::R6:
+ case ARM::R7:
+ case ARM::LR:
+ unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(Reg, true), MFI->getObjectOffset(FI)));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ break;
+ }
+ }
+
+
+ // Adjust FP so it point to the stack slot that contains the previous FP.
+ if (HasFP) {
+ FramePtrOffsetInBlock += MFI->getObjectOffset(FramePtrSpillFI)
+ + GPRCS1Size + ArgRegsSaveSize;
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tADDrSPi), FramePtr)
+ .addReg(ARM::SP).addImm(FramePtrOffsetInBlock / 4)
+ .setMIFlags(MachineInstr::FrameSetup));
+ if(FramePtrOffsetInBlock) {
+ CFAOffset += FramePtrOffsetInBlock;
+ unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa(
+ nullptr, MRI->getDwarfRegNum(FramePtr, true), CFAOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ } else {
+ unsigned CFIIndex =
+ MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(
+ nullptr, MRI->getDwarfRegNum(FramePtr, true)));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ if (NumBytes > 508)
+ // If offset is > 508 then sp cannot be adjusted in a single instruction,
+ // try restoring from fp instead.
+ AFI->setShouldRestoreSPFromFP(true);
+ }
+
+ if (NumBytes) {
+ // Insert it after all the callee-save spills.
+ emitSPUpdate(MBB, MBBI, TII, dl, *RegInfo, -NumBytes,
+ MachineInstr::FrameSetup);
+ if (!HasFP) {
+ CFAOffset -= NumBytes;
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+
+ if (STI.isTargetELF() && HasFP)
+ MFI->setOffsetAdjustment(MFI->getOffsetAdjustment() -
+ AFI->getFramePtrSpillOffset());
+
+ AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
+ AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
+ AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
+
+ // Thumb1 does not currently support dynamic stack realignment. Report a
+ // fatal error rather then silently generate bad code.
+ if (RegInfo->needsStackRealignment(MF))
+ report_fatal_error("Dynamic stack realignment not supported for thumb1.");
+
+ // If we need a base pointer, set it up here. It's whatever the value
+ // of the stack pointer is at this point. Any variable size objects
+ // will be allocated after this, so we can still use the base pointer
+ // to reference locals.
+ if (RegInfo->hasBasePointer(MF))
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), BasePtr)
+ .addReg(ARM::SP));
+
+ // If the frame has variable sized objects then the epilogue must restore
+ // the sp from fp. We can assume there's an FP here since hasFP already
+ // checks for hasVarSizedObjects.
+ if (MFI->hasVarSizedObjects())
+ AFI->setShouldRestoreSPFromFP(true);
+}
+
+static bool isCSRestore(MachineInstr *MI, const MCPhysReg *CSRegs) {
+ if (MI->getOpcode() == ARM::tLDRspi &&
+ MI->getOperand(1).isFI() &&
+ isCalleeSavedRegister(MI->getOperand(0).getReg(), CSRegs))
+ return true;
+ else if (MI->getOpcode() == ARM::tPOP) {
+ // The first two operands are predicates. The last two are
+ // imp-def and imp-use of SP. Check everything in between.
+ for (int i = 2, e = MI->getNumOperands() - 2; i != e; ++i)
+ if (!isCalleeSavedRegister(MI->getOperand(i).getReg(), CSRegs))
+ return false;
+ return true;
+ }
+ return false;
+}
+
+void Thumb1FrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ assert((MBBI->getOpcode() == ARM::tBX_RET ||
+ MBBI->getOpcode() == ARM::tPOP_RET) &&
+ "Can only insert epilog into returning blocks");
+ DebugLoc dl = MBBI->getDebugLoc();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ const Thumb1RegisterInfo *RegInfo =
+ static_cast<const Thumb1RegisterInfo*>(MF.getTarget().getRegisterInfo());
+ const Thumb1InstrInfo &TII =
+ *static_cast<const Thumb1InstrInfo*>(MF.getTarget().getInstrInfo());
+
+ unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(Align);
+ int NumBytes = (int)MFI->getStackSize();
+ assert((unsigned)NumBytes >= ArgRegsSaveSize &&
+ "ArgRegsSaveSize is included in NumBytes");
+ const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs();
+ unsigned FramePtr = RegInfo->getFrameRegister(MF);
+
+ if (!AFI->hasStackFrame()) {
+ if (NumBytes - ArgRegsSaveSize != 0)
+ emitSPUpdate(MBB, MBBI, TII, dl, *RegInfo, NumBytes - ArgRegsSaveSize);
+ } else {
+ // Unwind MBBI to point to first LDR / VLDRD.
+ if (MBBI != MBB.begin()) {
+ do
+ --MBBI;
+ while (MBBI != MBB.begin() && isCSRestore(MBBI, CSRegs));
+ if (!isCSRestore(MBBI, CSRegs))
+ ++MBBI;
+ }
+
+ // Move SP to start of FP callee save spill area.
+ NumBytes -= (AFI->getGPRCalleeSavedArea1Size() +
+ AFI->getGPRCalleeSavedArea2Size() +
+ AFI->getDPRCalleeSavedAreaSize() +
+ ArgRegsSaveSize);
+
+ if (AFI->shouldRestoreSPFromFP()) {
+ NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
+ // Reset SP based on frame pointer only if the stack frame extends beyond
+ // frame pointer stack slot, the target is ELF and the function has FP, or
+ // the target uses var sized objects.
+ if (NumBytes) {
+ assert(MF.getRegInfo().isPhysRegUsed(ARM::R4) &&
+ "No scratch register to restore SP from FP!");
+ emitThumbRegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
+ TII, *RegInfo);
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr),
+ ARM::SP)
+ .addReg(ARM::R4));
+ } else
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr),
+ ARM::SP)
+ .addReg(FramePtr));
+ } else {
+ if (MBBI->getOpcode() == ARM::tBX_RET &&
+ &MBB.front() != MBBI &&
+ std::prev(MBBI)->getOpcode() == ARM::tPOP) {
+ MachineBasicBlock::iterator PMBBI = std::prev(MBBI);
+ if (!tryFoldSPUpdateIntoPushPop(STI, MF, PMBBI, NumBytes))
+ emitSPUpdate(MBB, PMBBI, TII, dl, *RegInfo, NumBytes);
+ } else if (!tryFoldSPUpdateIntoPushPop(STI, MF, MBBI, NumBytes))
+ emitSPUpdate(MBB, MBBI, TII, dl, *RegInfo, NumBytes);
+ }
+ }
+
+ if (ArgRegsSaveSize) {
+ // Unlike T2 and ARM mode, the T1 pop instruction cannot restore
+ // to LR, and we can't pop the value directly to the PC since
+ // we need to update the SP after popping the value. Therefore, we
+ // pop the old LR into R3 as a temporary.
+
+ // Get the last instruction, tBX_RET
+ MBBI = MBB.getLastNonDebugInstr();
+ assert (MBBI->getOpcode() == ARM::tBX_RET);
+ // Epilogue for vararg functions: pop LR to R3 and branch off it.
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tPOP)))
+ .addReg(ARM::R3, RegState::Define);
+
+ emitSPUpdate(MBB, MBBI, TII, dl, *RegInfo, ArgRegsSaveSize);
+
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tBX_RET_vararg))
+ .addReg(ARM::R3, RegState::Kill);
+ AddDefaultPred(MIB);
+ MIB.copyImplicitOps(&*MBBI);
+ // erase the old tBX_RET instruction
+ MBB.erase(MBBI);
+ }
+}
+
+bool Thumb1FrameLowering::
+spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ DebugLoc DL;
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(ARM::tPUSH));
+ AddDefaultPred(MIB);
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i-1].getReg();
+ bool isKill = true;
+
+ // Add the callee-saved register as live-in unless it's LR and
+ // @llvm.returnaddress is called. If LR is returned for @llvm.returnaddress
+ // then it's already added to the function and entry block live-in sets.
+ if (Reg == ARM::LR) {
+ MachineFunction &MF = *MBB.getParent();
+ if (MF.getFrameInfo()->isReturnAddressTaken() &&
+ MF.getRegInfo().isLiveIn(Reg))
+ isKill = false;
+ }
+
+ if (isKill)
+ MBB.addLiveIn(Reg);
+
+ MIB.addReg(Reg, getKillRegState(isKill));
+ }
+ MIB.setMIFlags(MachineInstr::FrameSetup);
+ return true;
+}
+
+bool Thumb1FrameLowering::
+restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ MachineFunction &MF = *MBB.getParent();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+
+ bool isVarArg = AFI->getArgRegsSaveSize() > 0;
+ DebugLoc DL = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(MF, DL, TII.get(ARM::tPOP));
+ AddDefaultPred(MIB);
+
+ bool NumRegs = false;
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i-1].getReg();
+ if (Reg == ARM::LR) {
+ // Special epilogue for vararg functions. See emitEpilogue
+ if (isVarArg)
+ continue;
+ Reg = ARM::PC;
+ (*MIB).setDesc(TII.get(ARM::tPOP_RET));
+ MIB.copyImplicitOps(&*MI);
+ MI = MBB.erase(MI);
+ }
+ MIB.addReg(Reg, getDefRegState(true));
+ NumRegs = true;
+ }
+
+ // It's illegal to emit pop instruction without operands.
+ if (NumRegs)
+ MBB.insert(MI, &*MIB);
+ else
+ MF.DeleteMachineInstr(MIB);
+
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.h b/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.h
new file mode 100644
index 0000000..a227f8e
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.h
@@ -0,0 +1,52 @@
+//===-- Thumb1FrameLowering.h - Thumb1-specific frame info stuff --*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ARM_THUMB1FRAMELOWERING_H
+#define LLVM_ARM_THUMB1FRAMELOWERING_H
+
+#include "ARMFrameLowering.h"
+#include "Thumb1InstrInfo.h"
+#include "Thumb1RegisterInfo.h"
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+
+class Thumb1FrameLowering : public ARMFrameLowering {
+public:
+ explicit Thumb1FrameLowering(const ARMSubtarget &sti);
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+ bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool hasReservedCallFrame(const MachineFunction &MF) const override;
+
+ void
+ eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const override;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.cpp b/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.cpp
new file mode 100644
index 0000000..68cbb5c
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.cpp
@@ -0,0 +1,103 @@
+//===-- Thumb1InstrInfo.cpp - Thumb-1 Instruction Information -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Thumb-1 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Thumb1InstrInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/MC/MCInst.h"
+
+using namespace llvm;
+
+Thumb1InstrInfo::Thumb1InstrInfo(const ARMSubtarget &STI)
+ : ARMBaseInstrInfo(STI), RI(STI) {
+}
+
+/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
+void Thumb1InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
+ NopInst.setOpcode(ARM::tMOVr);
+ NopInst.addOperand(MCOperand::CreateReg(ARM::R8));
+ NopInst.addOperand(MCOperand::CreateReg(ARM::R8));
+ NopInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ NopInst.addOperand(MCOperand::CreateReg(0));
+}
+
+unsigned Thumb1InstrInfo::getUnindexedOpcode(unsigned Opc) const {
+ return 0;
+}
+
+void Thumb1InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::tMOVr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc)));
+ assert(ARM::GPRRegClass.contains(DestReg, SrcReg) &&
+ "Thumb1 can only copy GPR registers");
+}
+
+void Thumb1InstrInfo::
+storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ assert((RC == &ARM::tGPRRegClass ||
+ (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+ isARMLowRegister(SrcReg))) && "Unknown regclass!");
+
+ if (RC == &ARM::tGPRRegClass ||
+ (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+ isARMLowRegister(SrcReg))) {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::tSTRspi))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ }
+}
+
+void Thumb1InstrInfo::
+loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ assert((RC == &ARM::tGPRRegClass ||
+ (TargetRegisterInfo::isPhysicalRegister(DestReg) &&
+ isARMLowRegister(DestReg))) && "Unknown regclass!");
+
+ if (RC == &ARM::tGPRRegClass ||
+ (TargetRegisterInfo::isPhysicalRegister(DestReg) &&
+ isARMLowRegister(DestReg))) {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::tLDRspi), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ }
+}
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.h b/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.h
new file mode 100644
index 0000000..c5845b7
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.h
@@ -0,0 +1,60 @@
+//===-- Thumb1InstrInfo.h - Thumb-1 Instruction Information -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Thumb-1 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef THUMB1INSTRUCTIONINFO_H
+#define THUMB1INSTRUCTIONINFO_H
+
+#include "ARMBaseInstrInfo.h"
+#include "Thumb1RegisterInfo.h"
+
+namespace llvm {
+ class ARMSubtarget;
+
+class Thumb1InstrInfo : public ARMBaseInstrInfo {
+ Thumb1RegisterInfo RI;
+public:
+ explicit Thumb1InstrInfo(const ARMSubtarget &STI);
+
+ /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
+ void getNoopForMachoTarget(MCInst &NopInst) const override;
+
+ // Return the non-pre/post incrementing version of 'Opc'. Return 0
+ // if there is not such an opcode.
+ unsigned getUnindexedOpcode(unsigned Opc) const override;
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ const Thumb1RegisterInfo &getRegisterInfo() const override { return RI; }
+
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+};
+}
+
+#endif // THUMB1INSTRUCTIONINFO_H
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.cpp b/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.cpp
new file mode 100644
index 0000000..f907b14
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.cpp
@@ -0,0 +1,677 @@
+//===-- Thumb1RegisterInfo.cpp - Thumb-1 Register Information -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Thumb-1 implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Thumb1RegisterInfo.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMSubtarget.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+extern cl::opt<bool> ReuseFrameIndexVals;
+}
+
+using namespace llvm;
+
+Thumb1RegisterInfo::Thumb1RegisterInfo(const ARMSubtarget &sti)
+ : ARMBaseRegisterInfo(sti) {
+}
+
+const TargetRegisterClass*
+Thumb1RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC)
+ const {
+ if (ARM::tGPRRegClass.hasSubClassEq(RC))
+ return &ARM::tGPRRegClass;
+ return ARMBaseRegisterInfo::getLargestLegalSuperClass(RC);
+}
+
+const TargetRegisterClass *
+Thumb1RegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
+ const {
+ return &ARM::tGPRRegClass;
+}
+
+/// emitLoadConstPool - Emits a load from constpool to materialize the
+/// specified immediate.
+void
+Thumb1RegisterInfo::emitLoadConstPool(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl,
+ unsigned DestReg, unsigned SubIdx,
+ int Val,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ unsigned MIFlags) const {
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ MachineConstantPool *ConstantPool = MF.getConstantPool();
+ const Constant *C = ConstantInt::get(
+ Type::getInt32Ty(MBB.getParent()->getFunction()->getContext()), Val);
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
+
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tLDRpci))
+ .addReg(DestReg, getDefRegState(true), SubIdx)
+ .addConstantPoolIndex(Idx).addImm(Pred).addReg(PredReg)
+ .setMIFlags(MIFlags);
+}
+
+
+/// emitThumbRegPlusImmInReg - Emits a series of instructions to materialize
+/// a destreg = basereg + immediate in Thumb code. Materialize the immediate
+/// in a register using mov / mvn sequences or load the immediate from a
+/// constpool entry.
+static
+void emitThumbRegPlusImmInReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg,
+ int NumBytes, bool CanChangeCC,
+ const TargetInstrInfo &TII,
+ const ARMBaseRegisterInfo& MRI,
+ unsigned MIFlags = MachineInstr::NoFlags) {
+ MachineFunction &MF = *MBB.getParent();
+ bool isHigh = !isARMLowRegister(DestReg) ||
+ (BaseReg != 0 && !isARMLowRegister(BaseReg));
+ bool isSub = false;
+ // Subtract doesn't have high register version. Load the negative value
+ // if either base or dest register is a high register. Also, if do not
+ // issue sub as part of the sequence if condition register is to be
+ // preserved.
+ if (NumBytes < 0 && !isHigh && CanChangeCC) {
+ isSub = true;
+ NumBytes = -NumBytes;
+ }
+ unsigned LdReg = DestReg;
+ if (DestReg == ARM::SP) {
+ assert(BaseReg == ARM::SP && "Unexpected!");
+ LdReg = MF.getRegInfo().createVirtualRegister(&ARM::tGPRRegClass);
+ }
+
+ if (NumBytes <= 255 && NumBytes >= 0)
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg))
+ .addImm(NumBytes).setMIFlags(MIFlags);
+ else if (NumBytes < 0 && NumBytes >= -255) {
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg))
+ .addImm(NumBytes).setMIFlags(MIFlags);
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tRSB), LdReg))
+ .addReg(LdReg, RegState::Kill).setMIFlags(MIFlags);
+ } else
+ MRI.emitLoadConstPool(MBB, MBBI, dl, LdReg, 0, NumBytes,
+ ARMCC::AL, 0, MIFlags);
+
+ // Emit add / sub.
+ int Opc = (isSub) ? ARM::tSUBrr : (isHigh ? ARM::tADDhirr : ARM::tADDrr);
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg);
+ if (Opc != ARM::tADDhirr)
+ MIB = AddDefaultT1CC(MIB);
+ if (DestReg == ARM::SP || isSub)
+ MIB.addReg(BaseReg).addReg(LdReg, RegState::Kill);
+ else
+ MIB.addReg(LdReg).addReg(BaseReg, RegState::Kill);
+ AddDefaultPred(MIB);
+}
+
+/// calcNumMI - Returns the number of instructions required to materialize
+/// the specific add / sub r, c instruction.
+static unsigned calcNumMI(int Opc, int ExtraOpc, unsigned Bytes,
+ unsigned NumBits, unsigned Scale) {
+ unsigned NumMIs = 0;
+ unsigned Chunk = ((1 << NumBits) - 1) * Scale;
+
+ if (Opc == ARM::tADDrSPi) {
+ unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
+ Bytes -= ThisVal;
+ NumMIs++;
+ NumBits = 8;
+ Scale = 1; // Followed by a number of tADDi8.
+ Chunk = ((1 << NumBits) - 1) * Scale;
+ }
+
+ NumMIs += Bytes / Chunk;
+ if ((Bytes % Chunk) != 0)
+ NumMIs++;
+ if (ExtraOpc)
+ NumMIs++;
+ return NumMIs;
+}
+
+/// emitThumbRegPlusImmediate - Emits a series of instructions to materialize
+/// a destreg = basereg + immediate in Thumb code.
+void llvm::emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg,
+ int NumBytes, const TargetInstrInfo &TII,
+ const ARMBaseRegisterInfo& MRI,
+ unsigned MIFlags) {
+ bool isSub = NumBytes < 0;
+ unsigned Bytes = (unsigned)NumBytes;
+ if (isSub) Bytes = -NumBytes;
+ bool isMul4 = (Bytes & 3) == 0;
+ bool isTwoAddr = false;
+ bool DstNotEqBase = false;
+ unsigned NumBits = 1;
+ unsigned Scale = 1;
+ int Opc = 0;
+ int ExtraOpc = 0;
+ bool NeedCC = false;
+
+ if (DestReg == BaseReg && BaseReg == ARM::SP) {
+ assert(isMul4 && "Thumb sp inc / dec size must be multiple of 4!");
+ NumBits = 7;
+ Scale = 4;
+ Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
+ isTwoAddr = true;
+ } else if (!isSub && BaseReg == ARM::SP) {
+ // r1 = add sp, 403
+ // =>
+ // r1 = add sp, 100 * 4
+ // r1 = add r1, 3
+ if (!isMul4) {
+ Bytes &= ~3;
+ ExtraOpc = ARM::tADDi3;
+ }
+ NumBits = 8;
+ Scale = 4;
+ Opc = ARM::tADDrSPi;
+ } else {
+ // sp = sub sp, c
+ // r1 = sub sp, c
+ // r8 = sub sp, c
+ if (DestReg != BaseReg)
+ DstNotEqBase = true;
+ NumBits = 8;
+ if (DestReg == ARM::SP) {
+ Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
+ assert(isMul4 && "Thumb sp inc / dec size must be multiple of 4!");
+ NumBits = 7;
+ Scale = 4;
+ } else {
+ Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
+ NumBits = 8;
+ NeedCC = true;
+ }
+ isTwoAddr = true;
+ }
+
+ unsigned NumMIs = calcNumMI(Opc, ExtraOpc, Bytes, NumBits, Scale);
+ unsigned Threshold = (DestReg == ARM::SP) ? 3 : 2;
+ if (NumMIs > Threshold) {
+ // This will expand into too many instructions. Load the immediate from a
+ // constpool entry.
+ emitThumbRegPlusImmInReg(MBB, MBBI, dl,
+ DestReg, BaseReg, NumBytes, true,
+ TII, MRI, MIFlags);
+ return;
+ }
+
+ if (DstNotEqBase) {
+ if (isARMLowRegister(DestReg) && isARMLowRegister(BaseReg)) {
+ // If both are low registers, emit DestReg = add BaseReg, max(Imm, 7)
+ unsigned Chunk = (1 << 3) - 1;
+ unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
+ Bytes -= ThisVal;
+ const MCInstrDesc &MCID = TII.get(isSub ? ARM::tSUBi3 : ARM::tADDi3);
+ const MachineInstrBuilder MIB =
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, MCID, DestReg)
+ .setMIFlags(MIFlags));
+ AddDefaultPred(MIB.addReg(BaseReg, RegState::Kill).addImm(ThisVal));
+ } else {
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), DestReg)
+ .addReg(BaseReg, RegState::Kill))
+ .setMIFlags(MIFlags);
+ }
+ BaseReg = DestReg;
+ }
+
+ unsigned Chunk = ((1 << NumBits) - 1) * Scale;
+ while (Bytes) {
+ unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
+ Bytes -= ThisVal;
+ ThisVal /= Scale;
+ // Build the new tADD / tSUB.
+ if (isTwoAddr) {
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg);
+ if (NeedCC)
+ MIB = AddDefaultT1CC(MIB);
+ MIB.addReg(DestReg).addImm(ThisVal);
+ MIB = AddDefaultPred(MIB);
+ MIB.setMIFlags(MIFlags);
+ } else {
+ bool isKill = BaseReg != ARM::SP;
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg);
+ if (NeedCC)
+ MIB = AddDefaultT1CC(MIB);
+ MIB.addReg(BaseReg, getKillRegState(isKill)).addImm(ThisVal);
+ MIB = AddDefaultPred(MIB);
+ MIB.setMIFlags(MIFlags);
+
+ BaseReg = DestReg;
+ if (Opc == ARM::tADDrSPi) {
+ // r4 = add sp, imm
+ // r4 = add r4, imm
+ // ...
+ NumBits = 8;
+ Scale = 1;
+ Chunk = ((1 << NumBits) - 1) * Scale;
+ Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
+ NeedCC = isTwoAddr = true;
+ }
+ }
+ }
+
+ if (ExtraOpc) {
+ const MCInstrDesc &MCID = TII.get(ExtraOpc);
+ AddDefaultPred(AddDefaultT1CC(BuildMI(MBB, MBBI, dl, MCID, DestReg))
+ .addReg(DestReg, RegState::Kill)
+ .addImm(((unsigned)NumBytes) & 3)
+ .setMIFlags(MIFlags));
+ }
+}
+
+/// emitThumbConstant - Emit a series of instructions to materialize a
+/// constant.
+static void emitThumbConstant(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ unsigned DestReg, int Imm,
+ const TargetInstrInfo &TII,
+ const Thumb1RegisterInfo& MRI,
+ DebugLoc dl) {
+ bool isSub = Imm < 0;
+ if (isSub) Imm = -Imm;
+
+ int Chunk = (1 << 8) - 1;
+ int ThisVal = (Imm > Chunk) ? Chunk : Imm;
+ Imm -= ThisVal;
+ AddDefaultPred(AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8),
+ DestReg))
+ .addImm(ThisVal));
+ if (Imm > 0)
+ emitThumbRegPlusImmediate(MBB, MBBI, dl, DestReg, DestReg, Imm, TII, MRI);
+ if (isSub) {
+ const MCInstrDesc &MCID = TII.get(ARM::tRSB);
+ AddDefaultPred(AddDefaultT1CC(BuildMI(MBB, MBBI, dl, MCID, DestReg))
+ .addReg(DestReg, RegState::Kill));
+ }
+}
+
+static void removeOperands(MachineInstr &MI, unsigned i) {
+ unsigned Op = i;
+ for (unsigned e = MI.getNumOperands(); i != e; ++i)
+ MI.RemoveOperand(Op);
+}
+
+/// convertToNonSPOpcode - Change the opcode to the non-SP version, because
+/// we're replacing the frame index with a non-SP register.
+static unsigned convertToNonSPOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ case ARM::tLDRspi:
+ return ARM::tLDRi;
+
+ case ARM::tSTRspi:
+ return ARM::tSTRi;
+ }
+
+ return Opcode;
+}
+
+bool Thumb1RegisterInfo::
+rewriteFrameIndex(MachineBasicBlock::iterator II, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII) const {
+ MachineInstr &MI = *II;
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc dl = MI.getDebugLoc();
+ MachineInstrBuilder MIB(*MBB.getParent(), &MI);
+ unsigned Opcode = MI.getOpcode();
+ const MCInstrDesc &Desc = MI.getDesc();
+ unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
+
+ if (Opcode == ARM::tADDrSPi) {
+ Offset += MI.getOperand(FrameRegIdx+1).getImm();
+
+ // Can't use tADDrSPi if it's based off the frame pointer.
+ unsigned NumBits = 0;
+ unsigned Scale = 1;
+ if (FrameReg != ARM::SP) {
+ Opcode = ARM::tADDi3;
+ NumBits = 3;
+ } else {
+ NumBits = 8;
+ Scale = 4;
+ assert((Offset & 3) == 0 &&
+ "Thumb add/sub sp, #imm immediate must be multiple of 4!");
+ }
+
+ unsigned PredReg;
+ if (Offset == 0 && getInstrPredicate(&MI, PredReg) == ARMCC::AL) {
+ // Turn it into a move.
+ MI.setDesc(TII.get(ARM::tMOVr));
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ // Remove offset
+ MI.RemoveOperand(FrameRegIdx+1);
+ return true;
+ }
+
+ // Common case: small offset, fits into instruction.
+ unsigned Mask = (1 << NumBits) - 1;
+ if (((Offset / Scale) & ~Mask) == 0) {
+ // Replace the FrameIndex with sp / fp
+ if (Opcode == ARM::tADDi3) {
+ MI.setDesc(TII.get(Opcode));
+ removeOperands(MI, FrameRegIdx);
+ AddDefaultPred(AddDefaultT1CC(MIB).addReg(FrameReg)
+ .addImm(Offset / Scale));
+ } else {
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset / Scale);
+ }
+ return true;
+ }
+
+ unsigned DestReg = MI.getOperand(0).getReg();
+ unsigned Bytes = (Offset > 0) ? Offset : -Offset;
+ unsigned NumMIs = calcNumMI(Opcode, 0, Bytes, NumBits, Scale);
+ // MI would expand into a large number of instructions. Don't try to
+ // simplify the immediate.
+ if (NumMIs > 2) {
+ emitThumbRegPlusImmediate(MBB, II, dl, DestReg, FrameReg, Offset, TII,
+ *this);
+ MBB.erase(II);
+ return true;
+ }
+
+ if (Offset > 0) {
+ // Translate r0 = add sp, imm to
+ // r0 = add sp, 255*4
+ // r0 = add r0, (imm - 255*4)
+ if (Opcode == ARM::tADDi3) {
+ MI.setDesc(TII.get(Opcode));
+ removeOperands(MI, FrameRegIdx);
+ AddDefaultPred(AddDefaultT1CC(MIB).addReg(FrameReg).addImm(Mask));
+ } else {
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Mask);
+ }
+ Offset = (Offset - Mask * Scale);
+ MachineBasicBlock::iterator NII = std::next(II);
+ emitThumbRegPlusImmediate(MBB, NII, dl, DestReg, DestReg, Offset, TII,
+ *this);
+ } else {
+ // Translate r0 = add sp, -imm to
+ // r0 = -imm (this is then translated into a series of instructions)
+ // r0 = add r0, sp
+ emitThumbConstant(MBB, II, DestReg, Offset, TII, *this, dl);
+
+ MI.setDesc(TII.get(ARM::tADDhirr));
+ MI.getOperand(FrameRegIdx).ChangeToRegister(DestReg, false, false, true);
+ MI.getOperand(FrameRegIdx+1).ChangeToRegister(FrameReg, false);
+ }
+ return true;
+ } else {
+ if (AddrMode != ARMII::AddrModeT1_s)
+ llvm_unreachable("Unsupported addressing mode!");
+
+ unsigned ImmIdx = FrameRegIdx + 1;
+ int InstrOffs = MI.getOperand(ImmIdx).getImm();
+ unsigned NumBits = (FrameReg == ARM::SP) ? 8 : 5;
+ unsigned Scale = 4;
+
+ Offset += InstrOffs * Scale;
+ assert((Offset & (Scale - 1)) == 0 && "Can't encode this offset!");
+
+ // Common case: small offset, fits into instruction.
+ MachineOperand &ImmOp = MI.getOperand(ImmIdx);
+ int ImmedOffset = Offset / Scale;
+ unsigned Mask = (1 << NumBits) - 1;
+
+ if ((unsigned)Offset <= Mask * Scale) {
+ // Replace the FrameIndex with the frame register (e.g., sp).
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ ImmOp.ChangeToImmediate(ImmedOffset);
+
+ // If we're using a register where sp was stored, convert the instruction
+ // to the non-SP version.
+ unsigned NewOpc = convertToNonSPOpcode(Opcode);
+ if (NewOpc != Opcode && FrameReg != ARM::SP)
+ MI.setDesc(TII.get(NewOpc));
+
+ return true;
+ }
+
+ NumBits = 5;
+ Mask = (1 << NumBits) - 1;
+
+ // If this is a thumb spill / restore, we will be using a constpool load to
+ // materialize the offset.
+ if (Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) {
+ ImmOp.ChangeToImmediate(0);
+ } else {
+ // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
+ ImmedOffset = ImmedOffset & Mask;
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset &= ~(Mask * Scale);
+ }
+ }
+
+ return Offset == 0;
+}
+
+void Thumb1RegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
+ int64_t Offset) const {
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo*>(
+ MI.getParent()->getParent()->getTarget().getInstrInfo());
+ int Off = Offset; // ARM doesn't need the general 64-bit offsets
+ unsigned i = 0;
+
+ while (!MI.getOperand(i).isFI()) {
+ ++i;
+ assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
+ }
+ bool Done = rewriteFrameIndex(MI, i, BaseReg, Off, TII);
+ assert (Done && "Unable to resolve frame index!");
+ (void)Done;
+}
+
+/// saveScavengerRegister - Spill the register so it can be used by the
+/// register scavenger. Return true.
+bool
+Thumb1RegisterInfo::saveScavengerRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator &UseMI,
+ const TargetRegisterClass *RC,
+ unsigned Reg) const {
+ // Thumb1 can't use the emergency spill slot on the stack because
+ // ldr/str immediate offsets must be positive, and if we're referencing
+ // off the frame pointer (if, for example, there are alloca() calls in
+ // the function, the offset will be negative. Use R12 instead since that's
+ // a call clobbered register that we know won't be used in Thumb1 mode.
+ const TargetInstrInfo &TII = *MBB.getParent()->getTarget().getInstrInfo();
+ DebugLoc DL;
+ AddDefaultPred(BuildMI(MBB, I, DL, TII.get(ARM::tMOVr))
+ .addReg(ARM::R12, RegState::Define)
+ .addReg(Reg, RegState::Kill));
+
+ // The UseMI is where we would like to restore the register. If there's
+ // interference with R12 before then, however, we'll need to restore it
+ // before that instead and adjust the UseMI.
+ bool done = false;
+ for (MachineBasicBlock::iterator II = I; !done && II != UseMI ; ++II) {
+ if (II->isDebugValue())
+ continue;
+ // If this instruction affects R12, adjust our restore point.
+ for (unsigned i = 0, e = II->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = II->getOperand(i);
+ if (MO.isRegMask() && MO.clobbersPhysReg(ARM::R12)) {
+ UseMI = II;
+ done = true;
+ break;
+ }
+ if (!MO.isReg() || MO.isUndef() || !MO.getReg() ||
+ TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ continue;
+ if (MO.getReg() == ARM::R12) {
+ UseMI = II;
+ done = true;
+ break;
+ }
+ }
+ }
+ // Restore the register from R12
+ AddDefaultPred(BuildMI(MBB, UseMI, DL, TII.get(ARM::tMOVr)).
+ addReg(Reg, RegState::Define).addReg(ARM::R12, RegState::Kill));
+
+ return true;
+}
+
+void
+Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ unsigned VReg = 0;
+ MachineInstr &MI = *II;
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ DebugLoc dl = MI.getDebugLoc();
+ MachineInstrBuilder MIB(*MBB.getParent(), &MI);
+
+ unsigned FrameReg = ARM::SP;
+ int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
+ int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
+ MF.getFrameInfo()->getStackSize() + SPAdj;
+
+ if (MF.getFrameInfo()->hasVarSizedObjects()) {
+ assert(SPAdj == 0 && MF.getTarget().getFrameLowering()->hasFP(MF) &&
+ "Unexpected");
+ // There are alloca()'s in this function, must reference off the frame
+ // pointer or base pointer instead.
+ if (!hasBasePointer(MF)) {
+ FrameReg = getFrameRegister(MF);
+ Offset -= AFI->getFramePtrSpillOffset();
+ } else
+ FrameReg = BasePtr;
+ }
+
+ // PEI::scavengeFrameVirtualRegs() cannot accurately track SPAdj because the
+ // call frame setup/destroy instructions have already been eliminated. That
+ // means the stack pointer cannot be used to access the emergency spill slot
+ // when !hasReservedCallFrame().
+#ifndef NDEBUG
+ if (RS && FrameReg == ARM::SP && RS->isScavengingFrameIndex(FrameIndex)){
+ assert(MF.getTarget().getFrameLowering()->hasReservedCallFrame(MF) &&
+ "Cannot use SP to access the emergency spill slot in "
+ "functions without a reserved call frame");
+ assert(!MF.getFrameInfo()->hasVarSizedObjects() &&
+ "Cannot use SP to access the emergency spill slot in "
+ "functions with variable sized frame objects");
+ }
+#endif // NDEBUG
+
+ // Special handling of dbg_value instructions.
+ if (MI.isDebugValue()) {
+ MI.getOperand(FIOperandNum). ChangeToRegister(FrameReg, false /*isDef*/);
+ MI.getOperand(FIOperandNum+1).ChangeToImmediate(Offset);
+ return;
+ }
+
+ // Modify MI as necessary to handle as much of 'Offset' as possible
+ assert(AFI->isThumbFunction() &&
+ "This eliminateFrameIndex only supports Thumb1!");
+ if (rewriteFrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
+ return;
+
+ // If we get here, the immediate doesn't fit into the instruction. We folded
+ // as much as possible above, handle the rest, providing a register that is
+ // SP+LargeImm.
+ assert(Offset && "This code isn't needed if offset already handled!");
+
+ unsigned Opcode = MI.getOpcode();
+
+ // Remove predicate first.
+ int PIdx = MI.findFirstPredOperandIdx();
+ if (PIdx != -1)
+ removeOperands(MI, PIdx);
+
+ if (MI.mayLoad()) {
+ // Use the destination register to materialize sp + offset.
+ unsigned TmpReg = MI.getOperand(0).getReg();
+ bool UseRR = false;
+ if (Opcode == ARM::tLDRspi) {
+ if (FrameReg == ARM::SP)
+ emitThumbRegPlusImmInReg(MBB, II, dl, TmpReg, FrameReg,
+ Offset, false, TII, *this);
+ else {
+ emitLoadConstPool(MBB, II, dl, TmpReg, 0, Offset);
+ UseRR = true;
+ }
+ } else {
+ emitThumbRegPlusImmediate(MBB, II, dl, TmpReg, FrameReg, Offset, TII,
+ *this);
+ }
+
+ MI.setDesc(TII.get(UseRR ? ARM::tLDRr : ARM::tLDRi));
+ MI.getOperand(FIOperandNum).ChangeToRegister(TmpReg, false, false, true);
+ if (UseRR)
+ // Use [reg, reg] addrmode. Replace the immediate operand w/ the frame
+ // register. The offset is already handled in the vreg value.
+ MI.getOperand(FIOperandNum+1).ChangeToRegister(FrameReg, false, false,
+ false);
+ } else if (MI.mayStore()) {
+ VReg = MF.getRegInfo().createVirtualRegister(&ARM::tGPRRegClass);
+ bool UseRR = false;
+
+ if (Opcode == ARM::tSTRspi) {
+ if (FrameReg == ARM::SP)
+ emitThumbRegPlusImmInReg(MBB, II, dl, VReg, FrameReg,
+ Offset, false, TII, *this);
+ else {
+ emitLoadConstPool(MBB, II, dl, VReg, 0, Offset);
+ UseRR = true;
+ }
+ } else
+ emitThumbRegPlusImmediate(MBB, II, dl, VReg, FrameReg, Offset, TII,
+ *this);
+ MI.setDesc(TII.get(UseRR ? ARM::tSTRr : ARM::tSTRi));
+ MI.getOperand(FIOperandNum).ChangeToRegister(VReg, false, false, true);
+ if (UseRR)
+ // Use [reg, reg] addrmode. Replace the immediate operand w/ the frame
+ // register. The offset is already handled in the vreg value.
+ MI.getOperand(FIOperandNum+1).ChangeToRegister(FrameReg, false, false,
+ false);
+ } else {
+ llvm_unreachable("Unexpected opcode!");
+ }
+
+ // Add predicate back if it's needed.
+ if (MI.isPredicable())
+ AddDefaultPred(MIB);
+}
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.h b/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.h
new file mode 100644
index 0000000..0c0abbe
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.h
@@ -0,0 +1,63 @@
+//===- Thumb1RegisterInfo.h - Thumb-1 Register Information Impl -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Thumb-1 implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef THUMB1REGISTERINFO_H
+#define THUMB1REGISTERINFO_H
+
+#include "ARMBaseRegisterInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+namespace llvm {
+ class ARMSubtarget;
+ class ARMBaseInstrInfo;
+
+struct Thumb1RegisterInfo : public ARMBaseRegisterInfo {
+public:
+ Thumb1RegisterInfo(const ARMSubtarget &STI);
+
+ const TargetRegisterClass *
+ getLargestLegalSuperClass(const TargetRegisterClass *RC) const override;
+
+ const TargetRegisterClass *
+ getPointerRegClass(const MachineFunction &MF,
+ unsigned Kind = 0) const override;
+
+ /// emitLoadConstPool - Emits a load from constpool to materialize the
+ /// specified immediate.
+ void
+ emitLoadConstPool(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl, unsigned DestReg, unsigned SubIdx, int Val,
+ ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0,
+ unsigned MIFlags = MachineInstr::NoFlags) const override;
+
+ // rewrite MI to access 'Offset' bytes from the FP. Update Offset to be
+ // however much remains to be handled. Return 'true' if no further
+ // work is required.
+ bool rewriteFrameIndex(MachineBasicBlock::iterator II, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII) const;
+ void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
+ int64_t Offset) const override;
+ bool saveScavengerRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator &UseMI,
+ const TargetRegisterClass *RC,
+ unsigned Reg) const override;
+ void eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const override;
+};
+}
+
+#endif // THUMB1REGISTERINFO_H
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp b/contrib/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp
new file mode 100644
index 0000000..edb9ff3
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp
@@ -0,0 +1,282 @@
+//===-- Thumb2ITBlockPass.cpp - Insert Thumb-2 IT blocks ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMMachineFunctionInfo.h"
+#include "Thumb2InstrInfo.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "thumb2-it"
+
+STATISTIC(NumITs, "Number of IT blocks inserted");
+STATISTIC(NumMovedInsts, "Number of predicated instructions moved");
+
+namespace {
+ class Thumb2ITBlockPass : public MachineFunctionPass {
+ public:
+ static char ID;
+ Thumb2ITBlockPass() : MachineFunctionPass(ID) {}
+
+ bool restrictIT;
+ const Thumb2InstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ ARMFunctionInfo *AFI;
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "Thumb IT blocks insertion pass";
+ }
+
+ private:
+ bool MoveCopyOutOfITBlock(MachineInstr *MI,
+ ARMCC::CondCodes CC, ARMCC::CondCodes OCC,
+ SmallSet<unsigned, 4> &Defs,
+ SmallSet<unsigned, 4> &Uses);
+ bool InsertITInstructions(MachineBasicBlock &MBB);
+ };
+ char Thumb2ITBlockPass::ID = 0;
+}
+
+/// TrackDefUses - Tracking what registers are being defined and used by
+/// instructions in the IT block. This also tracks "dependencies", i.e. uses
+/// in the IT block that are defined before the IT instruction.
+static void TrackDefUses(MachineInstr *MI,
+ SmallSet<unsigned, 4> &Defs,
+ SmallSet<unsigned, 4> &Uses,
+ const TargetRegisterInfo *TRI) {
+ SmallVector<unsigned, 4> LocalDefs;
+ SmallVector<unsigned, 4> LocalUses;
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg || Reg == ARM::ITSTATE || Reg == ARM::SP)
+ continue;
+ if (MO.isUse())
+ LocalUses.push_back(Reg);
+ else
+ LocalDefs.push_back(Reg);
+ }
+
+ for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
+ unsigned Reg = LocalUses[i];
+ for (MCSubRegIterator Subreg(Reg, TRI, /*IncludeSelf=*/true);
+ Subreg.isValid(); ++Subreg)
+ Uses.insert(*Subreg);
+ }
+
+ for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) {
+ unsigned Reg = LocalDefs[i];
+ for (MCSubRegIterator Subreg(Reg, TRI, /*IncludeSelf=*/true);
+ Subreg.isValid(); ++Subreg)
+ Defs.insert(*Subreg);
+ if (Reg == ARM::CPSR)
+ continue;
+ }
+}
+
+static bool isCopy(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default:
+ return false;
+ case ARM::MOVr:
+ case ARM::MOVr_TC:
+ case ARM::tMOVr:
+ case ARM::t2MOVr:
+ return true;
+ }
+}
+
+bool
+Thumb2ITBlockPass::MoveCopyOutOfITBlock(MachineInstr *MI,
+ ARMCC::CondCodes CC, ARMCC::CondCodes OCC,
+ SmallSet<unsigned, 4> &Defs,
+ SmallSet<unsigned, 4> &Uses) {
+ if (!isCopy(MI))
+ return false;
+ // llvm models select's as two-address instructions. That means a copy
+ // is inserted before a t2MOVccr, etc. If the copy is scheduled in
+ // between selects we would end up creating multiple IT blocks.
+ assert(MI->getOperand(0).getSubReg() == 0 &&
+ MI->getOperand(1).getSubReg() == 0 &&
+ "Sub-register indices still around?");
+
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+
+ // First check if it's safe to move it.
+ if (Uses.count(DstReg) || Defs.count(SrcReg))
+ return false;
+
+ // If the CPSR is defined by this copy, then we don't want to move it. E.g.,
+ // if we have:
+ //
+ // movs r1, r1
+ // rsb r1, 0
+ // movs r2, r2
+ // rsb r2, 0
+ //
+ // we don't want this to be converted to:
+ //
+ // movs r1, r1
+ // movs r2, r2
+ // itt mi
+ // rsb r1, 0
+ // rsb r2, 0
+ //
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MI->hasOptionalDef() &&
+ MI->getOperand(MCID.getNumOperands() - 1).getReg() == ARM::CPSR)
+ return false;
+
+ // Then peek at the next instruction to see if it's predicated on CC or OCC.
+ // If not, then there is nothing to be gained by moving the copy.
+ MachineBasicBlock::iterator I = MI; ++I;
+ MachineBasicBlock::iterator E = MI->getParent()->end();
+ while (I != E && I->isDebugValue())
+ ++I;
+ if (I != E) {
+ unsigned NPredReg = 0;
+ ARMCC::CondCodes NCC = getITInstrPredicate(I, NPredReg);
+ if (NCC == CC || NCC == OCC)
+ return true;
+ }
+ return false;
+}
+
+bool Thumb2ITBlockPass::InsertITInstructions(MachineBasicBlock &MBB) {
+ bool Modified = false;
+
+ SmallSet<unsigned, 4> Defs;
+ SmallSet<unsigned, 4> Uses;
+ MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
+ while (MBBI != E) {
+ MachineInstr *MI = &*MBBI;
+ DebugLoc dl = MI->getDebugLoc();
+ unsigned PredReg = 0;
+ ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg);
+ if (CC == ARMCC::AL) {
+ ++MBBI;
+ continue;
+ }
+
+ Defs.clear();
+ Uses.clear();
+ TrackDefUses(MI, Defs, Uses, TRI);
+
+ // Insert an IT instruction.
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII->get(ARM::t2IT))
+ .addImm(CC);
+
+ // Add implicit use of ITSTATE to IT block instructions.
+ MI->addOperand(MachineOperand::CreateReg(ARM::ITSTATE, false/*ifDef*/,
+ true/*isImp*/, false/*isKill*/));
+
+ MachineInstr *LastITMI = MI;
+ MachineBasicBlock::iterator InsertPos = MIB;
+ ++MBBI;
+
+ // Form IT block.
+ ARMCC::CondCodes OCC = ARMCC::getOppositeCondition(CC);
+ unsigned Mask = 0, Pos = 3;
+
+ // v8 IT blocks are limited to one conditional op unless -arm-no-restrict-it
+ // is set: skip the loop
+ if (!restrictIT) {
+ // Branches, including tricky ones like LDM_RET, need to end an IT
+ // block so check the instruction we just put in the block.
+ for (; MBBI != E && Pos &&
+ (!MI->isBranch() && !MI->isReturn()) ; ++MBBI) {
+ if (MBBI->isDebugValue())
+ continue;
+
+ MachineInstr *NMI = &*MBBI;
+ MI = NMI;
+
+ unsigned NPredReg = 0;
+ ARMCC::CondCodes NCC = getITInstrPredicate(NMI, NPredReg);
+ if (NCC == CC || NCC == OCC) {
+ Mask |= (NCC & 1) << Pos;
+ // Add implicit use of ITSTATE.
+ NMI->addOperand(MachineOperand::CreateReg(ARM::ITSTATE, false/*ifDef*/,
+ true/*isImp*/, false/*isKill*/));
+ LastITMI = NMI;
+ } else {
+ if (NCC == ARMCC::AL &&
+ MoveCopyOutOfITBlock(NMI, CC, OCC, Defs, Uses)) {
+ --MBBI;
+ MBB.remove(NMI);
+ MBB.insert(InsertPos, NMI);
+ ++NumMovedInsts;
+ continue;
+ }
+ break;
+ }
+ TrackDefUses(NMI, Defs, Uses, TRI);
+ --Pos;
+ }
+ }
+
+ // Finalize IT mask.
+ Mask |= (1 << Pos);
+ // Tag along (firstcond[0] << 4) with the mask.
+ Mask |= (CC & 1) << 4;
+ MIB.addImm(Mask);
+
+ // Last instruction in IT block kills ITSTATE.
+ LastITMI->findRegisterUseOperand(ARM::ITSTATE)->setIsKill();
+
+ // Finalize the bundle.
+ MachineBasicBlock::instr_iterator LI = LastITMI;
+ finalizeBundle(MBB, InsertPos.getInstrIterator(), std::next(LI));
+
+ Modified = true;
+ ++NumITs;
+ }
+
+ return Modified;
+}
+
+bool Thumb2ITBlockPass::runOnMachineFunction(MachineFunction &Fn) {
+ const TargetMachine &TM = Fn.getTarget();
+ AFI = Fn.getInfo<ARMFunctionInfo>();
+ TII = static_cast<const Thumb2InstrInfo*>(TM.getInstrInfo());
+ TRI = TM.getRegisterInfo();
+ restrictIT = TM.getSubtarget<ARMSubtarget>().restrictIT();
+
+ if (!AFI->isThumbFunction())
+ return false;
+
+ bool Modified = false;
+ for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E; ) {
+ MachineBasicBlock &MBB = *MFI;
+ ++MFI;
+ Modified |= InsertITInstructions(MBB);
+ }
+
+ if (Modified)
+ AFI->setHasITBlocks(true);
+
+ return Modified;
+}
+
+/// createThumb2ITBlockPass - Returns an instance of the Thumb2 IT blocks
+/// insertion pass.
+FunctionPass *llvm::createThumb2ITBlockPass() {
+ return new Thumb2ITBlockPass();
+}
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.cpp b/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.cpp
new file mode 100644
index 0000000..a9df006
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.cpp
@@ -0,0 +1,630 @@
+//===-- Thumb2InstrInfo.cpp - Thumb-2 Instruction Information -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Thumb-2 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Thumb2InstrInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/CommandLine.h"
+
+using namespace llvm;
+
+static cl::opt<bool>
+OldT2IfCvt("old-thumb2-ifcvt", cl::Hidden,
+ cl::desc("Use old-style Thumb2 if-conversion heuristics"),
+ cl::init(false));
+
+Thumb2InstrInfo::Thumb2InstrInfo(const ARMSubtarget &STI)
+ : ARMBaseInstrInfo(STI), RI(STI) {
+}
+
+/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
+void Thumb2InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
+ NopInst.setOpcode(ARM::tHINT);
+ NopInst.addOperand(MCOperand::CreateImm(0));
+ NopInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ NopInst.addOperand(MCOperand::CreateReg(0));
+}
+
+unsigned Thumb2InstrInfo::getUnindexedOpcode(unsigned Opc) const {
+ // FIXME
+ return 0;
+}
+
+void
+Thumb2InstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
+ MachineBasicBlock *NewDest) const {
+ MachineBasicBlock *MBB = Tail->getParent();
+ ARMFunctionInfo *AFI = MBB->getParent()->getInfo<ARMFunctionInfo>();
+ if (!AFI->hasITBlocks()) {
+ TargetInstrInfo::ReplaceTailWithBranchTo(Tail, NewDest);
+ return;
+ }
+
+ // If the first instruction of Tail is predicated, we may have to update
+ // the IT instruction.
+ unsigned PredReg = 0;
+ ARMCC::CondCodes CC = getInstrPredicate(Tail, PredReg);
+ MachineBasicBlock::iterator MBBI = Tail;
+ if (CC != ARMCC::AL)
+ // Expecting at least the t2IT instruction before it.
+ --MBBI;
+
+ // Actually replace the tail.
+ TargetInstrInfo::ReplaceTailWithBranchTo(Tail, NewDest);
+
+ // Fix up IT.
+ if (CC != ARMCC::AL) {
+ MachineBasicBlock::iterator E = MBB->begin();
+ unsigned Count = 4; // At most 4 instructions in an IT block.
+ while (Count && MBBI != E) {
+ if (MBBI->isDebugValue()) {
+ --MBBI;
+ continue;
+ }
+ if (MBBI->getOpcode() == ARM::t2IT) {
+ unsigned Mask = MBBI->getOperand(1).getImm();
+ if (Count == 4)
+ MBBI->eraseFromParent();
+ else {
+ unsigned MaskOn = 1 << Count;
+ unsigned MaskOff = ~(MaskOn - 1);
+ MBBI->getOperand(1).setImm((Mask & MaskOff) | MaskOn);
+ }
+ return;
+ }
+ --MBBI;
+ --Count;
+ }
+
+ // Ctrl flow can reach here if branch folding is run before IT block
+ // formation pass.
+ }
+}
+
+bool
+Thumb2InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI) const {
+ while (MBBI->isDebugValue()) {
+ ++MBBI;
+ if (MBBI == MBB.end())
+ return false;
+ }
+
+ unsigned PredReg = 0;
+ return getITInstrPredicate(MBBI, PredReg) == ARMCC::AL;
+}
+
+void Thumb2InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ // Handle SPR, DPR, and QPR copies.
+ if (!ARM::GPRRegClass.contains(DestReg, SrcReg))
+ return ARMBaseInstrInfo::copyPhysReg(MBB, I, DL, DestReg, SrcReg, KillSrc);
+
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::tMOVr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc)));
+}
+
+void Thumb2InstrInfo::
+storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+
+ if (RC == &ARM::GPRRegClass || RC == &ARM::tGPRRegClass ||
+ RC == &ARM::tcGPRRegClass || RC == &ARM::rGPRRegClass ||
+ RC == &ARM::GPRnopcRegClass) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::t2STRi12))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ return;
+ }
+
+ if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
+ // Thumb2 STRD expects its dest-registers to be in rGPR. Not a problem for
+ // gsub_0, but needs an extra constraint for gsub_1 (which could be sp
+ // otherwise).
+ MachineRegisterInfo *MRI = &MF.getRegInfo();
+ MRI->constrainRegClass(SrcReg, &ARM::GPRPair_with_gsub_1_in_rGPRRegClass);
+
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::t2STRDi8));
+ AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
+ AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
+ MIB.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
+ AddDefaultPred(MIB);
+ return;
+ }
+
+ ARMBaseInstrInfo::storeRegToStackSlot(MBB, I, SrcReg, isKill, FI, RC, TRI);
+}
+
+void Thumb2InstrInfo::
+loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+
+ if (RC == &ARM::GPRRegClass || RC == &ARM::tGPRRegClass ||
+ RC == &ARM::tcGPRRegClass || RC == &ARM::rGPRRegClass ||
+ RC == &ARM::GPRnopcRegClass) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::t2LDRi12), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ return;
+ }
+
+ if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
+ // Thumb2 LDRD expects its dest-registers to be in rGPR. Not a problem for
+ // gsub_0, but needs an extra constraint for gsub_1 (which could be sp
+ // otherwise).
+ MachineRegisterInfo *MRI = &MF.getRegInfo();
+ MRI->constrainRegClass(DestReg, &ARM::GPRPair_with_gsub_1_in_rGPRRegClass);
+
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::t2LDRDi8));
+ AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
+ AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
+ MIB.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
+ AddDefaultPred(MIB);
+
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ return;
+ }
+
+ ARMBaseInstrInfo::loadRegFromStackSlot(MBB, I, DestReg, FI, RC, TRI);
+}
+
+void llvm::emitT2RegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg, int NumBytes,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ const ARMBaseInstrInfo &TII, unsigned MIFlags) {
+ if (NumBytes == 0 && DestReg != BaseReg) {
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), DestReg)
+ .addReg(BaseReg, RegState::Kill)
+ .addImm((unsigned)Pred).addReg(PredReg).setMIFlags(MIFlags);
+ return;
+ }
+
+ bool isSub = NumBytes < 0;
+ if (isSub) NumBytes = -NumBytes;
+
+ // If profitable, use a movw or movt to materialize the offset.
+ // FIXME: Use the scavenger to grab a scratch register.
+ if (DestReg != ARM::SP && DestReg != BaseReg &&
+ NumBytes >= 4096 &&
+ ARM_AM::getT2SOImmVal(NumBytes) == -1) {
+ bool Fits = false;
+ if (NumBytes < 65536) {
+ // Use a movw to materialize the 16-bit constant.
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), DestReg)
+ .addImm(NumBytes)
+ .addImm((unsigned)Pred).addReg(PredReg).setMIFlags(MIFlags);
+ Fits = true;
+ } else if ((NumBytes & 0xffff) == 0) {
+ // Use a movt to materialize the 32-bit constant.
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), DestReg)
+ .addReg(DestReg)
+ .addImm(NumBytes >> 16)
+ .addImm((unsigned)Pred).addReg(PredReg).setMIFlags(MIFlags);
+ Fits = true;
+ }
+
+ if (Fits) {
+ if (isSub) {
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), DestReg)
+ .addReg(BaseReg, RegState::Kill)
+ .addReg(DestReg, RegState::Kill)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
+ .setMIFlags(MIFlags);
+ } else {
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2ADDrr), DestReg)
+ .addReg(DestReg, RegState::Kill)
+ .addReg(BaseReg, RegState::Kill)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
+ .setMIFlags(MIFlags);
+ }
+ return;
+ }
+ }
+
+ while (NumBytes) {
+ unsigned ThisVal = NumBytes;
+ unsigned Opc = 0;
+ if (DestReg == ARM::SP && BaseReg != ARM::SP) {
+ // mov sp, rn. Note t2MOVr cannot be used.
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr),DestReg)
+ .addReg(BaseReg).setMIFlags(MIFlags));
+ BaseReg = ARM::SP;
+ continue;
+ }
+
+ bool HasCCOut = true;
+ if (BaseReg == ARM::SP) {
+ // sub sp, sp, #imm7
+ if (DestReg == ARM::SP && (ThisVal < ((1 << 7)-1) * 4)) {
+ assert((ThisVal & 3) == 0 && "Stack update is not multiple of 4?");
+ Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
+ .addReg(BaseReg).addImm(ThisVal/4).setMIFlags(MIFlags));
+ NumBytes = 0;
+ continue;
+ }
+
+ // sub rd, sp, so_imm
+ Opc = isSub ? ARM::t2SUBri : ARM::t2ADDri;
+ if (ARM_AM::getT2SOImmVal(NumBytes) != -1) {
+ NumBytes = 0;
+ } else {
+ // FIXME: Move this to ARMAddressingModes.h?
+ unsigned RotAmt = countLeadingZeros(ThisVal);
+ ThisVal = ThisVal & ARM_AM::rotr32(0xff000000U, RotAmt);
+ NumBytes &= ~ThisVal;
+ assert(ARM_AM::getT2SOImmVal(ThisVal) != -1 &&
+ "Bit extraction didn't work?");
+ }
+ } else {
+ assert(DestReg != ARM::SP && BaseReg != ARM::SP);
+ Opc = isSub ? ARM::t2SUBri : ARM::t2ADDri;
+ if (ARM_AM::getT2SOImmVal(NumBytes) != -1) {
+ NumBytes = 0;
+ } else if (ThisVal < 4096) {
+ Opc = isSub ? ARM::t2SUBri12 : ARM::t2ADDri12;
+ HasCCOut = false;
+ NumBytes = 0;
+ } else {
+ // FIXME: Move this to ARMAddressingModes.h?
+ unsigned RotAmt = countLeadingZeros(ThisVal);
+ ThisVal = ThisVal & ARM_AM::rotr32(0xff000000U, RotAmt);
+ NumBytes &= ~ThisVal;
+ assert(ARM_AM::getT2SOImmVal(ThisVal) != -1 &&
+ "Bit extraction didn't work?");
+ }
+ }
+
+ // Build the new ADD / SUB.
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
+ .addReg(BaseReg, RegState::Kill)
+ .addImm(ThisVal)).setMIFlags(MIFlags);
+ if (HasCCOut)
+ AddDefaultCC(MIB);
+
+ BaseReg = DestReg;
+ }
+}
+
+static unsigned
+negativeOffsetOpcode(unsigned opcode)
+{
+ switch (opcode) {
+ case ARM::t2LDRi12: return ARM::t2LDRi8;
+ case ARM::t2LDRHi12: return ARM::t2LDRHi8;
+ case ARM::t2LDRBi12: return ARM::t2LDRBi8;
+ case ARM::t2LDRSHi12: return ARM::t2LDRSHi8;
+ case ARM::t2LDRSBi12: return ARM::t2LDRSBi8;
+ case ARM::t2STRi12: return ARM::t2STRi8;
+ case ARM::t2STRBi12: return ARM::t2STRBi8;
+ case ARM::t2STRHi12: return ARM::t2STRHi8;
+ case ARM::t2PLDi12: return ARM::t2PLDi8;
+
+ case ARM::t2LDRi8:
+ case ARM::t2LDRHi8:
+ case ARM::t2LDRBi8:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRSBi8:
+ case ARM::t2STRi8:
+ case ARM::t2STRBi8:
+ case ARM::t2STRHi8:
+ case ARM::t2PLDi8:
+ return opcode;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+static unsigned
+positiveOffsetOpcode(unsigned opcode)
+{
+ switch (opcode) {
+ case ARM::t2LDRi8: return ARM::t2LDRi12;
+ case ARM::t2LDRHi8: return ARM::t2LDRHi12;
+ case ARM::t2LDRBi8: return ARM::t2LDRBi12;
+ case ARM::t2LDRSHi8: return ARM::t2LDRSHi12;
+ case ARM::t2LDRSBi8: return ARM::t2LDRSBi12;
+ case ARM::t2STRi8: return ARM::t2STRi12;
+ case ARM::t2STRBi8: return ARM::t2STRBi12;
+ case ARM::t2STRHi8: return ARM::t2STRHi12;
+ case ARM::t2PLDi8: return ARM::t2PLDi12;
+
+ case ARM::t2LDRi12:
+ case ARM::t2LDRHi12:
+ case ARM::t2LDRBi12:
+ case ARM::t2LDRSHi12:
+ case ARM::t2LDRSBi12:
+ case ARM::t2STRi12:
+ case ARM::t2STRBi12:
+ case ARM::t2STRHi12:
+ case ARM::t2PLDi12:
+ return opcode;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+static unsigned
+immediateOffsetOpcode(unsigned opcode)
+{
+ switch (opcode) {
+ case ARM::t2LDRs: return ARM::t2LDRi12;
+ case ARM::t2LDRHs: return ARM::t2LDRHi12;
+ case ARM::t2LDRBs: return ARM::t2LDRBi12;
+ case ARM::t2LDRSHs: return ARM::t2LDRSHi12;
+ case ARM::t2LDRSBs: return ARM::t2LDRSBi12;
+ case ARM::t2STRs: return ARM::t2STRi12;
+ case ARM::t2STRBs: return ARM::t2STRBi12;
+ case ARM::t2STRHs: return ARM::t2STRHi12;
+ case ARM::t2PLDs: return ARM::t2PLDi12;
+
+ case ARM::t2LDRi12:
+ case ARM::t2LDRHi12:
+ case ARM::t2LDRBi12:
+ case ARM::t2LDRSHi12:
+ case ARM::t2LDRSBi12:
+ case ARM::t2STRi12:
+ case ARM::t2STRBi12:
+ case ARM::t2STRHi12:
+ case ARM::t2PLDi12:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRHi8:
+ case ARM::t2LDRBi8:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRSBi8:
+ case ARM::t2STRi8:
+ case ARM::t2STRBi8:
+ case ARM::t2STRHi8:
+ case ARM::t2PLDi8:
+ return opcode;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+bool llvm::rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII) {
+ unsigned Opcode = MI.getOpcode();
+ const MCInstrDesc &Desc = MI.getDesc();
+ unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
+ bool isSub = false;
+
+ // Memory operands in inline assembly always use AddrModeT2_i12.
+ if (Opcode == ARM::INLINEASM)
+ AddrMode = ARMII::AddrModeT2_i12; // FIXME. mode for thumb2?
+
+ if (Opcode == ARM::t2ADDri || Opcode == ARM::t2ADDri12) {
+ Offset += MI.getOperand(FrameRegIdx+1).getImm();
+
+ unsigned PredReg;
+ if (Offset == 0 && getInstrPredicate(&MI, PredReg) == ARMCC::AL) {
+ // Turn it into a move.
+ MI.setDesc(TII.get(ARM::tMOVr));
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ // Remove offset and remaining explicit predicate operands.
+ do MI.RemoveOperand(FrameRegIdx+1);
+ while (MI.getNumOperands() > FrameRegIdx+1);
+ MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI);
+ AddDefaultPred(MIB);
+ return true;
+ }
+
+ bool HasCCOut = Opcode != ARM::t2ADDri12;
+
+ if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ MI.setDesc(TII.get(ARM::t2SUBri));
+ } else {
+ MI.setDesc(TII.get(ARM::t2ADDri));
+ }
+
+ // Common case: small offset, fits into instruction.
+ if (ARM_AM::getT2SOImmVal(Offset) != -1) {
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
+ // Add cc_out operand if the original instruction did not have one.
+ if (!HasCCOut)
+ MI.addOperand(MachineOperand::CreateReg(0, false));
+ Offset = 0;
+ return true;
+ }
+ // Another common case: imm12.
+ if (Offset < 4096 &&
+ (!HasCCOut || MI.getOperand(MI.getNumOperands()-1).getReg() == 0)) {
+ unsigned NewOpc = isSub ? ARM::t2SUBri12 : ARM::t2ADDri12;
+ MI.setDesc(TII.get(NewOpc));
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
+ // Remove the cc_out operand.
+ if (HasCCOut)
+ MI.RemoveOperand(MI.getNumOperands()-1);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, extract 8 adjacent bits from the immediate into this
+ // t2ADDri/t2SUBri.
+ unsigned RotAmt = countLeadingZeros<unsigned>(Offset);
+ unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xff000000U, RotAmt);
+
+ // We will handle these bits from offset, clear them.
+ Offset &= ~ThisImmVal;
+
+ assert(ARM_AM::getT2SOImmVal(ThisImmVal) != -1 &&
+ "Bit extraction didn't work?");
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
+ // Add cc_out operand if the original instruction did not have one.
+ if (!HasCCOut)
+ MI.addOperand(MachineOperand::CreateReg(0, false));
+
+ } else {
+
+ // AddrMode4 and AddrMode6 cannot handle any offset.
+ if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6)
+ return false;
+
+ // AddrModeT2_so cannot handle any offset. If there is no offset
+ // register then we change to an immediate version.
+ unsigned NewOpc = Opcode;
+ if (AddrMode == ARMII::AddrModeT2_so) {
+ unsigned OffsetReg = MI.getOperand(FrameRegIdx+1).getReg();
+ if (OffsetReg != 0) {
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ return Offset == 0;
+ }
+
+ MI.RemoveOperand(FrameRegIdx+1);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(0);
+ NewOpc = immediateOffsetOpcode(Opcode);
+ AddrMode = ARMII::AddrModeT2_i12;
+ }
+
+ unsigned NumBits = 0;
+ unsigned Scale = 1;
+ if (AddrMode == ARMII::AddrModeT2_i8 || AddrMode == ARMII::AddrModeT2_i12) {
+ // i8 supports only negative, and i12 supports only positive, so
+ // based on Offset sign convert Opcode to the appropriate
+ // instruction
+ Offset += MI.getOperand(FrameRegIdx+1).getImm();
+ if (Offset < 0) {
+ NewOpc = negativeOffsetOpcode(Opcode);
+ NumBits = 8;
+ isSub = true;
+ Offset = -Offset;
+ } else {
+ NewOpc = positiveOffsetOpcode(Opcode);
+ NumBits = 12;
+ }
+ } else if (AddrMode == ARMII::AddrMode5) {
+ // VFP address mode.
+ const MachineOperand &OffOp = MI.getOperand(FrameRegIdx+1);
+ int InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm());
+ if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ Scale = 4;
+ Offset += InstrOffs * 4;
+ assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
+ if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ }
+ } else if (AddrMode == ARMII::AddrModeT2_i8s4) {
+ Offset += MI.getOperand(FrameRegIdx + 1).getImm() * 4;
+ NumBits = 8;
+ // MCInst operand has already scaled value.
+ Scale = 1;
+ if (Offset < 0) {
+ isSub = true;
+ Offset = -Offset;
+ }
+ } else {
+ llvm_unreachable("Unsupported addressing mode!");
+ }
+
+ if (NewOpc != Opcode)
+ MI.setDesc(TII.get(NewOpc));
+
+ MachineOperand &ImmOp = MI.getOperand(FrameRegIdx+1);
+
+ // Attempt to fold address computation
+ // Common case: small offset, fits into instruction.
+ int ImmedOffset = Offset / Scale;
+ unsigned Mask = (1 << NumBits) - 1;
+ if ((unsigned)Offset <= Mask * Scale) {
+ // Replace the FrameIndex with fp/sp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode5)
+ // FIXME: Not consistent.
+ ImmedOffset |= 1 << NumBits;
+ else
+ ImmedOffset = -ImmedOffset;
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, offset doesn't fit. Pull in what we can to simplify
+ ImmedOffset = ImmedOffset & Mask;
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode5)
+ // FIXME: Not consistent.
+ ImmedOffset |= 1 << NumBits;
+ else {
+ ImmedOffset = -ImmedOffset;
+ if (ImmedOffset == 0)
+ // Change the opcode back if the encoded offset is zero.
+ MI.setDesc(TII.get(positiveOffsetOpcode(NewOpc)));
+ }
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset &= ~(Mask*Scale);
+ }
+
+ Offset = (isSub) ? -Offset : Offset;
+ return Offset == 0;
+}
+
+ARMCC::CondCodes
+llvm::getITInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
+ unsigned Opc = MI->getOpcode();
+ if (Opc == ARM::tBcc || Opc == ARM::t2Bcc)
+ return ARMCC::AL;
+ return getInstrPredicate(MI, PredReg);
+}
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.h b/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.h
new file mode 100644
index 0000000..34d45d3
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.h
@@ -0,0 +1,74 @@
+//===-- Thumb2InstrInfo.h - Thumb-2 Instruction Information -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Thumb-2 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef THUMB2INSTRUCTIONINFO_H
+#define THUMB2INSTRUCTIONINFO_H
+
+#include "ARMBaseInstrInfo.h"
+#include "Thumb2RegisterInfo.h"
+
+namespace llvm {
+class ARMSubtarget;
+class ScheduleHazardRecognizer;
+
+class Thumb2InstrInfo : public ARMBaseInstrInfo {
+ Thumb2RegisterInfo RI;
+public:
+ explicit Thumb2InstrInfo(const ARMSubtarget &STI);
+
+ /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
+ void getNoopForMachoTarget(MCInst &NopInst) const override;
+
+ // Return the non-pre/post incrementing version of 'Opc'. Return 0
+ // if there is not such an opcode.
+ unsigned getUnindexedOpcode(unsigned Opc) const override;
+
+ void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
+ MachineBasicBlock *NewDest) const override;
+
+ bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI) const override;
+
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ const Thumb2RegisterInfo &getRegisterInfo() const override { return RI; }
+};
+
+/// getITInstrPredicate - Valid only in Thumb2 mode. This function is identical
+/// to llvm::getInstrPredicate except it returns AL for conditional branch
+/// instructions which are "predicated", but are not in IT blocks.
+ARMCC::CondCodes getITInstrPredicate(const MachineInstr *MI, unsigned &PredReg);
+
+
+}
+
+#endif // THUMB2INSTRUCTIONINFO_H
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.cpp b/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.cpp
new file mode 100644
index 0000000..782d81f
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.cpp
@@ -0,0 +1,53 @@
+//===-- Thumb2RegisterInfo.cpp - Thumb-2 Register Information -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Thumb-2 implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Thumb2RegisterInfo.h"
+#include "ARM.h"
+#include "ARMSubtarget.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+Thumb2RegisterInfo::Thumb2RegisterInfo(const ARMSubtarget &sti)
+ : ARMBaseRegisterInfo(sti) {
+}
+
+/// emitLoadConstPool - Emits a load from constpool to materialize the
+/// specified immediate.
+void
+Thumb2RegisterInfo::emitLoadConstPool(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl,
+ unsigned DestReg, unsigned SubIdx,
+ int Val,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ unsigned MIFlags) const {
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ MachineConstantPool *ConstantPool = MF.getConstantPool();
+ const Constant *C = ConstantInt::get(
+ Type::getInt32Ty(MBB.getParent()->getFunction()->getContext()), Val);
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
+
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2LDRpci))
+ .addReg(DestReg, getDefRegState(true), SubIdx)
+ .addConstantPoolIndex(Idx).addImm((int64_t)ARMCC::AL).addReg(0)
+ .setMIFlags(MIFlags);
+}
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.h b/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.h
new file mode 100644
index 0000000..8a33e6c
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.h
@@ -0,0 +1,38 @@
+//===- Thumb2RegisterInfo.h - Thumb-2 Register Information Impl -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Thumb-2 implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef THUMB2REGISTERINFO_H
+#define THUMB2REGISTERINFO_H
+
+#include "ARMBaseRegisterInfo.h"
+
+namespace llvm {
+
+class ARMSubtarget;
+
+struct Thumb2RegisterInfo : public ARMBaseRegisterInfo {
+public:
+ Thumb2RegisterInfo(const ARMSubtarget &STI);
+
+ /// emitLoadConstPool - Emits a load from constpool to materialize the
+ /// specified immediate.
+ void
+ emitLoadConstPool(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl, unsigned DestReg, unsigned SubIdx, int Val,
+ ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0,
+ unsigned MIFlags = MachineInstr::NoFlags) const override;
+};
+}
+
+#endif // THUMB2REGISTERINFO_H
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2SizeReduction.cpp b/contrib/llvm/lib/Target/ARM/Thumb2SizeReduction.cpp
new file mode 100644
index 0000000..09debe7
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/Thumb2SizeReduction.cpp
@@ -0,0 +1,1033 @@
+//===-- Thumb2SizeReduction.cpp - Thumb2 code size reduction pass -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMSubtarget.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "Thumb2InstrInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/IR/Function.h" // To access Function attributes
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "t2-reduce-size"
+
+STATISTIC(NumNarrows, "Number of 32-bit instrs reduced to 16-bit ones");
+STATISTIC(Num2Addrs, "Number of 32-bit instrs reduced to 2addr 16-bit ones");
+STATISTIC(NumLdSts, "Number of 32-bit load / store reduced to 16-bit ones");
+
+static cl::opt<int> ReduceLimit("t2-reduce-limit",
+ cl::init(-1), cl::Hidden);
+static cl::opt<int> ReduceLimit2Addr("t2-reduce-limit2",
+ cl::init(-1), cl::Hidden);
+static cl::opt<int> ReduceLimitLdSt("t2-reduce-limit3",
+ cl::init(-1), cl::Hidden);
+
+namespace {
+ /// ReduceTable - A static table with information on mapping from wide
+ /// opcodes to narrow
+ struct ReduceEntry {
+ uint16_t WideOpc; // Wide opcode
+ uint16_t NarrowOpc1; // Narrow opcode to transform to
+ uint16_t NarrowOpc2; // Narrow opcode when it's two-address
+ uint8_t Imm1Limit; // Limit of immediate field (bits)
+ uint8_t Imm2Limit; // Limit of immediate field when it's two-address
+ unsigned LowRegs1 : 1; // Only possible if low-registers are used
+ unsigned LowRegs2 : 1; // Only possible if low-registers are used (2addr)
+ unsigned PredCC1 : 2; // 0 - If predicated, cc is on and vice versa.
+ // 1 - No cc field.
+ // 2 - Always set CPSR.
+ unsigned PredCC2 : 2;
+ unsigned PartFlag : 1; // 16-bit instruction does partial flag update
+ unsigned Special : 1; // Needs to be dealt with specially
+ unsigned AvoidMovs: 1; // Avoid movs with shifter operand (for Swift)
+ };
+
+ static const ReduceEntry ReduceTable[] = {
+ // Wide, Narrow1, Narrow2, imm1,imm2, lo1, lo2, P/C,PF,S,AM
+ { ARM::t2ADCrr, 0, ARM::tADC, 0, 0, 0, 1, 0,0, 0,0,0 },
+ { ARM::t2ADDri, ARM::tADDi3, ARM::tADDi8, 3, 8, 1, 1, 0,0, 0,1,0 },
+ { ARM::t2ADDrr, ARM::tADDrr, ARM::tADDhirr, 0, 0, 1, 0, 0,1, 0,0,0 },
+ { ARM::t2ADDSri,ARM::tADDi3, ARM::tADDi8, 3, 8, 1, 1, 2,2, 0,1,0 },
+ { ARM::t2ADDSrr,ARM::tADDrr, 0, 0, 0, 1, 0, 2,0, 0,1,0 },
+ { ARM::t2ANDrr, 0, ARM::tAND, 0, 0, 0, 1, 0,0, 1,0,0 },
+ { ARM::t2ASRri, ARM::tASRri, 0, 5, 0, 1, 0, 0,0, 1,0,1 },
+ { ARM::t2ASRrr, 0, ARM::tASRrr, 0, 0, 0, 1, 0,0, 1,0,1 },
+ { ARM::t2BICrr, 0, ARM::tBIC, 0, 0, 0, 1, 0,0, 1,0,0 },
+ //FIXME: Disable CMN, as CCodes are backwards from compare expectations
+ //{ ARM::t2CMNrr, ARM::tCMN, 0, 0, 0, 1, 0, 2,0, 0,0,0 },
+ { ARM::t2CMNzrr, ARM::tCMNz, 0, 0, 0, 1, 0, 2,0, 0,0,0 },
+ { ARM::t2CMPri, ARM::tCMPi8, 0, 8, 0, 1, 0, 2,0, 0,0,0 },
+ { ARM::t2CMPrr, ARM::tCMPhir, 0, 0, 0, 0, 0, 2,0, 0,1,0 },
+ { ARM::t2EORrr, 0, ARM::tEOR, 0, 0, 0, 1, 0,0, 1,0,0 },
+ // FIXME: adr.n immediate offset must be multiple of 4.
+ //{ ARM::t2LEApcrelJT,ARM::tLEApcrelJT, 0, 0, 0, 1, 0, 1,0, 0,0,0 },
+ { ARM::t2LSLri, ARM::tLSLri, 0, 5, 0, 1, 0, 0,0, 1,0,1 },
+ { ARM::t2LSLrr, 0, ARM::tLSLrr, 0, 0, 0, 1, 0,0, 1,0,1 },
+ { ARM::t2LSRri, ARM::tLSRri, 0, 5, 0, 1, 0, 0,0, 1,0,1 },
+ { ARM::t2LSRrr, 0, ARM::tLSRrr, 0, 0, 0, 1, 0,0, 1,0,1 },
+ { ARM::t2MOVi, ARM::tMOVi8, 0, 8, 0, 1, 0, 0,0, 1,0,0 },
+ { ARM::t2MOVi16,ARM::tMOVi8, 0, 8, 0, 1, 0, 0,0, 1,1,0 },
+ // FIXME: Do we need the 16-bit 'S' variant?
+ { ARM::t2MOVr,ARM::tMOVr, 0, 0, 0, 0, 0, 1,0, 0,0,0 },
+ { ARM::t2MUL, 0, ARM::tMUL, 0, 0, 0, 1, 0,0, 1,0,0 },
+ { ARM::t2MVNr, ARM::tMVN, 0, 0, 0, 1, 0, 0,0, 0,0,0 },
+ { ARM::t2ORRrr, 0, ARM::tORR, 0, 0, 0, 1, 0,0, 1,0,0 },
+ { ARM::t2REV, ARM::tREV, 0, 0, 0, 1, 0, 1,0, 0,0,0 },
+ { ARM::t2REV16, ARM::tREV16, 0, 0, 0, 1, 0, 1,0, 0,0,0 },
+ { ARM::t2REVSH, ARM::tREVSH, 0, 0, 0, 1, 0, 1,0, 0,0,0 },
+ { ARM::t2RORrr, 0, ARM::tROR, 0, 0, 0, 1, 0,0, 1,0,0 },
+ { ARM::t2RSBri, ARM::tRSB, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2RSBSri,ARM::tRSB, 0, 0, 0, 1, 0, 2,0, 0,1,0 },
+ { ARM::t2SBCrr, 0, ARM::tSBC, 0, 0, 0, 1, 0,0, 0,0,0 },
+ { ARM::t2SUBri, ARM::tSUBi3, ARM::tSUBi8, 3, 8, 1, 1, 0,0, 0,0,0 },
+ { ARM::t2SUBrr, ARM::tSUBrr, 0, 0, 0, 1, 0, 0,0, 0,0,0 },
+ { ARM::t2SUBSri,ARM::tSUBi3, ARM::tSUBi8, 3, 8, 1, 1, 2,2, 0,0,0 },
+ { ARM::t2SUBSrr,ARM::tSUBrr, 0, 0, 0, 1, 0, 2,0, 0,0,0 },
+ { ARM::t2SXTB, ARM::tSXTB, 0, 0, 0, 1, 0, 1,0, 0,1,0 },
+ { ARM::t2SXTH, ARM::tSXTH, 0, 0, 0, 1, 0, 1,0, 0,1,0 },
+ { ARM::t2TSTrr, ARM::tTST, 0, 0, 0, 1, 0, 2,0, 0,0,0 },
+ { ARM::t2UXTB, ARM::tUXTB, 0, 0, 0, 1, 0, 1,0, 0,1,0 },
+ { ARM::t2UXTH, ARM::tUXTH, 0, 0, 0, 1, 0, 1,0, 0,1,0 },
+
+ // FIXME: Clean this up after splitting each Thumb load / store opcode
+ // into multiple ones.
+ { ARM::t2LDRi12,ARM::tLDRi, ARM::tLDRspi, 5, 8, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2LDRs, ARM::tLDRr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2LDRBi12,ARM::tLDRBi, 0, 5, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2LDRBs, ARM::tLDRBr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2LDRHi12,ARM::tLDRHi, 0, 5, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2LDRHs, ARM::tLDRHr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2LDRSBs,ARM::tLDRSB, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2LDRSHs,ARM::tLDRSH, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2STRi12,ARM::tSTRi, ARM::tSTRspi, 5, 8, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2STRs, ARM::tSTRr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2STRBi12,ARM::tSTRBi, 0, 5, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2STRBs, ARM::tSTRBr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2STRHi12,ARM::tSTRHi, 0, 5, 0, 1, 0, 0,0, 0,1,0 },
+ { ARM::t2STRHs, ARM::tSTRHr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
+
+ { ARM::t2LDMIA, ARM::tLDMIA, 0, 0, 0, 1, 1, 1,1, 0,1,0 },
+ { ARM::t2LDMIA_RET,0, ARM::tPOP_RET, 0, 0, 1, 1, 1,1, 0,1,0 },
+ { ARM::t2LDMIA_UPD,ARM::tLDMIA_UPD,ARM::tPOP,0, 0, 1, 1, 1,1, 0,1,0 },
+ // ARM::t2STM (with no basereg writeback) has no Thumb1 equivalent
+ { ARM::t2STMIA_UPD,ARM::tSTMIA_UPD, 0, 0, 0, 1, 1, 1,1, 0,1,0 },
+ { ARM::t2STMDB_UPD, 0, ARM::tPUSH, 0, 0, 1, 1, 1,1, 0,1,0 }
+ };
+
+ class Thumb2SizeReduce : public MachineFunctionPass {
+ public:
+ static char ID;
+ Thumb2SizeReduce();
+
+ const Thumb2InstrInfo *TII;
+ const ARMSubtarget *STI;
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "Thumb2 instruction size reduction pass";
+ }
+
+ private:
+ /// ReduceOpcodeMap - Maps wide opcode to index of entry in ReduceTable.
+ DenseMap<unsigned, unsigned> ReduceOpcodeMap;
+
+ bool canAddPseudoFlagDep(MachineInstr *Use, bool IsSelfLoop);
+
+ bool VerifyPredAndCC(MachineInstr *MI, const ReduceEntry &Entry,
+ bool is2Addr, ARMCC::CondCodes Pred,
+ bool LiveCPSR, bool &HasCC, bool &CCDead);
+
+ bool ReduceLoadStore(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry);
+
+ bool ReduceSpecial(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry, bool LiveCPSR, bool IsSelfLoop);
+
+ /// ReduceTo2Addr - Reduce a 32-bit instruction to a 16-bit two-address
+ /// instruction.
+ bool ReduceTo2Addr(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry, bool LiveCPSR,
+ bool IsSelfLoop);
+
+ /// ReduceToNarrow - Reduce a 32-bit instruction to a 16-bit
+ /// non-two-address instruction.
+ bool ReduceToNarrow(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry, bool LiveCPSR,
+ bool IsSelfLoop);
+
+ /// ReduceMI - Attempt to reduce MI, return true on success.
+ bool ReduceMI(MachineBasicBlock &MBB, MachineInstr *MI,
+ bool LiveCPSR, bool IsSelfLoop);
+
+ /// ReduceMBB - Reduce width of instructions in the specified basic block.
+ bool ReduceMBB(MachineBasicBlock &MBB);
+
+ bool OptimizeSize;
+ bool MinimizeSize;
+
+ // Last instruction to define CPSR in the current block.
+ MachineInstr *CPSRDef;
+ // Was CPSR last defined by a high latency instruction?
+ // When CPSRDef is null, this refers to CPSR defs in predecessors.
+ bool HighLatencyCPSR;
+
+ struct MBBInfo {
+ // The flags leaving this block have high latency.
+ bool HighLatencyCPSR;
+ // Has this block been visited yet?
+ bool Visited;
+
+ MBBInfo() : HighLatencyCPSR(false), Visited(false) {}
+ };
+
+ SmallVector<MBBInfo, 8> BlockInfo;
+ };
+ char Thumb2SizeReduce::ID = 0;
+}
+
+Thumb2SizeReduce::Thumb2SizeReduce() : MachineFunctionPass(ID) {
+ OptimizeSize = MinimizeSize = false;
+ for (unsigned i = 0, e = array_lengthof(ReduceTable); i != e; ++i) {
+ unsigned FromOpc = ReduceTable[i].WideOpc;
+ if (!ReduceOpcodeMap.insert(std::make_pair(FromOpc, i)).second)
+ assert(false && "Duplicated entries?");
+ }
+}
+
+static bool HasImplicitCPSRDef(const MCInstrDesc &MCID) {
+ for (const uint16_t *Regs = MCID.getImplicitDefs(); *Regs; ++Regs)
+ if (*Regs == ARM::CPSR)
+ return true;
+ return false;
+}
+
+// Check for a likely high-latency flag def.
+static bool isHighLatencyCPSR(MachineInstr *Def) {
+ switch(Def->getOpcode()) {
+ case ARM::FMSTAT:
+ case ARM::tMUL:
+ return true;
+ }
+ return false;
+}
+
+/// canAddPseudoFlagDep - For A9 (and other out-of-order) implementations,
+/// the 's' 16-bit instruction partially update CPSR. Abort the
+/// transformation to avoid adding false dependency on last CPSR setting
+/// instruction which hurts the ability for out-of-order execution engine
+/// to do register renaming magic.
+/// This function checks if there is a read-of-write dependency between the
+/// last instruction that defines the CPSR and the current instruction. If there
+/// is, then there is no harm done since the instruction cannot be retired
+/// before the CPSR setting instruction anyway.
+/// Note, we are not doing full dependency analysis here for the sake of compile
+/// time. We're not looking for cases like:
+/// r0 = muls ...
+/// r1 = add.w r0, ...
+/// ...
+/// = mul.w r1
+/// In this case it would have been ok to narrow the mul.w to muls since there
+/// are indirect RAW dependency between the muls and the mul.w
+bool
+Thumb2SizeReduce::canAddPseudoFlagDep(MachineInstr *Use, bool FirstInSelfLoop) {
+ // Disable the check for -Oz (aka OptimizeForSizeHarder).
+ if (MinimizeSize || !STI->avoidCPSRPartialUpdate())
+ return false;
+
+ if (!CPSRDef)
+ // If this BB loops back to itself, conservatively avoid narrowing the
+ // first instruction that does partial flag update.
+ return HighLatencyCPSR || FirstInSelfLoop;
+
+ SmallSet<unsigned, 2> Defs;
+ for (const MachineOperand &MO : CPSRDef->operands()) {
+ if (!MO.isReg() || MO.isUndef() || MO.isUse())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0 || Reg == ARM::CPSR)
+ continue;
+ Defs.insert(Reg);
+ }
+
+ for (const MachineOperand &MO : Use->operands()) {
+ if (!MO.isReg() || MO.isUndef() || MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Defs.count(Reg))
+ return false;
+ }
+
+ // If the current CPSR has high latency, try to avoid the false dependency.
+ if (HighLatencyCPSR)
+ return true;
+
+ // tMOVi8 usually doesn't start long dependency chains, and there are a lot
+ // of them, so always shrink them when CPSR doesn't have high latency.
+ if (Use->getOpcode() == ARM::t2MOVi ||
+ Use->getOpcode() == ARM::t2MOVi16)
+ return false;
+
+ // No read-after-write dependency. The narrowing will add false dependency.
+ return true;
+}
+
+bool
+Thumb2SizeReduce::VerifyPredAndCC(MachineInstr *MI, const ReduceEntry &Entry,
+ bool is2Addr, ARMCC::CondCodes Pred,
+ bool LiveCPSR, bool &HasCC, bool &CCDead) {
+ if ((is2Addr && Entry.PredCC2 == 0) ||
+ (!is2Addr && Entry.PredCC1 == 0)) {
+ if (Pred == ARMCC::AL) {
+ // Not predicated, must set CPSR.
+ if (!HasCC) {
+ // Original instruction was not setting CPSR, but CPSR is not
+ // currently live anyway. It's ok to set it. The CPSR def is
+ // dead though.
+ if (!LiveCPSR) {
+ HasCC = true;
+ CCDead = true;
+ return true;
+ }
+ return false;
+ }
+ } else {
+ // Predicated, must not set CPSR.
+ if (HasCC)
+ return false;
+ }
+ } else if ((is2Addr && Entry.PredCC2 == 2) ||
+ (!is2Addr && Entry.PredCC1 == 2)) {
+ /// Old opcode has an optional def of CPSR.
+ if (HasCC)
+ return true;
+ // If old opcode does not implicitly define CPSR, then it's not ok since
+ // these new opcodes' CPSR def is not meant to be thrown away. e.g. CMP.
+ if (!HasImplicitCPSRDef(MI->getDesc()))
+ return false;
+ HasCC = true;
+ } else {
+ // 16-bit instruction does not set CPSR.
+ if (HasCC)
+ return false;
+ }
+
+ return true;
+}
+
+static bool VerifyLowRegs(MachineInstr *MI) {
+ unsigned Opc = MI->getOpcode();
+ bool isPCOk = (Opc == ARM::t2LDMIA_RET || Opc == ARM::t2LDMIA ||
+ Opc == ARM::t2LDMDB || Opc == ARM::t2LDMIA_UPD ||
+ Opc == ARM::t2LDMDB_UPD);
+ bool isLROk = (Opc == ARM::t2STMIA_UPD || Opc == ARM::t2STMDB_UPD);
+ bool isSPOk = isPCOk || isLROk;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0 || Reg == ARM::CPSR)
+ continue;
+ if (isPCOk && Reg == ARM::PC)
+ continue;
+ if (isLROk && Reg == ARM::LR)
+ continue;
+ if (Reg == ARM::SP) {
+ if (isSPOk)
+ continue;
+ if (i == 1 && (Opc == ARM::t2LDRi12 || Opc == ARM::t2STRi12))
+ // Special case for these ldr / str with sp as base register.
+ continue;
+ }
+ if (!isARMLowRegister(Reg))
+ return false;
+ }
+ return true;
+}
+
+bool
+Thumb2SizeReduce::ReduceLoadStore(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry) {
+ if (ReduceLimitLdSt != -1 && ((int)NumLdSts >= ReduceLimitLdSt))
+ return false;
+
+ unsigned Scale = 1;
+ bool HasImmOffset = false;
+ bool HasShift = false;
+ bool HasOffReg = true;
+ bool isLdStMul = false;
+ unsigned Opc = Entry.NarrowOpc1;
+ unsigned OpNum = 3; // First 'rest' of operands.
+ uint8_t ImmLimit = Entry.Imm1Limit;
+
+ switch (Entry.WideOpc) {
+ default:
+ llvm_unreachable("Unexpected Thumb2 load / store opcode!");
+ case ARM::t2LDRi12:
+ case ARM::t2STRi12:
+ if (MI->getOperand(1).getReg() == ARM::SP) {
+ Opc = Entry.NarrowOpc2;
+ ImmLimit = Entry.Imm2Limit;
+ HasOffReg = false;
+ }
+
+ Scale = 4;
+ HasImmOffset = true;
+ HasOffReg = false;
+ break;
+ case ARM::t2LDRBi12:
+ case ARM::t2STRBi12:
+ HasImmOffset = true;
+ HasOffReg = false;
+ break;
+ case ARM::t2LDRHi12:
+ case ARM::t2STRHi12:
+ Scale = 2;
+ HasImmOffset = true;
+ HasOffReg = false;
+ break;
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSBs:
+ case ARM::t2LDRSHs:
+ case ARM::t2STRs:
+ case ARM::t2STRBs:
+ case ARM::t2STRHs:
+ HasShift = true;
+ OpNum = 4;
+ break;
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB: {
+ unsigned BaseReg = MI->getOperand(0).getReg();
+ if (!isARMLowRegister(BaseReg) || Entry.WideOpc != ARM::t2LDMIA)
+ return false;
+
+ // For the non-writeback version (this one), the base register must be
+ // one of the registers being loaded.
+ bool isOK = false;
+ for (unsigned i = 4; i < MI->getNumOperands(); ++i) {
+ if (MI->getOperand(i).getReg() == BaseReg) {
+ isOK = true;
+ break;
+ }
+ }
+
+ if (!isOK)
+ return false;
+
+ OpNum = 0;
+ isLdStMul = true;
+ break;
+ }
+ case ARM::t2LDMIA_RET: {
+ unsigned BaseReg = MI->getOperand(1).getReg();
+ if (BaseReg != ARM::SP)
+ return false;
+ Opc = Entry.NarrowOpc2; // tPOP_RET
+ OpNum = 2;
+ isLdStMul = true;
+ break;
+ }
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD: {
+ OpNum = 0;
+
+ unsigned BaseReg = MI->getOperand(1).getReg();
+ if (BaseReg == ARM::SP &&
+ (Entry.WideOpc == ARM::t2LDMIA_UPD ||
+ Entry.WideOpc == ARM::t2STMDB_UPD)) {
+ Opc = Entry.NarrowOpc2; // tPOP or tPUSH
+ OpNum = 2;
+ } else if (!isARMLowRegister(BaseReg) ||
+ (Entry.WideOpc != ARM::t2LDMIA_UPD &&
+ Entry.WideOpc != ARM::t2STMIA_UPD)) {
+ return false;
+ }
+
+ isLdStMul = true;
+ break;
+ }
+ }
+
+ unsigned OffsetReg = 0;
+ bool OffsetKill = false;
+ if (HasShift) {
+ OffsetReg = MI->getOperand(2).getReg();
+ OffsetKill = MI->getOperand(2).isKill();
+
+ if (MI->getOperand(3).getImm())
+ // Thumb1 addressing mode doesn't support shift.
+ return false;
+ }
+
+ unsigned OffsetImm = 0;
+ if (HasImmOffset) {
+ OffsetImm = MI->getOperand(2).getImm();
+ unsigned MaxOffset = ((1 << ImmLimit) - 1) * Scale;
+
+ if ((OffsetImm & (Scale - 1)) || OffsetImm > MaxOffset)
+ // Make sure the immediate field fits.
+ return false;
+ }
+
+ // Add the 16-bit load / store instruction.
+ DebugLoc dl = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, TII->get(Opc));
+ if (!isLdStMul) {
+ MIB.addOperand(MI->getOperand(0));
+ MIB.addOperand(MI->getOperand(1));
+
+ if (HasImmOffset)
+ MIB.addImm(OffsetImm / Scale);
+
+ assert((!HasShift || OffsetReg) && "Invalid so_reg load / store address!");
+
+ if (HasOffReg)
+ MIB.addReg(OffsetReg, getKillRegState(OffsetKill));
+ }
+
+ // Transfer the rest of operands.
+ for (unsigned e = MI->getNumOperands(); OpNum != e; ++OpNum)
+ MIB.addOperand(MI->getOperand(OpNum));
+
+ // Transfer memoperands.
+ MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+
+ // Transfer MI flags.
+ MIB.setMIFlags(MI->getFlags());
+
+ DEBUG(errs() << "Converted 32-bit: " << *MI << " to 16-bit: " << *MIB);
+
+ MBB.erase_instr(MI);
+ ++NumLdSts;
+ return true;
+}
+
+bool
+Thumb2SizeReduce::ReduceSpecial(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry,
+ bool LiveCPSR, bool IsSelfLoop) {
+ unsigned Opc = MI->getOpcode();
+ if (Opc == ARM::t2ADDri) {
+ // If the source register is SP, try to reduce to tADDrSPi, otherwise
+ // it's a normal reduce.
+ if (MI->getOperand(1).getReg() != ARM::SP) {
+ if (ReduceTo2Addr(MBB, MI, Entry, LiveCPSR, IsSelfLoop))
+ return true;
+ return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
+ }
+ // Try to reduce to tADDrSPi.
+ unsigned Imm = MI->getOperand(2).getImm();
+ // The immediate must be in range, the destination register must be a low
+ // reg, the predicate must be "always" and the condition flags must not
+ // be being set.
+ if (Imm & 3 || Imm > 1020)
+ return false;
+ if (!isARMLowRegister(MI->getOperand(0).getReg()))
+ return false;
+ if (MI->getOperand(3).getImm() != ARMCC::AL)
+ return false;
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MCID.hasOptionalDef() &&
+ MI->getOperand(MCID.getNumOperands()-1).getReg() == ARM::CPSR)
+ return false;
+
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, MI->getDebugLoc(),
+ TII->get(ARM::tADDrSPi))
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(1))
+ .addImm(Imm / 4); // The tADDrSPi has an implied scale by four.
+ AddDefaultPred(MIB);
+
+ // Transfer MI flags.
+ MIB.setMIFlags(MI->getFlags());
+
+ DEBUG(errs() << "Converted 32-bit: " << *MI << " to 16-bit: " <<*MIB);
+
+ MBB.erase_instr(MI);
+ ++NumNarrows;
+ return true;
+ }
+
+ if (Entry.LowRegs1 && !VerifyLowRegs(MI))
+ return false;
+
+ if (MI->mayLoad() || MI->mayStore())
+ return ReduceLoadStore(MBB, MI, Entry);
+
+ switch (Opc) {
+ default: break;
+ case ARM::t2ADDSri:
+ case ARM::t2ADDSrr: {
+ unsigned PredReg = 0;
+ if (getInstrPredicate(MI, PredReg) == ARMCC::AL) {
+ switch (Opc) {
+ default: break;
+ case ARM::t2ADDSri: {
+ if (ReduceTo2Addr(MBB, MI, Entry, LiveCPSR, IsSelfLoop))
+ return true;
+ // fallthrough
+ }
+ case ARM::t2ADDSrr:
+ return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
+ }
+ }
+ break;
+ }
+ case ARM::t2RSBri:
+ case ARM::t2RSBSri:
+ case ARM::t2SXTB:
+ case ARM::t2SXTH:
+ case ARM::t2UXTB:
+ case ARM::t2UXTH:
+ if (MI->getOperand(2).getImm() == 0)
+ return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
+ break;
+ case ARM::t2MOVi16:
+ // Can convert only 'pure' immediate operands, not immediates obtained as
+ // globals' addresses.
+ if (MI->getOperand(1).isImm())
+ return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
+ break;
+ case ARM::t2CMPrr: {
+ // Try to reduce to the lo-reg only version first. Why there are two
+ // versions of the instruction is a mystery.
+ // It would be nice to just have two entries in the master table that
+ // are prioritized, but the table assumes a unique entry for each
+ // source insn opcode. So for now, we hack a local entry record to use.
+ static const ReduceEntry NarrowEntry =
+ { ARM::t2CMPrr,ARM::tCMPr, 0, 0, 0, 1, 1,2, 0, 0,1,0 };
+ if (ReduceToNarrow(MBB, MI, NarrowEntry, LiveCPSR, IsSelfLoop))
+ return true;
+ return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
+ }
+ }
+ return false;
+}
+
+bool
+Thumb2SizeReduce::ReduceTo2Addr(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry,
+ bool LiveCPSR, bool IsSelfLoop) {
+
+ if (ReduceLimit2Addr != -1 && ((int)Num2Addrs >= ReduceLimit2Addr))
+ return false;
+
+ if (!MinimizeSize && !OptimizeSize && Entry.AvoidMovs &&
+ STI->avoidMOVsShifterOperand())
+ // Don't issue movs with shifter operand for some CPUs unless we
+ // are optimizing / minimizing for size.
+ return false;
+
+ unsigned Reg0 = MI->getOperand(0).getReg();
+ unsigned Reg1 = MI->getOperand(1).getReg();
+ // t2MUL is "special". The tied source operand is second, not first.
+ if (MI->getOpcode() == ARM::t2MUL) {
+ unsigned Reg2 = MI->getOperand(2).getReg();
+ // Early exit if the regs aren't all low regs.
+ if (!isARMLowRegister(Reg0) || !isARMLowRegister(Reg1)
+ || !isARMLowRegister(Reg2))
+ return false;
+ if (Reg0 != Reg2) {
+ // If the other operand also isn't the same as the destination, we
+ // can't reduce.
+ if (Reg1 != Reg0)
+ return false;
+ // Try to commute the operands to make it a 2-address instruction.
+ MachineInstr *CommutedMI = TII->commuteInstruction(MI);
+ if (!CommutedMI)
+ return false;
+ }
+ } else if (Reg0 != Reg1) {
+ // Try to commute the operands to make it a 2-address instruction.
+ unsigned CommOpIdx1, CommOpIdx2;
+ if (!TII->findCommutedOpIndices(MI, CommOpIdx1, CommOpIdx2) ||
+ CommOpIdx1 != 1 || MI->getOperand(CommOpIdx2).getReg() != Reg0)
+ return false;
+ MachineInstr *CommutedMI = TII->commuteInstruction(MI);
+ if (!CommutedMI)
+ return false;
+ }
+ if (Entry.LowRegs2 && !isARMLowRegister(Reg0))
+ return false;
+ if (Entry.Imm2Limit) {
+ unsigned Imm = MI->getOperand(2).getImm();
+ unsigned Limit = (1 << Entry.Imm2Limit) - 1;
+ if (Imm > Limit)
+ return false;
+ } else {
+ unsigned Reg2 = MI->getOperand(2).getReg();
+ if (Entry.LowRegs2 && !isARMLowRegister(Reg2))
+ return false;
+ }
+
+ // Check if it's possible / necessary to transfer the predicate.
+ const MCInstrDesc &NewMCID = TII->get(Entry.NarrowOpc2);
+ unsigned PredReg = 0;
+ ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
+ bool SkipPred = false;
+ if (Pred != ARMCC::AL) {
+ if (!NewMCID.isPredicable())
+ // Can't transfer predicate, fail.
+ return false;
+ } else {
+ SkipPred = !NewMCID.isPredicable();
+ }
+
+ bool HasCC = false;
+ bool CCDead = false;
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MCID.hasOptionalDef()) {
+ unsigned NumOps = MCID.getNumOperands();
+ HasCC = (MI->getOperand(NumOps-1).getReg() == ARM::CPSR);
+ if (HasCC && MI->getOperand(NumOps-1).isDead())
+ CCDead = true;
+ }
+ if (!VerifyPredAndCC(MI, Entry, true, Pred, LiveCPSR, HasCC, CCDead))
+ return false;
+
+ // Avoid adding a false dependency on partial flag update by some 16-bit
+ // instructions which has the 's' bit set.
+ if (Entry.PartFlag && NewMCID.hasOptionalDef() && HasCC &&
+ canAddPseudoFlagDep(MI, IsSelfLoop))
+ return false;
+
+ // Add the 16-bit instruction.
+ DebugLoc dl = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, NewMCID);
+ MIB.addOperand(MI->getOperand(0));
+ if (NewMCID.hasOptionalDef()) {
+ if (HasCC)
+ AddDefaultT1CC(MIB, CCDead);
+ else
+ AddNoT1CC(MIB);
+ }
+
+ // Transfer the rest of operands.
+ unsigned NumOps = MCID.getNumOperands();
+ for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
+ if (i < NumOps && MCID.OpInfo[i].isOptionalDef())
+ continue;
+ if (SkipPred && MCID.OpInfo[i].isPredicate())
+ continue;
+ MIB.addOperand(MI->getOperand(i));
+ }
+
+ // Transfer MI flags.
+ MIB.setMIFlags(MI->getFlags());
+
+ DEBUG(errs() << "Converted 32-bit: " << *MI << " to 16-bit: " << *MIB);
+
+ MBB.erase_instr(MI);
+ ++Num2Addrs;
+ return true;
+}
+
+bool
+Thumb2SizeReduce::ReduceToNarrow(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry,
+ bool LiveCPSR, bool IsSelfLoop) {
+ if (ReduceLimit != -1 && ((int)NumNarrows >= ReduceLimit))
+ return false;
+
+ if (!MinimizeSize && !OptimizeSize && Entry.AvoidMovs &&
+ STI->avoidMOVsShifterOperand())
+ // Don't issue movs with shifter operand for some CPUs unless we
+ // are optimizing / minimizing for size.
+ return false;
+
+ unsigned Limit = ~0U;
+ if (Entry.Imm1Limit)
+ Limit = (1 << Entry.Imm1Limit) - 1;
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
+ if (MCID.OpInfo[i].isPredicate())
+ continue;
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg()) {
+ unsigned Reg = MO.getReg();
+ if (!Reg || Reg == ARM::CPSR)
+ continue;
+ if (Entry.LowRegs1 && !isARMLowRegister(Reg))
+ return false;
+ } else if (MO.isImm() &&
+ !MCID.OpInfo[i].isPredicate()) {
+ if (((unsigned)MO.getImm()) > Limit)
+ return false;
+ }
+ }
+
+ // Check if it's possible / necessary to transfer the predicate.
+ const MCInstrDesc &NewMCID = TII->get(Entry.NarrowOpc1);
+ unsigned PredReg = 0;
+ ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
+ bool SkipPred = false;
+ if (Pred != ARMCC::AL) {
+ if (!NewMCID.isPredicable())
+ // Can't transfer predicate, fail.
+ return false;
+ } else {
+ SkipPred = !NewMCID.isPredicable();
+ }
+
+ bool HasCC = false;
+ bool CCDead = false;
+ if (MCID.hasOptionalDef()) {
+ unsigned NumOps = MCID.getNumOperands();
+ HasCC = (MI->getOperand(NumOps-1).getReg() == ARM::CPSR);
+ if (HasCC && MI->getOperand(NumOps-1).isDead())
+ CCDead = true;
+ }
+ if (!VerifyPredAndCC(MI, Entry, false, Pred, LiveCPSR, HasCC, CCDead))
+ return false;
+
+ // Avoid adding a false dependency on partial flag update by some 16-bit
+ // instructions which has the 's' bit set.
+ if (Entry.PartFlag && NewMCID.hasOptionalDef() && HasCC &&
+ canAddPseudoFlagDep(MI, IsSelfLoop))
+ return false;
+
+ // Add the 16-bit instruction.
+ DebugLoc dl = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, NewMCID);
+ MIB.addOperand(MI->getOperand(0));
+ if (NewMCID.hasOptionalDef()) {
+ if (HasCC)
+ AddDefaultT1CC(MIB, CCDead);
+ else
+ AddNoT1CC(MIB);
+ }
+
+ // Transfer the rest of operands.
+ unsigned NumOps = MCID.getNumOperands();
+ for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
+ if (i < NumOps && MCID.OpInfo[i].isOptionalDef())
+ continue;
+ if ((MCID.getOpcode() == ARM::t2RSBSri ||
+ MCID.getOpcode() == ARM::t2RSBri ||
+ MCID.getOpcode() == ARM::t2SXTB ||
+ MCID.getOpcode() == ARM::t2SXTH ||
+ MCID.getOpcode() == ARM::t2UXTB ||
+ MCID.getOpcode() == ARM::t2UXTH) && i == 2)
+ // Skip the zero immediate operand, it's now implicit.
+ continue;
+ bool isPred = (i < NumOps && MCID.OpInfo[i].isPredicate());
+ if (SkipPred && isPred)
+ continue;
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isImplicit() && MO.getReg() == ARM::CPSR)
+ // Skip implicit def of CPSR. Either it's modeled as an optional
+ // def now or it's already an implicit def on the new instruction.
+ continue;
+ MIB.addOperand(MO);
+ }
+ if (!MCID.isPredicable() && NewMCID.isPredicable())
+ AddDefaultPred(MIB);
+
+ // Transfer MI flags.
+ MIB.setMIFlags(MI->getFlags());
+
+ DEBUG(errs() << "Converted 32-bit: " << *MI << " to 16-bit: " << *MIB);
+
+ MBB.erase_instr(MI);
+ ++NumNarrows;
+ return true;
+}
+
+static bool UpdateCPSRDef(MachineInstr &MI, bool LiveCPSR, bool &DefCPSR) {
+ bool HasDef = false;
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg() || MO.isUndef() || MO.isUse())
+ continue;
+ if (MO.getReg() != ARM::CPSR)
+ continue;
+
+ DefCPSR = true;
+ if (!MO.isDead())
+ HasDef = true;
+ }
+
+ return HasDef || LiveCPSR;
+}
+
+static bool UpdateCPSRUse(MachineInstr &MI, bool LiveCPSR) {
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg() || MO.isUndef() || MO.isDef())
+ continue;
+ if (MO.getReg() != ARM::CPSR)
+ continue;
+ assert(LiveCPSR && "CPSR liveness tracking is wrong!");
+ if (MO.isKill()) {
+ LiveCPSR = false;
+ break;
+ }
+ }
+
+ return LiveCPSR;
+}
+
+bool Thumb2SizeReduce::ReduceMI(MachineBasicBlock &MBB, MachineInstr *MI,
+ bool LiveCPSR, bool IsSelfLoop) {
+ unsigned Opcode = MI->getOpcode();
+ DenseMap<unsigned, unsigned>::iterator OPI = ReduceOpcodeMap.find(Opcode);
+ if (OPI == ReduceOpcodeMap.end())
+ return false;
+ const ReduceEntry &Entry = ReduceTable[OPI->second];
+
+ // Don't attempt normal reductions on "special" cases for now.
+ if (Entry.Special)
+ return ReduceSpecial(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
+
+ // Try to transform to a 16-bit two-address instruction.
+ if (Entry.NarrowOpc2 &&
+ ReduceTo2Addr(MBB, MI, Entry, LiveCPSR, IsSelfLoop))
+ return true;
+
+ // Try to transform to a 16-bit non-two-address instruction.
+ if (Entry.NarrowOpc1 &&
+ ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop))
+ return true;
+
+ return false;
+}
+
+bool Thumb2SizeReduce::ReduceMBB(MachineBasicBlock &MBB) {
+ bool Modified = false;
+
+ // Yes, CPSR could be livein.
+ bool LiveCPSR = MBB.isLiveIn(ARM::CPSR);
+ MachineInstr *BundleMI = nullptr;
+
+ CPSRDef = nullptr;
+ HighLatencyCPSR = false;
+
+ // Check predecessors for the latest CPSRDef.
+ for (auto *Pred : MBB.predecessors()) {
+ const MBBInfo &PInfo = BlockInfo[Pred->getNumber()];
+ if (!PInfo.Visited) {
+ // Since blocks are visited in RPO, this must be a back-edge.
+ continue;
+ }
+ if (PInfo.HighLatencyCPSR) {
+ HighLatencyCPSR = true;
+ break;
+ }
+ }
+
+ // If this BB loops back to itself, conservatively avoid narrowing the
+ // first instruction that does partial flag update.
+ bool IsSelfLoop = MBB.isSuccessor(&MBB);
+ MachineBasicBlock::instr_iterator MII = MBB.instr_begin(),E = MBB.instr_end();
+ MachineBasicBlock::instr_iterator NextMII;
+ for (; MII != E; MII = NextMII) {
+ NextMII = std::next(MII);
+
+ MachineInstr *MI = &*MII;
+ if (MI->isBundle()) {
+ BundleMI = MI;
+ continue;
+ }
+ if (MI->isDebugValue())
+ continue;
+
+ LiveCPSR = UpdateCPSRUse(*MI, LiveCPSR);
+
+ // Does NextMII belong to the same bundle as MI?
+ bool NextInSameBundle = NextMII != E && NextMII->isBundledWithPred();
+
+ if (ReduceMI(MBB, MI, LiveCPSR, IsSelfLoop)) {
+ Modified = true;
+ MachineBasicBlock::instr_iterator I = std::prev(NextMII);
+ MI = &*I;
+ // Removing and reinserting the first instruction in a bundle will break
+ // up the bundle. Fix the bundling if it was broken.
+ if (NextInSameBundle && !NextMII->isBundledWithPred())
+ NextMII->bundleWithPred();
+ }
+
+ if (!NextInSameBundle && MI->isInsideBundle()) {
+ // FIXME: Since post-ra scheduler operates on bundles, the CPSR kill
+ // marker is only on the BUNDLE instruction. Process the BUNDLE
+ // instruction as we finish with the bundled instruction to work around
+ // the inconsistency.
+ if (BundleMI->killsRegister(ARM::CPSR))
+ LiveCPSR = false;
+ MachineOperand *MO = BundleMI->findRegisterDefOperand(ARM::CPSR);
+ if (MO && !MO->isDead())
+ LiveCPSR = true;
+ MO = BundleMI->findRegisterUseOperand(ARM::CPSR);
+ if (MO && !MO->isKill())
+ LiveCPSR = true;
+ }
+
+ bool DefCPSR = false;
+ LiveCPSR = UpdateCPSRDef(*MI, LiveCPSR, DefCPSR);
+ if (MI->isCall()) {
+ // Calls don't really set CPSR.
+ CPSRDef = nullptr;
+ HighLatencyCPSR = false;
+ IsSelfLoop = false;
+ } else if (DefCPSR) {
+ // This is the last CPSR defining instruction.
+ CPSRDef = MI;
+ HighLatencyCPSR = isHighLatencyCPSR(CPSRDef);
+ IsSelfLoop = false;
+ }
+ }
+
+ MBBInfo &Info = BlockInfo[MBB.getNumber()];
+ Info.HighLatencyCPSR = HighLatencyCPSR;
+ Info.Visited = true;
+ return Modified;
+}
+
+bool Thumb2SizeReduce::runOnMachineFunction(MachineFunction &MF) {
+ const TargetMachine &TM = MF.getTarget();
+ TII = static_cast<const Thumb2InstrInfo*>(TM.getInstrInfo());
+ STI = &TM.getSubtarget<ARMSubtarget>();
+
+ // Optimizing / minimizing size?
+ AttributeSet FnAttrs = MF.getFunction()->getAttributes();
+ OptimizeSize = FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize);
+ MinimizeSize =
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
+
+ BlockInfo.clear();
+ BlockInfo.resize(MF.getNumBlockIDs());
+
+ // Visit blocks in reverse post-order so LastCPSRDef is known for all
+ // predecessors.
+ ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
+ bool Modified = false;
+ for (ReversePostOrderTraversal<MachineFunction*>::rpo_iterator
+ I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
+ Modified |= ReduceMBB(**I);
+ return Modified;
+}
+
+/// createThumb2SizeReductionPass - Returns an instance of the Thumb2 size
+/// reduction pass.
+FunctionPass *llvm::createThumb2SizeReductionPass() {
+ return new Thumb2SizeReduce();
+}
diff --git a/contrib/llvm/lib/Target/CppBackend/CPPBackend.cpp b/contrib/llvm/lib/Target/CppBackend/CPPBackend.cpp
new file mode 100644
index 0000000..f610fbb
--- /dev/null
+++ b/contrib/llvm/lib/Target/CppBackend/CPPBackend.cpp
@@ -0,0 +1,2157 @@
+//===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the writing of the LLVM IR as a set of C++ calls to the
+// LLVM IR interface. The input module is assumed to be verified.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CPPTargetMachine.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Config/config.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/TargetRegistry.h"
+#include <algorithm>
+#include <cctype>
+#include <cstdio>
+#include <map>
+#include <set>
+using namespace llvm;
+
+static cl::opt<std::string>
+FuncName("cppfname", cl::desc("Specify the name of the generated function"),
+ cl::value_desc("function name"));
+
+enum WhatToGenerate {
+ GenProgram,
+ GenModule,
+ GenContents,
+ GenFunction,
+ GenFunctions,
+ GenInline,
+ GenVariable,
+ GenType
+};
+
+static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
+ cl::desc("Choose what kind of output to generate"),
+ cl::init(GenProgram),
+ cl::values(
+ clEnumValN(GenProgram, "program", "Generate a complete program"),
+ clEnumValN(GenModule, "module", "Generate a module definition"),
+ clEnumValN(GenContents, "contents", "Generate contents of a module"),
+ clEnumValN(GenFunction, "function", "Generate a function definition"),
+ clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
+ clEnumValN(GenInline, "inline", "Generate an inline function"),
+ clEnumValN(GenVariable, "variable", "Generate a variable definition"),
+ clEnumValN(GenType, "type", "Generate a type definition"),
+ clEnumValEnd
+ )
+);
+
+static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
+ cl::desc("Specify the name of the thing to generate"),
+ cl::init("!bad!"));
+
+extern "C" void LLVMInitializeCppBackendTarget() {
+ // Register the target.
+ RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
+}
+
+namespace {
+ typedef std::vector<Type*> TypeList;
+ typedef std::map<Type*,std::string> TypeMap;
+ typedef std::map<const Value*,std::string> ValueMap;
+ typedef std::set<std::string> NameSet;
+ typedef std::set<Type*> TypeSet;
+ typedef std::set<const Value*> ValueSet;
+ typedef std::map<const Value*,std::string> ForwardRefMap;
+
+ /// CppWriter - This class is the main chunk of code that converts an LLVM
+ /// module to a C++ translation unit.
+ class CppWriter : public ModulePass {
+ formatted_raw_ostream &Out;
+ const Module *TheModule;
+ uint64_t uniqueNum;
+ TypeMap TypeNames;
+ ValueMap ValueNames;
+ NameSet UsedNames;
+ TypeSet DefinedTypes;
+ ValueSet DefinedValues;
+ ForwardRefMap ForwardRefs;
+ bool is_inline;
+ unsigned indent_level;
+
+ public:
+ static char ID;
+ explicit CppWriter(formatted_raw_ostream &o) :
+ ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
+
+ const char *getPassName() const override { return "C++ backend"; }
+
+ bool runOnModule(Module &M) override;
+
+ void printProgram(const std::string& fname, const std::string& modName );
+ void printModule(const std::string& fname, const std::string& modName );
+ void printContents(const std::string& fname, const std::string& modName );
+ void printFunction(const std::string& fname, const std::string& funcName );
+ void printFunctions();
+ void printInline(const std::string& fname, const std::string& funcName );
+ void printVariable(const std::string& fname, const std::string& varName );
+ void printType(const std::string& fname, const std::string& typeName );
+
+ void error(const std::string& msg);
+
+
+ formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
+ inline void in() { indent_level++; }
+ inline void out() { if (indent_level >0) indent_level--; }
+
+ private:
+ void printLinkageType(GlobalValue::LinkageTypes LT);
+ void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
+ void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType);
+ void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
+ void printCallingConv(CallingConv::ID cc);
+ void printEscapedString(const std::string& str);
+ void printCFP(const ConstantFP* CFP);
+
+ std::string getCppName(Type* val);
+ inline void printCppName(Type* val);
+
+ std::string getCppName(const Value* val);
+ inline void printCppName(const Value* val);
+
+ void printAttributes(const AttributeSet &PAL, const std::string &name);
+ void printType(Type* Ty);
+ void printTypes(const Module* M);
+
+ void printConstant(const Constant *CPV);
+ void printConstants(const Module* M);
+
+ void printVariableUses(const GlobalVariable *GV);
+ void printVariableHead(const GlobalVariable *GV);
+ void printVariableBody(const GlobalVariable *GV);
+
+ void printFunctionUses(const Function *F);
+ void printFunctionHead(const Function *F);
+ void printFunctionBody(const Function *F);
+ void printInstruction(const Instruction *I, const std::string& bbname);
+ std::string getOpName(const Value*);
+
+ void printModuleBody();
+ };
+} // end anonymous namespace.
+
+formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
+ Out << '\n';
+ if (delta >= 0 || indent_level >= unsigned(-delta))
+ indent_level += delta;
+ Out.indent(indent_level);
+ return Out;
+}
+
+static inline void sanitize(std::string &str) {
+ for (size_t i = 0; i < str.length(); ++i)
+ if (!isalnum(str[i]) && str[i] != '_')
+ str[i] = '_';
+}
+
+static std::string getTypePrefix(Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return "void_";
+ case Type::IntegerTyID:
+ return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
+ case Type::FloatTyID: return "float_";
+ case Type::DoubleTyID: return "double_";
+ case Type::LabelTyID: return "label_";
+ case Type::FunctionTyID: return "func_";
+ case Type::StructTyID: return "struct_";
+ case Type::ArrayTyID: return "array_";
+ case Type::PointerTyID: return "ptr_";
+ case Type::VectorTyID: return "packed_";
+ default: return "other_";
+ }
+}
+
+void CppWriter::error(const std::string& msg) {
+ report_fatal_error(msg);
+}
+
+static inline std::string ftostr(const APFloat& V) {
+ std::string Buf;
+ if (&V.getSemantics() == &APFloat::IEEEdouble) {
+ raw_string_ostream(Buf) << V.convertToDouble();
+ return Buf;
+ } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
+ raw_string_ostream(Buf) << (double)V.convertToFloat();
+ return Buf;
+ }
+ return "<unknown format in ftostr>"; // error
+}
+
+// printCFP - Print a floating point constant .. very carefully :)
+// This makes sure that conversion to/from floating yields the same binary
+// result so that we don't lose precision.
+void CppWriter::printCFP(const ConstantFP *CFP) {
+ bool ignored;
+ APFloat APF = APFloat(CFP->getValueAPF()); // copy
+ if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
+ Out << "ConstantFP::get(mod->getContext(), ";
+ Out << "APFloat(";
+#if HAVE_PRINTF_A
+ char Buffer[100];
+ sprintf(Buffer, "%A", APF.convertToDouble());
+ if ((!strncmp(Buffer, "0x", 2) ||
+ !strncmp(Buffer, "-0x", 3) ||
+ !strncmp(Buffer, "+0x", 3)) &&
+ APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
+ if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
+ Out << "BitsToDouble(" << Buffer << ")";
+ else
+ Out << "BitsToFloat((float)" << Buffer << ")";
+ Out << ")";
+ } else {
+#endif
+ std::string StrVal = ftostr(CFP->getValueAPF());
+
+ while (StrVal[0] == ' ')
+ StrVal.erase(StrVal.begin());
+
+ // Check to make sure that the stringized number is not some string like
+ // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
+ if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+ ((StrVal[0] == '-' || StrVal[0] == '+') &&
+ (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
+ (CFP->isExactlyValue(atof(StrVal.c_str())))) {
+ if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
+ Out << StrVal;
+ else
+ Out << StrVal << "f";
+ } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
+ Out << "BitsToDouble(0x"
+ << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
+ << "ULL) /* " << StrVal << " */";
+ else
+ Out << "BitsToFloat(0x"
+ << utohexstr((uint32_t)CFP->getValueAPF().
+ bitcastToAPInt().getZExtValue())
+ << "U) /* " << StrVal << " */";
+ Out << ")";
+#if HAVE_PRINTF_A
+ }
+#endif
+ Out << ")";
+}
+
+void CppWriter::printCallingConv(CallingConv::ID cc){
+ // Print the calling convention.
+ switch (cc) {
+ case CallingConv::C: Out << "CallingConv::C"; break;
+ case CallingConv::Fast: Out << "CallingConv::Fast"; break;
+ case CallingConv::Cold: Out << "CallingConv::Cold"; break;
+ case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
+ default: Out << cc; break;
+ }
+}
+
+void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
+ switch (LT) {
+ case GlobalValue::InternalLinkage:
+ Out << "GlobalValue::InternalLinkage"; break;
+ case GlobalValue::PrivateLinkage:
+ Out << "GlobalValue::PrivateLinkage"; break;
+ case GlobalValue::AvailableExternallyLinkage:
+ Out << "GlobalValue::AvailableExternallyLinkage "; break;
+ case GlobalValue::LinkOnceAnyLinkage:
+ Out << "GlobalValue::LinkOnceAnyLinkage "; break;
+ case GlobalValue::LinkOnceODRLinkage:
+ Out << "GlobalValue::LinkOnceODRLinkage "; break;
+ case GlobalValue::WeakAnyLinkage:
+ Out << "GlobalValue::WeakAnyLinkage"; break;
+ case GlobalValue::WeakODRLinkage:
+ Out << "GlobalValue::WeakODRLinkage"; break;
+ case GlobalValue::AppendingLinkage:
+ Out << "GlobalValue::AppendingLinkage"; break;
+ case GlobalValue::ExternalLinkage:
+ Out << "GlobalValue::ExternalLinkage"; break;
+ case GlobalValue::ExternalWeakLinkage:
+ Out << "GlobalValue::ExternalWeakLinkage"; break;
+ case GlobalValue::CommonLinkage:
+ Out << "GlobalValue::CommonLinkage"; break;
+ }
+}
+
+void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
+ switch (VisType) {
+ case GlobalValue::DefaultVisibility:
+ Out << "GlobalValue::DefaultVisibility";
+ break;
+ case GlobalValue::HiddenVisibility:
+ Out << "GlobalValue::HiddenVisibility";
+ break;
+ case GlobalValue::ProtectedVisibility:
+ Out << "GlobalValue::ProtectedVisibility";
+ break;
+ }
+}
+
+void CppWriter::printDLLStorageClassType(
+ GlobalValue::DLLStorageClassTypes DSCType) {
+ switch (DSCType) {
+ case GlobalValue::DefaultStorageClass:
+ Out << "GlobalValue::DefaultStorageClass";
+ break;
+ case GlobalValue::DLLImportStorageClass:
+ Out << "GlobalValue::DLLImportStorageClass";
+ break;
+ case GlobalValue::DLLExportStorageClass:
+ Out << "GlobalValue::DLLExportStorageClass";
+ break;
+ }
+}
+
+void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
+ switch (TLM) {
+ case GlobalVariable::NotThreadLocal:
+ Out << "GlobalVariable::NotThreadLocal";
+ break;
+ case GlobalVariable::GeneralDynamicTLSModel:
+ Out << "GlobalVariable::GeneralDynamicTLSModel";
+ break;
+ case GlobalVariable::LocalDynamicTLSModel:
+ Out << "GlobalVariable::LocalDynamicTLSModel";
+ break;
+ case GlobalVariable::InitialExecTLSModel:
+ Out << "GlobalVariable::InitialExecTLSModel";
+ break;
+ case GlobalVariable::LocalExecTLSModel:
+ Out << "GlobalVariable::LocalExecTLSModel";
+ break;
+ }
+}
+
+// printEscapedString - Print each character of the specified string, escaping
+// it if it is not printable or if it is an escape char.
+void CppWriter::printEscapedString(const std::string &Str) {
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ unsigned char C = Str[i];
+ if (isprint(C) && C != '"' && C != '\\') {
+ Out << C;
+ } else {
+ Out << "\\x"
+ << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
+ << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
+ }
+ }
+}
+
+std::string CppWriter::getCppName(Type* Ty) {
+ switch (Ty->getTypeID()) {
+ default:
+ break;
+ case Type::VoidTyID:
+ return "Type::getVoidTy(mod->getContext())";
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
+ return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
+ }
+ case Type::X86_FP80TyID:
+ return "Type::getX86_FP80Ty(mod->getContext())";
+ case Type::FloatTyID:
+ return "Type::getFloatTy(mod->getContext())";
+ case Type::DoubleTyID:
+ return "Type::getDoubleTy(mod->getContext())";
+ case Type::LabelTyID:
+ return "Type::getLabelTy(mod->getContext())";
+ case Type::X86_MMXTyID:
+ return "Type::getX86_MMXTy(mod->getContext())";
+ }
+
+ // Now, see if we've seen the type before and return that
+ TypeMap::iterator I = TypeNames.find(Ty);
+ if (I != TypeNames.end())
+ return I->second;
+
+ // Okay, let's build a new name for this type. Start with a prefix
+ const char* prefix = nullptr;
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: prefix = "FuncTy_"; break;
+ case Type::StructTyID: prefix = "StructTy_"; break;
+ case Type::ArrayTyID: prefix = "ArrayTy_"; break;
+ case Type::PointerTyID: prefix = "PointerTy_"; break;
+ case Type::VectorTyID: prefix = "VectorTy_"; break;
+ default: prefix = "OtherTy_"; break; // prevent breakage
+ }
+
+ // See if the type has a name in the symboltable and build accordingly
+ std::string name;
+ if (StructType *STy = dyn_cast<StructType>(Ty))
+ if (STy->hasName())
+ name = STy->getName();
+
+ if (name.empty())
+ name = utostr(uniqueNum++);
+
+ name = std::string(prefix) + name;
+ sanitize(name);
+
+ // Save the name
+ return TypeNames[Ty] = name;
+}
+
+void CppWriter::printCppName(Type* Ty) {
+ printEscapedString(getCppName(Ty));
+}
+
+std::string CppWriter::getCppName(const Value* val) {
+ std::string name;
+ ValueMap::iterator I = ValueNames.find(val);
+ if (I != ValueNames.end() && I->first == val)
+ return I->second;
+
+ if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
+ name = std::string("gvar_") +
+ getTypePrefix(GV->getType()->getElementType());
+ } else if (isa<Function>(val)) {
+ name = std::string("func_");
+ } else if (const Constant* C = dyn_cast<Constant>(val)) {
+ name = std::string("const_") + getTypePrefix(C->getType());
+ } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
+ if (is_inline) {
+ unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
+ Function::const_arg_iterator(Arg)) + 1;
+ name = std::string("arg_") + utostr(argNum);
+ NameSet::iterator NI = UsedNames.find(name);
+ if (NI != UsedNames.end())
+ name += std::string("_") + utostr(uniqueNum++);
+ UsedNames.insert(name);
+ return ValueNames[val] = name;
+ } else {
+ name = getTypePrefix(val->getType());
+ }
+ } else {
+ name = getTypePrefix(val->getType());
+ }
+ if (val->hasName())
+ name += val->getName();
+ else
+ name += utostr(uniqueNum++);
+ sanitize(name);
+ NameSet::iterator NI = UsedNames.find(name);
+ if (NI != UsedNames.end())
+ name += std::string("_") + utostr(uniqueNum++);
+ UsedNames.insert(name);
+ return ValueNames[val] = name;
+}
+
+void CppWriter::printCppName(const Value* val) {
+ printEscapedString(getCppName(val));
+}
+
+void CppWriter::printAttributes(const AttributeSet &PAL,
+ const std::string &name) {
+ Out << "AttributeSet " << name << "_PAL;";
+ nl(Out);
+ if (!PAL.isEmpty()) {
+ Out << '{'; in(); nl(Out);
+ Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
+ Out << "AttributeSet PAS;"; in(); nl(Out);
+ for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
+ unsigned index = PAL.getSlotIndex(i);
+ AttrBuilder attrs(PAL.getSlotAttributes(i), index);
+ Out << "{"; in(); nl(Out);
+ Out << "AttrBuilder B;"; nl(Out);
+
+#define HANDLE_ATTR(X) \
+ if (attrs.contains(Attribute::X)) { \
+ Out << "B.addAttribute(Attribute::" #X ");"; nl(Out); \
+ attrs.removeAttribute(Attribute::X); \
+ }
+
+ HANDLE_ATTR(SExt);
+ HANDLE_ATTR(ZExt);
+ HANDLE_ATTR(NoReturn);
+ HANDLE_ATTR(InReg);
+ HANDLE_ATTR(StructRet);
+ HANDLE_ATTR(NoUnwind);
+ HANDLE_ATTR(NoAlias);
+ HANDLE_ATTR(ByVal);
+ HANDLE_ATTR(InAlloca);
+ HANDLE_ATTR(Nest);
+ HANDLE_ATTR(ReadNone);
+ HANDLE_ATTR(ReadOnly);
+ HANDLE_ATTR(NoInline);
+ HANDLE_ATTR(AlwaysInline);
+ HANDLE_ATTR(OptimizeNone);
+ HANDLE_ATTR(OptimizeForSize);
+ HANDLE_ATTR(StackProtect);
+ HANDLE_ATTR(StackProtectReq);
+ HANDLE_ATTR(StackProtectStrong);
+ HANDLE_ATTR(NoCapture);
+ HANDLE_ATTR(NoRedZone);
+ HANDLE_ATTR(NoImplicitFloat);
+ HANDLE_ATTR(Naked);
+ HANDLE_ATTR(InlineHint);
+ HANDLE_ATTR(ReturnsTwice);
+ HANDLE_ATTR(UWTable);
+ HANDLE_ATTR(NonLazyBind);
+ HANDLE_ATTR(MinSize);
+#undef HANDLE_ATTR
+
+ if (attrs.contains(Attribute::StackAlignment)) {
+ Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
+ nl(Out);
+ attrs.removeAttribute(Attribute::StackAlignment);
+ }
+
+ Out << "PAS = AttributeSet::get(mod->getContext(), ";
+ if (index == ~0U)
+ Out << "~0U,";
+ else
+ Out << index << "U,";
+ Out << " B);"; out(); nl(Out);
+ Out << "}"; out(); nl(Out);
+ nl(Out);
+ Out << "Attrs.push_back(PAS);"; nl(Out);
+ }
+ Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
+ nl(Out);
+ out(); nl(Out);
+ Out << '}'; nl(Out);
+ }
+}
+
+void CppWriter::printType(Type* Ty) {
+ // We don't print definitions for primitive types
+ if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() ||
+ Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy())
+ return;
+
+ // If we already defined this type, we don't need to define it again.
+ if (DefinedTypes.find(Ty) != DefinedTypes.end())
+ return;
+
+ // Everything below needs the name for the type so get it now.
+ std::string typeName(getCppName(Ty));
+
+ // Print the type definition
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: {
+ FunctionType* FT = cast<FunctionType>(Ty);
+ Out << "std::vector<Type*>" << typeName << "_args;";
+ nl(Out);
+ FunctionType::param_iterator PI = FT->param_begin();
+ FunctionType::param_iterator PE = FT->param_end();
+ for (; PI != PE; ++PI) {
+ Type* argTy = static_cast<Type*>(*PI);
+ printType(argTy);
+ std::string argName(getCppName(argTy));
+ Out << typeName << "_args.push_back(" << argName;
+ Out << ");";
+ nl(Out);
+ }
+ printType(FT->getReturnType());
+ std::string retTypeName(getCppName(FT->getReturnType()));
+ Out << "FunctionType* " << typeName << " = FunctionType::get(";
+ in(); nl(Out) << "/*Result=*/" << retTypeName;
+ Out << ",";
+ nl(Out) << "/*Params=*/" << typeName << "_args,";
+ nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
+ out();
+ nl(Out);
+ break;
+ }
+ case Type::StructTyID: {
+ StructType* ST = cast<StructType>(Ty);
+ if (!ST->isLiteral()) {
+ Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
+ printEscapedString(ST->getName());
+ Out << "\");";
+ nl(Out);
+ Out << "if (!" << typeName << ") {";
+ nl(Out);
+ Out << typeName << " = ";
+ Out << "StructType::create(mod->getContext(), \"";
+ printEscapedString(ST->getName());
+ Out << "\");";
+ nl(Out);
+ Out << "}";
+ nl(Out);
+ // Indicate that this type is now defined.
+ DefinedTypes.insert(Ty);
+ }
+
+ Out << "std::vector<Type*>" << typeName << "_fields;";
+ nl(Out);
+ StructType::element_iterator EI = ST->element_begin();
+ StructType::element_iterator EE = ST->element_end();
+ for (; EI != EE; ++EI) {
+ Type* fieldTy = static_cast<Type*>(*EI);
+ printType(fieldTy);
+ std::string fieldName(getCppName(fieldTy));
+ Out << typeName << "_fields.push_back(" << fieldName;
+ Out << ");";
+ nl(Out);
+ }
+
+ if (ST->isLiteral()) {
+ Out << "StructType *" << typeName << " = ";
+ Out << "StructType::get(" << "mod->getContext(), ";
+ } else {
+ Out << "if (" << typeName << "->isOpaque()) {";
+ nl(Out);
+ Out << typeName << "->setBody(";
+ }
+
+ Out << typeName << "_fields, /*isPacked=*/"
+ << (ST->isPacked() ? "true" : "false") << ");";
+ nl(Out);
+ if (!ST->isLiteral()) {
+ Out << "}";
+ nl(Out);
+ }
+ break;
+ }
+ case Type::ArrayTyID: {
+ ArrayType* AT = cast<ArrayType>(Ty);
+ Type* ET = AT->getElementType();
+ printType(ET);
+ if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
+ std::string elemName(getCppName(ET));
+ Out << "ArrayType* " << typeName << " = ArrayType::get("
+ << elemName
+ << ", " << utostr(AT->getNumElements()) << ");";
+ nl(Out);
+ }
+ break;
+ }
+ case Type::PointerTyID: {
+ PointerType* PT = cast<PointerType>(Ty);
+ Type* ET = PT->getElementType();
+ printType(ET);
+ if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
+ std::string elemName(getCppName(ET));
+ Out << "PointerType* " << typeName << " = PointerType::get("
+ << elemName
+ << ", " << utostr(PT->getAddressSpace()) << ");";
+ nl(Out);
+ }
+ break;
+ }
+ case Type::VectorTyID: {
+ VectorType* PT = cast<VectorType>(Ty);
+ Type* ET = PT->getElementType();
+ printType(ET);
+ if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
+ std::string elemName(getCppName(ET));
+ Out << "VectorType* " << typeName << " = VectorType::get("
+ << elemName
+ << ", " << utostr(PT->getNumElements()) << ");";
+ nl(Out);
+ }
+ break;
+ }
+ default:
+ error("Invalid TypeID");
+ }
+
+ // Indicate that this type is now defined.
+ DefinedTypes.insert(Ty);
+
+ // Finally, separate the type definition from other with a newline.
+ nl(Out);
+}
+
+void CppWriter::printTypes(const Module* M) {
+ // Add all of the global variables to the value table.
+ for (Module::const_global_iterator I = TheModule->global_begin(),
+ E = TheModule->global_end(); I != E; ++I) {
+ if (I->hasInitializer())
+ printType(I->getInitializer()->getType());
+ printType(I->getType());
+ }
+
+ // Add all the functions to the table
+ for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
+ FI != FE; ++FI) {
+ printType(FI->getReturnType());
+ printType(FI->getFunctionType());
+ // Add all the function arguments
+ for (Function::const_arg_iterator AI = FI->arg_begin(),
+ AE = FI->arg_end(); AI != AE; ++AI) {
+ printType(AI->getType());
+ }
+
+ // Add all of the basic blocks and instructions
+ for (Function::const_iterator BB = FI->begin(),
+ E = FI->end(); BB != E; ++BB) {
+ printType(BB->getType());
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
+ ++I) {
+ printType(I->getType());
+ for (unsigned i = 0; i < I->getNumOperands(); ++i)
+ printType(I->getOperand(i)->getType());
+ }
+ }
+ }
+}
+
+
+// printConstant - Print out a constant pool entry...
+void CppWriter::printConstant(const Constant *CV) {
+ // First, if the constant is actually a GlobalValue (variable or function)
+ // or its already in the constant list then we've printed it already and we
+ // can just return.
+ if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
+ return;
+
+ std::string constName(getCppName(CV));
+ std::string typeName(getCppName(CV->getType()));
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ std::string constValue = CI->getValue().toString(10, true);
+ Out << "ConstantInt* " << constName
+ << " = ConstantInt::get(mod->getContext(), APInt("
+ << cast<IntegerType>(CI->getType())->getBitWidth()
+ << ", StringRef(\"" << constValue << "\"), 10));";
+ } else if (isa<ConstantAggregateZero>(CV)) {
+ Out << "ConstantAggregateZero* " << constName
+ << " = ConstantAggregateZero::get(" << typeName << ");";
+ } else if (isa<ConstantPointerNull>(CV)) {
+ Out << "ConstantPointerNull* " << constName
+ << " = ConstantPointerNull::get(" << typeName << ");";
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ Out << "ConstantFP* " << constName << " = ";
+ printCFP(CFP);
+ Out << ";";
+ } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+ Out << "std::vector<Constant*> " << constName << "_elems;";
+ nl(Out);
+ unsigned N = CA->getNumOperands();
+ for (unsigned i = 0; i < N; ++i) {
+ printConstant(CA->getOperand(i)); // recurse to print operands
+ Out << constName << "_elems.push_back("
+ << getCppName(CA->getOperand(i)) << ");";
+ nl(Out);
+ }
+ Out << "Constant* " << constName << " = ConstantArray::get("
+ << typeName << ", " << constName << "_elems);";
+ } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+ Out << "std::vector<Constant*> " << constName << "_fields;";
+ nl(Out);
+ unsigned N = CS->getNumOperands();
+ for (unsigned i = 0; i < N; i++) {
+ printConstant(CS->getOperand(i));
+ Out << constName << "_fields.push_back("
+ << getCppName(CS->getOperand(i)) << ");";
+ nl(Out);
+ }
+ Out << "Constant* " << constName << " = ConstantStruct::get("
+ << typeName << ", " << constName << "_fields);";
+ } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
+ Out << "std::vector<Constant*> " << constName << "_elems;";
+ nl(Out);
+ unsigned N = CVec->getNumOperands();
+ for (unsigned i = 0; i < N; ++i) {
+ printConstant(CVec->getOperand(i));
+ Out << constName << "_elems.push_back("
+ << getCppName(CVec->getOperand(i)) << ");";
+ nl(Out);
+ }
+ Out << "Constant* " << constName << " = ConstantVector::get("
+ << typeName << ", " << constName << "_elems);";
+ } else if (isa<UndefValue>(CV)) {
+ Out << "UndefValue* " << constName << " = UndefValue::get("
+ << typeName << ");";
+ } else if (const ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(CV)) {
+ if (CDS->isString()) {
+ Out << "Constant *" << constName <<
+ " = ConstantDataArray::getString(mod->getContext(), \"";
+ StringRef Str = CDS->getAsString();
+ bool nullTerminate = false;
+ if (Str.back() == 0) {
+ Str = Str.drop_back();
+ nullTerminate = true;
+ }
+ printEscapedString(Str);
+ // Determine if we want null termination or not.
+ if (nullTerminate)
+ Out << "\", true);";
+ else
+ Out << "\", false);";// No null terminator
+ } else {
+ // TODO: Could generate more efficient code generating CDS calls instead.
+ Out << "std::vector<Constant*> " << constName << "_elems;";
+ nl(Out);
+ for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
+ Constant *Elt = CDS->getElementAsConstant(i);
+ printConstant(Elt);
+ Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
+ nl(Out);
+ }
+ Out << "Constant* " << constName;
+
+ if (isa<ArrayType>(CDS->getType()))
+ Out << " = ConstantArray::get(";
+ else
+ Out << " = ConstantVector::get(";
+ Out << typeName << ", " << constName << "_elems);";
+ }
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ if (CE->getOpcode() == Instruction::GetElementPtr) {
+ Out << "std::vector<Constant*> " << constName << "_indices;";
+ nl(Out);
+ printConstant(CE->getOperand(0));
+ for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
+ printConstant(CE->getOperand(i));
+ Out << constName << "_indices.push_back("
+ << getCppName(CE->getOperand(i)) << ");";
+ nl(Out);
+ }
+ Out << "Constant* " << constName
+ << " = ConstantExpr::getGetElementPtr("
+ << getCppName(CE->getOperand(0)) << ", "
+ << constName << "_indices);";
+ } else if (CE->isCast()) {
+ printConstant(CE->getOperand(0));
+ Out << "Constant* " << constName << " = ConstantExpr::getCast(";
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid cast opcode");
+ case Instruction::Trunc: Out << "Instruction::Trunc"; break;
+ case Instruction::ZExt: Out << "Instruction::ZExt"; break;
+ case Instruction::SExt: Out << "Instruction::SExt"; break;
+ case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
+ case Instruction::FPExt: Out << "Instruction::FPExt"; break;
+ case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
+ case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
+ case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
+ case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
+ case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
+ case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
+ case Instruction::BitCast: Out << "Instruction::BitCast"; break;
+ }
+ Out << ", " << getCppName(CE->getOperand(0)) << ", "
+ << getCppName(CE->getType()) << ");";
+ } else {
+ unsigned N = CE->getNumOperands();
+ for (unsigned i = 0; i < N; ++i ) {
+ printConstant(CE->getOperand(i));
+ }
+ Out << "Constant* " << constName << " = ConstantExpr::";
+ switch (CE->getOpcode()) {
+ case Instruction::Add: Out << "getAdd("; break;
+ case Instruction::FAdd: Out << "getFAdd("; break;
+ case Instruction::Sub: Out << "getSub("; break;
+ case Instruction::FSub: Out << "getFSub("; break;
+ case Instruction::Mul: Out << "getMul("; break;
+ case Instruction::FMul: Out << "getFMul("; break;
+ case Instruction::UDiv: Out << "getUDiv("; break;
+ case Instruction::SDiv: Out << "getSDiv("; break;
+ case Instruction::FDiv: Out << "getFDiv("; break;
+ case Instruction::URem: Out << "getURem("; break;
+ case Instruction::SRem: Out << "getSRem("; break;
+ case Instruction::FRem: Out << "getFRem("; break;
+ case Instruction::And: Out << "getAnd("; break;
+ case Instruction::Or: Out << "getOr("; break;
+ case Instruction::Xor: Out << "getXor("; break;
+ case Instruction::ICmp:
+ Out << "getICmp(ICmpInst::ICMP_";
+ switch (CE->getPredicate()) {
+ case ICmpInst::ICMP_EQ: Out << "EQ"; break;
+ case ICmpInst::ICMP_NE: Out << "NE"; break;
+ case ICmpInst::ICMP_SLT: Out << "SLT"; break;
+ case ICmpInst::ICMP_ULT: Out << "ULT"; break;
+ case ICmpInst::ICMP_SGT: Out << "SGT"; break;
+ case ICmpInst::ICMP_UGT: Out << "UGT"; break;
+ case ICmpInst::ICMP_SLE: Out << "SLE"; break;
+ case ICmpInst::ICMP_ULE: Out << "ULE"; break;
+ case ICmpInst::ICMP_SGE: Out << "SGE"; break;
+ case ICmpInst::ICMP_UGE: Out << "UGE"; break;
+ default: error("Invalid ICmp Predicate");
+ }
+ break;
+ case Instruction::FCmp:
+ Out << "getFCmp(FCmpInst::FCMP_";
+ switch (CE->getPredicate()) {
+ case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
+ case FCmpInst::FCMP_ORD: Out << "ORD"; break;
+ case FCmpInst::FCMP_UNO: Out << "UNO"; break;
+ case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
+ case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
+ case FCmpInst::FCMP_ONE: Out << "ONE"; break;
+ case FCmpInst::FCMP_UNE: Out << "UNE"; break;
+ case FCmpInst::FCMP_OLT: Out << "OLT"; break;
+ case FCmpInst::FCMP_ULT: Out << "ULT"; break;
+ case FCmpInst::FCMP_OGT: Out << "OGT"; break;
+ case FCmpInst::FCMP_UGT: Out << "UGT"; break;
+ case FCmpInst::FCMP_OLE: Out << "OLE"; break;
+ case FCmpInst::FCMP_ULE: Out << "ULE"; break;
+ case FCmpInst::FCMP_OGE: Out << "OGE"; break;
+ case FCmpInst::FCMP_UGE: Out << "UGE"; break;
+ case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
+ default: error("Invalid FCmp Predicate");
+ }
+ break;
+ case Instruction::Shl: Out << "getShl("; break;
+ case Instruction::LShr: Out << "getLShr("; break;
+ case Instruction::AShr: Out << "getAShr("; break;
+ case Instruction::Select: Out << "getSelect("; break;
+ case Instruction::ExtractElement: Out << "getExtractElement("; break;
+ case Instruction::InsertElement: Out << "getInsertElement("; break;
+ case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
+ default:
+ error("Invalid constant expression");
+ break;
+ }
+ Out << getCppName(CE->getOperand(0));
+ for (unsigned i = 1; i < CE->getNumOperands(); ++i)
+ Out << ", " << getCppName(CE->getOperand(i));
+ Out << ");";
+ }
+ } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
+ Out << "Constant* " << constName << " = ";
+ Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
+ } else {
+ error("Bad Constant");
+ Out << "Constant* " << constName << " = 0; ";
+ }
+ nl(Out);
+}
+
+void CppWriter::printConstants(const Module* M) {
+ // Traverse all the global variables looking for constant initializers
+ for (Module::const_global_iterator I = TheModule->global_begin(),
+ E = TheModule->global_end(); I != E; ++I)
+ if (I->hasInitializer())
+ printConstant(I->getInitializer());
+
+ // Traverse the LLVM functions looking for constants
+ for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
+ FI != FE; ++FI) {
+ // Add all of the basic blocks and instructions
+ for (Function::const_iterator BB = FI->begin(),
+ E = FI->end(); BB != E; ++BB) {
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
+ ++I) {
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
+ printConstant(C);
+ }
+ }
+ }
+ }
+ }
+}
+
+void CppWriter::printVariableUses(const GlobalVariable *GV) {
+ nl(Out) << "// Type Definitions";
+ nl(Out);
+ printType(GV->getType());
+ if (GV->hasInitializer()) {
+ const Constant *Init = GV->getInitializer();
+ printType(Init->getType());
+ if (const Function *F = dyn_cast<Function>(Init)) {
+ nl(Out)<< "/ Function Declarations"; nl(Out);
+ printFunctionHead(F);
+ } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
+ nl(Out) << "// Global Variable Declarations"; nl(Out);
+ printVariableHead(gv);
+
+ nl(Out) << "// Global Variable Definitions"; nl(Out);
+ printVariableBody(gv);
+ } else {
+ nl(Out) << "// Constant Definitions"; nl(Out);
+ printConstant(Init);
+ }
+ }
+}
+
+void CppWriter::printVariableHead(const GlobalVariable *GV) {
+ nl(Out) << "GlobalVariable* " << getCppName(GV);
+ if (is_inline) {
+ Out << " = mod->getGlobalVariable(mod->getContext(), ";
+ printEscapedString(GV->getName());
+ Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
+ nl(Out) << "if (!" << getCppName(GV) << ") {";
+ in(); nl(Out) << getCppName(GV);
+ }
+ Out << " = new GlobalVariable(/*Module=*/*mod, ";
+ nl(Out) << "/*Type=*/";
+ printCppName(GV->getType()->getElementType());
+ Out << ",";
+ nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
+ Out << ",";
+ nl(Out) << "/*Linkage=*/";
+ printLinkageType(GV->getLinkage());
+ Out << ",";
+ nl(Out) << "/*Initializer=*/0, ";
+ if (GV->hasInitializer()) {
+ Out << "// has initializer, specified below";
+ }
+ nl(Out) << "/*Name=*/\"";
+ printEscapedString(GV->getName());
+ Out << "\");";
+ nl(Out);
+
+ if (GV->hasSection()) {
+ printCppName(GV);
+ Out << "->setSection(\"";
+ printEscapedString(GV->getSection());
+ Out << "\");";
+ nl(Out);
+ }
+ if (GV->getAlignment()) {
+ printCppName(GV);
+ Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
+ nl(Out);
+ }
+ if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
+ printCppName(GV);
+ Out << "->setVisibility(";
+ printVisibilityType(GV->getVisibility());
+ Out << ");";
+ nl(Out);
+ }
+ if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
+ printCppName(GV);
+ Out << "->setDLLStorageClass(";
+ printDLLStorageClassType(GV->getDLLStorageClass());
+ Out << ");";
+ nl(Out);
+ }
+ if (GV->isThreadLocal()) {
+ printCppName(GV);
+ Out << "->setThreadLocalMode(";
+ printThreadLocalMode(GV->getThreadLocalMode());
+ Out << ");";
+ nl(Out);
+ }
+ if (is_inline) {
+ out(); Out << "}"; nl(Out);
+ }
+}
+
+void CppWriter::printVariableBody(const GlobalVariable *GV) {
+ if (GV->hasInitializer()) {
+ printCppName(GV);
+ Out << "->setInitializer(";
+ Out << getCppName(GV->getInitializer()) << ");";
+ nl(Out);
+ }
+}
+
+std::string CppWriter::getOpName(const Value* V) {
+ if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
+ return getCppName(V);
+
+ // See if its alread in the map of forward references, if so just return the
+ // name we already set up for it
+ ForwardRefMap::const_iterator I = ForwardRefs.find(V);
+ if (I != ForwardRefs.end())
+ return I->second;
+
+ // This is a new forward reference. Generate a unique name for it
+ std::string result(std::string("fwdref_") + utostr(uniqueNum++));
+
+ // Yes, this is a hack. An Argument is the smallest instantiable value that
+ // we can make as a placeholder for the real value. We'll replace these
+ // Argument instances later.
+ Out << "Argument* " << result << " = new Argument("
+ << getCppName(V->getType()) << ");";
+ nl(Out);
+ ForwardRefs[V] = result;
+ return result;
+}
+
+static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
+ switch (Ordering) {
+ case NotAtomic: return "NotAtomic";
+ case Unordered: return "Unordered";
+ case Monotonic: return "Monotonic";
+ case Acquire: return "Acquire";
+ case Release: return "Release";
+ case AcquireRelease: return "AcquireRelease";
+ case SequentiallyConsistent: return "SequentiallyConsistent";
+ }
+ llvm_unreachable("Unknown ordering");
+}
+
+static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
+ switch (SynchScope) {
+ case SingleThread: return "SingleThread";
+ case CrossThread: return "CrossThread";
+ }
+ llvm_unreachable("Unknown synch scope");
+}
+
+// printInstruction - This member is called for each Instruction in a function.
+void CppWriter::printInstruction(const Instruction *I,
+ const std::string& bbname) {
+ std::string iName(getCppName(I));
+
+ // Before we emit this instruction, we need to take care of generating any
+ // forward references. So, we get the names of all the operands in advance
+ const unsigned Ops(I->getNumOperands());
+ std::string* opNames = new std::string[Ops];
+ for (unsigned i = 0; i < Ops; i++)
+ opNames[i] = getOpName(I->getOperand(i));
+
+ switch (I->getOpcode()) {
+ default:
+ error("Invalid instruction");
+ break;
+
+ case Instruction::Ret: {
+ const ReturnInst* ret = cast<ReturnInst>(I);
+ Out << "ReturnInst::Create(mod->getContext(), "
+ << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
+ break;
+ }
+ case Instruction::Br: {
+ const BranchInst* br = cast<BranchInst>(I);
+ Out << "BranchInst::Create(" ;
+ if (br->getNumOperands() == 3) {
+ Out << opNames[2] << ", "
+ << opNames[1] << ", "
+ << opNames[0] << ", ";
+
+ } else if (br->getNumOperands() == 1) {
+ Out << opNames[0] << ", ";
+ } else {
+ error("Branch with 2 operands?");
+ }
+ Out << bbname << ");";
+ break;
+ }
+ case Instruction::Switch: {
+ const SwitchInst *SI = cast<SwitchInst>(I);
+ Out << "SwitchInst* " << iName << " = SwitchInst::Create("
+ << getOpName(SI->getCondition()) << ", "
+ << getOpName(SI->getDefaultDest()) << ", "
+ << SI->getNumCases() << ", " << bbname << ");";
+ nl(Out);
+ for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
+ i != e; ++i) {
+ const ConstantInt* CaseVal = i.getCaseValue();
+ const BasicBlock *BB = i.getCaseSuccessor();
+ Out << iName << "->addCase("
+ << getOpName(CaseVal) << ", "
+ << getOpName(BB) << ");";
+ nl(Out);
+ }
+ break;
+ }
+ case Instruction::IndirectBr: {
+ const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
+ Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
+ << opNames[0] << ", " << IBI->getNumDestinations() << ");";
+ nl(Out);
+ for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
+ Out << iName << "->addDestination(" << opNames[i] << ");";
+ nl(Out);
+ }
+ break;
+ }
+ case Instruction::Resume: {
+ Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");";
+ break;
+ }
+ case Instruction::Invoke: {
+ const InvokeInst* inv = cast<InvokeInst>(I);
+ Out << "std::vector<Value*> " << iName << "_params;";
+ nl(Out);
+ for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
+ Out << iName << "_params.push_back("
+ << getOpName(inv->getArgOperand(i)) << ");";
+ nl(Out);
+ }
+ // FIXME: This shouldn't use magic numbers -3, -2, and -1.
+ Out << "InvokeInst *" << iName << " = InvokeInst::Create("
+ << getOpName(inv->getCalledValue()) << ", "
+ << getOpName(inv->getNormalDest()) << ", "
+ << getOpName(inv->getUnwindDest()) << ", "
+ << iName << "_params, \"";
+ printEscapedString(inv->getName());
+ Out << "\", " << bbname << ");";
+ nl(Out) << iName << "->setCallingConv(";
+ printCallingConv(inv->getCallingConv());
+ Out << ");";
+ printAttributes(inv->getAttributes(), iName);
+ Out << iName << "->setAttributes(" << iName << "_PAL);";
+ nl(Out);
+ break;
+ }
+ case Instruction::Unreachable: {
+ Out << "new UnreachableInst("
+ << "mod->getContext(), "
+ << bbname << ");";
+ break;
+ }
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:{
+ Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
+ switch (I->getOpcode()) {
+ case Instruction::Add: Out << "Instruction::Add"; break;
+ case Instruction::FAdd: Out << "Instruction::FAdd"; break;
+ case Instruction::Sub: Out << "Instruction::Sub"; break;
+ case Instruction::FSub: Out << "Instruction::FSub"; break;
+ case Instruction::Mul: Out << "Instruction::Mul"; break;
+ case Instruction::FMul: Out << "Instruction::FMul"; break;
+ case Instruction::UDiv:Out << "Instruction::UDiv"; break;
+ case Instruction::SDiv:Out << "Instruction::SDiv"; break;
+ case Instruction::FDiv:Out << "Instruction::FDiv"; break;
+ case Instruction::URem:Out << "Instruction::URem"; break;
+ case Instruction::SRem:Out << "Instruction::SRem"; break;
+ case Instruction::FRem:Out << "Instruction::FRem"; break;
+ case Instruction::And: Out << "Instruction::And"; break;
+ case Instruction::Or: Out << "Instruction::Or"; break;
+ case Instruction::Xor: Out << "Instruction::Xor"; break;
+ case Instruction::Shl: Out << "Instruction::Shl"; break;
+ case Instruction::LShr:Out << "Instruction::LShr"; break;
+ case Instruction::AShr:Out << "Instruction::AShr"; break;
+ default: Out << "Instruction::BadOpCode"; break;
+ }
+ Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
+ printEscapedString(I->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::FCmp: {
+ Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
+ switch (cast<FCmpInst>(I)->getPredicate()) {
+ case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
+ case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
+ case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
+ case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
+ case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
+ case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
+ case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
+ case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
+ case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
+ case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
+ case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
+ case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
+ case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
+ case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
+ case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
+ case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
+ default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
+ }
+ Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
+ printEscapedString(I->getName());
+ Out << "\");";
+ break;
+ }
+ case Instruction::ICmp: {
+ Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
+ switch (cast<ICmpInst>(I)->getPredicate()) {
+ case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
+ case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
+ case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
+ case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
+ case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
+ case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
+ case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
+ case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
+ case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
+ case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
+ default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
+ }
+ Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
+ printEscapedString(I->getName());
+ Out << "\");";
+ break;
+ }
+ case Instruction::Alloca: {
+ const AllocaInst* allocaI = cast<AllocaInst>(I);
+ Out << "AllocaInst* " << iName << " = new AllocaInst("
+ << getCppName(allocaI->getAllocatedType()) << ", ";
+ if (allocaI->isArrayAllocation())
+ Out << opNames[0] << ", ";
+ Out << "\"";
+ printEscapedString(allocaI->getName());
+ Out << "\", " << bbname << ");";
+ if (allocaI->getAlignment())
+ nl(Out) << iName << "->setAlignment("
+ << allocaI->getAlignment() << ");";
+ break;
+ }
+ case Instruction::Load: {
+ const LoadInst* load = cast<LoadInst>(I);
+ Out << "LoadInst* " << iName << " = new LoadInst("
+ << opNames[0] << ", \"";
+ printEscapedString(load->getName());
+ Out << "\", " << (load->isVolatile() ? "true" : "false" )
+ << ", " << bbname << ");";
+ if (load->getAlignment())
+ nl(Out) << iName << "->setAlignment("
+ << load->getAlignment() << ");";
+ if (load->isAtomic()) {
+ StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
+ StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
+ nl(Out) << iName << "->setAtomic("
+ << Ordering << ", " << CrossThread << ");";
+ }
+ break;
+ }
+ case Instruction::Store: {
+ const StoreInst* store = cast<StoreInst>(I);
+ Out << "StoreInst* " << iName << " = new StoreInst("
+ << opNames[0] << ", "
+ << opNames[1] << ", "
+ << (store->isVolatile() ? "true" : "false")
+ << ", " << bbname << ");";
+ if (store->getAlignment())
+ nl(Out) << iName << "->setAlignment("
+ << store->getAlignment() << ");";
+ if (store->isAtomic()) {
+ StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
+ StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
+ nl(Out) << iName << "->setAtomic("
+ << Ordering << ", " << CrossThread << ");";
+ }
+ break;
+ }
+ case Instruction::GetElementPtr: {
+ const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
+ if (gep->getNumOperands() <= 2) {
+ Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
+ << opNames[0];
+ if (gep->getNumOperands() == 2)
+ Out << ", " << opNames[1];
+ } else {
+ Out << "std::vector<Value*> " << iName << "_indices;";
+ nl(Out);
+ for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
+ Out << iName << "_indices.push_back("
+ << opNames[i] << ");";
+ nl(Out);
+ }
+ Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
+ << opNames[0] << ", " << iName << "_indices";
+ }
+ Out << ", \"";
+ printEscapedString(gep->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::PHI: {
+ const PHINode* phi = cast<PHINode>(I);
+
+ Out << "PHINode* " << iName << " = PHINode::Create("
+ << getCppName(phi->getType()) << ", "
+ << phi->getNumIncomingValues() << ", \"";
+ printEscapedString(phi->getName());
+ Out << "\", " << bbname << ");";
+ nl(Out);
+ for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
+ Out << iName << "->addIncoming("
+ << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
+ << getOpName(phi->getIncomingBlock(i)) << ");";
+ nl(Out);
+ }
+ break;
+ }
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast: {
+ const CastInst* cst = cast<CastInst>(I);
+ Out << "CastInst* " << iName << " = new ";
+ switch (I->getOpcode()) {
+ case Instruction::Trunc: Out << "TruncInst"; break;
+ case Instruction::ZExt: Out << "ZExtInst"; break;
+ case Instruction::SExt: Out << "SExtInst"; break;
+ case Instruction::FPTrunc: Out << "FPTruncInst"; break;
+ case Instruction::FPExt: Out << "FPExtInst"; break;
+ case Instruction::FPToUI: Out << "FPToUIInst"; break;
+ case Instruction::FPToSI: Out << "FPToSIInst"; break;
+ case Instruction::UIToFP: Out << "UIToFPInst"; break;
+ case Instruction::SIToFP: Out << "SIToFPInst"; break;
+ case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
+ case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
+ case Instruction::BitCast: Out << "BitCastInst"; break;
+ default: llvm_unreachable("Unreachable");
+ }
+ Out << "(" << opNames[0] << ", "
+ << getCppName(cst->getType()) << ", \"";
+ printEscapedString(cst->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::Call: {
+ const CallInst* call = cast<CallInst>(I);
+ if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
+ Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
+ << getCppName(ila->getFunctionType()) << ", \""
+ << ila->getAsmString() << "\", \""
+ << ila->getConstraintString() << "\","
+ << (ila->hasSideEffects() ? "true" : "false") << ");";
+ nl(Out);
+ }
+ if (call->getNumArgOperands() > 1) {
+ Out << "std::vector<Value*> " << iName << "_params;";
+ nl(Out);
+ for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
+ Out << iName << "_params.push_back(" << opNames[i] << ");";
+ nl(Out);
+ }
+ Out << "CallInst* " << iName << " = CallInst::Create("
+ << opNames[call->getNumArgOperands()] << ", "
+ << iName << "_params, \"";
+ } else if (call->getNumArgOperands() == 1) {
+ Out << "CallInst* " << iName << " = CallInst::Create("
+ << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
+ } else {
+ Out << "CallInst* " << iName << " = CallInst::Create("
+ << opNames[call->getNumArgOperands()] << ", \"";
+ }
+ printEscapedString(call->getName());
+ Out << "\", " << bbname << ");";
+ nl(Out) << iName << "->setCallingConv(";
+ printCallingConv(call->getCallingConv());
+ Out << ");";
+ nl(Out) << iName << "->setTailCall("
+ << (call->isTailCall() ? "true" : "false");
+ Out << ");";
+ nl(Out);
+ printAttributes(call->getAttributes(), iName);
+ Out << iName << "->setAttributes(" << iName << "_PAL);";
+ nl(Out);
+ break;
+ }
+ case Instruction::Select: {
+ const SelectInst* sel = cast<SelectInst>(I);
+ Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
+ Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
+ printEscapedString(sel->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::UserOp1:
+ /// FALL THROUGH
+ case Instruction::UserOp2: {
+ /// FIXME: What should be done here?
+ break;
+ }
+ case Instruction::VAArg: {
+ const VAArgInst* va = cast<VAArgInst>(I);
+ Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
+ << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
+ printEscapedString(va->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::ExtractElement: {
+ const ExtractElementInst* eei = cast<ExtractElementInst>(I);
+ Out << "ExtractElementInst* " << getCppName(eei)
+ << " = new ExtractElementInst(" << opNames[0]
+ << ", " << opNames[1] << ", \"";
+ printEscapedString(eei->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::InsertElement: {
+ const InsertElementInst* iei = cast<InsertElementInst>(I);
+ Out << "InsertElementInst* " << getCppName(iei)
+ << " = InsertElementInst::Create(" << opNames[0]
+ << ", " << opNames[1] << ", " << opNames[2] << ", \"";
+ printEscapedString(iei->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::ShuffleVector: {
+ const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
+ Out << "ShuffleVectorInst* " << getCppName(svi)
+ << " = new ShuffleVectorInst(" << opNames[0]
+ << ", " << opNames[1] << ", " << opNames[2] << ", \"";
+ printEscapedString(svi->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::ExtractValue: {
+ const ExtractValueInst *evi = cast<ExtractValueInst>(I);
+ Out << "std::vector<unsigned> " << iName << "_indices;";
+ nl(Out);
+ for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
+ Out << iName << "_indices.push_back("
+ << evi->idx_begin()[i] << ");";
+ nl(Out);
+ }
+ Out << "ExtractValueInst* " << getCppName(evi)
+ << " = ExtractValueInst::Create(" << opNames[0]
+ << ", "
+ << iName << "_indices, \"";
+ printEscapedString(evi->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::InsertValue: {
+ const InsertValueInst *ivi = cast<InsertValueInst>(I);
+ Out << "std::vector<unsigned> " << iName << "_indices;";
+ nl(Out);
+ for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
+ Out << iName << "_indices.push_back("
+ << ivi->idx_begin()[i] << ");";
+ nl(Out);
+ }
+ Out << "InsertValueInst* " << getCppName(ivi)
+ << " = InsertValueInst::Create(" << opNames[0]
+ << ", " << opNames[1] << ", "
+ << iName << "_indices, \"";
+ printEscapedString(ivi->getName());
+ Out << "\", " << bbname << ");";
+ break;
+ }
+ case Instruction::Fence: {
+ const FenceInst *fi = cast<FenceInst>(I);
+ StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
+ StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
+ Out << "FenceInst* " << iName
+ << " = new FenceInst(mod->getContext(), "
+ << Ordering << ", " << CrossThread << ", " << bbname
+ << ");";
+ break;
+ }
+ case Instruction::AtomicCmpXchg: {
+ const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
+ StringRef SuccessOrdering =
+ ConvertAtomicOrdering(cxi->getSuccessOrdering());
+ StringRef FailureOrdering =
+ ConvertAtomicOrdering(cxi->getFailureOrdering());
+ StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
+ Out << "AtomicCmpXchgInst* " << iName
+ << " = new AtomicCmpXchgInst("
+ << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
+ << SuccessOrdering << ", " << FailureOrdering << ", "
+ << CrossThread << ", " << bbname
+ << ");";
+ nl(Out) << iName << "->setName(\"";
+ printEscapedString(cxi->getName());
+ Out << "\");";
+ nl(Out) << iName << "->setVolatile("
+ << (cxi->isVolatile() ? "true" : "false") << ");";
+ nl(Out) << iName << "->setWeak("
+ << (cxi->isWeak() ? "true" : "false") << ");";
+ break;
+ }
+ case Instruction::AtomicRMW: {
+ const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
+ StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
+ StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
+ StringRef Operation;
+ switch (rmwi->getOperation()) {
+ case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
+ case AtomicRMWInst::Add: Operation = "AtomicRMWInst::Add"; break;
+ case AtomicRMWInst::Sub: Operation = "AtomicRMWInst::Sub"; break;
+ case AtomicRMWInst::And: Operation = "AtomicRMWInst::And"; break;
+ case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
+ case AtomicRMWInst::Or: Operation = "AtomicRMWInst::Or"; break;
+ case AtomicRMWInst::Xor: Operation = "AtomicRMWInst::Xor"; break;
+ case AtomicRMWInst::Max: Operation = "AtomicRMWInst::Max"; break;
+ case AtomicRMWInst::Min: Operation = "AtomicRMWInst::Min"; break;
+ case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
+ case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
+ case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
+ }
+ Out << "AtomicRMWInst* " << iName
+ << " = new AtomicRMWInst("
+ << Operation << ", "
+ << opNames[0] << ", " << opNames[1] << ", "
+ << Ordering << ", " << CrossThread << ", " << bbname
+ << ");";
+ nl(Out) << iName << "->setName(\"";
+ printEscapedString(rmwi->getName());
+ Out << "\");";
+ nl(Out) << iName << "->setVolatile("
+ << (rmwi->isVolatile() ? "true" : "false") << ");";
+ break;
+ }
+ case Instruction::LandingPad: {
+ const LandingPadInst *lpi = cast<LandingPadInst>(I);
+ Out << "LandingPadInst* " << iName << " = LandingPadInst::Create(";
+ printCppName(lpi->getType());
+ Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \"";
+ printEscapedString(lpi->getName());
+ Out << "\", " << bbname << ");";
+ nl(Out) << iName << "->setCleanup("
+ << (lpi->isCleanup() ? "true" : "false")
+ << ");";
+ for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i)
+ nl(Out) << iName << "->addClause(" << opNames[i+1] << ");";
+ break;
+ }
+ }
+ DefinedValues.insert(I);
+ nl(Out);
+ delete [] opNames;
+}
+
+// Print out the types, constants and declarations needed by one function
+void CppWriter::printFunctionUses(const Function* F) {
+ nl(Out) << "// Type Definitions"; nl(Out);
+ if (!is_inline) {
+ // Print the function's return type
+ printType(F->getReturnType());
+
+ // Print the function's function type
+ printType(F->getFunctionType());
+
+ // Print the types of each of the function's arguments
+ for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ AI != AE; ++AI) {
+ printType(AI->getType());
+ }
+ }
+
+ // Print type definitions for every type referenced by an instruction and
+ // make a note of any global values or constants that are referenced
+ SmallPtrSet<GlobalValue*,64> gvs;
+ SmallPtrSet<Constant*,64> consts;
+ for (Function::const_iterator BB = F->begin(), BE = F->end();
+ BB != BE; ++BB){
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+ I != E; ++I) {
+ // Print the type of the instruction itself
+ printType(I->getType());
+
+ // Print the type of each of the instruction's operands
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ Value* operand = I->getOperand(i);
+ printType(operand->getType());
+
+ // If the operand references a GVal or Constant, make a note of it
+ if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
+ gvs.insert(GV);
+ if (GenerationType != GenFunction)
+ if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
+ if (GVar->hasInitializer())
+ consts.insert(GVar->getInitializer());
+ } else if (Constant* C = dyn_cast<Constant>(operand)) {
+ consts.insert(C);
+ for (unsigned j = 0; j < C->getNumOperands(); ++j) {
+ // If the operand references a GVal or Constant, make a note of it
+ Value* operand = C->getOperand(j);
+ printType(operand->getType());
+ if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
+ gvs.insert(GV);
+ if (GenerationType != GenFunction)
+ if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
+ if (GVar->hasInitializer())
+ consts.insert(GVar->getInitializer());
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Print the function declarations for any functions encountered
+ nl(Out) << "// Function Declarations"; nl(Out);
+ for (auto *GV : gvs) {
+ if (Function *Fun = dyn_cast<Function>(GV)) {
+ if (!is_inline || Fun != F)
+ printFunctionHead(Fun);
+ }
+ }
+
+ // Print the global variable declarations for any variables encountered
+ nl(Out) << "// Global Variable Declarations"; nl(Out);
+ for (auto *GV : gvs) {
+ if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV))
+ printVariableHead(F);
+ }
+
+ // Print the constants found
+ nl(Out) << "// Constant Definitions"; nl(Out);
+ for (const auto *C : consts) {
+ printConstant(C);
+ }
+
+ // Process the global variables definitions now that all the constants have
+ // been emitted. These definitions just couple the gvars with their constant
+ // initializers.
+ if (GenerationType != GenFunction) {
+ nl(Out) << "// Global Variable Definitions"; nl(Out);
+ for (const auto &GV : gvs) {
+ if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV))
+ printVariableBody(Var);
+ }
+ }
+}
+
+void CppWriter::printFunctionHead(const Function* F) {
+ nl(Out) << "Function* " << getCppName(F);
+ Out << " = mod->getFunction(\"";
+ printEscapedString(F->getName());
+ Out << "\");";
+ nl(Out) << "if (!" << getCppName(F) << ") {";
+ nl(Out) << getCppName(F);
+
+ Out<< " = Function::Create(";
+ nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
+ nl(Out) << "/*Linkage=*/";
+ printLinkageType(F->getLinkage());
+ Out << ",";
+ nl(Out) << "/*Name=*/\"";
+ printEscapedString(F->getName());
+ Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
+ nl(Out,-1);
+ printCppName(F);
+ Out << "->setCallingConv(";
+ printCallingConv(F->getCallingConv());
+ Out << ");";
+ nl(Out);
+ if (F->hasSection()) {
+ printCppName(F);
+ Out << "->setSection(\"" << F->getSection() << "\");";
+ nl(Out);
+ }
+ if (F->getAlignment()) {
+ printCppName(F);
+ Out << "->setAlignment(" << F->getAlignment() << ");";
+ nl(Out);
+ }
+ if (F->getVisibility() != GlobalValue::DefaultVisibility) {
+ printCppName(F);
+ Out << "->setVisibility(";
+ printVisibilityType(F->getVisibility());
+ Out << ");";
+ nl(Out);
+ }
+ if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
+ printCppName(F);
+ Out << "->setDLLStorageClass(";
+ printDLLStorageClassType(F->getDLLStorageClass());
+ Out << ");";
+ nl(Out);
+ }
+ if (F->hasGC()) {
+ printCppName(F);
+ Out << "->setGC(\"" << F->getGC() << "\");";
+ nl(Out);
+ }
+ Out << "}";
+ nl(Out);
+ printAttributes(F->getAttributes(), getCppName(F));
+ printCppName(F);
+ Out << "->setAttributes(" << getCppName(F) << "_PAL);";
+ nl(Out);
+}
+
+void CppWriter::printFunctionBody(const Function *F) {
+ if (F->isDeclaration())
+ return; // external functions have no bodies.
+
+ // Clear the DefinedValues and ForwardRefs maps because we can't have
+ // cross-function forward refs
+ ForwardRefs.clear();
+ DefinedValues.clear();
+
+ // Create all the argument values
+ if (!is_inline) {
+ if (!F->arg_empty()) {
+ Out << "Function::arg_iterator args = " << getCppName(F)
+ << "->arg_begin();";
+ nl(Out);
+ }
+ for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ AI != AE; ++AI) {
+ Out << "Value* " << getCppName(AI) << " = args++;";
+ nl(Out);
+ if (AI->hasName()) {
+ Out << getCppName(AI) << "->setName(\"";
+ printEscapedString(AI->getName());
+ Out << "\");";
+ nl(Out);
+ }
+ }
+ }
+
+ // Create all the basic blocks
+ nl(Out);
+ for (Function::const_iterator BI = F->begin(), BE = F->end();
+ BI != BE; ++BI) {
+ std::string bbname(getCppName(BI));
+ Out << "BasicBlock* " << bbname <<
+ " = BasicBlock::Create(mod->getContext(), \"";
+ if (BI->hasName())
+ printEscapedString(BI->getName());
+ Out << "\"," << getCppName(BI->getParent()) << ",0);";
+ nl(Out);
+ }
+
+ // Output all of its basic blocks... for the function
+ for (Function::const_iterator BI = F->begin(), BE = F->end();
+ BI != BE; ++BI) {
+ std::string bbname(getCppName(BI));
+ nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
+ nl(Out);
+
+ // Output all of the instructions in the basic block...
+ for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
+ I != E; ++I) {
+ printInstruction(I,bbname);
+ }
+ }
+
+ // Loop over the ForwardRefs and resolve them now that all instructions
+ // are generated.
+ if (!ForwardRefs.empty()) {
+ nl(Out) << "// Resolve Forward References";
+ nl(Out);
+ }
+
+ while (!ForwardRefs.empty()) {
+ ForwardRefMap::iterator I = ForwardRefs.begin();
+ Out << I->second << "->replaceAllUsesWith("
+ << getCppName(I->first) << "); delete " << I->second << ";";
+ nl(Out);
+ ForwardRefs.erase(I);
+ }
+}
+
+void CppWriter::printInline(const std::string& fname,
+ const std::string& func) {
+ const Function* F = TheModule->getFunction(func);
+ if (!F) {
+ error(std::string("Function '") + func + "' not found in input module");
+ return;
+ }
+ if (F->isDeclaration()) {
+ error(std::string("Function '") + func + "' is external!");
+ return;
+ }
+ nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
+ << getCppName(F);
+ unsigned arg_count = 1;
+ for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ AI != AE; ++AI) {
+ Out << ", Value* arg_" << arg_count++;
+ }
+ Out << ") {";
+ nl(Out);
+ is_inline = true;
+ printFunctionUses(F);
+ printFunctionBody(F);
+ is_inline = false;
+ Out << "return " << getCppName(F->begin()) << ";";
+ nl(Out) << "}";
+ nl(Out);
+}
+
+void CppWriter::printModuleBody() {
+ // Print out all the type definitions
+ nl(Out) << "// Type Definitions"; nl(Out);
+ printTypes(TheModule);
+
+ // Functions can call each other and global variables can reference them so
+ // define all the functions first before emitting their function bodies.
+ nl(Out) << "// Function Declarations"; nl(Out);
+ for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
+ I != E; ++I)
+ printFunctionHead(I);
+
+ // Process the global variables declarations. We can't initialze them until
+ // after the constants are printed so just print a header for each global
+ nl(Out) << "// Global Variable Declarations\n"; nl(Out);
+ for (Module::const_global_iterator I = TheModule->global_begin(),
+ E = TheModule->global_end(); I != E; ++I) {
+ printVariableHead(I);
+ }
+
+ // Print out all the constants definitions. Constants don't recurse except
+ // through GlobalValues. All GlobalValues have been declared at this point
+ // so we can proceed to generate the constants.
+ nl(Out) << "// Constant Definitions"; nl(Out);
+ printConstants(TheModule);
+
+ // Process the global variables definitions now that all the constants have
+ // been emitted. These definitions just couple the gvars with their constant
+ // initializers.
+ nl(Out) << "// Global Variable Definitions"; nl(Out);
+ for (Module::const_global_iterator I = TheModule->global_begin(),
+ E = TheModule->global_end(); I != E; ++I) {
+ printVariableBody(I);
+ }
+
+ // Finally, we can safely put out all of the function bodies.
+ nl(Out) << "// Function Definitions"; nl(Out);
+ for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
+ I != E; ++I) {
+ if (!I->isDeclaration()) {
+ nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
+ << ")";
+ nl(Out) << "{";
+ nl(Out,1);
+ printFunctionBody(I);
+ nl(Out,-1) << "}";
+ nl(Out);
+ }
+ }
+}
+
+void CppWriter::printProgram(const std::string& fname,
+ const std::string& mName) {
+ Out << "#include <llvm/Pass.h>\n";
+ Out << "#include <llvm/PassManager.h>\n";
+
+ Out << "#include <llvm/ADT/SmallVector.h>\n";
+ Out << "#include <llvm/Analysis/Verifier.h>\n";
+ Out << "#include <llvm/IR/BasicBlock.h>\n";
+ Out << "#include <llvm/IR/CallingConv.h>\n";
+ Out << "#include <llvm/IR/Constants.h>\n";
+ Out << "#include <llvm/IR/DerivedTypes.h>\n";
+ Out << "#include <llvm/IR/Function.h>\n";
+ Out << "#include <llvm/IR/GlobalVariable.h>\n";
+ Out << "#include <llvm/IR/IRPrintingPasses.h>\n";
+ Out << "#include <llvm/IR/InlineAsm.h>\n";
+ Out << "#include <llvm/IR/Instructions.h>\n";
+ Out << "#include <llvm/IR/LLVMContext.h>\n";
+ Out << "#include <llvm/IR/Module.h>\n";
+ Out << "#include <llvm/Support/FormattedStream.h>\n";
+ Out << "#include <llvm/Support/MathExtras.h>\n";
+ Out << "#include <algorithm>\n";
+ Out << "using namespace llvm;\n\n";
+ Out << "Module* " << fname << "();\n\n";
+ Out << "int main(int argc, char**argv) {\n";
+ Out << " Module* Mod = " << fname << "();\n";
+ Out << " verifyModule(*Mod, PrintMessageAction);\n";
+ Out << " PassManager PM;\n";
+ Out << " PM.add(createPrintModulePass(&outs()));\n";
+ Out << " PM.run(*Mod);\n";
+ Out << " return 0;\n";
+ Out << "}\n\n";
+ printModule(fname,mName);
+}
+
+void CppWriter::printModule(const std::string& fname,
+ const std::string& mName) {
+ nl(Out) << "Module* " << fname << "() {";
+ nl(Out,1) << "// Module Construction";
+ nl(Out) << "Module* mod = new Module(\"";
+ printEscapedString(mName);
+ Out << "\", getGlobalContext());";
+ if (!TheModule->getTargetTriple().empty()) {
+ nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
+ }
+ if (!TheModule->getTargetTriple().empty()) {
+ nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
+ << "\");";
+ }
+
+ if (!TheModule->getModuleInlineAsm().empty()) {
+ nl(Out) << "mod->setModuleInlineAsm(\"";
+ printEscapedString(TheModule->getModuleInlineAsm());
+ Out << "\");";
+ }
+ nl(Out);
+
+ printModuleBody();
+ nl(Out) << "return mod;";
+ nl(Out,-1) << "}";
+ nl(Out);
+}
+
+void CppWriter::printContents(const std::string& fname,
+ const std::string& mName) {
+ Out << "\nModule* " << fname << "(Module *mod) {\n";
+ Out << "\nmod->setModuleIdentifier(\"";
+ printEscapedString(mName);
+ Out << "\");\n";
+ printModuleBody();
+ Out << "\nreturn mod;\n";
+ Out << "\n}\n";
+}
+
+void CppWriter::printFunction(const std::string& fname,
+ const std::string& funcName) {
+ const Function* F = TheModule->getFunction(funcName);
+ if (!F) {
+ error(std::string("Function '") + funcName + "' not found in input module");
+ return;
+ }
+ Out << "\nFunction* " << fname << "(Module *mod) {\n";
+ printFunctionUses(F);
+ printFunctionHead(F);
+ printFunctionBody(F);
+ Out << "return " << getCppName(F) << ";\n";
+ Out << "}\n";
+}
+
+void CppWriter::printFunctions() {
+ const Module::FunctionListType &funcs = TheModule->getFunctionList();
+ Module::const_iterator I = funcs.begin();
+ Module::const_iterator IE = funcs.end();
+
+ for (; I != IE; ++I) {
+ const Function &func = *I;
+ if (!func.isDeclaration()) {
+ std::string name("define_");
+ name += func.getName();
+ printFunction(name, func.getName());
+ }
+ }
+}
+
+void CppWriter::printVariable(const std::string& fname,
+ const std::string& varName) {
+ const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
+
+ if (!GV) {
+ error(std::string("Variable '") + varName + "' not found in input module");
+ return;
+ }
+ Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
+ printVariableUses(GV);
+ printVariableHead(GV);
+ printVariableBody(GV);
+ Out << "return " << getCppName(GV) << ";\n";
+ Out << "}\n";
+}
+
+void CppWriter::printType(const std::string &fname,
+ const std::string &typeName) {
+ Type* Ty = TheModule->getTypeByName(typeName);
+ if (!Ty) {
+ error(std::string("Type '") + typeName + "' not found in input module");
+ return;
+ }
+ Out << "\nType* " << fname << "(Module *mod) {\n";
+ printType(Ty);
+ Out << "return " << getCppName(Ty) << ";\n";
+ Out << "}\n";
+}
+
+bool CppWriter::runOnModule(Module &M) {
+ TheModule = &M;
+
+ // Emit a header
+ Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
+
+ // Get the name of the function we're supposed to generate
+ std::string fname = FuncName.getValue();
+
+ // Get the name of the thing we are to generate
+ std::string tgtname = NameToGenerate.getValue();
+ if (GenerationType == GenModule ||
+ GenerationType == GenContents ||
+ GenerationType == GenProgram ||
+ GenerationType == GenFunctions) {
+ if (tgtname == "!bad!") {
+ if (M.getModuleIdentifier() == "-")
+ tgtname = "<stdin>";
+ else
+ tgtname = M.getModuleIdentifier();
+ }
+ } else if (tgtname == "!bad!")
+ error("You must use the -for option with -gen-{function,variable,type}");
+
+ switch (WhatToGenerate(GenerationType)) {
+ case GenProgram:
+ if (fname.empty())
+ fname = "makeLLVMModule";
+ printProgram(fname,tgtname);
+ break;
+ case GenModule:
+ if (fname.empty())
+ fname = "makeLLVMModule";
+ printModule(fname,tgtname);
+ break;
+ case GenContents:
+ if (fname.empty())
+ fname = "makeLLVMModuleContents";
+ printContents(fname,tgtname);
+ break;
+ case GenFunction:
+ if (fname.empty())
+ fname = "makeLLVMFunction";
+ printFunction(fname,tgtname);
+ break;
+ case GenFunctions:
+ printFunctions();
+ break;
+ case GenInline:
+ if (fname.empty())
+ fname = "makeLLVMInline";
+ printInline(fname,tgtname);
+ break;
+ case GenVariable:
+ if (fname.empty())
+ fname = "makeLLVMVariable";
+ printVariable(fname,tgtname);
+ break;
+ case GenType:
+ if (fname.empty())
+ fname = "makeLLVMType";
+ printType(fname,tgtname);
+ break;
+ }
+
+ return false;
+}
+
+char CppWriter::ID = 0;
+
+//===----------------------------------------------------------------------===//
+// External Interface declaration
+//===----------------------------------------------------------------------===//
+
+bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
+ formatted_raw_ostream &o,
+ CodeGenFileType FileType,
+ bool DisableVerify,
+ AnalysisID StartAfter,
+ AnalysisID StopAfter) {
+ if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
+ PM.add(new CppWriter(o));
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/CppBackend/CPPTargetMachine.h b/contrib/llvm/lib/Target/CppBackend/CPPTargetMachine.h
new file mode 100644
index 0000000..673ade7
--- /dev/null
+++ b/contrib/llvm/lib/Target/CppBackend/CPPTargetMachine.h
@@ -0,0 +1,44 @@
+//===-- CPPTargetMachine.h - TargetMachine for the C++ backend --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the TargetMachine that is used by the C++ backend.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef CPPTARGETMACHINE_H
+#define CPPTARGETMACHINE_H
+
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+class formatted_raw_ostream;
+
+struct CPPTargetMachine : public TargetMachine {
+ CPPTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : TargetMachine(T, TT, CPU, FS, Options) {}
+
+ bool addPassesToEmitFile(PassManagerBase &PM, formatted_raw_ostream &Out,
+ CodeGenFileType FileType, bool DisableVerify,
+ AnalysisID StartAfter,
+ AnalysisID StopAfter) override;
+
+ const DataLayout *getDataLayout() const override { return nullptr; }
+};
+
+extern Target TheCppBackendTarget;
+
+} // End llvm namespace
+
+
+#endif
diff --git a/contrib/llvm/lib/Target/CppBackend/TargetInfo/CppBackendTargetInfo.cpp b/contrib/llvm/lib/Target/CppBackend/TargetInfo/CppBackendTargetInfo.cpp
new file mode 100644
index 0000000..096dc73
--- /dev/null
+++ b/contrib/llvm/lib/Target/CppBackend/TargetInfo/CppBackendTargetInfo.cpp
@@ -0,0 +1,29 @@
+//===-- CppBackendTargetInfo.cpp - CppBackend Target Implementation -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CPPTargetMachine.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheCppBackendTarget;
+
+static bool CppBackend_TripleMatchQuality(Triple::ArchType Arch) {
+ // This backend doesn't correspond to any architecture. It must be explicitly
+ // selected with -march.
+ return false;
+}
+
+extern "C" void LLVMInitializeCppBackendTargetInfo() {
+ TargetRegistry::RegisterTarget(TheCppBackendTarget, "cpp",
+ "C++ backend",
+ &CppBackend_TripleMatchQuality);
+}
+
+extern "C" void LLVMInitializeCppBackendTargetMC() {}
diff --git a/contrib/llvm/lib/Target/Hexagon/Hexagon.h b/contrib/llvm/lib/Target/Hexagon/Hexagon.h
new file mode 100644
index 0000000..5467ee3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/Hexagon.h
@@ -0,0 +1,82 @@
+//=-- Hexagon.h - Top-level interface for Hexagon representation --*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in the LLVM
+// Hexagon back-end.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef TARGET_Hexagon_H
+#define TARGET_Hexagon_H
+
+#include "MCTargetDesc/HexagonMCTargetDesc.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+ class FunctionPass;
+ class ModulePass;
+ class TargetMachine;
+ class MachineInstr;
+ class HexagonMCInst;
+ class HexagonAsmPrinter;
+ class HexagonTargetMachine;
+ class raw_ostream;
+
+ FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
+ CodeGenOpt::Level OptLevel);
+ FunctionPass *createHexagonDelaySlotFillerPass(const TargetMachine &TM);
+ FunctionPass *createHexagonFPMoverPass(const TargetMachine &TM);
+ FunctionPass *createHexagonRemoveExtendArgs(const HexagonTargetMachine &TM);
+ FunctionPass *createHexagonCFGOptimizer(const HexagonTargetMachine &TM);
+
+ FunctionPass *createHexagonSplitTFRCondSets(const HexagonTargetMachine &TM);
+ FunctionPass *createHexagonSplitConst32AndConst64(
+ const HexagonTargetMachine &TM);
+ FunctionPass *createHexagonExpandPredSpillCode(
+ const HexagonTargetMachine &TM);
+ FunctionPass *createHexagonHardwareLoops();
+ FunctionPass *createHexagonPeephole();
+ FunctionPass *createHexagonFixupHwLoops();
+ FunctionPass *createHexagonNewValueJump();
+ FunctionPass *createHexagonCopyToCombine();
+ FunctionPass *createHexagonPacketizer();
+ FunctionPass *createHexagonNewValueJump();
+
+/* TODO: object output.
+ MCCodeEmitter *createHexagonMCCodeEmitter(const Target &,
+ const TargetMachine &TM,
+ MCContext &Ctx);
+*/
+/* TODO: assembler input.
+ TargetAsmBackend *createHexagonAsmBackend(const Target &,
+ const std::string &);
+*/
+ void HexagonLowerToMC(const MachineInstr *MI, HexagonMCInst &MCI,
+ HexagonAsmPrinter &AP);
+} // end namespace llvm;
+
+#define Hexagon_POINTER_SIZE 4
+
+#define Hexagon_PointerSize (Hexagon_POINTER_SIZE)
+#define Hexagon_PointerSize_Bits (Hexagon_POINTER_SIZE * 8)
+#define Hexagon_WordSize Hexagon_PointerSize
+#define Hexagon_WordSize_Bits Hexagon_PointerSize_Bits
+
+// allocframe saves LR and FP on stack before allocating
+// a new stack frame. This takes 8 bytes.
+#define HEXAGON_LRFP_SIZE 8
+
+// Normal instruction size (in bytes).
+#define HEXAGON_INSTR_SIZE 4
+
+// Maximum number of words and instructions in a packet.
+#define HEXAGON_PACKET_SIZE 4
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/Hexagon.td b/contrib/llvm/lib/Target/Hexagon/Hexagon.td
new file mode 100644
index 0000000..5f4a6c6
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/Hexagon.td
@@ -0,0 +1,213 @@
+//===-- Hexagon.td - Describe the Hexagon Target Machine --*- tablegen -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the top level entry point for the Hexagon target.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces which we are implementing
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// Hexagon Subtarget features.
+//===----------------------------------------------------------------------===//
+
+// Hexagon Archtectures
+def ArchV2 : SubtargetFeature<"v2", "HexagonArchVersion", "V2",
+ "Hexagon v2">;
+def ArchV3 : SubtargetFeature<"v3", "HexagonArchVersion", "V3",
+ "Hexagon v3">;
+def ArchV4 : SubtargetFeature<"v4", "HexagonArchVersion", "V4",
+ "Hexagon v4">;
+def ArchV5 : SubtargetFeature<"v5", "HexagonArchVersion", "V5",
+ "Hexagon v5">;
+
+//===----------------------------------------------------------------------===//
+// Hexagon Instruction Predicate Definitions.
+//===----------------------------------------------------------------------===//
+def HasV2T : Predicate<"Subtarget.hasV2TOps()">;
+def HasV2TOnly : Predicate<"Subtarget.hasV2TOpsOnly()">;
+def NoV2T : Predicate<"!Subtarget.hasV2TOps()">;
+def HasV3T : Predicate<"Subtarget.hasV3TOps()">;
+def HasV3TOnly : Predicate<"Subtarget.hasV3TOpsOnly()">;
+def NoV3T : Predicate<"!Subtarget.hasV3TOps()">;
+def HasV4T : Predicate<"Subtarget.hasV4TOps()">;
+def NoV4T : Predicate<"!Subtarget.hasV4TOps()">;
+def HasV5T : Predicate<"Subtarget.hasV5TOps()">;
+def NoV5T : Predicate<"!Subtarget.hasV5TOps()">;
+def UseMEMOP : Predicate<"Subtarget.useMemOps()">;
+def IEEERndNearV5T : Predicate<"Subtarget.modeIEEERndNear()">;
+
+//===----------------------------------------------------------------------===//
+// Classes used for relation maps.
+//===----------------------------------------------------------------------===//
+// PredRel - Filter class used to relate non-predicated instructions with their
+// predicated forms.
+class PredRel;
+// PredNewRel - Filter class used to relate predicated instructions with their
+// predicate-new forms.
+class PredNewRel: PredRel;
+// ImmRegRel - Filter class used to relate instructions having reg-reg form
+// with their reg-imm counterparts.
+class ImmRegRel;
+// NewValueRel - Filter class used to relate regular store instructions with
+// their new-value store form.
+class NewValueRel: PredNewRel;
+// NewValueRel - Filter class used to relate load/store instructions having
+// different addressing modes with each other.
+class AddrModeRel: NewValueRel;
+
+//===----------------------------------------------------------------------===//
+// Generate mapping table to relate non-predicate instructions with their
+// predicated formats - true and false.
+//
+
+def getPredOpcode : InstrMapping {
+ let FilterClass = "PredRel";
+ // Instructions with the same BaseOpcode and isNVStore values form a row.
+ let RowFields = ["BaseOpcode", "isNVStore", "PNewValue"];
+ // Instructions with the same predicate sense form a column.
+ let ColFields = ["PredSense"];
+ // The key column is the unpredicated instructions.
+ let KeyCol = [""];
+ // Value columns are PredSense=true and PredSense=false
+ let ValueCols = [["true"], ["false"]];
+}
+
+//===----------------------------------------------------------------------===//
+// Generate mapping table to relate predicate-true instructions with their
+// predicate-false forms
+//
+def getFalsePredOpcode : InstrMapping {
+ let FilterClass = "PredRel";
+ let RowFields = ["BaseOpcode", "PNewValue", "isNVStore", "isBrTaken"];
+ let ColFields = ["PredSense"];
+ let KeyCol = ["true"];
+ let ValueCols = [["false"]];
+}
+
+//===----------------------------------------------------------------------===//
+// Generate mapping table to relate predicate-false instructions with their
+// predicate-true forms
+//
+def getTruePredOpcode : InstrMapping {
+ let FilterClass = "PredRel";
+ let RowFields = ["BaseOpcode", "PNewValue", "isNVStore", "isBrTaken"];
+ let ColFields = ["PredSense"];
+ let KeyCol = ["false"];
+ let ValueCols = [["true"]];
+}
+
+//===----------------------------------------------------------------------===//
+// Generate mapping table to relate predicated instructions with their .new
+// format.
+//
+def getPredNewOpcode : InstrMapping {
+ let FilterClass = "PredNewRel";
+ let RowFields = ["BaseOpcode", "PredSense", "isNVStore", "isBrTaken"];
+ let ColFields = ["PNewValue"];
+ let KeyCol = [""];
+ let ValueCols = [["new"]];
+}
+
+//===----------------------------------------------------------------------===//
+// Generate mapping table to relate .new predicated instructions with their old
+// format.
+//
+def getPredOldOpcode : InstrMapping {
+ let FilterClass = "PredNewRel";
+ let RowFields = ["BaseOpcode", "PredSense", "isNVStore"];
+ let ColFields = ["PNewValue"];
+ let KeyCol = ["new"];
+ let ValueCols = [[""]];
+}
+
+//===----------------------------------------------------------------------===//
+// Generate mapping table to relate store instructions with their new-value
+// format.
+//
+def getNewValueOpcode : InstrMapping {
+ let FilterClass = "NewValueRel";
+ let RowFields = ["BaseOpcode", "PredSense", "PNewValue"];
+ let ColFields = ["NValueST"];
+ let KeyCol = ["false"];
+ let ValueCols = [["true"]];
+}
+
+//===----------------------------------------------------------------------===//
+// Generate mapping table to relate new-value store instructions with their old
+// format.
+//
+def getNonNVStore : InstrMapping {
+ let FilterClass = "NewValueRel";
+ let RowFields = ["BaseOpcode", "PredSense", "PNewValue"];
+ let ColFields = ["NValueST"];
+ let KeyCol = ["true"];
+ let ValueCols = [["false"]];
+}
+
+def getBasedWithImmOffset : InstrMapping {
+ let FilterClass = "AddrModeRel";
+ let RowFields = ["CextOpcode", "PredSense", "PNewValue", "isNVStore",
+ "isMEMri", "isFloat"];
+ let ColFields = ["addrMode"];
+ let KeyCol = ["Absolute"];
+ let ValueCols = [["BaseImmOffset"]];
+}
+
+def getBaseWithRegOffset : InstrMapping {
+ let FilterClass = "AddrModeRel";
+ let RowFields = ["CextOpcode", "PredSense", "PNewValue", "isNVStore"];
+ let ColFields = ["addrMode"];
+ let KeyCol = ["BaseImmOffset"];
+ let ValueCols = [["BaseRegOffset"]];
+}
+
+def getRegForm : InstrMapping {
+ let FilterClass = "ImmRegRel";
+ let RowFields = ["CextOpcode", "PredSense", "PNewValue"];
+ let ColFields = ["InputType"];
+ let KeyCol = ["imm"];
+ let ValueCols = [["reg"]];
+}
+
+//===----------------------------------------------------------------------===//
+// Register File, Calling Conv, Instruction Descriptions
+//===----------------------------------------------------------------------===//
+include "HexagonSchedule.td"
+include "HexagonRegisterInfo.td"
+include "HexagonCallingConv.td"
+include "HexagonInstrInfo.td"
+include "HexagonIntrinsics.td"
+include "HexagonIntrinsicsDerived.td"
+
+def HexagonInstrInfo : InstrInfo;
+
+//===----------------------------------------------------------------------===//
+// Hexagon processors supported.
+//===----------------------------------------------------------------------===//
+
+class Proc<string Name, SchedMachineModel Model,
+ list<SubtargetFeature> Features>
+ : ProcessorModel<Name, Model, Features>;
+
+def : Proc<"hexagonv4", HexagonModelV4, [ArchV2, ArchV3, ArchV4]>;
+def : Proc<"hexagonv5", HexagonModelV4, [ArchV2, ArchV3, ArchV4, ArchV5]>;
+
+//===----------------------------------------------------------------------===//
+// Declare the target which we are implementing
+//===----------------------------------------------------------------------===//
+
+def Hexagon : Target {
+ // Pull in Instruction Info:
+ let InstructionSet = HexagonInstrInfo;
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.cpp
new file mode 100644
index 0000000..2e011bd
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.cpp
@@ -0,0 +1,236 @@
+//===-- HexagonAsmPrinter.cpp - Print machine instrs to Hexagon assembly --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to Hexagon assembly language. This printer is
+// the output mechanism used by `llc'.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "HexagonAsmPrinter.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "InstPrinter/HexagonInstPrinter.h"
+#include "MCTargetDesc/HexagonMCInst.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+static cl::opt<bool> AlignCalls(
+ "hexagon-align-calls", cl::Hidden, cl::init(true),
+ cl::desc("Insert falign after call instruction for Hexagon target"));
+
+void HexagonAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MachineOperand &MO = MI->getOperand(OpNo);
+
+ switch (MO.getType()) {
+ default: llvm_unreachable ("<unknown operand type>");
+ case MachineOperand::MO_Register:
+ O << HexagonInstPrinter::getRegisterName(MO.getReg());
+ return;
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ return;
+ case MachineOperand::MO_MachineBasicBlock:
+ O << *MO.getMBB()->getSymbol();
+ return;
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << *GetCPISymbol(MO.getIndex());
+ return;
+ case MachineOperand::MO_GlobalAddress:
+ // Computing the address of a global symbol, not calling it.
+ O << *getSymbol(MO.getGlobal());
+ printOffset(MO.getOffset(), O);
+ return;
+ }
+}
+
+//
+// isBlockOnlyReachableByFallthrough - We need to override this since the
+// default AsmPrinter does not print labels for any basic block that
+// is only reachable by a fall through. That works for all cases except
+// for the case in which the basic block is reachable by a fall through but
+// through an indirect from a jump table. In this case, the jump table
+// will contain a label not defined by AsmPrinter.
+//
+bool HexagonAsmPrinter::
+isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
+ if (MBB->hasAddressTaken()) {
+ return false;
+ }
+ return AsmPrinter::isBlockOnlyReachableByFallthrough(MBB);
+}
+
+
+/// PrintAsmOperand - Print out an operand for an inline asm expression.
+///
+bool HexagonAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &OS) {
+ // Does this asm operand have a single letter operand modifier?
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ default:
+ // See if this is a generic print operand
+ return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, OS);
+ case 'c': // Don't print "$" before a global var name or constant.
+ // Hexagon never has a prefix.
+ printOperand(MI, OpNo, OS);
+ return false;
+ case 'L': // Write second word of DImode reference.
+ // Verify that this operand has two consecutive registers.
+ if (!MI->getOperand(OpNo).isReg() ||
+ OpNo+1 == MI->getNumOperands() ||
+ !MI->getOperand(OpNo+1).isReg())
+ return true;
+ ++OpNo; // Return the high-part.
+ break;
+ case 'I':
+ // Write 'i' if an integer constant, otherwise nothing. Used to print
+ // addi vs add, etc.
+ if (MI->getOperand(OpNo).isImm())
+ OS << "i";
+ return false;
+ }
+ }
+
+ printOperand(MI, OpNo, OS);
+ return false;
+}
+
+bool HexagonAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNo, unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &O) {
+ if (ExtraCode && ExtraCode[0])
+ return true; // Unknown modifier.
+
+ const MachineOperand &Base = MI->getOperand(OpNo);
+ const MachineOperand &Offset = MI->getOperand(OpNo+1);
+
+ if (Base.isReg())
+ printOperand(MI, OpNo, O);
+ else
+ llvm_unreachable("Unimplemented");
+
+ if (Offset.isImm()) {
+ if (Offset.getImm())
+ O << " + #" << Offset.getImm();
+ }
+ else
+ llvm_unreachable("Unimplemented");
+
+ return false;
+}
+
+
+/// printMachineInstruction -- Print out a single Hexagon MI in Darwin syntax to
+/// the current output stream.
+///
+void HexagonAsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ if (MI->isBundle()) {
+ std::vector<const MachineInstr*> BundleMIs;
+
+ const MachineBasicBlock *MBB = MI->getParent();
+ MachineBasicBlock::const_instr_iterator MII = MI;
+ ++MII;
+ unsigned int IgnoreCount = 0;
+ while (MII != MBB->end() && MII->isInsideBundle()) {
+ const MachineInstr *MInst = MII;
+ if (MInst->getOpcode() == TargetOpcode::DBG_VALUE ||
+ MInst->getOpcode() == TargetOpcode::IMPLICIT_DEF) {
+ IgnoreCount++;
+ ++MII;
+ continue;
+ }
+ //BundleMIs.push_back(&*MII);
+ BundleMIs.push_back(MInst);
+ ++MII;
+ }
+ unsigned Size = BundleMIs.size();
+ assert((Size+IgnoreCount) == MI->getBundleSize() && "Corrupt Bundle!");
+ for (unsigned Index = 0; Index < Size; Index++) {
+ HexagonMCInst MCI;
+ MCI.setPacketStart(Index == 0);
+ MCI.setPacketEnd(Index == (Size-1));
+
+ HexagonLowerToMC(BundleMIs[Index], MCI, *this);
+ EmitToStreamer(OutStreamer, MCI);
+ }
+ }
+ else {
+ HexagonMCInst MCI;
+ if (MI->getOpcode() == Hexagon::ENDLOOP0) {
+ MCI.setPacketStart(true);
+ MCI.setPacketEnd(true);
+ }
+ HexagonLowerToMC(MI, MCI, *this);
+ EmitToStreamer(OutStreamer, MCI);
+ }
+
+ return;
+}
+
+static MCInstPrinter *createHexagonMCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ if (SyntaxVariant == 0)
+ return(new HexagonInstPrinter(MAI, MII, MRI));
+ else
+ return nullptr;
+}
+
+extern "C" void LLVMInitializeHexagonAsmPrinter() {
+ RegisterAsmPrinter<HexagonAsmPrinter> X(TheHexagonTarget);
+
+ TargetRegistry::RegisterMCInstPrinter(TheHexagonTarget,
+ createHexagonMCInstPrinter);
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.h b/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.h
new file mode 100644
index 0000000..7fe8c57
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.h
@@ -0,0 +1,55 @@
+//===-- HexagonAsmPrinter.h - Print machine code to an Hexagon .s file ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Hexagon Assembly printer class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HEXAGONASMPRINTER_H
+#define HEXAGONASMPRINTER_H
+
+#include "Hexagon.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+ class HexagonAsmPrinter : public AsmPrinter {
+ const HexagonSubtarget *Subtarget;
+
+ public:
+ explicit HexagonAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer) {
+ Subtarget = &TM.getSubtarget<HexagonSubtarget>();
+ }
+
+ const char *getPassName() const override {
+ return "Hexagon Assembly Printer";
+ }
+
+ bool isBlockOnlyReachableByFallthrough(
+ const MachineBasicBlock *MBB) const override;
+
+ void EmitInstruction(const MachineInstr *MI) override;
+
+ void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &OS) override;
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &OS) override;
+
+ static const char *getRegisterName(unsigned RegNo);
+ };
+
+} // end of llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonCFGOptimizer.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonCFGOptimizer.cpp
new file mode 100644
index 0000000..de340e0
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonCFGOptimizer.cpp
@@ -0,0 +1,253 @@
+//===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon_cfg"
+
+namespace llvm {
+ void initializeHexagonCFGOptimizerPass(PassRegistry&);
+}
+
+
+namespace {
+
+class HexagonCFGOptimizer : public MachineFunctionPass {
+
+private:
+ const HexagonTargetMachine& QTM;
+ const HexagonSubtarget &QST;
+
+ void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
+
+ public:
+ static char ID;
+ HexagonCFGOptimizer(const HexagonTargetMachine& TM)
+ : MachineFunctionPass(ID), QTM(TM), QST(*TM.getSubtargetImpl()) {
+ initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
+ }
+
+ const char *getPassName() const override {
+ return "Hexagon CFG Optimizer";
+ }
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+};
+
+
+char HexagonCFGOptimizer::ID = 0;
+
+static bool IsConditionalBranch(int Opc) {
+ return (Opc == Hexagon::JMP_t) || (Opc == Hexagon::JMP_f)
+ || (Opc == Hexagon::JMP_tnew_t) || (Opc == Hexagon::JMP_fnew_t);
+}
+
+
+static bool IsUnconditionalJump(int Opc) {
+ return (Opc == Hexagon::JMP);
+}
+
+
+void
+HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
+ MachineBasicBlock* NewTarget) {
+ const HexagonInstrInfo *QII = QTM.getInstrInfo();
+ int NewOpcode = 0;
+ switch(MI->getOpcode()) {
+ case Hexagon::JMP_t:
+ NewOpcode = Hexagon::JMP_f;
+ break;
+
+ case Hexagon::JMP_f:
+ NewOpcode = Hexagon::JMP_t;
+ break;
+
+ case Hexagon::JMP_tnew_t:
+ NewOpcode = Hexagon::JMP_fnew_t;
+ break;
+
+ case Hexagon::JMP_fnew_t:
+ NewOpcode = Hexagon::JMP_tnew_t;
+ break;
+
+ default:
+ llvm_unreachable("Cannot handle this case");
+ }
+
+ MI->setDesc(QII->get(NewOpcode));
+ MI->getOperand(1).setMBB(NewTarget);
+}
+
+
+bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
+
+ // Loop over all of the basic blocks.
+ for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
+ MBBb != MBBe; ++MBBb) {
+ MachineBasicBlock* MBB = MBBb;
+
+ // Traverse the basic block.
+ MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
+ if (MII != MBB->end()) {
+ MachineInstr *MI = MII;
+ int Opc = MI->getOpcode();
+ if (IsConditionalBranch(Opc)) {
+
+ //
+ // (Case 1) Transform the code if the following condition occurs:
+ // BB1: if (p0) jump BB3
+ // ...falls-through to BB2 ...
+ // BB2: jump BB4
+ // ...next block in layout is BB3...
+ // BB3: ...
+ //
+ // Transform this to:
+ // BB1: if (!p0) jump BB4
+ // Remove BB2
+ // BB3: ...
+ //
+ // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
+ // BB1: if (p0) jump BB3
+ // ...falls-through to BB2 ...
+ // BB2: jump BB4
+ // ...other basic blocks ...
+ // BB4:
+ // ...not a fall-thru
+ // BB3: ...
+ // jump BB4
+ //
+ // Transform this to:
+ // BB1: if (!p0) jump BB4
+ // Remove BB2
+ // BB3: ...
+ // BB4: ...
+ //
+ unsigned NumSuccs = MBB->succ_size();
+ MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
+ MachineBasicBlock* FirstSucc = *SI;
+ MachineBasicBlock* SecondSucc = *(++SI);
+ MachineBasicBlock* LayoutSucc = nullptr;
+ MachineBasicBlock* JumpAroundTarget = nullptr;
+
+ if (MBB->isLayoutSuccessor(FirstSucc)) {
+ LayoutSucc = FirstSucc;
+ JumpAroundTarget = SecondSucc;
+ } else if (MBB->isLayoutSuccessor(SecondSucc)) {
+ LayoutSucc = SecondSucc;
+ JumpAroundTarget = FirstSucc;
+ } else {
+ // Odd case...cannot handle.
+ }
+
+ // The target of the unconditional branch must be JumpAroundTarget.
+ // TODO: If not, we should not invert the unconditional branch.
+ MachineBasicBlock* CondBranchTarget = nullptr;
+ if ((MI->getOpcode() == Hexagon::JMP_t) ||
+ (MI->getOpcode() == Hexagon::JMP_f)) {
+ CondBranchTarget = MI->getOperand(1).getMBB();
+ }
+
+ if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
+ continue;
+ }
+
+ if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
+
+ // Ensure that BB2 has one instruction -- an unconditional jump.
+ if ((LayoutSucc->size() == 1) &&
+ IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
+ MachineBasicBlock* UncondTarget =
+ LayoutSucc->front().getOperand(0).getMBB();
+ // Check if the layout successor of BB2 is BB3.
+ bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
+ bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
+ JumpAroundTarget->size() >= 1 &&
+ IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
+ JumpAroundTarget->pred_size() == 1 &&
+ JumpAroundTarget->succ_size() == 1;
+
+ if (case1 || case2) {
+ InvertAndChangeJumpTarget(MI, UncondTarget);
+ MBB->removeSuccessor(JumpAroundTarget);
+ MBB->addSuccessor(UncondTarget);
+
+ // Remove the unconditional branch in LayoutSucc.
+ LayoutSucc->erase(LayoutSucc->begin());
+ LayoutSucc->removeSuccessor(UncondTarget);
+ LayoutSucc->addSuccessor(JumpAroundTarget);
+
+ // This code performs the conversion for case 2, which moves
+ // the block to the fall-thru case (BB3 in the code above).
+ if (case2 && !case1) {
+ JumpAroundTarget->moveAfter(LayoutSucc);
+ // only move a block if it doesn't have a fall-thru. otherwise
+ // the CFG will be incorrect.
+ if (!UncondTarget->canFallThrough()) {
+ UncondTarget->moveAfter(JumpAroundTarget);
+ }
+ }
+
+ //
+ // Correct live-in information. Is used by post-RA scheduler
+ // The live-in to LayoutSucc is now all values live-in to
+ // JumpAroundTarget.
+ //
+ std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
+ LayoutSucc->livein_end());
+ std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
+ JumpAroundTarget->livein_end());
+ for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
+ LayoutSucc->removeLiveIn(OrigLiveIn[i]);
+ }
+ for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
+ LayoutSucc->addLiveIn(NewLiveIn[i]);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ return true;
+}
+}
+
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+static void initializePassOnce(PassRegistry &Registry) {
+ PassInfo *PI = new PassInfo("Hexagon CFG Optimizer", "hexagon-cfg",
+ &HexagonCFGOptimizer::ID, nullptr, false, false);
+ Registry.registerPass(*PI, true);
+}
+
+void llvm::initializeHexagonCFGOptimizerPass(PassRegistry &Registry) {
+ CALL_ONCE_INITIALIZATION(initializePassOnce)
+}
+
+FunctionPass *llvm::createHexagonCFGOptimizer(const HexagonTargetMachine &TM) {
+ return new HexagonCFGOptimizer(TM);
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonCallingConv.td b/contrib/llvm/lib/Target/Hexagon/HexagonCallingConv.td
new file mode 100644
index 0000000..e61b2a7
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonCallingConv.td
@@ -0,0 +1,35 @@
+//===- HexagonCallingConv.td - Calling Conventions Hexagon -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This describes the calling conventions for the Hexagon architectures.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Conventions
+//===----------------------------------------------------------------------===//
+
+// Hexagon 32-bit C return-value convention.
+def RetCC_Hexagon32 : CallingConv<[
+ CCIfType<[i32, f32], CCAssignToReg<[R0, R1, R2, R3, R4, R5]>>,
+ CCIfType<[i64, f64], CCAssignToReg<[D0, D1, D2]>>,
+
+ // Alternatively, they are assigned to the stack in 4-byte aligned units.
+ CCAssignToStack<4, 4>
+]>;
+
+// Hexagon 32-bit C Calling convention.
+def CC_Hexagon32 : CallingConv<[
+ // All arguments get passed in integer registers if there is space.
+ CCIfType<[f32, i32, i16, i8], CCAssignToReg<[R0, R1, R2, R3, R4, R5]>>,
+ CCIfType<[f64, i64], CCAssignToReg<[D0, D1, D2]>>,
+
+ // Alternatively, they are assigned to the stack in 4-byte aligned units.
+ CCAssignToStack<4, 4>
+]>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.cpp
new file mode 100644
index 0000000..f5f958c
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.cpp
@@ -0,0 +1,204 @@
+//===-- llvm/CallingConvLower.cpp - Calling Convention lowering -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Hexagon_CCState class, used for lowering and
+// implementing calling conventions. Adapted from the machine independent
+// version of the class (CCState) but this handles calls to varargs functions
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonCallingConvLower.h"
+#include "Hexagon.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+using namespace llvm;
+
+Hexagon_CCState::Hexagon_CCState(CallingConv::ID CC, bool isVarArg,
+ const TargetMachine &tm,
+ SmallVectorImpl<CCValAssign> &locs,
+ LLVMContext &c)
+ : CallingConv(CC), IsVarArg(isVarArg), TM(tm), Locs(locs), Context(c) {
+ // No stack is used.
+ StackOffset = 0;
+
+ UsedRegs.resize((TM.getRegisterInfo()->getNumRegs()+31)/32);
+}
+
+// HandleByVal - Allocate a stack slot large enough to pass an argument by
+// value. The size and alignment information of the argument is encoded in its
+// parameter attribute.
+void Hexagon_CCState::HandleByVal(unsigned ValNo, EVT ValVT,
+ EVT LocVT, CCValAssign::LocInfo LocInfo,
+ int MinSize, int MinAlign,
+ ISD::ArgFlagsTy ArgFlags) {
+ unsigned Align = ArgFlags.getByValAlign();
+ unsigned Size = ArgFlags.getByValSize();
+ if (MinSize > (int)Size)
+ Size = MinSize;
+ if (MinAlign > (int)Align)
+ Align = MinAlign;
+ unsigned Offset = AllocateStack(Size, Align);
+
+ addLoc(CCValAssign::getMem(ValNo, ValVT.getSimpleVT(), Offset,
+ LocVT.getSimpleVT(), LocInfo));
+}
+
+/// MarkAllocated - Mark a register and all of its aliases as allocated.
+void Hexagon_CCState::MarkAllocated(unsigned Reg) {
+ const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
+ for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
+ UsedRegs[*AI/32] |= 1 << (*AI&31);
+}
+
+/// AnalyzeFormalArguments - Analyze an ISD::FORMAL_ARGUMENTS node,
+/// incorporating info about the formals into this state.
+void
+Hexagon_CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ Hexagon_CCAssignFn Fn,
+ unsigned SretValueInRegs) {
+ unsigned NumArgs = Ins.size();
+ unsigned i = 0;
+
+ // If the function returns a small struct in registers, skip
+ // over the first (dummy) argument.
+ if (SretValueInRegs != 0) {
+ ++i;
+ }
+
+
+ for (; i != NumArgs; ++i) {
+ EVT ArgVT = Ins[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
+ if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this, 0, 0, false)) {
+ dbgs() << "Formal argument #" << i << " has unhandled type "
+ << ArgVT.getEVTString() << "\n";
+ abort();
+ }
+ }
+}
+
+/// AnalyzeReturn - Analyze the returned values of an ISD::RET node,
+/// incorporating info about the result values into this state.
+void
+Hexagon_CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
+ Hexagon_CCAssignFn Fn,
+ unsigned SretValueInRegs) {
+
+ // For Hexagon, Return small structures in registers.
+ if (SretValueInRegs != 0) {
+ if (SretValueInRegs <= 32) {
+ unsigned Reg = Hexagon::R0;
+ addLoc(CCValAssign::getReg(0, MVT::i32, Reg, MVT::i32,
+ CCValAssign::Full));
+ return;
+ }
+ if (SretValueInRegs <= 64) {
+ unsigned Reg = Hexagon::D0;
+ addLoc(CCValAssign::getReg(0, MVT::i64, Reg, MVT::i64,
+ CCValAssign::Full));
+ return;
+ }
+ }
+
+
+ // Determine which register each value should be copied into.
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ EVT VT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this, -1, -1, false)){
+ dbgs() << "Return operand #" << i << " has unhandled type "
+ << VT.getEVTString() << "\n";
+ abort();
+ }
+ }
+}
+
+
+/// AnalyzeCallOperands - Analyze an ISD::CALL node, incorporating info
+/// about the passed values into this state.
+void
+Hexagon_CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg>
+ &Outs,
+ Hexagon_CCAssignFn Fn,
+ int NonVarArgsParams,
+ unsigned SretValueSize) {
+ unsigned NumOps = Outs.size();
+
+ unsigned i = 0;
+ // If the called function returns a small struct in registers, skip
+ // the first actual parameter. We do not want to pass a pointer to
+ // the stack location.
+ if (SretValueSize != 0) {
+ ++i;
+ }
+
+ for (; i != NumOps; ++i) {
+ EVT ArgVT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this,
+ NonVarArgsParams, i+1, false)) {
+ dbgs() << "Call operand #" << i << " has unhandled type "
+ << ArgVT.getEVTString() << "\n";
+ abort();
+ }
+ }
+}
+
+/// AnalyzeCallOperands - Same as above except it takes vectors of types
+/// and argument flags.
+void
+Hexagon_CCState::AnalyzeCallOperands(SmallVectorImpl<EVT> &ArgVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
+ Hexagon_CCAssignFn Fn) {
+ unsigned NumOps = ArgVTs.size();
+ for (unsigned i = 0; i != NumOps; ++i) {
+ EVT ArgVT = ArgVTs[i];
+ ISD::ArgFlagsTy ArgFlags = Flags[i];
+ if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this, -1, -1,
+ false)) {
+ dbgs() << "Call operand #" << i << " has unhandled type "
+ << ArgVT.getEVTString() << "\n";
+ abort();
+ }
+ }
+}
+
+/// AnalyzeCallResult - Analyze the return values of an ISD::CALL node,
+/// incorporating info about the passed values into this state.
+void
+Hexagon_CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
+ Hexagon_CCAssignFn Fn,
+ unsigned SretValueInRegs) {
+
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ EVT VT = Ins[i].VT;
+ ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
+ if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this, -1, -1, false)) {
+ dbgs() << "Call result #" << i << " has unhandled type "
+ << VT.getEVTString() << "\n";
+ abort();
+ }
+ }
+}
+
+/// AnalyzeCallResult - Same as above except it's specialized for calls which
+/// produce a single value.
+void Hexagon_CCState::AnalyzeCallResult(EVT VT, Hexagon_CCAssignFn Fn) {
+ if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this, -1, -1,
+ false)) {
+ dbgs() << "Call result has unhandled type "
+ << VT.getEVTString() << "\n";
+ abort();
+ }
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.h b/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.h
new file mode 100644
index 0000000..70b8b64
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.h
@@ -0,0 +1,187 @@
+//===-- HexagonCallingConvLower.h - Calling Conventions ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the Hexagon_CCState class, used for lowering
+// and implementing calling conventions. Adapted from the target independent
+// version but this handles calls to varargs functions
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_Hexagon_CODEGEN_CALLINGCONVLOWER_H
+#define LLVM_Hexagon_CODEGEN_CALLINGCONVLOWER_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+
+//
+// Need to handle varargs.
+//
+namespace llvm {
+ class TargetRegisterInfo;
+ class TargetMachine;
+ class Hexagon_CCState;
+ class SDNode;
+ struct EVT;
+
+/// Hexagon_CCAssignFn - This function assigns a location for Val, updating
+/// State to reflect the change.
+typedef bool Hexagon_CCAssignFn(unsigned ValNo, EVT ValVT,
+ EVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, Hexagon_CCState &State,
+ int NonVarArgsParams,
+ int CurrentParam,
+ bool ForceMem);
+
+
+/// CCState - This class holds information needed while lowering arguments and
+/// return values. It captures which registers are already assigned and which
+/// stack slots are used. It provides accessors to allocate these values.
+class Hexagon_CCState {
+ CallingConv::ID CallingConv;
+ bool IsVarArg;
+ const TargetMachine &TM;
+ SmallVectorImpl<CCValAssign> &Locs;
+ LLVMContext &Context;
+
+ unsigned StackOffset;
+ SmallVector<uint32_t, 16> UsedRegs;
+public:
+ Hexagon_CCState(CallingConv::ID CC, bool isVarArg, const TargetMachine &TM,
+ SmallVectorImpl<CCValAssign> &locs, LLVMContext &c);
+
+ void addLoc(const CCValAssign &V) {
+ Locs.push_back(V);
+ }
+
+ LLVMContext &getContext() const { return Context; }
+ const TargetMachine &getTarget() const { return TM; }
+ unsigned getCallingConv() const { return CallingConv; }
+ bool isVarArg() const { return IsVarArg; }
+
+ unsigned getNextStackOffset() const { return StackOffset; }
+
+ /// isAllocated - Return true if the specified register (or an alias) is
+ /// allocated.
+ bool isAllocated(unsigned Reg) const {
+ return UsedRegs[Reg/32] & (1 << (Reg&31));
+ }
+
+ /// AnalyzeFormalArguments - Analyze an ISD::FORMAL_ARGUMENTS node,
+ /// incorporating info about the formals into this state.
+ void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
+ Hexagon_CCAssignFn Fn, unsigned SretValueInRegs);
+
+ /// AnalyzeReturn - Analyze the returned values of an ISD::RET node,
+ /// incorporating info about the result values into this state.
+ void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
+ Hexagon_CCAssignFn Fn, unsigned SretValueInRegs);
+
+ /// AnalyzeCallOperands - Analyze an ISD::CALL node, incorporating info
+ /// about the passed values into this state.
+ void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
+ Hexagon_CCAssignFn Fn, int NonVarArgsParams,
+ unsigned SretValueSize);
+
+ /// AnalyzeCallOperands - Same as above except it takes vectors of types
+ /// and argument flags.
+ void AnalyzeCallOperands(SmallVectorImpl<EVT> &ArgVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
+ Hexagon_CCAssignFn Fn);
+
+ /// AnalyzeCallResult - Analyze the return values of an ISD::CALL node,
+ /// incorporating info about the passed values into this state.
+ void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
+ Hexagon_CCAssignFn Fn, unsigned SretValueInRegs);
+
+ /// AnalyzeCallResult - Same as above except it's specialized for calls which
+ /// produce a single value.
+ void AnalyzeCallResult(EVT VT, Hexagon_CCAssignFn Fn);
+
+ /// getFirstUnallocated - Return the first unallocated register in the set, or
+ /// NumRegs if they are all allocated.
+ unsigned getFirstUnallocated(const unsigned *Regs, unsigned NumRegs) const {
+ for (unsigned i = 0; i != NumRegs; ++i)
+ if (!isAllocated(Regs[i]))
+ return i;
+ return NumRegs;
+ }
+
+ /// AllocateReg - Attempt to allocate one register. If it is not available,
+ /// return zero. Otherwise, return the register, marking it and any aliases
+ /// as allocated.
+ unsigned AllocateReg(unsigned Reg) {
+ if (isAllocated(Reg)) return 0;
+ MarkAllocated(Reg);
+ return Reg;
+ }
+
+ /// Version of AllocateReg with extra register to be shadowed.
+ unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) {
+ if (isAllocated(Reg)) return 0;
+ MarkAllocated(Reg);
+ MarkAllocated(ShadowReg);
+ return Reg;
+ }
+
+ /// AllocateReg - Attempt to allocate one of the specified registers. If none
+ /// are available, return zero. Otherwise, return the first one available,
+ /// marking it and any aliases as allocated.
+ unsigned AllocateReg(const unsigned *Regs, unsigned NumRegs) {
+ unsigned FirstUnalloc = getFirstUnallocated(Regs, NumRegs);
+ if (FirstUnalloc == NumRegs)
+ return 0; // Didn't find the reg.
+
+ // Mark the register and any aliases as allocated.
+ unsigned Reg = Regs[FirstUnalloc];
+ MarkAllocated(Reg);
+ return Reg;
+ }
+
+ /// Version of AllocateReg with list of registers to be shadowed.
+ unsigned AllocateReg(const unsigned *Regs, const unsigned *ShadowRegs,
+ unsigned NumRegs) {
+ unsigned FirstUnalloc = getFirstUnallocated(Regs, NumRegs);
+ if (FirstUnalloc == NumRegs)
+ return 0; // Didn't find the reg.
+
+ // Mark the register and any aliases as allocated.
+ unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
+ MarkAllocated(Reg);
+ MarkAllocated(ShadowReg);
+ return Reg;
+ }
+
+ /// AllocateStack - Allocate a chunk of stack space with the specified size
+ /// and alignment.
+ unsigned AllocateStack(unsigned Size, unsigned Align) {
+ assert(Align && ((Align-1) & Align) == 0); // Align is power of 2.
+ StackOffset = ((StackOffset + Align-1) & ~(Align-1));
+ unsigned Result = StackOffset;
+ StackOffset += Size;
+ return Result;
+ }
+
+ // HandleByVal - Allocate a stack slot large enough to pass an argument by
+ // value. The size and alignment information of the argument is encoded in its
+ // parameter attribute.
+ void HandleByVal(unsigned ValNo, EVT ValVT,
+ EVT LocVT, CCValAssign::LocInfo LocInfo,
+ int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags);
+
+private:
+ /// MarkAllocated - Mark a register and all of its aliases as allocated.
+ void MarkAllocated(unsigned Reg);
+};
+
+
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonCopyToCombine.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonCopyToCombine.cpp
new file mode 100644
index 0000000..aeff680
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonCopyToCombine.cpp
@@ -0,0 +1,676 @@
+//===------- HexagonCopyToCombine.cpp - Hexagon Copy-To-Combine Pass ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This pass replaces transfer instructions by combine instructions.
+// We walk along a basic block and look for two combinable instructions and try
+// to move them together. If we can move them next to each other we do so and
+// replace them with a combine instruction.
+//===----------------------------------------------------------------------===//
+#include "llvm/PassSupport.h"
+#include "Hexagon.h"
+#include "HexagonInstrInfo.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonRegisterInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-copy-combine"
+
+static
+cl::opt<bool> IsCombinesDisabled("disable-merge-into-combines",
+ cl::Hidden, cl::ZeroOrMore,
+ cl::init(false),
+ cl::desc("Disable merging into combines"));
+static
+cl::opt<unsigned>
+MaxNumOfInstsBetweenNewValueStoreAndTFR("max-num-inst-between-tfr-and-nv-store",
+ cl::Hidden, cl::init(4),
+ cl::desc("Maximum distance between a tfr feeding a store we "
+ "consider the store still to be newifiable"));
+
+namespace llvm {
+ void initializeHexagonCopyToCombinePass(PassRegistry&);
+}
+
+
+namespace {
+
+class HexagonCopyToCombine : public MachineFunctionPass {
+ const HexagonInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ bool ShouldCombineAggressively;
+
+ DenseSet<MachineInstr *> PotentiallyNewifiableTFR;
+public:
+ static char ID;
+
+ HexagonCopyToCombine() : MachineFunctionPass(ID) {
+ initializeHexagonCopyToCombinePass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ const char *getPassName() const override {
+ return "Hexagon Copy-To-Combine Pass";
+ }
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+private:
+ MachineInstr *findPairable(MachineInstr *I1, bool &DoInsertAtI1);
+
+ void findPotentialNewifiableTFRs(MachineBasicBlock &);
+
+ void combine(MachineInstr *I1, MachineInstr *I2,
+ MachineBasicBlock::iterator &MI, bool DoInsertAtI1);
+
+ bool isSafeToMoveTogether(MachineInstr *I1, MachineInstr *I2,
+ unsigned I1DestReg, unsigned I2DestReg,
+ bool &DoInsertAtI1);
+
+ void emitCombineRR(MachineBasicBlock::iterator &Before, unsigned DestReg,
+ MachineOperand &HiOperand, MachineOperand &LoOperand);
+
+ void emitCombineRI(MachineBasicBlock::iterator &Before, unsigned DestReg,
+ MachineOperand &HiOperand, MachineOperand &LoOperand);
+
+ void emitCombineIR(MachineBasicBlock::iterator &Before, unsigned DestReg,
+ MachineOperand &HiOperand, MachineOperand &LoOperand);
+
+ void emitCombineII(MachineBasicBlock::iterator &Before, unsigned DestReg,
+ MachineOperand &HiOperand, MachineOperand &LoOperand);
+};
+
+} // End anonymous namespace.
+
+char HexagonCopyToCombine::ID = 0;
+
+INITIALIZE_PASS(HexagonCopyToCombine, "hexagon-copy-combine",
+ "Hexagon Copy-To-Combine Pass", false, false)
+
+static bool isCombinableInstType(MachineInstr *MI,
+ const HexagonInstrInfo *TII,
+ bool ShouldCombineAggressively) {
+ switch(MI->getOpcode()) {
+ case Hexagon::TFR: {
+ // A COPY instruction can be combined if its arguments are IntRegs (32bit).
+ assert(MI->getOperand(0).isReg() && MI->getOperand(1).isReg());
+
+ unsigned DestReg = MI->getOperand(0).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ return Hexagon::IntRegsRegClass.contains(DestReg) &&
+ Hexagon::IntRegsRegClass.contains(SrcReg);
+ }
+
+ case Hexagon::TFRI: {
+ // A transfer-immediate can be combined if its argument is a signed 8bit
+ // value.
+ assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
+ unsigned DestReg = MI->getOperand(0).getReg();
+
+ // Only combine constant extended TFRI if we are in aggressive mode.
+ return Hexagon::IntRegsRegClass.contains(DestReg) &&
+ (ShouldCombineAggressively || isInt<8>(MI->getOperand(1).getImm()));
+ }
+
+ case Hexagon::TFRI_V4: {
+ if (!ShouldCombineAggressively)
+ return false;
+ assert(MI->getOperand(0).isReg() && MI->getOperand(1).isGlobal());
+
+ // Ensure that TargetFlags are MO_NO_FLAG for a global. This is a
+ // workaround for an ABI bug that prevents GOT relocations on combine
+ // instructions
+ if (MI->getOperand(1).getTargetFlags() != HexagonII::MO_NO_FLAG)
+ return false;
+
+ unsigned DestReg = MI->getOperand(0).getReg();
+ return Hexagon::IntRegsRegClass.contains(DestReg);
+ }
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+static bool isGreaterThan8BitTFRI(MachineInstr *I) {
+ return I->getOpcode() == Hexagon::TFRI &&
+ !isInt<8>(I->getOperand(1).getImm());
+}
+static bool isGreaterThan6BitTFRI(MachineInstr *I) {
+ return I->getOpcode() == Hexagon::TFRI &&
+ !isUInt<6>(I->getOperand(1).getImm());
+}
+
+/// areCombinableOperations - Returns true if the two instruction can be merge
+/// into a combine (ignoring register constraints).
+static bool areCombinableOperations(const TargetRegisterInfo *TRI,
+ MachineInstr *HighRegInst,
+ MachineInstr *LowRegInst) {
+ assert((HighRegInst->getOpcode() == Hexagon::TFR ||
+ HighRegInst->getOpcode() == Hexagon::TFRI ||
+ HighRegInst->getOpcode() == Hexagon::TFRI_V4) &&
+ (LowRegInst->getOpcode() == Hexagon::TFR ||
+ LowRegInst->getOpcode() == Hexagon::TFRI ||
+ LowRegInst->getOpcode() == Hexagon::TFRI_V4) &&
+ "Assume individual instructions are of a combinable type");
+
+ const HexagonRegisterInfo *QRI =
+ static_cast<const HexagonRegisterInfo *>(TRI);
+
+ // V4 added some combine variations (mixed immediate and register source
+ // operands), if we are on < V4 we can only combine 2 register-to-register
+ // moves and 2 immediate-to-register moves. We also don't have
+ // constant-extenders.
+ if (!QRI->Subtarget.hasV4TOps())
+ return HighRegInst->getOpcode() == LowRegInst->getOpcode() &&
+ !isGreaterThan8BitTFRI(HighRegInst) &&
+ !isGreaterThan6BitTFRI(LowRegInst);
+
+ // There is no combine of two constant extended values.
+ if ((HighRegInst->getOpcode() == Hexagon::TFRI_V4 ||
+ isGreaterThan8BitTFRI(HighRegInst)) &&
+ (LowRegInst->getOpcode() == Hexagon::TFRI_V4 ||
+ isGreaterThan6BitTFRI(LowRegInst)))
+ return false;
+
+ return true;
+}
+
+static bool isEvenReg(unsigned Reg) {
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ Hexagon::IntRegsRegClass.contains(Reg));
+ return (Reg - Hexagon::R0) % 2 == 0;
+}
+
+static void removeKillInfo(MachineInstr *MI, unsigned RegNotKilled) {
+ for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
+ MachineOperand &Op = MI->getOperand(I);
+ if (!Op.isReg() || Op.getReg() != RegNotKilled || !Op.isKill())
+ continue;
+ Op.setIsKill(false);
+ }
+}
+
+/// isUnsafeToMoveAcross - Returns true if it is unsafe to move a copy
+/// instruction from \p UseReg to \p DestReg over the instruction \p I.
+static bool isUnsafeToMoveAcross(MachineInstr *I, unsigned UseReg,
+ unsigned DestReg,
+ const TargetRegisterInfo *TRI) {
+ return (UseReg && (I->modifiesRegister(UseReg, TRI))) ||
+ I->modifiesRegister(DestReg, TRI) ||
+ I->readsRegister(DestReg, TRI) ||
+ I->hasUnmodeledSideEffects() ||
+ I->isInlineAsm() || I->isDebugValue();
+}
+
+/// isSafeToMoveTogether - Returns true if it is safe to move I1 next to I2 such
+/// that the two instructions can be paired in a combine.
+bool HexagonCopyToCombine::isSafeToMoveTogether(MachineInstr *I1,
+ MachineInstr *I2,
+ unsigned I1DestReg,
+ unsigned I2DestReg,
+ bool &DoInsertAtI1) {
+
+ bool IsImmUseReg = I2->getOperand(1).isImm() || I2->getOperand(1).isGlobal();
+ unsigned I2UseReg = IsImmUseReg ? 0 : I2->getOperand(1).getReg();
+
+ // It is not safe to move I1 and I2 into one combine if I2 has a true
+ // dependence on I1.
+ if (I2UseReg && I1->modifiesRegister(I2UseReg, TRI))
+ return false;
+
+ bool isSafe = true;
+
+ // First try to move I2 towards I1.
+ {
+ // A reverse_iterator instantiated like below starts before I2, and I1
+ // respectively.
+ // Look at instructions I in between I2 and (excluding) I1.
+ MachineBasicBlock::reverse_iterator I(I2),
+ End = --(MachineBasicBlock::reverse_iterator(I1));
+ // At 03 we got better results (dhrystone!) by being more conservative.
+ if (!ShouldCombineAggressively)
+ End = MachineBasicBlock::reverse_iterator(I1);
+ // If I2 kills its operand and we move I2 over an instruction that also
+ // uses I2's use reg we need to modify that (first) instruction to now kill
+ // this reg.
+ unsigned KilledOperand = 0;
+ if (I2->killsRegister(I2UseReg))
+ KilledOperand = I2UseReg;
+ MachineInstr *KillingInstr = nullptr;
+
+ for (; I != End; ++I) {
+ // If the intervening instruction I:
+ // * modifies I2's use reg
+ // * modifies I2's def reg
+ // * reads I2's def reg
+ // * or has unmodelled side effects
+ // we can't move I2 across it.
+ if (isUnsafeToMoveAcross(&*I, I2UseReg, I2DestReg, TRI)) {
+ isSafe = false;
+ break;
+ }
+
+ // Update first use of the killed operand.
+ if (!KillingInstr && KilledOperand &&
+ I->readsRegister(KilledOperand, TRI))
+ KillingInstr = &*I;
+ }
+ if (isSafe) {
+ // Update the intermediate instruction to with the kill flag.
+ if (KillingInstr) {
+ bool Added = KillingInstr->addRegisterKilled(KilledOperand, TRI, true);
+ (void)Added; // suppress compiler warning
+ assert(Added && "Must successfully update kill flag");
+ removeKillInfo(I2, KilledOperand);
+ }
+ DoInsertAtI1 = true;
+ return true;
+ }
+ }
+
+ // Try to move I1 towards I2.
+ {
+ // Look at instructions I in between I1 and (excluding) I2.
+ MachineBasicBlock::iterator I(I1), End(I2);
+ // At O3 we got better results (dhrystone) by being more conservative here.
+ if (!ShouldCombineAggressively)
+ End = std::next(MachineBasicBlock::iterator(I2));
+ IsImmUseReg = I1->getOperand(1).isImm() || I1->getOperand(1).isGlobal();
+ unsigned I1UseReg = IsImmUseReg ? 0 : I1->getOperand(1).getReg();
+ // Track killed operands. If we move across an instruction that kills our
+ // operand, we need to update the kill information on the moved I1. It kills
+ // the operand now.
+ MachineInstr *KillingInstr = nullptr;
+ unsigned KilledOperand = 0;
+
+ while(++I != End) {
+ // If the intervening instruction I:
+ // * modifies I1's use reg
+ // * modifies I1's def reg
+ // * reads I1's def reg
+ // * or has unmodelled side effects
+ // We introduce this special case because llvm has no api to remove a
+ // kill flag for a register (a removeRegisterKilled() analogous to
+ // addRegisterKilled) that handles aliased register correctly.
+ // * or has a killed aliased register use of I1's use reg
+ // %D4<def> = TFRI64 16
+ // %R6<def> = TFR %R9
+ // %R8<def> = KILL %R8, %D4<imp-use,kill>
+ // If we want to move R6 = across the KILL instruction we would have
+ // to remove the %D4<imp-use,kill> operand. For now, we are
+ // conservative and disallow the move.
+ // we can't move I1 across it.
+ if (isUnsafeToMoveAcross(I, I1UseReg, I1DestReg, TRI) ||
+ // Check for an aliased register kill. Bail out if we see one.
+ (!I->killsRegister(I1UseReg) && I->killsRegister(I1UseReg, TRI)))
+ return false;
+
+ // Check for an exact kill (registers match).
+ if (I1UseReg && I->killsRegister(I1UseReg)) {
+ assert(!KillingInstr && "Should only see one killing instruction");
+ KilledOperand = I1UseReg;
+ KillingInstr = &*I;
+ }
+ }
+ if (KillingInstr) {
+ removeKillInfo(KillingInstr, KilledOperand);
+ // Update I1 to set the kill flag. This flag will later be picked up by
+ // the new COMBINE instruction.
+ bool Added = I1->addRegisterKilled(KilledOperand, TRI);
+ (void)Added; // suppress compiler warning
+ assert(Added && "Must successfully update kill flag");
+ }
+ DoInsertAtI1 = false;
+ }
+
+ return true;
+}
+
+/// findPotentialNewifiableTFRs - Finds tranfers that feed stores that could be
+/// newified. (A use of a 64 bit register define can not be newified)
+void
+HexagonCopyToCombine::findPotentialNewifiableTFRs(MachineBasicBlock &BB) {
+ DenseMap<unsigned, MachineInstr *> LastDef;
+ for (MachineBasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
+ MachineInstr *MI = I;
+ // Mark TFRs that feed a potential new value store as such.
+ if(TII->mayBeNewStore(MI)) {
+ // Look for uses of TFR instructions.
+ for (unsigned OpdIdx = 0, OpdE = MI->getNumOperands(); OpdIdx != OpdE;
+ ++OpdIdx) {
+ MachineOperand &Op = MI->getOperand(OpdIdx);
+
+ // Skip over anything except register uses.
+ if (!Op.isReg() || !Op.isUse() || !Op.getReg())
+ continue;
+
+ // Look for the defining instruction.
+ unsigned Reg = Op.getReg();
+ MachineInstr *DefInst = LastDef[Reg];
+ if (!DefInst)
+ continue;
+ if (!isCombinableInstType(DefInst, TII, ShouldCombineAggressively))
+ continue;
+
+ // Only close newifiable stores should influence the decision.
+ MachineBasicBlock::iterator It(DefInst);
+ unsigned NumInstsToDef = 0;
+ while (&*It++ != MI)
+ ++NumInstsToDef;
+
+ if (NumInstsToDef > MaxNumOfInstsBetweenNewValueStoreAndTFR)
+ continue;
+
+ PotentiallyNewifiableTFR.insert(DefInst);
+ }
+ // Skip to next instruction.
+ continue;
+ }
+
+ // Put instructions that last defined integer or double registers into the
+ // map.
+ for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
+ MachineOperand &Op = MI->getOperand(I);
+ if (!Op.isReg() || !Op.isDef() || !Op.getReg())
+ continue;
+ unsigned Reg = Op.getReg();
+ if (Hexagon::DoubleRegsRegClass.contains(Reg)) {
+ for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
+ LastDef[*SubRegs] = MI;
+ }
+ } else if (Hexagon::IntRegsRegClass.contains(Reg))
+ LastDef[Reg] = MI;
+ }
+ }
+}
+
+bool HexagonCopyToCombine::runOnMachineFunction(MachineFunction &MF) {
+
+ if (IsCombinesDisabled) return false;
+
+ bool HasChanged = false;
+
+ // Get target info.
+ TRI = MF.getTarget().getRegisterInfo();
+ TII = static_cast<const HexagonInstrInfo *>(MF.getTarget().getInstrInfo());
+
+ // Combine aggressively (for code size)
+ ShouldCombineAggressively =
+ MF.getTarget().getOptLevel() <= CodeGenOpt::Default;
+
+ // Traverse basic blocks.
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
+ ++BI) {
+ PotentiallyNewifiableTFR.clear();
+ findPotentialNewifiableTFRs(*BI);
+
+ // Traverse instructions in basic block.
+ for(MachineBasicBlock::iterator MI = BI->begin(), End = BI->end();
+ MI != End;) {
+ MachineInstr *I1 = MI++;
+ // Don't combine a TFR whose user could be newified (instructions that
+ // define double registers can not be newified - Programmer's Ref Manual
+ // 5.4.2 New-value stores).
+ if (ShouldCombineAggressively && PotentiallyNewifiableTFR.count(I1))
+ continue;
+
+ // Ignore instructions that are not combinable.
+ if (!isCombinableInstType(I1, TII, ShouldCombineAggressively))
+ continue;
+
+ // Find a second instruction that can be merged into a combine
+ // instruction.
+ bool DoInsertAtI1 = false;
+ MachineInstr *I2 = findPairable(I1, DoInsertAtI1);
+ if (I2) {
+ HasChanged = true;
+ combine(I1, I2, MI, DoInsertAtI1);
+ }
+ }
+ }
+
+ return HasChanged;
+}
+
+/// findPairable - Returns an instruction that can be merged with \p I1 into a
+/// COMBINE instruction or 0 if no such instruction can be found. Returns true
+/// in \p DoInsertAtI1 if the combine must be inserted at instruction \p I1
+/// false if the combine must be inserted at the returned instruction.
+MachineInstr *HexagonCopyToCombine::findPairable(MachineInstr *I1,
+ bool &DoInsertAtI1) {
+ MachineBasicBlock::iterator I2 = std::next(MachineBasicBlock::iterator(I1));
+ unsigned I1DestReg = I1->getOperand(0).getReg();
+
+ for (MachineBasicBlock::iterator End = I1->getParent()->end(); I2 != End;
+ ++I2) {
+ // Bail out early if we see a second definition of I1DestReg.
+ if (I2->modifiesRegister(I1DestReg, TRI))
+ break;
+
+ // Ignore non-combinable instructions.
+ if (!isCombinableInstType(I2, TII, ShouldCombineAggressively))
+ continue;
+
+ // Don't combine a TFR whose user could be newified.
+ if (ShouldCombineAggressively && PotentiallyNewifiableTFR.count(I2))
+ continue;
+
+ unsigned I2DestReg = I2->getOperand(0).getReg();
+
+ // Check that registers are adjacent and that the first destination register
+ // is even.
+ bool IsI1LowReg = (I2DestReg - I1DestReg) == 1;
+ bool IsI2LowReg = (I1DestReg - I2DestReg) == 1;
+ unsigned FirstRegIndex = IsI1LowReg ? I1DestReg : I2DestReg;
+ if ((!IsI1LowReg && !IsI2LowReg) || !isEvenReg(FirstRegIndex))
+ continue;
+
+ // Check that the two instructions are combinable. V4 allows more
+ // instructions to be merged into a combine.
+ // The order matters because in a TFRI we might can encode a int8 as the
+ // hi reg operand but only a uint6 as the low reg operand.
+ if ((IsI2LowReg && !areCombinableOperations(TRI, I1, I2)) ||
+ (IsI1LowReg && !areCombinableOperations(TRI, I2, I1)))
+ break;
+
+ if (isSafeToMoveTogether(I1, I2, I1DestReg, I2DestReg,
+ DoInsertAtI1))
+ return I2;
+
+ // Not safe. Stop searching.
+ break;
+ }
+ return nullptr;
+}
+
+void HexagonCopyToCombine::combine(MachineInstr *I1, MachineInstr *I2,
+ MachineBasicBlock::iterator &MI,
+ bool DoInsertAtI1) {
+ // We are going to delete I2. If MI points to I2 advance it to the next
+ // instruction.
+ if ((MachineInstr *)MI == I2) ++MI;
+
+ // Figure out whether I1 or I2 goes into the lowreg part.
+ unsigned I1DestReg = I1->getOperand(0).getReg();
+ unsigned I2DestReg = I2->getOperand(0).getReg();
+ bool IsI1Loreg = (I2DestReg - I1DestReg) == 1;
+ unsigned LoRegDef = IsI1Loreg ? I1DestReg : I2DestReg;
+
+ // Get the double word register.
+ unsigned DoubleRegDest =
+ TRI->getMatchingSuperReg(LoRegDef, Hexagon::subreg_loreg,
+ &Hexagon::DoubleRegsRegClass);
+ assert(DoubleRegDest != 0 && "Expect a valid register");
+
+
+ // Setup source operands.
+ MachineOperand &LoOperand = IsI1Loreg ? I1->getOperand(1) :
+ I2->getOperand(1);
+ MachineOperand &HiOperand = IsI1Loreg ? I2->getOperand(1) :
+ I1->getOperand(1);
+
+ // Figure out which source is a register and which a constant.
+ bool IsHiReg = HiOperand.isReg();
+ bool IsLoReg = LoOperand.isReg();
+
+ MachineBasicBlock::iterator InsertPt(DoInsertAtI1 ? I1 : I2);
+ // Emit combine.
+ if (IsHiReg && IsLoReg)
+ emitCombineRR(InsertPt, DoubleRegDest, HiOperand, LoOperand);
+ else if (IsHiReg)
+ emitCombineRI(InsertPt, DoubleRegDest, HiOperand, LoOperand);
+ else if (IsLoReg)
+ emitCombineIR(InsertPt, DoubleRegDest, HiOperand, LoOperand);
+ else
+ emitCombineII(InsertPt, DoubleRegDest, HiOperand, LoOperand);
+
+ I1->eraseFromParent();
+ I2->eraseFromParent();
+}
+
+void HexagonCopyToCombine::emitCombineII(MachineBasicBlock::iterator &InsertPt,
+ unsigned DoubleDestReg,
+ MachineOperand &HiOperand,
+ MachineOperand &LoOperand) {
+ DebugLoc DL = InsertPt->getDebugLoc();
+ MachineBasicBlock *BB = InsertPt->getParent();
+
+ // Handle globals.
+ if (HiOperand.isGlobal()) {
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg)
+ .addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(),
+ HiOperand.getTargetFlags())
+ .addImm(LoOperand.getImm());
+ return;
+ }
+ if (LoOperand.isGlobal()) {
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_iI_V4), DoubleDestReg)
+ .addImm(HiOperand.getImm())
+ .addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(),
+ LoOperand.getTargetFlags());
+ return;
+ }
+
+ // Handle constant extended immediates.
+ if (!isInt<8>(HiOperand.getImm())) {
+ assert(isInt<8>(LoOperand.getImm()));
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg)
+ .addImm(HiOperand.getImm())
+ .addImm(LoOperand.getImm());
+ return;
+ }
+
+ if (!isUInt<6>(LoOperand.getImm())) {
+ assert(isInt<8>(HiOperand.getImm()));
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_iI_V4), DoubleDestReg)
+ .addImm(HiOperand.getImm())
+ .addImm(LoOperand.getImm());
+ return;
+ }
+
+ // Insert new combine instruction.
+ // DoubleRegDest = combine #HiImm, #LoImm
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg)
+ .addImm(HiOperand.getImm())
+ .addImm(LoOperand.getImm());
+}
+
+void HexagonCopyToCombine::emitCombineIR(MachineBasicBlock::iterator &InsertPt,
+ unsigned DoubleDestReg,
+ MachineOperand &HiOperand,
+ MachineOperand &LoOperand) {
+ unsigned LoReg = LoOperand.getReg();
+ unsigned LoRegKillFlag = getKillRegState(LoOperand.isKill());
+
+ DebugLoc DL = InsertPt->getDebugLoc();
+ MachineBasicBlock *BB = InsertPt->getParent();
+
+ // Handle global.
+ if (HiOperand.isGlobal()) {
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ir_V4), DoubleDestReg)
+ .addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(),
+ HiOperand.getTargetFlags())
+ .addReg(LoReg, LoRegKillFlag);
+ return;
+ }
+ // Insert new combine instruction.
+ // DoubleRegDest = combine #HiImm, LoReg
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ir_V4), DoubleDestReg)
+ .addImm(HiOperand.getImm())
+ .addReg(LoReg, LoRegKillFlag);
+}
+
+void HexagonCopyToCombine::emitCombineRI(MachineBasicBlock::iterator &InsertPt,
+ unsigned DoubleDestReg,
+ MachineOperand &HiOperand,
+ MachineOperand &LoOperand) {
+ unsigned HiRegKillFlag = getKillRegState(HiOperand.isKill());
+ unsigned HiReg = HiOperand.getReg();
+
+ DebugLoc DL = InsertPt->getDebugLoc();
+ MachineBasicBlock *BB = InsertPt->getParent();
+
+ // Handle global.
+ if (LoOperand.isGlobal()) {
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rI_V4), DoubleDestReg)
+ .addReg(HiReg, HiRegKillFlag)
+ .addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(),
+ LoOperand.getTargetFlags());
+ return;
+ }
+
+ // Insert new combine instruction.
+ // DoubleRegDest = combine HiReg, #LoImm
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rI_V4), DoubleDestReg)
+ .addReg(HiReg, HiRegKillFlag)
+ .addImm(LoOperand.getImm());
+}
+
+void HexagonCopyToCombine::emitCombineRR(MachineBasicBlock::iterator &InsertPt,
+ unsigned DoubleDestReg,
+ MachineOperand &HiOperand,
+ MachineOperand &LoOperand) {
+ unsigned LoRegKillFlag = getKillRegState(LoOperand.isKill());
+ unsigned HiRegKillFlag = getKillRegState(HiOperand.isKill());
+ unsigned LoReg = LoOperand.getReg();
+ unsigned HiReg = HiOperand.getReg();
+
+ DebugLoc DL = InsertPt->getDebugLoc();
+ MachineBasicBlock *BB = InsertPt->getParent();
+
+ // Insert new combine instruction.
+ // DoubleRegDest = combine HiReg, LoReg
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rr), DoubleDestReg)
+ .addReg(HiReg, HiRegKillFlag)
+ .addReg(LoReg, LoRegKillFlag);
+}
+
+FunctionPass *llvm::createHexagonCopyToCombine() {
+ return new HexagonCopyToCombine();
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonExpandPredSpillCode.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonExpandPredSpillCode.cpp
new file mode 100644
index 0000000..3dafe80
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonExpandPredSpillCode.cpp
@@ -0,0 +1,201 @@
+//===-- HexagonExpandPredSpillCode.cpp - Expand Predicate Spill Code ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// The Hexagon processor has no instructions that load or store predicate
+// registers directly. So, when these registers must be spilled a general
+// purpose register must be found and the value copied to/from it from/to
+// the predicate register. This code currently does not use the register
+// scavenger mechanism available in the allocator. There are two registers
+// reserved to allow spilling/restoring predicate registers. One is used to
+// hold the predicate value. The other is used when stack frame offsets are
+// too large.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LatencyPriorityQueue.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+
+namespace llvm {
+ void initializeHexagonExpandPredSpillCodePass(PassRegistry&);
+}
+
+
+namespace {
+
+class HexagonExpandPredSpillCode : public MachineFunctionPass {
+ const HexagonTargetMachine& QTM;
+ const HexagonSubtarget &QST;
+
+ public:
+ static char ID;
+ HexagonExpandPredSpillCode(const HexagonTargetMachine& TM) :
+ MachineFunctionPass(ID), QTM(TM), QST(*TM.getSubtargetImpl()) {
+ PassRegistry &Registry = *PassRegistry::getPassRegistry();
+ initializeHexagonExpandPredSpillCodePass(Registry);
+ }
+
+ const char *getPassName() const override {
+ return "Hexagon Expand Predicate Spill Code";
+ }
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+};
+
+
+char HexagonExpandPredSpillCode::ID = 0;
+
+
+bool HexagonExpandPredSpillCode::runOnMachineFunction(MachineFunction &Fn) {
+
+ const HexagonInstrInfo *TII = QTM.getInstrInfo();
+
+ // Loop over all of the basic blocks.
+ for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
+ MBBb != MBBe; ++MBBb) {
+ MachineBasicBlock* MBB = MBBb;
+ // Traverse the basic block.
+ for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end();
+ ++MII) {
+ MachineInstr *MI = MII;
+ int Opc = MI->getOpcode();
+ if (Opc == Hexagon::STriw_pred) {
+ // STriw_pred [R30], ofst, SrcReg;
+ unsigned FP = MI->getOperand(0).getReg();
+ assert(FP == QTM.getRegisterInfo()->getFrameRegister() &&
+ "Not a Frame Pointer, Nor a Spill Slot");
+ assert(MI->getOperand(1).isImm() && "Not an offset");
+ int Offset = MI->getOperand(1).getImm();
+ int SrcReg = MI->getOperand(2).getReg();
+ assert(Hexagon::PredRegsRegClass.contains(SrcReg) &&
+ "Not a predicate register");
+ if (!TII->isValidOffset(Hexagon::STriw_indexed, Offset)) {
+ if (!TII->isValidOffset(Hexagon::ADD_ri, Offset)) {
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::CONST32_Int_Real),
+ HEXAGON_RESERVED_REG_1).addImm(Offset);
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::ADD_rr),
+ HEXAGON_RESERVED_REG_1)
+ .addReg(FP).addReg(HEXAGON_RESERVED_REG_1);
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_RsPd),
+ HEXAGON_RESERVED_REG_2).addReg(SrcReg);
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::STriw_indexed))
+ .addReg(HEXAGON_RESERVED_REG_1)
+ .addImm(0).addReg(HEXAGON_RESERVED_REG_2);
+ } else {
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::ADD_ri),
+ HEXAGON_RESERVED_REG_1).addReg(FP).addImm(Offset);
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_RsPd),
+ HEXAGON_RESERVED_REG_2).addReg(SrcReg);
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::STriw_indexed))
+ .addReg(HEXAGON_RESERVED_REG_1)
+ .addImm(0)
+ .addReg(HEXAGON_RESERVED_REG_2);
+ }
+ } else {
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_RsPd),
+ HEXAGON_RESERVED_REG_2).addReg(SrcReg);
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::STriw_indexed)).
+ addReg(FP).addImm(Offset).addReg(HEXAGON_RESERVED_REG_2);
+ }
+ MII = MBB->erase(MI);
+ --MII;
+ } else if (Opc == Hexagon::LDriw_pred) {
+ // DstReg = LDriw_pred [R30], ofst.
+ int DstReg = MI->getOperand(0).getReg();
+ assert(Hexagon::PredRegsRegClass.contains(DstReg) &&
+ "Not a predicate register");
+ unsigned FP = MI->getOperand(1).getReg();
+ assert(FP == QTM.getRegisterInfo()->getFrameRegister() &&
+ "Not a Frame Pointer, Nor a Spill Slot");
+ assert(MI->getOperand(2).isImm() && "Not an offset");
+ int Offset = MI->getOperand(2).getImm();
+ if (!TII->isValidOffset(Hexagon::LDriw, Offset)) {
+ if (!TII->isValidOffset(Hexagon::ADD_ri, Offset)) {
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::CONST32_Int_Real),
+ HEXAGON_RESERVED_REG_1).addImm(Offset);
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::ADD_rr),
+ HEXAGON_RESERVED_REG_1)
+ .addReg(FP)
+ .addReg(HEXAGON_RESERVED_REG_1);
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::LDriw),
+ HEXAGON_RESERVED_REG_2)
+ .addReg(HEXAGON_RESERVED_REG_1)
+ .addImm(0);
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_PdRs),
+ DstReg).addReg(HEXAGON_RESERVED_REG_2);
+ } else {
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::ADD_ri),
+ HEXAGON_RESERVED_REG_1).addReg(FP).addImm(Offset);
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::LDriw),
+ HEXAGON_RESERVED_REG_2)
+ .addReg(HEXAGON_RESERVED_REG_1)
+ .addImm(0);
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_PdRs),
+ DstReg).addReg(HEXAGON_RESERVED_REG_2);
+ }
+ } else {
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::LDriw),
+ HEXAGON_RESERVED_REG_2).addReg(FP).addImm(Offset);
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_PdRs),
+ DstReg).addReg(HEXAGON_RESERVED_REG_2);
+ }
+ MII = MBB->erase(MI);
+ --MII;
+ }
+ }
+ }
+
+ return true;
+}
+
+}
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+static void initializePassOnce(PassRegistry &Registry) {
+ const char *Name = "Hexagon Expand Predicate Spill Code";
+ PassInfo *PI = new PassInfo(Name, "hexagon-spill-pred",
+ &HexagonExpandPredSpillCode::ID,
+ nullptr, false, false);
+ Registry.registerPass(*PI, true);
+}
+
+void llvm::initializeHexagonExpandPredSpillCodePass(PassRegistry &Registry) {
+ CALL_ONCE_INITIALIZATION(initializePassOnce)
+}
+
+FunctionPass*
+llvm::createHexagonExpandPredSpillCode(const HexagonTargetMachine &TM) {
+ return new HexagonExpandPredSpillCode(TM);
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonFixupHwLoops.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonFixupHwLoops.cpp
new file mode 100644
index 0000000..d41939a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonFixupHwLoops.cpp
@@ -0,0 +1,185 @@
+//===---- HexagonFixupHwLoops.cpp - Fixup HW loops too far from LOOPn. ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+// The loop start address in the LOOPn instruction is encoded as a distance
+// from the LOOPn instruction itself. If the start address is too far from
+// the LOOPn instruction, the loop needs to be set up manually, i.e. via
+// direct transfers to SAn and LCn.
+// This pass will identify and convert such LOOPn instructions to a proper
+// form.
+//===----------------------------------------------------------------------===//
+
+
+#include "llvm/ADT/DenseMap.h"
+#include "Hexagon.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/PassSupport.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+using namespace llvm;
+
+namespace llvm {
+ void initializeHexagonFixupHwLoopsPass(PassRegistry&);
+}
+
+namespace {
+ struct HexagonFixupHwLoops : public MachineFunctionPass {
+ public:
+ static char ID;
+
+ HexagonFixupHwLoops() : MachineFunctionPass(ID) {
+ initializeHexagonFixupHwLoopsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "Hexagon Hardware Loop Fixup";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ private:
+ /// \brief Maximum distance between the loop instr and the basic block.
+ /// Just an estimate.
+ static const unsigned MAX_LOOP_DISTANCE = 200;
+
+ /// \brief Check the offset between each loop instruction and
+ /// the loop basic block to determine if we can use the LOOP instruction
+ /// or if we need to set the LC/SA registers explicitly.
+ bool fixupLoopInstrs(MachineFunction &MF);
+
+ /// \brief Add the instruction to set the LC and SA registers explicitly.
+ void convertLoopInstr(MachineFunction &MF,
+ MachineBasicBlock::iterator &MII,
+ RegScavenger &RS);
+
+ };
+
+ char HexagonFixupHwLoops::ID = 0;
+}
+
+INITIALIZE_PASS(HexagonFixupHwLoops, "hwloopsfixup",
+ "Hexagon Hardware Loops Fixup", false, false)
+
+FunctionPass *llvm::createHexagonFixupHwLoops() {
+ return new HexagonFixupHwLoops();
+}
+
+
+/// \brief Returns true if the instruction is a hardware loop instruction.
+static bool isHardwareLoop(const MachineInstr *MI) {
+ return MI->getOpcode() == Hexagon::LOOP0_r ||
+ MI->getOpcode() == Hexagon::LOOP0_i;
+}
+
+
+bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) {
+ bool Changed = fixupLoopInstrs(MF);
+ return Changed;
+}
+
+
+/// \brief For Hexagon, if the loop label is to far from the
+/// loop instruction then we need to set the LC0 and SA0 registers
+/// explicitly instead of using LOOP(start,count). This function
+/// checks the distance, and generates register assignments if needed.
+///
+/// This function makes two passes over the basic blocks. The first
+/// pass computes the offset of the basic block from the start.
+/// The second pass checks all the loop instructions.
+bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
+
+ // Offset of the current instruction from the start.
+ unsigned InstOffset = 0;
+ // Map for each basic block to it's first instruction.
+ DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
+
+ // First pass - compute the offset of each basic block.
+ for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
+ MBB != MBBe; ++MBB) {
+ BlockToInstOffset[MBB] = InstOffset;
+ InstOffset += (MBB->size() * 4);
+ }
+
+ // Second pass - check each loop instruction to see if it needs to
+ // be converted.
+ InstOffset = 0;
+ bool Changed = false;
+ RegScavenger RS;
+
+ // Loop over all the basic blocks.
+ for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
+ MBB != MBBe; ++MBB) {
+ InstOffset = BlockToInstOffset[MBB];
+ RS.enterBasicBlock(MBB);
+
+ // Loop over all the instructions.
+ MachineBasicBlock::iterator MIE = MBB->end();
+ MachineBasicBlock::iterator MII = MBB->begin();
+ while (MII != MIE) {
+ if (isHardwareLoop(MII)) {
+ RS.forward(MII);
+ assert(MII->getOperand(0).isMBB() &&
+ "Expect a basic block as loop operand");
+ int Sub = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()];
+ unsigned Dist = Sub > 0 ? Sub : -Sub;
+ if (Dist > MAX_LOOP_DISTANCE) {
+ // Convert to explicity setting LC0 and SA0.
+ convertLoopInstr(MF, MII, RS);
+ MII = MBB->erase(MII);
+ Changed = true;
+ } else {
+ ++MII;
+ }
+ } else {
+ ++MII;
+ }
+ InstOffset += 4;
+ }
+ }
+
+ return Changed;
+}
+
+
+/// \brief convert a loop instruction to a sequence of instructions that
+/// set the LC0 and SA0 register explicitly.
+void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
+ MachineBasicBlock::iterator &MII,
+ RegScavenger &RS) {
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ MachineBasicBlock *MBB = MII->getParent();
+ DebugLoc DL = MII->getDebugLoc();
+ unsigned Scratch = RS.scavengeRegister(&Hexagon::IntRegsRegClass, MII, 0);
+
+ // First, set the LC0 with the trip count.
+ if (MII->getOperand(1).isReg()) {
+ // Trip count is a register
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
+ .addReg(MII->getOperand(1).getReg());
+ } else {
+ // Trip count is an immediate.
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch)
+ .addImm(MII->getOperand(1).getImm());
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
+ .addReg(Scratch);
+ }
+ // Then, set the SA0 with the loop start address.
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch)
+ .addMBB(MII->getOperand(0).getMBB());
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0)
+ .addReg(Scratch);
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
new file mode 100644
index 0000000..21df12f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
@@ -0,0 +1,346 @@
+//===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonFrameLowering.h"
+#include "Hexagon.h"
+#include "HexagonInstrInfo.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonRegisterInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+static cl::opt<bool> DisableDeallocRet(
+ "disable-hexagon-dealloc-ret",
+ cl::Hidden,
+ cl::desc("Disable Dealloc Return for Hexagon target"));
+
+/// determineFrameLayout - Determine the size of the frame and maximum call
+/// frame size.
+void HexagonFrameLowering::determineFrameLayout(MachineFunction &MF) const {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ // Get the number of bytes to allocate from the FrameInfo.
+ unsigned FrameSize = MFI->getStackSize();
+
+ // Get the alignments provided by the target.
+ unsigned TargetAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
+ // Get the maximum call frame size of all the calls.
+ unsigned maxCallFrameSize = MFI->getMaxCallFrameSize();
+
+ // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
+ // that allocations will be aligned.
+ if (MFI->hasVarSizedObjects())
+ maxCallFrameSize = RoundUpToAlignment(maxCallFrameSize, TargetAlign);
+
+ // Update maximum call frame size.
+ MFI->setMaxCallFrameSize(maxCallFrameSize);
+
+ // Include call frame size in total.
+ FrameSize += maxCallFrameSize;
+
+ // Make sure the frame is aligned.
+ FrameSize = RoundUpToAlignment(FrameSize, TargetAlign);
+
+ // Update frame info.
+ MFI->setStackSize(FrameSize);
+}
+
+
+void HexagonFrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ const HexagonRegisterInfo *QRI =
+ static_cast<const HexagonRegisterInfo *>(MF.getTarget().getRegisterInfo());
+ DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+ determineFrameLayout(MF);
+
+ // Get the number of bytes to allocate from the FrameInfo.
+ int NumBytes = (int) MFI->getStackSize();
+
+ // LLVM expects allocframe not to be the first instruction in the
+ // basic block.
+ MachineBasicBlock::iterator InsertPt = MBB.begin();
+
+ //
+ // ALLOCA adjust regs. Iterate over ADJDYNALLOC nodes and change the offset.
+ //
+ HexagonMachineFunctionInfo *FuncInfo =
+ MF.getInfo<HexagonMachineFunctionInfo>();
+ const std::vector<MachineInstr*>& AdjustRegs =
+ FuncInfo->getAllocaAdjustInsts();
+ for (std::vector<MachineInstr*>::const_iterator i = AdjustRegs.begin(),
+ e = AdjustRegs.end();
+ i != e; ++i) {
+ MachineInstr* MI = *i;
+ assert((MI->getOpcode() == Hexagon::ADJDYNALLOC) &&
+ "Expected adjust alloca node");
+
+ MachineOperand& MO = MI->getOperand(2);
+ assert(MO.isImm() && "Expected immediate");
+ MO.setImm(MFI->getMaxCallFrameSize());
+ }
+
+ //
+ // Only insert ALLOCFRAME if we need to.
+ //
+ if (hasFP(MF)) {
+ // Check for overflow.
+ // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
+ const int ALLOCFRAME_MAX = 16384;
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+
+ if (NumBytes >= ALLOCFRAME_MAX) {
+ // Emit allocframe(#0).
+ BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::ALLOCFRAME)).addImm(0);
+
+ // Subtract offset from frame pointer.
+ BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::CONST32_Int_Real),
+ HEXAGON_RESERVED_REG_1).addImm(NumBytes);
+ BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::SUB_rr),
+ QRI->getStackRegister()).
+ addReg(QRI->getStackRegister()).
+ addReg(HEXAGON_RESERVED_REG_1);
+ } else {
+ BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::ALLOCFRAME)).addImm(NumBytes);
+ }
+ }
+}
+// Returns true if MBB has a machine instructions that indicates a tail call
+// in the block.
+bool HexagonFrameLowering::hasTailCall(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ unsigned RetOpcode = MBBI->getOpcode();
+
+ return RetOpcode == Hexagon::TCRETURNtg || RetOpcode == Hexagon::TCRETURNtext;
+}
+
+void HexagonFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = std::prev(MBB.end());
+ DebugLoc dl = MBBI->getDebugLoc();
+ //
+ // Only insert deallocframe if we need to. Also at -O0. See comment
+ // in emitPrologue above.
+ //
+ if (hasFP(MF) || MF.getTarget().getOptLevel() == CodeGenOpt::None) {
+ MachineBasicBlock::iterator MBBI = std::prev(MBB.end());
+ MachineBasicBlock::iterator MBBI_end = MBB.end();
+
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ // Handle EH_RETURN.
+ if (MBBI->getOpcode() == Hexagon::EH_RETURN_JMPR) {
+ assert(MBBI->getOperand(0).isReg() && "Offset should be in register!");
+ BuildMI(MBB, MBBI, dl, TII.get(Hexagon::DEALLOCFRAME));
+ BuildMI(MBB, MBBI, dl, TII.get(Hexagon::ADD_rr),
+ Hexagon::R29).addReg(Hexagon::R29).addReg(Hexagon::R28);
+ return;
+ }
+ // Replace 'jumpr r31' instruction with dealloc_return for V4 and higher
+ // versions.
+ if (MF.getTarget().getSubtarget<HexagonSubtarget>().hasV4TOps() &&
+ MBBI->getOpcode() == Hexagon::JMPret && !DisableDeallocRet) {
+ // Check for RESTORE_DEALLOC_RET_JMP_V4 call. Don't emit an extra DEALLOC
+ // instruction if we encounter it.
+ MachineBasicBlock::iterator BeforeJMPR =
+ MBB.begin() == MBBI ? MBBI : std::prev(MBBI);
+ if (BeforeJMPR != MBBI &&
+ BeforeJMPR->getOpcode() == Hexagon::RESTORE_DEALLOC_RET_JMP_V4) {
+ // Remove the JMPR node.
+ MBB.erase(MBBI);
+ return;
+ }
+
+ // Add dealloc_return.
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI_end, dl, TII.get(Hexagon::DEALLOC_RET_V4));
+ // Transfer the function live-out registers.
+ MIB->copyImplicitOps(*MBB.getParent(), &*MBBI);
+ // Remove the JUMPR node.
+ MBB.erase(MBBI);
+ } else { // Add deallocframe for V2 and V3, and V4 tail calls.
+ // Check for RESTORE_DEALLOC_BEFORE_TAILCALL_V4. We don't need an extra
+ // DEALLOCFRAME instruction after it.
+ MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
+ MachineBasicBlock::iterator I =
+ Term == MBB.begin() ? MBB.end() : std::prev(Term);
+ if (I != MBB.end() &&
+ I->getOpcode() == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4)
+ return;
+
+ BuildMI(MBB, MBBI, dl, TII.get(Hexagon::DEALLOCFRAME));
+ }
+ }
+}
+
+bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const HexagonMachineFunctionInfo *FuncInfo =
+ MF.getInfo<HexagonMachineFunctionInfo>();
+ return (MFI->hasCalls() || (MFI->getStackSize() > 0) ||
+ FuncInfo->hasClobberLR() );
+}
+
+static inline
+unsigned uniqueSuperReg(unsigned Reg, const TargetRegisterInfo *TRI) {
+ MCSuperRegIterator SRI(Reg, TRI);
+ assert(SRI.isValid() && "Expected a superreg");
+ unsigned SuperReg = *SRI;
+ ++SRI;
+ assert(!SRI.isValid() && "Expected exactly one superreg");
+ return SuperReg;
+}
+
+bool
+HexagonFrameLowering::spillCalleeSavedRegisters(
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction *MF = MBB.getParent();
+ const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+
+ if (CSI.empty()) {
+ return false;
+ }
+
+ // We can only schedule double loads if we spill contiguous callee-saved regs
+ // For instance, we cannot scheduled double-word loads if we spill r24,
+ // r26, and r27.
+ // Hexagon_TODO: We can try to double-word align odd registers for -O2 and
+ // above.
+ bool ContiguousRegs = true;
+
+ for (unsigned i = 0; i < CSI.size(); ++i) {
+ unsigned Reg = CSI[i].getReg();
+
+ //
+ // Check if we can use a double-word store.
+ //
+ unsigned SuperReg = uniqueSuperReg(Reg, TRI);
+ bool CanUseDblStore = false;
+ const TargetRegisterClass* SuperRegClass = nullptr;
+
+ if (ContiguousRegs && (i < CSI.size()-1)) {
+ unsigned SuperRegNext = uniqueSuperReg(CSI[i+1].getReg(), TRI);
+ SuperRegClass = TRI->getMinimalPhysRegClass(SuperReg);
+ CanUseDblStore = (SuperRegNext == SuperReg);
+ }
+
+
+ if (CanUseDblStore) {
+ TII.storeRegToStackSlot(MBB, MI, SuperReg, true,
+ CSI[i+1].getFrameIdx(), SuperRegClass, TRI);
+ MBB.addLiveIn(SuperReg);
+ ++i;
+ } else {
+ // Cannot use a double-word store.
+ ContiguousRegs = false;
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i].getFrameIdx(), RC,
+ TRI);
+ MBB.addLiveIn(Reg);
+ }
+ }
+ return true;
+}
+
+
+bool HexagonFrameLowering::restoreCalleeSavedRegisters(
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+
+ MachineFunction *MF = MBB.getParent();
+ const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+
+ if (CSI.empty()) {
+ return false;
+ }
+
+ // We can only schedule double loads if we spill contiguous callee-saved regs
+ // For instance, we cannot scheduled double-word loads if we spill r24,
+ // r26, and r27.
+ // Hexagon_TODO: We can try to double-word align odd registers for -O2 and
+ // above.
+ bool ContiguousRegs = true;
+
+ for (unsigned i = 0; i < CSI.size(); ++i) {
+ unsigned Reg = CSI[i].getReg();
+
+ //
+ // Check if we can use a double-word load.
+ //
+ unsigned SuperReg = uniqueSuperReg(Reg, TRI);
+ const TargetRegisterClass* SuperRegClass = nullptr;
+ bool CanUseDblLoad = false;
+ if (ContiguousRegs && (i < CSI.size()-1)) {
+ unsigned SuperRegNext = uniqueSuperReg(CSI[i+1].getReg(), TRI);
+ SuperRegClass = TRI->getMinimalPhysRegClass(SuperReg);
+ CanUseDblLoad = (SuperRegNext == SuperReg);
+ }
+
+
+ if (CanUseDblLoad) {
+ TII.loadRegFromStackSlot(MBB, MI, SuperReg, CSI[i+1].getFrameIdx(),
+ SuperRegClass, TRI);
+ MBB.addLiveIn(SuperReg);
+ ++i;
+ } else {
+ // Cannot use a double-word load.
+ ContiguousRegs = false;
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
+ MBB.addLiveIn(Reg);
+ }
+ }
+ return true;
+}
+
+void HexagonFrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ MachineInstr &MI = *I;
+
+ if (MI.getOpcode() == Hexagon::ADJCALLSTACKDOWN) {
+ // Hexagon_TODO: add code
+ } else if (MI.getOpcode() == Hexagon::ADJCALLSTACKUP) {
+ // Hexagon_TODO: add code
+ } else {
+ llvm_unreachable("Cannot handle this call frame pseudo instruction");
+ }
+ MBB.erase(I);
+}
+
+int HexagonFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
+ int FI) const {
+ return MF.getFrameInfo()->getObjectOffset(FI);
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.h b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.h
new file mode 100644
index 0000000..2d4b0b9
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.h
@@ -0,0 +1,51 @@
+//=- HexagonFrameLowering.h - Define frame lowering for Hexagon --*- C++ -*--=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HEXAGON_FRAMEINFO_H
+#define HEXAGON_FRAMEINFO_H
+
+#include "Hexagon.h"
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+
+class HexagonFrameLowering : public TargetFrameLowering {
+private:
+ void determineFrameLayout(MachineFunction &MF) const;
+
+public:
+ explicit HexagonFrameLowering() : TargetFrameLowering(StackGrowsDown, 8, 0) {}
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ void
+ eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const override;
+
+ bool
+ restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+ int getFrameIndexOffset(const MachineFunction &MF, int FI) const override;
+ bool hasFP(const MachineFunction &MF) const override;
+ bool hasTailCall(MachineBasicBlock &MBB) const;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
new file mode 100644
index 0000000..7f76421
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
@@ -0,0 +1,1548 @@
+//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass identifies loops where we can generate the Hexagon hardware
+// loop instruction. The hardware loop can perform loop branches with a
+// zero-cycle overhead.
+//
+// The pattern that defines the induction variable can changed depending on
+// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
+// normalizes induction variables, and the Loop Strength Reduction pass
+// run by 'llc' may also make changes to the induction variable.
+// The pattern detected by this phase is due to running Strength Reduction.
+//
+// Criteria for hardware loops:
+// - Countable loops (w/ ind. var for a trip count)
+// - Assumes loops are normalized by IndVarSimplify
+// - Try inner-most loops first
+// - No nested hardware loops.
+// - No function calls in loops.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallSet.h"
+#include "Hexagon.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/PassSupport.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include <algorithm>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "hwloops"
+
+#ifndef NDEBUG
+static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1));
+#endif
+
+STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
+
+namespace llvm {
+ void initializeHexagonHardwareLoopsPass(PassRegistry&);
+}
+
+namespace {
+ class CountValue;
+ struct HexagonHardwareLoops : public MachineFunctionPass {
+ MachineLoopInfo *MLI;
+ MachineRegisterInfo *MRI;
+ MachineDominatorTree *MDT;
+ const HexagonTargetMachine *TM;
+ const HexagonInstrInfo *TII;
+ const HexagonRegisterInfo *TRI;
+#ifndef NDEBUG
+ static int Counter;
+#endif
+
+ public:
+ static char ID;
+
+ HexagonHardwareLoops() : MachineFunctionPass(ID) {
+ initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override { return "Hexagon Hardware Loops"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ private:
+ /// Kinds of comparisons in the compare instructions.
+ struct Comparison {
+ enum Kind {
+ EQ = 0x01,
+ NE = 0x02,
+ L = 0x04, // Less-than property.
+ G = 0x08, // Greater-than property.
+ U = 0x40, // Unsigned property.
+ LTs = L,
+ LEs = L | EQ,
+ GTs = G,
+ GEs = G | EQ,
+ LTu = L | U,
+ LEu = L | EQ | U,
+ GTu = G | U,
+ GEu = G | EQ | U
+ };
+
+ static Kind getSwappedComparison(Kind Cmp) {
+ assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
+ if ((Cmp & L) || (Cmp & G))
+ return (Kind)(Cmp ^ (L|G));
+ return Cmp;
+ }
+ };
+
+ /// \brief Find the register that contains the loop controlling
+ /// induction variable.
+ /// If successful, it will return true and set the \p Reg, \p IVBump
+ /// and \p IVOp arguments. Otherwise it will return false.
+ /// The returned induction register is the register R that follows the
+ /// following induction pattern:
+ /// loop:
+ /// R = phi ..., [ R.next, LatchBlock ]
+ /// R.next = R + #bump
+ /// if (R.next < #N) goto loop
+ /// IVBump is the immediate value added to R, and IVOp is the instruction
+ /// "R.next = R + #bump".
+ bool findInductionRegister(MachineLoop *L, unsigned &Reg,
+ int64_t &IVBump, MachineInstr *&IVOp) const;
+
+ /// \brief Analyze the statements in a loop to determine if the loop
+ /// has a computable trip count and, if so, return a value that represents
+ /// the trip count expression.
+ CountValue *getLoopTripCount(MachineLoop *L,
+ SmallVectorImpl<MachineInstr *> &OldInsts);
+
+ /// \brief Return the expression that represents the number of times
+ /// a loop iterates. The function takes the operands that represent the
+ /// loop start value, loop end value, and induction value. Based upon
+ /// these operands, the function attempts to compute the trip count.
+ /// If the trip count is not directly available (as an immediate value,
+ /// or a register), the function will attempt to insert computation of it
+ /// to the loop's preheader.
+ CountValue *computeCount(MachineLoop *Loop,
+ const MachineOperand *Start,
+ const MachineOperand *End,
+ unsigned IVReg,
+ int64_t IVBump,
+ Comparison::Kind Cmp) const;
+
+ /// \brief Return true if the instruction is not valid within a hardware
+ /// loop.
+ bool isInvalidLoopOperation(const MachineInstr *MI) const;
+
+ /// \brief Return true if the loop contains an instruction that inhibits
+ /// using the hardware loop.
+ bool containsInvalidInstruction(MachineLoop *L) const;
+
+ /// \brief Given a loop, check if we can convert it to a hardware loop.
+ /// If so, then perform the conversion and return true.
+ bool convertToHardwareLoop(MachineLoop *L);
+
+ /// \brief Return true if the instruction is now dead.
+ bool isDead(const MachineInstr *MI,
+ SmallVectorImpl<MachineInstr *> &DeadPhis) const;
+
+ /// \brief Remove the instruction if it is now dead.
+ void removeIfDead(MachineInstr *MI);
+
+ /// \brief Make sure that the "bump" instruction executes before the
+ /// compare. We need that for the IV fixup, so that the compare
+ /// instruction would not use a bumped value that has not yet been
+ /// defined. If the instructions are out of order, try to reorder them.
+ bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
+
+ /// \brief Get the instruction that loads an immediate value into \p R,
+ /// or 0 if such an instruction does not exist.
+ MachineInstr *defWithImmediate(unsigned R);
+
+ /// \brief Get the immediate value referenced to by \p MO, either for
+ /// immediate operands, or for register operands, where the register
+ /// was defined with an immediate value.
+ int64_t getImmediate(MachineOperand &MO);
+
+ /// \brief Reset the given machine operand to now refer to a new immediate
+ /// value. Assumes that the operand was already referencing an immediate
+ /// value, either directly, or via a register.
+ void setImmediate(MachineOperand &MO, int64_t Val);
+
+ /// \brief Fix the data flow of the induction varible.
+ /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
+ /// |
+ /// +-> back to phi
+ /// where "bump" is the increment of the induction variable:
+ /// iv = iv + #const.
+ /// Due to some prior code transformations, the actual flow may look
+ /// like this:
+ /// phi -+-> bump ---> back to phi
+ /// |
+ /// +-> comparison-in-latch (against upper_bound-bump),
+ /// i.e. the comparison that controls the loop execution may be using
+ /// the value of the induction variable from before the increment.
+ ///
+ /// Return true if the loop's flow is the desired one (i.e. it's
+ /// either been fixed, or no fixing was necessary).
+ /// Otherwise, return false. This can happen if the induction variable
+ /// couldn't be identified, or if the value in the latch's comparison
+ /// cannot be adjusted to reflect the post-bump value.
+ bool fixupInductionVariable(MachineLoop *L);
+
+ /// \brief Given a loop, if it does not have a preheader, create one.
+ /// Return the block that is the preheader.
+ MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
+ };
+
+ char HexagonHardwareLoops::ID = 0;
+#ifndef NDEBUG
+ int HexagonHardwareLoops::Counter = 0;
+#endif
+
+ /// \brief Abstraction for a trip count of a loop. A smaller vesrsion
+ /// of the MachineOperand class without the concerns of changing the
+ /// operand representation.
+ class CountValue {
+ public:
+ enum CountValueType {
+ CV_Register,
+ CV_Immediate
+ };
+ private:
+ CountValueType Kind;
+ union Values {
+ struct {
+ unsigned Reg;
+ unsigned Sub;
+ } R;
+ unsigned ImmVal;
+ } Contents;
+
+ public:
+ explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
+ Kind = t;
+ if (Kind == CV_Register) {
+ Contents.R.Reg = v;
+ Contents.R.Sub = u;
+ } else {
+ Contents.ImmVal = v;
+ }
+ }
+ bool isReg() const { return Kind == CV_Register; }
+ bool isImm() const { return Kind == CV_Immediate; }
+
+ unsigned getReg() const {
+ assert(isReg() && "Wrong CountValue accessor");
+ return Contents.R.Reg;
+ }
+ unsigned getSubReg() const {
+ assert(isReg() && "Wrong CountValue accessor");
+ return Contents.R.Sub;
+ }
+ unsigned getImm() const {
+ assert(isImm() && "Wrong CountValue accessor");
+ return Contents.ImmVal;
+ }
+
+ void print(raw_ostream &OS, const TargetMachine *TM = nullptr) const {
+ const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : nullptr;
+ if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
+ if (isImm()) { OS << Contents.ImmVal; }
+ }
+ };
+} // end anonymous namespace
+
+
+INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
+ "Hexagon Hardware Loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
+ "Hexagon Hardware Loops", false, false)
+
+
+/// \brief Returns true if the instruction is a hardware loop instruction.
+static bool isHardwareLoop(const MachineInstr *MI) {
+ return MI->getOpcode() == Hexagon::LOOP0_r ||
+ MI->getOpcode() == Hexagon::LOOP0_i;
+}
+
+FunctionPass *llvm::createHexagonHardwareLoops() {
+ return new HexagonHardwareLoops();
+}
+
+
+bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
+ DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
+
+ bool Changed = false;
+
+ MLI = &getAnalysis<MachineLoopInfo>();
+ MRI = &MF.getRegInfo();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ TM = static_cast<const HexagonTargetMachine*>(&MF.getTarget());
+ TII = static_cast<const HexagonInstrInfo*>(TM->getInstrInfo());
+ TRI = static_cast<const HexagonRegisterInfo*>(TM->getRegisterInfo());
+
+ for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
+ I != E; ++I) {
+ MachineLoop *L = *I;
+ if (!L->getParentLoop())
+ Changed |= convertToHardwareLoop(L);
+ }
+
+ return Changed;
+}
+
+
+bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
+ unsigned &Reg,
+ int64_t &IVBump,
+ MachineInstr *&IVOp
+ ) const {
+ MachineBasicBlock *Header = L->getHeader();
+ MachineBasicBlock *Preheader = L->getLoopPreheader();
+ MachineBasicBlock *Latch = L->getLoopLatch();
+ if (!Header || !Preheader || !Latch)
+ return false;
+
+ // This pair represents an induction register together with an immediate
+ // value that will be added to it in each loop iteration.
+ typedef std::pair<unsigned,int64_t> RegisterBump;
+
+ // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
+ // from an induction operation
+ // R.next = R + bump
+ // where bump is an immediate value.
+ typedef std::map<unsigned,RegisterBump> InductionMap;
+
+ InductionMap IndMap;
+
+ typedef MachineBasicBlock::instr_iterator instr_iterator;
+ for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
+ I != E && I->isPHI(); ++I) {
+ MachineInstr *Phi = &*I;
+
+ // Have a PHI instruction. Get the operand that corresponds to the
+ // latch block, and see if is a result of an addition of form "reg+imm",
+ // where the "reg" is defined by the PHI node we are looking at.
+ for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
+ if (Phi->getOperand(i+1).getMBB() != Latch)
+ continue;
+
+ unsigned PhiOpReg = Phi->getOperand(i).getReg();
+ MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
+ unsigned UpdOpc = DI->getOpcode();
+ bool isAdd = (UpdOpc == Hexagon::ADD_ri);
+
+ if (isAdd) {
+ // If the register operand to the add is the PHI we're
+ // looking at, this meets the induction pattern.
+ unsigned IndReg = DI->getOperand(1).getReg();
+ if (MRI->getVRegDef(IndReg) == Phi) {
+ unsigned UpdReg = DI->getOperand(0).getReg();
+ int64_t V = DI->getOperand(2).getImm();
+ IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
+ }
+ }
+ } // for (i)
+ } // for (instr)
+
+ SmallVector<MachineOperand,2> Cond;
+ MachineBasicBlock *TB = nullptr, *FB = nullptr;
+ bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
+ if (NotAnalyzed)
+ return false;
+
+ unsigned CSz = Cond.size();
+ assert (CSz == 1 || CSz == 2);
+ unsigned PredR = Cond[CSz-1].getReg();
+
+ MachineInstr *PredI = MRI->getVRegDef(PredR);
+ if (!PredI->isCompare())
+ return false;
+
+ unsigned CmpReg1 = 0, CmpReg2 = 0;
+ int CmpImm = 0, CmpMask = 0;
+ bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2,
+ CmpMask, CmpImm);
+ // Fail if the compare was not analyzed, or it's not comparing a register
+ // with an immediate value. Not checking the mask here, since we handle
+ // the individual compare opcodes (including CMPb) later on.
+ if (!CmpAnalyzed)
+ return false;
+
+ // Exactly one of the input registers to the comparison should be among
+ // the induction registers.
+ InductionMap::iterator IndMapEnd = IndMap.end();
+ InductionMap::iterator F = IndMapEnd;
+ if (CmpReg1 != 0) {
+ InductionMap::iterator F1 = IndMap.find(CmpReg1);
+ if (F1 != IndMapEnd)
+ F = F1;
+ }
+ if (CmpReg2 != 0) {
+ InductionMap::iterator F2 = IndMap.find(CmpReg2);
+ if (F2 != IndMapEnd) {
+ if (F != IndMapEnd)
+ return false;
+ F = F2;
+ }
+ }
+ if (F == IndMapEnd)
+ return false;
+
+ Reg = F->second.first;
+ IVBump = F->second.second;
+ IVOp = MRI->getVRegDef(F->first);
+ return true;
+}
+
+
+/// \brief Analyze the statements in a loop to determine if the loop has
+/// a computable trip count and, if so, return a value that represents
+/// the trip count expression.
+///
+/// This function iterates over the phi nodes in the loop to check for
+/// induction variable patterns that are used in the calculation for
+/// the number of time the loop is executed.
+CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
+ SmallVectorImpl<MachineInstr *> &OldInsts) {
+ MachineBasicBlock *TopMBB = L->getTopBlock();
+ MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
+ assert(PI != TopMBB->pred_end() &&
+ "Loop must have more than one incoming edge!");
+ MachineBasicBlock *Backedge = *PI++;
+ if (PI == TopMBB->pred_end()) // dead loop?
+ return nullptr;
+ MachineBasicBlock *Incoming = *PI++;
+ if (PI != TopMBB->pred_end()) // multiple backedges?
+ return nullptr;
+
+ // Make sure there is one incoming and one backedge and determine which
+ // is which.
+ if (L->contains(Incoming)) {
+ if (L->contains(Backedge))
+ return nullptr;
+ std::swap(Incoming, Backedge);
+ } else if (!L->contains(Backedge))
+ return nullptr;
+
+ // Look for the cmp instruction to determine if we can get a useful trip
+ // count. The trip count can be either a register or an immediate. The
+ // location of the value depends upon the type (reg or imm).
+ MachineBasicBlock *Latch = L->getLoopLatch();
+ if (!Latch)
+ return nullptr;
+
+ unsigned IVReg = 0;
+ int64_t IVBump = 0;
+ MachineInstr *IVOp;
+ bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
+ if (!FoundIV)
+ return nullptr;
+
+ MachineBasicBlock *Preheader = L->getLoopPreheader();
+
+ MachineOperand *InitialValue = nullptr;
+ MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
+ for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
+ MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
+ if (MBB == Preheader)
+ InitialValue = &IV_Phi->getOperand(i);
+ else if (MBB == Latch)
+ IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump.
+ }
+ if (!InitialValue)
+ return nullptr;
+
+ SmallVector<MachineOperand,2> Cond;
+ MachineBasicBlock *TB = nullptr, *FB = nullptr;
+ bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
+ if (NotAnalyzed)
+ return nullptr;
+
+ MachineBasicBlock *Header = L->getHeader();
+ // TB must be non-null. If FB is also non-null, one of them must be
+ // the header. Otherwise, branch to TB could be exiting the loop, and
+ // the fall through can go to the header.
+ assert (TB && "Latch block without a branch?");
+ assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
+ if (!TB || (FB && TB != Header && FB != Header))
+ return nullptr;
+
+ // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
+ // to put imm(0), followed by P in the vector Cond.
+ // If TB is not the header, it means that the "not-taken" path must lead
+ // to the header.
+ bool Negated = (Cond.size() > 1) ^ (TB != Header);
+ unsigned PredReg = Cond[Cond.size()-1].getReg();
+ MachineInstr *CondI = MRI->getVRegDef(PredReg);
+ unsigned CondOpc = CondI->getOpcode();
+
+ unsigned CmpReg1 = 0, CmpReg2 = 0;
+ int Mask = 0, ImmValue = 0;
+ bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2,
+ Mask, ImmValue);
+ if (!AnalyzedCmp)
+ return nullptr;
+
+ // The comparison operator type determines how we compute the loop
+ // trip count.
+ OldInsts.push_back(CondI);
+ OldInsts.push_back(IVOp);
+
+ // Sadly, the following code gets information based on the position
+ // of the operands in the compare instruction. This has to be done
+ // this way, because the comparisons check for a specific relationship
+ // between the operands (e.g. is-less-than), rather than to find out
+ // what relationship the operands are in (as on PPC).
+ Comparison::Kind Cmp;
+ bool isSwapped = false;
+ const MachineOperand &Op1 = CondI->getOperand(1);
+ const MachineOperand &Op2 = CondI->getOperand(2);
+ const MachineOperand *EndValue = nullptr;
+
+ if (Op1.isReg()) {
+ if (Op2.isImm() || Op1.getReg() == IVReg)
+ EndValue = &Op2;
+ else {
+ EndValue = &Op1;
+ isSwapped = true;
+ }
+ }
+
+ if (!EndValue)
+ return nullptr;
+
+ switch (CondOpc) {
+ case Hexagon::CMPEQri:
+ case Hexagon::CMPEQrr:
+ Cmp = !Negated ? Comparison::EQ : Comparison::NE;
+ break;
+ case Hexagon::CMPGTUri:
+ case Hexagon::CMPGTUrr:
+ Cmp = !Negated ? Comparison::GTu : Comparison::LEu;
+ break;
+ case Hexagon::CMPGTri:
+ case Hexagon::CMPGTrr:
+ Cmp = !Negated ? Comparison::GTs : Comparison::LEs;
+ break;
+ // Very limited support for byte/halfword compares.
+ case Hexagon::CMPbEQri_V4:
+ case Hexagon::CMPhEQri_V4: {
+ if (IVBump != 1)
+ return nullptr;
+
+ int64_t InitV, EndV;
+ // Since the comparisons are "ri", the EndValue should be an
+ // immediate. Check it just in case.
+ assert(EndValue->isImm() && "Unrecognized latch comparison");
+ EndV = EndValue->getImm();
+ // Allow InitialValue to be a register defined with an immediate.
+ if (InitialValue->isReg()) {
+ if (!defWithImmediate(InitialValue->getReg()))
+ return nullptr;
+ InitV = getImmediate(*InitialValue);
+ } else {
+ assert(InitialValue->isImm());
+ InitV = InitialValue->getImm();
+ }
+ if (InitV >= EndV)
+ return nullptr;
+ if (CondOpc == Hexagon::CMPbEQri_V4) {
+ if (!isInt<8>(InitV) || !isInt<8>(EndV))
+ return nullptr;
+ } else { // Hexagon::CMPhEQri_V4
+ if (!isInt<16>(InitV) || !isInt<16>(EndV))
+ return nullptr;
+ }
+ Cmp = !Negated ? Comparison::EQ : Comparison::NE;
+ break;
+ }
+ default:
+ return nullptr;
+ }
+
+ if (isSwapped)
+ Cmp = Comparison::getSwappedComparison(Cmp);
+
+ if (InitialValue->isReg()) {
+ unsigned R = InitialValue->getReg();
+ MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
+ if (!MDT->properlyDominates(DefBB, Header))
+ return nullptr;
+ OldInsts.push_back(MRI->getVRegDef(R));
+ }
+ if (EndValue->isReg()) {
+ unsigned R = EndValue->getReg();
+ MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
+ if (!MDT->properlyDominates(DefBB, Header))
+ return nullptr;
+ }
+
+ return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
+}
+
+/// \brief Helper function that returns the expression that represents the
+/// number of times a loop iterates. The function takes the operands that
+/// represent the loop start value, loop end value, and induction value.
+/// Based upon these operands, the function attempts to compute the trip count.
+CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
+ const MachineOperand *Start,
+ const MachineOperand *End,
+ unsigned IVReg,
+ int64_t IVBump,
+ Comparison::Kind Cmp) const {
+ // Cannot handle comparison EQ, i.e. while (A == B).
+ if (Cmp == Comparison::EQ)
+ return nullptr;
+
+ // Check if either the start or end values are an assignment of an immediate.
+ // If so, use the immediate value rather than the register.
+ if (Start->isReg()) {
+ const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
+ if (StartValInstr && StartValInstr->getOpcode() == Hexagon::TFRI)
+ Start = &StartValInstr->getOperand(1);
+ }
+ if (End->isReg()) {
+ const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
+ if (EndValInstr && EndValInstr->getOpcode() == Hexagon::TFRI)
+ End = &EndValInstr->getOperand(1);
+ }
+
+ assert (Start->isReg() || Start->isImm());
+ assert (End->isReg() || End->isImm());
+
+ bool CmpLess = Cmp & Comparison::L;
+ bool CmpGreater = Cmp & Comparison::G;
+ bool CmpHasEqual = Cmp & Comparison::EQ;
+
+ // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
+ // If loop executes while iv is "less" with the iv value going down, then
+ // the iv must wrap.
+ if (CmpLess && IVBump < 0)
+ return nullptr;
+ // If loop executes while iv is "greater" with the iv value going up, then
+ // the iv must wrap.
+ if (CmpGreater && IVBump > 0)
+ return nullptr;
+
+ if (Start->isImm() && End->isImm()) {
+ // Both, start and end are immediates.
+ int64_t StartV = Start->getImm();
+ int64_t EndV = End->getImm();
+ int64_t Dist = EndV - StartV;
+ if (Dist == 0)
+ return nullptr;
+
+ bool Exact = (Dist % IVBump) == 0;
+
+ if (Cmp == Comparison::NE) {
+ if (!Exact)
+ return nullptr;
+ if ((Dist < 0) ^ (IVBump < 0))
+ return nullptr;
+ }
+
+ // For comparisons that include the final value (i.e. include equality
+ // with the final value), we need to increase the distance by 1.
+ if (CmpHasEqual)
+ Dist = Dist > 0 ? Dist+1 : Dist-1;
+
+ // assert (CmpLess => Dist > 0);
+ assert ((!CmpLess || Dist > 0) && "Loop should never iterate!");
+ // assert (CmpGreater => Dist < 0);
+ assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!");
+
+ // "Normalized" distance, i.e. with the bump set to +-1.
+ int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump
+ : (-Dist + (-IVBump-1)) / (-IVBump);
+ assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.");
+
+ uint64_t Count = Dist1;
+
+ if (Count > 0xFFFFFFFFULL)
+ return nullptr;
+
+ return new CountValue(CountValue::CV_Immediate, Count);
+ }
+
+ // A general case: Start and End are some values, but the actual
+ // iteration count may not be available. If it is not, insert
+ // a computation of it into the preheader.
+
+ // If the induction variable bump is not a power of 2, quit.
+ // Othwerise we'd need a general integer division.
+ if (!isPowerOf2_64(abs64(IVBump)))
+ return nullptr;
+
+ MachineBasicBlock *PH = Loop->getLoopPreheader();
+ assert (PH && "Should have a preheader by now");
+ MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
+ DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc()
+ : DebugLoc();
+
+ // If Start is an immediate and End is a register, the trip count
+ // will be "reg - imm". Hexagon's "subtract immediate" instruction
+ // is actually "reg + -imm".
+
+ // If the loop IV is going downwards, i.e. if the bump is negative,
+ // then the iteration count (computed as End-Start) will need to be
+ // negated. To avoid the negation, just swap Start and End.
+ if (IVBump < 0) {
+ std::swap(Start, End);
+ IVBump = -IVBump;
+ }
+ // Cmp may now have a wrong direction, e.g. LEs may now be GEs.
+ // Signedness, and "including equality" are preserved.
+
+ bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
+ bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
+
+ int64_t StartV = 0, EndV = 0;
+ if (Start->isImm())
+ StartV = Start->getImm();
+ if (End->isImm())
+ EndV = End->getImm();
+
+ int64_t AdjV = 0;
+ // To compute the iteration count, we would need this computation:
+ // Count = (End - Start + (IVBump-1)) / IVBump
+ // or, when CmpHasEqual:
+ // Count = (End - Start + (IVBump-1)+1) / IVBump
+ // The "IVBump-1" part is the adjustment (AdjV). We can avoid
+ // generating an instruction specifically to add it if we can adjust
+ // the immediate values for Start or End.
+
+ if (CmpHasEqual) {
+ // Need to add 1 to the total iteration count.
+ if (Start->isImm())
+ StartV--;
+ else if (End->isImm())
+ EndV++;
+ else
+ AdjV += 1;
+ }
+
+ if (Cmp != Comparison::NE) {
+ if (Start->isImm())
+ StartV -= (IVBump-1);
+ else if (End->isImm())
+ EndV += (IVBump-1);
+ else
+ AdjV += (IVBump-1);
+ }
+
+ unsigned R = 0, SR = 0;
+ if (Start->isReg()) {
+ R = Start->getReg();
+ SR = Start->getSubReg();
+ } else {
+ R = End->getReg();
+ SR = End->getSubReg();
+ }
+ const TargetRegisterClass *RC = MRI->getRegClass(R);
+ // Hardware loops cannot handle 64-bit registers. If it's a double
+ // register, it has to have a subregister.
+ if (!SR && RC == &Hexagon::DoubleRegsRegClass)
+ return nullptr;
+ const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
+
+ // Compute DistR (register with the distance between Start and End).
+ unsigned DistR, DistSR;
+
+ // Avoid special case, where the start value is an imm(0).
+ if (Start->isImm() && StartV == 0) {
+ DistR = End->getReg();
+ DistSR = End->getSubReg();
+ } else {
+ const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::SUB_rr) :
+ (RegToImm ? TII->get(Hexagon::SUB_ri) :
+ TII->get(Hexagon::ADD_ri));
+ unsigned SubR = MRI->createVirtualRegister(IntRC);
+ MachineInstrBuilder SubIB =
+ BuildMI(*PH, InsertPos, DL, SubD, SubR);
+
+ if (RegToReg) {
+ SubIB.addReg(End->getReg(), 0, End->getSubReg())
+ .addReg(Start->getReg(), 0, Start->getSubReg());
+ } else if (RegToImm) {
+ SubIB.addImm(EndV)
+ .addReg(Start->getReg(), 0, Start->getSubReg());
+ } else { // ImmToReg
+ SubIB.addReg(End->getReg(), 0, End->getSubReg())
+ .addImm(-StartV);
+ }
+ DistR = SubR;
+ DistSR = 0;
+ }
+
+ // From DistR, compute AdjR (register with the adjusted distance).
+ unsigned AdjR, AdjSR;
+
+ if (AdjV == 0) {
+ AdjR = DistR;
+ AdjSR = DistSR;
+ } else {
+ // Generate CountR = ADD DistR, AdjVal
+ unsigned AddR = MRI->createVirtualRegister(IntRC);
+ const MCInstrDesc &AddD = TII->get(Hexagon::ADD_ri);
+ BuildMI(*PH, InsertPos, DL, AddD, AddR)
+ .addReg(DistR, 0, DistSR)
+ .addImm(AdjV);
+
+ AdjR = AddR;
+ AdjSR = 0;
+ }
+
+ // From AdjR, compute CountR (register with the final count).
+ unsigned CountR, CountSR;
+
+ if (IVBump == 1) {
+ CountR = AdjR;
+ CountSR = AdjSR;
+ } else {
+ // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
+ unsigned Shift = Log2_32(IVBump);
+
+ // Generate NormR = LSR DistR, Shift.
+ unsigned LsrR = MRI->createVirtualRegister(IntRC);
+ const MCInstrDesc &LsrD = TII->get(Hexagon::LSR_ri);
+ BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
+ .addReg(AdjR, 0, AdjSR)
+ .addImm(Shift);
+
+ CountR = LsrR;
+ CountSR = 0;
+ }
+
+ return new CountValue(CountValue::CV_Register, CountR, CountSR);
+}
+
+
+/// \brief Return true if the operation is invalid within hardware loop.
+bool HexagonHardwareLoops::isInvalidLoopOperation(
+ const MachineInstr *MI) const {
+
+ // call is not allowed because the callee may use a hardware loop
+ if (MI->getDesc().isCall())
+ return true;
+
+ // do not allow nested hardware loops
+ if (isHardwareLoop(MI))
+ return true;
+
+ // check if the instruction defines a hardware loop register
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned R = MO.getReg();
+ if (R == Hexagon::LC0 || R == Hexagon::LC1 ||
+ R == Hexagon::SA0 || R == Hexagon::SA1)
+ return true;
+ }
+ return false;
+}
+
+
+/// \brief - Return true if the loop contains an instruction that inhibits
+/// the use of the hardware loop function.
+bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
+ const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
+ for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = Blocks[i];
+ for (MachineBasicBlock::iterator
+ MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
+ const MachineInstr *MI = &*MII;
+ if (isInvalidLoopOperation(MI))
+ return true;
+ }
+ }
+ return false;
+}
+
+
+/// \brief Returns true if the instruction is dead. This was essentially
+/// copied from DeadMachineInstructionElim::isDead, but with special cases
+/// for inline asm, physical registers and instructions with side effects
+/// removed.
+bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
+ SmallVectorImpl<MachineInstr *> &DeadPhis) const {
+ // Examine each operand.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+
+ unsigned Reg = MO.getReg();
+ if (MRI->use_nodbg_empty(Reg))
+ continue;
+
+ typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator;
+
+ // This instruction has users, but if the only user is the phi node for the
+ // parent block, and the only use of that phi node is this instruction, then
+ // this instruction is dead: both it (and the phi node) can be removed.
+ use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
+ use_nodbg_iterator End = MRI->use_nodbg_end();
+ if (std::next(I) != End || !I->getParent()->isPHI())
+ return false;
+
+ MachineInstr *OnePhi = I->getParent();
+ for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
+ const MachineOperand &OPO = OnePhi->getOperand(j);
+ if (!OPO.isReg() || !OPO.isDef())
+ continue;
+
+ unsigned OPReg = OPO.getReg();
+ use_nodbg_iterator nextJ;
+ for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
+ J != End; J = nextJ) {
+ nextJ = std::next(J);
+ MachineOperand &Use = *J;
+ MachineInstr *UseMI = Use.getParent();
+
+ // If the phi node has a user that is not MI, bail...
+ if (MI != UseMI)
+ return false;
+ }
+ }
+ DeadPhis.push_back(OnePhi);
+ }
+
+ // If there are no defs with uses, the instruction is dead.
+ return true;
+}
+
+void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
+ // This procedure was essentially copied from DeadMachineInstructionElim.
+
+ SmallVector<MachineInstr*, 1> DeadPhis;
+ if (isDead(MI, DeadPhis)) {
+ DEBUG(dbgs() << "HW looping will remove: " << *MI);
+
+ // It is possible that some DBG_VALUE instructions refer to this
+ // instruction. Examine each def operand for such references;
+ // if found, mark the DBG_VALUE as undef (but don't delete it).
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ MachineRegisterInfo::use_iterator nextI;
+ for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
+ E = MRI->use_end(); I != E; I = nextI) {
+ nextI = std::next(I); // I is invalidated by the setReg
+ MachineOperand &Use = *I;
+ MachineInstr *UseMI = I->getParent();
+ if (UseMI == MI)
+ continue;
+ if (Use.isDebug())
+ UseMI->getOperand(0).setReg(0U);
+ // This may also be a "instr -> phi -> instr" case which can
+ // be removed too.
+ }
+ }
+
+ MI->eraseFromParent();
+ for (unsigned i = 0; i < DeadPhis.size(); ++i)
+ DeadPhis[i]->eraseFromParent();
+ }
+}
+
+/// \brief Check if the loop is a candidate for converting to a hardware
+/// loop. If so, then perform the transformation.
+///
+/// This function works on innermost loops first. A loop can be converted
+/// if it is a counting loop; either a register value or an immediate.
+///
+/// The code makes several assumptions about the representation of the loop
+/// in llvm.
+bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
+ // This is just for sanity.
+ assert(L->getHeader() && "Loop without a header?");
+
+ bool Changed = false;
+ // Process nested loops first.
+ for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
+ Changed |= convertToHardwareLoop(*I);
+
+ // If a nested loop has been converted, then we can't convert this loop.
+ if (Changed)
+ return Changed;
+
+#ifndef NDEBUG
+ // Stop trying after reaching the limit (if any).
+ int Limit = HWLoopLimit;
+ if (Limit >= 0) {
+ if (Counter >= HWLoopLimit)
+ return false;
+ Counter++;
+ }
+#endif
+
+ // Does the loop contain any invalid instructions?
+ if (containsInvalidInstruction(L))
+ return false;
+
+ // Is the induction variable bump feeding the latch condition?
+ if (!fixupInductionVariable(L))
+ return false;
+
+ MachineBasicBlock *LastMBB = L->getExitingBlock();
+ // Don't generate hw loop if the loop has more than one exit.
+ if (!LastMBB)
+ return false;
+
+ MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
+ if (LastI == LastMBB->end())
+ return false;
+
+ // Ensure the loop has a preheader: the loop instruction will be
+ // placed there.
+ bool NewPreheader = false;
+ MachineBasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) {
+ Preheader = createPreheaderForLoop(L);
+ if (!Preheader)
+ return false;
+ NewPreheader = true;
+ }
+ MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
+
+ SmallVector<MachineInstr*, 2> OldInsts;
+ // Are we able to determine the trip count for the loop?
+ CountValue *TripCount = getLoopTripCount(L, OldInsts);
+ if (!TripCount)
+ return false;
+
+ // Is the trip count available in the preheader?
+ if (TripCount->isReg()) {
+ // There will be a use of the register inserted into the preheader,
+ // so make sure that the register is actually defined at that point.
+ MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
+ MachineBasicBlock *BBDef = TCDef->getParent();
+ if (!NewPreheader) {
+ if (!MDT->dominates(BBDef, Preheader))
+ return false;
+ } else {
+ // If we have just created a preheader, the dominator tree won't be
+ // aware of it. Check if the definition of the register dominates
+ // the header, but is not the header itself.
+ if (!MDT->properlyDominates(BBDef, L->getHeader()))
+ return false;
+ }
+ }
+
+ // Determine the loop start.
+ MachineBasicBlock *LoopStart = L->getTopBlock();
+ if (L->getLoopLatch() != LastMBB) {
+ // When the exit and latch are not the same, use the latch block as the
+ // start.
+ // The loop start address is used only after the 1st iteration, and the
+ // loop latch may contains instrs. that need to be executed after the
+ // first iteration.
+ LoopStart = L->getLoopLatch();
+ // Make sure the latch is a successor of the exit, otherwise it won't work.
+ if (!LastMBB->isSuccessor(LoopStart))
+ return false;
+ }
+
+ // Convert the loop to a hardware loop.
+ DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
+ DebugLoc DL;
+ if (InsertPos != Preheader->end())
+ DL = InsertPos->getDebugLoc();
+
+ if (TripCount->isReg()) {
+ // Create a copy of the loop count register.
+ unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
+ BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
+ .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
+ // Add the Loop instruction to the beginning of the loop.
+ BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r))
+ .addMBB(LoopStart)
+ .addReg(CountReg);
+ } else {
+ assert(TripCount->isImm() && "Expecting immediate value for trip count");
+ // Add the Loop immediate instruction to the beginning of the loop,
+ // if the immediate fits in the instructions. Otherwise, we need to
+ // create a new virtual register.
+ int64_t CountImm = TripCount->getImm();
+ if (!TII->isValidOffset(Hexagon::LOOP0_i, CountImm)) {
+ unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
+ BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::TFRI), CountReg)
+ .addImm(CountImm);
+ BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r))
+ .addMBB(LoopStart).addReg(CountReg);
+ } else
+ BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_i))
+ .addMBB(LoopStart).addImm(CountImm);
+ }
+
+ // Make sure the loop start always has a reference in the CFG. We need
+ // to create a BlockAddress operand to get this mechanism to work both the
+ // MachineBasicBlock and BasicBlock objects need the flag set.
+ LoopStart->setHasAddressTaken();
+ // This line is needed to set the hasAddressTaken flag on the BasicBlock
+ // object.
+ BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
+
+ // Replace the loop branch with an endloop instruction.
+ DebugLoc LastIDL = LastI->getDebugLoc();
+ BuildMI(*LastMBB, LastI, LastIDL,
+ TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);
+
+ // The loop ends with either:
+ // - a conditional branch followed by an unconditional branch, or
+ // - a conditional branch to the loop start.
+ if (LastI->getOpcode() == Hexagon::JMP_t ||
+ LastI->getOpcode() == Hexagon::JMP_f) {
+ // Delete one and change/add an uncond. branch to out of the loop.
+ MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
+ LastI = LastMBB->erase(LastI);
+ if (!L->contains(BranchTarget)) {
+ if (LastI != LastMBB->end())
+ LastI = LastMBB->erase(LastI);
+ SmallVector<MachineOperand, 0> Cond;
+ TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
+ }
+ } else {
+ // Conditional branch to loop start; just delete it.
+ LastMBB->erase(LastI);
+ }
+ delete TripCount;
+
+ // The induction operation and the comparison may now be
+ // unneeded. If these are unneeded, then remove them.
+ for (unsigned i = 0; i < OldInsts.size(); ++i)
+ removeIfDead(OldInsts[i]);
+
+ ++NumHWLoops;
+ return true;
+}
+
+
+bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
+ MachineInstr *CmpI) {
+ assert (BumpI != CmpI && "Bump and compare in the same instruction?");
+
+ MachineBasicBlock *BB = BumpI->getParent();
+ if (CmpI->getParent() != BB)
+ return false;
+
+ typedef MachineBasicBlock::instr_iterator instr_iterator;
+ // Check if things are in order to begin with.
+ for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I)
+ if (&*I == CmpI)
+ return true;
+
+ // Out of order.
+ unsigned PredR = CmpI->getOperand(0).getReg();
+ bool FoundBump = false;
+ instr_iterator CmpIt = CmpI, NextIt = std::next(CmpIt);
+ for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
+ MachineInstr *In = &*I;
+ for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
+ MachineOperand &MO = In->getOperand(i);
+ if (MO.isReg() && MO.isUse()) {
+ if (MO.getReg() == PredR) // Found an intervening use of PredR.
+ return false;
+ }
+ }
+
+ if (In == BumpI) {
+ instr_iterator After = BumpI;
+ instr_iterator From = CmpI;
+ BB->splice(std::next(After), BB, From);
+ FoundBump = true;
+ break;
+ }
+ }
+ assert (FoundBump && "Cannot determine instruction order");
+ return FoundBump;
+}
+
+
+MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) {
+ MachineInstr *DI = MRI->getVRegDef(R);
+ unsigned DOpc = DI->getOpcode();
+ switch (DOpc) {
+ case Hexagon::TFRI:
+ case Hexagon::TFRI64:
+ case Hexagon::CONST32_Int_Real:
+ case Hexagon::CONST64_Int_Real:
+ return DI;
+ }
+ return nullptr;
+}
+
+
+int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) {
+ if (MO.isImm())
+ return MO.getImm();
+ assert(MO.isReg());
+ unsigned R = MO.getReg();
+ MachineInstr *DI = defWithImmediate(R);
+ assert(DI && "Need an immediate operand");
+ // All currently supported "define-with-immediate" instructions have the
+ // actual immediate value in the operand(1).
+ int64_t v = DI->getOperand(1).getImm();
+ return v;
+}
+
+
+void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
+ if (MO.isImm()) {
+ MO.setImm(Val);
+ return;
+ }
+
+ assert(MO.isReg());
+ unsigned R = MO.getReg();
+ MachineInstr *DI = defWithImmediate(R);
+ if (MRI->hasOneNonDBGUse(R)) {
+ // If R has only one use, then just change its defining instruction to
+ // the new immediate value.
+ DI->getOperand(1).setImm(Val);
+ return;
+ }
+
+ const TargetRegisterClass *RC = MRI->getRegClass(R);
+ unsigned NewR = MRI->createVirtualRegister(RC);
+ MachineBasicBlock &B = *DI->getParent();
+ DebugLoc DL = DI->getDebugLoc();
+ BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR)
+ .addImm(Val);
+ MO.setReg(NewR);
+}
+
+
+bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
+ MachineBasicBlock *Header = L->getHeader();
+ MachineBasicBlock *Preheader = L->getLoopPreheader();
+ MachineBasicBlock *Latch = L->getLoopLatch();
+
+ if (!Header || !Preheader || !Latch)
+ return false;
+
+ // These data structures follow the same concept as the corresponding
+ // ones in findInductionRegister (where some comments are).
+ typedef std::pair<unsigned,int64_t> RegisterBump;
+ typedef std::pair<unsigned,RegisterBump> RegisterInduction;
+ typedef std::set<RegisterInduction> RegisterInductionSet;
+
+ // Register candidates for induction variables, with their associated bumps.
+ RegisterInductionSet IndRegs;
+
+ // Look for induction patterns:
+ // vreg1 = PHI ..., [ latch, vreg2 ]
+ // vreg2 = ADD vreg1, imm
+ typedef MachineBasicBlock::instr_iterator instr_iterator;
+ for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
+ I != E && I->isPHI(); ++I) {
+ MachineInstr *Phi = &*I;
+
+ // Have a PHI instruction.
+ for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
+ if (Phi->getOperand(i+1).getMBB() != Latch)
+ continue;
+
+ unsigned PhiReg = Phi->getOperand(i).getReg();
+ MachineInstr *DI = MRI->getVRegDef(PhiReg);
+ unsigned UpdOpc = DI->getOpcode();
+ bool isAdd = (UpdOpc == Hexagon::ADD_ri);
+
+ if (isAdd) {
+ // If the register operand to the add/sub is the PHI we are looking
+ // at, this meets the induction pattern.
+ unsigned IndReg = DI->getOperand(1).getReg();
+ if (MRI->getVRegDef(IndReg) == Phi) {
+ unsigned UpdReg = DI->getOperand(0).getReg();
+ int64_t V = DI->getOperand(2).getImm();
+ IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
+ }
+ }
+ } // for (i)
+ } // for (instr)
+
+ if (IndRegs.empty())
+ return false;
+
+ MachineBasicBlock *TB = nullptr, *FB = nullptr;
+ SmallVector<MachineOperand,2> Cond;
+ // AnalyzeBranch returns true if it fails to analyze branch.
+ bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
+ if (NotAnalyzed)
+ return false;
+
+ // Check if the latch branch is unconditional.
+ if (Cond.empty())
+ return false;
+
+ if (TB != Header && FB != Header)
+ // The latch does not go back to the header. Not a latch we know and love.
+ return false;
+
+ // Expecting a predicate register as a condition. It won't be a hardware
+ // predicate register at this point yet, just a vreg.
+ // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
+ // into Cond, followed by the predicate register. For non-negated branches
+ // it's just the register.
+ unsigned CSz = Cond.size();
+ if (CSz != 1 && CSz != 2)
+ return false;
+
+ unsigned P = Cond[CSz-1].getReg();
+ MachineInstr *PredDef = MRI->getVRegDef(P);
+
+ if (!PredDef->isCompare())
+ return false;
+
+ SmallSet<unsigned,2> CmpRegs;
+ MachineOperand *CmpImmOp = nullptr;
+
+ // Go over all operands to the compare and look for immediate and register
+ // operands. Assume that if the compare has a single register use and a
+ // single immediate operand, then the register is being compared with the
+ // immediate value.
+ for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
+ MachineOperand &MO = PredDef->getOperand(i);
+ if (MO.isReg()) {
+ // Skip all implicit references. In one case there was:
+ // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use>
+ if (MO.isImplicit())
+ continue;
+ if (MO.isUse()) {
+ unsigned R = MO.getReg();
+ if (!defWithImmediate(R)) {
+ CmpRegs.insert(MO.getReg());
+ continue;
+ }
+ // Consider the register to be the "immediate" operand.
+ if (CmpImmOp)
+ return false;
+ CmpImmOp = &MO;
+ }
+ } else if (MO.isImm()) {
+ if (CmpImmOp) // A second immediate argument? Confusing. Bail out.
+ return false;
+ CmpImmOp = &MO;
+ }
+ }
+
+ if (CmpRegs.empty())
+ return false;
+
+ // Check if the compared register follows the order we want. Fix if needed.
+ for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
+ I != E; ++I) {
+ // This is a success. If the register used in the comparison is one that
+ // we have identified as a bumped (updated) induction register, there is
+ // nothing to do.
+ if (CmpRegs.count(I->first))
+ return true;
+
+ // Otherwise, if the register being compared comes out of a PHI node,
+ // and has been recognized as following the induction pattern, and is
+ // compared against an immediate, we can fix it.
+ const RegisterBump &RB = I->second;
+ if (CmpRegs.count(RB.first)) {
+ if (!CmpImmOp)
+ return false;
+
+ int64_t CmpImm = getImmediate(*CmpImmOp);
+ int64_t V = RB.second;
+ if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit).
+ return false;
+ if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit).
+ return false;
+ CmpImm += V;
+ // Some forms of cmp-immediate allow u9 and s10. Assume the worst case
+ // scenario, i.e. an 8-bit value.
+ if (CmpImmOp->isImm() && !isInt<8>(CmpImm))
+ return false;
+
+ // Make sure that the compare happens after the bump. Otherwise,
+ // after the fixup, the compare would use a yet-undefined register.
+ MachineInstr *BumpI = MRI->getVRegDef(I->first);
+ bool Order = orderBumpCompare(BumpI, PredDef);
+ if (!Order)
+ return false;
+
+ // Finally, fix the compare instruction.
+ setImmediate(*CmpImmOp, CmpImm);
+ for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
+ MachineOperand &MO = PredDef->getOperand(i);
+ if (MO.isReg() && MO.getReg() == RB.first) {
+ MO.setReg(I->first);
+ return true;
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+
+/// \brief Create a preheader for a given loop.
+MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
+ MachineLoop *L) {
+ if (MachineBasicBlock *TmpPH = L->getLoopPreheader())
+ return TmpPH;
+
+ MachineBasicBlock *Header = L->getHeader();
+ MachineBasicBlock *Latch = L->getLoopLatch();
+ MachineFunction *MF = Header->getParent();
+ DebugLoc DL;
+
+ if (!Latch || Header->hasAddressTaken())
+ return nullptr;
+
+ typedef MachineBasicBlock::instr_iterator instr_iterator;
+
+ // Verify that all existing predecessors have analyzable branches
+ // (or no branches at all).
+ typedef std::vector<MachineBasicBlock*> MBBVector;
+ MBBVector Preds(Header->pred_begin(), Header->pred_end());
+ SmallVector<MachineOperand,2> Tmp1;
+ MachineBasicBlock *TB = nullptr, *FB = nullptr;
+
+ if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false))
+ return nullptr;
+
+ for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
+ MachineBasicBlock *PB = *I;
+ if (PB != Latch) {
+ bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false);
+ if (NotAnalyzed)
+ return nullptr;
+ }
+ }
+
+ MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
+ MF->insert(Header, NewPH);
+
+ if (Header->pred_size() > 2) {
+ // Ensure that the header has only two predecessors: the preheader and
+ // the loop latch. Any additional predecessors of the header should
+ // join at the newly created preheader. Inspect all PHI nodes from the
+ // header and create appropriate corresponding PHI nodes in the preheader.
+
+ for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
+ I != E && I->isPHI(); ++I) {
+ MachineInstr *PN = &*I;
+
+ const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
+ MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
+ NewPH->insert(NewPH->end(), NewPN);
+
+ unsigned PR = PN->getOperand(0).getReg();
+ const TargetRegisterClass *RC = MRI->getRegClass(PR);
+ unsigned NewPR = MRI->createVirtualRegister(RC);
+ NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
+
+ // Copy all non-latch operands of a header's PHI node to the newly
+ // created PHI node in the preheader.
+ for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
+ unsigned PredR = PN->getOperand(i).getReg();
+ MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
+ if (PredB == Latch)
+ continue;
+
+ NewPN->addOperand(MachineOperand::CreateReg(PredR, false));
+ NewPN->addOperand(MachineOperand::CreateMBB(PredB));
+ }
+
+ // Remove copied operands from the old PHI node and add the value
+ // coming from the preheader's PHI.
+ for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
+ MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
+ if (PredB != Latch) {
+ PN->RemoveOperand(i+1);
+ PN->RemoveOperand(i);
+ }
+ }
+ PN->addOperand(MachineOperand::CreateReg(NewPR, false));
+ PN->addOperand(MachineOperand::CreateMBB(NewPH));
+ }
+
+ } else {
+ assert(Header->pred_size() == 2);
+
+ // The header has only two predecessors, but the non-latch predecessor
+ // is not a preheader (e.g. it has other successors, etc.)
+ // In such a case we don't need any extra PHI nodes in the new preheader,
+ // all we need is to adjust existing PHIs in the header to now refer to
+ // the new preheader.
+ for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
+ I != E && I->isPHI(); ++I) {
+ MachineInstr *PN = &*I;
+ for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
+ MachineOperand &MO = PN->getOperand(i+1);
+ if (MO.getMBB() != Latch)
+ MO.setMBB(NewPH);
+ }
+ }
+ }
+
+ // "Reroute" the CFG edges to link in the new preheader.
+ // If any of the predecessors falls through to the header, insert a branch
+ // to the new preheader in that place.
+ SmallVector<MachineOperand,1> Tmp2;
+ SmallVector<MachineOperand,1> EmptyCond;
+
+ TB = FB = nullptr;
+
+ for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
+ MachineBasicBlock *PB = *I;
+ if (PB != Latch) {
+ Tmp2.clear();
+ bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false);
+ (void)NotAnalyzed; // suppress compiler warning
+ assert (!NotAnalyzed && "Should be analyzable!");
+ if (TB != Header && (Tmp2.empty() || FB != Header))
+ TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
+ PB->ReplaceUsesOfBlockWith(Header, NewPH);
+ }
+ }
+
+ // It can happen that the latch block will fall through into the header.
+ // Insert an unconditional branch to the header.
+ TB = FB = nullptr;
+ bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false);
+ (void)LatchNotAnalyzed; // suppress compiler warning
+ assert (!LatchNotAnalyzed && "Should be analyzable!");
+ if (!TB && !FB)
+ TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL);
+
+ // Finally, the branch from the preheader to the header.
+ TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
+ NewPH->addSuccessor(Header);
+
+ return NewPH;
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp
new file mode 100644
index 0000000..dabe650
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp
@@ -0,0 +1,1685 @@
+//===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the Hexagon target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "HexagonISelLowering.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-isel"
+
+static
+cl::opt<unsigned>
+MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders",
+ cl::Hidden, cl::init(2),
+ cl::desc("Maximum number of uses of a global address such that we still us a"
+ "constant extended instruction"));
+
+//===----------------------------------------------------------------------===//
+// Instruction Selector Implementation
+//===----------------------------------------------------------------------===//
+
+namespace llvm {
+ void initializeHexagonDAGToDAGISelPass(PassRegistry&);
+}
+
+//===--------------------------------------------------------------------===//
+/// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+class HexagonDAGToDAGISel : public SelectionDAGISel {
+ /// Subtarget - Keep a pointer to the Hexagon Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const HexagonSubtarget &Subtarget;
+
+ // Keep a reference to HexagonTargetMachine.
+ const HexagonTargetMachine& TM;
+ DenseMap<const GlobalValue *, unsigned> GlobalAddressUseCountMap;
+public:
+ explicit HexagonDAGToDAGISel(HexagonTargetMachine &targetmachine,
+ CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(targetmachine, OptLevel),
+ Subtarget(targetmachine.getSubtarget<HexagonSubtarget>()),
+ TM(targetmachine) {
+ initializeHexagonDAGToDAGISelPass(*PassRegistry::getPassRegistry());
+ }
+ bool hasNumUsesBelowThresGA(SDNode *N) const;
+
+ SDNode *Select(SDNode *N) override;
+
+ // Complex Pattern Selectors.
+ inline bool foldGlobalAddress(SDValue &N, SDValue &R);
+ inline bool foldGlobalAddressGP(SDValue &N, SDValue &R);
+ bool foldGlobalAddressImpl(SDValue &N, SDValue &R, bool ShouldLookForGP);
+ bool SelectADDRri(SDValue& N, SDValue &R1, SDValue &R2);
+ bool SelectADDRriS11_0(SDValue& N, SDValue &R1, SDValue &R2);
+ bool SelectADDRriS11_1(SDValue& N, SDValue &R1, SDValue &R2);
+ bool SelectADDRriS11_2(SDValue& N, SDValue &R1, SDValue &R2);
+ bool SelectMEMriS11_2(SDValue& Addr, SDValue &Base, SDValue &Offset);
+ bool SelectADDRriS11_3(SDValue& N, SDValue &R1, SDValue &R2);
+ bool SelectADDRrr(SDValue &Addr, SDValue &Base, SDValue &Offset);
+ bool SelectADDRriU6_0(SDValue& N, SDValue &R1, SDValue &R2);
+ bool SelectADDRriU6_1(SDValue& N, SDValue &R1, SDValue &R2);
+ bool SelectADDRriU6_2(SDValue& N, SDValue &R1, SDValue &R2);
+
+ const char *getPassName() const override {
+ return "Hexagon DAG->DAG Pattern Instruction Selection";
+ }
+
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions.
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps) override;
+ bool SelectAddr(SDNode *Op, SDValue Addr, SDValue &Base, SDValue &Offset);
+
+ SDNode *SelectLoad(SDNode *N);
+ SDNode *SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl);
+ SDNode *SelectIndexedLoad(LoadSDNode *LD, SDLoc dl);
+ SDNode *SelectIndexedLoadZeroExtend64(LoadSDNode *LD, unsigned Opcode,
+ SDLoc dl);
+ SDNode *SelectIndexedLoadSignExtend64(LoadSDNode *LD, unsigned Opcode,
+ SDLoc dl);
+ SDNode *SelectBaseOffsetStore(StoreSDNode *ST, SDLoc dl);
+ SDNode *SelectIndexedStore(StoreSDNode *ST, SDLoc dl);
+ SDNode *SelectStore(SDNode *N);
+ SDNode *SelectSHL(SDNode *N);
+ SDNode *SelectSelect(SDNode *N);
+ SDNode *SelectTruncate(SDNode *N);
+ SDNode *SelectMul(SDNode *N);
+ SDNode *SelectZeroExtend(SDNode *N);
+ SDNode *SelectIntrinsicWOChain(SDNode *N);
+ SDNode *SelectIntrinsicWChain(SDNode *N);
+ SDNode *SelectConstant(SDNode *N);
+ SDNode *SelectConstantFP(SDNode *N);
+ SDNode *SelectAdd(SDNode *N);
+ bool isConstExtProfitable(SDNode *N) const;
+
+// XformMskToBitPosU5Imm - Returns the bit position which
+// the single bit 32 bit mask represents.
+// Used in Clr and Set bit immediate memops.
+SDValue XformMskToBitPosU5Imm(uint32_t Imm) {
+ int32_t bitPos;
+ bitPos = Log2_32(Imm);
+ assert(bitPos >= 0 && bitPos < 32 &&
+ "Constant out of range for 32 BitPos Memops");
+ return CurDAG->getTargetConstant(bitPos, MVT::i32);
+}
+
+// XformMskToBitPosU4Imm - Returns the bit position which the single bit 16 bit
+// mask represents. Used in Clr and Set bit immediate memops.
+SDValue XformMskToBitPosU4Imm(uint16_t Imm) {
+ return XformMskToBitPosU5Imm(Imm);
+}
+
+// XformMskToBitPosU3Imm - Returns the bit position which the single bit 8 bit
+// mask represents. Used in Clr and Set bit immediate memops.
+SDValue XformMskToBitPosU3Imm(uint8_t Imm) {
+ return XformMskToBitPosU5Imm(Imm);
+}
+
+// Return true if there is exactly one bit set in V, i.e., if V is one of the
+// following integers: 2^0, 2^1, ..., 2^31.
+bool ImmIsSingleBit(uint32_t v) const {
+ uint32_t c = CountPopulation_64(v);
+ // Only return true if we counted 1 bit.
+ return c == 1;
+}
+
+// XformM5ToU5Imm - Return a target constant with the specified value, of type
+// i32 where the negative literal is transformed into a positive literal for
+// use in -= memops.
+inline SDValue XformM5ToU5Imm(signed Imm) {
+ assert( (Imm >= -31 && Imm <= -1) && "Constant out of range for Memops");
+ return CurDAG->getTargetConstant( - Imm, MVT::i32);
+}
+
+
+// XformU7ToU7M1Imm - Return a target constant decremented by 1, in range
+// [1..128], used in cmpb.gtu instructions.
+inline SDValue XformU7ToU7M1Imm(signed Imm) {
+ assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op");
+ return CurDAG->getTargetConstant(Imm - 1, MVT::i8);
+}
+
+// XformS8ToS8M1Imm - Return a target constant decremented by 1.
+inline SDValue XformSToSM1Imm(signed Imm) {
+ return CurDAG->getTargetConstant(Imm - 1, MVT::i32);
+}
+
+// XformU8ToU8M1Imm - Return a target constant decremented by 1.
+inline SDValue XformUToUM1Imm(unsigned Imm) {
+ assert((Imm >= 1) && "Cannot decrement unsigned int less than 1");
+ return CurDAG->getTargetConstant(Imm - 1, MVT::i32);
+}
+
+// Include the pieces autogenerated from the target description.
+#include "HexagonGenDAGISel.inc"
+};
+} // end anonymous namespace
+
+
+/// createHexagonISelDag - This pass converts a legalized DAG into a
+/// Hexagon-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createHexagonISelDag(HexagonTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new HexagonDAGToDAGISel(TM, OptLevel);
+}
+
+static void initializePassOnce(PassRegistry &Registry) {
+ const char *Name = "Hexagon DAG->DAG Pattern Instruction Selection";
+ PassInfo *PI = new PassInfo(Name, "hexagon-isel",
+ &SelectionDAGISel::ID, nullptr, false, false);
+ Registry.registerPass(*PI, true);
+}
+
+void llvm::initializeHexagonDAGToDAGISelPass(PassRegistry &Registry) {
+ CALL_ONCE_INITIALIZATION(initializePassOnce)
+}
+
+
+static bool IsS11_0_Offset(SDNode * S) {
+ ConstantSDNode *N = cast<ConstantSDNode>(S);
+
+ // immS16 predicate - True if the immediate fits in a 16-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<11>(v);
+}
+
+
+static bool IsS11_1_Offset(SDNode * S) {
+ ConstantSDNode *N = cast<ConstantSDNode>(S);
+
+ // immS16 predicate - True if the immediate fits in a 16-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<11,1>(v);
+}
+
+
+static bool IsS11_2_Offset(SDNode * S) {
+ ConstantSDNode *N = cast<ConstantSDNode>(S);
+
+ // immS16 predicate - True if the immediate fits in a 16-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<11,2>(v);
+}
+
+
+static bool IsS11_3_Offset(SDNode * S) {
+ ConstantSDNode *N = cast<ConstantSDNode>(S);
+
+ // immS16 predicate - True if the immediate fits in a 16-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<11,3>(v);
+}
+
+
+static bool IsU6_0_Offset(SDNode * S) {
+ ConstantSDNode *N = cast<ConstantSDNode>(S);
+
+ // u6 predicate - True if the immediate fits in a 6-bit unsigned extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<6>(v);
+}
+
+
+static bool IsU6_1_Offset(SDNode * S) {
+ ConstantSDNode *N = cast<ConstantSDNode>(S);
+
+ // u6 predicate - True if the immediate fits in a 6-bit unsigned extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedUInt<6,1>(v);
+}
+
+
+static bool IsU6_2_Offset(SDNode * S) {
+ ConstantSDNode *N = cast<ConstantSDNode>(S);
+
+ // u6 predicate - True if the immediate fits in a 6-bit unsigned extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedUInt<6,2>(v);
+}
+
+
+// Intrinsics that return a a predicate.
+static unsigned doesIntrinsicReturnPredicate(unsigned ID)
+{
+ switch (ID) {
+ default:
+ return 0;
+ case Intrinsic::hexagon_C2_cmpeq:
+ case Intrinsic::hexagon_C2_cmpgt:
+ case Intrinsic::hexagon_C2_cmpgtu:
+ case Intrinsic::hexagon_C2_cmpgtup:
+ case Intrinsic::hexagon_C2_cmpgtp:
+ case Intrinsic::hexagon_C2_cmpeqp:
+ case Intrinsic::hexagon_C2_bitsset:
+ case Intrinsic::hexagon_C2_bitsclr:
+ case Intrinsic::hexagon_C2_cmpeqi:
+ case Intrinsic::hexagon_C2_cmpgti:
+ case Intrinsic::hexagon_C2_cmpgtui:
+ case Intrinsic::hexagon_C2_cmpgei:
+ case Intrinsic::hexagon_C2_cmpgeui:
+ case Intrinsic::hexagon_C2_cmplt:
+ case Intrinsic::hexagon_C2_cmpltu:
+ case Intrinsic::hexagon_C2_bitsclri:
+ case Intrinsic::hexagon_C2_and:
+ case Intrinsic::hexagon_C2_or:
+ case Intrinsic::hexagon_C2_xor:
+ case Intrinsic::hexagon_C2_andn:
+ case Intrinsic::hexagon_C2_not:
+ case Intrinsic::hexagon_C2_orn:
+ case Intrinsic::hexagon_C2_pxfer_map:
+ case Intrinsic::hexagon_C2_any8:
+ case Intrinsic::hexagon_C2_all8:
+ case Intrinsic::hexagon_A2_vcmpbeq:
+ case Intrinsic::hexagon_A2_vcmpbgtu:
+ case Intrinsic::hexagon_A2_vcmpheq:
+ case Intrinsic::hexagon_A2_vcmphgt:
+ case Intrinsic::hexagon_A2_vcmphgtu:
+ case Intrinsic::hexagon_A2_vcmpweq:
+ case Intrinsic::hexagon_A2_vcmpwgt:
+ case Intrinsic::hexagon_A2_vcmpwgtu:
+ case Intrinsic::hexagon_C2_tfrrp:
+ case Intrinsic::hexagon_S2_tstbit_i:
+ case Intrinsic::hexagon_S2_tstbit_r:
+ return 1;
+ }
+}
+
+
+// Intrinsics that have predicate operands.
+static unsigned doesIntrinsicContainPredicate(unsigned ID)
+{
+ switch (ID) {
+ default:
+ return 0;
+ case Intrinsic::hexagon_C2_tfrpr:
+ return Hexagon::TFR_RsPd;
+ case Intrinsic::hexagon_C2_and:
+ return Hexagon::AND_pp;
+ case Intrinsic::hexagon_C2_xor:
+ return Hexagon::XOR_pp;
+ case Intrinsic::hexagon_C2_or:
+ return Hexagon::OR_pp;
+ case Intrinsic::hexagon_C2_not:
+ return Hexagon::NOT_p;
+ case Intrinsic::hexagon_C2_any8:
+ return Hexagon::ANY_pp;
+ case Intrinsic::hexagon_C2_all8:
+ return Hexagon::ALL_pp;
+ case Intrinsic::hexagon_C2_vitpack:
+ return Hexagon::VITPACK_pp;
+ case Intrinsic::hexagon_C2_mask:
+ return Hexagon::MASK_p;
+ case Intrinsic::hexagon_C2_mux:
+ return Hexagon::MUX_rr;
+
+ // Mapping hexagon_C2_muxir to MUX_pri. This is pretty weird - but
+ // that's how it's mapped in q6protos.h.
+ case Intrinsic::hexagon_C2_muxir:
+ return Hexagon::MUX_ri;
+
+ // Mapping hexagon_C2_muxri to MUX_pir. This is pretty weird - but
+ // that's how it's mapped in q6protos.h.
+ case Intrinsic::hexagon_C2_muxri:
+ return Hexagon::MUX_ir;
+
+ case Intrinsic::hexagon_C2_muxii:
+ return Hexagon::MUX_ii;
+ case Intrinsic::hexagon_C2_vmux:
+ return Hexagon::VMUX_prr64;
+ case Intrinsic::hexagon_S2_valignrb:
+ return Hexagon::VALIGN_rrp;
+ case Intrinsic::hexagon_S2_vsplicerb:
+ return Hexagon::VSPLICE_rrp;
+ }
+}
+
+
+static bool OffsetFitsS11(EVT MemType, int64_t Offset) {
+ if (MemType == MVT::i64 && isShiftedInt<11,3>(Offset)) {
+ return true;
+ }
+ if (MemType == MVT::i32 && isShiftedInt<11,2>(Offset)) {
+ return true;
+ }
+ if (MemType == MVT::i16 && isShiftedInt<11,1>(Offset)) {
+ return true;
+ }
+ if (MemType == MVT::i8 && isInt<11>(Offset)) {
+ return true;
+ }
+ return false;
+}
+
+
+//
+// Try to lower loads of GlobalAdresses into base+offset loads. Custom
+// lowering for GlobalAddress nodes has already turned it into a
+// CONST32.
+//
+SDNode *HexagonDAGToDAGISel::SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl) {
+ SDValue Chain = LD->getChain();
+ SDNode* Const32 = LD->getBasePtr().getNode();
+ unsigned Opcode = 0;
+
+ if (Const32->getOpcode() == HexagonISD::CONST32 &&
+ ISD::isNormalLoad(LD)) {
+ SDValue Base = Const32->getOperand(0);
+ EVT LoadedVT = LD->getMemoryVT();
+ int64_t Offset = cast<GlobalAddressSDNode>(Base)->getOffset();
+ if (Offset != 0 && OffsetFitsS11(LoadedVT, Offset)) {
+ MVT PointerTy = getTargetLowering()->getPointerTy();
+ const GlobalValue* GV =
+ cast<GlobalAddressSDNode>(Base)->getGlobal();
+ SDValue TargAddr =
+ CurDAG->getTargetGlobalAddress(GV, dl, PointerTy, 0);
+ SDNode* NewBase = CurDAG->getMachineNode(Hexagon::CONST32_set,
+ dl, PointerTy,
+ TargAddr);
+ // Figure out base + offset opcode
+ if (LoadedVT == MVT::i64) Opcode = Hexagon::LDrid_indexed;
+ else if (LoadedVT == MVT::i32) Opcode = Hexagon::LDriw_indexed;
+ else if (LoadedVT == MVT::i16) Opcode = Hexagon::LDrih_indexed;
+ else if (LoadedVT == MVT::i8) Opcode = Hexagon::LDrib_indexed;
+ else llvm_unreachable("unknown memory type");
+
+ // Build indexed load.
+ SDValue TargetConstOff = CurDAG->getTargetConstant(Offset, PointerTy);
+ SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
+ LD->getValueType(0),
+ MVT::Other,
+ SDValue(NewBase,0),
+ TargetConstOff,
+ Chain);
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
+ ReplaceUses(LD, Result);
+ return Result;
+ }
+ }
+
+ return SelectCode(LD);
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD,
+ unsigned Opcode,
+ SDLoc dl)
+{
+ SDValue Chain = LD->getChain();
+ EVT LoadedVT = LD->getMemoryVT();
+ SDValue Base = LD->getBasePtr();
+ SDValue Offset = LD->getOffset();
+ SDNode *OffsetNode = Offset.getNode();
+ int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
+ SDValue N1 = LD->getOperand(1);
+ SDValue CPTmpN1_0;
+ SDValue CPTmpN1_1;
+
+ if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) &&
+ N1.getNode()->getValueType(0) == MVT::i32) {
+ const HexagonInstrInfo *TII =
+ static_cast<const HexagonInstrInfo*>(TM.getInstrInfo());
+ if (TII->isValidAutoIncImm(LoadedVT, Val)) {
+ SDValue TargetConst = CurDAG->getTargetConstant(Val, MVT::i32);
+ SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32,
+ MVT::Other, Base, TargetConst,
+ Chain);
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::SXTW, dl, MVT::i64,
+ SDValue(Result_1, 0));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2)
+ };
+ const SDValue Tos[] = { SDValue(Result_2, 0),
+ SDValue(Result_1, 1),
+ SDValue(Result_1, 2)
+ };
+ ReplaceUses(Froms, Tos, 3);
+ return Result_2;
+ }
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
+ SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
+ MVT::Other, Base, TargetConst0,
+ Chain);
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::SXTW, dl,
+ MVT::i64, SDValue(Result_1, 0));
+ SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl,
+ MVT::i32, Base, TargetConstVal,
+ SDValue(Result_1, 1));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2)
+ };
+ const SDValue Tos[] = { SDValue(Result_2, 0),
+ SDValue(Result_3, 0),
+ SDValue(Result_1, 1)
+ };
+ ReplaceUses(Froms, Tos, 3);
+ return Result_2;
+ }
+ return SelectCode(LD);
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD,
+ unsigned Opcode,
+ SDLoc dl)
+{
+ SDValue Chain = LD->getChain();
+ EVT LoadedVT = LD->getMemoryVT();
+ SDValue Base = LD->getBasePtr();
+ SDValue Offset = LD->getOffset();
+ SDNode *OffsetNode = Offset.getNode();
+ int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
+ SDValue N1 = LD->getOperand(1);
+ SDValue CPTmpN1_0;
+ SDValue CPTmpN1_1;
+
+ if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) &&
+ N1.getNode()->getValueType(0) == MVT::i32) {
+ const HexagonInstrInfo *TII =
+ static_cast<const HexagonInstrInfo*>(TM.getInstrInfo());
+ if (TII->isValidAutoIncImm(LoadedVT, Val)) {
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
+ SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
+ MVT::i32, MVT::Other, Base,
+ TargetConstVal, Chain);
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32,
+ TargetConst0);
+ SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl,
+ MVT::i64, MVT::Other,
+ SDValue(Result_2,0),
+ SDValue(Result_1,0));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2)
+ };
+ const SDValue Tos[] = { SDValue(Result_3, 0),
+ SDValue(Result_1, 1),
+ SDValue(Result_1, 2)
+ };
+ ReplaceUses(Froms, Tos, 3);
+ return Result_3;
+ }
+
+ // Generate an indirect load.
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
+ SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
+ MVT::Other,
+ Base, TargetConst0, Chain);
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32,
+ TargetConst0);
+ SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl,
+ MVT::i64, MVT::Other,
+ SDValue(Result_2,0),
+ SDValue(Result_1,0));
+ // Add offset to base.
+ SDNode* Result_4 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32,
+ Base, TargetConstVal,
+ SDValue(Result_1, 1));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2)
+ };
+ const SDValue Tos[] = { SDValue(Result_3, 0), // Load value.
+ SDValue(Result_4, 0), // New address.
+ SDValue(Result_1, 1)
+ };
+ ReplaceUses(Froms, Tos, 3);
+ return Result_3;
+ }
+
+ return SelectCode(LD);
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, SDLoc dl) {
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Offset = LD->getOffset();
+ SDNode *OffsetNode = Offset.getNode();
+ // Get the constant value.
+ int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
+ EVT LoadedVT = LD->getMemoryVT();
+ unsigned Opcode = 0;
+
+ // Check for zero ext loads.
+ bool zextval = (LD->getExtensionType() == ISD::ZEXTLOAD);
+
+ // Figure out the opcode.
+ const HexagonInstrInfo *TII =
+ static_cast<const HexagonInstrInfo*>(TM.getInstrInfo());
+ if (LoadedVT == MVT::i64) {
+ if (TII->isValidAutoIncImm(LoadedVT, Val))
+ Opcode = Hexagon::POST_LDrid;
+ else
+ Opcode = Hexagon::LDrid;
+ } else if (LoadedVT == MVT::i32) {
+ if (TII->isValidAutoIncImm(LoadedVT, Val))
+ Opcode = Hexagon::POST_LDriw;
+ else
+ Opcode = Hexagon::LDriw;
+ } else if (LoadedVT == MVT::i16) {
+ if (TII->isValidAutoIncImm(LoadedVT, Val))
+ Opcode = zextval ? Hexagon::POST_LDriuh : Hexagon::POST_LDrih;
+ else
+ Opcode = zextval ? Hexagon::LDriuh : Hexagon::LDrih;
+ } else if (LoadedVT == MVT::i8) {
+ if (TII->isValidAutoIncImm(LoadedVT, Val))
+ Opcode = zextval ? Hexagon::POST_LDriub : Hexagon::POST_LDrib;
+ else
+ Opcode = zextval ? Hexagon::LDriub : Hexagon::LDrib;
+ } else
+ llvm_unreachable("unknown memory type");
+
+ // For zero ext i64 loads, we need to add combine instructions.
+ if (LD->getValueType(0) == MVT::i64 &&
+ LD->getExtensionType() == ISD::ZEXTLOAD) {
+ return SelectIndexedLoadZeroExtend64(LD, Opcode, dl);
+ }
+ if (LD->getValueType(0) == MVT::i64 &&
+ LD->getExtensionType() == ISD::SEXTLOAD) {
+ // Handle sign ext i64 loads.
+ return SelectIndexedLoadSignExtend64(LD, Opcode, dl);
+ }
+ if (TII->isValidAutoIncImm(LoadedVT, Val)) {
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
+ SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
+ LD->getValueType(0),
+ MVT::i32, MVT::Other, Base,
+ TargetConstVal, Chain);
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2)
+ };
+ const SDValue Tos[] = { SDValue(Result, 0),
+ SDValue(Result, 1),
+ SDValue(Result, 2)
+ };
+ ReplaceUses(Froms, Tos, 3);
+ return Result;
+ } else {
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
+ SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl,
+ LD->getValueType(0),
+ MVT::Other, Base, TargetConst0,
+ Chain);
+ SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32,
+ Base, TargetConstVal,
+ SDValue(Result_1, 1));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2)
+ };
+ const SDValue Tos[] = { SDValue(Result_1, 0),
+ SDValue(Result_2, 0),
+ SDValue(Result_1, 1)
+ };
+ ReplaceUses(Froms, Tos, 3);
+ return Result_1;
+ }
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
+ SDNode *result;
+ SDLoc dl(N);
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+
+ // Handle indexed loads.
+ if (AM != ISD::UNINDEXED) {
+ result = SelectIndexedLoad(LD, dl);
+ } else {
+ result = SelectBaseOffsetLoad(LD, dl);
+ }
+
+ return result;
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, SDLoc dl) {
+ SDValue Chain = ST->getChain();
+ SDValue Base = ST->getBasePtr();
+ SDValue Offset = ST->getOffset();
+ SDValue Value = ST->getValue();
+ SDNode *OffsetNode = Offset.getNode();
+ // Get the constant value.
+ int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
+ EVT StoredVT = ST->getMemoryVT();
+
+ // Offset value must be within representable range
+ // and must have correct alignment properties.
+ const HexagonInstrInfo *TII =
+ static_cast<const HexagonInstrInfo*>(TM.getInstrInfo());
+ if (TII->isValidAutoIncImm(StoredVT, Val)) {
+ SDValue Ops[] = {Base, CurDAG->getTargetConstant(Val, MVT::i32), Value,
+ Chain};
+ unsigned Opcode = 0;
+
+ // Figure out the post inc version of opcode.
+ if (StoredVT == MVT::i64) Opcode = Hexagon::POST_STdri;
+ else if (StoredVT == MVT::i32) Opcode = Hexagon::POST_STwri;
+ else if (StoredVT == MVT::i16) Opcode = Hexagon::POST_SThri;
+ else if (StoredVT == MVT::i8) Opcode = Hexagon::POST_STbri;
+ else llvm_unreachable("unknown memory type");
+
+ // Build post increment store.
+ SDNode* Result = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
+ MVT::Other, Ops);
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = ST->getMemOperand();
+ cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
+
+ ReplaceUses(ST, Result);
+ ReplaceUses(SDValue(ST,1), SDValue(Result,1));
+ return Result;
+ }
+
+ // Note: Order of operands matches the def of instruction:
+ // def STrid : STInst<(outs), (ins MEMri:$addr, DoubleRegs:$src1), ...
+ // and it differs for POST_ST* for instance.
+ SDValue Ops[] = { Base, CurDAG->getTargetConstant(0, MVT::i32), Value,
+ Chain};
+ unsigned Opcode = 0;
+
+ // Figure out the opcode.
+ if (StoredVT == MVT::i64) Opcode = Hexagon::STrid;
+ else if (StoredVT == MVT::i32) Opcode = Hexagon::STriw_indexed;
+ else if (StoredVT == MVT::i16) Opcode = Hexagon::STrih;
+ else if (StoredVT == MVT::i8) Opcode = Hexagon::STrib;
+ else llvm_unreachable("unknown memory type");
+
+ // Build regular store.
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
+ SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
+ // Build splitted incriment instruction.
+ SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32,
+ Base,
+ TargetConstVal,
+ SDValue(Result_1, 0));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = ST->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+
+ ReplaceUses(SDValue(ST,0), SDValue(Result_2,0));
+ ReplaceUses(SDValue(ST,1), SDValue(Result_1,0));
+ return Result_2;
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectBaseOffsetStore(StoreSDNode *ST,
+ SDLoc dl) {
+ SDValue Chain = ST->getChain();
+ SDNode* Const32 = ST->getBasePtr().getNode();
+ SDValue Value = ST->getValue();
+ unsigned Opcode = 0;
+
+ // Try to lower stores of GlobalAdresses into indexed stores. Custom
+ // lowering for GlobalAddress nodes has already turned it into a
+ // CONST32. Avoid truncating stores for the moment. Post-inc stores
+ // do the same. Don't think there's a reason for it, so will file a
+ // bug to fix.
+ if ((Const32->getOpcode() == HexagonISD::CONST32) &&
+ !(Value.getValueType() == MVT::i64 && ST->isTruncatingStore())) {
+ SDValue Base = Const32->getOperand(0);
+ if (Base.getOpcode() == ISD::TargetGlobalAddress) {
+ EVT StoredVT = ST->getMemoryVT();
+ int64_t Offset = cast<GlobalAddressSDNode>(Base)->getOffset();
+ if (Offset != 0 && OffsetFitsS11(StoredVT, Offset)) {
+ MVT PointerTy = getTargetLowering()->getPointerTy();
+ const GlobalValue* GV =
+ cast<GlobalAddressSDNode>(Base)->getGlobal();
+ SDValue TargAddr =
+ CurDAG->getTargetGlobalAddress(GV, dl, PointerTy, 0);
+ SDNode* NewBase = CurDAG->getMachineNode(Hexagon::CONST32_set,
+ dl, PointerTy,
+ TargAddr);
+
+ // Figure out base + offset opcode
+ if (StoredVT == MVT::i64) Opcode = Hexagon::STrid_indexed;
+ else if (StoredVT == MVT::i32) Opcode = Hexagon::STriw_indexed;
+ else if (StoredVT == MVT::i16) Opcode = Hexagon::STrih_indexed;
+ else if (StoredVT == MVT::i8) Opcode = Hexagon::STrib_indexed;
+ else llvm_unreachable("unknown memory type");
+
+ SDValue Ops[] = {SDValue(NewBase,0),
+ CurDAG->getTargetConstant(Offset,PointerTy),
+ Value, Chain};
+ // build indexed store
+ SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
+ MVT::Other, Ops);
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = ST->getMemOperand();
+ cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
+ ReplaceUses(ST, Result);
+ return Result;
+ }
+ }
+ }
+
+ return SelectCode(ST);
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectStore(SDNode *N) {
+ SDLoc dl(N);
+ StoreSDNode *ST = cast<StoreSDNode>(N);
+ ISD::MemIndexedMode AM = ST->getAddressingMode();
+
+ // Handle indexed stores.
+ if (AM != ISD::UNINDEXED) {
+ return SelectIndexedStore(ST, dl);
+ }
+
+ return SelectBaseOffsetStore(ST, dl);
+}
+
+SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) {
+ SDLoc dl(N);
+
+ //
+ // %conv.i = sext i32 %tmp1 to i64
+ // %conv2.i = sext i32 %add to i64
+ // %mul.i = mul nsw i64 %conv2.i, %conv.i
+ //
+ // --- match with the following ---
+ //
+ // %mul.i = mpy (%tmp1, %add)
+ //
+
+ if (N->getValueType(0) == MVT::i64) {
+ // Shifting a i64 signed multiply.
+ SDValue MulOp0 = N->getOperand(0);
+ SDValue MulOp1 = N->getOperand(1);
+
+ SDValue OP0;
+ SDValue OP1;
+
+ // Handle sign_extend and sextload.
+ if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
+ SDValue Sext0 = MulOp0.getOperand(0);
+ if (Sext0.getNode()->getValueType(0) != MVT::i32) {
+ return SelectCode(N);
+ }
+
+ OP0 = Sext0;
+ } else if (MulOp0.getOpcode() == ISD::LOAD) {
+ LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
+ if (LD->getMemoryVT() != MVT::i32 ||
+ LD->getExtensionType() != ISD::SEXTLOAD ||
+ LD->getAddressingMode() != ISD::UNINDEXED) {
+ return SelectCode(N);
+ }
+
+ SDValue Chain = LD->getChain();
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
+ OP0 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
+ MVT::Other,
+ LD->getBasePtr(), TargetConst0,
+ Chain), 0);
+ } else {
+ return SelectCode(N);
+ }
+
+ // Same goes for the second operand.
+ if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
+ SDValue Sext1 = MulOp1.getOperand(0);
+ if (Sext1.getNode()->getValueType(0) != MVT::i32) {
+ return SelectCode(N);
+ }
+
+ OP1 = Sext1;
+ } else if (MulOp1.getOpcode() == ISD::LOAD) {
+ LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
+ if (LD->getMemoryVT() != MVT::i32 ||
+ LD->getExtensionType() != ISD::SEXTLOAD ||
+ LD->getAddressingMode() != ISD::UNINDEXED) {
+ return SelectCode(N);
+ }
+
+ SDValue Chain = LD->getChain();
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
+ OP1 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
+ MVT::Other,
+ LD->getBasePtr(), TargetConst0,
+ Chain), 0);
+ } else {
+ return SelectCode(N);
+ }
+
+ // Generate a mpy instruction.
+ SDNode *Result = CurDAG->getMachineNode(Hexagon::MPY64, dl, MVT::i64,
+ OP0, OP1);
+ ReplaceUses(N, Result);
+ return Result;
+ }
+
+ return SelectCode(N);
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectSelect(SDNode *N) {
+ SDLoc dl(N);
+ SDValue N0 = N->getOperand(0);
+ if (N0.getOpcode() == ISD::SETCC) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ SDValue N000 = N00.getOperand(0);
+ SDValue N001 = N00.getOperand(1);
+ if (cast<VTSDNode>(N001)->getVT() == MVT::i16) {
+ SDValue N01 = N0.getOperand(1);
+ SDValue N02 = N0.getOperand(2);
+
+ // Pattern: (select:i32 (setcc:i1 (sext_inreg:i32 IntRegs:i32:$src2,
+ // i16:Other),IntRegs:i32:$src1, SETLT:Other),IntRegs:i32:$src1,
+ // IntRegs:i32:$src2)
+ // Emits: (MAXh_rr:i32 IntRegs:i32:$src1, IntRegs:i32:$src2)
+ // Pattern complexity = 9 cost = 1 size = 0.
+ if (cast<CondCodeSDNode>(N02)->get() == ISD::SETLT) {
+ SDValue N1 = N->getOperand(1);
+ if (N01 == N1) {
+ SDValue N2 = N->getOperand(2);
+ if (N000 == N2 &&
+ N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 &&
+ N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) {
+ SDNode *SextNode = CurDAG->getMachineNode(Hexagon::SXTH, dl,
+ MVT::i32, N000);
+ SDNode *Result = CurDAG->getMachineNode(Hexagon::MAXw_rr, dl,
+ MVT::i32,
+ SDValue(SextNode, 0),
+ N1);
+ ReplaceUses(N, Result);
+ return Result;
+ }
+ }
+ }
+
+ // Pattern: (select:i32 (setcc:i1 (sext_inreg:i32 IntRegs:i32:$src2,
+ // i16:Other), IntRegs:i32:$src1, SETGT:Other), IntRegs:i32:$src1,
+ // IntRegs:i32:$src2)
+ // Emits: (MINh_rr:i32 IntRegs:i32:$src1, IntRegs:i32:$src2)
+ // Pattern complexity = 9 cost = 1 size = 0.
+ if (cast<CondCodeSDNode>(N02)->get() == ISD::SETGT) {
+ SDValue N1 = N->getOperand(1);
+ if (N01 == N1) {
+ SDValue N2 = N->getOperand(2);
+ if (N000 == N2 &&
+ N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 &&
+ N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) {
+ SDNode *SextNode = CurDAG->getMachineNode(Hexagon::SXTH, dl,
+ MVT::i32, N000);
+ SDNode *Result = CurDAG->getMachineNode(Hexagon::MINw_rr, dl,
+ MVT::i32,
+ SDValue(SextNode, 0),
+ N1);
+ ReplaceUses(N, Result);
+ return Result;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return SelectCode(N);
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectTruncate(SDNode *N) {
+ SDLoc dl(N);
+ SDValue Shift = N->getOperand(0);
+
+ //
+ // %conv.i = sext i32 %tmp1 to i64
+ // %conv2.i = sext i32 %add to i64
+ // %mul.i = mul nsw i64 %conv2.i, %conv.i
+ // %shr5.i = lshr i64 %mul.i, 32
+ // %conv3.i = trunc i64 %shr5.i to i32
+ //
+ // --- match with the following ---
+ //
+ // %conv3.i = mpy (%tmp1, %add)
+ //
+ // Trunc to i32.
+ if (N->getValueType(0) == MVT::i32) {
+ // Trunc from i64.
+ if (Shift.getNode()->getValueType(0) == MVT::i64) {
+ // Trunc child is logical shift right.
+ if (Shift.getOpcode() != ISD::SRL) {
+ return SelectCode(N);
+ }
+
+ SDValue ShiftOp0 = Shift.getOperand(0);
+ SDValue ShiftOp1 = Shift.getOperand(1);
+
+ // Shift by const 32
+ if (ShiftOp1.getOpcode() != ISD::Constant) {
+ return SelectCode(N);
+ }
+
+ int32_t ShiftConst =
+ cast<ConstantSDNode>(ShiftOp1.getNode())->getSExtValue();
+ if (ShiftConst != 32) {
+ return SelectCode(N);
+ }
+
+ // Shifting a i64 signed multiply
+ SDValue Mul = ShiftOp0;
+ if (Mul.getOpcode() != ISD::MUL) {
+ return SelectCode(N);
+ }
+
+ SDValue MulOp0 = Mul.getOperand(0);
+ SDValue MulOp1 = Mul.getOperand(1);
+
+ SDValue OP0;
+ SDValue OP1;
+
+ // Handle sign_extend and sextload
+ if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
+ SDValue Sext0 = MulOp0.getOperand(0);
+ if (Sext0.getNode()->getValueType(0) != MVT::i32) {
+ return SelectCode(N);
+ }
+
+ OP0 = Sext0;
+ } else if (MulOp0.getOpcode() == ISD::LOAD) {
+ LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
+ if (LD->getMemoryVT() != MVT::i32 ||
+ LD->getExtensionType() != ISD::SEXTLOAD ||
+ LD->getAddressingMode() != ISD::UNINDEXED) {
+ return SelectCode(N);
+ }
+
+ SDValue Chain = LD->getChain();
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
+ OP0 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
+ MVT::Other,
+ LD->getBasePtr(),
+ TargetConst0, Chain), 0);
+ } else {
+ return SelectCode(N);
+ }
+
+ // Same goes for the second operand.
+ if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
+ SDValue Sext1 = MulOp1.getOperand(0);
+ if (Sext1.getNode()->getValueType(0) != MVT::i32)
+ return SelectCode(N);
+
+ OP1 = Sext1;
+ } else if (MulOp1.getOpcode() == ISD::LOAD) {
+ LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
+ if (LD->getMemoryVT() != MVT::i32 ||
+ LD->getExtensionType() != ISD::SEXTLOAD ||
+ LD->getAddressingMode() != ISD::UNINDEXED) {
+ return SelectCode(N);
+ }
+
+ SDValue Chain = LD->getChain();
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
+ OP1 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
+ MVT::Other,
+ LD->getBasePtr(),
+ TargetConst0, Chain), 0);
+ } else {
+ return SelectCode(N);
+ }
+
+ // Generate a mpy instruction.
+ SDNode *Result = CurDAG->getMachineNode(Hexagon::MPY, dl, MVT::i32,
+ OP0, OP1);
+ ReplaceUses(N, Result);
+ return Result;
+ }
+ }
+
+ return SelectCode(N);
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
+ SDLoc dl(N);
+ if (N->getValueType(0) == MVT::i32) {
+ SDValue Shl_0 = N->getOperand(0);
+ SDValue Shl_1 = N->getOperand(1);
+ // RHS is const.
+ if (Shl_1.getOpcode() == ISD::Constant) {
+ if (Shl_0.getOpcode() == ISD::MUL) {
+ SDValue Mul_0 = Shl_0.getOperand(0); // Val
+ SDValue Mul_1 = Shl_0.getOperand(1); // Const
+ // RHS of mul is const.
+ if (Mul_1.getOpcode() == ISD::Constant) {
+ int32_t ShlConst =
+ cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
+ int32_t MulConst =
+ cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue();
+ int32_t ValConst = MulConst << ShlConst;
+ SDValue Val = CurDAG->getTargetConstant(ValConst,
+ MVT::i32);
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
+ if (isInt<9>(CN->getSExtValue())) {
+ SDNode* Result =
+ CurDAG->getMachineNode(Hexagon::MPYI_ri, dl,
+ MVT::i32, Mul_0, Val);
+ ReplaceUses(N, Result);
+ return Result;
+ }
+
+ }
+ } else if (Shl_0.getOpcode() == ISD::SUB) {
+ SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
+ SDValue Sub_1 = Shl_0.getOperand(1); // Val
+ if (Sub_0.getOpcode() == ISD::Constant) {
+ int32_t SubConst =
+ cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue();
+ if (SubConst == 0) {
+ if (Sub_1.getOpcode() == ISD::SHL) {
+ SDValue Shl2_0 = Sub_1.getOperand(0); // Val
+ SDValue Shl2_1 = Sub_1.getOperand(1); // Const
+ if (Shl2_1.getOpcode() == ISD::Constant) {
+ int32_t ShlConst =
+ cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
+ int32_t Shl2Const =
+ cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue();
+ int32_t ValConst = 1 << (ShlConst+Shl2Const);
+ SDValue Val = CurDAG->getTargetConstant(-ValConst, MVT::i32);
+ if (ConstantSDNode *CN =
+ dyn_cast<ConstantSDNode>(Val.getNode()))
+ if (isInt<9>(CN->getSExtValue())) {
+ SDNode* Result =
+ CurDAG->getMachineNode(Hexagon::MPYI_ri, dl, MVT::i32,
+ Shl2_0, Val);
+ ReplaceUses(N, Result);
+ return Result;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ return SelectCode(N);
+}
+
+
+//
+// If there is an zero_extend followed an intrinsic in DAG (this means - the
+// result of the intrinsic is predicate); convert the zero_extend to
+// transfer instruction.
+//
+// Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
+// converted into a MUX as predicate registers defined as 1 bit in the
+// compiler. Architecture defines them as 8-bit registers.
+// We want to preserve all the lower 8-bits and, not just 1 LSB bit.
+//
+SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
+ SDLoc dl(N);
+ SDNode *IsIntrinsic = N->getOperand(0).getNode();
+ if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) {
+ unsigned ID =
+ cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue();
+ if (doesIntrinsicReturnPredicate(ID)) {
+ // Now we need to differentiate target data types.
+ if (N->getValueType(0) == MVT::i64) {
+ // Convert the zero_extend to Rs = Pd followed by COMBINE_rr(0,Rs).
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
+ SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::TFR_RsPd, dl,
+ MVT::i32,
+ SDValue(IsIntrinsic, 0));
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl,
+ MVT::i32,
+ TargetConst0);
+ SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl,
+ MVT::i64, MVT::Other,
+ SDValue(Result_2, 0),
+ SDValue(Result_1, 0));
+ ReplaceUses(N, Result_3);
+ return Result_3;
+ }
+ if (N->getValueType(0) == MVT::i32) {
+ // Convert the zero_extend to Rs = Pd
+ SDNode* RsPd = CurDAG->getMachineNode(Hexagon::TFR_RsPd, dl,
+ MVT::i32,
+ SDValue(IsIntrinsic, 0));
+ ReplaceUses(N, RsPd);
+ return RsPd;
+ }
+ llvm_unreachable("Unexpected value type");
+ }
+ }
+ return SelectCode(N);
+}
+
+
+//
+// Checking for intrinsics which have predicate registers as operand(s)
+// and lowering to the actual intrinsic.
+//
+SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
+ SDLoc dl(N);
+ unsigned ID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ unsigned IntrinsicWithPred = doesIntrinsicContainPredicate(ID);
+
+ // We are concerned with only those intrinsics that have predicate registers
+ // as at least one of the operands.
+ if (IntrinsicWithPred) {
+ SmallVector<SDValue, 8> Ops;
+ const HexagonInstrInfo *TII =
+ static_cast<const HexagonInstrInfo*>(TM.getInstrInfo());
+ const MCInstrDesc &MCID = TII->get(IntrinsicWithPred);
+ const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+
+ // Iterate over all the operands of the intrinsics.
+ // For PredRegs, do the transfer.
+ // For Double/Int Regs, just preserve the value
+ // For immediates, lower it.
+ for (unsigned i = 1; i < N->getNumOperands(); ++i) {
+ SDNode *Arg = N->getOperand(i).getNode();
+ const TargetRegisterClass *RC = TII->getRegClass(MCID, i, TRI, *MF);
+
+ if (RC == &Hexagon::IntRegsRegClass ||
+ RC == &Hexagon::DoubleRegsRegClass) {
+ Ops.push_back(SDValue(Arg, 0));
+ } else if (RC == &Hexagon::PredRegsRegClass) {
+ // Do the transfer.
+ SDNode *PdRs = CurDAG->getMachineNode(Hexagon::TFR_PdRs, dl, MVT::i1,
+ SDValue(Arg, 0));
+ Ops.push_back(SDValue(PdRs,0));
+ } else if (!RC && (dyn_cast<ConstantSDNode>(Arg) != nullptr)) {
+ // This is immediate operand. Lower it here making sure that we DO have
+ // const SDNode for immediate value.
+ int32_t Val = cast<ConstantSDNode>(Arg)->getSExtValue();
+ SDValue SDVal = CurDAG->getTargetConstant(Val, MVT::i32);
+ Ops.push_back(SDVal);
+ } else {
+ llvm_unreachable("Unimplemented");
+ }
+ }
+ EVT ReturnValueVT = N->getValueType(0);
+ SDNode *Result = CurDAG->getMachineNode(IntrinsicWithPred, dl,
+ ReturnValueVT, Ops);
+ ReplaceUses(N, Result);
+ return Result;
+ }
+ return SelectCode(N);
+}
+
+//
+// Map floating point constant values.
+//
+SDNode *HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
+ SDLoc dl(N);
+ ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
+ APFloat APF = CN->getValueAPF();
+ if (N->getValueType(0) == MVT::f32) {
+ return CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32,
+ CurDAG->getTargetConstantFP(APF.convertToFloat(), MVT::f32));
+ }
+ else if (N->getValueType(0) == MVT::f64) {
+ return CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64,
+ CurDAG->getTargetConstantFP(APF.convertToDouble(), MVT::f64));
+ }
+
+ return SelectCode(N);
+}
+
+
+//
+// Map predicate true (encoded as -1 in LLVM) to a XOR.
+//
+SDNode *HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
+ SDLoc dl(N);
+ if (N->getValueType(0) == MVT::i1) {
+ SDNode* Result;
+ int32_t Val = cast<ConstantSDNode>(N)->getSExtValue();
+ if (Val == -1) {
+ // Create the IntReg = 1 node.
+ SDNode* IntRegTFR =
+ CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32,
+ CurDAG->getTargetConstant(0, MVT::i32));
+
+ // Pd = IntReg
+ SDNode* Pd = CurDAG->getMachineNode(Hexagon::TFR_PdRs, dl, MVT::i1,
+ SDValue(IntRegTFR, 0));
+
+ // not(Pd)
+ SDNode* NotPd = CurDAG->getMachineNode(Hexagon::NOT_p, dl, MVT::i1,
+ SDValue(Pd, 0));
+
+ // xor(not(Pd))
+ Result = CurDAG->getMachineNode(Hexagon::XOR_pp, dl, MVT::i1,
+ SDValue(Pd, 0), SDValue(NotPd, 0));
+
+ // We have just built:
+ // Rs = Pd
+ // Pd = xor(not(Pd), Pd)
+
+ ReplaceUses(N, Result);
+ return Result;
+ }
+ }
+
+ return SelectCode(N);
+}
+
+
+//
+// Map add followed by a asr -> asr +=.
+//
+SDNode *HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
+ SDLoc dl(N);
+ if (N->getValueType(0) != MVT::i32) {
+ return SelectCode(N);
+ }
+ // Identify nodes of the form: add(asr(...)).
+ SDNode* Src1 = N->getOperand(0).getNode();
+ if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse()
+ || Src1->getValueType(0) != MVT::i32) {
+ return SelectCode(N);
+ }
+
+ // Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
+ // Rd and Rd' are assigned to the same register
+ SDNode* Result = CurDAG->getMachineNode(Hexagon::ASR_ADD_rr, dl, MVT::i32,
+ N->getOperand(1),
+ Src1->getOperand(0),
+ Src1->getOperand(1));
+ ReplaceUses(N, Result);
+
+ return Result;
+}
+
+
+SDNode *HexagonDAGToDAGISel::Select(SDNode *N) {
+ if (N->isMachineOpcode()) {
+ N->setNodeId(-1);
+ return nullptr; // Already selected.
+ }
+
+
+ switch (N->getOpcode()) {
+ case ISD::Constant:
+ return SelectConstant(N);
+
+ case ISD::ConstantFP:
+ return SelectConstantFP(N);
+
+ case ISD::ADD:
+ return SelectAdd(N);
+
+ case ISD::SHL:
+ return SelectSHL(N);
+
+ case ISD::LOAD:
+ return SelectLoad(N);
+
+ case ISD::STORE:
+ return SelectStore(N);
+
+ case ISD::SELECT:
+ return SelectSelect(N);
+
+ case ISD::TRUNCATE:
+ return SelectTruncate(N);
+
+ case ISD::MUL:
+ return SelectMul(N);
+
+ case ISD::ZERO_EXTEND:
+ return SelectZeroExtend(N);
+
+ case ISD::INTRINSIC_WO_CHAIN:
+ return SelectIntrinsicWOChain(N);
+ }
+
+ return SelectCode(N);
+}
+
+
+//
+// Hexagon_TODO: Five functions for ADDRri?! Surely there must be a better way
+// to define these instructions.
+//
+bool HexagonDAGToDAGISel::SelectADDRri(SDValue& Addr, SDValue &Base,
+ SDValue &Offset) {
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress)
+ return false; // Direct calls.
+
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+
+bool HexagonDAGToDAGISel::SelectADDRriS11_0(SDValue& Addr, SDValue &Base,
+ SDValue &Offset) {
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress)
+ return false; // Direct calls.
+
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsS11_0_Offset(Offset.getNode()));
+ }
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsS11_0_Offset(Offset.getNode()));
+}
+
+
+bool HexagonDAGToDAGISel::SelectADDRriS11_1(SDValue& Addr, SDValue &Base,
+ SDValue &Offset) {
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress)
+ return false; // Direct calls.
+
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsS11_1_Offset(Offset.getNode()));
+ }
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsS11_1_Offset(Offset.getNode()));
+}
+
+
+bool HexagonDAGToDAGISel::SelectADDRriS11_2(SDValue& Addr, SDValue &Base,
+ SDValue &Offset) {
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress)
+ return false; // Direct calls.
+
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsS11_2_Offset(Offset.getNode()));
+ }
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsS11_2_Offset(Offset.getNode()));
+}
+
+
+bool HexagonDAGToDAGISel::SelectADDRriU6_0(SDValue& Addr, SDValue &Base,
+ SDValue &Offset) {
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress)
+ return false; // Direct calls.
+
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsU6_0_Offset(Offset.getNode()));
+ }
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsU6_0_Offset(Offset.getNode()));
+}
+
+
+bool HexagonDAGToDAGISel::SelectADDRriU6_1(SDValue& Addr, SDValue &Base,
+ SDValue &Offset) {
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress)
+ return false; // Direct calls.
+
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsU6_1_Offset(Offset.getNode()));
+ }
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsU6_1_Offset(Offset.getNode()));
+}
+
+
+bool HexagonDAGToDAGISel::SelectADDRriU6_2(SDValue& Addr, SDValue &Base,
+ SDValue &Offset) {
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress)
+ return false; // Direct calls.
+
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsU6_2_Offset(Offset.getNode()));
+ }
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsU6_2_Offset(Offset.getNode()));
+}
+
+
+bool HexagonDAGToDAGISel::SelectMEMriS11_2(SDValue& Addr, SDValue &Base,
+ SDValue &Offset) {
+
+ if (Addr.getOpcode() != ISD::ADD) {
+ return(SelectADDRriS11_2(Addr, Base, Offset));
+ }
+
+ return SelectADDRriS11_2(Addr, Base, Offset);
+}
+
+
+bool HexagonDAGToDAGISel::SelectADDRriS11_3(SDValue& Addr, SDValue &Base,
+ SDValue &Offset) {
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress)
+ return false; // Direct calls.
+
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsS11_3_Offset(Offset.getNode()));
+ }
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return (IsS11_3_Offset(Offset.getNode()));
+}
+
+bool HexagonDAGToDAGISel::SelectADDRrr(SDValue &Addr, SDValue &R1,
+ SDValue &R2) {
+ if (Addr.getOpcode() == ISD::FrameIndex) return false;
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress)
+ return false; // Direct calls.
+
+ if (Addr.getOpcode() == ISD::ADD) {
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
+ if (isInt<13>(CN->getSExtValue()))
+ return false; // Let the reg+imm pattern catch this!
+ R1 = Addr.getOperand(0);
+ R2 = Addr.getOperand(1);
+ return true;
+ }
+
+ R1 = Addr;
+
+ return true;
+}
+
+
+// Handle generic address case. It is accessed from inlined asm =m constraints,
+// which could have any kind of pointer.
+bool HexagonDAGToDAGISel::SelectAddr(SDNode *Op, SDValue Addr,
+ SDValue &Base, SDValue &Offset) {
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress)
+ return false; // Direct calls.
+
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (Addr.getOpcode() == ISD::ADD) {
+ Base = Addr.getOperand(0);
+ Offset = Addr.getOperand(1);
+ return true;
+ }
+
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+
+bool HexagonDAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ SDValue Op0, Op1;
+
+ switch (ConstraintCode) {
+ case 'o': // Offsetable.
+ case 'v': // Not offsetable.
+ default: return true;
+ case 'm': // Memory.
+ if (!SelectAddr(Op.getNode(), Op, Op0, Op1))
+ return true;
+ break;
+ }
+
+ OutOps.push_back(Op0);
+ OutOps.push_back(Op1);
+ return false;
+}
+
+bool HexagonDAGToDAGISel::isConstExtProfitable(SDNode *N) const {
+ unsigned UseCount = 0;
+ for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
+ UseCount++;
+ }
+
+ return (UseCount <= 1);
+
+}
+
+//===--------------------------------------------------------------------===//
+// Return 'true' if use count of the global address is below threshold.
+//===--------------------------------------------------------------------===//
+bool HexagonDAGToDAGISel::hasNumUsesBelowThresGA(SDNode *N) const {
+ assert(N->getOpcode() == ISD::TargetGlobalAddress &&
+ "Expecting a target global address");
+
+ // Always try to fold the address.
+ if (TM.getOptLevel() == CodeGenOpt::Aggressive)
+ return true;
+
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
+ DenseMap<const GlobalValue *, unsigned>::const_iterator GI =
+ GlobalAddressUseCountMap.find(GA->getGlobal());
+
+ if (GI == GlobalAddressUseCountMap.end())
+ return false;
+
+ return GI->second <= MaxNumOfUsesForConstExtenders;
+}
+
+//===--------------------------------------------------------------------===//
+// Return true if the non-GP-relative global address can be folded.
+//===--------------------------------------------------------------------===//
+inline bool HexagonDAGToDAGISel::foldGlobalAddress(SDValue &N, SDValue &R) {
+ return foldGlobalAddressImpl(N, R, false);
+}
+
+//===--------------------------------------------------------------------===//
+// Return true if the GP-relative global address can be folded.
+//===--------------------------------------------------------------------===//
+inline bool HexagonDAGToDAGISel::foldGlobalAddressGP(SDValue &N, SDValue &R) {
+ return foldGlobalAddressImpl(N, R, true);
+}
+
+//===--------------------------------------------------------------------===//
+// Fold offset of the global address if number of uses are below threshold.
+//===--------------------------------------------------------------------===//
+bool HexagonDAGToDAGISel::foldGlobalAddressImpl(SDValue &N, SDValue &R,
+ bool ShouldLookForGP) {
+ if (N.getOpcode() == ISD::ADD) {
+ SDValue N0 = N.getOperand(0);
+ SDValue N1 = N.getOperand(1);
+ if ((ShouldLookForGP && (N0.getOpcode() == HexagonISD::CONST32_GP)) ||
+ (!ShouldLookForGP && (N0.getOpcode() == HexagonISD::CONST32))) {
+ ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1);
+ GlobalAddressSDNode *GA =
+ dyn_cast<GlobalAddressSDNode>(N0.getOperand(0));
+
+ if (Const && GA &&
+ (GA->getOpcode() == ISD::TargetGlobalAddress)) {
+ if ((N0.getOpcode() == HexagonISD::CONST32) &&
+ !hasNumUsesBelowThresGA(GA))
+ return false;
+ R = CurDAG->getTargetGlobalAddress(GA->getGlobal(),
+ SDLoc(Const),
+ N.getValueType(),
+ GA->getOffset() +
+ (uint64_t)Const->getSExtValue());
+ return true;
+ }
+ }
+ }
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp
new file mode 100644
index 0000000..a460ea4
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp
@@ -0,0 +1,1708 @@
+//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the interfaces that Hexagon uses to lower LLVM code
+// into a selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonISelLowering.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "HexagonTargetObjectFile.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-lowering"
+
+static cl::opt<bool>
+EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden,
+ cl::desc("Control jump table emission on Hexagon target"));
+
+namespace {
+class HexagonCCState : public CCState {
+ int NumNamedVarArgParams;
+
+public:
+ HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
+ const TargetMachine &TM, SmallVectorImpl<CCValAssign> &locs,
+ LLVMContext &C, int NumNamedVarArgParams)
+ : CCState(CC, isVarArg, MF, TM, locs, C),
+ NumNamedVarArgParams(NumNamedVarArgParams) {}
+
+ int getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
+};
+}
+
+// Implement calling convention for Hexagon.
+static bool
+CC_Hexagon(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+CC_Hexagon32(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+CC_Hexagon64(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+RetCC_Hexagon(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ HexagonCCState &HState = static_cast<HexagonCCState &>(State);
+
+ // NumNamedVarArgParams can not be zero for a VarArg function.
+ assert((HState.getNumNamedVarArgParams() > 0) &&
+ "NumNamedVarArgParams is not bigger than zero.");
+
+ if ((int)ValNo < HState.getNumNamedVarArgParams()) {
+ // Deal with named arguments.
+ return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
+ }
+
+ // Deal with un-named arguments.
+ unsigned ofst;
+ if (ArgFlags.isByVal()) {
+ // If pass-by-value, the size allocated on stack is decided
+ // by ArgFlags.getByValSize(), not by the size of LocVT.
+ assert ((ArgFlags.getByValSize() > 8) &&
+ "ByValSize must be bigger than 8 bytes");
+ ofst = State.AllocateStack(ArgFlags.getByValSize(), 4);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
+ return false;
+ }
+ if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
+ LocVT = MVT::i32;
+ ValVT = MVT::i32;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExt;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExt;
+ else
+ LocInfo = CCValAssign::AExt;
+ }
+ if (LocVT == MVT::i32 || LocVT == MVT::f32) {
+ ofst = State.AllocateStack(4, 4);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
+ return false;
+ }
+ if (LocVT == MVT::i64 || LocVT == MVT::f64) {
+ ofst = State.AllocateStack(8, 8);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
+ return false;
+ }
+ llvm_unreachable(nullptr);
+}
+
+
+static bool
+CC_Hexagon (unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+ if (ArgFlags.isByVal()) {
+ // Passed on stack.
+ assert ((ArgFlags.getByValSize() > 8) &&
+ "ByValSize must be bigger than 8 bytes");
+ unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 4);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+ }
+
+ if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
+ LocVT = MVT::i32;
+ ValVT = MVT::i32;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExt;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExt;
+ else
+ LocInfo = CCValAssign::AExt;
+ }
+
+ if (LocVT == MVT::i32 || LocVT == MVT::f32) {
+ if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
+ return false;
+ }
+
+ if (LocVT == MVT::i64 || LocVT == MVT::f64) {
+ if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
+ return false;
+ }
+
+ return true; // CC didn't match.
+}
+
+
+static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+ static const MCPhysReg RegList[] = {
+ Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
+ Hexagon::R5
+ };
+ if (unsigned Reg = State.AllocateReg(RegList, 6)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+
+ unsigned Offset = State.AllocateStack(4, 4);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+}
+
+static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+ if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+
+ static const MCPhysReg RegList1[] = {
+ Hexagon::D1, Hexagon::D2
+ };
+ static const MCPhysReg RegList2[] = {
+ Hexagon::R1, Hexagon::R3
+ };
+ if (unsigned Reg = State.AllocateReg(RegList1, RegList2, 2)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+
+ unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+}
+
+static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+
+ if (LocVT == MVT::i1 ||
+ LocVT == MVT::i8 ||
+ LocVT == MVT::i16) {
+ LocVT = MVT::i32;
+ ValVT = MVT::i32;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExt;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExt;
+ else
+ LocInfo = CCValAssign::AExt;
+ }
+
+ if (LocVT == MVT::i32 || LocVT == MVT::f32) {
+ if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
+ return false;
+ }
+
+ if (LocVT == MVT::i64 || LocVT == MVT::f64) {
+ if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
+ return false;
+ }
+
+ return true; // CC didn't match.
+}
+
+static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+ if (LocVT == MVT::i32 || LocVT == MVT::f32) {
+ if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ unsigned Offset = State.AllocateStack(4, 4);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+}
+
+static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ if (LocVT == MVT::i64 || LocVT == MVT::f64) {
+ if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ unsigned Offset = State.AllocateStack(8, 8);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+}
+
+SDValue
+HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
+const {
+ return SDValue();
+}
+
+/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
+/// by "Src" to address "Dst" of size "Size". Alignment information is
+/// specified by the specific parameter attribute. The copy will be passed as
+/// a byval function parameter. Sometimes what we are copying is the end of a
+/// larger object, the part that does not fit in registers.
+static SDValue
+CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
+ ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
+ SDLoc dl) {
+
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
+ return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
+ /*isVolatile=*/false, /*AlwaysInline=*/false,
+ MachinePointerInfo(), MachinePointerInfo());
+}
+
+
+// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
+// passed by value, the function prototype is modified to return void and
+// the value is stored in memory pointed by a pointer passed by caller.
+SDValue
+HexagonTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+
+ // CCValAssign - represent the assignment of the return value to locations.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+
+ // Analyze return values of ISD::RET
+ CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
+
+ // Guarantee that all emitted copies are stuck together with flags.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
+}
+
+
+
+
+/// LowerCallResult - Lower the result values of an ISD::CALL into the
+/// appropriate copies out of appropriate physical registers. This assumes that
+/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
+/// being lowered. Returns a SDNode with the same number of values as the
+/// ISD::CALL.
+SDValue
+HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const
+ SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDValue Callee) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ Chain = DAG.getCopyFromReg(Chain, dl,
+ RVLocs[i].getLocReg(),
+ RVLocs[i].getValVT(), InFlag).getValue(1);
+ InFlag = Chain.getValue(2);
+ InVals.push_back(Chain.getValue(0));
+ }
+
+ return Chain;
+}
+
+/// LowerCall - Functions arguments are copied from virtual regs to
+/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
+SDValue
+HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool isVarArg = CLI.IsVarArg;
+
+ bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
+
+ // Check for varargs.
+ int NumNamedVarArgParams = -1;
+ if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee))
+ {
+ const Function* CalleeFn = nullptr;
+ Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, MVT::i32);
+ if ((CalleeFn = dyn_cast<Function>(GA->getGlobal())))
+ {
+ // If a function has zero args and is a vararg function, that's
+ // disallowed so it must be an undeclared function. Do not assume
+ // varargs if the callee is undefined.
+ if (CalleeFn->isVarArg() &&
+ CalleeFn->getFunctionType()->getNumParams() != 0) {
+ NumNamedVarArgParams = CalleeFn->getFunctionType()->getNumParams();
+ }
+ }
+ }
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext(),
+ NumNamedVarArgParams);
+
+ if (NumNamedVarArgParams > 0)
+ CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
+ else
+ CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
+
+
+ if(isTailCall) {
+ bool StructAttrFlag =
+ DAG.getMachineFunction().getFunction()->hasStructRetAttr();
+ isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
+ isVarArg, IsStructRet,
+ StructAttrFlag,
+ Outs, OutVals, Ins, DAG);
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i){
+ CCValAssign &VA = ArgLocs[i];
+ if (VA.isMemLoc()) {
+ isTailCall = false;
+ break;
+ }
+ }
+ if (isTailCall) {
+ DEBUG(dbgs () << "Eligible for Tail Call\n");
+ } else {
+ DEBUG(dbgs () <<
+ "Argument must be passed on stack. Not eligible for Tail Call\n");
+ }
+ }
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+ SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
+ DAG.getTarget().getRegisterInfo());
+ SDValue StackPtr =
+ DAG.getCopyFromReg(Chain, dl, QRI->getStackRegister(), getPointerTy());
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default:
+ // Loc info must be one of Full, SExt, ZExt, or AExt.
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (VA.isMemLoc()) {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue PtrOff = DAG.getConstant(LocMemOffset, StackPtr.getValueType());
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+
+ if (Flags.isByVal()) {
+ // The argument is a struct passed by value. According to LLVM, "Arg"
+ // is is pointer.
+ MemOpChains.push_back(CreateCopyOfByValArgument(Arg, PtrOff, Chain,
+ Flags, DAG, dl));
+ } else {
+ // The argument is not passed by value. "Arg" is a buildin type. It is
+ // not a pointer.
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(),false, false,
+ 0));
+ }
+ continue;
+ }
+
+ // Arguments that can be passed on register must be kept at RegsToPass
+ // vector.
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ }
+ }
+
+ // Transform all store nodes into one single node because all store
+ // nodes are independent of each other.
+ if (!MemOpChains.empty()) {
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+ }
+
+ if (!isTailCall)
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes,
+ getPointerTy(), true),
+ dl);
+
+ // Build a sequence of copy-to-reg nodes chained together with token
+ // chain and flag operands which copy the outgoing args into registers.
+ // The InFlag in necessary since all emitted instructions must be
+ // stuck together.
+ SDValue InFlag;
+ if (!isTailCall) {
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+ }
+
+ // For tail calls lower the arguments to the 'real' stack slot.
+ if (isTailCall) {
+ // Force all the incoming stack arguments to be loaded from the stack
+ // before any new outgoing arguments are stored to the stack, because the
+ // outgoing stack slots may alias the incoming argument stack slots, and
+ // the alias isn't otherwise explicit. This is slightly more conservative
+ // than necessary, because it means that each store effectively depends
+ // on every argument instead of just those arguments it would clobber.
+ //
+ // Do not flag preceding copytoreg stuff together with the following stuff.
+ InFlag = SDValue();
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+ InFlag =SDValue();
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ if (flag_aligned_memcpy) {
+ const char *MemcpyName =
+ "__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes";
+ Callee =
+ DAG.getTargetExternalSymbol(MemcpyName, getPointerTy());
+ flag_aligned_memcpy = false;
+ } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy());
+ } else if (ExternalSymbolSDNode *S =
+ dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
+ }
+
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+ }
+
+ if (InFlag.getNode()) {
+ Ops.push_back(InFlag);
+ }
+
+ if (isTailCall)
+ return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
+
+ Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(0, true), InFlag, dl);
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
+ InVals, OutVals, Callee);
+}
+
+static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
+ bool isSEXTLoad, SDValue &Base,
+ SDValue &Offset, bool &isInc,
+ SelectionDAG &DAG) {
+ if (Ptr->getOpcode() != ISD::ADD)
+ return false;
+
+ if (VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ // Ensure that Offset is a constant.
+ return (isa<ConstantSDNode>(Offset));
+ }
+
+ return false;
+}
+
+// TODO: Put this function along with the other isS* functions in
+// HexagonISelDAGToDAG.cpp into a common file. Or better still, use the
+// functions defined in HexagonOperands.td.
+static bool Is_PostInc_S4_Offset(SDNode * S, int ShiftAmount) {
+ ConstantSDNode *N = cast<ConstantSDNode>(S);
+
+ // immS4 predicate - True if the immediate fits in a 4-bit sign extended.
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ int64_t m = 0;
+ if (ShiftAmount > 0) {
+ m = v % ShiftAmount;
+ v = v >> ShiftAmount;
+ }
+ return (v <= 7) && (v >= -8) && (m == 0);
+}
+
+/// getPostIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if this node can be
+/// combined with a load / store to form a post-indexed load / store.
+bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const
+{
+ EVT VT;
+ SDValue Ptr;
+ bool isSEXTLoad = false;
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
+ return false;
+ }
+ } else {
+ return false;
+ }
+
+ bool isInc = false;
+ bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ // ShiftAmount = number of left-shifted bits in the Hexagon instruction.
+ int ShiftAmount = VT.getSizeInBits() / 16;
+ if (isLegal && Is_PostInc_S4_Offset(Offset.getNode(), ShiftAmount)) {
+ AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
+ return true;
+ }
+
+ return false;
+}
+
+SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDNode *Node = Op.getNode();
+ MachineFunction &MF = DAG.getMachineFunction();
+ HexagonMachineFunctionInfo *FuncInfo =
+ MF.getInfo<HexagonMachineFunctionInfo>();
+ switch (Node->getOpcode()) {
+ case ISD::INLINEASM: {
+ unsigned NumOps = Node->getNumOperands();
+ if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
+ --NumOps; // Ignore the flag operand.
+
+ for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
+ if (FuncInfo->hasClobberLR())
+ break;
+ unsigned Flags =
+ cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
+ unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
+ ++i; // Skip the ID value.
+
+ switch (InlineAsm::getKind(Flags)) {
+ default: llvm_unreachable("Bad flags!");
+ case InlineAsm::Kind_RegDef:
+ case InlineAsm::Kind_RegUse:
+ case InlineAsm::Kind_Imm:
+ case InlineAsm::Kind_Clobber:
+ case InlineAsm::Kind_Mem: {
+ for (; NumVals; --NumVals, ++i) {}
+ break;
+ }
+ case InlineAsm::Kind_RegDefEarlyClobber: {
+ for (; NumVals; --NumVals, ++i) {
+ unsigned Reg =
+ cast<RegisterSDNode>(Node->getOperand(i))->getReg();
+
+ // Check it to be lr
+ const HexagonRegisterInfo *QRI =
+ static_cast<const HexagonRegisterInfo *>(
+ DAG.getTarget().getRegisterInfo());
+ if (Reg == QRI->getRARegister()) {
+ FuncInfo->setHasClobberLR(true);
+ break;
+ }
+ }
+ break;
+ }
+ }
+ }
+ }
+ } // Node->getOpcode
+ return Op;
+}
+
+
+//
+// Taken from the XCore backend.
+//
+SDValue HexagonTargetLowering::
+LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
+{
+ SDValue Chain = Op.getOperand(0);
+ SDValue Table = Op.getOperand(1);
+ SDValue Index = Op.getOperand(2);
+ SDLoc dl(Op);
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
+ unsigned JTI = JT->getIndex();
+ MachineFunction &MF = DAG.getMachineFunction();
+ const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
+ SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
+
+ // Mark all jump table targets as address taken.
+ const std::vector<MachineJumpTableEntry> &JTE = MJTI->getJumpTables();
+ const std::vector<MachineBasicBlock*> &JTBBs = JTE[JTI].MBBs;
+ for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = JTBBs[i];
+ MBB->setHasAddressTaken();
+ // This line is needed to set the hasAddressTaken flag on the BasicBlock
+ // object.
+ BlockAddress::get(const_cast<BasicBlock *>(MBB->getBasicBlock()));
+ }
+
+ SDValue JumpTableBase = DAG.getNode(HexagonISD::WrapperJT, dl,
+ getPointerTy(), TargetJT);
+ SDValue ShiftIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
+ DAG.getConstant(2, MVT::i32));
+ SDValue JTAddress = DAG.getNode(ISD::ADD, dl, MVT::i32, JumpTableBase,
+ ShiftIndex);
+ SDValue LoadTarget = DAG.getLoad(MVT::i32, dl, Chain, JTAddress,
+ MachinePointerInfo(), false, false, false,
+ 0);
+ return DAG.getNode(HexagonISD::BR_JT, dl, MVT::Other, Chain, LoadTarget);
+}
+
+
+SDValue
+HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ SDLoc dl(Op);
+
+ unsigned SPReg = getStackPointerRegisterToSaveRestore();
+
+ // Get a reference to the stack pointer.
+ SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32);
+
+ // Subtract the dynamic size from the actual stack size to
+ // obtain the new stack size.
+ SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
+
+ //
+ // For Hexagon, the outgoing memory arguments area should be on top of the
+ // alloca area on the stack i.e., the outgoing memory arguments should be
+ // at a lower address than the alloca area. Move the alloca area down the
+ // stack by adding back the space reserved for outgoing arguments to SP
+ // here.
+ //
+ // We do not know what the size of the outgoing args is at this point.
+ // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
+ // stack pointer. We patch this instruction with the correct, known
+ // offset in emitPrologue().
+ //
+ // Use a placeholder immediate (zero) for now. This will be patched up
+ // by emitPrologue().
+ SDValue ArgAdjust = DAG.getNode(HexagonISD::ADJDYNALLOC, dl,
+ MVT::i32,
+ Sub,
+ DAG.getConstant(0, MVT::i32));
+
+ // The Sub result contains the new stack start address, so it
+ // must be placed in the stack pointer register.
+ const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
+ DAG.getTarget().getRegisterInfo());
+ SDValue CopyChain = DAG.getCopyToReg(Chain, dl, QRI->getStackRegister(), Sub);
+
+ SDValue Ops[2] = { ArgAdjust, CopyChain };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue
+HexagonTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const
+ SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+const {
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ HexagonMachineFunctionInfo *FuncInfo =
+ MF.getInfo<HexagonMachineFunctionInfo>();
+
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
+
+ // For LLVM, in the case when returning a struct by value (>8byte),
+ // the first argument is a pointer that points to the location on caller's
+ // stack where the return value will be stored. For Hexagon, the location on
+ // caller's stack is passed only when the struct size is smaller than (and
+ // equal to) 8 bytes. If not, no address will be passed into callee and
+ // callee return the result direclty through R0/R1.
+
+ SmallVector<SDValue, 4> MemOps;
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ unsigned ObjSize;
+ unsigned StackLocation;
+ int FI;
+
+ if ( (VA.isRegLoc() && !Flags.isByVal())
+ || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
+ // Arguments passed in registers
+ // 1. int, long long, ptr args that get allocated in register.
+ // 2. Large struct that gets an register to put its address in.
+ EVT RegVT = VA.getLocVT();
+ if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
+ RegVT == MVT::i32 || RegVT == MVT::f32) {
+ unsigned VReg =
+ RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
+ } else if (RegVT == MVT::i64) {
+ unsigned VReg =
+ RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
+ } else {
+ assert (0);
+ }
+ } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
+ assert (0 && "ByValSize must be bigger than 8 bytes");
+ } else {
+ // Sanity check.
+ assert(VA.isMemLoc());
+
+ if (Flags.isByVal()) {
+ // If it's a byval parameter, then we need to compute the
+ // "real" size, not the size of the pointer.
+ ObjSize = Flags.getByValSize();
+ } else {
+ ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
+ }
+
+ StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
+ // Create the frame index object for this incoming parameter...
+ FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);
+
+ // Create the SelectionDAG nodes cordl, responding to a load
+ // from this parameter.
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+
+ if (Flags.isByVal()) {
+ // If it's a pass-by-value aggregate, then do not dereference the stack
+ // location. Instead, we should generate a reference to the stack
+ // location.
+ InVals.push_back(FIN);
+ } else {
+ InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
+ MachinePointerInfo(), false, false,
+ false, 0));
+ }
+ }
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+
+ if (isVarArg) {
+ // This will point to the next argument passed via stack.
+ int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
+ HEXAGON_LRFP_SIZE +
+ CCInfo.getNextStackOffset(),
+ true);
+ FuncInfo->setVarArgsFrameIndex(FrameIndex);
+ }
+
+ return Chain;
+}
+
+SDValue
+HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ // VASTART stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ MachineFunction &MF = DAG.getMachineFunction();
+ HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
+ SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr,
+ Op.getOperand(1), MachinePointerInfo(SV), false,
+ false, 0);
+}
+
+SDValue
+HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
+ EVT ValTy = Op.getValueType();
+ SDLoc dl(Op);
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ SDValue Res;
+ if (CP->isMachineConstantPoolEntry())
+ Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), ValTy,
+ CP->getAlignment());
+ else
+ Res = DAG.getTargetConstantPool(CP->getConstVal(), ValTy,
+ CP->getAlignment());
+ return DAG.getNode(HexagonISD::CONST32, dl, ValTy, Res);
+}
+
+SDValue
+HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
+ const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ if (Depth) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset = DAG.getConstant(4, MVT::i32);
+ return DAG.getLoad(VT, dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Return LR, which contains the return address. Mark it an implicit live-in.
+ unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
+ return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
+}
+
+SDValue
+HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ const HexagonRegisterInfo *TRI =
+ static_cast<const HexagonRegisterInfo *>(DAG.getTarget().getRegisterInfo());
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
+ TRI->getFrameRegister(), VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ return FrameAddr;
+}
+
+SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op,
+ SelectionDAG& DAG) const {
+ SDLoc dl(Op);
+ return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
+}
+
+
+SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Result;
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
+ SDLoc dl(Op);
+ Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
+
+ const HexagonTargetObjectFile &TLOF =
+ static_cast<const HexagonTargetObjectFile &>(getObjFileLowering());
+ if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
+ return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), Result);
+ }
+
+ return DAG.getNode(HexagonISD::CONST32, dl, getPointerTy(), Result);
+}
+
+SDValue
+HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ SDValue BA_SD = DAG.getTargetBlockAddress(BA, MVT::i32);
+ SDLoc dl(Op);
+ return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), BA_SD);
+}
+
+//===----------------------------------------------------------------------===//
+// TargetLowering Implementation
+//===----------------------------------------------------------------------===//
+
+HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &targetmachine)
+ : TargetLowering(targetmachine, new HexagonTargetObjectFile()),
+ TM(targetmachine) {
+
+ const HexagonSubtarget &Subtarget = TM.getSubtarget<HexagonSubtarget>();
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
+ addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
+
+ if (Subtarget.hasV5TOps()) {
+ addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
+ addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
+ }
+
+ addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
+
+ computeRegisterProperties();
+
+ // Align loop entry
+ setPrefLoopAlignment(4);
+
+ // Limits for inline expansion of memcpy/memmove
+ MaxStoresPerMemcpy = 6;
+ MaxStoresPerMemmove = 6;
+
+ //
+ // Library calls for unsupported operations
+ //
+
+ setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
+ setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
+
+ setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
+ setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
+
+ setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
+ setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
+
+ setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
+ setOperationAction(ISD::SDIV, MVT::i32, Expand);
+ setLibcallName(RTLIB::SREM_I32, "__hexagon_umodsi3");
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+
+ setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
+ setOperationAction(ISD::SDIV, MVT::i64, Expand);
+ setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+
+ setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+
+ setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
+ setOperationAction(ISD::UDIV, MVT::i64, Expand);
+
+ setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+
+ setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+
+ setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
+ setOperationAction(ISD::FDIV, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
+ setOperationAction(ISD::FDIV, MVT::f64, Expand);
+
+ setOperationAction(ISD::FSQRT, MVT::f32, Expand);
+ setOperationAction(ISD::FSQRT, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+
+ if (Subtarget.hasV5TOps()) {
+ // Hexagon V5 Support.
+ setOperationAction(ISD::FADD, MVT::f32, Legal);
+ setOperationAction(ISD::FADD, MVT::f64, Legal);
+ setOperationAction(ISD::FP_EXTEND, MVT::f32, Legal);
+ setCondCodeAction(ISD::SETOEQ, MVT::f32, Legal);
+ setCondCodeAction(ISD::SETOEQ, MVT::f64, Legal);
+ setCondCodeAction(ISD::SETUEQ, MVT::f32, Legal);
+ setCondCodeAction(ISD::SETUEQ, MVT::f64, Legal);
+
+ setCondCodeAction(ISD::SETOGE, MVT::f32, Legal);
+ setCondCodeAction(ISD::SETOGE, MVT::f64, Legal);
+ setCondCodeAction(ISD::SETUGE, MVT::f32, Legal);
+ setCondCodeAction(ISD::SETUGE, MVT::f64, Legal);
+
+ setCondCodeAction(ISD::SETOGT, MVT::f32, Legal);
+ setCondCodeAction(ISD::SETOGT, MVT::f64, Legal);
+ setCondCodeAction(ISD::SETUGT, MVT::f32, Legal);
+ setCondCodeAction(ISD::SETUGT, MVT::f64, Legal);
+
+ setCondCodeAction(ISD::SETOLE, MVT::f32, Legal);
+ setCondCodeAction(ISD::SETOLE, MVT::f64, Legal);
+ setCondCodeAction(ISD::SETOLT, MVT::f32, Legal);
+ setCondCodeAction(ISD::SETOLT, MVT::f64, Legal);
+
+ setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
+
+ setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
+
+ setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
+
+ setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
+
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
+
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal);
+
+ setOperationAction(ISD::FABS, MVT::f32, Legal);
+ setOperationAction(ISD::FABS, MVT::f64, Expand);
+
+ setOperationAction(ISD::FNEG, MVT::f32, Legal);
+ setOperationAction(ISD::FNEG, MVT::f64, Expand);
+ } else {
+
+ // Expand fp<->uint.
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
+
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
+
+ setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
+ setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
+
+ setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
+ setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
+
+ setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
+ setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
+
+ setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
+ setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
+
+ setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
+ setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
+
+ setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
+ setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
+
+ setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
+ setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
+
+ setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
+ setOperationAction(ISD::FADD, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
+ setOperationAction(ISD::FADD, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
+ setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
+ setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
+ setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
+ setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
+ setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
+ setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
+ setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
+ setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
+ setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
+ setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
+ setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
+ setCondCodeAction(ISD::SETOLT, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
+ setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
+ setOperationAction(ISD::FMUL, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
+ setOperationAction(ISD::MUL, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
+ setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
+
+ setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
+ setOperationAction(ISD::SUB, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
+ setOperationAction(ISD::SUB, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
+ setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
+ setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
+ setCondCodeAction(ISD::SETO, MVT::f64, Expand);
+
+ setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
+ setCondCodeAction(ISD::SETO, MVT::f32, Expand);
+
+ setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
+ setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
+
+ setOperationAction(ISD::FABS, MVT::f32, Expand);
+ setOperationAction(ISD::FABS, MVT::f64, Expand);
+ setOperationAction(ISD::FNEG, MVT::f32, Expand);
+ setOperationAction(ISD::FNEG, MVT::f64, Expand);
+ }
+
+ setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+
+ setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
+ setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
+ setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
+ setIndexedLoadAction(ISD::POST_INC, MVT::i64, Legal);
+
+ setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
+ setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
+ setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
+ setIndexedStoreAction(ISD::POST_INC, MVT::i64, Legal);
+
+ setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
+
+ // Turn FP extload into load/fextend.
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ // Hexagon has a i1 sign extending load.
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
+ // Turn FP truncstore into trunc + store.
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ // Custom legalize GlobalAddress nodes into CONST32.
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
+ // Truncate action?
+ setOperationAction(ISD::TRUNCATE, MVT::i64, Expand);
+
+ // Hexagon doesn't have sext_inreg, replace them with shl/sra.
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ // Hexagon has no REM or DIVREM operations.
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
+
+ setOperationAction(ISD::BSWAP, MVT::i64, Expand);
+
+ // Lower SELECT_CC to SETCC and SELECT.
+ setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+
+ if (Subtarget.hasV5TOps()) {
+
+ // We need to make the operation type of SELECT node to be Custom,
+ // such that we don't go into the infinite loop of
+ // select -> setcc -> select_cc -> select loop.
+ setOperationAction(ISD::SELECT, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Custom);
+
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
+
+ } else {
+
+ // Hexagon has no select or setcc: expand to SELECT_CC.
+ setOperationAction(ISD::SELECT, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f64, Expand);
+ }
+
+ if (EmitJumpTables) {
+ setOperationAction(ISD::BR_JT, MVT::Other, Custom);
+ } else {
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ }
+ // Increase jump tables cutover to 5, was 4.
+ setMinimumJumpTableEntries(5);
+
+ setOperationAction(ISD::BR_CC, MVT::f32, Expand);
+ setOperationAction(ISD::BR_CC, MVT::f64, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i1, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i64, Expand);
+
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
+
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FREM, MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+
+ // In V4, we have double word add/sub with carry. The problem with
+ // modelling this instruction is that it produces 2 results - Rdd and Px.
+ // To model update of Px, we will have to use Defs[p0..p3] which will
+ // cause any predicate live range to spill. So, we pretend we dont't
+ // have these instructions.
+ setOperationAction(ISD::ADDE, MVT::i8, Expand);
+ setOperationAction(ISD::ADDE, MVT::i16, Expand);
+ setOperationAction(ISD::ADDE, MVT::i32, Expand);
+ setOperationAction(ISD::ADDE, MVT::i64, Expand);
+ setOperationAction(ISD::SUBE, MVT::i8, Expand);
+ setOperationAction(ISD::SUBE, MVT::i16, Expand);
+ setOperationAction(ISD::SUBE, MVT::i32, Expand);
+ setOperationAction(ISD::SUBE, MVT::i64, Expand);
+ setOperationAction(ISD::ADDC, MVT::i8, Expand);
+ setOperationAction(ISD::ADDC, MVT::i16, Expand);
+ setOperationAction(ISD::ADDC, MVT::i32, Expand);
+ setOperationAction(ISD::ADDC, MVT::i64, Expand);
+ setOperationAction(ISD::SUBC, MVT::i8, Expand);
+ setOperationAction(ISD::SUBC, MVT::i16, Expand);
+ setOperationAction(ISD::SUBC, MVT::i32, Expand);
+ setOperationAction(ISD::SUBC, MVT::i64, Expand);
+
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i64, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i64, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ, MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ, MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTR, MVT::i32, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
+
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
+
+ setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
+
+ setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
+
+ if (Subtarget.isSubtargetV2()) {
+ setExceptionPointerRegister(Hexagon::R20);
+ setExceptionSelectorRegister(Hexagon::R21);
+ } else {
+ setExceptionPointerRegister(Hexagon::R0);
+ setExceptionSelectorRegister(Hexagon::R1);
+ }
+
+ // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
+ setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
+
+ setMinFunctionAlignment(2);
+
+ // Needed for DYNAMIC_STACKALLOC expansion.
+ const HexagonRegisterInfo *QRI =
+ static_cast<const HexagonRegisterInfo *>(TM.getRegisterInfo());
+ setStackPointerRegisterToSaveRestore(QRI->getStackRegister());
+ setSchedulingPreference(Sched::VLIW);
+}
+
+const char*
+HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return nullptr;
+ case HexagonISD::CONST32: return "HexagonISD::CONST32";
+ case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
+ case HexagonISD::CONST32_Int_Real: return "HexagonISD::CONST32_Int_Real";
+ case HexagonISD::ADJDYNALLOC: return "HexagonISD::ADJDYNALLOC";
+ case HexagonISD::CMPICC: return "HexagonISD::CMPICC";
+ case HexagonISD::CMPFCC: return "HexagonISD::CMPFCC";
+ case HexagonISD::BRICC: return "HexagonISD::BRICC";
+ case HexagonISD::BRFCC: return "HexagonISD::BRFCC";
+ case HexagonISD::SELECT_ICC: return "HexagonISD::SELECT_ICC";
+ case HexagonISD::SELECT_FCC: return "HexagonISD::SELECT_FCC";
+ case HexagonISD::Hi: return "HexagonISD::Hi";
+ case HexagonISD::Lo: return "HexagonISD::Lo";
+ case HexagonISD::FTOI: return "HexagonISD::FTOI";
+ case HexagonISD::ITOF: return "HexagonISD::ITOF";
+ case HexagonISD::CALL: return "HexagonISD::CALL";
+ case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG";
+ case HexagonISD::BR_JT: return "HexagonISD::BR_JT";
+ case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
+ case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
+ }
+}
+
+bool
+HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
+ EVT MTy1 = EVT::getEVT(Ty1);
+ EVT MTy2 = EVT::getEVT(Ty2);
+ if (!MTy1.isSimple() || !MTy2.isSimple()) {
+ return false;
+ }
+ return ((MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32));
+}
+
+bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
+ if (!VT1.isSimple() || !VT2.isSimple()) {
+ return false;
+ }
+ return ((VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32));
+}
+
+bool
+HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
+ // Assuming the caller does not have either a signext or zeroext modifier, and
+ // only one value is accepted, any reasonable truncation is allowed.
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+
+ // FIXME: in principle up to 64-bit could be made safe, but it would be very
+ // fragile at the moment: any support for multiple value returns would be
+ // liable to disallow tail calls involving i64 -> iN truncation in many cases.
+ return Ty1->getPrimitiveSizeInBits() <= 32;
+}
+
+SDValue
+HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Offset = Op.getOperand(1);
+ SDValue Handler = Op.getOperand(2);
+ SDLoc dl(Op);
+
+ // Mark function as containing a call to EH_RETURN.
+ HexagonMachineFunctionInfo *FuncInfo =
+ DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
+ FuncInfo->setHasEHReturn();
+
+ unsigned OffsetReg = Hexagon::R28;
+
+ SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ DAG.getRegister(Hexagon::R30, getPointerTy()),
+ DAG.getIntPtrConstant(4));
+ Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
+ false, false, 0);
+ Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
+
+ // Not needed we already use it as explict input to EH_RETURN.
+ // MF.getRegInfo().addLiveOut(OffsetReg);
+
+ return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
+}
+
+SDValue
+HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Should not custom lower this!");
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
+ // Frame & Return address. Currently unimplemented.
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::GlobalTLSAddress:
+ llvm_unreachable("TLS not implemented for Hexagon.");
+ case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
+ case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::BR_JT: return LowerBR_JT(Op, DAG);
+
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
+ case ISD::SELECT: return Op;
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::INLINEASM: return LowerINLINEASM(Op, DAG);
+
+ }
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Hexagon Scheduler Hooks
+//===----------------------------------------------------------------------===//
+MachineBasicBlock *
+HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB)
+const {
+ switch (MI->getOpcode()) {
+ case Hexagon::ADJDYNALLOC: {
+ MachineFunction *MF = BB->getParent();
+ HexagonMachineFunctionInfo *FuncInfo =
+ MF->getInfo<HexagonMachineFunctionInfo>();
+ FuncInfo->addAllocaAdjustInst(MI);
+ return BB;
+ }
+ default: llvm_unreachable("Unexpected instr type to insert");
+ } // switch
+}
+
+//===----------------------------------------------------------------------===//
+// Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+std::pair<unsigned, const TargetRegisterClass*>
+HexagonTargetLowering::getRegForInlineAsmConstraint(const
+ std::string &Constraint,
+ MVT VT) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r': // R0-R31
+ switch (VT.SimpleTy) {
+ default:
+ llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
+ case MVT::i32:
+ case MVT::i16:
+ case MVT::i8:
+ case MVT::f32:
+ return std::make_pair(0U, &Hexagon::IntRegsRegClass);
+ case MVT::i64:
+ case MVT::f64:
+ return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
+ }
+ default:
+ llvm_unreachable("Unknown asm register class");
+ }
+ }
+
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+/// isFPImmLegal - Returns true if the target can instruction select the
+/// specified FP immediate natively. If false, the legalizer will
+/// materialize the FP immediate as a load from a constant pool.
+bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ return TM.getSubtarget<HexagonSubtarget>().hasV5TOps();
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented by
+/// AM is legal for this target, for a load/store of the specified type.
+bool HexagonTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ // Allows a signed-extended 11-bit immediate field.
+ if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) {
+ return false;
+ }
+
+ // No global is ever allowed as a base.
+ if (AM.BaseGV) {
+ return false;
+ }
+
+ int Scale = AM.Scale;
+ if (Scale < 0) Scale = -Scale;
+ switch (Scale) {
+ case 0: // No scale reg, "r+i", "r", or just "i".
+ break;
+ default: // No scaled addressing mode.
+ return false;
+ }
+ return true;
+}
+
+/// isLegalICmpImmediate - Return true if the specified immediate is legal
+/// icmp immediate, that is the target has icmp instructions which can compare
+/// a register against the immediate without having to materialize the
+/// immediate into a register.
+bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
+ return Imm >= -512 && Imm <= 511;
+}
+
+/// IsEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization. Targets which want to do tail call
+/// optimization should implement this function.
+bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
+ SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ bool isCalleeStructRet,
+ bool isCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const {
+ const Function *CallerF = DAG.getMachineFunction().getFunction();
+ CallingConv::ID CallerCC = CallerF->getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+
+ // ***************************************************************************
+ // Look for obvious safe cases to perform tail call optimization that do not
+ // require ABI changes.
+ // ***************************************************************************
+
+ // If this is a tail call via a function pointer, then don't do it!
+ if (!(dyn_cast<GlobalAddressSDNode>(Callee))
+ && !(dyn_cast<ExternalSymbolSDNode>(Callee))) {
+ return false;
+ }
+
+ // Do not optimize if the calling conventions do not match.
+ if (!CCMatch)
+ return false;
+
+ // Do not tail call optimize vararg calls.
+ if (isVarArg)
+ return false;
+
+ // Also avoid tail call optimization if either caller or callee uses struct
+ // return semantics.
+ if (isCalleeStructRet || isCallerStructRet)
+ return false;
+
+ // In addition to the cases above, we also disable Tail Call Optimization if
+ // the calling convention code that at least one outgoing argument needs to
+ // go on the stack. We cannot check that here because at this point that
+ // information is not available.
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.h b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.h
new file mode 100644
index 0000000..ec16cc8
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.h
@@ -0,0 +1,177 @@
+//===-- HexagonISelLowering.h - Hexagon DAG Lowering Interface --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that Hexagon uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef Hexagon_ISELLOWERING_H
+#define Hexagon_ISELLOWERING_H
+
+#include "Hexagon.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/Target/TargetLowering.h"
+
+namespace llvm {
+ namespace HexagonISD {
+ enum {
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ CONST32,
+ CONST32_GP, // For marking data present in GP.
+ CONST32_Int_Real,
+ FCONST32,
+ SETCC,
+ ADJDYNALLOC,
+ ARGEXTEND,
+
+ CMPICC, // Compare two GPR operands, set icc.
+ CMPFCC, // Compare two FP operands, set fcc.
+ BRICC, // Branch to dest on icc condition
+ BRFCC, // Branch to dest on fcc condition
+ SELECT_ICC, // Select between two values using the current ICC flags.
+ SELECT_FCC, // Select between two values using the current FCC flags.
+
+ Hi, Lo, // Hi/Lo operations, typically on a global address.
+
+ FTOI, // FP to Int within a FP register.
+ ITOF, // Int to FP within a FP register.
+
+ CALL, // A call instruction.
+ RET_FLAG, // Return with a flag operand.
+ BR_JT, // Jump table.
+ BARRIER, // Memory barrier.
+ WrapperJT,
+ WrapperCP,
+ WrapperCombineII,
+ WrapperCombineRR,
+ WrapperCombineRI_V4,
+ WrapperCombineIR_V4,
+ WrapperPackhl,
+ WrapperSplatB,
+ WrapperSplatH,
+ WrapperShuffEB,
+ WrapperShuffEH,
+ WrapperShuffOB,
+ WrapperShuffOH,
+ TC_RETURN,
+ EH_RETURN
+ };
+ }
+
+ class HexagonTargetLowering : public TargetLowering {
+ int VarArgsFrameOffset; // Frame offset to start of varargs area.
+
+ bool CanReturnSmallStruct(const Function* CalleeFn,
+ unsigned& RetSize) const;
+
+ public:
+ const TargetMachine &TM;
+ explicit HexagonTargetLowering(const TargetMachine &targetmachine);
+
+ /// IsEligibleForTailCallOptimization - Check whether the call is eligible
+ /// for tail call optimization. Targets which want to do tail call
+ /// optimization should implement this function.
+ bool
+ IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ bool isCalleeStructRet,
+ bool isCallerStructRet,
+ const
+ SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const;
+
+ bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
+ bool isTruncateFree(EVT VT1, EVT VT2) const override;
+
+ bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
+
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+
+ const char *getTargetNodeName(unsigned Opcode) const override;
+ SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEH_LABEL(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+ SDValue LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDValue Callee) const;
+
+ SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const;
+ SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const override;
+
+ MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const override;
+
+ SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
+ EVT getSetCCResultType(LLVMContext &C, EVT VT) const override {
+ if (!VT.isVector())
+ return MVT::i1;
+ else
+ return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
+ }
+
+ bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDValue &Base, SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const override;
+
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const override;
+
+ // Intrinsics
+ SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
+ /// isLegalAddressingMode - Return true if the addressing mode represented
+ /// by AM is legal for this target, for a load/store of the specified type.
+ /// The type may be VoidTy, in which case only return true if the addressing
+ /// mode is legal for a load/store of any legal type.
+ /// TODO: Handle pre/postinc as well.
+ bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
+ bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
+
+ /// isLegalICmpImmediate - Return true if the specified immediate is legal
+ /// icmp immediate, that is the target has icmp instructions which can
+ /// compare a register against the immediate without having to materialize
+ /// the immediate into a register.
+ bool isLegalICmpImmediate(int64_t Imm) const override;
+ };
+} // end namespace llvm
+
+#endif // Hexagon_ISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormats.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormats.td
new file mode 100644
index 0000000..1057343
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormats.td
@@ -0,0 +1,401 @@
+//==- HexagonInstrFormats.td - Hexagon Instruction Formats --*- tablegen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Hexagon Instruction Flags +
+//
+// *** Must match HexagonBaseInfo.h ***
+//===----------------------------------------------------------------------===//
+
+class IType<bits<5> t> {
+ bits<5> Value = t;
+}
+def TypePSEUDO : IType<0>;
+def TypeALU32 : IType<1>;
+def TypeCR : IType<2>;
+def TypeJR : IType<3>;
+def TypeJ : IType<4>;
+def TypeLD : IType<5>;
+def TypeST : IType<6>;
+def TypeSYSTEM : IType<7>;
+def TypeXTYPE : IType<8>;
+def TypeENDLOOP: IType<31>;
+
+// Maintain list of valid subtargets for each instruction.
+class SubTarget<bits<4> value> {
+ bits<4> Value = value;
+}
+
+def HasV2SubT : SubTarget<0xf>;
+def HasV2SubTOnly : SubTarget<0x1>;
+def NoV2SubT : SubTarget<0x0>;
+def HasV3SubT : SubTarget<0xe>;
+def HasV3SubTOnly : SubTarget<0x2>;
+def NoV3SubT : SubTarget<0x1>;
+def HasV4SubT : SubTarget<0xc>;
+def NoV4SubT : SubTarget<0x3>;
+def HasV5SubT : SubTarget<0x8>;
+def NoV5SubT : SubTarget<0x7>;
+
+// Addressing modes for load/store instructions
+class AddrModeType<bits<3> value> {
+ bits<3> Value = value;
+}
+
+def NoAddrMode : AddrModeType<0>; // No addressing mode
+def Absolute : AddrModeType<1>; // Absolute addressing mode
+def AbsoluteSet : AddrModeType<2>; // Absolute set addressing mode
+def BaseImmOffset : AddrModeType<3>; // Indirect with offset
+def BaseLongOffset : AddrModeType<4>; // Indirect with long offset
+def BaseRegOffset : AddrModeType<5>; // Indirect with register offset
+def PostInc : AddrModeType<6>; // Post increment addressing mode
+
+class MemAccessSize<bits<3> value> {
+ bits<3> Value = value;
+}
+
+def NoMemAccess : MemAccessSize<0>;// Not a memory acces instruction.
+def ByteAccess : MemAccessSize<1>;// Byte access instruction (memb).
+def HalfWordAccess : MemAccessSize<2>;// Half word access instruction (memh).
+def WordAccess : MemAccessSize<3>;// Word access instruction (memw).
+def DoubleWordAccess : MemAccessSize<4>;// Double word access instruction (memd)
+
+
+//===----------------------------------------------------------------------===//
+// Instruction Class Declaration +
+//===----------------------------------------------------------------------===//
+
+class OpcodeHexagon {
+ field bits<32> Inst = ?; // Default to an invalid insn.
+ bits<4> IClass = 0; // ICLASS
+ bits<2> IParse = 0; // Parse bits.
+
+ let Inst{31-28} = IClass;
+ let Inst{15-14} = IParse;
+
+ bits<1> zero = 0;
+}
+
+class InstHexagon<dag outs, dag ins, string asmstr, list<dag> pattern,
+ string cstr, InstrItinClass itin, IType type>
+ : Instruction, OpcodeHexagon {
+ let Namespace = "Hexagon";
+
+ dag OutOperandList = outs;
+ dag InOperandList = ins;
+ let AsmString = asmstr;
+ let Pattern = pattern;
+ let Constraints = cstr;
+ let Itinerary = itin;
+ let Size = 4;
+
+ // *** Must match MCTargetDesc/HexagonBaseInfo.h ***
+
+ // Instruction type according to the ISA.
+ IType Type = type;
+ let TSFlags{4-0} = Type.Value;
+
+ // Solo instructions, i.e., those that cannot be in a packet with others.
+ bits<1> isSolo = 0;
+ let TSFlags{5} = isSolo;
+ // Packed only with A or X-type instructions.
+ bits<1> isSoloAX = 0;
+ let TSFlags{6} = isSoloAX;
+ // Only A-type instruction in first slot or nothing.
+ bits<1> isSoloAin1 = 0;
+ let TSFlags{7} = isSoloAin1;
+
+ // Predicated instructions.
+ bits<1> isPredicated = 0;
+ let TSFlags{8} = isPredicated;
+ bits<1> isPredicatedFalse = 0;
+ let TSFlags{9} = isPredicatedFalse;
+ bits<1> isPredicatedNew = 0;
+ let TSFlags{10} = isPredicatedNew;
+ bits<1> isPredicateLate = 0;
+ let TSFlags{11} = isPredicateLate; // Late predicate producer insn.
+
+ // New-value insn helper fields.
+ bits<1> isNewValue = 0;
+ let TSFlags{12} = isNewValue; // New-value consumer insn.
+ bits<1> hasNewValue = 0;
+ let TSFlags{13} = hasNewValue; // New-value producer insn.
+ bits<3> opNewValue = 0;
+ let TSFlags{16-14} = opNewValue; // New-value produced operand.
+ bits<1> isNVStorable = 0;
+ let TSFlags{17} = isNVStorable; // Store that can become new-value store.
+ bits<1> isNVStore = 0;
+ let TSFlags{18} = isNVStore; // New-value store insn.
+ bits<1> isCVLoadable = 0;
+ let TSFlags{19} = isCVLoadable; // Load that can become cur-value load.
+ bits<1> isCVLoad = 0;
+ let TSFlags{20} = isCVLoad; // Cur-value load insn.
+
+ // Immediate extender helper fields.
+ bits<1> isExtendable = 0;
+ let TSFlags{21} = isExtendable; // Insn may be extended.
+ bits<1> isExtended = 0;
+ let TSFlags{22} = isExtended; // Insn must be extended.
+ bits<3> opExtendable = 0;
+ let TSFlags{25-23} = opExtendable; // Which operand may be extended.
+ bits<1> isExtentSigned = 0;
+ let TSFlags{26} = isExtentSigned; // Signed or unsigned range.
+ bits<5> opExtentBits = 0;
+ let TSFlags{31-27} = opExtentBits; //Number of bits of range before extending.
+ bits<2> opExtentAlign = 0;
+ let TSFlags{33-32} = opExtentAlign; // Alignment exponent before extending.
+
+ // If an instruction is valid on a subtarget (v2-v5), set the corresponding
+ // bit from validSubTargets. v2 is the least significant bit.
+ // By default, instruction is valid on all subtargets.
+ SubTarget validSubTargets = HasV2SubT;
+ let TSFlags{37-34} = validSubTargets.Value;
+
+ // Addressing mode for load/store instructions.
+ AddrModeType addrMode = NoAddrMode;
+ let TSFlags{42-40} = addrMode.Value;
+
+ // Memory access size for mem access instructions (load/store)
+ MemAccessSize accessSize = NoMemAccess;
+ let TSFlags{45-43} = accessSize.Value;
+
+ bits<1> isTaken = 0;
+ let TSFlags {47} = isTaken; // Branch prediction.
+
+ bits<1> isFP = 0;
+ let TSFlags {48} = isFP; // Floating-point.
+
+ // Fields used for relation models.
+ string BaseOpcode = "";
+ string CextOpcode = "";
+ string PredSense = "";
+ string PNewValue = "";
+ string NValueST = ""; // Set to "true" for new-value stores.
+ string InputType = ""; // Input is "imm" or "reg" type.
+ string isMEMri = "false"; // Set to "true" for load/store with MEMri operand.
+ string isFloat = "false"; // Set to "true" for the floating-point load/store.
+ string isBrTaken = ""; // Set to "true"/"false" for jump instructions
+
+ let PredSense = !if(isPredicated, !if(isPredicatedFalse, "false", "true"),
+ "");
+ let PNewValue = !if(isPredicatedNew, "new", "");
+ let NValueST = !if(isNVStore, "true", "false");
+
+ // *** Must match MCTargetDesc/HexagonBaseInfo.h ***
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction Classes Definitions +
+//===----------------------------------------------------------------------===//
+
+// LD Instruction Class in V2/V3/V4.
+// Definition of the instruction class NOT CHANGED.
+class LDInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = LD_tc_ld_SLOT01>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeLD>;
+
+let mayLoad = 1 in
+class LDInst2<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "">
+ : LDInst<outs, ins, asmstr, pattern, cstr>;
+
+class CONSTLDInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "">
+ : LDInst<outs, ins, asmstr, pattern, cstr>;
+
+// LD Instruction Class in V2/V3/V4.
+// Definition of the instruction class NOT CHANGED.
+class LDInstPost<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "">
+ : LDInst<outs, ins, asmstr, pattern, cstr>;
+
+let mayLoad = 1 in
+class LD0Inst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin=LD_tc_ld_SLOT0>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeLD>;
+
+// ST Instruction Class in V2/V3 can take SLOT0 only.
+// ST Instruction Class in V4 can take SLOT0 & SLOT1.
+// Definition of the instruction class CHANGED from V2/V3 to V4.
+let mayStore = 1 in
+class STInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ST_tc_st_SLOT01>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeST>;
+
+class STInst2<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "">
+ : STInst<outs, ins, asmstr, pattern, cstr>;
+
+let mayStore = 1 in
+class ST0Inst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ST_tc_ld_SLOT0>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeST>;
+
+// ST Instruction Class in V2/V3 can take SLOT0 only.
+// ST Instruction Class in V4 can take SLOT0 & SLOT1.
+// Definition of the instruction class CHANGED from V2/V3 to V4.
+class STInstPost<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ST_tc_st_SLOT01>
+ : STInst<outs, ins, asmstr, pattern, cstr, itin>;
+
+// SYSTEM Instruction Class in V4 can take SLOT0 only
+// In V2/V3 we used ST for this but in v4 ST can take SLOT0 or SLOT1.
+class SYSInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ST_tc_3stall_SLOT0>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeSYSTEM>;
+
+// ALU32 Instruction Class in V2/V3/V4.
+// Definition of the instruction class NOT CHANGED.
+class ALU32Inst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ALU32_2op_tc_1_SLOT0123>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeALU32>;
+
+// ALU64 Instruction Class in V2/V3.
+// XTYPE Instruction Class in V4.
+// Definition of the instruction class NOT CHANGED.
+// Name of the Instruction Class changed from ALU64 to XTYPE from V2/V3 to V4.
+class ALU64Inst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ALU64_tc_2_SLOT23>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeXTYPE>;
+
+class ALU64_acc<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ALU64_tc_2_SLOT23>
+ : ALU64Inst<outs, ins, asmstr, pattern, cstr, itin>;
+
+
+// M Instruction Class in V2/V3.
+// XTYPE Instruction Class in V4.
+// Definition of the instruction class NOT CHANGED.
+// Name of the Instruction Class changed from M to XTYPE from V2/V3 to V4.
+class MInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = M_tc_3x_SLOT23>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeXTYPE>;
+
+// M Instruction Class in V2/V3.
+// XTYPE Instruction Class in V4.
+// Definition of the instruction class NOT CHANGED.
+// Name of the Instruction Class changed from M to XTYPE from V2/V3 to V4.
+class MInst_acc<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = M_tc_2_SLOT23>
+ : MInst<outs, ins, asmstr, pattern, cstr, itin>;
+
+// S Instruction Class in V2/V3.
+// XTYPE Instruction Class in V4.
+// Definition of the instruction class NOT CHANGED.
+// Name of the Instruction Class changed from S to XTYPE from V2/V3 to V4.
+class SInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = S_2op_tc_1_SLOT23>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeXTYPE>;
+
+// S Instruction Class in V2/V3.
+// XTYPE Instruction Class in V4.
+// Definition of the instruction class NOT CHANGED.
+// Name of the Instruction Class changed from S to XTYPE from V2/V3 to V4.
+class SInst_acc<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = S_3op_tc_1_SLOT23>
+ : SInst<outs, ins, asmstr, pattern, cstr, itin>;
+
+// J Instruction Class in V2/V3/V4.
+// Definition of the instruction class NOT CHANGED.
+class JInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = J_tc_2early_SLOT23>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeJ>;
+
+// JR Instruction Class in V2/V3/V4.
+// Definition of the instruction class NOT CHANGED.
+class JRInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = J_tc_2early_SLOT2>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeJR>;
+
+// CR Instruction Class in V2/V3/V4.
+// Definition of the instruction class NOT CHANGED.
+class CRInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = CR_tc_2early_SLOT3>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeCR>;
+
+let isCodeGenOnly = 1, isPseudo = 1 in
+class Endloop<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = J_tc_2early_SLOT0123>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeENDLOOP>;
+
+let isCodeGenOnly = 1, isPseudo = 1 in
+class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "">
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, PSEUDO, TypePSEUDO>;
+
+let isCodeGenOnly = 1, isPseudo = 1 in
+class PseudoM<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr="">
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, PSEUDOM, TypePSEUDO>;
+
+//===----------------------------------------------------------------------===//
+// Instruction Classes Definitions -
+//===----------------------------------------------------------------------===//
+
+
+//
+// ALU32 patterns
+//.
+class ALU32_rr<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ALU32_2op_tc_1_SLOT0123>
+ : ALU32Inst<outs, ins, asmstr, pattern, cstr, itin>;
+
+class ALU32_ir<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ALU32_2op_tc_1_SLOT0123>
+ : ALU32Inst<outs, ins, asmstr, pattern, cstr, itin>;
+
+class ALU32_ri<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ALU32_2op_tc_1_SLOT0123>
+ : ALU32Inst<outs, ins, asmstr, pattern, cstr, itin>;
+
+class ALU32_ii<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ALU32_2op_tc_1_SLOT0123>
+ : ALU32Inst<outs, ins, asmstr, pattern, cstr, itin>;
+
+
+//
+// ALU64 patterns.
+//
+class ALU64_rr<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ALU64_tc_1_SLOT23>
+ : ALU64Inst<outs, ins, asmstr, pattern, cstr, itin>;
+
+class ALU64_ri<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ALU64_tc_1_SLOT23>
+ : ALU64Inst<outs, ins, asmstr, pattern, cstr, itin>;
+
+// Post increment ST Instruction.
+class STInstPI<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "">
+ : STInst<outs, ins, asmstr, pattern, cstr>;
+
+let mayStore = 1 in
+class STInst2PI<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "">
+ : STInst<outs, ins, asmstr, pattern, cstr>;
+
+// Post increment LD Instruction.
+class LDInstPI<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "">
+ : LDInst<outs, ins, asmstr, pattern, cstr>;
+
+let mayLoad = 1 in
+class LDInst2PI<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "">
+ : LDInst<outs, ins, asmstr, pattern, cstr>;
+
+//===----------------------------------------------------------------------===//
+// V4 Instruction Format Definitions +
+//===----------------------------------------------------------------------===//
+
+include "HexagonInstrFormatsV4.td"
+
+//===----------------------------------------------------------------------===//
+// V4 Instruction Format Definitions +
+//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormatsV4.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormatsV4.td
new file mode 100644
index 0000000..d92f97b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormatsV4.td
@@ -0,0 +1,67 @@
+//==- HexagonInstrFormats.td - Hexagon Instruction Formats --*- tablegen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Hexagon V4 instruction classes in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+//----------------------------------------------------------------------------//
+// Hexagon Instruction Flags
+//
+// *** Must match BaseInfo.h ***
+//----------------------------------------------------------------------------//
+
+def TypeMEMOP : IType<9>;
+def TypeNV : IType<10>;
+def TypePREFIX : IType<30>;
+
+//----------------------------------------------------------------------------//
+// Instruction Classes Definitions
+//----------------------------------------------------------------------------//
+
+//
+// NV type instructions.
+//
+class NVInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = NCJ_tc_3or4stall_SLOT0>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeNV>;
+
+class NVInst_V4<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = NCJ_tc_3or4stall_SLOT0>
+ : NVInst<outs, ins, asmstr, pattern, cstr, itin>;
+
+// Definition of Post increment new value store.
+class NVInstPost_V4<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ST_tc_st_SLOT0>
+ : NVInst<outs, ins, asmstr, pattern, cstr, itin>;
+
+// Post increment ST Instruction.
+let mayStore = 1 in
+class NVInstPI_V4<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = ST_tc_st_SLOT0>
+ : NVInst<outs, ins, asmstr, pattern, cstr, itin>;
+
+// New-value conditional branch.
+class NCJInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "">
+ : NVInst<outs, ins, asmstr, pattern, cstr>;
+
+let mayLoad = 1, mayStore = 1 in
+class MEMInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = V4LDST_tc_st_SLOT0>
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeMEMOP>;
+
+class MEMInst_V4<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "", InstrItinClass itin = V4LDST_tc_st_SLOT0>
+ : MEMInst<outs, ins, asmstr, pattern, cstr, itin>;
+
+let isCodeGenOnly = 1 in
+class EXTENDERInst<dag outs, dag ins, string asmstr, list<dag> pattern = []>
+ : InstHexagon<outs, ins, asmstr, pattern, "", EXTENDER_tc_1_SLOT0123,
+ TypePREFIX>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
new file mode 100644
index 0000000..1c95e06
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
@@ -0,0 +1,1858 @@
+//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Hexagon implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonInstrInfo.h"
+#include "Hexagon.h"
+#include "HexagonRegisterInfo.h"
+#include "HexagonSubtarget.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/DFAPacketizer.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-instrinfo"
+
+#define GET_INSTRINFO_CTOR_DTOR
+#define GET_INSTRMAP_INFO
+#include "HexagonGenInstrInfo.inc"
+#include "HexagonGenDFAPacketizer.inc"
+
+///
+/// Constants for Hexagon instructions.
+///
+const int Hexagon_MEMW_OFFSET_MAX = 4095;
+const int Hexagon_MEMW_OFFSET_MIN = -4096;
+const int Hexagon_MEMD_OFFSET_MAX = 8191;
+const int Hexagon_MEMD_OFFSET_MIN = -8192;
+const int Hexagon_MEMH_OFFSET_MAX = 2047;
+const int Hexagon_MEMH_OFFSET_MIN = -2048;
+const int Hexagon_MEMB_OFFSET_MAX = 1023;
+const int Hexagon_MEMB_OFFSET_MIN = -1024;
+const int Hexagon_ADDI_OFFSET_MAX = 32767;
+const int Hexagon_ADDI_OFFSET_MIN = -32768;
+const int Hexagon_MEMD_AUTOINC_MAX = 56;
+const int Hexagon_MEMD_AUTOINC_MIN = -64;
+const int Hexagon_MEMW_AUTOINC_MAX = 28;
+const int Hexagon_MEMW_AUTOINC_MIN = -32;
+const int Hexagon_MEMH_AUTOINC_MAX = 14;
+const int Hexagon_MEMH_AUTOINC_MIN = -16;
+const int Hexagon_MEMB_AUTOINC_MAX = 7;
+const int Hexagon_MEMB_AUTOINC_MIN = -8;
+
+// Pin the vtable to this file.
+void HexagonInstrInfo::anchor() {}
+
+HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
+ : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
+ RI(ST), Subtarget(ST) {
+}
+
+
+/// isLoadFromStackSlot - If the specified machine instruction is a direct
+/// load from a stack slot, return the virtual or physical register number of
+/// the destination along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than loading from the stack slot.
+unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+
+
+ switch (MI->getOpcode()) {
+ default: break;
+ case Hexagon::LDriw:
+ case Hexagon::LDrid:
+ case Hexagon::LDrih:
+ case Hexagon::LDrib:
+ case Hexagon::LDriub:
+ if (MI->getOperand(2).isFI() &&
+ MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
+ FrameIndex = MI->getOperand(2).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+
+/// isStoreToStackSlot - If the specified machine instruction is a direct
+/// store to a stack slot, return the virtual or physical register number of
+/// the source reg along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than storing to the stack slot.
+unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case Hexagon::STriw:
+ case Hexagon::STrid:
+ case Hexagon::STrih:
+ case Hexagon::STrib:
+ if (MI->getOperand(2).isFI() &&
+ MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
+ FrameIndex = MI->getOperand(0).getIndex();
+ return MI->getOperand(2).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+
+unsigned
+HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const{
+
+ int BOpc = Hexagon::JMP;
+ int BccOpc = Hexagon::JMP_t;
+
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+
+ int regPos = 0;
+ // Check if ReverseBranchCondition has asked to reverse this branch
+ // If we want to reverse the branch an odd number of times, we want
+ // JMP_f.
+ if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
+ BccOpc = Hexagon::JMP_f;
+ regPos = 1;
+ }
+
+ if (!FBB) {
+ if (Cond.empty()) {
+ // Due to a bug in TailMerging/CFG Optimization, we need to add a
+ // special case handling of a predicated jump followed by an
+ // unconditional jump. If not, Tail Merging and CFG Optimization go
+ // into an infinite loop.
+ MachineBasicBlock *NewTBB, *NewFBB;
+ SmallVector<MachineOperand, 4> Cond;
+ MachineInstr *Term = MBB.getFirstTerminator();
+ if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
+ false)) {
+ MachineBasicBlock *NextBB =
+ std::next(MachineFunction::iterator(&MBB));
+ if (NewTBB == NextBB) {
+ ReverseBranchCondition(Cond);
+ RemoveBranch(MBB);
+ return InsertBranch(MBB, TBB, nullptr, Cond, DL);
+ }
+ }
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
+ } else {
+ BuildMI(&MBB, DL,
+ get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
+ }
+ return 1;
+ }
+
+ BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
+
+ return 2;
+}
+
+
+bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ TBB = nullptr;
+ FBB = nullptr;
+
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::instr_iterator I = MBB.instr_end();
+ if (I == MBB.instr_begin())
+ return false;
+
+ // A basic block may looks like this:
+ //
+ // [ insn
+ // EH_LABEL
+ // insn
+ // insn
+ // insn
+ // EH_LABEL
+ // insn ]
+ //
+ // It has two succs but does not have a terminator
+ // Don't know how to handle it.
+ do {
+ --I;
+ if (I->isEHLabel())
+ return true;
+ } while (I != MBB.instr_begin());
+
+ I = MBB.instr_end();
+ --I;
+
+ while (I->isDebugValue()) {
+ if (I == MBB.instr_begin())
+ return false;
+ --I;
+ }
+
+ // Delete the JMP if it's equivalent to a fall-through.
+ if (AllowModify && I->getOpcode() == Hexagon::JMP &&
+ MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
+ DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
+ I->eraseFromParent();
+ I = MBB.instr_end();
+ if (I == MBB.instr_begin())
+ return false;
+ --I;
+ }
+ if (!isUnpredicatedTerminator(I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+ MachineInstr *SecondLastInst = nullptr;
+ // Find one more terminator if present.
+ do {
+ if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
+ if (!SecondLastInst)
+ SecondLastInst = I;
+ else
+ // This is a third branch.
+ return true;
+ }
+ if (I == MBB.instr_begin())
+ break;
+ --I;
+ } while(I);
+
+ int LastOpcode = LastInst->getOpcode();
+
+ bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
+ bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
+
+ // If there is only one terminator instruction, process it.
+ if (LastInst && !SecondLastInst) {
+ if (LastOpcode == Hexagon::JMP) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+ if (LastOpcode == Hexagon::ENDLOOP0) {
+ TBB = LastInst->getOperand(0).getMBB();
+ Cond.push_back(LastInst->getOperand(0));
+ return false;
+ }
+ if (LastOpcodeHasJMP_c) {
+ TBB = LastInst->getOperand(1).getMBB();
+ if (LastOpcodeHasNot) {
+ Cond.push_back(MachineOperand::CreateImm(0));
+ }
+ Cond.push_back(LastInst->getOperand(0));
+ return false;
+ }
+ // Otherwise, don't know what this is.
+ return true;
+ }
+
+ int SecLastOpcode = SecondLastInst->getOpcode();
+
+ bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
+ bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
+ if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) {
+ TBB = SecondLastInst->getOperand(1).getMBB();
+ if (SecLastOpcodeHasNot)
+ Cond.push_back(MachineOperand::CreateImm(0));
+ Cond.push_back(SecondLastInst->getOperand(0));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two Hexagon:JMPs, handle it. The second one is not
+ // executed, so remove it.
+ if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // If the block ends with an ENDLOOP, and JMP, handle it.
+ if (SecLastOpcode == Hexagon::ENDLOOP0 &&
+ LastOpcode == Hexagon::JMP) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ Cond.push_back(SecondLastInst->getOperand(0));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+
+unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ int BOpc = Hexagon::JMP;
+ int BccOpc = Hexagon::JMP_t;
+ int BccOpcNot = Hexagon::JMP_f;
+
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin()) return 0;
+ --I;
+ if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
+ I->getOpcode() != BccOpcNot)
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+
+/// \brief For a comparison instruction, return the source registers in
+/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
+/// compares against in CmpValue. Return true if the comparison instruction
+/// can be analyzed.
+bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
+ unsigned &SrcReg, unsigned &SrcReg2,
+ int &Mask, int &Value) const {
+ unsigned Opc = MI->getOpcode();
+
+ // Set mask and the first source register.
+ switch (Opc) {
+ case Hexagon::CMPEHexagon4rr:
+ case Hexagon::CMPEQri:
+ case Hexagon::CMPEQrr:
+ case Hexagon::CMPGT64rr:
+ case Hexagon::CMPGTU64rr:
+ case Hexagon::CMPGTUri:
+ case Hexagon::CMPGTUrr:
+ case Hexagon::CMPGTri:
+ case Hexagon::CMPGTrr:
+ SrcReg = MI->getOperand(1).getReg();
+ Mask = ~0;
+ break;
+ case Hexagon::CMPbEQri_V4:
+ case Hexagon::CMPbEQrr_sbsb_V4:
+ case Hexagon::CMPbEQrr_ubub_V4:
+ case Hexagon::CMPbGTUri_V4:
+ case Hexagon::CMPbGTUrr_V4:
+ case Hexagon::CMPbGTrr_V4:
+ SrcReg = MI->getOperand(1).getReg();
+ Mask = 0xFF;
+ break;
+ case Hexagon::CMPhEQri_V4:
+ case Hexagon::CMPhEQrr_shl_V4:
+ case Hexagon::CMPhEQrr_xor_V4:
+ case Hexagon::CMPhGTUri_V4:
+ case Hexagon::CMPhGTUrr_V4:
+ case Hexagon::CMPhGTrr_shl_V4:
+ SrcReg = MI->getOperand(1).getReg();
+ Mask = 0xFFFF;
+ break;
+ }
+
+ // Set the value/second source register.
+ switch (Opc) {
+ case Hexagon::CMPEHexagon4rr:
+ case Hexagon::CMPEQrr:
+ case Hexagon::CMPGT64rr:
+ case Hexagon::CMPGTU64rr:
+ case Hexagon::CMPGTUrr:
+ case Hexagon::CMPGTrr:
+ case Hexagon::CMPbEQrr_sbsb_V4:
+ case Hexagon::CMPbEQrr_ubub_V4:
+ case Hexagon::CMPbGTUrr_V4:
+ case Hexagon::CMPbGTrr_V4:
+ case Hexagon::CMPhEQrr_shl_V4:
+ case Hexagon::CMPhEQrr_xor_V4:
+ case Hexagon::CMPhGTUrr_V4:
+ case Hexagon::CMPhGTrr_shl_V4:
+ SrcReg2 = MI->getOperand(2).getReg();
+ return true;
+
+ case Hexagon::CMPEQri:
+ case Hexagon::CMPGTUri:
+ case Hexagon::CMPGTri:
+ case Hexagon::CMPbEQri_V4:
+ case Hexagon::CMPbGTUri_V4:
+ case Hexagon::CMPhEQri_V4:
+ case Hexagon::CMPhGTUri_V4:
+ SrcReg2 = 0;
+ Value = MI->getOperand(2).getImm();
+ return true;
+ }
+
+ return false;
+}
+
+
+void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg);
+ return;
+ }
+ if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg);
+ return;
+ }
+ if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
+ // Map Pd = Ps to Pd = or(Ps, Ps).
+ BuildMI(MBB, I, DL, get(Hexagon::OR_pp),
+ DestReg).addReg(SrcReg).addReg(SrcReg);
+ return;
+ }
+ if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
+ Hexagon::IntRegsRegClass.contains(SrcReg)) {
+ // We can have an overlap between single and double reg: r1:0 = r0.
+ if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
+ // r1:0 = r0
+ BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
+ Hexagon::subreg_hireg))).addImm(0);
+ } else {
+ // r1:0 = r1 or no overlap.
+ BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg,
+ Hexagon::subreg_loreg))).addReg(SrcReg);
+ BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
+ Hexagon::subreg_hireg))).addImm(0);
+ }
+ return;
+ }
+ if (Hexagon::CRRegsRegClass.contains(DestReg) &&
+ Hexagon::IntRegsRegClass.contains(SrcReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
+ return;
+ }
+ if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
+ Hexagon::IntRegsRegClass.contains(DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg).
+ addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
+ Hexagon::PredRegsRegClass.contains(DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg).
+ addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+
+ llvm_unreachable("Unimplemented");
+}
+
+
+void HexagonInstrInfo::
+storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+
+ DebugLoc DL = MBB.findDebugLoc(I);
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(
+ MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FI),
+ Align);
+
+ if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DL, get(Hexagon::STriw))
+ .addFrameIndex(FI).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DL, get(Hexagon::STrid))
+ .addFrameIndex(FI).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
+ .addFrameIndex(FI).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ } else {
+ llvm_unreachable("Unimplemented");
+ }
+}
+
+
+void HexagonInstrInfo::storeRegToAddr(
+ MachineFunction &MF, unsigned SrcReg,
+ bool isKill,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const
+{
+ llvm_unreachable("Unimplemented");
+}
+
+
+void HexagonInstrInfo::
+loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBB.findDebugLoc(I);
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(
+ MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FI),
+ Align);
+ if (RC == &Hexagon::IntRegsRegClass) {
+ BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
+ } else if (RC == &Hexagon::DoubleRegsRegClass) {
+ BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
+ } else if (RC == &Hexagon::PredRegsRegClass) {
+ BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
+ } else {
+ llvm_unreachable("Can't store this register to stack slot");
+ }
+}
+
+
+void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ llvm_unreachable("Unimplemented");
+}
+
+
+MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FI) const {
+ // Hexagon_TODO: Implement.
+ return nullptr;
+}
+
+unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
+
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ const TargetRegisterClass *TRC;
+ if (VT == MVT::i1) {
+ TRC = &Hexagon::PredRegsRegClass;
+ } else if (VT == MVT::i32 || VT == MVT::f32) {
+ TRC = &Hexagon::IntRegsRegClass;
+ } else if (VT == MVT::i64 || VT == MVT::f64) {
+ TRC = &Hexagon::DoubleRegsRegClass;
+ } else {
+ llvm_unreachable("Cannot handle this register class");
+ }
+
+ unsigned NewReg = RegInfo.createVirtualRegister(TRC);
+ return NewReg;
+}
+
+bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
+ // Constant extenders are allowed only for V4 and above.
+ if (!Subtarget.hasV4TOps())
+ return false;
+
+ const MCInstrDesc &MID = MI->getDesc();
+ const uint64_t F = MID.TSFlags;
+ if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
+ return true;
+
+ // TODO: This is largely obsolete now. Will need to be removed
+ // in consecutive patches.
+ switch(MI->getOpcode()) {
+ // TFR_FI Remains a special case.
+ case Hexagon::TFR_FI:
+ return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
+// This returns true in two cases:
+// - The OP code itself indicates that this is an extended instruction.
+// - One of MOs has been marked with HMOTF_ConstExtended flag.
+bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
+ // First check if this is permanently extended op code.
+ const uint64_t F = MI->getDesc().TSFlags;
+ if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
+ return true;
+ // Use MO operand flags to determine if one of MI's operands
+ // has HMOTF_ConstExtended flag set.
+ for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
+ E = MI->operands_end(); I != E; ++I) {
+ if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
+ return true;
+ }
+ return false;
+}
+
+bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
+ return MI->getDesc().isBranch();
+}
+
+bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
+ if (isNewValueJump(MI))
+ return true;
+
+ if (isNewValueStore(MI))
+ return true;
+
+ return false;
+}
+
+bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
+ return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
+}
+
+bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
+ bool isPred = MI->getDesc().isPredicable();
+
+ if (!isPred)
+ return false;
+
+ const int Opc = MI->getOpcode();
+
+ switch(Opc) {
+ case Hexagon::TFRI:
+ return isInt<12>(MI->getOperand(1).getImm());
+
+ case Hexagon::STrid:
+ case Hexagon::STrid_indexed:
+ return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
+
+ case Hexagon::STriw:
+ case Hexagon::STriw_indexed:
+ case Hexagon::STriw_nv_V4:
+ return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
+
+ case Hexagon::STrih:
+ case Hexagon::STrih_indexed:
+ case Hexagon::STrih_nv_V4:
+ return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
+
+ case Hexagon::STrib:
+ case Hexagon::STrib_indexed:
+ case Hexagon::STrib_nv_V4:
+ return isUInt<6>(MI->getOperand(1).getImm());
+
+ case Hexagon::LDrid:
+ case Hexagon::LDrid_indexed:
+ return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
+
+ case Hexagon::LDriw:
+ case Hexagon::LDriw_indexed:
+ return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
+
+ case Hexagon::LDrih:
+ case Hexagon::LDriuh:
+ case Hexagon::LDrih_indexed:
+ case Hexagon::LDriuh_indexed:
+ return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
+
+ case Hexagon::LDrib:
+ case Hexagon::LDriub:
+ case Hexagon::LDrib_indexed:
+ case Hexagon::LDriub_indexed:
+ return isUInt<6>(MI->getOperand(2).getImm());
+
+ case Hexagon::POST_LDrid:
+ return isShiftedInt<4,3>(MI->getOperand(3).getImm());
+
+ case Hexagon::POST_LDriw:
+ return isShiftedInt<4,2>(MI->getOperand(3).getImm());
+
+ case Hexagon::POST_LDrih:
+ case Hexagon::POST_LDriuh:
+ return isShiftedInt<4,1>(MI->getOperand(3).getImm());
+
+ case Hexagon::POST_LDrib:
+ case Hexagon::POST_LDriub:
+ return isInt<4>(MI->getOperand(3).getImm());
+
+ case Hexagon::STrib_imm_V4:
+ case Hexagon::STrih_imm_V4:
+ case Hexagon::STriw_imm_V4:
+ return (isUInt<6>(MI->getOperand(1).getImm()) &&
+ isInt<6>(MI->getOperand(2).getImm()));
+
+ case Hexagon::ADD_ri:
+ return isInt<8>(MI->getOperand(2).getImm());
+
+ case Hexagon::ASLH:
+ case Hexagon::ASRH:
+ case Hexagon::SXTB:
+ case Hexagon::SXTH:
+ case Hexagon::ZXTB:
+ case Hexagon::ZXTH:
+ return Subtarget.hasV4TOps();
+ }
+
+ return true;
+}
+
+// This function performs the following inversiones:
+//
+// cPt ---> cNotPt
+// cNotPt ---> cPt
+//
+unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
+ int InvPredOpcode;
+ InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
+ : Hexagon::getTruePredOpcode(Opc);
+ if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
+ return InvPredOpcode;
+
+ switch(Opc) {
+ default: llvm_unreachable("Unexpected predicated instruction");
+ case Hexagon::COMBINE_rr_cPt:
+ return Hexagon::COMBINE_rr_cNotPt;
+ case Hexagon::COMBINE_rr_cNotPt:
+ return Hexagon::COMBINE_rr_cPt;
+
+ // Dealloc_return.
+ case Hexagon::DEALLOC_RET_cPt_V4:
+ return Hexagon::DEALLOC_RET_cNotPt_V4;
+ case Hexagon::DEALLOC_RET_cNotPt_V4:
+ return Hexagon::DEALLOC_RET_cPt_V4;
+ }
+}
+
+// New Value Store instructions.
+bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
+}
+
+bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+
+ return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
+}
+
+int HexagonInstrInfo::
+getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
+ enum Hexagon::PredSense inPredSense;
+ inPredSense = invertPredicate ? Hexagon::PredSense_false :
+ Hexagon::PredSense_true;
+ int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
+ if (CondOpcode >= 0) // Valid Conditional opcode/instruction
+ return CondOpcode;
+
+ // This switch case will be removed once all the instructions have been
+ // modified to use relation maps.
+ switch(Opc) {
+ case Hexagon::TFRI_f:
+ return !invertPredicate ? Hexagon::TFRI_cPt_f :
+ Hexagon::TFRI_cNotPt_f;
+ case Hexagon::COMBINE_rr:
+ return !invertPredicate ? Hexagon::COMBINE_rr_cPt :
+ Hexagon::COMBINE_rr_cNotPt;
+
+ // Word.
+ case Hexagon::STriw_f:
+ return !invertPredicate ? Hexagon::STriw_cPt :
+ Hexagon::STriw_cNotPt;
+ case Hexagon::STriw_indexed_f:
+ return !invertPredicate ? Hexagon::STriw_indexed_cPt :
+ Hexagon::STriw_indexed_cNotPt;
+
+ // DEALLOC_RETURN.
+ case Hexagon::DEALLOC_RET_V4:
+ return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
+ Hexagon::DEALLOC_RET_cNotPt_V4;
+ }
+ llvm_unreachable("Unexpected predicable instruction");
+}
+
+
+bool HexagonInstrInfo::
+PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Cond) const {
+ int Opc = MI->getOpcode();
+ assert (isPredicable(MI) && "Expected predicable instruction");
+ bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
+ (Cond[0].getImm() == 0));
+
+ // This will change MI's opcode to its predicate version.
+ // However, its operand list is still the old one, i.e. the
+ // non-predicate one.
+ MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
+
+ int oper = -1;
+ unsigned int GAIdx = 0;
+
+ // Indicates whether the current MI has a GlobalAddress operand
+ bool hasGAOpnd = false;
+ std::vector<MachineOperand> tmpOpnds;
+
+ // Indicates whether we need to shift operands to right.
+ bool needShift = true;
+
+ // The predicate is ALWAYS the FIRST input operand !!!
+ if (MI->getNumOperands() == 0) {
+ // The non-predicate version of MI does not take any operands,
+ // i.e. no outs and no ins. In this condition, the predicate
+ // operand will be directly placed at Operands[0]. No operand
+ // shift is needed.
+ // Example: BARRIER
+ needShift = false;
+ oper = -1;
+ }
+ else if ( MI->getOperand(MI->getNumOperands()-1).isReg()
+ && MI->getOperand(MI->getNumOperands()-1).isDef()
+ && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
+ // The non-predicate version of MI does not have any input operands.
+ // In this condition, we extend the length of Operands[] by one and
+ // copy the original last operand to the newly allocated slot.
+ // At this moment, it is just a place holder. Later, we will put
+ // predicate operand directly into it. No operand shift is needed.
+ // Example: r0=BARRIER (this is a faked insn used here for illustration)
+ MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
+ needShift = false;
+ oper = MI->getNumOperands() - 2;
+ }
+ else {
+ // We need to right shift all input operands by one. Duplicate the
+ // last operand into the newly allocated slot.
+ MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
+ }
+
+ if (needShift)
+ {
+ // Operands[ MI->getNumOperands() - 2 ] has been copied into
+ // Operands[ MI->getNumOperands() - 1 ], so we start from
+ // Operands[ MI->getNumOperands() - 3 ].
+ // oper is a signed int.
+ // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
+ for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
+ {
+ MachineOperand &MO = MI->getOperand(oper);
+
+ // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4] Opnd[5] Opnd[6] Opnd[7]
+ // <Def0> <Def1> <Use0> <Use1> <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
+ // /\~
+ // /||\~
+ // ||
+ // Predicate Operand here
+ if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
+ break;
+ }
+ if (MO.isReg()) {
+ MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
+ MO.isImplicit(), MO.isKill(),
+ MO.isDead(), MO.isUndef(),
+ MO.isDebug());
+ }
+ else if (MO.isImm()) {
+ MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
+ }
+ else if (MO.isGlobal()) {
+ // MI can not have more than one GlobalAddress operand.
+ assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
+
+ // There is no member function called "ChangeToGlobalAddress" in the
+ // MachineOperand class (not like "ChangeToRegister" and
+ // "ChangeToImmediate"). So we have to remove them from Operands[] list
+ // first, and then add them back after we have inserted the predicate
+ // operand. tmpOpnds[] is to remember these operands before we remove
+ // them.
+ tmpOpnds.push_back(MO);
+
+ // Operands[oper] is a GlobalAddress operand;
+ // Operands[oper+1] has been copied into Operands[oper+2];
+ hasGAOpnd = true;
+ GAIdx = oper;
+ continue;
+ }
+ else {
+ assert(false && "Unexpected operand type");
+ }
+ }
+ }
+
+ int regPos = invertJump ? 1 : 0;
+ MachineOperand PredMO = Cond[regPos];
+
+ // [oper] now points to the last explicit Def. Predicate operand must be
+ // located at [oper+1]. See diagram above.
+ // This assumes that the predicate is always the first operand,
+ // i.e. Operands[0+numResults], in the set of inputs
+ // It is better to have an assert here to check this. But I don't know how
+ // to write this assert because findFirstPredOperandIdx() would return -1
+ if (oper < -1) oper = -1;
+
+ MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
+ PredMO.isImplicit(), false,
+ PredMO.isDead(), PredMO.isUndef(),
+ PredMO.isDebug());
+
+ MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
+ RegInfo.clearKillFlags(PredMO.getReg());
+
+ if (hasGAOpnd)
+ {
+ unsigned int i;
+
+ // Operands[GAIdx] is the original GlobalAddress operand, which is
+ // already copied into tmpOpnds[0].
+ // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
+ // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
+ // so we start from [GAIdx+2]
+ for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
+ tmpOpnds.push_back(MI->getOperand(i));
+
+ // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
+ // It is very important that we always remove from the end of Operands[]
+ // MI->getNumOperands() is at least 2 if program goes to here.
+ for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
+ MI->RemoveOperand(i);
+
+ for (i = 0; i < tmpOpnds.size(); ++i)
+ MI->addOperand(tmpOpnds[i]);
+ }
+
+ return true;
+}
+
+
+bool
+HexagonInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles,
+ unsigned ExtraPredCycles,
+ const BranchProbability &Probability) const {
+ return true;
+}
+
+
+bool
+HexagonInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumTCycles,
+ unsigned ExtraTCycles,
+ MachineBasicBlock &FMBB,
+ unsigned NumFCycles,
+ unsigned ExtraFCycles,
+ const BranchProbability &Probability) const {
+ return true;
+}
+
+// Returns true if an instruction is predicated irrespective of the predicate
+// sense. For example, all of the following will return true.
+// if (p0) R1 = add(R2, R3)
+// if (!p0) R1 = add(R2, R3)
+// if (p0.new) R1 = add(R2, R3)
+// if (!p0.new) R1 = add(R2, R3)
+bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
+}
+
+bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+
+ return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
+}
+
+bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ assert(isPredicated(MI));
+ return (!((F >> HexagonII::PredicatedFalsePos) &
+ HexagonII::PredicatedFalseMask));
+}
+
+bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+
+ // Make sure that the instruction is predicated.
+ assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
+ return (!((F >> HexagonII::PredicatedFalsePos) &
+ HexagonII::PredicatedFalseMask));
+}
+
+bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ assert(isPredicated(MI));
+ return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
+}
+
+bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+
+ assert(isPredicated(Opcode));
+ return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
+}
+
+// Returns true, if a ST insn can be promoted to a new-value store.
+bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
+ const HexagonRegisterInfo& QRI = getRegisterInfo();
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ return ((F >> HexagonII::mayNVStorePos) &
+ HexagonII::mayNVStoreMask &
+ QRI.Subtarget.hasV4TOps());
+}
+
+bool
+HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const {
+ for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
+ MachineOperand MO = MI->getOperand(oper);
+ if (MO.isReg() && MO.isDef()) {
+ const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
+ if (RC == &Hexagon::PredRegsRegClass) {
+ Pred.push_back(MO);
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+
+bool
+HexagonInstrInfo::
+SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const {
+ // TODO: Fix this
+ return false;
+}
+
+
+//
+// We indicate that we want to reverse the branch by
+// inserting a 0 at the beginning of the Cond vector.
+//
+bool HexagonInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
+ Cond.erase(Cond.begin());
+ } else {
+ Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
+ }
+ return false;
+}
+
+
+bool HexagonInstrInfo::
+isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
+ const BranchProbability &Probability) const {
+ return (NumInstrs <= 4);
+}
+
+bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case Hexagon::DEALLOC_RET_V4 :
+ case Hexagon::DEALLOC_RET_cPt_V4 :
+ case Hexagon::DEALLOC_RET_cNotPt_V4 :
+ case Hexagon::DEALLOC_RET_cdnPnt_V4 :
+ case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
+ case Hexagon::DEALLOC_RET_cdnPt_V4 :
+ case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
+ return true;
+ }
+}
+
+
+bool HexagonInstrInfo::
+isValidOffset(const int Opcode, const int Offset) const {
+ // This function is to check whether the "Offset" is in the correct range of
+ // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
+ // inserted to calculate the final address. Due to this reason, the function
+ // assumes that the "Offset" has correct alignment.
+ // We used to assert if the offset was not properly aligned, however,
+ // there are cases where a misaligned pointer recast can cause this
+ // problem, and we need to allow for it. The front end warns of such
+ // misaligns with respect to load size.
+
+ switch(Opcode) {
+
+ case Hexagon::LDriw:
+ case Hexagon::LDriw_indexed:
+ case Hexagon::LDriw_f:
+ case Hexagon::STriw_indexed:
+ case Hexagon::STriw:
+ case Hexagon::STriw_f:
+ return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
+ (Offset <= Hexagon_MEMW_OFFSET_MAX);
+
+ case Hexagon::LDrid:
+ case Hexagon::LDrid_indexed:
+ case Hexagon::LDrid_f:
+ case Hexagon::STrid:
+ case Hexagon::STrid_indexed:
+ case Hexagon::STrid_f:
+ return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
+ (Offset <= Hexagon_MEMD_OFFSET_MAX);
+
+ case Hexagon::LDrih:
+ case Hexagon::LDriuh:
+ case Hexagon::STrih:
+ return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
+ (Offset <= Hexagon_MEMH_OFFSET_MAX);
+
+ case Hexagon::LDrib:
+ case Hexagon::STrib:
+ case Hexagon::LDriub:
+ return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
+ (Offset <= Hexagon_MEMB_OFFSET_MAX);
+
+ case Hexagon::ADD_ri:
+ case Hexagon::TFR_FI:
+ return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
+ (Offset <= Hexagon_ADDI_OFFSET_MAX);
+
+ case Hexagon::MemOPw_ADDi_V4 :
+ case Hexagon::MemOPw_SUBi_V4 :
+ case Hexagon::MemOPw_ADDr_V4 :
+ case Hexagon::MemOPw_SUBr_V4 :
+ case Hexagon::MemOPw_ANDr_V4 :
+ case Hexagon::MemOPw_ORr_V4 :
+ return (0 <= Offset && Offset <= 255);
+
+ case Hexagon::MemOPh_ADDi_V4 :
+ case Hexagon::MemOPh_SUBi_V4 :
+ case Hexagon::MemOPh_ADDr_V4 :
+ case Hexagon::MemOPh_SUBr_V4 :
+ case Hexagon::MemOPh_ANDr_V4 :
+ case Hexagon::MemOPh_ORr_V4 :
+ return (0 <= Offset && Offset <= 127);
+
+ case Hexagon::MemOPb_ADDi_V4 :
+ case Hexagon::MemOPb_SUBi_V4 :
+ case Hexagon::MemOPb_ADDr_V4 :
+ case Hexagon::MemOPb_SUBr_V4 :
+ case Hexagon::MemOPb_ANDr_V4 :
+ case Hexagon::MemOPb_ORr_V4 :
+ return (0 <= Offset && Offset <= 63);
+
+ // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
+ // any size. Later pass knows how to handle it.
+ case Hexagon::STriw_pred:
+ case Hexagon::LDriw_pred:
+ return true;
+
+ case Hexagon::LOOP0_i:
+ return isUInt<10>(Offset);
+
+ // INLINEASM is very special.
+ case Hexagon::INLINEASM:
+ return true;
+ }
+
+ llvm_unreachable("No offset range is defined for this opcode. "
+ "Please define it in the above switch statement!");
+}
+
+
+//
+// Check if the Offset is a valid auto-inc imm by Load/Store Type.
+//
+bool HexagonInstrInfo::
+isValidAutoIncImm(const EVT VT, const int Offset) const {
+
+ if (VT == MVT::i64) {
+ return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMD_AUTOINC_MAX &&
+ (Offset & 0x7) == 0);
+ }
+ if (VT == MVT::i32) {
+ return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMW_AUTOINC_MAX &&
+ (Offset & 0x3) == 0);
+ }
+ if (VT == MVT::i16) {
+ return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMH_AUTOINC_MAX &&
+ (Offset & 0x1) == 0);
+ }
+ if (VT == MVT::i8) {
+ return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMB_AUTOINC_MAX);
+ }
+ llvm_unreachable("Not an auto-inc opc!");
+}
+
+
+bool HexagonInstrInfo::
+isMemOp(const MachineInstr *MI) const {
+// return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
+
+ switch (MI->getOpcode())
+ {
+ default: return false;
+ case Hexagon::MemOPw_ADDi_V4 :
+ case Hexagon::MemOPw_SUBi_V4 :
+ case Hexagon::MemOPw_ADDr_V4 :
+ case Hexagon::MemOPw_SUBr_V4 :
+ case Hexagon::MemOPw_ANDr_V4 :
+ case Hexagon::MemOPw_ORr_V4 :
+ case Hexagon::MemOPh_ADDi_V4 :
+ case Hexagon::MemOPh_SUBi_V4 :
+ case Hexagon::MemOPh_ADDr_V4 :
+ case Hexagon::MemOPh_SUBr_V4 :
+ case Hexagon::MemOPh_ANDr_V4 :
+ case Hexagon::MemOPh_ORr_V4 :
+ case Hexagon::MemOPb_ADDi_V4 :
+ case Hexagon::MemOPb_SUBi_V4 :
+ case Hexagon::MemOPb_ADDr_V4 :
+ case Hexagon::MemOPb_SUBr_V4 :
+ case Hexagon::MemOPb_ANDr_V4 :
+ case Hexagon::MemOPb_ORr_V4 :
+ case Hexagon::MemOPb_SETBITi_V4:
+ case Hexagon::MemOPh_SETBITi_V4:
+ case Hexagon::MemOPw_SETBITi_V4:
+ case Hexagon::MemOPb_CLRBITi_V4:
+ case Hexagon::MemOPh_CLRBITi_V4:
+ case Hexagon::MemOPw_CLRBITi_V4:
+ return true;
+ }
+ return false;
+}
+
+
+bool HexagonInstrInfo::
+isSpillPredRegOp(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case Hexagon::STriw_pred :
+ case Hexagon::LDriw_pred :
+ return true;
+ }
+}
+
+bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case Hexagon::CMPEQrr:
+ case Hexagon::CMPEQri:
+ case Hexagon::CMPGTrr:
+ case Hexagon::CMPGTri:
+ case Hexagon::CMPGTUrr:
+ case Hexagon::CMPGTUri:
+ return true;
+ }
+}
+
+bool HexagonInstrInfo::
+isConditionalTransfer (const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case Hexagon::TFR_cPt:
+ case Hexagon::TFR_cNotPt:
+ case Hexagon::TFRI_cPt:
+ case Hexagon::TFRI_cNotPt:
+ case Hexagon::TFR_cdnPt:
+ case Hexagon::TFR_cdnNotPt:
+ case Hexagon::TFRI_cdnPt:
+ case Hexagon::TFRI_cdnNotPt:
+ return true;
+ }
+}
+
+bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
+ const HexagonRegisterInfo& QRI = getRegisterInfo();
+ switch (MI->getOpcode())
+ {
+ default: return false;
+ case Hexagon::ADD_ri_cPt:
+ case Hexagon::ADD_ri_cNotPt:
+ case Hexagon::ADD_rr_cPt:
+ case Hexagon::ADD_rr_cNotPt:
+ case Hexagon::XOR_rr_cPt:
+ case Hexagon::XOR_rr_cNotPt:
+ case Hexagon::AND_rr_cPt:
+ case Hexagon::AND_rr_cNotPt:
+ case Hexagon::OR_rr_cPt:
+ case Hexagon::OR_rr_cNotPt:
+ case Hexagon::SUB_rr_cPt:
+ case Hexagon::SUB_rr_cNotPt:
+ case Hexagon::COMBINE_rr_cPt:
+ case Hexagon::COMBINE_rr_cNotPt:
+ return true;
+ case Hexagon::ASLH_cPt_V4:
+ case Hexagon::ASLH_cNotPt_V4:
+ case Hexagon::ASRH_cPt_V4:
+ case Hexagon::ASRH_cNotPt_V4:
+ case Hexagon::SXTB_cPt_V4:
+ case Hexagon::SXTB_cNotPt_V4:
+ case Hexagon::SXTH_cPt_V4:
+ case Hexagon::SXTH_cNotPt_V4:
+ case Hexagon::ZXTB_cPt_V4:
+ case Hexagon::ZXTB_cNotPt_V4:
+ case Hexagon::ZXTH_cPt_V4:
+ case Hexagon::ZXTH_cNotPt_V4:
+ return QRI.Subtarget.hasV4TOps();
+ }
+}
+
+bool HexagonInstrInfo::
+isConditionalLoad (const MachineInstr* MI) const {
+ const HexagonRegisterInfo& QRI = getRegisterInfo();
+ switch (MI->getOpcode())
+ {
+ default: return false;
+ case Hexagon::LDrid_cPt :
+ case Hexagon::LDrid_cNotPt :
+ case Hexagon::LDrid_indexed_cPt :
+ case Hexagon::LDrid_indexed_cNotPt :
+ case Hexagon::LDriw_cPt :
+ case Hexagon::LDriw_cNotPt :
+ case Hexagon::LDriw_indexed_cPt :
+ case Hexagon::LDriw_indexed_cNotPt :
+ case Hexagon::LDrih_cPt :
+ case Hexagon::LDrih_cNotPt :
+ case Hexagon::LDrih_indexed_cPt :
+ case Hexagon::LDrih_indexed_cNotPt :
+ case Hexagon::LDrib_cPt :
+ case Hexagon::LDrib_cNotPt :
+ case Hexagon::LDrib_indexed_cPt :
+ case Hexagon::LDrib_indexed_cNotPt :
+ case Hexagon::LDriuh_cPt :
+ case Hexagon::LDriuh_cNotPt :
+ case Hexagon::LDriuh_indexed_cPt :
+ case Hexagon::LDriuh_indexed_cNotPt :
+ case Hexagon::LDriub_cPt :
+ case Hexagon::LDriub_cNotPt :
+ case Hexagon::LDriub_indexed_cPt :
+ case Hexagon::LDriub_indexed_cNotPt :
+ return true;
+ case Hexagon::POST_LDrid_cPt :
+ case Hexagon::POST_LDrid_cNotPt :
+ case Hexagon::POST_LDriw_cPt :
+ case Hexagon::POST_LDriw_cNotPt :
+ case Hexagon::POST_LDrih_cPt :
+ case Hexagon::POST_LDrih_cNotPt :
+ case Hexagon::POST_LDrib_cPt :
+ case Hexagon::POST_LDrib_cNotPt :
+ case Hexagon::POST_LDriuh_cPt :
+ case Hexagon::POST_LDriuh_cNotPt :
+ case Hexagon::POST_LDriub_cPt :
+ case Hexagon::POST_LDriub_cNotPt :
+ return QRI.Subtarget.hasV4TOps();
+ case Hexagon::LDrid_indexed_shl_cPt_V4 :
+ case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
+ case Hexagon::LDrib_indexed_shl_cPt_V4 :
+ case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
+ case Hexagon::LDriub_indexed_shl_cPt_V4 :
+ case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
+ case Hexagon::LDrih_indexed_shl_cPt_V4 :
+ case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
+ case Hexagon::LDriuh_indexed_shl_cPt_V4 :
+ case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
+ case Hexagon::LDriw_indexed_shl_cPt_V4 :
+ case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
+ return QRI.Subtarget.hasV4TOps();
+ }
+}
+
+// Returns true if an instruction is a conditional store.
+//
+// Note: It doesn't include conditional new-value stores as they can't be
+// converted to .new predicate.
+//
+// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
+// ^ ^
+// / \ (not OK. it will cause new-value store to be
+// / X conditional on p0.new while R2 producer is
+// / \ on p0)
+// / \.
+// p.new store p.old NV store
+// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
+// ^ ^
+// \ /
+// \ /
+// \ /
+// p.old store
+// [if (p0)memw(R0+#0)=R2]
+//
+// The above diagram shows the steps involoved in the conversion of a predicated
+// store instruction to its .new predicated new-value form.
+//
+// The following set of instructions further explains the scenario where
+// conditional new-value store becomes invalid when promoted to .new predicate
+// form.
+//
+// { 1) if (p0) r0 = add(r1, r2)
+// 2) p0 = cmp.eq(r3, #0) }
+//
+// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
+// the first two instructions because in instr 1, r0 is conditional on old value
+// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
+// is not valid for new-value stores.
+bool HexagonInstrInfo::
+isConditionalStore (const MachineInstr* MI) const {
+ const HexagonRegisterInfo& QRI = getRegisterInfo();
+ switch (MI->getOpcode())
+ {
+ default: return false;
+ case Hexagon::STrib_imm_cPt_V4 :
+ case Hexagon::STrib_imm_cNotPt_V4 :
+ case Hexagon::STrib_indexed_shl_cPt_V4 :
+ case Hexagon::STrib_indexed_shl_cNotPt_V4 :
+ case Hexagon::STrib_cPt :
+ case Hexagon::STrib_cNotPt :
+ case Hexagon::POST_STbri_cPt :
+ case Hexagon::POST_STbri_cNotPt :
+ case Hexagon::STrid_indexed_cPt :
+ case Hexagon::STrid_indexed_cNotPt :
+ case Hexagon::STrid_indexed_shl_cPt_V4 :
+ case Hexagon::POST_STdri_cPt :
+ case Hexagon::POST_STdri_cNotPt :
+ case Hexagon::STrih_cPt :
+ case Hexagon::STrih_cNotPt :
+ case Hexagon::STrih_indexed_cPt :
+ case Hexagon::STrih_indexed_cNotPt :
+ case Hexagon::STrih_imm_cPt_V4 :
+ case Hexagon::STrih_imm_cNotPt_V4 :
+ case Hexagon::STrih_indexed_shl_cPt_V4 :
+ case Hexagon::STrih_indexed_shl_cNotPt_V4 :
+ case Hexagon::POST_SThri_cPt :
+ case Hexagon::POST_SThri_cNotPt :
+ case Hexagon::STriw_cPt :
+ case Hexagon::STriw_cNotPt :
+ case Hexagon::STriw_indexed_cPt :
+ case Hexagon::STriw_indexed_cNotPt :
+ case Hexagon::STriw_imm_cPt_V4 :
+ case Hexagon::STriw_imm_cNotPt_V4 :
+ case Hexagon::STriw_indexed_shl_cPt_V4 :
+ case Hexagon::STriw_indexed_shl_cNotPt_V4 :
+ case Hexagon::POST_STwri_cPt :
+ case Hexagon::POST_STwri_cNotPt :
+ return QRI.Subtarget.hasV4TOps();
+
+ // V4 global address store before promoting to dot new.
+ case Hexagon::STd_GP_cPt_V4 :
+ case Hexagon::STd_GP_cNotPt_V4 :
+ case Hexagon::STb_GP_cPt_V4 :
+ case Hexagon::STb_GP_cNotPt_V4 :
+ case Hexagon::STh_GP_cPt_V4 :
+ case Hexagon::STh_GP_cNotPt_V4 :
+ case Hexagon::STw_GP_cPt_V4 :
+ case Hexagon::STw_GP_cNotPt_V4 :
+ return QRI.Subtarget.hasV4TOps();
+
+ // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
+ // from the "Conditional Store" list. Because a predicated new value store
+ // would NOT be promoted to a double dot new store. See diagram below:
+ // This function returns yes for those stores that are predicated but not
+ // yet promoted to predicate dot new instructions.
+ //
+ // +---------------------+
+ // /-----| if (p0) memw(..)=r0 |---------\~
+ // || +---------------------+ ||
+ // promote || /\ /\ || promote
+ // || /||\ /||\ ||
+ // \||/ demote || \||/
+ // \/ || || \/
+ // +-------------------------+ || +-------------------------+
+ // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
+ // +-------------------------+ || +-------------------------+
+ // || || ||
+ // || demote \||/
+ // promote || \/ NOT possible
+ // || || /\~
+ // \||/ || /||\~
+ // \/ || ||
+ // +-----------------------------+
+ // | if (p0.new) memw(..)=r0.new |
+ // +-----------------------------+
+ // Double Dot New Store
+ //
+ }
+}
+
+
+bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
+ if (isNewValue(MI) && isBranch(MI))
+ return true;
+ return false;
+}
+
+bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
+ return (getAddrMode(MI) == HexagonII::PostInc);
+}
+
+bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
+}
+
+// Returns true, if any one of the operands is a dot new
+// insn, whether it is predicated dot new or register dot new.
+bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
+ return (isNewValueInst(MI) ||
+ (isPredicated(MI) && isPredicatedNew(MI)));
+}
+
+// Returns the most basic instruction for the .new predicated instructions and
+// new-value stores.
+// For example, all of the following instructions will be converted back to the
+// same instruction:
+// 1) if (p0.new) memw(R0+#0) = R1.new --->
+// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
+// 3) if (p0.new) memw(R0+#0) = R1 --->
+//
+
+int HexagonInstrInfo::GetDotOldOp(const int opc) const {
+ int NewOp = opc;
+ if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
+ NewOp = Hexagon::getPredOldOpcode(NewOp);
+ assert(NewOp >= 0 &&
+ "Couldn't change predicate new instruction to its old form.");
+ }
+
+ if (isNewValueStore(NewOp)) { // Convert into non-new-value format
+ NewOp = Hexagon::getNonNVStore(NewOp);
+ assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
+ }
+ return NewOp;
+}
+
+// Return the new value instruction for a given store.
+int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
+ int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
+ if (NVOpcode >= 0) // Valid new-value store instruction.
+ return NVOpcode;
+
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unknown .new type");
+ // store new value byte
+ case Hexagon::STrib_shl_V4:
+ return Hexagon::STrib_shl_nv_V4;
+
+ case Hexagon::STrih_shl_V4:
+ return Hexagon::STrih_shl_nv_V4;
+
+ case Hexagon::STriw_f:
+ return Hexagon::STriw_nv_V4;
+
+ case Hexagon::STriw_indexed_f:
+ return Hexagon::STriw_indexed_nv_V4;
+
+ case Hexagon::STriw_shl_V4:
+ return Hexagon::STriw_shl_nv_V4;
+
+ }
+ return 0;
+}
+
+// Return .new predicate version for an instruction.
+int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
+ const MachineBranchProbabilityInfo
+ *MBPI) const {
+
+ int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
+ if (NewOpcode >= 0) // Valid predicate new instruction
+ return NewOpcode;
+
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unknown .new type");
+ // Condtional Jumps
+ case Hexagon::JMP_t:
+ case Hexagon::JMP_f:
+ return getDotNewPredJumpOp(MI, MBPI);
+
+ case Hexagon::JMPR_t:
+ return Hexagon::JMPR_tnew_tV3;
+
+ case Hexagon::JMPR_f:
+ return Hexagon::JMPR_fnew_tV3;
+
+ case Hexagon::JMPret_t:
+ return Hexagon::JMPret_tnew_tV3;
+
+ case Hexagon::JMPret_f:
+ return Hexagon::JMPret_fnew_tV3;
+
+
+ // Conditional combine
+ case Hexagon::COMBINE_rr_cPt :
+ return Hexagon::COMBINE_rr_cdnPt;
+ case Hexagon::COMBINE_rr_cNotPt :
+ return Hexagon::COMBINE_rr_cdnNotPt;
+ }
+}
+
+
+unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
+}
+
+/// immediateExtend - Changes the instruction in place to one using an immediate
+/// extender.
+void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
+ assert((isExtendable(MI)||isConstExtended(MI)) &&
+ "Instruction must be extendable");
+ // Find which operand is extendable.
+ short ExtOpNum = getCExtOpNum(MI);
+ MachineOperand &MO = MI->getOperand(ExtOpNum);
+ // This needs to be something we understand.
+ assert((MO.isMBB() || MO.isImm()) &&
+ "Branch with unknown extendable field type");
+ // Mark given operand as extended.
+ MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
+}
+
+DFAPacketizer *HexagonInstrInfo::
+CreateTargetScheduleState(const TargetMachine *TM,
+ const ScheduleDAG *DAG) const {
+ const InstrItineraryData *II = TM->getInstrItineraryData();
+ return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
+}
+
+bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ const MachineFunction &MF) const {
+ // Debug info is never a scheduling boundary. It's necessary to be explicit
+ // due to the special treatment of IT instructions below, otherwise a
+ // dbg_value followed by an IT will result in the IT instruction being
+ // considered a scheduling hazard, which is wrong. It should be the actual
+ // instruction preceding the dbg_value instruction(s), just like it is
+ // when debug info is not present.
+ if (MI->isDebugValue())
+ return false;
+
+ // Terminators and labels can't be scheduled around.
+ if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
+ return true;
+
+ return false;
+}
+
+bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
+
+ // Constant extenders are allowed only for V4 and above.
+ if (!Subtarget.hasV4TOps())
+ return false;
+
+ const uint64_t F = MI->getDesc().TSFlags;
+ unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
+ if (isExtended) // Instruction must be extended.
+ return true;
+
+ unsigned isExtendable = (F >> HexagonII::ExtendablePos)
+ & HexagonII::ExtendableMask;
+ if (!isExtendable)
+ return false;
+
+ short ExtOpNum = getCExtOpNum(MI);
+ const MachineOperand &MO = MI->getOperand(ExtOpNum);
+ // Use MO operand flags to determine if MO
+ // has the HMOTF_ConstExtended flag set.
+ if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
+ return true;
+ // If this is a Machine BB address we are talking about, and it is
+ // not marked as extended, say so.
+ if (MO.isMBB())
+ return false;
+
+ // We could be using an instruction with an extendable immediate and shoehorn
+ // a global address into it. If it is a global address it will be constant
+ // extended. We do this for COMBINE.
+ // We currently only handle isGlobal() because it is the only kind of
+ // object we are going to end up with here for now.
+ // In the future we probably should add isSymbol(), etc.
+ if (MO.isGlobal() || MO.isSymbol())
+ return true;
+
+ // If the extendable operand is not 'Immediate' type, the instruction should
+ // have 'isExtended' flag set.
+ assert(MO.isImm() && "Extendable operand must be Immediate type");
+
+ int MinValue = getMinValue(MI);
+ int MaxValue = getMaxValue(MI);
+ int ImmValue = MO.getImm();
+
+ return (ImmValue < MinValue || ImmValue > MaxValue);
+}
+
+// Returns the opcode to use when converting MI, which is a conditional jump,
+// into a conditional instruction which uses the .new value of the predicate.
+// We also use branch probabilities to add a hint to the jump.
+int
+HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
+ const
+ MachineBranchProbabilityInfo *MBPI) const {
+
+ // We assume that block can have at most two successors.
+ bool taken = false;
+ MachineBasicBlock *Src = MI->getParent();
+ MachineOperand *BrTarget = &MI->getOperand(1);
+ MachineBasicBlock *Dst = BrTarget->getMBB();
+
+ const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
+ if (Prediction >= BranchProbability(1,2))
+ taken = true;
+
+ switch (MI->getOpcode()) {
+ case Hexagon::JMP_t:
+ return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt;
+ case Hexagon::JMP_f:
+ return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt;
+
+ default:
+ llvm_unreachable("Unexpected jump instruction.");
+ }
+}
+// Returns true if a particular operand is extendable for an instruction.
+bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
+ unsigned short OperandNum) const {
+ // Constant extenders are allowed only for V4 and above.
+ if (!Subtarget.hasV4TOps())
+ return false;
+
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
+ == OperandNum;
+}
+
+// Returns Operand Index for the constant extended instruction.
+unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
+}
+
+// Returns the min value that doesn't need to be extended.
+int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
+ & HexagonII::ExtentSignedMask;
+ unsigned bits = (F >> HexagonII::ExtentBitsPos)
+ & HexagonII::ExtentBitsMask;
+
+ if (isSigned) // if value is signed
+ return -1 << (bits - 1);
+ else
+ return 0;
+}
+
+// Returns the max value that doesn't need to be extended.
+int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
+ & HexagonII::ExtentSignedMask;
+ unsigned bits = (F >> HexagonII::ExtentBitsPos)
+ & HexagonII::ExtentBitsMask;
+
+ if (isSigned) // if value is signed
+ return ~(-1 << (bits - 1));
+ else
+ return ~(-1 << bits);
+}
+
+// Returns true if an instruction can be converted into a non-extended
+// equivalent instruction.
+bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
+
+ short NonExtOpcode;
+ // Check if the instruction has a register form that uses register in place
+ // of the extended operand, if so return that as the non-extended form.
+ if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
+ return true;
+
+ if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
+ // Check addressing mode and retrieve non-ext equivalent instruction.
+
+ switch (getAddrMode(MI)) {
+ case HexagonII::Absolute :
+ // Load/store with absolute addressing mode can be converted into
+ // base+offset mode.
+ NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
+ break;
+ case HexagonII::BaseImmOffset :
+ // Load/store with base+offset addressing mode can be converted into
+ // base+register offset addressing mode. However left shift operand should
+ // be set to 0.
+ NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
+ break;
+ default:
+ return false;
+ }
+ if (NonExtOpcode < 0)
+ return false;
+ return true;
+ }
+ return false;
+}
+
+// Returns opcode of the non-extended equivalent instruction.
+short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
+
+ // Check if the instruction has a register form that uses register in place
+ // of the extended operand, if so return that as the non-extended form.
+ short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
+ if (NonExtOpcode >= 0)
+ return NonExtOpcode;
+
+ if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
+ // Check addressing mode and retrieve non-ext equivalent instruction.
+ switch (getAddrMode(MI)) {
+ case HexagonII::Absolute :
+ return Hexagon::getBasedWithImmOffset(MI->getOpcode());
+ case HexagonII::BaseImmOffset :
+ return Hexagon::getBaseWithRegOffset(MI->getOpcode());
+ default:
+ return -1;
+ }
+ }
+ return -1;
+}
+
+bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
+ return (Opcode == Hexagon::JMP_t) ||
+ (Opcode == Hexagon::JMP_f) ||
+ (Opcode == Hexagon::JMP_tnew_t) ||
+ (Opcode == Hexagon::JMP_fnew_t) ||
+ (Opcode == Hexagon::JMP_tnew_nt) ||
+ (Opcode == Hexagon::JMP_fnew_nt);
+}
+
+bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
+ return (Opcode == Hexagon::JMP_f) ||
+ (Opcode == Hexagon::JMP_fnew_t) ||
+ (Opcode == Hexagon::JMP_fnew_nt);
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.h b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.h
new file mode 100644
index 0000000..6b032c9
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.h
@@ -0,0 +1,222 @@
+//===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Hexagon implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HexagonINSTRUCTIONINFO_H
+#define HexagonINSTRUCTIONINFO_H
+
+#include "HexagonRegisterInfo.h"
+#include "MCTargetDesc/HexagonBaseInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "HexagonGenInstrInfo.inc"
+
+namespace llvm {
+
+struct EVT;
+
+class HexagonInstrInfo : public HexagonGenInstrInfo {
+ virtual void anchor();
+ const HexagonRegisterInfo RI;
+ const HexagonSubtarget &Subtarget;
+ typedef unsigned Opcode_t;
+
+public:
+ explicit HexagonInstrInfo(HexagonSubtarget &ST);
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ const HexagonRegisterInfo &getRegisterInfo() const { return RI; }
+
+ /// isLoadFromStackSlot - If the specified machine instruction is a direct
+ /// load from a stack slot, return the virtual or physical register number of
+ /// the destination along with the FrameIndex of the loaded stack slot. If
+ /// not, return 0. This predicate must return 0 if the instruction has
+ /// any side effects other than loading from the stack slot.
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ /// isStoreToStackSlot - If the specified machine instruction is a direct
+ /// store to a stack slot, return the virtual or physical register number of
+ /// the source reg along with the FrameIndex of the loaded stack slot. If
+ /// not, return 0. This predicate must return 0 if the instruction has
+ /// any side effects other than storing to the stack slot.
+ unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+
+ bool AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const override;
+
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const override;
+
+ bool analyzeCompare(const MachineInstr *MI,
+ unsigned &SrcReg, unsigned &SrcReg2,
+ int &Mask, int &Value) const override;
+
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const;
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const;
+
+ MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const override;
+
+ MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr* LoadMI) const override {
+ return nullptr;
+ }
+
+ unsigned createVR(MachineFunction* MF, MVT VT) const;
+
+ bool isBranch(const MachineInstr *MI) const;
+ bool isPredicable(MachineInstr *MI) const override;
+ bool PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Cond) const override;
+
+ bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
+ unsigned ExtraPredCycles,
+ const BranchProbability &Probability) const override;
+
+ bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumTCycles, unsigned ExtraTCycles,
+ MachineBasicBlock &FMBB,
+ unsigned NumFCycles, unsigned ExtraFCycles,
+ const BranchProbability &Probability) const override;
+
+ bool isPredicated(const MachineInstr *MI) const override;
+ bool isPredicated(unsigned Opcode) const;
+ bool isPredicatedTrue(const MachineInstr *MI) const;
+ bool isPredicatedTrue(unsigned Opcode) const;
+ bool isPredicatedNew(const MachineInstr *MI) const;
+ bool isPredicatedNew(unsigned Opcode) const;
+ bool DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const override;
+ bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const override;
+
+ bool
+ ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
+
+ bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
+ const BranchProbability &Probability) const override;
+
+ DFAPacketizer*
+ CreateTargetScheduleState(const TargetMachine *TM,
+ const ScheduleDAG *DAG) const override;
+
+ bool isSchedulingBoundary(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ const MachineFunction &MF) const override;
+ bool isValidOffset(const int Opcode, const int Offset) const;
+ bool isValidAutoIncImm(const EVT VT, const int Offset) const;
+ bool isMemOp(const MachineInstr *MI) const;
+ bool isSpillPredRegOp(const MachineInstr *MI) const;
+ bool isU6_3Immediate(const int value) const;
+ bool isU6_2Immediate(const int value) const;
+ bool isU6_1Immediate(const int value) const;
+ bool isU6_0Immediate(const int value) const;
+ bool isS4_3Immediate(const int value) const;
+ bool isS4_2Immediate(const int value) const;
+ bool isS4_1Immediate(const int value) const;
+ bool isS4_0Immediate(const int value) const;
+ bool isS12_Immediate(const int value) const;
+ bool isU6_Immediate(const int value) const;
+ bool isS8_Immediate(const int value) const;
+ bool isS6_Immediate(const int value) const;
+
+ bool isSaveCalleeSavedRegsCall(const MachineInstr* MI) const;
+ bool isConditionalTransfer(const MachineInstr* MI) const;
+ bool isConditionalALU32 (const MachineInstr* MI) const;
+ bool isConditionalLoad (const MachineInstr* MI) const;
+ bool isConditionalStore(const MachineInstr* MI) const;
+ bool isNewValueInst(const MachineInstr* MI) const;
+ bool isNewValue(const MachineInstr* MI) const;
+ bool isDotNewInst(const MachineInstr* MI) const;
+ int GetDotOldOp(const int opc) const;
+ int GetDotNewOp(const MachineInstr* MI) const;
+ int GetDotNewPredOp(MachineInstr *MI,
+ const MachineBranchProbabilityInfo
+ *MBPI) const;
+ bool mayBeNewStore(const MachineInstr* MI) const;
+ bool isDeallocRet(const MachineInstr *MI) const;
+ unsigned getInvertedPredicatedOpcode(const int Opc) const;
+ bool isExtendable(const MachineInstr* MI) const;
+ bool isExtended(const MachineInstr* MI) const;
+ bool isPostIncrement(const MachineInstr* MI) const;
+ bool isNewValueStore(const MachineInstr* MI) const;
+ bool isNewValueStore(unsigned Opcode) const;
+ bool isNewValueJump(const MachineInstr* MI) const;
+ bool isNewValueJumpCandidate(const MachineInstr *MI) const;
+
+
+ void immediateExtend(MachineInstr *MI) const;
+ bool isConstExtended(MachineInstr *MI) const;
+ int getDotNewPredJumpOp(MachineInstr *MI,
+ const MachineBranchProbabilityInfo *MBPI) const;
+ unsigned getAddrMode(const MachineInstr* MI) const;
+ bool isOperandExtended(const MachineInstr *MI,
+ unsigned short OperandNum) const;
+ unsigned short getCExtOpNum(const MachineInstr *MI) const;
+ int getMinValue(const MachineInstr *MI) const;
+ int getMaxValue(const MachineInstr *MI) const;
+ bool NonExtEquivalentExists (const MachineInstr *MI) const;
+ short getNonExtOpcode(const MachineInstr *MI) const;
+ bool PredOpcodeHasJMP_c(Opcode_t Opcode) const;
+ bool PredOpcodeHasNot(Opcode_t Opcode) const;
+
+private:
+ int getMatchingCondBranchOpcode(int Opc, bool sense) const;
+
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td
new file mode 100644
index 0000000..4dcf101
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td
@@ -0,0 +1,2853 @@
+//==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Hexagon instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+include "HexagonInstrFormats.td"
+include "HexagonOperands.td"
+
+//===----------------------------------------------------------------------===//
+
+// Multi-class for logical operators.
+multiclass ALU32_rr_ri<string OpcStr, SDNode OpNode> {
+ def rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
+ [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$b),
+ (i32 IntRegs:$c)))]>;
+ def ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$b, IntRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "(#$b, $c)")),
+ [(set (i32 IntRegs:$dst), (OpNode s10Imm:$b,
+ (i32 IntRegs:$c)))]>;
+}
+
+// Multi-class for compare ops.
+let isCompare = 1 in {
+multiclass CMP64_rr<string OpcStr, PatFrag OpNode> {
+ def rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
+ [(set (i1 PredRegs:$dst),
+ (OpNode (i64 DoubleRegs:$b), (i64 DoubleRegs:$c)))]>;
+}
+
+multiclass CMP32_rr_ri_s10<string OpcStr, string CextOp, PatFrag OpNode> {
+ let CextOpcode = CextOp in {
+ let InputType = "reg" in
+ def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
+ [(set (i1 PredRegs:$dst),
+ (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
+
+ let isExtendable = 1, opExtendable = 2, isExtentSigned = 1,
+ opExtentBits = 10, InputType = "imm" in
+ def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s10Ext:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
+ [(set (i1 PredRegs:$dst),
+ (OpNode (i32 IntRegs:$b), s10ExtPred:$c))]>;
+ }
+}
+
+multiclass CMP32_rr_ri_u9<string OpcStr, string CextOp, PatFrag OpNode> {
+ let CextOpcode = CextOp in {
+ let InputType = "reg" in
+ def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
+ [(set (i1 PredRegs:$dst),
+ (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
+
+ let isExtendable = 1, opExtendable = 2, isExtentSigned = 0,
+ opExtentBits = 9, InputType = "imm" in
+ def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u9Ext:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
+ [(set (i1 PredRegs:$dst),
+ (OpNode (i32 IntRegs:$b), u9ExtPred:$c))]>;
+ }
+}
+
+multiclass CMP32_ri_s8<string OpcStr, PatFrag OpNode> {
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in
+ def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s8Ext:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
+ [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b),
+ s8ExtPred:$c))]>;
+}
+}
+
+//===----------------------------------------------------------------------===//
+// ALU32/ALU (Instructions with register-register form)
+//===----------------------------------------------------------------------===//
+def SDTHexagonI64I32I32 : SDTypeProfile<1, 2,
+ [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
+
+def HexagonWrapperCombineII :
+ SDNode<"HexagonISD::WrapperCombineII", SDTHexagonI64I32I32>;
+
+def HexagonWrapperCombineRR :
+ SDNode<"HexagonISD::WrapperCombineRR", SDTHexagonI64I32I32>;
+
+multiclass ALU32_Pbase<string mnemonic, RegisterClass RC, bit isNot,
+ bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : ALU32_rr<(outs RC:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs: $src3),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
+ ") $dst = ")#mnemonic#"($src2, $src3)",
+ []>;
+}
+
+multiclass ALU32_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 1>;
+ }
+}
+
+let InputType = "reg" in
+multiclass ALU32_base<string mnemonic, string CextOp, SDNode OpNode> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_rr in {
+ let isPredicable = 1 in
+ def NAME : ALU32_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = "#mnemonic#"($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+ let neverHasSideEffects = 1, isPredicated = 1 in {
+ defm Pt : ALU32_Pred<mnemonic, IntRegs, 0>;
+ defm NotPt : ALU32_Pred<mnemonic, IntRegs, 1>;
+ }
+ }
+}
+
+let isCommutable = 1 in {
+ defm ADD_rr : ALU32_base<"add", "ADD", add>, ImmRegRel, PredNewRel;
+ defm AND_rr : ALU32_base<"and", "AND", and>, ImmRegRel, PredNewRel;
+ defm XOR_rr : ALU32_base<"xor", "XOR", xor>, ImmRegRel, PredNewRel;
+ defm OR_rr : ALU32_base<"or", "OR", or>, ImmRegRel, PredNewRel;
+}
+
+defm SUB_rr : ALU32_base<"sub", "SUB", sub>, ImmRegRel, PredNewRel;
+
+// Combines the two integer registers SRC1 and SRC2 into a double register.
+let isPredicable = 1 in
+class T_Combine : ALU32_rr<(outs DoubleRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = combine($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (HexagonWrapperCombineRR (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2))))]>;
+
+multiclass Combine_base {
+ let BaseOpcode = "combine" in {
+ def NAME : T_Combine;
+ let neverHasSideEffects = 1, isPredicated = 1 in {
+ defm Pt : ALU32_Pred<"combine", DoubleRegs, 0>;
+ defm NotPt : ALU32_Pred<"combine", DoubleRegs, 1>;
+ }
+ }
+}
+
+defm COMBINE_rr : Combine_base, PredNewRel;
+
+// Combines the two immediates SRC1 and SRC2 into a double register.
+class COMBINE_imm<Operand imm1, Operand imm2, PatLeaf pat1, PatLeaf pat2> :
+ ALU32_ii<(outs DoubleRegs:$dst), (ins imm1:$src1, imm2:$src2),
+ "$dst = combine(#$src1, #$src2)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (HexagonWrapperCombineII (i32 pat1:$src1), (i32 pat2:$src2))))]>;
+
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8 in
+def COMBINE_Ii : COMBINE_imm<s8Ext, s8Imm, s8ExtPred, s8ImmPred>;
+
+//===----------------------------------------------------------------------===//
+// ALU32/ALU (ADD with register-immediate form)
+//===----------------------------------------------------------------------===//
+multiclass ALU32ri_Pbase<string mnemonic, bit isNot, bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, s8Ext: $src3),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
+ ") $dst = ")#mnemonic#"($src2, #$src3)",
+ []>;
+}
+
+multiclass ALU32ri_Pred<string mnemonic, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ALU32ri_Pbase<mnemonic, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : ALU32ri_Pbase<mnemonic, PredNot, 1>;
+ }
+}
+
+let isExtendable = 1, InputType = "imm" in
+multiclass ALU32ri_base<string mnemonic, string CextOp, SDNode OpNode> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_ri in {
+ let opExtendable = 2, isExtentSigned = 1, opExtentBits = 16,
+ isPredicable = 1 in
+ def NAME : ALU32_ri<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s16Ext:$src2),
+ "$dst = "#mnemonic#"($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
+ (s16ExtPred:$src2)))]>;
+
+ let opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
+ neverHasSideEffects = 1, isPredicated = 1 in {
+ defm Pt : ALU32ri_Pred<mnemonic, 0>;
+ defm NotPt : ALU32ri_Pred<mnemonic, 1>;
+ }
+ }
+}
+
+defm ADD_ri : ALU32ri_base<"add", "ADD", add>, ImmRegRel, PredNewRel;
+
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
+CextOpcode = "OR", InputType = "imm" in
+def OR_ri : ALU32_ri<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s10Ext:$src2),
+ "$dst = or($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
+ s10ExtPred:$src2))]>, ImmRegRel;
+
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
+InputType = "imm", CextOpcode = "AND" in
+def AND_ri : ALU32_ri<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s10Ext:$src2),
+ "$dst = and($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
+ s10ExtPred:$src2))]>, ImmRegRel;
+
+// Nop.
+let neverHasSideEffects = 1 in
+def NOP : ALU32_rr<(outs), (ins),
+ "nop",
+ []>;
+
+// Rd32=sub(#s10,Rs32)
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 10,
+CextOpcode = "SUB", InputType = "imm" in
+def SUB_ri : ALU32_ri<(outs IntRegs:$dst),
+ (ins s10Ext:$src1, IntRegs:$src2),
+ "$dst = sub(#$src1, $src2)",
+ [(set IntRegs:$dst, (sub s10ExtPred:$src1, IntRegs:$src2))]>,
+ ImmRegRel;
+
+// Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs).
+def : Pat<(not (i32 IntRegs:$src1)),
+ (SUB_ri -1, (i32 IntRegs:$src1))>;
+
+// Rd = neg(Rs) gets mapped to Rd=sub(#0, Rs).
+// Pattern definition for 'neg' was not necessary.
+
+multiclass TFR_Pred<bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ def _c#NAME : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2),
+ !if(PredNot, "if (!$src1", "if ($src1")#") $dst = $src2",
+ []>;
+ // Predicate new
+ let isPredicatedNew = 1 in
+ def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2),
+ !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = $src2",
+ []>;
+ }
+}
+
+let InputType = "reg", neverHasSideEffects = 1 in
+multiclass TFR_base<string CextOp> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp in {
+ let isPredicable = 1 in
+ def NAME : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = $src1",
+ []>;
+
+ let isPredicated = 1 in {
+ defm Pt : TFR_Pred<0>;
+ defm NotPt : TFR_Pred<1>;
+ }
+ }
+}
+
+class T_TFR64_Pred<bit PredNot, bit isPredNew>
+ : ALU32_rr<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, DoubleRegs:$src2),
+ !if(PredNot, "if (!$src1", "if ($src1")#
+ !if(isPredNew, ".new) ", ") ")#"$dst = $src2", []>
+{
+ bits<5> dst;
+ bits<2> src1;
+ bits<5> src2;
+
+ let IClass = 0b1111;
+ let Inst{27-24} = 0b1101;
+ let Inst{13} = isPredNew;
+ let Inst{7} = PredNot;
+ let Inst{4-0} = dst;
+ let Inst{6-5} = src1;
+ let Inst{20-17} = src2{4-1};
+ let Inst{16} = 0b1;
+ let Inst{12-9} = src2{4-1};
+ let Inst{8} = 0b0;
+}
+
+multiclass TFR64_Pred<bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ def _c#NAME : T_TFR64_Pred<PredNot, 0>;
+
+ let isPredicatedNew = 1 in
+ def _cdn#NAME : T_TFR64_Pred<PredNot, 1>; // Predicate new
+ }
+}
+
+let neverHasSideEffects = 1 in
+multiclass TFR64_base<string BaseName> {
+ let BaseOpcode = BaseName in {
+ let isPredicable = 1 in
+ def NAME : ALU32Inst <(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1),
+ "$dst = $src1" > {
+ bits<5> dst;
+ bits<5> src1;
+
+ let IClass = 0b1111;
+ let Inst{27-23} = 0b01010;
+ let Inst{4-0} = dst;
+ let Inst{20-17} = src1{4-1};
+ let Inst{16} = 0b1;
+ let Inst{12-9} = src1{4-1};
+ let Inst{8} = 0b0;
+ }
+
+ let isPredicated = 1 in {
+ defm Pt : TFR64_Pred<0>;
+ defm NotPt : TFR64_Pred<1>;
+ }
+ }
+}
+
+multiclass TFRI_Pred<bit PredNot> {
+ let isMoveImm = 1, isPredicatedFalse = PredNot in {
+ def _c#NAME : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, s12Ext:$src2),
+ !if(PredNot, "if (!$src1", "if ($src1")#") $dst = #$src2",
+ []>;
+
+ // Predicate new
+ let isPredicatedNew = 1 in
+ def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, s12Ext:$src2),
+ !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = #$src2",
+ []>;
+ }
+}
+
+let InputType = "imm", isExtendable = 1, isExtentSigned = 1 in
+multiclass TFRI_base<string CextOp> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#I in {
+ let isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16,
+ isMoveImm = 1, isPredicable = 1, isReMaterializable = 1 in
+ def NAME : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1),
+ "$dst = #$src1",
+ [(set (i32 IntRegs:$dst), s16ExtPred:$src1)]>;
+
+ let opExtendable = 2, opExtentBits = 12, neverHasSideEffects = 1,
+ isPredicated = 1 in {
+ defm Pt : TFRI_Pred<0>;
+ defm NotPt : TFRI_Pred<1>;
+ }
+ }
+}
+
+defm TFRI : TFRI_base<"TFR">, ImmRegRel, PredNewRel;
+defm TFR : TFR_base<"TFR">, ImmRegRel, PredNewRel;
+defm TFR64 : TFR64_base<"TFR64">, PredNewRel;
+
+// Transfer control register.
+let neverHasSideEffects = 1 in
+def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1),
+ "$dst = $src1",
+ []>;
+//===----------------------------------------------------------------------===//
+// ALU32/ALU -
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// ALU32/PERM +
+//===----------------------------------------------------------------------===//
+
+let neverHasSideEffects = 1 in
+def COMBINE_ii : ALU32_ii<(outs DoubleRegs:$dst),
+ (ins s8Imm:$src1, s8Imm:$src2),
+ "$dst = combine(#$src1, #$src2)",
+ []>;
+
+// Mux.
+def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1,
+ DoubleRegs:$src2,
+ DoubleRegs:$src3),
+ "$dst = vmux($src1, $src2, $src3)",
+ []>;
+
+let CextOpcode = "MUX", InputType = "reg" in
+def MUX_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ IntRegs:$src2, IntRegs:$src3),
+ "$dst = mux($src1, $src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))]>, ImmRegRel;
+
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
+CextOpcode = "MUX", InputType = "imm" in
+def MUX_ir : ALU32_ir<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2,
+ IntRegs:$src3),
+ "$dst = mux($src1, #$src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 PredRegs:$src1), s8ExtPred:$src2,
+ (i32 IntRegs:$src3))))]>, ImmRegRel;
+
+let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
+CextOpcode = "MUX", InputType = "imm" in
+def MUX_ri : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2,
+ s8Ext:$src3),
+ "$dst = mux($src1, $src2, #$src3)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
+ s8ExtPred:$src3)))]>, ImmRegRel;
+
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in
+def MUX_ii : ALU32_ii<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2,
+ s8Imm:$src3),
+ "$dst = mux($src1, #$src2, #$src3)",
+ [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1),
+ s8ExtPred:$src2,
+ s8ImmPred:$src3)))]>;
+
+// ALU32 - aslh, asrh, sxtb, sxth, zxtb, zxth
+multiclass ALU32_2op_Pbase<string mnemonic, bit isNot, bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : ALU32Inst<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
+ ") $dst = ")#mnemonic#"($src2)">,
+ Requires<[HasV4T]>;
+}
+
+multiclass ALU32_2op_Pred<string mnemonic, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 1>;
+ }
+}
+
+multiclass ALU32_2op_base<string mnemonic> {
+ let BaseOpcode = mnemonic in {
+ let isPredicable = 1, neverHasSideEffects = 1 in
+ def NAME : ALU32Inst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1),
+ "$dst = "#mnemonic#"($src1)">;
+
+ let Predicates = [HasV4T], validSubTargets = HasV4SubT, isPredicated = 1,
+ neverHasSideEffects = 1 in {
+ defm Pt_V4 : ALU32_2op_Pred<mnemonic, 0>;
+ defm NotPt_V4 : ALU32_2op_Pred<mnemonic, 1>;
+ }
+ }
+}
+
+defm ASLH : ALU32_2op_base<"aslh">, PredNewRel;
+defm ASRH : ALU32_2op_base<"asrh">, PredNewRel;
+defm SXTB : ALU32_2op_base<"sxtb">, PredNewRel;
+defm SXTH : ALU32_2op_base<"sxth">, PredNewRel;
+defm ZXTB : ALU32_2op_base<"zxtb">, PredNewRel;
+defm ZXTH : ALU32_2op_base<"zxth">, PredNewRel;
+
+def : Pat <(shl (i32 IntRegs:$src1), (i32 16)),
+ (ASLH IntRegs:$src1)>;
+
+def : Pat <(sra (i32 IntRegs:$src1), (i32 16)),
+ (ASRH IntRegs:$src1)>;
+
+def : Pat <(sext_inreg (i32 IntRegs:$src1), i8),
+ (SXTB IntRegs:$src1)>;
+
+def : Pat <(sext_inreg (i32 IntRegs:$src1), i16),
+ (SXTH IntRegs:$src1)>;
+
+//===----------------------------------------------------------------------===//
+// ALU32/PERM -
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// ALU32/PRED +
+//===----------------------------------------------------------------------===//
+
+// Compare.
+defm CMPGTU : CMP32_rr_ri_u9<"cmp.gtu", "CMPGTU", setugt>, ImmRegRel;
+defm CMPGT : CMP32_rr_ri_s10<"cmp.gt", "CMPGT", setgt>, ImmRegRel;
+defm CMPEQ : CMP32_rr_ri_s10<"cmp.eq", "CMPEQ", seteq>, ImmRegRel;
+
+// SDNode for converting immediate C to C-1.
+def DEC_CONST_SIGNED : SDNodeXForm<imm, [{
+ // Return the byte immediate const-1 as an SDNode.
+ int32_t imm = N->getSExtValue();
+ return XformSToSM1Imm(imm);
+}]>;
+
+// SDNode for converting immediate C to C-1.
+def DEC_CONST_UNSIGNED : SDNodeXForm<imm, [{
+ // Return the byte immediate const-1 as an SDNode.
+ uint32_t imm = N->getZExtValue();
+ return XformUToUM1Imm(imm);
+}]>;
+
+def CTLZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = cl0($src1)",
+ [(set (i32 IntRegs:$dst), (ctlz (i32 IntRegs:$src1)))]>;
+
+def CTTZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = ct0($src1)",
+ [(set (i32 IntRegs:$dst), (cttz (i32 IntRegs:$src1)))]>;
+
+def CTLZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
+ "$dst = cl0($src1)",
+ [(set (i32 IntRegs:$dst), (i32 (trunc (ctlz (i64 DoubleRegs:$src1)))))]>;
+
+def CTTZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
+ "$dst = ct0($src1)",
+ [(set (i32 IntRegs:$dst), (i32 (trunc (cttz (i64 DoubleRegs:$src1)))))]>;
+
+def TSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = tstbit($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (setne (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>;
+
+def TSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = tstbit($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (setne (and (shl 1, (u5ImmPred:$src2)), (i32 IntRegs:$src1)), 0))]>;
+
+//===----------------------------------------------------------------------===//
+// ALU32/PRED -
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// ALU64/ALU +
+//===----------------------------------------------------------------------===//
+// Add.
+def ADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = add($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (add (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))]>;
+
+// Add halfword.
+
+// Compare.
+defm CMPEHexagon4 : CMP64_rr<"cmp.eq", seteq>;
+defm CMPGT64 : CMP64_rr<"cmp.gt", setgt>;
+defm CMPGTU64 : CMP64_rr<"cmp.gtu", setugt>;
+
+// Logical operations.
+def AND_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = and($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))]>;
+
+def OR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = or($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (or (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))]>;
+
+def XOR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = xor($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))]>;
+
+// Maximum.
+def MAXw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = max($src2, $src1)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 (setlt (i32 IntRegs:$src2),
+ (i32 IntRegs:$src1))),
+ (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+
+def MAXUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = maxu($src2, $src1)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 (setult (i32 IntRegs:$src2),
+ (i32 IntRegs:$src1))),
+ (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+
+def MAXd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = max($src2, $src1)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (select (i1 (setlt (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1))),
+ (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2))))]>;
+
+def MAXUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = maxu($src2, $src1)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (select (i1 (setult (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1))),
+ (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2))))]>;
+
+// Minimum.
+def MINw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = min($src2, $src1)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 (setgt (i32 IntRegs:$src2),
+ (i32 IntRegs:$src1))),
+ (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+
+def MINUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = minu($src2, $src1)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 (setugt (i32 IntRegs:$src2),
+ (i32 IntRegs:$src1))),
+ (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+
+def MINd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = min($src2, $src1)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (select (i1 (setgt (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1))),
+ (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2))))]>;
+
+def MINUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = minu($src2, $src1)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (select (i1 (setugt (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1))),
+ (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2))))]>;
+
+// Subtract.
+def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = sub($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))]>;
+
+// Subtract halfword.
+
+//===----------------------------------------------------------------------===//
+// ALU64/ALU -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ALU64/BIT +
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+// ALU64/BIT -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ALU64/PERM +
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+// ALU64/PERM -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// CR +
+//===----------------------------------------------------------------------===//
+// Logical reductions on predicates.
+
+// Looping instructions.
+
+// Pipelined looping instructions.
+
+// Logical operations on predicates.
+def AND_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
+ "$dst = and($src1, $src2)",
+ [(set (i1 PredRegs:$dst), (and (i1 PredRegs:$src1),
+ (i1 PredRegs:$src2)))]>;
+
+let neverHasSideEffects = 1 in
+def AND_pnotp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1,
+ PredRegs:$src2),
+ "$dst = and($src1, !$src2)",
+ []>;
+
+def ANY_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
+ "$dst = any8($src1)",
+ []>;
+
+def ALL_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
+ "$dst = all8($src1)",
+ []>;
+
+def VITPACK_pp : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ PredRegs:$src2),
+ "$dst = vitpack($src1, $src2)",
+ []>;
+
+def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2,
+ PredRegs:$src3),
+ "$dst = valignb($src1, $src2, $src3)",
+ []>;
+
+def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2,
+ PredRegs:$src3),
+ "$dst = vspliceb($src1, $src2, $src3)",
+ []>;
+
+def MASK_p : SInst<(outs DoubleRegs:$dst), (ins PredRegs:$src1),
+ "$dst = mask($src1)",
+ []>;
+
+def NOT_p : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
+ "$dst = not($src1)",
+ [(set (i1 PredRegs:$dst), (not (i1 PredRegs:$src1)))]>;
+
+def OR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
+ "$dst = or($src1, $src2)",
+ [(set (i1 PredRegs:$dst), (or (i1 PredRegs:$src1),
+ (i1 PredRegs:$src2)))]>;
+
+def XOR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
+ "$dst = xor($src1, $src2)",
+ [(set (i1 PredRegs:$dst), (xor (i1 PredRegs:$src1),
+ (i1 PredRegs:$src2)))]>;
+
+
+// User control register transfer.
+//===----------------------------------------------------------------------===//
+// CR -
+//===----------------------------------------------------------------------===//
+
+def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone,
+ [SDNPHasChain]>;
+
+def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
+def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>;
+
+let InputType = "imm", isBarrier = 1, isPredicable = 1,
+Defs = [PC], isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
+opExtentBits = 24 in
+class T_JMP <dag InsDag, list<dag> JumpList = []>
+ : JInst<(outs), InsDag,
+ "jump $dst" , JumpList> {
+ bits<24> dst;
+
+ let IClass = 0b0101;
+
+ let Inst{27-25} = 0b100;
+ let Inst{24-16} = dst{23-15};
+ let Inst{13-1} = dst{14-2};
+}
+
+let InputType = "imm", isExtendable = 1, opExtendable = 1, isExtentSigned = 1,
+Defs = [PC], isPredicated = 1, opExtentBits = 17 in
+class T_JMP_c <bit PredNot, bit isPredNew, bit isTak>:
+ JInst<(outs ), (ins PredRegs:$src, brtarget:$dst),
+ !if(PredNot, "if (!$src", "if ($src")#
+ !if(isPredNew, ".new) ", ") ")#"jump"#
+ !if(isPredNew, !if(isTak, ":t ", ":nt "), " ")#"$dst"> {
+
+ let isTaken = isTak;
+ let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), "");
+ let isPredicatedFalse = PredNot;
+ let isPredicatedNew = isPredNew;
+ bits<2> src;
+ bits<17> dst;
+
+ let IClass = 0b0101;
+
+ let Inst{27-24} = 0b1100;
+ let Inst{21} = PredNot;
+ let Inst{12} = !if(isPredNew, isTak, zero);
+ let Inst{11} = isPredNew;
+ let Inst{9-8} = src;
+ let Inst{23-22} = dst{16-15};
+ let Inst{20-16} = dst{14-10};
+ let Inst{13} = dst{9};
+ let Inst{7-1} = dst{8-2};
+ }
+
+let isBarrier = 1, Defs = [PC], isPredicable = 1, InputType = "reg" in
+class T_JMPr<dag InsDag = (ins IntRegs:$dst)>
+ : JRInst<(outs ), InsDag,
+ "jumpr $dst" ,
+ []> {
+ bits<5> dst;
+
+ let IClass = 0b0101;
+ let Inst{27-21} = 0b0010100;
+ let Inst{20-16} = dst;
+}
+
+let Defs = [PC], isPredicated = 1, InputType = "reg" in
+class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak>:
+ JRInst <(outs ), (ins PredRegs:$src, IntRegs:$dst),
+ !if(PredNot, "if (!$src", "if ($src")#
+ !if(isPredNew, ".new) ", ") ")#"jumpr"#
+ !if(isPredNew, !if(isTak, ":t ", ":nt "), " ")#"$dst"> {
+
+ let isTaken = isTak;
+ let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), "");
+ let isPredicatedFalse = PredNot;
+ let isPredicatedNew = isPredNew;
+ bits<2> src;
+ bits<5> dst;
+
+ let IClass = 0b0101;
+
+ let Inst{27-22} = 0b001101;
+ let Inst{21} = PredNot;
+ let Inst{20-16} = dst;
+ let Inst{12} = !if(isPredNew, isTak, zero);
+ let Inst{11} = isPredNew;
+ let Inst{9-8} = src;
+ let Predicates = !if(isPredNew, [HasV3T], [HasV2T]);
+ let validSubTargets = !if(isPredNew, HasV3SubT, HasV2SubT);
+}
+
+multiclass JMP_Pred<bit PredNot> {
+ def _#NAME : T_JMP_c<PredNot, 0, 0>;
+ // Predicate new
+ def _#NAME#new_t : T_JMP_c<PredNot, 1, 1>; // taken
+ def _#NAME#new_nt : T_JMP_c<PredNot, 1, 0>; // not taken
+}
+
+multiclass JMP_base<string BaseOp> {
+ let BaseOpcode = BaseOp in {
+ def NAME : T_JMP<(ins brtarget:$dst), [(br bb:$dst)]>;
+ defm t : JMP_Pred<0>;
+ defm f : JMP_Pred<1>;
+ }
+}
+
+multiclass JMPR_Pred<bit PredNot> {
+ def NAME: T_JMPr_c<PredNot, 0, 0>;
+ // Predicate new
+ def NAME#new_tV3 : T_JMPr_c<PredNot, 1, 1>; // taken
+ def NAME#new_ntV3 : T_JMPr_c<PredNot, 1, 0>; // not taken
+}
+
+multiclass JMPR_base<string BaseOp> {
+ let BaseOpcode = BaseOp in {
+ def NAME : T_JMPr;
+ defm _t : JMPR_Pred<0>;
+ defm _f : JMPR_Pred<1>;
+ }
+}
+
+let isTerminator = 1, neverHasSideEffects = 1 in {
+let isBranch = 1 in
+defm JMP : JMP_base<"JMP">, PredNewRel;
+
+let isBranch = 1, isIndirectBranch = 1 in
+defm JMPR : JMPR_base<"JMPr">, PredNewRel;
+
+let isReturn = 1, isCodeGenOnly = 1 in
+defm JMPret : JMPR_base<"JMPret">, PredNewRel;
+}
+
+def : Pat<(retflag),
+ (JMPret (i32 R31))>;
+
+def : Pat <(brcond (i1 PredRegs:$src1), bb:$offset),
+ (JMP_t (i1 PredRegs:$src1), bb:$offset)>;
+
+// A return through builtin_eh_return.
+let isReturn = 1, isTerminator = 1, isBarrier = 1, neverHasSideEffects = 1,
+isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
+def EH_RETURN_JMPR : T_JMPr;
+
+def : Pat<(eh_return),
+ (EH_RETURN_JMPR (i32 R31))>;
+
+def : Pat<(HexagonBR_JT (i32 IntRegs:$dst)),
+ (JMPR (i32 IntRegs:$dst))>;
+
+def : Pat<(brind (i32 IntRegs:$dst)),
+ (JMPR (i32 IntRegs:$dst))>;
+
+//===----------------------------------------------------------------------===//
+// JR -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// LD +
+//===----------------------------------------------------------------------===//
+///
+// Load -- MEMri operand
+multiclass LD_MEMri_Pbase<string mnemonic, RegisterClass RC,
+ bit isNot, bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : LDInst2<(outs RC:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#"$dst = "#mnemonic#"($addr)",
+ []>;
+}
+
+multiclass LD_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 1>;
+ }
+}
+
+let isExtendable = 1, neverHasSideEffects = 1 in
+multiclass LD_MEMri<string mnemonic, string CextOp, RegisterClass RC,
+ bits<5> ImmBits, bits<5> PredImmBits> {
+
+ let CextOpcode = CextOp, BaseOpcode = CextOp in {
+ let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits,
+ isPredicable = 1 in
+ def NAME : LDInst2<(outs RC:$dst), (ins MEMri:$addr),
+ "$dst = "#mnemonic#"($addr)",
+ []>;
+
+ let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits,
+ isPredicated = 1 in {
+ defm Pt : LD_MEMri_Pred<mnemonic, RC, 0 >;
+ defm NotPt : LD_MEMri_Pred<mnemonic, RC, 1 >;
+ }
+ }
+}
+
+let addrMode = BaseImmOffset, isMEMri = "true" in {
+ let accessSize = ByteAccess in {
+ defm LDrib: LD_MEMri < "memb", "LDrib", IntRegs, 11, 6>, AddrModeRel;
+ defm LDriub: LD_MEMri < "memub" , "LDriub", IntRegs, 11, 6>, AddrModeRel;
+ }
+
+ let accessSize = HalfWordAccess in {
+ defm LDrih: LD_MEMri < "memh", "LDrih", IntRegs, 12, 7>, AddrModeRel;
+ defm LDriuh: LD_MEMri < "memuh", "LDriuh", IntRegs, 12, 7>, AddrModeRel;
+ }
+
+ let accessSize = WordAccess in
+ defm LDriw: LD_MEMri < "memw", "LDriw", IntRegs, 13, 8>, AddrModeRel;
+
+ let accessSize = DoubleWordAccess in
+ defm LDrid: LD_MEMri < "memd", "LDrid", DoubleRegs, 14, 9>, AddrModeRel;
+}
+
+def : Pat < (i32 (sextloadi8 ADDRriS11_0:$addr)),
+ (LDrib ADDRriS11_0:$addr) >;
+
+def : Pat < (i32 (zextloadi8 ADDRriS11_0:$addr)),
+ (LDriub ADDRriS11_0:$addr) >;
+
+def : Pat < (i32 (sextloadi16 ADDRriS11_1:$addr)),
+ (LDrih ADDRriS11_1:$addr) >;
+
+def : Pat < (i32 (zextloadi16 ADDRriS11_1:$addr)),
+ (LDriuh ADDRriS11_1:$addr) >;
+
+def : Pat < (i32 (load ADDRriS11_2:$addr)),
+ (LDriw ADDRriS11_2:$addr) >;
+
+def : Pat < (i64 (load ADDRriS11_3:$addr)),
+ (LDrid ADDRriS11_3:$addr) >;
+
+
+// Load - Base with Immediate offset addressing mode
+multiclass LD_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp,
+ bit isNot, bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : LDInst2<(outs RC:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#"$dst = "#mnemonic#"($src2+#$src3)",
+ []>;
+}
+
+multiclass LD_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp,
+ bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>;
+ }
+}
+
+let isExtendable = 1, neverHasSideEffects = 1 in
+multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC,
+ Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
+ bits<5> PredImmBits> {
+
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
+ let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits,
+ isPredicable = 1, AddedComplexity = 20 in
+ def NAME : LDInst2<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset),
+ "$dst = "#mnemonic#"($src1+#$offset)",
+ []>;
+
+ let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits,
+ isPredicated = 1 in {
+ defm Pt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 0 >;
+ defm NotPt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 1 >;
+ }
+ }
+}
+
+let addrMode = BaseImmOffset in {
+ let accessSize = ByteAccess in {
+ defm LDrib_indexed: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext,
+ 11, 6>, AddrModeRel;
+ defm LDriub_indexed: LD_Idxd <"memub" , "LDriub", IntRegs, s11_0Ext, u6_0Ext,
+ 11, 6>, AddrModeRel;
+ }
+ let accessSize = HalfWordAccess in {
+ defm LDrih_indexed: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext,
+ 12, 7>, AddrModeRel;
+ defm LDriuh_indexed: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext,
+ 12, 7>, AddrModeRel;
+ }
+ let accessSize = WordAccess in
+ defm LDriw_indexed: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext,
+ 13, 8>, AddrModeRel;
+
+ let accessSize = DoubleWordAccess in
+ defm LDrid_indexed: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext,
+ 14, 9>, AddrModeRel;
+}
+
+let AddedComplexity = 20 in {
+def : Pat < (i32 (sextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))),
+ (LDrib_indexed IntRegs:$src1, s11_0ExtPred:$offset) >;
+
+def : Pat < (i32 (zextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))),
+ (LDriub_indexed IntRegs:$src1, s11_0ExtPred:$offset) >;
+
+def : Pat < (i32 (sextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))),
+ (LDrih_indexed IntRegs:$src1, s11_1ExtPred:$offset) >;
+
+def : Pat < (i32 (zextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))),
+ (LDriuh_indexed IntRegs:$src1, s11_1ExtPred:$offset) >;
+
+def : Pat < (i32 (load (add IntRegs:$src1, s11_2ExtPred:$offset))),
+ (LDriw_indexed IntRegs:$src1, s11_2ExtPred:$offset) >;
+
+def : Pat < (i64 (load (add IntRegs:$src1, s11_3ExtPred:$offset))),
+ (LDrid_indexed IntRegs:$src1, s11_3ExtPred:$offset) >;
+}
+
+//===----------------------------------------------------------------------===//
+// Post increment load
+//===----------------------------------------------------------------------===//
+
+multiclass LD_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp,
+ bit isNot, bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#"$dst = "#mnemonic#"($src2++#$offset)",
+ [],
+ "$src2 = $dst2">;
+}
+
+multiclass LD_PostInc_Pred<string mnemonic, RegisterClass RC,
+ Operand ImmOp, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>;
+ // Predicate new
+ let Predicates = [HasV4T], validSubTargets = HasV4SubT in
+ defm _cdn#NAME#_V4 : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>;
+ }
+}
+
+multiclass LD_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
+ Operand ImmOp> {
+
+ let BaseOpcode = "POST_"#BaseOp in {
+ let isPredicable = 1 in
+ def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2),
+ (ins IntRegs:$src1, ImmOp:$offset),
+ "$dst = "#mnemonic#"($src1++#$offset)",
+ [],
+ "$src1 = $dst2">;
+
+ let isPredicated = 1 in {
+ defm Pt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 0 >;
+ defm NotPt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 1 >;
+ }
+ }
+}
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, addrMode = PostInc in {
+ defm POST_LDrib : LD_PostInc<"memb", "LDrib", IntRegs, s4_0Imm>,
+ PredNewRel;
+ defm POST_LDriub : LD_PostInc<"memub", "LDriub", IntRegs, s4_0Imm>,
+ PredNewRel;
+ defm POST_LDrih : LD_PostInc<"memh", "LDrih", IntRegs, s4_1Imm>,
+ PredNewRel;
+ defm POST_LDriuh : LD_PostInc<"memuh", "LDriuh", IntRegs, s4_1Imm>,
+ PredNewRel;
+ defm POST_LDriw : LD_PostInc<"memw", "LDriw", IntRegs, s4_2Imm>,
+ PredNewRel;
+ defm POST_LDrid : LD_PostInc<"memd", "LDrid", DoubleRegs, s4_3Imm>,
+ PredNewRel;
+}
+
+def : Pat< (i32 (extloadi1 ADDRriS11_0:$addr)),
+ (i32 (LDrib ADDRriS11_0:$addr)) >;
+
+// Load byte any-extend.
+def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)),
+ (i32 (LDrib ADDRriS11_0:$addr)) >;
+
+// Indexed load byte any-extend.
+let AddedComplexity = 20 in
+def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))),
+ (i32 (LDrib_indexed IntRegs:$src1, s11_0ImmPred:$offset)) >;
+
+def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)),
+ (i32 (LDrih ADDRriS11_1:$addr))>;
+
+let AddedComplexity = 20 in
+def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))),
+ (i32 (LDrih_indexed IntRegs:$src1, s11_1ImmPred:$offset)) >;
+
+let AddedComplexity = 10 in
+def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)),
+ (i32 (LDriub ADDRriS11_0:$addr))>;
+
+let AddedComplexity = 20 in
+def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))),
+ (i32 (LDriub_indexed IntRegs:$src1, s11_0ImmPred:$offset))>;
+
+// Load predicate.
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
+isPseudo = 1, Defs = [R10,R11,D5], neverHasSideEffects = 1 in
+def LDriw_pred : LDInst2<(outs PredRegs:$dst),
+ (ins MEMri:$addr),
+ "Error; should not emit",
+ []>;
+
+// Deallocate stack frame.
+let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in {
+ def DEALLOCFRAME : LDInst2<(outs), (ins),
+ "deallocframe",
+ []>;
+}
+
+// Load and unpack bytes to halfwords.
+//===----------------------------------------------------------------------===//
+// LD -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/ALU +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// MTYPE/ALU -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/COMPLEX +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// MTYPE/COMPLEX -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/MPYH +
+//===----------------------------------------------------------------------===//
+// Multiply and use lower result.
+// Rd=+mpyi(Rs,#u8)
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 8 in
+def MPYI_riu : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Ext:$src2),
+ "$dst =+ mpyi($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
+ u8ExtPred:$src2))]>;
+
+// Rd=-mpyi(Rs,#u8)
+def MPYI_rin : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2),
+ "$dst =- mpyi($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (ineg (mul (i32 IntRegs:$src1),
+ u8ImmPred:$src2)))]>;
+
+// Rd=mpyi(Rs,#m9)
+// s9 is NOT the same as m9 - but it works.. so far.
+// Assembler maps to either Rd=+mpyi(Rs,#u8 or Rd=-mpyi(Rs,#u8)
+// depending on the value of m9. See Arch Spec.
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9,
+CextOpcode = "MPYI", InputType = "imm" in
+def MPYI_ri : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2),
+ "$dst = mpyi($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
+ s9ExtPred:$src2))]>, ImmRegRel;
+
+// Rd=mpyi(Rs,Rt)
+let CextOpcode = "MPYI", InputType = "reg" in
+def MPYI : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpyi($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>, ImmRegRel;
+
+// Rx+=mpyi(Rs,#u8)
+let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8,
+CextOpcode = "MPYI_acc", InputType = "imm" in
+def MPYI_acc_ri : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3),
+ "$dst += mpyi($src2, #$src3)",
+ [(set (i32 IntRegs:$dst),
+ (add (mul (i32 IntRegs:$src2), u8ExtPred:$src3),
+ (i32 IntRegs:$src1)))],
+ "$src1 = $dst">, ImmRegRel;
+
+// Rx+=mpyi(Rs,Rt)
+let CextOpcode = "MPYI_acc", InputType = "reg" in
+def MPYI_acc_rr : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "$dst += mpyi($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
+ (i32 IntRegs:$src1)))],
+ "$src1 = $dst">, ImmRegRel;
+
+// Rx-=mpyi(Rs,#u8)
+let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8 in
+def MPYI_sub_ri : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3),
+ "$dst -= mpyi($src2, #$src3)",
+ [(set (i32 IntRegs:$dst),
+ (sub (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
+ u8ExtPred:$src3)))],
+ "$src1 = $dst">;
+
+// Multiply and use upper result.
+// Rd=mpy(Rs,Rt.H):<<1:rnd:sat
+// Rd=mpy(Rs,Rt.L):<<1:rnd:sat
+// Rd=mpy(Rs,Rt)
+def MPY : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpy($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (mulhs (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+// Rd=mpy(Rs,Rt):rnd
+// Rd=mpyu(Rs,Rt)
+def MPYU : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpyu($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (mulhu (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+// Multiply and use full result.
+// Rdd=mpyu(Rs,Rt)
+def MPYU64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpyu($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst),
+ (mul (i64 (anyext (i32 IntRegs:$src1))),
+ (i64 (anyext (i32 IntRegs:$src2)))))]>;
+
+// Rdd=mpy(Rs,Rt)
+def MPY64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpy($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst),
+ (mul (i64 (sext (i32 IntRegs:$src1))),
+ (i64 (sext (i32 IntRegs:$src2)))))]>;
+
+// Multiply and accumulate, use full result.
+// Rxx[+-]=mpy(Rs,Rt)
+// Rxx+=mpy(Rs,Rt)
+def MPY64_acc : MInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "$dst += mpy($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (add (mul (i64 (sext (i32 IntRegs:$src2))),
+ (i64 (sext (i32 IntRegs:$src3)))),
+ (i64 DoubleRegs:$src1)))],
+ "$src1 = $dst">;
+
+// Rxx-=mpy(Rs,Rt)
+def MPY64_sub : MInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "$dst -= mpy($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (sub (i64 DoubleRegs:$src1),
+ (mul (i64 (sext (i32 IntRegs:$src2))),
+ (i64 (sext (i32 IntRegs:$src3))))))],
+ "$src1 = $dst">;
+
+// Rxx[+-]=mpyu(Rs,Rt)
+// Rxx+=mpyu(Rs,Rt)
+def MPYU64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ IntRegs:$src2, IntRegs:$src3),
+ "$dst += mpyu($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (add (mul (i64 (anyext (i32 IntRegs:$src2))),
+ (i64 (anyext (i32 IntRegs:$src3)))),
+ (i64 DoubleRegs:$src1)))], "$src1 = $dst">;
+
+// Rxx-=mpyu(Rs,Rt)
+def MPYU64_sub : MInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "$dst -= mpyu($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (sub (i64 DoubleRegs:$src1),
+ (mul (i64 (anyext (i32 IntRegs:$src2))),
+ (i64 (anyext (i32 IntRegs:$src3))))))],
+ "$src1 = $dst">;
+
+
+let InputType = "reg", CextOpcode = "ADD_acc" in
+def ADDrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
+ IntRegs:$src2, IntRegs:$src3),
+ "$dst += add($src2, $src3)",
+ [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3)),
+ (i32 IntRegs:$src1)))],
+ "$src1 = $dst">, ImmRegRel;
+
+let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
+InputType = "imm", CextOpcode = "ADD_acc" in
+def ADDri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
+ IntRegs:$src2, s8Ext:$src3),
+ "$dst += add($src2, #$src3)",
+ [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
+ s8_16ExtPred:$src3),
+ (i32 IntRegs:$src1)))],
+ "$src1 = $dst">, ImmRegRel;
+
+let CextOpcode = "SUB_acc", InputType = "reg" in
+def SUBrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
+ IntRegs:$src2, IntRegs:$src3),
+ "$dst -= add($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">, ImmRegRel;
+
+let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
+CextOpcode = "SUB_acc", InputType = "imm" in
+def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
+ IntRegs:$src2, s8Ext:$src3),
+ "$dst -= add($src2, #$src3)",
+ [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1),
+ (add (i32 IntRegs:$src2),
+ s8_16ExtPred:$src3)))],
+ "$src1 = $dst">, ImmRegRel;
+
+//===----------------------------------------------------------------------===//
+// MTYPE/MPYH -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/MPYS +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// MTYPE/MPYS -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/VB +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// MTYPE/VB -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/VH +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// MTYPE/VH -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ST +
+//===----------------------------------------------------------------------===//
+///
+// Store doubleword.
+
+//===----------------------------------------------------------------------===//
+// Post increment store
+//===----------------------------------------------------------------------===//
+
+multiclass ST_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp,
+ bit isNot, bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : STInst2PI<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2++#$offset) = $src3",
+ [],
+ "$src2 = $dst">;
+}
+
+multiclass ST_PostInc_Pred<string mnemonic, RegisterClass RC,
+ Operand ImmOp, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>;
+ // Predicate new
+ let Predicates = [HasV4T], validSubTargets = HasV4SubT in
+ defm _cdn#NAME#_V4 : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>;
+ }
+}
+
+let hasCtrlDep = 1, isNVStorable = 1, neverHasSideEffects = 1 in
+multiclass ST_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
+ Operand ImmOp> {
+
+ let hasCtrlDep = 1, BaseOpcode = "POST_"#BaseOp in {
+ let isPredicable = 1 in
+ def NAME : STInst2PI<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
+ mnemonic#"($src1++#$offset) = $src2",
+ [],
+ "$src1 = $dst">;
+
+ let isPredicated = 1 in {
+ defm Pt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 0 >;
+ defm NotPt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 1 >;
+ }
+ }
+}
+
+defm POST_STbri: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel;
+defm POST_SThri: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel;
+defm POST_STwri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel;
+
+let isNVStorable = 0 in
+defm POST_STdri: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm>, AddrModeRel;
+
+def : Pat<(post_truncsti8 (i32 IntRegs:$src1), IntRegs:$src2,
+ s4_3ImmPred:$offset),
+ (POST_STbri IntRegs:$src2, s4_0ImmPred:$offset, IntRegs:$src1)>;
+
+def : Pat<(post_truncsti16 (i32 IntRegs:$src1), IntRegs:$src2,
+ s4_3ImmPred:$offset),
+ (POST_SThri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
+
+def : Pat<(post_store (i32 IntRegs:$src1), IntRegs:$src2, s4_2ImmPred:$offset),
+ (POST_STwri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
+
+def : Pat<(post_store (i64 DoubleRegs:$src1), IntRegs:$src2,
+ s4_3ImmPred:$offset),
+ (POST_STdri IntRegs:$src2, s4_3ImmPred:$offset, DoubleRegs:$src1)>;
+
+//===----------------------------------------------------------------------===//
+// multiclass for the store instructions with MEMri operand.
+//===----------------------------------------------------------------------===//
+multiclass ST_MEMri_Pbase<string mnemonic, RegisterClass RC, bit isNot,
+ bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : STInst2<(outs),
+ (ins PredRegs:$src1, MEMri:$addr, RC: $src2),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($addr) = $src2",
+ []>;
+}
+
+multiclass ST_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ST_MEMri_Pbase<mnemonic, RC, PredNot, 0>;
+
+ // Predicate new
+ let validSubTargets = HasV4SubT, Predicates = [HasV4T] in
+ defm _cdn#NAME#_V4 : ST_MEMri_Pbase<mnemonic, RC, PredNot, 1>;
+ }
+}
+
+let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in
+multiclass ST_MEMri<string mnemonic, string CextOp, RegisterClass RC,
+ bits<5> ImmBits, bits<5> PredImmBits> {
+
+ let CextOpcode = CextOp, BaseOpcode = CextOp in {
+ let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
+ isPredicable = 1 in
+ def NAME : STInst2<(outs),
+ (ins MEMri:$addr, RC:$src),
+ mnemonic#"($addr) = $src",
+ []>;
+
+ let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
+ isPredicated = 1 in {
+ defm Pt : ST_MEMri_Pred<mnemonic, RC, 0>;
+ defm NotPt : ST_MEMri_Pred<mnemonic, RC, 1>;
+ }
+ }
+}
+
+let addrMode = BaseImmOffset, isMEMri = "true" in {
+ let accessSize = ByteAccess in
+ defm STrib: ST_MEMri < "memb", "STrib", IntRegs, 11, 6>, AddrModeRel;
+
+ let accessSize = HalfWordAccess in
+ defm STrih: ST_MEMri < "memh", "STrih", IntRegs, 12, 7>, AddrModeRel;
+
+ let accessSize = WordAccess in
+ defm STriw: ST_MEMri < "memw", "STriw", IntRegs, 13, 8>, AddrModeRel;
+
+ let accessSize = DoubleWordAccess, isNVStorable = 0 in
+ defm STrid: ST_MEMri < "memd", "STrid", DoubleRegs, 14, 9>, AddrModeRel;
+}
+
+def : Pat<(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr),
+ (STrib ADDRriS11_0:$addr, (i32 IntRegs:$src1))>;
+
+def : Pat<(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr),
+ (STrih ADDRriS11_1:$addr, (i32 IntRegs:$src1))>;
+
+def : Pat<(store (i32 IntRegs:$src1), ADDRriS11_2:$addr),
+ (STriw ADDRriS11_2:$addr, (i32 IntRegs:$src1))>;
+
+def : Pat<(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr),
+ (STrid ADDRriS11_3:$addr, (i64 DoubleRegs:$src1))>;
+
+
+//===----------------------------------------------------------------------===//
+// multiclass for the store instructions with base+immediate offset
+// addressing mode
+//===----------------------------------------------------------------------===//
+multiclass ST_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp,
+ bit isNot, bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : STInst2<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2+#$src3) = $src4",
+ []>;
+}
+
+multiclass ST_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp,
+ bit PredNot> {
+ let isPredicatedFalse = PredNot, isPredicated = 1 in {
+ defm _c#NAME : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>;
+
+ // Predicate new
+ let validSubTargets = HasV4SubT, Predicates = [HasV4T] in
+ defm _cdn#NAME#_V4 : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>;
+ }
+}
+
+let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in
+multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC,
+ Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
+ bits<5> PredImmBits> {
+
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
+ let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
+ isPredicable = 1 in
+ def NAME : STInst2<(outs),
+ (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
+ mnemonic#"($src1+#$src2) = $src3",
+ []>;
+
+ let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits in {
+ defm Pt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 0>;
+ defm NotPt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 1>;
+ }
+ }
+}
+
+let addrMode = BaseImmOffset, InputType = "reg" in {
+ let accessSize = ByteAccess in
+ defm STrib_indexed: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext,
+ u6_0Ext, 11, 6>, AddrModeRel, ImmRegRel;
+
+ let accessSize = HalfWordAccess in
+ defm STrih_indexed: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext,
+ u6_1Ext, 12, 7>, AddrModeRel, ImmRegRel;
+
+ let accessSize = WordAccess in
+ defm STriw_indexed: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext,
+ u6_2Ext, 13, 8>, AddrModeRel, ImmRegRel;
+
+ let accessSize = DoubleWordAccess, isNVStorable = 0 in
+ defm STrid_indexed: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext,
+ u6_3Ext, 14, 9>, AddrModeRel;
+}
+
+let AddedComplexity = 10 in {
+def : Pat<(truncstorei8 (i32 IntRegs:$src1), (add IntRegs:$src2,
+ s11_0ExtPred:$offset)),
+ (STrib_indexed IntRegs:$src2, s11_0ImmPred:$offset,
+ (i32 IntRegs:$src1))>;
+
+def : Pat<(truncstorei16 (i32 IntRegs:$src1), (add IntRegs:$src2,
+ s11_1ExtPred:$offset)),
+ (STrih_indexed IntRegs:$src2, s11_1ImmPred:$offset,
+ (i32 IntRegs:$src1))>;
+
+def : Pat<(store (i32 IntRegs:$src1), (add IntRegs:$src2,
+ s11_2ExtPred:$offset)),
+ (STriw_indexed IntRegs:$src2, s11_2ImmPred:$offset,
+ (i32 IntRegs:$src1))>;
+
+def : Pat<(store (i64 DoubleRegs:$src1), (add IntRegs:$src2,
+ s11_3ExtPred:$offset)),
+ (STrid_indexed IntRegs:$src2, s11_3ImmPred:$offset,
+ (i64 DoubleRegs:$src1))>;
+}
+
+// memh(Rx++#s4:1)=Rt.H
+
+// Store word.
+// Store predicate.
+let Defs = [R10,R11,D5], neverHasSideEffects = 1 in
+def STriw_pred : STInst2<(outs),
+ (ins MEMri:$addr, PredRegs:$src1),
+ "Error; should not emit",
+ []>;
+
+// Allocate stack frame.
+let Defs = [R29, R30], Uses = [R31, R30], neverHasSideEffects = 1 in {
+ def ALLOCFRAME : STInst2<(outs),
+ (ins i32imm:$amt),
+ "allocframe(#$amt)",
+ []>;
+}
+//===----------------------------------------------------------------------===//
+// ST -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/ALU +
+//===----------------------------------------------------------------------===//
+// Logical NOT.
+def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1),
+ "$dst = not($src1)",
+ [(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>;
+
+
+// Sign extend word to doubleword.
+def SXTW : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1),
+ "$dst = sxtw($src1)",
+ [(set (i64 DoubleRegs:$dst), (sext (i32 IntRegs:$src1)))]>;
+//===----------------------------------------------------------------------===//
+// STYPE/ALU -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/BIT +
+//===----------------------------------------------------------------------===//
+// clrbit.
+def CLRBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = clrbit($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
+ (not
+ (shl 1, u5ImmPred:$src2))))]>;
+
+def CLRBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = clrbit($src1, #$src2)",
+ []>;
+
+// Map from r0 = and(r1, 2147483647) to r0 = clrbit(r1, #31).
+def : Pat <(and (i32 IntRegs:$src1), 2147483647),
+ (CLRBIT_31 (i32 IntRegs:$src1), 31)>;
+
+// setbit.
+def SETBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = setbit($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
+ (shl 1, u5ImmPred:$src2)))]>;
+
+// Map from r0 = or(r1, -2147483648) to r0 = setbit(r1, #31).
+def SETBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = setbit($src1, #$src2)",
+ []>;
+
+def : Pat <(or (i32 IntRegs:$src1), -2147483648),
+ (SETBIT_31 (i32 IntRegs:$src1), 31)>;
+
+// togglebit.
+def TOGBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = setbit($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1),
+ (shl 1, u5ImmPred:$src2)))]>;
+
+// Map from r0 = xor(r1, -2147483648) to r0 = togglebit(r1, #31).
+def TOGBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = togglebit($src1, #$src2)",
+ []>;
+
+def : Pat <(xor (i32 IntRegs:$src1), -2147483648),
+ (TOGBIT_31 (i32 IntRegs:$src1), 31)>;
+
+// Predicate transfer.
+let neverHasSideEffects = 1 in
+def TFR_RsPd : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1),
+ "$dst = $src1 /* Should almost never emit this. */",
+ []>;
+
+def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1),
+ "$dst = $src1 /* Should almost never emit this. */",
+ [(set (i1 PredRegs:$dst), (trunc (i32 IntRegs:$src1)))]>;
+//===----------------------------------------------------------------------===//
+// STYPE/PRED -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/SHIFT +
+//===----------------------------------------------------------------------===//
+// Shift by immediate.
+def ASR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = asr($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
+ u5ImmPred:$src2))]>;
+
+def ASRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
+ "$dst = asr($src1, #$src2)",
+ [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
+ u6ImmPred:$src2))]>;
+
+def ASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = asl($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
+ u5ImmPred:$src2))]>;
+
+def ASLd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
+ "$dst = asl($src1, #$src2)",
+ [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
+ u6ImmPred:$src2))]>;
+
+def LSR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = lsr($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
+ u5ImmPred:$src2))]>;
+
+def LSRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
+ "$dst = lsr($src1, #$src2)",
+ [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
+ u6ImmPred:$src2))]>;
+
+// Shift by immediate and add.
+let AddedComplexity = 100 in
+def ADDASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ u3Imm:$src3),
+ "$dst = addasl($src1, $src2, #$src3)",
+ [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1),
+ (shl (i32 IntRegs:$src2),
+ u3ImmPred:$src3)))]>;
+
+// Shift by register.
+def ASL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = asl($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def ASR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = asr($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def LSL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = lsl($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def LSR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = lsr($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def ASLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
+ "$dst = asl($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def LSLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
+ "$dst = lsl($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def ASRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ IntRegs:$src2),
+ "$dst = asr($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ IntRegs:$src2),
+ "$dst = lsr($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+//===----------------------------------------------------------------------===//
+// STYPE/SHIFT -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/VH +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// STYPE/VH -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/VW +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// STYPE/VW -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// SYSTEM/SUPER +
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// SYSTEM/USER +
+//===----------------------------------------------------------------------===//
+def SDHexagonBARRIER: SDTypeProfile<0, 0, []>;
+def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDHexagonBARRIER,
+ [SDNPHasChain]>;
+
+let hasSideEffects = 1, isSolo = 1 in
+def BARRIER : SYSInst<(outs), (ins),
+ "barrier",
+ [(HexagonBARRIER)]>;
+
+//===----------------------------------------------------------------------===//
+// SYSTEM/SUPER -
+//===----------------------------------------------------------------------===//
+
+// TFRI64 - assembly mapped.
+let isReMaterializable = 1 in
+def TFRI64 : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1),
+ "$dst = #$src1",
+ [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>;
+
+// Pseudo instruction to encode a set of conditional transfers.
+// This instruction is used instead of a mux and trades-off codesize
+// for performance. We conduct this transformation optimistically in
+// the hope that these instructions get promoted to dot-new transfers.
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ IntRegs:$src2,
+ IntRegs:$src3),
+ "Error; should not emit",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 PredRegs:$src1),
+ (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))]>;
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3),
+ "Error; should not emit",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
+ s12ImmPred:$src3)))]>;
+
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, s12Imm:$src2, IntRegs:$src3),
+ "Error; should not emit",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2,
+ (i32 IntRegs:$src3))))]>;
+
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, s12Imm:$src2, s12Imm:$src3),
+ "Error; should not emit",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2,
+ s12ImmPred:$src3)))]>;
+
+// Generate frameindex addresses.
+let isReMaterializable = 1 in
+def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1),
+ "$dst = add($src1)",
+ [(set (i32 IntRegs:$dst), ADDRri:$src1)]>;
+
+//
+// CR - Type.
+//
+let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
+def LOOP0_i : CRInst<(outs), (ins brtarget:$offset, u10Imm:$src2),
+ "loop0($offset, #$src2)",
+ []>;
+}
+
+let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
+def LOOP0_r : CRInst<(outs), (ins brtarget:$offset, IntRegs:$src2),
+ "loop0($offset, $src2)",
+ []>;
+}
+
+let isBranch = 1, isTerminator = 1, neverHasSideEffects = 1,
+ Defs = [PC, LC0], Uses = [SA0, LC0] in {
+def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset),
+ ":endloop0",
+ []>;
+}
+
+// Support for generating global address.
+// Taken from X86InstrInfo.td.
+def SDTHexagonCONST32 : SDTypeProfile<1, 1, [
+ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>,
+ SDTCisPtrTy<0>]>;
+def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>;
+def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>;
+
+// HI/LO Instructions
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
+ "$dst.l = #LO($global)",
+ []>;
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
+ "$dst.h = #HI($global)",
+ []>;
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
+ "$dst.l = #LO($imm_value)",
+ []>;
+
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
+ "$dst.h = #HI($imm_value)",
+ []>;
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
+ "$dst.l = #LO($jt)",
+ []>;
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
+ "$dst.h = #HI($jt)",
+ []>;
+
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
+ "$dst.l = #LO($label)",
+ []>;
+
+let isReMaterializable = 1, isMoveImm = 1 , neverHasSideEffects = 1 in
+def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
+ "$dst.h = #HI($label)",
+ []>;
+
+// This pattern is incorrect. When we add small data, we should change
+// this pattern to use memw(#foo).
+// This is for sdata.
+let isMoveImm = 1 in
+def CONST32 : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global),
+ "$dst = CONST32(#$global)",
+ [(set (i32 IntRegs:$dst),
+ (load (HexagonCONST32 tglobaltlsaddr:$global)))]>;
+
+// This is for non-sdata.
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST32_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global),
+ "$dst = CONST32(#$global)",
+ [(set (i32 IntRegs:$dst),
+ (HexagonCONST32 tglobaladdr:$global))]>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST32_set_jt : LDInst2<(outs IntRegs:$dst), (ins jumptablebase:$jt),
+ "$dst = CONST32(#$jt)",
+ [(set (i32 IntRegs:$dst),
+ (HexagonCONST32 tjumptable:$jt))]>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST32GP_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global),
+ "$dst = CONST32(#$global)",
+ [(set (i32 IntRegs:$dst),
+ (HexagonCONST32_GP tglobaladdr:$global))]>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global),
+ "$dst = CONST32(#$global)",
+ [(set (i32 IntRegs:$dst), imm:$global) ]>;
+
+// Map BlockAddress lowering to CONST32_Int_Real
+def : Pat<(HexagonCONST32_GP tblockaddress:$addr),
+ (CONST32_Int_Real tblockaddress:$addr)>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label),
+ "$dst = CONST32($label)",
+ [(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST64_Int_Real : LDInst2<(outs DoubleRegs:$dst), (ins i64imm:$global),
+ "$dst = CONST64(#$global)",
+ [(set (i64 DoubleRegs:$dst), imm:$global) ]>;
+
+def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins),
+ "$dst = xor($dst, $dst)",
+ [(set (i1 PredRegs:$dst), 0)]>;
+
+def MPY_trsext : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpy($src1, $src2)",
+ [(set (i32 IntRegs:$dst),
+ (trunc (i64 (srl (i64 (mul (i64 (sext (i32 IntRegs:$src1))),
+ (i64 (sext (i32 IntRegs:$src2))))),
+ (i32 32)))))]>;
+
+// Pseudo instructions.
+def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
+
+def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32> ]>;
+
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
+ [SDNPHasChain, SDNPOutGlue]>;
+
+def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
+
+def call : SDNode<"HexagonISD::CALL", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
+
+// For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain,
+// Optional Flag and Variable Arguments.
+// Its 1 Operand has pointer type.
+def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+let Defs = [R29, R30], Uses = [R31, R30, R29] in {
+ def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
+ "Should never be emitted",
+ [(callseq_start timm:$amt)]>;
+}
+
+let Defs = [R29, R30, R31], Uses = [R29] in {
+ def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "Should never be emitted",
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+}
+// Call subroutine.
+let isCall = 1, neverHasSideEffects = 1,
+ Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
+ R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
+ def CALL : JInst<(outs), (ins calltarget:$dst),
+ "call $dst", []>;
+}
+
+// Call subroutine from register.
+let isCall = 1, neverHasSideEffects = 1,
+ Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
+ R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
+ def CALLR : JRInst<(outs), (ins IntRegs:$dst),
+ "callr $dst",
+ []>;
+ }
+
+
+// Indirect tail-call.
+let isCodeGenOnly = 1, isCall = 1, isReturn = 1 in
+def TCRETURNR : T_JMPr;
+
+// Direct tail-calls.
+let isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
+isTerminator = 1, isCodeGenOnly = 1 in {
+ def TCRETURNtg : T_JMP<(ins calltarget:$dst)>;
+ def TCRETURNtext : T_JMP<(ins calltarget:$dst)>;
+}
+
+// Map call instruction.
+def : Pat<(call (i32 IntRegs:$dst)),
+ (CALLR (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>;
+def : Pat<(call tglobaladdr:$dst),
+ (CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>;
+def : Pat<(call texternalsym:$dst),
+ (CALL texternalsym:$dst)>, Requires<[HasV2TOnly]>;
+//Tail calls.
+def : Pat<(HexagonTCRet tglobaladdr:$dst),
+ (TCRETURNtg tglobaladdr:$dst)>;
+def : Pat<(HexagonTCRet texternalsym:$dst),
+ (TCRETURNtext texternalsym:$dst)>;
+def : Pat<(HexagonTCRet (i32 IntRegs:$dst)),
+ (TCRETURNR (i32 IntRegs:$dst))>;
+
+// Atomic load and store support
+// 8 bit atomic load
+def : Pat<(atomic_load_8 ADDRriS11_0:$src1),
+ (i32 (LDriub ADDRriS11_0:$src1))>;
+
+def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)),
+ (i32 (LDriub_indexed (i32 IntRegs:$src1), s11_0ImmPred:$offset))>;
+
+// 16 bit atomic load
+def : Pat<(atomic_load_16 ADDRriS11_1:$src1),
+ (i32 (LDriuh ADDRriS11_1:$src1))>;
+
+def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)),
+ (i32 (LDriuh_indexed (i32 IntRegs:$src1), s11_1ImmPred:$offset))>;
+
+def : Pat<(atomic_load_32 ADDRriS11_2:$src1),
+ (i32 (LDriw ADDRriS11_2:$src1))>;
+
+def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)),
+ (i32 (LDriw_indexed (i32 IntRegs:$src1), s11_2ImmPred:$offset))>;
+
+// 64 bit atomic load
+def : Pat<(atomic_load_64 ADDRriS11_3:$src1),
+ (i64 (LDrid ADDRriS11_3:$src1))>;
+
+def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)),
+ (i64 (LDrid_indexed (i32 IntRegs:$src1), s11_3ImmPred:$offset))>;
+
+
+def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)),
+ (STrib ADDRriS11_0:$src2, (i32 IntRegs:$src1))>;
+
+def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset),
+ (i32 IntRegs:$src1)),
+ (STrib_indexed (i32 IntRegs:$src2), s11_0ImmPred:$offset,
+ (i32 IntRegs:$src1))>;
+
+
+def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)),
+ (STrih ADDRriS11_1:$src2, (i32 IntRegs:$src1))>;
+
+def : Pat<(atomic_store_16 (i32 IntRegs:$src1),
+ (add (i32 IntRegs:$src2), s11_1ImmPred:$offset)),
+ (STrih_indexed (i32 IntRegs:$src2), s11_1ImmPred:$offset,
+ (i32 IntRegs:$src1))>;
+
+def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)),
+ (STriw ADDRriS11_2:$src2, (i32 IntRegs:$src1))>;
+
+def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset),
+ (i32 IntRegs:$src1)),
+ (STriw_indexed (i32 IntRegs:$src2), s11_2ImmPred:$offset,
+ (i32 IntRegs:$src1))>;
+
+
+
+
+def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)),
+ (STrid ADDRriS11_3:$src2, (i64 DoubleRegs:$src1))>;
+
+def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset),
+ (i64 DoubleRegs:$src1)),
+ (STrid_indexed (i32 IntRegs:$src2), s11_3ImmPred:$offset,
+ (i64 DoubleRegs:$src1))>;
+
+// Map from r0 = and(r1, 65535) to r0 = zxth(r1)
+def : Pat <(and (i32 IntRegs:$src1), 65535),
+ (ZXTH (i32 IntRegs:$src1))>;
+
+// Map from r0 = and(r1, 255) to r0 = zxtb(r1).
+def : Pat <(and (i32 IntRegs:$src1), 255),
+ (ZXTB (i32 IntRegs:$src1))>;
+
+// Map Add(p1, true) to p1 = not(p1).
+// Add(p1, false) should never be produced,
+// if it does, it got to be mapped to NOOP.
+def : Pat <(add (i1 PredRegs:$src1), -1),
+ (NOT_p (i1 PredRegs:$src1))>;
+
+// Map from p0 = setlt(r0, r1) r2 = mux(p0, r3, r4) =>
+// p0 = cmp.lt(r0, r1), r0 = mux(p0, r2, r1).
+// cmp.lt(r0, r1) -> cmp.gt(r1, r0)
+def : Pat <(select (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i32 IntRegs:$src3),
+ (i32 IntRegs:$src4)),
+ (i32 (TFR_condset_rr (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)),
+ (i32 IntRegs:$src4), (i32 IntRegs:$src3)))>,
+ Requires<[HasV2TOnly]>;
+
+// Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i).
+def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3),
+ (i32 (TFR_condset_ii (i1 PredRegs:$src1), s8ImmPred:$src3,
+ s8ImmPred:$src2))>;
+
+// Map from p0 = pnot(p0); r0 = select(p0, #i, r1)
+// => r0 = TFR_condset_ri(p0, r1, #i)
+def : Pat <(select (not (i1 PredRegs:$src1)), s12ImmPred:$src2,
+ (i32 IntRegs:$src3)),
+ (i32 (TFR_condset_ri (i1 PredRegs:$src1), (i32 IntRegs:$src3),
+ s12ImmPred:$src2))>;
+
+// Map from p0 = pnot(p0); r0 = mux(p0, r1, #i)
+// => r0 = TFR_condset_ir(p0, #i, r1)
+def : Pat <(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s12ImmPred:$src3),
+ (i32 (TFR_condset_ir (i1 PredRegs:$src1), s12ImmPred:$src3,
+ (i32 IntRegs:$src2)))>;
+
+// Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump.
+def : Pat <(brcond (not (i1 PredRegs:$src1)), bb:$offset),
+ (JMP_f (i1 PredRegs:$src1), bb:$offset)>;
+
+// Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2).
+def : Pat <(and (i1 PredRegs:$src1), (not (i1 PredRegs:$src2))),
+ (i1 (AND_pnotp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
+
+
+let AddedComplexity = 100 in
+def : Pat <(i64 (zextloadi1 (HexagonCONST32 tglobaladdr:$global))),
+ (i64 (COMBINE_rr (TFRI 0),
+ (LDriub_indexed (CONST32_set tglobaladdr:$global), 0)))>,
+ Requires<[NoV4T]>;
+
+// Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned.
+let AddedComplexity = 10 in
+def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)),
+ (i32 (AND_rr (i32 (LDrib ADDRriS11_0:$addr)), (TFRI 0x1)))>;
+
+// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = SXTW(Rss.lo).
+def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)),
+ (i64 (SXTW (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>;
+
+// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = SXTW(SXTH(Rss.lo)).
+def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)),
+ (i64 (SXTW (i32 (SXTH (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ subreg_loreg))))))>;
+
+// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = SXTW(SXTB(Rss.lo)).
+def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)),
+ (i64 (SXTW (i32 (SXTB (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ subreg_loreg))))))>;
+
+// We want to prevent emitting pnot's as much as possible.
+// Map brcond with an unsupported setcc to a JMP_f.
+def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ bb:$offset),
+ (JMP_f (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
+ bb:$offset)>;
+
+def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)),
+ bb:$offset),
+ (JMP_f (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>;
+
+def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset),
+ (JMP_f (i1 PredRegs:$src1), bb:$offset)>;
+
+def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset),
+ (JMP_t (i1 PredRegs:$src1), bb:$offset)>;
+
+// cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1)
+def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)),
+ bb:$offset),
+ (JMP_f (CMPGTri (i32 IntRegs:$src1),
+ (DEC_CONST_SIGNED s8ImmPred:$src2)), bb:$offset)>;
+
+// cmp.lt(r0, r1) -> cmp.gt(r1, r0)
+def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ bb:$offset),
+ (JMP_t (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>;
+
+def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ bb:$offset),
+ (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)),
+ bb:$offset)>;
+
+def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ bb:$offset),
+ (JMP_f (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
+ bb:$offset)>;
+
+def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ bb:$offset),
+ (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
+ bb:$offset)>;
+
+// Map from a 64-bit select to an emulated 64-bit mux.
+// Hexagon does not support 64-bit MUXes; so emulate with combines.
+def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src3)),
+ (i64 (COMBINE_rr (i32 (MUX_rr (i1 PredRegs:$src1),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
+ subreg_hireg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
+ subreg_hireg)))),
+ (i32 (MUX_rr (i1 PredRegs:$src1),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
+ subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
+ subreg_loreg))))))>;
+
+// Map from a 1-bit select to logical ops.
+// From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3).
+def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2),
+ (i1 PredRegs:$src3)),
+ (OR_pp (AND_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)),
+ (AND_pp (NOT_p (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>;
+
+// Map Pd = load(addr) -> Rs = load(addr); Pd = Rs.
+def : Pat<(i1 (load ADDRriS11_2:$addr)),
+ (i1 (TFR_PdRs (i32 (LDrib ADDRriS11_2:$addr))))>;
+
+// Map for truncating from 64 immediates to 32 bit immediates.
+def : Pat<(i32 (trunc (i64 DoubleRegs:$src))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))>;
+
+// Map for truncating from i64 immediates to i1 bit immediates.
+def : Pat<(i1 (trunc (i64 DoubleRegs:$src))),
+ (i1 (TFR_PdRs (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ subreg_loreg))))>;
+
+// Map memb(Rs) = Rdd -> memb(Rs) = Rt.
+def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
+ (STrib ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ subreg_loreg)))>;
+
+// Map memh(Rs) = Rdd -> memh(Rs) = Rt.
+def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
+ (STrih ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ subreg_loreg)))>;
+// Map memw(Rs) = Rdd -> memw(Rs) = Rt
+def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
+ (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ subreg_loreg)))>;
+
+// Map memw(Rs) = Rdd -> memw(Rs) = Rt.
+def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
+ (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ subreg_loreg)))>;
+
+// Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0.
+def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
+ (STrib ADDRriS11_2:$addr, (TFRI 1))>;
+
+
+// Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0.
+def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
+ (STrib ADDRriS11_2:$addr, (TFRI 1))>;
+
+// Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt.
+def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr),
+ (STrib ADDRriS11_2:$addr, (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0)) )>;
+
+// Map Rdd = anyext(Rs) -> Rdd = sxtw(Rs).
+// Hexagon_TODO: We can probably use combine but that will cost 2 instructions.
+// Better way to do this?
+def : Pat<(i64 (anyext (i32 IntRegs:$src1))),
+ (i64 (SXTW (i32 IntRegs:$src1)))>;
+
+// Map cmple -> cmpgt.
+// rs <= rt -> !(rs > rt).
+def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ExtPred:$src2)),
+ (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), s10ExtPred:$src2)))>;
+
+// rs <= rt -> !(rs > rt).
+def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (NOT_p (CMPGTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
+
+// Rss <= Rtt -> !(Rss > Rtt).
+def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (NOT_p (CMPGT64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
+
+// Map cmpne -> cmpeq.
+// Hexagon_TODO: We should improve on this.
+// rs != rt -> !(rs == rt).
+def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ExtPred:$src2)),
+ (i1 (NOT_p(i1 (CMPEQri (i32 IntRegs:$src1), s10ExtPred:$src2))))>;
+
+// Map cmpne(Rs) -> !cmpeqe(Rs).
+// rs != rt -> !(rs == rt).
+def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (NOT_p (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>;
+
+// Convert setne back to xor for hexagon since we compute w/ pred registers.
+def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))),
+ (i1 (XOR_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
+
+// Map cmpne(Rss) -> !cmpew(Rss).
+// rs != rt -> !(rs == rt).
+def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (NOT_p (i1 (CMPEHexagon4rr (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))))>;
+
+// Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt).
+// rs >= rt -> !(rt > rs).
+def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (NOT_p (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>;
+
+// cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1)
+def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ExtPred:$src2)),
+ (i1 (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2)))>;
+
+// Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss).
+// rss >= rtt -> !(rtt > rss).
+def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (NOT_p (i1 (CMPGT64rr (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1)))))>;
+
+// Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm).
+// !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1).
+// rs < rt -> !(rs >= rt).
+def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ExtPred:$src2)),
+ (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2))))>;
+
+// Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs).
+// rs < rt -> rt > rs.
+// We can let assembler map it, or we can do in the compiler itself.
+def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
+
+// Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss).
+// rss < rtt -> (rtt > rss).
+def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
+
+// Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs)
+// rs < rt -> rt > rs.
+// We can let assembler map it, or we can do in the compiler itself.
+def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
+
+// Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss).
+// rs < rt -> rt > rs.
+def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
+
+// Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs)
+def : Pat <(i1 (setuge (i32 IntRegs:$src1), 0)),
+ (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src1)))>;
+
+// Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1)
+def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ExtPred:$src2)),
+ (i1 (CMPGTUri (i32 IntRegs:$src1), (DEC_CONST_UNSIGNED u8ExtPred:$src2)))>;
+
+// Generate cmpgtu(Rs, #u9)
+def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)),
+ (i1 (CMPGTUri (i32 IntRegs:$src1), u9ExtPred:$src2))>;
+
+// Map from Rs >= Rt -> !(Rt > Rs).
+// rs >= rt -> !(rt > rs).
+def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>;
+
+// Map from Rs >= Rt -> !(Rt > Rs).
+// rs >= rt -> !(rt > rs).
+def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>;
+
+// Map from cmpleu(Rs, Rt) -> !cmpgtu(Rs, Rt).
+// Map from (Rs <= Rt) -> !(Rs > Rt).
+def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
+
+// Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1).
+// Map from (Rs <= Rt) -> !(Rs > Rt).
+def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
+
+// Sign extends.
+// i1 -> i32
+def : Pat <(i32 (sext (i1 PredRegs:$src1))),
+ (i32 (MUX_ii (i1 PredRegs:$src1), -1, 0))>;
+
+// i1 -> i64
+def : Pat <(i64 (sext (i1 PredRegs:$src1))),
+ (i64 (COMBINE_rr (TFRI -1), (MUX_ii (i1 PredRegs:$src1), -1, 0)))>;
+
+// Convert sign-extended load back to load and sign extend.
+// i8 -> i64
+def: Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)),
+ (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
+
+// Convert any-extended load back to load and sign extend.
+// i8 -> i64
+def: Pat <(i64 (extloadi8 ADDRriS11_0:$src1)),
+ (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
+
+// Convert sign-extended load back to load and sign extend.
+// i16 -> i64
+def: Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)),
+ (i64 (SXTW (LDrih ADDRriS11_1:$src1)))>;
+
+// Convert sign-extended load back to load and sign extend.
+// i32 -> i64
+def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)),
+ (i64 (SXTW (LDriw ADDRriS11_2:$src1)))>;
+
+
+// Zero extends.
+// i1 -> i32
+def : Pat <(i32 (zext (i1 PredRegs:$src1))),
+ (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+
+// i1 -> i64
+def : Pat <(i64 (zext (i1 PredRegs:$src1))),
+ (i64 (COMBINE_rr (TFRI 0), (MUX_ii (i1 PredRegs:$src1), 1, 0)))>,
+ Requires<[NoV4T]>;
+
+// i32 -> i64
+def : Pat <(i64 (zext (i32 IntRegs:$src1))),
+ (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>,
+ Requires<[NoV4T]>;
+
+// i8 -> i64
+def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
+ (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>,
+ Requires<[NoV4T]>;
+
+let AddedComplexity = 20 in
+def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1),
+ s11_0ExtPred:$offset))),
+ (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1,
+ s11_0ExtPred:$offset)))>,
+ Requires<[NoV4T]>;
+
+// i1 -> i64
+def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)),
+ (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>,
+ Requires<[NoV4T]>;
+
+let AddedComplexity = 20 in
+def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1),
+ s11_0ExtPred:$offset))),
+ (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1,
+ s11_0ExtPred:$offset)))>,
+ Requires<[NoV4T]>;
+
+// i16 -> i64
+def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
+ (i64 (COMBINE_rr (TFRI 0), (LDriuh ADDRriS11_1:$src1)))>,
+ Requires<[NoV4T]>;
+
+let AddedComplexity = 20 in
+def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1),
+ s11_1ExtPred:$offset))),
+ (i64 (COMBINE_rr (TFRI 0), (LDriuh_indexed IntRegs:$src1,
+ s11_1ExtPred:$offset)))>,
+ Requires<[NoV4T]>;
+
+// i32 -> i64
+def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
+ (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>,
+ Requires<[NoV4T]>;
+
+let AddedComplexity = 100 in
+def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
+ (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1,
+ s11_2ExtPred:$offset)))>,
+ Requires<[NoV4T]>;
+
+let AddedComplexity = 10 in
+def: Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)),
+ (i32 (LDriw ADDRriS11_0:$src1))>;
+
+// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
+def : Pat <(i32 (zext (i1 PredRegs:$src1))),
+ (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+
+// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
+def : Pat <(i32 (anyext (i1 PredRegs:$src1))),
+ (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+
+// Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0))
+def : Pat <(i64 (anyext (i1 PredRegs:$src1))),
+ (i64 (SXTW (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))))>;
+
+
+let AddedComplexity = 100 in
+def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
+ (i32 32))),
+ (i64 (zextloadi32 (i32 (add IntRegs:$src2,
+ s11_2ExtPred:$offset2)))))),
+ (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ (LDriw_indexed IntRegs:$src2,
+ s11_2ExtPred:$offset2)))>;
+
+def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
+ (i32 32))),
+ (i64 (zextloadi32 ADDRriS11_2:$srcLow)))),
+ (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ (LDriw ADDRriS11_2:$srcLow)))>;
+
+def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
+ (i32 32))),
+ (i64 (zext (i32 IntRegs:$srcLow))))),
+ (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ IntRegs:$srcLow))>;
+
+let AddedComplexity = 100 in
+def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
+ (i32 32))),
+ (i64 (zextloadi32 (i32 (add IntRegs:$src2,
+ s11_2ExtPred:$offset2)))))),
+ (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ (LDriw_indexed IntRegs:$src2,
+ s11_2ExtPred:$offset2)))>;
+
+def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
+ (i32 32))),
+ (i64 (zextloadi32 ADDRriS11_2:$srcLow)))),
+ (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ (LDriw ADDRriS11_2:$srcLow)))>;
+
+def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
+ (i32 32))),
+ (i64 (zext (i32 IntRegs:$srcLow))))),
+ (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ IntRegs:$srcLow))>;
+
+// Any extended 64-bit load.
+// anyext i32 -> i64
+def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
+ (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>,
+ Requires<[NoV4T]>;
+
+// When there is an offset we should prefer the pattern below over the pattern above.
+// The complexity of the above is 13 (gleaned from HexagonGenDAGIsel.inc)
+// So this complexity below is comfortably higher to allow for choosing the below.
+// If this is not done then we generate addresses such as
+// ********************************************
+// r1 = add (r0, #4)
+// r1 = memw(r1 + #0)
+// instead of
+// r1 = memw(r0 + #4)
+// ********************************************
+let AddedComplexity = 100 in
+def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
+ (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1,
+ s11_2ExtPred:$offset)))>,
+ Requires<[NoV4T]>;
+
+// anyext i16 -> i64.
+def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
+ (i64 (COMBINE_rr (TFRI 0), (LDrih ADDRriS11_2:$src1)))>,
+ Requires<[NoV4T]>;
+
+let AddedComplexity = 20 in
+def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1),
+ s11_1ExtPred:$offset))),
+ (i64 (COMBINE_rr (TFRI 0), (LDrih_indexed IntRegs:$src1,
+ s11_1ExtPred:$offset)))>,
+ Requires<[NoV4T]>;
+
+// Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs).
+def : Pat<(i64 (zext (i32 IntRegs:$src1))),
+ (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>,
+ Requires<[NoV4T]>;
+
+// Multiply 64-bit unsigned and use upper result.
+def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
+ (i64
+ (MPYU64_acc
+ (i64
+ (COMBINE_rr
+ (TFRI 0),
+ (i32
+ (EXTRACT_SUBREG
+ (i64
+ (LSRd_ri
+ (i64
+ (MPYU64_acc
+ (i64
+ (MPYU64_acc
+ (i64
+ (COMBINE_rr (TFRI 0),
+ (i32
+ (EXTRACT_SUBREG
+ (i64
+ (LSRd_ri
+ (i64
+ (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
+ subreg_loreg)))), 32)),
+ subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))),
+ 32)), subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>;
+
+// Multiply 64-bit signed and use upper result.
+def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
+ (i64
+ (MPY64_acc
+ (i64
+ (COMBINE_rr (TFRI 0),
+ (i32
+ (EXTRACT_SUBREG
+ (i64
+ (LSRd_ri
+ (i64
+ (MPY64_acc
+ (i64
+ (MPY64_acc
+ (i64
+ (COMBINE_rr (TFRI 0),
+ (i32
+ (EXTRACT_SUBREG
+ (i64
+ (LSRd_ri
+ (i64
+ (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
+ subreg_loreg)))), 32)),
+ subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))),
+ 32)), subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>;
+
+// Hexagon specific ISD nodes.
+//def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>]>;
+def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2,
+ [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
+def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC",
+ SDTHexagonADJDYNALLOC>;
+// Needed to tag these instructions for stack layout.
+let usesCustomInserter = 1 in
+def ADJDYNALLOC : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1,
+ s16Imm:$src2),
+ "$dst = add($src1, #$src2)",
+ [(set (i32 IntRegs:$dst),
+ (Hexagon_ADJDYNALLOC (i32 IntRegs:$src1),
+ s16ImmPred:$src2))]>;
+
+def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>;
+def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>;
+def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = $src1",
+ [(set (i32 IntRegs:$dst),
+ (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>;
+
+let AddedComplexity = 100 in
+def : Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)),
+ (COPY (i32 IntRegs:$src1))>;
+
+def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>;
+
+def : Pat<(HexagonWrapperJT tjumptable:$dst),
+ (i32 (CONST32_set_jt tjumptable:$dst))>;
+
+// XTYPE/SHIFT
+
+// Multi-class for logical operators :
+// Shift by immediate/register and accumulate/logical
+multiclass xtype_imm<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
+ def _ri : SInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, u5Imm:$src3),
+ !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
+ [(set (i32 IntRegs:$dst),
+ (OpNode2 (i32 IntRegs:$src1),
+ (OpNode1 (i32 IntRegs:$src2),
+ u5ImmPred:$src3)))],
+ "$src1 = $dst">;
+
+ def d_ri : SInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2, u6Imm:$src3),
+ !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
+ [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1),
+ (OpNode1 (i64 DoubleRegs:$src2), u6ImmPred:$src3)))],
+ "$src1 = $dst">;
+}
+
+// Multi-class for logical operators :
+// Shift by register and accumulate/logical (32/64 bits)
+multiclass xtype_reg<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
+ def _rr : SInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
+ [(set (i32 IntRegs:$dst),
+ (OpNode2 (i32 IntRegs:$src1),
+ (OpNode1 (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">;
+
+ def d_rr : SInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
+ !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
+ [(set (i64 DoubleRegs:$dst),
+ (OpNode2 (i64 DoubleRegs:$src1),
+ (OpNode1 (i64 DoubleRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">;
+
+}
+
+multiclass basic_xtype_imm<string OpcStr, SDNode OpNode> {
+let AddedComplexity = 100 in
+ defm _ADD : xtype_imm< !strconcat("+= ", OpcStr), OpNode, add>;
+ defm _SUB : xtype_imm< !strconcat("-= ", OpcStr), OpNode, sub>;
+ defm _AND : xtype_imm< !strconcat("&= ", OpcStr), OpNode, and>;
+ defm _OR : xtype_imm< !strconcat("|= ", OpcStr), OpNode, or>;
+}
+
+multiclass basic_xtype_reg<string OpcStr, SDNode OpNode> {
+let AddedComplexity = 100 in
+ defm _ADD : xtype_reg< !strconcat("+= ", OpcStr), OpNode, add>;
+ defm _SUB : xtype_reg< !strconcat("-= ", OpcStr), OpNode, sub>;
+ defm _AND : xtype_reg< !strconcat("&= ", OpcStr), OpNode, and>;
+ defm _OR : xtype_reg< !strconcat("|= ", OpcStr), OpNode, or>;
+}
+
+multiclass xtype_xor_imm<string OpcStr, SDNode OpNode> {
+let AddedComplexity = 100 in
+ defm _XOR : xtype_imm< !strconcat("^= ", OpcStr), OpNode, xor>;
+}
+
+defm ASL : basic_xtype_imm<"asl", shl>, basic_xtype_reg<"asl", shl>,
+ xtype_xor_imm<"asl", shl>;
+
+defm LSR : basic_xtype_imm<"lsr", srl>, basic_xtype_reg<"lsr", srl>,
+ xtype_xor_imm<"lsr", srl>;
+
+defm ASR : basic_xtype_imm<"asr", sra>, basic_xtype_reg<"asr", sra>;
+defm LSL : basic_xtype_reg<"lsl", shl>;
+
+// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
+def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)),
+ (i32 (MPYI_rin (i32 IntRegs:$src1), u8ImmPred:$src2))>;
+
+//===----------------------------------------------------------------------===//
+// V3 Instructions +
+//===----------------------------------------------------------------------===//
+
+include "HexagonInstrInfoV3.td"
+
+//===----------------------------------------------------------------------===//
+// V3 Instructions -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// V4 Instructions +
+//===----------------------------------------------------------------------===//
+
+include "HexagonInstrInfoV4.td"
+
+//===----------------------------------------------------------------------===//
+// V4 Instructions -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// V5 Instructions +
+//===----------------------------------------------------------------------===//
+
+include "HexagonInstrInfoV5.td"
+
+//===----------------------------------------------------------------------===//
+// V5 Instructions -
+//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV3.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV3.td
new file mode 100644
index 0000000..7e75554
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV3.td
@@ -0,0 +1,107 @@
+//=- HexagonInstrInfoV3.td - Target Desc. for Hexagon Target -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Hexagon V3 instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+def callv3 : SDNode<"HexagonISD::CALLv3", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
+
+def callv3nr : SDNode<"HexagonISD::CALLv3nr", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
+
+//===----------------------------------------------------------------------===//
+// J +
+//===----------------------------------------------------------------------===//
+// Call subroutine.
+let isCall = 1, neverHasSideEffects = 1,
+ Defs = [D0, D1, D2, D3, D4, D5, D6, D7, R28, R31,
+ P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
+ def CALLv3 : JInst<(outs), (ins calltarget:$dst),
+ "call $dst", []>, Requires<[HasV3T]>;
+}
+
+//===----------------------------------------------------------------------===//
+// J -
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// JR +
+//===----------------------------------------------------------------------===//
+// Call subroutine from register.
+let isCall = 1, neverHasSideEffects = 1,
+ Defs = [D0, D1, D2, D3, D4, D5, D6, D7, R28, R31,
+ P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
+ def CALLRv3 : JRInst<(outs), (ins IntRegs:$dst),
+ "callr $dst",
+ []>, Requires<[HasV3TOnly]>;
+ }
+
+//===----------------------------------------------------------------------===//
+// JR -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ALU64/ALU +
+//===----------------------------------------------------------------------===//
+
+let AddedComplexity = 200 in
+def MAXw_dd : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = max($src2, $src1)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (select (i1 (setlt (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1))),
+ (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2))))]>,
+Requires<[HasV3T]>;
+
+let AddedComplexity = 200 in
+def MINw_dd : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = min($src2, $src1)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (select (i1 (setgt (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1))),
+ (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2))))]>,
+Requires<[HasV3T]>;
+
+//===----------------------------------------------------------------------===//
+// ALU64/ALU -
+//===----------------------------------------------------------------------===//
+
+
+
+
+//def : Pat <(brcond (i1 (seteq (i32 IntRegs:$src1), 0)), bb:$offset),
+// (JMP_RegEzt (i32 IntRegs:$src1), bb:$offset)>, Requires<[HasV3T]>;
+
+//def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), 0)), bb:$offset),
+// (JMP_RegNzt (i32 IntRegs:$src1), bb:$offset)>, Requires<[HasV3T]>;
+
+//def : Pat <(brcond (i1 (setle (i32 IntRegs:$src1), 0)), bb:$offset),
+// (JMP_RegLezt (i32 IntRegs:$src1), bb:$offset)>, Requires<[HasV3T]>;
+
+//def : Pat <(brcond (i1 (setge (i32 IntRegs:$src1), 0)), bb:$offset),
+// (JMP_RegGezt (i32 IntRegs:$src1), bb:$offset)>, Requires<[HasV3T]>;
+
+//def : Pat <(brcond (i1 (setgt (i32 IntRegs:$src1), -1)), bb:$offset),
+// (JMP_RegGezt (i32 IntRegs:$src1), bb:$offset)>, Requires<[HasV3T]>;
+
+
+// Map call instruction
+def : Pat<(call (i32 IntRegs:$dst)),
+ (CALLRv3 (i32 IntRegs:$dst))>, Requires<[HasV3T]>;
+def : Pat<(call tglobaladdr:$dst),
+ (CALLv3 tglobaladdr:$dst)>, Requires<[HasV3T]>;
+def : Pat<(call texternalsym:$dst),
+ (CALLv3 texternalsym:$dst)>, Requires<[HasV3T]>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV4.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV4.td
new file mode 100644
index 0000000..db5b7ea
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV4.td
@@ -0,0 +1,3397 @@
+//=- HexagonInstrInfoV4.td - Target Desc. for Hexagon Target -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Hexagon V4 instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+let neverHasSideEffects = 1 in
+class T_Immext<dag ins> :
+ EXTENDERInst<(outs), ins, "immext(#$imm)", []>,
+ Requires<[HasV4T]>;
+
+def IMMEXT_b : T_Immext<(ins brtarget:$imm)>;
+def IMMEXT_c : T_Immext<(ins calltarget:$imm)>;
+def IMMEXT_g : T_Immext<(ins globaladdress:$imm)>;
+def IMMEXT_i : T_Immext<(ins u26_6Imm:$imm)>;
+
+// Fold (add (CONST32 tglobaladdr:$addr) <offset>) into a global address.
+def FoldGlobalAddr : ComplexPattern<i32, 1, "foldGlobalAddress", [], []>;
+
+// Fold (add (CONST32_GP tglobaladdr:$addr) <offset>) into a global address.
+def FoldGlobalAddrGP : ComplexPattern<i32, 1, "foldGlobalAddressGP", [], []>;
+
+def NumUsesBelowThresCONST32 : PatFrag<(ops node:$addr),
+ (HexagonCONST32 node:$addr), [{
+ return hasNumUsesBelowThresGA(N->getOperand(0).getNode());
+}]>;
+
+// Hexagon V4 Architecture spec defines 8 instruction classes:
+// LD ST ALU32 XTYPE J JR MEMOP NV CR SYSTEM(system is not implemented in the
+// compiler)
+
+// LD Instructions:
+// ========================================
+// Loads (8/16/32/64 bit)
+// Deallocframe
+
+// ST Instructions:
+// ========================================
+// Stores (8/16/32/64 bit)
+// Allocframe
+
+// ALU32 Instructions:
+// ========================================
+// Arithmetic / Logical (32 bit)
+// Vector Halfword
+
+// XTYPE Instructions (32/64 bit):
+// ========================================
+// Arithmetic, Logical, Bit Manipulation
+// Multiply (Integer, Fractional, Complex)
+// Permute / Vector Permute Operations
+// Predicate Operations
+// Shift / Shift with Add/Sub/Logical
+// Vector Byte ALU
+// Vector Halfword (ALU, Shift, Multiply)
+// Vector Word (ALU, Shift)
+
+// J Instructions:
+// ========================================
+// Jump/Call PC-relative
+
+// JR Instructions:
+// ========================================
+// Jump/Call Register
+
+// MEMOP Instructions:
+// ========================================
+// Operation on memory (8/16/32 bit)
+
+// NV Instructions:
+// ========================================
+// New-value Jumps
+// New-value Stores
+
+// CR Instructions:
+// ========================================
+// Control-Register Transfers
+// Hardware Loop Setup
+// Predicate Logicals & Reductions
+
+// SYSTEM Instructions (not implemented in the compiler):
+// ========================================
+// Prefetch
+// Cache Maintenance
+// Bus Operations
+
+
+//===----------------------------------------------------------------------===//
+// ALU32 +
+//===----------------------------------------------------------------------===//
+// Generate frame index addresses.
+let neverHasSideEffects = 1, isReMaterializable = 1,
+isExtended = 1, opExtendable = 2, validSubTargets = HasV4SubT in
+def TFR_FI_immext_V4 : ALU32_ri<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s32Imm:$offset),
+ "$dst = add($src1, ##$offset)",
+ []>,
+ Requires<[HasV4T]>;
+
+// Rd=cmp.eq(Rs,#s8)
+let validSubTargets = HasV4SubT, isExtendable = 1, opExtendable = 2,
+isExtentSigned = 1, opExtentBits = 8 in
+def V4_A4_rcmpeqi : ALU32_ri<(outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, s8Ext:$s8),
+ "$Rd = cmp.eq($Rs, #$s8)",
+ [(set (i32 IntRegs:$Rd),
+ (i32 (zext (i1 (seteq (i32 IntRegs:$Rs),
+ s8ExtPred:$s8)))))]>,
+ Requires<[HasV4T]>;
+
+// Preserve the TSTBIT generation
+def : Pat <(i32 (zext (i1 (setne (i32 (and (i32 (shl 1, (i32 IntRegs:$src2))),
+ (i32 IntRegs:$src1))), 0)))),
+ (i32 (MUX_ii (i1 (TSTBIT_rr (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ 1, 0))>;
+
+// Interfered with tstbit generation, above pattern preserves, see : tstbit.ll
+// Rd=cmp.ne(Rs,#s8)
+let validSubTargets = HasV4SubT, isExtendable = 1, opExtendable = 2,
+isExtentSigned = 1, opExtentBits = 8 in
+def V4_A4_rcmpneqi : ALU32_ri<(outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, s8Ext:$s8),
+ "$Rd = !cmp.eq($Rs, #$s8)",
+ [(set (i32 IntRegs:$Rd),
+ (i32 (zext (i1 (setne (i32 IntRegs:$Rs),
+ s8ExtPred:$s8)))))]>,
+ Requires<[HasV4T]>;
+
+// Rd=cmp.eq(Rs,Rt)
+let validSubTargets = HasV4SubT in
+def V4_A4_rcmpeq : ALU32_ri<(outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = cmp.eq($Rs, $Rt)",
+ [(set (i32 IntRegs:$Rd),
+ (i32 (zext (i1 (seteq (i32 IntRegs:$Rs),
+ IntRegs:$Rt)))))]>,
+ Requires<[HasV4T]>;
+
+// Rd=cmp.ne(Rs,Rt)
+let validSubTargets = HasV4SubT in
+def V4_A4_rcmpneq : ALU32_ri<(outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = !cmp.eq($Rs, $Rt)",
+ [(set (i32 IntRegs:$Rd),
+ (i32 (zext (i1 (setne (i32 IntRegs:$Rs),
+ IntRegs:$Rt)))))]>,
+ Requires<[HasV4T]>;
+
+//===----------------------------------------------------------------------===//
+// ALU32 -
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// ALU32/PERM +
+//===----------------------------------------------------------------------===//
+
+// Combine
+// Rdd=combine(Rs, #s8)
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
+ neverHasSideEffects = 1, validSubTargets = HasV4SubT in
+def COMBINE_rI_V4 : ALU32_ri<(outs DoubleRegs:$dst),
+ (ins IntRegs:$src1, s8Ext:$src2),
+ "$dst = combine($src1, #$src2)",
+ []>,
+ Requires<[HasV4T]>;
+
+// Rdd=combine(#s8, Rs)
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8,
+ neverHasSideEffects = 1, validSubTargets = HasV4SubT in
+def COMBINE_Ir_V4 : ALU32_ir<(outs DoubleRegs:$dst),
+ (ins s8Ext:$src1, IntRegs:$src2),
+ "$dst = combine(#$src1, $src2)",
+ []>,
+ Requires<[HasV4T]>;
+
+def HexagonWrapperCombineRI_V4 :
+ SDNode<"HexagonISD::WrapperCombineRI_V4", SDTHexagonI64I32I32>;
+def HexagonWrapperCombineIR_V4 :
+ SDNode<"HexagonISD::WrapperCombineIR_V4", SDTHexagonI64I32I32>;
+
+def : Pat <(HexagonWrapperCombineRI_V4 IntRegs:$r, s8ExtPred:$i),
+ (COMBINE_rI_V4 IntRegs:$r, s8ExtPred:$i)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(HexagonWrapperCombineIR_V4 s8ExtPred:$i, IntRegs:$r),
+ (COMBINE_Ir_V4 s8ExtPred:$i, IntRegs:$r)>,
+ Requires<[HasV4T]>;
+
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 6,
+ neverHasSideEffects = 1, validSubTargets = HasV4SubT in
+def COMBINE_iI_V4 : ALU32_ii<(outs DoubleRegs:$dst),
+ (ins s8Imm:$src1, u6Ext:$src2),
+ "$dst = combine(#$src1, #$src2)",
+ []>,
+ Requires<[HasV4T]>;
+
+//===----------------------------------------------------------------------===//
+// ALU32/PERM +
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// LD +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// Template class for load instructions with Absolute set addressing mode.
+//===----------------------------------------------------------------------===//
+let isExtended = 1, opExtendable = 2, neverHasSideEffects = 1,
+validSubTargets = HasV4SubT, addrMode = AbsoluteSet in
+class T_LD_abs_set<string mnemonic, RegisterClass RC>:
+ LDInst2<(outs RC:$dst1, IntRegs:$dst2),
+ (ins u0AlwaysExt:$addr),
+ "$dst1 = "#mnemonic#"($dst2=##$addr)",
+ []>,
+ Requires<[HasV4T]>;
+
+def LDrid_abs_set_V4 : T_LD_abs_set <"memd", DoubleRegs>;
+def LDrib_abs_set_V4 : T_LD_abs_set <"memb", IntRegs>;
+def LDriub_abs_set_V4 : T_LD_abs_set <"memub", IntRegs>;
+def LDrih_abs_set_V4 : T_LD_abs_set <"memh", IntRegs>;
+def LDriw_abs_set_V4 : T_LD_abs_set <"memw", IntRegs>;
+def LDriuh_abs_set_V4 : T_LD_abs_set <"memuh", IntRegs>;
+
+
+// multiclass for load instructions with base + register offset
+// addressing mode
+multiclass ld_idxd_shl_pbase<string mnemonic, RegisterClass RC, bit isNot,
+ bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : LDInst2<(outs RC:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$offset),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#"$dst = "#mnemonic#"($src2+$src3<<#$offset)",
+ []>, Requires<[HasV4T]>;
+}
+
+multiclass ld_idxd_shl_pred<string mnemonic, RegisterClass RC, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ld_idxd_shl_pbase<mnemonic, RC, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : ld_idxd_shl_pbase<mnemonic, RC, PredNot, 1>;
+ }
+}
+
+let neverHasSideEffects = 1 in
+multiclass ld_idxd_shl<string mnemonic, string CextOp, RegisterClass RC> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
+ let isPredicable = 1 in
+ def NAME#_V4 : LDInst2<(outs RC:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$offset),
+ "$dst = "#mnemonic#"($src1+$src2<<#$offset)",
+ []>, Requires<[HasV4T]>;
+
+ let isPredicated = 1 in {
+ defm Pt_V4 : ld_idxd_shl_pred<mnemonic, RC, 0 >;
+ defm NotPt_V4 : ld_idxd_shl_pred<mnemonic, RC, 1>;
+ }
+ }
+}
+
+let addrMode = BaseRegOffset in {
+ let accessSize = ByteAccess in {
+ defm LDrib_indexed_shl: ld_idxd_shl<"memb", "LDrib", IntRegs>,
+ AddrModeRel;
+ defm LDriub_indexed_shl: ld_idxd_shl<"memub", "LDriub", IntRegs>,
+ AddrModeRel;
+ }
+ let accessSize = HalfWordAccess in {
+ defm LDrih_indexed_shl: ld_idxd_shl<"memh", "LDrih", IntRegs>, AddrModeRel;
+ defm LDriuh_indexed_shl: ld_idxd_shl<"memuh", "LDriuh", IntRegs>,
+ AddrModeRel;
+ }
+ let accessSize = WordAccess in
+ defm LDriw_indexed_shl: ld_idxd_shl<"memw", "LDriw", IntRegs>, AddrModeRel;
+
+ let accessSize = DoubleWordAccess in
+ defm LDrid_indexed_shl: ld_idxd_shl<"memd", "LDrid", DoubleRegs>,
+ AddrModeRel;
+}
+
+// 'def pats' for load instructions with base + register offset and non-zero
+// immediate value. Immediate value is used to left-shift the second
+// register operand.
+let AddedComplexity = 40 in {
+def : Pat <(i32 (sextloadi8 (add IntRegs:$src1,
+ (shl IntRegs:$src2, u2ImmPred:$offset)))),
+ (LDrib_indexed_shl_V4 IntRegs:$src1,
+ IntRegs:$src2, u2ImmPred:$offset)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (zextloadi8 (add IntRegs:$src1,
+ (shl IntRegs:$src2, u2ImmPred:$offset)))),
+ (LDriub_indexed_shl_V4 IntRegs:$src1,
+ IntRegs:$src2, u2ImmPred:$offset)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (extloadi8 (add IntRegs:$src1,
+ (shl IntRegs:$src2, u2ImmPred:$offset)))),
+ (LDriub_indexed_shl_V4 IntRegs:$src1,
+ IntRegs:$src2, u2ImmPred:$offset)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (sextloadi16 (add IntRegs:$src1,
+ (shl IntRegs:$src2, u2ImmPred:$offset)))),
+ (LDrih_indexed_shl_V4 IntRegs:$src1,
+ IntRegs:$src2, u2ImmPred:$offset)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (zextloadi16 (add IntRegs:$src1,
+ (shl IntRegs:$src2, u2ImmPred:$offset)))),
+ (LDriuh_indexed_shl_V4 IntRegs:$src1,
+ IntRegs:$src2, u2ImmPred:$offset)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (extloadi16 (add IntRegs:$src1,
+ (shl IntRegs:$src2, u2ImmPred:$offset)))),
+ (LDriuh_indexed_shl_V4 IntRegs:$src1,
+ IntRegs:$src2, u2ImmPred:$offset)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (load (add IntRegs:$src1,
+ (shl IntRegs:$src2, u2ImmPred:$offset)))),
+ (LDriw_indexed_shl_V4 IntRegs:$src1,
+ IntRegs:$src2, u2ImmPred:$offset)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i64 (load (add IntRegs:$src1,
+ (shl IntRegs:$src2, u2ImmPred:$offset)))),
+ (LDrid_indexed_shl_V4 IntRegs:$src1,
+ IntRegs:$src2, u2ImmPred:$offset)>,
+ Requires<[HasV4T]>;
+}
+
+
+// 'def pats' for load instruction base + register offset and
+// zero immediate value.
+let AddedComplexity = 10 in {
+def : Pat <(i64 (load (add IntRegs:$src1, IntRegs:$src2))),
+ (LDrid_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (sextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
+ (LDrib_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (zextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
+ (LDriub_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (extloadi8 (add IntRegs:$src1, IntRegs:$src2))),
+ (LDriub_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (sextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
+ (LDrih_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (zextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
+ (LDriuh_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (extloadi16 (add IntRegs:$src1, IntRegs:$src2))),
+ (LDriuh_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ Requires<[HasV4T]>;
+
+def : Pat <(i32 (load (add IntRegs:$src1, IntRegs:$src2))),
+ (LDriw_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ Requires<[HasV4T]>;
+}
+
+// zext i1->i64
+def : Pat <(i64 (zext (i1 PredRegs:$src1))),
+ (i64 (COMBINE_Ir_V4 0, (MUX_ii (i1 PredRegs:$src1), 1, 0)))>,
+ Requires<[HasV4T]>;
+
+// zext i32->i64
+def : Pat <(i64 (zext (i32 IntRegs:$src1))),
+ (i64 (COMBINE_Ir_V4 0, (i32 IntRegs:$src1)))>,
+ Requires<[HasV4T]>;
+// zext i8->i64
+def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
+ (i64 (COMBINE_Ir_V4 0, (LDriub ADDRriS11_0:$src1)))>,
+ Requires<[HasV4T]>;
+
+let AddedComplexity = 20 in
+def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1),
+ s11_0ExtPred:$offset))),
+ (i64 (COMBINE_Ir_V4 0, (LDriub_indexed IntRegs:$src1,
+ s11_0ExtPred:$offset)))>,
+ Requires<[HasV4T]>;
+
+// zext i1->i64
+def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)),
+ (i64 (COMBINE_Ir_V4 0, (LDriub ADDRriS11_0:$src1)))>,
+ Requires<[HasV4T]>;
+
+let AddedComplexity = 20 in
+def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1),
+ s11_0ExtPred:$offset))),
+ (i64 (COMBINE_Ir_V4 0, (LDriub_indexed IntRegs:$src1,
+ s11_0ExtPred:$offset)))>,
+ Requires<[HasV4T]>;
+
+// zext i16->i64
+def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
+ (i64 (COMBINE_Ir_V4 0, (LDriuh ADDRriS11_1:$src1)))>,
+ Requires<[HasV4T]>;
+
+let AddedComplexity = 20 in
+def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1),
+ s11_1ExtPred:$offset))),
+ (i64 (COMBINE_Ir_V4 0, (LDriuh_indexed IntRegs:$src1,
+ s11_1ExtPred:$offset)))>,
+ Requires<[HasV4T]>;
+
+// anyext i16->i64
+def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
+ (i64 (COMBINE_Ir_V4 0, (LDrih ADDRriS11_2:$src1)))>,
+ Requires<[HasV4T]>;
+
+let AddedComplexity = 20 in
+def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1),
+ s11_1ExtPred:$offset))),
+ (i64 (COMBINE_Ir_V4 0, (LDrih_indexed IntRegs:$src1,
+ s11_1ExtPred:$offset)))>,
+ Requires<[HasV4T]>;
+
+// zext i32->i64
+def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
+ (i64 (COMBINE_Ir_V4 0, (LDriw ADDRriS11_2:$src1)))>,
+ Requires<[HasV4T]>;
+
+let AddedComplexity = 100 in
+def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
+ (i64 (COMBINE_Ir_V4 0, (LDriw_indexed IntRegs:$src1,
+ s11_2ExtPred:$offset)))>,
+ Requires<[HasV4T]>;
+
+// anyext i32->i64
+def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
+ (i64 (COMBINE_Ir_V4 0, (LDriw ADDRriS11_2:$src1)))>,
+ Requires<[HasV4T]>;
+
+let AddedComplexity = 100 in
+def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
+ (i64 (COMBINE_Ir_V4 0, (LDriw_indexed IntRegs:$src1,
+ s11_2ExtPred:$offset)))>,
+ Requires<[HasV4T]>;
+
+
+
+//===----------------------------------------------------------------------===//
+// LD -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ST +
+//===----------------------------------------------------------------------===//
+///
+//===----------------------------------------------------------------------===//
+// Template class for store instructions with Absolute set addressing mode.
+//===----------------------------------------------------------------------===//
+let isExtended = 1, opExtendable = 2, validSubTargets = HasV4SubT,
+addrMode = AbsoluteSet in
+class T_ST_abs_set<string mnemonic, RegisterClass RC>:
+ STInst2<(outs IntRegs:$dst1),
+ (ins RC:$src1, u0AlwaysExt:$src2),
+ mnemonic#"($dst1=##$src2) = $src1",
+ []>,
+ Requires<[HasV4T]>;
+
+def STrid_abs_set_V4 : T_ST_abs_set <"memd", DoubleRegs>;
+def STrib_abs_set_V4 : T_ST_abs_set <"memb", IntRegs>;
+def STrih_abs_set_V4 : T_ST_abs_set <"memh", IntRegs>;
+def STriw_abs_set_V4 : T_ST_abs_set <"memw", IntRegs>;
+
+//===----------------------------------------------------------------------===//
+// multiclass for store instructions with base + register offset addressing
+// mode
+//===----------------------------------------------------------------------===//
+multiclass ST_Idxd_shl_Pbase<string mnemonic, RegisterClass RC, bit isNot,
+ bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : STInst2<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$src4,
+ RC:$src5),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2+$src3<<#$src4) = $src5",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+multiclass ST_Idxd_shl_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ST_Idxd_shl_Pbase<mnemonic, RC, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : ST_Idxd_shl_Pbase<mnemonic, RC, PredNot, 1>;
+ }
+}
+
+let isNVStorable = 1 in
+multiclass ST_Idxd_shl<string mnemonic, string CextOp, RegisterClass RC> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
+ let isPredicable = 1 in
+ def NAME#_V4 : STInst2<(outs),
+ (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$src3, RC:$src4),
+ mnemonic#"($src1+$src2<<#$src3) = $src4",
+ []>,
+ Requires<[HasV4T]>;
+
+ let isPredicated = 1 in {
+ defm Pt_V4 : ST_Idxd_shl_Pred<mnemonic, RC, 0 >;
+ defm NotPt_V4 : ST_Idxd_shl_Pred<mnemonic, RC, 1>;
+ }
+ }
+}
+
+// multiclass for new-value store instructions with base + register offset
+// addressing mode.
+multiclass ST_Idxd_shl_Pbase_nv<string mnemonic, RegisterClass RC, bit isNot,
+ bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME#_nv_V4 : NVInst_V4<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$src4,
+ RC:$src5),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2+$src3<<#$src4) = $src5.new",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+multiclass ST_Idxd_shl_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ST_Idxd_shl_Pbase_nv<mnemonic, RC, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : ST_Idxd_shl_Pbase_nv<mnemonic, RC, PredNot, 1>;
+ }
+}
+
+let mayStore = 1, isNVStore = 1 in
+multiclass ST_Idxd_shl_nv<string mnemonic, string CextOp, RegisterClass RC> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
+ let isPredicable = 1 in
+ def NAME#_nv_V4 : NVInst_V4<(outs),
+ (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$src3, RC:$src4),
+ mnemonic#"($src1+$src2<<#$src3) = $src4.new",
+ []>,
+ Requires<[HasV4T]>;
+
+ let isPredicated = 1 in {
+ defm Pt : ST_Idxd_shl_Pred_nv<mnemonic, RC, 0 >;
+ defm NotPt : ST_Idxd_shl_Pred_nv<mnemonic, RC, 1>;
+ }
+ }
+}
+
+let addrMode = BaseRegOffset, neverHasSideEffects = 1,
+validSubTargets = HasV4SubT in {
+ let accessSize = ByteAccess in
+ defm STrib_indexed_shl: ST_Idxd_shl<"memb", "STrib", IntRegs>,
+ ST_Idxd_shl_nv<"memb", "STrib", IntRegs>, AddrModeRel;
+
+ let accessSize = HalfWordAccess in
+ defm STrih_indexed_shl: ST_Idxd_shl<"memh", "STrih", IntRegs>,
+ ST_Idxd_shl_nv<"memh", "STrih", IntRegs>, AddrModeRel;
+
+ let accessSize = WordAccess in
+ defm STriw_indexed_shl: ST_Idxd_shl<"memw", "STriw", IntRegs>,
+ ST_Idxd_shl_nv<"memw", "STriw", IntRegs>, AddrModeRel;
+
+ let isNVStorable = 0, accessSize = DoubleWordAccess in
+ defm STrid_indexed_shl: ST_Idxd_shl<"memd", "STrid", DoubleRegs>, AddrModeRel;
+}
+
+let Predicates = [HasV4T], AddedComplexity = 10 in {
+def : Pat<(truncstorei8 (i32 IntRegs:$src4),
+ (add IntRegs:$src1, (shl IntRegs:$src2,
+ u2ImmPred:$src3))),
+ (STrib_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
+ u2ImmPred:$src3, IntRegs:$src4)>;
+
+def : Pat<(truncstorei16 (i32 IntRegs:$src4),
+ (add IntRegs:$src1, (shl IntRegs:$src2,
+ u2ImmPred:$src3))),
+ (STrih_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
+ u2ImmPred:$src3, IntRegs:$src4)>;
+
+def : Pat<(store (i32 IntRegs:$src4),
+ (add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
+ (STriw_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
+ u2ImmPred:$src3, IntRegs:$src4)>;
+
+def : Pat<(store (i64 DoubleRegs:$src4),
+ (add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
+ (STrid_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
+ u2ImmPred:$src3, DoubleRegs:$src4)>;
+}
+
+let isExtended = 1, opExtendable = 2 in
+class T_ST_LongOff <string mnemonic, PatFrag stOp, RegisterClass RC, ValueType VT> :
+ STInst<(outs),
+ (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, RC:$src4),
+ mnemonic#"($src1<<#$src2+##$src3) = $src4",
+ [(stOp (VT RC:$src4),
+ (add (shl (i32 IntRegs:$src1), u2ImmPred:$src2),
+ u0AlwaysExtPred:$src3))]>,
+ Requires<[HasV4T]>;
+
+let isExtended = 1, opExtendable = 2, mayStore = 1, isNVStore = 1 in
+class T_ST_LongOff_nv <string mnemonic> :
+ NVInst_V4<(outs),
+ (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, IntRegs:$src4),
+ mnemonic#"($src1<<#$src2+##$src3) = $src4.new",
+ []>,
+ Requires<[HasV4T]>;
+
+multiclass ST_LongOff <string mnemonic, string BaseOp, PatFrag stOp> {
+ let BaseOpcode = BaseOp#"_shl" in {
+ let isNVStorable = 1 in
+ def NAME#_V4 : T_ST_LongOff<mnemonic, stOp, IntRegs, i32>;
+
+ def NAME#_nv_V4 : T_ST_LongOff_nv<mnemonic>;
+ }
+}
+
+let AddedComplexity = 10, validSubTargets = HasV4SubT in {
+ def STrid_shl_V4 : T_ST_LongOff<"memd", store, DoubleRegs, i64>;
+ defm STrib_shl : ST_LongOff <"memb", "STrib", truncstorei8>, NewValueRel;
+ defm STrih_shl : ST_LongOff <"memh", "Strih", truncstorei16>, NewValueRel;
+ defm STriw_shl : ST_LongOff <"memw", "STriw", store>, NewValueRel;
+}
+
+let AddedComplexity = 40 in
+multiclass T_ST_LOff_Pats <InstHexagon I, RegisterClass RC, ValueType VT,
+ PatFrag stOp> {
+ def : Pat<(stOp (VT RC:$src4),
+ (add (shl IntRegs:$src1, u2ImmPred:$src2),
+ (NumUsesBelowThresCONST32 tglobaladdr:$src3))),
+ (I IntRegs:$src1, u2ImmPred:$src2, tglobaladdr:$src3, RC:$src4)>;
+
+ def : Pat<(stOp (VT RC:$src4),
+ (add IntRegs:$src1,
+ (NumUsesBelowThresCONST32 tglobaladdr:$src3))),
+ (I IntRegs:$src1, 0, tglobaladdr:$src3, RC:$src4)>;
+}
+
+defm : T_ST_LOff_Pats<STrid_shl_V4, DoubleRegs, i64, store>;
+defm : T_ST_LOff_Pats<STriw_shl_V4, IntRegs, i32, store>;
+defm : T_ST_LOff_Pats<STrib_shl_V4, IntRegs, i32, truncstorei8>;
+defm : T_ST_LOff_Pats<STrih_shl_V4, IntRegs, i32, truncstorei16>;
+
+// memd(Rx++#s4:3)=Rtt
+// memd(Rx++#s4:3:circ(Mu))=Rtt
+// memd(Rx++I:circ(Mu))=Rtt
+// memd(Rx++Mu)=Rtt
+// memd(Rx++Mu:brev)=Rtt
+// memd(gp+#u16:3)=Rtt
+
+// Store doubleword conditionally.
+// if ([!]Pv[.new]) memd(#u6)=Rtt
+// TODO: needs to be implemented.
+
+//===----------------------------------------------------------------------===//
+// multiclass for store instructions with base + immediate offset
+// addressing mode and immediate stored value.
+// mem[bhw](Rx++#s4:3)=#s8
+// if ([!]Pv[.new]) mem[bhw](Rx++#s4:3)=#s6
+//===----------------------------------------------------------------------===//
+multiclass ST_Imm_Pbase<string mnemonic, Operand OffsetOp, bit isNot,
+ bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : STInst2<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, OffsetOp:$src3, s6Ext:$src4),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2+#$src3) = #$src4",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+multiclass ST_Imm_Pred<string mnemonic, Operand OffsetOp, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ST_Imm_Pbase<mnemonic, OffsetOp, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : ST_Imm_Pbase<mnemonic, OffsetOp, PredNot, 1>;
+ }
+}
+
+let isExtendable = 1, isExtentSigned = 1, neverHasSideEffects = 1 in
+multiclass ST_Imm<string mnemonic, string CextOp, Operand OffsetOp> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_imm in {
+ let opExtendable = 2, opExtentBits = 8, isPredicable = 1 in
+ def NAME#_V4 : STInst2<(outs),
+ (ins IntRegs:$src1, OffsetOp:$src2, s8Ext:$src3),
+ mnemonic#"($src1+#$src2) = #$src3",
+ []>,
+ Requires<[HasV4T]>;
+
+ let opExtendable = 3, opExtentBits = 6, isPredicated = 1 in {
+ defm Pt_V4 : ST_Imm_Pred<mnemonic, OffsetOp, 0>;
+ defm NotPt_V4 : ST_Imm_Pred<mnemonic, OffsetOp, 1 >;
+ }
+ }
+}
+
+let addrMode = BaseImmOffset, InputType = "imm",
+validSubTargets = HasV4SubT in {
+ let accessSize = ByteAccess in
+ defm STrib_imm : ST_Imm<"memb", "STrib", u6_0Imm>, ImmRegRel, PredNewRel;
+
+ let accessSize = HalfWordAccess in
+ defm STrih_imm : ST_Imm<"memh", "STrih", u6_1Imm>, ImmRegRel, PredNewRel;
+
+ let accessSize = WordAccess in
+ defm STriw_imm : ST_Imm<"memw", "STriw", u6_2Imm>, ImmRegRel, PredNewRel;
+}
+
+let Predicates = [HasV4T], AddedComplexity = 10 in {
+def: Pat<(truncstorei8 s8ExtPred:$src3, (add IntRegs:$src1, u6_0ImmPred:$src2)),
+ (STrib_imm_V4 IntRegs:$src1, u6_0ImmPred:$src2, s8ExtPred:$src3)>;
+
+def: Pat<(truncstorei16 s8ExtPred:$src3, (add IntRegs:$src1,
+ u6_1ImmPred:$src2)),
+ (STrih_imm_V4 IntRegs:$src1, u6_1ImmPred:$src2, s8ExtPred:$src3)>;
+
+def: Pat<(store s8ExtPred:$src3, (add IntRegs:$src1, u6_2ImmPred:$src2)),
+ (STriw_imm_V4 IntRegs:$src1, u6_2ImmPred:$src2, s8ExtPred:$src3)>;
+}
+
+let AddedComplexity = 6 in
+def : Pat <(truncstorei8 s8ExtPred:$src2, (i32 IntRegs:$src1)),
+ (STrib_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
+ Requires<[HasV4T]>;
+
+// memb(Rx++#s4:0:circ(Mu))=Rt
+// memb(Rx++I:circ(Mu))=Rt
+// memb(Rx++Mu)=Rt
+// memb(Rx++Mu:brev)=Rt
+// memb(gp+#u16:0)=Rt
+
+
+// Store halfword.
+// TODO: needs to be implemented
+// memh(Re=#U6)=Rt.H
+// memh(Rs+#s11:1)=Rt.H
+let AddedComplexity = 6 in
+def : Pat <(truncstorei16 s8ExtPred:$src2, (i32 IntRegs:$src1)),
+ (STrih_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
+ Requires<[HasV4T]>;
+
+// memh(Rs+Ru<<#u2)=Rt.H
+// TODO: needs to be implemented.
+
+// memh(Ru<<#u2+#U6)=Rt.H
+// memh(Rx++#s4:1:circ(Mu))=Rt.H
+// memh(Rx++#s4:1:circ(Mu))=Rt
+// memh(Rx++I:circ(Mu))=Rt.H
+// memh(Rx++I:circ(Mu))=Rt
+// memh(Rx++Mu)=Rt.H
+// memh(Rx++Mu)=Rt
+// memh(Rx++Mu:brev)=Rt.H
+// memh(Rx++Mu:brev)=Rt
+// memh(gp+#u16:1)=Rt
+// if ([!]Pv[.new]) memh(#u6)=Rt.H
+// if ([!]Pv[.new]) memh(#u6)=Rt
+
+
+// if ([!]Pv[.new]) memh(Rs+#u6:1)=Rt.H
+// TODO: needs to be implemented.
+
+// if ([!]Pv[.new]) memh(Rx++#s4:1)=Rt.H
+// TODO: Needs to be implemented.
+
+// Store word.
+// memw(Re=#U6)=Rt
+// TODO: Needs to be implemented.
+
+// Store predicate:
+let neverHasSideEffects = 1 in
+def STriw_pred_V4 : STInst2<(outs),
+ (ins MEMri:$addr, PredRegs:$src1),
+ "Error; should not emit",
+ []>,
+ Requires<[HasV4T]>;
+
+let AddedComplexity = 6 in
+def : Pat <(store s8ExtPred:$src2, (i32 IntRegs:$src1)),
+ (STriw_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
+ Requires<[HasV4T]>;
+
+// memw(Rx++#s4:2)=Rt
+// memw(Rx++#s4:2:circ(Mu))=Rt
+// memw(Rx++I:circ(Mu))=Rt
+// memw(Rx++Mu)=Rt
+// memw(Rx++Mu:brev)=Rt
+
+//===----------------------------------------------------------------------===
+// ST -
+//===----------------------------------------------------------------------===
+
+
+//===----------------------------------------------------------------------===//
+// NV/ST +
+//===----------------------------------------------------------------------===//
+
+// multiclass for new-value store instructions with base + immediate offset.
+//
+multiclass ST_Idxd_Pbase_nv<string mnemonic, RegisterClass RC,
+ Operand predImmOp, bit isNot, bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME#_nv_V4 : NVInst_V4<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2+#$src3) = $src4.new",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+multiclass ST_Idxd_Pred_nv<string mnemonic, RegisterClass RC, Operand predImmOp,
+ bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ST_Idxd_Pbase_nv<mnemonic, RC, predImmOp, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : ST_Idxd_Pbase_nv<mnemonic, RC, predImmOp, PredNot, 1>;
+ }
+}
+
+let mayStore = 1, isNVStore = 1, neverHasSideEffects = 1, isExtendable = 1 in
+multiclass ST_Idxd_nv<string mnemonic, string CextOp, RegisterClass RC,
+ Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
+ bits<5> PredImmBits> {
+
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
+ let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
+ isPredicable = 1 in
+ def NAME#_nv_V4 : NVInst_V4<(outs),
+ (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
+ mnemonic#"($src1+#$src2) = $src3.new",
+ []>,
+ Requires<[HasV4T]>;
+
+ let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
+ isPredicated = 1 in {
+ defm Pt : ST_Idxd_Pred_nv<mnemonic, RC, predImmOp, 0>;
+ defm NotPt : ST_Idxd_Pred_nv<mnemonic, RC, predImmOp, 1>;
+ }
+ }
+}
+
+let addrMode = BaseImmOffset, validSubTargets = HasV4SubT in {
+ let accessSize = ByteAccess in
+ defm STrib_indexed: ST_Idxd_nv<"memb", "STrib", IntRegs, s11_0Ext,
+ u6_0Ext, 11, 6>, AddrModeRel;
+
+ let accessSize = HalfWordAccess in
+ defm STrih_indexed: ST_Idxd_nv<"memh", "STrih", IntRegs, s11_1Ext,
+ u6_1Ext, 12, 7>, AddrModeRel;
+
+ let accessSize = WordAccess in
+ defm STriw_indexed: ST_Idxd_nv<"memw", "STriw", IntRegs, s11_2Ext,
+ u6_2Ext, 13, 8>, AddrModeRel;
+}
+
+// multiclass for new-value store instructions with base + immediate offset.
+// and MEMri operand.
+multiclass ST_MEMri_Pbase_nv<string mnemonic, RegisterClass RC, bit isNot,
+ bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME#_nv_V4 : NVInst_V4<(outs),
+ (ins PredRegs:$src1, MEMri:$addr, RC: $src2),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($addr) = $src2.new",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+multiclass ST_MEMri_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ST_MEMri_Pbase_nv<mnemonic, RC, PredNot, 0>;
+
+ // Predicate new
+ defm _cdn#NAME : ST_MEMri_Pbase_nv<mnemonic, RC, PredNot, 1>;
+ }
+}
+
+let mayStore = 1, isNVStore = 1, isExtendable = 1, neverHasSideEffects = 1 in
+multiclass ST_MEMri_nv<string mnemonic, string CextOp, RegisterClass RC,
+ bits<5> ImmBits, bits<5> PredImmBits> {
+
+ let CextOpcode = CextOp, BaseOpcode = CextOp in {
+ let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
+ isPredicable = 1 in
+ def NAME#_nv_V4 : NVInst_V4<(outs),
+ (ins MEMri:$addr, RC:$src),
+ mnemonic#"($addr) = $src.new",
+ []>,
+ Requires<[HasV4T]>;
+
+ let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
+ neverHasSideEffects = 1, isPredicated = 1 in {
+ defm Pt : ST_MEMri_Pred_nv<mnemonic, RC, 0>;
+ defm NotPt : ST_MEMri_Pred_nv<mnemonic, RC, 1>;
+ }
+ }
+}
+
+let addrMode = BaseImmOffset, isMEMri = "true", validSubTargets = HasV4SubT,
+mayStore = 1 in {
+ let accessSize = ByteAccess in
+ defm STrib: ST_MEMri_nv<"memb", "STrib", IntRegs, 11, 6>, AddrModeRel;
+
+ let accessSize = HalfWordAccess in
+ defm STrih: ST_MEMri_nv<"memh", "STrih", IntRegs, 12, 7>, AddrModeRel;
+
+ let accessSize = WordAccess in
+ defm STriw: ST_MEMri_nv<"memw", "STriw", IntRegs, 13, 8>, AddrModeRel;
+}
+
+//===----------------------------------------------------------------------===//
+// Post increment store
+// mem[bhwd](Rx++#s4:[0123])=Nt.new
+//===----------------------------------------------------------------------===//
+
+multiclass ST_PostInc_Pbase_nv<string mnemonic, RegisterClass RC, Operand ImmOp,
+ bit isNot, bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME#_nv_V4 : NVInstPI_V4<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2++#$offset) = $src3.new",
+ [],
+ "$src2 = $dst">,
+ Requires<[HasV4T]>;
+}
+
+multiclass ST_PostInc_Pred_nv<string mnemonic, RegisterClass RC,
+ Operand ImmOp, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ST_PostInc_Pbase_nv<mnemonic, RC, ImmOp, PredNot, 0>;
+ // Predicate new
+ let Predicates = [HasV4T], validSubTargets = HasV4SubT in
+ defm _cdn#NAME : ST_PostInc_Pbase_nv<mnemonic, RC, ImmOp, PredNot, 1>;
+ }
+}
+
+let hasCtrlDep = 1, isNVStore = 1, neverHasSideEffects = 1 in
+multiclass ST_PostInc_nv<string mnemonic, string BaseOp, RegisterClass RC,
+ Operand ImmOp> {
+
+ let BaseOpcode = "POST_"#BaseOp in {
+ let isPredicable = 1 in
+ def NAME#_nv_V4 : NVInstPI_V4<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
+ mnemonic#"($src1++#$offset) = $src2.new",
+ [],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+ let isPredicated = 1 in {
+ defm Pt : ST_PostInc_Pred_nv<mnemonic, RC, ImmOp, 0 >;
+ defm NotPt : ST_PostInc_Pred_nv<mnemonic, RC, ImmOp, 1 >;
+ }
+ }
+}
+
+let addrMode = PostInc, validSubTargets = HasV4SubT in {
+defm POST_STbri: ST_PostInc_nv <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel;
+defm POST_SThri: ST_PostInc_nv <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel;
+defm POST_STwri: ST_PostInc_nv <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel;
+}
+
+// memb(Rx++#s4:0:circ(Mu))=Nt.new
+// memb(Rx++I:circ(Mu))=Nt.new
+// memb(Rx++Mu)=Nt.new
+// memb(Rx++Mu:brev)=Nt.new
+// memh(Rx++#s4:1:circ(Mu))=Nt.new
+// memh(Rx++I:circ(Mu))=Nt.new
+// memh(Rx++Mu)=Nt.new
+// memh(Rx++Mu:brev)=Nt.new
+
+// memw(Rx++#s4:2:circ(Mu))=Nt.new
+// memw(Rx++I:circ(Mu))=Nt.new
+// memw(Rx++Mu)=Nt.new
+// memw(Rx++Mu:brev)=Nt.new
+
+//===----------------------------------------------------------------------===//
+// NV/ST -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// NV/J +
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// multiclass/template class for the new-value compare jumps with the register
+// operands.
+//===----------------------------------------------------------------------===//
+
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11 in
+class NVJrr_template<string mnemonic, bits<3> majOp, bit NvOpNum,
+ bit isNegCond, bit isTak>
+ : NVInst_V4<(outs),
+ (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset),
+ "if ("#!if(isNegCond, "!","")#mnemonic#
+ "($src1"#!if(!eq(NvOpNum, 0),".new, ",", ")#
+ "$src2"#!if(!eq(NvOpNum, 1),".new))","))")#" jump:"
+ #!if(isTak, "t","nt")#" $offset",
+ []>, Requires<[HasV4T]> {
+
+ bits<5> src1;
+ bits<5> src2;
+ bits<3> Ns; // New-Value Operand
+ bits<5> RegOp; // Non-New-Value Operand
+ bits<11> offset;
+
+ let isTaken = isTak;
+ let isBrTaken = !if(isTaken, "true", "false");
+ let isPredicatedFalse = isNegCond;
+
+ let Ns = !if(!eq(NvOpNum, 0), src1{2-0}, src2{2-0});
+ let RegOp = !if(!eq(NvOpNum, 0), src2, src1);
+
+ let IClass = 0b0010;
+ let Inst{26} = 0b0;
+ let Inst{25-23} = majOp;
+ let Inst{22} = isNegCond;
+ let Inst{18-16} = Ns;
+ let Inst{13} = isTak;
+ let Inst{12-8} = RegOp;
+ let Inst{21-20} = offset{10-9};
+ let Inst{7-1} = offset{8-2};
+}
+
+
+multiclass NVJrr_cond<string mnemonic, bits<3> majOp, bit NvOpNum,
+ bit isNegCond> {
+ // Branch not taken:
+ def _nt_V4: NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 0>;
+ // Branch taken:
+ def _t_V4: NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 1>;
+}
+
+// NvOpNum = 0 -> First Operand is a new-value Register
+// NvOpNum = 1 -> Second Operand is a new-value Register
+
+multiclass NVJrr_base<string mnemonic, string BaseOp, bits<3> majOp,
+ bit NvOpNum> {
+ let BaseOpcode = BaseOp#_NVJ in {
+ defm _t_Jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 0>; // True cond
+ defm _f_Jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 1>; // False cond
+ }
+}
+
+// if ([!]cmp.eq(Ns.new,Rt)) jump:[n]t #r9:2
+// if ([!]cmp.gt(Ns.new,Rt)) jump:[n]t #r9:2
+// if ([!]cmp.gtu(Ns.new,Rt)) jump:[n]t #r9:2
+// if ([!]cmp.gt(Rt,Ns.new)) jump:[n]t #r9:2
+// if ([!]cmp.gtu(Rt,Ns.new)) jump:[n]t #r9:2
+
+let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
+ Defs = [PC], neverHasSideEffects = 1, validSubTargets = HasV4SubT in {
+ defm CMPEQrr : NVJrr_base<"cmp.eq", "CMPEQ", 0b000, 0>, PredRel;
+ defm CMPGTrr : NVJrr_base<"cmp.gt", "CMPGT", 0b001, 0>, PredRel;
+ defm CMPGTUrr : NVJrr_base<"cmp.gtu", "CMPGTU", 0b010, 0>, PredRel;
+ defm CMPLTrr : NVJrr_base<"cmp.gt", "CMPLT", 0b011, 1>, PredRel;
+ defm CMPLTUrr : NVJrr_base<"cmp.gtu", "CMPLTU", 0b100, 1>, PredRel;
+}
+
+//===----------------------------------------------------------------------===//
+// multiclass/template class for the new-value compare jumps instruction
+// with a register and an unsigned immediate (U5) operand.
+//===----------------------------------------------------------------------===//
+
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11 in
+class NVJri_template<string mnemonic, bits<3> majOp, bit isNegCond,
+ bit isTak>
+ : NVInst_V4<(outs),
+ (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset),
+ "if ("#!if(isNegCond, "!","")#mnemonic#"($src1.new, #$src2)) jump:"
+ #!if(isTak, "t","nt")#" $offset",
+ []>, Requires<[HasV4T]> {
+
+ let isTaken = isTak;
+ let isPredicatedFalse = isNegCond;
+ let isBrTaken = !if(isTaken, "true", "false");
+
+ bits<3> src1;
+ bits<5> src2;
+ bits<11> offset;
+
+ let IClass = 0b0010;
+ let Inst{26} = 0b1;
+ let Inst{25-23} = majOp;
+ let Inst{22} = isNegCond;
+ let Inst{18-16} = src1;
+ let Inst{13} = isTak;
+ let Inst{12-8} = src2;
+ let Inst{21-20} = offset{10-9};
+ let Inst{7-1} = offset{8-2};
+}
+
+multiclass NVJri_cond<string mnemonic, bits<3> majOp, bit isNegCond> {
+ // Branch not taken:
+ def _nt_V4: NVJri_template<mnemonic, majOp, isNegCond, 0>;
+ // Branch taken:
+ def _t_V4: NVJri_template<mnemonic, majOp, isNegCond, 1>;
+}
+
+multiclass NVJri_base<string mnemonic, string BaseOp, bits<3> majOp> {
+ let BaseOpcode = BaseOp#_NVJri in {
+ defm _t_Jumpnv : NVJri_cond<mnemonic, majOp, 0>; // True Cond
+ defm _f_Jumpnv : NVJri_cond<mnemonic, majOp, 1>; // False cond
+ }
+}
+
+// if ([!]cmp.eq(Ns.new,#U5)) jump:[n]t #r9:2
+// if ([!]cmp.gt(Ns.new,#U5)) jump:[n]t #r9:2
+// if ([!]cmp.gtu(Ns.new,#U5)) jump:[n]t #r9:2
+
+let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
+ Defs = [PC], neverHasSideEffects = 1, validSubTargets = HasV4SubT in {
+ defm CMPEQri : NVJri_base<"cmp.eq", "CMPEQ", 0b000>, PredRel;
+ defm CMPGTri : NVJri_base<"cmp.gt", "CMPGT", 0b001>, PredRel;
+ defm CMPGTUri : NVJri_base<"cmp.gtu", "CMPGTU", 0b010>, PredRel;
+}
+
+//===----------------------------------------------------------------------===//
+// multiclass/template class for the new-value compare jumps instruction
+// with a register and an hardcoded 0/-1 immediate value.
+//===----------------------------------------------------------------------===//
+
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 11 in
+class NVJ_ConstImm_template<string mnemonic, bits<3> majOp, string ImmVal,
+ bit isNegCond, bit isTak>
+ : NVInst_V4<(outs),
+ (ins IntRegs:$src1, brtarget:$offset),
+ "if ("#!if(isNegCond, "!","")#mnemonic
+ #"($src1.new, #"#ImmVal#")) jump:"
+ #!if(isTak, "t","nt")#" $offset",
+ []>, Requires<[HasV4T]> {
+
+ let isTaken = isTak;
+ let isPredicatedFalse = isNegCond;
+ let isBrTaken = !if(isTaken, "true", "false");
+
+ bits<3> src1;
+ bits<11> offset;
+ let IClass = 0b0010;
+ let Inst{26} = 0b1;
+ let Inst{25-23} = majOp;
+ let Inst{22} = isNegCond;
+ let Inst{18-16} = src1;
+ let Inst{13} = isTak;
+ let Inst{21-20} = offset{10-9};
+ let Inst{7-1} = offset{8-2};
+}
+
+multiclass NVJ_ConstImm_cond<string mnemonic, bits<3> majOp, string ImmVal,
+ bit isNegCond> {
+ // Branch not taken:
+ def _nt_V4: NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 0>;
+ // Branch taken:
+ def _t_V4: NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 1>;
+}
+
+multiclass NVJ_ConstImm_base<string mnemonic, string BaseOp, bits<3> majOp,
+ string ImmVal> {
+ let BaseOpcode = BaseOp#_NVJ_ConstImm in {
+ defm _t_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 0>; // True cond
+ defm _f_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 1>; // False Cond
+ }
+}
+
+// if ([!]tstbit(Ns.new,#0)) jump:[n]t #r9:2
+// if ([!]cmp.eq(Ns.new,#-1)) jump:[n]t #r9:2
+// if ([!]cmp.gt(Ns.new,#-1)) jump:[n]t #r9:2
+
+let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator=1,
+ Defs = [PC], neverHasSideEffects = 1 in {
+ defm TSTBIT0 : NVJ_ConstImm_base<"tstbit", "TSTBIT", 0b011, "0">, PredRel;
+ defm CMPEQn1 : NVJ_ConstImm_base<"cmp.eq", "CMPEQ", 0b100, "-1">, PredRel;
+ defm CMPGTn1 : NVJ_ConstImm_base<"cmp.gt", "CMPGT", 0b101, "-1">, PredRel;
+}
+
+//===----------------------------------------------------------------------===//
+// XTYPE/ALU +
+//===----------------------------------------------------------------------===//
+
+// Add and accumulate.
+// Rd=add(Rs,add(Ru,#s6))
+let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 6,
+validSubTargets = HasV4SubT in
+def ADDr_ADDri_V4 : MInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, s6Ext:$src3),
+ "$dst = add($src1, add($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (add (i32 IntRegs:$src1), (add (i32 IntRegs:$src2),
+ s6_16ExtPred:$src3)))]>,
+ Requires<[HasV4T]>;
+
+// Rd=add(Rs,sub(#s6,Ru))
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 6,
+validSubTargets = HasV4SubT in
+def ADDr_SUBri_V4 : MInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s6Ext:$src2, IntRegs:$src3),
+ "$dst = add($src1, sub(#$src2, $src3))",
+ [(set (i32 IntRegs:$dst),
+ (add (i32 IntRegs:$src1), (sub s6_10ExtPred:$src2,
+ (i32 IntRegs:$src3))))]>,
+ Requires<[HasV4T]>;
+
+// Generates the same instruction as ADDr_SUBri_V4 but matches different
+// pattern.
+// Rd=add(Rs,sub(#s6,Ru))
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 6,
+validSubTargets = HasV4SubT in
+def ADDri_SUBr_V4 : MInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s6Ext:$src2, IntRegs:$src3),
+ "$dst = add($src1, sub(#$src2, $src3))",
+ [(set (i32 IntRegs:$dst),
+ (sub (add (i32 IntRegs:$src1), s6_10ExtPred:$src2),
+ (i32 IntRegs:$src3)))]>,
+ Requires<[HasV4T]>;
+
+
+// Add or subtract doublewords with carry.
+//TODO:
+// Rdd=add(Rss,Rtt,Px):carry
+//TODO:
+// Rdd=sub(Rss,Rtt,Px):carry
+
+
+// Logical doublewords.
+// Rdd=and(Rtt,~Rss)
+let validSubTargets = HasV4SubT in
+def ANDd_NOTd_V4 : MInst<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ "$dst = and($src1, ~$src2)",
+ [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1),
+ (not (i64 DoubleRegs:$src2))))]>,
+ Requires<[HasV4T]>;
+
+// Rdd=or(Rtt,~Rss)
+let validSubTargets = HasV4SubT in
+def ORd_NOTd_V4 : MInst<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ "$dst = or($src1, ~$src2)",
+ [(set (i64 DoubleRegs:$dst),
+ (or (i64 DoubleRegs:$src1), (not (i64 DoubleRegs:$src2))))]>,
+ Requires<[HasV4T]>;
+
+
+// Logical-logical doublewords.
+// Rxx^=xor(Rss,Rtt)
+let validSubTargets = HasV4SubT in
+def XORd_XORdd: MInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2, DoubleRegs:$src3),
+ "$dst ^= xor($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (xor (i64 DoubleRegs:$src1), (xor (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+
+// Logical-logical words.
+// Rx=or(Ru,and(Rx,#s10))
+let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
+validSubTargets = HasV4SubT in
+def ORr_ANDri_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
+ "$dst = or($src1, and($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
+ s10ExtPred:$src3)))],
+ "$src2 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx[&|^]=and(Rs,Rt)
+// Rx&=and(Rs,Rt)
+let validSubTargets = HasV4SubT in
+def ANDr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst &= and($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (and (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx|=and(Rs,Rt)
+let validSubTargets = HasV4SubT, CextOpcode = "ORr_ANDr", InputType = "reg" in
+def ORr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst |= and($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>, ImmRegRel;
+
+// Rx^=and(Rs,Rt)
+let validSubTargets = HasV4SubT in
+def XORr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst ^= and($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (xor (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx[&|^]=and(Rs,~Rt)
+// Rx&=and(Rs,~Rt)
+let validSubTargets = HasV4SubT in
+def ANDr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst &= and($src2, ~$src3)",
+ [(set (i32 IntRegs:$dst),
+ (and (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
+ (not (i32 IntRegs:$src3)))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx|=and(Rs,~Rt)
+let validSubTargets = HasV4SubT in
+def ORr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst |= and($src2, ~$src3)",
+ [(set (i32 IntRegs:$dst),
+ (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
+ (not (i32 IntRegs:$src3)))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx^=and(Rs,~Rt)
+let validSubTargets = HasV4SubT in
+def XORr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst ^= and($src2, ~$src3)",
+ [(set (i32 IntRegs:$dst),
+ (xor (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
+ (not (i32 IntRegs:$src3)))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx[&|^]=or(Rs,Rt)
+// Rx&=or(Rs,Rt)
+let validSubTargets = HasV4SubT in
+def ANDr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst &= or($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (and (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx|=or(Rs,Rt)
+let validSubTargets = HasV4SubT, CextOpcode = "ORr_ORr", InputType = "reg" in
+def ORr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst |= or($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (or (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>, ImmRegRel;
+
+// Rx^=or(Rs,Rt)
+let validSubTargets = HasV4SubT in
+def XORr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst ^= or($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (xor (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx[&|^]=xor(Rs,Rt)
+// Rx&=xor(Rs,Rt)
+let validSubTargets = HasV4SubT in
+def ANDr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst &= xor($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx|=xor(Rs,Rt)
+let validSubTargets = HasV4SubT in
+def ORr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst |= xor($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx^=xor(Rs,Rt)
+let validSubTargets = HasV4SubT in
+def XORr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
+ "$dst ^= xor($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx|=and(Rs,#s10)
+let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
+validSubTargets = HasV4SubT, CextOpcode = "ORr_ANDr", InputType = "imm" in
+def ORr_ANDri2_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
+ "$dst |= and($src2, #$src3)",
+ [(set (i32 IntRegs:$dst),
+ (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
+ s10ExtPred:$src3)))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>, ImmRegRel;
+
+// Rx|=or(Rs,#s10)
+let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
+validSubTargets = HasV4SubT, CextOpcode = "ORr_ORr", InputType = "imm" in
+def ORr_ORri_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
+ "$dst |= or($src2, #$src3)",
+ [(set (i32 IntRegs:$dst),
+ (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
+ s10ExtPred:$src3)))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>, ImmRegRel;
+
+
+// Modulo wrap
+// Rd=modwrap(Rs,Rt)
+// Round
+// Rd=cround(Rs,#u5)
+// Rd=cround(Rs,Rt)
+// Rd=round(Rs,#u5)[:sat]
+// Rd=round(Rs,Rt)[:sat]
+// Vector reduce add unsigned halfwords
+// Rd=vraddh(Rss,Rtt)
+// Vector add bytes
+// Rdd=vaddb(Rss,Rtt)
+// Vector conditional negate
+// Rdd=vcnegh(Rss,Rt)
+// Rxx+=vrcnegh(Rss,Rt)
+// Vector maximum bytes
+// Rdd=vmaxb(Rtt,Rss)
+// Vector reduce maximum halfwords
+// Rxx=vrmaxh(Rss,Ru)
+// Rxx=vrmaxuh(Rss,Ru)
+// Vector reduce maximum words
+// Rxx=vrmaxuw(Rss,Ru)
+// Rxx=vrmaxw(Rss,Ru)
+// Vector minimum bytes
+// Rdd=vminb(Rtt,Rss)
+// Vector reduce minimum halfwords
+// Rxx=vrminh(Rss,Ru)
+// Rxx=vrminuh(Rss,Ru)
+// Vector reduce minimum words
+// Rxx=vrminuw(Rss,Ru)
+// Rxx=vrminw(Rss,Ru)
+// Vector subtract bytes
+// Rdd=vsubb(Rss,Rtt)
+
+//===----------------------------------------------------------------------===//
+// XTYPE/ALU -
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// XTYPE/MPY +
+//===----------------------------------------------------------------------===//
+
+// Multiply and user lower result.
+// Rd=add(#u6,mpyi(Rs,#U6))
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 6,
+validSubTargets = HasV4SubT in
+def ADDi_MPYri_V4 : MInst<(outs IntRegs:$dst),
+ (ins u6Ext:$src1, IntRegs:$src2, u6Imm:$src3),
+ "$dst = add(#$src1, mpyi($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (add (mul (i32 IntRegs:$src2), u6ImmPred:$src3),
+ u6ExtPred:$src1))]>,
+ Requires<[HasV4T]>;
+
+// Rd=add(##,mpyi(Rs,#U6))
+def : Pat <(add (mul (i32 IntRegs:$src2), u6ImmPred:$src3),
+ (HexagonCONST32 tglobaladdr:$src1)),
+ (i32 (ADDi_MPYri_V4 tglobaladdr:$src1, IntRegs:$src2,
+ u6ImmPred:$src3))>;
+
+// Rd=add(#u6,mpyi(Rs,Rt))
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 6,
+validSubTargets = HasV4SubT, InputType = "imm", CextOpcode = "ADD_MPY" in
+def ADDi_MPYrr_V4 : MInst<(outs IntRegs:$dst),
+ (ins u6Ext:$src1, IntRegs:$src2, IntRegs:$src3),
+ "$dst = add(#$src1, mpyi($src2, $src3))",
+ [(set (i32 IntRegs:$dst),
+ (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
+ u6ExtPred:$src1))]>,
+ Requires<[HasV4T]>, ImmRegRel;
+
+// Rd=add(##,mpyi(Rs,Rt))
+def : Pat <(add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
+ (HexagonCONST32 tglobaladdr:$src1)),
+ (i32 (ADDi_MPYrr_V4 tglobaladdr:$src1, IntRegs:$src2,
+ IntRegs:$src3))>;
+
+// Rd=add(Ru,mpyi(#u6:2,Rs))
+let validSubTargets = HasV4SubT in
+def ADDr_MPYir_V4 : MInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, u6Imm:$src2, IntRegs:$src3),
+ "$dst = add($src1, mpyi(#$src2, $src3))",
+ [(set (i32 IntRegs:$dst),
+ (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src3),
+ u6_2ImmPred:$src2)))]>,
+ Requires<[HasV4T]>;
+
+// Rd=add(Ru,mpyi(Rs,#u6))
+let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 6,
+validSubTargets = HasV4SubT, InputType = "imm", CextOpcode = "ADD_MPY" in
+def ADDr_MPYri_V4 : MInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, u6Ext:$src3),
+ "$dst = add($src1, mpyi($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
+ u6ExtPred:$src3)))]>,
+ Requires<[HasV4T]>, ImmRegRel;
+
+// Rx=add(Ru,mpyi(Rx,Rs))
+let validSubTargets = HasV4SubT, InputType = "reg", CextOpcode = "ADD_MPY" in
+def ADDr_MPYrr_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "$dst = add($src1, mpyi($src2, $src3))",
+ [(set (i32 IntRegs:$dst),
+ (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src2 = $dst">,
+ Requires<[HasV4T]>, ImmRegRel;
+
+
+// Polynomial multiply words
+// Rdd=pmpyw(Rs,Rt)
+// Rxx^=pmpyw(Rs,Rt)
+
+// Vector reduce multiply word by signed half (32x16)
+// Rdd=vrmpyweh(Rss,Rtt)[:<<1]
+// Rdd=vrmpywoh(Rss,Rtt)[:<<1]
+// Rxx+=vrmpyweh(Rss,Rtt)[:<<1]
+// Rxx+=vrmpywoh(Rss,Rtt)[:<<1]
+
+// Multiply and use upper result
+// Rd=mpy(Rs,Rt.H):<<1:sat
+// Rd=mpy(Rs,Rt.L):<<1:sat
+// Rd=mpy(Rs,Rt):<<1
+// Rd=mpy(Rs,Rt):<<1:sat
+// Rd=mpysu(Rs,Rt)
+// Rx+=mpy(Rs,Rt):<<1:sat
+// Rx-=mpy(Rs,Rt):<<1:sat
+
+// Vector multiply bytes
+// Rdd=vmpybsu(Rs,Rt)
+// Rdd=vmpybu(Rs,Rt)
+// Rxx+=vmpybsu(Rs,Rt)
+// Rxx+=vmpybu(Rs,Rt)
+
+// Vector polynomial multiply halfwords
+// Rdd=vpmpyh(Rs,Rt)
+// Rxx^=vpmpyh(Rs,Rt)
+
+//===----------------------------------------------------------------------===//
+// XTYPE/MPY -
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// XTYPE/SHIFT +
+//===----------------------------------------------------------------------===//
+
+// Shift by immediate and accumulate.
+// Rx=add(#u8,asl(Rx,#U5))
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
+validSubTargets = HasV4SubT in
+def ADDi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
+ "$dst = add(#$src1, asl($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (add (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
+ u8ExtPred:$src1))],
+ "$src2 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx=add(#u8,lsr(Rx,#U5))
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
+validSubTargets = HasV4SubT in
+def ADDi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
+ "$dst = add(#$src1, lsr($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (add (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
+ u8ExtPred:$src1))],
+ "$src2 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx=sub(#u8,asl(Rx,#U5))
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
+validSubTargets = HasV4SubT in
+def SUBi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
+ "$dst = sub(#$src1, asl($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (sub (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
+ u8ExtPred:$src1))],
+ "$src2 = $dst">,
+ Requires<[HasV4T]>;
+
+// Rx=sub(#u8,lsr(Rx,#U5))
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
+validSubTargets = HasV4SubT in
+def SUBi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
+ "$dst = sub(#$src1, lsr($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (sub (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
+ u8ExtPred:$src1))],
+ "$src2 = $dst">,
+ Requires<[HasV4T]>;
+
+
+//Shift by immediate and logical.
+//Rx=and(#u8,asl(Rx,#U5))
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
+validSubTargets = HasV4SubT in
+def ANDi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
+ "$dst = and(#$src1, asl($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (and (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
+ u8ExtPred:$src1))],
+ "$src2 = $dst">,
+ Requires<[HasV4T]>;
+
+//Rx=and(#u8,lsr(Rx,#U5))
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
+validSubTargets = HasV4SubT in
+def ANDi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
+ "$dst = and(#$src1, lsr($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (and (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
+ u8ExtPred:$src1))],
+ "$src2 = $dst">,
+ Requires<[HasV4T]>;
+
+//Rx=or(#u8,asl(Rx,#U5))
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
+AddedComplexity = 30, validSubTargets = HasV4SubT in
+def ORi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
+ "$dst = or(#$src1, asl($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (or (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
+ u8ExtPred:$src1))],
+ "$src2 = $dst">,
+ Requires<[HasV4T]>;
+
+//Rx=or(#u8,lsr(Rx,#U5))
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
+AddedComplexity = 30, validSubTargets = HasV4SubT in
+def ORi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
+ (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
+ "$dst = or(#$src1, lsr($src2, #$src3))",
+ [(set (i32 IntRegs:$dst),
+ (or (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
+ u8ExtPred:$src1))],
+ "$src2 = $dst">,
+ Requires<[HasV4T]>;
+
+
+//Shift by register.
+//Rd=lsl(#s6,Rt)
+let validSubTargets = HasV4SubT in {
+def LSLi_V4 : MInst<(outs IntRegs:$dst), (ins s6Imm:$src1, IntRegs:$src2),
+ "$dst = lsl(#$src1, $src2)",
+ [(set (i32 IntRegs:$dst), (shl s6ImmPred:$src1,
+ (i32 IntRegs:$src2)))]>,
+ Requires<[HasV4T]>;
+
+
+//Shift by register and logical.
+//Rxx^=asl(Rss,Rt)
+def ASLd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
+ "$dst ^= asl($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (xor (i64 DoubleRegs:$src1), (shl (i64 DoubleRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+//Rxx^=asr(Rss,Rt)
+def ASRd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
+ "$dst ^= asr($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (xor (i64 DoubleRegs:$src1), (sra (i64 DoubleRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+//Rxx^=lsl(Rss,Rt)
+def LSLd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
+ "$dst ^= lsl($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1),
+ (shl (i64 DoubleRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+
+//Rxx^=lsr(Rss,Rt)
+def LSRd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
+ "$dst ^= lsr($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (xor (i64 DoubleRegs:$src1), (srl (i64 DoubleRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">,
+ Requires<[HasV4T]>;
+}
+
+//===----------------------------------------------------------------------===//
+// XTYPE/SHIFT -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MEMOP: Word, Half, Byte
+//===----------------------------------------------------------------------===//
+
+def MEMOPIMM : SDNodeXForm<imm, [{
+ // Call the transformation function XformM5ToU5Imm to get the negative
+ // immediate's positive counterpart.
+ int32_t imm = N->getSExtValue();
+ return XformM5ToU5Imm(imm);
+}]>;
+
+def MEMOPIMM_HALF : SDNodeXForm<imm, [{
+ // -1 .. -31 represented as 65535..65515
+ // assigning to a short restores our desired signed value.
+ // Call the transformation function XformM5ToU5Imm to get the negative
+ // immediate's positive counterpart.
+ int16_t imm = N->getSExtValue();
+ return XformM5ToU5Imm(imm);
+}]>;
+
+def MEMOPIMM_BYTE : SDNodeXForm<imm, [{
+ // -1 .. -31 represented as 255..235
+ // assigning to a char restores our desired signed value.
+ // Call the transformation function XformM5ToU5Imm to get the negative
+ // immediate's positive counterpart.
+ int8_t imm = N->getSExtValue();
+ return XformM5ToU5Imm(imm);
+}]>;
+
+def SETMEMIMM : SDNodeXForm<imm, [{
+ // Return the bit position we will set [0-31].
+ // As an SDNode.
+ int32_t imm = N->getSExtValue();
+ return XformMskToBitPosU5Imm(imm);
+}]>;
+
+def CLRMEMIMM : SDNodeXForm<imm, [{
+ // Return the bit position we will clear [0-31].
+ // As an SDNode.
+ // we bit negate the value first
+ int32_t imm = ~(N->getSExtValue());
+ return XformMskToBitPosU5Imm(imm);
+}]>;
+
+def SETMEMIMM_SHORT : SDNodeXForm<imm, [{
+ // Return the bit position we will set [0-15].
+ // As an SDNode.
+ int16_t imm = N->getSExtValue();
+ return XformMskToBitPosU4Imm(imm);
+}]>;
+
+def CLRMEMIMM_SHORT : SDNodeXForm<imm, [{
+ // Return the bit position we will clear [0-15].
+ // As an SDNode.
+ // we bit negate the value first
+ int16_t imm = ~(N->getSExtValue());
+ return XformMskToBitPosU4Imm(imm);
+}]>;
+
+def SETMEMIMM_BYTE : SDNodeXForm<imm, [{
+ // Return the bit position we will set [0-7].
+ // As an SDNode.
+ int8_t imm = N->getSExtValue();
+ return XformMskToBitPosU3Imm(imm);
+}]>;
+
+def CLRMEMIMM_BYTE : SDNodeXForm<imm, [{
+ // Return the bit position we will clear [0-7].
+ // As an SDNode.
+ // we bit negate the value first
+ int8_t imm = ~(N->getSExtValue());
+ return XformMskToBitPosU3Imm(imm);
+}]>;
+
+//===----------------------------------------------------------------------===//
+// Template class for MemOp instructions with the register value.
+//===----------------------------------------------------------------------===//
+class MemOp_rr_base <string opc, bits<2> opcBits, Operand ImmOp,
+ string memOp, bits<2> memOpBits> :
+ MEMInst_V4<(outs),
+ (ins IntRegs:$base, ImmOp:$offset, IntRegs:$delta),
+ opc#"($base+#$offset)"#memOp#"$delta",
+ []>,
+ Requires<[HasV4T, UseMEMOP]> {
+
+ bits<5> base;
+ bits<5> delta;
+ bits<32> offset;
+ bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
+
+ let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
+ !if (!eq(opcBits, 0b01), offset{6-1},
+ !if (!eq(opcBits, 0b10), offset{7-2},0)));
+
+ let IClass = 0b0011;
+ let Inst{27-24} = 0b1110;
+ let Inst{22-21} = opcBits;
+ let Inst{20-16} = base;
+ let Inst{13} = 0b0;
+ let Inst{12-7} = offsetBits;
+ let Inst{6-5} = memOpBits;
+ let Inst{4-0} = delta;
+}
+
+//===----------------------------------------------------------------------===//
+// Template class for MemOp instructions with the immediate value.
+//===----------------------------------------------------------------------===//
+class MemOp_ri_base <string opc, bits<2> opcBits, Operand ImmOp,
+ string memOp, bits<2> memOpBits> :
+ MEMInst_V4 <(outs),
+ (ins IntRegs:$base, ImmOp:$offset, u5Imm:$delta),
+ opc#"($base+#$offset)"#memOp#"#$delta"
+ #!if(memOpBits{1},")", ""), // clrbit, setbit - include ')'
+ []>,
+ Requires<[HasV4T, UseMEMOP]> {
+
+ bits<5> base;
+ bits<5> delta;
+ bits<32> offset;
+ bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
+
+ let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
+ !if (!eq(opcBits, 0b01), offset{6-1},
+ !if (!eq(opcBits, 0b10), offset{7-2},0)));
+
+ let IClass = 0b0011;
+ let Inst{27-24} = 0b1111;
+ let Inst{22-21} = opcBits;
+ let Inst{20-16} = base;
+ let Inst{13} = 0b0;
+ let Inst{12-7} = offsetBits;
+ let Inst{6-5} = memOpBits;
+ let Inst{4-0} = delta;
+}
+
+// multiclass to define MemOp instructions with register operand.
+multiclass MemOp_rr<string opc, bits<2> opcBits, Operand ImmOp> {
+ def _ADD#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " += ", 0b00>; // add
+ def _SUB#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " -= ", 0b01>; // sub
+ def _AND#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " &= ", 0b10>; // and
+ def _OR#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " |= ", 0b11>; // or
+}
+
+// multiclass to define MemOp instructions with immediate Operand.
+multiclass MemOp_ri<string opc, bits<2> opcBits, Operand ImmOp> {
+ def _ADD#NAME#_V4 : MemOp_ri_base <opc, opcBits, ImmOp, " += ", 0b00 >;
+ def _SUB#NAME#_V4 : MemOp_ri_base <opc, opcBits, ImmOp, " -= ", 0b01 >;
+ def _CLRBIT#NAME#_V4 : MemOp_ri_base<opc, opcBits, ImmOp, " =clrbit(", 0b10>;
+ def _SETBIT#NAME#_V4 : MemOp_ri_base<opc, opcBits, ImmOp, " =setbit(", 0b11>;
+}
+
+multiclass MemOp_base <string opc, bits<2> opcBits, Operand ImmOp> {
+ defm r : MemOp_rr <opc, opcBits, ImmOp>;
+ defm i : MemOp_ri <opc, opcBits, ImmOp>;
+}
+
+// Define MemOp instructions.
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 0,
+validSubTargets =HasV4SubT in {
+ let opExtentBits = 6, accessSize = ByteAccess in
+ defm MemOPb : MemOp_base <"memb", 0b00, u6_0Ext>;
+
+ let opExtentBits = 7, accessSize = HalfWordAccess in
+ defm MemOPh : MemOp_base <"memh", 0b01, u6_1Ext>;
+
+ let opExtentBits = 8, accessSize = WordAccess in
+ defm MemOPw : MemOp_base <"memw", 0b10, u6_2Ext>;
+}
+
+//===----------------------------------------------------------------------===//
+// Multiclass to define 'Def Pats' for ALU operations on the memory
+// Here value used for the ALU operation is an immediate value.
+// mem[bh](Rs+#0) += #U5
+// mem[bh](Rs+#u6) += #U5
+//===----------------------------------------------------------------------===//
+
+multiclass MemOpi_u5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf ExtPred,
+ InstHexagon MI, SDNode OpNode> {
+ let AddedComplexity = 180 in
+ def : Pat < (stOp (OpNode (ldOp IntRegs:$addr), u5ImmPred:$addend),
+ IntRegs:$addr),
+ (MI IntRegs:$addr, #0, u5ImmPred:$addend )>;
+
+ let AddedComplexity = 190 in
+ def : Pat <(stOp (OpNode (ldOp (add IntRegs:$base, ExtPred:$offset)),
+ u5ImmPred:$addend),
+ (add IntRegs:$base, ExtPred:$offset)),
+ (MI IntRegs:$base, ExtPred:$offset, u5ImmPred:$addend)>;
+}
+
+multiclass MemOpi_u5ALUOp<PatFrag ldOp, PatFrag stOp, PatLeaf ExtPred,
+ InstHexagon addMI, InstHexagon subMI> {
+ defm : MemOpi_u5Pats<ldOp, stOp, ExtPred, addMI, add>;
+ defm : MemOpi_u5Pats<ldOp, stOp, ExtPred, subMI, sub>;
+}
+
+multiclass MemOpi_u5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
+ // Half Word
+ defm : MemOpi_u5ALUOp <ldOpHalf, truncstorei16, u6_1ExtPred,
+ MemOPh_ADDi_V4, MemOPh_SUBi_V4>;
+ // Byte
+ defm : MemOpi_u5ALUOp <ldOpByte, truncstorei8, u6ExtPred,
+ MemOPb_ADDi_V4, MemOPb_SUBi_V4>;
+}
+
+let Predicates = [HasV4T, UseMEMOP] in {
+ defm : MemOpi_u5ExtType<zextloadi8, zextloadi16>; // zero extend
+ defm : MemOpi_u5ExtType<sextloadi8, sextloadi16>; // sign extend
+ defm : MemOpi_u5ExtType<extloadi8, extloadi16>; // any extend
+
+ // Word
+ defm : MemOpi_u5ALUOp <load, store, u6_2ExtPred, MemOPw_ADDi_V4,
+ MemOPw_SUBi_V4>;
+}
+
+//===----------------------------------------------------------------------===//
+// multiclass to define 'Def Pats' for ALU operations on the memory.
+// Here value used for the ALU operation is a negative value.
+// mem[bh](Rs+#0) += #m5
+// mem[bh](Rs+#u6) += #m5
+//===----------------------------------------------------------------------===//
+
+multiclass MemOpi_m5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf extPred,
+ PatLeaf immPred, ComplexPattern addrPred,
+ SDNodeXForm xformFunc, InstHexagon MI> {
+ let AddedComplexity = 190 in
+ def : Pat <(stOp (add (ldOp IntRegs:$addr), immPred:$subend),
+ IntRegs:$addr),
+ (MI IntRegs:$addr, #0, (xformFunc immPred:$subend) )>;
+
+ let AddedComplexity = 195 in
+ def : Pat<(stOp (add (ldOp (add IntRegs:$base, extPred:$offset)),
+ immPred:$subend),
+ (add IntRegs:$base, extPred:$offset)),
+ (MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$subend))>;
+}
+
+multiclass MemOpi_m5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
+ // Half Word
+ defm : MemOpi_m5Pats <ldOpHalf, truncstorei16, u6_1ExtPred, m5HImmPred,
+ ADDRriU6_1, MEMOPIMM_HALF, MemOPh_SUBi_V4>;
+ // Byte
+ defm : MemOpi_m5Pats <ldOpByte, truncstorei8, u6ExtPred, m5BImmPred,
+ ADDRriU6_0, MEMOPIMM_BYTE, MemOPb_SUBi_V4>;
+}
+
+let Predicates = [HasV4T, UseMEMOP] in {
+ defm : MemOpi_m5ExtType<zextloadi8, zextloadi16>; // zero extend
+ defm : MemOpi_m5ExtType<sextloadi8, sextloadi16>; // sign extend
+ defm : MemOpi_m5ExtType<extloadi8, extloadi16>; // any extend
+
+ // Word
+ defm : MemOpi_m5Pats <load, store, u6_2ExtPred, m5ImmPred,
+ ADDRriU6_2, MEMOPIMM, MemOPw_SUBi_V4>;
+}
+
+//===----------------------------------------------------------------------===//
+// Multiclass to define 'def Pats' for bit operations on the memory.
+// mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
+// mem[bhw](Rs+#u6) = [clrbit|setbit](#U5)
+//===----------------------------------------------------------------------===//
+
+multiclass MemOpi_bitPats <PatFrag ldOp, PatFrag stOp, PatLeaf immPred,
+ PatLeaf extPred, ComplexPattern addrPred,
+ SDNodeXForm xformFunc, InstHexagon MI, SDNode OpNode> {
+
+ // mem[bhw](Rs+#u6:[012]) = [clrbit|setbit](#U5)
+ let AddedComplexity = 250 in
+ def : Pat<(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
+ immPred:$bitend),
+ (add IntRegs:$base, extPred:$offset)),
+ (MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$bitend))>;
+
+ // mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
+ let AddedComplexity = 225 in
+ def : Pat <(stOp (OpNode (ldOp (addrPred IntRegs:$addr, extPred:$offset)),
+ immPred:$bitend),
+ (addrPred (i32 IntRegs:$addr), extPred:$offset)),
+ (MI IntRegs:$addr, extPred:$offset, (xformFunc immPred:$bitend))>;
+}
+
+multiclass MemOpi_bitExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
+ // Byte - clrbit
+ defm : MemOpi_bitPats<ldOpByte, truncstorei8, Clr3ImmPred, u6ExtPred,
+ ADDRriU6_0, CLRMEMIMM_BYTE, MemOPb_CLRBITi_V4, and>;
+ // Byte - setbit
+ defm : MemOpi_bitPats<ldOpByte, truncstorei8, Set3ImmPred, u6ExtPred,
+ ADDRriU6_0, SETMEMIMM_BYTE, MemOPb_SETBITi_V4, or>;
+ // Half Word - clrbit
+ defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Clr4ImmPred, u6_1ExtPred,
+ ADDRriU6_1, CLRMEMIMM_SHORT, MemOPh_CLRBITi_V4, and>;
+ // Half Word - setbit
+ defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Set4ImmPred, u6_1ExtPred,
+ ADDRriU6_1, SETMEMIMM_SHORT, MemOPh_SETBITi_V4, or>;
+}
+
+let Predicates = [HasV4T, UseMEMOP] in {
+ // mem[bh](Rs+#0) = [clrbit|setbit](#U5)
+ // mem[bh](Rs+#u6:[01]) = [clrbit|setbit](#U5)
+ defm : MemOpi_bitExtType<zextloadi8, zextloadi16>; // zero extend
+ defm : MemOpi_bitExtType<sextloadi8, sextloadi16>; // sign extend
+ defm : MemOpi_bitExtType<extloadi8, extloadi16>; // any extend
+
+ // memw(Rs+#0) = [clrbit|setbit](#U5)
+ // memw(Rs+#u6:2) = [clrbit|setbit](#U5)
+ defm : MemOpi_bitPats<load, store, Clr5ImmPred, u6_2ExtPred, ADDRriU6_2,
+ CLRMEMIMM, MemOPw_CLRBITi_V4, and>;
+ defm : MemOpi_bitPats<load, store, Set5ImmPred, u6_2ExtPred, ADDRriU6_2,
+ SETMEMIMM, MemOPw_SETBITi_V4, or>;
+}
+
+//===----------------------------------------------------------------------===//
+// Multiclass to define 'def Pats' for ALU operations on the memory
+// where addend is a register.
+// mem[bhw](Rs+#0) [+-&|]= Rt
+// mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
+//===----------------------------------------------------------------------===//
+
+multiclass MemOpr_Pats <PatFrag ldOp, PatFrag stOp, ComplexPattern addrPred,
+ PatLeaf extPred, InstHexagon MI, SDNode OpNode> {
+ let AddedComplexity = 141 in
+ // mem[bhw](Rs+#0) [+-&|]= Rt
+ def : Pat <(stOp (OpNode (ldOp (addrPred IntRegs:$addr, extPred:$offset)),
+ (i32 IntRegs:$addend)),
+ (addrPred (i32 IntRegs:$addr), extPred:$offset)),
+ (MI IntRegs:$addr, extPred:$offset, (i32 IntRegs:$addend) )>;
+
+ // mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
+ let AddedComplexity = 150 in
+ def : Pat <(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
+ (i32 IntRegs:$orend)),
+ (add IntRegs:$base, extPred:$offset)),
+ (MI IntRegs:$base, extPred:$offset, (i32 IntRegs:$orend) )>;
+}
+
+multiclass MemOPr_ALUOp<PatFrag ldOp, PatFrag stOp,
+ ComplexPattern addrPred, PatLeaf extPred,
+ InstHexagon addMI, InstHexagon subMI,
+ InstHexagon andMI, InstHexagon orMI > {
+
+ defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, addMI, add>;
+ defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, subMI, sub>;
+ defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, andMI, and>;
+ defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, orMI, or>;
+}
+
+multiclass MemOPr_ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
+ // Half Word
+ defm : MemOPr_ALUOp <ldOpHalf, truncstorei16, ADDRriU6_1, u6_1ExtPred,
+ MemOPh_ADDr_V4, MemOPh_SUBr_V4,
+ MemOPh_ANDr_V4, MemOPh_ORr_V4>;
+ // Byte
+ defm : MemOPr_ALUOp <ldOpByte, truncstorei8, ADDRriU6_0, u6ExtPred,
+ MemOPb_ADDr_V4, MemOPb_SUBr_V4,
+ MemOPb_ANDr_V4, MemOPb_ORr_V4>;
+}
+
+// Define 'def Pats' for MemOps with register addend.
+let Predicates = [HasV4T, UseMEMOP] in {
+ // Byte, Half Word
+ defm : MemOPr_ExtType<zextloadi8, zextloadi16>; // zero extend
+ defm : MemOPr_ExtType<sextloadi8, sextloadi16>; // sign extend
+ defm : MemOPr_ExtType<extloadi8, extloadi16>; // any extend
+ // Word
+ defm : MemOPr_ALUOp <load, store, ADDRriU6_2, u6_2ExtPred, MemOPw_ADDr_V4,
+ MemOPw_SUBr_V4, MemOPw_ANDr_V4, MemOPw_ORr_V4 >;
+}
+
+//===----------------------------------------------------------------------===//
+// XTYPE/PRED +
+//===----------------------------------------------------------------------===//
+
+// Hexagon V4 only supports these flavors of byte/half compare instructions:
+// EQ/GT/GTU. Other flavors like GE/GEU/LT/LTU/LE/LEU are not supported by
+// hardware. However, compiler can still implement these patterns through
+// appropriate patterns combinations based on current implemented patterns.
+// The implemented patterns are: EQ/GT/GTU.
+// Missing patterns are: GE/GEU/LT/LTU/LE/LEU.
+
+// Following instruction is not being extended as it results into the
+// incorrect code for negative numbers.
+// Pd=cmpb.eq(Rs,#u8)
+
+// p=!cmp.eq(r1,r2)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPnotEQ_rr : ALU32_rr<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = !cmp.eq($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>,
+ Requires<[HasV4T]>;
+
+// p=!cmp.eq(r1,#s10)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPnotEQ_ri : ALU32_ri<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, s10Ext:$src2),
+ "$dst = !cmp.eq($src1, #$src2)",
+ [(set (i1 PredRegs:$dst),
+ (setne (i32 IntRegs:$src1), s10ImmPred:$src2))]>,
+ Requires<[HasV4T]>;
+
+// p=!cmp.gt(r1,r2)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPnotGT_rr : ALU32_rr<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = !cmp.gt($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (not (setgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
+ Requires<[HasV4T]>;
+
+// p=!cmp.gt(r1,#s10)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPnotGT_ri : ALU32_ri<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, s10Ext:$src2),
+ "$dst = !cmp.gt($src1, #$src2)",
+ [(set (i1 PredRegs:$dst),
+ (not (setgt (i32 IntRegs:$src1), s10ImmPred:$src2)))]>,
+ Requires<[HasV4T]>;
+
+// p=!cmp.gtu(r1,r2)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPnotGTU_rr : ALU32_rr<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = !cmp.gtu($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (not (setugt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
+ Requires<[HasV4T]>;
+
+// p=!cmp.gtu(r1,#u9)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPnotGTU_ri : ALU32_ri<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, u9Ext:$src2),
+ "$dst = !cmp.gtu($src1, #$src2)",
+ [(set (i1 PredRegs:$dst),
+ (not (setugt (i32 IntRegs:$src1), u9ImmPred:$src2)))]>,
+ Requires<[HasV4T]>;
+
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPbEQri_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, u8Imm:$src2),
+ "$dst = cmpb.eq($src1, #$src2)",
+ [(set (i1 PredRegs:$dst),
+ (seteq (and (i32 IntRegs:$src1), 255), u8ImmPred:$src2))]>,
+ Requires<[HasV4T]>;
+
+def : Pat <(brcond (i1 (setne (and (i32 IntRegs:$src1), 255), u8ImmPred:$src2)),
+ bb:$offset),
+ (JMP_f (CMPbEQri_V4 (i32 IntRegs:$src1), u8ImmPred:$src2),
+ bb:$offset)>,
+ Requires<[HasV4T]>;
+
+// Pd=cmpb.eq(Rs,Rt)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPbEQrr_ubub_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = cmpb.eq($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (seteq (and (xor (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)), 255), 0))]>,
+ Requires<[HasV4T]>;
+
+// Pd=cmpb.eq(Rs,Rt)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPbEQrr_sbsb_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = cmpb.eq($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (seteq (shl (i32 IntRegs:$src1), (i32 24)),
+ (shl (i32 IntRegs:$src2), (i32 24))))]>,
+ Requires<[HasV4T]>;
+
+// Pd=cmpb.gt(Rs,Rt)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPbGTrr_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = cmpb.gt($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (setgt (shl (i32 IntRegs:$src1), (i32 24)),
+ (shl (i32 IntRegs:$src2), (i32 24))))]>,
+ Requires<[HasV4T]>;
+
+// Pd=cmpb.gtu(Rs,#u7)
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 7,
+isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPbGTU", InputType = "imm" in
+def CMPbGTUri_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, u7Ext:$src2),
+ "$dst = cmpb.gtu($src1, #$src2)",
+ [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 255),
+ u7ExtPred:$src2))]>,
+ Requires<[HasV4T]>, ImmRegRel;
+
+// SDNode for converting immediate C to C-1.
+def DEC_CONST_BYTE : SDNodeXForm<imm, [{
+ // Return the byte immediate const-1 as an SDNode.
+ int32_t imm = N->getSExtValue();
+ return XformU7ToU7M1Imm(imm);
+}]>;
+
+// For the sequence
+// zext( seteq ( and(Rs, 255), u8))
+// Generate
+// Pd=cmpb.eq(Rs, #u8)
+// if (Pd.new) Rd=#1
+// if (!Pd.new) Rd=#0
+def : Pat <(i32 (zext (i1 (seteq (i32 (and (i32 IntRegs:$Rs), 255)),
+ u8ExtPred:$u8)))),
+ (i32 (TFR_condset_ii (i1 (CMPbEQri_V4 (i32 IntRegs:$Rs),
+ (u8ExtPred:$u8))),
+ 1, 0))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( setne ( and(Rs, 255), u8))
+// Generate
+// Pd=cmpb.eq(Rs, #u8)
+// if (Pd.new) Rd=#0
+// if (!Pd.new) Rd=#1
+def : Pat <(i32 (zext (i1 (setne (i32 (and (i32 IntRegs:$Rs), 255)),
+ u8ExtPred:$u8)))),
+ (i32 (TFR_condset_ii (i1 (CMPbEQri_V4 (i32 IntRegs:$Rs),
+ (u8ExtPred:$u8))),
+ 0, 1))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( seteq (Rs, and(Rt, 255)))
+// Generate
+// Pd=cmpb.eq(Rs, Rt)
+// if (Pd.new) Rd=#1
+// if (!Pd.new) Rd=#0
+def : Pat <(i32 (zext (i1 (seteq (i32 IntRegs:$Rt),
+ (i32 (and (i32 IntRegs:$Rs), 255)))))),
+ (i32 (TFR_condset_ii (i1 (CMPbEQrr_ubub_V4 (i32 IntRegs:$Rs),
+ (i32 IntRegs:$Rt))),
+ 1, 0))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( setne (Rs, and(Rt, 255)))
+// Generate
+// Pd=cmpb.eq(Rs, Rt)
+// if (Pd.new) Rd=#0
+// if (!Pd.new) Rd=#1
+def : Pat <(i32 (zext (i1 (setne (i32 IntRegs:$Rt),
+ (i32 (and (i32 IntRegs:$Rs), 255)))))),
+ (i32 (TFR_condset_ii (i1 (CMPbEQrr_ubub_V4 (i32 IntRegs:$Rs),
+ (i32 IntRegs:$Rt))),
+ 0, 1))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( setugt ( and(Rs, 255), u8))
+// Generate
+// Pd=cmpb.gtu(Rs, #u8)
+// if (Pd.new) Rd=#1
+// if (!Pd.new) Rd=#0
+def : Pat <(i32 (zext (i1 (setugt (i32 (and (i32 IntRegs:$Rs), 255)),
+ u8ExtPred:$u8)))),
+ (i32 (TFR_condset_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$Rs),
+ (u8ExtPred:$u8))),
+ 1, 0))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( setugt ( and(Rs, 254), u8))
+// Generate
+// Pd=cmpb.gtu(Rs, #u8)
+// if (Pd.new) Rd=#1
+// if (!Pd.new) Rd=#0
+def : Pat <(i32 (zext (i1 (setugt (i32 (and (i32 IntRegs:$Rs), 254)),
+ u8ExtPred:$u8)))),
+ (i32 (TFR_condset_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$Rs),
+ (u8ExtPred:$u8))),
+ 1, 0))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( setult ( Rs, Rt))
+// Generate
+// Pd=cmp.ltu(Rs, Rt)
+// if (Pd.new) Rd=#1
+// if (!Pd.new) Rd=#0
+// cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
+def : Pat <(i32 (zext (i1 (setult (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
+ (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rt),
+ (i32 IntRegs:$Rs))),
+ 1, 0))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( setlt ( Rs, Rt))
+// Generate
+// Pd=cmp.lt(Rs, Rt)
+// if (Pd.new) Rd=#1
+// if (!Pd.new) Rd=#0
+// cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
+def : Pat <(i32 (zext (i1 (setlt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
+ (i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rt),
+ (i32 IntRegs:$Rs))),
+ 1, 0))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( setugt ( Rs, Rt))
+// Generate
+// Pd=cmp.gtu(Rs, Rt)
+// if (Pd.new) Rd=#1
+// if (!Pd.new) Rd=#0
+def : Pat <(i32 (zext (i1 (setugt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
+ (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rs),
+ (i32 IntRegs:$Rt))),
+ 1, 0))>,
+ Requires<[HasV4T]>;
+
+// This pattern interefers with coremark performance, not implementing at this
+// time.
+// For the sequence
+// zext( setgt ( Rs, Rt))
+// Generate
+// Pd=cmp.gt(Rs, Rt)
+// if (Pd.new) Rd=#1
+// if (!Pd.new) Rd=#0
+
+// For the sequence
+// zext( setuge ( Rs, Rt))
+// Generate
+// Pd=cmp.ltu(Rs, Rt)
+// if (Pd.new) Rd=#0
+// if (!Pd.new) Rd=#1
+// cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
+def : Pat <(i32 (zext (i1 (setuge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
+ (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rt),
+ (i32 IntRegs:$Rs))),
+ 0, 1))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( setge ( Rs, Rt))
+// Generate
+// Pd=cmp.lt(Rs, Rt)
+// if (Pd.new) Rd=#0
+// if (!Pd.new) Rd=#1
+// cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
+def : Pat <(i32 (zext (i1 (setge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
+ (i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rt),
+ (i32 IntRegs:$Rs))),
+ 0, 1))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( setule ( Rs, Rt))
+// Generate
+// Pd=cmp.gtu(Rs, Rt)
+// if (Pd.new) Rd=#0
+// if (!Pd.new) Rd=#1
+def : Pat <(i32 (zext (i1 (setule (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
+ (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rs),
+ (i32 IntRegs:$Rt))),
+ 0, 1))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( setle ( Rs, Rt))
+// Generate
+// Pd=cmp.gt(Rs, Rt)
+// if (Pd.new) Rd=#0
+// if (!Pd.new) Rd=#1
+def : Pat <(i32 (zext (i1 (setle (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
+ (i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rs),
+ (i32 IntRegs:$Rt))),
+ 0, 1))>,
+ Requires<[HasV4T]>;
+
+// For the sequence
+// zext( setult ( and(Rs, 255), u8))
+// Use the isdigit transformation below
+
+// Generate code of the form 'mux_ii(cmpbgtu(Rdd, C-1),0,1)'
+// for C code of the form r = ((c>='0') & (c<='9')) ? 1 : 0;.
+// The isdigit transformation relies on two 'clever' aspects:
+// 1) The data type is unsigned which allows us to eliminate a zero test after
+// biasing the expression by 48. We are depending on the representation of
+// the unsigned types, and semantics.
+// 2) The front end has converted <= 9 into < 10 on entry to LLVM
+//
+// For the C code:
+// retval = ((c>='0') & (c<='9')) ? 1 : 0;
+// The code is transformed upstream of llvm into
+// retval = (c-48) < 10 ? 1 : 0;
+let AddedComplexity = 139 in
+def : Pat <(i32 (zext (i1 (setult (i32 (and (i32 IntRegs:$src1), 255)),
+ u7StrictPosImmPred:$src2)))),
+ (i32 (MUX_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$src1),
+ (DEC_CONST_BYTE u7StrictPosImmPred:$src2))),
+ 0, 1))>,
+ Requires<[HasV4T]>;
+
+// Pd=cmpb.gtu(Rs,Rt)
+let isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPbGTU",
+InputType = "reg" in
+def CMPbGTUrr_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = cmpb.gtu($src1, $src2)",
+ [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 255),
+ (and (i32 IntRegs:$src2), 255)))]>,
+ Requires<[HasV4T]>, ImmRegRel;
+
+// Following instruction is not being extended as it results into the incorrect
+// code for negative numbers.
+
+// Signed half compare(.eq) ri.
+// Pd=cmph.eq(Rs,#s8)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPhEQri_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, s8Imm:$src2),
+ "$dst = cmph.eq($src1, #$src2)",
+ [(set (i1 PredRegs:$dst), (seteq (and (i32 IntRegs:$src1), 65535),
+ s8ImmPred:$src2))]>,
+ Requires<[HasV4T]>;
+
+// Signed half compare(.eq) rr.
+// Case 1: xor + and, then compare:
+// r0=xor(r0,r1)
+// r0=and(r0,#0xffff)
+// p0=cmp.eq(r0,#0)
+// Pd=cmph.eq(Rs,Rt)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPhEQrr_xor_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = cmph.eq($src1, $src2)",
+ [(set (i1 PredRegs:$dst), (seteq (and (xor (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)),
+ 65535), 0))]>,
+ Requires<[HasV4T]>;
+
+// Signed half compare(.eq) rr.
+// Case 2: shift left 16 bits then compare:
+// r0=asl(r0,16)
+// r1=asl(r1,16)
+// p0=cmp.eq(r0,r1)
+// Pd=cmph.eq(Rs,Rt)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPhEQrr_shl_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = cmph.eq($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (seteq (shl (i32 IntRegs:$src1), (i32 16)),
+ (shl (i32 IntRegs:$src2), (i32 16))))]>,
+ Requires<[HasV4T]>;
+
+/* Incorrect Pattern -- immediate should be right shifted before being
+used in the cmph.gt instruction.
+// Signed half compare(.gt) ri.
+// Pd=cmph.gt(Rs,#s8)
+
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
+isCompare = 1, validSubTargets = HasV4SubT in
+def CMPhGTri_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, s8Ext:$src2),
+ "$dst = cmph.gt($src1, #$src2)",
+ [(set (i1 PredRegs:$dst),
+ (setgt (shl (i32 IntRegs:$src1), (i32 16)),
+ s8ExtPred:$src2))]>,
+ Requires<[HasV4T]>;
+*/
+
+// Signed half compare(.gt) rr.
+// Pd=cmph.gt(Rs,Rt)
+let isCompare = 1, validSubTargets = HasV4SubT in
+def CMPhGTrr_shl_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = cmph.gt($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (setgt (shl (i32 IntRegs:$src1), (i32 16)),
+ (shl (i32 IntRegs:$src2), (i32 16))))]>,
+ Requires<[HasV4T]>;
+
+// Unsigned half compare rr (.gtu).
+// Pd=cmph.gtu(Rs,Rt)
+let isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPhGTU",
+InputType = "reg" in
+def CMPhGTUrr_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = cmph.gtu($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (setugt (and (i32 IntRegs:$src1), 65535),
+ (and (i32 IntRegs:$src2), 65535)))]>,
+ Requires<[HasV4T]>, ImmRegRel;
+
+// Unsigned half compare ri (.gtu).
+// Pd=cmph.gtu(Rs,#u7)
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 7,
+isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPhGTU",
+InputType = "imm" in
+def CMPhGTUri_V4 : MInst<(outs PredRegs:$dst),
+ (ins IntRegs:$src1, u7Ext:$src2),
+ "$dst = cmph.gtu($src1, #$src2)",
+ [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 65535),
+ u7ExtPred:$src2))]>,
+ Requires<[HasV4T]>, ImmRegRel;
+
+let validSubTargets = HasV4SubT in
+def NTSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = !tstbit($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (seteq (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>,
+ Requires<[HasV4T]>;
+
+let validSubTargets = HasV4SubT in
+def NTSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = !tstbit($src1, $src2)",
+ [(set (i1 PredRegs:$dst),
+ (seteq (and (shl 1, u5ImmPred:$src2), (i32 IntRegs:$src1)), 0))]>,
+ Requires<[HasV4T]>;
+
+//===----------------------------------------------------------------------===//
+// XTYPE/PRED -
+//===----------------------------------------------------------------------===//
+
+//Deallocate frame and return.
+// dealloc_return
+let isReturn = 1, isTerminator = 1, isBarrier = 1, isPredicable = 1,
+ Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1 in {
+let validSubTargets = HasV4SubT in
+ def DEALLOC_RET_V4 : LD0Inst<(outs), (ins),
+ "dealloc_return",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+// Restore registers and dealloc return function call.
+let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
+ Defs = [R29, R30, R31, PC] in {
+let validSubTargets = HasV4SubT in
+ def RESTORE_DEALLOC_RET_JMP_V4 : JInst<(outs),
+ (ins calltarget:$dst),
+ "jump $dst",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+// Restore registers and dealloc frame before a tail call.
+let isCall = 1, isBarrier = 1,
+ Defs = [R29, R30, R31, PC] in {
+let validSubTargets = HasV4SubT in
+ def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : JInst<(outs),
+ (ins calltarget:$dst),
+ "call $dst",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+// Save registers function call.
+let isCall = 1, isBarrier = 1,
+ Uses = [R29, R31] in {
+ def SAVE_REGISTERS_CALL_V4 : JInst<(outs),
+ (ins calltarget:$dst),
+ "call $dst // Save_calle_saved_registers",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+// if (Ps) dealloc_return
+let isReturn = 1, isTerminator = 1,
+ Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
+ isPredicated = 1 in {
+let validSubTargets = HasV4SubT in
+ def DEALLOC_RET_cPt_V4 : LD0Inst<(outs),
+ (ins PredRegs:$src1),
+ "if ($src1) dealloc_return",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+// if (!Ps) dealloc_return
+let isReturn = 1, isTerminator = 1,
+ Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
+ isPredicated = 1, isPredicatedFalse = 1 in {
+let validSubTargets = HasV4SubT in
+ def DEALLOC_RET_cNotPt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
+ "if (!$src1) dealloc_return",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+// if (Ps.new) dealloc_return:nt
+let isReturn = 1, isTerminator = 1,
+ Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
+ isPredicated = 1 in {
+let validSubTargets = HasV4SubT in
+ def DEALLOC_RET_cdnPnt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
+ "if ($src1.new) dealloc_return:nt",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+// if (!Ps.new) dealloc_return:nt
+let isReturn = 1, isTerminator = 1,
+ Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
+ isPredicated = 1, isPredicatedFalse = 1 in {
+let validSubTargets = HasV4SubT in
+ def DEALLOC_RET_cNotdnPnt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
+ "if (!$src1.new) dealloc_return:nt",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+// if (Ps.new) dealloc_return:t
+let isReturn = 1, isTerminator = 1,
+ Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
+ isPredicated = 1 in {
+let validSubTargets = HasV4SubT in
+ def DEALLOC_RET_cdnPt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
+ "if ($src1.new) dealloc_return:t",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+// if (!Ps.new) dealloc_return:nt
+let isReturn = 1, isTerminator = 1,
+ Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
+ isPredicated = 1, isPredicatedFalse = 1 in {
+let validSubTargets = HasV4SubT in
+ def DEALLOC_RET_cNotdnPt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
+ "if (!$src1.new) dealloc_return:t",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+// Load/Store with absolute addressing mode
+// memw(#u6)=Rt
+
+multiclass ST_Abs_Predbase<string mnemonic, RegisterClass RC, bit isNot,
+ bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME#_V4 : STInst2<(outs),
+ (ins PredRegs:$src1, u0AlwaysExt:$absaddr, RC: $src2),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"(##$absaddr) = $src2",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+multiclass ST_Abs_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ST_Abs_Predbase<mnemonic, RC, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : ST_Abs_Predbase<mnemonic, RC, PredNot, 1>;
+ }
+}
+
+let isNVStorable = 1, isExtended = 1, neverHasSideEffects = 1 in
+multiclass ST_Abs<string mnemonic, string CextOp, RegisterClass RC> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
+ let opExtendable = 0, isPredicable = 1 in
+ def NAME#_V4 : STInst2<(outs),
+ (ins u0AlwaysExt:$absaddr, RC:$src),
+ mnemonic#"(##$absaddr) = $src",
+ []>,
+ Requires<[HasV4T]>;
+
+ let opExtendable = 1, isPredicated = 1 in {
+ defm Pt : ST_Abs_Pred<mnemonic, RC, 0>;
+ defm NotPt : ST_Abs_Pred<mnemonic, RC, 1>;
+ }
+ }
+}
+
+multiclass ST_Abs_Predbase_nv<string mnemonic, RegisterClass RC, bit isNot,
+ bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME#_nv_V4 : NVInst_V4<(outs),
+ (ins PredRegs:$src1, u0AlwaysExt:$absaddr, RC: $src2),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"(##$absaddr) = $src2.new",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+multiclass ST_Abs_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : ST_Abs_Predbase_nv<mnemonic, RC, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : ST_Abs_Predbase_nv<mnemonic, RC, PredNot, 1>;
+ }
+}
+
+let mayStore = 1, isNVStore = 1, isExtended = 1, neverHasSideEffects = 1 in
+multiclass ST_Abs_nv<string mnemonic, string CextOp, RegisterClass RC> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
+ let opExtendable = 0, isPredicable = 1 in
+ def NAME#_nv_V4 : NVInst_V4<(outs),
+ (ins u0AlwaysExt:$absaddr, RC:$src),
+ mnemonic#"(##$absaddr) = $src.new",
+ []>,
+ Requires<[HasV4T]>;
+
+ let opExtendable = 1, isPredicated = 1 in {
+ defm Pt : ST_Abs_Pred_nv<mnemonic, RC, 0>;
+ defm NotPt : ST_Abs_Pred_nv<mnemonic, RC, 1>;
+ }
+ }
+}
+
+let addrMode = Absolute in {
+ let accessSize = ByteAccess in
+ defm STrib_abs : ST_Abs<"memb", "STrib", IntRegs>,
+ ST_Abs_nv<"memb", "STrib", IntRegs>, AddrModeRel;
+
+ let accessSize = HalfWordAccess in
+ defm STrih_abs : ST_Abs<"memh", "STrih", IntRegs>,
+ ST_Abs_nv<"memh", "STrih", IntRegs>, AddrModeRel;
+
+ let accessSize = WordAccess in
+ defm STriw_abs : ST_Abs<"memw", "STriw", IntRegs>,
+ ST_Abs_nv<"memw", "STriw", IntRegs>, AddrModeRel;
+
+ let accessSize = DoubleWordAccess, isNVStorable = 0 in
+ defm STrid_abs : ST_Abs<"memd", "STrid", DoubleRegs>, AddrModeRel;
+}
+
+let Predicates = [HasV4T], AddedComplexity = 30 in {
+def : Pat<(truncstorei8 (i32 IntRegs:$src1),
+ (HexagonCONST32 tglobaladdr:$absaddr)),
+ (STrib_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;
+
+def : Pat<(truncstorei16 (i32 IntRegs:$src1),
+ (HexagonCONST32 tglobaladdr:$absaddr)),
+ (STrih_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;
+
+def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32 tglobaladdr:$absaddr)),
+ (STriw_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;
+
+def : Pat<(store (i64 DoubleRegs:$src1),
+ (HexagonCONST32 tglobaladdr:$absaddr)),
+ (STrid_abs_V4 tglobaladdr: $absaddr, DoubleRegs: $src1)>;
+}
+
+//===----------------------------------------------------------------------===//
+// multiclass for store instructions with GP-relative addressing mode.
+// mem[bhwd](#global)=Rt
+// if ([!]Pv[.new]) mem[bhwd](##global) = Rt
+//===----------------------------------------------------------------------===//
+let mayStore = 1, isNVStorable = 1 in
+multiclass ST_GP<string mnemonic, string BaseOp, RegisterClass RC> {
+ let BaseOpcode = BaseOp, isPredicable = 1 in
+ def NAME#_V4 : STInst2<(outs),
+ (ins globaladdress:$global, RC:$src),
+ mnemonic#"(#$global) = $src",
+ []>;
+
+ // When GP-relative instructions are predicated, their addressing mode is
+ // changed to absolute and they are always constant extended.
+ let BaseOpcode = BaseOp, isExtended = 1, opExtendable = 1,
+ isPredicated = 1 in {
+ defm Pt : ST_Abs_Pred <mnemonic, RC, 0>;
+ defm NotPt : ST_Abs_Pred <mnemonic, RC, 1>;
+ }
+}
+
+let mayStore = 1, isNVStore = 1 in
+multiclass ST_GP_nv<string mnemonic, string BaseOp, RegisterClass RC> {
+ let BaseOpcode = BaseOp, isPredicable = 1 in
+ def NAME#_nv_V4 : NVInst_V4<(outs),
+ (ins u0AlwaysExt:$global, RC:$src),
+ mnemonic#"(#$global) = $src.new",
+ []>,
+ Requires<[HasV4T]>;
+
+ // When GP-relative instructions are predicated, their addressing mode is
+ // changed to absolute and they are always constant extended.
+ let BaseOpcode = BaseOp, isExtended = 1, opExtendable = 1,
+ isPredicated = 1 in {
+ defm Pt : ST_Abs_Pred_nv<mnemonic, RC, 0>;
+ defm NotPt : ST_Abs_Pred_nv<mnemonic, RC, 1>;
+ }
+}
+
+let validSubTargets = HasV4SubT, neverHasSideEffects = 1 in {
+ let isNVStorable = 0 in
+ defm STd_GP : ST_GP <"memd", "STd_GP", DoubleRegs>, PredNewRel;
+
+ defm STb_GP : ST_GP<"memb", "STb_GP", IntRegs>,
+ ST_GP_nv<"memb", "STb_GP", IntRegs>, NewValueRel;
+ defm STh_GP : ST_GP<"memh", "STh_GP", IntRegs>,
+ ST_GP_nv<"memh", "STh_GP", IntRegs>, NewValueRel;
+ defm STw_GP : ST_GP<"memw", "STw_GP", IntRegs>,
+ ST_GP_nv<"memw", "STw_GP", IntRegs>, NewValueRel;
+}
+
+// 64 bit atomic store
+def : Pat <(atomic_store_64 (HexagonCONST32_GP tglobaladdr:$global),
+ (i64 DoubleRegs:$src1)),
+ (STd_GP_V4 tglobaladdr:$global, (i64 DoubleRegs:$src1))>,
+ Requires<[HasV4T]>;
+
+// Map from store(globaladdress) -> memd(#foo)
+let AddedComplexity = 100 in
+def : Pat <(store (i64 DoubleRegs:$src1),
+ (HexagonCONST32_GP tglobaladdr:$global)),
+ (STd_GP_V4 tglobaladdr:$global, (i64 DoubleRegs:$src1))>;
+
+// 8 bit atomic store
+def : Pat < (atomic_store_8 (HexagonCONST32_GP tglobaladdr:$global),
+ (i32 IntRegs:$src1)),
+ (STb_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+
+// Map from store(globaladdress) -> memb(#foo)
+let AddedComplexity = 100 in
+def : Pat<(truncstorei8 (i32 IntRegs:$src1),
+ (HexagonCONST32_GP tglobaladdr:$global)),
+ (STb_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+
+// Map from "i1 = constant<-1>; memw(CONST32(#foo)) = i1"
+// to "r0 = 1; memw(#foo) = r0"
+let AddedComplexity = 100 in
+def : Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)),
+ (STb_GP_V4 tglobaladdr:$global, (TFRI 1))>;
+
+def : Pat<(atomic_store_16 (HexagonCONST32_GP tglobaladdr:$global),
+ (i32 IntRegs:$src1)),
+ (STh_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+
+// Map from store(globaladdress) -> memh(#foo)
+let AddedComplexity = 100 in
+def : Pat<(truncstorei16 (i32 IntRegs:$src1),
+ (HexagonCONST32_GP tglobaladdr:$global)),
+ (STh_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+
+// 32 bit atomic store
+def : Pat<(atomic_store_32 (HexagonCONST32_GP tglobaladdr:$global),
+ (i32 IntRegs:$src1)),
+ (STw_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+
+// Map from store(globaladdress) -> memw(#foo)
+let AddedComplexity = 100 in
+def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)),
+ (STw_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+
+//===----------------------------------------------------------------------===//
+// Multiclass for the load instructions with absolute addressing mode.
+//===----------------------------------------------------------------------===//
+multiclass LD_Abs_Predbase<string mnemonic, RegisterClass RC, bit isNot,
+ bit isPredNew> {
+ let isPredicatedNew = isPredNew in
+ def NAME : LDInst2<(outs RC:$dst),
+ (ins PredRegs:$src1, u0AlwaysExt:$absaddr),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#"$dst = "#mnemonic#"(##$absaddr)",
+ []>,
+ Requires<[HasV4T]>;
+}
+
+multiclass LD_Abs_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
+ let isPredicatedFalse = PredNot in {
+ defm _c#NAME : LD_Abs_Predbase<mnemonic, RC, PredNot, 0>;
+ // Predicate new
+ defm _cdn#NAME : LD_Abs_Predbase<mnemonic, RC, PredNot, 1>;
+ }
+}
+
+let isExtended = 1, neverHasSideEffects = 1 in
+multiclass LD_Abs<string mnemonic, string CextOp, RegisterClass RC> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
+ let opExtendable = 1, isPredicable = 1 in
+ def NAME#_V4 : LDInst2<(outs RC:$dst),
+ (ins u0AlwaysExt:$absaddr),
+ "$dst = "#mnemonic#"(##$absaddr)",
+ []>,
+ Requires<[HasV4T]>;
+
+ let opExtendable = 2, isPredicated = 1 in {
+ defm Pt_V4 : LD_Abs_Pred<mnemonic, RC, 0>;
+ defm NotPt_V4 : LD_Abs_Pred<mnemonic, RC, 1>;
+ }
+ }
+}
+
+let addrMode = Absolute in {
+ let accessSize = ByteAccess in {
+ defm LDrib_abs : LD_Abs<"memb", "LDrib", IntRegs>, AddrModeRel;
+ defm LDriub_abs : LD_Abs<"memub", "LDriub", IntRegs>, AddrModeRel;
+ }
+ let accessSize = HalfWordAccess in {
+ defm LDrih_abs : LD_Abs<"memh", "LDrih", IntRegs>, AddrModeRel;
+ defm LDriuh_abs : LD_Abs<"memuh", "LDriuh", IntRegs>, AddrModeRel;
+ }
+ let accessSize = WordAccess in
+ defm LDriw_abs : LD_Abs<"memw", "LDriw", IntRegs>, AddrModeRel;
+
+ let accessSize = DoubleWordAccess in
+ defm LDrid_abs : LD_Abs<"memd", "LDrid", DoubleRegs>, AddrModeRel;
+}
+
+let Predicates = [HasV4T], AddedComplexity = 30 in {
+def : Pat<(i32 (load (HexagonCONST32 tglobaladdr:$absaddr))),
+ (LDriw_abs_V4 tglobaladdr: $absaddr)>;
+
+def : Pat<(i32 (sextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
+ (LDrib_abs_V4 tglobaladdr:$absaddr)>;
+
+def : Pat<(i32 (zextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
+ (LDriub_abs_V4 tglobaladdr:$absaddr)>;
+
+def : Pat<(i32 (sextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
+ (LDrih_abs_V4 tglobaladdr:$absaddr)>;
+
+def : Pat<(i32 (zextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
+ (LDriuh_abs_V4 tglobaladdr:$absaddr)>;
+}
+
+//===----------------------------------------------------------------------===//
+// multiclass for load instructions with GP-relative addressing mode.
+// Rx=mem[bhwd](##global)
+// if ([!]Pv[.new]) Rx=mem[bhwd](##global)
+//===----------------------------------------------------------------------===//
+let neverHasSideEffects = 1, validSubTargets = HasV4SubT in
+multiclass LD_GP<string mnemonic, string BaseOp, RegisterClass RC> {
+ let BaseOpcode = BaseOp in {
+ let isPredicable = 1 in
+ def NAME#_V4 : LDInst2<(outs RC:$dst),
+ (ins globaladdress:$global),
+ "$dst = "#mnemonic#"(#$global)",
+ []>;
+
+ let isExtended = 1, opExtendable = 2, isPredicated = 1 in {
+ defm Pt_V4 : LD_Abs_Pred<mnemonic, RC, 0>;
+ defm NotPt_V4 : LD_Abs_Pred<mnemonic, RC, 1>;
+ }
+ }
+}
+
+defm LDd_GP : LD_GP<"memd", "LDd_GP", DoubleRegs>, PredNewRel;
+defm LDb_GP : LD_GP<"memb", "LDb_GP", IntRegs>, PredNewRel;
+defm LDub_GP : LD_GP<"memub", "LDub_GP", IntRegs>, PredNewRel;
+defm LDh_GP : LD_GP<"memh", "LDh_GP", IntRegs>, PredNewRel;
+defm LDuh_GP : LD_GP<"memuh", "LDuh_GP", IntRegs>, PredNewRel;
+defm LDw_GP : LD_GP<"memw", "LDw_GP", IntRegs>, PredNewRel;
+
+def : Pat <(atomic_load_64 (HexagonCONST32_GP tglobaladdr:$global)),
+ (i64 (LDd_GP_V4 tglobaladdr:$global))>;
+
+def : Pat <(atomic_load_32 (HexagonCONST32_GP tglobaladdr:$global)),
+ (i32 (LDw_GP_V4 tglobaladdr:$global))>;
+
+def : Pat <(atomic_load_16 (HexagonCONST32_GP tglobaladdr:$global)),
+ (i32 (LDuh_GP_V4 tglobaladdr:$global))>;
+
+def : Pat <(atomic_load_8 (HexagonCONST32_GP tglobaladdr:$global)),
+ (i32 (LDub_GP_V4 tglobaladdr:$global))>;
+
+// Map from load(globaladdress) -> memw(#foo + 0)
+let AddedComplexity = 100 in
+def : Pat <(i64 (load (HexagonCONST32_GP tglobaladdr:$global))),
+ (i64 (LDd_GP_V4 tglobaladdr:$global))>;
+
+// Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd
+let AddedComplexity = 100 in
+def : Pat <(i1 (load (HexagonCONST32_GP tglobaladdr:$global))),
+ (i1 (TFR_PdRs (i32 (LDb_GP_V4 tglobaladdr:$global))))>;
+
+// When the Interprocedural Global Variable optimizer realizes that a certain
+// global variable takes only two constant values, it shrinks the global to
+// a boolean. Catch those loads here in the following 3 patterns.
+let AddedComplexity = 100 in
+def : Pat <(i32 (extloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDb_GP_V4 tglobaladdr:$global))>;
+
+let AddedComplexity = 100 in
+def : Pat <(i32 (sextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDb_GP_V4 tglobaladdr:$global))>;
+
+// Map from load(globaladdress) -> memb(#foo)
+let AddedComplexity = 100 in
+def : Pat <(i32 (extloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDb_GP_V4 tglobaladdr:$global))>;
+
+// Map from load(globaladdress) -> memb(#foo)
+let AddedComplexity = 100 in
+def : Pat <(i32 (sextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDb_GP_V4 tglobaladdr:$global))>;
+
+let AddedComplexity = 100 in
+def : Pat <(i32 (zextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDub_GP_V4 tglobaladdr:$global))>;
+
+// Map from load(globaladdress) -> memub(#foo)
+let AddedComplexity = 100 in
+def : Pat <(i32 (zextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDub_GP_V4 tglobaladdr:$global))>;
+
+// Map from load(globaladdress) -> memh(#foo)
+let AddedComplexity = 100 in
+def : Pat <(i32 (extloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDh_GP_V4 tglobaladdr:$global))>;
+
+// Map from load(globaladdress) -> memh(#foo)
+let AddedComplexity = 100 in
+def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDh_GP_V4 tglobaladdr:$global))>;
+
+// Map from load(globaladdress) -> memuh(#foo)
+let AddedComplexity = 100 in
+def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDuh_GP_V4 tglobaladdr:$global))>;
+
+// Map from load(globaladdress) -> memw(#foo)
+let AddedComplexity = 100 in
+def : Pat <(i32 (load (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDw_GP_V4 tglobaladdr:$global))>;
+
+
+// Transfer global address into a register
+let isExtended = 1, opExtendable = 1, AddedComplexity=50, isMoveImm = 1,
+isAsCheapAsAMove = 1, isReMaterializable = 1, validSubTargets = HasV4SubT in
+def TFRI_V4 : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1),
+ "$dst = #$src1",
+ [(set IntRegs:$dst, (HexagonCONST32 tglobaladdr:$src1))]>,
+ Requires<[HasV4T]>;
+
+// Transfer a block address into a register
+def : Pat<(HexagonCONST32_GP tblockaddress:$src1),
+ (TFRI_V4 tblockaddress:$src1)>,
+ Requires<[HasV4T]>;
+
+let isExtended = 1, opExtendable = 2, AddedComplexity=50,
+neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
+def TFRI_cPt_V4 : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, s16Ext:$src2),
+ "if($src1) $dst = #$src2",
+ []>,
+ Requires<[HasV4T]>;
+
+let isExtended = 1, opExtendable = 2, AddedComplexity=50, isPredicatedFalse = 1,
+neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
+def TFRI_cNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, s16Ext:$src2),
+ "if(!$src1) $dst = #$src2",
+ []>,
+ Requires<[HasV4T]>;
+
+let isExtended = 1, opExtendable = 2, AddedComplexity=50,
+neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
+def TFRI_cdnPt_V4 : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, s16Ext:$src2),
+ "if($src1.new) $dst = #$src2",
+ []>,
+ Requires<[HasV4T]>;
+
+let isExtended = 1, opExtendable = 2, AddedComplexity=50, isPredicatedFalse = 1,
+neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
+def TFRI_cdnNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, s16Ext:$src2),
+ "if(!$src1.new) $dst = #$src2",
+ []>,
+ Requires<[HasV4T]>;
+
+let AddedComplexity = 50, Predicates = [HasV4T] in
+def : Pat<(HexagonCONST32_GP tglobaladdr:$src1),
+ (TFRI_V4 tglobaladdr:$src1)>,
+ Requires<[HasV4T]>;
+
+
+// Load - Indirect with long offset: These instructions take global address
+// as an operand
+let isExtended = 1, opExtendable = 3, AddedComplexity = 40,
+validSubTargets = HasV4SubT in
+def LDrid_ind_lo_V4 : LDInst<(outs DoubleRegs:$dst),
+ (ins IntRegs:$src1, u2Imm:$src2, globaladdressExt:$offset),
+ "$dst=memd($src1<<#$src2+##$offset)",
+ [(set (i64 DoubleRegs:$dst),
+ (load (add (shl IntRegs:$src1, u2ImmPred:$src2),
+ (HexagonCONST32 tglobaladdr:$offset))))]>,
+ Requires<[HasV4T]>;
+
+let AddedComplexity = 40 in
+multiclass LD_indirect_lo<string OpcStr, PatFrag OpNode> {
+let isExtended = 1, opExtendable = 3, validSubTargets = HasV4SubT in
+ def _lo_V4 : LDInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, u2Imm:$src2, globaladdressExt:$offset),
+ !strconcat("$dst = ",
+ !strconcat(OpcStr, "($src1<<#$src2+##$offset)")),
+ [(set IntRegs:$dst,
+ (i32 (OpNode (add (shl IntRegs:$src1, u2ImmPred:$src2),
+ (HexagonCONST32 tglobaladdr:$offset)))))]>,
+ Requires<[HasV4T]>;
+}
+
+defm LDrib_ind : LD_indirect_lo<"memb", sextloadi8>;
+defm LDriub_ind : LD_indirect_lo<"memub", zextloadi8>;
+defm LDriub_ind_anyext : LD_indirect_lo<"memub", extloadi8>;
+defm LDrih_ind : LD_indirect_lo<"memh", sextloadi16>;
+defm LDriuh_ind : LD_indirect_lo<"memuh", zextloadi16>;
+defm LDriuh_ind_anyext : LD_indirect_lo<"memuh", extloadi16>;
+defm LDriw_ind : LD_indirect_lo<"memw", load>;
+
+let AddedComplexity = 40 in
+def : Pat <(i32 (sextloadi8 (add IntRegs:$src1,
+ (NumUsesBelowThresCONST32 tglobaladdr:$offset)))),
+ (i32 (LDrib_ind_lo_V4 IntRegs:$src1, 0, tglobaladdr:$offset))>,
+ Requires<[HasV4T]>;
+
+let AddedComplexity = 40 in
+def : Pat <(i32 (zextloadi8 (add IntRegs:$src1,
+ (NumUsesBelowThresCONST32 tglobaladdr:$offset)))),
+ (i32 (LDriub_ind_lo_V4 IntRegs:$src1, 0, tglobaladdr:$offset))>,
+ Requires<[HasV4T]>;
+
+let Predicates = [HasV4T], AddedComplexity = 30 in {
+def : Pat<(truncstorei8 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
+ (STrib_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;
+
+def : Pat<(truncstorei16 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
+ (STrih_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;
+
+def : Pat<(store (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
+ (STriw_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;
+}
+
+let Predicates = [HasV4T], AddedComplexity = 30 in {
+def : Pat<(i32 (load u0AlwaysExtPred:$src)),
+ (LDriw_abs_V4 u0AlwaysExtPred:$src)>;
+
+def : Pat<(i32 (sextloadi8 u0AlwaysExtPred:$src)),
+ (LDrib_abs_V4 u0AlwaysExtPred:$src)>;
+
+def : Pat<(i32 (zextloadi8 u0AlwaysExtPred:$src)),
+ (LDriub_abs_V4 u0AlwaysExtPred:$src)>;
+
+def : Pat<(i32 (sextloadi16 u0AlwaysExtPred:$src)),
+ (LDrih_abs_V4 u0AlwaysExtPred:$src)>;
+
+def : Pat<(i32 (zextloadi16 u0AlwaysExtPred:$src)),
+ (LDriuh_abs_V4 u0AlwaysExtPred:$src)>;
+}
+
+// Indexed store word - global address.
+// memw(Rs+#u6:2)=#S8
+let AddedComplexity = 10 in
+def STriw_offset_ext_V4 : STInst<(outs),
+ (ins IntRegs:$src1, u6_2Imm:$src2, globaladdress:$src3),
+ "memw($src1+#$src2) = ##$src3",
+ [(store (HexagonCONST32 tglobaladdr:$src3),
+ (add IntRegs:$src1, u6_2ImmPred:$src2))]>,
+ Requires<[HasV4T]>;
+
+def : Pat<(i64 (ctlz (i64 DoubleRegs:$src1))),
+ (i64 (COMBINE_Ir_V4 (i32 0), (i32 (CTLZ64_rr DoubleRegs:$src1))))>,
+ Requires<[HasV4T]>;
+
+def : Pat<(i64 (cttz (i64 DoubleRegs:$src1))),
+ (i64 (COMBINE_Ir_V4 (i32 0), (i32 (CTTZ64_rr DoubleRegs:$src1))))>,
+ Requires<[HasV4T]>;
+
+
+// i8 -> i64 loads
+// We need a complexity of 120 here to override preceding handling of
+// zextloadi8.
+let Predicates = [HasV4T], AddedComplexity = 120 in {
+def: Pat <(i64 (extloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
+ (i64 (COMBINE_Ir_V4 0, (LDrib_abs_V4 tglobaladdr:$addr)))>;
+
+def: Pat <(i64 (zextloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
+ (i64 (COMBINE_Ir_V4 0, (LDriub_abs_V4 tglobaladdr:$addr)))>;
+
+def: Pat <(i64 (sextloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
+ (i64 (SXTW (LDrib_abs_V4 tglobaladdr:$addr)))>;
+
+def: Pat <(i64 (extloadi8 FoldGlobalAddr:$addr)),
+ (i64 (COMBINE_Ir_V4 0, (LDrib_abs_V4 FoldGlobalAddr:$addr)))>;
+
+def: Pat <(i64 (zextloadi8 FoldGlobalAddr:$addr)),
+ (i64 (COMBINE_Ir_V4 0, (LDriub_abs_V4 FoldGlobalAddr:$addr)))>;
+
+def: Pat <(i64 (sextloadi8 FoldGlobalAddr:$addr)),
+ (i64 (SXTW (LDrib_abs_V4 FoldGlobalAddr:$addr)))>;
+}
+// i16 -> i64 loads
+// We need a complexity of 120 here to override preceding handling of
+// zextloadi16.
+let AddedComplexity = 120 in {
+def: Pat <(i64 (extloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
+ (i64 (COMBINE_Ir_V4 0, (LDrih_abs_V4 tglobaladdr:$addr)))>,
+ Requires<[HasV4T]>;
+
+def: Pat <(i64 (zextloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
+ (i64 (COMBINE_Ir_V4 0, (LDriuh_abs_V4 tglobaladdr:$addr)))>,
+ Requires<[HasV4T]>;
+
+def: Pat <(i64 (sextloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
+ (i64 (SXTW (LDrih_abs_V4 tglobaladdr:$addr)))>,
+ Requires<[HasV4T]>;
+
+def: Pat <(i64 (extloadi16 FoldGlobalAddr:$addr)),
+ (i64 (COMBINE_Ir_V4 0, (LDrih_abs_V4 FoldGlobalAddr:$addr)))>,
+ Requires<[HasV4T]>;
+
+def: Pat <(i64 (zextloadi16 FoldGlobalAddr:$addr)),
+ (i64 (COMBINE_Ir_V4 0, (LDriuh_abs_V4 FoldGlobalAddr:$addr)))>,
+ Requires<[HasV4T]>;
+
+def: Pat <(i64 (sextloadi16 FoldGlobalAddr:$addr)),
+ (i64 (SXTW (LDrih_abs_V4 FoldGlobalAddr:$addr)))>,
+ Requires<[HasV4T]>;
+}
+// i32->i64 loads
+// We need a complexity of 120 here to override preceding handling of
+// zextloadi32.
+let AddedComplexity = 120 in {
+def: Pat <(i64 (extloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
+ (i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 tglobaladdr:$addr)))>,
+ Requires<[HasV4T]>;
+
+def: Pat <(i64 (zextloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
+ (i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 tglobaladdr:$addr)))>,
+ Requires<[HasV4T]>;
+
+def: Pat <(i64 (sextloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
+ (i64 (SXTW (LDriw_abs_V4 tglobaladdr:$addr)))>,
+ Requires<[HasV4T]>;
+
+def: Pat <(i64 (extloadi32 FoldGlobalAddr:$addr)),
+ (i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 FoldGlobalAddr:$addr)))>,
+ Requires<[HasV4T]>;
+
+def: Pat <(i64 (zextloadi32 FoldGlobalAddr:$addr)),
+ (i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 FoldGlobalAddr:$addr)))>,
+ Requires<[HasV4T]>;
+
+def: Pat <(i64 (sextloadi32 FoldGlobalAddr:$addr)),
+ (i64 (SXTW (LDriw_abs_V4 FoldGlobalAddr:$addr)))>,
+ Requires<[HasV4T]>;
+}
+
+// Indexed store double word - global address.
+// memw(Rs+#u6:2)=#S8
+let AddedComplexity = 10 in
+def STrih_offset_ext_V4 : STInst<(outs),
+ (ins IntRegs:$src1, u6_1Imm:$src2, globaladdress:$src3),
+ "memh($src1+#$src2) = ##$src3",
+ [(truncstorei16 (HexagonCONST32 tglobaladdr:$src3),
+ (add IntRegs:$src1, u6_1ImmPred:$src2))]>,
+ Requires<[HasV4T]>;
+// Map from store(globaladdress + x) -> memd(#foo + x)
+let AddedComplexity = 100 in
+def : Pat<(store (i64 DoubleRegs:$src1),
+ FoldGlobalAddrGP:$addr),
+ (STrid_abs_V4 FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
+ Requires<[HasV4T]>;
+
+def : Pat<(atomic_store_64 FoldGlobalAddrGP:$addr,
+ (i64 DoubleRegs:$src1)),
+ (STrid_abs_V4 FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
+ Requires<[HasV4T]>;
+
+// Map from store(globaladdress + x) -> memb(#foo + x)
+let AddedComplexity = 100 in
+def : Pat<(truncstorei8 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
+ (STrib_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ Requires<[HasV4T]>;
+
+def : Pat<(atomic_store_8 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
+ (STrib_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ Requires<[HasV4T]>;
+
+// Map from store(globaladdress + x) -> memh(#foo + x)
+let AddedComplexity = 100 in
+def : Pat<(truncstorei16 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
+ (STrih_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ Requires<[HasV4T]>;
+
+def : Pat<(atomic_store_16 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
+ (STrih_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ Requires<[HasV4T]>;
+
+// Map from store(globaladdress + x) -> memw(#foo + x)
+let AddedComplexity = 100 in
+def : Pat<(store (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
+ (STriw_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ Requires<[HasV4T]>;
+
+def : Pat<(atomic_store_32 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
+ (STriw_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ Requires<[HasV4T]>;
+
+// Map from load(globaladdress + x) -> memd(#foo + x)
+let AddedComplexity = 100 in
+def : Pat<(i64 (load FoldGlobalAddrGP:$addr)),
+ (i64 (LDrid_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
+
+def : Pat<(atomic_load_64 FoldGlobalAddrGP:$addr),
+ (i64 (LDrid_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
+
+// Map from load(globaladdress + x) -> memb(#foo + x)
+let AddedComplexity = 100 in
+def : Pat<(i32 (extloadi8 FoldGlobalAddrGP:$addr)),
+ (i32 (LDrib_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
+
+// Map from load(globaladdress + x) -> memb(#foo + x)
+let AddedComplexity = 100 in
+def : Pat<(i32 (sextloadi8 FoldGlobalAddrGP:$addr)),
+ (i32 (LDrib_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
+
+//let AddedComplexity = 100 in
+let AddedComplexity = 100 in
+def : Pat<(i32 (extloadi16 FoldGlobalAddrGP:$addr)),
+ (i32 (LDrih_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
+
+// Map from load(globaladdress + x) -> memh(#foo + x)
+let AddedComplexity = 100 in
+def : Pat<(i32 (sextloadi16 FoldGlobalAddrGP:$addr)),
+ (i32 (LDrih_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
+
+// Map from load(globaladdress + x) -> memuh(#foo + x)
+let AddedComplexity = 100 in
+def : Pat<(i32 (zextloadi16 FoldGlobalAddrGP:$addr)),
+ (i32 (LDriuh_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
+
+def : Pat<(atomic_load_16 FoldGlobalAddrGP:$addr),
+ (i32 (LDriuh_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
+
+// Map from load(globaladdress + x) -> memub(#foo + x)
+let AddedComplexity = 100 in
+def : Pat<(i32 (zextloadi8 FoldGlobalAddrGP:$addr)),
+ (i32 (LDriub_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
+
+def : Pat<(atomic_load_8 FoldGlobalAddrGP:$addr),
+ (i32 (LDriub_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
+
+// Map from load(globaladdress + x) -> memw(#foo + x)
+let AddedComplexity = 100 in
+def : Pat<(i32 (load FoldGlobalAddrGP:$addr)),
+ (i32 (LDriw_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
+
+def : Pat<(atomic_load_32 FoldGlobalAddrGP:$addr),
+ (i32 (LDriw_abs_V4 FoldGlobalAddrGP:$addr))>,
+ Requires<[HasV4T]>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV5.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV5.td
new file mode 100644
index 0000000..9da6074
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV5.td
@@ -0,0 +1,633 @@
+def SDTHexagonFCONST32 : SDTypeProfile<1, 1, [
+ SDTCisVT<0, f32>,
+ SDTCisPtrTy<1>]>;
+def HexagonFCONST32 : SDNode<"HexagonISD::FCONST32", SDTHexagonFCONST32>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def FCONST32_nsdata : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global),
+ "$dst = CONST32(#$global)",
+ [(set (f32 IntRegs:$dst),
+ (HexagonFCONST32 tglobaladdr:$global))]>,
+ Requires<[HasV5T]>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST64_Float_Real : LDInst<(outs DoubleRegs:$dst), (ins f64imm:$src1),
+ "$dst = CONST64(#$src1)",
+ [(set DoubleRegs:$dst, fpimm:$src1)]>,
+ Requires<[HasV5T]>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST32_Float_Real : LDInst<(outs IntRegs:$dst), (ins f32imm:$src1),
+ "$dst = CONST32(#$src1)",
+ [(set IntRegs:$dst, fpimm:$src1)]>,
+ Requires<[HasV5T]>;
+
+// Transfer immediate float.
+// Only works with single precision fp value.
+// For double precision, use CONST64_float_real, as 64bit transfer
+// can only hold 40-bit values - 32 from const ext + 8 bit immediate.
+// Make sure that complexity is more than the CONST32 pattern in
+// HexagonInstrInfo.td patterns.
+let isExtended = 1, opExtendable = 1, isMoveImm = 1, isReMaterializable = 1,
+isPredicable = 1, AddedComplexity = 30, validSubTargets = HasV5SubT,
+isCodeGenOnly = 1 in
+def TFRI_f : ALU32_ri<(outs IntRegs:$dst), (ins f32Ext:$src1),
+ "$dst = #$src1",
+ [(set IntRegs:$dst, fpimm:$src1)]>,
+ Requires<[HasV5T]>;
+
+let isExtended = 1, opExtendable = 2, isPredicated = 1,
+neverHasSideEffects = 1, validSubTargets = HasV5SubT in
+def TFRI_cPt_f : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, f32Ext:$src2),
+ "if ($src1) $dst = #$src2",
+ []>,
+ Requires<[HasV5T]>;
+
+let isExtended = 1, opExtendable = 2, isPredicated = 1, isPredicatedFalse = 1,
+neverHasSideEffects = 1, validSubTargets = HasV5SubT in
+def TFRI_cNotPt_f : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, f32Ext:$src2),
+ "if (!$src1) $dst =#$src2",
+ []>,
+ Requires<[HasV5T]>;
+
+// Convert single precision to double precision and vice-versa.
+def CONVERT_sf2df : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_sf2df($src)",
+ [(set DoubleRegs:$dst, (fextend IntRegs:$src))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_df2sf : ALU64_rr<(outs IntRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_df2sf($src)",
+ [(set IntRegs:$dst, (fround DoubleRegs:$src))]>,
+ Requires<[HasV5T]>;
+
+
+// Load.
+def LDrid_f : LDInst<(outs DoubleRegs:$dst),
+ (ins MEMri:$addr),
+ "$dst = memd($addr)",
+ [(set DoubleRegs:$dst, (f64 (load ADDRriS11_3:$addr)))]>,
+ Requires<[HasV5T]>;
+
+
+let AddedComplexity = 20 in
+def LDrid_indexed_f : LDInst<(outs DoubleRegs:$dst),
+ (ins IntRegs:$src1, s11_3Imm:$offset),
+ "$dst = memd($src1+#$offset)",
+ [(set DoubleRegs:$dst, (f64 (load (add IntRegs:$src1,
+ s11_3ImmPred:$offset))))]>,
+ Requires<[HasV5T]>;
+
+def LDriw_f : LDInst<(outs IntRegs:$dst),
+ (ins MEMri:$addr), "$dst = memw($addr)",
+ [(set IntRegs:$dst, (f32 (load ADDRriS11_2:$addr)))]>,
+ Requires<[HasV5T]>;
+
+
+let AddedComplexity = 20 in
+def LDriw_indexed_f : LDInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s11_2Imm:$offset),
+ "$dst = memw($src1+#$offset)",
+ [(set IntRegs:$dst, (f32 (load (add IntRegs:$src1,
+ s11_2ImmPred:$offset))))]>,
+ Requires<[HasV5T]>;
+
+// Store.
+def STriw_f : STInst<(outs),
+ (ins MEMri:$addr, IntRegs:$src1),
+ "memw($addr) = $src1",
+ [(store (f32 IntRegs:$src1), ADDRriS11_2:$addr)]>,
+ Requires<[HasV5T]>;
+
+let AddedComplexity = 10 in
+def STriw_indexed_f : STInst<(outs),
+ (ins IntRegs:$src1, s11_2Imm:$src2, IntRegs:$src3),
+ "memw($src1+#$src2) = $src3",
+ [(store (f32 IntRegs:$src3),
+ (add IntRegs:$src1, s11_2ImmPred:$src2))]>,
+ Requires<[HasV5T]>;
+
+def STrid_f : STInst<(outs),
+ (ins MEMri:$addr, DoubleRegs:$src1),
+ "memd($addr) = $src1",
+ [(store (f64 DoubleRegs:$src1), ADDRriS11_2:$addr)]>,
+ Requires<[HasV5T]>;
+
+// Indexed store double word.
+let AddedComplexity = 10 in
+def STrid_indexed_f : STInst<(outs),
+ (ins IntRegs:$src1, s11_3Imm:$src2, DoubleRegs:$src3),
+ "memd($src1+#$src2) = $src3",
+ [(store (f64 DoubleRegs:$src3),
+ (add IntRegs:$src1, s11_3ImmPred:$src2))]>,
+ Requires<[HasV5T]>;
+
+
+// Add
+let isCommutable = 1 in
+def fADD_rr : ALU64_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = sfadd($src1, $src2)",
+ [(set IntRegs:$dst, (fadd IntRegs:$src1, IntRegs:$src2))]>,
+ Requires<[HasV5T]>;
+
+let isCommutable = 1 in
+def fADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = dfadd($src1, $src2)",
+ [(set DoubleRegs:$dst, (fadd DoubleRegs:$src1,
+ DoubleRegs:$src2))]>,
+ Requires<[HasV5T]>;
+
+def fSUB_rr : ALU64_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = sfsub($src1, $src2)",
+ [(set IntRegs:$dst, (fsub IntRegs:$src1, IntRegs:$src2))]>,
+ Requires<[HasV5T]>;
+
+def fSUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = dfsub($src1, $src2)",
+ [(set DoubleRegs:$dst, (fsub DoubleRegs:$src1,
+ DoubleRegs:$src2))]>,
+ Requires<[HasV5T]>;
+
+let isCommutable = 1 in
+def fMUL_rr : ALU64_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = sfmpy($src1, $src2)",
+ [(set IntRegs:$dst, (fmul IntRegs:$src1, IntRegs:$src2))]>,
+ Requires<[HasV5T]>;
+
+let isCommutable = 1 in
+def fMUL64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = dfmpy($src1, $src2)",
+ [(set DoubleRegs:$dst, (fmul DoubleRegs:$src1,
+ DoubleRegs:$src2))]>,
+ Requires<[HasV5T]>;
+
+// Compare.
+let isCompare = 1 in {
+multiclass FCMP64_rr<string OpcStr, PatFrag OpNode> {
+ def _rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
+ [(set PredRegs:$dst,
+ (OpNode (f64 DoubleRegs:$b), (f64 DoubleRegs:$c)))]>,
+ Requires<[HasV5T]>;
+}
+
+multiclass FCMP32_rr<string OpcStr, PatFrag OpNode> {
+ def _rr : ALU64_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
+ [(set PredRegs:$dst,
+ (OpNode (f32 IntRegs:$b), (f32 IntRegs:$c)))]>,
+ Requires<[HasV5T]>;
+}
+}
+
+defm FCMPOEQ64 : FCMP64_rr<"dfcmp.eq", setoeq>;
+defm FCMPUEQ64 : FCMP64_rr<"dfcmp.eq", setueq>;
+defm FCMPOGT64 : FCMP64_rr<"dfcmp.gt", setogt>;
+defm FCMPUGT64 : FCMP64_rr<"dfcmp.gt", setugt>;
+defm FCMPOGE64 : FCMP64_rr<"dfcmp.ge", setoge>;
+defm FCMPUGE64 : FCMP64_rr<"dfcmp.ge", setuge>;
+
+defm FCMPOEQ32 : FCMP32_rr<"sfcmp.eq", setoeq>;
+defm FCMPUEQ32 : FCMP32_rr<"sfcmp.eq", setueq>;
+defm FCMPOGT32 : FCMP32_rr<"sfcmp.gt", setogt>;
+defm FCMPUGT32 : FCMP32_rr<"sfcmp.gt", setugt>;
+defm FCMPOGE32 : FCMP32_rr<"sfcmp.ge", setoge>;
+defm FCMPUGE32 : FCMP32_rr<"sfcmp.ge", setuge>;
+
+// olt.
+def : Pat <(i1 (setolt (f32 IntRegs:$src1), (f32 IntRegs:$src2))),
+ (i1 (FCMPOGT32_rr IntRegs:$src2, IntRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+def : Pat <(i1 (setolt (f32 IntRegs:$src1), (fpimm:$src2))),
+ (i1 (FCMPOGT32_rr (f32 (TFRI_f fpimm:$src2)), (f32 IntRegs:$src1)))>,
+ Requires<[HasV5T]>;
+
+def : Pat <(i1 (setolt (f64 DoubleRegs:$src1), (f64 DoubleRegs:$src2))),
+ (i1 (FCMPOGT64_rr DoubleRegs:$src2, DoubleRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+def : Pat <(i1 (setolt (f64 DoubleRegs:$src1), (fpimm:$src2))),
+ (i1 (FCMPOGT64_rr (f64 (CONST64_Float_Real fpimm:$src2)),
+ (f64 DoubleRegs:$src1)))>,
+ Requires<[HasV5T]>;
+
+// gt.
+def : Pat <(i1 (setugt (f64 DoubleRegs:$src1), (fpimm:$src2))),
+ (i1 (FCMPUGT64_rr (f64 DoubleRegs:$src1),
+ (f64 (CONST64_Float_Real fpimm:$src2))))>,
+ Requires<[HasV5T]>;
+
+def : Pat <(i1 (setugt (f32 IntRegs:$src1), (fpimm:$src2))),
+ (i1 (FCMPUGT32_rr (f32 IntRegs:$src1), (f32 (TFRI_f fpimm:$src2))))>,
+ Requires<[HasV5T]>;
+
+// ult.
+def : Pat <(i1 (setult (f32 IntRegs:$src1), (f32 IntRegs:$src2))),
+ (i1 (FCMPUGT32_rr IntRegs:$src2, IntRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+def : Pat <(i1 (setult (f32 IntRegs:$src1), (fpimm:$src2))),
+ (i1 (FCMPUGT32_rr (f32 (TFRI_f fpimm:$src2)), (f32 IntRegs:$src1)))>,
+ Requires<[HasV5T]>;
+
+def : Pat <(i1 (setult (f64 DoubleRegs:$src1), (f64 DoubleRegs:$src2))),
+ (i1 (FCMPUGT64_rr DoubleRegs:$src2, DoubleRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+def : Pat <(i1 (setult (f64 DoubleRegs:$src1), (fpimm:$src2))),
+ (i1 (FCMPUGT64_rr (f64 (CONST64_Float_Real fpimm:$src2)),
+ (f64 DoubleRegs:$src1)))>,
+ Requires<[HasV5T]>;
+
+// le.
+// rs <= rt -> rt >= rs.
+def : Pat<(i1 (setole (f32 IntRegs:$src1), (f32 IntRegs:$src2))),
+ (i1 (FCMPOGE32_rr IntRegs:$src2, IntRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+def : Pat<(i1 (setole (f32 IntRegs:$src1), (fpimm:$src2))),
+ (i1 (FCMPOGE32_rr (f32 (TFRI_f fpimm:$src2)), IntRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+
+// Rss <= Rtt -> Rtt >= Rss.
+def : Pat<(i1 (setole (f64 DoubleRegs:$src1), (f64 DoubleRegs:$src2))),
+ (i1 (FCMPOGE64_rr DoubleRegs:$src2, DoubleRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+def : Pat<(i1 (setole (f64 DoubleRegs:$src1), (fpimm:$src2))),
+ (i1 (FCMPOGE64_rr (f64 (CONST64_Float_Real fpimm:$src2)),
+ DoubleRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+// rs <= rt -> rt >= rs.
+def : Pat<(i1 (setule (f32 IntRegs:$src1), (f32 IntRegs:$src2))),
+ (i1 (FCMPUGE32_rr IntRegs:$src2, IntRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+def : Pat<(i1 (setule (f32 IntRegs:$src1), (fpimm:$src2))),
+ (i1 (FCMPUGE32_rr (f32 (TFRI_f fpimm:$src2)), IntRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+// Rss <= Rtt -> Rtt >= Rss.
+def : Pat<(i1 (setule (f64 DoubleRegs:$src1), (f64 DoubleRegs:$src2))),
+ (i1 (FCMPUGE64_rr DoubleRegs:$src2, DoubleRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+def : Pat<(i1 (setule (f64 DoubleRegs:$src1), (fpimm:$src2))),
+ (i1 (FCMPUGE64_rr (f64 (CONST64_Float_Real fpimm:$src2)),
+ DoubleRegs:$src1))>,
+ Requires<[HasV5T]>;
+
+// ne.
+def : Pat<(i1 (setone (f32 IntRegs:$src1), (f32 IntRegs:$src2))),
+ (i1 (NOT_p (FCMPOEQ32_rr IntRegs:$src1, IntRegs:$src2)))>,
+ Requires<[HasV5T]>;
+
+def : Pat<(i1 (setone (f64 DoubleRegs:$src1), (f64 DoubleRegs:$src2))),
+ (i1 (NOT_p (FCMPOEQ64_rr DoubleRegs:$src1, DoubleRegs:$src2)))>,
+ Requires<[HasV5T]>;
+
+def : Pat<(i1 (setune (f32 IntRegs:$src1), (f32 IntRegs:$src2))),
+ (i1 (NOT_p (FCMPUEQ32_rr IntRegs:$src1, IntRegs:$src2)))>,
+ Requires<[HasV5T]>;
+
+def : Pat<(i1 (setune (f64 DoubleRegs:$src1), (f64 DoubleRegs:$src2))),
+ (i1 (NOT_p (FCMPUEQ64_rr DoubleRegs:$src1, DoubleRegs:$src2)))>,
+ Requires<[HasV5T]>;
+
+def : Pat<(i1 (setone (f32 IntRegs:$src1), (fpimm:$src2))),
+ (i1 (NOT_p (FCMPOEQ32_rr IntRegs:$src1, (f32 (TFRI_f fpimm:$src2)))))>,
+ Requires<[HasV5T]>;
+
+def : Pat<(i1 (setone (f64 DoubleRegs:$src1), (fpimm:$src2))),
+ (i1 (NOT_p (FCMPOEQ64_rr DoubleRegs:$src1,
+ (f64 (CONST64_Float_Real fpimm:$src2)))))>,
+ Requires<[HasV5T]>;
+
+def : Pat<(i1 (setune (f32 IntRegs:$src1), (fpimm:$src2))),
+ (i1 (NOT_p (FCMPUEQ32_rr IntRegs:$src1, (f32 (TFRI_f fpimm:$src2)))))>,
+ Requires<[HasV5T]>;
+
+def : Pat<(i1 (setune (f64 DoubleRegs:$src1), (fpimm:$src2))),
+ (i1 (NOT_p (FCMPUEQ64_rr DoubleRegs:$src1,
+ (f64 (CONST64_Float_Real fpimm:$src2)))))>,
+ Requires<[HasV5T]>;
+
+// Convert Integer to Floating Point.
+def CONVERT_d2sf : ALU64_rr<(outs IntRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_d2sf($src)",
+ [(set (f32 IntRegs:$dst), (sint_to_fp (i64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_ud2sf : ALU64_rr<(outs IntRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_ud2sf($src)",
+ [(set (f32 IntRegs:$dst), (uint_to_fp (i64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_uw2sf : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_uw2sf($src)",
+ [(set (f32 IntRegs:$dst), (uint_to_fp (i32 IntRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_w2sf : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_w2sf($src)",
+ [(set (f32 IntRegs:$dst), (sint_to_fp (i32 IntRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_d2df : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_d2df($src)",
+ [(set (f64 DoubleRegs:$dst), (sint_to_fp (i64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_ud2df : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_ud2df($src)",
+ [(set (f64 DoubleRegs:$dst), (uint_to_fp (i64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_uw2df : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_uw2df($src)",
+ [(set (f64 DoubleRegs:$dst), (uint_to_fp (i32 IntRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_w2df : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_w2df($src)",
+ [(set (f64 DoubleRegs:$dst), (sint_to_fp (i32 IntRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+// Convert Floating Point to Integer - default.
+def CONVERT_df2uw : ALU64_rr<(outs IntRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_df2uw($src):chop",
+ [(set (i32 IntRegs:$dst), (fp_to_uint (f64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_df2w : ALU64_rr<(outs IntRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_df2w($src):chop",
+ [(set (i32 IntRegs:$dst), (fp_to_sint (f64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_sf2uw : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_sf2uw($src):chop",
+ [(set (i32 IntRegs:$dst), (fp_to_uint (f32 IntRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_sf2w : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_sf2w($src):chop",
+ [(set (i32 IntRegs:$dst), (fp_to_sint (f32 IntRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_df2d : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_df2d($src):chop",
+ [(set (i64 DoubleRegs:$dst), (fp_to_sint (f64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_df2ud : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_df2ud($src):chop",
+ [(set (i64 DoubleRegs:$dst), (fp_to_uint (f64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_sf2d : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_sf2d($src):chop",
+ [(set (i64 DoubleRegs:$dst), (fp_to_sint (f32 IntRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+def CONVERT_sf2ud : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_sf2ud($src):chop",
+ [(set (i64 DoubleRegs:$dst), (fp_to_uint (f32 IntRegs:$src)))]>,
+ Requires<[HasV5T]>;
+
+// Convert Floating Point to Integer: non-chopped.
+let AddedComplexity = 20 in
+def CONVERT_df2uw_nchop : ALU64_rr<(outs IntRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_df2uw($src)",
+ [(set (i32 IntRegs:$dst), (fp_to_uint (f64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T, IEEERndNearV5T]>;
+
+let AddedComplexity = 20 in
+def CONVERT_df2w_nchop : ALU64_rr<(outs IntRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_df2w($src)",
+ [(set (i32 IntRegs:$dst), (fp_to_sint (f64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T, IEEERndNearV5T]>;
+
+let AddedComplexity = 20 in
+def CONVERT_sf2uw_nchop : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_sf2uw($src)",
+ [(set (i32 IntRegs:$dst), (fp_to_uint (f32 IntRegs:$src)))]>,
+ Requires<[HasV5T, IEEERndNearV5T]>;
+
+let AddedComplexity = 20 in
+def CONVERT_sf2w_nchop : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_sf2w($src)",
+ [(set (i32 IntRegs:$dst), (fp_to_sint (f32 IntRegs:$src)))]>,
+ Requires<[HasV5T, IEEERndNearV5T]>;
+
+let AddedComplexity = 20 in
+def CONVERT_df2d_nchop : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_df2d($src)",
+ [(set (i64 DoubleRegs:$dst), (fp_to_sint (f64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T, IEEERndNearV5T]>;
+
+let AddedComplexity = 20 in
+def CONVERT_df2ud_nchop : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src),
+ "$dst = convert_df2ud($src)",
+ [(set (i64 DoubleRegs:$dst), (fp_to_uint (f64 DoubleRegs:$src)))]>,
+ Requires<[HasV5T, IEEERndNearV5T]>;
+
+let AddedComplexity = 20 in
+def CONVERT_sf2d_nchop : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_sf2d($src)",
+ [(set (i64 DoubleRegs:$dst), (fp_to_sint (f32 IntRegs:$src)))]>,
+ Requires<[HasV5T, IEEERndNearV5T]>;
+
+let AddedComplexity = 20 in
+def CONVERT_sf2ud_nchop : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src),
+ "$dst = convert_sf2ud($src)",
+ [(set (i64 DoubleRegs:$dst), (fp_to_uint (f32 IntRegs:$src)))]>,
+ Requires<[HasV5T, IEEERndNearV5T]>;
+
+
+
+// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
+def : Pat <(i32 (bitconvert (f32 IntRegs:$src))),
+ (i32 (TFR IntRegs:$src))>,
+ Requires<[HasV5T]>;
+
+def : Pat <(f32 (bitconvert (i32 IntRegs:$src))),
+ (f32 (TFR IntRegs:$src))>,
+ Requires<[HasV5T]>;
+
+def : Pat <(i64 (bitconvert (f64 DoubleRegs:$src))),
+ (i64 (TFR64 DoubleRegs:$src))>,
+ Requires<[HasV5T]>;
+
+def : Pat <(f64 (bitconvert (i64 DoubleRegs:$src))),
+ (f64 (TFR64 DoubleRegs:$src))>,
+ Requires<[HasV5T]>;
+
+// Floating point fused multiply-add.
+def FMADD_dp : ALU64_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2, DoubleRegs:$src3),
+ "$dst += dfmpy($src2, $src3)",
+ [(set (f64 DoubleRegs:$dst),
+ (fma DoubleRegs:$src2, DoubleRegs:$src3, DoubleRegs:$src1))],
+ "$src1 = $dst">,
+ Requires<[HasV5T]>;
+
+def FMADD_sp : ALU64_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "$dst += sfmpy($src2, $src3)",
+ [(set (f32 IntRegs:$dst),
+ (fma IntRegs:$src2, IntRegs:$src3, IntRegs:$src1))],
+ "$src1 = $dst">,
+ Requires<[HasV5T]>;
+
+
+// Floating point max/min.
+let AddedComplexity = 100 in
+def FMAX_dp : ALU64_rr<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ "$dst = dfmax($src1, $src2)",
+ [(set DoubleRegs:$dst, (f64 (select (i1 (setolt DoubleRegs:$src2,
+ DoubleRegs:$src1)),
+ DoubleRegs:$src1,
+ DoubleRegs:$src2)))]>,
+ Requires<[HasV5T]>;
+
+let AddedComplexity = 100 in
+def FMAX_sp : ALU64_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = sfmax($src1, $src2)",
+ [(set IntRegs:$dst, (f32 (select (i1 (setolt IntRegs:$src2,
+ IntRegs:$src1)),
+ IntRegs:$src1,
+ IntRegs:$src2)))]>,
+ Requires<[HasV5T]>;
+
+let AddedComplexity = 100 in
+def FMIN_dp : ALU64_rr<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ "$dst = dfmin($src1, $src2)",
+ [(set DoubleRegs:$dst, (f64 (select (i1 (setogt DoubleRegs:$src2,
+ DoubleRegs:$src1)),
+ DoubleRegs:$src1,
+ DoubleRegs:$src2)))]>,
+ Requires<[HasV5T]>;
+
+let AddedComplexity = 100 in
+def FMIN_sp : ALU64_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = sfmin($src1, $src2)",
+ [(set IntRegs:$dst, (f32 (select (i1 (setogt IntRegs:$src2,
+ IntRegs:$src1)),
+ IntRegs:$src1,
+ IntRegs:$src2)))]>,
+ Requires<[HasV5T]>;
+
+// Pseudo instruction to encode a set of conditional transfers.
+// This instruction is used instead of a mux and trades-off codesize
+// for performance. We conduct this transformation optimistically in
+// the hope that these instructions get promoted to dot-new transfers.
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_rr_f : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ IntRegs:$src2,
+ IntRegs:$src3),
+ "Error; should not emit",
+ [(set IntRegs:$dst, (f32 (select PredRegs:$src1,
+ IntRegs:$src2,
+ IntRegs:$src3)))]>,
+ Requires<[HasV5T]>;
+
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_rr64_f : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1,
+ DoubleRegs:$src2,
+ DoubleRegs:$src3),
+ "Error; should not emit",
+ [(set DoubleRegs:$dst, (f64 (select PredRegs:$src1,
+ DoubleRegs:$src2,
+ DoubleRegs:$src3)))]>,
+ Requires<[HasV5T]>;
+
+
+
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_ri_f : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, f32imm:$src3),
+ "Error; should not emit",
+ [(set IntRegs:$dst,
+ (f32 (select PredRegs:$src1, IntRegs:$src2, fpimm:$src3)))]>,
+ Requires<[HasV5T]>;
+
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_ir_f : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, f32imm:$src2, IntRegs:$src3),
+ "Error; should not emit",
+ [(set IntRegs:$dst,
+ (f32 (select PredRegs:$src1, fpimm:$src2, IntRegs:$src3)))]>,
+ Requires<[HasV5T]>;
+
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_ii_f : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, f32imm:$src2, f32imm:$src3),
+ "Error; should not emit",
+ [(set IntRegs:$dst, (f32 (select PredRegs:$src1,
+ fpimm:$src2,
+ fpimm:$src3)))]>,
+ Requires<[HasV5T]>;
+
+
+def : Pat <(select (i1 (setult (f32 IntRegs:$src1), (f32 IntRegs:$src2))),
+ (f32 IntRegs:$src3),
+ (f32 IntRegs:$src4)),
+ (TFR_condset_rr_f (FCMPUGT32_rr IntRegs:$src2, IntRegs:$src1), IntRegs:$src4,
+ IntRegs:$src3)>, Requires<[HasV5T]>;
+
+def : Pat <(select (i1 (setult (f64 DoubleRegs:$src1), (f64 DoubleRegs:$src2))),
+ (f64 DoubleRegs:$src3),
+ (f64 DoubleRegs:$src4)),
+ (TFR_condset_rr64_f (FCMPUGT64_rr DoubleRegs:$src2, DoubleRegs:$src1),
+ DoubleRegs:$src4, DoubleRegs:$src3)>, Requires<[HasV5T]>;
+
+// Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i).
+def : Pat <(select (not PredRegs:$src1), fpimm:$src2, fpimm:$src3),
+ (TFR_condset_ii_f PredRegs:$src1, fpimm:$src3, fpimm:$src2)>;
+
+// Map from p0 = pnot(p0); r0 = select(p0, #i, r1)
+// => r0 = TFR_condset_ri(p0, r1, #i)
+def : Pat <(select (not PredRegs:$src1), fpimm:$src2, IntRegs:$src3),
+ (TFR_condset_ri_f PredRegs:$src1, IntRegs:$src3, fpimm:$src2)>;
+
+// Map from p0 = pnot(p0); r0 = mux(p0, r1, #i)
+// => r0 = TFR_condset_ir(p0, #i, r1)
+def : Pat <(select (not PredRegs:$src1), IntRegs:$src2, fpimm:$src3),
+ (TFR_condset_ir_f PredRegs:$src1, fpimm:$src3, IntRegs:$src2)>;
+
+def : Pat <(i32 (fp_to_sint (f64 DoubleRegs:$src1))),
+ (i32 (EXTRACT_SUBREG (i64 (CONVERT_df2d (f64 DoubleRegs:$src1))), subreg_loreg))>,
+ Requires<[HasV5T]>;
+
+def : Pat <(fabs (f32 IntRegs:$src1)),
+ (CLRBIT_31 (f32 IntRegs:$src1), 31)>,
+ Requires<[HasV5T]>;
+
+def : Pat <(fneg (f32 IntRegs:$src1)),
+ (TOGBIT_31 (f32 IntRegs:$src1), 31)>,
+ Requires<[HasV5T]>;
+
+/*
+def : Pat <(fabs (f64 DoubleRegs:$src1)),
+ (CLRBIT_31 (f32 (EXTRACT_SUBREG DoubleRegs:$src1, subreg_hireg)), 31)>,
+ Requires<[HasV5T]>;
+
+def : Pat <(fabs (f64 DoubleRegs:$src1)),
+ (CLRBIT_31 (f32 (EXTRACT_SUBREG DoubleRegs:$src1, subreg_hireg)), 31)>,
+ Requires<[HasV5T]>;
+ */
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsics.td b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsics.td
new file mode 100644
index 0000000..99f59d5
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsics.td
@@ -0,0 +1,3503 @@
+//===-- HexagonIntrinsics.td - Instruction intrinsics ------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This is populated based on the following specs:
+// Hexagon V2 Architecture
+// Application-Level Specification
+// 80-V9418-8 Rev. B
+// March 4, 2008
+//===----------------------------------------------------------------------===//
+
+//
+// ALU 32 types.
+//
+
+class qi_ALU32_sisi<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class qi_ALU32_sis10<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$src1, s10Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class qi_ALU32_sis8<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$src1, s8Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class qi_ALU32_siu8<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class qi_ALU32_siu9<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$src1, u9Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class si_ALU32_qisisi<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2, $src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class si_ALU32_qis8si<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, s8Imm:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2, $src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2,
+ IntRegs:$src3))]>;
+
+class si_ALU32_qisis8<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ s8Imm:$src3),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2,
+ imm:$src3))]>;
+
+class si_ALU32_qis8s8<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, s8Imm:$src2, s8Imm:$src3),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2, imm:$src3))]>;
+
+class si_ALU32_sisi<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU32_sisi_sat<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU32_sisi_rnd<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):rnd")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU32_sis16<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, s16Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class si_ALU32_sis10<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, s10Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class si_ALU32_s10si<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins s10Imm:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "(#$src1, $src2)")),
+ [(set IntRegs:$dst, (IntID imm:$src1, IntRegs:$src2))]>;
+
+class si_lo_ALU32_siu16<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u16Imm:$src2),
+ !strconcat("$dst.l = ", !strconcat(opc , "#$src2")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class si_hi_ALU32_siu16<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u16Imm:$src2),
+ !strconcat("$dst.h = ", !strconcat(opc , "#$src2")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class si_ALU32_s16<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins s16Imm:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "#$src1")),
+ [(set IntRegs:$dst, (IntID imm:$src1))]>;
+
+class di_ALU32_s8<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs DoubleRegs:$dst), (ins s8Imm:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "#$src1")),
+ [(set DoubleRegs:$dst, (IntID imm:$src1))]>;
+
+class di_ALU64_di<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "$src")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src))]>;
+
+class si_ALU32_si<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "($src)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src))]>;
+
+class si_ALU32_si_tfr<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "$src")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src))]>;
+
+//
+// ALU 64 types.
+//
+
+class si_ALU64_si_sat<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "($src):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src))]>;
+
+class si_ALU64_didi<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2))]>;
+
+class di_ALU64_sidi<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, DoubleRegs:$src2))]>;
+
+class di_ALU64_didi<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class di_ALU64_qididi<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1, DoubleRegs:$src2,
+ DoubleRegs:$src3),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2, $src3)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, DoubleRegs:$src2,
+ DoubleRegs:$src3))]>;
+
+class di_ALU64_sisi<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_ALU64_didi_sat<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class di_ALU64_didi_rnd<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):rnd")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class di_ALU64_didi_crnd<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):crnd")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class di_ALU64_didi_rnd_sat<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):rnd:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class di_ALU64_didi_crnd_sat<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):crnd:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class qi_ALU64_didi<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set PredRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2))]>;
+
+class si_ALU64_sisi<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_sat_lh<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.H):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_l16_sat_hh<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.H):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_l16_sat_lh<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.H):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_l16_sat_hl<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.L):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_l16_sat_ll<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.L):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_l16_hh<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.H)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_l16_hl<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.L)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_l16_lh<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.H)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_l16_ll<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.L)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_h16_sat_hh<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.H, $src2.H):sat:<<16")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_h16_sat_lh<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.L, $src2.H):sat:<<16")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_h16_sat_hl<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.H, $src2.L):sat:<<16")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_h16_sat_ll<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.L, $src2.L):sat:<<16")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_h16_hh<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.H):<<16")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_h16_hl<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.L):<<16")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_h16_lh<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.H):<<16")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_h16_ll<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.L):<<16")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_lh<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.H)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_ll<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.L)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_ALU64_sisi_sat<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+//
+// SInst classes.
+//
+
+class qi_SInst_qi<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "($src)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src))]>;
+
+class qi_SInst_qi_pxfer<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "$src")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src))]>;
+
+class qi_SInst_qiqi<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class qi_SInst_qiqi_neg<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, !$src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_SInst_di<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "($src)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src))]>;
+
+class di_SInst_di_sat<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "($src):sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src))]>;
+
+class si_SInst_di<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "($src)")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src))]>;
+
+class si_SInst_di_sat<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "($src):sat")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src))]>;
+
+class di_SInst_disi<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, IntRegs:$src2))]>;
+
+class di_SInst_didi<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2))]>;
+
+class di_SInst_si<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1))]>;
+
+class si_SInst_sisiu3<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, u3Imm:$src3),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2,
+ imm:$src3))]>;
+
+class si_SInst_diu5<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1, u5Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1, imm:$src2))]>;
+
+class si_SInst_disi<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1, IntRegs:$src2))]>;
+
+class si_SInst_sidi<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, DoubleRegs:$src2))]>;
+
+class di_SInst_disisi<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2, $src3)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class di_SInst_sisi<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class qi_SInst_siu5<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class qi_SInst_siu6<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u6Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class qi_SInst_sisi<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_SInst_si<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "($src)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src))]>;
+
+class si_SInst_si_sat<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "($src):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src))]>;
+
+class di_SInst_qi<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins IntRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "($src)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src))]>;
+
+class si_SInst_qi<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "$src")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src))]>;
+
+class si_SInst_qiqi<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class qi_SInst_si<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src),
+ !strconcat("$dst = ", !strconcat(opc , "$src")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src))]>;
+
+class si_SInst_sisi<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_SInst_diu6<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, imm:$src2))]>;
+
+class si_SInst_siu5<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class si_SInst_siu5_rnd<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2):rnd")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class si_SInst_siu5u5<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2, u5Imm:$src3),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2, imm:$src3))]>;
+
+class si_SInst_sisisi_acc<string opc, Intrinsic IntID>
+ : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_SInst_sisisi_nac<string opc, Intrinsic IntID>
+ : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_SInst_didisi_acc<string opc, Intrinsic IntID>
+ : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_SInst_didisi_nac<string opc, Intrinsic IntID>
+ : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1, IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_SInst_sisiu5u5<string opc, Intrinsic IntID>
+ : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ u5Imm:$src2, u5Imm:$src3),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, #$src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ imm:$src2, imm:$src3))],
+ "$dst2 = $dst">;
+
+class si_SInst_sisidi<string opc, Intrinsic IntID>
+ : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ DoubleRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_SInst_didiu6u6<string opc, Intrinsic IntID>
+ : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ u6Imm:$src2, u6Imm:$src3),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, #$src2, #$src3)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, DoubleRegs:$src1,
+ imm:$src2, imm:$src3))],
+ "$dst2 = $dst">;
+
+class di_SInst_dididi<string opc, Intrinsic IntID>
+ : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ DoubleRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_SInst_diu6u6<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2,
+ u6Imm:$src3),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2, #$src3)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, imm:$src2,
+ imm:$src3))]>;
+
+class di_SInst_didiqi<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2, $src3)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2,
+ IntRegs:$src3))]>;
+
+class di_SInst_didiu3<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2,
+ u3Imm:$src3),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2, #$src3)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2,
+ imm:$src3))]>;
+
+class di_SInst_didisi_or<string opc, Intrinsic IntID>
+ : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst |= ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, DoubleRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_SInst_didisi_and<string opc, Intrinsic IntID>
+ : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst &= ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, DoubleRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_SInst_didiu6_and<string opc, Intrinsic IntID>
+ : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ u6Imm:$src2),
+ !strconcat("$dst &= ", !strconcat(opc , "($src1, #$src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, DoubleRegs:$src1,
+ imm:$src2))],
+ "$dst2 = $dst">;
+
+class di_SInst_didiu6_or<string opc, Intrinsic IntID>
+ : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ u6Imm:$src2),
+ !strconcat("$dst |= ", !strconcat(opc , "($src1, #$src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, DoubleRegs:$src1,
+ imm:$src2))],
+ "$dst2 = $dst">;
+
+class di_SInst_didiu6_xor<string opc, Intrinsic IntID>
+ : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ u6Imm:$src2),
+ !strconcat("$dst ^= ", !strconcat(opc , "($src1, #$src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, DoubleRegs:$src1,
+ imm:$src2))],
+ "$dst2 = $dst">;
+
+class si_SInst_sisisi_and<string opc, Intrinsic IntID>
+ : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst &= ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_SInst_sisisi_or<string opc, Intrinsic IntID>
+ : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst |= ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+
+class si_SInst_sisiu5_and<string opc, Intrinsic IntID>
+ : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ u5Imm:$src2),
+ !strconcat("$dst &= ", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ imm:$src2))],
+ "$dst2 = $dst">;
+
+class si_SInst_sisiu5_or<string opc, Intrinsic IntID>
+ : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ u5Imm:$src2),
+ !strconcat("$dst |= ", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ imm:$src2))],
+ "$dst2 = $dst">;
+
+class si_SInst_sisiu5_xor<string opc, Intrinsic IntID>
+ : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ u5Imm:$src2),
+ !strconcat("$dst ^= ", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ imm:$src2))],
+ "$dst2 = $dst">;
+
+class si_SInst_sisiu5_acc<string opc, Intrinsic IntID>
+ : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ u5Imm:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ imm:$src2))],
+ "$dst2 = $dst">;
+
+class si_SInst_sisiu5_nac<string opc, Intrinsic IntID>
+ : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ u5Imm:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ imm:$src2))],
+ "$dst2 = $dst">;
+
+class di_SInst_didiu6_acc<string opc, Intrinsic IntID>
+ : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ u5Imm:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1, #$src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1, imm:$src2))],
+ "$dst2 = $dst">;
+
+class di_SInst_didiu6_nac<string opc, Intrinsic IntID>
+ : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ u5Imm:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1, #$src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, DoubleRegs:$src1,
+ imm:$src2))],
+ "$dst2 = $dst">;
+
+
+//
+// MInst classes.
+//
+
+class di_MInst_sisi_rnd_hh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.H, $src2.H):<<1:rnd")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_rnd_hh<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.H, $src2.H):rnd")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_rnd_hl_s1<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.H, $src2.L):<<1:rnd")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_rnd_hl<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.H, $src2.L):rnd")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_rnd_lh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.L, $src2.H):<<1:rnd")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_rnd_lh<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.L, $src2.H):rnd")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_rnd_ll_s1<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.L, $src2.L):<<1:rnd")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_rnd_ll<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.L, $src2.L):rnd")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_disisi_acc<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1, $src2):sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1, $src2):sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_sat_conj<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1, $src2*):sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_sat_conj<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1, $src2*):sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_s1_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1, $src2):<<1:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_s1_sat_conj<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1, $src2*):<<1:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_s1_sat_conj<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1, $src2*):<<1:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_s8s8<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins s8Imm:$src1, s8Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "(#$src1, #$src2)")),
+ [(set DoubleRegs:$dst, (IntID imm:$src1, imm:$src2))]>;
+
+class si_MInst_sis9<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class si_MInst_sisi<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_hh<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.H)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_hh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.H):<<1")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_lh<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.H)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_lh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.H):<<1")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_hl<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.L)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_hl_s1<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.L):<<1")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_ll<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.L)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_ll_s1<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.L):<<1")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+
+class si_MInst_sisi_hh<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.H)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_hh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.H):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_lh<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.H)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_lh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.H):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_hl<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.L)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_hl_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.L):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_ll<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.L)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_ll_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.L):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_up<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_didi<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class di_MInst_didi_conj<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2*)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class di_MInst_sisi_s1_sat_conj<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, $src2*):<<1:sat")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_didi_s1_rnd_sat<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, $src2):<<1:rnd:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class di_MInst_didi_sat<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class di_MInst_didi_rnd_sat<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, $src2):rnd:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class si_SInst_sisi_sat<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_SInst_didi_sat<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):sat")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2))]>;
+
+class si_SInst_disi_s1_rnd_sat<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, $src2):<<1:rnd:sat")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_s1_rnd_sat<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, $src2):<<1:rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_l_s1_rnd_sat<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, $src2.L):<<1:rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_h_s1_rnd_sat<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, $src2.H):<<1:rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_rnd_sat_conj<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, $src2*):rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_s1_rnd_sat_conj<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, $src2*):<<1:rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_rnd_sat<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, $src2):rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_rnd<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):rnd")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisisi_xacc<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst ^= ", !strconcat(opc , "($src2, $src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src2,
+ IntRegs:$src3))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst += ", !strconcat(opc , "($src2, $src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src2,
+ IntRegs:$src3))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst -= ", !strconcat(opc , "($src2, $src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src2,
+ IntRegs:$src3))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisis8_acc<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src2,
+ s8Imm:$src3),
+ !strconcat("$dst += ", !strconcat(opc , "($src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src2,
+ imm:$src3))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisis8_nac<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src2,
+ s8Imm:$src3),
+ !strconcat("$dst -= ", !strconcat(opc , "($src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src2,
+ imm:$src3))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisiu4u5<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ u4Imm:$src2, u5Imm:$src3),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, #$src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ imm:$src2, imm:$src3))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisiu8_acc<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src2,
+ u8Imm:$src3),
+ !strconcat("$dst += ", !strconcat(opc , "($src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src2,
+ imm:$src3))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisiu8_nac<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src2,
+ u8Imm:$src3),
+ !strconcat("$dst -= ", !strconcat(opc , "($src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src2,
+ imm:$src3))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_hh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1.H, $src2.H)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_sat_lh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.L, $src2.H):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_sat_lh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.L, $src2.H):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_sat_hh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.H, $src2.H):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_sat_hh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.H, $src2.H):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_hh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.H, $src2.H):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_hh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1.H, $src2.H)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_sat_hh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.H, $src2.H):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_sat_hh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.H, $src2.H):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_sat_hl_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.H, $src2.L):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_sat_hl<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.H, $src2.L):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_sat_lh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.L, $src2.H):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_sat_lh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.L, $src2.H):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_sat_ll_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.L, $src2.L):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_sat_ll<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.L, $src2.L):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_hh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.H, $src2.H):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_hl<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1.H, $src2.L)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_hl_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.H, $src2.L):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_hl<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1.H, $src2.L)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_hl_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.H, $src2.L):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_lh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1.L, $src2.H)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_lh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.L, $src2.H):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_lh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1.L, $src2.H)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_lh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.L, $src2.H):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_ll<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1.L, $src2.L)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_ll_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.L, $src2.L):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_sat_ll_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.L, $src2.L):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_sat_hl_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.H, $src2.L):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_sat_ll<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.L, $src2.L):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_acc_sat_hl<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1.H, $src2.L):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_ll<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1.L, $src2.L)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_ll_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.L, $src2.L):<<1")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_hh_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.H, $src2.H):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_hh_s1_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.H, $src2.H):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_hl_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.H, $src2.L):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_hl_s1_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.H, $src2.L):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_lh_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.L, $src2.H):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_lh_s1_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.L, $src2.H):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_ll_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.L, $src2.L):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_nac_ll_s1_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1.L, $src2.L):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_ALU32_sisi<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_sat<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):sat")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_sat_conj<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2*):sat")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_sisi_s1_sat<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):<<1:sat")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_didi_s1_sat<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):<<1:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2))]>;
+
+class si_MInst_didi_s1_rnd_sat<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, $src2):<<1:rnd:sat")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2))]>;
+
+class si_MInst_didi_rnd_sat<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):rnd:sat")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2))]>;
+
+class si_MInst_sisi_sat_hh<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.H):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_hh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.H, $src2.H):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_hl<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.H, $src2.L):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_hl_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.H, $src2.L):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_lh<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.H):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_lh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.L, $src2.H):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_ll<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1.L, $src2.L):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_ll_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.L, $src2.L):<<1:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_rnd_hh<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.H, $src2.H):rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_rnd_hh<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.H, $src2.H):rnd")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_rnd_hh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1.H, $src2.H):<<1:rnd")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_rnd_hh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc ,
+ "($src1.H, $src2.H):<<1:rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_rnd_hl<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.H, $src2.L):rnd")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_rnd_hl_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.H, $src2.L):<<1:rnd")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_rnd_hl<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.H, $src2.L):rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_rnd_hl_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.H, $src2.L):<<1:rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_rnd_lh<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.L, $src2.H):rnd")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_rnd_lh<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.L, $src2.H):rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_rnd_lh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.L, $src2.H):<<1:rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_rnd_lh_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.L, $src2.H):<<1:rnd")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_rnd_ll<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.L, $src2.L):rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_sat_rnd_ll_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.L, $src2.L):<<1:rnd:sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_rnd_ll<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.L, $src2.L):rnd")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_sisi_rnd_ll_s1<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1.L, $src2.L):<<1:rnd")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_dididi_acc_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2,
+ DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1, $src2):sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ DoubleRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_dididi_acc_rnd_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ !strconcat("$dst += ",
+ !strconcat(opc , "($src1, $src2):rnd:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ DoubleRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_dididi_acc_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ !strconcat("$dst += ",
+ !strconcat(opc , "($src1, $src2):<<1")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ DoubleRegs:$src2))],
+ "$dst2 = $dst">;
+
+
+class di_MInst_dididi_acc_s1_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ !strconcat("$dst += ",
+ !strconcat(opc , "($src1, $src2):<<1:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ DoubleRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_dididi_acc_s1_rnd_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ !strconcat("$dst += ",
+ !strconcat(opc , "($src1, $src2):<<1:rnd:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ DoubleRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_dididi_acc<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ DoubleRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_dididi_acc_conj<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1, $src2*)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ DoubleRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_hh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1.H, $src2.H)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_hl<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1.H, $src2.L)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_lh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1.L, $src2.H)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_ll<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ", !strconcat(opc , "($src1.L, $src2.L)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_hh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ",
+ !strconcat(opc , "($src1.H, $src2.H):<<1")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_hl_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ",
+ !strconcat(opc , "($src1.H, $src2.L):<<1")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_lh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ",
+ !strconcat(opc , "($src1.L, $src2.H):<<1")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_ll_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ",
+ !strconcat(opc , "($src1.L, $src2.L):<<1")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_hh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1.H, $src2.H)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_hl<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1.H, $src2.L)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_lh<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1.L, $src2.H)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_ll<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ", !strconcat(opc , "($src1.L, $src2.L)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_hh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ",
+ !strconcat(opc , "($src1.H, $src2.H):<<1")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_hl_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ",
+ !strconcat(opc , "($src1.H, $src2.L):<<1")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_lh_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ",
+ !strconcat(opc , "($src1.L, $src2.H):<<1")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_nac_ll_s1<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst -= ",
+ !strconcat(opc , "($src1.L, $src2.L):<<1")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disisi_acc_s1_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ",
+ !strconcat(opc , "($src1, $src2):<<1:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class di_MInst_disi_s1_sat<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2):<<1:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, IntRegs:$src2))]>;
+
+class di_MInst_didisi_acc_s1_sat<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ IntRegs:$src2),
+ !strconcat("$dst += ",
+ !strconcat(opc , "($src1, $src2):<<1:sat")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2,
+ DoubleRegs:$src1,
+ IntRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_disi_s1_rnd_sat<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ",
+ !strconcat(opc , "($src1, $src2):<<1:rnd:sat")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1, IntRegs:$src2))]>;
+
+class si_MInst_didi<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2))]>;
+
+//
+// LDInst classes.
+//
+let mayLoad = 1, neverHasSideEffects = 1 in
+class di_LDInstPI_diu4<string opc, Intrinsic IntID>
+ : LDInstPI<(outs IntRegs:$dst, DoubleRegs:$dst2),
+ (ins IntRegs:$src1, IntRegs:$src2, CRRegs:$src3, s4Imm:$offset),
+ "$dst2 = memd($src1++#$offset:circ($src3))",
+ [],
+ "$src1 = $dst">;
+
+/********************************************************************
+* ALU32/ALU *
+*********************************************************************/
+
+// ALU32 / ALU / Add.
+def HEXAGON_A2_add:
+ si_ALU32_sisi <"add", int_hexagon_A2_add>;
+def HEXAGON_A2_addi:
+ si_ALU32_sis16 <"add", int_hexagon_A2_addi>;
+
+// ALU32 / ALU / Logical operations.
+def HEXAGON_A2_and:
+ si_ALU32_sisi <"and", int_hexagon_A2_and>;
+def HEXAGON_A2_andir:
+ si_ALU32_sis10 <"and", int_hexagon_A2_andir>;
+def HEXAGON_A2_not:
+ si_ALU32_si <"not", int_hexagon_A2_not>;
+def HEXAGON_A2_or:
+ si_ALU32_sisi <"or", int_hexagon_A2_or>;
+def HEXAGON_A2_orir:
+ si_ALU32_sis10 <"or", int_hexagon_A2_orir>;
+def HEXAGON_A2_xor:
+ si_ALU32_sisi <"xor", int_hexagon_A2_xor>;
+
+// ALU32 / ALU / Negate.
+def HEXAGON_A2_neg:
+ si_ALU32_si <"neg", int_hexagon_A2_neg>;
+
+// ALU32 / ALU / Subtract.
+def HEXAGON_A2_sub:
+ si_ALU32_sisi <"sub", int_hexagon_A2_sub>;
+def HEXAGON_A2_subri:
+ si_ALU32_s10si <"sub", int_hexagon_A2_subri>;
+
+// ALU32 / ALU / Transfer Immediate.
+def HEXAGON_A2_tfril:
+ si_lo_ALU32_siu16 <"", int_hexagon_A2_tfril>;
+def HEXAGON_A2_tfrih:
+ si_hi_ALU32_siu16 <"", int_hexagon_A2_tfrih>;
+def HEXAGON_A2_tfrsi:
+ si_ALU32_s16 <"", int_hexagon_A2_tfrsi>;
+def HEXAGON_A2_tfrpi:
+ di_ALU32_s8 <"", int_hexagon_A2_tfrpi>;
+
+// ALU32 / ALU / Transfer Register.
+def HEXAGON_A2_tfr:
+ si_ALU32_si_tfr <"", int_hexagon_A2_tfr>;
+
+/********************************************************************
+* ALU32/PERM *
+*********************************************************************/
+
+// ALU32 / PERM / Combine.
+def HEXAGON_A2_combinew:
+ di_ALU32_sisi <"combine", int_hexagon_A2_combinew>;
+def HEXAGON_A2_combine_hh:
+ si_MInst_sisi_hh <"combine", int_hexagon_A2_combine_hh>;
+def HEXAGON_A2_combine_lh:
+ si_MInst_sisi_lh <"combine", int_hexagon_A2_combine_lh>;
+def HEXAGON_A2_combine_hl:
+ si_MInst_sisi_hl <"combine", int_hexagon_A2_combine_hl>;
+def HEXAGON_A2_combine_ll:
+ si_MInst_sisi_ll <"combine", int_hexagon_A2_combine_ll>;
+def HEXAGON_A2_combineii:
+ di_MInst_s8s8 <"combine", int_hexagon_A2_combineii>;
+
+// ALU32 / PERM / Mux.
+def HEXAGON_C2_mux:
+ si_ALU32_qisisi <"mux", int_hexagon_C2_mux>;
+def HEXAGON_C2_muxri:
+ si_ALU32_qis8si <"mux", int_hexagon_C2_muxri>;
+def HEXAGON_C2_muxir:
+ si_ALU32_qisis8 <"mux", int_hexagon_C2_muxir>;
+def HEXAGON_C2_muxii:
+ si_ALU32_qis8s8 <"mux", int_hexagon_C2_muxii>;
+
+// ALU32 / PERM / Shift halfword.
+def HEXAGON_A2_aslh:
+ si_ALU32_si <"aslh", int_hexagon_A2_aslh>;
+def HEXAGON_A2_asrh:
+ si_ALU32_si <"asrh", int_hexagon_A2_asrh>;
+def SI_to_SXTHI_asrh:
+ si_ALU32_si <"asrh", int_hexagon_SI_to_SXTHI_asrh>;
+
+// ALU32 / PERM / Sign/zero extend.
+def HEXAGON_A2_sxth:
+ si_ALU32_si <"sxth", int_hexagon_A2_sxth>;
+def HEXAGON_A2_sxtb:
+ si_ALU32_si <"sxtb", int_hexagon_A2_sxtb>;
+def HEXAGON_A2_zxth:
+ si_ALU32_si <"zxth", int_hexagon_A2_zxth>;
+def HEXAGON_A2_zxtb:
+ si_ALU32_si <"zxtb", int_hexagon_A2_zxtb>;
+
+/********************************************************************
+* ALU32/PRED *
+*********************************************************************/
+
+// ALU32 / PRED / Compare.
+def HEXAGON_C2_cmpeq:
+ qi_ALU32_sisi <"cmp.eq", int_hexagon_C2_cmpeq>;
+def HEXAGON_C2_cmpeqi:
+ qi_ALU32_sis10 <"cmp.eq", int_hexagon_C2_cmpeqi>;
+def HEXAGON_C2_cmpgei:
+ qi_ALU32_sis8 <"cmp.ge", int_hexagon_C2_cmpgei>;
+def HEXAGON_C2_cmpgeui:
+ qi_ALU32_siu8 <"cmp.geu", int_hexagon_C2_cmpgeui>;
+def HEXAGON_C2_cmpgt:
+ qi_ALU32_sisi <"cmp.gt", int_hexagon_C2_cmpgt>;
+def HEXAGON_C2_cmpgti:
+ qi_ALU32_sis10 <"cmp.gt", int_hexagon_C2_cmpgti>;
+def HEXAGON_C2_cmpgtu:
+ qi_ALU32_sisi <"cmp.gtu", int_hexagon_C2_cmpgtu>;
+def HEXAGON_C2_cmpgtui:
+ qi_ALU32_siu9 <"cmp.gtu", int_hexagon_C2_cmpgtui>;
+def HEXAGON_C2_cmplt:
+ qi_ALU32_sisi <"cmp.lt", int_hexagon_C2_cmplt>;
+def HEXAGON_C2_cmpltu:
+ qi_ALU32_sisi <"cmp.ltu", int_hexagon_C2_cmpltu>;
+
+/********************************************************************
+* ALU32/VH *
+*********************************************************************/
+
+// ALU32 / VH / Vector add halfwords.
+// Rd32=vadd[u]h(Rs32,Rt32:sat]
+def HEXAGON_A2_svaddh:
+ si_ALU32_sisi <"vaddh", int_hexagon_A2_svaddh>;
+def HEXAGON_A2_svaddhs:
+ si_ALU32_sisi_sat <"vaddh", int_hexagon_A2_svaddhs>;
+def HEXAGON_A2_svadduhs:
+ si_ALU32_sisi_sat <"vadduh", int_hexagon_A2_svadduhs>;
+
+// ALU32 / VH / Vector average halfwords.
+def HEXAGON_A2_svavgh:
+ si_ALU32_sisi <"vavgh", int_hexagon_A2_svavgh>;
+def HEXAGON_A2_svavghs:
+ si_ALU32_sisi_rnd <"vavgh", int_hexagon_A2_svavghs>;
+def HEXAGON_A2_svnavgh:
+ si_ALU32_sisi <"vnavgh", int_hexagon_A2_svnavgh>;
+
+// ALU32 / VH / Vector subtract halfwords.
+def HEXAGON_A2_svsubh:
+ si_ALU32_sisi <"vsubh", int_hexagon_A2_svsubh>;
+def HEXAGON_A2_svsubhs:
+ si_ALU32_sisi_sat <"vsubh", int_hexagon_A2_svsubhs>;
+def HEXAGON_A2_svsubuhs:
+ si_ALU32_sisi_sat <"vsubuh", int_hexagon_A2_svsubuhs>;
+
+/********************************************************************
+* ALU64/ALU *
+*********************************************************************/
+
+// ALU64 / ALU / Add.
+def HEXAGON_A2_addp:
+ di_ALU64_didi <"add", int_hexagon_A2_addp>;
+def HEXAGON_A2_addsat:
+ si_ALU64_sisi_sat <"add", int_hexagon_A2_addsat>;
+
+// ALU64 / ALU / Add halfword.
+// Even though the definition says hl, it should be lh -
+//so DON'T change the class " si_ALU64_sisi_l16_lh " it inherits.
+def HEXAGON_A2_addh_l16_hl:
+ si_ALU64_sisi_l16_lh <"add", int_hexagon_A2_addh_l16_hl>;
+def HEXAGON_A2_addh_l16_ll:
+ si_ALU64_sisi_l16_ll <"add", int_hexagon_A2_addh_l16_ll>;
+
+def HEXAGON_A2_addh_l16_sat_hl:
+ si_ALU64_sisi_l16_sat_lh <"add", int_hexagon_A2_addh_l16_sat_hl>;
+def HEXAGON_A2_addh_l16_sat_ll:
+ si_ALU64_sisi_l16_sat_ll <"add", int_hexagon_A2_addh_l16_sat_ll>;
+
+def HEXAGON_A2_addh_h16_hh:
+ si_ALU64_sisi_h16_hh <"add", int_hexagon_A2_addh_h16_hh>;
+def HEXAGON_A2_addh_h16_hl:
+ si_ALU64_sisi_h16_hl <"add", int_hexagon_A2_addh_h16_hl>;
+def HEXAGON_A2_addh_h16_lh:
+ si_ALU64_sisi_h16_lh <"add", int_hexagon_A2_addh_h16_lh>;
+def HEXAGON_A2_addh_h16_ll:
+ si_ALU64_sisi_h16_ll <"add", int_hexagon_A2_addh_h16_ll>;
+
+def HEXAGON_A2_addh_h16_sat_hh:
+ si_ALU64_sisi_h16_sat_hh <"add", int_hexagon_A2_addh_h16_sat_hh>;
+def HEXAGON_A2_addh_h16_sat_hl:
+ si_ALU64_sisi_h16_sat_hl <"add", int_hexagon_A2_addh_h16_sat_hl>;
+def HEXAGON_A2_addh_h16_sat_lh:
+ si_ALU64_sisi_h16_sat_lh <"add", int_hexagon_A2_addh_h16_sat_lh>;
+def HEXAGON_A2_addh_h16_sat_ll:
+ si_ALU64_sisi_h16_sat_ll <"add", int_hexagon_A2_addh_h16_sat_ll>;
+
+// ALU64 / ALU / Compare.
+def HEXAGON_C2_cmpeqp:
+ qi_ALU64_didi <"cmp.eq", int_hexagon_C2_cmpeqp>;
+def HEXAGON_C2_cmpgtp:
+ qi_ALU64_didi <"cmp.gt", int_hexagon_C2_cmpgtp>;
+def HEXAGON_C2_cmpgtup:
+ qi_ALU64_didi <"cmp.gtu", int_hexagon_C2_cmpgtup>;
+
+// ALU64 / ALU / Logical operations.
+def HEXAGON_A2_andp:
+ di_ALU64_didi <"and", int_hexagon_A2_andp>;
+def HEXAGON_A2_orp:
+ di_ALU64_didi <"or", int_hexagon_A2_orp>;
+def HEXAGON_A2_xorp:
+ di_ALU64_didi <"xor", int_hexagon_A2_xorp>;
+
+// ALU64 / ALU / Maximum.
+def HEXAGON_A2_max:
+ si_ALU64_sisi <"max", int_hexagon_A2_max>;
+def HEXAGON_A2_maxu:
+ si_ALU64_sisi <"maxu", int_hexagon_A2_maxu>;
+
+// ALU64 / ALU / Minimum.
+def HEXAGON_A2_min:
+ si_ALU64_sisi <"min", int_hexagon_A2_min>;
+def HEXAGON_A2_minu:
+ si_ALU64_sisi <"minu", int_hexagon_A2_minu>;
+
+// ALU64 / ALU / Subtract.
+def HEXAGON_A2_subp:
+ di_ALU64_didi <"sub", int_hexagon_A2_subp>;
+def HEXAGON_A2_subsat:
+ si_ALU64_sisi_sat <"sub", int_hexagon_A2_subsat>;
+
+// ALU64 / ALU / Subtract halfword.
+// Even though the definition says hl, it should be lh -
+//so DON'T change the class " si_ALU64_sisi_l16_lh " it inherits.
+def HEXAGON_A2_subh_l16_hl:
+ si_ALU64_sisi_l16_lh <"sub", int_hexagon_A2_subh_l16_hl>;
+def HEXAGON_A2_subh_l16_ll:
+ si_ALU64_sisi_l16_ll <"sub", int_hexagon_A2_subh_l16_ll>;
+
+def HEXAGON_A2_subh_l16_sat_hl:
+ si_ALU64_sisi_l16_sat_lh <"sub", int_hexagon_A2_subh_l16_sat_hl>;
+def HEXAGON_A2_subh_l16_sat_ll:
+ si_ALU64_sisi_l16_sat_ll <"sub", int_hexagon_A2_subh_l16_sat_ll>;
+
+def HEXAGON_A2_subh_h16_hh:
+ si_ALU64_sisi_h16_hh <"sub", int_hexagon_A2_subh_h16_hh>;
+def HEXAGON_A2_subh_h16_hl:
+ si_ALU64_sisi_h16_hl <"sub", int_hexagon_A2_subh_h16_hl>;
+def HEXAGON_A2_subh_h16_lh:
+ si_ALU64_sisi_h16_lh <"sub", int_hexagon_A2_subh_h16_lh>;
+def HEXAGON_A2_subh_h16_ll:
+ si_ALU64_sisi_h16_ll <"sub", int_hexagon_A2_subh_h16_ll>;
+
+def HEXAGON_A2_subh_h16_sat_hh:
+ si_ALU64_sisi_h16_sat_hh <"sub", int_hexagon_A2_subh_h16_sat_hh>;
+def HEXAGON_A2_subh_h16_sat_hl:
+ si_ALU64_sisi_h16_sat_hl <"sub", int_hexagon_A2_subh_h16_sat_hl>;
+def HEXAGON_A2_subh_h16_sat_lh:
+ si_ALU64_sisi_h16_sat_lh <"sub", int_hexagon_A2_subh_h16_sat_lh>;
+def HEXAGON_A2_subh_h16_sat_ll:
+ si_ALU64_sisi_h16_sat_ll <"sub", int_hexagon_A2_subh_h16_sat_ll>;
+
+// ALU64 / ALU / Transfer register.
+def HEXAGON_A2_tfrp:
+ di_ALU64_di <"", int_hexagon_A2_tfrp>;
+
+/********************************************************************
+* ALU64/BIT *
+*********************************************************************/
+
+// ALU64 / BIT / Masked parity.
+def HEXAGON_S2_parityp:
+ si_ALU64_didi <"parity", int_hexagon_S2_parityp>;
+
+/********************************************************************
+* ALU64/PERM *
+*********************************************************************/
+
+// ALU64 / PERM / Vector pack high and low halfwords.
+def HEXAGON_S2_packhl:
+ di_ALU64_sisi <"packhl", int_hexagon_S2_packhl>;
+
+/********************************************************************
+* ALU64/VB *
+*********************************************************************/
+
+// ALU64 / VB / Vector add unsigned bytes.
+def HEXAGON_A2_vaddub:
+ di_ALU64_didi <"vaddub", int_hexagon_A2_vaddub>;
+def HEXAGON_A2_vaddubs:
+ di_ALU64_didi_sat <"vaddub", int_hexagon_A2_vaddubs>;
+
+// ALU64 / VB / Vector average unsigned bytes.
+def HEXAGON_A2_vavgub:
+ di_ALU64_didi <"vavgub", int_hexagon_A2_vavgub>;
+def HEXAGON_A2_vavgubr:
+ di_ALU64_didi_rnd <"vavgub", int_hexagon_A2_vavgubr>;
+
+// ALU64 / VB / Vector compare unsigned bytes.
+def HEXAGON_A2_vcmpbeq:
+ qi_ALU64_didi <"vcmpb.eq", int_hexagon_A2_vcmpbeq>;
+def HEXAGON_A2_vcmpbgtu:
+ qi_ALU64_didi <"vcmpb.gtu",int_hexagon_A2_vcmpbgtu>;
+
+// ALU64 / VB / Vector maximum/minimum unsigned bytes.
+def HEXAGON_A2_vmaxub:
+ di_ALU64_didi <"vmaxub", int_hexagon_A2_vmaxub>;
+def HEXAGON_A2_vminub:
+ di_ALU64_didi <"vminub", int_hexagon_A2_vminub>;
+
+// ALU64 / VB / Vector subtract unsigned bytes.
+def HEXAGON_A2_vsubub:
+ di_ALU64_didi <"vsubub", int_hexagon_A2_vsubub>;
+def HEXAGON_A2_vsububs:
+ di_ALU64_didi_sat <"vsubub", int_hexagon_A2_vsububs>;
+
+// ALU64 / VB / Vector mux.
+def HEXAGON_C2_vmux:
+ di_ALU64_qididi <"vmux", int_hexagon_C2_vmux>;
+
+
+/********************************************************************
+* ALU64/VH *
+*********************************************************************/
+
+// ALU64 / VH / Vector add halfwords.
+// Rdd64=vadd[u]h(Rss64,Rtt64:sat]
+def HEXAGON_A2_vaddh:
+ di_ALU64_didi <"vaddh", int_hexagon_A2_vaddh>;
+def HEXAGON_A2_vaddhs:
+ di_ALU64_didi_sat <"vaddh", int_hexagon_A2_vaddhs>;
+def HEXAGON_A2_vadduhs:
+ di_ALU64_didi_sat <"vadduh", int_hexagon_A2_vadduhs>;
+
+// ALU64 / VH / Vector average halfwords.
+// Rdd64=v[n]avg[u]h(Rss64,Rtt64:rnd/:crnd][:sat]
+def HEXAGON_A2_vavgh:
+ di_ALU64_didi <"vavgh", int_hexagon_A2_vavgh>;
+def HEXAGON_A2_vavghcr:
+ di_ALU64_didi_crnd <"vavgh", int_hexagon_A2_vavghcr>;
+def HEXAGON_A2_vavghr:
+ di_ALU64_didi_rnd <"vavgh", int_hexagon_A2_vavghr>;
+def HEXAGON_A2_vavguh:
+ di_ALU64_didi <"vavguh", int_hexagon_A2_vavguh>;
+def HEXAGON_A2_vavguhr:
+ di_ALU64_didi_rnd <"vavguh", int_hexagon_A2_vavguhr>;
+def HEXAGON_A2_vnavgh:
+ di_ALU64_didi <"vnavgh", int_hexagon_A2_vnavgh>;
+def HEXAGON_A2_vnavghcr:
+ di_ALU64_didi_crnd_sat <"vnavgh", int_hexagon_A2_vnavghcr>;
+def HEXAGON_A2_vnavghr:
+ di_ALU64_didi_rnd_sat <"vnavgh", int_hexagon_A2_vnavghr>;
+
+// ALU64 / VH / Vector compare halfwords.
+def HEXAGON_A2_vcmpheq:
+ qi_ALU64_didi <"vcmph.eq", int_hexagon_A2_vcmpheq>;
+def HEXAGON_A2_vcmphgt:
+ qi_ALU64_didi <"vcmph.gt", int_hexagon_A2_vcmphgt>;
+def HEXAGON_A2_vcmphgtu:
+ qi_ALU64_didi <"vcmph.gtu",int_hexagon_A2_vcmphgtu>;
+
+// ALU64 / VH / Vector maximum halfwords.
+def HEXAGON_A2_vmaxh:
+ di_ALU64_didi <"vmaxh", int_hexagon_A2_vmaxh>;
+def HEXAGON_A2_vmaxuh:
+ di_ALU64_didi <"vmaxuh", int_hexagon_A2_vmaxuh>;
+
+// ALU64 / VH / Vector minimum halfwords.
+def HEXAGON_A2_vminh:
+ di_ALU64_didi <"vminh", int_hexagon_A2_vminh>;
+def HEXAGON_A2_vminuh:
+ di_ALU64_didi <"vminuh", int_hexagon_A2_vminuh>;
+
+// ALU64 / VH / Vector subtract halfwords.
+def HEXAGON_A2_vsubh:
+ di_ALU64_didi <"vsubh", int_hexagon_A2_vsubh>;
+def HEXAGON_A2_vsubhs:
+ di_ALU64_didi_sat <"vsubh", int_hexagon_A2_vsubhs>;
+def HEXAGON_A2_vsubuhs:
+ di_ALU64_didi_sat <"vsubuh", int_hexagon_A2_vsubuhs>;
+
+
+/********************************************************************
+* ALU64/VW *
+*********************************************************************/
+
+// ALU64 / VW / Vector add words.
+// Rdd32=vaddw(Rss32,Rtt32)[:sat]
+def HEXAGON_A2_vaddw:
+ di_ALU64_didi <"vaddw", int_hexagon_A2_vaddw>;
+def HEXAGON_A2_vaddws:
+ di_ALU64_didi_sat <"vaddw", int_hexagon_A2_vaddws>;
+
+// ALU64 / VW / Vector average words.
+def HEXAGON_A2_vavguw:
+ di_ALU64_didi <"vavguw", int_hexagon_A2_vavguw>;
+def HEXAGON_A2_vavguwr:
+ di_ALU64_didi_rnd <"vavguw", int_hexagon_A2_vavguwr>;
+def HEXAGON_A2_vavgw:
+ di_ALU64_didi <"vavgw", int_hexagon_A2_vavgw>;
+def HEXAGON_A2_vavgwcr:
+ di_ALU64_didi_crnd <"vavgw", int_hexagon_A2_vavgwcr>;
+def HEXAGON_A2_vavgwr:
+ di_ALU64_didi_rnd <"vavgw", int_hexagon_A2_vavgwr>;
+def HEXAGON_A2_vnavgw:
+ di_ALU64_didi <"vnavgw", int_hexagon_A2_vnavgw>;
+def HEXAGON_A2_vnavgwcr:
+ di_ALU64_didi_crnd_sat <"vnavgw", int_hexagon_A2_vnavgwcr>;
+def HEXAGON_A2_vnavgwr:
+ di_ALU64_didi_rnd_sat <"vnavgw", int_hexagon_A2_vnavgwr>;
+
+// ALU64 / VW / Vector compare words.
+def HEXAGON_A2_vcmpweq:
+ qi_ALU64_didi <"vcmpw.eq", int_hexagon_A2_vcmpweq>;
+def HEXAGON_A2_vcmpwgt:
+ qi_ALU64_didi <"vcmpw.gt", int_hexagon_A2_vcmpwgt>;
+def HEXAGON_A2_vcmpwgtu:
+ qi_ALU64_didi <"vcmpw.gtu",int_hexagon_A2_vcmpwgtu>;
+
+// ALU64 / VW / Vector maximum words.
+def HEXAGON_A2_vmaxw:
+ di_ALU64_didi <"vmaxw", int_hexagon_A2_vmaxw>;
+def HEXAGON_A2_vmaxuw:
+ di_ALU64_didi <"vmaxuw", int_hexagon_A2_vmaxuw>;
+
+// ALU64 / VW / Vector minimum words.
+def HEXAGON_A2_vminw:
+ di_ALU64_didi <"vminw", int_hexagon_A2_vminw>;
+def HEXAGON_A2_vminuw:
+ di_ALU64_didi <"vminuw", int_hexagon_A2_vminuw>;
+
+// ALU64 / VW / Vector subtract words.
+def HEXAGON_A2_vsubw:
+ di_ALU64_didi <"vsubw", int_hexagon_A2_vsubw>;
+def HEXAGON_A2_vsubws:
+ di_ALU64_didi_sat <"vsubw", int_hexagon_A2_vsubws>;
+
+
+/********************************************************************
+* CR *
+*********************************************************************/
+
+// CR / Logical reductions on predicates.
+def HEXAGON_C2_all8:
+ qi_SInst_qi <"all8", int_hexagon_C2_all8>;
+def HEXAGON_C2_any8:
+ qi_SInst_qi <"any8", int_hexagon_C2_any8>;
+
+// CR / Logical operations on predicates.
+def HEXAGON_C2_pxfer_map:
+ qi_SInst_qi_pxfer <"", int_hexagon_C2_pxfer_map>;
+def HEXAGON_C2_and:
+ qi_SInst_qiqi <"and", int_hexagon_C2_and>;
+def HEXAGON_C2_andn:
+ qi_SInst_qiqi_neg <"and", int_hexagon_C2_andn>;
+def HEXAGON_C2_not:
+ qi_SInst_qi <"not", int_hexagon_C2_not>;
+def HEXAGON_C2_or:
+ qi_SInst_qiqi <"or", int_hexagon_C2_or>;
+def HEXAGON_C2_orn:
+ qi_SInst_qiqi_neg <"or", int_hexagon_C2_orn>;
+def HEXAGON_C2_xor:
+ qi_SInst_qiqi <"xor", int_hexagon_C2_xor>;
+
+
+/********************************************************************
+* MTYPE/ALU *
+*********************************************************************/
+
+// MTYPE / ALU / Add and accumulate.
+def HEXAGON_M2_acci:
+ si_MInst_sisisi_acc <"add", int_hexagon_M2_acci>;
+def HEXAGON_M2_accii:
+ si_MInst_sisis8_acc <"add", int_hexagon_M2_accii>;
+def HEXAGON_M2_nacci:
+ si_MInst_sisisi_nac <"add", int_hexagon_M2_nacci>;
+def HEXAGON_M2_naccii:
+ si_MInst_sisis8_nac <"add", int_hexagon_M2_naccii>;
+
+// MTYPE / ALU / Subtract and accumulate.
+def HEXAGON_M2_subacc:
+ si_MInst_sisisi_acc <"sub", int_hexagon_M2_subacc>;
+
+// MTYPE / ALU / Vector absolute difference.
+def HEXAGON_M2_vabsdiffh:
+ di_MInst_didi <"vabsdiffh",int_hexagon_M2_vabsdiffh>;
+def HEXAGON_M2_vabsdiffw:
+ di_MInst_didi <"vabsdiffw",int_hexagon_M2_vabsdiffw>;
+
+// MTYPE / ALU / XOR and xor with destination.
+def HEXAGON_M2_xor_xacc:
+ si_MInst_sisisi_xacc <"xor", int_hexagon_M2_xor_xacc>;
+
+
+/********************************************************************
+* MTYPE/COMPLEX *
+*********************************************************************/
+
+// MTYPE / COMPLEX / Complex multiply.
+// Rdd[-+]=cmpy(Rs, Rt:<<1]:sat
+def HEXAGON_M2_cmpys_s1:
+ di_MInst_sisi_s1_sat <"cmpy", int_hexagon_M2_cmpys_s1>;
+def HEXAGON_M2_cmpys_s0:
+ di_MInst_sisi_sat <"cmpy", int_hexagon_M2_cmpys_s0>;
+def HEXAGON_M2_cmpysc_s1:
+ di_MInst_sisi_s1_sat_conj <"cmpy", int_hexagon_M2_cmpysc_s1>;
+def HEXAGON_M2_cmpysc_s0:
+ di_MInst_sisi_sat_conj <"cmpy", int_hexagon_M2_cmpysc_s0>;
+
+def HEXAGON_M2_cmacs_s1:
+ di_MInst_disisi_acc_s1_sat <"cmpy", int_hexagon_M2_cmacs_s1>;
+def HEXAGON_M2_cmacs_s0:
+ di_MInst_disisi_acc_sat <"cmpy", int_hexagon_M2_cmacs_s0>;
+def HEXAGON_M2_cmacsc_s1:
+ di_MInst_disisi_acc_s1_sat_conj <"cmpy", int_hexagon_M2_cmacsc_s1>;
+def HEXAGON_M2_cmacsc_s0:
+ di_MInst_disisi_acc_sat_conj <"cmpy", int_hexagon_M2_cmacsc_s0>;
+
+def HEXAGON_M2_cnacs_s1:
+ di_MInst_disisi_nac_s1_sat <"cmpy", int_hexagon_M2_cnacs_s1>;
+def HEXAGON_M2_cnacs_s0:
+ di_MInst_disisi_nac_sat <"cmpy", int_hexagon_M2_cnacs_s0>;
+def HEXAGON_M2_cnacsc_s1:
+ di_MInst_disisi_nac_s1_sat_conj <"cmpy", int_hexagon_M2_cnacsc_s1>;
+def HEXAGON_M2_cnacsc_s0:
+ di_MInst_disisi_nac_sat_conj <"cmpy", int_hexagon_M2_cnacsc_s0>;
+
+// MTYPE / COMPLEX / Complex multiply real or imaginary.
+def HEXAGON_M2_cmpyr_s0:
+ di_MInst_sisi <"cmpyr", int_hexagon_M2_cmpyr_s0>;
+def HEXAGON_M2_cmacr_s0:
+ di_MInst_disisi_acc <"cmpyr", int_hexagon_M2_cmacr_s0>;
+
+def HEXAGON_M2_cmpyi_s0:
+ di_MInst_sisi <"cmpyi", int_hexagon_M2_cmpyi_s0>;
+def HEXAGON_M2_cmaci_s0:
+ di_MInst_disisi_acc <"cmpyi", int_hexagon_M2_cmaci_s0>;
+
+// MTYPE / COMPLEX / Complex multiply with round and pack.
+// Rxx32+=cmpy(Rs32,[*]Rt32:<<1]:rnd:sat
+def HEXAGON_M2_cmpyrs_s0:
+ si_MInst_sisi_rnd_sat <"cmpy", int_hexagon_M2_cmpyrs_s0>;
+def HEXAGON_M2_cmpyrs_s1:
+ si_MInst_sisi_s1_rnd_sat <"cmpy", int_hexagon_M2_cmpyrs_s1>;
+
+def HEXAGON_M2_cmpyrsc_s0:
+ si_MInst_sisi_rnd_sat_conj <"cmpy", int_hexagon_M2_cmpyrsc_s0>;
+def HEXAGON_M2_cmpyrsc_s1:
+ si_MInst_sisi_s1_rnd_sat_conj <"cmpy", int_hexagon_M2_cmpyrsc_s1>;
+
+//MTYPE / COMPLEX / Vector complex multiply real or imaginary.
+def HEXAGON_M2_vcmpy_s0_sat_i:
+ di_MInst_didi_sat <"vcmpyi", int_hexagon_M2_vcmpy_s0_sat_i>;
+def HEXAGON_M2_vcmpy_s1_sat_i:
+ di_MInst_didi_s1_sat <"vcmpyi", int_hexagon_M2_vcmpy_s1_sat_i>;
+
+def HEXAGON_M2_vcmpy_s0_sat_r:
+ di_MInst_didi_sat <"vcmpyr", int_hexagon_M2_vcmpy_s0_sat_r>;
+def HEXAGON_M2_vcmpy_s1_sat_r:
+ di_MInst_didi_s1_sat <"vcmpyr", int_hexagon_M2_vcmpy_s1_sat_r>;
+
+def HEXAGON_M2_vcmac_s0_sat_i:
+ di_MInst_dididi_acc_sat <"vcmpyi", int_hexagon_M2_vcmac_s0_sat_i>;
+def HEXAGON_M2_vcmac_s0_sat_r:
+ di_MInst_dididi_acc_sat <"vcmpyr", int_hexagon_M2_vcmac_s0_sat_r>;
+
+//MTYPE / COMPLEX / Vector reduce complex multiply real or imaginary.
+def HEXAGON_M2_vrcmpyi_s0:
+ di_MInst_didi <"vrcmpyi", int_hexagon_M2_vrcmpyi_s0>;
+def HEXAGON_M2_vrcmpyr_s0:
+ di_MInst_didi <"vrcmpyr", int_hexagon_M2_vrcmpyr_s0>;
+
+def HEXAGON_M2_vrcmpyi_s0c:
+ di_MInst_didi_conj <"vrcmpyi", int_hexagon_M2_vrcmpyi_s0c>;
+def HEXAGON_M2_vrcmpyr_s0c:
+ di_MInst_didi_conj <"vrcmpyr", int_hexagon_M2_vrcmpyr_s0c>;
+
+def HEXAGON_M2_vrcmaci_s0:
+ di_MInst_dididi_acc <"vrcmpyi", int_hexagon_M2_vrcmaci_s0>;
+def HEXAGON_M2_vrcmacr_s0:
+ di_MInst_dididi_acc <"vrcmpyr", int_hexagon_M2_vrcmacr_s0>;
+
+def HEXAGON_M2_vrcmaci_s0c:
+ di_MInst_dididi_acc_conj <"vrcmpyi", int_hexagon_M2_vrcmaci_s0c>;
+def HEXAGON_M2_vrcmacr_s0c:
+ di_MInst_dididi_acc_conj <"vrcmpyr", int_hexagon_M2_vrcmacr_s0c>;
+
+
+/********************************************************************
+* MTYPE/MPYH *
+*********************************************************************/
+
+// MTYPE / MPYH / Multiply and use lower result.
+//def HEXAGON_M2_mpysmi:
+//FIXME: Hexagon_M2_mpysmi should really by of the type si_MInst_sim9,
+// not si_MInst_sis9 - but for now, we will use s9.
+// def Hexagon_M2_mpysmi:
+// si_MInst_sim9 <"mpyi", int_hexagon_M2_mpysmi>;
+def Hexagon_M2_mpysmi:
+ si_MInst_sis9 <"mpyi", int_hexagon_M2_mpysmi>;
+def HEXAGON_M2_mpyi:
+ si_MInst_sisi <"mpyi", int_hexagon_M2_mpyi>;
+def HEXAGON_M2_mpyui:
+ si_MInst_sisi <"mpyui", int_hexagon_M2_mpyui>;
+def HEXAGON_M2_macsip:
+ si_MInst_sisiu8_acc <"mpyi", int_hexagon_M2_macsip>;
+def HEXAGON_M2_maci:
+ si_MInst_sisisi_acc <"mpyi", int_hexagon_M2_maci>;
+def HEXAGON_M2_macsin:
+ si_MInst_sisiu8_nac <"mpyi", int_hexagon_M2_macsin>;
+
+// MTYPE / MPYH / Multiply word by half (32x16).
+//Rdd[+]=vmpywoh(Rss,Rtt)[:<<1][:rnd][:sat]
+//Rdd[+]=vmpyweh(Rss,Rtt)[:<<1][:rnd][:sat]
+def HEXAGON_M2_mmpyl_rs1:
+ di_MInst_didi_s1_rnd_sat <"vmpyweh", int_hexagon_M2_mmpyl_rs1>;
+def HEXAGON_M2_mmpyl_s1:
+ di_MInst_didi_s1_sat <"vmpyweh", int_hexagon_M2_mmpyl_s1>;
+def HEXAGON_M2_mmpyl_rs0:
+ di_MInst_didi_rnd_sat <"vmpyweh", int_hexagon_M2_mmpyl_rs0>;
+def HEXAGON_M2_mmpyl_s0:
+ di_MInst_didi_sat <"vmpyweh", int_hexagon_M2_mmpyl_s0>;
+def HEXAGON_M2_mmpyh_rs1:
+ di_MInst_didi_s1_rnd_sat <"vmpywoh", int_hexagon_M2_mmpyh_rs1>;
+def HEXAGON_M2_mmpyh_s1:
+ di_MInst_didi_s1_sat <"vmpywoh", int_hexagon_M2_mmpyh_s1>;
+def HEXAGON_M2_mmpyh_rs0:
+ di_MInst_didi_rnd_sat <"vmpywoh", int_hexagon_M2_mmpyh_rs0>;
+def HEXAGON_M2_mmpyh_s0:
+ di_MInst_didi_sat <"vmpywoh", int_hexagon_M2_mmpyh_s0>;
+def HEXAGON_M2_mmacls_rs1:
+ di_MInst_dididi_acc_s1_rnd_sat <"vmpyweh", int_hexagon_M2_mmacls_rs1>;
+def HEXAGON_M2_mmacls_s1:
+ di_MInst_dididi_acc_s1_sat <"vmpyweh", int_hexagon_M2_mmacls_s1>;
+def HEXAGON_M2_mmacls_rs0:
+ di_MInst_dididi_acc_rnd_sat <"vmpyweh", int_hexagon_M2_mmacls_rs0>;
+def HEXAGON_M2_mmacls_s0:
+ di_MInst_dididi_acc_sat <"vmpyweh", int_hexagon_M2_mmacls_s0>;
+def HEXAGON_M2_mmachs_rs1:
+ di_MInst_dididi_acc_s1_rnd_sat <"vmpywoh", int_hexagon_M2_mmachs_rs1>;
+def HEXAGON_M2_mmachs_s1:
+ di_MInst_dididi_acc_s1_sat <"vmpywoh", int_hexagon_M2_mmachs_s1>;
+def HEXAGON_M2_mmachs_rs0:
+ di_MInst_dididi_acc_rnd_sat <"vmpywoh", int_hexagon_M2_mmachs_rs0>;
+def HEXAGON_M2_mmachs_s0:
+ di_MInst_dididi_acc_sat <"vmpywoh", int_hexagon_M2_mmachs_s0>;
+
+// MTYPE / MPYH / Multiply word by unsigned half (32x16).
+//Rdd[+]=vmpywouh(Rss,Rtt)[:<<1][:rnd][:sat]
+//Rdd[+]=vmpyweuh(Rss,Rtt)[:<<1][:rnd][:sat]
+def HEXAGON_M2_mmpyul_rs1:
+ di_MInst_didi_s1_rnd_sat <"vmpyweuh", int_hexagon_M2_mmpyul_rs1>;
+def HEXAGON_M2_mmpyul_s1:
+ di_MInst_didi_s1_sat <"vmpyweuh", int_hexagon_M2_mmpyul_s1>;
+def HEXAGON_M2_mmpyul_rs0:
+ di_MInst_didi_rnd_sat <"vmpyweuh", int_hexagon_M2_mmpyul_rs0>;
+def HEXAGON_M2_mmpyul_s0:
+ di_MInst_didi_sat <"vmpyweuh", int_hexagon_M2_mmpyul_s0>;
+def HEXAGON_M2_mmpyuh_rs1:
+ di_MInst_didi_s1_rnd_sat <"vmpywouh", int_hexagon_M2_mmpyuh_rs1>;
+def HEXAGON_M2_mmpyuh_s1:
+ di_MInst_didi_s1_sat <"vmpywouh", int_hexagon_M2_mmpyuh_s1>;
+def HEXAGON_M2_mmpyuh_rs0:
+ di_MInst_didi_rnd_sat <"vmpywouh", int_hexagon_M2_mmpyuh_rs0>;
+def HEXAGON_M2_mmpyuh_s0:
+ di_MInst_didi_sat <"vmpywouh", int_hexagon_M2_mmpyuh_s0>;
+def HEXAGON_M2_mmaculs_rs1:
+ di_MInst_dididi_acc_s1_rnd_sat <"vmpyweuh", int_hexagon_M2_mmaculs_rs1>;
+def HEXAGON_M2_mmaculs_s1:
+ di_MInst_dididi_acc_s1_sat <"vmpyweuh", int_hexagon_M2_mmaculs_s1>;
+def HEXAGON_M2_mmaculs_rs0:
+ di_MInst_dididi_acc_rnd_sat <"vmpyweuh", int_hexagon_M2_mmaculs_rs0>;
+def HEXAGON_M2_mmaculs_s0:
+ di_MInst_dididi_acc_sat <"vmpyweuh", int_hexagon_M2_mmaculs_s0>;
+def HEXAGON_M2_mmacuhs_rs1:
+ di_MInst_dididi_acc_s1_rnd_sat <"vmpywouh", int_hexagon_M2_mmacuhs_rs1>;
+def HEXAGON_M2_mmacuhs_s1:
+ di_MInst_dididi_acc_s1_sat <"vmpywouh", int_hexagon_M2_mmacuhs_s1>;
+def HEXAGON_M2_mmacuhs_rs0:
+ di_MInst_dididi_acc_rnd_sat <"vmpywouh", int_hexagon_M2_mmacuhs_rs0>;
+def HEXAGON_M2_mmacuhs_s0:
+ di_MInst_dididi_acc_sat <"vmpywouh", int_hexagon_M2_mmacuhs_s0>;
+
+// MTYPE / MPYH / Multiply and use upper result.
+def HEXAGON_M2_hmmpyh_rs1:
+ si_MInst_sisi_h_s1_rnd_sat <"mpy", int_hexagon_M2_hmmpyh_rs1>;
+def HEXAGON_M2_hmmpyl_rs1:
+ si_MInst_sisi_l_s1_rnd_sat <"mpy", int_hexagon_M2_hmmpyl_rs1>;
+def HEXAGON_M2_mpy_up:
+ si_MInst_sisi <"mpy", int_hexagon_M2_mpy_up>;
+def HEXAGON_M2_dpmpyss_rnd_s0:
+ si_MInst_sisi_rnd <"mpy", int_hexagon_M2_dpmpyss_rnd_s0>;
+def HEXAGON_M2_mpyu_up:
+ si_MInst_sisi <"mpyu", int_hexagon_M2_mpyu_up>;
+
+// MTYPE / MPYH / Multiply and use full result.
+def HEXAGON_M2_dpmpyuu_s0:
+ di_MInst_sisi <"mpyu", int_hexagon_M2_dpmpyuu_s0>;
+def HEXAGON_M2_dpmpyuu_acc_s0:
+ di_MInst_disisi_acc <"mpyu", int_hexagon_M2_dpmpyuu_acc_s0>;
+def HEXAGON_M2_dpmpyuu_nac_s0:
+ di_MInst_disisi_nac <"mpyu", int_hexagon_M2_dpmpyuu_nac_s0>;
+def HEXAGON_M2_dpmpyss_s0:
+ di_MInst_sisi <"mpy", int_hexagon_M2_dpmpyss_s0>;
+def HEXAGON_M2_dpmpyss_acc_s0:
+ di_MInst_disisi_acc <"mpy", int_hexagon_M2_dpmpyss_acc_s0>;
+def HEXAGON_M2_dpmpyss_nac_s0:
+ di_MInst_disisi_nac <"mpy", int_hexagon_M2_dpmpyss_nac_s0>;
+
+
+/********************************************************************
+* MTYPE/MPYS *
+*********************************************************************/
+
+// MTYPE / MPYS / Scalar 16x16 multiply signed.
+//Rd=mpy(Rs.[H|L],Rt.[H|L:<<0|:<<1]|
+// [:<<0[:rnd|:sat|:rnd:sat]|:<<1[:rnd|:sat|:rnd:sat]]]
+def HEXAGON_M2_mpy_hh_s0:
+ si_MInst_sisi_hh <"mpy", int_hexagon_M2_mpy_hh_s0>;
+def HEXAGON_M2_mpy_hh_s1:
+ si_MInst_sisi_hh_s1 <"mpy", int_hexagon_M2_mpy_hh_s1>;
+def HEXAGON_M2_mpy_rnd_hh_s1:
+ si_MInst_sisi_rnd_hh_s1 <"mpy", int_hexagon_M2_mpy_rnd_hh_s1>;
+def HEXAGON_M2_mpy_sat_rnd_hh_s1:
+ si_MInst_sisi_sat_rnd_hh_s1 <"mpy", int_hexagon_M2_mpy_sat_rnd_hh_s1>;
+def HEXAGON_M2_mpy_sat_hh_s1:
+ si_MInst_sisi_sat_hh_s1 <"mpy", int_hexagon_M2_mpy_sat_hh_s1>;
+def HEXAGON_M2_mpy_rnd_hh_s0:
+ si_MInst_sisi_rnd_hh <"mpy", int_hexagon_M2_mpy_rnd_hh_s0>;
+def HEXAGON_M2_mpy_sat_rnd_hh_s0:
+ si_MInst_sisi_sat_rnd_hh <"mpy", int_hexagon_M2_mpy_sat_rnd_hh_s0>;
+def HEXAGON_M2_mpy_sat_hh_s0:
+ si_MInst_sisi_sat_hh <"mpy", int_hexagon_M2_mpy_sat_hh_s0>;
+
+def HEXAGON_M2_mpy_hl_s0:
+ si_MInst_sisi_hl <"mpy", int_hexagon_M2_mpy_hl_s0>;
+def HEXAGON_M2_mpy_hl_s1:
+ si_MInst_sisi_hl_s1 <"mpy", int_hexagon_M2_mpy_hl_s1>;
+def HEXAGON_M2_mpy_rnd_hl_s1:
+ si_MInst_sisi_rnd_hl_s1 <"mpy", int_hexagon_M2_mpy_rnd_hl_s1>;
+def HEXAGON_M2_mpy_sat_rnd_hl_s1:
+ si_MInst_sisi_sat_rnd_hl_s1 <"mpy", int_hexagon_M2_mpy_sat_rnd_hl_s1>;
+def HEXAGON_M2_mpy_sat_hl_s1:
+ si_MInst_sisi_sat_hl_s1 <"mpy", int_hexagon_M2_mpy_sat_hl_s1>;
+def HEXAGON_M2_mpy_rnd_hl_s0:
+ si_MInst_sisi_rnd_hl <"mpy", int_hexagon_M2_mpy_rnd_hl_s0>;
+def HEXAGON_M2_mpy_sat_rnd_hl_s0:
+ si_MInst_sisi_sat_rnd_hl <"mpy", int_hexagon_M2_mpy_sat_rnd_hl_s0>;
+def HEXAGON_M2_mpy_sat_hl_s0:
+ si_MInst_sisi_sat_hl <"mpy", int_hexagon_M2_mpy_sat_hl_s0>;
+
+def HEXAGON_M2_mpy_lh_s0:
+ si_MInst_sisi_lh <"mpy", int_hexagon_M2_mpy_lh_s0>;
+def HEXAGON_M2_mpy_lh_s1:
+ si_MInst_sisi_lh_s1 <"mpy", int_hexagon_M2_mpy_lh_s1>;
+def HEXAGON_M2_mpy_rnd_lh_s1:
+ si_MInst_sisi_rnd_lh_s1 <"mpy", int_hexagon_M2_mpy_rnd_lh_s1>;
+def HEXAGON_M2_mpy_sat_rnd_lh_s1:
+ si_MInst_sisi_sat_rnd_lh_s1 <"mpy", int_hexagon_M2_mpy_sat_rnd_lh_s1>;
+def HEXAGON_M2_mpy_sat_lh_s1:
+ si_MInst_sisi_sat_lh_s1 <"mpy", int_hexagon_M2_mpy_sat_lh_s1>;
+def HEXAGON_M2_mpy_rnd_lh_s0:
+ si_MInst_sisi_rnd_lh <"mpy", int_hexagon_M2_mpy_rnd_lh_s0>;
+def HEXAGON_M2_mpy_sat_rnd_lh_s0:
+ si_MInst_sisi_sat_rnd_lh <"mpy", int_hexagon_M2_mpy_sat_rnd_lh_s0>;
+def HEXAGON_M2_mpy_sat_lh_s0:
+ si_MInst_sisi_sat_lh <"mpy", int_hexagon_M2_mpy_sat_lh_s0>;
+
+def HEXAGON_M2_mpy_ll_s0:
+ si_MInst_sisi_ll <"mpy", int_hexagon_M2_mpy_ll_s0>;
+def HEXAGON_M2_mpy_ll_s1:
+ si_MInst_sisi_ll_s1 <"mpy", int_hexagon_M2_mpy_ll_s1>;
+def HEXAGON_M2_mpy_rnd_ll_s1:
+ si_MInst_sisi_rnd_ll_s1 <"mpy", int_hexagon_M2_mpy_rnd_ll_s1>;
+def HEXAGON_M2_mpy_sat_rnd_ll_s1:
+ si_MInst_sisi_sat_rnd_ll_s1 <"mpy", int_hexagon_M2_mpy_sat_rnd_ll_s1>;
+def HEXAGON_M2_mpy_sat_ll_s1:
+ si_MInst_sisi_sat_ll_s1 <"mpy", int_hexagon_M2_mpy_sat_ll_s1>;
+def HEXAGON_M2_mpy_rnd_ll_s0:
+ si_MInst_sisi_rnd_ll <"mpy", int_hexagon_M2_mpy_rnd_ll_s0>;
+def HEXAGON_M2_mpy_sat_rnd_ll_s0:
+ si_MInst_sisi_sat_rnd_ll <"mpy", int_hexagon_M2_mpy_sat_rnd_ll_s0>;
+def HEXAGON_M2_mpy_sat_ll_s0:
+ si_MInst_sisi_sat_ll <"mpy", int_hexagon_M2_mpy_sat_ll_s0>;
+
+//Rdd=mpy(Rs.[H|L],Rt.[H|L])[[:<<0|:<<1]|[:<<0:rnd|:<<1:rnd]]
+def HEXAGON_M2_mpyd_hh_s0:
+ di_MInst_sisi_hh <"mpy", int_hexagon_M2_mpyd_hh_s0>;
+def HEXAGON_M2_mpyd_hh_s1:
+ di_MInst_sisi_hh_s1 <"mpy", int_hexagon_M2_mpyd_hh_s1>;
+def HEXAGON_M2_mpyd_rnd_hh_s1:
+ di_MInst_sisi_rnd_hh_s1 <"mpy", int_hexagon_M2_mpyd_rnd_hh_s1>;
+def HEXAGON_M2_mpyd_rnd_hh_s0:
+ di_MInst_sisi_rnd_hh <"mpy", int_hexagon_M2_mpyd_rnd_hh_s0>;
+
+def HEXAGON_M2_mpyd_hl_s0:
+ di_MInst_sisi_hl <"mpy", int_hexagon_M2_mpyd_hl_s0>;
+def HEXAGON_M2_mpyd_hl_s1:
+ di_MInst_sisi_hl_s1 <"mpy", int_hexagon_M2_mpyd_hl_s1>;
+def HEXAGON_M2_mpyd_rnd_hl_s1:
+ di_MInst_sisi_rnd_hl_s1 <"mpy", int_hexagon_M2_mpyd_rnd_hl_s1>;
+def HEXAGON_M2_mpyd_rnd_hl_s0:
+ di_MInst_sisi_rnd_hl <"mpy", int_hexagon_M2_mpyd_rnd_hl_s0>;
+
+def HEXAGON_M2_mpyd_lh_s0:
+ di_MInst_sisi_lh <"mpy", int_hexagon_M2_mpyd_lh_s0>;
+def HEXAGON_M2_mpyd_lh_s1:
+ di_MInst_sisi_lh_s1 <"mpy", int_hexagon_M2_mpyd_lh_s1>;
+def HEXAGON_M2_mpyd_rnd_lh_s1:
+ di_MInst_sisi_rnd_lh_s1 <"mpy", int_hexagon_M2_mpyd_rnd_lh_s1>;
+def HEXAGON_M2_mpyd_rnd_lh_s0:
+ di_MInst_sisi_rnd_lh <"mpy", int_hexagon_M2_mpyd_rnd_lh_s0>;
+
+def HEXAGON_M2_mpyd_ll_s0:
+ di_MInst_sisi_ll <"mpy", int_hexagon_M2_mpyd_ll_s0>;
+def HEXAGON_M2_mpyd_ll_s1:
+ di_MInst_sisi_ll_s1 <"mpy", int_hexagon_M2_mpyd_ll_s1>;
+def HEXAGON_M2_mpyd_rnd_ll_s1:
+ di_MInst_sisi_rnd_ll_s1 <"mpy", int_hexagon_M2_mpyd_rnd_ll_s1>;
+def HEXAGON_M2_mpyd_rnd_ll_s0:
+ di_MInst_sisi_rnd_ll <"mpy", int_hexagon_M2_mpyd_rnd_ll_s0>;
+
+//Rx+=mpy(Rs.[H|L],Rt.[H|L])[[[:<<0|:<<1]|[:<<0:sat|:<<1:sat]]
+def HEXAGON_M2_mpy_acc_hh_s0:
+ si_MInst_sisisi_acc_hh <"mpy", int_hexagon_M2_mpy_acc_hh_s0>;
+def HEXAGON_M2_mpy_acc_hh_s1:
+ si_MInst_sisisi_acc_hh_s1 <"mpy", int_hexagon_M2_mpy_acc_hh_s1>;
+def HEXAGON_M2_mpy_acc_sat_hh_s1:
+ si_MInst_sisisi_acc_sat_hh_s1 <"mpy", int_hexagon_M2_mpy_acc_sat_hh_s1>;
+def HEXAGON_M2_mpy_acc_sat_hh_s0:
+ si_MInst_sisisi_acc_sat_hh <"mpy", int_hexagon_M2_mpy_acc_sat_hh_s0>;
+
+def HEXAGON_M2_mpy_acc_hl_s0:
+ si_MInst_sisisi_acc_hl <"mpy", int_hexagon_M2_mpy_acc_hl_s0>;
+def HEXAGON_M2_mpy_acc_hl_s1:
+ si_MInst_sisisi_acc_hl_s1 <"mpy", int_hexagon_M2_mpy_acc_hl_s1>;
+def HEXAGON_M2_mpy_acc_sat_hl_s1:
+ si_MInst_sisisi_acc_sat_hl_s1 <"mpy", int_hexagon_M2_mpy_acc_sat_hl_s1>;
+def HEXAGON_M2_mpy_acc_sat_hl_s0:
+ si_MInst_sisisi_acc_sat_hl <"mpy", int_hexagon_M2_mpy_acc_sat_hl_s0>;
+
+def HEXAGON_M2_mpy_acc_lh_s0:
+ si_MInst_sisisi_acc_lh <"mpy", int_hexagon_M2_mpy_acc_lh_s0>;
+def HEXAGON_M2_mpy_acc_lh_s1:
+ si_MInst_sisisi_acc_lh_s1 <"mpy", int_hexagon_M2_mpy_acc_lh_s1>;
+def HEXAGON_M2_mpy_acc_sat_lh_s1:
+ si_MInst_sisisi_acc_sat_lh_s1 <"mpy", int_hexagon_M2_mpy_acc_sat_lh_s1>;
+def HEXAGON_M2_mpy_acc_sat_lh_s0:
+ si_MInst_sisisi_acc_sat_lh <"mpy", int_hexagon_M2_mpy_acc_sat_lh_s0>;
+
+def HEXAGON_M2_mpy_acc_ll_s0:
+ si_MInst_sisisi_acc_ll <"mpy", int_hexagon_M2_mpy_acc_ll_s0>;
+def HEXAGON_M2_mpy_acc_ll_s1:
+ si_MInst_sisisi_acc_ll_s1 <"mpy", int_hexagon_M2_mpy_acc_ll_s1>;
+def HEXAGON_M2_mpy_acc_sat_ll_s1:
+ si_MInst_sisisi_acc_sat_ll_s1 <"mpy", int_hexagon_M2_mpy_acc_sat_ll_s1>;
+def HEXAGON_M2_mpy_acc_sat_ll_s0:
+ si_MInst_sisisi_acc_sat_ll <"mpy", int_hexagon_M2_mpy_acc_sat_ll_s0>;
+
+//Rx-=mpy(Rs.[H|L],Rt.[H|L])[[[:<<0|:<<1]|[:<<0:sat|:<<1:sat]]
+def HEXAGON_M2_mpy_nac_hh_s0:
+ si_MInst_sisisi_nac_hh <"mpy", int_hexagon_M2_mpy_nac_hh_s0>;
+def HEXAGON_M2_mpy_nac_hh_s1:
+ si_MInst_sisisi_nac_hh_s1 <"mpy", int_hexagon_M2_mpy_nac_hh_s1>;
+def HEXAGON_M2_mpy_nac_sat_hh_s1:
+ si_MInst_sisisi_nac_sat_hh_s1 <"mpy", int_hexagon_M2_mpy_nac_sat_hh_s1>;
+def HEXAGON_M2_mpy_nac_sat_hh_s0:
+ si_MInst_sisisi_nac_sat_hh <"mpy", int_hexagon_M2_mpy_nac_sat_hh_s0>;
+
+def HEXAGON_M2_mpy_nac_hl_s0:
+ si_MInst_sisisi_nac_hl <"mpy", int_hexagon_M2_mpy_nac_hl_s0>;
+def HEXAGON_M2_mpy_nac_hl_s1:
+ si_MInst_sisisi_nac_hl_s1 <"mpy", int_hexagon_M2_mpy_nac_hl_s1>;
+def HEXAGON_M2_mpy_nac_sat_hl_s1:
+ si_MInst_sisisi_nac_sat_hl_s1 <"mpy", int_hexagon_M2_mpy_nac_sat_hl_s1>;
+def HEXAGON_M2_mpy_nac_sat_hl_s0:
+ si_MInst_sisisi_nac_sat_hl <"mpy", int_hexagon_M2_mpy_nac_sat_hl_s0>;
+
+def HEXAGON_M2_mpy_nac_lh_s0:
+ si_MInst_sisisi_nac_lh <"mpy", int_hexagon_M2_mpy_nac_lh_s0>;
+def HEXAGON_M2_mpy_nac_lh_s1:
+ si_MInst_sisisi_nac_lh_s1 <"mpy", int_hexagon_M2_mpy_nac_lh_s1>;
+def HEXAGON_M2_mpy_nac_sat_lh_s1:
+ si_MInst_sisisi_nac_sat_lh_s1 <"mpy", int_hexagon_M2_mpy_nac_sat_lh_s1>;
+def HEXAGON_M2_mpy_nac_sat_lh_s0:
+ si_MInst_sisisi_nac_sat_lh <"mpy", int_hexagon_M2_mpy_nac_sat_lh_s0>;
+
+def HEXAGON_M2_mpy_nac_ll_s0:
+ si_MInst_sisisi_nac_ll <"mpy", int_hexagon_M2_mpy_nac_ll_s0>;
+def HEXAGON_M2_mpy_nac_ll_s1:
+ si_MInst_sisisi_nac_ll_s1 <"mpy", int_hexagon_M2_mpy_nac_ll_s1>;
+def HEXAGON_M2_mpy_nac_sat_ll_s1:
+ si_MInst_sisisi_nac_sat_ll_s1 <"mpy", int_hexagon_M2_mpy_nac_sat_ll_s1>;
+def HEXAGON_M2_mpy_nac_sat_ll_s0:
+ si_MInst_sisisi_nac_sat_ll <"mpy", int_hexagon_M2_mpy_nac_sat_ll_s0>;
+
+//Rx+=mpy(Rs.[H|L],Rt.[H|L:<<0|:<<1]
+def HEXAGON_M2_mpyd_acc_hh_s0:
+ di_MInst_disisi_acc_hh <"mpy", int_hexagon_M2_mpyd_acc_hh_s0>;
+def HEXAGON_M2_mpyd_acc_hh_s1:
+ di_MInst_disisi_acc_hh_s1 <"mpy", int_hexagon_M2_mpyd_acc_hh_s1>;
+
+def HEXAGON_M2_mpyd_acc_hl_s0:
+ di_MInst_disisi_acc_hl <"mpy", int_hexagon_M2_mpyd_acc_hl_s0>;
+def HEXAGON_M2_mpyd_acc_hl_s1:
+ di_MInst_disisi_acc_hl_s1 <"mpy", int_hexagon_M2_mpyd_acc_hl_s1>;
+
+def HEXAGON_M2_mpyd_acc_lh_s0:
+ di_MInst_disisi_acc_lh <"mpy", int_hexagon_M2_mpyd_acc_lh_s0>;
+def HEXAGON_M2_mpyd_acc_lh_s1:
+ di_MInst_disisi_acc_lh_s1 <"mpy", int_hexagon_M2_mpyd_acc_lh_s1>;
+
+def HEXAGON_M2_mpyd_acc_ll_s0:
+ di_MInst_disisi_acc_ll <"mpy", int_hexagon_M2_mpyd_acc_ll_s0>;
+def HEXAGON_M2_mpyd_acc_ll_s1:
+ di_MInst_disisi_acc_ll_s1 <"mpy", int_hexagon_M2_mpyd_acc_ll_s1>;
+
+//Rx-=mpy(Rs.[H|L],Rt.[H|L:<<0|:<<1]
+def HEXAGON_M2_mpyd_nac_hh_s0:
+ di_MInst_disisi_nac_hh <"mpy", int_hexagon_M2_mpyd_nac_hh_s0>;
+def HEXAGON_M2_mpyd_nac_hh_s1:
+ di_MInst_disisi_nac_hh_s1 <"mpy", int_hexagon_M2_mpyd_nac_hh_s1>;
+
+def HEXAGON_M2_mpyd_nac_hl_s0:
+ di_MInst_disisi_nac_hl <"mpy", int_hexagon_M2_mpyd_nac_hl_s0>;
+def HEXAGON_M2_mpyd_nac_hl_s1:
+ di_MInst_disisi_nac_hl_s1 <"mpy", int_hexagon_M2_mpyd_nac_hl_s1>;
+
+def HEXAGON_M2_mpyd_nac_lh_s0:
+ di_MInst_disisi_nac_lh <"mpy", int_hexagon_M2_mpyd_nac_lh_s0>;
+def HEXAGON_M2_mpyd_nac_lh_s1:
+ di_MInst_disisi_nac_lh_s1 <"mpy", int_hexagon_M2_mpyd_nac_lh_s1>;
+
+def HEXAGON_M2_mpyd_nac_ll_s0:
+ di_MInst_disisi_nac_ll <"mpy", int_hexagon_M2_mpyd_nac_ll_s0>;
+def HEXAGON_M2_mpyd_nac_ll_s1:
+ di_MInst_disisi_nac_ll_s1 <"mpy", int_hexagon_M2_mpyd_nac_ll_s1>;
+
+// MTYPE / MPYS / Scalar 16x16 multiply unsigned.
+//Rd=mpyu(Rs.[H|L],Rt.[H|L])[:<<0|:<<1]
+def HEXAGON_M2_mpyu_hh_s0:
+ si_MInst_sisi_hh <"mpyu", int_hexagon_M2_mpyu_hh_s0>;
+def HEXAGON_M2_mpyu_hh_s1:
+ si_MInst_sisi_hh_s1 <"mpyu", int_hexagon_M2_mpyu_hh_s1>;
+def HEXAGON_M2_mpyu_hl_s0:
+ si_MInst_sisi_hl <"mpyu", int_hexagon_M2_mpyu_hl_s0>;
+def HEXAGON_M2_mpyu_hl_s1:
+ si_MInst_sisi_hl_s1 <"mpyu", int_hexagon_M2_mpyu_hl_s1>;
+def HEXAGON_M2_mpyu_lh_s0:
+ si_MInst_sisi_lh <"mpyu", int_hexagon_M2_mpyu_lh_s0>;
+def HEXAGON_M2_mpyu_lh_s1:
+ si_MInst_sisi_lh_s1 <"mpyu", int_hexagon_M2_mpyu_lh_s1>;
+def HEXAGON_M2_mpyu_ll_s0:
+ si_MInst_sisi_ll <"mpyu", int_hexagon_M2_mpyu_ll_s0>;
+def HEXAGON_M2_mpyu_ll_s1:
+ si_MInst_sisi_ll_s1 <"mpyu", int_hexagon_M2_mpyu_ll_s1>;
+
+//Rdd=mpyu(Rs.[H|L],Rt.[H|L])[:<<0|:<<1]
+def HEXAGON_M2_mpyud_hh_s0:
+ di_MInst_sisi_hh <"mpyu", int_hexagon_M2_mpyud_hh_s0>;
+def HEXAGON_M2_mpyud_hh_s1:
+ di_MInst_sisi_hh_s1 <"mpyu", int_hexagon_M2_mpyud_hh_s1>;
+def HEXAGON_M2_mpyud_hl_s0:
+ di_MInst_sisi_hl <"mpyu", int_hexagon_M2_mpyud_hl_s0>;
+def HEXAGON_M2_mpyud_hl_s1:
+ di_MInst_sisi_hl_s1 <"mpyu", int_hexagon_M2_mpyud_hl_s1>;
+def HEXAGON_M2_mpyud_lh_s0:
+ di_MInst_sisi_lh <"mpyu", int_hexagon_M2_mpyud_lh_s0>;
+def HEXAGON_M2_mpyud_lh_s1:
+ di_MInst_sisi_lh_s1 <"mpyu", int_hexagon_M2_mpyud_lh_s1>;
+def HEXAGON_M2_mpyud_ll_s0:
+ di_MInst_sisi_ll <"mpyu", int_hexagon_M2_mpyud_ll_s0>;
+def HEXAGON_M2_mpyud_ll_s1:
+ di_MInst_sisi_ll_s1 <"mpyu", int_hexagon_M2_mpyud_ll_s1>;
+
+//Rd+=mpyu(Rs.[H|L],Rt.[H|L])[:<<0|:<<1]
+def HEXAGON_M2_mpyu_acc_hh_s0:
+ si_MInst_sisisi_acc_hh <"mpyu", int_hexagon_M2_mpyu_acc_hh_s0>;
+def HEXAGON_M2_mpyu_acc_hh_s1:
+ si_MInst_sisisi_acc_hh_s1 <"mpyu", int_hexagon_M2_mpyu_acc_hh_s1>;
+def HEXAGON_M2_mpyu_acc_hl_s0:
+ si_MInst_sisisi_acc_hl <"mpyu", int_hexagon_M2_mpyu_acc_hl_s0>;
+def HEXAGON_M2_mpyu_acc_hl_s1:
+ si_MInst_sisisi_acc_hl_s1 <"mpyu", int_hexagon_M2_mpyu_acc_hl_s1>;
+def HEXAGON_M2_mpyu_acc_lh_s0:
+ si_MInst_sisisi_acc_lh <"mpyu", int_hexagon_M2_mpyu_acc_lh_s0>;
+def HEXAGON_M2_mpyu_acc_lh_s1:
+ si_MInst_sisisi_acc_lh_s1 <"mpyu", int_hexagon_M2_mpyu_acc_lh_s1>;
+def HEXAGON_M2_mpyu_acc_ll_s0:
+ si_MInst_sisisi_acc_ll <"mpyu", int_hexagon_M2_mpyu_acc_ll_s0>;
+def HEXAGON_M2_mpyu_acc_ll_s1:
+ si_MInst_sisisi_acc_ll_s1 <"mpyu", int_hexagon_M2_mpyu_acc_ll_s1>;
+
+//Rd+=mpyu(Rs.[H|L],Rt.[H|L])[:<<0|:<<1]
+def HEXAGON_M2_mpyu_nac_hh_s0:
+ si_MInst_sisisi_nac_hh <"mpyu", int_hexagon_M2_mpyu_nac_hh_s0>;
+def HEXAGON_M2_mpyu_nac_hh_s1:
+ si_MInst_sisisi_nac_hh_s1 <"mpyu", int_hexagon_M2_mpyu_nac_hh_s1>;
+def HEXAGON_M2_mpyu_nac_hl_s0:
+ si_MInst_sisisi_nac_hl <"mpyu", int_hexagon_M2_mpyu_nac_hl_s0>;
+def HEXAGON_M2_mpyu_nac_hl_s1:
+ si_MInst_sisisi_nac_hl_s1 <"mpyu", int_hexagon_M2_mpyu_nac_hl_s1>;
+def HEXAGON_M2_mpyu_nac_lh_s0:
+ si_MInst_sisisi_nac_lh <"mpyu", int_hexagon_M2_mpyu_nac_lh_s0>;
+def HEXAGON_M2_mpyu_nac_lh_s1:
+ si_MInst_sisisi_nac_lh_s1 <"mpyu", int_hexagon_M2_mpyu_nac_lh_s1>;
+def HEXAGON_M2_mpyu_nac_ll_s0:
+ si_MInst_sisisi_nac_ll <"mpyu", int_hexagon_M2_mpyu_nac_ll_s0>;
+def HEXAGON_M2_mpyu_nac_ll_s1:
+ si_MInst_sisisi_nac_ll_s1 <"mpyu", int_hexagon_M2_mpyu_nac_ll_s1>;
+
+//Rdd+=mpyu(Rs.[H|L],Rt.[H|L])[:<<0|:<<1]
+def HEXAGON_M2_mpyud_acc_hh_s0:
+ di_MInst_disisi_acc_hh <"mpyu", int_hexagon_M2_mpyud_acc_hh_s0>;
+def HEXAGON_M2_mpyud_acc_hh_s1:
+ di_MInst_disisi_acc_hh_s1 <"mpyu", int_hexagon_M2_mpyud_acc_hh_s1>;
+def HEXAGON_M2_mpyud_acc_hl_s0:
+ di_MInst_disisi_acc_hl <"mpyu", int_hexagon_M2_mpyud_acc_hl_s0>;
+def HEXAGON_M2_mpyud_acc_hl_s1:
+ di_MInst_disisi_acc_hl_s1 <"mpyu", int_hexagon_M2_mpyud_acc_hl_s1>;
+def HEXAGON_M2_mpyud_acc_lh_s0:
+ di_MInst_disisi_acc_lh <"mpyu", int_hexagon_M2_mpyud_acc_lh_s0>;
+def HEXAGON_M2_mpyud_acc_lh_s1:
+ di_MInst_disisi_acc_lh_s1 <"mpyu", int_hexagon_M2_mpyud_acc_lh_s1>;
+def HEXAGON_M2_mpyud_acc_ll_s0:
+ di_MInst_disisi_acc_ll <"mpyu", int_hexagon_M2_mpyud_acc_ll_s0>;
+def HEXAGON_M2_mpyud_acc_ll_s1:
+ di_MInst_disisi_acc_ll_s1 <"mpyu", int_hexagon_M2_mpyud_acc_ll_s1>;
+
+//Rdd-=mpyu(Rs.[H|L],Rt.[H|L])[:<<0|:<<1]
+def HEXAGON_M2_mpyud_nac_hh_s0:
+ di_MInst_disisi_nac_hh <"mpyu", int_hexagon_M2_mpyud_nac_hh_s0>;
+def HEXAGON_M2_mpyud_nac_hh_s1:
+ di_MInst_disisi_nac_hh_s1 <"mpyu", int_hexagon_M2_mpyud_nac_hh_s1>;
+def HEXAGON_M2_mpyud_nac_hl_s0:
+ di_MInst_disisi_nac_hl <"mpyu", int_hexagon_M2_mpyud_nac_hl_s0>;
+def HEXAGON_M2_mpyud_nac_hl_s1:
+ di_MInst_disisi_nac_hl_s1 <"mpyu", int_hexagon_M2_mpyud_nac_hl_s1>;
+def HEXAGON_M2_mpyud_nac_lh_s0:
+ di_MInst_disisi_nac_lh <"mpyu", int_hexagon_M2_mpyud_nac_lh_s0>;
+def HEXAGON_M2_mpyud_nac_lh_s1:
+ di_MInst_disisi_nac_lh_s1 <"mpyu", int_hexagon_M2_mpyud_nac_lh_s1>;
+def HEXAGON_M2_mpyud_nac_ll_s0:
+ di_MInst_disisi_nac_ll <"mpyu", int_hexagon_M2_mpyud_nac_ll_s0>;
+def HEXAGON_M2_mpyud_nac_ll_s1:
+ di_MInst_disisi_nac_ll_s1 <"mpyu", int_hexagon_M2_mpyud_nac_ll_s1>;
+
+
+/********************************************************************
+* MTYPE/VB *
+*********************************************************************/
+
+// MTYPE / VB / Vector reduce add unsigned bytes.
+def HEXAGON_A2_vraddub:
+ di_MInst_didi <"vraddub", int_hexagon_A2_vraddub>;
+def HEXAGON_A2_vraddub_acc:
+ di_MInst_dididi_acc <"vraddub", int_hexagon_A2_vraddub_acc>;
+
+// MTYPE / VB / Vector sum of absolute differences unsigned bytes.
+def HEXAGON_A2_vrsadub:
+ di_MInst_didi <"vrsadub", int_hexagon_A2_vrsadub>;
+def HEXAGON_A2_vrsadub_acc:
+ di_MInst_dididi_acc <"vrsadub", int_hexagon_A2_vrsadub_acc>;
+
+/********************************************************************
+* MTYPE/VH *
+*********************************************************************/
+
+// MTYPE / VH / Vector dual multiply.
+def HEXAGON_M2_vdmpys_s1:
+ di_MInst_didi_s1_sat <"vdmpy", int_hexagon_M2_vdmpys_s1>;
+def HEXAGON_M2_vdmpys_s0:
+ di_MInst_didi_sat <"vdmpy", int_hexagon_M2_vdmpys_s0>;
+def HEXAGON_M2_vdmacs_s1:
+ di_MInst_dididi_acc_s1_sat <"vdmpy", int_hexagon_M2_vdmacs_s1>;
+def HEXAGON_M2_vdmacs_s0:
+ di_MInst_dididi_acc_sat <"vdmpy", int_hexagon_M2_vdmacs_s0>;
+
+// MTYPE / VH / Vector dual multiply with round and pack.
+def HEXAGON_M2_vdmpyrs_s0:
+ si_MInst_didi_rnd_sat <"vdmpy", int_hexagon_M2_vdmpyrs_s0>;
+def HEXAGON_M2_vdmpyrs_s1:
+ si_MInst_didi_s1_rnd_sat <"vdmpy", int_hexagon_M2_vdmpyrs_s1>;
+
+// MTYPE / VH / Vector multiply even halfwords.
+def HEXAGON_M2_vmpy2es_s1:
+ di_MInst_didi_s1_sat <"vmpyeh", int_hexagon_M2_vmpy2es_s1>;
+def HEXAGON_M2_vmpy2es_s0:
+ di_MInst_didi_sat <"vmpyeh", int_hexagon_M2_vmpy2es_s0>;
+def HEXAGON_M2_vmac2es:
+ di_MInst_dididi_acc <"vmpyeh", int_hexagon_M2_vmac2es>;
+def HEXAGON_M2_vmac2es_s1:
+ di_MInst_dididi_acc_s1_sat <"vmpyeh", int_hexagon_M2_vmac2es_s1>;
+def HEXAGON_M2_vmac2es_s0:
+ di_MInst_dididi_acc_sat <"vmpyeh", int_hexagon_M2_vmac2es_s0>;
+
+// MTYPE / VH / Vector multiply halfwords.
+def HEXAGON_M2_vmpy2s_s0:
+ di_MInst_sisi_sat <"vmpyh", int_hexagon_M2_vmpy2s_s0>;
+def HEXAGON_M2_vmpy2s_s1:
+ di_MInst_sisi_s1_sat <"vmpyh", int_hexagon_M2_vmpy2s_s1>;
+def HEXAGON_M2_vmac2:
+ di_MInst_disisi_acc <"vmpyh", int_hexagon_M2_vmac2>;
+def HEXAGON_M2_vmac2s_s0:
+ di_MInst_disisi_acc_sat <"vmpyh", int_hexagon_M2_vmac2s_s0>;
+def HEXAGON_M2_vmac2s_s1:
+ di_MInst_disisi_acc_s1_sat <"vmpyh", int_hexagon_M2_vmac2s_s1>;
+
+// MTYPE / VH / Vector multiply halfwords with round and pack.
+def HEXAGON_M2_vmpy2s_s0pack:
+ si_MInst_sisi_rnd_sat <"vmpyh", int_hexagon_M2_vmpy2s_s0pack>;
+def HEXAGON_M2_vmpy2s_s1pack:
+ si_MInst_sisi_s1_rnd_sat <"vmpyh", int_hexagon_M2_vmpy2s_s1pack>;
+
+// MTYPE / VH / Vector reduce multiply halfwords.
+// Rxx32+=vrmpyh(Rss32,Rtt32)
+def HEXAGON_M2_vrmpy_s0:
+ di_MInst_didi <"vrmpyh", int_hexagon_M2_vrmpy_s0>;
+def HEXAGON_M2_vrmac_s0:
+ di_MInst_dididi_acc <"vrmpyh", int_hexagon_M2_vrmac_s0>;
+
+
+/********************************************************************
+* STYPE/ALU *
+*********************************************************************/
+
+// STYPE / ALU / Absolute value.
+def HEXAGON_A2_abs:
+ si_SInst_si <"abs", int_hexagon_A2_abs>;
+def HEXAGON_A2_absp:
+ di_SInst_di <"abs", int_hexagon_A2_absp>;
+def HEXAGON_A2_abssat:
+ si_SInst_si_sat <"abs", int_hexagon_A2_abssat>;
+
+// STYPE / ALU / Negate.
+def HEXAGON_A2_negp:
+ di_SInst_di <"neg", int_hexagon_A2_negp>;
+def HEXAGON_A2_negsat:
+ si_SInst_si_sat <"neg", int_hexagon_A2_negsat>;
+
+// STYPE / ALU / Logical Not.
+def HEXAGON_A2_notp:
+ di_SInst_di <"not", int_hexagon_A2_notp>;
+
+// STYPE / ALU / Sign extend word to doubleword.
+def HEXAGON_A2_sxtw:
+ di_SInst_si <"sxtw", int_hexagon_A2_sxtw>;
+
+
+/********************************************************************
+* STYPE/BIT *
+*********************************************************************/
+
+// STYPE / BIT / Count leading.
+def HEXAGON_S2_cl0:
+ si_SInst_si <"cl0", int_hexagon_S2_cl0>;
+def HEXAGON_S2_cl0p:
+ si_SInst_di <"cl0", int_hexagon_S2_cl0p>;
+def HEXAGON_S2_cl1:
+ si_SInst_si <"cl1", int_hexagon_S2_cl1>;
+def HEXAGON_S2_cl1p:
+ si_SInst_di <"cl1", int_hexagon_S2_cl1p>;
+def HEXAGON_S2_clb:
+ si_SInst_si <"clb", int_hexagon_S2_clb>;
+def HEXAGON_S2_clbp:
+ si_SInst_di <"clb", int_hexagon_S2_clbp>;
+def HEXAGON_S2_clbnorm:
+ si_SInst_si <"normamt", int_hexagon_S2_clbnorm>;
+
+// STYPE / BIT / Count trailing.
+def HEXAGON_S2_ct0:
+ si_SInst_si <"ct0", int_hexagon_S2_ct0>;
+def HEXAGON_S2_ct1:
+ si_SInst_si <"ct1", int_hexagon_S2_ct1>;
+
+// STYPE / BIT / Compare bit mask.
+def Hexagon_C2_bitsclr:
+ qi_SInst_sisi <"bitsclr", int_hexagon_C2_bitsclr>;
+def Hexagon_C2_bitsclri:
+ qi_SInst_siu6 <"bitsclr", int_hexagon_C2_bitsclri>;
+def Hexagon_C2_bitsset:
+ qi_SInst_sisi <"bitsset", int_hexagon_C2_bitsset>;
+
+// STYPE / BIT / Extract unsigned.
+// Rd[d][32/64]=extractu(Rs[s],Rt[t],[imm])
+def HEXAGON_S2_extractu:
+ si_SInst_siu5u5 <"extractu",int_hexagon_S2_extractu>;
+def HEXAGON_S2_extractu_rp:
+ si_SInst_sidi <"extractu",int_hexagon_S2_extractu_rp>;
+def HEXAGON_S2_extractup:
+ di_SInst_diu6u6 <"extractu",int_hexagon_S2_extractup>;
+def HEXAGON_S2_extractup_rp:
+ di_SInst_didi <"extractu",int_hexagon_S2_extractup_rp>;
+
+// STYPE / BIT / Insert bitfield.
+def Hexagon_S2_insert:
+ si_SInst_sisiu5u5 <"insert", int_hexagon_S2_insert>;
+def Hexagon_S2_insert_rp:
+ si_SInst_sisidi <"insert", int_hexagon_S2_insert_rp>;
+def Hexagon_S2_insertp:
+ di_SInst_didiu6u6 <"insert", int_hexagon_S2_insertp>;
+def Hexagon_S2_insertp_rp:
+ di_SInst_dididi <"insert", int_hexagon_S2_insertp_rp>;
+
+// STYPE / BIT / Innterleave/deinterleave.
+def Hexagon_S2_interleave:
+ di_SInst_di <"interleave", int_hexagon_S2_interleave>;
+def Hexagon_S2_deinterleave:
+ di_SInst_di <"deinterleave", int_hexagon_S2_deinterleave>;
+
+// STYPE / BIT / Linear feedback-shift Iteration.
+def Hexagon_S2_lfsp:
+ di_SInst_didi <"lfs", int_hexagon_S2_lfsp>;
+
+// STYPE / BIT / Bit reverse.
+def Hexagon_S2_brev:
+ si_SInst_si <"brev", int_hexagon_S2_brev>;
+
+// STYPE / BIT / Set/Clear/Toggle Bit.
+def HEXAGON_S2_setbit_i:
+ si_SInst_siu5 <"setbit", int_hexagon_S2_setbit_i>;
+def HEXAGON_S2_togglebit_i:
+ si_SInst_siu5 <"togglebit", int_hexagon_S2_togglebit_i>;
+def HEXAGON_S2_clrbit_i:
+ si_SInst_siu5 <"clrbit", int_hexagon_S2_clrbit_i>;
+def HEXAGON_S2_setbit_r:
+ si_SInst_sisi <"setbit", int_hexagon_S2_setbit_r>;
+def HEXAGON_S2_togglebit_r:
+ si_SInst_sisi <"togglebit", int_hexagon_S2_togglebit_r>;
+def HEXAGON_S2_clrbit_r:
+ si_SInst_sisi <"clrbit", int_hexagon_S2_clrbit_r>;
+
+// STYPE / BIT / Test Bit.
+def HEXAGON_S2_tstbit_i:
+ qi_SInst_siu5 <"tstbit", int_hexagon_S2_tstbit_i>;
+def HEXAGON_S2_tstbit_r:
+ qi_SInst_sisi <"tstbit", int_hexagon_S2_tstbit_r>;
+
+
+/********************************************************************
+* STYPE/COMPLEX *
+*********************************************************************/
+
+// STYPE / COMPLEX / Vector Complex conjugate.
+def HEXAGON_A2_vconj:
+ di_SInst_di_sat <"vconj", int_hexagon_A2_vconj>;
+
+// STYPE / COMPLEX / Vector Complex rotate.
+def HEXAGON_S2_vcrotate:
+ di_SInst_disi <"vcrotate",int_hexagon_S2_vcrotate>;
+
+
+/********************************************************************
+* STYPE/PERM *
+*********************************************************************/
+
+// STYPE / PERM / Saturate.
+def HEXAGON_A2_sat:
+ si_SInst_di <"sat", int_hexagon_A2_sat>;
+def HEXAGON_A2_satb:
+ si_SInst_si <"satb", int_hexagon_A2_satb>;
+def HEXAGON_A2_sath:
+ si_SInst_si <"sath", int_hexagon_A2_sath>;
+def HEXAGON_A2_satub:
+ si_SInst_si <"satub", int_hexagon_A2_satub>;
+def HEXAGON_A2_satuh:
+ si_SInst_si <"satuh", int_hexagon_A2_satuh>;
+
+// STYPE / PERM / Swizzle bytes.
+def HEXAGON_A2_swiz:
+ si_SInst_si <"swiz", int_hexagon_A2_swiz>;
+
+// STYPE / PERM / Vector align.
+// Need custom lowering
+def HEXAGON_S2_valignib:
+ di_SInst_didiu3 <"valignb", int_hexagon_S2_valignib>;
+def HEXAGON_S2_valignrb:
+ di_SInst_didiqi <"valignb", int_hexagon_S2_valignrb>;
+
+// STYPE / PERM / Vector round and pack.
+def HEXAGON_S2_vrndpackwh:
+ si_SInst_di <"vrndwh", int_hexagon_S2_vrndpackwh>;
+def HEXAGON_S2_vrndpackwhs:
+ si_SInst_di_sat <"vrndwh", int_hexagon_S2_vrndpackwhs>;
+
+// STYPE / PERM / Vector saturate and pack.
+def HEXAGON_S2_svsathb:
+ si_SInst_si <"vsathb", int_hexagon_S2_svsathb>;
+def HEXAGON_S2_vsathb:
+ si_SInst_di <"vsathb", int_hexagon_S2_vsathb>;
+def HEXAGON_S2_svsathub:
+ si_SInst_si <"vsathub", int_hexagon_S2_svsathub>;
+def HEXAGON_S2_vsathub:
+ si_SInst_di <"vsathub", int_hexagon_S2_vsathub>;
+def HEXAGON_S2_vsatwh:
+ si_SInst_di <"vsatwh", int_hexagon_S2_vsatwh>;
+def HEXAGON_S2_vsatwuh:
+ si_SInst_di <"vsatwuh", int_hexagon_S2_vsatwuh>;
+
+// STYPE / PERM / Vector saturate without pack.
+def HEXAGON_S2_vsathb_nopack:
+ di_SInst_di <"vsathb", int_hexagon_S2_vsathb_nopack>;
+def HEXAGON_S2_vsathub_nopack:
+ di_SInst_di <"vsathub", int_hexagon_S2_vsathub_nopack>;
+def HEXAGON_S2_vsatwh_nopack:
+ di_SInst_di <"vsatwh", int_hexagon_S2_vsatwh_nopack>;
+def HEXAGON_S2_vsatwuh_nopack:
+ di_SInst_di <"vsatwuh", int_hexagon_S2_vsatwuh_nopack>;
+
+// STYPE / PERM / Vector shuffle.
+def HEXAGON_S2_shuffeb:
+ di_SInst_didi <"shuffeb", int_hexagon_S2_shuffeb>;
+def HEXAGON_S2_shuffeh:
+ di_SInst_didi <"shuffeh", int_hexagon_S2_shuffeh>;
+def HEXAGON_S2_shuffob:
+ di_SInst_didi <"shuffob", int_hexagon_S2_shuffob>;
+def HEXAGON_S2_shuffoh:
+ di_SInst_didi <"shuffoh", int_hexagon_S2_shuffoh>;
+
+// STYPE / PERM / Vector splat bytes.
+def HEXAGON_S2_vsplatrb:
+ si_SInst_si <"vsplatb", int_hexagon_S2_vsplatrb>;
+
+// STYPE / PERM / Vector splat halfwords.
+def HEXAGON_S2_vsplatrh:
+ di_SInst_si <"vsplath", int_hexagon_S2_vsplatrh>;
+
+// STYPE / PERM / Vector splice.
+def Hexagon_S2_vsplicerb:
+ di_SInst_didiqi <"vspliceb",int_hexagon_S2_vsplicerb>;
+def Hexagon_S2_vspliceib:
+ di_SInst_didiu3 <"vspliceb",int_hexagon_S2_vspliceib>;
+
+// STYPE / PERM / Sign extend.
+def HEXAGON_S2_vsxtbh:
+ di_SInst_si <"vsxtbh", int_hexagon_S2_vsxtbh>;
+def HEXAGON_S2_vsxthw:
+ di_SInst_si <"vsxthw", int_hexagon_S2_vsxthw>;
+
+// STYPE / PERM / Truncate.
+def HEXAGON_S2_vtrunehb:
+ si_SInst_di <"vtrunehb",int_hexagon_S2_vtrunehb>;
+def HEXAGON_S2_vtrunohb:
+ si_SInst_di <"vtrunohb",int_hexagon_S2_vtrunohb>;
+def HEXAGON_S2_vtrunewh:
+ di_SInst_didi <"vtrunewh",int_hexagon_S2_vtrunewh>;
+def HEXAGON_S2_vtrunowh:
+ di_SInst_didi <"vtrunowh",int_hexagon_S2_vtrunowh>;
+
+// STYPE / PERM / Zero extend.
+def HEXAGON_S2_vzxtbh:
+ di_SInst_si <"vzxtbh", int_hexagon_S2_vzxtbh>;
+def HEXAGON_S2_vzxthw:
+ di_SInst_si <"vzxthw", int_hexagon_S2_vzxthw>;
+
+
+/********************************************************************
+* STYPE/PRED *
+*********************************************************************/
+
+// STYPE / PRED / Mask generate from predicate.
+def HEXAGON_C2_mask:
+ di_SInst_qi <"mask", int_hexagon_C2_mask>;
+
+// STYPE / PRED / Predicate transfer.
+def HEXAGON_C2_tfrpr:
+ si_SInst_qi <"", int_hexagon_C2_tfrpr>;
+def HEXAGON_C2_tfrrp:
+ qi_SInst_si <"", int_hexagon_C2_tfrrp>;
+
+// STYPE / PRED / Viterbi pack even and odd predicate bits.
+def HEXAGON_C2_vitpack:
+ si_SInst_qiqi <"vitpack",int_hexagon_C2_vitpack>;
+
+
+/********************************************************************
+* STYPE/SHIFT *
+*********************************************************************/
+
+// STYPE / SHIFT / Shift by immediate.
+def HEXAGON_S2_asl_i_r:
+ si_SInst_siu5 <"asl", int_hexagon_S2_asl_i_r>;
+def HEXAGON_S2_asr_i_r:
+ si_SInst_siu5 <"asr", int_hexagon_S2_asr_i_r>;
+def HEXAGON_S2_lsr_i_r:
+ si_SInst_siu5 <"lsr", int_hexagon_S2_lsr_i_r>;
+def HEXAGON_S2_asl_i_p:
+ di_SInst_diu6 <"asl", int_hexagon_S2_asl_i_p>;
+def HEXAGON_S2_asr_i_p:
+ di_SInst_diu6 <"asr", int_hexagon_S2_asr_i_p>;
+def HEXAGON_S2_lsr_i_p:
+ di_SInst_diu6 <"lsr", int_hexagon_S2_lsr_i_p>;
+
+// STYPE / SHIFT / Shift by immediate and accumulate.
+def HEXAGON_S2_asl_i_r_acc:
+ si_SInst_sisiu5_acc <"asl", int_hexagon_S2_asl_i_r_acc>;
+def HEXAGON_S2_asr_i_r_acc:
+ si_SInst_sisiu5_acc <"asr", int_hexagon_S2_asr_i_r_acc>;
+def HEXAGON_S2_lsr_i_r_acc:
+ si_SInst_sisiu5_acc <"lsr", int_hexagon_S2_lsr_i_r_acc>;
+def HEXAGON_S2_asl_i_r_nac:
+ si_SInst_sisiu5_nac <"asl", int_hexagon_S2_asl_i_r_nac>;
+def HEXAGON_S2_asr_i_r_nac:
+ si_SInst_sisiu5_nac <"asr", int_hexagon_S2_asr_i_r_nac>;
+def HEXAGON_S2_lsr_i_r_nac:
+ si_SInst_sisiu5_nac <"lsr", int_hexagon_S2_lsr_i_r_nac>;
+def HEXAGON_S2_asl_i_p_acc:
+ di_SInst_didiu6_acc <"asl", int_hexagon_S2_asl_i_p_acc>;
+def HEXAGON_S2_asr_i_p_acc:
+ di_SInst_didiu6_acc <"asr", int_hexagon_S2_asr_i_p_acc>;
+def HEXAGON_S2_lsr_i_p_acc:
+ di_SInst_didiu6_acc <"lsr", int_hexagon_S2_lsr_i_p_acc>;
+def HEXAGON_S2_asl_i_p_nac:
+ di_SInst_didiu6_nac <"asl", int_hexagon_S2_asl_i_p_nac>;
+def HEXAGON_S2_asr_i_p_nac:
+ di_SInst_didiu6_nac <"asr", int_hexagon_S2_asr_i_p_nac>;
+def HEXAGON_S2_lsr_i_p_nac:
+ di_SInst_didiu6_nac <"lsr", int_hexagon_S2_lsr_i_p_nac>;
+
+// STYPE / SHIFT / Shift by immediate and add.
+def HEXAGON_S2_addasl_rrri:
+ si_SInst_sisiu3 <"addasl", int_hexagon_S2_addasl_rrri>;
+
+// STYPE / SHIFT / Shift by immediate and logical.
+def HEXAGON_S2_asl_i_r_and:
+ si_SInst_sisiu5_and <"asl", int_hexagon_S2_asl_i_r_and>;
+def HEXAGON_S2_asr_i_r_and:
+ si_SInst_sisiu5_and <"asr", int_hexagon_S2_asr_i_r_and>;
+def HEXAGON_S2_lsr_i_r_and:
+ si_SInst_sisiu5_and <"lsr", int_hexagon_S2_lsr_i_r_and>;
+
+def HEXAGON_S2_asl_i_r_xacc:
+ si_SInst_sisiu5_xor <"asl", int_hexagon_S2_asl_i_r_xacc>;
+def HEXAGON_S2_lsr_i_r_xacc:
+ si_SInst_sisiu5_xor <"lsr", int_hexagon_S2_lsr_i_r_xacc>;
+
+def HEXAGON_S2_asl_i_r_or:
+ si_SInst_sisiu5_or <"asl", int_hexagon_S2_asl_i_r_or>;
+def HEXAGON_S2_asr_i_r_or:
+ si_SInst_sisiu5_or <"asr", int_hexagon_S2_asr_i_r_or>;
+def HEXAGON_S2_lsr_i_r_or:
+ si_SInst_sisiu5_or <"lsr", int_hexagon_S2_lsr_i_r_or>;
+
+def HEXAGON_S2_asl_i_p_and:
+ di_SInst_didiu6_and <"asl", int_hexagon_S2_asl_i_p_and>;
+def HEXAGON_S2_asr_i_p_and:
+ di_SInst_didiu6_and <"asr", int_hexagon_S2_asr_i_p_and>;
+def HEXAGON_S2_lsr_i_p_and:
+ di_SInst_didiu6_and <"lsr", int_hexagon_S2_lsr_i_p_and>;
+
+def HEXAGON_S2_asl_i_p_xacc:
+ di_SInst_didiu6_xor <"asl", int_hexagon_S2_asl_i_p_xacc>;
+def HEXAGON_S2_lsr_i_p_xacc:
+ di_SInst_didiu6_xor <"lsr", int_hexagon_S2_lsr_i_p_xacc>;
+
+def HEXAGON_S2_asl_i_p_or:
+ di_SInst_didiu6_or <"asl", int_hexagon_S2_asl_i_p_or>;
+def HEXAGON_S2_asr_i_p_or:
+ di_SInst_didiu6_or <"asr", int_hexagon_S2_asr_i_p_or>;
+def HEXAGON_S2_lsr_i_p_or:
+ di_SInst_didiu6_or <"lsr", int_hexagon_S2_lsr_i_p_or>;
+
+// STYPE / SHIFT / Shift right by immediate with rounding.
+def HEXAGON_S2_asr_i_r_rnd:
+ si_SInst_siu5_rnd <"asr", int_hexagon_S2_asr_i_r_rnd>;
+def HEXAGON_S2_asr_i_r_rnd_goodsyntax:
+ si_SInst_siu5 <"asrrnd", int_hexagon_S2_asr_i_r_rnd_goodsyntax>;
+
+// STYPE / SHIFT / Shift left by immediate with saturation.
+def HEXAGON_S2_asl_i_r_sat:
+ si_SInst_sisi_sat <"asl", int_hexagon_S2_asl_i_r_sat>;
+
+// STYPE / SHIFT / Shift by register.
+def HEXAGON_S2_asl_r_r:
+ si_SInst_sisi <"asl", int_hexagon_S2_asl_r_r>;
+def HEXAGON_S2_asr_r_r:
+ si_SInst_sisi <"asr", int_hexagon_S2_asr_r_r>;
+def HEXAGON_S2_lsl_r_r:
+ si_SInst_sisi <"lsl", int_hexagon_S2_lsl_r_r>;
+def HEXAGON_S2_lsr_r_r:
+ si_SInst_sisi <"lsr", int_hexagon_S2_lsr_r_r>;
+def HEXAGON_S2_asl_r_p:
+ di_SInst_disi <"asl", int_hexagon_S2_asl_r_p>;
+def HEXAGON_S2_asr_r_p:
+ di_SInst_disi <"asr", int_hexagon_S2_asr_r_p>;
+def HEXAGON_S2_lsl_r_p:
+ di_SInst_disi <"lsl", int_hexagon_S2_lsl_r_p>;
+def HEXAGON_S2_lsr_r_p:
+ di_SInst_disi <"lsr", int_hexagon_S2_lsr_r_p>;
+
+// STYPE / SHIFT / Shift by register and accumulate.
+def HEXAGON_S2_asl_r_r_acc:
+ si_SInst_sisisi_acc <"asl", int_hexagon_S2_asl_r_r_acc>;
+def HEXAGON_S2_asr_r_r_acc:
+ si_SInst_sisisi_acc <"asr", int_hexagon_S2_asr_r_r_acc>;
+def HEXAGON_S2_lsl_r_r_acc:
+ si_SInst_sisisi_acc <"lsl", int_hexagon_S2_lsl_r_r_acc>;
+def HEXAGON_S2_lsr_r_r_acc:
+ si_SInst_sisisi_acc <"lsr", int_hexagon_S2_lsr_r_r_acc>;
+def HEXAGON_S2_asl_r_p_acc:
+ di_SInst_didisi_acc <"asl", int_hexagon_S2_asl_r_p_acc>;
+def HEXAGON_S2_asr_r_p_acc:
+ di_SInst_didisi_acc <"asr", int_hexagon_S2_asr_r_p_acc>;
+def HEXAGON_S2_lsl_r_p_acc:
+ di_SInst_didisi_acc <"lsl", int_hexagon_S2_lsl_r_p_acc>;
+def HEXAGON_S2_lsr_r_p_acc:
+ di_SInst_didisi_acc <"lsr", int_hexagon_S2_lsr_r_p_acc>;
+
+def HEXAGON_S2_asl_r_r_nac:
+ si_SInst_sisisi_nac <"asl", int_hexagon_S2_asl_r_r_nac>;
+def HEXAGON_S2_asr_r_r_nac:
+ si_SInst_sisisi_nac <"asr", int_hexagon_S2_asr_r_r_nac>;
+def HEXAGON_S2_lsl_r_r_nac:
+ si_SInst_sisisi_nac <"lsl", int_hexagon_S2_lsl_r_r_nac>;
+def HEXAGON_S2_lsr_r_r_nac:
+ si_SInst_sisisi_nac <"lsr", int_hexagon_S2_lsr_r_r_nac>;
+def HEXAGON_S2_asl_r_p_nac:
+ di_SInst_didisi_nac <"asl", int_hexagon_S2_asl_r_p_nac>;
+def HEXAGON_S2_asr_r_p_nac:
+ di_SInst_didisi_nac <"asr", int_hexagon_S2_asr_r_p_nac>;
+def HEXAGON_S2_lsl_r_p_nac:
+ di_SInst_didisi_nac <"lsl", int_hexagon_S2_lsl_r_p_nac>;
+def HEXAGON_S2_lsr_r_p_nac:
+ di_SInst_didisi_nac <"lsr", int_hexagon_S2_lsr_r_p_nac>;
+
+// STYPE / SHIFT / Shift by register and logical.
+def HEXAGON_S2_asl_r_r_and:
+ si_SInst_sisisi_and <"asl", int_hexagon_S2_asl_r_r_and>;
+def HEXAGON_S2_asr_r_r_and:
+ si_SInst_sisisi_and <"asr", int_hexagon_S2_asr_r_r_and>;
+def HEXAGON_S2_lsl_r_r_and:
+ si_SInst_sisisi_and <"lsl", int_hexagon_S2_lsl_r_r_and>;
+def HEXAGON_S2_lsr_r_r_and:
+ si_SInst_sisisi_and <"lsr", int_hexagon_S2_lsr_r_r_and>;
+
+def HEXAGON_S2_asl_r_r_or:
+ si_SInst_sisisi_or <"asl", int_hexagon_S2_asl_r_r_or>;
+def HEXAGON_S2_asr_r_r_or:
+ si_SInst_sisisi_or <"asr", int_hexagon_S2_asr_r_r_or>;
+def HEXAGON_S2_lsl_r_r_or:
+ si_SInst_sisisi_or <"lsl", int_hexagon_S2_lsl_r_r_or>;
+def HEXAGON_S2_lsr_r_r_or:
+ si_SInst_sisisi_or <"lsr", int_hexagon_S2_lsr_r_r_or>;
+
+def HEXAGON_S2_asl_r_p_and:
+ di_SInst_didisi_and <"asl", int_hexagon_S2_asl_r_p_and>;
+def HEXAGON_S2_asr_r_p_and:
+ di_SInst_didisi_and <"asr", int_hexagon_S2_asr_r_p_and>;
+def HEXAGON_S2_lsl_r_p_and:
+ di_SInst_didisi_and <"lsl", int_hexagon_S2_lsl_r_p_and>;
+def HEXAGON_S2_lsr_r_p_and:
+ di_SInst_didisi_and <"lsr", int_hexagon_S2_lsr_r_p_and>;
+
+def HEXAGON_S2_asl_r_p_or:
+ di_SInst_didisi_or <"asl", int_hexagon_S2_asl_r_p_or>;
+def HEXAGON_S2_asr_r_p_or:
+ di_SInst_didisi_or <"asr", int_hexagon_S2_asr_r_p_or>;
+def HEXAGON_S2_lsl_r_p_or:
+ di_SInst_didisi_or <"lsl", int_hexagon_S2_lsl_r_p_or>;
+def HEXAGON_S2_lsr_r_p_or:
+ di_SInst_didisi_or <"lsr", int_hexagon_S2_lsr_r_p_or>;
+
+// STYPE / SHIFT / Shift by register with saturation.
+def HEXAGON_S2_asl_r_r_sat:
+ si_SInst_sisi_sat <"asl", int_hexagon_S2_asl_r_r_sat>;
+def HEXAGON_S2_asr_r_r_sat:
+ si_SInst_sisi_sat <"asr", int_hexagon_S2_asr_r_r_sat>;
+
+// STYPE / SHIFT / Table Index.
+def Hexagon_S2_tableidxb_goodsyntax:
+ si_MInst_sisiu4u5 <"tableidxb",int_hexagon_S2_tableidxb_goodsyntax>;
+def Hexagon_S2_tableidxd_goodsyntax:
+ si_MInst_sisiu4u5 <"tableidxd",int_hexagon_S2_tableidxd_goodsyntax>;
+def Hexagon_S2_tableidxh_goodsyntax:
+ si_MInst_sisiu4u5 <"tableidxh",int_hexagon_S2_tableidxh_goodsyntax>;
+def Hexagon_S2_tableidxw_goodsyntax:
+ si_MInst_sisiu4u5 <"tableidxw",int_hexagon_S2_tableidxw_goodsyntax>;
+
+
+/********************************************************************
+* STYPE/VH *
+*********************************************************************/
+
+// STYPE / VH / Vector absolute value halfwords.
+// Rdd64=vabsh(Rss64)
+def HEXAGON_A2_vabsh:
+ di_SInst_di <"vabsh", int_hexagon_A2_vabsh>;
+def HEXAGON_A2_vabshsat:
+ di_SInst_di_sat <"vabsh", int_hexagon_A2_vabshsat>;
+
+// STYPE / VH / Vector shift halfwords by immediate.
+// Rdd64=v[asl/asr/lsr]h(Rss64,Rt32)
+def HEXAGON_S2_asl_i_vh:
+ di_SInst_disi <"vaslh", int_hexagon_S2_asl_i_vh>;
+def HEXAGON_S2_asr_i_vh:
+ di_SInst_disi <"vasrh", int_hexagon_S2_asr_i_vh>;
+def HEXAGON_S2_lsr_i_vh:
+ di_SInst_disi <"vlsrh", int_hexagon_S2_lsr_i_vh>;
+
+// STYPE / VH / Vector shift halfwords by register.
+// Rdd64=v[asl/asr/lsl/lsr]w(Rss64,Rt32)
+def HEXAGON_S2_asl_r_vh:
+ di_SInst_disi <"vaslh", int_hexagon_S2_asl_r_vh>;
+def HEXAGON_S2_asr_r_vh:
+ di_SInst_disi <"vasrh", int_hexagon_S2_asr_r_vh>;
+def HEXAGON_S2_lsl_r_vh:
+ di_SInst_disi <"vlslh", int_hexagon_S2_lsl_r_vh>;
+def HEXAGON_S2_lsr_r_vh:
+ di_SInst_disi <"vlsrh", int_hexagon_S2_lsr_r_vh>;
+
+
+/********************************************************************
+* STYPE/VW *
+*********************************************************************/
+
+// STYPE / VW / Vector absolute value words.
+def HEXAGON_A2_vabsw:
+ di_SInst_di <"vabsw", int_hexagon_A2_vabsw>;
+def HEXAGON_A2_vabswsat:
+ di_SInst_di_sat <"vabsw", int_hexagon_A2_vabswsat>;
+
+// STYPE / VW / Vector shift words by immediate.
+// Rdd64=v[asl/vsl]w(Rss64,Rt32)
+def HEXAGON_S2_asl_i_vw:
+ di_SInst_disi <"vaslw", int_hexagon_S2_asl_i_vw>;
+def HEXAGON_S2_asr_i_vw:
+ di_SInst_disi <"vasrw", int_hexagon_S2_asr_i_vw>;
+def HEXAGON_S2_lsr_i_vw:
+ di_SInst_disi <"vlsrw", int_hexagon_S2_lsr_i_vw>;
+
+// STYPE / VW / Vector shift words by register.
+// Rdd64=v[asl/vsl]w(Rss64,Rt32)
+def HEXAGON_S2_asl_r_vw:
+ di_SInst_disi <"vaslw", int_hexagon_S2_asl_r_vw>;
+def HEXAGON_S2_asr_r_vw:
+ di_SInst_disi <"vasrw", int_hexagon_S2_asr_r_vw>;
+def HEXAGON_S2_lsl_r_vw:
+ di_SInst_disi <"vlslw", int_hexagon_S2_lsl_r_vw>;
+def HEXAGON_S2_lsr_r_vw:
+ di_SInst_disi <"vlsrw", int_hexagon_S2_lsr_r_vw>;
+
+// STYPE / VW / Vector shift words with truncate and pack.
+def HEXAGON_S2_asr_r_svw_trun:
+ si_SInst_disi <"vasrw", int_hexagon_S2_asr_r_svw_trun>;
+def HEXAGON_S2_asr_i_svw_trun:
+ si_SInst_diu5 <"vasrw", int_hexagon_S2_asr_i_svw_trun>;
+
+// LD / Circular loads.
+def HEXAGON_circ_ldd:
+ di_LDInstPI_diu4 <"circ_ldd", int_hexagon_circ_ldd>;
+
+include "HexagonIntrinsicsV3.td"
+include "HexagonIntrinsicsV4.td"
+include "HexagonIntrinsicsV5.td"
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsDerived.td b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsDerived.td
new file mode 100644
index 0000000..2788101
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsDerived.td
@@ -0,0 +1,39 @@
+//===-- HexagonIntrinsicsDerived.td - Derived intrinsics ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Multiply 64-bit and use lower result
+//
+// Optimized with intrinisics accumulates
+//
+def : Pat <(mul DoubleRegs:$src1, DoubleRegs:$src2),
+ (i64
+ (COMBINE_rr
+ (HEXAGON_M2_maci
+ (HEXAGON_M2_maci
+ (i32
+ (EXTRACT_SUBREG
+ (i64
+ (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
+ subreg_loreg)))),
+ subreg_hireg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg))),
+ (i32
+ (EXTRACT_SUBREG
+ (i64
+ (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
+ subreg_loreg)))), subreg_loreg))))>;
+
+
+
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV3.td b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV3.td
new file mode 100644
index 0000000..2a54e62
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV3.td
@@ -0,0 +1,50 @@
+//=- HexagonIntrinsicsV3.td - Target Description for Hexagon -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Hexagon V3 Compiler Intrinsics in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+
+
+
+// MTYPE / COMPLEX / Vector reduce complex multiply real or imaginary.
+def Hexagon_M2_vrcmpys_s1:
+ di_MInst_disi_s1_sat <"vrcmpys", int_hexagon_M2_vrcmpys_s1>;
+def Hexagon_M2_vrcmpys_acc_s1:
+ di_MInst_didisi_acc_s1_sat <"vrcmpys", int_hexagon_M2_vrcmpys_acc_s1>;
+def Hexagon_M2_vrcmpys_s1rp:
+ si_MInst_disi_s1_rnd_sat <"vrcmpys", int_hexagon_M2_vrcmpys_s1rp>;
+
+
+
+
+/********************************************************************
+* MTYPE/VB *
+*********************************************************************/
+
+// MTYPE / VB / Vector reduce add unsigned bytes.
+def Hexagon_M2_vradduh:
+ si_MInst_didi <"vradduh", int_hexagon_M2_vradduh>;
+
+
+/********************************************************************
+* ALU64/ALU *
+*********************************************************************/
+
+// ALU64 / ALU / Add.
+def Hexagon_A2_addsp:
+ di_ALU64_sidi <"add", int_hexagon_A2_addsp>;
+def Hexagon_A2_addpsat:
+ di_ALU64_didi <"add", int_hexagon_A2_addpsat>;
+
+def Hexagon_A2_maxp:
+ di_ALU64_didi <"max", int_hexagon_A2_maxp>;
+def Hexagon_A2_maxup:
+ di_ALU64_didi <"maxu", int_hexagon_A2_maxup>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV4.td b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV4.td
new file mode 100644
index 0000000..dd28ebb
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV4.td
@@ -0,0 +1,369 @@
+//===- HexagonIntrinsicsV4.td - V4 Instruction intrinsics --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This is populated based on the following specs:
+// Hexagon V4 Architecture Extensions
+// Application-Level Specification
+// 80-V9418-12 Rev. A
+// June 15, 2010
+
+
+//
+// ALU 32 types.
+//
+
+class si_ALU32_sisi_not<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, ~$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class di_ALU32_s8si<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs DoubleRegs:$dst), (ins s8Imm:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "(#$src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID imm:$src1, IntRegs:$src2))]>;
+
+class di_ALU32_sis8<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1, s8Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class qi_neg_ALU32_sisi<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = !", !strconcat(opc , "($src1, $src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class qi_neg_ALU32_sis10<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$src1, s10Imm:$src2),
+ !strconcat("$dst = !", !strconcat(opc , "($src1, #$src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class qi_neg_ALU32_siu9<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$src1, u9Imm:$src2),
+ !strconcat("$dst = !", !strconcat(opc , "($src1, #$src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class si_neg_ALU32_sisi<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = !", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class si_neg_ALU32_sis8<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, s8Imm:$src2),
+ !strconcat("$dst = !", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class si_ALU32_sis8<string opc, Intrinsic IntID>
+ : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, s8Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+
+//
+// SInst Classes.
+//
+class qi_neg_SInst_qiqi<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = !", !strconcat(opc , "($src1, $src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class qi_SInst_qi_andqiqi_neg<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, and($src2, !$src3)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class qi_SInst_qi_andqiqi<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, and($src2, $src3)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class qi_SInst_qi_orqiqi_neg<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, or($src2, !$src3)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class qi_SInst_qi_orqiqi<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, or($src2, $src3)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class si_SInst_si_addsis6<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, s6Imm:$src3),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, add($src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2,
+ imm:$src3))]>;
+
+class si_SInst_si_subs6si<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s6Imm:$src2, IntRegs:$src3),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, sub(#$src2, $src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2,
+ IntRegs:$src3))]>;
+
+class di_ALU64_didi_neg<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, ~$src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2))]>;
+
+class di_MInst_dididi_xacc<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ !strconcat("$dst ^= ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, DoubleRegs:$src1,
+ DoubleRegs:$src2))],
+ "$dst2 = $dst">;
+
+class si_MInst_sisisi_and<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst &= ", !strconcat(opc , "($src2, $src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class si_MInst_sisisi_andn<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst &= ", !strconcat(opc , "($src2, ~$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class si_SInst_sisis10_andi<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, s10Imm:$src3),
+ !strconcat("$dst = ", !strconcat(opc ,
+ "($src1, and($src2, #$src3))")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2,
+ imm:$src3))]>;
+
+class si_MInst_sisisi_xor<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst ^= ", !strconcat(opc , "($src2, $src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class si_MInst_sisisi_xorn<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst ^= ", !strconcat(opc , "($src2, ~$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class si_SInst_sisis10_or<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$dst1, IntRegs:$src2, s10Imm:$src3),
+ !strconcat("$dst |= ", !strconcat(opc , "($src2, #$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst1, IntRegs:$src2,
+ imm:$src3))]>;
+
+class si_MInst_sisisi_or<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst |= ", !strconcat(opc , "($src2, $src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class si_MInst_sisisi_orn<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3),
+ !strconcat("$dst |= ", !strconcat(opc , "($src2, ~$src3)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst1, IntRegs:$src2,
+ IntRegs:$src3))]>;
+
+class si_SInst_siu5_sat<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2):sat")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+
+/********************************************************************
+* ALU32/ALU *
+*********************************************************************/
+
+// ALU32 / ALU / Logical Operations.
+def Hexagon_A4_orn : si_ALU32_sisi_not <"or", int_hexagon_A4_orn>;
+def Hexagon_A4_andn : si_ALU32_sisi_not <"and", int_hexagon_A4_andn>;
+
+
+/********************************************************************
+* ALU32/PERM *
+*********************************************************************/
+
+// ALU32 / PERM / Combine Words Into Doublewords.
+def Hexagon_A4_combineir : di_ALU32_s8si <"combine", int_hexagon_A4_combineir>;
+def Hexagon_A4_combineri : di_ALU32_sis8 <"combine", int_hexagon_A4_combineri>;
+
+
+/********************************************************************
+* ALU32/PRED *
+*********************************************************************/
+
+// ALU32 / PRED / Conditional Shift Halfword.
+// ALU32 / PRED / Conditional Sign Extend.
+// ALU32 / PRED / Conditional Zero Extend.
+// ALU32 / PRED / Compare.
+def Hexagon_C4_cmpneq : qi_neg_ALU32_sisi <"cmp.eq", int_hexagon_C4_cmpneq>;
+def Hexagon_C4_cmpneqi : qi_neg_ALU32_sis10 <"cmp.eq", int_hexagon_C4_cmpneqi>;
+def Hexagon_C4_cmplte : qi_neg_ALU32_sisi <"cmp.gt", int_hexagon_C4_cmplte>;
+def Hexagon_C4_cmpltei : qi_neg_ALU32_sis10 <"cmp.gt", int_hexagon_C4_cmpltei>;
+def Hexagon_C4_cmplteu : qi_neg_ALU32_sisi <"cmp.gtu",int_hexagon_C4_cmplteu>;
+def Hexagon_C4_cmplteui: qi_neg_ALU32_siu9 <"cmp.gtu",int_hexagon_C4_cmplteui>;
+
+// ALU32 / PRED / cmpare To General Register.
+def Hexagon_A4_rcmpneq : si_neg_ALU32_sisi <"cmp.eq", int_hexagon_A4_rcmpneq>;
+def Hexagon_A4_rcmpneqi: si_neg_ALU32_sis8 <"cmp.eq", int_hexagon_A4_rcmpneqi>;
+def Hexagon_A4_rcmpeq : si_ALU32_sisi <"cmp.eq", int_hexagon_A4_rcmpeq>;
+def Hexagon_A4_rcmpeqi : si_ALU32_sis8 <"cmp.eq", int_hexagon_A4_rcmpeqi>;
+
+
+/********************************************************************
+* CR *
+*********************************************************************/
+
+// CR / Corner Detection Acceleration.
+def Hexagon_C4_fastcorner9:
+ qi_SInst_qiqi<"fastcorner9", int_hexagon_C4_fastcorner9>;
+def Hexagon_C4_fastcorner9_not:
+ qi_neg_SInst_qiqi<"fastcorner9",int_hexagon_C4_fastcorner9_not>;
+
+// CR / Logical Operations On Predicates.
+def Hexagon_C4_and_andn:
+ qi_SInst_qi_andqiqi_neg <"and", int_hexagon_C4_and_andn>;
+def Hexagon_C4_and_and:
+ qi_SInst_qi_andqiqi <"and", int_hexagon_C4_and_and>;
+def Hexagon_C4_and_orn:
+ qi_SInst_qi_orqiqi_neg <"and", int_hexagon_C4_and_orn>;
+def Hexagon_C4_and_or:
+ qi_SInst_qi_orqiqi <"and", int_hexagon_C4_and_or>;
+def Hexagon_C4_or_andn:
+ qi_SInst_qi_andqiqi_neg <"or", int_hexagon_C4_or_andn>;
+def Hexagon_C4_or_and:
+ qi_SInst_qi_andqiqi <"or", int_hexagon_C4_or_and>;
+def Hexagon_C4_or_orn:
+ qi_SInst_qi_orqiqi_neg <"or", int_hexagon_C4_or_orn>;
+def Hexagon_C4_or_or:
+ qi_SInst_qi_orqiqi <"or", int_hexagon_C4_or_or>;
+
+
+/********************************************************************
+* XTYPE/ALU *
+*********************************************************************/
+
+// XTYPE / ALU / Add And Accumulate.
+def Hexagon_S4_addaddi:
+ si_SInst_si_addsis6 <"add", int_hexagon_S4_addaddi>;
+def Hexagon_S4_subaddi:
+ si_SInst_si_subs6si <"add", int_hexagon_S4_subaddi>;
+
+// XTYPE / ALU / Logical Doublewords.
+def Hexagon_S4_andnp:
+ di_ALU64_didi_neg <"and", int_hexagon_A4_andnp>;
+def Hexagon_S4_ornp:
+ di_ALU64_didi_neg <"or", int_hexagon_A4_ornp>;
+
+// XTYPE / ALU / Logical-logical Doublewords.
+def Hexagon_M4_xor_xacc:
+ di_MInst_dididi_xacc <"xor", int_hexagon_M4_xor_xacc>;
+
+// XTYPE / ALU / Logical-logical Words.
+def HEXAGON_M4_and_and:
+ si_MInst_sisisi_and <"and", int_hexagon_M4_and_and>;
+def HEXAGON_M4_and_or:
+ si_MInst_sisisi_and <"or", int_hexagon_M4_and_or>;
+def HEXAGON_M4_and_xor:
+ si_MInst_sisisi_and <"xor", int_hexagon_M4_and_xor>;
+def HEXAGON_M4_and_andn:
+ si_MInst_sisisi_andn <"and", int_hexagon_M4_and_andn>;
+def HEXAGON_M4_xor_and:
+ si_MInst_sisisi_xor <"and", int_hexagon_M4_xor_and>;
+def HEXAGON_M4_xor_or:
+ si_MInst_sisisi_xor <"or", int_hexagon_M4_xor_or>;
+def HEXAGON_M4_xor_andn:
+ si_MInst_sisisi_xorn <"and", int_hexagon_M4_xor_andn>;
+def HEXAGON_M4_or_and:
+ si_MInst_sisisi_or <"and", int_hexagon_M4_or_and>;
+def HEXAGON_M4_or_or:
+ si_MInst_sisisi_or <"or", int_hexagon_M4_or_or>;
+def HEXAGON_M4_or_xor:
+ si_MInst_sisisi_or <"xor", int_hexagon_M4_or_xor>;
+def HEXAGON_M4_or_andn:
+ si_MInst_sisisi_orn <"and", int_hexagon_M4_or_andn>;
+def HEXAGON_S4_or_andix:
+ si_SInst_sisis10_andi <"or", int_hexagon_S4_or_andix>;
+def HEXAGON_S4_or_andi:
+ si_SInst_sisis10_or <"and", int_hexagon_S4_or_andi>;
+def HEXAGON_S4_or_ori:
+ si_SInst_sisis10_or <"or", int_hexagon_S4_or_ori>;
+
+// XTYPE / ALU / Modulo wrap.
+def HEXAGON_A4_modwrapu:
+ si_ALU64_sisi <"modwrap", int_hexagon_A4_modwrapu>;
+
+// XTYPE / ALU / Round.
+def HEXAGON_A4_cround_ri:
+ si_SInst_siu5 <"cround", int_hexagon_A4_cround_ri>;
+def HEXAGON_A4_cround_rr:
+ si_SInst_sisi <"cround", int_hexagon_A4_cround_rr>;
+def HEXAGON_A4_round_ri:
+ si_SInst_siu5 <"round", int_hexagon_A4_round_ri>;
+def HEXAGON_A4_round_rr:
+ si_SInst_sisi <"round", int_hexagon_A4_round_rr>;
+def HEXAGON_A4_round_ri_sat:
+ si_SInst_siu5_sat <"round", int_hexagon_A4_round_ri_sat>;
+def HEXAGON_A4_round_rr_sat:
+ si_SInst_sisi_sat <"round", int_hexagon_A4_round_rr_sat>;
+
+// XTYPE / ALU / Vector reduce add unsigned halfwords.
+// XTYPE / ALU / Vector add bytes.
+// XTYPE / ALU / Vector conditional negate.
+// XTYPE / ALU / Vector maximum bytes.
+// XTYPE / ALU / Vector reduce maximum halfwords.
+// XTYPE / ALU / Vector reduce maximum words.
+// XTYPE / ALU / Vector minimum bytes.
+// XTYPE / ALU / Vector reduce minimum halfwords.
+// XTYPE / ALU / Vector reduce minimum words.
+// XTYPE / ALU / Vector subtract bytes.
+
+
+/********************************************************************
+* XTYPE/BIT *
+*********************************************************************/
+
+// XTYPE / BIT / Count leading.
+// XTYPE / BIT / Count trailing.
+// XTYPE / BIT / Extract bitfield.
+// XTYPE / BIT / Masked parity.
+// XTYPE / BIT / Bit reverse.
+// XTYPE / BIT / Split bitfield.
+
+
+/********************************************************************
+* XTYPE/COMPLEX *
+*********************************************************************/
+
+// XTYPE / COMPLEX / Complex add/sub halfwords.
+// XTYPE / COMPLEX / Complex add/sub words.
+// XTYPE / COMPLEX / Complex multiply 32x16.
+// XTYPE / COMPLEX / Vector reduce complex rotate.
+
+
+/********************************************************************
+* XTYPE/MPY *
+*********************************************************************/
+
+// XTYPE / COMPLEX / Complex add/sub halfwords.
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV5.td b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV5.td
new file mode 100644
index 0000000..1d44b52
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV5.td
@@ -0,0 +1,395 @@
+class sf_SInst_sf<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1))]>;
+
+class si_SInst_sf<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1))]>;
+
+class sf_SInst_si<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1))]>;
+
+class sf_SInst_di<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1))]>;
+
+class sf_SInst_df<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1))]>;
+
+class si_SInst_df<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1))]>;
+
+class df_SInst_sf<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1))]>;
+
+class di_SInst_sf<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1))]>;
+
+class df_SInst_si<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set DoubleRegs:$dst, (IntID IntRegs:$src1))]>;
+
+class df_SInst_df<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1))]>;
+
+class di_SInst_df<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1))]>;
+
+
+class df_SInst_di<string opc, Intrinsic IntID>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "($src1)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1))]>;
+
+class sf_MInst_sfsf<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class df_MInst_dfdf<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2))]>;
+
+class qi_ALU64_dfdf<string opc, Intrinsic IntID>
+ : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set PredRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2))]>;
+
+class qi_ALU64_dfu5<string opc, Intrinsic IntID>
+ : ALU64_ri<(outs PredRegs:$dst), (ins DoubleRegs:$src1, u5Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set PredRegs:$dst, (IntID DoubleRegs:$src1, imm:$src2))]>;
+
+
+class sf_MInst_sfsfsf_acc<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$dst2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1,
+ IntRegs:$src2, IntRegs:$dst2))],
+ "$dst2 = $dst">;
+
+class sf_MInst_sfsfsf_nac<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$dst2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1, $src2)")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1,
+ IntRegs:$src2, IntRegs:$dst2))],
+ "$dst2 = $dst">;
+
+
+class sf_MInst_sfsfsfsi_sc<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2, IntRegs:$src3),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1, $src2, $src3):scale")),
+ [(set IntRegs:$dst, (IntID IntRegs:$dst2, IntRegs:$src1,
+ IntRegs:$src2, IntRegs:$src3))],
+ "$dst2 = $dst">;
+
+class sf_MInst_sfsfsf_acc_lib<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$dst2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1, $src2):lib")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1,
+ IntRegs:$src2, IntRegs:$dst2))],
+ "$dst2 = $dst">;
+
+class sf_MInst_sfsfsf_nac_lib<string opc, Intrinsic IntID>
+ : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ IntRegs:$dst2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1, $src2):lib")),
+ [(set IntRegs:$dst, (IntID IntRegs:$src1,
+ IntRegs:$src2, IntRegs:$dst2))],
+ "$dst2 = $dst">;
+
+class df_MInst_dfdfdf_acc<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2,
+ DoubleRegs:$dst2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2, DoubleRegs:$dst2))],
+ "$dst2 = $dst">;
+
+class df_MInst_dfdfdf_nac<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2,
+ DoubleRegs:$dst2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1, $src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2, DoubleRegs:$dst2))],
+ "$dst2 = $dst">;
+
+
+class df_MInst_dfdfdfsi_sc<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1,
+ DoubleRegs:$src2, IntRegs:$src3),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1, $src2, $src3):scale")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$dst2, DoubleRegs:$src1,
+ DoubleRegs:$src2, IntRegs:$src3))],
+ "$dst2 = $dst">;
+
+class df_MInst_dfdfdf_acc_lib<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2,
+ DoubleRegs:$dst2),
+ !strconcat("$dst += ", !strconcat(opc ,
+ "($src1, $src2):lib")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2, DoubleRegs:$dst2))],
+ "$dst2 = $dst">;
+
+class df_MInst_dfdfdf_nac_lib<string opc, Intrinsic IntID>
+ : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2,
+ DoubleRegs:$dst2),
+ !strconcat("$dst -= ", !strconcat(opc ,
+ "($src1, $src2):lib")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1,
+ DoubleRegs:$src2, DoubleRegs:$dst2))],
+ "$dst2 = $dst">;
+
+class qi_SInst_sfsf<string opc, Intrinsic IntID>
+ : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, IntRegs:$src2))]>;
+
+class qi_SInst_sfu5<string opc, Intrinsic IntID>
+ : MInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set PredRegs:$dst, (IntID IntRegs:$src1, imm:$src2))]>;
+
+class sf_ALU64_u10_pos<string opc, Intrinsic IntID>
+ : ALU64_ri<(outs IntRegs:$dst), (ins u10Imm:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "#$src1):pos")),
+ [(set IntRegs:$dst, (IntID imm:$src1))]>;
+
+class sf_ALU64_u10_neg<string opc, Intrinsic IntID>
+ : ALU64_ri<(outs IntRegs:$dst), (ins u10Imm:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "#$src1):neg")),
+ [(set IntRegs:$dst, (IntID imm:$src1))]>;
+
+class df_ALU64_u10_pos<string opc, Intrinsic IntID>
+ : ALU64_ri<(outs DoubleRegs:$dst), (ins u10Imm:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "#$src1):pos")),
+ [(set DoubleRegs:$dst, (IntID imm:$src1))]>;
+
+class df_ALU64_u10_neg<string opc, Intrinsic IntID>
+ : ALU64_ri<(outs DoubleRegs:$dst), (ins u10Imm:$src1),
+ !strconcat("$dst = ", !strconcat(opc , "#$src1):neg")),
+ [(set DoubleRegs:$dst, (IntID imm:$src1))]>;
+
+class di_MInst_diu6<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2)")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, imm:$src2))]>;
+
+class di_MInst_diu4_rnd<string opc, Intrinsic IntID>
+ : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u4Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2):rnd")),
+ [(set DoubleRegs:$dst, (IntID DoubleRegs:$src1, imm:$src2))]>;
+
+class si_MInst_diu4_rnd_sat<string opc, Intrinsic IntID>
+ : MInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1, u4Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2):rnd:sat")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1, imm:$src2))]>;
+
+class si_SInst_diu4_sat<string opc, Intrinsic IntID>
+ : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1, u4Imm:$src2),
+ !strconcat("$dst = ", !strconcat(opc , "($src1, #$src2):sat")),
+ [(set IntRegs:$dst, (IntID DoubleRegs:$src1, imm:$src2))]>;
+
+
+def HEXAGON_C4_fastcorner9:
+ qi_SInst_qiqi <"fastcorner9", int_hexagon_C4_fastcorner9>;
+def HEXAGON_C4_fastcorner9_not:
+ qi_SInst_qiqi <"!fastcorner9", int_hexagon_C4_fastcorner9_not>;
+def HEXAGON_M5_vrmpybuu:
+ di_MInst_didi <"vrmpybu", int_hexagon_M5_vrmpybuu>;
+def HEXAGON_M5_vrmacbuu:
+ di_MInst_dididi_acc <"vrmpybu", int_hexagon_M5_vrmacbuu>;
+def HEXAGON_M5_vrmpybsu:
+ di_MInst_didi <"vrmpybsu", int_hexagon_M5_vrmpybsu>;
+def HEXAGON_M5_vrmacbsu:
+ di_MInst_dididi_acc <"vrmpybsu", int_hexagon_M5_vrmacbsu>;
+def HEXAGON_M5_vmpybuu:
+ di_MInst_sisi <"vmpybu", int_hexagon_M5_vmpybuu>;
+def HEXAGON_M5_vmpybsu:
+ di_MInst_sisi <"vmpybsu", int_hexagon_M5_vmpybsu>;
+def HEXAGON_M5_vmacbuu:
+ di_MInst_disisi_acc <"vmpybu", int_hexagon_M5_vmacbuu>;
+def HEXAGON_M5_vmacbsu:
+ di_MInst_disisi_acc <"vmpybsu", int_hexagon_M5_vmacbsu>;
+def HEXAGON_M5_vdmpybsu:
+ di_MInst_didi_sat <"vdmpybsu", int_hexagon_M5_vdmpybsu>;
+def HEXAGON_M5_vdmacbsu:
+ di_MInst_dididi_acc_sat <"vdmpybsu", int_hexagon_M5_vdmacbsu>;
+def HEXAGON_A5_vaddhubs:
+ si_SInst_didi_sat <"vaddhub", int_hexagon_A5_vaddhubs>;
+def HEXAGON_S5_popcountp:
+ si_SInst_di <"popcount", int_hexagon_S5_popcountp>;
+def HEXAGON_S5_asrhub_rnd_sat_goodsyntax:
+ si_MInst_diu4_rnd_sat <"vasrhub", int_hexagon_S5_asrhub_rnd_sat_goodsyntax>;
+def HEXAGON_S5_asrhub_sat:
+ si_SInst_diu4_sat <"vasrhub", int_hexagon_S5_asrhub_sat>;
+def HEXAGON_S5_vasrhrnd_goodsyntax:
+ di_MInst_diu4_rnd <"vasrh", int_hexagon_S5_vasrhrnd_goodsyntax>;
+def HEXAGON_S2_asr_i_p_rnd:
+ di_SInst_diu6 <"asr", int_hexagon_S2_asr_i_p_rnd>;
+def HEXAGON_S2_asr_i_p_rnd_goodsyntax:
+ di_MInst_diu6 <"asrrnd", int_hexagon_S2_asr_i_p_rnd_goodsyntax>;
+def HEXAGON_F2_sfadd:
+ sf_MInst_sfsf <"sfadd", int_hexagon_F2_sfadd>;
+def HEXAGON_F2_sfsub:
+ sf_MInst_sfsf <"sfsub", int_hexagon_F2_sfsub>;
+def HEXAGON_F2_sfmpy:
+ sf_MInst_sfsf <"sfmpy", int_hexagon_F2_sfmpy>;
+def HEXAGON_F2_sffma:
+ sf_MInst_sfsfsf_acc <"sfmpy", int_hexagon_F2_sffma>;
+def HEXAGON_F2_sffma_sc:
+ sf_MInst_sfsfsfsi_sc <"sfmpy", int_hexagon_F2_sffma_sc>;
+def HEXAGON_F2_sffms:
+ sf_MInst_sfsfsf_nac <"sfmpy", int_hexagon_F2_sffms>;
+def HEXAGON_F2_sffma_lib:
+ sf_MInst_sfsfsf_acc_lib <"sfmpy", int_hexagon_F2_sffma_lib>;
+def HEXAGON_F2_sffms_lib:
+ sf_MInst_sfsfsf_nac_lib <"sfmpy", int_hexagon_F2_sffms_lib>;
+def HEXAGON_F2_sfcmpeq:
+ qi_SInst_sfsf <"sfcmp.eq", int_hexagon_F2_sfcmpeq>;
+def HEXAGON_F2_sfcmpgt:
+ qi_SInst_sfsf <"sfcmp.gt", int_hexagon_F2_sfcmpgt>;
+def HEXAGON_F2_sfcmpge:
+ qi_SInst_sfsf <"sfcmp.ge", int_hexagon_F2_sfcmpge>;
+def HEXAGON_F2_sfcmpuo:
+ qi_SInst_sfsf <"sfcmp.uo", int_hexagon_F2_sfcmpuo>;
+def HEXAGON_F2_sfmax:
+ sf_MInst_sfsf <"sfmax", int_hexagon_F2_sfmax>;
+def HEXAGON_F2_sfmin:
+ sf_MInst_sfsf <"sfmin", int_hexagon_F2_sfmin>;
+def HEXAGON_F2_sfclass:
+ qi_SInst_sfu5 <"sfclass", int_hexagon_F2_sfclass>;
+def HEXAGON_F2_sfimm_p:
+ sf_ALU64_u10_pos <"sfmake", int_hexagon_F2_sfimm_p>;
+def HEXAGON_F2_sfimm_n:
+ sf_ALU64_u10_neg <"sfmake", int_hexagon_F2_sfimm_n>;
+def HEXAGON_F2_sffixupn:
+ sf_MInst_sfsf <"sffixupn", int_hexagon_F2_sffixupn>;
+def HEXAGON_F2_sffixupd:
+ sf_MInst_sfsf <"sffixupd", int_hexagon_F2_sffixupd>;
+def HEXAGON_F2_sffixupr:
+ sf_SInst_sf <"sffixupr", int_hexagon_F2_sffixupr>;
+def HEXAGON_F2_dfadd:
+ df_MInst_dfdf <"dfadd", int_hexagon_F2_dfadd>;
+def HEXAGON_F2_dfsub:
+ df_MInst_dfdf <"dfsub", int_hexagon_F2_dfsub>;
+def HEXAGON_F2_dfmpy:
+ df_MInst_dfdf <"dfmpy", int_hexagon_F2_dfmpy>;
+def HEXAGON_F2_dffma:
+ df_MInst_dfdfdf_acc <"dfmpy", int_hexagon_F2_dffma>;
+def HEXAGON_F2_dffms:
+ df_MInst_dfdfdf_nac <"dfmpy", int_hexagon_F2_dffms>;
+def HEXAGON_F2_dffma_lib:
+ df_MInst_dfdfdf_acc_lib <"dfmpy", int_hexagon_F2_dffma_lib>;
+def HEXAGON_F2_dffms_lib:
+ df_MInst_dfdfdf_nac_lib <"dfmpy", int_hexagon_F2_dffms_lib>;
+def HEXAGON_F2_dffma_sc:
+ df_MInst_dfdfdfsi_sc <"dfmpy", int_hexagon_F2_dffma_sc>;
+def HEXAGON_F2_dfmax:
+ df_MInst_dfdf <"dfmax", int_hexagon_F2_dfmax>;
+def HEXAGON_F2_dfmin:
+ df_MInst_dfdf <"dfmin", int_hexagon_F2_dfmin>;
+def HEXAGON_F2_dfcmpeq:
+ qi_ALU64_dfdf <"dfcmp.eq", int_hexagon_F2_dfcmpeq>;
+def HEXAGON_F2_dfcmpgt:
+ qi_ALU64_dfdf <"dfcmp.gt", int_hexagon_F2_dfcmpgt>;
+def HEXAGON_F2_dfcmpge:
+ qi_ALU64_dfdf <"dfcmp.ge", int_hexagon_F2_dfcmpge>;
+def HEXAGON_F2_dfcmpuo:
+ qi_ALU64_dfdf <"dfcmp.uo", int_hexagon_F2_dfcmpuo>;
+def HEXAGON_F2_dfclass:
+ qi_ALU64_dfu5 <"dfclass", int_hexagon_F2_dfclass>;
+def HEXAGON_F2_dfimm_p:
+ df_ALU64_u10_pos <"dfmake", int_hexagon_F2_dfimm_p>;
+def HEXAGON_F2_dfimm_n:
+ df_ALU64_u10_neg <"dfmake", int_hexagon_F2_dfimm_n>;
+def HEXAGON_F2_dffixupn:
+ df_MInst_dfdf <"dffixupn", int_hexagon_F2_dffixupn>;
+def HEXAGON_F2_dffixupd:
+ df_MInst_dfdf <"dffixupd", int_hexagon_F2_dffixupd>;
+def HEXAGON_F2_dffixupr:
+ df_SInst_df <"dffixupr", int_hexagon_F2_dffixupr>;
+def HEXAGON_F2_conv_sf2df:
+ df_SInst_sf <"convert_sf2df", int_hexagon_F2_conv_sf2df>;
+def HEXAGON_F2_conv_df2sf:
+ sf_SInst_df <"convert_df2sf", int_hexagon_F2_conv_df2sf>;
+def HEXAGON_F2_conv_uw2sf:
+ sf_SInst_si <"convert_uw2sf", int_hexagon_F2_conv_uw2sf>;
+def HEXAGON_F2_conv_uw2df:
+ df_SInst_si <"convert_uw2df", int_hexagon_F2_conv_uw2df>;
+def HEXAGON_F2_conv_w2sf:
+ sf_SInst_si <"convert_w2sf", int_hexagon_F2_conv_w2sf>;
+def HEXAGON_F2_conv_w2df:
+ df_SInst_si <"convert_w2df", int_hexagon_F2_conv_w2df>;
+def HEXAGON_F2_conv_ud2sf:
+ sf_SInst_di <"convert_ud2sf", int_hexagon_F2_conv_ud2sf>;
+def HEXAGON_F2_conv_ud2df:
+ df_SInst_di <"convert_ud2df", int_hexagon_F2_conv_ud2df>;
+def HEXAGON_F2_conv_d2sf:
+ sf_SInst_di <"convert_d2sf", int_hexagon_F2_conv_d2sf>;
+def HEXAGON_F2_conv_d2df:
+ df_SInst_di <"convert_d2df", int_hexagon_F2_conv_d2df>;
+def HEXAGON_F2_conv_sf2uw:
+ si_SInst_sf <"convert_sf2uw", int_hexagon_F2_conv_sf2uw>;
+def HEXAGON_F2_conv_sf2w:
+ si_SInst_sf <"convert_sf2w", int_hexagon_F2_conv_sf2w>;
+def HEXAGON_F2_conv_sf2ud:
+ di_SInst_sf <"convert_sf2ud", int_hexagon_F2_conv_sf2ud>;
+def HEXAGON_F2_conv_sf2d:
+ di_SInst_sf <"convert_sf2d", int_hexagon_F2_conv_sf2d>;
+def HEXAGON_F2_conv_df2uw:
+ si_SInst_df <"convert_df2uw", int_hexagon_F2_conv_df2uw>;
+def HEXAGON_F2_conv_df2w:
+ si_SInst_df <"convert_df2w", int_hexagon_F2_conv_df2w>;
+def HEXAGON_F2_conv_df2ud:
+ di_SInst_df <"convert_df2ud", int_hexagon_F2_conv_df2ud>;
+def HEXAGON_F2_conv_df2d:
+ di_SInst_df <"convert_df2d", int_hexagon_F2_conv_df2d>;
+def HEXAGON_F2_conv_sf2uw_chop:
+ si_SInst_sf <"convert_sf2uw", int_hexagon_F2_conv_sf2uw_chop>;
+def HEXAGON_F2_conv_sf2w_chop:
+ si_SInst_sf <"convert_sf2w", int_hexagon_F2_conv_sf2w_chop>;
+def HEXAGON_F2_conv_sf2ud_chop:
+ di_SInst_sf <"convert_sf2ud", int_hexagon_F2_conv_sf2ud_chop>;
+def HEXAGON_F2_conv_sf2d_chop:
+ di_SInst_sf <"convert_sf2d", int_hexagon_F2_conv_sf2d_chop>;
+def HEXAGON_F2_conv_df2uw_chop:
+ si_SInst_df <"convert_df2uw", int_hexagon_F2_conv_df2uw_chop>;
+def HEXAGON_F2_conv_df2w_chop:
+ si_SInst_df <"convert_df2w", int_hexagon_F2_conv_df2w_chop>;
+def HEXAGON_F2_conv_df2ud_chop:
+ di_SInst_df <"convert_df2ud", int_hexagon_F2_conv_df2ud_chop>;
+def HEXAGON_F2_conv_df2d_chop:
+ di_SInst_df <"convert_df2d", int_hexagon_F2_conv_df2d_chop>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonMCInstLower.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonMCInstLower.cpp
new file mode 100644
index 0000000..5e4346d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonMCInstLower.cpp
@@ -0,0 +1,95 @@
+//===- HexagonMCInstLower.cpp - Convert Hexagon MachineInstr to an MCInst -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code to lower Hexagon MachineInstrs to their corresponding
+// MCInst records.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "HexagonAsmPrinter.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "MCTargetDesc/HexagonMCInst.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+
+using namespace llvm;
+
+static MCOperand GetSymbolRef(const MachineOperand& MO, const MCSymbol* Symbol,
+ HexagonAsmPrinter& Printer) {
+ MCContext &MC = Printer.OutContext;
+ const MCExpr *ME;
+
+ ME = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None, MC);
+
+ if (!MO.isJTI() && MO.getOffset())
+ ME = MCBinaryExpr::CreateAdd(ME, MCConstantExpr::Create(MO.getOffset(), MC),
+ MC);
+
+ return (MCOperand::CreateExpr(ME));
+}
+
+// Create an MCInst from a MachineInstr
+void llvm::HexagonLowerToMC(const MachineInstr* MI, HexagonMCInst& MCI,
+ HexagonAsmPrinter& AP) {
+ MCI.setOpcode(MI->getOpcode());
+ MCI.setDesc(MI->getDesc());
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i < e; i++) {
+ const MachineOperand &MO = MI->getOperand(i);
+ MCOperand MCO;
+
+ switch (MO.getType()) {
+ default:
+ MI->dump();
+ llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ // Ignore all implicit register operands.
+ if (MO.isImplicit()) continue;
+ MCO = MCOperand::CreateReg(MO.getReg());
+ break;
+ case MachineOperand::MO_FPImmediate: {
+ APFloat Val = MO.getFPImm()->getValueAPF();
+ // FP immediates are used only when setting GPRs, so they may be dealt
+ // with like regular immediates from this point on.
+ MCO = MCOperand::CreateImm(*Val.bitcastToAPInt().getRawData());
+ break;
+ }
+ case MachineOperand::MO_Immediate:
+ MCO = MCOperand::CreateImm(MO.getImm());
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ MCO = MCOperand::CreateExpr
+ (MCSymbolRefExpr::Create(MO.getMBB()->getSymbol(),
+ AP.OutContext));
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ MCO = GetSymbolRef(MO, AP.getSymbol(MO.getGlobal()), AP);
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ MCO = GetSymbolRef(MO, AP.GetExternalSymbolSymbol(MO.getSymbolName()),
+ AP);
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ MCO = GetSymbolRef(MO, AP.GetJTISymbol(MO.getIndex()), AP);
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ MCO = GetSymbolRef(MO, AP.GetCPISymbol(MO.getIndex()), AP);
+ break;
+ case MachineOperand::MO_BlockAddress:
+ MCO = GetSymbolRef(MO, AP.GetBlockAddressSymbol(MO.getBlockAddress()),AP);
+ break;
+ }
+
+ MCI.addOperand(MCO);
+ }
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.cpp
new file mode 100644
index 0000000..9579c8b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.cpp
@@ -0,0 +1,16 @@
+//= HexagonMachineFunctionInfo.cpp - Hexagon machine function info *- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonMachineFunctionInfo.h"
+
+using namespace llvm;
+
+// pin vtable to this file
+void HexagonMachineFunctionInfo::anchor() {}
+
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.h b/contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.h
new file mode 100644
index 0000000..d799bdb
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.h
@@ -0,0 +1,80 @@
+//=- HexagonMachineFunctionInfo.h - Hexagon machine function info -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HexagonMACHINEFUNCTIONINFO_H
+#define HexagonMACHINEFUNCTIONINFO_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+#include <map>
+
+namespace llvm {
+
+ namespace Hexagon {
+ const unsigned int StartPacket = 0x1;
+ const unsigned int EndPacket = 0x2;
+ }
+
+
+/// Hexagon target-specific information for each MachineFunction.
+class HexagonMachineFunctionInfo : public MachineFunctionInfo {
+ // SRetReturnReg - Some subtargets require that sret lowering includes
+ // returning the value of the returned struct in a register. This field
+ // holds the virtual register into which the sret argument is passed.
+ unsigned SRetReturnReg;
+ std::vector<MachineInstr*> AllocaAdjustInsts;
+ int VarArgsFrameIndex;
+ bool HasClobberLR;
+ bool HasEHReturn;
+ std::map<const MachineInstr*, unsigned> PacketInfo;
+ virtual void anchor();
+
+public:
+ HexagonMachineFunctionInfo() : SRetReturnReg(0), HasClobberLR(0),
+ HasEHReturn(false) {}
+
+ HexagonMachineFunctionInfo(MachineFunction &MF) : SRetReturnReg(0),
+ HasClobberLR(0),
+ HasEHReturn(false) {}
+
+ unsigned getSRetReturnReg() const { return SRetReturnReg; }
+ void setSRetReturnReg(unsigned Reg) { SRetReturnReg = Reg; }
+
+ void addAllocaAdjustInst(MachineInstr* MI) {
+ AllocaAdjustInsts.push_back(MI);
+ }
+ const std::vector<MachineInstr*>& getAllocaAdjustInsts() {
+ return AllocaAdjustInsts;
+ }
+
+ void setVarArgsFrameIndex(int v) { VarArgsFrameIndex = v; }
+ int getVarArgsFrameIndex() { return VarArgsFrameIndex; }
+
+ void setStartPacket(MachineInstr* MI) {
+ PacketInfo[MI] |= Hexagon::StartPacket;
+ }
+ void setEndPacket(MachineInstr* MI) {
+ PacketInfo[MI] |= Hexagon::EndPacket;
+ }
+ bool isStartPacket(const MachineInstr* MI) const {
+ return (PacketInfo.count(MI) &&
+ (PacketInfo.find(MI)->second & Hexagon::StartPacket));
+ }
+ bool isEndPacket(const MachineInstr* MI) const {
+ return (PacketInfo.count(MI) &&
+ (PacketInfo.find(MI)->second & Hexagon::EndPacket));
+ }
+ void setHasClobberLR(bool v) { HasClobberLR = v; }
+ bool hasClobberLR() const { return HasClobberLR; }
+
+ bool hasEHReturn() const { return HasEHReturn; };
+ void setHasEHReturn(bool H = true) { HasEHReturn = H; };
+};
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp
new file mode 100644
index 0000000..6fcaa20
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp
@@ -0,0 +1,694 @@
+//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// MachineScheduler schedules machine instructions after phi elimination. It
+// preserves LiveIntervals so it can be invoked before register allocation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonMachineScheduler.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/IR/Function.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "misched"
+
+/// Platform-specific modifications to DAG.
+void VLIWMachineScheduler::postprocessDAG() {
+ SUnit* LastSequentialCall = nullptr;
+ // Currently we only catch the situation when compare gets scheduled
+ // before preceding call.
+ for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
+ // Remember the call.
+ if (SUnits[su].getInstr()->isCall())
+ LastSequentialCall = &(SUnits[su]);
+ // Look for a compare that defines a predicate.
+ else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
+ SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
+ }
+}
+
+/// Check if scheduling of this SU is possible
+/// in the current packet.
+/// It is _not_ precise (statefull), it is more like
+/// another heuristic. Many corner cases are figured
+/// empirically.
+bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
+ if (!SU || !SU->getInstr())
+ return false;
+
+ // First see if the pipeline could receive this instruction
+ // in the current cycle.
+ switch (SU->getInstr()->getOpcode()) {
+ default:
+ if (!ResourcesModel->canReserveResources(SU->getInstr()))
+ return false;
+ case TargetOpcode::EXTRACT_SUBREG:
+ case TargetOpcode::INSERT_SUBREG:
+ case TargetOpcode::SUBREG_TO_REG:
+ case TargetOpcode::REG_SEQUENCE:
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::COPY:
+ case TargetOpcode::INLINEASM:
+ break;
+ }
+
+ // Now see if there are no other dependencies to instructions already
+ // in the packet.
+ for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
+ if (Packet[i]->Succs.size() == 0)
+ continue;
+ for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
+ E = Packet[i]->Succs.end(); I != E; ++I) {
+ // Since we do not add pseudos to packets, might as well
+ // ignore order dependencies.
+ if (I->isCtrl())
+ continue;
+
+ if (I->getSUnit() == SU)
+ return false;
+ }
+ }
+ return true;
+}
+
+/// Keep track of available resources.
+bool VLIWResourceModel::reserveResources(SUnit *SU) {
+ bool startNewCycle = false;
+ // Artificially reset state.
+ if (!SU) {
+ ResourcesModel->clearResources();
+ Packet.clear();
+ TotalPackets++;
+ return false;
+ }
+ // If this SU does not fit in the packet
+ // start a new one.
+ if (!isResourceAvailable(SU)) {
+ ResourcesModel->clearResources();
+ Packet.clear();
+ TotalPackets++;
+ startNewCycle = true;
+ }
+
+ switch (SU->getInstr()->getOpcode()) {
+ default:
+ ResourcesModel->reserveResources(SU->getInstr());
+ break;
+ case TargetOpcode::EXTRACT_SUBREG:
+ case TargetOpcode::INSERT_SUBREG:
+ case TargetOpcode::SUBREG_TO_REG:
+ case TargetOpcode::REG_SEQUENCE:
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ case TargetOpcode::CFI_INSTRUCTION:
+ case TargetOpcode::EH_LABEL:
+ case TargetOpcode::COPY:
+ case TargetOpcode::INLINEASM:
+ break;
+ }
+ Packet.push_back(SU);
+
+#ifndef NDEBUG
+ DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
+ for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
+ DEBUG(dbgs() << "\t[" << i << "] SU(");
+ DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
+ DEBUG(Packet[i]->getInstr()->dump());
+ }
+#endif
+
+ // If packet is now full, reset the state so in the next cycle
+ // we start fresh.
+ if (Packet.size() >= SchedModel->getIssueWidth()) {
+ ResourcesModel->clearResources();
+ Packet.clear();
+ TotalPackets++;
+ startNewCycle = true;
+ }
+
+ return startNewCycle;
+}
+
+/// schedule - Called back from MachineScheduler::runOnMachineFunction
+/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
+/// only includes instructions that have DAG nodes, not scheduling boundaries.
+void VLIWMachineScheduler::schedule() {
+ DEBUG(dbgs()
+ << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
+ << " " << BB->getName()
+ << " in_func " << BB->getParent()->getFunction()->getName()
+ << " at loop depth " << MLI.getLoopDepth(BB)
+ << " \n");
+
+ buildDAGWithRegPressure();
+
+ // Postprocess the DAG to add platform-specific artificial dependencies.
+ postprocessDAG();
+
+ SmallVector<SUnit*, 8> TopRoots, BotRoots;
+ findRootsAndBiasEdges(TopRoots, BotRoots);
+
+ // Initialize the strategy before modifying the DAG.
+ SchedImpl->initialize(this);
+
+ // To view Height/Depth correctly, they should be accessed at least once.
+ //
+ // FIXME: SUnit::dumpAll always recompute depth and height now. The max
+ // depth/height could be computed directly from the roots and leaves.
+ DEBUG(unsigned maxH = 0;
+ for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ if (SUnits[su].getHeight() > maxH)
+ maxH = SUnits[su].getHeight();
+ dbgs() << "Max Height " << maxH << "\n";);
+ DEBUG(unsigned maxD = 0;
+ for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ if (SUnits[su].getDepth() > maxD)
+ maxD = SUnits[su].getDepth();
+ dbgs() << "Max Depth " << maxD << "\n";);
+ DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ SUnits[su].dumpAll(this));
+
+ initQueues(TopRoots, BotRoots);
+
+ bool IsTopNode = false;
+ while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
+ if (!checkSchedLimit())
+ break;
+
+ scheduleMI(SU, IsTopNode);
+
+ updateQueues(SU, IsTopNode);
+
+ // Notify the scheduling strategy after updating the DAG.
+ SchedImpl->schedNode(SU, IsTopNode);
+ }
+ assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
+
+ placeDebugValues();
+}
+
+void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
+ DAG = static_cast<VLIWMachineScheduler*>(dag);
+ SchedModel = DAG->getSchedModel();
+
+ Top.init(DAG, SchedModel);
+ Bot.init(DAG, SchedModel);
+
+ // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
+ // are disabled, then these HazardRecs will be disabled.
+ const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
+ const TargetMachine &TM = DAG->MF.getTarget();
+ delete Top.HazardRec;
+ delete Bot.HazardRec;
+ Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+
+ delete Top.ResourceModel;
+ delete Bot.ResourceModel;
+ Top.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
+ Bot.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
+
+ assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
+ "-misched-topdown incompatible with -misched-bottomup");
+}
+
+void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
+ if (SU->isScheduled)
+ return;
+
+ for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
+ unsigned MinLatency = I->getLatency();
+#ifndef NDEBUG
+ Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
+#endif
+ if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
+ SU->TopReadyCycle = PredReadyCycle + MinLatency;
+ }
+ Top.releaseNode(SU, SU->TopReadyCycle);
+}
+
+void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
+ if (SU->isScheduled)
+ return;
+
+ assert(SU->getInstr() && "Scheduled SUnit must have instr");
+
+ for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I) {
+ unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
+ unsigned MinLatency = I->getLatency();
+#ifndef NDEBUG
+ Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
+#endif
+ if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
+ SU->BotReadyCycle = SuccReadyCycle + MinLatency;
+ }
+ Bot.releaseNode(SU, SU->BotReadyCycle);
+}
+
+/// Does this SU have a hazard within the current instruction group.
+///
+/// The scheduler supports two modes of hazard recognition. The first is the
+/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
+/// supports highly complicated in-order reservation tables
+/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
+///
+/// The second is a streamlined mechanism that checks for hazards based on
+/// simple counters that the scheduler itself maintains. It explicitly checks
+/// for instruction dispatch limitations, including the number of micro-ops that
+/// can dispatch per cycle.
+///
+/// TODO: Also check whether the SU must start a new group.
+bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) {
+ if (HazardRec->isEnabled())
+ return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
+
+ unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
+ if (IssueCount + uops > SchedModel->getIssueWidth())
+ return true;
+
+ return false;
+}
+
+void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU,
+ unsigned ReadyCycle) {
+ if (ReadyCycle < MinReadyCycle)
+ MinReadyCycle = ReadyCycle;
+
+ // Check for interlocks first. For the purpose of other heuristics, an
+ // instruction that cannot issue appears as if it's not in the ReadyQueue.
+ if (ReadyCycle > CurrCycle || checkHazard(SU))
+
+ Pending.push(SU);
+ else
+ Available.push(SU);
+}
+
+/// Move the boundary of scheduled code by one cycle.
+void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() {
+ unsigned Width = SchedModel->getIssueWidth();
+ IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
+
+ assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
+ unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
+
+ if (!HazardRec->isEnabled()) {
+ // Bypass HazardRec virtual calls.
+ CurrCycle = NextCycle;
+ } else {
+ // Bypass getHazardType calls in case of long latency.
+ for (; CurrCycle != NextCycle; ++CurrCycle) {
+ if (isTop())
+ HazardRec->AdvanceCycle();
+ else
+ HazardRec->RecedeCycle();
+ }
+ }
+ CheckPending = true;
+
+ DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
+ << CurrCycle << '\n');
+}
+
+/// Move the boundary of scheduled code by one SUnit.
+void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) {
+ bool startNewCycle = false;
+
+ // Update the reservation table.
+ if (HazardRec->isEnabled()) {
+ if (!isTop() && SU->isCall) {
+ // Calls are scheduled with their preceding instructions. For bottom-up
+ // scheduling, clear the pipeline state before emitting.
+ HazardRec->Reset();
+ }
+ HazardRec->EmitInstruction(SU);
+ }
+
+ // Update DFA model.
+ startNewCycle = ResourceModel->reserveResources(SU);
+
+ // Check the instruction group dispatch limit.
+ // TODO: Check if this SU must end a dispatch group.
+ IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
+ if (startNewCycle) {
+ DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
+ bumpCycle();
+ }
+ else
+ DEBUG(dbgs() << "*** IssueCount " << IssueCount
+ << " at cycle " << CurrCycle << '\n');
+}
+
+/// Release pending ready nodes in to the available queue. This makes them
+/// visible to heuristics.
+void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() {
+ // If the available queue is empty, it is safe to reset MinReadyCycle.
+ if (Available.empty())
+ MinReadyCycle = UINT_MAX;
+
+ // Check to see if any of the pending instructions are ready to issue. If
+ // so, add them to the available queue.
+ for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
+ SUnit *SU = *(Pending.begin()+i);
+ unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
+
+ if (ReadyCycle < MinReadyCycle)
+ MinReadyCycle = ReadyCycle;
+
+ if (ReadyCycle > CurrCycle)
+ continue;
+
+ if (checkHazard(SU))
+ continue;
+
+ Available.push(SU);
+ Pending.remove(Pending.begin()+i);
+ --i; --e;
+ }
+ CheckPending = false;
+}
+
+/// Remove SU from the ready set for this boundary.
+void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) {
+ if (Available.isInQueue(SU))
+ Available.remove(Available.find(SU));
+ else {
+ assert(Pending.isInQueue(SU) && "bad ready count");
+ Pending.remove(Pending.find(SU));
+ }
+}
+
+/// If this queue only has one ready candidate, return it. As a side effect,
+/// advance the cycle until at least one node is ready. If multiple instructions
+/// are ready, return NULL.
+SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() {
+ if (CheckPending)
+ releasePending();
+
+ for (unsigned i = 0; Available.empty(); ++i) {
+ assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
+ "permanent hazard"); (void)i;
+ ResourceModel->reserveResources(nullptr);
+ bumpCycle();
+ releasePending();
+ }
+ if (Available.size() == 1)
+ return *Available.begin();
+ return nullptr;
+}
+
+#ifndef NDEBUG
+void ConvergingVLIWScheduler::traceCandidate(const char *Label,
+ const ReadyQueue &Q,
+ SUnit *SU, PressureChange P) {
+ dbgs() << Label << " " << Q.getName() << " ";
+ if (P.isValid())
+ dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
+ << P.getUnitInc() << " ";
+ else
+ dbgs() << " ";
+ SU->dump(DAG);
+}
+#endif
+
+/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
+/// of SU, return it, otherwise return null.
+static SUnit *getSingleUnscheduledPred(SUnit *SU) {
+ SUnit *OnlyAvailablePred = nullptr;
+ for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ SUnit &Pred = *I->getSUnit();
+ if (!Pred.isScheduled) {
+ // We found an available, but not scheduled, predecessor. If it's the
+ // only one we have found, keep track of it... otherwise give up.
+ if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
+ return nullptr;
+ OnlyAvailablePred = &Pred;
+ }
+ }
+ return OnlyAvailablePred;
+}
+
+/// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
+/// of SU, return it, otherwise return null.
+static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
+ SUnit *OnlyAvailableSucc = nullptr;
+ for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I) {
+ SUnit &Succ = *I->getSUnit();
+ if (!Succ.isScheduled) {
+ // We found an available, but not scheduled, successor. If it's the
+ // only one we have found, keep track of it... otherwise give up.
+ if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
+ return nullptr;
+ OnlyAvailableSucc = &Succ;
+ }
+ }
+ return OnlyAvailableSucc;
+}
+
+// Constants used to denote relative importance of
+// heuristic components for cost computation.
+static const unsigned PriorityOne = 200;
+static const unsigned PriorityTwo = 50;
+static const unsigned ScaleTwo = 10;
+static const unsigned FactorOne = 2;
+
+/// Single point to compute overall scheduling cost.
+/// TODO: More heuristics will be used soon.
+int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
+ SchedCandidate &Candidate,
+ RegPressureDelta &Delta,
+ bool verbose) {
+ // Initial trivial priority.
+ int ResCount = 1;
+
+ // Do not waste time on a node that is already scheduled.
+ if (!SU || SU->isScheduled)
+ return ResCount;
+
+ // Forced priority is high.
+ if (SU->isScheduleHigh)
+ ResCount += PriorityOne;
+
+ // Critical path first.
+ if (Q.getID() == TopQID) {
+ ResCount += (SU->getHeight() * ScaleTwo);
+
+ // If resources are available for it, multiply the
+ // chance of scheduling.
+ if (Top.ResourceModel->isResourceAvailable(SU))
+ ResCount <<= FactorOne;
+ } else {
+ ResCount += (SU->getDepth() * ScaleTwo);
+
+ // If resources are available for it, multiply the
+ // chance of scheduling.
+ if (Bot.ResourceModel->isResourceAvailable(SU))
+ ResCount <<= FactorOne;
+ }
+
+ unsigned NumNodesBlocking = 0;
+ if (Q.getID() == TopQID) {
+ // How many SUs does it block from scheduling?
+ // Look at all of the successors of this node.
+ // Count the number of nodes that
+ // this node is the sole unscheduled node for.
+ for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I)
+ if (getSingleUnscheduledPred(I->getSUnit()) == SU)
+ ++NumNodesBlocking;
+ } else {
+ // How many unscheduled predecessors block this node?
+ for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I)
+ if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
+ ++NumNodesBlocking;
+ }
+ ResCount += (NumNodesBlocking * ScaleTwo);
+
+ // Factor in reg pressure as a heuristic.
+ ResCount -= (Delta.Excess.getUnitInc()*PriorityTwo);
+ ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityTwo);
+
+ DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
+
+ return ResCount;
+}
+
+/// Pick the best candidate from the top queue.
+///
+/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
+/// DAG building. To adjust for the current scheduling location we need to
+/// maintain the number of vreg uses remaining to be top-scheduled.
+ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
+pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
+ SchedCandidate &Candidate) {
+ DEBUG(Q.dump());
+
+ // getMaxPressureDelta temporarily modifies the tracker.
+ RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
+
+ // BestSU remains NULL if no top candidates beat the best existing candidate.
+ CandResult FoundCandidate = NoCand;
+ for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
+ RegPressureDelta RPDelta;
+ TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+
+ int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
+
+ // Initialize the candidate if needed.
+ if (!Candidate.SU) {
+ Candidate.SU = *I;
+ Candidate.RPDelta = RPDelta;
+ Candidate.SCost = CurrentCost;
+ FoundCandidate = NodeOrder;
+ continue;
+ }
+
+ // Best cost.
+ if (CurrentCost > Candidate.SCost) {
+ DEBUG(traceCandidate("CCAND", Q, *I));
+ Candidate.SU = *I;
+ Candidate.RPDelta = RPDelta;
+ Candidate.SCost = CurrentCost;
+ FoundCandidate = BestCost;
+ continue;
+ }
+
+ // Fall through to original instruction order.
+ // Only consider node order if Candidate was chosen from this Q.
+ if (FoundCandidate == NoCand)
+ continue;
+ }
+ return FoundCandidate;
+}
+
+/// Pick the best candidate node from either the top or bottom queue.
+SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
+ // Schedule as far as possible in the direction of no choice. This is most
+ // efficient, but also provides the best heuristics for CriticalPSets.
+ if (SUnit *SU = Bot.pickOnlyChoice()) {
+ IsTopNode = false;
+ return SU;
+ }
+ if (SUnit *SU = Top.pickOnlyChoice()) {
+ IsTopNode = true;
+ return SU;
+ }
+ SchedCandidate BotCand;
+ // Prefer bottom scheduling when heuristics are silent.
+ CandResult BotResult = pickNodeFromQueue(Bot.Available,
+ DAG->getBotRPTracker(), BotCand);
+ assert(BotResult != NoCand && "failed to find the first candidate");
+
+ // If either Q has a single candidate that provides the least increase in
+ // Excess pressure, we can immediately schedule from that Q.
+ //
+ // RegionCriticalPSets summarizes the pressure within the scheduled region and
+ // affects picking from either Q. If scheduling in one direction must
+ // increase pressure for one of the excess PSets, then schedule in that
+ // direction first to provide more freedom in the other direction.
+ if (BotResult == SingleExcess || BotResult == SingleCritical) {
+ IsTopNode = false;
+ return BotCand.SU;
+ }
+ // Check if the top Q has a better candidate.
+ SchedCandidate TopCand;
+ CandResult TopResult = pickNodeFromQueue(Top.Available,
+ DAG->getTopRPTracker(), TopCand);
+ assert(TopResult != NoCand && "failed to find the first candidate");
+
+ if (TopResult == SingleExcess || TopResult == SingleCritical) {
+ IsTopNode = true;
+ return TopCand.SU;
+ }
+ // If either Q has a single candidate that minimizes pressure above the
+ // original region's pressure pick it.
+ if (BotResult == SingleMax) {
+ IsTopNode = false;
+ return BotCand.SU;
+ }
+ if (TopResult == SingleMax) {
+ IsTopNode = true;
+ return TopCand.SU;
+ }
+ if (TopCand.SCost > BotCand.SCost) {
+ IsTopNode = true;
+ return TopCand.SU;
+ }
+ // Otherwise prefer the bottom candidate in node order.
+ IsTopNode = false;
+ return BotCand.SU;
+}
+
+/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
+SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
+ if (DAG->top() == DAG->bottom()) {
+ assert(Top.Available.empty() && Top.Pending.empty() &&
+ Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
+ return nullptr;
+ }
+ SUnit *SU;
+ if (llvm::ForceTopDown) {
+ SU = Top.pickOnlyChoice();
+ if (!SU) {
+ SchedCandidate TopCand;
+ CandResult TopResult =
+ pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
+ assert(TopResult != NoCand && "failed to find the first candidate");
+ (void)TopResult;
+ SU = TopCand.SU;
+ }
+ IsTopNode = true;
+ } else if (llvm::ForceBottomUp) {
+ SU = Bot.pickOnlyChoice();
+ if (!SU) {
+ SchedCandidate BotCand;
+ CandResult BotResult =
+ pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
+ assert(BotResult != NoCand && "failed to find the first candidate");
+ (void)BotResult;
+ SU = BotCand.SU;
+ }
+ IsTopNode = false;
+ } else {
+ SU = pickNodeBidrectional(IsTopNode);
+ }
+ if (SU->isTopReady())
+ Top.removeReady(SU);
+ if (SU->isBottomReady())
+ Bot.removeReady(SU);
+
+ DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
+ << " Scheduling Instruction in cycle "
+ << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
+ SU->dump(DAG));
+ return SU;
+}
+
+/// Update the scheduler's state after scheduling a node. This is the same node
+/// that was just returned by pickNode(). However, VLIWMachineScheduler needs
+/// to update it's state based on the current cycle before MachineSchedStrategy
+/// does.
+void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
+ if (IsTopNode) {
+ SU->TopReadyCycle = Top.CurrCycle;
+ Top.bumpNode(SU);
+ } else {
+ SU->BotReadyCycle = Bot.CurrCycle;
+ Bot.bumpNode(SU);
+ }
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.h b/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.h
new file mode 100644
index 0000000..8c41086
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.h
@@ -0,0 +1,244 @@
+//===-- HexagonMachineScheduler.h - Custom Hexagon MI scheduler. ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Custom Hexagon MI scheduler.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HEXAGONASMPRINTER_H
+#define HEXAGONASMPRINTER_H
+
+#include "llvm/ADT/PriorityQueue.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineScheduler.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/CodeGen/RegisterPressure.h"
+#include "llvm/CodeGen/ResourcePriorityQueue.h"
+#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+using namespace llvm;
+
+namespace llvm {
+//===----------------------------------------------------------------------===//
+// ConvergingVLIWScheduler - Implementation of the standard
+// MachineSchedStrategy.
+//===----------------------------------------------------------------------===//
+
+class VLIWResourceModel {
+ /// ResourcesModel - Represents VLIW state.
+ /// Not limited to VLIW targets per say, but assumes
+ /// definition of DFA by a target.
+ DFAPacketizer *ResourcesModel;
+
+ const TargetSchedModel *SchedModel;
+
+ /// Local packet/bundle model. Purely
+ /// internal to the MI schedulre at the time.
+ std::vector<SUnit*> Packet;
+
+ /// Total packets created.
+ unsigned TotalPackets;
+
+public:
+VLIWResourceModel(const TargetMachine &TM, const TargetSchedModel *SM) :
+ SchedModel(SM), TotalPackets(0) {
+ ResourcesModel = TM.getInstrInfo()->CreateTargetScheduleState(&TM, nullptr);
+
+ // This hard requirement could be relaxed,
+ // but for now do not let it proceed.
+ assert(ResourcesModel && "Unimplemented CreateTargetScheduleState.");
+
+ Packet.resize(SchedModel->getIssueWidth());
+ Packet.clear();
+ ResourcesModel->clearResources();
+ }
+
+ ~VLIWResourceModel() {
+ delete ResourcesModel;
+ }
+
+ void resetPacketState() {
+ Packet.clear();
+ }
+
+ void resetDFA() {
+ ResourcesModel->clearResources();
+ }
+
+ void reset() {
+ Packet.clear();
+ ResourcesModel->clearResources();
+ }
+
+ bool isResourceAvailable(SUnit *SU);
+ bool reserveResources(SUnit *SU);
+ unsigned getTotalPackets() const { return TotalPackets; }
+};
+
+/// Extend the standard ScheduleDAGMI to provide more context and override the
+/// top-level schedule() driver.
+class VLIWMachineScheduler : public ScheduleDAGMILive {
+public:
+ VLIWMachineScheduler(MachineSchedContext *C,
+ std::unique_ptr<MachineSchedStrategy> S)
+ : ScheduleDAGMILive(C, std::move(S)) {}
+
+ /// Schedule - This is called back from ScheduleDAGInstrs::Run() when it's
+ /// time to do some work.
+ virtual void schedule() override;
+ /// Perform platform-specific DAG postprocessing.
+ void postprocessDAG();
+};
+
+/// ConvergingVLIWScheduler shrinks the unscheduled zone using heuristics
+/// to balance the schedule.
+class ConvergingVLIWScheduler : public MachineSchedStrategy {
+
+ /// Store the state used by ConvergingVLIWScheduler heuristics, required
+ /// for the lifetime of one invocation of pickNode().
+ struct SchedCandidate {
+ // The best SUnit candidate.
+ SUnit *SU;
+
+ // Register pressure values for the best candidate.
+ RegPressureDelta RPDelta;
+
+ // Best scheduling cost.
+ int SCost;
+
+ SchedCandidate(): SU(nullptr), SCost(0) {}
+ };
+ /// Represent the type of SchedCandidate found within a single queue.
+ enum CandResult {
+ NoCand, NodeOrder, SingleExcess, SingleCritical, SingleMax, MultiPressure,
+ BestCost};
+
+ /// Each Scheduling boundary is associated with ready queues. It tracks the
+ /// current cycle in whichever direction at has moved, and maintains the state
+ /// of "hazards" and other interlocks at the current cycle.
+ struct VLIWSchedBoundary {
+ VLIWMachineScheduler *DAG;
+ const TargetSchedModel *SchedModel;
+
+ ReadyQueue Available;
+ ReadyQueue Pending;
+ bool CheckPending;
+
+ ScheduleHazardRecognizer *HazardRec;
+ VLIWResourceModel *ResourceModel;
+
+ unsigned CurrCycle;
+ unsigned IssueCount;
+
+ /// MinReadyCycle - Cycle of the soonest available instruction.
+ unsigned MinReadyCycle;
+
+ // Remember the greatest min operand latency.
+ unsigned MaxMinLatency;
+
+ /// Pending queues extend the ready queues with the same ID and the
+ /// PendingFlag set.
+ VLIWSchedBoundary(unsigned ID, const Twine &Name):
+ DAG(nullptr), SchedModel(nullptr), Available(ID, Name+".A"),
+ Pending(ID << ConvergingVLIWScheduler::LogMaxQID, Name+".P"),
+ CheckPending(false), HazardRec(nullptr), ResourceModel(nullptr),
+ CurrCycle(0), IssueCount(0),
+ MinReadyCycle(UINT_MAX), MaxMinLatency(0) {}
+
+ ~VLIWSchedBoundary() {
+ delete ResourceModel;
+ delete HazardRec;
+ }
+
+ void init(VLIWMachineScheduler *dag, const TargetSchedModel *smodel) {
+ DAG = dag;
+ SchedModel = smodel;
+ }
+
+ bool isTop() const {
+ return Available.getID() == ConvergingVLIWScheduler::TopQID;
+ }
+
+ bool checkHazard(SUnit *SU);
+
+ void releaseNode(SUnit *SU, unsigned ReadyCycle);
+
+ void bumpCycle();
+
+ void bumpNode(SUnit *SU);
+
+ void releasePending();
+
+ void removeReady(SUnit *SU);
+
+ SUnit *pickOnlyChoice();
+ };
+
+ VLIWMachineScheduler *DAG;
+ const TargetSchedModel *SchedModel;
+
+ // State of the top and bottom scheduled instruction boundaries.
+ VLIWSchedBoundary Top;
+ VLIWSchedBoundary Bot;
+
+public:
+ /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
+ enum {
+ TopQID = 1,
+ BotQID = 2,
+ LogMaxQID = 2
+ };
+
+ ConvergingVLIWScheduler()
+ : DAG(nullptr), SchedModel(nullptr), Top(TopQID, "TopQ"),
+ Bot(BotQID, "BotQ") {}
+
+ virtual void initialize(ScheduleDAGMI *dag) override;
+
+ virtual SUnit *pickNode(bool &IsTopNode) override;
+
+ virtual void schedNode(SUnit *SU, bool IsTopNode) override;
+
+ virtual void releaseTopNode(SUnit *SU) override;
+
+ virtual void releaseBottomNode(SUnit *SU) override;
+
+ unsigned ReportPackets() {
+ return Top.ResourceModel->getTotalPackets() +
+ Bot.ResourceModel->getTotalPackets();
+ }
+
+protected:
+ SUnit *pickNodeBidrectional(bool &IsTopNode);
+
+ int SchedulingCost(ReadyQueue &Q,
+ SUnit *SU, SchedCandidate &Candidate,
+ RegPressureDelta &Delta, bool verbose);
+
+ CandResult pickNodeFromQueue(ReadyQueue &Q,
+ const RegPressureTracker &RPTracker,
+ SchedCandidate &Candidate);
+#ifndef NDEBUG
+ void traceCandidate(const char *Label, const ReadyQueue &Q, SUnit *SU,
+ PressureChange P = PressureChange());
+#endif
+};
+
+} // namespace
+
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonNewValueJump.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonNewValueJump.cpp
new file mode 100644
index 0000000..b7c03a7
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonNewValueJump.cpp
@@ -0,0 +1,656 @@
+//===----- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements NewValueJump pass in Hexagon.
+// Ideally, we should merge this as a Peephole pass prior to register
+// allocation, but because we have a spill in between the feeder and new value
+// jump instructions, we are forced to write after register allocation.
+// Having said that, we should re-attempt to pull this earlier at some point
+// in future.
+
+// The basic approach looks for sequence of predicated jump, compare instruciton
+// that genereates the predicate and, the feeder to the predicate. Once it finds
+// all, it collapses compare and jump instruction into a new valu jump
+// intstructions.
+//
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/PassSupport.h"
+#include "Hexagon.h"
+#include "HexagonInstrInfo.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonRegisterInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <map>
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-nvj"
+
+STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");
+
+static cl::opt<int>
+DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden, cl::desc(
+ "Maximum number of predicated jumps to be converted to New Value Jump"));
+
+static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden,
+ cl::ZeroOrMore, cl::init(false),
+ cl::desc("Disable New Value Jumps"));
+
+namespace llvm {
+ void initializeHexagonNewValueJumpPass(PassRegistry&);
+}
+
+
+namespace {
+ struct HexagonNewValueJump : public MachineFunctionPass {
+ const HexagonInstrInfo *QII;
+ const HexagonRegisterInfo *QRI;
+
+ public:
+ static char ID;
+
+ HexagonNewValueJump() : MachineFunctionPass(ID) {
+ initializeHexagonNewValueJumpPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ const char *getPassName() const override {
+ return "Hexagon NewValueJump";
+ }
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ private:
+ /// \brief A handle to the branch probability pass.
+ const MachineBranchProbabilityInfo *MBPI;
+
+ };
+
+} // end of anonymous namespace
+
+char HexagonNewValueJump::ID = 0;
+
+INITIALIZE_PASS_BEGIN(HexagonNewValueJump, "hexagon-nvj",
+ "Hexagon NewValueJump", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_END(HexagonNewValueJump, "hexagon-nvj",
+ "Hexagon NewValueJump", false, false)
+
+
+// We have identified this II could be feeder to NVJ,
+// verify that it can be.
+static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII,
+ const TargetRegisterInfo *TRI,
+ MachineBasicBlock::iterator II,
+ MachineBasicBlock::iterator end,
+ MachineBasicBlock::iterator skip,
+ MachineFunction &MF) {
+
+ // Predicated instruction can not be feeder to NVJ.
+ if (QII->isPredicated(II))
+ return false;
+
+ // Bail out if feederReg is a paired register (double regs in
+ // our case). One would think that we can check to see if a given
+ // register cmpReg1 or cmpReg2 is a sub register of feederReg
+ // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
+ // before the callsite of this function
+ // But we can not as it comes in the following fashion.
+ // %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
+ // %R0<def> = KILL %R0, %D0<imp-use,kill>
+ // %P0<def> = CMPEQri %R0<kill>, 0
+ // Hence, we need to check if it's a KILL instruction.
+ if (II->getOpcode() == TargetOpcode::KILL)
+ return false;
+
+
+ // Make sure there there is no 'def' or 'use' of any of the uses of
+ // feeder insn between it's definition, this MI and jump, jmpInst
+ // skipping compare, cmpInst.
+ // Here's the example.
+ // r21=memub(r22+r24<<#0)
+ // p0 = cmp.eq(r21, #0)
+ // r4=memub(r3+r21<<#0)
+ // if (p0.new) jump:t .LBB29_45
+ // Without this check, it will be converted into
+ // r4=memub(r3+r21<<#0)
+ // r21=memub(r22+r24<<#0)
+ // p0 = cmp.eq(r21, #0)
+ // if (p0.new) jump:t .LBB29_45
+ // and result WAR hazards if converted to New Value Jump.
+
+ for (unsigned i = 0; i < II->getNumOperands(); ++i) {
+ if (II->getOperand(i).isReg() &&
+ (II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
+ MachineBasicBlock::iterator localII = II;
+ ++localII;
+ unsigned Reg = II->getOperand(i).getReg();
+ for (MachineBasicBlock::iterator localBegin = localII;
+ localBegin != end; ++localBegin) {
+ if (localBegin == skip ) continue;
+ // Check for Subregisters too.
+ if (localBegin->modifiesRegister(Reg, TRI) ||
+ localBegin->readsRegister(Reg, TRI))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+// These are the common checks that need to performed
+// to determine if
+// 1. compare instruction can be moved before jump.
+// 2. feeder to the compare instruction can be moved before jump.
+static bool commonChecksToProhibitNewValueJump(bool afterRA,
+ MachineBasicBlock::iterator MII) {
+
+ // If store in path, bail out.
+ if (MII->getDesc().mayStore())
+ return false;
+
+ // if call in path, bail out.
+ if (MII->getOpcode() == Hexagon::CALLv3)
+ return false;
+
+ // if NVJ is running prior to RA, do the following checks.
+ if (!afterRA) {
+ // The following Target Opcode instructions are spurious
+ // to new value jump. If they are in the path, bail out.
+ // KILL sets kill flag on the opcode. It also sets up a
+ // single register, out of pair.
+ // %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
+ // %R0<def> = KILL %R0, %D0<imp-use,kill>
+ // %P0<def> = CMPEQri %R0<kill>, 0
+ // PHI can be anything after RA.
+ // COPY can remateriaze things in between feeder, compare and nvj.
+ if (MII->getOpcode() == TargetOpcode::KILL ||
+ MII->getOpcode() == TargetOpcode::PHI ||
+ MII->getOpcode() == TargetOpcode::COPY)
+ return false;
+
+ // The following pseudo Hexagon instructions sets "use" and "def"
+ // of registers by individual passes in the backend. At this time,
+ // we don't know the scope of usage and definitions of these
+ // instructions.
+ if (MII->getOpcode() == Hexagon::TFR_condset_rr ||
+ MII->getOpcode() == Hexagon::TFR_condset_ii ||
+ MII->getOpcode() == Hexagon::TFR_condset_ri ||
+ MII->getOpcode() == Hexagon::TFR_condset_ir ||
+ MII->getOpcode() == Hexagon::LDriw_pred ||
+ MII->getOpcode() == Hexagon::STriw_pred)
+ return false;
+ }
+
+ return true;
+}
+
+static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
+ const TargetRegisterInfo *TRI,
+ MachineBasicBlock::iterator II,
+ unsigned pReg,
+ bool secondReg,
+ bool optLocation,
+ MachineBasicBlock::iterator end,
+ MachineFunction &MF) {
+
+ MachineInstr *MI = II;
+
+ // If the second operand of the compare is an imm, make sure it's in the
+ // range specified by the arch.
+ if (!secondReg) {
+ int64_t v = MI->getOperand(2).getImm();
+
+ if (!(isUInt<5>(v) ||
+ ((MI->getOpcode() == Hexagon::CMPEQri ||
+ MI->getOpcode() == Hexagon::CMPGTri) &&
+ (v == -1))))
+ return false;
+ }
+
+ unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
+ cmpReg1 = MI->getOperand(1).getReg();
+
+ if (secondReg) {
+ cmpOp2 = MI->getOperand(2).getReg();
+
+ // Make sure that that second register is not from COPY
+ // At machine code level, we don't need this, but if we decide
+ // to move new value jump prior to RA, we would be needing this.
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ if (secondReg && !TargetRegisterInfo::isPhysicalRegister(cmpOp2)) {
+ MachineInstr *def = MRI.getVRegDef(cmpOp2);
+ if (def->getOpcode() == TargetOpcode::COPY)
+ return false;
+ }
+ }
+
+ // Walk the instructions after the compare (predicate def) to the jump,
+ // and satisfy the following conditions.
+ ++II ;
+ for (MachineBasicBlock::iterator localII = II; localII != end;
+ ++localII) {
+
+ // Check 1.
+ // If "common" checks fail, bail out.
+ if (!commonChecksToProhibitNewValueJump(optLocation, localII))
+ return false;
+
+ // Check 2.
+ // If there is a def or use of predicate (result of compare), bail out.
+ if (localII->modifiesRegister(pReg, TRI) ||
+ localII->readsRegister(pReg, TRI))
+ return false;
+
+ // Check 3.
+ // If there is a def of any of the use of the compare (operands of compare),
+ // bail out.
+ // Eg.
+ // p0 = cmp.eq(r2, r0)
+ // r2 = r4
+ // if (p0.new) jump:t .LBB28_3
+ if (localII->modifiesRegister(cmpReg1, TRI) ||
+ (secondReg && localII->modifiesRegister(cmpOp2, TRI)))
+ return false;
+ }
+ return true;
+}
+
+// Given a compare operator, return a matching New Value Jump
+// compare operator. Make sure that MI here is included in
+// HexagonInstrInfo.cpp::isNewValueJumpCandidate
+static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
+ bool secondRegNewified,
+ MachineBasicBlock *jmpTarget,
+ const MachineBranchProbabilityInfo
+ *MBPI) {
+ bool taken = false;
+ MachineBasicBlock *Src = MI->getParent();
+ const BranchProbability Prediction =
+ MBPI->getEdgeProbability(Src, jmpTarget);
+
+ if (Prediction >= BranchProbability(1,2))
+ taken = true;
+
+ switch (MI->getOpcode()) {
+ case Hexagon::CMPEQrr:
+ return taken ? Hexagon::CMPEQrr_t_Jumpnv_t_V4
+ : Hexagon::CMPEQrr_t_Jumpnv_nt_V4;
+
+ case Hexagon::CMPEQri: {
+ if (reg >= 0)
+ return taken ? Hexagon::CMPEQri_t_Jumpnv_t_V4
+ : Hexagon::CMPEQri_t_Jumpnv_nt_V4;
+ else
+ return taken ? Hexagon::CMPEQn1_t_Jumpnv_t_V4
+ : Hexagon::CMPEQn1_t_Jumpnv_nt_V4;
+ }
+
+ case Hexagon::CMPGTrr: {
+ if (secondRegNewified)
+ return taken ? Hexagon::CMPLTrr_t_Jumpnv_t_V4
+ : Hexagon::CMPLTrr_t_Jumpnv_nt_V4;
+ else
+ return taken ? Hexagon::CMPGTrr_t_Jumpnv_t_V4
+ : Hexagon::CMPGTrr_t_Jumpnv_nt_V4;
+ }
+
+ case Hexagon::CMPGTri: {
+ if (reg >= 0)
+ return taken ? Hexagon::CMPGTri_t_Jumpnv_t_V4
+ : Hexagon::CMPGTri_t_Jumpnv_nt_V4;
+ else
+ return taken ? Hexagon::CMPGTn1_t_Jumpnv_t_V4
+ : Hexagon::CMPGTn1_t_Jumpnv_nt_V4;
+ }
+
+ case Hexagon::CMPGTUrr: {
+ if (secondRegNewified)
+ return taken ? Hexagon::CMPLTUrr_t_Jumpnv_t_V4
+ : Hexagon::CMPLTUrr_t_Jumpnv_nt_V4;
+ else
+ return taken ? Hexagon::CMPGTUrr_t_Jumpnv_t_V4
+ : Hexagon::CMPGTUrr_t_Jumpnv_nt_V4;
+ }
+
+ case Hexagon::CMPGTUri:
+ return taken ? Hexagon::CMPGTUri_t_Jumpnv_t_V4
+ : Hexagon::CMPGTUri_t_Jumpnv_nt_V4;
+
+ default:
+ llvm_unreachable("Could not find matching New Value Jump instruction.");
+ }
+ // return *some value* to avoid compiler warning
+ return 0;
+}
+
+bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
+
+ DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
+ << "********** Function: "
+ << MF.getName() << "\n");
+
+#if 0
+ // for now disable this, if we move NewValueJump before register
+ // allocation we need this information.
+ LiveVariables &LVs = getAnalysis<LiveVariables>();
+#endif
+
+ QII = static_cast<const HexagonInstrInfo *>(MF.getTarget().getInstrInfo());
+ QRI =
+ static_cast<const HexagonRegisterInfo *>(MF.getTarget().getRegisterInfo());
+ MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+
+ if (!QRI->Subtarget.hasV4TOps() ||
+ DisableNewValueJumps) {
+ return false;
+ }
+
+ int nvjCount = DbgNVJCount;
+ int nvjGenerated = 0;
+
+ // Loop through all the bb's of the function
+ for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
+ MBBb != MBBe; ++MBBb) {
+ MachineBasicBlock* MBB = MBBb;
+
+ DEBUG(dbgs() << "** dumping bb ** "
+ << MBB->getNumber() << "\n");
+ DEBUG(MBB->dump());
+ DEBUG(dbgs() << "\n" << "********** dumping instr bottom up **********\n");
+ bool foundJump = false;
+ bool foundCompare = false;
+ bool invertPredicate = false;
+ unsigned predReg = 0; // predicate reg of the jump.
+ unsigned cmpReg1 = 0;
+ int cmpOp2 = 0;
+ bool MO1IsKill = false;
+ bool MO2IsKill = false;
+ MachineBasicBlock::iterator jmpPos;
+ MachineBasicBlock::iterator cmpPos;
+ MachineInstr *cmpInstr = nullptr, *jmpInstr = nullptr;
+ MachineBasicBlock *jmpTarget = nullptr;
+ bool afterRA = false;
+ bool isSecondOpReg = false;
+ bool isSecondOpNewified = false;
+ // Traverse the basic block - bottom up
+ for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
+ MII != E;) {
+ MachineInstr *MI = --MII;
+ if (MI->isDebugValue()) {
+ continue;
+ }
+
+ if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
+ break;
+
+ DEBUG(dbgs() << "Instr: "; MI->dump(); dbgs() << "\n");
+
+ if (!foundJump &&
+ (MI->getOpcode() == Hexagon::JMP_t ||
+ MI->getOpcode() == Hexagon::JMP_f ||
+ MI->getOpcode() == Hexagon::JMP_tnew_t ||
+ MI->getOpcode() == Hexagon::JMP_tnew_nt ||
+ MI->getOpcode() == Hexagon::JMP_fnew_t ||
+ MI->getOpcode() == Hexagon::JMP_fnew_nt)) {
+ // This is where you would insert your compare and
+ // instr that feeds compare
+ jmpPos = MII;
+ jmpInstr = MI;
+ predReg = MI->getOperand(0).getReg();
+ afterRA = TargetRegisterInfo::isPhysicalRegister(predReg);
+
+ // If ifconverter had not messed up with the kill flags of the
+ // operands, the following check on the kill flag would suffice.
+ // if(!jmpInstr->getOperand(0).isKill()) break;
+
+ // This predicate register is live out out of BB
+ // this would only work if we can actually use Live
+ // variable analysis on phy regs - but LLVM does not
+ // provide LV analysis on phys regs.
+ //if(LVs.isLiveOut(predReg, *MBB)) break;
+
+ // Get all the successors of this block - which will always
+ // be 2. Check if the predicate register is live in in those
+ // successor. If yes, we can not delete the predicate -
+ // I am doing this only because LLVM does not provide LiveOut
+ // at the BB level.
+ bool predLive = false;
+ for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
+ SIE = MBB->succ_end(); SI != SIE; ++SI) {
+ MachineBasicBlock* succMBB = *SI;
+ if (succMBB->isLiveIn(predReg)) {
+ predLive = true;
+ }
+ }
+ if (predLive)
+ break;
+
+ jmpTarget = MI->getOperand(1).getMBB();
+ foundJump = true;
+ if (MI->getOpcode() == Hexagon::JMP_f ||
+ MI->getOpcode() == Hexagon::JMP_fnew_t ||
+ MI->getOpcode() == Hexagon::JMP_fnew_nt) {
+ invertPredicate = true;
+ }
+ continue;
+ }
+
+ // No new value jump if there is a barrier. A barrier has to be in its
+ // own packet. A barrier has zero operands. We conservatively bail out
+ // here if we see any instruction with zero operands.
+ if (foundJump && MI->getNumOperands() == 0)
+ break;
+
+ if (foundJump &&
+ !foundCompare &&
+ MI->getOperand(0).isReg() &&
+ MI->getOperand(0).getReg() == predReg) {
+
+ // Not all compares can be new value compare. Arch Spec: 7.6.1.1
+ if (QII->isNewValueJumpCandidate(MI)) {
+
+ assert((MI->getDesc().isCompare()) &&
+ "Only compare instruction can be collapsed into New Value Jump");
+ isSecondOpReg = MI->getOperand(2).isReg();
+
+ if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
+ afterRA, jmpPos, MF))
+ break;
+
+ cmpInstr = MI;
+ cmpPos = MII;
+ foundCompare = true;
+
+ // We need cmpReg1 and cmpOp2(imm or reg) while building
+ // new value jump instruction.
+ cmpReg1 = MI->getOperand(1).getReg();
+ if (MI->getOperand(1).isKill())
+ MO1IsKill = true;
+
+ if (isSecondOpReg) {
+ cmpOp2 = MI->getOperand(2).getReg();
+ if (MI->getOperand(2).isKill())
+ MO2IsKill = true;
+ } else
+ cmpOp2 = MI->getOperand(2).getImm();
+ continue;
+ }
+ }
+
+ if (foundCompare && foundJump) {
+
+ // If "common" checks fail, bail out on this BB.
+ if (!commonChecksToProhibitNewValueJump(afterRA, MII))
+ break;
+
+ bool foundFeeder = false;
+ MachineBasicBlock::iterator feederPos = MII;
+ if (MI->getOperand(0).isReg() &&
+ MI->getOperand(0).isDef() &&
+ (MI->getOperand(0).getReg() == cmpReg1 ||
+ (isSecondOpReg &&
+ MI->getOperand(0).getReg() == (unsigned) cmpOp2))) {
+
+ unsigned feederReg = MI->getOperand(0).getReg();
+
+ // First try to see if we can get the feeder from the first operand
+ // of the compare. If we can not, and if secondOpReg is true
+ // (second operand of the compare is also register), try that one.
+ // TODO: Try to come up with some heuristic to figure out which
+ // feeder would benefit.
+
+ if (feederReg == cmpReg1) {
+ if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
+ if (!isSecondOpReg)
+ break;
+ else
+ continue;
+ } else
+ foundFeeder = true;
+ }
+
+ if (!foundFeeder &&
+ isSecondOpReg &&
+ feederReg == (unsigned) cmpOp2)
+ if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
+ break;
+
+ if (isSecondOpReg) {
+ // In case of CMPLT, or CMPLTU, or EQ with the second register
+ // to newify, swap the operands.
+ if (cmpInstr->getOpcode() == Hexagon::CMPEQrr &&
+ feederReg == (unsigned) cmpOp2) {
+ unsigned tmp = cmpReg1;
+ bool tmpIsKill = MO1IsKill;
+ cmpReg1 = cmpOp2;
+ MO1IsKill = MO2IsKill;
+ cmpOp2 = tmp;
+ MO2IsKill = tmpIsKill;
+ }
+
+ // Now we have swapped the operands, all we need to check is,
+ // if the second operand (after swap) is the feeder.
+ // And if it is, make a note.
+ if (feederReg == (unsigned)cmpOp2)
+ isSecondOpNewified = true;
+ }
+
+ // Now that we are moving feeder close the jump,
+ // make sure we are respecting the kill values of
+ // the operands of the feeder.
+
+ bool updatedIsKill = false;
+ for (unsigned i = 0; i < MI->getNumOperands(); i++) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isUse()) {
+ unsigned feederReg = MO.getReg();
+ for (MachineBasicBlock::iterator localII = feederPos,
+ end = jmpPos; localII != end; localII++) {
+ MachineInstr *localMI = localII;
+ for (unsigned j = 0; j < localMI->getNumOperands(); j++) {
+ MachineOperand &localMO = localMI->getOperand(j);
+ if (localMO.isReg() && localMO.isUse() &&
+ localMO.isKill() && feederReg == localMO.getReg()) {
+ // We found that there is kill of a use register
+ // Set up a kill flag on the register
+ localMO.setIsKill(false);
+ MO.setIsKill();
+ updatedIsKill = true;
+ break;
+ }
+ }
+ if (updatedIsKill) break;
+ }
+ }
+ if (updatedIsKill) break;
+ }
+
+ MBB->splice(jmpPos, MI->getParent(), MI);
+ MBB->splice(jmpPos, MI->getParent(), cmpInstr);
+ DebugLoc dl = MI->getDebugLoc();
+ MachineInstr *NewMI;
+
+ assert((QII->isNewValueJumpCandidate(cmpInstr)) &&
+ "This compare is not a New Value Jump candidate.");
+ unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
+ isSecondOpNewified,
+ jmpTarget, MBPI);
+ if (invertPredicate)
+ opc = QII->getInvertedPredicatedOpcode(opc);
+
+ if (isSecondOpReg)
+ NewMI = BuildMI(*MBB, jmpPos, dl,
+ QII->get(opc))
+ .addReg(cmpReg1, getKillRegState(MO1IsKill))
+ .addReg(cmpOp2, getKillRegState(MO2IsKill))
+ .addMBB(jmpTarget);
+
+ else if ((cmpInstr->getOpcode() == Hexagon::CMPEQri ||
+ cmpInstr->getOpcode() == Hexagon::CMPGTri) &&
+ cmpOp2 == -1 )
+ // Corresponding new-value compare jump instructions don't have the
+ // operand for -1 immediate value.
+ NewMI = BuildMI(*MBB, jmpPos, dl,
+ QII->get(opc))
+ .addReg(cmpReg1, getKillRegState(MO1IsKill))
+ .addMBB(jmpTarget);
+
+ else
+ NewMI = BuildMI(*MBB, jmpPos, dl,
+ QII->get(opc))
+ .addReg(cmpReg1, getKillRegState(MO1IsKill))
+ .addImm(cmpOp2)
+ .addMBB(jmpTarget);
+
+ assert(NewMI && "New Value Jump Instruction Not created!");
+ (void)NewMI;
+ if (cmpInstr->getOperand(0).isReg() &&
+ cmpInstr->getOperand(0).isKill())
+ cmpInstr->getOperand(0).setIsKill(false);
+ if (cmpInstr->getOperand(1).isReg() &&
+ cmpInstr->getOperand(1).isKill())
+ cmpInstr->getOperand(1).setIsKill(false);
+ cmpInstr->eraseFromParent();
+ jmpInstr->eraseFromParent();
+ ++nvjGenerated;
+ ++NumNVJGenerated;
+ break;
+ }
+ }
+ }
+ }
+
+ return true;
+
+}
+
+FunctionPass *llvm::createHexagonNewValueJump() {
+ return new HexagonNewValueJump();
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonOperands.td b/contrib/llvm/lib/Target/Hexagon/HexagonOperands.td
new file mode 100644
index 0000000..c79d78f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonOperands.td
@@ -0,0 +1,858 @@
+//===- HexagonOperands.td - Hexagon immediate processing -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illnois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// Immediate operands.
+
+let PrintMethod = "printImmOperand" in {
+ // f32Ext type is used to identify constant extended floating point immediates.
+ def f32Ext : Operand<f32>;
+ def s32Imm : Operand<i32>;
+ def s26_6Imm : Operand<i32>;
+ def s16Imm : Operand<i32>;
+ def s12Imm : Operand<i32>;
+ def s11Imm : Operand<i32>;
+ def s11_0Imm : Operand<i32>;
+ def s11_1Imm : Operand<i32>;
+ def s11_2Imm : Operand<i32>;
+ def s11_3Imm : Operand<i32>;
+ def s10Imm : Operand<i32>;
+ def s9Imm : Operand<i32>;
+ def m9Imm : Operand<i32>;
+ def s8Imm : Operand<i32>;
+ def s8Imm64 : Operand<i64>;
+ def s6Imm : Operand<i32>;
+ def s4Imm : Operand<i32>;
+ def s4_0Imm : Operand<i32>;
+ def s4_1Imm : Operand<i32>;
+ def s4_2Imm : Operand<i32>;
+ def s4_3Imm : Operand<i32>;
+ def u64Imm : Operand<i64>;
+ def u32Imm : Operand<i32>;
+ def u26_6Imm : Operand<i32>;
+ def u16Imm : Operand<i32>;
+ def u16_0Imm : Operand<i32>;
+ def u16_1Imm : Operand<i32>;
+ def u16_2Imm : Operand<i32>;
+ def u11_3Imm : Operand<i32>;
+ def u10Imm : Operand<i32>;
+ def u9Imm : Operand<i32>;
+ def u8Imm : Operand<i32>;
+ def u7Imm : Operand<i32>;
+ def u6Imm : Operand<i32>;
+ def u6_0Imm : Operand<i32>;
+ def u6_1Imm : Operand<i32>;
+ def u6_2Imm : Operand<i32>;
+ def u6_3Imm : Operand<i32>;
+ def u5Imm : Operand<i32>;
+ def u4Imm : Operand<i32>;
+ def u3Imm : Operand<i32>;
+ def u2Imm : Operand<i32>;
+ def u1Imm : Operand<i32>;
+ def n8Imm : Operand<i32>;
+ def m6Imm : Operand<i32>;
+}
+
+let PrintMethod = "printNOneImmOperand" in
+def nOneImm : Operand<i32>;
+
+//
+// Immediate predicates
+//
+def s32ImmPred : PatLeaf<(i32 imm), [{
+ // s32ImmPred predicate - True if the immediate fits in a 32-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<32>(v);
+}]>;
+
+def s32_24ImmPred : PatLeaf<(i32 imm), [{
+ // s32_24ImmPred predicate - True if the immediate fits in a 32-bit sign
+ // extended field that is a multiple of 0x1000000.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<32,24>(v);
+}]>;
+
+def s32_16s8ImmPred : PatLeaf<(i32 imm), [{
+ // s32_16s8ImmPred predicate - True if the immediate fits in a 32-bit sign
+ // extended field that is a multiple of 0x10000.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<24,16>(v);
+}]>;
+
+def s26_6ImmPred : PatLeaf<(i32 imm), [{
+ // s26_6ImmPred predicate - True if the immediate fits in a 32-bit
+ // sign extended field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<26,6>(v);
+}]>;
+
+
+def s16ImmPred : PatLeaf<(i32 imm), [{
+ // s16ImmPred predicate - True if the immediate fits in a 16-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<16>(v);
+}]>;
+
+
+def s13ImmPred : PatLeaf<(i32 imm), [{
+ // s13ImmPred predicate - True if the immediate fits in a 13-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<13>(v);
+}]>;
+
+
+def s12ImmPred : PatLeaf<(i32 imm), [{
+ // s12ImmPred predicate - True if the immediate fits in a 12-bit
+ // sign extended field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<12>(v);
+}]>;
+
+def s11_0ImmPred : PatLeaf<(i32 imm), [{
+ // s11_0ImmPred predicate - True if the immediate fits in a 11-bit
+ // sign extended field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<11>(v);
+}]>;
+
+
+def s11_1ImmPred : PatLeaf<(i32 imm), [{
+ // s11_1ImmPred predicate - True if the immediate fits in a 12-bit
+ // sign extended field and is a multiple of 2.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<11,1>(v);
+}]>;
+
+
+def s11_2ImmPred : PatLeaf<(i32 imm), [{
+ // s11_2ImmPred predicate - True if the immediate fits in a 13-bit
+ // sign extended field and is a multiple of 4.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<11,2>(v);
+}]>;
+
+
+def s11_3ImmPred : PatLeaf<(i32 imm), [{
+ // s11_3ImmPred predicate - True if the immediate fits in a 14-bit
+ // sign extended field and is a multiple of 8.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<11,3>(v);
+}]>;
+
+
+def s10ImmPred : PatLeaf<(i32 imm), [{
+ // s10ImmPred predicate - True if the immediate fits in a 10-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<10>(v);
+}]>;
+
+
+def s9ImmPred : PatLeaf<(i32 imm), [{
+ // s9ImmPred predicate - True if the immediate fits in a 9-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<9>(v);
+}]>;
+
+def m9ImmPred : PatLeaf<(i32 imm), [{
+ // m9ImmPred predicate - True if the immediate fits in a 9-bit magnitude
+ // field. The range of m9 is -255 to 255.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<9>(v) && (v != -256);
+}]>;
+
+def s8ImmPred : PatLeaf<(i32 imm), [{
+ // s8ImmPred predicate - True if the immediate fits in a 8-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<8>(v);
+}]>;
+
+
+def s8Imm64Pred : PatLeaf<(i64 imm), [{
+ // s8ImmPred predicate - True if the immediate fits in a 8-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<8>(v);
+}]>;
+
+
+def s6ImmPred : PatLeaf<(i32 imm), [{
+ // s6ImmPred predicate - True if the immediate fits in a 6-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<6>(v);
+}]>;
+
+
+def s4_0ImmPred : PatLeaf<(i32 imm), [{
+ // s4_0ImmPred predicate - True if the immediate fits in a 4-bit sign extended
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isInt<4>(v);
+}]>;
+
+
+def s4_1ImmPred : PatLeaf<(i32 imm), [{
+ // s4_1ImmPred predicate - True if the immediate fits in a 4-bit sign extended
+ // field of 2.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<4,1>(v);
+}]>;
+
+
+def s4_2ImmPred : PatLeaf<(i32 imm), [{
+ // s4_2ImmPred predicate - True if the immediate fits in a 4-bit sign extended
+ // field that is a multiple of 4.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<4,2>(v);
+}]>;
+
+
+def s4_3ImmPred : PatLeaf<(i32 imm), [{
+ // s4_3ImmPred predicate - True if the immediate fits in a 4-bit sign extended
+ // field that is a multiple of 8.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedInt<4,3>(v);
+}]>;
+
+
+def u64ImmPred : PatLeaf<(i64 imm), [{
+ // Adding "N ||" to suppress gcc unused warning.
+ return (N || true);
+}]>;
+
+def u32ImmPred : PatLeaf<(i32 imm), [{
+ // u32ImmPred predicate - True if the immediate fits in a 32-bit field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<32>(v);
+}]>;
+
+def u26_6ImmPred : PatLeaf<(i32 imm), [{
+ // u26_6ImmPred - True if the immediate fits in a 32-bit field and
+ // is a multiple of 64.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedUInt<26,6>(v);
+}]>;
+
+def u16ImmPred : PatLeaf<(i32 imm), [{
+ // u16ImmPred predicate - True if the immediate fits in a 16-bit unsigned
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<16>(v);
+}]>;
+
+def u16_s8ImmPred : PatLeaf<(i32 imm), [{
+ // u16_s8ImmPred predicate - True if the immediate fits in a 16-bit sign
+ // extended s8 field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedUInt<16,8>(v);
+}]>;
+
+def u9ImmPred : PatLeaf<(i32 imm), [{
+ // u9ImmPred predicate - True if the immediate fits in a 9-bit unsigned
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<9>(v);
+}]>;
+
+
+def u8ImmPred : PatLeaf<(i32 imm), [{
+ // u8ImmPred predicate - True if the immediate fits in a 8-bit unsigned
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<8>(v);
+}]>;
+
+def u7StrictPosImmPred : ImmLeaf<i32, [{
+ // u7StrictPosImmPred predicate - True if the immediate fits in an 7-bit
+ // unsigned field and is strictly greater than 0.
+ return isUInt<7>(Imm) && Imm > 0;
+}]>;
+
+def u7ImmPred : PatLeaf<(i32 imm), [{
+ // u7ImmPred predicate - True if the immediate fits in a 7-bit unsigned
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<7>(v);
+}]>;
+
+
+def u6ImmPred : PatLeaf<(i32 imm), [{
+ // u6ImmPred predicate - True if the immediate fits in a 6-bit unsigned
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<6>(v);
+}]>;
+
+def u6_0ImmPred : PatLeaf<(i32 imm), [{
+ // u6_0ImmPred predicate - True if the immediate fits in a 6-bit unsigned
+ // field. Same as u6ImmPred.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<6>(v);
+}]>;
+
+def u6_1ImmPred : PatLeaf<(i32 imm), [{
+ // u6_1ImmPred predicate - True if the immediate fits in a 7-bit unsigned
+ // field that is 1 bit alinged - multiple of 2.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedUInt<6,1>(v);
+}]>;
+
+def u6_2ImmPred : PatLeaf<(i32 imm), [{
+ // u6_2ImmPred predicate - True if the immediate fits in a 8-bit unsigned
+ // field that is 2 bits alinged - multiple of 4.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedUInt<6,2>(v);
+}]>;
+
+def u6_3ImmPred : PatLeaf<(i32 imm), [{
+ // u6_3ImmPred predicate - True if the immediate fits in a 9-bit unsigned
+ // field that is 3 bits alinged - multiple of 8.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedUInt<6,3>(v);
+}]>;
+
+def u5ImmPred : PatLeaf<(i32 imm), [{
+ // u5ImmPred predicate - True if the immediate fits in a 5-bit unsigned
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<5>(v);
+}]>;
+
+
+def u3ImmPred : PatLeaf<(i32 imm), [{
+ // u3ImmPred predicate - True if the immediate fits in a 3-bit unsigned
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<3>(v);
+}]>;
+
+
+def u2ImmPred : PatLeaf<(i32 imm), [{
+ // u2ImmPred predicate - True if the immediate fits in a 2-bit unsigned
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<2>(v);
+}]>;
+
+
+def u1ImmPred : PatLeaf<(i1 imm), [{
+ // u1ImmPred predicate - True if the immediate fits in a 1-bit unsigned
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<1>(v);
+}]>;
+
+def m5BImmPred : PatLeaf<(i32 imm), [{
+ // m5BImmPred predicate - True if the (char) number is in range -1 .. -31
+ // and will fit in a 5 bit field when made positive, for use in memops.
+ // this is specific to the zero extending of a negative by CombineInstr
+ int8_t v = (int8_t)N->getSExtValue();
+ return (-31 <= v && v <= -1);
+}]>;
+
+def m5HImmPred : PatLeaf<(i32 imm), [{
+ // m5HImmPred predicate - True if the (short) number is in range -1 .. -31
+ // and will fit in a 5 bit field when made positive, for use in memops.
+ // this is specific to the zero extending of a negative by CombineInstr
+ int16_t v = (int16_t)N->getSExtValue();
+ return (-31 <= v && v <= -1);
+}]>;
+
+def m5ImmPred : PatLeaf<(i32 imm), [{
+ // m5ImmPred predicate - True if the number is in range -1 .. -31
+ // and will fit in a 5 bit field when made positive, for use in memops.
+ int64_t v = (int64_t)N->getSExtValue();
+ return (-31 <= v && v <= -1);
+}]>;
+
+//InN means negative integers in [-(2^N - 1), 0]
+def n8ImmPred : PatLeaf<(i32 imm), [{
+ // n8ImmPred predicate - True if the immediate fits in a 8-bit signed
+ // field.
+ int64_t v = (int64_t)N->getSExtValue();
+ return (-255 <= v && v <= 0);
+}]>;
+
+def nOneImmPred : PatLeaf<(i32 imm), [{
+ // nOneImmPred predicate - True if the immediate is -1.
+ int64_t v = (int64_t)N->getSExtValue();
+ return (-1 == v);
+}]>;
+
+def Set5ImmPred : PatLeaf<(i32 imm), [{
+ // Set5ImmPred predicate - True if the number is in the series of values.
+ // [ 2^0, 2^1, ... 2^31 ]
+ // For use in setbit immediate.
+ uint32_t v = (int32_t)N->getSExtValue();
+ // Constrain to 32 bits, and then check for single bit.
+ return ImmIsSingleBit(v);
+}]>;
+
+def Clr5ImmPred : PatLeaf<(i32 imm), [{
+ // Clr5ImmPred predicate - True if the number is in the series of
+ // bit negated values.
+ // [ 2^0, 2^1, ... 2^31 ]
+ // For use in clrbit immediate.
+ // Note: we are bit NOTing the value.
+ uint32_t v = ~ (int32_t)N->getSExtValue();
+ // Constrain to 32 bits, and then check for single bit.
+ return ImmIsSingleBit(v);
+}]>;
+
+def SetClr5ImmPred : PatLeaf<(i32 imm), [{
+ // SetClr5ImmPred predicate - True if the immediate is in range 0..31.
+ int32_t v = (int32_t)N->getSExtValue();
+ return (v >= 0 && v <= 31);
+}]>;
+
+def Set4ImmPred : PatLeaf<(i32 imm), [{
+ // Set4ImmPred predicate - True if the number is in the series of values:
+ // [ 2^0, 2^1, ... 2^15 ].
+ // For use in setbit immediate.
+ uint16_t v = (int16_t)N->getSExtValue();
+ // Constrain to 16 bits, and then check for single bit.
+ return ImmIsSingleBit(v);
+}]>;
+
+def Clr4ImmPred : PatLeaf<(i32 imm), [{
+ // Clr4ImmPred predicate - True if the number is in the series of
+ // bit negated values:
+ // [ 2^0, 2^1, ... 2^15 ].
+ // For use in setbit and clrbit immediate.
+ uint16_t v = ~ (int16_t)N->getSExtValue();
+ // Constrain to 16 bits, and then check for single bit.
+ return ImmIsSingleBit(v);
+}]>;
+
+def SetClr4ImmPred : PatLeaf<(i32 imm), [{
+ // SetClr4ImmPred predicate - True if the immediate is in the range 0..15.
+ int16_t v = (int16_t)N->getSExtValue();
+ return (v >= 0 && v <= 15);
+}]>;
+
+def Set3ImmPred : PatLeaf<(i32 imm), [{
+ // Set3ImmPred predicate - True if the number is in the series of values:
+ // [ 2^0, 2^1, ... 2^7 ].
+ // For use in setbit immediate.
+ uint8_t v = (int8_t)N->getSExtValue();
+ // Constrain to 8 bits, and then check for single bit.
+ return ImmIsSingleBit(v);
+}]>;
+
+def Clr3ImmPred : PatLeaf<(i32 imm), [{
+ // Clr3ImmPred predicate - True if the number is in the series of
+ // bit negated values:
+ // [ 2^0, 2^1, ... 2^7 ].
+ // For use in setbit and clrbit immediate.
+ uint8_t v = ~ (int8_t)N->getSExtValue();
+ // Constrain to 8 bits, and then check for single bit.
+ return ImmIsSingleBit(v);
+}]>;
+
+def SetClr3ImmPred : PatLeaf<(i32 imm), [{
+ // SetClr3ImmPred predicate - True if the immediate is in the range 0..7.
+ int8_t v = (int8_t)N->getSExtValue();
+ return (v >= 0 && v <= 7);
+}]>;
+
+
+// Extendable immediate operands.
+
+let PrintMethod = "printExtOperand" in {
+ def s16Ext : Operand<i32>;
+ def s12Ext : Operand<i32>;
+ def s10Ext : Operand<i32>;
+ def s9Ext : Operand<i32>;
+ def s8Ext : Operand<i32>;
+ def s6Ext : Operand<i32>;
+ def s11_0Ext : Operand<i32>;
+ def s11_1Ext : Operand<i32>;
+ def s11_2Ext : Operand<i32>;
+ def s11_3Ext : Operand<i32>;
+ def u6Ext : Operand<i32>;
+ def u7Ext : Operand<i32>;
+ def u8Ext : Operand<i32>;
+ def u9Ext : Operand<i32>;
+ def u10Ext : Operand<i32>;
+ def u6_0Ext : Operand<i32>;
+ def u6_1Ext : Operand<i32>;
+ def u6_2Ext : Operand<i32>;
+ def u6_3Ext : Operand<i32>;
+}
+
+let PrintMethod = "printImmOperand" in
+def u0AlwaysExt : Operand<i32>;
+
+// Predicates for constant extendable operands
+def s16ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 16-bit sign extended field.
+ return isInt<16>(v);
+ else {
+ if (isInt<16>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit signed field.
+ return isConstExtProfitable(Node) && isInt<32>(v);
+ }
+}]>;
+
+def s10ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 10-bit sign extended field.
+ return isInt<10>(v);
+ else {
+ if (isInt<10>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit signed field.
+ return isConstExtProfitable(Node) && isInt<32>(v);
+ }
+}]>;
+
+def s9ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 9-bit sign extended field.
+ return isInt<9>(v);
+ else {
+ if (isInt<9>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit unsigned field.
+ return isConstExtProfitable(Node) && isInt<32>(v);
+ }
+}]>;
+
+def s8ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 8-bit sign extended field.
+ return isInt<8>(v);
+ else {
+ if (isInt<8>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit signed field.
+ return isConstExtProfitable(Node) && isInt<32>(v);
+ }
+}]>;
+
+def s8_16ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate fits in a 8-bit sign extended field.
+ return isInt<8>(v);
+ else {
+ if (isInt<8>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can't fit in a 16-bit signed field. This is required to avoid
+ // unnecessary constant extenders.
+ return isConstExtProfitable(Node) && !isInt<16>(v);
+ }
+}]>;
+
+def s6ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 6-bit sign extended field.
+ return isInt<6>(v);
+ else {
+ if (isInt<6>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit unsigned field.
+ return isConstExtProfitable(Node) && isInt<32>(v);
+ }
+}]>;
+
+def s6_16ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate fits in a 6-bit sign extended field.
+ return isInt<6>(v);
+ else {
+ if (isInt<6>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can't fit in a 16-bit signed field. This is required to avoid
+ // unnecessary constant extenders.
+ return isConstExtProfitable(Node) && !isInt<16>(v);
+ }
+}]>;
+
+def s6_10ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 6-bit sign extended field.
+ return isInt<6>(v);
+ else {
+ if (isInt<6>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can't fit in a 10-bit signed field. This is required to avoid
+ // unnecessary constant extenders.
+ return isConstExtProfitable(Node) && !isInt<10>(v);
+ }
+}]>;
+
+def s11_0ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 11-bit sign extended field.
+ return isShiftedInt<11,0>(v);
+ else {
+ if (isInt<11>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit signed field.
+ return isConstExtProfitable(Node) && isInt<32>(v);
+ }
+}]>;
+
+def s11_1ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 12-bit sign extended field and
+ // is 2 byte aligned.
+ return isShiftedInt<11,1>(v);
+ else {
+ if (isInt<12>(v))
+ return isShiftedInt<11,1>(v);
+
+ // Return true if extending this immediate is profitable and the low 1 bit
+ // is zero (2-byte aligned).
+ return isConstExtProfitable(Node) && isInt<32>(v) && ((v % 2) == 0);
+ }
+}]>;
+
+def s11_2ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 13-bit sign extended field and
+ // is 4-byte aligned.
+ return isShiftedInt<11,2>(v);
+ else {
+ if (isInt<13>(v))
+ return isShiftedInt<11,2>(v);
+
+ // Return true if extending this immediate is profitable and the low 2-bits
+ // are zero (4-byte aligned).
+ return isConstExtProfitable(Node) && isInt<32>(v) && ((v % 4) == 0);
+ }
+}]>;
+
+def s11_3ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 14-bit sign extended field and
+ // is 8-byte aligned.
+ return isShiftedInt<11,3>(v);
+ else {
+ if (isInt<14>(v))
+ return isShiftedInt<11,3>(v);
+
+ // Return true if extending this immediate is profitable and the low 3-bits
+ // are zero (8-byte aligned).
+ return isConstExtProfitable(Node) && isInt<32>(v) && ((v % 8) == 0);
+ }
+}]>;
+
+def u0AlwaysExtPred : PatLeaf<(i32 imm), [{
+ // Predicate for an unsigned 32-bit value that always needs to be extended.
+ if (Subtarget.hasV4TOps()) {
+ if (isConstExtProfitable(Node)) {
+ int64_t v = (int64_t)N->getSExtValue();
+ return isUInt<32>(v);
+ }
+ }
+ return false;
+}]>;
+
+def u6ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 6-bit unsigned field.
+ return isUInt<6>(v);
+ else {
+ if (isUInt<6>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit unsigned field.
+ return isConstExtProfitable(Node) && isUInt<32>(v);
+ }
+}]>;
+
+def u7ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 7-bit unsigned field.
+ return isUInt<7>(v);
+ else {
+ if (isUInt<7>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit unsigned field.
+ return isConstExtProfitable(Node) && isUInt<32>(v);
+ }
+}]>;
+
+def u8ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 8-bit unsigned field.
+ return isUInt<8>(v);
+ else {
+ if (isUInt<8>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit unsigned field.
+ return isConstExtProfitable(Node) && isUInt<32>(v);
+ }
+}]>;
+
+def u9ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 9-bit unsigned field.
+ return isUInt<9>(v);
+ else {
+ if (isUInt<9>(v))
+ return true;
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit unsigned field.
+ return isConstExtProfitable(Node) && isUInt<32>(v);
+ }
+}]>;
+
+def u6_1ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 7-bit unsigned field and
+ // is 2-byte aligned.
+ return isShiftedUInt<6,1>(v);
+ else {
+ if (isUInt<7>(v))
+ return isShiftedUInt<6,1>(v);
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit unsigned field.
+ return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 2) == 0);
+ }
+}]>;
+
+def u6_2ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 8-bit unsigned field and
+ // is 4-byte aligned.
+ return isShiftedUInt<6,2>(v);
+ else {
+ if (isUInt<8>(v))
+ return isShiftedUInt<6,2>(v);
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit unsigned field.
+ return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 4) == 0);
+ }
+}]>;
+
+def u6_3ExtPred : PatLeaf<(i32 imm), [{
+ int64_t v = (int64_t)N->getSExtValue();
+ if (!Subtarget.hasV4TOps())
+ // Return true if the immediate can fit in a 9-bit unsigned field and
+ // is 8-byte aligned.
+ return isShiftedUInt<6,3>(v);
+ else {
+ if (isUInt<9>(v))
+ return isShiftedUInt<6,3>(v);
+
+ // Return true if extending this immediate is profitable and the value
+ // can fit in a 32-bit unsigned field.
+ return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 8) == 0);
+ }
+}]>;
+
+// Addressing modes.
+
+def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
+def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
+def ADDRriS11_0 : ComplexPattern<i32, 2, "SelectADDRriS11_0", [frameindex], []>;
+def ADDRriS11_1 : ComplexPattern<i32, 2, "SelectADDRriS11_1", [frameindex], []>;
+def ADDRriS11_2 : ComplexPattern<i32, 2, "SelectADDRriS11_2", [frameindex], []>;
+def ADDRriS11_3 : ComplexPattern<i32, 2, "SelectADDRriS11_3", [frameindex], []>;
+def ADDRriU6_0 : ComplexPattern<i32, 2, "SelectADDRriU6_0", [frameindex], []>;
+def ADDRriU6_1 : ComplexPattern<i32, 2, "SelectADDRriU6_1", [frameindex], []>;
+def ADDRriU6_2 : ComplexPattern<i32, 2, "SelectADDRriU6_2", [frameindex], []>;
+
+// Address operands.
+
+def MEMrr : Operand<i32> {
+ let PrintMethod = "printMEMrrOperand";
+ let MIOperandInfo = (ops IntRegs, IntRegs);
+}
+
+def MEMri : Operand<i32> {
+ let PrintMethod = "printMEMriOperand";
+ let MIOperandInfo = (ops IntRegs, IntRegs);
+}
+
+def MEMri_s11_2 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectMEMriS11_2", []> {
+ let PrintMethod = "printMEMriOperand";
+ let MIOperandInfo = (ops IntRegs, s11Imm);
+}
+
+def FrameIndex : Operand<i32> {
+ let PrintMethod = "printFrameIndexOperand";
+ let MIOperandInfo = (ops IntRegs, s11Imm);
+}
+
+let PrintMethod = "printGlobalOperand" in {
+ def globaladdress : Operand<i32>;
+ def globaladdressExt : Operand<i32>;
+}
+
+let PrintMethod = "printJumpTable" in
+def jumptablebase : Operand<i32>;
+
+def brtarget : Operand<OtherVT>;
+def brtargetExt : Operand<OtherVT>;
+def calltarget : Operand<i32>;
+
+def bblabel : Operand<i32>;
+def bbl : SDNode<"ISD::BasicBlock", SDTPtrLeaf , [], "BasicBlockSDNode">;
+
+def symbolHi32 : Operand<i32> {
+ let PrintMethod = "printSymbolHi";
+}
+def symbolLo32 : Operand<i32> {
+ let PrintMethod = "printSymbolLo";
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonPeephole.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonPeephole.cpp
new file mode 100644
index 0000000..48b6159
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonPeephole.cpp
@@ -0,0 +1,347 @@
+//===-- HexagonPeephole.cpp - Hexagon Peephole Optimiztions ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+// This peephole pass optimizes in the following cases.
+// 1. Optimizes redundant sign extends for the following case
+// Transform the following pattern
+// %vreg170<def> = SXTW %vreg166
+// ...
+// %vreg176<def> = COPY %vreg170:subreg_loreg
+//
+// Into
+// %vreg176<def> = COPY vreg166
+//
+// 2. Optimizes redundant negation of predicates.
+// %vreg15<def> = CMPGTrr %vreg6, %vreg2
+// ...
+// %vreg16<def> = NOT_p %vreg15<kill>
+// ...
+// JMP_c %vreg16<kill>, <BB#1>, %PC<imp-def,dead>
+//
+// Into
+// %vreg15<def> = CMPGTrr %vreg6, %vreg2;
+// ...
+// JMP_cNot %vreg15<kill>, <BB#1>, %PC<imp-def,dead>;
+//
+// Note: The peephole pass makes the instrucstions like
+// %vreg170<def> = SXTW %vreg166 or %vreg16<def> = NOT_p %vreg15<kill>
+// redundant and relies on some form of dead removal instructions, like
+// DCE or DIE to actually eliminate them.
+
+
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/PassSupport.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <algorithm>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-peephole"
+
+static cl::opt<bool> DisableHexagonPeephole("disable-hexagon-peephole",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Disable Peephole Optimization"));
+
+static cl::opt<bool> DisablePNotP("disable-hexagon-pnotp",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Disable Optimization of PNotP"));
+
+static cl::opt<bool> DisableOptSZExt("disable-hexagon-optszext",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Disable Optimization of Sign/Zero Extends"));
+
+static cl::opt<bool> DisableOptExtTo64("disable-hexagon-opt-ext-to-64",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Disable Optimization of extensions to i64."));
+
+namespace llvm {
+ void initializeHexagonPeepholePass(PassRegistry&);
+}
+
+namespace {
+ struct HexagonPeephole : public MachineFunctionPass {
+ const HexagonInstrInfo *QII;
+ const HexagonRegisterInfo *QRI;
+ const MachineRegisterInfo *MRI;
+
+ public:
+ static char ID;
+ HexagonPeephole() : MachineFunctionPass(ID) {
+ initializeHexagonPeepholePass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "Hexagon optimize redundant zero and size extends";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ private:
+ void ChangeOpInto(MachineOperand &Dst, MachineOperand &Src);
+ };
+}
+
+char HexagonPeephole::ID = 0;
+
+INITIALIZE_PASS(HexagonPeephole, "hexagon-peephole", "Hexagon Peephole",
+ false, false)
+
+bool HexagonPeephole::runOnMachineFunction(MachineFunction &MF) {
+ QII = static_cast<const HexagonInstrInfo *>(MF.getTarget().
+ getInstrInfo());
+ QRI = static_cast<const HexagonRegisterInfo *>(MF.getTarget().
+ getRegisterInfo());
+ MRI = &MF.getRegInfo();
+
+ DenseMap<unsigned, unsigned> PeepholeMap;
+ DenseMap<unsigned, std::pair<unsigned, unsigned> > PeepholeDoubleRegsMap;
+
+ if (DisableHexagonPeephole) return false;
+
+ // Loop over all of the basic blocks.
+ for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
+ MBBb != MBBe; ++MBBb) {
+ MachineBasicBlock* MBB = MBBb;
+ PeepholeMap.clear();
+ PeepholeDoubleRegsMap.clear();
+
+ // Traverse the basic block.
+ for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end();
+ ++MII) {
+ MachineInstr *MI = MII;
+ // Look for sign extends:
+ // %vreg170<def> = SXTW %vreg166
+ if (!DisableOptSZExt && MI->getOpcode() == Hexagon::SXTW) {
+ assert (MI->getNumOperands() == 2);
+ MachineOperand &Dst = MI->getOperand(0);
+ MachineOperand &Src = MI->getOperand(1);
+ unsigned DstReg = Dst.getReg();
+ unsigned SrcReg = Src.getReg();
+ // Just handle virtual registers.
+ if (TargetRegisterInfo::isVirtualRegister(DstReg) &&
+ TargetRegisterInfo::isVirtualRegister(SrcReg)) {
+ // Map the following:
+ // %vreg170<def> = SXTW %vreg166
+ // PeepholeMap[170] = vreg166
+ PeepholeMap[DstReg] = SrcReg;
+ }
+ }
+
+ // Look for %vreg170<def> = COMBINE_ir_V4 (0, %vreg169)
+ // %vreg170:DoublRegs, %vreg169:IntRegs
+ if (!DisableOptExtTo64 &&
+ MI->getOpcode () == Hexagon::COMBINE_Ir_V4) {
+ assert (MI->getNumOperands() == 3);
+ MachineOperand &Dst = MI->getOperand(0);
+ MachineOperand &Src1 = MI->getOperand(1);
+ MachineOperand &Src2 = MI->getOperand(2);
+ if (Src1.getImm() != 0)
+ continue;
+ unsigned DstReg = Dst.getReg();
+ unsigned SrcReg = Src2.getReg();
+ PeepholeMap[DstReg] = SrcReg;
+ }
+
+ // Look for this sequence below
+ // %vregDoubleReg1 = LSRd_ri %vregDoubleReg0, 32
+ // %vregIntReg = COPY %vregDoubleReg1:subreg_loreg.
+ // and convert into
+ // %vregIntReg = COPY %vregDoubleReg0:subreg_hireg.
+ if (MI->getOpcode() == Hexagon::LSRd_ri) {
+ assert(MI->getNumOperands() == 3);
+ MachineOperand &Dst = MI->getOperand(0);
+ MachineOperand &Src1 = MI->getOperand(1);
+ MachineOperand &Src2 = MI->getOperand(2);
+ if (Src2.getImm() != 32)
+ continue;
+ unsigned DstReg = Dst.getReg();
+ unsigned SrcReg = Src1.getReg();
+ PeepholeDoubleRegsMap[DstReg] =
+ std::make_pair(*&SrcReg, 1/*Hexagon::subreg_hireg*/);
+ }
+
+ // Look for P=NOT(P).
+ if (!DisablePNotP &&
+ (MI->getOpcode() == Hexagon::NOT_p)) {
+ assert (MI->getNumOperands() == 2);
+ MachineOperand &Dst = MI->getOperand(0);
+ MachineOperand &Src = MI->getOperand(1);
+ unsigned DstReg = Dst.getReg();
+ unsigned SrcReg = Src.getReg();
+ // Just handle virtual registers.
+ if (TargetRegisterInfo::isVirtualRegister(DstReg) &&
+ TargetRegisterInfo::isVirtualRegister(SrcReg)) {
+ // Map the following:
+ // %vreg170<def> = NOT_xx %vreg166
+ // PeepholeMap[170] = vreg166
+ PeepholeMap[DstReg] = SrcReg;
+ }
+ }
+
+ // Look for copy:
+ // %vreg176<def> = COPY %vreg170:subreg_loreg
+ if (!DisableOptSZExt && MI->isCopy()) {
+ assert (MI->getNumOperands() == 2);
+ MachineOperand &Dst = MI->getOperand(0);
+ MachineOperand &Src = MI->getOperand(1);
+
+ // Make sure we are copying the lower 32 bits.
+ if (Src.getSubReg() != Hexagon::subreg_loreg)
+ continue;
+
+ unsigned DstReg = Dst.getReg();
+ unsigned SrcReg = Src.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(DstReg) &&
+ TargetRegisterInfo::isVirtualRegister(SrcReg)) {
+ // Try to find in the map.
+ if (unsigned PeepholeSrc = PeepholeMap.lookup(SrcReg)) {
+ // Change the 1st operand.
+ MI->RemoveOperand(1);
+ MI->addOperand(MachineOperand::CreateReg(PeepholeSrc, false));
+ } else {
+ DenseMap<unsigned, std::pair<unsigned, unsigned> >::iterator DI =
+ PeepholeDoubleRegsMap.find(SrcReg);
+ if (DI != PeepholeDoubleRegsMap.end()) {
+ std::pair<unsigned,unsigned> PeepholeSrc = DI->second;
+ MI->RemoveOperand(1);
+ MI->addOperand(MachineOperand::CreateReg(PeepholeSrc.first,
+ false /*isDef*/,
+ false /*isImp*/,
+ false /*isKill*/,
+ false /*isDead*/,
+ false /*isUndef*/,
+ false /*isEarlyClobber*/,
+ PeepholeSrc.second));
+ }
+ }
+ }
+ }
+
+ // Look for Predicated instructions.
+ if (!DisablePNotP) {
+ bool Done = false;
+ if (QII->isPredicated(MI)) {
+ MachineOperand &Op0 = MI->getOperand(0);
+ unsigned Reg0 = Op0.getReg();
+ const TargetRegisterClass *RC0 = MRI->getRegClass(Reg0);
+ if (RC0->getID() == Hexagon::PredRegsRegClassID) {
+ // Handle instructions that have a prediate register in op0
+ // (most cases of predicable instructions).
+ if (TargetRegisterInfo::isVirtualRegister(Reg0)) {
+ // Try to find in the map.
+ if (unsigned PeepholeSrc = PeepholeMap.lookup(Reg0)) {
+ // Change the 1st operand and, flip the opcode.
+ MI->getOperand(0).setReg(PeepholeSrc);
+ int NewOp = QII->getInvertedPredicatedOpcode(MI->getOpcode());
+ MI->setDesc(QII->get(NewOp));
+ Done = true;
+ }
+ }
+ }
+ }
+
+ if (!Done) {
+ // Handle special instructions.
+ unsigned Op = MI->getOpcode();
+ unsigned NewOp = 0;
+ unsigned PR = 1, S1 = 2, S2 = 3; // Operand indices.
+
+ switch (Op) {
+ case Hexagon::TFR_condset_rr:
+ case Hexagon::TFR_condset_ii:
+ case Hexagon::MUX_ii:
+ case Hexagon::MUX_rr:
+ NewOp = Op;
+ break;
+ case Hexagon::TFR_condset_ri:
+ NewOp = Hexagon::TFR_condset_ir;
+ break;
+ case Hexagon::TFR_condset_ir:
+ NewOp = Hexagon::TFR_condset_ri;
+ break;
+ case Hexagon::MUX_ri:
+ NewOp = Hexagon::MUX_ir;
+ break;
+ case Hexagon::MUX_ir:
+ NewOp = Hexagon::MUX_ri;
+ break;
+ }
+ if (NewOp) {
+ unsigned PSrc = MI->getOperand(PR).getReg();
+ if (unsigned POrig = PeepholeMap.lookup(PSrc)) {
+ MI->getOperand(PR).setReg(POrig);
+ MI->setDesc(QII->get(NewOp));
+ // Swap operands S1 and S2.
+ MachineOperand Op1 = MI->getOperand(S1);
+ MachineOperand Op2 = MI->getOperand(S2);
+ ChangeOpInto(MI->getOperand(S1), Op2);
+ ChangeOpInto(MI->getOperand(S2), Op1);
+ }
+ } // if (NewOp)
+ } // if (!Done)
+
+ } // if (!DisablePNotP)
+
+ } // Instruction
+ } // Basic Block
+ return true;
+}
+
+void HexagonPeephole::ChangeOpInto(MachineOperand &Dst, MachineOperand &Src) {
+ assert (&Dst != &Src && "Cannot duplicate into itself");
+ switch (Dst.getType()) {
+ case MachineOperand::MO_Register:
+ if (Src.isReg()) {
+ Dst.setReg(Src.getReg());
+ } else if (Src.isImm()) {
+ Dst.ChangeToImmediate(Src.getImm());
+ } else {
+ llvm_unreachable("Unexpected src operand type");
+ }
+ break;
+
+ case MachineOperand::MO_Immediate:
+ if (Src.isImm()) {
+ Dst.setImm(Src.getImm());
+ } else if (Src.isReg()) {
+ Dst.ChangeToRegister(Src.getReg(), Src.isDef(), Src.isImplicit(),
+ Src.isKill(), Src.isDead(), Src.isUndef(),
+ Src.isDebug());
+ } else {
+ llvm_unreachable("Unexpected src operand type");
+ }
+ break;
+
+ default:
+ llvm_unreachable("Unexpected dst operand type");
+ break;
+ }
+}
+
+FunctionPass *llvm::createHexagonPeephole() {
+ return new HexagonPeephole();
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.cpp
new file mode 100644
index 0000000..fb466d3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.cpp
@@ -0,0 +1,298 @@
+//===-- HexagonRegisterInfo.cpp - Hexagon Register Information ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Hexagon implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonRegisterInfo.h"
+#include "Hexagon.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+
+HexagonRegisterInfo::HexagonRegisterInfo(HexagonSubtarget &st)
+ : HexagonGenRegisterInfo(Hexagon::R31),
+ Subtarget(st) {
+}
+
+const MCPhysReg *
+HexagonRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ static const MCPhysReg CalleeSavedRegsV2[] = {
+ Hexagon::R24, Hexagon::R25, Hexagon::R26, Hexagon::R27, 0
+ };
+ static const MCPhysReg CalleeSavedRegsV3[] = {
+ Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
+ Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23,
+ Hexagon::R24, Hexagon::R25, Hexagon::R26, Hexagon::R27, 0
+ };
+
+ switch(Subtarget.getHexagonArchVersion()) {
+ case HexagonSubtarget::V1:
+ break;
+ case HexagonSubtarget::V2:
+ return CalleeSavedRegsV2;
+ case HexagonSubtarget::V3:
+ case HexagonSubtarget::V4:
+ case HexagonSubtarget::V5:
+ return CalleeSavedRegsV3;
+ }
+ llvm_unreachable("Callee saved registers requested for unknown architecture "
+ "version");
+}
+
+BitVector HexagonRegisterInfo::getReservedRegs(const MachineFunction &MF)
+ const {
+ BitVector Reserved(getNumRegs());
+ Reserved.set(HEXAGON_RESERVED_REG_1);
+ Reserved.set(HEXAGON_RESERVED_REG_2);
+ Reserved.set(Hexagon::R29);
+ Reserved.set(Hexagon::R30);
+ Reserved.set(Hexagon::R31);
+ Reserved.set(Hexagon::D14);
+ Reserved.set(Hexagon::D15);
+ Reserved.set(Hexagon::LC0);
+ Reserved.set(Hexagon::LC1);
+ Reserved.set(Hexagon::SA0);
+ Reserved.set(Hexagon::SA1);
+ return Reserved;
+}
+
+
+const TargetRegisterClass* const*
+HexagonRegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
+ static const TargetRegisterClass * const CalleeSavedRegClassesV2[] = {
+ &Hexagon::IntRegsRegClass, &Hexagon::IntRegsRegClass,
+ &Hexagon::IntRegsRegClass, &Hexagon::IntRegsRegClass,
+ };
+ static const TargetRegisterClass * const CalleeSavedRegClassesV3[] = {
+ &Hexagon::IntRegsRegClass, &Hexagon::IntRegsRegClass,
+ &Hexagon::IntRegsRegClass, &Hexagon::IntRegsRegClass,
+ &Hexagon::IntRegsRegClass, &Hexagon::IntRegsRegClass,
+ &Hexagon::IntRegsRegClass, &Hexagon::IntRegsRegClass,
+ &Hexagon::IntRegsRegClass, &Hexagon::IntRegsRegClass,
+ &Hexagon::IntRegsRegClass, &Hexagon::IntRegsRegClass,
+ };
+
+ switch(Subtarget.getHexagonArchVersion()) {
+ case HexagonSubtarget::V1:
+ break;
+ case HexagonSubtarget::V2:
+ return CalleeSavedRegClassesV2;
+ case HexagonSubtarget::V3:
+ case HexagonSubtarget::V4:
+ case HexagonSubtarget::V5:
+ return CalleeSavedRegClassesV3;
+ }
+ llvm_unreachable("Callee saved register classes requested for unknown "
+ "architecture version");
+}
+
+void HexagonRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ //
+ // Hexagon_TODO: Do we need to enforce this for Hexagon?
+ assert(SPAdj == 0 && "Unexpected");
+
+ MachineInstr &MI = *II;
+ int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
+
+ // Addressable stack objects are accessed using neg. offsets from %fp.
+ MachineFunction &MF = *MI.getParent()->getParent();
+ const HexagonInstrInfo &TII =
+ *static_cast<const HexagonInstrInfo*>(MF.getTarget().getInstrInfo());
+ int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex);
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+
+ unsigned FrameReg = getFrameRegister(MF);
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ if (!TFI->hasFP(MF)) {
+ // We will not reserve space on the stack for the lr and fp registers.
+ Offset -= 2 * Hexagon_WordSize;
+ }
+
+ const unsigned FrameSize = MFI.getStackSize();
+
+ if (!MFI.hasVarSizedObjects() &&
+ TII.isValidOffset(MI.getOpcode(), (FrameSize+Offset)) &&
+ !TII.isSpillPredRegOp(&MI)) {
+ // Replace frame index with a stack pointer reference.
+ MI.getOperand(FIOperandNum).ChangeToRegister(getStackRegister(), false,
+ false, true);
+ MI.getOperand(FIOperandNum + 1).ChangeToImmediate(FrameSize+Offset);
+ } else {
+ // Replace frame index with a frame pointer reference.
+ if (!TII.isValidOffset(MI.getOpcode(), Offset)) {
+
+ // If the offset overflows, then correct it.
+ //
+ // For loads, we do not need a reserved register
+ // r0 = memw(r30 + #10000) to:
+ //
+ // r0 = add(r30, #10000)
+ // r0 = memw(r0)
+ if ( (MI.getOpcode() == Hexagon::LDriw) ||
+ (MI.getOpcode() == Hexagon::LDrid) ||
+ (MI.getOpcode() == Hexagon::LDrih) ||
+ (MI.getOpcode() == Hexagon::LDriuh) ||
+ (MI.getOpcode() == Hexagon::LDrib) ||
+ (MI.getOpcode() == Hexagon::LDriub) ||
+ (MI.getOpcode() == Hexagon::LDriw_f) ||
+ (MI.getOpcode() == Hexagon::LDrid_f)) {
+ unsigned dstReg = (MI.getOpcode() == Hexagon::LDrid) ?
+ getSubReg(MI.getOperand(0).getReg(), Hexagon::subreg_loreg) :
+ MI.getOperand(0).getReg();
+
+ // Check if offset can fit in addi.
+ if (!TII.isValidOffset(Hexagon::ADD_ri, Offset)) {
+ BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
+ TII.get(Hexagon::CONST32_Int_Real), dstReg).addImm(Offset);
+ BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
+ TII.get(Hexagon::ADD_rr),
+ dstReg).addReg(FrameReg).addReg(dstReg);
+ } else {
+ BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
+ TII.get(Hexagon::ADD_ri),
+ dstReg).addReg(FrameReg).addImm(Offset);
+ }
+
+ MI.getOperand(FIOperandNum).ChangeToRegister(dstReg, false, false,true);
+ MI.getOperand(FIOperandNum+1).ChangeToImmediate(0);
+ } else if ((MI.getOpcode() == Hexagon::STriw_indexed) ||
+ (MI.getOpcode() == Hexagon::STriw) ||
+ (MI.getOpcode() == Hexagon::STrid) ||
+ (MI.getOpcode() == Hexagon::STrih) ||
+ (MI.getOpcode() == Hexagon::STrib) ||
+ (MI.getOpcode() == Hexagon::STrid_f) ||
+ (MI.getOpcode() == Hexagon::STriw_f)) {
+ // For stores, we need a reserved register. Change
+ // memw(r30 + #10000) = r0 to:
+ //
+ // rs = add(r30, #10000);
+ // memw(rs) = r0
+ unsigned resReg = HEXAGON_RESERVED_REG_1;
+
+ // Check if offset can fit in addi.
+ if (!TII.isValidOffset(Hexagon::ADD_ri, Offset)) {
+ BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
+ TII.get(Hexagon::CONST32_Int_Real), resReg).addImm(Offset);
+ BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
+ TII.get(Hexagon::ADD_rr),
+ resReg).addReg(FrameReg).addReg(resReg);
+ } else {
+ BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
+ TII.get(Hexagon::ADD_ri),
+ resReg).addReg(FrameReg).addImm(Offset);
+ }
+ MI.getOperand(FIOperandNum).ChangeToRegister(resReg, false, false,true);
+ MI.getOperand(FIOperandNum+1).ChangeToImmediate(0);
+ } else if (TII.isMemOp(&MI)) {
+ // use the constant extender if the instruction provides it
+ // and we are V4TOps.
+ if (Subtarget.hasV4TOps()) {
+ if (TII.isConstExtended(&MI)) {
+ MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FIOperandNum+1).ChangeToImmediate(Offset);
+ TII.immediateExtend(&MI);
+ } else {
+ llvm_unreachable("Need to implement for memops");
+ }
+ } else {
+ // Only V3 and older instructions here.
+ unsigned ResReg = HEXAGON_RESERVED_REG_1;
+ if (!MFI.hasVarSizedObjects() &&
+ TII.isValidOffset(MI.getOpcode(), (FrameSize+Offset))) {
+ MI.getOperand(FIOperandNum).ChangeToRegister(getStackRegister(),
+ false, false, false);
+ MI.getOperand(FIOperandNum+1).ChangeToImmediate(FrameSize+Offset);
+ } else if (!TII.isValidOffset(Hexagon::ADD_ri, Offset)) {
+ BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
+ TII.get(Hexagon::CONST32_Int_Real), ResReg).addImm(Offset);
+ BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
+ TII.get(Hexagon::ADD_rr), ResReg).addReg(FrameReg).
+ addReg(ResReg);
+ MI.getOperand(FIOperandNum).ChangeToRegister(ResReg, false, false,
+ true);
+ MI.getOperand(FIOperandNum+1).ChangeToImmediate(0);
+ } else {
+ BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
+ TII.get(Hexagon::ADD_ri), ResReg).addReg(FrameReg).
+ addImm(Offset);
+ MI.getOperand(FIOperandNum).ChangeToRegister(ResReg, false, false,
+ true);
+ MI.getOperand(FIOperandNum+1).ChangeToImmediate(0);
+ }
+ }
+ } else {
+ unsigned dstReg = MI.getOperand(0).getReg();
+ BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
+ TII.get(Hexagon::CONST32_Int_Real), dstReg).addImm(Offset);
+ BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
+ TII.get(Hexagon::ADD_rr),
+ dstReg).addReg(FrameReg).addReg(dstReg);
+ // Can we delete MI??? r2 = add (r2, #0).
+ MI.getOperand(FIOperandNum).ChangeToRegister(dstReg, false, false,true);
+ MI.getOperand(FIOperandNum+1).ChangeToImmediate(0);
+ }
+ } else {
+ // If the offset is small enough to fit in the immediate field, directly
+ // encode it.
+ MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FIOperandNum+1).ChangeToImmediate(Offset);
+ }
+ }
+
+}
+
+unsigned HexagonRegisterInfo::getRARegister() const {
+ return Hexagon::R31;
+}
+
+unsigned HexagonRegisterInfo::getFrameRegister(const MachineFunction
+ &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ if (TFI->hasFP(MF)) {
+ return Hexagon::R30;
+ }
+
+ return Hexagon::R29;
+}
+
+unsigned HexagonRegisterInfo::getFrameRegister() const {
+ return Hexagon::R30;
+}
+
+unsigned HexagonRegisterInfo::getStackRegister() const {
+ return Hexagon::R29;
+}
+
+#define GET_REGINFO_TARGET_DESC
+#include "HexagonGenRegisterInfo.inc"
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.h b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.h
new file mode 100644
index 0000000..648b4af
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.h
@@ -0,0 +1,86 @@
+//==- HexagonRegisterInfo.h - Hexagon Register Information Impl --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Hexagon implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HexagonREGISTERINFO_H
+#define HexagonREGISTERINFO_H
+
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define GET_REGINFO_HEADER
+#include "HexagonGenRegisterInfo.inc"
+
+//
+// We try not to hard code the reserved registers in our code,
+// so the following two macros were defined. However, there
+// are still a few places that R11 and R10 are hard wired.
+// See below. If, in the future, we decided to change the reserved
+// register. Don't forget changing the following places.
+//
+// 1. the "Defs" set of STriw_pred in HexagonInstrInfo.td
+// 2. the "Defs" set of LDri_pred in HexagonInstrInfo.td
+// 3. the definition of "IntRegs" in HexagonRegisterInfo.td
+// 4. the definition of "DoubleRegs" in HexagonRegisterInfo.td
+//
+#define HEXAGON_RESERVED_REG_1 Hexagon::R10
+#define HEXAGON_RESERVED_REG_2 Hexagon::R11
+
+namespace llvm {
+
+class HexagonSubtarget;
+class HexagonInstrInfo;
+class Type;
+
+struct HexagonRegisterInfo : public HexagonGenRegisterInfo {
+ HexagonSubtarget &Subtarget;
+
+ HexagonRegisterInfo(HexagonSubtarget &st);
+
+ /// Code Generation virtual methods...
+ const MCPhysReg *
+ getCalleeSavedRegs(const MachineFunction *MF = nullptr) const override;
+
+ const TargetRegisterClass* const*
+ getCalleeSavedRegClasses(const MachineFunction *MF = nullptr) const;
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+
+ void eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const override;
+
+ /// determineFrameLayout - Determine the size of the frame and maximum call
+ /// frame size.
+ void determineFrameLayout(MachineFunction &MF) const;
+
+ /// requiresRegisterScavenging - returns true since we may need scavenging for
+ /// a temporary register when generating hardware loop instructions.
+ bool requiresRegisterScavenging(const MachineFunction &MF) const override {
+ return true;
+ }
+
+ bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const override {
+ return true;
+ }
+
+ // Debug information queries.
+ unsigned getRARegister() const;
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+ unsigned getFrameRegister() const;
+ unsigned getStackRegister() const;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.td b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.td
new file mode 100644
index 0000000..8ea1b7e
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.td
@@ -0,0 +1,167 @@
+//===-- HexagonRegisterInfo.td - Hexagon Register defs -----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Declarations that describe the Hexagon register file.
+//===----------------------------------------------------------------------===//
+
+let Namespace = "Hexagon" in {
+
+ class HexagonReg<string n> : Register<n> {
+ field bits<5> Num;
+ }
+
+ class HexagonDoubleReg<string n, list<Register> subregs> :
+ RegisterWithSubRegs<n, subregs> {
+ field bits<5> Num;
+ }
+
+ // Registers are identified with 5-bit ID numbers.
+ // Ri - 32-bit integer registers.
+ class Ri<bits<5> num, string n> : HexagonReg<n> {
+ let Num = num;
+ }
+
+ // Rf - 32-bit floating-point registers.
+ class Rf<bits<5> num, string n> : HexagonReg<n> {
+ let Num = num;
+ }
+
+
+ // Rd - 64-bit registers.
+ class Rd<bits<5> num, string n, list<Register> subregs> :
+ HexagonDoubleReg<n, subregs> {
+ let Num = num;
+ let SubRegs = subregs;
+ }
+
+ // Rp - predicate registers
+ class Rp<bits<5> num, string n> : HexagonReg<n> {
+ let Num = num;
+ }
+
+ // Rc - control registers
+ class Rc<bits<5> num, string n> : HexagonReg<n> {
+ let Num = num;
+ }
+
+ // Rj - aliased integer registers
+ class Rj<string n, Ri R>: HexagonReg<n> {
+ let Num = R.Num;
+ let Aliases = [R];
+ }
+
+ def subreg_loreg : SubRegIndex<32>;
+ def subreg_hireg : SubRegIndex<32, 32>;
+
+ // Integer registers.
+ def R0 : Ri< 0, "r0">, DwarfRegNum<[0]>;
+ def R1 : Ri< 1, "r1">, DwarfRegNum<[1]>;
+ def R2 : Ri< 2, "r2">, DwarfRegNum<[2]>;
+ def R3 : Ri< 3, "r3">, DwarfRegNum<[3]>;
+ def R4 : Ri< 4, "r4">, DwarfRegNum<[4]>;
+ def R5 : Ri< 5, "r5">, DwarfRegNum<[5]>;
+ def R6 : Ri< 6, "r6">, DwarfRegNum<[6]>;
+ def R7 : Ri< 7, "r7">, DwarfRegNum<[7]>;
+ def R8 : Ri< 8, "r8">, DwarfRegNum<[8]>;
+ def R9 : Ri< 9, "r9">, DwarfRegNum<[9]>;
+ def R10 : Ri<10, "r10">, DwarfRegNum<[10]>;
+ def R11 : Ri<11, "r11">, DwarfRegNum<[11]>;
+ def R12 : Ri<12, "r12">, DwarfRegNum<[12]>;
+ def R13 : Ri<13, "r13">, DwarfRegNum<[13]>;
+ def R14 : Ri<14, "r14">, DwarfRegNum<[14]>;
+ def R15 : Ri<15, "r15">, DwarfRegNum<[15]>;
+ def R16 : Ri<16, "r16">, DwarfRegNum<[16]>;
+ def R17 : Ri<17, "r17">, DwarfRegNum<[17]>;
+ def R18 : Ri<18, "r18">, DwarfRegNum<[18]>;
+ def R19 : Ri<19, "r19">, DwarfRegNum<[19]>;
+ def R20 : Ri<20, "r20">, DwarfRegNum<[20]>;
+ def R21 : Ri<21, "r21">, DwarfRegNum<[21]>;
+ def R22 : Ri<22, "r22">, DwarfRegNum<[22]>;
+ def R23 : Ri<23, "r23">, DwarfRegNum<[23]>;
+ def R24 : Ri<24, "r24">, DwarfRegNum<[24]>;
+ def R25 : Ri<25, "r25">, DwarfRegNum<[25]>;
+ def R26 : Ri<26, "r26">, DwarfRegNum<[26]>;
+ def R27 : Ri<27, "r27">, DwarfRegNum<[27]>;
+ def R28 : Ri<28, "r28">, DwarfRegNum<[28]>;
+ def R29 : Ri<29, "r29">, DwarfRegNum<[29]>;
+ def R30 : Ri<30, "r30">, DwarfRegNum<[30]>;
+ def R31 : Ri<31, "r31">, DwarfRegNum<[31]>;
+
+ def SP : Rj<"sp", R29>, DwarfRegNum<[29]>;
+ def FP : Rj<"fp", R30>, DwarfRegNum<[30]>;
+ def LR : Rj<"lr", R31>, DwarfRegNum<[31]>;
+
+ // Aliases of the R* registers used to hold 64-bit int values (doubles).
+ let SubRegIndices = [subreg_loreg, subreg_hireg], CoveredBySubRegs = 1 in {
+ def D0 : Rd< 0, "r1:0", [R0, R1]>, DwarfRegNum<[32]>;
+ def D1 : Rd< 2, "r3:2", [R2, R3]>, DwarfRegNum<[34]>;
+ def D2 : Rd< 4, "r5:4", [R4, R5]>, DwarfRegNum<[36]>;
+ def D3 : Rd< 6, "r7:6", [R6, R7]>, DwarfRegNum<[38]>;
+ def D4 : Rd< 8, "r9:8", [R8, R9]>, DwarfRegNum<[40]>;
+ def D5 : Rd<10, "r11:10", [R10, R11]>, DwarfRegNum<[42]>;
+ def D6 : Rd<12, "r13:12", [R12, R13]>, DwarfRegNum<[44]>;
+ def D7 : Rd<14, "r15:14", [R14, R15]>, DwarfRegNum<[46]>;
+ def D8 : Rd<16, "r17:16", [R16, R17]>, DwarfRegNum<[48]>;
+ def D9 : Rd<18, "r19:18", [R18, R19]>, DwarfRegNum<[50]>;
+ def D10 : Rd<20, "r21:20", [R20, R21]>, DwarfRegNum<[52]>;
+ def D11 : Rd<22, "r23:22", [R22, R23]>, DwarfRegNum<[54]>;
+ def D12 : Rd<24, "r25:24", [R24, R25]>, DwarfRegNum<[56]>;
+ def D13 : Rd<26, "r27:26", [R26, R27]>, DwarfRegNum<[58]>;
+ def D14 : Rd<28, "r29:28", [R28, R29]>, DwarfRegNum<[60]>;
+ def D15 : Rd<30, "r31:30", [R30, R31]>, DwarfRegNum<[62]>;
+ }
+
+ // Predicate registers.
+ def P0 : Rp<0, "p0">, DwarfRegNum<[63]>;
+ def P1 : Rp<1, "p1">, DwarfRegNum<[64]>;
+ def P2 : Rp<2, "p2">, DwarfRegNum<[65]>;
+ def P3 : Rp<3, "p3">, DwarfRegNum<[66]>;
+
+ // Control registers.
+ def SA0 : Rc<0, "sa0">, DwarfRegNum<[67]>;
+ def LC0 : Rc<1, "lc0">, DwarfRegNum<[68]>;
+
+ def SA1 : Rc<2, "sa1">, DwarfRegNum<[69]>;
+ def LC1 : Rc<3, "lc1">, DwarfRegNum<[70]>;
+
+ def M0 : Rc<6, "m0">, DwarfRegNum<[71]>;
+ def M1 : Rc<7, "m1">, DwarfRegNum<[72]>;
+
+ def PC : Rc<9, "pc">, DwarfRegNum<[32]>; // is the Dwarf number correct?
+ def GP : Rc<11, "gp">, DwarfRegNum<[33]>; // is the Dwarf number correct?
+}
+
+// Register classes.
+//
+// FIXME: the register order should be defined in terms of the preferred
+// allocation order...
+//
+def IntRegs : RegisterClass<"Hexagon", [i32,f32], 32,
+ (add (sequence "R%u", 0, 9),
+ (sequence "R%u", 12, 28),
+ R10, R11, R29, R30, R31)> {
+}
+
+def DoubleRegs : RegisterClass<"Hexagon", [i64,f64], 64,
+ (add (sequence "D%u", 0, 4),
+ (sequence "D%u", 6, 13), D5, D14, D15)>;
+
+
+def PredRegs : RegisterClass<"Hexagon", [i1], 32, (add (sequence "P%u", 0, 3))>
+{
+ let Size = 32;
+}
+
+def CRRegs : RegisterClass<"Hexagon", [i32], 32,
+ (add (sequence "LC%u", 0, 1),
+ (sequence "SA%u", 0, 1),
+ (sequence "M%u", 0, 1), PC, GP)> {
+ let Size = 32;
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonRemoveSZExtArgs.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonRemoveSZExtArgs.cpp
new file mode 100644
index 0000000..2b459a4
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonRemoveSZExtArgs.cpp
@@ -0,0 +1,89 @@
+//===- HexagonRemoveExtendArgs.cpp - Remove unnecessary argument sign extends //
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Pass that removes sign extends for function parameters. These parameters
+// are already sign extended by the caller per Hexagon's ABI
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Pass.h"
+#include "llvm/Transforms/Scalar.h"
+
+using namespace llvm;
+
+namespace llvm {
+ void initializeHexagonRemoveExtendArgsPass(PassRegistry&);
+}
+
+namespace {
+ struct HexagonRemoveExtendArgs : public FunctionPass {
+ public:
+ static char ID;
+ HexagonRemoveExtendArgs() : FunctionPass(ID) {
+ initializeHexagonRemoveExtendArgsPass(*PassRegistry::getPassRegistry());
+ }
+ bool runOnFunction(Function &F) override;
+
+ const char *getPassName() const override {
+ return "Remove sign extends";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineFunctionAnalysis>();
+ AU.addPreserved<MachineFunctionAnalysis>();
+ AU.addPreserved("stack-protector");
+ FunctionPass::getAnalysisUsage(AU);
+ }
+ };
+}
+
+char HexagonRemoveExtendArgs::ID = 0;
+
+INITIALIZE_PASS(HexagonRemoveExtendArgs, "reargs",
+ "Remove Sign and Zero Extends for Args", false, false)
+
+bool HexagonRemoveExtendArgs::runOnFunction(Function &F) {
+ unsigned Idx = 1;
+ for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end(); AI != AE;
+ ++AI, ++Idx) {
+ if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) {
+ Argument* Arg = AI;
+ if (!isa<PointerType>(Arg->getType())) {
+ for (auto UI = Arg->user_begin(); UI != Arg->user_end();) {
+ if (isa<SExtInst>(*UI)) {
+ Instruction* I = cast<Instruction>(*UI);
+ SExtInst* SI = new SExtInst(Arg, I->getType());
+ assert (EVT::getEVT(SI->getType()) ==
+ (EVT::getEVT(I->getType())));
+ ++UI;
+ I->replaceAllUsesWith(SI);
+ Instruction* First = F.getEntryBlock().begin();
+ SI->insertBefore(First);
+ I->eraseFromParent();
+ } else {
+ ++UI;
+ }
+ }
+ }
+ }
+ }
+ return true;
+}
+
+
+
+FunctionPass*
+llvm::createHexagonRemoveExtendArgs(const HexagonTargetMachine &TM) {
+ return new HexagonRemoveExtendArgs();
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSchedule.td b/contrib/llvm/lib/Target/Hexagon/HexagonSchedule.td
new file mode 100644
index 0000000..528cafc
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSchedule.td
@@ -0,0 +1,18 @@
+//===- HexagonSchedule.td - Hexagon Scheduling Definitions -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// V4 Machine Info +
+//===----------------------------------------------------------------------===//
+
+include "HexagonScheduleV4.td"
+
+//===----------------------------------------------------------------------===//
+// V4 Machine Info -
+//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonScheduleV4.td b/contrib/llvm/lib/Target/Hexagon/HexagonScheduleV4.td
new file mode 100644
index 0000000..a7d2d47
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonScheduleV4.td
@@ -0,0 +1,203 @@
+//=-HexagonScheduleV4.td - HexagonV4 Scheduling Definitions --*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// There are four SLOTS (four parallel pipelines) in Hexagon V4 machine.
+// This file describes that machine information.
+
+//
+// |===========|==================================================|
+// | PIPELINE | Instruction Classes |
+// |===========|==================================================|
+// | SLOT0 | LD ST ALU32 MEMOP NV SYSTEM |
+// |-----------|--------------------------------------------------|
+// | SLOT1 | LD ST ALU32 |
+// |-----------|--------------------------------------------------|
+// | SLOT2 | XTYPE ALU32 J JR |
+// |-----------|--------------------------------------------------|
+// | SLOT3 | XTYPE ALU32 J CR |
+// |===========|==================================================|
+
+// Functional Units.
+def SLOT0 : FuncUnit;
+def SLOT1 : FuncUnit;
+def SLOT2 : FuncUnit;
+def SLOT3 : FuncUnit;
+// Endloop is a pseudo instruction that is encoded with 2 bits in a packet
+// rather than taking an execution slot. This special unit is needed
+// to schedule an ENDLOOP with 4 other instructions.
+def SLOT_ENDLOOP: FuncUnit;
+
+// Itinerary classes.
+def PSEUDO : InstrItinClass;
+def PSEUDOM : InstrItinClass;
+// ALU64/M/S Instruction classes of V2 are collectively knownn as XTYPE in V4.
+def DUPLEX : InstrItinClass;
+def PREFIX : InstrItinClass;
+def COMPOUND : InstrItinClass;
+
+def ALU32_2op_tc_1_SLOT0123 : InstrItinClass;
+def ALU32_2op_tc_2early_SLOT0123 : InstrItinClass;
+def ALU32_3op_tc_2early_SLOT0123 : InstrItinClass;
+def ALU32_3op_tc_1_SLOT0123 : InstrItinClass;
+def ALU32_3op_tc_2_SLOT0123 : InstrItinClass;
+def ALU32_ADDI_tc_1_SLOT0123 : InstrItinClass;
+def ALU64_tc_1_SLOT23 : InstrItinClass;
+def ALU64_tc_1or2_SLOT23 : InstrItinClass;
+def ALU64_tc_2_SLOT23 : InstrItinClass;
+def ALU64_tc_2early_SLOT23 : InstrItinClass;
+def ALU64_tc_3x_SLOT23 : InstrItinClass;
+def CR_tc_2_SLOT3 : InstrItinClass;
+def CR_tc_2early_SLOT23 : InstrItinClass;
+def CR_tc_2early_SLOT3 : InstrItinClass;
+def CR_tc_3x_SLOT23 : InstrItinClass;
+def CR_tc_3x_SLOT3 : InstrItinClass;
+def J_tc_2early_SLOT23 : InstrItinClass;
+def J_tc_2early_SLOT2 : InstrItinClass;
+def LD_tc_ld_SLOT01 : InstrItinClass;
+def LD_tc_ld_SLOT0 : InstrItinClass;
+def LD_tc_3or4stall_SLOT0 : InstrItinClass;
+def M_tc_1_SLOT23 : InstrItinClass;
+def M_tc_1or2_SLOT23 : InstrItinClass;
+def M_tc_2_SLOT23 : InstrItinClass;
+def M_tc_3_SLOT23 : InstrItinClass;
+def M_tc_3x_SLOT23 : InstrItinClass;
+def M_tc_3or4x_SLOT23 : InstrItinClass;
+def ST_tc_st_SLOT01 : InstrItinClass;
+def ST_tc_st_SLOT0 : InstrItinClass;
+def ST_tc_ld_SLOT0 : InstrItinClass;
+def ST_tc_3stall_SLOT0 : InstrItinClass;
+def S_2op_tc_1_SLOT23 : InstrItinClass;
+def S_2op_tc_2_SLOT23 : InstrItinClass;
+def S_2op_tc_2early_SLOT23 : InstrItinClass;
+def S_2op_tc_3or4x_SLOT23 : InstrItinClass;
+def S_3op_tc_1_SLOT23 : InstrItinClass;
+def S_3op_tc_1or2_SLOT23 : InstrItinClass;
+def S_3op_tc_2_SLOT23 : InstrItinClass;
+def S_3op_tc_2early_SLOT23 : InstrItinClass;
+def S_3op_tc_3_SLOT23 : InstrItinClass;
+def S_3op_tc_3x_SLOT23 : InstrItinClass;
+def NCJ_tc_3or4stall_SLOT0 : InstrItinClass;
+def V2LDST_tc_ld_SLOT01 : InstrItinClass;
+def V2LDST_tc_st_SLOT0 : InstrItinClass;
+def V2LDST_tc_st_SLOT01 : InstrItinClass;
+def V4LDST_tc_ld_SLOT01 : InstrItinClass;
+def V4LDST_tc_st_SLOT0 : InstrItinClass;
+def V4LDST_tc_st_SLOT01 : InstrItinClass;
+def J_tc_2early_SLOT0123 : InstrItinClass;
+def EXTENDER_tc_1_SLOT0123 : InstrItinClass;
+
+
+def HexagonItinerariesV4 :
+ ProcessorItineraries<[SLOT0, SLOT1, SLOT2, SLOT3, SLOT_ENDLOOP], [], [
+ // ALU32
+ InstrItinData<ALU32_2op_tc_1_SLOT0123 ,
+ [InstrStage<1, [SLOT0, SLOT1, SLOT2, SLOT3]>]>,
+ InstrItinData<ALU32_2op_tc_2early_SLOT0123,
+ [InstrStage<1, [SLOT0, SLOT1, SLOT2, SLOT3]>]>,
+ InstrItinData<ALU32_3op_tc_1_SLOT0123 ,
+ [InstrStage<1, [SLOT0, SLOT1, SLOT2, SLOT3]>]>,
+ InstrItinData<ALU32_3op_tc_2early_SLOT0123,
+ [InstrStage<1, [SLOT0, SLOT1, SLOT2, SLOT3]>]>,
+ InstrItinData<ALU32_3op_tc_2_SLOT0123 ,
+ [InstrStage<1, [SLOT0, SLOT1, SLOT2, SLOT3]>]>,
+ InstrItinData<ALU32_ADDI_tc_1_SLOT0123 ,
+ [InstrStage<1, [SLOT0, SLOT1, SLOT2, SLOT3]>]>,
+
+ // ALU64
+ InstrItinData<ALU64_tc_1_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<ALU64_tc_1or2_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<ALU64_tc_2_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<ALU64_tc_2early_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<ALU64_tc_3x_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+
+ // CR -> System
+ InstrItinData<CR_tc_2_SLOT3 , [InstrStage<1, [SLOT3]>]>,
+ InstrItinData<CR_tc_2early_SLOT3 , [InstrStage<1, [SLOT3]>]>,
+ InstrItinData<CR_tc_3x_SLOT3 , [InstrStage<1, [SLOT3]>]>,
+
+ // Jump (conditional/unconditional/return etc)
+ // CR
+ InstrItinData<CR_tc_2early_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<CR_tc_3x_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ // J
+ InstrItinData<J_tc_2early_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ // JR
+ InstrItinData<J_tc_2early_SLOT2 , [InstrStage<1, [SLOT2]>]>,
+
+ //Load
+ InstrItinData<LD_tc_ld_SLOT01 , [InstrStage<1, [SLOT0, SLOT1]>]>,
+ InstrItinData<LD_tc_ld_SLOT0 , [InstrStage<1, [SLOT0]>]>,
+ InstrItinData<LD_tc_3or4stall_SLOT0 , [InstrStage<1, [SLOT0]>]>,
+
+ // M
+ InstrItinData<M_tc_1_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<M_tc_1or2_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<M_tc_2_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<M_tc_3_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<M_tc_3x_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<M_tc_3or4x_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+
+ // Store
+ // ST
+ InstrItinData<ST_tc_st_SLOT01 , [InstrStage<1, [SLOT0, SLOT1]>]>,
+ // ST0
+ InstrItinData<ST_tc_st_SLOT0 , [InstrStage<1, [SLOT0]>]>,
+ InstrItinData<ST_tc_ld_SLOT0 , [InstrStage<1, [SLOT0]>]>,
+
+ // S
+ InstrItinData<S_2op_tc_1_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<S_2op_tc_2_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<S_2op_tc_2early_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<S_2op_tc_3or4x_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<S_3op_tc_1_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<S_3op_tc_1or2_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<S_3op_tc_2early_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<S_3op_tc_2_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<S_3op_tc_3_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<S_3op_tc_3x_SLOT23 , [InstrStage<1, [SLOT2, SLOT3]>]>,
+
+ // SYS
+ InstrItinData<ST_tc_3stall_SLOT0 , [InstrStage<1, [SLOT0]>]>,
+
+ // New Value Compare Jump
+ InstrItinData<NCJ_tc_3or4stall_SLOT0 , [InstrStage<1, [SLOT0]>]>,
+
+ // Mem ops - MEM_V4
+ InstrItinData<V2LDST_tc_st_SLOT0 , [InstrStage<1, [SLOT0]>]>,
+ InstrItinData<V2LDST_tc_ld_SLOT01 , [InstrStage<1, [SLOT0, SLOT1]>]>,
+ InstrItinData<V2LDST_tc_st_SLOT01 , [InstrStage<1, [SLOT0, SLOT1]>]>,
+ InstrItinData<V4LDST_tc_st_SLOT0 , [InstrStage<1, [SLOT0]>]>,
+ InstrItinData<V4LDST_tc_ld_SLOT01 , [InstrStage<1, [SLOT0, SLOT1]>]>,
+ InstrItinData<V4LDST_tc_st_SLOT01 , [InstrStage<1, [SLOT0, SLOT1]>]>,
+
+ InstrItinData<DUPLEX , [InstrStage<1, [SLOT0]>]>,
+
+ // ENDLOOP
+ InstrItinData<J_tc_2early_SLOT0123 , [InstrStage<1, [SLOT_ENDLOOP]>]>,
+
+ // Extender/PREFIX
+ InstrItinData<EXTENDER_tc_1_SLOT0123,
+ [InstrStage<1, [SLOT0, SLOT1, SLOT2, SLOT3]>]>,
+
+ InstrItinData<COMPOUND , [InstrStage<1, [SLOT2, SLOT3]>]>,
+ InstrItinData<PSEUDO , [InstrStage<1, [SLOT0, SLOT1, SLOT2, SLOT3]>]>,
+ InstrItinData<PSEUDOM, [InstrStage<1, [SLOT2, SLOT3], 0>,
+ InstrStage<1, [SLOT2, SLOT3]>]>
+ ]>;
+
+def HexagonModelV4 : SchedMachineModel {
+ // Max issue per cycle == bundle width.
+ let IssueWidth = 4;
+ let Itineraries = HexagonItinerariesV4;
+ let LoadLatency = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// Hexagon V4 Resource Definitions -
+//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSelectCCInfo.td b/contrib/llvm/lib/Target/Hexagon/HexagonSelectCCInfo.td
new file mode 100644
index 0000000..d8feb89
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSelectCCInfo.td
@@ -0,0 +1,121 @@
+//===-- HexagoSelectCCInfo.td - Selectcc mappings ----------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+
+//
+// selectcc mappings.
+//
+def : Pat <(i32 (selectcc IntRegs:$lhs, IntRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETEQ)),
+ (i32 (MUX_rr (i1 (CMPEQrr IntRegs:$lhs, IntRegs:$rhs)),
+ IntRegs:$tval, IntRegs:$fval))>;
+
+def : Pat <(i32 (selectcc IntRegs:$lhs, IntRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETNE)),
+ (i32 (MUX_rr (i1 (NOT_p (CMPEQrr IntRegs:$lhs, IntRegs:$rhs))),
+ IntRegs:$tval, IntRegs:$fval))>;
+
+def : Pat <(i32 (selectcc IntRegs:$lhs, IntRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETGT)),
+ (i32 (MUX_rr (i1 (CMPGTrr IntRegs:$lhs, IntRegs:$rhs)),
+ IntRegs:$tval, IntRegs:$fval))>;
+
+def : Pat <(i32 (selectcc IntRegs:$lhs, IntRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETUGT)),
+ (i32 (MUX_rr (i1 (CMPGTUrr IntRegs:$lhs, IntRegs:$rhs)),
+ IntRegs:$tval, IntRegs:$fval))>;
+
+
+
+def : Pat <(i32 (selectcc IntRegs:$lhs, IntRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETULT)),
+ (i32 (MUX_rr (i1 (NOT_p (CMPGTUrr IntRegs:$lhs,
+ (ADD_ri IntRegs:$rhs, -1)))),
+ IntRegs:$tval, IntRegs:$fval))>;
+
+def : Pat <(i32 (selectcc IntRegs:$lhs, IntRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETLT)),
+ (i32 (MUX_rr (i1 (NOT_p (CMPGTrr IntRegs:$lhs,
+ (ADD_ri IntRegs:$rhs, -1)))),
+ IntRegs:$tval, IntRegs:$fval))>;
+
+def : Pat <(i32 (selectcc IntRegs:$lhs, IntRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETLE)),
+ (i32 (MUX_rr (i1 (NOT_p (CMPGTrr IntRegs:$lhs, IntRegs:$rhs))),
+ IntRegs:$tval, IntRegs:$fval))>;
+
+def : Pat <(i32 (selectcc IntRegs:$lhs, IntRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETULE)),
+ (i32 (MUX_rr (i1 (NOT_p (CMPGTUrr IntRegs:$lhs, IntRegs:$rhs))),
+ IntRegs:$tval, IntRegs:$fval))>;
+
+
+//
+// selectcc mappings for greater-equal-to Rs => greater-than Rs-1.
+//
+def : Pat <(i32 (selectcc IntRegs:$lhs, IntRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETGE)),
+ (i32 (MUX_rr (i1 (CMPGTrr IntRegs:$lhs, (ADD_ri IntRegs:$rhs, -1))),
+ IntRegs:$tval, IntRegs:$fval))>;
+
+def : Pat <(i32 (selectcc IntRegs:$lhs, IntRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETUGE)),
+ (i32 (MUX_rr (i1 (CMPGTUrr IntRegs:$lhs, (ADD_ri IntRegs:$rhs, -1))),
+ IntRegs:$tval, IntRegs:$fval))>;
+
+
+
+//
+// selectcc mappings for predicate comparisons.
+//
+// Convert Rd = selectcc(p0, p1, true_val, false_val, SETEQ) into:
+// pt = not(p1 xor p2)
+// Rd = mux(pt, true_val, false_val)
+// and similarly for SETNE
+//
+def : Pat <(i32 (selectcc PredRegs:$lhs, PredRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETNE)),
+ (i32 (MUX_rr (i1 (XOR_pp PredRegs:$lhs, PredRegs:$rhs)), IntRegs:$tval,
+ IntRegs:$fval))>;
+
+def : Pat <(i32 (selectcc PredRegs:$lhs, PredRegs:$rhs, IntRegs:$tval,
+ IntRegs:$fval, SETEQ)),
+ (i32 (MUX_rr (i1 (NOT_p (XOR_pp PredRegs:$lhs, PredRegs:$rhs))),
+ IntRegs:$tval, IntRegs:$fval))>;
+
+
+//
+// selectcc mappings for 64-bit operands are messy. Hexagon does not have a
+// MUX64 o, use this:
+// selectcc(Rss, Rdd, tval, fval, cond) ->
+// combine(mux(cmp_cond(Rss, Rdd), tval.hi, fval.hi),
+// mux(cmp_cond(Rss, Rdd), tval.lo, fval.lo))
+
+// setgt-64.
+def : Pat<(i64 (selectcc DoubleRegs:$lhs, DoubleRegs:$rhs, DoubleRegs:$tval,
+ DoubleRegs:$fval, SETGT)),
+ (COMBINE_rr (MUX_rr (CMPGT64rr DoubleRegs:$lhs, DoubleRegs:$rhs),
+ (EXTRACT_SUBREG DoubleRegs:$tval, subreg_hireg),
+ (EXTRACT_SUBREG DoubleRegs:$fval, subreg_hireg)),
+ (MUX_rr (CMPGT64rr DoubleRegs:$lhs, DoubleRegs:$rhs),
+ (EXTRACT_SUBREG DoubleRegs:$tval, subreg_loreg),
+ (EXTRACT_SUBREG DoubleRegs:$fval, subreg_loreg)))>;
+
+
+// setlt-64 -> setgt-64.
+def : Pat<(i64 (selectcc DoubleRegs:$lhs, DoubleRegs:$rhs, DoubleRegs:$tval,
+ DoubleRegs:$fval, SETLT)),
+ (COMBINE_rr (MUX_rr (CMPGT64rr DoubleRegs:$lhs,
+ (ADD64_rr DoubleRegs:$rhs, (TFRI64 -1))),
+ (EXTRACT_SUBREG DoubleRegs:$tval, subreg_hireg),
+ (EXTRACT_SUBREG DoubleRegs:$fval, subreg_hireg)),
+ (MUX_rr (CMPGT64rr DoubleRegs:$lhs,
+ (ADD64_rr DoubleRegs:$rhs, (TFRI64 -1))),
+ (EXTRACT_SUBREG DoubleRegs:$tval, subreg_loreg),
+ (EXTRACT_SUBREG DoubleRegs:$fval, subreg_loreg)))>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.cpp
new file mode 100644
index 0000000..b5db997
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.cpp
@@ -0,0 +1,45 @@
+//===-- HexagonSelectionDAGInfo.cpp - Hexagon SelectionDAG Info -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the HexagonSelectionDAGInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonTargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-selectiondag-info"
+
+bool llvm::flag_aligned_memcpy;
+
+HexagonSelectionDAGInfo::HexagonSelectionDAGInfo(const DataLayout &DL)
+ : TargetSelectionDAGInfo(&DL) {}
+
+HexagonSelectionDAGInfo::~HexagonSelectionDAGInfo() {
+}
+
+SDValue
+HexagonSelectionDAGInfo::
+EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl, SDValue Chain,
+ SDValue Dst, SDValue Src, SDValue Size, unsigned Align,
+ bool isVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) const {
+ flag_aligned_memcpy = false;
+ if ((Align & 0x3) == 0) {
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ if (ConstantSize) {
+ uint64_t SizeVal = ConstantSize->getZExtValue();
+ if ((SizeVal > 32) && ((SizeVal % 8) == 0))
+ flag_aligned_memcpy = true;
+ }
+ }
+
+ return SDValue();
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.h b/contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.h
new file mode 100644
index 0000000..b40b303
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.h
@@ -0,0 +1,37 @@
+//===-- HexagonSelectionDAGInfo.h - Hexagon SelectionDAG Info ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the Hexagon subclass for TargetSelectionDAGInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HexagonSELECTIONDAGINFO_H
+#define HexagonSELECTIONDAGINFO_H
+
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+class HexagonSelectionDAGInfo : public TargetSelectionDAGInfo {
+public:
+ explicit HexagonSelectionDAGInfo(const DataLayout &DL);
+ ~HexagonSelectionDAGInfo();
+
+ SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
+ SDValue Chain,
+ SDValue Dst, SDValue Src,
+ SDValue Size, unsigned Align,
+ bool isVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) const override;
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSplitConst32AndConst64.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonSplitConst32AndConst64.cpp
new file mode 100644
index 0000000..247207f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSplitConst32AndConst64.cpp
@@ -0,0 +1,180 @@
+//=== HexagonSplitConst32AndConst64.cpp - split CONST32/Const64 into HI/LO ===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// When the compiler is invoked with no small data, for instance, with the -G0
+// command line option, then all CONST32_* opcodes should be broken down into
+// appropriate LO and HI instructions. This splitting is done by this pass.
+// The only reason this is not done in the DAG lowering itself is that there
+// is no simple way of getting the register allocator to allot the same hard
+// register to the result of LO and HI instructions. This pass is always
+// scheduled after register allocation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "HexagonTargetObjectFile.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LatencyPriorityQueue.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <map>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "xfer"
+
+namespace {
+
+class HexagonSplitConst32AndConst64 : public MachineFunctionPass {
+ const HexagonTargetMachine &QTM;
+
+ public:
+ static char ID;
+ HexagonSplitConst32AndConst64(const HexagonTargetMachine &TM)
+ : MachineFunctionPass(ID), QTM(TM) {}
+
+ const char *getPassName() const override {
+ return "Hexagon Split Const32s and Const64s";
+ }
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+};
+
+
+char HexagonSplitConst32AndConst64::ID = 0;
+
+
+bool HexagonSplitConst32AndConst64::runOnMachineFunction(MachineFunction &Fn) {
+
+ const HexagonTargetObjectFile &TLOF =
+ (const HexagonTargetObjectFile &)
+ QTM.getTargetLowering()->getObjFileLowering();
+ if (TLOF.IsSmallDataEnabled())
+ return true;
+
+ const TargetInstrInfo *TII = QTM.getInstrInfo();
+
+ // Loop over all of the basic blocks
+ for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
+ MBBb != MBBe; ++MBBb) {
+ MachineBasicBlock* MBB = MBBb;
+ // Traverse the basic block
+ MachineBasicBlock::iterator MII = MBB->begin();
+ MachineBasicBlock::iterator MIE = MBB->end ();
+ while (MII != MIE) {
+ MachineInstr *MI = MII;
+ int Opc = MI->getOpcode();
+ if (Opc == Hexagon::CONST32_set) {
+ int DestReg = MI->getOperand(0).getReg();
+ MachineOperand &Symbol = MI->getOperand (1);
+
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::LO), DestReg).addOperand(Symbol);
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::HI), DestReg).addOperand(Symbol);
+ // MBB->erase returns the iterator to the next instruction, which is the
+ // one we want to process next
+ MII = MBB->erase (MI);
+ continue;
+ }
+ else if (Opc == Hexagon::CONST32_set_jt) {
+ int DestReg = MI->getOperand(0).getReg();
+ MachineOperand &Symbol = MI->getOperand (1);
+
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::LO_jt), DestReg).addOperand(Symbol);
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::HI_jt), DestReg).addOperand(Symbol);
+ // MBB->erase returns the iterator to the next instruction, which is the
+ // one we want to process next
+ MII = MBB->erase (MI);
+ continue;
+ }
+ else if (Opc == Hexagon::CONST32_Label) {
+ int DestReg = MI->getOperand(0).getReg();
+ MachineOperand &Symbol = MI->getOperand (1);
+
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::LO_label), DestReg).addOperand(Symbol);
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::HI_label), DestReg).addOperand(Symbol);
+ // MBB->erase returns the iterator to the next instruction, which is the
+ // one we want to process next
+ MII = MBB->erase (MI);
+ continue;
+ }
+ else if (Opc == Hexagon::CONST32_Int_Real) {
+ int DestReg = MI->getOperand(0).getReg();
+ int64_t ImmValue = MI->getOperand(1).getImm ();
+
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::LOi), DestReg).addImm(ImmValue);
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::HIi), DestReg).addImm(ImmValue);
+ MII = MBB->erase (MI);
+ continue;
+ }
+ else if (Opc == Hexagon::CONST64_Int_Real) {
+ int DestReg = MI->getOperand(0).getReg();
+ int64_t ImmValue = MI->getOperand(1).getImm ();
+ unsigned DestLo =
+ QTM.getRegisterInfo()->getSubReg (DestReg, Hexagon::subreg_loreg);
+ unsigned DestHi =
+ QTM.getRegisterInfo()->getSubReg (DestReg, Hexagon::subreg_hireg);
+
+ int32_t LowWord = (ImmValue & 0xFFFFFFFF);
+ int32_t HighWord = (ImmValue >> 32) & 0xFFFFFFFF;
+
+ // Lower Registers Lower Half
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::LOi), DestLo).addImm(LowWord);
+ // Lower Registers Higher Half
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::HIi), DestLo).addImm(LowWord);
+ // Higher Registers Lower Half
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::LOi), DestHi).addImm(HighWord);
+ // Higher Registers Higher Half.
+ BuildMI (*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::HIi), DestHi).addImm(HighWord);
+ MII = MBB->erase (MI);
+ continue;
+ }
+ ++MII;
+ }
+ }
+
+ return true;
+}
+
+}
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+FunctionPass *
+llvm::createHexagonSplitConst32AndConst64(const HexagonTargetMachine &TM) {
+ return new HexagonSplitConst32AndConst64(TM);
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSplitTFRCondSets.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonSplitTFRCondSets.cpp
new file mode 100644
index 0000000..9601090
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSplitTFRCondSets.cpp
@@ -0,0 +1,237 @@
+//===-- HexagonSplitTFRCondSets.cpp - split TFR condsets into xfers -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//
+//===----------------------------------------------------------------------===//
+// This pass tries to provide opportunities for better optimization of muxes.
+// The default code generated for something like: flag = (a == b) ? 1 : 3;
+// would be:
+//
+// {p0 = cmp.eq(r0,r1)}
+// {r3 = mux(p0,#1,#3)}
+//
+// This requires two packets. If we use .new predicated immediate transfers,
+// then we can do this in a single packet, e.g.:
+//
+// {p0 = cmp.eq(r0,r1)
+// if (p0.new) r3 = #1
+// if (!p0.new) r3 = #3}
+//
+// Note that the conditional assignments are not generated in .new form here.
+// We assume opptimisically that they will be formed later.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/CodeGen/LatencyPriorityQueue.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "xfer"
+
+namespace llvm {
+ void initializeHexagonSplitTFRCondSetsPass(PassRegistry&);
+}
+
+
+namespace {
+
+class HexagonSplitTFRCondSets : public MachineFunctionPass {
+ const HexagonTargetMachine &QTM;
+ const HexagonSubtarget &QST;
+
+ public:
+ static char ID;
+ HexagonSplitTFRCondSets(const HexagonTargetMachine& TM) :
+ MachineFunctionPass(ID), QTM(TM), QST(*TM.getSubtargetImpl()) {
+ initializeHexagonSplitTFRCondSetsPass(*PassRegistry::getPassRegistry());
+ }
+
+ const char *getPassName() const override {
+ return "Hexagon Split TFRCondSets";
+ }
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+};
+
+
+char HexagonSplitTFRCondSets::ID = 0;
+
+
+bool HexagonSplitTFRCondSets::runOnMachineFunction(MachineFunction &Fn) {
+
+ const TargetInstrInfo *TII = QTM.getInstrInfo();
+
+ // Loop over all of the basic blocks.
+ for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
+ MBBb != MBBe; ++MBBb) {
+ MachineBasicBlock* MBB = MBBb;
+ // Traverse the basic block.
+ for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end();
+ ++MII) {
+ MachineInstr *MI = MII;
+ int Opc1, Opc2;
+ switch(MI->getOpcode()) {
+ case Hexagon::TFR_condset_rr:
+ case Hexagon::TFR_condset_rr_f:
+ case Hexagon::TFR_condset_rr64_f: {
+ int DestReg = MI->getOperand(0).getReg();
+ int SrcReg1 = MI->getOperand(2).getReg();
+ int SrcReg2 = MI->getOperand(3).getReg();
+
+ if (MI->getOpcode() == Hexagon::TFR_condset_rr ||
+ MI->getOpcode() == Hexagon::TFR_condset_rr_f) {
+ Opc1 = Hexagon::TFR_cPt;
+ Opc2 = Hexagon::TFR_cNotPt;
+ }
+ else if (MI->getOpcode() == Hexagon::TFR_condset_rr64_f) {
+ Opc1 = Hexagon::TFR64_cPt;
+ Opc2 = Hexagon::TFR64_cNotPt;
+ }
+
+ // Minor optimization: do not emit the predicated copy if the source
+ // and the destination is the same register.
+ if (DestReg != SrcReg1) {
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Opc1),
+ DestReg).addReg(MI->getOperand(1).getReg()).addReg(SrcReg1);
+ }
+ if (DestReg != SrcReg2) {
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Opc2),
+ DestReg).addReg(MI->getOperand(1).getReg()).addReg(SrcReg2);
+ }
+ MII = MBB->erase(MI);
+ --MII;
+ break;
+ }
+ case Hexagon::TFR_condset_ri:
+ case Hexagon::TFR_condset_ri_f: {
+ int DestReg = MI->getOperand(0).getReg();
+ int SrcReg1 = MI->getOperand(2).getReg();
+
+ // Do not emit the predicated copy if the source and the destination
+ // is the same register.
+ if (DestReg != SrcReg1) {
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::TFR_cPt), DestReg).
+ addReg(MI->getOperand(1).getReg()).addReg(SrcReg1);
+ }
+ if (MI->getOpcode() == Hexagon::TFR_condset_ri ) {
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::TFRI_cNotPt), DestReg).
+ addReg(MI->getOperand(1).getReg()).
+ addImm(MI->getOperand(3).getImm());
+ } else if (MI->getOpcode() == Hexagon::TFR_condset_ri_f ) {
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::TFRI_cNotPt_f), DestReg).
+ addReg(MI->getOperand(1).getReg()).
+ addFPImm(MI->getOperand(3).getFPImm());
+ }
+
+ MII = MBB->erase(MI);
+ --MII;
+ break;
+ }
+ case Hexagon::TFR_condset_ir:
+ case Hexagon::TFR_condset_ir_f: {
+ int DestReg = MI->getOperand(0).getReg();
+ int SrcReg2 = MI->getOperand(3).getReg();
+
+ if (MI->getOpcode() == Hexagon::TFR_condset_ir ) {
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::TFRI_cPt), DestReg).
+ addReg(MI->getOperand(1).getReg()).
+ addImm(MI->getOperand(2).getImm());
+ } else if (MI->getOpcode() == Hexagon::TFR_condset_ir_f ) {
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::TFRI_cPt_f), DestReg).
+ addReg(MI->getOperand(1).getReg()).
+ addFPImm(MI->getOperand(2).getFPImm());
+ }
+
+ // Do not emit the predicated copy if the source and
+ // the destination is the same register.
+ if (DestReg != SrcReg2) {
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::TFR_cNotPt), DestReg).
+ addReg(MI->getOperand(1).getReg()).addReg(SrcReg2);
+ }
+ MII = MBB->erase(MI);
+ --MII;
+ break;
+ }
+ case Hexagon::TFR_condset_ii:
+ case Hexagon::TFR_condset_ii_f: {
+ int DestReg = MI->getOperand(0).getReg();
+ int SrcReg1 = MI->getOperand(1).getReg();
+
+ if (MI->getOpcode() == Hexagon::TFR_condset_ii ) {
+ int Immed1 = MI->getOperand(2).getImm();
+ int Immed2 = MI->getOperand(3).getImm();
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::TFRI_cPt),
+ DestReg).addReg(SrcReg1).addImm(Immed1);
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::TFRI_cNotPt),
+ DestReg).addReg(SrcReg1).addImm(Immed2);
+ } else if (MI->getOpcode() == Hexagon::TFR_condset_ii_f ) {
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::TFRI_cPt_f), DestReg).
+ addReg(SrcReg1).
+ addFPImm(MI->getOperand(2).getFPImm());
+ BuildMI(*MBB, MII, MI->getDebugLoc(),
+ TII->get(Hexagon::TFRI_cNotPt_f), DestReg).
+ addReg(SrcReg1).
+ addFPImm(MI->getOperand(3).getFPImm());
+ }
+ MII = MBB->erase(MI);
+ --MII;
+ break;
+ }
+ }
+ }
+ }
+ return true;
+}
+
+}
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+static void initializePassOnce(PassRegistry &Registry) {
+ const char *Name = "Hexagon Split TFRCondSets";
+ PassInfo *PI = new PassInfo(Name, "hexagon-split-tfr",
+ &HexagonSplitTFRCondSets::ID, nullptr, false,
+ false);
+ Registry.registerPass(*PI, true);
+}
+
+void llvm::initializeHexagonSplitTFRCondSetsPass(PassRegistry &Registry) {
+ CALL_ONCE_INITIALIZATION(initializePassOnce)
+}
+
+FunctionPass*
+llvm::createHexagonSplitTFRCondSets(const HexagonTargetMachine &TM) {
+ return new HexagonSplitTFRCondSets(TM);
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp
new file mode 100644
index 0000000..657893f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp
@@ -0,0 +1,99 @@
+//===-- HexagonSubtarget.cpp - Hexagon Subtarget Information --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Hexagon specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonSubtarget.h"
+#include "Hexagon.h"
+#include "HexagonRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-subtarget"
+
+#define GET_SUBTARGETINFO_CTOR
+#define GET_SUBTARGETINFO_TARGET_DESC
+#include "HexagonGenSubtargetInfo.inc"
+
+static cl::opt<bool>
+EnableV3("enable-hexagon-v3", cl::Hidden,
+ cl::desc("Enable Hexagon V3 instructions."));
+
+static cl::opt<bool>
+EnableMemOps(
+ "enable-hexagon-memops",
+ cl::Hidden, cl::ZeroOrMore, cl::ValueDisallowed, cl::init(true),
+ cl::desc(
+ "Generate V4 MEMOP in code generation for Hexagon target"));
+
+static cl::opt<bool>
+DisableMemOps(
+ "disable-hexagon-memops",
+ cl::Hidden, cl::ZeroOrMore, cl::ValueDisallowed, cl::init(false),
+ cl::desc(
+ "Do not generate V4 MEMOP in code generation for Hexagon target"));
+
+static cl::opt<bool>
+EnableIEEERndNear(
+ "enable-hexagon-ieee-rnd-near",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Generate non-chopped conversion from fp to int."));
+
+HexagonSubtarget &
+HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
+ // If the programmer has not specified a Hexagon version, default to -mv4.
+ if (CPUString.empty())
+ CPUString = "hexagonv4";
+
+ if (CPUString == "hexagonv2") {
+ HexagonArchVersion = V2;
+ } else if (CPUString == "hexagonv3") {
+ EnableV3 = true;
+ HexagonArchVersion = V3;
+ } else if (CPUString == "hexagonv4") {
+ HexagonArchVersion = V4;
+ } else if (CPUString == "hexagonv5") {
+ HexagonArchVersion = V5;
+ } else {
+ llvm_unreachable("Unrecognized Hexagon processor version");
+ }
+
+ ParseSubtargetFeatures(CPUString, FS);
+ return *this;
+}
+
+HexagonSubtarget::HexagonSubtarget(StringRef TT, StringRef CPU, StringRef FS,
+ const TargetMachine &TM)
+ : HexagonGenSubtargetInfo(TT, CPU, FS), CPUString(CPU.str()),
+ DL("e-m:e-p:32:32-i1:32-i64:64-a:0-n32"),
+ InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM),
+ TSInfo(DL), FrameLowering() {
+
+ // Initialize scheduling itinerary for the specified CPU.
+ InstrItins = getInstrItineraryForCPU(CPUString);
+
+ // UseMemOps on by default unless disabled explicitly
+ if (DisableMemOps)
+ UseMemOps = false;
+ else if (EnableMemOps)
+ UseMemOps = true;
+ else
+ UseMemOps = false;
+
+ if (EnableIEEERndNear)
+ ModeIEEERndNear = true;
+ else
+ ModeIEEERndNear = false;
+}
+
+// Pin the vtable to this file.
+void HexagonSubtarget::anchor() {}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.h b/contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.h
new file mode 100644
index 0000000..b184e62
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.h
@@ -0,0 +1,105 @@
+//===-- HexagonSubtarget.h - Define Subtarget for the Hexagon ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the Hexagon specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef Hexagon_SUBTARGET_H
+#define Hexagon_SUBTARGET_H
+
+#include "HexagonFrameLowering.h"
+#include "HexagonInstrInfo.h"
+#include "HexagonISelLowering.h"
+#include "HexagonSelectionDAGInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "HexagonGenSubtargetInfo.inc"
+
+#define Hexagon_SMALL_DATA_THRESHOLD 8
+#define Hexagon_SLOTS 4
+
+namespace llvm {
+
+class HexagonSubtarget : public HexagonGenSubtargetInfo {
+ virtual void anchor();
+
+ bool UseMemOps;
+ bool ModeIEEERndNear;
+
+public:
+ enum HexagonArchEnum {
+ V1, V2, V3, V4, V5
+ };
+
+ HexagonArchEnum HexagonArchVersion;
+private:
+ std::string CPUString;
+ const DataLayout DL; // Calculates type size & alignment.
+ HexagonInstrInfo InstrInfo;
+ HexagonTargetLowering TLInfo;
+ HexagonSelectionDAGInfo TSInfo;
+ HexagonFrameLowering FrameLowering;
+ InstrItineraryData InstrItins;
+
+public:
+ HexagonSubtarget(StringRef TT, StringRef CPU, StringRef FS,
+ const TargetMachine &TM);
+
+ /// getInstrItins - Return the instruction itineraies based on subtarget
+ /// selection.
+ const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
+ const HexagonInstrInfo *getInstrInfo() const { return &InstrInfo; }
+ const HexagonRegisterInfo *getRegisterInfo() const {
+ return &InstrInfo.getRegisterInfo();
+ }
+ const HexagonTargetLowering *getTargetLowering() const { return &TLInfo; }
+ const HexagonFrameLowering *getFrameLowering() const {
+ return &FrameLowering;
+ }
+ const HexagonSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+ const DataLayout *getDataLayout() const { return &DL; }
+
+ HexagonSubtarget &initializeSubtargetDependencies(StringRef CPU,
+ StringRef FS);
+
+ /// ParseSubtargetFeatures - Parses features string setting specified
+ /// subtarget options. Definition of function is auto generated by tblgen.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+
+ bool hasV2TOps () const { return HexagonArchVersion >= V2; }
+ bool hasV2TOpsOnly () const { return HexagonArchVersion == V2; }
+ bool hasV3TOps () const { return HexagonArchVersion >= V3; }
+ bool hasV3TOpsOnly () const { return HexagonArchVersion == V3; }
+ bool hasV4TOps () const { return HexagonArchVersion >= V4; }
+ bool hasV4TOpsOnly () const { return HexagonArchVersion == V4; }
+ bool useMemOps () const { return HexagonArchVersion >= V4 && UseMemOps; }
+ bool hasV5TOps () const { return HexagonArchVersion >= V5; }
+ bool hasV5TOpsOnly () const { return HexagonArchVersion == V5; }
+ bool modeIEEERndNear () const { return ModeIEEERndNear; }
+
+ bool isSubtargetV2() const { return HexagonArchVersion == V2;}
+ const std::string &getCPUString () const { return CPUString; }
+
+ // Threshold for small data section
+ unsigned getSmallDataThreshold() const {
+ return Hexagon_SMALL_DATA_THRESHOLD;
+ }
+ const HexagonArchEnum &getHexagonArchVersion() const {
+ return HexagonArchVersion;
+ }
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp
new file mode 100644
index 0000000..7831410
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp
@@ -0,0 +1,178 @@
+//===-- HexagonTargetMachine.cpp - Define TargetMachine for Hexagon -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements the info about Hexagon target spec.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonTargetMachine.h"
+#include "Hexagon.h"
+#include "HexagonISelLowering.h"
+#include "HexagonMachineScheduler.h"
+#include "HexagonTargetObjectFile.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Transforms/IPO/PassManagerBuilder.h"
+#include "llvm/Transforms/Scalar.h"
+
+using namespace llvm;
+
+static cl:: opt<bool> DisableHardwareLoops("disable-hexagon-hwloops",
+ cl::Hidden, cl::desc("Disable Hardware Loops for Hexagon target"));
+
+static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Disable Hexagon MI Scheduling"));
+
+static cl::opt<bool> DisableHexagonCFGOpt("disable-hexagon-cfgopt",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Disable Hexagon CFG Optimization"));
+
+
+/// HexagonTargetMachineModule - Note that this is used on hosts that
+/// cannot link in a library unless there are references into the
+/// library. In particular, it seems that it is not possible to get
+/// things to work on Win32 without this. Though it is unused, do not
+/// remove it.
+extern "C" int HexagonTargetMachineModule;
+int HexagonTargetMachineModule = 0;
+
+extern "C" void LLVMInitializeHexagonTarget() {
+ // Register the target.
+ RegisterTargetMachine<HexagonTargetMachine> X(TheHexagonTarget);
+}
+
+static ScheduleDAGInstrs *createVLIWMachineSched(MachineSchedContext *C) {
+ return new VLIWMachineScheduler(C, make_unique<ConvergingVLIWScheduler>());
+}
+
+static MachineSchedRegistry
+SchedCustomRegistry("hexagon", "Run Hexagon's custom scheduler",
+ createVLIWMachineSched);
+
+/// HexagonTargetMachine ctor - Create an ILP32 architecture model.
+///
+
+/// Hexagon_TODO: Do I need an aggregate alignment?
+///
+HexagonTargetMachine::HexagonTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS, *this) {
+ initAsmInfo();
+}
+
+namespace {
+/// Hexagon Code Generator Pass Configuration Options.
+class HexagonPassConfig : public TargetPassConfig {
+public:
+ HexagonPassConfig(HexagonTargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {
+ // FIXME: Rather than calling enablePass(&MachineSchedulerID) below, define
+ // HexagonSubtarget::enableMachineScheduler() { return true; }.
+ // That will bypass the SelectionDAG VLIW scheduler, which is probably just
+ // hurting compile time and will be removed eventually anyway.
+ if (DisableHexagonMISched)
+ disablePass(&MachineSchedulerID);
+ else
+ enablePass(&MachineSchedulerID);
+ }
+
+ HexagonTargetMachine &getHexagonTargetMachine() const {
+ return getTM<HexagonTargetMachine>();
+ }
+
+ ScheduleDAGInstrs *
+ createMachineScheduler(MachineSchedContext *C) const override {
+ return createVLIWMachineSched(C);
+ }
+
+ bool addInstSelector() override;
+ bool addPreRegAlloc() override;
+ bool addPostRegAlloc() override;
+ bool addPreSched2() override;
+ bool addPreEmitPass() override;
+};
+} // namespace
+
+TargetPassConfig *HexagonTargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new HexagonPassConfig(this, PM);
+}
+
+bool HexagonPassConfig::addInstSelector() {
+ HexagonTargetMachine &TM = getHexagonTargetMachine();
+ bool NoOpt = (getOptLevel() == CodeGenOpt::None);
+
+ if (!NoOpt)
+ addPass(createHexagonRemoveExtendArgs(TM));
+
+ addPass(createHexagonISelDag(TM, getOptLevel()));
+
+ if (!NoOpt) {
+ addPass(createHexagonPeephole());
+ printAndVerify("After hexagon peephole pass");
+ }
+
+ return false;
+}
+
+bool HexagonPassConfig::addPreRegAlloc() {
+ if (getOptLevel() != CodeGenOpt::None)
+ if (!DisableHardwareLoops)
+ addPass(createHexagonHardwareLoops());
+ return false;
+}
+
+bool HexagonPassConfig::addPostRegAlloc() {
+ const HexagonTargetMachine &TM = getHexagonTargetMachine();
+ if (getOptLevel() != CodeGenOpt::None)
+ if (!DisableHexagonCFGOpt)
+ addPass(createHexagonCFGOptimizer(TM));
+ return false;
+}
+
+bool HexagonPassConfig::addPreSched2() {
+ const HexagonTargetMachine &TM = getHexagonTargetMachine();
+
+ addPass(createHexagonCopyToCombine());
+ if (getOptLevel() != CodeGenOpt::None)
+ addPass(&IfConverterID);
+ addPass(createHexagonSplitConst32AndConst64(TM));
+ printAndVerify("After hexagon split const32/64 pass");
+ return true;
+}
+
+bool HexagonPassConfig::addPreEmitPass() {
+ const HexagonTargetMachine &TM = getHexagonTargetMachine();
+ bool NoOpt = (getOptLevel() == CodeGenOpt::None);
+
+ if (!NoOpt)
+ addPass(createHexagonNewValueJump());
+
+ // Expand Spill code for predicate registers.
+ addPass(createHexagonExpandPredSpillCode(TM));
+
+ // Split up TFRcondsets into conditional transfers.
+ addPass(createHexagonSplitTFRCondSets(TM));
+
+ // Create Packets.
+ if (!NoOpt) {
+ if (!DisableHardwareLoops)
+ addPass(createHexagonFixupHwLoops());
+ addPass(createHexagonPacketizer());
+ }
+
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.h b/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.h
new file mode 100644
index 0000000..d88178e
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.h
@@ -0,0 +1,67 @@
+//=-- HexagonTargetMachine.h - Define TargetMachine for Hexagon ---*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the Hexagon specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HexagonTARGETMACHINE_H
+#define HexagonTARGETMACHINE_H
+
+#include "HexagonInstrInfo.h"
+#include "HexagonSubtarget.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+class Module;
+
+class HexagonTargetMachine : public LLVMTargetMachine {
+ HexagonSubtarget Subtarget;
+
+public:
+ HexagonTargetMachine(const Target &T, StringRef TT,StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+
+ const HexagonInstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const HexagonSubtarget *getSubtargetImpl() const override {
+ return &Subtarget;
+ }
+ const HexagonRegisterInfo *getRegisterInfo() const override {
+ return getSubtargetImpl()->getRegisterInfo();
+ }
+ const InstrItineraryData* getInstrItineraryData() const override {
+ return &getSubtargetImpl()->getInstrItineraryData();
+ }
+ const HexagonTargetLowering* getTargetLowering() const override {
+ return getSubtargetImpl()->getTargetLowering();
+ }
+ const HexagonFrameLowering* getFrameLowering() const override {
+ return getSubtargetImpl()->getFrameLowering();
+ }
+ const HexagonSelectionDAGInfo* getSelectionDAGInfo() const override {
+ return getSubtargetImpl()->getSelectionDAGInfo();
+ }
+ const DataLayout *getDataLayout() const override {
+ return getSubtargetImpl()->getDataLayout();
+ }
+ static unsigned getModuleMatchQuality(const Module &M);
+
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+};
+
+extern bool flag_aligned_memcpy;
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.cpp
new file mode 100644
index 0000000..c97526e
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.cpp
@@ -0,0 +1,101 @@
+//===-- HexagonTargetObjectFile.cpp - Hexagon asm properties --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the HexagonTargetAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonTargetObjectFile.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ELF.h"
+
+using namespace llvm;
+
+static cl::opt<int> SmallDataThreshold("hexagon-small-data-threshold",
+ cl::init(8), cl::Hidden,
+ cl::desc("The maximum size of an object in the sdata section"));
+
+void HexagonTargetObjectFile::Initialize(MCContext &Ctx,
+ const TargetMachine &TM) {
+ TargetLoweringObjectFileELF::Initialize(Ctx, TM);
+
+
+ SmallDataSection =
+ getContext().getELFSection(".sdata", ELF::SHT_PROGBITS,
+ ELF::SHF_WRITE | ELF::SHF_ALLOC,
+ SectionKind::getDataRel());
+ SmallBSSSection =
+ getContext().getELFSection(".sbss", ELF::SHT_NOBITS,
+ ELF::SHF_WRITE | ELF::SHF_ALLOC,
+ SectionKind::getBSS());
+}
+
+// sdata/sbss support taken largely from the MIPS Backend.
+static bool IsInSmallSection(uint64_t Size) {
+ return Size > 0 && Size <= (uint64_t)SmallDataThreshold;
+}
+
+bool HexagonTargetObjectFile::IsSmallDataEnabled () const {
+ return SmallDataThreshold > 0;
+}
+
+/// IsGlobalInSmallSection - Return true if this global value should be
+/// placed into small data/bss section.
+bool HexagonTargetObjectFile::IsGlobalInSmallSection(const GlobalValue *GV,
+ const TargetMachine &TM) const {
+ // If the primary definition of this global value is outside the current
+ // translation unit or the global value is available for inspection but not
+ // emission, then do nothing.
+ if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage())
+ return false;
+
+ // Otherwise, Check if GV should be in sdata/sbss, when normally it would end
+ // up in getKindForGlobal(GV, TM).
+ return IsGlobalInSmallSection(GV, TM, getKindForGlobal(GV, TM));
+}
+
+/// IsGlobalInSmallSection - Return true if this global value should be
+/// placed into small data/bss section.
+bool HexagonTargetObjectFile::
+IsGlobalInSmallSection(const GlobalValue *GV, const TargetMachine &TM,
+ SectionKind Kind) const {
+ // Only global variables, not functions.
+ const GlobalVariable *GVA = dyn_cast<GlobalVariable>(GV);
+ if (!GVA)
+ return false;
+
+ if (Kind.isBSS() || Kind.isDataNoRel() || Kind.isCommon()) {
+ Type *Ty = GV->getType()->getElementType();
+ return IsInSmallSection(TM.getDataLayout()->getTypeAllocSize(Ty));
+ }
+
+ return false;
+}
+
+const MCSection *
+HexagonTargetObjectFile::SelectSectionForGlobal(const GlobalValue *GV,
+ SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const {
+
+ // Handle Small Section classification here.
+ if (Kind.isBSS() && IsGlobalInSmallSection(GV, TM, Kind))
+ return SmallBSSSection;
+ if (Kind.isDataNoRel() && IsGlobalInSmallSection(GV, TM, Kind))
+ return SmallDataSection;
+
+ // Otherwise, we work the same as ELF.
+ return TargetLoweringObjectFileELF::SelectSectionForGlobal(GV, Kind, Mang,TM);
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.h b/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.h
new file mode 100644
index 0000000..1bd1272
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.h
@@ -0,0 +1,40 @@
+//===-- HexagonTargetAsmInfo.h - Hexagon asm properties --------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HexagonTARGETOBJECTFILE_H
+#define HexagonTARGETOBJECTFILE_H
+
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/MC/MCSectionELF.h"
+
+namespace llvm {
+
+ class HexagonTargetObjectFile : public TargetLoweringObjectFileELF {
+ const MCSectionELF *SmallDataSection;
+ const MCSectionELF *SmallBSSSection;
+ public:
+ void Initialize(MCContext &Ctx, const TargetMachine &TM) override;
+
+ /// IsGlobalInSmallSection - Return true if this global address should be
+ /// placed into small data/bss section.
+ bool IsGlobalInSmallSection(const GlobalValue *GV,
+ const TargetMachine &TM,
+ SectionKind Kind) const;
+ bool IsGlobalInSmallSection(const GlobalValue *GV,
+ const TargetMachine &TM) const;
+
+ bool IsSmallDataEnabled () const;
+ const MCSection *SelectSectionForGlobal(const GlobalValue *GV,
+ SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const override;
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp
new file mode 100644
index 0000000..87ce960
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp
@@ -0,0 +1,1428 @@
+//===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements a simple VLIW packetizer using DFA. The packetizer works on
+// machine basic blocks. For each instruction I in BB, the packetizer consults
+// the DFA to see if machine resources are available to execute I. If so, the
+// packetizer checks if I depends on any instruction J in the current packet.
+// If no dependency is found, I is added to current packet and machine resource
+// is marked as taken. If any dependency is found, a target API call is made to
+// prune the dependence.
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/CodeGen/DFAPacketizer.h"
+#include "Hexagon.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonRegisterInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LatencyPriorityQueue.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <map>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "packets"
+
+static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
+ cl::ZeroOrMore, cl::Hidden, cl::init(true),
+ cl::desc("Allow non-solo packetization of volatile memory references"));
+
+namespace llvm {
+ void initializeHexagonPacketizerPass(PassRegistry&);
+}
+
+
+namespace {
+ class HexagonPacketizer : public MachineFunctionPass {
+
+ public:
+ static char ID;
+ HexagonPacketizer() : MachineFunctionPass(ID) {
+ initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ const char *getPassName() const override {
+ return "Hexagon Packetizer";
+ }
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+ };
+ char HexagonPacketizer::ID = 0;
+
+ class HexagonPacketizerList : public VLIWPacketizerList {
+
+ private:
+
+ // Has the instruction been promoted to a dot-new instruction.
+ bool PromotedToDotNew;
+
+ // Has the instruction been glued to allocframe.
+ bool GlueAllocframeStore;
+
+ // Has the feeder instruction been glued to new value jump.
+ bool GlueToNewValueJump;
+
+ // Check if there is a dependence between some instruction already in this
+ // packet and this instruction.
+ bool Dependence;
+
+ // Only check for dependence if there are resources available to
+ // schedule this instruction.
+ bool FoundSequentialDependence;
+
+ /// \brief A handle to the branch probability pass.
+ const MachineBranchProbabilityInfo *MBPI;
+
+ // Track MIs with ignored dependece.
+ std::vector<MachineInstr*> IgnoreDepMIs;
+
+ public:
+ // Ctor.
+ HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
+ MachineDominatorTree &MDT,
+ const MachineBranchProbabilityInfo *MBPI);
+
+ // initPacketizerState - initialize some internal flags.
+ void initPacketizerState() override;
+
+ // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
+ bool ignorePseudoInstruction(MachineInstr *MI,
+ MachineBasicBlock *MBB) override;
+
+ // isSoloInstruction - return true if instruction MI can not be packetized
+ // with any other instruction, which means that MI itself is a packet.
+ bool isSoloInstruction(MachineInstr *MI) override;
+
+ // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
+ // together.
+ bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override;
+
+ // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
+ // and SUJ.
+ bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override;
+
+ MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override;
+ private:
+ bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg);
+ bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType,
+ MachineBasicBlock::iterator &MII,
+ const TargetRegisterClass* RC);
+ bool CanPromoteToDotNew(MachineInstr* MI, SUnit* PacketSU,
+ unsigned DepReg,
+ std::map <MachineInstr*, SUnit*> MIToSUnit,
+ MachineBasicBlock::iterator &MII,
+ const TargetRegisterClass* RC);
+ bool CanPromoteToNewValue(MachineInstr* MI, SUnit* PacketSU,
+ unsigned DepReg,
+ std::map <MachineInstr*, SUnit*> MIToSUnit,
+ MachineBasicBlock::iterator &MII);
+ bool CanPromoteToNewValueStore(MachineInstr* MI, MachineInstr* PacketMI,
+ unsigned DepReg,
+ std::map <MachineInstr*, SUnit*> MIToSUnit);
+ bool DemoteToDotOld(MachineInstr* MI);
+ bool ArePredicatesComplements(MachineInstr* MI1, MachineInstr* MI2,
+ std::map <MachineInstr*, SUnit*> MIToSUnit);
+ bool RestrictingDepExistInPacket(MachineInstr*,
+ unsigned, std::map <MachineInstr*, SUnit*>);
+ bool isNewifiable(MachineInstr* MI);
+ bool isCondInst(MachineInstr* MI);
+ bool tryAllocateResourcesForConstExt(MachineInstr* MI);
+ bool canReserveResourcesForConstExt(MachineInstr *MI);
+ void reserveResourcesForConstExt(MachineInstr* MI);
+ bool isNewValueInst(MachineInstr* MI);
+ };
+}
+
+INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
+ false, false)
+
+
+// HexagonPacketizerList Ctor.
+HexagonPacketizerList::HexagonPacketizerList(
+ MachineFunction &MF, MachineLoopInfo &MLI,MachineDominatorTree &MDT,
+ const MachineBranchProbabilityInfo *MBPI)
+ : VLIWPacketizerList(MF, MLI, MDT, true){
+ this->MBPI = MBPI;
+}
+
+bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
+ const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
+ MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
+ MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
+ const MachineBranchProbabilityInfo *MBPI =
+ &getAnalysis<MachineBranchProbabilityInfo>();
+ // Instantiate the packetizer.
+ HexagonPacketizerList Packetizer(Fn, MLI, MDT, MBPI);
+
+ // DFA state table should not be empty.
+ assert(Packetizer.getResourceTracker() && "Empty DFA table!");
+
+ //
+ // Loop over all basic blocks and remove KILL pseudo-instructions
+ // These instructions confuse the dependence analysis. Consider:
+ // D0 = ... (Insn 0)
+ // R0 = KILL R0, D0 (Insn 1)
+ // R0 = ... (Insn 2)
+ // Here, Insn 1 will result in the dependence graph not emitting an output
+ // dependence between Insn 0 and Insn 2. This can lead to incorrect
+ // packetization
+ //
+ for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+ MBB != MBBe; ++MBB) {
+ MachineBasicBlock::iterator End = MBB->end();
+ MachineBasicBlock::iterator MI = MBB->begin();
+ while (MI != End) {
+ if (MI->isKill()) {
+ MachineBasicBlock::iterator DeleteMI = MI;
+ ++MI;
+ MBB->erase(DeleteMI);
+ End = MBB->end();
+ continue;
+ }
+ ++MI;
+ }
+ }
+
+ // Loop over all of the basic blocks.
+ for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+ MBB != MBBe; ++MBB) {
+ // Find scheduling regions and schedule / packetize each region.
+ unsigned RemainingCount = MBB->size();
+ for(MachineBasicBlock::iterator RegionEnd = MBB->end();
+ RegionEnd != MBB->begin();) {
+ // The next region starts above the previous region. Look backward in the
+ // instruction stream until we find the nearest boundary.
+ MachineBasicBlock::iterator I = RegionEnd;
+ for(;I != MBB->begin(); --I, --RemainingCount) {
+ if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn))
+ break;
+ }
+ I = MBB->begin();
+
+ // Skip empty scheduling regions.
+ if (I == RegionEnd) {
+ RegionEnd = std::prev(RegionEnd);
+ --RemainingCount;
+ continue;
+ }
+ // Skip regions with one instruction.
+ if (I == std::prev(RegionEnd)) {
+ RegionEnd = std::prev(RegionEnd);
+ continue;
+ }
+
+ Packetizer.PacketizeMIs(MBB, I, RegionEnd);
+ RegionEnd = I;
+ }
+ }
+
+ return true;
+}
+
+
+static bool IsIndirectCall(MachineInstr* MI) {
+ return ((MI->getOpcode() == Hexagon::CALLR) ||
+ (MI->getOpcode() == Hexagon::CALLRv3));
+}
+
+// Reserve resources for constant extender. Trigure an assertion if
+// reservation fail.
+void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) {
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+ MachineFunction *MF = MI->getParent()->getParent();
+ MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
+ MI->getDebugLoc());
+
+ if (ResourceTracker->canReserveResources(PseudoMI)) {
+ ResourceTracker->reserveResources(PseudoMI);
+ MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
+ } else {
+ MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
+ llvm_unreachable("can not reserve resources for constant extender.");
+ }
+ return;
+}
+
+bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+ assert((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
+ "Should only be called for constant extended instructions");
+ MachineFunction *MF = MI->getParent()->getParent();
+ MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
+ MI->getDebugLoc());
+ bool CanReserve = ResourceTracker->canReserveResources(PseudoMI);
+ MF->DeleteMachineInstr(PseudoMI);
+ return CanReserve;
+}
+
+// Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return
+// true, otherwise, return false.
+bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) {
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+ MachineFunction *MF = MI->getParent()->getParent();
+ MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
+ MI->getDebugLoc());
+
+ if (ResourceTracker->canReserveResources(PseudoMI)) {
+ ResourceTracker->reserveResources(PseudoMI);
+ MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
+ return true;
+ } else {
+ MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
+ return false;
+ }
+}
+
+
+bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI,
+ SDep::Kind DepType,
+ unsigned DepReg) {
+
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+ const HexagonRegisterInfo* QRI =
+ (const HexagonRegisterInfo *) TM.getRegisterInfo();
+
+ // Check for lr dependence
+ if (DepReg == QRI->getRARegister()) {
+ return true;
+ }
+
+ if (QII->isDeallocRet(MI)) {
+ if (DepReg == QRI->getFrameRegister() ||
+ DepReg == QRI->getStackRegister())
+ return true;
+ }
+
+ // Check if this is a predicate dependence
+ const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg);
+ if (RC == &Hexagon::PredRegsRegClass) {
+ return true;
+ }
+
+ //
+ // Lastly check for an operand used in an indirect call
+ // If we had an attribute for checking if an instruction is an indirect call,
+ // then we could have avoided this relatively brittle implementation of
+ // IsIndirectCall()
+ //
+ // Assumes that the first operand of the CALLr is the function address
+ //
+ if (IsIndirectCall(MI) && (DepType == SDep::Data)) {
+ MachineOperand MO = MI->getOperand(0);
+ if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool IsRegDependence(const SDep::Kind DepType) {
+ return (DepType == SDep::Data || DepType == SDep::Anti ||
+ DepType == SDep::Output);
+}
+
+static bool IsDirectJump(MachineInstr* MI) {
+ return (MI->getOpcode() == Hexagon::JMP);
+}
+
+static bool IsSchedBarrier(MachineInstr* MI) {
+ switch (MI->getOpcode()) {
+ case Hexagon::BARRIER:
+ return true;
+ }
+ return false;
+}
+
+static bool IsControlFlow(MachineInstr* MI) {
+ return (MI->getDesc().isTerminator() || MI->getDesc().isCall());
+}
+
+static bool IsLoopN(MachineInstr *MI) {
+ return (MI->getOpcode() == Hexagon::LOOP0_i ||
+ MI->getOpcode() == Hexagon::LOOP0_r);
+}
+
+/// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a
+/// callee-saved register.
+static bool DoesModifyCalleeSavedReg(MachineInstr *MI,
+ const TargetRegisterInfo *TRI) {
+ for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(); *CSR; ++CSR) {
+ unsigned CalleeSavedReg = *CSR;
+ if (MI->modifiesRegister(CalleeSavedReg, TRI))
+ return true;
+ }
+ return false;
+}
+
+// Returns true if an instruction can be promoted to .new predicate
+// or new-value store.
+bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) {
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+ if ( isCondInst(MI) || QII->mayBeNewStore(MI))
+ return true;
+ else
+ return false;
+}
+
+bool HexagonPacketizerList::isCondInst (MachineInstr* MI) {
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+ const MCInstrDesc& TID = MI->getDesc();
+ // bug 5670: until that is fixed,
+ // this portion is disabled.
+ if ( TID.isConditionalBranch() // && !IsRegisterJump(MI)) ||
+ || QII->isConditionalTransfer(MI)
+ || QII->isConditionalALU32(MI)
+ || QII->isConditionalLoad(MI)
+ || QII->isConditionalStore(MI)) {
+ return true;
+ }
+ return false;
+}
+
+
+// Promote an instructiont to its .new form.
+// At this time, we have already made a call to CanPromoteToDotNew
+// and made sure that it can *indeed* be promoted.
+bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI,
+ SDep::Kind DepType, MachineBasicBlock::iterator &MII,
+ const TargetRegisterClass* RC) {
+
+ assert (DepType == SDep::Data);
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+
+ int NewOpcode;
+ if (RC == &Hexagon::PredRegsRegClass)
+ NewOpcode = QII->GetDotNewPredOp(MI, MBPI);
+ else
+ NewOpcode = QII->GetDotNewOp(MI);
+ MI->setDesc(QII->get(NewOpcode));
+
+ return true;
+}
+
+bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) {
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+ int NewOpcode = QII->GetDotOldOp(MI->getOpcode());
+ MI->setDesc(QII->get(NewOpcode));
+ return true;
+}
+
+enum PredicateKind {
+ PK_False,
+ PK_True,
+ PK_Unknown
+};
+
+/// Returns true if an instruction is predicated on p0 and false if it's
+/// predicated on !p0.
+static PredicateKind getPredicateSense(MachineInstr* MI,
+ const HexagonInstrInfo *QII) {
+ if (!QII->isPredicated(MI))
+ return PK_Unknown;
+
+ if (QII->isPredicatedTrue(MI))
+ return PK_True;
+
+ return PK_False;
+}
+
+static MachineOperand& GetPostIncrementOperand(MachineInstr *MI,
+ const HexagonInstrInfo *QII) {
+ assert(QII->isPostIncrement(MI) && "Not a post increment operation.");
+#ifndef NDEBUG
+ // Post Increment means duplicates. Use dense map to find duplicates in the
+ // list. Caution: Densemap initializes with the minimum of 64 buckets,
+ // whereas there are at most 5 operands in the post increment.
+ DenseMap<unsigned, unsigned> DefRegsSet;
+ for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
+ if (MI->getOperand(opNum).isReg() &&
+ MI->getOperand(opNum).isDef()) {
+ DefRegsSet[MI->getOperand(opNum).getReg()] = 1;
+ }
+
+ for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
+ if (MI->getOperand(opNum).isReg() &&
+ MI->getOperand(opNum).isUse()) {
+ if (DefRegsSet[MI->getOperand(opNum).getReg()]) {
+ return MI->getOperand(opNum);
+ }
+ }
+#else
+ if (MI->getDesc().mayLoad()) {
+ // The 2nd operand is always the post increment operand in load.
+ assert(MI->getOperand(1).isReg() &&
+ "Post increment operand has be to a register.");
+ return (MI->getOperand(1));
+ }
+ if (MI->getDesc().mayStore()) {
+ // The 1st operand is always the post increment operand in store.
+ assert(MI->getOperand(0).isReg() &&
+ "Post increment operand has be to a register.");
+ return (MI->getOperand(0));
+ }
+#endif
+ // we should never come here.
+ llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
+}
+
+// get the value being stored
+static MachineOperand& GetStoreValueOperand(MachineInstr *MI) {
+ // value being stored is always the last operand.
+ return (MI->getOperand(MI->getNumOperands()-1));
+}
+
+// can be new value store?
+// Following restrictions are to be respected in convert a store into
+// a new value store.
+// 1. If an instruction uses auto-increment, its address register cannot
+// be a new-value register. Arch Spec 5.4.2.1
+// 2. If an instruction uses absolute-set addressing mode,
+// its address register cannot be a new-value register.
+// Arch Spec 5.4.2.1.TODO: This is not enabled as
+// as absolute-set address mode patters are not implemented.
+// 3. If an instruction produces a 64-bit result, its registers cannot be used
+// as new-value registers. Arch Spec 5.4.2.2.
+// 4. If the instruction that sets a new-value register is conditional, then
+// the instruction that uses the new-value register must also be conditional,
+// and both must always have their predicates evaluate identically.
+// Arch Spec 5.4.2.3.
+// 5. There is an implied restriction of a packet can not have another store,
+// if there is a new value store in the packet. Corollary, if there is
+// already a store in a packet, there can not be a new value store.
+// Arch Spec: 3.4.4.2
+bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI,
+ MachineInstr *PacketMI, unsigned DepReg,
+ std::map <MachineInstr*, SUnit*> MIToSUnit) {
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+ // Make sure we are looking at the store, that can be promoted.
+ if (!QII->mayBeNewStore(MI))
+ return false;
+
+ // Make sure there is dependency and can be new value'ed
+ if (GetStoreValueOperand(MI).isReg() &&
+ GetStoreValueOperand(MI).getReg() != DepReg)
+ return false;
+
+ const HexagonRegisterInfo* QRI =
+ (const HexagonRegisterInfo *) TM.getRegisterInfo();
+ const MCInstrDesc& MCID = PacketMI->getDesc();
+ // first operand is always the result
+
+ const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF);
+
+ // if there is already an store in the packet, no can do new value store
+ // Arch Spec 3.4.4.2.
+ for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
+ VE = CurrentPacketMIs.end();
+ (VI != VE); ++VI) {
+ SUnit* PacketSU = MIToSUnit[*VI];
+ if (PacketSU->getInstr()->getDesc().mayStore() ||
+ // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME,
+ // then we don't need this
+ PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
+ PacketSU->getInstr()->getOpcode() == Hexagon::DEALLOCFRAME)
+ return false;
+ }
+
+ if (PacketRC == &Hexagon::DoubleRegsRegClass) {
+ // new value store constraint: double regs can not feed into new value store
+ // arch spec section: 5.4.2.2
+ return false;
+ }
+
+ // Make sure it's NOT the post increment register that we are going to
+ // new value.
+ if (QII->isPostIncrement(MI) &&
+ MI->getDesc().mayStore() &&
+ GetPostIncrementOperand(MI, QII).getReg() == DepReg) {
+ return false;
+ }
+
+ if (QII->isPostIncrement(PacketMI) &&
+ PacketMI->getDesc().mayLoad() &&
+ GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) {
+ // if source is post_inc, or absolute-set addressing,
+ // it can not feed into new value store
+ // r3 = memw(r2++#4)
+ // memw(r30 + #-1404) = r2.new -> can not be new value store
+ // arch spec section: 5.4.2.1
+ return false;
+ }
+
+ // If the source that feeds the store is predicated, new value store must
+ // also be predicated.
+ if (QII->isPredicated(PacketMI)) {
+ if (!QII->isPredicated(MI))
+ return false;
+
+ // Check to make sure that they both will have their predicates
+ // evaluate identically
+ unsigned predRegNumSrc = 0;
+ unsigned predRegNumDst = 0;
+ const TargetRegisterClass* predRegClass = nullptr;
+
+ // Get predicate register used in the source instruction
+ for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
+ if ( PacketMI->getOperand(opNum).isReg())
+ predRegNumSrc = PacketMI->getOperand(opNum).getReg();
+ predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc);
+ if (predRegClass == &Hexagon::PredRegsRegClass) {
+ break;
+ }
+ }
+ assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
+ ("predicate register not found in a predicated PacketMI instruction"));
+
+ // Get predicate register used in new-value store instruction
+ for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
+ if ( MI->getOperand(opNum).isReg())
+ predRegNumDst = MI->getOperand(opNum).getReg();
+ predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst);
+ if (predRegClass == &Hexagon::PredRegsRegClass) {
+ break;
+ }
+ }
+ assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
+ ("predicate register not found in a predicated MI instruction"));
+
+ // New-value register producer and user (store) need to satisfy these
+ // constraints:
+ // 1) Both instructions should be predicated on the same register.
+ // 2) If producer of the new-value register is .new predicated then store
+ // should also be .new predicated and if producer is not .new predicated
+ // then store should not be .new predicated.
+ // 3) Both new-value register producer and user should have same predicate
+ // sense, i.e, either both should be negated or both should be none negated.
+
+ if (( predRegNumDst != predRegNumSrc) ||
+ QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI) ||
+ getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) {
+ return false;
+ }
+ }
+
+ // Make sure that other than the new-value register no other store instruction
+ // register has been modified in the same packet. Predicate registers can be
+ // modified by they should not be modified between the producer and the store
+ // instruction as it will make them both conditional on different values.
+ // We already know this to be true for all the instructions before and
+ // including PacketMI. Howerver, we need to perform the check for the
+ // remaining instructions in the packet.
+
+ std::vector<MachineInstr*>::iterator VI;
+ std::vector<MachineInstr*>::iterator VE;
+ unsigned StartCheck = 0;
+
+ for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end();
+ (VI != VE); ++VI) {
+ SUnit* TempSU = MIToSUnit[*VI];
+ MachineInstr* TempMI = TempSU->getInstr();
+
+ // Following condition is true for all the instructions until PacketMI is
+ // reached (StartCheck is set to 0 before the for loop).
+ // StartCheck flag is 1 for all the instructions after PacketMI.
+ if (TempMI != PacketMI && !StartCheck) // start processing only after
+ continue; // encountering PacketMI
+
+ StartCheck = 1;
+ if (TempMI == PacketMI) // We don't want to check PacketMI for dependence
+ continue;
+
+ for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
+ if (MI->getOperand(opNum).isReg() &&
+ TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(),
+ QRI))
+ return false;
+ }
+ }
+
+ // Make sure that for non-POST_INC stores:
+ // 1. The only use of reg is DepReg and no other registers.
+ // This handles V4 base+index registers.
+ // The following store can not be dot new.
+ // Eg. r0 = add(r0, #3)a
+ // memw(r1+r0<<#2) = r0
+ if (!QII->isPostIncrement(MI) &&
+ GetStoreValueOperand(MI).isReg() &&
+ GetStoreValueOperand(MI).getReg() == DepReg) {
+ for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) {
+ if (MI->getOperand(opNum).isReg() &&
+ MI->getOperand(opNum).getReg() == DepReg) {
+ return false;
+ }
+ }
+ // 2. If data definition is because of implicit definition of the register,
+ // do not newify the store. Eg.
+ // %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def>
+ // STrih_indexed %R8, 2, %R12<kill>; mem:ST2[%scevgep343]
+ for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
+ if (PacketMI->getOperand(opNum).isReg() &&
+ PacketMI->getOperand(opNum).getReg() == DepReg &&
+ PacketMI->getOperand(opNum).isDef() &&
+ PacketMI->getOperand(opNum).isImplicit()) {
+ return false;
+ }
+ }
+ }
+
+ // Can be dot new store.
+ return true;
+}
+
+// can this MI to promoted to either
+// new value store or new value jump
+bool HexagonPacketizerList::CanPromoteToNewValue( MachineInstr *MI,
+ SUnit *PacketSU, unsigned DepReg,
+ std::map <MachineInstr*, SUnit*> MIToSUnit,
+ MachineBasicBlock::iterator &MII)
+{
+
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+ const HexagonRegisterInfo* QRI =
+ (const HexagonRegisterInfo *) TM.getRegisterInfo();
+ if (!QRI->Subtarget.hasV4TOps() ||
+ !QII->mayBeNewStore(MI))
+ return false;
+
+ MachineInstr *PacketMI = PacketSU->getInstr();
+
+ // Check to see the store can be new value'ed.
+ if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit))
+ return true;
+
+ // Check to see the compare/jump can be new value'ed.
+ // This is done as a pass on its own. Don't need to check it here.
+ return false;
+}
+
+// Check to see if an instruction can be dot new
+// There are three kinds.
+// 1. dot new on predicate - V2/V3/V4
+// 2. dot new on stores NV/ST - V4
+// 3. dot new on jump NV/J - V4 -- This is generated in a pass.
+bool HexagonPacketizerList::CanPromoteToDotNew( MachineInstr *MI,
+ SUnit *PacketSU, unsigned DepReg,
+ std::map <MachineInstr*, SUnit*> MIToSUnit,
+ MachineBasicBlock::iterator &MII,
+ const TargetRegisterClass* RC )
+{
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+ // Already a dot new instruction.
+ if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI))
+ return false;
+
+ if (!isNewifiable(MI))
+ return false;
+
+ // predicate .new
+ if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI))
+ return true;
+ else if (RC != &Hexagon::PredRegsRegClass &&
+ !QII->mayBeNewStore(MI)) // MI is not a new-value store
+ return false;
+ else {
+ // Create a dot new machine instruction to see if resources can be
+ // allocated. If not, bail out now.
+ int NewOpcode = QII->GetDotNewOp(MI);
+ const MCInstrDesc &desc = QII->get(NewOpcode);
+ DebugLoc dl;
+ MachineInstr *NewMI =
+ MI->getParent()->getParent()->CreateMachineInstr(desc, dl);
+ bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI);
+ MI->getParent()->getParent()->DeleteMachineInstr(NewMI);
+
+ if (!ResourcesAvailable)
+ return false;
+
+ // new value store only
+ // new new value jump generated as a passes
+ if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+// Go through the packet instructions and search for anti dependency
+// between them and DepReg from MI
+// Consider this case:
+// Trying to add
+// a) %R1<def> = TFRI_cdNotPt %P3, 2
+// to this packet:
+// {
+// b) %P0<def> = OR_pp %P3<kill>, %P0<kill>
+// c) %P3<def> = TFR_PdRs %R23
+// d) %R1<def> = TFRI_cdnPt %P3, 4
+// }
+// The P3 from a) and d) will be complements after
+// a)'s P3 is converted to .new form
+// Anti Dep between c) and b) is irrelevant for this case
+bool HexagonPacketizerList::RestrictingDepExistInPacket (MachineInstr* MI,
+ unsigned DepReg,
+ std::map <MachineInstr*, SUnit*> MIToSUnit) {
+
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+ SUnit* PacketSUDep = MIToSUnit[MI];
+
+ for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
+ VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
+
+ // We only care for dependencies to predicated instructions
+ if(!QII->isPredicated(*VIN)) continue;
+
+ // Scheduling Unit for current insn in the packet
+ SUnit* PacketSU = MIToSUnit[*VIN];
+
+ // Look at dependencies between current members of the packet
+ // and predicate defining instruction MI.
+ // Make sure that dependency is on the exact register
+ // we care about.
+ if (PacketSU->isSucc(PacketSUDep)) {
+ for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
+ if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) &&
+ (PacketSU->Succs[i].getKind() == SDep::Anti) &&
+ (PacketSU->Succs[i].getReg() == DepReg)) {
+ return true;
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+
+/// Gets the predicate register of a predicated instruction.
+static unsigned getPredicatedRegister(MachineInstr *MI,
+ const HexagonInstrInfo *QII) {
+ /// We use the following rule: The first predicate register that is a use is
+ /// the predicate register of a predicated instruction.
+
+ assert(QII->isPredicated(MI) && "Must be predicated instruction");
+
+ for (MachineInstr::mop_iterator OI = MI->operands_begin(),
+ OE = MI->operands_end(); OI != OE; ++OI) {
+ MachineOperand &Op = *OI;
+ if (Op.isReg() && Op.getReg() && Op.isUse() &&
+ Hexagon::PredRegsRegClass.contains(Op.getReg()))
+ return Op.getReg();
+ }
+
+ llvm_unreachable("Unknown instruction operand layout");
+
+ return 0;
+}
+
+// Given two predicated instructions, this function detects whether
+// the predicates are complements
+bool HexagonPacketizerList::ArePredicatesComplements (MachineInstr* MI1,
+ MachineInstr* MI2, std::map <MachineInstr*, SUnit*> MIToSUnit) {
+
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+
+ // If we don't know the predicate sense of the instructions bail out early, we
+ // need it later.
+ if (getPredicateSense(MI1, QII) == PK_Unknown ||
+ getPredicateSense(MI2, QII) == PK_Unknown)
+ return false;
+
+ // Scheduling unit for candidate
+ SUnit* SU = MIToSUnit[MI1];
+
+ // One corner case deals with the following scenario:
+ // Trying to add
+ // a) %R24<def> = TFR_cPt %P0, %R25
+ // to this packet:
+ //
+ // {
+ // b) %R25<def> = TFR_cNotPt %P0, %R24
+ // c) %P0<def> = CMPEQri %R26, 1
+ // }
+ //
+ // On general check a) and b) are complements, but
+ // presence of c) will convert a) to .new form, and
+ // then it is not a complement
+ // We attempt to detect it by analyzing existing
+ // dependencies in the packet
+
+ // Analyze relationships between all existing members of the packet.
+ // Look for Anti dependecy on the same predicate reg
+ // as used in the candidate
+ for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
+ VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
+
+ // Scheduling Unit for current insn in the packet
+ SUnit* PacketSU = MIToSUnit[*VIN];
+
+ // If this instruction in the packet is succeeded by the candidate...
+ if (PacketSU->isSucc(SU)) {
+ for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
+ // The corner case exist when there is true data
+ // dependency between candidate and one of current
+ // packet members, this dep is on predicate reg, and
+ // there already exist anti dep on the same pred in
+ // the packet.
+ if (PacketSU->Succs[i].getSUnit() == SU &&
+ PacketSU->Succs[i].getKind() == SDep::Data &&
+ Hexagon::PredRegsRegClass.contains(
+ PacketSU->Succs[i].getReg()) &&
+ // Here I know that *VIN is predicate setting instruction
+ // with true data dep to candidate on the register
+ // we care about - c) in the above example.
+ // Now I need to see if there is an anti dependency
+ // from c) to any other instruction in the
+ // same packet on the pred reg of interest
+ RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(),
+ MIToSUnit)) {
+ return false;
+ }
+ }
+ }
+ }
+
+ // If the above case does not apply, check regular
+ // complement condition.
+ // Check that the predicate register is the same and
+ // that the predicate sense is different
+ // We also need to differentiate .old vs. .new:
+ // !p0 is not complimentary to p0.new
+ unsigned PReg1 = getPredicatedRegister(MI1, QII);
+ unsigned PReg2 = getPredicatedRegister(MI2, QII);
+ return ((PReg1 == PReg2) &&
+ Hexagon::PredRegsRegClass.contains(PReg1) &&
+ Hexagon::PredRegsRegClass.contains(PReg2) &&
+ (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) &&
+ (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2)));
+}
+
+// initPacketizerState - Initialize packetizer flags
+void HexagonPacketizerList::initPacketizerState() {
+
+ Dependence = false;
+ PromotedToDotNew = false;
+ GlueToNewValueJump = false;
+ GlueAllocframeStore = false;
+ FoundSequentialDependence = false;
+
+ return;
+}
+
+// ignorePseudoInstruction - Ignore bundling of pseudo instructions.
+bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI,
+ MachineBasicBlock *MBB) {
+ if (MI->isDebugValue())
+ return true;
+
+ // We must print out inline assembly
+ if (MI->isInlineAsm())
+ return false;
+
+ // We check if MI has any functional units mapped to it.
+ // If it doesn't, we ignore the instruction.
+ const MCInstrDesc& TID = MI->getDesc();
+ unsigned SchedClass = TID.getSchedClass();
+ const InstrStage* IS =
+ ResourceTracker->getInstrItins()->beginStage(SchedClass);
+ unsigned FuncUnits = IS->getUnits();
+ return !FuncUnits;
+}
+
+// isSoloInstruction: - Returns true for instructions that must be
+// scheduled in their own packet.
+bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) {
+
+ if (MI->isInlineAsm())
+ return true;
+
+ if (MI->isEHLabel())
+ return true;
+
+ // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints:
+ // trap, pause, barrier, icinva, isync, and syncht are solo instructions.
+ // They must not be grouped with other instructions in a packet.
+ if (IsSchedBarrier(MI))
+ return true;
+
+ return false;
+}
+
+// isLegalToPacketizeTogether:
+// SUI is the current instruction that is out side of the current packet.
+// SUJ is the current instruction inside the current packet against which that
+// SUI will be packetized.
+bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
+ MachineInstr *I = SUI->getInstr();
+ MachineInstr *J = SUJ->getInstr();
+ assert(I && J && "Unable to packetize null instruction!");
+
+ const MCInstrDesc &MCIDI = I->getDesc();
+ const MCInstrDesc &MCIDJ = J->getDesc();
+
+ MachineBasicBlock::iterator II = I;
+
+ const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
+ const HexagonRegisterInfo* QRI =
+ (const HexagonRegisterInfo *) TM.getRegisterInfo();
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+
+ // Inline asm cannot go in the packet.
+ if (I->getOpcode() == Hexagon::INLINEASM)
+ llvm_unreachable("Should not meet inline asm here!");
+
+ if (isSoloInstruction(I))
+ llvm_unreachable("Should not meet solo instr here!");
+
+ // A save callee-save register function call can only be in a packet
+ // with instructions that don't write to the callee-save registers.
+ if ((QII->isSaveCalleeSavedRegsCall(I) &&
+ DoesModifyCalleeSavedReg(J, QRI)) ||
+ (QII->isSaveCalleeSavedRegsCall(J) &&
+ DoesModifyCalleeSavedReg(I, QRI))) {
+ Dependence = true;
+ return false;
+ }
+
+ // Two control flow instructions cannot go in the same packet.
+ if (IsControlFlow(I) && IsControlFlow(J)) {
+ Dependence = true;
+ return false;
+ }
+
+ // A LoopN instruction cannot appear in the same packet as a jump or call.
+ if (IsLoopN(I) &&
+ (IsDirectJump(J) || MCIDJ.isCall() || QII->isDeallocRet(J))) {
+ Dependence = true;
+ return false;
+ }
+ if (IsLoopN(J) &&
+ (IsDirectJump(I) || MCIDI.isCall() || QII->isDeallocRet(I))) {
+ Dependence = true;
+ return false;
+ }
+
+ // dealloc_return cannot appear in the same packet as a conditional or
+ // unconditional jump.
+ if (QII->isDeallocRet(I) &&
+ (MCIDJ.isBranch() || MCIDJ.isCall() || MCIDJ.isBarrier())) {
+ Dependence = true;
+ return false;
+ }
+
+
+ // V4 allows dual store. But does not allow second store, if the
+ // first store is not in SLOT0. New value store, new value jump,
+ // dealloc_return and memop always take SLOT0.
+ // Arch spec 3.4.4.2
+ if (QRI->Subtarget.hasV4TOps()) {
+ if (MCIDI.mayStore() && MCIDJ.mayStore() &&
+ (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) {
+ Dependence = true;
+ return false;
+ }
+
+ if ((QII->isMemOp(J) && MCIDI.mayStore())
+ || (MCIDJ.mayStore() && QII->isMemOp(I))
+ || (QII->isMemOp(J) && QII->isMemOp(I))) {
+ Dependence = true;
+ return false;
+ }
+
+ //if dealloc_return
+ if (MCIDJ.mayStore() && QII->isDeallocRet(I)) {
+ Dependence = true;
+ return false;
+ }
+
+ // If an instruction feeds new value jump, glue it.
+ MachineBasicBlock::iterator NextMII = I;
+ ++NextMII;
+ if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) {
+ MachineInstr *NextMI = NextMII;
+
+ bool secondRegMatch = false;
+ bool maintainNewValueJump = false;
+
+ if (NextMI->getOperand(1).isReg() &&
+ I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) {
+ secondRegMatch = true;
+ maintainNewValueJump = true;
+ }
+
+ if (!secondRegMatch &&
+ I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) {
+ maintainNewValueJump = true;
+ }
+
+ for (std::vector<MachineInstr*>::iterator
+ VI = CurrentPacketMIs.begin(),
+ VE = CurrentPacketMIs.end();
+ (VI != VE && maintainNewValueJump); ++VI) {
+ SUnit* PacketSU = MIToSUnit[*VI];
+
+ // NVJ can not be part of the dual jump - Arch Spec: section 7.8
+ if (PacketSU->getInstr()->getDesc().isCall()) {
+ Dependence = true;
+ break;
+ }
+ // Validate
+ // 1. Packet does not have a store in it.
+ // 2. If the first operand of the nvj is newified, and the second
+ // operand is also a reg, it (second reg) is not defined in
+ // the same packet.
+ // 3. If the second operand of the nvj is newified, (which means
+ // first operand is also a reg), first reg is not defined in
+ // the same packet.
+ if (PacketSU->getInstr()->getDesc().mayStore() ||
+ PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
+ // Check #2.
+ (!secondRegMatch && NextMI->getOperand(1).isReg() &&
+ PacketSU->getInstr()->modifiesRegister(
+ NextMI->getOperand(1).getReg(), QRI)) ||
+ // Check #3.
+ (secondRegMatch &&
+ PacketSU->getInstr()->modifiesRegister(
+ NextMI->getOperand(0).getReg(), QRI))) {
+ Dependence = true;
+ break;
+ }
+ }
+ if (!Dependence)
+ GlueToNewValueJump = true;
+ else
+ return false;
+ }
+ }
+
+ if (SUJ->isSucc(SUI)) {
+ for (unsigned i = 0;
+ (i < SUJ->Succs.size()) && !FoundSequentialDependence;
+ ++i) {
+
+ if (SUJ->Succs[i].getSUnit() != SUI) {
+ continue;
+ }
+
+ SDep::Kind DepType = SUJ->Succs[i].getKind();
+
+ // For direct calls:
+ // Ignore register dependences for call instructions for
+ // packetization purposes except for those due to r31 and
+ // predicate registers.
+ //
+ // For indirect calls:
+ // Same as direct calls + check for true dependences to the register
+ // used in the indirect call.
+ //
+ // We completely ignore Order dependences for call instructions
+ //
+ // For returns:
+ // Ignore register dependences for return instructions like jumpr,
+ // dealloc return unless we have dependencies on the explicit uses
+ // of the registers used by jumpr (like r31) or dealloc return
+ // (like r29 or r30).
+ //
+ // TODO: Currently, jumpr is handling only return of r31. So, the
+ // following logic (specificaly IsCallDependent) is working fine.
+ // We need to enable jumpr for register other than r31 and then,
+ // we need to rework the last part, where it handles indirect call
+ // of that (IsCallDependent) function. Bug 6216 is opened for this.
+ //
+ unsigned DepReg = 0;
+ const TargetRegisterClass* RC = nullptr;
+ if (DepType == SDep::Data) {
+ DepReg = SUJ->Succs[i].getReg();
+ RC = QRI->getMinimalPhysRegClass(DepReg);
+ }
+ if ((MCIDI.isCall() || MCIDI.isReturn()) &&
+ (!IsRegDependence(DepType) ||
+ !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) {
+ /* do nothing */
+ }
+
+ // For instructions that can be promoted to dot-new, try to promote.
+ else if ((DepType == SDep::Data) &&
+ CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) &&
+ PromoteToDotNew(I, DepType, II, RC)) {
+ PromotedToDotNew = true;
+ /* do nothing */
+ }
+
+ else if ((DepType == SDep::Data) &&
+ (QII->isNewValueJump(I))) {
+ /* do nothing */
+ }
+
+ // For predicated instructions, if the predicates are complements
+ // then there can be no dependence.
+ else if (QII->isPredicated(I) &&
+ QII->isPredicated(J) &&
+ ArePredicatesComplements(I, J, MIToSUnit)) {
+ /* do nothing */
+
+ }
+ else if (IsDirectJump(I) &&
+ !MCIDJ.isBranch() &&
+ !MCIDJ.isCall() &&
+ (DepType == SDep::Order)) {
+ // Ignore Order dependences between unconditional direct branches
+ // and non-control-flow instructions
+ /* do nothing */
+ }
+ else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) &&
+ (DepType != SDep::Output)) {
+ // Ignore all dependences for jumps except for true and output
+ // dependences
+ /* do nothing */
+ }
+
+ // Ignore output dependences due to superregs. We can
+ // write to two different subregisters of R1:0 for instance
+ // in the same cycle
+ //
+
+ //
+ // Let the
+ // If neither I nor J defines DepReg, then this is a
+ // superfluous output dependence. The dependence must be of the
+ // form:
+ // R0 = ...
+ // R1 = ...
+ // and there is an output dependence between the two instructions
+ // with
+ // DepReg = D0
+ // We want to ignore these dependences.
+ // Ideally, the dependence constructor should annotate such
+ // dependences. We can then avoid this relatively expensive check.
+ //
+ else if (DepType == SDep::Output) {
+ // DepReg is the register that's responsible for the dependence.
+ unsigned DepReg = SUJ->Succs[i].getReg();
+
+ // Check if I and J really defines DepReg.
+ if (I->definesRegister(DepReg) ||
+ J->definesRegister(DepReg)) {
+ FoundSequentialDependence = true;
+ break;
+ }
+ }
+
+ // We ignore Order dependences for
+ // 1. Two loads unless they are volatile.
+ // 2. Two stores in V4 unless they are volatile.
+ else if ((DepType == SDep::Order) &&
+ !I->hasOrderedMemoryRef() &&
+ !J->hasOrderedMemoryRef()) {
+ if (QRI->Subtarget.hasV4TOps() &&
+ // hexagonv4 allows dual store.
+ MCIDI.mayStore() && MCIDJ.mayStore()) {
+ /* do nothing */
+ }
+ // store followed by store-- not OK on V2
+ // store followed by load -- not OK on all (OK if addresses
+ // are not aliased)
+ // load followed by store -- OK on all
+ // load followed by load -- OK on all
+ else if ( !MCIDJ.mayStore()) {
+ /* do nothing */
+ }
+ else {
+ FoundSequentialDependence = true;
+ break;
+ }
+ }
+
+ // For V4, special case ALLOCFRAME. Even though there is dependency
+ // between ALLOCAFRAME and subsequent store, allow it to be
+ // packetized in a same packet. This implies that the store is using
+ // caller's SP. Hense, offset needs to be updated accordingly.
+ else if (DepType == SDep::Data
+ && QRI->Subtarget.hasV4TOps()
+ && J->getOpcode() == Hexagon::ALLOCFRAME
+ && (I->getOpcode() == Hexagon::STrid
+ || I->getOpcode() == Hexagon::STriw
+ || I->getOpcode() == Hexagon::STrib)
+ && I->getOperand(0).getReg() == QRI->getStackRegister()
+ && QII->isValidOffset(I->getOpcode(),
+ I->getOperand(1).getImm() -
+ (FrameSize + HEXAGON_LRFP_SIZE)))
+ {
+ GlueAllocframeStore = true;
+ // Since this store is to be glued with allocframe in the same
+ // packet, it will use SP of the previous stack frame, i.e
+ // caller's SP. Therefore, we need to recalculate offset according
+ // to this change.
+ I->getOperand(1).setImm(I->getOperand(1).getImm() -
+ (FrameSize + HEXAGON_LRFP_SIZE));
+ }
+
+ //
+ // Skip over anti-dependences. Two instructions that are
+ // anti-dependent can share a packet
+ //
+ else if (DepType != SDep::Anti) {
+ FoundSequentialDependence = true;
+ break;
+ }
+ }
+
+ if (FoundSequentialDependence) {
+ Dependence = true;
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// isLegalToPruneDependencies
+bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
+ MachineInstr *I = SUI->getInstr();
+ assert(I && SUJ->getInstr() && "Unable to packetize null instruction!");
+
+ const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
+
+ if (Dependence) {
+
+ // Check if the instruction was promoted to a dot-new. If so, demote it
+ // back into a dot-old.
+ if (PromotedToDotNew) {
+ DemoteToDotOld(I);
+ }
+
+ // Check if the instruction (must be a store) was glued with an Allocframe
+ // instruction. If so, restore its offset to its original value, i.e. use
+ // curent SP instead of caller's SP.
+ if (GlueAllocframeStore) {
+ I->getOperand(1).setImm(I->getOperand(1).getImm() +
+ FrameSize + HEXAGON_LRFP_SIZE);
+ }
+
+ return false;
+ }
+ return true;
+}
+
+MachineBasicBlock::iterator
+HexagonPacketizerList::addToPacket(MachineInstr *MI) {
+
+ MachineBasicBlock::iterator MII = MI;
+ MachineBasicBlock *MBB = MI->getParent();
+
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+
+ if (GlueToNewValueJump) {
+
+ ++MII;
+ MachineInstr *nvjMI = MII;
+ assert(ResourceTracker->canReserveResources(MI));
+ ResourceTracker->reserveResources(MI);
+ if ((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
+ !tryAllocateResourcesForConstExt(MI)) {
+ endPacket(MBB, MI);
+ ResourceTracker->reserveResources(MI);
+ assert(canReserveResourcesForConstExt(MI) &&
+ "Ensure that there is a slot");
+ reserveResourcesForConstExt(MI);
+ // Reserve resources for new value jump constant extender.
+ assert(canReserveResourcesForConstExt(MI) &&
+ "Ensure that there is a slot");
+ reserveResourcesForConstExt(nvjMI);
+ assert(ResourceTracker->canReserveResources(nvjMI) &&
+ "Ensure that there is a slot");
+
+ } else if ( // Extended instruction takes two slots in the packet.
+ // Try reserve and allocate 4-byte in the current packet first.
+ (QII->isExtended(nvjMI)
+ && (!tryAllocateResourcesForConstExt(nvjMI)
+ || !ResourceTracker->canReserveResources(nvjMI)))
+ || // For non-extended instruction, no need to allocate extra 4 bytes.
+ (!QII->isExtended(nvjMI) &&
+ !ResourceTracker->canReserveResources(nvjMI)))
+ {
+ endPacket(MBB, MI);
+ // A new and empty packet starts.
+ // We are sure that the resources requirements can be satisfied.
+ // Therefore, do not need to call "canReserveResources" anymore.
+ ResourceTracker->reserveResources(MI);
+ if (QII->isExtended(nvjMI))
+ reserveResourcesForConstExt(nvjMI);
+ }
+ // Here, we are sure that "reserveResources" would succeed.
+ ResourceTracker->reserveResources(nvjMI);
+ CurrentPacketMIs.push_back(MI);
+ CurrentPacketMIs.push_back(nvjMI);
+ } else {
+ if ( (QII->isExtended(MI) || QII->isConstExtended(MI))
+ && ( !tryAllocateResourcesForConstExt(MI)
+ || !ResourceTracker->canReserveResources(MI)))
+ {
+ endPacket(MBB, MI);
+ // Check if the instruction was promoted to a dot-new. If so, demote it
+ // back into a dot-old
+ if (PromotedToDotNew) {
+ DemoteToDotOld(MI);
+ }
+ reserveResourcesForConstExt(MI);
+ }
+ // In case that "MI" is not an extended insn,
+ // the resource availability has already been checked.
+ ResourceTracker->reserveResources(MI);
+ CurrentPacketMIs.push_back(MI);
+ }
+ return MII;
+}
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+FunctionPass *llvm::createHexagonPacketizer() {
+ return new HexagonPacketizer();
+}
+
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonVarargsCallingConvention.h b/contrib/llvm/lib/Target/Hexagon/HexagonVarargsCallingConvention.h
new file mode 100644
index 0000000..668ca98
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonVarargsCallingConvention.h
@@ -0,0 +1,141 @@
+//===-- HexagonVarargsCallingConvention.h - Calling Conventions -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the functions that assign locations to outgoing function
+// arguments. Adapted from the target independent version but this handles
+// calls to varargs functions
+//
+//===----------------------------------------------------------------------===//
+//
+
+
+
+
+static bool RetCC_Hexagon32_VarArgs(unsigned ValNo, EVT ValVT,
+ EVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags,
+ Hexagon_CCState &State,
+ int NonVarArgsParams,
+ int CurrentParam,
+ bool ForceMem);
+
+
+static bool CC_Hexagon32_VarArgs(unsigned ValNo, EVT ValVT,
+ EVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags,
+ Hexagon_CCState &State,
+ int NonVarArgsParams,
+ int CurrentParam,
+ bool ForceMem) {
+ unsigned ByValSize = 0;
+ if (ArgFlags.isByVal() &&
+ ((ByValSize = ArgFlags.getByValSize()) >
+ (MVT(MVT::i64).getSizeInBits() / 8))) {
+ ForceMem = true;
+ }
+
+
+ // Only assign registers for named (non-varargs) arguments
+ if ( !ForceMem && ((NonVarArgsParams == -1) || (CurrentParam <=
+ NonVarArgsParams))) {
+
+ if (LocVT == MVT::i32 ||
+ LocVT == MVT::i16 ||
+ LocVT == MVT::i8 ||
+ LocVT == MVT::f32) {
+ static const unsigned RegList1[] = {
+ Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
+ Hexagon::R5
+ };
+ if (unsigned Reg = State.AllocateReg(RegList1, 6)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT.getSimpleVT(), Reg,
+ LocVT.getSimpleVT(), LocInfo));
+ return false;
+ }
+ }
+
+ if (LocVT == MVT::i64 ||
+ LocVT == MVT::f64) {
+ static const unsigned RegList2[] = {
+ Hexagon::D0, Hexagon::D1, Hexagon::D2
+ };
+ if (unsigned Reg = State.AllocateReg(RegList2, 3)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT.getSimpleVT(), Reg,
+ LocVT.getSimpleVT(), LocInfo));
+ return false;
+ }
+ }
+ }
+
+ const Type* ArgTy = LocVT.getTypeForEVT(State.getContext());
+ unsigned Alignment =
+ State.getTarget().getDataLayout()->getABITypeAlignment(ArgTy);
+ unsigned Size =
+ State.getTarget().getDataLayout()->getTypeSizeInBits(ArgTy) / 8;
+
+ // If it's passed by value, then we need the size of the aggregate not of
+ // the pointer.
+ if (ArgFlags.isByVal()) {
+ Size = ByValSize;
+
+ // Hexagon_TODO: Get the alignment of the contained type here.
+ Alignment = 8;
+ }
+
+ unsigned Offset3 = State.AllocateStack(Size, Alignment);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT.getSimpleVT(), Offset3,
+ LocVT.getSimpleVT(), LocInfo));
+ return false;
+}
+
+
+static bool RetCC_Hexagon32_VarArgs(unsigned ValNo, EVT ValVT,
+ EVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags,
+ Hexagon_CCState &State,
+ int NonVarArgsParams,
+ int CurrentParam,
+ bool ForceMem) {
+
+ if (LocVT == MVT::i32 ||
+ LocVT == MVT::f32) {
+ static const unsigned RegList1[] = {
+ Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
+ Hexagon::R5
+ };
+ if (unsigned Reg = State.AllocateReg(RegList1, 6)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT.getSimpleVT(), Reg,
+ LocVT.getSimpleVT(), LocInfo));
+ return false;
+ }
+ }
+
+ if (LocVT == MVT::i64 ||
+ LocVT == MVT::f64) {
+ static const unsigned RegList2[] = {
+ Hexagon::D0, Hexagon::D1, Hexagon::D2
+ };
+ if (unsigned Reg = State.AllocateReg(RegList2, 3)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT.getSimpleVT(), Reg,
+ LocVT.getSimpleVT(), LocInfo));
+ return false;
+ }
+ }
+
+ const Type* ArgTy = LocVT.getTypeForEVT(State.getContext());
+ unsigned Alignment =
+ State.getTarget().getDataLayout()->getABITypeAlignment(ArgTy);
+ unsigned Size =
+ State.getTarget().getDataLayout()->getTypeSizeInBits(ArgTy) / 8;
+
+ unsigned Offset3 = State.AllocateStack(Size, Alignment);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT.getSimpleVT(), Offset3,
+ LocVT.getSimpleVT(), LocInfo));
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.cpp b/contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.cpp
new file mode 100644
index 0000000..9942a60
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.cpp
@@ -0,0 +1,204 @@
+//===- HexagonInstPrinter.cpp - Convert Hexagon MCInst to assembly syntax -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an Hexagon MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonAsmPrinter.h"
+#include "Hexagon.h"
+#include "HexagonInstPrinter.h"
+#include "MCTargetDesc/HexagonMCInst.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+#define GET_INSTRUCTION_NAME
+#include "HexagonGenAsmWriter.inc"
+
+const char HexagonInstPrinter::PacketPadding = '\t';
+
+StringRef HexagonInstPrinter::getOpcodeName(unsigned Opcode) const {
+ return MII.getName(Opcode);
+}
+
+StringRef HexagonInstPrinter::getRegName(unsigned RegNo) const {
+ return getRegisterName(RegNo);
+}
+
+void HexagonInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
+ StringRef Annot) {
+ printInst((const HexagonMCInst*)(MI), O, Annot);
+}
+
+void HexagonInstPrinter::printInst(const HexagonMCInst *MI, raw_ostream &O,
+ StringRef Annot) {
+ const char startPacket = '{',
+ endPacket = '}';
+ // TODO: add outer HW loop when it's supported too.
+ if (MI->getOpcode() == Hexagon::ENDLOOP0) {
+ // Ending a harware loop is different from ending an regular packet.
+ assert(MI->isPacketEnd() && "Loop-end must also end the packet");
+
+ if (MI->isPacketStart()) {
+ // There must be a packet to end a loop.
+ // FIXME: when shuffling is always run, this shouldn't be needed.
+ HexagonMCInst Nop;
+ StringRef NoAnnot;
+
+ Nop.setOpcode (Hexagon::NOP);
+ Nop.setPacketStart (MI->isPacketStart());
+ printInst (&Nop, O, NoAnnot);
+ }
+
+ // Close the packet.
+ if (MI->isPacketEnd())
+ O << PacketPadding << endPacket;
+
+ printInstruction(MI, O);
+ }
+ else {
+ // Prefix the insn opening the packet.
+ if (MI->isPacketStart())
+ O << PacketPadding << startPacket << '\n';
+
+ printInstruction(MI, O);
+
+ // Suffix the insn closing the packet.
+ if (MI->isPacketEnd())
+ // Suffix the packet in a new line always, since the GNU assembler has
+ // issues with a closing brace on the same line as CONST{32,64}.
+ O << '\n' << PacketPadding << endPacket;
+ }
+
+ printAnnotation(O, Annot);
+}
+
+void HexagonInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+ const MCOperand& MO = MI->getOperand(OpNo);
+
+ if (MO.isReg()) {
+ O << getRegisterName(MO.getReg());
+ } else if(MO.isExpr()) {
+ O << *MO.getExpr();
+ } else if(MO.isImm()) {
+ printImmOperand(MI, OpNo, O);
+ } else {
+ llvm_unreachable("Unknown operand");
+ }
+}
+
+void HexagonInstPrinter::printImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+ const MCOperand& MO = MI->getOperand(OpNo);
+
+ if(MO.isExpr()) {
+ O << *MO.getExpr();
+ } else if(MO.isImm()) {
+ O << MI->getOperand(OpNo).getImm();
+ } else {
+ llvm_unreachable("Unknown operand");
+ }
+}
+
+void HexagonInstPrinter::printExtOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+ const HexagonMCInst *HMCI = static_cast<const HexagonMCInst*>(MI);
+ if (HMCI->isConstExtended())
+ O << "#";
+ printOperand(MI, OpNo, O);
+}
+
+void HexagonInstPrinter::printUnsignedImmOperand(const MCInst *MI,
+ unsigned OpNo, raw_ostream &O) const {
+ O << MI->getOperand(OpNo).getImm();
+}
+
+void HexagonInstPrinter::printNegImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+ O << -MI->getOperand(OpNo).getImm();
+}
+
+void HexagonInstPrinter::printNOneImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+ O << -1;
+}
+
+void HexagonInstPrinter::printMEMriOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+ const MCOperand& MO0 = MI->getOperand(OpNo);
+ const MCOperand& MO1 = MI->getOperand(OpNo + 1);
+
+ O << getRegisterName(MO0.getReg());
+ O << " + #" << MO1.getImm();
+}
+
+void HexagonInstPrinter::printFrameIndexOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+ const MCOperand& MO0 = MI->getOperand(OpNo);
+ const MCOperand& MO1 = MI->getOperand(OpNo + 1);
+
+ O << getRegisterName(MO0.getReg()) << ", #" << MO1.getImm();
+}
+
+void HexagonInstPrinter::printGlobalOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+ assert(MI->getOperand(OpNo).isExpr() && "Expecting expression");
+
+ printOperand(MI, OpNo, O);
+}
+
+void HexagonInstPrinter::printJumpTable(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+ assert(MI->getOperand(OpNo).isExpr() && "Expecting expression");
+
+ printOperand(MI, OpNo, O);
+}
+
+void HexagonInstPrinter::printConstantPool(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+ assert(MI->getOperand(OpNo).isExpr() && "Expecting expression");
+
+ printOperand(MI, OpNo, O);
+}
+
+void HexagonInstPrinter::printBranchOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+ // Branches can take an immediate operand. This is used by the branch
+ // selection pass to print $+8, an eight byte displacement from the PC.
+ llvm_unreachable("Unknown branch operand.");
+}
+
+void HexagonInstPrinter::printCallOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+}
+
+void HexagonInstPrinter::printAbsAddrOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+}
+
+void HexagonInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const {
+}
+
+void HexagonInstPrinter::printSymbol(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O, bool hi) const {
+ assert(MI->getOperand(OpNo).isImm() && "Unknown symbol operand");
+
+ O << '#' << (hi ? "HI" : "LO") << "(#";
+ printOperand(MI, OpNo, O);
+ O << ')';
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.h b/contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.h
new file mode 100644
index 0000000..09e3f88
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.h
@@ -0,0 +1,87 @@
+//===-- HexagonInstPrinter.h - Convert Hexagon MCInst to assembly syntax --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an Hexagon MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HEXAGONINSTPRINTER_H
+#define HEXAGONINSTPRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/MC/MCInstrInfo.h"
+
+namespace llvm {
+ class HexagonMCInst;
+
+ class HexagonInstPrinter : public MCInstPrinter {
+ public:
+ explicit HexagonInstPrinter(const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI)
+ : MCInstPrinter(MAI, MII, MRI), MII(MII) {}
+
+ void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot) override;
+ void printInst(const HexagonMCInst *MI, raw_ostream &O, StringRef Annot);
+ virtual StringRef getOpcodeName(unsigned Opcode) const;
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ StringRef getRegName(unsigned RegNo) const;
+ static const char *getRegisterName(unsigned RegNo);
+
+ void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) const;
+ void printImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) const;
+ void printExtOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) const;
+ void printUnsignedImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const;
+ void printNegImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
+ const;
+ void printNOneImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
+ const;
+ void printMEMriOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
+ const;
+ void printFrameIndexOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const;
+ void printBranchOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
+ const;
+ void printCallOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
+ const;
+ void printAbsAddrOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
+ const;
+ void printPredicateOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
+ const;
+ void printGlobalOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
+ const;
+ void printJumpTable(const MCInst *MI, unsigned OpNo, raw_ostream &O) const;
+
+ void printConstantPool(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) const;
+
+ void printSymbolHi(const MCInst *MI, unsigned OpNo, raw_ostream &O) const
+ { printSymbol(MI, OpNo, O, true); }
+ void printSymbolLo(const MCInst *MI, unsigned OpNo, raw_ostream &O) const
+ { printSymbol(MI, OpNo, O, false); }
+
+ const MCInstrInfo &getMII() const {
+ return MII;
+ }
+
+ protected:
+ void printSymbol(const MCInst *MI, unsigned OpNo, raw_ostream &O, bool hi)
+ const;
+
+ static const char PacketPadding;
+
+ private:
+ const MCInstrInfo &MII;
+
+ };
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h
new file mode 100644
index 0000000..f8be77c
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h
@@ -0,0 +1,196 @@
+//===-- HexagonBaseInfo.h - Top level definitions for Hexagon --*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains small standalone helper functions and enum definitions for
+// the Hexagon target useful for the compiler back-end and the MC libraries.
+// As such, it deliberately does not include references to LLVM core
+// code gen types, passes, etc..
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HEXAGONBASEINFO_H
+#define HEXAGONBASEINFO_H
+
+#include "HexagonMCTargetDesc.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace llvm {
+
+/// HexagonII - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace HexagonII {
+ // *** The code below must match HexagonInstrFormat*.td *** //
+
+ // Insn types.
+ // *** Must match HexagonInstrFormat*.td ***
+ enum Type {
+ TypePSEUDO = 0,
+ TypeALU32 = 1,
+ TypeCR = 2,
+ TypeJR = 3,
+ TypeJ = 4,
+ TypeLD = 5,
+ TypeST = 6,
+ TypeSYSTEM = 7,
+ TypeXTYPE = 8,
+ TypeMEMOP = 9,
+ TypeNV = 10,
+ TypePREFIX = 30, // Such as extenders.
+ TypeENDLOOP = 31 // Such as end of a HW loop.
+ };
+
+ enum SubTarget {
+ HasV2SubT = 0xf,
+ HasV2SubTOnly = 0x1,
+ NoV2SubT = 0x0,
+ HasV3SubT = 0xe,
+ HasV3SubTOnly = 0x2,
+ NoV3SubT = 0x1,
+ HasV4SubT = 0xc,
+ NoV4SubT = 0x3,
+ HasV5SubT = 0x8,
+ NoV5SubT = 0x7
+ };
+
+ enum AddrMode {
+ NoAddrMode = 0, // No addressing mode
+ Absolute = 1, // Absolute addressing mode
+ AbsoluteSet = 2, // Absolute set addressing mode
+ BaseImmOffset = 3, // Indirect with offset
+ BaseLongOffset = 4, // Indirect with long offset
+ BaseRegOffset = 5, // Indirect with register offset
+ PostInc = 6 // Post increment addressing mode
+ };
+
+ enum MemAccessSize {
+ NoMemAccess = 0, // Not a memory acces instruction.
+ ByteAccess = 1, // Byte access instruction (memb).
+ HalfWordAccess = 2, // Half word access instruction (memh).
+ WordAccess = 3, // Word access instruction (memw).
+ DoubleWordAccess = 4 // Double word access instruction (memd)
+ };
+
+ // MCInstrDesc TSFlags
+ // *** Must match HexagonInstrFormat*.td ***
+ enum {
+ // This 5-bit field describes the insn type.
+ TypePos = 0,
+ TypeMask = 0x1f,
+
+ // Solo instructions.
+ SoloPos = 5,
+ SoloMask = 0x1,
+ // Packed only with A or X-type instructions.
+ SoloAXPos = 6,
+ SoloAXMask = 0x1,
+ // Only A-type instruction in first slot or nothing.
+ SoloAin1Pos = 7,
+ SoloAin1Mask = 0x1,
+
+ // Predicated instructions.
+ PredicatedPos = 8,
+ PredicatedMask = 0x1,
+ PredicatedFalsePos = 9,
+ PredicatedFalseMask = 0x1,
+ PredicatedNewPos = 10,
+ PredicatedNewMask = 0x1,
+ PredicateLatePos = 11,
+ PredicateLateMask = 0x1,
+
+ // New-Value consumer instructions.
+ NewValuePos = 12,
+ NewValueMask = 0x1,
+ // New-Value producer instructions.
+ hasNewValuePos = 13,
+ hasNewValueMask = 0x1,
+ // Which operand consumes or produces a new value.
+ NewValueOpPos = 14,
+ NewValueOpMask = 0x7,
+ // Stores that can become new-value stores.
+ mayNVStorePos = 17,
+ mayNVStoreMask = 0x1,
+ // New-value store instructions.
+ NVStorePos = 18,
+ NVStoreMask = 0x1,
+ // Loads that can become current-value loads.
+ mayCVLoadPos = 19,
+ mayCVLoadMask = 0x1,
+ // Current-value load instructions.
+ CVLoadPos = 20,
+ CVLoadMask = 0x1,
+
+ // Extendable insns.
+ ExtendablePos = 21,
+ ExtendableMask = 0x1,
+ // Insns must be extended.
+ ExtendedPos = 22,
+ ExtendedMask = 0x1,
+ // Which operand may be extended.
+ ExtendableOpPos = 23,
+ ExtendableOpMask = 0x7,
+ // Signed or unsigned range.
+ ExtentSignedPos = 26,
+ ExtentSignedMask = 0x1,
+ // Number of bits of range before extending operand.
+ ExtentBitsPos = 27,
+ ExtentBitsMask = 0x1f,
+ // Alignment power-of-two before extending operand.
+ ExtentAlignPos = 32,
+ ExtentAlignMask = 0x3,
+
+ // Valid subtargets
+ validSubTargetPos = 34,
+ validSubTargetMask = 0xf,
+
+ // Addressing mode for load/store instructions.
+ AddrModePos = 40,
+ AddrModeMask = 0x7,
+ // Access size for load/store instructions.
+ MemAccessSizePos = 43,
+ MemAccesSizeMask = 0x7,
+
+ // Branch predicted taken.
+ TakenPos = 47,
+ TakenMask = 0x1,
+
+ // Floating-point instructions.
+ FPPos = 48,
+ FPMask = 0x1
+ };
+
+ // *** The code above must match HexagonInstrFormat*.td *** //
+
+ // Hexagon specific MO operand flag mask.
+ enum HexagonMOTargetFlagVal {
+ //===------------------------------------------------------------------===//
+ // Hexagon Specific MachineOperand flags.
+ MO_NO_FLAG,
+
+ HMOTF_ConstExtended = 1,
+
+ /// MO_PCREL - On a symbol operand, indicates a PC-relative relocation
+ /// Used for computing a global address for PIC compilations
+ MO_PCREL,
+
+ /// MO_GOT - Indicates a GOT-relative relocation
+ MO_GOT,
+
+ // Low or high part of a symbol.
+ MO_LO16, MO_HI16,
+
+ // Offset from the base of the SDA.
+ MO_GPREL
+ };
+
+} // End namespace HexagonII.
+
+} // End namespace llvm.
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.cpp b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.cpp
new file mode 100644
index 0000000..141e514
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.cpp
@@ -0,0 +1,38 @@
+//===-- HexagonMCAsmInfo.cpp - Hexagon asm properties ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the HexagonMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonMCAsmInfo.h"
+
+using namespace llvm;
+
+// Pin the vtable to this file.
+void HexagonMCAsmInfo::anchor() {}
+
+HexagonMCAsmInfo::HexagonMCAsmInfo(StringRef TT) {
+ Data16bitsDirective = "\t.half\t";
+ Data32bitsDirective = "\t.word\t";
+ Data64bitsDirective = nullptr; // .xword is only supported by V9.
+ ZeroDirective = "\t.skip\t";
+ CommentString = "//";
+ HasLEB128 = true;
+
+ LCOMMDirectiveAlignmentType = LCOMM::ByteAlignment;
+ InlineAsmStart = "# InlineAsm Start";
+ InlineAsmEnd = "# InlineAsm End";
+ ZeroDirective = "\t.space\t";
+ AscizDirective = "\t.string\t";
+
+ SupportsDebugInformation = true;
+ UsesELFSectionDirectiveForBSS = true;
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.h b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.h
new file mode 100644
index 0000000..953d804
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.h
@@ -0,0 +1,29 @@
+//===-- HexagonTargetAsmInfo.h - Hexagon asm properties --------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the HexagonMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HexagonMCASMINFO_H
+#define HexagonMCASMINFO_H
+
+#include "llvm/ADT/StringRef.h"
+#include "llvm/MC/MCAsmInfoELF.h"
+
+namespace llvm {
+ class HexagonMCAsmInfo : public MCAsmInfoELF {
+ void anchor() override;
+ public:
+ explicit HexagonMCAsmInfo(StringRef TT);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.cpp b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.cpp
new file mode 100644
index 0000000..9260b4a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.cpp
@@ -0,0 +1,175 @@
+//===- HexagonMCInst.cpp - Hexagon sub-class of MCInst --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class extends MCInst to allow some Hexagon VLIW annotations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonInstrInfo.h"
+#include "MCTargetDesc/HexagonBaseInfo.h"
+#include "MCTargetDesc/HexagonMCInst.h"
+#include "MCTargetDesc/HexagonMCTargetDesc.h"
+
+using namespace llvm;
+
+// Return the slots used by the insn.
+unsigned HexagonMCInst::getUnits(const HexagonTargetMachine* TM) const {
+ const HexagonInstrInfo* QII = TM->getInstrInfo();
+ const InstrItineraryData* II = TM->getInstrItineraryData();
+ const InstrStage*
+ IS = II->beginStage(QII->get(this->getOpcode()).getSchedClass());
+
+ return (IS->getUnits());
+}
+
+// Return the Hexagon ISA class for the insn.
+unsigned HexagonMCInst::getType() const {
+ const uint64_t F = MCID->TSFlags;
+
+ return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
+}
+
+// Return whether the insn is an actual insn.
+bool HexagonMCInst::isCanon() const {
+ return (!MCID->isPseudo() &&
+ !isPrefix() &&
+ getType() != HexagonII::TypeENDLOOP);
+}
+
+// Return whether the insn is a prefix.
+bool HexagonMCInst::isPrefix() const {
+ return (getType() == HexagonII::TypePREFIX);
+}
+
+// Return whether the insn is solo, i.e., cannot be in a packet.
+bool HexagonMCInst::isSolo() const {
+ const uint64_t F = MCID->TSFlags;
+ return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
+}
+
+// Return whether the insn is a new-value consumer.
+bool HexagonMCInst::isNewValue() const {
+ const uint64_t F = MCID->TSFlags;
+ return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
+}
+
+// Return whether the instruction is a legal new-value producer.
+bool HexagonMCInst::hasNewValue() const {
+ const uint64_t F = MCID->TSFlags;
+ return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
+}
+
+// Return the operand that consumes or produces a new value.
+const MCOperand& HexagonMCInst::getNewValue() const {
+ const uint64_t F = MCID->TSFlags;
+ const unsigned O = (F >> HexagonII::NewValueOpPos) &
+ HexagonII::NewValueOpMask;
+ const MCOperand& MCO = getOperand(O);
+
+ assert ((isNewValue() || hasNewValue()) && MCO.isReg());
+ return (MCO);
+}
+
+// Return whether the instruction needs to be constant extended.
+// 1) Always return true if the instruction has 'isExtended' flag set.
+//
+// isExtendable:
+// 2) For immediate extended operands, return true only if the value is
+// out-of-range.
+// 3) For global address, always return true.
+
+bool HexagonMCInst::isConstExtended(void) const {
+ if (isExtended())
+ return true;
+
+ if (!isExtendable())
+ return false;
+
+ short ExtOpNum = getCExtOpNum();
+ int MinValue = getMinValue();
+ int MaxValue = getMaxValue();
+ const MCOperand& MO = getOperand(ExtOpNum);
+
+ // We could be using an instruction with an extendable immediate and shoehorn
+ // a global address into it. If it is a global address it will be constant
+ // extended. We do this for COMBINE.
+ // We currently only handle isGlobal() because it is the only kind of
+ // object we are going to end up with here for now.
+ // In the future we probably should add isSymbol(), etc.
+ if (MO.isExpr())
+ return true;
+
+ // If the extendable operand is not 'Immediate' type, the instruction should
+ // have 'isExtended' flag set.
+ assert(MO.isImm() && "Extendable operand must be Immediate type");
+
+ int ImmValue = MO.getImm();
+ return (ImmValue < MinValue || ImmValue > MaxValue);
+}
+
+// Return whether the instruction must be always extended.
+bool HexagonMCInst::isExtended(void) const {
+ const uint64_t F = MCID->TSFlags;
+ return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
+}
+
+// Return true if the instruction may be extended based on the operand value.
+bool HexagonMCInst::isExtendable(void) const {
+ const uint64_t F = MCID->TSFlags;
+ return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
+}
+
+// Return number of bits in the constant extended operand.
+unsigned HexagonMCInst::getBitCount(void) const {
+ const uint64_t F = MCID->TSFlags;
+ return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
+}
+
+// Return constant extended operand number.
+unsigned short HexagonMCInst::getCExtOpNum(void) const {
+ const uint64_t F = MCID->TSFlags;
+ return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
+}
+
+// Return whether the operand can be constant extended.
+bool HexagonMCInst::isOperandExtended(const unsigned short OperandNum) const {
+ const uint64_t F = MCID->TSFlags;
+ return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
+ == OperandNum;
+}
+
+// Return the min value that a constant extendable operand can have
+// without being extended.
+int HexagonMCInst::getMinValue(void) const {
+ const uint64_t F = MCID->TSFlags;
+ unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
+ & HexagonII::ExtentSignedMask;
+ unsigned bits = (F >> HexagonII::ExtentBitsPos)
+ & HexagonII::ExtentBitsMask;
+
+ if (isSigned) // if value is signed
+ return -1 << (bits - 1);
+ else
+ return 0;
+}
+
+// Return the max value that a constant extendable operand can have
+// without being extended.
+int HexagonMCInst::getMaxValue(void) const {
+ const uint64_t F = MCID->TSFlags;
+ unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
+ & HexagonII::ExtentSignedMask;
+ unsigned bits = (F >> HexagonII::ExtentBitsPos)
+ & HexagonII::ExtentBitsMask;
+
+ if (isSigned) // if value is signed
+ return ~(-1 << (bits - 1));
+ else
+ return ~(-1 << bits);
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.h b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.h
new file mode 100644
index 0000000..3c52d456
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.h
@@ -0,0 +1,100 @@
+//===- HexagonMCInst.h - Hexagon sub-class of MCInst ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class extends MCInst to allow some VLIW annotations.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HEXAGONMCINST_H
+#define HEXAGONMCINST_H
+
+#include "HexagonTargetMachine.h"
+#include "llvm/MC/MCInst.h"
+
+namespace llvm {
+ class MCOperand;
+
+ class HexagonMCInst: public MCInst {
+ // MCID is set during instruction lowering.
+ // It is needed in order to access TSFlags for
+ // use in checking MC instruction properties.
+ const MCInstrDesc *MCID;
+
+ // Packet start and end markers
+ unsigned packetStart: 1, packetEnd: 1;
+
+ public:
+ explicit HexagonMCInst():
+ MCInst(), MCID(nullptr), packetStart(0), packetEnd(0) {};
+ HexagonMCInst(const MCInstrDesc& mcid):
+ MCInst(), MCID(&mcid), packetStart(0), packetEnd(0) {};
+
+ bool isPacketStart() const { return (packetStart); };
+ bool isPacketEnd() const { return (packetEnd); };
+ void setPacketStart(bool Y) { packetStart = Y; };
+ void setPacketEnd(bool Y) { packetEnd = Y; };
+ void resetPacket() { setPacketStart(false); setPacketEnd(false); };
+
+ // Return the slots used by the insn.
+ unsigned getUnits(const HexagonTargetMachine* TM) const;
+
+ // Return the Hexagon ISA class for the insn.
+ unsigned getType() const;
+
+ void setDesc(const MCInstrDesc& mcid) { MCID = &mcid; };
+ const MCInstrDesc& getDesc(void) const { return *MCID; };
+
+ // Return whether the insn is an actual insn.
+ bool isCanon() const;
+
+ // Return whether the insn is a prefix.
+ bool isPrefix() const;
+
+ // Return whether the insn is solo, i.e., cannot be in a packet.
+ bool isSolo() const;
+
+ // Return whether the instruction needs to be constant extended.
+ bool isConstExtended() const;
+
+ // Return constant extended operand number.
+ unsigned short getCExtOpNum(void) const;
+
+ // Return whether the insn is a new-value consumer.
+ bool isNewValue() const;
+
+ // Return whether the instruction is a legal new-value producer.
+ bool hasNewValue() const;
+
+ // Return the operand that consumes or produces a new value.
+ const MCOperand& getNewValue() const;
+
+ // Return number of bits in the constant extended operand.
+ unsigned getBitCount(void) const;
+
+ private:
+ // Return whether the instruction must be always extended.
+ bool isExtended() const;
+
+ // Return true if the insn may be extended based on the operand value.
+ bool isExtendable() const;
+
+ // Return true if the operand can be constant extended.
+ bool isOperandExtended(const unsigned short OperandNum) const;
+
+ // Return the min value that a constant extendable operand can have
+ // without being extended.
+ int getMinValue() const;
+
+ // Return the max value that a constant extendable operand can have
+ // without being extended.
+ int getMaxValue() const;
+ };
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.cpp b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.cpp
new file mode 100644
index 0000000..581674d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.cpp
@@ -0,0 +1,98 @@
+//===-- HexagonMCTargetDesc.cpp - Hexagon Target Descriptions -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Hexagon specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonMCTargetDesc.h"
+#include "HexagonMCAsmInfo.h"
+#include "InstPrinter/HexagonInstPrinter.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_MC_DESC
+#include "HexagonGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "HexagonGenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "HexagonGenRegisterInfo.inc"
+
+static MCInstrInfo *createHexagonMCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitHexagonMCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createHexagonMCRegisterInfo(StringRef TT) {
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitHexagonMCRegisterInfo(X, Hexagon::R0);
+ return X;
+}
+
+static MCSubtargetInfo *createHexagonMCSubtargetInfo(StringRef TT,
+ StringRef CPU,
+ StringRef FS) {
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+ InitHexagonMCSubtargetInfo(X, TT, CPU, FS);
+ return X;
+}
+
+static MCAsmInfo *createHexagonMCAsmInfo(const MCRegisterInfo &MRI,
+ StringRef TT) {
+ MCAsmInfo *MAI = new HexagonMCAsmInfo(TT);
+
+ // VirtualFP = (R30 + #0).
+ MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(
+ nullptr, Hexagon::R30, 0);
+ MAI->addInitialFrameState(Inst);
+
+ return MAI;
+}
+
+static MCCodeGenInfo *createHexagonMCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+ // For the time being, use static relocations, since there's really no
+ // support for PIC yet.
+ X->InitMCCodeGenInfo(Reloc::Static, CM, OL);
+ return X;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeHexagonTargetMC() {
+ // Register the MC asm info.
+ RegisterMCAsmInfoFn X(TheHexagonTarget, createHexagonMCAsmInfo);
+
+ // Register the MC codegen info.
+ TargetRegistry::RegisterMCCodeGenInfo(TheHexagonTarget,
+ createHexagonMCCodeGenInfo);
+
+ // Register the MC instruction info.
+ TargetRegistry::RegisterMCInstrInfo(TheHexagonTarget, createHexagonMCInstrInfo);
+
+ // Register the MC register info.
+ TargetRegistry::RegisterMCRegInfo(TheHexagonTarget,
+ createHexagonMCRegisterInfo);
+
+ // Register the MC subtarget info.
+ TargetRegistry::RegisterMCSubtargetInfo(TheHexagonTarget,
+ createHexagonMCSubtargetInfo);
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.h b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.h
new file mode 100644
index 0000000..2238b1a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.h
@@ -0,0 +1,39 @@
+//===-- HexagonMCTargetDesc.h - Hexagon Target Descriptions -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Hexagon specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef HEXAGONMCTARGETDESC_H
+#define HEXAGONMCTARGETDESC_H
+
+namespace llvm {
+class MCSubtargetInfo;
+class Target;
+
+extern Target TheHexagonTarget;
+
+} // End llvm namespace
+
+// Define symbolic names for Hexagon registers. This defines a mapping from
+// register name to register number.
+//
+#define GET_REGINFO_ENUM
+#include "HexagonGenRegisterInfo.inc"
+
+// Defines symbolic names for the Hexagon instructions.
+//
+#define GET_INSTRINFO_ENUM
+#include "HexagonGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "HexagonGenSubtargetInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/TargetInfo/HexagonTargetInfo.cpp b/contrib/llvm/lib/Target/Hexagon/TargetInfo/HexagonTargetInfo.cpp
new file mode 100644
index 0000000..40f6c8d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/TargetInfo/HexagonTargetInfo.cpp
@@ -0,0 +1,19 @@
+//===-- HexagonTargetInfo.cpp - Hexagon Target Implementation ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheHexagonTarget;
+
+extern "C" void LLVMInitializeHexagonTargetInfo() {
+ RegisterTarget<Triple::hexagon, /*HasJIT=*/false> X(TheHexagonTarget, "hexagon", "Hexagon");
+}
diff --git a/contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.cpp b/contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.cpp
new file mode 100644
index 0000000..acf1214
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.cpp
@@ -0,0 +1,115 @@
+//===-- MSP430InstPrinter.cpp - Convert MSP430 MCInst to assembly syntax --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an MSP430 MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430InstPrinter.h"
+#include "MSP430.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+
+// Include the auto-generated portion of the assembly writer.
+#include "MSP430GenAsmWriter.inc"
+
+void MSP430InstPrinter::printInst(const MCInst *MI, raw_ostream &O,
+ StringRef Annot) {
+ printInstruction(MI, O);
+ printAnnotation(O, Annot);
+}
+
+void MSP430InstPrinter::printPCRelImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isImm())
+ O << Op.getImm();
+ else {
+ assert(Op.isExpr() && "unknown pcrel immediate operand");
+ O << *Op.getExpr();
+ }
+}
+
+void MSP430InstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O, const char *Modifier) {
+ assert((Modifier == nullptr || Modifier[0] == 0) && "No modifiers supported");
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ O << getRegisterName(Op.getReg());
+ } else if (Op.isImm()) {
+ O << '#' << Op.getImm();
+ } else {
+ assert(Op.isExpr() && "unknown operand kind in printOperand");
+ O << '#' << *Op.getExpr();
+ }
+}
+
+void MSP430InstPrinter::printSrcMemOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O,
+ const char *Modifier) {
+ const MCOperand &Base = MI->getOperand(OpNo);
+ const MCOperand &Disp = MI->getOperand(OpNo+1);
+
+ // Print displacement first
+
+ // If the global address expression is a part of displacement field with a
+ // register base, we should not emit any prefix symbol here, e.g.
+ // mov.w &foo, r1
+ // vs
+ // mov.w glb(r1), r2
+ // Otherwise (!) msp430-as will silently miscompile the output :(
+ if (!Base.getReg())
+ O << '&';
+
+ if (Disp.isExpr())
+ O << *Disp.getExpr();
+ else {
+ assert(Disp.isImm() && "Expected immediate in displacement field");
+ O << Disp.getImm();
+ }
+
+ // Print register base field
+ if (Base.getReg())
+ O << '(' << getRegisterName(Base.getReg()) << ')';
+}
+
+void MSP430InstPrinter::printCCOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned CC = MI->getOperand(OpNo).getImm();
+
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported CC code");
+ case MSP430CC::COND_E:
+ O << "eq";
+ break;
+ case MSP430CC::COND_NE:
+ O << "ne";
+ break;
+ case MSP430CC::COND_HS:
+ O << "hs";
+ break;
+ case MSP430CC::COND_LO:
+ O << "lo";
+ break;
+ case MSP430CC::COND_GE:
+ O << "ge";
+ break;
+ case MSP430CC::COND_L:
+ O << 'l';
+ break;
+ }
+}
diff --git a/contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.h b/contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.h
new file mode 100644
index 0000000..5afbd20
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.h
@@ -0,0 +1,44 @@
+//= MSP430InstPrinter.h - Convert MSP430 MCInst to assembly syntax -*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints a MSP430 MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MSP430INSTPRINTER_H
+#define MSP430INSTPRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+
+namespace llvm {
+ class MCOperand;
+
+ class MSP430InstPrinter : public MCInstPrinter {
+ public:
+ MSP430InstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI)
+ : MCInstPrinter(MAI, MII, MRI) {}
+
+ void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot) override;
+
+ // Autogenerated by tblgen.
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ static const char *getRegisterName(unsigned RegNo);
+
+ void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O,
+ const char *Modifier = nullptr);
+ void printPCRelImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printSrcMemOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O,
+ const char *Modifier = nullptr);
+ void printCCOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+
+ };
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.cpp b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.cpp
new file mode 100644
index 0000000..df1aa1a
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.cpp
@@ -0,0 +1,27 @@
+//===-- MSP430MCAsmInfo.cpp - MSP430 asm properties -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the MSP430MCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430MCAsmInfo.h"
+#include "llvm/ADT/StringRef.h"
+using namespace llvm;
+
+void MSP430MCAsmInfo::anchor() { }
+
+MSP430MCAsmInfo::MSP430MCAsmInfo(StringRef TT) {
+ PointerSize = CalleeSaveStackSlotSize = 2;
+
+ CommentString = ";";
+
+ AlignmentIsInBytes = false;
+ UsesELFSectionDirectiveForBSS = true;
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.h b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.h
new file mode 100644
index 0000000..ef805bb
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.h
@@ -0,0 +1,30 @@
+//===-- MSP430MCAsmInfo.h - MSP430 asm properties --------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the MSP430MCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MSP430TARGETASMINFO_H
+#define MSP430TARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfoELF.h"
+
+namespace llvm {
+ class StringRef;
+
+ class MSP430MCAsmInfo : public MCAsmInfoELF {
+ void anchor() override;
+ public:
+ explicit MSP430MCAsmInfo(StringRef TT);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.cpp b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.cpp
new file mode 100644
index 0000000..72adb45
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.cpp
@@ -0,0 +1,94 @@
+//===-- MSP430MCTargetDesc.cpp - MSP430 Target Descriptions ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides MSP430 specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430MCTargetDesc.h"
+#include "InstPrinter/MSP430InstPrinter.h"
+#include "MSP430MCAsmInfo.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_MC_DESC
+#include "MSP430GenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "MSP430GenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "MSP430GenRegisterInfo.inc"
+
+static MCInstrInfo *createMSP430MCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitMSP430MCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createMSP430MCRegisterInfo(StringRef TT) {
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitMSP430MCRegisterInfo(X, MSP430::PCW);
+ return X;
+}
+
+static MCSubtargetInfo *createMSP430MCSubtargetInfo(StringRef TT, StringRef CPU,
+ StringRef FS) {
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+ InitMSP430MCSubtargetInfo(X, TT, CPU, FS);
+ return X;
+}
+
+static MCCodeGenInfo *createMSP430MCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+static MCInstPrinter *createMSP430MCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ if (SyntaxVariant == 0)
+ return new MSP430InstPrinter(MAI, MII, MRI);
+ return nullptr;
+}
+
+extern "C" void LLVMInitializeMSP430TargetMC() {
+ // Register the MC asm info.
+ RegisterMCAsmInfo<MSP430MCAsmInfo> X(TheMSP430Target);
+
+ // Register the MC codegen info.
+ TargetRegistry::RegisterMCCodeGenInfo(TheMSP430Target,
+ createMSP430MCCodeGenInfo);
+
+ // Register the MC instruction info.
+ TargetRegistry::RegisterMCInstrInfo(TheMSP430Target, createMSP430MCInstrInfo);
+
+ // Register the MC register info.
+ TargetRegistry::RegisterMCRegInfo(TheMSP430Target,
+ createMSP430MCRegisterInfo);
+
+ // Register the MC subtarget info.
+ TargetRegistry::RegisterMCSubtargetInfo(TheMSP430Target,
+ createMSP430MCSubtargetInfo);
+
+ // Register the MCInstPrinter.
+ TargetRegistry::RegisterMCInstPrinter(TheMSP430Target,
+ createMSP430MCInstPrinter);
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.h b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.h
new file mode 100644
index 0000000..7f3505c
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.h
@@ -0,0 +1,36 @@
+//===-- MSP430MCTargetDesc.h - MSP430 Target Descriptions -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides MSP430 specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MSP430MCTARGETDESC_H
+#define MSP430MCTARGETDESC_H
+
+namespace llvm {
+class Target;
+
+extern Target TheMSP430Target;
+
+} // End llvm namespace
+
+// Defines symbolic names for MSP430 registers.
+// This defines a mapping from register name to register number.
+#define GET_REGINFO_ENUM
+#include "MSP430GenRegisterInfo.inc"
+
+// Defines symbolic names for the MSP430 instructions.
+#define GET_INSTRINFO_ENUM
+#include "MSP430GenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "MSP430GenSubtargetInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430.h b/contrib/llvm/lib/Target/MSP430/MSP430.h
new file mode 100644
index 0000000..4574ce5
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430.h
@@ -0,0 +1,47 @@
+//==-- MSP430.h - Top-level interface for MSP430 representation --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in
+// the LLVM MSP430 backend.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_MSP430_H
+#define LLVM_TARGET_MSP430_H
+
+#include "MCTargetDesc/MSP430MCTargetDesc.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace MSP430CC {
+ // MSP430 specific condition code.
+ enum CondCodes {
+ COND_E = 0, // aka COND_Z
+ COND_NE = 1, // aka COND_NZ
+ COND_HS = 2, // aka COND_C
+ COND_LO = 3, // aka COND_NC
+ COND_GE = 4,
+ COND_L = 5,
+
+ COND_INVALID = -1
+ };
+}
+
+namespace llvm {
+ class MSP430TargetMachine;
+ class FunctionPass;
+ class formatted_raw_ostream;
+
+ FunctionPass *createMSP430ISelDag(MSP430TargetMachine &TM,
+ CodeGenOpt::Level OptLevel);
+
+ FunctionPass *createMSP430BranchSelectionPass();
+
+} // end namespace llvm;
+
+#endif
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430.td b/contrib/llvm/lib/Target/MSP430/MSP430.td
new file mode 100644
index 0000000..dfea669
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430.td
@@ -0,0 +1,60 @@
+//===-- MSP430.td - Describe the MSP430 Target Machine -----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This is the top level entry point for the MSP430 target.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// Subtarget Features.
+//===----------------------------------------------------------------------===//
+def FeatureX
+ : SubtargetFeature<"ext", "ExtendedInsts", "true",
+ "Enable MSP430-X extensions">;
+
+//===----------------------------------------------------------------------===//
+// MSP430 supported processors.
+//===----------------------------------------------------------------------===//
+class Proc<string Name, list<SubtargetFeature> Features>
+ : Processor<Name, NoItineraries, Features>;
+
+def : Proc<"generic", []>;
+
+//===----------------------------------------------------------------------===//
+// Register File Description
+//===----------------------------------------------------------------------===//
+
+include "MSP430RegisterInfo.td"
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Description
+//===----------------------------------------------------------------------===//
+
+include "MSP430CallingConv.td"
+
+//===----------------------------------------------------------------------===//
+// Instruction Descriptions
+//===----------------------------------------------------------------------===//
+
+include "MSP430InstrInfo.td"
+
+def MSP430InstrInfo : InstrInfo;
+
+//===----------------------------------------------------------------------===//
+// Target Declaration
+//===----------------------------------------------------------------------===//
+
+def MSP430 : Target {
+ let InstructionSet = MSP430InstrInfo;
+}
+
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430AsmPrinter.cpp b/contrib/llvm/lib/Target/MSP430/MSP430AsmPrinter.cpp
new file mode 100644
index 0000000..22a973e
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430AsmPrinter.cpp
@@ -0,0 +1,161 @@
+//===-- MSP430AsmPrinter.cpp - MSP430 LLVM assembly writer ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to the MSP430 assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430.h"
+#include "InstPrinter/MSP430InstPrinter.h"
+#include "MSP430InstrInfo.h"
+#include "MSP430MCInstLower.h"
+#include "MSP430TargetMachine.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+namespace {
+ class MSP430AsmPrinter : public AsmPrinter {
+ public:
+ MSP430AsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer) {}
+
+ const char *getPassName() const override {
+ return "MSP430 Assembly Printer";
+ }
+
+ void printOperand(const MachineInstr *MI, int OpNum,
+ raw_ostream &O, const char* Modifier = nullptr);
+ void printSrcMemOperand(const MachineInstr *MI, int OpNum,
+ raw_ostream &O);
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+ bool PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNo, unsigned AsmVariant,
+ const char *ExtraCode, raw_ostream &O) override;
+ void EmitInstruction(const MachineInstr *MI) override;
+ };
+} // end of anonymous namespace
+
+
+void MSP430AsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
+ raw_ostream &O, const char *Modifier) {
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ switch (MO.getType()) {
+ default: llvm_unreachable("Not implemented yet!");
+ case MachineOperand::MO_Register:
+ O << MSP430InstPrinter::getRegisterName(MO.getReg());
+ return;
+ case MachineOperand::MO_Immediate:
+ if (!Modifier || strcmp(Modifier, "nohash"))
+ O << '#';
+ O << MO.getImm();
+ return;
+ case MachineOperand::MO_MachineBasicBlock:
+ O << *MO.getMBB()->getSymbol();
+ return;
+ case MachineOperand::MO_GlobalAddress: {
+ bool isMemOp = Modifier && !strcmp(Modifier, "mem");
+ uint64_t Offset = MO.getOffset();
+
+ // If the global address expression is a part of displacement field with a
+ // register base, we should not emit any prefix symbol here, e.g.
+ // mov.w &foo, r1
+ // vs
+ // mov.w glb(r1), r2
+ // Otherwise (!) msp430-as will silently miscompile the output :(
+ if (!Modifier || strcmp(Modifier, "nohash"))
+ O << (isMemOp ? '&' : '#');
+ if (Offset)
+ O << '(' << Offset << '+';
+
+ O << *getSymbol(MO.getGlobal());
+
+ if (Offset)
+ O << ')';
+
+ return;
+ }
+ }
+}
+
+void MSP430AsmPrinter::printSrcMemOperand(const MachineInstr *MI, int OpNum,
+ raw_ostream &O) {
+ const MachineOperand &Base = MI->getOperand(OpNum);
+ const MachineOperand &Disp = MI->getOperand(OpNum+1);
+
+ // Print displacement first
+
+ // Imm here is in fact global address - print extra modifier.
+ if (Disp.isImm() && !Base.getReg())
+ O << '&';
+ printOperand(MI, OpNum+1, O, "nohash");
+
+ // Print register base field
+ if (Base.getReg()) {
+ O << '(';
+ printOperand(MI, OpNum, O);
+ O << ')';
+ }
+}
+
+/// PrintAsmOperand - Print out an operand for an inline asm expression.
+///
+bool MSP430AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode, raw_ostream &O) {
+ // Does this asm operand have a single letter operand modifier?
+ if (ExtraCode && ExtraCode[0])
+ return true; // Unknown modifier.
+
+ printOperand(MI, OpNo, O);
+ return false;
+}
+
+bool MSP430AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNo, unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &O) {
+ if (ExtraCode && ExtraCode[0]) {
+ return true; // Unknown modifier.
+ }
+ printSrcMemOperand(MI, OpNo, O);
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+void MSP430AsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ MSP430MCInstLower MCInstLowering(OutContext, *this);
+
+ MCInst TmpInst;
+ MCInstLowering.Lower(MI, TmpInst);
+ EmitToStreamer(OutStreamer, TmpInst);
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeMSP430AsmPrinter() {
+ RegisterAsmPrinter<MSP430AsmPrinter> X(TheMSP430Target);
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430BranchSelector.cpp b/contrib/llvm/lib/Target/MSP430/MSP430BranchSelector.cpp
new file mode 100644
index 0000000..a96930a
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430BranchSelector.cpp
@@ -0,0 +1,181 @@
+//===-- MSP430BranchSelector.cpp - Emit long conditional branches ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that scans a machine function to determine which
+// conditional branches need more than 10 bits of displacement to reach their
+// target basic block. It does this in two passes; a calculation of basic block
+// positions pass, and a branch pseudo op to machine branch opcode pass. This
+// pass should be run last, just before the assembly printer.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430.h"
+#include "MSP430InstrInfo.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "msp430-branch-select"
+
+STATISTIC(NumExpanded, "Number of branches expanded to long format");
+
+namespace {
+ struct MSP430BSel : public MachineFunctionPass {
+ static char ID;
+ MSP430BSel() : MachineFunctionPass(ID) {}
+
+ /// BlockSizes - The sizes of the basic blocks in the function.
+ std::vector<unsigned> BlockSizes;
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "MSP430 Branch Selector";
+ }
+ };
+ char MSP430BSel::ID = 0;
+}
+
+/// createMSP430BranchSelectionPass - returns an instance of the Branch
+/// Selection Pass
+///
+FunctionPass *llvm::createMSP430BranchSelectionPass() {
+ return new MSP430BSel();
+}
+
+bool MSP430BSel::runOnMachineFunction(MachineFunction &Fn) {
+ const MSP430InstrInfo *TII =
+ static_cast<const MSP430InstrInfo*>(Fn.getTarget().getInstrInfo());
+ // Give the blocks of the function a dense, in-order, numbering.
+ Fn.RenumberBlocks();
+ BlockSizes.resize(Fn.getNumBlockIDs());
+
+ // Measure each MBB and compute a size for the entire function.
+ unsigned FuncSize = 0;
+ for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
+ ++MFI) {
+ MachineBasicBlock *MBB = MFI;
+
+ unsigned BlockSize = 0;
+ for (MachineBasicBlock::iterator MBBI = MBB->begin(), EE = MBB->end();
+ MBBI != EE; ++MBBI)
+ BlockSize += TII->GetInstSizeInBytes(MBBI);
+
+ BlockSizes[MBB->getNumber()] = BlockSize;
+ FuncSize += BlockSize;
+ }
+
+ // If the entire function is smaller than the displacement of a branch field,
+ // we know we don't need to shrink any branches in this function. This is a
+ // common case.
+ if (FuncSize < (1 << 9)) {
+ BlockSizes.clear();
+ return false;
+ }
+
+ // For each conditional branch, if the offset to its destination is larger
+ // than the offset field allows, transform it into a long branch sequence
+ // like this:
+ // short branch:
+ // bCC MBB
+ // long branch:
+ // b!CC $PC+6
+ // b MBB
+ //
+ bool MadeChange = true;
+ bool EverMadeChange = false;
+ while (MadeChange) {
+ // Iteratively expand branches until we reach a fixed point.
+ MadeChange = false;
+
+ for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
+ ++MFI) {
+ MachineBasicBlock &MBB = *MFI;
+ unsigned MBBStartOffset = 0;
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ I != E; ++I) {
+ if ((I->getOpcode() != MSP430::JCC || I->getOperand(0).isImm()) &&
+ I->getOpcode() != MSP430::JMP) {
+ MBBStartOffset += TII->GetInstSizeInBytes(I);
+ continue;
+ }
+
+ // Determine the offset from the current branch to the destination
+ // block.
+ MachineBasicBlock *Dest = I->getOperand(0).getMBB();
+
+ int BranchSize;
+ if (Dest->getNumber() <= MBB.getNumber()) {
+ // If this is a backwards branch, the delta is the offset from the
+ // start of this block to this branch, plus the sizes of all blocks
+ // from this block to the dest.
+ BranchSize = MBBStartOffset;
+
+ for (unsigned i = Dest->getNumber(), e = MBB.getNumber(); i != e; ++i)
+ BranchSize += BlockSizes[i];
+ } else {
+ // Otherwise, add the size of the blocks between this block and the
+ // dest to the number of bytes left in this block.
+ BranchSize = -MBBStartOffset;
+
+ for (unsigned i = MBB.getNumber(), e = Dest->getNumber(); i != e; ++i)
+ BranchSize += BlockSizes[i];
+ }
+
+ // If this branch is in range, ignore it.
+ if (isInt<10>(BranchSize)) {
+ MBBStartOffset += 2;
+ continue;
+ }
+
+ // Otherwise, we have to expand it to a long branch.
+ unsigned NewSize;
+ MachineInstr *OldBranch = I;
+ DebugLoc dl = OldBranch->getDebugLoc();
+
+ if (I->getOpcode() == MSP430::JMP) {
+ NewSize = 4;
+ } else {
+ // The BCC operands are:
+ // 0. MSP430 branch predicate
+ // 1. Target MBB
+ SmallVector<MachineOperand, 1> Cond;
+ Cond.push_back(I->getOperand(1));
+
+ // Jump over the uncond branch inst (i.e. $+6) on opposite condition.
+ TII->ReverseBranchCondition(Cond);
+ BuildMI(MBB, I, dl, TII->get(MSP430::JCC))
+ .addImm(4).addOperand(Cond[0]);
+
+ NewSize = 6;
+ }
+ // Uncond branch to the real destination.
+ I = BuildMI(MBB, I, dl, TII->get(MSP430::Bi)).addMBB(Dest);
+
+ // Remove the old branch from the function.
+ OldBranch->eraseFromParent();
+
+ // Remember that this instruction is NewSize bytes, increase the size of the
+ // block by NewSize-2, remember to iterate.
+ BlockSizes[MBB.getNumber()] += NewSize-2;
+ MBBStartOffset += NewSize;
+
+ ++NumExpanded;
+ MadeChange = true;
+ }
+ }
+ EverMadeChange |= MadeChange;
+ }
+
+ BlockSizes.clear();
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430CallingConv.td b/contrib/llvm/lib/Target/MSP430/MSP430CallingConv.td
new file mode 100644
index 0000000..8a69d1e
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430CallingConv.td
@@ -0,0 +1,37 @@
+//==- MSP430CallingConv.td - Calling Conventions for MSP430 -*- tablegen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This describes the calling conventions for MSP430 architecture.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MSP430 Return Value Calling Convention
+//===----------------------------------------------------------------------===//
+def RetCC_MSP430 : CallingConv<[
+ // i8 are returned in registers R15B, R14B, R13B, R12B
+ CCIfType<[i8], CCAssignToReg<[R15B, R14B, R13B, R12B]>>,
+
+ // i16 are returned in registers R15, R14, R13, R12
+ CCIfType<[i16], CCAssignToReg<[R15W, R14W, R13W, R12W]>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// MSP430 Argument Calling Conventions
+//===----------------------------------------------------------------------===//
+def CC_MSP430_AssignStack : CallingConv<[
+ // Pass by value if the byval attribute is given
+ CCIfByVal<CCPassByVal<2, 2>>,
+
+ // Promote i8 arguments to i16.
+ CCIfType<[i8], CCPromoteToType<i16>>,
+
+ // Integer values get stored in stack slots that are 2 bytes in
+ // size and 2-byte aligned.
+ CCIfType<[i16], CCAssignToStack<2, 2>>
+]>;
+
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.cpp b/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.cpp
new file mode 100644
index 0000000..82c8b29
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.cpp
@@ -0,0 +1,297 @@
+//===-- MSP430FrameLowering.cpp - MSP430 Frame Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the MSP430 implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430FrameLowering.h"
+#include "MSP430InstrInfo.h"
+#include "MSP430MachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+bool MSP430FrameLowering::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
+ MF.getFrameInfo()->hasVarSizedObjects() ||
+ MFI->isFrameAddressTaken());
+}
+
+bool MSP430FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ return !MF.getFrameInfo()->hasVarSizedObjects();
+}
+
+void MSP430FrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MSP430MachineFunctionInfo *MSP430FI = MF.getInfo<MSP430MachineFunctionInfo>();
+ const MSP430InstrInfo &TII =
+ *static_cast<const MSP430InstrInfo*>(MF.getTarget().getInstrInfo());
+
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Get the number of bytes to allocate from the FrameInfo.
+ uint64_t StackSize = MFI->getStackSize();
+
+ uint64_t NumBytes = 0;
+ if (hasFP(MF)) {
+ // Calculate required stack adjustment
+ uint64_t FrameSize = StackSize - 2;
+ NumBytes = FrameSize - MSP430FI->getCalleeSavedFrameSize();
+
+ // Get the offset of the stack slot for the EBP register... which is
+ // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
+ // Update the frame offset adjustment.
+ MFI->setOffsetAdjustment(-NumBytes);
+
+ // Save FPW into the appropriate stack slot...
+ BuildMI(MBB, MBBI, DL, TII.get(MSP430::PUSH16r))
+ .addReg(MSP430::FPW, RegState::Kill);
+
+ // Update FPW with the new base value...
+ BuildMI(MBB, MBBI, DL, TII.get(MSP430::MOV16rr), MSP430::FPW)
+ .addReg(MSP430::SPW);
+
+ // Mark the FramePtr as live-in in every block except the entry.
+ for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
+ I != E; ++I)
+ I->addLiveIn(MSP430::FPW);
+
+ } else
+ NumBytes = StackSize - MSP430FI->getCalleeSavedFrameSize();
+
+ // Skip the callee-saved push instructions.
+ while (MBBI != MBB.end() && (MBBI->getOpcode() == MSP430::PUSH16r))
+ ++MBBI;
+
+ if (MBBI != MBB.end())
+ DL = MBBI->getDebugLoc();
+
+ if (NumBytes) { // adjust stack pointer: SPW -= numbytes
+ // If there is an SUB16ri of SPW immediately before this instruction, merge
+ // the two.
+ //NumBytes -= mergeSPUpdates(MBB, MBBI, true);
+ // If there is an ADD16ri or SUB16ri of SPW immediately after this
+ // instruction, merge the two instructions.
+ // mergeSPUpdatesDown(MBB, MBBI, &NumBytes);
+
+ if (NumBytes) {
+ MachineInstr *MI =
+ BuildMI(MBB, MBBI, DL, TII.get(MSP430::SUB16ri), MSP430::SPW)
+ .addReg(MSP430::SPW).addImm(NumBytes);
+ // The SRW implicit def is dead.
+ MI->getOperand(3).setIsDead();
+ }
+ }
+}
+
+void MSP430FrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ MSP430MachineFunctionInfo *MSP430FI = MF.getInfo<MSP430MachineFunctionInfo>();
+ const MSP430InstrInfo &TII =
+ *static_cast<const MSP430InstrInfo*>(MF.getTarget().getInstrInfo());
+
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ unsigned RetOpcode = MBBI->getOpcode();
+ DebugLoc DL = MBBI->getDebugLoc();
+
+ switch (RetOpcode) {
+ case MSP430::RET:
+ case MSP430::RETI: break; // These are ok
+ default:
+ llvm_unreachable("Can only insert epilog into returning blocks");
+ }
+
+ // Get the number of bytes to allocate from the FrameInfo
+ uint64_t StackSize = MFI->getStackSize();
+ unsigned CSSize = MSP430FI->getCalleeSavedFrameSize();
+ uint64_t NumBytes = 0;
+
+ if (hasFP(MF)) {
+ // Calculate required stack adjustment
+ uint64_t FrameSize = StackSize - 2;
+ NumBytes = FrameSize - CSSize;
+
+ // pop FPW.
+ BuildMI(MBB, MBBI, DL, TII.get(MSP430::POP16r), MSP430::FPW);
+ } else
+ NumBytes = StackSize - CSSize;
+
+ // Skip the callee-saved pop instructions.
+ while (MBBI != MBB.begin()) {
+ MachineBasicBlock::iterator PI = std::prev(MBBI);
+ unsigned Opc = PI->getOpcode();
+ if (Opc != MSP430::POP16r && !PI->isTerminator())
+ break;
+ --MBBI;
+ }
+
+ DL = MBBI->getDebugLoc();
+
+ // If there is an ADD16ri or SUB16ri of SPW immediately before this
+ // instruction, merge the two instructions.
+ //if (NumBytes || MFI->hasVarSizedObjects())
+ // mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
+
+ if (MFI->hasVarSizedObjects()) {
+ BuildMI(MBB, MBBI, DL,
+ TII.get(MSP430::MOV16rr), MSP430::SPW).addReg(MSP430::FPW);
+ if (CSSize) {
+ MachineInstr *MI =
+ BuildMI(MBB, MBBI, DL,
+ TII.get(MSP430::SUB16ri), MSP430::SPW)
+ .addReg(MSP430::SPW).addImm(CSSize);
+ // The SRW implicit def is dead.
+ MI->getOperand(3).setIsDead();
+ }
+ } else {
+ // adjust stack pointer back: SPW += numbytes
+ if (NumBytes) {
+ MachineInstr *MI =
+ BuildMI(MBB, MBBI, DL, TII.get(MSP430::ADD16ri), MSP430::SPW)
+ .addReg(MSP430::SPW).addImm(NumBytes);
+ // The SRW implicit def is dead.
+ MI->getOperand(3).setIsDead();
+ }
+ }
+}
+
+// FIXME: Can we eleminate these in favour of generic code?
+bool
+MSP430FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ DebugLoc DL;
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ MSP430MachineFunctionInfo *MFI = MF.getInfo<MSP430MachineFunctionInfo>();
+ MFI->setCalleeSavedFrameSize(CSI.size() * 2);
+
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i-1].getReg();
+ // Add the callee-saved register as live-in. It's killed at the spill.
+ MBB.addLiveIn(Reg);
+ BuildMI(MBB, MI, DL, TII.get(MSP430::PUSH16r))
+ .addReg(Reg, RegState::Kill);
+ }
+ return true;
+}
+
+bool
+MSP430FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ DebugLoc DL;
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i)
+ BuildMI(MBB, MI, DL, TII.get(MSP430::POP16r), CSI[i].getReg());
+
+ return true;
+}
+
+void MSP430FrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const MSP430InstrInfo &TII =
+ *static_cast<const MSP430InstrInfo*>(MF.getTarget().getInstrInfo());
+ unsigned StackAlign = getStackAlignment();
+
+ if (!hasReservedCallFrame(MF)) {
+ // If the stack pointer can be changed after prologue, turn the
+ // adjcallstackup instruction into a 'sub SPW, <amt>' and the
+ // adjcallstackdown instruction into 'add SPW, <amt>'
+ // TODO: consider using push / pop instead of sub + store / add
+ MachineInstr *Old = I;
+ uint64_t Amount = Old->getOperand(0).getImm();
+ if (Amount != 0) {
+ // We need to keep the stack aligned properly. To do this, we round the
+ // amount of space needed for the outgoing arguments up to the next
+ // alignment boundary.
+ Amount = (Amount+StackAlign-1)/StackAlign*StackAlign;
+
+ MachineInstr *New = nullptr;
+ if (Old->getOpcode() == TII.getCallFrameSetupOpcode()) {
+ New = BuildMI(MF, Old->getDebugLoc(),
+ TII.get(MSP430::SUB16ri), MSP430::SPW)
+ .addReg(MSP430::SPW).addImm(Amount);
+ } else {
+ assert(Old->getOpcode() == TII.getCallFrameDestroyOpcode());
+ // factor out the amount the callee already popped.
+ uint64_t CalleeAmt = Old->getOperand(1).getImm();
+ Amount -= CalleeAmt;
+ if (Amount)
+ New = BuildMI(MF, Old->getDebugLoc(),
+ TII.get(MSP430::ADD16ri), MSP430::SPW)
+ .addReg(MSP430::SPW).addImm(Amount);
+ }
+
+ if (New) {
+ // The SRW implicit def is dead.
+ New->getOperand(3).setIsDead();
+
+ // Replace the pseudo instruction with a new instruction...
+ MBB.insert(I, New);
+ }
+ }
+ } else if (I->getOpcode() == TII.getCallFrameDestroyOpcode()) {
+ // If we are performing frame pointer elimination and if the callee pops
+ // something off the stack pointer, add it back.
+ if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
+ MachineInstr *Old = I;
+ MachineInstr *New =
+ BuildMI(MF, Old->getDebugLoc(), TII.get(MSP430::SUB16ri),
+ MSP430::SPW).addReg(MSP430::SPW).addImm(CalleeAmt);
+ // The SRW implicit def is dead.
+ New->getOperand(3).setIsDead();
+
+ MBB.insert(I, New);
+ }
+ }
+
+ MBB.erase(I);
+}
+
+void
+MSP430FrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
+ RegScavenger *) const {
+ // Create a frame entry for the FPW register that must be saved.
+ if (hasFP(MF)) {
+ int FrameIdx = MF.getFrameInfo()->CreateFixedObject(2, -4, true);
+ (void)FrameIdx;
+ assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
+ "Slot for FPW register must be last in order to be found!");
+ }
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.h b/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.h
new file mode 100644
index 0000000..fadfeed
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.h
@@ -0,0 +1,54 @@
+//==- MSP430FrameLowering.h - Define frame lowering for MSP430 --*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MSP430_FRAMEINFO_H
+#define MSP430_FRAMEINFO_H
+
+#include "MSP430.h"
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+class MSP430FrameLowering : public TargetFrameLowering {
+protected:
+
+public:
+ explicit MSP430FrameLowering()
+ : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 2, -2, 2) {}
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const override;
+
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+ bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool hasFP(const MachineFunction &MF) const override;
+ bool hasReservedCallFrame(const MachineFunction &MF) const override;
+ void processFunctionBeforeFrameFinalized(MachineFunction &MF,
+ RegScavenger *RS = nullptr) const override;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp b/contrib/llvm/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp
new file mode 100644
index 0000000..a9b9035
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp
@@ -0,0 +1,493 @@
+//===-- MSP430ISelDAGToDAG.cpp - A dag to dag inst selector for MSP430 ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the MSP430 target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430.h"
+#include "MSP430TargetMachine.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "msp430-isel"
+
+namespace {
+ struct MSP430ISelAddressMode {
+ enum {
+ RegBase,
+ FrameIndexBase
+ } BaseType;
+
+ struct { // This is really a union, discriminated by BaseType!
+ SDValue Reg;
+ int FrameIndex;
+ } Base;
+
+ int16_t Disp;
+ const GlobalValue *GV;
+ const Constant *CP;
+ const BlockAddress *BlockAddr;
+ const char *ES;
+ int JT;
+ unsigned Align; // CP alignment.
+
+ MSP430ISelAddressMode()
+ : BaseType(RegBase), Disp(0), GV(nullptr), CP(nullptr),
+ BlockAddr(nullptr), ES(nullptr), JT(-1), Align(0) {
+ }
+
+ bool hasSymbolicDisplacement() const {
+ return GV != nullptr || CP != nullptr || ES != nullptr || JT != -1;
+ }
+
+ void dump() {
+ errs() << "MSP430ISelAddressMode " << this << '\n';
+ if (BaseType == RegBase && Base.Reg.getNode() != nullptr) {
+ errs() << "Base.Reg ";
+ Base.Reg.getNode()->dump();
+ } else if (BaseType == FrameIndexBase) {
+ errs() << " Base.FrameIndex " << Base.FrameIndex << '\n';
+ }
+ errs() << " Disp " << Disp << '\n';
+ if (GV) {
+ errs() << "GV ";
+ GV->dump();
+ } else if (CP) {
+ errs() << " CP ";
+ CP->dump();
+ errs() << " Align" << Align << '\n';
+ } else if (ES) {
+ errs() << "ES ";
+ errs() << ES << '\n';
+ } else if (JT != -1)
+ errs() << " JT" << JT << " Align" << Align << '\n';
+ }
+ };
+}
+
+/// MSP430DAGToDAGISel - MSP430 specific code to select MSP430 machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+ class MSP430DAGToDAGISel : public SelectionDAGISel {
+ const MSP430TargetLowering &Lowering;
+ const MSP430Subtarget &Subtarget;
+
+ public:
+ MSP430DAGToDAGISel(MSP430TargetMachine &TM, CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(TM, OptLevel),
+ Lowering(*TM.getTargetLowering()),
+ Subtarget(*TM.getSubtargetImpl()) { }
+
+ const char *getPassName() const override {
+ return "MSP430 DAG->DAG Pattern Instruction Selection";
+ }
+
+ bool MatchAddress(SDValue N, MSP430ISelAddressMode &AM);
+ bool MatchWrapper(SDValue N, MSP430ISelAddressMode &AM);
+ bool MatchAddressBase(SDValue N, MSP430ISelAddressMode &AM);
+
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) override;
+
+ // Include the pieces autogenerated from the target description.
+ #include "MSP430GenDAGISel.inc"
+
+ private:
+ SDNode *Select(SDNode *N) override;
+ SDNode *SelectIndexedLoad(SDNode *Op);
+ SDNode *SelectIndexedBinOp(SDNode *Op, SDValue N1, SDValue N2,
+ unsigned Opc8, unsigned Opc16);
+
+ bool SelectAddr(SDValue Addr, SDValue &Base, SDValue &Disp);
+ };
+} // end anonymous namespace
+
+/// createMSP430ISelDag - This pass converts a legalized DAG into a
+/// MSP430-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createMSP430ISelDag(MSP430TargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new MSP430DAGToDAGISel(TM, OptLevel);
+}
+
+
+/// MatchWrapper - Try to match MSP430ISD::Wrapper node into an addressing mode.
+/// These wrap things that will resolve down into a symbol reference. If no
+/// match is possible, this returns true, otherwise it returns false.
+bool MSP430DAGToDAGISel::MatchWrapper(SDValue N, MSP430ISelAddressMode &AM) {
+ // If the addressing mode already has a symbol as the displacement, we can
+ // never match another symbol.
+ if (AM.hasSymbolicDisplacement())
+ return true;
+
+ SDValue N0 = N.getOperand(0);
+
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
+ AM.GV = G->getGlobal();
+ AM.Disp += G->getOffset();
+ //AM.SymbolFlags = G->getTargetFlags();
+ } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
+ AM.CP = CP->getConstVal();
+ AM.Align = CP->getAlignment();
+ AM.Disp += CP->getOffset();
+ //AM.SymbolFlags = CP->getTargetFlags();
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
+ AM.ES = S->getSymbol();
+ //AM.SymbolFlags = S->getTargetFlags();
+ } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
+ AM.JT = J->getIndex();
+ //AM.SymbolFlags = J->getTargetFlags();
+ } else {
+ AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
+ //AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
+ }
+ return false;
+}
+
+/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
+/// specified addressing mode without any further recursion.
+bool MSP430DAGToDAGISel::MatchAddressBase(SDValue N, MSP430ISelAddressMode &AM) {
+ // Is the base register already occupied?
+ if (AM.BaseType != MSP430ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
+ // If so, we cannot select it.
+ return true;
+ }
+
+ // Default, generate it as a register.
+ AM.BaseType = MSP430ISelAddressMode::RegBase;
+ AM.Base.Reg = N;
+ return false;
+}
+
+bool MSP430DAGToDAGISel::MatchAddress(SDValue N, MSP430ISelAddressMode &AM) {
+ DEBUG(errs() << "MatchAddress: "; AM.dump());
+
+ switch (N.getOpcode()) {
+ default: break;
+ case ISD::Constant: {
+ uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
+ AM.Disp += Val;
+ return false;
+ }
+
+ case MSP430ISD::Wrapper:
+ if (!MatchWrapper(N, AM))
+ return false;
+ break;
+
+ case ISD::FrameIndex:
+ if (AM.BaseType == MSP430ISelAddressMode::RegBase
+ && AM.Base.Reg.getNode() == nullptr) {
+ AM.BaseType = MSP430ISelAddressMode::FrameIndexBase;
+ AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
+ return false;
+ }
+ break;
+
+ case ISD::ADD: {
+ MSP430ISelAddressMode Backup = AM;
+ if (!MatchAddress(N.getNode()->getOperand(0), AM) &&
+ !MatchAddress(N.getNode()->getOperand(1), AM))
+ return false;
+ AM = Backup;
+ if (!MatchAddress(N.getNode()->getOperand(1), AM) &&
+ !MatchAddress(N.getNode()->getOperand(0), AM))
+ return false;
+ AM = Backup;
+
+ break;
+ }
+
+ case ISD::OR:
+ // Handle "X | C" as "X + C" iff X is known to have C bits clear.
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ MSP430ISelAddressMode Backup = AM;
+ uint64_t Offset = CN->getSExtValue();
+ // Start with the LHS as an addr mode.
+ if (!MatchAddress(N.getOperand(0), AM) &&
+ // Address could not have picked a GV address for the displacement.
+ AM.GV == nullptr &&
+ // Check to see if the LHS & C is zero.
+ CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
+ AM.Disp += Offset;
+ return false;
+ }
+ AM = Backup;
+ }
+ break;
+ }
+
+ return MatchAddressBase(N, AM);
+}
+
+/// SelectAddr - returns true if it is able pattern match an addressing mode.
+/// It returns the operands which make up the maximal addressing mode it can
+/// match by reference.
+bool MSP430DAGToDAGISel::SelectAddr(SDValue N,
+ SDValue &Base, SDValue &Disp) {
+ MSP430ISelAddressMode AM;
+
+ if (MatchAddress(N, AM))
+ return false;
+
+ EVT VT = N.getValueType();
+ if (AM.BaseType == MSP430ISelAddressMode::RegBase) {
+ if (!AM.Base.Reg.getNode())
+ AM.Base.Reg = CurDAG->getRegister(0, VT);
+ }
+
+ Base = (AM.BaseType == MSP430ISelAddressMode::FrameIndexBase) ?
+ CurDAG->getTargetFrameIndex(AM.Base.FrameIndex,
+ getTargetLowering()->getPointerTy()) :
+ AM.Base.Reg;
+
+ if (AM.GV)
+ Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(N),
+ MVT::i16, AM.Disp,
+ 0/*AM.SymbolFlags*/);
+ else if (AM.CP)
+ Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i16,
+ AM.Align, AM.Disp, 0/*AM.SymbolFlags*/);
+ else if (AM.ES)
+ Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i16, 0/*AM.SymbolFlags*/);
+ else if (AM.JT != -1)
+ Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i16, 0/*AM.SymbolFlags*/);
+ else if (AM.BlockAddr)
+ Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, 0,
+ 0/*AM.SymbolFlags*/);
+ else
+ Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i16);
+
+ return true;
+}
+
+bool MSP430DAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ SDValue Op0, Op1;
+ switch (ConstraintCode) {
+ default: return true;
+ case 'm': // memory
+ if (!SelectAddr(Op, Op0, Op1))
+ return true;
+ break;
+ }
+
+ OutOps.push_back(Op0);
+ OutOps.push_back(Op1);
+ return false;
+}
+
+static bool isValidIndexedLoad(const LoadSDNode *LD) {
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ if (AM != ISD::POST_INC || LD->getExtensionType() != ISD::NON_EXTLOAD)
+ return false;
+
+ EVT VT = LD->getMemoryVT();
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::i8:
+ // Sanity check
+ if (cast<ConstantSDNode>(LD->getOffset())->getZExtValue() != 1)
+ return false;
+
+ break;
+ case MVT::i16:
+ // Sanity check
+ if (cast<ConstantSDNode>(LD->getOffset())->getZExtValue() != 2)
+ return false;
+
+ break;
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+SDNode *MSP430DAGToDAGISel::SelectIndexedLoad(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ if (!isValidIndexedLoad(LD))
+ return nullptr;
+
+ MVT VT = LD->getMemoryVT().getSimpleVT();
+
+ unsigned Opcode = 0;
+ switch (VT.SimpleTy) {
+ case MVT::i8:
+ Opcode = MSP430::MOV8rm_POST;
+ break;
+ case MVT::i16:
+ Opcode = MSP430::MOV16rm_POST;
+ break;
+ default:
+ return nullptr;
+ }
+
+ return CurDAG->getMachineNode(Opcode, SDLoc(N),
+ VT, MVT::i16, MVT::Other,
+ LD->getBasePtr(), LD->getChain());
+}
+
+SDNode *MSP430DAGToDAGISel::SelectIndexedBinOp(SDNode *Op,
+ SDValue N1, SDValue N2,
+ unsigned Opc8, unsigned Opc16) {
+ if (N1.getOpcode() == ISD::LOAD &&
+ N1.hasOneUse() &&
+ IsLegalToFold(N1, Op, Op, OptLevel)) {
+ LoadSDNode *LD = cast<LoadSDNode>(N1);
+ if (!isValidIndexedLoad(LD))
+ return nullptr;
+
+ MVT VT = LD->getMemoryVT().getSimpleVT();
+ unsigned Opc = (VT == MVT::i16 ? Opc16 : Opc8);
+ MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
+ MemRefs0[0] = cast<MemSDNode>(N1)->getMemOperand();
+ SDValue Ops0[] = { N2, LD->getBasePtr(), LD->getChain() };
+ SDNode *ResNode =
+ CurDAG->SelectNodeTo(Op, Opc, VT, MVT::i16, MVT::Other, Ops0);
+ cast<MachineSDNode>(ResNode)->setMemRefs(MemRefs0, MemRefs0 + 1);
+ // Transfer chain.
+ ReplaceUses(SDValue(N1.getNode(), 2), SDValue(ResNode, 2));
+ // Transfer writeback.
+ ReplaceUses(SDValue(N1.getNode(), 1), SDValue(ResNode, 1));
+ return ResNode;
+ }
+
+ return nullptr;
+}
+
+
+SDNode *MSP430DAGToDAGISel::Select(SDNode *Node) {
+ SDLoc dl(Node);
+
+ // Dump information about the Node being selected
+ DEBUG(errs() << "Selecting: ");
+ DEBUG(Node->dump(CurDAG));
+ DEBUG(errs() << "\n");
+
+ // If we have a custom node, we already have selected!
+ if (Node->isMachineOpcode()) {
+ DEBUG(errs() << "== ";
+ Node->dump(CurDAG);
+ errs() << "\n");
+ Node->setNodeId(-1);
+ return nullptr;
+ }
+
+ // Few custom selection stuff.
+ switch (Node->getOpcode()) {
+ default: break;
+ case ISD::FrameIndex: {
+ assert(Node->getValueType(0) == MVT::i16);
+ int FI = cast<FrameIndexSDNode>(Node)->getIndex();
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, MVT::i16);
+ if (Node->hasOneUse())
+ return CurDAG->SelectNodeTo(Node, MSP430::ADD16ri, MVT::i16,
+ TFI, CurDAG->getTargetConstant(0, MVT::i16));
+ return CurDAG->getMachineNode(MSP430::ADD16ri, dl, MVT::i16,
+ TFI, CurDAG->getTargetConstant(0, MVT::i16));
+ }
+ case ISD::LOAD:
+ if (SDNode *ResNode = SelectIndexedLoad(Node))
+ return ResNode;
+ // Other cases are autogenerated.
+ break;
+ case ISD::ADD:
+ if (SDNode *ResNode =
+ SelectIndexedBinOp(Node,
+ Node->getOperand(0), Node->getOperand(1),
+ MSP430::ADD8rm_POST, MSP430::ADD16rm_POST))
+ return ResNode;
+ else if (SDNode *ResNode =
+ SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0),
+ MSP430::ADD8rm_POST, MSP430::ADD16rm_POST))
+ return ResNode;
+
+ // Other cases are autogenerated.
+ break;
+ case ISD::SUB:
+ if (SDNode *ResNode =
+ SelectIndexedBinOp(Node,
+ Node->getOperand(0), Node->getOperand(1),
+ MSP430::SUB8rm_POST, MSP430::SUB16rm_POST))
+ return ResNode;
+
+ // Other cases are autogenerated.
+ break;
+ case ISD::AND:
+ if (SDNode *ResNode =
+ SelectIndexedBinOp(Node,
+ Node->getOperand(0), Node->getOperand(1),
+ MSP430::AND8rm_POST, MSP430::AND16rm_POST))
+ return ResNode;
+ else if (SDNode *ResNode =
+ SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0),
+ MSP430::AND8rm_POST, MSP430::AND16rm_POST))
+ return ResNode;
+
+ // Other cases are autogenerated.
+ break;
+ case ISD::OR:
+ if (SDNode *ResNode =
+ SelectIndexedBinOp(Node,
+ Node->getOperand(0), Node->getOperand(1),
+ MSP430::OR8rm_POST, MSP430::OR16rm_POST))
+ return ResNode;
+ else if (SDNode *ResNode =
+ SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0),
+ MSP430::OR8rm_POST, MSP430::OR16rm_POST))
+ return ResNode;
+
+ // Other cases are autogenerated.
+ break;
+ case ISD::XOR:
+ if (SDNode *ResNode =
+ SelectIndexedBinOp(Node,
+ Node->getOperand(0), Node->getOperand(1),
+ MSP430::XOR8rm_POST, MSP430::XOR16rm_POST))
+ return ResNode;
+ else if (SDNode *ResNode =
+ SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0),
+ MSP430::XOR8rm_POST, MSP430::XOR16rm_POST))
+ return ResNode;
+
+ // Other cases are autogenerated.
+ break;
+ }
+
+ // Select the default instruction
+ SDNode *ResNode = SelectCode(Node);
+
+ DEBUG(errs() << "=> ");
+ if (ResNode == nullptr || ResNode == Node)
+ DEBUG(Node->dump(CurDAG));
+ else
+ DEBUG(ResNode->dump(CurDAG));
+ DEBUG(errs() << "\n");
+
+ return ResNode;
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.cpp b/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.cpp
new file mode 100644
index 0000000..3d3ee92
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.cpp
@@ -0,0 +1,1371 @@
+//===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MSP430TargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430ISelLowering.h"
+#include "MSP430.h"
+#include "MSP430MachineFunctionInfo.h"
+#include "MSP430Subtarget.h"
+#include "MSP430TargetMachine.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "msp430-lower"
+
+typedef enum {
+ NoHWMult,
+ HWMultIntr,
+ HWMultNoIntr
+} HWMultUseMode;
+
+static cl::opt<HWMultUseMode>
+HWMultMode("msp430-hwmult-mode", cl::Hidden,
+ cl::desc("Hardware multiplier use mode"),
+ cl::init(HWMultNoIntr),
+ cl::values(
+ clEnumValN(NoHWMult, "no",
+ "Do not use hardware multiplier"),
+ clEnumValN(HWMultIntr, "interrupts",
+ "Assume hardware multiplier can be used inside interrupts"),
+ clEnumValN(HWMultNoIntr, "use",
+ "Assume hardware multiplier cannot be used inside interrupts"),
+ clEnumValEnd));
+
+MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM)
+ : TargetLowering(TM, new TargetLoweringObjectFileELF()) {
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i8, &MSP430::GR8RegClass);
+ addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
+
+ // Compute derived properties from the register classes
+ computeRegisterProperties();
+
+ // Provide all sorts of operation actions
+
+ // Division is expensive
+ setIntDivIsCheap(false);
+
+ setStackPointerRegisterToSaveRestore(MSP430::SPW);
+ setBooleanContents(ZeroOrOneBooleanContent);
+ setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
+
+ // We have post-incremented loads / stores.
+ setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
+ setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand);
+
+ // We don't have any truncstores
+ setTruncStoreAction(MVT::i16, MVT::i8, Expand);
+
+ setOperationAction(ISD::SRA, MVT::i8, Custom);
+ setOperationAction(ISD::SHL, MVT::i8, Custom);
+ setOperationAction(ISD::SRL, MVT::i8, Custom);
+ setOperationAction(ISD::SRA, MVT::i16, Custom);
+ setOperationAction(ISD::SHL, MVT::i16, Custom);
+ setOperationAction(ISD::SRL, MVT::i16, Custom);
+ setOperationAction(ISD::ROTL, MVT::i8, Expand);
+ setOperationAction(ISD::ROTR, MVT::i8, Expand);
+ setOperationAction(ISD::ROTL, MVT::i16, Expand);
+ setOperationAction(ISD::ROTR, MVT::i16, Expand);
+ setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
+ setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i8, Custom);
+ setOperationAction(ISD::BR_CC, MVT::i16, Custom);
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+ setOperationAction(ISD::SETCC, MVT::i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::i16, Custom);
+ setOperationAction(ISD::SELECT, MVT::i8, Expand);
+ setOperationAction(ISD::SELECT, MVT::i16, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
+
+ setOperationAction(ISD::CTTZ, MVT::i8, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i16, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i8, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Expand);
+ setOperationAction(ISD::CTLZ, MVT::i8, Expand);
+ setOperationAction(ISD::CTLZ, MVT::i16, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i8, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i16, Expand);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand);
+ setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ // FIXME: Implement efficiently multiplication by a constant
+ setOperationAction(ISD::MUL, MVT::i8, Expand);
+ setOperationAction(ISD::MULHS, MVT::i8, Expand);
+ setOperationAction(ISD::MULHU, MVT::i8, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
+ setOperationAction(ISD::MUL, MVT::i16, Expand);
+ setOperationAction(ISD::MULHS, MVT::i16, Expand);
+ setOperationAction(ISD::MULHU, MVT::i16, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
+
+ setOperationAction(ISD::UDIV, MVT::i8, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i8, Expand);
+ setOperationAction(ISD::UREM, MVT::i8, Expand);
+ setOperationAction(ISD::SDIV, MVT::i8, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i8, Expand);
+ setOperationAction(ISD::SREM, MVT::i8, Expand);
+ setOperationAction(ISD::UDIV, MVT::i16, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i16, Expand);
+ setOperationAction(ISD::UREM, MVT::i16, Expand);
+ setOperationAction(ISD::SDIV, MVT::i16, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i16, Expand);
+ setOperationAction(ISD::SREM, MVT::i16, Expand);
+
+ // varargs support
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::JumpTable, MVT::i16, Custom);
+
+ // Libcalls names.
+ if (HWMultMode == HWMultIntr) {
+ setLibcallName(RTLIB::MUL_I8, "__mulqi3hw");
+ setLibcallName(RTLIB::MUL_I16, "__mulhi3hw");
+ } else if (HWMultMode == HWMultNoIntr) {
+ setLibcallName(RTLIB::MUL_I8, "__mulqi3hw_noint");
+ setLibcallName(RTLIB::MUL_I16, "__mulhi3hw_noint");
+ }
+
+ setMinFunctionAlignment(1);
+ setPrefFunctionAlignment(2);
+}
+
+SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ case ISD::SHL: // FALLTHROUGH
+ case ISD::SRL:
+ case ISD::SRA: return LowerShifts(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
+ case ISD::SETCC: return LowerSETCC(Op, DAG);
+ case ISD::BR_CC: return LowerBR_CC(Op, DAG);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
+ case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ default:
+ llvm_unreachable("unimplemented operand");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// MSP430 Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+TargetLowering::ConstraintType
+MSP430TargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r':
+ return C_RegisterClass;
+ default:
+ break;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+MSP430TargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const {
+ if (Constraint.size() == 1) {
+ // GCC Constraint Letters
+ switch (Constraint[0]) {
+ default: break;
+ case 'r': // GENERAL_REGS
+ if (VT == MVT::i8)
+ return std::make_pair(0U, &MSP430::GR8RegClass);
+
+ return std::make_pair(0U, &MSP430::GR16RegClass);
+ }
+ }
+
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "MSP430GenCallingConv.inc"
+
+/// For each argument in a function store the number of pieces it is composed
+/// of.
+template<typename ArgT>
+static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
+ SmallVectorImpl<unsigned> &Out) {
+ unsigned CurrentArgIndex = ~0U;
+ for (unsigned i = 0, e = Args.size(); i != e; i++) {
+ if (CurrentArgIndex == Args[i].OrigArgIndex) {
+ Out.back()++;
+ } else {
+ Out.push_back(1);
+ CurrentArgIndex++;
+ }
+ }
+}
+
+static void AnalyzeVarArgs(CCState &State,
+ const SmallVectorImpl<ISD::OutputArg> &Outs) {
+ State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
+}
+
+static void AnalyzeVarArgs(CCState &State,
+ const SmallVectorImpl<ISD::InputArg> &Ins) {
+ State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
+}
+
+/// Analyze incoming and outgoing function arguments. We need custom C++ code
+/// to handle special constraints in the ABI like reversing the order of the
+/// pieces of splitted arguments. In addition, all pieces of a certain argument
+/// have to be passed either using registers or the stack but never mixing both.
+template<typename ArgT>
+static void AnalyzeArguments(CCState &State,
+ SmallVectorImpl<CCValAssign> &ArgLocs,
+ const SmallVectorImpl<ArgT> &Args) {
+ static const MCPhysReg RegList[] = {
+ MSP430::R15W, MSP430::R14W, MSP430::R13W, MSP430::R12W
+ };
+ static const unsigned NbRegs = array_lengthof(RegList);
+
+ if (State.isVarArg()) {
+ AnalyzeVarArgs(State, Args);
+ return;
+ }
+
+ SmallVector<unsigned, 4> ArgsParts;
+ ParseFunctionArgs(Args, ArgsParts);
+
+ unsigned RegsLeft = NbRegs;
+ bool UseStack = false;
+ unsigned ValNo = 0;
+
+ for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
+ MVT ArgVT = Args[ValNo].VT;
+ ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
+ MVT LocVT = ArgVT;
+ CCValAssign::LocInfo LocInfo = CCValAssign::Full;
+
+ // Promote i8 to i16
+ if (LocVT == MVT::i8) {
+ LocVT = MVT::i16;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExt;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExt;
+ else
+ LocInfo = CCValAssign::AExt;
+ }
+
+ // Handle byval arguments
+ if (ArgFlags.isByVal()) {
+ State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags);
+ continue;
+ }
+
+ unsigned Parts = ArgsParts[i];
+
+ if (!UseStack && Parts <= RegsLeft) {
+ unsigned FirstVal = ValNo;
+ for (unsigned j = 0; j < Parts; j++) {
+ unsigned Reg = State.AllocateReg(RegList, NbRegs);
+ State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
+ RegsLeft--;
+ }
+
+ // Reverse the order of the pieces to agree with the "big endian" format
+ // required in the calling convention ABI.
+ SmallVectorImpl<CCValAssign>::iterator B = ArgLocs.begin() + FirstVal;
+ std::reverse(B, B + Parts);
+ } else {
+ UseStack = true;
+ for (unsigned j = 0; j < Parts; j++)
+ CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
+ }
+ }
+}
+
+static void AnalyzeRetResult(CCState &State,
+ const SmallVectorImpl<ISD::InputArg> &Ins) {
+ State.AnalyzeCallResult(Ins, RetCC_MSP430);
+}
+
+static void AnalyzeRetResult(CCState &State,
+ const SmallVectorImpl<ISD::OutputArg> &Outs) {
+ State.AnalyzeReturn(Outs, RetCC_MSP430);
+}
+
+template<typename ArgT>
+static void AnalyzeReturnValues(CCState &State,
+ SmallVectorImpl<CCValAssign> &RVLocs,
+ const SmallVectorImpl<ArgT> &Args) {
+ AnalyzeRetResult(State, Args);
+
+ // Reverse splitted return values to get the "big endian" format required
+ // to agree with the calling convention ABI.
+ std::reverse(RVLocs.begin(), RVLocs.end());
+}
+
+SDValue
+MSP430TargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+
+ switch (CallConv) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::C:
+ case CallingConv::Fast:
+ return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
+ case CallingConv::MSP430_INTR:
+ if (Ins.empty())
+ return Chain;
+ report_fatal_error("ISRs cannot have arguments");
+ }
+}
+
+SDValue
+MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool isVarArg = CLI.IsVarArg;
+
+ // MSP430 target does not yet support tail call optimization.
+ isTailCall = false;
+
+ switch (CallConv) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::Fast:
+ case CallingConv::C:
+ return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
+ Outs, OutVals, Ins, dl, DAG, InVals);
+ case CallingConv::MSP430_INTR:
+ report_fatal_error("ISRs cannot be called directly");
+ }
+}
+
+/// LowerCCCArguments - transform physical registers into virtual registers and
+/// generate load operations for arguments places on the stack.
+// FIXME: struct return stuff
+SDValue
+MSP430TargetLowering::LowerCCCArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+ AnalyzeArguments(CCInfo, ArgLocs, Ins);
+
+ // Create frame index for the start of the first vararg value
+ if (isVarArg) {
+ unsigned Offset = CCInfo.getNextStackOffset();
+ FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, Offset, true));
+ }
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (VA.isRegLoc()) {
+ // Arguments passed in registers
+ EVT RegVT = VA.getLocVT();
+ switch (RegVT.getSimpleVT().SimpleTy) {
+ default:
+ {
+#ifndef NDEBUG
+ errs() << "LowerFormalArguments Unhandled argument type: "
+ << RegVT.getSimpleVT().SimpleTy << "\n";
+#endif
+ llvm_unreachable(nullptr);
+ }
+ case MVT::i16:
+ unsigned VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
+
+ // If this is an 8-bit value, it is really passed promoted to 16
+ // bits. Insert an assert[sz]ext to capture this, then truncate to the
+ // right size.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+
+ if (VA.getLocInfo() != CCValAssign::Full)
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+
+ InVals.push_back(ArgValue);
+ }
+ } else {
+ // Sanity check
+ assert(VA.isMemLoc());
+
+ SDValue InVal;
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+
+ if (Flags.isByVal()) {
+ int FI = MFI->CreateFixedObject(Flags.getByValSize(),
+ VA.getLocMemOffset(), true);
+ InVal = DAG.getFrameIndex(FI, getPointerTy());
+ } else {
+ // Load the argument to a virtual register
+ unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
+ if (ObjSize > 2) {
+ errs() << "LowerFormalArguments Unhandled argument type: "
+ << EVT(VA.getLocVT()).getEVTString()
+ << "\n";
+ }
+ // Create the frame index object for this incoming parameter...
+ int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
+
+ // Create the SelectionDAG nodes corresponding to a load
+ //from this parameter
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
+ InVal = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0);
+ }
+
+ InVals.push_back(InVal);
+ }
+ }
+
+ return Chain;
+}
+
+SDValue
+MSP430TargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+
+ // CCValAssign - represent the assignment of the return value to a location
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // ISRs cannot return any value.
+ if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
+ report_fatal_error("ISRs cannot return any value");
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+
+ // Analize return values.
+ AnalyzeReturnValues(CCInfo, RVLocs, Outs);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ OutVals[i], Flag);
+
+ // Guarantee that all emitted copies are stuck together,
+ // avoiding something bad.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
+ MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(Opc, dl, MVT::Other, RetOps);
+}
+
+/// LowerCCCCallTo - functions arguments are copied from virtual regs to
+/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
+// TODO: sret.
+SDValue
+MSP430TargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg>
+ &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+ AnalyzeArguments(CCInfo, ArgLocs, Outs);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ Chain = DAG.getCALLSEQ_START(Chain ,DAG.getConstant(NumBytes,
+ getPointerTy(), true),
+ dl);
+
+ SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
+ SmallVector<SDValue, 12> MemOpChains;
+ SDValue StackPtr;
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+
+ SDValue Arg = OutVals[i];
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ // Arguments that can be passed on register must be kept at RegsToPass
+ // vector
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ assert(VA.isMemLoc());
+
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SPW, getPointerTy());
+
+ SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ StackPtr,
+ DAG.getIntPtrConstant(VA.getLocMemOffset()));
+
+ SDValue MemOp;
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+
+ if (Flags.isByVal()) {
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i16);
+ MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
+ Flags.getByValAlign(),
+ /*isVolatile*/false,
+ /*AlwaysInline=*/true,
+ MachinePointerInfo(),
+ MachinePointerInfo());
+ } else {
+ MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(),
+ false, false, 0);
+ }
+
+ MemOpChains.push_back(MemOp);
+ }
+ }
+
+ // Transform all store nodes into one single node because all store nodes are
+ // independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain and
+ // flag operands which copy the outgoing args into registers. The InFlag in
+ // necessary since all emitted instructions must be stuck together.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress node (quite common, every direct call is)
+ // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+ // Likewise ExternalSymbol -> TargetExternalSymbol.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
+ else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
+ Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
+
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getConstant(NumBytes, getPointerTy(), true),
+ DAG.getConstant(0, getPointerTy(), true),
+ InFlag, dl);
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
+ DAG, InVals);
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+///
+SDValue
+MSP430TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+
+ AnalyzeReturnValues(CCInfo, RVLocs, Ins);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
+ RVLocs[i].getValVT(), InFlag).getValue(1);
+ InFlag = Chain.getValue(2);
+ InVals.push_back(Chain.getValue(0));
+ }
+
+ return Chain;
+}
+
+SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned Opc = Op.getOpcode();
+ SDNode* N = Op.getNode();
+ EVT VT = Op.getValueType();
+ SDLoc dl(N);
+
+ // Expand non-constant shifts to loops:
+ if (!isa<ConstantSDNode>(N->getOperand(1)))
+ switch (Opc) {
+ default: llvm_unreachable("Invalid shift opcode!");
+ case ISD::SHL:
+ return DAG.getNode(MSP430ISD::SHL, dl,
+ VT, N->getOperand(0), N->getOperand(1));
+ case ISD::SRA:
+ return DAG.getNode(MSP430ISD::SRA, dl,
+ VT, N->getOperand(0), N->getOperand(1));
+ case ISD::SRL:
+ return DAG.getNode(MSP430ISD::SRL, dl,
+ VT, N->getOperand(0), N->getOperand(1));
+ }
+
+ uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+
+ // Expand the stuff into sequence of shifts.
+ // FIXME: for some shift amounts this might be done better!
+ // E.g.: foo >> (8 + N) => sxt(swpb(foo)) >> N
+ SDValue Victim = N->getOperand(0);
+
+ if (Opc == ISD::SRL && ShiftAmount) {
+ // Emit a special goodness here:
+ // srl A, 1 => clrc; rrc A
+ Victim = DAG.getNode(MSP430ISD::RRC, dl, VT, Victim);
+ ShiftAmount -= 1;
+ }
+
+ while (ShiftAmount--)
+ Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
+ dl, VT, Victim);
+
+ return Victim;
+}
+
+SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
+
+ // Create the TargetGlobalAddress node, folding in the constant offset.
+ SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
+ getPointerTy(), Offset);
+ return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op),
+ getPointerTy(), Result);
+}
+
+SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
+ SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
+
+ return DAG.getNode(MSP430ISD::Wrapper, dl, getPointerTy(), Result);
+}
+
+SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
+
+ return DAG.getNode(MSP430ISD::Wrapper, dl, getPointerTy(), Result);
+}
+
+static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
+ ISD::CondCode CC,
+ SDLoc dl, SelectionDAG &DAG) {
+ // FIXME: Handle bittests someday
+ assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
+
+ // FIXME: Handle jump negative someday
+ MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
+ switch (CC) {
+ default: llvm_unreachable("Invalid integer condition!");
+ case ISD::SETEQ:
+ TCC = MSP430CC::COND_E; // aka COND_Z
+ // Minor optimization: if LHS is a constant, swap operands, then the
+ // constant can be folded into comparison.
+ if (LHS.getOpcode() == ISD::Constant)
+ std::swap(LHS, RHS);
+ break;
+ case ISD::SETNE:
+ TCC = MSP430CC::COND_NE; // aka COND_NZ
+ // Minor optimization: if LHS is a constant, swap operands, then the
+ // constant can be folded into comparison.
+ if (LHS.getOpcode() == ISD::Constant)
+ std::swap(LHS, RHS);
+ break;
+ case ISD::SETULE:
+ std::swap(LHS, RHS); // FALLTHROUGH
+ case ISD::SETUGE:
+ // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
+ // fold constant into instruction.
+ if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
+ LHS = RHS;
+ RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
+ TCC = MSP430CC::COND_LO;
+ break;
+ }
+ TCC = MSP430CC::COND_HS; // aka COND_C
+ break;
+ case ISD::SETUGT:
+ std::swap(LHS, RHS); // FALLTHROUGH
+ case ISD::SETULT:
+ // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
+ // fold constant into instruction.
+ if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
+ LHS = RHS;
+ RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
+ TCC = MSP430CC::COND_HS;
+ break;
+ }
+ TCC = MSP430CC::COND_LO; // aka COND_NC
+ break;
+ case ISD::SETLE:
+ std::swap(LHS, RHS); // FALLTHROUGH
+ case ISD::SETGE:
+ // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
+ // fold constant into instruction.
+ if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
+ LHS = RHS;
+ RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
+ TCC = MSP430CC::COND_L;
+ break;
+ }
+ TCC = MSP430CC::COND_GE;
+ break;
+ case ISD::SETGT:
+ std::swap(LHS, RHS); // FALLTHROUGH
+ case ISD::SETLT:
+ // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
+ // fold constant into instruction.
+ if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
+ LHS = RHS;
+ RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
+ TCC = MSP430CC::COND_GE;
+ break;
+ }
+ TCC = MSP430CC::COND_L;
+ break;
+ }
+
+ TargetCC = DAG.getConstant(TCC, MVT::i8);
+ return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
+}
+
+
+SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ SDLoc dl (Op);
+
+ SDValue TargetCC;
+ SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
+
+ return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
+ Chain, Dest, TargetCC, Flag);
+}
+
+SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDLoc dl (Op);
+
+ // If we are doing an AND and testing against zero, then the CMP
+ // will not be generated. The AND (or BIT) will generate the condition codes,
+ // but they are different from CMP.
+ // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
+ // lowering & isel wouldn't diverge.
+ bool andCC = false;
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
+ if (RHSC->isNullValue() && LHS.hasOneUse() &&
+ (LHS.getOpcode() == ISD::AND ||
+ (LHS.getOpcode() == ISD::TRUNCATE &&
+ LHS.getOperand(0).getOpcode() == ISD::AND))) {
+ andCC = true;
+ }
+ }
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDValue TargetCC;
+ SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
+
+ // Get the condition codes directly from the status register, if its easy.
+ // Otherwise a branch will be generated. Note that the AND and BIT
+ // instructions generate different flags than CMP, the carry bit can be used
+ // for NE/EQ.
+ bool Invert = false;
+ bool Shift = false;
+ bool Convert = true;
+ switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
+ default:
+ Convert = false;
+ break;
+ case MSP430CC::COND_HS:
+ // Res = SRW & 1, no processing is required
+ break;
+ case MSP430CC::COND_LO:
+ // Res = ~(SRW & 1)
+ Invert = true;
+ break;
+ case MSP430CC::COND_NE:
+ if (andCC) {
+ // C = ~Z, thus Res = SRW & 1, no processing is required
+ } else {
+ // Res = ~((SRW >> 1) & 1)
+ Shift = true;
+ Invert = true;
+ }
+ break;
+ case MSP430CC::COND_E:
+ Shift = true;
+ // C = ~Z for AND instruction, thus we can put Res = ~(SRW & 1), however,
+ // Res = (SRW >> 1) & 1 is 1 word shorter.
+ break;
+ }
+ EVT VT = Op.getValueType();
+ SDValue One = DAG.getConstant(1, VT);
+ if (Convert) {
+ SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SRW,
+ MVT::i16, Flag);
+ if (Shift)
+ // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
+ SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
+ SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
+ if (Invert)
+ SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
+ return SR;
+ } else {
+ SDValue Zero = DAG.getConstant(0, VT);
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
+ SmallVector<SDValue, 4> Ops;
+ Ops.push_back(One);
+ Ops.push_back(Zero);
+ Ops.push_back(TargetCC);
+ Ops.push_back(Flag);
+ return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
+ }
+}
+
+SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue TrueV = Op.getOperand(2);
+ SDValue FalseV = Op.getOperand(3);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDLoc dl (Op);
+
+ SDValue TargetCC;
+ SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
+ SmallVector<SDValue, 4> Ops;
+ Ops.push_back(TrueV);
+ Ops.push_back(FalseV);
+ Ops.push_back(TargetCC);
+ Ops.push_back(Flag);
+
+ return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
+}
+
+SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Val = Op.getOperand(0);
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+
+ assert(VT == MVT::i16 && "Only support i16 for now!");
+
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
+ DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
+ DAG.getValueType(Val.getValueType()));
+}
+
+SDValue
+MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
+ int ReturnAddrIndex = FuncInfo->getRAIndex();
+
+ if (ReturnAddrIndex == 0) {
+ // Set up a frame object for the return address.
+ uint64_t SlotSize = getDataLayout()->getPointerSize();
+ ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
+ true);
+ FuncInfo->setRAIndex(ReturnAddrIndex);
+ }
+
+ return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
+}
+
+SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDLoc dl(Op);
+
+ if (Depth > 0) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset =
+ DAG.getConstant(getDataLayout()->getPointerSize(), MVT::i16);
+ return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Just load the return address.
+ SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
+ return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ RetAddrFI, MachinePointerInfo(), false, false, false, 0);
+}
+
+SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op); // FIXME probably not meaningful
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
+ MSP430::FPW, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ return FrameAddr;
+}
+
+SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
+
+ // Frame index of first vararg argument
+ SDValue FrameIndex = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
+ getPointerTy());
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+
+ // Create a store of the frame index to the location operand
+ return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex,
+ Op.getOperand(1), MachinePointerInfo(SV),
+ false, false, 0);
+}
+
+SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
+ SelectionDAG &DAG) const {
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+ SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
+ return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT),
+ getPointerTy(), Result);
+}
+
+/// getPostIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if this node can be
+/// combined with a load / store to form a post-indexed load / store.
+bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ if (LD->getExtensionType() != ISD::NON_EXTLOAD)
+ return false;
+
+ EVT VT = LD->getMemoryVT();
+ if (VT != MVT::i8 && VT != MVT::i16)
+ return false;
+
+ if (Op->getOpcode() != ISD::ADD)
+ return false;
+
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
+ uint64_t RHSC = RHS->getZExtValue();
+ if ((VT == MVT::i16 && RHSC != 2) ||
+ (VT == MVT::i8 && RHSC != 1))
+ return false;
+
+ Base = Op->getOperand(0);
+ Offset = DAG.getConstant(RHSC, VT);
+ AM = ISD::POST_INC;
+ return true;
+ }
+
+ return false;
+}
+
+
+const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return nullptr;
+ case MSP430ISD::RET_FLAG: return "MSP430ISD::RET_FLAG";
+ case MSP430ISD::RETI_FLAG: return "MSP430ISD::RETI_FLAG";
+ case MSP430ISD::RRA: return "MSP430ISD::RRA";
+ case MSP430ISD::RLA: return "MSP430ISD::RLA";
+ case MSP430ISD::RRC: return "MSP430ISD::RRC";
+ case MSP430ISD::CALL: return "MSP430ISD::CALL";
+ case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper";
+ case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC";
+ case MSP430ISD::CMP: return "MSP430ISD::CMP";
+ case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC";
+ case MSP430ISD::SHL: return "MSP430ISD::SHL";
+ case MSP430ISD::SRA: return "MSP430ISD::SRA";
+ }
+}
+
+bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
+ Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+
+ return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits());
+}
+
+bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
+ if (!VT1.isInteger() || !VT2.isInteger())
+ return false;
+
+ return (VT1.getSizeInBits() > VT2.getSizeInBits());
+}
+
+bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
+ // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
+ return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
+}
+
+bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
+ // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
+ return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
+}
+
+bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ return isZExtFree(Val.getValueType(), VT2);
+}
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Code
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock*
+MSP430TargetLowering::EmitShiftInstr(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ MachineFunction *F = BB->getParent();
+ MachineRegisterInfo &RI = F->getRegInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
+
+ unsigned Opc;
+ const TargetRegisterClass * RC;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Invalid shift opcode!");
+ case MSP430::Shl8:
+ Opc = MSP430::SHL8r1;
+ RC = &MSP430::GR8RegClass;
+ break;
+ case MSP430::Shl16:
+ Opc = MSP430::SHL16r1;
+ RC = &MSP430::GR16RegClass;
+ break;
+ case MSP430::Sra8:
+ Opc = MSP430::SAR8r1;
+ RC = &MSP430::GR8RegClass;
+ break;
+ case MSP430::Sra16:
+ Opc = MSP430::SAR16r1;
+ RC = &MSP430::GR16RegClass;
+ break;
+ case MSP430::Srl8:
+ Opc = MSP430::SAR8r1c;
+ RC = &MSP430::GR8RegClass;
+ break;
+ case MSP430::Srl16:
+ Opc = MSP430::SAR16r1c;
+ RC = &MSP430::GR16RegClass;
+ break;
+ }
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator I = BB;
+ ++I;
+
+ // Create loop block
+ MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
+
+ F->insert(I, LoopBB);
+ F->insert(I, RemBB);
+
+ // Update machine-CFG edges by transferring all successors of the current
+ // block to the block containing instructions after shift.
+ RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ RemBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
+ BB->addSuccessor(LoopBB);
+ BB->addSuccessor(RemBB);
+ LoopBB->addSuccessor(RemBB);
+ LoopBB->addSuccessor(LoopBB);
+
+ unsigned ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
+ unsigned ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
+ unsigned ShiftReg = RI.createVirtualRegister(RC);
+ unsigned ShiftReg2 = RI.createVirtualRegister(RC);
+ unsigned ShiftAmtSrcReg = MI->getOperand(2).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ unsigned DstReg = MI->getOperand(0).getReg();
+
+ // BB:
+ // cmp 0, N
+ // je RemBB
+ BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
+ .addReg(ShiftAmtSrcReg).addImm(0);
+ BuildMI(BB, dl, TII.get(MSP430::JCC))
+ .addMBB(RemBB)
+ .addImm(MSP430CC::COND_E);
+
+ // LoopBB:
+ // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
+ // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
+ // ShiftReg2 = shift ShiftReg
+ // ShiftAmt2 = ShiftAmt - 1;
+ BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
+ .addReg(SrcReg).addMBB(BB)
+ .addReg(ShiftReg2).addMBB(LoopBB);
+ BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
+ .addReg(ShiftAmtSrcReg).addMBB(BB)
+ .addReg(ShiftAmtReg2).addMBB(LoopBB);
+ BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
+ .addReg(ShiftReg);
+ BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
+ .addReg(ShiftAmtReg).addImm(1);
+ BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
+ .addMBB(LoopBB)
+ .addImm(MSP430CC::COND_NE);
+
+ // RemBB:
+ // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
+ BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
+ .addReg(SrcReg).addMBB(BB)
+ .addReg(ShiftReg2).addMBB(LoopBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return RemBB;
+}
+
+MachineBasicBlock*
+MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ unsigned Opc = MI->getOpcode();
+
+ if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
+ Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
+ Opc == MSP430::Srl8 || Opc == MSP430::Srl16)
+ return EmitShiftInstr(MI, BB);
+
+ const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+
+ assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
+ "Unexpected instr type to insert");
+
+ // To "insert" a SELECT instruction, we actually have to insert the diamond
+ // control-flow pattern. The incoming instruction knows the destination vreg
+ // to set, the condition code register to branch on, the true/false values to
+ // select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator I = BB;
+ ++I;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // jCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(I, copy0MBB);
+ F->insert(I, copy1MBB);
+ // Update machine-CFG edges by transferring all successors of the current
+ // block to the new block which will contain the Phi node for the select.
+ copy1MBB->splice(copy1MBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(copy1MBB);
+
+ BuildMI(BB, dl, TII.get(MSP430::JCC))
+ .addMBB(copy1MBB)
+ .addImm(MI->getOperand(3).getImm());
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to copy1MBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(copy1MBB);
+
+ // copy1MBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = copy1MBB;
+ BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI),
+ MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.h b/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.h
new file mode 100644
index 0000000..3e2f344
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.h
@@ -0,0 +1,173 @@
+//===-- MSP430ISelLowering.h - MSP430 DAG Lowering Interface ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that MSP430 uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_MSP430_ISELLOWERING_H
+#define LLVM_TARGET_MSP430_ISELLOWERING_H
+
+#include "MSP430.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLowering.h"
+
+namespace llvm {
+ namespace MSP430ISD {
+ enum {
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ /// Return with a flag operand. Operand 0 is the chain operand.
+ RET_FLAG,
+
+ /// Same as RET_FLAG, but used for returning from ISRs.
+ RETI_FLAG,
+
+ /// Y = R{R,L}A X, rotate right (left) arithmetically
+ RRA, RLA,
+
+ /// Y = RRC X, rotate right via carry
+ RRC,
+
+ /// CALL - These operations represent an abstract call
+ /// instruction, which includes a bunch of information.
+ CALL,
+
+ /// Wrapper - A wrapper node for TargetConstantPool, TargetExternalSymbol,
+ /// and TargetGlobalAddress.
+ Wrapper,
+
+ /// CMP - Compare instruction.
+ CMP,
+
+ /// SetCC - Operand 0 is condition code, and operand 1 is the flag
+ /// operand produced by a CMP instruction.
+ SETCC,
+
+ /// MSP430 conditional branches. Operand 0 is the chain operand, operand 1
+ /// is the block to branch if condition is true, operand 2 is the
+ /// condition code, and operand 3 is the flag operand produced by a CMP
+ /// instruction.
+ BR_CC,
+
+ /// SELECT_CC - Operand 0 and operand 1 are selection variable, operand 3
+ /// is condition code and operand 4 is flag operand.
+ SELECT_CC,
+
+ /// SHL, SRA, SRL - Non-constant shifts.
+ SHL, SRA, SRL
+ };
+ }
+
+ class MSP430TargetLowering : public TargetLowering {
+ public:
+ explicit MSP430TargetLowering(const TargetMachine &TM);
+
+ MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i8; }
+
+ /// LowerOperation - Provide custom lowering hooks for some operations.
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+
+ /// getTargetNodeName - This method returns the name of a target specific
+ /// DAG node.
+ const char *getTargetNodeName(unsigned Opcode) const override;
+
+ SDValue LowerShifts(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
+ SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
+
+ TargetLowering::ConstraintType
+ getConstraintType(const std::string &Constraint) const override;
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const override;
+
+ /// isTruncateFree - Return true if it's free to truncate a value of type
+ /// Ty1 to type Ty2. e.g. On msp430 it's free to truncate a i16 value in
+ /// register R15W to i8 by referencing its sub-register R15B.
+ bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
+ bool isTruncateFree(EVT VT1, EVT VT2) const override;
+
+ /// isZExtFree - Return true if any actual instruction that defines a value
+ /// of type Ty1 implicit zero-extends the value to Ty2 in the result
+ /// register. This does not necessarily include registers defined in unknown
+ /// ways, such as incoming arguments, or copies from unknown virtual
+ /// registers. Also, if isTruncateFree(Ty2, Ty1) is true, this does not
+ /// necessarily apply to truncate instructions. e.g. on msp430, all
+ /// instructions that define 8-bit values implicit zero-extend the result
+ /// out to 16 bits.
+ bool isZExtFree(Type *Ty1, Type *Ty2) const override;
+ bool isZExtFree(EVT VT1, EVT VT2) const override;
+ bool isZExtFree(SDValue Val, EVT VT2) const override;
+
+ MachineBasicBlock* EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const override;
+ MachineBasicBlock* EmitShiftInstr(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+
+ private:
+ SDValue LowerCCCCallTo(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+
+ SDValue LowerCCCArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+
+ SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+ SDValue
+ LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const override;
+
+ bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const override;
+ };
+} // namespace llvm
+
+#endif // LLVM_TARGET_MSP430_ISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430InstrFormats.td b/contrib/llvm/lib/Target/MSP430/MSP430InstrFormats.td
new file mode 100644
index 0000000..a9e87da
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430InstrFormats.td
@@ -0,0 +1,211 @@
+//===-- MSP430InstrFormats.td - MSP430 Instruction Formats -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Describe MSP430 instructions format here
+//
+
+// Format specifies the encoding used by the instruction. This is part of the
+// ad-hoc solution used to emit machine instruction encodings by our machine
+// code emitter.
+class Format<bits<2> val> {
+ bits<2> Value = val;
+}
+
+def PseudoFrm : Format<0>;
+def SingleOpFrm : Format<1>;
+def DoubleOpFrm : Format<2>;
+def CondJumpFrm : Format<3>;
+
+class SourceMode<bits<2> val> {
+ bits<2> Value = val;
+}
+
+def SrcReg : SourceMode<0>;
+def SrcMem : SourceMode<1>;
+def SrcIndReg : SourceMode<2>;
+def SrcPostInc : SourceMode<3>;
+def SrcImm : SourceMode<3>;
+
+class DestMode<bit val> {
+ bit Value = val;
+}
+
+def DstReg : DestMode<0>;
+def DstMem : DestMode<1>;
+
+class SizeVal<bits<3> val> {
+ bits<3> Value = val;
+}
+
+def SizeUnknown : SizeVal<0>; // Unknown / unset size
+def SizeSpecial : SizeVal<1>; // Special instruction, e.g. pseudo
+def Size2Bytes : SizeVal<2>;
+def Size4Bytes : SizeVal<3>;
+def Size6Bytes : SizeVal<4>;
+
+// Generic MSP430 Format
+class MSP430Inst<dag outs, dag ins, SizeVal sz, Format f,
+ string asmstr> : Instruction {
+ field bits<16> Inst;
+
+ let Namespace = "MSP430";
+
+ dag OutOperandList = outs;
+ dag InOperandList = ins;
+
+ Format Form = f;
+ SizeVal Sz = sz;
+
+ // Define how we want to layout our TargetSpecific information field... This
+ // should be kept up-to-date with the fields in the MSP430InstrInfo.h file.
+ let TSFlags{1-0} = Form.Value;
+ let TSFlags{4-2} = Sz.Value;
+
+ let AsmString = asmstr;
+}
+
+// FIXME: Create different classes for different addressing modes.
+
+// MSP430 Double Operand (Format I) Instructions
+class IForm<bits<4> opcode, DestMode dest, bit bw, SourceMode src, SizeVal sz,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : MSP430Inst<outs, ins, sz, DoubleOpFrm, asmstr> {
+ let Pattern = pattern;
+
+ DestMode ad = dest;
+ SourceMode as = src;
+
+ let Inst{12-15} = opcode;
+ let Inst{7} = ad.Value;
+ let Inst{6} = bw;
+ let Inst{4-5} = as.Value;
+}
+
+// 8 bit IForm instructions
+class IForm8<bits<4> opcode, DestMode dest, SourceMode src, SizeVal sz,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm<opcode, dest, 1, src, sz, outs, ins, asmstr, pattern>;
+
+class I8rr<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm8<opcode, DstReg, SrcReg, Size2Bytes, outs, ins, asmstr, pattern>;
+
+class I8ri<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm8<opcode, DstReg, SrcImm, Size4Bytes, outs, ins, asmstr, pattern>;
+
+class I8rm<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm8<opcode, DstReg, SrcMem, Size4Bytes, outs, ins, asmstr, pattern>;
+
+class I8mr<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm8<opcode, DstMem, SrcReg, Size4Bytes, outs, ins, asmstr, pattern>;
+
+class I8mi<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm8<opcode, DstMem, SrcImm, Size6Bytes, outs, ins, asmstr, pattern>;
+
+class I8mm<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm8<opcode, DstMem, SrcMem, Size6Bytes, outs, ins, asmstr, pattern>;
+
+// 16 bit IForm instructions
+class IForm16<bits<4> opcode, DestMode dest, SourceMode src, SizeVal sz,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm<opcode, dest, 0, src, sz, outs, ins, asmstr, pattern>;
+
+class I16rr<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm16<opcode, DstReg, SrcReg, Size2Bytes, outs, ins, asmstr, pattern>;
+
+class I16ri<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm16<opcode, DstReg, SrcImm, Size4Bytes, outs, ins, asmstr, pattern>;
+
+class I16rm<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm16<opcode, DstReg, SrcMem, Size4Bytes, outs, ins, asmstr, pattern>;
+
+class I16mr<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm16<opcode, DstMem, SrcReg, Size4Bytes, outs, ins, asmstr, pattern>;
+
+class I16mi<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm16<opcode, DstMem, SrcImm, Size6Bytes, outs, ins, asmstr, pattern>;
+
+class I16mm<bits<4> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IForm16<opcode, DstMem, SrcMem, Size6Bytes, outs, ins, asmstr, pattern>;
+
+// MSP430 Single Operand (Format II) Instructions
+class IIForm<bits<9> opcode, bit bw, SourceMode src, SizeVal sz,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : MSP430Inst<outs, ins, sz, SingleOpFrm, asmstr> {
+ let Pattern = pattern;
+
+ SourceMode as = src;
+
+ let Inst{7-15} = opcode;
+ let Inst{6} = bw;
+ let Inst{4-5} = as.Value;
+}
+
+// 8 bit IIForm instructions
+class IIForm8<bits<9> opcode, SourceMode src, SizeVal sz,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IIForm<opcode, 1, src, sz, outs, ins, asmstr, pattern>;
+
+class II8r<bits<9> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IIForm8<opcode, SrcReg, Size2Bytes, outs, ins, asmstr, pattern>;
+
+class II8m<bits<9> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IIForm8<opcode, SrcMem, Size4Bytes, outs, ins, asmstr, pattern>;
+
+class II8i<bits<9> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IIForm8<opcode, SrcImm, Size4Bytes, outs, ins, asmstr, pattern>;
+
+// 16 bit IIForm instructions
+class IIForm16<bits<9> opcode, SourceMode src, SizeVal sz,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IIForm<opcode, 0, src, sz, outs, ins, asmstr, pattern>;
+
+class II16r<bits<9> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IIForm16<opcode, SrcReg, Size2Bytes, outs, ins, asmstr, pattern>;
+
+class II16m<bits<9> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IIForm16<opcode, SrcMem, Size4Bytes, outs, ins, asmstr, pattern>;
+
+class II16i<bits<9> opcode,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : IIForm16<opcode, SrcImm, Size4Bytes, outs, ins, asmstr, pattern>;
+
+// MSP430 Conditional Jumps Instructions
+class CJForm<bits<3> opcode, bits<3> cond,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : MSP430Inst<outs, ins, Size2Bytes, CondJumpFrm, asmstr> {
+ let Pattern = pattern;
+
+ let Inst{13-15} = opcode;
+ let Inst{10-12} = cond;
+}
+
+// Pseudo instructions
+class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : MSP430Inst<outs, ins, SizeSpecial, PseudoFrm, asmstr> {
+ let Pattern = pattern;
+ let Inst{15-0} = 0;
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.cpp b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.cpp
new file mode 100644
index 0000000..ccb6c09
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.cpp
@@ -0,0 +1,329 @@
+//===-- MSP430InstrInfo.cpp - MSP430 Instruction Information --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the MSP430 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430InstrInfo.h"
+#include "MSP430.h"
+#include "MSP430MachineFunctionInfo.h"
+#include "MSP430TargetMachine.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "MSP430GenInstrInfo.inc"
+
+// Pin the vtable to this file.
+void MSP430InstrInfo::anchor() {}
+
+MSP430InstrInfo::MSP430InstrInfo(MSP430Subtarget &STI)
+ : MSP430GenInstrInfo(MSP430::ADJCALLSTACKDOWN, MSP430::ADJCALLSTACKUP),
+ RI() {}
+
+void MSP430InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FrameIdx),
+ MFI.getObjectAlignment(FrameIdx));
+
+ if (RC == &MSP430::GR16RegClass)
+ BuildMI(MBB, MI, DL, get(MSP430::MOV16mr))
+ .addFrameIndex(FrameIdx).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ else if (RC == &MSP430::GR8RegClass)
+ BuildMI(MBB, MI, DL, get(MSP430::MOV8mr))
+ .addFrameIndex(FrameIdx).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ else
+ llvm_unreachable("Cannot store this register to stack slot!");
+}
+
+void MSP430InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const{
+ DebugLoc DL;
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FrameIdx),
+ MFI.getObjectAlignment(FrameIdx));
+
+ if (RC == &MSP430::GR16RegClass)
+ BuildMI(MBB, MI, DL, get(MSP430::MOV16rm))
+ .addReg(DestReg).addFrameIndex(FrameIdx).addImm(0).addMemOperand(MMO);
+ else if (RC == &MSP430::GR8RegClass)
+ BuildMI(MBB, MI, DL, get(MSP430::MOV8rm))
+ .addReg(DestReg).addFrameIndex(FrameIdx).addImm(0).addMemOperand(MMO);
+ else
+ llvm_unreachable("Cannot store this register to stack slot!");
+}
+
+void MSP430InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ unsigned Opc;
+ if (MSP430::GR16RegClass.contains(DestReg, SrcReg))
+ Opc = MSP430::MOV16rr;
+ else if (MSP430::GR8RegClass.contains(DestReg, SrcReg))
+ Opc = MSP430::MOV8rr;
+ else
+ llvm_unreachable("Impossible reg-to-reg copy");
+
+ BuildMI(MBB, I, DL, get(Opc), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+}
+
+unsigned MSP430InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ unsigned Count = 0;
+
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+ if (I->getOpcode() != MSP430::JMP &&
+ I->getOpcode() != MSP430::JCC &&
+ I->getOpcode() != MSP430::Br &&
+ I->getOpcode() != MSP430::Bm)
+ break;
+ // Remove the branch.
+ I->eraseFromParent();
+ I = MBB.end();
+ ++Count;
+ }
+
+ return Count;
+}
+
+bool MSP430InstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 1 && "Invalid Xbranch condition!");
+
+ MSP430CC::CondCodes CC = static_cast<MSP430CC::CondCodes>(Cond[0].getImm());
+
+ switch (CC) {
+ default: llvm_unreachable("Invalid branch condition!");
+ case MSP430CC::COND_E:
+ CC = MSP430CC::COND_NE;
+ break;
+ case MSP430CC::COND_NE:
+ CC = MSP430CC::COND_E;
+ break;
+ case MSP430CC::COND_L:
+ CC = MSP430CC::COND_GE;
+ break;
+ case MSP430CC::COND_GE:
+ CC = MSP430CC::COND_L;
+ break;
+ case MSP430CC::COND_HS:
+ CC = MSP430CC::COND_LO;
+ break;
+ case MSP430CC::COND_LO:
+ CC = MSP430CC::COND_HS;
+ break;
+ }
+
+ Cond[0].setImm(CC);
+ return false;
+}
+
+bool MSP430InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
+ if (!MI->isTerminator()) return false;
+
+ // Conditional branch is a special case.
+ if (MI->isBranch() && !MI->isBarrier())
+ return true;
+ if (!MI->isPredicable())
+ return true;
+ return !isPredicated(MI);
+}
+
+bool MSP430InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // Start from the bottom of the block and work up, examining the
+ // terminator instructions.
+ MachineBasicBlock::iterator I = MBB.end();
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+
+ // Working from the bottom, when we see a non-terminator
+ // instruction, we're done.
+ if (!isUnpredicatedTerminator(I))
+ break;
+
+ // A terminator that isn't a branch can't easily be handled
+ // by this analysis.
+ if (!I->isBranch())
+ return true;
+
+ // Cannot handle indirect branches.
+ if (I->getOpcode() == MSP430::Br ||
+ I->getOpcode() == MSP430::Bm)
+ return true;
+
+ // Handle unconditional branches.
+ if (I->getOpcode() == MSP430::JMP) {
+ if (!AllowModify) {
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ // If the block has any instructions after a JMP, delete them.
+ while (std::next(I) != MBB.end())
+ std::next(I)->eraseFromParent();
+ Cond.clear();
+ FBB = nullptr;
+
+ // Delete the JMP if it's equivalent to a fall-through.
+ if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
+ TBB = nullptr;
+ I->eraseFromParent();
+ I = MBB.end();
+ continue;
+ }
+
+ // TBB is used to indicate the unconditinal destination.
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ // Handle conditional branches.
+ assert(I->getOpcode() == MSP430::JCC && "Invalid conditional branch");
+ MSP430CC::CondCodes BranchCode =
+ static_cast<MSP430CC::CondCodes>(I->getOperand(1).getImm());
+ if (BranchCode == MSP430CC::COND_INVALID)
+ return true; // Can't handle weird stuff.
+
+ // Working from the bottom, handle the first conditional branch.
+ if (Cond.empty()) {
+ FBB = TBB;
+ TBB = I->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(BranchCode));
+ continue;
+ }
+
+ // Handle subsequent conditional branches. Only handle the case where all
+ // conditional branches branch to the same destination.
+ assert(Cond.size() == 1);
+ assert(TBB);
+
+ // Only handle the case where all conditional branches branch to
+ // the same destination.
+ if (TBB != I->getOperand(0).getMBB())
+ return true;
+
+ MSP430CC::CondCodes OldBranchCode = (MSP430CC::CondCodes)Cond[0].getImm();
+ // If the conditions are the same, we can leave them alone.
+ if (OldBranchCode == BranchCode)
+ continue;
+
+ return true;
+ }
+
+ return false;
+}
+
+unsigned
+MSP430InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 1 || Cond.size() == 0) &&
+ "MSP430 branch conditions have one component!");
+
+ if (Cond.empty()) {
+ // Unconditional branch?
+ assert(!FBB && "Unconditional branch with multiple successors!");
+ BuildMI(&MBB, DL, get(MSP430::JMP)).addMBB(TBB);
+ return 1;
+ }
+
+ // Conditional branch.
+ unsigned Count = 0;
+ BuildMI(&MBB, DL, get(MSP430::JCC)).addMBB(TBB).addImm(Cond[0].getImm());
+ ++Count;
+
+ if (FBB) {
+ // Two-way Conditional branch. Insert the second branch.
+ BuildMI(&MBB, DL, get(MSP430::JMP)).addMBB(FBB);
+ ++Count;
+ }
+ return Count;
+}
+
+/// GetInstSize - Return the number of bytes of code the specified
+/// instruction may be. This returns the maximum number of bytes.
+///
+unsigned MSP430InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ const MCInstrDesc &Desc = MI->getDesc();
+
+ switch (Desc.TSFlags & MSP430II::SizeMask) {
+ default:
+ switch (Desc.getOpcode()) {
+ default: llvm_unreachable("Unknown instruction size!");
+ case TargetOpcode::CFI_INSTRUCTION:
+ case TargetOpcode::EH_LABEL:
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ case TargetOpcode::DBG_VALUE:
+ return 0;
+ case TargetOpcode::INLINEASM: {
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ return TII.getInlineAsmLength(MI->getOperand(0).getSymbolName(),
+ *MF->getTarget().getMCAsmInfo());
+ }
+ }
+ case MSP430II::SizeSpecial:
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unknown instruction size!");
+ case MSP430::SAR8r1c:
+ case MSP430::SAR16r1c:
+ return 4;
+ }
+ case MSP430II::Size2Bytes:
+ return 2;
+ case MSP430II::Size4Bytes:
+ return 4;
+ case MSP430II::Size6Bytes:
+ return 6;
+ }
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.h b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.h
new file mode 100644
index 0000000..e6baaef
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.h
@@ -0,0 +1,93 @@
+//===-- MSP430InstrInfo.h - MSP430 Instruction Information ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the MSP430 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_MSP430INSTRINFO_H
+#define LLVM_TARGET_MSP430INSTRINFO_H
+
+#include "MSP430RegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "MSP430GenInstrInfo.inc"
+
+namespace llvm {
+
+class MSP430Subtarget;
+
+/// MSP430II - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace MSP430II {
+ enum {
+ SizeShift = 2,
+ SizeMask = 7 << SizeShift,
+
+ SizeUnknown = 0 << SizeShift,
+ SizeSpecial = 1 << SizeShift,
+ Size2Bytes = 2 << SizeShift,
+ Size4Bytes = 3 << SizeShift,
+ Size6Bytes = 4 << SizeShift
+ };
+}
+
+class MSP430InstrInfo : public MSP430GenInstrInfo {
+ const MSP430RegisterInfo RI;
+ virtual void anchor();
+public:
+ explicit MSP430InstrInfo(MSP430Subtarget &STI);
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ const TargetRegisterInfo &getRegisterInfo() const { return RI; }
+
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill,
+ int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
+
+ // Branch folding goodness
+ bool
+ ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
+ bool isUnpredicatedTerminator(const MachineInstr *MI) const override;
+ bool AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const override;
+
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const override;
+
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.td b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.td
new file mode 100644
index 0000000..50e3fda
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.td
@@ -0,0 +1,1211 @@
+//===-- MSP430InstrInfo.td - MSP430 Instruction defs -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the MSP430 instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+include "MSP430InstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+// Type Constraints.
+//===----------------------------------------------------------------------===//
+class SDTCisI8<int OpNum> : SDTCisVT<OpNum, i8>;
+class SDTCisI16<int OpNum> : SDTCisVT<OpNum, i16>;
+
+//===----------------------------------------------------------------------===//
+// Type Profiles.
+//===----------------------------------------------------------------------===//
+def SDT_MSP430Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
+def SDT_MSP430CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i16>]>;
+def SDT_MSP430CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
+def SDT_MSP430Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
+ SDTCisPtrTy<0>]>;
+def SDT_MSP430Cmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
+def SDT_MSP430BrCC : SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>,
+ SDTCisVT<1, i8>]>;
+def SDT_MSP430SelectCC : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
+ SDTCisSameAs<1, 2>,
+ SDTCisVT<3, i8>]>;
+def SDT_MSP430Shift : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
+ SDTCisI8<2>]>;
+
+//===----------------------------------------------------------------------===//
+// MSP430 Specific Node Definitions.
+//===----------------------------------------------------------------------===//
+def MSP430retflag : SDNode<"MSP430ISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+def MSP430retiflag : SDNode<"MSP430ISD::RETI_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+def MSP430rra : SDNode<"MSP430ISD::RRA", SDTIntUnaryOp, []>;
+def MSP430rla : SDNode<"MSP430ISD::RLA", SDTIntUnaryOp, []>;
+def MSP430rrc : SDNode<"MSP430ISD::RRC", SDTIntUnaryOp, []>;
+
+def MSP430call : SDNode<"MSP430ISD::CALL", SDT_MSP430Call,
+ [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, SDNPVariadic]>;
+def MSP430callseq_start :
+ SDNode<"ISD::CALLSEQ_START", SDT_MSP430CallSeqStart,
+ [SDNPHasChain, SDNPOutGlue]>;
+def MSP430callseq_end :
+ SDNode<"ISD::CALLSEQ_END", SDT_MSP430CallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+def MSP430Wrapper : SDNode<"MSP430ISD::Wrapper", SDT_MSP430Wrapper>;
+def MSP430cmp : SDNode<"MSP430ISD::CMP", SDT_MSP430Cmp, [SDNPOutGlue]>;
+def MSP430brcc : SDNode<"MSP430ISD::BR_CC", SDT_MSP430BrCC,
+ [SDNPHasChain, SDNPInGlue]>;
+def MSP430selectcc: SDNode<"MSP430ISD::SELECT_CC", SDT_MSP430SelectCC,
+ [SDNPInGlue]>;
+def MSP430shl : SDNode<"MSP430ISD::SHL", SDT_MSP430Shift, []>;
+def MSP430sra : SDNode<"MSP430ISD::SRA", SDT_MSP430Shift, []>;
+def MSP430srl : SDNode<"MSP430ISD::SRL", SDT_MSP430Shift, []>;
+
+//===----------------------------------------------------------------------===//
+// MSP430 Operand Definitions.
+//===----------------------------------------------------------------------===//
+
+// Address operands
+def memsrc : Operand<i16> {
+ let PrintMethod = "printSrcMemOperand";
+ let MIOperandInfo = (ops GR16, i16imm);
+}
+
+def memdst : Operand<i16> {
+ let PrintMethod = "printSrcMemOperand";
+ let MIOperandInfo = (ops GR16, i16imm);
+}
+
+// Short jump targets have OtherVT type and are printed as pcrel imm values.
+def jmptarget : Operand<OtherVT> {
+ let PrintMethod = "printPCRelImmOperand";
+}
+
+// Operand for printing out a condition code.
+def cc : Operand<i8> {
+ let PrintMethod = "printCCOperand";
+}
+
+//===----------------------------------------------------------------------===//
+// MSP430 Complex Pattern Definitions.
+//===----------------------------------------------------------------------===//
+
+def addr : ComplexPattern<iPTR, 2, "SelectAddr", [], []>;
+
+//===----------------------------------------------------------------------===//
+// Pattern Fragments
+def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>;
+def extloadi16i8 : PatFrag<(ops node:$ptr), (i16 ( extloadi8 node:$ptr))>;
+def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
+ return N->hasOneUse();
+}]>;
+//===----------------------------------------------------------------------===//
+// Instruction list..
+
+// ADJCALLSTACKDOWN/UP implicitly use/def SP because they may be expanded into
+// a stack adjustment and the codegen must know that they may modify the stack
+// pointer before prolog-epilog rewriting occurs.
+// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
+// sub / add which can clobber SRW.
+let Defs = [SPW, SRW], Uses = [SPW] in {
+def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i16imm:$amt),
+ "#ADJCALLSTACKDOWN",
+ [(MSP430callseq_start timm:$amt)]>;
+def ADJCALLSTACKUP : Pseudo<(outs), (ins i16imm:$amt1, i16imm:$amt2),
+ "#ADJCALLSTACKUP",
+ [(MSP430callseq_end timm:$amt1, timm:$amt2)]>;
+}
+
+let usesCustomInserter = 1 in {
+ def Select8 : Pseudo<(outs GR8:$dst), (ins GR8:$src, GR8:$src2, i8imm:$cc),
+ "# Select8 PSEUDO",
+ [(set GR8:$dst,
+ (MSP430selectcc GR8:$src, GR8:$src2, imm:$cc))]>;
+ def Select16 : Pseudo<(outs GR16:$dst), (ins GR16:$src, GR16:$src2, i8imm:$cc),
+ "# Select16 PSEUDO",
+ [(set GR16:$dst,
+ (MSP430selectcc GR16:$src, GR16:$src2, imm:$cc))]>;
+ let Defs = [SRW] in {
+ def Shl8 : Pseudo<(outs GR8:$dst), (ins GR8:$src, GR8:$cnt),
+ "# Shl8 PSEUDO",
+ [(set GR8:$dst, (MSP430shl GR8:$src, GR8:$cnt))]>;
+ def Shl16 : Pseudo<(outs GR16:$dst), (ins GR16:$src, GR8:$cnt),
+ "# Shl16 PSEUDO",
+ [(set GR16:$dst, (MSP430shl GR16:$src, GR8:$cnt))]>;
+ def Sra8 : Pseudo<(outs GR8:$dst), (ins GR8:$src, GR8:$cnt),
+ "# Sra8 PSEUDO",
+ [(set GR8:$dst, (MSP430sra GR8:$src, GR8:$cnt))]>;
+ def Sra16 : Pseudo<(outs GR16:$dst), (ins GR16:$src, GR8:$cnt),
+ "# Sra16 PSEUDO",
+ [(set GR16:$dst, (MSP430sra GR16:$src, GR8:$cnt))]>;
+ def Srl8 : Pseudo<(outs GR8:$dst), (ins GR8:$src, GR8:$cnt),
+ "# Srl8 PSEUDO",
+ [(set GR8:$dst, (MSP430srl GR8:$src, GR8:$cnt))]>;
+ def Srl16 : Pseudo<(outs GR16:$dst), (ins GR16:$src, GR8:$cnt),
+ "# Srl16 PSEUDO",
+ [(set GR16:$dst, (MSP430srl GR16:$src, GR8:$cnt))]>;
+
+ }
+}
+
+let neverHasSideEffects = 1 in
+def NOP : Pseudo<(outs), (ins), "nop", []>;
+
+//===----------------------------------------------------------------------===//
+// Control Flow Instructions...
+//
+
+// FIXME: Provide proper encoding!
+let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
+ def RET : IForm16<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs), (ins), "ret", [(MSP430retflag)]>;
+ def RETI : II16r<0x0, (outs), (ins), "reti", [(MSP430retiflag)]>;
+}
+
+let isBranch = 1, isTerminator = 1 in {
+
+// FIXME: expand opcode & cond field for branches!
+
+// Direct branch
+let isBarrier = 1 in {
+ // Short branch
+ def JMP : CJForm<0, 0, (outs), (ins jmptarget:$dst),
+ "jmp\t$dst",
+ [(br bb:$dst)]>;
+ let isIndirectBranch = 1 in {
+ // Long branches
+ def Bi : I16ri<0, (outs), (ins i16imm:$brdst),
+ "br\t$brdst",
+ [(brind tblockaddress:$brdst)]>;
+ def Br : I16rr<0, (outs), (ins GR16:$brdst),
+ "br\t$brdst",
+ [(brind GR16:$brdst)]>;
+ def Bm : I16rm<0, (outs), (ins memsrc:$brdst),
+ "br\t$brdst",
+ [(brind (load addr:$brdst))]>;
+ }
+}
+
+// Conditional branches
+let Uses = [SRW] in
+ def JCC : CJForm<0, 0,
+ (outs), (ins jmptarget:$dst, cc:$cc),
+ "j$cc\t$dst",
+ [(MSP430brcc bb:$dst, imm:$cc)]>;
+} // isBranch, isTerminator
+
+//===----------------------------------------------------------------------===//
+// Call Instructions...
+//
+let isCall = 1 in
+ // All calls clobber the non-callee saved registers. SPW is marked as
+ // a use to prevent stack-pointer assignments that appear immediately
+ // before calls from potentially appearing dead. Uses for argument
+ // registers are added manually.
+ let Defs = [R12W, R13W, R14W, R15W, SRW],
+ Uses = [SPW] in {
+ def CALLi : II16i<0x0,
+ (outs), (ins i16imm:$dst),
+ "call\t$dst", [(MSP430call imm:$dst)]>;
+ def CALLr : II16r<0x0,
+ (outs), (ins GR16:$dst),
+ "call\t$dst", [(MSP430call GR16:$dst)]>;
+ def CALLm : II16m<0x0,
+ (outs), (ins memsrc:$dst),
+ "call\t${dst:mem}", [(MSP430call (load addr:$dst))]>;
+ }
+
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instructions...
+//
+let Defs = [SPW], Uses = [SPW], neverHasSideEffects=1 in {
+let mayLoad = 1 in
+def POP16r : IForm16<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR16:$reg), (ins), "pop.w\t$reg", []>;
+
+let mayStore = 1 in
+def PUSH16r : II16r<0x0,
+ (outs), (ins GR16:$reg), "push.w\t$reg",[]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Move Instructions
+
+// FIXME: Provide proper encoding!
+let neverHasSideEffects = 1 in {
+def MOV8rr : I8rr<0x0,
+ (outs GR8:$dst), (ins GR8:$src),
+ "mov.b\t{$src, $dst}",
+ []>;
+def MOV16rr : I16rr<0x0,
+ (outs GR16:$dst), (ins GR16:$src),
+ "mov.w\t{$src, $dst}",
+ []>;
+}
+
+// FIXME: Provide proper encoding!
+let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
+def MOV8ri : I8ri<0x0,
+ (outs GR8:$dst), (ins i8imm:$src),
+ "mov.b\t{$src, $dst}",
+ [(set GR8:$dst, imm:$src)]>;
+def MOV16ri : I16ri<0x0,
+ (outs GR16:$dst), (ins i16imm:$src),
+ "mov.w\t{$src, $dst}",
+ [(set GR16:$dst, imm:$src)]>;
+}
+
+let canFoldAsLoad = 1, isReMaterializable = 1 in {
+def MOV8rm : I8rm<0x0,
+ (outs GR8:$dst), (ins memsrc:$src),
+ "mov.b\t{$src, $dst}",
+ [(set GR8:$dst, (load addr:$src))]>;
+def MOV16rm : I16rm<0x0,
+ (outs GR16:$dst), (ins memsrc:$src),
+ "mov.w\t{$src, $dst}",
+ [(set GR16:$dst, (load addr:$src))]>;
+}
+
+def MOVZX16rr8 : I8rr<0x0,
+ (outs GR16:$dst), (ins GR8:$src),
+ "mov.b\t{$src, $dst}",
+ [(set GR16:$dst, (zext GR8:$src))]>;
+def MOVZX16rm8 : I8rm<0x0,
+ (outs GR16:$dst), (ins memsrc:$src),
+ "mov.b\t{$src, $dst}",
+ [(set GR16:$dst, (zextloadi16i8 addr:$src))]>;
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1, Constraints = "$base = $base_wb" in {
+def MOV8rm_POST : IForm8<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR8:$dst, GR16:$base_wb), (ins GR16:$base),
+ "mov.b\t{@$base+, $dst}", []>;
+def MOV16rm_POST : IForm16<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR16:$dst, GR16:$base_wb), (ins GR16:$base),
+ "mov.w\t{@$base+, $dst}", []>;
+}
+
+// Any instruction that defines a 8-bit result leaves the high half of the
+// register. Truncate can be lowered to EXTRACT_SUBREG, and CopyFromReg may
+// be copying from a truncate, but any other 8-bit operation will zero-extend
+// up to 16 bits.
+def def8 : PatLeaf<(i8 GR8:$src), [{
+ return N->getOpcode() != ISD::TRUNCATE &&
+ N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
+ N->getOpcode() != ISD::CopyFromReg;
+}]>;
+
+// In the case of a 8-bit def that is known to implicitly zero-extend,
+// we can use a SUBREG_TO_REG.
+def : Pat<(i16 (zext def8:$src)),
+ (SUBREG_TO_REG (i16 0), GR8:$src, subreg_8bit)>;
+
+def MOV8mi : I8mi<0x0,
+ (outs), (ins memdst:$dst, i8imm:$src),
+ "mov.b\t{$src, $dst}",
+ [(store (i8 imm:$src), addr:$dst)]>;
+def MOV16mi : I16mi<0x0,
+ (outs), (ins memdst:$dst, i16imm:$src),
+ "mov.w\t{$src, $dst}",
+ [(store (i16 imm:$src), addr:$dst)]>;
+
+def MOV8mr : I8mr<0x0,
+ (outs), (ins memdst:$dst, GR8:$src),
+ "mov.b\t{$src, $dst}",
+ [(store GR8:$src, addr:$dst)]>;
+def MOV16mr : I16mr<0x0,
+ (outs), (ins memdst:$dst, GR16:$src),
+ "mov.w\t{$src, $dst}",
+ [(store GR16:$src, addr:$dst)]>;
+
+def MOV8mm : I8mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "mov.b\t{$src, $dst}",
+ [(store (i8 (load addr:$src)), addr:$dst)]>;
+def MOV16mm : I16mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "mov.w\t{$src, $dst}",
+ [(store (i16 (load addr:$src)), addr:$dst)]>;
+
+//===----------------------------------------------------------------------===//
+// Arithmetic Instructions
+
+let Constraints = "$src = $dst" in {
+
+let Defs = [SRW] in {
+
+let isCommutable = 1 in { // X = ADD Y, Z == X = ADD Z, Y
+
+def ADD8rr : I8rr<0x0,
+ (outs GR8:$dst), (ins GR8:$src, GR8:$src2),
+ "add.b\t{$src2, $dst}",
+ [(set GR8:$dst, (add GR8:$src, GR8:$src2)),
+ (implicit SRW)]>;
+def ADD16rr : I16rr<0x0,
+ (outs GR16:$dst), (ins GR16:$src, GR16:$src2),
+ "add.w\t{$src2, $dst}",
+ [(set GR16:$dst, (add GR16:$src, GR16:$src2)),
+ (implicit SRW)]>;
+}
+
+def ADD8rm : I8rm<0x0,
+ (outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
+ "add.b\t{$src2, $dst}",
+ [(set GR8:$dst, (add GR8:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+def ADD16rm : I16rm<0x0,
+ (outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
+ "add.w\t{$src2, $dst}",
+ [(set GR16:$dst, (add GR16:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1,
+Constraints = "$base = $base_wb, $src = $dst" in {
+def ADD8rm_POST : IForm8<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR8:$dst, GR16:$base_wb),
+ (ins GR8:$src, GR16:$base),
+ "add.b\t{@$base+, $dst}", []>;
+def ADD16rm_POST : IForm16<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR16:$dst, GR16:$base_wb),
+ (ins GR16:$src, GR16:$base),
+ "add.w\t{@$base+, $dst}", []>;
+}
+
+
+def ADD8ri : I8ri<0x0,
+ (outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
+ "add.b\t{$src2, $dst}",
+ [(set GR8:$dst, (add GR8:$src, imm:$src2)),
+ (implicit SRW)]>;
+def ADD16ri : I16ri<0x0,
+ (outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
+ "add.w\t{$src2, $dst}",
+ [(set GR16:$dst, (add GR16:$src, imm:$src2)),
+ (implicit SRW)]>;
+
+let Constraints = "" in {
+def ADD8mr : I8mr<0x0,
+ (outs), (ins memdst:$dst, GR8:$src),
+ "add.b\t{$src, $dst}",
+ [(store (add (load addr:$dst), GR8:$src), addr:$dst),
+ (implicit SRW)]>;
+def ADD16mr : I16mr<0x0,
+ (outs), (ins memdst:$dst, GR16:$src),
+ "add.w\t{$src, $dst}",
+ [(store (add (load addr:$dst), GR16:$src), addr:$dst),
+ (implicit SRW)]>;
+
+def ADD8mi : I8mi<0x0,
+ (outs), (ins memdst:$dst, i8imm:$src),
+ "add.b\t{$src, $dst}",
+ [(store (add (load addr:$dst), (i8 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+def ADD16mi : I16mi<0x0,
+ (outs), (ins memdst:$dst, i16imm:$src),
+ "add.w\t{$src, $dst}",
+ [(store (add (load addr:$dst), (i16 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+
+def ADD8mm : I8mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "add.b\t{$src, $dst}",
+ [(store (add (load addr:$dst),
+ (i8 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+def ADD16mm : I16mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "add.w\t{$src, $dst}",
+ [(store (add (load addr:$dst),
+ (i16 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+}
+
+let Uses = [SRW] in {
+
+let isCommutable = 1 in { // X = ADDC Y, Z == X = ADDC Z, Y
+def ADC8rr : I8rr<0x0,
+ (outs GR8:$dst), (ins GR8:$src, GR8:$src2),
+ "addc.b\t{$src2, $dst}",
+ [(set GR8:$dst, (adde GR8:$src, GR8:$src2)),
+ (implicit SRW)]>;
+def ADC16rr : I16rr<0x0,
+ (outs GR16:$dst), (ins GR16:$src, GR16:$src2),
+ "addc.w\t{$src2, $dst}",
+ [(set GR16:$dst, (adde GR16:$src, GR16:$src2)),
+ (implicit SRW)]>;
+} // isCommutable
+
+def ADC8ri : I8ri<0x0,
+ (outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
+ "addc.b\t{$src2, $dst}",
+ [(set GR8:$dst, (adde GR8:$src, imm:$src2)),
+ (implicit SRW)]>;
+def ADC16ri : I16ri<0x0,
+ (outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
+ "addc.w\t{$src2, $dst}",
+ [(set GR16:$dst, (adde GR16:$src, imm:$src2)),
+ (implicit SRW)]>;
+
+def ADC8rm : I8rm<0x0,
+ (outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
+ "addc.b\t{$src2, $dst}",
+ [(set GR8:$dst, (adde GR8:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+def ADC16rm : I16rm<0x0,
+ (outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
+ "addc.w\t{$src2, $dst}",
+ [(set GR16:$dst, (adde GR16:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+
+let Constraints = "" in {
+def ADC8mr : I8mr<0x0,
+ (outs), (ins memdst:$dst, GR8:$src),
+ "addc.b\t{$src, $dst}",
+ [(store (adde (load addr:$dst), GR8:$src), addr:$dst),
+ (implicit SRW)]>;
+def ADC16mr : I16mr<0x0,
+ (outs), (ins memdst:$dst, GR16:$src),
+ "addc.w\t{$src, $dst}",
+ [(store (adde (load addr:$dst), GR16:$src), addr:$dst),
+ (implicit SRW)]>;
+
+def ADC8mi : I8mi<0x0,
+ (outs), (ins memdst:$dst, i8imm:$src),
+ "addc.b\t{$src, $dst}",
+ [(store (adde (load addr:$dst), (i8 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+def ADC16mi : I16mi<0x0,
+ (outs), (ins memdst:$dst, i16imm:$src),
+ "addc.w\t{$src, $dst}",
+ [(store (adde (load addr:$dst), (i16 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+
+def ADC8mm : I8mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "addc.b\t{$src, $dst}",
+ [(store (adde (load addr:$dst),
+ (i8 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+def ADC16mm : I8mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "addc.w\t{$src, $dst}",
+ [(store (adde (load addr:$dst),
+ (i16 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+}
+
+} // Uses = [SRW]
+
+let isCommutable = 1 in { // X = AND Y, Z == X = AND Z, Y
+def AND8rr : I8rr<0x0,
+ (outs GR8:$dst), (ins GR8:$src, GR8:$src2),
+ "and.b\t{$src2, $dst}",
+ [(set GR8:$dst, (and GR8:$src, GR8:$src2)),
+ (implicit SRW)]>;
+def AND16rr : I16rr<0x0,
+ (outs GR16:$dst), (ins GR16:$src, GR16:$src2),
+ "and.w\t{$src2, $dst}",
+ [(set GR16:$dst, (and GR16:$src, GR16:$src2)),
+ (implicit SRW)]>;
+}
+
+def AND8ri : I8ri<0x0,
+ (outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
+ "and.b\t{$src2, $dst}",
+ [(set GR8:$dst, (and GR8:$src, imm:$src2)),
+ (implicit SRW)]>;
+def AND16ri : I16ri<0x0,
+ (outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
+ "and.w\t{$src2, $dst}",
+ [(set GR16:$dst, (and GR16:$src, imm:$src2)),
+ (implicit SRW)]>;
+
+def AND8rm : I8rm<0x0,
+ (outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
+ "and.b\t{$src2, $dst}",
+ [(set GR8:$dst, (and GR8:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+def AND16rm : I16rm<0x0,
+ (outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
+ "and.w\t{$src2, $dst}",
+ [(set GR16:$dst, (and GR16:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1,
+Constraints = "$base = $base_wb, $src = $dst" in {
+def AND8rm_POST : IForm8<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR8:$dst, GR16:$base_wb),
+ (ins GR8:$src, GR16:$base),
+ "and.b\t{@$base+, $dst}", []>;
+def AND16rm_POST : IForm16<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR16:$dst, GR16:$base_wb),
+ (ins GR16:$src, GR16:$base),
+ "and.w\t{@$base+, $dst}", []>;
+}
+
+let Constraints = "" in {
+def AND8mr : I8mr<0x0,
+ (outs), (ins memdst:$dst, GR8:$src),
+ "and.b\t{$src, $dst}",
+ [(store (and (load addr:$dst), GR8:$src), addr:$dst),
+ (implicit SRW)]>;
+def AND16mr : I16mr<0x0,
+ (outs), (ins memdst:$dst, GR16:$src),
+ "and.w\t{$src, $dst}",
+ [(store (and (load addr:$dst), GR16:$src), addr:$dst),
+ (implicit SRW)]>;
+
+def AND8mi : I8mi<0x0,
+ (outs), (ins memdst:$dst, i8imm:$src),
+ "and.b\t{$src, $dst}",
+ [(store (and (load addr:$dst), (i8 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+def AND16mi : I16mi<0x0,
+ (outs), (ins memdst:$dst, i16imm:$src),
+ "and.w\t{$src, $dst}",
+ [(store (and (load addr:$dst), (i16 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+
+def AND8mm : I8mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "and.b\t{$src, $dst}",
+ [(store (and (load addr:$dst),
+ (i8 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+def AND16mm : I16mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "and.w\t{$src, $dst}",
+ [(store (and (load addr:$dst),
+ (i16 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+}
+
+let isCommutable = 1 in { // X = OR Y, Z == X = OR Z, Y
+def OR8rr : I8rr<0x0,
+ (outs GR8:$dst), (ins GR8:$src, GR8:$src2),
+ "bis.b\t{$src2, $dst}",
+ [(set GR8:$dst, (or GR8:$src, GR8:$src2))]>;
+def OR16rr : I16rr<0x0,
+ (outs GR16:$dst), (ins GR16:$src, GR16:$src2),
+ "bis.w\t{$src2, $dst}",
+ [(set GR16:$dst, (or GR16:$src, GR16:$src2))]>;
+}
+
+def OR8ri : I8ri<0x0,
+ (outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
+ "bis.b\t{$src2, $dst}",
+ [(set GR8:$dst, (or GR8:$src, imm:$src2))]>;
+def OR16ri : I16ri<0x0,
+ (outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
+ "bis.w\t{$src2, $dst}",
+ [(set GR16:$dst, (or GR16:$src, imm:$src2))]>;
+
+def OR8rm : I8rm<0x0,
+ (outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
+ "bis.b\t{$src2, $dst}",
+ [(set GR8:$dst, (or GR8:$src, (load addr:$src2)))]>;
+def OR16rm : I16rm<0x0,
+ (outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
+ "bis.w\t{$src2, $dst}",
+ [(set GR16:$dst, (or GR16:$src, (load addr:$src2)))]>;
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1,
+Constraints = "$base = $base_wb, $src = $dst" in {
+def OR8rm_POST : IForm8<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR8:$dst, GR16:$base_wb),
+ (ins GR8:$src, GR16:$base),
+ "bis.b\t{@$base+, $dst}", []>;
+def OR16rm_POST : IForm16<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR16:$dst, GR16:$base_wb),
+ (ins GR16:$src, GR16:$base),
+ "bis.w\t{@$base+, $dst}", []>;
+}
+
+let Constraints = "" in {
+def OR8mr : I8mr<0x0,
+ (outs), (ins memdst:$dst, GR8:$src),
+ "bis.b\t{$src, $dst}",
+ [(store (or (load addr:$dst), GR8:$src), addr:$dst)]>;
+def OR16mr : I16mr<0x0,
+ (outs), (ins memdst:$dst, GR16:$src),
+ "bis.w\t{$src, $dst}",
+ [(store (or (load addr:$dst), GR16:$src), addr:$dst)]>;
+
+def OR8mi : I8mi<0x0,
+ (outs), (ins memdst:$dst, i8imm:$src),
+ "bis.b\t{$src, $dst}",
+ [(store (or (load addr:$dst), (i8 imm:$src)), addr:$dst)]>;
+def OR16mi : I16mi<0x0,
+ (outs), (ins memdst:$dst, i16imm:$src),
+ "bis.w\t{$src, $dst}",
+ [(store (or (load addr:$dst), (i16 imm:$src)), addr:$dst)]>;
+
+def OR8mm : I8mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "bis.b\t{$src, $dst}",
+ [(store (or (i8 (load addr:$dst)),
+ (i8 (load addr:$src))), addr:$dst)]>;
+def OR16mm : I16mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "bis.w\t{$src, $dst}",
+ [(store (or (i16 (load addr:$dst)),
+ (i16 (load addr:$src))), addr:$dst)]>;
+}
+
+// bic does not modify condition codes
+def BIC8rr : I8rr<0x0,
+ (outs GR8:$dst), (ins GR8:$src, GR8:$src2),
+ "bic.b\t{$src2, $dst}",
+ [(set GR8:$dst, (and GR8:$src, (not GR8:$src2)))]>;
+def BIC16rr : I16rr<0x0,
+ (outs GR16:$dst), (ins GR16:$src, GR16:$src2),
+ "bic.w\t{$src2, $dst}",
+ [(set GR16:$dst, (and GR16:$src, (not GR16:$src2)))]>;
+
+def BIC8rm : I8rm<0x0,
+ (outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
+ "bic.b\t{$src2, $dst}",
+ [(set GR8:$dst, (and GR8:$src, (not (i8 (load addr:$src2)))))]>;
+def BIC16rm : I16rm<0x0,
+ (outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
+ "bic.w\t{$src2, $dst}",
+ [(set GR16:$dst, (and GR16:$src, (not (i16 (load addr:$src2)))))]>;
+
+let Constraints = "" in {
+def BIC8mr : I8mr<0x0,
+ (outs), (ins memdst:$dst, GR8:$src),
+ "bic.b\t{$src, $dst}",
+ [(store (and (load addr:$dst), (not GR8:$src)), addr:$dst)]>;
+def BIC16mr : I16mr<0x0,
+ (outs), (ins memdst:$dst, GR16:$src),
+ "bic.w\t{$src, $dst}",
+ [(store (and (load addr:$dst), (not GR16:$src)), addr:$dst)]>;
+
+def BIC8mm : I8mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "bic.b\t{$src, $dst}",
+ [(store (and (load addr:$dst),
+ (not (i8 (load addr:$src)))), addr:$dst)]>;
+def BIC16mm : I16mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "bic.w\t{$src, $dst}",
+ [(store (and (load addr:$dst),
+ (not (i16 (load addr:$src)))), addr:$dst)]>;
+}
+
+let isCommutable = 1 in { // X = XOR Y, Z == X = XOR Z, Y
+def XOR8rr : I8rr<0x0,
+ (outs GR8:$dst), (ins GR8:$src, GR8:$src2),
+ "xor.b\t{$src2, $dst}",
+ [(set GR8:$dst, (xor GR8:$src, GR8:$src2)),
+ (implicit SRW)]>;
+def XOR16rr : I16rr<0x0,
+ (outs GR16:$dst), (ins GR16:$src, GR16:$src2),
+ "xor.w\t{$src2, $dst}",
+ [(set GR16:$dst, (xor GR16:$src, GR16:$src2)),
+ (implicit SRW)]>;
+}
+
+def XOR8ri : I8ri<0x0,
+ (outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
+ "xor.b\t{$src2, $dst}",
+ [(set GR8:$dst, (xor GR8:$src, imm:$src2)),
+ (implicit SRW)]>;
+def XOR16ri : I16ri<0x0,
+ (outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
+ "xor.w\t{$src2, $dst}",
+ [(set GR16:$dst, (xor GR16:$src, imm:$src2)),
+ (implicit SRW)]>;
+
+def XOR8rm : I8rm<0x0,
+ (outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
+ "xor.b\t{$src2, $dst}",
+ [(set GR8:$dst, (xor GR8:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+def XOR16rm : I16rm<0x0,
+ (outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
+ "xor.w\t{$src2, $dst}",
+ [(set GR16:$dst, (xor GR16:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1,
+Constraints = "$base = $base_wb, $src = $dst" in {
+def XOR8rm_POST : IForm8<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR8:$dst, GR16:$base_wb),
+ (ins GR8:$src, GR16:$base),
+ "xor.b\t{@$base+, $dst}", []>;
+def XOR16rm_POST : IForm16<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR16:$dst, GR16:$base_wb),
+ (ins GR16:$src, GR16:$base),
+ "xor.w\t{@$base+, $dst}", []>;
+}
+
+let Constraints = "" in {
+def XOR8mr : I8mr<0x0,
+ (outs), (ins memdst:$dst, GR8:$src),
+ "xor.b\t{$src, $dst}",
+ [(store (xor (load addr:$dst), GR8:$src), addr:$dst),
+ (implicit SRW)]>;
+def XOR16mr : I16mr<0x0,
+ (outs), (ins memdst:$dst, GR16:$src),
+ "xor.w\t{$src, $dst}",
+ [(store (xor (load addr:$dst), GR16:$src), addr:$dst),
+ (implicit SRW)]>;
+
+def XOR8mi : I8mi<0x0,
+ (outs), (ins memdst:$dst, i8imm:$src),
+ "xor.b\t{$src, $dst}",
+ [(store (xor (load addr:$dst), (i8 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+def XOR16mi : I16mi<0x0,
+ (outs), (ins memdst:$dst, i16imm:$src),
+ "xor.w\t{$src, $dst}",
+ [(store (xor (load addr:$dst), (i16 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+
+def XOR8mm : I8mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "xor.b\t{$src, $dst}",
+ [(store (xor (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+def XOR16mm : I16mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "xor.w\t{$src, $dst}",
+ [(store (xor (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+}
+
+
+def SUB8rr : I8rr<0x0,
+ (outs GR8:$dst), (ins GR8:$src, GR8:$src2),
+ "sub.b\t{$src2, $dst}",
+ [(set GR8:$dst, (sub GR8:$src, GR8:$src2)),
+ (implicit SRW)]>;
+def SUB16rr : I16rr<0x0,
+ (outs GR16:$dst), (ins GR16:$src, GR16:$src2),
+ "sub.w\t{$src2, $dst}",
+ [(set GR16:$dst, (sub GR16:$src, GR16:$src2)),
+ (implicit SRW)]>;
+
+def SUB8ri : I8ri<0x0,
+ (outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
+ "sub.b\t{$src2, $dst}",
+ [(set GR8:$dst, (sub GR8:$src, imm:$src2)),
+ (implicit SRW)]>;
+def SUB16ri : I16ri<0x0,
+ (outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
+ "sub.w\t{$src2, $dst}",
+ [(set GR16:$dst, (sub GR16:$src, imm:$src2)),
+ (implicit SRW)]>;
+
+def SUB8rm : I8rm<0x0,
+ (outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
+ "sub.b\t{$src2, $dst}",
+ [(set GR8:$dst, (sub GR8:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+def SUB16rm : I16rm<0x0,
+ (outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
+ "sub.w\t{$src2, $dst}",
+ [(set GR16:$dst, (sub GR16:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1,
+Constraints = "$base = $base_wb, $src = $dst" in {
+def SUB8rm_POST : IForm8<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR8:$dst, GR16:$base_wb),
+ (ins GR8:$src, GR16:$base),
+ "sub.b\t{@$base+, $dst}", []>;
+def SUB16rm_POST : IForm16<0x0, DstReg, SrcPostInc, Size2Bytes,
+ (outs GR16:$dst, GR16:$base_wb),
+ (ins GR16:$src, GR16:$base),
+ "sub.w\t{@$base+, $dst}", []>;
+}
+
+let Constraints = "" in {
+def SUB8mr : I8mr<0x0,
+ (outs), (ins memdst:$dst, GR8:$src),
+ "sub.b\t{$src, $dst}",
+ [(store (sub (load addr:$dst), GR8:$src), addr:$dst),
+ (implicit SRW)]>;
+def SUB16mr : I16mr<0x0,
+ (outs), (ins memdst:$dst, GR16:$src),
+ "sub.w\t{$src, $dst}",
+ [(store (sub (load addr:$dst), GR16:$src), addr:$dst),
+ (implicit SRW)]>;
+
+def SUB8mi : I8mi<0x0,
+ (outs), (ins memdst:$dst, i8imm:$src),
+ "sub.b\t{$src, $dst}",
+ [(store (sub (load addr:$dst), (i8 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+def SUB16mi : I16mi<0x0,
+ (outs), (ins memdst:$dst, i16imm:$src),
+ "sub.w\t{$src, $dst}",
+ [(store (sub (load addr:$dst), (i16 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+
+def SUB8mm : I8mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "sub.b\t{$src, $dst}",
+ [(store (sub (load addr:$dst),
+ (i8 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+def SUB16mm : I16mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "sub.w\t{$src, $dst}",
+ [(store (sub (load addr:$dst),
+ (i16 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+}
+
+let Uses = [SRW] in {
+def SBC8rr : I8rr<0x0,
+ (outs GR8:$dst), (ins GR8:$src, GR8:$src2),
+ "subc.b\t{$src2, $dst}",
+ [(set GR8:$dst, (sube GR8:$src, GR8:$src2)),
+ (implicit SRW)]>;
+def SBC16rr : I16rr<0x0,
+ (outs GR16:$dst), (ins GR16:$src, GR16:$src2),
+ "subc.w\t{$src2, $dst}",
+ [(set GR16:$dst, (sube GR16:$src, GR16:$src2)),
+ (implicit SRW)]>;
+
+def SBC8ri : I8ri<0x0,
+ (outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
+ "subc.b\t{$src2, $dst}",
+ [(set GR8:$dst, (sube GR8:$src, imm:$src2)),
+ (implicit SRW)]>;
+def SBC16ri : I16ri<0x0,
+ (outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
+ "subc.w\t{$src2, $dst}",
+ [(set GR16:$dst, (sube GR16:$src, imm:$src2)),
+ (implicit SRW)]>;
+
+def SBC8rm : I8rm<0x0,
+ (outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
+ "subc.b\t{$src2, $dst}",
+ [(set GR8:$dst, (sube GR8:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+def SBC16rm : I16rm<0x0,
+ (outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
+ "subc.w\t{$src2, $dst}",
+ [(set GR16:$dst, (sube GR16:$src, (load addr:$src2))),
+ (implicit SRW)]>;
+
+let Constraints = "" in {
+def SBC8mr : I8mr<0x0,
+ (outs), (ins memdst:$dst, GR8:$src),
+ "subc.b\t{$src, $dst}",
+ [(store (sube (load addr:$dst), GR8:$src), addr:$dst),
+ (implicit SRW)]>;
+def SBC16mr : I16mr<0x0,
+ (outs), (ins memdst:$dst, GR16:$src),
+ "subc.w\t{$src, $dst}",
+ [(store (sube (load addr:$dst), GR16:$src), addr:$dst),
+ (implicit SRW)]>;
+
+def SBC8mi : I8mi<0x0,
+ (outs), (ins memdst:$dst, i8imm:$src),
+ "subc.b\t{$src, $dst}",
+ [(store (sube (load addr:$dst), (i8 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+def SBC16mi : I16mi<0x0,
+ (outs), (ins memdst:$dst, i16imm:$src),
+ "subc.w\t{$src, $dst}",
+ [(store (sube (load addr:$dst), (i16 imm:$src)), addr:$dst),
+ (implicit SRW)]>;
+
+def SBC8mm : I8mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "subc.b\t{$src, $dst}",
+ [(store (sube (load addr:$dst),
+ (i8 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+def SBC16mm : I16mm<0x0,
+ (outs), (ins memdst:$dst, memsrc:$src),
+ "subc.w\t{$src, $dst}",
+ [(store (sube (load addr:$dst),
+ (i16 (load addr:$src))), addr:$dst),
+ (implicit SRW)]>;
+}
+
+} // Uses = [SRW]
+
+// FIXME: memory variant!
+def SAR8r1 : II8r<0x0,
+ (outs GR8:$dst), (ins GR8:$src),
+ "rra.b\t$dst",
+ [(set GR8:$dst, (MSP430rra GR8:$src)),
+ (implicit SRW)]>;
+def SAR16r1 : II16r<0x0,
+ (outs GR16:$dst), (ins GR16:$src),
+ "rra.w\t$dst",
+ [(set GR16:$dst, (MSP430rra GR16:$src)),
+ (implicit SRW)]>;
+
+def SHL8r1 : I8rr<0x0,
+ (outs GR8:$dst), (ins GR8:$src),
+ "rla.b\t$dst",
+ [(set GR8:$dst, (MSP430rla GR8:$src)),
+ (implicit SRW)]>;
+def SHL16r1 : I16rr<0x0,
+ (outs GR16:$dst), (ins GR16:$src),
+ "rla.w\t$dst",
+ [(set GR16:$dst, (MSP430rla GR16:$src)),
+ (implicit SRW)]>;
+
+def SAR8r1c : Pseudo<(outs GR8:$dst), (ins GR8:$src),
+ "clrc\n\t"
+ "rrc.b\t$dst",
+ [(set GR8:$dst, (MSP430rrc GR8:$src)),
+ (implicit SRW)]>;
+def SAR16r1c : Pseudo<(outs GR16:$dst), (ins GR16:$src),
+ "clrc\n\t"
+ "rrc.w\t$dst",
+ [(set GR16:$dst, (MSP430rrc GR16:$src)),
+ (implicit SRW)]>;
+
+// FIXME: Memory sext's ?
+def SEXT16r : II16r<0x0,
+ (outs GR16:$dst), (ins GR16:$src),
+ "sxt\t$dst",
+ [(set GR16:$dst, (sext_inreg GR16:$src, i8)),
+ (implicit SRW)]>;
+
+} // Defs = [SRW]
+
+def ZEXT16r : I8rr<0x0,
+ (outs GR16:$dst), (ins GR16:$src),
+ "mov.b\t{$src, $dst}",
+ [(set GR16:$dst, (zext (trunc GR16:$src)))]>;
+
+// FIXME: Memory bitswaps?
+def SWPB16r : II16r<0x0,
+ (outs GR16:$dst), (ins GR16:$src),
+ "swpb\t$dst",
+ [(set GR16:$dst, (bswap GR16:$src))]>;
+
+} // Constraints = "$src = $dst"
+
+// Integer comparisons
+let Defs = [SRW] in {
+def CMP8rr : I8rr<0x0,
+ (outs), (ins GR8:$src, GR8:$src2),
+ "cmp.b\t{$src2, $src}",
+ [(MSP430cmp GR8:$src, GR8:$src2), (implicit SRW)]>;
+def CMP16rr : I16rr<0x0,
+ (outs), (ins GR16:$src, GR16:$src2),
+ "cmp.w\t{$src2, $src}",
+ [(MSP430cmp GR16:$src, GR16:$src2), (implicit SRW)]>;
+
+def CMP8ri : I8ri<0x0,
+ (outs), (ins GR8:$src, i8imm:$src2),
+ "cmp.b\t{$src2, $src}",
+ [(MSP430cmp GR8:$src, imm:$src2), (implicit SRW)]>;
+def CMP16ri : I16ri<0x0,
+ (outs), (ins GR16:$src, i16imm:$src2),
+ "cmp.w\t{$src2, $src}",
+ [(MSP430cmp GR16:$src, imm:$src2), (implicit SRW)]>;
+
+def CMP8mi : I8mi<0x0,
+ (outs), (ins memsrc:$src, i8imm:$src2),
+ "cmp.b\t{$src2, $src}",
+ [(MSP430cmp (load addr:$src),
+ (i8 imm:$src2)), (implicit SRW)]>;
+def CMP16mi : I16mi<0x0,
+ (outs), (ins memsrc:$src, i16imm:$src2),
+ "cmp.w\t{$src2, $src}",
+ [(MSP430cmp (load addr:$src),
+ (i16 imm:$src2)), (implicit SRW)]>;
+
+def CMP8rm : I8rm<0x0,
+ (outs), (ins GR8:$src, memsrc:$src2),
+ "cmp.b\t{$src2, $src}",
+ [(MSP430cmp GR8:$src, (load addr:$src2)),
+ (implicit SRW)]>;
+def CMP16rm : I16rm<0x0,
+ (outs), (ins GR16:$src, memsrc:$src2),
+ "cmp.w\t{$src2, $src}",
+ [(MSP430cmp GR16:$src, (load addr:$src2)),
+ (implicit SRW)]>;
+
+def CMP8mr : I8mr<0x0,
+ (outs), (ins memsrc:$src, GR8:$src2),
+ "cmp.b\t{$src2, $src}",
+ [(MSP430cmp (load addr:$src), GR8:$src2),
+ (implicit SRW)]>;
+def CMP16mr : I16mr<0x0,
+ (outs), (ins memsrc:$src, GR16:$src2),
+ "cmp.w\t{$src2, $src}",
+ [(MSP430cmp (load addr:$src), GR16:$src2),
+ (implicit SRW)]>;
+
+
+// BIT TESTS, just sets condition codes
+// Note that the C condition is set differently than when using CMP.
+let isCommutable = 1 in {
+def BIT8rr : I8rr<0x0,
+ (outs), (ins GR8:$src, GR8:$src2),
+ "bit.b\t{$src2, $src}",
+ [(MSP430cmp (and_su GR8:$src, GR8:$src2), 0),
+ (implicit SRW)]>;
+def BIT16rr : I16rr<0x0,
+ (outs), (ins GR16:$src, GR16:$src2),
+ "bit.w\t{$src2, $src}",
+ [(MSP430cmp (and_su GR16:$src, GR16:$src2), 0),
+ (implicit SRW)]>;
+}
+def BIT8ri : I8ri<0x0,
+ (outs), (ins GR8:$src, i8imm:$src2),
+ "bit.b\t{$src2, $src}",
+ [(MSP430cmp (and_su GR8:$src, imm:$src2), 0),
+ (implicit SRW)]>;
+def BIT16ri : I16ri<0x0,
+ (outs), (ins GR16:$src, i16imm:$src2),
+ "bit.w\t{$src2, $src}",
+ [(MSP430cmp (and_su GR16:$src, imm:$src2), 0),
+ (implicit SRW)]>;
+
+def BIT8rm : I8rm<0x0,
+ (outs), (ins GR8:$src, memdst:$src2),
+ "bit.b\t{$src2, $src}",
+ [(MSP430cmp (and_su GR8:$src, (load addr:$src2)), 0),
+ (implicit SRW)]>;
+def BIT16rm : I16rm<0x0,
+ (outs), (ins GR16:$src, memdst:$src2),
+ "bit.w\t{$src2, $src}",
+ [(MSP430cmp (and_su GR16:$src, (load addr:$src2)), 0),
+ (implicit SRW)]>;
+
+def BIT8mr : I8mr<0x0,
+ (outs), (ins memsrc:$src, GR8:$src2),
+ "bit.b\t{$src2, $src}",
+ [(MSP430cmp (and_su (load addr:$src), GR8:$src2), 0),
+ (implicit SRW)]>;
+def BIT16mr : I16mr<0x0,
+ (outs), (ins memsrc:$src, GR16:$src2),
+ "bit.w\t{$src2, $src}",
+ [(MSP430cmp (and_su (load addr:$src), GR16:$src2), 0),
+ (implicit SRW)]>;
+
+def BIT8mi : I8mi<0x0,
+ (outs), (ins memsrc:$src, i8imm:$src2),
+ "bit.b\t{$src2, $src}",
+ [(MSP430cmp (and_su (load addr:$src), (i8 imm:$src2)), 0),
+ (implicit SRW)]>;
+def BIT16mi : I16mi<0x0,
+ (outs), (ins memsrc:$src, i16imm:$src2),
+ "bit.w\t{$src2, $src}",
+ [(MSP430cmp (and_su (load addr:$src), (i16 imm:$src2)), 0),
+ (implicit SRW)]>;
+
+def BIT8mm : I8mm<0x0,
+ (outs), (ins memsrc:$src, memsrc:$src2),
+ "bit.b\t{$src2, $src}",
+ [(MSP430cmp (and_su (i8 (load addr:$src)),
+ (load addr:$src2)),
+ 0),
+ (implicit SRW)]>;
+def BIT16mm : I16mm<0x0,
+ (outs), (ins memsrc:$src, memsrc:$src2),
+ "bit.w\t{$src2, $src}",
+ [(MSP430cmp (and_su (i16 (load addr:$src)),
+ (load addr:$src2)),
+ 0),
+ (implicit SRW)]>;
+} // Defs = [SRW]
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+
+// extload
+def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
+
+// anyext
+def : Pat<(i16 (anyext GR8:$src)),
+ (SUBREG_TO_REG (i16 0), GR8:$src, subreg_8bit)>;
+
+// truncs
+def : Pat<(i8 (trunc GR16:$src)),
+ (EXTRACT_SUBREG GR16:$src, subreg_8bit)>;
+
+// GlobalAddress, ExternalSymbol
+def : Pat<(i16 (MSP430Wrapper tglobaladdr:$dst)), (MOV16ri tglobaladdr:$dst)>;
+def : Pat<(i16 (MSP430Wrapper texternalsym:$dst)), (MOV16ri texternalsym:$dst)>;
+def : Pat<(i16 (MSP430Wrapper tblockaddress:$dst)), (MOV16ri tblockaddress:$dst)>;
+
+def : Pat<(add GR16:$src, (MSP430Wrapper tglobaladdr :$src2)),
+ (ADD16ri GR16:$src, tglobaladdr:$src2)>;
+def : Pat<(add GR16:$src, (MSP430Wrapper texternalsym:$src2)),
+ (ADD16ri GR16:$src, texternalsym:$src2)>;
+def : Pat<(add GR16:$src, (MSP430Wrapper tblockaddress:$src2)),
+ (ADD16ri GR16:$src, tblockaddress:$src2)>;
+
+def : Pat<(store (i16 (MSP430Wrapper tglobaladdr:$src)), addr:$dst),
+ (MOV16mi addr:$dst, tglobaladdr:$src)>;
+def : Pat<(store (i16 (MSP430Wrapper texternalsym:$src)), addr:$dst),
+ (MOV16mi addr:$dst, texternalsym:$src)>;
+def : Pat<(store (i16 (MSP430Wrapper tblockaddress:$src)), addr:$dst),
+ (MOV16mi addr:$dst, tblockaddress:$src)>;
+
+// calls
+def : Pat<(MSP430call (i16 tglobaladdr:$dst)),
+ (CALLi tglobaladdr:$dst)>;
+def : Pat<(MSP430call (i16 texternalsym:$dst)),
+ (CALLi texternalsym:$dst)>;
+
+// add and sub always produce carry
+def : Pat<(addc GR16:$src, GR16:$src2),
+ (ADD16rr GR16:$src, GR16:$src2)>;
+def : Pat<(addc GR16:$src, (load addr:$src2)),
+ (ADD16rm GR16:$src, addr:$src2)>;
+def : Pat<(addc GR16:$src, imm:$src2),
+ (ADD16ri GR16:$src, imm:$src2)>;
+def : Pat<(store (addc (load addr:$dst), GR16:$src), addr:$dst),
+ (ADD16mr addr:$dst, GR16:$src)>;
+def : Pat<(store (addc (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
+ (ADD16mm addr:$dst, addr:$src)>;
+
+def : Pat<(addc GR8:$src, GR8:$src2),
+ (ADD8rr GR8:$src, GR8:$src2)>;
+def : Pat<(addc GR8:$src, (load addr:$src2)),
+ (ADD8rm GR8:$src, addr:$src2)>;
+def : Pat<(addc GR8:$src, imm:$src2),
+ (ADD8ri GR8:$src, imm:$src2)>;
+def : Pat<(store (addc (load addr:$dst), GR8:$src), addr:$dst),
+ (ADD8mr addr:$dst, GR8:$src)>;
+def : Pat<(store (addc (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
+ (ADD8mm addr:$dst, addr:$src)>;
+
+def : Pat<(subc GR16:$src, GR16:$src2),
+ (SUB16rr GR16:$src, GR16:$src2)>;
+def : Pat<(subc GR16:$src, (load addr:$src2)),
+ (SUB16rm GR16:$src, addr:$src2)>;
+def : Pat<(subc GR16:$src, imm:$src2),
+ (SUB16ri GR16:$src, imm:$src2)>;
+def : Pat<(store (subc (load addr:$dst), GR16:$src), addr:$dst),
+ (SUB16mr addr:$dst, GR16:$src)>;
+def : Pat<(store (subc (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
+ (SUB16mm addr:$dst, addr:$src)>;
+
+def : Pat<(subc GR8:$src, GR8:$src2),
+ (SUB8rr GR8:$src, GR8:$src2)>;
+def : Pat<(subc GR8:$src, (load addr:$src2)),
+ (SUB8rm GR8:$src, addr:$src2)>;
+def : Pat<(subc GR8:$src, imm:$src2),
+ (SUB8ri GR8:$src, imm:$src2)>;
+def : Pat<(store (subc (load addr:$dst), GR8:$src), addr:$dst),
+ (SUB8mr addr:$dst, GR8:$src)>;
+def : Pat<(store (subc (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
+ (SUB8mm addr:$dst, addr:$src)>;
+
+// peephole patterns
+def : Pat<(and GR16:$src, 255), (ZEXT16r GR16:$src)>;
+def : Pat<(MSP430cmp (trunc (and_su GR16:$src, GR16:$src2)), 0),
+ (BIT8rr (EXTRACT_SUBREG GR16:$src, subreg_8bit),
+ (EXTRACT_SUBREG GR16:$src2, subreg_8bit))>;
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.cpp b/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.cpp
new file mode 100644
index 0000000..05352a2
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.cpp
@@ -0,0 +1,157 @@
+//===-- MSP430MCInstLower.cpp - Convert MSP430 MachineInstr to an MCInst --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code to lower MSP430 MachineInstrs to their corresponding
+// MCInst records.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430MCInstLower.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+MCSymbol *MSP430MCInstLower::
+GetGlobalAddressSymbol(const MachineOperand &MO) const {
+ switch (MO.getTargetFlags()) {
+ default: llvm_unreachable("Unknown target flag on GV operand");
+ case 0: break;
+ }
+
+ return Printer.getSymbol(MO.getGlobal());
+}
+
+MCSymbol *MSP430MCInstLower::
+GetExternalSymbolSymbol(const MachineOperand &MO) const {
+ switch (MO.getTargetFlags()) {
+ default: llvm_unreachable("Unknown target flag on GV operand");
+ case 0: break;
+ }
+
+ return Printer.GetExternalSymbolSymbol(MO.getSymbolName());
+}
+
+MCSymbol *MSP430MCInstLower::
+GetJumpTableSymbol(const MachineOperand &MO) const {
+ const DataLayout *DL = Printer.TM.getDataLayout();
+ SmallString<256> Name;
+ raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "JTI"
+ << Printer.getFunctionNumber() << '_'
+ << MO.getIndex();
+
+ switch (MO.getTargetFlags()) {
+ default: llvm_unreachable("Unknown target flag on GV operand");
+ case 0: break;
+ }
+
+ // Create a symbol for the name.
+ return Ctx.GetOrCreateSymbol(Name.str());
+}
+
+MCSymbol *MSP430MCInstLower::
+GetConstantPoolIndexSymbol(const MachineOperand &MO) const {
+ const DataLayout *DL = Printer.TM.getDataLayout();
+ SmallString<256> Name;
+ raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "CPI"
+ << Printer.getFunctionNumber() << '_'
+ << MO.getIndex();
+
+ switch (MO.getTargetFlags()) {
+ default: llvm_unreachable("Unknown target flag on GV operand");
+ case 0: break;
+ }
+
+ // Create a symbol for the name.
+ return Ctx.GetOrCreateSymbol(Name.str());
+}
+
+MCSymbol *MSP430MCInstLower::
+GetBlockAddressSymbol(const MachineOperand &MO) const {
+ switch (MO.getTargetFlags()) {
+ default: llvm_unreachable("Unknown target flag on GV operand");
+ case 0: break;
+ }
+
+ return Printer.GetBlockAddressSymbol(MO.getBlockAddress());
+}
+
+MCOperand MSP430MCInstLower::
+LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const {
+ // FIXME: We would like an efficient form for this, so we don't have to do a
+ // lot of extra uniquing.
+ const MCExpr *Expr = MCSymbolRefExpr::Create(Sym, Ctx);
+
+ switch (MO.getTargetFlags()) {
+ default: llvm_unreachable("Unknown target flag on GV operand");
+ case 0: break;
+ }
+
+ if (!MO.isJTI() && MO.getOffset())
+ Expr = MCBinaryExpr::CreateAdd(Expr,
+ MCConstantExpr::Create(MO.getOffset(), Ctx),
+ Ctx);
+ return MCOperand::CreateExpr(Expr);
+}
+
+void MSP430MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
+ OutMI.setOpcode(MI->getOpcode());
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+
+ MCOperand MCOp;
+ switch (MO.getType()) {
+ default:
+ MI->dump();
+ llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ // Ignore all implicit register operands.
+ if (MO.isImplicit()) continue;
+ MCOp = MCOperand::CreateReg(MO.getReg());
+ break;
+ case MachineOperand::MO_Immediate:
+ MCOp = MCOperand::CreateImm(MO.getImm());
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
+ MO.getMBB()->getSymbol(), Ctx));
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ MCOp = LowerSymbolOperand(MO, GetGlobalAddressSymbol(MO));
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ MCOp = LowerSymbolOperand(MO, GetExternalSymbolSymbol(MO));
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ MCOp = LowerSymbolOperand(MO, GetJumpTableSymbol(MO));
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ MCOp = LowerSymbolOperand(MO, GetConstantPoolIndexSymbol(MO));
+ break;
+ case MachineOperand::MO_BlockAddress:
+ MCOp = LowerSymbolOperand(MO, GetBlockAddressSymbol(MO));
+ break;
+ case MachineOperand::MO_RegisterMask:
+ continue;
+ }
+
+ OutMI.addOperand(MCOp);
+ }
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.h b/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.h
new file mode 100644
index 0000000..794aa56
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.h
@@ -0,0 +1,47 @@
+//===-- MSP430MCInstLower.h - Lower MachineInstr to MCInst ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MSP430_MCINSTLOWER_H
+#define MSP430_MCINSTLOWER_H
+
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+ class AsmPrinter;
+ class MCContext;
+ class MCInst;
+ class MCOperand;
+ class MCSymbol;
+ class MachineInstr;
+ class MachineModuleInfoMachO;
+ class MachineOperand;
+
+ /// MSP430MCInstLower - This class is used to lower an MachineInstr
+ /// into an MCInst.
+class LLVM_LIBRARY_VISIBILITY MSP430MCInstLower {
+ MCContext &Ctx;
+
+ AsmPrinter &Printer;
+public:
+ MSP430MCInstLower(MCContext &ctx, AsmPrinter &printer)
+ : Ctx(ctx), Printer(printer) {}
+ void Lower(const MachineInstr *MI, MCInst &OutMI) const;
+
+ MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
+
+ MCSymbol *GetGlobalAddressSymbol(const MachineOperand &MO) const;
+ MCSymbol *GetExternalSymbolSymbol(const MachineOperand &MO) const;
+ MCSymbol *GetJumpTableSymbol(const MachineOperand &MO) const;
+ MCSymbol *GetConstantPoolIndexSymbol(const MachineOperand &MO) const;
+ MCSymbol *GetBlockAddressSymbol(const MachineOperand &MO) const;
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.cpp b/contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.cpp
new file mode 100644
index 0000000..0f75399
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.cpp
@@ -0,0 +1,14 @@
+//===-- MSP430MachineFuctionInfo.cpp - MSP430 machine function info -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430MachineFunctionInfo.h"
+
+using namespace llvm;
+
+void MSP430MachineFunctionInfo::anchor() { }
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.h b/contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.h
new file mode 100644
index 0000000..d1697f4
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.h
@@ -0,0 +1,54 @@
+//===- MSP430MachineFuctionInfo.h - MSP430 machine function info -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares MSP430-specific per-machine-function information.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MSP430MACHINEFUNCTIONINFO_H
+#define MSP430MACHINEFUNCTIONINFO_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+
+namespace llvm {
+
+/// MSP430MachineFunctionInfo - This class is derived from MachineFunction and
+/// contains private MSP430 target-specific information for each MachineFunction.
+class MSP430MachineFunctionInfo : public MachineFunctionInfo {
+ virtual void anchor();
+
+ /// CalleeSavedFrameSize - Size of the callee-saved register portion of the
+ /// stack frame in bytes.
+ unsigned CalleeSavedFrameSize;
+
+ /// ReturnAddrIndex - FrameIndex for return slot.
+ int ReturnAddrIndex;
+
+ /// VarArgsFrameIndex - FrameIndex for start of varargs area.
+ int VarArgsFrameIndex;
+
+public:
+ MSP430MachineFunctionInfo() : CalleeSavedFrameSize(0) {}
+
+ explicit MSP430MachineFunctionInfo(MachineFunction &MF)
+ : CalleeSavedFrameSize(0), ReturnAddrIndex(0) {}
+
+ unsigned getCalleeSavedFrameSize() const { return CalleeSavedFrameSize; }
+ void setCalleeSavedFrameSize(unsigned bytes) { CalleeSavedFrameSize = bytes; }
+
+ int getRAIndex() const { return ReturnAddrIndex; }
+ void setRAIndex(int Index) { ReturnAddrIndex = Index; }
+
+ int getVarArgsFrameIndex() const { return VarArgsFrameIndex;}
+ void setVarArgsFrameIndex(int Index) { VarArgsFrameIndex = Index; }
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.cpp b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.cpp
new file mode 100644
index 0000000..691bcee
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.cpp
@@ -0,0 +1,162 @@
+//===-- MSP430RegisterInfo.cpp - MSP430 Register Information --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the MSP430 implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430RegisterInfo.h"
+#include "MSP430.h"
+#include "MSP430MachineFunctionInfo.h"
+#include "MSP430TargetMachine.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "msp430-reg-info"
+
+#define GET_REGINFO_TARGET_DESC
+#include "MSP430GenRegisterInfo.inc"
+
+// FIXME: Provide proper call frame setup / destroy opcodes.
+MSP430RegisterInfo::MSP430RegisterInfo()
+ : MSP430GenRegisterInfo(MSP430::PCW) {}
+
+const MCPhysReg*
+MSP430RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ const TargetFrameLowering *TFI = MF->getTarget().getFrameLowering();
+ const Function* F = MF->getFunction();
+ static const MCPhysReg CalleeSavedRegs[] = {
+ MSP430::FPW, MSP430::R5W, MSP430::R6W, MSP430::R7W,
+ MSP430::R8W, MSP430::R9W, MSP430::R10W, MSP430::R11W,
+ 0
+ };
+ static const MCPhysReg CalleeSavedRegsFP[] = {
+ MSP430::R5W, MSP430::R6W, MSP430::R7W,
+ MSP430::R8W, MSP430::R9W, MSP430::R10W, MSP430::R11W,
+ 0
+ };
+ static const MCPhysReg CalleeSavedRegsIntr[] = {
+ MSP430::FPW, MSP430::R5W, MSP430::R6W, MSP430::R7W,
+ MSP430::R8W, MSP430::R9W, MSP430::R10W, MSP430::R11W,
+ MSP430::R12W, MSP430::R13W, MSP430::R14W, MSP430::R15W,
+ 0
+ };
+ static const MCPhysReg CalleeSavedRegsIntrFP[] = {
+ MSP430::R5W, MSP430::R6W, MSP430::R7W,
+ MSP430::R8W, MSP430::R9W, MSP430::R10W, MSP430::R11W,
+ MSP430::R12W, MSP430::R13W, MSP430::R14W, MSP430::R15W,
+ 0
+ };
+
+ if (TFI->hasFP(*MF))
+ return (F->getCallingConv() == CallingConv::MSP430_INTR ?
+ CalleeSavedRegsIntrFP : CalleeSavedRegsFP);
+ else
+ return (F->getCallingConv() == CallingConv::MSP430_INTR ?
+ CalleeSavedRegsIntr : CalleeSavedRegs);
+
+}
+
+BitVector MSP430RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ BitVector Reserved(getNumRegs());
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ // Mark 4 special registers with subregisters as reserved.
+ Reserved.set(MSP430::PCB);
+ Reserved.set(MSP430::SPB);
+ Reserved.set(MSP430::SRB);
+ Reserved.set(MSP430::CGB);
+ Reserved.set(MSP430::PCW);
+ Reserved.set(MSP430::SPW);
+ Reserved.set(MSP430::SRW);
+ Reserved.set(MSP430::CGW);
+
+ // Mark frame pointer as reserved if needed.
+ if (TFI->hasFP(MF)) {
+ Reserved.set(MSP430::FPB);
+ Reserved.set(MSP430::FPW);
+ }
+
+ return Reserved;
+}
+
+const TargetRegisterClass *
+MSP430RegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
+ const {
+ return &MSP430::GR16RegClass;
+}
+
+void
+MSP430RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ assert(SPAdj == 0 && "Unexpected");
+
+ MachineInstr &MI = *II;
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ DebugLoc dl = MI.getDebugLoc();
+ int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
+
+ unsigned BasePtr = (TFI->hasFP(MF) ? MSP430::FPW : MSP430::SPW);
+ int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex);
+
+ // Skip the saved PC
+ Offset += 2;
+
+ if (!TFI->hasFP(MF))
+ Offset += MF.getFrameInfo()->getStackSize();
+ else
+ Offset += 2; // Skip the saved FPW
+
+ // Fold imm into offset
+ Offset += MI.getOperand(FIOperandNum + 1).getImm();
+
+ if (MI.getOpcode() == MSP430::ADD16ri) {
+ // This is actually "load effective address" of the stack slot
+ // instruction. We have only two-address instructions, thus we need to
+ // expand it into mov + add
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+
+ MI.setDesc(TII.get(MSP430::MOV16rr));
+ MI.getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
+
+ if (Offset == 0)
+ return;
+
+ // We need to materialize the offset via add instruction.
+ unsigned DstReg = MI.getOperand(0).getReg();
+ if (Offset < 0)
+ BuildMI(MBB, std::next(II), dl, TII.get(MSP430::SUB16ri), DstReg)
+ .addReg(DstReg).addImm(-Offset);
+ else
+ BuildMI(MBB, std::next(II), dl, TII.get(MSP430::ADD16ri), DstReg)
+ .addReg(DstReg).addImm(Offset);
+
+ return;
+ }
+
+ MI.getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
+ MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
+}
+
+unsigned MSP430RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ return TFI->hasFP(MF) ? MSP430::FPW : MSP430::SPW;
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.h b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.h
new file mode 100644
index 0000000..cb01961
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.h
@@ -0,0 +1,47 @@
+//===-- MSP430RegisterInfo.h - MSP430 Register Information Impl -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the MSP430 implementation of the MRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_MSP430REGISTERINFO_H
+#define LLVM_TARGET_MSP430REGISTERINFO_H
+
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define GET_REGINFO_HEADER
+#include "MSP430GenRegisterInfo.inc"
+
+namespace llvm {
+
+struct MSP430RegisterInfo : public MSP430GenRegisterInfo {
+public:
+ MSP430RegisterInfo();
+
+ /// Code Generation virtual methods...
+ const MCPhysReg *
+ getCalleeSavedRegs(const MachineFunction *MF = nullptr) const override;
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+ const TargetRegisterClass*
+ getPointerRegClass(const MachineFunction &MF,
+ unsigned Kind = 0) const override;
+
+ void eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const override;
+
+ // Debug information queries.
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+};
+
+} // end namespace llvm
+
+#endif // LLVM_TARGET_MSP430REGISTERINFO_H
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.td b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.td
new file mode 100644
index 0000000..4010781
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.td
@@ -0,0 +1,81 @@
+//===-- MSP430RegisterInfo.td - MSP430 Register defs -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Declarations that describe the MSP430 register file
+//===----------------------------------------------------------------------===//
+
+class MSP430Reg<bits<4> num, string n> : Register<n> {
+ field bits<4> Num = num;
+ let Namespace = "MSP430";
+}
+
+class MSP430RegWithSubregs<bits<4> num, string n, list<Register> subregs>
+ : RegisterWithSubRegs<n, subregs> {
+ field bits<4> Num = num;
+ let Namespace = "MSP430";
+}
+
+//===----------------------------------------------------------------------===//
+// Registers
+//===----------------------------------------------------------------------===//
+
+def PCB : MSP430Reg<0, "r0">;
+def SPB : MSP430Reg<1, "r1">;
+def SRB : MSP430Reg<2, "r2">;
+def CGB : MSP430Reg<3, "r3">;
+def FPB : MSP430Reg<4, "r4">;
+def R5B : MSP430Reg<5, "r5">;
+def R6B : MSP430Reg<6, "r6">;
+def R7B : MSP430Reg<7, "r7">;
+def R8B : MSP430Reg<8, "r8">;
+def R9B : MSP430Reg<9, "r9">;
+def R10B : MSP430Reg<10, "r10">;
+def R11B : MSP430Reg<11, "r11">;
+def R12B : MSP430Reg<12, "r12">;
+def R13B : MSP430Reg<13, "r13">;
+def R14B : MSP430Reg<14, "r14">;
+def R15B : MSP430Reg<15, "r15">;
+
+def subreg_8bit : SubRegIndex<8> { let Namespace = "MSP430"; }
+
+let SubRegIndices = [subreg_8bit] in {
+def PCW : MSP430RegWithSubregs<0, "r0", [PCB]>;
+def SPW : MSP430RegWithSubregs<1, "r1", [SPB]>;
+def SRW : MSP430RegWithSubregs<2, "r2", [SRB]>;
+def CGW : MSP430RegWithSubregs<3, "r3", [CGB]>;
+def FPW : MSP430RegWithSubregs<4, "r4", [FPB]>;
+def R5W : MSP430RegWithSubregs<5, "r5", [R5B]>;
+def R6W : MSP430RegWithSubregs<6, "r6", [R6B]>;
+def R7W : MSP430RegWithSubregs<7, "r7", [R7B]>;
+def R8W : MSP430RegWithSubregs<8, "r8", [R8B]>;
+def R9W : MSP430RegWithSubregs<9, "r9", [R9B]>;
+def R10W : MSP430RegWithSubregs<10, "r10", [R10B]>;
+def R11W : MSP430RegWithSubregs<11, "r11", [R11B]>;
+def R12W : MSP430RegWithSubregs<12, "r12", [R12B]>;
+def R13W : MSP430RegWithSubregs<13, "r13", [R13B]>;
+def R14W : MSP430RegWithSubregs<14, "r14", [R14B]>;
+def R15W : MSP430RegWithSubregs<15, "r15", [R15B]>;
+}
+
+def GR8 : RegisterClass<"MSP430", [i8], 8,
+ // Volatile registers
+ (add R12B, R13B, R14B, R15B, R11B, R10B, R9B, R8B, R7B, R6B, R5B,
+ // Frame pointer, sometimes allocable
+ FPB,
+ // Volatile, but not allocable
+ PCB, SPB, SRB, CGB)>;
+
+def GR16 : RegisterClass<"MSP430", [i16], 16,
+ // Volatile registers
+ (add R12W, R13W, R14W, R15W, R11W, R10W, R9W, R8W, R7W, R6W, R5W,
+ // Frame pointer, sometimes allocable
+ FPW,
+ // Volatile, but not allocable
+ PCW, SPW, SRW, CGW)>;
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.cpp b/contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.cpp
new file mode 100644
index 0000000..3897ef6
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.cpp
@@ -0,0 +1,23 @@
+//===-- MSP430SelectionDAGInfo.cpp - MSP430 SelectionDAG Info -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MSP430SelectionDAGInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430TargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "msp430-selectiondag-info"
+
+MSP430SelectionDAGInfo::MSP430SelectionDAGInfo(const DataLayout &DL)
+ : TargetSelectionDAGInfo(&DL) {}
+
+MSP430SelectionDAGInfo::~MSP430SelectionDAGInfo() {
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.h b/contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.h
new file mode 100644
index 0000000..cb04adc
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.h
@@ -0,0 +1,31 @@
+//===-- MSP430SelectionDAGInfo.h - MSP430 SelectionDAG Info -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the MSP430 subclass for TargetSelectionDAGInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MSP430SELECTIONDAGINFO_H
+#define MSP430SELECTIONDAGINFO_H
+
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+class MSP430TargetMachine;
+
+class MSP430SelectionDAGInfo : public TargetSelectionDAGInfo {
+public:
+ explicit MSP430SelectionDAGInfo(const DataLayout &DL);
+ ~MSP430SelectionDAGInfo();
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.cpp b/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.cpp
new file mode 100644
index 0000000..dbddc52
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.cpp
@@ -0,0 +1,39 @@
+//===-- MSP430Subtarget.cpp - MSP430 Subtarget Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MSP430 specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430Subtarget.h"
+#include "MSP430.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "msp430-subtarget"
+
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#include "MSP430GenSubtargetInfo.inc"
+
+void MSP430Subtarget::anchor() { }
+
+MSP430Subtarget &MSP430Subtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
+ ParseSubtargetFeatures("generic", FS);
+ return *this;
+}
+
+MSP430Subtarget::MSP430Subtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, const TargetMachine &TM)
+ : MSP430GenSubtargetInfo(TT, CPU, FS),
+ // FIXME: Check DataLayout string.
+ DL("e-m:e-p:16:16-i32:16:32-n8:16"), FrameLowering(),
+ InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM),
+ TSInfo(DL) {}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.h b/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.h
new file mode 100644
index 0000000..0152ad1
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.h
@@ -0,0 +1,65 @@
+//===-- MSP430Subtarget.h - Define Subtarget for the MSP430 ----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the MSP430 specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_MSP430_SUBTARGET_H
+#define LLVM_TARGET_MSP430_SUBTARGET_H
+
+#include "MSP430FrameLowering.h"
+#include "MSP430InstrInfo.h"
+#include "MSP430ISelLowering.h"
+#include "MSP430RegisterInfo.h"
+#include "MSP430SelectionDAGInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "MSP430GenSubtargetInfo.inc"
+
+namespace llvm {
+class StringRef;
+
+class MSP430Subtarget : public MSP430GenSubtargetInfo {
+ virtual void anchor();
+ bool ExtendedInsts;
+ const DataLayout DL; // Calculates type size & alignment
+ MSP430FrameLowering FrameLowering;
+ MSP430InstrInfo InstrInfo;
+ MSP430TargetLowering TLInfo;
+ MSP430SelectionDAGInfo TSInfo;
+
+public:
+ /// This constructor initializes the data members to match that
+ /// of the specified triple.
+ ///
+ MSP430Subtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, const TargetMachine &TM);
+
+ MSP430Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
+
+ /// ParseSubtargetFeatures - Parses features string setting specified
+ /// subtarget options. Definition of function is auto generated by tblgen.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+
+ const TargetFrameLowering *getFrameLowering() const { return &FrameLowering; }
+ const MSP430InstrInfo *getInstrInfo() const { return &InstrInfo; }
+ const DataLayout *getDataLayout() const { return &DL; }
+ const TargetRegisterInfo *getRegisterInfo() const {
+ return &InstrInfo.getRegisterInfo();
+ }
+ const MSP430TargetLowering *getTargetLowering() const { return &TLInfo; }
+ const MSP430SelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+};
+} // End llvm namespace
+
+#endif // LLVM_TARGET_MSP430_SUBTARGET_H
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.cpp b/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.cpp
new file mode 100644
index 0000000..5ca36f2
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.cpp
@@ -0,0 +1,67 @@
+//===-- MSP430TargetMachine.cpp - Define TargetMachine for MSP430 ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Top-level implementation for the MSP430 target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430TargetMachine.h"
+#include "MSP430.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+extern "C" void LLVMInitializeMSP430Target() {
+ // Register the target.
+ RegisterTargetMachine<MSP430TargetMachine> X(TheMSP430Target);
+}
+
+MSP430TargetMachine::MSP430TargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS, *this) {
+ initAsmInfo();
+}
+
+namespace {
+/// MSP430 Code Generator Pass Configuration Options.
+class MSP430PassConfig : public TargetPassConfig {
+public:
+ MSP430PassConfig(MSP430TargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ MSP430TargetMachine &getMSP430TargetMachine() const {
+ return getTM<MSP430TargetMachine>();
+ }
+
+ bool addInstSelector() override;
+ bool addPreEmitPass() override;
+};
+} // namespace
+
+TargetPassConfig *MSP430TargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new MSP430PassConfig(this, PM);
+}
+
+bool MSP430PassConfig::addInstSelector() {
+ // Install an instruction selector.
+ addPass(createMSP430ISelDag(getMSP430TargetMachine(), getOptLevel()));
+ return false;
+}
+
+bool MSP430PassConfig::addPreEmitPass() {
+ // Must run branch selection immediately preceding the asm printer.
+ addPass(createMSP430BranchSelectionPass());
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.h b/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.h
new file mode 100644
index 0000000..efa8403
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.h
@@ -0,0 +1,61 @@
+//===-- MSP430TargetMachine.h - Define TargetMachine for MSP430 -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the MSP430 specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef LLVM_TARGET_MSP430_TARGETMACHINE_H
+#define LLVM_TARGET_MSP430_TARGETMACHINE_H
+
+#include "MSP430Subtarget.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+/// MSP430TargetMachine
+///
+class MSP430TargetMachine : public LLVMTargetMachine {
+ MSP430Subtarget Subtarget;
+
+public:
+ MSP430TargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+
+ const TargetFrameLowering *getFrameLowering() const override {
+ return getSubtargetImpl()->getFrameLowering();
+ }
+ const MSP430InstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const DataLayout *getDataLayout() const override {
+ return getSubtargetImpl()->getDataLayout();
+ }
+ const MSP430Subtarget *getSubtargetImpl() const override {
+ return &Subtarget;
+ }
+ const TargetRegisterInfo *getRegisterInfo() const override {
+ return getSubtargetImpl()->getRegisterInfo();
+ }
+ const MSP430TargetLowering *getTargetLowering() const override {
+ return getSubtargetImpl()->getTargetLowering();
+ }
+ const MSP430SelectionDAGInfo *getSelectionDAGInfo() const override {
+ return getSubtargetImpl()->getSelectionDAGInfo();
+ }
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+}; // MSP430TargetMachine.
+
+} // end namespace llvm
+
+#endif // LLVM_TARGET_MSP430_TARGETMACHINE_H
diff --git a/contrib/llvm/lib/Target/MSP430/TargetInfo/MSP430TargetInfo.cpp b/contrib/llvm/lib/Target/MSP430/TargetInfo/MSP430TargetInfo.cpp
new file mode 100644
index 0000000..0d71d04
--- /dev/null
+++ b/contrib/llvm/lib/Target/MSP430/TargetInfo/MSP430TargetInfo.cpp
@@ -0,0 +1,20 @@
+//===-- MSP430TargetInfo.cpp - MSP430 Target Implementation ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheMSP430Target;
+
+extern "C" void LLVMInitializeMSP430TargetInfo() {
+ RegisterTarget<Triple::msp430>
+ X(TheMSP430Target, "msp430", "MSP430 [experimental]");
+}
diff --git a/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp b/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp
new file mode 100644
index 0000000..53b30f9
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp
@@ -0,0 +1,3020 @@
+//===-- MipsAsmParser.cpp - Parse Mips assembly to MCInst instructions ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/MipsMCExpr.h"
+#include "MCTargetDesc/MipsMCTargetDesc.h"
+#include "MipsRegisterInfo.h"
+#include "MipsTargetStreamer.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstBuilder.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-asm-parser"
+
+namespace llvm {
+class MCInstrInfo;
+}
+
+namespace {
+class MipsAssemblerOptions {
+public:
+ MipsAssemblerOptions() : aTReg(1), reorder(true), macro(true) {}
+
+ unsigned getATRegNum() { return aTReg; }
+ bool setATReg(unsigned Reg);
+
+ bool isReorder() { return reorder; }
+ void setReorder() { reorder = true; }
+ void setNoreorder() { reorder = false; }
+
+ bool isMacro() { return macro; }
+ void setMacro() { macro = true; }
+ void setNomacro() { macro = false; }
+
+private:
+ unsigned aTReg;
+ bool reorder;
+ bool macro;
+};
+}
+
+namespace {
+class MipsAsmParser : public MCTargetAsmParser {
+ MipsTargetStreamer &getTargetStreamer() {
+ MCTargetStreamer &TS = *Parser.getStreamer().getTargetStreamer();
+ return static_cast<MipsTargetStreamer &>(TS);
+ }
+
+ MCSubtargetInfo &STI;
+ MCAsmParser &Parser;
+ MipsAssemblerOptions Options;
+
+#define GET_ASSEMBLER_HEADER
+#include "MipsGenAsmMatcher.inc"
+
+ unsigned checkTargetMatchPredicate(MCInst &Inst) override;
+
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ unsigned &ErrorInfo,
+ bool MatchingInlineAsm) override;
+
+ /// Parse a register as used in CFI directives
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+
+ bool ParseParenSuffix(StringRef Name, OperandVector &Operands);
+
+ bool ParseBracketSuffix(StringRef Name, OperandVector &Operands);
+
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+
+ bool ParseDirective(AsmToken DirectiveID) override;
+
+ MipsAsmParser::OperandMatchResultTy parseMemOperand(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy
+ MatchAnyRegisterNameWithoutDollar(OperandVector &Operands,
+ StringRef Identifier, SMLoc S);
+
+ MipsAsmParser::OperandMatchResultTy
+ MatchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S);
+
+ MipsAsmParser::OperandMatchResultTy ParseAnyRegister(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy ParseImm(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy ParseJumpTarget(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy parseInvNum(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy ParseLSAImm(OperandVector &Operands);
+
+ bool searchSymbolAlias(OperandVector &Operands);
+
+ bool ParseOperand(OperandVector &, StringRef Mnemonic);
+
+ bool needsExpansion(MCInst &Inst);
+
+ // Expands assembly pseudo instructions.
+ // Returns false on success, true otherwise.
+ bool expandInstruction(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool expandLoadImm(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ void expandMemInst(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions, bool isLoad,
+ bool isImmOpnd);
+ bool reportParseError(Twine ErrorMsg);
+ bool reportParseError(SMLoc Loc, Twine ErrorMsg);
+
+ bool parseMemOffset(const MCExpr *&Res, bool isParenExpr);
+ bool parseRelocOperand(const MCExpr *&Res);
+
+ const MCExpr *evaluateRelocExpr(const MCExpr *Expr, StringRef RelocStr);
+
+ bool isEvaluated(const MCExpr *Expr);
+ bool parseSetFeature(uint64_t Feature);
+ bool parseDirectiveCPLoad(SMLoc Loc);
+ bool parseDirectiveCPSetup();
+ bool parseDirectiveNaN();
+ bool parseDirectiveSet();
+ bool parseDirectiveOption();
+
+ bool parseSetAtDirective();
+ bool parseSetNoAtDirective();
+ bool parseSetMacroDirective();
+ bool parseSetNoMacroDirective();
+ bool parseSetReorderDirective();
+ bool parseSetNoReorderDirective();
+ bool parseSetNoMips16Directive();
+ bool parseSetFpDirective();
+
+ bool parseSetAssignment();
+
+ bool parseDataDirective(unsigned Size, SMLoc L);
+ bool parseDirectiveGpWord();
+ bool parseDirectiveGpDWord();
+ bool parseDirectiveModule();
+ bool parseDirectiveModuleFP();
+ bool parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI,
+ StringRef Directive);
+
+ MCSymbolRefExpr::VariantKind getVariantKind(StringRef Symbol);
+
+ bool eatComma(StringRef ErrorStr);
+
+ int matchCPURegisterName(StringRef Symbol);
+
+ int matchRegisterByNumber(unsigned RegNum, unsigned RegClass);
+
+ int matchFPURegisterName(StringRef Name);
+
+ int matchFCCRegisterName(StringRef Name);
+
+ int matchACRegisterName(StringRef Name);
+
+ int matchMSA128RegisterName(StringRef Name);
+
+ int matchMSA128CtrlRegisterName(StringRef Name);
+
+ unsigned getReg(int RC, int RegNo);
+
+ unsigned getGPR(int RegNo);
+
+ int getATReg(SMLoc Loc);
+
+ bool processInstruction(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ // Helper function that checks if the value of a vector index is within the
+ // boundaries of accepted values for each RegisterKind
+ // Example: INSERT.B $w0[n], $1 => 16 > n >= 0
+ bool validateMSAIndex(int Val, int RegKind);
+
+ void setFeatureBits(unsigned Feature, StringRef FeatureString) {
+ if (!(STI.getFeatureBits() & Feature)) {
+ setAvailableFeatures(
+ ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
+ }
+ }
+
+ void clearFeatureBits(unsigned Feature, StringRef FeatureString) {
+ if (STI.getFeatureBits() & Feature) {
+ setAvailableFeatures(
+ ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
+ }
+ }
+
+public:
+ enum MipsMatchResultTy {
+ Match_RequiresDifferentSrcAndDst = FIRST_TARGET_MATCH_RESULT_TY
+#define GET_OPERAND_DIAGNOSTIC_TYPES
+#include "MipsGenAsmMatcher.inc"
+#undef GET_OPERAND_DIAGNOSTIC_TYPES
+
+ };
+
+ MipsAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
+ const MCInstrInfo &MII, const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(sti), Parser(parser) {
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+
+ getTargetStreamer().updateABIInfo(*this);
+
+ // Assert exactly one ABI was chosen.
+ assert((((STI.getFeatureBits() & Mips::FeatureO32) != 0) +
+ ((STI.getFeatureBits() & Mips::FeatureEABI) != 0) +
+ ((STI.getFeatureBits() & Mips::FeatureN32) != 0) +
+ ((STI.getFeatureBits() & Mips::FeatureN64) != 0)) == 1);
+
+ if (!isABI_O32() && !useOddSPReg() != 0)
+ report_fatal_error("-mno-odd-spreg requires the O32 ABI");
+ }
+
+ MCAsmParser &getParser() const { return Parser; }
+ MCAsmLexer &getLexer() const { return Parser.getLexer(); }
+
+ /// True if all of $fcc0 - $fcc7 exist for the current ISA.
+ bool hasEightFccRegisters() const { return hasMips4() || hasMips32(); }
+
+ bool isGP64bit() const { return STI.getFeatureBits() & Mips::FeatureGP64Bit; }
+ bool isFP64bit() const { return STI.getFeatureBits() & Mips::FeatureFP64Bit; }
+ bool isABI_N32() const { return STI.getFeatureBits() & Mips::FeatureN32; }
+ bool isABI_N64() const { return STI.getFeatureBits() & Mips::FeatureN64; }
+ bool isABI_O32() const { return STI.getFeatureBits() & Mips::FeatureO32; }
+ bool isABI_FPXX() const { return STI.getFeatureBits() & Mips::FeatureFPXX; }
+
+ bool useOddSPReg() const {
+ return !(STI.getFeatureBits() & Mips::FeatureNoOddSPReg);
+ }
+
+ bool inMicroMipsMode() const {
+ return STI.getFeatureBits() & Mips::FeatureMicroMips;
+ }
+ bool hasMips1() const { return STI.getFeatureBits() & Mips::FeatureMips1; }
+ bool hasMips2() const { return STI.getFeatureBits() & Mips::FeatureMips2; }
+ bool hasMips3() const { return STI.getFeatureBits() & Mips::FeatureMips3; }
+ bool hasMips4() const { return STI.getFeatureBits() & Mips::FeatureMips4; }
+ bool hasMips5() const { return STI.getFeatureBits() & Mips::FeatureMips5; }
+ bool hasMips32() const {
+ return (STI.getFeatureBits() & Mips::FeatureMips32);
+ }
+ bool hasMips64() const {
+ return (STI.getFeatureBits() & Mips::FeatureMips64);
+ }
+ bool hasMips32r2() const {
+ return (STI.getFeatureBits() & Mips::FeatureMips32r2);
+ }
+ bool hasMips64r2() const {
+ return (STI.getFeatureBits() & Mips::FeatureMips64r2);
+ }
+ bool hasMips32r6() const {
+ return (STI.getFeatureBits() & Mips::FeatureMips32r6);
+ }
+ bool hasMips64r6() const {
+ return (STI.getFeatureBits() & Mips::FeatureMips64r6);
+ }
+ bool hasDSP() const { return (STI.getFeatureBits() & Mips::FeatureDSP); }
+ bool hasDSPR2() const { return (STI.getFeatureBits() & Mips::FeatureDSPR2); }
+ bool hasMSA() const { return (STI.getFeatureBits() & Mips::FeatureMSA); }
+
+ bool inMips16Mode() const {
+ return STI.getFeatureBits() & Mips::FeatureMips16;
+ }
+ // TODO: see how can we get this info.
+ bool abiUsesSoftFloat() const { return false; }
+
+ /// Warn if RegNo is the current assembler temporary.
+ void WarnIfAssemblerTemporary(int RegNo, SMLoc Loc);
+};
+}
+
+namespace {
+
+/// MipsOperand - Instances of this class represent a parsed Mips machine
+/// instruction.
+class MipsOperand : public MCParsedAsmOperand {
+public:
+ /// Broad categories of register classes
+ /// The exact class is finalized by the render method.
+ enum RegKind {
+ RegKind_GPR = 1, /// GPR32 and GPR64 (depending on isGP64bit())
+ RegKind_FGR = 2, /// FGR32, FGR64, AFGR64 (depending on context and
+ /// isFP64bit())
+ RegKind_FCC = 4, /// FCC
+ RegKind_MSA128 = 8, /// MSA128[BHWD] (makes no difference which)
+ RegKind_MSACtrl = 16, /// MSA control registers
+ RegKind_COP2 = 32, /// COP2
+ RegKind_ACC = 64, /// HI32DSP, LO32DSP, and ACC64DSP (depending on
+ /// context).
+ RegKind_CCR = 128, /// CCR
+ RegKind_HWRegs = 256, /// HWRegs
+ RegKind_COP3 = 512, /// COP3
+
+ /// Potentially any (e.g. $1)
+ RegKind_Numeric = RegKind_GPR | RegKind_FGR | RegKind_FCC | RegKind_MSA128 |
+ RegKind_MSACtrl | RegKind_COP2 | RegKind_ACC |
+ RegKind_CCR | RegKind_HWRegs | RegKind_COP3
+ };
+
+private:
+ enum KindTy {
+ k_Immediate, /// An immediate (possibly involving symbol references)
+ k_Memory, /// Base + Offset Memory Address
+ k_PhysRegister, /// A physical register from the Mips namespace
+ k_RegisterIndex, /// A register index in one or more RegKind.
+ k_Token /// A simple token
+ } Kind;
+
+public:
+ MipsOperand(KindTy K, MipsAsmParser &Parser)
+ : MCParsedAsmOperand(), Kind(K), AsmParser(Parser) {}
+
+private:
+ /// For diagnostics, and checking the assembler temporary
+ MipsAsmParser &AsmParser;
+
+ struct Token {
+ const char *Data;
+ unsigned Length;
+ };
+
+ struct PhysRegOp {
+ unsigned Num; /// Register Number
+ };
+
+ struct RegIdxOp {
+ unsigned Index; /// Index into the register class
+ RegKind Kind; /// Bitfield of the kinds it could possibly be
+ const MCRegisterInfo *RegInfo;
+ };
+
+ struct ImmOp {
+ const MCExpr *Val;
+ };
+
+ struct MemOp {
+ MipsOperand *Base;
+ const MCExpr *Off;
+ };
+
+ union {
+ struct Token Tok;
+ struct PhysRegOp PhysReg;
+ struct RegIdxOp RegIdx;
+ struct ImmOp Imm;
+ struct MemOp Mem;
+ };
+
+ SMLoc StartLoc, EndLoc;
+
+ /// Internal constructor for register kinds
+ static std::unique_ptr<MipsOperand> CreateReg(unsigned Index, RegKind RegKind,
+ const MCRegisterInfo *RegInfo,
+ SMLoc S, SMLoc E,
+ MipsAsmParser &Parser) {
+ auto Op = make_unique<MipsOperand>(k_RegisterIndex, Parser);
+ Op->RegIdx.Index = Index;
+ Op->RegIdx.RegInfo = RegInfo;
+ Op->RegIdx.Kind = RegKind;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+public:
+ /// Coerce the register to GPR32 and return the real register for the current
+ /// target.
+ unsigned getGPR32Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
+ AsmParser.WarnIfAssemblerTemporary(RegIdx.Index, StartLoc);
+ unsigned ClassID = Mips::GPR32RegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to GPR64 and return the real register for the current
+ /// target.
+ unsigned getGPR64Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
+ unsigned ClassID = Mips::GPR64RegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+private:
+ /// Coerce the register to AFGR64 and return the real register for the current
+ /// target.
+ unsigned getAFGR64Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
+ if (RegIdx.Index % 2 != 0)
+ AsmParser.Warning(StartLoc, "Float register should be even.");
+ return RegIdx.RegInfo->getRegClass(Mips::AFGR64RegClassID)
+ .getRegister(RegIdx.Index / 2);
+ }
+
+ /// Coerce the register to FGR64 and return the real register for the current
+ /// target.
+ unsigned getFGR64Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
+ return RegIdx.RegInfo->getRegClass(Mips::FGR64RegClassID)
+ .getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to FGR32 and return the real register for the current
+ /// target.
+ unsigned getFGR32Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
+ return RegIdx.RegInfo->getRegClass(Mips::FGR32RegClassID)
+ .getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to FGRH32 and return the real register for the current
+ /// target.
+ unsigned getFGRH32Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
+ return RegIdx.RegInfo->getRegClass(Mips::FGRH32RegClassID)
+ .getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to FCC and return the real register for the current
+ /// target.
+ unsigned getFCCReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_FCC) && "Invalid access!");
+ return RegIdx.RegInfo->getRegClass(Mips::FCCRegClassID)
+ .getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to MSA128 and return the real register for the current
+ /// target.
+ unsigned getMSA128Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_MSA128) && "Invalid access!");
+ // It doesn't matter which of the MSA128[BHWD] classes we use. They are all
+ // identical
+ unsigned ClassID = Mips::MSA128BRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to MSACtrl and return the real register for the
+ /// current target.
+ unsigned getMSACtrlReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_MSACtrl) && "Invalid access!");
+ unsigned ClassID = Mips::MSACtrlRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to COP2 and return the real register for the
+ /// current target.
+ unsigned getCOP2Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_COP2) && "Invalid access!");
+ unsigned ClassID = Mips::COP2RegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to COP3 and return the real register for the
+ /// current target.
+ unsigned getCOP3Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_COP3) && "Invalid access!");
+ unsigned ClassID = Mips::COP3RegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to ACC64DSP and return the real register for the
+ /// current target.
+ unsigned getACC64DSPReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
+ unsigned ClassID = Mips::ACC64DSPRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to HI32DSP and return the real register for the
+ /// current target.
+ unsigned getHI32DSPReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
+ unsigned ClassID = Mips::HI32DSPRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to LO32DSP and return the real register for the
+ /// current target.
+ unsigned getLO32DSPReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
+ unsigned ClassID = Mips::LO32DSPRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to CCR and return the real register for the
+ /// current target.
+ unsigned getCCRReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_CCR) && "Invalid access!");
+ unsigned ClassID = Mips::CCRRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to HWRegs and return the real register for the
+ /// current target.
+ unsigned getHWRegsReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_HWRegs) && "Invalid access!");
+ unsigned ClassID = Mips::HWRegsRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+public:
+ void addExpr(MCInst &Inst, const MCExpr *Expr) const {
+ // Add as immediate when possible. Null MCExpr = 0.
+ if (!Expr)
+ Inst.addOperand(MCOperand::CreateImm(0));
+ else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(Expr));
+ }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ llvm_unreachable("Use a custom parser instead");
+ }
+
+ /// Render the operand to an MCInst as a GPR32
+ /// Asserts if the wrong number of operands are requested, or the operand
+ /// is not a k_RegisterIndex compatible with RegKind_GPR
+ void addGPR32AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getGPR32Reg()));
+ }
+
+ /// Render the operand to an MCInst as a GPR64
+ /// Asserts if the wrong number of operands are requested, or the operand
+ /// is not a k_RegisterIndex compatible with RegKind_GPR
+ void addGPR64AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getGPR64Reg()));
+ }
+
+ void addAFGR64AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getAFGR64Reg()));
+ }
+
+ void addFGR64AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getFGR64Reg()));
+ }
+
+ void addFGR32AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getFGR32Reg()));
+ // FIXME: We ought to do this for -integrated-as without -via-file-asm too.
+ if (!AsmParser.useOddSPReg() && RegIdx.Index & 1)
+ AsmParser.Error(StartLoc, "-mno-odd-spreg prohibits the use of odd FPU "
+ "registers");
+ }
+
+ void addFGRH32AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getFGRH32Reg()));
+ }
+
+ void addFCCAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getFCCReg()));
+ }
+
+ void addMSA128AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getMSA128Reg()));
+ }
+
+ void addMSACtrlAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getMSACtrlReg()));
+ }
+
+ void addCOP2AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getCOP2Reg()));
+ }
+
+ void addCOP3AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getCOP3Reg()));
+ }
+
+ void addACC64DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getACC64DSPReg()));
+ }
+
+ void addHI32DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getHI32DSPReg()));
+ }
+
+ void addLO32DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getLO32DSPReg()));
+ }
+
+ void addCCRAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getCCRReg()));
+ }
+
+ void addHWRegsAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getHWRegsReg()));
+ }
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCExpr *Expr = getImm();
+ addExpr(Inst, Expr);
+ }
+
+ void addMemOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+
+ Inst.addOperand(MCOperand::CreateReg(getMemBase()->getGPR32Reg()));
+
+ const MCExpr *Expr = getMemOff();
+ addExpr(Inst, Expr);
+ }
+
+ bool isReg() const override {
+ // As a special case until we sort out the definition of div/divu, pretend
+ // that $0/$zero are k_PhysRegister so that MCK_ZERO works correctly.
+ if (isGPRAsmReg() && RegIdx.Index == 0)
+ return true;
+
+ return Kind == k_PhysRegister;
+ }
+ bool isRegIdx() const { return Kind == k_RegisterIndex; }
+ bool isImm() const override { return Kind == k_Immediate; }
+ bool isConstantImm() const {
+ return isImm() && dyn_cast<MCConstantExpr>(getImm());
+ }
+ bool isToken() const override {
+ // Note: It's not possible to pretend that other operand kinds are tokens.
+ // The matcher emitter checks tokens first.
+ return Kind == k_Token;
+ }
+ bool isMem() const override { return Kind == k_Memory; }
+ bool isConstantMemOff() const {
+ return isMem() && dyn_cast<MCConstantExpr>(getMemOff());
+ }
+ template <unsigned Bits> bool isMemWithSimmOffset() const {
+ return isMem() && isConstantMemOff() && isInt<Bits>(getConstantMemOff());
+ }
+ bool isInvNum() const { return Kind == k_Immediate; }
+ bool isLSAImm() const {
+ if (!isConstantImm())
+ return false;
+ int64_t Val = getConstantImm();
+ return 1 <= Val && Val <= 4;
+ }
+
+ StringRef getToken() const {
+ assert(Kind == k_Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+
+ unsigned getReg() const override {
+ // As a special case until we sort out the definition of div/divu, pretend
+ // that $0/$zero are k_PhysRegister so that MCK_ZERO works correctly.
+ if (Kind == k_RegisterIndex && RegIdx.Index == 0 &&
+ RegIdx.Kind & RegKind_GPR)
+ return getGPR32Reg(); // FIXME: GPR64 too
+
+ assert(Kind == k_PhysRegister && "Invalid access!");
+ return PhysReg.Num;
+ }
+
+ const MCExpr *getImm() const {
+ assert((Kind == k_Immediate) && "Invalid access!");
+ return Imm.Val;
+ }
+
+ int64_t getConstantImm() const {
+ const MCExpr *Val = getImm();
+ return static_cast<const MCConstantExpr *>(Val)->getValue();
+ }
+
+ MipsOperand *getMemBase() const {
+ assert((Kind == k_Memory) && "Invalid access!");
+ return Mem.Base;
+ }
+
+ const MCExpr *getMemOff() const {
+ assert((Kind == k_Memory) && "Invalid access!");
+ return Mem.Off;
+ }
+
+ int64_t getConstantMemOff() const {
+ return static_cast<const MCConstantExpr *>(getMemOff())->getValue();
+ }
+
+ static std::unique_ptr<MipsOperand> CreateToken(StringRef Str, SMLoc S,
+ MipsAsmParser &Parser) {
+ auto Op = make_unique<MipsOperand>(k_Token, Parser);
+ Op->Tok.Data = Str.data();
+ Op->Tok.Length = Str.size();
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ /// Create a numeric register (e.g. $1). The exact register remains
+ /// unresolved until an instruction successfully matches
+ static std::unique_ptr<MipsOperand>
+ CreateNumericReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
+ SMLoc E, MipsAsmParser &Parser) {
+ DEBUG(dbgs() << "CreateNumericReg(" << Index << ", ...)\n");
+ return CreateReg(Index, RegKind_Numeric, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely a GPR.
+ /// This is typically only used for named registers such as $gp.
+ static std::unique_ptr<MipsOperand>
+ CreateGPRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_GPR, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely a FGR.
+ /// This is typically only used for named registers such as $f0.
+ static std::unique_ptr<MipsOperand>
+ CreateFGRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_FGR, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely an FCC.
+ /// This is typically only used for named registers such as $fcc0.
+ static std::unique_ptr<MipsOperand>
+ CreateFCCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_FCC, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely an ACC.
+ /// This is typically only used for named registers such as $ac0.
+ static std::unique_ptr<MipsOperand>
+ CreateACCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_ACC, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely an MSA128.
+ /// This is typically only used for named registers such as $w0.
+ static std::unique_ptr<MipsOperand>
+ CreateMSA128Reg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
+ SMLoc E, MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_MSA128, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely an MSACtrl.
+ /// This is typically only used for named registers such as $msaaccess.
+ static std::unique_ptr<MipsOperand>
+ CreateMSACtrlReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
+ SMLoc E, MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_MSACtrl, RegInfo, S, E, Parser);
+ }
+
+ static std::unique_ptr<MipsOperand>
+ CreateImm(const MCExpr *Val, SMLoc S, SMLoc E, MipsAsmParser &Parser) {
+ auto Op = make_unique<MipsOperand>(k_Immediate, Parser);
+ Op->Imm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<MipsOperand>
+ CreateMem(std::unique_ptr<MipsOperand> Base, const MCExpr *Off, SMLoc S,
+ SMLoc E, MipsAsmParser &Parser) {
+ auto Op = make_unique<MipsOperand>(k_Memory, Parser);
+ Op->Mem.Base = Base.release();
+ Op->Mem.Off = Off;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ bool isGPRAsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_GPR && RegIdx.Index <= 31;
+ }
+ bool isFGRAsmReg() const {
+ // AFGR64 is $0-$15 but we handle this in getAFGR64()
+ return isRegIdx() && RegIdx.Kind & RegKind_FGR && RegIdx.Index <= 31;
+ }
+ bool isHWRegsAsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_HWRegs && RegIdx.Index <= 31;
+ }
+ bool isCCRAsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_CCR && RegIdx.Index <= 31;
+ }
+ bool isFCCAsmReg() const {
+ if (!(isRegIdx() && RegIdx.Kind & RegKind_FCC))
+ return false;
+ if (!AsmParser.hasEightFccRegisters())
+ return RegIdx.Index == 0;
+ return RegIdx.Index <= 7;
+ }
+ bool isACCAsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_ACC && RegIdx.Index <= 3;
+ }
+ bool isCOP2AsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_COP2 && RegIdx.Index <= 31;
+ }
+ bool isCOP3AsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_COP3 && RegIdx.Index <= 31;
+ }
+ bool isMSA128AsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_MSA128 && RegIdx.Index <= 31;
+ }
+ bool isMSACtrlAsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_MSACtrl && RegIdx.Index <= 7;
+ }
+
+ /// getStartLoc - Get the location of the first token of this operand.
+ SMLoc getStartLoc() const override { return StartLoc; }
+ /// getEndLoc - Get the location of the last token of this operand.
+ SMLoc getEndLoc() const override { return EndLoc; }
+
+ virtual ~MipsOperand() {
+ switch (Kind) {
+ case k_Immediate:
+ break;
+ case k_Memory:
+ delete Mem.Base;
+ break;
+ case k_PhysRegister:
+ case k_RegisterIndex:
+ case k_Token:
+ break;
+ }
+ }
+
+ void print(raw_ostream &OS) const override {
+ switch (Kind) {
+ case k_Immediate:
+ OS << "Imm<";
+ Imm.Val->print(OS);
+ OS << ">";
+ break;
+ case k_Memory:
+ OS << "Mem<";
+ Mem.Base->print(OS);
+ OS << ", ";
+ Mem.Off->print(OS);
+ OS << ">";
+ break;
+ case k_PhysRegister:
+ OS << "PhysReg<" << PhysReg.Num << ">";
+ break;
+ case k_RegisterIndex:
+ OS << "RegIdx<" << RegIdx.Index << ":" << RegIdx.Kind << ">";
+ break;
+ case k_Token:
+ OS << Tok.Data;
+ break;
+ }
+ }
+}; // class MipsOperand
+} // namespace
+
+namespace llvm {
+extern const MCInstrDesc MipsInsts[];
+}
+static const MCInstrDesc &getInstDesc(unsigned Opcode) {
+ return MipsInsts[Opcode];
+}
+
+bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
+
+ Inst.setLoc(IDLoc);
+
+ if (MCID.isBranch() || MCID.isCall()) {
+ const unsigned Opcode = Inst.getOpcode();
+ MCOperand Offset;
+
+ switch (Opcode) {
+ default:
+ break;
+ case Mips::BEQ:
+ case Mips::BNE:
+ case Mips::BEQ_MM:
+ case Mips::BNE_MM:
+ assert(MCID.getNumOperands() == 3 && "unexpected number of operands");
+ Offset = Inst.getOperand(2);
+ if (!Offset.isImm())
+ break; // We'll deal with this situation later on when applying fixups.
+ if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm()))
+ return Error(IDLoc, "branch target out of range");
+ if (OffsetToAlignment(Offset.getImm(),
+ 1LL << (inMicroMipsMode() ? 1 : 2)))
+ return Error(IDLoc, "branch to misaligned address");
+ break;
+ case Mips::BGEZ:
+ case Mips::BGTZ:
+ case Mips::BLEZ:
+ case Mips::BLTZ:
+ case Mips::BGEZAL:
+ case Mips::BLTZAL:
+ case Mips::BC1F:
+ case Mips::BC1T:
+ case Mips::BGEZ_MM:
+ case Mips::BGTZ_MM:
+ case Mips::BLEZ_MM:
+ case Mips::BLTZ_MM:
+ case Mips::BGEZAL_MM:
+ case Mips::BLTZAL_MM:
+ case Mips::BC1F_MM:
+ case Mips::BC1T_MM:
+ assert(MCID.getNumOperands() == 2 && "unexpected number of operands");
+ Offset = Inst.getOperand(1);
+ if (!Offset.isImm())
+ break; // We'll deal with this situation later on when applying fixups.
+ if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm()))
+ return Error(IDLoc, "branch target out of range");
+ if (OffsetToAlignment(Offset.getImm(),
+ 1LL << (inMicroMipsMode() ? 1 : 2)))
+ return Error(IDLoc, "branch to misaligned address");
+ break;
+ }
+ }
+
+ // SSNOP is deprecated on MIPS32r6/MIPS64r6
+ // We still accept it but it is a normal nop.
+ if (hasMips32r6() && Inst.getOpcode() == Mips::SSNOP) {
+ std::string ISA = hasMips64r6() ? "MIPS64r6" : "MIPS32r6";
+ Warning(IDLoc, "ssnop is deprecated for " + ISA + " and is equivalent to a "
+ "nop instruction");
+ }
+
+ if (MCID.hasDelaySlot() && Options.isReorder()) {
+ // If this instruction has a delay slot and .set reorder is active,
+ // emit a NOP after it.
+ Instructions.push_back(Inst);
+ MCInst NopInst;
+ NopInst.setOpcode(Mips::SLL);
+ NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
+ NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
+ NopInst.addOperand(MCOperand::CreateImm(0));
+ Instructions.push_back(NopInst);
+ return false;
+ }
+
+ if (MCID.mayLoad() || MCID.mayStore()) {
+ // Check the offset of memory operand, if it is a symbol
+ // reference or immediate we may have to expand instructions.
+ for (unsigned i = 0; i < MCID.getNumOperands(); i++) {
+ const MCOperandInfo &OpInfo = MCID.OpInfo[i];
+ if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) ||
+ (OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) {
+ MCOperand &Op = Inst.getOperand(i);
+ if (Op.isImm()) {
+ int MemOffset = Op.getImm();
+ if (MemOffset < -32768 || MemOffset > 32767) {
+ // Offset can't exceed 16bit value.
+ expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), true);
+ return false;
+ }
+ } else if (Op.isExpr()) {
+ const MCExpr *Expr = Op.getExpr();
+ if (Expr->getKind() == MCExpr::SymbolRef) {
+ const MCSymbolRefExpr *SR =
+ static_cast<const MCSymbolRefExpr *>(Expr);
+ if (SR->getKind() == MCSymbolRefExpr::VK_None) {
+ // Expand symbol.
+ expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
+ return false;
+ }
+ } else if (!isEvaluated(Expr)) {
+ expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
+ return false;
+ }
+ }
+ }
+ } // for
+ } // if load/store
+
+ if (needsExpansion(Inst))
+ return expandInstruction(Inst, IDLoc, Instructions);
+ else
+ Instructions.push_back(Inst);
+
+ return false;
+}
+
+bool MipsAsmParser::needsExpansion(MCInst &Inst) {
+
+ switch (Inst.getOpcode()) {
+ case Mips::LoadImm32Reg:
+ case Mips::LoadAddr32Imm:
+ case Mips::LoadAddr32Reg:
+ case Mips::LoadImm64Reg:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool MipsAsmParser::expandInstruction(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ switch (Inst.getOpcode()) {
+ default:
+ assert(0 && "unimplemented expansion");
+ return true;
+ case Mips::LoadImm32Reg:
+ return expandLoadImm(Inst, IDLoc, Instructions);
+ case Mips::LoadImm64Reg:
+ if (!isGP64bit()) {
+ Error(IDLoc, "instruction requires a CPU feature not currently enabled");
+ return true;
+ }
+ return expandLoadImm(Inst, IDLoc, Instructions);
+ case Mips::LoadAddr32Imm:
+ return expandLoadAddressImm(Inst, IDLoc, Instructions);
+ case Mips::LoadAddr32Reg:
+ return expandLoadAddressReg(Inst, IDLoc, Instructions);
+ }
+}
+
+namespace {
+template <int Shift, bool PerformShift>
+void createShiftOr(int64_t Value, unsigned RegNo, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ MCInst tmpInst;
+ if (PerformShift) {
+ tmpInst.setOpcode(Mips::DSLL);
+ tmpInst.addOperand(MCOperand::CreateReg(RegNo));
+ tmpInst.addOperand(MCOperand::CreateReg(RegNo));
+ tmpInst.addOperand(MCOperand::CreateImm(16));
+ tmpInst.setLoc(IDLoc);
+ Instructions.push_back(tmpInst);
+ tmpInst.clear();
+ }
+ tmpInst.setOpcode(Mips::ORi);
+ tmpInst.addOperand(MCOperand::CreateReg(RegNo));
+ tmpInst.addOperand(MCOperand::CreateReg(RegNo));
+ tmpInst.addOperand(
+ MCOperand::CreateImm(((Value & (0xffffLL << Shift)) >> Shift)));
+ tmpInst.setLoc(IDLoc);
+ Instructions.push_back(tmpInst);
+}
+}
+
+bool MipsAsmParser::expandLoadImm(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ MCInst tmpInst;
+ const MCOperand &ImmOp = Inst.getOperand(1);
+ assert(ImmOp.isImm() && "expected immediate operand kind");
+ const MCOperand &RegOp = Inst.getOperand(0);
+ assert(RegOp.isReg() && "expected register operand kind");
+
+ int64_t ImmValue = ImmOp.getImm();
+ tmpInst.setLoc(IDLoc);
+ // FIXME: gas has a special case for values that are 000...1111, which
+ // becomes a li -1 and then a dsrl
+ if (0 <= ImmValue && ImmValue <= 65535) {
+ // For 0 <= j <= 65535.
+ // li d,j => ori d,$zero,j
+ tmpInst.setOpcode(Mips::ORi);
+ tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
+ tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
+ Instructions.push_back(tmpInst);
+ } else if (ImmValue < 0 && ImmValue >= -32768) {
+ // For -32768 <= j < 0.
+ // li d,j => addiu d,$zero,j
+ tmpInst.setOpcode(Mips::ADDiu);
+ tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
+ tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
+ Instructions.push_back(tmpInst);
+ } else if ((ImmValue & 0xffffffff) == ImmValue) {
+ // For any value of j that is representable as a 32-bit integer, create
+ // a sequence of:
+ // li d,j => lui d,hi16(j)
+ // ori d,d,lo16(j)
+ tmpInst.setOpcode(Mips::LUi);
+ tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
+ Instructions.push_back(tmpInst);
+ createShiftOr<0, false>(ImmValue, RegOp.getReg(), IDLoc, Instructions);
+ } else if ((ImmValue & (0xffffLL << 48)) == 0) {
+ if (!isGP64bit()) {
+ Error(IDLoc, "instruction requires a CPU feature not currently enabled");
+ return true;
+ }
+
+ // <------- lo32 ------>
+ // <------- hi32 ------>
+ // <- hi16 -> <- lo16 ->
+ // _________________________________
+ // | | | |
+ // | 16-bytes | 16-bytes | 16-bytes |
+ // |__________|__________|__________|
+ //
+ // For any value of j that is representable as a 48-bit integer, create
+ // a sequence of:
+ // li d,j => lui d,hi16(j)
+ // ori d,d,hi16(lo32(j))
+ // dsll d,d,16
+ // ori d,d,lo16(lo32(j))
+ tmpInst.setOpcode(Mips::LUi);
+ tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
+ tmpInst.addOperand(
+ MCOperand::CreateImm((ImmValue & (0xffffLL << 32)) >> 32));
+ Instructions.push_back(tmpInst);
+ createShiftOr<16, false>(ImmValue, RegOp.getReg(), IDLoc, Instructions);
+ createShiftOr<0, true>(ImmValue, RegOp.getReg(), IDLoc, Instructions);
+ } else {
+ if (!isGP64bit()) {
+ Error(IDLoc, "instruction requires a CPU feature not currently enabled");
+ return true;
+ }
+
+ // <------- hi32 ------> <------- lo32 ------>
+ // <- hi16 -> <- lo16 ->
+ // ___________________________________________
+ // | | | | |
+ // | 16-bytes | 16-bytes | 16-bytes | 16-bytes |
+ // |__________|__________|__________|__________|
+ //
+ // For any value of j that isn't representable as a 48-bit integer.
+ // li d,j => lui d,hi16(j)
+ // ori d,d,lo16(hi32(j))
+ // dsll d,d,16
+ // ori d,d,hi16(lo32(j))
+ // dsll d,d,16
+ // ori d,d,lo16(lo32(j))
+ tmpInst.setOpcode(Mips::LUi);
+ tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
+ tmpInst.addOperand(
+ MCOperand::CreateImm((ImmValue & (0xffffLL << 48)) >> 48));
+ Instructions.push_back(tmpInst);
+ createShiftOr<32, false>(ImmValue, RegOp.getReg(), IDLoc, Instructions);
+ createShiftOr<16, true>(ImmValue, RegOp.getReg(), IDLoc, Instructions);
+ createShiftOr<0, true>(ImmValue, RegOp.getReg(), IDLoc, Instructions);
+ }
+ return false;
+}
+
+bool
+MipsAsmParser::expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ MCInst tmpInst;
+ const MCOperand &ImmOp = Inst.getOperand(2);
+ assert(ImmOp.isImm() && "expected immediate operand kind");
+ const MCOperand &SrcRegOp = Inst.getOperand(1);
+ assert(SrcRegOp.isReg() && "expected register operand kind");
+ const MCOperand &DstRegOp = Inst.getOperand(0);
+ assert(DstRegOp.isReg() && "expected register operand kind");
+ int ImmValue = ImmOp.getImm();
+ if (-32768 <= ImmValue && ImmValue <= 65535) {
+ // For -32768 <= j <= 65535.
+ // la d,j(s) => addiu d,s,j
+ tmpInst.setOpcode(Mips::ADDiu);
+ tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateReg(SrcRegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
+ Instructions.push_back(tmpInst);
+ } else {
+ // For any other value of j that is representable as a 32-bit integer.
+ // la d,j(s) => lui d,hi16(j)
+ // ori d,d,lo16(j)
+ // addu d,d,s
+ tmpInst.setOpcode(Mips::LUi);
+ tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
+ Instructions.push_back(tmpInst);
+ tmpInst.clear();
+ tmpInst.setOpcode(Mips::ORi);
+ tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
+ Instructions.push_back(tmpInst);
+ tmpInst.clear();
+ tmpInst.setOpcode(Mips::ADDu);
+ tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateReg(SrcRegOp.getReg()));
+ Instructions.push_back(tmpInst);
+ }
+ return false;
+}
+
+bool
+MipsAsmParser::expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ MCInst tmpInst;
+ const MCOperand &ImmOp = Inst.getOperand(1);
+ assert(ImmOp.isImm() && "expected immediate operand kind");
+ const MCOperand &RegOp = Inst.getOperand(0);
+ assert(RegOp.isReg() && "expected register operand kind");
+ int ImmValue = ImmOp.getImm();
+ if (-32768 <= ImmValue && ImmValue <= 65535) {
+ // For -32768 <= j <= 65535.
+ // la d,j => addiu d,$zero,j
+ tmpInst.setOpcode(Mips::ADDiu);
+ tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
+ tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
+ Instructions.push_back(tmpInst);
+ } else {
+ // For any other value of j that is representable as a 32-bit integer.
+ // la d,j => lui d,hi16(j)
+ // ori d,d,lo16(j)
+ tmpInst.setOpcode(Mips::LUi);
+ tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
+ Instructions.push_back(tmpInst);
+ tmpInst.clear();
+ tmpInst.setOpcode(Mips::ORi);
+ tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
+ tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
+ Instructions.push_back(tmpInst);
+ }
+ return false;
+}
+
+void MipsAsmParser::expandMemInst(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions,
+ bool isLoad, bool isImmOpnd) {
+ const MCSymbolRefExpr *SR;
+ MCInst TempInst;
+ unsigned ImmOffset, HiOffset, LoOffset;
+ const MCExpr *ExprOffset;
+ unsigned TmpRegNum;
+ // 1st operand is either the source or destination register.
+ assert(Inst.getOperand(0).isReg() && "expected register operand kind");
+ unsigned RegOpNum = Inst.getOperand(0).getReg();
+ // 2nd operand is the base register.
+ assert(Inst.getOperand(1).isReg() && "expected register operand kind");
+ unsigned BaseRegNum = Inst.getOperand(1).getReg();
+ // 3rd operand is either an immediate or expression.
+ if (isImmOpnd) {
+ assert(Inst.getOperand(2).isImm() && "expected immediate operand kind");
+ ImmOffset = Inst.getOperand(2).getImm();
+ LoOffset = ImmOffset & 0x0000ffff;
+ HiOffset = (ImmOffset & 0xffff0000) >> 16;
+ // If msb of LoOffset is 1(negative number) we must increment HiOffset.
+ if (LoOffset & 0x8000)
+ HiOffset++;
+ } else
+ ExprOffset = Inst.getOperand(2).getExpr();
+ // All instructions will have the same location.
+ TempInst.setLoc(IDLoc);
+ // These are some of the types of expansions we perform here:
+ // 1) lw $8, sym => lui $8, %hi(sym)
+ // lw $8, %lo(sym)($8)
+ // 2) lw $8, offset($9) => lui $8, %hi(offset)
+ // add $8, $8, $9
+ // lw $8, %lo(offset)($9)
+ // 3) lw $8, offset($8) => lui $at, %hi(offset)
+ // add $at, $at, $8
+ // lw $8, %lo(offset)($at)
+ // 4) sw $8, sym => lui $at, %hi(sym)
+ // sw $8, %lo(sym)($at)
+ // 5) sw $8, offset($8) => lui $at, %hi(offset)
+ // add $at, $at, $8
+ // sw $8, %lo(offset)($at)
+ // 6) ldc1 $f0, sym => lui $at, %hi(sym)
+ // ldc1 $f0, %lo(sym)($at)
+ //
+ // For load instructions we can use the destination register as a temporary
+ // if base and dst are different (examples 1 and 2) and if the base register
+ // is general purpose otherwise we must use $at (example 6) and error if it's
+ // not available. For stores we must use $at (examples 4 and 5) because we
+ // must not clobber the source register setting up the offset.
+ const MCInstrDesc &Desc = getInstDesc(Inst.getOpcode());
+ int16_t RegClassOp0 = Desc.OpInfo[0].RegClass;
+ unsigned RegClassIDOp0 =
+ getContext().getRegisterInfo()->getRegClass(RegClassOp0).getID();
+ bool IsGPR = (RegClassIDOp0 == Mips::GPR32RegClassID) ||
+ (RegClassIDOp0 == Mips::GPR64RegClassID);
+ if (isLoad && IsGPR && (BaseRegNum != RegOpNum))
+ TmpRegNum = RegOpNum;
+ else {
+ int AT = getATReg(IDLoc);
+ // At this point we need AT to perform the expansions and we exit if it is
+ // not available.
+ if (!AT)
+ return;
+ TmpRegNum = getReg(
+ (isGP64bit()) ? Mips::GPR64RegClassID : Mips::GPR32RegClassID, AT);
+ }
+
+ TempInst.setOpcode(Mips::LUi);
+ TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
+ if (isImmOpnd)
+ TempInst.addOperand(MCOperand::CreateImm(HiOffset));
+ else {
+ if (ExprOffset->getKind() == MCExpr::SymbolRef) {
+ SR = static_cast<const MCSymbolRefExpr *>(ExprOffset);
+ const MCSymbolRefExpr *HiExpr = MCSymbolRefExpr::Create(
+ SR->getSymbol().getName(), MCSymbolRefExpr::VK_Mips_ABS_HI,
+ getContext());
+ TempInst.addOperand(MCOperand::CreateExpr(HiExpr));
+ } else {
+ const MCExpr *HiExpr = evaluateRelocExpr(ExprOffset, "hi");
+ TempInst.addOperand(MCOperand::CreateExpr(HiExpr));
+ }
+ }
+ // Add the instruction to the list.
+ Instructions.push_back(TempInst);
+ // Prepare TempInst for next instruction.
+ TempInst.clear();
+ // Add temp register to base.
+ TempInst.setOpcode(Mips::ADDu);
+ TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
+ TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
+ TempInst.addOperand(MCOperand::CreateReg(BaseRegNum));
+ Instructions.push_back(TempInst);
+ TempInst.clear();
+ // And finally, create original instruction with low part
+ // of offset and new base.
+ TempInst.setOpcode(Inst.getOpcode());
+ TempInst.addOperand(MCOperand::CreateReg(RegOpNum));
+ TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
+ if (isImmOpnd)
+ TempInst.addOperand(MCOperand::CreateImm(LoOffset));
+ else {
+ if (ExprOffset->getKind() == MCExpr::SymbolRef) {
+ const MCSymbolRefExpr *LoExpr = MCSymbolRefExpr::Create(
+ SR->getSymbol().getName(), MCSymbolRefExpr::VK_Mips_ABS_LO,
+ getContext());
+ TempInst.addOperand(MCOperand::CreateExpr(LoExpr));
+ } else {
+ const MCExpr *LoExpr = evaluateRelocExpr(ExprOffset, "lo");
+ TempInst.addOperand(MCOperand::CreateExpr(LoExpr));
+ }
+ }
+ Instructions.push_back(TempInst);
+ TempInst.clear();
+}
+
+unsigned MipsAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
+ // As described by the Mips32r2 spec, the registers Rd and Rs for
+ // jalr.hb must be different.
+ unsigned Opcode = Inst.getOpcode();
+
+ if (Opcode == Mips::JALR_HB &&
+ (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()))
+ return Match_RequiresDifferentSrcAndDst;
+
+ return Match_Success;
+}
+
+bool MipsAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ unsigned &ErrorInfo,
+ bool MatchingInlineAsm) {
+
+ MCInst Inst;
+ SmallVector<MCInst, 8> Instructions;
+ unsigned MatchResult =
+ MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
+
+ switch (MatchResult) {
+ default:
+ break;
+ case Match_Success: {
+ if (processInstruction(Inst, IDLoc, Instructions))
+ return true;
+ for (unsigned i = 0; i < Instructions.size(); i++)
+ Out.EmitInstruction(Instructions[i], STI);
+ return false;
+ }
+ case Match_MissingFeature:
+ Error(IDLoc, "instruction requires a CPU feature not currently enabled");
+ return true;
+ case Match_InvalidOperand: {
+ SMLoc ErrorLoc = IDLoc;
+ if (ErrorInfo != ~0U) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ ErrorLoc = ((MipsOperand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc())
+ ErrorLoc = IDLoc;
+ }
+
+ return Error(ErrorLoc, "invalid operand for instruction");
+ }
+ case Match_MnemonicFail:
+ return Error(IDLoc, "invalid instruction");
+ case Match_RequiresDifferentSrcAndDst:
+ return Error(IDLoc, "source and destination must be different");
+ }
+ return true;
+}
+
+void MipsAsmParser::WarnIfAssemblerTemporary(int RegIndex, SMLoc Loc) {
+ if ((RegIndex != 0) && ((int)Options.getATRegNum() == RegIndex)) {
+ if (RegIndex == 1)
+ Warning(Loc, "Used $at without \".set noat\"");
+ else
+ Warning(Loc, Twine("Used $") + Twine(RegIndex) + " with \".set at=$" +
+ Twine(RegIndex) + "\"");
+ }
+}
+
+int MipsAsmParser::matchCPURegisterName(StringRef Name) {
+ int CC;
+
+ CC = StringSwitch<unsigned>(Name)
+ .Case("zero", 0)
+ .Case("at", 1)
+ .Case("a0", 4)
+ .Case("a1", 5)
+ .Case("a2", 6)
+ .Case("a3", 7)
+ .Case("v0", 2)
+ .Case("v1", 3)
+ .Case("s0", 16)
+ .Case("s1", 17)
+ .Case("s2", 18)
+ .Case("s3", 19)
+ .Case("s4", 20)
+ .Case("s5", 21)
+ .Case("s6", 22)
+ .Case("s7", 23)
+ .Case("k0", 26)
+ .Case("k1", 27)
+ .Case("gp", 28)
+ .Case("sp", 29)
+ .Case("fp", 30)
+ .Case("s8", 30)
+ .Case("ra", 31)
+ .Case("t0", 8)
+ .Case("t1", 9)
+ .Case("t2", 10)
+ .Case("t3", 11)
+ .Case("t4", 12)
+ .Case("t5", 13)
+ .Case("t6", 14)
+ .Case("t7", 15)
+ .Case("t8", 24)
+ .Case("t9", 25)
+ .Default(-1);
+
+ if (isABI_N32() || isABI_N64()) {
+ // Although SGI documentation just cuts out t0-t3 for n32/n64,
+ // GNU pushes the values of t0-t3 to override the o32/o64 values for t4-t7
+ // We are supporting both cases, so for t0-t3 we'll just push them to t4-t7.
+ if (8 <= CC && CC <= 11)
+ CC += 4;
+
+ if (CC == -1)
+ CC = StringSwitch<unsigned>(Name)
+ .Case("a4", 8)
+ .Case("a5", 9)
+ .Case("a6", 10)
+ .Case("a7", 11)
+ .Case("kt0", 26)
+ .Case("kt1", 27)
+ .Default(-1);
+ }
+
+ return CC;
+}
+
+int MipsAsmParser::matchFPURegisterName(StringRef Name) {
+
+ if (Name[0] == 'f') {
+ StringRef NumString = Name.substr(1);
+ unsigned IntVal;
+ if (NumString.getAsInteger(10, IntVal))
+ return -1; // This is not an integer.
+ if (IntVal > 31) // Maximum index for fpu register.
+ return -1;
+ return IntVal;
+ }
+ return -1;
+}
+
+int MipsAsmParser::matchFCCRegisterName(StringRef Name) {
+
+ if (Name.startswith("fcc")) {
+ StringRef NumString = Name.substr(3);
+ unsigned IntVal;
+ if (NumString.getAsInteger(10, IntVal))
+ return -1; // This is not an integer.
+ if (IntVal > 7) // There are only 8 fcc registers.
+ return -1;
+ return IntVal;
+ }
+ return -1;
+}
+
+int MipsAsmParser::matchACRegisterName(StringRef Name) {
+
+ if (Name.startswith("ac")) {
+ StringRef NumString = Name.substr(2);
+ unsigned IntVal;
+ if (NumString.getAsInteger(10, IntVal))
+ return -1; // This is not an integer.
+ if (IntVal > 3) // There are only 3 acc registers.
+ return -1;
+ return IntVal;
+ }
+ return -1;
+}
+
+int MipsAsmParser::matchMSA128RegisterName(StringRef Name) {
+ unsigned IntVal;
+
+ if (Name.front() != 'w' || Name.drop_front(1).getAsInteger(10, IntVal))
+ return -1;
+
+ if (IntVal > 31)
+ return -1;
+
+ return IntVal;
+}
+
+int MipsAsmParser::matchMSA128CtrlRegisterName(StringRef Name) {
+ int CC;
+
+ CC = StringSwitch<unsigned>(Name)
+ .Case("msair", 0)
+ .Case("msacsr", 1)
+ .Case("msaaccess", 2)
+ .Case("msasave", 3)
+ .Case("msamodify", 4)
+ .Case("msarequest", 5)
+ .Case("msamap", 6)
+ .Case("msaunmap", 7)
+ .Default(-1);
+
+ return CC;
+}
+
+bool MipsAssemblerOptions::setATReg(unsigned Reg) {
+ if (Reg > 31)
+ return false;
+
+ aTReg = Reg;
+ return true;
+}
+
+int MipsAsmParser::getATReg(SMLoc Loc) {
+ int AT = Options.getATRegNum();
+ if (AT == 0)
+ reportParseError(Loc,
+ "Pseudo instruction requires $at, which is not available");
+ return AT;
+}
+
+unsigned MipsAsmParser::getReg(int RC, int RegNo) {
+ return *(getContext().getRegisterInfo()->getRegClass(RC).begin() + RegNo);
+}
+
+unsigned MipsAsmParser::getGPR(int RegNo) {
+ return getReg(isGP64bit() ? Mips::GPR64RegClassID : Mips::GPR32RegClassID,
+ RegNo);
+}
+
+int MipsAsmParser::matchRegisterByNumber(unsigned RegNum, unsigned RegClass) {
+ if (RegNum >
+ getContext().getRegisterInfo()->getRegClass(RegClass).getNumRegs() - 1)
+ return -1;
+
+ return getReg(RegClass, RegNum);
+}
+
+bool MipsAsmParser::ParseOperand(OperandVector &Operands, StringRef Mnemonic) {
+ DEBUG(dbgs() << "ParseOperand\n");
+
+ // Check if the current operand has a custom associated parser, if so, try to
+ // custom parse the operand, or fallback to the general approach.
+ OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
+ if (ResTy == MatchOperand_Success)
+ return false;
+ // If there wasn't a custom match, try the generic matcher below. Otherwise,
+ // there was a match, but an error occurred, in which case, just return that
+ // the operand parsing failed.
+ if (ResTy == MatchOperand_ParseFail)
+ return true;
+
+ DEBUG(dbgs() << ".. Generic Parser\n");
+
+ switch (getLexer().getKind()) {
+ default:
+ Error(Parser.getTok().getLoc(), "unexpected token in operand");
+ return true;
+ case AsmToken::Dollar: {
+ // Parse the register.
+ SMLoc S = Parser.getTok().getLoc();
+
+ // Almost all registers have been parsed by custom parsers. There is only
+ // one exception to this. $zero (and it's alias $0) will reach this point
+ // for div, divu, and similar instructions because it is not an operand
+ // to the instruction definition but an explicit register. Special case
+ // this situation for now.
+ if (ParseAnyRegister(Operands) != MatchOperand_NoMatch)
+ return false;
+
+ // Maybe it is a symbol reference.
+ StringRef Identifier;
+ if (Parser.parseIdentifier(Identifier))
+ return true;
+
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ MCSymbol *Sym = getContext().GetOrCreateSymbol("$" + Identifier);
+ // Otherwise create a symbol reference.
+ const MCExpr *Res =
+ MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None, getContext());
+
+ Operands.push_back(MipsOperand::CreateImm(Res, S, E, *this));
+ return false;
+ }
+ // Else drop to expression parsing.
+ case AsmToken::LParen:
+ case AsmToken::Minus:
+ case AsmToken::Plus:
+ case AsmToken::Integer:
+ case AsmToken::Tilde:
+ case AsmToken::String: {
+ DEBUG(dbgs() << ".. generic integer\n");
+ OperandMatchResultTy ResTy = ParseImm(Operands);
+ return ResTy != MatchOperand_Success;
+ }
+ case AsmToken::Percent: {
+ // It is a symbol reference or constant expression.
+ const MCExpr *IdVal;
+ SMLoc S = Parser.getTok().getLoc(); // Start location of the operand.
+ if (parseRelocOperand(IdVal))
+ return true;
+
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+
+ Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
+ return false;
+ } // case AsmToken::Percent
+ } // switch(getLexer().getKind())
+ return true;
+}
+
+const MCExpr *MipsAsmParser::evaluateRelocExpr(const MCExpr *Expr,
+ StringRef RelocStr) {
+ const MCExpr *Res;
+ // Check the type of the expression.
+ if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Expr)) {
+ // It's a constant, evaluate reloc value.
+ int16_t Val;
+ switch (getVariantKind(RelocStr)) {
+ case MCSymbolRefExpr::VK_Mips_ABS_LO:
+ // Get the 1st 16-bits.
+ Val = MCE->getValue() & 0xffff;
+ break;
+ case MCSymbolRefExpr::VK_Mips_ABS_HI:
+ // Get the 2nd 16-bits. Also add 1 if bit 15 is 1, to compensate for low
+ // 16 bits being negative.
+ Val = ((MCE->getValue() + 0x8000) >> 16) & 0xffff;
+ break;
+ case MCSymbolRefExpr::VK_Mips_HIGHER:
+ // Get the 3rd 16-bits.
+ Val = ((MCE->getValue() + 0x80008000LL) >> 32) & 0xffff;
+ break;
+ case MCSymbolRefExpr::VK_Mips_HIGHEST:
+ // Get the 4th 16-bits.
+ Val = ((MCE->getValue() + 0x800080008000LL) >> 48) & 0xffff;
+ break;
+ default:
+ report_fatal_error("Unsupported reloc value!");
+ }
+ return MCConstantExpr::Create(Val, getContext());
+ }
+
+ if (const MCSymbolRefExpr *MSRE = dyn_cast<MCSymbolRefExpr>(Expr)) {
+ // It's a symbol, create a symbolic expression from the symbol.
+ StringRef Symbol = MSRE->getSymbol().getName();
+ MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr);
+ Res = MCSymbolRefExpr::Create(Symbol, VK, getContext());
+ return Res;
+ }
+
+ if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
+ MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr);
+
+ // Try to create target expression.
+ if (MipsMCExpr::isSupportedBinaryExpr(VK, BE))
+ return MipsMCExpr::Create(VK, Expr, getContext());
+
+ const MCExpr *LExp = evaluateRelocExpr(BE->getLHS(), RelocStr);
+ const MCExpr *RExp = evaluateRelocExpr(BE->getRHS(), RelocStr);
+ Res = MCBinaryExpr::Create(BE->getOpcode(), LExp, RExp, getContext());
+ return Res;
+ }
+
+ if (const MCUnaryExpr *UN = dyn_cast<MCUnaryExpr>(Expr)) {
+ const MCExpr *UnExp = evaluateRelocExpr(UN->getSubExpr(), RelocStr);
+ Res = MCUnaryExpr::Create(UN->getOpcode(), UnExp, getContext());
+ return Res;
+ }
+ // Just return the original expression.
+ return Expr;
+}
+
+bool MipsAsmParser::isEvaluated(const MCExpr *Expr) {
+
+ switch (Expr->getKind()) {
+ case MCExpr::Constant:
+ return true;
+ case MCExpr::SymbolRef:
+ return (cast<MCSymbolRefExpr>(Expr)->getKind() != MCSymbolRefExpr::VK_None);
+ case MCExpr::Binary:
+ if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
+ if (!isEvaluated(BE->getLHS()))
+ return false;
+ return isEvaluated(BE->getRHS());
+ }
+ case MCExpr::Unary:
+ return isEvaluated(cast<MCUnaryExpr>(Expr)->getSubExpr());
+ case MCExpr::Target:
+ return true;
+ }
+ return false;
+}
+
+bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) {
+ Parser.Lex(); // Eat the % token.
+ const AsmToken &Tok = Parser.getTok(); // Get next token, operation.
+ if (Tok.isNot(AsmToken::Identifier))
+ return true;
+
+ std::string Str = Tok.getIdentifier().str();
+
+ Parser.Lex(); // Eat the identifier.
+ // Now make an expression from the rest of the operand.
+ const MCExpr *IdVal;
+ SMLoc EndLoc;
+
+ if (getLexer().getKind() == AsmToken::LParen) {
+ while (1) {
+ Parser.Lex(); // Eat the '(' token.
+ if (getLexer().getKind() == AsmToken::Percent) {
+ Parser.Lex(); // Eat the % token.
+ const AsmToken &nextTok = Parser.getTok();
+ if (nextTok.isNot(AsmToken::Identifier))
+ return true;
+ Str += "(%";
+ Str += nextTok.getIdentifier();
+ Parser.Lex(); // Eat the identifier.
+ if (getLexer().getKind() != AsmToken::LParen)
+ return true;
+ } else
+ break;
+ }
+ if (getParser().parseParenExpression(IdVal, EndLoc))
+ return true;
+
+ while (getLexer().getKind() == AsmToken::RParen)
+ Parser.Lex(); // Eat the ')' token.
+
+ } else
+ return true; // Parenthesis must follow the relocation operand.
+
+ Res = evaluateRelocExpr(IdVal, Str);
+ return false;
+}
+
+bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
+ SMLoc &EndLoc) {
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
+ OperandMatchResultTy ResTy = ParseAnyRegister(Operands);
+ if (ResTy == MatchOperand_Success) {
+ assert(Operands.size() == 1);
+ MipsOperand &Operand = static_cast<MipsOperand &>(*Operands.front());
+ StartLoc = Operand.getStartLoc();
+ EndLoc = Operand.getEndLoc();
+
+ // AFAIK, we only support numeric registers and named GPR's in CFI
+ // directives.
+ // Don't worry about eating tokens before failing. Using an unrecognised
+ // register is a parse error.
+ if (Operand.isGPRAsmReg()) {
+ // Resolve to GPR32 or GPR64 appropriately.
+ RegNo = isGP64bit() ? Operand.getGPR64Reg() : Operand.getGPR32Reg();
+ }
+
+ return (RegNo == (unsigned)-1);
+ }
+
+ assert(Operands.size() == 0);
+ return (RegNo == (unsigned)-1);
+}
+
+bool MipsAsmParser::parseMemOffset(const MCExpr *&Res, bool isParenExpr) {
+ SMLoc S;
+ bool Result = true;
+
+ while (getLexer().getKind() == AsmToken::LParen)
+ Parser.Lex();
+
+ switch (getLexer().getKind()) {
+ default:
+ return true;
+ case AsmToken::Identifier:
+ case AsmToken::LParen:
+ case AsmToken::Integer:
+ case AsmToken::Minus:
+ case AsmToken::Plus:
+ if (isParenExpr)
+ Result = getParser().parseParenExpression(Res, S);
+ else
+ Result = (getParser().parseExpression(Res));
+ while (getLexer().getKind() == AsmToken::RParen)
+ Parser.Lex();
+ break;
+ case AsmToken::Percent:
+ Result = parseRelocOperand(Res);
+ }
+ return Result;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseMemOperand(OperandVector &Operands) {
+ DEBUG(dbgs() << "parseMemOperand\n");
+ const MCExpr *IdVal = nullptr;
+ SMLoc S;
+ bool isParenExpr = false;
+ MipsAsmParser::OperandMatchResultTy Res = MatchOperand_NoMatch;
+ // First operand is the offset.
+ S = Parser.getTok().getLoc();
+
+ if (getLexer().getKind() == AsmToken::LParen) {
+ Parser.Lex();
+ isParenExpr = true;
+ }
+
+ if (getLexer().getKind() != AsmToken::Dollar) {
+ if (parseMemOffset(IdVal, isParenExpr))
+ return MatchOperand_ParseFail;
+
+ const AsmToken &Tok = Parser.getTok(); // Get the next token.
+ if (Tok.isNot(AsmToken::LParen)) {
+ MipsOperand &Mnemonic = static_cast<MipsOperand &>(*Operands[0]);
+ if (Mnemonic.getToken() == "la") {
+ SMLoc E =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
+ return MatchOperand_Success;
+ }
+ if (Tok.is(AsmToken::EndOfStatement)) {
+ SMLoc E =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+
+ // Zero register assumed, add a memory operand with ZERO as its base.
+ // "Base" will be managed by k_Memory.
+ auto Base = MipsOperand::CreateGPRReg(0, getContext().getRegisterInfo(),
+ S, E, *this);
+ Operands.push_back(
+ MipsOperand::CreateMem(std::move(Base), IdVal, S, E, *this));
+ return MatchOperand_Success;
+ }
+ Error(Parser.getTok().getLoc(), "'(' expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Parser.Lex(); // Eat the '(' token.
+ }
+
+ Res = ParseAnyRegister(Operands);
+ if (Res != MatchOperand_Success)
+ return Res;
+
+ if (Parser.getTok().isNot(AsmToken::RParen)) {
+ Error(Parser.getTok().getLoc(), "')' expected");
+ return MatchOperand_ParseFail;
+ }
+
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+
+ Parser.Lex(); // Eat the ')' token.
+
+ if (!IdVal)
+ IdVal = MCConstantExpr::Create(0, getContext());
+
+ // Replace the register operand with the memory operand.
+ std::unique_ptr<MipsOperand> op(
+ static_cast<MipsOperand *>(Operands.back().release()));
+ // Remove the register from the operands.
+ // "op" will be managed by k_Memory.
+ Operands.pop_back();
+ // Add the memory operand.
+ if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(IdVal)) {
+ int64_t Imm;
+ if (IdVal->EvaluateAsAbsolute(Imm))
+ IdVal = MCConstantExpr::Create(Imm, getContext());
+ else if (BE->getLHS()->getKind() != MCExpr::SymbolRef)
+ IdVal = MCBinaryExpr::Create(BE->getOpcode(), BE->getRHS(), BE->getLHS(),
+ getContext());
+ }
+
+ Operands.push_back(MipsOperand::CreateMem(std::move(op), IdVal, S, E, *this));
+ return MatchOperand_Success;
+}
+
+bool MipsAsmParser::searchSymbolAlias(OperandVector &Operands) {
+
+ MCSymbol *Sym = getContext().LookupSymbol(Parser.getTok().getIdentifier());
+ if (Sym) {
+ SMLoc S = Parser.getTok().getLoc();
+ const MCExpr *Expr;
+ if (Sym->isVariable())
+ Expr = Sym->getVariableValue();
+ else
+ return false;
+ if (Expr->getKind() == MCExpr::SymbolRef) {
+ const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
+ const StringRef DefSymbol = Ref->getSymbol().getName();
+ if (DefSymbol.startswith("$")) {
+ OperandMatchResultTy ResTy =
+ MatchAnyRegisterNameWithoutDollar(Operands, DefSymbol.substr(1), S);
+ if (ResTy == MatchOperand_Success) {
+ Parser.Lex();
+ return true;
+ } else if (ResTy == MatchOperand_ParseFail)
+ llvm_unreachable("Should never ParseFail");
+ return false;
+ }
+ } else if (Expr->getKind() == MCExpr::Constant) {
+ Parser.Lex();
+ const MCConstantExpr *Const = static_cast<const MCConstantExpr *>(Expr);
+ Operands.push_back(
+ MipsOperand::CreateImm(Const, S, Parser.getTok().getLoc(), *this));
+ return true;
+ }
+ }
+ return false;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::MatchAnyRegisterNameWithoutDollar(OperandVector &Operands,
+ StringRef Identifier,
+ SMLoc S) {
+ int Index = matchCPURegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::CreateGPRReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchFPURegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::CreateFGRReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchFCCRegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::CreateFCCReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchACRegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::CreateACCReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchMSA128RegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::CreateMSA128Reg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchMSA128CtrlRegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::CreateMSACtrlReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ return MatchOperand_NoMatch;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::MatchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S) {
+ auto Token = Parser.getLexer().peekTok(false);
+
+ if (Token.is(AsmToken::Identifier)) {
+ DEBUG(dbgs() << ".. identifier\n");
+ StringRef Identifier = Token.getIdentifier();
+ OperandMatchResultTy ResTy =
+ MatchAnyRegisterNameWithoutDollar(Operands, Identifier, S);
+ return ResTy;
+ } else if (Token.is(AsmToken::Integer)) {
+ DEBUG(dbgs() << ".. integer\n");
+ Operands.push_back(MipsOperand::CreateNumericReg(
+ Token.getIntVal(), getContext().getRegisterInfo(), S, Token.getLoc(),
+ *this));
+ return MatchOperand_Success;
+ }
+
+ DEBUG(dbgs() << Parser.getTok().getKind() << "\n");
+
+ return MatchOperand_NoMatch;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::ParseAnyRegister(OperandVector &Operands) {
+ DEBUG(dbgs() << "ParseAnyRegister\n");
+
+ auto Token = Parser.getTok();
+
+ SMLoc S = Token.getLoc();
+
+ if (Token.isNot(AsmToken::Dollar)) {
+ DEBUG(dbgs() << ".. !$ -> try sym aliasing\n");
+ if (Token.is(AsmToken::Identifier)) {
+ if (searchSymbolAlias(Operands))
+ return MatchOperand_Success;
+ }
+ DEBUG(dbgs() << ".. !symalias -> NoMatch\n");
+ return MatchOperand_NoMatch;
+ }
+ DEBUG(dbgs() << ".. $\n");
+
+ OperandMatchResultTy ResTy = MatchAnyRegisterWithoutDollar(Operands, S);
+ if (ResTy == MatchOperand_Success) {
+ Parser.Lex(); // $
+ Parser.Lex(); // identifier
+ }
+ return ResTy;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::ParseImm(OperandVector &Operands) {
+ switch (getLexer().getKind()) {
+ default:
+ return MatchOperand_NoMatch;
+ case AsmToken::LParen:
+ case AsmToken::Minus:
+ case AsmToken::Plus:
+ case AsmToken::Integer:
+ case AsmToken::Tilde:
+ case AsmToken::String:
+ break;
+ }
+
+ const MCExpr *IdVal;
+ SMLoc S = Parser.getTok().getLoc();
+ if (getParser().parseExpression(IdVal))
+ return MatchOperand_ParseFail;
+
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
+ return MatchOperand_Success;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::ParseJumpTarget(OperandVector &Operands) {
+ DEBUG(dbgs() << "ParseJumpTarget\n");
+
+ SMLoc S = getLexer().getLoc();
+
+ // Integers and expressions are acceptable
+ OperandMatchResultTy ResTy = ParseImm(Operands);
+ if (ResTy != MatchOperand_NoMatch)
+ return ResTy;
+
+ // Registers are a valid target and have priority over symbols.
+ ResTy = ParseAnyRegister(Operands);
+ if (ResTy != MatchOperand_NoMatch)
+ return ResTy;
+
+ const MCExpr *Expr = nullptr;
+ if (Parser.parseExpression(Expr)) {
+ // We have no way of knowing if a symbol was consumed so we must ParseFail
+ return MatchOperand_ParseFail;
+ }
+ Operands.push_back(
+ MipsOperand::CreateImm(Expr, S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseInvNum(OperandVector &Operands) {
+ const MCExpr *IdVal;
+ // If the first token is '$' we may have register operand.
+ if (Parser.getTok().is(AsmToken::Dollar))
+ return MatchOperand_NoMatch;
+ SMLoc S = Parser.getTok().getLoc();
+ if (getParser().parseExpression(IdVal))
+ return MatchOperand_ParseFail;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(IdVal);
+ assert(MCE && "Unexpected MCExpr type.");
+ int64_t Val = MCE->getValue();
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(MipsOperand::CreateImm(
+ MCConstantExpr::Create(0 - Val, getContext()), S, E, *this));
+ return MatchOperand_Success;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::ParseLSAImm(OperandVector &Operands) {
+ switch (getLexer().getKind()) {
+ default:
+ return MatchOperand_NoMatch;
+ case AsmToken::LParen:
+ case AsmToken::Plus:
+ case AsmToken::Minus:
+ case AsmToken::Integer:
+ break;
+ }
+
+ const MCExpr *Expr;
+ SMLoc S = Parser.getTok().getLoc();
+
+ if (getParser().parseExpression(Expr))
+ return MatchOperand_ParseFail;
+
+ int64_t Val;
+ if (!Expr->EvaluateAsAbsolute(Val)) {
+ Error(S, "expected immediate value");
+ return MatchOperand_ParseFail;
+ }
+
+ // The LSA instruction allows a 2-bit unsigned immediate. For this reason
+ // and because the CPU always adds one to the immediate field, the allowed
+ // range becomes 1..4. We'll only check the range here and will deal
+ // with the addition/subtraction when actually decoding/encoding
+ // the instruction.
+ if (Val < 1 || Val > 4) {
+ Error(S, "immediate not in range (1..4)");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(
+ MipsOperand::CreateImm(Expr, S, Parser.getTok().getLoc(), *this));
+ return MatchOperand_Success;
+}
+
+MCSymbolRefExpr::VariantKind MipsAsmParser::getVariantKind(StringRef Symbol) {
+
+ MCSymbolRefExpr::VariantKind VK =
+ StringSwitch<MCSymbolRefExpr::VariantKind>(Symbol)
+ .Case("hi", MCSymbolRefExpr::VK_Mips_ABS_HI)
+ .Case("lo", MCSymbolRefExpr::VK_Mips_ABS_LO)
+ .Case("gp_rel", MCSymbolRefExpr::VK_Mips_GPREL)
+ .Case("call16", MCSymbolRefExpr::VK_Mips_GOT_CALL)
+ .Case("got", MCSymbolRefExpr::VK_Mips_GOT)
+ .Case("tlsgd", MCSymbolRefExpr::VK_Mips_TLSGD)
+ .Case("tlsldm", MCSymbolRefExpr::VK_Mips_TLSLDM)
+ .Case("dtprel_hi", MCSymbolRefExpr::VK_Mips_DTPREL_HI)
+ .Case("dtprel_lo", MCSymbolRefExpr::VK_Mips_DTPREL_LO)
+ .Case("gottprel", MCSymbolRefExpr::VK_Mips_GOTTPREL)
+ .Case("tprel_hi", MCSymbolRefExpr::VK_Mips_TPREL_HI)
+ .Case("tprel_lo", MCSymbolRefExpr::VK_Mips_TPREL_LO)
+ .Case("got_disp", MCSymbolRefExpr::VK_Mips_GOT_DISP)
+ .Case("got_page", MCSymbolRefExpr::VK_Mips_GOT_PAGE)
+ .Case("got_ofst", MCSymbolRefExpr::VK_Mips_GOT_OFST)
+ .Case("hi(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_HI)
+ .Case("lo(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_LO)
+ .Case("got_hi", MCSymbolRefExpr::VK_Mips_GOT_HI16)
+ .Case("got_lo", MCSymbolRefExpr::VK_Mips_GOT_LO16)
+ .Case("call_hi", MCSymbolRefExpr::VK_Mips_CALL_HI16)
+ .Case("call_lo", MCSymbolRefExpr::VK_Mips_CALL_LO16)
+ .Case("higher", MCSymbolRefExpr::VK_Mips_HIGHER)
+ .Case("highest", MCSymbolRefExpr::VK_Mips_HIGHEST)
+ .Case("pcrel_hi", MCSymbolRefExpr::VK_Mips_PCREL_HI16)
+ .Case("pcrel_lo", MCSymbolRefExpr::VK_Mips_PCREL_LO16)
+ .Default(MCSymbolRefExpr::VK_None);
+
+ assert(VK != MCSymbolRefExpr::VK_None);
+
+ return VK;
+}
+
+/// Sometimes (i.e. load/stores) the operand may be followed immediately by
+/// either this.
+/// ::= '(', register, ')'
+/// handle it before we iterate so we don't get tripped up by the lack of
+/// a comma.
+bool MipsAsmParser::ParseParenSuffix(StringRef Name, OperandVector &Operands) {
+ if (getLexer().is(AsmToken::LParen)) {
+ Operands.push_back(
+ MipsOperand::CreateToken("(", getLexer().getLoc(), *this));
+ Parser.Lex();
+ if (ParseOperand(Operands, Name)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ if (Parser.getTok().isNot(AsmToken::RParen)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token, expected ')'");
+ }
+ Operands.push_back(
+ MipsOperand::CreateToken(")", getLexer().getLoc(), *this));
+ Parser.Lex();
+ }
+ return false;
+}
+
+/// Sometimes (i.e. in MSA) the operand may be followed immediately by
+/// either one of these.
+/// ::= '[', register, ']'
+/// ::= '[', integer, ']'
+/// handle it before we iterate so we don't get tripped up by the lack of
+/// a comma.
+bool MipsAsmParser::ParseBracketSuffix(StringRef Name,
+ OperandVector &Operands) {
+ if (getLexer().is(AsmToken::LBrac)) {
+ Operands.push_back(
+ MipsOperand::CreateToken("[", getLexer().getLoc(), *this));
+ Parser.Lex();
+ if (ParseOperand(Operands, Name)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ if (Parser.getTok().isNot(AsmToken::RBrac)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token, expected ']'");
+ }
+ Operands.push_back(
+ MipsOperand::CreateToken("]", getLexer().getLoc(), *this));
+ Parser.Lex();
+ }
+ return false;
+}
+
+bool MipsAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) {
+ DEBUG(dbgs() << "ParseInstruction\n");
+ // We have reached first instruction, module directive after
+ // this is forbidden.
+ getTargetStreamer().setCanHaveModuleDir(false);
+ // Check if we have valid mnemonic
+ if (!mnemonicIsValid(Name, 0)) {
+ Parser.eatToEndOfStatement();
+ return Error(NameLoc, "Unknown instruction");
+ }
+ // First operand in MCInst is instruction mnemonic.
+ Operands.push_back(MipsOperand::CreateToken(Name, NameLoc, *this));
+
+ // Read the remaining operands.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ // Read the first operand.
+ if (ParseOperand(Operands, Name)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ if (getLexer().is(AsmToken::LBrac) && ParseBracketSuffix(Name, Operands))
+ return true;
+ // AFAIK, parenthesis suffixes are never on the first operand
+
+ while (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma.
+ // Parse and remember the operand.
+ if (ParseOperand(Operands, Name)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ // Parse bracket and parenthesis suffixes before we iterate
+ if (getLexer().is(AsmToken::LBrac)) {
+ if (ParseBracketSuffix(Name, Operands))
+ return true;
+ } else if (getLexer().is(AsmToken::LParen) &&
+ ParseParenSuffix(Name, Operands))
+ return true;
+ }
+ }
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::reportParseError(Twine ErrorMsg) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, ErrorMsg);
+}
+
+bool MipsAsmParser::reportParseError(SMLoc Loc, Twine ErrorMsg) {
+ return Error(Loc, ErrorMsg);
+}
+
+bool MipsAsmParser::parseSetNoAtDirective() {
+ // Line should look like: ".set noat".
+ // set at reg to 0.
+ Options.setATReg(0);
+ // eat noat
+ Parser.Lex();
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetAtDirective() {
+ // Line can be .set at - defaults to $1
+ // or .set at=$reg
+ int AtRegNo;
+ getParser().Lex();
+ if (getLexer().is(AsmToken::EndOfStatement)) {
+ Options.setATReg(1);
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+ } else if (getLexer().is(AsmToken::Equal)) {
+ getParser().Lex(); // Eat the '='.
+ if (getLexer().isNot(AsmToken::Dollar)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+ Parser.Lex(); // Eat the '$'.
+ const AsmToken &Reg = Parser.getTok();
+ if (Reg.is(AsmToken::Identifier)) {
+ AtRegNo = matchCPURegisterName(Reg.getIdentifier());
+ } else if (Reg.is(AsmToken::Integer)) {
+ AtRegNo = Reg.getIntVal();
+ } else {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+
+ if (AtRegNo < 0 || AtRegNo > 31) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+
+ if (!Options.setATReg(AtRegNo)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+ getParser().Lex(); // Eat the register.
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+ } else {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+}
+
+bool MipsAsmParser::parseSetReorderDirective() {
+ Parser.Lex();
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+ Options.setReorder();
+ getTargetStreamer().emitDirectiveSetReorder();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoReorderDirective() {
+ Parser.Lex();
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+ Options.setNoreorder();
+ getTargetStreamer().emitDirectiveSetNoReorder();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetMacroDirective() {
+ Parser.Lex();
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+ Options.setMacro();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoMacroDirective() {
+ Parser.Lex();
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("`noreorder' must be set before `nomacro'");
+ return false;
+ }
+ if (Options.isReorder()) {
+ reportParseError("`noreorder' must be set before `nomacro'");
+ return false;
+ }
+ Options.setNomacro();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoMips16Directive() {
+ Parser.Lex();
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+ // For now do nothing.
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetFpDirective() {
+ MipsABIFlagsSection::FpABIKind FpAbiVal;
+ // Line can be: .set fp=32
+ // .set fp=xx
+ // .set fp=64
+ Parser.Lex(); // Eat fp token
+ AsmToken Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Equal)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+ Parser.Lex(); // Eat '=' token.
+ Tok = Parser.getTok();
+
+ if (!parseFpABIValue(FpAbiVal, ".set"))
+ return false;
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+ getTargetStreamer().emitDirectiveSetFp(FpAbiVal);
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetAssignment() {
+ StringRef Name;
+ const MCExpr *Value;
+
+ if (Parser.parseIdentifier(Name))
+ reportParseError("expected identifier after .set");
+
+ if (getLexer().isNot(AsmToken::Comma))
+ return reportParseError("unexpected token in .set directive");
+ Lex(); // Eat comma
+
+ if (Parser.parseExpression(Value))
+ return reportParseError("expected valid expression after comma");
+
+ // Check if the Name already exists as a symbol.
+ MCSymbol *Sym = getContext().LookupSymbol(Name);
+ if (Sym)
+ return reportParseError("symbol already defined");
+ Sym = getContext().GetOrCreateSymbol(Name);
+ Sym->setVariableValue(Value);
+
+ return false;
+}
+
+bool MipsAsmParser::parseSetFeature(uint64_t Feature) {
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token in .set directive");
+
+ switch (Feature) {
+ default:
+ llvm_unreachable("Unimplemented feature");
+ case Mips::FeatureDSP:
+ setFeatureBits(Mips::FeatureDSP, "dsp");
+ getTargetStreamer().emitDirectiveSetDsp();
+ break;
+ case Mips::FeatureMicroMips:
+ getTargetStreamer().emitDirectiveSetMicroMips();
+ break;
+ case Mips::FeatureMips16:
+ getTargetStreamer().emitDirectiveSetMips16();
+ break;
+ case Mips::FeatureMips32r2:
+ setFeatureBits(Mips::FeatureMips32r2, "mips32r2");
+ getTargetStreamer().emitDirectiveSetMips32R2();
+ break;
+ case Mips::FeatureMips64:
+ setFeatureBits(Mips::FeatureMips64, "mips64");
+ getTargetStreamer().emitDirectiveSetMips64();
+ break;
+ case Mips::FeatureMips64r2:
+ setFeatureBits(Mips::FeatureMips64r2, "mips64r2");
+ getTargetStreamer().emitDirectiveSetMips64R2();
+ break;
+ }
+ return false;
+}
+
+bool MipsAsmParser::eatComma(StringRef ErrorStr) {
+ if (getLexer().isNot(AsmToken::Comma)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, ErrorStr);
+ }
+
+ Parser.Lex(); // Eat the comma.
+ return true;
+}
+
+bool MipsAsmParser::parseDirectiveCPLoad(SMLoc Loc) {
+ if (Options.isReorder())
+ Warning(Loc, ".cpload in reorder section");
+
+ // FIXME: Warn if cpload is used in Mips16 mode.
+
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Reg;
+ OperandMatchResultTy ResTy = ParseAnyRegister(Reg);
+ if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
+ reportParseError("expected register containing function address");
+ return false;
+ }
+
+ MipsOperand &RegOpnd = static_cast<MipsOperand &>(*Reg[0]);
+ if (!RegOpnd.isGPRAsmReg()) {
+ reportParseError(RegOpnd.getStartLoc(), "invalid register");
+ return false;
+ }
+
+ getTargetStreamer().emitDirectiveCpload(RegOpnd.getGPR32Reg());
+ return false;
+}
+
+bool MipsAsmParser::parseDirectiveCPSetup() {
+ unsigned FuncReg;
+ unsigned Save;
+ bool SaveIsReg = true;
+
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg;
+ OperandMatchResultTy ResTy = ParseAnyRegister(TmpReg);
+ if (ResTy == MatchOperand_NoMatch) {
+ reportParseError("expected register containing function address");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ MipsOperand &FuncRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
+ if (!FuncRegOpnd.isGPRAsmReg()) {
+ reportParseError(FuncRegOpnd.getStartLoc(), "invalid register");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ FuncReg = FuncRegOpnd.getGPR32Reg();
+ TmpReg.clear();
+
+ if (!eatComma("expected comma parsing directive"))
+ return true;
+
+ ResTy = ParseAnyRegister(TmpReg);
+ if (ResTy == MatchOperand_NoMatch) {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.is(AsmToken::Integer)) {
+ Save = Tok.getIntVal();
+ SaveIsReg = false;
+ Parser.Lex();
+ } else {
+ reportParseError("expected save register or stack offset");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ } else {
+ MipsOperand &SaveOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
+ if (!SaveOpnd.isGPRAsmReg()) {
+ reportParseError(SaveOpnd.getStartLoc(), "invalid register");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ Save = SaveOpnd.getGPR32Reg();
+ }
+
+ if (!eatComma("expected comma parsing directive"))
+ return true;
+
+ StringRef Name;
+ if (Parser.parseIdentifier(Name))
+ reportParseError("expected identifier");
+ MCSymbol *Sym = getContext().GetOrCreateSymbol(Name);
+
+ getTargetStreamer().emitDirectiveCpsetup(FuncReg, Save, *Sym, SaveIsReg);
+ return false;
+}
+
+bool MipsAsmParser::parseDirectiveNaN() {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ const AsmToken &Tok = Parser.getTok();
+
+ if (Tok.getString() == "2008") {
+ Parser.Lex();
+ getTargetStreamer().emitDirectiveNaN2008();
+ return false;
+ } else if (Tok.getString() == "legacy") {
+ Parser.Lex();
+ getTargetStreamer().emitDirectiveNaNLegacy();
+ return false;
+ }
+ }
+ // If we don't recognize the option passed to the .nan
+ // directive (e.g. no option or unknown option), emit an error.
+ reportParseError("invalid option in .nan directive");
+ return false;
+}
+
+bool MipsAsmParser::parseDirectiveSet() {
+
+ // Get the next token.
+ const AsmToken &Tok = Parser.getTok();
+
+ if (Tok.getString() == "noat") {
+ return parseSetNoAtDirective();
+ } else if (Tok.getString() == "at") {
+ return parseSetAtDirective();
+ } else if (Tok.getString() == "fp") {
+ return parseSetFpDirective();
+ } else if (Tok.getString() == "reorder") {
+ return parseSetReorderDirective();
+ } else if (Tok.getString() == "noreorder") {
+ return parseSetNoReorderDirective();
+ } else if (Tok.getString() == "macro") {
+ return parseSetMacroDirective();
+ } else if (Tok.getString() == "nomacro") {
+ return parseSetNoMacroDirective();
+ } else if (Tok.getString() == "mips16") {
+ return parseSetFeature(Mips::FeatureMips16);
+ } else if (Tok.getString() == "nomips16") {
+ return parseSetNoMips16Directive();
+ } else if (Tok.getString() == "nomicromips") {
+ getTargetStreamer().emitDirectiveSetNoMicroMips();
+ Parser.eatToEndOfStatement();
+ return false;
+ } else if (Tok.getString() == "micromips") {
+ return parseSetFeature(Mips::FeatureMicroMips);
+ } else if (Tok.getString() == "mips32r2") {
+ return parseSetFeature(Mips::FeatureMips32r2);
+ } else if (Tok.getString() == "mips64") {
+ return parseSetFeature(Mips::FeatureMips64);
+ } else if (Tok.getString() == "mips64r2") {
+ return parseSetFeature(Mips::FeatureMips64r2);
+ } else if (Tok.getString() == "dsp") {
+ return parseSetFeature(Mips::FeatureDSP);
+ } else {
+ // It is just an identifier, look for an assignment.
+ parseSetAssignment();
+ return false;
+ }
+
+ return true;
+}
+
+/// parseDataDirective
+/// ::= .word [ expression (, expression)* ]
+bool MipsAsmParser::parseDataDirective(unsigned Size, SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ for (;;) {
+ const MCExpr *Value;
+ if (getParser().parseExpression(Value))
+ return true;
+
+ getParser().getStreamer().EmitValue(Value, Size);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ // FIXME: Improve diagnostic.
+ if (getLexer().isNot(AsmToken::Comma))
+ return Error(L, "unexpected token in directive");
+ Parser.Lex();
+ }
+ }
+
+ Parser.Lex();
+ return false;
+}
+
+/// parseDirectiveGpWord
+/// ::= .gpword local_sym
+bool MipsAsmParser::parseDirectiveGpWord() {
+ const MCExpr *Value;
+ // EmitGPRel32Value requires an expression, so we are using base class
+ // method to evaluate the expression.
+ if (getParser().parseExpression(Value))
+ return true;
+ getParser().getStreamer().EmitGPRel32Value(Value);
+
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return Error(getLexer().getLoc(), "unexpected token in directive");
+ Parser.Lex(); // Eat EndOfStatement token.
+ return false;
+}
+
+/// parseDirectiveGpDWord
+/// ::= .gpdword local_sym
+bool MipsAsmParser::parseDirectiveGpDWord() {
+ const MCExpr *Value;
+ // EmitGPRel64Value requires an expression, so we are using base class
+ // method to evaluate the expression.
+ if (getParser().parseExpression(Value))
+ return true;
+ getParser().getStreamer().EmitGPRel64Value(Value);
+
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return Error(getLexer().getLoc(), "unexpected token in directive");
+ Parser.Lex(); // Eat EndOfStatement token.
+ return false;
+}
+
+bool MipsAsmParser::parseDirectiveOption() {
+ // Get the option token.
+ AsmToken Tok = Parser.getTok();
+ // At the moment only identifiers are supported.
+ if (Tok.isNot(AsmToken::Identifier)) {
+ Error(Parser.getTok().getLoc(), "unexpected token in .option directive");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ StringRef Option = Tok.getIdentifier();
+
+ if (Option == "pic0") {
+ getTargetStreamer().emitDirectiveOptionPic0();
+ Parser.Lex();
+ if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
+ Error(Parser.getTok().getLoc(),
+ "unexpected token in .option pic0 directive");
+ Parser.eatToEndOfStatement();
+ }
+ return false;
+ }
+
+ if (Option == "pic2") {
+ getTargetStreamer().emitDirectiveOptionPic2();
+ Parser.Lex();
+ if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
+ Error(Parser.getTok().getLoc(),
+ "unexpected token in .option pic2 directive");
+ Parser.eatToEndOfStatement();
+ }
+ return false;
+ }
+
+ // Unknown option.
+ Warning(Parser.getTok().getLoc(), "unknown option in .option directive");
+ Parser.eatToEndOfStatement();
+ return false;
+}
+
+/// parseDirectiveModule
+/// ::= .module oddspreg
+/// ::= .module nooddspreg
+/// ::= .module fp=value
+bool MipsAsmParser::parseDirectiveModule() {
+ MCAsmLexer &Lexer = getLexer();
+ SMLoc L = Lexer.getLoc();
+
+ if (!getTargetStreamer().getCanHaveModuleDir()) {
+ // TODO : get a better message.
+ reportParseError(".module directive must appear before any code");
+ return false;
+ }
+
+ if (Lexer.is(AsmToken::Identifier)) {
+ StringRef Option = Parser.getTok().getString();
+ Parser.Lex();
+
+ if (Option == "oddspreg") {
+ getTargetStreamer().emitDirectiveModuleOddSPReg(true, isABI_O32());
+ clearFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("Expected end of statement");
+ return false;
+ }
+
+ return false;
+ } else if (Option == "nooddspreg") {
+ if (!isABI_O32()) {
+ Error(L, "'.module nooddspreg' requires the O32 ABI");
+ return false;
+ }
+
+ getTargetStreamer().emitDirectiveModuleOddSPReg(false, isABI_O32());
+ setFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("Expected end of statement");
+ return false;
+ }
+
+ return false;
+ } else if (Option == "fp") {
+ return parseDirectiveModuleFP();
+ }
+
+ return Error(L, "'" + Twine(Option) + "' is not a valid .module option.");
+ }
+
+ return false;
+}
+
+/// parseDirectiveModuleFP
+/// ::= =32
+/// ::= =xx
+/// ::= =64
+bool MipsAsmParser::parseDirectiveModuleFP() {
+ MCAsmLexer &Lexer = getLexer();
+
+ if (Lexer.isNot(AsmToken::Equal)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+ Parser.Lex(); // Eat '=' token.
+
+ MipsABIFlagsSection::FpABIKind FpABI;
+ if (!parseFpABIValue(FpABI, ".module"))
+ return false;
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token in statement");
+ return false;
+ }
+
+ // Emit appropriate flags.
+ getTargetStreamer().emitDirectiveModuleFP(FpABI, isABI_O32());
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI,
+ StringRef Directive) {
+ MCAsmLexer &Lexer = getLexer();
+
+ if (Lexer.is(AsmToken::Identifier)) {
+ StringRef Value = Parser.getTok().getString();
+ Parser.Lex();
+
+ if (Value != "xx") {
+ reportParseError("unsupported value, expected 'xx', '32' or '64'");
+ return false;
+ }
+
+ if (!isABI_O32()) {
+ reportParseError("'" + Directive + " fp=xx' requires the O32 ABI");
+ return false;
+ }
+
+ FpABI = MipsABIFlagsSection::FpABIKind::XX;
+ return true;
+ }
+
+ if (Lexer.is(AsmToken::Integer)) {
+ unsigned Value = Parser.getTok().getIntVal();
+ Parser.Lex();
+
+ if (Value != 32 && Value != 64) {
+ reportParseError("unsupported value, expected 'xx', '32' or '64'");
+ return false;
+ }
+
+ if (Value == 32) {
+ if (!isABI_O32()) {
+ reportParseError("'" + Directive + " fp=32' requires the O32 ABI");
+ return false;
+ }
+
+ FpABI = MipsABIFlagsSection::FpABIKind::S32;
+ } else
+ FpABI = MipsABIFlagsSection::FpABIKind::S64;
+
+ return true;
+ }
+
+ return false;
+}
+
+bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) {
+ StringRef IDVal = DirectiveID.getString();
+
+ if (IDVal == ".cpload")
+ return parseDirectiveCPLoad(DirectiveID.getLoc());
+ if (IDVal == ".dword") {
+ parseDataDirective(8, DirectiveID.getLoc());
+ return false;
+ }
+
+ if (IDVal == ".ent") {
+ // Ignore this directive for now.
+ Parser.Lex();
+ return false;
+ }
+
+ if (IDVal == ".end") {
+ // Ignore this directive for now.
+ Parser.Lex();
+ return false;
+ }
+
+ if (IDVal == ".frame") {
+ // Ignore this directive for now.
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ if (IDVal == ".set") {
+ return parseDirectiveSet();
+ }
+
+ if (IDVal == ".fmask") {
+ // Ignore this directive for now.
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ if (IDVal == ".mask") {
+ // Ignore this directive for now.
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ if (IDVal == ".nan")
+ return parseDirectiveNaN();
+
+ if (IDVal == ".gpword") {
+ parseDirectiveGpWord();
+ return false;
+ }
+
+ if (IDVal == ".gpdword") {
+ parseDirectiveGpDWord();
+ return false;
+ }
+
+ if (IDVal == ".word") {
+ parseDataDirective(4, DirectiveID.getLoc());
+ return false;
+ }
+
+ if (IDVal == ".option")
+ return parseDirectiveOption();
+
+ if (IDVal == ".abicalls") {
+ getTargetStreamer().emitDirectiveAbiCalls();
+ if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
+ Error(Parser.getTok().getLoc(), "unexpected token in directive");
+ // Clear line
+ Parser.eatToEndOfStatement();
+ }
+ return false;
+ }
+
+ if (IDVal == ".cpsetup")
+ return parseDirectiveCPSetup();
+
+ if (IDVal == ".module")
+ return parseDirectiveModule();
+
+ return true;
+}
+
+extern "C" void LLVMInitializeMipsAsmParser() {
+ RegisterMCAsmParser<MipsAsmParser> X(TheMipsTarget);
+ RegisterMCAsmParser<MipsAsmParser> Y(TheMipselTarget);
+ RegisterMCAsmParser<MipsAsmParser> A(TheMips64Target);
+ RegisterMCAsmParser<MipsAsmParser> B(TheMips64elTarget);
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_MATCHER_IMPLEMENTATION
+#include "MipsGenAsmMatcher.inc"
diff --git a/contrib/llvm/lib/Target/Mips/Disassembler/MipsDisassembler.cpp b/contrib/llvm/lib/Target/Mips/Disassembler/MipsDisassembler.cpp
new file mode 100644
index 0000000..f35a8de
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Disassembler/MipsDisassembler.cpp
@@ -0,0 +1,1328 @@
+//===- MipsDisassembler.cpp - Disassembler for Mips -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the Mips Disassembler.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Mips.h"
+#include "MipsRegisterInfo.h"
+#include "MipsSubtarget.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDisassembler.h"
+#include "llvm/MC/MCFixedLenDisassembler.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MemoryObject.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-disassembler"
+
+typedef MCDisassembler::DecodeStatus DecodeStatus;
+
+namespace {
+
+/// MipsDisassemblerBase - a disasembler class for Mips.
+class MipsDisassemblerBase : public MCDisassembler {
+public:
+ /// Constructor - Initializes the disassembler.
+ ///
+ MipsDisassemblerBase(const MCSubtargetInfo &STI, MCContext &Ctx,
+ bool bigEndian) :
+ MCDisassembler(STI, Ctx),
+ IsN64(STI.getFeatureBits() & Mips::FeatureN64), isBigEndian(bigEndian) {}
+
+ virtual ~MipsDisassemblerBase() {}
+
+ bool isN64() const { return IsN64; }
+
+private:
+ bool IsN64;
+protected:
+ bool isBigEndian;
+};
+
+/// MipsDisassembler - a disasembler class for Mips32.
+class MipsDisassembler : public MipsDisassemblerBase {
+ bool IsMicroMips;
+public:
+ /// Constructor - Initializes the disassembler.
+ ///
+ MipsDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, bool bigEndian)
+ : MipsDisassemblerBase(STI, Ctx, bigEndian) {
+ IsMicroMips = STI.getFeatureBits() & Mips::FeatureMicroMips;
+ }
+
+ bool hasMips3() const { return STI.getFeatureBits() & Mips::FeatureMips3; }
+ bool hasMips32() const { return STI.getFeatureBits() & Mips::FeatureMips32; }
+ bool hasMips32r6() const {
+ return STI.getFeatureBits() & Mips::FeatureMips32r6;
+ }
+
+ bool isGP64() const { return STI.getFeatureBits() & Mips::FeatureGP64Bit; }
+
+ bool hasCOP3() const {
+ // Only present in MIPS-I and MIPS-II
+ return !hasMips32() && !hasMips3();
+ }
+
+ /// getInstruction - See MCDisassembler.
+ DecodeStatus getInstruction(MCInst &instr,
+ uint64_t &size,
+ const MemoryObject &region,
+ uint64_t address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const override;
+};
+
+
+/// Mips64Disassembler - a disasembler class for Mips64.
+class Mips64Disassembler : public MipsDisassemblerBase {
+public:
+ /// Constructor - Initializes the disassembler.
+ ///
+ Mips64Disassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
+ bool bigEndian) :
+ MipsDisassemblerBase(STI, Ctx, bigEndian) {}
+
+ /// getInstruction - See MCDisassembler.
+ DecodeStatus getInstruction(MCInst &instr,
+ uint64_t &size,
+ const MemoryObject &region,
+ uint64_t address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const override;
+};
+
+} // end anonymous namespace
+
+// Forward declare these because the autogenerated code will reference them.
+// Definitions are further down.
+static DecodeStatus DecodeGPR64RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeCPU16RegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeGPR32RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodePtrRegisterClass(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeDSPRRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeFGR64RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeFGR32RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeCCRRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeFCCRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeFGRCCRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeHWRegsRegisterClass(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeAFGR64RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeACC64DSPRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeHI32DSPRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeLO32DSPRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeMSA128BRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeMSA128HRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeMSA128WRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeMSA128DRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeMSACtrlRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeCOP2RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeBranchTarget(MCInst &Inst,
+ unsigned Offset,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeJumpTarget(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeBranchTarget21(MCInst &Inst,
+ unsigned Offset,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeBranchTarget26(MCInst &Inst,
+ unsigned Offset,
+ uint64_t Address,
+ const void *Decoder);
+
+// DecodeBranchTargetMM - Decode microMIPS branch offset, which is
+// shifted left by 1 bit.
+static DecodeStatus DecodeBranchTargetMM(MCInst &Inst,
+ unsigned Offset,
+ uint64_t Address,
+ const void *Decoder);
+
+// DecodeJumpTargetMM - Decode microMIPS jump target, which is
+// shifted left by 1 bit.
+static DecodeStatus DecodeJumpTargetMM(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeMem(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeMSA128Mem(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+
+static DecodeStatus DecodeMemMMImm12(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeMemMMImm16(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeFMem(MCInst &Inst, unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeSpecial3LlSc(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeSimm16(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+// Decode the immediate field of an LSA instruction which
+// is off by one.
+static DecodeStatus DecodeLSAImm(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeInsSize(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeExtSize(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeSimm19Lsl2(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+
+static DecodeStatus DecodeSimm18Lsl3(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+
+/// INSVE_[BHWD] have an implicit operand that the generated decoder doesn't
+/// handle.
+template <typename InsnType>
+static DecodeStatus DecodeINSVE_DF(MCInst &MI, InsnType insn, uint64_t Address,
+ const void *Decoder);
+
+template <typename InsnType>
+static DecodeStatus
+DecodeAddiGroupBranch(MCInst &MI, InsnType insn, uint64_t Address,
+ const void *Decoder);
+
+template <typename InsnType>
+static DecodeStatus
+DecodeDaddiGroupBranch(MCInst &MI, InsnType insn, uint64_t Address,
+ const void *Decoder);
+
+template <typename InsnType>
+static DecodeStatus
+DecodeBlezlGroupBranch(MCInst &MI, InsnType insn, uint64_t Address,
+ const void *Decoder);
+
+template <typename InsnType>
+static DecodeStatus
+DecodeBgtzlGroupBranch(MCInst &MI, InsnType insn, uint64_t Address,
+ const void *Decoder);
+
+template <typename InsnType>
+static DecodeStatus
+DecodeBgtzGroupBranch(MCInst &MI, InsnType insn, uint64_t Address,
+ const void *Decoder);
+
+template <typename InsnType>
+static DecodeStatus
+DecodeBlezGroupBranch(MCInst &MI, InsnType insn, uint64_t Address,
+ const void *Decoder);
+
+namespace llvm {
+extern Target TheMipselTarget, TheMipsTarget, TheMips64Target,
+ TheMips64elTarget;
+}
+
+static MCDisassembler *createMipsDisassembler(
+ const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new MipsDisassembler(STI, Ctx, true);
+}
+
+static MCDisassembler *createMipselDisassembler(
+ const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new MipsDisassembler(STI, Ctx, false);
+}
+
+static MCDisassembler *createMips64Disassembler(
+ const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new Mips64Disassembler(STI, Ctx, true);
+}
+
+static MCDisassembler *createMips64elDisassembler(
+ const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new Mips64Disassembler(STI, Ctx, false);
+}
+
+extern "C" void LLVMInitializeMipsDisassembler() {
+ // Register the disassembler.
+ TargetRegistry::RegisterMCDisassembler(TheMipsTarget,
+ createMipsDisassembler);
+ TargetRegistry::RegisterMCDisassembler(TheMipselTarget,
+ createMipselDisassembler);
+ TargetRegistry::RegisterMCDisassembler(TheMips64Target,
+ createMips64Disassembler);
+ TargetRegistry::RegisterMCDisassembler(TheMips64elTarget,
+ createMips64elDisassembler);
+}
+
+#include "MipsGenDisassemblerTables.inc"
+
+static unsigned getReg(const void *D, unsigned RC, unsigned RegNo) {
+ const MipsDisassemblerBase *Dis = static_cast<const MipsDisassemblerBase*>(D);
+ const MCRegisterInfo *RegInfo = Dis->getContext().getRegisterInfo();
+ return *(RegInfo->getRegClass(RC).begin() + RegNo);
+}
+
+template <typename InsnType>
+static DecodeStatus DecodeINSVE_DF(MCInst &MI, InsnType insn, uint64_t Address,
+ const void *Decoder) {
+ typedef DecodeStatus (*DecodeFN)(MCInst &, unsigned, uint64_t, const void *);
+ // The size of the n field depends on the element size
+ // The register class also depends on this.
+ InsnType tmp = fieldFromInstruction(insn, 17, 5);
+ unsigned NSize = 0;
+ DecodeFN RegDecoder = nullptr;
+ if ((tmp & 0x18) == 0x00) { // INSVE_B
+ NSize = 4;
+ RegDecoder = DecodeMSA128BRegisterClass;
+ } else if ((tmp & 0x1c) == 0x10) { // INSVE_H
+ NSize = 3;
+ RegDecoder = DecodeMSA128HRegisterClass;
+ } else if ((tmp & 0x1e) == 0x18) { // INSVE_W
+ NSize = 2;
+ RegDecoder = DecodeMSA128WRegisterClass;
+ } else if ((tmp & 0x1f) == 0x1c) { // INSVE_D
+ NSize = 1;
+ RegDecoder = DecodeMSA128DRegisterClass;
+ } else
+ llvm_unreachable("Invalid encoding");
+
+ assert(NSize != 0 && RegDecoder != nullptr);
+
+ // $wd
+ tmp = fieldFromInstruction(insn, 6, 5);
+ if (RegDecoder(MI, tmp, Address, Decoder) == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+ // $wd_in
+ if (RegDecoder(MI, tmp, Address, Decoder) == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+ // $n
+ tmp = fieldFromInstruction(insn, 16, NSize);
+ MI.addOperand(MCOperand::CreateImm(tmp));
+ // $ws
+ tmp = fieldFromInstruction(insn, 11, 5);
+ if (RegDecoder(MI, tmp, Address, Decoder) == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+ // $n2
+ MI.addOperand(MCOperand::CreateImm(0));
+
+ return MCDisassembler::Success;
+}
+
+template <typename InsnType>
+static DecodeStatus DecodeAddiGroupBranch(MCInst &MI, InsnType insn,
+ uint64_t Address,
+ const void *Decoder) {
+ // If we are called then we can assume that MIPS32r6/MIPS64r6 is enabled
+ // (otherwise we would have matched the ADDI instruction from the earlier
+ // ISA's instead).
+ //
+ // We have:
+ // 0b001000 sssss ttttt iiiiiiiiiiiiiiii
+ // BOVC if rs >= rt
+ // BEQZALC if rs == 0 && rt != 0
+ // BEQC if rs < rt && rs != 0
+
+ InsnType Rs = fieldFromInstruction(insn, 21, 5);
+ InsnType Rt = fieldFromInstruction(insn, 16, 5);
+ InsnType Imm = SignExtend64(fieldFromInstruction(insn, 0, 16), 16) << 2;
+ bool HasRs = false;
+
+ if (Rs >= Rt) {
+ MI.setOpcode(Mips::BOVC);
+ HasRs = true;
+ } else if (Rs != 0 && Rs < Rt) {
+ MI.setOpcode(Mips::BEQC);
+ HasRs = true;
+ } else
+ MI.setOpcode(Mips::BEQZALC);
+
+ if (HasRs)
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rs)));
+
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rt)));
+ MI.addOperand(MCOperand::CreateImm(Imm));
+
+ return MCDisassembler::Success;
+}
+
+template <typename InsnType>
+static DecodeStatus DecodeDaddiGroupBranch(MCInst &MI, InsnType insn,
+ uint64_t Address,
+ const void *Decoder) {
+ // If we are called then we can assume that MIPS32r6/MIPS64r6 is enabled
+ // (otherwise we would have matched the ADDI instruction from the earlier
+ // ISA's instead).
+ //
+ // We have:
+ // 0b011000 sssss ttttt iiiiiiiiiiiiiiii
+ // BNVC if rs >= rt
+ // BNEZALC if rs == 0 && rt != 0
+ // BNEC if rs < rt && rs != 0
+
+ InsnType Rs = fieldFromInstruction(insn, 21, 5);
+ InsnType Rt = fieldFromInstruction(insn, 16, 5);
+ InsnType Imm = SignExtend64(fieldFromInstruction(insn, 0, 16), 16) << 2;
+ bool HasRs = false;
+
+ if (Rs >= Rt) {
+ MI.setOpcode(Mips::BNVC);
+ HasRs = true;
+ } else if (Rs != 0 && Rs < Rt) {
+ MI.setOpcode(Mips::BNEC);
+ HasRs = true;
+ } else
+ MI.setOpcode(Mips::BNEZALC);
+
+ if (HasRs)
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rs)));
+
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rt)));
+ MI.addOperand(MCOperand::CreateImm(Imm));
+
+ return MCDisassembler::Success;
+}
+
+template <typename InsnType>
+static DecodeStatus DecodeBlezlGroupBranch(MCInst &MI, InsnType insn,
+ uint64_t Address,
+ const void *Decoder) {
+ // If we are called then we can assume that MIPS32r6/MIPS64r6 is enabled
+ // (otherwise we would have matched the BLEZL instruction from the earlier
+ // ISA's instead).
+ //
+ // We have:
+ // 0b010110 sssss ttttt iiiiiiiiiiiiiiii
+ // Invalid if rs == 0
+ // BLEZC if rs == 0 && rt != 0
+ // BGEZC if rs == rt && rt != 0
+ // BGEC if rs != rt && rs != 0 && rt != 0
+
+ InsnType Rs = fieldFromInstruction(insn, 21, 5);
+ InsnType Rt = fieldFromInstruction(insn, 16, 5);
+ InsnType Imm = SignExtend64(fieldFromInstruction(insn, 0, 16), 16) << 2;
+ bool HasRs = false;
+
+ if (Rt == 0)
+ return MCDisassembler::Fail;
+ else if (Rs == 0)
+ MI.setOpcode(Mips::BLEZC);
+ else if (Rs == Rt)
+ MI.setOpcode(Mips::BGEZC);
+ else {
+ HasRs = true;
+ MI.setOpcode(Mips::BGEC);
+ }
+
+ if (HasRs)
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rs)));
+
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rt)));
+
+ MI.addOperand(MCOperand::CreateImm(Imm));
+
+ return MCDisassembler::Success;
+}
+
+template <typename InsnType>
+static DecodeStatus DecodeBgtzlGroupBranch(MCInst &MI, InsnType insn,
+ uint64_t Address,
+ const void *Decoder) {
+ // If we are called then we can assume that MIPS32r6/MIPS64r6 is enabled
+ // (otherwise we would have matched the BGTZL instruction from the earlier
+ // ISA's instead).
+ //
+ // We have:
+ // 0b010111 sssss ttttt iiiiiiiiiiiiiiii
+ // Invalid if rs == 0
+ // BGTZC if rs == 0 && rt != 0
+ // BLTZC if rs == rt && rt != 0
+ // BLTC if rs != rt && rs != 0 && rt != 0
+
+ bool HasRs = false;
+
+ InsnType Rs = fieldFromInstruction(insn, 21, 5);
+ InsnType Rt = fieldFromInstruction(insn, 16, 5);
+ InsnType Imm = SignExtend64(fieldFromInstruction(insn, 0, 16), 16) << 2;
+
+ if (Rt == 0)
+ return MCDisassembler::Fail;
+ else if (Rs == 0)
+ MI.setOpcode(Mips::BGTZC);
+ else if (Rs == Rt)
+ MI.setOpcode(Mips::BLTZC);
+ else {
+ MI.setOpcode(Mips::BLTC);
+ HasRs = true;
+ }
+
+ if (HasRs)
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rs)));
+
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rt)));
+
+ MI.addOperand(MCOperand::CreateImm(Imm));
+
+ return MCDisassembler::Success;
+}
+
+template <typename InsnType>
+static DecodeStatus DecodeBgtzGroupBranch(MCInst &MI, InsnType insn,
+ uint64_t Address,
+ const void *Decoder) {
+ // If we are called then we can assume that MIPS32r6/MIPS64r6 is enabled
+ // (otherwise we would have matched the BGTZ instruction from the earlier
+ // ISA's instead).
+ //
+ // We have:
+ // 0b000111 sssss ttttt iiiiiiiiiiiiiiii
+ // BGTZ if rt == 0
+ // BGTZALC if rs == 0 && rt != 0
+ // BLTZALC if rs != 0 && rs == rt
+ // BLTUC if rs != 0 && rs != rt
+
+ InsnType Rs = fieldFromInstruction(insn, 21, 5);
+ InsnType Rt = fieldFromInstruction(insn, 16, 5);
+ InsnType Imm = SignExtend64(fieldFromInstruction(insn, 0, 16), 16) << 2;
+ bool HasRs = false;
+ bool HasRt = false;
+
+ if (Rt == 0) {
+ MI.setOpcode(Mips::BGTZ);
+ HasRs = true;
+ } else if (Rs == 0) {
+ MI.setOpcode(Mips::BGTZALC);
+ HasRt = true;
+ } else if (Rs == Rt) {
+ MI.setOpcode(Mips::BLTZALC);
+ HasRs = true;
+ } else {
+ MI.setOpcode(Mips::BLTUC);
+ HasRs = true;
+ HasRt = true;
+ }
+
+ if (HasRs)
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rs)));
+
+ if (HasRt)
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rt)));
+
+ MI.addOperand(MCOperand::CreateImm(Imm));
+
+ return MCDisassembler::Success;
+}
+
+template <typename InsnType>
+static DecodeStatus DecodeBlezGroupBranch(MCInst &MI, InsnType insn,
+ uint64_t Address,
+ const void *Decoder) {
+ // If we are called then we can assume that MIPS32r6/MIPS64r6 is enabled
+ // (otherwise we would have matched the BLEZL instruction from the earlier
+ // ISA's instead).
+ //
+ // We have:
+ // 0b000110 sssss ttttt iiiiiiiiiiiiiiii
+ // Invalid if rs == 0
+ // BLEZALC if rs == 0 && rt != 0
+ // BGEZALC if rs == rt && rt != 0
+ // BGEUC if rs != rt && rs != 0 && rt != 0
+
+ InsnType Rs = fieldFromInstruction(insn, 21, 5);
+ InsnType Rt = fieldFromInstruction(insn, 16, 5);
+ InsnType Imm = SignExtend64(fieldFromInstruction(insn, 0, 16), 16) << 2;
+ bool HasRs = false;
+
+ if (Rt == 0)
+ return MCDisassembler::Fail;
+ else if (Rs == 0)
+ MI.setOpcode(Mips::BLEZALC);
+ else if (Rs == Rt)
+ MI.setOpcode(Mips::BGEZALC);
+ else {
+ HasRs = true;
+ MI.setOpcode(Mips::BGEUC);
+ }
+
+ if (HasRs)
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rs)));
+ MI.addOperand(MCOperand::CreateReg(getReg(Decoder, Mips::GPR32RegClassID,
+ Rt)));
+
+ MI.addOperand(MCOperand::CreateImm(Imm));
+
+ return MCDisassembler::Success;
+}
+
+ /// readInstruction - read four bytes from the MemoryObject
+ /// and return 32 bit word sorted according to the given endianess
+static DecodeStatus readInstruction32(const MemoryObject &region,
+ uint64_t address,
+ uint64_t &size,
+ uint32_t &insn,
+ bool isBigEndian,
+ bool IsMicroMips) {
+ uint8_t Bytes[4];
+
+ // We want to read exactly 4 Bytes of data.
+ if (region.readBytes(address, 4, Bytes) == -1) {
+ size = 0;
+ return MCDisassembler::Fail;
+ }
+
+ if (isBigEndian) {
+ // Encoded as a big-endian 32-bit word in the stream.
+ insn = (Bytes[3] << 0) |
+ (Bytes[2] << 8) |
+ (Bytes[1] << 16) |
+ (Bytes[0] << 24);
+ }
+ else {
+ // Encoded as a small-endian 32-bit word in the stream.
+ // Little-endian byte ordering:
+ // mips32r2: 4 | 3 | 2 | 1
+ // microMIPS: 2 | 1 | 4 | 3
+ if (IsMicroMips) {
+ insn = (Bytes[2] << 0) |
+ (Bytes[3] << 8) |
+ (Bytes[0] << 16) |
+ (Bytes[1] << 24);
+ } else {
+ insn = (Bytes[0] << 0) |
+ (Bytes[1] << 8) |
+ (Bytes[2] << 16) |
+ (Bytes[3] << 24);
+ }
+ }
+
+ return MCDisassembler::Success;
+}
+
+DecodeStatus
+MipsDisassembler::getInstruction(MCInst &instr,
+ uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const {
+ uint32_t Insn;
+
+ DecodeStatus Result = readInstruction32(Region, Address, Size,
+ Insn, isBigEndian, IsMicroMips);
+ if (Result == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+
+ if (IsMicroMips) {
+ DEBUG(dbgs() << "Trying MicroMips32 table (32-bit opcodes):\n");
+ // Calling the auto-generated decoder function.
+ Result = decodeInstruction(DecoderTableMicroMips32, instr, Insn, Address,
+ this, STI);
+ if (Result != MCDisassembler::Fail) {
+ Size = 4;
+ return Result;
+ }
+ return MCDisassembler::Fail;
+ }
+
+ if (hasCOP3()) {
+ DEBUG(dbgs() << "Trying COP3_ table (32-bit opcodes):\n");
+ Result =
+ decodeInstruction(DecoderTableCOP3_32, instr, Insn, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
+ Size = 4;
+ return Result;
+ }
+ }
+
+ if (hasMips32r6() && isGP64()) {
+ DEBUG(dbgs() << "Trying Mips32r6_64r6 (GPR64) table (32-bit opcodes):\n");
+ Result = decodeInstruction(DecoderTableMips32r6_64r6_GP6432, instr, Insn,
+ Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
+ Size = 4;
+ return Result;
+ }
+ }
+
+ if (hasMips32r6()) {
+ DEBUG(dbgs() << "Trying Mips32r6_64r6 table (32-bit opcodes):\n");
+ Result = decodeInstruction(DecoderTableMips32r6_64r632, instr, Insn,
+ Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
+ Size = 4;
+ return Result;
+ }
+ }
+
+ DEBUG(dbgs() << "Trying Mips table (32-bit opcodes):\n");
+ // Calling the auto-generated decoder function.
+ Result = decodeInstruction(DecoderTableMips32, instr, Insn, Address,
+ this, STI);
+ if (Result != MCDisassembler::Fail) {
+ Size = 4;
+ return Result;
+ }
+
+ return MCDisassembler::Fail;
+}
+
+DecodeStatus
+Mips64Disassembler::getInstruction(MCInst &instr,
+ uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const {
+ uint32_t Insn;
+
+ DecodeStatus Result = readInstruction32(Region, Address, Size,
+ Insn, isBigEndian, false);
+ if (Result == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+
+ // Calling the auto-generated decoder function.
+ Result = decodeInstruction(DecoderTableMips6432, instr, Insn, Address,
+ this, STI);
+ if (Result != MCDisassembler::Fail) {
+ Size = 4;
+ return Result;
+ }
+ // If we fail to decode in Mips64 decoder space we can try in Mips32
+ Result = decodeInstruction(DecoderTableMips32, instr, Insn, Address,
+ this, STI);
+ if (Result != MCDisassembler::Fail) {
+ Size = 4;
+ return Result;
+ }
+
+ return MCDisassembler::Fail;
+}
+
+static DecodeStatus DecodeCPU16RegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+
+ return MCDisassembler::Fail;
+
+}
+
+static DecodeStatus DecodeGPR64RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::GPR64RegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeGPR32RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+ unsigned Reg = getReg(Decoder, Mips::GPR32RegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodePtrRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (static_cast<const MipsDisassembler *>(Decoder)->isN64())
+ return DecodeGPR64RegisterClass(Inst, RegNo, Address, Decoder);
+
+ return DecodeGPR32RegisterClass(Inst, RegNo, Address, Decoder);
+}
+
+static DecodeStatus DecodeDSPRRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return DecodeGPR32RegisterClass(Inst, RegNo, Address, Decoder);
+}
+
+static DecodeStatus DecodeFGR64RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::FGR64RegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeFGR32RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::FGR32RegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeCCRRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+ unsigned Reg = getReg(Decoder, Mips::CCRRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeFCCRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 7)
+ return MCDisassembler::Fail;
+ unsigned Reg = getReg(Decoder, Mips::FCCRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeFGRCCRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::FGRCCRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMem(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ int Offset = SignExtend32<16>(Insn & 0xffff);
+ unsigned Reg = fieldFromInstruction(Insn, 16, 5);
+ unsigned Base = fieldFromInstruction(Insn, 21, 5);
+
+ Reg = getReg(Decoder, Mips::GPR32RegClassID, Reg);
+ Base = getReg(Decoder, Mips::GPR32RegClassID, Base);
+
+ if(Inst.getOpcode() == Mips::SC){
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ }
+
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ Inst.addOperand(MCOperand::CreateReg(Base));
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMSA128Mem(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ int Offset = SignExtend32<10>(fieldFromInstruction(Insn, 16, 10));
+ unsigned Reg = fieldFromInstruction(Insn, 6, 5);
+ unsigned Base = fieldFromInstruction(Insn, 11, 5);
+
+ Reg = getReg(Decoder, Mips::MSA128BRegClassID, Reg);
+ Base = getReg(Decoder, Mips::GPR32RegClassID, Base);
+
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ Inst.addOperand(MCOperand::CreateReg(Base));
+
+ // The immediate field of an LD/ST instruction is scaled which means it must
+ // be multiplied (when decoding) by the size (in bytes) of the instructions'
+ // data format.
+ // .b - 1 byte
+ // .h - 2 bytes
+ // .w - 4 bytes
+ // .d - 8 bytes
+ switch(Inst.getOpcode())
+ {
+ default:
+ assert (0 && "Unexpected instruction");
+ return MCDisassembler::Fail;
+ break;
+ case Mips::LD_B:
+ case Mips::ST_B:
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+ break;
+ case Mips::LD_H:
+ case Mips::ST_H:
+ Inst.addOperand(MCOperand::CreateImm(Offset << 1));
+ break;
+ case Mips::LD_W:
+ case Mips::ST_W:
+ Inst.addOperand(MCOperand::CreateImm(Offset << 2));
+ break;
+ case Mips::LD_D:
+ case Mips::ST_D:
+ Inst.addOperand(MCOperand::CreateImm(Offset << 3));
+ break;
+ }
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMemMMImm12(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ int Offset = SignExtend32<12>(Insn & 0x0fff);
+ unsigned Reg = fieldFromInstruction(Insn, 21, 5);
+ unsigned Base = fieldFromInstruction(Insn, 16, 5);
+
+ Reg = getReg(Decoder, Mips::GPR32RegClassID, Reg);
+ Base = getReg(Decoder, Mips::GPR32RegClassID, Base);
+
+ if (Inst.getOpcode() == Mips::SC_MM)
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ Inst.addOperand(MCOperand::CreateReg(Base));
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMemMMImm16(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ int Offset = SignExtend32<16>(Insn & 0xffff);
+ unsigned Reg = fieldFromInstruction(Insn, 21, 5);
+ unsigned Base = fieldFromInstruction(Insn, 16, 5);
+
+ Reg = getReg(Decoder, Mips::GPR32RegClassID, Reg);
+ Base = getReg(Decoder, Mips::GPR32RegClassID, Base);
+
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ Inst.addOperand(MCOperand::CreateReg(Base));
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeFMem(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ int Offset = SignExtend32<16>(Insn & 0xffff);
+ unsigned Reg = fieldFromInstruction(Insn, 16, 5);
+ unsigned Base = fieldFromInstruction(Insn, 21, 5);
+
+ Reg = getReg(Decoder, Mips::FGR64RegClassID, Reg);
+ Base = getReg(Decoder, Mips::GPR32RegClassID, Base);
+
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ Inst.addOperand(MCOperand::CreateReg(Base));
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeSpecial3LlSc(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ int64_t Offset = SignExtend64<9>((Insn >> 7) & 0x1ff);
+ unsigned Rt = fieldFromInstruction(Insn, 16, 5);
+ unsigned Base = fieldFromInstruction(Insn, 21, 5);
+
+ Rt = getReg(Decoder, Mips::GPR32RegClassID, Rt);
+ Base = getReg(Decoder, Mips::GPR32RegClassID, Base);
+
+ if(Inst.getOpcode() == Mips::SC_R6 || Inst.getOpcode() == Mips::SCD_R6){
+ Inst.addOperand(MCOperand::CreateReg(Rt));
+ }
+
+ Inst.addOperand(MCOperand::CreateReg(Rt));
+ Inst.addOperand(MCOperand::CreateReg(Base));
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeHWRegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ // Currently only hardware register 29 is supported.
+ if (RegNo != 29)
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateReg(Mips::HWR29));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeAFGR64RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 30 || RegNo %2)
+ return MCDisassembler::Fail;
+
+ ;
+ unsigned Reg = getReg(Decoder, Mips::AFGR64RegClassID, RegNo /2);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeACC64DSPRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo >= 4)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::ACC64DSPRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeHI32DSPRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo >= 4)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::HI32DSPRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeLO32DSPRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo >= 4)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::LO32DSPRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMSA128BRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::MSA128BRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMSA128HRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::MSA128HRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMSA128WRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::MSA128WRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMSA128DRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::MSA128DRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMSACtrlRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 7)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::MSACtrlRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeCOP2RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = getReg(Decoder, Mips::COP2RegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeBranchTarget(MCInst &Inst,
+ unsigned Offset,
+ uint64_t Address,
+ const void *Decoder) {
+ int32_t BranchOffset = (SignExtend32<16>(Offset) << 2) + 4;
+ Inst.addOperand(MCOperand::CreateImm(BranchOffset));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeJumpTarget(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+
+ unsigned JumpOffset = fieldFromInstruction(Insn, 0, 26) << 2;
+ Inst.addOperand(MCOperand::CreateImm(JumpOffset));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeBranchTarget21(MCInst &Inst,
+ unsigned Offset,
+ uint64_t Address,
+ const void *Decoder) {
+ int32_t BranchOffset = SignExtend32<21>(Offset) << 2;
+
+ Inst.addOperand(MCOperand::CreateImm(BranchOffset));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeBranchTarget26(MCInst &Inst,
+ unsigned Offset,
+ uint64_t Address,
+ const void *Decoder) {
+ int32_t BranchOffset = SignExtend32<26>(Offset) << 2;
+
+ Inst.addOperand(MCOperand::CreateImm(BranchOffset));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeBranchTargetMM(MCInst &Inst,
+ unsigned Offset,
+ uint64_t Address,
+ const void *Decoder) {
+ int32_t BranchOffset = SignExtend32<16>(Offset) << 1;
+ Inst.addOperand(MCOperand::CreateImm(BranchOffset));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeJumpTargetMM(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ unsigned JumpOffset = fieldFromInstruction(Insn, 0, 26) << 1;
+ Inst.addOperand(MCOperand::CreateImm(JumpOffset));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeSimm16(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<16>(Insn)));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeLSAImm(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ // We add one to the immediate field as it was encoded as 'imm - 1'.
+ Inst.addOperand(MCOperand::CreateImm(Insn + 1));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeInsSize(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ // First we need to grab the pos(lsb) from MCInst.
+ int Pos = Inst.getOperand(2).getImm();
+ int Size = (int) Insn - Pos + 1;
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<16>(Size)));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeExtSize(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ int Size = (int) Insn + 1;
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<16>(Size)));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeSimm19Lsl2(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<19>(Insn) << 2));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeSimm18Lsl3(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<18>(Insn) << 3));
+ return MCDisassembler::Success;
+}
diff --git a/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.cpp b/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.cpp
new file mode 100644
index 0000000..8c79751
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.cpp
@@ -0,0 +1,326 @@
+//===-- MipsInstPrinter.cpp - Convert Mips MCInst to assembly syntax ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an Mips MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsInstPrinter.h"
+#include "MCTargetDesc/MipsMCExpr.h"
+#include "MipsInstrInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+#define PRINT_ALIAS_INSTR
+#include "MipsGenAsmWriter.inc"
+
+template<unsigned R>
+static bool isReg(const MCInst &MI, unsigned OpNo) {
+ assert(MI.getOperand(OpNo).isReg() && "Register operand expected.");
+ return MI.getOperand(OpNo).getReg() == R;
+}
+
+const char* Mips::MipsFCCToString(Mips::CondCode CC) {
+ switch (CC) {
+ case FCOND_F:
+ case FCOND_T: return "f";
+ case FCOND_UN:
+ case FCOND_OR: return "un";
+ case FCOND_OEQ:
+ case FCOND_UNE: return "eq";
+ case FCOND_UEQ:
+ case FCOND_ONE: return "ueq";
+ case FCOND_OLT:
+ case FCOND_UGE: return "olt";
+ case FCOND_ULT:
+ case FCOND_OGE: return "ult";
+ case FCOND_OLE:
+ case FCOND_UGT: return "ole";
+ case FCOND_ULE:
+ case FCOND_OGT: return "ule";
+ case FCOND_SF:
+ case FCOND_ST: return "sf";
+ case FCOND_NGLE:
+ case FCOND_GLE: return "ngle";
+ case FCOND_SEQ:
+ case FCOND_SNE: return "seq";
+ case FCOND_NGL:
+ case FCOND_GL: return "ngl";
+ case FCOND_LT:
+ case FCOND_NLT: return "lt";
+ case FCOND_NGE:
+ case FCOND_GE: return "nge";
+ case FCOND_LE:
+ case FCOND_NLE: return "le";
+ case FCOND_NGT:
+ case FCOND_GT: return "ngt";
+ }
+ llvm_unreachable("Impossible condition code!");
+}
+
+void MipsInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
+ OS << '$' << StringRef(getRegisterName(RegNo)).lower();
+}
+
+void MipsInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
+ StringRef Annot) {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case Mips::RDHWR:
+ case Mips::RDHWR64:
+ O << "\t.set\tpush\n";
+ O << "\t.set\tmips32r2\n";
+ break;
+ case Mips::Save16:
+ O << "\tsave\t";
+ printSaveRestore(MI, O);
+ O << " # 16 bit inst\n";
+ return;
+ case Mips::SaveX16:
+ O << "\tsave\t";
+ printSaveRestore(MI, O);
+ O << "\n";
+ return;
+ case Mips::Restore16:
+ O << "\trestore\t";
+ printSaveRestore(MI, O);
+ O << " # 16 bit inst\n";
+ return;
+ case Mips::RestoreX16:
+ O << "\trestore\t";
+ printSaveRestore(MI, O);
+ O << "\n";
+ return;
+ }
+
+ // Try to print any aliases first.
+ if (!printAliasInstr(MI, O) && !printAlias(*MI, O))
+ printInstruction(MI, O);
+ printAnnotation(O, Annot);
+
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case Mips::RDHWR:
+ case Mips::RDHWR64:
+ O << "\n\t.set\tpop";
+ }
+}
+
+static void printExpr(const MCExpr *Expr, raw_ostream &OS) {
+ int Offset = 0;
+ const MCSymbolRefExpr *SRE;
+
+ if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
+ SRE = dyn_cast<MCSymbolRefExpr>(BE->getLHS());
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(BE->getRHS());
+ assert(SRE && CE && "Binary expression must be sym+const.");
+ Offset = CE->getValue();
+ } else if (const MipsMCExpr *ME = dyn_cast<MipsMCExpr>(Expr)) {
+ ME->print(OS);
+ return;
+ } else if (!(SRE = dyn_cast<MCSymbolRefExpr>(Expr)))
+ assert(false && "Unexpected MCExpr type.");
+
+ MCSymbolRefExpr::VariantKind Kind = SRE->getKind();
+
+ switch (Kind) {
+ default: llvm_unreachable("Invalid kind!");
+ case MCSymbolRefExpr::VK_None: break;
+ case MCSymbolRefExpr::VK_Mips_GPREL: OS << "%gp_rel("; break;
+ case MCSymbolRefExpr::VK_Mips_GOT_CALL: OS << "%call16("; break;
+ case MCSymbolRefExpr::VK_Mips_GOT16: OS << "%got("; break;
+ case MCSymbolRefExpr::VK_Mips_GOT: OS << "%got("; break;
+ case MCSymbolRefExpr::VK_Mips_ABS_HI: OS << "%hi("; break;
+ case MCSymbolRefExpr::VK_Mips_ABS_LO: OS << "%lo("; break;
+ case MCSymbolRefExpr::VK_Mips_TLSGD: OS << "%tlsgd("; break;
+ case MCSymbolRefExpr::VK_Mips_TLSLDM: OS << "%tlsldm("; break;
+ case MCSymbolRefExpr::VK_Mips_DTPREL_HI: OS << "%dtprel_hi("; break;
+ case MCSymbolRefExpr::VK_Mips_DTPREL_LO: OS << "%dtprel_lo("; break;
+ case MCSymbolRefExpr::VK_Mips_GOTTPREL: OS << "%gottprel("; break;
+ case MCSymbolRefExpr::VK_Mips_TPREL_HI: OS << "%tprel_hi("; break;
+ case MCSymbolRefExpr::VK_Mips_TPREL_LO: OS << "%tprel_lo("; break;
+ case MCSymbolRefExpr::VK_Mips_GPOFF_HI: OS << "%hi(%neg(%gp_rel("; break;
+ case MCSymbolRefExpr::VK_Mips_GPOFF_LO: OS << "%lo(%neg(%gp_rel("; break;
+ case MCSymbolRefExpr::VK_Mips_GOT_DISP: OS << "%got_disp("; break;
+ case MCSymbolRefExpr::VK_Mips_GOT_PAGE: OS << "%got_page("; break;
+ case MCSymbolRefExpr::VK_Mips_GOT_OFST: OS << "%got_ofst("; break;
+ case MCSymbolRefExpr::VK_Mips_HIGHER: OS << "%higher("; break;
+ case MCSymbolRefExpr::VK_Mips_HIGHEST: OS << "%highest("; break;
+ case MCSymbolRefExpr::VK_Mips_GOT_HI16: OS << "%got_hi("; break;
+ case MCSymbolRefExpr::VK_Mips_GOT_LO16: OS << "%got_lo("; break;
+ case MCSymbolRefExpr::VK_Mips_CALL_HI16: OS << "%call_hi("; break;
+ case MCSymbolRefExpr::VK_Mips_CALL_LO16: OS << "%call_lo("; break;
+ case MCSymbolRefExpr::VK_Mips_PCREL_HI16: OS << "%pcrel_hi("; break;
+ case MCSymbolRefExpr::VK_Mips_PCREL_LO16: OS << "%pcrel_lo("; break;
+ }
+
+ OS << SRE->getSymbol();
+
+ if (Offset) {
+ if (Offset > 0)
+ OS << '+';
+ OS << Offset;
+ }
+
+ if ((Kind == MCSymbolRefExpr::VK_Mips_GPOFF_HI) ||
+ (Kind == MCSymbolRefExpr::VK_Mips_GPOFF_LO))
+ OS << ")))";
+ else if (Kind != MCSymbolRefExpr::VK_None)
+ OS << ')';
+}
+
+void MipsInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ printRegName(O, Op.getReg());
+ return;
+ }
+
+ if (Op.isImm()) {
+ O << Op.getImm();
+ return;
+ }
+
+ assert(Op.isExpr() && "unknown operand kind in printOperand");
+ printExpr(Op.getExpr(), O);
+}
+
+void MipsInstPrinter::printUnsignedImm(const MCInst *MI, int opNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(opNum);
+ if (MO.isImm())
+ O << (unsigned short int)MO.getImm();
+ else
+ printOperand(MI, opNum, O);
+}
+
+void MipsInstPrinter::printUnsignedImm8(const MCInst *MI, int opNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(opNum);
+ if (MO.isImm())
+ O << (unsigned short int)(unsigned char)MO.getImm();
+ else
+ printOperand(MI, opNum, O);
+}
+
+void MipsInstPrinter::
+printMemOperand(const MCInst *MI, int opNum, raw_ostream &O) {
+ // Load/Store memory operands -- imm($reg)
+ // If PIC target the target is loaded as the
+ // pattern lw $25,%call16($28)
+ printOperand(MI, opNum+1, O);
+ O << "(";
+ printOperand(MI, opNum, O);
+ O << ")";
+}
+
+void MipsInstPrinter::
+printMemOperandEA(const MCInst *MI, int opNum, raw_ostream &O) {
+ // when using stack locations for not load/store instructions
+ // print the same way as all normal 3 operand instructions.
+ printOperand(MI, opNum, O);
+ O << ", ";
+ printOperand(MI, opNum+1, O);
+ return;
+}
+
+void MipsInstPrinter::
+printFCCOperand(const MCInst *MI, int opNum, raw_ostream &O) {
+ const MCOperand& MO = MI->getOperand(opNum);
+ O << MipsFCCToString((Mips::CondCode)MO.getImm());
+}
+
+void MipsInstPrinter::
+printSHFMask(const MCInst *MI, int opNum, raw_ostream &O) {
+ llvm_unreachable("TODO");
+}
+
+bool MipsInstPrinter::printAlias(const char *Str, const MCInst &MI,
+ unsigned OpNo, raw_ostream &OS) {
+ OS << "\t" << Str << "\t";
+ printOperand(&MI, OpNo, OS);
+ return true;
+}
+
+bool MipsInstPrinter::printAlias(const char *Str, const MCInst &MI,
+ unsigned OpNo0, unsigned OpNo1,
+ raw_ostream &OS) {
+ printAlias(Str, MI, OpNo0, OS);
+ OS << ", ";
+ printOperand(&MI, OpNo1, OS);
+ return true;
+}
+
+bool MipsInstPrinter::printAlias(const MCInst &MI, raw_ostream &OS) {
+ switch (MI.getOpcode()) {
+ case Mips::BEQ:
+ // beq $zero, $zero, $L2 => b $L2
+ // beq $r0, $zero, $L2 => beqz $r0, $L2
+ return (isReg<Mips::ZERO>(MI, 0) && isReg<Mips::ZERO>(MI, 1) &&
+ printAlias("b", MI, 2, OS)) ||
+ (isReg<Mips::ZERO>(MI, 1) && printAlias("beqz", MI, 0, 2, OS));
+ case Mips::BEQ64:
+ // beq $r0, $zero, $L2 => beqz $r0, $L2
+ return isReg<Mips::ZERO_64>(MI, 1) && printAlias("beqz", MI, 0, 2, OS);
+ case Mips::BNE:
+ // bne $r0, $zero, $L2 => bnez $r0, $L2
+ return isReg<Mips::ZERO>(MI, 1) && printAlias("bnez", MI, 0, 2, OS);
+ case Mips::BNE64:
+ // bne $r0, $zero, $L2 => bnez $r0, $L2
+ return isReg<Mips::ZERO_64>(MI, 1) && printAlias("bnez", MI, 0, 2, OS);
+ case Mips::BGEZAL:
+ // bgezal $zero, $L1 => bal $L1
+ return isReg<Mips::ZERO>(MI, 0) && printAlias("bal", MI, 1, OS);
+ case Mips::BC1T:
+ // bc1t $fcc0, $L1 => bc1t $L1
+ return isReg<Mips::FCC0>(MI, 0) && printAlias("bc1t", MI, 1, OS);
+ case Mips::BC1F:
+ // bc1f $fcc0, $L1 => bc1f $L1
+ return isReg<Mips::FCC0>(MI, 0) && printAlias("bc1f", MI, 1, OS);
+ case Mips::JALR:
+ // jalr $ra, $r1 => jalr $r1
+ return isReg<Mips::RA>(MI, 0) && printAlias("jalr", MI, 1, OS);
+ case Mips::JALR64:
+ // jalr $ra, $r1 => jalr $r1
+ return isReg<Mips::RA_64>(MI, 0) && printAlias("jalr", MI, 1, OS);
+ case Mips::NOR:
+ case Mips::NOR_MM:
+ // nor $r0, $r1, $zero => not $r0, $r1
+ return isReg<Mips::ZERO>(MI, 2) && printAlias("not", MI, 0, 1, OS);
+ case Mips::NOR64:
+ // nor $r0, $r1, $zero => not $r0, $r1
+ return isReg<Mips::ZERO_64>(MI, 2) && printAlias("not", MI, 0, 1, OS);
+ case Mips::OR:
+ // or $r0, $r1, $zero => move $r0, $r1
+ return isReg<Mips::ZERO>(MI, 2) && printAlias("move", MI, 0, 1, OS);
+ default: return false;
+ }
+}
+
+void MipsInstPrinter::printSaveRestore(const MCInst *MI, raw_ostream &O) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ if (i != 0) O << ", ";
+ if (MI->getOperand(i).isReg())
+ printRegName(O, MI->getOperand(i).getReg());
+ else
+ printUnsignedImm(MI, i, O);
+ }
+}
+
diff --git a/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.h b/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.h
new file mode 100644
index 0000000..550a0f10
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.h
@@ -0,0 +1,113 @@
+//=== MipsInstPrinter.h - Convert Mips MCInst to assembly syntax -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints a Mips MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSINSTPRINTER_H
+#define MIPSINSTPRINTER_H
+#include "llvm/MC/MCInstPrinter.h"
+
+namespace llvm {
+// These enumeration declarations were originally in MipsInstrInfo.h but
+// had to be moved here to avoid circular dependencies between
+// LLVMMipsCodeGen and LLVMMipsAsmPrinter.
+namespace Mips {
+// Mips Branch Codes
+enum FPBranchCode {
+ BRANCH_F,
+ BRANCH_T,
+ BRANCH_FL,
+ BRANCH_TL,
+ BRANCH_INVALID
+};
+
+// Mips Condition Codes
+enum CondCode {
+ // To be used with float branch True
+ FCOND_F,
+ FCOND_UN,
+ FCOND_OEQ,
+ FCOND_UEQ,
+ FCOND_OLT,
+ FCOND_ULT,
+ FCOND_OLE,
+ FCOND_ULE,
+ FCOND_SF,
+ FCOND_NGLE,
+ FCOND_SEQ,
+ FCOND_NGL,
+ FCOND_LT,
+ FCOND_NGE,
+ FCOND_LE,
+ FCOND_NGT,
+
+ // To be used with float branch False
+ // This conditions have the same mnemonic as the
+ // above ones, but are used with a branch False;
+ FCOND_T,
+ FCOND_OR,
+ FCOND_UNE,
+ FCOND_ONE,
+ FCOND_UGE,
+ FCOND_OGE,
+ FCOND_UGT,
+ FCOND_OGT,
+ FCOND_ST,
+ FCOND_GLE,
+ FCOND_SNE,
+ FCOND_GL,
+ FCOND_NLT,
+ FCOND_GE,
+ FCOND_NLE,
+ FCOND_GT
+};
+
+const char *MipsFCCToString(Mips::CondCode CC);
+} // end namespace Mips
+
+class TargetMachine;
+
+class MipsInstPrinter : public MCInstPrinter {
+public:
+ MipsInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI)
+ : MCInstPrinter(MAI, MII, MRI) {}
+
+ // Autogenerated by tblgen.
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ static const char *getRegisterName(unsigned RegNo);
+
+ void printRegName(raw_ostream &OS, unsigned RegNo) const override;
+ void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot) override;
+
+ bool printAliasInstr(const MCInst *MI, raw_ostream &OS);
+ void printCustomAliasOperand(const MCInst *MI, unsigned OpIdx,
+ unsigned PrintMethodIdx, raw_ostream &O);
+
+private:
+ void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printUnsignedImm(const MCInst *MI, int opNum, raw_ostream &O);
+ void printUnsignedImm8(const MCInst *MI, int opNum, raw_ostream &O);
+ void printMemOperand(const MCInst *MI, int opNum, raw_ostream &O);
+ void printMemOperandEA(const MCInst *MI, int opNum, raw_ostream &O);
+ void printFCCOperand(const MCInst *MI, int opNum, raw_ostream &O);
+ void printSHFMask(const MCInst *MI, int opNum, raw_ostream &O);
+
+ bool printAlias(const char *Str, const MCInst &MI, unsigned OpNo,
+ raw_ostream &OS);
+ bool printAlias(const char *Str, const MCInst &MI, unsigned OpNo0,
+ unsigned OpNo1, raw_ostream &OS);
+ bool printAlias(const MCInst &MI, raw_ostream &OS);
+ void printSaveRestore(const MCInst *MI, raw_ostream &O);
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.cpp
new file mode 100644
index 0000000..5b0f950
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.cpp
@@ -0,0 +1,66 @@
+//===-- MipsABIFlagsSection.cpp - Mips ELF ABI Flags Section ---*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsABIFlagsSection.h"
+
+using namespace llvm;
+
+uint8_t MipsABIFlagsSection::getFpABIValue() {
+ switch (FpABI) {
+ case FpABIKind::ANY:
+ return Val_GNU_MIPS_ABI_FP_ANY;
+ case FpABIKind::XX:
+ return Val_GNU_MIPS_ABI_FP_XX;
+ case FpABIKind::S32:
+ return Val_GNU_MIPS_ABI_FP_DOUBLE;
+ case FpABIKind::S64:
+ if (Is32BitABI)
+ return OddSPReg ? Val_GNU_MIPS_ABI_FP_64 : Val_GNU_MIPS_ABI_FP_64A;
+ return Val_GNU_MIPS_ABI_FP_DOUBLE;
+ }
+
+ llvm_unreachable("unexpected fp abi value");
+}
+
+StringRef MipsABIFlagsSection::getFpABIString(FpABIKind Value) {
+ switch (Value) {
+ case FpABIKind::XX:
+ return "xx";
+ case FpABIKind::S32:
+ return "32";
+ case FpABIKind::S64:
+ return "64";
+ default:
+ llvm_unreachable("unsupported fp abi value");
+ }
+}
+
+uint8_t MipsABIFlagsSection::getCPR1SizeValue() {
+ if (FpABI == FpABIKind::XX)
+ return (uint8_t)AFL_REG_32;
+ return (uint8_t)CPR1Size;
+}
+
+namespace llvm {
+MCStreamer &operator<<(MCStreamer &OS, MipsABIFlagsSection &ABIFlagsSection) {
+ // Write out a Elf_Internal_ABIFlags_v0 struct
+ OS.EmitIntValue(ABIFlagsSection.getVersionValue(), 2); // version
+ OS.EmitIntValue(ABIFlagsSection.getISALevelValue(), 1); // isa_level
+ OS.EmitIntValue(ABIFlagsSection.getISARevisionValue(), 1); // isa_rev
+ OS.EmitIntValue(ABIFlagsSection.getGPRSizeValue(), 1); // gpr_size
+ OS.EmitIntValue(ABIFlagsSection.getCPR1SizeValue(), 1); // cpr1_size
+ OS.EmitIntValue(ABIFlagsSection.getCPR2SizeValue(), 1); // cpr2_size
+ OS.EmitIntValue(ABIFlagsSection.getFpABIValue(), 1); // fp_abi
+ OS.EmitIntValue(ABIFlagsSection.getISAExtensionSetValue(), 4); // isa_ext
+ OS.EmitIntValue(ABIFlagsSection.getASESetValue(), 4); // ases
+ OS.EmitIntValue(ABIFlagsSection.getFlags1Value(), 4); // flags1
+ OS.EmitIntValue(ABIFlagsSection.getFlags2Value(), 4); // flags2
+ return OS;
+}
+}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.h
new file mode 100644
index 0000000..ea5bc12
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.h
@@ -0,0 +1,238 @@
+//===-- MipsABIFlagsSection.h - Mips ELF ABI Flags Section -----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSABIFLAGSSECTION_H
+#define MIPSABIFLAGSSECTION_H
+
+#include "llvm/MC/MCStreamer.h"
+
+namespace llvm {
+
+class MCStreamer;
+
+struct MipsABIFlagsSection {
+ // Values for the xxx_size bytes of an ABI flags structure.
+ enum AFL_REG {
+ AFL_REG_NONE = 0x00, // No registers.
+ AFL_REG_32 = 0x01, // 32-bit registers.
+ AFL_REG_64 = 0x02, // 64-bit registers.
+ AFL_REG_128 = 0x03 // 128-bit registers.
+ };
+
+ // Masks for the ases word of an ABI flags structure.
+ enum AFL_ASE {
+ AFL_ASE_DSP = 0x00000001, // DSP ASE.
+ AFL_ASE_DSPR2 = 0x00000002, // DSP R2 ASE.
+ AFL_ASE_EVA = 0x00000004, // Enhanced VA Scheme.
+ AFL_ASE_MCU = 0x00000008, // MCU (MicroController) ASE.
+ AFL_ASE_MDMX = 0x00000010, // MDMX ASE.
+ AFL_ASE_MIPS3D = 0x00000020, // MIPS-3D ASE.
+ AFL_ASE_MT = 0x00000040, // MT ASE.
+ AFL_ASE_SMARTMIPS = 0x00000080, // SmartMIPS ASE.
+ AFL_ASE_VIRT = 0x00000100, // VZ ASE.
+ AFL_ASE_MSA = 0x00000200, // MSA ASE.
+ AFL_ASE_MIPS16 = 0x00000400, // MIPS16 ASE.
+ AFL_ASE_MICROMIPS = 0x00000800, // MICROMIPS ASE.
+ AFL_ASE_XPA = 0x00001000 // XPA ASE.
+ };
+
+ // Values for the isa_ext word of an ABI flags structure.
+ enum AFL_EXT {
+ AFL_EXT_XLR = 1, // RMI Xlr instruction.
+ AFL_EXT_OCTEON2 = 2, // Cavium Networks Octeon2.
+ AFL_EXT_OCTEONP = 3, // Cavium Networks OcteonP.
+ AFL_EXT_LOONGSON_3A = 4, // Loongson 3A.
+ AFL_EXT_OCTEON = 5, // Cavium Networks Octeon.
+ AFL_EXT_5900 = 6, // MIPS R5900 instruction.
+ AFL_EXT_4650 = 7, // MIPS R4650 instruction.
+ AFL_EXT_4010 = 8, // LSI R4010 instruction.
+ AFL_EXT_4100 = 9, // NEC VR4100 instruction.
+ AFL_EXT_3900 = 10, // Toshiba R3900 instruction.
+ AFL_EXT_10000 = 11, // MIPS R10000 instruction.
+ AFL_EXT_SB1 = 12, // Broadcom SB-1 instruction.
+ AFL_EXT_4111 = 13, // NEC VR4111/VR4181 instruction.
+ AFL_EXT_4120 = 14, // NEC VR4120 instruction.
+ AFL_EXT_5400 = 15, // NEC VR5400 instruction.
+ AFL_EXT_5500 = 16, // NEC VR5500 instruction.
+ AFL_EXT_LOONGSON_2E = 17, // ST Microelectronics Loongson 2E.
+ AFL_EXT_LOONGSON_2F = 18 // ST Microelectronics Loongson 2F.
+ };
+
+ // Values for the fp_abi word of an ABI flags structure.
+ enum Val_GNU_MIPS_ABI {
+ Val_GNU_MIPS_ABI_FP_ANY = 0,
+ Val_GNU_MIPS_ABI_FP_DOUBLE = 1,
+ Val_GNU_MIPS_ABI_FP_XX = 5,
+ Val_GNU_MIPS_ABI_FP_64 = 6,
+ Val_GNU_MIPS_ABI_FP_64A = 7
+ };
+
+ enum AFL_FLAGS1 {
+ AFL_FLAGS1_ODDSPREG = 1
+ };
+
+ // Internal representation of the values used in .module fp=value
+ enum class FpABIKind { ANY, XX, S32, S64 };
+
+ // Version of flags structure.
+ uint16_t Version;
+ // The level of the ISA: 1-5, 32, 64.
+ uint8_t ISALevel;
+ // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
+ uint8_t ISARevision;
+ // The size of general purpose registers.
+ AFL_REG GPRSize;
+ // The size of co-processor 1 registers.
+ AFL_REG CPR1Size;
+ // The size of co-processor 2 registers.
+ AFL_REG CPR2Size;
+ // Processor-specific extension.
+ uint32_t ISAExtensionSet;
+ // Mask of ASEs used.
+ uint32_t ASESet;
+
+ bool OddSPReg;
+
+ bool Is32BitABI;
+
+protected:
+ // The floating-point ABI.
+ FpABIKind FpABI;
+
+public:
+ MipsABIFlagsSection()
+ : Version(0), ISALevel(0), ISARevision(0), GPRSize(AFL_REG_NONE),
+ CPR1Size(AFL_REG_NONE), CPR2Size(AFL_REG_NONE), ISAExtensionSet(0),
+ ASESet(0), OddSPReg(false), Is32BitABI(false), FpABI(FpABIKind::ANY) {}
+
+ uint16_t getVersionValue() { return (uint16_t)Version; }
+ uint8_t getISALevelValue() { return (uint8_t)ISALevel; }
+ uint8_t getISARevisionValue() { return (uint8_t)ISARevision; }
+ uint8_t getGPRSizeValue() { return (uint8_t)GPRSize; }
+ uint8_t getCPR1SizeValue();
+ uint8_t getCPR2SizeValue() { return (uint8_t)CPR2Size; }
+ uint8_t getFpABIValue();
+ uint32_t getISAExtensionSetValue() { return (uint32_t)ISAExtensionSet; }
+ uint32_t getASESetValue() { return (uint32_t)ASESet; }
+
+ uint32_t getFlags1Value() {
+ uint32_t Value = 0;
+
+ if (OddSPReg)
+ Value |= (uint32_t)AFL_FLAGS1_ODDSPREG;
+
+ return Value;
+ }
+
+ uint32_t getFlags2Value() { return 0; }
+
+ FpABIKind getFpABI() { return FpABI; }
+ void setFpABI(FpABIKind Value, bool IsABI32Bit) {
+ FpABI = Value;
+ Is32BitABI = IsABI32Bit;
+ }
+ StringRef getFpABIString(FpABIKind Value);
+
+ template <class PredicateLibrary>
+ void setISALevelAndRevisionFromPredicates(const PredicateLibrary &P) {
+ if (P.hasMips64()) {
+ ISALevel = 64;
+ if (P.hasMips64r6())
+ ISARevision = 6;
+ else if (P.hasMips64r2())
+ ISARevision = 2;
+ else
+ ISARevision = 1;
+ } else if (P.hasMips32()) {
+ ISALevel = 32;
+ if (P.hasMips32r6())
+ ISARevision = 6;
+ else if (P.hasMips32r2())
+ ISARevision = 2;
+ else
+ ISARevision = 1;
+ } else {
+ ISARevision = 0;
+ if (P.hasMips5())
+ ISALevel = 5;
+ else if (P.hasMips4())
+ ISALevel = 4;
+ else if (P.hasMips3())
+ ISALevel = 3;
+ else if (P.hasMips2())
+ ISALevel = 2;
+ else if (P.hasMips1())
+ ISALevel = 1;
+ else
+ llvm_unreachable("Unknown ISA level!");
+ }
+ }
+
+ template <class PredicateLibrary>
+ void setGPRSizeFromPredicates(const PredicateLibrary &P) {
+ GPRSize = P.isGP64bit() ? AFL_REG_64 : AFL_REG_32;
+ }
+
+ template <class PredicateLibrary>
+ void setCPR1SizeFromPredicates(const PredicateLibrary &P) {
+ if (P.abiUsesSoftFloat())
+ CPR1Size = AFL_REG_NONE;
+ else if (P.hasMSA())
+ CPR1Size = AFL_REG_128;
+ else
+ CPR1Size = P.isFP64bit() ? AFL_REG_64 : AFL_REG_32;
+ }
+
+ template <class PredicateLibrary>
+ void setASESetFromPredicates(const PredicateLibrary &P) {
+ ASESet = 0;
+ if (P.hasDSP())
+ ASESet |= AFL_ASE_DSP;
+ if (P.hasDSPR2())
+ ASESet |= AFL_ASE_DSPR2;
+ if (P.hasMSA())
+ ASESet |= AFL_ASE_MSA;
+ if (P.inMicroMipsMode())
+ ASESet |= AFL_ASE_MICROMIPS;
+ if (P.inMips16Mode())
+ ASESet |= AFL_ASE_MIPS16;
+ }
+
+ template <class PredicateLibrary>
+ void setFpAbiFromPredicates(const PredicateLibrary &P) {
+ Is32BitABI = P.isABI_O32();
+
+ FpABI = FpABIKind::ANY;
+ if (P.isABI_N32() || P.isABI_N64())
+ FpABI = FpABIKind::S64;
+ else if (P.isABI_O32()) {
+ if (P.isABI_FPXX())
+ FpABI = FpABIKind::XX;
+ else if (P.isFP64bit())
+ FpABI = FpABIKind::S64;
+ else
+ FpABI = FpABIKind::S32;
+ }
+ }
+
+ template <class PredicateLibrary>
+ void setAllFromPredicates(const PredicateLibrary &P) {
+ setISALevelAndRevisionFromPredicates(P);
+ setGPRSizeFromPredicates(P);
+ setCPR1SizeFromPredicates(P);
+ setASESetFromPredicates(P);
+ setFpAbiFromPredicates(P);
+ OddSPReg = P.useOddSPReg();
+ }
+};
+
+MCStreamer &operator<<(MCStreamer &OS, MipsABIFlagsSection &ABIFlagsSection);
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.cpp
new file mode 100644
index 0000000..d8e6128
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.cpp
@@ -0,0 +1,425 @@
+//===-- MipsAsmBackend.cpp - Mips Asm Backend ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MipsAsmBackend class.
+//
+//===----------------------------------------------------------------------===//
+//
+
+#include "MCTargetDesc/MipsFixupKinds.h"
+#include "MCTargetDesc/MipsAsmBackend.h"
+#include "MCTargetDesc/MipsMCTargetDesc.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDirectives.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCFixupKindInfo.h"
+#include "llvm/MC/MCObjectWriter.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+// Prepare value for the target space for it
+static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
+ MCContext *Ctx = nullptr) {
+
+ unsigned Kind = Fixup.getKind();
+
+ // Add/subtract and shift
+ switch (Kind) {
+ default:
+ return 0;
+ case FK_Data_2:
+ case FK_GPRel_4:
+ case FK_Data_4:
+ case FK_Data_8:
+ case Mips::fixup_Mips_LO16:
+ case Mips::fixup_Mips_GPREL16:
+ case Mips::fixup_Mips_GPOFF_HI:
+ case Mips::fixup_Mips_GPOFF_LO:
+ case Mips::fixup_Mips_GOT_PAGE:
+ case Mips::fixup_Mips_GOT_OFST:
+ case Mips::fixup_Mips_GOT_DISP:
+ case Mips::fixup_Mips_GOT_LO16:
+ case Mips::fixup_Mips_CALL_LO16:
+ case Mips::fixup_MICROMIPS_LO16:
+ case Mips::fixup_MICROMIPS_GOT_PAGE:
+ case Mips::fixup_MICROMIPS_GOT_OFST:
+ case Mips::fixup_MICROMIPS_GOT_DISP:
+ case Mips::fixup_MIPS_PCLO16:
+ break;
+ case Mips::fixup_Mips_PC16:
+ // So far we are only using this type for branches.
+ // For branches we start 1 instruction after the branch
+ // so the displacement will be one instruction size less.
+ Value -= 4;
+ // The displacement is then divided by 4 to give us an 18 bit
+ // address range. Forcing a signed division because Value can be negative.
+ Value = (int64_t)Value / 4;
+ // We now check if Value can be encoded as a 16-bit signed immediate.
+ if (!isIntN(16, Value) && Ctx)
+ Ctx->FatalError(Fixup.getLoc(), "out of range PC16 fixup");
+ break;
+ case Mips::fixup_MIPS_PC19_S2:
+ // Forcing a signed division because Value can be negative.
+ Value = (int64_t)Value / 4;
+ // We now check if Value can be encoded as a 19-bit signed immediate.
+ if (!isIntN(19, Value) && Ctx)
+ Ctx->FatalError(Fixup.getLoc(), "out of range PC19 fixup");
+ break;
+ case Mips::fixup_Mips_26:
+ // So far we are only using this type for jumps.
+ // The displacement is then divided by 4 to give us an 28 bit
+ // address range.
+ Value >>= 2;
+ break;
+ case Mips::fixup_Mips_HI16:
+ case Mips::fixup_Mips_GOT_Local:
+ case Mips::fixup_Mips_GOT_HI16:
+ case Mips::fixup_Mips_CALL_HI16:
+ case Mips::fixup_MICROMIPS_HI16:
+ case Mips::fixup_MIPS_PCHI16:
+ // Get the 2nd 16-bits. Also add 1 if bit 15 is 1.
+ Value = ((Value + 0x8000) >> 16) & 0xffff;
+ break;
+ case Mips::fixup_Mips_HIGHER:
+ // Get the 3rd 16-bits.
+ Value = ((Value + 0x80008000LL) >> 32) & 0xffff;
+ break;
+ case Mips::fixup_Mips_HIGHEST:
+ // Get the 4th 16-bits.
+ Value = ((Value + 0x800080008000LL) >> 48) & 0xffff;
+ break;
+ case Mips::fixup_MICROMIPS_26_S1:
+ Value >>= 1;
+ break;
+ case Mips::fixup_MICROMIPS_PC16_S1:
+ Value -= 4;
+ // Forcing a signed division because Value can be negative.
+ Value = (int64_t)Value / 2;
+ // We now check if Value can be encoded as a 16-bit signed immediate.
+ if (!isIntN(16, Value) && Ctx)
+ Ctx->FatalError(Fixup.getLoc(), "out of range PC16 fixup");
+ break;
+ case Mips::fixup_MIPS_PC18_S3:
+ // Forcing a signed division because Value can be negative.
+ Value = (int64_t)Value / 8;
+ // We now check if Value can be encoded as a 18-bit signed immediate.
+ if (!isIntN(18, Value) && Ctx)
+ Ctx->FatalError(Fixup.getLoc(), "out of range PC18 fixup");
+ break;
+ case Mips::fixup_MIPS_PC21_S2:
+ Value -= 4;
+ // Forcing a signed division because Value can be negative.
+ Value = (int64_t) Value / 4;
+ // We now check if Value can be encoded as a 21-bit signed immediate.
+ if (!isIntN(21, Value) && Ctx)
+ Ctx->FatalError(Fixup.getLoc(), "out of range PC21 fixup");
+ break;
+ case Mips::fixup_MIPS_PC26_S2:
+ Value -= 4;
+ // Forcing a signed division because Value can be negative.
+ Value = (int64_t) Value / 4;
+ // We now check if Value can be encoded as a 26-bit signed immediate.
+ if (!isIntN(26, Value) && Ctx)
+ Ctx->FatalError(Fixup.getLoc(), "out of range PC26 fixup");
+ break;
+ }
+
+ return Value;
+}
+
+MCObjectWriter *MipsAsmBackend::createObjectWriter(raw_ostream &OS) const {
+ return createMipsELFObjectWriter(OS,
+ MCELFObjectTargetWriter::getOSABI(OSType), IsLittle, Is64Bit);
+}
+
+// Little-endian fixup data byte ordering:
+// mips32r2: a | b | x | x
+// microMIPS: x | x | a | b
+
+static bool needsMMLEByteOrder(unsigned Kind) {
+ return Kind >= Mips::fixup_MICROMIPS_26_S1 &&
+ Kind < Mips::LastTargetFixupKind;
+}
+
+// Calculate index for microMIPS specific little endian byte order
+static unsigned calculateMMLEIndex(unsigned i) {
+ assert(i <= 3 && "Index out of range!");
+
+ return (1 - i / 2) * 2 + i % 2;
+}
+
+/// ApplyFixup - Apply the \p Value for given \p Fixup into the provided
+/// data fragment, at the offset specified by the fixup and following the
+/// fixup kind as appropriate.
+void MipsAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
+ unsigned DataSize, uint64_t Value,
+ bool IsPCRel) const {
+ MCFixupKind Kind = Fixup.getKind();
+ Value = adjustFixupValue(Fixup, Value);
+
+ if (!Value)
+ return; // Doesn't change encoding.
+
+ // Where do we start in the object
+ unsigned Offset = Fixup.getOffset();
+ // Number of bytes we need to fixup
+ unsigned NumBytes = (getFixupKindInfo(Kind).TargetSize + 7) / 8;
+ // Used to point to big endian bytes
+ unsigned FullSize;
+
+ switch ((unsigned)Kind) {
+ case FK_Data_2:
+ case Mips::fixup_Mips_16:
+ FullSize = 2;
+ break;
+ case FK_Data_8:
+ case Mips::fixup_Mips_64:
+ FullSize = 8;
+ break;
+ case FK_Data_4:
+ default:
+ FullSize = 4;
+ break;
+ }
+
+ // Grab current value, if any, from bits.
+ uint64_t CurVal = 0;
+
+ bool microMipsLEByteOrder = needsMMLEByteOrder((unsigned) Kind);
+
+ for (unsigned i = 0; i != NumBytes; ++i) {
+ unsigned Idx = IsLittle ? (microMipsLEByteOrder ? calculateMMLEIndex(i)
+ : i)
+ : (FullSize - 1 - i);
+ CurVal |= (uint64_t)((uint8_t)Data[Offset + Idx]) << (i*8);
+ }
+
+ uint64_t Mask = ((uint64_t)(-1) >>
+ (64 - getFixupKindInfo(Kind).TargetSize));
+ CurVal |= Value & Mask;
+
+ // Write out the fixed up bytes back to the code/data bits.
+ for (unsigned i = 0; i != NumBytes; ++i) {
+ unsigned Idx = IsLittle ? (microMipsLEByteOrder ? calculateMMLEIndex(i)
+ : i)
+ : (FullSize - 1 - i);
+ Data[Offset + Idx] = (uint8_t)((CurVal >> (i*8)) & 0xff);
+ }
+}
+
+const MCFixupKindInfo &MipsAsmBackend::
+getFixupKindInfo(MCFixupKind Kind) const {
+ const static MCFixupKindInfo LittleEndianInfos[Mips::NumTargetFixupKinds] = {
+ // This table *must* be in same the order of fixup_* kinds in
+ // MipsFixupKinds.h.
+ //
+ // name offset bits flags
+ { "fixup_Mips_16", 0, 16, 0 },
+ { "fixup_Mips_32", 0, 32, 0 },
+ { "fixup_Mips_REL32", 0, 32, 0 },
+ { "fixup_Mips_26", 0, 26, 0 },
+ { "fixup_Mips_HI16", 0, 16, 0 },
+ { "fixup_Mips_LO16", 0, 16, 0 },
+ { "fixup_Mips_GPREL16", 0, 16, 0 },
+ { "fixup_Mips_LITERAL", 0, 16, 0 },
+ { "fixup_Mips_GOT_Global", 0, 16, 0 },
+ { "fixup_Mips_GOT_Local", 0, 16, 0 },
+ { "fixup_Mips_PC16", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_Mips_CALL16", 0, 16, 0 },
+ { "fixup_Mips_GPREL32", 0, 32, 0 },
+ { "fixup_Mips_SHIFT5", 6, 5, 0 },
+ { "fixup_Mips_SHIFT6", 6, 5, 0 },
+ { "fixup_Mips_64", 0, 64, 0 },
+ { "fixup_Mips_TLSGD", 0, 16, 0 },
+ { "fixup_Mips_GOTTPREL", 0, 16, 0 },
+ { "fixup_Mips_TPREL_HI", 0, 16, 0 },
+ { "fixup_Mips_TPREL_LO", 0, 16, 0 },
+ { "fixup_Mips_TLSLDM", 0, 16, 0 },
+ { "fixup_Mips_DTPREL_HI", 0, 16, 0 },
+ { "fixup_Mips_DTPREL_LO", 0, 16, 0 },
+ { "fixup_Mips_Branch_PCRel", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_Mips_GPOFF_HI", 0, 16, 0 },
+ { "fixup_Mips_GPOFF_LO", 0, 16, 0 },
+ { "fixup_Mips_GOT_PAGE", 0, 16, 0 },
+ { "fixup_Mips_GOT_OFST", 0, 16, 0 },
+ { "fixup_Mips_GOT_DISP", 0, 16, 0 },
+ { "fixup_Mips_HIGHER", 0, 16, 0 },
+ { "fixup_Mips_HIGHEST", 0, 16, 0 },
+ { "fixup_Mips_GOT_HI16", 0, 16, 0 },
+ { "fixup_Mips_GOT_LO16", 0, 16, 0 },
+ { "fixup_Mips_CALL_HI16", 0, 16, 0 },
+ { "fixup_Mips_CALL_LO16", 0, 16, 0 },
+ { "fixup_Mips_PC18_S3", 0, 18, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MIPS_PC19_S2", 0, 19, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MIPS_PC21_S2", 0, 21, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MIPS_PC26_S2", 0, 26, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MIPS_PCHI16", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MIPS_PCLO16", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MICROMIPS_26_S1", 0, 26, 0 },
+ { "fixup_MICROMIPS_HI16", 0, 16, 0 },
+ { "fixup_MICROMIPS_LO16", 0, 16, 0 },
+ { "fixup_MICROMIPS_GOT16", 0, 16, 0 },
+ { "fixup_MICROMIPS_PC16_S1", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MICROMIPS_CALL16", 0, 16, 0 },
+ { "fixup_MICROMIPS_GOT_DISP", 0, 16, 0 },
+ { "fixup_MICROMIPS_GOT_PAGE", 0, 16, 0 },
+ { "fixup_MICROMIPS_GOT_OFST", 0, 16, 0 },
+ { "fixup_MICROMIPS_TLS_GD", 0, 16, 0 },
+ { "fixup_MICROMIPS_TLS_LDM", 0, 16, 0 },
+ { "fixup_MICROMIPS_TLS_DTPREL_HI16", 0, 16, 0 },
+ { "fixup_MICROMIPS_TLS_DTPREL_LO16", 0, 16, 0 },
+ { "fixup_MICROMIPS_TLS_TPREL_HI16", 0, 16, 0 },
+ { "fixup_MICROMIPS_TLS_TPREL_LO16", 0, 16, 0 }
+ };
+
+ const static MCFixupKindInfo BigEndianInfos[Mips::NumTargetFixupKinds] = {
+ // This table *must* be in same the order of fixup_* kinds in
+ // MipsFixupKinds.h.
+ //
+ // name offset bits flags
+ { "fixup_Mips_16", 16, 16, 0 },
+ { "fixup_Mips_32", 0, 32, 0 },
+ { "fixup_Mips_REL32", 0, 32, 0 },
+ { "fixup_Mips_26", 6, 26, 0 },
+ { "fixup_Mips_HI16", 16, 16, 0 },
+ { "fixup_Mips_LO16", 16, 16, 0 },
+ { "fixup_Mips_GPREL16", 16, 16, 0 },
+ { "fixup_Mips_LITERAL", 16, 16, 0 },
+ { "fixup_Mips_GOT_Global", 16, 16, 0 },
+ { "fixup_Mips_GOT_Local", 16, 16, 0 },
+ { "fixup_Mips_PC16", 16, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_Mips_CALL16", 16, 16, 0 },
+ { "fixup_Mips_GPREL32", 0, 32, 0 },
+ { "fixup_Mips_SHIFT5", 21, 5, 0 },
+ { "fixup_Mips_SHIFT6", 21, 5, 0 },
+ { "fixup_Mips_64", 0, 64, 0 },
+ { "fixup_Mips_TLSGD", 16, 16, 0 },
+ { "fixup_Mips_GOTTPREL", 16, 16, 0 },
+ { "fixup_Mips_TPREL_HI", 16, 16, 0 },
+ { "fixup_Mips_TPREL_LO", 16, 16, 0 },
+ { "fixup_Mips_TLSLDM", 16, 16, 0 },
+ { "fixup_Mips_DTPREL_HI", 16, 16, 0 },
+ { "fixup_Mips_DTPREL_LO", 16, 16, 0 },
+ { "fixup_Mips_Branch_PCRel",16, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_Mips_GPOFF_HI", 16, 16, 0 },
+ { "fixup_Mips_GPOFF_LO", 16, 16, 0 },
+ { "fixup_Mips_GOT_PAGE", 16, 16, 0 },
+ { "fixup_Mips_GOT_OFST", 16, 16, 0 },
+ { "fixup_Mips_GOT_DISP", 16, 16, 0 },
+ { "fixup_Mips_HIGHER", 16, 16, 0 },
+ { "fixup_Mips_HIGHEST", 16, 16, 0 },
+ { "fixup_Mips_GOT_HI16", 16, 16, 0 },
+ { "fixup_Mips_GOT_LO16", 16, 16, 0 },
+ { "fixup_Mips_CALL_HI16", 16, 16, 0 },
+ { "fixup_Mips_CALL_LO16", 16, 16, 0 },
+ { "fixup_Mips_PC18_S3", 14, 18, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MIPS_PC19_S2", 13, 19, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MIPS_PC21_S2", 11, 21, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MIPS_PC26_S2", 6, 26, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MIPS_PCHI16", 16, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MIPS_PCLO16", 16, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MICROMIPS_26_S1", 6, 26, 0 },
+ { "fixup_MICROMIPS_HI16", 16, 16, 0 },
+ { "fixup_MICROMIPS_LO16", 16, 16, 0 },
+ { "fixup_MICROMIPS_GOT16", 16, 16, 0 },
+ { "fixup_MICROMIPS_PC16_S1",16, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_MICROMIPS_CALL16", 16, 16, 0 },
+ { "fixup_MICROMIPS_GOT_DISP", 16, 16, 0 },
+ { "fixup_MICROMIPS_GOT_PAGE", 16, 16, 0 },
+ { "fixup_MICROMIPS_GOT_OFST", 16, 16, 0 },
+ { "fixup_MICROMIPS_TLS_GD", 16, 16, 0 },
+ { "fixup_MICROMIPS_TLS_LDM", 16, 16, 0 },
+ { "fixup_MICROMIPS_TLS_DTPREL_HI16", 16, 16, 0 },
+ { "fixup_MICROMIPS_TLS_DTPREL_LO16", 16, 16, 0 },
+ { "fixup_MICROMIPS_TLS_TPREL_HI16", 16, 16, 0 },
+ { "fixup_MICROMIPS_TLS_TPREL_LO16", 16, 16, 0 }
+ };
+
+ if (Kind < FirstTargetFixupKind)
+ return MCAsmBackend::getFixupKindInfo(Kind);
+
+ assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
+ "Invalid kind!");
+
+ if (IsLittle)
+ return LittleEndianInfos[Kind - FirstTargetFixupKind];
+ return BigEndianInfos[Kind - FirstTargetFixupKind];
+}
+
+/// WriteNopData - Write an (optimal) nop sequence of Count bytes
+/// to the given output. If the target cannot generate such a sequence,
+/// it should return an error.
+///
+/// \return - True on success.
+bool MipsAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
+ // Check for a less than instruction size number of bytes
+ // FIXME: 16 bit instructions are not handled yet here.
+ // We shouldn't be using a hard coded number for instruction size.
+ if (Count % 4) return false;
+
+ uint64_t NumNops = Count / 4;
+ for (uint64_t i = 0; i != NumNops; ++i)
+ OW->Write32(0);
+ return true;
+}
+
+/// processFixupValue - Target hook to process the literal value of a fixup
+/// if necessary.
+void MipsAsmBackend::processFixupValue(const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFixup &Fixup,
+ const MCFragment *DF,
+ const MCValue &Target,
+ uint64_t &Value,
+ bool &IsResolved) {
+ // At this point we'll ignore the value returned by adjustFixupValue as
+ // we are only checking if the fixup can be applied correctly. We have
+ // access to MCContext from here which allows us to report a fatal error
+ // with *possibly* a source code location.
+ (void)adjustFixupValue(Fixup, Value, &Asm.getContext());
+}
+
+// MCAsmBackend
+MCAsmBackend *llvm::createMipsAsmBackendEL32(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT,
+ StringRef CPU) {
+ return new MipsAsmBackend(T, Triple(TT).getOS(),
+ /*IsLittle*/true, /*Is64Bit*/false);
+}
+
+MCAsmBackend *llvm::createMipsAsmBackendEB32(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT,
+ StringRef CPU) {
+ return new MipsAsmBackend(T, Triple(TT).getOS(),
+ /*IsLittle*/false, /*Is64Bit*/false);
+}
+
+MCAsmBackend *llvm::createMipsAsmBackendEL64(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT,
+ StringRef CPU) {
+ return new MipsAsmBackend(T, Triple(TT).getOS(),
+ /*IsLittle*/true, /*Is64Bit*/true);
+}
+
+MCAsmBackend *llvm::createMipsAsmBackendEB64(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT,
+ StringRef CPU) {
+ return new MipsAsmBackend(T, Triple(TT).getOS(),
+ /*IsLittle*/false, /*Is64Bit*/true);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.h
new file mode 100644
index 0000000..d5c3dbc
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.h
@@ -0,0 +1,93 @@
+//===-- MipsAsmBackend.h - Mips Asm Backend ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the MipsAsmBackend class.
+//
+//===----------------------------------------------------------------------===//
+//
+
+#ifndef MIPSASMBACKEND_H
+#define MIPSASMBACKEND_H
+
+#include "MCTargetDesc/MipsFixupKinds.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/ADT/Triple.h"
+
+namespace llvm {
+
+class MCAssembler;
+struct MCFixupKindInfo;
+class Target;
+class MCObjectWriter;
+
+class MipsAsmBackend : public MCAsmBackend {
+ Triple::OSType OSType;
+ bool IsLittle; // Big or little endian
+ bool Is64Bit; // 32 or 64 bit words
+
+public:
+ MipsAsmBackend(const Target &T, Triple::OSType _OSType, bool _isLittle,
+ bool _is64Bit)
+ : MCAsmBackend(), OSType(_OSType), IsLittle(_isLittle),
+ Is64Bit(_is64Bit) {}
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override;
+
+ void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
+ uint64_t Value, bool IsPCRel) const override;
+
+ const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override;
+
+ unsigned getNumFixupKinds() const override {
+ return Mips::NumTargetFixupKinds;
+ }
+
+ /// @name Target Relaxation Interfaces
+ /// @{
+
+ /// MayNeedRelaxation - Check whether the given instruction may need
+ /// relaxation.
+ ///
+ /// \param Inst - The instruction to test.
+ bool mayNeedRelaxation(const MCInst &Inst) const override {
+ return false;
+ }
+
+ /// fixupNeedsRelaxation - Target specific predicate for whether a given
+ /// fixup requires the associated instruction to be relaxed.
+ bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const override {
+ // FIXME.
+ llvm_unreachable("RelaxInstruction() unimplemented");
+ return false;
+ }
+
+ /// RelaxInstruction - Relax the instruction in the given fragment
+ /// to the next wider instruction.
+ ///
+ /// \param Inst - The instruction to relax, which may be the same
+ /// as the output.
+ /// \param [out] Res On return, the relaxed instruction.
+ void relaxInstruction(const MCInst &Inst, MCInst &Res) const override {}
+
+ /// @}
+
+ bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
+
+ void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFixup &Fixup, const MCFragment *DF,
+ const MCValue &Target, uint64_t &Value,
+ bool &IsResolved) override;
+
+}; // class MipsAsmBackend
+
+} // namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsBaseInfo.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsBaseInfo.h
new file mode 100644
index 0000000..d2323dc
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsBaseInfo.h
@@ -0,0 +1,125 @@
+//===-- MipsBaseInfo.h - Top level definitions for MIPS MC ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains small standalone helper functions and enum definitions for
+// the Mips target useful for the compiler back-end and the MC libraries.
+//
+//===----------------------------------------------------------------------===//
+#ifndef MIPSBASEINFO_H
+#define MIPSBASEINFO_H
+
+#include "MipsFixupKinds.h"
+#include "MipsMCTargetDesc.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace llvm {
+
+/// MipsII - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace MipsII {
+ /// Target Operand Flag enum.
+ enum TOF {
+ //===------------------------------------------------------------------===//
+ // Mips Specific MachineOperand flags.
+
+ MO_NO_FLAG,
+
+ /// MO_GOT16 - Represents the offset into the global offset table at which
+ /// the address the relocation entry symbol resides during execution.
+ MO_GOT16,
+ MO_GOT,
+
+ /// MO_GOT_CALL - Represents the offset into the global offset table at
+ /// which the address of a call site relocation entry symbol resides
+ /// during execution. This is different from the above since this flag
+ /// can only be present in call instructions.
+ MO_GOT_CALL,
+
+ /// MO_GPREL - Represents the offset from the current gp value to be used
+ /// for the relocatable object file being produced.
+ MO_GPREL,
+
+ /// MO_ABS_HI/LO - Represents the hi or low part of an absolute symbol
+ /// address.
+ MO_ABS_HI,
+ MO_ABS_LO,
+
+ /// MO_TLSGD - Represents the offset into the global offset table at which
+ // the module ID and TSL block offset reside during execution (General
+ // Dynamic TLS).
+ MO_TLSGD,
+
+ /// MO_TLSLDM - Represents the offset into the global offset table at which
+ // the module ID and TSL block offset reside during execution (Local
+ // Dynamic TLS).
+ MO_TLSLDM,
+ MO_DTPREL_HI,
+ MO_DTPREL_LO,
+
+ /// MO_GOTTPREL - Represents the offset from the thread pointer (Initial
+ // Exec TLS).
+ MO_GOTTPREL,
+
+ /// MO_TPREL_HI/LO - Represents the hi and low part of the offset from
+ // the thread pointer (Local Exec TLS).
+ MO_TPREL_HI,
+ MO_TPREL_LO,
+
+ // N32/64 Flags.
+ MO_GPOFF_HI,
+ MO_GPOFF_LO,
+ MO_GOT_DISP,
+ MO_GOT_PAGE,
+ MO_GOT_OFST,
+
+ /// MO_HIGHER/HIGHEST - Represents the highest or higher half word of a
+ /// 64-bit symbol address.
+ MO_HIGHER,
+ MO_HIGHEST,
+
+ /// MO_GOT_HI16/LO16, MO_CALL_HI16/LO16 - Relocations used for large GOTs.
+ MO_GOT_HI16,
+ MO_GOT_LO16,
+ MO_CALL_HI16,
+ MO_CALL_LO16
+ };
+
+ enum {
+ //===------------------------------------------------------------------===//
+ // Instruction encodings. These are the standard/most common forms for
+ // Mips instructions.
+ //
+
+ // Pseudo - This represents an instruction that is a pseudo instruction
+ // or one that has not been implemented yet. It is illegal to code generate
+ // it, but tolerated for intermediate implementation stages.
+ Pseudo = 0,
+
+ /// FrmR - This form is for instructions of the format R.
+ FrmR = 1,
+ /// FrmI - This form is for instructions of the format I.
+ FrmI = 2,
+ /// FrmJ - This form is for instructions of the format J.
+ FrmJ = 3,
+ /// FrmFR - This form is for instructions of the format FR.
+ FrmFR = 4,
+ /// FrmFI - This form is for instructions of the format FI.
+ FrmFI = 5,
+ /// FrmOther - This form is for instructions that have no specific format.
+ FrmOther = 6,
+
+ FormMask = 15
+ };
+}
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFObjectWriter.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFObjectWriter.cpp
new file mode 100644
index 0000000..4ea7846
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFObjectWriter.cpp
@@ -0,0 +1,263 @@
+//===-- MipsELFObjectWriter.cpp - Mips ELF Writer -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MCTargetDesc/MipsFixupKinds.h"
+#include "MCTargetDesc/MipsMCTargetDesc.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <list>
+
+using namespace llvm;
+
+namespace {
+ class MipsELFObjectWriter : public MCELFObjectTargetWriter {
+ public:
+ MipsELFObjectWriter(bool _is64Bit, uint8_t OSABI,
+ bool _isN64, bool IsLittleEndian);
+
+ virtual ~MipsELFObjectWriter();
+
+ unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsPCRel) const override;
+ bool needsRelocateWithSymbol(const MCSymbolData &SD,
+ unsigned Type) const override;
+ };
+}
+
+MipsELFObjectWriter::MipsELFObjectWriter(bool _is64Bit, uint8_t OSABI,
+ bool _isN64, bool IsLittleEndian)
+ : MCELFObjectTargetWriter(_is64Bit, OSABI, ELF::EM_MIPS,
+ /*HasRelocationAddend*/ (_isN64) ? true : false,
+ /*IsN64*/ _isN64) {}
+
+MipsELFObjectWriter::~MipsELFObjectWriter() {}
+
+unsigned MipsELFObjectWriter::GetRelocType(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const {
+ // determine the type of the relocation
+ unsigned Type = (unsigned)ELF::R_MIPS_NONE;
+ unsigned Kind = (unsigned)Fixup.getKind();
+
+ switch (Kind) {
+ default:
+ llvm_unreachable("invalid fixup kind!");
+ case FK_Data_4:
+ Type = ELF::R_MIPS_32;
+ break;
+ case FK_Data_8:
+ Type = ELF::R_MIPS_64;
+ break;
+ case FK_GPRel_4:
+ if (isN64()) {
+ Type = setRType((unsigned)ELF::R_MIPS_GPREL32, Type);
+ Type = setRType2((unsigned)ELF::R_MIPS_64, Type);
+ Type = setRType3((unsigned)ELF::R_MIPS_NONE, Type);
+ }
+ else
+ Type = ELF::R_MIPS_GPREL32;
+ break;
+ case Mips::fixup_Mips_GPREL16:
+ Type = ELF::R_MIPS_GPREL16;
+ break;
+ case Mips::fixup_Mips_26:
+ Type = ELF::R_MIPS_26;
+ break;
+ case Mips::fixup_Mips_CALL16:
+ Type = ELF::R_MIPS_CALL16;
+ break;
+ case Mips::fixup_Mips_GOT_Global:
+ case Mips::fixup_Mips_GOT_Local:
+ Type = ELF::R_MIPS_GOT16;
+ break;
+ case Mips::fixup_Mips_HI16:
+ Type = ELF::R_MIPS_HI16;
+ break;
+ case Mips::fixup_Mips_LO16:
+ Type = ELF::R_MIPS_LO16;
+ break;
+ case Mips::fixup_Mips_TLSGD:
+ Type = ELF::R_MIPS_TLS_GD;
+ break;
+ case Mips::fixup_Mips_GOTTPREL:
+ Type = ELF::R_MIPS_TLS_GOTTPREL;
+ break;
+ case Mips::fixup_Mips_TPREL_HI:
+ Type = ELF::R_MIPS_TLS_TPREL_HI16;
+ break;
+ case Mips::fixup_Mips_TPREL_LO:
+ Type = ELF::R_MIPS_TLS_TPREL_LO16;
+ break;
+ case Mips::fixup_Mips_TLSLDM:
+ Type = ELF::R_MIPS_TLS_LDM;
+ break;
+ case Mips::fixup_Mips_DTPREL_HI:
+ Type = ELF::R_MIPS_TLS_DTPREL_HI16;
+ break;
+ case Mips::fixup_Mips_DTPREL_LO:
+ Type = ELF::R_MIPS_TLS_DTPREL_LO16;
+ break;
+ case Mips::fixup_Mips_Branch_PCRel:
+ case Mips::fixup_Mips_PC16:
+ Type = ELF::R_MIPS_PC16;
+ break;
+ case Mips::fixup_Mips_GOT_PAGE:
+ Type = ELF::R_MIPS_GOT_PAGE;
+ break;
+ case Mips::fixup_Mips_GOT_OFST:
+ Type = ELF::R_MIPS_GOT_OFST;
+ break;
+ case Mips::fixup_Mips_GOT_DISP:
+ Type = ELF::R_MIPS_GOT_DISP;
+ break;
+ case Mips::fixup_Mips_GPOFF_HI:
+ Type = setRType((unsigned)ELF::R_MIPS_GPREL16, Type);
+ Type = setRType2((unsigned)ELF::R_MIPS_SUB, Type);
+ Type = setRType3((unsigned)ELF::R_MIPS_HI16, Type);
+ break;
+ case Mips::fixup_Mips_GPOFF_LO:
+ Type = setRType((unsigned)ELF::R_MIPS_GPREL16, Type);
+ Type = setRType2((unsigned)ELF::R_MIPS_SUB, Type);
+ Type = setRType3((unsigned)ELF::R_MIPS_LO16, Type);
+ break;
+ case Mips::fixup_Mips_HIGHER:
+ Type = ELF::R_MIPS_HIGHER;
+ break;
+ case Mips::fixup_Mips_HIGHEST:
+ Type = ELF::R_MIPS_HIGHEST;
+ break;
+ case Mips::fixup_Mips_GOT_HI16:
+ Type = ELF::R_MIPS_GOT_HI16;
+ break;
+ case Mips::fixup_Mips_GOT_LO16:
+ Type = ELF::R_MIPS_GOT_LO16;
+ break;
+ case Mips::fixup_Mips_CALL_HI16:
+ Type = ELF::R_MIPS_CALL_HI16;
+ break;
+ case Mips::fixup_Mips_CALL_LO16:
+ Type = ELF::R_MIPS_CALL_LO16;
+ break;
+ case Mips::fixup_MICROMIPS_26_S1:
+ Type = ELF::R_MICROMIPS_26_S1;
+ break;
+ case Mips::fixup_MICROMIPS_HI16:
+ Type = ELF::R_MICROMIPS_HI16;
+ break;
+ case Mips::fixup_MICROMIPS_LO16:
+ Type = ELF::R_MICROMIPS_LO16;
+ break;
+ case Mips::fixup_MICROMIPS_GOT16:
+ Type = ELF::R_MICROMIPS_GOT16;
+ break;
+ case Mips::fixup_MICROMIPS_PC16_S1:
+ Type = ELF::R_MICROMIPS_PC16_S1;
+ break;
+ case Mips::fixup_MICROMIPS_CALL16:
+ Type = ELF::R_MICROMIPS_CALL16;
+ break;
+ case Mips::fixup_MICROMIPS_GOT_DISP:
+ Type = ELF::R_MICROMIPS_GOT_DISP;
+ break;
+ case Mips::fixup_MICROMIPS_GOT_PAGE:
+ Type = ELF::R_MICROMIPS_GOT_PAGE;
+ break;
+ case Mips::fixup_MICROMIPS_GOT_OFST:
+ Type = ELF::R_MICROMIPS_GOT_OFST;
+ break;
+ case Mips::fixup_MICROMIPS_TLS_GD:
+ Type = ELF::R_MICROMIPS_TLS_GD;
+ break;
+ case Mips::fixup_MICROMIPS_TLS_LDM:
+ Type = ELF::R_MICROMIPS_TLS_LDM;
+ break;
+ case Mips::fixup_MICROMIPS_TLS_DTPREL_HI16:
+ Type = ELF::R_MICROMIPS_TLS_DTPREL_HI16;
+ break;
+ case Mips::fixup_MICROMIPS_TLS_DTPREL_LO16:
+ Type = ELF::R_MICROMIPS_TLS_DTPREL_LO16;
+ break;
+ case Mips::fixup_MICROMIPS_TLS_TPREL_HI16:
+ Type = ELF::R_MICROMIPS_TLS_TPREL_HI16;
+ break;
+ case Mips::fixup_MICROMIPS_TLS_TPREL_LO16:
+ Type = ELF::R_MICROMIPS_TLS_TPREL_LO16;
+ break;
+ case Mips::fixup_MIPS_PC19_S2:
+ Type = ELF::R_MIPS_PC19_S2;
+ break;
+ case Mips::fixup_MIPS_PC18_S3:
+ Type = ELF::R_MIPS_PC18_S3;
+ break;
+ case Mips::fixup_MIPS_PC21_S2:
+ Type = ELF::R_MIPS_PC21_S2;
+ break;
+ case Mips::fixup_MIPS_PC26_S2:
+ Type = ELF::R_MIPS_PC26_S2;
+ break;
+ case Mips::fixup_MIPS_PCHI16:
+ Type = ELF::R_MIPS_PCHI16;
+ break;
+ case Mips::fixup_MIPS_PCLO16:
+ Type = ELF::R_MIPS_PCLO16;
+ break;
+ }
+ return Type;
+}
+
+bool
+MipsELFObjectWriter::needsRelocateWithSymbol(const MCSymbolData &SD,
+ unsigned Type) const {
+ // FIXME: This is extremelly conservative. This really needs to use a
+ // whitelist with a clear explanation for why each realocation needs to
+ // point to the symbol, not to the section.
+ switch (Type) {
+ default:
+ return true;
+
+ case ELF::R_MIPS_GOT16:
+ case ELF::R_MIPS16_GOT16:
+ case ELF::R_MICROMIPS_GOT16:
+ llvm_unreachable("Should have been handled already");
+
+ // These relocations might be paired with another relocation. The pairing is
+ // done by the static linker by matching the symbol. Since we only see one
+ // relocation at a time, we have to force them to relocate with a symbol to
+ // avoid ending up with a pair where one points to a section and another
+ // points to a symbol.
+ case ELF::R_MIPS_HI16:
+ case ELF::R_MIPS16_HI16:
+ case ELF::R_MICROMIPS_HI16:
+ case ELF::R_MIPS_LO16:
+ case ELF::R_MIPS16_LO16:
+ case ELF::R_MICROMIPS_LO16:
+ return true;
+
+ case ELF::R_MIPS_26:
+ case ELF::R_MIPS_32:
+ case ELF::R_MIPS_64:
+ case ELF::R_MIPS_GPREL16:
+ return false;
+ }
+}
+
+MCObjectWriter *llvm::createMipsELFObjectWriter(raw_ostream &OS,
+ uint8_t OSABI,
+ bool IsLittleEndian,
+ bool Is64Bit) {
+ MCELFObjectTargetWriter *MOTW = new MipsELFObjectWriter(Is64Bit, OSABI,
+ (Is64Bit) ? true : false,
+ IsLittleEndian);
+ return createELFObjectWriter(MOTW, OS, IsLittleEndian);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.cpp
new file mode 100644
index 0000000..803ab85
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.cpp
@@ -0,0 +1,43 @@
+//===-------- MipsELFStreamer.cpp - ELF Object Output ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsELFStreamer.h"
+#include "llvm/MC/MCInst.h"
+
+void MipsELFStreamer::EmitInstruction(const MCInst &Inst,
+ const MCSubtargetInfo &STI) {
+ MCELFStreamer::EmitInstruction(Inst, STI);
+
+ MCContext &Context = getContext();
+ const MCRegisterInfo *MCRegInfo = Context.getRegisterInfo();
+
+ for (unsigned OpIndex = 0; OpIndex < Inst.getNumOperands(); ++OpIndex) {
+ const MCOperand &Op = Inst.getOperand(OpIndex);
+
+ if (!Op.isReg())
+ continue;
+
+ unsigned Reg = Op.getReg();
+ RegInfoRecord->SetPhysRegUsed(Reg, MCRegInfo);
+ }
+}
+
+void MipsELFStreamer::EmitMipsOptionRecords() {
+ for (const auto &I : MipsOptionRecords)
+ I->EmitMipsOptionRecord();
+}
+
+namespace llvm {
+MCELFStreamer *createMipsELFStreamer(MCContext &Context, MCAsmBackend &MAB,
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI, bool RelaxAll,
+ bool NoExecStack) {
+ return new MipsELFStreamer(Context, MAB, OS, Emitter, STI);
+}
+}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.h
new file mode 100644
index 0000000..58863be
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.h
@@ -0,0 +1,58 @@
+//===-------- MipsELFStreamer.h - ELF Object Output -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a custom MCELFStreamer which allows us to insert some hooks before
+// emitting data into an actual object file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSELFSTREAMER_H
+#define MIPSELFSTREAMER_H
+
+#include "MipsOptionRecord.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/MC/MCELFStreamer.h"
+#include <memory>
+
+namespace llvm {
+class MCAsmBackend;
+class MCCodeEmitter;
+class MCContext;
+class MCSubtargetInfo;
+
+class MipsELFStreamer : public MCELFStreamer {
+ SmallVector<std::unique_ptr<MipsOptionRecord>, 8> MipsOptionRecords;
+ MipsRegInfoRecord *RegInfoRecord;
+
+public:
+ MipsELFStreamer(MCContext &Context, MCAsmBackend &MAB, raw_ostream &OS,
+ MCCodeEmitter *Emitter, const MCSubtargetInfo &STI)
+ : MCELFStreamer(Context, MAB, OS, Emitter) {
+
+ RegInfoRecord = new MipsRegInfoRecord(this, Context, STI);
+ MipsOptionRecords.push_back(
+ std::unique_ptr<MipsRegInfoRecord>(RegInfoRecord));
+ }
+
+ /// Overriding this function allows us to add arbitrary behaviour before the
+ /// \p Inst is actually emitted. For example, we can inspect the operands and
+ /// gather sufficient information that allows us to reason about the register
+ /// usage for the translation unit.
+ void EmitInstruction(const MCInst &Inst, const MCSubtargetInfo &STI) override;
+
+ /// Emits all the option records stored up until the point it's called.
+ void EmitMipsOptionRecords();
+};
+
+MCELFStreamer *createMipsELFStreamer(MCContext &Context, MCAsmBackend &MAB,
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI, bool RelaxAll,
+ bool NoExecStack);
+} // namespace llvm.
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsFixupKinds.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsFixupKinds.h
new file mode 100644
index 0000000..05080f0
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsFixupKinds.h
@@ -0,0 +1,202 @@
+//===-- MipsFixupKinds.h - Mips Specific Fixup Entries ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_MIPS_MIPSFIXUPKINDS_H
+#define LLVM_MIPS_MIPSFIXUPKINDS_H
+
+#include "llvm/MC/MCFixup.h"
+
+namespace llvm {
+namespace Mips {
+ // Although most of the current fixup types reflect a unique relocation
+ // one can have multiple fixup types for a given relocation and thus need
+ // to be uniquely named.
+ //
+ // This table *must* be in the save order of
+ // MCFixupKindInfo Infos[Mips::NumTargetFixupKinds]
+ // in MipsAsmBackend.cpp.
+ //
+ enum Fixups {
+ // Branch fixups resulting in R_MIPS_16.
+ fixup_Mips_16 = FirstTargetFixupKind,
+
+ // Pure 32 bit data fixup resulting in - R_MIPS_32.
+ fixup_Mips_32,
+
+ // Full 32 bit data relative data fixup resulting in - R_MIPS_REL32.
+ fixup_Mips_REL32,
+
+ // Jump 26 bit fixup resulting in - R_MIPS_26.
+ fixup_Mips_26,
+
+ // Pure upper 16 bit fixup resulting in - R_MIPS_HI16.
+ fixup_Mips_HI16,
+
+ // Pure lower 16 bit fixup resulting in - R_MIPS_LO16.
+ fixup_Mips_LO16,
+
+ // 16 bit fixup for GP offest resulting in - R_MIPS_GPREL16.
+ fixup_Mips_GPREL16,
+
+ // 16 bit literal fixup resulting in - R_MIPS_LITERAL.
+ fixup_Mips_LITERAL,
+
+ // Global symbol fixup resulting in - R_MIPS_GOT16.
+ fixup_Mips_GOT_Global,
+
+ // Local symbol fixup resulting in - R_MIPS_GOT16.
+ fixup_Mips_GOT_Local,
+
+ // PC relative branch fixup resulting in - R_MIPS_PC16.
+ fixup_Mips_PC16,
+
+ // resulting in - R_MIPS_CALL16.
+ fixup_Mips_CALL16,
+
+ // resulting in - R_MIPS_GPREL32.
+ fixup_Mips_GPREL32,
+
+ // resulting in - R_MIPS_SHIFT5.
+ fixup_Mips_SHIFT5,
+
+ // resulting in - R_MIPS_SHIFT6.
+ fixup_Mips_SHIFT6,
+
+ // Pure 64 bit data fixup resulting in - R_MIPS_64.
+ fixup_Mips_64,
+
+ // resulting in - R_MIPS_TLS_GD.
+ fixup_Mips_TLSGD,
+
+ // resulting in - R_MIPS_TLS_GOTTPREL.
+ fixup_Mips_GOTTPREL,
+
+ // resulting in - R_MIPS_TLS_TPREL_HI16.
+ fixup_Mips_TPREL_HI,
+
+ // resulting in - R_MIPS_TLS_TPREL_LO16.
+ fixup_Mips_TPREL_LO,
+
+ // resulting in - R_MIPS_TLS_LDM.
+ fixup_Mips_TLSLDM,
+
+ // resulting in - R_MIPS_TLS_DTPREL_HI16.
+ fixup_Mips_DTPREL_HI,
+
+ // resulting in - R_MIPS_TLS_DTPREL_LO16.
+ fixup_Mips_DTPREL_LO,
+
+ // PC relative branch fixup resulting in - R_MIPS_PC16
+ fixup_Mips_Branch_PCRel,
+
+ // resulting in - R_MIPS_GPREL16/R_MIPS_SUB/R_MIPS_HI16
+ fixup_Mips_GPOFF_HI,
+
+ // resulting in - R_MIPS_GPREL16/R_MIPS_SUB/R_MIPS_LO16
+ fixup_Mips_GPOFF_LO,
+
+ // resulting in - R_MIPS_PAGE
+ fixup_Mips_GOT_PAGE,
+
+ // resulting in - R_MIPS_GOT_OFST
+ fixup_Mips_GOT_OFST,
+
+ // resulting in - R_MIPS_GOT_DISP
+ fixup_Mips_GOT_DISP,
+
+ // resulting in - R_MIPS_GOT_HIGHER
+ fixup_Mips_HIGHER,
+
+ // resulting in - R_MIPS_HIGHEST
+ fixup_Mips_HIGHEST,
+
+ // resulting in - R_MIPS_GOT_HI16
+ fixup_Mips_GOT_HI16,
+
+ // resulting in - R_MIPS_GOT_LO16
+ fixup_Mips_GOT_LO16,
+
+ // resulting in - R_MIPS_CALL_HI16
+ fixup_Mips_CALL_HI16,
+
+ // resulting in - R_MIPS_CALL_LO16
+ fixup_Mips_CALL_LO16,
+
+ // resulting in - R_MIPS_PC18_S3
+ fixup_MIPS_PC18_S3,
+
+ // resulting in - R_MIPS_PC19_S2
+ fixup_MIPS_PC19_S2,
+
+ // resulting in - R_MIPS_PC21_S2
+ fixup_MIPS_PC21_S2,
+
+ // resulting in - R_MIPS_PC26_S2
+ fixup_MIPS_PC26_S2,
+
+ // resulting in - R_MIPS_PCHI16
+ fixup_MIPS_PCHI16,
+
+ // resulting in - R_MIPS_PCLO16
+ fixup_MIPS_PCLO16,
+
+ // resulting in - R_MICROMIPS_26_S1
+ fixup_MICROMIPS_26_S1,
+
+ // resulting in - R_MICROMIPS_HI16
+ fixup_MICROMIPS_HI16,
+
+ // resulting in - R_MICROMIPS_LO16
+ fixup_MICROMIPS_LO16,
+
+ // resulting in - R_MICROMIPS_GOT16
+ fixup_MICROMIPS_GOT16,
+
+ // resulting in - R_MICROMIPS_PC16_S1
+ fixup_MICROMIPS_PC16_S1,
+
+ // resulting in - R_MICROMIPS_CALL16
+ fixup_MICROMIPS_CALL16,
+
+ // resulting in - R_MICROMIPS_GOT_DISP
+ fixup_MICROMIPS_GOT_DISP,
+
+ // resulting in - R_MICROMIPS_GOT_PAGE
+ fixup_MICROMIPS_GOT_PAGE,
+
+ // resulting in - R_MICROMIPS_GOT_OFST
+ fixup_MICROMIPS_GOT_OFST,
+
+ // resulting in - R_MICROMIPS_TLS_GD
+ fixup_MICROMIPS_TLS_GD,
+
+ // resulting in - R_MICROMIPS_TLS_LDM
+ fixup_MICROMIPS_TLS_LDM,
+
+ // resulting in - R_MICROMIPS_TLS_DTPREL_HI16
+ fixup_MICROMIPS_TLS_DTPREL_HI16,
+
+ // resulting in - R_MICROMIPS_TLS_DTPREL_LO16
+ fixup_MICROMIPS_TLS_DTPREL_LO16,
+
+ // resulting in - R_MICROMIPS_TLS_TPREL_HI16
+ fixup_MICROMIPS_TLS_TPREL_HI16,
+
+ // resulting in - R_MICROMIPS_TLS_TPREL_LO16
+ fixup_MICROMIPS_TLS_TPREL_LO16,
+
+ // Marker
+ LastTargetFixupKind,
+ NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind
+ };
+} // namespace Mips
+} // namespace llvm
+
+
+#endif // LLVM_MIPS_MIPSFIXUPKINDS_H
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.cpp
new file mode 100644
index 0000000..e415412
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.cpp
@@ -0,0 +1,46 @@
+//===-- MipsMCAsmInfo.cpp - Mips Asm Properties ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the MipsMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsMCAsmInfo.h"
+#include "llvm/ADT/Triple.h"
+
+using namespace llvm;
+
+void MipsMCAsmInfo::anchor() { }
+
+MipsMCAsmInfo::MipsMCAsmInfo(StringRef TT) {
+ Triple TheTriple(TT);
+ if ((TheTriple.getArch() == Triple::mips) ||
+ (TheTriple.getArch() == Triple::mips64))
+ IsLittleEndian = false;
+
+ if ((TheTriple.getArch() == Triple::mips64el) ||
+ (TheTriple.getArch() == Triple::mips64)) {
+ PointerSize = CalleeSaveStackSlotSize = 8;
+ }
+
+ AlignmentIsInBytes = false;
+ Data16bitsDirective = "\t.2byte\t";
+ Data32bitsDirective = "\t.4byte\t";
+ Data64bitsDirective = "\t.8byte\t";
+ PrivateGlobalPrefix = "$";
+ CommentString = "#";
+ ZeroDirective = "\t.space\t";
+ GPRel32Directive = "\t.gpword\t";
+ GPRel64Directive = "\t.gpdword\t";
+ UseAssignmentForEHBegin = true;
+ SupportsDebugInformation = true;
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+ HasLEB128 = true;
+ DwarfRegNumForCFI = true;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.h
new file mode 100644
index 0000000..37ba0c4
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.h
@@ -0,0 +1,30 @@
+//===-- MipsMCAsmInfo.h - Mips Asm Info ------------------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the MipsMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSTARGETASMINFO_H
+#define MIPSTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfoELF.h"
+
+namespace llvm {
+ class StringRef;
+
+ class MipsMCAsmInfo : public MCAsmInfoELF {
+ void anchor() override;
+ public:
+ explicit MipsMCAsmInfo(StringRef TT);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.cpp
new file mode 100644
index 0000000..43fc521
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.cpp
@@ -0,0 +1,662 @@
+//===-- MipsMCCodeEmitter.cpp - Convert Mips Code to Machine Code ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MipsMCCodeEmitter class.
+//
+//===----------------------------------------------------------------------===//
+//
+
+#include "MipsMCCodeEmitter.h"
+#include "MCTargetDesc/MipsFixupKinds.h"
+#include "MCTargetDesc/MipsMCExpr.h"
+#include "MCTargetDesc/MipsMCTargetDesc.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCFixup.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "mccodeemitter"
+
+#define GET_INSTRMAP_INFO
+#include "MipsGenInstrInfo.inc"
+#undef GET_INSTRMAP_INFO
+
+namespace llvm {
+MCCodeEmitter *createMipsMCCodeEmitterEB(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new MipsMCCodeEmitter(MCII, Ctx, false);
+}
+
+MCCodeEmitter *createMipsMCCodeEmitterEL(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new MipsMCCodeEmitter(MCII, Ctx, true);
+}
+} // End of namespace llvm.
+
+// If the D<shift> instruction has a shift amount that is greater
+// than 31 (checked in calling routine), lower it to a D<shift>32 instruction
+static void LowerLargeShift(MCInst& Inst) {
+
+ assert(Inst.getNumOperands() == 3 && "Invalid no. of operands for shift!");
+ assert(Inst.getOperand(2).isImm());
+
+ int64_t Shift = Inst.getOperand(2).getImm();
+ if (Shift <= 31)
+ return; // Do nothing
+ Shift -= 32;
+
+ // saminus32
+ Inst.getOperand(2).setImm(Shift);
+
+ switch (Inst.getOpcode()) {
+ default:
+ // Calling function is not synchronized
+ llvm_unreachable("Unexpected shift instruction");
+ case Mips::DSLL:
+ Inst.setOpcode(Mips::DSLL32);
+ return;
+ case Mips::DSRL:
+ Inst.setOpcode(Mips::DSRL32);
+ return;
+ case Mips::DSRA:
+ Inst.setOpcode(Mips::DSRA32);
+ return;
+ case Mips::DROTR:
+ Inst.setOpcode(Mips::DROTR32);
+ return;
+ }
+}
+
+// Pick a DEXT or DINS instruction variant based on the pos and size operands
+static void LowerDextDins(MCInst& InstIn) {
+ int Opcode = InstIn.getOpcode();
+
+ if (Opcode == Mips::DEXT)
+ assert(InstIn.getNumOperands() == 4 &&
+ "Invalid no. of machine operands for DEXT!");
+ else // Only DEXT and DINS are possible
+ assert(InstIn.getNumOperands() == 5 &&
+ "Invalid no. of machine operands for DINS!");
+
+ assert(InstIn.getOperand(2).isImm());
+ int64_t pos = InstIn.getOperand(2).getImm();
+ assert(InstIn.getOperand(3).isImm());
+ int64_t size = InstIn.getOperand(3).getImm();
+
+ if (size <= 32) {
+ if (pos < 32) // DEXT/DINS, do nothing
+ return;
+ // DEXTU/DINSU
+ InstIn.getOperand(2).setImm(pos - 32);
+ InstIn.setOpcode((Opcode == Mips::DEXT) ? Mips::DEXTU : Mips::DINSU);
+ return;
+ }
+ // DEXTM/DINSM
+ assert(pos < 32 && "DEXT/DINS cannot have both size and pos > 32");
+ InstIn.getOperand(3).setImm(size - 32);
+ InstIn.setOpcode((Opcode == Mips::DEXT) ? Mips::DEXTM : Mips::DINSM);
+ return;
+}
+
+bool MipsMCCodeEmitter::isMicroMips(const MCSubtargetInfo &STI) const {
+ return STI.getFeatureBits() & Mips::FeatureMicroMips;
+}
+
+void MipsMCCodeEmitter::EmitByte(unsigned char C, raw_ostream &OS) const {
+ OS << (char)C;
+}
+
+void MipsMCCodeEmitter::EmitInstruction(uint64_t Val, unsigned Size,
+ const MCSubtargetInfo &STI,
+ raw_ostream &OS) const {
+ // Output the instruction encoding in little endian byte order.
+ // Little-endian byte ordering:
+ // mips32r2: 4 | 3 | 2 | 1
+ // microMIPS: 2 | 1 | 4 | 3
+ if (IsLittleEndian && Size == 4 && isMicroMips(STI)) {
+ EmitInstruction(Val >> 16, 2, STI, OS);
+ EmitInstruction(Val, 2, STI, OS);
+ } else {
+ for (unsigned i = 0; i < Size; ++i) {
+ unsigned Shift = IsLittleEndian ? i * 8 : (Size - 1 - i) * 8;
+ EmitByte((Val >> Shift) & 0xff, OS);
+ }
+ }
+}
+
+/// EncodeInstruction - Emit the instruction.
+/// Size the instruction with Desc.getSize().
+void MipsMCCodeEmitter::
+EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const
+{
+
+ // Non-pseudo instructions that get changed for direct object
+ // only based on operand values.
+ // If this list of instructions get much longer we will move
+ // the check to a function call. Until then, this is more efficient.
+ MCInst TmpInst = MI;
+ switch (MI.getOpcode()) {
+ // If shift amount is >= 32 it the inst needs to be lowered further
+ case Mips::DSLL:
+ case Mips::DSRL:
+ case Mips::DSRA:
+ case Mips::DROTR:
+ LowerLargeShift(TmpInst);
+ break;
+ // Double extract instruction is chosen by pos and size operands
+ case Mips::DEXT:
+ case Mips::DINS:
+ LowerDextDins(TmpInst);
+ }
+
+ unsigned long N = Fixups.size();
+ uint32_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
+
+ // Check for unimplemented opcodes.
+ // Unfortunately in MIPS both NOP and SLL will come in with Binary == 0
+ // so we have to special check for them.
+ unsigned Opcode = TmpInst.getOpcode();
+ if ((Opcode != Mips::NOP) && (Opcode != Mips::SLL) && !Binary)
+ llvm_unreachable("unimplemented opcode in EncodeInstruction()");
+
+ if (STI.getFeatureBits() & Mips::FeatureMicroMips) {
+ int NewOpcode = Mips::Std2MicroMips (Opcode, Mips::Arch_micromips);
+ if (NewOpcode != -1) {
+ if (Fixups.size() > N)
+ Fixups.pop_back();
+ Opcode = NewOpcode;
+ TmpInst.setOpcode (NewOpcode);
+ Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
+ }
+ }
+
+ const MCInstrDesc &Desc = MCII.get(TmpInst.getOpcode());
+
+ // Get byte count of instruction
+ unsigned Size = Desc.getSize();
+ if (!Size)
+ llvm_unreachable("Desc.getSize() returns 0");
+
+ EmitInstruction(Binary, Size, STI, OS);
+}
+
+/// getBranchTargetOpValue - Return binary encoding of the branch
+/// target operand. If the machine operand requires relocation,
+/// record the relocation and return zero.
+unsigned MipsMCCodeEmitter::
+getBranchTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+
+ // If the destination is an immediate, divide by 4.
+ if (MO.isImm()) return MO.getImm() >> 2;
+
+ assert(MO.isExpr() &&
+ "getBranchTargetOpValue expects only expressions or immediates");
+
+ const MCExpr *Expr = MO.getExpr();
+ Fixups.push_back(MCFixup::Create(0, Expr,
+ MCFixupKind(Mips::fixup_Mips_PC16)));
+ return 0;
+}
+
+/// getBranchTargetOpValue - Return binary encoding of the microMIPS branch
+/// target operand. If the machine operand requires relocation,
+/// record the relocation and return zero.
+unsigned MipsMCCodeEmitter::
+getBranchTargetOpValueMM(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+
+ // If the destination is an immediate, divide by 2.
+ if (MO.isImm()) return MO.getImm() >> 1;
+
+ assert(MO.isExpr() &&
+ "getBranchTargetOpValueMM expects only expressions or immediates");
+
+ const MCExpr *Expr = MO.getExpr();
+ Fixups.push_back(MCFixup::Create(0, Expr,
+ MCFixupKind(Mips::
+ fixup_MICROMIPS_PC16_S1)));
+ return 0;
+}
+
+/// getBranchTarget21OpValue - Return binary encoding of the branch
+/// target operand. If the machine operand requires relocation,
+/// record the relocation and return zero.
+unsigned MipsMCCodeEmitter::
+getBranchTarget21OpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+
+ // If the destination is an immediate, divide by 4.
+ if (MO.isImm()) return MO.getImm() >> 2;
+
+ assert(MO.isExpr() &&
+ "getBranchTarget21OpValue expects only expressions or immediates");
+
+ const MCExpr *Expr = MO.getExpr();
+ Fixups.push_back(MCFixup::Create(0, Expr,
+ MCFixupKind(Mips::fixup_MIPS_PC21_S2)));
+ return 0;
+}
+
+/// getBranchTarget26OpValue - Return binary encoding of the branch
+/// target operand. If the machine operand requires relocation,
+/// record the relocation and return zero.
+unsigned MipsMCCodeEmitter::
+getBranchTarget26OpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+
+ // If the destination is an immediate, divide by 4.
+ if (MO.isImm()) return MO.getImm() >> 2;
+
+ assert(MO.isExpr() &&
+ "getBranchTarget26OpValue expects only expressions or immediates");
+
+ const MCExpr *Expr = MO.getExpr();
+ Fixups.push_back(MCFixup::Create(0, Expr,
+ MCFixupKind(Mips::fixup_MIPS_PC26_S2)));
+ return 0;
+}
+
+/// getJumpOffset16OpValue - Return binary encoding of the jump
+/// target operand. If the machine operand requires relocation,
+/// record the relocation and return zero.
+unsigned MipsMCCodeEmitter::
+getJumpOffset16OpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+
+ if (MO.isImm()) return MO.getImm();
+
+ assert(MO.isExpr() &&
+ "getJumpOffset16OpValue expects only expressions or an immediate");
+
+ // TODO: Push fixup.
+ return 0;
+}
+
+/// getJumpTargetOpValue - Return binary encoding of the jump
+/// target operand. If the machine operand requires relocation,
+/// record the relocation and return zero.
+unsigned MipsMCCodeEmitter::
+getJumpTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+ // If the destination is an immediate, divide by 4.
+ if (MO.isImm()) return MO.getImm()>>2;
+
+ assert(MO.isExpr() &&
+ "getJumpTargetOpValue expects only expressions or an immediate");
+
+ const MCExpr *Expr = MO.getExpr();
+ Fixups.push_back(MCFixup::Create(0, Expr,
+ MCFixupKind(Mips::fixup_Mips_26)));
+ return 0;
+}
+
+unsigned MipsMCCodeEmitter::
+getJumpTargetOpValueMM(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+ // If the destination is an immediate, divide by 2.
+ if (MO.isImm()) return MO.getImm() >> 1;
+
+ assert(MO.isExpr() &&
+ "getJumpTargetOpValueMM expects only expressions or an immediate");
+
+ const MCExpr *Expr = MO.getExpr();
+ Fixups.push_back(MCFixup::Create(0, Expr,
+ MCFixupKind(Mips::fixup_MICROMIPS_26_S1)));
+ return 0;
+}
+
+unsigned MipsMCCodeEmitter::
+getExprOpValue(const MCExpr *Expr,SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ int64_t Res;
+
+ if (Expr->EvaluateAsAbsolute(Res))
+ return Res;
+
+ MCExpr::ExprKind Kind = Expr->getKind();
+ if (Kind == MCExpr::Constant) {
+ return cast<MCConstantExpr>(Expr)->getValue();
+ }
+
+ if (Kind == MCExpr::Binary) {
+ unsigned Res = getExprOpValue(cast<MCBinaryExpr>(Expr)->getLHS(), Fixups, STI);
+ Res += getExprOpValue(cast<MCBinaryExpr>(Expr)->getRHS(), Fixups, STI);
+ return Res;
+ }
+
+ if (Kind == MCExpr::Target) {
+ const MipsMCExpr *MipsExpr = cast<MipsMCExpr>(Expr);
+
+ Mips::Fixups FixupKind = Mips::Fixups(0);
+ switch (MipsExpr->getKind()) {
+ default: llvm_unreachable("Unsupported fixup kind for target expression!");
+ case MipsMCExpr::VK_Mips_HIGHEST:
+ FixupKind = Mips::fixup_Mips_HIGHEST;
+ break;
+ case MipsMCExpr::VK_Mips_HIGHER:
+ FixupKind = Mips::fixup_Mips_HIGHER;
+ break;
+ case MipsMCExpr::VK_Mips_HI:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_HI16
+ : Mips::fixup_Mips_HI16;
+ break;
+ case MipsMCExpr::VK_Mips_LO:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_LO16
+ : Mips::fixup_Mips_LO16;
+ break;
+ }
+ Fixups.push_back(MCFixup::Create(0, MipsExpr, MCFixupKind(FixupKind)));
+ return 0;
+ }
+
+ if (Kind == MCExpr::SymbolRef) {
+ Mips::Fixups FixupKind = Mips::Fixups(0);
+
+ switch(cast<MCSymbolRefExpr>(Expr)->getKind()) {
+ default: llvm_unreachable("Unknown fixup kind!");
+ break;
+ case MCSymbolRefExpr::VK_Mips_GPOFF_HI :
+ FixupKind = Mips::fixup_Mips_GPOFF_HI;
+ break;
+ case MCSymbolRefExpr::VK_Mips_GPOFF_LO :
+ FixupKind = Mips::fixup_Mips_GPOFF_LO;
+ break;
+ case MCSymbolRefExpr::VK_Mips_GOT_PAGE :
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_PAGE
+ : Mips::fixup_Mips_GOT_PAGE;
+ break;
+ case MCSymbolRefExpr::VK_Mips_GOT_OFST :
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_OFST
+ : Mips::fixup_Mips_GOT_OFST;
+ break;
+ case MCSymbolRefExpr::VK_Mips_GOT_DISP :
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_DISP
+ : Mips::fixup_Mips_GOT_DISP;
+ break;
+ case MCSymbolRefExpr::VK_Mips_GPREL:
+ FixupKind = Mips::fixup_Mips_GPREL16;
+ break;
+ case MCSymbolRefExpr::VK_Mips_GOT_CALL:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_CALL16
+ : Mips::fixup_Mips_CALL16;
+ break;
+ case MCSymbolRefExpr::VK_Mips_GOT16:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT16
+ : Mips::fixup_Mips_GOT_Global;
+ break;
+ case MCSymbolRefExpr::VK_Mips_GOT:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT16
+ : Mips::fixup_Mips_GOT_Local;
+ break;
+ case MCSymbolRefExpr::VK_Mips_ABS_HI:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_HI16
+ : Mips::fixup_Mips_HI16;
+ break;
+ case MCSymbolRefExpr::VK_Mips_ABS_LO:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_LO16
+ : Mips::fixup_Mips_LO16;
+ break;
+ case MCSymbolRefExpr::VK_Mips_TLSGD:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_GD
+ : Mips::fixup_Mips_TLSGD;
+ break;
+ case MCSymbolRefExpr::VK_Mips_TLSLDM:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_LDM
+ : Mips::fixup_Mips_TLSLDM;
+ break;
+ case MCSymbolRefExpr::VK_Mips_DTPREL_HI:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_DTPREL_HI16
+ : Mips::fixup_Mips_DTPREL_HI;
+ break;
+ case MCSymbolRefExpr::VK_Mips_DTPREL_LO:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_DTPREL_LO16
+ : Mips::fixup_Mips_DTPREL_LO;
+ break;
+ case MCSymbolRefExpr::VK_Mips_GOTTPREL:
+ FixupKind = Mips::fixup_Mips_GOTTPREL;
+ break;
+ case MCSymbolRefExpr::VK_Mips_TPREL_HI:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_TPREL_HI16
+ : Mips::fixup_Mips_TPREL_HI;
+ break;
+ case MCSymbolRefExpr::VK_Mips_TPREL_LO:
+ FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_TPREL_LO16
+ : Mips::fixup_Mips_TPREL_LO;
+ break;
+ case MCSymbolRefExpr::VK_Mips_HIGHER:
+ FixupKind = Mips::fixup_Mips_HIGHER;
+ break;
+ case MCSymbolRefExpr::VK_Mips_HIGHEST:
+ FixupKind = Mips::fixup_Mips_HIGHEST;
+ break;
+ case MCSymbolRefExpr::VK_Mips_GOT_HI16:
+ FixupKind = Mips::fixup_Mips_GOT_HI16;
+ break;
+ case MCSymbolRefExpr::VK_Mips_GOT_LO16:
+ FixupKind = Mips::fixup_Mips_GOT_LO16;
+ break;
+ case MCSymbolRefExpr::VK_Mips_CALL_HI16:
+ FixupKind = Mips::fixup_Mips_CALL_HI16;
+ break;
+ case MCSymbolRefExpr::VK_Mips_CALL_LO16:
+ FixupKind = Mips::fixup_Mips_CALL_LO16;
+ break;
+ case MCSymbolRefExpr::VK_Mips_PCREL_HI16:
+ FixupKind = Mips::fixup_MIPS_PCHI16;
+ break;
+ case MCSymbolRefExpr::VK_Mips_PCREL_LO16:
+ FixupKind = Mips::fixup_MIPS_PCLO16;
+ break;
+ } // switch
+
+ Fixups.push_back(MCFixup::Create(0, Expr, MCFixupKind(FixupKind)));
+ return 0;
+ }
+ return 0;
+}
+
+/// getMachineOpValue - Return binary encoding of operand. If the machine
+/// operand requires relocation, record the relocation and return zero.
+unsigned MipsMCCodeEmitter::
+getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ if (MO.isReg()) {
+ unsigned Reg = MO.getReg();
+ unsigned RegNo = Ctx.getRegisterInfo()->getEncodingValue(Reg);
+ return RegNo;
+ } else if (MO.isImm()) {
+ return static_cast<unsigned>(MO.getImm());
+ } else if (MO.isFPImm()) {
+ return static_cast<unsigned>(APFloat(MO.getFPImm())
+ .bitcastToAPInt().getHiBits(32).getLimitedValue());
+ }
+ // MO must be an Expr.
+ assert(MO.isExpr());
+ return getExprOpValue(MO.getExpr(),Fixups, STI);
+}
+
+/// getMSAMemEncoding - Return binary encoding of memory operand for LD/ST
+/// instructions.
+unsigned
+MipsMCCodeEmitter::getMSAMemEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Base register is encoded in bits 20-16, offset is encoded in bits 15-0.
+ assert(MI.getOperand(OpNo).isReg());
+ unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),Fixups, STI) << 16;
+ unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
+
+ // The immediate field of an LD/ST instruction is scaled which means it must
+ // be divided (when encoding) by the size (in bytes) of the instructions'
+ // data format.
+ // .b - 1 byte
+ // .h - 2 bytes
+ // .w - 4 bytes
+ // .d - 8 bytes
+ switch(MI.getOpcode())
+ {
+ default:
+ assert (0 && "Unexpected instruction");
+ break;
+ case Mips::LD_B:
+ case Mips::ST_B:
+ // We don't need to scale the offset in this case
+ break;
+ case Mips::LD_H:
+ case Mips::ST_H:
+ OffBits >>= 1;
+ break;
+ case Mips::LD_W:
+ case Mips::ST_W:
+ OffBits >>= 2;
+ break;
+ case Mips::LD_D:
+ case Mips::ST_D:
+ OffBits >>= 3;
+ break;
+ }
+
+ return (OffBits & 0xFFFF) | RegBits;
+}
+
+/// getMemEncoding - Return binary encoding of memory related operand.
+/// If the offset operand requires relocation, record the relocation.
+unsigned
+MipsMCCodeEmitter::getMemEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Base register is encoded in bits 20-16, offset is encoded in bits 15-0.
+ assert(MI.getOperand(OpNo).isReg());
+ unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),Fixups, STI) << 16;
+ unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
+
+ return (OffBits & 0xFFFF) | RegBits;
+}
+
+unsigned MipsMCCodeEmitter::
+getMemEncodingMMImm12(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Base register is encoded in bits 20-16, offset is encoded in bits 11-0.
+ assert(MI.getOperand(OpNo).isReg());
+ unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) << 16;
+ unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
+
+ return (OffBits & 0x0FFF) | RegBits;
+}
+
+unsigned
+MipsMCCodeEmitter::getSizeExtEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ assert(MI.getOperand(OpNo).isImm());
+ unsigned SizeEncoding = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
+ return SizeEncoding - 1;
+}
+
+// FIXME: should be called getMSBEncoding
+//
+unsigned
+MipsMCCodeEmitter::getSizeInsEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ assert(MI.getOperand(OpNo-1).isImm());
+ assert(MI.getOperand(OpNo).isImm());
+ unsigned Position = getMachineOpValue(MI, MI.getOperand(OpNo-1), Fixups, STI);
+ unsigned Size = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
+
+ return Position + Size - 1;
+}
+
+unsigned
+MipsMCCodeEmitter::getLSAImmEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ assert(MI.getOperand(OpNo).isImm());
+ // The immediate is encoded as 'immediate - 1'.
+ return getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) - 1;
+}
+
+unsigned
+MipsMCCodeEmitter::getSimm19Lsl2Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isImm()) {
+ // The immediate is encoded as 'immediate << 2'.
+ unsigned Res = getMachineOpValue(MI, MO, Fixups, STI);
+ assert((Res & 3) == 0);
+ return Res >> 2;
+ }
+
+ assert(MO.isExpr() &&
+ "getSimm19Lsl2Encoding expects only expressions or an immediate");
+
+ const MCExpr *Expr = MO.getExpr();
+ Fixups.push_back(MCFixup::Create(0, Expr,
+ MCFixupKind(Mips::fixup_MIPS_PC19_S2)));
+ return 0;
+}
+
+unsigned
+MipsMCCodeEmitter::getSimm18Lsl3Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isImm()) {
+ // The immediate is encoded as 'immediate << 3'.
+ unsigned Res = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
+ assert((Res & 7) == 0);
+ return Res >> 3;
+ }
+
+ assert(MO.isExpr() &&
+ "getSimm18Lsl2Encoding expects only expressions or an immediate");
+
+ const MCExpr *Expr = MO.getExpr();
+ Fixups.push_back(MCFixup::Create(0, Expr,
+ MCFixupKind(Mips::fixup_MIPS_PC18_S3)));
+ return 0;
+}
+
+#include "MipsGenMCCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.h
new file mode 100644
index 0000000..304167f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.h
@@ -0,0 +1,154 @@
+//===-- MipsMCCodeEmitter.h - Convert Mips Code to Machine Code -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the MipsMCCodeEmitter class.
+//
+//===----------------------------------------------------------------------===//
+//
+
+#ifndef MIPS_MC_CODE_EMITTER_H
+#define MIPS_MC_CODE_EMITTER_H
+
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/Support/DataTypes.h"
+
+using namespace llvm;
+
+namespace llvm {
+class MCContext;
+class MCExpr;
+class MCInst;
+class MCInstrInfo;
+class MCFixup;
+class MCOperand;
+class MCSubtargetInfo;
+class raw_ostream;
+
+class MipsMCCodeEmitter : public MCCodeEmitter {
+ MipsMCCodeEmitter(const MipsMCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ void operator=(const MipsMCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ const MCInstrInfo &MCII;
+ MCContext &Ctx;
+ bool IsLittleEndian;
+
+ bool isMicroMips(const MCSubtargetInfo &STI) const;
+
+public:
+ MipsMCCodeEmitter(const MCInstrInfo &mcii, MCContext &Ctx_, bool IsLittle)
+ : MCII(mcii), Ctx(Ctx_), IsLittleEndian(IsLittle) {}
+
+ ~MipsMCCodeEmitter() {}
+
+ void EmitByte(unsigned char C, raw_ostream &OS) const;
+
+ void EmitInstruction(uint64_t Val, unsigned Size, const MCSubtargetInfo &STI,
+ raw_ostream &OS) const;
+
+ void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+
+ // getBinaryCodeForInstr - TableGen'erated function for getting the
+ // binary encoding for an instruction.
+ uint64_t getBinaryCodeForInstr(const MCInst &MI,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // getBranchJumpOpValue - Return binary encoding of the jump
+ // target operand. If the machine operand requires relocation,
+ // record the relocation and return zero.
+ unsigned getJumpTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // getBranchJumpOpValueMM - Return binary encoding of the microMIPS jump
+ // target operand. If the machine operand requires relocation,
+ // record the relocation and return zero.
+ unsigned getJumpTargetOpValueMM(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // getBranchTargetOpValue - Return binary encoding of the branch
+ // target operand. If the machine operand requires relocation,
+ // record the relocation and return zero.
+ unsigned getBranchTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // getBranchTargetOpValue - Return binary encoding of the microMIPS branch
+ // target operand. If the machine operand requires relocation,
+ // record the relocation and return zero.
+ unsigned getBranchTargetOpValueMM(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // getBranchTarget21OpValue - Return binary encoding of the branch
+ // offset operand. If the machine operand requires relocation,
+ // record the relocation and return zero.
+ unsigned getBranchTarget21OpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // getBranchTarget26OpValue - Return binary encoding of the branch
+ // offset operand. If the machine operand requires relocation,
+ // record the relocation and return zero.
+ unsigned getBranchTarget26OpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // getJumpOffset16OpValue - Return binary encoding of the jump
+ // offset operand. If the machine operand requires relocation,
+ // record the relocation and return zero.
+ unsigned getJumpOffset16OpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // getMachineOpValue - Return binary encoding of operand. If the machin
+ // operand requires relocation, record the relocation and return zero.
+ unsigned getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getMSAMemEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getMemEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getMemEncodingMMImm12(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getSizeExtEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getSizeInsEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // getLSAImmEncoding - Return binary encoding of LSA immediate.
+ unsigned getLSAImmEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getSimm19Lsl2Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getSimm18Lsl3Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getExprOpValue(const MCExpr *Expr, SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+}; // class MipsMCCodeEmitter
+} // namespace llvm.
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.cpp
new file mode 100644
index 0000000..5bba3e5
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.cpp
@@ -0,0 +1,89 @@
+//===-- MipsMCExpr.cpp - Mips specific MC expression classes --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsMCExpr.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCObjectStreamer.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mipsmcexpr"
+
+bool MipsMCExpr::isSupportedBinaryExpr(MCSymbolRefExpr::VariantKind VK,
+ const MCBinaryExpr *BE) {
+ switch (VK) {
+ case MCSymbolRefExpr::VK_Mips_ABS_LO:
+ case MCSymbolRefExpr::VK_Mips_ABS_HI:
+ case MCSymbolRefExpr::VK_Mips_HIGHER:
+ case MCSymbolRefExpr::VK_Mips_HIGHEST:
+ break;
+ default:
+ return false;
+ }
+
+ // We support expressions of the form "(sym1 binop1 sym2) binop2 const",
+ // where "binop2 const" is optional.
+ if (isa<MCBinaryExpr>(BE->getLHS())) {
+ if (!isa<MCConstantExpr>(BE->getRHS()))
+ return false;
+ BE = cast<MCBinaryExpr>(BE->getLHS());
+ }
+ return (isa<MCSymbolRefExpr>(BE->getLHS())
+ && isa<MCSymbolRefExpr>(BE->getRHS()));
+}
+
+const MipsMCExpr*
+MipsMCExpr::Create(MCSymbolRefExpr::VariantKind VK, const MCExpr *Expr,
+ MCContext &Ctx) {
+ VariantKind Kind;
+ switch (VK) {
+ case MCSymbolRefExpr::VK_Mips_ABS_LO:
+ Kind = VK_Mips_LO;
+ break;
+ case MCSymbolRefExpr::VK_Mips_ABS_HI:
+ Kind = VK_Mips_HI;
+ break;
+ case MCSymbolRefExpr::VK_Mips_HIGHER:
+ Kind = VK_Mips_HIGHER;
+ break;
+ case MCSymbolRefExpr::VK_Mips_HIGHEST:
+ Kind = VK_Mips_HIGHEST;
+ break;
+ default:
+ llvm_unreachable("Invalid kind!");
+ }
+
+ return new (Ctx) MipsMCExpr(Kind, Expr);
+}
+
+void MipsMCExpr::PrintImpl(raw_ostream &OS) const {
+ switch (Kind) {
+ default: llvm_unreachable("Invalid kind!");
+ case VK_Mips_LO: OS << "%lo"; break;
+ case VK_Mips_HI: OS << "%hi"; break;
+ case VK_Mips_HIGHER: OS << "%higher"; break;
+ case VK_Mips_HIGHEST: OS << "%highest"; break;
+ }
+
+ OS << '(';
+ Expr->print(OS);
+ OS << ')';
+}
+
+bool
+MipsMCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
+ const MCAsmLayout *Layout) const {
+ return getSubExpr()->EvaluateAsRelocatable(Res, Layout);
+}
+
+void MipsMCExpr::visitUsedExpr(MCStreamer &Streamer) const {
+ Streamer.visitUsedExpr(*getSubExpr());
+}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.h
new file mode 100644
index 0000000..f193dc9
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.h
@@ -0,0 +1,66 @@
+//===-- MipsMCExpr.h - Mips specific MC expression classes ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSMCEXPR_H
+#define MIPSMCEXPR_H
+
+#include "llvm/MC/MCAsmLayout.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCValue.h"
+
+namespace llvm {
+
+class MipsMCExpr : public MCTargetExpr {
+public:
+ enum VariantKind {
+ VK_Mips_None,
+ VK_Mips_LO,
+ VK_Mips_HI,
+ VK_Mips_HIGHER,
+ VK_Mips_HIGHEST
+ };
+
+private:
+ const VariantKind Kind;
+ const MCExpr *Expr;
+
+ explicit MipsMCExpr(VariantKind Kind, const MCExpr *Expr)
+ : Kind(Kind), Expr(Expr) {}
+
+public:
+ static bool isSupportedBinaryExpr(MCSymbolRefExpr::VariantKind VK,
+ const MCBinaryExpr *BE);
+
+ static const MipsMCExpr *Create(MCSymbolRefExpr::VariantKind VK,
+ const MCExpr *Expr, MCContext &Ctx);
+
+ /// getOpcode - Get the kind of this expression.
+ VariantKind getKind() const { return Kind; }
+
+ /// getSubExpr - Get the child of this expression.
+ const MCExpr *getSubExpr() const { return Expr; }
+
+ void PrintImpl(raw_ostream &OS) const override;
+ bool EvaluateAsRelocatableImpl(MCValue &Res,
+ const MCAsmLayout *Layout) const override;
+ void visitUsedExpr(MCStreamer &Streamer) const override;
+ const MCSection *FindAssociatedSection() const override {
+ return getSubExpr()->FindAssociatedSection();
+ }
+
+ // There are no TLS MipsMCExprs at the moment.
+ void fixELFSymbolsInTLSFixups(MCAssembler &Asm) const override {}
+
+ static bool classof(const MCExpr *E) {
+ return E->getKind() == MCExpr::Target;
+ }
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCNaCl.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCNaCl.h
new file mode 100644
index 0000000..01d5363
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCNaCl.h
@@ -0,0 +1,33 @@
+//===-- MipsMCNaCl.h - NaCl-related declarations --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSMCNACL_H
+#define MIPSMCNACL_H
+
+#include "llvm/MC/MCELFStreamer.h"
+
+namespace llvm {
+
+// Log2 of the NaCl MIPS sandbox's instruction bundle size.
+static const unsigned MIPS_NACL_BUNDLE_ALIGN = 4u;
+
+bool isBasePlusOffsetMemoryAccess(unsigned Opcode, unsigned *AddrIdx,
+ bool *IsStore = nullptr);
+bool baseRegNeedsLoadStoreMask(unsigned Reg);
+
+// This function creates an MCELFStreamer for Mips NaCl.
+MCELFStreamer *createMipsNaClELFStreamer(MCContext &Context, MCAsmBackend &TAB,
+ raw_ostream &OS,
+ MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI,
+ bool RelaxAll, bool NoExecStack);
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.cpp
new file mode 100644
index 0000000..d2b929b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.cpp
@@ -0,0 +1,231 @@
+//===-- MipsMCTargetDesc.cpp - Mips Target Descriptions -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Mips specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstPrinter/MipsInstPrinter.h"
+#include "MipsELFStreamer.h"
+#include "MipsMCAsmInfo.h"
+#include "MipsMCNaCl.h"
+#include "MipsMCTargetDesc.h"
+#include "MipsTargetStreamer.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_MC_DESC
+#include "MipsGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "MipsGenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "MipsGenRegisterInfo.inc"
+
+/// Select the Mips CPU for the given triple and cpu name.
+/// FIXME: Merge with the copy in MipsSubtarget.cpp
+static inline StringRef selectMipsCPU(StringRef TT, StringRef CPU) {
+ if (CPU.empty() || CPU == "generic") {
+ Triple TheTriple(TT);
+ if (TheTriple.getArch() == Triple::mips ||
+ TheTriple.getArch() == Triple::mipsel)
+ CPU = "mips32";
+ else
+ CPU = "mips64";
+ }
+ return CPU;
+}
+
+static MCInstrInfo *createMipsMCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitMipsMCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createMipsMCRegisterInfo(StringRef TT) {
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitMipsMCRegisterInfo(X, Mips::RA);
+ return X;
+}
+
+static MCSubtargetInfo *createMipsMCSubtargetInfo(StringRef TT, StringRef CPU,
+ StringRef FS) {
+ CPU = selectMipsCPU(TT, CPU);
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+ InitMipsMCSubtargetInfo(X, TT, CPU, FS);
+ return X;
+}
+
+static MCAsmInfo *createMipsMCAsmInfo(const MCRegisterInfo &MRI, StringRef TT) {
+ MCAsmInfo *MAI = new MipsMCAsmInfo(TT);
+
+ unsigned SP = MRI.getDwarfRegNum(Mips::SP, true);
+ MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(nullptr, SP, 0);
+ MAI->addInitialFrameState(Inst);
+
+ return MAI;
+}
+
+static MCCodeGenInfo *createMipsMCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+ if (CM == CodeModel::JITDefault)
+ RM = Reloc::Static;
+ else if (RM == Reloc::Default)
+ RM = Reloc::PIC_;
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+static MCInstPrinter *createMipsMCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ return new MipsInstPrinter(MAI, MII, MRI);
+}
+
+static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
+ MCContext &Context, MCAsmBackend &MAB,
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI,
+ bool RelaxAll, bool NoExecStack) {
+ MCStreamer *S;
+ if (!Triple(TT).isOSNaCl())
+ S = createMipsELFStreamer(Context, MAB, OS, Emitter, STI, RelaxAll,
+ NoExecStack);
+ else
+ S = createMipsNaClELFStreamer(Context, MAB, OS, Emitter, STI, RelaxAll,
+ NoExecStack);
+ new MipsTargetELFStreamer(*S, STI);
+ return S;
+}
+
+static MCStreamer *
+createMCAsmStreamer(MCContext &Ctx, formatted_raw_ostream &OS,
+ bool isVerboseAsm, bool useDwarfDirectory,
+ MCInstPrinter *InstPrint, MCCodeEmitter *CE,
+ MCAsmBackend *TAB, bool ShowInst) {
+ MCStreamer *S = llvm::createAsmStreamer(
+ Ctx, OS, isVerboseAsm, useDwarfDirectory, InstPrint, CE, TAB, ShowInst);
+ new MipsTargetAsmStreamer(*S, OS);
+ return S;
+}
+
+static MCStreamer *createMipsNullStreamer(MCContext &Ctx) {
+ MCStreamer *S = llvm::createNullStreamer(Ctx);
+ new MipsTargetStreamer(*S);
+ return S;
+}
+
+extern "C" void LLVMInitializeMipsTargetMC() {
+ // Register the MC asm info.
+ RegisterMCAsmInfoFn X(TheMipsTarget, createMipsMCAsmInfo);
+ RegisterMCAsmInfoFn Y(TheMipselTarget, createMipsMCAsmInfo);
+ RegisterMCAsmInfoFn A(TheMips64Target, createMipsMCAsmInfo);
+ RegisterMCAsmInfoFn B(TheMips64elTarget, createMipsMCAsmInfo);
+
+ // Register the MC codegen info.
+ TargetRegistry::RegisterMCCodeGenInfo(TheMipsTarget,
+ createMipsMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheMipselTarget,
+ createMipsMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheMips64Target,
+ createMipsMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheMips64elTarget,
+ createMipsMCCodeGenInfo);
+
+ // Register the MC instruction info.
+ TargetRegistry::RegisterMCInstrInfo(TheMipsTarget, createMipsMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheMipselTarget, createMipsMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheMips64Target, createMipsMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheMips64elTarget,
+ createMipsMCInstrInfo);
+
+ // Register the MC register info.
+ TargetRegistry::RegisterMCRegInfo(TheMipsTarget, createMipsMCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheMipselTarget, createMipsMCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheMips64Target, createMipsMCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheMips64elTarget,
+ createMipsMCRegisterInfo);
+
+ // Register the MC Code Emitter
+ TargetRegistry::RegisterMCCodeEmitter(TheMipsTarget,
+ createMipsMCCodeEmitterEB);
+ TargetRegistry::RegisterMCCodeEmitter(TheMipselTarget,
+ createMipsMCCodeEmitterEL);
+ TargetRegistry::RegisterMCCodeEmitter(TheMips64Target,
+ createMipsMCCodeEmitterEB);
+ TargetRegistry::RegisterMCCodeEmitter(TheMips64elTarget,
+ createMipsMCCodeEmitterEL);
+
+ // Register the object streamer.
+ TargetRegistry::RegisterMCObjectStreamer(TheMipsTarget, createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheMipselTarget, createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheMips64Target, createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheMips64elTarget,
+ createMCStreamer);
+
+ // Register the asm streamer.
+ TargetRegistry::RegisterAsmStreamer(TheMipsTarget, createMCAsmStreamer);
+ TargetRegistry::RegisterAsmStreamer(TheMipselTarget, createMCAsmStreamer);
+ TargetRegistry::RegisterAsmStreamer(TheMips64Target, createMCAsmStreamer);
+ TargetRegistry::RegisterAsmStreamer(TheMips64elTarget, createMCAsmStreamer);
+
+ TargetRegistry::RegisterNullStreamer(TheMipsTarget, createMipsNullStreamer);
+ TargetRegistry::RegisterNullStreamer(TheMipselTarget, createMipsNullStreamer);
+ TargetRegistry::RegisterNullStreamer(TheMips64Target, createMipsNullStreamer);
+ TargetRegistry::RegisterNullStreamer(TheMips64elTarget,
+ createMipsNullStreamer);
+
+ // Register the asm backend.
+ TargetRegistry::RegisterMCAsmBackend(TheMipsTarget,
+ createMipsAsmBackendEB32);
+ TargetRegistry::RegisterMCAsmBackend(TheMipselTarget,
+ createMipsAsmBackendEL32);
+ TargetRegistry::RegisterMCAsmBackend(TheMips64Target,
+ createMipsAsmBackendEB64);
+ TargetRegistry::RegisterMCAsmBackend(TheMips64elTarget,
+ createMipsAsmBackendEL64);
+
+ // Register the MC subtarget info.
+ TargetRegistry::RegisterMCSubtargetInfo(TheMipsTarget,
+ createMipsMCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheMipselTarget,
+ createMipsMCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheMips64Target,
+ createMipsMCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheMips64elTarget,
+ createMipsMCSubtargetInfo);
+
+ // Register the MCInstPrinter.
+ TargetRegistry::RegisterMCInstPrinter(TheMipsTarget,
+ createMipsMCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheMipselTarget,
+ createMipsMCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheMips64Target,
+ createMipsMCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheMips64elTarget,
+ createMipsMCInstPrinter);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.h
new file mode 100644
index 0000000..161d1ea
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.h
@@ -0,0 +1,76 @@
+//===-- MipsMCTargetDesc.h - Mips Target Descriptions -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Mips specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSMCTARGETDESC_H
+#define MIPSMCTARGETDESC_H
+
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+class MCAsmBackend;
+class MCCodeEmitter;
+class MCContext;
+class MCInstrInfo;
+class MCObjectWriter;
+class MCRegisterInfo;
+class MCSubtargetInfo;
+class StringRef;
+class Target;
+class raw_ostream;
+
+extern Target TheMipsTarget;
+extern Target TheMipselTarget;
+extern Target TheMips64Target;
+extern Target TheMips64elTarget;
+
+MCCodeEmitter *createMipsMCCodeEmitterEB(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+MCCodeEmitter *createMipsMCCodeEmitterEL(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+
+MCAsmBackend *createMipsAsmBackendEB32(const Target &T,
+ const MCRegisterInfo &MRI, StringRef TT,
+ StringRef CPU);
+MCAsmBackend *createMipsAsmBackendEL32(const Target &T,
+ const MCRegisterInfo &MRI, StringRef TT,
+ StringRef CPU);
+MCAsmBackend *createMipsAsmBackendEB64(const Target &T,
+ const MCRegisterInfo &MRI, StringRef TT,
+ StringRef CPU);
+MCAsmBackend *createMipsAsmBackendEL64(const Target &T,
+ const MCRegisterInfo &MRI, StringRef TT,
+ StringRef CPU);
+
+MCObjectWriter *createMipsELFObjectWriter(raw_ostream &OS,
+ uint8_t OSABI,
+ bool IsLittleEndian,
+ bool Is64Bit);
+} // End llvm namespace
+
+// Defines symbolic names for Mips registers. This defines a mapping from
+// register name to register number.
+#define GET_REGINFO_ENUM
+#include "MipsGenRegisterInfo.inc"
+
+// Defines symbolic names for the Mips instructions.
+#define GET_INSTRINFO_ENUM
+#include "MipsGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "MipsGenSubtargetInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsNaClELFStreamer.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsNaClELFStreamer.cpp
new file mode 100644
index 0000000..6cde8f9
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsNaClELFStreamer.cpp
@@ -0,0 +1,272 @@
+//===-- MipsNaClELFStreamer.cpp - ELF Object Output for Mips NaCl ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements MCELFStreamer for Mips NaCl. It emits .o object files
+// as required by NaCl's SFI sandbox. It inserts address-masking instructions
+// before dangerous control-flow and memory access instructions. It inserts
+// address-masking instructions after instructions that change the stack
+// pointer. It ensures that the mask and the dangerous instruction are always
+// emitted in the same bundle. It aligns call + branch delay to the bundle end,
+// so that return address is always aligned to the start of next bundle.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Mips.h"
+#include "MipsELFStreamer.h"
+#include "MipsMCNaCl.h"
+#include "llvm/MC/MCELFStreamer.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-mc-nacl"
+
+namespace {
+
+const unsigned IndirectBranchMaskReg = Mips::T6;
+const unsigned LoadStoreStackMaskReg = Mips::T7;
+
+/// Extend the generic MCELFStreamer class so that it can mask dangerous
+/// instructions.
+
+class MipsNaClELFStreamer : public MipsELFStreamer {
+public:
+ MipsNaClELFStreamer(MCContext &Context, MCAsmBackend &TAB, raw_ostream &OS,
+ MCCodeEmitter *Emitter, const MCSubtargetInfo &STI)
+ : MipsELFStreamer(Context, TAB, OS, Emitter, STI), PendingCall(false) {}
+
+ ~MipsNaClELFStreamer() {}
+
+private:
+ // Whether we started the sandboxing sequence for calls. Calls are bundled
+ // with branch delays and aligned to the bundle end.
+ bool PendingCall;
+
+ bool isIndirectJump(const MCInst &MI) {
+ if (MI.getOpcode() == Mips::JALR) {
+ // MIPS32r6/MIPS64r6 doesn't have a JR instruction and uses JALR instead.
+ // JALR is an indirect branch if the link register is $0.
+ assert(MI.getOperand(0).isReg());
+ return MI.getOperand(0).getReg() == Mips::ZERO;
+ }
+ return MI.getOpcode() == Mips::JR;
+ }
+
+ bool isStackPointerFirstOperand(const MCInst &MI) {
+ return (MI.getNumOperands() > 0 && MI.getOperand(0).isReg()
+ && MI.getOperand(0).getReg() == Mips::SP);
+ }
+
+ bool isCall(const MCInst &MI, bool *IsIndirectCall) {
+ unsigned Opcode = MI.getOpcode();
+
+ *IsIndirectCall = false;
+
+ switch (Opcode) {
+ default:
+ return false;
+
+ case Mips::JAL:
+ case Mips::BAL:
+ case Mips::BAL_BR:
+ case Mips::BLTZAL:
+ case Mips::BGEZAL:
+ return true;
+
+ case Mips::JALR:
+ // JALR is only a call if the link register is not $0. Otherwise it's an
+ // indirect branch.
+ assert(MI.getOperand(0).isReg());
+ if (MI.getOperand(0).getReg() == Mips::ZERO)
+ return false;
+
+ *IsIndirectCall = true;
+ return true;
+ }
+ }
+
+ void emitMask(unsigned AddrReg, unsigned MaskReg,
+ const MCSubtargetInfo &STI) {
+ MCInst MaskInst;
+ MaskInst.setOpcode(Mips::AND);
+ MaskInst.addOperand(MCOperand::CreateReg(AddrReg));
+ MaskInst.addOperand(MCOperand::CreateReg(AddrReg));
+ MaskInst.addOperand(MCOperand::CreateReg(MaskReg));
+ MipsELFStreamer::EmitInstruction(MaskInst, STI);
+ }
+
+ // Sandbox indirect branch or return instruction by inserting mask operation
+ // before it.
+ void sandboxIndirectJump(const MCInst &MI, const MCSubtargetInfo &STI) {
+ unsigned AddrReg = MI.getOperand(0).getReg();
+
+ EmitBundleLock(false);
+ emitMask(AddrReg, IndirectBranchMaskReg, STI);
+ MipsELFStreamer::EmitInstruction(MI, STI);
+ EmitBundleUnlock();
+ }
+
+ // Sandbox memory access or SP change. Insert mask operation before and/or
+ // after the instruction.
+ void sandboxLoadStoreStackChange(const MCInst &MI, unsigned AddrIdx,
+ const MCSubtargetInfo &STI, bool MaskBefore,
+ bool MaskAfter) {
+ EmitBundleLock(false);
+ if (MaskBefore) {
+ // Sandbox memory access.
+ unsigned BaseReg = MI.getOperand(AddrIdx).getReg();
+ emitMask(BaseReg, LoadStoreStackMaskReg, STI);
+ }
+ MipsELFStreamer::EmitInstruction(MI, STI);
+ if (MaskAfter) {
+ // Sandbox SP change.
+ unsigned SPReg = MI.getOperand(0).getReg();
+ assert((Mips::SP == SPReg) && "Unexpected stack-pointer register.");
+ emitMask(SPReg, LoadStoreStackMaskReg, STI);
+ }
+ EmitBundleUnlock();
+ }
+
+public:
+ /// This function is the one used to emit instruction data into the ELF
+ /// streamer. We override it to mask dangerous instructions.
+ void EmitInstruction(const MCInst &Inst,
+ const MCSubtargetInfo &STI) override {
+ // Sandbox indirect jumps.
+ if (isIndirectJump(Inst)) {
+ if (PendingCall)
+ report_fatal_error("Dangerous instruction in branch delay slot!");
+ sandboxIndirectJump(Inst, STI);
+ return;
+ }
+
+ // Sandbox loads, stores and SP changes.
+ unsigned AddrIdx;
+ bool IsStore;
+ bool IsMemAccess = isBasePlusOffsetMemoryAccess(Inst.getOpcode(), &AddrIdx,
+ &IsStore);
+ bool IsSPFirstOperand = isStackPointerFirstOperand(Inst);
+ if (IsMemAccess || IsSPFirstOperand) {
+ bool MaskBefore = (IsMemAccess
+ && baseRegNeedsLoadStoreMask(Inst.getOperand(AddrIdx)
+ .getReg()));
+ bool MaskAfter = IsSPFirstOperand && !IsStore;
+ if (MaskBefore || MaskAfter) {
+ if (PendingCall)
+ report_fatal_error("Dangerous instruction in branch delay slot!");
+ sandboxLoadStoreStackChange(Inst, AddrIdx, STI, MaskBefore, MaskAfter);
+ return;
+ }
+ // fallthrough
+ }
+
+ // Sandbox calls by aligning call and branch delay to the bundle end.
+ // For indirect calls, emit the mask before the call.
+ bool IsIndirectCall;
+ if (isCall(Inst, &IsIndirectCall)) {
+ if (PendingCall)
+ report_fatal_error("Dangerous instruction in branch delay slot!");
+
+ // Start the sandboxing sequence by emitting call.
+ EmitBundleLock(true);
+ if (IsIndirectCall) {
+ unsigned TargetReg = Inst.getOperand(1).getReg();
+ emitMask(TargetReg, IndirectBranchMaskReg, STI);
+ }
+ MipsELFStreamer::EmitInstruction(Inst, STI);
+ PendingCall = true;
+ return;
+ }
+ if (PendingCall) {
+ // Finish the sandboxing sequence by emitting branch delay.
+ MipsELFStreamer::EmitInstruction(Inst, STI);
+ EmitBundleUnlock();
+ PendingCall = false;
+ return;
+ }
+
+ // None of the sandboxing applies, just emit the instruction.
+ MipsELFStreamer::EmitInstruction(Inst, STI);
+ }
+};
+
+} // end anonymous namespace
+
+namespace llvm {
+
+bool isBasePlusOffsetMemoryAccess(unsigned Opcode, unsigned *AddrIdx,
+ bool *IsStore) {
+ if (IsStore)
+ *IsStore = false;
+
+ switch (Opcode) {
+ default:
+ return false;
+
+ // Load instructions with base address register in position 1.
+ case Mips::LB:
+ case Mips::LBu:
+ case Mips::LH:
+ case Mips::LHu:
+ case Mips::LW:
+ case Mips::LWC1:
+ case Mips::LDC1:
+ case Mips::LL:
+ case Mips::LL_R6:
+ case Mips::LWL:
+ case Mips::LWR:
+ *AddrIdx = 1;
+ return true;
+
+ // Store instructions with base address register in position 1.
+ case Mips::SB:
+ case Mips::SH:
+ case Mips::SW:
+ case Mips::SWC1:
+ case Mips::SDC1:
+ case Mips::SWL:
+ case Mips::SWR:
+ *AddrIdx = 1;
+ if (IsStore)
+ *IsStore = true;
+ return true;
+
+ // Store instructions with base address register in position 2.
+ case Mips::SC:
+ case Mips::SC_R6:
+ *AddrIdx = 2;
+ if (IsStore)
+ *IsStore = true;
+ return true;
+ }
+}
+
+bool baseRegNeedsLoadStoreMask(unsigned Reg) {
+ // The contents of SP and thread pointer register do not require masking.
+ return Reg != Mips::SP && Reg != Mips::T8;
+}
+
+MCELFStreamer *createMipsNaClELFStreamer(MCContext &Context, MCAsmBackend &TAB,
+ raw_ostream &OS,
+ MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI,
+ bool RelaxAll, bool NoExecStack) {
+ MipsNaClELFStreamer *S = new MipsNaClELFStreamer(Context, TAB, OS, Emitter,
+ STI);
+ if (RelaxAll)
+ S->getAssembler().setRelaxAll(true);
+ if (NoExecStack)
+ S->getAssembler().setNoExecStack(true);
+
+ // Set bundle-alignment as required by the NaCl ABI for the target.
+ S->EmitBundleAlignMode(MIPS_NACL_BUNDLE_ALIGN);
+
+ return S;
+}
+
+}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsOptionRecord.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsOptionRecord.cpp
new file mode 100644
index 0000000..0ef2208
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsOptionRecord.cpp
@@ -0,0 +1,92 @@
+//===-- MipsOptionRecord.cpp - Abstraction for storing information --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsOptionRecord.h"
+#include "MipsELFStreamer.h"
+#include "llvm/MC/MCSectionELF.h"
+
+using namespace llvm;
+
+void MipsRegInfoRecord::EmitMipsOptionRecord() {
+ MCAssembler &MCA = Streamer->getAssembler();
+ Triple T(STI.getTargetTriple());
+ uint64_t Features = STI.getFeatureBits();
+
+ Streamer->PushSection();
+
+ // We need to distinguish between N64 and the rest because at the moment
+ // we don't emit .Mips.options for other ELFs other than N64.
+ // Since .reginfo has the same information as .Mips.options (ODK_REGINFO),
+ // we can use the same abstraction (MipsRegInfoRecord class) to handle both.
+ if (Features & Mips::FeatureN64) {
+ // The EntrySize value of 1 seems strange since the records are neither
+ // 1-byte long nor fixed length but it matches the value GAS emits.
+ const MCSectionELF *Sec =
+ Context.getELFSection(".MIPS.options", ELF::SHT_MIPS_OPTIONS,
+ ELF::SHF_ALLOC | ELF::SHF_MIPS_NOSTRIP,
+ SectionKind::getMetadata(), 1, "");
+ MCA.getOrCreateSectionData(*Sec).setAlignment(8);
+ Streamer->SwitchSection(Sec);
+
+ Streamer->EmitIntValue(1, 1); // kind
+ Streamer->EmitIntValue(40, 1); // size
+ Streamer->EmitIntValue(0, 2); // section
+ Streamer->EmitIntValue(0, 4); // info
+ Streamer->EmitIntValue(ri_gprmask, 4);
+ Streamer->EmitIntValue(0, 4); // pad
+ Streamer->EmitIntValue(ri_cprmask[0], 4);
+ Streamer->EmitIntValue(ri_cprmask[1], 4);
+ Streamer->EmitIntValue(ri_cprmask[2], 4);
+ Streamer->EmitIntValue(ri_cprmask[3], 4);
+ Streamer->EmitIntValue(ri_gp_value, 8);
+ } else {
+ const MCSectionELF *Sec =
+ Context.getELFSection(".reginfo", ELF::SHT_MIPS_REGINFO, ELF::SHF_ALLOC,
+ SectionKind::getMetadata(), 24, "");
+ MCA.getOrCreateSectionData(*Sec)
+ .setAlignment(Features & Mips::FeatureN32 ? 8 : 4);
+ Streamer->SwitchSection(Sec);
+
+ Streamer->EmitIntValue(ri_gprmask, 4);
+ Streamer->EmitIntValue(ri_cprmask[0], 4);
+ Streamer->EmitIntValue(ri_cprmask[1], 4);
+ Streamer->EmitIntValue(ri_cprmask[2], 4);
+ Streamer->EmitIntValue(ri_cprmask[3], 4);
+ assert((ri_gp_value & 0xffffffff) == ri_gp_value);
+ Streamer->EmitIntValue(ri_gp_value, 4);
+ }
+
+ Streamer->PopSection();
+}
+
+void MipsRegInfoRecord::SetPhysRegUsed(unsigned Reg,
+ const MCRegisterInfo *MCRegInfo) {
+ unsigned Value = 0;
+
+ for (MCSubRegIterator SubRegIt(Reg, MCRegInfo, true); SubRegIt.isValid();
+ ++SubRegIt) {
+ unsigned CurrentSubReg = *SubRegIt;
+
+ unsigned EncVal = MCRegInfo->getEncodingValue(CurrentSubReg);
+ Value |= 1 << EncVal;
+
+ if (GPR32RegClass->contains(CurrentSubReg) ||
+ GPR64RegClass->contains(CurrentSubReg))
+ ri_gprmask |= Value;
+ else if (FGR32RegClass->contains(CurrentSubReg) ||
+ FGR64RegClass->contains(CurrentSubReg) ||
+ AFGR64RegClass->contains(CurrentSubReg) ||
+ MSA128BRegClass->contains(CurrentSubReg))
+ ri_cprmask[1] |= Value;
+ else if (COP2RegClass->contains(CurrentSubReg))
+ ri_cprmask[2] |= Value;
+ else if (COP3RegClass->contains(CurrentSubReg))
+ ri_cprmask[3] |= Value;
+ }
+}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsTargetStreamer.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsTargetStreamer.cpp
new file mode 100644
index 0000000..4a178e2
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsTargetStreamer.cpp
@@ -0,0 +1,642 @@
+//===-- MipsTargetStreamer.cpp - Mips Target Streamer Methods -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Mips specific target streamer methods.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstPrinter/MipsInstPrinter.h"
+#include "MipsELFStreamer.h"
+#include "MipsMCTargetDesc.h"
+#include "MipsTargetObjectFile.h"
+#include "MipsTargetStreamer.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCELF.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+
+using namespace llvm;
+
+MipsTargetStreamer::MipsTargetStreamer(MCStreamer &S)
+ : MCTargetStreamer(S), canHaveModuleDirective(true) {}
+void MipsTargetStreamer::emitDirectiveSetMicroMips() {}
+void MipsTargetStreamer::emitDirectiveSetNoMicroMips() {}
+void MipsTargetStreamer::emitDirectiveSetMips16() {}
+void MipsTargetStreamer::emitDirectiveSetNoMips16() {}
+void MipsTargetStreamer::emitDirectiveSetReorder() {}
+void MipsTargetStreamer::emitDirectiveSetNoReorder() {}
+void MipsTargetStreamer::emitDirectiveSetMacro() {}
+void MipsTargetStreamer::emitDirectiveSetNoMacro() {}
+void MipsTargetStreamer::emitDirectiveSetAt() {}
+void MipsTargetStreamer::emitDirectiveSetNoAt() {}
+void MipsTargetStreamer::emitDirectiveEnd(StringRef Name) {}
+void MipsTargetStreamer::emitDirectiveEnt(const MCSymbol &Symbol) {}
+void MipsTargetStreamer::emitDirectiveAbiCalls() {}
+void MipsTargetStreamer::emitDirectiveNaN2008() {}
+void MipsTargetStreamer::emitDirectiveNaNLegacy() {}
+void MipsTargetStreamer::emitDirectiveOptionPic0() {}
+void MipsTargetStreamer::emitDirectiveOptionPic2() {}
+void MipsTargetStreamer::emitFrame(unsigned StackReg, unsigned StackSize,
+ unsigned ReturnReg) {}
+void MipsTargetStreamer::emitMask(unsigned CPUBitmask, int CPUTopSavedRegOff) {}
+void MipsTargetStreamer::emitFMask(unsigned FPUBitmask, int FPUTopSavedRegOff) {
+}
+void MipsTargetStreamer::emitDirectiveSetMips32R2() {}
+void MipsTargetStreamer::emitDirectiveSetMips64() {}
+void MipsTargetStreamer::emitDirectiveSetMips64R2() {}
+void MipsTargetStreamer::emitDirectiveSetDsp() {}
+void MipsTargetStreamer::emitDirectiveCpload(unsigned RegNo) {}
+void MipsTargetStreamer::emitDirectiveCpsetup(unsigned RegNo, int RegOrOffset,
+ const MCSymbol &Sym, bool IsReg) {
+}
+void MipsTargetStreamer::emitDirectiveModuleOddSPReg(bool Enabled,
+ bool IsO32ABI) {
+ if (!Enabled && !IsO32ABI)
+ report_fatal_error("+nooddspreg is only valid for O32");
+}
+
+MipsTargetAsmStreamer::MipsTargetAsmStreamer(MCStreamer &S,
+ formatted_raw_ostream &OS)
+ : MipsTargetStreamer(S), OS(OS) {}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMicroMips() {
+ OS << "\t.set\tmicromips\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetNoMicroMips() {
+ OS << "\t.set\tnomicromips\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips16() {
+ OS << "\t.set\tmips16\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetNoMips16() {
+ OS << "\t.set\tnomips16\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetReorder() {
+ OS << "\t.set\treorder\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetNoReorder() {
+ OS << "\t.set\tnoreorder\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMacro() {
+ OS << "\t.set\tmacro\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetNoMacro() {
+ OS << "\t.set\tnomacro\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetAt() {
+ OS << "\t.set\tat\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetNoAt() {
+ OS << "\t.set\tnoat\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveEnd(StringRef Name) {
+ OS << "\t.end\t" << Name << '\n';
+}
+
+void MipsTargetAsmStreamer::emitDirectiveEnt(const MCSymbol &Symbol) {
+ OS << "\t.ent\t" << Symbol.getName() << '\n';
+}
+
+void MipsTargetAsmStreamer::emitDirectiveAbiCalls() { OS << "\t.abicalls\n"; }
+
+void MipsTargetAsmStreamer::emitDirectiveNaN2008() { OS << "\t.nan\t2008\n"; }
+
+void MipsTargetAsmStreamer::emitDirectiveNaNLegacy() {
+ OS << "\t.nan\tlegacy\n";
+}
+
+void MipsTargetAsmStreamer::emitDirectiveOptionPic0() {
+ OS << "\t.option\tpic0\n";
+}
+
+void MipsTargetAsmStreamer::emitDirectiveOptionPic2() {
+ OS << "\t.option\tpic2\n";
+}
+
+void MipsTargetAsmStreamer::emitFrame(unsigned StackReg, unsigned StackSize,
+ unsigned ReturnReg) {
+ OS << "\t.frame\t$"
+ << StringRef(MipsInstPrinter::getRegisterName(StackReg)).lower() << ","
+ << StackSize << ",$"
+ << StringRef(MipsInstPrinter::getRegisterName(ReturnReg)).lower() << '\n';
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips32R2() {
+ OS << "\t.set\tmips32r2\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips64() {
+ OS << "\t.set\tmips64\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips64R2() {
+ OS << "\t.set\tmips64r2\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetDsp() {
+ OS << "\t.set\tdsp\n";
+ setCanHaveModuleDir(false);
+}
+// Print a 32 bit hex number with all numbers.
+static void printHex32(unsigned Value, raw_ostream &OS) {
+ OS << "0x";
+ for (int i = 7; i >= 0; i--)
+ OS.write_hex((Value & (0xF << (i * 4))) >> (i * 4));
+}
+
+void MipsTargetAsmStreamer::emitMask(unsigned CPUBitmask,
+ int CPUTopSavedRegOff) {
+ OS << "\t.mask \t";
+ printHex32(CPUBitmask, OS);
+ OS << ',' << CPUTopSavedRegOff << '\n';
+}
+
+void MipsTargetAsmStreamer::emitFMask(unsigned FPUBitmask,
+ int FPUTopSavedRegOff) {
+ OS << "\t.fmask\t";
+ printHex32(FPUBitmask, OS);
+ OS << "," << FPUTopSavedRegOff << '\n';
+}
+
+void MipsTargetAsmStreamer::emitDirectiveCpload(unsigned RegNo) {
+ OS << "\t.cpload\t$"
+ << StringRef(MipsInstPrinter::getRegisterName(RegNo)).lower() << "\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveCpsetup(unsigned RegNo,
+ int RegOrOffset,
+ const MCSymbol &Sym,
+ bool IsReg) {
+ OS << "\t.cpsetup\t$"
+ << StringRef(MipsInstPrinter::getRegisterName(RegNo)).lower() << ", ";
+
+ if (IsReg)
+ OS << "$"
+ << StringRef(MipsInstPrinter::getRegisterName(RegOrOffset)).lower();
+ else
+ OS << RegOrOffset;
+
+ OS << ", ";
+
+ OS << Sym.getName() << "\n";
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveModuleFP(
+ MipsABIFlagsSection::FpABIKind Value, bool Is32BitABI) {
+ MipsTargetStreamer::emitDirectiveModuleFP(Value, Is32BitABI);
+
+ StringRef ModuleValue;
+ OS << "\t.module\tfp=";
+ OS << ABIFlagsSection.getFpABIString(Value) << "\n";
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetFp(
+ MipsABIFlagsSection::FpABIKind Value) {
+ StringRef ModuleValue;
+ OS << "\t.set\tfp=";
+ OS << ABIFlagsSection.getFpABIString(Value) << "\n";
+}
+
+void MipsTargetAsmStreamer::emitMipsAbiFlags() {
+ // No action required for text output.
+}
+
+void MipsTargetAsmStreamer::emitDirectiveModuleOddSPReg(bool Enabled,
+ bool IsO32ABI) {
+ MipsTargetStreamer::emitDirectiveModuleOddSPReg(Enabled, IsO32ABI);
+
+ OS << "\t.module\t" << (Enabled ? "" : "no") << "oddspreg\n";
+}
+
+// This part is for ELF object output.
+MipsTargetELFStreamer::MipsTargetELFStreamer(MCStreamer &S,
+ const MCSubtargetInfo &STI)
+ : MipsTargetStreamer(S), MicroMipsEnabled(false), STI(STI) {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ uint64_t Features = STI.getFeatureBits();
+ Triple T(STI.getTargetTriple());
+ Pic = (MCA.getContext().getObjectFileInfo()->getRelocM() == Reloc::PIC_)
+ ? true
+ : false;
+
+ // Update e_header flags
+ unsigned EFlags = 0;
+
+ // Architecture
+ if (Features & Mips::FeatureMips64r6)
+ EFlags |= ELF::EF_MIPS_ARCH_64R6;
+ else if (Features & Mips::FeatureMips64r2)
+ EFlags |= ELF::EF_MIPS_ARCH_64R2;
+ else if (Features & Mips::FeatureMips64)
+ EFlags |= ELF::EF_MIPS_ARCH_64;
+ else if (Features & Mips::FeatureMips5)
+ EFlags |= ELF::EF_MIPS_ARCH_5;
+ else if (Features & Mips::FeatureMips4)
+ EFlags |= ELF::EF_MIPS_ARCH_4;
+ else if (Features & Mips::FeatureMips3)
+ EFlags |= ELF::EF_MIPS_ARCH_3;
+ else if (Features & Mips::FeatureMips32r6)
+ EFlags |= ELF::EF_MIPS_ARCH_32R6;
+ else if (Features & Mips::FeatureMips32r2)
+ EFlags |= ELF::EF_MIPS_ARCH_32R2;
+ else if (Features & Mips::FeatureMips32)
+ EFlags |= ELF::EF_MIPS_ARCH_32;
+ else if (Features & Mips::FeatureMips2)
+ EFlags |= ELF::EF_MIPS_ARCH_2;
+ else
+ EFlags |= ELF::EF_MIPS_ARCH_1;
+
+ // ABI
+ // N64 does not require any ABI bits.
+ if (Features & Mips::FeatureO32)
+ EFlags |= ELF::EF_MIPS_ABI_O32;
+ else if (Features & Mips::FeatureN32)
+ EFlags |= ELF::EF_MIPS_ABI2;
+
+ if (Features & Mips::FeatureGP64Bit) {
+ if (Features & Mips::FeatureO32)
+ EFlags |= ELF::EF_MIPS_32BITMODE; /* Compatibility Mode */
+ } else if (Features & Mips::FeatureMips64r2 || Features & Mips::FeatureMips64)
+ EFlags |= ELF::EF_MIPS_32BITMODE;
+
+ // Other options.
+ if (Features & Mips::FeatureNaN2008)
+ EFlags |= ELF::EF_MIPS_NAN2008;
+
+ // -mabicalls and -mplt are not implemented but we should act as if they were
+ // given.
+ EFlags |= ELF::EF_MIPS_CPIC;
+ if (Features & Mips::FeatureN64)
+ EFlags |= ELF::EF_MIPS_PIC;
+
+ MCA.setELFHeaderEFlags(EFlags);
+}
+
+void MipsTargetELFStreamer::emitLabel(MCSymbol *Symbol) {
+ if (!isMicroMipsEnabled())
+ return;
+ MCSymbolData &Data = getStreamer().getOrCreateSymbolData(Symbol);
+ uint8_t Type = MCELF::GetType(Data);
+ if (Type != ELF::STT_FUNC)
+ return;
+
+ // The "other" values are stored in the last 6 bits of the second byte
+ // The traditional defines for STO values assume the full byte and thus
+ // the shift to pack it.
+ MCELF::setOther(Data, ELF::STO_MIPS_MICROMIPS >> 2);
+}
+
+void MipsTargetELFStreamer::finish() {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ const MCObjectFileInfo &OFI = *MCA.getContext().getObjectFileInfo();
+
+ // .bss, .text and .data are always at least 16-byte aligned.
+ MCSectionData &TextSectionData =
+ MCA.getOrCreateSectionData(*OFI.getTextSection());
+ MCSectionData &DataSectionData =
+ MCA.getOrCreateSectionData(*OFI.getDataSection());
+ MCSectionData &BSSSectionData =
+ MCA.getOrCreateSectionData(*OFI.getBSSSection());
+
+ TextSectionData.setAlignment(std::max(16u, TextSectionData.getAlignment()));
+ DataSectionData.setAlignment(std::max(16u, DataSectionData.getAlignment()));
+ BSSSectionData.setAlignment(std::max(16u, BSSSectionData.getAlignment()));
+
+ // Emit all the option records.
+ // At the moment we are only emitting .Mips.options (ODK_REGINFO) and
+ // .reginfo.
+ MipsELFStreamer &MEF = static_cast<MipsELFStreamer &>(Streamer);
+ MEF.EmitMipsOptionRecords();
+
+ emitMipsAbiFlags();
+}
+
+void MipsTargetELFStreamer::emitAssignment(MCSymbol *Symbol,
+ const MCExpr *Value) {
+ // If on rhs is micromips symbol then mark Symbol as microMips.
+ if (Value->getKind() != MCExpr::SymbolRef)
+ return;
+ const MCSymbol &RhsSym =
+ static_cast<const MCSymbolRefExpr *>(Value)->getSymbol();
+ MCSymbolData &Data = getStreamer().getOrCreateSymbolData(&RhsSym);
+ uint8_t Type = MCELF::GetType(Data);
+ if ((Type != ELF::STT_FUNC) ||
+ !(MCELF::getOther(Data) & (ELF::STO_MIPS_MICROMIPS >> 2)))
+ return;
+
+ MCSymbolData &SymbolData = getStreamer().getOrCreateSymbolData(Symbol);
+ // The "other" values are stored in the last 6 bits of the second byte.
+ // The traditional defines for STO values assume the full byte and thus
+ // the shift to pack it.
+ MCELF::setOther(SymbolData, ELF::STO_MIPS_MICROMIPS >> 2);
+}
+
+MCELFStreamer &MipsTargetELFStreamer::getStreamer() {
+ return static_cast<MCELFStreamer &>(Streamer);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetMicroMips() {
+ MicroMipsEnabled = true;
+
+ MCAssembler &MCA = getStreamer().getAssembler();
+ unsigned Flags = MCA.getELFHeaderEFlags();
+ Flags |= ELF::EF_MIPS_MICROMIPS;
+ MCA.setELFHeaderEFlags(Flags);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetNoMicroMips() {
+ MicroMipsEnabled = false;
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetMips16() {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ unsigned Flags = MCA.getELFHeaderEFlags();
+ Flags |= ELF::EF_MIPS_ARCH_ASE_M16;
+ MCA.setELFHeaderEFlags(Flags);
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetNoMips16() {
+ // FIXME: implement.
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetReorder() {
+ // FIXME: implement.
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetNoReorder() {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ unsigned Flags = MCA.getELFHeaderEFlags();
+ Flags |= ELF::EF_MIPS_NOREORDER;
+ MCA.setELFHeaderEFlags(Flags);
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetMacro() {
+ // FIXME: implement.
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetNoMacro() {
+ // FIXME: implement.
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetAt() {
+ // FIXME: implement.
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetNoAt() {
+ // FIXME: implement.
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveEnd(StringRef Name) {
+ // FIXME: implement.
+}
+
+void MipsTargetELFStreamer::emitDirectiveEnt(const MCSymbol &Symbol) {
+ // FIXME: implement.
+}
+
+void MipsTargetELFStreamer::emitDirectiveAbiCalls() {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ unsigned Flags = MCA.getELFHeaderEFlags();
+ Flags |= ELF::EF_MIPS_CPIC | ELF::EF_MIPS_PIC;
+ MCA.setELFHeaderEFlags(Flags);
+}
+
+void MipsTargetELFStreamer::emitDirectiveNaN2008() {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ unsigned Flags = MCA.getELFHeaderEFlags();
+ Flags |= ELF::EF_MIPS_NAN2008;
+ MCA.setELFHeaderEFlags(Flags);
+}
+
+void MipsTargetELFStreamer::emitDirectiveNaNLegacy() {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ unsigned Flags = MCA.getELFHeaderEFlags();
+ Flags &= ~ELF::EF_MIPS_NAN2008;
+ MCA.setELFHeaderEFlags(Flags);
+}
+
+void MipsTargetELFStreamer::emitDirectiveOptionPic0() {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ unsigned Flags = MCA.getELFHeaderEFlags();
+ // This option overrides other PIC options like -KPIC.
+ Pic = false;
+ Flags &= ~ELF::EF_MIPS_PIC;
+ MCA.setELFHeaderEFlags(Flags);
+}
+
+void MipsTargetELFStreamer::emitDirectiveOptionPic2() {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ unsigned Flags = MCA.getELFHeaderEFlags();
+ Pic = true;
+ // NOTE: We are following the GAS behaviour here which means the directive
+ // 'pic2' also sets the CPIC bit in the ELF header. This is different from
+ // what is stated in the SYSV ABI which consider the bits EF_MIPS_PIC and
+ // EF_MIPS_CPIC to be mutually exclusive.
+ Flags |= ELF::EF_MIPS_PIC | ELF::EF_MIPS_CPIC;
+ MCA.setELFHeaderEFlags(Flags);
+}
+
+void MipsTargetELFStreamer::emitFrame(unsigned StackReg, unsigned StackSize,
+ unsigned ReturnReg) {
+ // FIXME: implement.
+}
+
+void MipsTargetELFStreamer::emitMask(unsigned CPUBitmask,
+ int CPUTopSavedRegOff) {
+ // FIXME: implement.
+}
+
+void MipsTargetELFStreamer::emitFMask(unsigned FPUBitmask,
+ int FPUTopSavedRegOff) {
+ // FIXME: implement.
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetMips32R2() {
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetMips64() {
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetMips64R2() {
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveSetDsp() {
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveCpload(unsigned RegNo) {
+ // .cpload $reg
+ // This directive expands to:
+ // lui $gp, %hi(_gp_disp)
+ // addui $gp, $gp, %lo(_gp_disp)
+ // addu $gp, $gp, $reg
+ // when support for position independent code is enabled.
+ if (!Pic || (isN32() || isN64()))
+ return;
+
+ // There's a GNU extension controlled by -mno-shared that allows
+ // locally-binding symbols to be accessed using absolute addresses.
+ // This is currently not supported. When supported -mno-shared makes
+ // .cpload expand to:
+ // lui $gp, %hi(__gnu_local_gp)
+ // addiu $gp, $gp, %lo(__gnu_local_gp)
+
+ StringRef SymName("_gp_disp");
+ MCAssembler &MCA = getStreamer().getAssembler();
+ MCSymbol *GP_Disp = MCA.getContext().GetOrCreateSymbol(SymName);
+ MCA.getOrCreateSymbolData(*GP_Disp);
+
+ MCInst TmpInst;
+ TmpInst.setOpcode(Mips::LUi);
+ TmpInst.addOperand(MCOperand::CreateReg(Mips::GP));
+ const MCSymbolRefExpr *HiSym = MCSymbolRefExpr::Create(
+ "_gp_disp", MCSymbolRefExpr::VK_Mips_ABS_HI, MCA.getContext());
+ TmpInst.addOperand(MCOperand::CreateExpr(HiSym));
+ getStreamer().EmitInstruction(TmpInst, STI);
+
+ TmpInst.clear();
+
+ TmpInst.setOpcode(Mips::ADDiu);
+ TmpInst.addOperand(MCOperand::CreateReg(Mips::GP));
+ TmpInst.addOperand(MCOperand::CreateReg(Mips::GP));
+ const MCSymbolRefExpr *LoSym = MCSymbolRefExpr::Create(
+ "_gp_disp", MCSymbolRefExpr::VK_Mips_ABS_LO, MCA.getContext());
+ TmpInst.addOperand(MCOperand::CreateExpr(LoSym));
+ getStreamer().EmitInstruction(TmpInst, STI);
+
+ TmpInst.clear();
+
+ TmpInst.setOpcode(Mips::ADDu);
+ TmpInst.addOperand(MCOperand::CreateReg(Mips::GP));
+ TmpInst.addOperand(MCOperand::CreateReg(Mips::GP));
+ TmpInst.addOperand(MCOperand::CreateReg(RegNo));
+ getStreamer().EmitInstruction(TmpInst, STI);
+
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitDirectiveCpsetup(unsigned RegNo,
+ int RegOrOffset,
+ const MCSymbol &Sym,
+ bool IsReg) {
+ // Only N32 and N64 emit anything for .cpsetup iff PIC is set.
+ if (!Pic || !(isN32() || isN64()))
+ return;
+
+ MCAssembler &MCA = getStreamer().getAssembler();
+ MCInst Inst;
+
+ // Either store the old $gp in a register or on the stack
+ if (IsReg) {
+ // move $save, $gpreg
+ Inst.setOpcode(Mips::DADDu);
+ Inst.addOperand(MCOperand::CreateReg(RegOrOffset));
+ Inst.addOperand(MCOperand::CreateReg(Mips::GP));
+ Inst.addOperand(MCOperand::CreateReg(Mips::ZERO));
+ } else {
+ // sd $gpreg, offset($sp)
+ Inst.setOpcode(Mips::SD);
+ Inst.addOperand(MCOperand::CreateReg(Mips::GP));
+ Inst.addOperand(MCOperand::CreateReg(Mips::SP));
+ Inst.addOperand(MCOperand::CreateImm(RegOrOffset));
+ }
+ getStreamer().EmitInstruction(Inst, STI);
+ Inst.clear();
+
+ const MCSymbolRefExpr *HiExpr = MCSymbolRefExpr::Create(
+ Sym.getName(), MCSymbolRefExpr::VK_Mips_GPOFF_HI, MCA.getContext());
+ const MCSymbolRefExpr *LoExpr = MCSymbolRefExpr::Create(
+ Sym.getName(), MCSymbolRefExpr::VK_Mips_GPOFF_LO, MCA.getContext());
+ // lui $gp, %hi(%neg(%gp_rel(funcSym)))
+ Inst.setOpcode(Mips::LUi);
+ Inst.addOperand(MCOperand::CreateReg(Mips::GP));
+ Inst.addOperand(MCOperand::CreateExpr(HiExpr));
+ getStreamer().EmitInstruction(Inst, STI);
+ Inst.clear();
+
+ // addiu $gp, $gp, %lo(%neg(%gp_rel(funcSym)))
+ Inst.setOpcode(Mips::ADDiu);
+ Inst.addOperand(MCOperand::CreateReg(Mips::GP));
+ Inst.addOperand(MCOperand::CreateReg(Mips::GP));
+ Inst.addOperand(MCOperand::CreateExpr(LoExpr));
+ getStreamer().EmitInstruction(Inst, STI);
+ Inst.clear();
+
+ // daddu $gp, $gp, $funcreg
+ Inst.setOpcode(Mips::DADDu);
+ Inst.addOperand(MCOperand::CreateReg(Mips::GP));
+ Inst.addOperand(MCOperand::CreateReg(Mips::GP));
+ Inst.addOperand(MCOperand::CreateReg(RegNo));
+ getStreamer().EmitInstruction(Inst, STI);
+
+ setCanHaveModuleDir(false);
+}
+
+void MipsTargetELFStreamer::emitMipsAbiFlags() {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ MCContext &Context = MCA.getContext();
+ MCStreamer &OS = getStreamer();
+ const MCSectionELF *Sec =
+ Context.getELFSection(".MIPS.abiflags", ELF::SHT_MIPS_ABIFLAGS,
+ ELF::SHF_ALLOC, SectionKind::getMetadata(), 24, "");
+ MCSectionData &ABIShndxSD = MCA.getOrCreateSectionData(*Sec);
+ ABIShndxSD.setAlignment(8);
+ OS.SwitchSection(Sec);
+
+ OS << ABIFlagsSection;
+}
+
+void MipsTargetELFStreamer::emitDirectiveModuleOddSPReg(bool Enabled,
+ bool IsO32ABI) {
+ MipsTargetStreamer::emitDirectiveModuleOddSPReg(Enabled, IsO32ABI);
+
+ ABIFlagsSection.OddSPReg = Enabled;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MSA.txt b/contrib/llvm/lib/Target/Mips/MSA.txt
new file mode 100644
index 0000000..113375f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MSA.txt
@@ -0,0 +1,83 @@
+Code Generation Notes for MSA
+=============================
+
+Intrinsics are lowered to SelectionDAG nodes where possible in order to enable
+optimisation, reduce the size of the ISel matcher, and reduce repetition in
+the implementation. In a small number of cases, this can cause different
+(semantically equivalent) instructions to be used in place of the requested
+instruction, even when no optimisation has taken place.
+
+Instructions
+============
+
+This section describes any quirks of instruction selection for MSA. For
+example, two instructions might be equally valid for some given IR and one is
+chosen in preference to the other.
+
+bclri.b:
+ It is not possible to emit bclri.b since andi.b covers exactly the
+ same cases. andi.b should use fractionally less power than bclri.b in
+ most hardware implementations so it is used in preference to bclri.b.
+
+vshf.w:
+ It is not possible to emit vshf.w when the shuffle description is
+ constant since shf.w covers exactly the same cases. shf.w is used
+ instead. It is also impossible for the shuffle description to be
+ unknown at compile-time due to the definition of shufflevector in
+ LLVM IR.
+
+vshf.[bhwd]
+ When the shuffle description describes a splat operation, splat.[bhwd]
+ instructions will be selected instead of vshf.[bhwd]. Unlike the ilv*,
+ and pck* instructions, this is matched from MipsISD::VSHF instead of
+ a special-case MipsISD node.
+
+ilvl.d, pckev.d:
+ It is not possible to emit ilvl.d, or pckev.d since ilvev.d covers the
+ same shuffle. ilvev.d will be emitted instead.
+
+ilvr.d, ilvod.d, pckod.d:
+ It is not possible to emit ilvr.d, or pckod.d since ilvod.d covers the
+ same shuffle. ilvod.d will be emitted instead.
+
+splat.[bhwd]
+ The intrinsic will work as expected. However, unlike other intrinsics
+ it lowers directly to MipsISD::VSHF instead of using common IR.
+
+splati.w:
+ It is not possible to emit splati.w since shf.w covers the same cases.
+ shf.w will be emitted instead.
+
+copy_s.w:
+ On MIPS32, the copy_u.d intrinsic will emit this instruction instead of
+ copy_u.w. This is semantically equivalent since the general-purpose
+ register file is 32-bits wide.
+
+binsri.[bhwd], binsli.[bhwd]:
+ These two operations are equivalent to each other with the operands
+ swapped and condition inverted. The compiler may use either one as
+ appropriate.
+ Furthermore, the compiler may use bsel.[bhwd] for some masks that do
+ not survive the legalization process (this is a bug and will be fixed).
+
+bmnz.v, bmz.v, bsel.v:
+ These three operations differ only in the operand that is tied to the
+ result and the order of the operands.
+ It is (currently) not possible to emit bmz.v, or bsel.v since bmnz.v is
+ the same operation and will be emitted instead.
+ In future, the compiler may choose between these three instructions
+ according to register allocation.
+ These three operations can be very confusing so here is a mapping
+ between the instructions and the vselect node in one place:
+ bmz.v wd, ws, wt/i8 -> (vselect wt/i8, wd, ws)
+ bmnz.v wd, ws, wt/i8 -> (vselect wt/i8, ws, wd)
+ bsel.v wd, ws, wt/i8 -> (vselect wd, wt/i8, ws)
+
+bmnzi.b, bmzi.b:
+ Like their non-immediate counterparts, bmnzi.v and bmzi.v are the same
+ operation with the operands swapped. bmnzi.v will (currently) be emitted
+ for both cases.
+
+bseli.v:
+ Unlike the non-immediate versions, bseli.v is distinguishable from
+ bmnzi.b and bmzi.b and can be emitted.
diff --git a/contrib/llvm/lib/Target/Mips/MicroMipsInstrFPU.td b/contrib/llvm/lib/Target/Mips/MicroMipsInstrFPU.td
new file mode 100644
index 0000000..b93017a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MicroMipsInstrFPU.td
@@ -0,0 +1,148 @@
+let isCodeGenOnly = 1, Predicates = [InMicroMips] in {
+def FADD_S_MM : MMRel, ADDS_FT<"add.s", FGR32Opnd, II_ADD_S, 1, fadd>,
+ ADDS_FM_MM<0, 0x30>;
+def FDIV_S_MM : MMRel, ADDS_FT<"div.s", FGR32Opnd, II_DIV_S, 0, fdiv>,
+ ADDS_FM_MM<0, 0xf0>;
+def FMUL_S_MM : MMRel, ADDS_FT<"mul.s", FGR32Opnd, II_MUL_S, 1, fmul>,
+ ADDS_FM_MM<0, 0xb0>;
+def FSUB_S_MM : MMRel, ADDS_FT<"sub.s", FGR32Opnd, II_SUB_S, 0, fsub>,
+ ADDS_FM_MM<0, 0x70>;
+
+def FADD_MM : MMRel, ADDS_FT<"add.d", AFGR64Opnd, II_ADD_D, 1, fadd>,
+ ADDS_FM_MM<1, 0x30>;
+def FDIV_MM : MMRel, ADDS_FT<"div.d", AFGR64Opnd, II_DIV_D, 0, fdiv>,
+ ADDS_FM_MM<1, 0xf0>;
+def FMUL_MM : MMRel, ADDS_FT<"mul.d", AFGR64Opnd, II_MUL_D, 1, fmul>,
+ ADDS_FM_MM<1, 0xb0>;
+def FSUB_MM : MMRel, ADDS_FT<"sub.d", AFGR64Opnd, II_SUB_D, 0, fsub>,
+ ADDS_FM_MM<1, 0x70>;
+
+def LWC1_MM : MMRel, LW_FT<"lwc1", FGR32Opnd, II_LWC1, load>, LW_FM_MM<0x27>;
+def SWC1_MM : MMRel, SW_FT<"swc1", FGR32Opnd, II_SWC1, store>,
+ LW_FM_MM<0x26>;
+def LDC1_MM : MMRel, LW_FT<"ldc1", AFGR64Opnd, II_LDC1, load>, LW_FM_MM<0x2f>;
+def SDC1_MM : MMRel, SW_FT<"sdc1", AFGR64Opnd, II_SDC1, store>,
+ LW_FM_MM<0x2e>;
+def LWXC1_MM : MMRel, LWXC1_FT<"lwxc1", FGR32Opnd, II_LWXC1, load>,
+ LWXC1_FM_MM<0x48>, INSN_MIPS4_32R2_NOT_32R6_64R6;
+def SWXC1_MM : MMRel, SWXC1_FT<"swxc1", FGR32Opnd, II_SWXC1, store>,
+ SWXC1_FM_MM<0x88>, INSN_MIPS4_32R2_NOT_32R6_64R6;
+def LUXC1_MM : MMRel, LWXC1_FT<"luxc1", AFGR64Opnd, II_LUXC1>,
+ LWXC1_FM_MM<0x148>, INSN_MIPS5_32R2_NOT_32R6_64R6;
+def SUXC1_MM : MMRel, SWXC1_FT<"suxc1", AFGR64Opnd, II_SUXC1>,
+ SWXC1_FM_MM<0x188>, INSN_MIPS5_32R2_NOT_32R6_64R6;
+
+def FCMP_S32_MM : MMRel, CEQS_FT<"s", FGR32, II_C_CC_S, MipsFPCmp>,
+ CEQS_FM_MM<0>;
+def FCMP_D32_MM : MMRel, CEQS_FT<"d", AFGR64, II_C_CC_D, MipsFPCmp>,
+ CEQS_FM_MM<1>;
+
+def BC1F_MM : MMRel, BC1F_FT<"bc1f", brtarget_mm, IIBranch, MIPS_BRANCH_F>,
+ BC1F_FM_MM<0x1c>, ISA_MIPS1_NOT_32R6_64R6;
+def BC1T_MM : MMRel, BC1F_FT<"bc1t", brtarget_mm, IIBranch, MIPS_BRANCH_T>,
+ BC1F_FM_MM<0x1d>, ISA_MIPS1_NOT_32R6_64R6;
+
+def CEIL_W_S_MM : MMRel, ABSS_FT<"ceil.w.s", FGR32Opnd, FGR32Opnd, II_CEIL>,
+ ROUND_W_FM_MM<0, 0x6c>;
+def CVT_W_S_MM : MMRel, ABSS_FT<"cvt.w.s", FGR32Opnd, FGR32Opnd, II_CVT>,
+ ROUND_W_FM_MM<0, 0x24>;
+def FLOOR_W_S_MM : MMRel, ABSS_FT<"floor.w.s", FGR32Opnd, FGR32Opnd, II_FLOOR>,
+ ROUND_W_FM_MM<0, 0x2c>;
+def ROUND_W_S_MM : MMRel, ABSS_FT<"round.w.s", FGR32Opnd, FGR32Opnd, II_ROUND>,
+ ROUND_W_FM_MM<0, 0xec>;
+def TRUNC_W_S_MM : MMRel, ABSS_FT<"trunc.w.s", FGR32Opnd, FGR32Opnd, II_TRUNC>,
+ ROUND_W_FM_MM<0, 0xac>;
+def FSQRT_S_MM : MMRel, ABSS_FT<"sqrt.s", FGR32Opnd, FGR32Opnd, II_SQRT_S,
+ fsqrt>, ROUND_W_FM_MM<0, 0x28>;
+
+def CEIL_W_MM : MMRel, ABSS_FT<"ceil.w.d", FGR32Opnd, AFGR64Opnd, II_CEIL>,
+ ROUND_W_FM_MM<1, 0x6c>;
+def CVT_W_MM : MMRel, ABSS_FT<"cvt.w.d", FGR32Opnd, AFGR64Opnd, II_CVT>,
+ ROUND_W_FM_MM<1, 0x24>;
+def FLOOR_W_MM : MMRel, ABSS_FT<"floor.w.d", FGR32Opnd, AFGR64Opnd, II_FLOOR>,
+ ROUND_W_FM_MM<1, 0x2c>;
+def ROUND_W_MM : MMRel, ABSS_FT<"round.w.d", FGR32Opnd, AFGR64Opnd, II_ROUND>,
+ ROUND_W_FM_MM<1, 0xec>;
+def TRUNC_W_MM : MMRel, ABSS_FT<"trunc.w.d", FGR32Opnd, AFGR64Opnd, II_TRUNC>,
+ ROUND_W_FM_MM<1, 0xac>;
+
+def FSQRT_MM : MMRel, ABSS_FT<"sqrt.d", AFGR64Opnd, AFGR64Opnd, II_SQRT_D,
+ fsqrt>, ROUND_W_FM_MM<1, 0x28>;
+
+def CVT_L_S_MM : MMRel, ABSS_FT<"cvt.l.s", FGR64Opnd, FGR32Opnd, II_CVT>,
+ ROUND_W_FM_MM<0, 0x4>, INSN_MIPS3_32R2;
+def CVT_L_D64_MM : MMRel, ABSS_FT<"cvt.l.d", FGR64Opnd, FGR64Opnd, II_CVT>,
+ ROUND_W_FM_MM<1, 0x4>, INSN_MIPS3_32R2;
+
+def FABS_S_MM : MMRel, ABSS_FT<"abs.s", FGR32Opnd, FGR32Opnd, II_ABS, fabs>,
+ ABS_FM_MM<0, 0xd>;
+def FMOV_S_MM : MMRel, ABSS_FT<"mov.s", FGR32Opnd, FGR32Opnd, II_MOV_S>,
+ ABS_FM_MM<0, 0x1>;
+def FNEG_S_MM : MMRel, ABSS_FT<"neg.s", FGR32Opnd, FGR32Opnd, II_NEG, fneg>,
+ ABS_FM_MM<0, 0x2d>;
+def CVT_D_S_MM : MMRel, ABSS_FT<"cvt.d.s", AFGR64Opnd, FGR32Opnd, II_CVT>,
+ ABS_FM_MM<0, 0x4d>;
+def CVT_D32_W_MM : MMRel, ABSS_FT<"cvt.d.w", AFGR64Opnd, FGR32Opnd, II_CVT>,
+ ABS_FM_MM<1, 0x4d>;
+def CVT_S_D32_MM : MMRel, ABSS_FT<"cvt.s.d", FGR32Opnd, AFGR64Opnd, II_CVT>,
+ ABS_FM_MM<0, 0x6d>;
+def CVT_S_W_MM : MMRel, ABSS_FT<"cvt.s.w", FGR32Opnd, FGR32Opnd, II_CVT>,
+ ABS_FM_MM<1, 0x6d>;
+
+def FABS_MM : MMRel, ABSS_FT<"abs.d", AFGR64Opnd, AFGR64Opnd, II_ABS, fabs>,
+ ABS_FM_MM<1, 0xd>;
+def FNEG_MM : MMRel, ABSS_FT<"neg.d", AFGR64Opnd, AFGR64Opnd, II_NEG, fneg>,
+ ABS_FM_MM<1, 0x2d>;
+
+def FMOV_D32_MM : MMRel, ABSS_FT<"mov.d", AFGR64Opnd, AFGR64Opnd, II_MOV_D>,
+ ABS_FM_MM<1, 0x1>, AdditionalRequires<[NotFP64bit]>;
+
+def MOVZ_I_S_MM : MMRel, CMov_I_F_FT<"movz.s", GPR32Opnd, FGR32Opnd,
+ II_MOVZ_S>, CMov_I_F_FM_MM<0x78, 0>;
+def MOVN_I_S_MM : MMRel, CMov_I_F_FT<"movn.s", GPR32Opnd, FGR32Opnd,
+ II_MOVN_S>, CMov_I_F_FM_MM<0x38, 0>;
+def MOVZ_I_D32_MM : MMRel, CMov_I_F_FT<"movz.d", GPR32Opnd, AFGR64Opnd,
+ II_MOVZ_D>, CMov_I_F_FM_MM<0x78, 1>;
+def MOVN_I_D32_MM : MMRel, CMov_I_F_FT<"movn.d", GPR32Opnd, AFGR64Opnd,
+ II_MOVN_D>, CMov_I_F_FM_MM<0x38, 1>;
+
+def MOVT_S_MM : MMRel, CMov_F_F_FT<"movt.s", FGR32Opnd, II_MOVT_S,
+ MipsCMovFP_T>, CMov_F_F_FM_MM<0x60, 0>;
+def MOVF_S_MM : MMRel, CMov_F_F_FT<"movf.s", FGR32Opnd, II_MOVF_S,
+ MipsCMovFP_F>, CMov_F_F_FM_MM<0x20, 0>;
+def MOVT_D32_MM : MMRel, CMov_F_F_FT<"movt.d", AFGR64Opnd, II_MOVT_D,
+ MipsCMovFP_T>, CMov_F_F_FM_MM<0x60, 1>;
+def MOVF_D32_MM : MMRel, CMov_F_F_FT<"movf.d", AFGR64Opnd, II_MOVF_D,
+ MipsCMovFP_F>, CMov_F_F_FM_MM<0x20, 1>;
+
+def CFC1_MM : MMRel, MFC1_FT<"cfc1", GPR32Opnd, CCROpnd, II_CFC1>,
+ MFC1_FM_MM<0x40>;
+def CTC1_MM : MMRel, MTC1_FT<"ctc1", CCROpnd, GPR32Opnd, II_CTC1>,
+ MFC1_FM_MM<0x60>;
+def MFC1_MM : MMRel, MFC1_FT<"mfc1", GPR32Opnd, FGR32Opnd,
+ II_MFC1, bitconvert>, MFC1_FM_MM<0x80>;
+def MTC1_MM : MMRel, MTC1_FT<"mtc1", FGR32Opnd, GPR32Opnd,
+ II_MTC1, bitconvert>, MFC1_FM_MM<0xa0>;
+def MFHC1_MM : MMRel, MFC1_FT<"mfhc1", GPR32Opnd, FGRH32Opnd, II_MFHC1>,
+ MFC1_FM_MM<3>, ISA_MIPS32R2;
+def MTHC1_MM : MMRel, MTC1_FT<"mthc1", FGRH32Opnd, GPR32Opnd, II_MTHC1>,
+ MFC1_FM_MM<7>, ISA_MIPS32R2;
+
+def MADD_S_MM : MMRel, MADDS_FT<"madd.s", FGR32Opnd, II_MADD_S, fadd>,
+ MADDS_FM_MM<0x1>;
+def MSUB_S_MM : MMRel, MADDS_FT<"msub.s", FGR32Opnd, II_MSUB_S, fsub>,
+ MADDS_FM_MM<0x21>;
+def NMADD_S_MM : MMRel, NMADDS_FT<"nmadd.s", FGR32Opnd, II_NMADD_S, fadd>,
+ MADDS_FM_MM<0x2>;
+def NMSUB_S_MM : MMRel, NMADDS_FT<"nmsub.s", FGR32Opnd, II_NMSUB_S, fsub>,
+ MADDS_FM_MM<0x22>;
+
+def MADD_D32_MM : MMRel, MADDS_FT<"madd.d", AFGR64Opnd, II_MADD_D, fadd>,
+ MADDS_FM_MM<0x9>;
+def MSUB_D32_MM : MMRel, MADDS_FT<"msub.d", AFGR64Opnd, II_MSUB_D, fsub>,
+ MADDS_FM_MM<0x29>;
+def NMADD_D32_MM : MMRel, NMADDS_FT<"nmadd.d", AFGR64Opnd, II_NMADD_D, fadd>,
+ MADDS_FM_MM<0xa>;
+def NMSUB_D32_MM : MMRel, NMADDS_FT<"nmsub.d", AFGR64Opnd, II_NMSUB_D, fsub>,
+ MADDS_FM_MM<0x2a>;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MicroMipsInstrFormats.td b/contrib/llvm/lib/Target/Mips/MicroMipsInstrFormats.td
new file mode 100644
index 0000000..15b951d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MicroMipsInstrFormats.td
@@ -0,0 +1,623 @@
+//===----------------------------------------------------------------------===//
+// MicroMIPS Base Classes
+//===----------------------------------------------------------------------===//
+
+//
+// Base class for MicroMips instructions.
+// This class does not depend on the instruction size.
+//
+class MicroMipsInstBase<dag outs, dag ins, string asmstr, list<dag> pattern,
+ InstrItinClass itin, Format f> : Instruction
+{
+ let Namespace = "Mips";
+ let DecoderNamespace = "MicroMips";
+
+ let OutOperandList = outs;
+ let InOperandList = ins;
+
+ let AsmString = asmstr;
+ let Pattern = pattern;
+ let Itinerary = itin;
+
+ let Predicates = [InMicroMips];
+
+ Format Form = f;
+}
+
+//
+// Base class for MicroMIPS 16-bit instructions.
+//
+class MicroMipsInst16<dag outs, dag ins, string asmstr, list<dag> pattern,
+ InstrItinClass itin, Format f> :
+ MicroMipsInstBase<outs, ins, asmstr, pattern, itin, f>
+{
+ let Size = 2;
+ field bits<16> Inst;
+ field bits<16> SoftFail = 0;
+ bits<6> Opcode = 0x0;
+}
+
+//===----------------------------------------------------------------------===//
+// MicroMIPS 16-bit Instruction Formats
+//===----------------------------------------------------------------------===//
+
+class MOVE_FM_MM16<bits<6> funct> {
+ bits<5> rs;
+ bits<5> rd;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = funct;
+ let Inst{9-5} = rd;
+ let Inst{4-0} = rs;
+}
+
+class JALR_FM_MM16<bits<5> op> {
+ bits<5> rs;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x11;
+ let Inst{9-5} = op;
+ let Inst{4-0} = rs;
+}
+
+class MFHILO_FM_MM16<bits<5> funct> {
+ bits<5> rd;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x11;
+ let Inst{9-5} = funct;
+ let Inst{4-0} = rd;
+}
+
+//===----------------------------------------------------------------------===//
+// MicroMIPS 32-bit Instruction Formats
+//===----------------------------------------------------------------------===//
+
+class MMArch {
+ string Arch = "micromips";
+ list<dag> Pattern = [];
+}
+
+class ADD_FM_MM<bits<6> op, bits<10> funct> : MMArch {
+ bits<5> rt;
+ bits<5> rs;
+ bits<5> rd;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = rs;
+ let Inst{15-11} = rd;
+ let Inst{10} = 0;
+ let Inst{9-0} = funct;
+}
+
+class ADDI_FM_MM<bits<6> op> : MMArch {
+ bits<5> rs;
+ bits<5> rt;
+ bits<16> imm16;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = rs;
+ let Inst{15-0} = imm16;
+}
+
+class SLTI_FM_MM<bits<6> op> : MMArch {
+ bits<5> rt;
+ bits<5> rs;
+ bits<16> imm16;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = rs;
+ let Inst{15-0} = imm16;
+}
+
+class LUI_FM_MM : MMArch {
+ bits<5> rt;
+ bits<16> imm16;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x10;
+ let Inst{25-21} = 0xd;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = imm16;
+}
+
+class MULT_FM_MM<bits<10> funct> : MMArch {
+ bits<5> rs;
+ bits<5> rt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = rs;
+ let Inst{15-6} = funct;
+ let Inst{5-0} = 0x3c;
+}
+
+class SRA_FM_MM<bits<10> funct, bit rotate> : MMArch {
+ bits<5> rd;
+ bits<5> rt;
+ bits<5> shamt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0;
+ let Inst{25-21} = rd;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = shamt;
+ let Inst{10} = rotate;
+ let Inst{9-0} = funct;
+}
+
+class SRLV_FM_MM<bits<10> funct, bit rotate> : MMArch {
+ bits<5> rd;
+ bits<5> rt;
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = rs;
+ let Inst{15-11} = rd;
+ let Inst{10} = rotate;
+ let Inst{9-0} = funct;
+}
+
+class LW_FM_MM<bits<6> op> : MMArch {
+ bits<5> rt;
+ bits<21> addr;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = addr{20-16};
+ let Inst{15-0} = addr{15-0};
+}
+
+class LWL_FM_MM<bits<4> funct> {
+ bits<5> rt;
+ bits<21> addr;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x18;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = addr{20-16};
+ let Inst{15-12} = funct;
+ let Inst{11-0} = addr{11-0};
+}
+
+class CMov_F_I_FM_MM<bits<7> func> : MMArch {
+ bits<5> rd;
+ bits<5> rs;
+ bits<3> fcc;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x15;
+ let Inst{25-21} = rd;
+ let Inst{20-16} = rs;
+ let Inst{15-13} = fcc;
+ let Inst{12-6} = func;
+ let Inst{5-0} = 0x3b;
+}
+
+class MTLO_FM_MM<bits<10> funct> : MMArch {
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-21} = 0x00;
+ let Inst{20-16} = rs;
+ let Inst{15-6} = funct;
+ let Inst{5-0} = 0x3c;
+}
+
+class MFLO_FM_MM<bits<10> funct> : MMArch {
+ bits<5> rd;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-21} = 0x00;
+ let Inst{20-16} = rd;
+ let Inst{15-6} = funct;
+ let Inst{5-0} = 0x3c;
+}
+
+class CLO_FM_MM<bits<10> funct> : MMArch {
+ bits<5> rd;
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-21} = rd;
+ let Inst{20-16} = rs;
+ let Inst{15-6} = funct;
+ let Inst{5-0} = 0x3c;
+}
+
+class SEB_FM_MM<bits<10> funct> : MMArch {
+ bits<5> rd;
+ bits<5> rt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-21} = rd;
+ let Inst{20-16} = rt;
+ let Inst{15-6} = funct;
+ let Inst{5-0} = 0x3c;
+}
+
+class EXT_FM_MM<bits<6> funct> : MMArch {
+ bits<5> rt;
+ bits<5> rs;
+ bits<5> pos;
+ bits<5> size;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = rs;
+ let Inst{15-11} = size;
+ let Inst{10-6} = pos;
+ let Inst{5-0} = funct;
+}
+
+class J_FM_MM<bits<6> op> : MMArch {
+ bits<26> target;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-0} = target;
+}
+
+class JR_FM_MM<bits<8> funct> : MMArch {
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-21} = 0x00;
+ let Inst{20-16} = rs;
+ let Inst{15-14} = 0x0;
+ let Inst{13-6} = funct;
+ let Inst{5-0} = 0x3c;
+}
+
+class JALR_FM_MM<bits<10> funct> {
+ bits<5> rs;
+ bits<5> rd;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-21} = rd;
+ let Inst{20-16} = rs;
+ let Inst{15-6} = funct;
+ let Inst{5-0} = 0x3c;
+}
+
+class BEQ_FM_MM<bits<6> op> : MMArch {
+ bits<5> rs;
+ bits<5> rt;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = rs;
+ let Inst{15-0} = offset;
+}
+
+class BGEZ_FM_MM<bits<5> funct> : MMArch {
+ bits<5> rs;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x10;
+ let Inst{25-21} = funct;
+ let Inst{20-16} = rs;
+ let Inst{15-0} = offset;
+}
+
+class BGEZAL_FM_MM<bits<5> funct> : MMArch {
+ bits<5> rs;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x10;
+ let Inst{25-21} = funct;
+ let Inst{20-16} = rs;
+ let Inst{15-0} = offset;
+}
+
+class SYNC_FM_MM : MMArch {
+ bits<5> stype;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-21} = 0x0;
+ let Inst{20-16} = stype;
+ let Inst{15-6} = 0x1ad;
+ let Inst{5-0} = 0x3c;
+}
+
+class BRK_FM_MM : MMArch {
+ bits<10> code_1;
+ bits<10> code_2;
+ bits<32> Inst;
+ let Inst{31-26} = 0x0;
+ let Inst{25-16} = code_1;
+ let Inst{15-6} = code_2;
+ let Inst{5-0} = 0x07;
+}
+
+class SYS_FM_MM : MMArch {
+ bits<10> code_;
+ bits<32> Inst;
+ let Inst{31-26} = 0x0;
+ let Inst{25-16} = code_;
+ let Inst{15-6} = 0x22d;
+ let Inst{5-0} = 0x3c;
+}
+
+class WAIT_FM_MM {
+ bits<10> code_;
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-16} = code_;
+ let Inst{15-6} = 0x24d;
+ let Inst{5-0} = 0x3c;
+}
+
+class ER_FM_MM<bits<10> funct> : MMArch {
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-16} = 0x00;
+ let Inst{15-6} = funct;
+ let Inst{5-0} = 0x3c;
+}
+
+class EI_FM_MM<bits<10> funct> : MMArch {
+ bits<32> Inst;
+ bits<5> rt;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-21} = 0x00;
+ let Inst{20-16} = rt;
+ let Inst{15-6} = funct;
+ let Inst{5-0} = 0x3c;
+}
+
+class TEQ_FM_MM<bits<6> funct> : MMArch {
+ bits<5> rs;
+ bits<5> rt;
+ bits<4> code_;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x00;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = rs;
+ let Inst{15-12} = code_;
+ let Inst{11-6} = funct;
+ let Inst{5-0} = 0x3c;
+}
+
+class TEQI_FM_MM<bits<5> funct> : MMArch {
+ bits<5> rs;
+ bits<16> imm16;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x10;
+ let Inst{25-21} = funct;
+ let Inst{20-16} = rs;
+ let Inst{15-0} = imm16;
+}
+
+class LL_FM_MM<bits<4> funct> {
+ bits<5> rt;
+ bits<21> addr;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x18;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = addr{20-16};
+ let Inst{15-12} = funct;
+ let Inst{11-0} = addr{11-0};
+}
+
+class ADDS_FM_MM<bits<2> fmt, bits<8> funct> : MMArch {
+ bits<5> ft;
+ bits<5> fs;
+ bits<5> fd;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x15;
+ let Inst{25-21} = ft;
+ let Inst{20-16} = fs;
+ let Inst{15-11} = fd;
+ let Inst{10} = 0;
+ let Inst{9-8} = fmt;
+ let Inst{7-0} = funct;
+
+ list<dag> Pattern = [];
+}
+
+class LWXC1_FM_MM<bits<9> funct> : MMArch {
+ bits<5> fd;
+ bits<5> base;
+ bits<5> index;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x15;
+ let Inst{25-21} = index;
+ let Inst{20-16} = base;
+ let Inst{15-11} = fd;
+ let Inst{10-9} = 0x0;
+ let Inst{8-0} = funct;
+}
+
+class SWXC1_FM_MM<bits<9> funct> : MMArch {
+ bits<5> fs;
+ bits<5> base;
+ bits<5> index;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x15;
+ let Inst{25-21} = index;
+ let Inst{20-16} = base;
+ let Inst{15-11} = fs;
+ let Inst{10-9} = 0x0;
+ let Inst{8-0} = funct;
+}
+
+class CEQS_FM_MM<bits<2> fmt> : MMArch {
+ bits<5> fs;
+ bits<5> ft;
+ bits<4> cond;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x15;
+ let Inst{25-21} = ft;
+ let Inst{20-16} = fs;
+ let Inst{15-13} = 0x0; // cc
+ let Inst{12} = 0;
+ let Inst{11-10} = fmt;
+ let Inst{9-6} = cond;
+ let Inst{5-0} = 0x3c;
+}
+
+class BC1F_FM_MM<bits<5> tf> : MMArch {
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x10;
+ let Inst{25-21} = tf;
+ let Inst{20-18} = 0x0; // cc
+ let Inst{17-16} = 0x0;
+ let Inst{15-0} = offset;
+}
+
+class ROUND_W_FM_MM<bits<1> fmt, bits<8> funct> : MMArch {
+ bits<5> fd;
+ bits<5> fs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x15;
+ let Inst{25-21} = fd;
+ let Inst{20-16} = fs;
+ let Inst{15} = 0;
+ let Inst{14} = fmt;
+ let Inst{13-6} = funct;
+ let Inst{5-0} = 0x3b;
+}
+
+class ABS_FM_MM<bits<2> fmt, bits<7> funct> : MMArch {
+ bits<5> fd;
+ bits<5> fs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x15;
+ let Inst{25-21} = fd;
+ let Inst{20-16} = fs;
+ let Inst{15} = 0;
+ let Inst{14-13} = fmt;
+ let Inst{12-6} = funct;
+ let Inst{5-0} = 0x3b;
+}
+
+class CMov_F_F_FM_MM<bits<9> func, bits<2> fmt> : MMArch {
+ bits<5> fd;
+ bits<5> fs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x15;
+ let Inst{25-21} = fd;
+ let Inst{20-16} = fs;
+ let Inst{15-13} = 0x0; //cc
+ let Inst{12-11} = 0x0;
+ let Inst{10-9} = fmt;
+ let Inst{8-0} = func;
+}
+
+class CMov_I_F_FM_MM<bits<8> funct, bits<2> fmt> : MMArch {
+ bits<5> fd;
+ bits<5> fs;
+ bits<5> rt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x15;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = fs;
+ let Inst{15-11} = fd;
+ let Inst{9-8} = fmt;
+ let Inst{7-0} = funct;
+}
+
+class MFC1_FM_MM<bits<8> funct> : MMArch {
+ bits<5> rt;
+ bits<5> fs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x15;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = fs;
+ let Inst{15-14} = 0x0;
+ let Inst{13-6} = funct;
+ let Inst{5-0} = 0x3b;
+}
+
+class MADDS_FM_MM<bits<6> funct>: MMArch {
+ bits<5> ft;
+ bits<5> fs;
+ bits<5> fd;
+ bits<5> fr;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x15;
+ let Inst{25-21} = ft;
+ let Inst{20-16} = fs;
+ let Inst{15-11} = fd;
+ let Inst{10-6} = fr;
+ let Inst{5-0} = funct;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MicroMipsInstrInfo.td b/contrib/llvm/lib/Target/Mips/MicroMipsInstrInfo.td
new file mode 100644
index 0000000..87a3a3e
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MicroMipsInstrInfo.td
@@ -0,0 +1,306 @@
+def addrimm12 : ComplexPattern<iPTR, 2, "selectIntAddrMM", [frameindex]>;
+
+def simm12 : Operand<i32> {
+ let DecoderMethod = "DecodeSimm12";
+}
+
+def mem_mm_12 : Operand<i32> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops GPR32, simm12);
+ let EncoderMethod = "getMemEncodingMMImm12";
+ let ParserMatchClass = MipsMemAsmOperand;
+ let OperandType = "OPERAND_MEMORY";
+}
+
+def jmptarget_mm : Operand<OtherVT> {
+ let EncoderMethod = "getJumpTargetOpValueMM";
+}
+
+def calltarget_mm : Operand<iPTR> {
+ let EncoderMethod = "getJumpTargetOpValueMM";
+}
+
+def brtarget_mm : Operand<OtherVT> {
+ let EncoderMethod = "getBranchTargetOpValueMM";
+ let OperandType = "OPERAND_PCREL";
+ let DecoderMethod = "DecodeBranchTargetMM";
+}
+
+let canFoldAsLoad = 1 in
+class LoadLeftRightMM<string opstr, SDNode OpNode, RegisterOperand RO,
+ Operand MemOpnd> :
+ InstSE<(outs RO:$rt), (ins MemOpnd:$addr, RO:$src),
+ !strconcat(opstr, "\t$rt, $addr"),
+ [(set RO:$rt, (OpNode addrimm12:$addr, RO:$src))],
+ NoItinerary, FrmI> {
+ let DecoderMethod = "DecodeMemMMImm12";
+ string Constraints = "$src = $rt";
+}
+
+class StoreLeftRightMM<string opstr, SDNode OpNode, RegisterOperand RO,
+ Operand MemOpnd>:
+ InstSE<(outs), (ins RO:$rt, MemOpnd:$addr),
+ !strconcat(opstr, "\t$rt, $addr"),
+ [(OpNode RO:$rt, addrimm12:$addr)], NoItinerary, FrmI> {
+ let DecoderMethod = "DecodeMemMMImm12";
+}
+
+class LLBaseMM<string opstr, RegisterOperand RO> :
+ InstSE<(outs RO:$rt), (ins mem_mm_12:$addr),
+ !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
+ let DecoderMethod = "DecodeMemMMImm12";
+ let mayLoad = 1;
+}
+
+class SCBaseMM<string opstr, RegisterOperand RO> :
+ InstSE<(outs RO:$dst), (ins RO:$rt, mem_mm_12:$addr),
+ !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
+ let DecoderMethod = "DecodeMemMMImm12";
+ let mayStore = 1;
+ let Constraints = "$rt = $dst";
+}
+
+class LoadMM<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
+ InstrItinClass Itin = NoItinerary> :
+ InstSE<(outs RO:$rt), (ins mem_mm_12:$addr),
+ !strconcat(opstr, "\t$rt, $addr"),
+ [(set RO:$rt, (OpNode addrimm12:$addr))], Itin, FrmI> {
+ let DecoderMethod = "DecodeMemMMImm12";
+ let canFoldAsLoad = 1;
+ let mayLoad = 1;
+}
+
+class MoveFromHILOMM<string opstr, RegisterOperand RO, Register UseReg> :
+ MicroMipsInst16<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"),
+ [], II_MFHI_MFLO, FrmR> {
+ let Uses = [UseReg];
+ let hasSideEffects = 0;
+}
+
+class MoveMM16<string opstr, RegisterOperand RO, bit isComm = 0,
+ InstrItinClass Itin = NoItinerary> :
+ MicroMipsInst16<(outs RO:$rd), (ins RO:$rs),
+ !strconcat(opstr, "\t$rd, $rs"), [], Itin, FrmR> {
+ let isCommutable = isComm;
+ let isReMaterializable = 1;
+}
+
+// 16-bit Jump and Link (Call)
+class JumpLinkRegMM16<string opstr, RegisterOperand RO> :
+ MicroMipsInst16<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"),
+ [(MipsJmpLink RO:$rs)], IIBranch, FrmR> {
+ let isCall = 1;
+ let hasDelaySlot = 1;
+ let Defs = [RA];
+}
+
+def MFHI16_MM : MoveFromHILOMM<"mfhi", GPR32Opnd, AC0>, MFHILO_FM_MM16<0x10>;
+def MFLO16_MM : MoveFromHILOMM<"mflo", GPR32Opnd, AC0>, MFHILO_FM_MM16<0x12>;
+def MOVE16_MM : MoveMM16<"move", GPR32Opnd>, MOVE_FM_MM16<0x03>;
+def JALR16_MM : JumpLinkRegMM16<"jalr", GPR32Opnd>, JALR_FM_MM16<0x0e>;
+
+class WaitMM<string opstr> :
+ InstSE<(outs), (ins uimm10:$code_), !strconcat(opstr, "\t$code_"), [],
+ NoItinerary, FrmOther, opstr>;
+
+let DecoderNamespace = "MicroMips", Predicates = [InMicroMips] in {
+ /// Arithmetic Instructions (ALU Immediate)
+ def ADDiu_MM : MMRel, ArithLogicI<"addiu", simm16, GPR32Opnd>,
+ ADDI_FM_MM<0xc>;
+ def ADDi_MM : MMRel, ArithLogicI<"addi", simm16, GPR32Opnd>,
+ ADDI_FM_MM<0x4>;
+ def SLTi_MM : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, GPR32Opnd>,
+ SLTI_FM_MM<0x24>;
+ def SLTiu_MM : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, GPR32Opnd>,
+ SLTI_FM_MM<0x2c>;
+ def ANDi_MM : MMRel, ArithLogicI<"andi", uimm16, GPR32Opnd>,
+ ADDI_FM_MM<0x34>;
+ def ORi_MM : MMRel, ArithLogicI<"ori", uimm16, GPR32Opnd>,
+ ADDI_FM_MM<0x14>;
+ def XORi_MM : MMRel, ArithLogicI<"xori", uimm16, GPR32Opnd>,
+ ADDI_FM_MM<0x1c>;
+ def LUi_MM : MMRel, LoadUpper<"lui", GPR32Opnd, uimm16>, LUI_FM_MM;
+
+ def LEA_ADDiu_MM : MMRel, EffectiveAddress<"addiu", GPR32Opnd>,
+ LW_FM_MM<0xc>;
+
+ /// Arithmetic Instructions (3-Operand, R-Type)
+ def ADDu_MM : MMRel, ArithLogicR<"addu", GPR32Opnd>, ADD_FM_MM<0, 0x150>;
+ def SUBu_MM : MMRel, ArithLogicR<"subu", GPR32Opnd>, ADD_FM_MM<0, 0x1d0>;
+ def MUL_MM : MMRel, ArithLogicR<"mul", GPR32Opnd>, ADD_FM_MM<0, 0x210>;
+ def ADD_MM : MMRel, ArithLogicR<"add", GPR32Opnd>, ADD_FM_MM<0, 0x110>;
+ def SUB_MM : MMRel, ArithLogicR<"sub", GPR32Opnd>, ADD_FM_MM<0, 0x190>;
+ def SLT_MM : MMRel, SetCC_R<"slt", setlt, GPR32Opnd>, ADD_FM_MM<0, 0x350>;
+ def SLTu_MM : MMRel, SetCC_R<"sltu", setult, GPR32Opnd>,
+ ADD_FM_MM<0, 0x390>;
+ def AND_MM : MMRel, ArithLogicR<"and", GPR32Opnd, 1, II_AND, and>,
+ ADD_FM_MM<0, 0x250>;
+ def OR_MM : MMRel, ArithLogicR<"or", GPR32Opnd, 1, II_OR, or>,
+ ADD_FM_MM<0, 0x290>;
+ def XOR_MM : MMRel, ArithLogicR<"xor", GPR32Opnd, 1, II_XOR, xor>,
+ ADD_FM_MM<0, 0x310>;
+ def NOR_MM : MMRel, LogicNOR<"nor", GPR32Opnd>, ADD_FM_MM<0, 0x2d0>;
+ def MULT_MM : MMRel, Mult<"mult", II_MULT, GPR32Opnd, [HI0, LO0]>,
+ MULT_FM_MM<0x22c>;
+ def MULTu_MM : MMRel, Mult<"multu", II_MULTU, GPR32Opnd, [HI0, LO0]>,
+ MULT_FM_MM<0x26c>;
+ def SDIV_MM : MMRel, Div<"div", II_DIV, GPR32Opnd, [HI0, LO0]>,
+ MULT_FM_MM<0x2ac>;
+ def UDIV_MM : MMRel, Div<"divu", II_DIVU, GPR32Opnd, [HI0, LO0]>,
+ MULT_FM_MM<0x2ec>;
+
+ /// Shift Instructions
+ def SLL_MM : MMRel, shift_rotate_imm<"sll", uimm5, GPR32Opnd, II_SLL>,
+ SRA_FM_MM<0, 0>;
+ def SRL_MM : MMRel, shift_rotate_imm<"srl", uimm5, GPR32Opnd, II_SRL>,
+ SRA_FM_MM<0x40, 0>;
+ def SRA_MM : MMRel, shift_rotate_imm<"sra", uimm5, GPR32Opnd, II_SRA>,
+ SRA_FM_MM<0x80, 0>;
+ def SLLV_MM : MMRel, shift_rotate_reg<"sllv", GPR32Opnd, II_SLLV>,
+ SRLV_FM_MM<0x10, 0>;
+ def SRLV_MM : MMRel, shift_rotate_reg<"srlv", GPR32Opnd, II_SRLV>,
+ SRLV_FM_MM<0x50, 0>;
+ def SRAV_MM : MMRel, shift_rotate_reg<"srav", GPR32Opnd, II_SRAV>,
+ SRLV_FM_MM<0x90, 0>;
+ def ROTR_MM : MMRel, shift_rotate_imm<"rotr", uimm5, GPR32Opnd, II_ROTR>,
+ SRA_FM_MM<0xc0, 0>;
+ def ROTRV_MM : MMRel, shift_rotate_reg<"rotrv", GPR32Opnd, II_ROTRV>,
+ SRLV_FM_MM<0xd0, 0>;
+
+ /// Load and Store Instructions - aligned
+ let DecoderMethod = "DecodeMemMMImm16" in {
+ def LB_MM : Load<"lb", GPR32Opnd>, MMRel, LW_FM_MM<0x7>;
+ def LBu_MM : Load<"lbu", GPR32Opnd>, MMRel, LW_FM_MM<0x5>;
+ def LH_MM : Load<"lh", GPR32Opnd>, MMRel, LW_FM_MM<0xf>;
+ def LHu_MM : Load<"lhu", GPR32Opnd>, MMRel, LW_FM_MM<0xd>;
+ def LW_MM : Load<"lw", GPR32Opnd>, MMRel, LW_FM_MM<0x3f>;
+ def SB_MM : Store<"sb", GPR32Opnd>, MMRel, LW_FM_MM<0x6>;
+ def SH_MM : Store<"sh", GPR32Opnd>, MMRel, LW_FM_MM<0xe>;
+ def SW_MM : Store<"sw", GPR32Opnd>, MMRel, LW_FM_MM<0x3e>;
+ }
+
+ def LWU_MM : LoadMM<"lwu", GPR32Opnd, zextloadi32, II_LWU>, LL_FM_MM<0xe>;
+
+ /// Load and Store Instructions - unaligned
+ def LWL_MM : LoadLeftRightMM<"lwl", MipsLWL, GPR32Opnd, mem_mm_12>,
+ LWL_FM_MM<0x0>;
+ def LWR_MM : LoadLeftRightMM<"lwr", MipsLWR, GPR32Opnd, mem_mm_12>,
+ LWL_FM_MM<0x1>;
+ def SWL_MM : StoreLeftRightMM<"swl", MipsSWL, GPR32Opnd, mem_mm_12>,
+ LWL_FM_MM<0x8>;
+ def SWR_MM : StoreLeftRightMM<"swr", MipsSWR, GPR32Opnd, mem_mm_12>,
+ LWL_FM_MM<0x9>;
+
+ /// Move Conditional
+ def MOVZ_I_MM : MMRel, CMov_I_I_FT<"movz", GPR32Opnd, GPR32Opnd,
+ NoItinerary>, ADD_FM_MM<0, 0x58>;
+ def MOVN_I_MM : MMRel, CMov_I_I_FT<"movn", GPR32Opnd, GPR32Opnd,
+ NoItinerary>, ADD_FM_MM<0, 0x18>;
+ def MOVT_I_MM : MMRel, CMov_F_I_FT<"movt", GPR32Opnd, II_MOVT>,
+ CMov_F_I_FM_MM<0x25>;
+ def MOVF_I_MM : MMRel, CMov_F_I_FT<"movf", GPR32Opnd, II_MOVF>,
+ CMov_F_I_FM_MM<0x5>;
+
+ /// Move to/from HI/LO
+ def MTHI_MM : MMRel, MoveToLOHI<"mthi", GPR32Opnd, [HI0]>,
+ MTLO_FM_MM<0x0b5>;
+ def MTLO_MM : MMRel, MoveToLOHI<"mtlo", GPR32Opnd, [LO0]>,
+ MTLO_FM_MM<0x0f5>;
+ def MFHI_MM : MMRel, MoveFromLOHI<"mfhi", GPR32Opnd, AC0>,
+ MFLO_FM_MM<0x035>;
+ def MFLO_MM : MMRel, MoveFromLOHI<"mflo", GPR32Opnd, AC0>,
+ MFLO_FM_MM<0x075>;
+
+ /// Multiply Add/Sub Instructions
+ def MADD_MM : MMRel, MArithR<"madd", II_MADD, 1>, MULT_FM_MM<0x32c>;
+ def MADDU_MM : MMRel, MArithR<"maddu", II_MADDU, 1>, MULT_FM_MM<0x36c>;
+ def MSUB_MM : MMRel, MArithR<"msub", II_MSUB>, MULT_FM_MM<0x3ac>;
+ def MSUBU_MM : MMRel, MArithR<"msubu", II_MSUBU>, MULT_FM_MM<0x3ec>;
+
+ /// Count Leading
+ def CLZ_MM : MMRel, CountLeading0<"clz", GPR32Opnd>, CLO_FM_MM<0x16c>,
+ ISA_MIPS32;
+ def CLO_MM : MMRel, CountLeading1<"clo", GPR32Opnd>, CLO_FM_MM<0x12c>,
+ ISA_MIPS32;
+
+ /// Sign Ext In Register Instructions.
+ def SEB_MM : MMRel, SignExtInReg<"seb", i8, GPR32Opnd, II_SEB>,
+ SEB_FM_MM<0x0ac>, ISA_MIPS32R2;
+ def SEH_MM : MMRel, SignExtInReg<"seh", i16, GPR32Opnd, II_SEH>,
+ SEB_FM_MM<0x0ec>, ISA_MIPS32R2;
+
+ /// Word Swap Bytes Within Halfwords
+ def WSBH_MM : MMRel, SubwordSwap<"wsbh", GPR32Opnd>, SEB_FM_MM<0x1ec>,
+ ISA_MIPS32R2;
+
+ def EXT_MM : MMRel, ExtBase<"ext", GPR32Opnd, uimm5, MipsExt>,
+ EXT_FM_MM<0x2c>;
+ def INS_MM : MMRel, InsBase<"ins", GPR32Opnd, uimm5, MipsIns>,
+ EXT_FM_MM<0x0c>;
+
+ /// Jump Instructions
+ let DecoderMethod = "DecodeJumpTargetMM" in {
+ def J_MM : MMRel, JumpFJ<jmptarget_mm, "j", br, bb, "j">,
+ J_FM_MM<0x35>;
+ def JAL_MM : MMRel, JumpLink<"jal", calltarget_mm>, J_FM_MM<0x3d>;
+ }
+ def JR_MM : MMRel, IndirectBranch<"jr", GPR32Opnd>, JR_FM_MM<0x3c>;
+ def JALR_MM : JumpLinkReg<"jalr", GPR32Opnd>, JALR_FM_MM<0x03c>;
+
+ /// Branch Instructions
+ def BEQ_MM : MMRel, CBranch<"beq", brtarget_mm, seteq, GPR32Opnd>,
+ BEQ_FM_MM<0x25>;
+ def BNE_MM : MMRel, CBranch<"bne", brtarget_mm, setne, GPR32Opnd>,
+ BEQ_FM_MM<0x2d>;
+ def BGEZ_MM : MMRel, CBranchZero<"bgez", brtarget_mm, setge, GPR32Opnd>,
+ BGEZ_FM_MM<0x2>;
+ def BGTZ_MM : MMRel, CBranchZero<"bgtz", brtarget_mm, setgt, GPR32Opnd>,
+ BGEZ_FM_MM<0x6>;
+ def BLEZ_MM : MMRel, CBranchZero<"blez", brtarget_mm, setle, GPR32Opnd>,
+ BGEZ_FM_MM<0x4>;
+ def BLTZ_MM : MMRel, CBranchZero<"bltz", brtarget_mm, setlt, GPR32Opnd>,
+ BGEZ_FM_MM<0x0>;
+ def BGEZAL_MM : MMRel, BGEZAL_FT<"bgezal", brtarget_mm, GPR32Opnd>,
+ BGEZAL_FM_MM<0x03>;
+ def BLTZAL_MM : MMRel, BGEZAL_FT<"bltzal", brtarget_mm, GPR32Opnd>,
+ BGEZAL_FM_MM<0x01>;
+
+ /// Control Instructions
+ def SYNC_MM : MMRel, SYNC_FT<"sync">, SYNC_FM_MM;
+ def BREAK_MM : MMRel, BRK_FT<"break">, BRK_FM_MM;
+ def SYSCALL_MM : MMRel, SYS_FT<"syscall">, SYS_FM_MM;
+ def WAIT_MM : WaitMM<"wait">, WAIT_FM_MM;
+ def ERET_MM : MMRel, ER_FT<"eret">, ER_FM_MM<0x3cd>;
+ def DERET_MM : MMRel, ER_FT<"deret">, ER_FM_MM<0x38d>;
+ def EI_MM : MMRel, DEI_FT<"ei", GPR32Opnd>, EI_FM_MM<0x15d>,
+ ISA_MIPS32R2;
+ def DI_MM : MMRel, DEI_FT<"di", GPR32Opnd>, EI_FM_MM<0x11d>,
+ ISA_MIPS32R2;
+
+ /// Trap Instructions
+ def TEQ_MM : MMRel, TEQ_FT<"teq", GPR32Opnd>, TEQ_FM_MM<0x0>;
+ def TGE_MM : MMRel, TEQ_FT<"tge", GPR32Opnd>, TEQ_FM_MM<0x08>;
+ def TGEU_MM : MMRel, TEQ_FT<"tgeu", GPR32Opnd>, TEQ_FM_MM<0x10>;
+ def TLT_MM : MMRel, TEQ_FT<"tlt", GPR32Opnd>, TEQ_FM_MM<0x20>;
+ def TLTU_MM : MMRel, TEQ_FT<"tltu", GPR32Opnd>, TEQ_FM_MM<0x28>;
+ def TNE_MM : MMRel, TEQ_FT<"tne", GPR32Opnd>, TEQ_FM_MM<0x30>;
+
+ def TEQI_MM : MMRel, TEQI_FT<"teqi", GPR32Opnd>, TEQI_FM_MM<0x0e>;
+ def TGEI_MM : MMRel, TEQI_FT<"tgei", GPR32Opnd>, TEQI_FM_MM<0x09>;
+ def TGEIU_MM : MMRel, TEQI_FT<"tgeiu", GPR32Opnd>, TEQI_FM_MM<0x0b>;
+ def TLTI_MM : MMRel, TEQI_FT<"tlti", GPR32Opnd>, TEQI_FM_MM<0x08>;
+ def TLTIU_MM : MMRel, TEQI_FT<"tltiu", GPR32Opnd>, TEQI_FM_MM<0x0a>;
+ def TNEI_MM : MMRel, TEQI_FT<"tnei", GPR32Opnd>, TEQI_FM_MM<0x0c>;
+
+ /// Load-linked, Store-conditional
+ def LL_MM : LLBaseMM<"ll", GPR32Opnd>, LL_FM_MM<0x3>;
+ def SC_MM : SCBaseMM<"sc", GPR32Opnd>, LL_FM_MM<0xb>;
+}
+
+//===----------------------------------------------------------------------===//
+// MicroMips instruction aliases
+//===----------------------------------------------------------------------===//
+
+let Predicates = [InMicroMips] in {
+ def : MipsInstAlias<"wait", (WAIT_MM 0x0), 1>;
+}
diff --git a/contrib/llvm/lib/Target/Mips/Mips.h b/contrib/llvm/lib/Target/Mips/Mips.h
new file mode 100644
index 0000000..d512d65
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips.h
@@ -0,0 +1,34 @@
+//===-- Mips.h - Top-level interface for Mips representation ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in
+// the LLVM Mips back-end.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef TARGET_MIPS_H
+#define TARGET_MIPS_H
+
+#include "MCTargetDesc/MipsMCTargetDesc.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+ class MipsTargetMachine;
+ class FunctionPass;
+
+ FunctionPass *createMipsISelDag(MipsTargetMachine &TM);
+ FunctionPass *createMipsOptimizePICCallPass(MipsTargetMachine &TM);
+ FunctionPass *createMipsDelaySlotFillerPass(MipsTargetMachine &TM);
+ FunctionPass *createMipsLongBranchPass(MipsTargetMachine &TM);
+ FunctionPass *createMipsJITCodeEmitterPass(MipsTargetMachine &TM,
+ JITCodeEmitter &JCE);
+ FunctionPass *createMipsConstantIslandPass(MipsTargetMachine &tm);
+} // end namespace llvm;
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/Mips.td b/contrib/llvm/lib/Target/Mips/Mips.td
new file mode 100644
index 0000000..dd3bc9b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips.td
@@ -0,0 +1,194 @@
+//===-- Mips.td - Describe the Mips Target Machine ---------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This is the top level entry point for the Mips target.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+// The overall idea of the PredicateControl class is to chop the Predicates list
+// into subsets that are usually overridden independently. This allows
+// subclasses to partially override the predicates of their superclasses without
+// having to re-add all the existing predicates.
+class PredicateControl {
+ // Predicates for the encoding scheme in use such as HasStdEnc
+ list<Predicate> EncodingPredicates = [];
+ // Predicates for the GPR size such as IsGP64bit
+ list<Predicate> GPRPredicates = [];
+ // Predicates for the FGR size and layout such as IsFP64bit
+ list<Predicate> FGRPredicates = [];
+ // Predicates for the instruction group membership such as ISA's and ASE's
+ list<Predicate> InsnPredicates = [];
+ // Predicates for anything else
+ list<Predicate> AdditionalPredicates = [];
+ list<Predicate> Predicates = !listconcat(EncodingPredicates,
+ GPRPredicates,
+ FGRPredicates,
+ InsnPredicates,
+ AdditionalPredicates);
+}
+
+// Like Requires<> but for the AdditionalPredicates list
+class AdditionalRequires<list<Predicate> preds> {
+ list<Predicate> AdditionalPredicates = preds;
+}
+
+//===----------------------------------------------------------------------===//
+// Register File, Calling Conv, Instruction Descriptions
+//===----------------------------------------------------------------------===//
+
+include "MipsRegisterInfo.td"
+include "MipsSchedule.td"
+include "MipsInstrInfo.td"
+include "MipsCallingConv.td"
+
+def MipsInstrInfo : InstrInfo;
+
+//===----------------------------------------------------------------------===//
+// Mips Subtarget features //
+//===----------------------------------------------------------------------===//
+
+def FeatureGP64Bit : SubtargetFeature<"gp64", "IsGP64bit", "true",
+ "General Purpose Registers are 64-bit wide.">;
+def FeatureFP64Bit : SubtargetFeature<"fp64", "IsFP64bit", "true",
+ "Support 64-bit FP registers.">;
+def FeatureFPXX : SubtargetFeature<"fpxx", "IsFPXX", "true",
+ "Support for FPXX.">;
+def FeatureNaN2008 : SubtargetFeature<"nan2008", "IsNaN2008bit", "true",
+ "IEEE 754-2008 NaN encoding.">;
+def FeatureSingleFloat : SubtargetFeature<"single-float", "IsSingleFloat",
+ "true", "Only supports single precision float">;
+def FeatureO32 : SubtargetFeature<"o32", "MipsABI", "O32",
+ "Enable o32 ABI">;
+def FeatureN32 : SubtargetFeature<"n32", "MipsABI", "N32",
+ "Enable n32 ABI">;
+def FeatureN64 : SubtargetFeature<"n64", "MipsABI", "N64",
+ "Enable n64 ABI">;
+def FeatureEABI : SubtargetFeature<"eabi", "MipsABI", "EABI",
+ "Enable eabi ABI">;
+def FeatureNoOddSPReg : SubtargetFeature<"nooddspreg", "UseOddSPReg", "false",
+ "Disable odd numbered single-precision "
+ "registers">;
+def FeatureVFPU : SubtargetFeature<"vfpu", "HasVFPU",
+ "true", "Enable vector FPU instructions.">;
+def FeatureMips1 : SubtargetFeature<"mips1", "MipsArchVersion", "Mips1",
+ "Mips I ISA Support [highly experimental]">;
+def FeatureMips2 : SubtargetFeature<"mips2", "MipsArchVersion", "Mips2",
+ "Mips II ISA Support [highly experimental]",
+ [FeatureMips1]>;
+def FeatureMips3_32 : SubtargetFeature<"mips3_32", "HasMips3_32", "true",
+ "Subset of MIPS-III that is also in MIPS32 "
+ "[highly experimental]">;
+def FeatureMips3_32r2 : SubtargetFeature<"mips3_32r2", "HasMips3_32r2", "true",
+ "Subset of MIPS-III that is also in MIPS32r2 "
+ "[highly experimental]">;
+def FeatureMips3 : SubtargetFeature<"mips3", "MipsArchVersion", "Mips3",
+ "MIPS III ISA Support [highly experimental]",
+ [FeatureMips2, FeatureMips3_32,
+ FeatureMips3_32r2, FeatureGP64Bit,
+ FeatureFP64Bit]>;
+def FeatureMips4_32 : SubtargetFeature<"mips4_32", "HasMips4_32", "true",
+ "Subset of MIPS-IV that is also in MIPS32 "
+ "[highly experimental]">;
+def FeatureMips4_32r2 : SubtargetFeature<"mips4_32r2", "HasMips4_32r2", "true",
+ "Subset of MIPS-IV that is also in MIPS32r2 "
+ "[highly experimental]">;
+def FeatureMips4 : SubtargetFeature<"mips4", "MipsArchVersion",
+ "Mips4", "MIPS IV ISA Support",
+ [FeatureMips3, FeatureMips4_32,
+ FeatureMips4_32r2]>;
+def FeatureMips5_32r2 : SubtargetFeature<"mips5_32r2", "HasMips5_32r2", "true",
+ "Subset of MIPS-V that is also in MIPS32r2 "
+ "[highly experimental]">;
+def FeatureMips5 : SubtargetFeature<"mips5", "MipsArchVersion", "Mips5",
+ "MIPS V ISA Support [highly experimental]",
+ [FeatureMips4, FeatureMips5_32r2]>;
+def FeatureMips32 : SubtargetFeature<"mips32", "MipsArchVersion", "Mips32",
+ "Mips32 ISA Support",
+ [FeatureMips2, FeatureMips3_32,
+ FeatureMips4_32]>;
+def FeatureMips32r2 : SubtargetFeature<"mips32r2", "MipsArchVersion",
+ "Mips32r2", "Mips32r2 ISA Support",
+ [FeatureMips3_32r2, FeatureMips4_32r2,
+ FeatureMips5_32r2, FeatureMips32]>;
+def FeatureMips32r6 : SubtargetFeature<"mips32r6", "MipsArchVersion",
+ "Mips32r6",
+ "Mips32r6 ISA Support [experimental]",
+ [FeatureMips32r2, FeatureFP64Bit,
+ FeatureNaN2008]>;
+def FeatureMips64 : SubtargetFeature<"mips64", "MipsArchVersion",
+ "Mips64", "Mips64 ISA Support",
+ [FeatureMips5, FeatureMips32]>;
+def FeatureMips64r2 : SubtargetFeature<"mips64r2", "MipsArchVersion",
+ "Mips64r2", "Mips64r2 ISA Support",
+ [FeatureMips64, FeatureMips32r2]>;
+def FeatureMips64r6 : SubtargetFeature<"mips64r6", "MipsArchVersion",
+ "Mips64r6",
+ "Mips64r6 ISA Support [experimental]",
+ [FeatureMips32r6, FeatureMips64r2,
+ FeatureNaN2008]>;
+
+def FeatureMips16 : SubtargetFeature<"mips16", "InMips16Mode", "true",
+ "Mips16 mode">;
+
+def FeatureDSP : SubtargetFeature<"dsp", "HasDSP", "true", "Mips DSP ASE">;
+def FeatureDSPR2 : SubtargetFeature<"dspr2", "HasDSPR2", "true",
+ "Mips DSP-R2 ASE", [FeatureDSP]>;
+
+def FeatureMSA : SubtargetFeature<"msa", "HasMSA", "true", "Mips MSA ASE">;
+
+def FeatureMicroMips : SubtargetFeature<"micromips", "InMicroMipsMode", "true",
+ "microMips mode">;
+
+def FeatureCnMips : SubtargetFeature<"cnmips", "HasCnMips",
+ "true", "Octeon cnMIPS Support",
+ [FeatureMips64r2]>;
+
+//===----------------------------------------------------------------------===//
+// Mips processors supported.
+//===----------------------------------------------------------------------===//
+
+class Proc<string Name, list<SubtargetFeature> Features>
+ : Processor<Name, MipsGenericItineraries, Features>;
+
+def : Proc<"mips1", [FeatureMips1, FeatureO32]>;
+def : Proc<"mips2", [FeatureMips2, FeatureO32]>;
+def : Proc<"mips32", [FeatureMips32, FeatureO32]>;
+def : Proc<"mips32r2", [FeatureMips32r2, FeatureO32]>;
+def : Proc<"mips32r6", [FeatureMips32r6, FeatureO32]>;
+
+def : Proc<"mips3", [FeatureMips3, FeatureN64]>;
+def : Proc<"mips4", [FeatureMips4, FeatureN64]>;
+def : Proc<"mips5", [FeatureMips5, FeatureN64]>;
+def : Proc<"mips64", [FeatureMips64, FeatureN64]>;
+def : Proc<"mips64r2", [FeatureMips64r2, FeatureN64]>;
+def : Proc<"mips64r6", [FeatureMips64r6, FeatureN64]>;
+def : Proc<"mips16", [FeatureMips16, FeatureO32]>;
+def : Proc<"octeon", [FeatureMips64r2, FeatureN64, FeatureCnMips]>;
+
+def MipsAsmParser : AsmParser {
+ let ShouldEmitMatchRegisterName = 0;
+ let MnemonicContainsDot = 1;
+}
+
+def MipsAsmParserVariant : AsmParserVariant {
+ int Variant = 0;
+
+ // Recognize hard coded registers.
+ string RegisterPrefix = "$";
+}
+
+def Mips : Target {
+ let InstructionSet = MipsInstrInfo;
+ let AssemblyParsers = [MipsAsmParser];
+ let AssemblyParserVariants = [MipsAsmParserVariant];
+}
diff --git a/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.cpp b/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.cpp
new file mode 100644
index 0000000..93706c2
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.cpp
@@ -0,0 +1,190 @@
+//===-- Mips16FrameLowering.cpp - Mips16 Frame Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips16 implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Mips16FrameLowering.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "Mips16InstrInfo.h"
+#include "MipsInstrInfo.h"
+#include "MipsRegisterInfo.h"
+#include "MipsSubtarget.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+Mips16FrameLowering::Mips16FrameLowering(const MipsSubtarget &STI)
+ : MipsFrameLowering(STI, STI.stackAlignment()) {}
+
+void Mips16FrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const Mips16InstrInfo &TII =
+ *static_cast<const Mips16InstrInfo*>(MF.getTarget().getInstrInfo());
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+ uint64_t StackSize = MFI->getStackSize();
+
+ // No need to allocate space on the stack.
+ if (StackSize == 0 && !MFI->adjustsStack()) return;
+
+ MachineModuleInfo &MMI = MF.getMMI();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
+ MachineLocation DstML, SrcML;
+
+ // Adjust stack.
+ TII.makeFrame(Mips::SP, StackSize, MBB, MBBI);
+
+ // emit ".cfi_def_cfa_offset StackSize"
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, -StackSize));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+
+ if (CSI.size()) {
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+
+ for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
+ E = CSI.end(); I != E; ++I) {
+ int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
+ unsigned Reg = I->getReg();
+ unsigned DReg = MRI->getDwarfRegNum(Reg, true);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, DReg, Offset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+ if (hasFP(MF))
+ BuildMI(MBB, MBBI, dl, TII.get(Mips::MoveR3216), Mips::S0)
+ .addReg(Mips::SP).setMIFlag(MachineInstr::FrameSetup);
+
+}
+
+void Mips16FrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const Mips16InstrInfo &TII =
+ *static_cast<const Mips16InstrInfo*>(MF.getTarget().getInstrInfo());
+ DebugLoc dl = MBBI->getDebugLoc();
+ uint64_t StackSize = MFI->getStackSize();
+
+ if (!StackSize)
+ return;
+
+ if (hasFP(MF))
+ BuildMI(MBB, MBBI, dl, TII.get(Mips::Move32R16), Mips::SP)
+ .addReg(Mips::S0);
+
+ // Adjust stack.
+ // assumes stacksize multiple of 8
+ TII.restoreFrame(Mips::SP, StackSize, MBB, MBBI);
+}
+
+bool Mips16FrameLowering::
+spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction *MF = MBB.getParent();
+ MachineBasicBlock *EntryBlock = MF->begin();
+
+ //
+ // Registers RA, S0,S1 are the callee saved registers and they
+ // will be saved with the "save" instruction
+ // during emitPrologue
+ //
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ // Add the callee-saved register as live-in. Do not add if the register is
+ // RA and return address is taken, because it has already been added in
+ // method MipsTargetLowering::LowerRETURNADDR.
+ // It's killed at the spill, unless the register is RA and return address
+ // is taken.
+ unsigned Reg = CSI[i].getReg();
+ bool IsRAAndRetAddrIsTaken = (Reg == Mips::RA)
+ && MF->getFrameInfo()->isReturnAddressTaken();
+ if (!IsRAAndRetAddrIsTaken)
+ EntryBlock->addLiveIn(Reg);
+ }
+
+ return true;
+}
+
+bool Mips16FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ //
+ // Registers RA,S0,S1 are the callee saved registers and they will be restored
+ // with the restore instruction during emitEpilogue.
+ // We need to override this virtual function, otherwise llvm will try and
+ // restore the registers on it's on from the stack.
+ //
+
+ return true;
+}
+
+// Eliminate ADJCALLSTACKDOWN, ADJCALLSTACKUP pseudo instructions
+void Mips16FrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ if (!hasReservedCallFrame(MF)) {
+ int64_t Amount = I->getOperand(0).getImm();
+
+ if (I->getOpcode() == Mips::ADJCALLSTACKDOWN)
+ Amount = -Amount;
+
+ const Mips16InstrInfo &TII =
+ *static_cast<const Mips16InstrInfo*>(MF.getTarget().getInstrInfo());
+
+ TII.adjustStackPtr(Mips::SP, Amount, MBB, I);
+ }
+
+ MBB.erase(I);
+}
+
+bool
+Mips16FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ // Reserve call frame if the size of the maximum call frame fits into 15-bit
+ // immediate field and there are no variable sized objects on the stack.
+ return isInt<15>(MFI->getMaxCallFrameSize()) && !MFI->hasVarSizedObjects();
+}
+
+void Mips16FrameLowering::
+processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const {
+ const Mips16InstrInfo &TII =
+ *static_cast<const Mips16InstrInfo*>(MF.getTarget().getInstrInfo());
+ const MipsRegisterInfo &RI = TII.getRegisterInfo();
+ const BitVector Reserved = RI.getReservedRegs(MF);
+ bool SaveS2 = Reserved[Mips::S2];
+ if (SaveS2)
+ MF.getRegInfo().setPhysRegUsed(Mips::S2);
+ if (hasFP(MF))
+ MF.getRegInfo().setPhysRegUsed(Mips::S0);
+}
+
+const MipsFrameLowering *
+llvm::createMips16FrameLowering(const MipsSubtarget &ST) {
+ return new Mips16FrameLowering(ST);
+}
diff --git a/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.h b/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.h
new file mode 100644
index 0000000..1fb7eda
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.h
@@ -0,0 +1,51 @@
+//===-- Mips16FrameLowering.h - Mips16 frame lowering ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPS16_FRAMEINFO_H
+#define MIPS16_FRAMEINFO_H
+
+#include "MipsFrameLowering.h"
+
+namespace llvm {
+class Mips16FrameLowering : public MipsFrameLowering {
+public:
+ explicit Mips16FrameLowering(const MipsSubtarget &STI);
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const override;
+
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool hasReservedCallFrame(const MachineFunction &MF) const override;
+
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const override;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/Mips16HardFloat.cpp b/contrib/llvm/lib/Target/Mips/Mips16HardFloat.cpp
new file mode 100644
index 0000000..14055d6
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16HardFloat.cpp
@@ -0,0 +1,542 @@
+//===---- Mips16HardFloat.cpp for Mips16 Hard Float --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a pass needed for Mips16 Hard Float
+//
+//===----------------------------------------------------------------------===//
+
+#include "Mips16HardFloat.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <string>
+
+#define DEBUG_TYPE "mips16-hard-float"
+
+static void inlineAsmOut
+ (LLVMContext &C, StringRef AsmString, BasicBlock *BB ) {
+ std::vector<llvm::Type *> AsmArgTypes;
+ std::vector<llvm::Value*> AsmArgs;
+ llvm::FunctionType *AsmFTy =
+ llvm::FunctionType::get(Type::getVoidTy(C),
+ AsmArgTypes, false);
+ llvm::InlineAsm *IA =
+ llvm::InlineAsm::get(AsmFTy, AsmString, "", true,
+ /* IsAlignStack */ false,
+ llvm::InlineAsm::AD_ATT);
+ CallInst::Create(IA, AsmArgs, "", BB);
+}
+
+namespace {
+
+class InlineAsmHelper {
+ LLVMContext &C;
+ BasicBlock *BB;
+public:
+ InlineAsmHelper(LLVMContext &C_, BasicBlock *BB_) :
+ C(C_), BB(BB_) {
+ }
+
+ void Out(StringRef AsmString) {
+ inlineAsmOut(C, AsmString, BB);
+ }
+
+};
+}
+//
+// Return types that matter for hard float are:
+// float, double, complex float, and complex double
+//
+enum FPReturnVariant {
+ FRet, DRet, CFRet, CDRet, NoFPRet
+};
+
+//
+// Determine which FP return type this function has
+//
+static FPReturnVariant whichFPReturnVariant(Type *T) {
+ switch (T->getTypeID()) {
+ case Type::FloatTyID:
+ return FRet;
+ case Type::DoubleTyID:
+ return DRet;
+ case Type::StructTyID:
+ if (T->getStructNumElements() != 2)
+ break;
+ if ((T->getContainedType(0)->isFloatTy()) &&
+ (T->getContainedType(1)->isFloatTy()))
+ return CFRet;
+ if ((T->getContainedType(0)->isDoubleTy()) &&
+ (T->getContainedType(1)->isDoubleTy()))
+ return CDRet;
+ break;
+ default:
+ break;
+ }
+ return NoFPRet;
+}
+
+//
+// Parameter type that matter are float, (float, float), (float, double),
+// double, (double, double), (double, float)
+//
+enum FPParamVariant {
+ FSig, FFSig, FDSig,
+ DSig, DDSig, DFSig, NoSig
+};
+
+// which floating point parameter signature variant we are dealing with
+//
+typedef Type::TypeID TypeID;
+const Type::TypeID FloatTyID = Type::FloatTyID;
+const Type::TypeID DoubleTyID = Type::DoubleTyID;
+
+static FPParamVariant whichFPParamVariantNeeded(Function &F) {
+ switch (F.arg_size()) {
+ case 0:
+ return NoSig;
+ case 1:{
+ TypeID ArgTypeID = F.getFunctionType()->getParamType(0)->getTypeID();
+ switch (ArgTypeID) {
+ case FloatTyID:
+ return FSig;
+ case DoubleTyID:
+ return DSig;
+ default:
+ return NoSig;
+ }
+ }
+ default: {
+ TypeID ArgTypeID0 = F.getFunctionType()->getParamType(0)->getTypeID();
+ TypeID ArgTypeID1 = F.getFunctionType()->getParamType(1)->getTypeID();
+ switch(ArgTypeID0) {
+ case FloatTyID: {
+ switch (ArgTypeID1) {
+ case FloatTyID:
+ return FFSig;
+ case DoubleTyID:
+ return FDSig;
+ default:
+ return FSig;
+ }
+ }
+ case DoubleTyID: {
+ switch (ArgTypeID1) {
+ case FloatTyID:
+ return DFSig;
+ case DoubleTyID:
+ return DDSig;
+ default:
+ return DSig;
+ }
+ }
+ default:
+ return NoSig;
+ }
+ }
+ }
+ llvm_unreachable("can't get here");
+}
+
+// Figure out if we need float point based on the function parameters.
+// We need to move variables in and/or out of floating point
+// registers because of the ABI
+//
+static bool needsFPStubFromParams(Function &F) {
+ if (F.arg_size() >=1) {
+ Type *ArgType = F.getFunctionType()->getParamType(0);
+ switch (ArgType->getTypeID()) {
+ case Type::FloatTyID:
+ case Type::DoubleTyID:
+ return true;
+ default:
+ break;
+ }
+ }
+ return false;
+}
+
+static bool needsFPReturnHelper(Function &F) {
+ Type* RetType = F.getReturnType();
+ return whichFPReturnVariant(RetType) != NoFPRet;
+}
+
+static bool needsFPReturnHelper(const FunctionType &FT) {
+ Type* RetType = FT.getReturnType();
+ return whichFPReturnVariant(RetType) != NoFPRet;
+}
+
+static bool needsFPHelperFromSig(Function &F) {
+ return needsFPStubFromParams(F) || needsFPReturnHelper(F);
+}
+
+//
+// We swap between FP and Integer registers to allow Mips16 and Mips32 to
+// interoperate
+//
+
+static void swapFPIntParams
+ (FPParamVariant PV, Module *M, InlineAsmHelper &IAH,
+ bool LE, bool ToFP) {
+ //LLVMContext &Context = M->getContext();
+ std::string MI = ToFP? "mtc1 ": "mfc1 ";
+ switch (PV) {
+ case FSig:
+ IAH.Out(MI + "$$4,$$f12");
+ break;
+ case FFSig:
+ IAH.Out(MI +"$$4,$$f12");
+ IAH.Out(MI + "$$5,$$f14");
+ break;
+ case FDSig:
+ IAH.Out(MI + "$$4,$$f12");
+ if (LE) {
+ IAH.Out(MI + "$$6,$$f14");
+ IAH.Out(MI + "$$7,$$f15");
+ } else {
+ IAH.Out(MI + "$$7,$$f14");
+ IAH.Out(MI + "$$6,$$f15");
+ }
+ break;
+ case DSig:
+ if (LE) {
+ IAH.Out(MI + "$$4,$$f12");
+ IAH.Out(MI + "$$5,$$f13");
+ } else {
+ IAH.Out(MI + "$$5,$$f12");
+ IAH.Out(MI + "$$4,$$f13");
+ }
+ break;
+ case DDSig:
+ if (LE) {
+ IAH.Out(MI + "$$4,$$f12");
+ IAH.Out(MI + "$$5,$$f13");
+ IAH.Out(MI + "$$6,$$f14");
+ IAH.Out(MI + "$$7,$$f15");
+ } else {
+ IAH.Out(MI + "$$5,$$f12");
+ IAH.Out(MI + "$$4,$$f13");
+ IAH.Out(MI + "$$7,$$f14");
+ IAH.Out(MI + "$$6,$$f15");
+ }
+ break;
+ case DFSig:
+ if (LE) {
+ IAH.Out(MI + "$$4,$$f12");
+ IAH.Out(MI + "$$5,$$f13");
+ } else {
+ IAH.Out(MI + "$$5,$$f12");
+ IAH.Out(MI + "$$4,$$f13");
+ }
+ IAH.Out(MI + "$$6,$$f14");
+ break;
+ case NoSig:
+ return;
+ }
+}
+//
+// Make sure that we know we already need a stub for this function.
+// Having called needsFPHelperFromSig
+//
+static void assureFPCallStub(Function &F, Module *M,
+ const MipsSubtarget &Subtarget) {
+ // for now we only need them for static relocation
+ if (Subtarget.getRelocationModel() == Reloc::PIC_)
+ return;
+ LLVMContext &Context = M->getContext();
+ bool LE = Subtarget.isLittle();
+ std::string Name = F.getName();
+ std::string SectionName = ".mips16.call.fp." + Name;
+ std::string StubName = "__call_stub_fp_" + Name;
+ //
+ // see if we already have the stub
+ //
+ Function *FStub = M->getFunction(StubName);
+ if (FStub && !FStub->isDeclaration()) return;
+ FStub = Function::Create(F.getFunctionType(),
+ Function::InternalLinkage, StubName, M);
+ FStub->addFnAttr("mips16_fp_stub");
+ FStub->addFnAttr(llvm::Attribute::Naked);
+ FStub->addFnAttr(llvm::Attribute::NoInline);
+ FStub->addFnAttr(llvm::Attribute::NoUnwind);
+ FStub->addFnAttr("nomips16");
+ FStub->setSection(SectionName);
+ BasicBlock *BB = BasicBlock::Create(Context, "entry", FStub);
+ InlineAsmHelper IAH(Context, BB);
+ IAH.Out(".set reorder");
+ FPReturnVariant RV = whichFPReturnVariant(FStub->getReturnType());
+ FPParamVariant PV = whichFPParamVariantNeeded(F);
+ swapFPIntParams(PV, M, IAH, LE, true);
+ if (RV != NoFPRet) {
+ IAH.Out("move $$18, $$31");
+ IAH.Out("jal " + Name);
+ } else {
+ IAH.Out("lui $$25,%hi(" + Name + ")");
+ IAH.Out("addiu $$25,$$25,%lo(" + Name + ")" );
+ }
+ switch (RV) {
+ case FRet:
+ IAH.Out("mfc1 $$2,$$f0");
+ break;
+ case DRet:
+ if (LE) {
+ IAH.Out("mfc1 $$2,$$f0");
+ IAH.Out("mfc1 $$3,$$f1");
+ } else {
+ IAH.Out("mfc1 $$3,$$f0");
+ IAH.Out("mfc1 $$2,$$f1");
+ }
+ break;
+ case CFRet:
+ if (LE) {
+ IAH.Out("mfc1 $$2,$$f0");
+ IAH.Out("mfc1 $$3,$$f2");
+ } else {
+ IAH.Out("mfc1 $$3,$$f0");
+ IAH.Out("mfc1 $$3,$$f2");
+ }
+ break;
+ case CDRet:
+ if (LE) {
+ IAH.Out("mfc1 $$4,$$f2");
+ IAH.Out("mfc1 $$5,$$f3");
+ IAH.Out("mfc1 $$2,$$f0");
+ IAH.Out("mfc1 $$3,$$f1");
+
+ } else {
+ IAH.Out("mfc1 $$5,$$f2");
+ IAH.Out("mfc1 $$4,$$f3");
+ IAH.Out("mfc1 $$3,$$f0");
+ IAH.Out("mfc1 $$2,$$f1");
+ }
+ break;
+ case NoFPRet:
+ break;
+ }
+ if (RV != NoFPRet)
+ IAH.Out("jr $$18");
+ else
+ IAH.Out("jr $$25");
+ new UnreachableInst(Context, BB);
+}
+
+//
+// Functions that are llvm intrinsics and don't need helpers.
+//
+static const char *IntrinsicInline[] =
+ {"fabs",
+ "fabsf",
+ "llvm.ceil.f32", "llvm.ceil.f64",
+ "llvm.copysign.f32", "llvm.copysign.f64",
+ "llvm.cos.f32", "llvm.cos.f64",
+ "llvm.exp.f32", "llvm.exp.f64",
+ "llvm.exp2.f32", "llvm.exp2.f64",
+ "llvm.fabs.f32", "llvm.fabs.f64",
+ "llvm.floor.f32", "llvm.floor.f64",
+ "llvm.fma.f32", "llvm.fma.f64",
+ "llvm.log.f32", "llvm.log.f64",
+ "llvm.log10.f32", "llvm.log10.f64",
+ "llvm.nearbyint.f32", "llvm.nearbyint.f64",
+ "llvm.pow.f32", "llvm.pow.f64",
+ "llvm.powi.f32", "llvm.powi.f64",
+ "llvm.rint.f32", "llvm.rint.f64",
+ "llvm.round.f32", "llvm.round.f64",
+ "llvm.sin.f32", "llvm.sin.f64",
+ "llvm.sqrt.f32", "llvm.sqrt.f64",
+ "llvm.trunc.f32", "llvm.trunc.f64",
+ };
+
+static bool isIntrinsicInline(Function *F) {
+ return std::binary_search(std::begin(IntrinsicInline),
+ std::end(IntrinsicInline), F->getName());
+}
+//
+// Returns of float, double and complex need to be handled with a helper
+// function.
+//
+static bool fixupFPReturnAndCall
+ (Function &F, Module *M, const MipsSubtarget &Subtarget) {
+ bool Modified = false;
+ LLVMContext &C = M->getContext();
+ Type *MyVoid = Type::getVoidTy(C);
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end();
+ I != E; ++I) {
+ Instruction &Inst = *I;
+ if (const ReturnInst *RI = dyn_cast<ReturnInst>(I)) {
+ Value *RVal = RI->getReturnValue();
+ if (!RVal) continue;
+ //
+ // If there is a return value and it needs a helper function,
+ // figure out which one and add a call before the actual
+ // return to this helper. The purpose of the helper is to move
+ // floating point values from their soft float return mapping to
+ // where they would have been mapped to in floating point registers.
+ //
+ Type *T = RVal->getType();
+ FPReturnVariant RV = whichFPReturnVariant(T);
+ if (RV == NoFPRet) continue;
+ static const char* Helper[NoFPRet] =
+ {"__mips16_ret_sf", "__mips16_ret_df", "__mips16_ret_sc",
+ "__mips16_ret_dc"};
+ const char *Name = Helper[RV];
+ AttributeSet A;
+ Value *Params[] = {RVal};
+ Modified = true;
+ //
+ // These helper functions have a different calling ABI so
+ // this __Mips16RetHelper indicates that so that later
+ // during call setup, the proper call lowering to the helper
+ // functions will take place.
+ //
+ A = A.addAttribute(C, AttributeSet::FunctionIndex,
+ "__Mips16RetHelper");
+ A = A.addAttribute(C, AttributeSet::FunctionIndex,
+ Attribute::ReadNone);
+ A = A.addAttribute(C, AttributeSet::FunctionIndex,
+ Attribute::NoInline);
+ Value *F = (M->getOrInsertFunction(Name, A, MyVoid, T, NULL));
+ CallInst::Create(F, Params, "", &Inst );
+ } else if (const CallInst *CI = dyn_cast<CallInst>(I)) {
+ const Value* V = CI->getCalledValue();
+ const Type* T = nullptr;
+ if (V) T = V->getType();
+ const PointerType *PFT=nullptr;
+ if (T) PFT = dyn_cast<PointerType>(T);
+ const FunctionType *FT=nullptr;
+ if (PFT) FT = dyn_cast<FunctionType>(PFT->getElementType());
+ Function *F_ = CI->getCalledFunction();
+ if (FT && needsFPReturnHelper(*FT) &&
+ !(F_ && isIntrinsicInline(F_))) {
+ Modified=true;
+ F.addFnAttr("saveS2");
+ }
+ if (F_ && !isIntrinsicInline(F_)) {
+ // pic mode calls are handled by already defined
+ // helper functions
+ if (needsFPReturnHelper(*F_)) {
+ Modified=true;
+ F.addFnAttr("saveS2");
+ }
+ if (Subtarget.getRelocationModel() != Reloc::PIC_ ) {
+ if (needsFPHelperFromSig(*F_)) {
+ assureFPCallStub(*F_, M, Subtarget);
+ Modified=true;
+ }
+ }
+ }
+ }
+ }
+ return Modified;
+}
+
+static void createFPFnStub(Function *F, Module *M, FPParamVariant PV,
+ const MipsSubtarget &Subtarget ) {
+ bool PicMode = Subtarget.getRelocationModel() == Reloc::PIC_;
+ bool LE = Subtarget.isLittle();
+ LLVMContext &Context = M->getContext();
+ std::string Name = F->getName();
+ std::string SectionName = ".mips16.fn." + Name;
+ std::string StubName = "__fn_stub_" + Name;
+ std::string LocalName = "$$__fn_local_" + Name;
+ Function *FStub = Function::Create
+ (F->getFunctionType(),
+ Function::InternalLinkage, StubName, M);
+ FStub->addFnAttr("mips16_fp_stub");
+ FStub->addFnAttr(llvm::Attribute::Naked);
+ FStub->addFnAttr(llvm::Attribute::NoUnwind);
+ FStub->addFnAttr(llvm::Attribute::NoInline);
+ FStub->addFnAttr("nomips16");
+ FStub->setSection(SectionName);
+ BasicBlock *BB = BasicBlock::Create(Context, "entry", FStub);
+ InlineAsmHelper IAH(Context, BB);
+ IAH.Out(" .set macro");
+ if (PicMode) {
+ IAH.Out(".set noreorder");
+ IAH.Out(".cpload $$25");
+ IAH.Out(".set reorder");
+ IAH.Out(".reloc 0,R_MIPS_NONE," + Name);
+ IAH.Out("la $$25," + LocalName);
+ }
+ else {
+ IAH.Out(".set reorder");
+ IAH.Out("la $$25," + Name);
+ }
+ swapFPIntParams(PV, M, IAH, LE, false);
+ IAH.Out("jr $$25");
+ IAH.Out(LocalName + " = " + Name);
+ new UnreachableInst(FStub->getContext(), BB);
+}
+
+//
+// remove the use-soft-float attribute
+//
+static void removeUseSoftFloat(Function &F) {
+ AttributeSet A;
+ DEBUG(errs() << "removing -use-soft-float\n");
+ A = A.addAttribute(F.getContext(), AttributeSet::FunctionIndex,
+ "use-soft-float", "false");
+ F.removeAttributes(AttributeSet::FunctionIndex, A);
+ if (F.hasFnAttribute("use-soft-float")) {
+ DEBUG(errs() << "still has -use-soft-float\n");
+ }
+ F.addAttributes(AttributeSet::FunctionIndex, A);
+}
+
+namespace llvm {
+
+//
+// This pass only makes sense when the underlying chip has floating point but
+// we are compiling as mips16.
+// For all mips16 functions (that are not stubs we have already generated), or
+// declared via attributes as nomips16, we must:
+// 1) fixup all returns of float, double, single and double complex
+// by calling a helper function before the actual return.
+// 2) generate helper functions (stubs) that can be called by mips32
+// functions that will move parameters passed normally passed in
+// floating point
+// registers the soft float equivalents.
+// 3) in the case of static relocation, generate helper functions so that
+// mips16 functions can call extern functions of unknown type (mips16 or
+// mips32).
+// 4) TBD. For pic, calls to extern functions of unknown type are handled by
+// predefined helper functions in libc but this work is currently done
+// during call lowering but it should be moved here in the future.
+//
+bool Mips16HardFloat::runOnModule(Module &M) {
+ DEBUG(errs() << "Run on Module Mips16HardFloat\n");
+ bool Modified = false;
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ if (F->hasFnAttribute("nomips16") &&
+ F->hasFnAttribute("use-soft-float")) {
+ removeUseSoftFloat(*F);
+ continue;
+ }
+ if (F->isDeclaration() || F->hasFnAttribute("mips16_fp_stub") ||
+ F->hasFnAttribute("nomips16")) continue;
+ Modified |= fixupFPReturnAndCall(*F, &M, Subtarget);
+ FPParamVariant V = whichFPParamVariantNeeded(*F);
+ if (V != NoSig) {
+ Modified = true;
+ createFPFnStub(F, &M, V, Subtarget);
+ }
+ }
+ return Modified;
+}
+
+char Mips16HardFloat::ID = 0;
+
+}
+
+ModulePass *llvm::createMips16HardFloat(MipsTargetMachine &TM) {
+ return new Mips16HardFloat(TM);
+}
+
diff --git a/contrib/llvm/lib/Target/Mips/Mips16HardFloat.h b/contrib/llvm/lib/Target/Mips/Mips16HardFloat.h
new file mode 100644
index 0000000..826887e
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16HardFloat.h
@@ -0,0 +1,54 @@
+//===---- Mips16HardFloat.h for Mips16 Hard Float --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a phase which implements part of the floating point
+// interoperability between Mips16 and Mips32 code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/MipsMCTargetDesc.h"
+#include "MipsTargetMachine.h"
+#include "llvm/Pass.h"
+#include "llvm/Target/TargetMachine.h"
+
+
+#ifndef MIPS16HARDFLOAT_H
+#define MIPS16HARDFLOAT_H
+
+using namespace llvm;
+
+namespace llvm {
+
+class Mips16HardFloat : public ModulePass {
+
+public:
+ static char ID;
+
+ Mips16HardFloat(MipsTargetMachine &TM_) : ModulePass(ID),
+ TM(TM_), Subtarget(TM.getSubtarget<MipsSubtarget>()) {
+ }
+
+ const char *getPassName() const override {
+ return "MIPS16 Hard Float Pass";
+ }
+
+ bool runOnModule(Module &M) override;
+
+protected:
+ /// Keep a pointer to the MipsSubtarget around so that we can make the right
+ /// decision when generating code for different targets.
+ const TargetMachine &TM;
+ const MipsSubtarget &Subtarget;
+
+};
+
+ModulePass *createMips16HardFloat(MipsTargetMachine &TM);
+
+}
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.cpp b/contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.cpp
new file mode 100644
index 0000000..2eb6e5d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.cpp
@@ -0,0 +1,50 @@
+//===---- Mips16HardFloatInfo.cpp for Mips16 Hard Float -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips16 implementation of Mips16HardFloatInfo
+// namespace.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Mips16HardFloatInfo.h"
+#include <string.h>
+
+namespace llvm {
+
+namespace Mips16HardFloatInfo {
+
+const FuncNameSignature PredefinedFuncs[] = {
+ { "__floatdidf", { NoSig, DRet } },
+ { "__floatdisf", { NoSig, FRet } },
+ { "__floatundidf", { NoSig, DRet } },
+ { "__fixsfdi", { FSig, NoFPRet } },
+ { "__fixunsdfsi", { DSig, NoFPRet } },
+ { "__fixunsdfdi", { DSig, NoFPRet } },
+ { "__fixdfdi", { DSig, NoFPRet } },
+ { "__fixunssfsi", { FSig, NoFPRet } },
+ { "__fixunssfdi", { FSig, NoFPRet } },
+ { "__floatundisf", { NoSig, FRet } },
+ { nullptr, { NoSig, NoFPRet } }
+};
+
+// just do a search for now. there are very few of these special cases.
+//
+extern FuncSignature const *findFuncSignature(const char *name) {
+ const char *name_;
+ int i = 0;
+ while (PredefinedFuncs[i].Name) {
+ name_ = PredefinedFuncs[i].Name;
+ if (strcmp(name, name_) == 0)
+ return &PredefinedFuncs[i].Signature;
+ i++;
+ }
+ return nullptr;
+}
+}
+}
diff --git a/contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.h b/contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.h
new file mode 100644
index 0000000..02444d9
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.h
@@ -0,0 +1,50 @@
+//===---- Mips16HardFloatInfo.h for Mips16 Hard Float --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines some data structures relevant to the implementation of
+// Mips16 hard float.
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPS16HARDFLOATINFO_H
+#define MIPS16HARDFLOATINFO_H
+
+namespace llvm {
+
+namespace Mips16HardFloatInfo {
+
+// Return types that matter for hard float are:
+// float, double, complex float, and complex double
+//
+enum FPReturnVariant { FRet, DRet, CFRet, CDRet, NoFPRet };
+
+//
+// Parameter type that matter are float, (float, float), (float, double),
+// double, (double, double), (double, float)
+//
+enum FPParamVariant { FSig, FFSig, FDSig, DSig, DDSig, DFSig, NoSig };
+
+struct FuncSignature {
+ FPParamVariant ParamSig;
+ FPReturnVariant RetSig;
+};
+
+struct FuncNameSignature {
+ const char *Name;
+ FuncSignature Signature;
+};
+
+extern const FuncNameSignature PredefinedFuncs[];
+
+extern FuncSignature const *findFuncSignature(const char *name);
+}
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.cpp
new file mode 100644
index 0000000..7b05842
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.cpp
@@ -0,0 +1,320 @@
+//===-- Mips16ISelDAGToDAG.cpp - A Dag to Dag Inst Selector for Mips16 ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Subclass of MipsDAGToDAGISel specialized for mips16.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Mips16ISelDAGToDAG.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "Mips.h"
+#include "MipsAnalyzeImmediate.h"
+#include "MipsMachineFunction.h"
+#include "MipsRegisterInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-isel"
+
+bool Mips16DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
+ Subtarget = &TM.getSubtarget<MipsSubtarget>();
+ if (!Subtarget->inMips16Mode())
+ return false;
+ return MipsDAGToDAGISel::runOnMachineFunction(MF);
+}
+/// Select multiply instructions.
+std::pair<SDNode*, SDNode*>
+Mips16DAGToDAGISel::selectMULT(SDNode *N, unsigned Opc, SDLoc DL, EVT Ty,
+ bool HasLo, bool HasHi) {
+ SDNode *Lo = nullptr, *Hi = nullptr;
+ SDNode *Mul = CurDAG->getMachineNode(Opc, DL, MVT::Glue, N->getOperand(0),
+ N->getOperand(1));
+ SDValue InFlag = SDValue(Mul, 0);
+
+ if (HasLo) {
+ unsigned Opcode = Mips::Mflo16;
+ Lo = CurDAG->getMachineNode(Opcode, DL, Ty, MVT::Glue, InFlag);
+ InFlag = SDValue(Lo, 1);
+ }
+ if (HasHi) {
+ unsigned Opcode = Mips::Mfhi16;
+ Hi = CurDAG->getMachineNode(Opcode, DL, Ty, InFlag);
+ }
+ return std::make_pair(Lo, Hi);
+}
+
+void Mips16DAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ if (!MipsFI->globalBaseRegSet())
+ return;
+
+ MachineBasicBlock &MBB = MF.front();
+ MachineBasicBlock::iterator I = MBB.begin();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
+ unsigned V0, V1, V2, GlobalBaseReg = MipsFI->getGlobalBaseReg();
+ const TargetRegisterClass *RC =
+ (const TargetRegisterClass*)&Mips::CPU16RegsRegClass;
+
+ V0 = RegInfo.createVirtualRegister(RC);
+ V1 = RegInfo.createVirtualRegister(RC);
+ V2 = RegInfo.createVirtualRegister(RC);
+
+ BuildMI(MBB, I, DL, TII.get(Mips::GotPrologue16), V0).
+ addReg(V1, RegState::Define).
+ addExternalSymbol("_gp_disp", MipsII::MO_ABS_HI).
+ addExternalSymbol("_gp_disp", MipsII::MO_ABS_LO);
+
+ BuildMI(MBB, I, DL, TII.get(Mips::SllX16), V2).addReg(V0).addImm(16);
+ BuildMI(MBB, I, DL, TII.get(Mips::AdduRxRyRz16), GlobalBaseReg)
+ .addReg(V1).addReg(V2);
+}
+
+// Insert instructions to initialize the Mips16 SP Alias register in the
+// first MBB of the function.
+//
+void Mips16DAGToDAGISel::initMips16SPAliasReg(MachineFunction &MF) {
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ if (!MipsFI->mips16SPAliasRegSet())
+ return;
+
+ MachineBasicBlock &MBB = MF.front();
+ MachineBasicBlock::iterator I = MBB.begin();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
+ unsigned Mips16SPAliasReg = MipsFI->getMips16SPAliasReg();
+
+ BuildMI(MBB, I, DL, TII.get(Mips::MoveR3216), Mips16SPAliasReg)
+ .addReg(Mips::SP);
+}
+
+void Mips16DAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
+ initGlobalBaseReg(MF);
+ initMips16SPAliasReg(MF);
+}
+
+/// getMips16SPAliasReg - Output the instructions required to put the
+/// SP into a Mips16 accessible aliased register.
+SDValue Mips16DAGToDAGISel::getMips16SPAliasReg() {
+ unsigned Mips16SPAliasReg =
+ MF->getInfo<MipsFunctionInfo>()->getMips16SPAliasReg();
+ return CurDAG->getRegister(Mips16SPAliasReg,
+ getTargetLowering()->getPointerTy());
+}
+
+void Mips16DAGToDAGISel::getMips16SPRefReg(SDNode *Parent, SDValue &AliasReg) {
+ SDValue AliasFPReg = CurDAG->getRegister(Mips::S0,
+ getTargetLowering()->getPointerTy());
+ if (Parent) {
+ switch (Parent->getOpcode()) {
+ case ISD::LOAD: {
+ LoadSDNode *SD = dyn_cast<LoadSDNode>(Parent);
+ switch (SD->getMemoryVT().getSizeInBits()) {
+ case 8:
+ case 16:
+ AliasReg = TM.getFrameLowering()->hasFP(*MF)?
+ AliasFPReg: getMips16SPAliasReg();
+ return;
+ }
+ break;
+ }
+ case ISD::STORE: {
+ StoreSDNode *SD = dyn_cast<StoreSDNode>(Parent);
+ switch (SD->getMemoryVT().getSizeInBits()) {
+ case 8:
+ case 16:
+ AliasReg = TM.getFrameLowering()->hasFP(*MF)?
+ AliasFPReg: getMips16SPAliasReg();
+ return;
+ }
+ break;
+ }
+ }
+ }
+ AliasReg = CurDAG->getRegister(Mips::SP, getTargetLowering()->getPointerTy());
+ return;
+
+}
+
+bool Mips16DAGToDAGISel::selectAddr16(
+ SDNode *Parent, SDValue Addr, SDValue &Base, SDValue &Offset,
+ SDValue &Alias) {
+ EVT ValTy = Addr.getValueType();
+
+ Alias = CurDAG->getTargetConstant(0, ValTy);
+
+ // if Address is FI, get the TargetFrameIndex.
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
+ Offset = CurDAG->getTargetConstant(0, ValTy);
+ getMips16SPRefReg(Parent, Alias);
+ return true;
+ }
+ // on PIC code Load GA
+ if (Addr.getOpcode() == MipsISD::Wrapper) {
+ Base = Addr.getOperand(0);
+ Offset = Addr.getOperand(1);
+ return true;
+ }
+ if (TM.getRelocationModel() != Reloc::PIC_) {
+ if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress))
+ return false;
+ }
+ // Addresses of the form FI+const or FI|const
+ if (CurDAG->isBaseWithConstantOffset(Addr)) {
+ ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
+ if (isInt<16>(CN->getSExtValue())) {
+
+ // If the first operand is a FI, get the TargetFI Node
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
+ (Addr.getOperand(0))) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
+ getMips16SPRefReg(Parent, Alias);
+ }
+ else
+ Base = Addr.getOperand(0);
+
+ Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy);
+ return true;
+ }
+ }
+ // Operand is a result from an ADD.
+ if (Addr.getOpcode() == ISD::ADD) {
+ // When loading from constant pools, load the lower address part in
+ // the instruction itself. Example, instead of:
+ // lui $2, %hi($CPI1_0)
+ // addiu $2, $2, %lo($CPI1_0)
+ // lwc1 $f0, 0($2)
+ // Generate:
+ // lui $2, %hi($CPI1_0)
+ // lwc1 $f0, %lo($CPI1_0)($2)
+ if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
+ Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
+ SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
+ if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
+ isa<JumpTableSDNode>(Opnd0)) {
+ Base = Addr.getOperand(0);
+ Offset = Opnd0;
+ return true;
+ }
+ }
+
+ // If an indexed floating point load/store can be emitted, return false.
+ const LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(Parent);
+
+ if (LS) {
+ if (LS->getMemoryVT() == MVT::f32 && Subtarget->hasMips4_32r2())
+ return false;
+ if (LS->getMemoryVT() == MVT::f64 && Subtarget->hasMips4_32r2())
+ return false;
+ }
+ }
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, ValTy);
+ return true;
+}
+
+/// Select instructions not customized! Used for
+/// expanded, promoted and normal instructions
+std::pair<bool, SDNode*> Mips16DAGToDAGISel::selectNode(SDNode *Node) {
+ unsigned Opcode = Node->getOpcode();
+ SDLoc DL(Node);
+
+ ///
+ // Instruction Selection not handled by the auto-generated
+ // tablegen selection should be handled here.
+ ///
+ EVT NodeTy = Node->getValueType(0);
+ unsigned MultOpc;
+
+ switch(Opcode) {
+ default: break;
+
+ case ISD::SUBE:
+ case ISD::ADDE: {
+ SDValue InFlag = Node->getOperand(2), CmpLHS;
+ unsigned Opc = InFlag.getOpcode(); (void)Opc;
+ assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
+ (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
+ "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
+
+ unsigned MOp;
+ if (Opcode == ISD::ADDE) {
+ CmpLHS = InFlag.getValue(0);
+ MOp = Mips::AdduRxRyRz16;
+ } else {
+ CmpLHS = InFlag.getOperand(0);
+ MOp = Mips::SubuRxRyRz16;
+ }
+
+ SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
+
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+
+ EVT VT = LHS.getValueType();
+
+ unsigned Sltu_op = Mips::SltuRxRyRz16;
+ SDNode *Carry = CurDAG->getMachineNode(Sltu_op, DL, VT, Ops);
+ unsigned Addu_op = Mips::AdduRxRyRz16;
+ SDNode *AddCarry = CurDAG->getMachineNode(Addu_op, DL, VT,
+ SDValue(Carry,0), RHS);
+
+ SDNode *Result = CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS,
+ SDValue(AddCarry,0));
+ return std::make_pair(true, Result);
+ }
+
+ /// Mul with two results
+ case ISD::SMUL_LOHI:
+ case ISD::UMUL_LOHI: {
+ MultOpc = (Opcode == ISD::UMUL_LOHI ? Mips::MultuRxRy16 : Mips::MultRxRy16);
+ std::pair<SDNode*, SDNode*> LoHi = selectMULT(Node, MultOpc, DL, NodeTy,
+ true, true);
+ if (!SDValue(Node, 0).use_empty())
+ ReplaceUses(SDValue(Node, 0), SDValue(LoHi.first, 0));
+
+ if (!SDValue(Node, 1).use_empty())
+ ReplaceUses(SDValue(Node, 1), SDValue(LoHi.second, 0));
+
+ return std::make_pair(true, nullptr);
+ }
+
+ case ISD::MULHS:
+ case ISD::MULHU: {
+ MultOpc = (Opcode == ISD::MULHU ? Mips::MultuRxRy16 : Mips::MultRxRy16);
+ SDNode *Result = selectMULT(Node, MultOpc, DL, NodeTy, false, true).second;
+ return std::make_pair(true, Result);
+ }
+ }
+
+ return std::make_pair(false, nullptr);
+}
+
+FunctionPass *llvm::createMips16ISelDag(MipsTargetMachine &TM) {
+ return new Mips16DAGToDAGISel(TM);
+}
diff --git a/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.h b/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.h
new file mode 100644
index 0000000..e653b39
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.h
@@ -0,0 +1,53 @@
+//===---- Mips16ISelDAGToDAG.h - A Dag to Dag Inst Selector for Mips ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Subclass of MipsDAGToDAGISel specialized for mips16.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPS16ISELDAGTODAG_H
+#define MIPS16ISELDAGTODAG_H
+
+#include "MipsISelDAGToDAG.h"
+
+namespace llvm {
+
+class Mips16DAGToDAGISel : public MipsDAGToDAGISel {
+public:
+ explicit Mips16DAGToDAGISel(MipsTargetMachine &TM) : MipsDAGToDAGISel(TM) {}
+
+private:
+ std::pair<SDNode*, SDNode*> selectMULT(SDNode *N, unsigned Opc, SDLoc DL,
+ EVT Ty, bool HasLo, bool HasHi);
+
+ SDValue getMips16SPAliasReg();
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getMips16SPRefReg(SDNode *Parent, SDValue &AliasReg);
+
+ bool selectAddr16(SDNode *Parent, SDValue N, SDValue &Base,
+ SDValue &Offset, SDValue &Alias) override;
+
+ std::pair<bool, SDNode*> selectNode(SDNode *Node) override;
+
+ void processFunctionAfterISel(MachineFunction &MF) override;
+
+ // Insert instructions to initialize the global base register in the
+ // first MBB of the function.
+ void initGlobalBaseReg(MachineFunction &MF);
+
+ void initMips16SPAliasReg(MachineFunction &MF);
+};
+
+FunctionPass *createMips16ISelDag(MipsTargetMachine &TM);
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.cpp b/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.cpp
new file mode 100644
index 0000000..587925d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.cpp
@@ -0,0 +1,792 @@
+//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Subclass of MipsTargetLowering specialized for mips16.
+//
+//===----------------------------------------------------------------------===//
+#include "Mips16ISelLowering.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MipsRegisterInfo.h"
+#include "MipsTargetMachine.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include <string>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-lower"
+
+static cl::opt<bool> DontExpandCondPseudos16(
+ "mips16-dont-expand-cond-pseudo",
+ cl::init(false),
+ cl::desc("Dont expand conditional move related "
+ "pseudos for Mips 16"),
+ cl::Hidden);
+
+namespace {
+struct Mips16Libcall {
+ RTLIB::Libcall Libcall;
+ const char *Name;
+
+ bool operator<(const Mips16Libcall &RHS) const {
+ return std::strcmp(Name, RHS.Name) < 0;
+ }
+};
+
+struct Mips16IntrinsicHelperType{
+ const char* Name;
+ const char* Helper;
+
+ bool operator<(const Mips16IntrinsicHelperType &RHS) const {
+ return std::strcmp(Name, RHS.Name) < 0;
+ }
+ bool operator==(const Mips16IntrinsicHelperType &RHS) const {
+ return std::strcmp(Name, RHS.Name) == 0;
+ }
+};
+}
+
+// Libcalls for which no helper is generated. Sorted by name for binary search.
+static const Mips16Libcall HardFloatLibCalls[] = {
+ { RTLIB::ADD_F64, "__mips16_adddf3" },
+ { RTLIB::ADD_F32, "__mips16_addsf3" },
+ { RTLIB::DIV_F64, "__mips16_divdf3" },
+ { RTLIB::DIV_F32, "__mips16_divsf3" },
+ { RTLIB::OEQ_F64, "__mips16_eqdf2" },
+ { RTLIB::OEQ_F32, "__mips16_eqsf2" },
+ { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
+ { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
+ { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
+ { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
+ { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
+ { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
+ { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
+ { RTLIB::OGE_F64, "__mips16_gedf2" },
+ { RTLIB::OGE_F32, "__mips16_gesf2" },
+ { RTLIB::OGT_F64, "__mips16_gtdf2" },
+ { RTLIB::OGT_F32, "__mips16_gtsf2" },
+ { RTLIB::OLE_F64, "__mips16_ledf2" },
+ { RTLIB::OLE_F32, "__mips16_lesf2" },
+ { RTLIB::OLT_F64, "__mips16_ltdf2" },
+ { RTLIB::OLT_F32, "__mips16_ltsf2" },
+ { RTLIB::MUL_F64, "__mips16_muldf3" },
+ { RTLIB::MUL_F32, "__mips16_mulsf3" },
+ { RTLIB::UNE_F64, "__mips16_nedf2" },
+ { RTLIB::UNE_F32, "__mips16_nesf2" },
+ { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
+ { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
+ { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
+ { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
+ { RTLIB::SUB_F64, "__mips16_subdf3" },
+ { RTLIB::SUB_F32, "__mips16_subsf3" },
+ { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
+ { RTLIB::UO_F64, "__mips16_unorddf2" },
+ { RTLIB::UO_F32, "__mips16_unordsf2" }
+};
+
+static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
+ {"__fixunsdfsi", "__mips16_call_stub_2" },
+ {"ceil", "__mips16_call_stub_df_2"},
+ {"ceilf", "__mips16_call_stub_sf_1"},
+ {"copysign", "__mips16_call_stub_df_10"},
+ {"copysignf", "__mips16_call_stub_sf_5"},
+ {"cos", "__mips16_call_stub_df_2"},
+ {"cosf", "__mips16_call_stub_sf_1"},
+ {"exp2", "__mips16_call_stub_df_2"},
+ {"exp2f", "__mips16_call_stub_sf_1"},
+ {"floor", "__mips16_call_stub_df_2"},
+ {"floorf", "__mips16_call_stub_sf_1"},
+ {"log2", "__mips16_call_stub_df_2"},
+ {"log2f", "__mips16_call_stub_sf_1"},
+ {"nearbyint", "__mips16_call_stub_df_2"},
+ {"nearbyintf", "__mips16_call_stub_sf_1"},
+ {"rint", "__mips16_call_stub_df_2"},
+ {"rintf", "__mips16_call_stub_sf_1"},
+ {"sin", "__mips16_call_stub_df_2"},
+ {"sinf", "__mips16_call_stub_sf_1"},
+ {"sqrt", "__mips16_call_stub_df_2"},
+ {"sqrtf", "__mips16_call_stub_sf_1"},
+ {"trunc", "__mips16_call_stub_df_2"},
+ {"truncf", "__mips16_call_stub_sf_1"},
+};
+
+Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM,
+ const MipsSubtarget &STI)
+ : MipsTargetLowering(TM, STI) {
+
+ // Set up the register classes
+ addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
+
+ if (!TM.Options.UseSoftFloat)
+ setMips16HardFloatLibCalls();
+
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
+
+ setOperationAction(ISD::ROTR, MVT::i32, Expand);
+ setOperationAction(ISD::ROTR, MVT::i64, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i64, Expand);
+
+ computeRegisterProperties();
+}
+
+const MipsTargetLowering *
+llvm::createMips16TargetLowering(MipsTargetMachine &TM,
+ const MipsSubtarget &STI) {
+ return new Mips16TargetLowering(TM, STI);
+}
+
+bool
+Mips16TargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
+ unsigned,
+ bool *Fast) const {
+ return false;
+}
+
+MachineBasicBlock *
+Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ switch (MI->getOpcode()) {
+ default:
+ return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
+ case Mips::SelBeqZ:
+ return emitSel16(Mips::BeqzRxImm16, MI, BB);
+ case Mips::SelBneZ:
+ return emitSel16(Mips::BnezRxImm16, MI, BB);
+ case Mips::SelTBteqZCmpi:
+ return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB);
+ case Mips::SelTBteqZSlti:
+ return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB);
+ case Mips::SelTBteqZSltiu:
+ return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB);
+ case Mips::SelTBtneZCmpi:
+ return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB);
+ case Mips::SelTBtneZSlti:
+ return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB);
+ case Mips::SelTBtneZSltiu:
+ return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB);
+ case Mips::SelTBteqZCmp:
+ return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
+ case Mips::SelTBteqZSlt:
+ return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
+ case Mips::SelTBteqZSltu:
+ return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
+ case Mips::SelTBtneZCmp:
+ return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
+ case Mips::SelTBtneZSlt:
+ return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
+ case Mips::SelTBtneZSltu:
+ return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
+ case Mips::BteqzT8CmpX16:
+ return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
+ case Mips::BteqzT8SltX16:
+ return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
+ case Mips::BteqzT8SltuX16:
+ // TBD: figure out a way to get this or remove the instruction
+ // altogether.
+ return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
+ case Mips::BtnezT8CmpX16:
+ return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
+ case Mips::BtnezT8SltX16:
+ return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
+ case Mips::BtnezT8SltuX16:
+ // TBD: figure out a way to get this or remove the instruction
+ // altogether.
+ return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
+ case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
+ Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
+ case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
+ Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
+ case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
+ Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
+ case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
+ Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
+ case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
+ Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
+ case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
+ Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
+ break;
+ case Mips::SltCCRxRy16:
+ return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
+ break;
+ case Mips::SltiCCRxImmX16:
+ return emitFEXT_CCRXI16_ins
+ (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
+ case Mips::SltiuCCRxImmX16:
+ return emitFEXT_CCRXI16_ins
+ (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
+ case Mips::SltuCCRxRy16:
+ return emitFEXT_CCRX16_ins
+ (Mips::SltuRxRy16, MI, BB);
+ }
+}
+
+bool Mips16TargetLowering::
+isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
+ unsigned NextStackOffset,
+ const MipsFunctionInfo& FI) const {
+ // No tail call optimization for mips16.
+ return false;
+}
+
+void Mips16TargetLowering::setMips16HardFloatLibCalls() {
+ for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
+ assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
+ "Array not sorted!");
+ if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
+ setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
+ }
+
+ setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
+ setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
+}
+
+//
+// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
+// cleaner way to do all of this but it will have to wait until the traditional
+// gcc mechanism is completed.
+//
+// For Pic, in order for Mips16 code to call Mips32 code which according the abi
+// have either arguments or returned values placed in floating point registers,
+// we use a set of helper functions. (This includes functions which return type
+// complex which on Mips are returned in a pair of floating point registers).
+//
+// This is an encoding that we inherited from gcc.
+// In Mips traditional O32, N32 ABI, floating point numbers are passed in
+// floating point argument registers 1,2 only when the first and optionally
+// the second arguments are float (sf) or double (df).
+// For Mips16 we are only concerned with the situations where floating point
+// arguments are being passed in floating point registers by the ABI, because
+// Mips16 mode code cannot execute floating point instructions to load those
+// values and hence helper functions are needed.
+// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
+// the helper function suffixs for these are:
+// 0, 1, 5, 9, 2, 6, 10
+// this suffix can then be calculated as follows:
+// for a given argument Arg:
+// Arg1x, Arg2x = 1 : Arg is sf
+// 2 : Arg is df
+// 0: Arg is neither sf or df
+// So this stub is the string for number Arg1x + Arg2x*4.
+// However not all numbers between 0 and 10 are possible, we check anyway and
+// assert if the impossible exists.
+//
+
+unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
+ (ArgListTy &Args) const {
+ unsigned int resultNum = 0;
+ if (Args.size() >= 1) {
+ Type *t = Args[0].Ty;
+ if (t->isFloatTy()) {
+ resultNum = 1;
+ }
+ else if (t->isDoubleTy()) {
+ resultNum = 2;
+ }
+ }
+ if (resultNum) {
+ if (Args.size() >=2) {
+ Type *t = Args[1].Ty;
+ if (t->isFloatTy()) {
+ resultNum += 4;
+ }
+ else if (t->isDoubleTy()) {
+ resultNum += 8;
+ }
+ }
+ }
+ return resultNum;
+}
+
+//
+// prefixs are attached to stub numbers depending on the return type .
+// return type: float sf_
+// double df_
+// single complex sc_
+// double complext dc_
+// others NO PREFIX
+//
+//
+// The full name of a helper function is__mips16_call_stub +
+// return type dependent prefix + stub number
+//
+//
+// This is something that probably should be in a different source file and
+// perhaps done differently but my main purpose is to not waste runtime
+// on something that we can enumerate in the source. Another possibility is
+// to have a python script to generate these mapping tables. This will do
+// for now. There are a whole series of helper function mapping arrays, one
+// for each return type class as outlined above. There there are 11 possible
+// entries. Ones with 0 are ones which should never be selected
+//
+// All the arrays are similar except for ones which return neither
+// sf, df, sc, dc, in which only care about ones which have sf or df as a
+// first parameter.
+//
+#define P_ "__mips16_call_stub_"
+#define MAX_STUB_NUMBER 10
+#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
+#define T P "0" , T1
+#define P P_
+static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
+ {nullptr, T1 };
+#undef P
+#define P P_ "sf_"
+static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
+ { T };
+#undef P
+#define P P_ "df_"
+static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
+ { T };
+#undef P
+#define P P_ "sc_"
+static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
+ { T };
+#undef P
+#define P P_ "dc_"
+static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
+ { T };
+#undef P
+#undef P_
+
+
+const char* Mips16TargetLowering::
+ getMips16HelperFunction
+ (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
+ const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
+#ifndef NDEBUG
+ const unsigned int maxStubNum = 10;
+ assert(stubNum <= maxStubNum);
+ const bool validStubNum[maxStubNum+1] =
+ {true, true, true, false, false, true, true, false, false, true, true};
+ assert(validStubNum[stubNum]);
+#endif
+ const char *result;
+ if (RetTy->isFloatTy()) {
+ result = sfMips16Helper[stubNum];
+ }
+ else if (RetTy ->isDoubleTy()) {
+ result = dfMips16Helper[stubNum];
+ }
+ else if (RetTy->isStructTy()) {
+ // check if it's complex
+ if (RetTy->getNumContainedTypes() == 2) {
+ if ((RetTy->getContainedType(0)->isFloatTy()) &&
+ (RetTy->getContainedType(1)->isFloatTy())) {
+ result = scMips16Helper[stubNum];
+ }
+ else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
+ (RetTy->getContainedType(1)->isDoubleTy())) {
+ result = dcMips16Helper[stubNum];
+ }
+ else {
+ llvm_unreachable("Uncovered condition");
+ }
+ }
+ else {
+ llvm_unreachable("Uncovered condition");
+ }
+ }
+ else {
+ if (stubNum == 0) {
+ needHelper = false;
+ return "";
+ }
+ result = vMips16Helper[stubNum];
+ }
+ needHelper = true;
+ return result;
+}
+
+void Mips16TargetLowering::
+getOpndList(SmallVectorImpl<SDValue> &Ops,
+ std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
+ bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
+ CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
+ SelectionDAG &DAG = CLI.DAG;
+ MachineFunction &MF = DAG.getMachineFunction();
+ MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
+ const char* Mips16HelperFunction = nullptr;
+ bool NeedMips16Helper = false;
+
+ if (Subtarget.inMips16HardFloat()) {
+ //
+ // currently we don't have symbols tagged with the mips16 or mips32
+ // qualifier so we will assume that we don't know what kind it is.
+ // and generate the helper
+ //
+ bool LookupHelper = true;
+ if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
+ Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
+
+ if (std::binary_search(std::begin(HardFloatLibCalls),
+ std::end(HardFloatLibCalls), Find))
+ LookupHelper = false;
+ else {
+ const char *Symbol = S->getSymbol();
+ Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" };
+ const Mips16HardFloatInfo::FuncSignature *Signature =
+ Mips16HardFloatInfo::findFuncSignature(Symbol);
+ if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) ==
+ FuncInfo->StubsNeeded.end()))) {
+ FuncInfo->StubsNeeded[Symbol] = Signature;
+ //
+ // S2 is normally saved if the stub is for a function which
+ // returns a float or double value and is not otherwise. This is
+ // because more work is required after the function the stub
+ // is calling completes, and so the stub cannot directly return
+ // and the stub has no stack space to store the return address so
+ // S2 is used for that purpose.
+ // In order to take advantage of not saving S2, we need to also
+ // optimize the call in the stub and this requires some further
+ // functionality in MipsAsmPrinter which we don't have yet.
+ // So for now we always save S2. The optimization will be done
+ // in a follow-on patch.
+ //
+ if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet))
+ FuncInfo->setSaveS2();
+ }
+ // one more look at list of intrinsics
+ const Mips16IntrinsicHelperType *Helper =
+ std::lower_bound(std::begin(Mips16IntrinsicHelper),
+ std::end(Mips16IntrinsicHelper), IntrinsicFind);
+ if (Helper != std::end(Mips16IntrinsicHelper) &&
+ *Helper == IntrinsicFind) {
+ Mips16HelperFunction = Helper->Helper;
+ NeedMips16Helper = true;
+ LookupHelper = false;
+ }
+
+ }
+ } else if (GlobalAddressSDNode *G =
+ dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
+ Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
+ G->getGlobal()->getName().data() };
+
+ if (std::binary_search(std::begin(HardFloatLibCalls),
+ std::end(HardFloatLibCalls), Find))
+ LookupHelper = false;
+ }
+ if (LookupHelper)
+ Mips16HelperFunction =
+ getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper);
+ }
+
+ SDValue JumpTarget = Callee;
+
+ // T9 should contain the address of the callee function if
+ // -reloction-model=pic or it is an indirect call.
+ if (IsPICCall || !GlobalOrExternal) {
+ unsigned V0Reg = Mips::V0;
+ if (NeedMips16Helper) {
+ RegsToPass.push_front(std::make_pair(V0Reg, Callee));
+ JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
+ ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
+ JumpTarget = getAddrGlobal(S, JumpTarget.getValueType(), DAG,
+ MipsII::MO_GOT, Chain,
+ FuncInfo->callPtrInfo(S->getSymbol()));
+ } else
+ RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
+ }
+
+ Ops.push_back(JumpTarget);
+
+ MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
+ InternalLinkage, CLI, Callee, Chain);
+}
+
+MachineBasicBlock *Mips16TargetLowering::
+emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
+ if (DontExpandCondPseudos16)
+ return BB;
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // setcc r1, r2, r3
+ // bNE r1, r0, copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
+ .addMBB(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
+ // ...
+ BB = sinkMBB;
+
+ BuildMI(*BB, BB->begin(), DL,
+ TII->get(Mips::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *Mips16TargetLowering::emitSelT16
+ (unsigned Opc1, unsigned Opc2,
+ MachineInstr *MI, MachineBasicBlock *BB) const {
+ if (DontExpandCondPseudos16)
+ return BB;
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // setcc r1, r2, r3
+ // bNE r1, r0, copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
+ .addReg(MI->getOperand(4).getReg());
+ BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
+ // ...
+ BB = sinkMBB;
+
+ BuildMI(*BB, BB->begin(), DL,
+ TII->get(Mips::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+
+}
+
+MachineBasicBlock *Mips16TargetLowering::emitSeliT16
+ (unsigned Opc1, unsigned Opc2,
+ MachineInstr *MI, MachineBasicBlock *BB) const {
+ if (DontExpandCondPseudos16)
+ return BB;
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // setcc r1, r2, r3
+ // bNE r1, r0, copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
+ .addImm(MI->getOperand(4).getImm());
+ BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
+ // ...
+ BB = sinkMBB;
+
+ BuildMI(*BB, BB->begin(), DL,
+ TII->get(Mips::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+
+}
+
+MachineBasicBlock
+ *Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
+ MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ if (DontExpandCondPseudos16)
+ return BB;
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ unsigned regX = MI->getOperand(0).getReg();
+ unsigned regY = MI->getOperand(1).getReg();
+ MachineBasicBlock *target = MI->getOperand(2).getMBB();
+ BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
+ .addReg(regY);
+ BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
+ unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
+ MachineInstr *MI, MachineBasicBlock *BB) const {
+ if (DontExpandCondPseudos16)
+ return BB;
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ unsigned regX = MI->getOperand(0).getReg();
+ int64_t imm = MI->getOperand(1).getImm();
+ MachineBasicBlock *target = MI->getOperand(2).getMBB();
+ unsigned CmpOpc;
+ if (isUInt<8>(imm))
+ CmpOpc = CmpiOpc;
+ else if ((!ImmSigned && isUInt<16>(imm)) ||
+ (ImmSigned && isInt<16>(imm)))
+ CmpOpc = CmpiXOpc;
+ else
+ llvm_unreachable("immediate field not usable");
+ BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
+ .addImm(imm);
+ BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+static unsigned Mips16WhichOp8uOr16simm
+ (unsigned shortOp, unsigned longOp, int64_t Imm) {
+ if (isUInt<8>(Imm))
+ return shortOp;
+ else if (isInt<16>(Imm))
+ return longOp;
+ else
+ llvm_unreachable("immediate field not usable");
+}
+
+MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
+ unsigned SltOpc,
+ MachineInstr *MI, MachineBasicBlock *BB) const {
+ if (DontExpandCondPseudos16)
+ return BB;
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ unsigned CC = MI->getOperand(0).getReg();
+ unsigned regX = MI->getOperand(1).getReg();
+ unsigned regY = MI->getOperand(2).getReg();
+ BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(SltOpc)).addReg(regX).addReg(
+ regY);
+ BuildMI(*BB, MI, MI->getDebugLoc(),
+ TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
+ unsigned SltiOpc, unsigned SltiXOpc,
+ MachineInstr *MI, MachineBasicBlock *BB )const {
+ if (DontExpandCondPseudos16)
+ return BB;
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ unsigned CC = MI->getOperand(0).getReg();
+ unsigned regX = MI->getOperand(1).getReg();
+ int64_t Imm = MI->getOperand(2).getImm();
+ unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
+ BuildMI(*BB, MI, MI->getDebugLoc(),
+ TII->get(SltOpc)).addReg(regX).addImm(Imm);
+ BuildMI(*BB, MI, MI->getDebugLoc(),
+ TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+
+}
diff --git a/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.h b/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.h
new file mode 100644
index 0000000..e7e4d7f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.h
@@ -0,0 +1,81 @@
+//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Subclass of MipsTargetLowering specialized for mips16.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPS16ISELLOWERING_H
+#define MIPS16ISELLOWERING_H
+
+#include "MipsISelLowering.h"
+
+namespace llvm {
+ class Mips16TargetLowering : public MipsTargetLowering {
+ public:
+ explicit Mips16TargetLowering(MipsTargetMachine &TM,
+ const MipsSubtarget &STI);
+
+ bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
+ bool *Fast) const override;
+
+ MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const override;
+
+ private:
+ bool isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
+ unsigned NextStackOffset,
+ const MipsFunctionInfo& FI) const override;
+
+ void setMips16HardFloatLibCalls();
+
+ unsigned int
+ getMips16HelperFunctionStubNumber(ArgListTy &Args) const;
+
+ const char *getMips16HelperFunction
+ (Type* RetTy, ArgListTy &Args, bool &needHelper) const;
+
+ void
+ getOpndList(SmallVectorImpl<SDValue> &Ops,
+ std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
+ bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
+ CallLoweringInfo &CLI, SDValue Callee,
+ SDValue Chain) const override;
+
+ MachineBasicBlock *emitSel16(unsigned Opc, MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *emitSeliT16(unsigned Opc1, unsigned Opc2,
+ MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *emitSelT16(unsigned Opc1, unsigned Opc2,
+ MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
+ MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *emitFEXT_T8I8I16_ins(
+ unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
+ MachineInstr *MI, MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *emitFEXT_CCRX16_ins(
+ unsigned SltOpc,
+ MachineInstr *MI, MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *emitFEXT_CCRXI16_ins(
+ unsigned SltiOpc, unsigned SltiXOpc,
+ MachineInstr *MI, MachineBasicBlock *BB )const;
+ };
+}
+
+#endif // Mips16ISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/Mips/Mips16InstrFormats.td b/contrib/llvm/lib/Target/Mips/Mips16InstrFormats.td
new file mode 100644
index 0000000..da3a1f1
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16InstrFormats.td
@@ -0,0 +1,640 @@
+//===- Mips16InstrFormats.td - Mips Instruction Formats ----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Describe MIPS instructions format
+//
+// CPU INSTRUCTION FORMATS
+//
+// funct or f Function field
+//
+// immediate 4-,5-,8- or 11-bit immediate, branch displacement, or
+// or imm address displacement
+//
+// op 5-bit major operation code
+//
+// rx 3-bit source or destination register
+//
+// ry 3-bit source or destination register
+//
+// rz 3-bit source or destination register
+//
+// sa 3- or 5-bit shift amount
+//
+//===----------------------------------------------------------------------===//
+
+
+// Base class for Mips 16 Format
+// This class does not depend on the instruction size
+//
+class MipsInst16_Base<dag outs, dag ins, string asmstr, list<dag> pattern,
+ InstrItinClass itin>: Instruction
+{
+
+ let Namespace = "Mips";
+
+ let OutOperandList = outs;
+ let InOperandList = ins;
+
+ let AsmString = asmstr;
+ let Pattern = pattern;
+ let Itinerary = itin;
+
+ let Predicates = [InMips16Mode];
+}
+
+//
+// Generic Mips 16 Format
+//
+class MipsInst16<dag outs, dag ins, string asmstr, list<dag> pattern,
+ InstrItinClass itin>:
+ MipsInst16_Base<outs, ins, asmstr, pattern, itin>
+{
+ field bits<16> Inst;
+ bits<5> Opcode = 0;
+
+ // Top 5 bits are the 'opcode' field
+ let Inst{15-11} = Opcode;
+
+ let Size=2;
+ field bits<16> SoftFail = 0;
+}
+
+//
+// For 32 bit extended instruction forms.
+//
+class MipsInst16_32<dag outs, dag ins, string asmstr, list<dag> pattern,
+ InstrItinClass itin>:
+ MipsInst16_Base<outs, ins, asmstr, pattern, itin>
+{
+ field bits<32> Inst;
+
+ let Size=4;
+ field bits<32> SoftFail = 0;
+}
+
+class MipsInst16_EXTEND<dag outs, dag ins, string asmstr, list<dag> pattern,
+ InstrItinClass itin>:
+ MipsInst16_32<outs, ins, asmstr, pattern, itin>
+{
+ let Inst{31-27} = 0b11110;
+}
+
+
+
+// Mips Pseudo Instructions Format
+class MipsPseudo16<dag outs, dag ins, string asmstr, list<dag> pattern>:
+ MipsInst16<outs, ins, asmstr, pattern, IIPseudo> {
+ let isCodeGenOnly = 1;
+ let isPseudo = 1;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Format I instruction class in Mips : <|opcode|imm11|>
+//===----------------------------------------------------------------------===//
+
+class FI16<bits<5> op, dag outs, dag ins, string asmstr, list<dag> pattern,
+ InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<11> imm11;
+
+ let Opcode = op;
+
+ let Inst{10-0} = imm11;
+}
+
+//===----------------------------------------------------------------------===//
+// Format RI instruction class in Mips : <|opcode|rx|imm8|>
+//===----------------------------------------------------------------------===//
+
+class FRI16<bits<5> op, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<3> rx;
+ bits<8> imm8;
+
+ let Opcode = op;
+
+ let Inst{10-8} = rx;
+ let Inst{7-0} = imm8;
+}
+
+//===----------------------------------------------------------------------===//
+// Format RR instruction class in Mips : <|opcode|rx|ry|funct|>
+//===----------------------------------------------------------------------===//
+
+class FRR16<bits<5> _funct, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<3> rx;
+ bits<3> ry;
+ bits<5> funct;
+
+ let Opcode = 0b11101;
+ let funct = _funct;
+
+ let Inst{10-8} = rx;
+ let Inst{7-5} = ry;
+ let Inst{4-0} = funct;
+}
+
+class FRRBreak16<dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<6> Code;
+ bits<5> funct;
+
+ let Opcode = 0b11101;
+ let funct = 0b00101;
+
+ let Inst{10-5} = Code;
+ let Inst{4-0} = funct;
+}
+
+//
+// For conversion functions.
+//
+class FRR_SF16<bits<5> _funct, bits<3> _subfunct, dag outs, dag ins,
+ string asmstr, list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<3> rx;
+ bits<3> subfunct;
+ bits<5> funct;
+
+ let Opcode = 0b11101; // RR
+ let funct = _funct;
+ let subfunct = _subfunct;
+
+ let Inst{10-8} = rx;
+ let Inst{7-5} = subfunct;
+ let Inst{4-0} = funct;
+}
+
+//
+// just used for breakpoint (hardware and software) instructions.
+//
+class FC16<bits<5> _funct, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<6> _code; // code is a keyword in tablegen
+ bits<5> funct;
+
+ let Opcode = 0b11101; // RR
+ let funct = _funct;
+
+ let Inst{10-5} = _code;
+ let Inst{4-0} = funct;
+}
+
+//
+// J(AL)R(C) subformat
+//
+class FRR16_JALRC<bits<1> _nd, bits<1> _l, bits<1> r_a,
+ dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<3> rx;
+ bits<1> nd;
+ bits<1> l;
+ bits<1> ra;
+
+ let nd = _nd;
+ let l = _l;
+ let ra = r_a;
+
+ let Opcode = 0b11101;
+
+ let Inst{10-8} = rx;
+ let Inst{7} = nd;
+ let Inst{6} = l;
+ let Inst{5} = ra;
+ let Inst{4-0} = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Format RRI instruction class in Mips : <|opcode|rx|ry|imm5|>
+//===----------------------------------------------------------------------===//
+
+class FRRI16<bits<5> op, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<3> rx;
+ bits<3> ry;
+ bits<5> imm5;
+
+ let Opcode = op;
+
+
+ let Inst{10-8} = rx;
+ let Inst{7-5} = ry;
+ let Inst{4-0} = imm5;
+}
+
+//===----------------------------------------------------------------------===//
+// Format RRR instruction class in Mips : <|opcode|rx|ry|rz|f|>
+//===----------------------------------------------------------------------===//
+
+class FRRR16<bits<2> _f, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<3> rx;
+ bits<3> ry;
+ bits<3> rz;
+ bits<2> f;
+
+ let Opcode = 0b11100;
+ let f = _f;
+
+ let Inst{10-8} = rx;
+ let Inst{7-5} = ry;
+ let Inst{4-2} = rz;
+ let Inst{1-0} = f;
+}
+
+//===----------------------------------------------------------------------===//
+// Format RRI-A instruction class in Mips : <|opcode|rx|ry|f|imm4|>
+//===----------------------------------------------------------------------===//
+
+class FRRI_A16<bits<1> _f, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<3> rx;
+ bits<3> ry;
+ bits<1> f;
+ bits<4> imm4;
+
+ let Opcode = 0b01000;
+ let f = _f;
+
+ let Inst{10-8} = rx;
+ let Inst{7-5} = ry;
+ let Inst{4} = f;
+ let Inst{3-0} = imm4;
+}
+
+//===----------------------------------------------------------------------===//
+// Format Shift instruction class in Mips : <|opcode|rx|ry|sa|f|>
+//===----------------------------------------------------------------------===//
+
+class FSHIFT16<bits<2> _f, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<3> rx;
+ bits<3> ry;
+ bits<3> sa;
+ bits<2> f;
+
+ let Opcode = 0b00110;
+ let f = _f;
+
+ let Inst{10-8} = rx;
+ let Inst{7-5} = ry;
+ let Inst{4-2} = sa;
+ let Inst{1-0} = f;
+}
+
+//===----------------------------------------------------------------------===//
+// Format i8 instruction class in Mips : <|opcode|funct|imm8>
+//===----------------------------------------------------------------------===//
+
+class FI816<bits<3> _func, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<3> func;
+ bits<8> imm8;
+
+ let Opcode = 0b01100;
+ let func = _func;
+
+ let Inst{10-8} = func;
+ let Inst{7-0} = imm8;
+}
+
+//===----------------------------------------------------------------------===//
+// Format i8_MOVR32 instruction class in Mips : <|opcode|func|ry|r32>
+//===----------------------------------------------------------------------===//
+
+class FI8_MOVR3216<dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+
+ bits<4> ry;
+ bits<4> r32;
+
+ let Opcode = 0b01100;
+
+ let Inst{10-8} = 0b111;
+ let Inst{7-4} = ry;
+ let Inst{3-0} = r32;
+
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Format i8_MOV32R instruction class in Mips : <|opcode|func|r32|rz>
+//===----------------------------------------------------------------------===//
+
+class FI8_MOV32R16<dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+
+ bits<3> func;
+ bits<5> r32;
+ bits<3> rz;
+
+
+ let Opcode = 0b01100;
+
+ let Inst{10-8} = 0b101;
+ let Inst{7-5} = r32{2-0};
+ let Inst{4-3} = r32{4-3};
+ let Inst{2-0} = rz;
+
+}
+
+//===----------------------------------------------------------------------===//
+// Format i8_SVRS instruction class in Mips :
+// <|opcode|svrs|s|ra|s0|s1|framesize>
+//===----------------------------------------------------------------------===//
+
+class FI8_SVRS16<bits<1> _s, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16<outs, ins, asmstr, pattern, itin>
+{
+ bits<1> s;
+ bits<1> ra = 0;
+ bits<1> s0 = 0;
+ bits<1> s1 = 0;
+ bits<4> framesize = 0;
+
+ let s =_s;
+ let Opcode = 0b01100;
+
+ let Inst{10-8} = 0b100;
+ let Inst{7} = s;
+ let Inst{6} = ra;
+ let Inst{5} = s0;
+ let Inst{4} = s1;
+ let Inst{3-0} = framesize;
+
+}
+
+//===----------------------------------------------------------------------===//
+// Format JAL instruction class in Mips16 :
+// <|opcode|svrs|s|ra|s0|s1|framesize>
+//===----------------------------------------------------------------------===//
+
+class FJAL16<bits<1> _X, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16_32<outs, ins, asmstr, pattern, itin>
+{
+ bits<1> X;
+ bits<26> imm26;
+
+
+ let X = _X;
+
+ let Inst{31-27} = 0b00011;
+ let Inst{26} = X;
+ let Inst{25-21} = imm26{20-16};
+ let Inst{20-16} = imm26{25-21};
+ let Inst{15-0} = imm26{15-0};
+
+}
+
+//===----------------------------------------------------------------------===//
+// Format EXT-I instruction class in Mips16 :
+// <|EXTEND|imm10:5|imm15:11|op|0|0|0|0|0|0|imm4:0>
+//===----------------------------------------------------------------------===//
+
+class FEXT_I16<bits<5> _eop, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16_EXTEND<outs, ins, asmstr, pattern, itin>
+{
+ bits<16> imm16;
+ bits<5> eop;
+
+ let eop = _eop;
+
+ let Inst{26-21} = imm16{10-5};
+ let Inst{20-16} = imm16{15-11};
+ let Inst{15-11} = eop;
+ let Inst{10-5} = 0;
+ let Inst{4-0} = imm16{4-0};
+
+}
+
+//===----------------------------------------------------------------------===//
+// Format ASMACRO instruction class in Mips16 :
+// <EXTEND|select|p4|p3|RRR|p2|p1|p0>
+//===----------------------------------------------------------------------===//
+
+class FASMACRO16<dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16_EXTEND<outs, ins, asmstr, pattern, itin>
+{
+ bits<3> select;
+ bits<3> p4;
+ bits<5> p3;
+ bits<5> RRR = 0b11100;
+ bits<3> p2;
+ bits<3> p1;
+ bits<5> p0;
+
+
+ let Inst{26-24} = select;
+ let Inst{23-21} = p4;
+ let Inst{20-16} = p3;
+ let Inst{15-11} = RRR;
+ let Inst{10-8} = p2;
+ let Inst{7-5} = p1;
+ let Inst{4-0} = p0;
+
+}
+
+
+//===----------------------------------------------------------------------===//
+// Format EXT-RI instruction class in Mips16 :
+// <|EXTEND|imm10:5|imm15:11|op|rx|0|0|0|imm4:0>
+//===----------------------------------------------------------------------===//
+
+class FEXT_RI16<bits<5> _op, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16_EXTEND<outs, ins, asmstr, pattern, itin>
+{
+ bits<16> imm16;
+ bits<5> op;
+ bits<3> rx;
+
+ let op = _op;
+
+ let Inst{26-21} = imm16{10-5};
+ let Inst{20-16} = imm16{15-11};
+ let Inst{15-11} = op;
+ let Inst{10-8} = rx;
+ let Inst{7-5} = 0;
+ let Inst{4-0} = imm16{4-0};
+
+}
+
+//===----------------------------------------------------------------------===//
+// Format EXT-RRI instruction class in Mips16 :
+// <|EXTEND|imm10:5|imm15:11|op|rx|ry|imm4:0>
+//===----------------------------------------------------------------------===//
+
+class FEXT_RRI16<bits<5> _op, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16_EXTEND<outs, ins, asmstr, pattern, itin>
+{
+ bits<5> op;
+ bits<16> imm16;
+ bits<3> rx;
+ bits<3> ry;
+
+ let op=_op;
+
+ let Inst{26-21} = imm16{10-5};
+ let Inst{20-16} = imm16{15-11};
+ let Inst{15-11} = op;
+ let Inst{10-8} = rx;
+ let Inst{7-5} = ry;
+ let Inst{4-0} = imm16{4-0};
+
+}
+
+//===----------------------------------------------------------------------===//
+// Format EXT-RRI-A instruction class in Mips16 :
+// <|EXTEND|imm10:4|imm14:11|RRI-A|rx|ry|f|imm3:0>
+//===----------------------------------------------------------------------===//
+
+class FEXT_RRI_A16<bits<1> _f, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16_EXTEND<outs, ins, asmstr, pattern, itin>
+{
+ bits<15> imm15;
+ bits<3> rx;
+ bits<3> ry;
+ bits<1> f;
+
+ let f = _f;
+
+ let Inst{26-20} = imm15{10-4};
+ let Inst{19-16} = imm15{14-11};
+ let Inst{15-11} = 0b01000;
+ let Inst{10-8} = rx;
+ let Inst{7-5} = ry;
+ let Inst{4} = f;
+ let Inst{3-0} = imm15{3-0};
+
+}
+
+//===----------------------------------------------------------------------===//
+// Format EXT-SHIFT instruction class in Mips16 :
+// <|EXTEND|sa 4:0|s5|0|SHIFT|rx|ry|0|f>
+//===----------------------------------------------------------------------===//
+
+class FEXT_SHIFT16<bits<2> _f, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16_EXTEND<outs, ins, asmstr, pattern, itin>
+{
+ bits<6> sa6;
+ bits<3> rx;
+ bits<3> ry;
+ bits<2> f;
+
+ let f = _f;
+
+ let Inst{26-22} = sa6{4-0};
+ let Inst{21} = sa6{5};
+ let Inst{20-16} = 0;
+ let Inst{15-11} = 0b00110;
+ let Inst{10-8} = rx;
+ let Inst{7-5} = ry;
+ let Inst{4-2} = 0;
+ let Inst{1-0} = f;
+
+}
+
+//===----------------------------------------------------------------------===//
+// Format EXT-I8 instruction class in Mips16 :
+// <|EXTEND|imm10:5|imm15:11|I8|funct|0|imm4:0>
+//===----------------------------------------------------------------------===//
+
+class FEXT_I816<bits<3> _funct, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16_EXTEND<outs, ins, asmstr, pattern, itin>
+{
+ bits<16> imm16;
+ bits<5> I8;
+ bits<3> funct;
+
+ let funct = _funct;
+ let I8 = 0b0110;
+
+ let Inst{26-21} = imm16{10-5};
+ let Inst{20-16} = imm16{15-11};
+ let Inst{15-11} = I8;
+ let Inst{10-8} = funct;
+ let Inst{7-5} = 0;
+ let Inst{4-0} = imm16{4-0};
+
+}
+
+//===----------------------------------------------------------------------===//
+// Format EXT-I8_SVRS instruction class in Mips16 :
+// <|EXTEND|xsregs|framesize7:4|aregs|I8|SVRS|s|ra|s0|s1|framesize3:0>
+//===----------------------------------------------------------------------===//
+
+class FEXT_I8_SVRS16<bits<1> s_, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ MipsInst16_EXTEND<outs, ins, asmstr, pattern, itin>
+{
+ bits<3> xsregs =0;
+ bits<8> framesize =0;
+ bits<3> aregs =0;
+ bits<5> I8 = 0b01100;
+ bits<3> SVRS = 0b100;
+ bits<1> s;
+ bits<1> ra = 0;
+ bits<1> s0 = 0;
+ bits<1> s1 = 0;
+
+ let s= s_;
+
+ let Inst{26-24} = xsregs;
+ let Inst{23-20} = framesize{7-4};
+ let Inst{19} = 0;
+ let Inst{18-16} = aregs;
+ let Inst{15-11} = I8;
+ let Inst{10-8} = SVRS;
+ let Inst{7} = s;
+ let Inst{6} = ra;
+ let Inst{5} = s0;
+ let Inst{4} = s1;
+ let Inst{3-0} = framesize{3-0};
+
+
+}
+
diff --git a/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.cpp b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.cpp
new file mode 100644
index 0000000..4dd9af2
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.cpp
@@ -0,0 +1,519 @@
+
+//===-- Mips16InstrInfo.cpp - Mips16 Instruction Information --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips16 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+#include "Mips16InstrInfo.h"
+#include "InstPrinter/MipsInstPrinter.h"
+#include "MipsMachineFunction.h"
+#include "MipsTargetMachine.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+#include <cctype>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips16-instrinfo"
+
+Mips16InstrInfo::Mips16InstrInfo(const MipsSubtarget &STI)
+ : MipsInstrInfo(STI, Mips::Bimm16), RI(STI) {}
+
+const MipsRegisterInfo &Mips16InstrInfo::getRegisterInfo() const {
+ return RI;
+}
+
+/// isLoadFromStackSlot - If the specified machine instruction is a direct
+/// load from a stack slot, return the virtual or physical register number of
+/// the destination along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than loading from the stack slot.
+unsigned Mips16InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ return 0;
+}
+
+/// isStoreToStackSlot - If the specified machine instruction is a direct
+/// store to a stack slot, return the virtual or physical register number of
+/// the source reg along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than storing to the stack slot.
+unsigned Mips16InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ return 0;
+}
+
+void Mips16InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ unsigned Opc = 0;
+
+ if (Mips::CPU16RegsRegClass.contains(DestReg) &&
+ Mips::GPR32RegClass.contains(SrcReg))
+ Opc = Mips::MoveR3216;
+ else if (Mips::GPR32RegClass.contains(DestReg) &&
+ Mips::CPU16RegsRegClass.contains(SrcReg))
+ Opc = Mips::Move32R16;
+ else if ((SrcReg == Mips::HI0) &&
+ (Mips::CPU16RegsRegClass.contains(DestReg)))
+ Opc = Mips::Mfhi16, SrcReg = 0;
+
+ else if ((SrcReg == Mips::LO0) &&
+ (Mips::CPU16RegsRegClass.contains(DestReg)))
+ Opc = Mips::Mflo16, SrcReg = 0;
+
+
+ assert(Opc && "Cannot copy registers");
+
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc));
+
+ if (DestReg)
+ MIB.addReg(DestReg, RegState::Define);
+
+ if (SrcReg)
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+}
+
+void Mips16InstrInfo::storeRegToStack(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ int64_t Offset) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOStore);
+ unsigned Opc = 0;
+ if (Mips::CPU16RegsRegClass.hasSubClassEq(RC))
+ Opc = Mips::SwRxSpImmX16;
+ assert(Opc && "Register class not handled!");
+ BuildMI(MBB, I, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill)).
+ addFrameIndex(FI).addImm(Offset)
+ .addMemOperand(MMO);
+}
+
+void Mips16InstrInfo::loadRegFromStack(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ int64_t Offset) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOLoad);
+ unsigned Opc = 0;
+
+ if (Mips::CPU16RegsRegClass.hasSubClassEq(RC))
+ Opc = Mips::LwRxSpImmX16;
+ assert(Opc && "Register class not handled!");
+ BuildMI(MBB, I, DL, get(Opc), DestReg).addFrameIndex(FI).addImm(Offset)
+ .addMemOperand(MMO);
+}
+
+bool Mips16InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ MachineBasicBlock &MBB = *MI->getParent();
+ switch(MI->getDesc().getOpcode()) {
+ default:
+ return false;
+ case Mips::RetRA16:
+ ExpandRetRA16(MBB, MI, Mips::JrcRa16);
+ break;
+ }
+
+ MBB.erase(MI);
+ return true;
+}
+
+/// GetOppositeBranchOpc - Return the inverse of the specified
+/// opcode, e.g. turning BEQ to BNE.
+unsigned Mips16InstrInfo::getOppositeBranchOpc(unsigned Opc) const {
+ switch (Opc) {
+ default: llvm_unreachable("Illegal opcode!");
+ case Mips::BeqzRxImmX16: return Mips::BnezRxImmX16;
+ case Mips::BnezRxImmX16: return Mips::BeqzRxImmX16;
+ case Mips::BeqzRxImm16: return Mips::BnezRxImm16;
+ case Mips::BnezRxImm16: return Mips::BeqzRxImm16;
+ case Mips::BteqzT8CmpX16: return Mips::BtnezT8CmpX16;
+ case Mips::BteqzT8SltX16: return Mips::BtnezT8SltX16;
+ case Mips::BteqzT8SltiX16: return Mips::BtnezT8SltiX16;
+ case Mips::Btnez16: return Mips::Bteqz16;
+ case Mips::BtnezX16: return Mips::BteqzX16;
+ case Mips::BtnezT8CmpiX16: return Mips::BteqzT8CmpiX16;
+ case Mips::BtnezT8SltuX16: return Mips::BteqzT8SltuX16;
+ case Mips::BtnezT8SltiuX16: return Mips::BteqzT8SltiuX16;
+ case Mips::Bteqz16: return Mips::Btnez16;
+ case Mips::BteqzX16: return Mips::BtnezX16;
+ case Mips::BteqzT8CmpiX16: return Mips::BtnezT8CmpiX16;
+ case Mips::BteqzT8SltuX16: return Mips::BtnezT8SltuX16;
+ case Mips::BteqzT8SltiuX16: return Mips::BtnezT8SltiuX16;
+ case Mips::BtnezT8CmpX16: return Mips::BteqzT8CmpX16;
+ case Mips::BtnezT8SltX16: return Mips::BteqzT8SltX16;
+ case Mips::BtnezT8SltiX16: return Mips::BteqzT8SltiX16;
+ }
+ assert(false && "Implement this function.");
+ return 0;
+}
+
+static void addSaveRestoreRegs(MachineInstrBuilder &MIB,
+ const std::vector<CalleeSavedInfo> &CSI,
+ unsigned Flags = 0) {
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ // Add the callee-saved register as live-in. Do not add if the register is
+ // RA and return address is taken, because it has already been added in
+ // method MipsTargetLowering::LowerRETURNADDR.
+ // It's killed at the spill, unless the register is RA and return address
+ // is taken.
+ unsigned Reg = CSI[e-i-1].getReg();
+ switch (Reg) {
+ case Mips::RA:
+ case Mips::S0:
+ case Mips::S1:
+ MIB.addReg(Reg, Flags);
+ break;
+ case Mips::S2:
+ break;
+ default:
+ llvm_unreachable("unexpected mips16 callee saved register");
+
+ }
+ }
+}
+// Adjust SP by FrameSize bytes. Save RA, S0, S1
+void Mips16InstrInfo::makeFrame(unsigned SP, int64_t FrameSize,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const BitVector Reserved = RI.getReservedRegs(MF);
+ bool SaveS2 = Reserved[Mips::S2];
+ MachineInstrBuilder MIB;
+ unsigned Opc = ((FrameSize <= 128) && !SaveS2)? Mips::Save16:Mips::SaveX16;
+ MIB = BuildMI(MBB, I, DL, get(Opc));
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ addSaveRestoreRegs(MIB, CSI);
+ if (SaveS2)
+ MIB.addReg(Mips::S2);
+ if (isUInt<11>(FrameSize))
+ MIB.addImm(FrameSize);
+ else {
+ int Base = 2040; // should create template function like isUInt that
+ // returns largest possible n bit unsigned integer
+ int64_t Remainder = FrameSize - Base;
+ MIB.addImm(Base);
+ if (isInt<16>(-Remainder))
+ BuildAddiuSpImm(MBB, I, -Remainder);
+ else
+ adjustStackPtrBig(SP, -Remainder, MBB, I, Mips::V0, Mips::V1);
+ }
+}
+
+// Adjust SP by FrameSize bytes. Restore RA, S0, S1
+void Mips16InstrInfo::restoreFrame(unsigned SP, int64_t FrameSize,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
+ MachineFunction *MF = MBB.getParent();
+ MachineFrameInfo *MFI = MF->getFrameInfo();
+ const BitVector Reserved = RI.getReservedRegs(*MF);
+ bool SaveS2 = Reserved[Mips::S2];
+ MachineInstrBuilder MIB;
+ unsigned Opc = ((FrameSize <= 128) && !SaveS2)?
+ Mips::Restore16:Mips::RestoreX16;
+
+ if (!isUInt<11>(FrameSize)) {
+ unsigned Base = 2040;
+ int64_t Remainder = FrameSize - Base;
+ FrameSize = Base; // should create template function like isUInt that
+ // returns largest possible n bit unsigned integer
+
+ if (isInt<16>(Remainder))
+ BuildAddiuSpImm(MBB, I, Remainder);
+ else
+ adjustStackPtrBig(SP, Remainder, MBB, I, Mips::A0, Mips::A1);
+ }
+ MIB = BuildMI(MBB, I, DL, get(Opc));
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ addSaveRestoreRegs(MIB, CSI, RegState::Define);
+ if (SaveS2)
+ MIB.addReg(Mips::S2, RegState::Define);
+ MIB.addImm(FrameSize);
+}
+
+// Adjust SP by Amount bytes where bytes can be up to 32bit number.
+// This can only be called at times that we know that there is at least one free
+// register.
+// This is clearly safe at prologue and epilogue.
+//
+void Mips16InstrInfo::adjustStackPtrBig(unsigned SP, int64_t Amount,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned Reg1, unsigned Reg2) const {
+ DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
+ //
+ // li reg1, constant
+ // move reg2, sp
+ // add reg1, reg1, reg2
+ // move sp, reg1
+ //
+ //
+ MachineInstrBuilder MIB1 = BuildMI(MBB, I, DL, get(Mips::LwConstant32), Reg1);
+ MIB1.addImm(Amount).addImm(-1);
+ MachineInstrBuilder MIB2 = BuildMI(MBB, I, DL, get(Mips::MoveR3216), Reg2);
+ MIB2.addReg(Mips::SP, RegState::Kill);
+ MachineInstrBuilder MIB3 = BuildMI(MBB, I, DL, get(Mips::AdduRxRyRz16), Reg1);
+ MIB3.addReg(Reg1);
+ MIB3.addReg(Reg2, RegState::Kill);
+ MachineInstrBuilder MIB4 = BuildMI(MBB, I, DL, get(Mips::Move32R16),
+ Mips::SP);
+ MIB4.addReg(Reg1, RegState::Kill);
+}
+
+void Mips16InstrInfo::adjustStackPtrBigUnrestricted(
+ unsigned SP, int64_t Amount, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ assert(false && "adjust stack pointer amount exceeded");
+}
+
+/// Adjust SP by Amount bytes.
+void Mips16InstrInfo::adjustStackPtr(unsigned SP, int64_t Amount,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ if (isInt<16>(Amount)) // need to change to addiu sp, ....and isInt<16>
+ BuildAddiuSpImm(MBB, I, Amount);
+ else
+ adjustStackPtrBigUnrestricted(SP, Amount, MBB, I);
+}
+
+/// This function generates the sequence of instructions needed to get the
+/// result of adding register REG and immediate IMM.
+unsigned Mips16InstrInfo::loadImmediate(unsigned FrameReg, int64_t Imm,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator II,
+ DebugLoc DL, unsigned &NewImm) const {
+ //
+ // given original instruction is:
+ // Instr rx, T[offset] where offset is too big.
+ //
+ // lo = offset & 0xFFFF
+ // hi = ((offset >> 16) + (lo >> 15)) & 0xFFFF;
+ //
+ // let T = temporary register
+ // li T, hi
+ // shl T, 16
+ // add T, Rx, T
+ //
+ RegScavenger rs;
+ int32_t lo = Imm & 0xFFFF;
+ NewImm = lo;
+ int Reg =0;
+ int SpReg = 0;
+
+ rs.enterBasicBlock(&MBB);
+ rs.forward(II);
+ //
+ // We need to know which registers can be used, in the case where there
+ // are not enough free registers. We exclude all registers that
+ // are used in the instruction that we are helping.
+ // // Consider all allocatable registers in the register class initially
+ BitVector Candidates =
+ RI.getAllocatableSet
+ (*II->getParent()->getParent(), &Mips::CPU16RegsRegClass);
+ // Exclude all the registers being used by the instruction.
+ for (unsigned i = 0, e = II->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = II->getOperand(i);
+ if (MO.isReg() && MO.getReg() != 0 && !MO.isDef() &&
+ !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ Candidates.reset(MO.getReg());
+ }
+
+ // If the same register was used and defined in an instruction, then
+ // it will not be in the list of candidates.
+ //
+ // we need to analyze the instruction that we are helping.
+ // we need to know if it defines register x but register x is not
+ // present as an operand of the instruction. this tells
+ // whether the register is live before the instruction. if it's not
+ // then we don't need to save it in case there are no free registers.
+ int DefReg = 0;
+ for (unsigned i = 0, e = II->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = II->getOperand(i);
+ if (MO.isReg() && MO.isDef()) {
+ DefReg = MO.getReg();
+ break;
+ }
+ }
+
+ BitVector Available = rs.getRegsAvailable(&Mips::CPU16RegsRegClass);
+ Available &= Candidates;
+ //
+ // we use T0 for the first register, if we need to save something away.
+ // we use T1 for the second register, if we need to save something away.
+ //
+ unsigned FirstRegSaved =0, SecondRegSaved=0;
+ unsigned FirstRegSavedTo = 0, SecondRegSavedTo = 0;
+
+ Reg = Available.find_first();
+
+ if (Reg == -1) {
+ Reg = Candidates.find_first();
+ Candidates.reset(Reg);
+ if (DefReg != Reg) {
+ FirstRegSaved = Reg;
+ FirstRegSavedTo = Mips::T0;
+ copyPhysReg(MBB, II, DL, FirstRegSavedTo, FirstRegSaved, true);
+ }
+ }
+ else
+ Available.reset(Reg);
+ BuildMI(MBB, II, DL, get(Mips::LwConstant32), Reg).addImm(Imm).addImm(-1);
+ NewImm = 0;
+ if (FrameReg == Mips::SP) {
+ SpReg = Available.find_first();
+ if (SpReg == -1) {
+ SpReg = Candidates.find_first();
+ // Candidates.reset(SpReg); // not really needed
+ if (DefReg!= SpReg) {
+ SecondRegSaved = SpReg;
+ SecondRegSavedTo = Mips::T1;
+ }
+ if (SecondRegSaved)
+ copyPhysReg(MBB, II, DL, SecondRegSavedTo, SecondRegSaved, true);
+ }
+ else
+ Available.reset(SpReg);
+ copyPhysReg(MBB, II, DL, SpReg, Mips::SP, false);
+ BuildMI(MBB, II, DL, get(Mips:: AdduRxRyRz16), Reg).addReg(SpReg, RegState::Kill)
+ .addReg(Reg);
+ }
+ else
+ BuildMI(MBB, II, DL, get(Mips:: AdduRxRyRz16), Reg).addReg(FrameReg)
+ .addReg(Reg, RegState::Kill);
+ if (FirstRegSaved || SecondRegSaved) {
+ II = std::next(II);
+ if (FirstRegSaved)
+ copyPhysReg(MBB, II, DL, FirstRegSaved, FirstRegSavedTo, true);
+ if (SecondRegSaved)
+ copyPhysReg(MBB, II, DL, SecondRegSaved, SecondRegSavedTo, true);
+ }
+ return Reg;
+}
+
+unsigned Mips16InstrInfo::getAnalyzableBrOpc(unsigned Opc) const {
+ return (Opc == Mips::BeqzRxImmX16 || Opc == Mips::BimmX16 ||
+ Opc == Mips::Bimm16 ||
+ Opc == Mips::Bteqz16 || Opc == Mips::Btnez16 ||
+ Opc == Mips::BeqzRxImm16 || Opc == Mips::BnezRxImm16 ||
+ Opc == Mips::BnezRxImmX16 || Opc == Mips::BteqzX16 ||
+ Opc == Mips::BteqzT8CmpX16 || Opc == Mips::BteqzT8CmpiX16 ||
+ Opc == Mips::BteqzT8SltX16 || Opc == Mips::BteqzT8SltuX16 ||
+ Opc == Mips::BteqzT8SltiX16 || Opc == Mips::BteqzT8SltiuX16 ||
+ Opc == Mips::BtnezX16 || Opc == Mips::BtnezT8CmpX16 ||
+ Opc == Mips::BtnezT8CmpiX16 || Opc == Mips::BtnezT8SltX16 ||
+ Opc == Mips::BtnezT8SltuX16 || Opc == Mips::BtnezT8SltiX16 ||
+ Opc == Mips::BtnezT8SltiuX16 ) ? Opc : 0;
+}
+
+void Mips16InstrInfo::ExpandRetRA16(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned Opc) const {
+ BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
+}
+
+const MCInstrDesc &Mips16InstrInfo::AddiuSpImm(int64_t Imm) const {
+ if (validSpImm8(Imm))
+ return get(Mips::AddiuSpImm16);
+ else
+ return get(Mips::AddiuSpImmX16);
+}
+
+void Mips16InstrInfo::BuildAddiuSpImm
+ (MachineBasicBlock &MBB, MachineBasicBlock::iterator I, int64_t Imm) const {
+ DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
+ BuildMI(MBB, I, DL, AddiuSpImm(Imm)).addImm(Imm);
+}
+
+const MipsInstrInfo *llvm::createMips16InstrInfo(const MipsSubtarget &STI) {
+ return new Mips16InstrInfo(STI);
+}
+
+bool Mips16InstrInfo::validImmediate(unsigned Opcode, unsigned Reg,
+ int64_t Amount) {
+ switch (Opcode) {
+ case Mips::LbRxRyOffMemX16:
+ case Mips::LbuRxRyOffMemX16:
+ case Mips::LhRxRyOffMemX16:
+ case Mips::LhuRxRyOffMemX16:
+ case Mips::SbRxRyOffMemX16:
+ case Mips::ShRxRyOffMemX16:
+ case Mips::LwRxRyOffMemX16:
+ case Mips::SwRxRyOffMemX16:
+ case Mips::SwRxSpImmX16:
+ case Mips::LwRxSpImmX16:
+ return isInt<16>(Amount);
+ case Mips::AddiuRxRyOffMemX16:
+ if ((Reg == Mips::PC) || (Reg == Mips::SP))
+ return isInt<16>(Amount);
+ return isInt<15>(Amount);
+ }
+ llvm_unreachable("unexpected Opcode in validImmediate");
+}
+
+/// Measure the specified inline asm to determine an approximation of its
+/// length.
+/// Comments (which run till the next SeparatorString or newline) do not
+/// count as an instruction.
+/// Any other non-whitespace text is considered an instruction, with
+/// multiple instructions separated by SeparatorString or newlines.
+/// Variable-length instructions are not handled here; this function
+/// may be overloaded in the target code to do that.
+/// We implement the special case of the .space directive taking only an
+/// integer argument, which is the size in bytes. This is used for creating
+/// inline code spacing for testing purposes using inline assembly.
+///
+unsigned Mips16InstrInfo::getInlineAsmLength(const char *Str,
+ const MCAsmInfo &MAI) const {
+
+ // Count the number of instructions in the asm.
+ bool atInsnStart = true;
+ unsigned Length = 0;
+ for (; *Str; ++Str) {
+ if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
+ strlen(MAI.getSeparatorString())) == 0)
+ atInsnStart = true;
+ if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
+ if (strncmp(Str, ".space", 6)==0) {
+ char *EStr; int Sz;
+ Sz = strtol(Str+6, &EStr, 10);
+ while (isspace(*EStr)) ++EStr;
+ if (*EStr=='\0') {
+ DEBUG(dbgs() << "parsed .space " << Sz << '\n');
+ return Sz;
+ }
+ }
+ Length += MAI.getMaxInstLength();
+ atInsnStart = false;
+ }
+ if (atInsnStart && strncmp(Str, MAI.getCommentString(),
+ strlen(MAI.getCommentString())) == 0)
+ atInsnStart = false;
+ }
+
+ return Length;
+}
diff --git a/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.h b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.h
new file mode 100644
index 0000000..a004c56
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.h
@@ -0,0 +1,128 @@
+//===-- Mips16InstrInfo.h - Mips16 Instruction Information ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips16 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPS16INSTRUCTIONINFO_H
+#define MIPS16INSTRUCTIONINFO_H
+
+#include "Mips16RegisterInfo.h"
+#include "MipsInstrInfo.h"
+
+namespace llvm {
+
+class Mips16InstrInfo : public MipsInstrInfo {
+ const Mips16RegisterInfo RI;
+
+public:
+ explicit Mips16InstrInfo(const MipsSubtarget &STI);
+
+ const MipsRegisterInfo &getRegisterInfo() const override;
+
+ /// isLoadFromStackSlot - If the specified machine instruction is a direct
+ /// load from a stack slot, return the virtual or physical register number of
+ /// the destination along with the FrameIndex of the loaded stack slot. If
+ /// not, return 0. This predicate must return 0 if the instruction has
+ /// any side effects other than loading from the stack slot.
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ /// isStoreToStackSlot - If the specified machine instruction is a direct
+ /// store to a stack slot, return the virtual or physical register number of
+ /// the source reg along with the FrameIndex of the loaded stack slot. If
+ /// not, return 0. This predicate must return 0 if the instruction has
+ /// any side effects other than storing to the stack slot.
+ unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+
+ void storeRegToStack(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ int64_t Offset) const override;
+
+ void loadRegFromStack(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ int64_t Offset) const override;
+
+ bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
+
+ unsigned getOppositeBranchOpc(unsigned Opc) const override;
+
+ // Adjust SP by FrameSize bytes. Save RA, S0, S1
+ void makeFrame(unsigned SP, int64_t FrameSize, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const;
+
+ // Adjust SP by FrameSize bytes. Restore RA, S0, S1
+ void restoreFrame(unsigned SP, int64_t FrameSize, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const;
+
+
+ /// Adjust SP by Amount bytes.
+ void adjustStackPtr(unsigned SP, int64_t Amount, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const;
+
+ /// Emit a series of instructions to load an immediate.
+ // This is to adjust some FrameReg. We return the new register to be used
+ // in place of FrameReg and the adjusted immediate field (&NewImm)
+ //
+ unsigned loadImmediate(unsigned FrameReg,
+ int64_t Imm, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator II, DebugLoc DL,
+ unsigned &NewImm) const;
+
+ static bool validImmediate(unsigned Opcode, unsigned Reg, int64_t Amount);
+
+ static bool validSpImm8(int offset) {
+ return ((offset & 7) == 0) && isInt<11>(offset);
+ }
+
+ //
+ // build the proper one based on the Imm field
+ //
+
+ const MCInstrDesc& AddiuSpImm(int64_t Imm) const;
+
+ void BuildAddiuSpImm
+ (MachineBasicBlock &MBB, MachineBasicBlock::iterator I, int64_t Imm) const;
+
+ unsigned getInlineAsmLength(const char *Str,
+ const MCAsmInfo &MAI) const override;
+private:
+ unsigned getAnalyzableBrOpc(unsigned Opc) const override;
+
+ void ExpandRetRA16(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned Opc) const;
+
+ // Adjust SP by Amount bytes where bytes can be up to 32bit number.
+ void adjustStackPtrBig(unsigned SP, int64_t Amount, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned Reg1, unsigned Reg2) const;
+
+ // Adjust SP by Amount bytes where bytes can be up to 32bit number.
+ void adjustStackPtrBigUnrestricted(unsigned SP, int64_t Amount,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const;
+
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.td b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.td
new file mode 100644
index 0000000..5e4eebb
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.td
@@ -0,0 +1,1917 @@
+//===- Mips16InstrInfo.td - Target Description for Mips16 -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes Mips16 instructions.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+// Mips Address
+//
+def addr16 :
+ ComplexPattern<iPTR, 3, "selectAddr16", [frameindex], [SDNPWantParent]>;
+
+//
+// Address operand
+def mem16 : Operand<i32> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops CPU16Regs, simm16, CPU16RegsPlusSP);
+ let EncoderMethod = "getMemEncoding";
+}
+
+def mem16_ea : Operand<i32> {
+ let PrintMethod = "printMemOperandEA";
+ let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
+ let EncoderMethod = "getMemEncoding";
+}
+
+//
+// I-type instruction format
+//
+// this is only used by bimm. the actual assembly value is a 12 bit signed
+// number
+//
+class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>:
+ FI16<op, (outs), (ins brtarget:$imm16),
+ !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>;
+
+//
+//
+// I8 instruction format
+//
+
+class FI816_ins_base<bits<3> _func, string asmstr,
+ string asmstr2, InstrItinClass itin>:
+ FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
+ [], itin>;
+
+class FI816_ins<bits<3> _func, string asmstr,
+ InstrItinClass itin>:
+ FI816_ins_base<_func, asmstr, "\t$imm # 16 bit inst", itin>;
+
+class FI816_SP_ins<bits<3> _func, string asmstr,
+ InstrItinClass itin>:
+ FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
+
+//
+// RI instruction format
+//
+
+
+class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
+ InstrItinClass itin>:
+ FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
+ !strconcat(asmstr, asmstr2), [], itin>;
+
+class FRI16_ins<bits<5> op, string asmstr,
+ InstrItinClass itin>:
+ FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
+
+class FRI16_TCP_ins<bits<5> _op, string asmstr,
+ InstrItinClass itin>:
+ FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
+ !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>;
+
+class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
+ InstrItinClass itin>:
+ FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
+ !strconcat(asmstr, asmstr2), [], itin>;
+
+class FRI16R_ins<bits<5> op, string asmstr,
+ InstrItinClass itin>:
+ FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
+
+class F2RI16_ins<bits<5> _op, string asmstr,
+ InstrItinClass itin>:
+ FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
+ !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
+ let Constraints = "$rx_ = $rx";
+}
+
+class FRI16_B_ins<bits<5> _op, string asmstr,
+ InstrItinClass itin>:
+ FRI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm),
+ !strconcat(asmstr, "\t$rx, $imm # 16 bit inst"), [], itin>;
+//
+// Compare a register and immediate and place result in CC
+// Implicit use of T8
+//
+// EXT-CCRR Instruction format
+//
+class FEXT_CCRXI16_ins<string asmstr>:
+ MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
+ !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
+ let isCodeGenOnly=1;
+ let usesCustomInserter = 1;
+}
+
+// JAL and JALX instruction format
+//
+class FJAL16_ins<bits<1> _X, string asmstr,
+ InstrItinClass itin>:
+ FJAL16<_X, (outs), (ins simm20:$imm),
+ !strconcat(asmstr, "\t$imm\n\tnop"),[],
+ itin> {
+ let isCodeGenOnly=1;
+ let Size=6;
+}
+
+class FJALB16_ins<bits<1> _X, string asmstr,
+ InstrItinClass itin>:
+ FJAL16<_X, (outs), (ins simm20:$imm),
+ !strconcat(asmstr, "\t$imm\t# branch\n\tnop"),[],
+ itin> {
+ let isCodeGenOnly=1;
+ let Size=6;
+}
+
+//
+// EXT-I instruction format
+//
+class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
+ FEXT_I16<eop, (outs), (ins brtarget:$imm16),
+ !strconcat(asmstr, "\t$imm16"),[], itin>;
+
+//
+// EXT-I8 instruction format
+//
+
+class FEXT_I816_ins_base<bits<3> _func, string asmstr,
+ string asmstr2, InstrItinClass itin>:
+ FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
+ [], itin>;
+
+class FEXT_I816_ins<bits<3> _func, string asmstr,
+ InstrItinClass itin>:
+ FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
+
+class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
+ InstrItinClass itin>:
+ FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
+
+//
+// Assembler formats in alphabetical order.
+// Natural and pseudos are mixed together.
+//
+// Compare two registers and place result in CC
+// Implicit use of T8
+//
+// CC-RR Instruction format
+//
+class FCCRR16_ins<string asmstr> :
+ MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
+ !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
+ let isCodeGenOnly=1;
+ let usesCustomInserter = 1;
+}
+
+//
+// EXT-RI instruction format
+//
+
+class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
+ InstrItinClass itin>:
+ FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
+ !strconcat(asmstr, asmstr2), [], itin>;
+
+class FEXT_RI16_ins<bits<5> _op, string asmstr,
+ InstrItinClass itin>:
+ FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
+
+class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
+ InstrItinClass itin>:
+ FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
+ !strconcat(asmstr, asmstr2), [], itin>;
+
+class FEXT_RI16R_ins<bits<5> _op, string asmstr,
+ InstrItinClass itin>:
+ FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
+
+class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
+ FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
+
+class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
+ InstrItinClass itin>:
+ FEXT_RI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm),
+ !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
+
+class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr,
+ InstrItinClass itin>:
+ FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
+ !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
+
+class FEXT_2RI16_ins<bits<5> _op, string asmstr,
+ InstrItinClass itin>:
+ FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
+ !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
+ let Constraints = "$rx_ = $rx";
+}
+
+
+// this has an explicit sp argument that we ignore to work around a problem
+// in the compiler
+class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
+ InstrItinClass itin>:
+ FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
+ !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
+
+class FEXT_RI16_SP_Store_explicit_ins<bits<5> _op, string asmstr,
+ InstrItinClass itin>:
+ FEXT_RI16<_op, (outs), (ins CPU16Regs:$rx, CPUSPReg:$ry, simm16:$imm),
+ !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
+
+//
+// EXT-RRI instruction format
+//
+
+class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
+ InstrItinClass itin>:
+ FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr),
+ !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
+
+class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
+ InstrItinClass itin>:
+ FEXT_RRI16<op, (outs ), (ins CPU16Regs:$ry, MemOpnd:$addr),
+ !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
+
+//
+//
+// EXT-RRI-A instruction format
+//
+
+class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
+ InstrItinClass itin>:
+ FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr),
+ !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
+
+//
+// EXT-SHIFT instruction format
+//
+class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
+ FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa),
+ !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
+
+//
+// EXT-T8I8
+//
+class FEXT_T8I816_ins<string asmstr, string asmstr2>:
+ MipsPseudo16<(outs),
+ (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
+ !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
+ !strconcat(asmstr, "\t$imm"))),[]> {
+ let isCodeGenOnly=1;
+ let usesCustomInserter = 1;
+}
+
+//
+// EXT-T8I8I
+//
+class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
+ MipsPseudo16<(outs),
+ (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
+ !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
+ !strconcat(asmstr, "\t$targ"))), []> {
+ let isCodeGenOnly=1;
+ let usesCustomInserter = 1;
+}
+//
+
+
+//
+// I8_MOVR32 instruction format (used only by the MOVR32 instructio
+//
+class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
+ FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
+ !strconcat(asmstr, "\t$rz, $r32"), [], itin>;
+
+//
+// I8_MOV32R instruction format (used only by MOV32R instruction)
+//
+
+class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
+ FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
+ !strconcat(asmstr, "\t$r32, $rz"), [], itin>;
+
+//
+// This are pseudo formats for multiply
+// This first one can be changed to non-pseudo now.
+//
+// MULT
+//
+class FMULT16_ins<string asmstr, InstrItinClass itin> :
+ MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
+ !strconcat(asmstr, "\t$rx, $ry"), []>;
+
+//
+// MULT-LO
+//
+class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
+ MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
+ !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
+ let isCodeGenOnly=1;
+}
+
+//
+// RR-type instruction format
+//
+
+class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
+ FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
+ !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
+}
+
+class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
+ FRRBreak16<(outs), (ins), asmstr, [], itin> {
+ let Code=0;
+}
+
+class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
+ FRR16<f, (outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
+ !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
+}
+
+class FRRTR16_ins<string asmstr> :
+ MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
+ !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
+
+//
+// maybe refactor but need a $zero as a dummy first parameter
+//
+class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
+ FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
+ !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
+
+class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
+ FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
+ !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
+
+
+class FRR16_M_ins<bits<5> f, string asmstr,
+ InstrItinClass itin> :
+ FRR16<f, (outs CPU16Regs:$rx), (ins),
+ !strconcat(asmstr, "\t$rx"), [], itin>;
+
+class FRxRxRy16_ins<bits<5> f, string asmstr,
+ InstrItinClass itin> :
+ FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
+ !strconcat(asmstr, "\t$rz, $ry"),
+ [], itin> {
+ let Constraints = "$rx = $rz";
+}
+
+let rx=0 in
+class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
+ string asmstr, InstrItinClass itin>:
+ FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
+ [], itin> ;
+
+
+class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
+ string asmstr, InstrItinClass itin>:
+ FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
+ !strconcat(asmstr, "\t $rx"), [], itin> ;
+
+class FRR_SF16_ins
+ <bits<5> _funct, bits<3> _subfunc,
+ string asmstr, InstrItinClass itin>:
+ FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_),
+ !strconcat(asmstr, "\t $rx"),
+ [], itin> {
+ let Constraints = "$rx_ = $rx";
+ }
+//
+// RRR-type instruction format
+//
+
+class FRRR16_ins<bits<2> _f, string asmstr, InstrItinClass itin> :
+ FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
+ !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
+
+//
+// These Sel patterns support the generation of conditional move
+// pseudo instructions.
+//
+// The nomenclature uses the components making up the pseudo and may
+// be a bit counter intuitive when compared with the end result we seek.
+// For example using a bqez in the example directly below results in the
+// conditional move being done if the tested register is not zero.
+// I considered in easier to check by keeping the pseudo consistent with
+// it's components but it could have been done differently.
+//
+// The simplest case is when can test and operand directly and do the
+// conditional move based on a simple mips16 conditional
+// branch instruction.
+// for example:
+// if $op == beqz or bnez:
+//
+// $op1 $rt, .+4
+// move $rd, $rs
+//
+// if $op == beqz, then if $rt != 0, then the conditional assignment
+// $rd = $rs is done.
+
+// if $op == bnez, then if $rt == 0, then the conditional assignment
+// $rd = $rs is done.
+//
+// So this pseudo class only has one operand, i.e. op
+//
+class Sel<string op>:
+ MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
+ CPU16Regs:$rt),
+ !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
+ //let isCodeGenOnly=1;
+ let Constraints = "$rd = $rd_";
+ let usesCustomInserter = 1;
+}
+
+//
+// The next two instruction classes allow for an operand which tests
+// two operands and returns a value in register T8 and
+//then does a conditional branch based on the value of T8
+//
+
+// op2 can be cmpi or slti/sltiu
+// op1 can bteqz or btnez
+// the operands for op2 are a register and a signed constant
+//
+// $op2 $t, $imm ;test register t and branch conditionally
+// $op1 .+4 ;op1 is a conditional branch
+// move $rd, $rs
+//
+//
+class SeliT<string op1, string op2>:
+ MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
+ CPU16Regs:$rl, simm16:$imm),
+ !strconcat(op2,
+ !strconcat("\t$rl, $imm\n\t",
+ !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
+ let isCodeGenOnly=1;
+ let Constraints = "$rd = $rd_";
+ let usesCustomInserter = 1;
+}
+
+//
+// op2 can be cmp or slt/sltu
+// op1 can be bteqz or btnez
+// the operands for op2 are two registers
+// op1 is a conditional branch
+//
+//
+// $op2 $rl, $rr ;test registers rl,rr
+// $op1 .+4 ;op2 is a conditional branch
+// move $rd, $rs
+//
+//
+class SelT<string op1, string op2>:
+ MipsPseudo16<(outs CPU16Regs:$rd_),
+ (ins CPU16Regs:$rd, CPU16Regs:$rs,
+ CPU16Regs:$rl, CPU16Regs:$rr),
+ !strconcat(op2,
+ !strconcat("\t$rl, $rr\n\t",
+ !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
+ let isCodeGenOnly=1;
+ let Constraints = "$rd = $rd_";
+ let usesCustomInserter = 1;
+}
+
+//
+// 32 bit constant
+//
+def imm32: Operand<i32>;
+
+def Constant32:
+ MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
+
+def LwConstant32:
+ MipsPseudo16<(outs CPU16Regs:$rx), (ins imm32:$imm, imm32:$constid),
+ "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
+
+
+//
+// Some general instruction class info
+//
+//
+
+class ArithLogic16Defs<bit isCom=0> {
+ bits<5> shamt = 0;
+ bit isCommutable = isCom;
+ bit isReMaterializable = 1;
+ bit neverHasSideEffects = 1;
+}
+
+class branch16 {
+ bit isBranch = 1;
+ bit isTerminator = 1;
+ bit isBarrier = 1;
+}
+
+class cbranch16 {
+ bit isBranch = 1;
+ bit isTerminator = 1;
+}
+
+class MayLoad {
+ bit mayLoad = 1;
+}
+
+class MayStore {
+ bit mayStore = 1;
+}
+//
+
+
+// Format: ADDIU rx, immediate MIPS16e
+// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
+// To add a constant to a 32-bit integer.
+//
+def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
+
+def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
+ ArithLogic16Defs<0> {
+ let AddedComplexity = 5;
+}
+def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
+ ArithLogic16Defs<0> {
+ let isCodeGenOnly = 1;
+}
+
+def AddiuRxRyOffMemX16:
+ FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
+
+//
+
+// Format: ADDIU rx, pc, immediate MIPS16e
+// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
+// To add a constant to the program counter.
+//
+def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
+
+//
+// Format: ADDIU sp, immediate MIPS16e
+// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
+// To add a constant to the stack pointer.
+//
+def AddiuSpImm16
+ : FI816_SP_ins<0b011, "addiu", IIAlu> {
+ let Defs = [SP];
+ let Uses = [SP];
+ let AddedComplexity = 5;
+}
+
+def AddiuSpImmX16
+ : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
+ let Defs = [SP];
+ let Uses = [SP];
+}
+
+//
+// Format: ADDU rz, rx, ry MIPS16e
+// Purpose: Add Unsigned Word (3-Operand)
+// To add 32-bit integers.
+//
+
+def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
+
+//
+// Format: AND rx, ry MIPS16e
+// Purpose: AND
+// To do a bitwise logical AND.
+
+def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
+
+
+//
+// Format: BEQZ rx, offset MIPS16e
+// Purpose: Branch on Equal to Zero
+// To test a GPR then do a PC-relative conditional branch.
+//
+def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
+
+
+//
+// Format: BEQZ rx, offset MIPS16e
+// Purpose: Branch on Equal to Zero (Extended)
+// To test a GPR then do a PC-relative conditional branch.
+//
+def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
+
+//
+// Format: B offset MIPS16e
+// Purpose: Unconditional Branch (Extended)
+// To do an unconditional PC-relative branch.
+//
+
+def Bimm16: FI16_ins<0b00010, "b", IIAlu>, branch16;
+
+// Format: B offset MIPS16e
+// Purpose: Unconditional Branch
+// To do an unconditional PC-relative branch.
+//
+def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
+
+//
+// Format: BNEZ rx, offset MIPS16e
+// Purpose: Branch on Not Equal to Zero
+// To test a GPR then do a PC-relative conditional branch.
+//
+def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
+
+//
+// Format: BNEZ rx, offset MIPS16e
+// Purpose: Branch on Not Equal to Zero (Extended)
+// To test a GPR then do a PC-relative conditional branch.
+//
+def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
+
+
+//
+//Format: BREAK immediate
+// Purpose: Breakpoint
+// To cause a Breakpoint exception.
+
+def Break16: FRRBreakNull16_ins<"break 0", NoItinerary>;
+//
+// Format: BTEQZ offset MIPS16e
+// Purpose: Branch on T Equal to Zero (Extended)
+// To test special register T then do a PC-relative conditional branch.
+//
+def Bteqz16: FI816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
+ let Uses = [T8];
+}
+
+def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
+ let Uses = [T8];
+}
+
+def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
+
+def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
+ cbranch16;
+
+def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
+
+def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
+
+def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
+
+def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
+ cbranch16;
+
+//
+// Format: BTNEZ offset MIPS16e
+// Purpose: Branch on T Not Equal to Zero (Extended)
+// To test special register T then do a PC-relative conditional branch.
+//
+
+def Btnez16: FI816_ins<0b001, "btnez", IIAlu>, cbranch16 {
+ let Uses = [T8];
+}
+
+def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
+ let Uses = [T8];
+}
+
+def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
+
+def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
+
+def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
+
+def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
+
+def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
+
+def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
+ cbranch16;
+
+//
+// Format: CMP rx, ry MIPS16e
+// Purpose: Compare
+// To compare the contents of two GPRs.
+//
+def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIAlu> {
+ let Defs = [T8];
+}
+
+//
+// Format: CMPI rx, immediate MIPS16e
+// Purpose: Compare Immediate
+// To compare a constant with the contents of a GPR.
+//
+def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIAlu> {
+ let Defs = [T8];
+}
+
+//
+// Format: CMPI rx, immediate MIPS16e
+// Purpose: Compare Immediate (Extended)
+// To compare a constant with the contents of a GPR.
+//
+def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIAlu> {
+ let Defs = [T8];
+}
+
+
+//
+// Format: DIV rx, ry MIPS16e
+// Purpose: Divide Word
+// To divide 32-bit signed integers.
+//
+def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
+ let Defs = [HI0, LO0];
+}
+
+//
+// Format: DIVU rx, ry MIPS16e
+// Purpose: Divide Unsigned Word
+// To divide 32-bit unsigned integers.
+//
+def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
+ let Defs = [HI0, LO0];
+}
+//
+// Format: JAL target MIPS16e
+// Purpose: Jump and Link
+// To execute a procedure call within the current 256 MB-aligned
+// region and preserve the current ISA.
+//
+
+def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
+ let hasDelaySlot = 0; // not true, but we add the nop for now
+ let isCall=1;
+ let Defs = [RA];
+}
+
+def JalB16 : FJALB16_ins<0b0, "jal", IIAlu>, branch16 {
+ let hasDelaySlot = 0; // not true, but we add the nop for now
+ let isBranch=1;
+ let Defs = [RA];
+}
+
+//
+// Format: JR ra MIPS16e
+// Purpose: Jump Register Through Register ra
+// To execute a branch to the instruction address in the return
+// address register.
+//
+
+def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
+ let isBranch = 1;
+ let isIndirectBranch = 1;
+ let hasDelaySlot = 1;
+ let isTerminator=1;
+ let isBarrier=1;
+}
+
+def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
+ let isBranch = 1;
+ let isIndirectBranch = 1;
+ let isTerminator=1;
+ let isBarrier=1;
+}
+
+def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
+ let isBranch = 1;
+ let isIndirectBranch = 1;
+ let isTerminator=1;
+ let isBarrier=1;
+}
+//
+// Format: LB ry, offset(rx) MIPS16e
+// Purpose: Load Byte (Extended)
+// To load a byte from memory as a signed value.
+//
+def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{
+ let isCodeGenOnly = 1;
+}
+
+//
+// Format: LBU ry, offset(rx) MIPS16e
+// Purpose: Load Byte Unsigned (Extended)
+// To load a byte from memory as a unsigned value.
+//
+def LbuRxRyOffMemX16:
+ FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad {
+ let isCodeGenOnly = 1;
+}
+
+//
+// Format: LH ry, offset(rx) MIPS16e
+// Purpose: Load Halfword signed (Extended)
+// To load a halfword from memory as a signed value.
+//
+def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{
+ let isCodeGenOnly = 1;
+}
+
+//
+// Format: LHU ry, offset(rx) MIPS16e
+// Purpose: Load Halfword unsigned (Extended)
+// To load a halfword from memory as an unsigned value.
+//
+def LhuRxRyOffMemX16:
+ FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad {
+ let isCodeGenOnly = 1;
+}
+
+//
+// Format: LI rx, immediate MIPS16e
+// Purpose: Load Immediate
+// To load a constant into a GPR.
+//
+def LiRxImm16: FRI16_ins<0b01101, "li", IIAlu>;
+
+//
+// Format: LI rx, immediate MIPS16e
+// Purpose: Load Immediate (Extended)
+// To load a constant into a GPR.
+//
+def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
+
+def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIAlu> {
+ let isCodeGenOnly = 1;
+}
+
+//
+// Format: LW ry, offset(rx) MIPS16e
+// Purpose: Load Word (Extended)
+// To load a word from memory as a signed value.
+//
+def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{
+ let isCodeGenOnly = 1;
+}
+
+// Format: LW rx, offset(sp) MIPS16e
+// Purpose: Load Word (SP-Relative, Extended)
+// To load an SP-relative word from memory as a signed value.
+//
+def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10010, "lw", II_LW>, MayLoad{
+ let Uses = [SP];
+}
+
+def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
+
+def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
+//
+// Format: MOVE r32, rz MIPS16e
+// Purpose: Move
+// To move the contents of a GPR to a GPR.
+//
+def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
+
+//
+// Format: MOVE ry, r32 MIPS16e
+//Purpose: Move
+// To move the contents of a GPR to a GPR.
+//
+def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
+
+//
+// Format: MFHI rx MIPS16e
+// Purpose: Move From HI Register
+// To copy the special purpose HI register to a GPR.
+//
+def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
+ let Uses = [HI0];
+ let neverHasSideEffects = 1;
+}
+
+//
+// Format: MFLO rx MIPS16e
+// Purpose: Move From LO Register
+// To copy the special purpose LO register to a GPR.
+//
+def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
+ let Uses = [LO0];
+ let neverHasSideEffects = 1;
+}
+
+//
+// Pseudo Instruction for mult
+//
+def MultRxRy16: FMULT16_ins<"mult", IIAlu> {
+ let isCommutable = 1;
+ let neverHasSideEffects = 1;
+ let Defs = [HI0, LO0];
+}
+
+def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
+ let isCommutable = 1;
+ let neverHasSideEffects = 1;
+ let Defs = [HI0, LO0];
+}
+
+//
+// Format: MULT rx, ry MIPS16e
+// Purpose: Multiply Word
+// To multiply 32-bit signed integers.
+//
+def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
+ let isCommutable = 1;
+ let neverHasSideEffects = 1;
+ let Defs = [HI0, LO0];
+}
+
+//
+// Format: MULTU rx, ry MIPS16e
+// Purpose: Multiply Unsigned Word
+// To multiply 32-bit unsigned integers.
+//
+def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
+ let isCommutable = 1;
+ let neverHasSideEffects = 1;
+ let Defs = [HI0, LO0];
+}
+
+//
+// Format: NEG rx, ry MIPS16e
+// Purpose: Negate
+// To negate an integer value.
+//
+def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
+
+//
+// Format: NOT rx, ry MIPS16e
+// Purpose: Not
+// To complement an integer value
+//
+def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
+
+//
+// Format: OR rx, ry MIPS16e
+// Purpose: Or
+// To do a bitwise logical OR.
+//
+def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
+
+//
+// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
+// (All args are optional) MIPS16e
+// Purpose: Restore Registers and Deallocate Stack Frame
+// To deallocate a stack frame before exit from a subroutine,
+// restoring return address and static registers, and adjusting
+// stack
+//
+
+def Restore16:
+ FI8_SVRS16<0b1, (outs), (ins variable_ops),
+ "", [], II_RESTORE >, MayLoad {
+ let isCodeGenOnly = 1;
+ let Defs = [SP];
+ let Uses = [SP];
+}
+
+
+def RestoreX16:
+ FI8_SVRS16<0b1, (outs), (ins variable_ops),
+ "", [], II_RESTORE >, MayLoad {
+ let isCodeGenOnly = 1;
+ let Defs = [SP];
+ let Uses = [SP];
+}
+
+//
+// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
+// MIPS16e
+// Purpose: Save Registers and Set Up Stack Frame
+// To set up a stack frame on entry to a subroutine,
+// saving return address and static registers, and adjusting stack
+//
+def Save16:
+ FI8_SVRS16<0b1, (outs), (ins variable_ops),
+ "", [], II_SAVE >, MayStore {
+ let isCodeGenOnly = 1;
+ let Uses = [SP];
+ let Defs = [SP];
+}
+
+def SaveX16:
+ FI8_SVRS16<0b1, (outs), (ins variable_ops),
+ "", [], II_SAVE >, MayStore {
+ let isCodeGenOnly = 1;
+ let Uses = [SP];
+ let Defs = [SP];
+}
+//
+// Format: SB ry, offset(rx) MIPS16e
+// Purpose: Store Byte (Extended)
+// To store a byte to memory.
+//
+def SbRxRyOffMemX16:
+ FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore;
+
+//
+// Format: SEB rx MIPS16e
+// Purpose: Sign-Extend Byte
+// Sign-extend least significant byte in register rx.
+//
+def SebRx16
+ : FRR_SF16_ins<0b10001, 0b100, "seb", IIAlu>;
+
+//
+// Format: SEH rx MIPS16e
+// Purpose: Sign-Extend Halfword
+// Sign-extend least significant word in register rx.
+//
+def SehRx16
+ : FRR_SF16_ins<0b10001, 0b101, "seh", IIAlu>;
+
+//
+// The Sel(T) instructions are pseudos
+// T means that they use T8 implicitly.
+//
+//
+// Format: SelBeqZ rd, rs, rt
+// Purpose: if rt==0, do nothing
+// else rs = rt
+//
+def SelBeqZ: Sel<"beqz">;
+
+//
+// Format: SelTBteqZCmp rd, rs, rl, rr
+// Purpose: b = Cmp rl, rr.
+// If b==0 then do nothing.
+// if b!=0 then rd = rs
+//
+def SelTBteqZCmp: SelT<"bteqz", "cmp">;
+
+//
+// Format: SelTBteqZCmpi rd, rs, rl, rr
+// Purpose: b = Cmpi rl, imm.
+// If b==0 then do nothing.
+// if b!=0 then rd = rs
+//
+def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
+
+//
+// Format: SelTBteqZSlt rd, rs, rl, rr
+// Purpose: b = Slt rl, rr.
+// If b==0 then do nothing.
+// if b!=0 then rd = rs
+//
+def SelTBteqZSlt: SelT<"bteqz", "slt">;
+
+//
+// Format: SelTBteqZSlti rd, rs, rl, rr
+// Purpose: b = Slti rl, imm.
+// If b==0 then do nothing.
+// if b!=0 then rd = rs
+//
+def SelTBteqZSlti: SeliT<"bteqz", "slti">;
+
+//
+// Format: SelTBteqZSltu rd, rs, rl, rr
+// Purpose: b = Sltu rl, rr.
+// If b==0 then do nothing.
+// if b!=0 then rd = rs
+//
+def SelTBteqZSltu: SelT<"bteqz", "sltu">;
+
+//
+// Format: SelTBteqZSltiu rd, rs, rl, rr
+// Purpose: b = Sltiu rl, imm.
+// If b==0 then do nothing.
+// if b!=0 then rd = rs
+//
+def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
+
+//
+// Format: SelBnez rd, rs, rt
+// Purpose: if rt!=0, do nothing
+// else rs = rt
+//
+def SelBneZ: Sel<"bnez">;
+
+//
+// Format: SelTBtneZCmp rd, rs, rl, rr
+// Purpose: b = Cmp rl, rr.
+// If b!=0 then do nothing.
+// if b0=0 then rd = rs
+//
+def SelTBtneZCmp: SelT<"btnez", "cmp">;
+
+//
+// Format: SelTBtnezCmpi rd, rs, rl, rr
+// Purpose: b = Cmpi rl, imm.
+// If b!=0 then do nothing.
+// if b==0 then rd = rs
+//
+def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
+
+//
+// Format: SelTBtneZSlt rd, rs, rl, rr
+// Purpose: b = Slt rl, rr.
+// If b!=0 then do nothing.
+// if b==0 then rd = rs
+//
+def SelTBtneZSlt: SelT<"btnez", "slt">;
+
+//
+// Format: SelTBtneZSlti rd, rs, rl, rr
+// Purpose: b = Slti rl, imm.
+// If b!=0 then do nothing.
+// if b==0 then rd = rs
+//
+def SelTBtneZSlti: SeliT<"btnez", "slti">;
+
+//
+// Format: SelTBtneZSltu rd, rs, rl, rr
+// Purpose: b = Sltu rl, rr.
+// If b!=0 then do nothing.
+// if b==0 then rd = rs
+//
+def SelTBtneZSltu: SelT<"btnez", "sltu">;
+
+//
+// Format: SelTBtneZSltiu rd, rs, rl, rr
+// Purpose: b = Slti rl, imm.
+// If b!=0 then do nothing.
+// if b==0 then rd = rs
+//
+def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
+//
+//
+// Format: SH ry, offset(rx) MIPS16e
+// Purpose: Store Halfword (Extended)
+// To store a halfword to memory.
+//
+def ShRxRyOffMemX16:
+ FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore;
+
+//
+// Format: SLL rx, ry, sa MIPS16e
+// Purpose: Shift Word Left Logical (Extended)
+// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits.
+//
+def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
+
+//
+// Format: SLLV ry, rx MIPS16e
+// Purpose: Shift Word Left Logical Variable
+// To execute a left-shift of a word by a variable number of bits.
+//
+def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
+
+// Format: SLTI rx, immediate MIPS16e
+// Purpose: Set on Less Than Immediate
+// To record the result of a less-than comparison with a constant.
+//
+//
+def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIAlu> {
+ let Defs = [T8];
+}
+
+//
+// Format: SLTI rx, immediate MIPS16e
+// Purpose: Set on Less Than Immediate (Extended)
+// To record the result of a less-than comparison with a constant.
+//
+//
+def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIAlu> {
+ let Defs = [T8];
+}
+
+def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
+
+// Format: SLTIU rx, immediate MIPS16e
+// Purpose: Set on Less Than Immediate Unsigned
+// To record the result of a less-than comparison with a constant.
+//
+//
+def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIAlu> {
+ let Defs = [T8];
+}
+
+//
+// Format: SLTI rx, immediate MIPS16e
+// Purpose: Set on Less Than Immediate Unsigned (Extended)
+// To record the result of a less-than comparison with a constant.
+//
+//
+def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIAlu> {
+ let Defs = [T8];
+}
+//
+// Format: SLTIU rx, immediate MIPS16e
+// Purpose: Set on Less Than Immediate Unsigned (Extended)
+// To record the result of a less-than comparison with a constant.
+//
+def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
+
+//
+// Format: SLT rx, ry MIPS16e
+// Purpose: Set on Less Than
+// To record the result of a less-than comparison.
+//
+def SltRxRy16: FRR16R_ins<0b00010, "slt", IIAlu>{
+ let Defs = [T8];
+}
+
+def SltCCRxRy16: FCCRR16_ins<"slt">;
+
+// Format: SLTU rx, ry MIPS16e
+// Purpose: Set on Less Than Unsigned
+// To record the result of an unsigned less-than comparison.
+//
+def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIAlu>{
+ let Defs = [T8];
+}
+
+def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
+ let isCodeGenOnly=1;
+ let Defs = [T8];
+}
+
+
+def SltuCCRxRy16: FCCRR16_ins<"sltu">;
+//
+// Format: SRAV ry, rx MIPS16e
+// Purpose: Shift Word Right Arithmetic Variable
+// To execute an arithmetic right-shift of a word by a variable
+// number of bits.
+//
+def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
+
+
+//
+// Format: SRA rx, ry, sa MIPS16e
+// Purpose: Shift Word Right Arithmetic (Extended)
+// To execute an arithmetic right-shift of a word by a fixed
+// number of bits-1 to 8 bits.
+//
+def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
+
+
+//
+// Format: SRLV ry, rx MIPS16e
+// Purpose: Shift Word Right Logical Variable
+// To execute a logical right-shift of a word by a variable
+// number of bits.
+//
+def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
+
+
+//
+// Format: SRL rx, ry, sa MIPS16e
+// Purpose: Shift Word Right Logical (Extended)
+// To execute a logical right-shift of a word by a fixed
+// number of bits-1 to 31 bits.
+//
+def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
+
+//
+// Format: SUBU rz, rx, ry MIPS16e
+// Purpose: Subtract Unsigned Word
+// To subtract 32-bit integers
+//
+def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
+
+//
+// Format: SW ry, offset(rx) MIPS16e
+// Purpose: Store Word (Extended)
+// To store a word to memory.
+//
+def SwRxRyOffMemX16:
+ FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore;
+
+//
+// Format: SW rx, offset(sp) MIPS16e
+// Purpose: Store Word rx (SP-Relative)
+// To store an SP-relative word to memory.
+//
+def SwRxSpImmX16: FEXT_RI16_SP_Store_explicit_ins
+ <0b11010, "sw", II_SW>, MayStore;
+
+//
+//
+// Format: XOR rx, ry MIPS16e
+// Purpose: Xor
+// To do a bitwise logical XOR.
+//
+def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
+
+class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
+ let Predicates = [InMips16Mode];
+}
+
+// Unary Arith/Logic
+//
+class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
+ Mips16Pat<(OpNode CPU16Regs:$r),
+ (I CPU16Regs:$r)>;
+
+def: ArithLogicU_pat<not, NotRxRy16>;
+def: ArithLogicU_pat<ineg, NegRxRy16>;
+
+class ArithLogic16_pat<SDNode OpNode, Instruction I> :
+ Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
+ (I CPU16Regs:$l, CPU16Regs:$r)>;
+
+def: ArithLogic16_pat<add, AdduRxRyRz16>;
+def: ArithLogic16_pat<and, AndRxRxRy16>;
+def: ArithLogic16_pat<mul, MultRxRyRz16>;
+def: ArithLogic16_pat<or, OrRxRxRy16>;
+def: ArithLogic16_pat<sub, SubuRxRyRz16>;
+def: ArithLogic16_pat<xor, XorRxRxRy16>;
+
+// Arithmetic and logical instructions with 2 register operands.
+
+class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
+ Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
+ (I CPU16Regs:$in, imm_type:$imm)>;
+
+def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
+def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
+def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
+def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
+def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
+
+class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
+ Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
+ (I CPU16Regs:$r, CPU16Regs:$ra)>;
+
+def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
+def: shift_rotate_reg16_pat<sra, SravRxRy16>;
+def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
+
+class LoadM16_pat<PatFrag OpNode, Instruction I> :
+ Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
+
+def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
+def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
+def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
+def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
+def: LoadM16_pat<load, LwRxRyOffMemX16>;
+
+class StoreM16_pat<PatFrag OpNode, Instruction I> :
+ Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
+ (I CPU16Regs:$r, addr16:$addr)>;
+
+def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
+def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
+def: StoreM16_pat<store, SwRxRyOffMemX16>;
+
+// Unconditional branch
+class UncondBranch16_pat<SDNode OpNode, Instruction I>:
+ Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
+ let Predicates = [InMips16Mode];
+ }
+
+def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
+ (Jal16 tglobaladdr:$dst)>;
+
+def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
+ (Jal16 texternalsym:$dst)>;
+
+// Indirect branch
+def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> {
+ // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change
+ // MIPS16's behaviour.
+ let AddedComplexity = 1;
+}
+
+// Jump and Link (Call)
+let isCall=1, hasDelaySlot=0 in
+def JumpLinkReg16:
+ FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
+ "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch> {
+ let Defs = [RA];
+}
+
+// Mips16 pseudos
+let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
+ hasExtraSrcRegAllocReq = 1 in
+def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
+
+
+// setcc patterns
+
+class SetCC_R16<PatFrag cond_op, Instruction I>:
+ Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
+ (I CPU16Regs:$rx, CPU16Regs:$ry)>;
+
+class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
+ Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
+ (I CPU16Regs:$rx, imm_type:$imm16)>;
+
+
+def: Mips16Pat<(i32 addr16:$addr),
+ (AddiuRxRyOffMemX16 addr16:$addr)>;
+
+
+// Large (>16 bit) immediate loads
+def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>;
+
+// Carry MipsPatterns
+def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
+ (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
+def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
+ (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
+def : Mips16Pat<(addc CPU16Regs:$src, immSExt16:$imm),
+ (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
+
+//
+// Some branch conditional patterns are not generated by llvm at this time.
+// Some are for seemingly arbitrary reasons not used: i.e. with signed number
+// comparison they are used and for unsigned a different pattern is used.
+// I am pushing upstream from the full mips16 port and it seemed that I needed
+// these earlier and the mips32 port has these but now I cannot create test
+// cases that use these patterns. While I sort this all out I will leave these
+// extra patterns commented out and if I can be sure they are really not used,
+// I will delete the code. I don't want to check the code in uncommented without
+// a valid test case. In some cases, the compiler is generating patterns with
+// setcc instead and earlier I had implemented setcc first so may have masked
+// the problem. The setcc variants are suboptimal for mips16 so I may wantto
+// figure out how to enable the brcond patterns or else possibly new
+// combinations of of brcond and setcc.
+//
+//
+// bcond-seteq
+//
+def: Mips16Pat
+ <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
+ (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
+ >;
+
+
+def: Mips16Pat
+ <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
+ (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16)
+ >;
+
+def: Mips16Pat
+ <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
+ (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16)
+ >;
+
+//
+// bcond-setgt (do we need to have this pair of setlt, setgt??)
+//
+def: Mips16Pat
+ <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
+ (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16)
+ >;
+
+//
+// bcond-setge
+//
+def: Mips16Pat
+ <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
+ (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
+ >;
+
+//
+// never called because compiler transforms a >= k to a > (k-1)
+def: Mips16Pat
+ <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
+ (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16)
+ >;
+
+//
+// bcond-setlt
+//
+def: Mips16Pat
+ <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
+ (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
+ >;
+
+def: Mips16Pat
+ <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
+ (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16)
+ >;
+
+//
+// bcond-setle
+//
+def: Mips16Pat
+ <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
+ (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16)
+ >;
+
+//
+// bcond-setne
+//
+def: Mips16Pat
+ <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
+ (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
+ >;
+
+def: Mips16Pat
+ <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
+ (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16)
+ >;
+
+def: Mips16Pat
+ <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
+ (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
+ >;
+
+//
+// This needs to be there but I forget which code will generate it
+//
+def: Mips16Pat
+ <(brcond CPU16Regs:$rx, bb:$targ16),
+ (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
+ >;
+
+//
+
+//
+// bcond-setugt
+//
+//def: Mips16Pat
+// <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
+// (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16)
+// >;
+
+//
+// bcond-setuge
+//
+//def: Mips16Pat
+// <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
+// (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
+// >;
+
+
+//
+// bcond-setult
+//
+//def: Mips16Pat
+// <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
+// (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
+// >;
+
+def: UncondBranch16_pat<br, Bimm16>;
+
+// Small immediates
+def: Mips16Pat<(i32 immSExt16:$in),
+ (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
+
+def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
+
+//
+// MipsDivRem
+//
+def: Mips16Pat
+ <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
+ (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
+
+//
+// MipsDivRemU
+//
+def: Mips16Pat
+ <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
+ (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
+
+// signed a,b
+// x = (a>=b)?x:y
+//
+// if !(a < b) x = y
+//
+def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$a, CPU16Regs:$b)>;
+
+// signed a,b
+// x = (a>b)?x:y
+//
+// if (b < a) x = y
+//
+def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$b, CPU16Regs:$a)>;
+
+// unsigned a,b
+// x = (a>=b)?x:y
+//
+// if !(a < b) x = y;
+//
+def : Mips16Pat<
+ (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$a, CPU16Regs:$b)>;
+
+// unsigned a,b
+// x = (a>b)?x:y
+//
+// if (b < a) x = y
+//
+def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$b, CPU16Regs:$a)>;
+
+// signed
+// x = (a >= k)?x:y
+// due to an llvm optimization, i don't think that this will ever
+// be used. This is transformed into x = (a > k-1)?x:y
+//
+//
+
+//def : Mips16Pat<
+// (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
+// CPU16Regs:$T, CPU16Regs:$F),
+// (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
+// CPU16Regs:$lhs, immSExt16:$rhs)>;
+
+//def : Mips16Pat<
+// (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
+// CPU16Regs:$T, CPU16Regs:$F),
+// (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
+// CPU16Regs:$lhs, immSExt16:$rhs)>;
+
+// signed
+// x = (a < k)?x:y
+//
+// if !(a < k) x = y;
+//
+def : Mips16Pat<
+ (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$a, immSExt16:$b)>;
+
+
+//
+//
+// signed
+// x = (a <= b)? x : y
+//
+// if (b < a) x = y
+//
+def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$b, CPU16Regs:$a)>;
+
+//
+// unnsigned
+// x = (a <= b)? x : y
+//
+// if (b < a) x = y
+//
+def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$b, CPU16Regs:$a)>;
+
+//
+// signed/unsigned
+// x = (a == b)? x : y
+//
+// if (a != b) x = y
+//
+def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$b, CPU16Regs:$a)>;
+
+//
+// signed/unsigned
+// x = (a == 0)? x : y
+//
+// if (a != 0) x = y
+//
+def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$a)>;
+
+
+//
+// signed/unsigned
+// x = (a == k)? x : y
+//
+// if (a != k) x = y
+//
+def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$a, immZExt16:$k)>;
+
+
+//
+// signed/unsigned
+// x = (a != b)? x : y
+//
+// if (a == b) x = y
+//
+//
+def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$b, CPU16Regs:$a)>;
+
+//
+// signed/unsigned
+// x = (a != 0)? x : y
+//
+// if (a == 0) x = y
+//
+def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$a)>;
+
+// signed/unsigned
+// x = (a)? x : y
+//
+// if (!a) x = y
+//
+def : Mips16Pat<(select CPU16Regs:$a,
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$a)>;
+
+
+//
+// signed/unsigned
+// x = (a != k)? x : y
+//
+// if (a == k) x = y
+//
+def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
+ CPU16Regs:$x, CPU16Regs:$y),
+ (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
+ CPU16Regs:$a, immZExt16:$k)>;
+
+//
+// When writing C code to test setxx these patterns,
+// some will be transformed into
+// other things. So we test using C code but using -O3 and -O0
+//
+// seteq
+//
+def : Mips16Pat
+ <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
+ (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
+
+def : Mips16Pat
+ <(seteq CPU16Regs:$lhs, 0),
+ (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
+
+
+//
+// setge
+//
+
+def: Mips16Pat
+ <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
+ (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
+ (LiRxImmX16 1))>;
+
+//
+// For constants, llvm transforms this to:
+// x > (k -1) and then reverses the operands to use setlt. So this pattern
+// is not used now by the compiler. (Presumably checking that k-1 does not
+// overflow). The compiler never uses this at a the current time, due to
+// other optimizations.
+//
+//def: Mips16Pat
+// <(setge CPU16Regs:$lhs, immSExt16:$rhs),
+// (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
+// (LiRxImmX16 1))>;
+
+// This catches the x >= -32768 case by transforming it to x > -32769
+//
+def: Mips16Pat
+ <(setgt CPU16Regs:$lhs, -32769),
+ (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
+ (LiRxImmX16 1))>;
+
+//
+// setgt
+//
+//
+
+def: Mips16Pat
+ <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
+ (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
+
+//
+// setle
+//
+def: Mips16Pat
+ <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
+ (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
+
+//
+// setlt
+//
+def: SetCC_R16<setlt, SltCCRxRy16>;
+
+def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
+
+//
+// setne
+//
+def : Mips16Pat
+ <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
+ (SltuCCRxRy16 (LiRxImmX16 0),
+ (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
+
+
+//
+// setuge
+//
+def: Mips16Pat
+ <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
+ (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
+ (LiRxImmX16 1))>;
+
+// this pattern will never be used because the compiler will transform
+// x >= k to x > (k - 1) and then use SLT
+//
+//def: Mips16Pat
+// <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
+// (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
+// (LiRxImmX16 1))>;
+
+//
+// setugt
+//
+def: Mips16Pat
+ <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
+ (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
+
+//
+// setule
+//
+def: Mips16Pat
+ <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
+ (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
+
+//
+// setult
+//
+def: SetCC_R16<setult, SltuCCRxRy16>;
+
+def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
+
+def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
+ (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
+
+// hi/lo relocs
+def : Mips16Pat<(MipsHi tblockaddress:$in),
+ (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
+def : Mips16Pat<(MipsHi tglobaladdr:$in),
+ (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
+def : Mips16Pat<(MipsHi tjumptable:$in),
+ (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
+def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
+ (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
+
+def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;
+
+// wrapper_pic
+class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
+ Mips16Pat<(MipsWrapper RC:$gp, node:$in),
+ (ADDiuOp RC:$gp, node:$in)>;
+
+
+def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
+def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
+
+def : Mips16Pat<(i32 (extloadi8 addr16:$src)),
+ (LbuRxRyOffMemX16 addr16:$src)>;
+def : Mips16Pat<(i32 (extloadi16 addr16:$src)),
+ (LhuRxRyOffMemX16 addr16:$src)>;
+
+def: Mips16Pat<(trap), (Break16)>;
+
+def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8),
+ (SebRx16 CPU16Regs:$val)>;
+
+def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16),
+ (SehRx16 CPU16Regs:$val)>;
+
+def GotPrologue16:
+ MipsPseudo16<
+ (outs CPU16Regs:$rh, CPU16Regs:$rl),
+ (ins simm16:$immHi, simm16:$immLo),
+ "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;
+
+// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
+def cpinst_operand : Operand<i32> {
+ // let PrintMethod = "printCPInstOperand";
+}
+
+// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
+// the function. The first operand is the ID# for this instruction, the second
+// is the index into the MachineConstantPool that this is, the third is the
+// size in bytes of this constant pool entry.
+//
+let neverHasSideEffects = 1, isNotDuplicable = 1 in
+def CONSTPOOL_ENTRY :
+MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
+ i32imm:$size), "foo", []>;
+
diff --git a/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.cpp b/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.cpp
new file mode 100644
index 0000000..dbee774
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.cpp
@@ -0,0 +1,153 @@
+//===-- Mips16RegisterInfo.cpp - MIPS16 Register Information --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the MIPS16 implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Mips16RegisterInfo.h"
+#include "Mips.h"
+#include "Mips16InstrInfo.h"
+#include "MipsAnalyzeImmediate.h"
+#include "MipsInstrInfo.h"
+#include "MipsMachineFunction.h"
+#include "MipsSubtarget.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips16-registerinfo"
+
+Mips16RegisterInfo::Mips16RegisterInfo(const MipsSubtarget &ST)
+ : MipsRegisterInfo(ST) {}
+
+bool Mips16RegisterInfo::requiresRegisterScavenging
+ (const MachineFunction &MF) const {
+ return false;
+}
+bool Mips16RegisterInfo::requiresFrameIndexScavenging
+ (const MachineFunction &MF) const {
+ return false;
+}
+
+bool Mips16RegisterInfo::useFPForScavengingIndex
+ (const MachineFunction &MF) const {
+ return false;
+}
+
+bool Mips16RegisterInfo::saveScavengerRegister
+ (MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator &UseMI,
+ const TargetRegisterClass *RC,
+ unsigned Reg) const {
+ DebugLoc DL;
+ const TargetInstrInfo &TII = *MBB.getParent()->getTarget().getInstrInfo();
+ TII.copyPhysReg(MBB, I, DL, Mips::T0, Reg, true);
+ TII.copyPhysReg(MBB, UseMI, DL, Reg, Mips::T0, true);
+ return true;
+}
+
+const TargetRegisterClass *
+Mips16RegisterInfo::intRegClass(unsigned Size) const {
+ assert(Size == 4);
+ return &Mips::CPU16RegsRegClass;
+}
+
+void Mips16RegisterInfo::eliminateFI(MachineBasicBlock::iterator II,
+ unsigned OpNo, int FrameIndex,
+ uint64_t StackSize,
+ int64_t SPOffset) const {
+ MachineInstr &MI = *II;
+ MachineFunction &MF = *MI.getParent()->getParent();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ int MinCSFI = 0;
+ int MaxCSFI = -1;
+
+ if (CSI.size()) {
+ MinCSFI = CSI[0].getFrameIdx();
+ MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
+ }
+
+ // The following stack frame objects are always
+ // referenced relative to $sp:
+ // 1. Outgoing arguments.
+ // 2. Pointer to dynamically allocated stack space.
+ // 3. Locations for callee-saved registers.
+ // Everything else is referenced relative to whatever register
+ // getFrameRegister() returns.
+ unsigned FrameReg;
+
+ if (FrameIndex >= MinCSFI && FrameIndex <= MaxCSFI)
+ FrameReg = Mips::SP;
+ else {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ if (TFI->hasFP(MF)) {
+ FrameReg = Mips::S0;
+ }
+ else {
+ if ((MI.getNumOperands()> OpNo+2) && MI.getOperand(OpNo+2).isReg())
+ FrameReg = MI.getOperand(OpNo+2).getReg();
+ else
+ FrameReg = Mips::SP;
+ }
+ }
+ // Calculate final offset.
+ // - There is no need to change the offset if the frame object
+ // is one of the
+ // following: an outgoing argument, pointer to a dynamically allocated
+ // stack space or a $gp restore location,
+ // - If the frame object is any of the following,
+ // its offset must be adjusted
+ // by adding the size of the stack:
+ // incoming argument, callee-saved register location or local variable.
+ int64_t Offset;
+ bool IsKill = false;
+ Offset = SPOffset + (int64_t)StackSize;
+ Offset += MI.getOperand(OpNo + 1).getImm();
+
+
+ DEBUG(errs() << "Offset : " << Offset << "\n" << "<--------->\n");
+
+ if (!MI.isDebugValue() &&
+ !Mips16InstrInfo::validImmediate(MI.getOpcode(), FrameReg, Offset)) {
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = II->getDebugLoc();
+ unsigned NewImm;
+ const Mips16InstrInfo &TII =
+ *static_cast<const Mips16InstrInfo*>(
+ MBB.getParent()->getTarget().getInstrInfo());
+ FrameReg = TII.loadImmediate(FrameReg, Offset, MBB, II, DL, NewImm);
+ Offset = SignExtend64<16>(NewImm);
+ IsKill = true;
+ }
+ MI.getOperand(OpNo).ChangeToRegister(FrameReg, false, false, IsKill);
+ MI.getOperand(OpNo + 1).ChangeToImmediate(Offset);
+
+
+}
diff --git a/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.h b/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.h
new file mode 100644
index 0000000..f59f1a7
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.h
@@ -0,0 +1,48 @@
+//===-- Mips16RegisterInfo.h - Mips16 Register Information ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips16 implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPS16REGISTERINFO_H
+#define MIPS16REGISTERINFO_H
+
+#include "MipsRegisterInfo.h"
+
+namespace llvm {
+class Mips16InstrInfo;
+
+class Mips16RegisterInfo : public MipsRegisterInfo {
+public:
+ Mips16RegisterInfo(const MipsSubtarget &Subtarget);
+
+ bool requiresRegisterScavenging(const MachineFunction &MF) const override;
+
+ bool requiresFrameIndexScavenging(const MachineFunction &MF) const override;
+
+ bool useFPForScavengingIndex(const MachineFunction &MF) const override;
+
+ bool saveScavengerRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator &UseMI,
+ const TargetRegisterClass *RC,
+ unsigned Reg) const override;
+
+ const TargetRegisterClass *intRegClass(unsigned Size) const override;
+
+private:
+ void eliminateFI(MachineBasicBlock::iterator II, unsigned OpNo,
+ int FrameIndex, uint64_t StackSize,
+ int64_t SPOffset) const override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/Mips32r6InstrFormats.td b/contrib/llvm/lib/Target/Mips/Mips32r6InstrFormats.td
new file mode 100644
index 0000000..e4ec96a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips32r6InstrFormats.td
@@ -0,0 +1,543 @@
+//=- Mips32r6InstrFormats.td - Mips32r6 Instruction Formats -*- tablegen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes Mips32r6 instruction formats.
+//
+//===----------------------------------------------------------------------===//
+
+class MipsR6Inst : MipsInst<(outs), (ins), "", [], NoItinerary, FrmOther>,
+ PredicateControl {
+ let DecoderNamespace = "Mips32r6_64r6";
+ let EncodingPredicates = [HasStdEnc];
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Field Values
+//
+//===----------------------------------------------------------------------===//
+
+class OPGROUP<bits<6> Val> {
+ bits<6> Value = Val;
+}
+def OPGROUP_COP1 : OPGROUP<0b010001>;
+def OPGROUP_COP2 : OPGROUP<0b010010>;
+def OPGROUP_ADDI : OPGROUP<0b001000>;
+def OPGROUP_AUI : OPGROUP<0b001111>;
+def OPGROUP_BLEZ : OPGROUP<0b000110>;
+def OPGROUP_BGTZ : OPGROUP<0b000111>;
+def OPGROUP_BLEZL : OPGROUP<0b010110>;
+def OPGROUP_BGTZL : OPGROUP<0b010111>;
+def OPGROUP_DADDI : OPGROUP<0b011000>;
+def OPGROUP_DAUI : OPGROUP<0b011101>;
+def OPGROUP_PCREL : OPGROUP<0b111011>;
+def OPGROUP_REGIMM : OPGROUP<0b000001>;
+def OPGROUP_SPECIAL : OPGROUP<0b000000>;
+// The spec occasionally names this value LL, LLD, SC, or SCD.
+def OPGROUP_SPECIAL3 : OPGROUP<0b011111>;
+// The spec names this constant LWC2, LDC2, SWC2, and SDC2 in different places.
+def OPGROUP_COP2LDST : OPGROUP<0b010010>;
+
+class OPCODE2<bits<2> Val> {
+ bits<2> Value = Val;
+}
+def OPCODE2_ADDIUPC : OPCODE2<0b00>;
+def OPCODE2_LWPC : OPCODE2<0b01>;
+def OPCODE2_LWUPC : OPCODE2<0b10>;
+
+class OPCODE3<bits<3> Val> {
+ bits<3> Value = Val;
+}
+def OPCODE3_LDPC : OPCODE3<0b110>;
+
+class OPCODE5<bits<5> Val> {
+ bits<5> Value = Val;
+}
+def OPCODE5_ALUIPC : OPCODE5<0b11111>;
+def OPCODE5_AUIPC : OPCODE5<0b11110>;
+def OPCODE5_DAHI : OPCODE5<0b00110>;
+def OPCODE5_DATI : OPCODE5<0b11110>;
+def OPCODE5_BC1EQZ : OPCODE5<0b01001>;
+def OPCODE5_BC1NEZ : OPCODE5<0b01101>;
+def OPCODE5_BC2EQZ : OPCODE5<0b01001>;
+def OPCODE5_BC2NEZ : OPCODE5<0b01101>;
+def OPCODE5_BGEZAL : OPCODE5<0b10001>;
+// The next four constants are unnamed in the spec. These names are taken from
+// the OPGROUP names they are used with.
+def OPCODE5_LDC2 : OPCODE5<0b01110>;
+def OPCODE5_LWC2 : OPCODE5<0b01010>;
+def OPCODE5_SDC2 : OPCODE5<0b01111>;
+def OPCODE5_SWC2 : OPCODE5<0b01011>;
+
+class OPCODE6<bits<6> Val> {
+ bits<6> Value = Val;
+}
+def OPCODE6_ALIGN : OPCODE6<0b100000>;
+def OPCODE6_DALIGN : OPCODE6<0b100100>;
+def OPCODE6_BITSWAP : OPCODE6<0b100000>;
+def OPCODE6_DBITSWAP : OPCODE6<0b100100>;
+def OPCODE6_JALR : OPCODE6<0b001001>;
+def OPCODE6_CACHE : OPCODE6<0b100101>;
+def OPCODE6_PREF : OPCODE6<0b110101>;
+// The next four constants are unnamed in the spec. These names are taken from
+// the OPGROUP names they are used with.
+def OPCODE6_LL : OPCODE6<0b110110>;
+def OPCODE6_LLD : OPCODE6<0b110111>;
+def OPCODE6_SC : OPCODE6<0b100110>;
+def OPCODE6_SCD : OPCODE6<0b100111>;
+def OPCODE6_CLO : OPCODE6<0b010001>;
+def OPCODE6_CLZ : OPCODE6<0b010000>;
+def OPCODE6_DCLO : OPCODE6<0b010011>;
+def OPCODE6_DCLZ : OPCODE6<0b010010>;
+def OPCODE6_LSA : OPCODE6<0b000101>;
+def OPCODE6_DLSA : OPCODE6<0b010101>;
+def OPCODE6_SDBBP : OPCODE6<0b001110>;
+
+class FIELD_FMT<bits<5> Val> {
+ bits<5> Value = Val;
+}
+def FIELD_FMT_S : FIELD_FMT<0b10000>;
+def FIELD_FMT_D : FIELD_FMT<0b10001>;
+
+class FIELD_CMP_COND<bits<5> Val> {
+ bits<5> Value = Val;
+}
+// Note: The CMP_COND_FMT names differ from the C_COND_FMT names.
+def FIELD_CMP_COND_AF : FIELD_CMP_COND<0b00000>;
+def FIELD_CMP_COND_UN : FIELD_CMP_COND<0b00001>;
+def FIELD_CMP_COND_EQ : FIELD_CMP_COND<0b00010>;
+def FIELD_CMP_COND_UEQ : FIELD_CMP_COND<0b00011>;
+def FIELD_CMP_COND_LT : FIELD_CMP_COND<0b00100>;
+def FIELD_CMP_COND_ULT : FIELD_CMP_COND<0b00101>;
+def FIELD_CMP_COND_LE : FIELD_CMP_COND<0b00110>;
+def FIELD_CMP_COND_ULE : FIELD_CMP_COND<0b00111>;
+def FIELD_CMP_COND_SAF : FIELD_CMP_COND<0b01000>;
+def FIELD_CMP_COND_SUN : FIELD_CMP_COND<0b01001>;
+def FIELD_CMP_COND_SEQ : FIELD_CMP_COND<0b01010>;
+def FIELD_CMP_COND_SUEQ : FIELD_CMP_COND<0b01011>;
+def FIELD_CMP_COND_SLT : FIELD_CMP_COND<0b01100>;
+def FIELD_CMP_COND_SULT : FIELD_CMP_COND<0b01101>;
+def FIELD_CMP_COND_SLE : FIELD_CMP_COND<0b01110>;
+def FIELD_CMP_COND_SULE : FIELD_CMP_COND<0b01111>;
+
+class FIELD_CMP_FORMAT<bits<5> Val> {
+ bits<5> Value = Val;
+}
+def FIELD_CMP_FORMAT_S : FIELD_CMP_FORMAT<0b10100>;
+def FIELD_CMP_FORMAT_D : FIELD_CMP_FORMAT<0b10101>;
+
+//===----------------------------------------------------------------------===//
+//
+// Disambiguators
+//
+//===----------------------------------------------------------------------===//
+//
+// Some encodings are ambiguous except by comparing field values.
+
+class DecodeDisambiguates<string Name> {
+ string DecoderMethod = !strconcat("Decode", Name);
+}
+
+class DecodeDisambiguatedBy<string Name> : DecodeDisambiguates<Name> {
+ string DecoderNamespace = "Mips32r6_64r6_Ambiguous";
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Encoding Formats
+//
+//===----------------------------------------------------------------------===//
+
+class AUI_FM : MipsR6Inst {
+ bits<5> rs;
+ bits<5> rt;
+ bits<16> imm;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_AUI.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = imm;
+}
+
+class DAUI_FM : AUI_FM {
+ let Inst{31-26} = OPGROUP_DAUI.Value;
+}
+
+class BAL_FM : MipsR6Inst {
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_REGIMM.Value;
+ let Inst{25-21} = 0b00000;
+ let Inst{20-16} = OPCODE5_BGEZAL.Value;
+ let Inst{15-0} = offset;
+}
+
+class COP1_2R_FM<bits<6> funct, FIELD_FMT Format> : MipsR6Inst {
+ bits<5> fs;
+ bits<5> fd;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_COP1.Value;
+ let Inst{25-21} = Format.Value;
+ let Inst{20-16} = 0b00000;
+ let Inst{15-11} = fs;
+ let Inst{10-6} = fd;
+ let Inst{5-0} = funct;
+}
+
+class COP1_3R_FM<bits<6> funct, FIELD_FMT Format> : MipsR6Inst {
+ bits<5> ft;
+ bits<5> fs;
+ bits<5> fd;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_COP1.Value;
+ let Inst{25-21} = Format.Value;
+ let Inst{20-16} = ft;
+ let Inst{15-11} = fs;
+ let Inst{10-6} = fd;
+ let Inst{5-0} = funct;
+}
+
+class COP1_BCCZ_FM<OPCODE5 Operation> : MipsR6Inst {
+ bits<5> ft;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_COP1.Value;
+ let Inst{25-21} = Operation.Value;
+ let Inst{20-16} = ft;
+ let Inst{15-0} = offset;
+}
+
+class COP2_BCCZ_FM<OPCODE5 Operation> : MipsR6Inst {
+ bits<5> ct;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_COP2.Value;
+ let Inst{25-21} = Operation.Value;
+ let Inst{20-16} = ct;
+ let Inst{15-0} = offset;
+}
+
+class PCREL16_FM<OPCODE5 Operation> : MipsR6Inst {
+ bits<5> rs;
+ bits<16> imm;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_PCREL.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = Operation.Value;
+ let Inst{15-0} = imm;
+}
+
+class PCREL19_FM<OPCODE2 Operation> : MipsR6Inst {
+ bits<5> rs;
+ bits<19> imm;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_PCREL.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-19} = Operation.Value;
+ let Inst{18-0} = imm;
+}
+
+class PCREL18_FM<OPCODE3 Operation> : MipsR6Inst {
+ bits<5> rs;
+ bits<18> imm;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_PCREL.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-18} = Operation.Value;
+ let Inst{17-0} = imm;
+}
+
+class SPECIAL3_2R_FM<OPCODE6 Operation> : MipsR6Inst {
+ bits<5> rd;
+ bits<5> rt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_SPECIAL3.Value;
+ let Inst{25-21} = 0b00000;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = 0b00000;
+ let Inst{5-0} = Operation.Value;
+}
+
+class SPECIAL3_MEM_FM<OPCODE6 Operation> : MipsR6Inst {
+ bits<21> addr;
+ bits<5> hint;
+ bits<5> base = addr{20-16};
+ bits<9> offset = addr{8-0};
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_SPECIAL3.Value;
+ let Inst{25-21} = base;
+ let Inst{20-16} = hint;
+ let Inst{15-7} = offset;
+ let Inst{6} = 0;
+ let Inst{5-0} = Operation.Value;
+}
+
+class SPECIAL_2R_FM<OPCODE6 Operation> : MipsR6Inst {
+ bits<5> rd;
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_SPECIAL.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = 0b00000;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = 0b00001;
+ let Inst{5-0} = Operation.Value;
+}
+
+class SPECIAL_3R_FM<bits<5> mulop, bits<6> funct> : MipsR6Inst {
+ bits<5> rd;
+ bits<5> rs;
+ bits<5> rt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_SPECIAL.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = mulop;
+ let Inst{5-0} = funct;
+}
+
+class SPECIAL_SDBBP_FM : MipsR6Inst {
+ bits<20> code_;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_SPECIAL.Value;
+ let Inst{25-6} = code_;
+ let Inst{5-0} = OPCODE6_SDBBP.Value;
+}
+
+// This class is ambiguous with other branches:
+// BEQC/BNEC require that rs > rt
+class CMP_BRANCH_2R_OFF16_FM<OPGROUP funct> : MipsR6Inst {
+ bits<5> rs;
+ bits<5> rt;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = funct.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = offset;
+}
+
+// This class is ambiguous with other branches:
+// BLEZC/BGEZC/BEQZALC/BNEZALC/BGTZALC require that rs == 0 && rt != 0
+// The '1R_RT' in the name means 1 register in the rt field.
+class CMP_BRANCH_1R_RT_OFF16_FM<OPGROUP funct> : MipsR6Inst {
+ bits<5> rt;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = funct.Value;
+ let Inst{25-21} = 0b00000;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = offset;
+}
+
+// This class is ambiguous with other branches:
+// BLTZC/BGTZC/BLTZALC/BGEZALC require that rs == rt && rt != 0
+// The '1R_BOTH' in the name means 1 register in both the rs and rt fields.
+class CMP_BRANCH_1R_BOTH_OFF16_FM<OPGROUP funct> : MipsR6Inst {
+ bits<5> rt;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = funct.Value;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = offset;
+}
+
+class CMP_BRANCH_OFF21_FM<bits<6> funct> : MipsR6Inst {
+ bits<5> rs; // rs != 0
+ bits<21> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = funct;
+ let Inst{25-21} = rs;
+ let Inst{20-0} = offset;
+}
+
+class JMP_IDX_COMPACT_FM<bits<6> funct> : MipsR6Inst {
+ bits<5> rt;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = funct;
+ let Inst{25-21} = 0b000000;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = offset;
+}
+
+class BRANCH_OFF26_FM<bits<6> funct> : MipsR6Inst {
+ bits<32> Inst;
+ bits<26> offset;
+
+ let Inst{31-26} = funct;
+ let Inst{25-0} = offset;
+}
+
+class SPECIAL3_ALIGN_FM<OPCODE6 Operation> : MipsR6Inst {
+ bits<5> rd;
+ bits<5> rs;
+ bits<5> rt;
+ bits<2> bp;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_SPECIAL3.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-8} = 0b010;
+ let Inst{7-6} = bp;
+ let Inst{5-0} = Operation.Value;
+}
+
+class SPECIAL3_DALIGN_FM<OPCODE6 Operation> : MipsR6Inst {
+ bits<5> rd;
+ bits<5> rs;
+ bits<5> rt;
+ bits<3> bp;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_SPECIAL3.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-9} = 0b01;
+ let Inst{8-6} = bp;
+ let Inst{5-0} = Operation.Value;
+}
+
+class SPECIAL3_LL_SC_FM<OPCODE6 Operation> : MipsR6Inst {
+ bits<5> rt;
+ bits<21> addr;
+ bits<5> base = addr{20-16};
+ bits<9> offset = addr{8-0};
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_SPECIAL3.Value;
+ let Inst{25-21} = base;
+ let Inst{20-16} = rt;
+ let Inst{15-7} = offset;
+ let Inst{5-0} = Operation.Value;
+
+ string DecoderMethod = "DecodeSpecial3LlSc";
+}
+
+class SPECIAL_LSA_FM<OPCODE6 Operation> : MipsR6Inst {
+ bits<5> rd;
+ bits<5> rs;
+ bits<5> rt;
+ bits<2> imm2;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_SPECIAL.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-8} = 0b000;
+ let Inst{7-6} = imm2;
+ let Inst{5-0} = Operation.Value;
+}
+
+class REGIMM_FM<OPCODE5 Operation> : MipsR6Inst {
+ bits<5> rs;
+ bits<16> imm;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_REGIMM.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = Operation.Value;
+ let Inst{15-0} = imm;
+}
+
+class COP1_CMP_CONDN_FM<FIELD_CMP_FORMAT Format,
+ FIELD_CMP_COND Cond> : MipsR6Inst {
+ bits<5> fd;
+ bits<5> fs;
+ bits<5> ft;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_COP1.Value;
+ let Inst{25-21} = Format.Value;
+ let Inst{20-16} = ft;
+ let Inst{15-11} = fs;
+ let Inst{10-6} = fd;
+ let Inst{5} = 0;
+ let Inst{4-0} = Cond.Value;
+}
+
+class JR_HB_R6_FM<OPCODE6 Operation> : MipsR6Inst {
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_SPECIAL.Value;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = 0;
+ let Inst{15-11} = 0;
+ let Inst{10} = 1;
+ let Inst{9-6} = 0;
+ let Inst{5-0} = Operation.Value;
+}
+
+class COP2LDST_FM<OPCODE5 Operation> : MipsR6Inst {
+ bits<5> rt;
+ bits<21> addr;
+ bits<5> base = addr{20-16};
+ bits<11> offset = addr{10-0};
+
+ bits<32> Inst;
+
+ let Inst{31-26} = OPGROUP_COP2LDST.Value;
+ let Inst{25-21} = Operation.Value;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = base;
+ let Inst{10-0} = offset;
+}
diff --git a/contrib/llvm/lib/Target/Mips/Mips32r6InstrInfo.td b/contrib/llvm/lib/Target/Mips/Mips32r6InstrInfo.td
new file mode 100644
index 0000000..6d6735b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips32r6InstrInfo.td
@@ -0,0 +1,824 @@
+//=- Mips32r6InstrInfo.td - Mips32r6 Instruction Information -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes Mips32r6 instructions.
+//
+//===----------------------------------------------------------------------===//
+
+include "Mips32r6InstrFormats.td"
+
+// Notes about removals/changes from MIPS32r6:
+// Reencoded: jr -> jalr
+// Reencoded: jr.hb -> jalr.hb
+
+def brtarget21 : Operand<OtherVT> {
+ let EncoderMethod = "getBranchTarget21OpValue";
+ let OperandType = "OPERAND_PCREL";
+ let DecoderMethod = "DecodeBranchTarget21";
+ let ParserMatchClass = MipsJumpTargetAsmOperand;
+}
+
+def brtarget26 : Operand<OtherVT> {
+ let EncoderMethod = "getBranchTarget26OpValue";
+ let OperandType = "OPERAND_PCREL";
+ let DecoderMethod = "DecodeBranchTarget26";
+ let ParserMatchClass = MipsJumpTargetAsmOperand;
+}
+
+def jmpoffset16 : Operand<OtherVT> {
+ let EncoderMethod = "getJumpOffset16OpValue";
+ let ParserMatchClass = MipsJumpTargetAsmOperand;
+}
+
+def calloffset16 : Operand<iPTR> {
+ let EncoderMethod = "getJumpOffset16OpValue";
+ let ParserMatchClass = MipsJumpTargetAsmOperand;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Instruction Encodings
+//
+//===----------------------------------------------------------------------===//
+
+class ADDIUPC_ENC : PCREL19_FM<OPCODE2_ADDIUPC>;
+class ALIGN_ENC : SPECIAL3_ALIGN_FM<OPCODE6_ALIGN>;
+class ALUIPC_ENC : PCREL16_FM<OPCODE5_ALUIPC>;
+class AUI_ENC : AUI_FM;
+class AUIPC_ENC : PCREL16_FM<OPCODE5_AUIPC>;
+
+class BAL_ENC : BAL_FM;
+class BALC_ENC : BRANCH_OFF26_FM<0b111010>;
+class BC_ENC : BRANCH_OFF26_FM<0b110010>;
+class BEQC_ENC : CMP_BRANCH_2R_OFF16_FM<OPGROUP_ADDI>,
+ DecodeDisambiguates<"AddiGroupBranch">;
+class BEQZALC_ENC : CMP_BRANCH_1R_RT_OFF16_FM<OPGROUP_ADDI>,
+ DecodeDisambiguatedBy<"DaddiGroupBranch">;
+class BNEC_ENC : CMP_BRANCH_2R_OFF16_FM<OPGROUP_DADDI>,
+ DecodeDisambiguates<"DaddiGroupBranch">;
+class BNEZALC_ENC : CMP_BRANCH_1R_RT_OFF16_FM<OPGROUP_DADDI>,
+ DecodeDisambiguatedBy<"DaddiGroupBranch">;
+
+class BLTZC_ENC : CMP_BRANCH_1R_BOTH_OFF16_FM<OPGROUP_BGTZL>,
+ DecodeDisambiguates<"BgtzlGroupBranch">;
+class BGEC_ENC : CMP_BRANCH_2R_OFF16_FM<OPGROUP_BLEZL>,
+ DecodeDisambiguatedBy<"BlezlGroupBranch">;
+class BGEUC_ENC : CMP_BRANCH_2R_OFF16_FM<OPGROUP_BLEZ>,
+ DecodeDisambiguatedBy<"BlezGroupBranch">;
+class BGEZC_ENC : CMP_BRANCH_1R_BOTH_OFF16_FM<OPGROUP_BLEZL>,
+ DecodeDisambiguates<"BlezlGroupBranch">;
+class BGTZALC_ENC : CMP_BRANCH_1R_RT_OFF16_FM<OPGROUP_BGTZ>,
+ DecodeDisambiguatedBy<"BgtzGroupBranch">;
+
+class BLTC_ENC : CMP_BRANCH_2R_OFF16_FM<OPGROUP_BGTZL>,
+ DecodeDisambiguatedBy<"BgtzlGroupBranch">;
+class BLTUC_ENC : CMP_BRANCH_2R_OFF16_FM<OPGROUP_BGTZ>,
+ DecodeDisambiguatedBy<"BgtzGroupBranch">;
+
+class BLEZC_ENC : CMP_BRANCH_1R_RT_OFF16_FM<OPGROUP_BLEZL>,
+ DecodeDisambiguatedBy<"BlezlGroupBranch">;
+class BLTZALC_ENC : CMP_BRANCH_1R_BOTH_OFF16_FM<OPGROUP_BGTZ>,
+ DecodeDisambiguates<"BgtzGroupBranch">;
+class BGTZC_ENC : CMP_BRANCH_1R_RT_OFF16_FM<OPGROUP_BGTZL>,
+ DecodeDisambiguatedBy<"BgtzlGroupBranch">;
+
+class BEQZC_ENC : CMP_BRANCH_OFF21_FM<0b110110>;
+class BGEZALC_ENC : CMP_BRANCH_1R_BOTH_OFF16_FM<OPGROUP_BLEZ>,
+ DecodeDisambiguates<"BlezGroupBranch">;
+class BNEZC_ENC : CMP_BRANCH_OFF21_FM<0b111110>;
+
+class BC1EQZ_ENC : COP1_BCCZ_FM<OPCODE5_BC1EQZ>;
+class BC1NEZ_ENC : COP1_BCCZ_FM<OPCODE5_BC1NEZ>;
+class BC2EQZ_ENC : COP2_BCCZ_FM<OPCODE5_BC2EQZ>;
+class BC2NEZ_ENC : COP2_BCCZ_FM<OPCODE5_BC2NEZ>;
+
+class JIALC_ENC : JMP_IDX_COMPACT_FM<0b111110>;
+class JIC_ENC : JMP_IDX_COMPACT_FM<0b110110>;
+class JR_HB_R6_ENC : JR_HB_R6_FM<OPCODE6_JALR>;
+class BITSWAP_ENC : SPECIAL3_2R_FM<OPCODE6_BITSWAP>;
+class BLEZALC_ENC : CMP_BRANCH_1R_RT_OFF16_FM<OPGROUP_BLEZ>,
+ DecodeDisambiguatedBy<"BlezGroupBranch">;
+class BNVC_ENC : CMP_BRANCH_2R_OFF16_FM<OPGROUP_DADDI>,
+ DecodeDisambiguatedBy<"DaddiGroupBranch">;
+class BOVC_ENC : CMP_BRANCH_2R_OFF16_FM<OPGROUP_ADDI>,
+ DecodeDisambiguatedBy<"AddiGroupBranch">;
+class DIV_ENC : SPECIAL_3R_FM<0b00010, 0b011010>;
+class DIVU_ENC : SPECIAL_3R_FM<0b00010, 0b011011>;
+class MOD_ENC : SPECIAL_3R_FM<0b00011, 0b011010>;
+class MODU_ENC : SPECIAL_3R_FM<0b00011, 0b011011>;
+class MUH_ENC : SPECIAL_3R_FM<0b00011, 0b011000>;
+class MUHU_ENC : SPECIAL_3R_FM<0b00011, 0b011001>;
+class MUL_R6_ENC : SPECIAL_3R_FM<0b00010, 0b011000>;
+class MULU_ENC : SPECIAL_3R_FM<0b00010, 0b011001>;
+
+class MADDF_S_ENC : COP1_3R_FM<0b011000, FIELD_FMT_S>;
+class MADDF_D_ENC : COP1_3R_FM<0b011000, FIELD_FMT_D>;
+class MSUBF_S_ENC : COP1_3R_FM<0b011001, FIELD_FMT_S>;
+class MSUBF_D_ENC : COP1_3R_FM<0b011001, FIELD_FMT_D>;
+
+class SEL_D_ENC : COP1_3R_FM<0b010000, FIELD_FMT_D>;
+class SEL_S_ENC : COP1_3R_FM<0b010000, FIELD_FMT_S>;
+
+class SELEQZ_ENC : SPECIAL_3R_FM<0b00000, 0b110101>;
+class SELNEZ_ENC : SPECIAL_3R_FM<0b00000, 0b110111>;
+
+class LWPC_ENC : PCREL19_FM<OPCODE2_LWPC>;
+class LWUPC_ENC : PCREL19_FM<OPCODE2_LWUPC>;
+
+class MAX_S_ENC : COP1_3R_FM<0b011101, FIELD_FMT_S>;
+class MAX_D_ENC : COP1_3R_FM<0b011101, FIELD_FMT_D>;
+class MIN_S_ENC : COP1_3R_FM<0b011100, FIELD_FMT_S>;
+class MIN_D_ENC : COP1_3R_FM<0b011100, FIELD_FMT_D>;
+
+class MAXA_S_ENC : COP1_3R_FM<0b011111, FIELD_FMT_S>;
+class MAXA_D_ENC : COP1_3R_FM<0b011111, FIELD_FMT_D>;
+class MINA_S_ENC : COP1_3R_FM<0b011110, FIELD_FMT_S>;
+class MINA_D_ENC : COP1_3R_FM<0b011110, FIELD_FMT_D>;
+
+class SELEQZ_S_ENC : COP1_3R_FM<0b010100, FIELD_FMT_S>;
+class SELEQZ_D_ENC : COP1_3R_FM<0b010100, FIELD_FMT_D>;
+class SELNEZ_S_ENC : COP1_3R_FM<0b010111, FIELD_FMT_S>;
+class SELNEZ_D_ENC : COP1_3R_FM<0b010111, FIELD_FMT_D>;
+
+class RINT_S_ENC : COP1_2R_FM<0b011010, FIELD_FMT_S>;
+class RINT_D_ENC : COP1_2R_FM<0b011010, FIELD_FMT_D>;
+class CLASS_S_ENC : COP1_2R_FM<0b011011, FIELD_FMT_S>;
+class CLASS_D_ENC : COP1_2R_FM<0b011011, FIELD_FMT_D>;
+
+class CACHE_ENC : SPECIAL3_MEM_FM<OPCODE6_CACHE>;
+class PREF_ENC : SPECIAL3_MEM_FM<OPCODE6_PREF>;
+
+class LDC2_R6_ENC : COP2LDST_FM<OPCODE5_LDC2>;
+class LWC2_R6_ENC : COP2LDST_FM<OPCODE5_LWC2>;
+class SDC2_R6_ENC : COP2LDST_FM<OPCODE5_SDC2>;
+class SWC2_R6_ENC : COP2LDST_FM<OPCODE5_SWC2>;
+
+class LSA_R6_ENC : SPECIAL_LSA_FM<OPCODE6_LSA>;
+
+class LL_R6_ENC : SPECIAL3_LL_SC_FM<OPCODE6_LL>;
+class SC_R6_ENC : SPECIAL3_LL_SC_FM<OPCODE6_SC>;
+
+class CLO_R6_ENC : SPECIAL_2R_FM<OPCODE6_CLO>;
+class CLZ_R6_ENC : SPECIAL_2R_FM<OPCODE6_CLZ>;
+
+class SDBBP_R6_ENC : SPECIAL_SDBBP_FM;
+
+//===----------------------------------------------------------------------===//
+//
+// Instruction Multiclasses
+//
+//===----------------------------------------------------------------------===//
+
+class CMP_CONDN_DESC_BASE<string CondStr, string Typestr,
+ RegisterOperand FGROpnd,
+ SDPatternOperator Op = null_frag> {
+ dag OutOperandList = (outs FGRCCOpnd:$fd);
+ dag InOperandList = (ins FGROpnd:$fs, FGROpnd:$ft);
+ string AsmString = !strconcat("cmp.", CondStr, ".", Typestr, "\t$fd, $fs, $ft");
+ list<dag> Pattern = [(set FGRCCOpnd:$fd, (Op FGROpnd:$fs, FGROpnd:$ft))];
+}
+
+multiclass CMP_CC_M <FIELD_CMP_FORMAT Format, string Typestr,
+ RegisterOperand FGROpnd>{
+ def CMP_F_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_AF>,
+ CMP_CONDN_DESC_BASE<"af", Typestr, FGROpnd>,
+ ISA_MIPS32R6;
+ def CMP_UN_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_UN>,
+ CMP_CONDN_DESC_BASE<"un", Typestr, FGROpnd, setuo>,
+ ISA_MIPS32R6;
+ def CMP_EQ_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_EQ>,
+ CMP_CONDN_DESC_BASE<"eq", Typestr, FGROpnd, setoeq>,
+ ISA_MIPS32R6;
+ def CMP_UEQ_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_UEQ>,
+ CMP_CONDN_DESC_BASE<"ueq", Typestr, FGROpnd, setueq>,
+ ISA_MIPS32R6;
+ def CMP_LT_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_LT>,
+ CMP_CONDN_DESC_BASE<"lt", Typestr, FGROpnd, setolt>,
+ ISA_MIPS32R6;
+ def CMP_ULT_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_ULT>,
+ CMP_CONDN_DESC_BASE<"ult", Typestr, FGROpnd, setult>,
+ ISA_MIPS32R6;
+ def CMP_LE_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_LE>,
+ CMP_CONDN_DESC_BASE<"le", Typestr, FGROpnd, setole>,
+ ISA_MIPS32R6;
+ def CMP_ULE_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_ULE>,
+ CMP_CONDN_DESC_BASE<"ule", Typestr, FGROpnd, setule>,
+ ISA_MIPS32R6;
+ def CMP_SAF_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_SAF>,
+ CMP_CONDN_DESC_BASE<"saf", Typestr, FGROpnd>,
+ ISA_MIPS32R6;
+ def CMP_SUN_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_SUN>,
+ CMP_CONDN_DESC_BASE<"sun", Typestr, FGROpnd>,
+ ISA_MIPS32R6;
+ def CMP_SEQ_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_SEQ>,
+ CMP_CONDN_DESC_BASE<"seq", Typestr, FGROpnd>,
+ ISA_MIPS32R6;
+ def CMP_SUEQ_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_SUEQ>,
+ CMP_CONDN_DESC_BASE<"sueq", Typestr, FGROpnd>,
+ ISA_MIPS32R6;
+ def CMP_SLT_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_SLT>,
+ CMP_CONDN_DESC_BASE<"slt", Typestr, FGROpnd>,
+ ISA_MIPS32R6;
+ def CMP_SULT_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_SULT>,
+ CMP_CONDN_DESC_BASE<"sult", Typestr, FGROpnd>,
+ ISA_MIPS32R6;
+ def CMP_SLE_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_SLE>,
+ CMP_CONDN_DESC_BASE<"sle", Typestr, FGROpnd>,
+ ISA_MIPS32R6;
+ def CMP_SULE_#NAME : COP1_CMP_CONDN_FM<Format, FIELD_CMP_COND_SULE>,
+ CMP_CONDN_DESC_BASE<"sule", Typestr, FGROpnd>,
+ ISA_MIPS32R6;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Instruction Descriptions
+//
+//===----------------------------------------------------------------------===//
+
+class PCREL_DESC_BASE<string instr_asm, RegisterOperand GPROpnd,
+ Operand ImmOpnd> {
+ dag OutOperandList = (outs GPROpnd:$rs);
+ dag InOperandList = (ins ImmOpnd:$imm);
+ string AsmString = !strconcat(instr_asm, "\t$rs, $imm");
+ list<dag> Pattern = [];
+}
+
+class ADDIUPC_DESC : PCREL_DESC_BASE<"addiupc", GPR32Opnd, simm19_lsl2>;
+class LWPC_DESC: PCREL_DESC_BASE<"lwpc", GPR32Opnd, simm19_lsl2>;
+class LWUPC_DESC: PCREL_DESC_BASE<"lwupc", GPR32Opnd, simm19_lsl2>;
+
+class ALIGN_DESC_BASE<string instr_asm, RegisterOperand GPROpnd,
+ Operand ImmOpnd> {
+ dag OutOperandList = (outs GPROpnd:$rd);
+ dag InOperandList = (ins GPROpnd:$rs, GPROpnd:$rt, ImmOpnd:$bp);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs, $rt, $bp");
+ list<dag> Pattern = [];
+}
+
+class ALIGN_DESC : ALIGN_DESC_BASE<"align", GPR32Opnd, uimm2>;
+
+class ALUIPC_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
+ dag OutOperandList = (outs GPROpnd:$rs);
+ dag InOperandList = (ins simm16:$imm);
+ string AsmString = !strconcat(instr_asm, "\t$rs, $imm");
+ list<dag> Pattern = [];
+}
+
+class ALUIPC_DESC : ALUIPC_DESC_BASE<"aluipc", GPR32Opnd>;
+class AUIPC_DESC : ALUIPC_DESC_BASE<"auipc", GPR32Opnd>;
+
+class AUI_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
+ dag OutOperandList = (outs GPROpnd:$rs);
+ dag InOperandList = (ins GPROpnd:$rt, simm16:$imm);
+ string AsmString = !strconcat(instr_asm, "\t$rs, $rt, $imm");
+ list<dag> Pattern = [];
+}
+
+class AUI_DESC : AUI_DESC_BASE<"aui", GPR32Opnd>;
+
+class BRANCH_DESC_BASE {
+ bit isBranch = 1;
+ bit isTerminator = 1;
+ bit hasDelaySlot = 0;
+}
+
+class BC_DESC_BASE<string instr_asm, DAGOperand opnd> : BRANCH_DESC_BASE {
+ dag InOperandList = (ins opnd:$offset);
+ dag OutOperandList = (outs);
+ string AsmString = !strconcat(instr_asm, "\t$offset");
+ bit isBarrier = 1;
+}
+
+class CMP_BC_DESC_BASE<string instr_asm, DAGOperand opnd,
+ RegisterOperand GPROpnd> : BRANCH_DESC_BASE {
+ dag InOperandList = (ins GPROpnd:$rs, GPROpnd:$rt, opnd:$offset);
+ dag OutOperandList = (outs);
+ string AsmString = !strconcat(instr_asm, "\t$rs, $rt, $offset");
+ list<Register> Defs = [AT];
+}
+
+class CMP_CBR_EQNE_Z_DESC_BASE<string instr_asm, DAGOperand opnd,
+ RegisterOperand GPROpnd> : BRANCH_DESC_BASE {
+ dag InOperandList = (ins GPROpnd:$rs, opnd:$offset);
+ dag OutOperandList = (outs);
+ string AsmString = !strconcat(instr_asm, "\t$rs, $offset");
+ list<Register> Defs = [AT];
+}
+
+class CMP_CBR_RT_Z_DESC_BASE<string instr_asm, DAGOperand opnd,
+ RegisterOperand GPROpnd> : BRANCH_DESC_BASE {
+ dag InOperandList = (ins GPROpnd:$rt, opnd:$offset);
+ dag OutOperandList = (outs);
+ string AsmString = !strconcat(instr_asm, "\t$rt, $offset");
+ list<Register> Defs = [AT];
+}
+
+class BAL_DESC : BC_DESC_BASE<"bal", brtarget> {
+ bit isCall = 1;
+ bit hasDelaySlot = 1;
+ list<Register> Defs = [RA];
+}
+
+class BALC_DESC : BC_DESC_BASE<"balc", brtarget26> {
+ bit isCall = 1;
+ list<Register> Defs = [RA];
+}
+
+class BC_DESC : BC_DESC_BASE<"bc", brtarget26>;
+class BGEC_DESC : CMP_BC_DESC_BASE<"bgec", brtarget, GPR32Opnd>;
+class BGEUC_DESC : CMP_BC_DESC_BASE<"bgeuc", brtarget, GPR32Opnd>;
+class BEQC_DESC : CMP_BC_DESC_BASE<"beqc", brtarget, GPR32Opnd>;
+class BNEC_DESC : CMP_BC_DESC_BASE<"bnec", brtarget, GPR32Opnd>;
+
+class BLTC_DESC : CMP_BC_DESC_BASE<"bltc", brtarget, GPR32Opnd>;
+class BLTUC_DESC : CMP_BC_DESC_BASE<"bltuc", brtarget, GPR32Opnd>;
+
+class BLTZC_DESC : CMP_CBR_RT_Z_DESC_BASE<"bltzc", brtarget, GPR32Opnd>;
+class BGEZC_DESC : CMP_CBR_RT_Z_DESC_BASE<"bgezc", brtarget, GPR32Opnd>;
+
+class BLEZC_DESC : CMP_CBR_RT_Z_DESC_BASE<"blezc", brtarget, GPR32Opnd>;
+class BGTZC_DESC : CMP_CBR_RT_Z_DESC_BASE<"bgtzc", brtarget, GPR32Opnd>;
+
+class BEQZC_DESC : CMP_CBR_EQNE_Z_DESC_BASE<"beqzc", brtarget21, GPR32Opnd>;
+class BNEZC_DESC : CMP_CBR_EQNE_Z_DESC_BASE<"bnezc", brtarget21, GPR32Opnd>;
+
+class COP1_BCCZ_DESC_BASE<string instr_asm> : BRANCH_DESC_BASE {
+ dag InOperandList = (ins FGR64Opnd:$ft, brtarget:$offset);
+ dag OutOperandList = (outs);
+ string AsmString = instr_asm;
+ bit hasDelaySlot = 1;
+}
+
+class BC1EQZ_DESC : COP1_BCCZ_DESC_BASE<"bc1eqz $ft, $offset">;
+class BC1NEZ_DESC : COP1_BCCZ_DESC_BASE<"bc1nez $ft, $offset">;
+
+class COP2_BCCZ_DESC_BASE<string instr_asm> : BRANCH_DESC_BASE {
+ dag InOperandList = (ins COP2Opnd:$ct, brtarget:$offset);
+ dag OutOperandList = (outs);
+ string AsmString = instr_asm;
+ bit hasDelaySlot = 1;
+}
+
+class BC2EQZ_DESC : COP2_BCCZ_DESC_BASE<"bc2eqz $ct, $offset">;
+class BC2NEZ_DESC : COP2_BCCZ_DESC_BASE<"bc2nez $ct, $offset">;
+
+class BOVC_DESC : CMP_BC_DESC_BASE<"bovc", brtarget, GPR32Opnd>;
+class BNVC_DESC : CMP_BC_DESC_BASE<"bnvc", brtarget, GPR32Opnd>;
+
+class JMP_IDX_COMPACT_DESC_BASE<string opstr, DAGOperand opnd,
+ RegisterOperand GPROpnd> {
+ dag InOperandList = (ins GPROpnd:$rt, opnd:$offset);
+ string AsmString = !strconcat(opstr, "\t$rt, $offset");
+ list<dag> Pattern = [];
+ bit isTerminator = 1;
+ bit hasDelaySlot = 0;
+ string DecoderMethod = "DecodeSimm16";
+}
+
+class JIALC_DESC : JMP_IDX_COMPACT_DESC_BASE<"jialc", calloffset16,
+ GPR32Opnd> {
+ bit isCall = 1;
+ list<Register> Defs = [RA];
+}
+
+class JIC_DESC : JMP_IDX_COMPACT_DESC_BASE<"jic", jmpoffset16, GPR32Opnd> {
+ bit isBarrier = 1;
+ list<Register> Defs = [AT];
+}
+
+class JR_HB_R6_DESC : JR_HB_DESC_BASE<"jr.hb", GPR32Opnd> {
+ bit isBranch = 1;
+ bit isIndirectBranch = 1;
+ bit hasDelaySlot = 1;
+ bit isTerminator=1;
+ bit isBarrier=1;
+}
+
+class BITSWAP_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
+ dag OutOperandList = (outs GPROpnd:$rd);
+ dag InOperandList = (ins GPROpnd:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rt");
+ list<dag> Pattern = [];
+}
+
+class BITSWAP_DESC : BITSWAP_DESC_BASE<"bitswap", GPR32Opnd>;
+
+class DIVMOD_DESC_BASE<string instr_asm, RegisterOperand GPROpnd,
+ SDPatternOperator Op=null_frag> {
+ dag OutOperandList = (outs GPROpnd:$rd);
+ dag InOperandList = (ins GPROpnd:$rs, GPROpnd:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs, $rt");
+ list<dag> Pattern = [(set GPROpnd:$rd, (Op GPROpnd:$rs, GPROpnd:$rt))];
+
+ // This instruction doesn't trap division by zero itself. We must insert
+ // teq instructions as well.
+ bit usesCustomInserter = 1;
+}
+
+class DIV_DESC : DIVMOD_DESC_BASE<"div", GPR32Opnd, sdiv>;
+class DIVU_DESC : DIVMOD_DESC_BASE<"divu", GPR32Opnd, udiv>;
+class MOD_DESC : DIVMOD_DESC_BASE<"mod", GPR32Opnd, srem>;
+class MODU_DESC : DIVMOD_DESC_BASE<"modu", GPR32Opnd, urem>;
+
+class BEQZALC_DESC : CMP_CBR_RT_Z_DESC_BASE<"beqzalc", brtarget, GPR32Opnd> {
+ list<Register> Defs = [RA];
+}
+
+class BGEZALC_DESC : CMP_CBR_RT_Z_DESC_BASE<"bgezalc", brtarget, GPR32Opnd> {
+ list<Register> Defs = [RA];
+}
+
+class BGTZALC_DESC : CMP_CBR_RT_Z_DESC_BASE<"bgtzalc", brtarget, GPR32Opnd> {
+ list<Register> Defs = [RA];
+}
+
+class BLEZALC_DESC : CMP_CBR_RT_Z_DESC_BASE<"blezalc", brtarget, GPR32Opnd> {
+ list<Register> Defs = [RA];
+}
+
+class BLTZALC_DESC : CMP_CBR_RT_Z_DESC_BASE<"bltzalc", brtarget, GPR32Opnd> {
+ list<Register> Defs = [RA];
+}
+
+class BNEZALC_DESC : CMP_CBR_RT_Z_DESC_BASE<"bnezalc", brtarget, GPR32Opnd> {
+ list<Register> Defs = [RA];
+}
+
+class MUL_R6_DESC_BASE<string instr_asm, RegisterOperand GPROpnd,
+ SDPatternOperator Op=null_frag> {
+ dag OutOperandList = (outs GPROpnd:$rd);
+ dag InOperandList = (ins GPROpnd:$rs, GPROpnd:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs, $rt");
+ list<dag> Pattern = [(set GPROpnd:$rd, (Op GPROpnd:$rs, GPROpnd:$rt))];
+}
+
+class MUH_DESC : MUL_R6_DESC_BASE<"muh", GPR32Opnd, mulhs>;
+class MUHU_DESC : MUL_R6_DESC_BASE<"muhu", GPR32Opnd, mulhu>;
+class MUL_R6_DESC : MUL_R6_DESC_BASE<"mul", GPR32Opnd, mul>;
+class MULU_DESC : MUL_R6_DESC_BASE<"mulu", GPR32Opnd>;
+
+class COP1_SEL_DESC_BASE<string instr_asm, RegisterOperand FGROpnd> {
+ dag OutOperandList = (outs FGROpnd:$fd);
+ dag InOperandList = (ins FGRCCOpnd:$fd_in, FGROpnd:$fs, FGROpnd:$ft);
+ string AsmString = !strconcat(instr_asm, "\t$fd, $fs, $ft");
+ list<dag> Pattern = [(set FGROpnd:$fd, (select FGRCCOpnd:$fd_in,
+ FGROpnd:$ft,
+ FGROpnd:$fs))];
+ string Constraints = "$fd_in = $fd";
+}
+
+class SEL_D_DESC : COP1_SEL_DESC_BASE<"sel.d", FGR64Opnd> {
+ // We must insert a SUBREG_TO_REG around $fd_in
+ bit usesCustomInserter = 1;
+}
+class SEL_S_DESC : COP1_SEL_DESC_BASE<"sel.s", FGR32Opnd>;
+
+class SELEQNE_Z_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
+ dag OutOperandList = (outs GPROpnd:$rd);
+ dag InOperandList = (ins GPROpnd:$rs, GPROpnd:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs, $rt");
+ list<dag> Pattern = [];
+}
+
+class SELEQZ_DESC : SELEQNE_Z_DESC_BASE<"seleqz", GPR32Opnd>;
+class SELNEZ_DESC : SELEQNE_Z_DESC_BASE<"selnez", GPR32Opnd>;
+
+class COP1_4R_DESC_BASE<string instr_asm, RegisterOperand FGROpnd> {
+ dag OutOperandList = (outs FGROpnd:$fd);
+ dag InOperandList = (ins FGROpnd:$fd_in, FGROpnd:$fs, FGROpnd:$ft);
+ string AsmString = !strconcat(instr_asm, "\t$fd, $fs, $ft");
+ list<dag> Pattern = [];
+ string Constraints = "$fd_in = $fd";
+}
+
+class MADDF_S_DESC : COP1_4R_DESC_BASE<"maddf.s", FGR32Opnd>;
+class MADDF_D_DESC : COP1_4R_DESC_BASE<"maddf.d", FGR64Opnd>;
+class MSUBF_S_DESC : COP1_4R_DESC_BASE<"msubf.s", FGR32Opnd>;
+class MSUBF_D_DESC : COP1_4R_DESC_BASE<"msubf.d", FGR64Opnd>;
+
+class MAX_MIN_DESC_BASE<string instr_asm, RegisterOperand FGROpnd> {
+ dag OutOperandList = (outs FGROpnd:$fd);
+ dag InOperandList = (ins FGROpnd:$fs, FGROpnd:$ft);
+ string AsmString = !strconcat(instr_asm, "\t$fd, $fs, $ft");
+ list<dag> Pattern = [];
+}
+
+class MAX_S_DESC : MAX_MIN_DESC_BASE<"max.s", FGR32Opnd>;
+class MAX_D_DESC : MAX_MIN_DESC_BASE<"max.d", FGR64Opnd>;
+class MIN_S_DESC : MAX_MIN_DESC_BASE<"min.s", FGR32Opnd>;
+class MIN_D_DESC : MAX_MIN_DESC_BASE<"min.d", FGR64Opnd>;
+
+class MAXA_S_DESC : MAX_MIN_DESC_BASE<"maxa.s", FGR32Opnd>;
+class MAXA_D_DESC : MAX_MIN_DESC_BASE<"maxa.d", FGR64Opnd>;
+class MINA_S_DESC : MAX_MIN_DESC_BASE<"mina.s", FGR32Opnd>;
+class MINA_D_DESC : MAX_MIN_DESC_BASE<"mina.d", FGR64Opnd>;
+
+class SELEQNEZ_DESC_BASE<string instr_asm, RegisterOperand FGROpnd> {
+ dag OutOperandList = (outs FGROpnd:$fd);
+ dag InOperandList = (ins FGROpnd:$fs, FGROpnd:$ft);
+ string AsmString = !strconcat(instr_asm, "\t$fd, $fs, $ft");
+ list<dag> Pattern = [];
+}
+
+class SELEQZ_S_DESC : SELEQNEZ_DESC_BASE<"seleqz.s", FGR32Opnd>;
+class SELEQZ_D_DESC : SELEQNEZ_DESC_BASE<"seleqz.d", FGR64Opnd>;
+class SELNEZ_S_DESC : SELEQNEZ_DESC_BASE<"selnez.s", FGR32Opnd>;
+class SELNEZ_D_DESC : SELEQNEZ_DESC_BASE<"selnez.d", FGR64Opnd>;
+
+class CLASS_RINT_DESC_BASE<string instr_asm, RegisterOperand FGROpnd> {
+ dag OutOperandList = (outs FGROpnd:$fd);
+ dag InOperandList = (ins FGROpnd:$fs);
+ string AsmString = !strconcat(instr_asm, "\t$fd, $fs");
+ list<dag> Pattern = [];
+}
+
+class RINT_S_DESC : CLASS_RINT_DESC_BASE<"rint.s", FGR32Opnd>;
+class RINT_D_DESC : CLASS_RINT_DESC_BASE<"rint.d", FGR64Opnd>;
+class CLASS_S_DESC : CLASS_RINT_DESC_BASE<"class.s", FGR32Opnd>;
+class CLASS_D_DESC : CLASS_RINT_DESC_BASE<"class.d", FGR64Opnd>;
+
+class CACHE_HINT_DESC<string instr_asm, Operand MemOpnd,
+ RegisterOperand GPROpnd> {
+ dag OutOperandList = (outs);
+ dag InOperandList = (ins MemOpnd:$addr, uimm5:$hint);
+ string AsmString = !strconcat(instr_asm, "\t$hint, $addr");
+ list<dag> Pattern = [];
+}
+
+class CACHE_DESC : CACHE_HINT_DESC<"cache", mem_simm9, GPR32Opnd>;
+class PREF_DESC : CACHE_HINT_DESC<"pref", mem_simm9, GPR32Opnd>;
+
+class COP2LD_DESC_BASE<string instr_asm, RegisterOperand COPOpnd> {
+ dag OutOperandList = (outs COPOpnd:$rt);
+ dag InOperandList = (ins mem_simm11:$addr);
+ string AsmString = !strconcat(instr_asm, "\t$rt, $addr");
+ list<dag> Pattern = [];
+ bit mayLoad = 1;
+}
+
+class LDC2_R6_DESC : COP2LD_DESC_BASE<"ldc2", COP2Opnd>;
+class LWC2_R6_DESC : COP2LD_DESC_BASE<"lwc2", COP2Opnd>;
+
+class COP2ST_DESC_BASE<string instr_asm, RegisterOperand COPOpnd> {
+ dag OutOperandList = (outs);
+ dag InOperandList = (ins COPOpnd:$rt, mem_simm11:$addr);
+ string AsmString = !strconcat(instr_asm, "\t$rt, $addr");
+ list<dag> Pattern = [];
+ bit mayStore = 1;
+}
+
+class SDC2_R6_DESC : COP2ST_DESC_BASE<"sdc2", COP2Opnd>;
+class SWC2_R6_DESC : COP2ST_DESC_BASE<"swc2", COP2Opnd>;
+
+class LSA_R6_DESC_BASE<string instr_asm, RegisterOperand GPROpnd,
+ Operand ImmOpnd> {
+ dag OutOperandList = (outs GPROpnd:$rd);
+ dag InOperandList = (ins GPROpnd:$rs, GPROpnd:$rt, ImmOpnd:$imm2);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs, $rt, $imm2");
+ list<dag> Pattern = [];
+}
+
+class LSA_R6_DESC : LSA_R6_DESC_BASE<"lsa", GPR32Opnd, uimm2>;
+
+class LL_R6_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
+ dag OutOperandList = (outs GPROpnd:$rt);
+ dag InOperandList = (ins mem_simm9:$addr);
+ string AsmString = !strconcat(instr_asm, "\t$rt, $addr");
+ list<dag> Pattern = [];
+ bit mayLoad = 1;
+}
+
+class LL_R6_DESC : LL_R6_DESC_BASE<"ll", GPR32Opnd>;
+
+class SC_R6_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
+ dag OutOperandList = (outs GPROpnd:$dst);
+ dag InOperandList = (ins GPROpnd:$rt, mem_simm9:$addr);
+ string AsmString = !strconcat(instr_asm, "\t$rt, $addr");
+ list<dag> Pattern = [];
+ bit mayStore = 1;
+ string Constraints = "$rt = $dst";
+}
+
+class SC_R6_DESC : SC_R6_DESC_BASE<"sc", GPR32Opnd>;
+
+class CLO_CLZ_R6_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
+ dag OutOperandList = (outs GPROpnd:$rd);
+ dag InOperandList = (ins GPROpnd:$rs);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs");
+}
+
+class CLO_R6_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> :
+ CLO_CLZ_R6_DESC_BASE<instr_asm, GPROpnd> {
+ list<dag> Pattern = [(set GPROpnd:$rd, (ctlz (not GPROpnd:$rs)))];
+}
+
+class CLZ_R6_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> :
+ CLO_CLZ_R6_DESC_BASE<instr_asm, GPROpnd> {
+ list<dag> Pattern = [(set GPROpnd:$rd, (ctlz GPROpnd:$rs))];
+}
+
+class CLO_R6_DESC : CLO_R6_DESC_BASE<"clo", GPR32Opnd>;
+class CLZ_R6_DESC : CLZ_R6_DESC_BASE<"clz", GPR32Opnd>;
+
+class SDBBP_R6_DESC {
+ dag OutOperandList = (outs);
+ dag InOperandList = (ins uimm20:$code_);
+ string AsmString = "sdbbp\t$code_";
+ list<dag> Pattern = [];
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Instruction Definitions
+//
+//===----------------------------------------------------------------------===//
+
+def ADDIUPC : ADDIUPC_ENC, ADDIUPC_DESC, ISA_MIPS32R6;
+def ALIGN : ALIGN_ENC, ALIGN_DESC, ISA_MIPS32R6;
+def ALUIPC : ALUIPC_ENC, ALUIPC_DESC, ISA_MIPS32R6;
+def AUI : AUI_ENC, AUI_DESC, ISA_MIPS32R6;
+def AUIPC : AUIPC_ENC, AUIPC_DESC, ISA_MIPS32R6;
+def BAL : BAL_ENC, BAL_DESC, ISA_MIPS32R6;
+def BALC : BALC_ENC, BALC_DESC, ISA_MIPS32R6;
+def BC1EQZ : BC1EQZ_ENC, BC1EQZ_DESC, ISA_MIPS32R6;
+def BC1NEZ : BC1NEZ_ENC, BC1NEZ_DESC, ISA_MIPS32R6;
+def BC2EQZ : BC2EQZ_ENC, BC2EQZ_DESC, ISA_MIPS32R6;
+def BC2NEZ : BC2NEZ_ENC, BC2NEZ_DESC, ISA_MIPS32R6;
+def BC : BC_ENC, BC_DESC, ISA_MIPS32R6;
+def BEQC : BEQC_ENC, BEQC_DESC, ISA_MIPS32R6;
+def BEQZALC : BEQZALC_ENC, BEQZALC_DESC, ISA_MIPS32R6;
+def BEQZC : BEQZC_ENC, BEQZC_DESC, ISA_MIPS32R6;
+def BGEC : BGEC_ENC, BGEC_DESC, ISA_MIPS32R6;
+def BGEUC : BGEUC_ENC, BGEUC_DESC, ISA_MIPS32R6;
+def BGEZALC : BGEZALC_ENC, BGEZALC_DESC, ISA_MIPS32R6;
+def BGEZC : BGEZC_ENC, BGEZC_DESC, ISA_MIPS32R6;
+def BGTZALC : BGTZALC_ENC, BGTZALC_DESC, ISA_MIPS32R6;
+def BGTZC : BGTZC_ENC, BGTZC_DESC, ISA_MIPS32R6;
+def BITSWAP : BITSWAP_ENC, BITSWAP_DESC, ISA_MIPS32R6;
+def BLEZALC : BLEZALC_ENC, BLEZALC_DESC, ISA_MIPS32R6;
+def BLEZC : BLEZC_ENC, BLEZC_DESC, ISA_MIPS32R6;
+def BLTC : BLTC_ENC, BLTC_DESC, ISA_MIPS32R6;
+def BLTUC : BLTUC_ENC, BLTUC_DESC, ISA_MIPS32R6;
+def BLTZALC : BLTZALC_ENC, BLTZALC_DESC, ISA_MIPS32R6;
+def BLTZC : BLTZC_ENC, BLTZC_DESC, ISA_MIPS32R6;
+def BNEC : BNEC_ENC, BNEC_DESC, ISA_MIPS32R6;
+def BNEZALC : BNEZALC_ENC, BNEZALC_DESC, ISA_MIPS32R6;
+def BNEZC : BNEZC_ENC, BNEZC_DESC, ISA_MIPS32R6;
+def BNVC : BNVC_ENC, BNVC_DESC, ISA_MIPS32R6;
+def BOVC : BOVC_ENC, BOVC_DESC, ISA_MIPS32R6;
+def CACHE_R6 : CACHE_ENC, CACHE_DESC, ISA_MIPS32R6;
+def CLASS_D : CLASS_D_ENC, CLASS_D_DESC, ISA_MIPS32R6;
+def CLASS_S : CLASS_S_ENC, CLASS_S_DESC, ISA_MIPS32R6;
+def CLO_R6 : CLO_R6_ENC, CLO_R6_DESC, ISA_MIPS32R6;
+def CLZ_R6 : CLZ_R6_ENC, CLZ_R6_DESC, ISA_MIPS32R6;
+defm S : CMP_CC_M<FIELD_CMP_FORMAT_S, "s", FGR32Opnd>;
+defm D : CMP_CC_M<FIELD_CMP_FORMAT_D, "d", FGR64Opnd>;
+def DIV : DIV_ENC, DIV_DESC, ISA_MIPS32R6;
+def DIVU : DIVU_ENC, DIVU_DESC, ISA_MIPS32R6;
+def JIALC : JIALC_ENC, JIALC_DESC, ISA_MIPS32R6;
+def JIC : JIC_ENC, JIC_DESC, ISA_MIPS32R6;
+def JR_HB_R6 : JR_HB_R6_ENC, JR_HB_R6_DESC, ISA_MIPS32R6;
+def LDC2_R6 : LDC2_R6_ENC, LDC2_R6_DESC, ISA_MIPS32R6;
+def LL_R6 : LL_R6_ENC, LL_R6_DESC, ISA_MIPS32R6;
+def LSA_R6 : LSA_R6_ENC, LSA_R6_DESC, ISA_MIPS32R6;
+def LWC2_R6 : LWC2_R6_ENC, LWC2_R6_DESC, ISA_MIPS32R6;
+def LWPC : LWPC_ENC, LWPC_DESC, ISA_MIPS32R6;
+def LWUPC : LWUPC_ENC, LWUPC_DESC, ISA_MIPS32R6;
+def MADDF_S : MADDF_S_ENC, MADDF_S_DESC, ISA_MIPS32R6;
+def MADDF_D : MADDF_D_ENC, MADDF_D_DESC, ISA_MIPS32R6;
+def MAXA_D : MAXA_D_ENC, MAXA_D_DESC, ISA_MIPS32R6;
+def MAXA_S : MAXA_S_ENC, MAXA_S_DESC, ISA_MIPS32R6;
+def MAX_D : MAX_D_ENC, MAX_D_DESC, ISA_MIPS32R6;
+def MAX_S : MAX_S_ENC, MAX_S_DESC, ISA_MIPS32R6;
+def MINA_D : MINA_D_ENC, MINA_D_DESC, ISA_MIPS32R6;
+def MINA_S : MINA_S_ENC, MINA_S_DESC, ISA_MIPS32R6;
+def MIN_D : MIN_D_ENC, MIN_D_DESC, ISA_MIPS32R6;
+def MIN_S : MIN_S_ENC, MIN_S_DESC, ISA_MIPS32R6;
+def MOD : MOD_ENC, MOD_DESC, ISA_MIPS32R6;
+def MODU : MODU_ENC, MODU_DESC, ISA_MIPS32R6;
+def MSUBF_S : MSUBF_S_ENC, MSUBF_S_DESC, ISA_MIPS32R6;
+def MSUBF_D : MSUBF_D_ENC, MSUBF_D_DESC, ISA_MIPS32R6;
+def MUH : MUH_ENC, MUH_DESC, ISA_MIPS32R6;
+def MUHU : MUHU_ENC, MUHU_DESC, ISA_MIPS32R6;
+def MUL_R6 : MUL_R6_ENC, MUL_R6_DESC, ISA_MIPS32R6;
+def MULU : MULU_ENC, MULU_DESC, ISA_MIPS32R6;
+def NAL; // BAL with rd=0
+def PREF_R6 : PREF_ENC, PREF_DESC, ISA_MIPS32R6;
+def RINT_D : RINT_D_ENC, RINT_D_DESC, ISA_MIPS32R6;
+def RINT_S : RINT_S_ENC, RINT_S_DESC, ISA_MIPS32R6;
+def SC_R6 : SC_R6_ENC, SC_R6_DESC, ISA_MIPS32R6;
+def SDBBP_R6 : SDBBP_R6_ENC, SDBBP_R6_DESC, ISA_MIPS32R6;
+def SDC2_R6 : SDC2_R6_ENC, SDC2_R6_DESC, ISA_MIPS32R6;
+def SELEQZ : SELEQZ_ENC, SELEQZ_DESC, ISA_MIPS32R6, GPR_32;
+def SELEQZ_D : SELEQZ_D_ENC, SELEQZ_D_DESC, ISA_MIPS32R6;
+def SELEQZ_S : SELEQZ_S_ENC, SELEQZ_S_DESC, ISA_MIPS32R6;
+def SELNEZ : SELNEZ_ENC, SELNEZ_DESC, ISA_MIPS32R6, GPR_32;
+def SELNEZ_D : SELNEZ_D_ENC, SELNEZ_D_DESC, ISA_MIPS32R6;
+def SELNEZ_S : SELNEZ_S_ENC, SELNEZ_S_DESC, ISA_MIPS32R6;
+def SEL_D : SEL_D_ENC, SEL_D_DESC, ISA_MIPS32R6;
+def SEL_S : SEL_S_ENC, SEL_S_DESC, ISA_MIPS32R6;
+def SWC2_R6 : SWC2_R6_ENC, SWC2_R6_DESC, ISA_MIPS32R6;
+
+//===----------------------------------------------------------------------===//
+//
+// Instruction Aliases
+//
+//===----------------------------------------------------------------------===//
+
+def : MipsInstAlias<"sdbbp", (SDBBP_R6 0)>, ISA_MIPS32R6;
+def : MipsInstAlias<"jr $rs", (JALR ZERO, GPR32Opnd:$rs), 1>, ISA_MIPS32R6;
+
+//===----------------------------------------------------------------------===//
+//
+// Patterns and Pseudo Instructions
+//
+//===----------------------------------------------------------------------===//
+
+// f32 comparisons supported via another comparison
+def : MipsPat<(setone f32:$lhs, f32:$rhs),
+ (NOR (CMP_UEQ_S f32:$lhs, f32:$rhs), ZERO)>, ISA_MIPS32R6;
+def : MipsPat<(seto f32:$lhs, f32:$rhs),
+ (NOR (CMP_UN_S f32:$lhs, f32:$rhs), ZERO)>, ISA_MIPS32R6;
+def : MipsPat<(setune f32:$lhs, f32:$rhs),
+ (NOR (CMP_EQ_S f32:$lhs, f32:$rhs), ZERO)>, ISA_MIPS32R6;
+def : MipsPat<(seteq f32:$lhs, f32:$rhs), (CMP_EQ_S f32:$lhs, f32:$rhs)>,
+ ISA_MIPS32R6;
+def : MipsPat<(setgt f32:$lhs, f32:$rhs), (CMP_LE_S f32:$rhs, f32:$lhs)>,
+ ISA_MIPS32R6;
+def : MipsPat<(setge f32:$lhs, f32:$rhs), (CMP_LT_S f32:$rhs, f32:$lhs)>,
+ ISA_MIPS32R6;
+def : MipsPat<(setlt f32:$lhs, f32:$rhs), (CMP_LT_S f32:$lhs, f32:$rhs)>,
+ ISA_MIPS32R6;
+def : MipsPat<(setlt f32:$lhs, f32:$rhs), (CMP_LE_S f32:$lhs, f32:$rhs)>,
+ ISA_MIPS32R6;
+def : MipsPat<(setne f32:$lhs, f32:$rhs),
+ (NOR (CMP_EQ_S f32:$lhs, f32:$rhs), ZERO)>, ISA_MIPS32R6;
+
+// f64 comparisons supported via another comparison
+def : MipsPat<(setone f64:$lhs, f64:$rhs),
+ (NOR (CMP_UEQ_D f64:$lhs, f64:$rhs), ZERO)>, ISA_MIPS32R6;
+def : MipsPat<(seto f64:$lhs, f64:$rhs),
+ (NOR (CMP_UN_D f64:$lhs, f64:$rhs), ZERO)>, ISA_MIPS32R6;
+def : MipsPat<(setune f64:$lhs, f64:$rhs),
+ (NOR (CMP_EQ_D f64:$lhs, f64:$rhs), ZERO)>, ISA_MIPS32R6;
+def : MipsPat<(seteq f64:$lhs, f64:$rhs), (CMP_EQ_D f64:$lhs, f64:$rhs)>,
+ ISA_MIPS32R6;
+def : MipsPat<(setgt f64:$lhs, f64:$rhs), (CMP_LE_D f64:$rhs, f64:$lhs)>,
+ ISA_MIPS32R6;
+def : MipsPat<(setge f64:$lhs, f64:$rhs), (CMP_LT_D f64:$rhs, f64:$lhs)>,
+ ISA_MIPS32R6;
+def : MipsPat<(setlt f64:$lhs, f64:$rhs), (CMP_LT_D f64:$lhs, f64:$rhs)>,
+ ISA_MIPS32R6;
+def : MipsPat<(setlt f64:$lhs, f64:$rhs), (CMP_LE_D f64:$lhs, f64:$rhs)>,
+ ISA_MIPS32R6;
+def : MipsPat<(setne f64:$lhs, f64:$rhs),
+ (NOR (CMP_EQ_D f64:$lhs, f64:$rhs), ZERO)>, ISA_MIPS32R6;
+
+// i32 selects
+def : MipsPat<(select i32:$cond, i32:$t, i32:$f),
+ (OR (SELNEZ i32:$t, i32:$cond), (SELEQZ i32:$f, i32:$cond))>,
+ ISA_MIPS32R6;
+def : MipsPat<(select (i32 (seteq i32:$cond, immz)), i32:$t, i32:$f),
+ (OR (SELEQZ i32:$t, i32:$cond), (SELNEZ i32:$f, i32:$cond))>,
+ ISA_MIPS32R6;
+def : MipsPat<(select (i32 (setne i32:$cond, immz)), i32:$t, i32:$f),
+ (OR (SELNEZ i32:$t, i32:$cond), (SELEQZ i32:$f, i32:$cond))>,
+ ISA_MIPS32R6;
+def : MipsPat<(select (i32 (seteq i32:$cond, immZExt16:$imm)), i32:$t, i32:$f),
+ (OR (SELEQZ i32:$t, (XORi i32:$cond, immZExt16:$imm)),
+ (SELNEZ i32:$f, (XORi i32:$cond, immZExt16:$imm)))>,
+ ISA_MIPS32R6;
+def : MipsPat<(select (i32 (setne i32:$cond, immZExt16:$imm)), i32:$t, i32:$f),
+ (OR (SELNEZ i32:$t, (XORi i32:$cond, immZExt16:$imm)),
+ (SELEQZ i32:$f, (XORi i32:$cond, immZExt16:$imm)))>,
+ ISA_MIPS32R6;
+def : MipsPat<(select (i32 (setgt i32:$cond, immSExt16Plus1:$imm)), i32:$t,
+ i32:$f),
+ (OR (SELEQZ i32:$t, (SLTi i32:$cond, (Plus1 imm:$imm))),
+ (SELNEZ i32:$f, (SLTi i32:$cond, (Plus1 imm:$imm))))>,
+ ISA_MIPS32R6;
+def : MipsPat<(select (i32 (setugt i32:$cond, immSExt16Plus1:$imm)),
+ i32:$t, i32:$f),
+ (OR (SELEQZ i32:$t, (SLTiu i32:$cond, (Plus1 imm:$imm))),
+ (SELNEZ i32:$f, (SLTiu i32:$cond, (Plus1 imm:$imm))))>,
+ ISA_MIPS32R6;
+
+def : MipsPat<(select i32:$cond, i32:$t, immz),
+ (SELNEZ i32:$t, i32:$cond)>, ISA_MIPS32R6;
+def : MipsPat<(select (i32 (setne i32:$cond, immz)), i32:$t, immz),
+ (SELNEZ i32:$t, i32:$cond)>, ISA_MIPS32R6;
+def : MipsPat<(select (i32 (seteq i32:$cond, immz)), i32:$t, immz),
+ (SELEQZ i32:$t, i32:$cond)>, ISA_MIPS32R6;
+def : MipsPat<(select i32:$cond, immz, i32:$f),
+ (SELEQZ i32:$f, i32:$cond)>, ISA_MIPS32R6;
+def : MipsPat<(select (i32 (setne i32:$cond, immz)), immz, i32:$f),
+ (SELEQZ i32:$f, i32:$cond)>, ISA_MIPS32R6;
+def : MipsPat<(select (i32 (seteq i32:$cond, immz)), immz, i32:$f),
+ (SELNEZ i32:$f, i32:$cond)>, ISA_MIPS32R6;
diff --git a/contrib/llvm/lib/Target/Mips/Mips64InstrInfo.td b/contrib/llvm/lib/Target/Mips/Mips64InstrInfo.td
new file mode 100644
index 0000000..f0b6814
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips64InstrInfo.td
@@ -0,0 +1,512 @@
+//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes Mips64 instructions.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Mips Operand, Complex Patterns and Transformations Definitions.
+//===----------------------------------------------------------------------===//
+
+// Unsigned Operand
+def uimm16_64 : Operand<i64> {
+ let PrintMethod = "printUnsignedImm";
+}
+
+// Signed Operand
+def simm10_64 : Operand<i64>;
+
+def imm64: Operand<i64>;
+
+// Transformation Function - get Imm - 32.
+def Subtract32 : SDNodeXForm<imm, [{
+ return getImm(N, (unsigned)N->getZExtValue() - 32);
+}]>;
+
+// shamt must fit in 6 bits.
+def immZExt6 : ImmLeaf<i32, [{return Imm == (Imm & 0x3f);}]>;
+
+// Node immediate fits as 10-bit sign extended on target immediate.
+// e.g. seqi, snei
+def immSExt10_64 : PatLeaf<(i64 imm),
+ [{ return isInt<10>(N->getSExtValue()); }]>;
+
+def immZExt16_64 : PatLeaf<(i64 imm),
+ [{ return isInt<16>(N->getZExtValue()); }]>;
+
+//===----------------------------------------------------------------------===//
+// Instructions specific format
+//===----------------------------------------------------------------------===//
+let usesCustomInserter = 1 in {
+ def ATOMIC_LOAD_ADD_I64 : Atomic2Ops<atomic_load_add_64, GPR64>;
+ def ATOMIC_LOAD_SUB_I64 : Atomic2Ops<atomic_load_sub_64, GPR64>;
+ def ATOMIC_LOAD_AND_I64 : Atomic2Ops<atomic_load_and_64, GPR64>;
+ def ATOMIC_LOAD_OR_I64 : Atomic2Ops<atomic_load_or_64, GPR64>;
+ def ATOMIC_LOAD_XOR_I64 : Atomic2Ops<atomic_load_xor_64, GPR64>;
+ def ATOMIC_LOAD_NAND_I64 : Atomic2Ops<atomic_load_nand_64, GPR64>;
+ def ATOMIC_SWAP_I64 : Atomic2Ops<atomic_swap_64, GPR64>;
+ def ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap<atomic_cmp_swap_64, GPR64>;
+}
+
+/// Pseudo instructions for loading and storing accumulator registers.
+let isPseudo = 1, isCodeGenOnly = 1 in {
+ def LOAD_ACC128 : Load<"", ACC128>;
+ def STORE_ACC128 : Store<"", ACC128>;
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction definition
+//===----------------------------------------------------------------------===//
+let DecoderNamespace = "Mips64" in {
+/// Arithmetic Instructions (ALU Immediate)
+def DADDi : ArithLogicI<"daddi", simm16_64, GPR64Opnd>, ADDI_FM<0x18>,
+ ISA_MIPS3_NOT_32R6_64R6;
+def DADDiu : ArithLogicI<"daddiu", simm16_64, GPR64Opnd, II_DADDIU,
+ immSExt16, add>,
+ ADDI_FM<0x19>, IsAsCheapAsAMove, ISA_MIPS3;
+
+let isCodeGenOnly = 1 in {
+def SLTi64 : SetCC_I<"slti", setlt, simm16_64, immSExt16, GPR64Opnd>,
+ SLTI_FM<0xa>;
+def SLTiu64 : SetCC_I<"sltiu", setult, simm16_64, immSExt16, GPR64Opnd>,
+ SLTI_FM<0xb>;
+def ANDi64 : ArithLogicI<"andi", uimm16_64, GPR64Opnd, II_AND, immZExt16, and>,
+ ADDI_FM<0xc>;
+def ORi64 : ArithLogicI<"ori", uimm16_64, GPR64Opnd, II_OR, immZExt16, or>,
+ ADDI_FM<0xd>;
+def XORi64 : ArithLogicI<"xori", uimm16_64, GPR64Opnd, II_XOR, immZExt16, xor>,
+ ADDI_FM<0xe>;
+def LUi64 : LoadUpper<"lui", GPR64Opnd, uimm16_64>, LUI_FM;
+}
+
+/// Arithmetic Instructions (3-Operand, R-Type)
+def DADD : ArithLogicR<"dadd", GPR64Opnd, 1, II_DADD>, ADD_FM<0, 0x2c>,
+ ISA_MIPS3;
+def DADDu : ArithLogicR<"daddu", GPR64Opnd, 1, II_DADDU, add>, ADD_FM<0, 0x2d>,
+ ISA_MIPS3;
+def DSUBu : ArithLogicR<"dsubu", GPR64Opnd, 0, II_DSUBU, sub>, ADD_FM<0, 0x2f>,
+ ISA_MIPS3;
+def DSUB : ArithLogicR<"dsub", GPR64Opnd, 0, II_DSUB>, ADD_FM<0, 0x2e>,
+ ISA_MIPS3;
+
+let isCodeGenOnly = 1 in {
+def SLT64 : SetCC_R<"slt", setlt, GPR64Opnd>, ADD_FM<0, 0x2a>;
+def SLTu64 : SetCC_R<"sltu", setult, GPR64Opnd>, ADD_FM<0, 0x2b>;
+def AND64 : ArithLogicR<"and", GPR64Opnd, 1, II_AND, and>, ADD_FM<0, 0x24>;
+def OR64 : ArithLogicR<"or", GPR64Opnd, 1, II_OR, or>, ADD_FM<0, 0x25>;
+def XOR64 : ArithLogicR<"xor", GPR64Opnd, 1, II_XOR, xor>, ADD_FM<0, 0x26>;
+def NOR64 : LogicNOR<"nor", GPR64Opnd>, ADD_FM<0, 0x27>;
+}
+
+/// Shift Instructions
+def DSLL : shift_rotate_imm<"dsll", uimm6, GPR64Opnd, II_DSLL, shl, immZExt6>,
+ SRA_FM<0x38, 0>, ISA_MIPS3;
+def DSRL : shift_rotate_imm<"dsrl", uimm6, GPR64Opnd, II_DSRL, srl, immZExt6>,
+ SRA_FM<0x3a, 0>, ISA_MIPS3;
+def DSRA : shift_rotate_imm<"dsra", uimm6, GPR64Opnd, II_DSRA, sra, immZExt6>,
+ SRA_FM<0x3b, 0>, ISA_MIPS3;
+def DSLLV : shift_rotate_reg<"dsllv", GPR64Opnd, II_DSLLV, shl>,
+ SRLV_FM<0x14, 0>, ISA_MIPS3;
+def DSRLV : shift_rotate_reg<"dsrlv", GPR64Opnd, II_DSRLV, srl>,
+ SRLV_FM<0x16, 0>, ISA_MIPS3;
+def DSRAV : shift_rotate_reg<"dsrav", GPR64Opnd, II_DSRAV, sra>,
+ SRLV_FM<0x17, 0>, ISA_MIPS3;
+def DSLL32 : shift_rotate_imm<"dsll32", uimm5, GPR64Opnd, II_DSLL32>,
+ SRA_FM<0x3c, 0>, ISA_MIPS3;
+def DSRL32 : shift_rotate_imm<"dsrl32", uimm5, GPR64Opnd, II_DSRL32>,
+ SRA_FM<0x3e, 0>, ISA_MIPS3;
+def DSRA32 : shift_rotate_imm<"dsra32", uimm5, GPR64Opnd, II_DSRA32>,
+ SRA_FM<0x3f, 0>, ISA_MIPS3;
+
+// Rotate Instructions
+def DROTR : shift_rotate_imm<"drotr", uimm6, GPR64Opnd, II_DROTR, rotr,
+ immZExt6>,
+ SRA_FM<0x3a, 1>, ISA_MIPS64R2;
+def DROTRV : shift_rotate_reg<"drotrv", GPR64Opnd, II_DROTRV, rotr>,
+ SRLV_FM<0x16, 1>, ISA_MIPS64R2;
+def DROTR32 : shift_rotate_imm<"drotr32", uimm5, GPR64Opnd, II_DROTR32>,
+ SRA_FM<0x3e, 1>, ISA_MIPS64R2;
+
+/// Load and Store Instructions
+/// aligned
+let isCodeGenOnly = 1 in {
+def LB64 : Load<"lb", GPR64Opnd, sextloadi8, II_LB>, LW_FM<0x20>;
+def LBu64 : Load<"lbu", GPR64Opnd, zextloadi8, II_LBU>, LW_FM<0x24>;
+def LH64 : Load<"lh", GPR64Opnd, sextloadi16, II_LH>, LW_FM<0x21>;
+def LHu64 : Load<"lhu", GPR64Opnd, zextloadi16, II_LHU>, LW_FM<0x25>;
+def LW64 : Load<"lw", GPR64Opnd, sextloadi32, II_LW>, LW_FM<0x23>;
+def SB64 : Store<"sb", GPR64Opnd, truncstorei8, II_SB>, LW_FM<0x28>;
+def SH64 : Store<"sh", GPR64Opnd, truncstorei16, II_SH>, LW_FM<0x29>;
+def SW64 : Store<"sw", GPR64Opnd, truncstorei32, II_SW>, LW_FM<0x2b>;
+}
+
+def LWu : Load<"lwu", GPR64Opnd, zextloadi32, II_LWU>, LW_FM<0x27>, ISA_MIPS3;
+def LD : Load<"ld", GPR64Opnd, load, II_LD>, LW_FM<0x37>, ISA_MIPS3;
+def SD : Store<"sd", GPR64Opnd, store, II_SD>, LW_FM<0x3f>, ISA_MIPS3;
+
+/// load/store left/right
+let isCodeGenOnly = 1 in {
+def LWL64 : LoadLeftRight<"lwl", MipsLWL, GPR64Opnd, II_LWL>, LW_FM<0x22>;
+def LWR64 : LoadLeftRight<"lwr", MipsLWR, GPR64Opnd, II_LWR>, LW_FM<0x26>;
+def SWL64 : StoreLeftRight<"swl", MipsSWL, GPR64Opnd, II_SWL>, LW_FM<0x2a>;
+def SWR64 : StoreLeftRight<"swr", MipsSWR, GPR64Opnd, II_SWR>, LW_FM<0x2e>;
+}
+
+def LDL : LoadLeftRight<"ldl", MipsLDL, GPR64Opnd, II_LDL>, LW_FM<0x1a>,
+ ISA_MIPS3_NOT_32R6_64R6;
+def LDR : LoadLeftRight<"ldr", MipsLDR, GPR64Opnd, II_LDR>, LW_FM<0x1b>,
+ ISA_MIPS3_NOT_32R6_64R6;
+def SDL : StoreLeftRight<"sdl", MipsSDL, GPR64Opnd, II_SDL>, LW_FM<0x2c>,
+ ISA_MIPS3_NOT_32R6_64R6;
+def SDR : StoreLeftRight<"sdr", MipsSDR, GPR64Opnd, II_SDR>, LW_FM<0x2d>,
+ ISA_MIPS3_NOT_32R6_64R6;
+
+/// Load-linked, Store-conditional
+def LLD : LLBase<"lld", GPR64Opnd>, LW_FM<0x34>, ISA_MIPS3_NOT_32R6_64R6;
+def SCD : SCBase<"scd", GPR64Opnd>, LW_FM<0x3c>, ISA_MIPS3_NOT_32R6_64R6;
+
+/// Jump and Branch Instructions
+let isCodeGenOnly = 1 in {
+ def JR64 : IndirectBranch<"jr", GPR64Opnd>, MTLO_FM<8>;
+ def BEQ64 : CBranch<"beq", brtarget, seteq, GPR64Opnd>, BEQ_FM<4>;
+ def BNE64 : CBranch<"bne", brtarget, setne, GPR64Opnd>, BEQ_FM<5>;
+ def BGEZ64 : CBranchZero<"bgez", brtarget, setge, GPR64Opnd>, BGEZ_FM<1, 1>;
+ def BGTZ64 : CBranchZero<"bgtz", brtarget, setgt, GPR64Opnd>, BGEZ_FM<7, 0>;
+ def BLEZ64 : CBranchZero<"blez", brtarget, setle, GPR64Opnd>, BGEZ_FM<6, 0>;
+ def BLTZ64 : CBranchZero<"bltz", brtarget, setlt, GPR64Opnd>, BGEZ_FM<1, 0>;
+ def JALR64 : JumpLinkReg<"jalr", GPR64Opnd>, JALR_FM;
+ def JALR64Pseudo : JumpLinkRegPseudo<GPR64Opnd, JALR, RA, GPR32Opnd>;
+ def TAILCALL64_R : TailCallReg<GPR64Opnd, JR, GPR32Opnd>;
+}
+
+def PseudoReturn64 : PseudoReturnBase<GPR64Opnd>;
+def PseudoIndirectBranch64 : PseudoIndirectBranchBase<GPR64Opnd>;
+
+/// Multiply and Divide Instructions.
+def DMULT : Mult<"dmult", II_DMULT, GPR64Opnd, [HI0_64, LO0_64]>,
+ MULT_FM<0, 0x1c>, ISA_MIPS3_NOT_32R6_64R6;
+def DMULTu : Mult<"dmultu", II_DMULTU, GPR64Opnd, [HI0_64, LO0_64]>,
+ MULT_FM<0, 0x1d>, ISA_MIPS3_NOT_32R6_64R6;
+def PseudoDMULT : MultDivPseudo<DMULT, ACC128, GPR64Opnd, MipsMult,
+ II_DMULT>, ISA_MIPS3_NOT_32R6_64R6;
+def PseudoDMULTu : MultDivPseudo<DMULTu, ACC128, GPR64Opnd, MipsMultu,
+ II_DMULTU>, ISA_MIPS3_NOT_32R6_64R6;
+def DSDIV : Div<"ddiv", II_DDIV, GPR64Opnd, [HI0_64, LO0_64]>,
+ MULT_FM<0, 0x1e>, ISA_MIPS3_NOT_32R6_64R6;
+def DUDIV : Div<"ddivu", II_DDIVU, GPR64Opnd, [HI0_64, LO0_64]>,
+ MULT_FM<0, 0x1f>, ISA_MIPS3_NOT_32R6_64R6;
+def PseudoDSDIV : MultDivPseudo<DSDIV, ACC128, GPR64Opnd, MipsDivRem,
+ II_DDIV, 0, 1, 1>, ISA_MIPS3_NOT_32R6_64R6;
+def PseudoDUDIV : MultDivPseudo<DUDIV, ACC128, GPR64Opnd, MipsDivRemU,
+ II_DDIVU, 0, 1, 1>, ISA_MIPS3_NOT_32R6_64R6;
+
+let isCodeGenOnly = 1 in {
+def MTHI64 : MoveToLOHI<"mthi", GPR64Opnd, [HI0_64]>, MTLO_FM<0x11>,
+ ISA_MIPS3_NOT_32R6_64R6;
+def MTLO64 : MoveToLOHI<"mtlo", GPR64Opnd, [LO0_64]>, MTLO_FM<0x13>,
+ ISA_MIPS3_NOT_32R6_64R6;
+def MFHI64 : MoveFromLOHI<"mfhi", GPR64Opnd, AC0_64>, MFLO_FM<0x10>,
+ ISA_MIPS3_NOT_32R6_64R6;
+def MFLO64 : MoveFromLOHI<"mflo", GPR64Opnd, AC0_64>, MFLO_FM<0x12>,
+ ISA_MIPS3_NOT_32R6_64R6;
+def PseudoMFHI64 : PseudoMFLOHI<GPR64, ACC128, MipsMFHI>,
+ ISA_MIPS3_NOT_32R6_64R6;
+def PseudoMFLO64 : PseudoMFLOHI<GPR64, ACC128, MipsMFLO>,
+ ISA_MIPS3_NOT_32R6_64R6;
+def PseudoMTLOHI64 : PseudoMTLOHI<ACC128, GPR64>, ISA_MIPS3_NOT_32R6_64R6;
+
+/// Sign Ext In Register Instructions.
+def SEB64 : SignExtInReg<"seb", i8, GPR64Opnd, II_SEB>, SEB_FM<0x10, 0x20>,
+ ISA_MIPS32R2;
+def SEH64 : SignExtInReg<"seh", i16, GPR64Opnd, II_SEH>, SEB_FM<0x18, 0x20>,
+ ISA_MIPS32R2;
+}
+
+/// Count Leading
+def DCLZ : CountLeading0<"dclz", GPR64Opnd>, CLO_FM<0x24>, ISA_MIPS64_NOT_64R6;
+def DCLO : CountLeading1<"dclo", GPR64Opnd>, CLO_FM<0x25>, ISA_MIPS64_NOT_64R6;
+
+/// Double Word Swap Bytes/HalfWords
+def DSBH : SubwordSwap<"dsbh", GPR64Opnd>, SEB_FM<2, 0x24>, ISA_MIPS64R2;
+def DSHD : SubwordSwap<"dshd", GPR64Opnd>, SEB_FM<5, 0x24>, ISA_MIPS64R2;
+
+def LEA_ADDiu64 : EffectiveAddress<"daddiu", GPR64Opnd>, LW_FM<0x19>;
+
+let isCodeGenOnly = 1 in
+def RDHWR64 : ReadHardware<GPR64Opnd, HWRegsOpnd>, RDHWR_FM;
+
+def DEXT : ExtBase<"dext", GPR64Opnd, uimm6, MipsExt>, EXT_FM<3>;
+def DEXTU : ExtBase<"dextu", GPR64Opnd, uimm6>, EXT_FM<2>;
+def DEXTM : ExtBase<"dextm", GPR64Opnd, uimm5>, EXT_FM<1>;
+
+def DINS : InsBase<"dins", GPR64Opnd, uimm6, MipsIns>, EXT_FM<7>;
+def DINSU : InsBase<"dinsu", GPR64Opnd, uimm6>, EXT_FM<6>;
+def DINSM : InsBase<"dinsm", GPR64Opnd, uimm5>, EXT_FM<5>;
+
+let isCodeGenOnly = 1, rs = 0, shamt = 0 in {
+ def DSLL64_32 : FR<0x00, 0x3c, (outs GPR64:$rd), (ins GPR32:$rt),
+ "dsll\t$rd, $rt, 32", [], II_DSLL>;
+ def SLL64_32 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR32:$rt),
+ "sll\t$rd, $rt, 0", [], II_SLL>;
+ def SLL64_64 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR64:$rt),
+ "sll\t$rd, $rt, 0", [], II_SLL>;
+}
+
+// We need the following pseudo instruction to avoid offset calculation for
+// long branches. See the comment in file MipsLongBranch.cpp for detailed
+// explanation.
+
+// Expands to: daddiu $dst, $src, %PART($tgt - $baltgt)
+// where %PART may be %hi or %lo, depending on the relocation kind
+// that $tgt is annotated with.
+def LONG_BRANCH_DADDiu : PseudoSE<(outs GPR64Opnd:$dst),
+ (ins GPR64Opnd:$src, brtarget:$tgt, brtarget:$baltgt), []>;
+
+// Cavium Octeon cmMIPS instructions
+let EncodingPredicates = []<Predicate>, // FIXME: The lack of HasStdEnc is probably a bug
+ AdditionalPredicates = [HasCnMips] in {
+
+class Count1s<string opstr, RegisterOperand RO>:
+ InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
+ [(set RO:$rd, (ctpop RO:$rs))], II_POP, FrmR, opstr> {
+ let TwoOperandAliasConstraint = "$rd = $rs";
+}
+
+class ExtsCins<string opstr, SDPatternOperator Op = null_frag>:
+ InstSE<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rs, uimm5:$pos, uimm5:$lenm1),
+ !strconcat(opstr, " $rt, $rs, $pos, $lenm1"),
+ [(set GPR64Opnd:$rt, (Op GPR64Opnd:$rs, imm:$pos, imm:$lenm1))],
+ NoItinerary, FrmR, opstr> {
+ let TwoOperandAliasConstraint = "$rt = $rs";
+}
+
+class SetCC64_R<string opstr, PatFrag cond_op> :
+ InstSE<(outs GPR64Opnd:$rd), (ins GPR64Opnd:$rs, GPR64Opnd:$rt),
+ !strconcat(opstr, "\t$rd, $rs, $rt"),
+ [(set GPR64Opnd:$rd, (cond_op GPR64Opnd:$rs, GPR64Opnd:$rt))],
+ II_SEQ_SNE, FrmR, opstr> {
+ let TwoOperandAliasConstraint = "$rd = $rs";
+}
+
+class SetCC64_I<string opstr, PatFrag cond_op>:
+ InstSE<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rs, simm10_64:$imm10),
+ !strconcat(opstr, "\t$rt, $rs, $imm10"),
+ [(set GPR64Opnd:$rt, (cond_op GPR64Opnd:$rs, immSExt10_64:$imm10))],
+ II_SEQI_SNEI, FrmI, opstr> {
+ let TwoOperandAliasConstraint = "$rt = $rs";
+}
+
+// Unsigned Byte Add
+let Pattern = [(set GPR64Opnd:$rd,
+ (and (add GPR64Opnd:$rs, GPR64Opnd:$rt), 255))] in
+def BADDu : ArithLogicR<"baddu", GPR64Opnd, 1, II_BADDU>,
+ ADD_FM<0x1c, 0x28>;
+
+// Multiply Doubleword to GPR
+let Defs = [HI0, LO0, P0, P1, P2] in
+def DMUL : ArithLogicR<"dmul", GPR64Opnd, 1, II_DMUL, mul>,
+ ADD_FM<0x1c, 0x03>;
+
+// Extract a signed bit field /+32
+def EXTS : ExtsCins<"exts">, EXTS_FM<0x3a>;
+def EXTS32: ExtsCins<"exts32">, EXTS_FM<0x3b>;
+
+// Clear and insert a bit field /+32
+def CINS : ExtsCins<"cins">, EXTS_FM<0x32>;
+def CINS32: ExtsCins<"cins32">, EXTS_FM<0x33>;
+
+// Move to multiplier/product register
+def MTM0 : MoveToLOHI<"mtm0", GPR64Opnd, [MPL0, P0, P1, P2]>, MTMR_FM<0x08>;
+def MTM1 : MoveToLOHI<"mtm1", GPR64Opnd, [MPL1, P0, P1, P2]>, MTMR_FM<0x0c>;
+def MTM2 : MoveToLOHI<"mtm2", GPR64Opnd, [MPL2, P0, P1, P2]>, MTMR_FM<0x0d>;
+def MTP0 : MoveToLOHI<"mtp0", GPR64Opnd, [P0]>, MTMR_FM<0x09>;
+def MTP1 : MoveToLOHI<"mtp1", GPR64Opnd, [P1]>, MTMR_FM<0x0a>;
+def MTP2 : MoveToLOHI<"mtp2", GPR64Opnd, [P2]>, MTMR_FM<0x0b>;
+
+// Count Ones in a Word/Doubleword
+def POP : Count1s<"pop", GPR32Opnd>, POP_FM<0x2c>;
+def DPOP : Count1s<"dpop", GPR64Opnd>, POP_FM<0x2d>;
+
+// Set on equal/not equal
+def SEQ : SetCC64_R<"seq", seteq>, SEQ_FM<0x2a>;
+def SEQi : SetCC64_I<"seqi", seteq>, SEQI_FM<0x2e>;
+def SNE : SetCC64_R<"sne", setne>, SEQ_FM<0x2b>;
+def SNEi : SetCC64_I<"snei", setne>, SEQI_FM<0x2f>;
+
+// 192-bit x 64-bit Unsigned Multiply and Add
+let Defs = [P0, P1, P2] in
+def V3MULU: ArithLogicR<"v3mulu", GPR64Opnd, 0, II_DMUL>,
+ ADD_FM<0x1c, 0x11>;
+
+// 64-bit Unsigned Multiply and Add Move
+let Defs = [MPL0, P0, P1, P2] in
+def VMM0 : ArithLogicR<"vmm0", GPR64Opnd, 0, II_DMUL>,
+ ADD_FM<0x1c, 0x10>;
+
+// 64-bit Unsigned Multiply and Add
+let Defs = [MPL1, MPL2, P0, P1, P2] in
+def VMULU : ArithLogicR<"vmulu", GPR64Opnd, 0, II_DMUL>,
+ ADD_FM<0x1c, 0x0f>;
+
+}
+
+}
+
+//===----------------------------------------------------------------------===//
+// Arbitrary patterns that map to one or more instructions
+//===----------------------------------------------------------------------===//
+
+// extended loads
+def : MipsPat<(i64 (extloadi1 addr:$src)), (LB64 addr:$src)>;
+def : MipsPat<(i64 (extloadi8 addr:$src)), (LB64 addr:$src)>;
+def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64 addr:$src)>;
+def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64 addr:$src)>;
+
+// hi/lo relocs
+def : MipsPat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>;
+def : MipsPat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>;
+def : MipsPat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>;
+def : MipsPat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>;
+def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>;
+def : MipsPat<(MipsHi texternalsym:$in), (LUi64 texternalsym:$in)>;
+
+def : MipsPat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>;
+def : MipsPat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>;
+def : MipsPat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>;
+def : MipsPat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>;
+def : MipsPat<(MipsLo tglobaltlsaddr:$in),
+ (DADDiu ZERO_64, tglobaltlsaddr:$in)>;
+def : MipsPat<(MipsLo texternalsym:$in), (DADDiu ZERO_64, texternalsym:$in)>;
+
+def : MipsPat<(add GPR64:$hi, (MipsLo tglobaladdr:$lo)),
+ (DADDiu GPR64:$hi, tglobaladdr:$lo)>;
+def : MipsPat<(add GPR64:$hi, (MipsLo tblockaddress:$lo)),
+ (DADDiu GPR64:$hi, tblockaddress:$lo)>;
+def : MipsPat<(add GPR64:$hi, (MipsLo tjumptable:$lo)),
+ (DADDiu GPR64:$hi, tjumptable:$lo)>;
+def : MipsPat<(add GPR64:$hi, (MipsLo tconstpool:$lo)),
+ (DADDiu GPR64:$hi, tconstpool:$lo)>;
+def : MipsPat<(add GPR64:$hi, (MipsLo tglobaltlsaddr:$lo)),
+ (DADDiu GPR64:$hi, tglobaltlsaddr:$lo)>;
+
+def : WrapperPat<tglobaladdr, DADDiu, GPR64>;
+def : WrapperPat<tconstpool, DADDiu, GPR64>;
+def : WrapperPat<texternalsym, DADDiu, GPR64>;
+def : WrapperPat<tblockaddress, DADDiu, GPR64>;
+def : WrapperPat<tjumptable, DADDiu, GPR64>;
+def : WrapperPat<tglobaltlsaddr, DADDiu, GPR64>;
+
+defm : BrcondPats<GPR64, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
+ ZERO_64>;
+
+def : MipsPat<(brcond (i32 (setlt i64:$lhs, 1)), bb:$dst),
+ (BLEZ64 i64:$lhs, bb:$dst)>;
+def : MipsPat<(brcond (i32 (setgt i64:$lhs, -1)), bb:$dst),
+ (BGEZ64 i64:$lhs, bb:$dst)>;
+
+// setcc patterns
+defm : SeteqPats<GPR64, SLTiu64, XOR64, SLTu64, ZERO_64>;
+defm : SetlePats<GPR64, SLT64, SLTu64>;
+defm : SetgtPats<GPR64, SLT64, SLTu64>;
+defm : SetgePats<GPR64, SLT64, SLTu64>;
+defm : SetgeImmPats<GPR64, SLTi64, SLTiu64>;
+
+// truncate
+def : MipsPat<(i32 (trunc GPR64:$src)),
+ (SLL (EXTRACT_SUBREG GPR64:$src, sub_32), 0)>;
+
+// 32-to-64-bit extension
+def : MipsPat<(i64 (anyext GPR32:$src)), (SLL64_32 GPR32:$src)>;
+def : MipsPat<(i64 (zext GPR32:$src)), (DSRL (DSLL64_32 GPR32:$src), 32)>;
+def : MipsPat<(i64 (sext GPR32:$src)), (SLL64_32 GPR32:$src)>;
+
+// Sign extend in register
+def : MipsPat<(i64 (sext_inreg GPR64:$src, i32)),
+ (SLL64_64 GPR64:$src)>;
+
+// bswap MipsPattern
+def : MipsPat<(bswap GPR64:$rt), (DSHD (DSBH GPR64:$rt))>;
+
+//===----------------------------------------------------------------------===//
+// Instruction aliases
+//===----------------------------------------------------------------------===//
+def : MipsInstAlias<"move $dst, $src",
+ (DADDu GPR64Opnd:$dst, GPR64Opnd:$src, ZERO_64), 1>,
+ GPR_64;
+def : MipsInstAlias<"daddu $rs, $rt, $imm",
+ (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
+ 0>;
+def : MipsInstAlias<"dadd $rs, $rt, $imm",
+ (DADDi GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
+ 0>, ISA_MIPS3_NOT_32R6_64R6;
+def : MipsInstAlias<"daddu $rs, $imm",
+ (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm),
+ 0>;
+def : MipsInstAlias<"dadd $rs, $imm",
+ (DADDi GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm),
+ 0>, ISA_MIPS3_NOT_32R6_64R6;
+def : MipsInstAlias<"add $rs, $imm",
+ (ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm),
+ 0>;
+def : MipsInstAlias<"addu $rs, $imm",
+ (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm),
+ 0>;
+def : MipsInstAlias<"dsll $rd, $rt, $rs",
+ (DSLLV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
+ ISA_MIPS3;
+def : MipsInstAlias<"dsubu $rt, $rs, $imm",
+ (DADDiu GPR64Opnd:$rt, GPR64Opnd:$rs,
+ InvertedImOperand64:$imm), 0>;
+def : MipsInstAlias<"dsubi $rs, $rt, $imm",
+ (DADDi GPR64Opnd:$rs, GPR64Opnd:$rt,
+ InvertedImOperand64:$imm),
+ 0>, ISA_MIPS3_NOT_32R6_64R6;
+def : MipsInstAlias<"dsubi $rs, $imm",
+ (DADDi GPR64Opnd:$rs, GPR64Opnd:$rs,
+ InvertedImOperand64:$imm),
+ 0>, ISA_MIPS3_NOT_32R6_64R6;
+def : MipsInstAlias<"dsub $rs, $rt, $imm",
+ (DADDi GPR64Opnd:$rs, GPR64Opnd:$rt,
+ InvertedImOperand64:$imm),
+ 0>, ISA_MIPS3_NOT_32R6_64R6;
+def : MipsInstAlias<"dsub $rs, $imm",
+ (DADDi GPR64Opnd:$rs, GPR64Opnd:$rs,
+ InvertedImOperand64:$imm),
+ 0>, ISA_MIPS3_NOT_32R6_64R6;
+def : MipsInstAlias<"dsubu $rs, $imm",
+ (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs,
+ InvertedImOperand64:$imm),
+ 0>;
+def : MipsInstAlias<"dsra $rd, $rt, $rs",
+ (DSRAV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
+ ISA_MIPS3;
+def : MipsInstAlias<"dsrl $rd, $rt, $rs",
+ (DSRLV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
+ ISA_MIPS3;
+
+class LoadImm64< string instr_asm, Operand Od, RegisterOperand RO> :
+ MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm64),
+ !strconcat(instr_asm, "\t$rt, $imm64")> ;
+def LoadImm64Reg : LoadImm64<"dli", imm64, GPR64Opnd>;
+
+/// Move between CPU and coprocessor registers
+let DecoderNamespace = "Mips64", Predicates = [HasMips64] in {
+def DMFC0 : MFC3OP<"dmfc0", GPR64Opnd>, MFC3OP_FM<0x10, 1>;
+def DMTC0 : MFC3OP<"dmtc0", GPR64Opnd>, MFC3OP_FM<0x10, 5>, ISA_MIPS3;
+def DMFC2 : MFC3OP<"dmfc2", GPR64Opnd>, MFC3OP_FM<0x12, 1>, ISA_MIPS3;
+def DMTC2 : MFC3OP<"dmtc2", GPR64Opnd>, MFC3OP_FM<0x12, 5>, ISA_MIPS3;
+}
+
+// Two operand (implicit 0 selector) versions:
+def : MipsInstAlias<"dmfc0 $rt, $rd", (DMFC0 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
+def : MipsInstAlias<"dmtc0 $rt, $rd", (DMTC0 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
+def : MipsInstAlias<"dmfc2 $rt, $rd", (DMFC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
+def : MipsInstAlias<"dmtc2 $rt, $rd", (DMTC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
+
diff --git a/contrib/llvm/lib/Target/Mips/Mips64r6InstrInfo.td b/contrib/llvm/lib/Target/Mips/Mips64r6InstrInfo.td
new file mode 100644
index 0000000..6b546e8
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/Mips64r6InstrInfo.td
@@ -0,0 +1,217 @@
+//=- Mips64r6InstrInfo.td - Mips64r6 Instruction Information -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes Mips64r6 instructions.
+//
+//===----------------------------------------------------------------------===//
+
+// Notes about removals/changes from MIPS32r6:
+// Reencoded: dclo, dclz
+
+//===----------------------------------------------------------------------===//
+//
+// Instruction Encodings
+//
+//===----------------------------------------------------------------------===//
+
+class DALIGN_ENC : SPECIAL3_DALIGN_FM<OPCODE6_DALIGN>;
+class DAUI_ENC : DAUI_FM;
+class DAHI_ENC : REGIMM_FM<OPCODE5_DAHI>;
+class DATI_ENC : REGIMM_FM<OPCODE5_DATI>;
+class DBITSWAP_ENC : SPECIAL3_2R_FM<OPCODE6_DBITSWAP>;
+class DCLO_R6_ENC : SPECIAL_2R_FM<OPCODE6_DCLO>;
+class DCLZ_R6_ENC : SPECIAL_2R_FM<OPCODE6_DCLZ>;
+class DDIV_ENC : SPECIAL_3R_FM<0b00010, 0b011110>;
+class DDIVU_ENC : SPECIAL_3R_FM<0b00010, 0b011111>;
+class DLSA_R6_ENC : SPECIAL_LSA_FM<OPCODE6_DLSA>;
+class DMOD_ENC : SPECIAL_3R_FM<0b00011, 0b011110>;
+class DMODU_ENC : SPECIAL_3R_FM<0b00011, 0b011111>;
+class DMUH_ENC : SPECIAL_3R_FM<0b00011, 0b011100>;
+class DMUHU_ENC : SPECIAL_3R_FM<0b00011, 0b011101>;
+class DMUL_R6_ENC : SPECIAL_3R_FM<0b00010, 0b011100>;
+class DMULU_ENC : SPECIAL_3R_FM<0b00010, 0b011101>;
+class LDPC_ENC : PCREL18_FM<OPCODE3_LDPC>;
+class LLD_R6_ENC : SPECIAL3_LL_SC_FM<OPCODE6_LLD>;
+class SCD_R6_ENC : SPECIAL3_LL_SC_FM<OPCODE6_SCD>;
+
+//===----------------------------------------------------------------------===//
+//
+// Instruction Descriptions
+//
+//===----------------------------------------------------------------------===//
+
+class AHI_ATI_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
+ dag OutOperandList = (outs GPROpnd:$rs);
+ dag InOperandList = (ins GPROpnd:$rt, simm16:$imm);
+ string AsmString = !strconcat(instr_asm, "\t$rt, $imm");
+ string Constraints = "$rs = $rt";
+}
+
+class DALIGN_DESC : ALIGN_DESC_BASE<"dalign", GPR64Opnd, uimm3>;
+class DAHI_DESC : AHI_ATI_DESC_BASE<"dahi", GPR64Opnd>;
+class DATI_DESC : AHI_ATI_DESC_BASE<"dati", GPR64Opnd>;
+class DAUI_DESC : AUI_DESC_BASE<"daui", GPR64Opnd>;
+class DBITSWAP_DESC : BITSWAP_DESC_BASE<"dbitswap", GPR64Opnd>;
+class DCLO_R6_DESC : CLO_R6_DESC_BASE<"dclo", GPR64Opnd>;
+class DCLZ_R6_DESC : CLZ_R6_DESC_BASE<"dclz", GPR64Opnd>;
+class DDIV_DESC : DIVMOD_DESC_BASE<"ddiv", GPR64Opnd, sdiv>;
+class DDIVU_DESC : DIVMOD_DESC_BASE<"ddivu", GPR64Opnd, udiv>;
+class DLSA_R6_DESC : LSA_R6_DESC_BASE<"dlsa", GPR64Opnd, uimm2>;
+class DMOD_DESC : DIVMOD_DESC_BASE<"dmod", GPR64Opnd, srem>;
+class DMODU_DESC : DIVMOD_DESC_BASE<"dmodu", GPR64Opnd, urem>;
+class DMUH_DESC : MUL_R6_DESC_BASE<"dmuh", GPR64Opnd, mulhs>;
+class DMUHU_DESC : MUL_R6_DESC_BASE<"dmuhu", GPR64Opnd, mulhu>;
+class DMUL_R6_DESC : MUL_R6_DESC_BASE<"dmul", GPR64Opnd, mul>;
+class DMULU_DESC : MUL_R6_DESC_BASE<"dmulu", GPR64Opnd>;
+class LDPC_DESC : PCREL_DESC_BASE<"ldpc", GPR64Opnd, simm18_lsl3>;
+class LLD_R6_DESC : LL_R6_DESC_BASE<"lld", GPR64Opnd>;
+class SCD_R6_DESC : SC_R6_DESC_BASE<"scd", GPR64Opnd>;
+class SELEQZ64_DESC : SELEQNE_Z_DESC_BASE<"seleqz", GPR64Opnd>;
+class SELNEZ64_DESC : SELEQNE_Z_DESC_BASE<"selnez", GPR64Opnd>;
+
+//===----------------------------------------------------------------------===//
+//
+// Instruction Definitions
+//
+//===----------------------------------------------------------------------===//
+
+def DAHI : DAHI_ENC, DAHI_DESC, ISA_MIPS64R6;
+def DALIGN : DALIGN_ENC, DALIGN_DESC, ISA_MIPS64R6;
+def DATI : DATI_ENC, DATI_DESC, ISA_MIPS64R6;
+def DAUI : DAUI_ENC, DAUI_DESC, ISA_MIPS64R6;
+def DBITSWAP : DBITSWAP_ENC, DBITSWAP_DESC, ISA_MIPS64R6;
+def DCLO_R6 : DCLO_R6_ENC, DCLO_R6_DESC, ISA_MIPS64R6;
+def DCLZ_R6 : DCLZ_R6_ENC, DCLZ_R6_DESC, ISA_MIPS64R6;
+def DDIV : DDIV_ENC, DDIV_DESC, ISA_MIPS64R6;
+def DDIVU : DDIVU_ENC, DDIVU_DESC, ISA_MIPS64R6;
+def DLSA_R6 : DLSA_R6_ENC, DLSA_R6_DESC, ISA_MIPS64R6;
+def DMOD : DMOD_ENC, DMOD_DESC, ISA_MIPS64R6;
+def DMODU : DMODU_ENC, DMODU_DESC, ISA_MIPS64R6;
+def DMUH: DMUH_ENC, DMUH_DESC, ISA_MIPS64R6;
+def DMUHU: DMUHU_ENC, DMUHU_DESC, ISA_MIPS64R6;
+def DMUL_R6: DMUL_R6_ENC, DMUL_R6_DESC, ISA_MIPS64R6;
+def DMULU: DMULU_ENC, DMULU_DESC, ISA_MIPS64R6;
+def LDPC: LDPC_ENC, LDPC_DESC, ISA_MIPS64R6;
+def LLD_R6 : LLD_R6_ENC, LLD_R6_DESC, ISA_MIPS32R6;
+def SCD_R6 : SCD_R6_ENC, SCD_R6_DESC, ISA_MIPS32R6;
+let DecoderNamespace = "Mips32r6_64r6_GP64" in {
+ def SELEQZ64 : SELEQZ_ENC, SELEQZ64_DESC, ISA_MIPS32R6, GPR_64;
+ def SELNEZ64 : SELNEZ_ENC, SELNEZ64_DESC, ISA_MIPS32R6, GPR_64;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Instruction Aliases
+//
+//===----------------------------------------------------------------------===//
+
+def : MipsInstAlias<"jr $rs", (JALR64 ZERO_64, GPR64Opnd:$rs), 1>, ISA_MIPS64R6;
+
+//===----------------------------------------------------------------------===//
+//
+// Patterns and Pseudo Instructions
+//
+//===----------------------------------------------------------------------===//
+
+// i64 selects
+def : MipsPat<(select i64:$cond, i64:$t, i64:$f),
+ (OR64 (SELNEZ64 i64:$t, i64:$cond),
+ (SELEQZ64 i64:$f, i64:$cond))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (seteq i64:$cond, immz)), i64:$t, i64:$f),
+ (OR64 (SELEQZ64 i64:$t, i64:$cond),
+ (SELNEZ64 i64:$f, i64:$cond))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (setne i64:$cond, immz)), i64:$t, i64:$f),
+ (OR64 (SELNEZ64 i64:$t, i64:$cond),
+ (SELEQZ64 i64:$f, i64:$cond))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (seteq i64:$cond, immZExt16_64:$imm)), i64:$t, i64:$f),
+ (OR64 (SELEQZ64 i64:$t, (XORi64 i64:$cond, immZExt16_64:$imm)),
+ (SELNEZ64 i64:$f, (XORi64 i64:$cond, immZExt16_64:$imm)))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (setne i64:$cond, immZExt16_64:$imm)), i64:$t, i64:$f),
+ (OR64 (SELNEZ64 i64:$t, (XORi64 i64:$cond, immZExt16_64:$imm)),
+ (SELEQZ64 i64:$f, (XORi64 i64:$cond, immZExt16_64:$imm)))>,
+ ISA_MIPS64R6;
+def : MipsPat<
+ (select (i32 (setgt i64:$cond, immSExt16Plus1:$imm)), i64:$t, i64:$f),
+ (OR64 (SELEQZ64 i64:$t,
+ (SUBREG_TO_REG (i64 0), (SLTi64 i64:$cond, (Plus1 imm:$imm)),
+ sub_32)),
+ (SELNEZ64 i64:$f,
+ (SUBREG_TO_REG (i64 0), (SLTi64 i64:$cond, (Plus1 imm:$imm)),
+ sub_32)))>,
+ ISA_MIPS64R6;
+def : MipsPat<
+ (select (i32 (setugt i64:$cond, immSExt16Plus1:$imm)), i64:$t, i64:$f),
+ (OR64 (SELEQZ64 i64:$t,
+ (SUBREG_TO_REG (i64 0), (SLTiu64 i64:$cond, (Plus1 imm:$imm)),
+ sub_32)),
+ (SELNEZ64 i64:$f,
+ (SUBREG_TO_REG (i64 0), (SLTiu64 i64:$cond, (Plus1 imm:$imm)),
+ sub_32)))>,
+ ISA_MIPS64R6;
+
+def : MipsPat<(select (i32 (setne i64:$cond, immz)), i64:$t, immz),
+ (SELNEZ64 i64:$t, i64:$cond)>, ISA_MIPS64R6;
+def : MipsPat<(select (i32 (seteq i64:$cond, immz)), i64:$t, immz),
+ (SELEQZ64 i64:$t, i64:$cond)>, ISA_MIPS64R6;
+def : MipsPat<(select (i32 (setne i64:$cond, immz)), immz, i64:$f),
+ (SELEQZ64 i64:$f, i64:$cond)>, ISA_MIPS64R6;
+def : MipsPat<(select (i32 (seteq i64:$cond, immz)), immz, i64:$f),
+ (SELNEZ64 i64:$f, i64:$cond)>, ISA_MIPS64R6;
+
+// i64 selects from an i32 comparison
+// One complicating factor here is that bits 32-63 of an i32 are undefined.
+// FIXME: Ideally, setcc would always produce an i64 on MIPS64 targets.
+// This would allow us to remove the sign-extensions here.
+def : MipsPat<(select i32:$cond, i64:$t, i64:$f),
+ (OR64 (SELNEZ64 i64:$t, (SLL64_32 i32:$cond)),
+ (SELEQZ64 i64:$f, (SLL64_32 i32:$cond)))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (seteq i32:$cond, immz)), i64:$t, i64:$f),
+ (OR64 (SELEQZ64 i64:$t, (SLL64_32 i32:$cond)),
+ (SELNEZ64 i64:$f, (SLL64_32 i32:$cond)))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (setne i32:$cond, immz)), i64:$t, i64:$f),
+ (OR64 (SELNEZ64 i64:$t, (SLL64_32 i32:$cond)),
+ (SELEQZ64 i64:$f, (SLL64_32 i32:$cond)))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (seteq i32:$cond, immZExt16:$imm)), i64:$t, i64:$f),
+ (OR64 (SELEQZ64 i64:$t, (SLL64_32 (XORi i32:$cond,
+ immZExt16:$imm))),
+ (SELNEZ64 i64:$f, (SLL64_32 (XORi i32:$cond,
+ immZExt16:$imm))))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (setne i32:$cond, immZExt16:$imm)), i64:$t, i64:$f),
+ (OR64 (SELNEZ64 i64:$t, (SLL64_32 (XORi i32:$cond,
+ immZExt16:$imm))),
+ (SELEQZ64 i64:$f, (SLL64_32 (XORi i32:$cond,
+ immZExt16:$imm))))>,
+ ISA_MIPS64R6;
+
+def : MipsPat<(select i32:$cond, i64:$t, immz),
+ (SELNEZ64 i64:$t, (SLL64_32 i32:$cond))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (setne i32:$cond, immz)), i64:$t, immz),
+ (SELNEZ64 i64:$t, (SLL64_32 i32:$cond))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (seteq i32:$cond, immz)), i64:$t, immz),
+ (SELEQZ64 i64:$t, (SLL64_32 i32:$cond))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select i32:$cond, immz, i64:$f),
+ (SELEQZ64 i64:$f, (SLL64_32 i32:$cond))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (setne i32:$cond, immz)), immz, i64:$f),
+ (SELEQZ64 i64:$f, (SLL64_32 i32:$cond))>,
+ ISA_MIPS64R6;
+def : MipsPat<(select (i32 (seteq i32:$cond, immz)), immz, i64:$f),
+ (SELNEZ64 i64:$f, (SLL64_32 i32:$cond))>,
+ ISA_MIPS64R6;
diff --git a/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.cpp b/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.cpp
new file mode 100644
index 0000000..31a9b7d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.cpp
@@ -0,0 +1,153 @@
+//===-- MipsAnalyzeImmediate.cpp - Analyze Immediates ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+#include "MipsAnalyzeImmediate.h"
+#include "Mips.h"
+#include "llvm/Support/MathExtras.h"
+
+using namespace llvm;
+
+MipsAnalyzeImmediate::Inst::Inst(unsigned O, unsigned I) : Opc(O), ImmOpnd(I) {}
+
+// Add I to the instruction sequences.
+void MipsAnalyzeImmediate::AddInstr(InstSeqLs &SeqLs, const Inst &I) {
+ // Add an instruction seqeunce consisting of just I.
+ if (SeqLs.empty()) {
+ SeqLs.push_back(InstSeq(1, I));
+ return;
+ }
+
+ for (InstSeqLs::iterator Iter = SeqLs.begin(); Iter != SeqLs.end(); ++Iter)
+ Iter->push_back(I);
+}
+
+void MipsAnalyzeImmediate::GetInstSeqLsADDiu(uint64_t Imm, unsigned RemSize,
+ InstSeqLs &SeqLs) {
+ GetInstSeqLs((Imm + 0x8000ULL) & 0xffffffffffff0000ULL, RemSize, SeqLs);
+ AddInstr(SeqLs, Inst(ADDiu, Imm & 0xffffULL));
+}
+
+void MipsAnalyzeImmediate::GetInstSeqLsORi(uint64_t Imm, unsigned RemSize,
+ InstSeqLs &SeqLs) {
+ GetInstSeqLs(Imm & 0xffffffffffff0000ULL, RemSize, SeqLs);
+ AddInstr(SeqLs, Inst(ORi, Imm & 0xffffULL));
+}
+
+void MipsAnalyzeImmediate::GetInstSeqLsSLL(uint64_t Imm, unsigned RemSize,
+ InstSeqLs &SeqLs) {
+ unsigned Shamt = countTrailingZeros(Imm);
+ GetInstSeqLs(Imm >> Shamt, RemSize - Shamt, SeqLs);
+ AddInstr(SeqLs, Inst(SLL, Shamt));
+}
+
+void MipsAnalyzeImmediate::GetInstSeqLs(uint64_t Imm, unsigned RemSize,
+ InstSeqLs &SeqLs) {
+ uint64_t MaskedImm = Imm & (0xffffffffffffffffULL >> (64 - Size));
+
+ // Do nothing if Imm is 0.
+ if (!MaskedImm)
+ return;
+
+ // A single ADDiu will do if RemSize <= 16.
+ if (RemSize <= 16) {
+ AddInstr(SeqLs, Inst(ADDiu, MaskedImm));
+ return;
+ }
+
+ // Shift if the lower 16-bit is cleared.
+ if (!(Imm & 0xffff)) {
+ GetInstSeqLsSLL(Imm, RemSize, SeqLs);
+ return;
+ }
+
+ GetInstSeqLsADDiu(Imm, RemSize, SeqLs);
+
+ // If bit 15 is cleared, it doesn't make a difference whether the last
+ // instruction is an ADDiu or ORi. In that case, do not call GetInstSeqLsORi.
+ if (Imm & 0x8000) {
+ InstSeqLs SeqLsORi;
+ GetInstSeqLsORi(Imm, RemSize, SeqLsORi);
+ SeqLs.insert(SeqLs.end(), SeqLsORi.begin(), SeqLsORi.end());
+ }
+}
+
+// Replace a ADDiu & SLL pair with a LUi.
+// e.g. the following two instructions
+// ADDiu 0x0111
+// SLL 18
+// are replaced with
+// LUi 0x444
+void MipsAnalyzeImmediate::ReplaceADDiuSLLWithLUi(InstSeq &Seq) {
+ // Check if the first two instructions are ADDiu and SLL and the shift amount
+ // is at least 16.
+ if ((Seq.size() < 2) || (Seq[0].Opc != ADDiu) ||
+ (Seq[1].Opc != SLL) || (Seq[1].ImmOpnd < 16))
+ return;
+
+ // Sign-extend and shift operand of ADDiu and see if it still fits in 16-bit.
+ int64_t Imm = SignExtend64<16>(Seq[0].ImmOpnd);
+ int64_t ShiftedImm = (uint64_t)Imm << (Seq[1].ImmOpnd - 16);
+
+ if (!isInt<16>(ShiftedImm))
+ return;
+
+ // Replace the first instruction and erase the second.
+ Seq[0].Opc = LUi;
+ Seq[0].ImmOpnd = (unsigned)(ShiftedImm & 0xffff);
+ Seq.erase(Seq.begin() + 1);
+}
+
+void MipsAnalyzeImmediate::GetShortestSeq(InstSeqLs &SeqLs, InstSeq &Insts) {
+ InstSeqLs::iterator ShortestSeq = SeqLs.end();
+ // The length of an instruction sequence is at most 7.
+ unsigned ShortestLength = 8;
+
+ for (InstSeqLs::iterator S = SeqLs.begin(); S != SeqLs.end(); ++S) {
+ ReplaceADDiuSLLWithLUi(*S);
+ assert(S->size() <= 7);
+
+ if (S->size() < ShortestLength) {
+ ShortestSeq = S;
+ ShortestLength = S->size();
+ }
+ }
+
+ Insts.clear();
+ Insts.append(ShortestSeq->begin(), ShortestSeq->end());
+}
+
+const MipsAnalyzeImmediate::InstSeq
+&MipsAnalyzeImmediate::Analyze(uint64_t Imm, unsigned Size,
+ bool LastInstrIsADDiu) {
+ this->Size = Size;
+
+ if (Size == 32) {
+ ADDiu = Mips::ADDiu;
+ ORi = Mips::ORi;
+ SLL = Mips::SLL;
+ LUi = Mips::LUi;
+ } else {
+ ADDiu = Mips::DADDiu;
+ ORi = Mips::ORi64;
+ SLL = Mips::DSLL;
+ LUi = Mips::LUi64;
+ }
+
+ InstSeqLs SeqLs;
+
+ // Get the list of instruction sequences.
+ if (LastInstrIsADDiu | !Imm)
+ GetInstSeqLsADDiu(Imm, Size, SeqLs);
+ else
+ GetInstSeqLs(Imm, Size, SeqLs);
+
+ // Set Insts to the shortest instruction sequence.
+ GetShortestSeq(SeqLs, Insts);
+
+ return Insts;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.h b/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.h
new file mode 100644
index 0000000..cc09034
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.h
@@ -0,0 +1,63 @@
+//===-- MipsAnalyzeImmediate.h - Analyze Immediates ------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+#ifndef MIPS_ANALYZE_IMMEDIATE_H
+#define MIPS_ANALYZE_IMMEDIATE_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+
+ class MipsAnalyzeImmediate {
+ public:
+ struct Inst {
+ unsigned Opc, ImmOpnd;
+ Inst(unsigned Opc, unsigned ImmOpnd);
+ };
+ typedef SmallVector<Inst, 7 > InstSeq;
+
+ /// Analyze - Get an instruction sequence to load immediate Imm. The last
+ /// instruction in the sequence must be an ADDiu if LastInstrIsADDiu is
+ /// true;
+ const InstSeq &Analyze(uint64_t Imm, unsigned Size, bool LastInstrIsADDiu);
+ private:
+ typedef SmallVector<InstSeq, 5> InstSeqLs;
+
+ /// AddInstr - Add I to all instruction sequences in SeqLs.
+ void AddInstr(InstSeqLs &SeqLs, const Inst &I);
+
+ /// GetInstSeqLsADDiu - Get instruction sequences which end with an ADDiu to
+ /// load immediate Imm
+ void GetInstSeqLsADDiu(uint64_t Imm, unsigned RemSize, InstSeqLs &SeqLs);
+
+ /// GetInstSeqLsORi - Get instrutcion sequences which end with an ORi to
+ /// load immediate Imm
+ void GetInstSeqLsORi(uint64_t Imm, unsigned RemSize, InstSeqLs &SeqLs);
+
+ /// GetInstSeqLsSLL - Get instruction sequences which end with a SLL to
+ /// load immediate Imm
+ void GetInstSeqLsSLL(uint64_t Imm, unsigned RemSize, InstSeqLs &SeqLs);
+
+ /// GetInstSeqLs - Get instruction sequences to load immediate Imm.
+ void GetInstSeqLs(uint64_t Imm, unsigned RemSize, InstSeqLs &SeqLs);
+
+ /// ReplaceADDiuSLLWithLUi - Replace an ADDiu & SLL pair with a LUi.
+ void ReplaceADDiuSLLWithLUi(InstSeq &Seq);
+
+ /// GetShortestSeq - Find the shortest instruction sequence in SeqLs and
+ /// return it in Insts.
+ void GetShortestSeq(InstSeqLs &SeqLs, InstSeq &Insts);
+
+ unsigned Size;
+ unsigned ADDiu, ORi, SLL, LUi;
+ InstSeq Insts;
+ };
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.cpp b/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.cpp
new file mode 100644
index 0000000..7f21d68
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.cpp
@@ -0,0 +1,1036 @@
+//===-- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to GAS-format MIPS assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstPrinter/MipsInstPrinter.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MCTargetDesc/MipsMCNaCl.h"
+#include "Mips.h"
+#include "MipsAsmPrinter.h"
+#include "MipsInstrInfo.h"
+#include "MipsMCInstLower.h"
+#include "MipsTargetStreamer.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetOptions.h"
+#include <string>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-asm-printer"
+
+MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() {
+ return static_cast<MipsTargetStreamer &>(*OutStreamer.getTargetStreamer());
+}
+
+bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+ Subtarget = &TM.getSubtarget<MipsSubtarget>();
+
+ // Initialize TargetLoweringObjectFile.
+ const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
+ .Initialize(OutContext, TM);
+
+ MipsFI = MF.getInfo<MipsFunctionInfo>();
+ if (Subtarget->inMips16Mode())
+ for (std::map<
+ const char *,
+ const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
+ it = MipsFI->StubsNeeded.begin();
+ it != MipsFI->StubsNeeded.end(); ++it) {
+ const char *Symbol = it->first;
+ const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
+ if (StubsNeeded.find(Symbol) == StubsNeeded.end())
+ StubsNeeded[Symbol] = Signature;
+ }
+ MCP = MF.getConstantPool();
+
+ // In NaCl, all indirect jump targets must be aligned to bundle size.
+ if (Subtarget->isTargetNaCl())
+ NaClAlignIndirectJumpTargets(MF);
+
+ AsmPrinter::runOnMachineFunction(MF);
+ return true;
+}
+
+bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
+ MCOp = MCInstLowering.LowerOperand(MO);
+ return MCOp.isValid();
+}
+
+#include "MipsGenMCPseudoLowering.inc"
+
+// Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
+// JALR, or JALR64 as appropriate for the target
+void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
+ const MachineInstr *MI) {
+ bool HasLinkReg = false;
+ MCInst TmpInst0;
+
+ if (Subtarget->hasMips64r6()) {
+ // MIPS64r6 should use (JALR64 ZERO_64, $rs)
+ TmpInst0.setOpcode(Mips::JALR64);
+ HasLinkReg = true;
+ } else if (Subtarget->hasMips32r6()) {
+ // MIPS32r6 should use (JALR ZERO, $rs)
+ TmpInst0.setOpcode(Mips::JALR);
+ HasLinkReg = true;
+ } else if (Subtarget->inMicroMipsMode())
+ // microMIPS should use (JR_MM $rs)
+ TmpInst0.setOpcode(Mips::JR_MM);
+ else {
+ // Everything else should use (JR $rs)
+ TmpInst0.setOpcode(Mips::JR);
+ }
+
+ MCOperand MCOp;
+
+ if (HasLinkReg) {
+ unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
+ TmpInst0.addOperand(MCOperand::CreateReg(ZeroReg));
+ }
+
+ lowerOperand(MI->getOperand(0), MCOp);
+ TmpInst0.addOperand(MCOp);
+
+ EmitToStreamer(OutStreamer, TmpInst0);
+}
+
+void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ MipsTargetStreamer &TS = getTargetStreamer();
+ TS.setCanHaveModuleDir(false);
+
+ if (MI->isDebugValue()) {
+ SmallString<128> Str;
+ raw_svector_ostream OS(Str);
+
+ PrintDebugValueComment(MI, OS);
+ return;
+ }
+
+ // If we just ended a constant pool, mark it as such.
+ if (InConstantPool && MI->getOpcode() != Mips::CONSTPOOL_ENTRY) {
+ OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
+ InConstantPool = false;
+ }
+ if (MI->getOpcode() == Mips::CONSTPOOL_ENTRY) {
+ // CONSTPOOL_ENTRY - This instruction represents a floating
+ //constant pool in the function. The first operand is the ID#
+ // for this instruction, the second is the index into the
+ // MachineConstantPool that this is, the third is the size in
+ // bytes of this constant pool entry.
+ // The required alignment is specified on the basic block holding this MI.
+ //
+ unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
+ unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
+
+ // If this is the first entry of the pool, mark it.
+ if (!InConstantPool) {
+ OutStreamer.EmitDataRegion(MCDR_DataRegion);
+ InConstantPool = true;
+ }
+
+ OutStreamer.EmitLabel(GetCPISymbol(LabelId));
+
+ const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
+ if (MCPE.isMachineConstantPoolEntry())
+ EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
+ else
+ EmitGlobalConstant(MCPE.Val.ConstVal);
+ return;
+ }
+
+
+ MachineBasicBlock::const_instr_iterator I = MI;
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+
+ do {
+ // Do any auto-generated pseudo lowerings.
+ if (emitPseudoExpansionLowering(OutStreamer, &*I))
+ continue;
+
+ if (I->getOpcode() == Mips::PseudoReturn ||
+ I->getOpcode() == Mips::PseudoReturn64 ||
+ I->getOpcode() == Mips::PseudoIndirectBranch ||
+ I->getOpcode() == Mips::PseudoIndirectBranch64) {
+ emitPseudoIndirectBranch(OutStreamer, &*I);
+ continue;
+ }
+
+ // The inMips16Mode() test is not permanent.
+ // Some instructions are marked as pseudo right now which
+ // would make the test fail for the wrong reason but
+ // that will be fixed soon. We need this here because we are
+ // removing another test for this situation downstream in the
+ // callchain.
+ //
+ if (I->isPseudo() && !Subtarget->inMips16Mode()
+ && !isLongBranchPseudo(I->getOpcode()))
+ llvm_unreachable("Pseudo opcode found in EmitInstruction()");
+
+ MCInst TmpInst0;
+ MCInstLowering.Lower(I, TmpInst0);
+ EmitToStreamer(OutStreamer, TmpInst0);
+ } while ((++I != E) && I->isInsideBundle()); // Delay slot check
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Mips Asm Directives
+//
+// -- Frame directive "frame Stackpointer, Stacksize, RARegister"
+// Describe the stack frame.
+//
+// -- Mask directives "(f)mask bitmask, offset"
+// Tells the assembler which registers are saved and where.
+// bitmask - contain a little endian bitset indicating which registers are
+// saved on function prologue (e.g. with a 0x80000000 mask, the
+// assembler knows the register 31 (RA) is saved at prologue.
+// offset - the position before stack pointer subtraction indicating where
+// the first saved register on prologue is located. (e.g. with a
+//
+// Consider the following function prologue:
+//
+// .frame $fp,48,$ra
+// .mask 0xc0000000,-8
+// addiu $sp, $sp, -48
+// sw $ra, 40($sp)
+// sw $fp, 36($sp)
+//
+// With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
+// 30 (FP) are saved at prologue. As the save order on prologue is from
+// left to right, RA is saved first. A -8 offset means that after the
+// stack pointer subtration, the first register in the mask (RA) will be
+// saved at address 48-8=40.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Mask directives
+//===----------------------------------------------------------------------===//
+
+// Create a bitmask with all callee saved registers for CPU or Floating Point
+// registers. For CPU registers consider RA, GP and FP for saving if necessary.
+void MipsAsmPrinter::printSavedRegsBitmask() {
+ // CPU and FPU Saved Registers Bitmasks
+ unsigned CPUBitmask = 0, FPUBitmask = 0;
+ int CPUTopSavedRegOff, FPUTopSavedRegOff;
+
+ // Set the CPU and FPU Bitmasks
+ const MachineFrameInfo *MFI = MF->getFrameInfo();
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ // size of stack area to which FP callee-saved regs are saved.
+ unsigned CPURegSize = Mips::GPR32RegClass.getSize();
+ unsigned FGR32RegSize = Mips::FGR32RegClass.getSize();
+ unsigned AFGR64RegSize = Mips::AFGR64RegClass.getSize();
+ bool HasAFGR64Reg = false;
+ unsigned CSFPRegsSize = 0;
+ unsigned i, e = CSI.size();
+
+ // Set FPU Bitmask.
+ for (i = 0; i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ if (Mips::GPR32RegClass.contains(Reg))
+ break;
+
+ unsigned RegNum = TM.getRegisterInfo()->getEncodingValue(Reg);
+ if (Mips::AFGR64RegClass.contains(Reg)) {
+ FPUBitmask |= (3 << RegNum);
+ CSFPRegsSize += AFGR64RegSize;
+ HasAFGR64Reg = true;
+ continue;
+ }
+
+ FPUBitmask |= (1 << RegNum);
+ CSFPRegsSize += FGR32RegSize;
+ }
+
+ // Set CPU Bitmask.
+ for (; i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ unsigned RegNum = TM.getRegisterInfo()->getEncodingValue(Reg);
+ CPUBitmask |= (1 << RegNum);
+ }
+
+ // FP Regs are saved right below where the virtual frame pointer points to.
+ FPUTopSavedRegOff = FPUBitmask ?
+ (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
+
+ // CPU Regs are saved below FP Regs.
+ CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
+
+ MipsTargetStreamer &TS = getTargetStreamer();
+ // Print CPUBitmask
+ TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
+
+ // Print FPUBitmask
+ TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
+}
+
+//===----------------------------------------------------------------------===//
+// Frame and Set directives
+//===----------------------------------------------------------------------===//
+
+/// Frame Directive
+void MipsAsmPrinter::emitFrameDirective() {
+ const TargetRegisterInfo &RI = *TM.getRegisterInfo();
+
+ unsigned stackReg = RI.getFrameRegister(*MF);
+ unsigned returnReg = RI.getRARegister();
+ unsigned stackSize = MF->getFrameInfo()->getStackSize();
+
+ getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
+}
+
+/// Emit Set directives.
+const char *MipsAsmPrinter::getCurrentABIString() const {
+ switch (Subtarget->getTargetABI()) {
+ case MipsSubtarget::O32: return "abi32";
+ case MipsSubtarget::N32: return "abiN32";
+ case MipsSubtarget::N64: return "abi64";
+ case MipsSubtarget::EABI: return "eabi32"; // TODO: handle eabi64
+ default: llvm_unreachable("Unknown Mips ABI");
+ }
+}
+
+void MipsAsmPrinter::EmitFunctionEntryLabel() {
+ MipsTargetStreamer &TS = getTargetStreamer();
+
+ // NaCl sandboxing requires that indirect call instructions are masked.
+ // This means that function entry points should be bundle-aligned.
+ if (Subtarget->isTargetNaCl())
+ EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
+
+ if (Subtarget->inMicroMipsMode())
+ TS.emitDirectiveSetMicroMips();
+ else
+ TS.emitDirectiveSetNoMicroMips();
+
+ if (Subtarget->inMips16Mode())
+ TS.emitDirectiveSetMips16();
+ else
+ TS.emitDirectiveSetNoMips16();
+
+ TS.emitDirectiveEnt(*CurrentFnSym);
+ OutStreamer.EmitLabel(CurrentFnSym);
+}
+
+/// EmitFunctionBodyStart - Targets can override this to emit stuff before
+/// the first basic block in the function.
+void MipsAsmPrinter::EmitFunctionBodyStart() {
+ MipsTargetStreamer &TS = getTargetStreamer();
+
+ MCInstLowering.Initialize(&MF->getContext());
+
+ bool IsNakedFunction =
+ MF->getFunction()->
+ getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::Naked);
+ if (!IsNakedFunction)
+ emitFrameDirective();
+
+ if (!IsNakedFunction)
+ printSavedRegsBitmask();
+
+ if (!Subtarget->inMips16Mode()) {
+ TS.emitDirectiveSetNoReorder();
+ TS.emitDirectiveSetNoMacro();
+ TS.emitDirectiveSetNoAt();
+ }
+}
+
+/// EmitFunctionBodyEnd - Targets can override this to emit stuff after
+/// the last basic block in the function.
+void MipsAsmPrinter::EmitFunctionBodyEnd() {
+ MipsTargetStreamer &TS = getTargetStreamer();
+
+ // There are instruction for this macros, but they must
+ // always be at the function end, and we can't emit and
+ // break with BB logic.
+ if (!Subtarget->inMips16Mode()) {
+ TS.emitDirectiveSetAt();
+ TS.emitDirectiveSetMacro();
+ TS.emitDirectiveSetReorder();
+ }
+ TS.emitDirectiveEnd(CurrentFnSym->getName());
+ // Make sure to terminate any constant pools that were at the end
+ // of the function.
+ if (!InConstantPool)
+ return;
+ InConstantPool = false;
+ OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
+}
+
+/// isBlockOnlyReachableByFallthough - Return true if the basic block has
+/// exactly one predecessor and the control transfer mechanism between
+/// the predecessor and this block is a fall-through.
+bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
+ MBB) const {
+ // The predecessor has to be immediately before this block.
+ const MachineBasicBlock *Pred = *MBB->pred_begin();
+
+ // If the predecessor is a switch statement, assume a jump table
+ // implementation, so it is not a fall through.
+ if (const BasicBlock *bb = Pred->getBasicBlock())
+ if (isa<SwitchInst>(bb->getTerminator()))
+ return false;
+
+ // If this is a landing pad, it isn't a fall through. If it has no preds,
+ // then nothing falls through to it.
+ if (MBB->isLandingPad() || MBB->pred_empty())
+ return false;
+
+ // If there isn't exactly one predecessor, it can't be a fall through.
+ MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
+ ++PI2;
+
+ if (PI2 != MBB->pred_end())
+ return false;
+
+ // The predecessor has to be immediately before this block.
+ if (!Pred->isLayoutSuccessor(MBB))
+ return false;
+
+ // If the block is completely empty, then it definitely does fall through.
+ if (Pred->empty())
+ return true;
+
+ // Otherwise, check the last instruction.
+ // Check if the last terminator is an unconditional branch.
+ MachineBasicBlock::const_iterator I = Pred->end();
+ while (I != Pred->begin() && !(--I)->isTerminator()) ;
+
+ return !I->isBarrier();
+}
+
+// Print out an operand for an inline asm expression.
+bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
+ unsigned AsmVariant,const char *ExtraCode,
+ raw_ostream &O) {
+ // Does this asm operand have a single letter operand modifier?
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ switch (ExtraCode[0]) {
+ default:
+ // See if this is a generic print operand
+ return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O);
+ case 'X': // hex const int
+ if ((MO.getType()) != MachineOperand::MO_Immediate)
+ return true;
+ O << "0x" << StringRef(utohexstr(MO.getImm())).lower();
+ return false;
+ case 'x': // hex const int (low 16 bits)
+ if ((MO.getType()) != MachineOperand::MO_Immediate)
+ return true;
+ O << "0x" << StringRef(utohexstr(MO.getImm() & 0xffff)).lower();
+ return false;
+ case 'd': // decimal const int
+ if ((MO.getType()) != MachineOperand::MO_Immediate)
+ return true;
+ O << MO.getImm();
+ return false;
+ case 'm': // decimal const int minus 1
+ if ((MO.getType()) != MachineOperand::MO_Immediate)
+ return true;
+ O << MO.getImm() - 1;
+ return false;
+ case 'z': {
+ // $0 if zero, regular printing otherwise
+ if (MO.getType() != MachineOperand::MO_Immediate)
+ return true;
+ int64_t Val = MO.getImm();
+ if (Val)
+ O << Val;
+ else
+ O << "$0";
+ return false;
+ }
+ case 'D': // Second part of a double word register operand
+ case 'L': // Low order register of a double word register operand
+ case 'M': // High order register of a double word register operand
+ {
+ if (OpNum == 0)
+ return true;
+ const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
+ if (!FlagsOP.isImm())
+ return true;
+ unsigned Flags = FlagsOP.getImm();
+ unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
+ // Number of registers represented by this operand. We are looking
+ // for 2 for 32 bit mode and 1 for 64 bit mode.
+ if (NumVals != 2) {
+ if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
+ unsigned Reg = MO.getReg();
+ O << '$' << MipsInstPrinter::getRegisterName(Reg);
+ return false;
+ }
+ return true;
+ }
+
+ unsigned RegOp = OpNum;
+ if (!Subtarget->isGP64bit()){
+ // Endianess reverses which register holds the high or low value
+ // between M and L.
+ switch(ExtraCode[0]) {
+ case 'M':
+ RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
+ break;
+ case 'L':
+ RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
+ break;
+ case 'D': // Always the second part
+ RegOp = OpNum + 1;
+ }
+ if (RegOp >= MI->getNumOperands())
+ return true;
+ const MachineOperand &MO = MI->getOperand(RegOp);
+ if (!MO.isReg())
+ return true;
+ unsigned Reg = MO.getReg();
+ O << '$' << MipsInstPrinter::getRegisterName(Reg);
+ return false;
+ }
+ }
+ case 'w':
+ // Print MSA registers for the 'f' constraint
+ // In LLVM, the 'w' modifier doesn't need to do anything.
+ // We can just call printOperand as normal.
+ break;
+ }
+ }
+
+ printOperand(MI, OpNum, O);
+ return false;
+}
+
+bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNum, unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &O) {
+ int Offset = 0;
+ // Currently we are expecting either no ExtraCode or 'D'
+ if (ExtraCode) {
+ if (ExtraCode[0] == 'D')
+ Offset = 4;
+ else
+ return true; // Unknown modifier.
+ }
+
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ assert(MO.isReg() && "unexpected inline asm memory operand");
+ O << Offset << "($" << MipsInstPrinter::getRegisterName(MO.getReg()) << ")";
+
+ return false;
+}
+
+void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
+ raw_ostream &O) {
+ const DataLayout *DL = TM.getDataLayout();
+ const MachineOperand &MO = MI->getOperand(opNum);
+ bool closeP = false;
+
+ if (MO.getTargetFlags())
+ closeP = true;
+
+ switch(MO.getTargetFlags()) {
+ case MipsII::MO_GPREL: O << "%gp_rel("; break;
+ case MipsII::MO_GOT_CALL: O << "%call16("; break;
+ case MipsII::MO_GOT: O << "%got("; break;
+ case MipsII::MO_ABS_HI: O << "%hi("; break;
+ case MipsII::MO_ABS_LO: O << "%lo("; break;
+ case MipsII::MO_TLSGD: O << "%tlsgd("; break;
+ case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
+ case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
+ case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
+ case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
+ case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
+ case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
+ case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
+ case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
+ }
+
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register:
+ O << '$'
+ << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
+ break;
+
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ break;
+
+ case MachineOperand::MO_MachineBasicBlock:
+ O << *MO.getMBB()->getSymbol();
+ return;
+
+ case MachineOperand::MO_GlobalAddress:
+ O << *getSymbol(MO.getGlobal());
+ break;
+
+ case MachineOperand::MO_BlockAddress: {
+ MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
+ O << BA->getName();
+ break;
+ }
+
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << DL->getPrivateGlobalPrefix() << "CPI"
+ << getFunctionNumber() << "_" << MO.getIndex();
+ if (MO.getOffset())
+ O << "+" << MO.getOffset();
+ break;
+
+ default:
+ llvm_unreachable("<unknown operand type>");
+ }
+
+ if (closeP) O << ")";
+}
+
+void MipsAsmPrinter::printUnsignedImm(const MachineInstr *MI, int opNum,
+ raw_ostream &O) {
+ const MachineOperand &MO = MI->getOperand(opNum);
+ if (MO.isImm())
+ O << (unsigned short int)MO.getImm();
+ else
+ printOperand(MI, opNum, O);
+}
+
+void MipsAsmPrinter::printUnsignedImm8(const MachineInstr *MI, int opNum,
+ raw_ostream &O) {
+ const MachineOperand &MO = MI->getOperand(opNum);
+ if (MO.isImm())
+ O << (unsigned short int)(unsigned char)MO.getImm();
+ else
+ printOperand(MI, opNum, O);
+}
+
+void MipsAsmPrinter::
+printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
+ // Load/Store memory operands -- imm($reg)
+ // If PIC target the target is loaded as the
+ // pattern lw $25,%call16($28)
+ printOperand(MI, opNum+1, O);
+ O << "(";
+ printOperand(MI, opNum, O);
+ O << ")";
+}
+
+void MipsAsmPrinter::
+printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
+ // when using stack locations for not load/store instructions
+ // print the same way as all normal 3 operand instructions.
+ printOperand(MI, opNum, O);
+ O << ", ";
+ printOperand(MI, opNum+1, O);
+ return;
+}
+
+void MipsAsmPrinter::
+printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
+ const char *Modifier) {
+ const MachineOperand &MO = MI->getOperand(opNum);
+ O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
+}
+
+void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
+ // TODO: Need to add -mabicalls and -mno-abicalls flags.
+ // Currently we assume that -mabicalls is the default.
+ bool IsABICalls = true;
+ if (IsABICalls) {
+ getTargetStreamer().emitDirectiveAbiCalls();
+ Reloc::Model RM = TM.getRelocationModel();
+ // FIXME: This condition should be a lot more complicated that it is here.
+ // Ideally it should test for properties of the ABI and not the ABI
+ // itself.
+ // For the moment, I'm only correcting enough to make MIPS-IV work.
+ if (RM == Reloc::Static && !Subtarget->isABI_N64())
+ getTargetStreamer().emitDirectiveOptionPic0();
+ }
+
+ // Tell the assembler which ABI we are using
+ std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
+ OutStreamer.SwitchSection(OutContext.getELFSection(
+ SectionName, ELF::SHT_PROGBITS, 0, SectionKind::getDataRel()));
+
+ // NaN: At the moment we only support:
+ // 1. .nan legacy (default)
+ // 2. .nan 2008
+ Subtarget->isNaN2008() ? getTargetStreamer().emitDirectiveNaN2008()
+ : getTargetStreamer().emitDirectiveNaNLegacy();
+
+ // TODO: handle O64 ABI
+
+ if (Subtarget->isABI_EABI()) {
+ if (Subtarget->isGP32bit())
+ OutStreamer.SwitchSection(
+ OutContext.getELFSection(".gcc_compiled_long32", ELF::SHT_PROGBITS, 0,
+ SectionKind::getDataRel()));
+ else
+ OutStreamer.SwitchSection(
+ OutContext.getELFSection(".gcc_compiled_long64", ELF::SHT_PROGBITS, 0,
+ SectionKind::getDataRel()));
+ }
+
+ getTargetStreamer().updateABIInfo(*Subtarget);
+
+ // We should always emit a '.module fp=...' but binutils 2.24 does not accept
+ // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
+ // -mfp64) and omit it otherwise.
+ if (Subtarget->isABI_O32() && (Subtarget->isABI_FPXX() ||
+ Subtarget->isFP64bit()))
+ getTargetStreamer().emitDirectiveModuleFP();
+
+ // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
+ // accept it. We therefore emit it when it contradicts the default or an
+ // option has changed the default (i.e. FPXX) and omit it otherwise.
+ if (Subtarget->isABI_O32() && (!Subtarget->useOddSPReg() ||
+ Subtarget->isABI_FPXX()))
+ getTargetStreamer().emitDirectiveModuleOddSPReg(Subtarget->useOddSPReg(),
+ Subtarget->isABI_O32());
+}
+
+void MipsAsmPrinter::EmitJal(MCSymbol *Symbol) {
+ MCInst I;
+ I.setOpcode(Mips::JAL);
+ I.addOperand(
+ MCOperand::CreateExpr(MCSymbolRefExpr::Create(Symbol, OutContext)));
+ OutStreamer.EmitInstruction(I, getSubtargetInfo());
+}
+
+void MipsAsmPrinter::EmitInstrReg(unsigned Opcode, unsigned Reg) {
+ MCInst I;
+ I.setOpcode(Opcode);
+ I.addOperand(MCOperand::CreateReg(Reg));
+ OutStreamer.EmitInstruction(I, getSubtargetInfo());
+}
+
+void MipsAsmPrinter::EmitInstrRegReg(unsigned Opcode, unsigned Reg1,
+ unsigned Reg2) {
+ MCInst I;
+ //
+ // Because of the current td files for Mips32, the operands for MTC1
+ // appear backwards from their normal assembly order. It's not a trivial
+ // change to fix this in the td file so we adjust for it here.
+ //
+ if (Opcode == Mips::MTC1) {
+ unsigned Temp = Reg1;
+ Reg1 = Reg2;
+ Reg2 = Temp;
+ }
+ I.setOpcode(Opcode);
+ I.addOperand(MCOperand::CreateReg(Reg1));
+ I.addOperand(MCOperand::CreateReg(Reg2));
+ OutStreamer.EmitInstruction(I, getSubtargetInfo());
+}
+
+void MipsAsmPrinter::EmitInstrRegRegReg(unsigned Opcode, unsigned Reg1,
+ unsigned Reg2, unsigned Reg3) {
+ MCInst I;
+ I.setOpcode(Opcode);
+ I.addOperand(MCOperand::CreateReg(Reg1));
+ I.addOperand(MCOperand::CreateReg(Reg2));
+ I.addOperand(MCOperand::CreateReg(Reg3));
+ OutStreamer.EmitInstruction(I, getSubtargetInfo());
+}
+
+void MipsAsmPrinter::EmitMovFPIntPair(unsigned MovOpc, unsigned Reg1,
+ unsigned Reg2, unsigned FPReg1,
+ unsigned FPReg2, bool LE) {
+ if (!LE) {
+ unsigned temp = Reg1;
+ Reg1 = Reg2;
+ Reg2 = temp;
+ }
+ EmitInstrRegReg(MovOpc, Reg1, FPReg1);
+ EmitInstrRegReg(MovOpc, Reg2, FPReg2);
+}
+
+void MipsAsmPrinter::EmitSwapFPIntParams(Mips16HardFloatInfo::FPParamVariant PV,
+ bool LE, bool ToFP) {
+ using namespace Mips16HardFloatInfo;
+ unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
+ switch (PV) {
+ case FSig:
+ EmitInstrRegReg(MovOpc, Mips::A0, Mips::F12);
+ break;
+ case FFSig:
+ EmitMovFPIntPair(MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
+ break;
+ case FDSig:
+ EmitInstrRegReg(MovOpc, Mips::A0, Mips::F12);
+ EmitMovFPIntPair(MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
+ break;
+ case DSig:
+ EmitMovFPIntPair(MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
+ break;
+ case DDSig:
+ EmitMovFPIntPair(MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
+ EmitMovFPIntPair(MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
+ break;
+ case DFSig:
+ EmitMovFPIntPair(MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
+ EmitInstrRegReg(MovOpc, Mips::A2, Mips::F14);
+ break;
+ case NoSig:
+ return;
+ }
+}
+
+void
+MipsAsmPrinter::EmitSwapFPIntRetval(Mips16HardFloatInfo::FPReturnVariant RV,
+ bool LE) {
+ using namespace Mips16HardFloatInfo;
+ unsigned MovOpc = Mips::MFC1;
+ switch (RV) {
+ case FRet:
+ EmitInstrRegReg(MovOpc, Mips::V0, Mips::F0);
+ break;
+ case DRet:
+ EmitMovFPIntPair(MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
+ break;
+ case CFRet:
+ EmitMovFPIntPair(MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
+ break;
+ case CDRet:
+ EmitMovFPIntPair(MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
+ EmitMovFPIntPair(MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
+ break;
+ case NoFPRet:
+ break;
+ }
+}
+
+void MipsAsmPrinter::EmitFPCallStub(
+ const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
+ MCSymbol *MSymbol = OutContext.GetOrCreateSymbol(StringRef(Symbol));
+ using namespace Mips16HardFloatInfo;
+ bool LE = Subtarget->isLittle();
+ //
+ // .global xxxx
+ //
+ OutStreamer.EmitSymbolAttribute(MSymbol, MCSA_Global);
+ const char *RetType;
+ //
+ // make the comment field identifying the return and parameter
+ // types of the floating point stub
+ // # Stub function to call rettype xxxx (params)
+ //
+ switch (Signature->RetSig) {
+ case FRet:
+ RetType = "float";
+ break;
+ case DRet:
+ RetType = "double";
+ break;
+ case CFRet:
+ RetType = "complex";
+ break;
+ case CDRet:
+ RetType = "double complex";
+ break;
+ case NoFPRet:
+ RetType = "";
+ break;
+ }
+ const char *Parms;
+ switch (Signature->ParamSig) {
+ case FSig:
+ Parms = "float";
+ break;
+ case FFSig:
+ Parms = "float, float";
+ break;
+ case FDSig:
+ Parms = "float, double";
+ break;
+ case DSig:
+ Parms = "double";
+ break;
+ case DDSig:
+ Parms = "double, double";
+ break;
+ case DFSig:
+ Parms = "double, float";
+ break;
+ case NoSig:
+ Parms = "";
+ break;
+ }
+ OutStreamer.AddComment("\t# Stub function to call " + Twine(RetType) + " " +
+ Twine(Symbol) + " (" + Twine(Parms) + ")");
+ //
+ // probably not necessary but we save and restore the current section state
+ //
+ OutStreamer.PushSection();
+ //
+ // .section mips16.call.fpxxxx,"ax",@progbits
+ //
+ const MCSectionELF *M = OutContext.getELFSection(
+ ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_EXECINSTR, SectionKind::getText());
+ OutStreamer.SwitchSection(M, nullptr);
+ //
+ // .align 2
+ //
+ OutStreamer.EmitValueToAlignment(4);
+ MipsTargetStreamer &TS = getTargetStreamer();
+ //
+ // .set nomips16
+ // .set nomicromips
+ //
+ TS.emitDirectiveSetNoMips16();
+ TS.emitDirectiveSetNoMicroMips();
+ //
+ // .ent __call_stub_fp_xxxx
+ // .type __call_stub_fp_xxxx,@function
+ // __call_stub_fp_xxxx:
+ //
+ std::string x = "__call_stub_fp_" + std::string(Symbol);
+ MCSymbol *Stub = OutContext.GetOrCreateSymbol(StringRef(x));
+ TS.emitDirectiveEnt(*Stub);
+ MCSymbol *MType =
+ OutContext.GetOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
+ OutStreamer.EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
+ OutStreamer.EmitLabel(Stub);
+ //
+ // we just handle non pic for now. these function will not be
+ // called otherwise. when the full stub generation is moved here
+ // we need to deal with pic.
+ //
+ if (Subtarget->getRelocationModel() == Reloc::PIC_)
+ llvm_unreachable("should not be here if we are compiling pic");
+ TS.emitDirectiveSetReorder();
+ //
+ // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
+ // stubs without raw text but this current patch is for compiler generated
+ // functions and they all return some value.
+ // The calling sequence for non pic is different in that case and we need
+ // to implement %lo and %hi in order to handle the case of no return value
+ // See the corresponding method in Mips16HardFloat for details.
+ //
+ // mov the return address to S2.
+ // we have no stack space to store it and we are about to make another call.
+ // We need to make sure that the enclosing function knows to save S2
+ // This should have already been handled.
+ //
+ // Mov $18, $31
+
+ EmitInstrRegRegReg(Mips::ADDu, Mips::S2, Mips::RA, Mips::ZERO);
+
+ EmitSwapFPIntParams(Signature->ParamSig, LE, true);
+
+ // Jal xxxx
+ //
+ EmitJal(MSymbol);
+
+ // fix return values
+ EmitSwapFPIntRetval(Signature->RetSig, LE);
+ //
+ // do the return
+ // if (Signature->RetSig == NoFPRet)
+ // llvm_unreachable("should not be any stubs here with no return value");
+ // else
+ EmitInstrReg(Mips::JR, Mips::S2);
+
+ MCSymbol *Tmp = OutContext.CreateTempSymbol();
+ OutStreamer.EmitLabel(Tmp);
+ const MCSymbolRefExpr *E = MCSymbolRefExpr::Create(Stub, OutContext);
+ const MCSymbolRefExpr *T = MCSymbolRefExpr::Create(Tmp, OutContext);
+ const MCExpr *T_min_E = MCBinaryExpr::CreateSub(T, E, OutContext);
+ OutStreamer.EmitELFSize(Stub, T_min_E);
+ TS.emitDirectiveEnd(x);
+ OutStreamer.PopSection();
+}
+
+void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) {
+ // Emit needed stubs
+ //
+ for (std::map<
+ const char *,
+ const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
+ it = StubsNeeded.begin();
+ it != StubsNeeded.end(); ++it) {
+ const char *Symbol = it->first;
+ const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
+ EmitFPCallStub(Symbol, Signature);
+ }
+ // return to the text section
+ OutStreamer.SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
+}
+
+void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
+ raw_ostream &OS) {
+ // TODO: implement
+}
+
+// Align all targets of indirect branches on bundle size. Used only if target
+// is NaCl.
+void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
+ // Align all blocks that are jumped to through jump table.
+ if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
+ const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
+ for (unsigned I = 0; I < JT.size(); ++I) {
+ const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs;
+
+ for (unsigned J = 0; J < MBBs.size(); ++J)
+ MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
+ }
+ }
+
+ // If basic block address is taken, block can be target of indirect branch.
+ for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
+ MBB != E; ++MBB) {
+ if (MBB->hasAddressTaken())
+ MBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
+ }
+}
+
+bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
+ return (Opcode == Mips::LONG_BRANCH_LUi
+ || Opcode == Mips::LONG_BRANCH_ADDiu
+ || Opcode == Mips::LONG_BRANCH_DADDiu);
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeMipsAsmPrinter() {
+ RegisterAsmPrinter<MipsAsmPrinter> X(TheMipsTarget);
+ RegisterAsmPrinter<MipsAsmPrinter> Y(TheMipselTarget);
+ RegisterAsmPrinter<MipsAsmPrinter> A(TheMips64Target);
+ RegisterAsmPrinter<MipsAsmPrinter> B(TheMips64elTarget);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.h b/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.h
new file mode 100644
index 0000000..abbd39b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.h
@@ -0,0 +1,144 @@
+//===-- MipsAsmPrinter.h - Mips LLVM Assembly Printer ----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Mips Assembly printer class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSASMPRINTER_H
+#define MIPSASMPRINTER_H
+
+#include "Mips16HardFloatInfo.h"
+#include "MipsMCInstLower.h"
+#include "MipsMachineFunction.h"
+#include "MipsSubtarget.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+class MCStreamer;
+class MachineInstr;
+class MachineBasicBlock;
+class MipsTargetStreamer;
+class Module;
+class raw_ostream;
+
+class LLVM_LIBRARY_VISIBILITY MipsAsmPrinter : public AsmPrinter {
+ MipsTargetStreamer &getTargetStreamer();
+
+ void EmitInstrWithMacroNoAT(const MachineInstr *MI);
+
+private:
+ // tblgen'erated function.
+ bool emitPseudoExpansionLowering(MCStreamer &OutStreamer,
+ const MachineInstr *MI);
+
+ // Emit PseudoReturn, PseudoReturn64, PseudoIndirectBranch,
+ // and PseudoIndirectBranch64 as a JR, JR_MM, JALR, or JALR64 as appropriate
+ // for the target.
+ void emitPseudoIndirectBranch(MCStreamer &OutStreamer,
+ const MachineInstr *MI);
+
+ // lowerOperand - Convert a MachineOperand into the equivalent MCOperand.
+ bool lowerOperand(const MachineOperand &MO, MCOperand &MCOp);
+
+ /// MCP - Keep a pointer to constantpool entries of the current
+ /// MachineFunction.
+ const MachineConstantPool *MCP;
+
+ /// InConstantPool - Maintain state when emitting a sequence of constant
+ /// pool entries so we can properly mark them as data regions.
+ bool InConstantPool;
+
+ std::map<const char *, const llvm::Mips16HardFloatInfo::FuncSignature *>
+ StubsNeeded;
+
+ void EmitJal(MCSymbol *Symbol);
+
+ void EmitInstrReg(unsigned Opcode, unsigned Reg);
+
+ void EmitInstrRegReg(unsigned Opcode, unsigned Reg1, unsigned Reg2);
+
+ void EmitInstrRegRegReg(unsigned Opcode, unsigned Reg1, unsigned Reg2,
+ unsigned Reg3);
+
+ void EmitMovFPIntPair(unsigned MovOpc, unsigned Reg1, unsigned Reg2,
+ unsigned FPReg1, unsigned FPReg2, bool LE);
+
+ void EmitSwapFPIntParams(Mips16HardFloatInfo::FPParamVariant, bool LE,
+ bool ToFP);
+
+ void EmitSwapFPIntRetval(Mips16HardFloatInfo::FPReturnVariant, bool LE);
+
+ void EmitFPCallStub(const char *, const Mips16HardFloatInfo::FuncSignature *);
+
+ void NaClAlignIndirectJumpTargets(MachineFunction &MF);
+
+ bool isLongBranchPseudo(int Opcode) const;
+
+public:
+
+ const MipsSubtarget *Subtarget;
+ const MipsFunctionInfo *MipsFI;
+ MipsMCInstLower MCInstLowering;
+
+ // We initialize the subtarget here and in runOnMachineFunction
+ // since there are certain target specific flags (ABI) that could
+ // reside on the TargetMachine, but are on the subtarget currently
+ // and we need them for the beginning of file output before we've
+ // seen a single function.
+ explicit MipsAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer), MCP(nullptr), InConstantPool(false),
+ Subtarget(&TM.getSubtarget<MipsSubtarget>()), MCInstLowering(*this) {}
+
+ const char *getPassName() const override {
+ return "Mips Assembly Printer";
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void EmitConstantPool() override {
+ bool UsingConstantPools =
+ (Subtarget->inMips16Mode() && Subtarget->useConstantIslands());
+ if (!UsingConstantPools)
+ AsmPrinter::EmitConstantPool();
+ // we emit constant pools customly!
+ }
+
+ void EmitInstruction(const MachineInstr *MI) override;
+ void printSavedRegsBitmask();
+ void emitFrameDirective();
+ const char *getCurrentABIString() const;
+ void EmitFunctionEntryLabel() override;
+ void EmitFunctionBodyStart() override;
+ void EmitFunctionBodyEnd() override;
+ bool isBlockOnlyReachableByFallthrough(
+ const MachineBasicBlock* MBB) const override;
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+ void printOperand(const MachineInstr *MI, int opNum, raw_ostream &O);
+ void printUnsignedImm(const MachineInstr *MI, int opNum, raw_ostream &O);
+ void printUnsignedImm8(const MachineInstr *MI, int opNum, raw_ostream &O);
+ void printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O);
+ void printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O);
+ void printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
+ const char *Modifier = nullptr);
+ void EmitStartOfAsmFile(Module &M) override;
+ void EmitEndOfAsmFile(Module &M) override;
+ void PrintDebugValueComment(const MachineInstr *MI, raw_ostream &OS);
+};
+}
+
+#endif
+
diff --git a/contrib/llvm/lib/Target/Mips/MipsCallingConv.td b/contrib/llvm/lib/Target/Mips/MipsCallingConv.td
new file mode 100644
index 0000000..b1cd3c3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsCallingConv.td
@@ -0,0 +1,269 @@
+//===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This describes the calling conventions for Mips architecture.
+//===----------------------------------------------------------------------===//
+
+/// CCIfSubtarget - Match if the current subtarget has a feature F.
+class CCIfSubtarget<string F, CCAction A>:
+ CCIf<!strconcat("State.getTarget().getSubtarget<MipsSubtarget>().", F), A>;
+
+//===----------------------------------------------------------------------===//
+// Mips O32 Calling Convention
+//===----------------------------------------------------------------------===//
+
+// Only the return rules are defined here for O32. The rules for argument
+// passing are defined in MipsISelLowering.cpp.
+def RetCC_MipsO32 : CallingConv<[
+ // i32 are returned in registers V0, V1, A0, A1
+ CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>,
+
+ // f32 are returned in registers F0, F2
+ CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
+
+ // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
+ // in D0 and D1 in FP32bit mode.
+ CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
+ CCIfType<[f64], CCIfSubtarget<"isNotFP64bit()", CCAssignToReg<[D0, D1]>>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// Mips N32/64 Calling Convention
+//===----------------------------------------------------------------------===//
+
+def CC_MipsN : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Integer arguments are passed in integer registers.
+ CCIfType<[i32], CCAssignToRegWithShadow<[A0, A1, A2, A3,
+ T0, T1, T2, T3],
+ [F12, F13, F14, F15,
+ F16, F17, F18, F19]>>,
+
+ CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
+ T0_64, T1_64, T2_64, T3_64],
+ [D12_64, D13_64, D14_64, D15_64,
+ D16_64, D17_64, D18_64, D19_64]>>,
+
+ // f32 arguments are passed in single precision FP registers.
+ CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
+ F16, F17, F18, F19],
+ [A0_64, A1_64, A2_64, A3_64,
+ T0_64, T1_64, T2_64, T3_64]>>,
+
+ // f64 arguments are passed in double precision FP registers.
+ CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
+ D16_64, D17_64, D18_64, D19_64],
+ [A0_64, A1_64, A2_64, A3_64,
+ T0_64, T1_64, T2_64, T3_64]>>,
+
+ // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
+ CCIfType<[i32, f32], CCAssignToStack<4, 8>>,
+ CCIfType<[i64, f64], CCAssignToStack<8, 8>>
+]>;
+
+// N32/64 variable arguments.
+// All arguments are passed in integer registers.
+def CC_MipsN_VarArg : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ CCIfType<[i32, f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
+
+ CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
+ T0_64, T1_64, T2_64, T3_64]>>,
+
+ // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
+ CCIfType<[i32, f32], CCAssignToStack<4, 8>>,
+ CCIfType<[i64, f64], CCAssignToStack<8, 8>>
+]>;
+
+def RetCC_MipsN : CallingConv<[
+ // i32 are returned in registers V0, V1
+ CCIfType<[i32], CCAssignToReg<[V0, V1]>>,
+
+ // i64 are returned in registers V0_64, V1_64
+ CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,
+
+ // f32 are returned in registers F0, F2
+ CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
+
+ // f64 are returned in registers D0, D2
+ CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
+]>;
+
+// In soft-mode, register A0_64, instead of V1_64, is used to return a long
+// double value.
+def RetCC_F128Soft : CallingConv<[
+ CCIfType<[i64], CCAssignToReg<[V0_64, A0_64]>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// Mips EABI Calling Convention
+//===----------------------------------------------------------------------===//
+
+def CC_MipsEABI : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Integer arguments are passed in integer registers.
+ CCIfType<[i32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
+
+ // Single fp arguments are passed in pairs within 32-bit mode
+ CCIfType<[f32], CCIfSubtarget<"isSingleFloat()",
+ CCAssignToReg<[F12, F13, F14, F15, F16, F17, F18, F19]>>>,
+
+ CCIfType<[f32], CCIfSubtarget<"isNotSingleFloat()",
+ CCAssignToReg<[F12, F14, F16, F18]>>>,
+
+ // The first 4 double fp arguments are passed in single fp registers.
+ CCIfType<[f64], CCIfSubtarget<"isNotSingleFloat()",
+ CCAssignToReg<[D6, D7, D8, D9]>>>,
+
+ // Integer values get stored in stack slots that are 4 bytes in
+ // size and 4-byte aligned.
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
+
+ // Integer values get stored in stack slots that are 8 bytes in
+ // size and 8-byte aligned.
+ CCIfType<[f64], CCIfSubtarget<"isNotSingleFloat()", CCAssignToStack<8, 8>>>
+]>;
+
+def RetCC_MipsEABI : CallingConv<[
+ // i32 are returned in registers V0, V1
+ CCIfType<[i32], CCAssignToReg<[V0, V1]>>,
+
+ // f32 are returned in registers F0, F1
+ CCIfType<[f32], CCAssignToReg<[F0, F1]>>,
+
+ // f64 are returned in register D0
+ CCIfType<[f64], CCIfSubtarget<"isNotSingleFloat()", CCAssignToReg<[D0]>>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// Mips FastCC Calling Convention
+//===----------------------------------------------------------------------===//
+def CC_MipsO32_FastCC : CallingConv<[
+ // f64 arguments are passed in double-precision floating pointer registers.
+ CCIfType<[f64], CCIfSubtarget<"isNotFP64bit()",
+ CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7,
+ D8, D9]>>>,
+ CCIfType<[f64], CCIfSubtarget<"isFP64bit()",
+ CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
+ D4_64, D5_64, D6_64, D7_64,
+ D8_64, D9_64, D10_64, D11_64,
+ D12_64, D13_64, D14_64, D15_64,
+ D16_64, D17_64, D18_64,
+ D19_64]>>>,
+
+ // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
+ CCIfType<[f64], CCAssignToStack<8, 8>>
+]>;
+
+def CC_MipsN_FastCC : CallingConv<[
+ // Integer arguments are passed in integer registers.
+ CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
+ T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
+ T8_64, V1_64]>>,
+
+ // f64 arguments are passed in double-precision floating pointer registers.
+ CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
+ D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
+ D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
+ D18_64, D19_64]>>,
+
+ // Stack parameter slots for i64 and f64 are 64-bit doublewords and
+ // 8-byte aligned.
+ CCIfType<[i64, f64], CCAssignToStack<8, 8>>
+]>;
+
+def CC_Mips_FastCC : CallingConv<[
+ // Handles byval parameters.
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Integer arguments are passed in integer registers. All scratch registers,
+ // except for AT, V0 and T9, are available to be used as argument registers.
+ CCIfType<[i32], CCIfSubtarget<"isNotTargetNaCl()",
+ CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,
+
+ // In NaCl, T6, T7 and T8 are reserved and not available as argument
+ // registers for fastcc. T6 contains the mask for sandboxing control flow
+ // (indirect jumps and calls). T7 contains the mask for sandboxing memory
+ // accesses (loads and stores). T8 contains the thread pointer.
+ CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
+ CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,
+
+ // f32 arguments are passed in single-precision floating pointer registers.
+ CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
+ CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
+ F14, F15, F16, F17, F18, F19]>>>,
+
+ // Don't use odd numbered single-precision registers for -mno-odd-spreg.
+ CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
+ CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,
+
+ // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
+
+ CCIfSubtarget<"isABI_EABI()", CCDelegateTo<CC_MipsEABI>>,
+ CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
+ CCDelegateTo<CC_MipsN_FastCC>
+]>;
+
+//==
+
+def CC_Mips16RetHelper : CallingConv<[
+ // Integer arguments are passed in integer registers.
+ CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// Mips Calling Convention Dispatch
+//===----------------------------------------------------------------------===//
+
+def RetCC_Mips : CallingConv<[
+ CCIfSubtarget<"isABI_EABI()", CCDelegateTo<RetCC_MipsEABI>>,
+ CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
+ CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
+ CCDelegateTo<RetCC_MipsO32>
+]>;
+
+//===----------------------------------------------------------------------===//
+// Callee-saved register lists.
+//===----------------------------------------------------------------------===//
+
+def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
+ (sequence "S%u", 7, 0))>;
+
+def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
+ (sequence "S%u", 7, 0))> {
+ let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
+}
+
+def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
+ (sequence "S%u", 7, 0))>;
+
+def CSR_O32_FP64 :
+ CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
+ (sequence "S%u", 7, 0))>;
+
+def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
+ D30_64, RA_64, FP_64, GP_64,
+ (sequence "S%u_64", 7, 0))>;
+
+def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
+ GP_64, (sequence "S%u_64", 7, 0))>;
+
+def CSR_Mips16RetHelper :
+ CalleeSavedRegs<(add V0, V1, FP,
+ (sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
+ (sequence "D%u", 15, 10))>;
diff --git a/contrib/llvm/lib/Target/Mips/MipsCodeEmitter.cpp b/contrib/llvm/lib/Target/Mips/MipsCodeEmitter.cpp
new file mode 100644
index 0000000..794c718
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsCodeEmitter.cpp
@@ -0,0 +1,481 @@
+//===-- Mips/MipsCodeEmitter.cpp - Convert Mips Code to Machine Code ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===---------------------------------------------------------------------===//
+//
+// This file contains the pass that transforms the Mips machine instructions
+// into relocatable machine code.
+//
+//===---------------------------------------------------------------------===//
+
+#include "Mips.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MipsInstrInfo.h"
+#include "MipsRelocations.h"
+#include "MipsSubtarget.h"
+#include "MipsTargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#ifndef NDEBUG
+#include <iomanip>
+#endif
+
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+STATISTIC(NumEmitted, "Number of machine instructions emitted");
+
+namespace {
+
+class MipsCodeEmitter : public MachineFunctionPass {
+ MipsJITInfo *JTI;
+ const MipsInstrInfo *II;
+ const DataLayout *TD;
+ const MipsSubtarget *Subtarget;
+ TargetMachine &TM;
+ JITCodeEmitter &MCE;
+ const std::vector<MachineConstantPoolEntry> *MCPEs;
+ const std::vector<MachineJumpTableEntry> *MJTEs;
+ bool IsPIC;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineModuleInfo> ();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ static char ID;
+
+public:
+ MipsCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
+ : MachineFunctionPass(ID), JTI(nullptr), II(nullptr), TD(nullptr),
+ TM(tm), MCE(mce), MCPEs(nullptr), MJTEs(nullptr),
+ IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "Mips Machine Code Emitter";
+ }
+
+ /// getBinaryCodeForInstr - This function, generated by the
+ /// CodeEmitterGenerator using TableGen, produces the binary encoding for
+ /// machine instructions.
+ uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
+
+ void emitInstruction(MachineBasicBlock::instr_iterator MI,
+ MachineBasicBlock &MBB);
+
+private:
+
+ void emitWord(unsigned Word);
+
+ /// Routines that handle operands which add machine relocations which are
+ /// fixed up by the relocation stage.
+ void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
+ bool MayNeedFarStub) const;
+ void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
+ void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
+ void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
+ void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc) const;
+
+ /// getMachineOpValue - Return binary encoding of operand. If the machine
+ /// operand requires relocation, record the relocation and return zero.
+ unsigned getMachineOpValue(const MachineInstr &MI,
+ const MachineOperand &MO) const;
+
+ unsigned getRelocation(const MachineInstr &MI,
+ const MachineOperand &MO) const;
+
+ unsigned getJumpTargetOpValue(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getJumpTargetOpValueMM(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getBranchTargetOpValueMM(const MachineInstr &MI,
+ unsigned OpNo) const;
+
+ unsigned getBranchTarget21OpValue(const MachineInstr &MI,
+ unsigned OpNo) const;
+ unsigned getBranchTarget26OpValue(const MachineInstr &MI,
+ unsigned OpNo) const;
+ unsigned getJumpOffset16OpValue(const MachineInstr &MI, unsigned OpNo) const;
+
+ unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getMemEncoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getMemEncodingMMImm12(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getMSAMemEncoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getSizeExtEncoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getSizeInsEncoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getLSAImmEncoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getSimm19Lsl2Encoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getSimm18Lsl3Encoding(const MachineInstr &MI, unsigned OpNo) const;
+
+ /// Expand pseudo instructions with accumulator register operands.
+ void expandACCInstr(MachineBasicBlock::instr_iterator MI,
+ MachineBasicBlock &MBB, unsigned Opc) const;
+
+ void expandPseudoIndirectBranch(MachineBasicBlock::instr_iterator MI,
+ MachineBasicBlock &MBB) const;
+
+ /// \brief Expand pseudo instruction. Return true if MI was expanded.
+ bool expandPseudos(MachineBasicBlock::instr_iterator &MI,
+ MachineBasicBlock &MBB) const;
+};
+}
+
+char MipsCodeEmitter::ID = 0;
+
+bool MipsCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
+ MipsTargetMachine &Target = static_cast<MipsTargetMachine &>(
+ const_cast<TargetMachine &>(MF.getTarget()));
+
+ JTI = Target.getJITInfo();
+ II = Target.getInstrInfo();
+ TD = Target.getDataLayout();
+ Subtarget = &TM.getSubtarget<MipsSubtarget> ();
+ MCPEs = &MF.getConstantPool()->getConstants();
+ MJTEs = nullptr;
+ if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
+ JTI->Initialize(MF, IsPIC, Subtarget->isLittle());
+ MCE.setModuleInfo(&getAnalysis<MachineModuleInfo> ());
+
+ do {
+ DEBUG(errs() << "JITTing function '"
+ << MF.getName() << "'\n");
+ MCE.startFunction(MF);
+
+ for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
+ MBB != E; ++MBB){
+ MCE.StartMachineBasicBlock(MBB);
+ for (MachineBasicBlock::instr_iterator I = MBB->instr_begin(),
+ E = MBB->instr_end(); I != E;)
+ emitInstruction(*I++, *MBB);
+ }
+ } while (MCE.finishFunction(MF));
+
+ return false;
+}
+
+unsigned MipsCodeEmitter::getRelocation(const MachineInstr &MI,
+ const MachineOperand &MO) const {
+ // NOTE: This relocations are for static.
+ uint64_t TSFlags = MI.getDesc().TSFlags;
+ uint64_t Form = TSFlags & MipsII::FormMask;
+ if (Form == MipsII::FrmJ)
+ return Mips::reloc_mips_26;
+ if ((Form == MipsII::FrmI || Form == MipsII::FrmFI)
+ && MI.isBranch())
+ return Mips::reloc_mips_pc16;
+ if (Form == MipsII::FrmI && MI.getOpcode() == Mips::LUi)
+ return Mips::reloc_mips_hi;
+ return Mips::reloc_mips_lo;
+}
+
+unsigned MipsCodeEmitter::getJumpTargetOpValue(const MachineInstr &MI,
+ unsigned OpNo) const {
+ MachineOperand MO = MI.getOperand(OpNo);
+ if (MO.isGlobal())
+ emitGlobalAddress(MO.getGlobal(), getRelocation(MI, MO), true);
+ else if (MO.isSymbol())
+ emitExternalSymbolAddress(MO.getSymbolName(), getRelocation(MI, MO));
+ else if (MO.isMBB())
+ emitMachineBasicBlock(MO.getMBB(), getRelocation(MI, MO));
+ else
+ llvm_unreachable("Unexpected jump target operand kind.");
+ return 0;
+}
+
+unsigned MipsCodeEmitter::getJumpTargetOpValueMM(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("Unimplemented function.");
+ return 0;
+}
+
+unsigned MipsCodeEmitter::getBranchTargetOpValueMM(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("Unimplemented function.");
+ return 0;
+}
+
+unsigned MipsCodeEmitter::getBranchTarget21OpValue(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("Unimplemented function.");
+ return 0;
+}
+
+unsigned MipsCodeEmitter::getBranchTarget26OpValue(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("Unimplemented function.");
+ return 0;
+}
+
+unsigned MipsCodeEmitter::getJumpOffset16OpValue(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("Unimplemented function.");
+ return 0;
+}
+
+unsigned MipsCodeEmitter::getBranchTargetOpValue(const MachineInstr &MI,
+ unsigned OpNo) const {
+ MachineOperand MO = MI.getOperand(OpNo);
+ emitMachineBasicBlock(MO.getMBB(), getRelocation(MI, MO));
+ return 0;
+}
+
+unsigned MipsCodeEmitter::getMemEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ // Base register is encoded in bits 20-16, offset is encoded in bits 15-0.
+ assert(MI.getOperand(OpNo).isReg());
+ unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo)) << 16;
+ return (getMachineOpValue(MI, MI.getOperand(OpNo+1)) & 0xFFFF) | RegBits;
+}
+
+unsigned MipsCodeEmitter::getMemEncodingMMImm12(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("Unimplemented function.");
+ return 0;
+}
+
+unsigned MipsCodeEmitter::getMSAMemEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("Unimplemented function.");
+ return 0;
+}
+
+unsigned MipsCodeEmitter::getSizeExtEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ // size is encoded as size-1.
+ return getMachineOpValue(MI, MI.getOperand(OpNo)) - 1;
+}
+
+unsigned MipsCodeEmitter::getSizeInsEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ // size is encoded as pos+size-1.
+ return getMachineOpValue(MI, MI.getOperand(OpNo-1)) +
+ getMachineOpValue(MI, MI.getOperand(OpNo)) - 1;
+}
+
+unsigned MipsCodeEmitter::getLSAImmEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("Unimplemented function.");
+ return 0;
+}
+
+unsigned MipsCodeEmitter::getSimm18Lsl3Encoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("Unimplemented function.");
+ return 0;
+}
+
+unsigned MipsCodeEmitter::getSimm19Lsl2Encoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("Unimplemented function.");
+ return 0;
+}
+
+/// getMachineOpValue - Return binary encoding of operand. If the machine
+/// operand requires relocation, record the relocation and return zero.
+unsigned MipsCodeEmitter::getMachineOpValue(const MachineInstr &MI,
+ const MachineOperand &MO) const {
+ if (MO.isReg())
+ return TM.getRegisterInfo()->getEncodingValue(MO.getReg());
+ else if (MO.isImm())
+ return static_cast<unsigned>(MO.getImm());
+ else if (MO.isGlobal())
+ emitGlobalAddress(MO.getGlobal(), getRelocation(MI, MO), true);
+ else if (MO.isSymbol())
+ emitExternalSymbolAddress(MO.getSymbolName(), getRelocation(MI, MO));
+ else if (MO.isCPI())
+ emitConstPoolAddress(MO.getIndex(), getRelocation(MI, MO));
+ else if (MO.isJTI())
+ emitJumpTableAddress(MO.getIndex(), getRelocation(MI, MO));
+ else if (MO.isMBB())
+ emitMachineBasicBlock(MO.getMBB(), getRelocation(MI, MO));
+ else
+ llvm_unreachable("Unable to encode MachineOperand!");
+ return 0;
+}
+
+void MipsCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
+ bool MayNeedFarStub) const {
+ MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
+ const_cast<GlobalValue *>(GV), 0,
+ MayNeedFarStub));
+}
+
+void MipsCodeEmitter::
+emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
+ Reloc, ES, 0, 0));
+}
+
+void MipsCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
+ Reloc, CPI, 0, false));
+}
+
+void MipsCodeEmitter::
+emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
+ Reloc, JTIndex, 0, false));
+}
+
+void MipsCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
+ unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
+ Reloc, BB));
+}
+
+void MipsCodeEmitter::emitInstruction(MachineBasicBlock::instr_iterator MI,
+ MachineBasicBlock &MBB) {
+ DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << *MI);
+
+ // Expand pseudo instruction. Skip if MI was not expanded.
+ if (((MI->getDesc().TSFlags & MipsII::FormMask) == MipsII::Pseudo) &&
+ !expandPseudos(MI, MBB))
+ return;
+
+ MCE.processDebugLoc(MI->getDebugLoc(), true);
+
+ emitWord(getBinaryCodeForInstr(*MI));
+ ++NumEmitted; // Keep track of the # of mi's emitted
+
+ MCE.processDebugLoc(MI->getDebugLoc(), false);
+}
+
+void MipsCodeEmitter::emitWord(unsigned Word) {
+ DEBUG(errs() << " 0x";
+ errs().write_hex(Word) << "\n");
+ if (Subtarget->isLittle())
+ MCE.emitWordLE(Word);
+ else
+ MCE.emitWordBE(Word);
+}
+
+void MipsCodeEmitter::expandACCInstr(MachineBasicBlock::instr_iterator MI,
+ MachineBasicBlock &MBB,
+ unsigned Opc) const {
+ // Expand "pseudomult $ac0, $t0, $t1" to "mult $t0, $t1".
+ BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Opc))
+ .addReg(MI->getOperand(1).getReg()).addReg(MI->getOperand(2).getReg());
+}
+
+void MipsCodeEmitter::expandPseudoIndirectBranch(
+ MachineBasicBlock::instr_iterator MI, MachineBasicBlock &MBB) const {
+ // This logic is duplicated from MipsAsmPrinter::emitPseudoIndirectBranch()
+ bool HasLinkReg = false;
+ unsigned Opcode = 0;
+
+ if (Subtarget->hasMips64r6()) {
+ // MIPS64r6 should use (JALR64 ZERO_64, $rs)
+ Opcode = Mips::JALR64;
+ HasLinkReg = true;
+ } else if (Subtarget->hasMips32r6()) {
+ // MIPS32r6 should use (JALR ZERO, $rs)
+ Opcode = Mips::JALR;
+ HasLinkReg = true;
+ } else if (Subtarget->inMicroMipsMode())
+ // microMIPS should use (JR_MM $rs)
+ Opcode = Mips::JR_MM;
+ else {
+ // Everything else should use (JR $rs)
+ Opcode = Mips::JR;
+ }
+
+ auto MIB = BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Opcode));
+
+ if (HasLinkReg) {
+ unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
+ MIB.addReg(ZeroReg);
+ }
+
+ MIB.addReg(MI->getOperand(0).getReg());
+}
+
+bool MipsCodeEmitter::expandPseudos(MachineBasicBlock::instr_iterator &MI,
+ MachineBasicBlock &MBB) const {
+ switch (MI->getOpcode()) {
+ default:
+ llvm_unreachable("Unhandled pseudo");
+ return false;
+ case Mips::NOP:
+ BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::SLL), Mips::ZERO)
+ .addReg(Mips::ZERO).addImm(0);
+ break;
+ case Mips::B:
+ BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::BEQ)).addReg(Mips::ZERO)
+ .addReg(Mips::ZERO).addOperand(MI->getOperand(0));
+ break;
+ case Mips::TRAP:
+ BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::BREAK)).addImm(0)
+ .addImm(0);
+ break;
+ case Mips::JALRPseudo:
+ BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::JALR), Mips::RA)
+ .addReg(MI->getOperand(0).getReg());
+ break;
+ case Mips::PseudoMULT:
+ expandACCInstr(MI, MBB, Mips::MULT);
+ break;
+ case Mips::PseudoMULTu:
+ expandACCInstr(MI, MBB, Mips::MULTu);
+ break;
+ case Mips::PseudoSDIV:
+ expandACCInstr(MI, MBB, Mips::SDIV);
+ break;
+ case Mips::PseudoUDIV:
+ expandACCInstr(MI, MBB, Mips::UDIV);
+ break;
+ case Mips::PseudoMADD:
+ expandACCInstr(MI, MBB, Mips::MADD);
+ break;
+ case Mips::PseudoMADDU:
+ expandACCInstr(MI, MBB, Mips::MADDU);
+ break;
+ case Mips::PseudoMSUB:
+ expandACCInstr(MI, MBB, Mips::MSUB);
+ break;
+ case Mips::PseudoMSUBU:
+ expandACCInstr(MI, MBB, Mips::MSUBU);
+ break;
+ case Mips::PseudoReturn:
+ case Mips::PseudoReturn64:
+ case Mips::PseudoIndirectBranch:
+ case Mips::PseudoIndirectBranch64:
+ expandPseudoIndirectBranch(MI, MBB);
+ break;
+ case TargetOpcode::CFI_INSTRUCTION:
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ // Do nothing
+ return false;
+ }
+
+ (MI--)->eraseFromBundle();
+ return true;
+}
+
+/// createMipsJITCodeEmitterPass - Return a pass that emits the collected Mips
+/// code to the specified MCE object.
+FunctionPass *llvm::createMipsJITCodeEmitterPass(MipsTargetMachine &TM,
+ JITCodeEmitter &JCE) {
+ return new MipsCodeEmitter(TM, JCE);
+}
+
+#include "MipsGenCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/Mips/MipsCondMov.td b/contrib/llvm/lib/Target/Mips/MipsCondMov.td
new file mode 100644
index 0000000..690f626
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsCondMov.td
@@ -0,0 +1,265 @@
+//===-- MipsCondMov.td - Describe Mips Conditional Moves --*- tablegen -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the Conditional Moves implementation.
+//
+//===----------------------------------------------------------------------===//
+
+// Conditional moves:
+// These instructions are expanded in
+// MipsISelLowering::EmitInstrWithCustomInserter if target does not have
+// conditional move instructions.
+// cond:int, data:int
+class CMov_I_I_FT<string opstr, RegisterOperand CRC, RegisterOperand DRC,
+ InstrItinClass Itin> :
+ InstSE<(outs DRC:$rd), (ins DRC:$rs, CRC:$rt, DRC:$F),
+ !strconcat(opstr, "\t$rd, $rs, $rt"), [], Itin, FrmFR, opstr> {
+ let Constraints = "$F = $rd";
+}
+
+// cond:int, data:float
+class CMov_I_F_FT<string opstr, RegisterOperand CRC, RegisterOperand DRC,
+ InstrItinClass Itin> :
+ InstSE<(outs DRC:$fd), (ins DRC:$fs, CRC:$rt, DRC:$F),
+ !strconcat(opstr, "\t$fd, $fs, $rt"), [], Itin, FrmFR, opstr> {
+ let Constraints = "$F = $fd";
+}
+
+// cond:float, data:int
+class CMov_F_I_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
+ SDPatternOperator OpNode = null_frag> :
+ InstSE<(outs RC:$rd), (ins RC:$rs, FCCRegsOpnd:$fcc, RC:$F),
+ !strconcat(opstr, "\t$rd, $rs, $fcc"),
+ [(set RC:$rd, (OpNode RC:$rs, FCCRegsOpnd:$fcc, RC:$F))],
+ Itin, FrmFR, opstr> {
+ let Constraints = "$F = $rd";
+}
+
+// cond:float, data:float
+class CMov_F_F_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
+ SDPatternOperator OpNode = null_frag> :
+ InstSE<(outs RC:$fd), (ins RC:$fs, FCCRegsOpnd:$fcc, RC:$F),
+ !strconcat(opstr, "\t$fd, $fs, $fcc"),
+ [(set RC:$fd, (OpNode RC:$fs, FCCRegsOpnd:$fcc, RC:$F))],
+ Itin, FrmFR, opstr> {
+ let Constraints = "$F = $fd";
+}
+
+// select patterns
+multiclass MovzPats0<RegisterClass CRC, RegisterClass DRC,
+ Instruction MOVZInst, Instruction SLTOp,
+ Instruction SLTuOp, Instruction SLTiOp,
+ Instruction SLTiuOp> {
+ def : MipsPat<(select (i32 (setge CRC:$lhs, CRC:$rhs)), DRC:$T, DRC:$F),
+ (MOVZInst DRC:$T, (SLTOp CRC:$lhs, CRC:$rhs), DRC:$F)>;
+ def : MipsPat<(select (i32 (setuge CRC:$lhs, CRC:$rhs)), DRC:$T, DRC:$F),
+ (MOVZInst DRC:$T, (SLTuOp CRC:$lhs, CRC:$rhs), DRC:$F)>;
+ def : MipsPat<(select (i32 (setge CRC:$lhs, immSExt16:$rhs)), DRC:$T, DRC:$F),
+ (MOVZInst DRC:$T, (SLTiOp CRC:$lhs, immSExt16:$rhs), DRC:$F)>;
+ def : MipsPat<(select (i32 (setuge CRC:$lh, immSExt16:$rh)), DRC:$T, DRC:$F),
+ (MOVZInst DRC:$T, (SLTiuOp CRC:$lh, immSExt16:$rh), DRC:$F)>;
+ def : MipsPat<(select (i32 (setle CRC:$lhs, CRC:$rhs)), DRC:$T, DRC:$F),
+ (MOVZInst DRC:$T, (SLTOp CRC:$rhs, CRC:$lhs), DRC:$F)>;
+ def : MipsPat<(select (i32 (setule CRC:$lhs, CRC:$rhs)), DRC:$T, DRC:$F),
+ (MOVZInst DRC:$T, (SLTuOp CRC:$rhs, CRC:$lhs), DRC:$F)>;
+ def : MipsPat<(select (i32 (setgt CRC:$lhs, immSExt16Plus1:$rhs)),
+ DRC:$T, DRC:$F),
+ (MOVZInst DRC:$T, (SLTiOp CRC:$lhs, (Plus1 imm:$rhs)), DRC:$F)>;
+ def : MipsPat<(select (i32 (setugt CRC:$lhs, immSExt16Plus1:$rhs)),
+ DRC:$T, DRC:$F),
+ (MOVZInst DRC:$T, (SLTiuOp CRC:$lhs, (Plus1 imm:$rhs)),
+ DRC:$F)>;
+}
+
+multiclass MovzPats1<RegisterClass CRC, RegisterClass DRC,
+ Instruction MOVZInst, Instruction XOROp> {
+ def : MipsPat<(select (i32 (seteq CRC:$lhs, CRC:$rhs)), DRC:$T, DRC:$F),
+ (MOVZInst DRC:$T, (XOROp CRC:$lhs, CRC:$rhs), DRC:$F)>;
+ def : MipsPat<(select (i32 (seteq CRC:$lhs, 0)), DRC:$T, DRC:$F),
+ (MOVZInst DRC:$T, CRC:$lhs, DRC:$F)>;
+}
+
+multiclass MovzPats2<RegisterClass CRC, RegisterClass DRC,
+ Instruction MOVZInst, Instruction XORiOp> {
+ def : MipsPat<
+ (select (i32 (seteq CRC:$lhs, immZExt16:$uimm16)), DRC:$T, DRC:$F),
+ (MOVZInst DRC:$T, (XORiOp CRC:$lhs, immZExt16:$uimm16), DRC:$F)>;
+}
+
+multiclass MovnPats<RegisterClass CRC, RegisterClass DRC, Instruction MOVNInst,
+ Instruction XOROp> {
+ def : MipsPat<(select (i32 (setne CRC:$lhs, CRC:$rhs)), DRC:$T, DRC:$F),
+ (MOVNInst DRC:$T, (XOROp CRC:$lhs, CRC:$rhs), DRC:$F)>;
+ def : MipsPat<(select CRC:$cond, DRC:$T, DRC:$F),
+ (MOVNInst DRC:$T, CRC:$cond, DRC:$F)>;
+ def : MipsPat<(select (i32 (setne CRC:$lhs, 0)),DRC:$T, DRC:$F),
+ (MOVNInst DRC:$T, CRC:$lhs, DRC:$F)>;
+}
+
+// Instantiation of instructions.
+def MOVZ_I_I : MMRel, CMov_I_I_FT<"movz", GPR32Opnd, GPR32Opnd, II_MOVZ>,
+ ADD_FM<0, 0xa>, INSN_MIPS4_32_NOT_32R6_64R6;
+
+let isCodeGenOnly = 1 in {
+ def MOVZ_I_I64 : CMov_I_I_FT<"movz", GPR32Opnd, GPR64Opnd, II_MOVZ>,
+ ADD_FM<0, 0xa>, INSN_MIPS4_32_NOT_32R6_64R6;
+ def MOVZ_I64_I : CMov_I_I_FT<"movz", GPR64Opnd, GPR32Opnd, II_MOVZ>,
+ ADD_FM<0, 0xa>, INSN_MIPS4_32_NOT_32R6_64R6;
+ def MOVZ_I64_I64 : CMov_I_I_FT<"movz", GPR64Opnd, GPR64Opnd, II_MOVZ>,
+ ADD_FM<0, 0xa>, INSN_MIPS4_32_NOT_32R6_64R6;
+}
+
+def MOVN_I_I : MMRel, CMov_I_I_FT<"movn", GPR32Opnd, GPR32Opnd, II_MOVN>,
+ ADD_FM<0, 0xb>, INSN_MIPS4_32_NOT_32R6_64R6;
+
+let isCodeGenOnly = 1 in {
+ def MOVN_I_I64 : CMov_I_I_FT<"movn", GPR32Opnd, GPR64Opnd, II_MOVN>,
+ ADD_FM<0, 0xb>, INSN_MIPS4_32_NOT_32R6_64R6;
+ def MOVN_I64_I : CMov_I_I_FT<"movn", GPR64Opnd, GPR32Opnd, II_MOVN>,
+ ADD_FM<0, 0xb>, INSN_MIPS4_32_NOT_32R6_64R6;
+ def MOVN_I64_I64 : CMov_I_I_FT<"movn", GPR64Opnd, GPR64Opnd, II_MOVN>,
+ ADD_FM<0, 0xb>, INSN_MIPS4_32_NOT_32R6_64R6;
+}
+
+def MOVZ_I_S : MMRel, CMov_I_F_FT<"movz.s", GPR32Opnd, FGR32Opnd, II_MOVZ_S>,
+ CMov_I_F_FM<18, 16>, INSN_MIPS4_32_NOT_32R6_64R6;
+
+let isCodeGenOnly = 1 in
+def MOVZ_I64_S : CMov_I_F_FT<"movz.s", GPR64Opnd, FGR32Opnd, II_MOVZ_S>,
+ CMov_I_F_FM<18, 16>, INSN_MIPS4_32_NOT_32R6_64R6,
+ AdditionalRequires<[HasMips64]>;
+
+def MOVN_I_S : MMRel, CMov_I_F_FT<"movn.s", GPR32Opnd, FGR32Opnd, II_MOVN_S>,
+ CMov_I_F_FM<19, 16>, INSN_MIPS4_32_NOT_32R6_64R6;
+
+let isCodeGenOnly = 1 in
+def MOVN_I64_S : CMov_I_F_FT<"movn.s", GPR64Opnd, FGR32Opnd, II_MOVN_S>,
+ CMov_I_F_FM<19, 16>, INSN_MIPS4_32_NOT_32R6_64R6,
+ AdditionalRequires<[IsGP64bit]>;
+
+def MOVZ_I_D32 : MMRel, CMov_I_F_FT<"movz.d", GPR32Opnd, AFGR64Opnd,
+ II_MOVZ_D>, CMov_I_F_FM<18, 17>,
+ INSN_MIPS4_32_NOT_32R6_64R6, FGR_32;
+def MOVN_I_D32 : MMRel, CMov_I_F_FT<"movn.d", GPR32Opnd, AFGR64Opnd,
+ II_MOVN_D>, CMov_I_F_FM<19, 17>,
+ INSN_MIPS4_32_NOT_32R6_64R6, FGR_32;
+
+let DecoderNamespace = "Mips64" in {
+ def MOVZ_I_D64 : CMov_I_F_FT<"movz.d", GPR32Opnd, FGR64Opnd, II_MOVZ_D>,
+ CMov_I_F_FM<18, 17>, INSN_MIPS4_32_NOT_32R6_64R6, FGR_64;
+ def MOVN_I_D64 : CMov_I_F_FT<"movn.d", GPR32Opnd, FGR64Opnd, II_MOVN_D>,
+ CMov_I_F_FM<19, 17>, INSN_MIPS4_32_NOT_32R6_64R6, FGR_64;
+ let isCodeGenOnly = 1 in {
+ def MOVZ_I64_D64 : CMov_I_F_FT<"movz.d", GPR64Opnd, FGR64Opnd, II_MOVZ_D>,
+ CMov_I_F_FM<18, 17>, INSN_MIPS4_32_NOT_32R6_64R6, FGR_64;
+ def MOVN_I64_D64 : CMov_I_F_FT<"movn.d", GPR64Opnd, FGR64Opnd, II_MOVN_D>,
+ CMov_I_F_FM<19, 17>, INSN_MIPS4_32_NOT_32R6_64R6, FGR_64;
+ }
+}
+
+def MOVT_I : MMRel, CMov_F_I_FT<"movt", GPR32Opnd, II_MOVT, MipsCMovFP_T>,
+ CMov_F_I_FM<1>, INSN_MIPS4_32_NOT_32R6_64R6;
+
+let isCodeGenOnly = 1 in
+def MOVT_I64 : CMov_F_I_FT<"movt", GPR64Opnd, II_MOVT, MipsCMovFP_T>,
+ CMov_F_I_FM<1>, INSN_MIPS4_32_NOT_32R6_64R6,
+ AdditionalRequires<[IsGP64bit]>;
+
+def MOVF_I : MMRel, CMov_F_I_FT<"movf", GPR32Opnd, II_MOVF, MipsCMovFP_F>,
+ CMov_F_I_FM<0>, INSN_MIPS4_32_NOT_32R6_64R6;
+
+let isCodeGenOnly = 1 in
+def MOVF_I64 : CMov_F_I_FT<"movf", GPR64Opnd, II_MOVF, MipsCMovFP_F>,
+ CMov_F_I_FM<0>, INSN_MIPS4_32_NOT_32R6_64R6,
+ AdditionalRequires<[IsGP64bit]>;
+
+def MOVT_S : MMRel, CMov_F_F_FT<"movt.s", FGR32Opnd, II_MOVT_S, MipsCMovFP_T>,
+ CMov_F_F_FM<16, 1>, INSN_MIPS4_32_NOT_32R6_64R6;
+def MOVF_S : MMRel, CMov_F_F_FT<"movf.s", FGR32Opnd, II_MOVF_S, MipsCMovFP_F>,
+ CMov_F_F_FM<16, 0>, INSN_MIPS4_32_NOT_32R6_64R6;
+
+def MOVT_D32 : MMRel, CMov_F_F_FT<"movt.d", AFGR64Opnd, II_MOVT_D,
+ MipsCMovFP_T>, CMov_F_F_FM<17, 1>,
+ INSN_MIPS4_32_NOT_32R6_64R6, FGR_32;
+def MOVF_D32 : MMRel, CMov_F_F_FT<"movf.d", AFGR64Opnd, II_MOVF_D,
+ MipsCMovFP_F>, CMov_F_F_FM<17, 0>,
+ INSN_MIPS4_32_NOT_32R6_64R6, FGR_32;
+
+let DecoderNamespace = "Mips64" in {
+ def MOVT_D64 : CMov_F_F_FT<"movt.d", FGR64Opnd, II_MOVT_D, MipsCMovFP_T>,
+ CMov_F_F_FM<17, 1>, INSN_MIPS4_32_NOT_32R6_64R6, FGR_64;
+ def MOVF_D64 : CMov_F_F_FT<"movf.d", FGR64Opnd, II_MOVF_D, MipsCMovFP_F>,
+ CMov_F_F_FM<17, 0>, INSN_MIPS4_32_NOT_32R6_64R6, FGR_64;
+}
+
+// Instantiation of conditional move patterns.
+defm : MovzPats0<GPR32, GPR32, MOVZ_I_I, SLT, SLTu, SLTi, SLTiu>,
+ INSN_MIPS4_32_NOT_32R6_64R6;
+defm : MovzPats1<GPR32, GPR32, MOVZ_I_I, XOR>, INSN_MIPS4_32_NOT_32R6_64R6;
+defm : MovzPats2<GPR32, GPR32, MOVZ_I_I, XORi>, INSN_MIPS4_32_NOT_32R6_64R6;
+
+defm : MovzPats0<GPR32, GPR64, MOVZ_I_I64, SLT, SLTu, SLTi, SLTiu>,
+ INSN_MIPS4_32_NOT_32R6_64R6, GPR_64;
+defm : MovzPats0<GPR64, GPR32, MOVZ_I_I, SLT64, SLTu64, SLTi64, SLTiu64>,
+ INSN_MIPS4_32_NOT_32R6_64R6, GPR_64;
+defm : MovzPats0<GPR64, GPR64, MOVZ_I_I64, SLT64, SLTu64, SLTi64, SLTiu64>,
+ INSN_MIPS4_32_NOT_32R6_64R6, GPR_64;
+defm : MovzPats1<GPR32, GPR64, MOVZ_I_I64, XOR>,
+ INSN_MIPS4_32_NOT_32R6_64R6, GPR_64;
+defm : MovzPats1<GPR64, GPR32, MOVZ_I64_I, XOR64>,
+ INSN_MIPS4_32_NOT_32R6_64R6, GPR_64;
+defm : MovzPats1<GPR64, GPR64, MOVZ_I64_I64, XOR64>,
+ INSN_MIPS4_32_NOT_32R6_64R6, GPR_64;
+defm : MovzPats2<GPR32, GPR64, MOVZ_I_I64, XORi>,
+ INSN_MIPS4_32_NOT_32R6_64R6, GPR_64;
+defm : MovzPats2<GPR64, GPR32, MOVZ_I64_I, XORi64>,
+ INSN_MIPS4_32_NOT_32R6_64R6, GPR_64;
+defm : MovzPats2<GPR64, GPR64, MOVZ_I64_I64, XORi64>,
+ INSN_MIPS4_32_NOT_32R6_64R6, GPR_64;
+
+defm : MovnPats<GPR32, GPR32, MOVN_I_I, XOR>, INSN_MIPS4_32_NOT_32R6_64R6;
+
+defm : MovnPats<GPR32, GPR64, MOVN_I_I64, XOR>, INSN_MIPS4_32_NOT_32R6_64R6,
+ GPR_64;
+defm : MovnPats<GPR64, GPR32, MOVN_I64_I, XOR64>, INSN_MIPS4_32_NOT_32R6_64R6,
+ GPR_64;
+defm : MovnPats<GPR64, GPR64, MOVN_I64_I64, XOR64>, INSN_MIPS4_32_NOT_32R6_64R6,
+ GPR_64;
+
+defm : MovzPats0<GPR32, FGR32, MOVZ_I_S, SLT, SLTu, SLTi, SLTiu>,
+ INSN_MIPS4_32_NOT_32R6_64R6;
+defm : MovzPats1<GPR32, FGR32, MOVZ_I_S, XOR>, INSN_MIPS4_32_NOT_32R6_64R6;
+defm : MovnPats<GPR32, FGR32, MOVN_I_S, XOR>, INSN_MIPS4_32_NOT_32R6_64R6;
+
+defm : MovzPats0<GPR64, FGR32, MOVZ_I_S, SLT64, SLTu64, SLTi64, SLTiu64>,
+ INSN_MIPS4_32_NOT_32R6_64R6, GPR_64;
+defm : MovzPats1<GPR64, FGR32, MOVZ_I64_S, XOR64>, INSN_MIPS4_32_NOT_32R6_64R6,
+ GPR_64;
+defm : MovnPats<GPR64, FGR32, MOVN_I64_S, XOR64>, INSN_MIPS4_32_NOT_32R6_64R6,
+ GPR_64;
+
+defm : MovzPats0<GPR32, AFGR64, MOVZ_I_D32, SLT, SLTu, SLTi, SLTiu>,
+ INSN_MIPS4_32_NOT_32R6_64R6, FGR_32;
+defm : MovzPats1<GPR32, AFGR64, MOVZ_I_D32, XOR>, INSN_MIPS4_32_NOT_32R6_64R6,
+ FGR_32;
+defm : MovnPats<GPR32, AFGR64, MOVN_I_D32, XOR>, INSN_MIPS4_32_NOT_32R6_64R6,
+ FGR_32;
+
+defm : MovzPats0<GPR32, FGR64, MOVZ_I_D64, SLT, SLTu, SLTi, SLTiu>,
+ INSN_MIPS4_32_NOT_32R6_64R6, FGR_64;
+defm : MovzPats0<GPR64, FGR64, MOVZ_I_D64, SLT64, SLTu64, SLTi64, SLTiu64>,
+ INSN_MIPS4_32_NOT_32R6_64R6, FGR_64;
+defm : MovzPats1<GPR32, FGR64, MOVZ_I_D64, XOR>, INSN_MIPS4_32_NOT_32R6_64R6,
+ FGR_64;
+defm : MovzPats1<GPR64, FGR64, MOVZ_I64_D64, XOR64>,
+ INSN_MIPS4_32_NOT_32R6_64R6, FGR_64;
+defm : MovnPats<GPR32, FGR64, MOVN_I_D64, XOR>, INSN_MIPS4_32_NOT_32R6_64R6,
+ FGR_64;
+defm : MovnPats<GPR64, FGR64, MOVN_I64_D64, XOR64>, INSN_MIPS4_32_NOT_32R6_64R6,
+ FGR_64;
diff --git a/contrib/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp b/contrib/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp
new file mode 100644
index 0000000..80bf573
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp
@@ -0,0 +1,1719 @@
+//===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+// This pass is used to make Pc relative loads of constants.
+// For now, only Mips16 will use this.
+//
+// Loading constants inline is expensive on Mips16 and it's in general better
+// to place the constant nearby in code space and then it can be loaded with a
+// simple 16 bit load instruction.
+//
+// The constants can be not just numbers but addresses of functions and labels.
+// This can be particularly helpful in static relocation mode for embedded
+// non-linux targets.
+//
+//
+
+#include "Mips.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "Mips16InstrInfo.h"
+#include "MipsMachineFunction.h"
+#include "MipsTargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <algorithm>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-constant-islands"
+
+STATISTIC(NumCPEs, "Number of constpool entries");
+STATISTIC(NumSplit, "Number of uncond branches inserted");
+STATISTIC(NumCBrFixed, "Number of cond branches fixed");
+STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
+
+// FIXME: This option should be removed once it has received sufficient testing.
+static cl::opt<bool>
+AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
+ cl::desc("Align constant islands in code"));
+
+
+// Rather than do make check tests with huge amounts of code, we force
+// the test to use this amount.
+//
+static cl::opt<int> ConstantIslandsSmallOffset(
+ "mips-constant-islands-small-offset",
+ cl::init(0),
+ cl::desc("Make small offsets be this amount for testing purposes"),
+ cl::Hidden);
+
+//
+// For testing purposes we tell it to not use relaxed load forms so that it
+// will split blocks.
+//
+static cl::opt<bool> NoLoadRelaxation(
+ "mips-constant-islands-no-load-relaxation",
+ cl::init(false),
+ cl::desc("Don't relax loads to long loads - for testing purposes"),
+ cl::Hidden);
+
+static unsigned int branchTargetOperand(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ case Mips::Bimm16:
+ case Mips::BimmX16:
+ case Mips::Bteqz16:
+ case Mips::BteqzX16:
+ case Mips::Btnez16:
+ case Mips::BtnezX16:
+ case Mips::JalB16:
+ return 0;
+ case Mips::BeqzRxImm16:
+ case Mips::BeqzRxImmX16:
+ case Mips::BnezRxImm16:
+ case Mips::BnezRxImmX16:
+ return 1;
+ }
+ llvm_unreachable("Unknown branch type");
+}
+
+static bool isUnconditionalBranch(unsigned int Opcode) {
+ switch (Opcode) {
+ default: return false;
+ case Mips::Bimm16:
+ case Mips::BimmX16:
+ case Mips::JalB16:
+ return true;
+ }
+}
+
+static unsigned int longformBranchOpcode(unsigned int Opcode) {
+ switch (Opcode) {
+ case Mips::Bimm16:
+ case Mips::BimmX16:
+ return Mips::BimmX16;
+ case Mips::Bteqz16:
+ case Mips::BteqzX16:
+ return Mips::BteqzX16;
+ case Mips::Btnez16:
+ case Mips::BtnezX16:
+ return Mips::BtnezX16;
+ case Mips::JalB16:
+ return Mips::JalB16;
+ case Mips::BeqzRxImm16:
+ case Mips::BeqzRxImmX16:
+ return Mips::BeqzRxImmX16;
+ case Mips::BnezRxImm16:
+ case Mips::BnezRxImmX16:
+ return Mips::BnezRxImmX16;
+ }
+ llvm_unreachable("Unknown branch type");
+}
+
+//
+// FIXME: need to go through this whole constant islands port and check the math
+// for branch ranges and clean this up and make some functions to calculate things
+// that are done many times identically.
+// Need to refactor some of the code to call this routine.
+//
+static unsigned int branchMaxOffsets(unsigned int Opcode) {
+ unsigned Bits, Scale;
+ switch (Opcode) {
+ case Mips::Bimm16:
+ Bits = 11;
+ Scale = 2;
+ break;
+ case Mips::BimmX16:
+ Bits = 16;
+ Scale = 2;
+ break;
+ case Mips::BeqzRxImm16:
+ Bits = 8;
+ Scale = 2;
+ break;
+ case Mips::BeqzRxImmX16:
+ Bits = 16;
+ Scale = 2;
+ break;
+ case Mips::BnezRxImm16:
+ Bits = 8;
+ Scale = 2;
+ break;
+ case Mips::BnezRxImmX16:
+ Bits = 16;
+ Scale = 2;
+ break;
+ case Mips::Bteqz16:
+ Bits = 8;
+ Scale = 2;
+ break;
+ case Mips::BteqzX16:
+ Bits = 16;
+ Scale = 2;
+ break;
+ case Mips::Btnez16:
+ Bits = 8;
+ Scale = 2;
+ break;
+ case Mips::BtnezX16:
+ Bits = 16;
+ Scale = 2;
+ break;
+ default:
+ llvm_unreachable("Unknown branch type");
+ }
+ unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
+ return MaxOffs;
+}
+
+namespace {
+
+
+ typedef MachineBasicBlock::iterator Iter;
+ typedef MachineBasicBlock::reverse_iterator ReverseIter;
+
+ /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
+ /// requires constant pool entries to be scattered among the instructions
+ /// inside a function. To do this, it completely ignores the normal LLVM
+ /// constant pool; instead, it places constants wherever it feels like with
+ /// special instructions.
+ ///
+ /// The terminology used in this pass includes:
+ /// Islands - Clumps of constants placed in the function.
+ /// Water - Potential places where an island could be formed.
+ /// CPE - A constant pool entry that has been placed somewhere, which
+ /// tracks a list of users.
+
+ class MipsConstantIslands : public MachineFunctionPass {
+
+ /// BasicBlockInfo - Information about the offset and size of a single
+ /// basic block.
+ struct BasicBlockInfo {
+ /// Offset - Distance from the beginning of the function to the beginning
+ /// of this basic block.
+ ///
+ /// Offsets are computed assuming worst case padding before an aligned
+ /// block. This means that subtracting basic block offsets always gives a
+ /// conservative estimate of the real distance which may be smaller.
+ ///
+ /// Because worst case padding is used, the computed offset of an aligned
+ /// block may not actually be aligned.
+ unsigned Offset;
+
+ /// Size - Size of the basic block in bytes. If the block contains
+ /// inline assembly, this is a worst case estimate.
+ ///
+ /// The size does not include any alignment padding whether from the
+ /// beginning of the block, or from an aligned jump table at the end.
+ unsigned Size;
+
+ // FIXME: ignore LogAlign for this patch
+ //
+ unsigned postOffset(unsigned LogAlign = 0) const {
+ unsigned PO = Offset + Size;
+ return PO;
+ }
+
+ BasicBlockInfo() : Offset(0), Size(0) {}
+
+ };
+
+ std::vector<BasicBlockInfo> BBInfo;
+
+ /// WaterList - A sorted list of basic blocks where islands could be placed
+ /// (i.e. blocks that don't fall through to the following block, due
+ /// to a return, unreachable, or unconditional branch).
+ std::vector<MachineBasicBlock*> WaterList;
+
+ /// NewWaterList - The subset of WaterList that was created since the
+ /// previous iteration by inserting unconditional branches.
+ SmallSet<MachineBasicBlock*, 4> NewWaterList;
+
+ typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
+
+ /// CPUser - One user of a constant pool, keeping the machine instruction
+ /// pointer, the constant pool being referenced, and the max displacement
+ /// allowed from the instruction to the CP. The HighWaterMark records the
+ /// highest basic block where a new CPEntry can be placed. To ensure this
+ /// pass terminates, the CP entries are initially placed at the end of the
+ /// function and then move monotonically to lower addresses. The
+ /// exception to this rule is when the current CP entry for a particular
+ /// CPUser is out of range, but there is another CP entry for the same
+ /// constant value in range. We want to use the existing in-range CP
+ /// entry, but if it later moves out of range, the search for new water
+ /// should resume where it left off. The HighWaterMark is used to record
+ /// that point.
+ struct CPUser {
+ MachineInstr *MI;
+ MachineInstr *CPEMI;
+ MachineBasicBlock *HighWaterMark;
+ private:
+ unsigned MaxDisp;
+ unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
+ // with different displacements
+ unsigned LongFormOpcode;
+ public:
+ bool NegOk;
+ CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
+ bool neg,
+ unsigned longformmaxdisp, unsigned longformopcode)
+ : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
+ LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
+ NegOk(neg){
+ HighWaterMark = CPEMI->getParent();
+ }
+ /// getMaxDisp - Returns the maximum displacement supported by MI.
+ unsigned getMaxDisp() const {
+ unsigned xMaxDisp = ConstantIslandsSmallOffset?
+ ConstantIslandsSmallOffset: MaxDisp;
+ return xMaxDisp;
+ }
+ void setMaxDisp(unsigned val) {
+ MaxDisp = val;
+ }
+ unsigned getLongFormMaxDisp() const {
+ return LongFormMaxDisp;
+ }
+ unsigned getLongFormOpcode() const {
+ return LongFormOpcode;
+ }
+ };
+
+ /// CPUsers - Keep track of all of the machine instructions that use various
+ /// constant pools and their max displacement.
+ std::vector<CPUser> CPUsers;
+
+ /// CPEntry - One per constant pool entry, keeping the machine instruction
+ /// pointer, the constpool index, and the number of CPUser's which
+ /// reference this entry.
+ struct CPEntry {
+ MachineInstr *CPEMI;
+ unsigned CPI;
+ unsigned RefCount;
+ CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
+ : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
+ };
+
+ /// CPEntries - Keep track of all of the constant pool entry machine
+ /// instructions. For each original constpool index (i.e. those that
+ /// existed upon entry to this pass), it keeps a vector of entries.
+ /// Original elements are cloned as we go along; the clones are
+ /// put in the vector of the original element, but have distinct CPIs.
+ std::vector<std::vector<CPEntry> > CPEntries;
+
+ /// ImmBranch - One per immediate branch, keeping the machine instruction
+ /// pointer, conditional or unconditional, the max displacement,
+ /// and (if isCond is true) the corresponding unconditional branch
+ /// opcode.
+ struct ImmBranch {
+ MachineInstr *MI;
+ unsigned MaxDisp : 31;
+ bool isCond : 1;
+ int UncondBr;
+ ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
+ : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
+ };
+
+ /// ImmBranches - Keep track of all the immediate branch instructions.
+ ///
+ std::vector<ImmBranch> ImmBranches;
+
+ /// HasFarJump - True if any far jump instruction has been emitted during
+ /// the branch fix up pass.
+ bool HasFarJump;
+
+ const TargetMachine &TM;
+ bool IsPIC;
+ unsigned ABI;
+ const MipsSubtarget *STI;
+ const Mips16InstrInfo *TII;
+ MipsFunctionInfo *MFI;
+ MachineFunction *MF;
+ MachineConstantPool *MCP;
+
+ unsigned PICLabelUId;
+ bool PrescannedForConstants;
+
+ void initPICLabelUId(unsigned UId) {
+ PICLabelUId = UId;
+ }
+
+
+ unsigned createPICLabelUId() {
+ return PICLabelUId++;
+ }
+
+ public:
+ static char ID;
+ MipsConstantIslands(TargetMachine &tm)
+ : MachineFunctionPass(ID), TM(tm),
+ IsPIC(TM.getRelocationModel() == Reloc::PIC_),
+ ABI(TM.getSubtarget<MipsSubtarget>().getTargetABI()), STI(nullptr),
+ MF(nullptr), MCP(nullptr), PrescannedForConstants(false) {}
+
+ const char *getPassName() const override {
+ return "Mips Constant Islands";
+ }
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+ void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
+ CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
+ unsigned getCPELogAlign(const MachineInstr *CPEMI);
+ void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
+ unsigned getOffsetOf(MachineInstr *MI) const;
+ unsigned getUserOffset(CPUser&) const;
+ void dumpBBs();
+
+ bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
+ unsigned Disp, bool NegativeOK);
+ bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
+ const CPUser &U);
+
+ void computeBlockSize(MachineBasicBlock *MBB);
+ MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
+ void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
+ void adjustBBOffsetsAfter(MachineBasicBlock *BB);
+ bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
+ int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
+ int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
+ bool findAvailableWater(CPUser&U, unsigned UserOffset,
+ water_iterator &WaterIter);
+ void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
+ MachineBasicBlock *&NewMBB);
+ bool handleConstantPoolUser(unsigned CPUserIndex);
+ void removeDeadCPEMI(MachineInstr *CPEMI);
+ bool removeUnusedCPEntries();
+ bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
+ MachineInstr *CPEMI, unsigned Disp, bool NegOk,
+ bool DoDump = false);
+ bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
+ CPUser &U, unsigned &Growth);
+ bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
+ bool fixupImmediateBr(ImmBranch &Br);
+ bool fixupConditionalBr(ImmBranch &Br);
+ bool fixupUnconditionalBr(ImmBranch &Br);
+
+ void prescanForConstants();
+
+ private:
+
+ };
+
+ char MipsConstantIslands::ID = 0;
+} // end of anonymous namespace
+
+bool MipsConstantIslands::isOffsetInRange
+ (unsigned UserOffset, unsigned TrialOffset,
+ const CPUser &U) {
+ return isOffsetInRange(UserOffset, TrialOffset,
+ U.getMaxDisp(), U.NegOk);
+}
+/// print block size and offset information - debugging
+void MipsConstantIslands::dumpBBs() {
+ DEBUG({
+ for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
+ const BasicBlockInfo &BBI = BBInfo[J];
+ dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
+ << format(" size=%#x\n", BBInfo[J].Size);
+ }
+ });
+}
+/// createMipsLongBranchPass - Returns a pass that converts branches to long
+/// branches.
+FunctionPass *llvm::createMipsConstantIslandPass(MipsTargetMachine &tm) {
+ return new MipsConstantIslands(tm);
+}
+
+bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
+ // The intention is for this to be a mips16 only pass for now
+ // FIXME:
+ MF = &mf;
+ MCP = mf.getConstantPool();
+ STI = &mf.getTarget().getSubtarget<MipsSubtarget>();
+ DEBUG(dbgs() << "constant island machine function " << "\n");
+ if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
+ return false;
+ }
+ TII = (const Mips16InstrInfo*)MF->getTarget().getInstrInfo();
+ MFI = MF->getInfo<MipsFunctionInfo>();
+ DEBUG(dbgs() << "constant island processing " << "\n");
+ //
+ // will need to make predermination if there is any constants we need to
+ // put in constant islands. TBD.
+ //
+ if (!PrescannedForConstants) prescanForConstants();
+
+ HasFarJump = false;
+ // This pass invalidates liveness information when it splits basic blocks.
+ MF->getRegInfo().invalidateLiveness();
+
+ // Renumber all of the machine basic blocks in the function, guaranteeing that
+ // the numbers agree with the position of the block in the function.
+ MF->RenumberBlocks();
+
+ bool MadeChange = false;
+
+ // Perform the initial placement of the constant pool entries. To start with,
+ // we put them all at the end of the function.
+ std::vector<MachineInstr*> CPEMIs;
+ if (!MCP->isEmpty())
+ doInitialPlacement(CPEMIs);
+
+ /// The next UID to take is the first unused one.
+ initPICLabelUId(CPEMIs.size());
+
+ // Do the initial scan of the function, building up information about the
+ // sizes of each block, the location of all the water, and finding all of the
+ // constant pool users.
+ initializeFunctionInfo(CPEMIs);
+ CPEMIs.clear();
+ DEBUG(dumpBBs());
+
+ /// Remove dead constant pool entries.
+ MadeChange |= removeUnusedCPEntries();
+
+ // Iteratively place constant pool entries and fix up branches until there
+ // is no change.
+ unsigned NoCPIters = 0, NoBRIters = 0;
+ (void)NoBRIters;
+ while (true) {
+ DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
+ bool CPChange = false;
+ for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
+ CPChange |= handleConstantPoolUser(i);
+ if (CPChange && ++NoCPIters > 30)
+ report_fatal_error("Constant Island pass failed to converge!");
+ DEBUG(dumpBBs());
+
+ // Clear NewWaterList now. If we split a block for branches, it should
+ // appear as "new water" for the next iteration of constant pool placement.
+ NewWaterList.clear();
+
+ DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
+ bool BRChange = false;
+ for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
+ BRChange |= fixupImmediateBr(ImmBranches[i]);
+ if (BRChange && ++NoBRIters > 30)
+ report_fatal_error("Branch Fix Up pass failed to converge!");
+ DEBUG(dumpBBs());
+ if (!CPChange && !BRChange)
+ break;
+ MadeChange = true;
+ }
+
+ DEBUG(dbgs() << '\n'; dumpBBs());
+
+ BBInfo.clear();
+ WaterList.clear();
+ CPUsers.clear();
+ CPEntries.clear();
+ ImmBranches.clear();
+ return MadeChange;
+}
+
+/// doInitialPlacement - Perform the initial placement of the constant pool
+/// entries. To start with, we put them all at the end of the function.
+void
+MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
+ // Create the basic block to hold the CPE's.
+ MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
+ MF->push_back(BB);
+
+
+ // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
+ unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
+
+ // Mark the basic block as required by the const-pool.
+ // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
+ BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
+
+ // The function needs to be as aligned as the basic blocks. The linker may
+ // move functions around based on their alignment.
+ MF->ensureAlignment(BB->getAlignment());
+
+ // Order the entries in BB by descending alignment. That ensures correct
+ // alignment of all entries as long as BB is sufficiently aligned. Keep
+ // track of the insertion point for each alignment. We are going to bucket
+ // sort the entries as they are created.
+ SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
+
+ // Add all of the constants from the constant pool to the end block, use an
+ // identity mapping of CPI's to CPE's.
+ const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
+
+ const DataLayout &TD = *MF->getTarget().getDataLayout();
+ for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
+ unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
+ assert(Size >= 4 && "Too small constant pool entry");
+ unsigned Align = CPs[i].getAlignment();
+ assert(isPowerOf2_32(Align) && "Invalid alignment");
+ // Verify that all constant pool entries are a multiple of their alignment.
+ // If not, we would have to pad them out so that instructions stay aligned.
+ assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
+
+ // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
+ unsigned LogAlign = Log2_32(Align);
+ MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
+
+ MachineInstr *CPEMI =
+ BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
+ .addImm(i).addConstantPoolIndex(i).addImm(Size);
+
+ CPEMIs.push_back(CPEMI);
+
+ // Ensure that future entries with higher alignment get inserted before
+ // CPEMI. This is bucket sort with iterators.
+ for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
+ if (InsPoint[a] == InsAt)
+ InsPoint[a] = CPEMI;
+ // Add a new CPEntry, but no corresponding CPUser yet.
+ std::vector<CPEntry> CPEs;
+ CPEs.push_back(CPEntry(CPEMI, i));
+ CPEntries.push_back(CPEs);
+ ++NumCPEs;
+ DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
+ << Size << ", align = " << Align <<'\n');
+ }
+ DEBUG(BB->dump());
+}
+
+/// BBHasFallthrough - Return true if the specified basic block can fallthrough
+/// into the block immediately after it.
+static bool BBHasFallthrough(MachineBasicBlock *MBB) {
+ // Get the next machine basic block in the function.
+ MachineFunction::iterator MBBI = MBB;
+ // Can't fall off end of function.
+ if (std::next(MBBI) == MBB->getParent()->end())
+ return false;
+
+ MachineBasicBlock *NextBB = std::next(MBBI);
+ for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
+ E = MBB->succ_end(); I != E; ++I)
+ if (*I == NextBB)
+ return true;
+
+ return false;
+}
+
+/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
+/// look up the corresponding CPEntry.
+MipsConstantIslands::CPEntry
+*MipsConstantIslands::findConstPoolEntry(unsigned CPI,
+ const MachineInstr *CPEMI) {
+ std::vector<CPEntry> &CPEs = CPEntries[CPI];
+ // Number of entries per constpool index should be small, just do a
+ // linear search.
+ for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
+ if (CPEs[i].CPEMI == CPEMI)
+ return &CPEs[i];
+ }
+ return nullptr;
+}
+
+/// getCPELogAlign - Returns the required alignment of the constant pool entry
+/// represented by CPEMI. Alignment is measured in log2(bytes) units.
+unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
+ assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY);
+
+ // Everything is 4-byte aligned unless AlignConstantIslands is set.
+ if (!AlignConstantIslands)
+ return 2;
+
+ unsigned CPI = CPEMI->getOperand(1).getIndex();
+ assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
+ unsigned Align = MCP->getConstants()[CPI].getAlignment();
+ assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
+ return Log2_32(Align);
+}
+
+/// initializeFunctionInfo - Do the initial scan of the function, building up
+/// information about the sizes of each block, the location of all the water,
+/// and finding all of the constant pool users.
+void MipsConstantIslands::
+initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
+ BBInfo.clear();
+ BBInfo.resize(MF->getNumBlockIDs());
+
+ // First thing, compute the size of all basic blocks, and see if the function
+ // has any inline assembly in it. If so, we have to be conservative about
+ // alignment assumptions, as we don't know for sure the size of any
+ // instructions in the inline assembly.
+ for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
+ computeBlockSize(I);
+
+
+ // Compute block offsets.
+ adjustBBOffsetsAfter(MF->begin());
+
+ // Now go back through the instructions and build up our data structures.
+ for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock &MBB = *MBBI;
+
+ // If this block doesn't fall through into the next MBB, then this is
+ // 'water' that a constant pool island could be placed.
+ if (!BBHasFallthrough(&MBB))
+ WaterList.push_back(&MBB);
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ I != E; ++I) {
+ if (I->isDebugValue())
+ continue;
+
+ int Opc = I->getOpcode();
+ if (I->isBranch()) {
+ bool isCond = false;
+ unsigned Bits = 0;
+ unsigned Scale = 1;
+ int UOpc = Opc;
+ switch (Opc) {
+ default:
+ continue; // Ignore other branches for now
+ case Mips::Bimm16:
+ Bits = 11;
+ Scale = 2;
+ isCond = false;
+ break;
+ case Mips::BimmX16:
+ Bits = 16;
+ Scale = 2;
+ isCond = false;
+ break;
+ case Mips::BeqzRxImm16:
+ UOpc=Mips::Bimm16;
+ Bits = 8;
+ Scale = 2;
+ isCond = true;
+ break;
+ case Mips::BeqzRxImmX16:
+ UOpc=Mips::Bimm16;
+ Bits = 16;
+ Scale = 2;
+ isCond = true;
+ break;
+ case Mips::BnezRxImm16:
+ UOpc=Mips::Bimm16;
+ Bits = 8;
+ Scale = 2;
+ isCond = true;
+ break;
+ case Mips::BnezRxImmX16:
+ UOpc=Mips::Bimm16;
+ Bits = 16;
+ Scale = 2;
+ isCond = true;
+ break;
+ case Mips::Bteqz16:
+ UOpc=Mips::Bimm16;
+ Bits = 8;
+ Scale = 2;
+ isCond = true;
+ break;
+ case Mips::BteqzX16:
+ UOpc=Mips::Bimm16;
+ Bits = 16;
+ Scale = 2;
+ isCond = true;
+ break;
+ case Mips::Btnez16:
+ UOpc=Mips::Bimm16;
+ Bits = 8;
+ Scale = 2;
+ isCond = true;
+ break;
+ case Mips::BtnezX16:
+ UOpc=Mips::Bimm16;
+ Bits = 16;
+ Scale = 2;
+ isCond = true;
+ break;
+ }
+ // Record this immediate branch.
+ unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
+ ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
+ }
+
+ if (Opc == Mips::CONSTPOOL_ENTRY)
+ continue;
+
+
+ // Scan the instructions for constant pool operands.
+ for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
+ if (I->getOperand(op).isCPI()) {
+
+ // We found one. The addressing mode tells us the max displacement
+ // from the PC that this instruction permits.
+
+ // Basic size info comes from the TSFlags field.
+ unsigned Bits = 0;
+ unsigned Scale = 1;
+ bool NegOk = false;
+ unsigned LongFormBits = 0;
+ unsigned LongFormScale = 0;
+ unsigned LongFormOpcode = 0;
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unknown addressing mode for CP reference!");
+ case Mips::LwRxPcTcp16:
+ Bits = 8;
+ Scale = 4;
+ LongFormOpcode = Mips::LwRxPcTcpX16;
+ LongFormBits = 14;
+ LongFormScale = 1;
+ break;
+ case Mips::LwRxPcTcpX16:
+ Bits = 14;
+ Scale = 1;
+ NegOk = true;
+ break;
+ }
+ // Remember that this is a user of a CP entry.
+ unsigned CPI = I->getOperand(op).getIndex();
+ MachineInstr *CPEMI = CPEMIs[CPI];
+ unsigned MaxOffs = ((1 << Bits)-1) * Scale;
+ unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
+ CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk,
+ LongFormMaxOffs, LongFormOpcode));
+
+ // Increment corresponding CPEntry reference count.
+ CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
+ assert(CPE && "Cannot find a corresponding CPEntry!");
+ CPE->RefCount++;
+
+ // Instructions can only use one CP entry, don't bother scanning the
+ // rest of the operands.
+ break;
+
+ }
+
+ }
+ }
+
+}
+
+/// computeBlockSize - Compute the size and some alignment information for MBB.
+/// This function updates BBInfo directly.
+void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
+ BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
+ BBI.Size = 0;
+
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
+ ++I)
+ BBI.Size += TII->GetInstSizeInBytes(I);
+
+}
+
+/// getOffsetOf - Return the current offset of the specified machine instruction
+/// from the start of the function. This offset changes as stuff is moved
+/// around inside the function.
+unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
+ MachineBasicBlock *MBB = MI->getParent();
+
+ // The offset is composed of two things: the sum of the sizes of all MBB's
+ // before this instruction's block, and the offset from the start of the block
+ // it is in.
+ unsigned Offset = BBInfo[MBB->getNumber()].Offset;
+
+ // Sum instructions before MI in MBB.
+ for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
+ assert(I != MBB->end() && "Didn't find MI in its own basic block?");
+ Offset += TII->GetInstSizeInBytes(I);
+ }
+ return Offset;
+}
+
+/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
+/// ID.
+static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
+ const MachineBasicBlock *RHS) {
+ return LHS->getNumber() < RHS->getNumber();
+}
+
+/// updateForInsertedWaterBlock - When a block is newly inserted into the
+/// machine function, it upsets all of the block numbers. Renumber the blocks
+/// and update the arrays that parallel this numbering.
+void MipsConstantIslands::updateForInsertedWaterBlock
+ (MachineBasicBlock *NewBB) {
+ // Renumber the MBB's to keep them consecutive.
+ NewBB->getParent()->RenumberBlocks(NewBB);
+
+ // Insert an entry into BBInfo to align it properly with the (newly
+ // renumbered) block numbers.
+ BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
+
+ // Next, update WaterList. Specifically, we need to add NewMBB as having
+ // available water after it.
+ water_iterator IP =
+ std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
+ CompareMBBNumbers);
+ WaterList.insert(IP, NewBB);
+}
+
+unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
+ return getOffsetOf(U.MI);
+}
+
+/// Split the basic block containing MI into two blocks, which are joined by
+/// an unconditional branch. Update data structures and renumber blocks to
+/// account for this change and returns the newly created block.
+MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr
+ (MachineInstr *MI) {
+ MachineBasicBlock *OrigBB = MI->getParent();
+
+ // Create a new MBB for the code after the OrigBB.
+ MachineBasicBlock *NewBB =
+ MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
+ MachineFunction::iterator MBBI = OrigBB; ++MBBI;
+ MF->insert(MBBI, NewBB);
+
+ // Splice the instructions starting with MI over to NewBB.
+ NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
+
+ // Add an unconditional branch from OrigBB to NewBB.
+ // Note the new unconditional branch is not being recorded.
+ // There doesn't seem to be meaningful DebugInfo available; this doesn't
+ // correspond to anything in the source.
+ BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
+ ++NumSplit;
+
+ // Update the CFG. All succs of OrigBB are now succs of NewBB.
+ NewBB->transferSuccessors(OrigBB);
+
+ // OrigBB branches to NewBB.
+ OrigBB->addSuccessor(NewBB);
+
+ // Update internal data structures to account for the newly inserted MBB.
+ // This is almost the same as updateForInsertedWaterBlock, except that
+ // the Water goes after OrigBB, not NewBB.
+ MF->RenumberBlocks(NewBB);
+
+ // Insert an entry into BBInfo to align it properly with the (newly
+ // renumbered) block numbers.
+ BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
+
+ // Next, update WaterList. Specifically, we need to add OrigMBB as having
+ // available water after it (but not if it's already there, which happens
+ // when splitting before a conditional branch that is followed by an
+ // unconditional branch - in that case we want to insert NewBB).
+ water_iterator IP =
+ std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
+ CompareMBBNumbers);
+ MachineBasicBlock* WaterBB = *IP;
+ if (WaterBB == OrigBB)
+ WaterList.insert(std::next(IP), NewBB);
+ else
+ WaterList.insert(IP, OrigBB);
+ NewWaterList.insert(OrigBB);
+
+ // Figure out how large the OrigBB is. As the first half of the original
+ // block, it cannot contain a tablejump. The size includes
+ // the new jump we added. (It should be possible to do this without
+ // recounting everything, but it's very confusing, and this is rarely
+ // executed.)
+ computeBlockSize(OrigBB);
+
+ // Figure out how large the NewMBB is. As the second half of the original
+ // block, it may contain a tablejump.
+ computeBlockSize(NewBB);
+
+ // All BBOffsets following these blocks must be modified.
+ adjustBBOffsetsAfter(OrigBB);
+
+ return NewBB;
+}
+
+
+
+/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
+/// reference) is within MaxDisp of TrialOffset (a proposed location of a
+/// constant pool entry).
+bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
+ unsigned TrialOffset, unsigned MaxDisp,
+ bool NegativeOK) {
+ if (UserOffset <= TrialOffset) {
+ // User before the Trial.
+ if (TrialOffset - UserOffset <= MaxDisp)
+ return true;
+ } else if (NegativeOK) {
+ if (UserOffset - TrialOffset <= MaxDisp)
+ return true;
+ }
+ return false;
+}
+
+/// isWaterInRange - Returns true if a CPE placed after the specified
+/// Water (a basic block) will be in range for the specific MI.
+///
+/// Compute how much the function will grow by inserting a CPE after Water.
+bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
+ MachineBasicBlock* Water, CPUser &U,
+ unsigned &Growth) {
+ unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
+ unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
+ unsigned NextBlockOffset, NextBlockAlignment;
+ MachineFunction::const_iterator NextBlock = Water;
+ if (++NextBlock == MF->end()) {
+ NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
+ NextBlockAlignment = 0;
+ } else {
+ NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
+ NextBlockAlignment = NextBlock->getAlignment();
+ }
+ unsigned Size = U.CPEMI->getOperand(2).getImm();
+ unsigned CPEEnd = CPEOffset + Size;
+
+ // The CPE may be able to hide in the alignment padding before the next
+ // block. It may also cause more padding to be required if it is more aligned
+ // that the next block.
+ if (CPEEnd > NextBlockOffset) {
+ Growth = CPEEnd - NextBlockOffset;
+ // Compute the padding that would go at the end of the CPE to align the next
+ // block.
+ Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
+
+ // If the CPE is to be inserted before the instruction, that will raise
+ // the offset of the instruction. Also account for unknown alignment padding
+ // in blocks between CPE and the user.
+ if (CPEOffset < UserOffset)
+ UserOffset += Growth;
+ } else
+ // CPE fits in existing padding.
+ Growth = 0;
+
+ return isOffsetInRange(UserOffset, CPEOffset, U);
+}
+
+/// isCPEntryInRange - Returns true if the distance between specific MI and
+/// specific ConstPool entry instruction can fit in MI's displacement field.
+bool MipsConstantIslands::isCPEntryInRange
+ (MachineInstr *MI, unsigned UserOffset,
+ MachineInstr *CPEMI, unsigned MaxDisp,
+ bool NegOk, bool DoDump) {
+ unsigned CPEOffset = getOffsetOf(CPEMI);
+
+ if (DoDump) {
+ DEBUG({
+ unsigned Block = MI->getParent()->getNumber();
+ const BasicBlockInfo &BBI = BBInfo[Block];
+ dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
+ << " max delta=" << MaxDisp
+ << format(" insn address=%#x", UserOffset)
+ << " in BB#" << Block << ": "
+ << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
+ << format("CPE address=%#x offset=%+d: ", CPEOffset,
+ int(CPEOffset-UserOffset));
+ });
+ }
+
+ return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
+}
+
+#ifndef NDEBUG
+/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
+/// unconditionally branches to its only successor.
+static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
+ if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
+ return false;
+ MachineBasicBlock *Succ = *MBB->succ_begin();
+ MachineBasicBlock *Pred = *MBB->pred_begin();
+ MachineInstr *PredMI = &Pred->back();
+ if (PredMI->getOpcode() == Mips::Bimm16)
+ return PredMI->getOperand(0).getMBB() == Succ;
+ return false;
+}
+#endif
+
+void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
+ unsigned BBNum = BB->getNumber();
+ for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
+ // Get the offset and known bits at the end of the layout predecessor.
+ // Include the alignment of the current block.
+ unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
+ BBInfo[i].Offset = Offset;
+ }
+}
+
+/// decrementCPEReferenceCount - find the constant pool entry with index CPI
+/// and instruction CPEMI, and decrement its refcount. If the refcount
+/// becomes 0 remove the entry and instruction. Returns true if we removed
+/// the entry, false if we didn't.
+
+bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
+ MachineInstr *CPEMI) {
+ // Find the old entry. Eliminate it if it is no longer used.
+ CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
+ assert(CPE && "Unexpected!");
+ if (--CPE->RefCount == 0) {
+ removeDeadCPEMI(CPEMI);
+ CPE->CPEMI = nullptr;
+ --NumCPEs;
+ return true;
+ }
+ return false;
+}
+
+/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
+/// if not, see if an in-range clone of the CPE is in range, and if so,
+/// change the data structures so the user references the clone. Returns:
+/// 0 = no existing entry found
+/// 1 = entry found, and there were no code insertions or deletions
+/// 2 = entry found, and there were code insertions or deletions
+int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
+{
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+
+ // Check to see if the CPE is already in-range.
+ if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
+ true)) {
+ DEBUG(dbgs() << "In range\n");
+ return 1;
+ }
+
+ // No. Look for previously created clones of the CPE that are in range.
+ unsigned CPI = CPEMI->getOperand(1).getIndex();
+ std::vector<CPEntry> &CPEs = CPEntries[CPI];
+ for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
+ // We already tried this one
+ if (CPEs[i].CPEMI == CPEMI)
+ continue;
+ // Removing CPEs can leave empty entries, skip
+ if (CPEs[i].CPEMI == nullptr)
+ continue;
+ if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
+ U.NegOk)) {
+ DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
+ << CPEs[i].CPI << "\n");
+ // Point the CPUser node to the replacement
+ U.CPEMI = CPEs[i].CPEMI;
+ // Change the CPI in the instruction operand to refer to the clone.
+ for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
+ if (UserMI->getOperand(j).isCPI()) {
+ UserMI->getOperand(j).setIndex(CPEs[i].CPI);
+ break;
+ }
+ // Adjust the refcount of the clone...
+ CPEs[i].RefCount++;
+ // ...and the original. If we didn't remove the old entry, none of the
+ // addresses changed, so we don't need another pass.
+ return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
+ }
+ }
+ return 0;
+}
+
+/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
+/// This version checks if the longer form of the instruction can be used to
+/// to satisfy things.
+/// if not, see if an in-range clone of the CPE is in range, and if so,
+/// change the data structures so the user references the clone. Returns:
+/// 0 = no existing entry found
+/// 1 = entry found, and there were no code insertions or deletions
+/// 2 = entry found, and there were code insertions or deletions
+int MipsConstantIslands::findLongFormInRangeCPEntry
+ (CPUser& U, unsigned UserOffset)
+{
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+
+ // Check to see if the CPE is already in-range.
+ if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
+ U.getLongFormMaxDisp(), U.NegOk,
+ true)) {
+ DEBUG(dbgs() << "In range\n");
+ UserMI->setDesc(TII->get(U.getLongFormOpcode()));
+ U.setMaxDisp(U.getLongFormMaxDisp());
+ return 2; // instruction is longer length now
+ }
+
+ // No. Look for previously created clones of the CPE that are in range.
+ unsigned CPI = CPEMI->getOperand(1).getIndex();
+ std::vector<CPEntry> &CPEs = CPEntries[CPI];
+ for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
+ // We already tried this one
+ if (CPEs[i].CPEMI == CPEMI)
+ continue;
+ // Removing CPEs can leave empty entries, skip
+ if (CPEs[i].CPEMI == nullptr)
+ continue;
+ if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
+ U.getLongFormMaxDisp(), U.NegOk)) {
+ DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
+ << CPEs[i].CPI << "\n");
+ // Point the CPUser node to the replacement
+ U.CPEMI = CPEs[i].CPEMI;
+ // Change the CPI in the instruction operand to refer to the clone.
+ for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
+ if (UserMI->getOperand(j).isCPI()) {
+ UserMI->getOperand(j).setIndex(CPEs[i].CPI);
+ break;
+ }
+ // Adjust the refcount of the clone...
+ CPEs[i].RefCount++;
+ // ...and the original. If we didn't remove the old entry, none of the
+ // addresses changed, so we don't need another pass.
+ return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
+ }
+ }
+ return 0;
+}
+
+/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
+/// the specific unconditional branch instruction.
+static inline unsigned getUnconditionalBrDisp(int Opc) {
+ switch (Opc) {
+ case Mips::Bimm16:
+ return ((1<<10)-1)*2;
+ case Mips::BimmX16:
+ return ((1<<16)-1)*2;
+ default:
+ break;
+ }
+ return ((1<<16)-1)*2;
+}
+
+/// findAvailableWater - Look for an existing entry in the WaterList in which
+/// we can place the CPE referenced from U so it's within range of U's MI.
+/// Returns true if found, false if not. If it returns true, WaterIter
+/// is set to the WaterList entry.
+/// To ensure that this pass
+/// terminates, the CPE location for a particular CPUser is only allowed to
+/// move to a lower address, so search backward from the end of the list and
+/// prefer the first water that is in range.
+bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
+ water_iterator &WaterIter) {
+ if (WaterList.empty())
+ return false;
+
+ unsigned BestGrowth = ~0u;
+ for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
+ --IP) {
+ MachineBasicBlock* WaterBB = *IP;
+ // Check if water is in range and is either at a lower address than the
+ // current "high water mark" or a new water block that was created since
+ // the previous iteration by inserting an unconditional branch. In the
+ // latter case, we want to allow resetting the high water mark back to
+ // this new water since we haven't seen it before. Inserting branches
+ // should be relatively uncommon and when it does happen, we want to be
+ // sure to take advantage of it for all the CPEs near that block, so that
+ // we don't insert more branches than necessary.
+ unsigned Growth;
+ if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
+ (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
+ NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
+ // This is the least amount of required padding seen so far.
+ BestGrowth = Growth;
+ WaterIter = IP;
+ DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
+ << " Growth=" << Growth << '\n');
+
+ // Keep looking unless it is perfect.
+ if (BestGrowth == 0)
+ return true;
+ }
+ if (IP == B)
+ break;
+ }
+ return BestGrowth != ~0u;
+}
+
+/// createNewWater - No existing WaterList entry will work for
+/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
+/// block is used if in range, and the conditional branch munged so control
+/// flow is correct. Otherwise the block is split to create a hole with an
+/// unconditional branch around it. In either case NewMBB is set to a
+/// block following which the new island can be inserted (the WaterList
+/// is not adjusted).
+void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
+ unsigned UserOffset,
+ MachineBasicBlock *&NewMBB) {
+ CPUser &U = CPUsers[CPUserIndex];
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+ unsigned CPELogAlign = getCPELogAlign(CPEMI);
+ MachineBasicBlock *UserMBB = UserMI->getParent();
+ const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
+
+ // If the block does not end in an unconditional branch already, and if the
+ // end of the block is within range, make new water there.
+ if (BBHasFallthrough(UserMBB)) {
+ // Size of branch to insert.
+ unsigned Delta = 2;
+ // Compute the offset where the CPE will begin.
+ unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
+
+ if (isOffsetInRange(UserOffset, CPEOffset, U)) {
+ DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
+ << format(", expected CPE offset %#x\n", CPEOffset));
+ NewMBB = std::next(MachineFunction::iterator(UserMBB));
+ // Add an unconditional branch from UserMBB to fallthrough block. Record
+ // it for branch lengthening; this new branch will not get out of range,
+ // but if the preceding conditional branch is out of range, the targets
+ // will be exchanged, and the altered branch may be out of range, so the
+ // machinery has to know about it.
+ int UncondBr = Mips::Bimm16;
+ BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
+ unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
+ ImmBranches.push_back(ImmBranch(&UserMBB->back(),
+ MaxDisp, false, UncondBr));
+ BBInfo[UserMBB->getNumber()].Size += Delta;
+ adjustBBOffsetsAfter(UserMBB);
+ return;
+ }
+ }
+
+ // What a big block. Find a place within the block to split it.
+
+ // Try to split the block so it's fully aligned. Compute the latest split
+ // point where we can add a 4-byte branch instruction, and then align to
+ // LogAlign which is the largest possible alignment in the function.
+ unsigned LogAlign = MF->getAlignment();
+ assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
+ unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
+ DEBUG(dbgs() << format("Split in middle of big block before %#x",
+ BaseInsertOffset));
+
+ // The 4 in the following is for the unconditional branch we'll be inserting
+ // Alignment of the island is handled
+ // inside isOffsetInRange.
+ BaseInsertOffset -= 4;
+
+ DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
+ << " la=" << LogAlign << '\n');
+
+ // This could point off the end of the block if we've already got constant
+ // pool entries following this block; only the last one is in the water list.
+ // Back past any possible branches (allow for a conditional and a maximally
+ // long unconditional).
+ if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
+ BaseInsertOffset = UserBBI.postOffset() - 8;
+ DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
+ }
+ unsigned EndInsertOffset = BaseInsertOffset + 4 +
+ CPEMI->getOperand(2).getImm();
+ MachineBasicBlock::iterator MI = UserMI;
+ ++MI;
+ unsigned CPUIndex = CPUserIndex+1;
+ unsigned NumCPUsers = CPUsers.size();
+ //MachineInstr *LastIT = 0;
+ for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
+ Offset < BaseInsertOffset;
+ Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) {
+ assert(MI != UserMBB->end() && "Fell off end of block");
+ if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
+ CPUser &U = CPUsers[CPUIndex];
+ if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
+ // Shift intertion point by one unit of alignment so it is within reach.
+ BaseInsertOffset -= 1u << LogAlign;
+ EndInsertOffset -= 1u << LogAlign;
+ }
+ // This is overly conservative, as we don't account for CPEMIs being
+ // reused within the block, but it doesn't matter much. Also assume CPEs
+ // are added in order with alignment padding. We may eventually be able
+ // to pack the aligned CPEs better.
+ EndInsertOffset += U.CPEMI->getOperand(2).getImm();
+ CPUIndex++;
+ }
+ }
+
+ --MI;
+ NewMBB = splitBlockBeforeInstr(MI);
+}
+
+/// handleConstantPoolUser - Analyze the specified user, checking to see if it
+/// is out-of-range. If so, pick up the constant pool value and move it some
+/// place in-range. Return true if we changed any addresses (thus must run
+/// another pass of branch lengthening), false otherwise.
+bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
+ CPUser &U = CPUsers[CPUserIndex];
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+ unsigned CPI = CPEMI->getOperand(1).getIndex();
+ unsigned Size = CPEMI->getOperand(2).getImm();
+ // Compute this only once, it's expensive.
+ unsigned UserOffset = getUserOffset(U);
+
+ // See if the current entry is within range, or there is a clone of it
+ // in range.
+ int result = findInRangeCPEntry(U, UserOffset);
+ if (result==1) return false;
+ else if (result==2) return true;
+
+
+ // Look for water where we can place this CPE.
+ MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
+ MachineBasicBlock *NewMBB;
+ water_iterator IP;
+ if (findAvailableWater(U, UserOffset, IP)) {
+ DEBUG(dbgs() << "Found water in range\n");
+ MachineBasicBlock *WaterBB = *IP;
+
+ // If the original WaterList entry was "new water" on this iteration,
+ // propagate that to the new island. This is just keeping NewWaterList
+ // updated to match the WaterList, which will be updated below.
+ if (NewWaterList.erase(WaterBB))
+ NewWaterList.insert(NewIsland);
+
+ // The new CPE goes before the following block (NewMBB).
+ NewMBB = std::next(MachineFunction::iterator(WaterBB));
+
+ } else {
+ // No water found.
+ // we first see if a longer form of the instrucion could have reached
+ // the constant. in that case we won't bother to split
+ if (!NoLoadRelaxation) {
+ result = findLongFormInRangeCPEntry(U, UserOffset);
+ if (result != 0) return true;
+ }
+ DEBUG(dbgs() << "No water found\n");
+ createNewWater(CPUserIndex, UserOffset, NewMBB);
+
+ // splitBlockBeforeInstr adds to WaterList, which is important when it is
+ // called while handling branches so that the water will be seen on the
+ // next iteration for constant pools, but in this context, we don't want
+ // it. Check for this so it will be removed from the WaterList.
+ // Also remove any entry from NewWaterList.
+ MachineBasicBlock *WaterBB = std::prev(MachineFunction::iterator(NewMBB));
+ IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
+ if (IP != WaterList.end())
+ NewWaterList.erase(WaterBB);
+
+ // We are adding new water. Update NewWaterList.
+ NewWaterList.insert(NewIsland);
+ }
+
+ // Remove the original WaterList entry; we want subsequent insertions in
+ // this vicinity to go after the one we're about to insert. This
+ // considerably reduces the number of times we have to move the same CPE
+ // more than once and is also important to ensure the algorithm terminates.
+ if (IP != WaterList.end())
+ WaterList.erase(IP);
+
+ // Okay, we know we can put an island before NewMBB now, do it!
+ MF->insert(NewMBB, NewIsland);
+
+ // Update internal data structures to account for the newly inserted MBB.
+ updateForInsertedWaterBlock(NewIsland);
+
+ // Decrement the old entry, and remove it if refcount becomes 0.
+ decrementCPEReferenceCount(CPI, CPEMI);
+
+ // No existing clone of this CPE is within range.
+ // We will be generating a new clone. Get a UID for it.
+ unsigned ID = createPICLabelUId();
+
+ // Now that we have an island to add the CPE to, clone the original CPE and
+ // add it to the island.
+ U.HighWaterMark = NewIsland;
+ U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
+ .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
+ CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
+ ++NumCPEs;
+
+ // Mark the basic block as aligned as required by the const-pool entry.
+ NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
+
+ // Increase the size of the island block to account for the new entry.
+ BBInfo[NewIsland->getNumber()].Size += Size;
+ adjustBBOffsetsAfter(std::prev(MachineFunction::iterator(NewIsland)));
+
+
+
+ // Finally, change the CPI in the instruction operand to be ID.
+ for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
+ if (UserMI->getOperand(i).isCPI()) {
+ UserMI->getOperand(i).setIndex(ID);
+ break;
+ }
+
+ DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
+ << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
+
+ return true;
+}
+
+/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
+/// sizes and offsets of impacted basic blocks.
+void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
+ MachineBasicBlock *CPEBB = CPEMI->getParent();
+ unsigned Size = CPEMI->getOperand(2).getImm();
+ CPEMI->eraseFromParent();
+ BBInfo[CPEBB->getNumber()].Size -= Size;
+ // All succeeding offsets have the current size value added in, fix this.
+ if (CPEBB->empty()) {
+ BBInfo[CPEBB->getNumber()].Size = 0;
+
+ // This block no longer needs to be aligned.
+ CPEBB->setAlignment(0);
+ } else
+ // Entries are sorted by descending alignment, so realign from the front.
+ CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
+
+ adjustBBOffsetsAfter(CPEBB);
+ // An island has only one predecessor BB and one successor BB. Check if
+ // this BB's predecessor jumps directly to this BB's successor. This
+ // shouldn't happen currently.
+ assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
+ // FIXME: remove the empty blocks after all the work is done?
+}
+
+/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
+/// are zero.
+bool MipsConstantIslands::removeUnusedCPEntries() {
+ unsigned MadeChange = false;
+ for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
+ std::vector<CPEntry> &CPEs = CPEntries[i];
+ for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
+ if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
+ removeDeadCPEMI(CPEs[j].CPEMI);
+ CPEs[j].CPEMI = nullptr;
+ MadeChange = true;
+ }
+ }
+ }
+ return MadeChange;
+}
+
+/// isBBInRange - Returns true if the distance between specific MI and
+/// specific BB can fit in MI's displacement field.
+bool MipsConstantIslands::isBBInRange
+ (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
+
+unsigned PCAdj = 4;
+
+ unsigned BrOffset = getOffsetOf(MI) + PCAdj;
+ unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
+
+ DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
+ << " from BB#" << MI->getParent()->getNumber()
+ << " max delta=" << MaxDisp
+ << " from " << getOffsetOf(MI) << " to " << DestOffset
+ << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
+
+ if (BrOffset <= DestOffset) {
+ // Branch before the Dest.
+ if (DestOffset-BrOffset <= MaxDisp)
+ return true;
+ } else {
+ if (BrOffset-DestOffset <= MaxDisp)
+ return true;
+ }
+ return false;
+}
+
+/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
+/// away to fit in its displacement field.
+bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ unsigned TargetOperand = branchTargetOperand(MI);
+ MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
+
+ // Check to see if the DestBB is already in-range.
+ if (isBBInRange(MI, DestBB, Br.MaxDisp))
+ return false;
+
+ if (!Br.isCond)
+ return fixupUnconditionalBr(Br);
+ return fixupConditionalBr(Br);
+}
+
+/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
+/// too far away to fit in its displacement field. If the LR register has been
+/// spilled in the epilogue, then we can use BL to implement a far jump.
+/// Otherwise, add an intermediate branch instruction to a branch.
+bool
+MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
+ // Use BL to implement far jump.
+ unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
+ if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
+ Br.MaxDisp = BimmX16MaxDisp;
+ MI->setDesc(TII->get(Mips::BimmX16));
+ }
+ else {
+ // need to give the math a more careful look here
+ // this is really a segment address and not
+ // a PC relative address. FIXME. But I think that
+ // just reducing the bits by 1 as I've done is correct.
+ // The basic block we are branching too much be longword aligned.
+ // we know that RA is saved because we always save it right now.
+ // this requirement will be relaxed later but we also have an alternate
+ // way to implement this that I will implement that does not need jal.
+ // We should have a way to back out this alignment restriction if we "can" later.
+ // but it is not harmful.
+ //
+ DestBB->setAlignment(2);
+ Br.MaxDisp = ((1<<24)-1) * 2;
+ MI->setDesc(TII->get(Mips::JalB16));
+ }
+ BBInfo[MBB->getNumber()].Size += 2;
+ adjustBBOffsetsAfter(MBB);
+ HasFarJump = true;
+ ++NumUBrFixed;
+
+ DEBUG(dbgs() << " Changed B to long jump " << *MI);
+
+ return true;
+}
+
+
+/// fixupConditionalBr - Fix up a conditional branch whose destination is too
+/// far away to fit in its displacement field. It is converted to an inverse
+/// conditional branch + an unconditional branch to the destination.
+bool
+MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ unsigned TargetOperand = branchTargetOperand(MI);
+ MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
+ unsigned Opcode = MI->getOpcode();
+ unsigned LongFormOpcode = longformBranchOpcode(Opcode);
+ unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
+
+ // Check to see if the DestBB is already in-range.
+ if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
+ Br.MaxDisp = LongFormMaxOff;
+ MI->setDesc(TII->get(LongFormOpcode));
+ return true;
+ }
+
+ // Add an unconditional branch to the destination and invert the branch
+ // condition to jump over it:
+ // bteqz L1
+ // =>
+ // bnez L2
+ // b L1
+ // L2:
+
+ // If the branch is at the end of its MBB and that has a fall-through block,
+ // direct the updated conditional branch to the fall-through block. Otherwise,
+ // split the MBB before the next instruction.
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineInstr *BMI = &MBB->back();
+ bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
+ unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
+
+ ++NumCBrFixed;
+ if (BMI != MI) {
+ if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
+ isUnconditionalBranch(BMI->getOpcode())) {
+ // Last MI in the BB is an unconditional branch. Can we simply invert the
+ // condition and swap destinations:
+ // beqz L1
+ // b L2
+ // =>
+ // bnez L2
+ // b L1
+ unsigned BMITargetOperand = branchTargetOperand(BMI);
+ MachineBasicBlock *NewDest =
+ BMI->getOperand(BMITargetOperand).getMBB();
+ if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
+ DEBUG(dbgs() << " Invert Bcc condition and swap its destination with "
+ << *BMI);
+ MI->setDesc(TII->get(OppositeBranchOpcode));
+ BMI->getOperand(BMITargetOperand).setMBB(DestBB);
+ MI->getOperand(TargetOperand).setMBB(NewDest);
+ return true;
+ }
+ }
+ }
+
+
+ if (NeedSplit) {
+ splitBlockBeforeInstr(MI);
+ // No need for the branch to the next block. We're adding an unconditional
+ // branch to the destination.
+ int delta = TII->GetInstSizeInBytes(&MBB->back());
+ BBInfo[MBB->getNumber()].Size -= delta;
+ MBB->back().eraseFromParent();
+ // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
+ }
+ MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(MBB));
+
+ DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber()
+ << " also invert condition and change dest. to BB#"
+ << NextBB->getNumber() << "\n");
+
+ // Insert a new conditional branch and a new unconditional branch.
+ // Also update the ImmBranch as well as adding a new entry for the new branch.
+ if (MI->getNumExplicitOperands() == 2) {
+ BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
+ .addReg(MI->getOperand(0).getReg())
+ .addMBB(NextBB);
+ } else {
+ BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
+ .addMBB(NextBB);
+ }
+ Br.MI = &MBB->back();
+ BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
+ BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
+ BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
+ unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
+ ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
+
+ // Remove the old conditional branch. It may or may not still be in MBB.
+ BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
+ MI->eraseFromParent();
+ adjustBBOffsetsAfter(MBB);
+ return true;
+}
+
+
+void MipsConstantIslands::prescanForConstants() {
+ unsigned J = 0;
+ (void)J;
+ for (MachineFunction::iterator B =
+ MF->begin(), E = MF->end(); B != E; ++B) {
+ for (MachineBasicBlock::instr_iterator I =
+ B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
+ switch(I->getDesc().getOpcode()) {
+ case Mips::LwConstant32: {
+ PrescannedForConstants = true;
+ DEBUG(dbgs() << "constant island constant " << *I << "\n");
+ J = I->getNumOperands();
+ DEBUG(dbgs() << "num operands " << J << "\n");
+ MachineOperand& Literal = I->getOperand(1);
+ if (Literal.isImm()) {
+ int64_t V = Literal.getImm();
+ DEBUG(dbgs() << "literal " << V << "\n");
+ Type *Int32Ty =
+ Type::getInt32Ty(MF->getFunction()->getContext());
+ const Constant *C = ConstantInt::get(Int32Ty, V);
+ unsigned index = MCP->getConstantPoolIndex(C, 4);
+ I->getOperand(2).ChangeToImmediate(index);
+ DEBUG(dbgs() << "constant island constant " << *I << "\n");
+ I->setDesc(TII->get(Mips::LwRxPcTcp16));
+ I->RemoveOperand(1);
+ I->RemoveOperand(1);
+ I->addOperand(MachineOperand::CreateCPI(index, 0));
+ I->addOperand(MachineOperand::CreateImm(4));
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ }
+}
+
diff --git a/contrib/llvm/lib/Target/Mips/MipsDSPInstrFormats.td b/contrib/llvm/lib/Target/Mips/MipsDSPInstrFormats.td
new file mode 100644
index 0000000..b5d52ce
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsDSPInstrFormats.td
@@ -0,0 +1,337 @@
+//===- MipsDSPInstrFormats.td - Mips Instruction Formats ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+def HasDSP : Predicate<"Subtarget->hasDSP()">,
+ AssemblerPredicate<"FeatureDSP">;
+def HasDSPR2 : Predicate<"Subtarget->hasDSPR2()">,
+ AssemblerPredicate<"FeatureDSPR2">;
+
+// Fields.
+class Field6<bits<6> val> {
+ bits<6> V = val;
+}
+
+def SPECIAL3_OPCODE : Field6<0b011111>;
+def REGIMM_OPCODE : Field6<0b000001>;
+
+class DSPInst : MipsInst<(outs), (ins), "", [], NoItinerary, FrmOther> {
+ let Predicates = [HasDSP];
+}
+
+class PseudoDSP<dag outs, dag ins, list<dag> pattern,
+ InstrItinClass itin = IIPseudo>:
+ MipsPseudo<outs, ins, pattern, itin> {
+ let Predicates = [HasDSP];
+}
+
+// ADDU.QB sub-class format.
+class ADDU_QB_FMT<bits<5> op> : DSPInst {
+ bits<5> rd;
+ bits<5> rs;
+ bits<5> rt;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b010000;
+}
+
+class RADDU_W_QB_FMT<bits<5> op> : DSPInst {
+ bits<5> rd;
+ bits<5> rs;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = 0;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b010000;
+}
+
+// CMPU.EQ.QB sub-class format.
+class CMP_EQ_QB_R2_FMT<bits<5> op> : DSPInst {
+ bits<5> rs;
+ bits<5> rt;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = 0;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b010001;
+}
+
+class CMP_EQ_QB_R3_FMT<bits<5> op> : DSPInst {
+ bits<5> rs;
+ bits<5> rt;
+ bits<5> rd;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b010001;
+}
+
+class PRECR_SRA_PH_W_FMT<bits<5> op> : DSPInst {
+ bits<5> rs;
+ bits<5> rt;
+ bits<5> sa;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = sa;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b010001;
+}
+
+// ABSQ_S.PH sub-class format.
+class ABSQ_S_PH_R2_FMT<bits<5> op> : DSPInst {
+ bits<5> rd;
+ bits<5> rt;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = 0;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b010010;
+}
+
+
+class REPL_FMT<bits<5> op> : DSPInst {
+ bits<5> rd;
+ bits<10> imm;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-16} = imm;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b010010;
+}
+
+// SHLL.QB sub-class format.
+class SHLL_QB_FMT<bits<5> op> : DSPInst {
+ bits<5> rd;
+ bits<5> rt;
+ bits<5> rs_sa;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs_sa;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b010011;
+}
+
+// LX sub-class format.
+class LX_FMT<bits<5> op> : DSPInst {
+ bits<5> rd;
+ bits<5> base;
+ bits<5> index;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = base;
+ let Inst{20-16} = index;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b001010;
+}
+
+// ADDUH.QB sub-class format.
+class ADDUH_QB_FMT<bits<5> op> : DSPInst {
+ bits<5> rd;
+ bits<5> rs;
+ bits<5> rt;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b011000;
+}
+
+// APPEND sub-class format.
+class APPEND_FMT<bits<5> op> : DSPInst {
+ bits<5> rt;
+ bits<5> rs;
+ bits<5> sa;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = sa;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b110001;
+}
+
+// DPA.W.PH sub-class format.
+class DPA_W_PH_FMT<bits<5> op> : DSPInst {
+ bits<2> ac;
+ bits<5> rs;
+ bits<5> rt;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-13} = 0;
+ let Inst{12-11} = ac;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b110000;
+}
+
+// MULT sub-class format.
+class MULT_FMT<bits<6> opcode, bits<6> funct> : DSPInst {
+ bits<2> ac;
+ bits<5> rs;
+ bits<5> rt;
+
+ let Opcode = opcode;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-13} = 0;
+ let Inst{12-11} = ac;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+// MFHI sub-class format.
+class MFHI_FMT<bits<6> funct> : DSPInst {
+ bits<5> rd;
+ bits<2> ac;
+
+ let Inst{31-26} = 0;
+ let Inst{25-23} = 0;
+ let Inst{22-21} = ac;
+ let Inst{20-16} = 0;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+// MTHI sub-class format.
+class MTHI_FMT<bits<6> funct> : DSPInst {
+ bits<5> rs;
+ bits<2> ac;
+
+ let Inst{31-26} = 0;
+ let Inst{25-21} = rs;
+ let Inst{20-13} = 0;
+ let Inst{12-11} = ac;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+// EXTR.W sub-class format (type 1).
+class EXTR_W_TY1_FMT<bits<5> op> : DSPInst {
+ bits<5> rt;
+ bits<2> ac;
+ bits<5> shift_rs;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = shift_rs;
+ let Inst{20-16} = rt;
+ let Inst{15-13} = 0;
+ let Inst{12-11} = ac;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b111000;
+}
+
+// SHILO sub-class format.
+class SHILO_R1_FMT<bits<5> op> : DSPInst {
+ bits<2> ac;
+ bits<6> shift;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-20} = shift;
+ let Inst{19-13} = 0;
+ let Inst{12-11} = ac;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b111000;
+}
+
+class SHILO_R2_FMT<bits<5> op> : DSPInst {
+ bits<2> ac;
+ bits<5> rs;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs;
+ let Inst{20-13} = 0;
+ let Inst{12-11} = ac;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b111000;
+}
+
+class RDDSP_FMT<bits<5> op> : DSPInst {
+ bits<5> rd;
+ bits<10> mask;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-16} = mask;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b111000;
+}
+
+class WRDSP_FMT<bits<5> op> : DSPInst {
+ bits<5> rs;
+ bits<10> mask;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs;
+ let Inst{20-11} = mask;
+ let Inst{10-6} = op;
+ let Inst{5-0} = 0b111000;
+}
+
+class BPOSGE32_FMT<bits<5> op> : DSPInst {
+ bits<16> offset;
+
+ let Opcode = REGIMM_OPCODE.V;
+
+ let Inst{25-21} = 0;
+ let Inst{20-16} = op;
+ let Inst{15-0} = offset;
+}
+
+// INSV sub-class format.
+class INSV_FMT<bits<6> op> : DSPInst {
+ bits<5> rt;
+ bits<5> rs;
+
+ let Opcode = SPECIAL3_OPCODE.V;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-6} = 0;
+ let Inst{5-0} = op;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsDSPInstrInfo.td b/contrib/llvm/lib/Target/Mips/MipsDSPInstrInfo.td
new file mode 100644
index 0000000..d268384
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsDSPInstrInfo.td
@@ -0,0 +1,1417 @@
+//===- MipsDSPInstrInfo.td - DSP ASE instructions -*- tablegen ------------*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes Mips DSP ASE instructions.
+//
+//===----------------------------------------------------------------------===//
+
+// ImmLeaf
+def immZExt2 : ImmLeaf<i32, [{return isUInt<2>(Imm);}]>;
+def immZExt3 : ImmLeaf<i32, [{return isUInt<3>(Imm);}]>;
+def immZExt4 : ImmLeaf<i32, [{return isUInt<4>(Imm);}]>;
+def immZExt8 : ImmLeaf<i32, [{return isUInt<8>(Imm);}]>;
+def immZExt10 : ImmLeaf<i32, [{return isUInt<10>(Imm);}]>;
+def immSExt6 : ImmLeaf<i32, [{return isInt<6>(Imm);}]>;
+
+// Mips-specific dsp nodes
+def SDT_MipsExtr : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
+ SDTCisVT<2, untyped>]>;
+def SDT_MipsShilo : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
+ SDTCisSameAs<0, 2>, SDTCisVT<1, i32>]>;
+def SDT_MipsDPA : SDTypeProfile<1, 3, [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
+ SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
+def SDT_MipsSHIFT_DSP : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
+ SDTCisVT<2, i32>]>;
+
+class MipsDSPBase<string Opc, SDTypeProfile Prof> :
+ SDNode<!strconcat("MipsISD::", Opc), Prof>;
+
+class MipsDSPSideEffectBase<string Opc, SDTypeProfile Prof> :
+ SDNode<!strconcat("MipsISD::", Opc), Prof, [SDNPHasChain, SDNPSideEffect]>;
+
+def MipsEXTP : MipsDSPSideEffectBase<"EXTP", SDT_MipsExtr>;
+def MipsEXTPDP : MipsDSPSideEffectBase<"EXTPDP", SDT_MipsExtr>;
+def MipsEXTR_S_H : MipsDSPSideEffectBase<"EXTR_S_H", SDT_MipsExtr>;
+def MipsEXTR_W : MipsDSPSideEffectBase<"EXTR_W", SDT_MipsExtr>;
+def MipsEXTR_R_W : MipsDSPSideEffectBase<"EXTR_R_W", SDT_MipsExtr>;
+def MipsEXTR_RS_W : MipsDSPSideEffectBase<"EXTR_RS_W", SDT_MipsExtr>;
+
+def MipsSHILO : MipsDSPBase<"SHILO", SDT_MipsShilo>;
+def MipsMTHLIP : MipsDSPSideEffectBase<"MTHLIP", SDT_MipsShilo>;
+
+def MipsMULSAQ_S_W_PH : MipsDSPSideEffectBase<"MULSAQ_S_W_PH", SDT_MipsDPA>;
+def MipsMAQ_S_W_PHL : MipsDSPSideEffectBase<"MAQ_S_W_PHL", SDT_MipsDPA>;
+def MipsMAQ_S_W_PHR : MipsDSPSideEffectBase<"MAQ_S_W_PHR", SDT_MipsDPA>;
+def MipsMAQ_SA_W_PHL : MipsDSPSideEffectBase<"MAQ_SA_W_PHL", SDT_MipsDPA>;
+def MipsMAQ_SA_W_PHR : MipsDSPSideEffectBase<"MAQ_SA_W_PHR", SDT_MipsDPA>;
+
+def MipsDPAU_H_QBL : MipsDSPBase<"DPAU_H_QBL", SDT_MipsDPA>;
+def MipsDPAU_H_QBR : MipsDSPBase<"DPAU_H_QBR", SDT_MipsDPA>;
+def MipsDPSU_H_QBL : MipsDSPBase<"DPSU_H_QBL", SDT_MipsDPA>;
+def MipsDPSU_H_QBR : MipsDSPBase<"DPSU_H_QBR", SDT_MipsDPA>;
+def MipsDPAQ_S_W_PH : MipsDSPSideEffectBase<"DPAQ_S_W_PH", SDT_MipsDPA>;
+def MipsDPSQ_S_W_PH : MipsDSPSideEffectBase<"DPSQ_S_W_PH", SDT_MipsDPA>;
+def MipsDPAQ_SA_L_W : MipsDSPSideEffectBase<"DPAQ_SA_L_W", SDT_MipsDPA>;
+def MipsDPSQ_SA_L_W : MipsDSPSideEffectBase<"DPSQ_SA_L_W", SDT_MipsDPA>;
+
+def MipsDPA_W_PH : MipsDSPBase<"DPA_W_PH", SDT_MipsDPA>;
+def MipsDPS_W_PH : MipsDSPBase<"DPS_W_PH", SDT_MipsDPA>;
+def MipsDPAQX_S_W_PH : MipsDSPSideEffectBase<"DPAQX_S_W_PH", SDT_MipsDPA>;
+def MipsDPAQX_SA_W_PH : MipsDSPSideEffectBase<"DPAQX_SA_W_PH", SDT_MipsDPA>;
+def MipsDPAX_W_PH : MipsDSPBase<"DPAX_W_PH", SDT_MipsDPA>;
+def MipsDPSX_W_PH : MipsDSPBase<"DPSX_W_PH", SDT_MipsDPA>;
+def MipsDPSQX_S_W_PH : MipsDSPSideEffectBase<"DPSQX_S_W_PH", SDT_MipsDPA>;
+def MipsDPSQX_SA_W_PH : MipsDSPSideEffectBase<"DPSQX_SA_W_PH", SDT_MipsDPA>;
+def MipsMULSA_W_PH : MipsDSPBase<"MULSA_W_PH", SDT_MipsDPA>;
+
+def MipsMULT : MipsDSPBase<"MULT", SDT_MipsDPA>;
+def MipsMULTU : MipsDSPBase<"MULTU", SDT_MipsDPA>;
+def MipsMADD_DSP : MipsDSPBase<"MADD_DSP", SDT_MipsDPA>;
+def MipsMADDU_DSP : MipsDSPBase<"MADDU_DSP", SDT_MipsDPA>;
+def MipsMSUB_DSP : MipsDSPBase<"MSUB_DSP", SDT_MipsDPA>;
+def MipsMSUBU_DSP : MipsDSPBase<"MSUBU_DSP", SDT_MipsDPA>;
+def MipsSHLL_DSP : MipsDSPBase<"SHLL_DSP", SDT_MipsSHIFT_DSP>;
+def MipsSHRA_DSP : MipsDSPBase<"SHRA_DSP", SDT_MipsSHIFT_DSP>;
+def MipsSHRL_DSP : MipsDSPBase<"SHRL_DSP", SDT_MipsSHIFT_DSP>;
+def MipsSETCC_DSP : MipsDSPBase<"SETCC_DSP", SDTSetCC>;
+def MipsSELECT_CC_DSP : MipsDSPBase<"SELECT_CC_DSP", SDTSelectCC>;
+
+// Flags.
+class Uses<list<Register> Regs> {
+ list<Register> Uses = Regs;
+}
+
+class Defs<list<Register> Regs> {
+ list<Register> Defs = Regs;
+}
+
+// Instruction encoding.
+class ADDU_QB_ENC : ADDU_QB_FMT<0b00000>;
+class ADDU_S_QB_ENC : ADDU_QB_FMT<0b00100>;
+class SUBU_QB_ENC : ADDU_QB_FMT<0b00001>;
+class SUBU_S_QB_ENC : ADDU_QB_FMT<0b00101>;
+class ADDQ_PH_ENC : ADDU_QB_FMT<0b01010>;
+class ADDQ_S_PH_ENC : ADDU_QB_FMT<0b01110>;
+class SUBQ_PH_ENC : ADDU_QB_FMT<0b01011>;
+class SUBQ_S_PH_ENC : ADDU_QB_FMT<0b01111>;
+class ADDQ_S_W_ENC : ADDU_QB_FMT<0b10110>;
+class SUBQ_S_W_ENC : ADDU_QB_FMT<0b10111>;
+class ADDSC_ENC : ADDU_QB_FMT<0b10000>;
+class ADDWC_ENC : ADDU_QB_FMT<0b10001>;
+class MODSUB_ENC : ADDU_QB_FMT<0b10010>;
+class RADDU_W_QB_ENC : RADDU_W_QB_FMT<0b10100>;
+class ABSQ_S_PH_ENC : ABSQ_S_PH_R2_FMT<0b01001>;
+class ABSQ_S_W_ENC : ABSQ_S_PH_R2_FMT<0b10001>;
+class PRECRQ_QB_PH_ENC : CMP_EQ_QB_R3_FMT<0b01100>;
+class PRECRQ_PH_W_ENC : CMP_EQ_QB_R3_FMT<0b10100>;
+class PRECRQ_RS_PH_W_ENC : CMP_EQ_QB_R3_FMT<0b10101>;
+class PRECRQU_S_QB_PH_ENC : CMP_EQ_QB_R3_FMT<0b01111>;
+class PRECEQ_W_PHL_ENC : ABSQ_S_PH_R2_FMT<0b01100>;
+class PRECEQ_W_PHR_ENC : ABSQ_S_PH_R2_FMT<0b01101>;
+class PRECEQU_PH_QBL_ENC : ABSQ_S_PH_R2_FMT<0b00100>;
+class PRECEQU_PH_QBR_ENC : ABSQ_S_PH_R2_FMT<0b00101>;
+class PRECEQU_PH_QBLA_ENC : ABSQ_S_PH_R2_FMT<0b00110>;
+class PRECEQU_PH_QBRA_ENC : ABSQ_S_PH_R2_FMT<0b00111>;
+class PRECEU_PH_QBL_ENC : ABSQ_S_PH_R2_FMT<0b11100>;
+class PRECEU_PH_QBR_ENC : ABSQ_S_PH_R2_FMT<0b11101>;
+class PRECEU_PH_QBLA_ENC : ABSQ_S_PH_R2_FMT<0b11110>;
+class PRECEU_PH_QBRA_ENC : ABSQ_S_PH_R2_FMT<0b11111>;
+class SHLL_QB_ENC : SHLL_QB_FMT<0b00000>;
+class SHLLV_QB_ENC : SHLL_QB_FMT<0b00010>;
+class SHRL_QB_ENC : SHLL_QB_FMT<0b00001>;
+class SHRLV_QB_ENC : SHLL_QB_FMT<0b00011>;
+class SHLL_PH_ENC : SHLL_QB_FMT<0b01000>;
+class SHLLV_PH_ENC : SHLL_QB_FMT<0b01010>;
+class SHLL_S_PH_ENC : SHLL_QB_FMT<0b01100>;
+class SHLLV_S_PH_ENC : SHLL_QB_FMT<0b01110>;
+class SHRA_PH_ENC : SHLL_QB_FMT<0b01001>;
+class SHRAV_PH_ENC : SHLL_QB_FMT<0b01011>;
+class SHRA_R_PH_ENC : SHLL_QB_FMT<0b01101>;
+class SHRAV_R_PH_ENC : SHLL_QB_FMT<0b01111>;
+class SHLL_S_W_ENC : SHLL_QB_FMT<0b10100>;
+class SHLLV_S_W_ENC : SHLL_QB_FMT<0b10110>;
+class SHRA_R_W_ENC : SHLL_QB_FMT<0b10101>;
+class SHRAV_R_W_ENC : SHLL_QB_FMT<0b10111>;
+class MULEU_S_PH_QBL_ENC : ADDU_QB_FMT<0b00110>;
+class MULEU_S_PH_QBR_ENC : ADDU_QB_FMT<0b00111>;
+class MULEQ_S_W_PHL_ENC : ADDU_QB_FMT<0b11100>;
+class MULEQ_S_W_PHR_ENC : ADDU_QB_FMT<0b11101>;
+class MULQ_RS_PH_ENC : ADDU_QB_FMT<0b11111>;
+class MULSAQ_S_W_PH_ENC : DPA_W_PH_FMT<0b00110>;
+class MAQ_S_W_PHL_ENC : DPA_W_PH_FMT<0b10100>;
+class MAQ_S_W_PHR_ENC : DPA_W_PH_FMT<0b10110>;
+class MAQ_SA_W_PHL_ENC : DPA_W_PH_FMT<0b10000>;
+class MAQ_SA_W_PHR_ENC : DPA_W_PH_FMT<0b10010>;
+class MFHI_ENC : MFHI_FMT<0b010000>;
+class MFLO_ENC : MFHI_FMT<0b010010>;
+class MTHI_ENC : MTHI_FMT<0b010001>;
+class MTLO_ENC : MTHI_FMT<0b010011>;
+class DPAU_H_QBL_ENC : DPA_W_PH_FMT<0b00011>;
+class DPAU_H_QBR_ENC : DPA_W_PH_FMT<0b00111>;
+class DPSU_H_QBL_ENC : DPA_W_PH_FMT<0b01011>;
+class DPSU_H_QBR_ENC : DPA_W_PH_FMT<0b01111>;
+class DPAQ_S_W_PH_ENC : DPA_W_PH_FMT<0b00100>;
+class DPSQ_S_W_PH_ENC : DPA_W_PH_FMT<0b00101>;
+class DPAQ_SA_L_W_ENC : DPA_W_PH_FMT<0b01100>;
+class DPSQ_SA_L_W_ENC : DPA_W_PH_FMT<0b01101>;
+class MULT_DSP_ENC : MULT_FMT<0b000000, 0b011000>;
+class MULTU_DSP_ENC : MULT_FMT<0b000000, 0b011001>;
+class MADD_DSP_ENC : MULT_FMT<0b011100, 0b000000>;
+class MADDU_DSP_ENC : MULT_FMT<0b011100, 0b000001>;
+class MSUB_DSP_ENC : MULT_FMT<0b011100, 0b000100>;
+class MSUBU_DSP_ENC : MULT_FMT<0b011100, 0b000101>;
+class CMPU_EQ_QB_ENC : CMP_EQ_QB_R2_FMT<0b00000>;
+class CMPU_LT_QB_ENC : CMP_EQ_QB_R2_FMT<0b00001>;
+class CMPU_LE_QB_ENC : CMP_EQ_QB_R2_FMT<0b00010>;
+class CMPGU_EQ_QB_ENC : CMP_EQ_QB_R3_FMT<0b00100>;
+class CMPGU_LT_QB_ENC : CMP_EQ_QB_R3_FMT<0b00101>;
+class CMPGU_LE_QB_ENC : CMP_EQ_QB_R3_FMT<0b00110>;
+class CMP_EQ_PH_ENC : CMP_EQ_QB_R2_FMT<0b01000>;
+class CMP_LT_PH_ENC : CMP_EQ_QB_R2_FMT<0b01001>;
+class CMP_LE_PH_ENC : CMP_EQ_QB_R2_FMT<0b01010>;
+class BITREV_ENC : ABSQ_S_PH_R2_FMT<0b11011>;
+class PACKRL_PH_ENC : CMP_EQ_QB_R3_FMT<0b01110>;
+class REPL_QB_ENC : REPL_FMT<0b00010>;
+class REPL_PH_ENC : REPL_FMT<0b01010>;
+class REPLV_QB_ENC : ABSQ_S_PH_R2_FMT<0b00011>;
+class REPLV_PH_ENC : ABSQ_S_PH_R2_FMT<0b01011>;
+class PICK_QB_ENC : CMP_EQ_QB_R3_FMT<0b00011>;
+class PICK_PH_ENC : CMP_EQ_QB_R3_FMT<0b01011>;
+class LWX_ENC : LX_FMT<0b00000>;
+class LHX_ENC : LX_FMT<0b00100>;
+class LBUX_ENC : LX_FMT<0b00110>;
+class BPOSGE32_ENC : BPOSGE32_FMT<0b11100>;
+class INSV_ENC : INSV_FMT<0b001100>;
+
+class EXTP_ENC : EXTR_W_TY1_FMT<0b00010>;
+class EXTPV_ENC : EXTR_W_TY1_FMT<0b00011>;
+class EXTPDP_ENC : EXTR_W_TY1_FMT<0b01010>;
+class EXTPDPV_ENC : EXTR_W_TY1_FMT<0b01011>;
+class EXTR_W_ENC : EXTR_W_TY1_FMT<0b00000>;
+class EXTRV_W_ENC : EXTR_W_TY1_FMT<0b00001>;
+class EXTR_R_W_ENC : EXTR_W_TY1_FMT<0b00100>;
+class EXTRV_R_W_ENC : EXTR_W_TY1_FMT<0b00101>;
+class EXTR_RS_W_ENC : EXTR_W_TY1_FMT<0b00110>;
+class EXTRV_RS_W_ENC : EXTR_W_TY1_FMT<0b00111>;
+class EXTR_S_H_ENC : EXTR_W_TY1_FMT<0b01110>;
+class EXTRV_S_H_ENC : EXTR_W_TY1_FMT<0b01111>;
+class SHILO_ENC : SHILO_R1_FMT<0b11010>;
+class SHILOV_ENC : SHILO_R2_FMT<0b11011>;
+class MTHLIP_ENC : SHILO_R2_FMT<0b11111>;
+
+class RDDSP_ENC : RDDSP_FMT<0b10010>;
+class WRDSP_ENC : WRDSP_FMT<0b10011>;
+class ADDU_PH_ENC : ADDU_QB_FMT<0b01000>;
+class ADDU_S_PH_ENC : ADDU_QB_FMT<0b01100>;
+class SUBU_PH_ENC : ADDU_QB_FMT<0b01001>;
+class SUBU_S_PH_ENC : ADDU_QB_FMT<0b01101>;
+class CMPGDU_EQ_QB_ENC : CMP_EQ_QB_R3_FMT<0b11000>;
+class CMPGDU_LT_QB_ENC : CMP_EQ_QB_R3_FMT<0b11001>;
+class CMPGDU_LE_QB_ENC : CMP_EQ_QB_R3_FMT<0b11010>;
+class ABSQ_S_QB_ENC : ABSQ_S_PH_R2_FMT<0b00001>;
+class ADDUH_QB_ENC : ADDUH_QB_FMT<0b00000>;
+class ADDUH_R_QB_ENC : ADDUH_QB_FMT<0b00010>;
+class SUBUH_QB_ENC : ADDUH_QB_FMT<0b00001>;
+class SUBUH_R_QB_ENC : ADDUH_QB_FMT<0b00011>;
+class ADDQH_PH_ENC : ADDUH_QB_FMT<0b01000>;
+class ADDQH_R_PH_ENC : ADDUH_QB_FMT<0b01010>;
+class SUBQH_PH_ENC : ADDUH_QB_FMT<0b01001>;
+class SUBQH_R_PH_ENC : ADDUH_QB_FMT<0b01011>;
+class ADDQH_W_ENC : ADDUH_QB_FMT<0b10000>;
+class ADDQH_R_W_ENC : ADDUH_QB_FMT<0b10010>;
+class SUBQH_W_ENC : ADDUH_QB_FMT<0b10001>;
+class SUBQH_R_W_ENC : ADDUH_QB_FMT<0b10011>;
+class MUL_PH_ENC : ADDUH_QB_FMT<0b01100>;
+class MUL_S_PH_ENC : ADDUH_QB_FMT<0b01110>;
+class MULQ_S_W_ENC : ADDUH_QB_FMT<0b10110>;
+class MULQ_RS_W_ENC : ADDUH_QB_FMT<0b10111>;
+class MULQ_S_PH_ENC : ADDU_QB_FMT<0b11110>;
+class DPA_W_PH_ENC : DPA_W_PH_FMT<0b00000>;
+class DPS_W_PH_ENC : DPA_W_PH_FMT<0b00001>;
+class DPAQX_S_W_PH_ENC : DPA_W_PH_FMT<0b11000>;
+class DPAQX_SA_W_PH_ENC : DPA_W_PH_FMT<0b11010>;
+class DPAX_W_PH_ENC : DPA_W_PH_FMT<0b01000>;
+class DPSX_W_PH_ENC : DPA_W_PH_FMT<0b01001>;
+class DPSQX_S_W_PH_ENC : DPA_W_PH_FMT<0b11001>;
+class DPSQX_SA_W_PH_ENC : DPA_W_PH_FMT<0b11011>;
+class MULSA_W_PH_ENC : DPA_W_PH_FMT<0b00010>;
+class PRECR_QB_PH_ENC : CMP_EQ_QB_R3_FMT<0b01101>;
+class PRECR_SRA_PH_W_ENC : PRECR_SRA_PH_W_FMT<0b11110>;
+class PRECR_SRA_R_PH_W_ENC : PRECR_SRA_PH_W_FMT<0b11111>;
+class SHRA_QB_ENC : SHLL_QB_FMT<0b00100>;
+class SHRAV_QB_ENC : SHLL_QB_FMT<0b00110>;
+class SHRA_R_QB_ENC : SHLL_QB_FMT<0b00101>;
+class SHRAV_R_QB_ENC : SHLL_QB_FMT<0b00111>;
+class SHRL_PH_ENC : SHLL_QB_FMT<0b11001>;
+class SHRLV_PH_ENC : SHLL_QB_FMT<0b11011>;
+class APPEND_ENC : APPEND_FMT<0b00000>;
+class BALIGN_ENC : APPEND_FMT<0b10000>;
+class PREPEND_ENC : APPEND_FMT<0b00001>;
+
+// Instruction desc.
+class ADDU_QB_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin, RegisterOperand ROD,
+ RegisterOperand ROS, RegisterOperand ROT = ROS> {
+ dag OutOperandList = (outs ROD:$rd);
+ dag InOperandList = (ins ROS:$rs, ROT:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs, $rt");
+ list<dag> Pattern = [(set ROD:$rd, (OpNode ROS:$rs, ROT:$rt))];
+ InstrItinClass Itinerary = itin;
+}
+
+class RADDU_W_QB_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin, RegisterOperand ROD,
+ RegisterOperand ROS = ROD> {
+ dag OutOperandList = (outs ROD:$rd);
+ dag InOperandList = (ins ROS:$rs);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs");
+ list<dag> Pattern = [(set ROD:$rd, (OpNode ROS:$rs))];
+ InstrItinClass Itinerary = itin;
+}
+
+class CMP_EQ_QB_R2_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin, RegisterOperand ROS,
+ RegisterOperand ROT = ROS> {
+ dag OutOperandList = (outs);
+ dag InOperandList = (ins ROS:$rs, ROT:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$rs, $rt");
+ list<dag> Pattern = [(OpNode ROS:$rs, ROT:$rt)];
+ InstrItinClass Itinerary = itin;
+}
+
+class CMP_EQ_QB_R3_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin, RegisterOperand ROD,
+ RegisterOperand ROS, RegisterOperand ROT = ROS> {
+ dag OutOperandList = (outs ROD:$rd);
+ dag InOperandList = (ins ROS:$rs, ROT:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs, $rt");
+ list<dag> Pattern = [(set ROD:$rd, (OpNode ROS:$rs, ROT:$rt))];
+ InstrItinClass Itinerary = itin;
+}
+
+class PRECR_SRA_PH_W_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin, RegisterOperand ROT,
+ RegisterOperand ROS = ROT> {
+ dag OutOperandList = (outs ROT:$rt);
+ dag InOperandList = (ins ROS:$rs, uimm5:$sa, ROS:$src);
+ string AsmString = !strconcat(instr_asm, "\t$rt, $rs, $sa");
+ list<dag> Pattern = [(set ROT:$rt, (OpNode ROS:$src, ROS:$rs, immZExt5:$sa))];
+ InstrItinClass Itinerary = itin;
+ string Constraints = "$src = $rt";
+}
+
+class ABSQ_S_PH_R2_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin, RegisterOperand ROD,
+ RegisterOperand ROT = ROD> {
+ dag OutOperandList = (outs ROD:$rd);
+ dag InOperandList = (ins ROT:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rt");
+ list<dag> Pattern = [(set ROD:$rd, (OpNode ROT:$rt))];
+ InstrItinClass Itinerary = itin;
+}
+
+class REPL_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ ImmLeaf immPat, InstrItinClass itin, RegisterOperand RO> {
+ dag OutOperandList = (outs RO:$rd);
+ dag InOperandList = (ins uimm16:$imm);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $imm");
+ list<dag> Pattern = [(set RO:$rd, (OpNode immPat:$imm))];
+ InstrItinClass Itinerary = itin;
+}
+
+class SHLL_QB_R3_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin, RegisterOperand RO> {
+ dag OutOperandList = (outs RO:$rd);
+ dag InOperandList = (ins RO:$rt, GPR32Opnd:$rs_sa);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rt, $rs_sa");
+ list<dag> Pattern = [(set RO:$rd, (OpNode RO:$rt, GPR32Opnd:$rs_sa))];
+ InstrItinClass Itinerary = itin;
+}
+
+class SHLL_QB_R2_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ SDPatternOperator ImmPat, InstrItinClass itin,
+ RegisterOperand RO> {
+ dag OutOperandList = (outs RO:$rd);
+ dag InOperandList = (ins RO:$rt, uimm16:$rs_sa);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rt, $rs_sa");
+ list<dag> Pattern = [(set RO:$rd, (OpNode RO:$rt, ImmPat:$rs_sa))];
+ InstrItinClass Itinerary = itin;
+ bit hasSideEffects = 1;
+}
+
+class LX_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin> {
+ dag OutOperandList = (outs GPR32Opnd:$rd);
+ dag InOperandList = (ins PtrRC:$base, PtrRC:$index);
+ string AsmString = !strconcat(instr_asm, "\t$rd, ${index}(${base})");
+ list<dag> Pattern = [(set GPR32Opnd:$rd, (OpNode iPTR:$base, iPTR:$index))];
+ InstrItinClass Itinerary = itin;
+ bit mayLoad = 1;
+}
+
+class ADDUH_QB_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin, RegisterOperand ROD,
+ RegisterOperand ROS = ROD, RegisterOperand ROT = ROD> {
+ dag OutOperandList = (outs ROD:$rd);
+ dag InOperandList = (ins ROS:$rs, ROT:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs, $rt");
+ list<dag> Pattern = [(set ROD:$rd, (OpNode ROS:$rs, ROT:$rt))];
+ InstrItinClass Itinerary = itin;
+}
+
+class APPEND_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ SDPatternOperator ImmOp, InstrItinClass itin> {
+ dag OutOperandList = (outs GPR32Opnd:$rt);
+ dag InOperandList = (ins GPR32Opnd:$rs, uimm5:$sa, GPR32Opnd:$src);
+ string AsmString = !strconcat(instr_asm, "\t$rt, $rs, $sa");
+ list<dag> Pattern = [(set GPR32Opnd:$rt,
+ (OpNode GPR32Opnd:$src, GPR32Opnd:$rs, ImmOp:$sa))];
+ InstrItinClass Itinerary = itin;
+ string Constraints = "$src = $rt";
+}
+
+class EXTR_W_TY1_R2_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin> {
+ dag OutOperandList = (outs GPR32Opnd:$rt);
+ dag InOperandList = (ins ACC64DSPOpnd:$ac, GPR32Opnd:$shift_rs);
+ string AsmString = !strconcat(instr_asm, "\t$rt, $ac, $shift_rs");
+ InstrItinClass Itinerary = itin;
+}
+
+class EXTR_W_TY1_R1_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin> {
+ dag OutOperandList = (outs GPR32Opnd:$rt);
+ dag InOperandList = (ins ACC64DSPOpnd:$ac, uimm16:$shift_rs);
+ string AsmString = !strconcat(instr_asm, "\t$rt, $ac, $shift_rs");
+ InstrItinClass Itinerary = itin;
+}
+
+class SHILO_R1_DESC_BASE<string instr_asm, SDPatternOperator OpNode> {
+ dag OutOperandList = (outs ACC64DSPOpnd:$ac);
+ dag InOperandList = (ins simm16:$shift, ACC64DSPOpnd:$acin);
+ string AsmString = !strconcat(instr_asm, "\t$ac, $shift");
+ list<dag> Pattern = [(set ACC64DSPOpnd:$ac,
+ (OpNode immSExt6:$shift, ACC64DSPOpnd:$acin))];
+ string Constraints = "$acin = $ac";
+}
+
+class SHILO_R2_DESC_BASE<string instr_asm, SDPatternOperator OpNode> {
+ dag OutOperandList = (outs ACC64DSPOpnd:$ac);
+ dag InOperandList = (ins GPR32Opnd:$rs, ACC64DSPOpnd:$acin);
+ string AsmString = !strconcat(instr_asm, "\t$ac, $rs");
+ list<dag> Pattern = [(set ACC64DSPOpnd:$ac,
+ (OpNode GPR32Opnd:$rs, ACC64DSPOpnd:$acin))];
+ string Constraints = "$acin = $ac";
+}
+
+class MTHLIP_DESC_BASE<string instr_asm, SDPatternOperator OpNode> {
+ dag OutOperandList = (outs ACC64DSPOpnd:$ac);
+ dag InOperandList = (ins GPR32Opnd:$rs, ACC64DSPOpnd:$acin);
+ string AsmString = !strconcat(instr_asm, "\t$rs, $ac");
+ list<dag> Pattern = [(set ACC64DSPOpnd:$ac,
+ (OpNode GPR32Opnd:$rs, ACC64DSPOpnd:$acin))];
+ string Constraints = "$acin = $ac";
+}
+
+class RDDSP_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin> {
+ dag OutOperandList = (outs GPR32Opnd:$rd);
+ dag InOperandList = (ins uimm16:$mask);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $mask");
+ list<dag> Pattern = [(set GPR32Opnd:$rd, (OpNode immZExt10:$mask))];
+ InstrItinClass Itinerary = itin;
+}
+
+class WRDSP_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin> {
+ dag OutOperandList = (outs);
+ dag InOperandList = (ins GPR32Opnd:$rs, uimm16:$mask);
+ string AsmString = !strconcat(instr_asm, "\t$rs, $mask");
+ list<dag> Pattern = [(OpNode GPR32Opnd:$rs, immZExt10:$mask)];
+ InstrItinClass Itinerary = itin;
+}
+
+class DPA_W_PH_DESC_BASE<string instr_asm, SDPatternOperator OpNode> {
+ dag OutOperandList = (outs ACC64DSPOpnd:$ac);
+ dag InOperandList = (ins GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64DSPOpnd:$acin);
+ string AsmString = !strconcat(instr_asm, "\t$ac, $rs, $rt");
+ list<dag> Pattern = [(set ACC64DSPOpnd:$ac,
+ (OpNode GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64DSPOpnd:$acin))];
+ string Constraints = "$acin = $ac";
+}
+
+class MULT_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin> {
+ dag OutOperandList = (outs ACC64DSPOpnd:$ac);
+ dag InOperandList = (ins GPR32Opnd:$rs, GPR32Opnd:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$ac, $rs, $rt");
+ list<dag> Pattern = [(set ACC64DSPOpnd:$ac, (OpNode GPR32Opnd:$rs, GPR32Opnd:$rt))];
+ InstrItinClass Itinerary = itin;
+ bit isCommutable = 1;
+}
+
+class MADD_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin> {
+ dag OutOperandList = (outs ACC64DSPOpnd:$ac);
+ dag InOperandList = (ins GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64DSPOpnd:$acin);
+ string AsmString = !strconcat(instr_asm, "\t$ac, $rs, $rt");
+ list<dag> Pattern = [(set ACC64DSPOpnd:$ac,
+ (OpNode GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64DSPOpnd:$acin))];
+ InstrItinClass Itinerary = itin;
+ string Constraints = "$acin = $ac";
+}
+
+class MFHI_DESC_BASE<string instr_asm, RegisterOperand RO, SDNode OpNode,
+ InstrItinClass itin> {
+ dag OutOperandList = (outs GPR32Opnd:$rd);
+ dag InOperandList = (ins RO:$ac);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $ac");
+ list<dag> Pattern = [(set GPR32Opnd:$rd, (OpNode RO:$ac))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MTHI_DESC_BASE<string instr_asm, RegisterOperand RO, InstrItinClass itin> {
+ dag OutOperandList = (outs RO:$ac);
+ dag InOperandList = (ins GPR32Opnd:$rs);
+ string AsmString = !strconcat(instr_asm, "\t$rs, $ac");
+ InstrItinClass Itinerary = itin;
+}
+
+class BPOSGE32_PSEUDO_DESC_BASE<SDPatternOperator OpNode, InstrItinClass itin> :
+ MipsPseudo<(outs GPR32Opnd:$dst), (ins), [(set GPR32Opnd:$dst, (OpNode))]> {
+ bit usesCustomInserter = 1;
+}
+
+class BPOSGE32_DESC_BASE<string instr_asm, InstrItinClass itin> {
+ dag OutOperandList = (outs);
+ dag InOperandList = (ins brtarget:$offset);
+ string AsmString = !strconcat(instr_asm, "\t$offset");
+ InstrItinClass Itinerary = itin;
+ bit isBranch = 1;
+ bit isTerminator = 1;
+ bit hasDelaySlot = 1;
+}
+
+class INSV_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ InstrItinClass itin> {
+ dag OutOperandList = (outs GPR32Opnd:$rt);
+ dag InOperandList = (ins GPR32Opnd:$src, GPR32Opnd:$rs);
+ string AsmString = !strconcat(instr_asm, "\t$rt, $rs");
+ list<dag> Pattern = [(set GPR32Opnd:$rt, (OpNode GPR32Opnd:$src, GPR32Opnd:$rs))];
+ InstrItinClass Itinerary = itin;
+ string Constraints = "$src = $rt";
+}
+
+//===----------------------------------------------------------------------===//
+// MIPS DSP Rev 1
+//===----------------------------------------------------------------------===//
+
+// Addition/subtraction
+class ADDU_QB_DESC : ADDU_QB_DESC_BASE<"addu.qb", null_frag, NoItinerary,
+ DSPROpnd, DSPROpnd>, IsCommutable,
+ Defs<[DSPOutFlag20]>;
+
+class ADDU_S_QB_DESC : ADDU_QB_DESC_BASE<"addu_s.qb", int_mips_addu_s_qb,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ IsCommutable, Defs<[DSPOutFlag20]>;
+
+class SUBU_QB_DESC : ADDU_QB_DESC_BASE<"subu.qb", null_frag, NoItinerary,
+ DSPROpnd, DSPROpnd>,
+ Defs<[DSPOutFlag20]>;
+
+class SUBU_S_QB_DESC : ADDU_QB_DESC_BASE<"subu_s.qb", int_mips_subu_s_qb,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ Defs<[DSPOutFlag20]>;
+
+class ADDQ_PH_DESC : ADDU_QB_DESC_BASE<"addq.ph", null_frag, NoItinerary,
+ DSPROpnd, DSPROpnd>, IsCommutable,
+ Defs<[DSPOutFlag20]>;
+
+class ADDQ_S_PH_DESC : ADDU_QB_DESC_BASE<"addq_s.ph", int_mips_addq_s_ph,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ IsCommutable, Defs<[DSPOutFlag20]>;
+
+class SUBQ_PH_DESC : ADDU_QB_DESC_BASE<"subq.ph", null_frag, NoItinerary,
+ DSPROpnd, DSPROpnd>,
+ Defs<[DSPOutFlag20]>;
+
+class SUBQ_S_PH_DESC : ADDU_QB_DESC_BASE<"subq_s.ph", int_mips_subq_s_ph,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ Defs<[DSPOutFlag20]>;
+
+class ADDQ_S_W_DESC : ADDU_QB_DESC_BASE<"addq_s.w", int_mips_addq_s_w,
+ NoItinerary, GPR32Opnd, GPR32Opnd>,
+ IsCommutable, Defs<[DSPOutFlag20]>;
+
+class SUBQ_S_W_DESC : ADDU_QB_DESC_BASE<"subq_s.w", int_mips_subq_s_w,
+ NoItinerary, GPR32Opnd, GPR32Opnd>,
+ Defs<[DSPOutFlag20]>;
+
+class ADDSC_DESC : ADDU_QB_DESC_BASE<"addsc", null_frag, NoItinerary,
+ GPR32Opnd, GPR32Opnd>, IsCommutable,
+ Defs<[DSPCarry]>;
+
+class ADDWC_DESC : ADDU_QB_DESC_BASE<"addwc", null_frag, NoItinerary,
+ GPR32Opnd, GPR32Opnd>,
+ IsCommutable, Uses<[DSPCarry]>, Defs<[DSPOutFlag20]>;
+
+class MODSUB_DESC : ADDU_QB_DESC_BASE<"modsub", int_mips_modsub, NoItinerary,
+ GPR32Opnd, GPR32Opnd>;
+
+class RADDU_W_QB_DESC : RADDU_W_QB_DESC_BASE<"raddu.w.qb", int_mips_raddu_w_qb,
+ NoItinerary, GPR32Opnd, DSPROpnd>;
+
+// Absolute value
+class ABSQ_S_PH_DESC : ABSQ_S_PH_R2_DESC_BASE<"absq_s.ph", int_mips_absq_s_ph,
+ NoItinerary, DSPROpnd>,
+ Defs<[DSPOutFlag20]>;
+
+class ABSQ_S_W_DESC : ABSQ_S_PH_R2_DESC_BASE<"absq_s.w", int_mips_absq_s_w,
+ NoItinerary, GPR32Opnd>,
+ Defs<[DSPOutFlag20]>;
+
+// Precision reduce/expand
+class PRECRQ_QB_PH_DESC : CMP_EQ_QB_R3_DESC_BASE<"precrq.qb.ph",
+ int_mips_precrq_qb_ph,
+ NoItinerary, DSPROpnd, DSPROpnd>;
+
+class PRECRQ_PH_W_DESC : CMP_EQ_QB_R3_DESC_BASE<"precrq.ph.w",
+ int_mips_precrq_ph_w,
+ NoItinerary, DSPROpnd, GPR32Opnd>;
+
+class PRECRQ_RS_PH_W_DESC : CMP_EQ_QB_R3_DESC_BASE<"precrq_rs.ph.w",
+ int_mips_precrq_rs_ph_w,
+ NoItinerary, DSPROpnd,
+ GPR32Opnd>,
+ Defs<[DSPOutFlag22]>;
+
+class PRECRQU_S_QB_PH_DESC : CMP_EQ_QB_R3_DESC_BASE<"precrqu_s.qb.ph",
+ int_mips_precrqu_s_qb_ph,
+ NoItinerary, DSPROpnd,
+ DSPROpnd>,
+ Defs<[DSPOutFlag22]>;
+
+class PRECEQ_W_PHL_DESC : ABSQ_S_PH_R2_DESC_BASE<"preceq.w.phl",
+ int_mips_preceq_w_phl,
+ NoItinerary, GPR32Opnd, DSPROpnd>;
+
+class PRECEQ_W_PHR_DESC : ABSQ_S_PH_R2_DESC_BASE<"preceq.w.phr",
+ int_mips_preceq_w_phr,
+ NoItinerary, GPR32Opnd, DSPROpnd>;
+
+class PRECEQU_PH_QBL_DESC : ABSQ_S_PH_R2_DESC_BASE<"precequ.ph.qbl",
+ int_mips_precequ_ph_qbl,
+ NoItinerary, DSPROpnd>;
+
+class PRECEQU_PH_QBR_DESC : ABSQ_S_PH_R2_DESC_BASE<"precequ.ph.qbr",
+ int_mips_precequ_ph_qbr,
+ NoItinerary, DSPROpnd>;
+
+class PRECEQU_PH_QBLA_DESC : ABSQ_S_PH_R2_DESC_BASE<"precequ.ph.qbla",
+ int_mips_precequ_ph_qbla,
+ NoItinerary, DSPROpnd>;
+
+class PRECEQU_PH_QBRA_DESC : ABSQ_S_PH_R2_DESC_BASE<"precequ.ph.qbra",
+ int_mips_precequ_ph_qbra,
+ NoItinerary, DSPROpnd>;
+
+class PRECEU_PH_QBL_DESC : ABSQ_S_PH_R2_DESC_BASE<"preceu.ph.qbl",
+ int_mips_preceu_ph_qbl,
+ NoItinerary, DSPROpnd>;
+
+class PRECEU_PH_QBR_DESC : ABSQ_S_PH_R2_DESC_BASE<"preceu.ph.qbr",
+ int_mips_preceu_ph_qbr,
+ NoItinerary, DSPROpnd>;
+
+class PRECEU_PH_QBLA_DESC : ABSQ_S_PH_R2_DESC_BASE<"preceu.ph.qbla",
+ int_mips_preceu_ph_qbla,
+ NoItinerary, DSPROpnd>;
+
+class PRECEU_PH_QBRA_DESC : ABSQ_S_PH_R2_DESC_BASE<"preceu.ph.qbra",
+ int_mips_preceu_ph_qbra,
+ NoItinerary, DSPROpnd>;
+
+// Shift
+class SHLL_QB_DESC : SHLL_QB_R2_DESC_BASE<"shll.qb", null_frag, immZExt3,
+ NoItinerary, DSPROpnd>,
+ Defs<[DSPOutFlag22]>;
+
+class SHLLV_QB_DESC : SHLL_QB_R3_DESC_BASE<"shllv.qb", int_mips_shll_qb,
+ NoItinerary, DSPROpnd>,
+ Defs<[DSPOutFlag22]>;
+
+class SHRL_QB_DESC : SHLL_QB_R2_DESC_BASE<"shrl.qb", null_frag, immZExt3,
+ NoItinerary, DSPROpnd>;
+
+class SHRLV_QB_DESC : SHLL_QB_R3_DESC_BASE<"shrlv.qb", int_mips_shrl_qb,
+ NoItinerary, DSPROpnd>;
+
+class SHLL_PH_DESC : SHLL_QB_R2_DESC_BASE<"shll.ph", null_frag, immZExt4,
+ NoItinerary, DSPROpnd>,
+ Defs<[DSPOutFlag22]>;
+
+class SHLLV_PH_DESC : SHLL_QB_R3_DESC_BASE<"shllv.ph", int_mips_shll_ph,
+ NoItinerary, DSPROpnd>,
+ Defs<[DSPOutFlag22]>;
+
+class SHLL_S_PH_DESC : SHLL_QB_R2_DESC_BASE<"shll_s.ph", int_mips_shll_s_ph,
+ immZExt4, NoItinerary, DSPROpnd>,
+ Defs<[DSPOutFlag22]>;
+
+class SHLLV_S_PH_DESC : SHLL_QB_R3_DESC_BASE<"shllv_s.ph", int_mips_shll_s_ph,
+ NoItinerary, DSPROpnd>,
+ Defs<[DSPOutFlag22]>;
+
+class SHRA_PH_DESC : SHLL_QB_R2_DESC_BASE<"shra.ph", null_frag, immZExt4,
+ NoItinerary, DSPROpnd>;
+
+class SHRAV_PH_DESC : SHLL_QB_R3_DESC_BASE<"shrav.ph", int_mips_shra_ph,
+ NoItinerary, DSPROpnd>;
+
+class SHRA_R_PH_DESC : SHLL_QB_R2_DESC_BASE<"shra_r.ph", int_mips_shra_r_ph,
+ immZExt4, NoItinerary, DSPROpnd>;
+
+class SHRAV_R_PH_DESC : SHLL_QB_R3_DESC_BASE<"shrav_r.ph", int_mips_shra_r_ph,
+ NoItinerary, DSPROpnd>;
+
+class SHLL_S_W_DESC : SHLL_QB_R2_DESC_BASE<"shll_s.w", int_mips_shll_s_w,
+ immZExt5, NoItinerary, GPR32Opnd>,
+ Defs<[DSPOutFlag22]>;
+
+class SHLLV_S_W_DESC : SHLL_QB_R3_DESC_BASE<"shllv_s.w", int_mips_shll_s_w,
+ NoItinerary, GPR32Opnd>,
+ Defs<[DSPOutFlag22]>;
+
+class SHRA_R_W_DESC : SHLL_QB_R2_DESC_BASE<"shra_r.w", int_mips_shra_r_w,
+ immZExt5, NoItinerary, GPR32Opnd>;
+
+class SHRAV_R_W_DESC : SHLL_QB_R3_DESC_BASE<"shrav_r.w", int_mips_shra_r_w,
+ NoItinerary, GPR32Opnd>;
+
+// Multiplication
+class MULEU_S_PH_QBL_DESC : ADDU_QB_DESC_BASE<"muleu_s.ph.qbl",
+ int_mips_muleu_s_ph_qbl,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ Defs<[DSPOutFlag21]>;
+
+class MULEU_S_PH_QBR_DESC : ADDU_QB_DESC_BASE<"muleu_s.ph.qbr",
+ int_mips_muleu_s_ph_qbr,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ Defs<[DSPOutFlag21]>;
+
+class MULEQ_S_W_PHL_DESC : ADDU_QB_DESC_BASE<"muleq_s.w.phl",
+ int_mips_muleq_s_w_phl,
+ NoItinerary, GPR32Opnd, DSPROpnd>,
+ IsCommutable, Defs<[DSPOutFlag21]>;
+
+class MULEQ_S_W_PHR_DESC : ADDU_QB_DESC_BASE<"muleq_s.w.phr",
+ int_mips_muleq_s_w_phr,
+ NoItinerary, GPR32Opnd, DSPROpnd>,
+ IsCommutable, Defs<[DSPOutFlag21]>;
+
+class MULQ_RS_PH_DESC : ADDU_QB_DESC_BASE<"mulq_rs.ph", int_mips_mulq_rs_ph,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ IsCommutable, Defs<[DSPOutFlag21]>;
+
+class MULSAQ_S_W_PH_DESC : DPA_W_PH_DESC_BASE<"mulsaq_s.w.ph",
+ MipsMULSAQ_S_W_PH>,
+ Defs<[DSPOutFlag16_19]>;
+
+class MAQ_S_W_PHL_DESC : DPA_W_PH_DESC_BASE<"maq_s.w.phl", MipsMAQ_S_W_PHL>,
+ Defs<[DSPOutFlag16_19]>;
+
+class MAQ_S_W_PHR_DESC : DPA_W_PH_DESC_BASE<"maq_s.w.phr", MipsMAQ_S_W_PHR>,
+ Defs<[DSPOutFlag16_19]>;
+
+class MAQ_SA_W_PHL_DESC : DPA_W_PH_DESC_BASE<"maq_sa.w.phl", MipsMAQ_SA_W_PHL>,
+ Defs<[DSPOutFlag16_19]>;
+
+class MAQ_SA_W_PHR_DESC : DPA_W_PH_DESC_BASE<"maq_sa.w.phr", MipsMAQ_SA_W_PHR>,
+ Defs<[DSPOutFlag16_19]>;
+
+// Move from/to hi/lo.
+class MFHI_DESC : MFHI_DESC_BASE<"mfhi", ACC64DSPOpnd, MipsMFHI, NoItinerary>;
+class MFLO_DESC : MFHI_DESC_BASE<"mflo", ACC64DSPOpnd, MipsMFLO, NoItinerary>;
+class MTHI_DESC : MTHI_DESC_BASE<"mthi", HI32DSPOpnd, NoItinerary>;
+class MTLO_DESC : MTHI_DESC_BASE<"mtlo", LO32DSPOpnd, NoItinerary>;
+
+// Dot product with accumulate/subtract
+class DPAU_H_QBL_DESC : DPA_W_PH_DESC_BASE<"dpau.h.qbl", MipsDPAU_H_QBL>;
+
+class DPAU_H_QBR_DESC : DPA_W_PH_DESC_BASE<"dpau.h.qbr", MipsDPAU_H_QBR>;
+
+class DPSU_H_QBL_DESC : DPA_W_PH_DESC_BASE<"dpsu.h.qbl", MipsDPSU_H_QBL>;
+
+class DPSU_H_QBR_DESC : DPA_W_PH_DESC_BASE<"dpsu.h.qbr", MipsDPSU_H_QBR>;
+
+class DPAQ_S_W_PH_DESC : DPA_W_PH_DESC_BASE<"dpaq_s.w.ph", MipsDPAQ_S_W_PH>,
+ Defs<[DSPOutFlag16_19]>;
+
+class DPSQ_S_W_PH_DESC : DPA_W_PH_DESC_BASE<"dpsq_s.w.ph", MipsDPSQ_S_W_PH>,
+ Defs<[DSPOutFlag16_19]>;
+
+class DPAQ_SA_L_W_DESC : DPA_W_PH_DESC_BASE<"dpaq_sa.l.w", MipsDPAQ_SA_L_W>,
+ Defs<[DSPOutFlag16_19]>;
+
+class DPSQ_SA_L_W_DESC : DPA_W_PH_DESC_BASE<"dpsq_sa.l.w", MipsDPSQ_SA_L_W>,
+ Defs<[DSPOutFlag16_19]>;
+
+class MULT_DSP_DESC : MULT_DESC_BASE<"mult", MipsMult, NoItinerary>;
+class MULTU_DSP_DESC : MULT_DESC_BASE<"multu", MipsMultu, NoItinerary>;
+class MADD_DSP_DESC : MADD_DESC_BASE<"madd", MipsMAdd, NoItinerary>;
+class MADDU_DSP_DESC : MADD_DESC_BASE<"maddu", MipsMAddu, NoItinerary>;
+class MSUB_DSP_DESC : MADD_DESC_BASE<"msub", MipsMSub, NoItinerary>;
+class MSUBU_DSP_DESC : MADD_DESC_BASE<"msubu", MipsMSubu, NoItinerary>;
+
+// Comparison
+class CMPU_EQ_QB_DESC : CMP_EQ_QB_R2_DESC_BASE<"cmpu.eq.qb",
+ int_mips_cmpu_eq_qb, NoItinerary,
+ DSPROpnd>,
+ IsCommutable, Defs<[DSPCCond]>;
+
+class CMPU_LT_QB_DESC : CMP_EQ_QB_R2_DESC_BASE<"cmpu.lt.qb",
+ int_mips_cmpu_lt_qb, NoItinerary,
+ DSPROpnd>, Defs<[DSPCCond]>;
+
+class CMPU_LE_QB_DESC : CMP_EQ_QB_R2_DESC_BASE<"cmpu.le.qb",
+ int_mips_cmpu_le_qb, NoItinerary,
+ DSPROpnd>, Defs<[DSPCCond]>;
+
+class CMPGU_EQ_QB_DESC : CMP_EQ_QB_R3_DESC_BASE<"cmpgu.eq.qb",
+ int_mips_cmpgu_eq_qb,
+ NoItinerary, GPR32Opnd, DSPROpnd>,
+ IsCommutable;
+
+class CMPGU_LT_QB_DESC : CMP_EQ_QB_R3_DESC_BASE<"cmpgu.lt.qb",
+ int_mips_cmpgu_lt_qb,
+ NoItinerary, GPR32Opnd, DSPROpnd>;
+
+class CMPGU_LE_QB_DESC : CMP_EQ_QB_R3_DESC_BASE<"cmpgu.le.qb",
+ int_mips_cmpgu_le_qb,
+ NoItinerary, GPR32Opnd, DSPROpnd>;
+
+class CMP_EQ_PH_DESC : CMP_EQ_QB_R2_DESC_BASE<"cmp.eq.ph", int_mips_cmp_eq_ph,
+ NoItinerary, DSPROpnd>,
+ IsCommutable, Defs<[DSPCCond]>;
+
+class CMP_LT_PH_DESC : CMP_EQ_QB_R2_DESC_BASE<"cmp.lt.ph", int_mips_cmp_lt_ph,
+ NoItinerary, DSPROpnd>,
+ Defs<[DSPCCond]>;
+
+class CMP_LE_PH_DESC : CMP_EQ_QB_R2_DESC_BASE<"cmp.le.ph", int_mips_cmp_le_ph,
+ NoItinerary, DSPROpnd>,
+ Defs<[DSPCCond]>;
+
+// Misc
+class BITREV_DESC : ABSQ_S_PH_R2_DESC_BASE<"bitrev", int_mips_bitrev,
+ NoItinerary, GPR32Opnd>;
+
+class PACKRL_PH_DESC : CMP_EQ_QB_R3_DESC_BASE<"packrl.ph", int_mips_packrl_ph,
+ NoItinerary, DSPROpnd, DSPROpnd>;
+
+class REPL_QB_DESC : REPL_DESC_BASE<"repl.qb", int_mips_repl_qb, immZExt8,
+ NoItinerary, DSPROpnd>;
+
+class REPL_PH_DESC : REPL_DESC_BASE<"repl.ph", int_mips_repl_ph, immZExt10,
+ NoItinerary, DSPROpnd>;
+
+class REPLV_QB_DESC : ABSQ_S_PH_R2_DESC_BASE<"replv.qb", int_mips_repl_qb,
+ NoItinerary, DSPROpnd, GPR32Opnd>;
+
+class REPLV_PH_DESC : ABSQ_S_PH_R2_DESC_BASE<"replv.ph", int_mips_repl_ph,
+ NoItinerary, DSPROpnd, GPR32Opnd>;
+
+class PICK_QB_DESC : CMP_EQ_QB_R3_DESC_BASE<"pick.qb", int_mips_pick_qb,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ Uses<[DSPCCond]>;
+
+class PICK_PH_DESC : CMP_EQ_QB_R3_DESC_BASE<"pick.ph", int_mips_pick_ph,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ Uses<[DSPCCond]>;
+
+class LWX_DESC : LX_DESC_BASE<"lwx", int_mips_lwx, NoItinerary>;
+
+class LHX_DESC : LX_DESC_BASE<"lhx", int_mips_lhx, NoItinerary>;
+
+class LBUX_DESC : LX_DESC_BASE<"lbux", int_mips_lbux, NoItinerary>;
+
+class BPOSGE32_DESC : BPOSGE32_DESC_BASE<"bposge32", NoItinerary>;
+
+// Extr
+class EXTP_DESC : EXTR_W_TY1_R1_DESC_BASE<"extp", MipsEXTP, NoItinerary>,
+ Uses<[DSPPos]>, Defs<[DSPEFI]>;
+
+class EXTPV_DESC : EXTR_W_TY1_R2_DESC_BASE<"extpv", MipsEXTP, NoItinerary>,
+ Uses<[DSPPos]>, Defs<[DSPEFI]>;
+
+class EXTPDP_DESC : EXTR_W_TY1_R1_DESC_BASE<"extpdp", MipsEXTPDP, NoItinerary>,
+ Uses<[DSPPos]>, Defs<[DSPPos, DSPEFI]>;
+
+class EXTPDPV_DESC : EXTR_W_TY1_R2_DESC_BASE<"extpdpv", MipsEXTPDP,
+ NoItinerary>,
+ Uses<[DSPPos]>, Defs<[DSPPos, DSPEFI]>;
+
+class EXTR_W_DESC : EXTR_W_TY1_R1_DESC_BASE<"extr.w", MipsEXTR_W, NoItinerary>,
+ Defs<[DSPOutFlag23]>;
+
+class EXTRV_W_DESC : EXTR_W_TY1_R2_DESC_BASE<"extrv.w", MipsEXTR_W,
+ NoItinerary>, Defs<[DSPOutFlag23]>;
+
+class EXTR_R_W_DESC : EXTR_W_TY1_R1_DESC_BASE<"extr_r.w", MipsEXTR_R_W,
+ NoItinerary>,
+ Defs<[DSPOutFlag23]>;
+
+class EXTRV_R_W_DESC : EXTR_W_TY1_R2_DESC_BASE<"extrv_r.w", MipsEXTR_R_W,
+ NoItinerary>,
+ Defs<[DSPOutFlag23]>;
+
+class EXTR_RS_W_DESC : EXTR_W_TY1_R1_DESC_BASE<"extr_rs.w", MipsEXTR_RS_W,
+ NoItinerary>,
+ Defs<[DSPOutFlag23]>;
+
+class EXTRV_RS_W_DESC : EXTR_W_TY1_R2_DESC_BASE<"extrv_rs.w", MipsEXTR_RS_W,
+ NoItinerary>,
+ Defs<[DSPOutFlag23]>;
+
+class EXTR_S_H_DESC : EXTR_W_TY1_R1_DESC_BASE<"extr_s.h", MipsEXTR_S_H,
+ NoItinerary>,
+ Defs<[DSPOutFlag23]>;
+
+class EXTRV_S_H_DESC : EXTR_W_TY1_R2_DESC_BASE<"extrv_s.h", MipsEXTR_S_H,
+ NoItinerary>,
+ Defs<[DSPOutFlag23]>;
+
+class SHILO_DESC : SHILO_R1_DESC_BASE<"shilo", MipsSHILO>;
+
+class SHILOV_DESC : SHILO_R2_DESC_BASE<"shilov", MipsSHILO>;
+
+class MTHLIP_DESC : MTHLIP_DESC_BASE<"mthlip", MipsMTHLIP>, Defs<[DSPPos]>;
+
+class RDDSP_DESC : RDDSP_DESC_BASE<"rddsp", int_mips_rddsp, NoItinerary>;
+
+class WRDSP_DESC : WRDSP_DESC_BASE<"wrdsp", int_mips_wrdsp, NoItinerary>;
+
+class INSV_DESC : INSV_DESC_BASE<"insv", int_mips_insv, NoItinerary>,
+ Uses<[DSPPos, DSPSCount]>;
+
+//===----------------------------------------------------------------------===//
+// MIPS DSP Rev 2
+// Addition/subtraction
+class ADDU_PH_DESC : ADDU_QB_DESC_BASE<"addu.ph", int_mips_addu_ph, NoItinerary,
+ DSPROpnd, DSPROpnd>, IsCommutable,
+ Defs<[DSPOutFlag20]>;
+
+class ADDU_S_PH_DESC : ADDU_QB_DESC_BASE<"addu_s.ph", int_mips_addu_s_ph,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ IsCommutable, Defs<[DSPOutFlag20]>;
+
+class SUBU_PH_DESC : ADDU_QB_DESC_BASE<"subu.ph", int_mips_subu_ph, NoItinerary,
+ DSPROpnd, DSPROpnd>,
+ Defs<[DSPOutFlag20]>;
+
+class SUBU_S_PH_DESC : ADDU_QB_DESC_BASE<"subu_s.ph", int_mips_subu_s_ph,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ Defs<[DSPOutFlag20]>;
+
+class ADDUH_QB_DESC : ADDUH_QB_DESC_BASE<"adduh.qb", int_mips_adduh_qb,
+ NoItinerary, DSPROpnd>, IsCommutable;
+
+class ADDUH_R_QB_DESC : ADDUH_QB_DESC_BASE<"adduh_r.qb", int_mips_adduh_r_qb,
+ NoItinerary, DSPROpnd>, IsCommutable;
+
+class SUBUH_QB_DESC : ADDUH_QB_DESC_BASE<"subuh.qb", int_mips_subuh_qb,
+ NoItinerary, DSPROpnd>;
+
+class SUBUH_R_QB_DESC : ADDUH_QB_DESC_BASE<"subuh_r.qb", int_mips_subuh_r_qb,
+ NoItinerary, DSPROpnd>;
+
+class ADDQH_PH_DESC : ADDUH_QB_DESC_BASE<"addqh.ph", int_mips_addqh_ph,
+ NoItinerary, DSPROpnd>, IsCommutable;
+
+class ADDQH_R_PH_DESC : ADDUH_QB_DESC_BASE<"addqh_r.ph", int_mips_addqh_r_ph,
+ NoItinerary, DSPROpnd>, IsCommutable;
+
+class SUBQH_PH_DESC : ADDUH_QB_DESC_BASE<"subqh.ph", int_mips_subqh_ph,
+ NoItinerary, DSPROpnd>;
+
+class SUBQH_R_PH_DESC : ADDUH_QB_DESC_BASE<"subqh_r.ph", int_mips_subqh_r_ph,
+ NoItinerary, DSPROpnd>;
+
+class ADDQH_W_DESC : ADDUH_QB_DESC_BASE<"addqh.w", int_mips_addqh_w,
+ NoItinerary, GPR32Opnd>, IsCommutable;
+
+class ADDQH_R_W_DESC : ADDUH_QB_DESC_BASE<"addqh_r.w", int_mips_addqh_r_w,
+ NoItinerary, GPR32Opnd>, IsCommutable;
+
+class SUBQH_W_DESC : ADDUH_QB_DESC_BASE<"subqh.w", int_mips_subqh_w,
+ NoItinerary, GPR32Opnd>;
+
+class SUBQH_R_W_DESC : ADDUH_QB_DESC_BASE<"subqh_r.w", int_mips_subqh_r_w,
+ NoItinerary, GPR32Opnd>;
+
+// Comparison
+class CMPGDU_EQ_QB_DESC : CMP_EQ_QB_R3_DESC_BASE<"cmpgdu.eq.qb",
+ int_mips_cmpgdu_eq_qb,
+ NoItinerary, GPR32Opnd, DSPROpnd>,
+ IsCommutable, Defs<[DSPCCond]>;
+
+class CMPGDU_LT_QB_DESC : CMP_EQ_QB_R3_DESC_BASE<"cmpgdu.lt.qb",
+ int_mips_cmpgdu_lt_qb,
+ NoItinerary, GPR32Opnd, DSPROpnd>,
+ Defs<[DSPCCond]>;
+
+class CMPGDU_LE_QB_DESC : CMP_EQ_QB_R3_DESC_BASE<"cmpgdu.le.qb",
+ int_mips_cmpgdu_le_qb,
+ NoItinerary, GPR32Opnd, DSPROpnd>,
+ Defs<[DSPCCond]>;
+
+// Absolute
+class ABSQ_S_QB_DESC : ABSQ_S_PH_R2_DESC_BASE<"absq_s.qb", int_mips_absq_s_qb,
+ NoItinerary, DSPROpnd>,
+ Defs<[DSPOutFlag20]>;
+
+// Multiplication
+class MUL_PH_DESC : ADDUH_QB_DESC_BASE<"mul.ph", null_frag, NoItinerary,
+ DSPROpnd>, IsCommutable,
+ Defs<[DSPOutFlag21]>;
+
+class MUL_S_PH_DESC : ADDUH_QB_DESC_BASE<"mul_s.ph", int_mips_mul_s_ph,
+ NoItinerary, DSPROpnd>, IsCommutable,
+ Defs<[DSPOutFlag21]>;
+
+class MULQ_S_W_DESC : ADDUH_QB_DESC_BASE<"mulq_s.w", int_mips_mulq_s_w,
+ NoItinerary, GPR32Opnd>, IsCommutable,
+ Defs<[DSPOutFlag21]>;
+
+class MULQ_RS_W_DESC : ADDUH_QB_DESC_BASE<"mulq_rs.w", int_mips_mulq_rs_w,
+ NoItinerary, GPR32Opnd>, IsCommutable,
+ Defs<[DSPOutFlag21]>;
+
+class MULQ_S_PH_DESC : ADDU_QB_DESC_BASE<"mulq_s.ph", int_mips_mulq_s_ph,
+ NoItinerary, DSPROpnd, DSPROpnd>,
+ IsCommutable, Defs<[DSPOutFlag21]>;
+
+// Dot product with accumulate/subtract
+class DPA_W_PH_DESC : DPA_W_PH_DESC_BASE<"dpa.w.ph", MipsDPA_W_PH>;
+
+class DPS_W_PH_DESC : DPA_W_PH_DESC_BASE<"dps.w.ph", MipsDPS_W_PH>;
+
+class DPAQX_S_W_PH_DESC : DPA_W_PH_DESC_BASE<"dpaqx_s.w.ph", MipsDPAQX_S_W_PH>,
+ Defs<[DSPOutFlag16_19]>;
+
+class DPAQX_SA_W_PH_DESC : DPA_W_PH_DESC_BASE<"dpaqx_sa.w.ph",
+ MipsDPAQX_SA_W_PH>,
+ Defs<[DSPOutFlag16_19]>;
+
+class DPAX_W_PH_DESC : DPA_W_PH_DESC_BASE<"dpax.w.ph", MipsDPAX_W_PH>;
+
+class DPSX_W_PH_DESC : DPA_W_PH_DESC_BASE<"dpsx.w.ph", MipsDPSX_W_PH>;
+
+class DPSQX_S_W_PH_DESC : DPA_W_PH_DESC_BASE<"dpsqx_s.w.ph", MipsDPSQX_S_W_PH>,
+ Defs<[DSPOutFlag16_19]>;
+
+class DPSQX_SA_W_PH_DESC : DPA_W_PH_DESC_BASE<"dpsqx_sa.w.ph",
+ MipsDPSQX_SA_W_PH>,
+ Defs<[DSPOutFlag16_19]>;
+
+class MULSA_W_PH_DESC : DPA_W_PH_DESC_BASE<"mulsa.w.ph", MipsMULSA_W_PH>;
+
+// Precision reduce/expand
+class PRECR_QB_PH_DESC : CMP_EQ_QB_R3_DESC_BASE<"precr.qb.ph",
+ int_mips_precr_qb_ph,
+ NoItinerary, DSPROpnd, DSPROpnd>;
+
+class PRECR_SRA_PH_W_DESC : PRECR_SRA_PH_W_DESC_BASE<"precr_sra.ph.w",
+ int_mips_precr_sra_ph_w,
+ NoItinerary, DSPROpnd,
+ GPR32Opnd>;
+
+class PRECR_SRA_R_PH_W_DESC : PRECR_SRA_PH_W_DESC_BASE<"precr_sra_r.ph.w",
+ int_mips_precr_sra_r_ph_w,
+ NoItinerary, DSPROpnd,
+ GPR32Opnd>;
+
+// Shift
+class SHRA_QB_DESC : SHLL_QB_R2_DESC_BASE<"shra.qb", null_frag, immZExt3,
+ NoItinerary, DSPROpnd>;
+
+class SHRAV_QB_DESC : SHLL_QB_R3_DESC_BASE<"shrav.qb", int_mips_shra_qb,
+ NoItinerary, DSPROpnd>;
+
+class SHRA_R_QB_DESC : SHLL_QB_R2_DESC_BASE<"shra_r.qb", int_mips_shra_r_qb,
+ immZExt3, NoItinerary, DSPROpnd>;
+
+class SHRAV_R_QB_DESC : SHLL_QB_R3_DESC_BASE<"shrav_r.qb", int_mips_shra_r_qb,
+ NoItinerary, DSPROpnd>;
+
+class SHRL_PH_DESC : SHLL_QB_R2_DESC_BASE<"shrl.ph", null_frag, immZExt4,
+ NoItinerary, DSPROpnd>;
+
+class SHRLV_PH_DESC : SHLL_QB_R3_DESC_BASE<"shrlv.ph", int_mips_shrl_ph,
+ NoItinerary, DSPROpnd>;
+
+// Misc
+class APPEND_DESC : APPEND_DESC_BASE<"append", int_mips_append, immZExt5,
+ NoItinerary>;
+
+class BALIGN_DESC : APPEND_DESC_BASE<"balign", int_mips_balign, immZExt2,
+ NoItinerary>;
+
+class PREPEND_DESC : APPEND_DESC_BASE<"prepend", int_mips_prepend, immZExt5,
+ NoItinerary>;
+
+// Pseudos.
+def BPOSGE32_PSEUDO : BPOSGE32_PSEUDO_DESC_BASE<int_mips_bposge32,
+ NoItinerary>, Uses<[DSPPos]>;
+
+// Instruction defs.
+// MIPS DSP Rev 1
+def ADDU_QB : ADDU_QB_ENC, ADDU_QB_DESC;
+def ADDU_S_QB : ADDU_S_QB_ENC, ADDU_S_QB_DESC;
+def SUBU_QB : SUBU_QB_ENC, SUBU_QB_DESC;
+def SUBU_S_QB : SUBU_S_QB_ENC, SUBU_S_QB_DESC;
+def ADDQ_PH : ADDQ_PH_ENC, ADDQ_PH_DESC;
+def ADDQ_S_PH : ADDQ_S_PH_ENC, ADDQ_S_PH_DESC;
+def SUBQ_PH : SUBQ_PH_ENC, SUBQ_PH_DESC;
+def SUBQ_S_PH : SUBQ_S_PH_ENC, SUBQ_S_PH_DESC;
+def ADDQ_S_W : ADDQ_S_W_ENC, ADDQ_S_W_DESC;
+def SUBQ_S_W : SUBQ_S_W_ENC, SUBQ_S_W_DESC;
+def ADDSC : ADDSC_ENC, ADDSC_DESC;
+def ADDWC : ADDWC_ENC, ADDWC_DESC;
+def MODSUB : MODSUB_ENC, MODSUB_DESC;
+def RADDU_W_QB : RADDU_W_QB_ENC, RADDU_W_QB_DESC;
+def ABSQ_S_PH : ABSQ_S_PH_ENC, ABSQ_S_PH_DESC;
+def ABSQ_S_W : ABSQ_S_W_ENC, ABSQ_S_W_DESC;
+def PRECRQ_QB_PH : PRECRQ_QB_PH_ENC, PRECRQ_QB_PH_DESC;
+def PRECRQ_PH_W : PRECRQ_PH_W_ENC, PRECRQ_PH_W_DESC;
+def PRECRQ_RS_PH_W : PRECRQ_RS_PH_W_ENC, PRECRQ_RS_PH_W_DESC;
+def PRECRQU_S_QB_PH : PRECRQU_S_QB_PH_ENC, PRECRQU_S_QB_PH_DESC;
+def PRECEQ_W_PHL : PRECEQ_W_PHL_ENC, PRECEQ_W_PHL_DESC;
+def PRECEQ_W_PHR : PRECEQ_W_PHR_ENC, PRECEQ_W_PHR_DESC;
+def PRECEQU_PH_QBL : PRECEQU_PH_QBL_ENC, PRECEQU_PH_QBL_DESC;
+def PRECEQU_PH_QBR : PRECEQU_PH_QBR_ENC, PRECEQU_PH_QBR_DESC;
+def PRECEQU_PH_QBLA : PRECEQU_PH_QBLA_ENC, PRECEQU_PH_QBLA_DESC;
+def PRECEQU_PH_QBRA : PRECEQU_PH_QBRA_ENC, PRECEQU_PH_QBRA_DESC;
+def PRECEU_PH_QBL : PRECEU_PH_QBL_ENC, PRECEU_PH_QBL_DESC;
+def PRECEU_PH_QBR : PRECEU_PH_QBR_ENC, PRECEU_PH_QBR_DESC;
+def PRECEU_PH_QBLA : PRECEU_PH_QBLA_ENC, PRECEU_PH_QBLA_DESC;
+def PRECEU_PH_QBRA : PRECEU_PH_QBRA_ENC, PRECEU_PH_QBRA_DESC;
+def SHLL_QB : SHLL_QB_ENC, SHLL_QB_DESC;
+def SHLLV_QB : SHLLV_QB_ENC, SHLLV_QB_DESC;
+def SHRL_QB : SHRL_QB_ENC, SHRL_QB_DESC;
+def SHRLV_QB : SHRLV_QB_ENC, SHRLV_QB_DESC;
+def SHLL_PH : SHLL_PH_ENC, SHLL_PH_DESC;
+def SHLLV_PH : SHLLV_PH_ENC, SHLLV_PH_DESC;
+def SHLL_S_PH : SHLL_S_PH_ENC, SHLL_S_PH_DESC;
+def SHLLV_S_PH : SHLLV_S_PH_ENC, SHLLV_S_PH_DESC;
+def SHRA_PH : SHRA_PH_ENC, SHRA_PH_DESC;
+def SHRAV_PH : SHRAV_PH_ENC, SHRAV_PH_DESC;
+def SHRA_R_PH : SHRA_R_PH_ENC, SHRA_R_PH_DESC;
+def SHRAV_R_PH : SHRAV_R_PH_ENC, SHRAV_R_PH_DESC;
+def SHLL_S_W : SHLL_S_W_ENC, SHLL_S_W_DESC;
+def SHLLV_S_W : SHLLV_S_W_ENC, SHLLV_S_W_DESC;
+def SHRA_R_W : SHRA_R_W_ENC, SHRA_R_W_DESC;
+def SHRAV_R_W : SHRAV_R_W_ENC, SHRAV_R_W_DESC;
+def MULEU_S_PH_QBL : MULEU_S_PH_QBL_ENC, MULEU_S_PH_QBL_DESC;
+def MULEU_S_PH_QBR : MULEU_S_PH_QBR_ENC, MULEU_S_PH_QBR_DESC;
+def MULEQ_S_W_PHL : MULEQ_S_W_PHL_ENC, MULEQ_S_W_PHL_DESC;
+def MULEQ_S_W_PHR : MULEQ_S_W_PHR_ENC, MULEQ_S_W_PHR_DESC;
+def MULQ_RS_PH : MULQ_RS_PH_ENC, MULQ_RS_PH_DESC;
+def MULSAQ_S_W_PH : MULSAQ_S_W_PH_ENC, MULSAQ_S_W_PH_DESC;
+def MAQ_S_W_PHL : MAQ_S_W_PHL_ENC, MAQ_S_W_PHL_DESC;
+def MAQ_S_W_PHR : MAQ_S_W_PHR_ENC, MAQ_S_W_PHR_DESC;
+def MAQ_SA_W_PHL : MAQ_SA_W_PHL_ENC, MAQ_SA_W_PHL_DESC;
+def MAQ_SA_W_PHR : MAQ_SA_W_PHR_ENC, MAQ_SA_W_PHR_DESC;
+def MFHI_DSP : MFHI_ENC, MFHI_DESC;
+def MFLO_DSP : MFLO_ENC, MFLO_DESC;
+def MTHI_DSP : MTHI_ENC, MTHI_DESC;
+def MTLO_DSP : MTLO_ENC, MTLO_DESC;
+def DPAU_H_QBL : DPAU_H_QBL_ENC, DPAU_H_QBL_DESC;
+def DPAU_H_QBR : DPAU_H_QBR_ENC, DPAU_H_QBR_DESC;
+def DPSU_H_QBL : DPSU_H_QBL_ENC, DPSU_H_QBL_DESC;
+def DPSU_H_QBR : DPSU_H_QBR_ENC, DPSU_H_QBR_DESC;
+def DPAQ_S_W_PH : DPAQ_S_W_PH_ENC, DPAQ_S_W_PH_DESC;
+def DPSQ_S_W_PH : DPSQ_S_W_PH_ENC, DPSQ_S_W_PH_DESC;
+def DPAQ_SA_L_W : DPAQ_SA_L_W_ENC, DPAQ_SA_L_W_DESC;
+def DPSQ_SA_L_W : DPSQ_SA_L_W_ENC, DPSQ_SA_L_W_DESC;
+def MULT_DSP : MULT_DSP_ENC, MULT_DSP_DESC;
+def MULTU_DSP : MULTU_DSP_ENC, MULTU_DSP_DESC;
+def MADD_DSP : MADD_DSP_ENC, MADD_DSP_DESC;
+def MADDU_DSP : MADDU_DSP_ENC, MADDU_DSP_DESC;
+def MSUB_DSP : MSUB_DSP_ENC, MSUB_DSP_DESC;
+def MSUBU_DSP : MSUBU_DSP_ENC, MSUBU_DSP_DESC;
+def CMPU_EQ_QB : CMPU_EQ_QB_ENC, CMPU_EQ_QB_DESC;
+def CMPU_LT_QB : CMPU_LT_QB_ENC, CMPU_LT_QB_DESC;
+def CMPU_LE_QB : CMPU_LE_QB_ENC, CMPU_LE_QB_DESC;
+def CMPGU_EQ_QB : CMPGU_EQ_QB_ENC, CMPGU_EQ_QB_DESC;
+def CMPGU_LT_QB : CMPGU_LT_QB_ENC, CMPGU_LT_QB_DESC;
+def CMPGU_LE_QB : CMPGU_LE_QB_ENC, CMPGU_LE_QB_DESC;
+def CMP_EQ_PH : CMP_EQ_PH_ENC, CMP_EQ_PH_DESC;
+def CMP_LT_PH : CMP_LT_PH_ENC, CMP_LT_PH_DESC;
+def CMP_LE_PH : CMP_LE_PH_ENC, CMP_LE_PH_DESC;
+def BITREV : BITREV_ENC, BITREV_DESC;
+def PACKRL_PH : PACKRL_PH_ENC, PACKRL_PH_DESC;
+def REPL_QB : REPL_QB_ENC, REPL_QB_DESC;
+def REPL_PH : REPL_PH_ENC, REPL_PH_DESC;
+def REPLV_QB : REPLV_QB_ENC, REPLV_QB_DESC;
+def REPLV_PH : REPLV_PH_ENC, REPLV_PH_DESC;
+def PICK_QB : PICK_QB_ENC, PICK_QB_DESC;
+def PICK_PH : PICK_PH_ENC, PICK_PH_DESC;
+def LWX : LWX_ENC, LWX_DESC;
+def LHX : LHX_ENC, LHX_DESC;
+def LBUX : LBUX_ENC, LBUX_DESC;
+def BPOSGE32 : BPOSGE32_ENC, BPOSGE32_DESC;
+def INSV : INSV_ENC, INSV_DESC;
+def EXTP : EXTP_ENC, EXTP_DESC;
+def EXTPV : EXTPV_ENC, EXTPV_DESC;
+def EXTPDP : EXTPDP_ENC, EXTPDP_DESC;
+def EXTPDPV : EXTPDPV_ENC, EXTPDPV_DESC;
+def EXTR_W : EXTR_W_ENC, EXTR_W_DESC;
+def EXTRV_W : EXTRV_W_ENC, EXTRV_W_DESC;
+def EXTR_R_W : EXTR_R_W_ENC, EXTR_R_W_DESC;
+def EXTRV_R_W : EXTRV_R_W_ENC, EXTRV_R_W_DESC;
+def EXTR_RS_W : EXTR_RS_W_ENC, EXTR_RS_W_DESC;
+def EXTRV_RS_W : EXTRV_RS_W_ENC, EXTRV_RS_W_DESC;
+def EXTR_S_H : EXTR_S_H_ENC, EXTR_S_H_DESC;
+def EXTRV_S_H : EXTRV_S_H_ENC, EXTRV_S_H_DESC;
+def SHILO : SHILO_ENC, SHILO_DESC;
+def SHILOV : SHILOV_ENC, SHILOV_DESC;
+def MTHLIP : MTHLIP_ENC, MTHLIP_DESC;
+def RDDSP : RDDSP_ENC, RDDSP_DESC;
+def WRDSP : WRDSP_ENC, WRDSP_DESC;
+
+// MIPS DSP Rev 2
+let Predicates = [HasDSPR2] in {
+
+def ADDU_PH : ADDU_PH_ENC, ADDU_PH_DESC;
+def ADDU_S_PH : ADDU_S_PH_ENC, ADDU_S_PH_DESC;
+def SUBU_PH : SUBU_PH_ENC, SUBU_PH_DESC;
+def SUBU_S_PH : SUBU_S_PH_ENC, SUBU_S_PH_DESC;
+def CMPGDU_EQ_QB : CMPGDU_EQ_QB_ENC, CMPGDU_EQ_QB_DESC;
+def CMPGDU_LT_QB : CMPGDU_LT_QB_ENC, CMPGDU_LT_QB_DESC;
+def CMPGDU_LE_QB : CMPGDU_LE_QB_ENC, CMPGDU_LE_QB_DESC;
+def ABSQ_S_QB : ABSQ_S_QB_ENC, ABSQ_S_QB_DESC;
+def ADDUH_QB : ADDUH_QB_ENC, ADDUH_QB_DESC;
+def ADDUH_R_QB : ADDUH_R_QB_ENC, ADDUH_R_QB_DESC;
+def SUBUH_QB : SUBUH_QB_ENC, SUBUH_QB_DESC;
+def SUBUH_R_QB : SUBUH_R_QB_ENC, SUBUH_R_QB_DESC;
+def ADDQH_PH : ADDQH_PH_ENC, ADDQH_PH_DESC;
+def ADDQH_R_PH : ADDQH_R_PH_ENC, ADDQH_R_PH_DESC;
+def SUBQH_PH : SUBQH_PH_ENC, SUBQH_PH_DESC;
+def SUBQH_R_PH : SUBQH_R_PH_ENC, SUBQH_R_PH_DESC;
+def ADDQH_W : ADDQH_W_ENC, ADDQH_W_DESC;
+def ADDQH_R_W : ADDQH_R_W_ENC, ADDQH_R_W_DESC;
+def SUBQH_W : SUBQH_W_ENC, SUBQH_W_DESC;
+def SUBQH_R_W : SUBQH_R_W_ENC, SUBQH_R_W_DESC;
+def MUL_PH : MUL_PH_ENC, MUL_PH_DESC;
+def MUL_S_PH : MUL_S_PH_ENC, MUL_S_PH_DESC;
+def MULQ_S_W : MULQ_S_W_ENC, MULQ_S_W_DESC;
+def MULQ_RS_W : MULQ_RS_W_ENC, MULQ_RS_W_DESC;
+def MULQ_S_PH : MULQ_S_PH_ENC, MULQ_S_PH_DESC;
+def DPA_W_PH : DPA_W_PH_ENC, DPA_W_PH_DESC;
+def DPS_W_PH : DPS_W_PH_ENC, DPS_W_PH_DESC;
+def DPAQX_S_W_PH : DPAQX_S_W_PH_ENC, DPAQX_S_W_PH_DESC;
+def DPAQX_SA_W_PH : DPAQX_SA_W_PH_ENC, DPAQX_SA_W_PH_DESC;
+def DPAX_W_PH : DPAX_W_PH_ENC, DPAX_W_PH_DESC;
+def DPSX_W_PH : DPSX_W_PH_ENC, DPSX_W_PH_DESC;
+def DPSQX_S_W_PH : DPSQX_S_W_PH_ENC, DPSQX_S_W_PH_DESC;
+def DPSQX_SA_W_PH : DPSQX_SA_W_PH_ENC, DPSQX_SA_W_PH_DESC;
+def MULSA_W_PH : MULSA_W_PH_ENC, MULSA_W_PH_DESC;
+def PRECR_QB_PH : PRECR_QB_PH_ENC, PRECR_QB_PH_DESC;
+def PRECR_SRA_PH_W : PRECR_SRA_PH_W_ENC, PRECR_SRA_PH_W_DESC;
+def PRECR_SRA_R_PH_W : PRECR_SRA_R_PH_W_ENC, PRECR_SRA_R_PH_W_DESC;
+def SHRA_QB : SHRA_QB_ENC, SHRA_QB_DESC;
+def SHRAV_QB : SHRAV_QB_ENC, SHRAV_QB_DESC;
+def SHRA_R_QB : SHRA_R_QB_ENC, SHRA_R_QB_DESC;
+def SHRAV_R_QB : SHRAV_R_QB_ENC, SHRAV_R_QB_DESC;
+def SHRL_PH : SHRL_PH_ENC, SHRL_PH_DESC;
+def SHRLV_PH : SHRLV_PH_ENC, SHRLV_PH_DESC;
+def APPEND : APPEND_ENC, APPEND_DESC;
+def BALIGN : BALIGN_ENC, BALIGN_DESC;
+def PREPEND : PREPEND_ENC, PREPEND_DESC;
+
+}
+
+// Pseudos.
+let isPseudo = 1, isCodeGenOnly = 1 in {
+ // Pseudo instructions for loading and storing accumulator registers.
+ def LOAD_ACC64DSP : Load<"", ACC64DSPOpnd>;
+ def STORE_ACC64DSP : Store<"", ACC64DSPOpnd>;
+
+ // Pseudos for loading and storing ccond field of DSP control register.
+ def LOAD_CCOND_DSP : Load<"load_ccond_dsp", DSPCC>;
+ def STORE_CCOND_DSP : Store<"store_ccond_dsp", DSPCC>;
+}
+
+// Pseudo CMP and PICK instructions.
+class PseudoCMP<Instruction RealInst> :
+ PseudoDSP<(outs DSPCC:$cmp), (ins DSPROpnd:$rs, DSPROpnd:$rt), []>,
+ PseudoInstExpansion<(RealInst DSPROpnd:$rs, DSPROpnd:$rt)>, NeverHasSideEffects;
+
+class PseudoPICK<Instruction RealInst> :
+ PseudoDSP<(outs DSPROpnd:$rd), (ins DSPCC:$cmp, DSPROpnd:$rs, DSPROpnd:$rt), []>,
+ PseudoInstExpansion<(RealInst DSPROpnd:$rd, DSPROpnd:$rs, DSPROpnd:$rt)>,
+ NeverHasSideEffects;
+
+def PseudoCMP_EQ_PH : PseudoCMP<CMP_EQ_PH>;
+def PseudoCMP_LT_PH : PseudoCMP<CMP_LT_PH>;
+def PseudoCMP_LE_PH : PseudoCMP<CMP_LE_PH>;
+def PseudoCMPU_EQ_QB : PseudoCMP<CMPU_EQ_QB>;
+def PseudoCMPU_LT_QB : PseudoCMP<CMPU_LT_QB>;
+def PseudoCMPU_LE_QB : PseudoCMP<CMPU_LE_QB>;
+
+def PseudoPICK_PH : PseudoPICK<PICK_PH>;
+def PseudoPICK_QB : PseudoPICK<PICK_QB>;
+
+def PseudoMTLOHI_DSP : PseudoMTLOHI<ACC64DSP, GPR32>;
+
+// Patterns.
+class DSPPat<dag pattern, dag result, Predicate pred = HasDSP> :
+ Pat<pattern, result>, Requires<[pred]>;
+
+class BitconvertPat<ValueType DstVT, ValueType SrcVT, RegisterClass DstRC,
+ RegisterClass SrcRC> :
+ DSPPat<(DstVT (bitconvert (SrcVT SrcRC:$src))),
+ (COPY_TO_REGCLASS SrcRC:$src, DstRC)>;
+
+def : BitconvertPat<i32, v2i16, GPR32, DSPR>;
+def : BitconvertPat<i32, v4i8, GPR32, DSPR>;
+def : BitconvertPat<v2i16, i32, DSPR, GPR32>;
+def : BitconvertPat<v4i8, i32, DSPR, GPR32>;
+
+def : DSPPat<(v2i16 (load addr:$a)),
+ (v2i16 (COPY_TO_REGCLASS (LW addr:$a), DSPR))>;
+def : DSPPat<(v4i8 (load addr:$a)),
+ (v4i8 (COPY_TO_REGCLASS (LW addr:$a), DSPR))>;
+def : DSPPat<(store (v2i16 DSPR:$val), addr:$a),
+ (SW (COPY_TO_REGCLASS DSPR:$val, GPR32), addr:$a)>;
+def : DSPPat<(store (v4i8 DSPR:$val), addr:$a),
+ (SW (COPY_TO_REGCLASS DSPR:$val, GPR32), addr:$a)>;
+
+// Binary operations.
+class DSPBinPat<Instruction Inst, ValueType ValTy, SDPatternOperator Node,
+ Predicate Pred = HasDSP> :
+ DSPPat<(Node ValTy:$a, ValTy:$b), (Inst ValTy:$a, ValTy:$b), Pred>;
+
+def : DSPBinPat<ADDQ_PH, v2i16, int_mips_addq_ph>;
+def : DSPBinPat<ADDQ_PH, v2i16, add>;
+def : DSPBinPat<SUBQ_PH, v2i16, int_mips_subq_ph>;
+def : DSPBinPat<SUBQ_PH, v2i16, sub>;
+def : DSPBinPat<MUL_PH, v2i16, int_mips_mul_ph, HasDSPR2>;
+def : DSPBinPat<MUL_PH, v2i16, mul, HasDSPR2>;
+def : DSPBinPat<ADDU_QB, v4i8, int_mips_addu_qb>;
+def : DSPBinPat<ADDU_QB, v4i8, add>;
+def : DSPBinPat<SUBU_QB, v4i8, int_mips_subu_qb>;
+def : DSPBinPat<SUBU_QB, v4i8, sub>;
+def : DSPBinPat<ADDSC, i32, int_mips_addsc>;
+def : DSPBinPat<ADDSC, i32, addc>;
+def : DSPBinPat<ADDWC, i32, int_mips_addwc>;
+def : DSPBinPat<ADDWC, i32, adde>;
+
+// Shift immediate patterns.
+class DSPShiftPat<Instruction Inst, ValueType ValTy, SDPatternOperator Node,
+ SDPatternOperator Imm, Predicate Pred = HasDSP> :
+ DSPPat<(Node ValTy:$a, Imm:$shamt), (Inst ValTy:$a, Imm:$shamt), Pred>;
+
+def : DSPShiftPat<SHLL_PH, v2i16, MipsSHLL_DSP, imm>;
+def : DSPShiftPat<SHRA_PH, v2i16, MipsSHRA_DSP, imm>;
+def : DSPShiftPat<SHRL_PH, v2i16, MipsSHRL_DSP, imm, HasDSPR2>;
+def : DSPShiftPat<SHLL_PH, v2i16, int_mips_shll_ph, immZExt4>;
+def : DSPShiftPat<SHRA_PH, v2i16, int_mips_shra_ph, immZExt4>;
+def : DSPShiftPat<SHRL_PH, v2i16, int_mips_shrl_ph, immZExt4, HasDSPR2>;
+def : DSPShiftPat<SHLL_QB, v4i8, MipsSHLL_DSP, imm>;
+def : DSPShiftPat<SHRA_QB, v4i8, MipsSHRA_DSP, imm, HasDSPR2>;
+def : DSPShiftPat<SHRL_QB, v4i8, MipsSHRL_DSP, imm>;
+def : DSPShiftPat<SHLL_QB, v4i8, int_mips_shll_qb, immZExt3>;
+def : DSPShiftPat<SHRA_QB, v4i8, int_mips_shra_qb, immZExt3, HasDSPR2>;
+def : DSPShiftPat<SHRL_QB, v4i8, int_mips_shrl_qb, immZExt3>;
+
+// SETCC/SELECT_CC patterns.
+class DSPSetCCPat<Instruction Cmp, Instruction Pick, ValueType ValTy,
+ CondCode CC> :
+ DSPPat<(ValTy (MipsSETCC_DSP ValTy:$a, ValTy:$b, CC)),
+ (ValTy (Pick (ValTy (Cmp ValTy:$a, ValTy:$b)),
+ (ValTy (COPY_TO_REGCLASS (ADDiu ZERO, -1), DSPR)),
+ (ValTy ZERO)))>;
+
+class DSPSetCCPatInv<Instruction Cmp, Instruction Pick, ValueType ValTy,
+ CondCode CC> :
+ DSPPat<(ValTy (MipsSETCC_DSP ValTy:$a, ValTy:$b, CC)),
+ (ValTy (Pick (ValTy (Cmp ValTy:$a, ValTy:$b)),
+ (ValTy ZERO),
+ (ValTy (COPY_TO_REGCLASS (ADDiu ZERO, -1), DSPR))))>;
+
+class DSPSelectCCPat<Instruction Cmp, Instruction Pick, ValueType ValTy,
+ CondCode CC> :
+ DSPPat<(ValTy (MipsSELECT_CC_DSP ValTy:$a, ValTy:$b, ValTy:$c, ValTy:$d, CC)),
+ (ValTy (Pick (ValTy (Cmp ValTy:$a, ValTy:$b)), $c, $d))>;
+
+class DSPSelectCCPatInv<Instruction Cmp, Instruction Pick, ValueType ValTy,
+ CondCode CC> :
+ DSPPat<(ValTy (MipsSELECT_CC_DSP ValTy:$a, ValTy:$b, ValTy:$c, ValTy:$d, CC)),
+ (ValTy (Pick (ValTy (Cmp ValTy:$a, ValTy:$b)), $d, $c))>;
+
+def : DSPSetCCPat<PseudoCMP_EQ_PH, PseudoPICK_PH, v2i16, SETEQ>;
+def : DSPSetCCPat<PseudoCMP_LT_PH, PseudoPICK_PH, v2i16, SETLT>;
+def : DSPSetCCPat<PseudoCMP_LE_PH, PseudoPICK_PH, v2i16, SETLE>;
+def : DSPSetCCPatInv<PseudoCMP_EQ_PH, PseudoPICK_PH, v2i16, SETNE>;
+def : DSPSetCCPatInv<PseudoCMP_LT_PH, PseudoPICK_PH, v2i16, SETGE>;
+def : DSPSetCCPatInv<PseudoCMP_LE_PH, PseudoPICK_PH, v2i16, SETGT>;
+def : DSPSetCCPat<PseudoCMPU_EQ_QB, PseudoPICK_QB, v4i8, SETEQ>;
+def : DSPSetCCPat<PseudoCMPU_LT_QB, PseudoPICK_QB, v4i8, SETULT>;
+def : DSPSetCCPat<PseudoCMPU_LE_QB, PseudoPICK_QB, v4i8, SETULE>;
+def : DSPSetCCPatInv<PseudoCMPU_EQ_QB, PseudoPICK_QB, v4i8, SETNE>;
+def : DSPSetCCPatInv<PseudoCMPU_LT_QB, PseudoPICK_QB, v4i8, SETUGE>;
+def : DSPSetCCPatInv<PseudoCMPU_LE_QB, PseudoPICK_QB, v4i8, SETUGT>;
+
+def : DSPSelectCCPat<PseudoCMP_EQ_PH, PseudoPICK_PH, v2i16, SETEQ>;
+def : DSPSelectCCPat<PseudoCMP_LT_PH, PseudoPICK_PH, v2i16, SETLT>;
+def : DSPSelectCCPat<PseudoCMP_LE_PH, PseudoPICK_PH, v2i16, SETLE>;
+def : DSPSelectCCPatInv<PseudoCMP_EQ_PH, PseudoPICK_PH, v2i16, SETNE>;
+def : DSPSelectCCPatInv<PseudoCMP_LT_PH, PseudoPICK_PH, v2i16, SETGE>;
+def : DSPSelectCCPatInv<PseudoCMP_LE_PH, PseudoPICK_PH, v2i16, SETGT>;
+def : DSPSelectCCPat<PseudoCMPU_EQ_QB, PseudoPICK_QB, v4i8, SETEQ>;
+def : DSPSelectCCPat<PseudoCMPU_LT_QB, PseudoPICK_QB, v4i8, SETULT>;
+def : DSPSelectCCPat<PseudoCMPU_LE_QB, PseudoPICK_QB, v4i8, SETULE>;
+def : DSPSelectCCPatInv<PseudoCMPU_EQ_QB, PseudoPICK_QB, v4i8, SETNE>;
+def : DSPSelectCCPatInv<PseudoCMPU_LT_QB, PseudoPICK_QB, v4i8, SETUGE>;
+def : DSPSelectCCPatInv<PseudoCMPU_LE_QB, PseudoPICK_QB, v4i8, SETUGT>;
+
+// Extr patterns.
+class EXTR_W_TY1_R2_Pat<SDPatternOperator OpNode, Instruction Instr> :
+ DSPPat<(i32 (OpNode GPR32:$rs, ACC64DSP:$ac)),
+ (Instr ACC64DSP:$ac, GPR32:$rs)>;
+
+class EXTR_W_TY1_R1_Pat<SDPatternOperator OpNode, Instruction Instr> :
+ DSPPat<(i32 (OpNode immZExt5:$shift, ACC64DSP:$ac)),
+ (Instr ACC64DSP:$ac, immZExt5:$shift)>;
+
+def : EXTR_W_TY1_R1_Pat<MipsEXTP, EXTP>;
+def : EXTR_W_TY1_R2_Pat<MipsEXTP, EXTPV>;
+def : EXTR_W_TY1_R1_Pat<MipsEXTPDP, EXTPDP>;
+def : EXTR_W_TY1_R2_Pat<MipsEXTPDP, EXTPDPV>;
+def : EXTR_W_TY1_R1_Pat<MipsEXTR_W, EXTR_W>;
+def : EXTR_W_TY1_R2_Pat<MipsEXTR_W, EXTRV_W>;
+def : EXTR_W_TY1_R1_Pat<MipsEXTR_R_W, EXTR_R_W>;
+def : EXTR_W_TY1_R2_Pat<MipsEXTR_R_W, EXTRV_R_W>;
+def : EXTR_W_TY1_R1_Pat<MipsEXTR_RS_W, EXTR_RS_W>;
+def : EXTR_W_TY1_R2_Pat<MipsEXTR_RS_W, EXTRV_RS_W>;
+def : EXTR_W_TY1_R1_Pat<MipsEXTR_S_H, EXTR_S_H>;
+def : EXTR_W_TY1_R2_Pat<MipsEXTR_S_H, EXTRV_S_H>;
+
+// Indexed load patterns.
+class IndexedLoadPat<SDPatternOperator LoadNode, Instruction Instr> :
+ DSPPat<(i32 (LoadNode (add i32:$base, i32:$index))),
+ (Instr i32:$base, i32:$index)>;
+
+let AddedComplexity = 20 in {
+ def : IndexedLoadPat<zextloadi8, LBUX>;
+ def : IndexedLoadPat<sextloadi16, LHX>;
+ def : IndexedLoadPat<load, LWX>;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsDelaySlotFiller.cpp b/contrib/llvm/lib/Target/Mips/MipsDelaySlotFiller.cpp
new file mode 100644
index 0000000..bcfbc12
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsDelaySlotFiller.cpp
@@ -0,0 +1,738 @@
+//===-- MipsDelaySlotFiller.cpp - Mips Delay Slot Filler ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Simple pass to fill delay slots with useful instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/MipsMCNaCl.h"
+#include "Mips.h"
+#include "MipsInstrInfo.h"
+#include "MipsTargetMachine.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "delay-slot-filler"
+
+STATISTIC(FilledSlots, "Number of delay slots filled");
+STATISTIC(UsefulSlots, "Number of delay slots filled with instructions that"
+ " are not NOP.");
+
+static cl::opt<bool> DisableDelaySlotFiller(
+ "disable-mips-delay-filler",
+ cl::init(false),
+ cl::desc("Fill all delay slots with NOPs."),
+ cl::Hidden);
+
+static cl::opt<bool> DisableForwardSearch(
+ "disable-mips-df-forward-search",
+ cl::init(true),
+ cl::desc("Disallow MIPS delay filler to search forward."),
+ cl::Hidden);
+
+static cl::opt<bool> DisableSuccBBSearch(
+ "disable-mips-df-succbb-search",
+ cl::init(true),
+ cl::desc("Disallow MIPS delay filler to search successor basic blocks."),
+ cl::Hidden);
+
+static cl::opt<bool> DisableBackwardSearch(
+ "disable-mips-df-backward-search",
+ cl::init(false),
+ cl::desc("Disallow MIPS delay filler to search backward."),
+ cl::Hidden);
+
+namespace {
+ typedef MachineBasicBlock::iterator Iter;
+ typedef MachineBasicBlock::reverse_iterator ReverseIter;
+ typedef SmallDenseMap<MachineBasicBlock*, MachineInstr*, 2> BB2BrMap;
+
+ class RegDefsUses {
+ public:
+ RegDefsUses(TargetMachine &TM);
+ void init(const MachineInstr &MI);
+
+ /// This function sets all caller-saved registers in Defs.
+ void setCallerSaved(const MachineInstr &MI);
+
+ /// This function sets all unallocatable registers in Defs.
+ void setUnallocatableRegs(const MachineFunction &MF);
+
+ /// Set bits in Uses corresponding to MBB's live-out registers except for
+ /// the registers that are live-in to SuccBB.
+ void addLiveOut(const MachineBasicBlock &MBB,
+ const MachineBasicBlock &SuccBB);
+
+ bool update(const MachineInstr &MI, unsigned Begin, unsigned End);
+
+ private:
+ bool checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, unsigned Reg,
+ bool IsDef) const;
+
+ /// Returns true if Reg or its alias is in RegSet.
+ bool isRegInSet(const BitVector &RegSet, unsigned Reg) const;
+
+ const TargetRegisterInfo &TRI;
+ BitVector Defs, Uses;
+ };
+
+ /// Base class for inspecting loads and stores.
+ class InspectMemInstr {
+ public:
+ InspectMemInstr(bool ForbidMemInstr_)
+ : OrigSeenLoad(false), OrigSeenStore(false), SeenLoad(false),
+ SeenStore(false), ForbidMemInstr(ForbidMemInstr_) {}
+
+ /// Return true if MI cannot be moved to delay slot.
+ bool hasHazard(const MachineInstr &MI);
+
+ virtual ~InspectMemInstr() {}
+
+ protected:
+ /// Flags indicating whether loads or stores have been seen.
+ bool OrigSeenLoad, OrigSeenStore, SeenLoad, SeenStore;
+
+ /// Memory instructions are not allowed to move to delay slot if this flag
+ /// is true.
+ bool ForbidMemInstr;
+
+ private:
+ virtual bool hasHazard_(const MachineInstr &MI) = 0;
+ };
+
+ /// This subclass rejects any memory instructions.
+ class NoMemInstr : public InspectMemInstr {
+ public:
+ NoMemInstr() : InspectMemInstr(true) {}
+ private:
+ bool hasHazard_(const MachineInstr &MI) override { return true; }
+ };
+
+ /// This subclass accepts loads from stacks and constant loads.
+ class LoadFromStackOrConst : public InspectMemInstr {
+ public:
+ LoadFromStackOrConst() : InspectMemInstr(false) {}
+ private:
+ bool hasHazard_(const MachineInstr &MI) override;
+ };
+
+ /// This subclass uses memory dependence information to determine whether a
+ /// memory instruction can be moved to a delay slot.
+ class MemDefsUses : public InspectMemInstr {
+ public:
+ MemDefsUses(const MachineFrameInfo *MFI);
+
+ private:
+ typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
+
+ bool hasHazard_(const MachineInstr &MI) override;
+
+ /// Update Defs and Uses. Return true if there exist dependences that
+ /// disqualify the delay slot candidate between V and values in Uses and
+ /// Defs.
+ bool updateDefsUses(ValueType V, bool MayStore);
+
+ /// Get the list of underlying objects of MI's memory operand.
+ bool getUnderlyingObjects(const MachineInstr &MI,
+ SmallVectorImpl<ValueType> &Objects) const;
+
+ const MachineFrameInfo *MFI;
+ SmallPtrSet<ValueType, 4> Uses, Defs;
+
+ /// Flags indicating whether loads or stores with no underlying objects have
+ /// been seen.
+ bool SeenNoObjLoad, SeenNoObjStore;
+ };
+
+ class Filler : public MachineFunctionPass {
+ public:
+ Filler(TargetMachine &tm)
+ : MachineFunctionPass(ID), TM(tm) { }
+
+ const char *getPassName() const override {
+ return "Mips Delay Slot Filler";
+ }
+
+ bool runOnMachineFunction(MachineFunction &F) override {
+ bool Changed = false;
+ for (MachineFunction::iterator FI = F.begin(), FE = F.end();
+ FI != FE; ++FI)
+ Changed |= runOnMachineBasicBlock(*FI);
+
+ // This pass invalidates liveness information when it reorders
+ // instructions to fill delay slot. Without this, -verify-machineinstrs
+ // will fail.
+ if (Changed)
+ F.getRegInfo().invalidateLiveness();
+
+ return Changed;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ private:
+ bool runOnMachineBasicBlock(MachineBasicBlock &MBB);
+
+ /// This function checks if it is valid to move Candidate to the delay slot
+ /// and returns true if it isn't. It also updates memory and register
+ /// dependence information.
+ bool delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU,
+ InspectMemInstr &IM) const;
+
+ /// This function searches range [Begin, End) for an instruction that can be
+ /// moved to the delay slot. Returns true on success.
+ template<typename IterTy>
+ bool searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
+ RegDefsUses &RegDU, InspectMemInstr &IM,
+ IterTy &Filler) const;
+
+ /// This function searches in the backward direction for an instruction that
+ /// can be moved to the delay slot. Returns true on success.
+ bool searchBackward(MachineBasicBlock &MBB, Iter Slot) const;
+
+ /// This function searches MBB in the forward direction for an instruction
+ /// that can be moved to the delay slot. Returns true on success.
+ bool searchForward(MachineBasicBlock &MBB, Iter Slot) const;
+
+ /// This function searches one of MBB's successor blocks for an instruction
+ /// that can be moved to the delay slot and inserts clones of the
+ /// instruction into the successor's predecessor blocks.
+ bool searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const;
+
+ /// Pick a successor block of MBB. Return NULL if MBB doesn't have a
+ /// successor block that is not a landing pad.
+ MachineBasicBlock *selectSuccBB(MachineBasicBlock &B) const;
+
+ /// This function analyzes MBB and returns an instruction with an unoccupied
+ /// slot that branches to Dst.
+ std::pair<MipsInstrInfo::BranchType, MachineInstr *>
+ getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const;
+
+ /// Examine Pred and see if it is possible to insert an instruction into
+ /// one of its branches delay slot or its end.
+ bool examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ,
+ RegDefsUses &RegDU, bool &HasMultipleSuccs,
+ BB2BrMap &BrMap) const;
+
+ bool terminateSearch(const MachineInstr &Candidate) const;
+
+ TargetMachine &TM;
+
+ static char ID;
+ };
+ char Filler::ID = 0;
+} // end of anonymous namespace
+
+static bool hasUnoccupiedSlot(const MachineInstr *MI) {
+ return MI->hasDelaySlot() && !MI->isBundledWithSucc();
+}
+
+/// This function inserts clones of Filler into predecessor blocks.
+static void insertDelayFiller(Iter Filler, const BB2BrMap &BrMap) {
+ MachineFunction *MF = Filler->getParent()->getParent();
+
+ for (BB2BrMap::const_iterator I = BrMap.begin(); I != BrMap.end(); ++I) {
+ if (I->second) {
+ MIBundleBuilder(I->second).append(MF->CloneMachineInstr(&*Filler));
+ ++UsefulSlots;
+ } else {
+ I->first->insert(I->first->end(), MF->CloneMachineInstr(&*Filler));
+ }
+ }
+}
+
+/// This function adds registers Filler defines to MBB's live-in register list.
+static void addLiveInRegs(Iter Filler, MachineBasicBlock &MBB) {
+ for (unsigned I = 0, E = Filler->getNumOperands(); I != E; ++I) {
+ const MachineOperand &MO = Filler->getOperand(I);
+ unsigned R;
+
+ if (!MO.isReg() || !MO.isDef() || !(R = MO.getReg()))
+ continue;
+
+#ifndef NDEBUG
+ const MachineFunction &MF = *MBB.getParent();
+ assert(MF.getTarget().getRegisterInfo()->getAllocatableSet(MF).test(R) &&
+ "Shouldn't move an instruction with unallocatable registers across "
+ "basic block boundaries.");
+#endif
+
+ if (!MBB.isLiveIn(R))
+ MBB.addLiveIn(R);
+ }
+}
+
+RegDefsUses::RegDefsUses(TargetMachine &TM)
+ : TRI(*TM.getRegisterInfo()), Defs(TRI.getNumRegs(), false),
+ Uses(TRI.getNumRegs(), false) {}
+
+void RegDefsUses::init(const MachineInstr &MI) {
+ // Add all register operands which are explicit and non-variadic.
+ update(MI, 0, MI.getDesc().getNumOperands());
+
+ // If MI is a call, add RA to Defs to prevent users of RA from going into
+ // delay slot.
+ if (MI.isCall())
+ Defs.set(Mips::RA);
+
+ // Add all implicit register operands of branch instructions except
+ // register AT.
+ if (MI.isBranch()) {
+ update(MI, MI.getDesc().getNumOperands(), MI.getNumOperands());
+ Defs.reset(Mips::AT);
+ }
+}
+
+void RegDefsUses::setCallerSaved(const MachineInstr &MI) {
+ assert(MI.isCall());
+
+ // If MI is a call, add all caller-saved registers to Defs.
+ BitVector CallerSavedRegs(TRI.getNumRegs(), true);
+
+ CallerSavedRegs.reset(Mips::ZERO);
+ CallerSavedRegs.reset(Mips::ZERO_64);
+
+ for (const MCPhysReg *R = TRI.getCalleeSavedRegs(); *R; ++R)
+ for (MCRegAliasIterator AI(*R, &TRI, true); AI.isValid(); ++AI)
+ CallerSavedRegs.reset(*AI);
+
+ Defs |= CallerSavedRegs;
+}
+
+void RegDefsUses::setUnallocatableRegs(const MachineFunction &MF) {
+ BitVector AllocSet = TRI.getAllocatableSet(MF);
+
+ for (int R = AllocSet.find_first(); R != -1; R = AllocSet.find_next(R))
+ for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI)
+ AllocSet.set(*AI);
+
+ AllocSet.set(Mips::ZERO);
+ AllocSet.set(Mips::ZERO_64);
+
+ Defs |= AllocSet.flip();
+}
+
+void RegDefsUses::addLiveOut(const MachineBasicBlock &MBB,
+ const MachineBasicBlock &SuccBB) {
+ for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
+ SE = MBB.succ_end(); SI != SE; ++SI)
+ if (*SI != &SuccBB)
+ for (MachineBasicBlock::livein_iterator LI = (*SI)->livein_begin(),
+ LE = (*SI)->livein_end(); LI != LE; ++LI)
+ Uses.set(*LI);
+}
+
+bool RegDefsUses::update(const MachineInstr &MI, unsigned Begin, unsigned End) {
+ BitVector NewDefs(TRI.getNumRegs()), NewUses(TRI.getNumRegs());
+ bool HasHazard = false;
+
+ for (unsigned I = Begin; I != End; ++I) {
+ const MachineOperand &MO = MI.getOperand(I);
+
+ if (MO.isReg() && MO.getReg())
+ HasHazard |= checkRegDefsUses(NewDefs, NewUses, MO.getReg(), MO.isDef());
+ }
+
+ Defs |= NewDefs;
+ Uses |= NewUses;
+
+ return HasHazard;
+}
+
+bool RegDefsUses::checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses,
+ unsigned Reg, bool IsDef) const {
+ if (IsDef) {
+ NewDefs.set(Reg);
+ // check whether Reg has already been defined or used.
+ return (isRegInSet(Defs, Reg) || isRegInSet(Uses, Reg));
+ }
+
+ NewUses.set(Reg);
+ // check whether Reg has already been defined.
+ return isRegInSet(Defs, Reg);
+}
+
+bool RegDefsUses::isRegInSet(const BitVector &RegSet, unsigned Reg) const {
+ // Check Reg and all aliased Registers.
+ for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
+ if (RegSet.test(*AI))
+ return true;
+ return false;
+}
+
+bool InspectMemInstr::hasHazard(const MachineInstr &MI) {
+ if (!MI.mayStore() && !MI.mayLoad())
+ return false;
+
+ if (ForbidMemInstr)
+ return true;
+
+ OrigSeenLoad = SeenLoad;
+ OrigSeenStore = SeenStore;
+ SeenLoad |= MI.mayLoad();
+ SeenStore |= MI.mayStore();
+
+ // If MI is an ordered or volatile memory reference, disallow moving
+ // subsequent loads and stores to delay slot.
+ if (MI.hasOrderedMemoryRef() && (OrigSeenLoad || OrigSeenStore)) {
+ ForbidMemInstr = true;
+ return true;
+ }
+
+ return hasHazard_(MI);
+}
+
+bool LoadFromStackOrConst::hasHazard_(const MachineInstr &MI) {
+ if (MI.mayStore())
+ return true;
+
+ if (!MI.hasOneMemOperand() || !(*MI.memoperands_begin())->getPseudoValue())
+ return true;
+
+ if (const PseudoSourceValue *PSV =
+ (*MI.memoperands_begin())->getPseudoValue()) {
+ if (isa<FixedStackPseudoSourceValue>(PSV))
+ return false;
+ return !PSV->isConstant(nullptr) && PSV != PseudoSourceValue::getStack();
+ }
+
+ return true;
+}
+
+MemDefsUses::MemDefsUses(const MachineFrameInfo *MFI_)
+ : InspectMemInstr(false), MFI(MFI_), SeenNoObjLoad(false),
+ SeenNoObjStore(false) {}
+
+bool MemDefsUses::hasHazard_(const MachineInstr &MI) {
+ bool HasHazard = false;
+ SmallVector<ValueType, 4> Objs;
+
+ // Check underlying object list.
+ if (getUnderlyingObjects(MI, Objs)) {
+ for (SmallVectorImpl<ValueType>::const_iterator I = Objs.begin();
+ I != Objs.end(); ++I)
+ HasHazard |= updateDefsUses(*I, MI.mayStore());
+
+ return HasHazard;
+ }
+
+ // No underlying objects found.
+ HasHazard = MI.mayStore() && (OrigSeenLoad || OrigSeenStore);
+ HasHazard |= MI.mayLoad() || OrigSeenStore;
+
+ SeenNoObjLoad |= MI.mayLoad();
+ SeenNoObjStore |= MI.mayStore();
+
+ return HasHazard;
+}
+
+bool MemDefsUses::updateDefsUses(ValueType V, bool MayStore) {
+ if (MayStore)
+ return !Defs.insert(V) || Uses.count(V) || SeenNoObjStore || SeenNoObjLoad;
+
+ Uses.insert(V);
+ return Defs.count(V) || SeenNoObjStore;
+}
+
+bool MemDefsUses::
+getUnderlyingObjects(const MachineInstr &MI,
+ SmallVectorImpl<ValueType> &Objects) const {
+ if (!MI.hasOneMemOperand() ||
+ (!(*MI.memoperands_begin())->getValue() &&
+ !(*MI.memoperands_begin())->getPseudoValue()))
+ return false;
+
+ if (const PseudoSourceValue *PSV =
+ (*MI.memoperands_begin())->getPseudoValue()) {
+ if (!PSV->isAliased(MFI))
+ return false;
+ Objects.push_back(PSV);
+ return true;
+ }
+
+ const Value *V = (*MI.memoperands_begin())->getValue();
+
+ SmallVector<Value *, 4> Objs;
+ GetUnderlyingObjects(const_cast<Value *>(V), Objs);
+
+ for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), E = Objs.end();
+ I != E; ++I) {
+ if (!isIdentifiedObject(V))
+ return false;
+
+ Objects.push_back(*I);
+ }
+
+ return true;
+}
+
+/// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
+/// We assume there is only one delay slot per delayed instruction.
+bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
+ bool Changed = false;
+
+ for (Iter I = MBB.begin(); I != MBB.end(); ++I) {
+ if (!hasUnoccupiedSlot(&*I))
+ continue;
+
+ ++FilledSlots;
+ Changed = true;
+
+ // Delay slot filling is disabled at -O0.
+ if (!DisableDelaySlotFiller && (TM.getOptLevel() != CodeGenOpt::None)) {
+ if (searchBackward(MBB, I))
+ continue;
+
+ if (I->isTerminator()) {
+ if (searchSuccBBs(MBB, I))
+ continue;
+ } else if (searchForward(MBB, I)) {
+ continue;
+ }
+ }
+
+ // Bundle the NOP to the instruction with the delay slot.
+ const MipsInstrInfo *TII =
+ static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
+ BuildMI(MBB, std::next(I), I->getDebugLoc(), TII->get(Mips::NOP));
+ MIBundleBuilder(MBB, I, std::next(I, 2));
+ }
+
+ return Changed;
+}
+
+/// createMipsDelaySlotFillerPass - Returns a pass that fills in delay
+/// slots in Mips MachineFunctions
+FunctionPass *llvm::createMipsDelaySlotFillerPass(MipsTargetMachine &tm) {
+ return new Filler(tm);
+}
+
+template<typename IterTy>
+bool Filler::searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
+ RegDefsUses &RegDU, InspectMemInstr& IM,
+ IterTy &Filler) const {
+ for (IterTy I = Begin; I != End; ++I) {
+ // skip debug value
+ if (I->isDebugValue())
+ continue;
+
+ if (terminateSearch(*I))
+ break;
+
+ assert((!I->isCall() && !I->isReturn() && !I->isBranch()) &&
+ "Cannot put calls, returns or branches in delay slot.");
+
+ if (delayHasHazard(*I, RegDU, IM))
+ continue;
+
+ if (TM.getSubtarget<MipsSubtarget>().isTargetNaCl()) {
+ // In NaCl, instructions that must be masked are forbidden in delay slots.
+ // We only check for loads, stores and SP changes. Calls, returns and
+ // branches are not checked because non-NaCl targets never put them in
+ // delay slots.
+ unsigned AddrIdx;
+ if ((isBasePlusOffsetMemoryAccess(I->getOpcode(), &AddrIdx)
+ && baseRegNeedsLoadStoreMask(I->getOperand(AddrIdx).getReg()))
+ || I->modifiesRegister(Mips::SP, TM.getRegisterInfo()))
+ continue;
+ }
+
+ Filler = I;
+ return true;
+ }
+
+ return false;
+}
+
+bool Filler::searchBackward(MachineBasicBlock &MBB, Iter Slot) const {
+ if (DisableBackwardSearch)
+ return false;
+
+ RegDefsUses RegDU(TM);
+ MemDefsUses MemDU(MBB.getParent()->getFrameInfo());
+ ReverseIter Filler;
+
+ RegDU.init(*Slot);
+
+ if (!searchRange(MBB, ReverseIter(Slot), MBB.rend(), RegDU, MemDU, Filler))
+ return false;
+
+ MBB.splice(std::next(Slot), &MBB, std::next(Filler).base());
+ MIBundleBuilder(MBB, Slot, std::next(Slot, 2));
+ ++UsefulSlots;
+ return true;
+}
+
+bool Filler::searchForward(MachineBasicBlock &MBB, Iter Slot) const {
+ // Can handle only calls.
+ if (DisableForwardSearch || !Slot->isCall())
+ return false;
+
+ RegDefsUses RegDU(TM);
+ NoMemInstr NM;
+ Iter Filler;
+
+ RegDU.setCallerSaved(*Slot);
+
+ if (!searchRange(MBB, std::next(Slot), MBB.end(), RegDU, NM, Filler))
+ return false;
+
+ MBB.splice(std::next(Slot), &MBB, Filler);
+ MIBundleBuilder(MBB, Slot, std::next(Slot, 2));
+ ++UsefulSlots;
+ return true;
+}
+
+bool Filler::searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const {
+ if (DisableSuccBBSearch)
+ return false;
+
+ MachineBasicBlock *SuccBB = selectSuccBB(MBB);
+
+ if (!SuccBB)
+ return false;
+
+ RegDefsUses RegDU(TM);
+ bool HasMultipleSuccs = false;
+ BB2BrMap BrMap;
+ std::unique_ptr<InspectMemInstr> IM;
+ Iter Filler;
+
+ // Iterate over SuccBB's predecessor list.
+ for (MachineBasicBlock::pred_iterator PI = SuccBB->pred_begin(),
+ PE = SuccBB->pred_end(); PI != PE; ++PI)
+ if (!examinePred(**PI, *SuccBB, RegDU, HasMultipleSuccs, BrMap))
+ return false;
+
+ // Do not allow moving instructions which have unallocatable register operands
+ // across basic block boundaries.
+ RegDU.setUnallocatableRegs(*MBB.getParent());
+
+ // Only allow moving loads from stack or constants if any of the SuccBB's
+ // predecessors have multiple successors.
+ if (HasMultipleSuccs) {
+ IM.reset(new LoadFromStackOrConst());
+ } else {
+ const MachineFrameInfo *MFI = MBB.getParent()->getFrameInfo();
+ IM.reset(new MemDefsUses(MFI));
+ }
+
+ if (!searchRange(MBB, SuccBB->begin(), SuccBB->end(), RegDU, *IM, Filler))
+ return false;
+
+ insertDelayFiller(Filler, BrMap);
+ addLiveInRegs(Filler, *SuccBB);
+ Filler->eraseFromParent();
+
+ return true;
+}
+
+MachineBasicBlock *Filler::selectSuccBB(MachineBasicBlock &B) const {
+ if (B.succ_empty())
+ return nullptr;
+
+ // Select the successor with the larget edge weight.
+ auto &Prob = getAnalysis<MachineBranchProbabilityInfo>();
+ MachineBasicBlock *S = *std::max_element(B.succ_begin(), B.succ_end(),
+ [&](const MachineBasicBlock *Dst0,
+ const MachineBasicBlock *Dst1) {
+ return Prob.getEdgeWeight(&B, Dst0) < Prob.getEdgeWeight(&B, Dst1);
+ });
+ return S->isLandingPad() ? nullptr : S;
+}
+
+std::pair<MipsInstrInfo::BranchType, MachineInstr *>
+Filler::getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const {
+ const MipsInstrInfo *TII =
+ static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
+ MachineBasicBlock *TrueBB = nullptr, *FalseBB = nullptr;
+ SmallVector<MachineInstr*, 2> BranchInstrs;
+ SmallVector<MachineOperand, 2> Cond;
+
+ MipsInstrInfo::BranchType R =
+ TII->AnalyzeBranch(MBB, TrueBB, FalseBB, Cond, false, BranchInstrs);
+
+ if ((R == MipsInstrInfo::BT_None) || (R == MipsInstrInfo::BT_NoBranch))
+ return std::make_pair(R, nullptr);
+
+ if (R != MipsInstrInfo::BT_CondUncond) {
+ if (!hasUnoccupiedSlot(BranchInstrs[0]))
+ return std::make_pair(MipsInstrInfo::BT_None, nullptr);
+
+ assert(((R != MipsInstrInfo::BT_Uncond) || (TrueBB == &Dst)));
+
+ return std::make_pair(R, BranchInstrs[0]);
+ }
+
+ assert((TrueBB == &Dst) || (FalseBB == &Dst));
+
+ // Examine the conditional branch. See if its slot is occupied.
+ if (hasUnoccupiedSlot(BranchInstrs[0]))
+ return std::make_pair(MipsInstrInfo::BT_Cond, BranchInstrs[0]);
+
+ // If that fails, try the unconditional branch.
+ if (hasUnoccupiedSlot(BranchInstrs[1]) && (FalseBB == &Dst))
+ return std::make_pair(MipsInstrInfo::BT_Uncond, BranchInstrs[1]);
+
+ return std::make_pair(MipsInstrInfo::BT_None, nullptr);
+}
+
+bool Filler::examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ,
+ RegDefsUses &RegDU, bool &HasMultipleSuccs,
+ BB2BrMap &BrMap) const {
+ std::pair<MipsInstrInfo::BranchType, MachineInstr *> P =
+ getBranch(Pred, Succ);
+
+ // Return if either getBranch wasn't able to analyze the branches or there
+ // were no branches with unoccupied slots.
+ if (P.first == MipsInstrInfo::BT_None)
+ return false;
+
+ if ((P.first != MipsInstrInfo::BT_Uncond) &&
+ (P.first != MipsInstrInfo::BT_NoBranch)) {
+ HasMultipleSuccs = true;
+ RegDU.addLiveOut(Pred, Succ);
+ }
+
+ BrMap[&Pred] = P.second;
+ return true;
+}
+
+bool Filler::delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU,
+ InspectMemInstr &IM) const {
+ bool HasHazard = (Candidate.isImplicitDef() || Candidate.isKill());
+
+ HasHazard |= IM.hasHazard(Candidate);
+ HasHazard |= RegDU.update(Candidate, 0, Candidate.getNumOperands());
+
+ return HasHazard;
+}
+
+bool Filler::terminateSearch(const MachineInstr &Candidate) const {
+ return (Candidate.isTerminator() || Candidate.isCall() ||
+ Candidate.isPosition() || Candidate.isInlineAsm() ||
+ Candidate.hasUnmodeledSideEffects());
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsFastISel.cpp b/contrib/llvm/lib/Target/Mips/MipsFastISel.cpp
new file mode 100644
index 0000000..617801b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsFastISel.cpp
@@ -0,0 +1,400 @@
+//===-- MipsastISel.cpp - Mips FastISel implementation
+//---------------------===//
+
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "MipsRegisterInfo.h"
+#include "MipsISelLowering.h"
+#include "MipsMachineFunction.h"
+#include "MipsSubtarget.h"
+#include "MipsTargetMachine.h"
+
+using namespace llvm;
+
+namespace {
+
+// All possible address modes.
+typedef struct Address {
+ enum { RegBase, FrameIndexBase } BaseType;
+
+ union {
+ unsigned Reg;
+ int FI;
+ } Base;
+
+ int64_t Offset;
+
+ // Innocuous defaults for our address.
+ Address() : BaseType(RegBase), Offset(0) { Base.Reg = 0; }
+} Address;
+
+class MipsFastISel final : public FastISel {
+
+ /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ Module &M;
+ const TargetMachine &TM;
+ const TargetInstrInfo &TII;
+ const TargetLowering &TLI;
+ const MipsSubtarget *Subtarget;
+ MipsFunctionInfo *MFI;
+
+ // Convenience variables to avoid some queries.
+ LLVMContext *Context;
+
+ bool TargetSupported;
+
+public:
+ explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo)
+ : FastISel(funcInfo, libInfo),
+ M(const_cast<Module &>(*funcInfo.Fn->getParent())),
+ TM(funcInfo.MF->getTarget()), TII(*TM.getInstrInfo()),
+ TLI(*TM.getTargetLowering()),
+ Subtarget(&TM.getSubtarget<MipsSubtarget>()) {
+ MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
+ Context = &funcInfo.Fn->getContext();
+ TargetSupported = ((Subtarget->getRelocationModel() == Reloc::PIC_) &&
+ (Subtarget->hasMips32r2() && (Subtarget->isABI_O32())));
+ }
+
+ bool TargetSelectInstruction(const Instruction *I) override;
+ unsigned TargetMaterializeConstant(const Constant *C) override;
+
+ bool ComputeAddress(const Value *Obj, Address &Addr);
+
+private:
+ bool EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
+ unsigned Alignment = 0);
+ bool EmitStore(MVT VT, unsigned SrcReg, Address &Addr,
+ unsigned Alignment = 0);
+ bool SelectLoad(const Instruction *I);
+ bool SelectRet(const Instruction *I);
+ bool SelectStore(const Instruction *I);
+
+ bool isTypeLegal(Type *Ty, MVT &VT);
+ bool isLoadTypeLegal(Type *Ty, MVT &VT);
+
+ unsigned MaterializeFP(const ConstantFP *CFP, MVT VT);
+ unsigned MaterializeGV(const GlobalValue *GV, MVT VT);
+ unsigned MaterializeInt(const Constant *C, MVT VT);
+ unsigned Materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
+
+ // for some reason, this default is not generated by tablegen
+ // so we explicitly generate it here.
+ //
+ unsigned FastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill, uint64_t imm1,
+ uint64_t imm2, unsigned Op3, bool Op3IsKill) {
+ return 0;
+ }
+
+ MachineInstrBuilder EmitInst(unsigned Opc) {
+ return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
+ }
+
+ MachineInstrBuilder EmitInst(unsigned Opc, unsigned DstReg) {
+ return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
+ DstReg);
+ }
+
+ MachineInstrBuilder EmitInstStore(unsigned Opc, unsigned SrcReg,
+ unsigned MemReg, int64_t MemOffset) {
+ return EmitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
+ }
+
+ MachineInstrBuilder EmitInstLoad(unsigned Opc, unsigned DstReg,
+ unsigned MemReg, int64_t MemOffset) {
+ return EmitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
+ }
+
+#include "MipsGenFastISel.inc"
+};
+
+bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
+ EVT evt = TLI.getValueType(Ty, true);
+ // Only handle simple types.
+ if (evt == MVT::Other || !evt.isSimple())
+ return false;
+ VT = evt.getSimpleVT();
+
+ // Handle all legal types, i.e. a register that will directly hold this
+ // value.
+ return TLI.isTypeLegal(VT);
+}
+
+bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
+ if (isTypeLegal(Ty, VT))
+ return true;
+ // We will extend this in a later patch:
+ // If this is a type than can be sign or zero-extended to a basic operation
+ // go ahead and accept it now.
+ if (VT == MVT::i8 || VT == MVT::i16)
+ return true;
+ return false;
+}
+
+bool MipsFastISel::ComputeAddress(const Value *Obj, Address &Addr) {
+ // This construct looks a big awkward but it is how other ports handle this
+ // and as this function is more fully completed, these cases which
+ // return false will have additional code in them.
+ //
+ if (isa<Instruction>(Obj))
+ return false;
+ else if (isa<ConstantExpr>(Obj))
+ return false;
+ Addr.Base.Reg = getRegForValue(Obj);
+ return Addr.Base.Reg != 0;
+}
+
+bool MipsFastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
+ unsigned Alignment) {
+ //
+ // more cases will be handled here in following patches.
+ //
+ unsigned Opc;
+ switch (VT.SimpleTy) {
+ case MVT::i32: {
+ ResultReg = createResultReg(&Mips::GPR32RegClass);
+ Opc = Mips::LW;
+ break;
+ }
+ case MVT::i16: {
+ ResultReg = createResultReg(&Mips::GPR32RegClass);
+ Opc = Mips::LHu;
+ break;
+ }
+ case MVT::i8: {
+ ResultReg = createResultReg(&Mips::GPR32RegClass);
+ Opc = Mips::LBu;
+ break;
+ }
+ case MVT::f32: {
+ ResultReg = createResultReg(&Mips::FGR32RegClass);
+ Opc = Mips::LWC1;
+ break;
+ }
+ case MVT::f64: {
+ ResultReg = createResultReg(&Mips::AFGR64RegClass);
+ Opc = Mips::LDC1;
+ break;
+ }
+ default:
+ return false;
+ }
+ EmitInstLoad(Opc, ResultReg, Addr.Base.Reg, Addr.Offset);
+ return true;
+}
+
+// Materialize a constant into a register, and return the register
+// number (or zero if we failed to handle it).
+unsigned MipsFastISel::TargetMaterializeConstant(const Constant *C) {
+ EVT CEVT = TLI.getValueType(C->getType(), true);
+
+ // Only handle simple types.
+ if (!CEVT.isSimple())
+ return 0;
+ MVT VT = CEVT.getSimpleVT();
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return MaterializeFP(CFP, VT);
+ else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return MaterializeGV(GV, VT);
+ else if (isa<ConstantInt>(C))
+ return MaterializeInt(C, VT);
+
+ return 0;
+}
+
+bool MipsFastISel::EmitStore(MVT VT, unsigned SrcReg, Address &Addr,
+ unsigned Alignment) {
+ //
+ // more cases will be handled here in following patches.
+ //
+ unsigned Opc;
+ switch (VT.SimpleTy) {
+ case MVT::i8:
+ Opc = Mips::SB;
+ break;
+ case MVT::i16:
+ Opc = Mips::SH;
+ break;
+ case MVT::i32:
+ Opc = Mips::SW;
+ break;
+ case MVT::f32:
+ Opc = Mips::SWC1;
+ break;
+ case MVT::f64:
+ Opc = Mips::SDC1;
+ break;
+ default:
+ return false;
+ }
+ EmitInstStore(Opc, SrcReg, Addr.Base.Reg, Addr.Offset);
+ return true;
+}
+
+bool MipsFastISel::SelectLoad(const Instruction *I) {
+ // Atomic loads need special handling.
+ if (cast<LoadInst>(I)->isAtomic())
+ return false;
+
+ // Verify we have a legal type before going any further.
+ MVT VT;
+ if (!isLoadTypeLegal(I->getType(), VT))
+ return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ComputeAddress(I->getOperand(0), Addr))
+ return false;
+
+ unsigned ResultReg;
+ if (!EmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
+ return false;
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool MipsFastISel::SelectStore(const Instruction *I) {
+ Value *Op0 = I->getOperand(0);
+ unsigned SrcReg = 0;
+
+ // Atomic stores need special handling.
+ if (cast<StoreInst>(I)->isAtomic())
+ return false;
+
+ // Verify we have a legal type before going any further.
+ MVT VT;
+ if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
+ return false;
+
+ // Get the value to be stored into a register.
+ SrcReg = getRegForValue(Op0);
+ if (SrcReg == 0)
+ return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ComputeAddress(I->getOperand(1), Addr))
+ return false;
+
+ if (!EmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
+ return false;
+ return true;
+}
+
+bool MipsFastISel::SelectRet(const Instruction *I) {
+ const ReturnInst *Ret = cast<ReturnInst>(I);
+
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+ if (Ret->getNumOperands() > 0) {
+ return false;
+ }
+ EmitInst(Mips::RetRA);
+ return true;
+}
+
+bool MipsFastISel::TargetSelectInstruction(const Instruction *I) {
+ if (!TargetSupported)
+ return false;
+ switch (I->getOpcode()) {
+ default:
+ break;
+ case Instruction::Load:
+ return SelectLoad(I);
+ case Instruction::Store:
+ return SelectStore(I);
+ case Instruction::Ret:
+ return SelectRet(I);
+ }
+ return false;
+}
+}
+
+unsigned MipsFastISel::MaterializeFP(const ConstantFP *CFP, MVT VT) {
+ int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
+ if (VT == MVT::f32) {
+ const TargetRegisterClass *RC = &Mips::FGR32RegClass;
+ unsigned DestReg = createResultReg(RC);
+ unsigned TempReg = Materialize32BitInt(Imm, &Mips::GPR32RegClass);
+ EmitInst(Mips::MTC1, DestReg).addReg(TempReg);
+ return DestReg;
+ } else if (VT == MVT::f64) {
+ const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
+ unsigned DestReg = createResultReg(RC);
+ unsigned TempReg1 = Materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
+ unsigned TempReg2 =
+ Materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
+ EmitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
+ return DestReg;
+ }
+ return 0;
+}
+
+unsigned MipsFastISel::MaterializeGV(const GlobalValue *GV, MVT VT) {
+ // For now 32-bit only.
+ if (VT != MVT::i32)
+ return 0;
+ const TargetRegisterClass *RC = &Mips::GPR32RegClass;
+ unsigned DestReg = createResultReg(RC);
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+ bool IsThreadLocal = GVar && GVar->isThreadLocal();
+ // TLS not supported at this time.
+ if (IsThreadLocal)
+ return 0;
+ EmitInst(Mips::LW, DestReg).addReg(MFI->getGlobalBaseReg()).addGlobalAddress(
+ GV, 0, MipsII::MO_GOT);
+ return DestReg;
+}
+unsigned MipsFastISel::MaterializeInt(const Constant *C, MVT VT) {
+ if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
+ return 0;
+ const TargetRegisterClass *RC = &Mips::GPR32RegClass;
+ const ConstantInt *CI = cast<ConstantInt>(C);
+ int64_t Imm;
+ if (CI->isNegative())
+ Imm = CI->getSExtValue();
+ else
+ Imm = CI->getZExtValue();
+ return Materialize32BitInt(Imm, RC);
+}
+
+unsigned MipsFastISel::Materialize32BitInt(int64_t Imm,
+ const TargetRegisterClass *RC) {
+ unsigned ResultReg = createResultReg(RC);
+
+ if (isInt<16>(Imm)) {
+ unsigned Opc = Mips::ADDiu;
+ EmitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
+ return ResultReg;
+ } else if (isUInt<16>(Imm)) {
+ EmitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
+ return ResultReg;
+ }
+ unsigned Lo = Imm & 0xFFFF;
+ unsigned Hi = (Imm >> 16) & 0xFFFF;
+ if (Lo) {
+ // Both Lo and Hi have nonzero bits.
+ unsigned TmpReg = createResultReg(RC);
+ EmitInst(Mips::LUi, TmpReg).addImm(Hi);
+ EmitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
+ } else {
+ EmitInst(Mips::LUi, ResultReg).addImm(Hi);
+ }
+ return ResultReg;
+}
+
+namespace llvm {
+FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) {
+ return new MipsFastISel(funcInfo, libInfo);
+}
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsFrameLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsFrameLowering.cpp
new file mode 100644
index 0000000..61afe17
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsFrameLowering.cpp
@@ -0,0 +1,133 @@
+//===-- MipsFrameLowering.cpp - Mips Frame Information --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsFrameLowering.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MipsAnalyzeImmediate.h"
+#include "MipsInstrInfo.h"
+#include "MipsMachineFunction.h"
+#include "MipsTargetMachine.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+
+//===----------------------------------------------------------------------===//
+//
+// Stack Frame Processing methods
+// +----------------------------+
+//
+// The stack is allocated decrementing the stack pointer on
+// the first instruction of a function prologue. Once decremented,
+// all stack references are done thought a positive offset
+// from the stack/frame pointer, so the stack is considering
+// to grow up! Otherwise terrible hacks would have to be made
+// to get this stack ABI compliant :)
+//
+// The stack frame required by the ABI (after call):
+// Offset
+//
+// 0 ----------
+// 4 Args to pass
+// . saved $GP (used in PIC)
+// . Alloca allocations
+// . Local Area
+// . CPU "Callee Saved" Registers
+// . saved FP
+// . saved RA
+// . FPU "Callee Saved" Registers
+// StackSize -----------
+//
+// Offset - offset from sp after stack allocation on function prologue
+//
+// The sp is the stack pointer subtracted/added from the stack size
+// at the Prologue/Epilogue
+//
+// References to the previous stack (to obtain arguments) are done
+// with offsets that exceeds the stack size: (stacksize+(4*(num_arg-1))
+//
+// Examples:
+// - reference to the actual stack frame
+// for any local area var there is smt like : FI >= 0, StackOffset: 4
+// sw REGX, 4(SP)
+//
+// - reference to previous stack frame
+// suppose there's a load to the 5th arguments : FI < 0, StackOffset: 16.
+// The emitted instruction will be something like:
+// lw REGX, 16+StackSize(SP)
+//
+// Since the total stack size is unknown on LowerFormalArguments, all
+// stack references (ObjectOffset) created to reference the function
+// arguments, are negative numbers. This way, on eliminateFrameIndex it's
+// possible to detect those references and the offsets are adjusted to
+// their real location.
+//
+//===----------------------------------------------------------------------===//
+
+const MipsFrameLowering *MipsFrameLowering::create(const MipsSubtarget &ST) {
+ if (ST.inMips16Mode())
+ return llvm::createMips16FrameLowering(ST);
+
+ return llvm::createMipsSEFrameLowering(ST);
+}
+
+// hasFP - Return true if the specified function should have a dedicated frame
+// pointer register. This is true if the function has variable sized allocas or
+// if frame pointer elimination is disabled.
+bool MipsFrameLowering::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ return MF.getTarget().Options.DisableFramePointerElim(MF) ||
+ MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken();
+}
+
+uint64_t MipsFrameLowering::estimateStackSize(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const TargetRegisterInfo &TRI = *MF.getTarget().getRegisterInfo();
+
+ int64_t Offset = 0;
+
+ // Iterate over fixed sized objects.
+ for (int I = MFI->getObjectIndexBegin(); I != 0; ++I)
+ Offset = std::max(Offset, -MFI->getObjectOffset(I));
+
+ // Conservatively assume all callee-saved registers will be saved.
+ for (const MCPhysReg *R = TRI.getCalleeSavedRegs(&MF); *R; ++R) {
+ unsigned Size = TRI.getMinimalPhysRegClass(*R)->getSize();
+ Offset = RoundUpToAlignment(Offset + Size, Size);
+ }
+
+ unsigned MaxAlign = MFI->getMaxAlignment();
+
+ // Check that MaxAlign is not zero if there is a stack object that is not a
+ // callee-saved spill.
+ assert(!MFI->getObjectIndexEnd() || MaxAlign);
+
+ // Iterate over other objects.
+ for (unsigned I = 0, E = MFI->getObjectIndexEnd(); I != E; ++I)
+ Offset = RoundUpToAlignment(Offset + MFI->getObjectSize(I), MaxAlign);
+
+ // Call frame.
+ if (MFI->adjustsStack() && hasReservedCallFrame(MF))
+ Offset = RoundUpToAlignment(Offset + MFI->getMaxCallFrameSize(),
+ std::max(MaxAlign, getStackAlignment()));
+
+ return RoundUpToAlignment(Offset, getStackAlignment());
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsFrameLowering.h b/contrib/llvm/lib/Target/Mips/MipsFrameLowering.h
new file mode 100644
index 0000000..9d59309
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsFrameLowering.h
@@ -0,0 +1,45 @@
+//===-- MipsFrameLowering.h - Define frame lowering for Mips ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPS_FRAMEINFO_H
+#define MIPS_FRAMEINFO_H
+
+#include "Mips.h"
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+ class MipsSubtarget;
+
+class MipsFrameLowering : public TargetFrameLowering {
+protected:
+ const MipsSubtarget &STI;
+
+public:
+ explicit MipsFrameLowering(const MipsSubtarget &sti, unsigned Alignment)
+ : TargetFrameLowering(StackGrowsDown, Alignment, 0, Alignment), STI(sti) {}
+
+ static const MipsFrameLowering *create(const MipsSubtarget &ST);
+
+ bool hasFP(const MachineFunction &MF) const override;
+
+protected:
+ uint64_t estimateStackSize(const MachineFunction &MF) const;
+};
+
+/// Create MipsFrameLowering objects.
+const MipsFrameLowering *createMips16FrameLowering(const MipsSubtarget &ST);
+const MipsFrameLowering *createMipsSEFrameLowering(const MipsSubtarget &ST);
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.cpp
new file mode 100644
index 0000000..0bdabf3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.cpp
@@ -0,0 +1,241 @@
+//===-- MipsISelDAGToDAG.cpp - A Dag to Dag Inst Selector for Mips --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the MIPS target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsISelDAGToDAG.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "Mips.h"
+#include "Mips16ISelDAGToDAG.h"
+#include "MipsMachineFunction.h"
+#include "MipsRegisterInfo.h"
+#include "MipsSEISelDAGToDAG.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-isel"
+
+//===----------------------------------------------------------------------===//
+// Instruction Selector Implementation
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MipsDAGToDAGISel - MIPS specific code to select MIPS machine
+// instructions for SelectionDAG operations.
+//===----------------------------------------------------------------------===//
+
+bool MipsDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
+ Subtarget = &TM.getSubtarget<MipsSubtarget>();
+ bool Ret = SelectionDAGISel::runOnMachineFunction(MF);
+
+ processFunctionAfterISel(MF);
+
+ return Ret;
+}
+
+/// getGlobalBaseReg - Output the instructions required to put the
+/// GOT address into a register.
+SDNode *MipsDAGToDAGISel::getGlobalBaseReg() {
+ unsigned GlobalBaseReg = MF->getInfo<MipsFunctionInfo>()->getGlobalBaseReg();
+ return CurDAG->getRegister(GlobalBaseReg,
+ getTargetLowering()->getPointerTy()).getNode();
+}
+
+/// ComplexPattern used on MipsInstrInfo
+/// Used on Mips Load/Store instructions
+bool MipsDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectAddr16(SDNode *Parent, SDValue N, SDValue &Base,
+ SDValue &Offset, SDValue &Alias) {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatUimm1(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatUimm2(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatUimm3(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatUimm4(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatUimm5(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatUimm6(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatUimm8(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatSimm5(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+bool MipsDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
+ llvm_unreachable("Unimplemented function.");
+ return false;
+}
+
+/// Select instructions not customized! Used for
+/// expanded, promoted and normal instructions
+SDNode* MipsDAGToDAGISel::Select(SDNode *Node) {
+ unsigned Opcode = Node->getOpcode();
+
+ // Dump information about the Node being selected
+ DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
+
+ // If we have a custom node, we already have selected!
+ if (Node->isMachineOpcode()) {
+ DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
+ Node->setNodeId(-1);
+ return nullptr;
+ }
+
+ // See if subclasses can handle this node.
+ std::pair<bool, SDNode*> Ret = selectNode(Node);
+
+ if (Ret.first)
+ return Ret.second;
+
+ switch(Opcode) {
+ default: break;
+
+ // Get target GOT address.
+ case ISD::GLOBAL_OFFSET_TABLE:
+ return getGlobalBaseReg();
+
+#ifndef NDEBUG
+ case ISD::LOAD:
+ case ISD::STORE:
+ assert((Subtarget->systemSupportsUnalignedAccess() ||
+ cast<MemSDNode>(Node)->getMemoryVT().getSizeInBits() / 8 <=
+ cast<MemSDNode>(Node)->getAlignment()) &&
+ "Unexpected unaligned loads/stores.");
+ break;
+#endif
+ }
+
+ // Select the default instruction
+ SDNode *ResNode = SelectCode(Node);
+
+ DEBUG(errs() << "=> ");
+ if (ResNode == nullptr || ResNode == Node)
+ DEBUG(Node->dump(CurDAG));
+ else
+ DEBUG(ResNode->dump(CurDAG));
+ DEBUG(errs() << "\n");
+ return ResNode;
+}
+
+bool MipsDAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
+ OutOps.push_back(Op);
+ return false;
+}
+
+/// createMipsISelDag - This pass converts a legalized DAG into a
+/// MIPS-specific DAG, ready for instruction scheduling.
+FunctionPass *llvm::createMipsISelDag(MipsTargetMachine &TM) {
+ if (TM.getSubtargetImpl()->inMips16Mode())
+ return llvm::createMips16ISelDag(TM);
+
+ return llvm::createMipsSEISelDag(TM);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.h b/contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.h
new file mode 100644
index 0000000..52f4c0d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.h
@@ -0,0 +1,135 @@
+//===---- MipsISelDAGToDAG.h - A Dag to Dag Inst Selector for Mips --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the MIPS target.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSISELDAGTODAG_H
+#define MIPSISELDAGTODAG_H
+
+#include "Mips.h"
+#include "MipsSubtarget.h"
+#include "MipsTargetMachine.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+
+//===----------------------------------------------------------------------===//
+// Instruction Selector Implementation
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MipsDAGToDAGISel - MIPS specific code to select MIPS machine
+// instructions for SelectionDAG operations.
+//===----------------------------------------------------------------------===//
+namespace llvm {
+
+class MipsDAGToDAGISel : public SelectionDAGISel {
+public:
+ explicit MipsDAGToDAGISel(MipsTargetMachine &TM)
+ : SelectionDAGISel(TM), Subtarget(nullptr) {}
+
+ // Pass Name
+ const char *getPassName() const override {
+ return "MIPS DAG->DAG Pattern Instruction Selection";
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+protected:
+ SDNode *getGlobalBaseReg();
+
+ /// Keep a pointer to the MipsSubtarget around so that we can make the right
+ /// decision when generating code for different targets.
+ const MipsSubtarget *Subtarget;
+
+private:
+ // Include the pieces autogenerated from the target description.
+ #include "MipsGenDAGISel.inc"
+
+ // Complex Pattern.
+ /// (reg + imm).
+ virtual bool selectAddrRegImm(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const;
+
+ // Complex Pattern.
+ /// (reg + reg).
+ virtual bool selectAddrRegReg(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const;
+
+ /// Fall back on this function if all else fails.
+ virtual bool selectAddrDefault(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const;
+
+ /// Match integer address pattern.
+ virtual bool selectIntAddr(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const;
+
+ virtual bool selectIntAddrMM(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const;
+
+ /// Match addr+simm10 and addr
+ virtual bool selectIntAddrMSA(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const;
+
+ virtual bool selectAddr16(SDNode *Parent, SDValue N, SDValue &Base,
+ SDValue &Offset, SDValue &Alias);
+
+ /// \brief Select constant vector splats.
+ virtual bool selectVSplat(SDNode *N, APInt &Imm) const;
+ /// \brief Select constant vector splats whose value fits in a uimm1.
+ virtual bool selectVSplatUimm1(SDValue N, SDValue &Imm) const;
+ /// \brief Select constant vector splats whose value fits in a uimm2.
+ virtual bool selectVSplatUimm2(SDValue N, SDValue &Imm) const;
+ /// \brief Select constant vector splats whose value fits in a uimm3.
+ virtual bool selectVSplatUimm3(SDValue N, SDValue &Imm) const;
+ /// \brief Select constant vector splats whose value fits in a uimm4.
+ virtual bool selectVSplatUimm4(SDValue N, SDValue &Imm) const;
+ /// \brief Select constant vector splats whose value fits in a uimm5.
+ virtual bool selectVSplatUimm5(SDValue N, SDValue &Imm) const;
+ /// \brief Select constant vector splats whose value fits in a uimm6.
+ virtual bool selectVSplatUimm6(SDValue N, SDValue &Imm) const;
+ /// \brief Select constant vector splats whose value fits in a uimm8.
+ virtual bool selectVSplatUimm8(SDValue N, SDValue &Imm) const;
+ /// \brief Select constant vector splats whose value fits in a simm5.
+ virtual bool selectVSplatSimm5(SDValue N, SDValue &Imm) const;
+ /// \brief Select constant vector splats whose value is a power of 2.
+ virtual bool selectVSplatUimmPow2(SDValue N, SDValue &Imm) const;
+ /// \brief Select constant vector splats whose value is the inverse of a
+ /// power of 2.
+ virtual bool selectVSplatUimmInvPow2(SDValue N, SDValue &Imm) const;
+ /// \brief Select constant vector splats whose value is a run of set bits
+ /// ending at the most significant bit
+ virtual bool selectVSplatMaskL(SDValue N, SDValue &Imm) const;
+ /// \brief Select constant vector splats whose value is a run of set bits
+ /// starting at bit zero.
+ virtual bool selectVSplatMaskR(SDValue N, SDValue &Imm) const;
+
+ SDNode *Select(SDNode *N) override;
+
+ virtual std::pair<bool, SDNode*> selectNode(SDNode *Node) = 0;
+
+ // getImm - Return a target constant with the specified value.
+ inline SDValue getImm(const SDNode *Node, uint64_t Imm) {
+ return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
+ }
+
+ virtual void processFunctionAfterISel(MachineFunction &MF) = 0;
+
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps) override;
+};
+
+/// createMipsISelDag - This pass converts a legalized DAG into a
+/// MIPS-specific DAG, ready for instruction scheduling.
+FunctionPass *createMipsISelDag(MipsTargetMachine &TM);
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp
new file mode 100644
index 0000000..40dc8e4
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp
@@ -0,0 +1,3715 @@
+//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that Mips uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+#include "MipsISelLowering.h"
+#include "InstPrinter/MipsInstPrinter.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MipsMachineFunction.h"
+#include "MipsSubtarget.h"
+#include "MipsTargetMachine.h"
+#include "MipsTargetObjectFile.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cctype>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-lower"
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+
+static cl::opt<bool>
+LargeGOT("mxgot", cl::Hidden,
+ cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
+
+static cl::opt<bool>
+NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
+ cl::desc("MIPS: Don't trap on integer division by zero."),
+ cl::init(false));
+
+cl::opt<bool>
+EnableMipsFastISel("mips-fast-isel", cl::Hidden,
+ cl::desc("Allow mips-fast-isel to be used"),
+ cl::init(false));
+
+static const MCPhysReg O32IntRegs[4] = {
+ Mips::A0, Mips::A1, Mips::A2, Mips::A3
+};
+
+static const MCPhysReg Mips64IntRegs[8] = {
+ Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
+ Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
+};
+
+static const MCPhysReg Mips64DPRegs[8] = {
+ Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
+ Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
+};
+
+// If I is a shifted mask, set the size (Size) and the first bit of the
+// mask (Pos), and return true.
+// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
+static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
+ if (!isShiftedMask_64(I))
+ return false;
+
+ Size = CountPopulation_64(I);
+ Pos = countTrailingZeros(I);
+ return true;
+}
+
+SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
+ MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
+ return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
+}
+
+SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
+ SelectionDAG &DAG,
+ unsigned Flag) const {
+ return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
+}
+
+SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
+ SelectionDAG &DAG,
+ unsigned Flag) const {
+ return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
+}
+
+SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
+ SelectionDAG &DAG,
+ unsigned Flag) const {
+ return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
+}
+
+SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
+ SelectionDAG &DAG,
+ unsigned Flag) const {
+ return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
+}
+
+SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
+ SelectionDAG &DAG,
+ unsigned Flag) const {
+ return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
+ N->getOffset(), Flag);
+}
+
+const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ case MipsISD::JmpLink: return "MipsISD::JmpLink";
+ case MipsISD::TailCall: return "MipsISD::TailCall";
+ case MipsISD::Hi: return "MipsISD::Hi";
+ case MipsISD::Lo: return "MipsISD::Lo";
+ case MipsISD::GPRel: return "MipsISD::GPRel";
+ case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
+ case MipsISD::Ret: return "MipsISD::Ret";
+ case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN";
+ case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
+ case MipsISD::FPCmp: return "MipsISD::FPCmp";
+ case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
+ case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
+ case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP";
+ case MipsISD::MFHI: return "MipsISD::MFHI";
+ case MipsISD::MFLO: return "MipsISD::MFLO";
+ case MipsISD::MTLOHI: return "MipsISD::MTLOHI";
+ case MipsISD::Mult: return "MipsISD::Mult";
+ case MipsISD::Multu: return "MipsISD::Multu";
+ case MipsISD::MAdd: return "MipsISD::MAdd";
+ case MipsISD::MAddu: return "MipsISD::MAddu";
+ case MipsISD::MSub: return "MipsISD::MSub";
+ case MipsISD::MSubu: return "MipsISD::MSubu";
+ case MipsISD::DivRem: return "MipsISD::DivRem";
+ case MipsISD::DivRemU: return "MipsISD::DivRemU";
+ case MipsISD::DivRem16: return "MipsISD::DivRem16";
+ case MipsISD::DivRemU16: return "MipsISD::DivRemU16";
+ case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
+ case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
+ case MipsISD::Wrapper: return "MipsISD::Wrapper";
+ case MipsISD::Sync: return "MipsISD::Sync";
+ case MipsISD::Ext: return "MipsISD::Ext";
+ case MipsISD::Ins: return "MipsISD::Ins";
+ case MipsISD::LWL: return "MipsISD::LWL";
+ case MipsISD::LWR: return "MipsISD::LWR";
+ case MipsISD::SWL: return "MipsISD::SWL";
+ case MipsISD::SWR: return "MipsISD::SWR";
+ case MipsISD::LDL: return "MipsISD::LDL";
+ case MipsISD::LDR: return "MipsISD::LDR";
+ case MipsISD::SDL: return "MipsISD::SDL";
+ case MipsISD::SDR: return "MipsISD::SDR";
+ case MipsISD::EXTP: return "MipsISD::EXTP";
+ case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
+ case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
+ case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
+ case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
+ case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
+ case MipsISD::SHILO: return "MipsISD::SHILO";
+ case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
+ case MipsISD::MULT: return "MipsISD::MULT";
+ case MipsISD::MULTU: return "MipsISD::MULTU";
+ case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP";
+ case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
+ case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
+ case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
+ case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP";
+ case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP";
+ case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP";
+ case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP";
+ case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP";
+ case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO";
+ case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO";
+ case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO";
+ case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO";
+ case MipsISD::VCEQ: return "MipsISD::VCEQ";
+ case MipsISD::VCLE_S: return "MipsISD::VCLE_S";
+ case MipsISD::VCLE_U: return "MipsISD::VCLE_U";
+ case MipsISD::VCLT_S: return "MipsISD::VCLT_S";
+ case MipsISD::VCLT_U: return "MipsISD::VCLT_U";
+ case MipsISD::VSMAX: return "MipsISD::VSMAX";
+ case MipsISD::VSMIN: return "MipsISD::VSMIN";
+ case MipsISD::VUMAX: return "MipsISD::VUMAX";
+ case MipsISD::VUMIN: return "MipsISD::VUMIN";
+ case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
+ case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
+ case MipsISD::VNOR: return "MipsISD::VNOR";
+ case MipsISD::VSHF: return "MipsISD::VSHF";
+ case MipsISD::SHF: return "MipsISD::SHF";
+ case MipsISD::ILVEV: return "MipsISD::ILVEV";
+ case MipsISD::ILVOD: return "MipsISD::ILVOD";
+ case MipsISD::ILVL: return "MipsISD::ILVL";
+ case MipsISD::ILVR: return "MipsISD::ILVR";
+ case MipsISD::PCKEV: return "MipsISD::PCKEV";
+ case MipsISD::PCKOD: return "MipsISD::PCKOD";
+ case MipsISD::INSVE: return "MipsISD::INSVE";
+ default: return nullptr;
+ }
+}
+
+MipsTargetLowering::MipsTargetLowering(MipsTargetMachine &TM,
+ const MipsSubtarget &STI)
+ : TargetLowering(TM, new MipsTargetObjectFile()), Subtarget(STI) {
+ // Mips does not have i1 type, so use i32 for
+ // setcc operations results (slt, sgt, ...).
+ setBooleanContents(ZeroOrOneBooleanContent);
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+ // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
+ // does. Integer booleans still use 0 and 1.
+ if (Subtarget.hasMips32r6())
+ setBooleanContents(ZeroOrOneBooleanContent,
+ ZeroOrNegativeOneBooleanContent);
+
+ // Load extented operations for i1 types must be promoted
+ setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+
+ // MIPS doesn't have extending float->double load/store
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ // Used by legalize types to correctly generate the setcc result.
+ // Without this, every float setcc comes with a AND/OR with the result,
+ // we don't want this, since the fpcmp result goes to a flag register,
+ // which is used implicitly by brcond and select operations.
+ AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
+
+ // Mips Custom Operations
+ setOperationAction(ISD::BR_JT, MVT::Other, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+ setOperationAction(ISD::SETCC, MVT::f32, Custom);
+ setOperationAction(ISD::SETCC, MVT::f64, Custom);
+ setOperationAction(ISD::BRCOND, MVT::Other, Custom);
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+
+ if (Subtarget.isGP64bit()) {
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i64, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::i64, Custom);
+ setOperationAction(ISD::LOAD, MVT::i64, Custom);
+ setOperationAction(ISD::STORE, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ }
+
+ if (!Subtarget.isGP64bit()) {
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
+ }
+
+ setOperationAction(ISD::ADD, MVT::i32, Custom);
+ if (Subtarget.isGP64bit())
+ setOperationAction(ISD::ADD, MVT::i64, Custom);
+
+ setOperationAction(ISD::SDIV, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIV, MVT::i64, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::UDIV, MVT::i64, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+
+ // Operations not directly supported by Mips.
+ setOperationAction(ISD::BR_CC, MVT::f32, Expand);
+ setOperationAction(ISD::BR_CC, MVT::f64, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+ if (Subtarget.hasCnMips()) {
+ setOperationAction(ISD::CTPOP, MVT::i32, Legal);
+ setOperationAction(ISD::CTPOP, MVT::i64, Legal);
+ } else {
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i64, Expand);
+ }
+ setOperationAction(ISD::CTTZ, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i64, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL, MVT::i64, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
+
+ if (!Subtarget.hasMips32r2())
+ setOperationAction(ISD::ROTR, MVT::i32, Expand);
+
+ if (!Subtarget.hasMips64r2())
+ setOperationAction(ISD::ROTR, MVT::i64, Expand);
+
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FPOWI, MVT::f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f32, Expand);
+ setOperationAction(ISD::FEXP, MVT::f32, Expand);
+ setOperationAction(ISD::FMA, MVT::f32, Expand);
+ setOperationAction(ISD::FMA, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f32, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+
+ setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
+
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+
+ // Use the default for now
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
+
+ setInsertFencesForAtomic(true);
+
+ if (!Subtarget.hasMips32r2()) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
+ }
+
+ // MIPS16 lacks MIPS32's clz and clo instructions.
+ if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
+ setOperationAction(ISD::CTLZ, MVT::i32, Expand);
+ if (!Subtarget.hasMips64())
+ setOperationAction(ISD::CTLZ, MVT::i64, Expand);
+
+ if (!Subtarget.hasMips32r2())
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+ if (!Subtarget.hasMips64r2())
+ setOperationAction(ISD::BSWAP, MVT::i64, Expand);
+
+ if (Subtarget.isGP64bit()) {
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
+ setTruncStoreAction(MVT::i64, MVT::i32, Custom);
+ }
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ setTargetDAGCombine(ISD::SDIVREM);
+ setTargetDAGCombine(ISD::UDIVREM);
+ setTargetDAGCombine(ISD::SELECT);
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::ADD);
+
+ setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);
+
+ setStackPointerRegisterToSaveRestore(Subtarget.isABI_N64() ? Mips::SP_64
+ : Mips::SP);
+
+ setExceptionPointerRegister(Subtarget.isABI_N64() ? Mips::A0_64 : Mips::A0);
+ setExceptionSelectorRegister(Subtarget.isABI_N64() ? Mips::A1_64 : Mips::A1);
+
+ MaxStoresPerMemcpy = 16;
+
+ isMicroMips = Subtarget.inMicroMipsMode();
+}
+
+const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM,
+ const MipsSubtarget &STI) {
+ if (STI.inMips16Mode())
+ return llvm::createMips16TargetLowering(TM, STI);
+
+ return llvm::createMipsSETargetLowering(TM, STI);
+}
+
+// Create a fast isel object.
+FastISel *
+MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const {
+ if (!EnableMipsFastISel)
+ return TargetLowering::createFastISel(funcInfo, libInfo);
+ return Mips::createFastISel(funcInfo, libInfo);
+}
+
+EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector())
+ return MVT::i32;
+ return VT.changeVectorElementTypeToInteger();
+}
+
+static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ EVT Ty = N->getValueType(0);
+ unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
+ unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
+ unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
+ MipsISD::DivRemU16;
+ SDLoc DL(N);
+
+ SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
+ N->getOperand(0), N->getOperand(1));
+ SDValue InChain = DAG.getEntryNode();
+ SDValue InGlue = DivRem;
+
+ // insert MFLO
+ if (N->hasAnyUseOfValue(0)) {
+ SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
+ InGlue);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
+ InChain = CopyFromLo.getValue(1);
+ InGlue = CopyFromLo.getValue(2);
+ }
+
+ // insert MFHI
+ if (N->hasAnyUseOfValue(1)) {
+ SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
+ HI, Ty, InGlue);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
+ }
+
+ return SDValue();
+}
+
+static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown fp condition code!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ: return Mips::FCOND_OEQ;
+ case ISD::SETUNE: return Mips::FCOND_UNE;
+ case ISD::SETLT:
+ case ISD::SETOLT: return Mips::FCOND_OLT;
+ case ISD::SETGT:
+ case ISD::SETOGT: return Mips::FCOND_OGT;
+ case ISD::SETLE:
+ case ISD::SETOLE: return Mips::FCOND_OLE;
+ case ISD::SETGE:
+ case ISD::SETOGE: return Mips::FCOND_OGE;
+ case ISD::SETULT: return Mips::FCOND_ULT;
+ case ISD::SETULE: return Mips::FCOND_ULE;
+ case ISD::SETUGT: return Mips::FCOND_UGT;
+ case ISD::SETUGE: return Mips::FCOND_UGE;
+ case ISD::SETUO: return Mips::FCOND_UN;
+ case ISD::SETO: return Mips::FCOND_OR;
+ case ISD::SETNE:
+ case ISD::SETONE: return Mips::FCOND_ONE;
+ case ISD::SETUEQ: return Mips::FCOND_UEQ;
+ }
+}
+
+
+/// This function returns true if the floating point conditional branches and
+/// conditional moves which use condition code CC should be inverted.
+static bool invertFPCondCodeUser(Mips::CondCode CC) {
+ if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
+ return false;
+
+ assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
+ "Illegal Condition Code");
+
+ return true;
+}
+
+// Creates and returns an FPCmp node from a setcc node.
+// Returns Op if setcc is not a floating point comparison.
+static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
+ // must be a SETCC node
+ if (Op.getOpcode() != ISD::SETCC)
+ return Op;
+
+ SDValue LHS = Op.getOperand(0);
+
+ if (!LHS.getValueType().isFloatingPoint())
+ return Op;
+
+ SDValue RHS = Op.getOperand(1);
+ SDLoc DL(Op);
+
+ // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
+ // node if necessary.
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+
+ return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
+ DAG.getConstant(condCodeToFCC(CC), MVT::i32));
+}
+
+// Creates and returns a CMovFPT/F node.
+static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
+ SDValue False, SDLoc DL) {
+ ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
+ bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
+ SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
+
+ return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
+ True.getValueType(), True, FCC0, False, Cond);
+}
+
+static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue SetCC = N->getOperand(0);
+
+ if ((SetCC.getOpcode() != ISD::SETCC) ||
+ !SetCC.getOperand(0).getValueType().isInteger())
+ return SDValue();
+
+ SDValue False = N->getOperand(2);
+ EVT FalseTy = False.getValueType();
+
+ if (!FalseTy.isInteger())
+ return SDValue();
+
+ ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
+
+ // If the RHS (False) is 0, we swap the order of the operands
+ // of ISD::SELECT (obviously also inverting the condition) so that we can
+ // take advantage of conditional moves using the $0 register.
+ // Example:
+ // return (a != 0) ? x : 0;
+ // load $reg, x
+ // movz $reg, $0, a
+ if (!FalseC)
+ return SDValue();
+
+ const SDLoc DL(N);
+
+ if (!FalseC->getZExtValue()) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
+ SDValue True = N->getOperand(1);
+
+ SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
+ SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
+
+ return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
+ }
+
+ // If both operands are integer constants there's a possibility that we
+ // can do some interesting optimizations.
+ SDValue True = N->getOperand(1);
+ ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
+
+ if (!TrueC || !True.getValueType().isInteger())
+ return SDValue();
+
+ // We'll also ignore MVT::i64 operands as this optimizations proves
+ // to be ineffective because of the required sign extensions as the result
+ // of a SETCC operator is always MVT::i32 for non-vector types.
+ if (True.getValueType() == MVT::i64)
+ return SDValue();
+
+ int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
+
+ // 1) (a < x) ? y : y-1
+ // slti $reg1, a, x
+ // addiu $reg2, $reg1, y-1
+ if (Diff == 1)
+ return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
+
+ // 2) (a < x) ? y-1 : y
+ // slti $reg1, a, x
+ // xor $reg1, $reg1, 1
+ // addiu $reg2, $reg1, y-1
+ if (Diff == -1) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
+ SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
+ SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
+ return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
+ }
+
+ // Couldn't optimize.
+ return SDValue();
+}
+
+static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ // Pattern match EXT.
+ // $dst = and ((sra or srl) $src , pos), (2**size - 1)
+ // => ext $dst, $src, size, pos
+ if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
+ return SDValue();
+
+ SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
+ unsigned ShiftRightOpc = ShiftRight.getOpcode();
+
+ // Op's first operand must be a shift right.
+ if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
+ return SDValue();
+
+ // The second operand of the shift must be an immediate.
+ ConstantSDNode *CN;
+ if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
+ return SDValue();
+
+ uint64_t Pos = CN->getZExtValue();
+ uint64_t SMPos, SMSize;
+
+ // Op's second operand must be a shifted mask.
+ if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
+ !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
+ return SDValue();
+
+ // Return if the shifted mask does not start at bit 0 or the sum of its size
+ // and Pos exceeds the word's size.
+ EVT ValTy = N->getValueType(0);
+ if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
+ return SDValue();
+
+ return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
+ ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
+ DAG.getConstant(SMSize, MVT::i32));
+}
+
+static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ // Pattern match INS.
+ // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
+ // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
+ // => ins $dst, $src, size, pos, $src1
+ if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
+ return SDValue();
+
+ SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
+ uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
+ ConstantSDNode *CN;
+
+ // See if Op's first operand matches (and $src1 , mask0).
+ if (And0.getOpcode() != ISD::AND)
+ return SDValue();
+
+ if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
+ !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
+ return SDValue();
+
+ // See if Op's second operand matches (and (shl $src, pos), mask1).
+ if (And1.getOpcode() != ISD::AND)
+ return SDValue();
+
+ if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
+ !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
+ return SDValue();
+
+ // The shift masks must have the same position and size.
+ if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
+ return SDValue();
+
+ SDValue Shl = And1.getOperand(0);
+ if (Shl.getOpcode() != ISD::SHL)
+ return SDValue();
+
+ if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
+ return SDValue();
+
+ unsigned Shamt = CN->getZExtValue();
+
+ // Return if the shift amount and the first bit position of mask are not the
+ // same.
+ EVT ValTy = N->getValueType(0);
+ if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
+ return SDValue();
+
+ return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
+ DAG.getConstant(SMPos0, MVT::i32),
+ DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
+}
+
+static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
+
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue Add = N->getOperand(1);
+
+ if (Add.getOpcode() != ISD::ADD)
+ return SDValue();
+
+ SDValue Lo = Add.getOperand(1);
+
+ if ((Lo.getOpcode() != MipsISD::Lo) ||
+ (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
+ return SDValue();
+
+ EVT ValTy = N->getValueType(0);
+ SDLoc DL(N);
+
+ SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
+ Add.getOperand(0));
+ return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
+}
+
+SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
+ const {
+ SelectionDAG &DAG = DCI.DAG;
+ unsigned Opc = N->getOpcode();
+
+ switch (Opc) {
+ default: break;
+ case ISD::SDIVREM:
+ case ISD::UDIVREM:
+ return performDivRemCombine(N, DAG, DCI, Subtarget);
+ case ISD::SELECT:
+ return performSELECTCombine(N, DAG, DCI, Subtarget);
+ case ISD::AND:
+ return performANDCombine(N, DAG, DCI, Subtarget);
+ case ISD::OR:
+ return performORCombine(N, DAG, DCI, Subtarget);
+ case ISD::ADD:
+ return performADDCombine(N, DAG, DCI, Subtarget);
+ }
+
+ return SDValue();
+}
+
+void
+MipsTargetLowering::LowerOperationWrapper(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ SDValue Res = LowerOperation(SDValue(N, 0), DAG);
+
+ for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
+ Results.push_back(Res.getValue(I));
+}
+
+void
+MipsTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ return LowerOperationWrapper(N, Results, DAG);
+}
+
+SDValue MipsTargetLowering::
+LowerOperation(SDValue Op, SelectionDAG &DAG) const
+{
+ switch (Op.getOpcode())
+ {
+ case ISD::BR_JT: return lowerBR_JT(Op, DAG);
+ case ISD::BRCOND: return lowerBRCOND(Op, DAG);
+ case ISD::ConstantPool: return lowerConstantPool(Op, DAG);
+ case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG);
+ case ISD::BlockAddress: return lowerBlockAddress(Op, DAG);
+ case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG);
+ case ISD::JumpTable: return lowerJumpTable(Op, DAG);
+ case ISD::SELECT: return lowerSELECT(Op, DAG);
+ case ISD::SELECT_CC: return lowerSELECT_CC(Op, DAG);
+ case ISD::SETCC: return lowerSETCC(Op, DAG);
+ case ISD::VASTART: return lowerVASTART(Op, DAG);
+ case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG);
+ case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG);
+ case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG);
+ case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG);
+ case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG);
+ case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG);
+ case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true);
+ case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false);
+ case ISD::LOAD: return lowerLOAD(Op, DAG);
+ case ISD::STORE: return lowerSTORE(Op, DAG);
+ case ISD::ADD: return lowerADD(Op, DAG);
+ case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG);
+ }
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Lower helper functions
+//===----------------------------------------------------------------------===//
+
+// addLiveIn - This helper function adds the specified physical register to the
+// MachineFunction as a live in value. It also creates a corresponding
+// virtual register for it.
+static unsigned
+addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
+{
+ unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
+ MF.getRegInfo().addLiveIn(PReg, VReg);
+ return VReg;
+}
+
+static MachineBasicBlock *insertDivByZeroTrap(MachineInstr *MI,
+ MachineBasicBlock &MBB,
+ const TargetInstrInfo &TII,
+ bool Is64Bit) {
+ if (NoZeroDivCheck)
+ return &MBB;
+
+ // Insert instruction "teq $divisor_reg, $zero, 7".
+ MachineBasicBlock::iterator I(MI);
+ MachineInstrBuilder MIB;
+ MachineOperand &Divisor = MI->getOperand(2);
+ MIB = BuildMI(MBB, std::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
+ .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
+ .addReg(Mips::ZERO).addImm(7);
+
+ // Use the 32-bit sub-register if this is a 64-bit division.
+ if (Is64Bit)
+ MIB->getOperand(0).setSubReg(Mips::sub_32);
+
+ // Clear Divisor's kill flag.
+ Divisor.setIsKill(false);
+
+ // We would normally delete the original instruction here but in this case
+ // we only needed to inject an additional instruction rather than replace it.
+
+ return &MBB;
+}
+
+MachineBasicBlock *
+MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ switch (MI->getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected instr type to insert");
+ case Mips::ATOMIC_LOAD_ADD_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
+ case Mips::ATOMIC_LOAD_ADD_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
+ case Mips::ATOMIC_LOAD_ADD_I32:
+ return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
+ case Mips::ATOMIC_LOAD_ADD_I64:
+ return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
+
+ case Mips::ATOMIC_LOAD_AND_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
+ case Mips::ATOMIC_LOAD_AND_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
+ case Mips::ATOMIC_LOAD_AND_I32:
+ return emitAtomicBinary(MI, BB, 4, Mips::AND);
+ case Mips::ATOMIC_LOAD_AND_I64:
+ return emitAtomicBinary(MI, BB, 8, Mips::AND64);
+
+ case Mips::ATOMIC_LOAD_OR_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
+ case Mips::ATOMIC_LOAD_OR_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
+ case Mips::ATOMIC_LOAD_OR_I32:
+ return emitAtomicBinary(MI, BB, 4, Mips::OR);
+ case Mips::ATOMIC_LOAD_OR_I64:
+ return emitAtomicBinary(MI, BB, 8, Mips::OR64);
+
+ case Mips::ATOMIC_LOAD_XOR_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
+ case Mips::ATOMIC_LOAD_XOR_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
+ case Mips::ATOMIC_LOAD_XOR_I32:
+ return emitAtomicBinary(MI, BB, 4, Mips::XOR);
+ case Mips::ATOMIC_LOAD_XOR_I64:
+ return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
+
+ case Mips::ATOMIC_LOAD_NAND_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
+ case Mips::ATOMIC_LOAD_NAND_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
+ case Mips::ATOMIC_LOAD_NAND_I32:
+ return emitAtomicBinary(MI, BB, 4, 0, true);
+ case Mips::ATOMIC_LOAD_NAND_I64:
+ return emitAtomicBinary(MI, BB, 8, 0, true);
+
+ case Mips::ATOMIC_LOAD_SUB_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
+ case Mips::ATOMIC_LOAD_SUB_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
+ case Mips::ATOMIC_LOAD_SUB_I32:
+ return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
+ case Mips::ATOMIC_LOAD_SUB_I64:
+ return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
+
+ case Mips::ATOMIC_SWAP_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1, 0);
+ case Mips::ATOMIC_SWAP_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2, 0);
+ case Mips::ATOMIC_SWAP_I32:
+ return emitAtomicBinary(MI, BB, 4, 0);
+ case Mips::ATOMIC_SWAP_I64:
+ return emitAtomicBinary(MI, BB, 8, 0);
+
+ case Mips::ATOMIC_CMP_SWAP_I8:
+ return emitAtomicCmpSwapPartword(MI, BB, 1);
+ case Mips::ATOMIC_CMP_SWAP_I16:
+ return emitAtomicCmpSwapPartword(MI, BB, 2);
+ case Mips::ATOMIC_CMP_SWAP_I32:
+ return emitAtomicCmpSwap(MI, BB, 4);
+ case Mips::ATOMIC_CMP_SWAP_I64:
+ return emitAtomicCmpSwap(MI, BB, 8);
+ case Mips::PseudoSDIV:
+ case Mips::PseudoUDIV:
+ case Mips::DIV:
+ case Mips::DIVU:
+ case Mips::MOD:
+ case Mips::MODU:
+ return insertDivByZeroTrap(MI, *BB, *getTargetMachine().getInstrInfo(),
+ false);
+ case Mips::PseudoDSDIV:
+ case Mips::PseudoDUDIV:
+ case Mips::DDIV:
+ case Mips::DDIVU:
+ case Mips::DMOD:
+ case Mips::DMODU:
+ return insertDivByZeroTrap(MI, *BB, *getTargetMachine().getInstrInfo(),
+ true);
+ case Mips::SEL_D:
+ return emitSEL_D(MI, BB);
+ }
+}
+
+// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
+// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
+MachineBasicBlock *
+MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
+ unsigned Size, unsigned BinOpcode,
+ bool Nand) const {
+ assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned LL, SC, AND, NOR, ZERO, BEQ;
+
+ if (Size == 4) {
+ if (isMicroMips) {
+ LL = Mips::LL_MM;
+ SC = Mips::SC_MM;
+ } else {
+ LL = Subtarget.hasMips32r6() ? Mips::LL_R6 : Mips::LL;
+ SC = Subtarget.hasMips32r6() ? Mips::SC_R6 : Mips::SC;
+ }
+ AND = Mips::AND;
+ NOR = Mips::NOR;
+ ZERO = Mips::ZERO;
+ BEQ = Mips::BEQ;
+ } else {
+ LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD;
+ SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD;
+ AND = Mips::AND64;
+ NOR = Mips::NOR64;
+ ZERO = Mips::ZERO_64;
+ BEQ = Mips::BEQ64;
+ }
+
+ unsigned OldVal = MI->getOperand(0).getReg();
+ unsigned Ptr = MI->getOperand(1).getReg();
+ unsigned Incr = MI->getOperand(2).getReg();
+
+ unsigned StoreVal = RegInfo.createVirtualRegister(RC);
+ unsigned AndRes = RegInfo.createVirtualRegister(RC);
+ unsigned Success = RegInfo.createVirtualRegister(RC);
+
+ // insert new blocks after the current block
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineFunction::iterator It = BB;
+ ++It;
+ MF->insert(It, loopMBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loopMBB);
+ loopMBB->addSuccessor(loopMBB);
+ loopMBB->addSuccessor(exitMBB);
+
+ // loopMBB:
+ // ll oldval, 0(ptr)
+ // <binop> storeval, oldval, incr
+ // sc success, storeval, 0(ptr)
+ // beq success, $0, loopMBB
+ BB = loopMBB;
+ BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
+ if (Nand) {
+ // and andres, oldval, incr
+ // nor storeval, $0, andres
+ BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
+ BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
+ } else if (BinOpcode) {
+ // <binop> storeval, oldval, incr
+ BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
+ } else {
+ StoreVal = Incr;
+ }
+ BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
+ BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
+
+ MI->eraseFromParent(); // The instruction is gone now.
+
+ return exitMBB;
+}
+
+MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
+ MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
+ unsigned SrcReg) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ if (Subtarget.hasMips32r2() && Size == 1) {
+ BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
+ return BB;
+ }
+
+ if (Subtarget.hasMips32r2() && Size == 2) {
+ BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
+ return BB;
+ }
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
+ unsigned ScrReg = RegInfo.createVirtualRegister(RC);
+
+ assert(Size < 32);
+ int64_t ShiftImm = 32 - (Size * 8);
+
+ BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
+ BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
+
+ return BB;
+}
+
+MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
+ MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
+ bool Nand) const {
+ assert((Size == 1 || Size == 2) &&
+ "Unsupported size for EmitAtomicBinaryPartial.");
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Ptr = MI->getOperand(1).getReg();
+ unsigned Incr = MI->getOperand(2).getReg();
+
+ unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
+ unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
+ unsigned Mask = RegInfo.createVirtualRegister(RC);
+ unsigned Mask2 = RegInfo.createVirtualRegister(RC);
+ unsigned NewVal = RegInfo.createVirtualRegister(RC);
+ unsigned OldVal = RegInfo.createVirtualRegister(RC);
+ unsigned Incr2 = RegInfo.createVirtualRegister(RC);
+ unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
+ unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
+ unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
+ unsigned AndRes = RegInfo.createVirtualRegister(RC);
+ unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
+ unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
+ unsigned StoreVal = RegInfo.createVirtualRegister(RC);
+ unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
+ unsigned SrlRes = RegInfo.createVirtualRegister(RC);
+ unsigned Success = RegInfo.createVirtualRegister(RC);
+
+ // insert new blocks after the current block
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineFunction::iterator It = BB;
+ ++It;
+ MF->insert(It, loopMBB);
+ MF->insert(It, sinkMBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(loopMBB);
+ loopMBB->addSuccessor(loopMBB);
+ loopMBB->addSuccessor(sinkMBB);
+ sinkMBB->addSuccessor(exitMBB);
+
+ // thisMBB:
+ // addiu masklsb2,$0,-4 # 0xfffffffc
+ // and alignedaddr,ptr,masklsb2
+ // andi ptrlsb2,ptr,3
+ // sll shiftamt,ptrlsb2,3
+ // ori maskupper,$0,255 # 0xff
+ // sll mask,maskupper,shiftamt
+ // nor mask2,$0,mask
+ // sll incr2,incr,shiftamt
+
+ int64_t MaskImm = (Size == 1) ? 255 : 65535;
+ BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
+ .addReg(Mips::ZERO).addImm(-4);
+ BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
+ .addReg(Ptr).addReg(MaskLSB2);
+ BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
+ if (Subtarget.isLittle()) {
+ BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
+ } else {
+ unsigned Off = RegInfo.createVirtualRegister(RC);
+ BuildMI(BB, DL, TII->get(Mips::XORi), Off)
+ .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
+ BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
+ }
+ BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
+ .addReg(Mips::ZERO).addImm(MaskImm);
+ BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
+ .addReg(MaskUpper).addReg(ShiftAmt);
+ BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
+ BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
+
+ // atomic.load.binop
+ // loopMBB:
+ // ll oldval,0(alignedaddr)
+ // binop binopres,oldval,incr2
+ // and newval,binopres,mask
+ // and maskedoldval0,oldval,mask2
+ // or storeval,maskedoldval0,newval
+ // sc success,storeval,0(alignedaddr)
+ // beq success,$0,loopMBB
+
+ // atomic.swap
+ // loopMBB:
+ // ll oldval,0(alignedaddr)
+ // and newval,incr2,mask
+ // and maskedoldval0,oldval,mask2
+ // or storeval,maskedoldval0,newval
+ // sc success,storeval,0(alignedaddr)
+ // beq success,$0,loopMBB
+
+ BB = loopMBB;
+ BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
+ if (Nand) {
+ // and andres, oldval, incr2
+ // nor binopres, $0, andres
+ // and newval, binopres, mask
+ BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
+ BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
+ .addReg(Mips::ZERO).addReg(AndRes);
+ BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
+ } else if (BinOpcode) {
+ // <binop> binopres, oldval, incr2
+ // and newval, binopres, mask
+ BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
+ BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
+ } else { // atomic.swap
+ // and newval, incr2, mask
+ BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
+ }
+
+ BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
+ .addReg(OldVal).addReg(Mask2);
+ BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
+ .addReg(MaskedOldVal0).addReg(NewVal);
+ BuildMI(BB, DL, TII->get(Mips::SC), Success)
+ .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
+ BuildMI(BB, DL, TII->get(Mips::BEQ))
+ .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
+
+ // sinkMBB:
+ // and maskedoldval1,oldval,mask
+ // srl srlres,maskedoldval1,shiftamt
+ // sign_extend dest,srlres
+ BB = sinkMBB;
+
+ BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
+ .addReg(OldVal).addReg(Mask);
+ BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
+ .addReg(MaskedOldVal1).addReg(ShiftAmt);
+ BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
+
+ MI->eraseFromParent(); // The instruction is gone now.
+
+ return exitMBB;
+}
+
+MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned Size) const {
+ assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned LL, SC, ZERO, BNE, BEQ;
+
+ if (Size == 4) {
+ LL = isMicroMips ? Mips::LL_MM : Mips::LL;
+ SC = isMicroMips ? Mips::SC_MM : Mips::SC;
+ ZERO = Mips::ZERO;
+ BNE = Mips::BNE;
+ BEQ = Mips::BEQ;
+ } else {
+ LL = Mips::LLD;
+ SC = Mips::SCD;
+ ZERO = Mips::ZERO_64;
+ BNE = Mips::BNE64;
+ BEQ = Mips::BEQ64;
+ }
+
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Ptr = MI->getOperand(1).getReg();
+ unsigned OldVal = MI->getOperand(2).getReg();
+ unsigned NewVal = MI->getOperand(3).getReg();
+
+ unsigned Success = RegInfo.createVirtualRegister(RC);
+
+ // insert new blocks after the current block
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineFunction::iterator It = BB;
+ ++It;
+ MF->insert(It, loop1MBB);
+ MF->insert(It, loop2MBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loop1MBB
+ BB->addSuccessor(loop1MBB);
+ loop1MBB->addSuccessor(exitMBB);
+ loop1MBB->addSuccessor(loop2MBB);
+ loop2MBB->addSuccessor(loop1MBB);
+ loop2MBB->addSuccessor(exitMBB);
+
+ // loop1MBB:
+ // ll dest, 0(ptr)
+ // bne dest, oldval, exitMBB
+ BB = loop1MBB;
+ BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
+ BuildMI(BB, DL, TII->get(BNE))
+ .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
+
+ // loop2MBB:
+ // sc success, newval, 0(ptr)
+ // beq success, $0, loop1MBB
+ BB = loop2MBB;
+ BuildMI(BB, DL, TII->get(SC), Success)
+ .addReg(NewVal).addReg(Ptr).addImm(0);
+ BuildMI(BB, DL, TII->get(BEQ))
+ .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
+
+ MI->eraseFromParent(); // The instruction is gone now.
+
+ return exitMBB;
+}
+
+MachineBasicBlock *
+MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned Size) const {
+ assert((Size == 1 || Size == 2) &&
+ "Unsupported size for EmitAtomicCmpSwapPartial.");
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Ptr = MI->getOperand(1).getReg();
+ unsigned CmpVal = MI->getOperand(2).getReg();
+ unsigned NewVal = MI->getOperand(3).getReg();
+
+ unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
+ unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
+ unsigned Mask = RegInfo.createVirtualRegister(RC);
+ unsigned Mask2 = RegInfo.createVirtualRegister(RC);
+ unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
+ unsigned OldVal = RegInfo.createVirtualRegister(RC);
+ unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
+ unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
+ unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
+ unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
+ unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
+ unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
+ unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
+ unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
+ unsigned StoreVal = RegInfo.createVirtualRegister(RC);
+ unsigned SrlRes = RegInfo.createVirtualRegister(RC);
+ unsigned Success = RegInfo.createVirtualRegister(RC);
+
+ // insert new blocks after the current block
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineFunction::iterator It = BB;
+ ++It;
+ MF->insert(It, loop1MBB);
+ MF->insert(It, loop2MBB);
+ MF->insert(It, sinkMBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(loop1MBB);
+ loop1MBB->addSuccessor(sinkMBB);
+ loop1MBB->addSuccessor(loop2MBB);
+ loop2MBB->addSuccessor(loop1MBB);
+ loop2MBB->addSuccessor(sinkMBB);
+ sinkMBB->addSuccessor(exitMBB);
+
+ // FIXME: computation of newval2 can be moved to loop2MBB.
+ // thisMBB:
+ // addiu masklsb2,$0,-4 # 0xfffffffc
+ // and alignedaddr,ptr,masklsb2
+ // andi ptrlsb2,ptr,3
+ // sll shiftamt,ptrlsb2,3
+ // ori maskupper,$0,255 # 0xff
+ // sll mask,maskupper,shiftamt
+ // nor mask2,$0,mask
+ // andi maskedcmpval,cmpval,255
+ // sll shiftedcmpval,maskedcmpval,shiftamt
+ // andi maskednewval,newval,255
+ // sll shiftednewval,maskednewval,shiftamt
+ int64_t MaskImm = (Size == 1) ? 255 : 65535;
+ BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
+ .addReg(Mips::ZERO).addImm(-4);
+ BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
+ .addReg(Ptr).addReg(MaskLSB2);
+ BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
+ if (Subtarget.isLittle()) {
+ BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
+ } else {
+ unsigned Off = RegInfo.createVirtualRegister(RC);
+ BuildMI(BB, DL, TII->get(Mips::XORi), Off)
+ .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
+ BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
+ }
+ BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
+ .addReg(Mips::ZERO).addImm(MaskImm);
+ BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
+ .addReg(MaskUpper).addReg(ShiftAmt);
+ BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
+ BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
+ .addReg(CmpVal).addImm(MaskImm);
+ BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
+ .addReg(MaskedCmpVal).addReg(ShiftAmt);
+ BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
+ .addReg(NewVal).addImm(MaskImm);
+ BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
+ .addReg(MaskedNewVal).addReg(ShiftAmt);
+
+ // loop1MBB:
+ // ll oldval,0(alginedaddr)
+ // and maskedoldval0,oldval,mask
+ // bne maskedoldval0,shiftedcmpval,sinkMBB
+ BB = loop1MBB;
+ BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
+ BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
+ .addReg(OldVal).addReg(Mask);
+ BuildMI(BB, DL, TII->get(Mips::BNE))
+ .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
+
+ // loop2MBB:
+ // and maskedoldval1,oldval,mask2
+ // or storeval,maskedoldval1,shiftednewval
+ // sc success,storeval,0(alignedaddr)
+ // beq success,$0,loop1MBB
+ BB = loop2MBB;
+ BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
+ .addReg(OldVal).addReg(Mask2);
+ BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
+ .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
+ BuildMI(BB, DL, TII->get(Mips::SC), Success)
+ .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
+ BuildMI(BB, DL, TII->get(Mips::BEQ))
+ .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
+
+ // sinkMBB:
+ // srl srlres,maskedoldval0,shiftamt
+ // sign_extend dest,srlres
+ BB = sinkMBB;
+
+ BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
+ .addReg(MaskedOldVal0).addReg(ShiftAmt);
+ BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
+
+ MI->eraseFromParent(); // The instruction is gone now.
+
+ return exitMBB;
+}
+
+MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ MachineFunction *MF = BB->getParent();
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ MachineBasicBlock::iterator II(MI);
+
+ unsigned Fc = MI->getOperand(1).getReg();
+ const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID);
+
+ unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass);
+
+ BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2)
+ .addImm(0)
+ .addReg(Fc)
+ .addImm(Mips::sub_lo);
+
+ // We don't erase the original instruction, we just replace the condition
+ // register with the 64-bit super-register.
+ MI->getOperand(1).setReg(Fc2);
+
+ return BB;
+}
+
+//===----------------------------------------------------------------------===//
+// Misc Lower Operation implementation
+//===----------------------------------------------------------------------===//
+SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Table = Op.getOperand(1);
+ SDValue Index = Op.getOperand(2);
+ SDLoc DL(Op);
+ EVT PTy = getPointerTy();
+ unsigned EntrySize =
+ DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
+
+ Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
+ DAG.getConstant(EntrySize, PTy));
+ SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
+
+ EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
+ Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
+ MachinePointerInfo::getJumpTable(), MemVT, false, false,
+ 0);
+ Chain = Addr.getValue(1);
+
+ if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) ||
+ Subtarget.isABI_N64()) {
+ // For PIC, the sequence is:
+ // BRIND(load(Jumptable + index) + RelocBase)
+ // RelocBase can be JumpTable, GOT or some sort of global base.
+ Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
+ getPICJumpTableRelocBase(Table, DAG));
+ }
+
+ return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
+}
+
+SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
+ // The first operand is the chain, the second is the condition, the third is
+ // the block to branch to if the condition is true.
+ SDValue Chain = Op.getOperand(0);
+ SDValue Dest = Op.getOperand(2);
+ SDLoc DL(Op);
+
+ assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
+ SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
+
+ // Return if flag is not set by a floating point comparison.
+ if (CondRes.getOpcode() != MipsISD::FPCmp)
+ return Op;
+
+ SDValue CCNode = CondRes.getOperand(2);
+ Mips::CondCode CC =
+ (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
+ unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
+ SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
+ SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
+ return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
+ FCC0, Dest, CondRes);
+}
+
+SDValue MipsTargetLowering::
+lowerSELECT(SDValue Op, SelectionDAG &DAG) const
+{
+ assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
+ SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
+
+ // Return if flag is not set by a floating point comparison.
+ if (Cond.getOpcode() != MipsISD::FPCmp)
+ return Op;
+
+ return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
+ SDLoc(Op));
+}
+
+SDValue MipsTargetLowering::
+lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
+{
+ SDLoc DL(Op);
+ EVT Ty = Op.getOperand(0).getValueType();
+ SDValue Cond = DAG.getNode(ISD::SETCC, DL,
+ getSetCCResultType(*DAG.getContext(), Ty),
+ Op.getOperand(0), Op.getOperand(1),
+ Op.getOperand(4));
+
+ return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
+ Op.getOperand(3));
+}
+
+SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+ assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
+ SDValue Cond = createFPCmp(DAG, Op);
+
+ assert(Cond.getOpcode() == MipsISD::FPCmp &&
+ "Floating point operand expected.");
+
+ SDValue True = DAG.getConstant(1, MVT::i32);
+ SDValue False = DAG.getConstant(0, MVT::i32);
+
+ return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
+}
+
+SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ // FIXME there isn't actually debug info here
+ SDLoc DL(Op);
+ EVT Ty = Op.getValueType();
+ GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = N->getGlobal();
+
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
+ !Subtarget.isABI_N64()) {
+ const MipsTargetObjectFile &TLOF =
+ (const MipsTargetObjectFile&)getObjFileLowering();
+
+ // %gp_rel relocation
+ if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
+ SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
+ MipsII::MO_GPREL);
+ SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
+ DAG.getVTList(MVT::i32), GA);
+ SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
+ return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
+ }
+
+ // %hi/%lo relocation
+ return getAddrNonPIC(N, Ty, DAG);
+ }
+
+ if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
+ return getAddrLocal(N, Ty, DAG,
+ Subtarget.isABI_N32() || Subtarget.isABI_N64());
+
+ if (LargeGOT)
+ return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16,
+ MipsII::MO_GOT_LO16, DAG.getEntryNode(),
+ MachinePointerInfo::getGOT());
+
+ return getAddrGlobal(N, Ty, DAG,
+ (Subtarget.isABI_N32() || Subtarget.isABI_N64())
+ ? MipsII::MO_GOT_DISP
+ : MipsII::MO_GOT16,
+ DAG.getEntryNode(), MachinePointerInfo::getGOT());
+}
+
+SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
+ EVT Ty = Op.getValueType();
+
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
+ !Subtarget.isABI_N64())
+ return getAddrNonPIC(N, Ty, DAG);
+
+ return getAddrLocal(N, Ty, DAG,
+ Subtarget.isABI_N32() || Subtarget.isABI_N64());
+}
+
+SDValue MipsTargetLowering::
+lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
+{
+ // If the relocation model is PIC, use the General Dynamic TLS Model or
+ // Local Dynamic TLS model, otherwise use the Initial Exec or
+ // Local Exec TLS Model.
+
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+ SDLoc DL(GA);
+ const GlobalValue *GV = GA->getGlobal();
+ EVT PtrVT = getPointerTy();
+
+ TLSModel::Model model = getTargetMachine().getTLSModel(GV);
+
+ if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
+ // General Dynamic and Local Dynamic TLS Model.
+ unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
+ : MipsII::MO_TLSGD;
+
+ SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
+ SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
+ getGlobalReg(DAG, PtrVT), TGA);
+ unsigned PtrSize = PtrVT.getSizeInBits();
+ IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
+
+ SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
+
+ ArgListTy Args;
+ ArgListEntry Entry;
+ Entry.Node = Argument;
+ Entry.Ty = PtrTy;
+ Args.push_back(Entry);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(DL).setChain(DAG.getEntryNode())
+ .setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args), 0);
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+
+ SDValue Ret = CallResult.first;
+
+ if (model != TLSModel::LocalDynamic)
+ return Ret;
+
+ SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ MipsII::MO_DTPREL_HI);
+ SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
+ SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ MipsII::MO_DTPREL_LO);
+ SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
+ SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
+ return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
+ }
+
+ SDValue Offset;
+ if (model == TLSModel::InitialExec) {
+ // Initial Exec TLS Model
+ SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ MipsII::MO_GOTTPREL);
+ TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
+ TGA);
+ Offset = DAG.getLoad(PtrVT, DL,
+ DAG.getEntryNode(), TGA, MachinePointerInfo(),
+ false, false, false, 0);
+ } else {
+ // Local Exec TLS Model
+ assert(model == TLSModel::LocalExec);
+ SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ MipsII::MO_TPREL_HI);
+ SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ MipsII::MO_TPREL_LO);
+ SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
+ SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
+ Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
+ }
+
+ SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
+ return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
+}
+
+SDValue MipsTargetLowering::
+lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
+{
+ JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
+ EVT Ty = Op.getValueType();
+
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
+ !Subtarget.isABI_N64())
+ return getAddrNonPIC(N, Ty, DAG);
+
+ return getAddrLocal(N, Ty, DAG,
+ Subtarget.isABI_N32() || Subtarget.isABI_N64());
+}
+
+SDValue MipsTargetLowering::
+lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
+{
+ // gp_rel relocation
+ // FIXME: we should reference the constant pool using small data sections,
+ // but the asm printer currently doesn't support this feature without
+ // hacking it. This feature should come soon so we can uncomment the
+ // stuff below.
+ //if (IsInSmallSection(C->getType())) {
+ // SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
+ // SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
+ // ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
+ ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
+ EVT Ty = Op.getValueType();
+
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
+ !Subtarget.isABI_N64())
+ return getAddrNonPIC(N, Ty, DAG);
+
+ return getAddrLocal(N, Ty, DAG,
+ Subtarget.isABI_N32() || Subtarget.isABI_N64());
+}
+
+SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
+
+ SDLoc DL(Op);
+ SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
+ getPointerTy());
+
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
+ MachinePointerInfo(SV), false, false, 0);
+}
+
+static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
+ bool HasExtractInsert) {
+ EVT TyX = Op.getOperand(0).getValueType();
+ EVT TyY = Op.getOperand(1).getValueType();
+ SDValue Const1 = DAG.getConstant(1, MVT::i32);
+ SDValue Const31 = DAG.getConstant(31, MVT::i32);
+ SDLoc DL(Op);
+ SDValue Res;
+
+ // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
+ // to i32.
+ SDValue X = (TyX == MVT::f32) ?
+ DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
+ DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
+ Const1);
+ SDValue Y = (TyY == MVT::f32) ?
+ DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
+ DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
+ Const1);
+
+ if (HasExtractInsert) {
+ // ext E, Y, 31, 1 ; extract bit31 of Y
+ // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
+ SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
+ Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
+ } else {
+ // sll SllX, X, 1
+ // srl SrlX, SllX, 1
+ // srl SrlY, Y, 31
+ // sll SllY, SrlX, 31
+ // or Or, SrlX, SllY
+ SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
+ SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
+ SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
+ SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
+ Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
+ }
+
+ if (TyX == MVT::f32)
+ return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
+
+ SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
+ Op.getOperand(0), DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
+}
+
+static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
+ bool HasExtractInsert) {
+ unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
+ unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
+ EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
+ SDValue Const1 = DAG.getConstant(1, MVT::i32);
+ SDLoc DL(Op);
+
+ // Bitcast to integer nodes.
+ SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
+ SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
+
+ if (HasExtractInsert) {
+ // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
+ // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
+ SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
+ DAG.getConstant(WidthY - 1, MVT::i32), Const1);
+
+ if (WidthX > WidthY)
+ E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
+ else if (WidthY > WidthX)
+ E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
+
+ SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
+ DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
+ return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
+ }
+
+ // (d)sll SllX, X, 1
+ // (d)srl SrlX, SllX, 1
+ // (d)srl SrlY, Y, width(Y)-1
+ // (d)sll SllY, SrlX, width(Y)-1
+ // or Or, SrlX, SllY
+ SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
+ SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
+ SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
+ DAG.getConstant(WidthY - 1, MVT::i32));
+
+ if (WidthX > WidthY)
+ SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
+ else if (WidthY > WidthX)
+ SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
+
+ SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
+ DAG.getConstant(WidthX - 1, MVT::i32));
+ SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
+ return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
+}
+
+SDValue
+MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
+ if (Subtarget.isGP64bit())
+ return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
+
+ return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
+}
+
+SDValue MipsTargetLowering::
+lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ // check the depth
+ assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
+ "Frame address can only be determined for current frame.");
+
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ SDValue FrameAddr =
+ DAG.getCopyFromReg(DAG.getEntryNode(), DL,
+ Subtarget.isABI_N64() ? Mips::FP_64 : Mips::FP, VT);
+ return FrameAddr;
+}
+
+SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ // check the depth
+ assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
+ "Return address can be determined only for current frame.");
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MVT VT = Op.getSimpleValueType();
+ unsigned RA = Subtarget.isABI_N64() ? Mips::RA_64 : Mips::RA;
+ MFI->setReturnAddressIsTaken(true);
+
+ // Return RA, which contains the return address. Mark it an implicit live-in.
+ unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
+ return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
+}
+
+// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
+// generated from __builtin_eh_return (offset, handler)
+// The effect of this is to adjust the stack pointer by "offset"
+// and then branch to "handler".
+SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
+ const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ MipsFI->setCallsEhReturn();
+ SDValue Chain = Op.getOperand(0);
+ SDValue Offset = Op.getOperand(1);
+ SDValue Handler = Op.getOperand(2);
+ SDLoc DL(Op);
+ EVT Ty = Subtarget.isABI_N64() ? MVT::i64 : MVT::i32;
+
+ // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
+ // EH_RETURN nodes, so that instructions are emitted back-to-back.
+ unsigned OffsetReg = Subtarget.isABI_N64() ? Mips::V1_64 : Mips::V1;
+ unsigned AddrReg = Subtarget.isABI_N64() ? Mips::V0_64 : Mips::V0;
+ Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
+ Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
+ return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
+ DAG.getRegister(OffsetReg, Ty),
+ DAG.getRegister(AddrReg, getPointerTy()),
+ Chain.getValue(1));
+}
+
+SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
+ SelectionDAG &DAG) const {
+ // FIXME: Need pseudo-fence for 'singlethread' fences
+ // FIXME: Set SType for weaker fences where supported/appropriate.
+ unsigned SType = 0;
+ SDLoc DL(Op);
+ return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(SType, MVT::i32));
+}
+
+SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
+ SDValue Shamt = Op.getOperand(2);
+
+ // if shamt < 32:
+ // lo = (shl lo, shamt)
+ // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
+ // else:
+ // lo = 0
+ // hi = (shl lo, shamt[4:0])
+ SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
+ DAG.getConstant(-1, MVT::i32));
+ SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
+ DAG.getConstant(1, MVT::i32));
+ SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
+ Not);
+ SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
+ SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
+ SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
+ SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
+ DAG.getConstant(0x20, MVT::i32));
+ Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
+ DAG.getConstant(0, MVT::i32), ShiftLeftLo);
+ Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
+
+ SDValue Ops[2] = {Lo, Hi};
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
+ bool IsSRA) const {
+ SDLoc DL(Op);
+ SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
+ SDValue Shamt = Op.getOperand(2);
+
+ // if shamt < 32:
+ // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
+ // if isSRA:
+ // hi = (sra hi, shamt)
+ // else:
+ // hi = (srl hi, shamt)
+ // else:
+ // if isSRA:
+ // lo = (sra hi, shamt[4:0])
+ // hi = (sra hi, 31)
+ // else:
+ // lo = (srl hi, shamt[4:0])
+ // hi = 0
+ SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
+ DAG.getConstant(-1, MVT::i32));
+ SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
+ DAG.getConstant(1, MVT::i32));
+ SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
+ SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
+ SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
+ SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
+ Hi, Shamt);
+ SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
+ DAG.getConstant(0x20, MVT::i32));
+ SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
+ DAG.getConstant(31, MVT::i32));
+ Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
+ Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
+ IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
+ ShiftRightHi);
+
+ SDValue Ops[2] = {Lo, Hi};
+ return DAG.getMergeValues(Ops, DL);
+}
+
+static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
+ SDValue Chain, SDValue Src, unsigned Offset) {
+ SDValue Ptr = LD->getBasePtr();
+ EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
+ EVT BasePtrVT = Ptr.getValueType();
+ SDLoc DL(LD);
+ SDVTList VTList = DAG.getVTList(VT, MVT::Other);
+
+ if (Offset)
+ Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
+ DAG.getConstant(Offset, BasePtrVT));
+
+ SDValue Ops[] = { Chain, Ptr, Src };
+ return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
+ LD->getMemOperand());
+}
+
+// Expand an unaligned 32 or 64-bit integer load node.
+SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ EVT MemVT = LD->getMemoryVT();
+
+ if (Subtarget.systemSupportsUnalignedAccess())
+ return Op;
+
+ // Return if load is aligned or if MemVT is neither i32 nor i64.
+ if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
+ ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
+ return SDValue();
+
+ bool IsLittle = Subtarget.isLittle();
+ EVT VT = Op.getValueType();
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
+
+ assert((VT == MVT::i32) || (VT == MVT::i64));
+
+ // Expand
+ // (set dst, (i64 (load baseptr)))
+ // to
+ // (set tmp, (ldl (add baseptr, 7), undef))
+ // (set dst, (ldr baseptr, tmp))
+ if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
+ SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
+ IsLittle ? 7 : 0);
+ return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
+ IsLittle ? 0 : 7);
+ }
+
+ SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
+ IsLittle ? 3 : 0);
+ SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
+ IsLittle ? 0 : 3);
+
+ // Expand
+ // (set dst, (i32 (load baseptr))) or
+ // (set dst, (i64 (sextload baseptr))) or
+ // (set dst, (i64 (extload baseptr)))
+ // to
+ // (set tmp, (lwl (add baseptr, 3), undef))
+ // (set dst, (lwr baseptr, tmp))
+ if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
+ (ExtType == ISD::EXTLOAD))
+ return LWR;
+
+ assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
+
+ // Expand
+ // (set dst, (i64 (zextload baseptr)))
+ // to
+ // (set tmp0, (lwl (add baseptr, 3), undef))
+ // (set tmp1, (lwr baseptr, tmp0))
+ // (set tmp2, (shl tmp1, 32))
+ // (set dst, (srl tmp2, 32))
+ SDLoc DL(LD);
+ SDValue Const32 = DAG.getConstant(32, MVT::i32);
+ SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
+ SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
+ SDValue Ops[] = { SRL, LWR.getValue(1) };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
+ SDValue Chain, unsigned Offset) {
+ SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
+ EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
+ SDLoc DL(SD);
+ SDVTList VTList = DAG.getVTList(MVT::Other);
+
+ if (Offset)
+ Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
+ DAG.getConstant(Offset, BasePtrVT));
+
+ SDValue Ops[] = { Chain, Value, Ptr };
+ return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
+ SD->getMemOperand());
+}
+
+// Expand an unaligned 32 or 64-bit integer store node.
+static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
+ bool IsLittle) {
+ SDValue Value = SD->getValue(), Chain = SD->getChain();
+ EVT VT = Value.getValueType();
+
+ // Expand
+ // (store val, baseptr) or
+ // (truncstore val, baseptr)
+ // to
+ // (swl val, (add baseptr, 3))
+ // (swr val, baseptr)
+ if ((VT == MVT::i32) || SD->isTruncatingStore()) {
+ SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
+ IsLittle ? 3 : 0);
+ return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
+ }
+
+ assert(VT == MVT::i64);
+
+ // Expand
+ // (store val, baseptr)
+ // to
+ // (sdl val, (add baseptr, 7))
+ // (sdr val, baseptr)
+ SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
+ return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
+}
+
+// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
+static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
+ SDValue Val = SD->getValue();
+
+ if (Val.getOpcode() != ISD::FP_TO_SINT)
+ return SDValue();
+
+ EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
+ SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
+ Val.getOperand(0));
+
+ return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
+ SD->getPointerInfo(), SD->isVolatile(),
+ SD->isNonTemporal(), SD->getAlignment());
+}
+
+SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
+ StoreSDNode *SD = cast<StoreSDNode>(Op);
+ EVT MemVT = SD->getMemoryVT();
+
+ // Lower unaligned integer stores.
+ if (!Subtarget.systemSupportsUnalignedAccess() &&
+ (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
+ ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
+ return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
+
+ return lowerFP_TO_SINT_STORE(SD, DAG);
+}
+
+SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
+ if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
+ || cast<ConstantSDNode>
+ (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
+ || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
+ return SDValue();
+
+ // The pattern
+ // (add (frameaddr 0), (frame_to_args_offset))
+ // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
+ // (add FrameObject, 0)
+ // where FrameObject is a fixed StackObject with offset 0 which points to
+ // the old stack pointer.
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ EVT ValTy = Op->getValueType(0);
+ int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
+ SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
+ return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
+ DAG.getConstant(0, ValTy));
+}
+
+SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
+ SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
+ Op.getOperand(0));
+ return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// TODO: Implement a generic logic using tblgen that can support this.
+// Mips O32 ABI rules:
+// ---
+// i32 - Passed in A0, A1, A2, A3 and stack
+// f32 - Only passed in f32 registers if no int reg has been used yet to hold
+// an argument. Otherwise, passed in A1, A2, A3 and stack.
+// f64 - Only passed in two aliased f32 registers if no int reg has been used
+// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
+// not used, it must be shadowed. If only A3 is avaiable, shadow it and
+// go to stack.
+//
+// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
+//===----------------------------------------------------------------------===//
+
+static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
+ CCState &State, const MCPhysReg *F64Regs) {
+
+ static const unsigned IntRegsSize = 4, FloatRegsSize = 2;
+
+ static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
+ static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
+
+ // Do not process byval args here.
+ if (ArgFlags.isByVal())
+ return true;
+
+ // Promote i8 and i16
+ if (LocVT == MVT::i8 || LocVT == MVT::i16) {
+ LocVT = MVT::i32;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExt;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExt;
+ else
+ LocInfo = CCValAssign::AExt;
+ }
+
+ unsigned Reg;
+
+ // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
+ // is true: function is vararg, argument is 3rd or higher, there is previous
+ // argument which is not f32 or f64.
+ bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
+ || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
+ unsigned OrigAlign = ArgFlags.getOrigAlign();
+ bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
+
+ if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
+ Reg = State.AllocateReg(IntRegs, IntRegsSize);
+ // If this is the first part of an i64 arg,
+ // the allocated register must be either A0 or A2.
+ if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
+ Reg = State.AllocateReg(IntRegs, IntRegsSize);
+ LocVT = MVT::i32;
+ } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
+ // Allocate int register and shadow next int register. If first
+ // available register is Mips::A1 or Mips::A3, shadow it too.
+ Reg = State.AllocateReg(IntRegs, IntRegsSize);
+ if (Reg == Mips::A1 || Reg == Mips::A3)
+ Reg = State.AllocateReg(IntRegs, IntRegsSize);
+ State.AllocateReg(IntRegs, IntRegsSize);
+ LocVT = MVT::i32;
+ } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
+ // we are guaranteed to find an available float register
+ if (ValVT == MVT::f32) {
+ Reg = State.AllocateReg(F32Regs, FloatRegsSize);
+ // Shadow int register
+ State.AllocateReg(IntRegs, IntRegsSize);
+ } else {
+ Reg = State.AllocateReg(F64Regs, FloatRegsSize);
+ // Shadow int registers
+ unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
+ if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
+ State.AllocateReg(IntRegs, IntRegsSize);
+ State.AllocateReg(IntRegs, IntRegsSize);
+ }
+ } else
+ llvm_unreachable("Cannot handle this ValVT.");
+
+ if (!Reg) {
+ unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
+ OrigAlign);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ } else
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+
+ return false;
+}
+
+static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
+
+ return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
+}
+
+static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
+
+ return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
+}
+
+#include "MipsGenCallingConv.inc"
+
+//===----------------------------------------------------------------------===//
+// Call Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+// Return next O32 integer argument register.
+static unsigned getNextIntArgReg(unsigned Reg) {
+ assert((Reg == Mips::A0) || (Reg == Mips::A2));
+ return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
+}
+
+SDValue
+MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
+ SDValue Chain, SDValue Arg, SDLoc DL,
+ bool IsTailCall, SelectionDAG &DAG) const {
+ if (!IsTailCall) {
+ SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
+ DAG.getIntPtrConstant(Offset));
+ return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
+ false, 0);
+ }
+
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
+ /*isVolatile=*/ true, false, 0);
+}
+
+void MipsTargetLowering::
+getOpndList(SmallVectorImpl<SDValue> &Ops,
+ std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
+ bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
+ CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
+ // Insert node "GP copy globalreg" before call to function.
+ //
+ // R_MIPS_CALL* operators (emitted when non-internal functions are called
+ // in PIC mode) allow symbols to be resolved via lazy binding.
+ // The lazy binding stub requires GP to point to the GOT.
+ if (IsPICCall && !InternalLinkage) {
+ unsigned GPReg = Subtarget.isABI_N64() ? Mips::GP_64 : Mips::GP;
+ EVT Ty = Subtarget.isABI_N64() ? MVT::i64 : MVT::i32;
+ RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
+ }
+
+ // Build a sequence of copy-to-reg nodes chained together with token
+ // chain and flag operands which copy the outgoing args into registers.
+ // The InFlag in necessary since all emitted instructions must be
+ // stuck together.
+ SDValue InFlag;
+
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ if (Subtarget.inMips16HardFloat()) {
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
+ llvm::StringRef Sym = G->getGlobal()->getName();
+ Function *F = G->getGlobal()->getParent()->getFunction(Sym);
+ if (F && F->hasFnAttribute("__Mips16RetHelper")) {
+ Mask = MipsRegisterInfo::getMips16RetHelperMask();
+ }
+ }
+ }
+ Ops.push_back(CLI.DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+}
+
+/// LowerCall - functions arguments are copied from virtual regs to
+/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
+SDValue
+MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc DL = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &IsTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool IsVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
+ MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
+ bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+ MipsCC::SpecialCallingConvType SpecialCallingConv =
+ getSpecialCallingConv(Callee);
+ MipsCC MipsCCInfo(CallConv, Subtarget.isABI_O32(), Subtarget.isFP64bit(),
+ CCInfo, SpecialCallingConv);
+
+ MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
+ Subtarget.abiUsesSoftFloat(),
+ Callee.getNode(), CLI.getArgs());
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NextStackOffset = CCInfo.getNextStackOffset();
+
+ // Check if it's really possible to do a tail call.
+ if (IsTailCall)
+ IsTailCall =
+ isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
+ *MF.getInfo<MipsFunctionInfo>());
+
+ if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
+ report_fatal_error("failed to perform tail call elimination on a call "
+ "site marked musttail");
+
+ if (IsTailCall)
+ ++NumTailCalls;
+
+ // Chain is the output chain of the last Load/Store or CopyToReg node.
+ // ByValChain is the output chain of the last Memcpy node created for copying
+ // byval arguments to the stack.
+ unsigned StackAlignment = TFL->getStackAlignment();
+ NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
+ SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
+
+ if (!IsTailCall)
+ Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
+
+ SDValue StackPtr = DAG.getCopyFromReg(
+ Chain, DL, Subtarget.isABI_N64() ? Mips::SP_64 : Mips::SP,
+ getPointerTy());
+
+ // With EABI is it possible to have 16 args on registers.
+ std::deque< std::pair<unsigned, SDValue> > RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+ MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ SDValue Arg = OutVals[i];
+ CCValAssign &VA = ArgLocs[i];
+ MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+
+ // ByVal Arg.
+ if (Flags.isByVal()) {
+ assert(Flags.getByValSize() &&
+ "ByVal args of size 0 should have been ignored by front-end.");
+ assert(ByValArg != MipsCCInfo.byval_end());
+ assert(!IsTailCall &&
+ "Do not tail-call optimize if there is a byval argument.");
+ passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
+ MipsCCInfo, *ByValArg, Flags, Subtarget.isLittle());
+ ++ByValArg;
+ continue;
+ }
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ if (VA.isRegLoc()) {
+ if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
+ (ValVT == MVT::f64 && LocVT == MVT::i64) ||
+ (ValVT == MVT::i64 && LocVT == MVT::f64))
+ Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
+ else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
+ SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
+ Arg, DAG.getConstant(0, MVT::i32));
+ SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
+ Arg, DAG.getConstant(1, MVT::i32));
+ if (!Subtarget.isLittle())
+ std::swap(Lo, Hi);
+ unsigned LocRegLo = VA.getLocReg();
+ unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
+ RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
+ RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
+ continue;
+ }
+ }
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
+ break;
+ }
+
+ // Arguments that can be passed on register must be kept at
+ // RegsToPass vector
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ continue;
+ }
+
+ // Register can't get to this point...
+ assert(VA.isMemLoc());
+
+ // emit ISD::STORE whichs stores the
+ // parameter value to a stack Location
+ MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
+ Chain, Arg, DL, IsTailCall, DAG));
+ }
+
+ // Transform all store nodes into one single node because all store
+ // nodes are independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ bool IsPICCall =
+ (Subtarget.isABI_N64() || IsPIC); // true if calls are translated to
+ // jalr $25
+ bool GlobalOrExternal = false, InternalLinkage = false;
+ SDValue CalleeLo;
+ EVT Ty = Callee.getValueType();
+
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ if (IsPICCall) {
+ const GlobalValue *Val = G->getGlobal();
+ InternalLinkage = Val->hasInternalLinkage();
+
+ if (InternalLinkage)
+ Callee = getAddrLocal(G, Ty, DAG,
+ Subtarget.isABI_N32() || Subtarget.isABI_N64());
+ else if (LargeGOT)
+ Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16,
+ MipsII::MO_CALL_LO16, Chain,
+ FuncInfo->callPtrInfo(Val));
+ else
+ Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
+ FuncInfo->callPtrInfo(Val));
+ } else
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
+ MipsII::MO_NO_FLAG);
+ GlobalOrExternal = true;
+ }
+ else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const char *Sym = S->getSymbol();
+
+ if (!Subtarget.isABI_N64() && !IsPIC) // !N64 && static
+ Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(),
+ MipsII::MO_NO_FLAG);
+ else if (LargeGOT)
+ Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16,
+ MipsII::MO_CALL_LO16, Chain,
+ FuncInfo->callPtrInfo(Sym));
+ else // N64 || PIC
+ Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
+ FuncInfo->callPtrInfo(Sym));
+
+ GlobalOrExternal = true;
+ }
+
+ SmallVector<SDValue, 8> Ops(1, Chain);
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
+ CLI, Callee, Chain);
+
+ if (IsTailCall)
+ return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
+
+ Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
+ SDValue InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
+ DAG.getIntPtrConstant(0, true), InFlag, DL);
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
+ Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue
+MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals,
+ const SDNode *CallNode,
+ const Type *RetTy) const {
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+ MipsCC MipsCCInfo(CallConv, Subtarget.isABI_O32(), Subtarget.isFP64bit(),
+ CCInfo);
+
+ MipsCCInfo.analyzeCallResult(Ins, Subtarget.abiUsesSoftFloat(),
+ CallNode, RetTy);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
+ RVLocs[i].getLocVT(), InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+
+ if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
+ Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// Formal Arguments Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+/// LowerFormalArguments - transform physical registers into virtual registers
+/// and generate load operations for arguments places on the stack.
+SDValue
+MipsTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ MipsFI->setVarArgsFrameIndex(0);
+
+ // Used with vargs to acumulate store chains.
+ std::vector<SDValue> OutChains;
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+ MipsCC MipsCCInfo(CallConv, Subtarget.isABI_O32(), Subtarget.isFP64bit(),
+ CCInfo);
+ Function::const_arg_iterator FuncArg =
+ DAG.getMachineFunction().getFunction()->arg_begin();
+ bool UseSoftFloat = Subtarget.abiUsesSoftFloat();
+
+ MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
+ MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
+ MipsCCInfo.hasByValArg());
+
+ unsigned CurArgIdx = 0;
+ MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
+ CurArgIdx = Ins[i].OrigArgIndex;
+ EVT ValVT = VA.getValVT();
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ bool IsRegLoc = VA.isRegLoc();
+
+ if (Flags.isByVal()) {
+ assert(Flags.getByValSize() &&
+ "ByVal args of size 0 should have been ignored by front-end.");
+ assert(ByValArg != MipsCCInfo.byval_end());
+ copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
+ MipsCCInfo, *ByValArg);
+ ++ByValArg;
+ continue;
+ }
+
+ // Arguments stored on registers
+ if (IsRegLoc) {
+ MVT RegVT = VA.getLocVT();
+ unsigned ArgReg = VA.getLocReg();
+ const TargetRegisterClass *RC = getRegClassFor(RegVT);
+
+ // Transform the arguments stored on
+ // physical registers into virtual ones
+ unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
+
+ // If this is an 8 or 16-bit value, it has been passed promoted
+ // to 32 bits. Insert an assert[sz]ext to capture this, then
+ // truncate to the right size.
+ if (VA.getLocInfo() != CCValAssign::Full) {
+ unsigned Opcode = 0;
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ Opcode = ISD::AssertSext;
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ Opcode = ISD::AssertZext;
+ if (Opcode)
+ ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
+ DAG.getValueType(ValVT));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
+ }
+
+ // Handle floating point arguments passed in integer registers and
+ // long double arguments passed in floating point registers.
+ if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
+ (RegVT == MVT::i64 && ValVT == MVT::f64) ||
+ (RegVT == MVT::f64 && ValVT == MVT::i64))
+ ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
+ else if (Subtarget.isABI_O32() && RegVT == MVT::i32 &&
+ ValVT == MVT::f64) {
+ unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
+ getNextIntArgReg(ArgReg), RC);
+ SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
+ if (!Subtarget.isLittle())
+ std::swap(ArgValue, ArgValue2);
+ ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
+ ArgValue, ArgValue2);
+ }
+
+ InVals.push_back(ArgValue);
+ } else { // VA.isRegLoc()
+
+ // sanity check
+ assert(VA.isMemLoc());
+
+ // The stack pointer offset is relative to the caller stack frame.
+ int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
+ VA.getLocMemOffset(), true);
+
+ // Create load nodes to retrieve arguments from the stack
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ SDValue Load = DAG.getLoad(ValVT, DL, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0);
+ InVals.push_back(Load);
+ OutChains.push_back(Load.getValue(1));
+ }
+ }
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ // The mips ABIs for returning structs by value requires that we copy
+ // the sret argument into $v0 for the return. Save the argument into
+ // a virtual register so that we can access it from the return points.
+ if (Ins[i].Flags.isSRet()) {
+ unsigned Reg = MipsFI->getSRetReturnReg();
+ if (!Reg) {
+ Reg = MF.getRegInfo().createVirtualRegister(
+ getRegClassFor(Subtarget.isABI_N64() ? MVT::i64 : MVT::i32));
+ MipsFI->setSRetReturnReg(Reg);
+ }
+ SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
+ break;
+ }
+ }
+
+ if (IsVarArg)
+ writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
+
+ // All stores are grouped in one node to allow the matching between
+ // the size of Ins and InVals. This only happens when on varg functions
+ if (!OutChains.empty()) {
+ OutChains.push_back(Chain);
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+bool
+MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
+ MachineFunction &MF, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
+ RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, RetCC_Mips);
+}
+
+SDValue
+MipsTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const {
+ // CCValAssign - represent the assignment of
+ // the return value to a location
+ SmallVector<CCValAssign, 16> RVLocs;
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
+ *DAG.getContext());
+ MipsCC MipsCCInfo(CallConv, Subtarget.isABI_O32(), Subtarget.isFP64bit(),
+ CCInfo);
+
+ // Analyze return values.
+ MipsCCInfo.analyzeReturn(Outs, Subtarget.abiUsesSoftFloat(),
+ MF.getFunction()->getReturnType());
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ SDValue Val = OutVals[i];
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
+ Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
+
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
+
+ // Guarantee that all emitted copies are stuck together with flags.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ // The mips ABIs for returning structs by value requires that we copy
+ // the sret argument into $v0 for the return. We saved the argument into
+ // a virtual register in the entry block, so now we copy the value out
+ // and into $v0.
+ if (MF.getFunction()->hasStructRetAttr()) {
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+ unsigned Reg = MipsFI->getSRetReturnReg();
+
+ if (!Reg)
+ llvm_unreachable("sret virtual register not created in the entry block");
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
+ unsigned V0 = Subtarget.isABI_N64() ? Mips::V0_64 : Mips::V0;
+
+ Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ // Return on Mips is always a "jr $ra"
+ return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
+}
+
+//===----------------------------------------------------------------------===//
+// Mips Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+MipsTargetLowering::ConstraintType MipsTargetLowering::
+getConstraintType(const std::string &Constraint) const
+{
+ // Mips specific constraints
+ // GCC config/mips/constraints.md
+ //
+ // 'd' : An address register. Equivalent to r
+ // unless generating MIPS16 code.
+ // 'y' : Equivalent to r; retained for
+ // backwards compatibility.
+ // 'c' : A register suitable for use in an indirect
+ // jump. This will always be $25 for -mabicalls.
+ // 'l' : The lo register. 1 word storage.
+ // 'x' : The hilo register pair. Double word storage.
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default : break;
+ case 'd':
+ case 'y':
+ case 'f':
+ case 'c':
+ case 'l':
+ case 'x':
+ return C_RegisterClass;
+ case 'R':
+ return C_Memory;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+MipsTargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'd':
+ case 'y':
+ if (type->isIntegerTy())
+ weight = CW_Register;
+ break;
+ case 'f': // FPU or MSA register
+ if (Subtarget.hasMSA() && type->isVectorTy() &&
+ cast<VectorType>(type)->getBitWidth() == 128)
+ weight = CW_Register;
+ else if (type->isFloatTy())
+ weight = CW_Register;
+ break;
+ case 'c': // $25 for indirect jumps
+ case 'l': // lo register
+ case 'x': // hilo register pair
+ if (type->isIntegerTy())
+ weight = CW_SpecificReg;
+ break;
+ case 'I': // signed 16 bit immediate
+ case 'J': // integer zero
+ case 'K': // unsigned 16 bit immediate
+ case 'L': // signed 32 bit immediate where lower 16 bits are 0
+ case 'N': // immediate in the range of -65535 to -1 (inclusive)
+ case 'O': // signed 15 bit immediate (+- 16383)
+ case 'P': // immediate in the range of 65535 to 1 (inclusive)
+ if (isa<ConstantInt>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case 'R':
+ weight = CW_Memory;
+ break;
+ }
+ return weight;
+}
+
+/// This is a helper function to parse a physical register string and split it
+/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
+/// that is returned indicates whether parsing was successful. The second flag
+/// is true if the numeric part exists.
+static std::pair<bool, bool>
+parsePhysicalReg(const StringRef &C, std::string &Prefix,
+ unsigned long long &Reg) {
+ if (C.front() != '{' || C.back() != '}')
+ return std::make_pair(false, false);
+
+ // Search for the first numeric character.
+ StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
+ I = std::find_if(B, E, std::ptr_fun(isdigit));
+
+ Prefix.assign(B, I - B);
+
+ // The second flag is set to false if no numeric characters were found.
+ if (I == E)
+ return std::make_pair(true, false);
+
+ // Parse the numeric characters.
+ return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
+ true);
+}
+
+std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
+parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterClass *RC;
+ std::string Prefix;
+ unsigned long long Reg;
+
+ std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
+
+ if (!R.first)
+ return std::make_pair(0U, nullptr);
+
+ if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
+ // No numeric characters follow "hi" or "lo".
+ if (R.second)
+ return std::make_pair(0U, nullptr);
+
+ RC = TRI->getRegClass(Prefix == "hi" ?
+ Mips::HI32RegClassID : Mips::LO32RegClassID);
+ return std::make_pair(*(RC->begin()), RC);
+ } else if (Prefix.compare(0, 4, "$msa") == 0) {
+ // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
+
+ // No numeric characters follow the name.
+ if (R.second)
+ return std::make_pair(0U, nullptr);
+
+ Reg = StringSwitch<unsigned long long>(Prefix)
+ .Case("$msair", Mips::MSAIR)
+ .Case("$msacsr", Mips::MSACSR)
+ .Case("$msaaccess", Mips::MSAAccess)
+ .Case("$msasave", Mips::MSASave)
+ .Case("$msamodify", Mips::MSAModify)
+ .Case("$msarequest", Mips::MSARequest)
+ .Case("$msamap", Mips::MSAMap)
+ .Case("$msaunmap", Mips::MSAUnmap)
+ .Default(0);
+
+ if (!Reg)
+ return std::make_pair(0U, nullptr);
+
+ RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
+ return std::make_pair(Reg, RC);
+ }
+
+ if (!R.second)
+ return std::make_pair(0U, nullptr);
+
+ if (Prefix == "$f") { // Parse $f0-$f31.
+ // If the size of FP registers is 64-bit or Reg is an even number, select
+ // the 64-bit register class. Otherwise, select the 32-bit register class.
+ if (VT == MVT::Other)
+ VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
+
+ RC = getRegClassFor(VT);
+
+ if (RC == &Mips::AFGR64RegClass) {
+ assert(Reg % 2 == 0);
+ Reg >>= 1;
+ }
+ } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
+ RC = TRI->getRegClass(Mips::FCCRegClassID);
+ else if (Prefix == "$w") { // Parse $w0-$w31.
+ RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
+ } else { // Parse $0-$31.
+ assert(Prefix == "$");
+ RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
+ }
+
+ assert(Reg < RC->getNumRegs());
+ return std::make_pair(*(RC->begin() + Reg), RC);
+}
+
+/// Given a register class constraint, like 'r', if this corresponds directly
+/// to an LLVM register class, return a register of 0 and the register class
+/// pointer.
+std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
+{
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
+ case 'y': // Same as 'r'. Exists for compatibility.
+ case 'r':
+ if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
+ if (Subtarget.inMips16Mode())
+ return std::make_pair(0U, &Mips::CPU16RegsRegClass);
+ return std::make_pair(0U, &Mips::GPR32RegClass);
+ }
+ if (VT == MVT::i64 && !Subtarget.isGP64bit())
+ return std::make_pair(0U, &Mips::GPR32RegClass);
+ if (VT == MVT::i64 && Subtarget.isGP64bit())
+ return std::make_pair(0U, &Mips::GPR64RegClass);
+ // This will generate an error message
+ return std::make_pair(0U, nullptr);
+ case 'f': // FPU or MSA register
+ if (VT == MVT::v16i8)
+ return std::make_pair(0U, &Mips::MSA128BRegClass);
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
+ return std::make_pair(0U, &Mips::MSA128HRegClass);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return std::make_pair(0U, &Mips::MSA128WRegClass);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return std::make_pair(0U, &Mips::MSA128DRegClass);
+ else if (VT == MVT::f32)
+ return std::make_pair(0U, &Mips::FGR32RegClass);
+ else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
+ if (Subtarget.isFP64bit())
+ return std::make_pair(0U, &Mips::FGR64RegClass);
+ return std::make_pair(0U, &Mips::AFGR64RegClass);
+ }
+ break;
+ case 'c': // register suitable for indirect jump
+ if (VT == MVT::i32)
+ return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
+ assert(VT == MVT::i64 && "Unexpected type.");
+ return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
+ case 'l': // register suitable for indirect jump
+ if (VT == MVT::i32)
+ return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
+ return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
+ case 'x': // register suitable for indirect jump
+ // Fixme: Not triggering the use of both hi and low
+ // This will generate an error message
+ return std::make_pair(0U, nullptr);
+ }
+ }
+
+ std::pair<unsigned, const TargetRegisterClass *> R;
+ R = parseRegForInlineAsmConstraint(Constraint, VT);
+
+ if (R.second)
+ return R;
+
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result;
+
+ // Only support length 1 constraints for now.
+ if (Constraint.length() > 1) return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break; // This will fall through to the generic implementation
+ case 'I': // Signed 16 bit constant
+ // If this fails, the parent routine will give an error
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getSExtValue();
+ if (isInt<16>(Val)) {
+ Result = DAG.getTargetConstant(Val, Type);
+ break;
+ }
+ }
+ return;
+ case 'J': // integer zero
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getZExtValue();
+ if (Val == 0) {
+ Result = DAG.getTargetConstant(0, Type);
+ break;
+ }
+ }
+ return;
+ case 'K': // unsigned 16 bit immediate
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ uint64_t Val = (uint64_t)C->getZExtValue();
+ if (isUInt<16>(Val)) {
+ Result = DAG.getTargetConstant(Val, Type);
+ break;
+ }
+ }
+ return;
+ case 'L': // signed 32 bit immediate where lower 16 bits are 0
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getSExtValue();
+ if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
+ Result = DAG.getTargetConstant(Val, Type);
+ break;
+ }
+ }
+ return;
+ case 'N': // immediate in the range of -65535 to -1 (inclusive)
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getSExtValue();
+ if ((Val >= -65535) && (Val <= -1)) {
+ Result = DAG.getTargetConstant(Val, Type);
+ break;
+ }
+ }
+ return;
+ case 'O': // signed 15 bit immediate
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getSExtValue();
+ if ((isInt<15>(Val))) {
+ Result = DAG.getTargetConstant(Val, Type);
+ break;
+ }
+ }
+ return;
+ case 'P': // immediate in the range of 1 to 65535 (inclusive)
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getSExtValue();
+ if ((Val <= 65535) && (Val >= 1)) {
+ Result = DAG.getTargetConstant(Val, Type);
+ break;
+ }
+ }
+ return;
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+
+ TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ switch (AM.Scale) {
+ case 0: // "r+i" or just "i", depending on HasBaseReg.
+ break;
+ case 1:
+ if (!AM.HasBaseReg) // allow "r+i".
+ break;
+ return false; // disallow "r+r" or "r+r+i".
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+bool
+MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The Mips target isn't yet aware of offsets.
+ return false;
+}
+
+EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
+ unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ if (Subtarget.hasMips64())
+ return MVT::i64;
+
+ return MVT::i32;
+}
+
+bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return false;
+ if (Imm.isNegZero())
+ return false;
+ return Imm.isZero();
+}
+
+unsigned MipsTargetLowering::getJumpTableEncoding() const {
+ if (Subtarget.isABI_N64())
+ return MachineJumpTableInfo::EK_GPRel64BlockAddress;
+
+ return TargetLowering::getJumpTableEncoding();
+}
+
+/// This function returns true if CallSym is a long double emulation routine.
+static bool isF128SoftLibCall(const char *CallSym) {
+ const char *const LibCalls[] =
+ {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
+ "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
+ "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
+ "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
+ "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
+ "__trunctfdf2", "__trunctfsf2", "__unordtf2",
+ "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
+ "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
+ "truncl"};
+
+ const char *const *End = LibCalls + array_lengthof(LibCalls);
+
+ // Check that LibCalls is sorted alphabetically.
+ MipsTargetLowering::LTStr Comp;
+
+#ifndef NDEBUG
+ for (const char *const *I = LibCalls; I < End - 1; ++I)
+ assert(Comp(*I, *(I + 1)));
+#endif
+
+ return std::binary_search(LibCalls, End, CallSym, Comp);
+}
+
+/// This function returns true if Ty is fp128 or i128 which was originally a
+/// fp128.
+static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
+ if (Ty->isFP128Ty())
+ return true;
+
+ const ExternalSymbolSDNode *ES =
+ dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
+
+ // If the Ty is i128 and the function being called is a long double emulation
+ // routine, then the original type is f128.
+ return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
+}
+
+MipsTargetLowering::MipsCC::SpecialCallingConvType
+ MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
+ MipsCC::SpecialCallingConvType SpecialCallingConv =
+ MipsCC::NoSpecialCallingConv;
+ if (Subtarget.inMips16HardFloat()) {
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ llvm::StringRef Sym = G->getGlobal()->getName();
+ Function *F = G->getGlobal()->getParent()->getFunction(Sym);
+ if (F && F->hasFnAttribute("__Mips16RetHelper")) {
+ SpecialCallingConv = MipsCC::Mips16RetHelperConv;
+ }
+ }
+ }
+ return SpecialCallingConv;
+}
+
+MipsTargetLowering::MipsCC::MipsCC(
+ CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
+ MipsCC::SpecialCallingConvType SpecialCallingConv_)
+ : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
+ SpecialCallingConv(SpecialCallingConv_){
+ // Pre-allocate reserved argument area.
+ CCInfo.AllocateStack(reservedArgArea(), 1);
+}
+
+
+void MipsTargetLowering::MipsCC::
+analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
+ bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
+ std::vector<ArgListEntry> &FuncArgs) {
+ assert((CallConv != CallingConv::Fast || !IsVarArg) &&
+ "CallingConv::Fast shouldn't be used for vararg functions.");
+
+ unsigned NumOpnds = Args.size();
+ llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
+
+ for (unsigned I = 0; I != NumOpnds; ++I) {
+ MVT ArgVT = Args[I].VT;
+ ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
+ bool R;
+
+ if (ArgFlags.isByVal()) {
+ handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
+ continue;
+ }
+
+ if (IsVarArg && !Args[I].IsFixed)
+ R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
+ else {
+ MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
+ IsSoftFloat);
+ R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
+ }
+
+ if (R) {
+#ifndef NDEBUG
+ dbgs() << "Call operand #" << I << " has unhandled type "
+ << EVT(ArgVT).getEVTString();
+#endif
+ llvm_unreachable(nullptr);
+ }
+ }
+}
+
+void MipsTargetLowering::MipsCC::
+analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
+ bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
+ unsigned NumArgs = Args.size();
+ llvm::CCAssignFn *FixedFn = fixedArgFn();
+ unsigned CurArgIdx = 0;
+
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ MVT ArgVT = Args[I].VT;
+ ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
+ std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
+ CurArgIdx = Args[I].OrigArgIndex;
+
+ if (ArgFlags.isByVal()) {
+ handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
+ continue;
+ }
+
+ MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), nullptr, IsSoftFloat);
+
+ if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
+ continue;
+
+#ifndef NDEBUG
+ dbgs() << "Formal Arg #" << I << " has unhandled type "
+ << EVT(ArgVT).getEVTString();
+#endif
+ llvm_unreachable(nullptr);
+ }
+}
+
+template<typename Ty>
+void MipsTargetLowering::MipsCC::
+analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
+ const SDNode *CallNode, const Type *RetTy) const {
+ CCAssignFn *Fn;
+
+ if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
+ Fn = RetCC_F128Soft;
+ else
+ Fn = RetCC_Mips;
+
+ for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
+ MVT VT = RetVals[I].VT;
+ ISD::ArgFlagsTy Flags = RetVals[I].Flags;
+ MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
+
+ if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
+#ifndef NDEBUG
+ dbgs() << "Call result #" << I << " has unhandled type "
+ << EVT(VT).getEVTString() << '\n';
+#endif
+ llvm_unreachable(nullptr);
+ }
+ }
+}
+
+void MipsTargetLowering::MipsCC::
+analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
+ const SDNode *CallNode, const Type *RetTy) const {
+ analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
+}
+
+void MipsTargetLowering::MipsCC::
+analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
+ const Type *RetTy) const {
+ analyzeReturn(Outs, IsSoftFloat, nullptr, RetTy);
+}
+
+void MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
+ MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags) {
+ assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
+
+ struct ByValArgInfo ByVal;
+ unsigned RegSize = regSize();
+ unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
+ unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
+ RegSize * 2);
+
+ if (useRegsForByval())
+ allocateRegs(ByVal, ByValSize, Align);
+
+ // Allocate space on caller's stack.
+ ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
+ Align);
+ CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
+ LocInfo));
+ ByValArgs.push_back(ByVal);
+}
+
+unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
+ return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
+}
+
+unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
+ return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
+}
+
+const MCPhysReg *MipsTargetLowering::MipsCC::intArgRegs() const {
+ return IsO32 ? O32IntRegs : Mips64IntRegs;
+}
+
+llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
+ if (CallConv == CallingConv::Fast)
+ return CC_Mips_FastCC;
+
+ if (SpecialCallingConv == Mips16RetHelperConv)
+ return CC_Mips16RetHelper;
+ return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
+}
+
+llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
+ return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
+}
+
+const MCPhysReg *MipsTargetLowering::MipsCC::shadowRegs() const {
+ return IsO32 ? O32IntRegs : Mips64DPRegs;
+}
+
+void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
+ unsigned ByValSize,
+ unsigned Align) {
+ unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
+ const MCPhysReg *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
+ assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
+ "Byval argument's size and alignment should be a multiple of"
+ "RegSize.");
+
+ ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
+
+ // If Align > RegSize, the first arg register must be even.
+ if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
+ CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
+ ++ByVal.FirstIdx;
+ }
+
+ // Mark the registers allocated.
+ for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
+ ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
+ CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
+}
+
+MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
+ const SDNode *CallNode,
+ bool IsSoftFloat) const {
+ if (IsSoftFloat || IsO32)
+ return VT;
+
+ // Check if the original type was fp128.
+ if (originalTypeIsF128(OrigTy, CallNode)) {
+ assert(VT == MVT::i64);
+ return MVT::f64;
+ }
+
+ return VT;
+}
+
+void MipsTargetLowering::
+copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
+ SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
+ SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
+ const MipsCC &CC, const ByValArgInfo &ByVal) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
+ unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
+ int FrameObjOffset;
+
+ if (RegAreaSize)
+ FrameObjOffset = (int)CC.reservedArgArea() -
+ (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
+ else
+ FrameObjOffset = ByVal.Address;
+
+ // Create frame object.
+ EVT PtrTy = getPointerTy();
+ int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
+ InVals.push_back(FIN);
+
+ if (!ByVal.NumRegs)
+ return;
+
+ // Copy arg registers.
+ MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
+ const TargetRegisterClass *RC = getRegClassFor(RegTy);
+
+ for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
+ unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
+ unsigned VReg = addLiveIn(MF, ArgReg, RC);
+ unsigned Offset = I * CC.regSize();
+ SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
+ DAG.getConstant(Offset, PtrTy));
+ SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
+ StorePtr, MachinePointerInfo(FuncArg, Offset),
+ false, false, 0);
+ OutChains.push_back(Store);
+ }
+}
+
+// Copy byVal arg to registers and stack.
+void MipsTargetLowering::
+passByValArg(SDValue Chain, SDLoc DL,
+ std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
+ SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
+ MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
+ const MipsCC &CC, const ByValArgInfo &ByVal,
+ const ISD::ArgFlagsTy &Flags, bool isLittle) const {
+ unsigned ByValSizeInBytes = Flags.getByValSize();
+ unsigned OffsetInBytes = 0; // From beginning of struct
+ unsigned RegSizeInBytes = CC.regSize();
+ unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
+ EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
+
+ if (ByVal.NumRegs) {
+ const MCPhysReg *ArgRegs = CC.intArgRegs();
+ bool LeftoverBytes = (ByVal.NumRegs * RegSizeInBytes > ByValSizeInBytes);
+ unsigned I = 0;
+
+ // Copy words to registers.
+ for (; I < ByVal.NumRegs - LeftoverBytes;
+ ++I, OffsetInBytes += RegSizeInBytes) {
+ SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
+ DAG.getConstant(OffsetInBytes, PtrTy));
+ SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
+ MachinePointerInfo(), false, false, false,
+ Alignment);
+ MemOpChains.push_back(LoadVal.getValue(1));
+ unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
+ RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
+ }
+
+ // Return if the struct has been fully copied.
+ if (ByValSizeInBytes == OffsetInBytes)
+ return;
+
+ // Copy the remainder of the byval argument with sub-word loads and shifts.
+ if (LeftoverBytes) {
+ assert((ByValSizeInBytes > OffsetInBytes) &&
+ (ByValSizeInBytes < OffsetInBytes + RegSizeInBytes) &&
+ "Size of the remainder should be smaller than RegSizeInBytes.");
+ SDValue Val;
+
+ for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
+ OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
+ unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
+
+ if (RemainingSizeInBytes < LoadSizeInBytes)
+ continue;
+
+ // Load subword.
+ SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
+ DAG.getConstant(OffsetInBytes, PtrTy));
+ SDValue LoadVal = DAG.getExtLoad(
+ ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
+ MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, Alignment);
+ MemOpChains.push_back(LoadVal.getValue(1));
+
+ // Shift the loaded value.
+ unsigned Shamt;
+
+ if (isLittle)
+ Shamt = TotalBytesLoaded * 8;
+ else
+ Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
+
+ SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
+ DAG.getConstant(Shamt, MVT::i32));
+
+ if (Val.getNode())
+ Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
+ else
+ Val = Shift;
+
+ OffsetInBytes += LoadSizeInBytes;
+ TotalBytesLoaded += LoadSizeInBytes;
+ Alignment = std::min(Alignment, LoadSizeInBytes);
+ }
+
+ unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
+ RegsToPass.push_back(std::make_pair(ArgReg, Val));
+ return;
+ }
+ }
+
+ // Copy remainder of byval arg to it with memcpy.
+ unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
+ SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
+ DAG.getConstant(OffsetInBytes, PtrTy));
+ SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
+ DAG.getIntPtrConstant(ByVal.Address));
+ Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy),
+ Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
+ MachinePointerInfo(), MachinePointerInfo());
+ MemOpChains.push_back(Chain);
+}
+
+void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
+ const MipsCC &CC, SDValue Chain,
+ SDLoc DL, SelectionDAG &DAG) const {
+ unsigned NumRegs = CC.numIntArgRegs();
+ const MCPhysReg *ArgRegs = CC.intArgRegs();
+ const CCState &CCInfo = CC.getCCInfo();
+ unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
+ unsigned RegSize = CC.regSize();
+ MVT RegTy = MVT::getIntegerVT(RegSize * 8);
+ const TargetRegisterClass *RC = getRegClassFor(RegTy);
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ // Offset of the first variable argument from stack pointer.
+ int VaArgOffset;
+
+ if (NumRegs == Idx)
+ VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
+ else
+ VaArgOffset = (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
+
+ // Record the frame index of the first variable argument
+ // which is a value necessary to VASTART.
+ int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
+ MipsFI->setVarArgsFrameIndex(FI);
+
+ // Copy the integer registers that have not been used for argument passing
+ // to the argument register save area. For O32, the save area is allocated
+ // in the caller's stack frame, while for N32/64, it is allocated in the
+ // callee's stack frame.
+ for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
+ unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
+ FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
+ SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
+ SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
+ MachinePointerInfo(), false, false, 0);
+ cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
+ (Value *)nullptr);
+ OutChains.push_back(Store);
+ }
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsISelLowering.h b/contrib/llvm/lib/Target/Mips/MipsISelLowering.h
new file mode 100644
index 0000000..10e4e0b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsISelLowering.h
@@ -0,0 +1,627 @@
+//===-- MipsISelLowering.h - Mips DAG Lowering Interface --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that Mips uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MipsISELLOWERING_H
+#define MipsISELLOWERING_H
+
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "Mips.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Target/TargetLowering.h"
+#include <deque>
+#include <string>
+
+namespace llvm {
+ namespace MipsISD {
+ enum NodeType {
+ // Start the numbering from where ISD NodeType finishes.
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ // Jump and link (call)
+ JmpLink,
+
+ // Tail call
+ TailCall,
+
+ // Get the Higher 16 bits from a 32-bit immediate
+ // No relation with Mips Hi register
+ Hi,
+
+ // Get the Lower 16 bits from a 32-bit immediate
+ // No relation with Mips Lo register
+ Lo,
+
+ // Handle gp_rel (small data/bss sections) relocation.
+ GPRel,
+
+ // Thread Pointer
+ ThreadPointer,
+
+ // Floating Point Branch Conditional
+ FPBrcond,
+
+ // Floating Point Compare
+ FPCmp,
+
+ // Floating Point Conditional Moves
+ CMovFP_T,
+ CMovFP_F,
+
+ // FP-to-int truncation node.
+ TruncIntFP,
+
+ // Return
+ Ret,
+
+ EH_RETURN,
+
+ // Node used to extract integer from accumulator.
+ MFHI,
+ MFLO,
+
+ // Node used to insert integers to accumulator.
+ MTLOHI,
+
+ // Mult nodes.
+ Mult,
+ Multu,
+
+ // MAdd/Sub nodes
+ MAdd,
+ MAddu,
+ MSub,
+ MSubu,
+
+ // DivRem(u)
+ DivRem,
+ DivRemU,
+ DivRem16,
+ DivRemU16,
+
+ BuildPairF64,
+ ExtractElementF64,
+
+ Wrapper,
+
+ DynAlloc,
+
+ Sync,
+
+ Ext,
+ Ins,
+
+ // EXTR.W instrinsic nodes.
+ EXTP,
+ EXTPDP,
+ EXTR_S_H,
+ EXTR_W,
+ EXTR_R_W,
+ EXTR_RS_W,
+ SHILO,
+ MTHLIP,
+
+ // DPA.W intrinsic nodes.
+ MULSAQ_S_W_PH,
+ MAQ_S_W_PHL,
+ MAQ_S_W_PHR,
+ MAQ_SA_W_PHL,
+ MAQ_SA_W_PHR,
+ DPAU_H_QBL,
+ DPAU_H_QBR,
+ DPSU_H_QBL,
+ DPSU_H_QBR,
+ DPAQ_S_W_PH,
+ DPSQ_S_W_PH,
+ DPAQ_SA_L_W,
+ DPSQ_SA_L_W,
+ DPA_W_PH,
+ DPS_W_PH,
+ DPAQX_S_W_PH,
+ DPAQX_SA_W_PH,
+ DPAX_W_PH,
+ DPSX_W_PH,
+ DPSQX_S_W_PH,
+ DPSQX_SA_W_PH,
+ MULSA_W_PH,
+
+ MULT,
+ MULTU,
+ MADD_DSP,
+ MADDU_DSP,
+ MSUB_DSP,
+ MSUBU_DSP,
+
+ // DSP shift nodes.
+ SHLL_DSP,
+ SHRA_DSP,
+ SHRL_DSP,
+
+ // DSP setcc and select_cc nodes.
+ SETCC_DSP,
+ SELECT_CC_DSP,
+
+ // Vector comparisons.
+ // These take a vector and return a boolean.
+ VALL_ZERO,
+ VANY_ZERO,
+ VALL_NONZERO,
+ VANY_NONZERO,
+
+ // These take a vector and return a vector bitmask.
+ VCEQ,
+ VCLE_S,
+ VCLE_U,
+ VCLT_S,
+ VCLT_U,
+
+ // Element-wise vector max/min.
+ VSMAX,
+ VSMIN,
+ VUMAX,
+ VUMIN,
+
+ // Vector Shuffle with mask as an operand
+ VSHF, // Generic shuffle
+ SHF, // 4-element set shuffle.
+ ILVEV, // Interleave even elements
+ ILVOD, // Interleave odd elements
+ ILVL, // Interleave left elements
+ ILVR, // Interleave right elements
+ PCKEV, // Pack even elements
+ PCKOD, // Pack odd elements
+
+ // Vector Lane Copy
+ INSVE, // Copy element from one vector to another
+
+ // Combined (XOR (OR $a, $b), -1)
+ VNOR,
+
+ // Extended vector element extraction
+ VEXTRACT_SEXT_ELT,
+ VEXTRACT_ZEXT_ELT,
+
+ // Load/Store Left/Right nodes.
+ LWL = ISD::FIRST_TARGET_MEMORY_OPCODE,
+ LWR,
+ SWL,
+ SWR,
+ LDL,
+ LDR,
+ SDL,
+ SDR
+ };
+ }
+
+ //===--------------------------------------------------------------------===//
+ // TargetLowering Implementation
+ //===--------------------------------------------------------------------===//
+ class MipsFunctionInfo;
+ class MipsSubtarget;
+
+ class MipsTargetLowering : public TargetLowering {
+ bool isMicroMips;
+ public:
+ explicit MipsTargetLowering(MipsTargetMachine &TM,
+ const MipsSubtarget &STI);
+
+ static const MipsTargetLowering *create(MipsTargetMachine &TM,
+ const MipsSubtarget &STI);
+
+ /// createFastISel - This method returns a target specific FastISel object,
+ /// or null if the target does not support "fast" ISel.
+ FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const override;
+
+ MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
+
+ void LowerOperationWrapper(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const override;
+
+ /// LowerOperation - Provide custom lowering hooks for some operations.
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+
+ /// ReplaceNodeResults - Replace the results of node with an illegal result
+ /// type with new values built out of custom code.
+ ///
+ void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const override;
+
+ /// getTargetNodeName - This method returns the name of a target specific
+ // DAG node.
+ const char *getTargetNodeName(unsigned Opcode) const override;
+
+ /// getSetCCResultType - get the ISD::SETCC result ValueType
+ EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
+
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+
+ MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const override;
+
+ struct LTStr {
+ bool operator()(const char *S1, const char *S2) const {
+ return strcmp(S1, S2) < 0;
+ }
+ };
+
+ protected:
+ SDValue getGlobalReg(SelectionDAG &DAG, EVT Ty) const;
+
+ // This method creates the following nodes, which are necessary for
+ // computing a local symbol's address:
+ //
+ // (add (load (wrapper $gp, %got(sym)), %lo(sym))
+ template <class NodeTy>
+ SDValue getAddrLocal(NodeTy *N, EVT Ty, SelectionDAG &DAG,
+ bool IsN32OrN64) const {
+ SDLoc DL(N);
+ unsigned GOTFlag = IsN32OrN64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
+ SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
+ getTargetNode(N, Ty, DAG, GOTFlag));
+ SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
+ MachinePointerInfo::getGOT(), false, false,
+ false, 0);
+ unsigned LoFlag = IsN32OrN64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
+ SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty,
+ getTargetNode(N, Ty, DAG, LoFlag));
+ return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
+ }
+
+ // This method creates the following nodes, which are necessary for
+ // computing a global symbol's address:
+ //
+ // (load (wrapper $gp, %got(sym)))
+ template<class NodeTy>
+ SDValue getAddrGlobal(NodeTy *N, EVT Ty, SelectionDAG &DAG,
+ unsigned Flag, SDValue Chain,
+ const MachinePointerInfo &PtrInfo) const {
+ SDLoc DL(N);
+ SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
+ getTargetNode(N, Ty, DAG, Flag));
+ return DAG.getLoad(Ty, DL, Chain, Tgt, PtrInfo, false, false, false, 0);
+ }
+
+ // This method creates the following nodes, which are necessary for
+ // computing a global symbol's address in large-GOT mode:
+ //
+ // (load (wrapper (add %hi(sym), $gp), %lo(sym)))
+ template<class NodeTy>
+ SDValue getAddrGlobalLargeGOT(NodeTy *N, EVT Ty, SelectionDAG &DAG,
+ unsigned HiFlag, unsigned LoFlag,
+ SDValue Chain,
+ const MachinePointerInfo &PtrInfo) const {
+ SDLoc DL(N);
+ SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty,
+ getTargetNode(N, Ty, DAG, HiFlag));
+ Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
+ SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
+ getTargetNode(N, Ty, DAG, LoFlag));
+ return DAG.getLoad(Ty, DL, Chain, Wrapper, PtrInfo, false, false, false,
+ 0);
+ }
+
+ // This method creates the following nodes, which are necessary for
+ // computing a symbol's address in non-PIC mode:
+ //
+ // (add %hi(sym), %lo(sym))
+ template<class NodeTy>
+ SDValue getAddrNonPIC(NodeTy *N, EVT Ty, SelectionDAG &DAG) const {
+ SDLoc DL(N);
+ SDValue Hi = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_HI);
+ SDValue Lo = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_LO);
+ return DAG.getNode(ISD::ADD, DL, Ty,
+ DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
+ DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
+ }
+
+ /// This function fills Ops, which is the list of operands that will later
+ /// be used when a function call node is created. It also generates
+ /// copyToReg nodes to set up argument registers.
+ virtual void
+ getOpndList(SmallVectorImpl<SDValue> &Ops,
+ std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
+ bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
+ CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const;
+
+ /// ByValArgInfo - Byval argument information.
+ struct ByValArgInfo {
+ unsigned FirstIdx; // Index of the first register used.
+ unsigned NumRegs; // Number of registers used for this argument.
+ unsigned Address; // Offset of the stack area used to pass this argument.
+
+ ByValArgInfo() : FirstIdx(0), NumRegs(0), Address(0) {}
+ };
+
+ /// MipsCC - This class provides methods used to analyze formal and call
+ /// arguments and inquire about calling convention information.
+ class MipsCC {
+ public:
+ enum SpecialCallingConvType {
+ Mips16RetHelperConv, NoSpecialCallingConv
+ };
+
+ MipsCC(CallingConv::ID CallConv, bool IsO32, bool IsFP64, CCState &Info,
+ SpecialCallingConvType SpecialCallingConv = NoSpecialCallingConv);
+
+
+ void analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
+ bool IsVarArg, bool IsSoftFloat,
+ const SDNode *CallNode,
+ std::vector<ArgListEntry> &FuncArgs);
+ void analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
+ bool IsSoftFloat,
+ Function::const_arg_iterator FuncArg);
+
+ void analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
+ bool IsSoftFloat, const SDNode *CallNode,
+ const Type *RetTy) const;
+
+ void analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
+ bool IsSoftFloat, const Type *RetTy) const;
+
+ const CCState &getCCInfo() const { return CCInfo; }
+
+ /// hasByValArg - Returns true if function has byval arguments.
+ bool hasByValArg() const { return !ByValArgs.empty(); }
+
+ /// regSize - Size (in number of bits) of integer registers.
+ unsigned regSize() const { return IsO32 ? 4 : 8; }
+
+ /// numIntArgRegs - Number of integer registers available for calls.
+ unsigned numIntArgRegs() const;
+
+ /// reservedArgArea - The size of the area the caller reserves for
+ /// register arguments. This is 16-byte if ABI is O32.
+ unsigned reservedArgArea() const;
+
+ /// Return pointer to array of integer argument registers.
+ const MCPhysReg *intArgRegs() const;
+
+ typedef SmallVectorImpl<ByValArgInfo>::const_iterator byval_iterator;
+ byval_iterator byval_begin() const { return ByValArgs.begin(); }
+ byval_iterator byval_end() const { return ByValArgs.end(); }
+
+ private:
+ void handleByValArg(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags);
+
+ /// useRegsForByval - Returns true if the calling convention allows the
+ /// use of registers to pass byval arguments.
+ bool useRegsForByval() const { return CallConv != CallingConv::Fast; }
+
+ /// Return the function that analyzes fixed argument list functions.
+ llvm::CCAssignFn *fixedArgFn() const;
+
+ /// Return the function that analyzes variable argument list functions.
+ llvm::CCAssignFn *varArgFn() const;
+
+ const MCPhysReg *shadowRegs() const;
+
+ void allocateRegs(ByValArgInfo &ByVal, unsigned ByValSize,
+ unsigned Align);
+
+ /// Return the type of the register which is used to pass an argument or
+ /// return a value. This function returns f64 if the argument is an i64
+ /// value which has been generated as a result of softening an f128 value.
+ /// Otherwise, it just returns VT.
+ MVT getRegVT(MVT VT, const Type *OrigTy, const SDNode *CallNode,
+ bool IsSoftFloat) const;
+
+ template<typename Ty>
+ void analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
+ const SDNode *CallNode, const Type *RetTy) const;
+
+ CCState &CCInfo;
+ CallingConv::ID CallConv;
+ bool IsO32, IsFP64;
+ SpecialCallingConvType SpecialCallingConv;
+ SmallVector<ByValArgInfo, 2> ByValArgs;
+ };
+ protected:
+ SDValue lowerLOAD(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSTORE(SDValue Op, SelectionDAG &DAG) const;
+
+ // Subtarget Info
+ const MipsSubtarget &Subtarget;
+
+ private:
+ // Create a TargetGlobalAddress node.
+ SDValue getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
+ unsigned Flag) const;
+
+ // Create a TargetExternalSymbol node.
+ SDValue getTargetNode(ExternalSymbolSDNode *N, EVT Ty, SelectionDAG &DAG,
+ unsigned Flag) const;
+
+ // Create a TargetBlockAddress node.
+ SDValue getTargetNode(BlockAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
+ unsigned Flag) const;
+
+ // Create a TargetJumpTable node.
+ SDValue getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG,
+ unsigned Flag) const;
+
+ // Create a TargetConstantPool node.
+ SDValue getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG,
+ unsigned Flag) const;
+
+ MipsCC::SpecialCallingConvType getSpecialCallingConv(SDValue Callee) const;
+ // Lower Operand helpers
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals,
+ const SDNode *CallNode, const Type *RetTy) const;
+
+ // Lower Operand specifics
+ SDValue lowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerFABS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const;
+ SDValue lowerShiftLeftParts(SDValue Op, SelectionDAG& DAG) const;
+ SDValue lowerShiftRightParts(SDValue Op, SelectionDAG& DAG,
+ bool IsSRA) const;
+ SDValue lowerADD(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
+
+ /// isEligibleForTailCallOptimization - Check whether the call is eligible
+ /// for tail call optimization.
+ virtual bool
+ isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
+ unsigned NextStackOffset,
+ const MipsFunctionInfo& FI) const = 0;
+
+ /// copyByValArg - Copy argument registers which were used to pass a byval
+ /// argument to the stack. Create a stack frame object for the byval
+ /// argument.
+ void copyByValRegs(SDValue Chain, SDLoc DL,
+ std::vector<SDValue> &OutChains, SelectionDAG &DAG,
+ const ISD::ArgFlagsTy &Flags,
+ SmallVectorImpl<SDValue> &InVals,
+ const Argument *FuncArg,
+ const MipsCC &CC, const ByValArgInfo &ByVal) const;
+
+ /// passByValArg - Pass a byval argument in registers or on stack.
+ void passByValArg(SDValue Chain, SDLoc DL,
+ std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
+ SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
+ MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
+ const MipsCC &CC, const ByValArgInfo &ByVal,
+ const ISD::ArgFlagsTy &Flags, bool isLittle) const;
+
+ /// writeVarArgRegs - Write variable function arguments passed in registers
+ /// to the stack. Also create a stack frame object for the first variable
+ /// argument.
+ void writeVarArgRegs(std::vector<SDValue> &OutChains, const MipsCC &CC,
+ SDValue Chain, SDLoc DL, SelectionDAG &DAG) const;
+
+ SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue passArgOnStack(SDValue StackPtr, unsigned Offset, SDValue Chain,
+ SDValue Arg, SDLoc DL, bool IsTailCall,
+ SelectionDAG &DAG) const;
+
+ SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const override;
+
+ SDValue LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const override;
+
+ // Inline asm support
+ ConstraintType
+ getConstraintType(const std::string &Constraint) const override;
+
+ /// Examine constraint string and operand type and determine a weight value.
+ /// The operand object must already have been set up with the operand type.
+ ConstraintWeight getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const override;
+
+ /// This function parses registers that appear in inline-asm constraints.
+ /// It returns pair (0, 0) on failure.
+ std::pair<unsigned, const TargetRegisterClass *>
+ parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const;
+
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const override;
+
+ /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+ /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
+ /// true it means one of the asm constraint of the inline asm instruction
+ /// being processed is 'm'.
+ void LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const override;
+
+ bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
+
+ bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
+
+ EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
+ unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const override;
+
+ /// isFPImmLegal - Returns true if the target can instruction select the
+ /// specified FP immediate natively. If false, the legalizer will
+ /// materialize the FP immediate as a load from a constant pool.
+ bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
+
+ unsigned getJumpTableEncoding() const override;
+
+ /// Emit a sign-extension using sll/sra, seb, or seh appropriately.
+ MachineBasicBlock *emitSignExtendToI32InReg(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned Size, unsigned DstReg,
+ unsigned SrcRec) const;
+
+ MachineBasicBlock *emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
+ unsigned Size, unsigned BinOpcode, bool Nand = false) const;
+ MachineBasicBlock *emitAtomicBinaryPartword(MachineInstr *MI,
+ MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
+ bool Nand = false) const;
+ MachineBasicBlock *emitAtomicCmpSwap(MachineInstr *MI,
+ MachineBasicBlock *BB, unsigned Size) const;
+ MachineBasicBlock *emitAtomicCmpSwapPartword(MachineInstr *MI,
+ MachineBasicBlock *BB, unsigned Size) const;
+ MachineBasicBlock *emitSEL_D(MachineInstr *MI, MachineBasicBlock *BB) const;
+ };
+
+ /// Create MipsTargetLowering objects.
+ const MipsTargetLowering *
+ createMips16TargetLowering(MipsTargetMachine &TM, const MipsSubtarget &STI);
+ const MipsTargetLowering *
+ createMipsSETargetLowering(MipsTargetMachine &TM, const MipsSubtarget &STI);
+
+ namespace Mips {
+ FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo);
+ }
+}
+
+#endif // MipsISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/Mips/MipsInstrFPU.td b/contrib/llvm/lib/Target/Mips/MipsInstrFPU.td
new file mode 100644
index 0000000..29d8e30
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsInstrFPU.td
@@ -0,0 +1,655 @@
+//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Mips FPU instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Floating Point Instructions
+// ------------------------
+// * 64bit fp:
+// - 32 64-bit registers (default mode)
+// - 16 even 32-bit registers (32-bit compatible mode) for
+// single and double access.
+// * 32bit fp:
+// - 16 even 32-bit registers - single and double (aliased)
+// - 32 32-bit registers (within single-only mode)
+//===----------------------------------------------------------------------===//
+
+// Floating Point Compare and Branch
+def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisInt<0>,
+ SDTCisVT<1, i32>,
+ SDTCisVT<2, OtherVT>]>;
+def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
+ SDTCisVT<2, i32>]>;
+def SDT_MipsCMovFP : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisVT<2, i32>,
+ SDTCisSameAs<1, 3>]>;
+def SDT_MipsTruncIntFP : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>;
+def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
+ SDTCisVT<1, i32>,
+ SDTCisSameAs<1, 2>]>;
+def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
+ SDTCisVT<1, f64>,
+ SDTCisVT<2, i32>]>;
+
+def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
+def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
+def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
+def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
+ [SDNPHasChain, SDNPOptInGlue]>;
+def MipsTruncIntFP : SDNode<"MipsISD::TruncIntFP", SDT_MipsTruncIntFP>;
+def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
+def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
+ SDT_MipsExtractElementF64>;
+
+// Operand for printing out a condition code.
+let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
+ def condcode : Operand<i32>;
+
+//===----------------------------------------------------------------------===//
+// Feature predicates.
+//===----------------------------------------------------------------------===//
+
+def IsFP64bit : Predicate<"Subtarget->isFP64bit()">,
+ AssemblerPredicate<"FeatureFP64Bit">;
+def NotFP64bit : Predicate<"!Subtarget->isFP64bit()">,
+ AssemblerPredicate<"!FeatureFP64Bit">;
+def IsSingleFloat : Predicate<"Subtarget->isSingleFloat()">,
+ AssemblerPredicate<"FeatureSingleFloat">;
+def IsNotSingleFloat : Predicate<"!Subtarget->isSingleFloat()">,
+ AssemblerPredicate<"!FeatureSingleFloat">;
+
+//===----------------------------------------------------------------------===//
+// Mips FGR size adjectives.
+// They are mutually exclusive.
+//===----------------------------------------------------------------------===//
+
+class FGR_32 { list<Predicate> FGRPredicates = [NotFP64bit]; }
+class FGR_64 { list<Predicate> FGRPredicates = [IsFP64bit]; }
+
+//===----------------------------------------------------------------------===//
+
+// FP immediate patterns.
+def fpimm0 : PatLeaf<(fpimm), [{
+ return N->isExactlyValue(+0.0);
+}]>;
+
+def fpimm0neg : PatLeaf<(fpimm), [{
+ return N->isExactlyValue(-0.0);
+}]>;
+
+//===----------------------------------------------------------------------===//
+// Instruction Class Templates
+//
+// A set of multiclasses is used to address the register usage.
+//
+// S32 - single precision in 16 32bit even fp registers
+// single precision in 32 32bit fp registers in SingleOnly mode
+// S64 - single precision in 32 64bit fp registers (In64BitMode)
+// D32 - double precision in 16 32bit even fp registers
+// D64 - double precision in 32 64bit fp registers (In64BitMode)
+//
+// Only S32 and D32 are supported right now.
+//===----------------------------------------------------------------------===//
+
+class ADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin, bit IsComm,
+ SDPatternOperator OpNode= null_frag> :
+ InstSE<(outs RC:$fd), (ins RC:$fs, RC:$ft),
+ !strconcat(opstr, "\t$fd, $fs, $ft"),
+ [(set RC:$fd, (OpNode RC:$fs, RC:$ft))], Itin, FrmFR, opstr> {
+ let isCommutable = IsComm;
+}
+
+multiclass ADDS_M<string opstr, InstrItinClass Itin, bit IsComm,
+ SDPatternOperator OpNode = null_frag> {
+ def _D32 : MMRel, ADDS_FT<opstr, AFGR64Opnd, Itin, IsComm, OpNode>,
+ AdditionalRequires<[NotFP64bit]>;
+ def _D64 : ADDS_FT<opstr, FGR64Opnd, Itin,
+ IsComm, OpNode>,
+ AdditionalRequires<[IsFP64bit]> {
+ string DecoderNamespace = "Mips64";
+ }
+}
+
+class ABSS_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
+ InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
+ InstSE<(outs DstRC:$fd), (ins SrcRC:$fs), !strconcat(opstr, "\t$fd, $fs"),
+ [(set DstRC:$fd, (OpNode SrcRC:$fs))], Itin, FrmFR, opstr>,
+ NeverHasSideEffects;
+
+multiclass ABSS_M<string opstr, InstrItinClass Itin,
+ SDPatternOperator OpNode= null_frag> {
+ def _D32 : MMRel, ABSS_FT<opstr, AFGR64Opnd, AFGR64Opnd, Itin, OpNode>,
+ AdditionalRequires<[NotFP64bit]>;
+ def _D64 : ABSS_FT<opstr, FGR64Opnd, FGR64Opnd, Itin, OpNode>,
+ AdditionalRequires<[IsFP64bit]> {
+ string DecoderNamespace = "Mips64";
+ }
+}
+
+multiclass ROUND_M<string opstr, InstrItinClass Itin> {
+ def _D32 : MMRel, ABSS_FT<opstr, FGR32Opnd, AFGR64Opnd, Itin>,
+ AdditionalRequires<[NotFP64bit]>;
+ def _D64 : ABSS_FT<opstr, FGR32Opnd, FGR64Opnd, Itin>,
+ AdditionalRequires<[IsFP64bit]> {
+ let DecoderNamespace = "Mips64";
+ }
+}
+
+class MFC1_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
+ InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
+ InstSE<(outs DstRC:$rt), (ins SrcRC:$fs), !strconcat(opstr, "\t$rt, $fs"),
+ [(set DstRC:$rt, (OpNode SrcRC:$fs))], Itin, FrmFR, opstr>;
+
+class MTC1_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
+ InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
+ InstSE<(outs DstRC:$fs), (ins SrcRC:$rt), !strconcat(opstr, "\t$rt, $fs"),
+ [(set DstRC:$fs, (OpNode SrcRC:$rt))], Itin, FrmFR, opstr>;
+
+class MTC1_64_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
+ InstrItinClass Itin> :
+ InstSE<(outs DstRC:$fs), (ins DstRC:$fs_in, SrcRC:$rt),
+ !strconcat(opstr, "\t$rt, $fs"), [], Itin, FrmFR, opstr> {
+ // $fs_in is part of a white lie to work around a widespread bug in the FPU
+ // implementation. See expandBuildPairF64 for details.
+ let Constraints = "$fs = $fs_in";
+}
+
+class LW_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
+ SDPatternOperator OpNode= null_frag> :
+ InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
+ [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> {
+ let DecoderMethod = "DecodeFMem";
+ let mayLoad = 1;
+}
+
+class SW_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
+ SDPatternOperator OpNode= null_frag> :
+ InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
+ [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> {
+ let DecoderMethod = "DecodeFMem";
+ let mayStore = 1;
+}
+
+class MADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
+ SDPatternOperator OpNode = null_frag> :
+ InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
+ !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
+ [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))], Itin,
+ FrmFR, opstr>;
+
+class NMADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
+ SDPatternOperator OpNode = null_frag> :
+ InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
+ !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
+ [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))],
+ Itin, FrmFR, opstr>;
+
+class LWXC1_FT<string opstr, RegisterOperand DRC,
+ InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
+ InstSE<(outs DRC:$fd), (ins PtrRC:$base, PtrRC:$index),
+ !strconcat(opstr, "\t$fd, ${index}(${base})"),
+ [(set DRC:$fd, (OpNode (add iPTR:$base, iPTR:$index)))], Itin,
+ FrmFI, opstr> {
+ let AddedComplexity = 20;
+}
+
+class SWXC1_FT<string opstr, RegisterOperand DRC,
+ InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
+ InstSE<(outs), (ins DRC:$fs, PtrRC:$base, PtrRC:$index),
+ !strconcat(opstr, "\t$fs, ${index}(${base})"),
+ [(OpNode DRC:$fs, (add iPTR:$base, iPTR:$index))], Itin,
+ FrmFI, opstr> {
+ let AddedComplexity = 20;
+}
+
+class BC1F_FT<string opstr, DAGOperand opnd, InstrItinClass Itin,
+ SDPatternOperator Op = null_frag> :
+ InstSE<(outs), (ins FCCRegsOpnd:$fcc, opnd:$offset),
+ !strconcat(opstr, "\t$fcc, $offset"),
+ [(MipsFPBrcond Op, FCCRegsOpnd:$fcc, bb:$offset)], Itin,
+ FrmFI, opstr> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let hasDelaySlot = 1;
+ let Defs = [AT];
+}
+
+class CEQS_FT<string typestr, RegisterClass RC, InstrItinClass Itin,
+ SDPatternOperator OpNode = null_frag> :
+ InstSE<(outs), (ins RC:$fs, RC:$ft, condcode:$cond),
+ !strconcat("c.$cond.", typestr, "\t$fs, $ft"),
+ [(OpNode RC:$fs, RC:$ft, imm:$cond)], Itin, FrmFR,
+ !strconcat("c.$cond.", typestr)> {
+ let Defs = [FCC0];
+ let isCodeGenOnly = 1;
+}
+
+class C_COND_FT<string CondStr, string Typestr, RegisterOperand RC,
+ InstrItinClass itin> :
+ InstSE<(outs), (ins RC:$fs, RC:$ft),
+ !strconcat("c.", CondStr, ".", Typestr, "\t$fs, $ft"), [], itin,
+ FrmFR>;
+
+multiclass C_COND_M<string TypeStr, RegisterOperand RC, bits<5> fmt,
+ InstrItinClass itin> {
+ def C_F_#NAME : C_COND_FT<"f", TypeStr, RC, itin>, C_COND_FM<fmt, 0>;
+ def C_UN_#NAME : C_COND_FT<"un", TypeStr, RC, itin>, C_COND_FM<fmt, 1>;
+ def C_EQ_#NAME : C_COND_FT<"eq", TypeStr, RC, itin>, C_COND_FM<fmt, 2>;
+ def C_UEQ_#NAME : C_COND_FT<"ueq", TypeStr, RC, itin>, C_COND_FM<fmt, 3>;
+ def C_OLT_#NAME : C_COND_FT<"olt", TypeStr, RC, itin>, C_COND_FM<fmt, 4>;
+ def C_ULT_#NAME : C_COND_FT<"ult", TypeStr, RC, itin>, C_COND_FM<fmt, 5>;
+ def C_OLE_#NAME : C_COND_FT<"ole", TypeStr, RC, itin>, C_COND_FM<fmt, 6>;
+ def C_ULE_#NAME : C_COND_FT<"ule", TypeStr, RC, itin>, C_COND_FM<fmt, 7>;
+ def C_SF_#NAME : C_COND_FT<"sf", TypeStr, RC, itin>, C_COND_FM<fmt, 8>;
+ def C_NGLE_#NAME : C_COND_FT<"ngle", TypeStr, RC, itin>, C_COND_FM<fmt, 9>;
+ def C_SEQ_#NAME : C_COND_FT<"seq", TypeStr, RC, itin>, C_COND_FM<fmt, 10>;
+ def C_NGL_#NAME : C_COND_FT<"ngl", TypeStr, RC, itin>, C_COND_FM<fmt, 11>;
+ def C_LT_#NAME : C_COND_FT<"lt", TypeStr, RC, itin>, C_COND_FM<fmt, 12>;
+ def C_NGE_#NAME : C_COND_FT<"nge", TypeStr, RC, itin>, C_COND_FM<fmt, 13>;
+ def C_LE_#NAME : C_COND_FT<"le", TypeStr, RC, itin>, C_COND_FM<fmt, 14>;
+ def C_NGT_#NAME : C_COND_FT<"ngt", TypeStr, RC, itin>, C_COND_FM<fmt, 15>;
+}
+
+defm S : C_COND_M<"s", FGR32Opnd, 16, II_C_CC_S>, ISA_MIPS1_NOT_32R6_64R6;
+defm D32 : C_COND_M<"d", AFGR64Opnd, 17, II_C_CC_D>, ISA_MIPS1_NOT_32R6_64R6,
+ AdditionalRequires<[NotFP64bit]>;
+let DecoderNamespace = "Mips64" in
+defm D64 : C_COND_M<"d", FGR64Opnd, 17, II_C_CC_D>, ISA_MIPS1_NOT_32R6_64R6,
+ AdditionalRequires<[IsFP64bit]>;
+
+//===----------------------------------------------------------------------===//
+// Floating Point Instructions
+//===----------------------------------------------------------------------===//
+def ROUND_W_S : MMRel, ABSS_FT<"round.w.s", FGR32Opnd, FGR32Opnd, II_ROUND>,
+ ABSS_FM<0xc, 16>, ISA_MIPS2;
+def TRUNC_W_S : MMRel, ABSS_FT<"trunc.w.s", FGR32Opnd, FGR32Opnd, II_TRUNC>,
+ ABSS_FM<0xd, 16>, ISA_MIPS2;
+def CEIL_W_S : MMRel, ABSS_FT<"ceil.w.s", FGR32Opnd, FGR32Opnd, II_CEIL>,
+ ABSS_FM<0xe, 16>, ISA_MIPS2;
+def FLOOR_W_S : MMRel, ABSS_FT<"floor.w.s", FGR32Opnd, FGR32Opnd, II_FLOOR>,
+ ABSS_FM<0xf, 16>, ISA_MIPS2;
+def CVT_W_S : MMRel, ABSS_FT<"cvt.w.s", FGR32Opnd, FGR32Opnd, II_CVT>,
+ ABSS_FM<0x24, 16>;
+
+defm ROUND_W : ROUND_M<"round.w.d", II_ROUND>, ABSS_FM<0xc, 17>, ISA_MIPS2;
+defm TRUNC_W : ROUND_M<"trunc.w.d", II_TRUNC>, ABSS_FM<0xd, 17>, ISA_MIPS2;
+defm CEIL_W : ROUND_M<"ceil.w.d", II_CEIL>, ABSS_FM<0xe, 17>, ISA_MIPS2;
+defm FLOOR_W : ROUND_M<"floor.w.d", II_FLOOR>, ABSS_FM<0xf, 17>, ISA_MIPS2;
+defm CVT_W : ROUND_M<"cvt.w.d", II_CVT>, ABSS_FM<0x24, 17>;
+
+let DecoderNamespace = "Mips64" in {
+ def ROUND_L_S : ABSS_FT<"round.l.s", FGR64Opnd, FGR32Opnd, II_ROUND>,
+ ABSS_FM<0x8, 16>, FGR_64;
+ def ROUND_L_D64 : ABSS_FT<"round.l.d", FGR64Opnd, FGR64Opnd, II_ROUND>,
+ ABSS_FM<0x8, 17>, FGR_64;
+ def TRUNC_L_S : ABSS_FT<"trunc.l.s", FGR64Opnd, FGR32Opnd, II_TRUNC>,
+ ABSS_FM<0x9, 16>, FGR_64;
+ def TRUNC_L_D64 : ABSS_FT<"trunc.l.d", FGR64Opnd, FGR64Opnd, II_TRUNC>,
+ ABSS_FM<0x9, 17>, FGR_64;
+ def CEIL_L_S : ABSS_FT<"ceil.l.s", FGR64Opnd, FGR32Opnd, II_CEIL>,
+ ABSS_FM<0xa, 16>, FGR_64;
+ def CEIL_L_D64 : ABSS_FT<"ceil.l.d", FGR64Opnd, FGR64Opnd, II_CEIL>,
+ ABSS_FM<0xa, 17>, FGR_64;
+ def FLOOR_L_S : ABSS_FT<"floor.l.s", FGR64Opnd, FGR32Opnd, II_FLOOR>,
+ ABSS_FM<0xb, 16>, FGR_64;
+ def FLOOR_L_D64 : ABSS_FT<"floor.l.d", FGR64Opnd, FGR64Opnd, II_FLOOR>,
+ ABSS_FM<0xb, 17>, FGR_64;
+}
+
+def CVT_S_W : MMRel, ABSS_FT<"cvt.s.w", FGR32Opnd, FGR32Opnd, II_CVT>,
+ ABSS_FM<0x20, 20>;
+def CVT_L_S : MMRel, ABSS_FT<"cvt.l.s", FGR64Opnd, FGR32Opnd, II_CVT>,
+ ABSS_FM<0x25, 16>, INSN_MIPS3_32R2;
+def CVT_L_D64: MMRel, ABSS_FT<"cvt.l.d", FGR64Opnd, FGR64Opnd, II_CVT>,
+ ABSS_FM<0x25, 17>, INSN_MIPS3_32R2;
+
+def CVT_S_D32 : MMRel, ABSS_FT<"cvt.s.d", FGR32Opnd, AFGR64Opnd, II_CVT>,
+ ABSS_FM<0x20, 17>, FGR_32;
+def CVT_D32_W : MMRel, ABSS_FT<"cvt.d.w", AFGR64Opnd, FGR32Opnd, II_CVT>,
+ ABSS_FM<0x21, 20>, FGR_32;
+def CVT_D32_S : MMRel, ABSS_FT<"cvt.d.s", AFGR64Opnd, FGR32Opnd, II_CVT>,
+ ABSS_FM<0x21, 16>, FGR_32;
+
+let DecoderNamespace = "Mips64" in {
+ def CVT_S_D64 : ABSS_FT<"cvt.s.d", FGR32Opnd, FGR64Opnd, II_CVT>,
+ ABSS_FM<0x20, 17>, FGR_64;
+ def CVT_S_L : ABSS_FT<"cvt.s.l", FGR32Opnd, FGR64Opnd, II_CVT>,
+ ABSS_FM<0x20, 21>, FGR_64;
+ def CVT_D64_W : ABSS_FT<"cvt.d.w", FGR64Opnd, FGR32Opnd, II_CVT>,
+ ABSS_FM<0x21, 20>, FGR_64;
+ def CVT_D64_S : ABSS_FT<"cvt.d.s", FGR64Opnd, FGR32Opnd, II_CVT>,
+ ABSS_FM<0x21, 16>, FGR_64;
+ def CVT_D64_L : ABSS_FT<"cvt.d.l", FGR64Opnd, FGR64Opnd, II_CVT>,
+ ABSS_FM<0x21, 21>, FGR_64;
+}
+
+let isPseudo = 1, isCodeGenOnly = 1 in {
+ def PseudoCVT_S_W : ABSS_FT<"", FGR32Opnd, GPR32Opnd, II_CVT>;
+ def PseudoCVT_D32_W : ABSS_FT<"", AFGR64Opnd, GPR32Opnd, II_CVT>;
+ def PseudoCVT_S_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, II_CVT>;
+ def PseudoCVT_D64_W : ABSS_FT<"", FGR64Opnd, GPR32Opnd, II_CVT>;
+ def PseudoCVT_D64_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, II_CVT>;
+}
+
+def FABS_S : MMRel, ABSS_FT<"abs.s", FGR32Opnd, FGR32Opnd, II_ABS, fabs>,
+ ABSS_FM<0x5, 16>;
+def FNEG_S : MMRel, ABSS_FT<"neg.s", FGR32Opnd, FGR32Opnd, II_NEG, fneg>,
+ ABSS_FM<0x7, 16>;
+defm FABS : ABSS_M<"abs.d", II_ABS, fabs>, ABSS_FM<0x5, 17>;
+defm FNEG : ABSS_M<"neg.d", II_NEG, fneg>, ABSS_FM<0x7, 17>;
+
+def FSQRT_S : MMRel, ABSS_FT<"sqrt.s", FGR32Opnd, FGR32Opnd, II_SQRT_S, fsqrt>,
+ ABSS_FM<0x4, 16>, ISA_MIPS2;
+defm FSQRT : ABSS_M<"sqrt.d", II_SQRT_D, fsqrt>, ABSS_FM<0x4, 17>, ISA_MIPS2;
+
+// The odd-numbered registers are only referenced when doing loads,
+// stores, and moves between floating-point and integer registers.
+// When defining instructions, we reference all 32-bit registers,
+// regardless of register aliasing.
+
+/// Move Control Registers From/To CPU Registers
+def CFC1 : MMRel, MFC1_FT<"cfc1", GPR32Opnd, CCROpnd, II_CFC1>, MFC1_FM<2>;
+def CTC1 : MMRel, MTC1_FT<"ctc1", CCROpnd, GPR32Opnd, II_CTC1>, MFC1_FM<6>;
+def MFC1 : MMRel, MFC1_FT<"mfc1", GPR32Opnd, FGR32Opnd, II_MFC1,
+ bitconvert>, MFC1_FM<0>;
+def MTC1 : MMRel, MTC1_FT<"mtc1", FGR32Opnd, GPR32Opnd, II_MTC1,
+ bitconvert>, MFC1_FM<4>;
+def MFHC1_D32 : MMRel, MFC1_FT<"mfhc1", GPR32Opnd, AFGR64Opnd, II_MFHC1>,
+ MFC1_FM<3>, ISA_MIPS32R2, AdditionalRequires<[NotFP64bit]>;
+def MFHC1_D64 : MFC1_FT<"mfhc1", GPR32Opnd, FGR64Opnd, II_MFHC1>,
+ MFC1_FM<3>, ISA_MIPS32R2, AdditionalRequires<[IsFP64bit]> {
+ let DecoderNamespace = "Mips64";
+}
+def MTHC1_D32 : MMRel, MTC1_64_FT<"mthc1", AFGR64Opnd, GPR32Opnd, II_MTHC1>,
+ MFC1_FM<7>, ISA_MIPS32R2, AdditionalRequires<[NotFP64bit]>;
+def MTHC1_D64 : MTC1_64_FT<"mthc1", FGR64Opnd, GPR32Opnd, II_MTHC1>,
+ MFC1_FM<7>, ISA_MIPS32R2, AdditionalRequires<[IsFP64bit]> {
+ let DecoderNamespace = "Mips64";
+}
+def DMFC1 : MFC1_FT<"dmfc1", GPR64Opnd, FGR64Opnd, II_DMFC1,
+ bitconvert>, MFC1_FM<1>, ISA_MIPS3;
+def DMTC1 : MTC1_FT<"dmtc1", FGR64Opnd, GPR64Opnd, II_DMTC1,
+ bitconvert>, MFC1_FM<5>, ISA_MIPS3;
+
+def FMOV_S : MMRel, ABSS_FT<"mov.s", FGR32Opnd, FGR32Opnd, II_MOV_S>,
+ ABSS_FM<0x6, 16>;
+def FMOV_D32 : MMRel, ABSS_FT<"mov.d", AFGR64Opnd, AFGR64Opnd, II_MOV_D>,
+ ABSS_FM<0x6, 17>, AdditionalRequires<[NotFP64bit]>;
+def FMOV_D64 : ABSS_FT<"mov.d", FGR64Opnd, FGR64Opnd, II_MOV_D>,
+ ABSS_FM<0x6, 17>, AdditionalRequires<[IsFP64bit]> {
+ let DecoderNamespace = "Mips64";
+}
+
+/// Floating Point Memory Instructions
+def LWC1 : MMRel, LW_FT<"lwc1", FGR32Opnd, II_LWC1, load>, LW_FM<0x31>;
+def SWC1 : MMRel, SW_FT<"swc1", FGR32Opnd, II_SWC1, store>, LW_FM<0x39>;
+
+let DecoderNamespace = "Mips64" in {
+ def LDC164 : LW_FT<"ldc1", FGR64Opnd, II_LDC1, load>, LW_FM<0x35>, ISA_MIPS2,
+ FGR_64;
+ def SDC164 : SW_FT<"sdc1", FGR64Opnd, II_SDC1, store>, LW_FM<0x3d>, ISA_MIPS2,
+ FGR_64;
+}
+
+def LDC1 : MMRel, LW_FT<"ldc1", AFGR64Opnd, II_LDC1, load>, LW_FM<0x35>,
+ ISA_MIPS2, FGR_32;
+def SDC1 : MMRel, SW_FT<"sdc1", AFGR64Opnd, II_SDC1, store>, LW_FM<0x3d>,
+ ISA_MIPS2, FGR_32;
+
+// Cop2 Memory Instructions
+// FIXME: These aren't really FPU instructions and as such don't belong in this
+// file
+def LWC2 : LW_FT<"lwc2", COP2Opnd, NoItinerary, load>, LW_FM<0x32>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def SWC2 : SW_FT<"swc2", COP2Opnd, NoItinerary, store>, LW_FM<0x3a>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def LDC2 : LW_FT<"ldc2", COP2Opnd, NoItinerary, load>, LW_FM<0x36>,
+ ISA_MIPS2_NOT_32R6_64R6;
+def SDC2 : SW_FT<"sdc2", COP2Opnd, NoItinerary, store>, LW_FM<0x3e>,
+ ISA_MIPS2_NOT_32R6_64R6;
+
+// Cop3 Memory Instructions
+// FIXME: These aren't really FPU instructions and as such don't belong in this
+// file
+let DecoderNamespace = "COP3_" in {
+ def LWC3 : LW_FT<"lwc3", COP3Opnd, NoItinerary, load>, LW_FM<0x33>;
+ def SWC3 : SW_FT<"swc3", COP3Opnd, NoItinerary, store>, LW_FM<0x3b>;
+ def LDC3 : LW_FT<"ldc3", COP3Opnd, NoItinerary, load>, LW_FM<0x37>,
+ ISA_MIPS2;
+ def SDC3 : SW_FT<"sdc3", COP3Opnd, NoItinerary, store>, LW_FM<0x3f>,
+ ISA_MIPS2;
+}
+
+// Indexed loads and stores.
+// Base register + offset register addressing mode (indicated by "x" in the
+// instruction mnemonic) is disallowed under NaCl.
+let AdditionalPredicates = [IsNotNaCl] in {
+ def LWXC1 : MMRel, LWXC1_FT<"lwxc1", FGR32Opnd, II_LWXC1, load>, LWXC1_FM<0>,
+ INSN_MIPS4_32R2_NOT_32R6_64R6;
+ def SWXC1 : MMRel, SWXC1_FT<"swxc1", FGR32Opnd, II_SWXC1, store>, SWXC1_FM<8>,
+ INSN_MIPS4_32R2_NOT_32R6_64R6;
+}
+
+let AdditionalPredicates = [NotInMicroMips, IsNotNaCl] in {
+ def LDXC1 : LWXC1_FT<"ldxc1", AFGR64Opnd, II_LDXC1, load>, LWXC1_FM<1>,
+ INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
+ def SDXC1 : SWXC1_FT<"sdxc1", AFGR64Opnd, II_SDXC1, store>, SWXC1_FM<9>,
+ INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32;
+}
+
+let DecoderNamespace="Mips64" in {
+ def LDXC164 : LWXC1_FT<"ldxc1", FGR64Opnd, II_LDXC1, load>, LWXC1_FM<1>,
+ INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
+ def SDXC164 : SWXC1_FT<"sdxc1", FGR64Opnd, II_SDXC1, store>, SWXC1_FM<9>,
+ INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64;
+}
+
+// Load/store doubleword indexed unaligned.
+let AdditionalPredicates = [IsNotNaCl] in {
+ def LUXC1 : MMRel, LWXC1_FT<"luxc1", AFGR64Opnd, II_LUXC1>, LWXC1_FM<0x5>,
+ INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_32;
+ def SUXC1 : MMRel, SWXC1_FT<"suxc1", AFGR64Opnd, II_SUXC1>, SWXC1_FM<0xd>,
+ INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_32;
+}
+
+let DecoderNamespace="Mips64" in {
+ def LUXC164 : LWXC1_FT<"luxc1", FGR64Opnd, II_LUXC1>, LWXC1_FM<0x5>,
+ INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_64;
+ def SUXC164 : SWXC1_FT<"suxc1", FGR64Opnd, II_SUXC1>, SWXC1_FM<0xd>,
+ INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_64;
+}
+
+/// Floating-point Aritmetic
+def FADD_S : MMRel, ADDS_FT<"add.s", FGR32Opnd, II_ADD_S, 1, fadd>,
+ ADDS_FM<0x00, 16>;
+defm FADD : ADDS_M<"add.d", II_ADD_D, 1, fadd>, ADDS_FM<0x00, 17>;
+def FDIV_S : MMRel, ADDS_FT<"div.s", FGR32Opnd, II_DIV_S, 0, fdiv>,
+ ADDS_FM<0x03, 16>;
+defm FDIV : ADDS_M<"div.d", II_DIV_D, 0, fdiv>, ADDS_FM<0x03, 17>;
+def FMUL_S : MMRel, ADDS_FT<"mul.s", FGR32Opnd, II_MUL_S, 1, fmul>,
+ ADDS_FM<0x02, 16>;
+defm FMUL : ADDS_M<"mul.d", II_MUL_D, 1, fmul>, ADDS_FM<0x02, 17>;
+def FSUB_S : MMRel, ADDS_FT<"sub.s", FGR32Opnd, II_SUB_S, 0, fsub>,
+ ADDS_FM<0x01, 16>;
+defm FSUB : ADDS_M<"sub.d", II_SUB_D, 0, fsub>, ADDS_FM<0x01, 17>;
+
+def MADD_S : MMRel, MADDS_FT<"madd.s", FGR32Opnd, II_MADD_S, fadd>,
+ MADDS_FM<4, 0>, ISA_MIPS32R2_NOT_32R6_64R6;
+def MSUB_S : MMRel, MADDS_FT<"msub.s", FGR32Opnd, II_MSUB_S, fsub>,
+ MADDS_FM<5, 0>, ISA_MIPS32R2_NOT_32R6_64R6;
+
+let AdditionalPredicates = [NoNaNsFPMath] in {
+ def NMADD_S : MMRel, NMADDS_FT<"nmadd.s", FGR32Opnd, II_NMADD_S, fadd>,
+ MADDS_FM<6, 0>, ISA_MIPS32R2_NOT_32R6_64R6;
+ def NMSUB_S : MMRel, NMADDS_FT<"nmsub.s", FGR32Opnd, II_NMSUB_S, fsub>,
+ MADDS_FM<7, 0>, ISA_MIPS32R2_NOT_32R6_64R6;
+}
+
+def MADD_D32 : MMRel, MADDS_FT<"madd.d", AFGR64Opnd, II_MADD_D, fadd>,
+ MADDS_FM<4, 1>, ISA_MIPS32R2_NOT_32R6_64R6, FGR_32;
+def MSUB_D32 : MMRel, MADDS_FT<"msub.d", AFGR64Opnd, II_MSUB_D, fsub>,
+ MADDS_FM<5, 1>, ISA_MIPS32R2_NOT_32R6_64R6, FGR_32;
+
+let AdditionalPredicates = [NoNaNsFPMath] in {
+ def NMADD_D32 : MMRel, NMADDS_FT<"nmadd.d", AFGR64Opnd, II_NMADD_D, fadd>,
+ MADDS_FM<6, 1>, ISA_MIPS32R2_NOT_32R6_64R6, FGR_32;
+ def NMSUB_D32 : MMRel, NMADDS_FT<"nmsub.d", AFGR64Opnd, II_NMSUB_D, fsub>,
+ MADDS_FM<7, 1>, ISA_MIPS32R2_NOT_32R6_64R6, FGR_32;
+}
+
+let isCodeGenOnly=1 in {
+ def MADD_D64 : MADDS_FT<"madd.d", FGR64Opnd, II_MADD_D, fadd>,
+ MADDS_FM<4, 1>, ISA_MIPS32R2_NOT_32R6_64R6, FGR_64;
+ def MSUB_D64 : MADDS_FT<"msub.d", FGR64Opnd, II_MSUB_D, fsub>,
+ MADDS_FM<5, 1>, ISA_MIPS32R2_NOT_32R6_64R6, FGR_64;
+}
+
+let AdditionalPredicates = [NoNaNsFPMath],
+ isCodeGenOnly=1 in {
+ def NMADD_D64 : NMADDS_FT<"nmadd.d", FGR64Opnd, II_NMADD_D, fadd>,
+ MADDS_FM<6, 1>, ISA_MIPS32R2_NOT_32R6_64R6, FGR_64;
+ def NMSUB_D64 : NMADDS_FT<"nmsub.d", FGR64Opnd, II_NMSUB_D, fsub>,
+ MADDS_FM<7, 1>, ISA_MIPS32R2_NOT_32R6_64R6, FGR_64;
+}
+
+//===----------------------------------------------------------------------===//
+// Floating Point Branch Codes
+//===----------------------------------------------------------------------===//
+// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
+// They must be kept in synch.
+def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
+def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
+
+def BC1F : MMRel, BC1F_FT<"bc1f", brtarget, IIBranch, MIPS_BRANCH_F>,
+ BC1F_FM<0, 0>, ISA_MIPS1_NOT_32R6_64R6;
+def BC1T : MMRel, BC1F_FT<"bc1t", brtarget, IIBranch, MIPS_BRANCH_T>,
+ BC1F_FM<0, 1>, ISA_MIPS1_NOT_32R6_64R6;
+
+//===----------------------------------------------------------------------===//
+// Floating Point Flag Conditions
+//===----------------------------------------------------------------------===//
+// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
+// They must be kept in synch.
+def MIPS_FCOND_F : PatLeaf<(i32 0)>;
+def MIPS_FCOND_UN : PatLeaf<(i32 1)>;
+def MIPS_FCOND_OEQ : PatLeaf<(i32 2)>;
+def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>;
+def MIPS_FCOND_OLT : PatLeaf<(i32 4)>;
+def MIPS_FCOND_ULT : PatLeaf<(i32 5)>;
+def MIPS_FCOND_OLE : PatLeaf<(i32 6)>;
+def MIPS_FCOND_ULE : PatLeaf<(i32 7)>;
+def MIPS_FCOND_SF : PatLeaf<(i32 8)>;
+def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
+def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>;
+def MIPS_FCOND_NGL : PatLeaf<(i32 11)>;
+def MIPS_FCOND_LT : PatLeaf<(i32 12)>;
+def MIPS_FCOND_NGE : PatLeaf<(i32 13)>;
+def MIPS_FCOND_LE : PatLeaf<(i32 14)>;
+def MIPS_FCOND_NGT : PatLeaf<(i32 15)>;
+
+/// Floating Point Compare
+def FCMP_S32 : MMRel, CEQS_FT<"s", FGR32, II_C_CC_S, MipsFPCmp>, CEQS_FM<16>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def FCMP_D32 : MMRel, CEQS_FT<"d", AFGR64, II_C_CC_D, MipsFPCmp>, CEQS_FM<17>,
+ ISA_MIPS1_NOT_32R6_64R6, AdditionalRequires<[NotFP64bit]>;
+let DecoderNamespace = "Mips64" in
+def FCMP_D64 : CEQS_FT<"d", FGR64, II_C_CC_D, MipsFPCmp>, CEQS_FM<17>,
+ ISA_MIPS1_NOT_32R6_64R6, AdditionalRequires<[IsFP64bit]>;
+
+//===----------------------------------------------------------------------===//
+// Floating Point Pseudo-Instructions
+//===----------------------------------------------------------------------===//
+
+// This pseudo instr gets expanded into 2 mtc1 instrs after register
+// allocation.
+class BuildPairF64Base<RegisterOperand RO> :
+ PseudoSE<(outs RO:$dst), (ins GPR32Opnd:$lo, GPR32Opnd:$hi),
+ [(set RO:$dst, (MipsBuildPairF64 GPR32Opnd:$lo, GPR32Opnd:$hi))]>;
+
+def BuildPairF64 : BuildPairF64Base<AFGR64Opnd>,
+ AdditionalRequires<[NotFP64bit]>;
+def BuildPairF64_64 : BuildPairF64Base<FGR64Opnd>,
+ AdditionalRequires<[IsFP64bit]>;
+
+// This pseudo instr gets expanded into 2 mfc1 instrs after register
+// allocation.
+// if n is 0, lower part of src is extracted.
+// if n is 1, higher part of src is extracted.
+class ExtractElementF64Base<RegisterOperand RO> :
+ PseudoSE<(outs GPR32Opnd:$dst), (ins RO:$src, i32imm:$n),
+ [(set GPR32Opnd:$dst, (MipsExtractElementF64 RO:$src, imm:$n))]>;
+
+def ExtractElementF64 : ExtractElementF64Base<AFGR64Opnd>,
+ AdditionalRequires<[NotFP64bit]>;
+def ExtractElementF64_64 : ExtractElementF64Base<FGR64Opnd>,
+ AdditionalRequires<[IsFP64bit]>;
+
+//===----------------------------------------------------------------------===//
+// InstAliases.
+//===----------------------------------------------------------------------===//
+def : MipsInstAlias<"bc1t $offset", (BC1T FCC0, brtarget:$offset)>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def : MipsInstAlias<"bc1f $offset", (BC1F FCC0, brtarget:$offset)>,
+ ISA_MIPS1_NOT_32R6_64R6;
+
+//===----------------------------------------------------------------------===//
+// Floating Point Patterns
+//===----------------------------------------------------------------------===//
+def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>;
+def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
+
+def : MipsPat<(f32 (sint_to_fp GPR32Opnd:$src)),
+ (PseudoCVT_S_W GPR32Opnd:$src)>;
+def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src),
+ (TRUNC_W_S FGR32Opnd:$src)>;
+
+def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)),
+ (PseudoCVT_D32_W GPR32Opnd:$src)>, FGR_32;
+def : MipsPat<(MipsTruncIntFP AFGR64Opnd:$src),
+ (TRUNC_W_D32 AFGR64Opnd:$src)>, FGR_32;
+def : MipsPat<(f32 (fround AFGR64Opnd:$src)),
+ (CVT_S_D32 AFGR64Opnd:$src)>, FGR_32;
+def : MipsPat<(f64 (fextend FGR32Opnd:$src)),
+ (CVT_D32_S FGR32Opnd:$src)>, FGR_32;
+
+def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>, FGR_64;
+def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>, FGR_64;
+
+def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)),
+ (PseudoCVT_D64_W GPR32Opnd:$src)>, FGR_64;
+def : MipsPat<(f32 (sint_to_fp GPR64Opnd:$src)),
+ (EXTRACT_SUBREG (PseudoCVT_S_L GPR64Opnd:$src), sub_lo)>, FGR_64;
+def : MipsPat<(f64 (sint_to_fp GPR64Opnd:$src)),
+ (PseudoCVT_D64_L GPR64Opnd:$src)>, FGR_64;
+
+def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src),
+ (TRUNC_W_D64 FGR64Opnd:$src)>, FGR_64;
+def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src),
+ (TRUNC_L_S FGR32Opnd:$src)>, FGR_64;
+def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src),
+ (TRUNC_L_D64 FGR64Opnd:$src)>, FGR_64;
+
+def : MipsPat<(f32 (fround FGR64Opnd:$src)),
+ (CVT_S_D64 FGR64Opnd:$src)>, FGR_64;
+def : MipsPat<(f64 (fextend FGR32Opnd:$src)),
+ (CVT_D64_S FGR32Opnd:$src)>, FGR_64;
+
+// Patterns for loads/stores with a reg+imm operand.
+let AddedComplexity = 40 in {
+ def : LoadRegImmPat<LWC1, f32, load>;
+ def : StoreRegImmPat<SWC1, f32>;
+
+ def : LoadRegImmPat<LDC164, f64, load>, FGR_64;
+ def : StoreRegImmPat<SDC164, f64>, FGR_64;
+
+ def : LoadRegImmPat<LDC1, f64, load>, FGR_32;
+ def : StoreRegImmPat<SDC1, f64>, FGR_32;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsInstrFormats.td b/contrib/llvm/lib/Target/Mips/MipsInstrFormats.td
new file mode 100644
index 0000000..6a01ae5
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsInstrFormats.td
@@ -0,0 +1,906 @@
+//===-- MipsInstrFormats.td - Mips Instruction Formats -----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Describe MIPS instructions format
+//
+// CPU INSTRUCTION FORMATS
+//
+// opcode - operation code.
+// rs - src reg.
+// rt - dst reg (on a 2 regs instr) or src reg (on a 3 reg instr).
+// rd - dst reg, only used on 3 regs instr.
+// shamt - only used on shift instructions, contains the shift amount.
+// funct - combined with opcode field give us an operation code.
+//
+//===----------------------------------------------------------------------===//
+
+// Format specifies the encoding used by the instruction. This is part of the
+// ad-hoc solution used to emit machine instruction encodings by our machine
+// code emitter.
+class Format<bits<4> val> {
+ bits<4> Value = val;
+}
+
+def Pseudo : Format<0>;
+def FrmR : Format<1>;
+def FrmI : Format<2>;
+def FrmJ : Format<3>;
+def FrmFR : Format<4>;
+def FrmFI : Format<5>;
+def FrmOther : Format<6>; // Instruction w/ a custom format
+
+class MMRel;
+
+def Std2MicroMips : InstrMapping {
+ let FilterClass = "MMRel";
+ // Instructions with the same BaseOpcode and isNVStore values form a row.
+ let RowFields = ["BaseOpcode"];
+ // Instructions with the same predicate sense form a column.
+ let ColFields = ["Arch"];
+ // The key column is the unpredicated instructions.
+ let KeyCol = ["se"];
+ // Value columns are PredSense=true and PredSense=false
+ let ValueCols = [["se"], ["micromips"]];
+}
+
+class StdArch {
+ string Arch = "se";
+}
+
+// Generic Mips Format
+class MipsInst<dag outs, dag ins, string asmstr, list<dag> pattern,
+ InstrItinClass itin, Format f>: Instruction
+{
+ field bits<32> Inst;
+ Format Form = f;
+
+ let Namespace = "Mips";
+
+ let Size = 4;
+
+ bits<6> Opcode = 0;
+
+ // Top 6 bits are the 'opcode' field
+ let Inst{31-26} = Opcode;
+
+ let OutOperandList = outs;
+ let InOperandList = ins;
+
+ let AsmString = asmstr;
+ let Pattern = pattern;
+ let Itinerary = itin;
+
+ //
+ // Attributes specific to Mips instructions...
+ //
+ bits<4> FormBits = Form.Value;
+
+ // TSFlags layout should be kept in sync with MipsInstrInfo.h.
+ let TSFlags{3-0} = FormBits;
+
+ let DecoderNamespace = "Mips";
+
+ field bits<32> SoftFail = 0;
+}
+
+// Mips32/64 Instruction Format
+class InstSE<dag outs, dag ins, string asmstr, list<dag> pattern,
+ InstrItinClass itin, Format f, string opstr = ""> :
+ MipsInst<outs, ins, asmstr, pattern, itin, f>, PredicateControl {
+ let EncodingPredicates = [HasStdEnc];
+ string BaseOpcode = opstr;
+ string Arch;
+}
+
+// Mips Pseudo Instructions Format
+class MipsPseudo<dag outs, dag ins, list<dag> pattern,
+ InstrItinClass itin = IIPseudo> :
+ MipsInst<outs, ins, "", pattern, itin, Pseudo> {
+ let isCodeGenOnly = 1;
+ let isPseudo = 1;
+}
+
+// Mips32/64 Pseudo Instruction Format
+class PseudoSE<dag outs, dag ins, list<dag> pattern,
+ InstrItinClass itin = IIPseudo> :
+ MipsPseudo<outs, ins, pattern, itin>, PredicateControl {
+ let EncodingPredicates = [HasStdEnc];
+}
+
+// Pseudo-instructions for alternate assembly syntax (never used by codegen).
+// These are aliases that require C++ handling to convert to the target
+// instruction, while InstAliases can be handled directly by tblgen.
+class MipsAsmPseudoInst<dag outs, dag ins, string asmstr>:
+ MipsInst<outs, ins, asmstr, [], IIPseudo, Pseudo> {
+ let isPseudo = 1;
+ let Pattern = [];
+}
+//===----------------------------------------------------------------------===//
+// Format R instruction class in Mips : <|opcode|rs|rt|rd|shamt|funct|>
+//===----------------------------------------------------------------------===//
+
+class FR<bits<6> op, bits<6> _funct, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ InstSE<outs, ins, asmstr, pattern, itin, FrmR>
+{
+ bits<5> rd;
+ bits<5> rs;
+ bits<5> rt;
+ bits<5> shamt;
+ bits<6> funct;
+
+ let Opcode = op;
+ let funct = _funct;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = shamt;
+ let Inst{5-0} = funct;
+}
+
+//===----------------------------------------------------------------------===//
+// Format I instruction class in Mips : <|opcode|rs|rt|immediate|>
+//===----------------------------------------------------------------------===//
+
+class FI<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
+ InstrItinClass itin>: InstSE<outs, ins, asmstr, pattern, itin, FrmI>
+{
+ bits<5> rt;
+ bits<5> rs;
+ bits<16> imm16;
+
+ let Opcode = op;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = imm16;
+}
+
+class BranchBase<bits<6> op, dag outs, dag ins, string asmstr,
+ list<dag> pattern, InstrItinClass itin>:
+ InstSE<outs, ins, asmstr, pattern, itin, FrmI>
+{
+ bits<5> rs;
+ bits<5> rt;
+ bits<16> imm16;
+
+ let Opcode = op;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = imm16;
+}
+
+//===----------------------------------------------------------------------===//
+// Format J instruction class in Mips : <|opcode|address|>
+//===----------------------------------------------------------------------===//
+
+class FJ<bits<6> op> : StdArch
+{
+ bits<26> target;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-0} = target;
+}
+
+//===----------------------------------------------------------------------===//
+// MFC instruction class in Mips : <|op|mf|rt|rd|0000000|sel|>
+//===----------------------------------------------------------------------===//
+class MFC3OP_FM<bits<6> op, bits<5> mfmt>
+{
+ bits<5> rt;
+ bits<5> rd;
+ bits<3> sel;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = mfmt;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-3} = 0;
+ let Inst{2-0} = sel;
+}
+
+class ADD_FM<bits<6> op, bits<6> funct> : StdArch {
+ bits<5> rd;
+ bits<5> rs;
+ bits<5> rt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+class ADDI_FM<bits<6> op> : StdArch {
+ bits<5> rs;
+ bits<5> rt;
+ bits<16> imm16;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = imm16;
+}
+
+class SRA_FM<bits<6> funct, bit rotate> : StdArch {
+ bits<5> rd;
+ bits<5> rt;
+ bits<5> shamt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0;
+ let Inst{25-22} = 0;
+ let Inst{21} = rotate;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = shamt;
+ let Inst{5-0} = funct;
+}
+
+class SRLV_FM<bits<6> funct, bit rotate> : StdArch {
+ bits<5> rd;
+ bits<5> rt;
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-7} = 0;
+ let Inst{6} = rotate;
+ let Inst{5-0} = funct;
+}
+
+class BEQ_FM<bits<6> op> : StdArch {
+ bits<5> rs;
+ bits<5> rt;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = offset;
+}
+
+class BGEZ_FM<bits<6> op, bits<5> funct> : StdArch {
+ bits<5> rs;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = funct;
+ let Inst{15-0} = offset;
+}
+
+class SLTI_FM<bits<6> op> : StdArch {
+ bits<5> rt;
+ bits<5> rs;
+ bits<16> imm16;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = imm16;
+}
+
+class MFLO_FM<bits<6> funct> : StdArch {
+ bits<5> rd;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0;
+ let Inst{25-16} = 0;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+class MTLO_FM<bits<6> funct> : StdArch {
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0;
+ let Inst{25-21} = rs;
+ let Inst{20-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+class SEB_FM<bits<5> funct, bits<6> funct2> : StdArch {
+ bits<5> rd;
+ bits<5> rt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x1f;
+ let Inst{25-21} = 0;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = funct;
+ let Inst{5-0} = funct2;
+}
+
+class CLO_FM<bits<6> funct> : StdArch {
+ bits<5> rd;
+ bits<5> rs;
+ bits<5> rt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x1c;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = funct;
+ let rt = rd;
+}
+
+class LUI_FM : StdArch {
+ bits<5> rt;
+ bits<16> imm16;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0xf;
+ let Inst{25-21} = 0;
+ let Inst{20-16} = rt;
+ let Inst{15-0} = imm16;
+}
+
+class JALR_FM {
+ bits<5> rd;
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = 0;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = 9;
+}
+
+class BGEZAL_FM<bits<5> funct> : StdArch {
+ bits<5> rs;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 1;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = funct;
+ let Inst{15-0} = offset;
+}
+
+class SYNC_FM : StdArch {
+ bits<5> stype;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0;
+ let Inst{10-6} = stype;
+ let Inst{5-0} = 0xf;
+}
+
+class MULT_FM<bits<6> op, bits<6> funct> : StdArch {
+ bits<5> rs;
+ bits<5> rt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+class EXT_FM<bits<6> funct> : StdArch {
+ bits<5> rt;
+ bits<5> rs;
+ bits<5> pos;
+ bits<5> size;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x1f;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = size;
+ let Inst{10-6} = pos;
+ let Inst{5-0} = funct;
+}
+
+class RDHWR_FM {
+ bits<5> rt;
+ bits<5> rd;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x1f;
+ let Inst{25-21} = 0;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = 0x3b;
+}
+
+class TEQ_FM<bits<6> funct> : StdArch {
+ bits<5> rs;
+ bits<5> rt;
+ bits<10> code_;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-6} = code_;
+ let Inst{5-0} = funct;
+}
+
+class TEQI_FM<bits<5> funct> : StdArch {
+ bits<5> rs;
+ bits<16> imm16;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 1;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = funct;
+ let Inst{15-0} = imm16;
+}
+
+class WAIT_FM : StdArch {
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x10;
+ let Inst{25} = 1;
+ let Inst{24-6} = 0;
+ let Inst{5-0} = 0x20;
+}
+
+class EXTS_FM<bits<6> funct> : StdArch {
+ bits<5> rt;
+ bits<5> rs;
+ bits<5> pos;
+ bits<5> lenm1;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x1c;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = lenm1;
+ let Inst{10-6} = pos;
+ let Inst{5-0} = funct;
+}
+
+class MTMR_FM<bits<6> funct> : StdArch {
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x1c;
+ let Inst{25-21} = rs;
+ let Inst{20-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+class POP_FM<bits<6> funct> : StdArch {
+ bits<5> rd;
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x1c;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = 0;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+class SEQ_FM<bits<6> funct> : StdArch {
+ bits<5> rd;
+ bits<5> rs;
+ bits<5> rt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x1c;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+class SEQI_FM<bits<6> funct> : StdArch {
+ bits<5> rs;
+ bits<5> rt;
+ bits<10> imm10;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x1c;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-6} = imm10;
+ let Inst{5-0} = funct;
+}
+
+//===----------------------------------------------------------------------===//
+// System calls format <op|code_|funct>
+//===----------------------------------------------------------------------===//
+
+class SYS_FM<bits<6> funct> : StdArch
+{
+ bits<20> code_;
+ bits<32> Inst;
+ let Inst{31-26} = 0x0;
+ let Inst{25-6} = code_;
+ let Inst{5-0} = funct;
+}
+
+//===----------------------------------------------------------------------===//
+// Break instruction format <op|code_1|funct>
+//===----------------------------------------------------------------------===//
+
+class BRK_FM<bits<6> funct> : StdArch
+{
+ bits<10> code_1;
+ bits<10> code_2;
+ bits<32> Inst;
+ let Inst{31-26} = 0x0;
+ let Inst{25-16} = code_1;
+ let Inst{15-6} = code_2;
+ let Inst{5-0} = funct;
+}
+
+//===----------------------------------------------------------------------===//
+// Exception return format <Cop0|1|0|funct>
+//===----------------------------------------------------------------------===//
+
+class ER_FM<bits<6> funct> : StdArch
+{
+ bits<32> Inst;
+ let Inst{31-26} = 0x10;
+ let Inst{25} = 1;
+ let Inst{24-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Enable/disable interrupt instruction format <Cop0|MFMC0|rt|12|0|sc|0|0>
+//===----------------------------------------------------------------------===//
+
+class EI_FM<bits<1> sc> : StdArch
+{
+ bits<32> Inst;
+ bits<5> rt;
+ let Inst{31-26} = 0x10;
+ let Inst{25-21} = 0xb;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = 0xc;
+ let Inst{10-6} = 0;
+ let Inst{5} = sc;
+ let Inst{4-0} = 0;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// FLOATING POINT INSTRUCTION FORMATS
+//
+// opcode - operation code.
+// fs - src reg.
+// ft - dst reg (on a 2 regs instr) or src reg (on a 3 reg instr).
+// fd - dst reg, only used on 3 regs instr.
+// fmt - double or single precision.
+// funct - combined with opcode field give us an operation code.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Format FI instruction class in Mips : <|opcode|base|ft|immediate|>
+//===----------------------------------------------------------------------===//
+
+class FFI<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern>:
+ InstSE<outs, ins, asmstr, pattern, NoItinerary, FrmFI>
+{
+ bits<5> ft;
+ bits<5> base;
+ bits<16> imm16;
+
+ let Opcode = op;
+
+ let Inst{25-21} = base;
+ let Inst{20-16} = ft;
+ let Inst{15-0} = imm16;
+}
+
+class ADDS_FM<bits<6> funct, bits<5> fmt> : StdArch {
+ bits<5> fd;
+ bits<5> fs;
+ bits<5> ft;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x11;
+ let Inst{25-21} = fmt;
+ let Inst{20-16} = ft;
+ let Inst{15-11} = fs;
+ let Inst{10-6} = fd;
+ let Inst{5-0} = funct;
+}
+
+class ABSS_FM<bits<6> funct, bits<5> fmt> : StdArch {
+ bits<5> fd;
+ bits<5> fs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x11;
+ let Inst{25-21} = fmt;
+ let Inst{20-16} = 0;
+ let Inst{15-11} = fs;
+ let Inst{10-6} = fd;
+ let Inst{5-0} = funct;
+}
+
+class MFC1_FM<bits<5> funct> : StdArch {
+ bits<5> rt;
+ bits<5> fs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x11;
+ let Inst{25-21} = funct;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = fs;
+ let Inst{10-0} = 0;
+}
+
+class LW_FM<bits<6> op> : StdArch {
+ bits<5> rt;
+ bits<21> addr;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = addr{20-16};
+ let Inst{20-16} = rt;
+ let Inst{15-0} = addr{15-0};
+}
+
+class MADDS_FM<bits<3> funct, bits<3> fmt> : StdArch {
+ bits<5> fd;
+ bits<5> fr;
+ bits<5> fs;
+ bits<5> ft;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x13;
+ let Inst{25-21} = fr;
+ let Inst{20-16} = ft;
+ let Inst{15-11} = fs;
+ let Inst{10-6} = fd;
+ let Inst{5-3} = funct;
+ let Inst{2-0} = fmt;
+}
+
+class LWXC1_FM<bits<6> funct> : StdArch {
+ bits<5> fd;
+ bits<5> base;
+ bits<5> index;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x13;
+ let Inst{25-21} = base;
+ let Inst{20-16} = index;
+ let Inst{15-11} = 0;
+ let Inst{10-6} = fd;
+ let Inst{5-0} = funct;
+}
+
+class SWXC1_FM<bits<6> funct> : StdArch {
+ bits<5> fs;
+ bits<5> base;
+ bits<5> index;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x13;
+ let Inst{25-21} = base;
+ let Inst{20-16} = index;
+ let Inst{15-11} = fs;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = funct;
+}
+
+class BC1F_FM<bit nd, bit tf> : StdArch {
+ bits<3> fcc;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x11;
+ let Inst{25-21} = 0x8;
+ let Inst{20-18} = fcc;
+ let Inst{17} = nd;
+ let Inst{16} = tf;
+ let Inst{15-0} = offset;
+}
+
+class CEQS_FM<bits<5> fmt> : StdArch {
+ bits<5> fs;
+ bits<5> ft;
+ bits<4> cond;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x11;
+ let Inst{25-21} = fmt;
+ let Inst{20-16} = ft;
+ let Inst{15-11} = fs;
+ let Inst{10-8} = 0; // cc
+ let Inst{7-4} = 0x3;
+ let Inst{3-0} = cond;
+}
+
+class C_COND_FM<bits<5> fmt, bits<4> c> : CEQS_FM<fmt> {
+ let cond = c;
+}
+
+class CMov_I_F_FM<bits<6> funct, bits<5> fmt> : StdArch {
+ bits<5> fd;
+ bits<5> fs;
+ bits<5> rt;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x11;
+ let Inst{25-21} = fmt;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = fs;
+ let Inst{10-6} = fd;
+ let Inst{5-0} = funct;
+}
+
+class CMov_F_I_FM<bit tf> : StdArch {
+ bits<5> rd;
+ bits<5> rs;
+ bits<3> fcc;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0;
+ let Inst{25-21} = rs;
+ let Inst{20-18} = fcc;
+ let Inst{17} = 0;
+ let Inst{16} = tf;
+ let Inst{15-11} = rd;
+ let Inst{10-6} = 0;
+ let Inst{5-0} = 1;
+}
+
+class CMov_F_F_FM<bits<5> fmt, bit tf> : StdArch {
+ bits<5> fd;
+ bits<5> fs;
+ bits<3> fcc;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x11;
+ let Inst{25-21} = fmt;
+ let Inst{20-18} = fcc;
+ let Inst{17} = 0;
+ let Inst{16} = tf;
+ let Inst{15-11} = fs;
+ let Inst{10-6} = fd;
+ let Inst{5-0} = 0x11;
+}
+
+class BARRIER_FM<bits<5> op> : StdArch {
+ bits<32> Inst;
+
+ let Inst{31-26} = 0; // SPECIAL
+ let Inst{25-21} = 0;
+ let Inst{20-16} = 0; // rt = 0
+ let Inst{15-11} = 0; // rd = 0
+ let Inst{10-6} = op; // Operation
+ let Inst{5-0} = 0; // SLL
+}
+
+class SDBBP_FM : StdArch {
+ bits<20> code_;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0b011100; // SPECIAL2
+ let Inst{25-6} = code_;
+ let Inst{5-0} = 0b111111; // SDBBP
+}
+
+class JR_HB_FM<bits<6> op> : StdArch{
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0; // SPECIAL
+ let Inst{25-21} = rs;
+ let Inst{20-11} = 0;
+ let Inst{10} = 1;
+ let Inst{9-6} = 0;
+ let Inst{5-0} = op;
+}
+
+class JALR_HB_FM<bits<6> op> : StdArch {
+ bits<5> rd;
+ bits<5> rs;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0; // SPECIAL
+ let Inst{25-21} = rs;
+ let Inst{20-16} = 0;
+ let Inst{15-11} = rd;
+ let Inst{10} = 1;
+ let Inst{9-6} = 0;
+ let Inst{5-0} = op;
+}
+
+class COP0_TLB_FM<bits<6> op> : StdArch {
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x10; // COP0
+ let Inst{25} = 1; // CO
+ let Inst{24-6} = 0;
+ let Inst{5-0} = op; // Operation
+}
+
+class CACHEOP_FM<bits<6> op> : StdArch {
+ bits<21> addr;
+ bits<5> hint;
+ bits<5> base = addr{20-16};
+ bits<16> offset = addr{15-0};
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = base;
+ let Inst{20-16} = hint;
+ let Inst{15-0} = offset;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsInstrInfo.cpp b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.cpp
new file mode 100644
index 0000000..dcc0e24
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.cpp
@@ -0,0 +1,289 @@
+//===-- MipsInstrInfo.cpp - Mips Instruction Information ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsInstrInfo.h"
+#include "InstPrinter/MipsInstPrinter.h"
+#include "MipsAnalyzeImmediate.h"
+#include "MipsMachineFunction.h"
+#include "MipsTargetMachine.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "MipsGenInstrInfo.inc"
+
+// Pin the vtable to this file.
+void MipsInstrInfo::anchor() {}
+
+MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr)
+ : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP),
+ Subtarget(STI), UncondBrOpc(UncondBr) {}
+
+const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) {
+ if (STI.inMips16Mode())
+ return llvm::createMips16InstrInfo(STI);
+
+ return llvm::createMipsSEInstrInfo(STI);
+}
+
+bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const {
+ return op.isImm() && op.getImm() == 0;
+}
+
+/// insertNoop - If data hazard condition is found insert the target nop
+/// instruction.
+void MipsInstrInfo::
+insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
+{
+ DebugLoc DL;
+ BuildMI(MBB, MI, DL, get(Mips::NOP));
+}
+
+MachineMemOperand *MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI,
+ unsigned Flag) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+
+ return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), Flag,
+ MFI.getObjectSize(FI), Align);
+}
+
+//===----------------------------------------------------------------------===//
+// Branch Analysis
+//===----------------------------------------------------------------------===//
+
+void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc,
+ MachineBasicBlock *&BB,
+ SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch");
+ int NumOp = Inst->getNumExplicitOperands();
+
+ // for both int and fp branches, the last explicit operand is the
+ // MBB.
+ BB = Inst->getOperand(NumOp-1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(Opc));
+
+ for (int i=0; i<NumOp-1; i++)
+ Cond.push_back(Inst->getOperand(i));
+}
+
+bool MipsInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ SmallVector<MachineInstr*, 2> BranchInstrs;
+ BranchType BT = AnalyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs);
+
+ return (BT == BT_None) || (BT == BT_Indirect);
+}
+
+void
+MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ DebugLoc DL,
+ const SmallVectorImpl<MachineOperand> &Cond) const {
+ unsigned Opc = Cond[0].getImm();
+ const MCInstrDesc &MCID = get(Opc);
+ MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID);
+
+ for (unsigned i = 1; i < Cond.size(); ++i) {
+ if (Cond[i].isReg())
+ MIB.addReg(Cond[i].getReg());
+ else if (Cond[i].isImm())
+ MIB.addImm(Cond[i].getImm());
+ else
+ assert(true && "Cannot copy operand");
+ }
+ MIB.addMBB(TBB);
+}
+
+unsigned MipsInstrInfo::InsertBranch(
+ MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const {
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+
+ // # of condition operands:
+ // Unconditional branches: 0
+ // Floating point branches: 1 (opc)
+ // Int BranchZero: 2 (opc, reg)
+ // Int Branch: 3 (opc, reg0, reg1)
+ assert((Cond.size() <= 3) &&
+ "# of Mips branch conditions must be <= 3!");
+
+ // Two-way Conditional branch.
+ if (FBB) {
+ BuildCondBr(MBB, TBB, DL, Cond);
+ BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB);
+ return 2;
+ }
+
+ // One way branch.
+ // Unconditional branch.
+ if (Cond.empty())
+ BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB);
+ else // Conditional branch.
+ BuildCondBr(MBB, TBB, DL, Cond);
+ return 1;
+}
+
+unsigned MipsInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
+ MachineBasicBlock::reverse_iterator FirstBr;
+ unsigned removed;
+
+ // Skip all the debug instructions.
+ while (I != REnd && I->isDebugValue())
+ ++I;
+
+ FirstBr = I;
+
+ // Up to 2 branches are removed.
+ // Note that indirect branches are not removed.
+ for (removed = 0; I != REnd && removed < 2; ++I, ++removed)
+ if (!getAnalyzableBrOpc(I->getOpcode()))
+ break;
+
+ MBB.erase(I.base(), FirstBr.base());
+
+ return removed;
+}
+
+/// ReverseBranchCondition - Return the inverse opcode of the
+/// specified Branch instruction.
+bool MipsInstrInfo::ReverseBranchCondition(
+ SmallVectorImpl<MachineOperand> &Cond) const {
+ assert( (Cond.size() && Cond.size() <= 3) &&
+ "Invalid Mips branch condition!");
+ Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm()));
+ return false;
+}
+
+MipsInstrInfo::BranchType MipsInstrInfo::AnalyzeBranch(
+ MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond, bool AllowModify,
+ SmallVectorImpl<MachineInstr *> &BranchInstrs) const {
+
+ MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
+
+ // Skip all the debug instructions.
+ while (I != REnd && I->isDebugValue())
+ ++I;
+
+ if (I == REnd || !isUnpredicatedTerminator(&*I)) {
+ // This block ends with no branches (it just falls through to its succ).
+ // Leave TBB/FBB null.
+ TBB = FBB = nullptr;
+ return BT_NoBranch;
+ }
+
+ MachineInstr *LastInst = &*I;
+ unsigned LastOpc = LastInst->getOpcode();
+ BranchInstrs.push_back(LastInst);
+
+ // Not an analyzable branch (e.g., indirect jump).
+ if (!getAnalyzableBrOpc(LastOpc))
+ return LastInst->isIndirectBranch() ? BT_Indirect : BT_None;
+
+ // Get the second to last instruction in the block.
+ unsigned SecondLastOpc = 0;
+ MachineInstr *SecondLastInst = nullptr;
+
+ if (++I != REnd) {
+ SecondLastInst = &*I;
+ SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode());
+
+ // Not an analyzable branch (must be an indirect jump).
+ if (isUnpredicatedTerminator(SecondLastInst) && !SecondLastOpc)
+ return BT_None;
+ }
+
+ // If there is only one terminator instruction, process it.
+ if (!SecondLastOpc) {
+ // Unconditional branch.
+ if (LastOpc == UncondBrOpc) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return BT_Uncond;
+ }
+
+ // Conditional branch
+ AnalyzeCondBr(LastInst, LastOpc, TBB, Cond);
+ return BT_Cond;
+ }
+
+ // If we reached here, there are two branches.
+ // If there are three terminators, we don't know what sort of block this is.
+ if (++I != REnd && isUnpredicatedTerminator(&*I))
+ return BT_None;
+
+ BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst);
+
+ // If second to last instruction is an unconditional branch,
+ // analyze it and remove the last instruction.
+ if (SecondLastOpc == UncondBrOpc) {
+ // Return if the last instruction cannot be removed.
+ if (!AllowModify)
+ return BT_None;
+
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ LastInst->eraseFromParent();
+ BranchInstrs.pop_back();
+ return BT_Uncond;
+ }
+
+ // Conditional branch followed by an unconditional branch.
+ // The last one must be unconditional.
+ if (LastOpc != UncondBrOpc)
+ return BT_None;
+
+ AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond);
+ FBB = LastInst->getOperand(0).getMBB();
+
+ return BT_CondUncond;
+}
+
+/// Return the number of bytes of code the specified instruction may be.
+unsigned MipsInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ return MI->getDesc().getSize();
+ case TargetOpcode::INLINEASM: { // Inline Asm: Variable size.
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const char *AsmStr = MI->getOperand(0).getSymbolName();
+ return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
+ }
+ case Mips::CONSTPOOL_ENTRY:
+ // If this machine instr is a constant pool entry, its size is recorded as
+ // operand #2.
+ return MI->getOperand(2).getImm();
+ }
+}
+
+MachineInstrBuilder
+MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc,
+ MachineBasicBlock::iterator I) const {
+ MachineInstrBuilder MIB;
+ MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc));
+
+ for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J)
+ MIB.addOperand(I->getOperand(J));
+
+ MIB.setMemRefs(I->memoperands_begin(), I->memoperands_end());
+ return MIB;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsInstrInfo.h b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.h
new file mode 100644
index 0000000..bdf2fd3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.h
@@ -0,0 +1,148 @@
+//===-- MipsInstrInfo.h - Mips Instruction Information ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips implementation of the TargetInstrInfo class.
+//
+// FIXME: We need to override TargetInstrInfo::getInlineAsmLength method in
+// order for MipsLongBranch pass to work correctly when the code has inline
+// assembly. The returned value doesn't have to be the asm instruction's exact
+// size in bytes; MipsLongBranch only expects it to be the correct upper bound.
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSINSTRUCTIONINFO_H
+#define MIPSINSTRUCTIONINFO_H
+
+#include "Mips.h"
+#include "MipsAnalyzeImmediate.h"
+#include "MipsRegisterInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "MipsGenInstrInfo.inc"
+
+namespace llvm {
+
+class MipsInstrInfo : public MipsGenInstrInfo {
+ virtual void anchor();
+protected:
+ const MipsSubtarget &Subtarget;
+ unsigned UncondBrOpc;
+
+public:
+ enum BranchType {
+ BT_None, // Couldn't analyze branch.
+ BT_NoBranch, // No branches found.
+ BT_Uncond, // One unconditional branch.
+ BT_Cond, // One conditional branch.
+ BT_CondUncond, // A conditional branch followed by an unconditional branch.
+ BT_Indirect // One indirct branch.
+ };
+
+ explicit MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBrOpc);
+
+ static const MipsInstrInfo *create(MipsSubtarget &STI);
+
+ /// Branch Analysis
+ bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const override;
+
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const override;
+
+ bool
+ ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
+
+ BranchType AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify,
+ SmallVectorImpl<MachineInstr*> &BranchInstrs) const;
+
+ /// Insert nop instruction when hazard condition is found
+ void insertNoop(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const override;
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ virtual const MipsRegisterInfo &getRegisterInfo() const = 0;
+
+ virtual unsigned getOppositeBranchOpc(unsigned Opc) const = 0;
+
+ /// Return the number of bytes of code the specified instruction may be.
+ unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
+
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override {
+ storeRegToStack(MBB, MBBI, SrcReg, isKill, FrameIndex, RC, TRI, 0);
+ }
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override {
+ loadRegFromStack(MBB, MBBI, DestReg, FrameIndex, RC, TRI, 0);
+ }
+
+ virtual void storeRegToStack(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ int64_t Offset) const = 0;
+
+ virtual void loadRegFromStack(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ int64_t Offset) const = 0;
+
+ /// Create an instruction which has the same operands and memory operands
+ /// as MI but has a new opcode.
+ MachineInstrBuilder genInstrWithNewOpc(unsigned NewOpc,
+ MachineBasicBlock::iterator I) const;
+
+protected:
+ bool isZeroImm(const MachineOperand &op) const;
+
+ MachineMemOperand *GetMemOperand(MachineBasicBlock &MBB, int FI,
+ unsigned Flag) const;
+
+private:
+ virtual unsigned getAnalyzableBrOpc(unsigned Opc) const = 0;
+
+ void AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc,
+ MachineBasicBlock *&BB,
+ SmallVectorImpl<MachineOperand> &Cond) const;
+
+ void BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, DebugLoc DL,
+ const SmallVectorImpl<MachineOperand>& Cond) const;
+};
+
+/// Create MipsInstrInfo objects.
+const MipsInstrInfo *createMips16InstrInfo(const MipsSubtarget &STI);
+const MipsInstrInfo *createMipsSEInstrInfo(const MipsSubtarget &STI);
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsInstrInfo.td b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.td
new file mode 100644
index 0000000..8e9472c
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.td
@@ -0,0 +1,1763 @@
+//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// Mips profiles and nodes
+//===----------------------------------------------------------------------===//
+
+def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
+def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
+ SDTCisSameAs<1, 2>,
+ SDTCisSameAs<3, 4>,
+ SDTCisInt<4>]>;
+def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
+def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
+def SDT_MFLOHI : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVT<1, untyped>]>;
+def SDT_MTLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
+ SDTCisInt<1>, SDTCisSameAs<1, 2>]>;
+def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
+ SDTCisSameAs<1, 2>]>;
+def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
+ [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
+ SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
+def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
+
+def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
+
+def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
+
+def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
+ SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
+def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
+ SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
+ SDTCisSameAs<0, 4>]>;
+
+def SDTMipsLoadLR : SDTypeProfile<1, 2,
+ [SDTCisInt<0>, SDTCisPtrTy<1>,
+ SDTCisSameAs<0, 2>]>;
+
+// Call
+def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
+ [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
+ SDNPVariadic]>;
+
+// Tail call
+def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+// Hi and Lo nodes are used to handle global addresses. Used on
+// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
+// static model. (nothing to do with Mips Registers Hi and Lo)
+def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
+def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
+def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
+
+// TlsGd node is used to handle General Dynamic TLS
+def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
+
+// TprelHi and TprelLo nodes are used to handle Local Exec TLS
+def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
+def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
+
+// Thread pointer
+def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
+
+// Return
+def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+// These are target-independent nodes, but have target-specific formats.
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
+ [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
+ [SDNPHasChain, SDNPSideEffect,
+ SDNPOptInGlue, SDNPOutGlue]>;
+
+// Nodes used to extract LO/HI registers.
+def MipsMFHI : SDNode<"MipsISD::MFHI", SDT_MFLOHI>;
+def MipsMFLO : SDNode<"MipsISD::MFLO", SDT_MFLOHI>;
+
+// Node used to insert 32-bit integers to LOHI register pair.
+def MipsMTLOHI : SDNode<"MipsISD::MTLOHI", SDT_MTLOHI>;
+
+// Mult nodes.
+def MipsMult : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
+def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;
+
+// MAdd*/MSub* nodes
+def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
+def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
+def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
+def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;
+
+// DivRem(u) nodes
+def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
+def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
+def MipsDivRem16 : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16,
+ [SDNPOutGlue]>;
+def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
+ [SDNPOutGlue]>;
+
+// Target constant nodes that are not part of any isel patterns and remain
+// unchanged can cause instructions with illegal operands to be emitted.
+// Wrapper node patterns give the instruction selector a chance to replace
+// target constant nodes that would otherwise remain unchanged with ADDiu
+// nodes. Without these wrapper node patterns, the following conditional move
+// instruction is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
+// compiled:
+// movn %got(d)($gp), %got(c)($gp), $4
+// This instruction is illegal since movn can take only register operands.
+
+def MipsWrapper : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
+
+def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
+
+def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>;
+def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>;
+
+def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
+ [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
+def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
+ [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
+def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
+ [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
+def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
+ [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
+def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
+ [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
+def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
+ [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
+def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
+ [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
+def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
+ [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
+
+//===----------------------------------------------------------------------===//
+// Mips Instruction Predicate Definitions.
+//===----------------------------------------------------------------------===//
+def HasMips2 : Predicate<"Subtarget->hasMips2()">,
+ AssemblerPredicate<"FeatureMips2">;
+def HasMips3_32 : Predicate<"Subtarget->hasMips3_32()">,
+ AssemblerPredicate<"FeatureMips3_32">;
+def HasMips3_32r2 : Predicate<"Subtarget->hasMips3_32r2()">,
+ AssemblerPredicate<"FeatureMips3_32r2">;
+def HasMips3 : Predicate<"Subtarget->hasMips3()">,
+ AssemblerPredicate<"FeatureMips3">;
+def HasMips4_32 : Predicate<"Subtarget->hasMips4_32()">,
+ AssemblerPredicate<"FeatureMips4_32">;
+def HasMips4_32r2 : Predicate<"Subtarget->hasMips4_32r2()">,
+ AssemblerPredicate<"FeatureMips4_32r2">;
+def HasMips5_32r2 : Predicate<"Subtarget->hasMips5_32r2()">,
+ AssemblerPredicate<"FeatureMips5_32r2">;
+def HasMips32 : Predicate<"Subtarget->hasMips32()">,
+ AssemblerPredicate<"FeatureMips32">;
+def HasMips32r2 : Predicate<"Subtarget->hasMips32r2()">,
+ AssemblerPredicate<"FeatureMips32r2">;
+def HasMips32r6 : Predicate<"Subtarget->hasMips32r6()">,
+ AssemblerPredicate<"FeatureMips32r6">;
+def NotMips32r6 : Predicate<"!Subtarget->hasMips32r6()">,
+ AssemblerPredicate<"!FeatureMips32r6">;
+def IsGP64bit : Predicate<"Subtarget->isGP64bit()">,
+ AssemblerPredicate<"FeatureGP64Bit">;
+def IsGP32bit : Predicate<"!Subtarget->isGP64bit()">,
+ AssemblerPredicate<"!FeatureGP64Bit">;
+def HasMips64 : Predicate<"Subtarget->hasMips64()">,
+ AssemblerPredicate<"FeatureMips64">;
+def HasMips64r2 : Predicate<"Subtarget->hasMips64r2()">,
+ AssemblerPredicate<"FeatureMips64r2">;
+def HasMips64r6 : Predicate<"Subtarget->hasMips64r6()">,
+ AssemblerPredicate<"FeatureMips64r6">;
+def NotMips64r6 : Predicate<"!Subtarget->hasMips64r6()">,
+ AssemblerPredicate<"!FeatureMips64r6">;
+def IsN64 : Predicate<"Subtarget->isABI_N64()">,
+ AssemblerPredicate<"FeatureN64">;
+def InMips16Mode : Predicate<"Subtarget->inMips16Mode()">,
+ AssemblerPredicate<"FeatureMips16">;
+def HasCnMips : Predicate<"Subtarget->hasCnMips()">,
+ AssemblerPredicate<"FeatureCnMips">;
+def RelocStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">,
+ AssemblerPredicate<"FeatureMips32">;
+def RelocPIC : Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
+ AssemblerPredicate<"FeatureMips32">;
+def NoNaNsFPMath : Predicate<"TM.Options.NoNaNsFPMath">;
+def HasStdEnc : Predicate<"Subtarget->hasStandardEncoding()">,
+ AssemblerPredicate<"!FeatureMips16">;
+def NotDSP : Predicate<"!Subtarget->hasDSP()">;
+def InMicroMips : Predicate<"Subtarget->inMicroMipsMode()">,
+ AssemblerPredicate<"FeatureMicroMips">;
+def NotInMicroMips : Predicate<"!Subtarget->inMicroMipsMode()">,
+ AssemblerPredicate<"!FeatureMicroMips">;
+def IsLE : Predicate<"Subtarget->isLittle()">;
+def IsBE : Predicate<"!Subtarget->isLittle()">;
+def IsNotNaCl : Predicate<"!Subtarget->isTargetNaCl()">;
+
+//===----------------------------------------------------------------------===//
+// Mips GPR size adjectives.
+// They are mutually exclusive.
+//===----------------------------------------------------------------------===//
+
+class GPR_32 { list<Predicate> GPRPredicates = [IsGP32bit]; }
+class GPR_64 { list<Predicate> GPRPredicates = [IsGP64bit]; }
+
+//===----------------------------------------------------------------------===//
+// Mips ISA/ASE membership and instruction group membership adjectives.
+// They are mutually exclusive.
+//===----------------------------------------------------------------------===//
+
+// FIXME: I'd prefer to use additive predicates to build the instruction sets
+// but we are short on assembler feature bits at the moment. Using a
+// subtractive predicate will hopefully keep us under the 32 predicate
+// limit long enough to develop an alternative way to handle P1||P2
+// predicates.
+class ISA_MIPS1_NOT_32R6_64R6 {
+ list<Predicate> InsnPredicates = [NotMips32r6, NotMips64r6];
+}
+class ISA_MIPS2 { list<Predicate> InsnPredicates = [HasMips2]; }
+class ISA_MIPS2_NOT_32R6_64R6 {
+ list<Predicate> InsnPredicates = [HasMips2, NotMips32r6, NotMips64r6];
+}
+class ISA_MIPS3 { list<Predicate> InsnPredicates = [HasMips3]; }
+class ISA_MIPS3_NOT_32R6_64R6 {
+ list<Predicate> InsnPredicates = [HasMips3, NotMips32r6, NotMips64r6];
+}
+class ISA_MIPS32 { list<Predicate> InsnPredicates = [HasMips32]; }
+class ISA_MIPS32_NOT_32R6_64R6 {
+ list<Predicate> InsnPredicates = [HasMips32, NotMips32r6, NotMips64r6];
+}
+class ISA_MIPS32R2 { list<Predicate> InsnPredicates = [HasMips32r2]; }
+class ISA_MIPS32R2_NOT_32R6_64R6 {
+ list<Predicate> InsnPredicates = [HasMips32r2, NotMips32r6, NotMips64r6];
+}
+class ISA_MIPS64 { list<Predicate> InsnPredicates = [HasMips64]; }
+class ISA_MIPS64_NOT_64R6 {
+ list<Predicate> InsnPredicates = [HasMips64, NotMips64r6];
+}
+class ISA_MIPS64R2 { list<Predicate> InsnPredicates = [HasMips64r2]; }
+class ISA_MIPS32R6 { list<Predicate> InsnPredicates = [HasMips32r6]; }
+class ISA_MIPS64R6 { list<Predicate> InsnPredicates = [HasMips64r6]; }
+
+// The portions of MIPS-III that were also added to MIPS32
+class INSN_MIPS3_32 { list<Predicate> InsnPredicates = [HasMips3_32]; }
+
+// The portions of MIPS-III that were also added to MIPS32 but were removed in
+// MIPS32r6 and MIPS64r6.
+class INSN_MIPS3_32_NOT_32R6_64R6 {
+ list<Predicate> InsnPredicates = [HasMips3_32, NotMips32r6, NotMips64r6];
+}
+
+// The portions of MIPS-III that were also added to MIPS32
+class INSN_MIPS3_32R2 { list<Predicate> InsnPredicates = [HasMips3_32r2]; }
+
+// The portions of MIPS-IV that were also added to MIPS32 but were removed in
+// MIPS32r6 and MIPS64r6.
+class INSN_MIPS4_32_NOT_32R6_64R6 {
+ list<Predicate> InsnPredicates = [HasMips4_32, NotMips32r6, NotMips64r6];
+}
+
+// The portions of MIPS-IV that were also added to MIPS32r2 but were removed in
+// MIPS32r6 and MIPS64r6.
+class INSN_MIPS4_32R2_NOT_32R6_64R6 {
+ list<Predicate> InsnPredicates = [HasMips4_32r2, NotMips32r6, NotMips64r6];
+}
+
+// The portions of MIPS-V that were also added to MIPS32r2 but were removed in
+// MIPS32r6 and MIPS64r6.
+class INSN_MIPS5_32R2_NOT_32R6_64R6 {
+ list<Predicate> InsnPredicates = [HasMips5_32r2, NotMips32r6, NotMips64r6];
+}
+
+//===----------------------------------------------------------------------===//
+
+class MipsPat<dag pattern, dag result> : Pat<pattern, result>, PredicateControl {
+ let EncodingPredicates = [HasStdEnc];
+}
+
+class MipsInstAlias<string Asm, dag Result, bit Emit = 0b1> :
+ InstAlias<Asm, Result, Emit>, PredicateControl;
+
+class IsCommutable {
+ bit isCommutable = 1;
+}
+
+class IsBranch {
+ bit isBranch = 1;
+}
+
+class IsReturn {
+ bit isReturn = 1;
+}
+
+class IsCall {
+ bit isCall = 1;
+}
+
+class IsTailCall {
+ bit isCall = 1;
+ bit isTerminator = 1;
+ bit isReturn = 1;
+ bit isBarrier = 1;
+ bit hasExtraSrcRegAllocReq = 1;
+ bit isCodeGenOnly = 1;
+}
+
+class IsAsCheapAsAMove {
+ bit isAsCheapAsAMove = 1;
+}
+
+class NeverHasSideEffects {
+ bit neverHasSideEffects = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction format superclass
+//===----------------------------------------------------------------------===//
+
+include "MipsInstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+// Mips Operand, Complex Patterns and Transformations Definitions.
+//===----------------------------------------------------------------------===//
+
+def MipsJumpTargetAsmOperand : AsmOperandClass {
+ let Name = "JumpTarget";
+ let ParserMethod = "ParseJumpTarget";
+ let PredicateMethod = "isImm";
+ let RenderMethod = "addImmOperands";
+}
+
+// Instruction operand types
+def jmptarget : Operand<OtherVT> {
+ let EncoderMethod = "getJumpTargetOpValue";
+ let ParserMatchClass = MipsJumpTargetAsmOperand;
+}
+def brtarget : Operand<OtherVT> {
+ let EncoderMethod = "getBranchTargetOpValue";
+ let OperandType = "OPERAND_PCREL";
+ let DecoderMethod = "DecodeBranchTarget";
+ let ParserMatchClass = MipsJumpTargetAsmOperand;
+}
+def calltarget : Operand<iPTR> {
+ let EncoderMethod = "getJumpTargetOpValue";
+ let ParserMatchClass = MipsJumpTargetAsmOperand;
+}
+
+def simm9 : Operand<i32>;
+def simm10 : Operand<i32>;
+def simm11 : Operand<i32>;
+
+def simm16 : Operand<i32> {
+ let DecoderMethod= "DecodeSimm16";
+}
+
+def simm19_lsl2 : Operand<i32> {
+ let EncoderMethod = "getSimm19Lsl2Encoding";
+ let DecoderMethod = "DecodeSimm19Lsl2";
+ let ParserMatchClass = MipsJumpTargetAsmOperand;
+}
+
+def simm18_lsl3 : Operand<i32> {
+ let EncoderMethod = "getSimm18Lsl3Encoding";
+ let DecoderMethod = "DecodeSimm18Lsl3";
+ let ParserMatchClass = MipsJumpTargetAsmOperand;
+}
+
+def simm20 : Operand<i32> {
+}
+
+def uimm20 : Operand<i32> {
+}
+
+def uimm10 : Operand<i32> {
+}
+
+def simm16_64 : Operand<i64> {
+ let DecoderMethod = "DecodeSimm16";
+}
+
+// Zero
+def uimmz : Operand<i32> {
+ let PrintMethod = "printUnsignedImm";
+}
+
+// Unsigned Operand
+def uimm2 : Operand<i32> {
+ let PrintMethod = "printUnsignedImm";
+}
+
+def uimm3 : Operand<i32> {
+ let PrintMethod = "printUnsignedImm";
+}
+
+def uimm5 : Operand<i32> {
+ let PrintMethod = "printUnsignedImm";
+}
+
+def uimm6 : Operand<i32> {
+ let PrintMethod = "printUnsignedImm";
+}
+
+def uimm16 : Operand<i32> {
+ let PrintMethod = "printUnsignedImm";
+}
+
+def pcrel16 : Operand<i32> {
+}
+
+def MipsMemAsmOperand : AsmOperandClass {
+ let Name = "Mem";
+ let ParserMethod = "parseMemOperand";
+}
+
+def MipsMemSimm11AsmOperand : AsmOperandClass {
+ let Name = "MemOffsetSimm11";
+ let SuperClasses = [MipsMemAsmOperand];
+ let RenderMethod = "addMemOperands";
+ let ParserMethod = "parseMemOperand";
+ let PredicateMethod = "isMemWithSimmOffset<11>";
+ //let DiagnosticType = "Simm11";
+}
+
+def MipsInvertedImmoperand : AsmOperandClass {
+ let Name = "InvNum";
+ let RenderMethod = "addImmOperands";
+ let ParserMethod = "parseInvNum";
+}
+
+def InvertedImOperand : Operand<i32> {
+ let ParserMatchClass = MipsInvertedImmoperand;
+}
+
+def InvertedImOperand64 : Operand<i64> {
+ let ParserMatchClass = MipsInvertedImmoperand;
+}
+
+class mem_generic : Operand<iPTR> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops ptr_rc, simm16);
+ let EncoderMethod = "getMemEncoding";
+ let ParserMatchClass = MipsMemAsmOperand;
+ let OperandType = "OPERAND_MEMORY";
+}
+
+// Address operand
+def mem : mem_generic;
+
+// MSA specific address operand
+def mem_msa : mem_generic {
+ let MIOperandInfo = (ops ptr_rc, simm10);
+ let EncoderMethod = "getMSAMemEncoding";
+}
+
+def mem_simm9 : mem_generic {
+ let MIOperandInfo = (ops ptr_rc, simm9);
+ let EncoderMethod = "getMemEncoding";
+}
+
+def mem_simm11 : mem_generic {
+ let MIOperandInfo = (ops ptr_rc, simm11);
+ let EncoderMethod = "getMemEncoding";
+ let ParserMatchClass = MipsMemSimm11AsmOperand;
+}
+
+def mem_ea : Operand<iPTR> {
+ let PrintMethod = "printMemOperandEA";
+ let MIOperandInfo = (ops ptr_rc, simm16);
+ let EncoderMethod = "getMemEncoding";
+ let OperandType = "OPERAND_MEMORY";
+}
+
+def PtrRC : Operand<iPTR> {
+ let MIOperandInfo = (ops ptr_rc);
+ let DecoderMethod = "DecodePtrRegisterClass";
+ let ParserMatchClass = GPR32AsmOperand;
+}
+
+// size operand of ext instruction
+def size_ext : Operand<i32> {
+ let EncoderMethod = "getSizeExtEncoding";
+ let DecoderMethod = "DecodeExtSize";
+}
+
+// size operand of ins instruction
+def size_ins : Operand<i32> {
+ let EncoderMethod = "getSizeInsEncoding";
+ let DecoderMethod = "DecodeInsSize";
+}
+
+// Transformation Function - get the lower 16 bits.
+def LO16 : SDNodeXForm<imm, [{
+ return getImm(N, N->getZExtValue() & 0xFFFF);
+}]>;
+
+// Transformation Function - get the higher 16 bits.
+def HI16 : SDNodeXForm<imm, [{
+ return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
+}]>;
+
+// Plus 1.
+def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;
+
+// Node immediate is zero (e.g. insve.d)
+def immz : PatLeaf<(imm), [{ return N->getSExtValue() == 0; }]>;
+
+// Node immediate fits as 16-bit sign extended on target immediate.
+// e.g. addi, andi
+def immSExt8 : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
+
+// Node immediate fits as 16-bit sign extended on target immediate.
+// e.g. addi, andi
+def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
+
+// Node immediate fits as 15-bit sign extended on target immediate.
+// e.g. addi, andi
+def immSExt15 : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
+
+// Node immediate fits as 16-bit zero extended on target immediate.
+// The LO16 param means that only the lower 16 bits of the node
+// immediate are caught.
+// e.g. addiu, sltiu
+def immZExt16 : PatLeaf<(imm), [{
+ if (N->getValueType(0) == MVT::i32)
+ return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
+ else
+ return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
+}], LO16>;
+
+// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
+def immLow16Zero : PatLeaf<(imm), [{
+ int64_t Val = N->getSExtValue();
+ return isInt<32>(Val) && !(Val & 0xffff);
+}]>;
+
+// shamt field must fit in 5 bits.
+def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
+
+// True if (N + 1) fits in 16-bit field.
+def immSExt16Plus1 : PatLeaf<(imm), [{
+ return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
+}]>;
+
+// Mips Address Mode! SDNode frameindex could possibily be a match
+// since load and store instructions from stack used it.
+def addr :
+ ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;
+
+def addrRegImm :
+ ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;
+
+def addrRegReg :
+ ComplexPattern<iPTR, 2, "selectAddrRegReg", [frameindex]>;
+
+def addrDefault :
+ ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;
+
+def addrimm10 : ComplexPattern<iPTR, 2, "selectIntAddrMSA", [frameindex]>;
+
+//===----------------------------------------------------------------------===//
+// Instructions specific format
+//===----------------------------------------------------------------------===//
+
+// Arithmetic and logical instructions with 3 register operands.
+class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
+ InstrItinClass Itin = NoItinerary,
+ SDPatternOperator OpNode = null_frag>:
+ InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
+ !strconcat(opstr, "\t$rd, $rs, $rt"),
+ [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> {
+ let isCommutable = isComm;
+ let isReMaterializable = 1;
+ let TwoOperandAliasConstraint = "$rd = $rs";
+}
+
+// Arithmetic and logical instructions with 2 register operands.
+class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
+ InstrItinClass Itin = NoItinerary,
+ SDPatternOperator imm_type = null_frag,
+ SDPatternOperator OpNode = null_frag> :
+ InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
+ !strconcat(opstr, "\t$rt, $rs, $imm16"),
+ [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))],
+ Itin, FrmI, opstr> {
+ let isReMaterializable = 1;
+ let TwoOperandAliasConstraint = "$rs = $rt";
+}
+
+// Arithmetic Multiply ADD/SUB
+class MArithR<string opstr, InstrItinClass itin, bit isComm = 0> :
+ InstSE<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt),
+ !strconcat(opstr, "\t$rs, $rt"), [], itin, FrmR, opstr> {
+ let Defs = [HI0, LO0];
+ let Uses = [HI0, LO0];
+ let isCommutable = isComm;
+}
+
+// Logical
+class LogicNOR<string opstr, RegisterOperand RO>:
+ InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
+ !strconcat(opstr, "\t$rd, $rs, $rt"),
+ [(set RO:$rd, (not (or RO:$rs, RO:$rt)))], II_NOR, FrmR, opstr> {
+ let isCommutable = 1;
+}
+
+// Shifts
+class shift_rotate_imm<string opstr, Operand ImmOpnd,
+ RegisterOperand RO, InstrItinClass itin,
+ SDPatternOperator OpNode = null_frag,
+ SDPatternOperator PF = null_frag> :
+ InstSE<(outs RO:$rd), (ins RO:$rt, ImmOpnd:$shamt),
+ !strconcat(opstr, "\t$rd, $rt, $shamt"),
+ [(set RO:$rd, (OpNode RO:$rt, PF:$shamt))], itin, FrmR, opstr> {
+ let TwoOperandAliasConstraint = "$rt = $rd";
+}
+
+class shift_rotate_reg<string opstr, RegisterOperand RO, InstrItinClass itin,
+ SDPatternOperator OpNode = null_frag>:
+ InstSE<(outs RO:$rd), (ins RO:$rt, GPR32Opnd:$rs),
+ !strconcat(opstr, "\t$rd, $rt, $rs"),
+ [(set RO:$rd, (OpNode RO:$rt, GPR32Opnd:$rs))], itin, FrmR,
+ opstr>;
+
+// Load Upper Imediate
+class LoadUpper<string opstr, RegisterOperand RO, Operand Imm>:
+ InstSE<(outs RO:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
+ [], II_LUI, FrmI, opstr>, IsAsCheapAsAMove {
+ let neverHasSideEffects = 1;
+ let isReMaterializable = 1;
+}
+
+// Memory Load/Store
+class Load<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
+ InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
+ InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
+ [(set RO:$rt, (OpNode Addr:$addr))], Itin, FrmI, opstr> {
+ let DecoderMethod = "DecodeMem";
+ let canFoldAsLoad = 1;
+ let mayLoad = 1;
+}
+
+class Store<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
+ InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
+ InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
+ [(OpNode RO:$rt, Addr:$addr)], Itin, FrmI, opstr> {
+ let DecoderMethod = "DecodeMem";
+ let mayStore = 1;
+}
+
+// Load/Store Left/Right
+let canFoldAsLoad = 1 in
+class LoadLeftRight<string opstr, SDNode OpNode, RegisterOperand RO,
+ InstrItinClass Itin> :
+ InstSE<(outs RO:$rt), (ins mem:$addr, RO:$src),
+ !strconcat(opstr, "\t$rt, $addr"),
+ [(set RO:$rt, (OpNode addr:$addr, RO:$src))], Itin, FrmI> {
+ let DecoderMethod = "DecodeMem";
+ string Constraints = "$src = $rt";
+}
+
+class StoreLeftRight<string opstr, SDNode OpNode, RegisterOperand RO,
+ InstrItinClass Itin> :
+ InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
+ [(OpNode RO:$rt, addr:$addr)], Itin, FrmI> {
+ let DecoderMethod = "DecodeMem";
+}
+
+// Conditional Branch
+class CBranch<string opstr, DAGOperand opnd, PatFrag cond_op,
+ RegisterOperand RO> :
+ InstSE<(outs), (ins RO:$rs, RO:$rt, opnd:$offset),
+ !strconcat(opstr, "\t$rs, $rt, $offset"),
+ [(brcond (i32 (cond_op RO:$rs, RO:$rt)), bb:$offset)], IIBranch,
+ FrmI, opstr> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let hasDelaySlot = 1;
+ let Defs = [AT];
+}
+
+class CBranchZero<string opstr, DAGOperand opnd, PatFrag cond_op,
+ RegisterOperand RO> :
+ InstSE<(outs), (ins RO:$rs, opnd:$offset),
+ !strconcat(opstr, "\t$rs, $offset"),
+ [(brcond (i32 (cond_op RO:$rs, 0)), bb:$offset)], IIBranch,
+ FrmI, opstr> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let hasDelaySlot = 1;
+ let Defs = [AT];
+}
+
+// SetCC
+class SetCC_R<string opstr, PatFrag cond_op, RegisterOperand RO> :
+ InstSE<(outs GPR32Opnd:$rd), (ins RO:$rs, RO:$rt),
+ !strconcat(opstr, "\t$rd, $rs, $rt"),
+ [(set GPR32Opnd:$rd, (cond_op RO:$rs, RO:$rt))],
+ II_SLT_SLTU, FrmR, opstr>;
+
+class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
+ RegisterOperand RO>:
+ InstSE<(outs GPR32Opnd:$rt), (ins RO:$rs, Od:$imm16),
+ !strconcat(opstr, "\t$rt, $rs, $imm16"),
+ [(set GPR32Opnd:$rt, (cond_op RO:$rs, imm_type:$imm16))],
+ II_SLTI_SLTIU, FrmI, opstr>;
+
+// Jump
+class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
+ SDPatternOperator targetoperator, string bopstr> :
+ InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
+ [(operator targetoperator:$target)], IIBranch, FrmJ, bopstr> {
+ let isTerminator=1;
+ let isBarrier=1;
+ let hasDelaySlot = 1;
+ let DecoderMethod = "DecodeJumpTarget";
+ let Defs = [AT];
+}
+
+// Unconditional branch
+class UncondBranch<Instruction BEQInst> :
+ PseudoSE<(outs), (ins brtarget:$offset), [(br bb:$offset)], IIBranch>,
+ PseudoInstExpansion<(BEQInst ZERO, ZERO, brtarget:$offset)> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let isBarrier = 1;
+ let hasDelaySlot = 1;
+ let AdditionalPredicates = [RelocPIC];
+ let Defs = [AT];
+}
+
+// Base class for indirect branch and return instruction classes.
+let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
+class JumpFR<string opstr, RegisterOperand RO,
+ SDPatternOperator operator = null_frag>:
+ InstSE<(outs), (ins RO:$rs), "jr\t$rs", [(operator RO:$rs)], IIBranch,
+ FrmR, opstr>;
+
+// Indirect branch
+class IndirectBranch<string opstr, RegisterOperand RO> : JumpFR<opstr, RO> {
+ let isBranch = 1;
+ let isIndirectBranch = 1;
+}
+
+// Jump and Link (Call)
+let isCall=1, hasDelaySlot=1, Defs = [RA] in {
+ class JumpLink<string opstr, DAGOperand opnd> :
+ InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
+ [(MipsJmpLink imm:$target)], IIBranch, FrmJ, opstr> {
+ let DecoderMethod = "DecodeJumpTarget";
+ }
+
+ class JumpLinkRegPseudo<RegisterOperand RO, Instruction JALRInst,
+ Register RetReg, RegisterOperand ResRO = RO>:
+ PseudoSE<(outs), (ins RO:$rs), [(MipsJmpLink RO:$rs)], IIBranch>,
+ PseudoInstExpansion<(JALRInst RetReg, ResRO:$rs)>;
+
+ class JumpLinkReg<string opstr, RegisterOperand RO>:
+ InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
+ [], IIBranch, FrmR>;
+
+ class BGEZAL_FT<string opstr, DAGOperand opnd, RegisterOperand RO> :
+ InstSE<(outs), (ins RO:$rs, opnd:$offset),
+ !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI, opstr>;
+
+}
+
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, hasDelaySlot = 1,
+ hasExtraSrcRegAllocReq = 1, Defs = [AT] in {
+ class TailCall<Instruction JumpInst> :
+ PseudoSE<(outs), (ins calltarget:$target), [], IIBranch>,
+ PseudoInstExpansion<(JumpInst jmptarget:$target)>;
+
+ class TailCallReg<RegisterOperand RO, Instruction JRInst,
+ RegisterOperand ResRO = RO> :
+ PseudoSE<(outs), (ins RO:$rs), [(MipsTailCall RO:$rs)], IIBranch>,
+ PseudoInstExpansion<(JRInst ResRO:$rs)>;
+}
+
+class BAL_BR_Pseudo<Instruction RealInst> :
+ PseudoSE<(outs), (ins brtarget:$offset), [], IIBranch>,
+ PseudoInstExpansion<(RealInst ZERO, brtarget:$offset)> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let isBarrier = 1;
+ let hasDelaySlot = 1;
+ let Defs = [RA];
+}
+
+// Syscall
+class SYS_FT<string opstr> :
+ InstSE<(outs), (ins uimm20:$code_),
+ !strconcat(opstr, "\t$code_"), [], NoItinerary, FrmI, opstr>;
+// Break
+class BRK_FT<string opstr> :
+ InstSE<(outs), (ins uimm10:$code_1, uimm10:$code_2),
+ !strconcat(opstr, "\t$code_1, $code_2"), [], NoItinerary,
+ FrmOther, opstr>;
+
+// (D)Eret
+class ER_FT<string opstr> :
+ InstSE<(outs), (ins),
+ opstr, [], NoItinerary, FrmOther, opstr>;
+
+// Interrupts
+class DEI_FT<string opstr, RegisterOperand RO> :
+ InstSE<(outs RO:$rt), (ins),
+ !strconcat(opstr, "\t$rt"), [], NoItinerary, FrmOther, opstr>;
+
+// Wait
+class WAIT_FT<string opstr> :
+ InstSE<(outs), (ins), opstr, [], NoItinerary, FrmOther, opstr>;
+
+// Sync
+let hasSideEffects = 1 in
+class SYNC_FT<string opstr> :
+ InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
+ NoItinerary, FrmOther, opstr>;
+
+let hasSideEffects = 1 in
+class TEQ_FT<string opstr, RegisterOperand RO> :
+ InstSE<(outs), (ins RO:$rs, RO:$rt, uimm16:$code_),
+ !strconcat(opstr, "\t$rs, $rt, $code_"), [], NoItinerary,
+ FrmI, opstr>;
+
+class TEQI_FT<string opstr, RegisterOperand RO> :
+ InstSE<(outs), (ins RO:$rs, uimm16:$imm16),
+ !strconcat(opstr, "\t$rs, $imm16"), [], NoItinerary, FrmOther, opstr>;
+// Mul, Div
+class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
+ list<Register> DefRegs> :
+ InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
+ itin, FrmR, opstr> {
+ let isCommutable = 1;
+ let Defs = DefRegs;
+ let neverHasSideEffects = 1;
+}
+
+// Pseudo multiply/divide instruction with explicit accumulator register
+// operands.
+class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
+ SDPatternOperator OpNode, InstrItinClass Itin,
+ bit IsComm = 1, bit HasSideEffects = 0,
+ bit UsesCustomInserter = 0> :
+ PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
+ [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
+ PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
+ let isCommutable = IsComm;
+ let hasSideEffects = HasSideEffects;
+ let usesCustomInserter = UsesCustomInserter;
+}
+
+// Pseudo multiply add/sub instruction with explicit accumulator register
+// operands.
+class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode,
+ InstrItinClass itin>
+ : PseudoSE<(outs ACC64:$ac),
+ (ins GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin),
+ [(set ACC64:$ac,
+ (OpNode GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin))],
+ itin>,
+ PseudoInstExpansion<(RealInst GPR32Opnd:$rs, GPR32Opnd:$rt)> {
+ string Constraints = "$acin = $ac";
+}
+
+class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
+ list<Register> DefRegs> :
+ InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
+ [], itin, FrmR, opstr> {
+ let Defs = DefRegs;
+}
+
+// Move from Hi/Lo
+class PseudoMFLOHI<RegisterClass DstRC, RegisterClass SrcRC, SDNode OpNode>
+ : PseudoSE<(outs DstRC:$rd), (ins SrcRC:$hilo),
+ [(set DstRC:$rd, (OpNode SrcRC:$hilo))], II_MFHI_MFLO>;
+
+class MoveFromLOHI<string opstr, RegisterOperand RO, Register UseReg>:
+ InstSE<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"), [], II_MFHI_MFLO,
+ FrmR, opstr> {
+ let Uses = [UseReg];
+ let neverHasSideEffects = 1;
+}
+
+class PseudoMTLOHI<RegisterClass DstRC, RegisterClass SrcRC>
+ : PseudoSE<(outs DstRC:$lohi), (ins SrcRC:$lo, SrcRC:$hi),
+ [(set DstRC:$lohi, (MipsMTLOHI SrcRC:$lo, SrcRC:$hi))],
+ II_MTHI_MTLO>;
+
+class MoveToLOHI<string opstr, RegisterOperand RO, list<Register> DefRegs>:
+ InstSE<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"), [], II_MTHI_MTLO,
+ FrmR, opstr> {
+ let Defs = DefRegs;
+ let neverHasSideEffects = 1;
+}
+
+class EffectiveAddress<string opstr, RegisterOperand RO> :
+ InstSE<(outs RO:$rt), (ins mem_ea:$addr), !strconcat(opstr, "\t$rt, $addr"),
+ [(set RO:$rt, addr:$addr)], NoItinerary, FrmI,
+ !strconcat(opstr, "_lea")> {
+ let isCodeGenOnly = 1;
+ let DecoderMethod = "DecodeMem";
+}
+
+// Count Leading Ones/Zeros in Word
+class CountLeading0<string opstr, RegisterOperand RO>:
+ InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
+ [(set RO:$rd, (ctlz RO:$rs))], II_CLZ, FrmR, opstr>;
+
+class CountLeading1<string opstr, RegisterOperand RO>:
+ InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
+ [(set RO:$rd, (ctlz (not RO:$rs)))], II_CLO, FrmR, opstr>;
+
+// Sign Extend in Register.
+class SignExtInReg<string opstr, ValueType vt, RegisterOperand RO,
+ InstrItinClass itin> :
+ InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"),
+ [(set RO:$rd, (sext_inreg RO:$rt, vt))], itin, FrmR, opstr>;
+
+// Subword Swap
+class SubwordSwap<string opstr, RegisterOperand RO>:
+ InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
+ NoItinerary, FrmR, opstr> {
+ let neverHasSideEffects = 1;
+}
+
+// Read Hardware
+class ReadHardware<RegisterOperand CPURegOperand, RegisterOperand RO> :
+ InstSE<(outs CPURegOperand:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
+ II_RDHWR, FrmR>;
+
+// Ext and Ins
+class ExtBase<string opstr, RegisterOperand RO, Operand PosOpnd,
+ SDPatternOperator Op = null_frag>:
+ InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, size_ext:$size),
+ !strconcat(opstr, " $rt, $rs, $pos, $size"),
+ [(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size))], NoItinerary,
+ FrmR, opstr>, ISA_MIPS32R2;
+
+class InsBase<string opstr, RegisterOperand RO, Operand PosOpnd,
+ SDPatternOperator Op = null_frag>:
+ InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, size_ins:$size, RO:$src),
+ !strconcat(opstr, " $rt, $rs, $pos, $size"),
+ [(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size, RO:$src))],
+ NoItinerary, FrmR, opstr>, ISA_MIPS32R2 {
+ let Constraints = "$src = $rt";
+}
+
+// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
+class Atomic2Ops<PatFrag Op, RegisterClass DRC> :
+ PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$incr),
+ [(set DRC:$dst, (Op iPTR:$ptr, DRC:$incr))]>;
+
+// Atomic Compare & Swap.
+class AtomicCmpSwap<PatFrag Op, RegisterClass DRC> :
+ PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$cmp, DRC:$swap),
+ [(set DRC:$dst, (Op iPTR:$ptr, DRC:$cmp, DRC:$swap))]>;
+
+class LLBase<string opstr, RegisterOperand RO> :
+ InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
+ [], NoItinerary, FrmI> {
+ let DecoderMethod = "DecodeMem";
+ let mayLoad = 1;
+}
+
+class SCBase<string opstr, RegisterOperand RO> :
+ InstSE<(outs RO:$dst), (ins RO:$rt, mem:$addr),
+ !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
+ let DecoderMethod = "DecodeMem";
+ let mayStore = 1;
+ let Constraints = "$rt = $dst";
+}
+
+class MFC3OP<string asmstr, RegisterOperand RO> :
+ InstSE<(outs RO:$rt, RO:$rd, uimm16:$sel), (ins),
+ !strconcat(asmstr, "\t$rt, $rd, $sel"), [], NoItinerary, FrmFR>;
+
+class TrapBase<Instruction RealInst>
+ : PseudoSE<(outs), (ins), [(trap)], NoItinerary>,
+ PseudoInstExpansion<(RealInst 0, 0)> {
+ let isBarrier = 1;
+ let isTerminator = 1;
+ let isCodeGenOnly = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions
+//===----------------------------------------------------------------------===//
+
+// Return RA.
+let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
+def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
+
+let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
+def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
+ [(callseq_start timm:$amt)]>;
+def ADJCALLSTACKUP : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+}
+
+let usesCustomInserter = 1 in {
+ def ATOMIC_LOAD_ADD_I8 : Atomic2Ops<atomic_load_add_8, GPR32>;
+ def ATOMIC_LOAD_ADD_I16 : Atomic2Ops<atomic_load_add_16, GPR32>;
+ def ATOMIC_LOAD_ADD_I32 : Atomic2Ops<atomic_load_add_32, GPR32>;
+ def ATOMIC_LOAD_SUB_I8 : Atomic2Ops<atomic_load_sub_8, GPR32>;
+ def ATOMIC_LOAD_SUB_I16 : Atomic2Ops<atomic_load_sub_16, GPR32>;
+ def ATOMIC_LOAD_SUB_I32 : Atomic2Ops<atomic_load_sub_32, GPR32>;
+ def ATOMIC_LOAD_AND_I8 : Atomic2Ops<atomic_load_and_8, GPR32>;
+ def ATOMIC_LOAD_AND_I16 : Atomic2Ops<atomic_load_and_16, GPR32>;
+ def ATOMIC_LOAD_AND_I32 : Atomic2Ops<atomic_load_and_32, GPR32>;
+ def ATOMIC_LOAD_OR_I8 : Atomic2Ops<atomic_load_or_8, GPR32>;
+ def ATOMIC_LOAD_OR_I16 : Atomic2Ops<atomic_load_or_16, GPR32>;
+ def ATOMIC_LOAD_OR_I32 : Atomic2Ops<atomic_load_or_32, GPR32>;
+ def ATOMIC_LOAD_XOR_I8 : Atomic2Ops<atomic_load_xor_8, GPR32>;
+ def ATOMIC_LOAD_XOR_I16 : Atomic2Ops<atomic_load_xor_16, GPR32>;
+ def ATOMIC_LOAD_XOR_I32 : Atomic2Ops<atomic_load_xor_32, GPR32>;
+ def ATOMIC_LOAD_NAND_I8 : Atomic2Ops<atomic_load_nand_8, GPR32>;
+ def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, GPR32>;
+ def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, GPR32>;
+
+ def ATOMIC_SWAP_I8 : Atomic2Ops<atomic_swap_8, GPR32>;
+ def ATOMIC_SWAP_I16 : Atomic2Ops<atomic_swap_16, GPR32>;
+ def ATOMIC_SWAP_I32 : Atomic2Ops<atomic_swap_32, GPR32>;
+
+ def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<atomic_cmp_swap_8, GPR32>;
+ def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<atomic_cmp_swap_16, GPR32>;
+ def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<atomic_cmp_swap_32, GPR32>;
+}
+
+/// Pseudo instructions for loading and storing accumulator registers.
+let isPseudo = 1, isCodeGenOnly = 1 in {
+ def LOAD_ACC64 : Load<"", ACC64>;
+ def STORE_ACC64 : Store<"", ACC64>;
+}
+
+// We need these two pseudo instructions to avoid offset calculation for long
+// branches. See the comment in file MipsLongBranch.cpp for detailed
+// explanation.
+
+// Expands to: lui $dst, %hi($tgt - $baltgt)
+def LONG_BRANCH_LUi : PseudoSE<(outs GPR32Opnd:$dst),
+ (ins brtarget:$tgt, brtarget:$baltgt), []>;
+
+// Expands to: addiu $dst, $src, %lo($tgt - $baltgt)
+def LONG_BRANCH_ADDiu : PseudoSE<(outs GPR32Opnd:$dst),
+ (ins GPR32Opnd:$src, brtarget:$tgt, brtarget:$baltgt), []>;
+
+//===----------------------------------------------------------------------===//
+// Instruction definition
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// MipsI Instructions
+//===----------------------------------------------------------------------===//
+
+/// Arithmetic Instructions (ALU Immediate)
+def ADDiu : MMRel, ArithLogicI<"addiu", simm16, GPR32Opnd, II_ADDIU, immSExt16,
+ add>,
+ ADDI_FM<0x9>, IsAsCheapAsAMove;
+def ADDi : MMRel, ArithLogicI<"addi", simm16, GPR32Opnd>, ADDI_FM<0x8>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def SLTi : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, GPR32Opnd>,
+ SLTI_FM<0xa>;
+def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, GPR32Opnd>,
+ SLTI_FM<0xb>;
+def ANDi : MMRel, ArithLogicI<"andi", uimm16, GPR32Opnd, II_ANDI, immZExt16,
+ and>,
+ ADDI_FM<0xc>;
+def ORi : MMRel, ArithLogicI<"ori", uimm16, GPR32Opnd, II_ORI, immZExt16,
+ or>,
+ ADDI_FM<0xd>;
+def XORi : MMRel, ArithLogicI<"xori", uimm16, GPR32Opnd, II_XORI, immZExt16,
+ xor>,
+ ADDI_FM<0xe>;
+def LUi : MMRel, LoadUpper<"lui", GPR32Opnd, uimm16>, LUI_FM;
+
+/// Arithmetic Instructions (3-Operand, R-Type)
+def ADDu : MMRel, ArithLogicR<"addu", GPR32Opnd, 1, II_ADDU, add>,
+ ADD_FM<0, 0x21>;
+def SUBu : MMRel, ArithLogicR<"subu", GPR32Opnd, 0, II_SUBU, sub>,
+ ADD_FM<0, 0x23>;
+let Defs = [HI0, LO0] in
+def MUL : MMRel, ArithLogicR<"mul", GPR32Opnd, 1, II_MUL, mul>,
+ ADD_FM<0x1c, 2>, ISA_MIPS32_NOT_32R6_64R6;
+def ADD : MMRel, ArithLogicR<"add", GPR32Opnd>, ADD_FM<0, 0x20>;
+def SUB : MMRel, ArithLogicR<"sub", GPR32Opnd>, ADD_FM<0, 0x22>;
+def SLT : MMRel, SetCC_R<"slt", setlt, GPR32Opnd>, ADD_FM<0, 0x2a>;
+def SLTu : MMRel, SetCC_R<"sltu", setult, GPR32Opnd>, ADD_FM<0, 0x2b>;
+def AND : MMRel, ArithLogicR<"and", GPR32Opnd, 1, II_AND, and>,
+ ADD_FM<0, 0x24>;
+def OR : MMRel, ArithLogicR<"or", GPR32Opnd, 1, II_OR, or>,
+ ADD_FM<0, 0x25>;
+def XOR : MMRel, ArithLogicR<"xor", GPR32Opnd, 1, II_XOR, xor>,
+ ADD_FM<0, 0x26>;
+def NOR : MMRel, LogicNOR<"nor", GPR32Opnd>, ADD_FM<0, 0x27>;
+
+/// Shift Instructions
+def SLL : MMRel, shift_rotate_imm<"sll", uimm5, GPR32Opnd, II_SLL, shl,
+ immZExt5>, SRA_FM<0, 0>;
+def SRL : MMRel, shift_rotate_imm<"srl", uimm5, GPR32Opnd, II_SRL, srl,
+ immZExt5>, SRA_FM<2, 0>;
+def SRA : MMRel, shift_rotate_imm<"sra", uimm5, GPR32Opnd, II_SRA, sra,
+ immZExt5>, SRA_FM<3, 0>;
+def SLLV : MMRel, shift_rotate_reg<"sllv", GPR32Opnd, II_SLLV, shl>,
+ SRLV_FM<4, 0>;
+def SRLV : MMRel, shift_rotate_reg<"srlv", GPR32Opnd, II_SRLV, srl>,
+ SRLV_FM<6, 0>;
+def SRAV : MMRel, shift_rotate_reg<"srav", GPR32Opnd, II_SRAV, sra>,
+ SRLV_FM<7, 0>;
+
+// Rotate Instructions
+def ROTR : MMRel, shift_rotate_imm<"rotr", uimm5, GPR32Opnd, II_ROTR, rotr,
+ immZExt5>,
+ SRA_FM<2, 1>, ISA_MIPS32R2;
+def ROTRV : MMRel, shift_rotate_reg<"rotrv", GPR32Opnd, II_ROTRV, rotr>,
+ SRLV_FM<6, 1>, ISA_MIPS32R2;
+
+/// Load and Store Instructions
+/// aligned
+def LB : Load<"lb", GPR32Opnd, sextloadi8, II_LB>, MMRel, LW_FM<0x20>;
+def LBu : Load<"lbu", GPR32Opnd, zextloadi8, II_LBU, addrDefault>, MMRel,
+ LW_FM<0x24>;
+def LH : Load<"lh", GPR32Opnd, sextloadi16, II_LH, addrDefault>, MMRel,
+ LW_FM<0x21>;
+def LHu : Load<"lhu", GPR32Opnd, zextloadi16, II_LHU>, MMRel, LW_FM<0x25>;
+def LW : Load<"lw", GPR32Opnd, load, II_LW, addrDefault>, MMRel,
+ LW_FM<0x23>;
+def SB : Store<"sb", GPR32Opnd, truncstorei8, II_SB>, MMRel, LW_FM<0x28>;
+def SH : Store<"sh", GPR32Opnd, truncstorei16, II_SH>, MMRel, LW_FM<0x29>;
+def SW : Store<"sw", GPR32Opnd, store, II_SW>, MMRel, LW_FM<0x2b>;
+
+/// load/store left/right
+let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug
+ AdditionalPredicates = [NotInMicroMips] in {
+def LWL : LoadLeftRight<"lwl", MipsLWL, GPR32Opnd, II_LWL>, LW_FM<0x22>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def LWR : LoadLeftRight<"lwr", MipsLWR, GPR32Opnd, II_LWR>, LW_FM<0x26>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def SWL : StoreLeftRight<"swl", MipsSWL, GPR32Opnd, II_SWL>, LW_FM<0x2a>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def SWR : StoreLeftRight<"swr", MipsSWR, GPR32Opnd, II_SWR>, LW_FM<0x2e>,
+ ISA_MIPS1_NOT_32R6_64R6;
+}
+
+def SYNC : MMRel, SYNC_FT<"sync">, SYNC_FM, ISA_MIPS32;
+def TEQ : MMRel, TEQ_FT<"teq", GPR32Opnd>, TEQ_FM<0x34>;
+def TGE : MMRel, TEQ_FT<"tge", GPR32Opnd>, TEQ_FM<0x30>;
+def TGEU : MMRel, TEQ_FT<"tgeu", GPR32Opnd>, TEQ_FM<0x31>;
+def TLT : MMRel, TEQ_FT<"tlt", GPR32Opnd>, TEQ_FM<0x32>;
+def TLTU : MMRel, TEQ_FT<"tltu", GPR32Opnd>, TEQ_FM<0x33>;
+def TNE : MMRel, TEQ_FT<"tne", GPR32Opnd>, TEQ_FM<0x36>;
+
+def TEQI : MMRel, TEQI_FT<"teqi", GPR32Opnd>, TEQI_FM<0xc>,
+ ISA_MIPS2_NOT_32R6_64R6;
+def TGEI : MMRel, TEQI_FT<"tgei", GPR32Opnd>, TEQI_FM<0x8>,
+ ISA_MIPS2_NOT_32R6_64R6;
+def TGEIU : MMRel, TEQI_FT<"tgeiu", GPR32Opnd>, TEQI_FM<0x9>,
+ ISA_MIPS2_NOT_32R6_64R6;
+def TLTI : MMRel, TEQI_FT<"tlti", GPR32Opnd>, TEQI_FM<0xa>,
+ ISA_MIPS2_NOT_32R6_64R6;
+def TTLTIU : MMRel, TEQI_FT<"tltiu", GPR32Opnd>, TEQI_FM<0xb>,
+ ISA_MIPS2_NOT_32R6_64R6;
+def TNEI : MMRel, TEQI_FT<"tnei", GPR32Opnd>, TEQI_FM<0xe>,
+ ISA_MIPS2_NOT_32R6_64R6;
+
+def BREAK : MMRel, BRK_FT<"break">, BRK_FM<0xd>;
+def SYSCALL : MMRel, SYS_FT<"syscall">, SYS_FM<0xc>;
+def TRAP : TrapBase<BREAK>;
+def SDBBP : SYS_FT<"sdbbp">, SDBBP_FM, ISA_MIPS32_NOT_32R6_64R6;
+
+def ERET : MMRel, ER_FT<"eret">, ER_FM<0x18>, INSN_MIPS3_32;
+def DERET : MMRel, ER_FT<"deret">, ER_FM<0x1f>, ISA_MIPS32;
+
+def EI : MMRel, DEI_FT<"ei", GPR32Opnd>, EI_FM<1>, ISA_MIPS32R2;
+def DI : MMRel, DEI_FT<"di", GPR32Opnd>, EI_FM<0>, ISA_MIPS32R2;
+
+let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug
+ AdditionalPredicates = [NotInMicroMips] in {
+def WAIT : WAIT_FT<"wait">, WAIT_FM;
+
+/// Load-linked, Store-conditional
+def LL : LLBase<"ll", GPR32Opnd>, LW_FM<0x30>, ISA_MIPS2_NOT_32R6_64R6;
+def SC : SCBase<"sc", GPR32Opnd>, LW_FM<0x38>, ISA_MIPS2_NOT_32R6_64R6;
+}
+
+/// Jump and Branch Instructions
+def J : MMRel, JumpFJ<jmptarget, "j", br, bb, "j">, FJ<2>,
+ AdditionalRequires<[RelocStatic]>, IsBranch;
+def JR : MMRel, IndirectBranch<"jr", GPR32Opnd>, MTLO_FM<8>;
+def BEQ : MMRel, CBranch<"beq", brtarget, seteq, GPR32Opnd>, BEQ_FM<4>;
+def BNE : MMRel, CBranch<"bne", brtarget, setne, GPR32Opnd>, BEQ_FM<5>;
+def BGEZ : MMRel, CBranchZero<"bgez", brtarget, setge, GPR32Opnd>,
+ BGEZ_FM<1, 1>;
+def BGTZ : MMRel, CBranchZero<"bgtz", brtarget, setgt, GPR32Opnd>,
+ BGEZ_FM<7, 0>;
+def BLEZ : MMRel, CBranchZero<"blez", brtarget, setle, GPR32Opnd>,
+ BGEZ_FM<6, 0>;
+def BLTZ : MMRel, CBranchZero<"bltz", brtarget, setlt, GPR32Opnd>,
+ BGEZ_FM<1, 0>;
+def B : UncondBranch<BEQ>;
+
+def JAL : MMRel, JumpLink<"jal", calltarget>, FJ<3>;
+let AdditionalPredicates = [NotInMicroMips] in {
+ def JALR : JumpLinkReg<"jalr", GPR32Opnd>, JALR_FM;
+ def JALRPseudo : JumpLinkRegPseudo<GPR32Opnd, JALR, RA>;
+}
+
+// FIXME: JALX really requires either MIPS16 or microMIPS in addition to MIPS32.
+def JALX : JumpLink<"jalx", calltarget>, FJ<0x1D>, ISA_MIPS32_NOT_32R6_64R6;
+def BGEZAL : MMRel, BGEZAL_FT<"bgezal", brtarget, GPR32Opnd>, BGEZAL_FM<0x11>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def BLTZAL : MMRel, BGEZAL_FT<"bltzal", brtarget, GPR32Opnd>, BGEZAL_FM<0x10>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def BAL_BR : BAL_BR_Pseudo<BGEZAL>;
+def TAILCALL : TailCall<J>;
+def TAILCALL_R : TailCallReg<GPR32Opnd, JR>;
+
+// Indirect branches are matched as PseudoIndirectBranch/PseudoIndirectBranch64
+// then are expanded to JR, JR64, JALR, or JALR64 depending on the ISA.
+class PseudoIndirectBranchBase<RegisterOperand RO> :
+ MipsPseudo<(outs), (ins RO:$rs), [(brind RO:$rs)], IIBranch> {
+ let isTerminator=1;
+ let isBarrier=1;
+ let hasDelaySlot = 1;
+ let isBranch = 1;
+ let isIndirectBranch = 1;
+}
+
+def PseudoIndirectBranch : PseudoIndirectBranchBase<GPR32Opnd>;
+
+// Return instructions are matched as a RetRA instruction, then ar expanded
+// into PseudoReturn/PseudoReturn64 after register allocation. Finally,
+// MipsAsmPrinter expands this into JR, JR64, JALR, or JALR64 depending on the
+// ISA.
+class PseudoReturnBase<RegisterOperand RO> : MipsPseudo<(outs), (ins RO:$rs),
+ [], IIBranch> {
+ let isTerminator = 1;
+ let isBarrier = 1;
+ let hasDelaySlot = 1;
+ let isReturn = 1;
+ let isCodeGenOnly = 1;
+ let hasCtrlDep = 1;
+ let hasExtraSrcRegAllocReq = 1;
+}
+
+def PseudoReturn : PseudoReturnBase<GPR32Opnd>;
+
+// Exception handling related node and instructions.
+// The conversion sequence is:
+// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
+// MIPSeh_return -> (stack change + indirect branch)
+//
+// MIPSeh_return takes the place of regular return instruction
+// but takes two arguments (V1, V0) which are used for storing
+// the offset and return address respectively.
+def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
+
+def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
+ def MIPSeh_return32 : MipsPseudo<(outs), (ins GPR32:$spoff, GPR32:$dst),
+ [(MIPSehret GPR32:$spoff, GPR32:$dst)]>;
+ def MIPSeh_return64 : MipsPseudo<(outs), (ins GPR64:$spoff,
+ GPR64:$dst),
+ [(MIPSehret GPR64:$spoff, GPR64:$dst)]>;
+}
+
+/// Multiply and Divide Instructions.
+def MULT : MMRel, Mult<"mult", II_MULT, GPR32Opnd, [HI0, LO0]>,
+ MULT_FM<0, 0x18>, ISA_MIPS1_NOT_32R6_64R6;
+def MULTu : MMRel, Mult<"multu", II_MULTU, GPR32Opnd, [HI0, LO0]>,
+ MULT_FM<0, 0x19>, ISA_MIPS1_NOT_32R6_64R6;
+def SDIV : MMRel, Div<"div", II_DIV, GPR32Opnd, [HI0, LO0]>,
+ MULT_FM<0, 0x1a>, ISA_MIPS1_NOT_32R6_64R6;
+def UDIV : MMRel, Div<"divu", II_DIVU, GPR32Opnd, [HI0, LO0]>,
+ MULT_FM<0, 0x1b>, ISA_MIPS1_NOT_32R6_64R6;
+
+def MTHI : MMRel, MoveToLOHI<"mthi", GPR32Opnd, [HI0]>, MTLO_FM<0x11>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def MTLO : MMRel, MoveToLOHI<"mtlo", GPR32Opnd, [LO0]>, MTLO_FM<0x13>,
+ ISA_MIPS1_NOT_32R6_64R6;
+let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug
+ AdditionalPredicates = [NotInMicroMips] in {
+def MFHI : MMRel, MoveFromLOHI<"mfhi", GPR32Opnd, AC0>, MFLO_FM<0x10>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def MFLO : MMRel, MoveFromLOHI<"mflo", GPR32Opnd, AC0>, MFLO_FM<0x12>,
+ ISA_MIPS1_NOT_32R6_64R6;
+}
+
+/// Sign Ext In Register Instructions.
+def SEB : MMRel, SignExtInReg<"seb", i8, GPR32Opnd, II_SEB>,
+ SEB_FM<0x10, 0x20>, ISA_MIPS32R2;
+def SEH : MMRel, SignExtInReg<"seh", i16, GPR32Opnd, II_SEH>,
+ SEB_FM<0x18, 0x20>, ISA_MIPS32R2;
+
+/// Count Leading
+def CLZ : MMRel, CountLeading0<"clz", GPR32Opnd>, CLO_FM<0x20>,
+ ISA_MIPS32_NOT_32R6_64R6;
+def CLO : MMRel, CountLeading1<"clo", GPR32Opnd>, CLO_FM<0x21>,
+ ISA_MIPS32_NOT_32R6_64R6;
+
+/// Word Swap Bytes Within Halfwords
+def WSBH : MMRel, SubwordSwap<"wsbh", GPR32Opnd>, SEB_FM<2, 0x20>, ISA_MIPS32R2;
+
+/// No operation.
+def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
+
+// FrameIndexes are legalized when they are operands from load/store
+// instructions. The same not happens for stack address copies, so an
+// add op with mem ComplexPattern is used and the stack address copy
+// can be matched. It's similar to Sparc LEA_ADDRi
+def LEA_ADDiu : MMRel, EffectiveAddress<"addiu", GPR32Opnd>, LW_FM<9>;
+
+// MADD*/MSUB*
+def MADD : MMRel, MArithR<"madd", II_MADD, 1>, MULT_FM<0x1c, 0>,
+ ISA_MIPS32_NOT_32R6_64R6;
+def MADDU : MMRel, MArithR<"maddu", II_MADDU, 1>, MULT_FM<0x1c, 1>,
+ ISA_MIPS32_NOT_32R6_64R6;
+def MSUB : MMRel, MArithR<"msub", II_MSUB>, MULT_FM<0x1c, 4>,
+ ISA_MIPS32_NOT_32R6_64R6;
+def MSUBU : MMRel, MArithR<"msubu", II_MSUBU>, MULT_FM<0x1c, 5>,
+ ISA_MIPS32_NOT_32R6_64R6;
+
+let AdditionalPredicates = [NotDSP] in {
+def PseudoMULT : MultDivPseudo<MULT, ACC64, GPR32Opnd, MipsMult, II_MULT>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def PseudoMULTu : MultDivPseudo<MULTu, ACC64, GPR32Opnd, MipsMultu, II_MULTU>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def PseudoMFHI : PseudoMFLOHI<GPR32, ACC64, MipsMFHI>, ISA_MIPS1_NOT_32R6_64R6;
+def PseudoMFLO : PseudoMFLOHI<GPR32, ACC64, MipsMFLO>, ISA_MIPS1_NOT_32R6_64R6;
+def PseudoMTLOHI : PseudoMTLOHI<ACC64, GPR32>, ISA_MIPS1_NOT_32R6_64R6;
+def PseudoMADD : MAddSubPseudo<MADD, MipsMAdd, II_MADD>,
+ ISA_MIPS32_NOT_32R6_64R6;
+def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu, II_MADDU>,
+ ISA_MIPS32_NOT_32R6_64R6;
+def PseudoMSUB : MAddSubPseudo<MSUB, MipsMSub, II_MSUB>,
+ ISA_MIPS32_NOT_32R6_64R6;
+def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu, II_MSUBU>,
+ ISA_MIPS32_NOT_32R6_64R6;
+}
+
+def PseudoSDIV : MultDivPseudo<SDIV, ACC64, GPR32Opnd, MipsDivRem, II_DIV,
+ 0, 1, 1>, ISA_MIPS1_NOT_32R6_64R6;
+def PseudoUDIV : MultDivPseudo<UDIV, ACC64, GPR32Opnd, MipsDivRemU, II_DIVU,
+ 0, 1, 1>, ISA_MIPS1_NOT_32R6_64R6;
+
+def RDHWR : ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM;
+
+def EXT : MMRel, ExtBase<"ext", GPR32Opnd, uimm5, MipsExt>, EXT_FM<0>;
+def INS : MMRel, InsBase<"ins", GPR32Opnd, uimm5, MipsIns>, EXT_FM<4>;
+
+/// Move Control Registers From/To CPU Registers
+def MFC0 : MFC3OP<"mfc0", GPR32Opnd>, MFC3OP_FM<0x10, 0>, ISA_MIPS32;
+def MTC0 : MFC3OP<"mtc0", GPR32Opnd>, MFC3OP_FM<0x10, 4>, ISA_MIPS32;
+def MFC2 : MFC3OP<"mfc2", GPR32Opnd>, MFC3OP_FM<0x12, 0>;
+def MTC2 : MFC3OP<"mtc2", GPR32Opnd>, MFC3OP_FM<0x12, 4>;
+
+class Barrier<string asmstr> : InstSE<(outs), (ins), asmstr, [], NoItinerary,
+ FrmOther>;
+def SSNOP : Barrier<"ssnop">, BARRIER_FM<1>;
+def EHB : Barrier<"ehb">, BARRIER_FM<3>;
+def PAUSE : Barrier<"pause">, BARRIER_FM<5>, ISA_MIPS32R2;
+
+// JR_HB and JALR_HB are defined here using the new style naming
+// scheme because some of this code is shared with Mips32r6InstrInfo.td
+// and because of that it doesn't follow the naming convention of the
+// rest of the file. To avoid a mixture of old vs new style, the new
+// style was chosen.
+class JR_HB_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
+ dag OutOperandList = (outs);
+ dag InOperandList = (ins GPROpnd:$rs);
+ string AsmString = !strconcat(instr_asm, "\t$rs");
+ list<dag> Pattern = [];
+}
+
+class JALR_HB_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
+ dag OutOperandList = (outs GPROpnd:$rd);
+ dag InOperandList = (ins GPROpnd:$rs);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs");
+ list<dag> Pattern = [];
+}
+
+class JR_HB_DESC : InstSE<(outs), (ins), "", [], NoItinerary, FrmJ>,
+ JR_HB_DESC_BASE<"jr.hb", GPR32Opnd> {
+ let isBranch=1;
+ let isIndirectBranch=1;
+ let hasDelaySlot=1;
+ let isTerminator=1;
+ let isBarrier=1;
+}
+
+class JALR_HB_DESC : InstSE<(outs), (ins), "", [], NoItinerary, FrmJ>,
+ JALR_HB_DESC_BASE<"jalr.hb", GPR32Opnd> {
+ let isIndirectBranch=1;
+ let hasDelaySlot=1;
+}
+
+class JR_HB_ENC : JR_HB_FM<8>;
+class JALR_HB_ENC : JALR_HB_FM<9>;
+
+def JR_HB : JR_HB_DESC, JR_HB_ENC, ISA_MIPS32_NOT_32R6_64R6;
+def JALR_HB : JALR_HB_DESC, JALR_HB_ENC, ISA_MIPS32;
+
+class TLB<string asmstr> : InstSE<(outs), (ins), asmstr, [], NoItinerary,
+ FrmOther>;
+def TLBP : TLB<"tlbp">, COP0_TLB_FM<0x08>;
+def TLBR : TLB<"tlbr">, COP0_TLB_FM<0x01>;
+def TLBWI : TLB<"tlbwi">, COP0_TLB_FM<0x02>;
+def TLBWR : TLB<"tlbwr">, COP0_TLB_FM<0x06>;
+
+class CacheOp<string instr_asm, Operand MemOpnd, RegisterOperand GPROpnd> :
+ InstSE<(outs), (ins MemOpnd:$addr, uimm5:$hint),
+ !strconcat(instr_asm, "\t$hint, $addr"), [], NoItinerary, FrmOther>;
+
+def CACHE : CacheOp<"cache", mem, GPR32Opnd>, CACHEOP_FM<0b101111>,
+ INSN_MIPS3_32_NOT_32R6_64R6;
+def PREF : CacheOp<"pref", mem, GPR32Opnd>, CACHEOP_FM<0b110011>,
+ INSN_MIPS3_32_NOT_32R6_64R6;
+
+//===----------------------------------------------------------------------===//
+// Instruction aliases
+//===----------------------------------------------------------------------===//
+def : MipsInstAlias<"move $dst, $src",
+ (ADDu GPR32Opnd:$dst, GPR32Opnd:$src,ZERO), 1>,
+ GPR_32 {
+ let AdditionalPredicates = [NotInMicroMips];
+}
+def : MipsInstAlias<"bal $offset", (BGEZAL ZERO, brtarget:$offset), 0>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def : MipsInstAlias<"addu $rs, $rt, $imm",
+ (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
+def : MipsInstAlias<"add $rs, $rt, $imm",
+ (ADDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
+def : MipsInstAlias<"and $rs, $rt, $imm",
+ (ANDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
+def : MipsInstAlias<"and $rs, $imm",
+ (ANDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm), 0>;
+def : MipsInstAlias<"j $rs", (JR GPR32Opnd:$rs), 0>;
+let Predicates = [NotInMicroMips] in {
+def : MipsInstAlias<"jalr $rs", (JALR RA, GPR32Opnd:$rs), 0>;
+}
+def : MipsInstAlias<"jal $rs", (JALR RA, GPR32Opnd:$rs), 0>;
+def : MipsInstAlias<"jal $rd,$rs", (JALR GPR32Opnd:$rd, GPR32Opnd:$rs), 0>;
+def : MipsInstAlias<"jalr.hb $rs", (JALR_HB RA, GPR32Opnd:$rs), 1>, ISA_MIPS32;
+def : MipsInstAlias<"not $rt, $rs",
+ (NOR GPR32Opnd:$rt, GPR32Opnd:$rs, ZERO), 0>;
+def : MipsInstAlias<"neg $rt, $rs",
+ (SUB GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
+def : MipsInstAlias<"negu $rt",
+ (SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rt), 0>;
+def : MipsInstAlias<"negu $rt, $rs",
+ (SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
+def : MipsInstAlias<"slt $rs, $rt, $imm",
+ (SLTi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
+def : MipsInstAlias<"sltu $rt, $rs, $imm",
+ (SLTiu GPR32Opnd:$rt, GPR32Opnd:$rs, simm16:$imm), 0>;
+def : MipsInstAlias<"xor $rs, $rt, $imm",
+ (XORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
+def : MipsInstAlias<"or $rs, $rt, $imm",
+ (ORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
+def : MipsInstAlias<"or $rs, $imm",
+ (ORi GPR32Opnd:$rs, GPR32Opnd:$rs, uimm16:$imm), 0>;
+def : MipsInstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
+def : MipsInstAlias<"mfc0 $rt, $rd", (MFC0 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
+def : MipsInstAlias<"mtc0 $rt, $rd", (MTC0 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
+def : MipsInstAlias<"mfc2 $rt, $rd", (MFC2 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
+def : MipsInstAlias<"mtc2 $rt, $rd", (MTC2 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
+def : MipsInstAlias<"b $offset", (BEQ ZERO, ZERO, brtarget:$offset), 0>;
+def : MipsInstAlias<"bnez $rs,$offset",
+ (BNE GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
+def : MipsInstAlias<"beqz $rs,$offset",
+ (BEQ GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
+def : MipsInstAlias<"syscall", (SYSCALL 0), 1>;
+
+def : MipsInstAlias<"break", (BREAK 0, 0), 1>;
+def : MipsInstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>;
+def : MipsInstAlias<"ei", (EI ZERO), 1>;
+def : MipsInstAlias<"di", (DI ZERO), 1>;
+
+def : MipsInstAlias<"teq $rs, $rt", (TEQ GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
+def : MipsInstAlias<"tge $rs, $rt", (TGE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
+def : MipsInstAlias<"tgeu $rs, $rt", (TGEU GPR32Opnd:$rs, GPR32Opnd:$rt, 0),
+ 1>;
+def : MipsInstAlias<"tlt $rs, $rt", (TLT GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
+def : MipsInstAlias<"tltu $rs, $rt", (TLTU GPR32Opnd:$rs, GPR32Opnd:$rt, 0),
+ 1>;
+def : MipsInstAlias<"tne $rs, $rt", (TNE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
+def : MipsInstAlias<"sll $rd, $rt, $rs",
+ (SLLV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>;
+def : MipsInstAlias<"sub, $rd, $rs, $imm",
+ (ADDi GPR32Opnd:$rd, GPR32Opnd:$rs,
+ InvertedImOperand:$imm), 0>;
+def : MipsInstAlias<"sub $rs, $imm",
+ (ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, InvertedImOperand:$imm),
+ 0>;
+def : MipsInstAlias<"subu, $rd, $rs, $imm",
+ (ADDiu GPR32Opnd:$rd, GPR32Opnd:$rs,
+ InvertedImOperand:$imm), 0>;
+def : MipsInstAlias<"subu $rs, $imm", (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs,
+ InvertedImOperand:$imm), 0>;
+def : MipsInstAlias<"sra $rd, $rt, $rs",
+ (SRAV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>;
+def : MipsInstAlias<"srl $rd, $rt, $rs",
+ (SRLV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>;
+def : MipsInstAlias<"sdbbp", (SDBBP 0)>, ISA_MIPS32_NOT_32R6_64R6;
+def : MipsInstAlias<"sync",
+ (SYNC 0), 1>, ISA_MIPS2;
+//===----------------------------------------------------------------------===//
+// Assembler Pseudo Instructions
+//===----------------------------------------------------------------------===//
+
+class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
+ MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
+ !strconcat(instr_asm, "\t$rt, $imm32")> ;
+def LoadImm32Reg : LoadImm32<"li", uimm5, GPR32Opnd>;
+
+class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
+ MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
+ !strconcat(instr_asm, "\t$rt, $addr")> ;
+def LoadAddr32Reg : LoadAddress<"la", mem, GPR32Opnd>;
+
+class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
+ MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
+ !strconcat(instr_asm, "\t$rt, $imm32")> ;
+def LoadAddr32Imm : LoadAddressImm<"la", uimm5, GPR32Opnd>;
+
+//===----------------------------------------------------------------------===//
+// Arbitrary patterns that map to one or more instructions
+//===----------------------------------------------------------------------===//
+
+// Load/store pattern templates.
+class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
+ MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;
+
+class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
+ MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
+
+// Small immediates
+def : MipsPat<(i32 immSExt16:$in),
+ (ADDiu ZERO, imm:$in)>;
+def : MipsPat<(i32 immZExt16:$in),
+ (ORi ZERO, imm:$in)>;
+def : MipsPat<(i32 immLow16Zero:$in),
+ (LUi (HI16 imm:$in))>;
+
+// Arbitrary immediates
+def : MipsPat<(i32 imm:$imm),
+ (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
+
+// Carry MipsPatterns
+def : MipsPat<(subc GPR32:$lhs, GPR32:$rhs),
+ (SUBu GPR32:$lhs, GPR32:$rhs)>;
+let AdditionalPredicates = [NotDSP] in {
+ def : MipsPat<(addc GPR32:$lhs, GPR32:$rhs),
+ (ADDu GPR32:$lhs, GPR32:$rhs)>;
+ def : MipsPat<(addc GPR32:$src, immSExt16:$imm),
+ (ADDiu GPR32:$src, imm:$imm)>;
+}
+
+// SYNC
+def : MipsPat<(MipsSync (i32 immz)),
+ (SYNC 0)>, ISA_MIPS2;
+
+// Call
+def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
+ (JAL tglobaladdr:$dst)>;
+def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
+ (JAL texternalsym:$dst)>;
+//def : MipsPat<(MipsJmpLink GPR32:$dst),
+// (JALR GPR32:$dst)>;
+
+// Tail call
+def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
+ (TAILCALL tglobaladdr:$dst)>;
+def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
+ (TAILCALL texternalsym:$dst)>;
+// hi/lo relocs
+def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
+def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
+def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
+def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
+def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
+def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
+
+def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
+def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
+def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
+def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
+def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
+def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
+
+def : MipsPat<(add GPR32:$hi, (MipsLo tglobaladdr:$lo)),
+ (ADDiu GPR32:$hi, tglobaladdr:$lo)>;
+def : MipsPat<(add GPR32:$hi, (MipsLo tblockaddress:$lo)),
+ (ADDiu GPR32:$hi, tblockaddress:$lo)>;
+def : MipsPat<(add GPR32:$hi, (MipsLo tjumptable:$lo)),
+ (ADDiu GPR32:$hi, tjumptable:$lo)>;
+def : MipsPat<(add GPR32:$hi, (MipsLo tconstpool:$lo)),
+ (ADDiu GPR32:$hi, tconstpool:$lo)>;
+def : MipsPat<(add GPR32:$hi, (MipsLo tglobaltlsaddr:$lo)),
+ (ADDiu GPR32:$hi, tglobaltlsaddr:$lo)>;
+
+// gp_rel relocs
+def : MipsPat<(add GPR32:$gp, (MipsGPRel tglobaladdr:$in)),
+ (ADDiu GPR32:$gp, tglobaladdr:$in)>;
+def : MipsPat<(add GPR32:$gp, (MipsGPRel tconstpool:$in)),
+ (ADDiu GPR32:$gp, tconstpool:$in)>;
+
+// wrapper_pic
+class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
+ MipsPat<(MipsWrapper RC:$gp, node:$in),
+ (ADDiuOp RC:$gp, node:$in)>;
+
+def : WrapperPat<tglobaladdr, ADDiu, GPR32>;
+def : WrapperPat<tconstpool, ADDiu, GPR32>;
+def : WrapperPat<texternalsym, ADDiu, GPR32>;
+def : WrapperPat<tblockaddress, ADDiu, GPR32>;
+def : WrapperPat<tjumptable, ADDiu, GPR32>;
+def : WrapperPat<tglobaltlsaddr, ADDiu, GPR32>;
+
+// Mips does not have "not", so we expand our way
+def : MipsPat<(not GPR32:$in),
+ (NOR GPR32Opnd:$in, ZERO)>;
+
+// extended loads
+def : MipsPat<(i32 (extloadi1 addr:$src)), (LBu addr:$src)>;
+def : MipsPat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>;
+def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
+
+// peepholes
+def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
+
+// brcond patterns
+multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
+ Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
+ Instruction SLTiuOp, Register ZEROReg> {
+def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
+ (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
+def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
+ (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
+
+def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
+ (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
+def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
+ (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
+def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
+ (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
+def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
+ (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
+def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
+ (BEQ (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
+def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
+ (BEQ (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
+
+def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
+ (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
+def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
+ (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
+
+def : MipsPat<(brcond RC:$cond, bb:$dst),
+ (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
+}
+
+defm : BrcondPats<GPR32, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
+
+def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst),
+ (BLEZ i32:$lhs, bb:$dst)>;
+def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst),
+ (BGEZ i32:$lhs, bb:$dst)>;
+
+// setcc patterns
+multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
+ Instruction SLTuOp, Register ZEROReg> {
+ def : MipsPat<(seteq RC:$lhs, 0),
+ (SLTiuOp RC:$lhs, 1)>;
+ def : MipsPat<(setne RC:$lhs, 0),
+ (SLTuOp ZEROReg, RC:$lhs)>;
+ def : MipsPat<(seteq RC:$lhs, RC:$rhs),
+ (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
+ def : MipsPat<(setne RC:$lhs, RC:$rhs),
+ (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
+}
+
+multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
+ def : MipsPat<(setle RC:$lhs, RC:$rhs),
+ (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
+ def : MipsPat<(setule RC:$lhs, RC:$rhs),
+ (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
+}
+
+multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
+ def : MipsPat<(setgt RC:$lhs, RC:$rhs),
+ (SLTOp RC:$rhs, RC:$lhs)>;
+ def : MipsPat<(setugt RC:$lhs, RC:$rhs),
+ (SLTuOp RC:$rhs, RC:$lhs)>;
+}
+
+multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
+ def : MipsPat<(setge RC:$lhs, RC:$rhs),
+ (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
+ def : MipsPat<(setuge RC:$lhs, RC:$rhs),
+ (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
+}
+
+multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
+ Instruction SLTiuOp> {
+ def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
+ (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
+ def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
+ (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
+}
+
+defm : SeteqPats<GPR32, SLTiu, XOR, SLTu, ZERO>;
+defm : SetlePats<GPR32, SLT, SLTu>;
+defm : SetgtPats<GPR32, SLT, SLTu>;
+defm : SetgePats<GPR32, SLT, SLTu>;
+defm : SetgeImmPats<GPR32, SLTi, SLTiu>;
+
+// bswap pattern
+def : MipsPat<(bswap GPR32:$rt), (ROTR (WSBH GPR32:$rt), 16)>;
+
+// Load halfword/word patterns.
+let AddedComplexity = 40 in {
+ def : LoadRegImmPat<LBu, i32, zextloadi8>;
+ def : LoadRegImmPat<LH, i32, sextloadi16>;
+ def : LoadRegImmPat<LW, i32, load>;
+}
+
+//===----------------------------------------------------------------------===//
+// Floating Point Support
+//===----------------------------------------------------------------------===//
+
+include "MipsInstrFPU.td"
+include "Mips64InstrInfo.td"
+include "MipsCondMov.td"
+
+include "Mips32r6InstrInfo.td"
+include "Mips64r6InstrInfo.td"
+
+//
+// Mips16
+
+include "Mips16InstrFormats.td"
+include "Mips16InstrInfo.td"
+
+// DSP
+include "MipsDSPInstrFormats.td"
+include "MipsDSPInstrInfo.td"
+
+// MSA
+include "MipsMSAInstrFormats.td"
+include "MipsMSAInstrInfo.td"
+
+// Micromips
+include "MicroMipsInstrFormats.td"
+include "MicroMipsInstrInfo.td"
+include "MicroMipsInstrFPU.td"
diff --git a/contrib/llvm/lib/Target/Mips/MipsJITInfo.cpp b/contrib/llvm/lib/Target/Mips/MipsJITInfo.cpp
new file mode 100644
index 0000000..2072488
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsJITInfo.cpp
@@ -0,0 +1,286 @@
+//===-- MipsJITInfo.cpp - Implement the Mips JIT Interface ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the JIT interfaces for the Mips target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsJITInfo.h"
+#include "MipsInstrInfo.h"
+#include "MipsRelocations.h"
+#include "MipsSubtarget.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Memory.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdlib>
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+
+void MipsJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
+ unsigned NewAddr = (intptr_t)New;
+ unsigned OldAddr = (intptr_t)Old;
+ const unsigned NopInstr = 0x0;
+
+ // If the functions are in the same memory segment, insert PC-region branch.
+ if ((NewAddr & 0xF0000000) == ((OldAddr + 4) & 0xF0000000)) {
+ unsigned *OldInstruction = (unsigned *)Old;
+ *OldInstruction = 0x08000000;
+ unsigned JTargetAddr = NewAddr & 0x0FFFFFFC;
+
+ JTargetAddr >>= 2;
+ *OldInstruction |= JTargetAddr;
+
+ // Insert a NOP.
+ OldInstruction++;
+ *OldInstruction = NopInstr;
+
+ sys::Memory::InvalidateInstructionCache(Old, 2 * 4);
+ } else {
+ // We need to clear hint bits from the instruction, in case it is 'jr ra'.
+ const unsigned HintMask = 0xFFFFF83F, ReturnSequence = 0x03e00008;
+ unsigned* CurrentInstr = (unsigned*)Old;
+ unsigned CurrInstrHintClear = (*CurrentInstr) & HintMask;
+ unsigned* NextInstr = CurrentInstr + 1;
+ unsigned NextInstrHintClear = (*NextInstr) & HintMask;
+
+ // Do absolute jump if there are 2 or more instructions before return from
+ // the old function.
+ if ((CurrInstrHintClear != ReturnSequence) &&
+ (NextInstrHintClear != ReturnSequence)) {
+ const unsigned LuiT0Instr = 0x3c080000, AddiuT0Instr = 0x25080000;
+ const unsigned JrT0Instr = 0x01000008;
+ // lui t0, high 16 bit of the NewAddr
+ (*(CurrentInstr++)) = LuiT0Instr | ((NewAddr & 0xffff0000) >> 16);
+ // addiu t0, t0, low 16 bit of the NewAddr
+ (*(CurrentInstr++)) = AddiuT0Instr | (NewAddr & 0x0000ffff);
+ // jr t0
+ (*(CurrentInstr++)) = JrT0Instr;
+ (*CurrentInstr) = NopInstr;
+
+ sys::Memory::InvalidateInstructionCache(Old, 4 * 4);
+ } else {
+ // Unsupported case
+ report_fatal_error("MipsJITInfo::replaceMachineCodeForFunction");
+ }
+ }
+}
+
+/// JITCompilerFunction - This contains the address of the JIT function used to
+/// compile a function lazily.
+static TargetJITInfo::JITCompilerFn JITCompilerFunction;
+
+// Get the ASMPREFIX for the current host. This is often '_'.
+#ifndef __USER_LABEL_PREFIX__
+#define __USER_LABEL_PREFIX__
+#endif
+#define GETASMPREFIX2(X) #X
+#define GETASMPREFIX(X) GETASMPREFIX2(X)
+#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
+
+// CompilationCallback stub - We can't use a C function with inline assembly in
+// it, because the prolog/epilog inserted by GCC won't work for us. Instead,
+// write our own wrapper, which does things our way, so we have complete control
+// over register saving and restoring. This code saves registers, calls
+// MipsCompilationCallbackC and restores registers.
+extern "C" {
+#if defined (__mips__)
+void MipsCompilationCallback();
+
+ asm(
+ ".text\n"
+ ".align 2\n"
+ ".globl " ASMPREFIX "MipsCompilationCallback\n"
+ ASMPREFIX "MipsCompilationCallback:\n"
+ ".ent " ASMPREFIX "MipsCompilationCallback\n"
+ ".frame $sp, 32, $ra\n"
+ ".set noreorder\n"
+ ".cpload $t9\n"
+
+ "addiu $sp, $sp, -64\n"
+ ".cprestore 16\n"
+
+ // Save argument registers a0, a1, a2, a3, f12, f14 since they may contain
+ // stuff for the real target function right now. We have to act as if this
+ // whole compilation callback doesn't exist as far as the caller is
+ // concerned. We also need to save the ra register since it contains the
+ // original return address, and t8 register since it contains the address
+ // of the end of function stub.
+ "sw $a0, 20($sp)\n"
+ "sw $a1, 24($sp)\n"
+ "sw $a2, 28($sp)\n"
+ "sw $a3, 32($sp)\n"
+ "sw $ra, 36($sp)\n"
+ "sw $t8, 40($sp)\n"
+ "sdc1 $f12, 48($sp)\n"
+ "sdc1 $f14, 56($sp)\n"
+
+ // t8 points at the end of function stub. Pass the beginning of the stub
+ // to the MipsCompilationCallbackC.
+ "addiu $a0, $t8, -16\n"
+ "jal " ASMPREFIX "MipsCompilationCallbackC\n"
+ "nop\n"
+
+ // Restore registers.
+ "lw $a0, 20($sp)\n"
+ "lw $a1, 24($sp)\n"
+ "lw $a2, 28($sp)\n"
+ "lw $a3, 32($sp)\n"
+ "lw $ra, 36($sp)\n"
+ "lw $t8, 40($sp)\n"
+ "ldc1 $f12, 48($sp)\n"
+ "ldc1 $f14, 56($sp)\n"
+ "addiu $sp, $sp, 64\n"
+
+ // Jump to the (newly modified) stub to invoke the real function.
+ "addiu $t8, $t8, -16\n"
+ "jr $t8\n"
+ "nop\n"
+
+ ".set reorder\n"
+ ".end " ASMPREFIX "MipsCompilationCallback\n"
+ );
+#else // host != Mips
+ void MipsCompilationCallback() {
+ llvm_unreachable(
+ "Cannot call MipsCompilationCallback() on a non-Mips arch!");
+ }
+#endif
+}
+
+/// MipsCompilationCallbackC - This is the target-specific function invoked
+/// by the function stub when we did not know the real target of a call.
+/// This function must locate the start of the stub or call site and pass
+/// it into the JIT compiler function.
+extern "C" void MipsCompilationCallbackC(intptr_t StubAddr) {
+ // Get the address of the compiled code for this function.
+ intptr_t NewVal = (intptr_t) JITCompilerFunction((void*) StubAddr);
+
+ // Rewrite the function stub so that we don't end up here every time we
+ // execute the call. We're replacing the first four instructions of the
+ // stub with code that jumps to the compiled function:
+ // lui $t9, %hi(NewVal)
+ // addiu $t9, $t9, %lo(NewVal)
+ // jr $t9
+ // nop
+
+ int Hi = ((unsigned)NewVal & 0xffff0000) >> 16;
+ if ((NewVal & 0x8000) != 0)
+ Hi++;
+ int Lo = (int)(NewVal & 0xffff);
+
+ *(intptr_t *)(StubAddr) = 0xf << 26 | 25 << 16 | Hi;
+ *(intptr_t *)(StubAddr + 4) = 9 << 26 | 25 << 21 | 25 << 16 | Lo;
+ *(intptr_t *)(StubAddr + 8) = 25 << 21 | 8;
+ *(intptr_t *)(StubAddr + 12) = 0;
+
+ sys::Memory::InvalidateInstructionCache((void*) StubAddr, 16);
+}
+
+TargetJITInfo::LazyResolverFn MipsJITInfo::getLazyResolverFunction(
+ JITCompilerFn F) {
+ JITCompilerFunction = F;
+ return MipsCompilationCallback;
+}
+
+TargetJITInfo::StubLayout MipsJITInfo::getStubLayout() {
+ // The stub contains 4 4-byte instructions, aligned at 4 bytes. See
+ // emitFunctionStub for details.
+ StubLayout Result = { 4*4, 4 };
+ return Result;
+}
+
+void *MipsJITInfo::emitFunctionStub(const Function *F, void *Fn,
+ JITCodeEmitter &JCE) {
+ JCE.emitAlignment(4);
+ void *Addr = (void*) (JCE.getCurrentPCValue());
+ if (!sys::Memory::setRangeWritable(Addr, 16))
+ llvm_unreachable("ERROR: Unable to mark stub writable.");
+
+ intptr_t EmittedAddr;
+ if (Fn != (void*)(intptr_t)MipsCompilationCallback)
+ EmittedAddr = (intptr_t)Fn;
+ else
+ EmittedAddr = (intptr_t)MipsCompilationCallback;
+
+
+ int Hi = ((unsigned)EmittedAddr & 0xffff0000) >> 16;
+ if ((EmittedAddr & 0x8000) != 0)
+ Hi++;
+ int Lo = (int)(EmittedAddr & 0xffff);
+
+ // lui $t9, %hi(EmittedAddr)
+ // addiu $t9, $t9, %lo(EmittedAddr)
+ // jalr $t8, $t9
+ // nop
+ if (IsLittleEndian) {
+ JCE.emitWordLE(0xf << 26 | 25 << 16 | Hi);
+ JCE.emitWordLE(9 << 26 | 25 << 21 | 25 << 16 | Lo);
+ JCE.emitWordLE(25 << 21 | 24 << 11 | 9);
+ JCE.emitWordLE(0);
+ } else {
+ JCE.emitWordBE(0xf << 26 | 25 << 16 | Hi);
+ JCE.emitWordBE(9 << 26 | 25 << 21 | 25 << 16 | Lo);
+ JCE.emitWordBE(25 << 21 | 24 << 11 | 9);
+ JCE.emitWordBE(0);
+ }
+
+ sys::Memory::InvalidateInstructionCache(Addr, 16);
+ if (!sys::Memory::setRangeExecutable(Addr, 16))
+ llvm_unreachable("ERROR: Unable to mark stub executable.");
+
+ return Addr;
+}
+
+/// relocate - Before the JIT can run a block of code that has been emitted,
+/// it must rewrite the code to contain the actual addresses of any
+/// referenced global symbols.
+void MipsJITInfo::relocate(void *Function, MachineRelocation *MR,
+ unsigned NumRelocs, unsigned char *GOTBase) {
+ for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
+
+ void *RelocPos = (char*) Function + MR->getMachineCodeOffset();
+ intptr_t ResultPtr = (intptr_t) MR->getResultPointer();
+
+ switch ((Mips::RelocationType) MR->getRelocationType()) {
+ case Mips::reloc_mips_pc16:
+ ResultPtr = (((ResultPtr - (intptr_t) RelocPos) - 4) >> 2) & 0xffff;
+ *((unsigned*) RelocPos) |= (unsigned) ResultPtr;
+ break;
+
+ case Mips::reloc_mips_26:
+ ResultPtr = (ResultPtr & 0x0fffffff) >> 2;
+ *((unsigned*) RelocPos) |= (unsigned) ResultPtr;
+ break;
+
+ case Mips::reloc_mips_hi:
+ ResultPtr = ResultPtr >> 16;
+ if ((((intptr_t) (MR->getResultPointer()) & 0xffff) >> 15) == 1) {
+ ResultPtr += 1;
+ }
+ *((unsigned*) RelocPos) |= (unsigned) ResultPtr;
+ break;
+
+ case Mips::reloc_mips_lo: {
+ // Addend is needed for unaligned load/store instructions, where offset
+ // for the second load/store in the expanded instruction sequence must
+ // be modified by +1 or +3. Otherwise, Addend is 0.
+ int Addend = *((unsigned*) RelocPos) & 0xffff;
+ ResultPtr = (ResultPtr + Addend) & 0xffff;
+ *((unsigned*) RelocPos) &= 0xffff0000;
+ *((unsigned*) RelocPos) |= (unsigned) ResultPtr;
+ break;
+ }
+ }
+ }
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsJITInfo.h b/contrib/llvm/lib/Target/Mips/MipsJITInfo.h
new file mode 100644
index 0000000..c9dfd83
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsJITInfo.h
@@ -0,0 +1,71 @@
+//===- MipsJITInfo.h - Mips Implementation of the JIT Interface -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the MipsJITInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSJITINFO_H
+#define MIPSJITINFO_H
+
+#include "MipsMachineFunction.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/Target/TargetJITInfo.h"
+
+namespace llvm {
+class MipsTargetMachine;
+
+class MipsJITInfo : public TargetJITInfo {
+
+ bool IsPIC;
+ bool IsLittleEndian;
+
+ public:
+ explicit MipsJITInfo() :
+ IsPIC(false), IsLittleEndian(true) {}
+
+ /// replaceMachineCodeForFunction - Make it so that calling the function
+ /// whose machine code is at OLD turns into a call to NEW, perhaps by
+ /// overwriting OLD with a branch to NEW. This is used for self-modifying
+ /// code.
+ ///
+ void replaceMachineCodeForFunction(void *Old, void *New) override;
+
+ // getStubLayout - Returns the size and alignment of the largest call stub
+ // on Mips.
+ StubLayout getStubLayout() override;
+
+ /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a
+ /// small native function that simply calls the function at the specified
+ /// address.
+ void *emitFunctionStub(const Function *F, void *Fn,
+ JITCodeEmitter &JCE) override;
+
+ /// getLazyResolverFunction - Expose the lazy resolver to the JIT.
+ LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
+
+ /// relocate - Before the JIT can run a block of code that has been emitted,
+ /// it must rewrite the code to contain the actual addresses of any
+ /// referenced global symbols.
+ void relocate(void *Function, MachineRelocation *MR,
+ unsigned NumRelocs, unsigned char *GOTBase) override;
+
+ /// Initialize - Initialize internal stage for the function being JITted.
+ void Initialize(const MachineFunction &MF, bool isPIC,
+ bool isLittleEndian) {
+ IsPIC = isPIC;
+ IsLittleEndian = isLittleEndian;
+ }
+
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsLongBranch.cpp b/contrib/llvm/lib/Target/Mips/MipsLongBranch.cpp
new file mode 100644
index 0000000..27110b6
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsLongBranch.cpp
@@ -0,0 +1,519 @@
+//===-- MipsLongBranch.cpp - Emit long branches ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass expands a branch or jump instruction into a long branch if its
+// offset is too large to fit into its immediate field.
+//
+// FIXME: Fix pc-region jump instructions which cross 256MB segment boundaries.
+//===----------------------------------------------------------------------===//
+
+#include "Mips.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MCTargetDesc/MipsMCNaCl.h"
+#include "MipsTargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-long-branch"
+
+STATISTIC(LongBranches, "Number of long branches.");
+
+static cl::opt<bool> SkipLongBranch(
+ "skip-mips-long-branch",
+ cl::init(false),
+ cl::desc("MIPS: Skip long branch pass."),
+ cl::Hidden);
+
+static cl::opt<bool> ForceLongBranch(
+ "force-mips-long-branch",
+ cl::init(false),
+ cl::desc("MIPS: Expand all branches to long format."),
+ cl::Hidden);
+
+namespace {
+ typedef MachineBasicBlock::iterator Iter;
+ typedef MachineBasicBlock::reverse_iterator ReverseIter;
+
+ struct MBBInfo {
+ uint64_t Size, Address;
+ bool HasLongBranch;
+ MachineInstr *Br;
+
+ MBBInfo() : Size(0), HasLongBranch(false), Br(nullptr) {}
+ };
+
+ class MipsLongBranch : public MachineFunctionPass {
+
+ public:
+ static char ID;
+ MipsLongBranch(TargetMachine &tm)
+ : MachineFunctionPass(ID), TM(tm),
+ IsPIC(TM.getRelocationModel() == Reloc::PIC_),
+ ABI(TM.getSubtarget<MipsSubtarget>().getTargetABI()),
+ LongBranchSeqSize(!IsPIC ? 2 : (ABI == MipsSubtarget::N64 ? 10 :
+ (!TM.getSubtarget<MipsSubtarget>().isTargetNaCl() ? 9 : 10))) {}
+
+ const char *getPassName() const override {
+ return "Mips Long Branch";
+ }
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+ private:
+ void splitMBB(MachineBasicBlock *MBB);
+ void initMBBInfo();
+ int64_t computeOffset(const MachineInstr *Br);
+ void replaceBranch(MachineBasicBlock &MBB, Iter Br, DebugLoc DL,
+ MachineBasicBlock *MBBOpnd);
+ void expandToLongBranch(MBBInfo &Info);
+
+ const TargetMachine &TM;
+ MachineFunction *MF;
+ SmallVector<MBBInfo, 16> MBBInfos;
+ bool IsPIC;
+ unsigned ABI;
+ unsigned LongBranchSeqSize;
+ };
+
+ char MipsLongBranch::ID = 0;
+} // end of anonymous namespace
+
+/// createMipsLongBranchPass - Returns a pass that converts branches to long
+/// branches.
+FunctionPass *llvm::createMipsLongBranchPass(MipsTargetMachine &tm) {
+ return new MipsLongBranch(tm);
+}
+
+/// Iterate over list of Br's operands and search for a MachineBasicBlock
+/// operand.
+static MachineBasicBlock *getTargetMBB(const MachineInstr &Br) {
+ for (unsigned I = 0, E = Br.getDesc().getNumOperands(); I < E; ++I) {
+ const MachineOperand &MO = Br.getOperand(I);
+
+ if (MO.isMBB())
+ return MO.getMBB();
+ }
+
+ assert(false && "This instruction does not have an MBB operand.");
+ return nullptr;
+}
+
+// Traverse the list of instructions backwards until a non-debug instruction is
+// found or it reaches E.
+static ReverseIter getNonDebugInstr(ReverseIter B, ReverseIter E) {
+ for (; B != E; ++B)
+ if (!B->isDebugValue())
+ return B;
+
+ return E;
+}
+
+// Split MBB if it has two direct jumps/branches.
+void MipsLongBranch::splitMBB(MachineBasicBlock *MBB) {
+ ReverseIter End = MBB->rend();
+ ReverseIter LastBr = getNonDebugInstr(MBB->rbegin(), End);
+
+ // Return if MBB has no branch instructions.
+ if ((LastBr == End) ||
+ (!LastBr->isConditionalBranch() && !LastBr->isUnconditionalBranch()))
+ return;
+
+ ReverseIter FirstBr = getNonDebugInstr(std::next(LastBr), End);
+
+ // MBB has only one branch instruction if FirstBr is not a branch
+ // instruction.
+ if ((FirstBr == End) ||
+ (!FirstBr->isConditionalBranch() && !FirstBr->isUnconditionalBranch()))
+ return;
+
+ assert(!FirstBr->isIndirectBranch() && "Unexpected indirect branch found.");
+
+ // Create a new MBB. Move instructions in MBB to the newly created MBB.
+ MachineBasicBlock *NewMBB =
+ MF->CreateMachineBasicBlock(MBB->getBasicBlock());
+
+ // Insert NewMBB and fix control flow.
+ MachineBasicBlock *Tgt = getTargetMBB(*FirstBr);
+ NewMBB->transferSuccessors(MBB);
+ NewMBB->removeSuccessor(Tgt);
+ MBB->addSuccessor(NewMBB);
+ MBB->addSuccessor(Tgt);
+ MF->insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
+
+ NewMBB->splice(NewMBB->end(), MBB, (++LastBr).base(), MBB->end());
+}
+
+// Fill MBBInfos.
+void MipsLongBranch::initMBBInfo() {
+ // Split the MBBs if they have two branches. Each basic block should have at
+ // most one branch after this loop is executed.
+ for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E;)
+ splitMBB(I++);
+
+ MF->RenumberBlocks();
+ MBBInfos.clear();
+ MBBInfos.resize(MF->size());
+
+ const MipsInstrInfo *TII =
+ static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
+ for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) {
+ MachineBasicBlock *MBB = MF->getBlockNumbered(I);
+
+ // Compute size of MBB.
+ for (MachineBasicBlock::instr_iterator MI = MBB->instr_begin();
+ MI != MBB->instr_end(); ++MI)
+ MBBInfos[I].Size += TII->GetInstSizeInBytes(&*MI);
+
+ // Search for MBB's branch instruction.
+ ReverseIter End = MBB->rend();
+ ReverseIter Br = getNonDebugInstr(MBB->rbegin(), End);
+
+ if ((Br != End) && !Br->isIndirectBranch() &&
+ (Br->isConditionalBranch() ||
+ (Br->isUnconditionalBranch() &&
+ TM.getRelocationModel() == Reloc::PIC_)))
+ MBBInfos[I].Br = (++Br).base();
+ }
+}
+
+// Compute offset of branch in number of bytes.
+int64_t MipsLongBranch::computeOffset(const MachineInstr *Br) {
+ int64_t Offset = 0;
+ int ThisMBB = Br->getParent()->getNumber();
+ int TargetMBB = getTargetMBB(*Br)->getNumber();
+
+ // Compute offset of a forward branch.
+ if (ThisMBB < TargetMBB) {
+ for (int N = ThisMBB + 1; N < TargetMBB; ++N)
+ Offset += MBBInfos[N].Size;
+
+ return Offset + 4;
+ }
+
+ // Compute offset of a backward branch.
+ for (int N = ThisMBB; N >= TargetMBB; --N)
+ Offset += MBBInfos[N].Size;
+
+ return -Offset + 4;
+}
+
+// Replace Br with a branch which has the opposite condition code and a
+// MachineBasicBlock operand MBBOpnd.
+void MipsLongBranch::replaceBranch(MachineBasicBlock &MBB, Iter Br,
+ DebugLoc DL, MachineBasicBlock *MBBOpnd) {
+ const MipsInstrInfo *TII =
+ static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
+ unsigned NewOpc = TII->getOppositeBranchOpc(Br->getOpcode());
+ const MCInstrDesc &NewDesc = TII->get(NewOpc);
+
+ MachineInstrBuilder MIB = BuildMI(MBB, Br, DL, NewDesc);
+
+ for (unsigned I = 0, E = Br->getDesc().getNumOperands(); I < E; ++I) {
+ MachineOperand &MO = Br->getOperand(I);
+
+ if (!MO.isReg()) {
+ assert(MO.isMBB() && "MBB operand expected.");
+ break;
+ }
+
+ MIB.addReg(MO.getReg());
+ }
+
+ MIB.addMBB(MBBOpnd);
+
+ // Bundle the instruction in the delay slot to the newly created branch
+ // and erase the original branch.
+ assert(Br->isBundledWithSucc());
+ MachineBasicBlock::instr_iterator II(Br);
+ MIBundleBuilder(&*MIB).append((++II)->removeFromBundle());
+ Br->eraseFromParent();
+}
+
+// Expand branch instructions to long branches.
+void MipsLongBranch::expandToLongBranch(MBBInfo &I) {
+ MachineBasicBlock::iterator Pos;
+ MachineBasicBlock *MBB = I.Br->getParent(), *TgtMBB = getTargetMBB(*I.Br);
+ DebugLoc DL = I.Br->getDebugLoc();
+ const BasicBlock *BB = MBB->getBasicBlock();
+ MachineFunction::iterator FallThroughMBB = ++MachineFunction::iterator(MBB);
+ MachineBasicBlock *LongBrMBB = MF->CreateMachineBasicBlock(BB);
+
+ const MipsInstrInfo *TII =
+ static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
+
+ MF->insert(FallThroughMBB, LongBrMBB);
+ MBB->removeSuccessor(TgtMBB);
+ MBB->addSuccessor(LongBrMBB);
+
+ if (IsPIC) {
+ MachineBasicBlock *BalTgtMBB = MF->CreateMachineBasicBlock(BB);
+ MF->insert(FallThroughMBB, BalTgtMBB);
+ LongBrMBB->addSuccessor(BalTgtMBB);
+ BalTgtMBB->addSuccessor(TgtMBB);
+
+ // We must select between the MIPS32r6/MIPS64r6 BAL (which is a normal
+ // instruction) and the pre-MIPS32r6/MIPS64r6 definition (which is an
+ // pseudo-instruction wrapping BGEZAL).
+
+ const MipsSubtarget &Subtarget = TM.getSubtarget<MipsSubtarget>();
+ unsigned BalOp = Subtarget.hasMips32r6() ? Mips::BAL : Mips::BAL_BR;
+
+ if (ABI != MipsSubtarget::N64) {
+ // $longbr:
+ // addiu $sp, $sp, -8
+ // sw $ra, 0($sp)
+ // lui $at, %hi($tgt - $baltgt)
+ // bal $baltgt
+ // addiu $at, $at, %lo($tgt - $baltgt)
+ // $baltgt:
+ // addu $at, $ra, $at
+ // lw $ra, 0($sp)
+ // jr $at
+ // addiu $sp, $sp, 8
+ // $fallthrough:
+ //
+
+ Pos = LongBrMBB->begin();
+
+ BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP)
+ .addReg(Mips::SP).addImm(-8);
+ BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SW)).addReg(Mips::RA)
+ .addReg(Mips::SP).addImm(0);
+
+ // LUi and ADDiu instructions create 32-bit offset of the target basic
+ // block from the target of BAL instruction. We cannot use immediate
+ // value for this offset because it cannot be determined accurately when
+ // the program has inline assembly statements. We therefore use the
+ // relocation expressions %hi($tgt-$baltgt) and %lo($tgt-$baltgt) which
+ // are resolved during the fixup, so the values will always be correct.
+ //
+ // Since we cannot create %hi($tgt-$baltgt) and %lo($tgt-$baltgt)
+ // expressions at this point (it is possible only at the MC layer),
+ // we replace LUi and ADDiu with pseudo instructions
+ // LONG_BRANCH_LUi and LONG_BRANCH_ADDiu, and add both basic
+ // blocks as operands to these instructions. When lowering these pseudo
+ // instructions to LUi and ADDiu in the MC layer, we will create
+ // %hi($tgt-$baltgt) and %lo($tgt-$baltgt) expressions and add them as
+ // operands to lowered instructions.
+
+ BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi), Mips::AT)
+ .addMBB(TgtMBB).addMBB(BalTgtMBB);
+ MIBundleBuilder(*LongBrMBB, Pos)
+ .append(BuildMI(*MF, DL, TII->get(BalOp)).addMBB(BalTgtMBB))
+ .append(BuildMI(*MF, DL, TII->get(Mips::LONG_BRANCH_ADDiu), Mips::AT)
+ .addReg(Mips::AT)
+ .addMBB(TgtMBB)
+ .addMBB(BalTgtMBB));
+
+ Pos = BalTgtMBB->begin();
+
+ BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDu), Mips::AT)
+ .addReg(Mips::RA).addReg(Mips::AT);
+ BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LW), Mips::RA)
+ .addReg(Mips::SP).addImm(0);
+
+ if (!TM.getSubtarget<MipsSubtarget>().isTargetNaCl()) {
+ MIBundleBuilder(*BalTgtMBB, Pos)
+ .append(BuildMI(*MF, DL, TII->get(Mips::JR)).addReg(Mips::AT))
+ .append(BuildMI(*MF, DL, TII->get(Mips::ADDiu), Mips::SP)
+ .addReg(Mips::SP).addImm(8));
+ } else {
+ // In NaCl, modifying the sp is not allowed in branch delay slot.
+ BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP)
+ .addReg(Mips::SP).addImm(8);
+
+ MIBundleBuilder(*BalTgtMBB, Pos)
+ .append(BuildMI(*MF, DL, TII->get(Mips::JR)).addReg(Mips::AT))
+ .append(BuildMI(*MF, DL, TII->get(Mips::NOP)));
+
+ // Bundle-align the target of indirect branch JR.
+ TgtMBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
+ }
+ } else {
+ // $longbr:
+ // daddiu $sp, $sp, -16
+ // sd $ra, 0($sp)
+ // daddiu $at, $zero, %hi($tgt - $baltgt)
+ // dsll $at, $at, 16
+ // bal $baltgt
+ // daddiu $at, $at, %lo($tgt - $baltgt)
+ // $baltgt:
+ // daddu $at, $ra, $at
+ // ld $ra, 0($sp)
+ // jr64 $at
+ // daddiu $sp, $sp, 16
+ // $fallthrough:
+ //
+
+ // We assume the branch is within-function, and that offset is within
+ // +/- 2GB. High 32 bits will therefore always be zero.
+
+ // Note that this will work even if the offset is negative, because
+ // of the +1 modification that's added in that case. For example, if the
+ // offset is -1MB (0xFFFFFFFFFFF00000), the computation for %higher is
+ //
+ // 0xFFFFFFFFFFF00000 + 0x80008000 = 0x000000007FF08000
+ //
+ // and the bits [47:32] are zero. For %highest
+ //
+ // 0xFFFFFFFFFFF00000 + 0x800080008000 = 0x000080007FF08000
+ //
+ // and the bits [63:48] are zero.
+
+ Pos = LongBrMBB->begin();
+
+ BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64)
+ .addReg(Mips::SP_64).addImm(-16);
+ BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SD)).addReg(Mips::RA_64)
+ .addReg(Mips::SP_64).addImm(0);
+ BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu),
+ Mips::AT_64).addReg(Mips::ZERO_64)
+ .addMBB(TgtMBB, MipsII::MO_ABS_HI).addMBB(BalTgtMBB);
+ BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
+ .addReg(Mips::AT_64).addImm(16);
+
+ MIBundleBuilder(*LongBrMBB, Pos)
+ .append(BuildMI(*MF, DL, TII->get(BalOp)).addMBB(BalTgtMBB))
+ .append(
+ BuildMI(*MF, DL, TII->get(Mips::LONG_BRANCH_DADDiu), Mips::AT_64)
+ .addReg(Mips::AT_64)
+ .addMBB(TgtMBB, MipsII::MO_ABS_LO)
+ .addMBB(BalTgtMBB));
+
+ Pos = BalTgtMBB->begin();
+
+ BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDu), Mips::AT_64)
+ .addReg(Mips::RA_64).addReg(Mips::AT_64);
+ BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LD), Mips::RA_64)
+ .addReg(Mips::SP_64).addImm(0);
+
+ MIBundleBuilder(*BalTgtMBB, Pos)
+ .append(BuildMI(*MF, DL, TII->get(Mips::JR64)).addReg(Mips::AT_64))
+ .append(BuildMI(*MF, DL, TII->get(Mips::DADDiu), Mips::SP_64)
+ .addReg(Mips::SP_64).addImm(16));
+ }
+
+ assert(LongBrMBB->size() + BalTgtMBB->size() == LongBranchSeqSize);
+ } else {
+ // $longbr:
+ // j $tgt
+ // nop
+ // $fallthrough:
+ //
+ Pos = LongBrMBB->begin();
+ LongBrMBB->addSuccessor(TgtMBB);
+ MIBundleBuilder(*LongBrMBB, Pos)
+ .append(BuildMI(*MF, DL, TII->get(Mips::J)).addMBB(TgtMBB))
+ .append(BuildMI(*MF, DL, TII->get(Mips::NOP)));
+
+ assert(LongBrMBB->size() == LongBranchSeqSize);
+ }
+
+ if (I.Br->isUnconditionalBranch()) {
+ // Change branch destination.
+ assert(I.Br->getDesc().getNumOperands() == 1);
+ I.Br->RemoveOperand(0);
+ I.Br->addOperand(MachineOperand::CreateMBB(LongBrMBB));
+ } else
+ // Change branch destination and reverse condition.
+ replaceBranch(*MBB, I.Br, DL, FallThroughMBB);
+}
+
+static void emitGPDisp(MachineFunction &F, const MipsInstrInfo *TII) {
+ MachineBasicBlock &MBB = F.front();
+ MachineBasicBlock::iterator I = MBB.begin();
+ DebugLoc DL = MBB.findDebugLoc(MBB.begin());
+ BuildMI(MBB, I, DL, TII->get(Mips::LUi), Mips::V0)
+ .addExternalSymbol("_gp_disp", MipsII::MO_ABS_HI);
+ BuildMI(MBB, I, DL, TII->get(Mips::ADDiu), Mips::V0)
+ .addReg(Mips::V0).addExternalSymbol("_gp_disp", MipsII::MO_ABS_LO);
+ MBB.removeLiveIn(Mips::V0);
+}
+
+bool MipsLongBranch::runOnMachineFunction(MachineFunction &F) {
+ const MipsInstrInfo *TII =
+ static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
+
+ const MipsSubtarget &STI = TM.getSubtarget<MipsSubtarget>();
+ if (STI.inMips16Mode() || !STI.enableLongBranchPass())
+ return false;
+ if ((TM.getRelocationModel() == Reloc::PIC_) &&
+ TM.getSubtarget<MipsSubtarget>().isABI_O32() &&
+ F.getInfo<MipsFunctionInfo>()->globalBaseRegSet())
+ emitGPDisp(F, TII);
+
+ if (SkipLongBranch)
+ return true;
+
+ MF = &F;
+ initMBBInfo();
+
+ SmallVectorImpl<MBBInfo>::iterator I, E = MBBInfos.end();
+ bool EverMadeChange = false, MadeChange = true;
+
+ while (MadeChange) {
+ MadeChange = false;
+
+ for (I = MBBInfos.begin(); I != E; ++I) {
+ // Skip if this MBB doesn't have a branch or the branch has already been
+ // converted to a long branch.
+ if (!I->Br || I->HasLongBranch)
+ continue;
+
+ int ShVal = TM.getSubtarget<MipsSubtarget>().inMicroMipsMode() ? 2 : 4;
+ int64_t Offset = computeOffset(I->Br) / ShVal;
+
+ if (TM.getSubtarget<MipsSubtarget>().isTargetNaCl()) {
+ // The offset calculation does not include sandboxing instructions
+ // that will be added later in the MC layer. Since at this point we
+ // don't know the exact amount of code that "sandboxing" will add, we
+ // conservatively estimate that code will not grow more than 100%.
+ Offset *= 2;
+ }
+
+ // Check if offset fits into 16-bit immediate field of branches.
+ if (!ForceLongBranch && isInt<16>(Offset))
+ continue;
+
+ I->HasLongBranch = true;
+ I->Size += LongBranchSeqSize * 4;
+ ++LongBranches;
+ EverMadeChange = MadeChange = true;
+ }
+ }
+
+ if (!EverMadeChange)
+ return true;
+
+ // Compute basic block addresses.
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ uint64_t Address = 0;
+
+ for (I = MBBInfos.begin(); I != E; Address += I->Size, ++I)
+ I->Address = Address;
+ }
+
+ // Do the expansion.
+ for (I = MBBInfos.begin(); I != E; ++I)
+ if (I->HasLongBranch)
+ expandToLongBranch(*I);
+
+ MF->RenumberBlocks();
+
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsMCInstLower.cpp b/contrib/llvm/lib/Target/Mips/MipsMCInstLower.cpp
new file mode 100644
index 0000000..821392e
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsMCInstLower.cpp
@@ -0,0 +1,233 @@
+//===-- MipsMCInstLower.cpp - Convert Mips MachineInstr to MCInst ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code to lower Mips MachineInstrs to their corresponding
+// MCInst records.
+//
+//===----------------------------------------------------------------------===//
+#include "MipsMCInstLower.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MipsAsmPrinter.h"
+#include "MipsInstrInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+
+using namespace llvm;
+
+MipsMCInstLower::MipsMCInstLower(MipsAsmPrinter &asmprinter)
+ : AsmPrinter(asmprinter) {}
+
+void MipsMCInstLower::Initialize(MCContext *C) {
+ Ctx = C;
+}
+
+MCOperand MipsMCInstLower::LowerSymbolOperand(const MachineOperand &MO,
+ MachineOperandType MOTy,
+ unsigned Offset) const {
+ MCSymbolRefExpr::VariantKind Kind;
+ const MCSymbol *Symbol;
+
+ switch(MO.getTargetFlags()) {
+ default: llvm_unreachable("Invalid target flag!");
+ case MipsII::MO_NO_FLAG: Kind = MCSymbolRefExpr::VK_None; break;
+ case MipsII::MO_GPREL: Kind = MCSymbolRefExpr::VK_Mips_GPREL; break;
+ case MipsII::MO_GOT_CALL: Kind = MCSymbolRefExpr::VK_Mips_GOT_CALL; break;
+ case MipsII::MO_GOT16: Kind = MCSymbolRefExpr::VK_Mips_GOT16; break;
+ case MipsII::MO_GOT: Kind = MCSymbolRefExpr::VK_Mips_GOT; break;
+ case MipsII::MO_ABS_HI: Kind = MCSymbolRefExpr::VK_Mips_ABS_HI; break;
+ case MipsII::MO_ABS_LO: Kind = MCSymbolRefExpr::VK_Mips_ABS_LO; break;
+ case MipsII::MO_TLSGD: Kind = MCSymbolRefExpr::VK_Mips_TLSGD; break;
+ case MipsII::MO_TLSLDM: Kind = MCSymbolRefExpr::VK_Mips_TLSLDM; break;
+ case MipsII::MO_DTPREL_HI: Kind = MCSymbolRefExpr::VK_Mips_DTPREL_HI; break;
+ case MipsII::MO_DTPREL_LO: Kind = MCSymbolRefExpr::VK_Mips_DTPREL_LO; break;
+ case MipsII::MO_GOTTPREL: Kind = MCSymbolRefExpr::VK_Mips_GOTTPREL; break;
+ case MipsII::MO_TPREL_HI: Kind = MCSymbolRefExpr::VK_Mips_TPREL_HI; break;
+ case MipsII::MO_TPREL_LO: Kind = MCSymbolRefExpr::VK_Mips_TPREL_LO; break;
+ case MipsII::MO_GPOFF_HI: Kind = MCSymbolRefExpr::VK_Mips_GPOFF_HI; break;
+ case MipsII::MO_GPOFF_LO: Kind = MCSymbolRefExpr::VK_Mips_GPOFF_LO; break;
+ case MipsII::MO_GOT_DISP: Kind = MCSymbolRefExpr::VK_Mips_GOT_DISP; break;
+ case MipsII::MO_GOT_PAGE: Kind = MCSymbolRefExpr::VK_Mips_GOT_PAGE; break;
+ case MipsII::MO_GOT_OFST: Kind = MCSymbolRefExpr::VK_Mips_GOT_OFST; break;
+ case MipsII::MO_HIGHER: Kind = MCSymbolRefExpr::VK_Mips_HIGHER; break;
+ case MipsII::MO_HIGHEST: Kind = MCSymbolRefExpr::VK_Mips_HIGHEST; break;
+ case MipsII::MO_GOT_HI16: Kind = MCSymbolRefExpr::VK_Mips_GOT_HI16; break;
+ case MipsII::MO_GOT_LO16: Kind = MCSymbolRefExpr::VK_Mips_GOT_LO16; break;
+ case MipsII::MO_CALL_HI16: Kind = MCSymbolRefExpr::VK_Mips_CALL_HI16; break;
+ case MipsII::MO_CALL_LO16: Kind = MCSymbolRefExpr::VK_Mips_CALL_LO16; break;
+ }
+
+ switch (MOTy) {
+ case MachineOperand::MO_MachineBasicBlock:
+ Symbol = MO.getMBB()->getSymbol();
+ break;
+
+ case MachineOperand::MO_GlobalAddress:
+ Symbol = AsmPrinter.getSymbol(MO.getGlobal());
+ Offset += MO.getOffset();
+ break;
+
+ case MachineOperand::MO_BlockAddress:
+ Symbol = AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress());
+ Offset += MO.getOffset();
+ break;
+
+ case MachineOperand::MO_ExternalSymbol:
+ Symbol = AsmPrinter.GetExternalSymbolSymbol(MO.getSymbolName());
+ Offset += MO.getOffset();
+ break;
+
+ case MachineOperand::MO_JumpTableIndex:
+ Symbol = AsmPrinter.GetJTISymbol(MO.getIndex());
+ break;
+
+ case MachineOperand::MO_ConstantPoolIndex:
+ Symbol = AsmPrinter.GetCPISymbol(MO.getIndex());
+ Offset += MO.getOffset();
+ break;
+
+ default:
+ llvm_unreachable("<unknown operand type>");
+ }
+
+ const MCSymbolRefExpr *MCSym = MCSymbolRefExpr::Create(Symbol, Kind, *Ctx);
+
+ if (!Offset)
+ return MCOperand::CreateExpr(MCSym);
+
+ // Assume offset is never negative.
+ assert(Offset > 0);
+
+ const MCConstantExpr *OffsetExpr = MCConstantExpr::Create(Offset, *Ctx);
+ const MCBinaryExpr *Add = MCBinaryExpr::CreateAdd(MCSym, OffsetExpr, *Ctx);
+ return MCOperand::CreateExpr(Add);
+}
+
+/*
+static void CreateMCInst(MCInst& Inst, unsigned Opc, const MCOperand &Opnd0,
+ const MCOperand &Opnd1,
+ const MCOperand &Opnd2 = MCOperand()) {
+ Inst.setOpcode(Opc);
+ Inst.addOperand(Opnd0);
+ Inst.addOperand(Opnd1);
+ if (Opnd2.isValid())
+ Inst.addOperand(Opnd2);
+}
+*/
+
+MCOperand MipsMCInstLower::LowerOperand(const MachineOperand &MO,
+ unsigned offset) const {
+ MachineOperandType MOTy = MO.getType();
+
+ switch (MOTy) {
+ default: llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ // Ignore all implicit register operands.
+ if (MO.isImplicit()) break;
+ return MCOperand::CreateReg(MO.getReg());
+ case MachineOperand::MO_Immediate:
+ return MCOperand::CreateImm(MO.getImm() + offset);
+ case MachineOperand::MO_MachineBasicBlock:
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ case MachineOperand::MO_JumpTableIndex:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_BlockAddress:
+ return LowerSymbolOperand(MO, MOTy, offset);
+ case MachineOperand::MO_RegisterMask:
+ break;
+ }
+
+ return MCOperand();
+}
+
+MCOperand MipsMCInstLower::createSub(MachineBasicBlock *BB1,
+ MachineBasicBlock *BB2,
+ MCSymbolRefExpr::VariantKind Kind) const {
+ const MCSymbolRefExpr *Sym1 = MCSymbolRefExpr::Create(BB1->getSymbol(), *Ctx);
+ const MCSymbolRefExpr *Sym2 = MCSymbolRefExpr::Create(BB2->getSymbol(), *Ctx);
+ const MCBinaryExpr *Sub = MCBinaryExpr::CreateSub(Sym1, Sym2, *Ctx);
+
+ return MCOperand::CreateExpr(MipsMCExpr::Create(Kind, Sub, *Ctx));
+}
+
+void MipsMCInstLower::
+lowerLongBranchLUi(const MachineInstr *MI, MCInst &OutMI) const {
+ OutMI.setOpcode(Mips::LUi);
+
+ // Lower register operand.
+ OutMI.addOperand(LowerOperand(MI->getOperand(0)));
+
+ // Create %hi($tgt-$baltgt).
+ OutMI.addOperand(createSub(MI->getOperand(1).getMBB(),
+ MI->getOperand(2).getMBB(),
+ MCSymbolRefExpr::VK_Mips_ABS_HI));
+}
+
+void MipsMCInstLower::
+lowerLongBranchADDiu(const MachineInstr *MI, MCInst &OutMI, int Opcode,
+ MCSymbolRefExpr::VariantKind Kind) const {
+ OutMI.setOpcode(Opcode);
+
+ // Lower two register operands.
+ for (unsigned I = 0, E = 2; I != E; ++I) {
+ const MachineOperand &MO = MI->getOperand(I);
+ OutMI.addOperand(LowerOperand(MO));
+ }
+
+ // Create %lo($tgt-$baltgt) or %hi($tgt-$baltgt).
+ OutMI.addOperand(createSub(MI->getOperand(2).getMBB(),
+ MI->getOperand(3).getMBB(), Kind));
+}
+
+bool MipsMCInstLower::lowerLongBranch(const MachineInstr *MI,
+ MCInst &OutMI) const {
+ switch (MI->getOpcode()) {
+ default:
+ return false;
+ case Mips::LONG_BRANCH_LUi:
+ lowerLongBranchLUi(MI, OutMI);
+ return true;
+ case Mips::LONG_BRANCH_ADDiu:
+ lowerLongBranchADDiu(MI, OutMI, Mips::ADDiu,
+ MCSymbolRefExpr::VK_Mips_ABS_LO);
+ return true;
+ case Mips::LONG_BRANCH_DADDiu:
+ unsigned TargetFlags = MI->getOperand(2).getTargetFlags();
+ if (TargetFlags == MipsII::MO_ABS_HI)
+ lowerLongBranchADDiu(MI, OutMI, Mips::DADDiu,
+ MCSymbolRefExpr::VK_Mips_ABS_HI);
+ else if (TargetFlags == MipsII::MO_ABS_LO)
+ lowerLongBranchADDiu(MI, OutMI, Mips::DADDiu,
+ MCSymbolRefExpr::VK_Mips_ABS_LO);
+ else
+ report_fatal_error("Unexpected flags for LONG_BRANCH_DADDiu");
+ return true;
+ }
+}
+
+void MipsMCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
+ if (lowerLongBranch(MI, OutMI))
+ return;
+
+ OutMI.setOpcode(MI->getOpcode());
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ MCOperand MCOp = LowerOperand(MO);
+
+ if (MCOp.isValid())
+ OutMI.addOperand(MCOp);
+ }
+}
+
diff --git a/contrib/llvm/lib/Target/Mips/MipsMCInstLower.h b/contrib/llvm/lib/Target/Mips/MipsMCInstLower.h
new file mode 100644
index 0000000..269190f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsMCInstLower.h
@@ -0,0 +1,50 @@
+//===-- MipsMCInstLower.h - Lower MachineInstr to MCInst -------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSMCINSTLOWER_H
+#define MIPSMCINSTLOWER_H
+#include "MCTargetDesc/MipsMCExpr.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+ class MCContext;
+ class MCInst;
+ class MCOperand;
+ class MachineInstr;
+ class MachineFunction;
+ class MipsAsmPrinter;
+
+/// MipsMCInstLower - This class is used to lower an MachineInstr into an
+// MCInst.
+class LLVM_LIBRARY_VISIBILITY MipsMCInstLower {
+ typedef MachineOperand::MachineOperandType MachineOperandType;
+ MCContext *Ctx;
+ MipsAsmPrinter &AsmPrinter;
+public:
+ MipsMCInstLower(MipsAsmPrinter &asmprinter);
+ void Initialize(MCContext *C);
+ void Lower(const MachineInstr *MI, MCInst &OutMI) const;
+ MCOperand LowerOperand(const MachineOperand& MO, unsigned offset = 0) const;
+
+private:
+ MCOperand LowerSymbolOperand(const MachineOperand &MO,
+ MachineOperandType MOTy, unsigned Offset) const;
+ MCOperand createSub(MachineBasicBlock *BB1, MachineBasicBlock *BB2,
+ MCSymbolRefExpr::VariantKind Kind) const;
+ void lowerLongBranchLUi(const MachineInstr *MI, MCInst &OutMI) const;
+ void lowerLongBranchADDiu(const MachineInstr *MI, MCInst &OutMI,
+ int Opcode,
+ MCSymbolRefExpr::VariantKind Kind) const;
+ bool lowerLongBranch(const MachineInstr *MI, MCInst &OutMI) const;
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsMSAInstrFormats.td b/contrib/llvm/lib/Target/Mips/MipsMSAInstrFormats.td
new file mode 100644
index 0000000..bff2d0f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsMSAInstrFormats.td
@@ -0,0 +1,465 @@
+//===- MipsMSAInstrFormats.td - Mips Instruction Formats ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+def HasMSA : Predicate<"Subtarget->hasMSA()">,
+ AssemblerPredicate<"FeatureMSA">;
+
+class MSAInst : MipsInst<(outs), (ins), "", [], NoItinerary, FrmOther> {
+ let Predicates = [HasMSA];
+ let Inst{31-26} = 0b011110;
+}
+
+class MSA64Inst : MSAInst {
+ let Predicates = [HasMSA, HasMips64];
+}
+
+class MSACBranch : MSAInst {
+ let Inst{31-26} = 0b010001;
+}
+
+class MSASpecial : MSAInst {
+ let Inst{31-26} = 0b000000;
+}
+
+class MSA64Special : MSA64Inst {
+ let Inst{31-26} = 0b000000;
+}
+
+class MSAPseudo<dag outs, dag ins, list<dag> pattern,
+ InstrItinClass itin = IIPseudo>:
+ MipsPseudo<outs, ins, pattern, itin> {
+ let Predicates = [HasMSA];
+}
+
+class MSA_BIT_B_FMT<bits<3> major, bits<6> minor>: MSAInst {
+ bits<5> ws;
+ bits<5> wd;
+ bits<3> m;
+
+ let Inst{25-23} = major;
+ let Inst{22-19} = 0b1110;
+ let Inst{18-16} = m;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_BIT_H_FMT<bits<3> major, bits<6> minor>: MSAInst {
+ bits<5> ws;
+ bits<5> wd;
+ bits<4> m;
+
+ let Inst{25-23} = major;
+ let Inst{22-20} = 0b110;
+ let Inst{19-16} = m;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_BIT_W_FMT<bits<3> major, bits<6> minor>: MSAInst {
+ bits<5> ws;
+ bits<5> wd;
+ bits<5> m;
+
+ let Inst{25-23} = major;
+ let Inst{22-21} = 0b10;
+ let Inst{20-16} = m;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_BIT_D_FMT<bits<3> major, bits<6> minor>: MSAInst {
+ bits<5> ws;
+ bits<5> wd;
+ bits<6> m;
+
+ let Inst{25-23} = major;
+ let Inst{22} = 0b0;
+ let Inst{21-16} = m;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_2R_FILL_FMT<bits<8> major, bits<2> df, bits<6> minor>: MSAInst {
+ bits<5> rs;
+ bits<5> wd;
+
+ let Inst{25-18} = major;
+ let Inst{17-16} = df;
+ let Inst{15-11} = rs;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_2R_FILL_D_FMT<bits<8> major, bits<2> df, bits<6> minor>: MSA64Inst {
+ bits<5> rs;
+ bits<5> wd;
+
+ let Inst{25-18} = major;
+ let Inst{17-16} = df;
+ let Inst{15-11} = rs;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_2R_FMT<bits<8> major, bits<2> df, bits<6> minor>: MSAInst {
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-18} = major;
+ let Inst{17-16} = df;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_2RF_FMT<bits<9> major, bits<1> df, bits<6> minor>: MSAInst {
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-17} = major;
+ let Inst{16} = df;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_3R_FMT<bits<3> major, bits<2> df, bits<6> minor>: MSAInst {
+ bits<5> wt;
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-23} = major;
+ let Inst{22-21} = df;
+ let Inst{20-16} = wt;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_3RF_FMT<bits<4> major, bits<1> df, bits<6> minor>: MSAInst {
+ bits<5> wt;
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-22} = major;
+ let Inst{21} = df;
+ let Inst{20-16} = wt;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_3R_INDEX_FMT<bits<3> major, bits<2> df, bits<6> minor>: MSAInst {
+ bits<5> rt;
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-23} = major;
+ let Inst{22-21} = df;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_FMT<bits<10> major, bits<6> minor>: MSAInst {
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-16} = major;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_CFCMSA_FMT<bits<10> major, bits<6> minor>: MSAInst {
+ bits<5> rd;
+ bits<5> cs;
+
+ let Inst{25-16} = major;
+ let Inst{15-11} = cs;
+ let Inst{10-6} = rd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_CTCMSA_FMT<bits<10> major, bits<6> minor>: MSAInst {
+ bits<5> rs;
+ bits<5> cd;
+
+ let Inst{25-16} = major;
+ let Inst{15-11} = rs;
+ let Inst{10-6} = cd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_B_FMT<bits<4> major, bits<6> minor>: MSAInst {
+ bits<4> n;
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-22} = major;
+ let Inst{21-20} = 0b00;
+ let Inst{19-16} = n{3-0};
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_H_FMT<bits<4> major, bits<6> minor>: MSAInst {
+ bits<4> n;
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-22} = major;
+ let Inst{21-19} = 0b100;
+ let Inst{18-16} = n{2-0};
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_W_FMT<bits<4> major, bits<6> minor>: MSAInst {
+ bits<4> n;
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-22} = major;
+ let Inst{21-18} = 0b1100;
+ let Inst{17-16} = n{1-0};
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_D_FMT<bits<4> major, bits<6> minor>: MSAInst {
+ bits<4> n;
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-22} = major;
+ let Inst{21-17} = 0b11100;
+ let Inst{16} = n{0};
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_COPY_B_FMT<bits<4> major, bits<6> minor>: MSAInst {
+ bits<4> n;
+ bits<5> ws;
+ bits<5> rd;
+
+ let Inst{25-22} = major;
+ let Inst{21-20} = 0b00;
+ let Inst{19-16} = n{3-0};
+ let Inst{15-11} = ws;
+ let Inst{10-6} = rd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_COPY_H_FMT<bits<4> major, bits<6> minor>: MSAInst {
+ bits<4> n;
+ bits<5> ws;
+ bits<5> rd;
+
+ let Inst{25-22} = major;
+ let Inst{21-19} = 0b100;
+ let Inst{18-16} = n{2-0};
+ let Inst{15-11} = ws;
+ let Inst{10-6} = rd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_COPY_W_FMT<bits<4> major, bits<6> minor>: MSAInst {
+ bits<4> n;
+ bits<5> ws;
+ bits<5> rd;
+
+ let Inst{25-22} = major;
+ let Inst{21-18} = 0b1100;
+ let Inst{17-16} = n{1-0};
+ let Inst{15-11} = ws;
+ let Inst{10-6} = rd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_COPY_D_FMT<bits<4> major, bits<6> minor>: MSA64Inst {
+ bits<4> n;
+ bits<5> ws;
+ bits<5> rd;
+
+ let Inst{25-22} = major;
+ let Inst{21-17} = 0b11100;
+ let Inst{16} = n{0};
+ let Inst{15-11} = ws;
+ let Inst{10-6} = rd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_INSERT_B_FMT<bits<4> major, bits<6> minor>: MSAInst {
+ bits<6> n;
+ bits<5> rs;
+ bits<5> wd;
+
+ let Inst{25-22} = major;
+ let Inst{21-20} = 0b00;
+ let Inst{19-16} = n{3-0};
+ let Inst{15-11} = rs;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_INSERT_H_FMT<bits<4> major, bits<6> minor>: MSAInst {
+ bits<6> n;
+ bits<5> rs;
+ bits<5> wd;
+
+ let Inst{25-22} = major;
+ let Inst{21-19} = 0b100;
+ let Inst{18-16} = n{2-0};
+ let Inst{15-11} = rs;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_INSERT_W_FMT<bits<4> major, bits<6> minor>: MSAInst {
+ bits<6> n;
+ bits<5> rs;
+ bits<5> wd;
+
+ let Inst{25-22} = major;
+ let Inst{21-18} = 0b1100;
+ let Inst{17-16} = n{1-0};
+ let Inst{15-11} = rs;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_ELM_INSERT_D_FMT<bits<4> major, bits<6> minor>: MSA64Inst {
+ bits<6> n;
+ bits<5> rs;
+ bits<5> wd;
+
+ let Inst{25-22} = major;
+ let Inst{21-17} = 0b11100;
+ let Inst{16} = n{0};
+ let Inst{15-11} = rs;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_I5_FMT<bits<3> major, bits<2> df, bits<6> minor>: MSAInst {
+ bits<5> imm;
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-23} = major;
+ let Inst{22-21} = df;
+ let Inst{20-16} = imm;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_I8_FMT<bits<2> major, bits<6> minor>: MSAInst {
+ bits<8> u8;
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-24} = major;
+ let Inst{23-16} = u8;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_I10_FMT<bits<3> major, bits<2> df, bits<6> minor>: MSAInst {
+ bits<10> s10;
+ bits<5> wd;
+
+ let Inst{25-23} = major;
+ let Inst{22-21} = df;
+ let Inst{20-11} = s10;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_MI10_FMT<bits<2> df, bits<4> minor>: MSAInst {
+ bits<21> addr;
+ bits<5> wd;
+
+ let Inst{25-16} = addr{9-0};
+ let Inst{15-11} = addr{20-16};
+ let Inst{10-6} = wd;
+ let Inst{5-2} = minor;
+ let Inst{1-0} = df;
+}
+
+class MSA_VEC_FMT<bits<5> major, bits<6> minor>: MSAInst {
+ bits<5> wt;
+ bits<5> ws;
+ bits<5> wd;
+
+ let Inst{25-21} = major;
+ let Inst{20-16} = wt;
+ let Inst{15-11} = ws;
+ let Inst{10-6} = wd;
+ let Inst{5-0} = minor;
+}
+
+class MSA_CBRANCH_FMT<bits<3> major, bits<2> df>: MSACBranch {
+ bits<16> offset;
+ bits<5> wt;
+
+ let Inst{25-23} = major;
+ let Inst{22-21} = df;
+ let Inst{20-16} = wt;
+ let Inst{15-0} = offset;
+}
+
+class MSA_CBRANCH_V_FMT<bits<5> major>: MSACBranch {
+ bits<16> offset;
+ bits<5> wt;
+
+ let Inst{25-21} = major;
+ let Inst{20-16} = wt;
+ let Inst{15-0} = offset;
+}
+
+class SPECIAL_LSA_FMT<bits<6> minor>: MSASpecial {
+ bits<5> rs;
+ bits<5> rt;
+ bits<5> rd;
+ bits<2> sa;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-8} = 0b000;
+ let Inst{7-6} = sa;
+ let Inst{5-0} = minor;
+}
+
+class SPECIAL_DLSA_FMT<bits<6> minor>: MSA64Special {
+ bits<5> rs;
+ bits<5> rt;
+ bits<5> rd;
+ bits<2> sa;
+
+ let Inst{25-21} = rs;
+ let Inst{20-16} = rt;
+ let Inst{15-11} = rd;
+ let Inst{10-8} = 0b000;
+ let Inst{7-6} = sa;
+ let Inst{5-0} = minor;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsMSAInstrInfo.td b/contrib/llvm/lib/Target/Mips/MipsMSAInstrInfo.td
new file mode 100644
index 0000000..285bb14
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsMSAInstrInfo.td
@@ -0,0 +1,3807 @@
+//===- MipsMSAInstrInfo.td - MSA ASE instructions -*- tablegen ------------*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes Mips MSA ASE instructions.
+//
+//===----------------------------------------------------------------------===//
+
+def SDT_MipsVecCond : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVec<1>]>;
+def SDT_VSetCC : SDTypeProfile<1, 3, [SDTCisInt<0>,
+ SDTCisInt<1>,
+ SDTCisSameAs<1, 2>,
+ SDTCisVT<3, OtherVT>]>;
+def SDT_VFSetCC : SDTypeProfile<1, 3, [SDTCisInt<0>,
+ SDTCisFP<1>,
+ SDTCisSameAs<1, 2>,
+ SDTCisVT<3, OtherVT>]>;
+def SDT_VSHF : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisVec<0>,
+ SDTCisInt<1>, SDTCisVec<1>,
+ SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>]>;
+def SDT_SHF : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVec<0>,
+ SDTCisVT<1, i32>, SDTCisSameAs<0, 2>]>;
+def SDT_ILV : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVec<0>,
+ SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>]>;
+def SDT_INSVE : SDTypeProfile<1, 4, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
+ SDTCisVT<2, i32>, SDTCisSameAs<0, 3>,
+ SDTCisVT<4, i32>]>;
+
+def MipsVAllNonZero : SDNode<"MipsISD::VALL_NONZERO", SDT_MipsVecCond>;
+def MipsVAnyNonZero : SDNode<"MipsISD::VANY_NONZERO", SDT_MipsVecCond>;
+def MipsVAllZero : SDNode<"MipsISD::VALL_ZERO", SDT_MipsVecCond>;
+def MipsVAnyZero : SDNode<"MipsISD::VANY_ZERO", SDT_MipsVecCond>;
+def MipsVSMax : SDNode<"MipsISD::VSMAX", SDTIntBinOp,
+ [SDNPCommutative, SDNPAssociative]>;
+def MipsVSMin : SDNode<"MipsISD::VSMIN", SDTIntBinOp,
+ [SDNPCommutative, SDNPAssociative]>;
+def MipsVUMax : SDNode<"MipsISD::VUMAX", SDTIntBinOp,
+ [SDNPCommutative, SDNPAssociative]>;
+def MipsVUMin : SDNode<"MipsISD::VUMIN", SDTIntBinOp,
+ [SDNPCommutative, SDNPAssociative]>;
+def MipsVNOR : SDNode<"MipsISD::VNOR", SDTIntBinOp,
+ [SDNPCommutative, SDNPAssociative]>;
+def MipsVSHF : SDNode<"MipsISD::VSHF", SDT_VSHF>;
+def MipsSHF : SDNode<"MipsISD::SHF", SDT_SHF>;
+def MipsILVEV : SDNode<"MipsISD::ILVEV", SDT_ILV>;
+def MipsILVOD : SDNode<"MipsISD::ILVOD", SDT_ILV>;
+def MipsILVL : SDNode<"MipsISD::ILVL", SDT_ILV>;
+def MipsILVR : SDNode<"MipsISD::ILVR", SDT_ILV>;
+def MipsPCKEV : SDNode<"MipsISD::PCKEV", SDT_ILV>;
+def MipsPCKOD : SDNode<"MipsISD::PCKOD", SDT_ILV>;
+def MipsINSVE : SDNode<"MipsISD::INSVE", SDT_INSVE>;
+
+def vsetcc : SDNode<"ISD::SETCC", SDT_VSetCC>;
+def vfsetcc : SDNode<"ISD::SETCC", SDT_VFSetCC>;
+
+def MipsVExtractSExt : SDNode<"MipsISD::VEXTRACT_SEXT_ELT",
+ SDTypeProfile<1, 3, [SDTCisPtrTy<2>]>, []>;
+def MipsVExtractZExt : SDNode<"MipsISD::VEXTRACT_ZEXT_ELT",
+ SDTypeProfile<1, 3, [SDTCisPtrTy<2>]>, []>;
+
+// Operands
+
+// The immediate of an LSA instruction needs special handling
+// as the encoded value should be subtracted by one.
+def uimm2LSAAsmOperand : AsmOperandClass {
+ let Name = "LSAImm";
+ let ParserMethod = "ParseLSAImm";
+ let RenderMethod = "addImmOperands";
+}
+
+def LSAImm : Operand<i32> {
+ let PrintMethod = "printUnsignedImm";
+ let EncoderMethod = "getLSAImmEncoding";
+ let DecoderMethod = "DecodeLSAImm";
+ let ParserMatchClass = uimm2LSAAsmOperand;
+}
+
+def uimm4 : Operand<i32> {
+ let PrintMethod = "printUnsignedImm8";
+}
+
+def uimm8 : Operand<i32> {
+ let PrintMethod = "printUnsignedImm8";
+}
+
+def simm5 : Operand<i32>;
+
+def vsplat_uimm1 : Operand<vAny> {
+ let PrintMethod = "printUnsignedImm8";
+}
+
+def vsplat_uimm2 : Operand<vAny> {
+ let PrintMethod = "printUnsignedImm8";
+}
+
+def vsplat_uimm3 : Operand<vAny> {
+ let PrintMethod = "printUnsignedImm8";
+}
+
+def vsplat_uimm4 : Operand<vAny> {
+ let PrintMethod = "printUnsignedImm8";
+}
+
+def vsplat_uimm5 : Operand<vAny> {
+ let PrintMethod = "printUnsignedImm8";
+}
+
+def vsplat_uimm6 : Operand<vAny> {
+ let PrintMethod = "printUnsignedImm8";
+}
+
+def vsplat_uimm8 : Operand<vAny> {
+ let PrintMethod = "printUnsignedImm8";
+}
+
+def vsplat_simm5 : Operand<vAny>;
+
+def vsplat_simm10 : Operand<vAny>;
+
+def immZExt2Lsa : ImmLeaf<i32, [{return isUInt<2>(Imm - 1);}]>;
+
+// Pattern fragments
+def vextract_sext_i8 : PatFrag<(ops node:$vec, node:$idx),
+ (MipsVExtractSExt node:$vec, node:$idx, i8)>;
+def vextract_sext_i16 : PatFrag<(ops node:$vec, node:$idx),
+ (MipsVExtractSExt node:$vec, node:$idx, i16)>;
+def vextract_sext_i32 : PatFrag<(ops node:$vec, node:$idx),
+ (MipsVExtractSExt node:$vec, node:$idx, i32)>;
+def vextract_sext_i64 : PatFrag<(ops node:$vec, node:$idx),
+ (MipsVExtractSExt node:$vec, node:$idx, i64)>;
+
+def vextract_zext_i8 : PatFrag<(ops node:$vec, node:$idx),
+ (MipsVExtractZExt node:$vec, node:$idx, i8)>;
+def vextract_zext_i16 : PatFrag<(ops node:$vec, node:$idx),
+ (MipsVExtractZExt node:$vec, node:$idx, i16)>;
+def vextract_zext_i32 : PatFrag<(ops node:$vec, node:$idx),
+ (MipsVExtractZExt node:$vec, node:$idx, i32)>;
+def vextract_zext_i64 : PatFrag<(ops node:$vec, node:$idx),
+ (MipsVExtractZExt node:$vec, node:$idx, i64)>;
+
+def vinsert_v16i8 : PatFrag<(ops node:$vec, node:$val, node:$idx),
+ (v16i8 (vector_insert node:$vec, node:$val, node:$idx))>;
+def vinsert_v8i16 : PatFrag<(ops node:$vec, node:$val, node:$idx),
+ (v8i16 (vector_insert node:$vec, node:$val, node:$idx))>;
+def vinsert_v4i32 : PatFrag<(ops node:$vec, node:$val, node:$idx),
+ (v4i32 (vector_insert node:$vec, node:$val, node:$idx))>;
+def vinsert_v2i64 : PatFrag<(ops node:$vec, node:$val, node:$idx),
+ (v2i64 (vector_insert node:$vec, node:$val, node:$idx))>;
+
+def insve_v16i8 : PatFrag<(ops node:$v1, node:$i1, node:$v2, node:$i2),
+ (v16i8 (MipsINSVE node:$v1, node:$i1, node:$v2, node:$i2))>;
+def insve_v8i16 : PatFrag<(ops node:$v1, node:$i1, node:$v2, node:$i2),
+ (v8i16 (MipsINSVE node:$v1, node:$i1, node:$v2, node:$i2))>;
+def insve_v4i32 : PatFrag<(ops node:$v1, node:$i1, node:$v2, node:$i2),
+ (v4i32 (MipsINSVE node:$v1, node:$i1, node:$v2, node:$i2))>;
+def insve_v2i64 : PatFrag<(ops node:$v1, node:$i1, node:$v2, node:$i2),
+ (v2i64 (MipsINSVE node:$v1, node:$i1, node:$v2, node:$i2))>;
+
+class vfsetcc_type<ValueType ResTy, ValueType OpTy, CondCode CC> :
+ PatFrag<(ops node:$lhs, node:$rhs),
+ (ResTy (vfsetcc (OpTy node:$lhs), (OpTy node:$rhs), CC))>;
+
+// ISD::SETFALSE cannot occur
+def vfsetoeq_v4f32 : vfsetcc_type<v4i32, v4f32, SETOEQ>;
+def vfsetoeq_v2f64 : vfsetcc_type<v2i64, v2f64, SETOEQ>;
+def vfsetoge_v4f32 : vfsetcc_type<v4i32, v4f32, SETOGE>;
+def vfsetoge_v2f64 : vfsetcc_type<v2i64, v2f64, SETOGE>;
+def vfsetogt_v4f32 : vfsetcc_type<v4i32, v4f32, SETOGT>;
+def vfsetogt_v2f64 : vfsetcc_type<v2i64, v2f64, SETOGT>;
+def vfsetole_v4f32 : vfsetcc_type<v4i32, v4f32, SETOLE>;
+def vfsetole_v2f64 : vfsetcc_type<v2i64, v2f64, SETOLE>;
+def vfsetolt_v4f32 : vfsetcc_type<v4i32, v4f32, SETOLT>;
+def vfsetolt_v2f64 : vfsetcc_type<v2i64, v2f64, SETOLT>;
+def vfsetone_v4f32 : vfsetcc_type<v4i32, v4f32, SETONE>;
+def vfsetone_v2f64 : vfsetcc_type<v2i64, v2f64, SETONE>;
+def vfsetord_v4f32 : vfsetcc_type<v4i32, v4f32, SETO>;
+def vfsetord_v2f64 : vfsetcc_type<v2i64, v2f64, SETO>;
+def vfsetun_v4f32 : vfsetcc_type<v4i32, v4f32, SETUO>;
+def vfsetun_v2f64 : vfsetcc_type<v2i64, v2f64, SETUO>;
+def vfsetueq_v4f32 : vfsetcc_type<v4i32, v4f32, SETUEQ>;
+def vfsetueq_v2f64 : vfsetcc_type<v2i64, v2f64, SETUEQ>;
+def vfsetuge_v4f32 : vfsetcc_type<v4i32, v4f32, SETUGE>;
+def vfsetuge_v2f64 : vfsetcc_type<v2i64, v2f64, SETUGE>;
+def vfsetugt_v4f32 : vfsetcc_type<v4i32, v4f32, SETUGT>;
+def vfsetugt_v2f64 : vfsetcc_type<v2i64, v2f64, SETUGT>;
+def vfsetule_v4f32 : vfsetcc_type<v4i32, v4f32, SETULE>;
+def vfsetule_v2f64 : vfsetcc_type<v2i64, v2f64, SETULE>;
+def vfsetult_v4f32 : vfsetcc_type<v4i32, v4f32, SETULT>;
+def vfsetult_v2f64 : vfsetcc_type<v2i64, v2f64, SETULT>;
+def vfsetune_v4f32 : vfsetcc_type<v4i32, v4f32, SETUNE>;
+def vfsetune_v2f64 : vfsetcc_type<v2i64, v2f64, SETUNE>;
+// ISD::SETTRUE cannot occur
+// ISD::SETFALSE2 cannot occur
+// ISD::SETTRUE2 cannot occur
+
+class vsetcc_type<ValueType ResTy, CondCode CC> :
+ PatFrag<(ops node:$lhs, node:$rhs),
+ (ResTy (vsetcc node:$lhs, node:$rhs, CC))>;
+
+def vseteq_v16i8 : vsetcc_type<v16i8, SETEQ>;
+def vseteq_v8i16 : vsetcc_type<v8i16, SETEQ>;
+def vseteq_v4i32 : vsetcc_type<v4i32, SETEQ>;
+def vseteq_v2i64 : vsetcc_type<v2i64, SETEQ>;
+def vsetle_v16i8 : vsetcc_type<v16i8, SETLE>;
+def vsetle_v8i16 : vsetcc_type<v8i16, SETLE>;
+def vsetle_v4i32 : vsetcc_type<v4i32, SETLE>;
+def vsetle_v2i64 : vsetcc_type<v2i64, SETLE>;
+def vsetlt_v16i8 : vsetcc_type<v16i8, SETLT>;
+def vsetlt_v8i16 : vsetcc_type<v8i16, SETLT>;
+def vsetlt_v4i32 : vsetcc_type<v4i32, SETLT>;
+def vsetlt_v2i64 : vsetcc_type<v2i64, SETLT>;
+def vsetule_v16i8 : vsetcc_type<v16i8, SETULE>;
+def vsetule_v8i16 : vsetcc_type<v8i16, SETULE>;
+def vsetule_v4i32 : vsetcc_type<v4i32, SETULE>;
+def vsetule_v2i64 : vsetcc_type<v2i64, SETULE>;
+def vsetult_v16i8 : vsetcc_type<v16i8, SETULT>;
+def vsetult_v8i16 : vsetcc_type<v8i16, SETULT>;
+def vsetult_v4i32 : vsetcc_type<v4i32, SETULT>;
+def vsetult_v2i64 : vsetcc_type<v2i64, SETULT>;
+
+def vsplati8 : PatFrag<(ops node:$e0),
+ (v16i8 (build_vector node:$e0, node:$e0,
+ node:$e0, node:$e0,
+ node:$e0, node:$e0,
+ node:$e0, node:$e0,
+ node:$e0, node:$e0,
+ node:$e0, node:$e0,
+ node:$e0, node:$e0,
+ node:$e0, node:$e0))>;
+def vsplati16 : PatFrag<(ops node:$e0),
+ (v8i16 (build_vector node:$e0, node:$e0,
+ node:$e0, node:$e0,
+ node:$e0, node:$e0,
+ node:$e0, node:$e0))>;
+def vsplati32 : PatFrag<(ops node:$e0),
+ (v4i32 (build_vector node:$e0, node:$e0,
+ node:$e0, node:$e0))>;
+def vsplati64 : PatFrag<(ops node:$e0),
+ (v2i64 (build_vector node:$e0, node:$e0))>;
+def vsplatf32 : PatFrag<(ops node:$e0),
+ (v4f32 (build_vector node:$e0, node:$e0,
+ node:$e0, node:$e0))>;
+def vsplatf64 : PatFrag<(ops node:$e0),
+ (v2f64 (build_vector node:$e0, node:$e0))>;
+
+def vsplati8_elt : PatFrag<(ops node:$v, node:$i),
+ (MipsVSHF (vsplati8 node:$i), node:$v, node:$v)>;
+def vsplati16_elt : PatFrag<(ops node:$v, node:$i),
+ (MipsVSHF (vsplati16 node:$i), node:$v, node:$v)>;
+def vsplati32_elt : PatFrag<(ops node:$v, node:$i),
+ (MipsVSHF (vsplati32 node:$i), node:$v, node:$v)>;
+def vsplati64_elt : PatFrag<(ops node:$v, node:$i),
+ (MipsVSHF (vsplati64 node:$i), node:$v, node:$v)>;
+
+class SplatPatLeaf<Operand opclass, dag frag, code pred = [{}],
+ SDNodeXForm xform = NOOP_SDNodeXForm>
+ : PatLeaf<frag, pred, xform> {
+ Operand OpClass = opclass;
+}
+
+class SplatComplexPattern<Operand opclass, ValueType ty, int numops, string fn,
+ list<SDNode> roots = [],
+ list<SDNodeProperty> props = []> :
+ ComplexPattern<ty, numops, fn, roots, props> {
+ Operand OpClass = opclass;
+}
+
+def vsplati8_uimm3 : SplatComplexPattern<vsplat_uimm3, v16i8, 1,
+ "selectVSplatUimm3",
+ [build_vector, bitconvert]>;
+
+def vsplati8_uimm4 : SplatComplexPattern<vsplat_uimm4, v16i8, 1,
+ "selectVSplatUimm4",
+ [build_vector, bitconvert]>;
+
+def vsplati8_uimm5 : SplatComplexPattern<vsplat_uimm5, v16i8, 1,
+ "selectVSplatUimm5",
+ [build_vector, bitconvert]>;
+
+def vsplati8_uimm8 : SplatComplexPattern<vsplat_uimm8, v16i8, 1,
+ "selectVSplatUimm8",
+ [build_vector, bitconvert]>;
+
+def vsplati8_simm5 : SplatComplexPattern<vsplat_simm5, v16i8, 1,
+ "selectVSplatSimm5",
+ [build_vector, bitconvert]>;
+
+def vsplati16_uimm3 : SplatComplexPattern<vsplat_uimm3, v8i16, 1,
+ "selectVSplatUimm3",
+ [build_vector, bitconvert]>;
+
+def vsplati16_uimm4 : SplatComplexPattern<vsplat_uimm4, v8i16, 1,
+ "selectVSplatUimm4",
+ [build_vector, bitconvert]>;
+
+def vsplati16_uimm5 : SplatComplexPattern<vsplat_uimm5, v8i16, 1,
+ "selectVSplatUimm5",
+ [build_vector, bitconvert]>;
+
+def vsplati16_simm5 : SplatComplexPattern<vsplat_simm5, v8i16, 1,
+ "selectVSplatSimm5",
+ [build_vector, bitconvert]>;
+
+def vsplati32_uimm2 : SplatComplexPattern<vsplat_uimm2, v4i32, 1,
+ "selectVSplatUimm2",
+ [build_vector, bitconvert]>;
+
+def vsplati32_uimm5 : SplatComplexPattern<vsplat_uimm5, v4i32, 1,
+ "selectVSplatUimm5",
+ [build_vector, bitconvert]>;
+
+def vsplati32_simm5 : SplatComplexPattern<vsplat_simm5, v4i32, 1,
+ "selectVSplatSimm5",
+ [build_vector, bitconvert]>;
+
+def vsplati64_uimm1 : SplatComplexPattern<vsplat_uimm1, v2i64, 1,
+ "selectVSplatUimm1",
+ [build_vector, bitconvert]>;
+
+def vsplati64_uimm5 : SplatComplexPattern<vsplat_uimm5, v2i64, 1,
+ "selectVSplatUimm5",
+ [build_vector, bitconvert]>;
+
+def vsplati64_uimm6 : SplatComplexPattern<vsplat_uimm6, v2i64, 1,
+ "selectVSplatUimm6",
+ [build_vector, bitconvert]>;
+
+def vsplati64_simm5 : SplatComplexPattern<vsplat_simm5, v2i64, 1,
+ "selectVSplatSimm5",
+ [build_vector, bitconvert]>;
+
+// Any build_vector that is a constant splat with a value that is an exact
+// power of 2
+def vsplat_uimm_pow2 : ComplexPattern<vAny, 1, "selectVSplatUimmPow2",
+ [build_vector, bitconvert]>;
+
+// Any build_vector that is a constant splat with a value that is the bitwise
+// inverse of an exact power of 2
+def vsplat_uimm_inv_pow2 : ComplexPattern<vAny, 1, "selectVSplatUimmInvPow2",
+ [build_vector, bitconvert]>;
+
+// Any build_vector that is a constant splat with only a consecutive sequence
+// of left-most bits set.
+def vsplat_maskl_bits : SplatComplexPattern<vsplat_uimm8, vAny, 1,
+ "selectVSplatMaskL",
+ [build_vector, bitconvert]>;
+
+// Any build_vector that is a constant splat with only a consecutive sequence
+// of right-most bits set.
+def vsplat_maskr_bits : SplatComplexPattern<vsplat_uimm8, vAny, 1,
+ "selectVSplatMaskR",
+ [build_vector, bitconvert]>;
+
+// Any build_vector that is a constant splat with a value that equals 1
+// FIXME: These should be a ComplexPattern but we can't use them because the
+// ISel generator requires the uses to have a name, but providing a name
+// causes other errors ("used in pattern but not operand list")
+def vsplat_imm_eq_1 : PatLeaf<(build_vector), [{
+ APInt Imm;
+ EVT EltTy = N->getValueType(0).getVectorElementType();
+
+ return selectVSplat (N, Imm) &&
+ Imm.getBitWidth() == EltTy.getSizeInBits() && Imm == 1;
+}]>;
+
+def vsplati64_imm_eq_1 : PatLeaf<(bitconvert (v4i32 (build_vector))), [{
+ APInt Imm;
+ SDNode *BV = N->getOperand(0).getNode();
+ EVT EltTy = N->getValueType(0).getVectorElementType();
+
+ return selectVSplat (BV, Imm) &&
+ Imm.getBitWidth() == EltTy.getSizeInBits() && Imm == 1;
+}]>;
+
+def vbclr_b : PatFrag<(ops node:$ws, node:$wt),
+ (and node:$ws, (xor (shl vsplat_imm_eq_1, node:$wt),
+ immAllOnesV))>;
+def vbclr_h : PatFrag<(ops node:$ws, node:$wt),
+ (and node:$ws, (xor (shl vsplat_imm_eq_1, node:$wt),
+ immAllOnesV))>;
+def vbclr_w : PatFrag<(ops node:$ws, node:$wt),
+ (and node:$ws, (xor (shl vsplat_imm_eq_1, node:$wt),
+ immAllOnesV))>;
+def vbclr_d : PatFrag<(ops node:$ws, node:$wt),
+ (and node:$ws, (xor (shl (v2i64 vsplati64_imm_eq_1),
+ node:$wt),
+ (bitconvert (v4i32 immAllOnesV))))>;
+
+def vbneg_b : PatFrag<(ops node:$ws, node:$wt),
+ (xor node:$ws, (shl vsplat_imm_eq_1, node:$wt))>;
+def vbneg_h : PatFrag<(ops node:$ws, node:$wt),
+ (xor node:$ws, (shl vsplat_imm_eq_1, node:$wt))>;
+def vbneg_w : PatFrag<(ops node:$ws, node:$wt),
+ (xor node:$ws, (shl vsplat_imm_eq_1, node:$wt))>;
+def vbneg_d : PatFrag<(ops node:$ws, node:$wt),
+ (xor node:$ws, (shl (v2i64 vsplati64_imm_eq_1),
+ node:$wt))>;
+
+def vbset_b : PatFrag<(ops node:$ws, node:$wt),
+ (or node:$ws, (shl vsplat_imm_eq_1, node:$wt))>;
+def vbset_h : PatFrag<(ops node:$ws, node:$wt),
+ (or node:$ws, (shl vsplat_imm_eq_1, node:$wt))>;
+def vbset_w : PatFrag<(ops node:$ws, node:$wt),
+ (or node:$ws, (shl vsplat_imm_eq_1, node:$wt))>;
+def vbset_d : PatFrag<(ops node:$ws, node:$wt),
+ (or node:$ws, (shl (v2i64 vsplati64_imm_eq_1),
+ node:$wt))>;
+
+def fms : PatFrag<(ops node:$wd, node:$ws, node:$wt),
+ (fsub node:$wd, (fmul node:$ws, node:$wt))>;
+
+def muladd : PatFrag<(ops node:$wd, node:$ws, node:$wt),
+ (add node:$wd, (mul node:$ws, node:$wt))>;
+
+def mulsub : PatFrag<(ops node:$wd, node:$ws, node:$wt),
+ (sub node:$wd, (mul node:$ws, node:$wt))>;
+
+def mul_fexp2 : PatFrag<(ops node:$ws, node:$wt),
+ (fmul node:$ws, (fexp2 node:$wt))>;
+
+// Immediates
+def immSExt5 : ImmLeaf<i32, [{return isInt<5>(Imm);}]>;
+def immSExt10: ImmLeaf<i32, [{return isInt<10>(Imm);}]>;
+
+// Instruction encoding.
+class ADD_A_B_ENC : MSA_3R_FMT<0b000, 0b00, 0b010000>;
+class ADD_A_H_ENC : MSA_3R_FMT<0b000, 0b01, 0b010000>;
+class ADD_A_W_ENC : MSA_3R_FMT<0b000, 0b10, 0b010000>;
+class ADD_A_D_ENC : MSA_3R_FMT<0b000, 0b11, 0b010000>;
+
+class ADDS_A_B_ENC : MSA_3R_FMT<0b001, 0b00, 0b010000>;
+class ADDS_A_H_ENC : MSA_3R_FMT<0b001, 0b01, 0b010000>;
+class ADDS_A_W_ENC : MSA_3R_FMT<0b001, 0b10, 0b010000>;
+class ADDS_A_D_ENC : MSA_3R_FMT<0b001, 0b11, 0b010000>;
+
+class ADDS_S_B_ENC : MSA_3R_FMT<0b010, 0b00, 0b010000>;
+class ADDS_S_H_ENC : MSA_3R_FMT<0b010, 0b01, 0b010000>;
+class ADDS_S_W_ENC : MSA_3R_FMT<0b010, 0b10, 0b010000>;
+class ADDS_S_D_ENC : MSA_3R_FMT<0b010, 0b11, 0b010000>;
+
+class ADDS_U_B_ENC : MSA_3R_FMT<0b011, 0b00, 0b010000>;
+class ADDS_U_H_ENC : MSA_3R_FMT<0b011, 0b01, 0b010000>;
+class ADDS_U_W_ENC : MSA_3R_FMT<0b011, 0b10, 0b010000>;
+class ADDS_U_D_ENC : MSA_3R_FMT<0b011, 0b11, 0b010000>;
+
+class ADDV_B_ENC : MSA_3R_FMT<0b000, 0b00, 0b001110>;
+class ADDV_H_ENC : MSA_3R_FMT<0b000, 0b01, 0b001110>;
+class ADDV_W_ENC : MSA_3R_FMT<0b000, 0b10, 0b001110>;
+class ADDV_D_ENC : MSA_3R_FMT<0b000, 0b11, 0b001110>;
+
+class ADDVI_B_ENC : MSA_I5_FMT<0b000, 0b00, 0b000110>;
+class ADDVI_H_ENC : MSA_I5_FMT<0b000, 0b01, 0b000110>;
+class ADDVI_W_ENC : MSA_I5_FMT<0b000, 0b10, 0b000110>;
+class ADDVI_D_ENC : MSA_I5_FMT<0b000, 0b11, 0b000110>;
+
+class AND_V_ENC : MSA_VEC_FMT<0b00000, 0b011110>;
+
+class ANDI_B_ENC : MSA_I8_FMT<0b00, 0b000000>;
+
+class ASUB_S_B_ENC : MSA_3R_FMT<0b100, 0b00, 0b010001>;
+class ASUB_S_H_ENC : MSA_3R_FMT<0b100, 0b01, 0b010001>;
+class ASUB_S_W_ENC : MSA_3R_FMT<0b100, 0b10, 0b010001>;
+class ASUB_S_D_ENC : MSA_3R_FMT<0b100, 0b11, 0b010001>;
+
+class ASUB_U_B_ENC : MSA_3R_FMT<0b101, 0b00, 0b010001>;
+class ASUB_U_H_ENC : MSA_3R_FMT<0b101, 0b01, 0b010001>;
+class ASUB_U_W_ENC : MSA_3R_FMT<0b101, 0b10, 0b010001>;
+class ASUB_U_D_ENC : MSA_3R_FMT<0b101, 0b11, 0b010001>;
+
+class AVE_S_B_ENC : MSA_3R_FMT<0b100, 0b00, 0b010000>;
+class AVE_S_H_ENC : MSA_3R_FMT<0b100, 0b01, 0b010000>;
+class AVE_S_W_ENC : MSA_3R_FMT<0b100, 0b10, 0b010000>;
+class AVE_S_D_ENC : MSA_3R_FMT<0b100, 0b11, 0b010000>;
+
+class AVE_U_B_ENC : MSA_3R_FMT<0b101, 0b00, 0b010000>;
+class AVE_U_H_ENC : MSA_3R_FMT<0b101, 0b01, 0b010000>;
+class AVE_U_W_ENC : MSA_3R_FMT<0b101, 0b10, 0b010000>;
+class AVE_U_D_ENC : MSA_3R_FMT<0b101, 0b11, 0b010000>;
+
+class AVER_S_B_ENC : MSA_3R_FMT<0b110, 0b00, 0b010000>;
+class AVER_S_H_ENC : MSA_3R_FMT<0b110, 0b01, 0b010000>;
+class AVER_S_W_ENC : MSA_3R_FMT<0b110, 0b10, 0b010000>;
+class AVER_S_D_ENC : MSA_3R_FMT<0b110, 0b11, 0b010000>;
+
+class AVER_U_B_ENC : MSA_3R_FMT<0b111, 0b00, 0b010000>;
+class AVER_U_H_ENC : MSA_3R_FMT<0b111, 0b01, 0b010000>;
+class AVER_U_W_ENC : MSA_3R_FMT<0b111, 0b10, 0b010000>;
+class AVER_U_D_ENC : MSA_3R_FMT<0b111, 0b11, 0b010000>;
+
+class BCLR_B_ENC : MSA_3R_FMT<0b011, 0b00, 0b001101>;
+class BCLR_H_ENC : MSA_3R_FMT<0b011, 0b01, 0b001101>;
+class BCLR_W_ENC : MSA_3R_FMT<0b011, 0b10, 0b001101>;
+class BCLR_D_ENC : MSA_3R_FMT<0b011, 0b11, 0b001101>;
+
+class BCLRI_B_ENC : MSA_BIT_B_FMT<0b011, 0b001001>;
+class BCLRI_H_ENC : MSA_BIT_H_FMT<0b011, 0b001001>;
+class BCLRI_W_ENC : MSA_BIT_W_FMT<0b011, 0b001001>;
+class BCLRI_D_ENC : MSA_BIT_D_FMT<0b011, 0b001001>;
+
+class BINSL_B_ENC : MSA_3R_FMT<0b110, 0b00, 0b001101>;
+class BINSL_H_ENC : MSA_3R_FMT<0b110, 0b01, 0b001101>;
+class BINSL_W_ENC : MSA_3R_FMT<0b110, 0b10, 0b001101>;
+class BINSL_D_ENC : MSA_3R_FMT<0b110, 0b11, 0b001101>;
+
+class BINSLI_B_ENC : MSA_BIT_B_FMT<0b110, 0b001001>;
+class BINSLI_H_ENC : MSA_BIT_H_FMT<0b110, 0b001001>;
+class BINSLI_W_ENC : MSA_BIT_W_FMT<0b110, 0b001001>;
+class BINSLI_D_ENC : MSA_BIT_D_FMT<0b110, 0b001001>;
+
+class BINSR_B_ENC : MSA_3R_FMT<0b111, 0b00, 0b001101>;
+class BINSR_H_ENC : MSA_3R_FMT<0b111, 0b01, 0b001101>;
+class BINSR_W_ENC : MSA_3R_FMT<0b111, 0b10, 0b001101>;
+class BINSR_D_ENC : MSA_3R_FMT<0b111, 0b11, 0b001101>;
+
+class BINSRI_B_ENC : MSA_BIT_B_FMT<0b111, 0b001001>;
+class BINSRI_H_ENC : MSA_BIT_H_FMT<0b111, 0b001001>;
+class BINSRI_W_ENC : MSA_BIT_W_FMT<0b111, 0b001001>;
+class BINSRI_D_ENC : MSA_BIT_D_FMT<0b111, 0b001001>;
+
+class BMNZ_V_ENC : MSA_VEC_FMT<0b00100, 0b011110>;
+
+class BMNZI_B_ENC : MSA_I8_FMT<0b00, 0b000001>;
+
+class BMZ_V_ENC : MSA_VEC_FMT<0b00101, 0b011110>;
+
+class BMZI_B_ENC : MSA_I8_FMT<0b01, 0b000001>;
+
+class BNEG_B_ENC : MSA_3R_FMT<0b101, 0b00, 0b001101>;
+class BNEG_H_ENC : MSA_3R_FMT<0b101, 0b01, 0b001101>;
+class BNEG_W_ENC : MSA_3R_FMT<0b101, 0b10, 0b001101>;
+class BNEG_D_ENC : MSA_3R_FMT<0b101, 0b11, 0b001101>;
+
+class BNEGI_B_ENC : MSA_BIT_B_FMT<0b101, 0b001001>;
+class BNEGI_H_ENC : MSA_BIT_H_FMT<0b101, 0b001001>;
+class BNEGI_W_ENC : MSA_BIT_W_FMT<0b101, 0b001001>;
+class BNEGI_D_ENC : MSA_BIT_D_FMT<0b101, 0b001001>;
+
+class BNZ_B_ENC : MSA_CBRANCH_FMT<0b111, 0b00>;
+class BNZ_H_ENC : MSA_CBRANCH_FMT<0b111, 0b01>;
+class BNZ_W_ENC : MSA_CBRANCH_FMT<0b111, 0b10>;
+class BNZ_D_ENC : MSA_CBRANCH_FMT<0b111, 0b11>;
+
+class BNZ_V_ENC : MSA_CBRANCH_V_FMT<0b01111>;
+
+class BSEL_V_ENC : MSA_VEC_FMT<0b00110, 0b011110>;
+
+class BSELI_B_ENC : MSA_I8_FMT<0b10, 0b000001>;
+
+class BSET_B_ENC : MSA_3R_FMT<0b100, 0b00, 0b001101>;
+class BSET_H_ENC : MSA_3R_FMT<0b100, 0b01, 0b001101>;
+class BSET_W_ENC : MSA_3R_FMT<0b100, 0b10, 0b001101>;
+class BSET_D_ENC : MSA_3R_FMT<0b100, 0b11, 0b001101>;
+
+class BSETI_B_ENC : MSA_BIT_B_FMT<0b100, 0b001001>;
+class BSETI_H_ENC : MSA_BIT_H_FMT<0b100, 0b001001>;
+class BSETI_W_ENC : MSA_BIT_W_FMT<0b100, 0b001001>;
+class BSETI_D_ENC : MSA_BIT_D_FMT<0b100, 0b001001>;
+
+class BZ_B_ENC : MSA_CBRANCH_FMT<0b110, 0b00>;
+class BZ_H_ENC : MSA_CBRANCH_FMT<0b110, 0b01>;
+class BZ_W_ENC : MSA_CBRANCH_FMT<0b110, 0b10>;
+class BZ_D_ENC : MSA_CBRANCH_FMT<0b110, 0b11>;
+
+class BZ_V_ENC : MSA_CBRANCH_V_FMT<0b01011>;
+
+class CEQ_B_ENC : MSA_3R_FMT<0b000, 0b00, 0b001111>;
+class CEQ_H_ENC : MSA_3R_FMT<0b000, 0b01, 0b001111>;
+class CEQ_W_ENC : MSA_3R_FMT<0b000, 0b10, 0b001111>;
+class CEQ_D_ENC : MSA_3R_FMT<0b000, 0b11, 0b001111>;
+
+class CEQI_B_ENC : MSA_I5_FMT<0b000, 0b00, 0b000111>;
+class CEQI_H_ENC : MSA_I5_FMT<0b000, 0b01, 0b000111>;
+class CEQI_W_ENC : MSA_I5_FMT<0b000, 0b10, 0b000111>;
+class CEQI_D_ENC : MSA_I5_FMT<0b000, 0b11, 0b000111>;
+
+class CFCMSA_ENC : MSA_ELM_CFCMSA_FMT<0b0001111110, 0b011001>;
+
+class CLE_S_B_ENC : MSA_3R_FMT<0b100, 0b00, 0b001111>;
+class CLE_S_H_ENC : MSA_3R_FMT<0b100, 0b01, 0b001111>;
+class CLE_S_W_ENC : MSA_3R_FMT<0b100, 0b10, 0b001111>;
+class CLE_S_D_ENC : MSA_3R_FMT<0b100, 0b11, 0b001111>;
+
+class CLE_U_B_ENC : MSA_3R_FMT<0b101, 0b00, 0b001111>;
+class CLE_U_H_ENC : MSA_3R_FMT<0b101, 0b01, 0b001111>;
+class CLE_U_W_ENC : MSA_3R_FMT<0b101, 0b10, 0b001111>;
+class CLE_U_D_ENC : MSA_3R_FMT<0b101, 0b11, 0b001111>;
+
+class CLEI_S_B_ENC : MSA_I5_FMT<0b100, 0b00, 0b000111>;
+class CLEI_S_H_ENC : MSA_I5_FMT<0b100, 0b01, 0b000111>;
+class CLEI_S_W_ENC : MSA_I5_FMT<0b100, 0b10, 0b000111>;
+class CLEI_S_D_ENC : MSA_I5_FMT<0b100, 0b11, 0b000111>;
+
+class CLEI_U_B_ENC : MSA_I5_FMT<0b101, 0b00, 0b000111>;
+class CLEI_U_H_ENC : MSA_I5_FMT<0b101, 0b01, 0b000111>;
+class CLEI_U_W_ENC : MSA_I5_FMT<0b101, 0b10, 0b000111>;
+class CLEI_U_D_ENC : MSA_I5_FMT<0b101, 0b11, 0b000111>;
+
+class CLT_S_B_ENC : MSA_3R_FMT<0b010, 0b00, 0b001111>;
+class CLT_S_H_ENC : MSA_3R_FMT<0b010, 0b01, 0b001111>;
+class CLT_S_W_ENC : MSA_3R_FMT<0b010, 0b10, 0b001111>;
+class CLT_S_D_ENC : MSA_3R_FMT<0b010, 0b11, 0b001111>;
+
+class CLT_U_B_ENC : MSA_3R_FMT<0b011, 0b00, 0b001111>;
+class CLT_U_H_ENC : MSA_3R_FMT<0b011, 0b01, 0b001111>;
+class CLT_U_W_ENC : MSA_3R_FMT<0b011, 0b10, 0b001111>;
+class CLT_U_D_ENC : MSA_3R_FMT<0b011, 0b11, 0b001111>;
+
+class CLTI_S_B_ENC : MSA_I5_FMT<0b010, 0b00, 0b000111>;
+class CLTI_S_H_ENC : MSA_I5_FMT<0b010, 0b01, 0b000111>;
+class CLTI_S_W_ENC : MSA_I5_FMT<0b010, 0b10, 0b000111>;
+class CLTI_S_D_ENC : MSA_I5_FMT<0b010, 0b11, 0b000111>;
+
+class CLTI_U_B_ENC : MSA_I5_FMT<0b011, 0b00, 0b000111>;
+class CLTI_U_H_ENC : MSA_I5_FMT<0b011, 0b01, 0b000111>;
+class CLTI_U_W_ENC : MSA_I5_FMT<0b011, 0b10, 0b000111>;
+class CLTI_U_D_ENC : MSA_I5_FMT<0b011, 0b11, 0b000111>;
+
+class COPY_S_B_ENC : MSA_ELM_COPY_B_FMT<0b0010, 0b011001>;
+class COPY_S_H_ENC : MSA_ELM_COPY_H_FMT<0b0010, 0b011001>;
+class COPY_S_W_ENC : MSA_ELM_COPY_W_FMT<0b0010, 0b011001>;
+class COPY_S_D_ENC : MSA_ELM_COPY_D_FMT<0b0010, 0b011001>;
+
+class COPY_U_B_ENC : MSA_ELM_COPY_B_FMT<0b0011, 0b011001>;
+class COPY_U_H_ENC : MSA_ELM_COPY_H_FMT<0b0011, 0b011001>;
+class COPY_U_W_ENC : MSA_ELM_COPY_W_FMT<0b0011, 0b011001>;
+class COPY_U_D_ENC : MSA_ELM_COPY_D_FMT<0b0011, 0b011001>;
+
+class CTCMSA_ENC : MSA_ELM_CTCMSA_FMT<0b0000111110, 0b011001>;
+
+class DIV_S_B_ENC : MSA_3R_FMT<0b100, 0b00, 0b010010>;
+class DIV_S_H_ENC : MSA_3R_FMT<0b100, 0b01, 0b010010>;
+class DIV_S_W_ENC : MSA_3R_FMT<0b100, 0b10, 0b010010>;
+class DIV_S_D_ENC : MSA_3R_FMT<0b100, 0b11, 0b010010>;
+
+class DIV_U_B_ENC : MSA_3R_FMT<0b101, 0b00, 0b010010>;
+class DIV_U_H_ENC : MSA_3R_FMT<0b101, 0b01, 0b010010>;
+class DIV_U_W_ENC : MSA_3R_FMT<0b101, 0b10, 0b010010>;
+class DIV_U_D_ENC : MSA_3R_FMT<0b101, 0b11, 0b010010>;
+
+class DOTP_S_H_ENC : MSA_3R_FMT<0b000, 0b01, 0b010011>;
+class DOTP_S_W_ENC : MSA_3R_FMT<0b000, 0b10, 0b010011>;
+class DOTP_S_D_ENC : MSA_3R_FMT<0b000, 0b11, 0b010011>;
+
+class DOTP_U_H_ENC : MSA_3R_FMT<0b001, 0b01, 0b010011>;
+class DOTP_U_W_ENC : MSA_3R_FMT<0b001, 0b10, 0b010011>;
+class DOTP_U_D_ENC : MSA_3R_FMT<0b001, 0b11, 0b010011>;
+
+class DPADD_S_H_ENC : MSA_3R_FMT<0b010, 0b01, 0b010011>;
+class DPADD_S_W_ENC : MSA_3R_FMT<0b010, 0b10, 0b010011>;
+class DPADD_S_D_ENC : MSA_3R_FMT<0b010, 0b11, 0b010011>;
+
+class DPADD_U_H_ENC : MSA_3R_FMT<0b011, 0b01, 0b010011>;
+class DPADD_U_W_ENC : MSA_3R_FMT<0b011, 0b10, 0b010011>;
+class DPADD_U_D_ENC : MSA_3R_FMT<0b011, 0b11, 0b010011>;
+
+class DPSUB_S_H_ENC : MSA_3R_FMT<0b100, 0b01, 0b010011>;
+class DPSUB_S_W_ENC : MSA_3R_FMT<0b100, 0b10, 0b010011>;
+class DPSUB_S_D_ENC : MSA_3R_FMT<0b100, 0b11, 0b010011>;
+
+class DPSUB_U_H_ENC : MSA_3R_FMT<0b101, 0b01, 0b010011>;
+class DPSUB_U_W_ENC : MSA_3R_FMT<0b101, 0b10, 0b010011>;
+class DPSUB_U_D_ENC : MSA_3R_FMT<0b101, 0b11, 0b010011>;
+
+class FADD_W_ENC : MSA_3RF_FMT<0b0000, 0b0, 0b011011>;
+class FADD_D_ENC : MSA_3RF_FMT<0b0000, 0b1, 0b011011>;
+
+class FCAF_W_ENC : MSA_3RF_FMT<0b0000, 0b0, 0b011010>;
+class FCAF_D_ENC : MSA_3RF_FMT<0b0000, 0b1, 0b011010>;
+
+class FCEQ_W_ENC : MSA_3RF_FMT<0b0010, 0b0, 0b011010>;
+class FCEQ_D_ENC : MSA_3RF_FMT<0b0010, 0b1, 0b011010>;
+
+class FCLASS_W_ENC : MSA_2RF_FMT<0b110010000, 0b0, 0b011110>;
+class FCLASS_D_ENC : MSA_2RF_FMT<0b110010000, 0b1, 0b011110>;
+
+class FCLE_W_ENC : MSA_3RF_FMT<0b0110, 0b0, 0b011010>;
+class FCLE_D_ENC : MSA_3RF_FMT<0b0110, 0b1, 0b011010>;
+
+class FCLT_W_ENC : MSA_3RF_FMT<0b0100, 0b0, 0b011010>;
+class FCLT_D_ENC : MSA_3RF_FMT<0b0100, 0b1, 0b011010>;
+
+class FCNE_W_ENC : MSA_3RF_FMT<0b0011, 0b0, 0b011100>;
+class FCNE_D_ENC : MSA_3RF_FMT<0b0011, 0b1, 0b011100>;
+
+class FCOR_W_ENC : MSA_3RF_FMT<0b0001, 0b0, 0b011100>;
+class FCOR_D_ENC : MSA_3RF_FMT<0b0001, 0b1, 0b011100>;
+
+class FCUEQ_W_ENC : MSA_3RF_FMT<0b0011, 0b0, 0b011010>;
+class FCUEQ_D_ENC : MSA_3RF_FMT<0b0011, 0b1, 0b011010>;
+
+class FCULE_W_ENC : MSA_3RF_FMT<0b0111, 0b0, 0b011010>;
+class FCULE_D_ENC : MSA_3RF_FMT<0b0111, 0b1, 0b011010>;
+
+class FCULT_W_ENC : MSA_3RF_FMT<0b0101, 0b0, 0b011010>;
+class FCULT_D_ENC : MSA_3RF_FMT<0b0101, 0b1, 0b011010>;
+
+class FCUN_W_ENC : MSA_3RF_FMT<0b0001, 0b0, 0b011010>;
+class FCUN_D_ENC : MSA_3RF_FMT<0b0001, 0b1, 0b011010>;
+
+class FCUNE_W_ENC : MSA_3RF_FMT<0b0010, 0b0, 0b011100>;
+class FCUNE_D_ENC : MSA_3RF_FMT<0b0010, 0b1, 0b011100>;
+
+class FDIV_W_ENC : MSA_3RF_FMT<0b0011, 0b0, 0b011011>;
+class FDIV_D_ENC : MSA_3RF_FMT<0b0011, 0b1, 0b011011>;
+
+class FEXDO_H_ENC : MSA_3RF_FMT<0b1000, 0b0, 0b011011>;
+class FEXDO_W_ENC : MSA_3RF_FMT<0b1000, 0b1, 0b011011>;
+
+class FEXP2_W_ENC : MSA_3RF_FMT<0b0111, 0b0, 0b011011>;
+class FEXP2_D_ENC : MSA_3RF_FMT<0b0111, 0b1, 0b011011>;
+
+class FEXUPL_W_ENC : MSA_2RF_FMT<0b110011000, 0b0, 0b011110>;
+class FEXUPL_D_ENC : MSA_2RF_FMT<0b110011000, 0b1, 0b011110>;
+
+class FEXUPR_W_ENC : MSA_2RF_FMT<0b110011001, 0b0, 0b011110>;
+class FEXUPR_D_ENC : MSA_2RF_FMT<0b110011001, 0b1, 0b011110>;
+
+class FFINT_S_W_ENC : MSA_2RF_FMT<0b110011110, 0b0, 0b011110>;
+class FFINT_S_D_ENC : MSA_2RF_FMT<0b110011110, 0b1, 0b011110>;
+
+class FFINT_U_W_ENC : MSA_2RF_FMT<0b110011111, 0b0, 0b011110>;
+class FFINT_U_D_ENC : MSA_2RF_FMT<0b110011111, 0b1, 0b011110>;
+
+class FFQL_W_ENC : MSA_2RF_FMT<0b110011010, 0b0, 0b011110>;
+class FFQL_D_ENC : MSA_2RF_FMT<0b110011010, 0b1, 0b011110>;
+
+class FFQR_W_ENC : MSA_2RF_FMT<0b110011011, 0b0, 0b011110>;
+class FFQR_D_ENC : MSA_2RF_FMT<0b110011011, 0b1, 0b011110>;
+
+class FILL_B_ENC : MSA_2R_FILL_FMT<0b11000000, 0b00, 0b011110>;
+class FILL_H_ENC : MSA_2R_FILL_FMT<0b11000000, 0b01, 0b011110>;
+class FILL_W_ENC : MSA_2R_FILL_FMT<0b11000000, 0b10, 0b011110>;
+class FILL_D_ENC : MSA_2R_FILL_D_FMT<0b11000000, 0b11, 0b011110>;
+
+class FLOG2_W_ENC : MSA_2RF_FMT<0b110010111, 0b0, 0b011110>;
+class FLOG2_D_ENC : MSA_2RF_FMT<0b110010111, 0b1, 0b011110>;
+
+class FMADD_W_ENC : MSA_3RF_FMT<0b0100, 0b0, 0b011011>;
+class FMADD_D_ENC : MSA_3RF_FMT<0b0100, 0b1, 0b011011>;
+
+class FMAX_W_ENC : MSA_3RF_FMT<0b1110, 0b0, 0b011011>;
+class FMAX_D_ENC : MSA_3RF_FMT<0b1110, 0b1, 0b011011>;
+
+class FMAX_A_W_ENC : MSA_3RF_FMT<0b1111, 0b0, 0b011011>;
+class FMAX_A_D_ENC : MSA_3RF_FMT<0b1111, 0b1, 0b011011>;
+
+class FMIN_W_ENC : MSA_3RF_FMT<0b1100, 0b0, 0b011011>;
+class FMIN_D_ENC : MSA_3RF_FMT<0b1100, 0b1, 0b011011>;
+
+class FMIN_A_W_ENC : MSA_3RF_FMT<0b1101, 0b0, 0b011011>;
+class FMIN_A_D_ENC : MSA_3RF_FMT<0b1101, 0b1, 0b011011>;
+
+class FMSUB_W_ENC : MSA_3RF_FMT<0b0101, 0b0, 0b011011>;
+class FMSUB_D_ENC : MSA_3RF_FMT<0b0101, 0b1, 0b011011>;
+
+class FMUL_W_ENC : MSA_3RF_FMT<0b0010, 0b0, 0b011011>;
+class FMUL_D_ENC : MSA_3RF_FMT<0b0010, 0b1, 0b011011>;
+
+class FRINT_W_ENC : MSA_2RF_FMT<0b110010110, 0b0, 0b011110>;
+class FRINT_D_ENC : MSA_2RF_FMT<0b110010110, 0b1, 0b011110>;
+
+class FRCP_W_ENC : MSA_2RF_FMT<0b110010101, 0b0, 0b011110>;
+class FRCP_D_ENC : MSA_2RF_FMT<0b110010101, 0b1, 0b011110>;
+
+class FRSQRT_W_ENC : MSA_2RF_FMT<0b110010100, 0b0, 0b011110>;
+class FRSQRT_D_ENC : MSA_2RF_FMT<0b110010100, 0b1, 0b011110>;
+
+class FSAF_W_ENC : MSA_3RF_FMT<0b1000, 0b0, 0b011010>;
+class FSAF_D_ENC : MSA_3RF_FMT<0b1000, 0b1, 0b011010>;
+
+class FSEQ_W_ENC : MSA_3RF_FMT<0b1010, 0b0, 0b011010>;
+class FSEQ_D_ENC : MSA_3RF_FMT<0b1010, 0b1, 0b011010>;
+
+class FSLE_W_ENC : MSA_3RF_FMT<0b1110, 0b0, 0b011010>;
+class FSLE_D_ENC : MSA_3RF_FMT<0b1110, 0b1, 0b011010>;
+
+class FSLT_W_ENC : MSA_3RF_FMT<0b1100, 0b0, 0b011010>;
+class FSLT_D_ENC : MSA_3RF_FMT<0b1100, 0b1, 0b011010>;
+
+class FSNE_W_ENC : MSA_3RF_FMT<0b1011, 0b0, 0b011100>;
+class FSNE_D_ENC : MSA_3RF_FMT<0b1011, 0b1, 0b011100>;
+
+class FSOR_W_ENC : MSA_3RF_FMT<0b1001, 0b0, 0b011100>;
+class FSOR_D_ENC : MSA_3RF_FMT<0b1001, 0b1, 0b011100>;
+
+class FSQRT_W_ENC : MSA_2RF_FMT<0b110010011, 0b0, 0b011110>;
+class FSQRT_D_ENC : MSA_2RF_FMT<0b110010011, 0b1, 0b011110>;
+
+class FSUB_W_ENC : MSA_3RF_FMT<0b0001, 0b0, 0b011011>;
+class FSUB_D_ENC : MSA_3RF_FMT<0b0001, 0b1, 0b011011>;
+
+class FSUEQ_W_ENC : MSA_3RF_FMT<0b1011, 0b0, 0b011010>;
+class FSUEQ_D_ENC : MSA_3RF_FMT<0b1011, 0b1, 0b011010>;
+
+class FSULE_W_ENC : MSA_3RF_FMT<0b1111, 0b0, 0b011010>;
+class FSULE_D_ENC : MSA_3RF_FMT<0b1111, 0b1, 0b011010>;
+
+class FSULT_W_ENC : MSA_3RF_FMT<0b1101, 0b0, 0b011010>;
+class FSULT_D_ENC : MSA_3RF_FMT<0b1101, 0b1, 0b011010>;
+
+class FSUN_W_ENC : MSA_3RF_FMT<0b1001, 0b0, 0b011010>;
+class FSUN_D_ENC : MSA_3RF_FMT<0b1001, 0b1, 0b011010>;
+
+class FSUNE_W_ENC : MSA_3RF_FMT<0b1010, 0b0, 0b011100>;
+class FSUNE_D_ENC : MSA_3RF_FMT<0b1010, 0b1, 0b011100>;
+
+class FTINT_S_W_ENC : MSA_2RF_FMT<0b110011100, 0b0, 0b011110>;
+class FTINT_S_D_ENC : MSA_2RF_FMT<0b110011100, 0b1, 0b011110>;
+
+class FTINT_U_W_ENC : MSA_2RF_FMT<0b110011101, 0b0, 0b011110>;
+class FTINT_U_D_ENC : MSA_2RF_FMT<0b110011101, 0b1, 0b011110>;
+
+class FTQ_H_ENC : MSA_3RF_FMT<0b1010, 0b0, 0b011011>;
+class FTQ_W_ENC : MSA_3RF_FMT<0b1010, 0b1, 0b011011>;
+
+class FTRUNC_S_W_ENC : MSA_2RF_FMT<0b110010001, 0b0, 0b011110>;
+class FTRUNC_S_D_ENC : MSA_2RF_FMT<0b110010001, 0b1, 0b011110>;
+
+class FTRUNC_U_W_ENC : MSA_2RF_FMT<0b110010010, 0b0, 0b011110>;
+class FTRUNC_U_D_ENC : MSA_2RF_FMT<0b110010010, 0b1, 0b011110>;
+
+class HADD_S_H_ENC : MSA_3R_FMT<0b100, 0b01, 0b010101>;
+class HADD_S_W_ENC : MSA_3R_FMT<0b100, 0b10, 0b010101>;
+class HADD_S_D_ENC : MSA_3R_FMT<0b100, 0b11, 0b010101>;
+
+class HADD_U_H_ENC : MSA_3R_FMT<0b101, 0b01, 0b010101>;
+class HADD_U_W_ENC : MSA_3R_FMT<0b101, 0b10, 0b010101>;
+class HADD_U_D_ENC : MSA_3R_FMT<0b101, 0b11, 0b010101>;
+
+class HSUB_S_H_ENC : MSA_3R_FMT<0b110, 0b01, 0b010101>;
+class HSUB_S_W_ENC : MSA_3R_FMT<0b110, 0b10, 0b010101>;
+class HSUB_S_D_ENC : MSA_3R_FMT<0b110, 0b11, 0b010101>;
+
+class HSUB_U_H_ENC : MSA_3R_FMT<0b111, 0b01, 0b010101>;
+class HSUB_U_W_ENC : MSA_3R_FMT<0b111, 0b10, 0b010101>;
+class HSUB_U_D_ENC : MSA_3R_FMT<0b111, 0b11, 0b010101>;
+
+class ILVEV_B_ENC : MSA_3R_FMT<0b110, 0b00, 0b010100>;
+class ILVEV_H_ENC : MSA_3R_FMT<0b110, 0b01, 0b010100>;
+class ILVEV_W_ENC : MSA_3R_FMT<0b110, 0b10, 0b010100>;
+class ILVEV_D_ENC : MSA_3R_FMT<0b110, 0b11, 0b010100>;
+
+class ILVL_B_ENC : MSA_3R_FMT<0b100, 0b00, 0b010100>;
+class ILVL_H_ENC : MSA_3R_FMT<0b100, 0b01, 0b010100>;
+class ILVL_W_ENC : MSA_3R_FMT<0b100, 0b10, 0b010100>;
+class ILVL_D_ENC : MSA_3R_FMT<0b100, 0b11, 0b010100>;
+
+class ILVOD_B_ENC : MSA_3R_FMT<0b111, 0b00, 0b010100>;
+class ILVOD_H_ENC : MSA_3R_FMT<0b111, 0b01, 0b010100>;
+class ILVOD_W_ENC : MSA_3R_FMT<0b111, 0b10, 0b010100>;
+class ILVOD_D_ENC : MSA_3R_FMT<0b111, 0b11, 0b010100>;
+
+class ILVR_B_ENC : MSA_3R_FMT<0b101, 0b00, 0b010100>;
+class ILVR_H_ENC : MSA_3R_FMT<0b101, 0b01, 0b010100>;
+class ILVR_W_ENC : MSA_3R_FMT<0b101, 0b10, 0b010100>;
+class ILVR_D_ENC : MSA_3R_FMT<0b101, 0b11, 0b010100>;
+
+class INSERT_B_ENC : MSA_ELM_INSERT_B_FMT<0b0100, 0b011001>;
+class INSERT_H_ENC : MSA_ELM_INSERT_H_FMT<0b0100, 0b011001>;
+class INSERT_W_ENC : MSA_ELM_INSERT_W_FMT<0b0100, 0b011001>;
+class INSERT_D_ENC : MSA_ELM_INSERT_D_FMT<0b0100, 0b011001>;
+
+class INSVE_B_ENC : MSA_ELM_B_FMT<0b0101, 0b011001>;
+class INSVE_H_ENC : MSA_ELM_H_FMT<0b0101, 0b011001>;
+class INSVE_W_ENC : MSA_ELM_W_FMT<0b0101, 0b011001>;
+class INSVE_D_ENC : MSA_ELM_D_FMT<0b0101, 0b011001>;
+
+class LD_B_ENC : MSA_MI10_FMT<0b00, 0b1000>;
+class LD_H_ENC : MSA_MI10_FMT<0b01, 0b1000>;
+class LD_W_ENC : MSA_MI10_FMT<0b10, 0b1000>;
+class LD_D_ENC : MSA_MI10_FMT<0b11, 0b1000>;
+
+class LDI_B_ENC : MSA_I10_FMT<0b110, 0b00, 0b000111>;
+class LDI_H_ENC : MSA_I10_FMT<0b110, 0b01, 0b000111>;
+class LDI_W_ENC : MSA_I10_FMT<0b110, 0b10, 0b000111>;
+class LDI_D_ENC : MSA_I10_FMT<0b110, 0b11, 0b000111>;
+
+class LSA_ENC : SPECIAL_LSA_FMT<0b000101>;
+class DLSA_ENC : SPECIAL_DLSA_FMT<0b010101>;
+
+class MADD_Q_H_ENC : MSA_3RF_FMT<0b0101, 0b0, 0b011100>;
+class MADD_Q_W_ENC : MSA_3RF_FMT<0b0101, 0b1, 0b011100>;
+
+class MADDR_Q_H_ENC : MSA_3RF_FMT<0b1101, 0b0, 0b011100>;
+class MADDR_Q_W_ENC : MSA_3RF_FMT<0b1101, 0b1, 0b011100>;
+
+class MADDV_B_ENC : MSA_3R_FMT<0b001, 0b00, 0b010010>;
+class MADDV_H_ENC : MSA_3R_FMT<0b001, 0b01, 0b010010>;
+class MADDV_W_ENC : MSA_3R_FMT<0b001, 0b10, 0b010010>;
+class MADDV_D_ENC : MSA_3R_FMT<0b001, 0b11, 0b010010>;
+
+class MAX_A_B_ENC : MSA_3R_FMT<0b110, 0b00, 0b001110>;
+class MAX_A_H_ENC : MSA_3R_FMT<0b110, 0b01, 0b001110>;
+class MAX_A_W_ENC : MSA_3R_FMT<0b110, 0b10, 0b001110>;
+class MAX_A_D_ENC : MSA_3R_FMT<0b110, 0b11, 0b001110>;
+
+class MAX_S_B_ENC : MSA_3R_FMT<0b010, 0b00, 0b001110>;
+class MAX_S_H_ENC : MSA_3R_FMT<0b010, 0b01, 0b001110>;
+class MAX_S_W_ENC : MSA_3R_FMT<0b010, 0b10, 0b001110>;
+class MAX_S_D_ENC : MSA_3R_FMT<0b010, 0b11, 0b001110>;
+
+class MAX_U_B_ENC : MSA_3R_FMT<0b011, 0b00, 0b001110>;
+class MAX_U_H_ENC : MSA_3R_FMT<0b011, 0b01, 0b001110>;
+class MAX_U_W_ENC : MSA_3R_FMT<0b011, 0b10, 0b001110>;
+class MAX_U_D_ENC : MSA_3R_FMT<0b011, 0b11, 0b001110>;
+
+class MAXI_S_B_ENC : MSA_I5_FMT<0b010, 0b00, 0b000110>;
+class MAXI_S_H_ENC : MSA_I5_FMT<0b010, 0b01, 0b000110>;
+class MAXI_S_W_ENC : MSA_I5_FMT<0b010, 0b10, 0b000110>;
+class MAXI_S_D_ENC : MSA_I5_FMT<0b010, 0b11, 0b000110>;
+
+class MAXI_U_B_ENC : MSA_I5_FMT<0b011, 0b00, 0b000110>;
+class MAXI_U_H_ENC : MSA_I5_FMT<0b011, 0b01, 0b000110>;
+class MAXI_U_W_ENC : MSA_I5_FMT<0b011, 0b10, 0b000110>;
+class MAXI_U_D_ENC : MSA_I5_FMT<0b011, 0b11, 0b000110>;
+
+class MIN_A_B_ENC : MSA_3R_FMT<0b111, 0b00, 0b001110>;
+class MIN_A_H_ENC : MSA_3R_FMT<0b111, 0b01, 0b001110>;
+class MIN_A_W_ENC : MSA_3R_FMT<0b111, 0b10, 0b001110>;
+class MIN_A_D_ENC : MSA_3R_FMT<0b111, 0b11, 0b001110>;
+
+class MIN_S_B_ENC : MSA_3R_FMT<0b100, 0b00, 0b001110>;
+class MIN_S_H_ENC : MSA_3R_FMT<0b100, 0b01, 0b001110>;
+class MIN_S_W_ENC : MSA_3R_FMT<0b100, 0b10, 0b001110>;
+class MIN_S_D_ENC : MSA_3R_FMT<0b100, 0b11, 0b001110>;
+
+class MIN_U_B_ENC : MSA_3R_FMT<0b101, 0b00, 0b001110>;
+class MIN_U_H_ENC : MSA_3R_FMT<0b101, 0b01, 0b001110>;
+class MIN_U_W_ENC : MSA_3R_FMT<0b101, 0b10, 0b001110>;
+class MIN_U_D_ENC : MSA_3R_FMT<0b101, 0b11, 0b001110>;
+
+class MINI_S_B_ENC : MSA_I5_FMT<0b100, 0b00, 0b000110>;
+class MINI_S_H_ENC : MSA_I5_FMT<0b100, 0b01, 0b000110>;
+class MINI_S_W_ENC : MSA_I5_FMT<0b100, 0b10, 0b000110>;
+class MINI_S_D_ENC : MSA_I5_FMT<0b100, 0b11, 0b000110>;
+
+class MINI_U_B_ENC : MSA_I5_FMT<0b101, 0b00, 0b000110>;
+class MINI_U_H_ENC : MSA_I5_FMT<0b101, 0b01, 0b000110>;
+class MINI_U_W_ENC : MSA_I5_FMT<0b101, 0b10, 0b000110>;
+class MINI_U_D_ENC : MSA_I5_FMT<0b101, 0b11, 0b000110>;
+
+class MOD_S_B_ENC : MSA_3R_FMT<0b110, 0b00, 0b010010>;
+class MOD_S_H_ENC : MSA_3R_FMT<0b110, 0b01, 0b010010>;
+class MOD_S_W_ENC : MSA_3R_FMT<0b110, 0b10, 0b010010>;
+class MOD_S_D_ENC : MSA_3R_FMT<0b110, 0b11, 0b010010>;
+
+class MOD_U_B_ENC : MSA_3R_FMT<0b111, 0b00, 0b010010>;
+class MOD_U_H_ENC : MSA_3R_FMT<0b111, 0b01, 0b010010>;
+class MOD_U_W_ENC : MSA_3R_FMT<0b111, 0b10, 0b010010>;
+class MOD_U_D_ENC : MSA_3R_FMT<0b111, 0b11, 0b010010>;
+
+class MOVE_V_ENC : MSA_ELM_FMT<0b0010111110, 0b011001>;
+
+class MSUB_Q_H_ENC : MSA_3RF_FMT<0b0110, 0b0, 0b011100>;
+class MSUB_Q_W_ENC : MSA_3RF_FMT<0b0110, 0b1, 0b011100>;
+
+class MSUBR_Q_H_ENC : MSA_3RF_FMT<0b1110, 0b0, 0b011100>;
+class MSUBR_Q_W_ENC : MSA_3RF_FMT<0b1110, 0b1, 0b011100>;
+
+class MSUBV_B_ENC : MSA_3R_FMT<0b010, 0b00, 0b010010>;
+class MSUBV_H_ENC : MSA_3R_FMT<0b010, 0b01, 0b010010>;
+class MSUBV_W_ENC : MSA_3R_FMT<0b010, 0b10, 0b010010>;
+class MSUBV_D_ENC : MSA_3R_FMT<0b010, 0b11, 0b010010>;
+
+class MUL_Q_H_ENC : MSA_3RF_FMT<0b0100, 0b0, 0b011100>;
+class MUL_Q_W_ENC : MSA_3RF_FMT<0b0100, 0b1, 0b011100>;
+
+class MULR_Q_H_ENC : MSA_3RF_FMT<0b1100, 0b0, 0b011100>;
+class MULR_Q_W_ENC : MSA_3RF_FMT<0b1100, 0b1, 0b011100>;
+
+class MULV_B_ENC : MSA_3R_FMT<0b000, 0b00, 0b010010>;
+class MULV_H_ENC : MSA_3R_FMT<0b000, 0b01, 0b010010>;
+class MULV_W_ENC : MSA_3R_FMT<0b000, 0b10, 0b010010>;
+class MULV_D_ENC : MSA_3R_FMT<0b000, 0b11, 0b010010>;
+
+class NLOC_B_ENC : MSA_2R_FMT<0b11000010, 0b00, 0b011110>;
+class NLOC_H_ENC : MSA_2R_FMT<0b11000010, 0b01, 0b011110>;
+class NLOC_W_ENC : MSA_2R_FMT<0b11000010, 0b10, 0b011110>;
+class NLOC_D_ENC : MSA_2R_FMT<0b11000010, 0b11, 0b011110>;
+
+class NLZC_B_ENC : MSA_2R_FMT<0b11000011, 0b00, 0b011110>;
+class NLZC_H_ENC : MSA_2R_FMT<0b11000011, 0b01, 0b011110>;
+class NLZC_W_ENC : MSA_2R_FMT<0b11000011, 0b10, 0b011110>;
+class NLZC_D_ENC : MSA_2R_FMT<0b11000011, 0b11, 0b011110>;
+
+class NOR_V_ENC : MSA_VEC_FMT<0b00010, 0b011110>;
+
+class NORI_B_ENC : MSA_I8_FMT<0b10, 0b000000>;
+
+class OR_V_ENC : MSA_VEC_FMT<0b00001, 0b011110>;
+
+class ORI_B_ENC : MSA_I8_FMT<0b01, 0b000000>;
+
+class PCKEV_B_ENC : MSA_3R_FMT<0b010, 0b00, 0b010100>;
+class PCKEV_H_ENC : MSA_3R_FMT<0b010, 0b01, 0b010100>;
+class PCKEV_W_ENC : MSA_3R_FMT<0b010, 0b10, 0b010100>;
+class PCKEV_D_ENC : MSA_3R_FMT<0b010, 0b11, 0b010100>;
+
+class PCKOD_B_ENC : MSA_3R_FMT<0b011, 0b00, 0b010100>;
+class PCKOD_H_ENC : MSA_3R_FMT<0b011, 0b01, 0b010100>;
+class PCKOD_W_ENC : MSA_3R_FMT<0b011, 0b10, 0b010100>;
+class PCKOD_D_ENC : MSA_3R_FMT<0b011, 0b11, 0b010100>;
+
+class PCNT_B_ENC : MSA_2R_FMT<0b11000001, 0b00, 0b011110>;
+class PCNT_H_ENC : MSA_2R_FMT<0b11000001, 0b01, 0b011110>;
+class PCNT_W_ENC : MSA_2R_FMT<0b11000001, 0b10, 0b011110>;
+class PCNT_D_ENC : MSA_2R_FMT<0b11000001, 0b11, 0b011110>;
+
+class SAT_S_B_ENC : MSA_BIT_B_FMT<0b000, 0b001010>;
+class SAT_S_H_ENC : MSA_BIT_H_FMT<0b000, 0b001010>;
+class SAT_S_W_ENC : MSA_BIT_W_FMT<0b000, 0b001010>;
+class SAT_S_D_ENC : MSA_BIT_D_FMT<0b000, 0b001010>;
+
+class SAT_U_B_ENC : MSA_BIT_B_FMT<0b001, 0b001010>;
+class SAT_U_H_ENC : MSA_BIT_H_FMT<0b001, 0b001010>;
+class SAT_U_W_ENC : MSA_BIT_W_FMT<0b001, 0b001010>;
+class SAT_U_D_ENC : MSA_BIT_D_FMT<0b001, 0b001010>;
+
+class SHF_B_ENC : MSA_I8_FMT<0b00, 0b000010>;
+class SHF_H_ENC : MSA_I8_FMT<0b01, 0b000010>;
+class SHF_W_ENC : MSA_I8_FMT<0b10, 0b000010>;
+
+class SLD_B_ENC : MSA_3R_INDEX_FMT<0b000, 0b00, 0b010100>;
+class SLD_H_ENC : MSA_3R_INDEX_FMT<0b000, 0b01, 0b010100>;
+class SLD_W_ENC : MSA_3R_INDEX_FMT<0b000, 0b10, 0b010100>;
+class SLD_D_ENC : MSA_3R_INDEX_FMT<0b000, 0b11, 0b010100>;
+
+class SLDI_B_ENC : MSA_ELM_B_FMT<0b0000, 0b011001>;
+class SLDI_H_ENC : MSA_ELM_H_FMT<0b0000, 0b011001>;
+class SLDI_W_ENC : MSA_ELM_W_FMT<0b0000, 0b011001>;
+class SLDI_D_ENC : MSA_ELM_D_FMT<0b0000, 0b011001>;
+
+class SLL_B_ENC : MSA_3R_FMT<0b000, 0b00, 0b001101>;
+class SLL_H_ENC : MSA_3R_FMT<0b000, 0b01, 0b001101>;
+class SLL_W_ENC : MSA_3R_FMT<0b000, 0b10, 0b001101>;
+class SLL_D_ENC : MSA_3R_FMT<0b000, 0b11, 0b001101>;
+
+class SLLI_B_ENC : MSA_BIT_B_FMT<0b000, 0b001001>;
+class SLLI_H_ENC : MSA_BIT_H_FMT<0b000, 0b001001>;
+class SLLI_W_ENC : MSA_BIT_W_FMT<0b000, 0b001001>;
+class SLLI_D_ENC : MSA_BIT_D_FMT<0b000, 0b001001>;
+
+class SPLAT_B_ENC : MSA_3R_INDEX_FMT<0b001, 0b00, 0b010100>;
+class SPLAT_H_ENC : MSA_3R_INDEX_FMT<0b001, 0b01, 0b010100>;
+class SPLAT_W_ENC : MSA_3R_INDEX_FMT<0b001, 0b10, 0b010100>;
+class SPLAT_D_ENC : MSA_3R_INDEX_FMT<0b001, 0b11, 0b010100>;
+
+class SPLATI_B_ENC : MSA_ELM_B_FMT<0b0001, 0b011001>;
+class SPLATI_H_ENC : MSA_ELM_H_FMT<0b0001, 0b011001>;
+class SPLATI_W_ENC : MSA_ELM_W_FMT<0b0001, 0b011001>;
+class SPLATI_D_ENC : MSA_ELM_D_FMT<0b0001, 0b011001>;
+
+class SRA_B_ENC : MSA_3R_FMT<0b001, 0b00, 0b001101>;
+class SRA_H_ENC : MSA_3R_FMT<0b001, 0b01, 0b001101>;
+class SRA_W_ENC : MSA_3R_FMT<0b001, 0b10, 0b001101>;
+class SRA_D_ENC : MSA_3R_FMT<0b001, 0b11, 0b001101>;
+
+class SRAI_B_ENC : MSA_BIT_B_FMT<0b001, 0b001001>;
+class SRAI_H_ENC : MSA_BIT_H_FMT<0b001, 0b001001>;
+class SRAI_W_ENC : MSA_BIT_W_FMT<0b001, 0b001001>;
+class SRAI_D_ENC : MSA_BIT_D_FMT<0b001, 0b001001>;
+
+class SRAR_B_ENC : MSA_3R_FMT<0b001, 0b00, 0b010101>;
+class SRAR_H_ENC : MSA_3R_FMT<0b001, 0b01, 0b010101>;
+class SRAR_W_ENC : MSA_3R_FMT<0b001, 0b10, 0b010101>;
+class SRAR_D_ENC : MSA_3R_FMT<0b001, 0b11, 0b010101>;
+
+class SRARI_B_ENC : MSA_BIT_B_FMT<0b010, 0b001010>;
+class SRARI_H_ENC : MSA_BIT_H_FMT<0b010, 0b001010>;
+class SRARI_W_ENC : MSA_BIT_W_FMT<0b010, 0b001010>;
+class SRARI_D_ENC : MSA_BIT_D_FMT<0b010, 0b001010>;
+
+class SRL_B_ENC : MSA_3R_FMT<0b010, 0b00, 0b001101>;
+class SRL_H_ENC : MSA_3R_FMT<0b010, 0b01, 0b001101>;
+class SRL_W_ENC : MSA_3R_FMT<0b010, 0b10, 0b001101>;
+class SRL_D_ENC : MSA_3R_FMT<0b010, 0b11, 0b001101>;
+
+class SRLI_B_ENC : MSA_BIT_B_FMT<0b010, 0b001001>;
+class SRLI_H_ENC : MSA_BIT_H_FMT<0b010, 0b001001>;
+class SRLI_W_ENC : MSA_BIT_W_FMT<0b010, 0b001001>;
+class SRLI_D_ENC : MSA_BIT_D_FMT<0b010, 0b001001>;
+
+class SRLR_B_ENC : MSA_3R_FMT<0b010, 0b00, 0b010101>;
+class SRLR_H_ENC : MSA_3R_FMT<0b010, 0b01, 0b010101>;
+class SRLR_W_ENC : MSA_3R_FMT<0b010, 0b10, 0b010101>;
+class SRLR_D_ENC : MSA_3R_FMT<0b010, 0b11, 0b010101>;
+
+class SRLRI_B_ENC : MSA_BIT_B_FMT<0b011, 0b001010>;
+class SRLRI_H_ENC : MSA_BIT_H_FMT<0b011, 0b001010>;
+class SRLRI_W_ENC : MSA_BIT_W_FMT<0b011, 0b001010>;
+class SRLRI_D_ENC : MSA_BIT_D_FMT<0b011, 0b001010>;
+
+class ST_B_ENC : MSA_MI10_FMT<0b00, 0b1001>;
+class ST_H_ENC : MSA_MI10_FMT<0b01, 0b1001>;
+class ST_W_ENC : MSA_MI10_FMT<0b10, 0b1001>;
+class ST_D_ENC : MSA_MI10_FMT<0b11, 0b1001>;
+
+class SUBS_S_B_ENC : MSA_3R_FMT<0b000, 0b00, 0b010001>;
+class SUBS_S_H_ENC : MSA_3R_FMT<0b000, 0b01, 0b010001>;
+class SUBS_S_W_ENC : MSA_3R_FMT<0b000, 0b10, 0b010001>;
+class SUBS_S_D_ENC : MSA_3R_FMT<0b000, 0b11, 0b010001>;
+
+class SUBS_U_B_ENC : MSA_3R_FMT<0b001, 0b00, 0b010001>;
+class SUBS_U_H_ENC : MSA_3R_FMT<0b001, 0b01, 0b010001>;
+class SUBS_U_W_ENC : MSA_3R_FMT<0b001, 0b10, 0b010001>;
+class SUBS_U_D_ENC : MSA_3R_FMT<0b001, 0b11, 0b010001>;
+
+class SUBSUS_U_B_ENC : MSA_3R_FMT<0b010, 0b00, 0b010001>;
+class SUBSUS_U_H_ENC : MSA_3R_FMT<0b010, 0b01, 0b010001>;
+class SUBSUS_U_W_ENC : MSA_3R_FMT<0b010, 0b10, 0b010001>;
+class SUBSUS_U_D_ENC : MSA_3R_FMT<0b010, 0b11, 0b010001>;
+
+class SUBSUU_S_B_ENC : MSA_3R_FMT<0b011, 0b00, 0b010001>;
+class SUBSUU_S_H_ENC : MSA_3R_FMT<0b011, 0b01, 0b010001>;
+class SUBSUU_S_W_ENC : MSA_3R_FMT<0b011, 0b10, 0b010001>;
+class SUBSUU_S_D_ENC : MSA_3R_FMT<0b011, 0b11, 0b010001>;
+
+class SUBV_B_ENC : MSA_3R_FMT<0b001, 0b00, 0b001110>;
+class SUBV_H_ENC : MSA_3R_FMT<0b001, 0b01, 0b001110>;
+class SUBV_W_ENC : MSA_3R_FMT<0b001, 0b10, 0b001110>;
+class SUBV_D_ENC : MSA_3R_FMT<0b001, 0b11, 0b001110>;
+
+class SUBVI_B_ENC : MSA_I5_FMT<0b001, 0b00, 0b000110>;
+class SUBVI_H_ENC : MSA_I5_FMT<0b001, 0b01, 0b000110>;
+class SUBVI_W_ENC : MSA_I5_FMT<0b001, 0b10, 0b000110>;
+class SUBVI_D_ENC : MSA_I5_FMT<0b001, 0b11, 0b000110>;
+
+class VSHF_B_ENC : MSA_3R_FMT<0b000, 0b00, 0b010101>;
+class VSHF_H_ENC : MSA_3R_FMT<0b000, 0b01, 0b010101>;
+class VSHF_W_ENC : MSA_3R_FMT<0b000, 0b10, 0b010101>;
+class VSHF_D_ENC : MSA_3R_FMT<0b000, 0b11, 0b010101>;
+
+class XOR_V_ENC : MSA_VEC_FMT<0b00011, 0b011110>;
+
+class XORI_B_ENC : MSA_I8_FMT<0b11, 0b000000>;
+
+// Instruction desc.
+class MSA_BIT_B_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ ComplexPattern Imm, RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, vsplat_uimm3:$m);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $m");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, Imm:$m))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_BIT_H_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ ComplexPattern Imm, RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, vsplat_uimm4:$m);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $m");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, Imm:$m))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_BIT_W_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ ComplexPattern Imm, RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, vsplat_uimm5:$m);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $m");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, Imm:$m))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_BIT_D_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ ComplexPattern Imm, RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, vsplat_uimm6:$m);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $m");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, Imm:$m))];
+ InstrItinClass Itinerary = itin;
+}
+
+// This class is deprecated and will be removed soon.
+class MSA_BIT_B_X_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, uimm3:$m);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $m");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, immZExt3:$m))];
+ InstrItinClass Itinerary = itin;
+}
+
+// This class is deprecated and will be removed soon.
+class MSA_BIT_H_X_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, uimm4:$m);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $m");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, immZExt4:$m))];
+ InstrItinClass Itinerary = itin;
+}
+
+// This class is deprecated and will be removed soon.
+class MSA_BIT_W_X_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, uimm5:$m);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $m");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, immZExt5:$m))];
+ InstrItinClass Itinerary = itin;
+}
+
+// This class is deprecated and will be removed soon.
+class MSA_BIT_D_X_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, uimm6:$m);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $m");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, immZExt6:$m))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_BIT_BINSXI_DESC_BASE<string instr_asm, ValueType Ty,
+ ComplexPattern Mask, RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWD:$wd_in, ROWS:$ws, vsplat_uimm8:$m);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $m");
+ // Note that binsxi and vselect treat the condition operand the opposite
+ // way to each other.
+ // (vselect cond, if_set, if_clear)
+ // (BSEL_V cond, if_clear, if_set)
+ list<dag> Pattern = [(set ROWD:$wd, (vselect (Ty Mask:$m), (Ty ROWD:$ws),
+ ROWS:$wd_in))];
+ InstrItinClass Itinerary = itin;
+ string Constraints = "$wd = $wd_in";
+}
+
+class MSA_BIT_BINSLI_DESC_BASE<string instr_asm, ValueType Ty,
+ RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> :
+ MSA_BIT_BINSXI_DESC_BASE<instr_asm, Ty, vsplat_maskl_bits, ROWD, ROWS, itin>;
+
+class MSA_BIT_BINSRI_DESC_BASE<string instr_asm, ValueType Ty,
+ RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> :
+ MSA_BIT_BINSXI_DESC_BASE<instr_asm, Ty, vsplat_maskr_bits, ROWD, ROWS, itin>;
+
+class MSA_BIT_SPLAT_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ SplatComplexPattern SplatImm,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, SplatImm.OpClass:$m);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $m");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, SplatImm:$m))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_COPY_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ ValueType VecTy, RegisterOperand ROD,
+ RegisterOperand ROWS,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROD:$rd);
+ dag InOperandList = (ins ROWS:$ws, uimm4:$n);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $ws[$n]");
+ list<dag> Pattern = [(set ROD:$rd, (OpNode (VecTy ROWS:$ws), immZExt4:$n))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_ELM_SLD_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWD:$wd_in, ROWS:$ws, uimm4:$n);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws[$n]");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWD:$wd_in, ROWS:$ws,
+ immZExt4:$n))];
+ string Constraints = "$wd = $wd_in";
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_COPY_PSEUDO_BASE<SDPatternOperator OpNode, ValueType VecTy,
+ RegisterClass RCD, RegisterClass RCWS> :
+ MSAPseudo<(outs RCD:$wd), (ins RCWS:$ws, uimm4:$n),
+ [(set RCD:$wd, (OpNode (VecTy RCWS:$ws), immZExt4:$n))]> {
+ bit usesCustomInserter = 1;
+}
+
+class MSA_I5_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ SplatComplexPattern SplatImm, RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, SplatImm.OpClass:$imm);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $imm");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, SplatImm:$imm))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_I8_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ SplatComplexPattern SplatImm, RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, SplatImm.OpClass:$u8);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $u8");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, SplatImm:$u8))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_I8_SHF_DESC_BASE<string instr_asm, RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, uimm8:$u8);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $u8");
+ list<dag> Pattern = [(set ROWD:$wd, (MipsSHF immZExt8:$u8, ROWS:$ws))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_I10_LDI_DESC_BASE<string instr_asm, RegisterOperand ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins vsplat_simm10:$s10);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $s10");
+ // LDI is matched using custom matching code in MipsSEISelDAGToDAG.cpp
+ list<dag> Pattern = [];
+ bit hasSideEffects = 0;
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_2R_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_2R_FILL_DESC_BASE<string instr_asm, ValueType VT,
+ SDPatternOperator OpNode, RegisterOperand ROWD,
+ RegisterOperand ROS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROS:$rs);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $rs");
+ list<dag> Pattern = [(set ROWD:$wd, (VT (OpNode ROS:$rs)))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_2R_FILL_PSEUDO_BASE<ValueType VT, SDPatternOperator OpNode,
+ RegisterClass RCWD, RegisterClass RCWS = RCWD> :
+ MSAPseudo<(outs RCWD:$wd), (ins RCWS:$fs),
+ [(set RCWD:$wd, (OpNode RCWS:$fs))]> {
+ let usesCustomInserter = 1;
+}
+
+class MSA_2RF_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_3R_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ RegisterOperand ROWT = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, ROWT:$wt);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $wt");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, ROWT:$wt))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_3R_BINSX_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ RegisterOperand ROWT = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWD:$wd_in, ROWS:$ws, ROWT:$wt);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $wt");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWD:$wd_in, ROWS:$ws,
+ ROWT:$wt))];
+ string Constraints = "$wd = $wd_in";
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_3R_SPLAT_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, GPR32Opnd:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws[$rt]");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, GPR32Opnd:$rt))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_3R_VSHF_DESC_BASE<string instr_asm, RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ RegisterOperand ROWT = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWD:$wd_in, ROWS:$ws, ROWT:$wt);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $wt");
+ list<dag> Pattern = [(set ROWD:$wd, (MipsVSHF ROWD:$wd_in, ROWS:$ws,
+ ROWT:$wt))];
+ string Constraints = "$wd = $wd_in";
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_3R_SLD_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWD:$wd_in, ROWS:$ws, GPR32Opnd:$rt);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws[$rt]");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWD:$wd_in, ROWS:$ws,
+ GPR32Opnd:$rt))];
+ InstrItinClass Itinerary = itin;
+ string Constraints = "$wd = $wd_in";
+}
+
+class MSA_3R_4R_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ RegisterOperand ROWT = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWD:$wd_in, ROWS:$ws, ROWT:$wt);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $wt");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWD:$wd_in, ROWS:$ws,
+ ROWT:$wt))];
+ InstrItinClass Itinerary = itin;
+ string Constraints = "$wd = $wd_in";
+}
+
+class MSA_3RF_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ RegisterOperand ROWT = ROWD,
+ InstrItinClass itin = NoItinerary> :
+ MSA_3R_DESC_BASE<instr_asm, OpNode, ROWD, ROWS, ROWT, itin>;
+
+class MSA_3RF_4RF_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ RegisterOperand ROWT = ROWD,
+ InstrItinClass itin = NoItinerary> :
+ MSA_3R_4R_DESC_BASE<instr_asm, OpNode, ROWD, ROWS, ROWT, itin>;
+
+class MSA_CBRANCH_DESC_BASE<string instr_asm, RegisterOperand ROWD> {
+ dag OutOperandList = (outs);
+ dag InOperandList = (ins ROWD:$wt, brtarget:$offset);
+ string AsmString = !strconcat(instr_asm, "\t$wt, $offset");
+ list<dag> Pattern = [];
+ InstrItinClass Itinerary = IIBranch;
+ bit isBranch = 1;
+ bit isTerminator = 1;
+ bit hasDelaySlot = 1;
+ list<Register> Defs = [AT];
+}
+
+class MSA_INSERT_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROS,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWD:$wd_in, ROS:$rs, uimm6:$n);
+ string AsmString = !strconcat(instr_asm, "\t$wd[$n], $rs");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWD:$wd_in,
+ ROS:$rs,
+ immZExt6:$n))];
+ InstrItinClass Itinerary = itin;
+ string Constraints = "$wd = $wd_in";
+}
+
+class MSA_INSERT_PSEUDO_BASE<SDPatternOperator OpNode, ValueType Ty,
+ RegisterOperand ROWD, RegisterOperand ROFS> :
+ MSAPseudo<(outs ROWD:$wd), (ins ROWD:$wd_in, uimm6:$n, ROFS:$fs),
+ [(set ROWD:$wd, (OpNode (Ty ROWD:$wd_in), ROFS:$fs,
+ immZExt6:$n))]> {
+ bit usesCustomInserter = 1;
+ string Constraints = "$wd = $wd_in";
+}
+
+class MSA_INSERT_VIDX_PSEUDO_BASE<SDPatternOperator OpNode, ValueType Ty,
+ RegisterOperand ROWD, RegisterOperand ROFS> :
+ MSAPseudo<(outs ROWD:$wd), (ins ROWD:$wd_in, GPR32Opnd:$n, ROFS:$fs),
+ [(set ROWD:$wd, (OpNode (Ty ROWD:$wd_in), ROFS:$fs,
+ GPR32Opnd:$n))]> {
+ bit usesCustomInserter = 1;
+ string Constraints = "$wd = $wd_in";
+}
+
+class MSA_INSVE_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWD:$wd_in, uimm6:$n, ROWS:$ws, uimmz:$n2);
+ string AsmString = !strconcat(instr_asm, "\t$wd[$n], $ws[$n2]");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWD:$wd_in,
+ immZExt6:$n,
+ ROWS:$ws,
+ immz:$n2))];
+ InstrItinClass Itinerary = itin;
+ string Constraints = "$wd = $wd_in";
+}
+
+class MSA_VEC_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ RegisterOperand ROWD, RegisterOperand ROWS = ROWD,
+ RegisterOperand ROWT = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, ROWT:$wt);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws, $wt");
+ list<dag> Pattern = [(set ROWD:$wd, (OpNode ROWS:$ws, ROWT:$wt))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_ELM_SPLAT_DESC_BASE<string instr_asm, SplatComplexPattern SplatImm,
+ RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins ROWS:$ws, SplatImm.OpClass:$n);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $ws[$n]");
+ list<dag> Pattern = [(set ROWD:$wd, (MipsVSHF SplatImm:$n, ROWS:$ws,
+ ROWS:$ws))];
+ InstrItinClass Itinerary = itin;
+}
+
+class MSA_VEC_PSEUDO_BASE<SDPatternOperator OpNode, RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ RegisterOperand ROWT = ROWD> :
+ MSAPseudo<(outs ROWD:$wd), (ins ROWS:$ws, ROWT:$wt),
+ [(set ROWD:$wd, (OpNode ROWS:$ws, ROWT:$wt))]>;
+
+class ADD_A_B_DESC : MSA_3R_DESC_BASE<"add_a.b", int_mips_add_a_b, MSA128BOpnd>,
+ IsCommutable;
+class ADD_A_H_DESC : MSA_3R_DESC_BASE<"add_a.h", int_mips_add_a_h, MSA128HOpnd>,
+ IsCommutable;
+class ADD_A_W_DESC : MSA_3R_DESC_BASE<"add_a.w", int_mips_add_a_w, MSA128WOpnd>,
+ IsCommutable;
+class ADD_A_D_DESC : MSA_3R_DESC_BASE<"add_a.d", int_mips_add_a_d, MSA128DOpnd>,
+ IsCommutable;
+
+class ADDS_A_B_DESC : MSA_3R_DESC_BASE<"adds_a.b", int_mips_adds_a_b,
+ MSA128BOpnd>, IsCommutable;
+class ADDS_A_H_DESC : MSA_3R_DESC_BASE<"adds_a.h", int_mips_adds_a_h,
+ MSA128HOpnd>, IsCommutable;
+class ADDS_A_W_DESC : MSA_3R_DESC_BASE<"adds_a.w", int_mips_adds_a_w,
+ MSA128WOpnd>, IsCommutable;
+class ADDS_A_D_DESC : MSA_3R_DESC_BASE<"adds_a.d", int_mips_adds_a_d,
+ MSA128DOpnd>, IsCommutable;
+
+class ADDS_S_B_DESC : MSA_3R_DESC_BASE<"adds_s.b", int_mips_adds_s_b,
+ MSA128BOpnd>, IsCommutable;
+class ADDS_S_H_DESC : MSA_3R_DESC_BASE<"adds_s.h", int_mips_adds_s_h,
+ MSA128HOpnd>, IsCommutable;
+class ADDS_S_W_DESC : MSA_3R_DESC_BASE<"adds_s.w", int_mips_adds_s_w,
+ MSA128WOpnd>, IsCommutable;
+class ADDS_S_D_DESC : MSA_3R_DESC_BASE<"adds_s.d", int_mips_adds_s_d,
+ MSA128DOpnd>, IsCommutable;
+
+class ADDS_U_B_DESC : MSA_3R_DESC_BASE<"adds_u.b", int_mips_adds_u_b,
+ MSA128BOpnd>, IsCommutable;
+class ADDS_U_H_DESC : MSA_3R_DESC_BASE<"adds_u.h", int_mips_adds_u_h,
+ MSA128HOpnd>, IsCommutable;
+class ADDS_U_W_DESC : MSA_3R_DESC_BASE<"adds_u.w", int_mips_adds_u_w,
+ MSA128WOpnd>, IsCommutable;
+class ADDS_U_D_DESC : MSA_3R_DESC_BASE<"adds_u.d", int_mips_adds_u_d,
+ MSA128DOpnd>, IsCommutable;
+
+class ADDV_B_DESC : MSA_3R_DESC_BASE<"addv.b", add, MSA128BOpnd>, IsCommutable;
+class ADDV_H_DESC : MSA_3R_DESC_BASE<"addv.h", add, MSA128HOpnd>, IsCommutable;
+class ADDV_W_DESC : MSA_3R_DESC_BASE<"addv.w", add, MSA128WOpnd>, IsCommutable;
+class ADDV_D_DESC : MSA_3R_DESC_BASE<"addv.d", add, MSA128DOpnd>, IsCommutable;
+
+class ADDVI_B_DESC : MSA_I5_DESC_BASE<"addvi.b", add, vsplati8_uimm5,
+ MSA128BOpnd>;
+class ADDVI_H_DESC : MSA_I5_DESC_BASE<"addvi.h", add, vsplati16_uimm5,
+ MSA128HOpnd>;
+class ADDVI_W_DESC : MSA_I5_DESC_BASE<"addvi.w", add, vsplati32_uimm5,
+ MSA128WOpnd>;
+class ADDVI_D_DESC : MSA_I5_DESC_BASE<"addvi.d", add, vsplati64_uimm5,
+ MSA128DOpnd>;
+
+class AND_V_DESC : MSA_VEC_DESC_BASE<"and.v", and, MSA128BOpnd>;
+class AND_V_H_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<and, MSA128HOpnd>;
+class AND_V_W_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<and, MSA128WOpnd>;
+class AND_V_D_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<and, MSA128DOpnd>;
+
+class ANDI_B_DESC : MSA_I8_DESC_BASE<"andi.b", and, vsplati8_uimm8,
+ MSA128BOpnd>;
+
+class ASUB_S_B_DESC : MSA_3R_DESC_BASE<"asub_s.b", int_mips_asub_s_b,
+ MSA128BOpnd>;
+class ASUB_S_H_DESC : MSA_3R_DESC_BASE<"asub_s.h", int_mips_asub_s_h,
+ MSA128HOpnd>;
+class ASUB_S_W_DESC : MSA_3R_DESC_BASE<"asub_s.w", int_mips_asub_s_w,
+ MSA128WOpnd>;
+class ASUB_S_D_DESC : MSA_3R_DESC_BASE<"asub_s.d", int_mips_asub_s_d,
+ MSA128DOpnd>;
+
+class ASUB_U_B_DESC : MSA_3R_DESC_BASE<"asub_u.b", int_mips_asub_u_b,
+ MSA128BOpnd>;
+class ASUB_U_H_DESC : MSA_3R_DESC_BASE<"asub_u.h", int_mips_asub_u_h,
+ MSA128HOpnd>;
+class ASUB_U_W_DESC : MSA_3R_DESC_BASE<"asub_u.w", int_mips_asub_u_w,
+ MSA128WOpnd>;
+class ASUB_U_D_DESC : MSA_3R_DESC_BASE<"asub_u.d", int_mips_asub_u_d,
+ MSA128DOpnd>;
+
+class AVE_S_B_DESC : MSA_3R_DESC_BASE<"ave_s.b", int_mips_ave_s_b, MSA128BOpnd>,
+ IsCommutable;
+class AVE_S_H_DESC : MSA_3R_DESC_BASE<"ave_s.h", int_mips_ave_s_h, MSA128HOpnd>,
+ IsCommutable;
+class AVE_S_W_DESC : MSA_3R_DESC_BASE<"ave_s.w", int_mips_ave_s_w, MSA128WOpnd>,
+ IsCommutable;
+class AVE_S_D_DESC : MSA_3R_DESC_BASE<"ave_s.d", int_mips_ave_s_d, MSA128DOpnd>,
+ IsCommutable;
+
+class AVE_U_B_DESC : MSA_3R_DESC_BASE<"ave_u.b", int_mips_ave_u_b, MSA128BOpnd>,
+ IsCommutable;
+class AVE_U_H_DESC : MSA_3R_DESC_BASE<"ave_u.h", int_mips_ave_u_h, MSA128HOpnd>,
+ IsCommutable;
+class AVE_U_W_DESC : MSA_3R_DESC_BASE<"ave_u.w", int_mips_ave_u_w, MSA128WOpnd>,
+ IsCommutable;
+class AVE_U_D_DESC : MSA_3R_DESC_BASE<"ave_u.d", int_mips_ave_u_d, MSA128DOpnd>,
+ IsCommutable;
+
+class AVER_S_B_DESC : MSA_3R_DESC_BASE<"aver_s.b", int_mips_aver_s_b,
+ MSA128BOpnd>, IsCommutable;
+class AVER_S_H_DESC : MSA_3R_DESC_BASE<"aver_s.h", int_mips_aver_s_h,
+ MSA128HOpnd>, IsCommutable;
+class AVER_S_W_DESC : MSA_3R_DESC_BASE<"aver_s.w", int_mips_aver_s_w,
+ MSA128WOpnd>, IsCommutable;
+class AVER_S_D_DESC : MSA_3R_DESC_BASE<"aver_s.d", int_mips_aver_s_d,
+ MSA128DOpnd>, IsCommutable;
+
+class AVER_U_B_DESC : MSA_3R_DESC_BASE<"aver_u.b", int_mips_aver_u_b,
+ MSA128BOpnd>, IsCommutable;
+class AVER_U_H_DESC : MSA_3R_DESC_BASE<"aver_u.h", int_mips_aver_u_h,
+ MSA128HOpnd>, IsCommutable;
+class AVER_U_W_DESC : MSA_3R_DESC_BASE<"aver_u.w", int_mips_aver_u_w,
+ MSA128WOpnd>, IsCommutable;
+class AVER_U_D_DESC : MSA_3R_DESC_BASE<"aver_u.d", int_mips_aver_u_d,
+ MSA128DOpnd>, IsCommutable;
+
+class BCLR_B_DESC : MSA_3R_DESC_BASE<"bclr.b", vbclr_b, MSA128BOpnd>;
+class BCLR_H_DESC : MSA_3R_DESC_BASE<"bclr.h", vbclr_h, MSA128HOpnd>;
+class BCLR_W_DESC : MSA_3R_DESC_BASE<"bclr.w", vbclr_w, MSA128WOpnd>;
+class BCLR_D_DESC : MSA_3R_DESC_BASE<"bclr.d", vbclr_d, MSA128DOpnd>;
+
+class BCLRI_B_DESC : MSA_BIT_B_DESC_BASE<"bclri.b", and, vsplat_uimm_inv_pow2,
+ MSA128BOpnd>;
+class BCLRI_H_DESC : MSA_BIT_H_DESC_BASE<"bclri.h", and, vsplat_uimm_inv_pow2,
+ MSA128HOpnd>;
+class BCLRI_W_DESC : MSA_BIT_W_DESC_BASE<"bclri.w", and, vsplat_uimm_inv_pow2,
+ MSA128WOpnd>;
+class BCLRI_D_DESC : MSA_BIT_D_DESC_BASE<"bclri.d", and, vsplat_uimm_inv_pow2,
+ MSA128DOpnd>;
+
+class BINSL_B_DESC : MSA_3R_BINSX_DESC_BASE<"binsl.b", int_mips_binsl_b,
+ MSA128BOpnd>;
+class BINSL_H_DESC : MSA_3R_BINSX_DESC_BASE<"binsl.h", int_mips_binsl_h,
+ MSA128HOpnd>;
+class BINSL_W_DESC : MSA_3R_BINSX_DESC_BASE<"binsl.w", int_mips_binsl_w,
+ MSA128WOpnd>;
+class BINSL_D_DESC : MSA_3R_BINSX_DESC_BASE<"binsl.d", int_mips_binsl_d,
+ MSA128DOpnd>;
+
+class BINSLI_B_DESC : MSA_BIT_BINSLI_DESC_BASE<"binsli.b", v16i8, MSA128BOpnd>;
+class BINSLI_H_DESC : MSA_BIT_BINSLI_DESC_BASE<"binsli.h", v8i16, MSA128HOpnd>;
+class BINSLI_W_DESC : MSA_BIT_BINSLI_DESC_BASE<"binsli.w", v4i32, MSA128WOpnd>;
+class BINSLI_D_DESC : MSA_BIT_BINSLI_DESC_BASE<"binsli.d", v2i64, MSA128DOpnd>;
+
+class BINSR_B_DESC : MSA_3R_BINSX_DESC_BASE<"binsr.b", int_mips_binsr_b,
+ MSA128BOpnd>;
+class BINSR_H_DESC : MSA_3R_BINSX_DESC_BASE<"binsr.h", int_mips_binsr_h,
+ MSA128HOpnd>;
+class BINSR_W_DESC : MSA_3R_BINSX_DESC_BASE<"binsr.w", int_mips_binsr_w,
+ MSA128WOpnd>;
+class BINSR_D_DESC : MSA_3R_BINSX_DESC_BASE<"binsr.d", int_mips_binsr_d,
+ MSA128DOpnd>;
+
+class BINSRI_B_DESC : MSA_BIT_BINSRI_DESC_BASE<"binsri.b", v16i8, MSA128BOpnd>;
+class BINSRI_H_DESC : MSA_BIT_BINSRI_DESC_BASE<"binsri.h", v8i16, MSA128HOpnd>;
+class BINSRI_W_DESC : MSA_BIT_BINSRI_DESC_BASE<"binsri.w", v4i32, MSA128WOpnd>;
+class BINSRI_D_DESC : MSA_BIT_BINSRI_DESC_BASE<"binsri.d", v2i64, MSA128DOpnd>;
+
+class BMNZ_V_DESC {
+ dag OutOperandList = (outs MSA128BOpnd:$wd);
+ dag InOperandList = (ins MSA128BOpnd:$wd_in, MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt);
+ string AsmString = "bmnz.v\t$wd, $ws, $wt";
+ list<dag> Pattern = [(set MSA128BOpnd:$wd, (vselect MSA128BOpnd:$wt,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wd_in))];
+ InstrItinClass Itinerary = NoItinerary;
+ string Constraints = "$wd = $wd_in";
+}
+
+class BMNZI_B_DESC {
+ dag OutOperandList = (outs MSA128BOpnd:$wd);
+ dag InOperandList = (ins MSA128BOpnd:$wd_in, MSA128BOpnd:$ws,
+ vsplat_uimm8:$u8);
+ string AsmString = "bmnzi.b\t$wd, $ws, $u8";
+ list<dag> Pattern = [(set MSA128BOpnd:$wd, (vselect vsplati8_uimm8:$u8,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wd_in))];
+ InstrItinClass Itinerary = NoItinerary;
+ string Constraints = "$wd = $wd_in";
+}
+
+class BMZ_V_DESC {
+ dag OutOperandList = (outs MSA128BOpnd:$wd);
+ dag InOperandList = (ins MSA128BOpnd:$wd_in, MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt);
+ string AsmString = "bmz.v\t$wd, $ws, $wt";
+ list<dag> Pattern = [(set MSA128BOpnd:$wd, (vselect MSA128BOpnd:$wt,
+ MSA128BOpnd:$wd_in,
+ MSA128BOpnd:$ws))];
+ InstrItinClass Itinerary = NoItinerary;
+ string Constraints = "$wd = $wd_in";
+}
+
+class BMZI_B_DESC {
+ dag OutOperandList = (outs MSA128BOpnd:$wd);
+ dag InOperandList = (ins MSA128BOpnd:$wd_in, MSA128BOpnd:$ws,
+ vsplat_uimm8:$u8);
+ string AsmString = "bmzi.b\t$wd, $ws, $u8";
+ list<dag> Pattern = [(set MSA128BOpnd:$wd, (vselect vsplati8_uimm8:$u8,
+ MSA128BOpnd:$wd_in,
+ MSA128BOpnd:$ws))];
+ InstrItinClass Itinerary = NoItinerary;
+ string Constraints = "$wd = $wd_in";
+}
+
+class BNEG_B_DESC : MSA_3R_DESC_BASE<"bneg.b", vbneg_b, MSA128BOpnd>;
+class BNEG_H_DESC : MSA_3R_DESC_BASE<"bneg.h", vbneg_h, MSA128HOpnd>;
+class BNEG_W_DESC : MSA_3R_DESC_BASE<"bneg.w", vbneg_w, MSA128WOpnd>;
+class BNEG_D_DESC : MSA_3R_DESC_BASE<"bneg.d", vbneg_d, MSA128DOpnd>;
+
+class BNEGI_B_DESC : MSA_BIT_B_DESC_BASE<"bnegi.b", xor, vsplat_uimm_pow2,
+ MSA128BOpnd>;
+class BNEGI_H_DESC : MSA_BIT_H_DESC_BASE<"bnegi.h", xor, vsplat_uimm_pow2,
+ MSA128HOpnd>;
+class BNEGI_W_DESC : MSA_BIT_W_DESC_BASE<"bnegi.w", xor, vsplat_uimm_pow2,
+ MSA128WOpnd>;
+class BNEGI_D_DESC : MSA_BIT_D_DESC_BASE<"bnegi.d", xor, vsplat_uimm_pow2,
+ MSA128DOpnd>;
+
+class BNZ_B_DESC : MSA_CBRANCH_DESC_BASE<"bnz.b", MSA128BOpnd>;
+class BNZ_H_DESC : MSA_CBRANCH_DESC_BASE<"bnz.h", MSA128HOpnd>;
+class BNZ_W_DESC : MSA_CBRANCH_DESC_BASE<"bnz.w", MSA128WOpnd>;
+class BNZ_D_DESC : MSA_CBRANCH_DESC_BASE<"bnz.d", MSA128DOpnd>;
+
+class BNZ_V_DESC : MSA_CBRANCH_DESC_BASE<"bnz.v", MSA128BOpnd>;
+
+class BSEL_V_DESC {
+ dag OutOperandList = (outs MSA128BOpnd:$wd);
+ dag InOperandList = (ins MSA128BOpnd:$wd_in, MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt);
+ string AsmString = "bsel.v\t$wd, $ws, $wt";
+ // Note that vselect and BSEL_V treat the condition operand the opposite way
+ // from each other.
+ // (vselect cond, if_set, if_clear)
+ // (BSEL_V cond, if_clear, if_set)
+ list<dag> Pattern = [(set MSA128BOpnd:$wd,
+ (vselect MSA128BOpnd:$wd_in, MSA128BOpnd:$wt,
+ MSA128BOpnd:$ws))];
+ InstrItinClass Itinerary = NoItinerary;
+ string Constraints = "$wd = $wd_in";
+}
+
+class BSELI_B_DESC {
+ dag OutOperandList = (outs MSA128BOpnd:$wd);
+ dag InOperandList = (ins MSA128BOpnd:$wd_in, MSA128BOpnd:$ws,
+ vsplat_uimm8:$u8);
+ string AsmString = "bseli.b\t$wd, $ws, $u8";
+ // Note that vselect and BSEL_V treat the condition operand the opposite way
+ // from each other.
+ // (vselect cond, if_set, if_clear)
+ // (BSEL_V cond, if_clear, if_set)
+ list<dag> Pattern = [(set MSA128BOpnd:$wd, (vselect MSA128BOpnd:$wd_in,
+ vsplati8_uimm8:$u8,
+ MSA128BOpnd:$ws))];
+ InstrItinClass Itinerary = NoItinerary;
+ string Constraints = "$wd = $wd_in";
+}
+
+class BSET_B_DESC : MSA_3R_DESC_BASE<"bset.b", vbset_b, MSA128BOpnd>;
+class BSET_H_DESC : MSA_3R_DESC_BASE<"bset.h", vbset_h, MSA128HOpnd>;
+class BSET_W_DESC : MSA_3R_DESC_BASE<"bset.w", vbset_w, MSA128WOpnd>;
+class BSET_D_DESC : MSA_3R_DESC_BASE<"bset.d", vbset_d, MSA128DOpnd>;
+
+class BSETI_B_DESC : MSA_BIT_B_DESC_BASE<"bseti.b", or, vsplat_uimm_pow2,
+ MSA128BOpnd>;
+class BSETI_H_DESC : MSA_BIT_H_DESC_BASE<"bseti.h", or, vsplat_uimm_pow2,
+ MSA128HOpnd>;
+class BSETI_W_DESC : MSA_BIT_W_DESC_BASE<"bseti.w", or, vsplat_uimm_pow2,
+ MSA128WOpnd>;
+class BSETI_D_DESC : MSA_BIT_D_DESC_BASE<"bseti.d", or, vsplat_uimm_pow2,
+ MSA128DOpnd>;
+
+class BZ_B_DESC : MSA_CBRANCH_DESC_BASE<"bz.b", MSA128BOpnd>;
+class BZ_H_DESC : MSA_CBRANCH_DESC_BASE<"bz.h", MSA128HOpnd>;
+class BZ_W_DESC : MSA_CBRANCH_DESC_BASE<"bz.w", MSA128WOpnd>;
+class BZ_D_DESC : MSA_CBRANCH_DESC_BASE<"bz.d", MSA128DOpnd>;
+
+class BZ_V_DESC : MSA_CBRANCH_DESC_BASE<"bz.v", MSA128BOpnd>;
+
+class CEQ_B_DESC : MSA_3R_DESC_BASE<"ceq.b", vseteq_v16i8, MSA128BOpnd>,
+ IsCommutable;
+class CEQ_H_DESC : MSA_3R_DESC_BASE<"ceq.h", vseteq_v8i16, MSA128HOpnd>,
+ IsCommutable;
+class CEQ_W_DESC : MSA_3R_DESC_BASE<"ceq.w", vseteq_v4i32, MSA128WOpnd>,
+ IsCommutable;
+class CEQ_D_DESC : MSA_3R_DESC_BASE<"ceq.d", vseteq_v2i64, MSA128DOpnd>,
+ IsCommutable;
+
+class CEQI_B_DESC : MSA_I5_DESC_BASE<"ceqi.b", vseteq_v16i8, vsplati8_simm5,
+ MSA128BOpnd>;
+class CEQI_H_DESC : MSA_I5_DESC_BASE<"ceqi.h", vseteq_v8i16, vsplati16_simm5,
+ MSA128HOpnd>;
+class CEQI_W_DESC : MSA_I5_DESC_BASE<"ceqi.w", vseteq_v4i32, vsplati32_simm5,
+ MSA128WOpnd>;
+class CEQI_D_DESC : MSA_I5_DESC_BASE<"ceqi.d", vseteq_v2i64, vsplati64_simm5,
+ MSA128DOpnd>;
+
+class CFCMSA_DESC {
+ dag OutOperandList = (outs GPR32Opnd:$rd);
+ dag InOperandList = (ins MSA128CROpnd:$cs);
+ string AsmString = "cfcmsa\t$rd, $cs";
+ InstrItinClass Itinerary = NoItinerary;
+ bit hasSideEffects = 1;
+}
+
+class CLE_S_B_DESC : MSA_3R_DESC_BASE<"cle_s.b", vsetle_v16i8, MSA128BOpnd>;
+class CLE_S_H_DESC : MSA_3R_DESC_BASE<"cle_s.h", vsetle_v8i16, MSA128HOpnd>;
+class CLE_S_W_DESC : MSA_3R_DESC_BASE<"cle_s.w", vsetle_v4i32, MSA128WOpnd>;
+class CLE_S_D_DESC : MSA_3R_DESC_BASE<"cle_s.d", vsetle_v2i64, MSA128DOpnd>;
+
+class CLE_U_B_DESC : MSA_3R_DESC_BASE<"cle_u.b", vsetule_v16i8, MSA128BOpnd>;
+class CLE_U_H_DESC : MSA_3R_DESC_BASE<"cle_u.h", vsetule_v8i16, MSA128HOpnd>;
+class CLE_U_W_DESC : MSA_3R_DESC_BASE<"cle_u.w", vsetule_v4i32, MSA128WOpnd>;
+class CLE_U_D_DESC : MSA_3R_DESC_BASE<"cle_u.d", vsetule_v2i64, MSA128DOpnd>;
+
+class CLEI_S_B_DESC : MSA_I5_DESC_BASE<"clei_s.b", vsetle_v16i8,
+ vsplati8_simm5, MSA128BOpnd>;
+class CLEI_S_H_DESC : MSA_I5_DESC_BASE<"clei_s.h", vsetle_v8i16,
+ vsplati16_simm5, MSA128HOpnd>;
+class CLEI_S_W_DESC : MSA_I5_DESC_BASE<"clei_s.w", vsetle_v4i32,
+ vsplati32_simm5, MSA128WOpnd>;
+class CLEI_S_D_DESC : MSA_I5_DESC_BASE<"clei_s.d", vsetle_v2i64,
+ vsplati64_simm5, MSA128DOpnd>;
+
+class CLEI_U_B_DESC : MSA_I5_DESC_BASE<"clei_u.b", vsetule_v16i8,
+ vsplati8_uimm5, MSA128BOpnd>;
+class CLEI_U_H_DESC : MSA_I5_DESC_BASE<"clei_u.h", vsetule_v8i16,
+ vsplati16_uimm5, MSA128HOpnd>;
+class CLEI_U_W_DESC : MSA_I5_DESC_BASE<"clei_u.w", vsetule_v4i32,
+ vsplati32_uimm5, MSA128WOpnd>;
+class CLEI_U_D_DESC : MSA_I5_DESC_BASE<"clei_u.d", vsetule_v2i64,
+ vsplati64_uimm5, MSA128DOpnd>;
+
+class CLT_S_B_DESC : MSA_3R_DESC_BASE<"clt_s.b", vsetlt_v16i8, MSA128BOpnd>;
+class CLT_S_H_DESC : MSA_3R_DESC_BASE<"clt_s.h", vsetlt_v8i16, MSA128HOpnd>;
+class CLT_S_W_DESC : MSA_3R_DESC_BASE<"clt_s.w", vsetlt_v4i32, MSA128WOpnd>;
+class CLT_S_D_DESC : MSA_3R_DESC_BASE<"clt_s.d", vsetlt_v2i64, MSA128DOpnd>;
+
+class CLT_U_B_DESC : MSA_3R_DESC_BASE<"clt_u.b", vsetult_v16i8, MSA128BOpnd>;
+class CLT_U_H_DESC : MSA_3R_DESC_BASE<"clt_u.h", vsetult_v8i16, MSA128HOpnd>;
+class CLT_U_W_DESC : MSA_3R_DESC_BASE<"clt_u.w", vsetult_v4i32, MSA128WOpnd>;
+class CLT_U_D_DESC : MSA_3R_DESC_BASE<"clt_u.d", vsetult_v2i64, MSA128DOpnd>;
+
+class CLTI_S_B_DESC : MSA_I5_DESC_BASE<"clti_s.b", vsetlt_v16i8,
+ vsplati8_simm5, MSA128BOpnd>;
+class CLTI_S_H_DESC : MSA_I5_DESC_BASE<"clti_s.h", vsetlt_v8i16,
+ vsplati16_simm5, MSA128HOpnd>;
+class CLTI_S_W_DESC : MSA_I5_DESC_BASE<"clti_s.w", vsetlt_v4i32,
+ vsplati32_simm5, MSA128WOpnd>;
+class CLTI_S_D_DESC : MSA_I5_DESC_BASE<"clti_s.d", vsetlt_v2i64,
+ vsplati64_simm5, MSA128DOpnd>;
+
+class CLTI_U_B_DESC : MSA_I5_DESC_BASE<"clti_u.b", vsetult_v16i8,
+ vsplati8_uimm5, MSA128BOpnd>;
+class CLTI_U_H_DESC : MSA_I5_DESC_BASE<"clti_u.h", vsetult_v8i16,
+ vsplati16_uimm5, MSA128HOpnd>;
+class CLTI_U_W_DESC : MSA_I5_DESC_BASE<"clti_u.w", vsetult_v4i32,
+ vsplati32_uimm5, MSA128WOpnd>;
+class CLTI_U_D_DESC : MSA_I5_DESC_BASE<"clti_u.d", vsetult_v2i64,
+ vsplati64_uimm5, MSA128DOpnd>;
+
+class COPY_S_B_DESC : MSA_COPY_DESC_BASE<"copy_s.b", vextract_sext_i8, v16i8,
+ GPR32Opnd, MSA128BOpnd>;
+class COPY_S_H_DESC : MSA_COPY_DESC_BASE<"copy_s.h", vextract_sext_i16, v8i16,
+ GPR32Opnd, MSA128HOpnd>;
+class COPY_S_W_DESC : MSA_COPY_DESC_BASE<"copy_s.w", vextract_sext_i32, v4i32,
+ GPR32Opnd, MSA128WOpnd>;
+class COPY_S_D_DESC : MSA_COPY_DESC_BASE<"copy_s.d", vextract_sext_i64, v2i64,
+ GPR64Opnd, MSA128DOpnd>;
+
+class COPY_U_B_DESC : MSA_COPY_DESC_BASE<"copy_u.b", vextract_zext_i8, v16i8,
+ GPR32Opnd, MSA128BOpnd>;
+class COPY_U_H_DESC : MSA_COPY_DESC_BASE<"copy_u.h", vextract_zext_i16, v8i16,
+ GPR32Opnd, MSA128HOpnd>;
+class COPY_U_W_DESC : MSA_COPY_DESC_BASE<"copy_u.w", vextract_zext_i32, v4i32,
+ GPR32Opnd, MSA128WOpnd>;
+class COPY_U_D_DESC : MSA_COPY_DESC_BASE<"copy_u.d", vextract_zext_i64, v2i64,
+ GPR64Opnd, MSA128DOpnd>;
+
+class COPY_FW_PSEUDO_DESC : MSA_COPY_PSEUDO_BASE<vector_extract, v4f32, FGR32,
+ MSA128W>;
+class COPY_FD_PSEUDO_DESC : MSA_COPY_PSEUDO_BASE<vector_extract, v2f64, FGR64,
+ MSA128D>;
+
+class CTCMSA_DESC {
+ dag OutOperandList = (outs);
+ dag InOperandList = (ins MSA128CROpnd:$cd, GPR32Opnd:$rs);
+ string AsmString = "ctcmsa\t$cd, $rs";
+ InstrItinClass Itinerary = NoItinerary;
+ bit hasSideEffects = 1;
+}
+
+class DIV_S_B_DESC : MSA_3R_DESC_BASE<"div_s.b", sdiv, MSA128BOpnd>;
+class DIV_S_H_DESC : MSA_3R_DESC_BASE<"div_s.h", sdiv, MSA128HOpnd>;
+class DIV_S_W_DESC : MSA_3R_DESC_BASE<"div_s.w", sdiv, MSA128WOpnd>;
+class DIV_S_D_DESC : MSA_3R_DESC_BASE<"div_s.d", sdiv, MSA128DOpnd>;
+
+class DIV_U_B_DESC : MSA_3R_DESC_BASE<"div_u.b", udiv, MSA128BOpnd>;
+class DIV_U_H_DESC : MSA_3R_DESC_BASE<"div_u.h", udiv, MSA128HOpnd>;
+class DIV_U_W_DESC : MSA_3R_DESC_BASE<"div_u.w", udiv, MSA128WOpnd>;
+class DIV_U_D_DESC : MSA_3R_DESC_BASE<"div_u.d", udiv, MSA128DOpnd>;
+
+class DOTP_S_H_DESC : MSA_3R_DESC_BASE<"dotp_s.h", int_mips_dotp_s_h,
+ MSA128HOpnd, MSA128BOpnd, MSA128BOpnd>,
+ IsCommutable;
+class DOTP_S_W_DESC : MSA_3R_DESC_BASE<"dotp_s.w", int_mips_dotp_s_w,
+ MSA128WOpnd, MSA128HOpnd, MSA128HOpnd>,
+ IsCommutable;
+class DOTP_S_D_DESC : MSA_3R_DESC_BASE<"dotp_s.d", int_mips_dotp_s_d,
+ MSA128DOpnd, MSA128WOpnd, MSA128WOpnd>,
+ IsCommutable;
+
+class DOTP_U_H_DESC : MSA_3R_DESC_BASE<"dotp_u.h", int_mips_dotp_u_h,
+ MSA128HOpnd, MSA128BOpnd, MSA128BOpnd>,
+ IsCommutable;
+class DOTP_U_W_DESC : MSA_3R_DESC_BASE<"dotp_u.w", int_mips_dotp_u_w,
+ MSA128WOpnd, MSA128HOpnd, MSA128HOpnd>,
+ IsCommutable;
+class DOTP_U_D_DESC : MSA_3R_DESC_BASE<"dotp_u.d", int_mips_dotp_u_d,
+ MSA128DOpnd, MSA128WOpnd, MSA128WOpnd>,
+ IsCommutable;
+
+class DPADD_S_H_DESC : MSA_3R_4R_DESC_BASE<"dpadd_s.h", int_mips_dpadd_s_h,
+ MSA128HOpnd, MSA128BOpnd,
+ MSA128BOpnd>, IsCommutable;
+class DPADD_S_W_DESC : MSA_3R_4R_DESC_BASE<"dpadd_s.w", int_mips_dpadd_s_w,
+ MSA128WOpnd, MSA128HOpnd,
+ MSA128HOpnd>, IsCommutable;
+class DPADD_S_D_DESC : MSA_3R_4R_DESC_BASE<"dpadd_s.d", int_mips_dpadd_s_d,
+ MSA128DOpnd, MSA128WOpnd,
+ MSA128WOpnd>, IsCommutable;
+
+class DPADD_U_H_DESC : MSA_3R_4R_DESC_BASE<"dpadd_u.h", int_mips_dpadd_u_h,
+ MSA128HOpnd, MSA128BOpnd,
+ MSA128BOpnd>, IsCommutable;
+class DPADD_U_W_DESC : MSA_3R_4R_DESC_BASE<"dpadd_u.w", int_mips_dpadd_u_w,
+ MSA128WOpnd, MSA128HOpnd,
+ MSA128HOpnd>, IsCommutable;
+class DPADD_U_D_DESC : MSA_3R_4R_DESC_BASE<"dpadd_u.d", int_mips_dpadd_u_d,
+ MSA128DOpnd, MSA128WOpnd,
+ MSA128WOpnd>, IsCommutable;
+
+class DPSUB_S_H_DESC : MSA_3R_4R_DESC_BASE<"dpsub_s.h", int_mips_dpsub_s_h,
+ MSA128HOpnd, MSA128BOpnd,
+ MSA128BOpnd>;
+class DPSUB_S_W_DESC : MSA_3R_4R_DESC_BASE<"dpsub_s.w", int_mips_dpsub_s_w,
+ MSA128WOpnd, MSA128HOpnd,
+ MSA128HOpnd>;
+class DPSUB_S_D_DESC : MSA_3R_4R_DESC_BASE<"dpsub_s.d", int_mips_dpsub_s_d,
+ MSA128DOpnd, MSA128WOpnd,
+ MSA128WOpnd>;
+
+class DPSUB_U_H_DESC : MSA_3R_4R_DESC_BASE<"dpsub_u.h", int_mips_dpsub_u_h,
+ MSA128HOpnd, MSA128BOpnd,
+ MSA128BOpnd>;
+class DPSUB_U_W_DESC : MSA_3R_4R_DESC_BASE<"dpsub_u.w", int_mips_dpsub_u_w,
+ MSA128WOpnd, MSA128HOpnd,
+ MSA128HOpnd>;
+class DPSUB_U_D_DESC : MSA_3R_4R_DESC_BASE<"dpsub_u.d", int_mips_dpsub_u_d,
+ MSA128DOpnd, MSA128WOpnd,
+ MSA128WOpnd>;
+
+class FADD_W_DESC : MSA_3RF_DESC_BASE<"fadd.w", fadd, MSA128WOpnd>,
+ IsCommutable;
+class FADD_D_DESC : MSA_3RF_DESC_BASE<"fadd.d", fadd, MSA128DOpnd>,
+ IsCommutable;
+
+class FCAF_W_DESC : MSA_3RF_DESC_BASE<"fcaf.w", int_mips_fcaf_w, MSA128WOpnd>,
+ IsCommutable;
+class FCAF_D_DESC : MSA_3RF_DESC_BASE<"fcaf.d", int_mips_fcaf_d, MSA128DOpnd>,
+ IsCommutable;
+
+class FCEQ_W_DESC : MSA_3RF_DESC_BASE<"fceq.w", vfsetoeq_v4f32, MSA128WOpnd>,
+ IsCommutable;
+class FCEQ_D_DESC : MSA_3RF_DESC_BASE<"fceq.d", vfsetoeq_v2f64, MSA128DOpnd>,
+ IsCommutable;
+
+class FCLASS_W_DESC : MSA_2RF_DESC_BASE<"fclass.w", int_mips_fclass_w,
+ MSA128WOpnd>;
+class FCLASS_D_DESC : MSA_2RF_DESC_BASE<"fclass.d", int_mips_fclass_d,
+ MSA128DOpnd>;
+
+class FCLE_W_DESC : MSA_3RF_DESC_BASE<"fcle.w", vfsetole_v4f32, MSA128WOpnd>;
+class FCLE_D_DESC : MSA_3RF_DESC_BASE<"fcle.d", vfsetole_v2f64, MSA128DOpnd>;
+
+class FCLT_W_DESC : MSA_3RF_DESC_BASE<"fclt.w", vfsetolt_v4f32, MSA128WOpnd>;
+class FCLT_D_DESC : MSA_3RF_DESC_BASE<"fclt.d", vfsetolt_v2f64, MSA128DOpnd>;
+
+class FCNE_W_DESC : MSA_3RF_DESC_BASE<"fcne.w", vfsetone_v4f32, MSA128WOpnd>,
+ IsCommutable;
+class FCNE_D_DESC : MSA_3RF_DESC_BASE<"fcne.d", vfsetone_v2f64, MSA128DOpnd>,
+ IsCommutable;
+
+class FCOR_W_DESC : MSA_3RF_DESC_BASE<"fcor.w", vfsetord_v4f32, MSA128WOpnd>,
+ IsCommutable;
+class FCOR_D_DESC : MSA_3RF_DESC_BASE<"fcor.d", vfsetord_v2f64, MSA128DOpnd>,
+ IsCommutable;
+
+class FCUEQ_W_DESC : MSA_3RF_DESC_BASE<"fcueq.w", vfsetueq_v4f32, MSA128WOpnd>,
+ IsCommutable;
+class FCUEQ_D_DESC : MSA_3RF_DESC_BASE<"fcueq.d", vfsetueq_v2f64, MSA128DOpnd>,
+ IsCommutable;
+
+class FCULE_W_DESC : MSA_3RF_DESC_BASE<"fcule.w", vfsetule_v4f32, MSA128WOpnd>,
+ IsCommutable;
+class FCULE_D_DESC : MSA_3RF_DESC_BASE<"fcule.d", vfsetule_v2f64, MSA128DOpnd>,
+ IsCommutable;
+
+class FCULT_W_DESC : MSA_3RF_DESC_BASE<"fcult.w", vfsetult_v4f32, MSA128WOpnd>,
+ IsCommutable;
+class FCULT_D_DESC : MSA_3RF_DESC_BASE<"fcult.d", vfsetult_v2f64, MSA128DOpnd>,
+ IsCommutable;
+
+class FCUN_W_DESC : MSA_3RF_DESC_BASE<"fcun.w", vfsetun_v4f32, MSA128WOpnd>,
+ IsCommutable;
+class FCUN_D_DESC : MSA_3RF_DESC_BASE<"fcun.d", vfsetun_v2f64, MSA128DOpnd>,
+ IsCommutable;
+
+class FCUNE_W_DESC : MSA_3RF_DESC_BASE<"fcune.w", vfsetune_v4f32, MSA128WOpnd>,
+ IsCommutable;
+class FCUNE_D_DESC : MSA_3RF_DESC_BASE<"fcune.d", vfsetune_v2f64, MSA128DOpnd>,
+ IsCommutable;
+
+class FDIV_W_DESC : MSA_3RF_DESC_BASE<"fdiv.w", fdiv, MSA128WOpnd>;
+class FDIV_D_DESC : MSA_3RF_DESC_BASE<"fdiv.d", fdiv, MSA128DOpnd>;
+
+class FEXDO_H_DESC : MSA_3RF_DESC_BASE<"fexdo.h", int_mips_fexdo_h,
+ MSA128HOpnd, MSA128WOpnd, MSA128WOpnd>;
+class FEXDO_W_DESC : MSA_3RF_DESC_BASE<"fexdo.w", int_mips_fexdo_w,
+ MSA128WOpnd, MSA128DOpnd, MSA128DOpnd>;
+
+// The fexp2.df instruction multiplies the first operand by 2 to the power of
+// the second operand. We therefore need a pseudo-insn in order to invent the
+// 1.0 when we only need to match ISD::FEXP2.
+class FEXP2_W_DESC : MSA_3RF_DESC_BASE<"fexp2.w", mul_fexp2, MSA128WOpnd>;
+class FEXP2_D_DESC : MSA_3RF_DESC_BASE<"fexp2.d", mul_fexp2, MSA128DOpnd>;
+let usesCustomInserter = 1 in {
+ class FEXP2_W_1_PSEUDO_DESC :
+ MSAPseudo<(outs MSA128W:$wd), (ins MSA128W:$ws),
+ [(set MSA128W:$wd, (fexp2 MSA128W:$ws))]>;
+ class FEXP2_D_1_PSEUDO_DESC :
+ MSAPseudo<(outs MSA128D:$wd), (ins MSA128D:$ws),
+ [(set MSA128D:$wd, (fexp2 MSA128D:$ws))]>;
+}
+
+class FEXUPL_W_DESC : MSA_2RF_DESC_BASE<"fexupl.w", int_mips_fexupl_w,
+ MSA128WOpnd, MSA128HOpnd>;
+class FEXUPL_D_DESC : MSA_2RF_DESC_BASE<"fexupl.d", int_mips_fexupl_d,
+ MSA128DOpnd, MSA128WOpnd>;
+
+class FEXUPR_W_DESC : MSA_2RF_DESC_BASE<"fexupr.w", int_mips_fexupr_w,
+ MSA128WOpnd, MSA128HOpnd>;
+class FEXUPR_D_DESC : MSA_2RF_DESC_BASE<"fexupr.d", int_mips_fexupr_d,
+ MSA128DOpnd, MSA128WOpnd>;
+
+class FFINT_S_W_DESC : MSA_2RF_DESC_BASE<"ffint_s.w", sint_to_fp, MSA128WOpnd>;
+class FFINT_S_D_DESC : MSA_2RF_DESC_BASE<"ffint_s.d", sint_to_fp, MSA128DOpnd>;
+
+class FFINT_U_W_DESC : MSA_2RF_DESC_BASE<"ffint_u.w", uint_to_fp, MSA128WOpnd>;
+class FFINT_U_D_DESC : MSA_2RF_DESC_BASE<"ffint_u.d", uint_to_fp, MSA128DOpnd>;
+
+class FFQL_W_DESC : MSA_2RF_DESC_BASE<"ffql.w", int_mips_ffql_w,
+ MSA128WOpnd, MSA128HOpnd>;
+class FFQL_D_DESC : MSA_2RF_DESC_BASE<"ffql.d", int_mips_ffql_d,
+ MSA128DOpnd, MSA128WOpnd>;
+
+class FFQR_W_DESC : MSA_2RF_DESC_BASE<"ffqr.w", int_mips_ffqr_w,
+ MSA128WOpnd, MSA128HOpnd>;
+class FFQR_D_DESC : MSA_2RF_DESC_BASE<"ffqr.d", int_mips_ffqr_d,
+ MSA128DOpnd, MSA128WOpnd>;
+
+class FILL_B_DESC : MSA_2R_FILL_DESC_BASE<"fill.b", v16i8, vsplati8,
+ MSA128BOpnd, GPR32Opnd>;
+class FILL_H_DESC : MSA_2R_FILL_DESC_BASE<"fill.h", v8i16, vsplati16,
+ MSA128HOpnd, GPR32Opnd>;
+class FILL_W_DESC : MSA_2R_FILL_DESC_BASE<"fill.w", v4i32, vsplati32,
+ MSA128WOpnd, GPR32Opnd>;
+class FILL_D_DESC : MSA_2R_FILL_DESC_BASE<"fill.d", v2i64, vsplati64,
+ MSA128DOpnd, GPR64Opnd>;
+
+class FILL_FW_PSEUDO_DESC : MSA_2R_FILL_PSEUDO_BASE<v4f32, vsplatf32, MSA128W,
+ FGR32>;
+class FILL_FD_PSEUDO_DESC : MSA_2R_FILL_PSEUDO_BASE<v2f64, vsplatf64, MSA128D,
+ FGR64>;
+
+class FLOG2_W_DESC : MSA_2RF_DESC_BASE<"flog2.w", flog2, MSA128WOpnd>;
+class FLOG2_D_DESC : MSA_2RF_DESC_BASE<"flog2.d", flog2, MSA128DOpnd>;
+
+class FMADD_W_DESC : MSA_3RF_4RF_DESC_BASE<"fmadd.w", fma, MSA128WOpnd>;
+class FMADD_D_DESC : MSA_3RF_4RF_DESC_BASE<"fmadd.d", fma, MSA128DOpnd>;
+
+class FMAX_W_DESC : MSA_3RF_DESC_BASE<"fmax.w", int_mips_fmax_w, MSA128WOpnd>;
+class FMAX_D_DESC : MSA_3RF_DESC_BASE<"fmax.d", int_mips_fmax_d, MSA128DOpnd>;
+
+class FMAX_A_W_DESC : MSA_3RF_DESC_BASE<"fmax_a.w", int_mips_fmax_a_w,
+ MSA128WOpnd>;
+class FMAX_A_D_DESC : MSA_3RF_DESC_BASE<"fmax_a.d", int_mips_fmax_a_d,
+ MSA128DOpnd>;
+
+class FMIN_W_DESC : MSA_3RF_DESC_BASE<"fmin.w", int_mips_fmin_w, MSA128WOpnd>;
+class FMIN_D_DESC : MSA_3RF_DESC_BASE<"fmin.d", int_mips_fmin_d, MSA128DOpnd>;
+
+class FMIN_A_W_DESC : MSA_3RF_DESC_BASE<"fmin_a.w", int_mips_fmin_a_w,
+ MSA128WOpnd>;
+class FMIN_A_D_DESC : MSA_3RF_DESC_BASE<"fmin_a.d", int_mips_fmin_a_d,
+ MSA128DOpnd>;
+
+class FMSUB_W_DESC : MSA_3RF_4RF_DESC_BASE<"fmsub.w", fms, MSA128WOpnd>;
+class FMSUB_D_DESC : MSA_3RF_4RF_DESC_BASE<"fmsub.d", fms, MSA128DOpnd>;
+
+class FMUL_W_DESC : MSA_3RF_DESC_BASE<"fmul.w", fmul, MSA128WOpnd>;
+class FMUL_D_DESC : MSA_3RF_DESC_BASE<"fmul.d", fmul, MSA128DOpnd>;
+
+class FRINT_W_DESC : MSA_2RF_DESC_BASE<"frint.w", frint, MSA128WOpnd>;
+class FRINT_D_DESC : MSA_2RF_DESC_BASE<"frint.d", frint, MSA128DOpnd>;
+
+class FRCP_W_DESC : MSA_2RF_DESC_BASE<"frcp.w", int_mips_frcp_w, MSA128WOpnd>;
+class FRCP_D_DESC : MSA_2RF_DESC_BASE<"frcp.d", int_mips_frcp_d, MSA128DOpnd>;
+
+class FRSQRT_W_DESC : MSA_2RF_DESC_BASE<"frsqrt.w", int_mips_frsqrt_w,
+ MSA128WOpnd>;
+class FRSQRT_D_DESC : MSA_2RF_DESC_BASE<"frsqrt.d", int_mips_frsqrt_d,
+ MSA128DOpnd>;
+
+class FSAF_W_DESC : MSA_3RF_DESC_BASE<"fsaf.w", int_mips_fsaf_w, MSA128WOpnd>;
+class FSAF_D_DESC : MSA_3RF_DESC_BASE<"fsaf.d", int_mips_fsaf_d, MSA128DOpnd>;
+
+class FSEQ_W_DESC : MSA_3RF_DESC_BASE<"fseq.w", int_mips_fseq_w, MSA128WOpnd>;
+class FSEQ_D_DESC : MSA_3RF_DESC_BASE<"fseq.d", int_mips_fseq_d, MSA128DOpnd>;
+
+class FSLE_W_DESC : MSA_3RF_DESC_BASE<"fsle.w", int_mips_fsle_w, MSA128WOpnd>;
+class FSLE_D_DESC : MSA_3RF_DESC_BASE<"fsle.d", int_mips_fsle_d, MSA128DOpnd>;
+
+class FSLT_W_DESC : MSA_3RF_DESC_BASE<"fslt.w", int_mips_fslt_w, MSA128WOpnd>;
+class FSLT_D_DESC : MSA_3RF_DESC_BASE<"fslt.d", int_mips_fslt_d, MSA128DOpnd>;
+
+class FSNE_W_DESC : MSA_3RF_DESC_BASE<"fsne.w", int_mips_fsne_w, MSA128WOpnd>;
+class FSNE_D_DESC : MSA_3RF_DESC_BASE<"fsne.d", int_mips_fsne_d, MSA128DOpnd>;
+
+class FSOR_W_DESC : MSA_3RF_DESC_BASE<"fsor.w", int_mips_fsor_w, MSA128WOpnd>;
+class FSOR_D_DESC : MSA_3RF_DESC_BASE<"fsor.d", int_mips_fsor_d, MSA128DOpnd>;
+
+class FSQRT_W_DESC : MSA_2RF_DESC_BASE<"fsqrt.w", fsqrt, MSA128WOpnd>;
+class FSQRT_D_DESC : MSA_2RF_DESC_BASE<"fsqrt.d", fsqrt, MSA128DOpnd>;
+
+class FSUB_W_DESC : MSA_3RF_DESC_BASE<"fsub.w", fsub, MSA128WOpnd>;
+class FSUB_D_DESC : MSA_3RF_DESC_BASE<"fsub.d", fsub, MSA128DOpnd>;
+
+class FSUEQ_W_DESC : MSA_3RF_DESC_BASE<"fsueq.w", int_mips_fsueq_w,
+ MSA128WOpnd>;
+class FSUEQ_D_DESC : MSA_3RF_DESC_BASE<"fsueq.d", int_mips_fsueq_d,
+ MSA128DOpnd>;
+
+class FSULE_W_DESC : MSA_3RF_DESC_BASE<"fsule.w", int_mips_fsule_w,
+ MSA128WOpnd>;
+class FSULE_D_DESC : MSA_3RF_DESC_BASE<"fsule.d", int_mips_fsule_d,
+ MSA128DOpnd>;
+
+class FSULT_W_DESC : MSA_3RF_DESC_BASE<"fsult.w", int_mips_fsult_w,
+ MSA128WOpnd>;
+class FSULT_D_DESC : MSA_3RF_DESC_BASE<"fsult.d", int_mips_fsult_d,
+ MSA128DOpnd>;
+
+class FSUN_W_DESC : MSA_3RF_DESC_BASE<"fsun.w", int_mips_fsun_w,
+ MSA128WOpnd>;
+class FSUN_D_DESC : MSA_3RF_DESC_BASE<"fsun.d", int_mips_fsun_d,
+ MSA128DOpnd>;
+
+class FSUNE_W_DESC : MSA_3RF_DESC_BASE<"fsune.w", int_mips_fsune_w,
+ MSA128WOpnd>;
+class FSUNE_D_DESC : MSA_3RF_DESC_BASE<"fsune.d", int_mips_fsune_d,
+ MSA128DOpnd>;
+
+class FTINT_S_W_DESC : MSA_2RF_DESC_BASE<"ftint_s.w", int_mips_ftint_s_w,
+ MSA128WOpnd>;
+class FTINT_S_D_DESC : MSA_2RF_DESC_BASE<"ftint_s.d", int_mips_ftint_s_d,
+ MSA128DOpnd>;
+
+class FTINT_U_W_DESC : MSA_2RF_DESC_BASE<"ftint_u.w", int_mips_ftint_u_w,
+ MSA128WOpnd>;
+class FTINT_U_D_DESC : MSA_2RF_DESC_BASE<"ftint_u.d", int_mips_ftint_u_d,
+ MSA128DOpnd>;
+
+class FTQ_H_DESC : MSA_3RF_DESC_BASE<"ftq.h", int_mips_ftq_h,
+ MSA128HOpnd, MSA128WOpnd, MSA128WOpnd>;
+class FTQ_W_DESC : MSA_3RF_DESC_BASE<"ftq.w", int_mips_ftq_w,
+ MSA128WOpnd, MSA128DOpnd, MSA128DOpnd>;
+
+class FTRUNC_S_W_DESC : MSA_2RF_DESC_BASE<"ftrunc_s.w", fp_to_sint,
+ MSA128WOpnd>;
+class FTRUNC_S_D_DESC : MSA_2RF_DESC_BASE<"ftrunc_s.d", fp_to_sint,
+ MSA128DOpnd>;
+
+class FTRUNC_U_W_DESC : MSA_2RF_DESC_BASE<"ftrunc_u.w", fp_to_uint,
+ MSA128WOpnd>;
+class FTRUNC_U_D_DESC : MSA_2RF_DESC_BASE<"ftrunc_u.d", fp_to_uint,
+ MSA128DOpnd>;
+
+class HADD_S_H_DESC : MSA_3R_DESC_BASE<"hadd_s.h", int_mips_hadd_s_h,
+ MSA128HOpnd, MSA128BOpnd, MSA128BOpnd>;
+class HADD_S_W_DESC : MSA_3R_DESC_BASE<"hadd_s.w", int_mips_hadd_s_w,
+ MSA128WOpnd, MSA128HOpnd, MSA128HOpnd>;
+class HADD_S_D_DESC : MSA_3R_DESC_BASE<"hadd_s.d", int_mips_hadd_s_d,
+ MSA128DOpnd, MSA128WOpnd, MSA128WOpnd>;
+
+class HADD_U_H_DESC : MSA_3R_DESC_BASE<"hadd_u.h", int_mips_hadd_u_h,
+ MSA128HOpnd, MSA128BOpnd, MSA128BOpnd>;
+class HADD_U_W_DESC : MSA_3R_DESC_BASE<"hadd_u.w", int_mips_hadd_u_w,
+ MSA128WOpnd, MSA128HOpnd, MSA128HOpnd>;
+class HADD_U_D_DESC : MSA_3R_DESC_BASE<"hadd_u.d", int_mips_hadd_u_d,
+ MSA128DOpnd, MSA128WOpnd, MSA128WOpnd>;
+
+class HSUB_S_H_DESC : MSA_3R_DESC_BASE<"hsub_s.h", int_mips_hsub_s_h,
+ MSA128HOpnd, MSA128BOpnd, MSA128BOpnd>;
+class HSUB_S_W_DESC : MSA_3R_DESC_BASE<"hsub_s.w", int_mips_hsub_s_w,
+ MSA128WOpnd, MSA128HOpnd, MSA128HOpnd>;
+class HSUB_S_D_DESC : MSA_3R_DESC_BASE<"hsub_s.d", int_mips_hsub_s_d,
+ MSA128DOpnd, MSA128WOpnd, MSA128WOpnd>;
+
+class HSUB_U_H_DESC : MSA_3R_DESC_BASE<"hsub_u.h", int_mips_hsub_u_h,
+ MSA128HOpnd, MSA128BOpnd, MSA128BOpnd>;
+class HSUB_U_W_DESC : MSA_3R_DESC_BASE<"hsub_u.w", int_mips_hsub_u_w,
+ MSA128WOpnd, MSA128HOpnd, MSA128HOpnd>;
+class HSUB_U_D_DESC : MSA_3R_DESC_BASE<"hsub_u.d", int_mips_hsub_u_d,
+ MSA128DOpnd, MSA128WOpnd, MSA128WOpnd>;
+
+class ILVEV_B_DESC : MSA_3R_DESC_BASE<"ilvev.b", MipsILVEV, MSA128BOpnd>;
+class ILVEV_H_DESC : MSA_3R_DESC_BASE<"ilvev.h", MipsILVEV, MSA128HOpnd>;
+class ILVEV_W_DESC : MSA_3R_DESC_BASE<"ilvev.w", MipsILVEV, MSA128WOpnd>;
+class ILVEV_D_DESC : MSA_3R_DESC_BASE<"ilvev.d", MipsILVEV, MSA128DOpnd>;
+
+class ILVL_B_DESC : MSA_3R_DESC_BASE<"ilvl.b", MipsILVL, MSA128BOpnd>;
+class ILVL_H_DESC : MSA_3R_DESC_BASE<"ilvl.h", MipsILVL, MSA128HOpnd>;
+class ILVL_W_DESC : MSA_3R_DESC_BASE<"ilvl.w", MipsILVL, MSA128WOpnd>;
+class ILVL_D_DESC : MSA_3R_DESC_BASE<"ilvl.d", MipsILVL, MSA128DOpnd>;
+
+class ILVOD_B_DESC : MSA_3R_DESC_BASE<"ilvod.b", MipsILVOD, MSA128BOpnd>;
+class ILVOD_H_DESC : MSA_3R_DESC_BASE<"ilvod.h", MipsILVOD, MSA128HOpnd>;
+class ILVOD_W_DESC : MSA_3R_DESC_BASE<"ilvod.w", MipsILVOD, MSA128WOpnd>;
+class ILVOD_D_DESC : MSA_3R_DESC_BASE<"ilvod.d", MipsILVOD, MSA128DOpnd>;
+
+class ILVR_B_DESC : MSA_3R_DESC_BASE<"ilvr.b", MipsILVR, MSA128BOpnd>;
+class ILVR_H_DESC : MSA_3R_DESC_BASE<"ilvr.h", MipsILVR, MSA128HOpnd>;
+class ILVR_W_DESC : MSA_3R_DESC_BASE<"ilvr.w", MipsILVR, MSA128WOpnd>;
+class ILVR_D_DESC : MSA_3R_DESC_BASE<"ilvr.d", MipsILVR, MSA128DOpnd>;
+
+class INSERT_B_DESC : MSA_INSERT_DESC_BASE<"insert.b", vinsert_v16i8,
+ MSA128BOpnd, GPR32Opnd>;
+class INSERT_H_DESC : MSA_INSERT_DESC_BASE<"insert.h", vinsert_v8i16,
+ MSA128HOpnd, GPR32Opnd>;
+class INSERT_W_DESC : MSA_INSERT_DESC_BASE<"insert.w", vinsert_v4i32,
+ MSA128WOpnd, GPR32Opnd>;
+class INSERT_D_DESC : MSA_INSERT_DESC_BASE<"insert.d", vinsert_v2i64,
+ MSA128DOpnd, GPR64Opnd>;
+
+class INSERT_B_VIDX_PSEUDO_DESC :
+ MSA_INSERT_VIDX_PSEUDO_BASE<vector_insert, v16i8, MSA128BOpnd, GPR32Opnd>;
+class INSERT_H_VIDX_PSEUDO_DESC :
+ MSA_INSERT_VIDX_PSEUDO_BASE<vector_insert, v8i16, MSA128HOpnd, GPR32Opnd>;
+class INSERT_W_VIDX_PSEUDO_DESC :
+ MSA_INSERT_VIDX_PSEUDO_BASE<vector_insert, v4i32, MSA128WOpnd, GPR32Opnd>;
+class INSERT_D_VIDX_PSEUDO_DESC :
+ MSA_INSERT_VIDX_PSEUDO_BASE<vector_insert, v2i64, MSA128DOpnd, GPR64Opnd>;
+
+class INSERT_FW_PSEUDO_DESC : MSA_INSERT_PSEUDO_BASE<vector_insert, v4f32,
+ MSA128WOpnd, FGR32Opnd>;
+class INSERT_FD_PSEUDO_DESC : MSA_INSERT_PSEUDO_BASE<vector_insert, v2f64,
+ MSA128DOpnd, FGR64Opnd>;
+
+class INSERT_FW_VIDX_PSEUDO_DESC :
+ MSA_INSERT_VIDX_PSEUDO_BASE<vector_insert, v4f32, MSA128WOpnd, FGR32Opnd>;
+class INSERT_FD_VIDX_PSEUDO_DESC :
+ MSA_INSERT_VIDX_PSEUDO_BASE<vector_insert, v2f64, MSA128DOpnd, FGR64Opnd>;
+
+class INSVE_B_DESC : MSA_INSVE_DESC_BASE<"insve.b", insve_v16i8,
+ MSA128BOpnd>;
+class INSVE_H_DESC : MSA_INSVE_DESC_BASE<"insve.h", insve_v8i16,
+ MSA128HOpnd>;
+class INSVE_W_DESC : MSA_INSVE_DESC_BASE<"insve.w", insve_v4i32,
+ MSA128WOpnd>;
+class INSVE_D_DESC : MSA_INSVE_DESC_BASE<"insve.d", insve_v2i64,
+ MSA128DOpnd>;
+
+class LD_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ ValueType TyNode, RegisterOperand ROWD,
+ Operand MemOpnd = mem_msa, ComplexPattern Addr = addrimm10,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs ROWD:$wd);
+ dag InOperandList = (ins MemOpnd:$addr);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $addr");
+ list<dag> Pattern = [(set ROWD:$wd, (TyNode (OpNode Addr:$addr)))];
+ InstrItinClass Itinerary = itin;
+ string DecoderMethod = "DecodeMSA128Mem";
+}
+
+class LD_B_DESC : LD_DESC_BASE<"ld.b", load, v16i8, MSA128BOpnd>;
+class LD_H_DESC : LD_DESC_BASE<"ld.h", load, v8i16, MSA128HOpnd>;
+class LD_W_DESC : LD_DESC_BASE<"ld.w", load, v4i32, MSA128WOpnd>;
+class LD_D_DESC : LD_DESC_BASE<"ld.d", load, v2i64, MSA128DOpnd>;
+
+class LDI_B_DESC : MSA_I10_LDI_DESC_BASE<"ldi.b", MSA128BOpnd>;
+class LDI_H_DESC : MSA_I10_LDI_DESC_BASE<"ldi.h", MSA128HOpnd>;
+class LDI_W_DESC : MSA_I10_LDI_DESC_BASE<"ldi.w", MSA128WOpnd>;
+class LDI_D_DESC : MSA_I10_LDI_DESC_BASE<"ldi.d", MSA128DOpnd>;
+
+class LSA_DESC_BASE<string instr_asm, RegisterOperand RORD,
+ RegisterOperand RORS = RORD, RegisterOperand RORT = RORD,
+ InstrItinClass itin = NoItinerary > {
+ dag OutOperandList = (outs RORD:$rd);
+ dag InOperandList = (ins RORS:$rs, RORT:$rt, LSAImm:$sa);
+ string AsmString = !strconcat(instr_asm, "\t$rd, $rs, $rt, $sa");
+ list<dag> Pattern = [(set RORD:$rd, (add RORT:$rt,
+ (shl RORS:$rs,
+ immZExt2Lsa:$sa)))];
+ InstrItinClass Itinerary = itin;
+}
+
+class LSA_DESC : LSA_DESC_BASE<"lsa", GPR32Opnd>;
+class DLSA_DESC : LSA_DESC_BASE<"dlsa", GPR64Opnd>;
+
+class MADD_Q_H_DESC : MSA_3RF_4RF_DESC_BASE<"madd_q.h", int_mips_madd_q_h,
+ MSA128HOpnd>;
+class MADD_Q_W_DESC : MSA_3RF_4RF_DESC_BASE<"madd_q.w", int_mips_madd_q_w,
+ MSA128WOpnd>;
+
+class MADDR_Q_H_DESC : MSA_3RF_4RF_DESC_BASE<"maddr_q.h", int_mips_maddr_q_h,
+ MSA128HOpnd>;
+class MADDR_Q_W_DESC : MSA_3RF_4RF_DESC_BASE<"maddr_q.w", int_mips_maddr_q_w,
+ MSA128WOpnd>;
+
+class MADDV_B_DESC : MSA_3R_4R_DESC_BASE<"maddv.b", muladd, MSA128BOpnd>;
+class MADDV_H_DESC : MSA_3R_4R_DESC_BASE<"maddv.h", muladd, MSA128HOpnd>;
+class MADDV_W_DESC : MSA_3R_4R_DESC_BASE<"maddv.w", muladd, MSA128WOpnd>;
+class MADDV_D_DESC : MSA_3R_4R_DESC_BASE<"maddv.d", muladd, MSA128DOpnd>;
+
+class MAX_A_B_DESC : MSA_3R_DESC_BASE<"max_a.b", int_mips_max_a_b, MSA128BOpnd>;
+class MAX_A_H_DESC : MSA_3R_DESC_BASE<"max_a.h", int_mips_max_a_h, MSA128HOpnd>;
+class MAX_A_W_DESC : MSA_3R_DESC_BASE<"max_a.w", int_mips_max_a_w, MSA128WOpnd>;
+class MAX_A_D_DESC : MSA_3R_DESC_BASE<"max_a.d", int_mips_max_a_d, MSA128DOpnd>;
+
+class MAX_S_B_DESC : MSA_3R_DESC_BASE<"max_s.b", MipsVSMax, MSA128BOpnd>;
+class MAX_S_H_DESC : MSA_3R_DESC_BASE<"max_s.h", MipsVSMax, MSA128HOpnd>;
+class MAX_S_W_DESC : MSA_3R_DESC_BASE<"max_s.w", MipsVSMax, MSA128WOpnd>;
+class MAX_S_D_DESC : MSA_3R_DESC_BASE<"max_s.d", MipsVSMax, MSA128DOpnd>;
+
+class MAX_U_B_DESC : MSA_3R_DESC_BASE<"max_u.b", MipsVUMax, MSA128BOpnd>;
+class MAX_U_H_DESC : MSA_3R_DESC_BASE<"max_u.h", MipsVUMax, MSA128HOpnd>;
+class MAX_U_W_DESC : MSA_3R_DESC_BASE<"max_u.w", MipsVUMax, MSA128WOpnd>;
+class MAX_U_D_DESC : MSA_3R_DESC_BASE<"max_u.d", MipsVUMax, MSA128DOpnd>;
+
+class MAXI_S_B_DESC : MSA_I5_DESC_BASE<"maxi_s.b", MipsVSMax, vsplati8_simm5,
+ MSA128BOpnd>;
+class MAXI_S_H_DESC : MSA_I5_DESC_BASE<"maxi_s.h", MipsVSMax, vsplati16_simm5,
+ MSA128HOpnd>;
+class MAXI_S_W_DESC : MSA_I5_DESC_BASE<"maxi_s.w", MipsVSMax, vsplati32_simm5,
+ MSA128WOpnd>;
+class MAXI_S_D_DESC : MSA_I5_DESC_BASE<"maxi_s.d", MipsVSMax, vsplati64_simm5,
+ MSA128DOpnd>;
+
+class MAXI_U_B_DESC : MSA_I5_DESC_BASE<"maxi_u.b", MipsVUMax, vsplati8_uimm5,
+ MSA128BOpnd>;
+class MAXI_U_H_DESC : MSA_I5_DESC_BASE<"maxi_u.h", MipsVUMax, vsplati16_uimm5,
+ MSA128HOpnd>;
+class MAXI_U_W_DESC : MSA_I5_DESC_BASE<"maxi_u.w", MipsVUMax, vsplati32_uimm5,
+ MSA128WOpnd>;
+class MAXI_U_D_DESC : MSA_I5_DESC_BASE<"maxi_u.d", MipsVUMax, vsplati64_uimm5,
+ MSA128DOpnd>;
+
+class MIN_A_B_DESC : MSA_3R_DESC_BASE<"min_a.b", int_mips_min_a_b, MSA128BOpnd>;
+class MIN_A_H_DESC : MSA_3R_DESC_BASE<"min_a.h", int_mips_min_a_h, MSA128HOpnd>;
+class MIN_A_W_DESC : MSA_3R_DESC_BASE<"min_a.w", int_mips_min_a_w, MSA128WOpnd>;
+class MIN_A_D_DESC : MSA_3R_DESC_BASE<"min_a.d", int_mips_min_a_d, MSA128DOpnd>;
+
+class MIN_S_B_DESC : MSA_3R_DESC_BASE<"min_s.b", MipsVSMin, MSA128BOpnd>;
+class MIN_S_H_DESC : MSA_3R_DESC_BASE<"min_s.h", MipsVSMin, MSA128HOpnd>;
+class MIN_S_W_DESC : MSA_3R_DESC_BASE<"min_s.w", MipsVSMin, MSA128WOpnd>;
+class MIN_S_D_DESC : MSA_3R_DESC_BASE<"min_s.d", MipsVSMin, MSA128DOpnd>;
+
+class MIN_U_B_DESC : MSA_3R_DESC_BASE<"min_u.b", MipsVUMin, MSA128BOpnd>;
+class MIN_U_H_DESC : MSA_3R_DESC_BASE<"min_u.h", MipsVUMin, MSA128HOpnd>;
+class MIN_U_W_DESC : MSA_3R_DESC_BASE<"min_u.w", MipsVUMin, MSA128WOpnd>;
+class MIN_U_D_DESC : MSA_3R_DESC_BASE<"min_u.d", MipsVUMin, MSA128DOpnd>;
+
+class MINI_S_B_DESC : MSA_I5_DESC_BASE<"mini_s.b", MipsVSMin, vsplati8_simm5,
+ MSA128BOpnd>;
+class MINI_S_H_DESC : MSA_I5_DESC_BASE<"mini_s.h", MipsVSMin, vsplati16_simm5,
+ MSA128HOpnd>;
+class MINI_S_W_DESC : MSA_I5_DESC_BASE<"mini_s.w", MipsVSMin, vsplati32_simm5,
+ MSA128WOpnd>;
+class MINI_S_D_DESC : MSA_I5_DESC_BASE<"mini_s.d", MipsVSMin, vsplati64_simm5,
+ MSA128DOpnd>;
+
+class MINI_U_B_DESC : MSA_I5_DESC_BASE<"mini_u.b", MipsVUMin, vsplati8_uimm5,
+ MSA128BOpnd>;
+class MINI_U_H_DESC : MSA_I5_DESC_BASE<"mini_u.h", MipsVUMin, vsplati16_uimm5,
+ MSA128HOpnd>;
+class MINI_U_W_DESC : MSA_I5_DESC_BASE<"mini_u.w", MipsVUMin, vsplati32_uimm5,
+ MSA128WOpnd>;
+class MINI_U_D_DESC : MSA_I5_DESC_BASE<"mini_u.d", MipsVUMin, vsplati64_uimm5,
+ MSA128DOpnd>;
+
+class MOD_S_B_DESC : MSA_3R_DESC_BASE<"mod_s.b", srem, MSA128BOpnd>;
+class MOD_S_H_DESC : MSA_3R_DESC_BASE<"mod_s.h", srem, MSA128HOpnd>;
+class MOD_S_W_DESC : MSA_3R_DESC_BASE<"mod_s.w", srem, MSA128WOpnd>;
+class MOD_S_D_DESC : MSA_3R_DESC_BASE<"mod_s.d", srem, MSA128DOpnd>;
+
+class MOD_U_B_DESC : MSA_3R_DESC_BASE<"mod_u.b", urem, MSA128BOpnd>;
+class MOD_U_H_DESC : MSA_3R_DESC_BASE<"mod_u.h", urem, MSA128HOpnd>;
+class MOD_U_W_DESC : MSA_3R_DESC_BASE<"mod_u.w", urem, MSA128WOpnd>;
+class MOD_U_D_DESC : MSA_3R_DESC_BASE<"mod_u.d", urem, MSA128DOpnd>;
+
+class MOVE_V_DESC {
+ dag OutOperandList = (outs MSA128BOpnd:$wd);
+ dag InOperandList = (ins MSA128BOpnd:$ws);
+ string AsmString = "move.v\t$wd, $ws";
+ list<dag> Pattern = [];
+ InstrItinClass Itinerary = NoItinerary;
+}
+
+class MSUB_Q_H_DESC : MSA_3RF_4RF_DESC_BASE<"msub_q.h", int_mips_msub_q_h,
+ MSA128HOpnd>;
+class MSUB_Q_W_DESC : MSA_3RF_4RF_DESC_BASE<"msub_q.w", int_mips_msub_q_w,
+ MSA128WOpnd>;
+
+class MSUBR_Q_H_DESC : MSA_3RF_4RF_DESC_BASE<"msubr_q.h", int_mips_msubr_q_h,
+ MSA128HOpnd>;
+class MSUBR_Q_W_DESC : MSA_3RF_4RF_DESC_BASE<"msubr_q.w", int_mips_msubr_q_w,
+ MSA128WOpnd>;
+
+class MSUBV_B_DESC : MSA_3R_4R_DESC_BASE<"msubv.b", mulsub, MSA128BOpnd>;
+class MSUBV_H_DESC : MSA_3R_4R_DESC_BASE<"msubv.h", mulsub, MSA128HOpnd>;
+class MSUBV_W_DESC : MSA_3R_4R_DESC_BASE<"msubv.w", mulsub, MSA128WOpnd>;
+class MSUBV_D_DESC : MSA_3R_4R_DESC_BASE<"msubv.d", mulsub, MSA128DOpnd>;
+
+class MUL_Q_H_DESC : MSA_3RF_DESC_BASE<"mul_q.h", int_mips_mul_q_h,
+ MSA128HOpnd>;
+class MUL_Q_W_DESC : MSA_3RF_DESC_BASE<"mul_q.w", int_mips_mul_q_w,
+ MSA128WOpnd>;
+
+class MULR_Q_H_DESC : MSA_3RF_DESC_BASE<"mulr_q.h", int_mips_mulr_q_h,
+ MSA128HOpnd>;
+class MULR_Q_W_DESC : MSA_3RF_DESC_BASE<"mulr_q.w", int_mips_mulr_q_w,
+ MSA128WOpnd>;
+
+class MULV_B_DESC : MSA_3R_DESC_BASE<"mulv.b", mul, MSA128BOpnd>;
+class MULV_H_DESC : MSA_3R_DESC_BASE<"mulv.h", mul, MSA128HOpnd>;
+class MULV_W_DESC : MSA_3R_DESC_BASE<"mulv.w", mul, MSA128WOpnd>;
+class MULV_D_DESC : MSA_3R_DESC_BASE<"mulv.d", mul, MSA128DOpnd>;
+
+class NLOC_B_DESC : MSA_2R_DESC_BASE<"nloc.b", int_mips_nloc_b, MSA128BOpnd>;
+class NLOC_H_DESC : MSA_2R_DESC_BASE<"nloc.h", int_mips_nloc_h, MSA128HOpnd>;
+class NLOC_W_DESC : MSA_2R_DESC_BASE<"nloc.w", int_mips_nloc_w, MSA128WOpnd>;
+class NLOC_D_DESC : MSA_2R_DESC_BASE<"nloc.d", int_mips_nloc_d, MSA128DOpnd>;
+
+class NLZC_B_DESC : MSA_2R_DESC_BASE<"nlzc.b", ctlz, MSA128BOpnd>;
+class NLZC_H_DESC : MSA_2R_DESC_BASE<"nlzc.h", ctlz, MSA128HOpnd>;
+class NLZC_W_DESC : MSA_2R_DESC_BASE<"nlzc.w", ctlz, MSA128WOpnd>;
+class NLZC_D_DESC : MSA_2R_DESC_BASE<"nlzc.d", ctlz, MSA128DOpnd>;
+
+class NOR_V_DESC : MSA_VEC_DESC_BASE<"nor.v", MipsVNOR, MSA128BOpnd>;
+class NOR_V_H_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<MipsVNOR, MSA128HOpnd>;
+class NOR_V_W_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<MipsVNOR, MSA128WOpnd>;
+class NOR_V_D_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<MipsVNOR, MSA128DOpnd>;
+
+class NORI_B_DESC : MSA_I8_DESC_BASE<"nori.b", MipsVNOR, vsplati8_uimm8,
+ MSA128BOpnd>;
+
+class OR_V_DESC : MSA_VEC_DESC_BASE<"or.v", or, MSA128BOpnd>;
+class OR_V_H_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<or, MSA128HOpnd>;
+class OR_V_W_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<or, MSA128WOpnd>;
+class OR_V_D_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<or, MSA128DOpnd>;
+
+class ORI_B_DESC : MSA_I8_DESC_BASE<"ori.b", or, vsplati8_uimm8, MSA128BOpnd>;
+
+class PCKEV_B_DESC : MSA_3R_DESC_BASE<"pckev.b", MipsPCKEV, MSA128BOpnd>;
+class PCKEV_H_DESC : MSA_3R_DESC_BASE<"pckev.h", MipsPCKEV, MSA128HOpnd>;
+class PCKEV_W_DESC : MSA_3R_DESC_BASE<"pckev.w", MipsPCKEV, MSA128WOpnd>;
+class PCKEV_D_DESC : MSA_3R_DESC_BASE<"pckev.d", MipsPCKEV, MSA128DOpnd>;
+
+class PCKOD_B_DESC : MSA_3R_DESC_BASE<"pckod.b", MipsPCKOD, MSA128BOpnd>;
+class PCKOD_H_DESC : MSA_3R_DESC_BASE<"pckod.h", MipsPCKOD, MSA128HOpnd>;
+class PCKOD_W_DESC : MSA_3R_DESC_BASE<"pckod.w", MipsPCKOD, MSA128WOpnd>;
+class PCKOD_D_DESC : MSA_3R_DESC_BASE<"pckod.d", MipsPCKOD, MSA128DOpnd>;
+
+class PCNT_B_DESC : MSA_2R_DESC_BASE<"pcnt.b", ctpop, MSA128BOpnd>;
+class PCNT_H_DESC : MSA_2R_DESC_BASE<"pcnt.h", ctpop, MSA128HOpnd>;
+class PCNT_W_DESC : MSA_2R_DESC_BASE<"pcnt.w", ctpop, MSA128WOpnd>;
+class PCNT_D_DESC : MSA_2R_DESC_BASE<"pcnt.d", ctpop, MSA128DOpnd>;
+
+class SAT_S_B_DESC : MSA_BIT_B_X_DESC_BASE<"sat_s.b", int_mips_sat_s_b,
+ MSA128BOpnd>;
+class SAT_S_H_DESC : MSA_BIT_H_X_DESC_BASE<"sat_s.h", int_mips_sat_s_h,
+ MSA128HOpnd>;
+class SAT_S_W_DESC : MSA_BIT_W_X_DESC_BASE<"sat_s.w", int_mips_sat_s_w,
+ MSA128WOpnd>;
+class SAT_S_D_DESC : MSA_BIT_D_X_DESC_BASE<"sat_s.d", int_mips_sat_s_d,
+ MSA128DOpnd>;
+
+class SAT_U_B_DESC : MSA_BIT_B_X_DESC_BASE<"sat_u.b", int_mips_sat_u_b,
+ MSA128BOpnd>;
+class SAT_U_H_DESC : MSA_BIT_H_X_DESC_BASE<"sat_u.h", int_mips_sat_u_h,
+ MSA128HOpnd>;
+class SAT_U_W_DESC : MSA_BIT_W_X_DESC_BASE<"sat_u.w", int_mips_sat_u_w,
+ MSA128WOpnd>;
+class SAT_U_D_DESC : MSA_BIT_D_X_DESC_BASE<"sat_u.d", int_mips_sat_u_d,
+ MSA128DOpnd>;
+
+class SHF_B_DESC : MSA_I8_SHF_DESC_BASE<"shf.b", MSA128BOpnd>;
+class SHF_H_DESC : MSA_I8_SHF_DESC_BASE<"shf.h", MSA128HOpnd>;
+class SHF_W_DESC : MSA_I8_SHF_DESC_BASE<"shf.w", MSA128WOpnd>;
+
+class SLD_B_DESC : MSA_3R_SLD_DESC_BASE<"sld.b", int_mips_sld_b, MSA128BOpnd>;
+class SLD_H_DESC : MSA_3R_SLD_DESC_BASE<"sld.h", int_mips_sld_h, MSA128HOpnd>;
+class SLD_W_DESC : MSA_3R_SLD_DESC_BASE<"sld.w", int_mips_sld_w, MSA128WOpnd>;
+class SLD_D_DESC : MSA_3R_SLD_DESC_BASE<"sld.d", int_mips_sld_d, MSA128DOpnd>;
+
+class SLDI_B_DESC : MSA_ELM_SLD_DESC_BASE<"sldi.b", int_mips_sldi_b,
+ MSA128BOpnd>;
+class SLDI_H_DESC : MSA_ELM_SLD_DESC_BASE<"sldi.h", int_mips_sldi_h,
+ MSA128HOpnd>;
+class SLDI_W_DESC : MSA_ELM_SLD_DESC_BASE<"sldi.w", int_mips_sldi_w,
+ MSA128WOpnd>;
+class SLDI_D_DESC : MSA_ELM_SLD_DESC_BASE<"sldi.d", int_mips_sldi_d,
+ MSA128DOpnd>;
+
+class SLL_B_DESC : MSA_3R_DESC_BASE<"sll.b", shl, MSA128BOpnd>;
+class SLL_H_DESC : MSA_3R_DESC_BASE<"sll.h", shl, MSA128HOpnd>;
+class SLL_W_DESC : MSA_3R_DESC_BASE<"sll.w", shl, MSA128WOpnd>;
+class SLL_D_DESC : MSA_3R_DESC_BASE<"sll.d", shl, MSA128DOpnd>;
+
+class SLLI_B_DESC : MSA_BIT_SPLAT_DESC_BASE<"slli.b", shl, vsplati8_uimm3,
+ MSA128BOpnd>;
+class SLLI_H_DESC : MSA_BIT_SPLAT_DESC_BASE<"slli.h", shl, vsplati16_uimm4,
+ MSA128HOpnd>;
+class SLLI_W_DESC : MSA_BIT_SPLAT_DESC_BASE<"slli.w", shl, vsplati32_uimm5,
+ MSA128WOpnd>;
+class SLLI_D_DESC : MSA_BIT_SPLAT_DESC_BASE<"slli.d", shl, vsplati64_uimm6,
+ MSA128DOpnd>;
+
+class SPLAT_B_DESC : MSA_3R_SPLAT_DESC_BASE<"splat.b", vsplati8_elt,
+ MSA128BOpnd>;
+class SPLAT_H_DESC : MSA_3R_SPLAT_DESC_BASE<"splat.h", vsplati16_elt,
+ MSA128HOpnd>;
+class SPLAT_W_DESC : MSA_3R_SPLAT_DESC_BASE<"splat.w", vsplati32_elt,
+ MSA128WOpnd>;
+class SPLAT_D_DESC : MSA_3R_SPLAT_DESC_BASE<"splat.d", vsplati64_elt,
+ MSA128DOpnd>;
+
+class SPLATI_B_DESC : MSA_ELM_SPLAT_DESC_BASE<"splati.b", vsplati8_uimm4,
+ MSA128BOpnd>;
+class SPLATI_H_DESC : MSA_ELM_SPLAT_DESC_BASE<"splati.h", vsplati16_uimm3,
+ MSA128HOpnd>;
+class SPLATI_W_DESC : MSA_ELM_SPLAT_DESC_BASE<"splati.w", vsplati32_uimm2,
+ MSA128WOpnd>;
+class SPLATI_D_DESC : MSA_ELM_SPLAT_DESC_BASE<"splati.d", vsplati64_uimm1,
+ MSA128DOpnd>;
+
+class SRA_B_DESC : MSA_3R_DESC_BASE<"sra.b", sra, MSA128BOpnd>;
+class SRA_H_DESC : MSA_3R_DESC_BASE<"sra.h", sra, MSA128HOpnd>;
+class SRA_W_DESC : MSA_3R_DESC_BASE<"sra.w", sra, MSA128WOpnd>;
+class SRA_D_DESC : MSA_3R_DESC_BASE<"sra.d", sra, MSA128DOpnd>;
+
+class SRAI_B_DESC : MSA_BIT_SPLAT_DESC_BASE<"srai.b", sra, vsplati8_uimm3,
+ MSA128BOpnd>;
+class SRAI_H_DESC : MSA_BIT_SPLAT_DESC_BASE<"srai.h", sra, vsplati16_uimm4,
+ MSA128HOpnd>;
+class SRAI_W_DESC : MSA_BIT_SPLAT_DESC_BASE<"srai.w", sra, vsplati32_uimm5,
+ MSA128WOpnd>;
+class SRAI_D_DESC : MSA_BIT_SPLAT_DESC_BASE<"srai.d", sra, vsplati64_uimm6,
+ MSA128DOpnd>;
+
+class SRAR_B_DESC : MSA_3R_DESC_BASE<"srar.b", int_mips_srar_b, MSA128BOpnd>;
+class SRAR_H_DESC : MSA_3R_DESC_BASE<"srar.h", int_mips_srar_h, MSA128HOpnd>;
+class SRAR_W_DESC : MSA_3R_DESC_BASE<"srar.w", int_mips_srar_w, MSA128WOpnd>;
+class SRAR_D_DESC : MSA_3R_DESC_BASE<"srar.d", int_mips_srar_d, MSA128DOpnd>;
+
+class SRARI_B_DESC : MSA_BIT_B_X_DESC_BASE<"srari.b", int_mips_srari_b,
+ MSA128BOpnd>;
+class SRARI_H_DESC : MSA_BIT_H_X_DESC_BASE<"srari.h", int_mips_srari_h,
+ MSA128HOpnd>;
+class SRARI_W_DESC : MSA_BIT_W_X_DESC_BASE<"srari.w", int_mips_srari_w,
+ MSA128WOpnd>;
+class SRARI_D_DESC : MSA_BIT_D_X_DESC_BASE<"srari.d", int_mips_srari_d,
+ MSA128DOpnd>;
+
+class SRL_B_DESC : MSA_3R_DESC_BASE<"srl.b", srl, MSA128BOpnd>;
+class SRL_H_DESC : MSA_3R_DESC_BASE<"srl.h", srl, MSA128HOpnd>;
+class SRL_W_DESC : MSA_3R_DESC_BASE<"srl.w", srl, MSA128WOpnd>;
+class SRL_D_DESC : MSA_3R_DESC_BASE<"srl.d", srl, MSA128DOpnd>;
+
+class SRLI_B_DESC : MSA_BIT_SPLAT_DESC_BASE<"srli.b", srl, vsplati8_uimm3,
+ MSA128BOpnd>;
+class SRLI_H_DESC : MSA_BIT_SPLAT_DESC_BASE<"srli.h", srl, vsplati16_uimm4,
+ MSA128HOpnd>;
+class SRLI_W_DESC : MSA_BIT_SPLAT_DESC_BASE<"srli.w", srl, vsplati32_uimm5,
+ MSA128WOpnd>;
+class SRLI_D_DESC : MSA_BIT_SPLAT_DESC_BASE<"srli.d", srl, vsplati64_uimm6,
+ MSA128DOpnd>;
+
+class SRLR_B_DESC : MSA_3R_DESC_BASE<"srlr.b", int_mips_srlr_b, MSA128BOpnd>;
+class SRLR_H_DESC : MSA_3R_DESC_BASE<"srlr.h", int_mips_srlr_h, MSA128HOpnd>;
+class SRLR_W_DESC : MSA_3R_DESC_BASE<"srlr.w", int_mips_srlr_w, MSA128WOpnd>;
+class SRLR_D_DESC : MSA_3R_DESC_BASE<"srlr.d", int_mips_srlr_d, MSA128DOpnd>;
+
+class SRLRI_B_DESC : MSA_BIT_B_X_DESC_BASE<"srlri.b", int_mips_srlri_b,
+ MSA128BOpnd>;
+class SRLRI_H_DESC : MSA_BIT_H_X_DESC_BASE<"srlri.h", int_mips_srlri_h,
+ MSA128HOpnd>;
+class SRLRI_W_DESC : MSA_BIT_W_X_DESC_BASE<"srlri.w", int_mips_srlri_w,
+ MSA128WOpnd>;
+class SRLRI_D_DESC : MSA_BIT_D_X_DESC_BASE<"srlri.d", int_mips_srlri_d,
+ MSA128DOpnd>;
+
+class ST_DESC_BASE<string instr_asm, SDPatternOperator OpNode,
+ ValueType TyNode, RegisterOperand ROWD,
+ Operand MemOpnd = mem_msa, ComplexPattern Addr = addrimm10,
+ InstrItinClass itin = NoItinerary> {
+ dag OutOperandList = (outs);
+ dag InOperandList = (ins ROWD:$wd, MemOpnd:$addr);
+ string AsmString = !strconcat(instr_asm, "\t$wd, $addr");
+ list<dag> Pattern = [(OpNode (TyNode ROWD:$wd), Addr:$addr)];
+ InstrItinClass Itinerary = itin;
+ string DecoderMethod = "DecodeMSA128Mem";
+}
+
+class ST_B_DESC : ST_DESC_BASE<"st.b", store, v16i8, MSA128BOpnd>;
+class ST_H_DESC : ST_DESC_BASE<"st.h", store, v8i16, MSA128HOpnd>;
+class ST_W_DESC : ST_DESC_BASE<"st.w", store, v4i32, MSA128WOpnd>;
+class ST_D_DESC : ST_DESC_BASE<"st.d", store, v2i64, MSA128DOpnd>;
+
+class SUBS_S_B_DESC : MSA_3R_DESC_BASE<"subs_s.b", int_mips_subs_s_b,
+ MSA128BOpnd>;
+class SUBS_S_H_DESC : MSA_3R_DESC_BASE<"subs_s.h", int_mips_subs_s_h,
+ MSA128HOpnd>;
+class SUBS_S_W_DESC : MSA_3R_DESC_BASE<"subs_s.w", int_mips_subs_s_w,
+ MSA128WOpnd>;
+class SUBS_S_D_DESC : MSA_3R_DESC_BASE<"subs_s.d", int_mips_subs_s_d,
+ MSA128DOpnd>;
+
+class SUBS_U_B_DESC : MSA_3R_DESC_BASE<"subs_u.b", int_mips_subs_u_b,
+ MSA128BOpnd>;
+class SUBS_U_H_DESC : MSA_3R_DESC_BASE<"subs_u.h", int_mips_subs_u_h,
+ MSA128HOpnd>;
+class SUBS_U_W_DESC : MSA_3R_DESC_BASE<"subs_u.w", int_mips_subs_u_w,
+ MSA128WOpnd>;
+class SUBS_U_D_DESC : MSA_3R_DESC_BASE<"subs_u.d", int_mips_subs_u_d,
+ MSA128DOpnd>;
+
+class SUBSUS_U_B_DESC : MSA_3R_DESC_BASE<"subsus_u.b", int_mips_subsus_u_b,
+ MSA128BOpnd>;
+class SUBSUS_U_H_DESC : MSA_3R_DESC_BASE<"subsus_u.h", int_mips_subsus_u_h,
+ MSA128HOpnd>;
+class SUBSUS_U_W_DESC : MSA_3R_DESC_BASE<"subsus_u.w", int_mips_subsus_u_w,
+ MSA128WOpnd>;
+class SUBSUS_U_D_DESC : MSA_3R_DESC_BASE<"subsus_u.d", int_mips_subsus_u_d,
+ MSA128DOpnd>;
+
+class SUBSUU_S_B_DESC : MSA_3R_DESC_BASE<"subsuu_s.b", int_mips_subsuu_s_b,
+ MSA128BOpnd>;
+class SUBSUU_S_H_DESC : MSA_3R_DESC_BASE<"subsuu_s.h", int_mips_subsuu_s_h,
+ MSA128HOpnd>;
+class SUBSUU_S_W_DESC : MSA_3R_DESC_BASE<"subsuu_s.w", int_mips_subsuu_s_w,
+ MSA128WOpnd>;
+class SUBSUU_S_D_DESC : MSA_3R_DESC_BASE<"subsuu_s.d", int_mips_subsuu_s_d,
+ MSA128DOpnd>;
+
+class SUBV_B_DESC : MSA_3R_DESC_BASE<"subv.b", sub, MSA128BOpnd>;
+class SUBV_H_DESC : MSA_3R_DESC_BASE<"subv.h", sub, MSA128HOpnd>;
+class SUBV_W_DESC : MSA_3R_DESC_BASE<"subv.w", sub, MSA128WOpnd>;
+class SUBV_D_DESC : MSA_3R_DESC_BASE<"subv.d", sub, MSA128DOpnd>;
+
+class SUBVI_B_DESC : MSA_I5_DESC_BASE<"subvi.b", sub, vsplati8_uimm5,
+ MSA128BOpnd>;
+class SUBVI_H_DESC : MSA_I5_DESC_BASE<"subvi.h", sub, vsplati16_uimm5,
+ MSA128HOpnd>;
+class SUBVI_W_DESC : MSA_I5_DESC_BASE<"subvi.w", sub, vsplati32_uimm5,
+ MSA128WOpnd>;
+class SUBVI_D_DESC : MSA_I5_DESC_BASE<"subvi.d", sub, vsplati64_uimm5,
+ MSA128DOpnd>;
+
+class VSHF_B_DESC : MSA_3R_VSHF_DESC_BASE<"vshf.b", MSA128BOpnd>;
+class VSHF_H_DESC : MSA_3R_VSHF_DESC_BASE<"vshf.h", MSA128HOpnd>;
+class VSHF_W_DESC : MSA_3R_VSHF_DESC_BASE<"vshf.w", MSA128WOpnd>;
+class VSHF_D_DESC : MSA_3R_VSHF_DESC_BASE<"vshf.d", MSA128DOpnd>;
+
+class XOR_V_DESC : MSA_VEC_DESC_BASE<"xor.v", xor, MSA128BOpnd>;
+class XOR_V_H_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<xor, MSA128HOpnd>;
+class XOR_V_W_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<xor, MSA128WOpnd>;
+class XOR_V_D_PSEUDO_DESC : MSA_VEC_PSEUDO_BASE<xor, MSA128DOpnd>;
+
+class XORI_B_DESC : MSA_I8_DESC_BASE<"xori.b", xor, vsplati8_uimm8,
+ MSA128BOpnd>;
+
+// Instruction defs.
+def ADD_A_B : ADD_A_B_ENC, ADD_A_B_DESC;
+def ADD_A_H : ADD_A_H_ENC, ADD_A_H_DESC;
+def ADD_A_W : ADD_A_W_ENC, ADD_A_W_DESC;
+def ADD_A_D : ADD_A_D_ENC, ADD_A_D_DESC;
+
+def ADDS_A_B : ADDS_A_B_ENC, ADDS_A_B_DESC;
+def ADDS_A_H : ADDS_A_H_ENC, ADDS_A_H_DESC;
+def ADDS_A_W : ADDS_A_W_ENC, ADDS_A_W_DESC;
+def ADDS_A_D : ADDS_A_D_ENC, ADDS_A_D_DESC;
+
+def ADDS_S_B : ADDS_S_B_ENC, ADDS_S_B_DESC;
+def ADDS_S_H : ADDS_S_H_ENC, ADDS_S_H_DESC;
+def ADDS_S_W : ADDS_S_W_ENC, ADDS_S_W_DESC;
+def ADDS_S_D : ADDS_S_D_ENC, ADDS_S_D_DESC;
+
+def ADDS_U_B : ADDS_U_B_ENC, ADDS_U_B_DESC;
+def ADDS_U_H : ADDS_U_H_ENC, ADDS_U_H_DESC;
+def ADDS_U_W : ADDS_U_W_ENC, ADDS_U_W_DESC;
+def ADDS_U_D : ADDS_U_D_ENC, ADDS_U_D_DESC;
+
+def ADDV_B : ADDV_B_ENC, ADDV_B_DESC;
+def ADDV_H : ADDV_H_ENC, ADDV_H_DESC;
+def ADDV_W : ADDV_W_ENC, ADDV_W_DESC;
+def ADDV_D : ADDV_D_ENC, ADDV_D_DESC;
+
+def ADDVI_B : ADDVI_B_ENC, ADDVI_B_DESC;
+def ADDVI_H : ADDVI_H_ENC, ADDVI_H_DESC;
+def ADDVI_W : ADDVI_W_ENC, ADDVI_W_DESC;
+def ADDVI_D : ADDVI_D_ENC, ADDVI_D_DESC;
+
+def AND_V : AND_V_ENC, AND_V_DESC;
+def AND_V_H_PSEUDO : AND_V_H_PSEUDO_DESC,
+ PseudoInstExpansion<(AND_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+def AND_V_W_PSEUDO : AND_V_W_PSEUDO_DESC,
+ PseudoInstExpansion<(AND_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+def AND_V_D_PSEUDO : AND_V_D_PSEUDO_DESC,
+ PseudoInstExpansion<(AND_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+
+def ANDI_B : ANDI_B_ENC, ANDI_B_DESC;
+
+def ASUB_S_B : ASUB_S_B_ENC, ASUB_S_B_DESC;
+def ASUB_S_H : ASUB_S_H_ENC, ASUB_S_H_DESC;
+def ASUB_S_W : ASUB_S_W_ENC, ASUB_S_W_DESC;
+def ASUB_S_D : ASUB_S_D_ENC, ASUB_S_D_DESC;
+
+def ASUB_U_B : ASUB_U_B_ENC, ASUB_U_B_DESC;
+def ASUB_U_H : ASUB_U_H_ENC, ASUB_U_H_DESC;
+def ASUB_U_W : ASUB_U_W_ENC, ASUB_U_W_DESC;
+def ASUB_U_D : ASUB_U_D_ENC, ASUB_U_D_DESC;
+
+def AVE_S_B : AVE_S_B_ENC, AVE_S_B_DESC;
+def AVE_S_H : AVE_S_H_ENC, AVE_S_H_DESC;
+def AVE_S_W : AVE_S_W_ENC, AVE_S_W_DESC;
+def AVE_S_D : AVE_S_D_ENC, AVE_S_D_DESC;
+
+def AVE_U_B : AVE_U_B_ENC, AVE_U_B_DESC;
+def AVE_U_H : AVE_U_H_ENC, AVE_U_H_DESC;
+def AVE_U_W : AVE_U_W_ENC, AVE_U_W_DESC;
+def AVE_U_D : AVE_U_D_ENC, AVE_U_D_DESC;
+
+def AVER_S_B : AVER_S_B_ENC, AVER_S_B_DESC;
+def AVER_S_H : AVER_S_H_ENC, AVER_S_H_DESC;
+def AVER_S_W : AVER_S_W_ENC, AVER_S_W_DESC;
+def AVER_S_D : AVER_S_D_ENC, AVER_S_D_DESC;
+
+def AVER_U_B : AVER_U_B_ENC, AVER_U_B_DESC;
+def AVER_U_H : AVER_U_H_ENC, AVER_U_H_DESC;
+def AVER_U_W : AVER_U_W_ENC, AVER_U_W_DESC;
+def AVER_U_D : AVER_U_D_ENC, AVER_U_D_DESC;
+
+def BCLR_B : BCLR_B_ENC, BCLR_B_DESC;
+def BCLR_H : BCLR_H_ENC, BCLR_H_DESC;
+def BCLR_W : BCLR_W_ENC, BCLR_W_DESC;
+def BCLR_D : BCLR_D_ENC, BCLR_D_DESC;
+
+def BCLRI_B : BCLRI_B_ENC, BCLRI_B_DESC;
+def BCLRI_H : BCLRI_H_ENC, BCLRI_H_DESC;
+def BCLRI_W : BCLRI_W_ENC, BCLRI_W_DESC;
+def BCLRI_D : BCLRI_D_ENC, BCLRI_D_DESC;
+
+def BINSL_B : BINSL_B_ENC, BINSL_B_DESC;
+def BINSL_H : BINSL_H_ENC, BINSL_H_DESC;
+def BINSL_W : BINSL_W_ENC, BINSL_W_DESC;
+def BINSL_D : BINSL_D_ENC, BINSL_D_DESC;
+
+def BINSLI_B : BINSLI_B_ENC, BINSLI_B_DESC;
+def BINSLI_H : BINSLI_H_ENC, BINSLI_H_DESC;
+def BINSLI_W : BINSLI_W_ENC, BINSLI_W_DESC;
+def BINSLI_D : BINSLI_D_ENC, BINSLI_D_DESC;
+
+def BINSR_B : BINSR_B_ENC, BINSR_B_DESC;
+def BINSR_H : BINSR_H_ENC, BINSR_H_DESC;
+def BINSR_W : BINSR_W_ENC, BINSR_W_DESC;
+def BINSR_D : BINSR_D_ENC, BINSR_D_DESC;
+
+def BINSRI_B : BINSRI_B_ENC, BINSRI_B_DESC;
+def BINSRI_H : BINSRI_H_ENC, BINSRI_H_DESC;
+def BINSRI_W : BINSRI_W_ENC, BINSRI_W_DESC;
+def BINSRI_D : BINSRI_D_ENC, BINSRI_D_DESC;
+
+def BMNZ_V : BMNZ_V_ENC, BMNZ_V_DESC;
+
+def BMNZI_B : BMNZI_B_ENC, BMNZI_B_DESC;
+
+def BMZ_V : BMZ_V_ENC, BMZ_V_DESC;
+
+def BMZI_B : BMZI_B_ENC, BMZI_B_DESC;
+
+def BNEG_B : BNEG_B_ENC, BNEG_B_DESC;
+def BNEG_H : BNEG_H_ENC, BNEG_H_DESC;
+def BNEG_W : BNEG_W_ENC, BNEG_W_DESC;
+def BNEG_D : BNEG_D_ENC, BNEG_D_DESC;
+
+def BNEGI_B : BNEGI_B_ENC, BNEGI_B_DESC;
+def BNEGI_H : BNEGI_H_ENC, BNEGI_H_DESC;
+def BNEGI_W : BNEGI_W_ENC, BNEGI_W_DESC;
+def BNEGI_D : BNEGI_D_ENC, BNEGI_D_DESC;
+
+def BNZ_B : BNZ_B_ENC, BNZ_B_DESC;
+def BNZ_H : BNZ_H_ENC, BNZ_H_DESC;
+def BNZ_W : BNZ_W_ENC, BNZ_W_DESC;
+def BNZ_D : BNZ_D_ENC, BNZ_D_DESC;
+
+def BNZ_V : BNZ_V_ENC, BNZ_V_DESC;
+
+def BSEL_V : BSEL_V_ENC, BSEL_V_DESC;
+
+class MSA_BSEL_PSEUDO_BASE<RegisterOperand RO, ValueType Ty> :
+ MSAPseudo<(outs RO:$wd), (ins RO:$wd_in, RO:$ws, RO:$wt),
+ [(set RO:$wd, (Ty (vselect RO:$wd_in, RO:$wt, RO:$ws)))]>,
+ // Note that vselect and BSEL_V treat the condition operand the opposite way
+ // from each other.
+ // (vselect cond, if_set, if_clear)
+ // (BSEL_V cond, if_clear, if_set)
+ PseudoInstExpansion<(BSEL_V MSA128BOpnd:$wd, MSA128BOpnd:$wd_in,
+ MSA128BOpnd:$ws, MSA128BOpnd:$wt)> {
+ let Constraints = "$wd_in = $wd";
+}
+
+def BSEL_H_PSEUDO : MSA_BSEL_PSEUDO_BASE<MSA128HOpnd, v8i16>;
+def BSEL_W_PSEUDO : MSA_BSEL_PSEUDO_BASE<MSA128WOpnd, v4i32>;
+def BSEL_D_PSEUDO : MSA_BSEL_PSEUDO_BASE<MSA128DOpnd, v2i64>;
+def BSEL_FW_PSEUDO : MSA_BSEL_PSEUDO_BASE<MSA128WOpnd, v4f32>;
+def BSEL_FD_PSEUDO : MSA_BSEL_PSEUDO_BASE<MSA128DOpnd, v2f64>;
+
+def BSELI_B : BSELI_B_ENC, BSELI_B_DESC;
+
+def BSET_B : BSET_B_ENC, BSET_B_DESC;
+def BSET_H : BSET_H_ENC, BSET_H_DESC;
+def BSET_W : BSET_W_ENC, BSET_W_DESC;
+def BSET_D : BSET_D_ENC, BSET_D_DESC;
+
+def BSETI_B : BSETI_B_ENC, BSETI_B_DESC;
+def BSETI_H : BSETI_H_ENC, BSETI_H_DESC;
+def BSETI_W : BSETI_W_ENC, BSETI_W_DESC;
+def BSETI_D : BSETI_D_ENC, BSETI_D_DESC;
+
+def BZ_B : BZ_B_ENC, BZ_B_DESC;
+def BZ_H : BZ_H_ENC, BZ_H_DESC;
+def BZ_W : BZ_W_ENC, BZ_W_DESC;
+def BZ_D : BZ_D_ENC, BZ_D_DESC;
+
+def BZ_V : BZ_V_ENC, BZ_V_DESC;
+
+def CEQ_B : CEQ_B_ENC, CEQ_B_DESC;
+def CEQ_H : CEQ_H_ENC, CEQ_H_DESC;
+def CEQ_W : CEQ_W_ENC, CEQ_W_DESC;
+def CEQ_D : CEQ_D_ENC, CEQ_D_DESC;
+
+def CEQI_B : CEQI_B_ENC, CEQI_B_DESC;
+def CEQI_H : CEQI_H_ENC, CEQI_H_DESC;
+def CEQI_W : CEQI_W_ENC, CEQI_W_DESC;
+def CEQI_D : CEQI_D_ENC, CEQI_D_DESC;
+
+def CFCMSA : CFCMSA_ENC, CFCMSA_DESC;
+
+def CLE_S_B : CLE_S_B_ENC, CLE_S_B_DESC;
+def CLE_S_H : CLE_S_H_ENC, CLE_S_H_DESC;
+def CLE_S_W : CLE_S_W_ENC, CLE_S_W_DESC;
+def CLE_S_D : CLE_S_D_ENC, CLE_S_D_DESC;
+
+def CLE_U_B : CLE_U_B_ENC, CLE_U_B_DESC;
+def CLE_U_H : CLE_U_H_ENC, CLE_U_H_DESC;
+def CLE_U_W : CLE_U_W_ENC, CLE_U_W_DESC;
+def CLE_U_D : CLE_U_D_ENC, CLE_U_D_DESC;
+
+def CLEI_S_B : CLEI_S_B_ENC, CLEI_S_B_DESC;
+def CLEI_S_H : CLEI_S_H_ENC, CLEI_S_H_DESC;
+def CLEI_S_W : CLEI_S_W_ENC, CLEI_S_W_DESC;
+def CLEI_S_D : CLEI_S_D_ENC, CLEI_S_D_DESC;
+
+def CLEI_U_B : CLEI_U_B_ENC, CLEI_U_B_DESC;
+def CLEI_U_H : CLEI_U_H_ENC, CLEI_U_H_DESC;
+def CLEI_U_W : CLEI_U_W_ENC, CLEI_U_W_DESC;
+def CLEI_U_D : CLEI_U_D_ENC, CLEI_U_D_DESC;
+
+def CLT_S_B : CLT_S_B_ENC, CLT_S_B_DESC;
+def CLT_S_H : CLT_S_H_ENC, CLT_S_H_DESC;
+def CLT_S_W : CLT_S_W_ENC, CLT_S_W_DESC;
+def CLT_S_D : CLT_S_D_ENC, CLT_S_D_DESC;
+
+def CLT_U_B : CLT_U_B_ENC, CLT_U_B_DESC;
+def CLT_U_H : CLT_U_H_ENC, CLT_U_H_DESC;
+def CLT_U_W : CLT_U_W_ENC, CLT_U_W_DESC;
+def CLT_U_D : CLT_U_D_ENC, CLT_U_D_DESC;
+
+def CLTI_S_B : CLTI_S_B_ENC, CLTI_S_B_DESC;
+def CLTI_S_H : CLTI_S_H_ENC, CLTI_S_H_DESC;
+def CLTI_S_W : CLTI_S_W_ENC, CLTI_S_W_DESC;
+def CLTI_S_D : CLTI_S_D_ENC, CLTI_S_D_DESC;
+
+def CLTI_U_B : CLTI_U_B_ENC, CLTI_U_B_DESC;
+def CLTI_U_H : CLTI_U_H_ENC, CLTI_U_H_DESC;
+def CLTI_U_W : CLTI_U_W_ENC, CLTI_U_W_DESC;
+def CLTI_U_D : CLTI_U_D_ENC, CLTI_U_D_DESC;
+
+def COPY_S_B : COPY_S_B_ENC, COPY_S_B_DESC;
+def COPY_S_H : COPY_S_H_ENC, COPY_S_H_DESC;
+def COPY_S_W : COPY_S_W_ENC, COPY_S_W_DESC;
+def COPY_S_D : COPY_S_D_ENC, COPY_S_D_DESC;
+
+def COPY_U_B : COPY_U_B_ENC, COPY_U_B_DESC;
+def COPY_U_H : COPY_U_H_ENC, COPY_U_H_DESC;
+def COPY_U_W : COPY_U_W_ENC, COPY_U_W_DESC;
+def COPY_U_D : COPY_U_D_ENC, COPY_U_D_DESC;
+
+def COPY_FW_PSEUDO : COPY_FW_PSEUDO_DESC;
+def COPY_FD_PSEUDO : COPY_FD_PSEUDO_DESC;
+
+def CTCMSA : CTCMSA_ENC, CTCMSA_DESC;
+
+def DIV_S_B : DIV_S_B_ENC, DIV_S_B_DESC;
+def DIV_S_H : DIV_S_H_ENC, DIV_S_H_DESC;
+def DIV_S_W : DIV_S_W_ENC, DIV_S_W_DESC;
+def DIV_S_D : DIV_S_D_ENC, DIV_S_D_DESC;
+
+def DIV_U_B : DIV_U_B_ENC, DIV_U_B_DESC;
+def DIV_U_H : DIV_U_H_ENC, DIV_U_H_DESC;
+def DIV_U_W : DIV_U_W_ENC, DIV_U_W_DESC;
+def DIV_U_D : DIV_U_D_ENC, DIV_U_D_DESC;
+
+def DOTP_S_H : DOTP_S_H_ENC, DOTP_S_H_DESC;
+def DOTP_S_W : DOTP_S_W_ENC, DOTP_S_W_DESC;
+def DOTP_S_D : DOTP_S_D_ENC, DOTP_S_D_DESC;
+
+def DOTP_U_H : DOTP_U_H_ENC, DOTP_U_H_DESC;
+def DOTP_U_W : DOTP_U_W_ENC, DOTP_U_W_DESC;
+def DOTP_U_D : DOTP_U_D_ENC, DOTP_U_D_DESC;
+
+def DPADD_S_H : DPADD_S_H_ENC, DPADD_S_H_DESC;
+def DPADD_S_W : DPADD_S_W_ENC, DPADD_S_W_DESC;
+def DPADD_S_D : DPADD_S_D_ENC, DPADD_S_D_DESC;
+
+def DPADD_U_H : DPADD_U_H_ENC, DPADD_U_H_DESC;
+def DPADD_U_W : DPADD_U_W_ENC, DPADD_U_W_DESC;
+def DPADD_U_D : DPADD_U_D_ENC, DPADD_U_D_DESC;
+
+def DPSUB_S_H : DPSUB_S_H_ENC, DPSUB_S_H_DESC;
+def DPSUB_S_W : DPSUB_S_W_ENC, DPSUB_S_W_DESC;
+def DPSUB_S_D : DPSUB_S_D_ENC, DPSUB_S_D_DESC;
+
+def DPSUB_U_H : DPSUB_U_H_ENC, DPSUB_U_H_DESC;
+def DPSUB_U_W : DPSUB_U_W_ENC, DPSUB_U_W_DESC;
+def DPSUB_U_D : DPSUB_U_D_ENC, DPSUB_U_D_DESC;
+
+def FADD_W : FADD_W_ENC, FADD_W_DESC;
+def FADD_D : FADD_D_ENC, FADD_D_DESC;
+
+def FCAF_W : FCAF_W_ENC, FCAF_W_DESC;
+def FCAF_D : FCAF_D_ENC, FCAF_D_DESC;
+
+def FCEQ_W : FCEQ_W_ENC, FCEQ_W_DESC;
+def FCEQ_D : FCEQ_D_ENC, FCEQ_D_DESC;
+
+def FCLE_W : FCLE_W_ENC, FCLE_W_DESC;
+def FCLE_D : FCLE_D_ENC, FCLE_D_DESC;
+
+def FCLT_W : FCLT_W_ENC, FCLT_W_DESC;
+def FCLT_D : FCLT_D_ENC, FCLT_D_DESC;
+
+def FCLASS_W : FCLASS_W_ENC, FCLASS_W_DESC;
+def FCLASS_D : FCLASS_D_ENC, FCLASS_D_DESC;
+
+def FCNE_W : FCNE_W_ENC, FCNE_W_DESC;
+def FCNE_D : FCNE_D_ENC, FCNE_D_DESC;
+
+def FCOR_W : FCOR_W_ENC, FCOR_W_DESC;
+def FCOR_D : FCOR_D_ENC, FCOR_D_DESC;
+
+def FCUEQ_W : FCUEQ_W_ENC, FCUEQ_W_DESC;
+def FCUEQ_D : FCUEQ_D_ENC, FCUEQ_D_DESC;
+
+def FCULE_W : FCULE_W_ENC, FCULE_W_DESC;
+def FCULE_D : FCULE_D_ENC, FCULE_D_DESC;
+
+def FCULT_W : FCULT_W_ENC, FCULT_W_DESC;
+def FCULT_D : FCULT_D_ENC, FCULT_D_DESC;
+
+def FCUN_W : FCUN_W_ENC, FCUN_W_DESC;
+def FCUN_D : FCUN_D_ENC, FCUN_D_DESC;
+
+def FCUNE_W : FCUNE_W_ENC, FCUNE_W_DESC;
+def FCUNE_D : FCUNE_D_ENC, FCUNE_D_DESC;
+
+def FDIV_W : FDIV_W_ENC, FDIV_W_DESC;
+def FDIV_D : FDIV_D_ENC, FDIV_D_DESC;
+
+def FEXDO_H : FEXDO_H_ENC, FEXDO_H_DESC;
+def FEXDO_W : FEXDO_W_ENC, FEXDO_W_DESC;
+
+def FEXP2_W : FEXP2_W_ENC, FEXP2_W_DESC;
+def FEXP2_D : FEXP2_D_ENC, FEXP2_D_DESC;
+def FEXP2_W_1_PSEUDO : FEXP2_W_1_PSEUDO_DESC;
+def FEXP2_D_1_PSEUDO : FEXP2_D_1_PSEUDO_DESC;
+
+def FEXUPL_W : FEXUPL_W_ENC, FEXUPL_W_DESC;
+def FEXUPL_D : FEXUPL_D_ENC, FEXUPL_D_DESC;
+
+def FEXUPR_W : FEXUPR_W_ENC, FEXUPR_W_DESC;
+def FEXUPR_D : FEXUPR_D_ENC, FEXUPR_D_DESC;
+
+def FFINT_S_W : FFINT_S_W_ENC, FFINT_S_W_DESC;
+def FFINT_S_D : FFINT_S_D_ENC, FFINT_S_D_DESC;
+
+def FFINT_U_W : FFINT_U_W_ENC, FFINT_U_W_DESC;
+def FFINT_U_D : FFINT_U_D_ENC, FFINT_U_D_DESC;
+
+def FFQL_W : FFQL_W_ENC, FFQL_W_DESC;
+def FFQL_D : FFQL_D_ENC, FFQL_D_DESC;
+
+def FFQR_W : FFQR_W_ENC, FFQR_W_DESC;
+def FFQR_D : FFQR_D_ENC, FFQR_D_DESC;
+
+def FILL_B : FILL_B_ENC, FILL_B_DESC;
+def FILL_H : FILL_H_ENC, FILL_H_DESC;
+def FILL_W : FILL_W_ENC, FILL_W_DESC;
+def FILL_D : FILL_D_ENC, FILL_D_DESC;
+def FILL_FW_PSEUDO : FILL_FW_PSEUDO_DESC;
+def FILL_FD_PSEUDO : FILL_FD_PSEUDO_DESC;
+
+def FLOG2_W : FLOG2_W_ENC, FLOG2_W_DESC;
+def FLOG2_D : FLOG2_D_ENC, FLOG2_D_DESC;
+
+def FMADD_W : FMADD_W_ENC, FMADD_W_DESC;
+def FMADD_D : FMADD_D_ENC, FMADD_D_DESC;
+
+def FMAX_W : FMAX_W_ENC, FMAX_W_DESC;
+def FMAX_D : FMAX_D_ENC, FMAX_D_DESC;
+
+def FMAX_A_W : FMAX_A_W_ENC, FMAX_A_W_DESC;
+def FMAX_A_D : FMAX_A_D_ENC, FMAX_A_D_DESC;
+
+def FMIN_W : FMIN_W_ENC, FMIN_W_DESC;
+def FMIN_D : FMIN_D_ENC, FMIN_D_DESC;
+
+def FMIN_A_W : FMIN_A_W_ENC, FMIN_A_W_DESC;
+def FMIN_A_D : FMIN_A_D_ENC, FMIN_A_D_DESC;
+
+def FMSUB_W : FMSUB_W_ENC, FMSUB_W_DESC;
+def FMSUB_D : FMSUB_D_ENC, FMSUB_D_DESC;
+
+def FMUL_W : FMUL_W_ENC, FMUL_W_DESC;
+def FMUL_D : FMUL_D_ENC, FMUL_D_DESC;
+
+def FRINT_W : FRINT_W_ENC, FRINT_W_DESC;
+def FRINT_D : FRINT_D_ENC, FRINT_D_DESC;
+
+def FRCP_W : FRCP_W_ENC, FRCP_W_DESC;
+def FRCP_D : FRCP_D_ENC, FRCP_D_DESC;
+
+def FRSQRT_W : FRSQRT_W_ENC, FRSQRT_W_DESC;
+def FRSQRT_D : FRSQRT_D_ENC, FRSQRT_D_DESC;
+
+def FSAF_W : FSAF_W_ENC, FSAF_W_DESC;
+def FSAF_D : FSAF_D_ENC, FSAF_D_DESC;
+
+def FSEQ_W : FSEQ_W_ENC, FSEQ_W_DESC;
+def FSEQ_D : FSEQ_D_ENC, FSEQ_D_DESC;
+
+def FSLE_W : FSLE_W_ENC, FSLE_W_DESC;
+def FSLE_D : FSLE_D_ENC, FSLE_D_DESC;
+
+def FSLT_W : FSLT_W_ENC, FSLT_W_DESC;
+def FSLT_D : FSLT_D_ENC, FSLT_D_DESC;
+
+def FSNE_W : FSNE_W_ENC, FSNE_W_DESC;
+def FSNE_D : FSNE_D_ENC, FSNE_D_DESC;
+
+def FSOR_W : FSOR_W_ENC, FSOR_W_DESC;
+def FSOR_D : FSOR_D_ENC, FSOR_D_DESC;
+
+def FSQRT_W : FSQRT_W_ENC, FSQRT_W_DESC;
+def FSQRT_D : FSQRT_D_ENC, FSQRT_D_DESC;
+
+def FSUB_W : FSUB_W_ENC, FSUB_W_DESC;
+def FSUB_D : FSUB_D_ENC, FSUB_D_DESC;
+
+def FSUEQ_W : FSUEQ_W_ENC, FSUEQ_W_DESC;
+def FSUEQ_D : FSUEQ_D_ENC, FSUEQ_D_DESC;
+
+def FSULE_W : FSULE_W_ENC, FSULE_W_DESC;
+def FSULE_D : FSULE_D_ENC, FSULE_D_DESC;
+
+def FSULT_W : FSULT_W_ENC, FSULT_W_DESC;
+def FSULT_D : FSULT_D_ENC, FSULT_D_DESC;
+
+def FSUN_W : FSUN_W_ENC, FSUN_W_DESC;
+def FSUN_D : FSUN_D_ENC, FSUN_D_DESC;
+
+def FSUNE_W : FSUNE_W_ENC, FSUNE_W_DESC;
+def FSUNE_D : FSUNE_D_ENC, FSUNE_D_DESC;
+
+def FTINT_S_W : FTINT_S_W_ENC, FTINT_S_W_DESC;
+def FTINT_S_D : FTINT_S_D_ENC, FTINT_S_D_DESC;
+
+def FTINT_U_W : FTINT_U_W_ENC, FTINT_U_W_DESC;
+def FTINT_U_D : FTINT_U_D_ENC, FTINT_U_D_DESC;
+
+def FTQ_H : FTQ_H_ENC, FTQ_H_DESC;
+def FTQ_W : FTQ_W_ENC, FTQ_W_DESC;
+
+def FTRUNC_S_W : FTRUNC_S_W_ENC, FTRUNC_S_W_DESC;
+def FTRUNC_S_D : FTRUNC_S_D_ENC, FTRUNC_S_D_DESC;
+
+def FTRUNC_U_W : FTRUNC_U_W_ENC, FTRUNC_U_W_DESC;
+def FTRUNC_U_D : FTRUNC_U_D_ENC, FTRUNC_U_D_DESC;
+
+def HADD_S_H : HADD_S_H_ENC, HADD_S_H_DESC;
+def HADD_S_W : HADD_S_W_ENC, HADD_S_W_DESC;
+def HADD_S_D : HADD_S_D_ENC, HADD_S_D_DESC;
+
+def HADD_U_H : HADD_U_H_ENC, HADD_U_H_DESC;
+def HADD_U_W : HADD_U_W_ENC, HADD_U_W_DESC;
+def HADD_U_D : HADD_U_D_ENC, HADD_U_D_DESC;
+
+def HSUB_S_H : HSUB_S_H_ENC, HSUB_S_H_DESC;
+def HSUB_S_W : HSUB_S_W_ENC, HSUB_S_W_DESC;
+def HSUB_S_D : HSUB_S_D_ENC, HSUB_S_D_DESC;
+
+def HSUB_U_H : HSUB_U_H_ENC, HSUB_U_H_DESC;
+def HSUB_U_W : HSUB_U_W_ENC, HSUB_U_W_DESC;
+def HSUB_U_D : HSUB_U_D_ENC, HSUB_U_D_DESC;
+
+def ILVEV_B : ILVEV_B_ENC, ILVEV_B_DESC;
+def ILVEV_H : ILVEV_H_ENC, ILVEV_H_DESC;
+def ILVEV_W : ILVEV_W_ENC, ILVEV_W_DESC;
+def ILVEV_D : ILVEV_D_ENC, ILVEV_D_DESC;
+
+def ILVL_B : ILVL_B_ENC, ILVL_B_DESC;
+def ILVL_H : ILVL_H_ENC, ILVL_H_DESC;
+def ILVL_W : ILVL_W_ENC, ILVL_W_DESC;
+def ILVL_D : ILVL_D_ENC, ILVL_D_DESC;
+
+def ILVOD_B : ILVOD_B_ENC, ILVOD_B_DESC;
+def ILVOD_H : ILVOD_H_ENC, ILVOD_H_DESC;
+def ILVOD_W : ILVOD_W_ENC, ILVOD_W_DESC;
+def ILVOD_D : ILVOD_D_ENC, ILVOD_D_DESC;
+
+def ILVR_B : ILVR_B_ENC, ILVR_B_DESC;
+def ILVR_H : ILVR_H_ENC, ILVR_H_DESC;
+def ILVR_W : ILVR_W_ENC, ILVR_W_DESC;
+def ILVR_D : ILVR_D_ENC, ILVR_D_DESC;
+
+def INSERT_B : INSERT_B_ENC, INSERT_B_DESC;
+def INSERT_H : INSERT_H_ENC, INSERT_H_DESC;
+def INSERT_W : INSERT_W_ENC, INSERT_W_DESC;
+def INSERT_D : INSERT_D_ENC, INSERT_D_DESC;
+
+// INSERT_FW_PSEUDO defined after INSVE_W
+// INSERT_FD_PSEUDO defined after INSVE_D
+
+// There is a fourth operand that is not present in the encoding. Use a
+// custom decoder to get a chance to add it.
+let DecoderMethod = "DecodeINSVE_DF" in {
+ def INSVE_B : INSVE_B_ENC, INSVE_B_DESC;
+ def INSVE_H : INSVE_H_ENC, INSVE_H_DESC;
+ def INSVE_W : INSVE_W_ENC, INSVE_W_DESC;
+ def INSVE_D : INSVE_D_ENC, INSVE_D_DESC;
+}
+
+def INSERT_FW_PSEUDO : INSERT_FW_PSEUDO_DESC;
+def INSERT_FD_PSEUDO : INSERT_FD_PSEUDO_DESC;
+
+def INSERT_B_VIDX_PSEUDO : INSERT_B_VIDX_PSEUDO_DESC;
+def INSERT_H_VIDX_PSEUDO : INSERT_H_VIDX_PSEUDO_DESC;
+def INSERT_W_VIDX_PSEUDO : INSERT_W_VIDX_PSEUDO_DESC;
+def INSERT_D_VIDX_PSEUDO : INSERT_D_VIDX_PSEUDO_DESC;
+def INSERT_FW_VIDX_PSEUDO : INSERT_FW_VIDX_PSEUDO_DESC;
+def INSERT_FD_VIDX_PSEUDO : INSERT_FD_VIDX_PSEUDO_DESC;
+
+def LD_B: LD_B_ENC, LD_B_DESC;
+def LD_H: LD_H_ENC, LD_H_DESC;
+def LD_W: LD_W_ENC, LD_W_DESC;
+def LD_D: LD_D_ENC, LD_D_DESC;
+
+def LDI_B : LDI_B_ENC, LDI_B_DESC;
+def LDI_H : LDI_H_ENC, LDI_H_DESC;
+def LDI_W : LDI_W_ENC, LDI_W_DESC;
+def LDI_D : LDI_D_ENC, LDI_D_DESC;
+
+def LSA : LSA_ENC, LSA_DESC;
+def DLSA : DLSA_ENC, DLSA_DESC;
+
+def MADD_Q_H : MADD_Q_H_ENC, MADD_Q_H_DESC;
+def MADD_Q_W : MADD_Q_W_ENC, MADD_Q_W_DESC;
+
+def MADDR_Q_H : MADDR_Q_H_ENC, MADDR_Q_H_DESC;
+def MADDR_Q_W : MADDR_Q_W_ENC, MADDR_Q_W_DESC;
+
+def MADDV_B : MADDV_B_ENC, MADDV_B_DESC;
+def MADDV_H : MADDV_H_ENC, MADDV_H_DESC;
+def MADDV_W : MADDV_W_ENC, MADDV_W_DESC;
+def MADDV_D : MADDV_D_ENC, MADDV_D_DESC;
+
+def MAX_A_B : MAX_A_B_ENC, MAX_A_B_DESC;
+def MAX_A_H : MAX_A_H_ENC, MAX_A_H_DESC;
+def MAX_A_W : MAX_A_W_ENC, MAX_A_W_DESC;
+def MAX_A_D : MAX_A_D_ENC, MAX_A_D_DESC;
+
+def MAX_S_B : MAX_S_B_ENC, MAX_S_B_DESC;
+def MAX_S_H : MAX_S_H_ENC, MAX_S_H_DESC;
+def MAX_S_W : MAX_S_W_ENC, MAX_S_W_DESC;
+def MAX_S_D : MAX_S_D_ENC, MAX_S_D_DESC;
+
+def MAX_U_B : MAX_U_B_ENC, MAX_U_B_DESC;
+def MAX_U_H : MAX_U_H_ENC, MAX_U_H_DESC;
+def MAX_U_W : MAX_U_W_ENC, MAX_U_W_DESC;
+def MAX_U_D : MAX_U_D_ENC, MAX_U_D_DESC;
+
+def MAXI_S_B : MAXI_S_B_ENC, MAXI_S_B_DESC;
+def MAXI_S_H : MAXI_S_H_ENC, MAXI_S_H_DESC;
+def MAXI_S_W : MAXI_S_W_ENC, MAXI_S_W_DESC;
+def MAXI_S_D : MAXI_S_D_ENC, MAXI_S_D_DESC;
+
+def MAXI_U_B : MAXI_U_B_ENC, MAXI_U_B_DESC;
+def MAXI_U_H : MAXI_U_H_ENC, MAXI_U_H_DESC;
+def MAXI_U_W : MAXI_U_W_ENC, MAXI_U_W_DESC;
+def MAXI_U_D : MAXI_U_D_ENC, MAXI_U_D_DESC;
+
+def MIN_A_B : MIN_A_B_ENC, MIN_A_B_DESC;
+def MIN_A_H : MIN_A_H_ENC, MIN_A_H_DESC;
+def MIN_A_W : MIN_A_W_ENC, MIN_A_W_DESC;
+def MIN_A_D : MIN_A_D_ENC, MIN_A_D_DESC;
+
+def MIN_S_B : MIN_S_B_ENC, MIN_S_B_DESC;
+def MIN_S_H : MIN_S_H_ENC, MIN_S_H_DESC;
+def MIN_S_W : MIN_S_W_ENC, MIN_S_W_DESC;
+def MIN_S_D : MIN_S_D_ENC, MIN_S_D_DESC;
+
+def MIN_U_B : MIN_U_B_ENC, MIN_U_B_DESC;
+def MIN_U_H : MIN_U_H_ENC, MIN_U_H_DESC;
+def MIN_U_W : MIN_U_W_ENC, MIN_U_W_DESC;
+def MIN_U_D : MIN_U_D_ENC, MIN_U_D_DESC;
+
+def MINI_S_B : MINI_S_B_ENC, MINI_S_B_DESC;
+def MINI_S_H : MINI_S_H_ENC, MINI_S_H_DESC;
+def MINI_S_W : MINI_S_W_ENC, MINI_S_W_DESC;
+def MINI_S_D : MINI_S_D_ENC, MINI_S_D_DESC;
+
+def MINI_U_B : MINI_U_B_ENC, MINI_U_B_DESC;
+def MINI_U_H : MINI_U_H_ENC, MINI_U_H_DESC;
+def MINI_U_W : MINI_U_W_ENC, MINI_U_W_DESC;
+def MINI_U_D : MINI_U_D_ENC, MINI_U_D_DESC;
+
+def MOD_S_B : MOD_S_B_ENC, MOD_S_B_DESC;
+def MOD_S_H : MOD_S_H_ENC, MOD_S_H_DESC;
+def MOD_S_W : MOD_S_W_ENC, MOD_S_W_DESC;
+def MOD_S_D : MOD_S_D_ENC, MOD_S_D_DESC;
+
+def MOD_U_B : MOD_U_B_ENC, MOD_U_B_DESC;
+def MOD_U_H : MOD_U_H_ENC, MOD_U_H_DESC;
+def MOD_U_W : MOD_U_W_ENC, MOD_U_W_DESC;
+def MOD_U_D : MOD_U_D_ENC, MOD_U_D_DESC;
+
+def MOVE_V : MOVE_V_ENC, MOVE_V_DESC;
+
+def MSUB_Q_H : MSUB_Q_H_ENC, MSUB_Q_H_DESC;
+def MSUB_Q_W : MSUB_Q_W_ENC, MSUB_Q_W_DESC;
+
+def MSUBR_Q_H : MSUBR_Q_H_ENC, MSUBR_Q_H_DESC;
+def MSUBR_Q_W : MSUBR_Q_W_ENC, MSUBR_Q_W_DESC;
+
+def MSUBV_B : MSUBV_B_ENC, MSUBV_B_DESC;
+def MSUBV_H : MSUBV_H_ENC, MSUBV_H_DESC;
+def MSUBV_W : MSUBV_W_ENC, MSUBV_W_DESC;
+def MSUBV_D : MSUBV_D_ENC, MSUBV_D_DESC;
+
+def MUL_Q_H : MUL_Q_H_ENC, MUL_Q_H_DESC;
+def MUL_Q_W : MUL_Q_W_ENC, MUL_Q_W_DESC;
+
+def MULR_Q_H : MULR_Q_H_ENC, MULR_Q_H_DESC;
+def MULR_Q_W : MULR_Q_W_ENC, MULR_Q_W_DESC;
+
+def MULV_B : MULV_B_ENC, MULV_B_DESC;
+def MULV_H : MULV_H_ENC, MULV_H_DESC;
+def MULV_W : MULV_W_ENC, MULV_W_DESC;
+def MULV_D : MULV_D_ENC, MULV_D_DESC;
+
+def NLOC_B : NLOC_B_ENC, NLOC_B_DESC;
+def NLOC_H : NLOC_H_ENC, NLOC_H_DESC;
+def NLOC_W : NLOC_W_ENC, NLOC_W_DESC;
+def NLOC_D : NLOC_D_ENC, NLOC_D_DESC;
+
+def NLZC_B : NLZC_B_ENC, NLZC_B_DESC;
+def NLZC_H : NLZC_H_ENC, NLZC_H_DESC;
+def NLZC_W : NLZC_W_ENC, NLZC_W_DESC;
+def NLZC_D : NLZC_D_ENC, NLZC_D_DESC;
+
+def NOR_V : NOR_V_ENC, NOR_V_DESC;
+def NOR_V_H_PSEUDO : NOR_V_H_PSEUDO_DESC,
+ PseudoInstExpansion<(NOR_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+def NOR_V_W_PSEUDO : NOR_V_W_PSEUDO_DESC,
+ PseudoInstExpansion<(NOR_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+def NOR_V_D_PSEUDO : NOR_V_D_PSEUDO_DESC,
+ PseudoInstExpansion<(NOR_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+
+def NORI_B : NORI_B_ENC, NORI_B_DESC;
+
+def OR_V : OR_V_ENC, OR_V_DESC;
+def OR_V_H_PSEUDO : OR_V_H_PSEUDO_DESC,
+ PseudoInstExpansion<(OR_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+def OR_V_W_PSEUDO : OR_V_W_PSEUDO_DESC,
+ PseudoInstExpansion<(OR_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+def OR_V_D_PSEUDO : OR_V_D_PSEUDO_DESC,
+ PseudoInstExpansion<(OR_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+
+def ORI_B : ORI_B_ENC, ORI_B_DESC;
+
+def PCKEV_B : PCKEV_B_ENC, PCKEV_B_DESC;
+def PCKEV_H : PCKEV_H_ENC, PCKEV_H_DESC;
+def PCKEV_W : PCKEV_W_ENC, PCKEV_W_DESC;
+def PCKEV_D : PCKEV_D_ENC, PCKEV_D_DESC;
+
+def PCKOD_B : PCKOD_B_ENC, PCKOD_B_DESC;
+def PCKOD_H : PCKOD_H_ENC, PCKOD_H_DESC;
+def PCKOD_W : PCKOD_W_ENC, PCKOD_W_DESC;
+def PCKOD_D : PCKOD_D_ENC, PCKOD_D_DESC;
+
+def PCNT_B : PCNT_B_ENC, PCNT_B_DESC;
+def PCNT_H : PCNT_H_ENC, PCNT_H_DESC;
+def PCNT_W : PCNT_W_ENC, PCNT_W_DESC;
+def PCNT_D : PCNT_D_ENC, PCNT_D_DESC;
+
+def SAT_S_B : SAT_S_B_ENC, SAT_S_B_DESC;
+def SAT_S_H : SAT_S_H_ENC, SAT_S_H_DESC;
+def SAT_S_W : SAT_S_W_ENC, SAT_S_W_DESC;
+def SAT_S_D : SAT_S_D_ENC, SAT_S_D_DESC;
+
+def SAT_U_B : SAT_U_B_ENC, SAT_U_B_DESC;
+def SAT_U_H : SAT_U_H_ENC, SAT_U_H_DESC;
+def SAT_U_W : SAT_U_W_ENC, SAT_U_W_DESC;
+def SAT_U_D : SAT_U_D_ENC, SAT_U_D_DESC;
+
+def SHF_B : SHF_B_ENC, SHF_B_DESC;
+def SHF_H : SHF_H_ENC, SHF_H_DESC;
+def SHF_W : SHF_W_ENC, SHF_W_DESC;
+
+def SLD_B : SLD_B_ENC, SLD_B_DESC;
+def SLD_H : SLD_H_ENC, SLD_H_DESC;
+def SLD_W : SLD_W_ENC, SLD_W_DESC;
+def SLD_D : SLD_D_ENC, SLD_D_DESC;
+
+def SLDI_B : SLDI_B_ENC, SLDI_B_DESC;
+def SLDI_H : SLDI_H_ENC, SLDI_H_DESC;
+def SLDI_W : SLDI_W_ENC, SLDI_W_DESC;
+def SLDI_D : SLDI_D_ENC, SLDI_D_DESC;
+
+def SLL_B : SLL_B_ENC, SLL_B_DESC;
+def SLL_H : SLL_H_ENC, SLL_H_DESC;
+def SLL_W : SLL_W_ENC, SLL_W_DESC;
+def SLL_D : SLL_D_ENC, SLL_D_DESC;
+
+def SLLI_B : SLLI_B_ENC, SLLI_B_DESC;
+def SLLI_H : SLLI_H_ENC, SLLI_H_DESC;
+def SLLI_W : SLLI_W_ENC, SLLI_W_DESC;
+def SLLI_D : SLLI_D_ENC, SLLI_D_DESC;
+
+def SPLAT_B : SPLAT_B_ENC, SPLAT_B_DESC;
+def SPLAT_H : SPLAT_H_ENC, SPLAT_H_DESC;
+def SPLAT_W : SPLAT_W_ENC, SPLAT_W_DESC;
+def SPLAT_D : SPLAT_D_ENC, SPLAT_D_DESC;
+
+def SPLATI_B : SPLATI_B_ENC, SPLATI_B_DESC;
+def SPLATI_H : SPLATI_H_ENC, SPLATI_H_DESC;
+def SPLATI_W : SPLATI_W_ENC, SPLATI_W_DESC;
+def SPLATI_D : SPLATI_D_ENC, SPLATI_D_DESC;
+
+def SRA_B : SRA_B_ENC, SRA_B_DESC;
+def SRA_H : SRA_H_ENC, SRA_H_DESC;
+def SRA_W : SRA_W_ENC, SRA_W_DESC;
+def SRA_D : SRA_D_ENC, SRA_D_DESC;
+
+def SRAI_B : SRAI_B_ENC, SRAI_B_DESC;
+def SRAI_H : SRAI_H_ENC, SRAI_H_DESC;
+def SRAI_W : SRAI_W_ENC, SRAI_W_DESC;
+def SRAI_D : SRAI_D_ENC, SRAI_D_DESC;
+
+def SRAR_B : SRAR_B_ENC, SRAR_B_DESC;
+def SRAR_H : SRAR_H_ENC, SRAR_H_DESC;
+def SRAR_W : SRAR_W_ENC, SRAR_W_DESC;
+def SRAR_D : SRAR_D_ENC, SRAR_D_DESC;
+
+def SRARI_B : SRARI_B_ENC, SRARI_B_DESC;
+def SRARI_H : SRARI_H_ENC, SRARI_H_DESC;
+def SRARI_W : SRARI_W_ENC, SRARI_W_DESC;
+def SRARI_D : SRARI_D_ENC, SRARI_D_DESC;
+
+def SRL_B : SRL_B_ENC, SRL_B_DESC;
+def SRL_H : SRL_H_ENC, SRL_H_DESC;
+def SRL_W : SRL_W_ENC, SRL_W_DESC;
+def SRL_D : SRL_D_ENC, SRL_D_DESC;
+
+def SRLI_B : SRLI_B_ENC, SRLI_B_DESC;
+def SRLI_H : SRLI_H_ENC, SRLI_H_DESC;
+def SRLI_W : SRLI_W_ENC, SRLI_W_DESC;
+def SRLI_D : SRLI_D_ENC, SRLI_D_DESC;
+
+def SRLR_B : SRLR_B_ENC, SRLR_B_DESC;
+def SRLR_H : SRLR_H_ENC, SRLR_H_DESC;
+def SRLR_W : SRLR_W_ENC, SRLR_W_DESC;
+def SRLR_D : SRLR_D_ENC, SRLR_D_DESC;
+
+def SRLRI_B : SRLRI_B_ENC, SRLRI_B_DESC;
+def SRLRI_H : SRLRI_H_ENC, SRLRI_H_DESC;
+def SRLRI_W : SRLRI_W_ENC, SRLRI_W_DESC;
+def SRLRI_D : SRLRI_D_ENC, SRLRI_D_DESC;
+
+def ST_B: ST_B_ENC, ST_B_DESC;
+def ST_H: ST_H_ENC, ST_H_DESC;
+def ST_W: ST_W_ENC, ST_W_DESC;
+def ST_D: ST_D_ENC, ST_D_DESC;
+
+def SUBS_S_B : SUBS_S_B_ENC, SUBS_S_B_DESC;
+def SUBS_S_H : SUBS_S_H_ENC, SUBS_S_H_DESC;
+def SUBS_S_W : SUBS_S_W_ENC, SUBS_S_W_DESC;
+def SUBS_S_D : SUBS_S_D_ENC, SUBS_S_D_DESC;
+
+def SUBS_U_B : SUBS_U_B_ENC, SUBS_U_B_DESC;
+def SUBS_U_H : SUBS_U_H_ENC, SUBS_U_H_DESC;
+def SUBS_U_W : SUBS_U_W_ENC, SUBS_U_W_DESC;
+def SUBS_U_D : SUBS_U_D_ENC, SUBS_U_D_DESC;
+
+def SUBSUS_U_B : SUBSUS_U_B_ENC, SUBSUS_U_B_DESC;
+def SUBSUS_U_H : SUBSUS_U_H_ENC, SUBSUS_U_H_DESC;
+def SUBSUS_U_W : SUBSUS_U_W_ENC, SUBSUS_U_W_DESC;
+def SUBSUS_U_D : SUBSUS_U_D_ENC, SUBSUS_U_D_DESC;
+
+def SUBSUU_S_B : SUBSUU_S_B_ENC, SUBSUU_S_B_DESC;
+def SUBSUU_S_H : SUBSUU_S_H_ENC, SUBSUU_S_H_DESC;
+def SUBSUU_S_W : SUBSUU_S_W_ENC, SUBSUU_S_W_DESC;
+def SUBSUU_S_D : SUBSUU_S_D_ENC, SUBSUU_S_D_DESC;
+
+def SUBV_B : SUBV_B_ENC, SUBV_B_DESC;
+def SUBV_H : SUBV_H_ENC, SUBV_H_DESC;
+def SUBV_W : SUBV_W_ENC, SUBV_W_DESC;
+def SUBV_D : SUBV_D_ENC, SUBV_D_DESC;
+
+def SUBVI_B : SUBVI_B_ENC, SUBVI_B_DESC;
+def SUBVI_H : SUBVI_H_ENC, SUBVI_H_DESC;
+def SUBVI_W : SUBVI_W_ENC, SUBVI_W_DESC;
+def SUBVI_D : SUBVI_D_ENC, SUBVI_D_DESC;
+
+def VSHF_B : VSHF_B_ENC, VSHF_B_DESC;
+def VSHF_H : VSHF_H_ENC, VSHF_H_DESC;
+def VSHF_W : VSHF_W_ENC, VSHF_W_DESC;
+def VSHF_D : VSHF_D_ENC, VSHF_D_DESC;
+
+def XOR_V : XOR_V_ENC, XOR_V_DESC;
+def XOR_V_H_PSEUDO : XOR_V_H_PSEUDO_DESC,
+ PseudoInstExpansion<(XOR_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+def XOR_V_W_PSEUDO : XOR_V_W_PSEUDO_DESC,
+ PseudoInstExpansion<(XOR_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+def XOR_V_D_PSEUDO : XOR_V_D_PSEUDO_DESC,
+ PseudoInstExpansion<(XOR_V MSA128BOpnd:$wd,
+ MSA128BOpnd:$ws,
+ MSA128BOpnd:$wt)>;
+
+def XORI_B : XORI_B_ENC, XORI_B_DESC;
+
+// Patterns.
+class MSAPat<dag pattern, dag result, list<Predicate> pred = [HasMSA]> :
+ Pat<pattern, result>, Requires<pred>;
+
+def : MSAPat<(extractelt (v4i32 MSA128W:$ws), immZExt4:$idx),
+ (COPY_S_W MSA128W:$ws, immZExt4:$idx)>;
+
+def : MSAPat<(v8f16 (load addrimm10:$addr)), (LD_H addrimm10:$addr)>;
+def : MSAPat<(v4f32 (load addrimm10:$addr)), (LD_W addrimm10:$addr)>;
+def : MSAPat<(v2f64 (load addrimm10:$addr)), (LD_D addrimm10:$addr)>;
+
+def ST_FH : MSAPat<(store (v8f16 MSA128H:$ws), addrimm10:$addr),
+ (ST_H MSA128H:$ws, addrimm10:$addr)>;
+def ST_FW : MSAPat<(store (v4f32 MSA128W:$ws), addrimm10:$addr),
+ (ST_W MSA128W:$ws, addrimm10:$addr)>;
+def ST_FD : MSAPat<(store (v2f64 MSA128D:$ws), addrimm10:$addr),
+ (ST_D MSA128D:$ws, addrimm10:$addr)>;
+
+class MSA_FABS_PSEUDO_DESC_BASE<RegisterOperand ROWD,
+ RegisterOperand ROWS = ROWD,
+ InstrItinClass itin = NoItinerary> :
+ MSAPseudo<(outs ROWD:$wd),
+ (ins ROWS:$ws),
+ [(set ROWD:$wd, (fabs ROWS:$ws))]> {
+ InstrItinClass Itinerary = itin;
+}
+def FABS_W : MSA_FABS_PSEUDO_DESC_BASE<MSA128WOpnd>,
+ PseudoInstExpansion<(FMAX_A_W MSA128WOpnd:$wd, MSA128WOpnd:$ws,
+ MSA128WOpnd:$ws)>;
+def FABS_D : MSA_FABS_PSEUDO_DESC_BASE<MSA128DOpnd>,
+ PseudoInstExpansion<(FMAX_A_D MSA128DOpnd:$wd, MSA128DOpnd:$ws,
+ MSA128DOpnd:$ws)>;
+
+class MSABitconvertPat<ValueType DstVT, ValueType SrcVT,
+ RegisterClass DstRC, list<Predicate> preds = [HasMSA]> :
+ MSAPat<(DstVT (bitconvert SrcVT:$src)),
+ (COPY_TO_REGCLASS SrcVT:$src, DstRC), preds>;
+
+// These are endian-independent because the element size doesnt change
+def : MSABitconvertPat<v8i16, v8f16, MSA128H>;
+def : MSABitconvertPat<v4i32, v4f32, MSA128W>;
+def : MSABitconvertPat<v2i64, v2f64, MSA128D>;
+def : MSABitconvertPat<v8f16, v8i16, MSA128H>;
+def : MSABitconvertPat<v4f32, v4i32, MSA128W>;
+def : MSABitconvertPat<v2f64, v2i64, MSA128D>;
+
+// Little endian bitcasts are always no-ops
+def : MSABitconvertPat<v16i8, v8i16, MSA128B, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v16i8, v4i32, MSA128B, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v16i8, v2i64, MSA128B, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v16i8, v8f16, MSA128B, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v16i8, v4f32, MSA128B, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v16i8, v2f64, MSA128B, [HasMSA, IsLE]>;
+
+def : MSABitconvertPat<v8i16, v16i8, MSA128H, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v8i16, v4i32, MSA128H, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v8i16, v2i64, MSA128H, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v8i16, v4f32, MSA128H, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v8i16, v2f64, MSA128H, [HasMSA, IsLE]>;
+
+def : MSABitconvertPat<v4i32, v16i8, MSA128W, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v4i32, v8i16, MSA128W, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v4i32, v2i64, MSA128W, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v4i32, v8f16, MSA128W, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v4i32, v2f64, MSA128W, [HasMSA, IsLE]>;
+
+def : MSABitconvertPat<v2i64, v16i8, MSA128D, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v2i64, v8i16, MSA128D, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v2i64, v4i32, MSA128D, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v2i64, v8f16, MSA128D, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v2i64, v4f32, MSA128D, [HasMSA, IsLE]>;
+
+def : MSABitconvertPat<v4f32, v16i8, MSA128W, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v4f32, v8i16, MSA128W, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v4f32, v2i64, MSA128W, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v4f32, v8f16, MSA128W, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v4f32, v2f64, MSA128W, [HasMSA, IsLE]>;
+
+def : MSABitconvertPat<v2f64, v16i8, MSA128D, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v2f64, v8i16, MSA128D, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v2f64, v4i32, MSA128D, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v2f64, v8f16, MSA128D, [HasMSA, IsLE]>;
+def : MSABitconvertPat<v2f64, v4f32, MSA128D, [HasMSA, IsLE]>;
+
+// Big endian bitcasts expand to shuffle instructions.
+// This is because bitcast is defined to be a store/load sequence and the
+// vector store/load instructions are mixed-endian with respect to the vector
+// as a whole (little endian with respect to element order, but big endian
+// elements).
+
+class MSABitconvertReverseQuartersPat<ValueType DstVT, ValueType SrcVT,
+ RegisterClass DstRC, MSAInst Insn,
+ RegisterClass ViaRC> :
+ MSAPat<(DstVT (bitconvert SrcVT:$src)),
+ (COPY_TO_REGCLASS (Insn (COPY_TO_REGCLASS SrcVT:$src, ViaRC), 27),
+ DstRC),
+ [HasMSA, IsBE]>;
+
+class MSABitconvertReverseHalvesPat<ValueType DstVT, ValueType SrcVT,
+ RegisterClass DstRC, MSAInst Insn,
+ RegisterClass ViaRC> :
+ MSAPat<(DstVT (bitconvert SrcVT:$src)),
+ (COPY_TO_REGCLASS (Insn (COPY_TO_REGCLASS SrcVT:$src, ViaRC), 177),
+ DstRC),
+ [HasMSA, IsBE]>;
+
+class MSABitconvertReverseBInHPat<ValueType DstVT, ValueType SrcVT,
+ RegisterClass DstRC> :
+ MSABitconvertReverseHalvesPat<DstVT, SrcVT, DstRC, SHF_B, MSA128B>;
+
+class MSABitconvertReverseBInWPat<ValueType DstVT, ValueType SrcVT,
+ RegisterClass DstRC> :
+ MSABitconvertReverseQuartersPat<DstVT, SrcVT, DstRC, SHF_B, MSA128B>;
+
+class MSABitconvertReverseBInDPat<ValueType DstVT, ValueType SrcVT,
+ RegisterClass DstRC> :
+ MSAPat<(DstVT (bitconvert SrcVT:$src)),
+ (COPY_TO_REGCLASS
+ (SHF_W
+ (COPY_TO_REGCLASS
+ (SHF_B (COPY_TO_REGCLASS SrcVT:$src, MSA128B), 27),
+ MSA128W), 177),
+ DstRC),
+ [HasMSA, IsBE]>;
+
+class MSABitconvertReverseHInWPat<ValueType DstVT, ValueType SrcVT,
+ RegisterClass DstRC> :
+ MSABitconvertReverseHalvesPat<DstVT, SrcVT, DstRC, SHF_H, MSA128H>;
+
+class MSABitconvertReverseHInDPat<ValueType DstVT, ValueType SrcVT,
+ RegisterClass DstRC> :
+ MSABitconvertReverseQuartersPat<DstVT, SrcVT, DstRC, SHF_H, MSA128H>;
+
+class MSABitconvertReverseWInDPat<ValueType DstVT, ValueType SrcVT,
+ RegisterClass DstRC> :
+ MSABitconvertReverseHalvesPat<DstVT, SrcVT, DstRC, SHF_W, MSA128W>;
+
+def : MSABitconvertReverseBInHPat<v8i16, v16i8, MSA128H>;
+def : MSABitconvertReverseBInHPat<v8f16, v16i8, MSA128H>;
+def : MSABitconvertReverseBInWPat<v4i32, v16i8, MSA128W>;
+def : MSABitconvertReverseBInWPat<v4f32, v16i8, MSA128W>;
+def : MSABitconvertReverseBInDPat<v2i64, v16i8, MSA128D>;
+def : MSABitconvertReverseBInDPat<v2f64, v16i8, MSA128D>;
+
+def : MSABitconvertReverseBInHPat<v16i8, v8i16, MSA128B>;
+def : MSABitconvertReverseHInWPat<v4i32, v8i16, MSA128W>;
+def : MSABitconvertReverseHInWPat<v4f32, v8i16, MSA128W>;
+def : MSABitconvertReverseHInDPat<v2i64, v8i16, MSA128D>;
+def : MSABitconvertReverseHInDPat<v2f64, v8i16, MSA128D>;
+
+def : MSABitconvertReverseBInHPat<v16i8, v8f16, MSA128B>;
+def : MSABitconvertReverseHInWPat<v4i32, v8f16, MSA128W>;
+def : MSABitconvertReverseHInWPat<v4f32, v8f16, MSA128W>;
+def : MSABitconvertReverseHInDPat<v2i64, v8f16, MSA128D>;
+def : MSABitconvertReverseHInDPat<v2f64, v8f16, MSA128D>;
+
+def : MSABitconvertReverseBInWPat<v16i8, v4i32, MSA128B>;
+def : MSABitconvertReverseHInWPat<v8i16, v4i32, MSA128H>;
+def : MSABitconvertReverseHInWPat<v8f16, v4i32, MSA128H>;
+def : MSABitconvertReverseWInDPat<v2i64, v4i32, MSA128D>;
+def : MSABitconvertReverseWInDPat<v2f64, v4i32, MSA128D>;
+
+def : MSABitconvertReverseBInWPat<v16i8, v4f32, MSA128B>;
+def : MSABitconvertReverseHInWPat<v8i16, v4f32, MSA128H>;
+def : MSABitconvertReverseHInWPat<v8f16, v4f32, MSA128H>;
+def : MSABitconvertReverseWInDPat<v2i64, v4f32, MSA128D>;
+def : MSABitconvertReverseWInDPat<v2f64, v4f32, MSA128D>;
+
+def : MSABitconvertReverseBInDPat<v16i8, v2i64, MSA128B>;
+def : MSABitconvertReverseHInDPat<v8i16, v2i64, MSA128H>;
+def : MSABitconvertReverseHInDPat<v8f16, v2i64, MSA128H>;
+def : MSABitconvertReverseWInDPat<v4i32, v2i64, MSA128W>;
+def : MSABitconvertReverseWInDPat<v4f32, v2i64, MSA128W>;
+
+def : MSABitconvertReverseBInDPat<v16i8, v2f64, MSA128B>;
+def : MSABitconvertReverseHInDPat<v8i16, v2f64, MSA128H>;
+def : MSABitconvertReverseHInDPat<v8f16, v2f64, MSA128H>;
+def : MSABitconvertReverseWInDPat<v4i32, v2f64, MSA128W>;
+def : MSABitconvertReverseWInDPat<v4f32, v2f64, MSA128W>;
+
+// Pseudos used to implement BNZ.df, and BZ.df
+
+class MSA_CBRANCH_PSEUDO_DESC_BASE<SDPatternOperator OpNode, ValueType TyNode,
+ RegisterClass RCWS,
+ InstrItinClass itin = NoItinerary> :
+ MipsPseudo<(outs GPR32:$dst),
+ (ins RCWS:$ws),
+ [(set GPR32:$dst, (OpNode (TyNode RCWS:$ws)))]> {
+ bit usesCustomInserter = 1;
+}
+
+def SNZ_B_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAllNonZero, v16i8,
+ MSA128B, NoItinerary>;
+def SNZ_H_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAllNonZero, v8i16,
+ MSA128H, NoItinerary>;
+def SNZ_W_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAllNonZero, v4i32,
+ MSA128W, NoItinerary>;
+def SNZ_D_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAllNonZero, v2i64,
+ MSA128D, NoItinerary>;
+def SNZ_V_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAnyNonZero, v16i8,
+ MSA128B, NoItinerary>;
+
+def SZ_B_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAllZero, v16i8,
+ MSA128B, NoItinerary>;
+def SZ_H_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAllZero, v8i16,
+ MSA128H, NoItinerary>;
+def SZ_W_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAllZero, v4i32,
+ MSA128W, NoItinerary>;
+def SZ_D_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAllZero, v2i64,
+ MSA128D, NoItinerary>;
+def SZ_V_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAnyZero, v16i8,
+ MSA128B, NoItinerary>;
+
+// Vector extraction with variable index
+def : MSAPat<(i32 (vextract_sext_i8 v16i8:$ws, i32:$idx)),
+ (SRA (COPY_TO_REGCLASS (i32 (EXTRACT_SUBREG (SPLAT_B v16i8:$ws,
+ i32:$idx),
+ sub_lo)),
+ GPR32), (i32 24))>;
+def : MSAPat<(i32 (vextract_sext_i16 v8i16:$ws, i32:$idx)),
+ (SRA (COPY_TO_REGCLASS (i32 (EXTRACT_SUBREG (SPLAT_H v8i16:$ws,
+ i32:$idx),
+ sub_lo)),
+ GPR32), (i32 16))>;
+def : MSAPat<(i32 (vextract_sext_i32 v4i32:$ws, i32:$idx)),
+ (COPY_TO_REGCLASS (i32 (EXTRACT_SUBREG (SPLAT_W v4i32:$ws,
+ i32:$idx),
+ sub_lo)),
+ GPR32)>;
+def : MSAPat<(i64 (vextract_sext_i64 v2i64:$ws, i32:$idx)),
+ (COPY_TO_REGCLASS (i64 (EXTRACT_SUBREG (SPLAT_D v2i64:$ws,
+ i32:$idx),
+ sub_64)),
+ GPR64), [HasMSA, IsGP64bit]>;
+
+def : MSAPat<(i32 (vextract_zext_i8 v16i8:$ws, i32:$idx)),
+ (SRL (COPY_TO_REGCLASS (i32 (EXTRACT_SUBREG (SPLAT_B v16i8:$ws,
+ i32:$idx),
+ sub_lo)),
+ GPR32), (i32 24))>;
+def : MSAPat<(i32 (vextract_zext_i16 v8i16:$ws, i32:$idx)),
+ (SRL (COPY_TO_REGCLASS (i32 (EXTRACT_SUBREG (SPLAT_H v8i16:$ws,
+ i32:$idx),
+ sub_lo)),
+ GPR32), (i32 16))>;
+def : MSAPat<(i32 (vextract_zext_i32 v4i32:$ws, i32:$idx)),
+ (COPY_TO_REGCLASS (i32 (EXTRACT_SUBREG (SPLAT_W v4i32:$ws,
+ i32:$idx),
+ sub_lo)),
+ GPR32)>;
+def : MSAPat<(i64 (vextract_zext_i64 v2i64:$ws, i32:$idx)),
+ (COPY_TO_REGCLASS (i64 (EXTRACT_SUBREG (SPLAT_D v2i64:$ws,
+ i32:$idx),
+ sub_64)),
+ GPR64), [HasMSA, IsGP64bit]>;
+
+def : MSAPat<(f32 (vector_extract v4f32:$ws, i32:$idx)),
+ (f32 (EXTRACT_SUBREG (SPLAT_W v4f32:$ws,
+ i32:$idx),
+ sub_lo))>;
+def : MSAPat<(f64 (vector_extract v2f64:$ws, i32:$idx)),
+ (f64 (EXTRACT_SUBREG (SPLAT_D v2f64:$ws,
+ i32:$idx),
+ sub_64))>;
diff --git a/contrib/llvm/lib/Target/Mips/MipsMachineFunction.cpp b/contrib/llvm/lib/Target/Mips/MipsMachineFunction.cpp
new file mode 100644
index 0000000..bc896be
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsMachineFunction.cpp
@@ -0,0 +1,148 @@
+//===-- MipsMachineFunctionInfo.cpp - Private data used for Mips ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsMachineFunction.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MipsInstrInfo.h"
+#include "MipsSubtarget.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+static cl::opt<bool>
+FixGlobalBaseReg("mips-fix-global-base-reg", cl::Hidden, cl::init(true),
+ cl::desc("Always use $gp as the global base register."));
+
+// class MipsCallEntry.
+MipsCallEntry::MipsCallEntry(const StringRef &N) {
+#ifndef NDEBUG
+ Name = N;
+ Val = nullptr;
+#endif
+}
+
+MipsCallEntry::MipsCallEntry(const GlobalValue *V) {
+#ifndef NDEBUG
+ Val = V;
+#endif
+}
+
+bool MipsCallEntry::isConstant(const MachineFrameInfo *) const {
+ return false;
+}
+
+bool MipsCallEntry::isAliased(const MachineFrameInfo *) const {
+ return false;
+}
+
+bool MipsCallEntry::mayAlias(const MachineFrameInfo *) const {
+ return false;
+}
+
+void MipsCallEntry::printCustom(raw_ostream &O) const {
+ O << "MipsCallEntry: ";
+#ifndef NDEBUG
+ if (Val)
+ O << Val->getName();
+ else
+ O << Name;
+#endif
+}
+
+MipsFunctionInfo::~MipsFunctionInfo() {
+ for (StringMap<const MipsCallEntry *>::iterator
+ I = ExternalCallEntries.begin(), E = ExternalCallEntries.end(); I != E;
+ ++I)
+ delete I->getValue();
+
+ for (const auto &Entry : GlobalCallEntries)
+ delete Entry.second;
+}
+
+bool MipsFunctionInfo::globalBaseRegSet() const {
+ return GlobalBaseReg;
+}
+
+unsigned MipsFunctionInfo::getGlobalBaseReg() {
+ // Return if it has already been initialized.
+ if (GlobalBaseReg)
+ return GlobalBaseReg;
+
+ const MipsSubtarget &ST = MF.getTarget().getSubtarget<MipsSubtarget>();
+
+ const TargetRegisterClass *RC;
+ if (ST.inMips16Mode())
+ RC=(const TargetRegisterClass*)&Mips::CPU16RegsRegClass;
+ else
+ RC = ST.isABI_N64() ?
+ (const TargetRegisterClass*)&Mips::GPR64RegClass :
+ (const TargetRegisterClass*)&Mips::GPR32RegClass;
+ return GlobalBaseReg = MF.getRegInfo().createVirtualRegister(RC);
+}
+
+bool MipsFunctionInfo::mips16SPAliasRegSet() const {
+ return Mips16SPAliasReg;
+}
+unsigned MipsFunctionInfo::getMips16SPAliasReg() {
+ // Return if it has already been initialized.
+ if (Mips16SPAliasReg)
+ return Mips16SPAliasReg;
+
+ const TargetRegisterClass *RC;
+ RC=(const TargetRegisterClass*)&Mips::CPU16RegsRegClass;
+ return Mips16SPAliasReg = MF.getRegInfo().createVirtualRegister(RC);
+}
+
+void MipsFunctionInfo::createEhDataRegsFI() {
+ for (int I = 0; I < 4; ++I) {
+ const MipsSubtarget &ST = MF.getTarget().getSubtarget<MipsSubtarget>();
+ const TargetRegisterClass *RC = ST.isABI_N64() ?
+ &Mips::GPR64RegClass : &Mips::GPR32RegClass;
+
+ EhDataRegFI[I] = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
+ RC->getAlignment(), false);
+ }
+}
+
+bool MipsFunctionInfo::isEhDataRegFI(int FI) const {
+ return CallsEhReturn && (FI == EhDataRegFI[0] || FI == EhDataRegFI[1]
+ || FI == EhDataRegFI[2] || FI == EhDataRegFI[3]);
+}
+
+MachinePointerInfo MipsFunctionInfo::callPtrInfo(const StringRef &Name) {
+ const MipsCallEntry *&E = ExternalCallEntries[Name];
+
+ if (!E)
+ E = new MipsCallEntry(Name);
+
+ return MachinePointerInfo(E);
+}
+
+MachinePointerInfo MipsFunctionInfo::callPtrInfo(const GlobalValue *Val) {
+ const MipsCallEntry *&E = GlobalCallEntries[Val];
+
+ if (!E)
+ E = new MipsCallEntry(Val);
+
+ return MachinePointerInfo(E);
+}
+
+int MipsFunctionInfo::getMoveF64ViaSpillFI(const TargetRegisterClass *RC) {
+ if (MoveF64ViaSpillFI == -1) {
+ MoveF64ViaSpillFI = MF.getFrameInfo()->CreateStackObject(
+ RC->getSize(), RC->getAlignment(), false);
+ }
+ return MoveF64ViaSpillFI;
+}
+
+void MipsFunctionInfo::anchor() { }
diff --git a/contrib/llvm/lib/Target/Mips/MipsMachineFunction.h b/contrib/llvm/lib/Target/Mips/MipsMachineFunction.h
new file mode 100644
index 0000000..61260e5
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsMachineFunction.h
@@ -0,0 +1,153 @@
+//===-- MipsMachineFunctionInfo.h - Private data used for Mips ----*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the Mips specific subclass of MachineFunctionInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPS_MACHINE_FUNCTION_INFO_H
+#define MIPS_MACHINE_FUNCTION_INFO_H
+
+#include "Mips16HardFloatInfo.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/ValueMap.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include <map>
+#include <string>
+#include <utility>
+
+namespace llvm {
+
+/// \brief A class derived from PseudoSourceValue that represents a GOT entry
+/// resolved by lazy-binding.
+class MipsCallEntry : public PseudoSourceValue {
+public:
+ explicit MipsCallEntry(const StringRef &N);
+ explicit MipsCallEntry(const GlobalValue *V);
+ bool isConstant(const MachineFrameInfo *) const override;
+ bool isAliased(const MachineFrameInfo *) const override;
+ bool mayAlias(const MachineFrameInfo *) const override;
+
+private:
+ void printCustom(raw_ostream &O) const override;
+#ifndef NDEBUG
+ std::string Name;
+ const GlobalValue *Val;
+#endif
+};
+
+/// MipsFunctionInfo - This class is derived from MachineFunction private
+/// Mips target-specific information for each MachineFunction.
+class MipsFunctionInfo : public MachineFunctionInfo {
+public:
+ MipsFunctionInfo(MachineFunction &MF)
+ : MF(MF), SRetReturnReg(0), GlobalBaseReg(0), Mips16SPAliasReg(0),
+ VarArgsFrameIndex(0), CallsEhReturn(false), SaveS2(false),
+ MoveF64ViaSpillFI(-1) {}
+
+ ~MipsFunctionInfo();
+
+ unsigned getSRetReturnReg() const { return SRetReturnReg; }
+ void setSRetReturnReg(unsigned Reg) { SRetReturnReg = Reg; }
+
+ bool globalBaseRegSet() const;
+ unsigned getGlobalBaseReg();
+
+ bool mips16SPAliasRegSet() const;
+ unsigned getMips16SPAliasReg();
+
+ int getVarArgsFrameIndex() const { return VarArgsFrameIndex; }
+ void setVarArgsFrameIndex(int Index) { VarArgsFrameIndex = Index; }
+
+ bool hasByvalArg() const { return HasByvalArg; }
+ void setFormalArgInfo(unsigned Size, bool HasByval) {
+ IncomingArgSize = Size;
+ HasByvalArg = HasByval;
+ }
+
+ unsigned getIncomingArgSize() const { return IncomingArgSize; }
+
+ bool callsEhReturn() const { return CallsEhReturn; }
+ void setCallsEhReturn() { CallsEhReturn = true; }
+
+ void createEhDataRegsFI();
+ int getEhDataRegFI(unsigned Reg) const { return EhDataRegFI[Reg]; }
+ bool isEhDataRegFI(int FI) const;
+
+ /// \brief Create a MachinePointerInfo that has a MipsCallEntr object
+ /// representing a GOT entry for an external function.
+ MachinePointerInfo callPtrInfo(const StringRef &Name);
+
+ /// \brief Create a MachinePointerInfo that has a MipsCallEntr object
+ /// representing a GOT entry for a global function.
+ MachinePointerInfo callPtrInfo(const GlobalValue *Val);
+
+ void setSaveS2() { SaveS2 = true; }
+ bool hasSaveS2() const { return SaveS2; }
+
+ int getMoveF64ViaSpillFI(const TargetRegisterClass *RC);
+
+ std::map<const char *, const llvm::Mips16HardFloatInfo::FuncSignature *>
+ StubsNeeded;
+
+private:
+ virtual void anchor();
+
+ MachineFunction& MF;
+ /// SRetReturnReg - Some subtargets require that sret lowering includes
+ /// returning the value of the returned struct in a register. This field
+ /// holds the virtual register into which the sret argument is passed.
+ unsigned SRetReturnReg;
+
+ /// GlobalBaseReg - keeps track of the virtual register initialized for
+ /// use as the global base register. This is used for PIC in some PIC
+ /// relocation models.
+ unsigned GlobalBaseReg;
+
+ /// Mips16SPAliasReg - keeps track of the virtual register initialized for
+ /// use as an alias for SP for use in load/store of halfword/byte from/to
+ /// the stack
+ unsigned Mips16SPAliasReg;
+
+ /// VarArgsFrameIndex - FrameIndex for start of varargs area.
+ int VarArgsFrameIndex;
+
+ /// True if function has a byval argument.
+ bool HasByvalArg;
+
+ /// Size of incoming argument area.
+ unsigned IncomingArgSize;
+
+ /// CallsEhReturn - Whether the function calls llvm.eh.return.
+ bool CallsEhReturn;
+
+ /// Frame objects for spilling eh data registers.
+ int EhDataRegFI[4];
+
+ // saveS2
+ bool SaveS2;
+
+ /// FrameIndex for expanding BuildPairF64 nodes to spill and reload when the
+ /// O32 FPXX ABI is enabled. -1 is used to denote invalid index.
+ int MoveF64ViaSpillFI;
+
+ /// MipsCallEntry maps.
+ StringMap<const MipsCallEntry *> ExternalCallEntries;
+ ValueMap<const GlobalValue *, const MipsCallEntry *> GlobalCallEntries;
+};
+
+} // end of namespace llvm
+
+#endif // MIPS_MACHINE_FUNCTION_INFO_H
diff --git a/contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.cpp
new file mode 100644
index 0000000..b011e8f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.cpp
@@ -0,0 +1,36 @@
+//===----------------------------------------------------------------------===//
+// Instruction Selector Subtarget Control
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// This file defines a pass used to change the subtarget for the
+// Mips Instruction selector.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsISelDAGToDAG.h"
+#include "MipsModuleISelDAGToDAG.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "mips-isel"
+
+namespace llvm {
+
+bool MipsModuleDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
+ DEBUG(errs() << "In MipsModuleDAGToDAGISel::runMachineFunction\n");
+ TM.resetSubtarget(&MF);
+ return false;
+}
+
+char MipsModuleDAGToDAGISel::ID = 0;
+
+}
+
+
+llvm::FunctionPass *llvm::createMipsModuleISelDag(MipsTargetMachine &TM) {
+ return new MipsModuleDAGToDAGISel(TM);
+}
+
+
diff --git a/contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.h b/contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.h
new file mode 100644
index 0000000..f7a0310
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.h
@@ -0,0 +1,58 @@
+//===---- MipsModuleISelDAGToDAG.h - Change Subtarget --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a pass used to change the subtarget for the
+// Mips Instruction selector.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSMODULEISELDAGTODAG_H
+#define MIPSMODULEISELDAGTODAG_H
+
+#include "Mips.h"
+#include "MipsSubtarget.h"
+#include "MipsTargetMachine.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+
+
+//===----------------------------------------------------------------------===//
+// Instruction Selector Implementation
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MipsModuleDAGToDAGISel - MIPS specific code to select MIPS machine
+// instructions for SelectionDAG operations.
+//===----------------------------------------------------------------------===//
+namespace llvm {
+
+class MipsModuleDAGToDAGISel : public MachineFunctionPass {
+public:
+
+ static char ID;
+
+ explicit MipsModuleDAGToDAGISel(MipsTargetMachine &TM_)
+ : MachineFunctionPass(ID), TM(TM_) {}
+
+ // Pass Name
+ const char *getPassName() const override {
+ return "MIPS DAG->DAG Pattern Instruction Selection";
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+protected:
+ MipsTargetMachine &TM;
+};
+
+/// createMipsISelDag - This pass converts a legalized DAG into a
+/// MIPS-specific DAG, ready for instruction scheduling.
+FunctionPass *createMipsModuleISelDag(MipsTargetMachine &TM);
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsOptimizePICCall.cpp b/contrib/llvm/lib/Target/Mips/MipsOptimizePICCall.cpp
new file mode 100644
index 0000000..c234049
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsOptimizePICCall.cpp
@@ -0,0 +1,301 @@
+//===--------- MipsOptimizePICCall.cpp - Optimize PIC Calls ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass eliminates unnecessary instructions that set up $gp and replace
+// instructions that load target function addresses with copy instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Mips.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MipsMachineFunction.h"
+#include "MipsTargetMachine.h"
+#include "llvm/ADT/ScopedHashTable.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "optimize-mips-pic-call"
+
+static cl::opt<bool> LoadTargetFromGOT("mips-load-target-from-got",
+ cl::init(true),
+ cl::desc("Load target address from GOT"),
+ cl::Hidden);
+
+static cl::opt<bool> EraseGPOpnd("mips-erase-gp-opnd",
+ cl::init(true), cl::desc("Erase GP Operand"),
+ cl::Hidden);
+
+namespace {
+typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
+
+typedef std::pair<unsigned, unsigned> CntRegP;
+typedef RecyclingAllocator<BumpPtrAllocator,
+ ScopedHashTableVal<ValueType, CntRegP> >
+AllocatorTy;
+typedef ScopedHashTable<ValueType, CntRegP, DenseMapInfo<ValueType>,
+ AllocatorTy> ScopedHTType;
+
+class MBBInfo {
+public:
+ MBBInfo(MachineDomTreeNode *N);
+ const MachineDomTreeNode *getNode() const;
+ bool isVisited() const;
+ void preVisit(ScopedHTType &ScopedHT);
+ void postVisit();
+
+private:
+ MachineDomTreeNode *Node;
+ ScopedHTType::ScopeTy *HTScope;
+};
+
+class OptimizePICCall : public MachineFunctionPass {
+public:
+ OptimizePICCall(TargetMachine &tm) : MachineFunctionPass(ID) {}
+
+ const char *getPassName() const override { return "Mips OptimizePICCall"; }
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+private:
+ /// \brief Visit MBB.
+ bool visitNode(MBBInfo &MBBI);
+
+ /// \brief Test if MI jumps to a function via a register.
+ ///
+ /// Also, return the virtual register containing the target function's address
+ /// and the underlying object in Reg and Val respectively, if the function's
+ /// address can be resolved lazily.
+ bool isCallViaRegister(MachineInstr &MI, unsigned &Reg,
+ ValueType &Val) const;
+
+ /// \brief Return the number of instructions that dominate the current
+ /// instruction and load the function address from object Entry.
+ unsigned getCount(ValueType Entry);
+
+ /// \brief Return the destination virtual register of the last instruction
+ /// that loads from object Entry.
+ unsigned getReg(ValueType Entry);
+
+ /// \brief Update ScopedHT.
+ void incCntAndSetReg(ValueType Entry, unsigned Reg);
+
+ ScopedHTType ScopedHT;
+ static char ID;
+};
+
+char OptimizePICCall::ID = 0;
+} // end of anonymous namespace
+
+/// Return the first MachineOperand of MI if it is a used virtual register.
+static MachineOperand *getCallTargetRegOpnd(MachineInstr &MI) {
+ if (MI.getNumOperands() == 0)
+ return nullptr;
+
+ MachineOperand &MO = MI.getOperand(0);
+
+ if (!MO.isReg() || !MO.isUse() ||
+ !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ return nullptr;
+
+ return &MO;
+}
+
+/// Return type of register Reg.
+static MVT::SimpleValueType getRegTy(unsigned Reg, MachineFunction &MF) {
+ const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
+ assert(RC->vt_end() - RC->vt_begin() == 1);
+ return *RC->vt_begin();
+}
+
+/// Do the following transformation:
+///
+/// jalr $vreg
+/// =>
+/// copy $t9, $vreg
+/// jalr $t9
+static void setCallTargetReg(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I) {
+ MachineFunction &MF = *MBB->getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ unsigned SrcReg = I->getOperand(0).getReg();
+ unsigned DstReg = getRegTy(SrcReg, MF) == MVT::i32 ? Mips::T9 : Mips::T9_64;
+ BuildMI(*MBB, I, I->getDebugLoc(), TII.get(TargetOpcode::COPY), DstReg)
+ .addReg(SrcReg);
+ I->getOperand(0).setReg(DstReg);
+}
+
+/// Search MI's operands for register GP and erase it.
+static void eraseGPOpnd(MachineInstr &MI) {
+ if (!EraseGPOpnd)
+ return;
+
+ MachineFunction &MF = *MI.getParent()->getParent();
+ MVT::SimpleValueType Ty = getRegTy(MI.getOperand(0).getReg(), MF);
+ unsigned Reg = Ty == MVT::i32 ? Mips::GP : Mips::GP_64;
+
+ for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
+ MachineOperand &MO = MI.getOperand(I);
+ if (MO.isReg() && MO.getReg() == Reg) {
+ MI.RemoveOperand(I);
+ return;
+ }
+ }
+
+ llvm_unreachable(nullptr);
+}
+
+MBBInfo::MBBInfo(MachineDomTreeNode *N) : Node(N), HTScope(nullptr) {}
+
+const MachineDomTreeNode *MBBInfo::getNode() const { return Node; }
+
+bool MBBInfo::isVisited() const { return HTScope; }
+
+void MBBInfo::preVisit(ScopedHTType &ScopedHT) {
+ HTScope = new ScopedHTType::ScopeTy(ScopedHT);
+}
+
+void MBBInfo::postVisit() {
+ delete HTScope;
+}
+
+// OptimizePICCall methods.
+bool OptimizePICCall::runOnMachineFunction(MachineFunction &F) {
+ if (F.getTarget().getSubtarget<MipsSubtarget>().inMips16Mode())
+ return false;
+
+ // Do a pre-order traversal of the dominator tree.
+ MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
+ bool Changed = false;
+
+ SmallVector<MBBInfo, 8> WorkList(1, MBBInfo(MDT->getRootNode()));
+
+ while (!WorkList.empty()) {
+ MBBInfo &MBBI = WorkList.back();
+
+ // If this MBB has already been visited, destroy the scope for the MBB and
+ // pop it from the work list.
+ if (MBBI.isVisited()) {
+ MBBI.postVisit();
+ WorkList.pop_back();
+ continue;
+ }
+
+ // Visit the MBB and add its children to the work list.
+ MBBI.preVisit(ScopedHT);
+ Changed |= visitNode(MBBI);
+ const MachineDomTreeNode *Node = MBBI.getNode();
+ const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
+ WorkList.append(Children.begin(), Children.end());
+ }
+
+ return Changed;
+}
+
+bool OptimizePICCall::visitNode(MBBInfo &MBBI) {
+ bool Changed = false;
+ MachineBasicBlock *MBB = MBBI.getNode()->getBlock();
+
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
+ ++I) {
+ unsigned Reg;
+ ValueType Entry;
+
+ // Skip instructions that are not call instructions via registers.
+ if (!isCallViaRegister(*I, Reg, Entry))
+ continue;
+
+ Changed = true;
+ unsigned N = getCount(Entry);
+
+ if (N != 0) {
+ // If a function has been called more than twice, we do not have to emit a
+ // load instruction to get the function address from the GOT, but can
+ // instead reuse the address that has been loaded before.
+ if (N >= 2 && !LoadTargetFromGOT)
+ getCallTargetRegOpnd(*I)->setReg(getReg(Entry));
+
+ // Erase the $gp operand if this isn't the first time a function has
+ // been called. $gp needs to be set up only if the function call can go
+ // through a lazy binding stub.
+ eraseGPOpnd(*I);
+ }
+
+ if (Entry)
+ incCntAndSetReg(Entry, Reg);
+
+ setCallTargetReg(MBB, I);
+ }
+
+ return Changed;
+}
+
+bool OptimizePICCall::isCallViaRegister(MachineInstr &MI, unsigned &Reg,
+ ValueType &Val) const {
+ if (!MI.isCall())
+ return false;
+
+ MachineOperand *MO = getCallTargetRegOpnd(MI);
+
+ // Return if MI is not a function call via a register.
+ if (!MO)
+ return false;
+
+ // Get the instruction that loads the function address from the GOT.
+ Reg = MO->getReg();
+ Val = (Value*)nullptr;
+ MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
+ MachineInstr *DefMI = MRI.getVRegDef(Reg);
+
+ assert(DefMI);
+
+ // See if DefMI is an instruction that loads from a GOT entry that holds the
+ // address of a lazy binding stub.
+ if (!DefMI->mayLoad() || DefMI->getNumOperands() < 3)
+ return true;
+
+ unsigned Flags = DefMI->getOperand(2).getTargetFlags();
+
+ if (Flags != MipsII::MO_GOT_CALL && Flags != MipsII::MO_CALL_LO16)
+ return true;
+
+ // Return the underlying object for the GOT entry in Val.
+ assert(DefMI->hasOneMemOperand());
+ Val = (*DefMI->memoperands_begin())->getValue();
+ if (!Val)
+ Val = (*DefMI->memoperands_begin())->getPseudoValue();
+ return true;
+}
+
+unsigned OptimizePICCall::getCount(ValueType Entry) {
+ return ScopedHT.lookup(Entry).first;
+}
+
+unsigned OptimizePICCall::getReg(ValueType Entry) {
+ unsigned Reg = ScopedHT.lookup(Entry).second;
+ assert(Reg);
+ return Reg;
+}
+
+void OptimizePICCall::incCntAndSetReg(ValueType Entry, unsigned Reg) {
+ CntRegP P = ScopedHT.lookup(Entry);
+ ScopedHT.insert(Entry, std::make_pair(P.first + 1, Reg));
+}
+
+/// Return an OptimizeCall object.
+FunctionPass *llvm::createMipsOptimizePICCallPass(MipsTargetMachine &TM) {
+ return new OptimizePICCall(TM);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsOptionRecord.h b/contrib/llvm/lib/Target/Mips/MipsOptionRecord.h
new file mode 100644
index 0000000..c0abce3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsOptionRecord.h
@@ -0,0 +1,80 @@
+//===-- MipsOptionRecord.h - Abstraction for storing information ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// MipsOptionRecord - Abstraction for storing arbitrary information in
+// ELF files. Arbitrary information (e.g. register usage) can be stored in Mips
+// specific ELF sections like .Mips.options. Specific records should subclass
+// MipsOptionRecord and provide an implementation to EmitMipsOptionRecord which
+// basically just dumps the information into an ELF section. More information
+// about .Mips.option can be found in the SysV ABI and the 64-bit ELF Object
+// specification.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSOPTIONRECORD_H
+#define MIPSOPTIONRECORD_H
+
+#include "MipsMCTargetDesc.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCRegisterInfo.h"
+
+using namespace llvm;
+
+namespace llvm {
+class MipsELFStreamer;
+class MCSubtargetInfo;
+}
+
+class MipsOptionRecord {
+public:
+ virtual ~MipsOptionRecord(){};
+ virtual void EmitMipsOptionRecord() = 0;
+};
+
+class MipsRegInfoRecord : public MipsOptionRecord {
+public:
+ MipsRegInfoRecord(MipsELFStreamer *S, MCContext &Context,
+ const MCSubtargetInfo &STI)
+ : Streamer(S), Context(Context), STI(STI) {
+ ri_gprmask = 0;
+ ri_cprmask[0] = ri_cprmask[1] = ri_cprmask[2] = ri_cprmask[3] = 0;
+ ri_gp_value = 0;
+
+ const MCRegisterInfo *TRI = Context.getRegisterInfo();
+ GPR32RegClass = &(TRI->getRegClass(Mips::GPR32RegClassID));
+ GPR64RegClass = &(TRI->getRegClass(Mips::GPR64RegClassID));
+ FGR32RegClass = &(TRI->getRegClass(Mips::FGR32RegClassID));
+ FGR64RegClass = &(TRI->getRegClass(Mips::FGR64RegClassID));
+ AFGR64RegClass = &(TRI->getRegClass(Mips::AFGR64RegClassID));
+ MSA128BRegClass = &(TRI->getRegClass(Mips::MSA128BRegClassID));
+ COP2RegClass = &(TRI->getRegClass(Mips::COP2RegClassID));
+ COP3RegClass = &(TRI->getRegClass(Mips::COP3RegClassID));
+ }
+ ~MipsRegInfoRecord() {}
+
+ void EmitMipsOptionRecord();
+ void SetPhysRegUsed(unsigned Reg, const MCRegisterInfo *MCRegInfo);
+
+private:
+ MipsELFStreamer *Streamer;
+ MCContext &Context;
+ const MCSubtargetInfo &STI;
+ const MCRegisterClass *GPR32RegClass;
+ const MCRegisterClass *GPR64RegClass;
+ const MCRegisterClass *FGR32RegClass;
+ const MCRegisterClass *FGR64RegClass;
+ const MCRegisterClass *AFGR64RegClass;
+ const MCRegisterClass *MSA128BRegClass;
+ const MCRegisterClass *COP2RegClass;
+ const MCRegisterClass *COP3RegClass;
+ uint32_t ri_gprmask;
+ uint32_t ri_cprmask[4];
+ int64_t ri_gp_value;
+};
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsOs16.cpp b/contrib/llvm/lib/Target/Mips/MipsOs16.cpp
new file mode 100644
index 0000000..7aae964
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsOs16.cpp
@@ -0,0 +1,147 @@
+//===---- MipsOs16.cpp for Mips Option -Os16 --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an optimization phase for the MIPS target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsOs16.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "mips-os16"
+
+
+static cl::opt<std::string> Mips32FunctionMask(
+ "mips32-function-mask",
+ cl::init(""),
+ cl::desc("Force function to be mips32"),
+ cl::Hidden);
+
+namespace {
+
+ // Figure out if we need float point based on the function signature.
+ // We need to move variables in and/or out of floating point
+ // registers because of the ABI
+ //
+ bool needsFPFromSig(Function &F) {
+ Type* RetType = F.getReturnType();
+ switch (RetType->getTypeID()) {
+ case Type::FloatTyID:
+ case Type::DoubleTyID:
+ return true;
+ default:
+ ;
+ }
+ if (F.arg_size() >=1) {
+ Argument &Arg = F.getArgumentList().front();
+ switch (Arg.getType()->getTypeID()) {
+ case Type::FloatTyID:
+ case Type::DoubleTyID:
+ return true;
+ default:
+ ;
+ }
+ }
+ return false;
+ }
+
+ // Figure out if the function will need floating point operations
+ //
+ bool needsFP(Function &F) {
+ if (needsFPFromSig(F))
+ return true;
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+ I != E; ++I) {
+ const Instruction &Inst = *I;
+ switch (Inst.getOpcode()) {
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FCmp:
+ return true;
+ default:
+ ;
+ }
+ if (const CallInst *CI = dyn_cast<CallInst>(I)) {
+ DEBUG(dbgs() << "Working on call" << "\n");
+ Function &F_ = *CI->getCalledFunction();
+ if (needsFPFromSig(F_))
+ return true;
+ }
+ }
+ return false;
+ }
+}
+namespace llvm {
+
+
+bool MipsOs16::runOnModule(Module &M) {
+ bool usingMask = Mips32FunctionMask.length() > 0;
+ bool doneUsingMask = false; // this will make it stop repeating
+ DEBUG(dbgs() << "Run on Module MipsOs16 \n" << Mips32FunctionMask << "\n");
+ if (usingMask)
+ DEBUG(dbgs() << "using mask \n" << Mips32FunctionMask << "\n");
+ unsigned int functionIndex = 0;
+ bool modified = false;
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ if (F->isDeclaration()) continue;
+ DEBUG(dbgs() << "Working on " << F->getName() << "\n");
+ if (usingMask) {
+ if (!doneUsingMask) {
+ if (functionIndex == Mips32FunctionMask.length())
+ functionIndex = 0;
+ switch (Mips32FunctionMask[functionIndex]) {
+ case '1':
+ DEBUG(dbgs() << "mask forced mips32: " << F->getName() << "\n");
+ F->addFnAttr("nomips16");
+ break;
+ case '.':
+ doneUsingMask = true;
+ break;
+ default:
+ break;
+ }
+ functionIndex++;
+ }
+ }
+ else {
+ if (needsFP(*F)) {
+ DEBUG(dbgs() << "os16 forced mips32: " << F->getName() << "\n");
+ F->addFnAttr("nomips16");
+ }
+ else {
+ DEBUG(dbgs() << "os16 forced mips16: " << F->getName() << "\n");
+ F->addFnAttr("mips16");
+ }
+ }
+ }
+ return modified;
+}
+
+char MipsOs16::ID = 0;
+
+}
+
+ModulePass *llvm::createMipsOs16(MipsTargetMachine &TM) {
+ return new MipsOs16;
+}
+
+
diff --git a/contrib/llvm/lib/Target/Mips/MipsOs16.h b/contrib/llvm/lib/Target/Mips/MipsOs16.h
new file mode 100644
index 0000000..55e5a81
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsOs16.h
@@ -0,0 +1,49 @@
+//===---- MipsOs16.h for Mips Option -Os16 --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an optimization phase for the MIPS target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/MipsMCTargetDesc.h"
+#include "MipsTargetMachine.h"
+#include "llvm/Pass.h"
+#include "llvm/Target/TargetMachine.h"
+
+
+
+#ifndef MIPSOS16_H
+#define MIPSOS16_H
+
+using namespace llvm;
+
+namespace llvm {
+
+class MipsOs16 : public ModulePass {
+
+public:
+ static char ID;
+
+ MipsOs16() : ModulePass(ID) {
+
+ }
+
+ const char *getPassName() const override {
+ return "MIPS Os16 Optimization";
+ }
+
+ bool runOnModule(Module &M) override;
+
+};
+
+ModulePass *createMipsOs16(MipsTargetMachine &TM);
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.cpp b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.cpp
new file mode 100644
index 0000000..084449b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.cpp
@@ -0,0 +1,263 @@
+//===-- MipsRegisterInfo.cpp - MIPS Register Information -== --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the MIPS implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsRegisterInfo.h"
+#include "Mips.h"
+#include "MipsAnalyzeImmediate.h"
+#include "MipsInstrInfo.h"
+#include "MipsMachineFunction.h"
+#include "MipsSubtarget.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-reg-info"
+
+#define GET_REGINFO_TARGET_DESC
+#include "MipsGenRegisterInfo.inc"
+
+MipsRegisterInfo::MipsRegisterInfo(const MipsSubtarget &ST)
+ : MipsGenRegisterInfo(Mips::RA), Subtarget(ST) {}
+
+unsigned MipsRegisterInfo::getPICCallReg() { return Mips::T9; }
+
+const TargetRegisterClass *
+MipsRegisterInfo::getPointerRegClass(const MachineFunction &MF,
+ unsigned Kind) const {
+ return Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
+}
+
+unsigned
+MipsRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const {
+ switch (RC->getID()) {
+ default:
+ return 0;
+ case Mips::GPR32RegClassID:
+ case Mips::GPR64RegClassID:
+ case Mips::DSPRRegClassID: {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ return 28 - TFI->hasFP(MF);
+ }
+ case Mips::FGR32RegClassID:
+ return 32;
+ case Mips::AFGR64RegClassID:
+ return 16;
+ case Mips::FGR64RegClassID:
+ return 32;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Callee Saved Registers methods
+//===----------------------------------------------------------------------===//
+
+/// Mips Callee Saved Registers
+const MCPhysReg *
+MipsRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ if (Subtarget.isSingleFloat())
+ return CSR_SingleFloatOnly_SaveList;
+
+ if (Subtarget.isABI_N64())
+ return CSR_N64_SaveList;
+
+ if (Subtarget.isABI_N32())
+ return CSR_N32_SaveList;
+
+ if (Subtarget.isFP64bit())
+ return CSR_O32_FP64_SaveList;
+
+ if (Subtarget.isFPXX())
+ return CSR_O32_FPXX_SaveList;
+
+ return CSR_O32_SaveList;
+}
+
+const uint32_t*
+MipsRegisterInfo::getCallPreservedMask(CallingConv::ID) const {
+ if (Subtarget.isSingleFloat())
+ return CSR_SingleFloatOnly_RegMask;
+
+ if (Subtarget.isABI_N64())
+ return CSR_N64_RegMask;
+
+ if (Subtarget.isABI_N32())
+ return CSR_N32_RegMask;
+
+ if (Subtarget.isFP64bit())
+ return CSR_O32_FP64_RegMask;
+
+ if (Subtarget.isFPXX())
+ return CSR_O32_FPXX_RegMask;
+
+ return CSR_O32_RegMask;
+}
+
+const uint32_t *MipsRegisterInfo::getMips16RetHelperMask() {
+ return CSR_Mips16RetHelper_RegMask;
+}
+
+BitVector MipsRegisterInfo::
+getReservedRegs(const MachineFunction &MF) const {
+ static const MCPhysReg ReservedGPR32[] = {
+ Mips::ZERO, Mips::K0, Mips::K1, Mips::SP
+ };
+
+ static const MCPhysReg ReservedGPR64[] = {
+ Mips::ZERO_64, Mips::K0_64, Mips::K1_64, Mips::SP_64
+ };
+
+ BitVector Reserved(getNumRegs());
+ typedef TargetRegisterClass::const_iterator RegIter;
+
+ for (unsigned I = 0; I < array_lengthof(ReservedGPR32); ++I)
+ Reserved.set(ReservedGPR32[I]);
+
+ // Reserve registers for the NaCl sandbox.
+ if (Subtarget.isTargetNaCl()) {
+ Reserved.set(Mips::T6); // Reserved for control flow mask.
+ Reserved.set(Mips::T7); // Reserved for memory access mask.
+ Reserved.set(Mips::T8); // Reserved for thread pointer.
+ }
+
+ for (unsigned I = 0; I < array_lengthof(ReservedGPR64); ++I)
+ Reserved.set(ReservedGPR64[I]);
+
+ if (Subtarget.isFP64bit()) {
+ // Reserve all registers in AFGR64.
+ for (RegIter Reg = Mips::AFGR64RegClass.begin(),
+ EReg = Mips::AFGR64RegClass.end(); Reg != EReg; ++Reg)
+ Reserved.set(*Reg);
+ } else {
+ // Reserve all registers in FGR64.
+ for (RegIter Reg = Mips::FGR64RegClass.begin(),
+ EReg = Mips::FGR64RegClass.end(); Reg != EReg; ++Reg)
+ Reserved.set(*Reg);
+ }
+ // Reserve FP if this function should have a dedicated frame pointer register.
+ if (MF.getTarget().getFrameLowering()->hasFP(MF)) {
+ if (Subtarget.inMips16Mode())
+ Reserved.set(Mips::S0);
+ else {
+ Reserved.set(Mips::FP);
+ Reserved.set(Mips::FP_64);
+ }
+ }
+
+ // Reserve hardware registers.
+ Reserved.set(Mips::HWR29);
+
+ // Reserve DSP control register.
+ Reserved.set(Mips::DSPPos);
+ Reserved.set(Mips::DSPSCount);
+ Reserved.set(Mips::DSPCarry);
+ Reserved.set(Mips::DSPEFI);
+ Reserved.set(Mips::DSPOutFlag);
+
+ // Reserve MSA control registers.
+ Reserved.set(Mips::MSAIR);
+ Reserved.set(Mips::MSACSR);
+ Reserved.set(Mips::MSAAccess);
+ Reserved.set(Mips::MSASave);
+ Reserved.set(Mips::MSAModify);
+ Reserved.set(Mips::MSARequest);
+ Reserved.set(Mips::MSAMap);
+ Reserved.set(Mips::MSAUnmap);
+
+ // Reserve RA if in mips16 mode.
+ if (Subtarget.inMips16Mode()) {
+ const MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+ Reserved.set(Mips::RA);
+ Reserved.set(Mips::RA_64);
+ Reserved.set(Mips::T0);
+ Reserved.set(Mips::T1);
+ if (MF.getFunction()->hasFnAttribute("saveS2") || MipsFI->hasSaveS2())
+ Reserved.set(Mips::S2);
+ }
+
+ // Reserve GP if small section is used.
+ if (Subtarget.useSmallSection()) {
+ Reserved.set(Mips::GP);
+ Reserved.set(Mips::GP_64);
+ }
+
+ if (Subtarget.isABI_O32() && !Subtarget.useOddSPReg()) {
+ for (const auto &Reg : Mips::OddSPRegClass)
+ Reserved.set(Reg);
+ }
+
+ return Reserved;
+}
+
+bool
+MipsRegisterInfo::requiresRegisterScavenging(const MachineFunction &MF) const {
+ return true;
+}
+
+bool
+MipsRegisterInfo::trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
+ return true;
+}
+
+// FrameIndex represent objects inside a abstract stack.
+// We must replace FrameIndex with an stack/frame pointer
+// direct reference.
+void MipsRegisterInfo::
+eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj,
+ unsigned FIOperandNum, RegScavenger *RS) const {
+ MachineInstr &MI = *II;
+ MachineFunction &MF = *MI.getParent()->getParent();
+
+ DEBUG(errs() << "\nFunction : " << MF.getName() << "\n";
+ errs() << "<--------->\n" << MI);
+
+ int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
+ uint64_t stackSize = MF.getFrameInfo()->getStackSize();
+ int64_t spOffset = MF.getFrameInfo()->getObjectOffset(FrameIndex);
+
+ DEBUG(errs() << "FrameIndex : " << FrameIndex << "\n"
+ << "spOffset : " << spOffset << "\n"
+ << "stackSize : " << stackSize << "\n");
+
+ eliminateFI(MI, FIOperandNum, FrameIndex, stackSize, spOffset);
+}
+
+unsigned MipsRegisterInfo::
+getFrameRegister(const MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ bool IsN64 = Subtarget.isABI_N64();
+
+ if (Subtarget.inMips16Mode())
+ return TFI->hasFP(MF) ? Mips::S0 : Mips::SP;
+ else
+ return TFI->hasFP(MF) ? (IsN64 ? Mips::FP_64 : Mips::FP) :
+ (IsN64 ? Mips::SP_64 : Mips::SP);
+
+}
+
diff --git a/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.h b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.h
new file mode 100644
index 0000000..b34496f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.h
@@ -0,0 +1,83 @@
+//===-- MipsRegisterInfo.h - Mips Register Information Impl -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSREGISTERINFO_H
+#define MIPSREGISTERINFO_H
+
+#include "Mips.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define GET_REGINFO_HEADER
+#include "MipsGenRegisterInfo.inc"
+
+namespace llvm {
+class MipsSubtarget;
+class Type;
+
+class MipsRegisterInfo : public MipsGenRegisterInfo {
+protected:
+ const MipsSubtarget &Subtarget;
+
+public:
+ MipsRegisterInfo(const MipsSubtarget &Subtarget);
+
+ /// getRegisterNumbering - Given the enum value for some register, e.g.
+ /// Mips::RA, return the number that it corresponds to (e.g. 31).
+ static unsigned getRegisterNumbering(unsigned RegEnum);
+
+ /// Get PIC indirect call register
+ static unsigned getPICCallReg();
+
+ /// Adjust the Mips stack frame.
+ void adjustMipsStackFrame(MachineFunction &MF) const;
+
+ /// Code Generation virtual methods...
+ const TargetRegisterClass *getPointerRegClass(const MachineFunction &MF,
+ unsigned Kind) const override;
+
+ unsigned getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const override;
+ const MCPhysReg *
+ getCalleeSavedRegs(const MachineFunction *MF = nullptr) const override;
+ const uint32_t *getCallPreservedMask(CallingConv::ID) const override;
+ static const uint32_t *getMips16RetHelperMask();
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+
+ bool requiresRegisterScavenging(const MachineFunction &MF) const override;
+
+ bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const override;
+
+ /// Stack Frame Processing Methods
+ void eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const override;
+
+ void processFunctionBeforeFrameFinalized(MachineFunction &MF,
+ RegScavenger *RS = nullptr) const;
+
+ /// Debug information queries.
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+
+ /// \brief Return GPR register class.
+ virtual const TargetRegisterClass *intRegClass(unsigned Size) const = 0;
+
+private:
+ virtual void eliminateFI(MachineBasicBlock::iterator II, unsigned OpNo,
+ int FrameIndex, uint64_t StackSize,
+ int64_t SPOffset) const = 0;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.td b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.td
new file mode 100644
index 0000000..74dfa4f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.td
@@ -0,0 +1,581 @@
+//===-- MipsRegisterInfo.td - Mips Register defs -----------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Declarations that describe the MIPS register file
+//===----------------------------------------------------------------------===//
+let Namespace = "Mips" in {
+def sub_32 : SubRegIndex<32>;
+def sub_64 : SubRegIndex<64>;
+def sub_lo : SubRegIndex<32>;
+def sub_hi : SubRegIndex<32, 32>;
+def sub_dsp16_19 : SubRegIndex<4, 16>;
+def sub_dsp20 : SubRegIndex<1, 20>;
+def sub_dsp21 : SubRegIndex<1, 21>;
+def sub_dsp22 : SubRegIndex<1, 22>;
+def sub_dsp23 : SubRegIndex<1, 23>;
+}
+
+class Unallocatable {
+ bit isAllocatable = 0;
+}
+
+// We have banks of 32 registers each.
+class MipsReg<bits<16> Enc, string n> : Register<n> {
+ let HWEncoding = Enc;
+ let Namespace = "Mips";
+}
+
+class MipsRegWithSubRegs<bits<16> Enc, string n, list<Register> subregs>
+ : RegisterWithSubRegs<n, subregs> {
+ let HWEncoding = Enc;
+ let Namespace = "Mips";
+}
+
+// Mips CPU Registers
+class MipsGPRReg<bits<16> Enc, string n> : MipsReg<Enc, n>;
+
+// Mips 64-bit CPU Registers
+class Mips64GPRReg<bits<16> Enc, string n, list<Register> subregs>
+ : MipsRegWithSubRegs<Enc, n, subregs> {
+ let SubRegIndices = [sub_32];
+}
+
+// Mips 32-bit FPU Registers
+class FPR<bits<16> Enc, string n> : MipsReg<Enc, n>;
+
+// Mips 64-bit (aliased) FPU Registers
+class AFPR<bits<16> Enc, string n, list<Register> subregs>
+ : MipsRegWithSubRegs<Enc, n, subregs> {
+ let SubRegIndices = [sub_lo, sub_hi];
+ let CoveredBySubRegs = 1;
+}
+
+class AFPR64<bits<16> Enc, string n, list<Register> subregs>
+ : MipsRegWithSubRegs<Enc, n, subregs> {
+ let SubRegIndices = [sub_lo, sub_hi];
+ let CoveredBySubRegs = 1;
+}
+
+// Mips 128-bit (aliased) MSA Registers
+class AFPR128<bits<16> Enc, string n, list<Register> subregs>
+ : MipsRegWithSubRegs<Enc, n, subregs> {
+ let SubRegIndices = [sub_64];
+}
+
+// Accumulator Registers
+class ACCReg<bits<16> Enc, string n, list<Register> subregs>
+ : MipsRegWithSubRegs<Enc, n, subregs> {
+ let SubRegIndices = [sub_lo, sub_hi];
+ let CoveredBySubRegs = 1;
+}
+
+// Mips Hardware Registers
+class HWR<bits<16> Enc, string n> : MipsReg<Enc, n>;
+
+//===----------------------------------------------------------------------===//
+// Registers
+//===----------------------------------------------------------------------===//
+
+let Namespace = "Mips" in {
+ // General Purpose Registers
+ def ZERO : MipsGPRReg< 0, "zero">, DwarfRegNum<[0]>;
+ def AT : MipsGPRReg< 1, "1">, DwarfRegNum<[1]>;
+ def V0 : MipsGPRReg< 2, "2">, DwarfRegNum<[2]>;
+ def V1 : MipsGPRReg< 3, "3">, DwarfRegNum<[3]>;
+ def A0 : MipsGPRReg< 4, "4">, DwarfRegNum<[4]>;
+ def A1 : MipsGPRReg< 5, "5">, DwarfRegNum<[5]>;
+ def A2 : MipsGPRReg< 6, "6">, DwarfRegNum<[6]>;
+ def A3 : MipsGPRReg< 7, "7">, DwarfRegNum<[7]>;
+ def T0 : MipsGPRReg< 8, "8">, DwarfRegNum<[8]>;
+ def T1 : MipsGPRReg< 9, "9">, DwarfRegNum<[9]>;
+ def T2 : MipsGPRReg< 10, "10">, DwarfRegNum<[10]>;
+ def T3 : MipsGPRReg< 11, "11">, DwarfRegNum<[11]>;
+ def T4 : MipsGPRReg< 12, "12">, DwarfRegNum<[12]>;
+ def T5 : MipsGPRReg< 13, "13">, DwarfRegNum<[13]>;
+ def T6 : MipsGPRReg< 14, "14">, DwarfRegNum<[14]>;
+ def T7 : MipsGPRReg< 15, "15">, DwarfRegNum<[15]>;
+ def S0 : MipsGPRReg< 16, "16">, DwarfRegNum<[16]>;
+ def S1 : MipsGPRReg< 17, "17">, DwarfRegNum<[17]>;
+ def S2 : MipsGPRReg< 18, "18">, DwarfRegNum<[18]>;
+ def S3 : MipsGPRReg< 19, "19">, DwarfRegNum<[19]>;
+ def S4 : MipsGPRReg< 20, "20">, DwarfRegNum<[20]>;
+ def S5 : MipsGPRReg< 21, "21">, DwarfRegNum<[21]>;
+ def S6 : MipsGPRReg< 22, "22">, DwarfRegNum<[22]>;
+ def S7 : MipsGPRReg< 23, "23">, DwarfRegNum<[23]>;
+ def T8 : MipsGPRReg< 24, "24">, DwarfRegNum<[24]>;
+ def T9 : MipsGPRReg< 25, "25">, DwarfRegNum<[25]>;
+ def K0 : MipsGPRReg< 26, "26">, DwarfRegNum<[26]>;
+ def K1 : MipsGPRReg< 27, "27">, DwarfRegNum<[27]>;
+ def GP : MipsGPRReg< 28, "gp">, DwarfRegNum<[28]>;
+ def SP : MipsGPRReg< 29, "sp">, DwarfRegNum<[29]>;
+ def FP : MipsGPRReg< 30, "fp">, DwarfRegNum<[30]>;
+ def RA : MipsGPRReg< 31, "ra">, DwarfRegNum<[31]>;
+
+ // General Purpose 64-bit Registers
+ def ZERO_64 : Mips64GPRReg< 0, "zero", [ZERO]>, DwarfRegNum<[0]>;
+ def AT_64 : Mips64GPRReg< 1, "1", [AT]>, DwarfRegNum<[1]>;
+ def V0_64 : Mips64GPRReg< 2, "2", [V0]>, DwarfRegNum<[2]>;
+ def V1_64 : Mips64GPRReg< 3, "3", [V1]>, DwarfRegNum<[3]>;
+ def A0_64 : Mips64GPRReg< 4, "4", [A0]>, DwarfRegNum<[4]>;
+ def A1_64 : Mips64GPRReg< 5, "5", [A1]>, DwarfRegNum<[5]>;
+ def A2_64 : Mips64GPRReg< 6, "6", [A2]>, DwarfRegNum<[6]>;
+ def A3_64 : Mips64GPRReg< 7, "7", [A3]>, DwarfRegNum<[7]>;
+ def T0_64 : Mips64GPRReg< 8, "8", [T0]>, DwarfRegNum<[8]>;
+ def T1_64 : Mips64GPRReg< 9, "9", [T1]>, DwarfRegNum<[9]>;
+ def T2_64 : Mips64GPRReg< 10, "10", [T2]>, DwarfRegNum<[10]>;
+ def T3_64 : Mips64GPRReg< 11, "11", [T3]>, DwarfRegNum<[11]>;
+ def T4_64 : Mips64GPRReg< 12, "12", [T4]>, DwarfRegNum<[12]>;
+ def T5_64 : Mips64GPRReg< 13, "13", [T5]>, DwarfRegNum<[13]>;
+ def T6_64 : Mips64GPRReg< 14, "14", [T6]>, DwarfRegNum<[14]>;
+ def T7_64 : Mips64GPRReg< 15, "15", [T7]>, DwarfRegNum<[15]>;
+ def S0_64 : Mips64GPRReg< 16, "16", [S0]>, DwarfRegNum<[16]>;
+ def S1_64 : Mips64GPRReg< 17, "17", [S1]>, DwarfRegNum<[17]>;
+ def S2_64 : Mips64GPRReg< 18, "18", [S2]>, DwarfRegNum<[18]>;
+ def S3_64 : Mips64GPRReg< 19, "19", [S3]>, DwarfRegNum<[19]>;
+ def S4_64 : Mips64GPRReg< 20, "20", [S4]>, DwarfRegNum<[20]>;
+ def S5_64 : Mips64GPRReg< 21, "21", [S5]>, DwarfRegNum<[21]>;
+ def S6_64 : Mips64GPRReg< 22, "22", [S6]>, DwarfRegNum<[22]>;
+ def S7_64 : Mips64GPRReg< 23, "23", [S7]>, DwarfRegNum<[23]>;
+ def T8_64 : Mips64GPRReg< 24, "24", [T8]>, DwarfRegNum<[24]>;
+ def T9_64 : Mips64GPRReg< 25, "25", [T9]>, DwarfRegNum<[25]>;
+ def K0_64 : Mips64GPRReg< 26, "26", [K0]>, DwarfRegNum<[26]>;
+ def K1_64 : Mips64GPRReg< 27, "27", [K1]>, DwarfRegNum<[27]>;
+ def GP_64 : Mips64GPRReg< 28, "gp", [GP]>, DwarfRegNum<[28]>;
+ def SP_64 : Mips64GPRReg< 29, "sp", [SP]>, DwarfRegNum<[29]>;
+ def FP_64 : Mips64GPRReg< 30, "fp", [FP]>, DwarfRegNum<[30]>;
+ def RA_64 : Mips64GPRReg< 31, "ra", [RA]>, DwarfRegNum<[31]>;
+
+ /// Mips Single point precision FPU Registers
+ foreach I = 0-31 in
+ def F#I : FPR<I, "f"#I>, DwarfRegNum<[!add(I, 32)]>;
+
+ // Higher half of 64-bit FP registers.
+ foreach I = 0-31 in
+ def F_HI#I : FPR<I, "f"#I>, DwarfRegNum<[!add(I, 32)]>;
+
+ /// Mips Double point precision FPU Registers (aliased
+ /// with the single precision to hold 64 bit values)
+ foreach I = 0-15 in
+ def D#I : AFPR<!shl(I, 1), "f"#!shl(I, 1),
+ [!cast<FPR>("F"#!shl(I, 1)),
+ !cast<FPR>("F"#!add(!shl(I, 1), 1))]>;
+
+ /// Mips Double point precision FPU Registers in MFP64 mode.
+ foreach I = 0-31 in
+ def D#I#_64 : AFPR64<I, "f"#I, [!cast<FPR>("F"#I), !cast<FPR>("F_HI"#I)]>,
+ DwarfRegNum<[!add(I, 32)]>;
+
+ /// Mips MSA registers
+ /// MSA and FPU cannot both be present unless the FPU has 64-bit registers
+ foreach I = 0-31 in
+ def W#I : AFPR128<I, "w"#I, [!cast<AFPR64>("D"#I#"_64")]>,
+ DwarfRegNum<[!add(I, 32)]>;
+
+ // Hi/Lo registers
+ def HI0 : MipsReg<0, "ac0">, DwarfRegNum<[64]>;
+ def HI1 : MipsReg<1, "ac1">, DwarfRegNum<[176]>;
+ def HI2 : MipsReg<2, "ac2">, DwarfRegNum<[178]>;
+ def HI3 : MipsReg<3, "ac3">, DwarfRegNum<[180]>;
+ def LO0 : MipsReg<0, "ac0">, DwarfRegNum<[65]>;
+ def LO1 : MipsReg<1, "ac1">, DwarfRegNum<[177]>;
+ def LO2 : MipsReg<2, "ac2">, DwarfRegNum<[179]>;
+ def LO3 : MipsReg<3, "ac3">, DwarfRegNum<[181]>;
+
+ let SubRegIndices = [sub_32] in {
+ def HI0_64 : RegisterWithSubRegs<"hi", [HI0]>;
+ def LO0_64 : RegisterWithSubRegs<"lo", [LO0]>;
+ }
+
+ // FP control registers.
+ foreach I = 0-31 in
+ def FCR#I : MipsReg<#I, ""#I>;
+
+ // FP condition code registers.
+ foreach I = 0-7 in
+ def FCC#I : MipsReg<#I, "fcc"#I>;
+
+ // COP2 registers.
+ foreach I = 0-31 in
+ def COP2#I : MipsReg<#I, ""#I>;
+
+ // COP3 registers.
+ foreach I = 0-31 in
+ def COP3#I : MipsReg<#I, ""#I>;
+
+ // PC register
+ def PC : Register<"pc">;
+
+ // Hardware register $29
+ foreach I = 0-31 in
+ def HWR#I : MipsReg<#I, ""#I>;
+
+ // Accum registers
+ foreach I = 0-3 in
+ def AC#I : ACCReg<#I, "ac"#I,
+ [!cast<Register>("LO"#I), !cast<Register>("HI"#I)]>;
+
+ def AC0_64 : ACCReg<0, "ac0", [LO0_64, HI0_64]>;
+
+ // DSP-ASE control register fields.
+ def DSPPos : Register<"">;
+ def DSPSCount : Register<"">;
+ def DSPCarry : Register<"">;
+ def DSPEFI : Register<"">;
+ def DSPOutFlag16_19 : Register<"">;
+ def DSPOutFlag20 : Register<"">;
+ def DSPOutFlag21 : Register<"">;
+ def DSPOutFlag22 : Register<"">;
+ def DSPOutFlag23 : Register<"">;
+ def DSPCCond : Register<"">;
+
+ let SubRegIndices = [sub_dsp16_19, sub_dsp20, sub_dsp21, sub_dsp22,
+ sub_dsp23] in
+ def DSPOutFlag : RegisterWithSubRegs<"", [DSPOutFlag16_19, DSPOutFlag20,
+ DSPOutFlag21, DSPOutFlag22,
+ DSPOutFlag23]>;
+
+ // MSA-ASE control registers.
+ def MSAIR : MipsReg<0, "0">;
+ def MSACSR : MipsReg<1, "1">;
+ def MSAAccess : MipsReg<2, "2">;
+ def MSASave : MipsReg<3, "3">;
+ def MSAModify : MipsReg<4, "4">;
+ def MSARequest : MipsReg<5, "5">;
+ def MSAMap : MipsReg<6, "6">;
+ def MSAUnmap : MipsReg<7, "7">;
+
+ // Octeon multiplier and product registers
+ def MPL0 : MipsReg<0, "mpl0">;
+ def MPL1 : MipsReg<1, "mpl1">;
+ def MPL2 : MipsReg<2, "mpl2">;
+ def P0 : MipsReg<0, "p0">;
+ def P1 : MipsReg<1, "p1">;
+ def P2 : MipsReg<2, "p2">;
+
+}
+
+//===----------------------------------------------------------------------===//
+// Register Classes
+//===----------------------------------------------------------------------===//
+
+class GPR32Class<list<ValueType> regTypes> :
+ RegisterClass<"Mips", regTypes, 32, (add
+ // Reserved
+ ZERO, AT,
+ // Return Values and Arguments
+ V0, V1, A0, A1, A2, A3,
+ // Not preserved across procedure calls
+ T0, T1, T2, T3, T4, T5, T6, T7,
+ // Callee save
+ S0, S1, S2, S3, S4, S5, S6, S7,
+ // Not preserved across procedure calls
+ T8, T9,
+ // Reserved
+ K0, K1, GP, SP, FP, RA)>;
+
+def GPR32 : GPR32Class<[i32]>;
+def DSPR : GPR32Class<[v4i8, v2i16]>;
+
+def GPR64 : RegisterClass<"Mips", [i64], 64, (add
+// Reserved
+ ZERO_64, AT_64,
+ // Return Values and Arguments
+ V0_64, V1_64, A0_64, A1_64, A2_64, A3_64,
+ // Not preserved across procedure calls
+ T0_64, T1_64, T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
+ // Callee save
+ S0_64, S1_64, S2_64, S3_64, S4_64, S5_64, S6_64, S7_64,
+ // Not preserved across procedure calls
+ T8_64, T9_64,
+ // Reserved
+ K0_64, K1_64, GP_64, SP_64, FP_64, RA_64)>;
+
+def CPU16Regs : RegisterClass<"Mips", [i32], 32, (add
+ // Return Values and Arguments
+ V0, V1, A0, A1, A2, A3,
+ // Callee save
+ S0, S1)>;
+
+def CPU16RegsPlusSP : RegisterClass<"Mips", [i32], 32, (add
+ // Return Values and Arguments
+ V0, V1, A0, A1, A2, A3,
+ // Callee save
+ S0, S1,
+ SP)>;
+
+def CPURAReg : RegisterClass<"Mips", [i32], 32, (add RA)>, Unallocatable;
+
+def CPUSPReg : RegisterClass<"Mips", [i32], 32, (add SP)>, Unallocatable;
+
+// 64bit fp:
+// * FGR64 - 32 64-bit registers
+// * AFGR64 - 16 32-bit even registers (32-bit FP Mode)
+//
+// 32bit fp:
+// * FGR32 - 16 32-bit even registers
+// * FGR32 - 32 32-bit registers (single float only mode)
+def FGR32 : RegisterClass<"Mips", [f32], 32, (sequence "F%u", 0, 31)>;
+
+def FGRH32 : RegisterClass<"Mips", [f32], 32, (sequence "F_HI%u", 0, 31)>,
+ Unallocatable;
+
+def AFGR64 : RegisterClass<"Mips", [f64], 64, (add
+ // Return Values and Arguments
+ D0, D1,
+ // Not preserved across procedure calls
+ D2, D3, D4, D5,
+ // Return Values and Arguments
+ D6, D7,
+ // Not preserved across procedure calls
+ D8, D9,
+ // Callee save
+ D10, D11, D12, D13, D14, D15)>;
+
+def FGR64 : RegisterClass<"Mips", [f64], 64, (sequence "D%u_64", 0, 31)>;
+
+// Used to reserve odd registers when given -mattr=+nooddspreg
+// FIXME: Remove double precision registers from this set.
+def OddSP : RegisterClass<"Mips", [f32], 32,
+ (add (decimate (sequence "F%u", 1, 31), 2),
+ (decimate (sequence "F_HI%u", 1, 31), 2),
+ (decimate (sequence "D%u", 1, 15), 2),
+ (decimate (sequence "D%u_64", 1, 31), 2))>,
+ Unallocatable;
+
+// FP control registers.
+def CCR : RegisterClass<"Mips", [i32], 32, (sequence "FCR%u", 0, 31)>,
+ Unallocatable;
+
+// FP condition code registers.
+def FCC : RegisterClass<"Mips", [i32], 32, (sequence "FCC%u", 0, 7)>,
+ Unallocatable;
+
+// MIPS32r6/MIPS64r6 store FPU condition codes in normal FGR registers.
+// This class allows us to represent this in codegen patterns.
+def FGRCC : RegisterClass<"Mips", [i32], 32, (sequence "F%u", 0, 31)>;
+
+def MSA128B: RegisterClass<"Mips", [v16i8], 128,
+ (sequence "W%u", 0, 31)>;
+def MSA128H: RegisterClass<"Mips", [v8i16, v8f16], 128,
+ (sequence "W%u", 0, 31)>;
+def MSA128W: RegisterClass<"Mips", [v4i32, v4f32], 128,
+ (sequence "W%u", 0, 31)>;
+def MSA128D: RegisterClass<"Mips", [v2i64, v2f64], 128,
+ (sequence "W%u", 0, 31)>;
+
+def MSACtrl: RegisterClass<"Mips", [i32], 32, (add
+ MSAIR, MSACSR, MSAAccess, MSASave, MSAModify, MSARequest, MSAMap, MSAUnmap)>;
+
+// Hi/Lo Registers
+def LO32 : RegisterClass<"Mips", [i32], 32, (add LO0)>;
+def HI32 : RegisterClass<"Mips", [i32], 32, (add HI0)>;
+def LO32DSP : RegisterClass<"Mips", [i32], 32, (sequence "LO%u", 0, 3)>;
+def HI32DSP : RegisterClass<"Mips", [i32], 32, (sequence "HI%u", 0, 3)>;
+def LO64 : RegisterClass<"Mips", [i64], 64, (add LO0_64)>;
+def HI64 : RegisterClass<"Mips", [i64], 64, (add HI0_64)>;
+
+// Hardware registers
+def HWRegs : RegisterClass<"Mips", [i32], 32, (sequence "HWR%u", 0, 31)>,
+ Unallocatable;
+
+// Accumulator Registers
+def ACC64 : RegisterClass<"Mips", [untyped], 64, (add AC0)> {
+ let Size = 64;
+}
+
+def ACC128 : RegisterClass<"Mips", [untyped], 128, (add AC0_64)> {
+ let Size = 128;
+}
+
+def ACC64DSP : RegisterClass<"Mips", [untyped], 64, (sequence "AC%u", 0, 3)> {
+ let Size = 64;
+}
+
+def DSPCC : RegisterClass<"Mips", [v4i8, v2i16], 32, (add DSPCCond)>;
+
+// Coprocessor 2 registers.
+def COP2 : RegisterClass<"Mips", [i32], 32, (sequence "COP2%u", 0, 31)>,
+ Unallocatable;
+
+// Coprocessor 3 registers.
+def COP3 : RegisterClass<"Mips", [i32], 32, (sequence "COP3%u", 0, 31)>,
+ Unallocatable;
+
+// Octeon multiplier and product registers
+def OCTEON_MPL : RegisterClass<"Mips", [i64], 64, (add MPL0, MPL1, MPL2)>,
+ Unallocatable;
+def OCTEON_P : RegisterClass<"Mips", [i64], 64, (add P0, P1, P2)>,
+ Unallocatable;
+
+// Register Operands.
+
+class MipsAsmRegOperand : AsmOperandClass {
+ let ParserMethod = "ParseAnyRegister";
+}
+
+def GPR64AsmOperand : MipsAsmRegOperand {
+ let Name = "GPR64AsmReg";
+ let PredicateMethod = "isGPRAsmReg";
+}
+
+def GPR32AsmOperand : MipsAsmRegOperand {
+ let Name = "GPR32AsmReg";
+ let PredicateMethod = "isGPRAsmReg";
+}
+
+def ACC64DSPAsmOperand : MipsAsmRegOperand {
+ let Name = "ACC64DSPAsmReg";
+ let PredicateMethod = "isACCAsmReg";
+}
+
+def HI32DSPAsmOperand : MipsAsmRegOperand {
+ let Name = "HI32DSPAsmReg";
+ let PredicateMethod = "isACCAsmReg";
+}
+
+def LO32DSPAsmOperand : MipsAsmRegOperand {
+ let Name = "LO32DSPAsmReg";
+ let PredicateMethod = "isACCAsmReg";
+}
+
+def CCRAsmOperand : MipsAsmRegOperand {
+ let Name = "CCRAsmReg";
+}
+
+def AFGR64AsmOperand : MipsAsmRegOperand {
+ let Name = "AFGR64AsmReg";
+ let PredicateMethod = "isFGRAsmReg";
+}
+
+def FGR64AsmOperand : MipsAsmRegOperand {
+ let Name = "FGR64AsmReg";
+ let PredicateMethod = "isFGRAsmReg";
+}
+
+def FGR32AsmOperand : MipsAsmRegOperand {
+ let Name = "FGR32AsmReg";
+ let PredicateMethod = "isFGRAsmReg";
+}
+
+def FGRH32AsmOperand : MipsAsmRegOperand {
+ let Name = "FGRH32AsmReg";
+ let PredicateMethod = "isFGRAsmReg";
+}
+
+def FCCRegsAsmOperand : MipsAsmRegOperand {
+ let Name = "FCCAsmReg";
+}
+
+def MSA128AsmOperand : MipsAsmRegOperand {
+ let Name = "MSA128AsmReg";
+}
+
+def MSACtrlAsmOperand : MipsAsmRegOperand {
+ let Name = "MSACtrlAsmReg";
+}
+
+def GPR32Opnd : RegisterOperand<GPR32> {
+ let ParserMatchClass = GPR32AsmOperand;
+}
+
+def GPR64Opnd : RegisterOperand<GPR64> {
+ let ParserMatchClass = GPR64AsmOperand;
+}
+
+def DSPROpnd : RegisterOperand<DSPR> {
+ let ParserMatchClass = GPR32AsmOperand;
+}
+
+def CCROpnd : RegisterOperand<CCR> {
+ let ParserMatchClass = CCRAsmOperand;
+}
+
+def HWRegsAsmOperand : MipsAsmRegOperand {
+ let Name = "HWRegsAsmReg";
+}
+
+def COP2AsmOperand : MipsAsmRegOperand {
+ let Name = "COP2AsmReg";
+}
+
+def COP3AsmOperand : MipsAsmRegOperand {
+ let Name = "COP3AsmReg";
+}
+
+def HWRegsOpnd : RegisterOperand<HWRegs> {
+ let ParserMatchClass = HWRegsAsmOperand;
+}
+
+def AFGR64Opnd : RegisterOperand<AFGR64> {
+ let ParserMatchClass = AFGR64AsmOperand;
+}
+
+def FGR64Opnd : RegisterOperand<FGR64> {
+ let ParserMatchClass = FGR64AsmOperand;
+}
+
+def FGR32Opnd : RegisterOperand<FGR32> {
+ let ParserMatchClass = FGR32AsmOperand;
+}
+
+def FGRCCOpnd : RegisterOperand<FGRCC> {
+ // The assembler doesn't use register classes so we can re-use
+ // FGR32AsmOperand.
+ let ParserMatchClass = FGR32AsmOperand;
+}
+
+def FGRH32Opnd : RegisterOperand<FGRH32> {
+ let ParserMatchClass = FGRH32AsmOperand;
+}
+
+def FCCRegsOpnd : RegisterOperand<FCC> {
+ let ParserMatchClass = FCCRegsAsmOperand;
+}
+
+def LO32DSPOpnd : RegisterOperand<LO32DSP> {
+ let ParserMatchClass = LO32DSPAsmOperand;
+}
+
+def HI32DSPOpnd : RegisterOperand<HI32DSP> {
+ let ParserMatchClass = HI32DSPAsmOperand;
+}
+
+def ACC64DSPOpnd : RegisterOperand<ACC64DSP> {
+ let ParserMatchClass = ACC64DSPAsmOperand;
+}
+
+def COP2Opnd : RegisterOperand<COP2> {
+ let ParserMatchClass = COP2AsmOperand;
+}
+
+def COP3Opnd : RegisterOperand<COP3> {
+ let ParserMatchClass = COP3AsmOperand;
+}
+
+def MSA128BOpnd : RegisterOperand<MSA128B> {
+ let ParserMatchClass = MSA128AsmOperand;
+}
+
+def MSA128HOpnd : RegisterOperand<MSA128H> {
+ let ParserMatchClass = MSA128AsmOperand;
+}
+
+def MSA128WOpnd : RegisterOperand<MSA128W> {
+ let ParserMatchClass = MSA128AsmOperand;
+}
+
+def MSA128DOpnd : RegisterOperand<MSA128D> {
+ let ParserMatchClass = MSA128AsmOperand;
+}
+
+def MSA128CROpnd : RegisterOperand<MSACtrl> {
+ let ParserMatchClass = MSACtrlAsmOperand;
+}
+
diff --git a/contrib/llvm/lib/Target/Mips/MipsRelocations.h b/contrib/llvm/lib/Target/Mips/MipsRelocations.h
new file mode 100644
index 0000000..0787ed3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsRelocations.h
@@ -0,0 +1,41 @@
+//===-- MipsRelocations.h - Mips Code Relocations ---------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the Mips target-specific relocation types
+// (for relocation-model=static).
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSRELOCATIONS_H_
+#define MIPSRELOCATIONS_H_
+
+#include "llvm/CodeGen/MachineRelocation.h"
+
+namespace llvm {
+ namespace Mips{
+ enum RelocationType {
+ // reloc_mips_pc16 - pc relative relocation for branches. The lower 18
+ // bits of the difference between the branch target and the branch
+ // instruction, shifted right by 2.
+ reloc_mips_pc16 = 1,
+
+ // reloc_mips_hi - upper 16 bits of the address (modified by +1 if the
+ // lower 16 bits of the address is negative).
+ reloc_mips_hi = 2,
+
+ // reloc_mips_lo - lower 16 bits of the address.
+ reloc_mips_lo = 3,
+
+ // reloc_mips_26 - lower 28 bits of the address, shifted right by 2.
+ reloc_mips_26 = 4
+ };
+ }
+}
+
+#endif /* MIPSRELOCATIONS_H_ */
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.cpp
new file mode 100644
index 0000000..d0a17cd
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.cpp
@@ -0,0 +1,705 @@
+//===-- MipsSEFrameLowering.cpp - Mips32/64 Frame Information -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips32/64 implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsSEFrameLowering.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MipsAnalyzeImmediate.h"
+#include "MipsMachineFunction.h"
+#include "MipsSEInstrInfo.h"
+#include "MipsSubtarget.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+namespace {
+typedef MachineBasicBlock::iterator Iter;
+
+static std::pair<unsigned, unsigned> getMFHiLoOpc(unsigned Src) {
+ if (Mips::ACC64RegClass.contains(Src))
+ return std::make_pair((unsigned)Mips::PseudoMFHI,
+ (unsigned)Mips::PseudoMFLO);
+
+ if (Mips::ACC64DSPRegClass.contains(Src))
+ return std::make_pair((unsigned)Mips::MFHI_DSP, (unsigned)Mips::MFLO_DSP);
+
+ if (Mips::ACC128RegClass.contains(Src))
+ return std::make_pair((unsigned)Mips::PseudoMFHI64,
+ (unsigned)Mips::PseudoMFLO64);
+
+ return std::make_pair(0, 0);
+}
+
+/// Helper class to expand pseudos.
+class ExpandPseudo {
+public:
+ ExpandPseudo(MachineFunction &MF);
+ bool expand();
+
+private:
+ bool expandInstr(MachineBasicBlock &MBB, Iter I);
+ void expandLoadCCond(MachineBasicBlock &MBB, Iter I);
+ void expandStoreCCond(MachineBasicBlock &MBB, Iter I);
+ void expandLoadACC(MachineBasicBlock &MBB, Iter I, unsigned RegSize);
+ void expandStoreACC(MachineBasicBlock &MBB, Iter I, unsigned MFHiOpc,
+ unsigned MFLoOpc, unsigned RegSize);
+ bool expandCopy(MachineBasicBlock &MBB, Iter I);
+ bool expandCopyACC(MachineBasicBlock &MBB, Iter I, unsigned MFHiOpc,
+ unsigned MFLoOpc);
+ bool expandBuildPairF64(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, bool FP64) const;
+ bool expandExtractElementF64(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, bool FP64) const;
+
+ MachineFunction &MF;
+ MachineRegisterInfo &MRI;
+};
+}
+
+ExpandPseudo::ExpandPseudo(MachineFunction &MF_)
+ : MF(MF_), MRI(MF.getRegInfo()) {}
+
+bool ExpandPseudo::expand() {
+ bool Expanded = false;
+
+ for (MachineFunction::iterator BB = MF.begin(), BBEnd = MF.end();
+ BB != BBEnd; ++BB)
+ for (Iter I = BB->begin(), End = BB->end(); I != End;)
+ Expanded |= expandInstr(*BB, I++);
+
+ return Expanded;
+}
+
+bool ExpandPseudo::expandInstr(MachineBasicBlock &MBB, Iter I) {
+ switch(I->getOpcode()) {
+ case Mips::LOAD_CCOND_DSP:
+ expandLoadCCond(MBB, I);
+ break;
+ case Mips::STORE_CCOND_DSP:
+ expandStoreCCond(MBB, I);
+ break;
+ case Mips::LOAD_ACC64:
+ case Mips::LOAD_ACC64DSP:
+ expandLoadACC(MBB, I, 4);
+ break;
+ case Mips::LOAD_ACC128:
+ expandLoadACC(MBB, I, 8);
+ break;
+ case Mips::STORE_ACC64:
+ expandStoreACC(MBB, I, Mips::PseudoMFHI, Mips::PseudoMFLO, 4);
+ break;
+ case Mips::STORE_ACC64DSP:
+ expandStoreACC(MBB, I, Mips::MFHI_DSP, Mips::MFLO_DSP, 4);
+ break;
+ case Mips::STORE_ACC128:
+ expandStoreACC(MBB, I, Mips::PseudoMFHI64, Mips::PseudoMFLO64, 8);
+ break;
+ case Mips::BuildPairF64:
+ if (expandBuildPairF64(MBB, I, false))
+ MBB.erase(I);
+ return false;
+ case Mips::BuildPairF64_64:
+ if (expandBuildPairF64(MBB, I, true))
+ MBB.erase(I);
+ return false;
+ case Mips::ExtractElementF64:
+ if (expandExtractElementF64(MBB, I, false))
+ MBB.erase(I);
+ return false;
+ case Mips::ExtractElementF64_64:
+ if (expandExtractElementF64(MBB, I, true))
+ MBB.erase(I);
+ return false;
+ case TargetOpcode::COPY:
+ if (!expandCopy(MBB, I))
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ MBB.erase(I);
+ return true;
+}
+
+void ExpandPseudo::expandLoadCCond(MachineBasicBlock &MBB, Iter I) {
+ // load $vr, FI
+ // copy ccond, $vr
+
+ assert(I->getOperand(0).isReg() && I->getOperand(1).isFI());
+
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo =
+ *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ const TargetRegisterClass *RC = RegInfo.intRegClass(4);
+ unsigned VR = MRI.createVirtualRegister(RC);
+ unsigned Dst = I->getOperand(0).getReg(), FI = I->getOperand(1).getIndex();
+
+ TII.loadRegFromStack(MBB, I, VR, FI, RC, &RegInfo, 0);
+ BuildMI(MBB, I, I->getDebugLoc(), TII.get(TargetOpcode::COPY), Dst)
+ .addReg(VR, RegState::Kill);
+}
+
+void ExpandPseudo::expandStoreCCond(MachineBasicBlock &MBB, Iter I) {
+ // copy $vr, ccond
+ // store $vr, FI
+
+ assert(I->getOperand(0).isReg() && I->getOperand(1).isFI());
+
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo =
+ *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ const TargetRegisterClass *RC = RegInfo.intRegClass(4);
+ unsigned VR = MRI.createVirtualRegister(RC);
+ unsigned Src = I->getOperand(0).getReg(), FI = I->getOperand(1).getIndex();
+
+ BuildMI(MBB, I, I->getDebugLoc(), TII.get(TargetOpcode::COPY), VR)
+ .addReg(Src, getKillRegState(I->getOperand(0).isKill()));
+ TII.storeRegToStack(MBB, I, VR, true, FI, RC, &RegInfo, 0);
+}
+
+void ExpandPseudo::expandLoadACC(MachineBasicBlock &MBB, Iter I,
+ unsigned RegSize) {
+ // load $vr0, FI
+ // copy lo, $vr0
+ // load $vr1, FI + 4
+ // copy hi, $vr1
+
+ assert(I->getOperand(0).isReg() && I->getOperand(1).isFI());
+
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo =
+ *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ const TargetRegisterClass *RC = RegInfo.intRegClass(RegSize);
+ unsigned VR0 = MRI.createVirtualRegister(RC);
+ unsigned VR1 = MRI.createVirtualRegister(RC);
+ unsigned Dst = I->getOperand(0).getReg(), FI = I->getOperand(1).getIndex();
+ unsigned Lo = RegInfo.getSubReg(Dst, Mips::sub_lo);
+ unsigned Hi = RegInfo.getSubReg(Dst, Mips::sub_hi);
+ DebugLoc DL = I->getDebugLoc();
+ const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
+
+ TII.loadRegFromStack(MBB, I, VR0, FI, RC, &RegInfo, 0);
+ BuildMI(MBB, I, DL, Desc, Lo).addReg(VR0, RegState::Kill);
+ TII.loadRegFromStack(MBB, I, VR1, FI, RC, &RegInfo, RegSize);
+ BuildMI(MBB, I, DL, Desc, Hi).addReg(VR1, RegState::Kill);
+}
+
+void ExpandPseudo::expandStoreACC(MachineBasicBlock &MBB, Iter I,
+ unsigned MFHiOpc, unsigned MFLoOpc,
+ unsigned RegSize) {
+ // mflo $vr0, src
+ // store $vr0, FI
+ // mfhi $vr1, src
+ // store $vr1, FI + 4
+
+ assert(I->getOperand(0).isReg() && I->getOperand(1).isFI());
+
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo =
+ *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ const TargetRegisterClass *RC = RegInfo.intRegClass(RegSize);
+ unsigned VR0 = MRI.createVirtualRegister(RC);
+ unsigned VR1 = MRI.createVirtualRegister(RC);
+ unsigned Src = I->getOperand(0).getReg(), FI = I->getOperand(1).getIndex();
+ unsigned SrcKill = getKillRegState(I->getOperand(0).isKill());
+ DebugLoc DL = I->getDebugLoc();
+
+ BuildMI(MBB, I, DL, TII.get(MFLoOpc), VR0).addReg(Src);
+ TII.storeRegToStack(MBB, I, VR0, true, FI, RC, &RegInfo, 0);
+ BuildMI(MBB, I, DL, TII.get(MFHiOpc), VR1).addReg(Src, SrcKill);
+ TII.storeRegToStack(MBB, I, VR1, true, FI, RC, &RegInfo, RegSize);
+}
+
+bool ExpandPseudo::expandCopy(MachineBasicBlock &MBB, Iter I) {
+ unsigned Src = I->getOperand(1).getReg();
+ std::pair<unsigned, unsigned> Opcodes = getMFHiLoOpc(Src);
+
+ if (!Opcodes.first)
+ return false;
+
+ return expandCopyACC(MBB, I, Opcodes.first, Opcodes.second);
+}
+
+bool ExpandPseudo::expandCopyACC(MachineBasicBlock &MBB, Iter I,
+ unsigned MFHiOpc, unsigned MFLoOpc) {
+ // mflo $vr0, src
+ // copy dst_lo, $vr0
+ // mfhi $vr1, src
+ // copy dst_hi, $vr1
+
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo =
+ *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ unsigned Dst = I->getOperand(0).getReg(), Src = I->getOperand(1).getReg();
+ unsigned VRegSize = RegInfo.getMinimalPhysRegClass(Dst)->getSize() / 2;
+ const TargetRegisterClass *RC = RegInfo.intRegClass(VRegSize);
+ unsigned VR0 = MRI.createVirtualRegister(RC);
+ unsigned VR1 = MRI.createVirtualRegister(RC);
+ unsigned SrcKill = getKillRegState(I->getOperand(1).isKill());
+ unsigned DstLo = RegInfo.getSubReg(Dst, Mips::sub_lo);
+ unsigned DstHi = RegInfo.getSubReg(Dst, Mips::sub_hi);
+ DebugLoc DL = I->getDebugLoc();
+
+ BuildMI(MBB, I, DL, TII.get(MFLoOpc), VR0).addReg(Src);
+ BuildMI(MBB, I, DL, TII.get(TargetOpcode::COPY), DstLo)
+ .addReg(VR0, RegState::Kill);
+ BuildMI(MBB, I, DL, TII.get(MFHiOpc), VR1).addReg(Src, SrcKill);
+ BuildMI(MBB, I, DL, TII.get(TargetOpcode::COPY), DstHi)
+ .addReg(VR1, RegState::Kill);
+ return true;
+}
+
+/// This method expands the same instruction that MipsSEInstrInfo::
+/// expandBuildPairF64 does, for the case when ABI is fpxx and mthc1 is not
+/// available and the case where the ABI is FP64A. It is implemented here
+/// because frame indexes are eliminated before MipsSEInstrInfo::
+/// expandBuildPairF64 is called.
+bool ExpandPseudo::expandBuildPairF64(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ bool FP64) const {
+ // For fpxx and when mthc1 is not available, use:
+ // spill + reload via ldc1
+ //
+ // The case where dmtc1 is available doesn't need to be handled here
+ // because it never creates a BuildPairF64 node.
+ //
+ // The FP64A ABI (fp64 with nooddspreg) must also use a spill/reload sequence
+ // for odd-numbered double precision values (because the lower 32-bits is
+ // transferred with mtc1 which is redirected to the upper half of the even
+ // register). Unfortunately, we have to make this decision before register
+ // allocation so for now we use a spill/reload sequence for all
+ // double-precision values in regardless of being an odd/even register.
+
+ const TargetMachine &TM = MF.getTarget();
+ const MipsSubtarget &Subtarget = TM.getSubtarget<MipsSubtarget>();
+ if ((Subtarget.isABI_FPXX() && !Subtarget.hasMTHC1()) ||
+ (FP64 && !Subtarget.useOddSPReg())) {
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo*>(TM.getInstrInfo());
+ const MipsRegisterInfo &TRI =
+ *static_cast<const MipsRegisterInfo*>(TM.getRegisterInfo());
+
+ unsigned DstReg = I->getOperand(0).getReg();
+ unsigned LoReg = I->getOperand(1).getReg();
+ unsigned HiReg = I->getOperand(2).getReg();
+
+ // It should be impossible to have FGR64 on MIPS-II or MIPS32r1 (which are
+ // the cases where mthc1 is not available). 64-bit architectures and
+ // MIPS32r2 or later can use FGR64 though.
+ assert(Subtarget.isGP64bit() || Subtarget.hasMTHC1() ||
+ !Subtarget.isFP64bit());
+
+ const TargetRegisterClass *RC = &Mips::GPR32RegClass;
+ const TargetRegisterClass *RC2 =
+ FP64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
+
+ // We re-use the same spill slot each time so that the stack frame doesn't
+ // grow too much in functions with a large number of moves.
+ int FI = MF.getInfo<MipsFunctionInfo>()->getMoveF64ViaSpillFI(RC2);
+ TII.storeRegToStack(MBB, I, LoReg, I->getOperand(1).isKill(), FI, RC, &TRI,
+ 0);
+ TII.storeRegToStack(MBB, I, HiReg, I->getOperand(2).isKill(), FI, RC, &TRI,
+ 4);
+ TII.loadRegFromStack(MBB, I, DstReg, FI, RC2, &TRI, 0);
+ return true;
+ }
+
+ return false;
+}
+
+/// This method expands the same instruction that MipsSEInstrInfo::
+/// expandExtractElementF64 does, for the case when ABI is fpxx and mfhc1 is not
+/// available and the case where the ABI is FP64A. It is implemented here
+/// because frame indexes are eliminated before MipsSEInstrInfo::
+/// expandExtractElementF64 is called.
+bool ExpandPseudo::expandExtractElementF64(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ bool FP64) const {
+ // For fpxx and when mfhc1 is not available, use:
+ // spill + reload via ldc1
+ //
+ // The case where dmfc1 is available doesn't need to be handled here
+ // because it never creates a ExtractElementF64 node.
+ //
+ // The FP64A ABI (fp64 with nooddspreg) must also use a spill/reload sequence
+ // for odd-numbered double precision values (because the lower 32-bits is
+ // transferred with mfc1 which is redirected to the upper half of the even
+ // register). Unfortunately, we have to make this decision before register
+ // allocation so for now we use a spill/reload sequence for all
+ // double-precision values in regardless of being an odd/even register.
+
+ const TargetMachine &TM = MF.getTarget();
+ const MipsSubtarget &Subtarget = TM.getSubtarget<MipsSubtarget>();
+ if ((Subtarget.isABI_FPXX() && !Subtarget.hasMTHC1()) ||
+ (FP64 && !Subtarget.useOddSPReg())) {
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo *>(TM.getInstrInfo());
+ const MipsRegisterInfo &TRI =
+ *static_cast<const MipsRegisterInfo *>(TM.getRegisterInfo());
+
+ unsigned DstReg = I->getOperand(0).getReg();
+ unsigned SrcReg = I->getOperand(1).getReg();
+ unsigned N = I->getOperand(2).getImm();
+
+ // It should be impossible to have FGR64 on MIPS-II or MIPS32r1 (which are
+ // the cases where mfhc1 is not available). 64-bit architectures and
+ // MIPS32r2 or later can use FGR64 though.
+ assert(Subtarget.isGP64bit() || Subtarget.hasMTHC1() ||
+ !Subtarget.isFP64bit());
+
+ const TargetRegisterClass *RC =
+ FP64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
+ const TargetRegisterClass *RC2 = &Mips::GPR32RegClass;
+
+ // We re-use the same spill slot each time so that the stack frame doesn't
+ // grow too much in functions with a large number of moves.
+ int FI = MF.getInfo<MipsFunctionInfo>()->getMoveF64ViaSpillFI(RC);
+ TII.storeRegToStack(MBB, I, SrcReg, I->getOperand(1).isKill(), FI, RC, &TRI,
+ 0);
+ TII.loadRegFromStack(MBB, I, DstReg, FI, RC2, &TRI, N * 4);
+ return true;
+ }
+
+ return false;
+}
+
+MipsSEFrameLowering::MipsSEFrameLowering(const MipsSubtarget &STI)
+ : MipsFrameLowering(STI, STI.stackAlignment()) {}
+
+unsigned MipsSEFrameLowering::ehDataReg(unsigned I) const {
+ static const unsigned EhDataReg[] = {
+ Mips::A0, Mips::A1, Mips::A2, Mips::A3
+ };
+ static const unsigned EhDataReg64[] = {
+ Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64
+ };
+
+ return STI.isABI_N64() ? EhDataReg64[I] : EhDataReg[I];
+}
+
+void MipsSEFrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo =
+ *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+ unsigned SP = STI.isABI_N64() ? Mips::SP_64 : Mips::SP;
+ unsigned FP = STI.isABI_N64() ? Mips::FP_64 : Mips::FP;
+ unsigned ZERO = STI.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO;
+ unsigned ADDu = STI.isABI_N64() ? Mips::DADDu : Mips::ADDu;
+
+ // First, compute final stack size.
+ uint64_t StackSize = MFI->getStackSize();
+
+ // No need to allocate space on the stack.
+ if (StackSize == 0 && !MFI->adjustsStack()) return;
+
+ MachineModuleInfo &MMI = MF.getMMI();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
+ MachineLocation DstML, SrcML;
+
+ // Adjust stack.
+ TII.adjustStackPtr(SP, -StackSize, MBB, MBBI);
+
+ // emit ".cfi_def_cfa_offset StackSize"
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, -StackSize));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+
+ if (CSI.size()) {
+ // Find the instruction past the last instruction that saves a callee-saved
+ // register to the stack.
+ for (unsigned i = 0; i < CSI.size(); ++i)
+ ++MBBI;
+
+ // Iterate over list of callee-saved registers and emit .cfi_offset
+ // directives.
+ for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
+ E = CSI.end(); I != E; ++I) {
+ int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
+ unsigned Reg = I->getReg();
+
+ // If Reg is a double precision register, emit two cfa_offsets,
+ // one for each of the paired single precision registers.
+ if (Mips::AFGR64RegClass.contains(Reg)) {
+ unsigned Reg0 =
+ MRI->getDwarfRegNum(RegInfo.getSubReg(Reg, Mips::sub_lo), true);
+ unsigned Reg1 =
+ MRI->getDwarfRegNum(RegInfo.getSubReg(Reg, Mips::sub_hi), true);
+
+ if (!STI.isLittle())
+ std::swap(Reg0, Reg1);
+
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg0, Offset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg1, Offset + 4));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ } else if (Mips::FGR64RegClass.contains(Reg)) {
+ unsigned Reg0 = MRI->getDwarfRegNum(Reg, true);
+ unsigned Reg1 = MRI->getDwarfRegNum(Reg, true) + 1;
+
+ if (!STI.isLittle())
+ std::swap(Reg0, Reg1);
+
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg0, Offset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg1, Offset + 4));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ } else {
+ // Reg is either in GPR32 or FGR32.
+ unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(Reg, 1), Offset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+ }
+
+ if (MipsFI->callsEhReturn()) {
+ const TargetRegisterClass *RC = STI.isABI_N64() ?
+ &Mips::GPR64RegClass : &Mips::GPR32RegClass;
+
+ // Insert instructions that spill eh data registers.
+ for (int I = 0; I < 4; ++I) {
+ if (!MBB.isLiveIn(ehDataReg(I)))
+ MBB.addLiveIn(ehDataReg(I));
+ TII.storeRegToStackSlot(MBB, MBBI, ehDataReg(I), false,
+ MipsFI->getEhDataRegFI(I), RC, &RegInfo);
+ }
+
+ // Emit .cfi_offset directives for eh data registers.
+ for (int I = 0; I < 4; ++I) {
+ int64_t Offset = MFI->getObjectOffset(MipsFI->getEhDataRegFI(I));
+ unsigned Reg = MRI->getDwarfRegNum(ehDataReg(I), true);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg, Offset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+
+ // if framepointer enabled, set it to point to the stack pointer.
+ if (hasFP(MF)) {
+ // Insert instruction "move $fp, $sp" at this location.
+ BuildMI(MBB, MBBI, dl, TII.get(ADDu), FP).addReg(SP).addReg(ZERO)
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ // emit ".cfi_def_cfa_register $fp"
+ unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(
+ nullptr, MRI->getDwarfRegNum(FP, true)));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+}
+
+void MipsSEFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo =
+ *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ DebugLoc dl = MBBI->getDebugLoc();
+ unsigned SP = STI.isABI_N64() ? Mips::SP_64 : Mips::SP;
+ unsigned FP = STI.isABI_N64() ? Mips::FP_64 : Mips::FP;
+ unsigned ZERO = STI.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO;
+ unsigned ADDu = STI.isABI_N64() ? Mips::DADDu : Mips::ADDu;
+
+ // if framepointer enabled, restore the stack pointer.
+ if (hasFP(MF)) {
+ // Find the first instruction that restores a callee-saved register.
+ MachineBasicBlock::iterator I = MBBI;
+
+ for (unsigned i = 0; i < MFI->getCalleeSavedInfo().size(); ++i)
+ --I;
+
+ // Insert instruction "move $sp, $fp" at this location.
+ BuildMI(MBB, I, dl, TII.get(ADDu), SP).addReg(FP).addReg(ZERO);
+ }
+
+ if (MipsFI->callsEhReturn()) {
+ const TargetRegisterClass *RC = STI.isABI_N64() ?
+ &Mips::GPR64RegClass : &Mips::GPR32RegClass;
+
+ // Find first instruction that restores a callee-saved register.
+ MachineBasicBlock::iterator I = MBBI;
+ for (unsigned i = 0; i < MFI->getCalleeSavedInfo().size(); ++i)
+ --I;
+
+ // Insert instructions that restore eh data registers.
+ for (int J = 0; J < 4; ++J) {
+ TII.loadRegFromStackSlot(MBB, I, ehDataReg(J), MipsFI->getEhDataRegFI(J),
+ RC, &RegInfo);
+ }
+ }
+
+ // Get the number of bytes from FrameInfo
+ uint64_t StackSize = MFI->getStackSize();
+
+ if (!StackSize)
+ return;
+
+ // Adjust stack.
+ TII.adjustStackPtr(SP, StackSize, MBB, MBBI);
+}
+
+bool MipsSEFrameLowering::
+spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction *MF = MBB.getParent();
+ MachineBasicBlock *EntryBlock = MF->begin();
+ const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ // Add the callee-saved register as live-in. Do not add if the register is
+ // RA and return address is taken, because it has already been added in
+ // method MipsTargetLowering::LowerRETURNADDR.
+ // It's killed at the spill, unless the register is RA and return address
+ // is taken.
+ unsigned Reg = CSI[i].getReg();
+ bool IsRAAndRetAddrIsTaken = (Reg == Mips::RA || Reg == Mips::RA_64)
+ && MF->getFrameInfo()->isReturnAddressTaken();
+ if (!IsRAAndRetAddrIsTaken)
+ EntryBlock->addLiveIn(Reg);
+
+ // Insert the spill to the stack frame.
+ bool IsKill = !IsRAAndRetAddrIsTaken;
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ TII.storeRegToStackSlot(*EntryBlock, MI, Reg, IsKill,
+ CSI[i].getFrameIdx(), RC, TRI);
+ }
+
+ return true;
+}
+
+bool
+MipsSEFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ // Reserve call frame if the size of the maximum call frame fits into 16-bit
+ // immediate field and there are no variable sized objects on the stack.
+ // Make sure the second register scavenger spill slot can be accessed with one
+ // instruction.
+ return isInt<16>(MFI->getMaxCallFrameSize() + getStackAlignment()) &&
+ !MFI->hasVarSizedObjects();
+}
+
+// Eliminate ADJCALLSTACKDOWN, ADJCALLSTACKUP pseudo instructions
+void MipsSEFrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
+
+ if (!hasReservedCallFrame(MF)) {
+ int64_t Amount = I->getOperand(0).getImm();
+
+ if (I->getOpcode() == Mips::ADJCALLSTACKDOWN)
+ Amount = -Amount;
+
+ unsigned SP = STI.isABI_N64() ? Mips::SP_64 : Mips::SP;
+ TII.adjustStackPtr(SP, Amount, MBB, I);
+ }
+
+ MBB.erase(I);
+}
+
+void MipsSEFrameLowering::
+processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+ unsigned FP = STI.isABI_N64() ? Mips::FP_64 : Mips::FP;
+
+ // Mark $fp as used if function has dedicated frame pointer.
+ if (hasFP(MF))
+ MRI.setPhysRegUsed(FP);
+
+ // Create spill slots for eh data registers if function calls eh_return.
+ if (MipsFI->callsEhReturn())
+ MipsFI->createEhDataRegsFI();
+
+ // Expand pseudo instructions which load, store or copy accumulators.
+ // Add an emergency spill slot if a pseudo was expanded.
+ if (ExpandPseudo(MF).expand()) {
+ // The spill slot should be half the size of the accumulator. If target is
+ // mips64, it should be 64-bit, otherwise it should be 32-bt.
+ const TargetRegisterClass *RC = STI.hasMips64() ?
+ &Mips::GPR64RegClass : &Mips::GPR32RegClass;
+ int FI = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
+ RC->getAlignment(), false);
+ RS->addScavengingFrameIndex(FI);
+ }
+
+ // Set scavenging frame index if necessary.
+ uint64_t MaxSPOffset = MF.getInfo<MipsFunctionInfo>()->getIncomingArgSize() +
+ estimateStackSize(MF);
+
+ if (isInt<16>(MaxSPOffset))
+ return;
+
+ const TargetRegisterClass *RC = STI.isABI_N64() ?
+ &Mips::GPR64RegClass : &Mips::GPR32RegClass;
+ int FI = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
+ RC->getAlignment(), false);
+ RS->addScavengingFrameIndex(FI);
+}
+
+const MipsFrameLowering *
+llvm::createMipsSEFrameLowering(const MipsSubtarget &ST) {
+ return new MipsSEFrameLowering(ST);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.h b/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.h
new file mode 100644
index 0000000..e832848
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.h
@@ -0,0 +1,48 @@
+//===-- MipsSEFrameLowering.h - Mips32/64 frame lowering --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSSE_FRAMEINFO_H
+#define MIPSSE_FRAMEINFO_H
+
+#include "MipsFrameLowering.h"
+
+namespace llvm {
+
+class MipsSEFrameLowering : public MipsFrameLowering {
+public:
+ explicit MipsSEFrameLowering(const MipsSubtarget &STI);
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const override;
+
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool hasReservedCallFrame(const MachineFunction &MF) const override;
+
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const override;
+ unsigned ehDataReg(unsigned I) const;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp
new file mode 100644
index 0000000..47e1931
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp
@@ -0,0 +1,878 @@
+//===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Subclass of MipsDAGToDAGISel specialized for mips32/64.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsSEISelDAGToDAG.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "Mips.h"
+#include "MipsAnalyzeImmediate.h"
+#include "MipsMachineFunction.h"
+#include "MipsRegisterInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-isel"
+
+bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
+ Subtarget = &TM.getSubtarget<MipsSubtarget>();
+ if (Subtarget->inMips16Mode())
+ return false;
+ return MipsDAGToDAGISel::runOnMachineFunction(MF);
+}
+
+void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
+ MachineFunction &MF) {
+ MachineInstrBuilder MIB(MF, &MI);
+ unsigned Mask = MI.getOperand(1).getImm();
+ unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit;
+
+ if (Mask & 1)
+ MIB.addReg(Mips::DSPPos, Flag);
+
+ if (Mask & 2)
+ MIB.addReg(Mips::DSPSCount, Flag);
+
+ if (Mask & 4)
+ MIB.addReg(Mips::DSPCarry, Flag);
+
+ if (Mask & 8)
+ MIB.addReg(Mips::DSPOutFlag, Flag);
+
+ if (Mask & 16)
+ MIB.addReg(Mips::DSPCCond, Flag);
+
+ if (Mask & 32)
+ MIB.addReg(Mips::DSPEFI, Flag);
+}
+
+unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
+ switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
+ default:
+ llvm_unreachable("Could not map int to register");
+ case 0: return Mips::MSAIR;
+ case 1: return Mips::MSACSR;
+ case 2: return Mips::MSAAccess;
+ case 3: return Mips::MSASave;
+ case 4: return Mips::MSAModify;
+ case 5: return Mips::MSARequest;
+ case 6: return Mips::MSAMap;
+ case 7: return Mips::MSAUnmap;
+ }
+}
+
+bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
+ const MachineInstr& MI) {
+ unsigned DstReg = 0, ZeroReg = 0;
+
+ // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
+ if ((MI.getOpcode() == Mips::ADDiu) &&
+ (MI.getOperand(1).getReg() == Mips::ZERO) &&
+ (MI.getOperand(2).getImm() == 0)) {
+ DstReg = MI.getOperand(0).getReg();
+ ZeroReg = Mips::ZERO;
+ } else if ((MI.getOpcode() == Mips::DADDiu) &&
+ (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
+ (MI.getOperand(2).getImm() == 0)) {
+ DstReg = MI.getOperand(0).getReg();
+ ZeroReg = Mips::ZERO_64;
+ }
+
+ if (!DstReg)
+ return false;
+
+ // Replace uses with ZeroReg.
+ for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
+ E = MRI->use_end(); U != E;) {
+ MachineOperand &MO = *U;
+ unsigned OpNo = U.getOperandNo();
+ MachineInstr *MI = MO.getParent();
+ ++U;
+
+ // Do not replace if it is a phi's operand or is tied to def operand.
+ if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
+ continue;
+
+ MO.setReg(ZeroReg);
+ }
+
+ return true;
+}
+
+void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ if (!MipsFI->globalBaseRegSet())
+ return;
+
+ MachineBasicBlock &MBB = MF.front();
+ MachineBasicBlock::iterator I = MBB.begin();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
+ unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
+ const TargetRegisterClass *RC;
+
+ if (Subtarget->isABI_N64())
+ RC = (const TargetRegisterClass*)&Mips::GPR64RegClass;
+ else
+ RC = (const TargetRegisterClass*)&Mips::GPR32RegClass;
+
+ V0 = RegInfo.createVirtualRegister(RC);
+ V1 = RegInfo.createVirtualRegister(RC);
+
+ if (Subtarget->isABI_N64()) {
+ MF.getRegInfo().addLiveIn(Mips::T9_64);
+ MBB.addLiveIn(Mips::T9_64);
+
+ // lui $v0, %hi(%neg(%gp_rel(fname)))
+ // daddu $v1, $v0, $t9
+ // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
+ const GlobalValue *FName = MF.getFunction();
+ BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
+ .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
+ BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
+ .addReg(Mips::T9_64);
+ BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
+ .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
+ return;
+ }
+
+ if (MF.getTarget().getRelocationModel() == Reloc::Static) {
+ // Set global register to __gnu_local_gp.
+ //
+ // lui $v0, %hi(__gnu_local_gp)
+ // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
+ BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
+ .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
+ BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
+ .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
+ return;
+ }
+
+ MF.getRegInfo().addLiveIn(Mips::T9);
+ MBB.addLiveIn(Mips::T9);
+
+ if (Subtarget->isABI_N32()) {
+ // lui $v0, %hi(%neg(%gp_rel(fname)))
+ // addu $v1, $v0, $t9
+ // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
+ const GlobalValue *FName = MF.getFunction();
+ BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
+ .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
+ BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
+ BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
+ .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
+ return;
+ }
+
+ assert(Subtarget->isABI_O32());
+
+ // For O32 ABI, the following instruction sequence is emitted to initialize
+ // the global base register:
+ //
+ // 0. lui $2, %hi(_gp_disp)
+ // 1. addiu $2, $2, %lo(_gp_disp)
+ // 2. addu $globalbasereg, $2, $t9
+ //
+ // We emit only the last instruction here.
+ //
+ // GNU linker requires that the first two instructions appear at the beginning
+ // of a function and no instructions be inserted before or between them.
+ // The two instructions are emitted during lowering to MC layer in order to
+ // avoid any reordering.
+ //
+ // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
+ // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
+ // reads it.
+ MF.getRegInfo().addLiveIn(Mips::V0);
+ MBB.addLiveIn(Mips::V0);
+ BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
+ .addReg(Mips::V0).addReg(Mips::T9);
+}
+
+void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
+ initGlobalBaseReg(MF);
+
+ MachineRegisterInfo *MRI = &MF.getRegInfo();
+
+ for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE;
+ ++MFI)
+ for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
+ if (I->getOpcode() == Mips::RDDSP)
+ addDSPCtrlRegOperands(false, *I, MF);
+ else if (I->getOpcode() == Mips::WRDSP)
+ addDSPCtrlRegOperands(true, *I, MF);
+ else
+ replaceUsesWithZeroReg(MRI, *I);
+ }
+}
+
+SDNode *MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
+ SDValue CmpLHS, SDLoc DL,
+ SDNode *Node) const {
+ unsigned Opc = InFlag.getOpcode(); (void)Opc;
+
+ assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
+ (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
+ "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
+
+ SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
+ SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
+ EVT VT = LHS.getValueType();
+
+ SDNode *Carry = CurDAG->getMachineNode(Mips::SLTu, DL, VT, Ops);
+ SDNode *AddCarry = CurDAG->getMachineNode(Mips::ADDu, DL, VT,
+ SDValue(Carry, 0), RHS);
+ return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS,
+ SDValue(AddCarry, 0));
+}
+
+/// Match frameindex
+bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ EVT ValTy = Addr.getValueType();
+
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
+ Offset = CurDAG->getTargetConstant(0, ValTy);
+ return true;
+ }
+ return false;
+}
+
+/// Match frameindex+offset and frameindex|offset
+bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base,
+ SDValue &Offset,
+ unsigned OffsetBits) const {
+ if (CurDAG->isBaseWithConstantOffset(Addr)) {
+ ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
+ if (isIntN(OffsetBits, CN->getSExtValue())) {
+ EVT ValTy = Addr.getValueType();
+
+ // If the first operand is a FI, get the TargetFI Node
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
+ (Addr.getOperand(0)))
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
+ else
+ Base = Addr.getOperand(0);
+
+ Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy);
+ return true;
+ }
+ }
+ return false;
+}
+
+/// ComplexPattern used on MipsInstrInfo
+/// Used on Mips Load/Store instructions
+bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ // if Address is FI, get the TargetFrameIndex.
+ if (selectAddrFrameIndex(Addr, Base, Offset))
+ return true;
+
+ // on PIC code Load GA
+ if (Addr.getOpcode() == MipsISD::Wrapper) {
+ Base = Addr.getOperand(0);
+ Offset = Addr.getOperand(1);
+ return true;
+ }
+
+ if (TM.getRelocationModel() != Reloc::PIC_) {
+ if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress))
+ return false;
+ }
+
+ // Addresses of the form FI+const or FI|const
+ if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
+ return true;
+
+ // Operand is a result from an ADD.
+ if (Addr.getOpcode() == ISD::ADD) {
+ // When loading from constant pools, load the lower address part in
+ // the instruction itself. Example, instead of:
+ // lui $2, %hi($CPI1_0)
+ // addiu $2, $2, %lo($CPI1_0)
+ // lwc1 $f0, 0($2)
+ // Generate:
+ // lui $2, %hi($CPI1_0)
+ // lwc1 $f0, %lo($CPI1_0)($2)
+ if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
+ Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
+ SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
+ if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
+ isa<JumpTableSDNode>(Opnd0)) {
+ Base = Addr.getOperand(0);
+ Offset = Opnd0;
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+/// ComplexPattern used on MipsInstrInfo
+/// Used on Mips Load/Store instructions
+bool MipsSEDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ // Operand is a result from an ADD.
+ if (Addr.getOpcode() == ISD::ADD) {
+ Base = Addr.getOperand(0);
+ Offset = Addr.getOperand(1);
+ return true;
+ }
+
+ return false;
+}
+
+bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, Addr.getValueType());
+ return true;
+}
+
+bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ return selectAddrRegImm(Addr, Base, Offset) ||
+ selectAddrDefault(Addr, Base, Offset);
+}
+
+bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ if (selectAddrFrameIndex(Addr, Base, Offset))
+ return true;
+
+ if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
+ return true;
+
+ return false;
+}
+
+/// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
+bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ if (selectAddrFrameIndex(Addr, Base, Offset))
+ return true;
+
+ if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
+ return true;
+
+ return false;
+}
+
+bool MipsSEDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ return selectAddrRegImm12(Addr, Base, Offset) ||
+ selectAddrDefault(Addr, Base, Offset);
+}
+
+bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ if (selectAddrRegImm10(Addr, Base, Offset))
+ return true;
+
+ if (selectAddrDefault(Addr, Base, Offset))
+ return true;
+
+ return false;
+}
+
+// Select constant vector splats.
+//
+// Returns true and sets Imm if:
+// * MSA is enabled
+// * N is a ISD::BUILD_VECTOR representing a constant splat
+bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm) const {
+ if (!Subtarget->hasMSA())
+ return false;
+
+ BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
+
+ if (!Node)
+ return false;
+
+ APInt SplatValue, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+
+ if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
+ HasAnyUndefs, 8,
+ !Subtarget->isLittle()))
+ return false;
+
+ Imm = SplatValue;
+
+ return true;
+}
+
+// Select constant vector splats.
+//
+// In addition to the requirements of selectVSplat(), this function returns
+// true and sets Imm if:
+// * The splat value is the same width as the elements of the vector
+// * The splat value fits in an integer with the specified signed-ness and
+// width.
+//
+// This function looks through ISD::BITCAST nodes.
+// TODO: This might not be appropriate for big-endian MSA since BITCAST is
+// sometimes a shuffle in big-endian mode.
+//
+// It's worth noting that this function is not used as part of the selection
+// of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
+// instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
+// MipsSEDAGToDAGISel::selectNode.
+bool MipsSEDAGToDAGISel::
+selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
+ unsigned ImmBitSize) const {
+ APInt ImmValue;
+ EVT EltTy = N->getValueType(0).getVectorElementType();
+
+ if (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0);
+
+ if (selectVSplat (N.getNode(), ImmValue) &&
+ ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
+ if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
+ (!Signed && ImmValue.isIntN(ImmBitSize))) {
+ Imm = CurDAG->getTargetConstant(ImmValue, EltTy);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Select constant vector splats.
+bool MipsSEDAGToDAGISel::
+selectVSplatUimm1(SDValue N, SDValue &Imm) const {
+ return selectVSplatCommon(N, Imm, false, 1);
+}
+
+bool MipsSEDAGToDAGISel::
+selectVSplatUimm2(SDValue N, SDValue &Imm) const {
+ return selectVSplatCommon(N, Imm, false, 2);
+}
+
+bool MipsSEDAGToDAGISel::
+selectVSplatUimm3(SDValue N, SDValue &Imm) const {
+ return selectVSplatCommon(N, Imm, false, 3);
+}
+
+// Select constant vector splats.
+bool MipsSEDAGToDAGISel::
+selectVSplatUimm4(SDValue N, SDValue &Imm) const {
+ return selectVSplatCommon(N, Imm, false, 4);
+}
+
+// Select constant vector splats.
+bool MipsSEDAGToDAGISel::
+selectVSplatUimm5(SDValue N, SDValue &Imm) const {
+ return selectVSplatCommon(N, Imm, false, 5);
+}
+
+// Select constant vector splats.
+bool MipsSEDAGToDAGISel::
+selectVSplatUimm6(SDValue N, SDValue &Imm) const {
+ return selectVSplatCommon(N, Imm, false, 6);
+}
+
+// Select constant vector splats.
+bool MipsSEDAGToDAGISel::
+selectVSplatUimm8(SDValue N, SDValue &Imm) const {
+ return selectVSplatCommon(N, Imm, false, 8);
+}
+
+// Select constant vector splats.
+bool MipsSEDAGToDAGISel::
+selectVSplatSimm5(SDValue N, SDValue &Imm) const {
+ return selectVSplatCommon(N, Imm, true, 5);
+}
+
+// Select constant vector splats whose value is a power of 2.
+//
+// In addition to the requirements of selectVSplat(), this function returns
+// true and sets Imm if:
+// * The splat value is the same width as the elements of the vector
+// * The splat value is a power of two.
+//
+// This function looks through ISD::BITCAST nodes.
+// TODO: This might not be appropriate for big-endian MSA since BITCAST is
+// sometimes a shuffle in big-endian mode.
+bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
+ APInt ImmValue;
+ EVT EltTy = N->getValueType(0).getVectorElementType();
+
+ if (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0);
+
+ if (selectVSplat (N.getNode(), ImmValue) &&
+ ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
+ int32_t Log2 = ImmValue.exactLogBase2();
+
+ if (Log2 != -1) {
+ Imm = CurDAG->getTargetConstant(Log2, EltTy);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Select constant vector splats whose value only has a consecutive sequence
+// of left-most bits set (e.g. 0b11...1100...00).
+//
+// In addition to the requirements of selectVSplat(), this function returns
+// true and sets Imm if:
+// * The splat value is the same width as the elements of the vector
+// * The splat value is a consecutive sequence of left-most bits.
+//
+// This function looks through ISD::BITCAST nodes.
+// TODO: This might not be appropriate for big-endian MSA since BITCAST is
+// sometimes a shuffle in big-endian mode.
+bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
+ APInt ImmValue;
+ EVT EltTy = N->getValueType(0).getVectorElementType();
+
+ if (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0);
+
+ if (selectVSplat(N.getNode(), ImmValue) &&
+ ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
+ // Extract the run of set bits starting with bit zero from the bitwise
+ // inverse of ImmValue, and test that the inverse of this is the same
+ // as the original value.
+ if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
+
+ Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Select constant vector splats whose value only has a consecutive sequence
+// of right-most bits set (e.g. 0b00...0011...11).
+//
+// In addition to the requirements of selectVSplat(), this function returns
+// true and sets Imm if:
+// * The splat value is the same width as the elements of the vector
+// * The splat value is a consecutive sequence of right-most bits.
+//
+// This function looks through ISD::BITCAST nodes.
+// TODO: This might not be appropriate for big-endian MSA since BITCAST is
+// sometimes a shuffle in big-endian mode.
+bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
+ APInt ImmValue;
+ EVT EltTy = N->getValueType(0).getVectorElementType();
+
+ if (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0);
+
+ if (selectVSplat(N.getNode(), ImmValue) &&
+ ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
+ // Extract the run of set bits starting with bit zero, and test that the
+ // result is the same as the original value
+ if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
+ Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
+ SDValue &Imm) const {
+ APInt ImmValue;
+ EVT EltTy = N->getValueType(0).getVectorElementType();
+
+ if (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0);
+
+ if (selectVSplat(N.getNode(), ImmValue) &&
+ ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
+ int32_t Log2 = (~ImmValue).exactLogBase2();
+
+ if (Log2 != -1) {
+ Imm = CurDAG->getTargetConstant(Log2, EltTy);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) {
+ unsigned Opcode = Node->getOpcode();
+ SDLoc DL(Node);
+
+ ///
+ // Instruction Selection not handled by the auto-generated
+ // tablegen selection should be handled here.
+ ///
+ SDNode *Result;
+
+ switch(Opcode) {
+ default: break;
+
+ case ISD::SUBE: {
+ SDValue InFlag = Node->getOperand(2);
+ Result = selectAddESubE(Mips::SUBu, InFlag, InFlag.getOperand(0), DL, Node);
+ return std::make_pair(true, Result);
+ }
+
+ case ISD::ADDE: {
+ if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
+ break;
+ SDValue InFlag = Node->getOperand(2);
+ Result = selectAddESubE(Mips::ADDu, InFlag, InFlag.getValue(0), DL, Node);
+ return std::make_pair(true, Result);
+ }
+
+ case ISD::ConstantFP: {
+ ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
+ if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
+ if (Subtarget->isGP64bit()) {
+ SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
+ Mips::ZERO_64, MVT::i64);
+ Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero);
+ } else if (Subtarget->isFP64bit()) {
+ SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
+ Mips::ZERO, MVT::i32);
+ Result = CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64,
+ Zero, Zero);
+ } else {
+ SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
+ Mips::ZERO, MVT::i32);
+ Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero,
+ Zero);
+ }
+
+ return std::make_pair(true, Result);
+ }
+ break;
+ }
+
+ case ISD::Constant: {
+ const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
+ unsigned Size = CN->getValueSizeInBits(0);
+
+ if (Size == 32)
+ break;
+
+ MipsAnalyzeImmediate AnalyzeImm;
+ int64_t Imm = CN->getSExtValue();
+
+ const MipsAnalyzeImmediate::InstSeq &Seq =
+ AnalyzeImm.Analyze(Imm, Size, false);
+
+ MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
+ SDLoc DL(CN);
+ SDNode *RegOpnd;
+ SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
+ MVT::i64);
+
+ // The first instruction can be a LUi which is different from other
+ // instructions (ADDiu, ORI and SLL) in that it does not have a register
+ // operand.
+ if (Inst->Opc == Mips::LUi64)
+ RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
+ else
+ RegOpnd =
+ CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
+ CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
+ ImmOpnd);
+
+ // The remaining instructions in the sequence are handled here.
+ for (++Inst; Inst != Seq.end(); ++Inst) {
+ ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
+ MVT::i64);
+ RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
+ SDValue(RegOpnd, 0), ImmOpnd);
+ }
+
+ return std::make_pair(true, RegOpnd);
+ }
+
+ case ISD::INTRINSIC_W_CHAIN: {
+ switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
+ default:
+ break;
+
+ case Intrinsic::mips_cfcmsa: {
+ SDValue ChainIn = Node->getOperand(0);
+ SDValue RegIdx = Node->getOperand(2);
+ SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
+ getMSACtrlReg(RegIdx), MVT::i32);
+ return std::make_pair(true, Reg.getNode());
+ }
+ }
+ break;
+ }
+
+ case ISD::INTRINSIC_WO_CHAIN: {
+ switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
+ default:
+ break;
+
+ case Intrinsic::mips_move_v:
+ // Like an assignment but will always produce a move.v even if
+ // unnecessary.
+ return std::make_pair(true,
+ CurDAG->getMachineNode(Mips::MOVE_V, DL,
+ Node->getValueType(0),
+ Node->getOperand(1)));
+ }
+ break;
+ }
+
+ case ISD::INTRINSIC_VOID: {
+ switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
+ default:
+ break;
+
+ case Intrinsic::mips_ctcmsa: {
+ SDValue ChainIn = Node->getOperand(0);
+ SDValue RegIdx = Node->getOperand(2);
+ SDValue Value = Node->getOperand(3);
+ SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
+ getMSACtrlReg(RegIdx), Value);
+ return std::make_pair(true, ChainOut.getNode());
+ }
+ }
+ break;
+ }
+
+ case MipsISD::ThreadPointer: {
+ EVT PtrVT = getTargetLowering()->getPointerTy();
+ unsigned RdhwrOpc, DestReg;
+
+ if (PtrVT == MVT::i32) {
+ RdhwrOpc = Mips::RDHWR;
+ DestReg = Mips::V1;
+ } else {
+ RdhwrOpc = Mips::RDHWR64;
+ DestReg = Mips::V1_64;
+ }
+
+ SDNode *Rdhwr =
+ CurDAG->getMachineNode(RdhwrOpc, SDLoc(Node),
+ Node->getValueType(0),
+ CurDAG->getRegister(Mips::HWR29, MVT::i32));
+ SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
+ SDValue(Rdhwr, 0));
+ SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
+ ReplaceUses(SDValue(Node, 0), ResNode);
+ return std::make_pair(true, ResNode.getNode());
+ }
+
+ case ISD::BUILD_VECTOR: {
+ // Select appropriate ldi.[bhwd] instructions for constant splats of
+ // 128-bit when MSA is enabled. Fixup any register class mismatches that
+ // occur as a result.
+ //
+ // This allows the compiler to use a wider range of immediates than would
+ // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
+ // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
+ // 0x01010101 } without using a constant pool. This would be sub-optimal
+ // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
+ // same set/ of registers. Similarly, ldi.h isn't capable of producing {
+ // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
+
+ BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
+ APInt SplatValue, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ unsigned LdiOp;
+ EVT ResVecTy = BVN->getValueType(0);
+ EVT ViaVecTy;
+
+ if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
+ return std::make_pair(false, nullptr);
+
+ if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
+ HasAnyUndefs, 8,
+ !Subtarget->isLittle()))
+ return std::make_pair(false, nullptr);
+
+ switch (SplatBitSize) {
+ default:
+ return std::make_pair(false, nullptr);
+ case 8:
+ LdiOp = Mips::LDI_B;
+ ViaVecTy = MVT::v16i8;
+ break;
+ case 16:
+ LdiOp = Mips::LDI_H;
+ ViaVecTy = MVT::v8i16;
+ break;
+ case 32:
+ LdiOp = Mips::LDI_W;
+ ViaVecTy = MVT::v4i32;
+ break;
+ case 64:
+ LdiOp = Mips::LDI_D;
+ ViaVecTy = MVT::v2i64;
+ break;
+ }
+
+ if (!SplatValue.isSignedIntN(10))
+ return std::make_pair(false, nullptr);
+
+ SDValue Imm = CurDAG->getTargetConstant(SplatValue,
+ ViaVecTy.getVectorElementType());
+
+ SDNode *Res = CurDAG->getMachineNode(LdiOp, SDLoc(Node), ViaVecTy, Imm);
+
+ if (ResVecTy != ViaVecTy) {
+ // If LdiOp is writing to a different register class to ResVecTy, then
+ // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
+ // since the source and destination register sets contain the same
+ // registers.
+ const TargetLowering *TLI = getTargetLowering();
+ MVT ResVecTySimple = ResVecTy.getSimpleVT();
+ const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
+ Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, SDLoc(Node),
+ ResVecTy, SDValue(Res, 0),
+ CurDAG->getTargetConstant(RC->getID(),
+ MVT::i32));
+ }
+
+ return std::make_pair(true, Res);
+ }
+
+ }
+
+ return std::make_pair(false, nullptr);
+}
+
+FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM) {
+ return new MipsSEDAGToDAGISel(TM);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.h b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.h
new file mode 100644
index 0000000..57328d2
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.h
@@ -0,0 +1,117 @@
+//===-- MipsSEISelDAGToDAG.h - A Dag to Dag Inst Selector for MipsSE -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Subclass of MipsDAGToDAGISel specialized for mips32/64.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSSEISELDAGTODAG_H
+#define MIPSSEISELDAGTODAG_H
+
+#include "MipsISelDAGToDAG.h"
+
+namespace llvm {
+
+class MipsSEDAGToDAGISel : public MipsDAGToDAGISel {
+
+public:
+ explicit MipsSEDAGToDAGISel(MipsTargetMachine &TM) : MipsDAGToDAGISel(TM) {}
+
+private:
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
+ MachineFunction &MF);
+
+ unsigned getMSACtrlReg(const SDValue RegIdx) const;
+
+ bool replaceUsesWithZeroReg(MachineRegisterInfo *MRI, const MachineInstr&);
+
+ std::pair<SDNode*, SDNode*> selectMULT(SDNode *N, unsigned Opc, SDLoc dl,
+ EVT Ty, bool HasLo, bool HasHi);
+
+ SDNode *selectAddESubE(unsigned MOp, SDValue InFlag, SDValue CmpLHS,
+ SDLoc DL, SDNode *Node) const;
+
+ bool selectAddrFrameIndex(SDValue Addr, SDValue &Base, SDValue &Offset) const;
+ bool selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base, SDValue &Offset,
+ unsigned OffsetBits) const;
+
+ bool selectAddrRegImm(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const override;
+
+ bool selectAddrRegReg(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const override;
+
+ bool selectAddrDefault(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const override;
+
+ bool selectIntAddr(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const override;
+
+ bool selectAddrRegImm10(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const;
+
+ bool selectAddrRegImm12(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const;
+
+ bool selectIntAddrMM(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const override;
+
+ bool selectIntAddrMSA(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const override;
+
+ /// \brief Select constant vector splats.
+ bool selectVSplat(SDNode *N, APInt &Imm) const override;
+ /// \brief Select constant vector splats whose value fits in a given integer.
+ bool selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
+ unsigned ImmBitSize) const;
+ /// \brief Select constant vector splats whose value fits in a uimm1.
+ bool selectVSplatUimm1(SDValue N, SDValue &Imm) const override;
+ /// \brief Select constant vector splats whose value fits in a uimm2.
+ bool selectVSplatUimm2(SDValue N, SDValue &Imm) const override;
+ /// \brief Select constant vector splats whose value fits in a uimm3.
+ bool selectVSplatUimm3(SDValue N, SDValue &Imm) const override;
+ /// \brief Select constant vector splats whose value fits in a uimm4.
+ bool selectVSplatUimm4(SDValue N, SDValue &Imm) const override;
+ /// \brief Select constant vector splats whose value fits in a uimm5.
+ bool selectVSplatUimm5(SDValue N, SDValue &Imm) const override;
+ /// \brief Select constant vector splats whose value fits in a uimm6.
+ bool selectVSplatUimm6(SDValue N, SDValue &Imm) const override;
+ /// \brief Select constant vector splats whose value fits in a uimm8.
+ bool selectVSplatUimm8(SDValue N, SDValue &Imm) const override;
+ /// \brief Select constant vector splats whose value fits in a simm5.
+ bool selectVSplatSimm5(SDValue N, SDValue &Imm) const override;
+ /// \brief Select constant vector splats whose value is a power of 2.
+ bool selectVSplatUimmPow2(SDValue N, SDValue &Imm) const override;
+ /// \brief Select constant vector splats whose value is the inverse of a
+ /// power of 2.
+ bool selectVSplatUimmInvPow2(SDValue N, SDValue &Imm) const override;
+ /// \brief Select constant vector splats whose value is a run of set bits
+ /// ending at the most significant bit
+ bool selectVSplatMaskL(SDValue N, SDValue &Imm) const override;
+ /// \brief Select constant vector splats whose value is a run of set bits
+ /// starting at bit zero.
+ bool selectVSplatMaskR(SDValue N, SDValue &Imm) const override;
+
+ std::pair<bool, SDNode*> selectNode(SDNode *Node) override;
+
+ void processFunctionAfterISel(MachineFunction &MF) override;
+
+ // Insert instructions to initialize the global base register in the
+ // first MBB of the function.
+ void initGlobalBaseReg(MachineFunction &MF);
+};
+
+FunctionPass *createMipsSEISelDag(MipsTargetMachine &TM);
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.cpp
new file mode 100644
index 0000000..8173615
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.cpp
@@ -0,0 +1,3236 @@
+//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Subclass of MipsTargetLowering specialized for mips32/64.
+//
+//===----------------------------------------------------------------------===//
+#include "MipsSEISelLowering.h"
+#include "MipsRegisterInfo.h"
+#include "MipsTargetMachine.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-isel"
+
+static cl::opt<bool>
+EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
+ cl::desc("MIPS: Enable tail calls."), cl::init(false));
+
+static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
+ cl::desc("Expand double precision loads and "
+ "stores to their single precision "
+ "counterparts"));
+
+MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM,
+ const MipsSubtarget &STI)
+ : MipsTargetLowering(TM, STI) {
+ // Set up the register classes
+ addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
+
+ if (Subtarget.isGP64bit())
+ addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
+
+ if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
+ // Expand all truncating stores and extending loads.
+ unsigned FirstVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ unsigned LastVT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
+
+ for (unsigned VT0 = FirstVT; VT0 <= LastVT; ++VT0) {
+ for (unsigned VT1 = FirstVT; VT1 <= LastVT; ++VT1)
+ setTruncStoreAction((MVT::SimpleValueType)VT0,
+ (MVT::SimpleValueType)VT1, Expand);
+
+ setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
+ setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT0, Expand);
+ }
+ }
+
+ if (Subtarget.hasDSP()) {
+ MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
+
+ for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
+ addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
+
+ // Expand all builtin opcodes.
+ for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
+ setOperationAction(Opc, VecTys[i], Expand);
+
+ setOperationAction(ISD::ADD, VecTys[i], Legal);
+ setOperationAction(ISD::SUB, VecTys[i], Legal);
+ setOperationAction(ISD::LOAD, VecTys[i], Legal);
+ setOperationAction(ISD::STORE, VecTys[i], Legal);
+ setOperationAction(ISD::BITCAST, VecTys[i], Legal);
+ }
+
+ setTargetDAGCombine(ISD::SHL);
+ setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::SETCC);
+ setTargetDAGCombine(ISD::VSELECT);
+ }
+
+ if (Subtarget.hasDSPR2())
+ setOperationAction(ISD::MUL, MVT::v2i16, Legal);
+
+ if (Subtarget.hasMSA()) {
+ addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
+ addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
+ addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
+ addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
+ addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
+ addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
+ addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
+
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::VSELECT);
+ setTargetDAGCombine(ISD::XOR);
+ }
+
+ if (!Subtarget.abiUsesSoftFloat()) {
+ addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
+
+ // When dealing with single precision only, use libcalls
+ if (!Subtarget.isSingleFloat()) {
+ if (Subtarget.isFP64bit())
+ addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
+ else
+ addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
+ }
+ }
+
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
+ setOperationAction(ISD::MULHS, MVT::i32, Custom);
+ setOperationAction(ISD::MULHU, MVT::i32, Custom);
+
+ if (Subtarget.hasCnMips())
+ setOperationAction(ISD::MUL, MVT::i64, Legal);
+ else if (Subtarget.isGP64bit())
+ setOperationAction(ISD::MUL, MVT::i64, Custom);
+
+ if (Subtarget.isGP64bit()) {
+ setOperationAction(ISD::MULHS, MVT::i64, Custom);
+ setOperationAction(ISD::MULHU, MVT::i64, Custom);
+ }
+
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
+
+ setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
+ setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
+ setOperationAction(ISD::LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::STORE, MVT::i32, Custom);
+
+ setTargetDAGCombine(ISD::ADDE);
+ setTargetDAGCombine(ISD::SUBE);
+ setTargetDAGCombine(ISD::MUL);
+
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
+
+ if (NoDPLoadStore) {
+ setOperationAction(ISD::LOAD, MVT::f64, Custom);
+ setOperationAction(ISD::STORE, MVT::f64, Custom);
+ }
+
+ if (Subtarget.hasMips32r6()) {
+ // MIPS32r6 replaces the accumulator-based multiplies with a three register
+ // instruction
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::MUL, MVT::i32, Legal);
+ setOperationAction(ISD::MULHS, MVT::i32, Legal);
+ setOperationAction(ISD::MULHU, MVT::i32, Legal);
+
+ // MIPS32r6 replaces the accumulator-based division/remainder with separate
+ // three register division and remainder instructions.
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIV, MVT::i32, Legal);
+ setOperationAction(ISD::UDIV, MVT::i32, Legal);
+ setOperationAction(ISD::SREM, MVT::i32, Legal);
+ setOperationAction(ISD::UREM, MVT::i32, Legal);
+
+ // MIPS32r6 replaces conditional moves with an equivalent that removes the
+ // need for three GPR read ports.
+ setOperationAction(ISD::SETCC, MVT::i32, Legal);
+ setOperationAction(ISD::SELECT, MVT::i32, Legal);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
+
+ setOperationAction(ISD::SETCC, MVT::f32, Legal);
+ setOperationAction(ISD::SELECT, MVT::f32, Legal);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
+
+ assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
+ setOperationAction(ISD::SETCC, MVT::f64, Legal);
+ setOperationAction(ISD::SELECT, MVT::f64, Legal);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
+
+ setOperationAction(ISD::BRCOND, MVT::Other, Legal);
+
+ // Floating point > and >= are supported via < and <=
+ setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
+
+ setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
+ }
+
+ if (Subtarget.hasMips64r6()) {
+ // MIPS64r6 replaces the accumulator-based multiplies with a three register
+ // instruction
+ setOperationAction(ISD::MUL, MVT::i64, Legal);
+ setOperationAction(ISD::MULHS, MVT::i64, Legal);
+ setOperationAction(ISD::MULHU, MVT::i64, Legal);
+
+ // MIPS32r6 replaces the accumulator-based division/remainder with separate
+ // three register division and remainder instructions.
+ setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::SDIV, MVT::i64, Legal);
+ setOperationAction(ISD::UDIV, MVT::i64, Legal);
+ setOperationAction(ISD::SREM, MVT::i64, Legal);
+ setOperationAction(ISD::UREM, MVT::i64, Legal);
+
+ // MIPS64r6 replaces conditional moves with an equivalent that removes the
+ // need for three GPR read ports.
+ setOperationAction(ISD::SETCC, MVT::i64, Legal);
+ setOperationAction(ISD::SELECT, MVT::i64, Legal);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+ }
+
+ computeRegisterProperties();
+}
+
+const MipsTargetLowering *
+llvm::createMipsSETargetLowering(MipsTargetMachine &TM,
+ const MipsSubtarget &STI) {
+ return new MipsSETargetLowering(TM, STI);
+}
+
+const TargetRegisterClass *
+MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
+ if (VT == MVT::Untyped)
+ return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
+
+ return TargetLowering::getRepRegClassFor(VT);
+}
+
+// Enable MSA support for the given integer type and Register class.
+void MipsSETargetLowering::
+addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
+ addRegisterClass(Ty, RC);
+
+ // Expand all builtin opcodes.
+ for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
+ setOperationAction(Opc, Ty, Expand);
+
+ setOperationAction(ISD::BITCAST, Ty, Legal);
+ setOperationAction(ISD::LOAD, Ty, Legal);
+ setOperationAction(ISD::STORE, Ty, Legal);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
+ setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
+
+ setOperationAction(ISD::ADD, Ty, Legal);
+ setOperationAction(ISD::AND, Ty, Legal);
+ setOperationAction(ISD::CTLZ, Ty, Legal);
+ setOperationAction(ISD::CTPOP, Ty, Legal);
+ setOperationAction(ISD::MUL, Ty, Legal);
+ setOperationAction(ISD::OR, Ty, Legal);
+ setOperationAction(ISD::SDIV, Ty, Legal);
+ setOperationAction(ISD::SREM, Ty, Legal);
+ setOperationAction(ISD::SHL, Ty, Legal);
+ setOperationAction(ISD::SRA, Ty, Legal);
+ setOperationAction(ISD::SRL, Ty, Legal);
+ setOperationAction(ISD::SUB, Ty, Legal);
+ setOperationAction(ISD::UDIV, Ty, Legal);
+ setOperationAction(ISD::UREM, Ty, Legal);
+ setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
+ setOperationAction(ISD::VSELECT, Ty, Legal);
+ setOperationAction(ISD::XOR, Ty, Legal);
+
+ if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
+ setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
+ setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
+ setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
+ setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
+ }
+
+ setOperationAction(ISD::SETCC, Ty, Legal);
+ setCondCodeAction(ISD::SETNE, Ty, Expand);
+ setCondCodeAction(ISD::SETGE, Ty, Expand);
+ setCondCodeAction(ISD::SETGT, Ty, Expand);
+ setCondCodeAction(ISD::SETUGE, Ty, Expand);
+ setCondCodeAction(ISD::SETUGT, Ty, Expand);
+}
+
+// Enable MSA support for the given floating-point type and Register class.
+void MipsSETargetLowering::
+addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
+ addRegisterClass(Ty, RC);
+
+ // Expand all builtin opcodes.
+ for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
+ setOperationAction(Opc, Ty, Expand);
+
+ setOperationAction(ISD::LOAD, Ty, Legal);
+ setOperationAction(ISD::STORE, Ty, Legal);
+ setOperationAction(ISD::BITCAST, Ty, Legal);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
+ setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
+
+ if (Ty != MVT::v8f16) {
+ setOperationAction(ISD::FABS, Ty, Legal);
+ setOperationAction(ISD::FADD, Ty, Legal);
+ setOperationAction(ISD::FDIV, Ty, Legal);
+ setOperationAction(ISD::FEXP2, Ty, Legal);
+ setOperationAction(ISD::FLOG2, Ty, Legal);
+ setOperationAction(ISD::FMA, Ty, Legal);
+ setOperationAction(ISD::FMUL, Ty, Legal);
+ setOperationAction(ISD::FRINT, Ty, Legal);
+ setOperationAction(ISD::FSQRT, Ty, Legal);
+ setOperationAction(ISD::FSUB, Ty, Legal);
+ setOperationAction(ISD::VSELECT, Ty, Legal);
+
+ setOperationAction(ISD::SETCC, Ty, Legal);
+ setCondCodeAction(ISD::SETOGE, Ty, Expand);
+ setCondCodeAction(ISD::SETOGT, Ty, Expand);
+ setCondCodeAction(ISD::SETUGE, Ty, Expand);
+ setCondCodeAction(ISD::SETUGT, Ty, Expand);
+ setCondCodeAction(ISD::SETGE, Ty, Expand);
+ setCondCodeAction(ISD::SETGT, Ty, Expand);
+ }
+}
+
+bool
+MipsSETargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
+ unsigned,
+ bool *Fast) const {
+ MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
+
+ if (Subtarget.systemSupportsUnalignedAccess()) {
+ // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
+ // implementation defined whether this is handled by hardware, software, or
+ // a hybrid of the two but it's expected that most implementations will
+ // handle the majority of cases in hardware.
+ if (Fast)
+ *Fast = true;
+ return true;
+ }
+
+ switch (SVT) {
+ case MVT::i64:
+ case MVT::i32:
+ if (Fast)
+ *Fast = true;
+ return true;
+ default:
+ return false;
+ }
+}
+
+SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const {
+ switch(Op.getOpcode()) {
+ case ISD::LOAD: return lowerLOAD(Op, DAG);
+ case ISD::STORE: return lowerSTORE(Op, DAG);
+ case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
+ case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
+ case ISD::MULHS: return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
+ case ISD::MULHU: return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
+ case ISD::MUL: return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
+ case ISD::SDIVREM: return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
+ case ISD::UDIVREM: return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
+ DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_W_CHAIN: return lowerINTRINSIC_W_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_VOID: return lowerINTRINSIC_VOID(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG);
+ case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG);
+ }
+
+ return MipsTargetLowering::LowerOperation(Op, DAG);
+}
+
+// selectMADD -
+// Transforms a subgraph in CurDAG if the following pattern is found:
+// (addc multLo, Lo0), (adde multHi, Hi0),
+// where,
+// multHi/Lo: product of multiplication
+// Lo0: initial value of Lo register
+// Hi0: initial value of Hi register
+// Return true if pattern matching was successful.
+static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
+ // ADDENode's second operand must be a flag output of an ADDC node in order
+ // for the matching to be successful.
+ SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
+
+ if (ADDCNode->getOpcode() != ISD::ADDC)
+ return false;
+
+ SDValue MultHi = ADDENode->getOperand(0);
+ SDValue MultLo = ADDCNode->getOperand(0);
+ SDNode *MultNode = MultHi.getNode();
+ unsigned MultOpc = MultHi.getOpcode();
+
+ // MultHi and MultLo must be generated by the same node,
+ if (MultLo.getNode() != MultNode)
+ return false;
+
+ // and it must be a multiplication.
+ if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
+ return false;
+
+ // MultLo amd MultHi must be the first and second output of MultNode
+ // respectively.
+ if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
+ return false;
+
+ // Transform this to a MADD only if ADDENode and ADDCNode are the only users
+ // of the values of MultNode, in which case MultNode will be removed in later
+ // phases.
+ // If there exist users other than ADDENode or ADDCNode, this function returns
+ // here, which will result in MultNode being mapped to a single MULT
+ // instruction node rather than a pair of MULT and MADD instructions being
+ // produced.
+ if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
+ return false;
+
+ SDLoc DL(ADDENode);
+
+ // Initialize accumulator.
+ SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
+ ADDCNode->getOperand(1),
+ ADDENode->getOperand(1));
+
+ // create MipsMAdd(u) node
+ MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
+
+ SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
+ MultNode->getOperand(0),// Factor 0
+ MultNode->getOperand(1),// Factor 1
+ ACCIn);
+
+ // replace uses of adde and addc here
+ if (!SDValue(ADDCNode, 0).use_empty()) {
+ SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
+ }
+ if (!SDValue(ADDENode, 0).use_empty()) {
+ SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
+ }
+
+ return true;
+}
+
+// selectMSUB -
+// Transforms a subgraph in CurDAG if the following pattern is found:
+// (addc Lo0, multLo), (sube Hi0, multHi),
+// where,
+// multHi/Lo: product of multiplication
+// Lo0: initial value of Lo register
+// Hi0: initial value of Hi register
+// Return true if pattern matching was successful.
+static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
+ // SUBENode's second operand must be a flag output of an SUBC node in order
+ // for the matching to be successful.
+ SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
+
+ if (SUBCNode->getOpcode() != ISD::SUBC)
+ return false;
+
+ SDValue MultHi = SUBENode->getOperand(1);
+ SDValue MultLo = SUBCNode->getOperand(1);
+ SDNode *MultNode = MultHi.getNode();
+ unsigned MultOpc = MultHi.getOpcode();
+
+ // MultHi and MultLo must be generated by the same node,
+ if (MultLo.getNode() != MultNode)
+ return false;
+
+ // and it must be a multiplication.
+ if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
+ return false;
+
+ // MultLo amd MultHi must be the first and second output of MultNode
+ // respectively.
+ if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
+ return false;
+
+ // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
+ // of the values of MultNode, in which case MultNode will be removed in later
+ // phases.
+ // If there exist users other than SUBENode or SUBCNode, this function returns
+ // here, which will result in MultNode being mapped to a single MULT
+ // instruction node rather than a pair of MULT and MSUB instructions being
+ // produced.
+ if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
+ return false;
+
+ SDLoc DL(SUBENode);
+
+ // Initialize accumulator.
+ SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
+ SUBCNode->getOperand(0),
+ SUBENode->getOperand(0));
+
+ // create MipsSub(u) node
+ MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
+
+ SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
+ MultNode->getOperand(0),// Factor 0
+ MultNode->getOperand(1),// Factor 1
+ ACCIn);
+
+ // replace uses of sube and subc here
+ if (!SDValue(SUBCNode, 0).use_empty()) {
+ SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
+ }
+ if (!SDValue(SUBENode, 0).use_empty()) {
+ SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
+ }
+
+ return true;
+}
+
+static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ if (DCI.isBeforeLegalize())
+ return SDValue();
+
+ if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
+ N->getValueType(0) == MVT::i32 && selectMADD(N, &DAG))
+ return SDValue(N, 0);
+
+ return SDValue();
+}
+
+// Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
+//
+// Performs the following transformations:
+// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
+// sign/zero-extension is completely overwritten by the new one performed by
+// the ISD::AND.
+// - Removes redundant zero extensions performed by an ISD::AND.
+static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ if (!Subtarget.hasMSA())
+ return SDValue();
+
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ unsigned Op0Opcode = Op0->getOpcode();
+
+ // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
+ // where $d + 1 == 2^n and n == 32
+ // or $d + 1 == 2^n and n <= 32 and ZExt
+ // -> (MipsVExtractZExt $a, $b, $c)
+ if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
+ Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
+ ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
+
+ if (!Mask)
+ return SDValue();
+
+ int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
+
+ if (Log2IfPositive <= 0)
+ return SDValue(); // Mask+1 is not a power of 2
+
+ SDValue Op0Op2 = Op0->getOperand(2);
+ EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
+ unsigned ExtendTySize = ExtendTy.getSizeInBits();
+ unsigned Log2 = Log2IfPositive;
+
+ if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
+ Log2 == ExtendTySize) {
+ SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
+ DAG.MorphNodeTo(Op0.getNode(), MipsISD::VEXTRACT_ZEXT_ELT,
+ Op0->getVTList(),
+ makeArrayRef(Ops, Op0->getNumOperands()));
+ return Op0;
+ }
+ }
+
+ return SDValue();
+}
+
+// Determine if the specified node is a constant vector splat.
+//
+// Returns true and sets Imm if:
+// * N is a ISD::BUILD_VECTOR representing a constant splat
+//
+// This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
+// differences are that it assumes the MSA has already been checked and the
+// arbitrary requirement for a maximum of 32-bit integers isn't applied (and
+// must not be in order for binsri.d to be selectable).
+static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
+ BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
+
+ if (!Node)
+ return false;
+
+ APInt SplatValue, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+
+ if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
+ 8, !IsLittleEndian))
+ return false;
+
+ Imm = SplatValue;
+
+ return true;
+}
+
+// Test whether the given node is an all-ones build_vector.
+static bool isVectorAllOnes(SDValue N) {
+ // Look through bitcasts. Endianness doesn't matter because we are looking
+ // for an all-ones value.
+ if (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0);
+
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
+
+ if (!BVN)
+ return false;
+
+ APInt SplatValue, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+
+ // Endianness doesn't matter in this context because we are looking for
+ // an all-ones value.
+ if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
+ return SplatValue.isAllOnesValue();
+
+ return false;
+}
+
+// Test whether N is the bitwise inverse of OfNode.
+static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
+ if (N->getOpcode() != ISD::XOR)
+ return false;
+
+ if (isVectorAllOnes(N->getOperand(0)))
+ return N->getOperand(1) == OfNode;
+
+ if (isVectorAllOnes(N->getOperand(1)))
+ return N->getOperand(0) == OfNode;
+
+ return false;
+}
+
+// Perform combines where ISD::OR is the root node.
+//
+// Performs the following transformations:
+// - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
+// where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
+// vector type.
+static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ if (!Subtarget.hasMSA())
+ return SDValue();
+
+ EVT Ty = N->getValueType(0);
+
+ if (!Ty.is128BitVector())
+ return SDValue();
+
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
+ SDValue Op0Op0 = Op0->getOperand(0);
+ SDValue Op0Op1 = Op0->getOperand(1);
+ SDValue Op1Op0 = Op1->getOperand(0);
+ SDValue Op1Op1 = Op1->getOperand(1);
+ bool IsLittleEndian = !Subtarget.isLittle();
+
+ SDValue IfSet, IfClr, Cond;
+ bool IsConstantMask = false;
+ APInt Mask, InvMask;
+
+ // If Op0Op0 is an appropriate mask, try to find it's inverse in either
+ // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
+ // looking.
+ // IfClr will be set if we find a valid match.
+ if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
+ Cond = Op0Op0;
+ IfSet = Op0Op1;
+
+ if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
+ Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
+ IfClr = Op1Op1;
+ else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
+ Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
+ IfClr = Op1Op0;
+
+ IsConstantMask = true;
+ }
+
+ // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
+ // thing again using this mask.
+ // IfClr will be set if we find a valid match.
+ if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
+ Cond = Op0Op1;
+ IfSet = Op0Op0;
+
+ if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
+ Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
+ IfClr = Op1Op1;
+ else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
+ Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
+ IfClr = Op1Op0;
+
+ IsConstantMask = true;
+ }
+
+ // If IfClr is not yet set, try looking for a non-constant match.
+ // IfClr will be set if we find a valid match amongst the eight
+ // possibilities.
+ if (!IfClr.getNode()) {
+ if (isBitwiseInverse(Op0Op0, Op1Op0)) {
+ Cond = Op1Op0;
+ IfSet = Op1Op1;
+ IfClr = Op0Op1;
+ } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
+ Cond = Op1Op0;
+ IfSet = Op1Op1;
+ IfClr = Op0Op0;
+ } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
+ Cond = Op1Op1;
+ IfSet = Op1Op0;
+ IfClr = Op0Op1;
+ } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
+ Cond = Op1Op1;
+ IfSet = Op1Op0;
+ IfClr = Op0Op0;
+ } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
+ Cond = Op0Op0;
+ IfSet = Op0Op1;
+ IfClr = Op1Op1;
+ } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
+ Cond = Op0Op0;
+ IfSet = Op0Op1;
+ IfClr = Op1Op0;
+ } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
+ Cond = Op0Op1;
+ IfSet = Op0Op0;
+ IfClr = Op1Op1;
+ } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
+ Cond = Op0Op1;
+ IfSet = Op0Op0;
+ IfClr = Op1Op0;
+ }
+ }
+
+ // At this point, IfClr will be set if we have a valid match.
+ if (!IfClr.getNode())
+ return SDValue();
+
+ assert(Cond.getNode() && IfSet.getNode());
+
+ // Fold degenerate cases.
+ if (IsConstantMask) {
+ if (Mask.isAllOnesValue())
+ return IfSet;
+ else if (Mask == 0)
+ return IfClr;
+ }
+
+ // Transform the DAG into an equivalent VSELECT.
+ return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
+ }
+
+ return SDValue();
+}
+
+static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ if (DCI.isBeforeLegalize())
+ return SDValue();
+
+ if (Subtarget.hasMips32() && N->getValueType(0) == MVT::i32 &&
+ selectMSUB(N, &DAG))
+ return SDValue(N, 0);
+
+ return SDValue();
+}
+
+static SDValue genConstMult(SDValue X, uint64_t C, SDLoc DL, EVT VT,
+ EVT ShiftTy, SelectionDAG &DAG) {
+ // Clear the upper (64 - VT.sizeInBits) bits.
+ C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
+
+ // Return 0.
+ if (C == 0)
+ return DAG.getConstant(0, VT);
+
+ // Return x.
+ if (C == 1)
+ return X;
+
+ // If c is power of 2, return (shl x, log2(c)).
+ if (isPowerOf2_64(C))
+ return DAG.getNode(ISD::SHL, DL, VT, X,
+ DAG.getConstant(Log2_64(C), ShiftTy));
+
+ unsigned Log2Ceil = Log2_64_Ceil(C);
+ uint64_t Floor = 1LL << Log2_64(C);
+ uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
+
+ // If |c - floor_c| <= |c - ceil_c|,
+ // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
+ // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
+ if (C - Floor <= Ceil - C) {
+ SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
+ SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
+ return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
+ }
+
+ // If |c - floor_c| > |c - ceil_c|,
+ // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
+ SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
+ SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
+ return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
+}
+
+static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
+ const TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSETargetLowering *TL) {
+ EVT VT = N->getValueType(0);
+
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
+ if (!VT.isVector())
+ return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N),
+ VT, TL->getScalarShiftAmountTy(VT), DAG);
+
+ return SDValue(N, 0);
+}
+
+static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
+ SelectionDAG &DAG,
+ const MipsSubtarget &Subtarget) {
+ // See if this is a vector splat immediate node.
+ APInt SplatValue, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
+ BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
+
+ if (!Subtarget.hasDSP())
+ return SDValue();
+
+ if (!BV ||
+ !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
+ EltSize, !Subtarget.isLittle()) ||
+ (SplatBitSize != EltSize) ||
+ (SplatValue.getZExtValue() >= EltSize))
+ return SDValue();
+
+ return DAG.getNode(Opc, SDLoc(N), Ty, N->getOperand(0),
+ DAG.getConstant(SplatValue.getZExtValue(), MVT::i32));
+}
+
+static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ EVT Ty = N->getValueType(0);
+
+ if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
+ return SDValue();
+
+ return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
+}
+
+// Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
+// constant splats into MipsISD::SHRA_DSP for DSPr2.
+//
+// Performs the following transformations:
+// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
+// sign/zero-extension is completely overwritten by the new one performed by
+// the ISD::SRA and ISD::SHL nodes.
+// - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
+// sequence.
+//
+// See performDSPShiftCombine for more information about the transformation
+// used for DSPr2.
+static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ EVT Ty = N->getValueType(0);
+
+ if (Subtarget.hasMSA()) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
+ // where $d + sizeof($c) == 32
+ // or $d + sizeof($c) <= 32 and SExt
+ // -> (MipsVExtractSExt $a, $b, $c)
+ if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
+ SDValue Op0Op0 = Op0->getOperand(0);
+ ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
+
+ if (!ShAmount)
+ return SDValue();
+
+ if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
+ Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
+ return SDValue();
+
+ EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
+ unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
+
+ if (TotalBits == 32 ||
+ (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
+ TotalBits <= 32)) {
+ SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
+ Op0Op0->getOperand(2) };
+ DAG.MorphNodeTo(Op0Op0.getNode(), MipsISD::VEXTRACT_SEXT_ELT,
+ Op0Op0->getVTList(),
+ makeArrayRef(Ops, Op0Op0->getNumOperands()));
+ return Op0Op0;
+ }
+ }
+ }
+
+ if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
+ return SDValue();
+
+ return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
+}
+
+
+static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ EVT Ty = N->getValueType(0);
+
+ if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
+ return SDValue();
+
+ return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
+}
+
+static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
+ bool IsV216 = (Ty == MVT::v2i16);
+
+ switch (CC) {
+ case ISD::SETEQ:
+ case ISD::SETNE: return true;
+ case ISD::SETLT:
+ case ISD::SETLE:
+ case ISD::SETGT:
+ case ISD::SETGE: return IsV216;
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ case ISD::SETUGE: return !IsV216;
+ default: return false;
+ }
+}
+
+static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
+ EVT Ty = N->getValueType(0);
+
+ if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
+ return SDValue();
+
+ if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
+ return SDValue();
+
+ return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
+ N->getOperand(1), N->getOperand(2));
+}
+
+static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
+ EVT Ty = N->getValueType(0);
+
+ if (Ty.is128BitVector() && Ty.isInteger()) {
+ // Try the following combines:
+ // (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
+ // (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
+ // (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
+ // (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
+ // (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
+ // (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
+ // (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
+ // (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
+ // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
+ // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
+ // legalizer.
+ SDValue Op0 = N->getOperand(0);
+
+ if (Op0->getOpcode() != ISD::SETCC)
+ return SDValue();
+
+ ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
+ bool Signed;
+
+ if (CondCode == ISD::SETLT || CondCode == ISD::SETLE)
+ Signed = true;
+ else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
+ Signed = false;
+ else
+ return SDValue();
+
+ SDValue Op1 = N->getOperand(1);
+ SDValue Op2 = N->getOperand(2);
+ SDValue Op0Op0 = Op0->getOperand(0);
+ SDValue Op0Op1 = Op0->getOperand(1);
+
+ if (Op1 == Op0Op0 && Op2 == Op0Op1)
+ return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
+ Ty, Op1, Op2);
+ else if (Op1 == Op0Op1 && Op2 == Op0Op0)
+ return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
+ Ty, Op1, Op2);
+ } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
+ SDValue SetCC = N->getOperand(0);
+
+ if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
+ return SDValue();
+
+ return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
+ SetCC.getOperand(0), SetCC.getOperand(1),
+ N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
+ }
+
+ return SDValue();
+}
+
+static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
+ const MipsSubtarget &Subtarget) {
+ EVT Ty = N->getValueType(0);
+
+ if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
+ // Try the following combines:
+ // (xor (or $a, $b), (build_vector allones))
+ // (xor (or $a, $b), (bitcast (build_vector allones)))
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ SDValue NotOp;
+
+ if (ISD::isBuildVectorAllOnes(Op0.getNode()))
+ NotOp = Op1;
+ else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
+ NotOp = Op0;
+ else
+ return SDValue();
+
+ if (NotOp->getOpcode() == ISD::OR)
+ return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
+ NotOp->getOperand(1));
+ }
+
+ return SDValue();
+}
+
+SDValue
+MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Val;
+
+ switch (N->getOpcode()) {
+ case ISD::ADDE:
+ return performADDECombine(N, DAG, DCI, Subtarget);
+ case ISD::AND:
+ Val = performANDCombine(N, DAG, DCI, Subtarget);
+ break;
+ case ISD::OR:
+ Val = performORCombine(N, DAG, DCI, Subtarget);
+ break;
+ case ISD::SUBE:
+ return performSUBECombine(N, DAG, DCI, Subtarget);
+ case ISD::MUL:
+ return performMULCombine(N, DAG, DCI, this);
+ case ISD::SHL:
+ return performSHLCombine(N, DAG, DCI, Subtarget);
+ case ISD::SRA:
+ return performSRACombine(N, DAG, DCI, Subtarget);
+ case ISD::SRL:
+ return performSRLCombine(N, DAG, DCI, Subtarget);
+ case ISD::VSELECT:
+ return performVSELECTCombine(N, DAG);
+ case ISD::XOR:
+ Val = performXORCombine(N, DAG, Subtarget);
+ break;
+ case ISD::SETCC:
+ Val = performSETCCCombine(N, DAG);
+ break;
+ }
+
+ if (Val.getNode()) {
+ DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
+ N->printrWithDepth(dbgs(), &DAG);
+ dbgs() << "\n=> \n";
+ Val.getNode()->printrWithDepth(dbgs(), &DAG);
+ dbgs() << "\n");
+ return Val;
+ }
+
+ return MipsTargetLowering::PerformDAGCombine(N, DCI);
+}
+
+MachineBasicBlock *
+MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ switch (MI->getOpcode()) {
+ default:
+ return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
+ case Mips::BPOSGE32_PSEUDO:
+ return emitBPOSGE32(MI, BB);
+ case Mips::SNZ_B_PSEUDO:
+ return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
+ case Mips::SNZ_H_PSEUDO:
+ return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
+ case Mips::SNZ_W_PSEUDO:
+ return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
+ case Mips::SNZ_D_PSEUDO:
+ return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
+ case Mips::SNZ_V_PSEUDO:
+ return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
+ case Mips::SZ_B_PSEUDO:
+ return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
+ case Mips::SZ_H_PSEUDO:
+ return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
+ case Mips::SZ_W_PSEUDO:
+ return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
+ case Mips::SZ_D_PSEUDO:
+ return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
+ case Mips::SZ_V_PSEUDO:
+ return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
+ case Mips::COPY_FW_PSEUDO:
+ return emitCOPY_FW(MI, BB);
+ case Mips::COPY_FD_PSEUDO:
+ return emitCOPY_FD(MI, BB);
+ case Mips::INSERT_FW_PSEUDO:
+ return emitINSERT_FW(MI, BB);
+ case Mips::INSERT_FD_PSEUDO:
+ return emitINSERT_FD(MI, BB);
+ case Mips::INSERT_B_VIDX_PSEUDO:
+ return emitINSERT_DF_VIDX(MI, BB, 1, false);
+ case Mips::INSERT_H_VIDX_PSEUDO:
+ return emitINSERT_DF_VIDX(MI, BB, 2, false);
+ case Mips::INSERT_W_VIDX_PSEUDO:
+ return emitINSERT_DF_VIDX(MI, BB, 4, false);
+ case Mips::INSERT_D_VIDX_PSEUDO:
+ return emitINSERT_DF_VIDX(MI, BB, 8, false);
+ case Mips::INSERT_FW_VIDX_PSEUDO:
+ return emitINSERT_DF_VIDX(MI, BB, 4, true);
+ case Mips::INSERT_FD_VIDX_PSEUDO:
+ return emitINSERT_DF_VIDX(MI, BB, 8, true);
+ case Mips::FILL_FW_PSEUDO:
+ return emitFILL_FW(MI, BB);
+ case Mips::FILL_FD_PSEUDO:
+ return emitFILL_FD(MI, BB);
+ case Mips::FEXP2_W_1_PSEUDO:
+ return emitFEXP2_W_1(MI, BB);
+ case Mips::FEXP2_D_1_PSEUDO:
+ return emitFEXP2_D_1(MI, BB);
+ }
+}
+
+bool MipsSETargetLowering::
+isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
+ unsigned NextStackOffset,
+ const MipsFunctionInfo& FI) const {
+ if (!EnableMipsTailCalls)
+ return false;
+
+ // Return false if either the callee or caller has a byval argument.
+ if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
+ return false;
+
+ // Return true if the callee's argument area is no larger than the
+ // caller's.
+ return NextStackOffset <= FI.getIncomingArgSize();
+}
+
+void MipsSETargetLowering::
+getOpndList(SmallVectorImpl<SDValue> &Ops,
+ std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
+ bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
+ CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
+ Ops.push_back(Callee);
+ MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
+ InternalLinkage, CLI, Callee, Chain);
+}
+
+SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ LoadSDNode &Nd = *cast<LoadSDNode>(Op);
+
+ if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
+ return MipsTargetLowering::lowerLOAD(Op, DAG);
+
+ // Replace a double precision load with two i32 loads and a buildpair64.
+ SDLoc DL(Op);
+ SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
+ EVT PtrVT = Ptr.getValueType();
+
+ // i32 load from lower address.
+ SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
+ MachinePointerInfo(), Nd.isVolatile(),
+ Nd.isNonTemporal(), Nd.isInvariant(),
+ Nd.getAlignment());
+
+ // i32 load from higher address.
+ Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
+ SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
+ MachinePointerInfo(), Nd.isVolatile(),
+ Nd.isNonTemporal(), Nd.isInvariant(),
+ std::min(Nd.getAlignment(), 4U));
+
+ if (!Subtarget.isLittle())
+ std::swap(Lo, Hi);
+
+ SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
+ SDValue Ops[2] = {BP, Hi.getValue(1)};
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
+ StoreSDNode &Nd = *cast<StoreSDNode>(Op);
+
+ if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
+ return MipsTargetLowering::lowerSTORE(Op, DAG);
+
+ // Replace a double precision store with two extractelement64s and i32 stores.
+ SDLoc DL(Op);
+ SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
+ EVT PtrVT = Ptr.getValueType();
+ SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
+ Val, DAG.getConstant(0, MVT::i32));
+ SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
+ Val, DAG.getConstant(1, MVT::i32));
+
+ if (!Subtarget.isLittle())
+ std::swap(Lo, Hi);
+
+ // i32 store to lower address.
+ Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
+ Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
+ Nd.getTBAAInfo());
+
+ // i32 store to higher address.
+ Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
+ return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
+ Nd.isVolatile(), Nd.isNonTemporal(),
+ std::min(Nd.getAlignment(), 4U), Nd.getTBAAInfo());
+}
+
+SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
+ bool HasLo, bool HasHi,
+ SelectionDAG &DAG) const {
+ // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
+ assert(!Subtarget.hasMips32r6());
+
+ EVT Ty = Op.getOperand(0).getValueType();
+ SDLoc DL(Op);
+ SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
+ Op.getOperand(0), Op.getOperand(1));
+ SDValue Lo, Hi;
+
+ if (HasLo)
+ Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
+ if (HasHi)
+ Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
+
+ if (!HasLo || !HasHi)
+ return HasLo ? Lo : Hi;
+
+ SDValue Vals[] = { Lo, Hi };
+ return DAG.getMergeValues(Vals, DL);
+}
+
+
+static SDValue initAccumulator(SDValue In, SDLoc DL, SelectionDAG &DAG) {
+ SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
+ DAG.getConstant(0, MVT::i32));
+ SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
+ DAG.getConstant(1, MVT::i32));
+ return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
+}
+
+static SDValue extractLOHI(SDValue Op, SDLoc DL, SelectionDAG &DAG) {
+ SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
+ SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
+ return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
+}
+
+// This function expands mips intrinsic nodes which have 64-bit input operands
+// or output values.
+//
+// out64 = intrinsic-node in64
+// =>
+// lo = copy (extract-element (in64, 0))
+// hi = copy (extract-element (in64, 1))
+// mips-specific-node
+// v0 = copy lo
+// v1 = copy hi
+// out64 = merge-values (v0, v1)
+//
+static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
+ SDLoc DL(Op);
+ bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
+ SmallVector<SDValue, 3> Ops;
+ unsigned OpNo = 0;
+
+ // See if Op has a chain input.
+ if (HasChainIn)
+ Ops.push_back(Op->getOperand(OpNo++));
+
+ // The next operand is the intrinsic opcode.
+ assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
+
+ // See if the next operand has type i64.
+ SDValue Opnd = Op->getOperand(++OpNo), In64;
+
+ if (Opnd.getValueType() == MVT::i64)
+ In64 = initAccumulator(Opnd, DL, DAG);
+ else
+ Ops.push_back(Opnd);
+
+ // Push the remaining operands.
+ for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
+ Ops.push_back(Op->getOperand(OpNo));
+
+ // Add In64 to the end of the list.
+ if (In64.getNode())
+ Ops.push_back(In64);
+
+ // Scan output.
+ SmallVector<EVT, 2> ResTys;
+
+ for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
+ I != E; ++I)
+ ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
+
+ // Create node.
+ SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
+ SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
+
+ if (!HasChainIn)
+ return Out;
+
+ assert(Val->getValueType(1) == MVT::Other);
+ SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
+ return DAG.getMergeValues(Vals, DL);
+}
+
+// Lower an MSA copy intrinsic into the specified SelectionDAG node
+static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
+ SDLoc DL(Op);
+ SDValue Vec = Op->getOperand(1);
+ SDValue Idx = Op->getOperand(2);
+ EVT ResTy = Op->getValueType(0);
+ EVT EltTy = Vec->getValueType(0).getVectorElementType();
+
+ SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
+ DAG.getValueType(EltTy));
+
+ return Result;
+}
+
+static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
+ EVT ResVecTy = Op->getValueType(0);
+ EVT ViaVecTy = ResVecTy;
+ SDLoc DL(Op);
+
+ // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
+ // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
+ // lanes.
+ SDValue LaneA;
+ SDValue LaneB = Op->getOperand(2);
+
+ if (ResVecTy == MVT::v2i64) {
+ LaneA = DAG.getConstant(0, MVT::i32);
+ ViaVecTy = MVT::v4i32;
+ } else
+ LaneA = LaneB;
+
+ SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
+ LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
+
+ SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
+ makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
+
+ if (ViaVecTy != ResVecTy)
+ Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
+
+ return Result;
+}
+
+static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
+ return DAG.getConstant(Op->getConstantOperandVal(ImmOp), Op->getValueType(0));
+}
+
+static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
+ bool BigEndian, SelectionDAG &DAG) {
+ EVT ViaVecTy = VecTy;
+ SDValue SplatValueA = SplatValue;
+ SDValue SplatValueB = SplatValue;
+ SDLoc DL(SplatValue);
+
+ if (VecTy == MVT::v2i64) {
+ // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
+ ViaVecTy = MVT::v4i32;
+
+ SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
+ SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
+ DAG.getConstant(32, MVT::i32));
+ SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
+ }
+
+ // We currently hold the parts in little endian order. Swap them if
+ // necessary.
+ if (BigEndian)
+ std::swap(SplatValueA, SplatValueB);
+
+ SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
+ SplatValueA, SplatValueB, SplatValueA, SplatValueB,
+ SplatValueA, SplatValueB, SplatValueA, SplatValueB,
+ SplatValueA, SplatValueB, SplatValueA, SplatValueB };
+
+ SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
+ makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
+
+ if (VecTy != ViaVecTy)
+ Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
+
+ return Result;
+}
+
+static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
+ unsigned Opc, SDValue Imm,
+ bool BigEndian) {
+ EVT VecTy = Op->getValueType(0);
+ SDValue Exp2Imm;
+ SDLoc DL(Op);
+
+ // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
+ // here for now.
+ if (VecTy == MVT::v2i64) {
+ if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
+ APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
+
+ SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), MVT::i32);
+ SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), MVT::i32);
+
+ if (BigEndian)
+ std::swap(BitImmLoOp, BitImmHiOp);
+
+ Exp2Imm =
+ DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, BitImmLoOp,
+ BitImmHiOp, BitImmLoOp, BitImmHiOp));
+ }
+ }
+
+ if (!Exp2Imm.getNode()) {
+ // We couldnt constant fold, do a vector shift instead
+
+ // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
+ // only values 0-63 are valid.
+ if (VecTy == MVT::v2i64)
+ Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
+
+ Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
+
+ Exp2Imm =
+ DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, VecTy), Exp2Imm);
+ }
+
+ return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
+}
+
+static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
+ EVT ResTy = Op->getValueType(0);
+ SDLoc DL(Op);
+ SDValue One = DAG.getConstant(1, ResTy);
+ SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
+
+ return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
+ DAG.getNOT(DL, Bit, ResTy));
+}
+
+static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ EVT ResTy = Op->getValueType(0);
+ APInt BitImm = APInt(ResTy.getVectorElementType().getSizeInBits(), 1)
+ << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
+ SDValue BitMask = DAG.getConstant(~BitImm, ResTy);
+
+ return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
+}
+
+SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+
+ switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
+ default:
+ return SDValue();
+ case Intrinsic::mips_shilo:
+ return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
+ case Intrinsic::mips_dpau_h_qbl:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
+ case Intrinsic::mips_dpau_h_qbr:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
+ case Intrinsic::mips_dpsu_h_qbl:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
+ case Intrinsic::mips_dpsu_h_qbr:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
+ case Intrinsic::mips_dpa_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
+ case Intrinsic::mips_dps_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
+ case Intrinsic::mips_dpax_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
+ case Intrinsic::mips_dpsx_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
+ case Intrinsic::mips_mulsa_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
+ case Intrinsic::mips_mult:
+ return lowerDSPIntr(Op, DAG, MipsISD::Mult);
+ case Intrinsic::mips_multu:
+ return lowerDSPIntr(Op, DAG, MipsISD::Multu);
+ case Intrinsic::mips_madd:
+ return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
+ case Intrinsic::mips_maddu:
+ return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
+ case Intrinsic::mips_msub:
+ return lowerDSPIntr(Op, DAG, MipsISD::MSub);
+ case Intrinsic::mips_msubu:
+ return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
+ case Intrinsic::mips_addv_b:
+ case Intrinsic::mips_addv_h:
+ case Intrinsic::mips_addv_w:
+ case Intrinsic::mips_addv_d:
+ return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_addvi_b:
+ case Intrinsic::mips_addvi_h:
+ case Intrinsic::mips_addvi_w:
+ case Intrinsic::mips_addvi_d:
+ return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
+ lowerMSASplatImm(Op, 2, DAG));
+ case Intrinsic::mips_and_v:
+ return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_andi_b:
+ return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
+ lowerMSASplatImm(Op, 2, DAG));
+ case Intrinsic::mips_bclr_b:
+ case Intrinsic::mips_bclr_h:
+ case Intrinsic::mips_bclr_w:
+ case Intrinsic::mips_bclr_d:
+ return lowerMSABitClear(Op, DAG);
+ case Intrinsic::mips_bclri_b:
+ case Intrinsic::mips_bclri_h:
+ case Intrinsic::mips_bclri_w:
+ case Intrinsic::mips_bclri_d:
+ return lowerMSABitClearImm(Op, DAG);
+ case Intrinsic::mips_binsli_b:
+ case Intrinsic::mips_binsli_h:
+ case Intrinsic::mips_binsli_w:
+ case Intrinsic::mips_binsli_d: {
+ // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
+ EVT VecTy = Op->getValueType(0);
+ EVT EltTy = VecTy.getVectorElementType();
+ APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
+ Op->getConstantOperandVal(3));
+ return DAG.getNode(ISD::VSELECT, DL, VecTy,
+ DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
+ Op->getOperand(1));
+ }
+ case Intrinsic::mips_binsri_b:
+ case Intrinsic::mips_binsri_h:
+ case Intrinsic::mips_binsri_w:
+ case Intrinsic::mips_binsri_d: {
+ // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
+ EVT VecTy = Op->getValueType(0);
+ EVT EltTy = VecTy.getVectorElementType();
+ APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
+ Op->getConstantOperandVal(3));
+ return DAG.getNode(ISD::VSELECT, DL, VecTy,
+ DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
+ Op->getOperand(1));
+ }
+ case Intrinsic::mips_bmnz_v:
+ return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
+ Op->getOperand(2), Op->getOperand(1));
+ case Intrinsic::mips_bmnzi_b:
+ return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
+ lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
+ Op->getOperand(1));
+ case Intrinsic::mips_bmz_v:
+ return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
+ Op->getOperand(1), Op->getOperand(2));
+ case Intrinsic::mips_bmzi_b:
+ return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
+ lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_bneg_b:
+ case Intrinsic::mips_bneg_h:
+ case Intrinsic::mips_bneg_w:
+ case Intrinsic::mips_bneg_d: {
+ EVT VecTy = Op->getValueType(0);
+ SDValue One = DAG.getConstant(1, VecTy);
+
+ return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
+ DAG.getNode(ISD::SHL, DL, VecTy, One,
+ Op->getOperand(2)));
+ }
+ case Intrinsic::mips_bnegi_b:
+ case Intrinsic::mips_bnegi_h:
+ case Intrinsic::mips_bnegi_w:
+ case Intrinsic::mips_bnegi_d:
+ return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
+ !Subtarget.isLittle());
+ case Intrinsic::mips_bnz_b:
+ case Intrinsic::mips_bnz_h:
+ case Intrinsic::mips_bnz_w:
+ case Intrinsic::mips_bnz_d:
+ return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
+ Op->getOperand(1));
+ case Intrinsic::mips_bnz_v:
+ return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
+ Op->getOperand(1));
+ case Intrinsic::mips_bsel_v:
+ // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
+ return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(3),
+ Op->getOperand(2));
+ case Intrinsic::mips_bseli_b:
+ // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
+ return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
+ Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
+ Op->getOperand(2));
+ case Intrinsic::mips_bset_b:
+ case Intrinsic::mips_bset_h:
+ case Intrinsic::mips_bset_w:
+ case Intrinsic::mips_bset_d: {
+ EVT VecTy = Op->getValueType(0);
+ SDValue One = DAG.getConstant(1, VecTy);
+
+ return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
+ DAG.getNode(ISD::SHL, DL, VecTy, One,
+ Op->getOperand(2)));
+ }
+ case Intrinsic::mips_bseti_b:
+ case Intrinsic::mips_bseti_h:
+ case Intrinsic::mips_bseti_w:
+ case Intrinsic::mips_bseti_d:
+ return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
+ !Subtarget.isLittle());
+ case Intrinsic::mips_bz_b:
+ case Intrinsic::mips_bz_h:
+ case Intrinsic::mips_bz_w:
+ case Intrinsic::mips_bz_d:
+ return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
+ Op->getOperand(1));
+ case Intrinsic::mips_bz_v:
+ return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
+ Op->getOperand(1));
+ case Intrinsic::mips_ceq_b:
+ case Intrinsic::mips_ceq_h:
+ case Intrinsic::mips_ceq_w:
+ case Intrinsic::mips_ceq_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETEQ);
+ case Intrinsic::mips_ceqi_b:
+ case Intrinsic::mips_ceqi_h:
+ case Intrinsic::mips_ceqi_w:
+ case Intrinsic::mips_ceqi_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
+ case Intrinsic::mips_cle_s_b:
+ case Intrinsic::mips_cle_s_h:
+ case Intrinsic::mips_cle_s_w:
+ case Intrinsic::mips_cle_s_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETLE);
+ case Intrinsic::mips_clei_s_b:
+ case Intrinsic::mips_clei_s_h:
+ case Intrinsic::mips_clei_s_w:
+ case Intrinsic::mips_clei_s_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
+ case Intrinsic::mips_cle_u_b:
+ case Intrinsic::mips_cle_u_h:
+ case Intrinsic::mips_cle_u_w:
+ case Intrinsic::mips_cle_u_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETULE);
+ case Intrinsic::mips_clei_u_b:
+ case Intrinsic::mips_clei_u_h:
+ case Intrinsic::mips_clei_u_w:
+ case Intrinsic::mips_clei_u_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
+ case Intrinsic::mips_clt_s_b:
+ case Intrinsic::mips_clt_s_h:
+ case Intrinsic::mips_clt_s_w:
+ case Intrinsic::mips_clt_s_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETLT);
+ case Intrinsic::mips_clti_s_b:
+ case Intrinsic::mips_clti_s_h:
+ case Intrinsic::mips_clti_s_w:
+ case Intrinsic::mips_clti_s_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
+ case Intrinsic::mips_clt_u_b:
+ case Intrinsic::mips_clt_u_h:
+ case Intrinsic::mips_clt_u_w:
+ case Intrinsic::mips_clt_u_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETULT);
+ case Intrinsic::mips_clti_u_b:
+ case Intrinsic::mips_clti_u_h:
+ case Intrinsic::mips_clti_u_w:
+ case Intrinsic::mips_clti_u_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
+ case Intrinsic::mips_copy_s_b:
+ case Intrinsic::mips_copy_s_h:
+ case Intrinsic::mips_copy_s_w:
+ return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
+ case Intrinsic::mips_copy_s_d:
+ if (Subtarget.hasMips64())
+ // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
+ return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
+ else {
+ // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
+ // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
+ Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ }
+ case Intrinsic::mips_copy_u_b:
+ case Intrinsic::mips_copy_u_h:
+ case Intrinsic::mips_copy_u_w:
+ return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
+ case Intrinsic::mips_copy_u_d:
+ if (Subtarget.hasMips64())
+ // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
+ return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
+ else {
+ // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
+ // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
+ // Note: When i64 is illegal, this results in copy_s.w instructions
+ // instead of copy_u.w instructions. This makes no difference to the
+ // behaviour since i64 is only illegal when the register file is 32-bit.
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
+ Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ }
+ case Intrinsic::mips_div_s_b:
+ case Intrinsic::mips_div_s_h:
+ case Intrinsic::mips_div_s_w:
+ case Intrinsic::mips_div_s_d:
+ return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_div_u_b:
+ case Intrinsic::mips_div_u_h:
+ case Intrinsic::mips_div_u_w:
+ case Intrinsic::mips_div_u_d:
+ return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_fadd_w:
+ case Intrinsic::mips_fadd_d:
+ return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
+ case Intrinsic::mips_fceq_w:
+ case Intrinsic::mips_fceq_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETOEQ);
+ case Intrinsic::mips_fcle_w:
+ case Intrinsic::mips_fcle_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETOLE);
+ case Intrinsic::mips_fclt_w:
+ case Intrinsic::mips_fclt_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETOLT);
+ case Intrinsic::mips_fcne_w:
+ case Intrinsic::mips_fcne_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETONE);
+ case Intrinsic::mips_fcor_w:
+ case Intrinsic::mips_fcor_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETO);
+ case Intrinsic::mips_fcueq_w:
+ case Intrinsic::mips_fcueq_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETUEQ);
+ case Intrinsic::mips_fcule_w:
+ case Intrinsic::mips_fcule_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETULE);
+ case Intrinsic::mips_fcult_w:
+ case Intrinsic::mips_fcult_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETULT);
+ case Intrinsic::mips_fcun_w:
+ case Intrinsic::mips_fcun_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETUO);
+ case Intrinsic::mips_fcune_w:
+ case Intrinsic::mips_fcune_d:
+ return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2), ISD::SETUNE);
+ case Intrinsic::mips_fdiv_w:
+ case Intrinsic::mips_fdiv_d:
+ return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_ffint_u_w:
+ case Intrinsic::mips_ffint_u_d:
+ return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
+ Op->getOperand(1));
+ case Intrinsic::mips_ffint_s_w:
+ case Intrinsic::mips_ffint_s_d:
+ return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
+ Op->getOperand(1));
+ case Intrinsic::mips_fill_b:
+ case Intrinsic::mips_fill_h:
+ case Intrinsic::mips_fill_w:
+ case Intrinsic::mips_fill_d: {
+ SmallVector<SDValue, 16> Ops;
+ EVT ResTy = Op->getValueType(0);
+
+ for (unsigned i = 0; i < ResTy.getVectorNumElements(); ++i)
+ Ops.push_back(Op->getOperand(1));
+
+ // If ResTy is v2i64 then the type legalizer will break this node down into
+ // an equivalent v4i32.
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, ResTy, Ops);
+ }
+ case Intrinsic::mips_fexp2_w:
+ case Intrinsic::mips_fexp2_d: {
+ EVT ResTy = Op->getValueType(0);
+ return DAG.getNode(
+ ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
+ DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
+ }
+ case Intrinsic::mips_flog2_w:
+ case Intrinsic::mips_flog2_d:
+ return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
+ case Intrinsic::mips_fmadd_w:
+ case Intrinsic::mips_fmadd_d:
+ return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
+ case Intrinsic::mips_fmul_w:
+ case Intrinsic::mips_fmul_d:
+ return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_fmsub_w:
+ case Intrinsic::mips_fmsub_d: {
+ EVT ResTy = Op->getValueType(0);
+ return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
+ DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
+ Op->getOperand(2), Op->getOperand(3)));
+ }
+ case Intrinsic::mips_frint_w:
+ case Intrinsic::mips_frint_d:
+ return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
+ case Intrinsic::mips_fsqrt_w:
+ case Intrinsic::mips_fsqrt_d:
+ return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
+ case Intrinsic::mips_fsub_w:
+ case Intrinsic::mips_fsub_d:
+ return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_ftrunc_u_w:
+ case Intrinsic::mips_ftrunc_u_d:
+ return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
+ Op->getOperand(1));
+ case Intrinsic::mips_ftrunc_s_w:
+ case Intrinsic::mips_ftrunc_s_d:
+ return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
+ Op->getOperand(1));
+ case Intrinsic::mips_ilvev_b:
+ case Intrinsic::mips_ilvev_h:
+ case Intrinsic::mips_ilvev_w:
+ case Intrinsic::mips_ilvev_d:
+ return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2));
+ case Intrinsic::mips_ilvl_b:
+ case Intrinsic::mips_ilvl_h:
+ case Intrinsic::mips_ilvl_w:
+ case Intrinsic::mips_ilvl_d:
+ return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2));
+ case Intrinsic::mips_ilvod_b:
+ case Intrinsic::mips_ilvod_h:
+ case Intrinsic::mips_ilvod_w:
+ case Intrinsic::mips_ilvod_d:
+ return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2));
+ case Intrinsic::mips_ilvr_b:
+ case Intrinsic::mips_ilvr_h:
+ case Intrinsic::mips_ilvr_w:
+ case Intrinsic::mips_ilvr_d:
+ return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2));
+ case Intrinsic::mips_insert_b:
+ case Intrinsic::mips_insert_h:
+ case Intrinsic::mips_insert_w:
+ case Intrinsic::mips_insert_d:
+ return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
+ case Intrinsic::mips_insve_b:
+ case Intrinsic::mips_insve_h:
+ case Intrinsic::mips_insve_w:
+ case Intrinsic::mips_insve_d:
+ return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
+ DAG.getConstant(0, MVT::i32));
+ case Intrinsic::mips_ldi_b:
+ case Intrinsic::mips_ldi_h:
+ case Intrinsic::mips_ldi_w:
+ case Intrinsic::mips_ldi_d:
+ return lowerMSASplatImm(Op, 1, DAG);
+ case Intrinsic::mips_lsa:
+ case Intrinsic::mips_dlsa: {
+ EVT ResTy = Op->getValueType(0);
+ return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
+ DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
+ Op->getOperand(2), Op->getOperand(3)));
+ }
+ case Intrinsic::mips_maddv_b:
+ case Intrinsic::mips_maddv_h:
+ case Intrinsic::mips_maddv_w:
+ case Intrinsic::mips_maddv_d: {
+ EVT ResTy = Op->getValueType(0);
+ return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
+ DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
+ Op->getOperand(2), Op->getOperand(3)));
+ }
+ case Intrinsic::mips_max_s_b:
+ case Intrinsic::mips_max_s_h:
+ case Intrinsic::mips_max_s_w:
+ case Intrinsic::mips_max_s_d:
+ return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2));
+ case Intrinsic::mips_max_u_b:
+ case Intrinsic::mips_max_u_h:
+ case Intrinsic::mips_max_u_w:
+ case Intrinsic::mips_max_u_d:
+ return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2));
+ case Intrinsic::mips_maxi_s_b:
+ case Intrinsic::mips_maxi_s_h:
+ case Intrinsic::mips_maxi_s_w:
+ case Intrinsic::mips_maxi_s_d:
+ return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
+ Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
+ case Intrinsic::mips_maxi_u_b:
+ case Intrinsic::mips_maxi_u_h:
+ case Intrinsic::mips_maxi_u_w:
+ case Intrinsic::mips_maxi_u_d:
+ return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
+ Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
+ case Intrinsic::mips_min_s_b:
+ case Intrinsic::mips_min_s_h:
+ case Intrinsic::mips_min_s_w:
+ case Intrinsic::mips_min_s_d:
+ return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2));
+ case Intrinsic::mips_min_u_b:
+ case Intrinsic::mips_min_u_h:
+ case Intrinsic::mips_min_u_w:
+ case Intrinsic::mips_min_u_d:
+ return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2));
+ case Intrinsic::mips_mini_s_b:
+ case Intrinsic::mips_mini_s_h:
+ case Intrinsic::mips_mini_s_w:
+ case Intrinsic::mips_mini_s_d:
+ return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
+ Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
+ case Intrinsic::mips_mini_u_b:
+ case Intrinsic::mips_mini_u_h:
+ case Intrinsic::mips_mini_u_w:
+ case Intrinsic::mips_mini_u_d:
+ return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
+ Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
+ case Intrinsic::mips_mod_s_b:
+ case Intrinsic::mips_mod_s_h:
+ case Intrinsic::mips_mod_s_w:
+ case Intrinsic::mips_mod_s_d:
+ return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_mod_u_b:
+ case Intrinsic::mips_mod_u_h:
+ case Intrinsic::mips_mod_u_w:
+ case Intrinsic::mips_mod_u_d:
+ return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_mulv_b:
+ case Intrinsic::mips_mulv_h:
+ case Intrinsic::mips_mulv_w:
+ case Intrinsic::mips_mulv_d:
+ return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_msubv_b:
+ case Intrinsic::mips_msubv_h:
+ case Intrinsic::mips_msubv_w:
+ case Intrinsic::mips_msubv_d: {
+ EVT ResTy = Op->getValueType(0);
+ return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
+ DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
+ Op->getOperand(2), Op->getOperand(3)));
+ }
+ case Intrinsic::mips_nlzc_b:
+ case Intrinsic::mips_nlzc_h:
+ case Intrinsic::mips_nlzc_w:
+ case Intrinsic::mips_nlzc_d:
+ return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
+ case Intrinsic::mips_nor_v: {
+ SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2));
+ return DAG.getNOT(DL, Res, Res->getValueType(0));
+ }
+ case Intrinsic::mips_nori_b: {
+ SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
+ Op->getOperand(1),
+ lowerMSASplatImm(Op, 2, DAG));
+ return DAG.getNOT(DL, Res, Res->getValueType(0));
+ }
+ case Intrinsic::mips_or_v:
+ return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_ori_b:
+ return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
+ Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
+ case Intrinsic::mips_pckev_b:
+ case Intrinsic::mips_pckev_h:
+ case Intrinsic::mips_pckev_w:
+ case Intrinsic::mips_pckev_d:
+ return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2));
+ case Intrinsic::mips_pckod_b:
+ case Intrinsic::mips_pckod_h:
+ case Intrinsic::mips_pckod_w:
+ case Intrinsic::mips_pckod_d:
+ return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2));
+ case Intrinsic::mips_pcnt_b:
+ case Intrinsic::mips_pcnt_h:
+ case Intrinsic::mips_pcnt_w:
+ case Intrinsic::mips_pcnt_d:
+ return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
+ case Intrinsic::mips_shf_b:
+ case Intrinsic::mips_shf_h:
+ case Intrinsic::mips_shf_w:
+ return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
+ Op->getOperand(2), Op->getOperand(1));
+ case Intrinsic::mips_sll_b:
+ case Intrinsic::mips_sll_h:
+ case Intrinsic::mips_sll_w:
+ case Intrinsic::mips_sll_d:
+ return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_slli_b:
+ case Intrinsic::mips_slli_h:
+ case Intrinsic::mips_slli_w:
+ case Intrinsic::mips_slli_d:
+ return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
+ Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
+ case Intrinsic::mips_splat_b:
+ case Intrinsic::mips_splat_h:
+ case Intrinsic::mips_splat_w:
+ case Intrinsic::mips_splat_d:
+ // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
+ // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
+ // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
+ // Instead we lower to MipsISD::VSHF and match from there.
+ return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
+ lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
+ Op->getOperand(1));
+ case Intrinsic::mips_splati_b:
+ case Intrinsic::mips_splati_h:
+ case Intrinsic::mips_splati_w:
+ case Intrinsic::mips_splati_d:
+ return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
+ lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
+ Op->getOperand(1));
+ case Intrinsic::mips_sra_b:
+ case Intrinsic::mips_sra_h:
+ case Intrinsic::mips_sra_w:
+ case Intrinsic::mips_sra_d:
+ return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_srai_b:
+ case Intrinsic::mips_srai_h:
+ case Intrinsic::mips_srai_w:
+ case Intrinsic::mips_srai_d:
+ return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
+ Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
+ case Intrinsic::mips_srl_b:
+ case Intrinsic::mips_srl_h:
+ case Intrinsic::mips_srl_w:
+ case Intrinsic::mips_srl_d:
+ return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_srli_b:
+ case Intrinsic::mips_srli_h:
+ case Intrinsic::mips_srli_w:
+ case Intrinsic::mips_srli_d:
+ return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
+ Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
+ case Intrinsic::mips_subv_b:
+ case Intrinsic::mips_subv_h:
+ case Intrinsic::mips_subv_w:
+ case Intrinsic::mips_subv_d:
+ return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_subvi_b:
+ case Intrinsic::mips_subvi_h:
+ case Intrinsic::mips_subvi_w:
+ case Intrinsic::mips_subvi_d:
+ return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
+ Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
+ case Intrinsic::mips_vshf_b:
+ case Intrinsic::mips_vshf_h:
+ case Intrinsic::mips_vshf_w:
+ case Intrinsic::mips_vshf_d:
+ return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
+ Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
+ case Intrinsic::mips_xor_v:
+ return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
+ Op->getOperand(2));
+ case Intrinsic::mips_xori_b:
+ return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
+ Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
+ }
+}
+
+static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
+ SDLoc DL(Op);
+ SDValue ChainIn = Op->getOperand(0);
+ SDValue Address = Op->getOperand(2);
+ SDValue Offset = Op->getOperand(3);
+ EVT ResTy = Op->getValueType(0);
+ EVT PtrTy = Address->getValueType(0);
+
+ Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
+
+ return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
+ false, false, 16);
+}
+
+SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
+ switch (Intr) {
+ default:
+ return SDValue();
+ case Intrinsic::mips_extp:
+ return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
+ case Intrinsic::mips_extpdp:
+ return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
+ case Intrinsic::mips_extr_w:
+ return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
+ case Intrinsic::mips_extr_r_w:
+ return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
+ case Intrinsic::mips_extr_rs_w:
+ return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
+ case Intrinsic::mips_extr_s_h:
+ return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
+ case Intrinsic::mips_mthlip:
+ return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
+ case Intrinsic::mips_mulsaq_s_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
+ case Intrinsic::mips_maq_s_w_phl:
+ return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
+ case Intrinsic::mips_maq_s_w_phr:
+ return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
+ case Intrinsic::mips_maq_sa_w_phl:
+ return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
+ case Intrinsic::mips_maq_sa_w_phr:
+ return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
+ case Intrinsic::mips_dpaq_s_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
+ case Intrinsic::mips_dpsq_s_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
+ case Intrinsic::mips_dpaq_sa_l_w:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
+ case Intrinsic::mips_dpsq_sa_l_w:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
+ case Intrinsic::mips_dpaqx_s_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
+ case Intrinsic::mips_dpaqx_sa_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
+ case Intrinsic::mips_dpsqx_s_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
+ case Intrinsic::mips_dpsqx_sa_w_ph:
+ return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
+ case Intrinsic::mips_ld_b:
+ case Intrinsic::mips_ld_h:
+ case Intrinsic::mips_ld_w:
+ case Intrinsic::mips_ld_d:
+ return lowerMSALoadIntr(Op, DAG, Intr);
+ }
+}
+
+static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
+ SDLoc DL(Op);
+ SDValue ChainIn = Op->getOperand(0);
+ SDValue Value = Op->getOperand(2);
+ SDValue Address = Op->getOperand(3);
+ SDValue Offset = Op->getOperand(4);
+ EVT PtrTy = Address->getValueType(0);
+
+ Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
+
+ return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
+ false, 16);
+}
+
+SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
+ switch (Intr) {
+ default:
+ return SDValue();
+ case Intrinsic::mips_st_b:
+ case Intrinsic::mips_st_h:
+ case Intrinsic::mips_st_w:
+ case Intrinsic::mips_st_d:
+ return lowerMSAStoreIntr(Op, DAG, Intr);
+ }
+}
+
+/// \brief Check if the given BuildVectorSDNode is a splat.
+/// This method currently relies on DAG nodes being reused when equivalent,
+/// so it's possible for this to return false even when isConstantSplat returns
+/// true.
+static bool isSplatVector(const BuildVectorSDNode *N) {
+ unsigned int nOps = N->getNumOperands();
+ assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
+
+ SDValue Operand0 = N->getOperand(0);
+
+ for (unsigned int i = 1; i < nOps; ++i) {
+ if (N->getOperand(i) != Operand0)
+ return false;
+ }
+
+ return true;
+}
+
+// Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
+//
+// The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
+// choose to sign-extend but we could have equally chosen zero-extend. The
+// DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
+// result into this node later (possibly changing it to a zero-extend in the
+// process).
+SDValue MipsSETargetLowering::
+lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT ResTy = Op->getValueType(0);
+ SDValue Op0 = Op->getOperand(0);
+ EVT VecTy = Op0->getValueType(0);
+
+ if (!VecTy.is128BitVector())
+ return SDValue();
+
+ if (ResTy.isInteger()) {
+ SDValue Op1 = Op->getOperand(1);
+ EVT EltTy = VecTy.getVectorElementType();
+ return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
+ DAG.getValueType(EltTy));
+ }
+
+ return Op;
+}
+
+static bool isConstantOrUndef(const SDValue Op) {
+ if (Op->getOpcode() == ISD::UNDEF)
+ return true;
+ if (dyn_cast<ConstantSDNode>(Op))
+ return true;
+ if (dyn_cast<ConstantFPSDNode>(Op))
+ return true;
+ return false;
+}
+
+static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
+ for (unsigned i = 0; i < Op->getNumOperands(); ++i)
+ if (isConstantOrUndef(Op->getOperand(i)))
+ return true;
+ return false;
+}
+
+// Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
+// backend.
+//
+// Lowers according to the following rules:
+// - Constant splats are legal as-is as long as the SplatBitSize is a power of
+// 2 less than or equal to 64 and the value fits into a signed 10-bit
+// immediate
+// - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
+// is a power of 2 less than or equal to 64 and the value does not fit into a
+// signed 10-bit immediate
+// - Non-constant splats are legal as-is.
+// - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
+// - All others are illegal and must be expanded.
+SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
+ EVT ResTy = Op->getValueType(0);
+ SDLoc DL(Op);
+ APInt SplatValue, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+
+ if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
+ return SDValue();
+
+ if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
+ HasAnyUndefs, 8,
+ !Subtarget.isLittle()) && SplatBitSize <= 64) {
+ // We can only cope with 8, 16, 32, or 64-bit elements
+ if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
+ SplatBitSize != 64)
+ return SDValue();
+
+ // If the value fits into a simm10 then we can use ldi.[bhwd]
+ // However, if it isn't an integer type we will have to bitcast from an
+ // integer type first. Also, if there are any undefs, we must lower them
+ // to defined values first.
+ if (ResTy.isInteger() && !HasAnyUndefs && SplatValue.isSignedIntN(10))
+ return Op;
+
+ EVT ViaVecTy;
+
+ switch (SplatBitSize) {
+ default:
+ return SDValue();
+ case 8:
+ ViaVecTy = MVT::v16i8;
+ break;
+ case 16:
+ ViaVecTy = MVT::v8i16;
+ break;
+ case 32:
+ ViaVecTy = MVT::v4i32;
+ break;
+ case 64:
+ // There's no fill.d to fall back on for 64-bit values
+ return SDValue();
+ }
+
+ // SelectionDAG::getConstant will promote SplatValue appropriately.
+ SDValue Result = DAG.getConstant(SplatValue, ViaVecTy);
+
+ // Bitcast to the type we originally wanted
+ if (ViaVecTy != ResTy)
+ Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
+
+ return Result;
+ } else if (isSplatVector(Node))
+ return Op;
+ else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
+ // Use INSERT_VECTOR_ELT operations rather than expand to stores.
+ // The resulting code is the same length as the expansion, but it doesn't
+ // use memory operations
+ EVT ResTy = Node->getValueType(0);
+
+ assert(ResTy.isVector());
+
+ unsigned NumElts = ResTy.getVectorNumElements();
+ SDValue Vector = DAG.getUNDEF(ResTy);
+ for (unsigned i = 0; i < NumElts; ++i) {
+ Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
+ Node->getOperand(i),
+ DAG.getConstant(i, MVT::i32));
+ }
+ return Vector;
+ }
+
+ return SDValue();
+}
+
+// Lower VECTOR_SHUFFLE into SHF (if possible).
+//
+// SHF splits the vector into blocks of four elements, then shuffles these
+// elements according to a <4 x i2> constant (encoded as an integer immediate).
+//
+// It is therefore possible to lower into SHF when the mask takes the form:
+// <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
+// When undef's appear they are treated as if they were whatever value is
+// necessary in order to fit the above form.
+//
+// For example:
+// %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
+// <8 x i32> <i32 3, i32 2, i32 1, i32 0,
+// i32 7, i32 6, i32 5, i32 4>
+// is lowered to:
+// (SHF_H $w0, $w1, 27)
+// where the 27 comes from:
+// 3 + (2 << 2) + (1 << 4) + (0 << 6)
+static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
+ SmallVector<int, 16> Indices,
+ SelectionDAG &DAG) {
+ int SHFIndices[4] = { -1, -1, -1, -1 };
+
+ if (Indices.size() < 4)
+ return SDValue();
+
+ for (unsigned i = 0; i < 4; ++i) {
+ for (unsigned j = i; j < Indices.size(); j += 4) {
+ int Idx = Indices[j];
+
+ // Convert from vector index to 4-element subvector index
+ // If an index refers to an element outside of the subvector then give up
+ if (Idx != -1) {
+ Idx -= 4 * (j / 4);
+ if (Idx < 0 || Idx >= 4)
+ return SDValue();
+ }
+
+ // If the mask has an undef, replace it with the current index.
+ // Note that it might still be undef if the current index is also undef
+ if (SHFIndices[i] == -1)
+ SHFIndices[i] = Idx;
+
+ // Check that non-undef values are the same as in the mask. If they
+ // aren't then give up
+ if (!(Idx == -1 || Idx == SHFIndices[i]))
+ return SDValue();
+ }
+ }
+
+ // Calculate the immediate. Replace any remaining undefs with zero
+ APInt Imm(32, 0);
+ for (int i = 3; i >= 0; --i) {
+ int Idx = SHFIndices[i];
+
+ if (Idx == -1)
+ Idx = 0;
+
+ Imm <<= 2;
+ Imm |= Idx & 0x3;
+ }
+
+ return DAG.getNode(MipsISD::SHF, SDLoc(Op), ResTy,
+ DAG.getConstant(Imm, MVT::i32), Op->getOperand(0));
+}
+
+// Lower VECTOR_SHUFFLE into ILVEV (if possible).
+//
+// ILVEV interleaves the even elements from each vector.
+//
+// It is possible to lower into ILVEV when the mask takes the form:
+// <0, n, 2, n+2, 4, n+4, ...>
+// where n is the number of elements in the vector.
+//
+// When undef's appear in the mask they are treated as if they were whatever
+// value is necessary in order to fit the above form.
+static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
+ SmallVector<int, 16> Indices,
+ SelectionDAG &DAG) {
+ assert ((Indices.size() % 2) == 0);
+ int WsIdx = 0;
+ int WtIdx = ResTy.getVectorNumElements();
+
+ for (unsigned i = 0; i < Indices.size(); i += 2) {
+ if (Indices[i] != -1 && Indices[i] != WsIdx)
+ return SDValue();
+ if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
+ return SDValue();
+ WsIdx += 2;
+ WtIdx += 2;
+ }
+
+ return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Op->getOperand(0),
+ Op->getOperand(1));
+}
+
+// Lower VECTOR_SHUFFLE into ILVOD (if possible).
+//
+// ILVOD interleaves the odd elements from each vector.
+//
+// It is possible to lower into ILVOD when the mask takes the form:
+// <1, n+1, 3, n+3, 5, n+5, ...>
+// where n is the number of elements in the vector.
+//
+// When undef's appear in the mask they are treated as if they were whatever
+// value is necessary in order to fit the above form.
+static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
+ SmallVector<int, 16> Indices,
+ SelectionDAG &DAG) {
+ assert ((Indices.size() % 2) == 0);
+ int WsIdx = 1;
+ int WtIdx = ResTy.getVectorNumElements() + 1;
+
+ for (unsigned i = 0; i < Indices.size(); i += 2) {
+ if (Indices[i] != -1 && Indices[i] != WsIdx)
+ return SDValue();
+ if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
+ return SDValue();
+ WsIdx += 2;
+ WtIdx += 2;
+ }
+
+ return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Op->getOperand(0),
+ Op->getOperand(1));
+}
+
+// Lower VECTOR_SHUFFLE into ILVL (if possible).
+//
+// ILVL interleaves consecutive elements from the left half of each vector.
+//
+// It is possible to lower into ILVL when the mask takes the form:
+// <0, n, 1, n+1, 2, n+2, ...>
+// where n is the number of elements in the vector.
+//
+// When undef's appear in the mask they are treated as if they were whatever
+// value is necessary in order to fit the above form.
+static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
+ SmallVector<int, 16> Indices,
+ SelectionDAG &DAG) {
+ assert ((Indices.size() % 2) == 0);
+ int WsIdx = 0;
+ int WtIdx = ResTy.getVectorNumElements();
+
+ for (unsigned i = 0; i < Indices.size(); i += 2) {
+ if (Indices[i] != -1 && Indices[i] != WsIdx)
+ return SDValue();
+ if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
+ return SDValue();
+ WsIdx ++;
+ WtIdx ++;
+ }
+
+ return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Op->getOperand(0),
+ Op->getOperand(1));
+}
+
+// Lower VECTOR_SHUFFLE into ILVR (if possible).
+//
+// ILVR interleaves consecutive elements from the right half of each vector.
+//
+// It is possible to lower into ILVR when the mask takes the form:
+// <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
+// where n is the number of elements in the vector and x is half n.
+//
+// When undef's appear in the mask they are treated as if they were whatever
+// value is necessary in order to fit the above form.
+static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
+ SmallVector<int, 16> Indices,
+ SelectionDAG &DAG) {
+ assert ((Indices.size() % 2) == 0);
+ unsigned NumElts = ResTy.getVectorNumElements();
+ int WsIdx = NumElts / 2;
+ int WtIdx = NumElts + NumElts / 2;
+
+ for (unsigned i = 0; i < Indices.size(); i += 2) {
+ if (Indices[i] != -1 && Indices[i] != WsIdx)
+ return SDValue();
+ if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
+ return SDValue();
+ WsIdx ++;
+ WtIdx ++;
+ }
+
+ return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Op->getOperand(0),
+ Op->getOperand(1));
+}
+
+// Lower VECTOR_SHUFFLE into PCKEV (if possible).
+//
+// PCKEV copies the even elements of each vector into the result vector.
+//
+// It is possible to lower into PCKEV when the mask takes the form:
+// <0, 2, 4, ..., n, n+2, n+4, ...>
+// where n is the number of elements in the vector.
+//
+// When undef's appear in the mask they are treated as if they were whatever
+// value is necessary in order to fit the above form.
+static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
+ SmallVector<int, 16> Indices,
+ SelectionDAG &DAG) {
+ assert ((Indices.size() % 2) == 0);
+ int Idx = 0;
+
+ for (unsigned i = 0; i < Indices.size(); ++i) {
+ if (Indices[i] != -1 && Indices[i] != Idx)
+ return SDValue();
+ Idx += 2;
+ }
+
+ return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Op->getOperand(0),
+ Op->getOperand(1));
+}
+
+// Lower VECTOR_SHUFFLE into PCKOD (if possible).
+//
+// PCKOD copies the odd elements of each vector into the result vector.
+//
+// It is possible to lower into PCKOD when the mask takes the form:
+// <1, 3, 5, ..., n+1, n+3, n+5, ...>
+// where n is the number of elements in the vector.
+//
+// When undef's appear in the mask they are treated as if they were whatever
+// value is necessary in order to fit the above form.
+static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
+ SmallVector<int, 16> Indices,
+ SelectionDAG &DAG) {
+ assert ((Indices.size() % 2) == 0);
+ int Idx = 1;
+
+ for (unsigned i = 0; i < Indices.size(); ++i) {
+ if (Indices[i] != -1 && Indices[i] != Idx)
+ return SDValue();
+ Idx += 2;
+ }
+
+ return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Op->getOperand(0),
+ Op->getOperand(1));
+}
+
+// Lower VECTOR_SHUFFLE into VSHF.
+//
+// This mostly consists of converting the shuffle indices in Indices into a
+// BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
+// also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
+// if the type is v8i16 and all the indices are less than 8 then the second
+// operand is unused and can be replaced with anything. We choose to replace it
+// with the used operand since this reduces the number of instructions overall.
+static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
+ SmallVector<int, 16> Indices,
+ SelectionDAG &DAG) {
+ SmallVector<SDValue, 16> Ops;
+ SDValue Op0;
+ SDValue Op1;
+ EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
+ EVT MaskEltTy = MaskVecTy.getVectorElementType();
+ bool Using1stVec = false;
+ bool Using2ndVec = false;
+ SDLoc DL(Op);
+ int ResTyNumElts = ResTy.getVectorNumElements();
+
+ for (int i = 0; i < ResTyNumElts; ++i) {
+ // Idx == -1 means UNDEF
+ int Idx = Indices[i];
+
+ if (0 <= Idx && Idx < ResTyNumElts)
+ Using1stVec = true;
+ if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
+ Using2ndVec = true;
+ }
+
+ for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
+ ++I)
+ Ops.push_back(DAG.getTargetConstant(*I, MaskEltTy));
+
+ SDValue MaskVec = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecTy, Ops);
+
+ if (Using1stVec && Using2ndVec) {
+ Op0 = Op->getOperand(0);
+ Op1 = Op->getOperand(1);
+ } else if (Using1stVec)
+ Op0 = Op1 = Op->getOperand(0);
+ else if (Using2ndVec)
+ Op0 = Op1 = Op->getOperand(1);
+ else
+ llvm_unreachable("shuffle vector mask references neither vector operand?");
+
+ // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
+ // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
+ // VSHF concatenates the vectors in a bitwise fashion:
+ // <0b00, 0b01> + <0b10, 0b11> ->
+ // 0b0100 + 0b1110 -> 0b01001110
+ // <0b10, 0b11, 0b00, 0b01>
+ // We must therefore swap the operands to get the correct result.
+ return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
+}
+
+// Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
+// indices in the shuffle.
+SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
+ SelectionDAG &DAG) const {
+ ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
+ EVT ResTy = Op->getValueType(0);
+
+ if (!ResTy.is128BitVector())
+ return SDValue();
+
+ int ResTyNumElts = ResTy.getVectorNumElements();
+ SmallVector<int, 16> Indices;
+
+ for (int i = 0; i < ResTyNumElts; ++i)
+ Indices.push_back(Node->getMaskElt(i));
+
+ SDValue Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG);
+ if (Result.getNode())
+ return Result;
+ Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG);
+ if (Result.getNode())
+ return Result;
+ Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG);
+ if (Result.getNode())
+ return Result;
+ Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG);
+ if (Result.getNode())
+ return Result;
+ Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG);
+ if (Result.getNode())
+ return Result;
+ Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG);
+ if (Result.getNode())
+ return Result;
+ Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG);
+ if (Result.getNode())
+ return Result;
+ return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
+}
+
+MachineBasicBlock * MipsSETargetLowering::
+emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
+ // $bb:
+ // bposge32_pseudo $vr0
+ // =>
+ // $bb:
+ // bposge32 $tbb
+ // $fbb:
+ // li $vr2, 0
+ // b $sink
+ // $tbb:
+ // li $vr1, 1
+ // $sink:
+ // $vr0 = phi($vr2, $fbb, $vr1, $tbb)
+
+ MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetRegisterClass *RC = &Mips::GPR32RegClass;
+ DebugLoc DL = MI->getDebugLoc();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, FBB);
+ F->insert(It, TBB);
+ F->insert(It, Sink);
+
+ // Transfer the remainder of BB and its successor edges to Sink.
+ Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ Sink->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Add successors.
+ BB->addSuccessor(FBB);
+ BB->addSuccessor(TBB);
+ FBB->addSuccessor(Sink);
+ TBB->addSuccessor(Sink);
+
+ // Insert the real bposge32 instruction to $BB.
+ BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
+
+ // Fill $FBB.
+ unsigned VR2 = RegInfo.createVirtualRegister(RC);
+ BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
+ .addReg(Mips::ZERO).addImm(0);
+ BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
+
+ // Fill $TBB.
+ unsigned VR1 = RegInfo.createVirtualRegister(RC);
+ BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
+ .addReg(Mips::ZERO).addImm(1);
+
+ // Insert phi function to $Sink.
+ BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
+ MI->getOperand(0).getReg())
+ .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return Sink;
+}
+
+MachineBasicBlock * MipsSETargetLowering::
+emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
+ unsigned BranchOp) const{
+ // $bb:
+ // vany_nonzero $rd, $ws
+ // =>
+ // $bb:
+ // bnz.b $ws, $tbb
+ // b $fbb
+ // $fbb:
+ // li $rd1, 0
+ // b $sink
+ // $tbb:
+ // li $rd2, 1
+ // $sink:
+ // $rd = phi($rd1, $fbb, $rd2, $tbb)
+
+ MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetRegisterClass *RC = &Mips::GPR32RegClass;
+ DebugLoc DL = MI->getDebugLoc();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, FBB);
+ F->insert(It, TBB);
+ F->insert(It, Sink);
+
+ // Transfer the remainder of BB and its successor edges to Sink.
+ Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ Sink->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Add successors.
+ BB->addSuccessor(FBB);
+ BB->addSuccessor(TBB);
+ FBB->addSuccessor(Sink);
+ TBB->addSuccessor(Sink);
+
+ // Insert the real bnz.b instruction to $BB.
+ BuildMI(BB, DL, TII->get(BranchOp))
+ .addReg(MI->getOperand(1).getReg())
+ .addMBB(TBB);
+
+ // Fill $FBB.
+ unsigned RD1 = RegInfo.createVirtualRegister(RC);
+ BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
+ .addReg(Mips::ZERO).addImm(0);
+ BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
+
+ // Fill $TBB.
+ unsigned RD2 = RegInfo.createVirtualRegister(RC);
+ BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
+ .addReg(Mips::ZERO).addImm(1);
+
+ // Insert phi function to $Sink.
+ BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
+ MI->getOperand(0).getReg())
+ .addReg(RD1).addMBB(FBB).addReg(RD2).addMBB(TBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return Sink;
+}
+
+// Emit the COPY_FW pseudo instruction.
+//
+// copy_fw_pseudo $fd, $ws, n
+// =>
+// copy_u_w $rt, $ws, $n
+// mtc1 $rt, $fd
+//
+// When n is zero, the equivalent operation can be performed with (potentially)
+// zero instructions due to register overlaps. This optimization is never valid
+// for lane 1 because it would require FR=0 mode which isn't supported by MSA.
+MachineBasicBlock * MipsSETargetLowering::
+emitCOPY_FW(MachineInstr *MI, MachineBasicBlock *BB) const{
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Fd = MI->getOperand(0).getReg();
+ unsigned Ws = MI->getOperand(1).getReg();
+ unsigned Lane = MI->getOperand(2).getImm();
+
+ if (Lane == 0)
+ BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_lo);
+ else {
+ unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
+
+ BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
+ BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
+ }
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+// Emit the COPY_FD pseudo instruction.
+//
+// copy_fd_pseudo $fd, $ws, n
+// =>
+// splati.d $wt, $ws, $n
+// copy $fd, $wt:sub_64
+//
+// When n is zero, the equivalent operation can be performed with (potentially)
+// zero instructions due to register overlaps. This optimization is always
+// valid because FR=1 mode which is the only supported mode in MSA.
+MachineBasicBlock * MipsSETargetLowering::
+emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
+ assert(Subtarget.isFP64bit());
+
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
+ unsigned Fd = MI->getOperand(0).getReg();
+ unsigned Ws = MI->getOperand(1).getReg();
+ unsigned Lane = MI->getOperand(2).getImm() * 2;
+ DebugLoc DL = MI->getDebugLoc();
+
+ if (Lane == 0)
+ BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
+ else {
+ unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
+
+ BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
+ BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
+ }
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+// Emit the INSERT_FW pseudo instruction.
+//
+// insert_fw_pseudo $wd, $wd_in, $n, $fs
+// =>
+// subreg_to_reg $wt:sub_lo, $fs
+// insve_w $wd[$n], $wd_in, $wt[0]
+MachineBasicBlock *
+MipsSETargetLowering::emitINSERT_FW(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Wd = MI->getOperand(0).getReg();
+ unsigned Wd_in = MI->getOperand(1).getReg();
+ unsigned Lane = MI->getOperand(2).getImm();
+ unsigned Fs = MI->getOperand(3).getReg();
+ unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
+
+ BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
+ .addImm(0)
+ .addReg(Fs)
+ .addImm(Mips::sub_lo);
+ BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
+ .addReg(Wd_in)
+ .addImm(Lane)
+ .addReg(Wt)
+ .addImm(0);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+// Emit the INSERT_FD pseudo instruction.
+//
+// insert_fd_pseudo $wd, $fs, n
+// =>
+// subreg_to_reg $wt:sub_64, $fs
+// insve_d $wd[$n], $wd_in, $wt[0]
+MachineBasicBlock *
+MipsSETargetLowering::emitINSERT_FD(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ assert(Subtarget.isFP64bit());
+
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Wd = MI->getOperand(0).getReg();
+ unsigned Wd_in = MI->getOperand(1).getReg();
+ unsigned Lane = MI->getOperand(2).getImm();
+ unsigned Fs = MI->getOperand(3).getReg();
+ unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
+
+ BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
+ .addImm(0)
+ .addReg(Fs)
+ .addImm(Mips::sub_64);
+ BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
+ .addReg(Wd_in)
+ .addImm(Lane)
+ .addReg(Wt)
+ .addImm(0);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+// Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
+//
+// For integer:
+// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
+// =>
+// (SLL $lanetmp1, $lane, <log2size)
+// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
+// (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
+// (NEG $lanetmp2, $lanetmp1)
+// (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
+//
+// For floating point:
+// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
+// =>
+// (SUBREG_TO_REG $wt, $fs, <subreg>)
+// (SLL $lanetmp1, $lane, <log2size)
+// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
+// (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
+// (NEG $lanetmp2, $lanetmp1)
+// (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
+MachineBasicBlock *
+MipsSETargetLowering::emitINSERT_DF_VIDX(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned EltSizeInBytes,
+ bool IsFP) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Wd = MI->getOperand(0).getReg();
+ unsigned SrcVecReg = MI->getOperand(1).getReg();
+ unsigned LaneReg = MI->getOperand(2).getReg();
+ unsigned SrcValReg = MI->getOperand(3).getReg();
+
+ const TargetRegisterClass *VecRC = nullptr;
+ const TargetRegisterClass *GPRRC =
+ Subtarget.isGP64bit() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
+ unsigned EltLog2Size;
+ unsigned InsertOp = 0;
+ unsigned InsveOp = 0;
+ switch (EltSizeInBytes) {
+ default:
+ llvm_unreachable("Unexpected size");
+ case 1:
+ EltLog2Size = 0;
+ InsertOp = Mips::INSERT_B;
+ InsveOp = Mips::INSVE_B;
+ VecRC = &Mips::MSA128BRegClass;
+ break;
+ case 2:
+ EltLog2Size = 1;
+ InsertOp = Mips::INSERT_H;
+ InsveOp = Mips::INSVE_H;
+ VecRC = &Mips::MSA128HRegClass;
+ break;
+ case 4:
+ EltLog2Size = 2;
+ InsertOp = Mips::INSERT_W;
+ InsveOp = Mips::INSVE_W;
+ VecRC = &Mips::MSA128WRegClass;
+ break;
+ case 8:
+ EltLog2Size = 3;
+ InsertOp = Mips::INSERT_D;
+ InsveOp = Mips::INSVE_D;
+ VecRC = &Mips::MSA128DRegClass;
+ break;
+ }
+
+ if (IsFP) {
+ unsigned Wt = RegInfo.createVirtualRegister(VecRC);
+ BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
+ .addImm(0)
+ .addReg(SrcValReg)
+ .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
+ SrcValReg = Wt;
+ }
+
+ // Convert the lane index into a byte index
+ if (EltSizeInBytes != 1) {
+ unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
+ BuildMI(*BB, MI, DL, TII->get(Mips::SLL), LaneTmp1)
+ .addReg(LaneReg)
+ .addImm(EltLog2Size);
+ LaneReg = LaneTmp1;
+ }
+
+ // Rotate bytes around so that the desired lane is element zero
+ unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
+ BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
+ .addReg(SrcVecReg)
+ .addReg(SrcVecReg)
+ .addReg(LaneReg);
+
+ unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
+ if (IsFP) {
+ // Use insve.df to insert to element zero
+ BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
+ .addReg(WdTmp1)
+ .addImm(0)
+ .addReg(SrcValReg)
+ .addImm(0);
+ } else {
+ // Use insert.df to insert to element zero
+ BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
+ .addReg(WdTmp1)
+ .addReg(SrcValReg)
+ .addImm(0);
+ }
+
+ // Rotate elements the rest of the way for a full rotation.
+ // sld.df inteprets $rt modulo the number of columns so we only need to negate
+ // the lane index to do this.
+ unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
+ BuildMI(*BB, MI, DL, TII->get(Mips::SUB), LaneTmp2)
+ .addReg(Mips::ZERO)
+ .addReg(LaneReg);
+ BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
+ .addReg(WdTmp2)
+ .addReg(WdTmp2)
+ .addReg(LaneTmp2);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+// Emit the FILL_FW pseudo instruction.
+//
+// fill_fw_pseudo $wd, $fs
+// =>
+// implicit_def $wt1
+// insert_subreg $wt2:subreg_lo, $wt1, $fs
+// splati.w $wd, $wt2[0]
+MachineBasicBlock *
+MipsSETargetLowering::emitFILL_FW(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Wd = MI->getOperand(0).getReg();
+ unsigned Fs = MI->getOperand(1).getReg();
+ unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
+ unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
+
+ BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
+ BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
+ .addReg(Wt1)
+ .addReg(Fs)
+ .addImm(Mips::sub_lo);
+ BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+// Emit the FILL_FD pseudo instruction.
+//
+// fill_fd_pseudo $wd, $fs
+// =>
+// implicit_def $wt1
+// insert_subreg $wt2:subreg_64, $wt1, $fs
+// splati.d $wd, $wt2[0]
+MachineBasicBlock *
+MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ assert(Subtarget.isFP64bit());
+
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Wd = MI->getOperand(0).getReg();
+ unsigned Fs = MI->getOperand(1).getReg();
+ unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
+ unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
+
+ BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
+ BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
+ .addReg(Wt1)
+ .addReg(Fs)
+ .addImm(Mips::sub_64);
+ BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+// Emit the FEXP2_W_1 pseudo instructions.
+//
+// fexp2_w_1_pseudo $wd, $wt
+// =>
+// ldi.w $ws, 1
+// fexp2.w $wd, $ws, $wt
+MachineBasicBlock *
+MipsSETargetLowering::emitFEXP2_W_1(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
+ const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
+ unsigned Ws1 = RegInfo.createVirtualRegister(RC);
+ unsigned Ws2 = RegInfo.createVirtualRegister(RC);
+ DebugLoc DL = MI->getDebugLoc();
+
+ // Splat 1.0 into a vector
+ BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
+ BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
+
+ // Emit 1.0 * fexp2(Wt)
+ BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI->getOperand(0).getReg())
+ .addReg(Ws2)
+ .addReg(MI->getOperand(1).getReg());
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+// Emit the FEXP2_D_1 pseudo instructions.
+//
+// fexp2_d_1_pseudo $wd, $wt
+// =>
+// ldi.d $ws, 1
+// fexp2.d $wd, $ws, $wt
+MachineBasicBlock *
+MipsSETargetLowering::emitFEXP2_D_1(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
+ const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
+ unsigned Ws1 = RegInfo.createVirtualRegister(RC);
+ unsigned Ws2 = RegInfo.createVirtualRegister(RC);
+ DebugLoc DL = MI->getDebugLoc();
+
+ // Splat 1.0 into a vector
+ BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
+ BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
+
+ // Emit 1.0 * fexp2(Wt)
+ BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI->getOperand(0).getReg())
+ .addReg(Ws2)
+ .addReg(MI->getOperand(1).getReg());
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.h b/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.h
new file mode 100644
index 0000000..00d8683
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.h
@@ -0,0 +1,116 @@
+//===-- MipsSEISelLowering.h - MipsSE DAG Lowering Interface ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Subclass of MipsTargetLowering specialized for mips32/64.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSSEISELLOWERING_H
+#define MIPSSEISELLOWERING_H
+
+#include "MipsISelLowering.h"
+#include "MipsRegisterInfo.h"
+
+namespace llvm {
+ class MipsSETargetLowering : public MipsTargetLowering {
+ public:
+ explicit MipsSETargetLowering(MipsTargetMachine &TM,
+ const MipsSubtarget &STI);
+
+ /// \brief Enable MSA support for the given integer type and Register
+ /// class.
+ void addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC);
+ /// \brief Enable MSA support for the given floating-point type and
+ /// Register class.
+ void addMSAFloatType(MVT::SimpleValueType Ty,
+ const TargetRegisterClass *RC);
+
+ bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AS = 0,
+ bool *Fast = nullptr) const override;
+
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+
+ MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const override;
+
+ bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
+ EVT VT) const override {
+ return false;
+ }
+
+ const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
+
+ private:
+ bool isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
+ unsigned NextStackOffset,
+ const MipsFunctionInfo& FI) const override;
+
+ void
+ getOpndList(SmallVectorImpl<SDValue> &Ops,
+ std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
+ bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
+ CallLoweringInfo &CLI, SDValue Callee,
+ SDValue Chain) const override;
+
+ SDValue lowerLOAD(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSTORE(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue lowerMulDiv(SDValue Op, unsigned NewOpc, bool HasLo, bool HasHi,
+ SelectionDAG &DAG) const;
+
+ SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
+ /// \brief Lower VECTOR_SHUFFLE into one of a number of instructions
+ /// depending on the indices in the shuffle.
+ SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
+
+ MachineBasicBlock *emitBPOSGE32(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ MachineBasicBlock *emitMSACBranchPseudo(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned BranchOp) const;
+ /// \brief Emit the COPY_FW pseudo instruction
+ MachineBasicBlock *emitCOPY_FW(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ /// \brief Emit the COPY_FD pseudo instruction
+ MachineBasicBlock *emitCOPY_FD(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ /// \brief Emit the INSERT_FW pseudo instruction
+ MachineBasicBlock *emitINSERT_FW(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ /// \brief Emit the INSERT_FD pseudo instruction
+ MachineBasicBlock *emitINSERT_FD(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ /// \brief Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction
+ MachineBasicBlock *emitINSERT_DF_VIDX(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned EltSizeInBytes,
+ bool IsFP) const;
+ /// \brief Emit the FILL_FW pseudo instruction
+ MachineBasicBlock *emitFILL_FW(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ /// \brief Emit the FILL_FD pseudo instruction
+ MachineBasicBlock *emitFILL_FD(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ /// \brief Emit the FEXP2_W_1 pseudo instructions.
+ MachineBasicBlock *emitFEXP2_W_1(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ /// \brief Emit the FEXP2_D_1 pseudo instructions.
+ MachineBasicBlock *emitFEXP2_D_1(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ };
+}
+
+#endif // MipsSEISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.cpp b/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.cpp
new file mode 100644
index 0000000..69cb74c
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.cpp
@@ -0,0 +1,637 @@
+//===-- MipsSEInstrInfo.cpp - Mips32/64 Instruction Information -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips32/64 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsSEInstrInfo.h"
+#include "InstPrinter/MipsInstPrinter.h"
+#include "MipsMachineFunction.h"
+#include "MipsTargetMachine.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+MipsSEInstrInfo::MipsSEInstrInfo(const MipsSubtarget &STI)
+ : MipsInstrInfo(STI, STI.getRelocationModel() == Reloc::PIC_ ? Mips::B
+ : Mips::J),
+ RI(STI), IsN64(STI.isABI_N64()) {}
+
+const MipsRegisterInfo &MipsSEInstrInfo::getRegisterInfo() const {
+ return RI;
+}
+
+/// isLoadFromStackSlot - If the specified machine instruction is a direct
+/// load from a stack slot, return the virtual or physical register number of
+/// the destination along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than loading from the stack slot.
+unsigned MipsSEInstrInfo::
+isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const
+{
+ unsigned Opc = MI->getOpcode();
+
+ if ((Opc == Mips::LW) || (Opc == Mips::LD) ||
+ (Opc == Mips::LWC1) || (Opc == Mips::LDC1) || (Opc == Mips::LDC164)) {
+ if ((MI->getOperand(1).isFI()) && // is a stack slot
+ (MI->getOperand(2).isImm()) && // the imm is zero
+ (isZeroImm(MI->getOperand(2)))) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ }
+
+ return 0;
+}
+
+/// isStoreToStackSlot - If the specified machine instruction is a direct
+/// store to a stack slot, return the virtual or physical register number of
+/// the source reg along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than storing to the stack slot.
+unsigned MipsSEInstrInfo::
+isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const
+{
+ unsigned Opc = MI->getOpcode();
+
+ if ((Opc == Mips::SW) || (Opc == Mips::SD) ||
+ (Opc == Mips::SWC1) || (Opc == Mips::SDC1) || (Opc == Mips::SDC164)) {
+ if ((MI->getOperand(1).isFI()) && // is a stack slot
+ (MI->getOperand(2).isImm()) && // the imm is zero
+ (isZeroImm(MI->getOperand(2)))) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ }
+ return 0;
+}
+
+void MipsSEInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ unsigned Opc = 0, ZeroReg = 0;
+ bool isMicroMips = Subtarget.inMicroMipsMode();
+
+ if (Mips::GPR32RegClass.contains(DestReg)) { // Copy to CPU Reg.
+ if (Mips::GPR32RegClass.contains(SrcReg)) {
+ if (isMicroMips)
+ Opc = Mips::MOVE16_MM;
+ else
+ Opc = Mips::ADDu, ZeroReg = Mips::ZERO;
+ } else if (Mips::CCRRegClass.contains(SrcReg))
+ Opc = Mips::CFC1;
+ else if (Mips::FGR32RegClass.contains(SrcReg))
+ Opc = Mips::MFC1;
+ else if (Mips::HI32RegClass.contains(SrcReg)) {
+ Opc = isMicroMips ? Mips::MFHI16_MM : Mips::MFHI;
+ SrcReg = 0;
+ } else if (Mips::LO32RegClass.contains(SrcReg)) {
+ Opc = isMicroMips ? Mips::MFLO16_MM : Mips::MFLO;
+ SrcReg = 0;
+ } else if (Mips::HI32DSPRegClass.contains(SrcReg))
+ Opc = Mips::MFHI_DSP;
+ else if (Mips::LO32DSPRegClass.contains(SrcReg))
+ Opc = Mips::MFLO_DSP;
+ else if (Mips::DSPCCRegClass.contains(SrcReg)) {
+ BuildMI(MBB, I, DL, get(Mips::RDDSP), DestReg).addImm(1 << 4)
+ .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
+ return;
+ }
+ else if (Mips::MSACtrlRegClass.contains(SrcReg))
+ Opc = Mips::CFCMSA;
+ }
+ else if (Mips::GPR32RegClass.contains(SrcReg)) { // Copy from CPU Reg.
+ if (Mips::CCRRegClass.contains(DestReg))
+ Opc = Mips::CTC1;
+ else if (Mips::FGR32RegClass.contains(DestReg))
+ Opc = Mips::MTC1;
+ else if (Mips::HI32RegClass.contains(DestReg))
+ Opc = Mips::MTHI, DestReg = 0;
+ else if (Mips::LO32RegClass.contains(DestReg))
+ Opc = Mips::MTLO, DestReg = 0;
+ else if (Mips::HI32DSPRegClass.contains(DestReg))
+ Opc = Mips::MTHI_DSP;
+ else if (Mips::LO32DSPRegClass.contains(DestReg))
+ Opc = Mips::MTLO_DSP;
+ else if (Mips::DSPCCRegClass.contains(DestReg)) {
+ BuildMI(MBB, I, DL, get(Mips::WRDSP))
+ .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1 << 4)
+ .addReg(DestReg, RegState::ImplicitDefine);
+ return;
+ }
+ else if (Mips::MSACtrlRegClass.contains(DestReg))
+ Opc = Mips::CTCMSA;
+ }
+ else if (Mips::FGR32RegClass.contains(DestReg, SrcReg))
+ Opc = Mips::FMOV_S;
+ else if (Mips::AFGR64RegClass.contains(DestReg, SrcReg))
+ Opc = Mips::FMOV_D32;
+ else if (Mips::FGR64RegClass.contains(DestReg, SrcReg))
+ Opc = Mips::FMOV_D64;
+ else if (Mips::GPR64RegClass.contains(DestReg)) { // Copy to CPU64 Reg.
+ if (Mips::GPR64RegClass.contains(SrcReg))
+ Opc = Mips::DADDu, ZeroReg = Mips::ZERO_64;
+ else if (Mips::HI64RegClass.contains(SrcReg))
+ Opc = Mips::MFHI64, SrcReg = 0;
+ else if (Mips::LO64RegClass.contains(SrcReg))
+ Opc = Mips::MFLO64, SrcReg = 0;
+ else if (Mips::FGR64RegClass.contains(SrcReg))
+ Opc = Mips::DMFC1;
+ }
+ else if (Mips::GPR64RegClass.contains(SrcReg)) { // Copy from CPU64 Reg.
+ if (Mips::HI64RegClass.contains(DestReg))
+ Opc = Mips::MTHI64, DestReg = 0;
+ else if (Mips::LO64RegClass.contains(DestReg))
+ Opc = Mips::MTLO64, DestReg = 0;
+ else if (Mips::FGR64RegClass.contains(DestReg))
+ Opc = Mips::DMTC1;
+ }
+ else if (Mips::MSA128BRegClass.contains(DestReg)) { // Copy to MSA reg
+ if (Mips::MSA128BRegClass.contains(SrcReg))
+ Opc = Mips::MOVE_V;
+ }
+
+ assert(Opc && "Cannot copy registers");
+
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc));
+
+ if (DestReg)
+ MIB.addReg(DestReg, RegState::Define);
+
+ if (SrcReg)
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+
+ if (ZeroReg)
+ MIB.addReg(ZeroReg);
+}
+
+void MipsSEInstrInfo::
+storeRegToStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC, const TargetRegisterInfo *TRI,
+ int64_t Offset) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOStore);
+
+ unsigned Opc = 0;
+
+ if (Mips::GPR32RegClass.hasSubClassEq(RC))
+ Opc = Mips::SW;
+ else if (Mips::GPR64RegClass.hasSubClassEq(RC))
+ Opc = Mips::SD;
+ else if (Mips::ACC64RegClass.hasSubClassEq(RC))
+ Opc = Mips::STORE_ACC64;
+ else if (Mips::ACC64DSPRegClass.hasSubClassEq(RC))
+ Opc = Mips::STORE_ACC64DSP;
+ else if (Mips::ACC128RegClass.hasSubClassEq(RC))
+ Opc = Mips::STORE_ACC128;
+ else if (Mips::DSPCCRegClass.hasSubClassEq(RC))
+ Opc = Mips::STORE_CCOND_DSP;
+ else if (Mips::FGR32RegClass.hasSubClassEq(RC))
+ Opc = Mips::SWC1;
+ else if (Mips::AFGR64RegClass.hasSubClassEq(RC))
+ Opc = Mips::SDC1;
+ else if (Mips::FGR64RegClass.hasSubClassEq(RC))
+ Opc = Mips::SDC164;
+ else if (RC->hasType(MVT::v16i8))
+ Opc = Mips::ST_B;
+ else if (RC->hasType(MVT::v8i16) || RC->hasType(MVT::v8f16))
+ Opc = Mips::ST_H;
+ else if (RC->hasType(MVT::v4i32) || RC->hasType(MVT::v4f32))
+ Opc = Mips::ST_W;
+ else if (RC->hasType(MVT::v2i64) || RC->hasType(MVT::v2f64))
+ Opc = Mips::ST_D;
+
+ assert(Opc && "Register class not handled!");
+ BuildMI(MBB, I, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(Offset).addMemOperand(MMO);
+}
+
+void MipsSEInstrInfo::
+loadRegFromStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, int FI, const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI, int64_t Offset) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOLoad);
+ unsigned Opc = 0;
+
+ if (Mips::GPR32RegClass.hasSubClassEq(RC))
+ Opc = Mips::LW;
+ else if (Mips::GPR64RegClass.hasSubClassEq(RC))
+ Opc = Mips::LD;
+ else if (Mips::ACC64RegClass.hasSubClassEq(RC))
+ Opc = Mips::LOAD_ACC64;
+ else if (Mips::ACC64DSPRegClass.hasSubClassEq(RC))
+ Opc = Mips::LOAD_ACC64DSP;
+ else if (Mips::ACC128RegClass.hasSubClassEq(RC))
+ Opc = Mips::LOAD_ACC128;
+ else if (Mips::DSPCCRegClass.hasSubClassEq(RC))
+ Opc = Mips::LOAD_CCOND_DSP;
+ else if (Mips::FGR32RegClass.hasSubClassEq(RC))
+ Opc = Mips::LWC1;
+ else if (Mips::AFGR64RegClass.hasSubClassEq(RC))
+ Opc = Mips::LDC1;
+ else if (Mips::FGR64RegClass.hasSubClassEq(RC))
+ Opc = Mips::LDC164;
+ else if (RC->hasType(MVT::v16i8))
+ Opc = Mips::LD_B;
+ else if (RC->hasType(MVT::v8i16) || RC->hasType(MVT::v8f16))
+ Opc = Mips::LD_H;
+ else if (RC->hasType(MVT::v4i32) || RC->hasType(MVT::v4f32))
+ Opc = Mips::LD_W;
+ else if (RC->hasType(MVT::v2i64) || RC->hasType(MVT::v2f64))
+ Opc = Mips::LD_D;
+
+ assert(Opc && "Register class not handled!");
+ BuildMI(MBB, I, DL, get(Opc), DestReg).addFrameIndex(FI).addImm(Offset)
+ .addMemOperand(MMO);
+}
+
+bool MipsSEInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ MachineBasicBlock &MBB = *MI->getParent();
+ bool isMicroMips = Subtarget.inMicroMipsMode();
+ unsigned Opc;
+
+ switch(MI->getDesc().getOpcode()) {
+ default:
+ return false;
+ case Mips::RetRA:
+ expandRetRA(MBB, MI);
+ break;
+ case Mips::PseudoMFHI:
+ Opc = isMicroMips ? Mips::MFHI16_MM : Mips::MFHI;
+ expandPseudoMFHiLo(MBB, MI, Opc);
+ break;
+ case Mips::PseudoMFLO:
+ Opc = isMicroMips ? Mips::MFLO16_MM : Mips::MFLO;
+ expandPseudoMFHiLo(MBB, MI, Opc);
+ break;
+ case Mips::PseudoMFHI64:
+ expandPseudoMFHiLo(MBB, MI, Mips::MFHI64);
+ break;
+ case Mips::PseudoMFLO64:
+ expandPseudoMFHiLo(MBB, MI, Mips::MFLO64);
+ break;
+ case Mips::PseudoMTLOHI:
+ expandPseudoMTLoHi(MBB, MI, Mips::MTLO, Mips::MTHI, false);
+ break;
+ case Mips::PseudoMTLOHI64:
+ expandPseudoMTLoHi(MBB, MI, Mips::MTLO64, Mips::MTHI64, false);
+ break;
+ case Mips::PseudoMTLOHI_DSP:
+ expandPseudoMTLoHi(MBB, MI, Mips::MTLO_DSP, Mips::MTHI_DSP, true);
+ break;
+ case Mips::PseudoCVT_S_W:
+ expandCvtFPInt(MBB, MI, Mips::CVT_S_W, Mips::MTC1, false);
+ break;
+ case Mips::PseudoCVT_D32_W:
+ expandCvtFPInt(MBB, MI, Mips::CVT_D32_W, Mips::MTC1, false);
+ break;
+ case Mips::PseudoCVT_S_L:
+ expandCvtFPInt(MBB, MI, Mips::CVT_S_L, Mips::DMTC1, true);
+ break;
+ case Mips::PseudoCVT_D64_W:
+ expandCvtFPInt(MBB, MI, Mips::CVT_D64_W, Mips::MTC1, true);
+ break;
+ case Mips::PseudoCVT_D64_L:
+ expandCvtFPInt(MBB, MI, Mips::CVT_D64_L, Mips::DMTC1, true);
+ break;
+ case Mips::BuildPairF64:
+ expandBuildPairF64(MBB, MI, false);
+ break;
+ case Mips::BuildPairF64_64:
+ expandBuildPairF64(MBB, MI, true);
+ break;
+ case Mips::ExtractElementF64:
+ expandExtractElementF64(MBB, MI, false);
+ break;
+ case Mips::ExtractElementF64_64:
+ expandExtractElementF64(MBB, MI, true);
+ break;
+ case Mips::MIPSeh_return32:
+ case Mips::MIPSeh_return64:
+ expandEhReturn(MBB, MI);
+ break;
+ }
+
+ MBB.erase(MI);
+ return true;
+}
+
+/// getOppositeBranchOpc - Return the inverse of the specified
+/// opcode, e.g. turning BEQ to BNE.
+unsigned MipsSEInstrInfo::getOppositeBranchOpc(unsigned Opc) const {
+ switch (Opc) {
+ default: llvm_unreachable("Illegal opcode!");
+ case Mips::BEQ: return Mips::BNE;
+ case Mips::BNE: return Mips::BEQ;
+ case Mips::BGTZ: return Mips::BLEZ;
+ case Mips::BGEZ: return Mips::BLTZ;
+ case Mips::BLTZ: return Mips::BGEZ;
+ case Mips::BLEZ: return Mips::BGTZ;
+ case Mips::BEQ64: return Mips::BNE64;
+ case Mips::BNE64: return Mips::BEQ64;
+ case Mips::BGTZ64: return Mips::BLEZ64;
+ case Mips::BGEZ64: return Mips::BLTZ64;
+ case Mips::BLTZ64: return Mips::BGEZ64;
+ case Mips::BLEZ64: return Mips::BGTZ64;
+ case Mips::BC1T: return Mips::BC1F;
+ case Mips::BC1F: return Mips::BC1T;
+ }
+}
+
+/// Adjust SP by Amount bytes.
+void MipsSEInstrInfo::adjustStackPtr(unsigned SP, int64_t Amount,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const MipsSubtarget &STI = Subtarget;
+ DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
+ unsigned ADDu = STI.isABI_N64() ? Mips::DADDu : Mips::ADDu;
+ unsigned ADDiu = STI.isABI_N64() ? Mips::DADDiu : Mips::ADDiu;
+
+ if (isInt<16>(Amount))// addi sp, sp, amount
+ BuildMI(MBB, I, DL, get(ADDiu), SP).addReg(SP).addImm(Amount);
+ else { // Expand immediate that doesn't fit in 16-bit.
+ unsigned Reg = loadImmediate(Amount, MBB, I, DL, nullptr);
+ BuildMI(MBB, I, DL, get(ADDu), SP).addReg(SP).addReg(Reg, RegState::Kill);
+ }
+}
+
+/// This function generates the sequence of instructions needed to get the
+/// result of adding register REG and immediate IMM.
+unsigned
+MipsSEInstrInfo::loadImmediate(int64_t Imm, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator II, DebugLoc DL,
+ unsigned *NewImm) const {
+ MipsAnalyzeImmediate AnalyzeImm;
+ const MipsSubtarget &STI = Subtarget;
+ MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
+ unsigned Size = STI.isABI_N64() ? 64 : 32;
+ unsigned LUi = STI.isABI_N64() ? Mips::LUi64 : Mips::LUi;
+ unsigned ZEROReg = STI.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO;
+ const TargetRegisterClass *RC = STI.isABI_N64() ?
+ &Mips::GPR64RegClass : &Mips::GPR32RegClass;
+ bool LastInstrIsADDiu = NewImm;
+
+ const MipsAnalyzeImmediate::InstSeq &Seq =
+ AnalyzeImm.Analyze(Imm, Size, LastInstrIsADDiu);
+ MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
+
+ assert(Seq.size() && (!LastInstrIsADDiu || (Seq.size() > 1)));
+
+ // The first instruction can be a LUi, which is different from other
+ // instructions (ADDiu, ORI and SLL) in that it does not have a register
+ // operand.
+ unsigned Reg = RegInfo.createVirtualRegister(RC);
+
+ if (Inst->Opc == LUi)
+ BuildMI(MBB, II, DL, get(LUi), Reg).addImm(SignExtend64<16>(Inst->ImmOpnd));
+ else
+ BuildMI(MBB, II, DL, get(Inst->Opc), Reg).addReg(ZEROReg)
+ .addImm(SignExtend64<16>(Inst->ImmOpnd));
+
+ // Build the remaining instructions in Seq.
+ for (++Inst; Inst != Seq.end() - LastInstrIsADDiu; ++Inst)
+ BuildMI(MBB, II, DL, get(Inst->Opc), Reg).addReg(Reg, RegState::Kill)
+ .addImm(SignExtend64<16>(Inst->ImmOpnd));
+
+ if (LastInstrIsADDiu)
+ *NewImm = Inst->ImmOpnd;
+
+ return Reg;
+}
+
+unsigned MipsSEInstrInfo::getAnalyzableBrOpc(unsigned Opc) const {
+ return (Opc == Mips::BEQ || Opc == Mips::BNE || Opc == Mips::BGTZ ||
+ Opc == Mips::BGEZ || Opc == Mips::BLTZ || Opc == Mips::BLEZ ||
+ Opc == Mips::BEQ64 || Opc == Mips::BNE64 || Opc == Mips::BGTZ64 ||
+ Opc == Mips::BGEZ64 || Opc == Mips::BLTZ64 || Opc == Mips::BLEZ64 ||
+ Opc == Mips::BC1T || Opc == Mips::BC1F || Opc == Mips::B ||
+ Opc == Mips::J) ?
+ Opc : 0;
+}
+
+void MipsSEInstrInfo::expandRetRA(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ if (Subtarget.isGP64bit())
+ BuildMI(MBB, I, I->getDebugLoc(), get(Mips::PseudoReturn64))
+ .addReg(Mips::RA_64);
+ else
+ BuildMI(MBB, I, I->getDebugLoc(), get(Mips::PseudoReturn)).addReg(Mips::RA);
+}
+
+std::pair<bool, bool>
+MipsSEInstrInfo::compareOpndSize(unsigned Opc,
+ const MachineFunction &MF) const {
+ const MCInstrDesc &Desc = get(Opc);
+ assert(Desc.NumOperands == 2 && "Unary instruction expected.");
+ const MipsRegisterInfo *RI = &getRegisterInfo();
+ unsigned DstRegSize = getRegClass(Desc, 0, RI, MF)->getSize();
+ unsigned SrcRegSize = getRegClass(Desc, 1, RI, MF)->getSize();
+
+ return std::make_pair(DstRegSize > SrcRegSize, DstRegSize < SrcRegSize);
+}
+
+void MipsSEInstrInfo::expandPseudoMFHiLo(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned NewOpc) const {
+ BuildMI(MBB, I, I->getDebugLoc(), get(NewOpc), I->getOperand(0).getReg());
+}
+
+void MipsSEInstrInfo::expandPseudoMTLoHi(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned LoOpc,
+ unsigned HiOpc,
+ bool HasExplicitDef) const {
+ // Expand
+ // lo_hi pseudomtlohi $gpr0, $gpr1
+ // to these two instructions:
+ // mtlo $gpr0
+ // mthi $gpr1
+
+ DebugLoc DL = I->getDebugLoc();
+ const MachineOperand &SrcLo = I->getOperand(1), &SrcHi = I->getOperand(2);
+ MachineInstrBuilder LoInst = BuildMI(MBB, I, DL, get(LoOpc));
+ MachineInstrBuilder HiInst = BuildMI(MBB, I, DL, get(HiOpc));
+ LoInst.addReg(SrcLo.getReg(), getKillRegState(SrcLo.isKill()));
+ HiInst.addReg(SrcHi.getReg(), getKillRegState(SrcHi.isKill()));
+
+ // Add lo/hi registers if the mtlo/hi instructions created have explicit
+ // def registers.
+ if (HasExplicitDef) {
+ unsigned DstReg = I->getOperand(0).getReg();
+ unsigned DstLo = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo);
+ unsigned DstHi = getRegisterInfo().getSubReg(DstReg, Mips::sub_hi);
+ LoInst.addReg(DstLo, RegState::Define);
+ HiInst.addReg(DstHi, RegState::Define);
+ }
+}
+
+void MipsSEInstrInfo::expandCvtFPInt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned CvtOpc, unsigned MovOpc,
+ bool IsI64) const {
+ const MCInstrDesc &CvtDesc = get(CvtOpc), &MovDesc = get(MovOpc);
+ const MachineOperand &Dst = I->getOperand(0), &Src = I->getOperand(1);
+ unsigned DstReg = Dst.getReg(), SrcReg = Src.getReg(), TmpReg = DstReg;
+ unsigned KillSrc = getKillRegState(Src.isKill());
+ DebugLoc DL = I->getDebugLoc();
+ bool DstIsLarger, SrcIsLarger;
+
+ std::tie(DstIsLarger, SrcIsLarger) =
+ compareOpndSize(CvtOpc, *MBB.getParent());
+
+ if (DstIsLarger)
+ TmpReg = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo);
+
+ if (SrcIsLarger)
+ DstReg = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo);
+
+ BuildMI(MBB, I, DL, MovDesc, TmpReg).addReg(SrcReg, KillSrc);
+ BuildMI(MBB, I, DL, CvtDesc, DstReg).addReg(TmpReg, RegState::Kill);
+}
+
+void MipsSEInstrInfo::expandExtractElementF64(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ bool FP64) const {
+ unsigned DstReg = I->getOperand(0).getReg();
+ unsigned SrcReg = I->getOperand(1).getReg();
+ unsigned N = I->getOperand(2).getImm();
+ DebugLoc dl = I->getDebugLoc();
+
+ assert(N < 2 && "Invalid immediate");
+ unsigned SubIdx = N ? Mips::sub_hi : Mips::sub_lo;
+ unsigned SubReg = getRegisterInfo().getSubReg(SrcReg, SubIdx);
+
+ // FPXX on MIPS-II or MIPS32r1 should have been handled with a spill/reload
+ // in MipsSEFrameLowering.cpp.
+ assert(!(Subtarget.isABI_FPXX() && !Subtarget.hasMips32r2()));
+
+ // FP64A (FP64 with nooddspreg) should have been handled with a spill/reload
+ // in MipsSEFrameLowering.cpp.
+ assert(!(Subtarget.isFP64bit() && !Subtarget.useOddSPReg()));
+
+ if (SubIdx == Mips::sub_hi && Subtarget.hasMTHC1()) {
+ // FIXME: Strictly speaking MFHC1 only reads the top 32-bits however, we
+ // claim to read the whole 64-bits as part of a white lie used to
+ // temporarily work around a widespread bug in the -mfp64 support.
+ // The problem is that none of the 32-bit fpu ops mention the fact
+ // that they clobber the upper 32-bits of the 64-bit FPR. Fixing that
+ // requires a major overhaul of the FPU implementation which can't
+ // be done right now due to time constraints.
+ // MFHC1 is one of two instructions that are affected since they are
+ // the only instructions that don't read the lower 32-bits.
+ // We therefore pretend that it reads the bottom 32-bits to
+ // artificially create a dependency and prevent the scheduler
+ // changing the behaviour of the code.
+ BuildMI(MBB, I, dl, get(FP64 ? Mips::MFHC1_D64 : Mips::MFHC1_D32), DstReg)
+ .addReg(SrcReg);
+ } else
+ BuildMI(MBB, I, dl, get(Mips::MFC1), DstReg).addReg(SubReg);
+}
+
+void MipsSEInstrInfo::expandBuildPairF64(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ bool FP64) const {
+ unsigned DstReg = I->getOperand(0).getReg();
+ unsigned LoReg = I->getOperand(1).getReg(), HiReg = I->getOperand(2).getReg();
+ const MCInstrDesc& Mtc1Tdd = get(Mips::MTC1);
+ DebugLoc dl = I->getDebugLoc();
+ const TargetRegisterInfo &TRI = getRegisterInfo();
+
+ // When mthc1 is available, use:
+ // mtc1 Lo, $fp
+ // mthc1 Hi, $fp
+ //
+ // Otherwise, for O32 FPXX ABI:
+ // spill + reload via ldc1
+ // This case is handled by the frame lowering code.
+ //
+ // Otherwise, for FP32:
+ // mtc1 Lo, $fp
+ // mtc1 Hi, $fp + 1
+ //
+ // The case where dmtc1 is available doesn't need to be handled here
+ // because it never creates a BuildPairF64 node.
+
+ // FPXX on MIPS-II or MIPS32r1 should have been handled with a spill/reload
+ // in MipsSEFrameLowering.cpp.
+ assert(!(Subtarget.isABI_FPXX() && !Subtarget.hasMips32r2()));
+
+ // FP64A (FP64 with nooddspreg) should have been handled with a spill/reload
+ // in MipsSEFrameLowering.cpp.
+ assert(!(Subtarget.isFP64bit() && !Subtarget.useOddSPReg()));
+
+ BuildMI(MBB, I, dl, Mtc1Tdd, TRI.getSubReg(DstReg, Mips::sub_lo))
+ .addReg(LoReg);
+
+ if (Subtarget.hasMTHC1()) {
+ // FIXME: The .addReg(DstReg) is a white lie used to temporarily work
+ // around a widespread bug in the -mfp64 support.
+ // The problem is that none of the 32-bit fpu ops mention the fact
+ // that they clobber the upper 32-bits of the 64-bit FPR. Fixing that
+ // requires a major overhaul of the FPU implementation which can't
+ // be done right now due to time constraints.
+ // MTHC1 is one of two instructions that are affected since they are
+ // the only instructions that don't read the lower 32-bits.
+ // We therefore pretend that it reads the bottom 32-bits to
+ // artificially create a dependency and prevent the scheduler
+ // changing the behaviour of the code.
+ BuildMI(MBB, I, dl, get(FP64 ? Mips::MTHC1_D64 : Mips::MTHC1_D32), DstReg)
+ .addReg(DstReg)
+ .addReg(HiReg);
+ } else if (Subtarget.isABI_FPXX())
+ llvm_unreachable("BuildPairF64 not expanded in frame lowering code!");
+ else
+ BuildMI(MBB, I, dl, Mtc1Tdd, TRI.getSubReg(DstReg, Mips::sub_hi))
+ .addReg(HiReg);
+}
+
+void MipsSEInstrInfo::expandEhReturn(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ // This pseudo instruction is generated as part of the lowering of
+ // ISD::EH_RETURN. We convert it to a stack increment by OffsetReg, and
+ // indirect jump to TargetReg
+ unsigned ADDU = Subtarget.isABI_N64() ? Mips::DADDu : Mips::ADDu;
+ unsigned SP = Subtarget.isGP64bit() ? Mips::SP_64 : Mips::SP;
+ unsigned RA = Subtarget.isGP64bit() ? Mips::RA_64 : Mips::RA;
+ unsigned T9 = Subtarget.isGP64bit() ? Mips::T9_64 : Mips::T9;
+ unsigned ZERO = Subtarget.isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
+ unsigned OffsetReg = I->getOperand(0).getReg();
+ unsigned TargetReg = I->getOperand(1).getReg();
+
+ // addu $ra, $v0, $zero
+ // addu $sp, $sp, $v1
+ // jr $ra (via RetRA)
+ const TargetMachine &TM = MBB.getParent()->getTarget();
+ if (TM.getRelocationModel() == Reloc::PIC_)
+ BuildMI(MBB, I, I->getDebugLoc(), TM.getInstrInfo()->get(ADDU), T9)
+ .addReg(TargetReg)
+ .addReg(ZERO);
+ BuildMI(MBB, I, I->getDebugLoc(), TM.getInstrInfo()->get(ADDU), RA)
+ .addReg(TargetReg)
+ .addReg(ZERO);
+ BuildMI(MBB, I, I->getDebugLoc(), TM.getInstrInfo()->get(ADDU), SP)
+ .addReg(SP)
+ .addReg(OffsetReg);
+ expandRetRA(MBB, I);
+}
+
+const MipsInstrInfo *llvm::createMipsSEInstrInfo(const MipsSubtarget &STI) {
+ return new MipsSEInstrInfo(STI);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.h b/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.h
new file mode 100644
index 0000000..9576fef
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.h
@@ -0,0 +1,119 @@
+//===-- MipsSEInstrInfo.h - Mips32/64 Instruction Information ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips32/64 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSSEINSTRUCTIONINFO_H
+#define MIPSSEINSTRUCTIONINFO_H
+
+#include "MipsInstrInfo.h"
+#include "MipsSERegisterInfo.h"
+
+namespace llvm {
+
+class MipsSEInstrInfo : public MipsInstrInfo {
+ const MipsSERegisterInfo RI;
+ bool IsN64;
+
+public:
+ explicit MipsSEInstrInfo(const MipsSubtarget &STI);
+
+ const MipsRegisterInfo &getRegisterInfo() const override;
+
+ /// isLoadFromStackSlot - If the specified machine instruction is a direct
+ /// load from a stack slot, return the virtual or physical register number of
+ /// the destination along with the FrameIndex of the loaded stack slot. If
+ /// not, return 0. This predicate must return 0 if the instruction has
+ /// any side effects other than loading from the stack slot.
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ /// isStoreToStackSlot - If the specified machine instruction is a direct
+ /// store to a stack slot, return the virtual or physical register number of
+ /// the source reg along with the FrameIndex of the loaded stack slot. If
+ /// not, return 0. This predicate must return 0 if the instruction has
+ /// any side effects other than storing to the stack slot.
+ unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+
+ void storeRegToStack(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ int64_t Offset) const override;
+
+ void loadRegFromStack(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ int64_t Offset) const override;
+
+ bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
+
+ unsigned getOppositeBranchOpc(unsigned Opc) const override;
+
+ /// Adjust SP by Amount bytes.
+ void adjustStackPtr(unsigned SP, int64_t Amount, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const;
+
+ /// Emit a series of instructions to load an immediate. If NewImm is a
+ /// non-NULL parameter, the last instruction is not emitted, but instead
+ /// its immediate operand is returned in NewImm.
+ unsigned loadImmediate(int64_t Imm, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator II, DebugLoc DL,
+ unsigned *NewImm) const;
+
+private:
+ unsigned getAnalyzableBrOpc(unsigned Opc) const override;
+
+ void expandRetRA(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const;
+
+ std::pair<bool, bool> compareOpndSize(unsigned Opc,
+ const MachineFunction &MF) const;
+
+ void expandPseudoMFHiLo(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned NewOpc) const;
+
+ void expandPseudoMTLoHi(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned LoOpc, unsigned HiOpc,
+ bool HasExplicitDef) const;
+
+ /// Expand pseudo Int-to-FP conversion instructions.
+ ///
+ /// For example, the following pseudo instruction
+ /// PseudoCVT_D32_W D2, A5
+ /// gets expanded into these two instructions:
+ /// MTC1 F4, A5
+ /// CVT_D32_W D2, F4
+ ///
+ /// We do this expansion post-RA to avoid inserting a floating point copy
+ /// instruction between MTC1 and CVT_D32_W.
+ void expandCvtFPInt(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned CvtOpc, unsigned MovOpc, bool IsI64) const;
+
+ void expandExtractElementF64(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, bool FP64) const;
+ void expandBuildPairF64(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, bool FP64) const;
+ void expandEhReturn(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const;
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.cpp b/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.cpp
new file mode 100644
index 0000000..0af1a6b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.cpp
@@ -0,0 +1,204 @@
+//===-- MipsSERegisterInfo.cpp - MIPS32/64 Register Information -== -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the MIPS32/64 implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsSERegisterInfo.h"
+#include "Mips.h"
+#include "MipsAnalyzeImmediate.h"
+#include "MipsMachineFunction.h"
+#include "MipsSEInstrInfo.h"
+#include "MipsSubtarget.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-reg-info"
+
+MipsSERegisterInfo::MipsSERegisterInfo(const MipsSubtarget &ST)
+ : MipsRegisterInfo(ST) {}
+
+bool MipsSERegisterInfo::
+requiresRegisterScavenging(const MachineFunction &MF) const {
+ return true;
+}
+
+bool MipsSERegisterInfo::
+requiresFrameIndexScavenging(const MachineFunction &MF) const {
+ return true;
+}
+
+const TargetRegisterClass *
+MipsSERegisterInfo::intRegClass(unsigned Size) const {
+ if (Size == 4)
+ return &Mips::GPR32RegClass;
+
+ assert(Size == 8);
+ return &Mips::GPR64RegClass;
+}
+
+/// Get the size of the offset supported by the given load/store.
+/// The result includes the effects of any scale factors applied to the
+/// instruction immediate.
+static inline unsigned getLoadStoreOffsetSizeInBits(const unsigned Opcode) {
+ switch (Opcode) {
+ case Mips::LD_B:
+ case Mips::ST_B:
+ return 10;
+ case Mips::LD_H:
+ case Mips::ST_H:
+ return 10 + 1 /* scale factor */;
+ case Mips::LD_W:
+ case Mips::ST_W:
+ return 10 + 2 /* scale factor */;
+ case Mips::LD_D:
+ case Mips::ST_D:
+ return 10 + 3 /* scale factor */;
+ default:
+ return 16;
+ }
+}
+
+/// Get the scale factor applied to the immediate in the given load/store.
+static inline unsigned getLoadStoreOffsetAlign(const unsigned Opcode) {
+ switch (Opcode) {
+ case Mips::LD_H:
+ case Mips::ST_H:
+ return 2;
+ case Mips::LD_W:
+ case Mips::ST_W:
+ return 4;
+ case Mips::LD_D:
+ case Mips::ST_D:
+ return 8;
+ default:
+ return 1;
+ }
+}
+
+void MipsSERegisterInfo::eliminateFI(MachineBasicBlock::iterator II,
+ unsigned OpNo, int FrameIndex,
+ uint64_t StackSize,
+ int64_t SPOffset) const {
+ MachineInstr &MI = *II;
+ MachineFunction &MF = *MI.getParent()->getParent();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ int MinCSFI = 0;
+ int MaxCSFI = -1;
+
+ if (CSI.size()) {
+ MinCSFI = CSI[0].getFrameIdx();
+ MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
+ }
+
+ bool EhDataRegFI = MipsFI->isEhDataRegFI(FrameIndex);
+
+ // The following stack frame objects are always referenced relative to $sp:
+ // 1. Outgoing arguments.
+ // 2. Pointer to dynamically allocated stack space.
+ // 3. Locations for callee-saved registers.
+ // 4. Locations for eh data registers.
+ // Everything else is referenced relative to whatever register
+ // getFrameRegister() returns.
+ unsigned FrameReg;
+
+ if ((FrameIndex >= MinCSFI && FrameIndex <= MaxCSFI) || EhDataRegFI)
+ FrameReg = Subtarget.isABI_N64() ? Mips::SP_64 : Mips::SP;
+ else
+ FrameReg = getFrameRegister(MF);
+
+ // Calculate final offset.
+ // - There is no need to change the offset if the frame object is one of the
+ // following: an outgoing argument, pointer to a dynamically allocated
+ // stack space or a $gp restore location,
+ // - If the frame object is any of the following, its offset must be adjusted
+ // by adding the size of the stack:
+ // incoming argument, callee-saved register location or local variable.
+ bool IsKill = false;
+ int64_t Offset;
+
+ Offset = SPOffset + (int64_t)StackSize;
+ Offset += MI.getOperand(OpNo + 1).getImm();
+
+ DEBUG(errs() << "Offset : " << Offset << "\n" << "<--------->\n");
+
+ if (!MI.isDebugValue()) {
+ // Make sure Offset fits within the field available.
+ // For MSA instructions, this is a 10-bit signed immediate (scaled by
+ // element size), otherwise it is a 16-bit signed immediate.
+ unsigned OffsetBitSize = getLoadStoreOffsetSizeInBits(MI.getOpcode());
+ unsigned OffsetAlign = getLoadStoreOffsetAlign(MI.getOpcode());
+
+ if (OffsetBitSize < 16 && isInt<16>(Offset) &&
+ (!isIntN(OffsetBitSize, Offset) ||
+ OffsetToAlignment(Offset, OffsetAlign) != 0)) {
+ // If we have an offset that needs to fit into a signed n-bit immediate
+ // (where n < 16) and doesn't, but does fit into 16-bits then use an ADDiu
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = II->getDebugLoc();
+ unsigned ADDiu = Subtarget.isABI_N64() ? Mips::DADDiu : Mips::ADDiu;
+ const TargetRegisterClass *RC =
+ Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
+ MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
+ unsigned Reg = RegInfo.createVirtualRegister(RC);
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo *>(
+ MBB.getParent()->getTarget().getInstrInfo());
+ BuildMI(MBB, II, DL, TII.get(ADDiu), Reg).addReg(FrameReg).addImm(Offset);
+
+ FrameReg = Reg;
+ Offset = 0;
+ IsKill = true;
+ } else if (!isInt<16>(Offset)) {
+ // Otherwise split the offset into 16-bit pieces and add it in multiple
+ // instructions.
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = II->getDebugLoc();
+ unsigned ADDu = Subtarget.isABI_N64() ? Mips::DADDu : Mips::ADDu;
+ unsigned NewImm = 0;
+ const MipsSEInstrInfo &TII =
+ *static_cast<const MipsSEInstrInfo *>(
+ MBB.getParent()->getTarget().getInstrInfo());
+ unsigned Reg = TII.loadImmediate(Offset, MBB, II, DL,
+ OffsetBitSize == 16 ? &NewImm : nullptr);
+ BuildMI(MBB, II, DL, TII.get(ADDu), Reg).addReg(FrameReg)
+ .addReg(Reg, RegState::Kill);
+
+ FrameReg = Reg;
+ Offset = SignExtend64<16>(NewImm);
+ IsKill = true;
+ }
+ }
+
+ MI.getOperand(OpNo).ChangeToRegister(FrameReg, false, false, IsKill);
+ MI.getOperand(OpNo + 1).ChangeToImmediate(Offset);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.h b/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.h
new file mode 100644
index 0000000..f2f3a7e
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.h
@@ -0,0 +1,41 @@
+//===-- MipsSERegisterInfo.h - Mips32/64 Register Information ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Mips32/64 implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSSEREGISTERINFO_H
+#define MIPSSEREGISTERINFO_H
+
+#include "MipsRegisterInfo.h"
+
+namespace llvm {
+class MipsSEInstrInfo;
+
+class MipsSERegisterInfo : public MipsRegisterInfo {
+public:
+ MipsSERegisterInfo(const MipsSubtarget &Subtarget);
+
+ bool requiresRegisterScavenging(const MachineFunction &MF) const override;
+
+ bool requiresFrameIndexScavenging(const MachineFunction &MF) const override;
+
+ const TargetRegisterClass *intRegClass(unsigned Size) const override;
+
+private:
+ void eliminateFI(MachineBasicBlock::iterator II, unsigned OpNo,
+ int FrameIndex, uint64_t StackSize,
+ int64_t SPOffset) const override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsSchedule.td b/contrib/llvm/lib/Target/Mips/MipsSchedule.td
new file mode 100644
index 0000000..ea98199
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSchedule.td
@@ -0,0 +1,311 @@
+//===-- MipsSchedule.td - Mips Scheduling Definitions ------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Functional units across Mips chips sets. Based on GCC/Mips backend files.
+//===----------------------------------------------------------------------===//
+def ALU : FuncUnit;
+def IMULDIV : FuncUnit;
+
+//===----------------------------------------------------------------------===//
+// Instruction Itinerary classes used for Mips
+//===----------------------------------------------------------------------===//
+def IIAlu : InstrItinClass;
+def IIBranch : InstrItinClass;
+def IIPseudo : InstrItinClass;
+
+def II_ABS : InstrItinClass;
+def II_ADDI : InstrItinClass;
+def II_ADDIU : InstrItinClass;
+def II_ADDU : InstrItinClass;
+def II_ADD_D : InstrItinClass;
+def II_ADD_S : InstrItinClass;
+def II_AND : InstrItinClass;
+def II_ANDI : InstrItinClass;
+def II_BADDU : InstrItinClass;
+def II_CEIL : InstrItinClass;
+def II_CFC1 : InstrItinClass;
+def II_CLO : InstrItinClass;
+def II_CLZ : InstrItinClass;
+def II_CTC1 : InstrItinClass;
+def II_CVT : InstrItinClass;
+def II_C_CC_D : InstrItinClass; // Any c.<cc>.d instruction
+def II_C_CC_S : InstrItinClass; // Any c.<cc>.s instruction
+def II_DADDIU : InstrItinClass;
+def II_DADDU : InstrItinClass;
+def II_DADD : InstrItinClass;
+def II_DDIV : InstrItinClass;
+def II_DDIVU : InstrItinClass;
+def II_DIV : InstrItinClass;
+def II_DIVU : InstrItinClass;
+def II_DIV_D : InstrItinClass;
+def II_DIV_S : InstrItinClass;
+def II_DMFC1 : InstrItinClass;
+def II_DMTC1 : InstrItinClass;
+def II_DMUL : InstrItinClass;
+def II_DMULT : InstrItinClass;
+def II_DMULTU : InstrItinClass;
+def II_DROTR : InstrItinClass;
+def II_DROTR32 : InstrItinClass;
+def II_DROTRV : InstrItinClass;
+def II_DSLL : InstrItinClass;
+def II_DSLL32 : InstrItinClass;
+def II_DSLLV : InstrItinClass;
+def II_DSRA : InstrItinClass;
+def II_DSRA32 : InstrItinClass;
+def II_DSRAV : InstrItinClass;
+def II_DSRL : InstrItinClass;
+def II_DSRL32 : InstrItinClass;
+def II_DSRLV : InstrItinClass;
+def II_DSUBU : InstrItinClass;
+def II_DSUB : InstrItinClass;
+def II_FLOOR : InstrItinClass;
+def II_LB : InstrItinClass;
+def II_LBU : InstrItinClass;
+def II_LD : InstrItinClass;
+def II_LDC1 : InstrItinClass;
+def II_LDL : InstrItinClass;
+def II_LDR : InstrItinClass;
+def II_LDXC1 : InstrItinClass;
+def II_LH : InstrItinClass;
+def II_LHU : InstrItinClass;
+def II_LUI : InstrItinClass;
+def II_LUXC1 : InstrItinClass;
+def II_LW : InstrItinClass;
+def II_LWC1 : InstrItinClass;
+def II_LWL : InstrItinClass;
+def II_LWR : InstrItinClass;
+def II_LWU : InstrItinClass;
+def II_LWXC1 : InstrItinClass;
+def II_MADD : InstrItinClass;
+def II_MADDU : InstrItinClass;
+def II_MADD_D : InstrItinClass;
+def II_MADD_S : InstrItinClass;
+def II_MFC1 : InstrItinClass;
+def II_MFHC1 : InstrItinClass;
+def II_MFHI_MFLO : InstrItinClass; // mfhi and mflo
+def II_MOVF : InstrItinClass;
+def II_MOVF_D : InstrItinClass;
+def II_MOVF_S : InstrItinClass;
+def II_MOVN : InstrItinClass;
+def II_MOVN_D : InstrItinClass;
+def II_MOVN_S : InstrItinClass;
+def II_MOVT : InstrItinClass;
+def II_MOVT_D : InstrItinClass;
+def II_MOVT_S : InstrItinClass;
+def II_MOVZ : InstrItinClass;
+def II_MOVZ_D : InstrItinClass;
+def II_MOVZ_S : InstrItinClass;
+def II_MOV_D : InstrItinClass;
+def II_MOV_S : InstrItinClass;
+def II_MSUB : InstrItinClass;
+def II_MSUBU : InstrItinClass;
+def II_MSUB_D : InstrItinClass;
+def II_MSUB_S : InstrItinClass;
+def II_MTC1 : InstrItinClass;
+def II_MTHC1 : InstrItinClass;
+def II_MTHI_MTLO : InstrItinClass; // mthi and mtlo
+def II_MUL : InstrItinClass;
+def II_MULT : InstrItinClass;
+def II_MULTU : InstrItinClass;
+def II_MUL_D : InstrItinClass;
+def II_MUL_S : InstrItinClass;
+def II_NEG : InstrItinClass;
+def II_NMADD_D : InstrItinClass;
+def II_NMADD_S : InstrItinClass;
+def II_NMSUB_D : InstrItinClass;
+def II_NMSUB_S : InstrItinClass;
+def II_NOR : InstrItinClass;
+def II_OR : InstrItinClass;
+def II_ORI : InstrItinClass;
+def II_POP : InstrItinClass;
+def II_RDHWR : InstrItinClass;
+def II_RESTORE : InstrItinClass;
+def II_ROTR : InstrItinClass;
+def II_ROTRV : InstrItinClass;
+def II_ROUND : InstrItinClass;
+def II_SAVE : InstrItinClass;
+def II_SB : InstrItinClass;
+def II_SD : InstrItinClass;
+def II_SDC1 : InstrItinClass;
+def II_SDL : InstrItinClass;
+def II_SDR : InstrItinClass;
+def II_SDXC1 : InstrItinClass;
+def II_SEB : InstrItinClass;
+def II_SEH : InstrItinClass;
+def II_SEQ_SNE : InstrItinClass; // seq and sne
+def II_SEQI_SNEI : InstrItinClass; // seqi and snei
+def II_SH : InstrItinClass;
+def II_SLL : InstrItinClass;
+def II_SLLV : InstrItinClass;
+def II_SLTI_SLTIU : InstrItinClass; // slti and sltiu
+def II_SLT_SLTU : InstrItinClass; // slt and sltu
+def II_SQRT_D : InstrItinClass;
+def II_SQRT_S : InstrItinClass;
+def II_SRA : InstrItinClass;
+def II_SRAV : InstrItinClass;
+def II_SRL : InstrItinClass;
+def II_SRLV : InstrItinClass;
+def II_SUBU : InstrItinClass;
+def II_SUB_D : InstrItinClass;
+def II_SUB_S : InstrItinClass;
+def II_SUXC1 : InstrItinClass;
+def II_SW : InstrItinClass;
+def II_SWC1 : InstrItinClass;
+def II_SWL : InstrItinClass;
+def II_SWR : InstrItinClass;
+def II_SWXC1 : InstrItinClass;
+def II_TRUNC : InstrItinClass;
+def II_XOR : InstrItinClass;
+def II_XORI : InstrItinClass;
+
+//===----------------------------------------------------------------------===//
+// Mips Generic instruction itineraries.
+//===----------------------------------------------------------------------===//
+def MipsGenericItineraries : ProcessorItineraries<[ALU, IMULDIV], [], [
+ InstrItinData<IIAlu , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_ADDI , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_ADDIU , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_ADDU , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_AND , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_BADDU , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SLL , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SRA , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SRL , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_ROTR , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SLLV , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SRAV , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SRLV , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_ROTRV , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_CLO , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_CLZ , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DADDIU , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DADDU , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DADD , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DSLL , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DSRL , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DSRA , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DSLLV , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DSRLV , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DSRAV , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DSUBU , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DSUB , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DROTR , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DROTRV , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_LUI , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_MOVF , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_MOVN , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_MOVN_S , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_MOVN_D , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_MOVT , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_MOVZ , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_NOR , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_OR , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_POP , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_RDHWR , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SUBU , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_XOR , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_ANDI , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_ORI , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_XORI , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_LB , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LBU , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LH , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LHU , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LW , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LWL , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LWR , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LD , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LDL , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LDR , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_RESTORE , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_SB , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SH , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SW , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SWL , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SWR , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SDL , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SDR , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SD , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SAVE , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SEQ_SNE , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SEQI_SNEI , [InstrStage<1, [ALU]>]>,
+ InstrItinData<IIBranch , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DMUL , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_DMULT , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_DMULTU , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_MADD , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_MADDU , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_MFHI_MFLO , [InstrStage<1, [IMULDIV]>]>,
+ InstrItinData<II_MSUB , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_MSUBU , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_MTHI_MTLO , [InstrStage<1, [IMULDIV]>]>,
+ InstrItinData<II_MUL , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_MULT , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_MULTU , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_MSUB , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_MSUBU , [InstrStage<17, [IMULDIV]>]>,
+ InstrItinData<II_DIV , [InstrStage<38, [IMULDIV]>]>,
+ InstrItinData<II_DIVU , [InstrStage<38, [IMULDIV]>]>,
+ InstrItinData<II_DDIV , [InstrStage<38, [IMULDIV]>]>,
+ InstrItinData<II_DDIVU , [InstrStage<38, [IMULDIV]>]>,
+ InstrItinData<II_CEIL , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_CVT , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_ABS , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_FLOOR , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_NEG , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_ROUND , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_TRUNC , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_MOV_D , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_MOV_S , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_CFC1 , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_CTC1 , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_MOVF_D , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_MOVF_S , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_MOVT_D , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_MOVT_S , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_MOVZ_D , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_MOVZ_S , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_C_CC_S , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_C_CC_D , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_ADD_D , [InstrStage<4, [ALU]>]>,
+ InstrItinData<II_ADD_S , [InstrStage<4, [ALU]>]>,
+ InstrItinData<II_SUB_D , [InstrStage<4, [ALU]>]>,
+ InstrItinData<II_SUB_S , [InstrStage<4, [ALU]>]>,
+ InstrItinData<II_MUL_S , [InstrStage<7, [ALU]>]>,
+ InstrItinData<II_MADD_S , [InstrStage<7, [ALU]>]>,
+ InstrItinData<II_MSUB_S , [InstrStage<7, [ALU]>]>,
+ InstrItinData<II_NMADD_S , [InstrStage<7, [ALU]>]>,
+ InstrItinData<II_NMSUB_S , [InstrStage<7, [ALU]>]>,
+ InstrItinData<II_MUL_D , [InstrStage<8, [ALU]>]>,
+ InstrItinData<II_MADD_D , [InstrStage<8, [ALU]>]>,
+ InstrItinData<II_MSUB_D , [InstrStage<8, [ALU]>]>,
+ InstrItinData<II_NMADD_D , [InstrStage<8, [ALU]>]>,
+ InstrItinData<II_NMSUB_D , [InstrStage<8, [ALU]>]>,
+ InstrItinData<II_DIV_S , [InstrStage<23, [ALU]>]>,
+ InstrItinData<II_DIV_D , [InstrStage<36, [ALU]>]>,
+ InstrItinData<II_SQRT_S , [InstrStage<54, [ALU]>]>,
+ InstrItinData<II_SQRT_D , [InstrStage<12, [ALU]>]>,
+ InstrItinData<II_LDC1 , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LWC1 , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LDXC1 , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LWXC1 , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_LUXC1 , [InstrStage<3, [ALU]>]>,
+ InstrItinData<II_SDC1 , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SWC1 , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SDXC1 , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SWXC1 , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_SUXC1 , [InstrStage<1, [ALU]>]>,
+ InstrItinData<II_DMFC1 , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_DMTC1 , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_MFC1 , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_MTC1 , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_MFHC1 , [InstrStage<2, [ALU]>]>,
+ InstrItinData<II_MTHC1 , [InstrStage<2, [ALU]>]>
+]>;
diff --git a/contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.cpp b/contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.cpp
new file mode 100644
index 0000000..edd8f67
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.cpp
@@ -0,0 +1,23 @@
+//===-- MipsSelectionDAGInfo.cpp - Mips SelectionDAG Info -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MipsSelectionDAGInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsTargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-selectiondag-info"
+
+MipsSelectionDAGInfo::MipsSelectionDAGInfo(const DataLayout &DL)
+ : TargetSelectionDAGInfo(&DL) {}
+
+MipsSelectionDAGInfo::~MipsSelectionDAGInfo() {
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.h b/contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.h
new file mode 100644
index 0000000..2b3d527
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.h
@@ -0,0 +1,31 @@
+//===-- MipsSelectionDAGInfo.h - Mips SelectionDAG Info ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the Mips subclass for TargetSelectionDAGInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSSELECTIONDAGINFO_H
+#define MIPSSELECTIONDAGINFO_H
+
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+class MipsTargetMachine;
+
+class MipsSelectionDAGInfo : public TargetSelectionDAGInfo {
+public:
+ explicit MipsSelectionDAGInfo(const DataLayout &DL);
+ ~MipsSelectionDAGInfo();
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsSubtarget.cpp b/contrib/llvm/lib/Target/Mips/MipsSubtarget.cpp
new file mode 100644
index 0000000..5bf875d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSubtarget.cpp
@@ -0,0 +1,219 @@
+//===-- MipsSubtarget.cpp - Mips Subtarget Information --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Mips specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsMachineFunction.h"
+#include "Mips.h"
+#include "MipsRegisterInfo.h"
+#include "MipsSubtarget.h"
+#include "MipsTargetMachine.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-subtarget"
+
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#include "MipsGenSubtargetInfo.inc"
+
+// FIXME: Maybe this should be on by default when Mips16 is specified
+//
+static cl::opt<bool> Mixed16_32(
+ "mips-mixed-16-32",
+ cl::init(false),
+ cl::desc("Allow for a mixture of Mips16 "
+ "and Mips32 code in a single source file"),
+ cl::Hidden);
+
+static cl::opt<bool> Mips_Os16(
+ "mips-os16",
+ cl::init(false),
+ cl::desc("Compile all functions that don' use "
+ "floating point as Mips 16"),
+ cl::Hidden);
+
+static cl::opt<bool>
+Mips16HardFloat("mips16-hard-float", cl::NotHidden,
+ cl::desc("MIPS: mips16 hard float enable."),
+ cl::init(false));
+
+static cl::opt<bool>
+Mips16ConstantIslands(
+ "mips16-constant-islands", cl::NotHidden,
+ cl::desc("MIPS: mips16 constant islands enable."),
+ cl::init(true));
+
+/// Select the Mips CPU for the given triple and cpu name.
+/// FIXME: Merge with the copy in MipsMCTargetDesc.cpp
+static StringRef selectMipsCPU(Triple TT, StringRef CPU) {
+ if (CPU.empty() || CPU == "generic") {
+ if (TT.getArch() == Triple::mips || TT.getArch() == Triple::mipsel)
+ CPU = "mips32";
+ else
+ CPU = "mips64";
+ }
+ return CPU;
+}
+
+void MipsSubtarget::anchor() { }
+
+static std::string computeDataLayout(const MipsSubtarget &ST) {
+ std::string Ret = "";
+
+ // There are both little and big endian mips.
+ if (ST.isLittle())
+ Ret += "e";
+ else
+ Ret += "E";
+
+ Ret += "-m:m";
+
+ // Pointers are 32 bit on some ABIs.
+ if (!ST.isABI_N64())
+ Ret += "-p:32:32";
+
+ // 8 and 16 bit integers only need no have natural alignment, but try to
+ // align them to 32 bits. 64 bit integers have natural alignment.
+ Ret += "-i8:8:32-i16:16:32-i64:64";
+
+ // 32 bit registers are always available and the stack is at least 64 bit
+ // aligned. On N64 64 bit registers are also available and the stack is
+ // 128 bit aligned.
+ if (ST.isABI_N64() || ST.isABI_N32())
+ Ret += "-n32:64-S128";
+ else
+ Ret += "-n32-S64";
+
+ return Ret;
+}
+
+MipsSubtarget::MipsSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, bool little,
+ MipsTargetMachine *_TM)
+ : MipsGenSubtargetInfo(TT, CPU, FS), MipsArchVersion(Mips32),
+ MipsABI(UnknownABI), IsLittle(little), IsSingleFloat(false),
+ IsFPXX(false), IsFP64bit(false), UseOddSPReg(true), IsNaN2008bit(false),
+ IsGP64bit(false), HasVFPU(false), HasCnMips(false), IsLinux(true),
+ HasMips3_32(false), HasMips3_32r2(false), HasMips4_32(false),
+ HasMips4_32r2(false), HasMips5_32r2(false), InMips16Mode(false),
+ InMips16HardFloat(Mips16HardFloat), InMicroMipsMode(false), HasDSP(false),
+ HasDSPR2(false), AllowMixed16_32(Mixed16_32 | Mips_Os16), Os16(Mips_Os16),
+ HasMSA(false), TM(_TM), TargetTriple(TT),
+ DL(computeDataLayout(initializeSubtargetDependencies(CPU, FS, TM))),
+ TSInfo(DL), JITInfo(), InstrInfo(MipsInstrInfo::create(*this)),
+ FrameLowering(MipsFrameLowering::create(*this)),
+ TLInfo(MipsTargetLowering::create(*TM, *this)) {
+
+ PreviousInMips16Mode = InMips16Mode;
+
+ // Don't even attempt to generate code for MIPS-I, MIPS-II, MIPS-III, and
+ // MIPS-V. They have not been tested and currently exist for the integrated
+ // assembler only.
+ if (MipsArchVersion == Mips1)
+ report_fatal_error("Code generation for MIPS-I is not implemented", false);
+ if (MipsArchVersion == Mips2)
+ report_fatal_error("Code generation for MIPS-II is not implemented", false);
+ if (MipsArchVersion == Mips3)
+ report_fatal_error("Code generation for MIPS-III is not implemented",
+ false);
+ if (MipsArchVersion == Mips5)
+ report_fatal_error("Code generation for MIPS-V is not implemented", false);
+
+ // Assert exactly one ABI was chosen.
+ assert(MipsABI != UnknownABI);
+ assert((((getFeatureBits() & Mips::FeatureO32) != 0) +
+ ((getFeatureBits() & Mips::FeatureEABI) != 0) +
+ ((getFeatureBits() & Mips::FeatureN32) != 0) +
+ ((getFeatureBits() & Mips::FeatureN64) != 0)) == 1);
+
+ // Check if Architecture and ABI are compatible.
+ assert(((!isGP64bit() && (isABI_O32() || isABI_EABI())) ||
+ (isGP64bit() && (isABI_N32() || isABI_N64()))) &&
+ "Invalid Arch & ABI pair.");
+
+ if (hasMSA() && !isFP64bit())
+ report_fatal_error("MSA requires a 64-bit FPU register file (FR=1 mode). "
+ "See -mattr=+fp64.",
+ false);
+
+ if (!isABI_O32() && !useOddSPReg())
+ report_fatal_error("-mattr=+nooddspreg requires the O32 ABI.", false);
+
+ if (IsFPXX && (isABI_N32() || isABI_N64()))
+ report_fatal_error("FPXX is not permitted for the N32/N64 ABI's.", false);
+
+ if (hasMips32r6()) {
+ StringRef ISA = hasMips64r6() ? "MIPS64r6" : "MIPS32r6";
+
+ assert(isFP64bit());
+ assert(isNaN2008());
+ if (hasDSP())
+ report_fatal_error(ISA + " is not compatible with the DSP ASE", false);
+ }
+
+ // Is the target system Linux ?
+ if (TT.find("linux") == std::string::npos)
+ IsLinux = false;
+
+ // Set UseSmallSection.
+ // TODO: Investigate the IsLinux check. I suspect it's really checking for
+ // bare-metal.
+ UseSmallSection = !IsLinux && (TM->getRelocationModel() == Reloc::Static);
+}
+
+/// This overrides the PostRAScheduler bit in the SchedModel for any CPU.
+bool MipsSubtarget::enablePostMachineScheduler() const { return true; }
+
+void MipsSubtarget::getCriticalPathRCs(RegClassVector &CriticalPathRCs) const {
+ CriticalPathRCs.clear();
+ CriticalPathRCs.push_back(isGP64bit() ?
+ &Mips::GPR64RegClass : &Mips::GPR32RegClass);
+}
+
+CodeGenOpt::Level MipsSubtarget::getOptLevelToEnablePostRAScheduler() const {
+ return CodeGenOpt::Aggressive;
+}
+
+MipsSubtarget &
+MipsSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS,
+ const TargetMachine *TM) {
+ std::string CPUName = selectMipsCPU(TargetTriple, CPU);
+
+ // Parse features string.
+ ParseSubtargetFeatures(CPUName, FS);
+ // Initialize scheduling itinerary for the specified CPU.
+ InstrItins = getInstrItineraryForCPU(CPUName);
+
+ if (InMips16Mode && !TM->Options.UseSoftFloat)
+ InMips16HardFloat = true;
+
+ return *this;
+}
+
+bool MipsSubtarget::abiUsesSoftFloat() const {
+ return TM->Options.UseSoftFloat && !InMips16HardFloat;
+}
+
+bool MipsSubtarget::useConstantIslands() {
+ DEBUG(dbgs() << "use constant islands " << Mips16ConstantIslands << "\n");
+ return Mips16ConstantIslands;
+}
+
+Reloc::Model MipsSubtarget::getRelocationModel() const {
+ return TM->getRelocationModel();
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsSubtarget.h b/contrib/llvm/lib/Target/Mips/MipsSubtarget.h
new file mode 100644
index 0000000..f326462
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsSubtarget.h
@@ -0,0 +1,290 @@
+//===-- MipsSubtarget.h - Define Subtarget for the Mips ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the Mips specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSSUBTARGET_H
+#define MIPSSUBTARGET_H
+
+#include "MipsFrameLowering.h"
+#include "MipsISelLowering.h"
+#include "MipsInstrInfo.h"
+#include "MipsJITInfo.h"
+#include "MipsSelectionDAGInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "MipsGenSubtargetInfo.inc"
+
+namespace llvm {
+class StringRef;
+
+class MipsTargetMachine;
+
+class MipsSubtarget : public MipsGenSubtargetInfo {
+ virtual void anchor();
+
+public:
+ // NOTE: O64 will not be supported.
+ enum MipsABIEnum {
+ UnknownABI, O32, N32, N64, EABI
+ };
+
+protected:
+ enum MipsArchEnum {
+ Mips1, Mips2, Mips32, Mips32r2, Mips32r6, Mips3, Mips4, Mips5, Mips64,
+ Mips64r2, Mips64r6
+ };
+
+ // Mips architecture version
+ MipsArchEnum MipsArchVersion;
+
+ // Mips supported ABIs
+ MipsABIEnum MipsABI;
+
+ // IsLittle - The target is Little Endian
+ bool IsLittle;
+
+ // IsSingleFloat - The target only supports single precision float
+ // point operations. This enable the target to use all 32 32-bit
+ // floating point registers instead of only using even ones.
+ bool IsSingleFloat;
+
+ // IsFPXX - MIPS O32 modeless ABI.
+ bool IsFPXX;
+
+ // IsFP64bit - The target processor has 64-bit floating point registers.
+ bool IsFP64bit;
+
+ /// Are odd single-precision registers permitted?
+ /// This corresponds to -modd-spreg and -mno-odd-spreg
+ bool UseOddSPReg;
+
+ // IsNan2008 - IEEE 754-2008 NaN encoding.
+ bool IsNaN2008bit;
+
+ // IsFP64bit - General-purpose registers are 64 bits wide
+ bool IsGP64bit;
+
+ // HasVFPU - Processor has a vector floating point unit.
+ bool HasVFPU;
+
+ // CPU supports cnMIPS (Cavium Networks Octeon CPU).
+ bool HasCnMips;
+
+ // isLinux - Target system is Linux. Is false we consider ELFOS for now.
+ bool IsLinux;
+
+ // UseSmallSection - Small section is used.
+ bool UseSmallSection;
+
+ /// Features related to the presence of specific instructions.
+
+ // HasMips3_32 - The subset of MIPS-III instructions added to MIPS32
+ bool HasMips3_32;
+
+ // HasMips3_32r2 - The subset of MIPS-III instructions added to MIPS32r2
+ bool HasMips3_32r2;
+
+ // HasMips4_32 - Has the subset of MIPS-IV present in MIPS32
+ bool HasMips4_32;
+
+ // HasMips4_32r2 - Has the subset of MIPS-IV present in MIPS32r2
+ bool HasMips4_32r2;
+
+ // HasMips5_32r2 - Has the subset of MIPS-V present in MIPS32r2
+ bool HasMips5_32r2;
+
+ // InMips16 -- can process Mips16 instructions
+ bool InMips16Mode;
+
+ // Mips16 hard float
+ bool InMips16HardFloat;
+
+ // PreviousInMips16 -- the function we just processed was in Mips 16 Mode
+ bool PreviousInMips16Mode;
+
+ // InMicroMips -- can process MicroMips instructions
+ bool InMicroMipsMode;
+
+ // HasDSP, HasDSPR2 -- supports DSP ASE.
+ bool HasDSP, HasDSPR2;
+
+ // Allow mixed Mips16 and Mips32 in one source file
+ bool AllowMixed16_32;
+
+ // Optimize for space by compiling all functions as Mips 16 unless
+ // it needs floating point. Functions needing floating point are
+ // compiled as Mips32
+ bool Os16;
+
+ // HasMSA -- supports MSA ASE.
+ bool HasMSA;
+
+ InstrItineraryData InstrItins;
+
+ // We can override the determination of whether we are in mips16 mode
+ // as from the command line
+ enum {NoOverride, Mips16Override, NoMips16Override} OverrideMode;
+
+ MipsTargetMachine *TM;
+
+ Triple TargetTriple;
+
+ const DataLayout DL; // Calculates type size & alignment
+ const MipsSelectionDAGInfo TSInfo;
+ MipsJITInfo JITInfo;
+ std::unique_ptr<const MipsInstrInfo> InstrInfo;
+ std::unique_ptr<const MipsFrameLowering> FrameLowering;
+ std::unique_ptr<const MipsTargetLowering> TLInfo;
+
+public:
+ /// This overrides the PostRAScheduler bit in the SchedModel for each CPU.
+ bool enablePostMachineScheduler() const override;
+ void getCriticalPathRCs(RegClassVector &CriticalPathRCs) const override;
+ CodeGenOpt::Level getOptLevelToEnablePostRAScheduler() const override;
+
+ /// Only O32 and EABI supported right now.
+ bool isABI_EABI() const { return MipsABI == EABI; }
+ bool isABI_N64() const { return MipsABI == N64; }
+ bool isABI_N32() const { return MipsABI == N32; }
+ bool isABI_O32() const { return MipsABI == O32; }
+ bool isABI_FPXX() const { return isABI_O32() && IsFPXX; }
+ unsigned getTargetABI() const { return MipsABI; }
+
+ /// This constructor initializes the data members to match that
+ /// of the specified triple.
+ MipsSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, bool little, MipsTargetMachine *TM);
+
+ /// ParseSubtargetFeatures - Parses features string setting specified
+ /// subtarget options. Definition of function is auto generated by tblgen.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+
+ bool hasMips1() const { return MipsArchVersion >= Mips1; }
+ bool hasMips2() const { return MipsArchVersion >= Mips2; }
+ bool hasMips3() const { return MipsArchVersion >= Mips3; }
+ bool hasMips4() const { return MipsArchVersion >= Mips4; }
+ bool hasMips5() const { return MipsArchVersion >= Mips5; }
+ bool hasMips4_32() const { return HasMips4_32; }
+ bool hasMips4_32r2() const { return HasMips4_32r2; }
+ bool hasMips32() const {
+ return MipsArchVersion >= Mips32 && MipsArchVersion != Mips3 &&
+ MipsArchVersion != Mips4 && MipsArchVersion != Mips5;
+ }
+ bool hasMips32r2() const {
+ return MipsArchVersion == Mips32r2 || MipsArchVersion == Mips32r6 ||
+ MipsArchVersion == Mips64r2 || MipsArchVersion == Mips64r6;
+ }
+ bool hasMips32r6() const {
+ return MipsArchVersion == Mips32r6 || MipsArchVersion == Mips64r6;
+ }
+ bool hasMips64() const { return MipsArchVersion >= Mips64; }
+ bool hasMips64r2() const {
+ return MipsArchVersion == Mips64r2 || MipsArchVersion == Mips64r6;
+ }
+ bool hasMips64r6() const { return MipsArchVersion == Mips64r6; }
+
+ bool hasCnMips() const { return HasCnMips; }
+
+ bool isLittle() const { return IsLittle; }
+ bool isFPXX() const { return IsFPXX; }
+ bool isFP64bit() const { return IsFP64bit; }
+ bool useOddSPReg() const { return UseOddSPReg; }
+ bool noOddSPReg() const { return !UseOddSPReg; }
+ bool isNaN2008() const { return IsNaN2008bit; }
+ bool isNotFP64bit() const { return !IsFP64bit; }
+ bool isGP64bit() const { return IsGP64bit; }
+ bool isGP32bit() const { return !IsGP64bit; }
+ bool isSingleFloat() const { return IsSingleFloat; }
+ bool isNotSingleFloat() const { return !IsSingleFloat; }
+ bool hasVFPU() const { return HasVFPU; }
+ bool inMips16Mode() const { return InMips16Mode; }
+ bool inMips16ModeDefault() const {
+ return InMips16Mode;
+ }
+ // Hard float for mips16 means essentially to compile as soft float
+ // but to use a runtime library for soft float that is written with
+ // native mips32 floating point instructions (those runtime routines
+ // run in mips32 hard float mode).
+ bool inMips16HardFloat() const {
+ return inMips16Mode() && InMips16HardFloat;
+ }
+ bool inMicroMipsMode() const { return InMicroMipsMode; }
+ bool hasDSP() const { return HasDSP; }
+ bool hasDSPR2() const { return HasDSPR2; }
+ bool hasMSA() const { return HasMSA; }
+ bool isLinux() const { return IsLinux; }
+ bool useSmallSection() const { return UseSmallSection; }
+
+ bool hasStandardEncoding() const { return !inMips16Mode(); }
+
+ bool abiUsesSoftFloat() const;
+
+ bool enableLongBranchPass() const {
+ return hasStandardEncoding() || allowMixed16_32();
+ }
+
+ /// Features related to the presence of specific instructions.
+ bool hasExtractInsert() const { return !inMips16Mode() && hasMips32r2(); }
+ bool hasMTHC1() const { return hasMips32r2(); }
+
+ const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
+ bool allowMixed16_32() const { return inMips16ModeDefault() |
+ AllowMixed16_32;}
+
+ bool os16() const { return Os16;};
+
+ bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
+ bool isNotTargetNaCl() const { return !TargetTriple.isOSNaCl(); }
+
+ // for now constant islands are on for the whole compilation unit but we only
+ // really use them if in addition we are in mips16 mode
+ static bool useConstantIslands();
+
+ unsigned stackAlignment() const { return hasMips64() ? 16 : 8; }
+
+ // Grab relocation model
+ Reloc::Model getRelocationModel() const;
+
+ MipsSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS,
+ const TargetMachine *TM);
+
+ /// Does the system support unaligned memory access.
+ ///
+ /// MIPS32r6/MIPS64r6 require full unaligned access support but does not
+ /// specify which component of the system provides it. Hardware, software, and
+ /// hybrid implementations are all valid.
+ bool systemSupportsUnalignedAccess() const { return hasMips32r6(); }
+
+ // Set helper classes
+ void setHelperClassesMips16();
+ void setHelperClassesMipsSE();
+
+ MipsJITInfo *getJITInfo() { return &JITInfo; }
+ const MipsSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+ const DataLayout *getDataLayout() const { return &DL; }
+ const MipsInstrInfo *getInstrInfo() const { return InstrInfo.get(); }
+ const TargetFrameLowering *getFrameLowering() const {
+ return FrameLowering.get();
+ }
+ const MipsRegisterInfo *getRegisterInfo() const {
+ return &InstrInfo->getRegisterInfo();
+ }
+ const MipsTargetLowering *getTargetLowering() const { return TLInfo.get(); }
+};
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsTargetMachine.cpp b/contrib/llvm/lib/Target/Mips/MipsTargetMachine.cpp
new file mode 100644
index 0000000..bb1870e
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsTargetMachine.cpp
@@ -0,0 +1,198 @@
+//===-- MipsTargetMachine.cpp - Define TargetMachine for Mips -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements the info about Mips target spec.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsTargetMachine.h"
+#include "Mips.h"
+#include "Mips16FrameLowering.h"
+#include "Mips16HardFloat.h"
+#include "Mips16ISelDAGToDAG.h"
+#include "Mips16ISelLowering.h"
+#include "Mips16InstrInfo.h"
+#include "MipsFrameLowering.h"
+#include "MipsInstrInfo.h"
+#include "MipsModuleISelDAGToDAG.h"
+#include "MipsOs16.h"
+#include "MipsSEFrameLowering.h"
+#include "MipsSEISelDAGToDAG.h"
+#include "MipsSEISelLowering.h"
+#include "MipsSEInstrInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "mips"
+
+extern "C" void LLVMInitializeMipsTarget() {
+ // Register the target.
+ RegisterTargetMachine<MipsebTargetMachine> X(TheMipsTarget);
+ RegisterTargetMachine<MipselTargetMachine> Y(TheMipselTarget);
+ RegisterTargetMachine<MipsebTargetMachine> A(TheMips64Target);
+ RegisterTargetMachine<MipselTargetMachine> B(TheMips64elTarget);
+}
+
+// On function prologue, the stack is created by decrementing
+// its pointer. Once decremented, all references are done with positive
+// offset from the stack/frame pointer, using StackGrowsUp enables
+// an easier handling.
+// Using CodeModel::Large enables different CALL behavior.
+MipsTargetMachine::MipsTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL, bool isLittle)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(nullptr), DefaultSubtarget(TT, CPU, FS, isLittle, this),
+ NoMips16Subtarget(TT, CPU, FS.empty() ? "-mips16" : FS.str() + ",-mips16",
+ isLittle, this),
+ Mips16Subtarget(TT, CPU, FS.empty() ? "+mips16" : FS.str() + ",+mips16",
+ isLittle, this) {
+ Subtarget = &DefaultSubtarget;
+ initAsmInfo();
+}
+
+void MipsebTargetMachine::anchor() { }
+
+MipsebTargetMachine::
+MipsebTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : MipsTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
+
+void MipselTargetMachine::anchor() { }
+
+MipselTargetMachine::
+MipselTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : MipsTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
+
+void MipsTargetMachine::resetSubtarget(MachineFunction *MF) {
+ DEBUG(dbgs() << "resetSubtarget\n");
+ AttributeSet FnAttrs = MF->getFunction()->getAttributes();
+ bool Mips16Attr = FnAttrs.hasAttribute(AttributeSet::FunctionIndex, "mips16");
+ bool NoMips16Attr =
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex, "nomips16");
+ assert(!(Mips16Attr && NoMips16Attr) &&
+ "mips16 and nomips16 specified on the same function");
+ if (Mips16Attr)
+ Subtarget = &Mips16Subtarget;
+ else if (NoMips16Attr)
+ Subtarget = &NoMips16Subtarget;
+ else
+ Subtarget = &DefaultSubtarget;
+ return;
+}
+
+namespace {
+/// Mips Code Generator Pass Configuration Options.
+class MipsPassConfig : public TargetPassConfig {
+public:
+ MipsPassConfig(MipsTargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {
+ // The current implementation of long branch pass requires a scratch
+ // register ($at) to be available before branch instructions. Tail merging
+ // can break this requirement, so disable it when long branch pass is
+ // enabled.
+ EnableTailMerge = !getMipsSubtarget().enableLongBranchPass();
+ }
+
+ MipsTargetMachine &getMipsTargetMachine() const {
+ return getTM<MipsTargetMachine>();
+ }
+
+ const MipsSubtarget &getMipsSubtarget() const {
+ return *getMipsTargetMachine().getSubtargetImpl();
+ }
+
+ void addIRPasses() override;
+ bool addInstSelector() override;
+ void addMachineSSAOptimization() override;
+ bool addPreEmitPass() override;
+
+ bool addPreRegAlloc() override;
+
+};
+} // namespace
+
+TargetPassConfig *MipsTargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new MipsPassConfig(this, PM);
+}
+
+void MipsPassConfig::addIRPasses() {
+ TargetPassConfig::addIRPasses();
+ if (getMipsSubtarget().os16())
+ addPass(createMipsOs16(getMipsTargetMachine()));
+ if (getMipsSubtarget().inMips16HardFloat())
+ addPass(createMips16HardFloat(getMipsTargetMachine()));
+ addPass(createPartiallyInlineLibCallsPass());
+}
+// Install an instruction selector pass using
+// the ISelDag to gen Mips code.
+bool MipsPassConfig::addInstSelector() {
+ addPass(createMipsModuleISelDag(getMipsTargetMachine()));
+ addPass(createMips16ISelDag(getMipsTargetMachine()));
+ addPass(createMipsSEISelDag(getMipsTargetMachine()));
+ return false;
+}
+
+void MipsPassConfig::addMachineSSAOptimization() {
+ addPass(createMipsOptimizePICCallPass(getMipsTargetMachine()));
+ TargetPassConfig::addMachineSSAOptimization();
+}
+
+bool MipsPassConfig::addPreRegAlloc() {
+ if (getOptLevel() == CodeGenOpt::None) {
+ addPass(createMipsOptimizePICCallPass(getMipsTargetMachine()));
+ return true;
+ }
+ else
+ return false;
+}
+
+void MipsTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
+ if (Subtarget->allowMixed16_32()) {
+ DEBUG(errs() << "No ");
+ //FIXME: The Basic Target Transform Info
+ // pass needs to become a function pass instead of
+ // being an immutable pass and then this method as it exists now
+ // would be unnecessary.
+ PM.add(createNoTargetTransformInfoPass());
+ } else
+ LLVMTargetMachine::addAnalysisPasses(PM);
+ DEBUG(errs() << "Target Transform Info Pass Added\n");
+}
+
+// Implemented by targets that want to run passes immediately before
+// machine code is emitted. return true if -print-machineinstrs should
+// print out the code after the passes.
+bool MipsPassConfig::addPreEmitPass() {
+ MipsTargetMachine &TM = getMipsTargetMachine();
+ addPass(createMipsDelaySlotFillerPass(TM));
+ addPass(createMipsLongBranchPass(TM));
+ addPass(createMipsConstantIslandPass(TM));
+ return true;
+}
+
+bool MipsTargetMachine::addCodeEmitter(PassManagerBase &PM,
+ JITCodeEmitter &JCE) {
+ // Machine code emitter pass for Mips.
+ PM.add(createMipsJITCodeEmitterPass(*this, JCE));
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsTargetMachine.h b/contrib/llvm/lib/Target/Mips/MipsTargetMachine.h
new file mode 100644
index 0000000..bcf411f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsTargetMachine.h
@@ -0,0 +1,105 @@
+//===-- MipsTargetMachine.h - Define TargetMachine for Mips -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the Mips specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSTARGETMACHINE_H
+#define MIPSTARGETMACHINE_H
+
+#include "MipsSubtarget.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+class formatted_raw_ostream;
+class MipsRegisterInfo;
+
+class MipsTargetMachine : public LLVMTargetMachine {
+ MipsSubtarget *Subtarget;
+ MipsSubtarget DefaultSubtarget;
+ MipsSubtarget NoMips16Subtarget;
+ MipsSubtarget Mips16Subtarget;
+
+public:
+ MipsTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS,
+ const TargetOptions &Options, Reloc::Model RM,
+ CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle);
+
+ virtual ~MipsTargetMachine() {}
+
+ void addAnalysisPasses(PassManagerBase &PM) override;
+
+ const MipsInstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const TargetFrameLowering *getFrameLowering() const override {
+ return getSubtargetImpl()->getFrameLowering();
+ }
+ const MipsSubtarget *getSubtargetImpl() const override {
+ if (Subtarget)
+ return Subtarget;
+ return &DefaultSubtarget;
+ }
+ const InstrItineraryData *getInstrItineraryData() const override {
+ return Subtarget->inMips16Mode()
+ ? nullptr
+ : &getSubtargetImpl()->getInstrItineraryData();
+ }
+ MipsJITInfo *getJITInfo() override {
+ return Subtarget->getJITInfo();
+ }
+ const MipsRegisterInfo *getRegisterInfo() const override {
+ return getSubtargetImpl()->getRegisterInfo();
+ }
+ const MipsTargetLowering *getTargetLowering() const override {
+ return getSubtargetImpl()->getTargetLowering();
+ }
+ const DataLayout *getDataLayout() const override {
+ return getSubtargetImpl()->getDataLayout();
+ }
+ const MipsSelectionDAGInfo* getSelectionDAGInfo() const override {
+ return getSubtargetImpl()->getSelectionDAGInfo();
+ }
+ /// \brief Reset the subtarget for the Mips target.
+ void resetSubtarget(MachineFunction *MF);
+
+ // Pass Pipeline Configuration
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+ bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &JCE) override;
+};
+
+/// MipsebTargetMachine - Mips32/64 big endian target machine.
+///
+class MipsebTargetMachine : public MipsTargetMachine {
+ virtual void anchor();
+public:
+ MipsebTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+/// MipselTargetMachine - Mips32/64 little endian target machine.
+///
+class MipselTargetMachine : public MipsTargetMachine {
+ virtual void anchor();
+public:
+ MipselTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.cpp b/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.cpp
new file mode 100644
index 0000000..13f9408
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.cpp
@@ -0,0 +1,103 @@
+//===-- MipsTargetObjectFile.cpp - Mips Object Files ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsTargetObjectFile.h"
+#include "MipsSubtarget.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+static cl::opt<unsigned>
+SSThreshold("mips-ssection-threshold", cl::Hidden,
+ cl::desc("Small data and bss section threshold size (default=8)"),
+ cl::init(8));
+
+void MipsTargetObjectFile::Initialize(MCContext &Ctx, const TargetMachine &TM){
+ TargetLoweringObjectFileELF::Initialize(Ctx, TM);
+ InitializeELF(TM.Options.UseInitArray);
+
+ SmallDataSection =
+ getContext().getELFSection(".sdata", ELF::SHT_PROGBITS,
+ ELF::SHF_WRITE |ELF::SHF_ALLOC,
+ SectionKind::getDataRel());
+
+ SmallBSSSection =
+ getContext().getELFSection(".sbss", ELF::SHT_NOBITS,
+ ELF::SHF_WRITE |ELF::SHF_ALLOC,
+ SectionKind::getBSS());
+}
+
+// A address must be loaded from a small section if its size is less than the
+// small section size threshold. Data in this section must be addressed using
+// gp_rel operator.
+static bool IsInSmallSection(uint64_t Size) {
+ return Size > 0 && Size <= SSThreshold;
+}
+
+bool MipsTargetObjectFile::IsGlobalInSmallSection(const GlobalValue *GV,
+ const TargetMachine &TM) const {
+ if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage())
+ return false;
+
+ return IsGlobalInSmallSection(GV, TM, getKindForGlobal(GV, TM));
+}
+
+/// IsGlobalInSmallSection - Return true if this global address should be
+/// placed into small data/bss section.
+bool MipsTargetObjectFile::
+IsGlobalInSmallSection(const GlobalValue *GV, const TargetMachine &TM,
+ SectionKind Kind) const {
+
+ const MipsSubtarget &Subtarget = TM.getSubtarget<MipsSubtarget>();
+
+ // Return if small section is not available.
+ if (!Subtarget.useSmallSection())
+ return false;
+
+ // Only global variables, not functions.
+ const GlobalVariable *GVA = dyn_cast<GlobalVariable>(GV);
+ if (!GVA)
+ return false;
+
+ // We can only do this for datarel or BSS objects for now.
+ if (!Kind.isBSS() && !Kind.isDataRel())
+ return false;
+
+ // If this is a internal constant string, there is a special
+ // section for it, but not in small data/bss.
+ if (Kind.isMergeable1ByteCString())
+ return false;
+
+ Type *Ty = GV->getType()->getElementType();
+ return IsInSmallSection(TM.getDataLayout()->getTypeAllocSize(Ty));
+}
+
+
+
+const MCSection *MipsTargetObjectFile::
+SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
+ Mangler &Mang, const TargetMachine &TM) const {
+ // TODO: Could also support "weak" symbols as well with ".gnu.linkonce.s.*"
+ // sections?
+
+ // Handle Small Section classification here.
+ if (Kind.isBSS() && IsGlobalInSmallSection(GV, TM, Kind))
+ return SmallBSSSection;
+ if (Kind.isDataNoRel() && IsGlobalInSmallSection(GV, TM, Kind))
+ return SmallDataSection;
+
+ // Otherwise, we work the same as ELF.
+ return TargetLoweringObjectFileELF::SelectSectionForGlobal(GV, Kind, Mang,TM);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.h b/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.h
new file mode 100644
index 0000000..2bf5a75
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.h
@@ -0,0 +1,38 @@
+//===-- llvm/Target/MipsTargetObjectFile.h - Mips Object Info ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_MIPS_TARGETOBJECTFILE_H
+#define LLVM_TARGET_MIPS_TARGETOBJECTFILE_H
+
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+
+namespace llvm {
+
+ class MipsTargetObjectFile : public TargetLoweringObjectFileELF {
+ const MCSection *SmallDataSection;
+ const MCSection *SmallBSSSection;
+ public:
+
+ void Initialize(MCContext &Ctx, const TargetMachine &TM) override;
+
+
+ /// IsGlobalInSmallSection - Return true if this global address should be
+ /// placed into small data/bss section.
+ bool IsGlobalInSmallSection(const GlobalValue *GV,
+ const TargetMachine &TM, SectionKind Kind)const;
+ bool IsGlobalInSmallSection(const GlobalValue *GV,
+ const TargetMachine &TM) const;
+
+ const MCSection *SelectSectionForGlobal(const GlobalValue *GV,
+ SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const override;
+ };
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsTargetStreamer.h b/contrib/llvm/lib/Target/Mips/MipsTargetStreamer.h
new file mode 100644
index 0000000..99f7d4c
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsTargetStreamer.h
@@ -0,0 +1,201 @@
+//===-- MipsTargetStreamer.h - Mips Target Streamer ------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSTARGETSTREAMER_H
+#define MIPSTARGETSTREAMER_H
+
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCStreamer.h"
+#include "MCTargetDesc/MipsABIFlagsSection.h"
+
+namespace llvm {
+
+struct MipsABIFlagsSection;
+
+class MipsTargetStreamer : public MCTargetStreamer {
+public:
+ MipsTargetStreamer(MCStreamer &S);
+ virtual void emitDirectiveSetMicroMips();
+ virtual void emitDirectiveSetNoMicroMips();
+ virtual void emitDirectiveSetMips16();
+ virtual void emitDirectiveSetNoMips16();
+
+ virtual void emitDirectiveSetReorder();
+ virtual void emitDirectiveSetNoReorder();
+ virtual void emitDirectiveSetMacro();
+ virtual void emitDirectiveSetNoMacro();
+ virtual void emitDirectiveSetAt();
+ virtual void emitDirectiveSetNoAt();
+ virtual void emitDirectiveEnd(StringRef Name);
+
+ virtual void emitDirectiveEnt(const MCSymbol &Symbol);
+ virtual void emitDirectiveAbiCalls();
+ virtual void emitDirectiveNaN2008();
+ virtual void emitDirectiveNaNLegacy();
+ virtual void emitDirectiveOptionPic0();
+ virtual void emitDirectiveOptionPic2();
+ virtual void emitFrame(unsigned StackReg, unsigned StackSize,
+ unsigned ReturnReg);
+ virtual void emitMask(unsigned CPUBitmask, int CPUTopSavedRegOff);
+ virtual void emitFMask(unsigned FPUBitmask, int FPUTopSavedRegOff);
+
+ virtual void emitDirectiveSetMips32R2();
+ virtual void emitDirectiveSetMips64();
+ virtual void emitDirectiveSetMips64R2();
+ virtual void emitDirectiveSetDsp();
+
+ // PIC support
+ virtual void emitDirectiveCpload(unsigned RegNo);
+ virtual void emitDirectiveCpsetup(unsigned RegNo, int RegOrOffset,
+ const MCSymbol &Sym, bool IsReg);
+
+ /// Emit a '.module fp=value' directive using the given values.
+ /// Updates the .MIPS.abiflags section
+ virtual void emitDirectiveModuleFP(MipsABIFlagsSection::FpABIKind Value,
+ bool Is32BitABI) {
+ ABIFlagsSection.setFpABI(Value, Is32BitABI);
+ }
+
+ /// Emit a '.module fp=value' directive using the current values of the
+ /// .MIPS.abiflags section.
+ void emitDirectiveModuleFP() {
+ emitDirectiveModuleFP(ABIFlagsSection.getFpABI(),
+ ABIFlagsSection.Is32BitABI);
+ }
+
+ virtual void emitDirectiveModuleOddSPReg(bool Enabled, bool IsO32ABI);
+ virtual void emitDirectiveSetFp(MipsABIFlagsSection::FpABIKind Value){};
+ virtual void emitMipsAbiFlags(){};
+ void setCanHaveModuleDir(bool Can) { canHaveModuleDirective = Can; }
+ bool getCanHaveModuleDir() { return canHaveModuleDirective; }
+
+ // This method enables template classes to set internal abi flags
+ // structure values.
+ template <class PredicateLibrary>
+ void updateABIInfo(const PredicateLibrary &P) {
+ ABIFlagsSection.setAllFromPredicates(P);
+ }
+
+ MipsABIFlagsSection &getABIFlagsSection() { return ABIFlagsSection; }
+
+protected:
+ MipsABIFlagsSection ABIFlagsSection;
+
+private:
+ bool canHaveModuleDirective;
+};
+
+// This part is for ascii assembly output
+class MipsTargetAsmStreamer : public MipsTargetStreamer {
+ formatted_raw_ostream &OS;
+
+public:
+ MipsTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS);
+ void emitDirectiveSetMicroMips() override;
+ void emitDirectiveSetNoMicroMips() override;
+ void emitDirectiveSetMips16() override;
+ void emitDirectiveSetNoMips16() override;
+
+ void emitDirectiveSetReorder() override;
+ void emitDirectiveSetNoReorder() override;
+ void emitDirectiveSetMacro() override;
+ void emitDirectiveSetNoMacro() override;
+ void emitDirectiveSetAt() override;
+ void emitDirectiveSetNoAt() override;
+ void emitDirectiveEnd(StringRef Name) override;
+
+ void emitDirectiveEnt(const MCSymbol &Symbol) override;
+ void emitDirectiveAbiCalls() override;
+ void emitDirectiveNaN2008() override;
+ void emitDirectiveNaNLegacy() override;
+ void emitDirectiveOptionPic0() override;
+ void emitDirectiveOptionPic2() override;
+ void emitFrame(unsigned StackReg, unsigned StackSize,
+ unsigned ReturnReg) override;
+ void emitMask(unsigned CPUBitmask, int CPUTopSavedRegOff) override;
+ void emitFMask(unsigned FPUBitmask, int FPUTopSavedRegOff) override;
+
+ void emitDirectiveSetMips32R2() override;
+ void emitDirectiveSetMips64() override;
+ void emitDirectiveSetMips64R2() override;
+ void emitDirectiveSetDsp() override;
+
+ // PIC support
+ virtual void emitDirectiveCpload(unsigned RegNo);
+ void emitDirectiveCpsetup(unsigned RegNo, int RegOrOffset,
+ const MCSymbol &Sym, bool IsReg) override;
+
+ // ABI Flags
+ void emitDirectiveModuleFP(MipsABIFlagsSection::FpABIKind Value,
+ bool Is32BitABI) override;
+ void emitDirectiveModuleOddSPReg(bool Enabled, bool IsO32ABI) override;
+ void emitDirectiveSetFp(MipsABIFlagsSection::FpABIKind Value) override;
+ void emitMipsAbiFlags() override;
+};
+
+// This part is for ELF object output
+class MipsTargetELFStreamer : public MipsTargetStreamer {
+ bool MicroMipsEnabled;
+ const MCSubtargetInfo &STI;
+ bool Pic;
+
+public:
+ bool isMicroMipsEnabled() const { return MicroMipsEnabled; }
+ MCELFStreamer &getStreamer();
+ MipsTargetELFStreamer(MCStreamer &S, const MCSubtargetInfo &STI);
+
+ void emitLabel(MCSymbol *Symbol) override;
+ void emitAssignment(MCSymbol *Symbol, const MCExpr *Value) override;
+ void finish() override;
+
+ void emitDirectiveSetMicroMips() override;
+ void emitDirectiveSetNoMicroMips() override;
+ void emitDirectiveSetMips16() override;
+ void emitDirectiveSetNoMips16() override;
+
+ void emitDirectiveSetReorder() override;
+ void emitDirectiveSetNoReorder() override;
+ void emitDirectiveSetMacro() override;
+ void emitDirectiveSetNoMacro() override;
+ void emitDirectiveSetAt() override;
+ void emitDirectiveSetNoAt() override;
+ void emitDirectiveEnd(StringRef Name) override;
+
+ void emitDirectiveEnt(const MCSymbol &Symbol) override;
+ void emitDirectiveAbiCalls() override;
+ void emitDirectiveNaN2008() override;
+ void emitDirectiveNaNLegacy() override;
+ void emitDirectiveOptionPic0() override;
+ void emitDirectiveOptionPic2() override;
+ void emitFrame(unsigned StackReg, unsigned StackSize,
+ unsigned ReturnReg) override;
+ void emitMask(unsigned CPUBitmask, int CPUTopSavedRegOff) override;
+ void emitFMask(unsigned FPUBitmask, int FPUTopSavedRegOff) override;
+
+ void emitDirectiveSetMips32R2() override;
+ void emitDirectiveSetMips64() override;
+ void emitDirectiveSetMips64R2() override;
+ void emitDirectiveSetDsp() override;
+
+ // PIC support
+ virtual void emitDirectiveCpload(unsigned RegNo);
+ void emitDirectiveCpsetup(unsigned RegNo, int RegOrOffset,
+ const MCSymbol &Sym, bool IsReg) override;
+
+ // ABI Flags
+ void emitDirectiveModuleOddSPReg(bool Enabled, bool IsO32ABI) override;
+ void emitMipsAbiFlags() override;
+
+protected:
+ bool isO32() const { return STI.getFeatureBits() & Mips::FeatureO32; }
+ bool isN32() const { return STI.getFeatureBits() & Mips::FeatureN32; }
+ bool isN64() const { return STI.getFeatureBits() & Mips::FeatureN64; }
+};
+}
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/TargetInfo/MipsTargetInfo.cpp b/contrib/llvm/lib/Target/Mips/TargetInfo/MipsTargetInfo.cpp
new file mode 100644
index 0000000..3615c14
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/TargetInfo/MipsTargetInfo.cpp
@@ -0,0 +1,31 @@
+//===-- MipsTargetInfo.cpp - Mips Target Implementation -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Mips.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheMipsTarget, llvm::TheMipselTarget;
+Target llvm::TheMips64Target, llvm::TheMips64elTarget;
+
+extern "C" void LLVMInitializeMipsTargetInfo() {
+ RegisterTarget<Triple::mips,
+ /*HasJIT=*/true> X(TheMipsTarget, "mips", "Mips");
+
+ RegisterTarget<Triple::mipsel,
+ /*HasJIT=*/true> Y(TheMipselTarget, "mipsel", "Mipsel");
+
+ RegisterTarget<Triple::mips64,
+ /*HasJIT=*/false> A(TheMips64Target, "mips64", "Mips64 [experimental]");
+
+ RegisterTarget<Triple::mips64el,
+ /*HasJIT=*/false> B(TheMips64elTarget,
+ "mips64el", "Mips64el [experimental]");
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.cpp b/contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.cpp
new file mode 100644
index 0000000..80b2f62
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.cpp
@@ -0,0 +1,290 @@
+//===-- NVPTXInstPrinter.cpp - PTX assembly instruction printing ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Print MCInst instructions to .ptx format.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstPrinter/NVPTXInstPrinter.h"
+#include "MCTargetDesc/NVPTXBaseInfo.h"
+#include "NVPTX.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include <cctype>
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+#include "NVPTXGenAsmWriter.inc"
+
+
+NVPTXInstPrinter::NVPTXInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI)
+ : MCInstPrinter(MAI, MII, MRI) {
+ setAvailableFeatures(STI.getFeatureBits());
+}
+
+void NVPTXInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
+ // Decode the virtual register
+ // Must be kept in sync with NVPTXAsmPrinter::encodeVirtualRegister
+ unsigned RCId = (RegNo >> 28);
+ switch (RCId) {
+ default: report_fatal_error("Bad virtual register encoding");
+ case 0:
+ // This is actually a physical register, so defer to the autogenerated
+ // register printer
+ OS << getRegisterName(RegNo);
+ return;
+ case 1:
+ OS << "%p";
+ break;
+ case 2:
+ OS << "%rs";
+ break;
+ case 3:
+ OS << "%r";
+ break;
+ case 4:
+ OS << "%rd";
+ break;
+ case 5:
+ OS << "%f";
+ break;
+ case 6:
+ OS << "%fd";
+ break;
+ }
+
+ unsigned VReg = RegNo & 0x0FFFFFFF;
+ OS << VReg;
+}
+
+void NVPTXInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
+ StringRef Annot) {
+ printInstruction(MI, OS);
+
+ // Next always print the annotation.
+ printAnnotation(OS, Annot);
+}
+
+void NVPTXInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ unsigned Reg = Op.getReg();
+ printRegName(O, Reg);
+ } else if (Op.isImm()) {
+ O << markup("<imm:") << formatImm(Op.getImm()) << markup(">");
+ } else {
+ assert(Op.isExpr() && "Unknown operand kind in printOperand");
+ O << *Op.getExpr();
+ }
+}
+
+void NVPTXInstPrinter::printCvtMode(const MCInst *MI, int OpNum, raw_ostream &O,
+ const char *Modifier) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+ int64_t Imm = MO.getImm();
+
+ if (strcmp(Modifier, "ftz") == 0) {
+ // FTZ flag
+ if (Imm & NVPTX::PTXCvtMode::FTZ_FLAG)
+ O << ".ftz";
+ } else if (strcmp(Modifier, "sat") == 0) {
+ // SAT flag
+ if (Imm & NVPTX::PTXCvtMode::SAT_FLAG)
+ O << ".sat";
+ } else if (strcmp(Modifier, "base") == 0) {
+ // Default operand
+ switch (Imm & NVPTX::PTXCvtMode::BASE_MASK) {
+ default:
+ return;
+ case NVPTX::PTXCvtMode::NONE:
+ break;
+ case NVPTX::PTXCvtMode::RNI:
+ O << ".rni";
+ break;
+ case NVPTX::PTXCvtMode::RZI:
+ O << ".rzi";
+ break;
+ case NVPTX::PTXCvtMode::RMI:
+ O << ".rmi";
+ break;
+ case NVPTX::PTXCvtMode::RPI:
+ O << ".rpi";
+ break;
+ case NVPTX::PTXCvtMode::RN:
+ O << ".rn";
+ break;
+ case NVPTX::PTXCvtMode::RZ:
+ O << ".rz";
+ break;
+ case NVPTX::PTXCvtMode::RM:
+ O << ".rm";
+ break;
+ case NVPTX::PTXCvtMode::RP:
+ O << ".rp";
+ break;
+ }
+ } else {
+ llvm_unreachable("Invalid conversion modifier");
+ }
+}
+
+void NVPTXInstPrinter::printCmpMode(const MCInst *MI, int OpNum, raw_ostream &O,
+ const char *Modifier) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+ int64_t Imm = MO.getImm();
+
+ if (strcmp(Modifier, "ftz") == 0) {
+ // FTZ flag
+ if (Imm & NVPTX::PTXCmpMode::FTZ_FLAG)
+ O << ".ftz";
+ } else if (strcmp(Modifier, "base") == 0) {
+ switch (Imm & NVPTX::PTXCmpMode::BASE_MASK) {
+ default:
+ return;
+ case NVPTX::PTXCmpMode::EQ:
+ O << ".eq";
+ break;
+ case NVPTX::PTXCmpMode::NE:
+ O << ".ne";
+ break;
+ case NVPTX::PTXCmpMode::LT:
+ O << ".lt";
+ break;
+ case NVPTX::PTXCmpMode::LE:
+ O << ".le";
+ break;
+ case NVPTX::PTXCmpMode::GT:
+ O << ".gt";
+ break;
+ case NVPTX::PTXCmpMode::GE:
+ O << ".ge";
+ break;
+ case NVPTX::PTXCmpMode::LO:
+ O << ".lo";
+ break;
+ case NVPTX::PTXCmpMode::LS:
+ O << ".ls";
+ break;
+ case NVPTX::PTXCmpMode::HI:
+ O << ".hi";
+ break;
+ case NVPTX::PTXCmpMode::HS:
+ O << ".hs";
+ break;
+ case NVPTX::PTXCmpMode::EQU:
+ O << ".equ";
+ break;
+ case NVPTX::PTXCmpMode::NEU:
+ O << ".neu";
+ break;
+ case NVPTX::PTXCmpMode::LTU:
+ O << ".ltu";
+ break;
+ case NVPTX::PTXCmpMode::LEU:
+ O << ".leu";
+ break;
+ case NVPTX::PTXCmpMode::GTU:
+ O << ".gtu";
+ break;
+ case NVPTX::PTXCmpMode::GEU:
+ O << ".geu";
+ break;
+ case NVPTX::PTXCmpMode::NUM:
+ O << ".num";
+ break;
+ case NVPTX::PTXCmpMode::NotANumber:
+ O << ".nan";
+ break;
+ }
+ } else {
+ llvm_unreachable("Empty Modifier");
+ }
+}
+
+void NVPTXInstPrinter::printLdStCode(const MCInst *MI, int OpNum,
+ raw_ostream &O, const char *Modifier) {
+ if (Modifier) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+ int Imm = (int) MO.getImm();
+ if (!strcmp(Modifier, "volatile")) {
+ if (Imm)
+ O << ".volatile";
+ } else if (!strcmp(Modifier, "addsp")) {
+ switch (Imm) {
+ case NVPTX::PTXLdStInstCode::GLOBAL:
+ O << ".global";
+ break;
+ case NVPTX::PTXLdStInstCode::SHARED:
+ O << ".shared";
+ break;
+ case NVPTX::PTXLdStInstCode::LOCAL:
+ O << ".local";
+ break;
+ case NVPTX::PTXLdStInstCode::PARAM:
+ O << ".param";
+ break;
+ case NVPTX::PTXLdStInstCode::CONSTANT:
+ O << ".const";
+ break;
+ case NVPTX::PTXLdStInstCode::GENERIC:
+ break;
+ default:
+ llvm_unreachable("Wrong Address Space");
+ }
+ } else if (!strcmp(Modifier, "sign")) {
+ if (Imm == NVPTX::PTXLdStInstCode::Signed)
+ O << "s";
+ else if (Imm == NVPTX::PTXLdStInstCode::Unsigned)
+ O << "u";
+ else
+ O << "f";
+ } else if (!strcmp(Modifier, "vec")) {
+ if (Imm == NVPTX::PTXLdStInstCode::V2)
+ O << ".v2";
+ else if (Imm == NVPTX::PTXLdStInstCode::V4)
+ O << ".v4";
+ } else
+ llvm_unreachable("Unknown Modifier");
+ } else
+ llvm_unreachable("Empty Modifier");
+}
+
+void NVPTXInstPrinter::printMemOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O, const char *Modifier) {
+ printOperand(MI, OpNum, O);
+
+ if (Modifier && !strcmp(Modifier, "add")) {
+ O << ", ";
+ printOperand(MI, OpNum + 1, O);
+ } else {
+ if (MI->getOperand(OpNum + 1).isImm() &&
+ MI->getOperand(OpNum + 1).getImm() == 0)
+ return; // don't print ',0' or '+0'
+ O << "+";
+ printOperand(MI, OpNum + 1, O);
+ }
+}
+
+void NVPTXInstPrinter::printProtoIdent(const MCInst *MI, int OpNum,
+ raw_ostream &O, const char *Modifier) {
+ const MCOperand &Op = MI->getOperand(OpNum);
+ assert(Op.isExpr() && "Call prototype is not an MCExpr?");
+ const MCExpr *Expr = Op.getExpr();
+ const MCSymbol &Sym = cast<MCSymbolRefExpr>(Expr)->getSymbol();
+ O << Sym.getName();
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.h b/contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.h
new file mode 100644
index 0000000..1fb3c57
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.h
@@ -0,0 +1,53 @@
+//= NVPTXInstPrinter.h - Convert NVPTX MCInst to assembly syntax --*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an NVPTX MCInst to .ptx file syntax.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTX_INST_PRINTER_H
+#define NVPTX_INST_PRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+class MCOperand;
+class MCSubtargetInfo;
+
+class NVPTXInstPrinter : public MCInstPrinter {
+public:
+ NVPTXInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI, const MCSubtargetInfo &STI);
+
+ void printRegName(raw_ostream &OS, unsigned RegNo) const override;
+ void printInst(const MCInst *MI, raw_ostream &OS, StringRef Annot) override;
+
+ // Autogenerated by tblgen.
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ static const char *getRegisterName(unsigned RegNo);
+ // End
+
+ void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printCvtMode(const MCInst *MI, int OpNum, raw_ostream &O,
+ const char *Modifier = nullptr);
+ void printCmpMode(const MCInst *MI, int OpNum, raw_ostream &O,
+ const char *Modifier = nullptr);
+ void printLdStCode(const MCInst *MI, int OpNum,
+ raw_ostream &O, const char *Modifier = nullptr);
+ void printMemOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O, const char *Modifier = nullptr);
+ void printProtoIdent(const MCInst *MI, int OpNum,
+ raw_ostream &O, const char *Modifier = nullptr);
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXBaseInfo.h b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXBaseInfo.h
new file mode 100644
index 0000000..16ec19c
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXBaseInfo.h
@@ -0,0 +1,100 @@
+//===-- NVPTXBaseInfo.h - Top-level definitions for NVPTX -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains small standalone helper functions and enum definitions for
+// the NVPTX target useful for the compiler back-end and the MC libraries.
+// As such, it deliberately does not include references to LLVM core
+// code gen types, passes, etc..
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTXBASEINFO_H
+#define NVPTXBASEINFO_H
+
+namespace llvm {
+
+enum AddressSpace {
+ ADDRESS_SPACE_GENERIC = 0,
+ ADDRESS_SPACE_GLOBAL = 1,
+ ADDRESS_SPACE_SHARED = 3,
+ ADDRESS_SPACE_CONST = 4,
+ ADDRESS_SPACE_LOCAL = 5,
+
+ // NVVM Internal
+ ADDRESS_SPACE_PARAM = 101
+};
+
+enum PropertyAnnotation {
+ PROPERTY_MAXNTID_X = 0,
+ PROPERTY_MAXNTID_Y,
+ PROPERTY_MAXNTID_Z,
+ PROPERTY_REQNTID_X,
+ PROPERTY_REQNTID_Y,
+ PROPERTY_REQNTID_Z,
+ PROPERTY_MINNCTAPERSM,
+ PROPERTY_ISTEXTURE,
+ PROPERTY_ISSURFACE,
+ PROPERTY_ISSAMPLER,
+ PROPERTY_ISREADONLY_IMAGE_PARAM,
+ PROPERTY_ISWRITEONLY_IMAGE_PARAM,
+ PROPERTY_ISREADWRITE_IMAGE_PARAM,
+ PROPERTY_ISKERNEL_FUNCTION,
+ PROPERTY_ALIGN,
+ PROPERTY_MANAGED,
+
+ // last property
+ PROPERTY_LAST
+};
+
+const unsigned AnnotationNameLen = 9; // length of each annotation name
+const char PropertyAnnotationNames[PROPERTY_LAST + 1][AnnotationNameLen + 1] = {
+ "maxntidx", // PROPERTY_MAXNTID_X
+ "maxntidy", // PROPERTY_MAXNTID_Y
+ "maxntidz", // PROPERTY_MAXNTID_Z
+ "reqntidx", // PROPERTY_REQNTID_X
+ "reqntidy", // PROPERTY_REQNTID_Y
+ "reqntidz", // PROPERTY_REQNTID_Z
+ "minctasm", // PROPERTY_MINNCTAPERSM
+ "texture", // PROPERTY_ISTEXTURE
+ "surface", // PROPERTY_ISSURFACE
+ "sampler", // PROPERTY_ISSAMPLER
+ "rdoimage", // PROPERTY_ISREADONLY_IMAGE_PARAM
+ "wroimage", // PROPERTY_ISWRITEONLY_IMAGE_PARAM
+ "rdwrimage", // PROPERTY_ISREADWRITE_IMAGE_PARAM
+ "kernel", // PROPERTY_ISKERNEL_FUNCTION
+ "align", // PROPERTY_ALIGN
+ "managed", // PROPERTY_MANAGED
+
+ // last property
+ "proplast", // PROPERTY_LAST
+};
+
+// name of named metadata used for global annotations
+#if defined(__GNUC__)
+// As this is declared to be static but some of the .cpp files that
+// include NVVM.h do not use this array, gcc gives a warning when
+// compiling those .cpp files, hence __attribute__((unused)).
+__attribute__((unused))
+#endif
+ static const char *NamedMDForAnnotations = "nvvm.annotations";
+
+namespace NVPTXII {
+enum {
+ // These must be kept in sync with TSFlags in NVPTXInstrFormats.td
+ IsTexFlag = 0x80,
+ IsSuldMask = 0x300,
+ IsSuldShift = 8,
+ IsSustFlag = 0x400,
+ IsSurfTexQueryFlag = 0x800,
+ IsTexModeUnifiedFlag = 0x1000
+};
+}
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.cpp b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.cpp
new file mode 100644
index 0000000..366341a
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.cpp
@@ -0,0 +1,56 @@
+//===-- NVPTXMCAsmInfo.cpp - NVPTX asm properties -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the NVPTXMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXMCAsmInfo.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Support/CommandLine.h"
+
+using namespace llvm;
+
+// -debug-compile - Command line option to inform opt and llc passes to
+// compile for debugging
+static cl::opt<bool> CompileForDebugging("debug-compile",
+ cl::desc("Compile for debugging"),
+ cl::Hidden, cl::init(false));
+
+void NVPTXMCAsmInfo::anchor() {}
+
+NVPTXMCAsmInfo::NVPTXMCAsmInfo(const StringRef &TT) {
+ Triple TheTriple(TT);
+ if (TheTriple.getArch() == Triple::nvptx64) {
+ PointerSize = CalleeSaveStackSlotSize = 8;
+ }
+
+ CommentString = "//";
+
+ HasSetDirective = false;
+
+ HasSingleParameterDotFile = false;
+
+ InlineAsmStart = " inline asm";
+ InlineAsmEnd = " inline asm";
+
+ SupportsDebugInformation = CompileForDebugging;
+ HasDotTypeDotSizeDirective = false;
+
+ Data8bitsDirective = " .b8 ";
+ Data16bitsDirective = " .b16 ";
+ Data32bitsDirective = " .b32 ";
+ Data64bitsDirective = " .b64 ";
+ ZeroDirective = " .b8";
+ AsciiDirective = " .b8";
+ AscizDirective = " .b8";
+
+ // @TODO: Can we just disable this?
+ GlobalDirective = "\t// .globl\t";
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.h b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.h
new file mode 100644
index 0000000..7d1633f
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.h
@@ -0,0 +1,30 @@
+//===-- NVPTXMCAsmInfo.h - NVPTX asm properties ----------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the NVPTXMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTX_MCASM_INFO_H
+#define NVPTX_MCASM_INFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+
+namespace llvm {
+class Target;
+class StringRef;
+
+class NVPTXMCAsmInfo : public MCAsmInfo {
+ virtual void anchor();
+public:
+ explicit NVPTXMCAsmInfo(const StringRef &TT);
+};
+} // namespace llvm
+
+#endif // NVPTX_MCASM_INFO_H
diff --git a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.cpp b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.cpp
new file mode 100644
index 0000000..158ca90
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.cpp
@@ -0,0 +1,105 @@
+//===-- NVPTXMCTargetDesc.cpp - NVPTX Target Descriptions -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides NVPTX specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXMCTargetDesc.h"
+#include "InstPrinter/NVPTXInstPrinter.h"
+#include "NVPTXMCAsmInfo.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_MC_DESC
+#include "NVPTXGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "NVPTXGenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "NVPTXGenRegisterInfo.inc"
+
+static MCInstrInfo *createNVPTXMCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitNVPTXMCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createNVPTXMCRegisterInfo(StringRef TT) {
+ MCRegisterInfo *X = new MCRegisterInfo();
+ // PTX does not have a return address register.
+ InitNVPTXMCRegisterInfo(X, 0);
+ return X;
+}
+
+static MCSubtargetInfo *
+createNVPTXMCSubtargetInfo(StringRef TT, StringRef CPU, StringRef FS) {
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+ InitNVPTXMCSubtargetInfo(X, TT, CPU, FS);
+ return X;
+}
+
+static MCCodeGenInfo *createNVPTXMCCodeGenInfo(
+ StringRef TT, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+static MCInstPrinter *createNVPTXMCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ if (SyntaxVariant == 0)
+ return new NVPTXInstPrinter(MAI, MII, MRI, STI);
+ return nullptr;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeNVPTXTargetMC() {
+ // Register the MC asm info.
+ RegisterMCAsmInfo<NVPTXMCAsmInfo> X(TheNVPTXTarget32);
+ RegisterMCAsmInfo<NVPTXMCAsmInfo> Y(TheNVPTXTarget64);
+
+ // Register the MC codegen info.
+ TargetRegistry::RegisterMCCodeGenInfo(TheNVPTXTarget32,
+ createNVPTXMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheNVPTXTarget64,
+ createNVPTXMCCodeGenInfo);
+
+ // Register the MC instruction info.
+ TargetRegistry::RegisterMCInstrInfo(TheNVPTXTarget32, createNVPTXMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheNVPTXTarget64, createNVPTXMCInstrInfo);
+
+ // Register the MC register info.
+ TargetRegistry::RegisterMCRegInfo(TheNVPTXTarget32,
+ createNVPTXMCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheNVPTXTarget64,
+ createNVPTXMCRegisterInfo);
+
+ // Register the MC subtarget info.
+ TargetRegistry::RegisterMCSubtargetInfo(TheNVPTXTarget32,
+ createNVPTXMCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheNVPTXTarget64,
+ createNVPTXMCSubtargetInfo);
+
+ // Register the MCInstPrinter.
+ TargetRegistry::RegisterMCInstPrinter(TheNVPTXTarget32,
+ createNVPTXMCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheNVPTXTarget64,
+ createNVPTXMCInstPrinter);
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.h b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.h
new file mode 100644
index 0000000..af95c76
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.h
@@ -0,0 +1,36 @@
+//===-- NVPTXMCTargetDesc.h - NVPTX Target Descriptions ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides NVPTX specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTXMCTARGETDESC_H
+#define NVPTXMCTARGETDESC_H
+
+namespace llvm {
+class Target;
+
+extern Target TheNVPTXTarget32;
+extern Target TheNVPTXTarget64;
+
+} // End llvm namespace
+
+// Defines symbolic names for PTX registers.
+#define GET_REGINFO_ENUM
+#include "NVPTXGenRegisterInfo.inc"
+
+// Defines symbolic names for the PTX instructions.
+#define GET_INSTRINFO_ENUM
+#include "NVPTXGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "NVPTXGenSubtargetInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/ManagedStringPool.h b/contrib/llvm/lib/Target/NVPTX/ManagedStringPool.h
new file mode 100644
index 0000000..f9fb059
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/ManagedStringPool.h
@@ -0,0 +1,48 @@
+//===-- ManagedStringPool.h - Managed String Pool ---------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// The strings allocated from a managed string pool are owned by the string
+// pool and will be deleted together with the managed string pool.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SUPPORT_MANAGED_STRING_H
+#define LLVM_SUPPORT_MANAGED_STRING_H
+
+#include "llvm/ADT/SmallVector.h"
+#include <string>
+
+namespace llvm {
+
+/// ManagedStringPool - The strings allocated from a managed string pool are
+/// owned by the string pool and will be deleted together with the managed
+/// string pool.
+class ManagedStringPool {
+ SmallVector<std::string *, 8> Pool;
+
+public:
+ ManagedStringPool() {}
+ ~ManagedStringPool() {
+ SmallVectorImpl<std::string *>::iterator Current = Pool.begin();
+ while (Current != Pool.end()) {
+ delete *Current;
+ Current++;
+ }
+ }
+
+ std::string *getManagedString(const char *S) {
+ std::string *Str = new std::string(S);
+ Pool.push_back(Str);
+ return Str;
+ }
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTX.h b/contrib/llvm/lib/Target/NVPTX/NVPTX.h
new file mode 100644
index 0000000..e74c808
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTX.h
@@ -0,0 +1,194 @@
+//===-- NVPTX.h - Top-level interface for NVPTX representation --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in
+// the LLVM NVPTX back-end.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_NVPTX_H
+#define LLVM_TARGET_NVPTX_H
+
+#include "MCTargetDesc/NVPTXBaseInfo.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cassert>
+#include <iosfwd>
+
+namespace llvm {
+class NVPTXTargetMachine;
+class FunctionPass;
+class MachineFunctionPass;
+class formatted_raw_ostream;
+
+namespace NVPTXCC {
+enum CondCodes {
+ EQ,
+ NE,
+ LT,
+ LE,
+ GT,
+ GE
+};
+}
+
+inline static const char *NVPTXCondCodeToString(NVPTXCC::CondCodes CC) {
+ switch (CC) {
+ case NVPTXCC::NE:
+ return "ne";
+ case NVPTXCC::EQ:
+ return "eq";
+ case NVPTXCC::LT:
+ return "lt";
+ case NVPTXCC::LE:
+ return "le";
+ case NVPTXCC::GT:
+ return "gt";
+ case NVPTXCC::GE:
+ return "ge";
+ }
+ llvm_unreachable("Unknown condition code");
+}
+
+FunctionPass *
+createNVPTXISelDag(NVPTXTargetMachine &TM, llvm::CodeGenOpt::Level OptLevel);
+ModulePass *createNVPTXAssignValidGlobalNamesPass();
+ModulePass *createGenericToNVVMPass();
+FunctionPass *createNVPTXFavorNonGenericAddrSpacesPass();
+ModulePass *createNVVMReflectPass();
+ModulePass *createNVVMReflectPass(const StringMap<int>& Mapping);
+MachineFunctionPass *createNVPTXPrologEpilogPass();
+MachineFunctionPass *createNVPTXReplaceImageHandlesPass();
+FunctionPass *createNVPTXImageOptimizerPass();
+
+bool isImageOrSamplerVal(const Value *, const Module *);
+
+extern Target TheNVPTXTarget32;
+extern Target TheNVPTXTarget64;
+
+namespace NVPTX {
+enum DrvInterface {
+ NVCL,
+ CUDA
+};
+
+// A field inside TSFlags needs a shift and a mask. The usage is
+// always as follows :
+// ((TSFlags & fieldMask) >> fieldShift)
+// The enum keeps the mask, the shift, and all valid values of the
+// field in one place.
+enum VecInstType {
+ VecInstTypeShift = 0,
+ VecInstTypeMask = 0xF,
+
+ VecNOP = 0,
+ VecLoad = 1,
+ VecStore = 2,
+ VecBuild = 3,
+ VecShuffle = 4,
+ VecExtract = 5,
+ VecInsert = 6,
+ VecDest = 7,
+ VecOther = 15
+};
+
+enum SimpleMove {
+ SimpleMoveMask = 0x10,
+ SimpleMoveShift = 4
+};
+enum LoadStore {
+ isLoadMask = 0x20,
+ isLoadShift = 5,
+ isStoreMask = 0x40,
+ isStoreShift = 6
+};
+
+namespace PTXLdStInstCode {
+enum AddressSpace {
+ GENERIC = 0,
+ GLOBAL = 1,
+ CONSTANT = 2,
+ SHARED = 3,
+ PARAM = 4,
+ LOCAL = 5
+};
+enum FromType {
+ Unsigned = 0,
+ Signed,
+ Float
+};
+enum VecType {
+ Scalar = 1,
+ V2 = 2,
+ V4 = 4
+};
+}
+
+/// PTXCvtMode - Conversion code enumeration
+namespace PTXCvtMode {
+enum CvtMode {
+ NONE = 0,
+ RNI,
+ RZI,
+ RMI,
+ RPI,
+ RN,
+ RZ,
+ RM,
+ RP,
+
+ BASE_MASK = 0x0F,
+ FTZ_FLAG = 0x10,
+ SAT_FLAG = 0x20
+};
+}
+
+/// PTXCmpMode - Comparison mode enumeration
+namespace PTXCmpMode {
+enum CmpMode {
+ EQ = 0,
+ NE,
+ LT,
+ LE,
+ GT,
+ GE,
+ LO,
+ LS,
+ HI,
+ HS,
+ EQU,
+ NEU,
+ LTU,
+ LEU,
+ GTU,
+ GEU,
+ NUM,
+ // NAN is a MACRO
+ NotANumber,
+
+ BASE_MASK = 0xFF,
+ FTZ_FLAG = 0x100
+};
+}
+}
+} // end namespace llvm;
+
+// Defines symbolic names for NVPTX registers. This defines a mapping from
+// register name to register number.
+#define GET_REGINFO_ENUM
+#include "NVPTXGenRegisterInfo.inc"
+
+// Defines symbolic names for the NVPTX instructions.
+#define GET_INSTRINFO_ENUM
+#include "NVPTXGenInstrInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTX.td b/contrib/llvm/lib/Target/NVPTX/NVPTX.td
new file mode 100644
index 0000000..93fabf6
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTX.td
@@ -0,0 +1,69 @@
+//===- NVPTX.td - Describe the NVPTX Target Machine -----------*- tblgen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This is the top level entry point for the NVPTX target.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+include "NVPTXRegisterInfo.td"
+include "NVPTXInstrInfo.td"
+
+//===----------------------------------------------------------------------===//
+// Subtarget Features.
+// - We use the SM version number instead of explicit feature table.
+// - Need at least one feature to avoid generating zero sized array by
+// TableGen in NVPTXGenSubtarget.inc.
+//===----------------------------------------------------------------------===//
+
+// SM Versions
+def SM20 : SubtargetFeature<"sm_20", "SmVersion", "20",
+ "Target SM 2.0">;
+def SM21 : SubtargetFeature<"sm_21", "SmVersion", "21",
+ "Target SM 2.1">;
+def SM30 : SubtargetFeature<"sm_30", "SmVersion", "30",
+ "Target SM 3.0">;
+def SM35 : SubtargetFeature<"sm_35", "SmVersion", "35",
+ "Target SM 3.5">;
+def SM50 : SubtargetFeature<"sm_50", "SmVersion", "50",
+ "Target SM 5.0">;
+
+// PTX Versions
+def PTX30 : SubtargetFeature<"ptx30", "PTXVersion", "30",
+ "Use PTX version 3.0">;
+def PTX31 : SubtargetFeature<"ptx31", "PTXVersion", "31",
+ "Use PTX version 3.1">;
+def PTX32 : SubtargetFeature<"ptx32", "PTXVersion", "32",
+ "Use PTX version 3.2">;
+def PTX40 : SubtargetFeature<"ptx40", "PTXVersion", "40",
+ "Use PTX version 4.0">;
+
+//===----------------------------------------------------------------------===//
+// NVPTX supported processors.
+//===----------------------------------------------------------------------===//
+
+class Proc<string Name, list<SubtargetFeature> Features>
+ : Processor<Name, NoItineraries, Features>;
+
+def : Proc<"sm_20", [SM20]>;
+def : Proc<"sm_21", [SM21]>;
+def : Proc<"sm_30", [SM30]>;
+def : Proc<"sm_35", [SM35]>;
+def : Proc<"sm_50", [SM50]>;
+
+
+def NVPTXInstrInfo : InstrInfo {
+}
+
+def NVPTX : Target {
+ let InstructionSet = NVPTXInstrInfo;
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.cpp
new file mode 100644
index 0000000..1f37696
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.cpp
@@ -0,0 +1,46 @@
+//===-- AllocaHoisting.cpp - Hoist allocas to the entry block --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Hoist the alloca instructions in the non-entry blocks to the entry blocks.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXAllocaHoisting.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+
+namespace llvm {
+
+bool NVPTXAllocaHoisting::runOnFunction(Function &function) {
+ bool functionModified = false;
+ Function::iterator I = function.begin();
+ TerminatorInst *firstTerminatorInst = (I++)->getTerminator();
+
+ for (Function::iterator E = function.end(); I != E; ++I) {
+ for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
+ AllocaInst *allocaInst = dyn_cast<AllocaInst>(BI++);
+ if (allocaInst && isa<ConstantInt>(allocaInst->getArraySize())) {
+ allocaInst->moveBefore(firstTerminatorInst);
+ functionModified = true;
+ }
+ }
+ }
+
+ return functionModified;
+}
+
+char NVPTXAllocaHoisting::ID = 1;
+static RegisterPass<NVPTXAllocaHoisting>
+X("alloca-hoisting", "Hoisting alloca instructions in non-entry "
+ "blocks to the entry block");
+
+FunctionPass *createAllocaHoisting() { return new NVPTXAllocaHoisting(); }
+
+} // end namespace llvm
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.h b/contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.h
new file mode 100644
index 0000000..5b61068
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.h
@@ -0,0 +1,50 @@
+//===-- AllocaHoisting.h - Hosist allocas to the entry block ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Hoist the alloca instructions in the non-entry blocks to the entry blocks.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTX_ALLOCA_HOISTING_H_
+#define NVPTX_ALLOCA_HOISTING_H_
+
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Pass.h"
+
+namespace llvm {
+
+class FunctionPass;
+class Function;
+
+// Hoisting the alloca instructions in the non-entry blocks to the entry
+// block.
+class NVPTXAllocaHoisting : public FunctionPass {
+public:
+ static char ID; // Pass ID
+ NVPTXAllocaHoisting() : FunctionPass(ID) {}
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DataLayoutPass>();
+ AU.addPreserved("stack-protector");
+ AU.addPreserved<MachineFunctionAnalysis>();
+ }
+
+ const char *getPassName() const override {
+ return "NVPTX specific alloca hoisting";
+ }
+
+ bool runOnFunction(Function &function) override;
+};
+
+extern FunctionPass *createAllocaHoisting();
+
+} // end namespace llvm
+
+#endif // NVPTX_ALLOCA_HOISTING_H_
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
new file mode 100644
index 0000000..187b88c
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
@@ -0,0 +1,2292 @@
+//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to NVPTX assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXAsmPrinter.h"
+#include "InstPrinter/NVPTXInstPrinter.h"
+#include "MCTargetDesc/NVPTXMCAsmInfo.h"
+#include "NVPTX.h"
+#include "NVPTXInstrInfo.h"
+#include "NVPTXMachineFunctionInfo.h"
+#include "NVPTXMCExpr.h"
+#include "NVPTXRegisterInfo.h"
+#include "NVPTXTargetMachine.h"
+#include "NVPTXUtilities.h"
+#include "cl_common_defines.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/TimeValue.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include <sstream>
+using namespace llvm;
+
+#define DEPOTNAME "__local_depot"
+
+static cl::opt<bool>
+EmitLineNumbers("nvptx-emit-line-numbers", cl::Hidden,
+ cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
+ cl::init(true));
+
+static cl::opt<bool>
+InterleaveSrc("nvptx-emit-src", cl::ZeroOrMore, cl::Hidden,
+ cl::desc("NVPTX Specific: Emit source line in ptx file"),
+ cl::init(false));
+
+namespace {
+/// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
+/// depends.
+void DiscoverDependentGlobals(const Value *V,
+ DenseSet<const GlobalVariable *> &Globals) {
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ Globals.insert(GV);
+ else {
+ if (const User *U = dyn_cast<User>(V)) {
+ for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
+ DiscoverDependentGlobals(U->getOperand(i), Globals);
+ }
+ }
+ }
+}
+
+/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
+/// instances to be emitted, but only after any dependents have been added
+/// first.
+void VisitGlobalVariableForEmission(
+ const GlobalVariable *GV, SmallVectorImpl<const GlobalVariable *> &Order,
+ DenseSet<const GlobalVariable *> &Visited,
+ DenseSet<const GlobalVariable *> &Visiting) {
+ // Have we already visited this one?
+ if (Visited.count(GV))
+ return;
+
+ // Do we have a circular dependency?
+ if (Visiting.count(GV))
+ report_fatal_error("Circular dependency found in global variable set");
+
+ // Start visiting this global
+ Visiting.insert(GV);
+
+ // Make sure we visit all dependents first
+ DenseSet<const GlobalVariable *> Others;
+ for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
+ DiscoverDependentGlobals(GV->getOperand(i), Others);
+
+ for (DenseSet<const GlobalVariable *>::iterator I = Others.begin(),
+ E = Others.end();
+ I != E; ++I)
+ VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
+
+ // Now we can visit ourself
+ Order.push_back(GV);
+ Visited.insert(GV);
+ Visiting.erase(GV);
+}
+}
+
+// @TODO: This is a copy from AsmPrinter.cpp. The function is static, so we
+// cannot just link to the existing version.
+/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
+///
+using namespace nvptx;
+const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
+ MCContext &Ctx = AP.OutContext;
+
+ if (CV->isNullValue() || isa<UndefValue>(CV))
+ return MCConstantExpr::Create(0, Ctx);
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
+ return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
+
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
+ return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
+
+ if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
+ return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
+
+ const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
+ if (!CE)
+ llvm_unreachable("Unknown constant value to lower!");
+
+ switch (CE->getOpcode()) {
+ default:
+ // If the code isn't optimized, there may be outstanding folding
+ // opportunities. Attempt to fold the expression using DataLayout as a
+ // last resort before giving up.
+ if (Constant *C = ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
+ if (C != CE)
+ return LowerConstant(C, AP);
+
+ // Otherwise report the problem to the user.
+ {
+ std::string S;
+ raw_string_ostream OS(S);
+ OS << "Unsupported expression in static initializer: ";
+ CE->printAsOperand(OS, /*PrintType=*/ false,
+ !AP.MF ? nullptr : AP.MF->getFunction()->getParent());
+ report_fatal_error(OS.str());
+ }
+ case Instruction::AddrSpaceCast: {
+ // Strip any addrspace(1)->addrspace(0) addrspace casts. These will be
+ // handled by the generic() logic in the MCExpr printer
+ PointerType *DstTy = cast<PointerType>(CE->getType());
+ PointerType *SrcTy = cast<PointerType>(CE->getOperand(0)->getType());
+ if (SrcTy->getAddressSpace() == 1 && DstTy->getAddressSpace() == 0) {
+ return LowerConstant(cast<const Constant>(CE->getOperand(0)), AP);
+ }
+ std::string S;
+ raw_string_ostream OS(S);
+ OS << "Unsupported expression in static initializer: ";
+ CE->printAsOperand(OS, /*PrintType=*/ false,
+ !AP.MF ? nullptr : AP.MF->getFunction()->getParent());
+ report_fatal_error(OS.str());
+ }
+ case Instruction::GetElementPtr: {
+ const DataLayout &TD = *AP.TM.getDataLayout();
+ // Generate a symbolic expression for the byte address
+ APInt OffsetAI(TD.getPointerSizeInBits(), 0);
+ cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
+
+ const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
+ if (!OffsetAI)
+ return Base;
+
+ int64_t Offset = OffsetAI.getSExtValue();
+ return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
+ Ctx);
+ }
+
+ case Instruction::Trunc:
+ // We emit the value and depend on the assembler to truncate the generated
+ // expression properly. This is important for differences between
+ // blockaddress labels. Since the two labels are in the same function, it
+ // is reasonable to treat their delta as a 32-bit value.
+ // FALL THROUGH.
+ case Instruction::BitCast:
+ return LowerConstant(CE->getOperand(0), AP);
+
+ case Instruction::IntToPtr: {
+ const DataLayout &TD = *AP.TM.getDataLayout();
+ // Handle casts to pointers by changing them into casts to the appropriate
+ // integer type. This promotes constant folding and simplifies this code.
+ Constant *Op = CE->getOperand(0);
+ Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
+ false /*ZExt*/);
+ return LowerConstant(Op, AP);
+ }
+
+ case Instruction::PtrToInt: {
+ const DataLayout &TD = *AP.TM.getDataLayout();
+ // Support only foldable casts to/from pointers that can be eliminated by
+ // changing the pointer to the appropriately sized integer type.
+ Constant *Op = CE->getOperand(0);
+ Type *Ty = CE->getType();
+
+ const MCExpr *OpExpr = LowerConstant(Op, AP);
+
+ // We can emit the pointer value into this slot if the slot is an
+ // integer slot equal to the size of the pointer.
+ if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
+ return OpExpr;
+
+ // Otherwise the pointer is smaller than the resultant integer, mask off
+ // the high bits so we are sure to get a proper truncation if the input is
+ // a constant expr.
+ unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
+ const MCExpr *MaskExpr =
+ MCConstantExpr::Create(~0ULL >> (64 - InBits), Ctx);
+ return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
+ }
+
+ // The MC library also has a right-shift operator, but it isn't consistently
+ // signed or unsigned between different targets.
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::SDiv:
+ case Instruction::SRem:
+ case Instruction::Shl:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
+ const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
+ switch (CE->getOpcode()) {
+ default:
+ llvm_unreachable("Unknown binary operator constant cast expr");
+ case Instruction::Add:
+ return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
+ case Instruction::Sub:
+ return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
+ case Instruction::Mul:
+ return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
+ case Instruction::SDiv:
+ return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
+ case Instruction::SRem:
+ return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
+ case Instruction::Shl:
+ return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
+ case Instruction::And:
+ return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
+ case Instruction::Or:
+ return MCBinaryExpr::CreateOr(LHS, RHS, Ctx);
+ case Instruction::Xor:
+ return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
+ }
+ }
+ }
+}
+
+void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) {
+ if (!EmitLineNumbers)
+ return;
+ if (ignoreLoc(MI))
+ return;
+
+ DebugLoc curLoc = MI.getDebugLoc();
+
+ if (prevDebugLoc.isUnknown() && curLoc.isUnknown())
+ return;
+
+ if (prevDebugLoc == curLoc)
+ return;
+
+ prevDebugLoc = curLoc;
+
+ if (curLoc.isUnknown())
+ return;
+
+ const MachineFunction *MF = MI.getParent()->getParent();
+ //const TargetMachine &TM = MF->getTarget();
+
+ const LLVMContext &ctx = MF->getFunction()->getContext();
+ DIScope Scope(curLoc.getScope(ctx));
+
+ assert((!Scope || Scope.isScope()) &&
+ "Scope of a DebugLoc should be null or a DIScope.");
+ if (!Scope)
+ return;
+
+ StringRef fileName(Scope.getFilename());
+ StringRef dirName(Scope.getDirectory());
+ SmallString<128> FullPathName = dirName;
+ if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
+ sys::path::append(FullPathName, fileName);
+ fileName = FullPathName.str();
+ }
+
+ if (filenameMap.find(fileName.str()) == filenameMap.end())
+ return;
+
+ // Emit the line from the source file.
+ if (InterleaveSrc)
+ this->emitSrcInText(fileName.str(), curLoc.getLine());
+
+ std::stringstream temp;
+ temp << "\t.loc " << filenameMap[fileName.str()] << " " << curLoc.getLine()
+ << " " << curLoc.getCol();
+ OutStreamer.EmitRawText(Twine(temp.str().c_str()));
+}
+
+void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ SmallString<128> Str;
+ raw_svector_ostream OS(Str);
+ if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
+ emitLineNumberAsDotLoc(*MI);
+
+ MCInst Inst;
+ lowerToMCInst(MI, Inst);
+ EmitToStreamer(OutStreamer, Inst);
+}
+
+// Handle symbol backtracking for targets that do not support image handles
+bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI,
+ unsigned OpNo, MCOperand &MCOp) {
+ const MachineOperand &MO = MI->getOperand(OpNo);
+ const MCInstrDesc &MCID = MI->getDesc();
+
+ if (MCID.TSFlags & NVPTXII::IsTexFlag) {
+ // This is a texture fetch, so operand 4 is a texref and operand 5 is
+ // a samplerref
+ if (OpNo == 4 && MO.isImm()) {
+ lowerImageHandleSymbol(MO.getImm(), MCOp);
+ return true;
+ }
+ if (OpNo == 5 && MO.isImm() && !(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) {
+ lowerImageHandleSymbol(MO.getImm(), MCOp);
+ return true;
+ }
+
+ return false;
+ } else if (MCID.TSFlags & NVPTXII::IsSuldMask) {
+ unsigned VecSize =
+ 1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1);
+
+ // For a surface load of vector size N, the Nth operand will be the surfref
+ if (OpNo == VecSize && MO.isImm()) {
+ lowerImageHandleSymbol(MO.getImm(), MCOp);
+ return true;
+ }
+
+ return false;
+ } else if (MCID.TSFlags & NVPTXII::IsSustFlag) {
+ // This is a surface store, so operand 0 is a surfref
+ if (OpNo == 0 && MO.isImm()) {
+ lowerImageHandleSymbol(MO.getImm(), MCOp);
+ return true;
+ }
+
+ return false;
+ } else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) {
+ // This is a query, so operand 1 is a surfref/texref
+ if (OpNo == 1 && MO.isImm()) {
+ lowerImageHandleSymbol(MO.getImm(), MCOp);
+ return true;
+ }
+
+ return false;
+ }
+
+ return false;
+}
+
+void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) {
+ // Ewwww
+ TargetMachine &TM = const_cast<TargetMachine&>(MF->getTarget());
+ NVPTXTargetMachine &nvTM = static_cast<NVPTXTargetMachine&>(TM);
+ const NVPTXMachineFunctionInfo *MFI = MF->getInfo<NVPTXMachineFunctionInfo>();
+ const char *Sym = MFI->getImageHandleSymbol(Index);
+ std::string *SymNamePtr =
+ nvTM.getManagedStrPool()->getManagedString(Sym);
+ MCOp = GetSymbolRef(OutContext.GetOrCreateSymbol(
+ StringRef(SymNamePtr->c_str())));
+}
+
+void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
+ OutMI.setOpcode(MI->getOpcode());
+ const NVPTXSubtarget &ST = TM.getSubtarget<NVPTXSubtarget>();
+
+ // Special: Do not mangle symbol operand of CALL_PROTOTYPE
+ if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
+ const MachineOperand &MO = MI->getOperand(0);
+ OutMI.addOperand(GetSymbolRef(
+ OutContext.GetOrCreateSymbol(Twine(MO.getSymbolName()))));
+ return;
+ }
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+
+ MCOperand MCOp;
+ if (!ST.hasImageHandles()) {
+ if (lowerImageHandleOperand(MI, i, MCOp)) {
+ OutMI.addOperand(MCOp);
+ continue;
+ }
+ }
+
+ if (lowerOperand(MO, MCOp))
+ OutMI.addOperand(MCOp);
+ }
+}
+
+bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
+ MCOperand &MCOp) {
+ switch (MO.getType()) {
+ default: llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ MCOp = MCOperand::CreateReg(encodeVirtualRegister(MO.getReg()));
+ break;
+ case MachineOperand::MO_Immediate:
+ MCOp = MCOperand::CreateImm(MO.getImm());
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
+ MO.getMBB()->getSymbol(), OutContext));
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ MCOp = GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ MCOp = GetSymbolRef(getSymbol(MO.getGlobal()));
+ break;
+ case MachineOperand::MO_FPImmediate: {
+ const ConstantFP *Cnt = MO.getFPImm();
+ APFloat Val = Cnt->getValueAPF();
+
+ switch (Cnt->getType()->getTypeID()) {
+ default: report_fatal_error("Unsupported FP type"); break;
+ case Type::FloatTyID:
+ MCOp = MCOperand::CreateExpr(
+ NVPTXFloatMCExpr::CreateConstantFPSingle(Val, OutContext));
+ break;
+ case Type::DoubleTyID:
+ MCOp = MCOperand::CreateExpr(
+ NVPTXFloatMCExpr::CreateConstantFPDouble(Val, OutContext));
+ break;
+ }
+ break;
+ }
+ }
+ return true;
+}
+
+unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ const TargetRegisterClass *RC = MRI->getRegClass(Reg);
+
+ DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
+ unsigned RegNum = RegMap[Reg];
+
+ // Encode the register class in the upper 4 bits
+ // Must be kept in sync with NVPTXInstPrinter::printRegName
+ unsigned Ret = 0;
+ if (RC == &NVPTX::Int1RegsRegClass) {
+ Ret = (1 << 28);
+ } else if (RC == &NVPTX::Int16RegsRegClass) {
+ Ret = (2 << 28);
+ } else if (RC == &NVPTX::Int32RegsRegClass) {
+ Ret = (3 << 28);
+ } else if (RC == &NVPTX::Int64RegsRegClass) {
+ Ret = (4 << 28);
+ } else if (RC == &NVPTX::Float32RegsRegClass) {
+ Ret = (5 << 28);
+ } else if (RC == &NVPTX::Float64RegsRegClass) {
+ Ret = (6 << 28);
+ } else {
+ report_fatal_error("Bad register class");
+ }
+
+ // Insert the vreg number
+ Ret |= (RegNum & 0x0FFFFFFF);
+ return Ret;
+ } else {
+ // Some special-use registers are actually physical registers.
+ // Encode this as the register class ID of 0 and the real register ID.
+ return Reg & 0x0FFFFFFF;
+ }
+}
+
+MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
+ const MCExpr *Expr;
+ Expr = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None,
+ OutContext);
+ return MCOperand::CreateExpr(Expr);
+}
+
+void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
+ const DataLayout *TD = TM.getDataLayout();
+ const TargetLowering *TLI = TM.getTargetLowering();
+
+ Type *Ty = F->getReturnType();
+
+ bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
+
+ if (Ty->getTypeID() == Type::VoidTyID)
+ return;
+
+ O << " (";
+
+ if (isABI) {
+ if (Ty->isFloatingPointTy() || Ty->isIntegerTy()) {
+ unsigned size = 0;
+ if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
+ size = ITy->getBitWidth();
+ if (size < 32)
+ size = 32;
+ } else {
+ assert(Ty->isFloatingPointTy() && "Floating point type expected here");
+ size = Ty->getPrimitiveSizeInBits();
+ }
+
+ O << ".param .b" << size << " func_retval0";
+ } else if (isa<PointerType>(Ty)) {
+ O << ".param .b" << TLI->getPointerTy().getSizeInBits()
+ << " func_retval0";
+ } else {
+ if ((Ty->getTypeID() == Type::StructTyID) || isa<VectorType>(Ty)) {
+ unsigned totalsz = TD->getTypeAllocSize(Ty);
+ unsigned retAlignment = 0;
+ if (!llvm::getAlign(*F, 0, retAlignment))
+ retAlignment = TD->getABITypeAlignment(Ty);
+ O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
+ << "]";
+ } else
+ assert(false && "Unknown return type");
+ }
+ } else {
+ SmallVector<EVT, 16> vtparts;
+ ComputeValueVTs(*TLI, Ty, vtparts);
+ unsigned idx = 0;
+ for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
+ unsigned elems = 1;
+ EVT elemtype = vtparts[i];
+ if (vtparts[i].isVector()) {
+ elems = vtparts[i].getVectorNumElements();
+ elemtype = vtparts[i].getVectorElementType();
+ }
+
+ for (unsigned j = 0, je = elems; j != je; ++j) {
+ unsigned sz = elemtype.getSizeInBits();
+ if (elemtype.isInteger() && (sz < 32))
+ sz = 32;
+ O << ".reg .b" << sz << " func_retval" << idx;
+ if (j < je - 1)
+ O << ", ";
+ ++idx;
+ }
+ if (i < e - 1)
+ O << ", ";
+ }
+ }
+ O << ") ";
+ return;
+}
+
+void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
+ raw_ostream &O) {
+ const Function *F = MF.getFunction();
+ printReturnValStr(F, O);
+}
+
+void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
+ SmallString<128> Str;
+ raw_svector_ostream O(Str);
+
+ if (!GlobalsEmitted) {
+ emitGlobals(*MF->getFunction()->getParent());
+ GlobalsEmitted = true;
+ }
+
+ // Set up
+ MRI = &MF->getRegInfo();
+ F = MF->getFunction();
+ emitLinkageDirective(F, O);
+ if (llvm::isKernelFunction(*F))
+ O << ".entry ";
+ else {
+ O << ".func ";
+ printReturnValStr(*MF, O);
+ }
+
+ O << *CurrentFnSym;
+
+ emitFunctionParamList(*MF, O);
+
+ if (llvm::isKernelFunction(*F))
+ emitKernelFunctionDirectives(*F, O);
+
+ OutStreamer.EmitRawText(O.str());
+
+ prevDebugLoc = DebugLoc();
+}
+
+void NVPTXAsmPrinter::EmitFunctionBodyStart() {
+ VRegMapping.clear();
+ OutStreamer.EmitRawText(StringRef("{\n"));
+ setAndEmitFunctionVirtualRegisters(*MF);
+
+ SmallString<128> Str;
+ raw_svector_ostream O(Str);
+ emitDemotedVars(MF->getFunction(), O);
+ OutStreamer.EmitRawText(O.str());
+}
+
+void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
+ OutStreamer.EmitRawText(StringRef("}\n"));
+ VRegMapping.clear();
+}
+
+void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
+ unsigned RegNo = MI->getOperand(0).getReg();
+ const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ if (TRI->isVirtualRegister(RegNo)) {
+ OutStreamer.AddComment(Twine("implicit-def: ") +
+ getVirtualRegisterName(RegNo));
+ } else {
+ OutStreamer.AddComment(Twine("implicit-def: ") +
+ TM.getRegisterInfo()->getName(RegNo));
+ }
+ OutStreamer.AddBlankLine();
+}
+
+void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
+ raw_ostream &O) const {
+ // If the NVVM IR has some of reqntid* specified, then output
+ // the reqntid directive, and set the unspecified ones to 1.
+ // If none of reqntid* is specified, don't output reqntid directive.
+ unsigned reqntidx, reqntidy, reqntidz;
+ bool specified = false;
+ if (llvm::getReqNTIDx(F, reqntidx) == false)
+ reqntidx = 1;
+ else
+ specified = true;
+ if (llvm::getReqNTIDy(F, reqntidy) == false)
+ reqntidy = 1;
+ else
+ specified = true;
+ if (llvm::getReqNTIDz(F, reqntidz) == false)
+ reqntidz = 1;
+ else
+ specified = true;
+
+ if (specified)
+ O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
+ << "\n";
+
+ // If the NVVM IR has some of maxntid* specified, then output
+ // the maxntid directive, and set the unspecified ones to 1.
+ // If none of maxntid* is specified, don't output maxntid directive.
+ unsigned maxntidx, maxntidy, maxntidz;
+ specified = false;
+ if (llvm::getMaxNTIDx(F, maxntidx) == false)
+ maxntidx = 1;
+ else
+ specified = true;
+ if (llvm::getMaxNTIDy(F, maxntidy) == false)
+ maxntidy = 1;
+ else
+ specified = true;
+ if (llvm::getMaxNTIDz(F, maxntidz) == false)
+ maxntidz = 1;
+ else
+ specified = true;
+
+ if (specified)
+ O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
+ << "\n";
+
+ unsigned mincta;
+ if (llvm::getMinCTASm(F, mincta))
+ O << ".minnctapersm " << mincta << "\n";
+}
+
+std::string
+NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
+ const TargetRegisterClass *RC = MRI->getRegClass(Reg);
+
+ std::string Name;
+ raw_string_ostream NameStr(Name);
+
+ VRegRCMap::const_iterator I = VRegMapping.find(RC);
+ assert(I != VRegMapping.end() && "Bad register class");
+ const DenseMap<unsigned, unsigned> &RegMap = I->second;
+
+ VRegMap::const_iterator VI = RegMap.find(Reg);
+ assert(VI != RegMap.end() && "Bad virtual register");
+ unsigned MappedVR = VI->second;
+
+ NameStr << getNVPTXRegClassStr(RC) << MappedVR;
+
+ NameStr.flush();
+ return Name;
+}
+
+void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
+ raw_ostream &O) {
+ O << getVirtualRegisterName(vr);
+}
+
+void NVPTXAsmPrinter::printVecModifiedImmediate(
+ const MachineOperand &MO, const char *Modifier, raw_ostream &O) {
+ static const char vecelem[] = { '0', '1', '2', '3', '0', '1', '2', '3' };
+ int Imm = (int) MO.getImm();
+ if (0 == strcmp(Modifier, "vecelem"))
+ O << "_" << vecelem[Imm];
+ else if (0 == strcmp(Modifier, "vecv4comm1")) {
+ if ((Imm < 0) || (Imm > 3))
+ O << "//";
+ } else if (0 == strcmp(Modifier, "vecv4comm2")) {
+ if ((Imm < 4) || (Imm > 7))
+ O << "//";
+ } else if (0 == strcmp(Modifier, "vecv4pos")) {
+ if (Imm < 0)
+ Imm = 0;
+ O << "_" << vecelem[Imm % 4];
+ } else if (0 == strcmp(Modifier, "vecv2comm1")) {
+ if ((Imm < 0) || (Imm > 1))
+ O << "//";
+ } else if (0 == strcmp(Modifier, "vecv2comm2")) {
+ if ((Imm < 2) || (Imm > 3))
+ O << "//";
+ } else if (0 == strcmp(Modifier, "vecv2pos")) {
+ if (Imm < 0)
+ Imm = 0;
+ O << "_" << vecelem[Imm % 2];
+ } else
+ llvm_unreachable("Unknown Modifier on immediate operand");
+}
+
+
+
+void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
+
+ emitLinkageDirective(F, O);
+ if (llvm::isKernelFunction(*F))
+ O << ".entry ";
+ else
+ O << ".func ";
+ printReturnValStr(F, O);
+ O << *getSymbol(F) << "\n";
+ emitFunctionParamList(F, O);
+ O << ";\n";
+}
+
+static bool usedInGlobalVarDef(const Constant *C) {
+ if (!C)
+ return false;
+
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
+ if (GV->getName().str() == "llvm.used")
+ return false;
+ return true;
+ }
+
+ for (const User *U : C->users())
+ if (const Constant *C = dyn_cast<Constant>(U))
+ if (usedInGlobalVarDef(C))
+ return true;
+
+ return false;
+}
+
+static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
+ if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
+ if (othergv->getName().str() == "llvm.used")
+ return true;
+ }
+
+ if (const Instruction *instr = dyn_cast<Instruction>(U)) {
+ if (instr->getParent() && instr->getParent()->getParent()) {
+ const Function *curFunc = instr->getParent()->getParent();
+ if (oneFunc && (curFunc != oneFunc))
+ return false;
+ oneFunc = curFunc;
+ return true;
+ } else
+ return false;
+ }
+
+ if (const MDNode *md = dyn_cast<MDNode>(U))
+ if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") ||
+ (md->getName().str() == "llvm.dbg.sp")))
+ return true;
+
+ for (const User *UU : U->users())
+ if (usedInOneFunc(UU, oneFunc) == false)
+ return false;
+
+ return true;
+}
+
+/* Find out if a global variable can be demoted to local scope.
+ * Currently, this is valid for CUDA shared variables, which have local
+ * scope and global lifetime. So the conditions to check are :
+ * 1. Is the global variable in shared address space?
+ * 2. Does it have internal linkage?
+ * 3. Is the global variable referenced only in one function?
+ */
+static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
+ if (gv->hasInternalLinkage() == false)
+ return false;
+ const PointerType *Pty = gv->getType();
+ if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
+ return false;
+
+ const Function *oneFunc = nullptr;
+
+ bool flag = usedInOneFunc(gv, oneFunc);
+ if (flag == false)
+ return false;
+ if (!oneFunc)
+ return false;
+ f = oneFunc;
+ return true;
+}
+
+static bool useFuncSeen(const Constant *C,
+ llvm::DenseMap<const Function *, bool> &seenMap) {
+ for (const User *U : C->users()) {
+ if (const Constant *cu = dyn_cast<Constant>(U)) {
+ if (useFuncSeen(cu, seenMap))
+ return true;
+ } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
+ const BasicBlock *bb = I->getParent();
+ if (!bb)
+ continue;
+ const Function *caller = bb->getParent();
+ if (!caller)
+ continue;
+ if (seenMap.find(caller) != seenMap.end())
+ return true;
+ }
+ }
+ return false;
+}
+
+void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
+ llvm::DenseMap<const Function *, bool> seenMap;
+ for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
+ const Function *F = FI;
+
+ if (F->isDeclaration()) {
+ if (F->use_empty())
+ continue;
+ if (F->getIntrinsicID())
+ continue;
+ emitDeclaration(F, O);
+ continue;
+ }
+ for (const User *U : F->users()) {
+ if (const Constant *C = dyn_cast<Constant>(U)) {
+ if (usedInGlobalVarDef(C)) {
+ // The use is in the initialization of a global variable
+ // that is a function pointer, so print a declaration
+ // for the original function
+ emitDeclaration(F, O);
+ break;
+ }
+ // Emit a declaration of this function if the function that
+ // uses this constant expr has already been seen.
+ if (useFuncSeen(C, seenMap)) {
+ emitDeclaration(F, O);
+ break;
+ }
+ }
+
+ if (!isa<Instruction>(U))
+ continue;
+ const Instruction *instr = cast<Instruction>(U);
+ const BasicBlock *bb = instr->getParent();
+ if (!bb)
+ continue;
+ const Function *caller = bb->getParent();
+ if (!caller)
+ continue;
+
+ // If a caller has already been seen, then the caller is
+ // appearing in the module before the callee. so print out
+ // a declaration for the callee.
+ if (seenMap.find(caller) != seenMap.end()) {
+ emitDeclaration(F, O);
+ break;
+ }
+ }
+ seenMap[F] = true;
+ }
+}
+
+void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
+ DebugInfoFinder DbgFinder;
+ DbgFinder.processModule(M);
+
+ unsigned i = 1;
+ for (DICompileUnit DIUnit : DbgFinder.compile_units()) {
+ StringRef Filename(DIUnit.getFilename());
+ StringRef Dirname(DIUnit.getDirectory());
+ SmallString<128> FullPathName = Dirname;
+ if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
+ sys::path::append(FullPathName, Filename);
+ Filename = FullPathName.str();
+ }
+ if (filenameMap.find(Filename.str()) != filenameMap.end())
+ continue;
+ filenameMap[Filename.str()] = i;
+ OutStreamer.EmitDwarfFileDirective(i, "", Filename.str());
+ ++i;
+ }
+
+ for (DISubprogram SP : DbgFinder.subprograms()) {
+ StringRef Filename(SP.getFilename());
+ StringRef Dirname(SP.getDirectory());
+ SmallString<128> FullPathName = Dirname;
+ if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
+ sys::path::append(FullPathName, Filename);
+ Filename = FullPathName.str();
+ }
+ if (filenameMap.find(Filename.str()) != filenameMap.end())
+ continue;
+ filenameMap[Filename.str()] = i;
+ ++i;
+ }
+}
+
+bool NVPTXAsmPrinter::doInitialization(Module &M) {
+
+ SmallString<128> Str1;
+ raw_svector_ostream OS1(Str1);
+
+ MMI = getAnalysisIfAvailable<MachineModuleInfo>();
+ MMI->AnalyzeModule(M);
+
+ // We need to call the parent's one explicitly.
+ //bool Result = AsmPrinter::doInitialization(M);
+
+ // Initialize TargetLoweringObjectFile.
+ const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
+ .Initialize(OutContext, TM);
+
+ Mang = new Mangler(TM.getDataLayout());
+
+ // Emit header before any dwarf directives are emitted below.
+ emitHeader(M, OS1);
+ OutStreamer.EmitRawText(OS1.str());
+
+ // Already commented out
+ //bool Result = AsmPrinter::doInitialization(M);
+
+ // Emit module-level inline asm if it exists.
+ if (!M.getModuleInlineAsm().empty()) {
+ OutStreamer.AddComment("Start of file scope inline assembly");
+ OutStreamer.AddBlankLine();
+ OutStreamer.EmitRawText(StringRef(M.getModuleInlineAsm()));
+ OutStreamer.AddBlankLine();
+ OutStreamer.AddComment("End of file scope inline assembly");
+ OutStreamer.AddBlankLine();
+ }
+
+ if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
+ recordAndEmitFilenames(M);
+
+ GlobalsEmitted = false;
+
+ return false; // success
+}
+
+void NVPTXAsmPrinter::emitGlobals(const Module &M) {
+ SmallString<128> Str2;
+ raw_svector_ostream OS2(Str2);
+
+ emitDeclarations(M, OS2);
+
+ // As ptxas does not support forward references of globals, we need to first
+ // sort the list of module-level globals in def-use order. We visit each
+ // global variable in order, and ensure that we emit it *after* its dependent
+ // globals. We use a little extra memory maintaining both a set and a list to
+ // have fast searches while maintaining a strict ordering.
+ SmallVector<const GlobalVariable *, 8> Globals;
+ DenseSet<const GlobalVariable *> GVVisited;
+ DenseSet<const GlobalVariable *> GVVisiting;
+
+ // Visit each global variable, in order
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ VisitGlobalVariableForEmission(I, Globals, GVVisited, GVVisiting);
+
+ assert(GVVisited.size() == M.getGlobalList().size() &&
+ "Missed a global variable");
+ assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
+
+ // Print out module-level global variables in proper order
+ for (unsigned i = 0, e = Globals.size(); i != e; ++i)
+ printModuleLevelGV(Globals[i], OS2);
+
+ OS2 << '\n';
+
+ OutStreamer.EmitRawText(OS2.str());
+}
+
+void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O) {
+ O << "//\n";
+ O << "// Generated by LLVM NVPTX Back-End\n";
+ O << "//\n";
+ O << "\n";
+
+ unsigned PTXVersion = nvptxSubtarget.getPTXVersion();
+ O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
+
+ O << ".target ";
+ O << nvptxSubtarget.getTargetName();
+
+ if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL)
+ O << ", texmode_independent";
+ if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
+ if (!nvptxSubtarget.hasDouble())
+ O << ", map_f64_to_f32";
+ }
+
+ if (MAI->doesSupportDebugInformation())
+ O << ", debug";
+
+ O << "\n";
+
+ O << ".address_size ";
+ if (nvptxSubtarget.is64Bit())
+ O << "64";
+ else
+ O << "32";
+ O << "\n";
+
+ O << "\n";
+}
+
+bool NVPTXAsmPrinter::doFinalization(Module &M) {
+
+ // If we did not emit any functions, then the global declarations have not
+ // yet been emitted.
+ if (!GlobalsEmitted) {
+ emitGlobals(M);
+ GlobalsEmitted = true;
+ }
+
+ // XXX Temproarily remove global variables so that doFinalization() will not
+ // emit them again (global variables are emitted at beginning).
+
+ Module::GlobalListType &global_list = M.getGlobalList();
+ int i, n = global_list.size();
+ GlobalVariable **gv_array = new GlobalVariable *[n];
+
+ // first, back-up GlobalVariable in gv_array
+ i = 0;
+ for (Module::global_iterator I = global_list.begin(), E = global_list.end();
+ I != E; ++I)
+ gv_array[i++] = &*I;
+
+ // second, empty global_list
+ while (!global_list.empty())
+ global_list.remove(global_list.begin());
+
+ // call doFinalization
+ bool ret = AsmPrinter::doFinalization(M);
+
+ // now we restore global variables
+ for (i = 0; i < n; i++)
+ global_list.insert(global_list.end(), gv_array[i]);
+
+ clearAnnotationCache(&M);
+
+ delete[] gv_array;
+ return ret;
+
+ //bool Result = AsmPrinter::doFinalization(M);
+ // Instead of calling the parents doFinalization, we may
+ // clone parents doFinalization and customize here.
+ // Currently, we if NVISA out the EmitGlobals() in
+ // parent's doFinalization, which is too intrusive.
+ //
+ // Same for the doInitialization.
+ //return Result;
+}
+
+// This function emits appropriate linkage directives for
+// functions and global variables.
+//
+// extern function declaration -> .extern
+// extern function definition -> .visible
+// external global variable with init -> .visible
+// external without init -> .extern
+// appending -> not allowed, assert.
+// for any linkage other than
+// internal, private, linker_private,
+// linker_private_weak, linker_private_weak_def_auto,
+// we emit -> .weak.
+
+void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
+ raw_ostream &O) {
+ if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
+ if (V->hasExternalLinkage()) {
+ if (isa<GlobalVariable>(V)) {
+ const GlobalVariable *GVar = cast<GlobalVariable>(V);
+ if (GVar) {
+ if (GVar->hasInitializer())
+ O << ".visible ";
+ else
+ O << ".extern ";
+ }
+ } else if (V->isDeclaration())
+ O << ".extern ";
+ else
+ O << ".visible ";
+ } else if (V->hasAppendingLinkage()) {
+ std::string msg;
+ msg.append("Error: ");
+ msg.append("Symbol ");
+ if (V->hasName())
+ msg.append(V->getName().str());
+ msg.append("has unsupported appending linkage type");
+ llvm_unreachable(msg.c_str());
+ } else if (!V->hasInternalLinkage() &&
+ !V->hasPrivateLinkage()) {
+ O << ".weak ";
+ }
+ }
+}
+
+void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
+ raw_ostream &O,
+ bool processDemoted) {
+
+ // Skip meta data
+ if (GVar->hasSection()) {
+ if (GVar->getSection() == StringRef("llvm.metadata"))
+ return;
+ }
+
+ // Skip LLVM intrinsic global variables
+ if (GVar->getName().startswith("llvm.") ||
+ GVar->getName().startswith("nvvm."))
+ return;
+
+ const DataLayout *TD = TM.getDataLayout();
+
+ // GlobalVariables are always constant pointers themselves.
+ const PointerType *PTy = GVar->getType();
+ Type *ETy = PTy->getElementType();
+
+ if (GVar->hasExternalLinkage()) {
+ if (GVar->hasInitializer())
+ O << ".visible ";
+ else
+ O << ".extern ";
+ } else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
+ GVar->hasAvailableExternallyLinkage() ||
+ GVar->hasCommonLinkage()) {
+ O << ".weak ";
+ }
+
+ if (llvm::isTexture(*GVar)) {
+ O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
+ return;
+ }
+
+ if (llvm::isSurface(*GVar)) {
+ O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
+ return;
+ }
+
+ if (GVar->isDeclaration()) {
+ // (extern) declarations, no definition or initializer
+ // Currently the only known declaration is for an automatic __local
+ // (.shared) promoted to global.
+ emitPTXGlobalVariable(GVar, O);
+ O << ";\n";
+ return;
+ }
+
+ if (llvm::isSampler(*GVar)) {
+ O << ".global .samplerref " << llvm::getSamplerName(*GVar);
+
+ const Constant *Initializer = nullptr;
+ if (GVar->hasInitializer())
+ Initializer = GVar->getInitializer();
+ const ConstantInt *CI = nullptr;
+ if (Initializer)
+ CI = dyn_cast<ConstantInt>(Initializer);
+ if (CI) {
+ unsigned sample = CI->getZExtValue();
+
+ O << " = { ";
+
+ for (int i = 0,
+ addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
+ i < 3; i++) {
+ O << "addr_mode_" << i << " = ";
+ switch (addr) {
+ case 0:
+ O << "wrap";
+ break;
+ case 1:
+ O << "clamp_to_border";
+ break;
+ case 2:
+ O << "clamp_to_edge";
+ break;
+ case 3:
+ O << "wrap";
+ break;
+ case 4:
+ O << "mirror";
+ break;
+ }
+ O << ", ";
+ }
+ O << "filter_mode = ";
+ switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
+ case 0:
+ O << "nearest";
+ break;
+ case 1:
+ O << "linear";
+ break;
+ case 2:
+ llvm_unreachable("Anisotropic filtering is not supported");
+ default:
+ O << "nearest";
+ break;
+ }
+ if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
+ O << ", force_unnormalized_coords = 1";
+ }
+ O << " }";
+ }
+
+ O << ";\n";
+ return;
+ }
+
+ if (GVar->hasPrivateLinkage()) {
+
+ if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
+ return;
+
+ // FIXME - need better way (e.g. Metadata) to avoid generating this global
+ if (!strncmp(GVar->getName().data(), "filename", 8))
+ return;
+ if (GVar->use_empty())
+ return;
+ }
+
+ const Function *demotedFunc = nullptr;
+ if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
+ O << "// " << GVar->getName().str() << " has been demoted\n";
+ if (localDecls.find(demotedFunc) != localDecls.end())
+ localDecls[demotedFunc].push_back(GVar);
+ else {
+ std::vector<const GlobalVariable *> temp;
+ temp.push_back(GVar);
+ localDecls[demotedFunc] = temp;
+ }
+ return;
+ }
+
+ O << ".";
+ emitPTXAddressSpace(PTy->getAddressSpace(), O);
+
+ if (isManaged(*GVar)) {
+ O << " .attribute(.managed)";
+ }
+
+ if (GVar->getAlignment() == 0)
+ O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
+ else
+ O << " .align " << GVar->getAlignment();
+
+ if (ETy->isSingleValueType()) {
+ O << " .";
+ // Special case: ABI requires that we use .u8 for predicates
+ if (ETy->isIntegerTy(1))
+ O << "u8";
+ else
+ O << getPTXFundamentalTypeStr(ETy, false);
+ O << " ";
+ O << *getSymbol(GVar);
+
+ // Ptx allows variable initilization only for constant and global state
+ // spaces.
+ if (GVar->hasInitializer()) {
+ if ((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
+ (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) {
+ const Constant *Initializer = GVar->getInitializer();
+ // 'undef' is treated as there is no value spefied.
+ if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
+ O << " = ";
+ printScalarConstant(Initializer, O);
+ }
+ } else {
+ // The frontend adds zero-initializer to variables that don't have an
+ // initial value, so skip warning for this case.
+ if (!GVar->getInitializer()->isNullValue()) {
+ std::string warnMsg = "initial value of '" + GVar->getName().str() +
+ "' is not allowed in addrspace(" +
+ llvm::utostr_32(PTy->getAddressSpace()) + ")";
+ report_fatal_error(warnMsg.c_str());
+ }
+ }
+ }
+ } else {
+ unsigned int ElementSize = 0;
+
+ // Although PTX has direct support for struct type and array type and
+ // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
+ // targets that support these high level field accesses. Structs, arrays
+ // and vectors are lowered into arrays of bytes.
+ switch (ETy->getTypeID()) {
+ case Type::StructTyID:
+ case Type::ArrayTyID:
+ case Type::VectorTyID:
+ ElementSize = TD->getTypeStoreSize(ETy);
+ // Ptx allows variable initilization only for constant and
+ // global state spaces.
+ if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
+ (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
+ GVar->hasInitializer()) {
+ const Constant *Initializer = GVar->getInitializer();
+ if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
+ AggBuffer aggBuffer(ElementSize, O, *this);
+ bufferAggregateConstant(Initializer, &aggBuffer);
+ if (aggBuffer.numSymbols) {
+ if (nvptxSubtarget.is64Bit()) {
+ O << " .u64 " << *getSymbol(GVar) << "[";
+ O << ElementSize / 8;
+ } else {
+ O << " .u32 " << *getSymbol(GVar) << "[";
+ O << ElementSize / 4;
+ }
+ O << "]";
+ } else {
+ O << " .b8 " << *getSymbol(GVar) << "[";
+ O << ElementSize;
+ O << "]";
+ }
+ O << " = {";
+ aggBuffer.print();
+ O << "}";
+ } else {
+ O << " .b8 " << *getSymbol(GVar);
+ if (ElementSize) {
+ O << "[";
+ O << ElementSize;
+ O << "]";
+ }
+ }
+ } else {
+ O << " .b8 " << *getSymbol(GVar);
+ if (ElementSize) {
+ O << "[";
+ O << ElementSize;
+ O << "]";
+ }
+ }
+ break;
+ default:
+ llvm_unreachable("type not supported yet");
+ }
+
+ }
+ O << ";\n";
+}
+
+void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
+ if (localDecls.find(f) == localDecls.end())
+ return;
+
+ std::vector<const GlobalVariable *> &gvars = localDecls[f];
+
+ for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
+ O << "\t// demoted variable\n\t";
+ printModuleLevelGV(gvars[i], O, true);
+ }
+}
+
+void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
+ raw_ostream &O) const {
+ switch (AddressSpace) {
+ case llvm::ADDRESS_SPACE_LOCAL:
+ O << "local";
+ break;
+ case llvm::ADDRESS_SPACE_GLOBAL:
+ O << "global";
+ break;
+ case llvm::ADDRESS_SPACE_CONST:
+ O << "const";
+ break;
+ case llvm::ADDRESS_SPACE_SHARED:
+ O << "shared";
+ break;
+ default:
+ report_fatal_error("Bad address space found while emitting PTX");
+ break;
+ }
+}
+
+std::string
+NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty, bool useB4PTR) const {
+ switch (Ty->getTypeID()) {
+ default:
+ llvm_unreachable("unexpected type");
+ break;
+ case Type::IntegerTyID: {
+ unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
+ if (NumBits == 1)
+ return "pred";
+ else if (NumBits <= 64) {
+ std::string name = "u";
+ return name + utostr(NumBits);
+ } else {
+ llvm_unreachable("Integer too large");
+ break;
+ }
+ break;
+ }
+ case Type::FloatTyID:
+ return "f32";
+ case Type::DoubleTyID:
+ return "f64";
+ case Type::PointerTyID:
+ if (nvptxSubtarget.is64Bit())
+ if (useB4PTR)
+ return "b64";
+ else
+ return "u64";
+ else if (useB4PTR)
+ return "b32";
+ else
+ return "u32";
+ }
+ llvm_unreachable("unexpected type");
+ return nullptr;
+}
+
+void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
+ raw_ostream &O) {
+
+ const DataLayout *TD = TM.getDataLayout();
+
+ // GlobalVariables are always constant pointers themselves.
+ const PointerType *PTy = GVar->getType();
+ Type *ETy = PTy->getElementType();
+
+ O << ".";
+ emitPTXAddressSpace(PTy->getAddressSpace(), O);
+ if (GVar->getAlignment() == 0)
+ O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
+ else
+ O << " .align " << GVar->getAlignment();
+
+ if (ETy->isSingleValueType()) {
+ O << " .";
+ O << getPTXFundamentalTypeStr(ETy);
+ O << " ";
+ O << *getSymbol(GVar);
+ return;
+ }
+
+ int64_t ElementSize = 0;
+
+ // Although PTX has direct support for struct type and array type and LLVM IR
+ // is very similar to PTX, the LLVM CodeGen does not support for targets that
+ // support these high level field accesses. Structs and arrays are lowered
+ // into arrays of bytes.
+ switch (ETy->getTypeID()) {
+ case Type::StructTyID:
+ case Type::ArrayTyID:
+ case Type::VectorTyID:
+ ElementSize = TD->getTypeStoreSize(ETy);
+ O << " .b8 " << *getSymbol(GVar) << "[";
+ if (ElementSize) {
+ O << itostr(ElementSize);
+ }
+ O << "]";
+ break;
+ default:
+ llvm_unreachable("type not supported yet");
+ }
+ return;
+}
+
+static unsigned int getOpenCLAlignment(const DataLayout *TD, Type *Ty) {
+ if (Ty->isSingleValueType())
+ return TD->getPrefTypeAlignment(Ty);
+
+ const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
+ if (ATy)
+ return getOpenCLAlignment(TD, ATy->getElementType());
+
+ const VectorType *VTy = dyn_cast<VectorType>(Ty);
+ if (VTy) {
+ Type *ETy = VTy->getElementType();
+ unsigned int numE = VTy->getNumElements();
+ unsigned int alignE = TD->getPrefTypeAlignment(ETy);
+ if (numE == 3)
+ return 4 * alignE;
+ else
+ return numE * alignE;
+ }
+
+ const StructType *STy = dyn_cast<StructType>(Ty);
+ if (STy) {
+ unsigned int alignStruct = 1;
+ // Go through each element of the struct and find the
+ // largest alignment.
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
+ Type *ETy = STy->getElementType(i);
+ unsigned int align = getOpenCLAlignment(TD, ETy);
+ if (align > alignStruct)
+ alignStruct = align;
+ }
+ return alignStruct;
+ }
+
+ const FunctionType *FTy = dyn_cast<FunctionType>(Ty);
+ if (FTy)
+ return TD->getPointerPrefAlignment();
+ return TD->getPrefTypeAlignment(Ty);
+}
+
+void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
+ int paramIndex, raw_ostream &O) {
+ if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
+ (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA))
+ O << *getSymbol(I->getParent()) << "_param_" << paramIndex;
+ else {
+ std::string argName = I->getName();
+ const char *p = argName.c_str();
+ while (*p) {
+ if (*p == '.')
+ O << "_";
+ else
+ O << *p;
+ p++;
+ }
+ }
+}
+
+void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) {
+ Function::const_arg_iterator I, E;
+ int i = 0;
+
+ if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
+ (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) {
+ O << *CurrentFnSym << "_param_" << paramIndex;
+ return;
+ }
+
+ for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) {
+ if (i == paramIndex) {
+ printParamName(I, paramIndex, O);
+ return;
+ }
+ }
+ llvm_unreachable("paramIndex out of bound");
+}
+
+void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
+ const DataLayout *TD = TM.getDataLayout();
+ const AttributeSet &PAL = F->getAttributes();
+ const TargetLowering *TLI = TM.getTargetLowering();
+ Function::const_arg_iterator I, E;
+ unsigned paramIndex = 0;
+ bool first = true;
+ bool isKernelFunc = llvm::isKernelFunction(*F);
+ bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
+ MVT thePointerTy = TLI->getPointerTy();
+
+ O << "(\n";
+
+ for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
+ Type *Ty = I->getType();
+
+ if (!first)
+ O << ",\n";
+
+ first = false;
+
+ // Handle image/sampler parameters
+ if (isKernelFunction(*F)) {
+ if (isSampler(*I) || isImage(*I)) {
+ if (isImage(*I)) {
+ std::string sname = I->getName();
+ if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
+ if (nvptxSubtarget.hasImageHandles())
+ O << "\t.param .u64 .ptr .surfref ";
+ else
+ O << "\t.param .surfref ";
+ O << *CurrentFnSym << "_param_" << paramIndex;
+ }
+ else { // Default image is read_only
+ if (nvptxSubtarget.hasImageHandles())
+ O << "\t.param .u64 .ptr .texref ";
+ else
+ O << "\t.param .texref ";
+ O << *CurrentFnSym << "_param_" << paramIndex;
+ }
+ } else {
+ if (nvptxSubtarget.hasImageHandles())
+ O << "\t.param .u64 .ptr .samplerref ";
+ else
+ O << "\t.param .samplerref ";
+ O << *CurrentFnSym << "_param_" << paramIndex;
+ }
+ continue;
+ }
+ }
+
+ if (PAL.hasAttribute(paramIndex + 1, Attribute::ByVal) == false) {
+ if (Ty->isAggregateType() || Ty->isVectorTy()) {
+ // Just print .param .align <a> .b8 .param[size];
+ // <a> = PAL.getparamalignment
+ // size = typeallocsize of element type
+ unsigned align = PAL.getParamAlignment(paramIndex + 1);
+ if (align == 0)
+ align = TD->getABITypeAlignment(Ty);
+
+ unsigned sz = TD->getTypeAllocSize(Ty);
+ O << "\t.param .align " << align << " .b8 ";
+ printParamName(I, paramIndex, O);
+ O << "[" << sz << "]";
+
+ continue;
+ }
+ // Just a scalar
+ const PointerType *PTy = dyn_cast<PointerType>(Ty);
+ if (isKernelFunc) {
+ if (PTy) {
+ // Special handling for pointer arguments to kernel
+ O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
+
+ if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) {
+ Type *ETy = PTy->getElementType();
+ int addrSpace = PTy->getAddressSpace();
+ switch (addrSpace) {
+ default:
+ O << ".ptr ";
+ break;
+ case llvm::ADDRESS_SPACE_CONST:
+ O << ".ptr .const ";
+ break;
+ case llvm::ADDRESS_SPACE_SHARED:
+ O << ".ptr .shared ";
+ break;
+ case llvm::ADDRESS_SPACE_GLOBAL:
+ O << ".ptr .global ";
+ break;
+ }
+ O << ".align " << (int) getOpenCLAlignment(TD, ETy) << " ";
+ }
+ printParamName(I, paramIndex, O);
+ continue;
+ }
+
+ // non-pointer scalar to kernel func
+ O << "\t.param .";
+ // Special case: predicate operands become .u8 types
+ if (Ty->isIntegerTy(1))
+ O << "u8";
+ else
+ O << getPTXFundamentalTypeStr(Ty);
+ O << " ";
+ printParamName(I, paramIndex, O);
+ continue;
+ }
+ // Non-kernel function, just print .param .b<size> for ABI
+ // and .reg .b<size> for non-ABI
+ unsigned sz = 0;
+ if (isa<IntegerType>(Ty)) {
+ sz = cast<IntegerType>(Ty)->getBitWidth();
+ if (sz < 32)
+ sz = 32;
+ } else if (isa<PointerType>(Ty))
+ sz = thePointerTy.getSizeInBits();
+ else
+ sz = Ty->getPrimitiveSizeInBits();
+ if (isABI)
+ O << "\t.param .b" << sz << " ";
+ else
+ O << "\t.reg .b" << sz << " ";
+ printParamName(I, paramIndex, O);
+ continue;
+ }
+
+ // param has byVal attribute. So should be a pointer
+ const PointerType *PTy = dyn_cast<PointerType>(Ty);
+ assert(PTy && "Param with byval attribute should be a pointer type");
+ Type *ETy = PTy->getElementType();
+
+ if (isABI || isKernelFunc) {
+ // Just print .param .align <a> .b8 .param[size];
+ // <a> = PAL.getparamalignment
+ // size = typeallocsize of element type
+ unsigned align = PAL.getParamAlignment(paramIndex + 1);
+ if (align == 0)
+ align = TD->getABITypeAlignment(ETy);
+
+ unsigned sz = TD->getTypeAllocSize(ETy);
+ O << "\t.param .align " << align << " .b8 ";
+ printParamName(I, paramIndex, O);
+ O << "[" << sz << "]";
+ continue;
+ } else {
+ // Split the ETy into constituent parts and
+ // print .param .b<size> <name> for each part.
+ // Further, if a part is vector, print the above for
+ // each vector element.
+ SmallVector<EVT, 16> vtparts;
+ ComputeValueVTs(*TLI, ETy, vtparts);
+ for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
+ unsigned elems = 1;
+ EVT elemtype = vtparts[i];
+ if (vtparts[i].isVector()) {
+ elems = vtparts[i].getVectorNumElements();
+ elemtype = vtparts[i].getVectorElementType();
+ }
+
+ for (unsigned j = 0, je = elems; j != je; ++j) {
+ unsigned sz = elemtype.getSizeInBits();
+ if (elemtype.isInteger() && (sz < 32))
+ sz = 32;
+ O << "\t.reg .b" << sz << " ";
+ printParamName(I, paramIndex, O);
+ if (j < je - 1)
+ O << ",\n";
+ ++paramIndex;
+ }
+ if (i < e - 1)
+ O << ",\n";
+ }
+ --paramIndex;
+ continue;
+ }
+ }
+
+ O << "\n)\n";
+}
+
+void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
+ raw_ostream &O) {
+ const Function *F = MF.getFunction();
+ emitFunctionParamList(F, O);
+}
+
+void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
+ const MachineFunction &MF) {
+ SmallString<128> Str;
+ raw_svector_ostream O(Str);
+
+ // Map the global virtual register number to a register class specific
+ // virtual register number starting from 1 with that class.
+ const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ //unsigned numRegClasses = TRI->getNumRegClasses();
+
+ // Emit the Fake Stack Object
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ int NumBytes = (int) MFI->getStackSize();
+ if (NumBytes) {
+ O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t" << DEPOTNAME
+ << getFunctionNumber() << "[" << NumBytes << "];\n";
+ if (nvptxSubtarget.is64Bit()) {
+ O << "\t.reg .b64 \t%SP;\n";
+ O << "\t.reg .b64 \t%SPL;\n";
+ } else {
+ O << "\t.reg .b32 \t%SP;\n";
+ O << "\t.reg .b32 \t%SPL;\n";
+ }
+ }
+
+ // Go through all virtual registers to establish the mapping between the
+ // global virtual
+ // register number and the per class virtual register number.
+ // We use the per class virtual register number in the ptx output.
+ unsigned int numVRs = MRI->getNumVirtRegs();
+ for (unsigned i = 0; i < numVRs; i++) {
+ unsigned int vr = TRI->index2VirtReg(i);
+ const TargetRegisterClass *RC = MRI->getRegClass(vr);
+ DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
+ int n = regmap.size();
+ regmap.insert(std::make_pair(vr, n + 1));
+ }
+
+ // Emit register declarations
+ // @TODO: Extract out the real register usage
+ // O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
+ // O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
+ // O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
+ // O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
+ // O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
+ // O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
+ // O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
+
+ // Emit declaration of the virtual registers or 'physical' registers for
+ // each register class
+ for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
+ const TargetRegisterClass *RC = TRI->getRegClass(i);
+ DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
+ std::string rcname = getNVPTXRegClassName(RC);
+ std::string rcStr = getNVPTXRegClassStr(RC);
+ int n = regmap.size();
+
+ // Only declare those registers that may be used.
+ if (n) {
+ O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
+ << ">;\n";
+ }
+ }
+
+ OutStreamer.EmitRawText(O.str());
+}
+
+void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
+ APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
+ bool ignored;
+ unsigned int numHex;
+ const char *lead;
+
+ if (Fp->getType()->getTypeID() == Type::FloatTyID) {
+ numHex = 8;
+ lead = "0f";
+ APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &ignored);
+ } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
+ numHex = 16;
+ lead = "0d";
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
+ } else
+ llvm_unreachable("unsupported fp type");
+
+ APInt API = APF.bitcastToAPInt();
+ std::string hexstr(utohexstr(API.getZExtValue()));
+ O << lead;
+ if (hexstr.length() < numHex)
+ O << std::string(numHex - hexstr.length(), '0');
+ O << utohexstr(API.getZExtValue());
+}
+
+void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
+ O << CI->getValue();
+ return;
+ }
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
+ printFPConstant(CFP, O);
+ return;
+ }
+ if (isa<ConstantPointerNull>(CPV)) {
+ O << "0";
+ return;
+ }
+ if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
+ PointerType *PTy = dyn_cast<PointerType>(GVar->getType());
+ bool IsNonGenericPointer = false;
+ if (PTy && PTy->getAddressSpace() != 0) {
+ IsNonGenericPointer = true;
+ }
+ if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
+ O << "generic(";
+ O << *getSymbol(GVar);
+ O << ")";
+ } else {
+ O << *getSymbol(GVar);
+ }
+ return;
+ }
+ if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
+ const Value *v = Cexpr->stripPointerCasts();
+ PointerType *PTy = dyn_cast<PointerType>(Cexpr->getType());
+ bool IsNonGenericPointer = false;
+ if (PTy && PTy->getAddressSpace() != 0) {
+ IsNonGenericPointer = true;
+ }
+ if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
+ if (EmitGeneric && !isa<Function>(v) && !IsNonGenericPointer) {
+ O << "generic(";
+ O << *getSymbol(GVar);
+ O << ")";
+ } else {
+ O << *getSymbol(GVar);
+ }
+ return;
+ } else {
+ O << *LowerConstant(CPV, *this);
+ return;
+ }
+ }
+ llvm_unreachable("Not scalar type found in printScalarConstant()");
+}
+
+void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
+ AggBuffer *aggBuffer) {
+
+ const DataLayout *TD = TM.getDataLayout();
+
+ if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
+ int s = TD->getTypeAllocSize(CPV->getType());
+ if (s < Bytes)
+ s = Bytes;
+ aggBuffer->addZeros(s);
+ return;
+ }
+
+ unsigned char *ptr;
+ switch (CPV->getType()->getTypeID()) {
+
+ case Type::IntegerTyID: {
+ const Type *ETy = CPV->getType();
+ if (ETy == Type::getInt8Ty(CPV->getContext())) {
+ unsigned char c =
+ (unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
+ ptr = &c;
+ aggBuffer->addBytes(ptr, 1, Bytes);
+ } else if (ETy == Type::getInt16Ty(CPV->getContext())) {
+ short int16 = (short)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
+ ptr = (unsigned char *)&int16;
+ aggBuffer->addBytes(ptr, 2, Bytes);
+ } else if (ETy == Type::getInt32Ty(CPV->getContext())) {
+ if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
+ int int32 = (int)(constInt->getZExtValue());
+ ptr = (unsigned char *)&int32;
+ aggBuffer->addBytes(ptr, 4, Bytes);
+ break;
+ } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
+ if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
+ ConstantFoldConstantExpression(Cexpr, TD))) {
+ int int32 = (int)(constInt->getZExtValue());
+ ptr = (unsigned char *)&int32;
+ aggBuffer->addBytes(ptr, 4, Bytes);
+ break;
+ }
+ if (Cexpr->getOpcode() == Instruction::PtrToInt) {
+ Value *v = Cexpr->getOperand(0)->stripPointerCasts();
+ aggBuffer->addSymbol(v);
+ aggBuffer->addZeros(4);
+ break;
+ }
+ }
+ llvm_unreachable("unsupported integer const type");
+ } else if (ETy == Type::getInt64Ty(CPV->getContext())) {
+ if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
+ long long int64 = (long long)(constInt->getZExtValue());
+ ptr = (unsigned char *)&int64;
+ aggBuffer->addBytes(ptr, 8, Bytes);
+ break;
+ } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
+ if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
+ ConstantFoldConstantExpression(Cexpr, TD))) {
+ long long int64 = (long long)(constInt->getZExtValue());
+ ptr = (unsigned char *)&int64;
+ aggBuffer->addBytes(ptr, 8, Bytes);
+ break;
+ }
+ if (Cexpr->getOpcode() == Instruction::PtrToInt) {
+ Value *v = Cexpr->getOperand(0)->stripPointerCasts();
+ aggBuffer->addSymbol(v);
+ aggBuffer->addZeros(8);
+ break;
+ }
+ }
+ llvm_unreachable("unsupported integer const type");
+ } else
+ llvm_unreachable("unsupported integer const type");
+ break;
+ }
+ case Type::FloatTyID:
+ case Type::DoubleTyID: {
+ const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
+ const Type *Ty = CFP->getType();
+ if (Ty == Type::getFloatTy(CPV->getContext())) {
+ float float32 = (float) CFP->getValueAPF().convertToFloat();
+ ptr = (unsigned char *)&float32;
+ aggBuffer->addBytes(ptr, 4, Bytes);
+ } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
+ double float64 = CFP->getValueAPF().convertToDouble();
+ ptr = (unsigned char *)&float64;
+ aggBuffer->addBytes(ptr, 8, Bytes);
+ } else {
+ llvm_unreachable("unsupported fp const type");
+ }
+ break;
+ }
+ case Type::PointerTyID: {
+ if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
+ aggBuffer->addSymbol(GVar);
+ } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
+ const Value *v = Cexpr->stripPointerCasts();
+ aggBuffer->addSymbol(v);
+ }
+ unsigned int s = TD->getTypeAllocSize(CPV->getType());
+ aggBuffer->addZeros(s);
+ break;
+ }
+
+ case Type::ArrayTyID:
+ case Type::VectorTyID:
+ case Type::StructTyID: {
+ if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) ||
+ isa<ConstantStruct>(CPV) || isa<ConstantDataSequential>(CPV)) {
+ int ElementSize = TD->getTypeAllocSize(CPV->getType());
+ bufferAggregateConstant(CPV, aggBuffer);
+ if (Bytes > ElementSize)
+ aggBuffer->addZeros(Bytes - ElementSize);
+ } else if (isa<ConstantAggregateZero>(CPV))
+ aggBuffer->addZeros(Bytes);
+ else
+ llvm_unreachable("Unexpected Constant type");
+ break;
+ }
+
+ default:
+ llvm_unreachable("unsupported type");
+ }
+}
+
+void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
+ AggBuffer *aggBuffer) {
+ const DataLayout *TD = TM.getDataLayout();
+ int Bytes;
+
+ // Old constants
+ if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
+ if (CPV->getNumOperands())
+ for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
+ bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
+ return;
+ }
+
+ if (const ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(CPV)) {
+ if (CDS->getNumElements())
+ for (unsigned i = 0; i < CDS->getNumElements(); ++i)
+ bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
+ aggBuffer);
+ return;
+ }
+
+ if (isa<ConstantStruct>(CPV)) {
+ if (CPV->getNumOperands()) {
+ StructType *ST = cast<StructType>(CPV->getType());
+ for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
+ if (i == (e - 1))
+ Bytes = TD->getStructLayout(ST)->getElementOffset(0) +
+ TD->getTypeAllocSize(ST) -
+ TD->getStructLayout(ST)->getElementOffset(i);
+ else
+ Bytes = TD->getStructLayout(ST)->getElementOffset(i + 1) -
+ TD->getStructLayout(ST)->getElementOffset(i);
+ bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
+ }
+ }
+ return;
+ }
+ llvm_unreachable("unsupported constant type in printAggregateConstant()");
+}
+
+// buildTypeNameMap - Run through symbol table looking for type names.
+//
+
+bool NVPTXAsmPrinter::isImageType(const Type *Ty) {
+
+ std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty);
+
+ if (PI != TypeNameMap.end() && (!PI->second.compare("struct._image1d_t") ||
+ !PI->second.compare("struct._image2d_t") ||
+ !PI->second.compare("struct._image3d_t")))
+ return true;
+
+ return false;
+}
+
+
+bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) {
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case NVPTX::CallArgBeginInst:
+ case NVPTX::CallArgEndInst0:
+ case NVPTX::CallArgEndInst1:
+ case NVPTX::CallArgF32:
+ case NVPTX::CallArgF64:
+ case NVPTX::CallArgI16:
+ case NVPTX::CallArgI32:
+ case NVPTX::CallArgI32imm:
+ case NVPTX::CallArgI64:
+ case NVPTX::CallArgParam:
+ case NVPTX::CallVoidInst:
+ case NVPTX::CallVoidInstReg:
+ case NVPTX::Callseq_End:
+ case NVPTX::CallVoidInstReg64:
+ case NVPTX::DeclareParamInst:
+ case NVPTX::DeclareRetMemInst:
+ case NVPTX::DeclareRetRegInst:
+ case NVPTX::DeclareRetScalarInst:
+ case NVPTX::DeclareScalarParamInst:
+ case NVPTX::DeclareScalarRegInst:
+ case NVPTX::StoreParamF32:
+ case NVPTX::StoreParamF64:
+ case NVPTX::StoreParamI16:
+ case NVPTX::StoreParamI32:
+ case NVPTX::StoreParamI64:
+ case NVPTX::StoreParamI8:
+ case NVPTX::StoreRetvalF32:
+ case NVPTX::StoreRetvalF64:
+ case NVPTX::StoreRetvalI16:
+ case NVPTX::StoreRetvalI32:
+ case NVPTX::StoreRetvalI64:
+ case NVPTX::StoreRetvalI8:
+ case NVPTX::LastCallArgF32:
+ case NVPTX::LastCallArgF64:
+ case NVPTX::LastCallArgI16:
+ case NVPTX::LastCallArgI32:
+ case NVPTX::LastCallArgI32imm:
+ case NVPTX::LastCallArgI64:
+ case NVPTX::LastCallArgParam:
+ case NVPTX::LoadParamMemF32:
+ case NVPTX::LoadParamMemF64:
+ case NVPTX::LoadParamMemI16:
+ case NVPTX::LoadParamMemI32:
+ case NVPTX::LoadParamMemI64:
+ case NVPTX::LoadParamMemI8:
+ case NVPTX::PrototypeInst:
+ case NVPTX::DBG_VALUE:
+ return true;
+ }
+ return false;
+}
+
+/// PrintAsmOperand - Print out an operand for an inline asm expression.
+///
+bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode, raw_ostream &O) {
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0)
+ return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ default:
+ // See if this is a generic print operand
+ return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
+ case 'r':
+ break;
+ }
+ }
+
+ printOperand(MI, OpNo, O);
+
+ return false;
+}
+
+bool NVPTXAsmPrinter::PrintAsmMemoryOperand(
+ const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant,
+ const char *ExtraCode, raw_ostream &O) {
+ if (ExtraCode && ExtraCode[0])
+ return true; // Unknown modifier
+
+ O << '[';
+ printMemOperand(MI, OpNo, O);
+ O << ']';
+
+ return false;
+}
+
+void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
+ raw_ostream &O, const char *Modifier) {
+ const MachineOperand &MO = MI->getOperand(opNum);
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register:
+ if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
+ if (MO.getReg() == NVPTX::VRDepot)
+ O << DEPOTNAME << getFunctionNumber();
+ else
+ O << NVPTXInstPrinter::getRegisterName(MO.getReg());
+ } else {
+ emitVirtualRegister(MO.getReg(), O);
+ }
+ return;
+
+ case MachineOperand::MO_Immediate:
+ if (!Modifier)
+ O << MO.getImm();
+ else if (strstr(Modifier, "vec") == Modifier)
+ printVecModifiedImmediate(MO, Modifier, O);
+ else
+ llvm_unreachable(
+ "Don't know how to handle modifier on immediate operand");
+ return;
+
+ case MachineOperand::MO_FPImmediate:
+ printFPConstant(MO.getFPImm(), O);
+ break;
+
+ case MachineOperand::MO_GlobalAddress:
+ O << *getSymbol(MO.getGlobal());
+ break;
+
+ case MachineOperand::MO_MachineBasicBlock:
+ O << *MO.getMBB()->getSymbol();
+ return;
+
+ default:
+ llvm_unreachable("Operand type not supported.");
+ }
+}
+
+void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
+ raw_ostream &O, const char *Modifier) {
+ printOperand(MI, opNum, O);
+
+ if (Modifier && !strcmp(Modifier, "add")) {
+ O << ", ";
+ printOperand(MI, opNum + 1, O);
+ } else {
+ if (MI->getOperand(opNum + 1).isImm() &&
+ MI->getOperand(opNum + 1).getImm() == 0)
+ return; // don't print ',0' or '+0'
+ O << "+";
+ printOperand(MI, opNum + 1, O);
+ }
+}
+
+
+// Force static initialization.
+extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() {
+ RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
+ RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
+}
+
+void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
+ std::stringstream temp;
+ LineReader *reader = this->getReader(filename.str());
+ temp << "\n//";
+ temp << filename.str();
+ temp << ":";
+ temp << line;
+ temp << " ";
+ temp << reader->readLine(line);
+ temp << "\n";
+ this->OutStreamer.EmitRawText(Twine(temp.str()));
+}
+
+LineReader *NVPTXAsmPrinter::getReader(std::string filename) {
+ if (!reader) {
+ reader = new LineReader(filename);
+ }
+
+ if (reader->fileName() != filename) {
+ delete reader;
+ reader = new LineReader(filename);
+ }
+
+ return reader;
+}
+
+std::string LineReader::readLine(unsigned lineNum) {
+ if (lineNum < theCurLine) {
+ theCurLine = 0;
+ fstr.seekg(0, std::ios::beg);
+ }
+ while (theCurLine < lineNum) {
+ fstr.getline(buff, 500);
+ theCurLine++;
+ }
+ return buff;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeNVPTXAsmPrinter() {
+ RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
+ RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.h b/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.h
new file mode 100644
index 0000000..a9f9bdd
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.h
@@ -0,0 +1,333 @@
+//===-- NVPTXAsmPrinter.h - NVPTX LLVM assembly writer --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to NVPTX assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTXASMPRINTER_H
+#define NVPTXASMPRINTER_H
+
+#include "NVPTX.h"
+#include "NVPTXSubtarget.h"
+#include "NVPTXTargetMachine.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <fstream>
+
+// The ptx syntax and format is very different from that usually seem in a .s
+// file,
+// therefore we are not able to use the MCAsmStreamer interface here.
+//
+// We are handcrafting the output method here.
+//
+// A better approach is to clone the MCAsmStreamer to a MCPTXAsmStreamer
+// (subclass of MCStreamer).
+
+// This is defined in AsmPrinter.cpp.
+// Used to process the constant expressions in initializers.
+namespace nvptx {
+const llvm::MCExpr *
+LowerConstant(const llvm::Constant *CV, llvm::AsmPrinter &AP);
+}
+
+namespace llvm {
+
+class LineReader {
+private:
+ unsigned theCurLine;
+ std::ifstream fstr;
+ char buff[512];
+ std::string theFileName;
+ SmallVector<unsigned, 32> lineOffset;
+public:
+ LineReader(std::string filename) {
+ theCurLine = 0;
+ fstr.open(filename.c_str());
+ theFileName = filename;
+ }
+ std::string fileName() { return theFileName; }
+ ~LineReader() { fstr.close(); }
+ std::string readLine(unsigned line);
+};
+
+class LLVM_LIBRARY_VISIBILITY NVPTXAsmPrinter : public AsmPrinter {
+
+ class AggBuffer {
+ // Used to buffer the emitted string for initializing global
+ // aggregates.
+ //
+ // Normally an aggregate (array, vector or structure) is emitted
+ // as a u8[]. However, if one element/field of the aggregate
+ // is a non-NULL address, then the aggregate is emitted as u32[]
+ // or u64[].
+ //
+ // We first layout the aggregate in 'buffer' in bytes, except for
+ // those symbol addresses. For the i-th symbol address in the
+ //aggregate, its corresponding 4-byte or 8-byte elements in 'buffer'
+ // are filled with 0s. symbolPosInBuffer[i-1] records its position
+ // in 'buffer', and Symbols[i-1] records the Value*.
+ //
+ // Once we have this AggBuffer setup, we can choose how to print
+ // it out.
+ public:
+ unsigned size; // size of the buffer in bytes
+ unsigned char *buffer; // the buffer
+ unsigned numSymbols; // number of symbol addresses
+ SmallVector<unsigned, 4> symbolPosInBuffer;
+ SmallVector<const Value *, 4> Symbols;
+
+ private:
+ unsigned curpos;
+ raw_ostream &O;
+ NVPTXAsmPrinter &AP;
+ bool EmitGeneric;
+
+ public:
+ AggBuffer(unsigned _size, raw_ostream &_O, NVPTXAsmPrinter &_AP)
+ : O(_O), AP(_AP) {
+ buffer = new unsigned char[_size];
+ size = _size;
+ curpos = 0;
+ numSymbols = 0;
+ EmitGeneric = AP.EmitGeneric;
+ }
+ ~AggBuffer() { delete[] buffer; }
+ unsigned addBytes(unsigned char *Ptr, int Num, int Bytes) {
+ assert((curpos + Num) <= size);
+ assert((curpos + Bytes) <= size);
+ for (int i = 0; i < Num; ++i) {
+ buffer[curpos] = Ptr[i];
+ curpos++;
+ }
+ for (int i = Num; i < Bytes; ++i) {
+ buffer[curpos] = 0;
+ curpos++;
+ }
+ return curpos;
+ }
+ unsigned addZeros(int Num) {
+ assert((curpos + Num) <= size);
+ for (int i = 0; i < Num; ++i) {
+ buffer[curpos] = 0;
+ curpos++;
+ }
+ return curpos;
+ }
+ void addSymbol(const Value *GVar) {
+ symbolPosInBuffer.push_back(curpos);
+ Symbols.push_back(GVar);
+ numSymbols++;
+ }
+ void print() {
+ if (numSymbols == 0) {
+ // print out in bytes
+ for (unsigned i = 0; i < size; i++) {
+ if (i)
+ O << ", ";
+ O << (unsigned int) buffer[i];
+ }
+ } else {
+ // print out in 4-bytes or 8-bytes
+ unsigned int pos = 0;
+ unsigned int nSym = 0;
+ unsigned int nextSymbolPos = symbolPosInBuffer[nSym];
+ unsigned int nBytes = 4;
+ if (AP.nvptxSubtarget.is64Bit())
+ nBytes = 8;
+ for (pos = 0; pos < size; pos += nBytes) {
+ if (pos)
+ O << ", ";
+ if (pos == nextSymbolPos) {
+ const Value *v = Symbols[nSym];
+ if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
+ MCSymbol *Name = AP.getSymbol(GVar);
+ PointerType *PTy = dyn_cast<PointerType>(GVar->getType());
+ bool IsNonGenericPointer = false;
+ if (PTy && PTy->getAddressSpace() != 0) {
+ IsNonGenericPointer = true;
+ }
+ if (EmitGeneric && !isa<Function>(v) && !IsNonGenericPointer) {
+ O << "generic(";
+ O << *Name;
+ O << ")";
+ } else {
+ O << *Name;
+ }
+ } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(v)) {
+ O << *nvptx::LowerConstant(Cexpr, AP);
+ } else
+ llvm_unreachable("symbol type unknown");
+ nSym++;
+ if (nSym >= numSymbols)
+ nextSymbolPos = size + 1;
+ else
+ nextSymbolPos = symbolPosInBuffer[nSym];
+ } else if (nBytes == 4)
+ O << *(unsigned int *)(buffer + pos);
+ else
+ O << *(unsigned long long *)(buffer + pos);
+ }
+ }
+ }
+ };
+
+ friend class AggBuffer;
+
+ void emitSrcInText(StringRef filename, unsigned line);
+
+private:
+ const char *getPassName() const override { return "NVPTX Assembly Printer"; }
+
+ const Function *F;
+ std::string CurrentFnName;
+
+ void EmitFunctionEntryLabel() override;
+ void EmitFunctionBodyStart() override;
+ void EmitFunctionBodyEnd() override;
+ void emitImplicitDef(const MachineInstr *MI) const override;
+
+ void EmitInstruction(const MachineInstr *) override;
+ void lowerToMCInst(const MachineInstr *MI, MCInst &OutMI);
+ bool lowerOperand(const MachineOperand &MO, MCOperand &MCOp);
+ MCOperand GetSymbolRef(const MCSymbol *Symbol);
+ unsigned encodeVirtualRegister(unsigned Reg);
+
+ void EmitAlignment(unsigned NumBits, const GlobalValue *GV = nullptr) const {}
+
+ void printVecModifiedImmediate(const MachineOperand &MO, const char *Modifier,
+ raw_ostream &O);
+ void printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
+ const char *Modifier = nullptr);
+ void printImplicitDef(const MachineInstr *MI, raw_ostream &O) const;
+ void printModuleLevelGV(const GlobalVariable *GVar, raw_ostream &O,
+ bool = false);
+ void printParamName(int paramIndex, raw_ostream &O);
+ void printParamName(Function::const_arg_iterator I, int paramIndex,
+ raw_ostream &O);
+ void emitGlobals(const Module &M);
+ void emitHeader(Module &M, raw_ostream &O);
+ void emitKernelFunctionDirectives(const Function &F, raw_ostream &O) const;
+ void emitVirtualRegister(unsigned int vr, raw_ostream &);
+ void emitFunctionExternParamList(const MachineFunction &MF);
+ void emitFunctionParamList(const Function *, raw_ostream &O);
+ void emitFunctionParamList(const MachineFunction &MF, raw_ostream &O);
+ void setAndEmitFunctionVirtualRegisters(const MachineFunction &MF);
+ void emitFunctionTempData(const MachineFunction &MF, unsigned &FrameSize);
+ bool isImageType(const Type *Ty);
+ void printReturnValStr(const Function *, raw_ostream &O);
+ void printReturnValStr(const MachineFunction &MF, raw_ostream &O);
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &) override;
+ void printOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
+ const char *Modifier = nullptr);
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &) override;
+protected:
+ bool doInitialization(Module &M) override;
+ bool doFinalization(Module &M) override;
+
+private:
+ std::string CurrentBankselLabelInBasicBlock;
+
+ bool GlobalsEmitted;
+
+ // This is specific per MachineFunction.
+ const MachineRegisterInfo *MRI;
+ // The contents are specific for each
+ // MachineFunction. But the size of the
+ // array is not.
+ typedef DenseMap<unsigned, unsigned> VRegMap;
+ typedef DenseMap<const TargetRegisterClass *, VRegMap> VRegRCMap;
+ VRegRCMap VRegMapping;
+ // cache the subtarget here.
+ const NVPTXSubtarget &nvptxSubtarget;
+ // Build the map between type name and ID based on module's type
+ // symbol table.
+ std::map<const Type *, std::string> TypeNameMap;
+
+ // List of variables demoted to a function scope.
+ std::map<const Function *, std::vector<const GlobalVariable *> > localDecls;
+
+ // To record filename to ID mapping
+ std::map<std::string, unsigned> filenameMap;
+ void recordAndEmitFilenames(Module &);
+
+ void emitPTXGlobalVariable(const GlobalVariable *GVar, raw_ostream &O);
+ void emitPTXAddressSpace(unsigned int AddressSpace, raw_ostream &O) const;
+ std::string getPTXFundamentalTypeStr(const Type *Ty, bool = true) const;
+ void printScalarConstant(const Constant *CPV, raw_ostream &O);
+ void printFPConstant(const ConstantFP *Fp, raw_ostream &O);
+ void bufferLEByte(const Constant *CPV, int Bytes, AggBuffer *aggBuffer);
+ void bufferAggregateConstant(const Constant *CV, AggBuffer *aggBuffer);
+
+ void printOperandProper(const MachineOperand &MO);
+
+ void emitLinkageDirective(const GlobalValue *V, raw_ostream &O);
+ void emitDeclarations(const Module &, raw_ostream &O);
+ void emitDeclaration(const Function *, raw_ostream &O);
+
+ static const char *getRegisterName(unsigned RegNo);
+ void emitDemotedVars(const Function *, raw_ostream &);
+
+ bool lowerImageHandleOperand(const MachineInstr *MI, unsigned OpNo,
+ MCOperand &MCOp);
+ void lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp);
+
+ LineReader *reader;
+ LineReader *getReader(std::string);
+
+ // Used to control the need to emit .generic() in the initializer of
+ // module scope variables.
+ // Although ptx supports the hybrid mode like the following,
+ // .global .u32 a;
+ // .global .u32 b;
+ // .global .u32 addr[] = {a, generic(b)}
+ // we have difficulty representing the difference in the NVVM IR.
+ //
+ // Since the address value should always be generic in CUDA C and always
+ // be specific in OpenCL, we use this simple control here.
+ //
+ bool EmitGeneric;
+
+public:
+ NVPTXAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer),
+ nvptxSubtarget(TM.getSubtarget<NVPTXSubtarget>()) {
+ CurrentBankselLabelInBasicBlock = "";
+ reader = nullptr;
+ EmitGeneric = (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA);
+ }
+
+ ~NVPTXAsmPrinter() {
+ if (!reader)
+ delete reader;
+ }
+
+ bool ignoreLoc(const MachineInstr &);
+
+ std::string getVirtualRegisterName(unsigned) const;
+
+ DebugLoc prevDebugLoc;
+ void emitLineNumberAsDotLoc(const MachineInstr &);
+};
+} // end of namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXAssignValidGlobalNames.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXAssignValidGlobalNames.cpp
new file mode 100644
index 0000000..962b123
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXAssignValidGlobalNames.cpp
@@ -0,0 +1,84 @@
+//===-- NVPTXAssignValidGlobalNames.cpp - Assign valid names to globals ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Clean up the names of global variables in the module to not contain symbols
+// that are invalid in PTX.
+//
+// Currently NVPTX, like other backends, relies on generic symbol name
+// sanitizing done by MC. However, the ptxas assembler is more stringent and
+// disallows some additional characters in symbol names. This pass makes sure
+// such names do not reach MC at all.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTX.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/raw_ostream.h"
+#include <string>
+
+using namespace llvm;
+
+namespace {
+/// \brief NVPTXAssignValidGlobalNames
+class NVPTXAssignValidGlobalNames : public ModulePass {
+public:
+ static char ID;
+ NVPTXAssignValidGlobalNames() : ModulePass(ID) {}
+
+ bool runOnModule(Module &M) override;
+
+ /// \brief Clean up the name to remove symbols invalid in PTX.
+ std::string cleanUpName(StringRef Name);
+};
+}
+
+char NVPTXAssignValidGlobalNames::ID = 0;
+
+namespace llvm {
+void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry &);
+}
+
+INITIALIZE_PASS(NVPTXAssignValidGlobalNames, "nvptx-assign-valid-global-names",
+ "Assign valid PTX names to globals", false, false)
+
+bool NVPTXAssignValidGlobalNames::runOnModule(Module &M) {
+ for (GlobalVariable &GV : M.globals()) {
+ // We are only allowed to rename local symbols.
+ if (GV.hasLocalLinkage()) {
+ // setName doesn't do extra work if the name does not change.
+ // Note: this does not create collisions - if setName is asked to set the
+ // name to something that already exists, it adds a proper postfix to
+ // avoid collisions.
+ GV.setName(cleanUpName(GV.getName()));
+ }
+ }
+
+ return true;
+}
+
+std::string NVPTXAssignValidGlobalNames::cleanUpName(StringRef Name) {
+ std::string ValidName;
+ raw_string_ostream ValidNameStream(ValidName);
+ for (unsigned I = 0, E = Name.size(); I != E; ++I) {
+ char C = Name[I];
+ if (C == '.' || C == '@') {
+ ValidNameStream << "_$_";
+ } else {
+ ValidNameStream << C;
+ }
+ }
+
+ return ValidNameStream.str();
+}
+
+ModulePass *llvm::createNVPTXAssignValidGlobalNamesPass() {
+ return new NVPTXAssignValidGlobalNames();
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXFavorNonGenericAddrSpaces.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXFavorNonGenericAddrSpaces.cpp
new file mode 100644
index 0000000..f3a095d
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXFavorNonGenericAddrSpaces.cpp
@@ -0,0 +1,195 @@
+//===-- NVPTXFavorNonGenericAddrSpace.cpp - ---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// When a load/store accesses the generic address space, checks whether the
+// address is casted from a non-generic address space. If so, remove this
+// addrspacecast because accessing non-generic address spaces is typically
+// faster. Besides seeking addrspacecasts, this optimization also traces into
+// the base pointer of a GEP.
+//
+// For instance, the code below loads a float from an array allocated in
+// addrspace(3).
+//
+// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
+// %1 = gep [10 x float]* %0, i64 0, i64 %i
+// %2 = load float* %1 ; emits ld.f32
+//
+// First, function hoistAddrSpaceCastFromGEP reorders the addrspacecast
+// and the GEP to expose more optimization opportunities to function
+// optimizeMemoryInst. The intermediate code looks like:
+//
+// %0 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
+// %1 = addrspacecast float addrspace(3)* %0 to float*
+// %2 = load float* %1 ; still emits ld.f32, but will be optimized shortly
+//
+// Then, function optimizeMemoryInstruction detects a load from addrspacecast'ed
+// generic pointers, and folds the load and the addrspacecast into a load from
+// the original address space. The final code looks like:
+//
+// %0 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
+// %2 = load float addrspace(3)* %0 ; emits ld.shared.f32
+//
+// This pass may remove an addrspacecast in a different BB. Therefore, we
+// implement it as a FunctionPass.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTX.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/CommandLine.h"
+
+using namespace llvm;
+
+// An option to disable this optimization. Enable it by default.
+static cl::opt<bool> DisableFavorNonGeneric(
+ "disable-nvptx-favor-non-generic",
+ cl::init(false),
+ cl::desc("Do not convert generic address space usage "
+ "to non-generic address space usage"),
+ cl::Hidden);
+
+namespace {
+/// \brief NVPTXFavorNonGenericAddrSpaces
+class NVPTXFavorNonGenericAddrSpaces : public FunctionPass {
+public:
+ static char ID;
+ NVPTXFavorNonGenericAddrSpaces() : FunctionPass(ID) {}
+
+ bool runOnFunction(Function &F) override;
+
+ /// Optimizes load/store instructions. Idx is the index of the pointer operand
+ /// (0 for load, and 1 for store). Returns true if it changes anything.
+ bool optimizeMemoryInstruction(Instruction *I, unsigned Idx);
+ /// Transforms "gep (addrspacecast X), indices" into "addrspacecast (gep X,
+ /// indices)". This reordering exposes to optimizeMemoryInstruction more
+ /// optimization opportunities on loads and stores. Returns true if it changes
+ /// the program.
+ bool hoistAddrSpaceCastFromGEP(GEPOperator *GEP);
+};
+}
+
+char NVPTXFavorNonGenericAddrSpaces::ID = 0;
+
+namespace llvm {
+void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
+}
+INITIALIZE_PASS(NVPTXFavorNonGenericAddrSpaces, "nvptx-favor-non-generic",
+ "Remove unnecessary non-generic-to-generic addrspacecasts",
+ false, false)
+
+// Decides whether removing Cast is valid and beneficial. Cast can be an
+// instruction or a constant expression.
+static bool IsEliminableAddrSpaceCast(Operator *Cast) {
+ // Returns false if not even an addrspacecast.
+ if (Cast->getOpcode() != Instruction::AddrSpaceCast)
+ return false;
+
+ Value *Src = Cast->getOperand(0);
+ PointerType *SrcTy = cast<PointerType>(Src->getType());
+ PointerType *DestTy = cast<PointerType>(Cast->getType());
+ // TODO: For now, we only handle the case where the addrspacecast only changes
+ // the address space but not the type. If the type also changes, we could
+ // still get rid of the addrspacecast by adding an extra bitcast, but we
+ // rarely see such scenarios.
+ if (SrcTy->getElementType() != DestTy->getElementType())
+ return false;
+
+ // Checks whether the addrspacecast is from a non-generic address space to the
+ // generic address space.
+ return (SrcTy->getAddressSpace() != AddressSpace::ADDRESS_SPACE_GENERIC &&
+ DestTy->getAddressSpace() == AddressSpace::ADDRESS_SPACE_GENERIC);
+}
+
+bool NVPTXFavorNonGenericAddrSpaces::hoistAddrSpaceCastFromGEP(
+ GEPOperator *GEP) {
+ Operator *Cast = dyn_cast<Operator>(GEP->getPointerOperand());
+ if (!Cast)
+ return false;
+
+ if (!IsEliminableAddrSpaceCast(Cast))
+ return false;
+
+ SmallVector<Value *, 8> Indices(GEP->idx_begin(), GEP->idx_end());
+ if (Instruction *GEPI = dyn_cast<Instruction>(GEP)) {
+ // %1 = gep (addrspacecast X), indices
+ // =>
+ // %0 = gep X, indices
+ // %1 = addrspacecast %0
+ GetElementPtrInst *NewGEPI = GetElementPtrInst::Create(Cast->getOperand(0),
+ Indices,
+ GEP->getName(),
+ GEPI);
+ NewGEPI->setIsInBounds(GEP->isInBounds());
+ GEP->replaceAllUsesWith(
+ new AddrSpaceCastInst(NewGEPI, GEP->getType(), "", GEPI));
+ } else {
+ // GEP is a constant expression.
+ Constant *NewGEPCE = ConstantExpr::getGetElementPtr(
+ cast<Constant>(Cast->getOperand(0)),
+ Indices,
+ GEP->isInBounds());
+ GEP->replaceAllUsesWith(
+ ConstantExpr::getAddrSpaceCast(NewGEPCE, GEP->getType()));
+ }
+
+ return true;
+}
+
+bool NVPTXFavorNonGenericAddrSpaces::optimizeMemoryInstruction(Instruction *MI,
+ unsigned Idx) {
+ // If the pointer operand is a GEP, hoist the addrspacecast if any from the
+ // GEP to expose more optimization opportunites.
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(MI->getOperand(Idx))) {
+ hoistAddrSpaceCastFromGEP(GEP);
+ }
+
+ // load/store (addrspacecast X) => load/store X if shortcutting the
+ // addrspacecast is valid and can improve performance.
+ //
+ // e.g.,
+ // %1 = addrspacecast float addrspace(3)* %0 to float*
+ // %2 = load float* %1
+ // ->
+ // %2 = load float addrspace(3)* %0
+ //
+ // Note: the addrspacecast can also be a constant expression.
+ if (Operator *Cast = dyn_cast<Operator>(MI->getOperand(Idx))) {
+ if (IsEliminableAddrSpaceCast(Cast)) {
+ MI->setOperand(Idx, Cast->getOperand(0));
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool NVPTXFavorNonGenericAddrSpaces::runOnFunction(Function &F) {
+ if (DisableFavorNonGeneric)
+ return false;
+
+ bool Changed = false;
+ for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
+ for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ++I) {
+ if (isa<LoadInst>(I)) {
+ // V = load P
+ Changed |= optimizeMemoryInstruction(I, 0);
+ } else if (isa<StoreInst>(I)) {
+ // store V, P
+ Changed |= optimizeMemoryInstruction(I, 1);
+ }
+ }
+ }
+ return Changed;
+}
+
+FunctionPass *llvm::createNVPTXFavorNonGenericAddrSpacesPass() {
+ return new NVPTXFavorNonGenericAddrSpaces();
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.cpp
new file mode 100644
index 0000000..8b08841
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.cpp
@@ -0,0 +1,81 @@
+//=======- NVPTXFrameLowering.cpp - NVPTX Frame Information ---*- C++ -*-=====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the NVPTX implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXFrameLowering.h"
+#include "NVPTX.h"
+#include "NVPTXRegisterInfo.h"
+#include "NVPTXSubtarget.h"
+#include "NVPTXTargetMachine.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+using namespace llvm;
+
+NVPTXFrameLowering::NVPTXFrameLowering(NVPTXSubtarget &STI)
+ : TargetFrameLowering(TargetFrameLowering::StackGrowsUp, 8, 0),
+ is64bit(STI.is64Bit()) {}
+
+bool NVPTXFrameLowering::hasFP(const MachineFunction &MF) const { return true; }
+
+void NVPTXFrameLowering::emitPrologue(MachineFunction &MF) const {
+ if (MF.getFrameInfo()->hasStackObjects()) {
+ MachineBasicBlock &MBB = MF.front();
+ // Insert "mov.u32 %SP, %Depot"
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ // This instruction really occurs before first instruction
+ // in the BB, so giving it no debug location.
+ DebugLoc dl = DebugLoc();
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // mov %SPL, %depot;
+ // cvta.local %SP, %SPL;
+ if (is64bit) {
+ unsigned LocalReg = MRI.createVirtualRegister(&NVPTX::Int64RegsRegClass);
+ MachineInstr *MI =
+ BuildMI(MBB, MBBI, dl,
+ MF.getTarget().getInstrInfo()->get(NVPTX::cvta_local_yes_64),
+ NVPTX::VRFrame).addReg(LocalReg);
+ BuildMI(MBB, MI, dl,
+ MF.getTarget().getInstrInfo()->get(NVPTX::MOV_DEPOT_ADDR_64),
+ LocalReg).addImm(MF.getFunctionNumber());
+ } else {
+ unsigned LocalReg = MRI.createVirtualRegister(&NVPTX::Int32RegsRegClass);
+ MachineInstr *MI =
+ BuildMI(MBB, MBBI, dl,
+ MF.getTarget().getInstrInfo()->get(NVPTX::cvta_local_yes),
+ NVPTX::VRFrame).addReg(LocalReg);
+ BuildMI(MBB, MI, dl,
+ MF.getTarget().getInstrInfo()->get(NVPTX::MOV_DEPOT_ADDR),
+ LocalReg).addImm(MF.getFunctionNumber());
+ }
+ }
+}
+
+void NVPTXFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {}
+
+// This function eliminates ADJCALLSTACKDOWN,
+// ADJCALLSTACKUP pseudo instructions
+void NVPTXFrameLowering::eliminateCallFramePseudoInstr(
+ MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ // Simply discard ADJCALLSTACKDOWN,
+ // ADJCALLSTACKUP instructions.
+ MBB.erase(I);
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.h b/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.h
new file mode 100644
index 0000000..56fb673
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.h
@@ -0,0 +1,38 @@
+//===--- NVPTXFrameLowering.h - Define frame lowering for NVPTX -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTX_FRAMELOWERING_H
+#define NVPTX_FRAMELOWERING_H
+
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+class NVPTXSubtarget;
+class NVPTXFrameLowering : public TargetFrameLowering {
+ bool is64bit;
+
+public:
+ explicit NVPTXFrameLowering(NVPTXSubtarget &STI);
+
+ bool hasFP(const MachineFunction &MF) const override;
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const override;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXGenericToNVVM.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXGenericToNVVM.cpp
new file mode 100644
index 0000000..faa9fdb
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXGenericToNVVM.cpp
@@ -0,0 +1,433 @@
+//===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Convert generic global variables into either .global or .const access based
+// on the variable's "constant" qualifier.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTX.h"
+#include "MCTargetDesc/NVPTXBaseInfo.h"
+#include "NVPTXUtilities.h"
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/ValueMap.h"
+#include "llvm/PassManager.h"
+
+using namespace llvm;
+
+namespace llvm {
+void initializeGenericToNVVMPass(PassRegistry &);
+}
+
+namespace {
+class GenericToNVVM : public ModulePass {
+public:
+ static char ID;
+
+ GenericToNVVM() : ModulePass(ID) {}
+
+ bool runOnModule(Module &M) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {}
+
+private:
+ Value *getOrInsertCVTA(Module *M, Function *F, GlobalVariable *GV,
+ IRBuilder<> &Builder);
+ Value *remapConstant(Module *M, Function *F, Constant *C,
+ IRBuilder<> &Builder);
+ Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
+ Constant *C,
+ IRBuilder<> &Builder);
+ Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
+ IRBuilder<> &Builder);
+ void remapNamedMDNode(Module *M, NamedMDNode *N);
+ MDNode *remapMDNode(Module *M, MDNode *N);
+
+ typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
+ typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
+ GVMapTy GVMap;
+ ConstantToValueMapTy ConstantToValueMap;
+};
+} // end namespace
+
+char GenericToNVVM::ID = 0;
+
+ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
+
+INITIALIZE_PASS(
+ GenericToNVVM, "generic-to-nvvm",
+ "Ensure that the global variables are in the global address space", false,
+ false)
+
+bool GenericToNVVM::runOnModule(Module &M) {
+ // Create a clone of each global variable that has the default address space.
+ // The clone is created with the global address space specifier, and the pair
+ // of original global variable and its clone is placed in the GVMap for later
+ // use.
+
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E;) {
+ GlobalVariable *GV = I++;
+ if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
+ !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
+ !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
+ GlobalVariable *NewGV = new GlobalVariable(
+ M, GV->getType()->getElementType(), GV->isConstant(),
+ GV->getLinkage(),
+ GV->hasInitializer() ? GV->getInitializer() : nullptr,
+ "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
+ NewGV->copyAttributesFrom(GV);
+ GVMap[GV] = NewGV;
+ }
+ }
+
+ // Return immediately, if every global variable has a specific address space
+ // specifier.
+ if (GVMap.empty()) {
+ return false;
+ }
+
+ // Walk through the instructions in function defitinions, and replace any use
+ // of original global variables in GVMap with a use of the corresponding
+ // copies in GVMap. If necessary, promote constants to instructions.
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ if (I->isDeclaration()) {
+ continue;
+ }
+ IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
+ for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
+ ++BBI) {
+ for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
+ ++II) {
+ for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
+ Value *Operand = II->getOperand(i);
+ if (isa<Constant>(Operand)) {
+ II->setOperand(
+ i, remapConstant(&M, I, cast<Constant>(Operand), Builder));
+ }
+ }
+ }
+ }
+ ConstantToValueMap.clear();
+ }
+
+ // Walk through the metadata section and update the debug information
+ // associated with the global variables in the default address space.
+ for (Module::named_metadata_iterator I = M.named_metadata_begin(),
+ E = M.named_metadata_end();
+ I != E; I++) {
+ remapNamedMDNode(&M, I);
+ }
+
+ // Walk through the global variable initializers, and replace any use of
+ // original global variables in GVMap with a use of the corresponding copies
+ // in GVMap. The copies need to be bitcast to the original global variable
+ // types, as we cannot use cvta in global variable initializers.
+ for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
+ GlobalVariable *GV = I->first;
+ GlobalVariable *NewGV = I->second;
+ ++I;
+ Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
+ // At this point, the remaining uses of GV should be found only in global
+ // variable initializers, as other uses have been already been removed
+ // while walking through the instructions in function definitions.
+ for (Value::use_iterator UI = GV->use_begin(), UE = GV->use_end();
+ UI != UE;)
+ (UI++)->set(BitCastNewGV);
+ std::string Name = GV->getName();
+ GV->removeDeadConstantUsers();
+ GV->eraseFromParent();
+ NewGV->setName(Name);
+ }
+ GVMap.clear();
+
+ return true;
+}
+
+Value *GenericToNVVM::getOrInsertCVTA(Module *M, Function *F,
+ GlobalVariable *GV,
+ IRBuilder<> &Builder) {
+ PointerType *GVType = GV->getType();
+ Value *CVTA = nullptr;
+
+ // See if the address space conversion requires the operand to be bitcast
+ // to i8 addrspace(n)* first.
+ EVT ExtendedGVType = EVT::getEVT(GVType->getElementType(), true);
+ if (!ExtendedGVType.isInteger() && !ExtendedGVType.isFloatingPoint()) {
+ // A bitcast to i8 addrspace(n)* on the operand is needed.
+ LLVMContext &Context = M->getContext();
+ unsigned int AddrSpace = GVType->getAddressSpace();
+ Type *DestTy = PointerType::get(Type::getInt8Ty(Context), AddrSpace);
+ CVTA = Builder.CreateBitCast(GV, DestTy, "cvta");
+ // Insert the address space conversion.
+ Type *ResultType =
+ PointerType::get(Type::getInt8Ty(Context), llvm::ADDRESS_SPACE_GENERIC);
+ SmallVector<Type *, 2> ParamTypes;
+ ParamTypes.push_back(ResultType);
+ ParamTypes.push_back(DestTy);
+ Function *CVTAFunction = Intrinsic::getDeclaration(
+ M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
+ CVTA = Builder.CreateCall(CVTAFunction, CVTA, "cvta");
+ // Another bitcast from i8 * to <the element type of GVType> * is
+ // required.
+ DestTy =
+ PointerType::get(GVType->getElementType(), llvm::ADDRESS_SPACE_GENERIC);
+ CVTA = Builder.CreateBitCast(CVTA, DestTy, "cvta");
+ } else {
+ // A simple CVTA is enough.
+ SmallVector<Type *, 2> ParamTypes;
+ ParamTypes.push_back(PointerType::get(GVType->getElementType(),
+ llvm::ADDRESS_SPACE_GENERIC));
+ ParamTypes.push_back(GVType);
+ Function *CVTAFunction = Intrinsic::getDeclaration(
+ M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
+ CVTA = Builder.CreateCall(CVTAFunction, GV, "cvta");
+ }
+
+ return CVTA;
+}
+
+Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
+ IRBuilder<> &Builder) {
+ // If the constant C has been converted already in the given function F, just
+ // return the converted value.
+ ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
+ if (CTII != ConstantToValueMap.end()) {
+ return CTII->second;
+ }
+
+ Value *NewValue = C;
+ if (isa<GlobalVariable>(C)) {
+ // If the constant C is a global variable and is found in GVMap, generate a
+ // set set of instructions that convert the clone of C with the global
+ // address space specifier to a generic pointer.
+ // The constant C cannot be used here, as it will be erased from the
+ // module eventually. And the clone of C with the global address space
+ // specifier cannot be used here either, as it will affect the types of
+ // other instructions in the function. Hence, this address space conversion
+ // is required.
+ GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
+ if (I != GVMap.end()) {
+ NewValue = getOrInsertCVTA(M, F, I->second, Builder);
+ }
+ } else if (isa<ConstantVector>(C) || isa<ConstantArray>(C) ||
+ isa<ConstantStruct>(C)) {
+ // If any element in the constant vector or aggregate C is or uses a global
+ // variable in GVMap, the constant C needs to be reconstructed, using a set
+ // of instructions.
+ NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
+ } else if (isa<ConstantExpr>(C)) {
+ // If any operand in the constant expression C is or uses a global variable
+ // in GVMap, the constant expression C needs to be reconstructed, using a
+ // set of instructions.
+ NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
+ }
+
+ ConstantToValueMap[C] = NewValue;
+ return NewValue;
+}
+
+Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
+ Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
+ bool OperandChanged = false;
+ SmallVector<Value *, 4> NewOperands;
+ unsigned NumOperands = C->getNumOperands();
+
+ // Check if any element is or uses a global variable in GVMap, and thus
+ // converted to another value.
+ for (unsigned i = 0; i < NumOperands; ++i) {
+ Value *Operand = C->getOperand(i);
+ Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
+ OperandChanged |= Operand != NewOperand;
+ NewOperands.push_back(NewOperand);
+ }
+
+ // If none of the elements has been modified, return C as it is.
+ if (!OperandChanged) {
+ return C;
+ }
+
+ // If any of the elements has been modified, construct the equivalent
+ // vector or aggregate value with a set instructions and the converted
+ // elements.
+ Value *NewValue = UndefValue::get(C->getType());
+ if (isa<ConstantVector>(C)) {
+ for (unsigned i = 0; i < NumOperands; ++i) {
+ Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
+ NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
+ }
+ } else {
+ for (unsigned i = 0; i < NumOperands; ++i) {
+ NewValue =
+ Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
+ }
+ }
+
+ return NewValue;
+}
+
+Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
+ IRBuilder<> &Builder) {
+ bool OperandChanged = false;
+ SmallVector<Value *, 4> NewOperands;
+ unsigned NumOperands = C->getNumOperands();
+
+ // Check if any operand is or uses a global variable in GVMap, and thus
+ // converted to another value.
+ for (unsigned i = 0; i < NumOperands; ++i) {
+ Value *Operand = C->getOperand(i);
+ Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
+ OperandChanged |= Operand != NewOperand;
+ NewOperands.push_back(NewOperand);
+ }
+
+ // If none of the operands has been modified, return C as it is.
+ if (!OperandChanged) {
+ return C;
+ }
+
+ // If any of the operands has been modified, construct the instruction with
+ // the converted operands.
+ unsigned Opcode = C->getOpcode();
+ switch (Opcode) {
+ case Instruction::ICmp:
+ // CompareConstantExpr (icmp)
+ return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
+ NewOperands[0], NewOperands[1]);
+ case Instruction::FCmp:
+ // CompareConstantExpr (fcmp)
+ assert(false && "Address space conversion should have no effect "
+ "on float point CompareConstantExpr (fcmp)!");
+ return C;
+ case Instruction::ExtractElement:
+ // ExtractElementConstantExpr
+ return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
+ case Instruction::InsertElement:
+ // InsertElementConstantExpr
+ return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
+ NewOperands[2]);
+ case Instruction::ShuffleVector:
+ // ShuffleVector
+ return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
+ NewOperands[2]);
+ case Instruction::ExtractValue:
+ // ExtractValueConstantExpr
+ return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
+ case Instruction::InsertValue:
+ // InsertValueConstantExpr
+ return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
+ C->getIndices());
+ case Instruction::GetElementPtr:
+ // GetElementPtrConstantExpr
+ return cast<GEPOperator>(C)->isInBounds()
+ ? Builder.CreateGEP(
+ NewOperands[0],
+ makeArrayRef(&NewOperands[1], NumOperands - 1))
+ : Builder.CreateInBoundsGEP(
+ NewOperands[0],
+ makeArrayRef(&NewOperands[1], NumOperands - 1));
+ case Instruction::Select:
+ // SelectConstantExpr
+ return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
+ default:
+ // BinaryConstantExpr
+ if (Instruction::isBinaryOp(Opcode)) {
+ return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
+ NewOperands[0], NewOperands[1]);
+ }
+ // UnaryConstantExpr
+ if (Instruction::isCast(Opcode)) {
+ return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
+ NewOperands[0], C->getType());
+ }
+ assert(false && "GenericToNVVM encountered an unsupported ConstantExpr");
+ return C;
+ }
+}
+
+void GenericToNVVM::remapNamedMDNode(Module *M, NamedMDNode *N) {
+
+ bool OperandChanged = false;
+ SmallVector<MDNode *, 16> NewOperands;
+ unsigned NumOperands = N->getNumOperands();
+
+ // Check if any operand is or contains a global variable in GVMap, and thus
+ // converted to another value.
+ for (unsigned i = 0; i < NumOperands; ++i) {
+ MDNode *Operand = N->getOperand(i);
+ MDNode *NewOperand = remapMDNode(M, Operand);
+ OperandChanged |= Operand != NewOperand;
+ NewOperands.push_back(NewOperand);
+ }
+
+ // If none of the operands has been modified, return immediately.
+ if (!OperandChanged) {
+ return;
+ }
+
+ // Replace the old operands with the new operands.
+ N->dropAllReferences();
+ for (SmallVectorImpl<MDNode *>::iterator I = NewOperands.begin(),
+ E = NewOperands.end();
+ I != E; ++I) {
+ N->addOperand(*I);
+ }
+}
+
+MDNode *GenericToNVVM::remapMDNode(Module *M, MDNode *N) {
+
+ bool OperandChanged = false;
+ SmallVector<Value *, 8> NewOperands;
+ unsigned NumOperands = N->getNumOperands();
+
+ // Check if any operand is or contains a global variable in GVMap, and thus
+ // converted to another value.
+ for (unsigned i = 0; i < NumOperands; ++i) {
+ Value *Operand = N->getOperand(i);
+ Value *NewOperand = Operand;
+ if (Operand) {
+ if (isa<GlobalVariable>(Operand)) {
+ GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(Operand));
+ if (I != GVMap.end()) {
+ NewOperand = I->second;
+ if (++i < NumOperands) {
+ NewOperands.push_back(NewOperand);
+ // Address space of the global variable follows the global variable
+ // in the global variable debug info (see createGlobalVariable in
+ // lib/Analysis/DIBuilder.cpp).
+ NewOperand =
+ ConstantInt::get(Type::getInt32Ty(M->getContext()),
+ I->second->getType()->getAddressSpace());
+ }
+ }
+ } else if (isa<MDNode>(Operand)) {
+ NewOperand = remapMDNode(M, cast<MDNode>(Operand));
+ }
+ }
+ OperandChanged |= Operand != NewOperand;
+ NewOperands.push_back(NewOperand);
+ }
+
+ // If none of the operands has been modified, return N as it is.
+ if (!OperandChanged) {
+ return N;
+ }
+
+ // If any of the operands has been modified, create a new MDNode with the new
+ // operands.
+ return MDNode::get(M->getContext(), makeArrayRef(NewOperands));
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp
new file mode 100644
index 0000000..05205fb
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp
@@ -0,0 +1,5085 @@
+//===-- NVPTXISelDAGToDAG.cpp - A dag to dag inst selector for NVPTX ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the NVPTX target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXISelDAGToDAG.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "nvptx-isel"
+
+static cl::opt<int> UsePrecDivF32(
+ "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
+ cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
+ " IEEE Compliant F32 div.rnd if avaiable."),
+ cl::init(2));
+
+static cl::opt<bool>
+UsePrecSqrtF32("nvptx-prec-sqrtf32", cl::Hidden,
+ cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
+ cl::init(true));
+
+static cl::opt<bool>
+FtzEnabled("nvptx-f32ftz", cl::ZeroOrMore, cl::Hidden,
+ cl::desc("NVPTX Specific: Flush f32 subnormals to sign-preserving zero."),
+ cl::init(false));
+
+
+/// createNVPTXISelDag - This pass converts a legalized DAG into a
+/// NVPTX-specific DAG, ready for instruction scheduling.
+FunctionPass *llvm::createNVPTXISelDag(NVPTXTargetMachine &TM,
+ llvm::CodeGenOpt::Level OptLevel) {
+ return new NVPTXDAGToDAGISel(TM, OptLevel);
+}
+
+NVPTXDAGToDAGISel::NVPTXDAGToDAGISel(NVPTXTargetMachine &tm,
+ CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(tm, OptLevel),
+ Subtarget(tm.getSubtarget<NVPTXSubtarget>()) {
+ doMulWide = (OptLevel > 0);
+}
+
+int NVPTXDAGToDAGISel::getDivF32Level() const {
+ if (UsePrecDivF32.getNumOccurrences() > 0) {
+ // If nvptx-prec-div32=N is used on the command-line, always honor it
+ return UsePrecDivF32;
+ } else {
+ // Otherwise, use div.approx if fast math is enabled
+ if (TM.Options.UnsafeFPMath)
+ return 0;
+ else
+ return 2;
+ }
+}
+
+bool NVPTXDAGToDAGISel::usePrecSqrtF32() const {
+ if (UsePrecSqrtF32.getNumOccurrences() > 0) {
+ // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
+ return UsePrecSqrtF32;
+ } else {
+ // Otherwise, use sqrt.approx if fast math is enabled
+ if (TM.Options.UnsafeFPMath)
+ return false;
+ else
+ return true;
+ }
+}
+
+bool NVPTXDAGToDAGISel::useF32FTZ() const {
+ if (FtzEnabled.getNumOccurrences() > 0) {
+ // If nvptx-f32ftz is used on the command-line, always honor it
+ return FtzEnabled;
+ } else {
+ const Function *F = MF->getFunction();
+ // Otherwise, check for an nvptx-f32ftz attribute on the function
+ if (F->hasFnAttribute("nvptx-f32ftz"))
+ return (F->getAttributes().getAttribute(AttributeSet::FunctionIndex,
+ "nvptx-f32ftz")
+ .getValueAsString() == "true");
+ else
+ return false;
+ }
+}
+
+bool NVPTXDAGToDAGISel::allowFMA() const {
+ const NVPTXTargetLowering *TL = Subtarget.getTargetLowering();
+ return TL->allowFMA(*MF, OptLevel);
+}
+
+/// Select - Select instructions not customized! Used for
+/// expanded, promoted and normal instructions.
+SDNode *NVPTXDAGToDAGISel::Select(SDNode *N) {
+
+ if (N->isMachineOpcode()) {
+ N->setNodeId(-1);
+ return nullptr; // Already selected.
+ }
+
+ SDNode *ResNode = nullptr;
+ switch (N->getOpcode()) {
+ case ISD::LOAD:
+ ResNode = SelectLoad(N);
+ break;
+ case ISD::STORE:
+ ResNode = SelectStore(N);
+ break;
+ case NVPTXISD::LoadV2:
+ case NVPTXISD::LoadV4:
+ ResNode = SelectLoadVector(N);
+ break;
+ case NVPTXISD::LDGV2:
+ case NVPTXISD::LDGV4:
+ case NVPTXISD::LDUV2:
+ case NVPTXISD::LDUV4:
+ ResNode = SelectLDGLDU(N);
+ break;
+ case NVPTXISD::StoreV2:
+ case NVPTXISD::StoreV4:
+ ResNode = SelectStoreVector(N);
+ break;
+ case NVPTXISD::LoadParam:
+ case NVPTXISD::LoadParamV2:
+ case NVPTXISD::LoadParamV4:
+ ResNode = SelectLoadParam(N);
+ break;
+ case NVPTXISD::StoreRetval:
+ case NVPTXISD::StoreRetvalV2:
+ case NVPTXISD::StoreRetvalV4:
+ ResNode = SelectStoreRetval(N);
+ break;
+ case NVPTXISD::StoreParam:
+ case NVPTXISD::StoreParamV2:
+ case NVPTXISD::StoreParamV4:
+ case NVPTXISD::StoreParamS32:
+ case NVPTXISD::StoreParamU32:
+ ResNode = SelectStoreParam(N);
+ break;
+ case ISD::INTRINSIC_WO_CHAIN:
+ ResNode = SelectIntrinsicNoChain(N);
+ break;
+ case ISD::INTRINSIC_W_CHAIN:
+ ResNode = SelectIntrinsicChain(N);
+ break;
+ case NVPTXISD::Tex1DFloatS32:
+ case NVPTXISD::Tex1DFloatFloat:
+ case NVPTXISD::Tex1DFloatFloatLevel:
+ case NVPTXISD::Tex1DFloatFloatGrad:
+ case NVPTXISD::Tex1DS32S32:
+ case NVPTXISD::Tex1DS32Float:
+ case NVPTXISD::Tex1DS32FloatLevel:
+ case NVPTXISD::Tex1DS32FloatGrad:
+ case NVPTXISD::Tex1DU32S32:
+ case NVPTXISD::Tex1DU32Float:
+ case NVPTXISD::Tex1DU32FloatLevel:
+ case NVPTXISD::Tex1DU32FloatGrad:
+ case NVPTXISD::Tex1DArrayFloatS32:
+ case NVPTXISD::Tex1DArrayFloatFloat:
+ case NVPTXISD::Tex1DArrayFloatFloatLevel:
+ case NVPTXISD::Tex1DArrayFloatFloatGrad:
+ case NVPTXISD::Tex1DArrayS32S32:
+ case NVPTXISD::Tex1DArrayS32Float:
+ case NVPTXISD::Tex1DArrayS32FloatLevel:
+ case NVPTXISD::Tex1DArrayS32FloatGrad:
+ case NVPTXISD::Tex1DArrayU32S32:
+ case NVPTXISD::Tex1DArrayU32Float:
+ case NVPTXISD::Tex1DArrayU32FloatLevel:
+ case NVPTXISD::Tex1DArrayU32FloatGrad:
+ case NVPTXISD::Tex2DFloatS32:
+ case NVPTXISD::Tex2DFloatFloat:
+ case NVPTXISD::Tex2DFloatFloatLevel:
+ case NVPTXISD::Tex2DFloatFloatGrad:
+ case NVPTXISD::Tex2DS32S32:
+ case NVPTXISD::Tex2DS32Float:
+ case NVPTXISD::Tex2DS32FloatLevel:
+ case NVPTXISD::Tex2DS32FloatGrad:
+ case NVPTXISD::Tex2DU32S32:
+ case NVPTXISD::Tex2DU32Float:
+ case NVPTXISD::Tex2DU32FloatLevel:
+ case NVPTXISD::Tex2DU32FloatGrad:
+ case NVPTXISD::Tex2DArrayFloatS32:
+ case NVPTXISD::Tex2DArrayFloatFloat:
+ case NVPTXISD::Tex2DArrayFloatFloatLevel:
+ case NVPTXISD::Tex2DArrayFloatFloatGrad:
+ case NVPTXISD::Tex2DArrayS32S32:
+ case NVPTXISD::Tex2DArrayS32Float:
+ case NVPTXISD::Tex2DArrayS32FloatLevel:
+ case NVPTXISD::Tex2DArrayS32FloatGrad:
+ case NVPTXISD::Tex2DArrayU32S32:
+ case NVPTXISD::Tex2DArrayU32Float:
+ case NVPTXISD::Tex2DArrayU32FloatLevel:
+ case NVPTXISD::Tex2DArrayU32FloatGrad:
+ case NVPTXISD::Tex3DFloatS32:
+ case NVPTXISD::Tex3DFloatFloat:
+ case NVPTXISD::Tex3DFloatFloatLevel:
+ case NVPTXISD::Tex3DFloatFloatGrad:
+ case NVPTXISD::Tex3DS32S32:
+ case NVPTXISD::Tex3DS32Float:
+ case NVPTXISD::Tex3DS32FloatLevel:
+ case NVPTXISD::Tex3DS32FloatGrad:
+ case NVPTXISD::Tex3DU32S32:
+ case NVPTXISD::Tex3DU32Float:
+ case NVPTXISD::Tex3DU32FloatLevel:
+ case NVPTXISD::Tex3DU32FloatGrad:
+ case NVPTXISD::TexCubeFloatFloat:
+ case NVPTXISD::TexCubeFloatFloatLevel:
+ case NVPTXISD::TexCubeS32Float:
+ case NVPTXISD::TexCubeS32FloatLevel:
+ case NVPTXISD::TexCubeU32Float:
+ case NVPTXISD::TexCubeU32FloatLevel:
+ case NVPTXISD::TexCubeArrayFloatFloat:
+ case NVPTXISD::TexCubeArrayFloatFloatLevel:
+ case NVPTXISD::TexCubeArrayS32Float:
+ case NVPTXISD::TexCubeArrayS32FloatLevel:
+ case NVPTXISD::TexCubeArrayU32Float:
+ case NVPTXISD::TexCubeArrayU32FloatLevel:
+ case NVPTXISD::Tld4R2DFloatFloat:
+ case NVPTXISD::Tld4G2DFloatFloat:
+ case NVPTXISD::Tld4B2DFloatFloat:
+ case NVPTXISD::Tld4A2DFloatFloat:
+ case NVPTXISD::Tld4R2DS64Float:
+ case NVPTXISD::Tld4G2DS64Float:
+ case NVPTXISD::Tld4B2DS64Float:
+ case NVPTXISD::Tld4A2DS64Float:
+ case NVPTXISD::Tld4R2DU64Float:
+ case NVPTXISD::Tld4G2DU64Float:
+ case NVPTXISD::Tld4B2DU64Float:
+ case NVPTXISD::Tld4A2DU64Float:
+ case NVPTXISD::TexUnified1DFloatS32:
+ case NVPTXISD::TexUnified1DFloatFloat:
+ case NVPTXISD::TexUnified1DFloatFloatLevel:
+ case NVPTXISD::TexUnified1DFloatFloatGrad:
+ case NVPTXISD::TexUnified1DS32S32:
+ case NVPTXISD::TexUnified1DS32Float:
+ case NVPTXISD::TexUnified1DS32FloatLevel:
+ case NVPTXISD::TexUnified1DS32FloatGrad:
+ case NVPTXISD::TexUnified1DU32S32:
+ case NVPTXISD::TexUnified1DU32Float:
+ case NVPTXISD::TexUnified1DU32FloatLevel:
+ case NVPTXISD::TexUnified1DU32FloatGrad:
+ case NVPTXISD::TexUnified1DArrayFloatS32:
+ case NVPTXISD::TexUnified1DArrayFloatFloat:
+ case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
+ case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
+ case NVPTXISD::TexUnified1DArrayS32S32:
+ case NVPTXISD::TexUnified1DArrayS32Float:
+ case NVPTXISD::TexUnified1DArrayS32FloatLevel:
+ case NVPTXISD::TexUnified1DArrayS32FloatGrad:
+ case NVPTXISD::TexUnified1DArrayU32S32:
+ case NVPTXISD::TexUnified1DArrayU32Float:
+ case NVPTXISD::TexUnified1DArrayU32FloatLevel:
+ case NVPTXISD::TexUnified1DArrayU32FloatGrad:
+ case NVPTXISD::TexUnified2DFloatS32:
+ case NVPTXISD::TexUnified2DFloatFloat:
+ case NVPTXISD::TexUnified2DFloatFloatLevel:
+ case NVPTXISD::TexUnified2DFloatFloatGrad:
+ case NVPTXISD::TexUnified2DS32S32:
+ case NVPTXISD::TexUnified2DS32Float:
+ case NVPTXISD::TexUnified2DS32FloatLevel:
+ case NVPTXISD::TexUnified2DS32FloatGrad:
+ case NVPTXISD::TexUnified2DU32S32:
+ case NVPTXISD::TexUnified2DU32Float:
+ case NVPTXISD::TexUnified2DU32FloatLevel:
+ case NVPTXISD::TexUnified2DU32FloatGrad:
+ case NVPTXISD::TexUnified2DArrayFloatS32:
+ case NVPTXISD::TexUnified2DArrayFloatFloat:
+ case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
+ case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
+ case NVPTXISD::TexUnified2DArrayS32S32:
+ case NVPTXISD::TexUnified2DArrayS32Float:
+ case NVPTXISD::TexUnified2DArrayS32FloatLevel:
+ case NVPTXISD::TexUnified2DArrayS32FloatGrad:
+ case NVPTXISD::TexUnified2DArrayU32S32:
+ case NVPTXISD::TexUnified2DArrayU32Float:
+ case NVPTXISD::TexUnified2DArrayU32FloatLevel:
+ case NVPTXISD::TexUnified2DArrayU32FloatGrad:
+ case NVPTXISD::TexUnified3DFloatS32:
+ case NVPTXISD::TexUnified3DFloatFloat:
+ case NVPTXISD::TexUnified3DFloatFloatLevel:
+ case NVPTXISD::TexUnified3DFloatFloatGrad:
+ case NVPTXISD::TexUnified3DS32S32:
+ case NVPTXISD::TexUnified3DS32Float:
+ case NVPTXISD::TexUnified3DS32FloatLevel:
+ case NVPTXISD::TexUnified3DS32FloatGrad:
+ case NVPTXISD::TexUnified3DU32S32:
+ case NVPTXISD::TexUnified3DU32Float:
+ case NVPTXISD::TexUnified3DU32FloatLevel:
+ case NVPTXISD::TexUnified3DU32FloatGrad:
+ case NVPTXISD::TexUnifiedCubeFloatFloat:
+ case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
+ case NVPTXISD::TexUnifiedCubeS32Float:
+ case NVPTXISD::TexUnifiedCubeS32FloatLevel:
+ case NVPTXISD::TexUnifiedCubeU32Float:
+ case NVPTXISD::TexUnifiedCubeU32FloatLevel:
+ case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
+ case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
+ case NVPTXISD::TexUnifiedCubeArrayS32Float:
+ case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
+ case NVPTXISD::TexUnifiedCubeArrayU32Float:
+ case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
+ case NVPTXISD::Tld4UnifiedR2DFloatFloat:
+ case NVPTXISD::Tld4UnifiedG2DFloatFloat:
+ case NVPTXISD::Tld4UnifiedB2DFloatFloat:
+ case NVPTXISD::Tld4UnifiedA2DFloatFloat:
+ case NVPTXISD::Tld4UnifiedR2DS64Float:
+ case NVPTXISD::Tld4UnifiedG2DS64Float:
+ case NVPTXISD::Tld4UnifiedB2DS64Float:
+ case NVPTXISD::Tld4UnifiedA2DS64Float:
+ case NVPTXISD::Tld4UnifiedR2DU64Float:
+ case NVPTXISD::Tld4UnifiedG2DU64Float:
+ case NVPTXISD::Tld4UnifiedB2DU64Float:
+ case NVPTXISD::Tld4UnifiedA2DU64Float:
+ ResNode = SelectTextureIntrinsic(N);
+ break;
+ case NVPTXISD::Suld1DI8Clamp:
+ case NVPTXISD::Suld1DI16Clamp:
+ case NVPTXISD::Suld1DI32Clamp:
+ case NVPTXISD::Suld1DI64Clamp:
+ case NVPTXISD::Suld1DV2I8Clamp:
+ case NVPTXISD::Suld1DV2I16Clamp:
+ case NVPTXISD::Suld1DV2I32Clamp:
+ case NVPTXISD::Suld1DV2I64Clamp:
+ case NVPTXISD::Suld1DV4I8Clamp:
+ case NVPTXISD::Suld1DV4I16Clamp:
+ case NVPTXISD::Suld1DV4I32Clamp:
+ case NVPTXISD::Suld1DArrayI8Clamp:
+ case NVPTXISD::Suld1DArrayI16Clamp:
+ case NVPTXISD::Suld1DArrayI32Clamp:
+ case NVPTXISD::Suld1DArrayI64Clamp:
+ case NVPTXISD::Suld1DArrayV2I8Clamp:
+ case NVPTXISD::Suld1DArrayV2I16Clamp:
+ case NVPTXISD::Suld1DArrayV2I32Clamp:
+ case NVPTXISD::Suld1DArrayV2I64Clamp:
+ case NVPTXISD::Suld1DArrayV4I8Clamp:
+ case NVPTXISD::Suld1DArrayV4I16Clamp:
+ case NVPTXISD::Suld1DArrayV4I32Clamp:
+ case NVPTXISD::Suld2DI8Clamp:
+ case NVPTXISD::Suld2DI16Clamp:
+ case NVPTXISD::Suld2DI32Clamp:
+ case NVPTXISD::Suld2DI64Clamp:
+ case NVPTXISD::Suld2DV2I8Clamp:
+ case NVPTXISD::Suld2DV2I16Clamp:
+ case NVPTXISD::Suld2DV2I32Clamp:
+ case NVPTXISD::Suld2DV2I64Clamp:
+ case NVPTXISD::Suld2DV4I8Clamp:
+ case NVPTXISD::Suld2DV4I16Clamp:
+ case NVPTXISD::Suld2DV4I32Clamp:
+ case NVPTXISD::Suld2DArrayI8Clamp:
+ case NVPTXISD::Suld2DArrayI16Clamp:
+ case NVPTXISD::Suld2DArrayI32Clamp:
+ case NVPTXISD::Suld2DArrayI64Clamp:
+ case NVPTXISD::Suld2DArrayV2I8Clamp:
+ case NVPTXISD::Suld2DArrayV2I16Clamp:
+ case NVPTXISD::Suld2DArrayV2I32Clamp:
+ case NVPTXISD::Suld2DArrayV2I64Clamp:
+ case NVPTXISD::Suld2DArrayV4I8Clamp:
+ case NVPTXISD::Suld2DArrayV4I16Clamp:
+ case NVPTXISD::Suld2DArrayV4I32Clamp:
+ case NVPTXISD::Suld3DI8Clamp:
+ case NVPTXISD::Suld3DI16Clamp:
+ case NVPTXISD::Suld3DI32Clamp:
+ case NVPTXISD::Suld3DI64Clamp:
+ case NVPTXISD::Suld3DV2I8Clamp:
+ case NVPTXISD::Suld3DV2I16Clamp:
+ case NVPTXISD::Suld3DV2I32Clamp:
+ case NVPTXISD::Suld3DV2I64Clamp:
+ case NVPTXISD::Suld3DV4I8Clamp:
+ case NVPTXISD::Suld3DV4I16Clamp:
+ case NVPTXISD::Suld3DV4I32Clamp:
+ case NVPTXISD::Suld1DI8Trap:
+ case NVPTXISD::Suld1DI16Trap:
+ case NVPTXISD::Suld1DI32Trap:
+ case NVPTXISD::Suld1DI64Trap:
+ case NVPTXISD::Suld1DV2I8Trap:
+ case NVPTXISD::Suld1DV2I16Trap:
+ case NVPTXISD::Suld1DV2I32Trap:
+ case NVPTXISD::Suld1DV2I64Trap:
+ case NVPTXISD::Suld1DV4I8Trap:
+ case NVPTXISD::Suld1DV4I16Trap:
+ case NVPTXISD::Suld1DV4I32Trap:
+ case NVPTXISD::Suld1DArrayI8Trap:
+ case NVPTXISD::Suld1DArrayI16Trap:
+ case NVPTXISD::Suld1DArrayI32Trap:
+ case NVPTXISD::Suld1DArrayI64Trap:
+ case NVPTXISD::Suld1DArrayV2I8Trap:
+ case NVPTXISD::Suld1DArrayV2I16Trap:
+ case NVPTXISD::Suld1DArrayV2I32Trap:
+ case NVPTXISD::Suld1DArrayV2I64Trap:
+ case NVPTXISD::Suld1DArrayV4I8Trap:
+ case NVPTXISD::Suld1DArrayV4I16Trap:
+ case NVPTXISD::Suld1DArrayV4I32Trap:
+ case NVPTXISD::Suld2DI8Trap:
+ case NVPTXISD::Suld2DI16Trap:
+ case NVPTXISD::Suld2DI32Trap:
+ case NVPTXISD::Suld2DI64Trap:
+ case NVPTXISD::Suld2DV2I8Trap:
+ case NVPTXISD::Suld2DV2I16Trap:
+ case NVPTXISD::Suld2DV2I32Trap:
+ case NVPTXISD::Suld2DV2I64Trap:
+ case NVPTXISD::Suld2DV4I8Trap:
+ case NVPTXISD::Suld2DV4I16Trap:
+ case NVPTXISD::Suld2DV4I32Trap:
+ case NVPTXISD::Suld2DArrayI8Trap:
+ case NVPTXISD::Suld2DArrayI16Trap:
+ case NVPTXISD::Suld2DArrayI32Trap:
+ case NVPTXISD::Suld2DArrayI64Trap:
+ case NVPTXISD::Suld2DArrayV2I8Trap:
+ case NVPTXISD::Suld2DArrayV2I16Trap:
+ case NVPTXISD::Suld2DArrayV2I32Trap:
+ case NVPTXISD::Suld2DArrayV2I64Trap:
+ case NVPTXISD::Suld2DArrayV4I8Trap:
+ case NVPTXISD::Suld2DArrayV4I16Trap:
+ case NVPTXISD::Suld2DArrayV4I32Trap:
+ case NVPTXISD::Suld3DI8Trap:
+ case NVPTXISD::Suld3DI16Trap:
+ case NVPTXISD::Suld3DI32Trap:
+ case NVPTXISD::Suld3DI64Trap:
+ case NVPTXISD::Suld3DV2I8Trap:
+ case NVPTXISD::Suld3DV2I16Trap:
+ case NVPTXISD::Suld3DV2I32Trap:
+ case NVPTXISD::Suld3DV2I64Trap:
+ case NVPTXISD::Suld3DV4I8Trap:
+ case NVPTXISD::Suld3DV4I16Trap:
+ case NVPTXISD::Suld3DV4I32Trap:
+ case NVPTXISD::Suld1DI8Zero:
+ case NVPTXISD::Suld1DI16Zero:
+ case NVPTXISD::Suld1DI32Zero:
+ case NVPTXISD::Suld1DI64Zero:
+ case NVPTXISD::Suld1DV2I8Zero:
+ case NVPTXISD::Suld1DV2I16Zero:
+ case NVPTXISD::Suld1DV2I32Zero:
+ case NVPTXISD::Suld1DV2I64Zero:
+ case NVPTXISD::Suld1DV4I8Zero:
+ case NVPTXISD::Suld1DV4I16Zero:
+ case NVPTXISD::Suld1DV4I32Zero:
+ case NVPTXISD::Suld1DArrayI8Zero:
+ case NVPTXISD::Suld1DArrayI16Zero:
+ case NVPTXISD::Suld1DArrayI32Zero:
+ case NVPTXISD::Suld1DArrayI64Zero:
+ case NVPTXISD::Suld1DArrayV2I8Zero:
+ case NVPTXISD::Suld1DArrayV2I16Zero:
+ case NVPTXISD::Suld1DArrayV2I32Zero:
+ case NVPTXISD::Suld1DArrayV2I64Zero:
+ case NVPTXISD::Suld1DArrayV4I8Zero:
+ case NVPTXISD::Suld1DArrayV4I16Zero:
+ case NVPTXISD::Suld1DArrayV4I32Zero:
+ case NVPTXISD::Suld2DI8Zero:
+ case NVPTXISD::Suld2DI16Zero:
+ case NVPTXISD::Suld2DI32Zero:
+ case NVPTXISD::Suld2DI64Zero:
+ case NVPTXISD::Suld2DV2I8Zero:
+ case NVPTXISD::Suld2DV2I16Zero:
+ case NVPTXISD::Suld2DV2I32Zero:
+ case NVPTXISD::Suld2DV2I64Zero:
+ case NVPTXISD::Suld2DV4I8Zero:
+ case NVPTXISD::Suld2DV4I16Zero:
+ case NVPTXISD::Suld2DV4I32Zero:
+ case NVPTXISD::Suld2DArrayI8Zero:
+ case NVPTXISD::Suld2DArrayI16Zero:
+ case NVPTXISD::Suld2DArrayI32Zero:
+ case NVPTXISD::Suld2DArrayI64Zero:
+ case NVPTXISD::Suld2DArrayV2I8Zero:
+ case NVPTXISD::Suld2DArrayV2I16Zero:
+ case NVPTXISD::Suld2DArrayV2I32Zero:
+ case NVPTXISD::Suld2DArrayV2I64Zero:
+ case NVPTXISD::Suld2DArrayV4I8Zero:
+ case NVPTXISD::Suld2DArrayV4I16Zero:
+ case NVPTXISD::Suld2DArrayV4I32Zero:
+ case NVPTXISD::Suld3DI8Zero:
+ case NVPTXISD::Suld3DI16Zero:
+ case NVPTXISD::Suld3DI32Zero:
+ case NVPTXISD::Suld3DI64Zero:
+ case NVPTXISD::Suld3DV2I8Zero:
+ case NVPTXISD::Suld3DV2I16Zero:
+ case NVPTXISD::Suld3DV2I32Zero:
+ case NVPTXISD::Suld3DV2I64Zero:
+ case NVPTXISD::Suld3DV4I8Zero:
+ case NVPTXISD::Suld3DV4I16Zero:
+ case NVPTXISD::Suld3DV4I32Zero:
+ ResNode = SelectSurfaceIntrinsic(N);
+ break;
+ case ISD::AND:
+ case ISD::SRA:
+ case ISD::SRL:
+ // Try to select BFE
+ ResNode = SelectBFE(N);
+ break;
+ case ISD::ADDRSPACECAST:
+ ResNode = SelectAddrSpaceCast(N);
+ break;
+ default:
+ break;
+ }
+ if (ResNode)
+ return ResNode;
+ return SelectCode(N);
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectIntrinsicChain(SDNode *N) {
+ unsigned IID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IID) {
+ default:
+ return NULL;
+ case Intrinsic::nvvm_ldg_global_f:
+ case Intrinsic::nvvm_ldg_global_i:
+ case Intrinsic::nvvm_ldg_global_p:
+ case Intrinsic::nvvm_ldu_global_f:
+ case Intrinsic::nvvm_ldu_global_i:
+ case Intrinsic::nvvm_ldu_global_p:
+ return SelectLDGLDU(N);
+ }
+}
+
+static unsigned int getCodeAddrSpace(MemSDNode *N,
+ const NVPTXSubtarget &Subtarget) {
+ const Value *Src = N->getMemOperand()->getValue();
+
+ if (!Src)
+ return NVPTX::PTXLdStInstCode::GENERIC;
+
+ if (const PointerType *PT = dyn_cast<PointerType>(Src->getType())) {
+ switch (PT->getAddressSpace()) {
+ case llvm::ADDRESS_SPACE_LOCAL: return NVPTX::PTXLdStInstCode::LOCAL;
+ case llvm::ADDRESS_SPACE_GLOBAL: return NVPTX::PTXLdStInstCode::GLOBAL;
+ case llvm::ADDRESS_SPACE_SHARED: return NVPTX::PTXLdStInstCode::SHARED;
+ case llvm::ADDRESS_SPACE_GENERIC: return NVPTX::PTXLdStInstCode::GENERIC;
+ case llvm::ADDRESS_SPACE_PARAM: return NVPTX::PTXLdStInstCode::PARAM;
+ case llvm::ADDRESS_SPACE_CONST: return NVPTX::PTXLdStInstCode::CONSTANT;
+ default: break;
+ }
+ }
+ return NVPTX::PTXLdStInstCode::GENERIC;
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectIntrinsicNoChain(SDNode *N) {
+ unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ switch (IID) {
+ default:
+ return nullptr;
+ case Intrinsic::nvvm_texsurf_handle_internal:
+ return SelectTexSurfHandle(N);
+ }
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectTexSurfHandle(SDNode *N) {
+ // Op 0 is the intrinsic ID
+ SDValue Wrapper = N->getOperand(1);
+ SDValue GlobalVal = Wrapper.getOperand(0);
+ return CurDAG->getMachineNode(NVPTX::texsurf_handles, SDLoc(N), MVT::i64,
+ GlobalVal);
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectAddrSpaceCast(SDNode *N) {
+ SDValue Src = N->getOperand(0);
+ AddrSpaceCastSDNode *CastN = cast<AddrSpaceCastSDNode>(N);
+ unsigned SrcAddrSpace = CastN->getSrcAddressSpace();
+ unsigned DstAddrSpace = CastN->getDestAddressSpace();
+
+ assert(SrcAddrSpace != DstAddrSpace &&
+ "addrspacecast must be between different address spaces");
+
+ if (DstAddrSpace == ADDRESS_SPACE_GENERIC) {
+ // Specific to generic
+ unsigned Opc;
+ switch (SrcAddrSpace) {
+ default: report_fatal_error("Bad address space in addrspacecast");
+ case ADDRESS_SPACE_GLOBAL:
+ Opc = Subtarget.is64Bit() ? NVPTX::cvta_global_yes_64
+ : NVPTX::cvta_global_yes;
+ break;
+ case ADDRESS_SPACE_SHARED:
+ Opc = Subtarget.is64Bit() ? NVPTX::cvta_shared_yes_64
+ : NVPTX::cvta_shared_yes;
+ break;
+ case ADDRESS_SPACE_CONST:
+ Opc = Subtarget.is64Bit() ? NVPTX::cvta_const_yes_64
+ : NVPTX::cvta_const_yes;
+ break;
+ case ADDRESS_SPACE_LOCAL:
+ Opc = Subtarget.is64Bit() ? NVPTX::cvta_local_yes_64
+ : NVPTX::cvta_local_yes;
+ break;
+ }
+ return CurDAG->getMachineNode(Opc, SDLoc(N), N->getValueType(0), Src);
+ } else {
+ // Generic to specific
+ if (SrcAddrSpace != 0)
+ report_fatal_error("Cannot cast between two non-generic address spaces");
+ unsigned Opc;
+ switch (DstAddrSpace) {
+ default: report_fatal_error("Bad address space in addrspacecast");
+ case ADDRESS_SPACE_GLOBAL:
+ Opc = Subtarget.is64Bit() ? NVPTX::cvta_to_global_yes_64
+ : NVPTX::cvta_to_global_yes;
+ break;
+ case ADDRESS_SPACE_SHARED:
+ Opc = Subtarget.is64Bit() ? NVPTX::cvta_to_shared_yes_64
+ : NVPTX::cvta_to_shared_yes;
+ break;
+ case ADDRESS_SPACE_CONST:
+ Opc = Subtarget.is64Bit() ? NVPTX::cvta_to_const_yes_64
+ : NVPTX::cvta_to_const_yes;
+ break;
+ case ADDRESS_SPACE_LOCAL:
+ Opc = Subtarget.is64Bit() ? NVPTX::cvta_to_local_yes_64
+ : NVPTX::cvta_to_local_yes;
+ break;
+ }
+ return CurDAG->getMachineNode(Opc, SDLoc(N), N->getValueType(0), Src);
+ }
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectLoad(SDNode *N) {
+ SDLoc dl(N);
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ EVT LoadedVT = LD->getMemoryVT();
+ SDNode *NVPTXLD = nullptr;
+
+ // do not support pre/post inc/dec
+ if (LD->isIndexed())
+ return nullptr;
+
+ if (!LoadedVT.isSimple())
+ return nullptr;
+
+ // Address Space Setting
+ unsigned int codeAddrSpace = getCodeAddrSpace(LD, Subtarget);
+
+ // Volatile Setting
+ // - .volatile is only availalble for .global and .shared
+ bool isVolatile = LD->isVolatile();
+ if (codeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
+ codeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
+ codeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
+ isVolatile = false;
+
+ // Vector Setting
+ MVT SimpleVT = LoadedVT.getSimpleVT();
+ unsigned vecType = NVPTX::PTXLdStInstCode::Scalar;
+ if (SimpleVT.isVector()) {
+ unsigned num = SimpleVT.getVectorNumElements();
+ if (num == 2)
+ vecType = NVPTX::PTXLdStInstCode::V2;
+ else if (num == 4)
+ vecType = NVPTX::PTXLdStInstCode::V4;
+ else
+ return nullptr;
+ }
+
+ // Type Setting: fromType + fromTypeWidth
+ //
+ // Sign : ISD::SEXTLOAD
+ // Unsign : ISD::ZEXTLOAD, ISD::NON_EXTLOAD or ISD::EXTLOAD and the
+ // type is integer
+ // Float : ISD::NON_EXTLOAD or ISD::EXTLOAD and the type is float
+ MVT ScalarVT = SimpleVT.getScalarType();
+ // Read at least 8 bits (predicates are stored as 8-bit values)
+ unsigned fromTypeWidth = std::max(8U, ScalarVT.getSizeInBits());
+ unsigned int fromType;
+ if ((LD->getExtensionType() == ISD::SEXTLOAD))
+ fromType = NVPTX::PTXLdStInstCode::Signed;
+ else if (ScalarVT.isFloatingPoint())
+ fromType = NVPTX::PTXLdStInstCode::Float;
+ else
+ fromType = NVPTX::PTXLdStInstCode::Unsigned;
+
+ // Create the machine instruction DAG
+ SDValue Chain = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue Addr;
+ SDValue Offset, Base;
+ unsigned Opcode;
+ MVT::SimpleValueType TargetVT = LD->getSimpleValueType(0).SimpleTy;
+
+ if (SelectDirectAddr(N1, Addr)) {
+ switch (TargetVT) {
+ case MVT::i8:
+ Opcode = NVPTX::LD_i8_avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LD_i16_avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LD_i32_avar;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LD_i64_avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LD_f32_avar;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LD_f64_avar;
+ break;
+ default:
+ return nullptr;
+ }
+ SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
+ getI32Imm(vecType), getI32Imm(fromType),
+ getI32Imm(fromTypeWidth), Addr, Chain };
+ NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops);
+ } else if (Subtarget.is64Bit()
+ ? SelectADDRsi64(N1.getNode(), N1, Base, Offset)
+ : SelectADDRsi(N1.getNode(), N1, Base, Offset)) {
+ switch (TargetVT) {
+ case MVT::i8:
+ Opcode = NVPTX::LD_i8_asi;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LD_i16_asi;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LD_i32_asi;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LD_i64_asi;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LD_f32_asi;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LD_f64_asi;
+ break;
+ default:
+ return nullptr;
+ }
+ SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
+ getI32Imm(vecType), getI32Imm(fromType),
+ getI32Imm(fromTypeWidth), Base, Offset, Chain };
+ NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops);
+ } else if (Subtarget.is64Bit()
+ ? SelectADDRri64(N1.getNode(), N1, Base, Offset)
+ : SelectADDRri(N1.getNode(), N1, Base, Offset)) {
+ if (Subtarget.is64Bit()) {
+ switch (TargetVT) {
+ case MVT::i8:
+ Opcode = NVPTX::LD_i8_ari_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LD_i16_ari_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LD_i32_ari_64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LD_i64_ari_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LD_f32_ari_64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LD_f64_ari_64;
+ break;
+ default:
+ return nullptr;
+ }
+ } else {
+ switch (TargetVT) {
+ case MVT::i8:
+ Opcode = NVPTX::LD_i8_ari;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LD_i16_ari;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LD_i32_ari;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LD_i64_ari;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LD_f32_ari;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LD_f64_ari;
+ break;
+ default:
+ return nullptr;
+ }
+ }
+ SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
+ getI32Imm(vecType), getI32Imm(fromType),
+ getI32Imm(fromTypeWidth), Base, Offset, Chain };
+ NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops);
+ } else {
+ if (Subtarget.is64Bit()) {
+ switch (TargetVT) {
+ case MVT::i8:
+ Opcode = NVPTX::LD_i8_areg_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LD_i16_areg_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LD_i32_areg_64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LD_i64_areg_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LD_f32_areg_64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LD_f64_areg_64;
+ break;
+ default:
+ return nullptr;
+ }
+ } else {
+ switch (TargetVT) {
+ case MVT::i8:
+ Opcode = NVPTX::LD_i8_areg;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LD_i16_areg;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LD_i32_areg;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LD_i64_areg;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LD_f32_areg;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LD_f64_areg;
+ break;
+ default:
+ return nullptr;
+ }
+ }
+ SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
+ getI32Imm(vecType), getI32Imm(fromType),
+ getI32Imm(fromTypeWidth), N1, Chain };
+ NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops);
+ }
+
+ if (NVPTXLD) {
+ MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
+ MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(NVPTXLD)->setMemRefs(MemRefs0, MemRefs0 + 1);
+ }
+
+ return NVPTXLD;
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectLoadVector(SDNode *N) {
+
+ SDValue Chain = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ SDValue Addr, Offset, Base;
+ unsigned Opcode;
+ SDLoc DL(N);
+ SDNode *LD;
+ MemSDNode *MemSD = cast<MemSDNode>(N);
+ EVT LoadedVT = MemSD->getMemoryVT();
+
+ if (!LoadedVT.isSimple())
+ return nullptr;
+
+ // Address Space Setting
+ unsigned int CodeAddrSpace = getCodeAddrSpace(MemSD, Subtarget);
+
+ // Volatile Setting
+ // - .volatile is only availalble for .global and .shared
+ bool IsVolatile = MemSD->isVolatile();
+ if (CodeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
+ CodeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
+ CodeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
+ IsVolatile = false;
+
+ // Vector Setting
+ MVT SimpleVT = LoadedVT.getSimpleVT();
+
+ // Type Setting: fromType + fromTypeWidth
+ //
+ // Sign : ISD::SEXTLOAD
+ // Unsign : ISD::ZEXTLOAD, ISD::NON_EXTLOAD or ISD::EXTLOAD and the
+ // type is integer
+ // Float : ISD::NON_EXTLOAD or ISD::EXTLOAD and the type is float
+ MVT ScalarVT = SimpleVT.getScalarType();
+ // Read at least 8 bits (predicates are stored as 8-bit values)
+ unsigned FromTypeWidth = std::max(8U, ScalarVT.getSizeInBits());
+ unsigned int FromType;
+ // The last operand holds the original LoadSDNode::getExtensionType() value
+ unsigned ExtensionType = cast<ConstantSDNode>(
+ N->getOperand(N->getNumOperands() - 1))->getZExtValue();
+ if (ExtensionType == ISD::SEXTLOAD)
+ FromType = NVPTX::PTXLdStInstCode::Signed;
+ else if (ScalarVT.isFloatingPoint())
+ FromType = NVPTX::PTXLdStInstCode::Float;
+ else
+ FromType = NVPTX::PTXLdStInstCode::Unsigned;
+
+ unsigned VecType;
+
+ switch (N->getOpcode()) {
+ case NVPTXISD::LoadV2:
+ VecType = NVPTX::PTXLdStInstCode::V2;
+ break;
+ case NVPTXISD::LoadV4:
+ VecType = NVPTX::PTXLdStInstCode::V4;
+ break;
+ default:
+ return nullptr;
+ }
+
+ EVT EltVT = N->getValueType(0);
+
+ if (SelectDirectAddr(Op1, Addr)) {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::LoadV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v2_avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v2_avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v2_avar;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LDV_i64_v2_avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v2_avar;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LDV_f64_v2_avar;
+ break;
+ }
+ break;
+ case NVPTXISD::LoadV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v4_avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v4_avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v4_avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v4_avar;
+ break;
+ }
+ break;
+ }
+
+ SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace),
+ getI32Imm(VecType), getI32Imm(FromType),
+ getI32Imm(FromTypeWidth), Addr, Chain };
+ LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops);
+ } else if (Subtarget.is64Bit()
+ ? SelectADDRsi64(Op1.getNode(), Op1, Base, Offset)
+ : SelectADDRsi(Op1.getNode(), Op1, Base, Offset)) {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::LoadV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v2_asi;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v2_asi;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v2_asi;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LDV_i64_v2_asi;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v2_asi;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LDV_f64_v2_asi;
+ break;
+ }
+ break;
+ case NVPTXISD::LoadV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v4_asi;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v4_asi;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v4_asi;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v4_asi;
+ break;
+ }
+ break;
+ }
+
+ SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace),
+ getI32Imm(VecType), getI32Imm(FromType),
+ getI32Imm(FromTypeWidth), Base, Offset, Chain };
+ LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops);
+ } else if (Subtarget.is64Bit()
+ ? SelectADDRri64(Op1.getNode(), Op1, Base, Offset)
+ : SelectADDRri(Op1.getNode(), Op1, Base, Offset)) {
+ if (Subtarget.is64Bit()) {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::LoadV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v2_ari_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v2_ari_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v2_ari_64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LDV_i64_v2_ari_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v2_ari_64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LDV_f64_v2_ari_64;
+ break;
+ }
+ break;
+ case NVPTXISD::LoadV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v4_ari_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v4_ari_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v4_ari_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v4_ari_64;
+ break;
+ }
+ break;
+ }
+ } else {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::LoadV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v2_ari;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v2_ari;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v2_ari;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LDV_i64_v2_ari;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v2_ari;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LDV_f64_v2_ari;
+ break;
+ }
+ break;
+ case NVPTXISD::LoadV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v4_ari;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v4_ari;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v4_ari;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v4_ari;
+ break;
+ }
+ break;
+ }
+ }
+
+ SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace),
+ getI32Imm(VecType), getI32Imm(FromType),
+ getI32Imm(FromTypeWidth), Base, Offset, Chain };
+
+ LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops);
+ } else {
+ if (Subtarget.is64Bit()) {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::LoadV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v2_areg_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v2_areg_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v2_areg_64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LDV_i64_v2_areg_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v2_areg_64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LDV_f64_v2_areg_64;
+ break;
+ }
+ break;
+ case NVPTXISD::LoadV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v4_areg_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v4_areg_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v4_areg_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v4_areg_64;
+ break;
+ }
+ break;
+ }
+ } else {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::LoadV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v2_areg;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v2_areg;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v2_areg;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::LDV_i64_v2_areg;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v2_areg;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::LDV_f64_v2_areg;
+ break;
+ }
+ break;
+ case NVPTXISD::LoadV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::LDV_i8_v4_areg;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::LDV_i16_v4_areg;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::LDV_i32_v4_areg;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::LDV_f32_v4_areg;
+ break;
+ }
+ break;
+ }
+ }
+
+ SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace),
+ getI32Imm(VecType), getI32Imm(FromType),
+ getI32Imm(FromTypeWidth), Op1, Chain };
+ LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops);
+ }
+
+ MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
+ MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(LD)->setMemRefs(MemRefs0, MemRefs0 + 1);
+
+ return LD;
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectLDGLDU(SDNode *N) {
+
+ SDValue Chain = N->getOperand(0);
+ SDValue Op1;
+ MemSDNode *Mem;
+ bool IsLDG = true;
+
+ // If this is an LDG intrinsic, the address is the third operand. Its its an
+ // LDG/LDU SD node (from custom vector handling), then its the second operand
+ if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
+ Op1 = N->getOperand(2);
+ Mem = cast<MemIntrinsicSDNode>(N);
+ unsigned IID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IID) {
+ default:
+ return NULL;
+ case Intrinsic::nvvm_ldg_global_f:
+ case Intrinsic::nvvm_ldg_global_i:
+ case Intrinsic::nvvm_ldg_global_p:
+ IsLDG = true;
+ break;
+ case Intrinsic::nvvm_ldu_global_f:
+ case Intrinsic::nvvm_ldu_global_i:
+ case Intrinsic::nvvm_ldu_global_p:
+ IsLDG = false;
+ break;
+ }
+ } else {
+ Op1 = N->getOperand(1);
+ Mem = cast<MemSDNode>(N);
+ }
+
+ unsigned Opcode;
+ SDLoc DL(N);
+ SDNode *LD;
+ SDValue Base, Offset, Addr;
+
+ EVT EltVT = Mem->getMemoryVT();
+ if (EltVT.isVector()) {
+ EltVT = EltVT.getVectorElementType();
+ }
+
+ if (SelectDirectAddr(Op1, Addr)) {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case ISD::INTRINSIC_W_CHAIN:
+ if (IsLDG) {
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i8avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i16avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i32avar;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i64avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_f32avar;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_f64avar;
+ break;
+ }
+ } else {
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i8avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i16avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i32avar;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i64avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_f32avar;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_f64avar;
+ break;
+ }
+ }
+ break;
+ case NVPTXISD::LDGV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_avar;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_avar;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_avar;
+ break;
+ }
+ break;
+ case NVPTXISD::LDUV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_avar;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_avar;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_avar;
+ break;
+ }
+ break;
+ case NVPTXISD::LDGV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_avar;
+ break;
+ }
+ break;
+ case NVPTXISD::LDUV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_avar;
+ break;
+ }
+ break;
+ }
+
+ SDValue Ops[] = { Addr, Chain };
+ LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops);
+ } else if (Subtarget.is64Bit()
+ ? SelectADDRri64(Op1.getNode(), Op1, Base, Offset)
+ : SelectADDRri(Op1.getNode(), Op1, Base, Offset)) {
+ if (Subtarget.is64Bit()) {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case ISD::INTRINSIC_W_CHAIN:
+ if (IsLDG) {
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i8ari64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i16ari64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i32ari64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i64ari64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_f32ari64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_f64ari64;
+ break;
+ }
+ } else {
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i8ari64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i16ari64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i32ari64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i64ari64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_f32ari64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_f64ari64;
+ break;
+ }
+ }
+ break;
+ case NVPTXISD::LDGV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_ari64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_ari64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_ari64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_ari64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_ari64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_ari64;
+ break;
+ }
+ break;
+ case NVPTXISD::LDUV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_ari64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_ari64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_ari64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_ari64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_ari64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_ari64;
+ break;
+ }
+ break;
+ case NVPTXISD::LDGV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_ari64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_ari64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_ari64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_ari64;
+ break;
+ }
+ break;
+ case NVPTXISD::LDUV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_ari64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_ari64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_ari64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_ari64;
+ break;
+ }
+ break;
+ }
+ } else {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case ISD::INTRINSIC_W_CHAIN:
+ if (IsLDG) {
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i8ari;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i16ari;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i32ari;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i64ari;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_f32ari;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_f64ari;
+ break;
+ }
+ } else {
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i8ari;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i16ari;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i32ari;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i64ari;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_f32ari;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_f64ari;
+ break;
+ }
+ }
+ break;
+ case NVPTXISD::LDGV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_ari32;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_ari32;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_ari32;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_ari32;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_ari32;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_ari32;
+ break;
+ }
+ break;
+ case NVPTXISD::LDUV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_ari32;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_ari32;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_ari32;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_ari32;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_ari32;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_ari32;
+ break;
+ }
+ break;
+ case NVPTXISD::LDGV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_ari32;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_ari32;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_ari32;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_ari32;
+ break;
+ }
+ break;
+ case NVPTXISD::LDUV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_ari32;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_ari32;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_ari32;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_ari32;
+ break;
+ }
+ break;
+ }
+ }
+
+ SDValue Ops[] = { Base, Offset, Chain };
+
+ LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops);
+ } else {
+ if (Subtarget.is64Bit()) {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case ISD::INTRINSIC_W_CHAIN:
+ if (IsLDG) {
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i8areg64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i16areg64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i32areg64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i64areg64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_f32areg64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_f64areg64;
+ break;
+ }
+ } else {
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i8areg64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i16areg64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i32areg64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i64areg64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_f32areg64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_f64areg64;
+ break;
+ }
+ }
+ break;
+ case NVPTXISD::LDGV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_areg64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_areg64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_areg64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_areg64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_areg64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_areg64;
+ break;
+ }
+ break;
+ case NVPTXISD::LDUV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_areg64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_areg64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_areg64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_areg64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_areg64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_areg64;
+ break;
+ }
+ break;
+ case NVPTXISD::LDGV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_areg64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_areg64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_areg64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_areg64;
+ break;
+ }
+ break;
+ case NVPTXISD::LDUV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_areg64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_areg64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_areg64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_areg64;
+ break;
+ }
+ break;
+ }
+ } else {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case ISD::INTRINSIC_W_CHAIN:
+ if (IsLDG) {
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i8areg;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i16areg;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i32areg;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_i64areg;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_f32areg;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDG_GLOBAL_f64areg;
+ break;
+ }
+ } else {
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i8areg;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i16areg;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i32areg;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_i64areg;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_f32areg;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDU_GLOBAL_f64areg;
+ break;
+ }
+ }
+ break;
+ case NVPTXISD::LDGV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_areg32;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_areg32;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_areg32;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_areg32;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_areg32;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_areg32;
+ break;
+ }
+ break;
+ case NVPTXISD::LDUV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_areg32;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_areg32;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_areg32;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_areg32;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_areg32;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_areg32;
+ break;
+ }
+ break;
+ case NVPTXISD::LDGV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_areg32;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_areg32;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_areg32;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_areg32;
+ break;
+ }
+ break;
+ case NVPTXISD::LDUV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_areg32;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_areg32;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_areg32;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_areg32;
+ break;
+ }
+ break;
+ }
+ }
+
+ SDValue Ops[] = { Op1, Chain };
+ LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops);
+ }
+
+ MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
+ MemRefs0[0] = Mem->getMemOperand();
+ cast<MachineSDNode>(LD)->setMemRefs(MemRefs0, MemRefs0 + 1);
+
+ return LD;
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectStore(SDNode *N) {
+ SDLoc dl(N);
+ StoreSDNode *ST = cast<StoreSDNode>(N);
+ EVT StoreVT = ST->getMemoryVT();
+ SDNode *NVPTXST = nullptr;
+
+ // do not support pre/post inc/dec
+ if (ST->isIndexed())
+ return nullptr;
+
+ if (!StoreVT.isSimple())
+ return nullptr;
+
+ // Address Space Setting
+ unsigned int codeAddrSpace = getCodeAddrSpace(ST, Subtarget);
+
+ // Volatile Setting
+ // - .volatile is only availalble for .global and .shared
+ bool isVolatile = ST->isVolatile();
+ if (codeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
+ codeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
+ codeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
+ isVolatile = false;
+
+ // Vector Setting
+ MVT SimpleVT = StoreVT.getSimpleVT();
+ unsigned vecType = NVPTX::PTXLdStInstCode::Scalar;
+ if (SimpleVT.isVector()) {
+ unsigned num = SimpleVT.getVectorNumElements();
+ if (num == 2)
+ vecType = NVPTX::PTXLdStInstCode::V2;
+ else if (num == 4)
+ vecType = NVPTX::PTXLdStInstCode::V4;
+ else
+ return nullptr;
+ }
+
+ // Type Setting: toType + toTypeWidth
+ // - for integer type, always use 'u'
+ //
+ MVT ScalarVT = SimpleVT.getScalarType();
+ unsigned toTypeWidth = ScalarVT.getSizeInBits();
+ unsigned int toType;
+ if (ScalarVT.isFloatingPoint())
+ toType = NVPTX::PTXLdStInstCode::Float;
+ else
+ toType = NVPTX::PTXLdStInstCode::Unsigned;
+
+ // Create the machine instruction DAG
+ SDValue Chain = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ SDValue Addr;
+ SDValue Offset, Base;
+ unsigned Opcode;
+ MVT::SimpleValueType SourceVT = N1.getNode()->getSimpleValueType(0).SimpleTy;
+
+ if (SelectDirectAddr(N2, Addr)) {
+ switch (SourceVT) {
+ case MVT::i8:
+ Opcode = NVPTX::ST_i8_avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::ST_i16_avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::ST_i32_avar;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::ST_i64_avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::ST_f32_avar;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::ST_f64_avar;
+ break;
+ default:
+ return nullptr;
+ }
+ SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
+ getI32Imm(vecType), getI32Imm(toType),
+ getI32Imm(toTypeWidth), Addr, Chain };
+ NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
+ } else if (Subtarget.is64Bit()
+ ? SelectADDRsi64(N2.getNode(), N2, Base, Offset)
+ : SelectADDRsi(N2.getNode(), N2, Base, Offset)) {
+ switch (SourceVT) {
+ case MVT::i8:
+ Opcode = NVPTX::ST_i8_asi;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::ST_i16_asi;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::ST_i32_asi;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::ST_i64_asi;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::ST_f32_asi;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::ST_f64_asi;
+ break;
+ default:
+ return nullptr;
+ }
+ SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
+ getI32Imm(vecType), getI32Imm(toType),
+ getI32Imm(toTypeWidth), Base, Offset, Chain };
+ NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
+ } else if (Subtarget.is64Bit()
+ ? SelectADDRri64(N2.getNode(), N2, Base, Offset)
+ : SelectADDRri(N2.getNode(), N2, Base, Offset)) {
+ if (Subtarget.is64Bit()) {
+ switch (SourceVT) {
+ case MVT::i8:
+ Opcode = NVPTX::ST_i8_ari_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::ST_i16_ari_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::ST_i32_ari_64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::ST_i64_ari_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::ST_f32_ari_64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::ST_f64_ari_64;
+ break;
+ default:
+ return nullptr;
+ }
+ } else {
+ switch (SourceVT) {
+ case MVT::i8:
+ Opcode = NVPTX::ST_i8_ari;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::ST_i16_ari;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::ST_i32_ari;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::ST_i64_ari;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::ST_f32_ari;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::ST_f64_ari;
+ break;
+ default:
+ return nullptr;
+ }
+ }
+ SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
+ getI32Imm(vecType), getI32Imm(toType),
+ getI32Imm(toTypeWidth), Base, Offset, Chain };
+ NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
+ } else {
+ if (Subtarget.is64Bit()) {
+ switch (SourceVT) {
+ case MVT::i8:
+ Opcode = NVPTX::ST_i8_areg_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::ST_i16_areg_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::ST_i32_areg_64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::ST_i64_areg_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::ST_f32_areg_64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::ST_f64_areg_64;
+ break;
+ default:
+ return nullptr;
+ }
+ } else {
+ switch (SourceVT) {
+ case MVT::i8:
+ Opcode = NVPTX::ST_i8_areg;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::ST_i16_areg;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::ST_i32_areg;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::ST_i64_areg;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::ST_f32_areg;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::ST_f64_areg;
+ break;
+ default:
+ return nullptr;
+ }
+ }
+ SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
+ getI32Imm(vecType), getI32Imm(toType),
+ getI32Imm(toTypeWidth), N2, Chain };
+ NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
+ }
+
+ if (NVPTXST) {
+ MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
+ MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(NVPTXST)->setMemRefs(MemRefs0, MemRefs0 + 1);
+ }
+
+ return NVPTXST;
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectStoreVector(SDNode *N) {
+ SDValue Chain = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ SDValue Addr, Offset, Base;
+ unsigned Opcode;
+ SDLoc DL(N);
+ SDNode *ST;
+ EVT EltVT = Op1.getValueType();
+ MemSDNode *MemSD = cast<MemSDNode>(N);
+ EVT StoreVT = MemSD->getMemoryVT();
+
+ // Address Space Setting
+ unsigned CodeAddrSpace = getCodeAddrSpace(MemSD, Subtarget);
+
+ if (CodeAddrSpace == NVPTX::PTXLdStInstCode::CONSTANT) {
+ report_fatal_error("Cannot store to pointer that points to constant "
+ "memory space");
+ }
+
+ // Volatile Setting
+ // - .volatile is only availalble for .global and .shared
+ bool IsVolatile = MemSD->isVolatile();
+ if (CodeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
+ CodeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
+ CodeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
+ IsVolatile = false;
+
+ // Type Setting: toType + toTypeWidth
+ // - for integer type, always use 'u'
+ assert(StoreVT.isSimple() && "Store value is not simple");
+ MVT ScalarVT = StoreVT.getSimpleVT().getScalarType();
+ unsigned ToTypeWidth = ScalarVT.getSizeInBits();
+ unsigned ToType;
+ if (ScalarVT.isFloatingPoint())
+ ToType = NVPTX::PTXLdStInstCode::Float;
+ else
+ ToType = NVPTX::PTXLdStInstCode::Unsigned;
+
+ SmallVector<SDValue, 12> StOps;
+ SDValue N2;
+ unsigned VecType;
+
+ switch (N->getOpcode()) {
+ case NVPTXISD::StoreV2:
+ VecType = NVPTX::PTXLdStInstCode::V2;
+ StOps.push_back(N->getOperand(1));
+ StOps.push_back(N->getOperand(2));
+ N2 = N->getOperand(3);
+ break;
+ case NVPTXISD::StoreV4:
+ VecType = NVPTX::PTXLdStInstCode::V4;
+ StOps.push_back(N->getOperand(1));
+ StOps.push_back(N->getOperand(2));
+ StOps.push_back(N->getOperand(3));
+ StOps.push_back(N->getOperand(4));
+ N2 = N->getOperand(5);
+ break;
+ default:
+ return nullptr;
+ }
+
+ StOps.push_back(getI32Imm(IsVolatile));
+ StOps.push_back(getI32Imm(CodeAddrSpace));
+ StOps.push_back(getI32Imm(VecType));
+ StOps.push_back(getI32Imm(ToType));
+ StOps.push_back(getI32Imm(ToTypeWidth));
+
+ if (SelectDirectAddr(N2, Addr)) {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::StoreV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v2_avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v2_avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v2_avar;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::STV_i64_v2_avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v2_avar;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::STV_f64_v2_avar;
+ break;
+ }
+ break;
+ case NVPTXISD::StoreV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v4_avar;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v4_avar;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v4_avar;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v4_avar;
+ break;
+ }
+ break;
+ }
+ StOps.push_back(Addr);
+ } else if (Subtarget.is64Bit()
+ ? SelectADDRsi64(N2.getNode(), N2, Base, Offset)
+ : SelectADDRsi(N2.getNode(), N2, Base, Offset)) {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::StoreV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v2_asi;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v2_asi;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v2_asi;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::STV_i64_v2_asi;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v2_asi;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::STV_f64_v2_asi;
+ break;
+ }
+ break;
+ case NVPTXISD::StoreV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v4_asi;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v4_asi;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v4_asi;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v4_asi;
+ break;
+ }
+ break;
+ }
+ StOps.push_back(Base);
+ StOps.push_back(Offset);
+ } else if (Subtarget.is64Bit()
+ ? SelectADDRri64(N2.getNode(), N2, Base, Offset)
+ : SelectADDRri(N2.getNode(), N2, Base, Offset)) {
+ if (Subtarget.is64Bit()) {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::StoreV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v2_ari_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v2_ari_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v2_ari_64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::STV_i64_v2_ari_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v2_ari_64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::STV_f64_v2_ari_64;
+ break;
+ }
+ break;
+ case NVPTXISD::StoreV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v4_ari_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v4_ari_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v4_ari_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v4_ari_64;
+ break;
+ }
+ break;
+ }
+ } else {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::StoreV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v2_ari;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v2_ari;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v2_ari;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::STV_i64_v2_ari;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v2_ari;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::STV_f64_v2_ari;
+ break;
+ }
+ break;
+ case NVPTXISD::StoreV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v4_ari;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v4_ari;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v4_ari;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v4_ari;
+ break;
+ }
+ break;
+ }
+ }
+ StOps.push_back(Base);
+ StOps.push_back(Offset);
+ } else {
+ if (Subtarget.is64Bit()) {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::StoreV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v2_areg_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v2_areg_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v2_areg_64;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::STV_i64_v2_areg_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v2_areg_64;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::STV_f64_v2_areg_64;
+ break;
+ }
+ break;
+ case NVPTXISD::StoreV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v4_areg_64;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v4_areg_64;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v4_areg_64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v4_areg_64;
+ break;
+ }
+ break;
+ }
+ } else {
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::StoreV2:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v2_areg;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v2_areg;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v2_areg;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::STV_i64_v2_areg;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v2_areg;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::STV_f64_v2_areg;
+ break;
+ }
+ break;
+ case NVPTXISD::StoreV4:
+ switch (EltVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i8:
+ Opcode = NVPTX::STV_i8_v4_areg;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::STV_i16_v4_areg;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::STV_i32_v4_areg;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::STV_f32_v4_areg;
+ break;
+ }
+ break;
+ }
+ }
+ StOps.push_back(N2);
+ }
+
+ StOps.push_back(Chain);
+
+ ST = CurDAG->getMachineNode(Opcode, DL, MVT::Other, StOps);
+
+ MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
+ MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(ST)->setMemRefs(MemRefs0, MemRefs0 + 1);
+
+ return ST;
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectLoadParam(SDNode *Node) {
+ SDValue Chain = Node->getOperand(0);
+ SDValue Offset = Node->getOperand(2);
+ SDValue Flag = Node->getOperand(3);
+ SDLoc DL(Node);
+ MemSDNode *Mem = cast<MemSDNode>(Node);
+
+ unsigned VecSize;
+ switch (Node->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::LoadParam:
+ VecSize = 1;
+ break;
+ case NVPTXISD::LoadParamV2:
+ VecSize = 2;
+ break;
+ case NVPTXISD::LoadParamV4:
+ VecSize = 4;
+ break;
+ }
+
+ EVT EltVT = Node->getValueType(0);
+ EVT MemVT = Mem->getMemoryVT();
+
+ unsigned Opc = 0;
+
+ switch (VecSize) {
+ default:
+ return nullptr;
+ case 1:
+ switch (MemVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i1:
+ Opc = NVPTX::LoadParamMemI8;
+ break;
+ case MVT::i8:
+ Opc = NVPTX::LoadParamMemI8;
+ break;
+ case MVT::i16:
+ Opc = NVPTX::LoadParamMemI16;
+ break;
+ case MVT::i32:
+ Opc = NVPTX::LoadParamMemI32;
+ break;
+ case MVT::i64:
+ Opc = NVPTX::LoadParamMemI64;
+ break;
+ case MVT::f32:
+ Opc = NVPTX::LoadParamMemF32;
+ break;
+ case MVT::f64:
+ Opc = NVPTX::LoadParamMemF64;
+ break;
+ }
+ break;
+ case 2:
+ switch (MemVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i1:
+ Opc = NVPTX::LoadParamMemV2I8;
+ break;
+ case MVT::i8:
+ Opc = NVPTX::LoadParamMemV2I8;
+ break;
+ case MVT::i16:
+ Opc = NVPTX::LoadParamMemV2I16;
+ break;
+ case MVT::i32:
+ Opc = NVPTX::LoadParamMemV2I32;
+ break;
+ case MVT::i64:
+ Opc = NVPTX::LoadParamMemV2I64;
+ break;
+ case MVT::f32:
+ Opc = NVPTX::LoadParamMemV2F32;
+ break;
+ case MVT::f64:
+ Opc = NVPTX::LoadParamMemV2F64;
+ break;
+ }
+ break;
+ case 4:
+ switch (MemVT.getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i1:
+ Opc = NVPTX::LoadParamMemV4I8;
+ break;
+ case MVT::i8:
+ Opc = NVPTX::LoadParamMemV4I8;
+ break;
+ case MVT::i16:
+ Opc = NVPTX::LoadParamMemV4I16;
+ break;
+ case MVT::i32:
+ Opc = NVPTX::LoadParamMemV4I32;
+ break;
+ case MVT::f32:
+ Opc = NVPTX::LoadParamMemV4F32;
+ break;
+ }
+ break;
+ }
+
+ SDVTList VTs;
+ if (VecSize == 1) {
+ VTs = CurDAG->getVTList(EltVT, MVT::Other, MVT::Glue);
+ } else if (VecSize == 2) {
+ VTs = CurDAG->getVTList(EltVT, EltVT, MVT::Other, MVT::Glue);
+ } else {
+ EVT EVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other, MVT::Glue };
+ VTs = CurDAG->getVTList(EVTs);
+ }
+
+ unsigned OffsetVal = cast<ConstantSDNode>(Offset)->getZExtValue();
+
+ SmallVector<SDValue, 2> Ops;
+ Ops.push_back(CurDAG->getTargetConstant(OffsetVal, MVT::i32));
+ Ops.push_back(Chain);
+ Ops.push_back(Flag);
+
+ SDNode *Ret =
+ CurDAG->getMachineNode(Opc, DL, VTs, Ops);
+ return Ret;
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectStoreRetval(SDNode *N) {
+ SDLoc DL(N);
+ SDValue Chain = N->getOperand(0);
+ SDValue Offset = N->getOperand(1);
+ unsigned OffsetVal = cast<ConstantSDNode>(Offset)->getZExtValue();
+ MemSDNode *Mem = cast<MemSDNode>(N);
+
+ // How many elements do we have?
+ unsigned NumElts = 1;
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::StoreRetval:
+ NumElts = 1;
+ break;
+ case NVPTXISD::StoreRetvalV2:
+ NumElts = 2;
+ break;
+ case NVPTXISD::StoreRetvalV4:
+ NumElts = 4;
+ break;
+ }
+
+ // Build vector of operands
+ SmallVector<SDValue, 6> Ops;
+ for (unsigned i = 0; i < NumElts; ++i)
+ Ops.push_back(N->getOperand(i + 2));
+ Ops.push_back(CurDAG->getTargetConstant(OffsetVal, MVT::i32));
+ Ops.push_back(Chain);
+
+ // Determine target opcode
+ // If we have an i1, use an 8-bit store. The lowering code in
+ // NVPTXISelLowering will have already emitted an upcast.
+ unsigned Opcode = 0;
+ switch (NumElts) {
+ default:
+ return nullptr;
+ case 1:
+ switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i1:
+ Opcode = NVPTX::StoreRetvalI8;
+ break;
+ case MVT::i8:
+ Opcode = NVPTX::StoreRetvalI8;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::StoreRetvalI16;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::StoreRetvalI32;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::StoreRetvalI64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::StoreRetvalF32;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::StoreRetvalF64;
+ break;
+ }
+ break;
+ case 2:
+ switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i1:
+ Opcode = NVPTX::StoreRetvalV2I8;
+ break;
+ case MVT::i8:
+ Opcode = NVPTX::StoreRetvalV2I8;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::StoreRetvalV2I16;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::StoreRetvalV2I32;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::StoreRetvalV2I64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::StoreRetvalV2F32;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::StoreRetvalV2F64;
+ break;
+ }
+ break;
+ case 4:
+ switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i1:
+ Opcode = NVPTX::StoreRetvalV4I8;
+ break;
+ case MVT::i8:
+ Opcode = NVPTX::StoreRetvalV4I8;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::StoreRetvalV4I16;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::StoreRetvalV4I32;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::StoreRetvalV4F32;
+ break;
+ }
+ break;
+ }
+
+ SDNode *Ret =
+ CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops);
+ MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
+ MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(Ret)->setMemRefs(MemRefs0, MemRefs0 + 1);
+
+ return Ret;
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectStoreParam(SDNode *N) {
+ SDLoc DL(N);
+ SDValue Chain = N->getOperand(0);
+ SDValue Param = N->getOperand(1);
+ unsigned ParamVal = cast<ConstantSDNode>(Param)->getZExtValue();
+ SDValue Offset = N->getOperand(2);
+ unsigned OffsetVal = cast<ConstantSDNode>(Offset)->getZExtValue();
+ MemSDNode *Mem = cast<MemSDNode>(N);
+ SDValue Flag = N->getOperand(N->getNumOperands() - 1);
+
+ // How many elements do we have?
+ unsigned NumElts = 1;
+ switch (N->getOpcode()) {
+ default:
+ return nullptr;
+ case NVPTXISD::StoreParamU32:
+ case NVPTXISD::StoreParamS32:
+ case NVPTXISD::StoreParam:
+ NumElts = 1;
+ break;
+ case NVPTXISD::StoreParamV2:
+ NumElts = 2;
+ break;
+ case NVPTXISD::StoreParamV4:
+ NumElts = 4;
+ break;
+ }
+
+ // Build vector of operands
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElts; ++i)
+ Ops.push_back(N->getOperand(i + 3));
+ Ops.push_back(CurDAG->getTargetConstant(ParamVal, MVT::i32));
+ Ops.push_back(CurDAG->getTargetConstant(OffsetVal, MVT::i32));
+ Ops.push_back(Chain);
+ Ops.push_back(Flag);
+
+ // Determine target opcode
+ // If we have an i1, use an 8-bit store. The lowering code in
+ // NVPTXISelLowering will have already emitted an upcast.
+ unsigned Opcode = 0;
+ switch (N->getOpcode()) {
+ default:
+ switch (NumElts) {
+ default:
+ return nullptr;
+ case 1:
+ switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i1:
+ Opcode = NVPTX::StoreParamI8;
+ break;
+ case MVT::i8:
+ Opcode = NVPTX::StoreParamI8;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::StoreParamI16;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::StoreParamI32;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::StoreParamI64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::StoreParamF32;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::StoreParamF64;
+ break;
+ }
+ break;
+ case 2:
+ switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i1:
+ Opcode = NVPTX::StoreParamV2I8;
+ break;
+ case MVT::i8:
+ Opcode = NVPTX::StoreParamV2I8;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::StoreParamV2I16;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::StoreParamV2I32;
+ break;
+ case MVT::i64:
+ Opcode = NVPTX::StoreParamV2I64;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::StoreParamV2F32;
+ break;
+ case MVT::f64:
+ Opcode = NVPTX::StoreParamV2F64;
+ break;
+ }
+ break;
+ case 4:
+ switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
+ default:
+ return nullptr;
+ case MVT::i1:
+ Opcode = NVPTX::StoreParamV4I8;
+ break;
+ case MVT::i8:
+ Opcode = NVPTX::StoreParamV4I8;
+ break;
+ case MVT::i16:
+ Opcode = NVPTX::StoreParamV4I16;
+ break;
+ case MVT::i32:
+ Opcode = NVPTX::StoreParamV4I32;
+ break;
+ case MVT::f32:
+ Opcode = NVPTX::StoreParamV4F32;
+ break;
+ }
+ break;
+ }
+ break;
+ // Special case: if we have a sign-extend/zero-extend node, insert the
+ // conversion instruction first, and use that as the value operand to
+ // the selected StoreParam node.
+ case NVPTXISD::StoreParamU32: {
+ Opcode = NVPTX::StoreParamI32;
+ SDValue CvtNone = CurDAG->getTargetConstant(NVPTX::PTXCvtMode::NONE,
+ MVT::i32);
+ SDNode *Cvt = CurDAG->getMachineNode(NVPTX::CVT_u32_u16, DL,
+ MVT::i32, Ops[0], CvtNone);
+ Ops[0] = SDValue(Cvt, 0);
+ break;
+ }
+ case NVPTXISD::StoreParamS32: {
+ Opcode = NVPTX::StoreParamI32;
+ SDValue CvtNone = CurDAG->getTargetConstant(NVPTX::PTXCvtMode::NONE,
+ MVT::i32);
+ SDNode *Cvt = CurDAG->getMachineNode(NVPTX::CVT_s32_s16, DL,
+ MVT::i32, Ops[0], CvtNone);
+ Ops[0] = SDValue(Cvt, 0);
+ break;
+ }
+ }
+
+ SDVTList RetVTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
+ SDNode *Ret =
+ CurDAG->getMachineNode(Opcode, DL, RetVTs, Ops);
+ MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
+ MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(Ret)->setMemRefs(MemRefs0, MemRefs0 + 1);
+
+ return Ret;
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectTextureIntrinsic(SDNode *N) {
+ SDValue Chain = N->getOperand(0);
+ SDNode *Ret = nullptr;
+ unsigned Opc = 0;
+ SmallVector<SDValue, 8> Ops;
+
+ switch (N->getOpcode()) {
+ default: return nullptr;
+ case NVPTXISD::Tex1DFloatS32:
+ Opc = NVPTX::TEX_1D_F32_S32;
+ break;
+ case NVPTXISD::Tex1DFloatFloat:
+ Opc = NVPTX::TEX_1D_F32_F32;
+ break;
+ case NVPTXISD::Tex1DFloatFloatLevel:
+ Opc = NVPTX::TEX_1D_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex1DFloatFloatGrad:
+ Opc = NVPTX::TEX_1D_F32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex1DS32S32:
+ Opc = NVPTX::TEX_1D_S32_S32;
+ break;
+ case NVPTXISD::Tex1DS32Float:
+ Opc = NVPTX::TEX_1D_S32_F32;
+ break;
+ case NVPTXISD::Tex1DS32FloatLevel:
+ Opc = NVPTX::TEX_1D_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex1DS32FloatGrad:
+ Opc = NVPTX::TEX_1D_S32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex1DU32S32:
+ Opc = NVPTX::TEX_1D_U32_S32;
+ break;
+ case NVPTXISD::Tex1DU32Float:
+ Opc = NVPTX::TEX_1D_U32_F32;
+ break;
+ case NVPTXISD::Tex1DU32FloatLevel:
+ Opc = NVPTX::TEX_1D_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex1DU32FloatGrad:
+ Opc = NVPTX::TEX_1D_U32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex1DArrayFloatS32:
+ Opc = NVPTX::TEX_1D_ARRAY_F32_S32;
+ break;
+ case NVPTXISD::Tex1DArrayFloatFloat:
+ Opc = NVPTX::TEX_1D_ARRAY_F32_F32;
+ break;
+ case NVPTXISD::Tex1DArrayFloatFloatLevel:
+ Opc = NVPTX::TEX_1D_ARRAY_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex1DArrayFloatFloatGrad:
+ Opc = NVPTX::TEX_1D_ARRAY_F32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex1DArrayS32S32:
+ Opc = NVPTX::TEX_1D_ARRAY_S32_S32;
+ break;
+ case NVPTXISD::Tex1DArrayS32Float:
+ Opc = NVPTX::TEX_1D_ARRAY_S32_F32;
+ break;
+ case NVPTXISD::Tex1DArrayS32FloatLevel:
+ Opc = NVPTX::TEX_1D_ARRAY_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex1DArrayS32FloatGrad:
+ Opc = NVPTX::TEX_1D_ARRAY_S32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex1DArrayU32S32:
+ Opc = NVPTX::TEX_1D_ARRAY_U32_S32;
+ break;
+ case NVPTXISD::Tex1DArrayU32Float:
+ Opc = NVPTX::TEX_1D_ARRAY_U32_F32;
+ break;
+ case NVPTXISD::Tex1DArrayU32FloatLevel:
+ Opc = NVPTX::TEX_1D_ARRAY_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex1DArrayU32FloatGrad:
+ Opc = NVPTX::TEX_1D_ARRAY_U32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex2DFloatS32:
+ Opc = NVPTX::TEX_2D_F32_S32;
+ break;
+ case NVPTXISD::Tex2DFloatFloat:
+ Opc = NVPTX::TEX_2D_F32_F32;
+ break;
+ case NVPTXISD::Tex2DFloatFloatLevel:
+ Opc = NVPTX::TEX_2D_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex2DFloatFloatGrad:
+ Opc = NVPTX::TEX_2D_F32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex2DS32S32:
+ Opc = NVPTX::TEX_2D_S32_S32;
+ break;
+ case NVPTXISD::Tex2DS32Float:
+ Opc = NVPTX::TEX_2D_S32_F32;
+ break;
+ case NVPTXISD::Tex2DS32FloatLevel:
+ Opc = NVPTX::TEX_2D_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex2DS32FloatGrad:
+ Opc = NVPTX::TEX_2D_S32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex2DU32S32:
+ Opc = NVPTX::TEX_2D_U32_S32;
+ break;
+ case NVPTXISD::Tex2DU32Float:
+ Opc = NVPTX::TEX_2D_U32_F32;
+ break;
+ case NVPTXISD::Tex2DU32FloatLevel:
+ Opc = NVPTX::TEX_2D_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex2DU32FloatGrad:
+ Opc = NVPTX::TEX_2D_U32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex2DArrayFloatS32:
+ Opc = NVPTX::TEX_2D_ARRAY_F32_S32;
+ break;
+ case NVPTXISD::Tex2DArrayFloatFloat:
+ Opc = NVPTX::TEX_2D_ARRAY_F32_F32;
+ break;
+ case NVPTXISD::Tex2DArrayFloatFloatLevel:
+ Opc = NVPTX::TEX_2D_ARRAY_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex2DArrayFloatFloatGrad:
+ Opc = NVPTX::TEX_2D_ARRAY_F32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex2DArrayS32S32:
+ Opc = NVPTX::TEX_2D_ARRAY_S32_S32;
+ break;
+ case NVPTXISD::Tex2DArrayS32Float:
+ Opc = NVPTX::TEX_2D_ARRAY_S32_F32;
+ break;
+ case NVPTXISD::Tex2DArrayS32FloatLevel:
+ Opc = NVPTX::TEX_2D_ARRAY_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex2DArrayS32FloatGrad:
+ Opc = NVPTX::TEX_2D_ARRAY_S32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex2DArrayU32S32:
+ Opc = NVPTX::TEX_2D_ARRAY_U32_S32;
+ break;
+ case NVPTXISD::Tex2DArrayU32Float:
+ Opc = NVPTX::TEX_2D_ARRAY_U32_F32;
+ break;
+ case NVPTXISD::Tex2DArrayU32FloatLevel:
+ Opc = NVPTX::TEX_2D_ARRAY_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex2DArrayU32FloatGrad:
+ Opc = NVPTX::TEX_2D_ARRAY_U32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex3DFloatS32:
+ Opc = NVPTX::TEX_3D_F32_S32;
+ break;
+ case NVPTXISD::Tex3DFloatFloat:
+ Opc = NVPTX::TEX_3D_F32_F32;
+ break;
+ case NVPTXISD::Tex3DFloatFloatLevel:
+ Opc = NVPTX::TEX_3D_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex3DFloatFloatGrad:
+ Opc = NVPTX::TEX_3D_F32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex3DS32S32:
+ Opc = NVPTX::TEX_3D_S32_S32;
+ break;
+ case NVPTXISD::Tex3DS32Float:
+ Opc = NVPTX::TEX_3D_S32_F32;
+ break;
+ case NVPTXISD::Tex3DS32FloatLevel:
+ Opc = NVPTX::TEX_3D_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex3DS32FloatGrad:
+ Opc = NVPTX::TEX_3D_S32_F32_GRAD;
+ break;
+ case NVPTXISD::Tex3DU32S32:
+ Opc = NVPTX::TEX_3D_U32_S32;
+ break;
+ case NVPTXISD::Tex3DU32Float:
+ Opc = NVPTX::TEX_3D_U32_F32;
+ break;
+ case NVPTXISD::Tex3DU32FloatLevel:
+ Opc = NVPTX::TEX_3D_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tex3DU32FloatGrad:
+ Opc = NVPTX::TEX_3D_U32_F32_GRAD;
+ break;
+ case NVPTXISD::TexCubeFloatFloat:
+ Opc = NVPTX::TEX_CUBE_F32_F32;
+ break;
+ case NVPTXISD::TexCubeFloatFloatLevel:
+ Opc = NVPTX::TEX_CUBE_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexCubeS32Float:
+ Opc = NVPTX::TEX_CUBE_S32_F32;
+ break;
+ case NVPTXISD::TexCubeS32FloatLevel:
+ Opc = NVPTX::TEX_CUBE_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexCubeU32Float:
+ Opc = NVPTX::TEX_CUBE_U32_F32;
+ break;
+ case NVPTXISD::TexCubeU32FloatLevel:
+ Opc = NVPTX::TEX_CUBE_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexCubeArrayFloatFloat:
+ Opc = NVPTX::TEX_CUBE_ARRAY_F32_F32;
+ break;
+ case NVPTXISD::TexCubeArrayFloatFloatLevel:
+ Opc = NVPTX::TEX_CUBE_ARRAY_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexCubeArrayS32Float:
+ Opc = NVPTX::TEX_CUBE_ARRAY_S32_F32;
+ break;
+ case NVPTXISD::TexCubeArrayS32FloatLevel:
+ Opc = NVPTX::TEX_CUBE_ARRAY_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexCubeArrayU32Float:
+ Opc = NVPTX::TEX_CUBE_ARRAY_U32_F32;
+ break;
+ case NVPTXISD::TexCubeArrayU32FloatLevel:
+ Opc = NVPTX::TEX_CUBE_ARRAY_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tld4R2DFloatFloat:
+ Opc = NVPTX::TLD4_R_2D_F32_F32;
+ break;
+ case NVPTXISD::Tld4G2DFloatFloat:
+ Opc = NVPTX::TLD4_G_2D_F32_F32;
+ break;
+ case NVPTXISD::Tld4B2DFloatFloat:
+ Opc = NVPTX::TLD4_B_2D_F32_F32;
+ break;
+ case NVPTXISD::Tld4A2DFloatFloat:
+ Opc = NVPTX::TLD4_A_2D_F32_F32;
+ break;
+ case NVPTXISD::Tld4R2DS64Float:
+ Opc = NVPTX::TLD4_R_2D_S32_F32;
+ break;
+ case NVPTXISD::Tld4G2DS64Float:
+ Opc = NVPTX::TLD4_G_2D_S32_F32;
+ break;
+ case NVPTXISD::Tld4B2DS64Float:
+ Opc = NVPTX::TLD4_B_2D_S32_F32;
+ break;
+ case NVPTXISD::Tld4A2DS64Float:
+ Opc = NVPTX::TLD4_A_2D_S32_F32;
+ break;
+ case NVPTXISD::Tld4R2DU64Float:
+ Opc = NVPTX::TLD4_R_2D_U32_F32;
+ break;
+ case NVPTXISD::Tld4G2DU64Float:
+ Opc = NVPTX::TLD4_G_2D_U32_F32;
+ break;
+ case NVPTXISD::Tld4B2DU64Float:
+ Opc = NVPTX::TLD4_B_2D_U32_F32;
+ break;
+ case NVPTXISD::Tld4A2DU64Float:
+ Opc = NVPTX::TLD4_A_2D_U32_F32;
+ break;
+ case NVPTXISD::TexUnified1DFloatS32:
+ Opc = NVPTX::TEX_UNIFIED_1D_F32_S32;
+ break;
+ case NVPTXISD::TexUnified1DFloatFloat:
+ Opc = NVPTX::TEX_UNIFIED_1D_F32_F32;
+ break;
+ case NVPTXISD::TexUnified1DFloatFloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_1D_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified1DFloatFloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_1D_F32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified1DS32S32:
+ Opc = NVPTX::TEX_UNIFIED_1D_S32_S32;
+ break;
+ case NVPTXISD::TexUnified1DS32Float:
+ Opc = NVPTX::TEX_UNIFIED_1D_S32_F32;
+ break;
+ case NVPTXISD::TexUnified1DS32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_1D_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified1DS32FloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_1D_S32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified1DU32S32:
+ Opc = NVPTX::TEX_UNIFIED_1D_U32_S32;
+ break;
+ case NVPTXISD::TexUnified1DU32Float:
+ Opc = NVPTX::TEX_UNIFIED_1D_U32_F32;
+ break;
+ case NVPTXISD::TexUnified1DU32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_1D_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified1DU32FloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_1D_U32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified1DArrayFloatS32:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_F32_S32;
+ break;
+ case NVPTXISD::TexUnified1DArrayFloatFloat:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_F32_F32;
+ break;
+ case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_F32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified1DArrayS32S32:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_S32_S32;
+ break;
+ case NVPTXISD::TexUnified1DArrayS32Float:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_S32_F32;
+ break;
+ case NVPTXISD::TexUnified1DArrayS32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified1DArrayS32FloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_S32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified1DArrayU32S32:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_U32_S32;
+ break;
+ case NVPTXISD::TexUnified1DArrayU32Float:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_U32_F32;
+ break;
+ case NVPTXISD::TexUnified1DArrayU32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified1DArrayU32FloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_1D_ARRAY_U32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified2DFloatS32:
+ Opc = NVPTX::TEX_UNIFIED_2D_F32_S32;
+ break;
+ case NVPTXISD::TexUnified2DFloatFloat:
+ Opc = NVPTX::TEX_UNIFIED_2D_F32_F32;
+ break;
+ case NVPTXISD::TexUnified2DFloatFloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_2D_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified2DFloatFloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_2D_F32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified2DS32S32:
+ Opc = NVPTX::TEX_UNIFIED_2D_S32_S32;
+ break;
+ case NVPTXISD::TexUnified2DS32Float:
+ Opc = NVPTX::TEX_UNIFIED_2D_S32_F32;
+ break;
+ case NVPTXISD::TexUnified2DS32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_2D_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified2DS32FloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_2D_S32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified2DU32S32:
+ Opc = NVPTX::TEX_UNIFIED_2D_U32_S32;
+ break;
+ case NVPTXISD::TexUnified2DU32Float:
+ Opc = NVPTX::TEX_UNIFIED_2D_U32_F32;
+ break;
+ case NVPTXISD::TexUnified2DU32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_2D_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified2DU32FloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_2D_U32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified2DArrayFloatS32:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_F32_S32;
+ break;
+ case NVPTXISD::TexUnified2DArrayFloatFloat:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_F32_F32;
+ break;
+ case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_F32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified2DArrayS32S32:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_S32_S32;
+ break;
+ case NVPTXISD::TexUnified2DArrayS32Float:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_S32_F32;
+ break;
+ case NVPTXISD::TexUnified2DArrayS32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified2DArrayS32FloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_S32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified2DArrayU32S32:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_U32_S32;
+ break;
+ case NVPTXISD::TexUnified2DArrayU32Float:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_U32_F32;
+ break;
+ case NVPTXISD::TexUnified2DArrayU32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified2DArrayU32FloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_2D_ARRAY_U32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified3DFloatS32:
+ Opc = NVPTX::TEX_UNIFIED_3D_F32_S32;
+ break;
+ case NVPTXISD::TexUnified3DFloatFloat:
+ Opc = NVPTX::TEX_UNIFIED_3D_F32_F32;
+ break;
+ case NVPTXISD::TexUnified3DFloatFloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_3D_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified3DFloatFloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_3D_F32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified3DS32S32:
+ Opc = NVPTX::TEX_UNIFIED_3D_S32_S32;
+ break;
+ case NVPTXISD::TexUnified3DS32Float:
+ Opc = NVPTX::TEX_UNIFIED_3D_S32_F32;
+ break;
+ case NVPTXISD::TexUnified3DS32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_3D_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified3DS32FloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_3D_S32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnified3DU32S32:
+ Opc = NVPTX::TEX_UNIFIED_3D_U32_S32;
+ break;
+ case NVPTXISD::TexUnified3DU32Float:
+ Opc = NVPTX::TEX_UNIFIED_3D_U32_F32;
+ break;
+ case NVPTXISD::TexUnified3DU32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_3D_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnified3DU32FloatGrad:
+ Opc = NVPTX::TEX_UNIFIED_3D_U32_F32_GRAD;
+ break;
+ case NVPTXISD::TexUnifiedCubeFloatFloat:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_F32_F32;
+ break;
+ case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnifiedCubeS32Float:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_S32_F32;
+ break;
+ case NVPTXISD::TexUnifiedCubeS32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnifiedCubeU32Float:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_U32_F32;
+ break;
+ case NVPTXISD::TexUnifiedCubeU32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_ARRAY_F32_F32;
+ break;
+ case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_ARRAY_F32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnifiedCubeArrayS32Float:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_ARRAY_S32_F32;
+ break;
+ case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_ARRAY_S32_F32_LEVEL;
+ break;
+ case NVPTXISD::TexUnifiedCubeArrayU32Float:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_ARRAY_U32_F32;
+ break;
+ case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
+ Opc = NVPTX::TEX_UNIFIED_CUBE_ARRAY_U32_F32_LEVEL;
+ break;
+ case NVPTXISD::Tld4UnifiedR2DFloatFloat:
+ Opc = NVPTX::TLD4_UNIFIED_R_2D_F32_F32;
+ break;
+ case NVPTXISD::Tld4UnifiedG2DFloatFloat:
+ Opc = NVPTX::TLD4_UNIFIED_G_2D_F32_F32;
+ break;
+ case NVPTXISD::Tld4UnifiedB2DFloatFloat:
+ Opc = NVPTX::TLD4_UNIFIED_B_2D_F32_F32;
+ break;
+ case NVPTXISD::Tld4UnifiedA2DFloatFloat:
+ Opc = NVPTX::TLD4_UNIFIED_A_2D_F32_F32;
+ break;
+ case NVPTXISD::Tld4UnifiedR2DS64Float:
+ Opc = NVPTX::TLD4_UNIFIED_R_2D_S32_F32;
+ break;
+ case NVPTXISD::Tld4UnifiedG2DS64Float:
+ Opc = NVPTX::TLD4_UNIFIED_G_2D_S32_F32;
+ break;
+ case NVPTXISD::Tld4UnifiedB2DS64Float:
+ Opc = NVPTX::TLD4_UNIFIED_B_2D_S32_F32;
+ break;
+ case NVPTXISD::Tld4UnifiedA2DS64Float:
+ Opc = NVPTX::TLD4_UNIFIED_A_2D_S32_F32;
+ break;
+ case NVPTXISD::Tld4UnifiedR2DU64Float:
+ Opc = NVPTX::TLD4_UNIFIED_R_2D_U32_F32;
+ break;
+ case NVPTXISD::Tld4UnifiedG2DU64Float:
+ Opc = NVPTX::TLD4_UNIFIED_G_2D_U32_F32;
+ break;
+ case NVPTXISD::Tld4UnifiedB2DU64Float:
+ Opc = NVPTX::TLD4_UNIFIED_B_2D_U32_F32;
+ break;
+ case NVPTXISD::Tld4UnifiedA2DU64Float:
+ Opc = NVPTX::TLD4_UNIFIED_A_2D_U32_F32;
+ break;
+ }
+
+ // Copy over operands
+ for (unsigned i = 1; i < N->getNumOperands(); ++i) {
+ Ops.push_back(N->getOperand(i));
+ }
+
+ Ops.push_back(Chain);
+ Ret = CurDAG->getMachineNode(Opc, SDLoc(N), N->getVTList(), Ops);
+ return Ret;
+}
+
+SDNode *NVPTXDAGToDAGISel::SelectSurfaceIntrinsic(SDNode *N) {
+ SDValue Chain = N->getOperand(0);
+ SDValue TexHandle = N->getOperand(1);
+ SDNode *Ret = nullptr;
+ unsigned Opc = 0;
+ SmallVector<SDValue, 8> Ops;
+ switch (N->getOpcode()) {
+ default: return nullptr;
+ case NVPTXISD::Suld1DI8Clamp:
+ Opc = NVPTX::SULD_1D_I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DI16Clamp:
+ Opc = NVPTX::SULD_1D_I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DI32Clamp:
+ Opc = NVPTX::SULD_1D_I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DI64Clamp:
+ Opc = NVPTX::SULD_1D_I64_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I8Clamp:
+ Opc = NVPTX::SULD_1D_V2I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I16Clamp:
+ Opc = NVPTX::SULD_1D_V2I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I32Clamp:
+ Opc = NVPTX::SULD_1D_V2I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I64Clamp:
+ Opc = NVPTX::SULD_1D_V2I64_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV4I8Clamp:
+ Opc = NVPTX::SULD_1D_V4I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV4I16Clamp:
+ Opc = NVPTX::SULD_1D_V4I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV4I32Clamp:
+ Opc = NVPTX::SULD_1D_V4I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI8Clamp:
+ Opc = NVPTX::SULD_1D_ARRAY_I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI16Clamp:
+ Opc = NVPTX::SULD_1D_ARRAY_I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI32Clamp:
+ Opc = NVPTX::SULD_1D_ARRAY_I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI64Clamp:
+ Opc = NVPTX::SULD_1D_ARRAY_I64_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I8Clamp:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I16Clamp:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I32Clamp:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I64Clamp:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I64_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV4I8Clamp:
+ Opc = NVPTX::SULD_1D_ARRAY_V4I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV4I16Clamp:
+ Opc = NVPTX::SULD_1D_ARRAY_V4I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV4I32Clamp:
+ Opc = NVPTX::SULD_1D_ARRAY_V4I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI8Clamp:
+ Opc = NVPTX::SULD_2D_I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI16Clamp:
+ Opc = NVPTX::SULD_2D_I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI32Clamp:
+ Opc = NVPTX::SULD_2D_I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI64Clamp:
+ Opc = NVPTX::SULD_2D_I64_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I8Clamp:
+ Opc = NVPTX::SULD_2D_V2I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I16Clamp:
+ Opc = NVPTX::SULD_2D_V2I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I32Clamp:
+ Opc = NVPTX::SULD_2D_V2I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I64Clamp:
+ Opc = NVPTX::SULD_2D_V2I64_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV4I8Clamp:
+ Opc = NVPTX::SULD_2D_V4I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV4I16Clamp:
+ Opc = NVPTX::SULD_2D_V4I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV4I32Clamp:
+ Opc = NVPTX::SULD_2D_V4I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI8Clamp:
+ Opc = NVPTX::SULD_2D_ARRAY_I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI16Clamp:
+ Opc = NVPTX::SULD_2D_ARRAY_I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI32Clamp:
+ Opc = NVPTX::SULD_2D_ARRAY_I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI64Clamp:
+ Opc = NVPTX::SULD_2D_ARRAY_I64_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I8Clamp:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I16Clamp:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I32Clamp:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I64Clamp:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I64_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV4I8Clamp:
+ Opc = NVPTX::SULD_2D_ARRAY_V4I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV4I16Clamp:
+ Opc = NVPTX::SULD_2D_ARRAY_V4I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV4I32Clamp:
+ Opc = NVPTX::SULD_2D_ARRAY_V4I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI8Clamp:
+ Opc = NVPTX::SULD_3D_I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI16Clamp:
+ Opc = NVPTX::SULD_3D_I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI32Clamp:
+ Opc = NVPTX::SULD_3D_I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI64Clamp:
+ Opc = NVPTX::SULD_3D_I64_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I8Clamp:
+ Opc = NVPTX::SULD_3D_V2I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I16Clamp:
+ Opc = NVPTX::SULD_3D_V2I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I32Clamp:
+ Opc = NVPTX::SULD_3D_V2I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I64Clamp:
+ Opc = NVPTX::SULD_3D_V2I64_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV4I8Clamp:
+ Opc = NVPTX::SULD_3D_V4I8_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV4I16Clamp:
+ Opc = NVPTX::SULD_3D_V4I16_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV4I32Clamp:
+ Opc = NVPTX::SULD_3D_V4I32_CLAMP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DI8Trap:
+ Opc = NVPTX::SULD_1D_I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DI16Trap:
+ Opc = NVPTX::SULD_1D_I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DI32Trap:
+ Opc = NVPTX::SULD_1D_I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DI64Trap:
+ Opc = NVPTX::SULD_1D_I64_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I8Trap:
+ Opc = NVPTX::SULD_1D_V2I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I16Trap:
+ Opc = NVPTX::SULD_1D_V2I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I32Trap:
+ Opc = NVPTX::SULD_1D_V2I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I64Trap:
+ Opc = NVPTX::SULD_1D_V2I64_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV4I8Trap:
+ Opc = NVPTX::SULD_1D_V4I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV4I16Trap:
+ Opc = NVPTX::SULD_1D_V4I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV4I32Trap:
+ Opc = NVPTX::SULD_1D_V4I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI8Trap:
+ Opc = NVPTX::SULD_1D_ARRAY_I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI16Trap:
+ Opc = NVPTX::SULD_1D_ARRAY_I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI32Trap:
+ Opc = NVPTX::SULD_1D_ARRAY_I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI64Trap:
+ Opc = NVPTX::SULD_1D_ARRAY_I64_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I8Trap:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I16Trap:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I32Trap:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I64Trap:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I64_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV4I8Trap:
+ Opc = NVPTX::SULD_1D_ARRAY_V4I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV4I16Trap:
+ Opc = NVPTX::SULD_1D_ARRAY_V4I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV4I32Trap:
+ Opc = NVPTX::SULD_1D_ARRAY_V4I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI8Trap:
+ Opc = NVPTX::SULD_2D_I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI16Trap:
+ Opc = NVPTX::SULD_2D_I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI32Trap:
+ Opc = NVPTX::SULD_2D_I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI64Trap:
+ Opc = NVPTX::SULD_2D_I64_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I8Trap:
+ Opc = NVPTX::SULD_2D_V2I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I16Trap:
+ Opc = NVPTX::SULD_2D_V2I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I32Trap:
+ Opc = NVPTX::SULD_2D_V2I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I64Trap:
+ Opc = NVPTX::SULD_2D_V2I64_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV4I8Trap:
+ Opc = NVPTX::SULD_2D_V4I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV4I16Trap:
+ Opc = NVPTX::SULD_2D_V4I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV4I32Trap:
+ Opc = NVPTX::SULD_2D_V4I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI8Trap:
+ Opc = NVPTX::SULD_2D_ARRAY_I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI16Trap:
+ Opc = NVPTX::SULD_2D_ARRAY_I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI32Trap:
+ Opc = NVPTX::SULD_2D_ARRAY_I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI64Trap:
+ Opc = NVPTX::SULD_2D_ARRAY_I64_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I8Trap:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I16Trap:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I32Trap:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I64Trap:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I64_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV4I8Trap:
+ Opc = NVPTX::SULD_2D_ARRAY_V4I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV4I16Trap:
+ Opc = NVPTX::SULD_2D_ARRAY_V4I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV4I32Trap:
+ Opc = NVPTX::SULD_2D_ARRAY_V4I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI8Trap:
+ Opc = NVPTX::SULD_3D_I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI16Trap:
+ Opc = NVPTX::SULD_3D_I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI32Trap:
+ Opc = NVPTX::SULD_3D_I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI64Trap:
+ Opc = NVPTX::SULD_3D_I64_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I8Trap:
+ Opc = NVPTX::SULD_3D_V2I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I16Trap:
+ Opc = NVPTX::SULD_3D_V2I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I32Trap:
+ Opc = NVPTX::SULD_3D_V2I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I64Trap:
+ Opc = NVPTX::SULD_3D_V2I64_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV4I8Trap:
+ Opc = NVPTX::SULD_3D_V4I8_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV4I16Trap:
+ Opc = NVPTX::SULD_3D_V4I16_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV4I32Trap:
+ Opc = NVPTX::SULD_3D_V4I32_TRAP;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DI8Zero:
+ Opc = NVPTX::SULD_1D_I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DI16Zero:
+ Opc = NVPTX::SULD_1D_I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DI32Zero:
+ Opc = NVPTX::SULD_1D_I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DI64Zero:
+ Opc = NVPTX::SULD_1D_I64_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I8Zero:
+ Opc = NVPTX::SULD_1D_V2I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I16Zero:
+ Opc = NVPTX::SULD_1D_V2I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I32Zero:
+ Opc = NVPTX::SULD_1D_V2I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV2I64Zero:
+ Opc = NVPTX::SULD_1D_V2I64_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV4I8Zero:
+ Opc = NVPTX::SULD_1D_V4I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV4I16Zero:
+ Opc = NVPTX::SULD_1D_V4I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DV4I32Zero:
+ Opc = NVPTX::SULD_1D_V4I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI8Zero:
+ Opc = NVPTX::SULD_1D_ARRAY_I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI16Zero:
+ Opc = NVPTX::SULD_1D_ARRAY_I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI32Zero:
+ Opc = NVPTX::SULD_1D_ARRAY_I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayI64Zero:
+ Opc = NVPTX::SULD_1D_ARRAY_I64_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I8Zero:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I16Zero:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I32Zero:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV2I64Zero:
+ Opc = NVPTX::SULD_1D_ARRAY_V2I64_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV4I8Zero:
+ Opc = NVPTX::SULD_1D_ARRAY_V4I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV4I16Zero:
+ Opc = NVPTX::SULD_1D_ARRAY_V4I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld1DArrayV4I32Zero:
+ Opc = NVPTX::SULD_1D_ARRAY_V4I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI8Zero:
+ Opc = NVPTX::SULD_2D_I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI16Zero:
+ Opc = NVPTX::SULD_2D_I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI32Zero:
+ Opc = NVPTX::SULD_2D_I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DI64Zero:
+ Opc = NVPTX::SULD_2D_I64_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I8Zero:
+ Opc = NVPTX::SULD_2D_V2I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I16Zero:
+ Opc = NVPTX::SULD_2D_V2I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I32Zero:
+ Opc = NVPTX::SULD_2D_V2I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV2I64Zero:
+ Opc = NVPTX::SULD_2D_V2I64_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV4I8Zero:
+ Opc = NVPTX::SULD_2D_V4I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV4I16Zero:
+ Opc = NVPTX::SULD_2D_V4I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DV4I32Zero:
+ Opc = NVPTX::SULD_2D_V4I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI8Zero:
+ Opc = NVPTX::SULD_2D_ARRAY_I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI16Zero:
+ Opc = NVPTX::SULD_2D_ARRAY_I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI32Zero:
+ Opc = NVPTX::SULD_2D_ARRAY_I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayI64Zero:
+ Opc = NVPTX::SULD_2D_ARRAY_I64_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I8Zero:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I16Zero:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I32Zero:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV2I64Zero:
+ Opc = NVPTX::SULD_2D_ARRAY_V2I64_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV4I8Zero:
+ Opc = NVPTX::SULD_2D_ARRAY_V4I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV4I16Zero:
+ Opc = NVPTX::SULD_2D_ARRAY_V4I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld2DArrayV4I32Zero:
+ Opc = NVPTX::SULD_2D_ARRAY_V4I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI8Zero:
+ Opc = NVPTX::SULD_3D_I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI16Zero:
+ Opc = NVPTX::SULD_3D_I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI32Zero:
+ Opc = NVPTX::SULD_3D_I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DI64Zero:
+ Opc = NVPTX::SULD_3D_I64_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I8Zero:
+ Opc = NVPTX::SULD_3D_V2I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I16Zero:
+ Opc = NVPTX::SULD_3D_V2I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I32Zero:
+ Opc = NVPTX::SULD_3D_V2I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV2I64Zero:
+ Opc = NVPTX::SULD_3D_V2I64_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV4I8Zero:
+ Opc = NVPTX::SULD_3D_V4I8_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV4I16Zero:
+ Opc = NVPTX::SULD_3D_V4I16_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ case NVPTXISD::Suld3DV4I32Zero:
+ Opc = NVPTX::SULD_3D_V4I32_ZERO;
+ Ops.push_back(TexHandle);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(N->getOperand(3));
+ Ops.push_back(N->getOperand(4));
+ Ops.push_back(Chain);
+ break;
+ }
+ Ret = CurDAG->getMachineNode(Opc, SDLoc(N), N->getVTList(), Ops);
+ return Ret;
+}
+
+
+/// SelectBFE - Look for instruction sequences that can be made more efficient
+/// by using the 'bfe' (bit-field extract) PTX instruction
+SDNode *NVPTXDAGToDAGISel::SelectBFE(SDNode *N) {
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ SDValue Len;
+ SDValue Start;
+ SDValue Val;
+ bool IsSigned = false;
+
+ if (N->getOpcode() == ISD::AND) {
+ // Canonicalize the operands
+ // We want 'and %val, %mask'
+ if (isa<ConstantSDNode>(LHS) && !isa<ConstantSDNode>(RHS)) {
+ std::swap(LHS, RHS);
+ }
+
+ ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS);
+ if (!Mask) {
+ // We need a constant mask on the RHS of the AND
+ return NULL;
+ }
+
+ // Extract the mask bits
+ uint64_t MaskVal = Mask->getZExtValue();
+ if (!isMask_64(MaskVal)) {
+ // We *could* handle shifted masks here, but doing so would require an
+ // 'and' operation to fix up the low-order bits so we would trade
+ // shr+and for bfe+and, which has the same throughput
+ return NULL;
+ }
+
+ // How many bits are in our mask?
+ uint64_t NumBits = CountTrailingOnes_64(MaskVal);
+ Len = CurDAG->getTargetConstant(NumBits, MVT::i32);
+
+ if (LHS.getOpcode() == ISD::SRL || LHS.getOpcode() == ISD::SRA) {
+ // We have a 'srl/and' pair, extract the effective start bit and length
+ Val = LHS.getNode()->getOperand(0);
+ Start = LHS.getNode()->getOperand(1);
+ ConstantSDNode *StartConst = dyn_cast<ConstantSDNode>(Start);
+ if (StartConst) {
+ uint64_t StartVal = StartConst->getZExtValue();
+ // How many "good" bits do we have left? "good" is defined here as bits
+ // that exist in the original value, not shifted in.
+ uint64_t GoodBits = Start.getValueType().getSizeInBits() - StartVal;
+ if (NumBits > GoodBits) {
+ // Do not handle the case where bits have been shifted in. In theory
+ // we could handle this, but the cost is likely higher than just
+ // emitting the srl/and pair.
+ return NULL;
+ }
+ Start = CurDAG->getTargetConstant(StartVal, MVT::i32);
+ } else {
+ // Do not handle the case where the shift amount (can be zero if no srl
+ // was found) is not constant. We could handle this case, but it would
+ // require run-time logic that would be more expensive than just
+ // emitting the srl/and pair.
+ return NULL;
+ }
+ } else {
+ // Do not handle the case where the LHS of the and is not a shift. While
+ // it would be trivial to handle this case, it would just transform
+ // 'and' -> 'bfe', but 'and' has higher-throughput.
+ return NULL;
+ }
+ } else if (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) {
+ if (LHS->getOpcode() == ISD::AND) {
+ ConstantSDNode *ShiftCnst = dyn_cast<ConstantSDNode>(RHS);
+ if (!ShiftCnst) {
+ // Shift amount must be constant
+ return NULL;
+ }
+
+ uint64_t ShiftAmt = ShiftCnst->getZExtValue();
+
+ SDValue AndLHS = LHS->getOperand(0);
+ SDValue AndRHS = LHS->getOperand(1);
+
+ // Canonicalize the AND to have the mask on the RHS
+ if (isa<ConstantSDNode>(AndLHS)) {
+ std::swap(AndLHS, AndRHS);
+ }
+
+ ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(AndRHS);
+ if (!MaskCnst) {
+ // Mask must be constant
+ return NULL;
+ }
+
+ uint64_t MaskVal = MaskCnst->getZExtValue();
+ uint64_t NumZeros;
+ uint64_t NumBits;
+ if (isMask_64(MaskVal)) {
+ NumZeros = 0;
+ // The number of bits in the result bitfield will be the number of
+ // trailing ones (the AND) minus the number of bits we shift off
+ NumBits = CountTrailingOnes_64(MaskVal) - ShiftAmt;
+ } else if (isShiftedMask_64(MaskVal)) {
+ NumZeros = countTrailingZeros(MaskVal);
+ unsigned NumOnes = CountTrailingOnes_64(MaskVal >> NumZeros);
+ // The number of bits in the result bitfield will be the number of
+ // trailing zeros plus the number of set bits in the mask minus the
+ // number of bits we shift off
+ NumBits = NumZeros + NumOnes - ShiftAmt;
+ } else {
+ // This is not a mask we can handle
+ return NULL;
+ }
+
+ if (ShiftAmt < NumZeros) {
+ // Handling this case would require extra logic that would make this
+ // transformation non-profitable
+ return NULL;
+ }
+
+ Val = AndLHS;
+ Start = CurDAG->getTargetConstant(ShiftAmt, MVT::i32);
+ Len = CurDAG->getTargetConstant(NumBits, MVT::i32);
+ } else if (LHS->getOpcode() == ISD::SHL) {
+ // Here, we have a pattern like:
+ //
+ // (sra (shl val, NN), MM)
+ // or
+ // (srl (shl val, NN), MM)
+ //
+ // If MM >= NN, we can efficiently optimize this with bfe
+ Val = LHS->getOperand(0);
+
+ SDValue ShlRHS = LHS->getOperand(1);
+ ConstantSDNode *ShlCnst = dyn_cast<ConstantSDNode>(ShlRHS);
+ if (!ShlCnst) {
+ // Shift amount must be constant
+ return NULL;
+ }
+ uint64_t InnerShiftAmt = ShlCnst->getZExtValue();
+
+ SDValue ShrRHS = RHS;
+ ConstantSDNode *ShrCnst = dyn_cast<ConstantSDNode>(ShrRHS);
+ if (!ShrCnst) {
+ // Shift amount must be constant
+ return NULL;
+ }
+ uint64_t OuterShiftAmt = ShrCnst->getZExtValue();
+
+ // To avoid extra codegen and be profitable, we need Outer >= Inner
+ if (OuterShiftAmt < InnerShiftAmt) {
+ return NULL;
+ }
+
+ // If the outer shift is more than the type size, we have no bitfield to
+ // extract (since we also check that the inner shift is <= the outer shift
+ // then this also implies that the inner shift is < the type size)
+ if (OuterShiftAmt >= Val.getValueType().getSizeInBits()) {
+ return NULL;
+ }
+
+ Start =
+ CurDAG->getTargetConstant(OuterShiftAmt - InnerShiftAmt, MVT::i32);
+ Len =
+ CurDAG->getTargetConstant(Val.getValueType().getSizeInBits() -
+ OuterShiftAmt, MVT::i32);
+
+ if (N->getOpcode() == ISD::SRA) {
+ // If we have a arithmetic right shift, we need to use the signed bfe
+ // variant
+ IsSigned = true;
+ }
+ } else {
+ // No can do...
+ return NULL;
+ }
+ } else {
+ // No can do...
+ return NULL;
+ }
+
+
+ unsigned Opc;
+ // For the BFE operations we form here from "and" and "srl", always use the
+ // unsigned variants.
+ if (Val.getValueType() == MVT::i32) {
+ if (IsSigned) {
+ Opc = NVPTX::BFE_S32rii;
+ } else {
+ Opc = NVPTX::BFE_U32rii;
+ }
+ } else if (Val.getValueType() == MVT::i64) {
+ if (IsSigned) {
+ Opc = NVPTX::BFE_S64rii;
+ } else {
+ Opc = NVPTX::BFE_U64rii;
+ }
+ } else {
+ // We cannot handle this type
+ return NULL;
+ }
+
+ SDValue Ops[] = {
+ Val, Start, Len
+ };
+
+ SDNode *Ret =
+ CurDAG->getMachineNode(Opc, SDLoc(N), N->getVTList(), Ops);
+
+ return Ret;
+}
+
+// SelectDirectAddr - Match a direct address for DAG.
+// A direct address could be a globaladdress or externalsymbol.
+bool NVPTXDAGToDAGISel::SelectDirectAddr(SDValue N, SDValue &Address) {
+ // Return true if TGA or ES.
+ if (N.getOpcode() == ISD::TargetGlobalAddress ||
+ N.getOpcode() == ISD::TargetExternalSymbol) {
+ Address = N;
+ return true;
+ }
+ if (N.getOpcode() == NVPTXISD::Wrapper) {
+ Address = N.getOperand(0);
+ return true;
+ }
+ if (N.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
+ unsigned IID = cast<ConstantSDNode>(N.getOperand(0))->getZExtValue();
+ if (IID == Intrinsic::nvvm_ptr_gen_to_param)
+ if (N.getOperand(1).getOpcode() == NVPTXISD::MoveParam)
+ return (SelectDirectAddr(N.getOperand(1).getOperand(0), Address));
+ }
+ return false;
+}
+
+// symbol+offset
+bool NVPTXDAGToDAGISel::SelectADDRsi_imp(
+ SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset, MVT mvt) {
+ if (Addr.getOpcode() == ISD::ADD) {
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) {
+ SDValue base = Addr.getOperand(0);
+ if (SelectDirectAddr(base, Base)) {
+ Offset = CurDAG->getTargetConstant(CN->getZExtValue(), mvt);
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+// symbol+offset
+bool NVPTXDAGToDAGISel::SelectADDRsi(SDNode *OpNode, SDValue Addr,
+ SDValue &Base, SDValue &Offset) {
+ return SelectADDRsi_imp(OpNode, Addr, Base, Offset, MVT::i32);
+}
+
+// symbol+offset
+bool NVPTXDAGToDAGISel::SelectADDRsi64(SDNode *OpNode, SDValue Addr,
+ SDValue &Base, SDValue &Offset) {
+ return SelectADDRsi_imp(OpNode, Addr, Base, Offset, MVT::i64);
+}
+
+// register+offset
+bool NVPTXDAGToDAGISel::SelectADDRri_imp(
+ SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset, MVT mvt) {
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), mvt);
+ Offset = CurDAG->getTargetConstant(0, mvt);
+ return true;
+ }
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress)
+ return false; // direct calls.
+
+ if (Addr.getOpcode() == ISD::ADD) {
+ if (SelectDirectAddr(Addr.getOperand(0), Addr)) {
+ return false;
+ }
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) {
+ if (FrameIndexSDNode *FIN =
+ dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
+ // Constant offset from frame ref.
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), mvt);
+ else
+ Base = Addr.getOperand(0);
+ Offset = CurDAG->getTargetConstant(CN->getZExtValue(), mvt);
+ return true;
+ }
+ }
+ return false;
+}
+
+// register+offset
+bool NVPTXDAGToDAGISel::SelectADDRri(SDNode *OpNode, SDValue Addr,
+ SDValue &Base, SDValue &Offset) {
+ return SelectADDRri_imp(OpNode, Addr, Base, Offset, MVT::i32);
+}
+
+// register+offset
+bool NVPTXDAGToDAGISel::SelectADDRri64(SDNode *OpNode, SDValue Addr,
+ SDValue &Base, SDValue &Offset) {
+ return SelectADDRri_imp(OpNode, Addr, Base, Offset, MVT::i64);
+}
+
+bool NVPTXDAGToDAGISel::ChkMemSDNodeAddressSpace(SDNode *N,
+ unsigned int spN) const {
+ const Value *Src = nullptr;
+ // Even though MemIntrinsicSDNode is a subclas of MemSDNode,
+ // the classof() for MemSDNode does not include MemIntrinsicSDNode
+ // (See SelectionDAGNodes.h). So we need to check for both.
+ if (MemSDNode *mN = dyn_cast<MemSDNode>(N)) {
+ if (spN == 0 && mN->getMemOperand()->getPseudoValue())
+ return true;
+ Src = mN->getMemOperand()->getValue();
+ } else if (MemSDNode *mN = dyn_cast<MemIntrinsicSDNode>(N)) {
+ if (spN == 0 && mN->getMemOperand()->getPseudoValue())
+ return true;
+ Src = mN->getMemOperand()->getValue();
+ }
+ if (!Src)
+ return false;
+ if (const PointerType *PT = dyn_cast<PointerType>(Src->getType()))
+ return (PT->getAddressSpace() == spN);
+ return false;
+}
+
+/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+/// inline asm expressions.
+bool NVPTXDAGToDAGISel::SelectInlineAsmMemoryOperand(
+ const SDValue &Op, char ConstraintCode, std::vector<SDValue> &OutOps) {
+ SDValue Op0, Op1;
+ switch (ConstraintCode) {
+ default:
+ return true;
+ case 'm': // memory
+ if (SelectDirectAddr(Op, Op0)) {
+ OutOps.push_back(Op0);
+ OutOps.push_back(CurDAG->getTargetConstant(0, MVT::i32));
+ return false;
+ }
+ if (SelectADDRri(Op.getNode(), Op, Op0, Op1)) {
+ OutOps.push_back(Op0);
+ OutOps.push_back(Op1);
+ return false;
+ }
+ break;
+ }
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h b/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h
new file mode 100644
index 0000000..c62fc25
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h
@@ -0,0 +1,94 @@
+//===-- NVPTXISelDAGToDAG.h - A dag to dag inst selector for NVPTX --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the NVPTX target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTX.h"
+#include "NVPTXISelLowering.h"
+#include "NVPTXRegisterInfo.h"
+#include "NVPTXTargetMachine.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/Compiler.h"
+using namespace llvm;
+
+namespace {
+
+class LLVM_LIBRARY_VISIBILITY NVPTXDAGToDAGISel : public SelectionDAGISel {
+
+ // If true, generate mul.wide from sext and mul
+ bool doMulWide;
+
+ int getDivF32Level() const;
+ bool usePrecSqrtF32() const;
+ bool useF32FTZ() const;
+ bool allowFMA() const;
+
+public:
+ explicit NVPTXDAGToDAGISel(NVPTXTargetMachine &tm,
+ CodeGenOpt::Level OptLevel);
+
+ // Pass Name
+ const char *getPassName() const override {
+ return "NVPTX DAG->DAG Pattern Instruction Selection";
+ }
+
+ const NVPTXSubtarget &Subtarget;
+
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps) override;
+private:
+// Include the pieces autogenerated from the target description.
+#include "NVPTXGenDAGISel.inc"
+
+ SDNode *Select(SDNode *N) override;
+ SDNode *SelectIntrinsicNoChain(SDNode *N);
+ SDNode *SelectIntrinsicChain(SDNode *N);
+ SDNode *SelectTexSurfHandle(SDNode *N);
+ SDNode *SelectLoad(SDNode *N);
+ SDNode *SelectLoadVector(SDNode *N);
+ SDNode *SelectLDGLDU(SDNode *N);
+ SDNode *SelectStore(SDNode *N);
+ SDNode *SelectStoreVector(SDNode *N);
+ SDNode *SelectLoadParam(SDNode *N);
+ SDNode *SelectStoreRetval(SDNode *N);
+ SDNode *SelectStoreParam(SDNode *N);
+ SDNode *SelectAddrSpaceCast(SDNode *N);
+ SDNode *SelectTextureIntrinsic(SDNode *N);
+ SDNode *SelectSurfaceIntrinsic(SDNode *N);
+ SDNode *SelectBFE(SDNode *N);
+
+ inline SDValue getI32Imm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ }
+
+ // Match direct address complex pattern.
+ bool SelectDirectAddr(SDValue N, SDValue &Address);
+
+ bool SelectADDRri_imp(SDNode *OpNode, SDValue Addr, SDValue &Base,
+ SDValue &Offset, MVT mvt);
+ bool SelectADDRri(SDNode *OpNode, SDValue Addr, SDValue &Base,
+ SDValue &Offset);
+ bool SelectADDRri64(SDNode *OpNode, SDValue Addr, SDValue &Base,
+ SDValue &Offset);
+
+ bool SelectADDRsi_imp(SDNode *OpNode, SDValue Addr, SDValue &Base,
+ SDValue &Offset, MVT mvt);
+ bool SelectADDRsi(SDNode *OpNode, SDValue Addr, SDValue &Base,
+ SDValue &Offset);
+ bool SelectADDRsi64(SDNode *OpNode, SDValue Addr, SDValue &Base,
+ SDValue &Offset);
+
+ bool ChkMemSDNodeAddressSpace(SDNode *N, unsigned int spN) const;
+
+};
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp
new file mode 100644
index 0000000..d76b20a
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp
@@ -0,0 +1,4516 @@
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that NVPTX uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXISelLowering.h"
+#include "NVPTX.h"
+#include "NVPTXTargetMachine.h"
+#include "NVPTXTargetObjectFile.h"
+#include "NVPTXUtilities.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <sstream>
+
+#undef DEBUG_TYPE
+#define DEBUG_TYPE "nvptx-lower"
+
+using namespace llvm;
+
+static unsigned int uniqueCallSite = 0;
+
+static cl::opt<bool> sched4reg(
+ "nvptx-sched4reg",
+ cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
+
+static cl::opt<unsigned>
+FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
+ cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
+ " 1: do it 2: do it aggressively"),
+ cl::init(2));
+
+static bool IsPTXVectorType(MVT VT) {
+ switch (VT.SimpleTy) {
+ default:
+ return false;
+ case MVT::v2i1:
+ case MVT::v4i1:
+ case MVT::v2i8:
+ case MVT::v4i8:
+ case MVT::v2i16:
+ case MVT::v4i16:
+ case MVT::v2i32:
+ case MVT::v4i32:
+ case MVT::v2i64:
+ case MVT::v2f32:
+ case MVT::v4f32:
+ case MVT::v2f64:
+ return true;
+ }
+}
+
+/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
+/// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors
+/// into their primitive components.
+/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
+/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
+/// LowerCall, and LowerReturn.
+static void ComputePTXValueVTs(const TargetLowering &TLI, Type *Ty,
+ SmallVectorImpl<EVT> &ValueVTs,
+ SmallVectorImpl<uint64_t> *Offsets = nullptr,
+ uint64_t StartingOffset = 0) {
+ SmallVector<EVT, 16> TempVTs;
+ SmallVector<uint64_t, 16> TempOffsets;
+
+ ComputeValueVTs(TLI, Ty, TempVTs, &TempOffsets, StartingOffset);
+ for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
+ EVT VT = TempVTs[i];
+ uint64_t Off = TempOffsets[i];
+ if (VT.isVector())
+ for (unsigned j = 0, je = VT.getVectorNumElements(); j != je; ++j) {
+ ValueVTs.push_back(VT.getVectorElementType());
+ if (Offsets)
+ Offsets->push_back(Off+j*VT.getVectorElementType().getStoreSize());
+ }
+ else {
+ ValueVTs.push_back(VT);
+ if (Offsets)
+ Offsets->push_back(Off);
+ }
+ }
+}
+
+// NVPTXTargetLowering Constructor.
+NVPTXTargetLowering::NVPTXTargetLowering(NVPTXTargetMachine &TM)
+ : TargetLowering(TM, new NVPTXTargetObjectFile()), nvTM(&TM),
+ nvptxSubtarget(TM.getSubtarget<NVPTXSubtarget>()) {
+
+ // always lower memset, memcpy, and memmove intrinsics to load/store
+ // instructions, rather
+ // then generating calls to memset, mempcy or memmove.
+ MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
+ MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
+ MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
+
+ setBooleanContents(ZeroOrNegativeOneBooleanContent);
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ // Jump is Expensive. Don't create extra control flow for 'and', 'or'
+ // condition branches.
+ setJumpIsExpensive(true);
+
+ // By default, use the Source scheduling
+ if (sched4reg)
+ setSchedulingPreference(Sched::RegPressure);
+ else
+ setSchedulingPreference(Sched::Source);
+
+ addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
+ addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
+ addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
+ addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
+ addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
+ addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
+
+ // Operations not directly supported by NVPTX.
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i8, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+ setOperationAction(ISD::BR_CC, MVT::f32, Expand);
+ setOperationAction(ISD::BR_CC, MVT::f64, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i1, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i8, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i16, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i64, Expand);
+ // Some SIGN_EXTEND_INREG can be done using cvt instruction.
+ // For others we will expand to a SHL/SRA pair.
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom);
+ setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom);
+
+ if (nvptxSubtarget.hasROT64()) {
+ setOperationAction(ISD::ROTL, MVT::i64, Legal);
+ setOperationAction(ISD::ROTR, MVT::i64, Legal);
+ } else {
+ setOperationAction(ISD::ROTL, MVT::i64, Expand);
+ setOperationAction(ISD::ROTR, MVT::i64, Expand);
+ }
+ if (nvptxSubtarget.hasROT32()) {
+ setOperationAction(ISD::ROTL, MVT::i32, Legal);
+ setOperationAction(ISD::ROTR, MVT::i32, Legal);
+ } else {
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTR, MVT::i32, Expand);
+ }
+
+ setOperationAction(ISD::ROTL, MVT::i16, Expand);
+ setOperationAction(ISD::ROTR, MVT::i16, Expand);
+ setOperationAction(ISD::ROTL, MVT::i8, Expand);
+ setOperationAction(ISD::ROTR, MVT::i8, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i16, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i64, Expand);
+
+ // Indirect branch is not supported.
+ // This also disables Jump Table creation.
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BRIND, MVT::Other, Expand);
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+
+ // We want to legalize constant related memmove and memcopy
+ // intrinsics.
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
+
+ // Turn FP extload into load/fextend
+ setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ // Turn FP truncstore into trunc + store.
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ // PTX does not support load / store predicate registers
+ setOperationAction(ISD::LOAD, MVT::i1, Custom);
+ setOperationAction(ISD::STORE, MVT::i1, Custom);
+
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setTruncStoreAction(MVT::i64, MVT::i1, Expand);
+ setTruncStoreAction(MVT::i32, MVT::i1, Expand);
+ setTruncStoreAction(MVT::i16, MVT::i1, Expand);
+ setTruncStoreAction(MVT::i8, MVT::i1, Expand);
+
+ // This is legal in NVPTX
+ setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
+
+ // TRAP can be lowered to PTX trap
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ setOperationAction(ISD::ADDC, MVT::i64, Expand);
+ setOperationAction(ISD::ADDE, MVT::i64, Expand);
+
+ // Register custom handling for vector loads/stores
+ for (int i = MVT::FIRST_VECTOR_VALUETYPE; i <= MVT::LAST_VECTOR_VALUETYPE;
+ ++i) {
+ MVT VT = (MVT::SimpleValueType) i;
+ if (IsPTXVectorType(VT)) {
+ setOperationAction(ISD::LOAD, VT, Custom);
+ setOperationAction(ISD::STORE, VT, Custom);
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
+ }
+ }
+
+ // Custom handling for i8 intrinsics
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
+
+ setOperationAction(ISD::CTLZ, MVT::i16, Legal);
+ setOperationAction(ISD::CTLZ, MVT::i32, Legal);
+ setOperationAction(ISD::CTLZ, MVT::i64, Legal);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Legal);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Legal);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Legal);
+ setOperationAction(ISD::CTTZ, MVT::i16, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i64, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i16, Legal);
+ setOperationAction(ISD::CTPOP, MVT::i32, Legal);
+ setOperationAction(ISD::CTPOP, MVT::i64, Legal);
+
+ // We have some custom DAG combine patterns for these nodes
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::FADD);
+ setTargetDAGCombine(ISD::MUL);
+ setTargetDAGCombine(ISD::SHL);
+
+ // Now deduce the information based on the above mentioned
+ // actions
+ computeRegisterProperties();
+}
+
+const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default:
+ return nullptr;
+ case NVPTXISD::CALL:
+ return "NVPTXISD::CALL";
+ case NVPTXISD::RET_FLAG:
+ return "NVPTXISD::RET_FLAG";
+ case NVPTXISD::Wrapper:
+ return "NVPTXISD::Wrapper";
+ case NVPTXISD::DeclareParam:
+ return "NVPTXISD::DeclareParam";
+ case NVPTXISD::DeclareScalarParam:
+ return "NVPTXISD::DeclareScalarParam";
+ case NVPTXISD::DeclareRet:
+ return "NVPTXISD::DeclareRet";
+ case NVPTXISD::DeclareRetParam:
+ return "NVPTXISD::DeclareRetParam";
+ case NVPTXISD::PrintCall:
+ return "NVPTXISD::PrintCall";
+ case NVPTXISD::LoadParam:
+ return "NVPTXISD::LoadParam";
+ case NVPTXISD::LoadParamV2:
+ return "NVPTXISD::LoadParamV2";
+ case NVPTXISD::LoadParamV4:
+ return "NVPTXISD::LoadParamV4";
+ case NVPTXISD::StoreParam:
+ return "NVPTXISD::StoreParam";
+ case NVPTXISD::StoreParamV2:
+ return "NVPTXISD::StoreParamV2";
+ case NVPTXISD::StoreParamV4:
+ return "NVPTXISD::StoreParamV4";
+ case NVPTXISD::StoreParamS32:
+ return "NVPTXISD::StoreParamS32";
+ case NVPTXISD::StoreParamU32:
+ return "NVPTXISD::StoreParamU32";
+ case NVPTXISD::CallArgBegin:
+ return "NVPTXISD::CallArgBegin";
+ case NVPTXISD::CallArg:
+ return "NVPTXISD::CallArg";
+ case NVPTXISD::LastCallArg:
+ return "NVPTXISD::LastCallArg";
+ case NVPTXISD::CallArgEnd:
+ return "NVPTXISD::CallArgEnd";
+ case NVPTXISD::CallVoid:
+ return "NVPTXISD::CallVoid";
+ case NVPTXISD::CallVal:
+ return "NVPTXISD::CallVal";
+ case NVPTXISD::CallSymbol:
+ return "NVPTXISD::CallSymbol";
+ case NVPTXISD::Prototype:
+ return "NVPTXISD::Prototype";
+ case NVPTXISD::MoveParam:
+ return "NVPTXISD::MoveParam";
+ case NVPTXISD::StoreRetval:
+ return "NVPTXISD::StoreRetval";
+ case NVPTXISD::StoreRetvalV2:
+ return "NVPTXISD::StoreRetvalV2";
+ case NVPTXISD::StoreRetvalV4:
+ return "NVPTXISD::StoreRetvalV4";
+ case NVPTXISD::PseudoUseParam:
+ return "NVPTXISD::PseudoUseParam";
+ case NVPTXISD::RETURN:
+ return "NVPTXISD::RETURN";
+ case NVPTXISD::CallSeqBegin:
+ return "NVPTXISD::CallSeqBegin";
+ case NVPTXISD::CallSeqEnd:
+ return "NVPTXISD::CallSeqEnd";
+ case NVPTXISD::CallPrototype:
+ return "NVPTXISD::CallPrototype";
+ case NVPTXISD::LoadV2:
+ return "NVPTXISD::LoadV2";
+ case NVPTXISD::LoadV4:
+ return "NVPTXISD::LoadV4";
+ case NVPTXISD::LDGV2:
+ return "NVPTXISD::LDGV2";
+ case NVPTXISD::LDGV4:
+ return "NVPTXISD::LDGV4";
+ case NVPTXISD::LDUV2:
+ return "NVPTXISD::LDUV2";
+ case NVPTXISD::LDUV4:
+ return "NVPTXISD::LDUV4";
+ case NVPTXISD::StoreV2:
+ return "NVPTXISD::StoreV2";
+ case NVPTXISD::StoreV4:
+ return "NVPTXISD::StoreV4";
+ case NVPTXISD::FUN_SHFL_CLAMP:
+ return "NVPTXISD::FUN_SHFL_CLAMP";
+ case NVPTXISD::FUN_SHFR_CLAMP:
+ return "NVPTXISD::FUN_SHFR_CLAMP";
+ case NVPTXISD::IMAD:
+ return "NVPTXISD::IMAD";
+ case NVPTXISD::MUL_WIDE_SIGNED:
+ return "NVPTXISD::MUL_WIDE_SIGNED";
+ case NVPTXISD::MUL_WIDE_UNSIGNED:
+ return "NVPTXISD::MUL_WIDE_UNSIGNED";
+ case NVPTXISD::Tex1DFloatS32: return "NVPTXISD::Tex1DFloatS32";
+ case NVPTXISD::Tex1DFloatFloat: return "NVPTXISD::Tex1DFloatFloat";
+ case NVPTXISD::Tex1DFloatFloatLevel:
+ return "NVPTXISD::Tex1DFloatFloatLevel";
+ case NVPTXISD::Tex1DFloatFloatGrad:
+ return "NVPTXISD::Tex1DFloatFloatGrad";
+ case NVPTXISD::Tex1DS32S32: return "NVPTXISD::Tex1DS32S32";
+ case NVPTXISD::Tex1DS32Float: return "NVPTXISD::Tex1DS32Float";
+ case NVPTXISD::Tex1DS32FloatLevel:
+ return "NVPTXISD::Tex1DS32FloatLevel";
+ case NVPTXISD::Tex1DS32FloatGrad:
+ return "NVPTXISD::Tex1DS32FloatGrad";
+ case NVPTXISD::Tex1DU32S32: return "NVPTXISD::Tex1DU32S32";
+ case NVPTXISD::Tex1DU32Float: return "NVPTXISD::Tex1DU32Float";
+ case NVPTXISD::Tex1DU32FloatLevel:
+ return "NVPTXISD::Tex1DU32FloatLevel";
+ case NVPTXISD::Tex1DU32FloatGrad:
+ return "NVPTXISD::Tex1DU32FloatGrad";
+ case NVPTXISD::Tex1DArrayFloatS32: return "NVPTXISD::Tex1DArrayFloatS32";
+ case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
+ case NVPTXISD::Tex1DArrayFloatFloatLevel:
+ return "NVPTXISD::Tex1DArrayFloatFloatLevel";
+ case NVPTXISD::Tex1DArrayFloatFloatGrad:
+ return "NVPTXISD::Tex1DArrayFloatFloatGrad";
+ case NVPTXISD::Tex1DArrayS32S32: return "NVPTXISD::Tex1DArrayS32S32";
+ case NVPTXISD::Tex1DArrayS32Float: return "NVPTXISD::Tex1DArrayS32Float";
+ case NVPTXISD::Tex1DArrayS32FloatLevel:
+ return "NVPTXISD::Tex1DArrayS32FloatLevel";
+ case NVPTXISD::Tex1DArrayS32FloatGrad:
+ return "NVPTXISD::Tex1DArrayS32FloatGrad";
+ case NVPTXISD::Tex1DArrayU32S32: return "NVPTXISD::Tex1DArrayU32S32";
+ case NVPTXISD::Tex1DArrayU32Float: return "NVPTXISD::Tex1DArrayU32Float";
+ case NVPTXISD::Tex1DArrayU32FloatLevel:
+ return "NVPTXISD::Tex1DArrayU32FloatLevel";
+ case NVPTXISD::Tex1DArrayU32FloatGrad:
+ return "NVPTXISD::Tex1DArrayU32FloatGrad";
+ case NVPTXISD::Tex2DFloatS32: return "NVPTXISD::Tex2DFloatS32";
+ case NVPTXISD::Tex2DFloatFloat: return "NVPTXISD::Tex2DFloatFloat";
+ case NVPTXISD::Tex2DFloatFloatLevel:
+ return "NVPTXISD::Tex2DFloatFloatLevel";
+ case NVPTXISD::Tex2DFloatFloatGrad:
+ return "NVPTXISD::Tex2DFloatFloatGrad";
+ case NVPTXISD::Tex2DS32S32: return "NVPTXISD::Tex2DS32S32";
+ case NVPTXISD::Tex2DS32Float: return "NVPTXISD::Tex2DS32Float";
+ case NVPTXISD::Tex2DS32FloatLevel:
+ return "NVPTXISD::Tex2DS32FloatLevel";
+ case NVPTXISD::Tex2DS32FloatGrad:
+ return "NVPTXISD::Tex2DS32FloatGrad";
+ case NVPTXISD::Tex2DU32S32: return "NVPTXISD::Tex2DU32S32";
+ case NVPTXISD::Tex2DU32Float: return "NVPTXISD::Tex2DU32Float";
+ case NVPTXISD::Tex2DU32FloatLevel:
+ return "NVPTXISD::Tex2DU32FloatLevel";
+ case NVPTXISD::Tex2DU32FloatGrad:
+ return "NVPTXISD::Tex2DU32FloatGrad";
+ case NVPTXISD::Tex2DArrayFloatS32: return "NVPTXISD::Tex2DArrayFloatS32";
+ case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
+ case NVPTXISD::Tex2DArrayFloatFloatLevel:
+ return "NVPTXISD::Tex2DArrayFloatFloatLevel";
+ case NVPTXISD::Tex2DArrayFloatFloatGrad:
+ return "NVPTXISD::Tex2DArrayFloatFloatGrad";
+ case NVPTXISD::Tex2DArrayS32S32: return "NVPTXISD::Tex2DArrayS32S32";
+ case NVPTXISD::Tex2DArrayS32Float: return "NVPTXISD::Tex2DArrayS32Float";
+ case NVPTXISD::Tex2DArrayS32FloatLevel:
+ return "NVPTXISD::Tex2DArrayS32FloatLevel";
+ case NVPTXISD::Tex2DArrayS32FloatGrad:
+ return "NVPTXISD::Tex2DArrayS32FloatGrad";
+ case NVPTXISD::Tex2DArrayU32S32: return "NVPTXISD::Tex2DArrayU32S32";
+ case NVPTXISD::Tex2DArrayU32Float: return "NVPTXISD::Tex2DArrayU32Float";
+ case NVPTXISD::Tex2DArrayU32FloatLevel:
+ return "NVPTXISD::Tex2DArrayU32FloatLevel";
+ case NVPTXISD::Tex2DArrayU32FloatGrad:
+ return "NVPTXISD::Tex2DArrayU32FloatGrad";
+ case NVPTXISD::Tex3DFloatS32: return "NVPTXISD::Tex3DFloatS32";
+ case NVPTXISD::Tex3DFloatFloat: return "NVPTXISD::Tex3DFloatFloat";
+ case NVPTXISD::Tex3DFloatFloatLevel:
+ return "NVPTXISD::Tex3DFloatFloatLevel";
+ case NVPTXISD::Tex3DFloatFloatGrad:
+ return "NVPTXISD::Tex3DFloatFloatGrad";
+ case NVPTXISD::Tex3DS32S32: return "NVPTXISD::Tex3DS32S32";
+ case NVPTXISD::Tex3DS32Float: return "NVPTXISD::Tex3DS32Float";
+ case NVPTXISD::Tex3DS32FloatLevel:
+ return "NVPTXISD::Tex3DS32FloatLevel";
+ case NVPTXISD::Tex3DS32FloatGrad:
+ return "NVPTXISD::Tex3DS32FloatGrad";
+ case NVPTXISD::Tex3DU32S32: return "NVPTXISD::Tex3DU32S32";
+ case NVPTXISD::Tex3DU32Float: return "NVPTXISD::Tex3DU32Float";
+ case NVPTXISD::Tex3DU32FloatLevel:
+ return "NVPTXISD::Tex3DU32FloatLevel";
+ case NVPTXISD::Tex3DU32FloatGrad:
+ return "NVPTXISD::Tex3DU32FloatGrad";
+ case NVPTXISD::TexCubeFloatFloat: return "NVPTXISD::TexCubeFloatFloat";
+ case NVPTXISD::TexCubeFloatFloatLevel:
+ return "NVPTXISD::TexCubeFloatFloatLevel";
+ case NVPTXISD::TexCubeS32Float: return "NVPTXISD::TexCubeS32Float";
+ case NVPTXISD::TexCubeS32FloatLevel:
+ return "NVPTXISD::TexCubeS32FloatLevel";
+ case NVPTXISD::TexCubeU32Float: return "NVPTXISD::TexCubeU32Float";
+ case NVPTXISD::TexCubeU32FloatLevel:
+ return "NVPTXISD::TexCubeU32FloatLevel";
+ case NVPTXISD::TexCubeArrayFloatFloat:
+ return "NVPTXISD::TexCubeArrayFloatFloat";
+ case NVPTXISD::TexCubeArrayFloatFloatLevel:
+ return "NVPTXISD::TexCubeArrayFloatFloatLevel";
+ case NVPTXISD::TexCubeArrayS32Float:
+ return "NVPTXISD::TexCubeArrayS32Float";
+ case NVPTXISD::TexCubeArrayS32FloatLevel:
+ return "NVPTXISD::TexCubeArrayS32FloatLevel";
+ case NVPTXISD::TexCubeArrayU32Float:
+ return "NVPTXISD::TexCubeArrayU32Float";
+ case NVPTXISD::TexCubeArrayU32FloatLevel:
+ return "NVPTXISD::TexCubeArrayU32FloatLevel";
+ case NVPTXISD::Tld4R2DFloatFloat:
+ return "NVPTXISD::Tld4R2DFloatFloat";
+ case NVPTXISD::Tld4G2DFloatFloat:
+ return "NVPTXISD::Tld4G2DFloatFloat";
+ case NVPTXISD::Tld4B2DFloatFloat:
+ return "NVPTXISD::Tld4B2DFloatFloat";
+ case NVPTXISD::Tld4A2DFloatFloat:
+ return "NVPTXISD::Tld4A2DFloatFloat";
+ case NVPTXISD::Tld4R2DS64Float:
+ return "NVPTXISD::Tld4R2DS64Float";
+ case NVPTXISD::Tld4G2DS64Float:
+ return "NVPTXISD::Tld4G2DS64Float";
+ case NVPTXISD::Tld4B2DS64Float:
+ return "NVPTXISD::Tld4B2DS64Float";
+ case NVPTXISD::Tld4A2DS64Float:
+ return "NVPTXISD::Tld4A2DS64Float";
+ case NVPTXISD::Tld4R2DU64Float:
+ return "NVPTXISD::Tld4R2DU64Float";
+ case NVPTXISD::Tld4G2DU64Float:
+ return "NVPTXISD::Tld4G2DU64Float";
+ case NVPTXISD::Tld4B2DU64Float:
+ return "NVPTXISD::Tld4B2DU64Float";
+ case NVPTXISD::Tld4A2DU64Float:
+ return "NVPTXISD::Tld4A2DU64Float";
+
+ case NVPTXISD::TexUnified1DFloatS32:
+ return "NVPTXISD::TexUnified1DFloatS32";
+ case NVPTXISD::TexUnified1DFloatFloat:
+ return "NVPTXISD::TexUnified1DFloatFloat";
+ case NVPTXISD::TexUnified1DFloatFloatLevel:
+ return "NVPTXISD::TexUnified1DFloatFloatLevel";
+ case NVPTXISD::TexUnified1DFloatFloatGrad:
+ return "NVPTXISD::TexUnified1DFloatFloatGrad";
+ case NVPTXISD::TexUnified1DS32S32:
+ return "NVPTXISD::TexUnified1DS32S32";
+ case NVPTXISD::TexUnified1DS32Float:
+ return "NVPTXISD::TexUnified1DS32Float";
+ case NVPTXISD::TexUnified1DS32FloatLevel:
+ return "NVPTXISD::TexUnified1DS32FloatLevel";
+ case NVPTXISD::TexUnified1DS32FloatGrad:
+ return "NVPTXISD::TexUnified1DS32FloatGrad";
+ case NVPTXISD::TexUnified1DU32S32:
+ return "NVPTXISD::TexUnified1DU32S32";
+ case NVPTXISD::TexUnified1DU32Float:
+ return "NVPTXISD::TexUnified1DU32Float";
+ case NVPTXISD::TexUnified1DU32FloatLevel:
+ return "NVPTXISD::TexUnified1DU32FloatLevel";
+ case NVPTXISD::TexUnified1DU32FloatGrad:
+ return "NVPTXISD::TexUnified1DU32FloatGrad";
+ case NVPTXISD::TexUnified1DArrayFloatS32:
+ return "NVPTXISD::TexUnified1DArrayFloatS32";
+ case NVPTXISD::TexUnified1DArrayFloatFloat:
+ return "NVPTXISD::TexUnified1DArrayFloatFloat";
+ case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
+ return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
+ case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
+ return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
+ case NVPTXISD::TexUnified1DArrayS32S32:
+ return "NVPTXISD::TexUnified1DArrayS32S32";
+ case NVPTXISD::TexUnified1DArrayS32Float:
+ return "NVPTXISD::TexUnified1DArrayS32Float";
+ case NVPTXISD::TexUnified1DArrayS32FloatLevel:
+ return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
+ case NVPTXISD::TexUnified1DArrayS32FloatGrad:
+ return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
+ case NVPTXISD::TexUnified1DArrayU32S32:
+ return "NVPTXISD::TexUnified1DArrayU32S32";
+ case NVPTXISD::TexUnified1DArrayU32Float:
+ return "NVPTXISD::TexUnified1DArrayU32Float";
+ case NVPTXISD::TexUnified1DArrayU32FloatLevel:
+ return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
+ case NVPTXISD::TexUnified1DArrayU32FloatGrad:
+ return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
+ case NVPTXISD::TexUnified2DFloatS32:
+ return "NVPTXISD::TexUnified2DFloatS32";
+ case NVPTXISD::TexUnified2DFloatFloat:
+ return "NVPTXISD::TexUnified2DFloatFloat";
+ case NVPTXISD::TexUnified2DFloatFloatLevel:
+ return "NVPTXISD::TexUnified2DFloatFloatLevel";
+ case NVPTXISD::TexUnified2DFloatFloatGrad:
+ return "NVPTXISD::TexUnified2DFloatFloatGrad";
+ case NVPTXISD::TexUnified2DS32S32:
+ return "NVPTXISD::TexUnified2DS32S32";
+ case NVPTXISD::TexUnified2DS32Float:
+ return "NVPTXISD::TexUnified2DS32Float";
+ case NVPTXISD::TexUnified2DS32FloatLevel:
+ return "NVPTXISD::TexUnified2DS32FloatLevel";
+ case NVPTXISD::TexUnified2DS32FloatGrad:
+ return "NVPTXISD::TexUnified2DS32FloatGrad";
+ case NVPTXISD::TexUnified2DU32S32:
+ return "NVPTXISD::TexUnified2DU32S32";
+ case NVPTXISD::TexUnified2DU32Float:
+ return "NVPTXISD::TexUnified2DU32Float";
+ case NVPTXISD::TexUnified2DU32FloatLevel:
+ return "NVPTXISD::TexUnified2DU32FloatLevel";
+ case NVPTXISD::TexUnified2DU32FloatGrad:
+ return "NVPTXISD::TexUnified2DU32FloatGrad";
+ case NVPTXISD::TexUnified2DArrayFloatS32:
+ return "NVPTXISD::TexUnified2DArrayFloatS32";
+ case NVPTXISD::TexUnified2DArrayFloatFloat:
+ return "NVPTXISD::TexUnified2DArrayFloatFloat";
+ case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
+ return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
+ case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
+ return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
+ case NVPTXISD::TexUnified2DArrayS32S32:
+ return "NVPTXISD::TexUnified2DArrayS32S32";
+ case NVPTXISD::TexUnified2DArrayS32Float:
+ return "NVPTXISD::TexUnified2DArrayS32Float";
+ case NVPTXISD::TexUnified2DArrayS32FloatLevel:
+ return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
+ case NVPTXISD::TexUnified2DArrayS32FloatGrad:
+ return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
+ case NVPTXISD::TexUnified2DArrayU32S32:
+ return "NVPTXISD::TexUnified2DArrayU32S32";
+ case NVPTXISD::TexUnified2DArrayU32Float:
+ return "NVPTXISD::TexUnified2DArrayU32Float";
+ case NVPTXISD::TexUnified2DArrayU32FloatLevel:
+ return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
+ case NVPTXISD::TexUnified2DArrayU32FloatGrad:
+ return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
+ case NVPTXISD::TexUnified3DFloatS32:
+ return "NVPTXISD::TexUnified3DFloatS32";
+ case NVPTXISD::TexUnified3DFloatFloat:
+ return "NVPTXISD::TexUnified3DFloatFloat";
+ case NVPTXISD::TexUnified3DFloatFloatLevel:
+ return "NVPTXISD::TexUnified3DFloatFloatLevel";
+ case NVPTXISD::TexUnified3DFloatFloatGrad:
+ return "NVPTXISD::TexUnified3DFloatFloatGrad";
+ case NVPTXISD::TexUnified3DS32S32:
+ return "NVPTXISD::TexUnified3DS32S32";
+ case NVPTXISD::TexUnified3DS32Float:
+ return "NVPTXISD::TexUnified3DS32Float";
+ case NVPTXISD::TexUnified3DS32FloatLevel:
+ return "NVPTXISD::TexUnified3DS32FloatLevel";
+ case NVPTXISD::TexUnified3DS32FloatGrad:
+ return "NVPTXISD::TexUnified3DS32FloatGrad";
+ case NVPTXISD::TexUnified3DU32S32:
+ return "NVPTXISD::TexUnified3DU32S32";
+ case NVPTXISD::TexUnified3DU32Float:
+ return "NVPTXISD::TexUnified3DU32Float";
+ case NVPTXISD::TexUnified3DU32FloatLevel:
+ return "NVPTXISD::TexUnified3DU32FloatLevel";
+ case NVPTXISD::TexUnified3DU32FloatGrad:
+ return "NVPTXISD::TexUnified3DU32FloatGrad";
+ case NVPTXISD::TexUnifiedCubeFloatFloat:
+ return "NVPTXISD::TexUnifiedCubeFloatFloat";
+ case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
+ return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
+ case NVPTXISD::TexUnifiedCubeS32Float:
+ return "NVPTXISD::TexUnifiedCubeS32Float";
+ case NVPTXISD::TexUnifiedCubeS32FloatLevel:
+ return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
+ case NVPTXISD::TexUnifiedCubeU32Float:
+ return "NVPTXISD::TexUnifiedCubeU32Float";
+ case NVPTXISD::TexUnifiedCubeU32FloatLevel:
+ return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
+ case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
+ return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
+ case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
+ return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
+ case NVPTXISD::TexUnifiedCubeArrayS32Float:
+ return "NVPTXISD::TexUnifiedCubeArrayS32Float";
+ case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
+ return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
+ case NVPTXISD::TexUnifiedCubeArrayU32Float:
+ return "NVPTXISD::TexUnifiedCubeArrayU32Float";
+ case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
+ return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
+ case NVPTXISD::Tld4UnifiedR2DFloatFloat:
+ return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
+ case NVPTXISD::Tld4UnifiedG2DFloatFloat:
+ return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
+ case NVPTXISD::Tld4UnifiedB2DFloatFloat:
+ return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
+ case NVPTXISD::Tld4UnifiedA2DFloatFloat:
+ return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
+ case NVPTXISD::Tld4UnifiedR2DS64Float:
+ return "NVPTXISD::Tld4UnifiedR2DS64Float";
+ case NVPTXISD::Tld4UnifiedG2DS64Float:
+ return "NVPTXISD::Tld4UnifiedG2DS64Float";
+ case NVPTXISD::Tld4UnifiedB2DS64Float:
+ return "NVPTXISD::Tld4UnifiedB2DS64Float";
+ case NVPTXISD::Tld4UnifiedA2DS64Float:
+ return "NVPTXISD::Tld4UnifiedA2DS64Float";
+ case NVPTXISD::Tld4UnifiedR2DU64Float:
+ return "NVPTXISD::Tld4UnifiedR2DU64Float";
+ case NVPTXISD::Tld4UnifiedG2DU64Float:
+ return "NVPTXISD::Tld4UnifiedG2DU64Float";
+ case NVPTXISD::Tld4UnifiedB2DU64Float:
+ return "NVPTXISD::Tld4UnifiedB2DU64Float";
+ case NVPTXISD::Tld4UnifiedA2DU64Float:
+ return "NVPTXISD::Tld4UnifiedA2DU64Float";
+
+ case NVPTXISD::Suld1DI8Clamp: return "NVPTXISD::Suld1DI8Clamp";
+ case NVPTXISD::Suld1DI16Clamp: return "NVPTXISD::Suld1DI16Clamp";
+ case NVPTXISD::Suld1DI32Clamp: return "NVPTXISD::Suld1DI32Clamp";
+ case NVPTXISD::Suld1DI64Clamp: return "NVPTXISD::Suld1DI64Clamp";
+ case NVPTXISD::Suld1DV2I8Clamp: return "NVPTXISD::Suld1DV2I8Clamp";
+ case NVPTXISD::Suld1DV2I16Clamp: return "NVPTXISD::Suld1DV2I16Clamp";
+ case NVPTXISD::Suld1DV2I32Clamp: return "NVPTXISD::Suld1DV2I32Clamp";
+ case NVPTXISD::Suld1DV2I64Clamp: return "NVPTXISD::Suld1DV2I64Clamp";
+ case NVPTXISD::Suld1DV4I8Clamp: return "NVPTXISD::Suld1DV4I8Clamp";
+ case NVPTXISD::Suld1DV4I16Clamp: return "NVPTXISD::Suld1DV4I16Clamp";
+ case NVPTXISD::Suld1DV4I32Clamp: return "NVPTXISD::Suld1DV4I32Clamp";
+
+ case NVPTXISD::Suld1DArrayI8Clamp: return "NVPTXISD::Suld1DArrayI8Clamp";
+ case NVPTXISD::Suld1DArrayI16Clamp: return "NVPTXISD::Suld1DArrayI16Clamp";
+ case NVPTXISD::Suld1DArrayI32Clamp: return "NVPTXISD::Suld1DArrayI32Clamp";
+ case NVPTXISD::Suld1DArrayI64Clamp: return "NVPTXISD::Suld1DArrayI64Clamp";
+ case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
+ case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
+ case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
+ case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
+ case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
+ case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
+ case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
+
+ case NVPTXISD::Suld2DI8Clamp: return "NVPTXISD::Suld2DI8Clamp";
+ case NVPTXISD::Suld2DI16Clamp: return "NVPTXISD::Suld2DI16Clamp";
+ case NVPTXISD::Suld2DI32Clamp: return "NVPTXISD::Suld2DI32Clamp";
+ case NVPTXISD::Suld2DI64Clamp: return "NVPTXISD::Suld2DI64Clamp";
+ case NVPTXISD::Suld2DV2I8Clamp: return "NVPTXISD::Suld2DV2I8Clamp";
+ case NVPTXISD::Suld2DV2I16Clamp: return "NVPTXISD::Suld2DV2I16Clamp";
+ case NVPTXISD::Suld2DV2I32Clamp: return "NVPTXISD::Suld2DV2I32Clamp";
+ case NVPTXISD::Suld2DV2I64Clamp: return "NVPTXISD::Suld2DV2I64Clamp";
+ case NVPTXISD::Suld2DV4I8Clamp: return "NVPTXISD::Suld2DV4I8Clamp";
+ case NVPTXISD::Suld2DV4I16Clamp: return "NVPTXISD::Suld2DV4I16Clamp";
+ case NVPTXISD::Suld2DV4I32Clamp: return "NVPTXISD::Suld2DV4I32Clamp";
+
+ case NVPTXISD::Suld2DArrayI8Clamp: return "NVPTXISD::Suld2DArrayI8Clamp";
+ case NVPTXISD::Suld2DArrayI16Clamp: return "NVPTXISD::Suld2DArrayI16Clamp";
+ case NVPTXISD::Suld2DArrayI32Clamp: return "NVPTXISD::Suld2DArrayI32Clamp";
+ case NVPTXISD::Suld2DArrayI64Clamp: return "NVPTXISD::Suld2DArrayI64Clamp";
+ case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
+ case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
+ case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
+ case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
+ case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
+ case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
+ case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
+
+ case NVPTXISD::Suld3DI8Clamp: return "NVPTXISD::Suld3DI8Clamp";
+ case NVPTXISD::Suld3DI16Clamp: return "NVPTXISD::Suld3DI16Clamp";
+ case NVPTXISD::Suld3DI32Clamp: return "NVPTXISD::Suld3DI32Clamp";
+ case NVPTXISD::Suld3DI64Clamp: return "NVPTXISD::Suld3DI64Clamp";
+ case NVPTXISD::Suld3DV2I8Clamp: return "NVPTXISD::Suld3DV2I8Clamp";
+ case NVPTXISD::Suld3DV2I16Clamp: return "NVPTXISD::Suld3DV2I16Clamp";
+ case NVPTXISD::Suld3DV2I32Clamp: return "NVPTXISD::Suld3DV2I32Clamp";
+ case NVPTXISD::Suld3DV2I64Clamp: return "NVPTXISD::Suld3DV2I64Clamp";
+ case NVPTXISD::Suld3DV4I8Clamp: return "NVPTXISD::Suld3DV4I8Clamp";
+ case NVPTXISD::Suld3DV4I16Clamp: return "NVPTXISD::Suld3DV4I16Clamp";
+ case NVPTXISD::Suld3DV4I32Clamp: return "NVPTXISD::Suld3DV4I32Clamp";
+
+ case NVPTXISD::Suld1DI8Trap: return "NVPTXISD::Suld1DI8Trap";
+ case NVPTXISD::Suld1DI16Trap: return "NVPTXISD::Suld1DI16Trap";
+ case NVPTXISD::Suld1DI32Trap: return "NVPTXISD::Suld1DI32Trap";
+ case NVPTXISD::Suld1DI64Trap: return "NVPTXISD::Suld1DI64Trap";
+ case NVPTXISD::Suld1DV2I8Trap: return "NVPTXISD::Suld1DV2I8Trap";
+ case NVPTXISD::Suld1DV2I16Trap: return "NVPTXISD::Suld1DV2I16Trap";
+ case NVPTXISD::Suld1DV2I32Trap: return "NVPTXISD::Suld1DV2I32Trap";
+ case NVPTXISD::Suld1DV2I64Trap: return "NVPTXISD::Suld1DV2I64Trap";
+ case NVPTXISD::Suld1DV4I8Trap: return "NVPTXISD::Suld1DV4I8Trap";
+ case NVPTXISD::Suld1DV4I16Trap: return "NVPTXISD::Suld1DV4I16Trap";
+ case NVPTXISD::Suld1DV4I32Trap: return "NVPTXISD::Suld1DV4I32Trap";
+
+ case NVPTXISD::Suld1DArrayI8Trap: return "NVPTXISD::Suld1DArrayI8Trap";
+ case NVPTXISD::Suld1DArrayI16Trap: return "NVPTXISD::Suld1DArrayI16Trap";
+ case NVPTXISD::Suld1DArrayI32Trap: return "NVPTXISD::Suld1DArrayI32Trap";
+ case NVPTXISD::Suld1DArrayI64Trap: return "NVPTXISD::Suld1DArrayI64Trap";
+ case NVPTXISD::Suld1DArrayV2I8Trap: return "NVPTXISD::Suld1DArrayV2I8Trap";
+ case NVPTXISD::Suld1DArrayV2I16Trap: return "NVPTXISD::Suld1DArrayV2I16Trap";
+ case NVPTXISD::Suld1DArrayV2I32Trap: return "NVPTXISD::Suld1DArrayV2I32Trap";
+ case NVPTXISD::Suld1DArrayV2I64Trap: return "NVPTXISD::Suld1DArrayV2I64Trap";
+ case NVPTXISD::Suld1DArrayV4I8Trap: return "NVPTXISD::Suld1DArrayV4I8Trap";
+ case NVPTXISD::Suld1DArrayV4I16Trap: return "NVPTXISD::Suld1DArrayV4I16Trap";
+ case NVPTXISD::Suld1DArrayV4I32Trap: return "NVPTXISD::Suld1DArrayV4I32Trap";
+
+ case NVPTXISD::Suld2DI8Trap: return "NVPTXISD::Suld2DI8Trap";
+ case NVPTXISD::Suld2DI16Trap: return "NVPTXISD::Suld2DI16Trap";
+ case NVPTXISD::Suld2DI32Trap: return "NVPTXISD::Suld2DI32Trap";
+ case NVPTXISD::Suld2DI64Trap: return "NVPTXISD::Suld2DI64Trap";
+ case NVPTXISD::Suld2DV2I8Trap: return "NVPTXISD::Suld2DV2I8Trap";
+ case NVPTXISD::Suld2DV2I16Trap: return "NVPTXISD::Suld2DV2I16Trap";
+ case NVPTXISD::Suld2DV2I32Trap: return "NVPTXISD::Suld2DV2I32Trap";
+ case NVPTXISD::Suld2DV2I64Trap: return "NVPTXISD::Suld2DV2I64Trap";
+ case NVPTXISD::Suld2DV4I8Trap: return "NVPTXISD::Suld2DV4I8Trap";
+ case NVPTXISD::Suld2DV4I16Trap: return "NVPTXISD::Suld2DV4I16Trap";
+ case NVPTXISD::Suld2DV4I32Trap: return "NVPTXISD::Suld2DV4I32Trap";
+
+ case NVPTXISD::Suld2DArrayI8Trap: return "NVPTXISD::Suld2DArrayI8Trap";
+ case NVPTXISD::Suld2DArrayI16Trap: return "NVPTXISD::Suld2DArrayI16Trap";
+ case NVPTXISD::Suld2DArrayI32Trap: return "NVPTXISD::Suld2DArrayI32Trap";
+ case NVPTXISD::Suld2DArrayI64Trap: return "NVPTXISD::Suld2DArrayI64Trap";
+ case NVPTXISD::Suld2DArrayV2I8Trap: return "NVPTXISD::Suld2DArrayV2I8Trap";
+ case NVPTXISD::Suld2DArrayV2I16Trap: return "NVPTXISD::Suld2DArrayV2I16Trap";
+ case NVPTXISD::Suld2DArrayV2I32Trap: return "NVPTXISD::Suld2DArrayV2I32Trap";
+ case NVPTXISD::Suld2DArrayV2I64Trap: return "NVPTXISD::Suld2DArrayV2I64Trap";
+ case NVPTXISD::Suld2DArrayV4I8Trap: return "NVPTXISD::Suld2DArrayV4I8Trap";
+ case NVPTXISD::Suld2DArrayV4I16Trap: return "NVPTXISD::Suld2DArrayV4I16Trap";
+ case NVPTXISD::Suld2DArrayV4I32Trap: return "NVPTXISD::Suld2DArrayV4I32Trap";
+
+ case NVPTXISD::Suld3DI8Trap: return "NVPTXISD::Suld3DI8Trap";
+ case NVPTXISD::Suld3DI16Trap: return "NVPTXISD::Suld3DI16Trap";
+ case NVPTXISD::Suld3DI32Trap: return "NVPTXISD::Suld3DI32Trap";
+ case NVPTXISD::Suld3DI64Trap: return "NVPTXISD::Suld3DI64Trap";
+ case NVPTXISD::Suld3DV2I8Trap: return "NVPTXISD::Suld3DV2I8Trap";
+ case NVPTXISD::Suld3DV2I16Trap: return "NVPTXISD::Suld3DV2I16Trap";
+ case NVPTXISD::Suld3DV2I32Trap: return "NVPTXISD::Suld3DV2I32Trap";
+ case NVPTXISD::Suld3DV2I64Trap: return "NVPTXISD::Suld3DV2I64Trap";
+ case NVPTXISD::Suld3DV4I8Trap: return "NVPTXISD::Suld3DV4I8Trap";
+ case NVPTXISD::Suld3DV4I16Trap: return "NVPTXISD::Suld3DV4I16Trap";
+ case NVPTXISD::Suld3DV4I32Trap: return "NVPTXISD::Suld3DV4I32Trap";
+
+ case NVPTXISD::Suld1DI8Zero: return "NVPTXISD::Suld1DI8Zero";
+ case NVPTXISD::Suld1DI16Zero: return "NVPTXISD::Suld1DI16Zero";
+ case NVPTXISD::Suld1DI32Zero: return "NVPTXISD::Suld1DI32Zero";
+ case NVPTXISD::Suld1DI64Zero: return "NVPTXISD::Suld1DI64Zero";
+ case NVPTXISD::Suld1DV2I8Zero: return "NVPTXISD::Suld1DV2I8Zero";
+ case NVPTXISD::Suld1DV2I16Zero: return "NVPTXISD::Suld1DV2I16Zero";
+ case NVPTXISD::Suld1DV2I32Zero: return "NVPTXISD::Suld1DV2I32Zero";
+ case NVPTXISD::Suld1DV2I64Zero: return "NVPTXISD::Suld1DV2I64Zero";
+ case NVPTXISD::Suld1DV4I8Zero: return "NVPTXISD::Suld1DV4I8Zero";
+ case NVPTXISD::Suld1DV4I16Zero: return "NVPTXISD::Suld1DV4I16Zero";
+ case NVPTXISD::Suld1DV4I32Zero: return "NVPTXISD::Suld1DV4I32Zero";
+
+ case NVPTXISD::Suld1DArrayI8Zero: return "NVPTXISD::Suld1DArrayI8Zero";
+ case NVPTXISD::Suld1DArrayI16Zero: return "NVPTXISD::Suld1DArrayI16Zero";
+ case NVPTXISD::Suld1DArrayI32Zero: return "NVPTXISD::Suld1DArrayI32Zero";
+ case NVPTXISD::Suld1DArrayI64Zero: return "NVPTXISD::Suld1DArrayI64Zero";
+ case NVPTXISD::Suld1DArrayV2I8Zero: return "NVPTXISD::Suld1DArrayV2I8Zero";
+ case NVPTXISD::Suld1DArrayV2I16Zero: return "NVPTXISD::Suld1DArrayV2I16Zero";
+ case NVPTXISD::Suld1DArrayV2I32Zero: return "NVPTXISD::Suld1DArrayV2I32Zero";
+ case NVPTXISD::Suld1DArrayV2I64Zero: return "NVPTXISD::Suld1DArrayV2I64Zero";
+ case NVPTXISD::Suld1DArrayV4I8Zero: return "NVPTXISD::Suld1DArrayV4I8Zero";
+ case NVPTXISD::Suld1DArrayV4I16Zero: return "NVPTXISD::Suld1DArrayV4I16Zero";
+ case NVPTXISD::Suld1DArrayV4I32Zero: return "NVPTXISD::Suld1DArrayV4I32Zero";
+
+ case NVPTXISD::Suld2DI8Zero: return "NVPTXISD::Suld2DI8Zero";
+ case NVPTXISD::Suld2DI16Zero: return "NVPTXISD::Suld2DI16Zero";
+ case NVPTXISD::Suld2DI32Zero: return "NVPTXISD::Suld2DI32Zero";
+ case NVPTXISD::Suld2DI64Zero: return "NVPTXISD::Suld2DI64Zero";
+ case NVPTXISD::Suld2DV2I8Zero: return "NVPTXISD::Suld2DV2I8Zero";
+ case NVPTXISD::Suld2DV2I16Zero: return "NVPTXISD::Suld2DV2I16Zero";
+ case NVPTXISD::Suld2DV2I32Zero: return "NVPTXISD::Suld2DV2I32Zero";
+ case NVPTXISD::Suld2DV2I64Zero: return "NVPTXISD::Suld2DV2I64Zero";
+ case NVPTXISD::Suld2DV4I8Zero: return "NVPTXISD::Suld2DV4I8Zero";
+ case NVPTXISD::Suld2DV4I16Zero: return "NVPTXISD::Suld2DV4I16Zero";
+ case NVPTXISD::Suld2DV4I32Zero: return "NVPTXISD::Suld2DV4I32Zero";
+
+ case NVPTXISD::Suld2DArrayI8Zero: return "NVPTXISD::Suld2DArrayI8Zero";
+ case NVPTXISD::Suld2DArrayI16Zero: return "NVPTXISD::Suld2DArrayI16Zero";
+ case NVPTXISD::Suld2DArrayI32Zero: return "NVPTXISD::Suld2DArrayI32Zero";
+ case NVPTXISD::Suld2DArrayI64Zero: return "NVPTXISD::Suld2DArrayI64Zero";
+ case NVPTXISD::Suld2DArrayV2I8Zero: return "NVPTXISD::Suld2DArrayV2I8Zero";
+ case NVPTXISD::Suld2DArrayV2I16Zero: return "NVPTXISD::Suld2DArrayV2I16Zero";
+ case NVPTXISD::Suld2DArrayV2I32Zero: return "NVPTXISD::Suld2DArrayV2I32Zero";
+ case NVPTXISD::Suld2DArrayV2I64Zero: return "NVPTXISD::Suld2DArrayV2I64Zero";
+ case NVPTXISD::Suld2DArrayV4I8Zero: return "NVPTXISD::Suld2DArrayV4I8Zero";
+ case NVPTXISD::Suld2DArrayV4I16Zero: return "NVPTXISD::Suld2DArrayV4I16Zero";
+ case NVPTXISD::Suld2DArrayV4I32Zero: return "NVPTXISD::Suld2DArrayV4I32Zero";
+
+ case NVPTXISD::Suld3DI8Zero: return "NVPTXISD::Suld3DI8Zero";
+ case NVPTXISD::Suld3DI16Zero: return "NVPTXISD::Suld3DI16Zero";
+ case NVPTXISD::Suld3DI32Zero: return "NVPTXISD::Suld3DI32Zero";
+ case NVPTXISD::Suld3DI64Zero: return "NVPTXISD::Suld3DI64Zero";
+ case NVPTXISD::Suld3DV2I8Zero: return "NVPTXISD::Suld3DV2I8Zero";
+ case NVPTXISD::Suld3DV2I16Zero: return "NVPTXISD::Suld3DV2I16Zero";
+ case NVPTXISD::Suld3DV2I32Zero: return "NVPTXISD::Suld3DV2I32Zero";
+ case NVPTXISD::Suld3DV2I64Zero: return "NVPTXISD::Suld3DV2I64Zero";
+ case NVPTXISD::Suld3DV4I8Zero: return "NVPTXISD::Suld3DV4I8Zero";
+ case NVPTXISD::Suld3DV4I16Zero: return "NVPTXISD::Suld3DV4I16Zero";
+ case NVPTXISD::Suld3DV4I32Zero: return "NVPTXISD::Suld3DV4I32Zero";
+ }
+}
+
+TargetLoweringBase::LegalizeTypeAction
+NVPTXTargetLowering::getPreferredVectorAction(EVT VT) const {
+ if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
+ return TypeSplitVector;
+
+ return TargetLoweringBase::getPreferredVectorAction(VT);
+}
+
+SDValue
+NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ Op = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
+ return DAG.getNode(NVPTXISD::Wrapper, dl, getPointerTy(), Op);
+}
+
+std::string
+NVPTXTargetLowering::getPrototype(Type *retTy, const ArgListTy &Args,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ unsigned retAlignment,
+ const ImmutableCallSite *CS) const {
+
+ bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
+ assert(isABI && "Non-ABI compilation is not supported");
+ if (!isABI)
+ return "";
+
+ std::stringstream O;
+ O << "prototype_" << uniqueCallSite << " : .callprototype ";
+
+ if (retTy->getTypeID() == Type::VoidTyID) {
+ O << "()";
+ } else {
+ O << "(";
+ if (retTy->isFloatingPointTy() || retTy->isIntegerTy()) {
+ unsigned size = 0;
+ if (const IntegerType *ITy = dyn_cast<IntegerType>(retTy)) {
+ size = ITy->getBitWidth();
+ if (size < 32)
+ size = 32;
+ } else {
+ assert(retTy->isFloatingPointTy() &&
+ "Floating point type expected here");
+ size = retTy->getPrimitiveSizeInBits();
+ }
+
+ O << ".param .b" << size << " _";
+ } else if (isa<PointerType>(retTy)) {
+ O << ".param .b" << getPointerTy().getSizeInBits() << " _";
+ } else {
+ if((retTy->getTypeID() == Type::StructTyID) ||
+ isa<VectorType>(retTy)) {
+ O << ".param .align "
+ << retAlignment
+ << " .b8 _["
+ << getDataLayout()->getTypeAllocSize(retTy) << "]";
+ } else {
+ assert(false && "Unknown return type");
+ }
+ }
+ O << ") ";
+ }
+ O << "_ (";
+
+ bool first = true;
+ MVT thePointerTy = getPointerTy();
+
+ unsigned OIdx = 0;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
+ Type *Ty = Args[i].Ty;
+ if (!first) {
+ O << ", ";
+ }
+ first = false;
+
+ if (Outs[OIdx].Flags.isByVal() == false) {
+ if (Ty->isAggregateType() || Ty->isVectorTy()) {
+ unsigned align = 0;
+ const CallInst *CallI = cast<CallInst>(CS->getInstruction());
+ const DataLayout *TD = getDataLayout();
+ // +1 because index 0 is reserved for return type alignment
+ if (!llvm::getAlign(*CallI, i + 1, align))
+ align = TD->getABITypeAlignment(Ty);
+ unsigned sz = TD->getTypeAllocSize(Ty);
+ O << ".param .align " << align << " .b8 ";
+ O << "_";
+ O << "[" << sz << "]";
+ // update the index for Outs
+ SmallVector<EVT, 16> vtparts;
+ ComputeValueVTs(*this, Ty, vtparts);
+ if (unsigned len = vtparts.size())
+ OIdx += len - 1;
+ continue;
+ }
+ // i8 types in IR will be i16 types in SDAG
+ assert((getValueType(Ty) == Outs[OIdx].VT ||
+ (getValueType(Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
+ "type mismatch between callee prototype and arguments");
+ // scalar type
+ unsigned sz = 0;
+ if (isa<IntegerType>(Ty)) {
+ sz = cast<IntegerType>(Ty)->getBitWidth();
+ if (sz < 32)
+ sz = 32;
+ } else if (isa<PointerType>(Ty))
+ sz = thePointerTy.getSizeInBits();
+ else
+ sz = Ty->getPrimitiveSizeInBits();
+ O << ".param .b" << sz << " ";
+ O << "_";
+ continue;
+ }
+ const PointerType *PTy = dyn_cast<PointerType>(Ty);
+ assert(PTy && "Param with byval attribute should be a pointer type");
+ Type *ETy = PTy->getElementType();
+
+ unsigned align = Outs[OIdx].Flags.getByValAlign();
+ unsigned sz = getDataLayout()->getTypeAllocSize(ETy);
+ O << ".param .align " << align << " .b8 ";
+ O << "_";
+ O << "[" << sz << "]";
+ }
+ O << ");";
+ return O.str();
+}
+
+unsigned
+NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
+ const ImmutableCallSite *CS,
+ Type *Ty,
+ unsigned Idx) const {
+ const DataLayout *TD = getDataLayout();
+ unsigned Align = 0;
+ const Value *DirectCallee = CS->getCalledFunction();
+
+ if (!DirectCallee) {
+ // We don't have a direct function symbol, but that may be because of
+ // constant cast instructions in the call.
+ const Instruction *CalleeI = CS->getInstruction();
+ assert(CalleeI && "Call target is not a function or derived value?");
+
+ // With bitcast'd call targets, the instruction will be the call
+ if (isa<CallInst>(CalleeI)) {
+ // Check if we have call alignment metadata
+ if (llvm::getAlign(*cast<CallInst>(CalleeI), Idx, Align))
+ return Align;
+
+ const Value *CalleeV = cast<CallInst>(CalleeI)->getCalledValue();
+ // Ignore any bitcast instructions
+ while(isa<ConstantExpr>(CalleeV)) {
+ const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
+ if (!CE->isCast())
+ break;
+ // Look through the bitcast
+ CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
+ }
+
+ // We have now looked past all of the bitcasts. Do we finally have a
+ // Function?
+ if (isa<Function>(CalleeV))
+ DirectCallee = CalleeV;
+ }
+ }
+
+ // Check for function alignment information if we found that the
+ // ultimate target is a Function
+ if (DirectCallee)
+ if (llvm::getAlign(*cast<Function>(DirectCallee), Idx, Align))
+ return Align;
+
+ // Call is indirect or alignment information is not available, fall back to
+ // the ABI type alignment
+ return TD->getABITypeAlignment(Ty);
+}
+
+SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ ArgListTy &Args = CLI.getArgs();
+ Type *retTy = CLI.RetTy;
+ ImmutableCallSite *CS = CLI.CS;
+
+ bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
+ assert(isABI && "Non-ABI compilation is not supported");
+ if (!isABI)
+ return Chain;
+ const DataLayout *TD = getDataLayout();
+ MachineFunction &MF = DAG.getMachineFunction();
+ const Function *F = MF.getFunction();
+
+ SDValue tempChain = Chain;
+ Chain =
+ DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(uniqueCallSite, true),
+ dl);
+ SDValue InFlag = Chain.getValue(1);
+
+ unsigned paramCount = 0;
+ // Args.size() and Outs.size() need not match.
+ // Outs.size() will be larger
+ // * if there is an aggregate argument with multiple fields (each field
+ // showing up separately in Outs)
+ // * if there is a vector argument with more than typical vector-length
+ // elements (generally if more than 4) where each vector element is
+ // individually present in Outs.
+ // So a different index should be used for indexing into Outs/OutVals.
+ // See similar issue in LowerFormalArguments.
+ unsigned OIdx = 0;
+ // Declare the .params or .reg need to pass values
+ // to the function
+ for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
+ EVT VT = Outs[OIdx].VT;
+ Type *Ty = Args[i].Ty;
+
+ if (Outs[OIdx].Flags.isByVal() == false) {
+ if (Ty->isAggregateType()) {
+ // aggregate
+ SmallVector<EVT, 16> vtparts;
+ SmallVector<uint64_t, 16> Offsets;
+ ComputePTXValueVTs(*this, Ty, vtparts, &Offsets, 0);
+
+ unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
+ // declare .param .align <align> .b8 .param<n>[<size>];
+ unsigned sz = TD->getTypeAllocSize(Ty);
+ SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue DeclareParamOps[] = { Chain, DAG.getConstant(align, MVT::i32),
+ DAG.getConstant(paramCount, MVT::i32),
+ DAG.getConstant(sz, MVT::i32), InFlag };
+ Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
+ DeclareParamOps);
+ InFlag = Chain.getValue(1);
+ for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
+ EVT elemtype = vtparts[j];
+ unsigned ArgAlign = GreatestCommonDivisor64(align, Offsets[j]);
+ if (elemtype.isInteger() && (sz < 8))
+ sz = 8;
+ SDValue StVal = OutVals[OIdx];
+ if (elemtype.getSizeInBits() < 16) {
+ StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
+ }
+ SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue CopyParamOps[] = { Chain,
+ DAG.getConstant(paramCount, MVT::i32),
+ DAG.getConstant(Offsets[j], MVT::i32),
+ StVal, InFlag };
+ Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
+ CopyParamVTs, CopyParamOps,
+ elemtype, MachinePointerInfo(),
+ ArgAlign);
+ InFlag = Chain.getValue(1);
+ ++OIdx;
+ }
+ if (vtparts.size() > 0)
+ --OIdx;
+ ++paramCount;
+ continue;
+ }
+ if (Ty->isVectorTy()) {
+ EVT ObjectVT = getValueType(Ty);
+ unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
+ // declare .param .align <align> .b8 .param<n>[<size>];
+ unsigned sz = TD->getTypeAllocSize(Ty);
+ SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue DeclareParamOps[] = { Chain, DAG.getConstant(align, MVT::i32),
+ DAG.getConstant(paramCount, MVT::i32),
+ DAG.getConstant(sz, MVT::i32), InFlag };
+ Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
+ DeclareParamOps);
+ InFlag = Chain.getValue(1);
+ unsigned NumElts = ObjectVT.getVectorNumElements();
+ EVT EltVT = ObjectVT.getVectorElementType();
+ EVT MemVT = EltVT;
+ bool NeedExtend = false;
+ if (EltVT.getSizeInBits() < 16) {
+ NeedExtend = true;
+ EltVT = MVT::i16;
+ }
+
+ // V1 store
+ if (NumElts == 1) {
+ SDValue Elt = OutVals[OIdx++];
+ if (NeedExtend)
+ Elt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt);
+
+ SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue CopyParamOps[] = { Chain,
+ DAG.getConstant(paramCount, MVT::i32),
+ DAG.getConstant(0, MVT::i32), Elt,
+ InFlag };
+ Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
+ CopyParamVTs, CopyParamOps,
+ MemVT, MachinePointerInfo());
+ InFlag = Chain.getValue(1);
+ } else if (NumElts == 2) {
+ SDValue Elt0 = OutVals[OIdx++];
+ SDValue Elt1 = OutVals[OIdx++];
+ if (NeedExtend) {
+ Elt0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt0);
+ Elt1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt1);
+ }
+
+ SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue CopyParamOps[] = { Chain,
+ DAG.getConstant(paramCount, MVT::i32),
+ DAG.getConstant(0, MVT::i32), Elt0, Elt1,
+ InFlag };
+ Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParamV2, dl,
+ CopyParamVTs, CopyParamOps,
+ MemVT, MachinePointerInfo());
+ InFlag = Chain.getValue(1);
+ } else {
+ unsigned curOffset = 0;
+ // V4 stores
+ // We have at least 4 elements (<3 x Ty> expands to 4 elements) and
+ // the
+ // vector will be expanded to a power of 2 elements, so we know we can
+ // always round up to the next multiple of 4 when creating the vector
+ // stores.
+ // e.g. 4 elem => 1 st.v4
+ // 6 elem => 2 st.v4
+ // 8 elem => 2 st.v4
+ // 11 elem => 3 st.v4
+ unsigned VecSize = 4;
+ if (EltVT.getSizeInBits() == 64)
+ VecSize = 2;
+
+ // This is potentially only part of a vector, so assume all elements
+ // are packed together.
+ unsigned PerStoreOffset = MemVT.getStoreSizeInBits() / 8 * VecSize;
+
+ for (unsigned i = 0; i < NumElts; i += VecSize) {
+ // Get values
+ SDValue StoreVal;
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(DAG.getConstant(paramCount, MVT::i32));
+ Ops.push_back(DAG.getConstant(curOffset, MVT::i32));
+
+ unsigned Opc = NVPTXISD::StoreParamV2;
+
+ StoreVal = OutVals[OIdx++];
+ if (NeedExtend)
+ StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
+ Ops.push_back(StoreVal);
+
+ if (i + 1 < NumElts) {
+ StoreVal = OutVals[OIdx++];
+ if (NeedExtend)
+ StoreVal =
+ DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
+ } else {
+ StoreVal = DAG.getUNDEF(EltVT);
+ }
+ Ops.push_back(StoreVal);
+
+ if (VecSize == 4) {
+ Opc = NVPTXISD::StoreParamV4;
+ if (i + 2 < NumElts) {
+ StoreVal = OutVals[OIdx++];
+ if (NeedExtend)
+ StoreVal =
+ DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
+ } else {
+ StoreVal = DAG.getUNDEF(EltVT);
+ }
+ Ops.push_back(StoreVal);
+
+ if (i + 3 < NumElts) {
+ StoreVal = OutVals[OIdx++];
+ if (NeedExtend)
+ StoreVal =
+ DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
+ } else {
+ StoreVal = DAG.getUNDEF(EltVT);
+ }
+ Ops.push_back(StoreVal);
+ }
+
+ Ops.push_back(InFlag);
+
+ SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getMemIntrinsicNode(Opc, dl, CopyParamVTs, Ops,
+ MemVT, MachinePointerInfo());
+ InFlag = Chain.getValue(1);
+ curOffset += PerStoreOffset;
+ }
+ }
+ ++paramCount;
+ --OIdx;
+ continue;
+ }
+ // Plain scalar
+ // for ABI, declare .param .b<size> .param<n>;
+ unsigned sz = VT.getSizeInBits();
+ bool needExtend = false;
+ if (VT.isInteger()) {
+ if (sz < 16)
+ needExtend = true;
+ if (sz < 32)
+ sz = 32;
+ }
+ SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue DeclareParamOps[] = { Chain,
+ DAG.getConstant(paramCount, MVT::i32),
+ DAG.getConstant(sz, MVT::i32),
+ DAG.getConstant(0, MVT::i32), InFlag };
+ Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
+ DeclareParamOps);
+ InFlag = Chain.getValue(1);
+ SDValue OutV = OutVals[OIdx];
+ if (needExtend) {
+ // zext/sext i1 to i16
+ unsigned opc = ISD::ZERO_EXTEND;
+ if (Outs[OIdx].Flags.isSExt())
+ opc = ISD::SIGN_EXTEND;
+ OutV = DAG.getNode(opc, dl, MVT::i16, OutV);
+ }
+ SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32),
+ DAG.getConstant(0, MVT::i32), OutV, InFlag };
+
+ unsigned opcode = NVPTXISD::StoreParam;
+ if (Outs[OIdx].Flags.isZExt())
+ opcode = NVPTXISD::StoreParamU32;
+ else if (Outs[OIdx].Flags.isSExt())
+ opcode = NVPTXISD::StoreParamS32;
+ Chain = DAG.getMemIntrinsicNode(opcode, dl, CopyParamVTs, CopyParamOps,
+ VT, MachinePointerInfo());
+
+ InFlag = Chain.getValue(1);
+ ++paramCount;
+ continue;
+ }
+ // struct or vector
+ SmallVector<EVT, 16> vtparts;
+ SmallVector<uint64_t, 16> Offsets;
+ const PointerType *PTy = dyn_cast<PointerType>(Args[i].Ty);
+ assert(PTy && "Type of a byval parameter should be pointer");
+ ComputePTXValueVTs(*this, PTy->getElementType(), vtparts, &Offsets, 0);
+
+ // declare .param .align <align> .b8 .param<n>[<size>];
+ unsigned sz = Outs[OIdx].Flags.getByValSize();
+ SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ unsigned ArgAlign = Outs[OIdx].Flags.getByValAlign();
+ // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
+ // so we don't need to worry about natural alignment or not.
+ // See TargetLowering::LowerCallTo().
+ SDValue DeclareParamOps[] = {
+ Chain, DAG.getConstant(Outs[OIdx].Flags.getByValAlign(), MVT::i32),
+ DAG.getConstant(paramCount, MVT::i32), DAG.getConstant(sz, MVT::i32),
+ InFlag
+ };
+ Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
+ DeclareParamOps);
+ InFlag = Chain.getValue(1);
+ for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
+ EVT elemtype = vtparts[j];
+ int curOffset = Offsets[j];
+ unsigned PartAlign = GreatestCommonDivisor64(ArgAlign, curOffset);
+ SDValue srcAddr =
+ DAG.getNode(ISD::ADD, dl, getPointerTy(), OutVals[OIdx],
+ DAG.getConstant(curOffset, getPointerTy()));
+ SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
+ MachinePointerInfo(), false, false, false,
+ PartAlign);
+ if (elemtype.getSizeInBits() < 16) {
+ theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
+ }
+ SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32),
+ DAG.getConstant(curOffset, MVT::i32), theVal,
+ InFlag };
+ Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
+ CopyParamOps, elemtype,
+ MachinePointerInfo());
+
+ InFlag = Chain.getValue(1);
+ }
+ ++paramCount;
+ }
+
+ GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
+ unsigned retAlignment = 0;
+
+ // Handle Result
+ if (Ins.size() > 0) {
+ SmallVector<EVT, 16> resvtparts;
+ ComputeValueVTs(*this, retTy, resvtparts);
+
+ // Declare
+ // .param .align 16 .b8 retval0[<size-in-bytes>], or
+ // .param .b<size-in-bits> retval0
+ unsigned resultsz = TD->getTypeAllocSizeInBits(retTy);
+ if (retTy->isSingleValueType()) {
+ // Scalar needs to be at least 32bit wide
+ if (resultsz < 32)
+ resultsz = 32;
+ SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, MVT::i32),
+ DAG.getConstant(resultsz, MVT::i32),
+ DAG.getConstant(0, MVT::i32), InFlag };
+ Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
+ DeclareRetOps);
+ InFlag = Chain.getValue(1);
+ } else {
+ retAlignment = getArgumentAlignment(Callee, CS, retTy, 0);
+ SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue DeclareRetOps[] = { Chain,
+ DAG.getConstant(retAlignment, MVT::i32),
+ DAG.getConstant(resultsz / 8, MVT::i32),
+ DAG.getConstant(0, MVT::i32), InFlag };
+ Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
+ DeclareRetOps);
+ InFlag = Chain.getValue(1);
+ }
+ }
+
+ if (!Func) {
+ // This is indirect function call case : PTX requires a prototype of the
+ // form
+ // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
+ // to be emitted, and the label has to used as the last arg of call
+ // instruction.
+ // The prototype is embedded in a string and put as the operand for a
+ // CallPrototype SDNode which will print out to the value of the string.
+ SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ std::string Proto = getPrototype(retTy, Args, Outs, retAlignment, CS);
+ const char *ProtoStr =
+ nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
+ SDValue ProtoOps[] = {
+ Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
+ };
+ Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
+ InFlag = Chain.getValue(1);
+ }
+ // Op to just print "call"
+ SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue PrintCallOps[] = {
+ Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, MVT::i32), InFlag
+ };
+ Chain = DAG.getNode(Func ? (NVPTXISD::PrintCallUni) : (NVPTXISD::PrintCall),
+ dl, PrintCallVTs, PrintCallOps);
+ InFlag = Chain.getValue(1);
+
+ // Ops to print out the function name
+ SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue CallVoidOps[] = { Chain, Callee, InFlag };
+ Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
+ InFlag = Chain.getValue(1);
+
+ // Ops to print out the param list
+ SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue CallArgBeginOps[] = { Chain, InFlag };
+ Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
+ CallArgBeginOps);
+ InFlag = Chain.getValue(1);
+
+ for (unsigned i = 0, e = paramCount; i != e; ++i) {
+ unsigned opcode;
+ if (i == (e - 1))
+ opcode = NVPTXISD::LastCallArg;
+ else
+ opcode = NVPTXISD::CallArg;
+ SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue CallArgOps[] = { Chain, DAG.getConstant(1, MVT::i32),
+ DAG.getConstant(i, MVT::i32), InFlag };
+ Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
+ InFlag = Chain.getValue(1);
+ }
+ SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue CallArgEndOps[] = { Chain, DAG.getConstant(Func ? 1 : 0, MVT::i32),
+ InFlag };
+ Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
+ InFlag = Chain.getValue(1);
+
+ if (!Func) {
+ SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue PrototypeOps[] = { Chain, DAG.getConstant(uniqueCallSite, MVT::i32),
+ InFlag };
+ Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Generate loads from param memory/moves from registers for result
+ if (Ins.size() > 0) {
+ if (retTy && retTy->isVectorTy()) {
+ EVT ObjectVT = getValueType(retTy);
+ unsigned NumElts = ObjectVT.getVectorNumElements();
+ EVT EltVT = ObjectVT.getVectorElementType();
+ assert(nvTM->getTargetLowering()->getNumRegisters(F->getContext(),
+ ObjectVT) == NumElts &&
+ "Vector was not scalarized");
+ unsigned sz = EltVT.getSizeInBits();
+ bool needTruncate = sz < 8 ? true : false;
+
+ if (NumElts == 1) {
+ // Just a simple load
+ SmallVector<EVT, 4> LoadRetVTs;
+ if (EltVT == MVT::i1 || EltVT == MVT::i8) {
+ // If loading i1/i8 result, generate
+ // load.b8 i16
+ // if i1
+ // trunc i16 to i1
+ LoadRetVTs.push_back(MVT::i16);
+ } else
+ LoadRetVTs.push_back(EltVT);
+ LoadRetVTs.push_back(MVT::Other);
+ LoadRetVTs.push_back(MVT::Glue);
+ SmallVector<SDValue, 4> LoadRetOps;
+ LoadRetOps.push_back(Chain);
+ LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
+ LoadRetOps.push_back(DAG.getConstant(0, MVT::i32));
+ LoadRetOps.push_back(InFlag);
+ SDValue retval = DAG.getMemIntrinsicNode(
+ NVPTXISD::LoadParam, dl,
+ DAG.getVTList(LoadRetVTs), LoadRetOps, EltVT, MachinePointerInfo());
+ Chain = retval.getValue(1);
+ InFlag = retval.getValue(2);
+ SDValue Ret0 = retval;
+ if (needTruncate)
+ Ret0 = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Ret0);
+ InVals.push_back(Ret0);
+ } else if (NumElts == 2) {
+ // LoadV2
+ SmallVector<EVT, 4> LoadRetVTs;
+ if (EltVT == MVT::i1 || EltVT == MVT::i8) {
+ // If loading i1/i8 result, generate
+ // load.b8 i16
+ // if i1
+ // trunc i16 to i1
+ LoadRetVTs.push_back(MVT::i16);
+ LoadRetVTs.push_back(MVT::i16);
+ } else {
+ LoadRetVTs.push_back(EltVT);
+ LoadRetVTs.push_back(EltVT);
+ }
+ LoadRetVTs.push_back(MVT::Other);
+ LoadRetVTs.push_back(MVT::Glue);
+ SmallVector<SDValue, 4> LoadRetOps;
+ LoadRetOps.push_back(Chain);
+ LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
+ LoadRetOps.push_back(DAG.getConstant(0, MVT::i32));
+ LoadRetOps.push_back(InFlag);
+ SDValue retval = DAG.getMemIntrinsicNode(
+ NVPTXISD::LoadParamV2, dl,
+ DAG.getVTList(LoadRetVTs), LoadRetOps, EltVT, MachinePointerInfo());
+ Chain = retval.getValue(2);
+ InFlag = retval.getValue(3);
+ SDValue Ret0 = retval.getValue(0);
+ SDValue Ret1 = retval.getValue(1);
+ if (needTruncate) {
+ Ret0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret0);
+ InVals.push_back(Ret0);
+ Ret1 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret1);
+ InVals.push_back(Ret1);
+ } else {
+ InVals.push_back(Ret0);
+ InVals.push_back(Ret1);
+ }
+ } else {
+ // Split into N LoadV4
+ unsigned Ofst = 0;
+ unsigned VecSize = 4;
+ unsigned Opc = NVPTXISD::LoadParamV4;
+ if (EltVT.getSizeInBits() == 64) {
+ VecSize = 2;
+ Opc = NVPTXISD::LoadParamV2;
+ }
+ EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
+ for (unsigned i = 0; i < NumElts; i += VecSize) {
+ SmallVector<EVT, 8> LoadRetVTs;
+ if (EltVT == MVT::i1 || EltVT == MVT::i8) {
+ // If loading i1/i8 result, generate
+ // load.b8 i16
+ // if i1
+ // trunc i16 to i1
+ for (unsigned j = 0; j < VecSize; ++j)
+ LoadRetVTs.push_back(MVT::i16);
+ } else {
+ for (unsigned j = 0; j < VecSize; ++j)
+ LoadRetVTs.push_back(EltVT);
+ }
+ LoadRetVTs.push_back(MVT::Other);
+ LoadRetVTs.push_back(MVT::Glue);
+ SmallVector<SDValue, 4> LoadRetOps;
+ LoadRetOps.push_back(Chain);
+ LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
+ LoadRetOps.push_back(DAG.getConstant(Ofst, MVT::i32));
+ LoadRetOps.push_back(InFlag);
+ SDValue retval = DAG.getMemIntrinsicNode(
+ Opc, dl, DAG.getVTList(LoadRetVTs),
+ LoadRetOps, EltVT, MachinePointerInfo());
+ if (VecSize == 2) {
+ Chain = retval.getValue(2);
+ InFlag = retval.getValue(3);
+ } else {
+ Chain = retval.getValue(4);
+ InFlag = retval.getValue(5);
+ }
+
+ for (unsigned j = 0; j < VecSize; ++j) {
+ if (i + j >= NumElts)
+ break;
+ SDValue Elt = retval.getValue(j);
+ if (needTruncate)
+ Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
+ InVals.push_back(Elt);
+ }
+ Ofst += TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
+ }
+ }
+ } else {
+ SmallVector<EVT, 16> VTs;
+ SmallVector<uint64_t, 16> Offsets;
+ ComputePTXValueVTs(*this, retTy, VTs, &Offsets, 0);
+ assert(VTs.size() == Ins.size() && "Bad value decomposition");
+ unsigned RetAlign = getArgumentAlignment(Callee, CS, retTy, 0);
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ unsigned sz = VTs[i].getSizeInBits();
+ unsigned AlignI = GreatestCommonDivisor64(RetAlign, Offsets[i]);
+ bool needTruncate = sz < 8 ? true : false;
+ if (VTs[i].isInteger() && (sz < 8))
+ sz = 8;
+
+ SmallVector<EVT, 4> LoadRetVTs;
+ EVT TheLoadType = VTs[i];
+ if (retTy->isIntegerTy() &&
+ TD->getTypeAllocSizeInBits(retTy) < 32) {
+ // This is for integer types only, and specifically not for
+ // aggregates.
+ LoadRetVTs.push_back(MVT::i32);
+ TheLoadType = MVT::i32;
+ } else if (sz < 16) {
+ // If loading i1/i8 result, generate
+ // load i8 (-> i16)
+ // trunc i16 to i1/i8
+ LoadRetVTs.push_back(MVT::i16);
+ } else
+ LoadRetVTs.push_back(Ins[i].VT);
+ LoadRetVTs.push_back(MVT::Other);
+ LoadRetVTs.push_back(MVT::Glue);
+
+ SmallVector<SDValue, 4> LoadRetOps;
+ LoadRetOps.push_back(Chain);
+ LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
+ LoadRetOps.push_back(DAG.getConstant(Offsets[i], MVT::i32));
+ LoadRetOps.push_back(InFlag);
+ SDValue retval = DAG.getMemIntrinsicNode(
+ NVPTXISD::LoadParam, dl,
+ DAG.getVTList(LoadRetVTs), LoadRetOps,
+ TheLoadType, MachinePointerInfo(), AlignI);
+ Chain = retval.getValue(1);
+ InFlag = retval.getValue(2);
+ SDValue Ret0 = retval.getValue(0);
+ if (needTruncate)
+ Ret0 = DAG.getNode(ISD::TRUNCATE, dl, Ins[i].VT, Ret0);
+ InVals.push_back(Ret0);
+ }
+ }
+ }
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(uniqueCallSite, true),
+ DAG.getIntPtrConstant(uniqueCallSite + 1, true),
+ InFlag, dl);
+ uniqueCallSite++;
+
+ // set isTailCall to false for now, until we figure out how to express
+ // tail call optimization in PTX
+ isTailCall = false;
+ return Chain;
+}
+
+// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
+// (see LegalizeDAG.cpp). This is slow and uses local memory.
+// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
+SDValue
+NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
+ SDNode *Node = Op.getNode();
+ SDLoc dl(Node);
+ SmallVector<SDValue, 8> Ops;
+ unsigned NumOperands = Node->getNumOperands();
+ for (unsigned i = 0; i < NumOperands; ++i) {
+ SDValue SubOp = Node->getOperand(i);
+ EVT VVT = SubOp.getNode()->getValueType(0);
+ EVT EltVT = VVT.getVectorElementType();
+ unsigned NumSubElem = VVT.getVectorNumElements();
+ for (unsigned j = 0; j < NumSubElem; ++j) {
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
+ DAG.getIntPtrConstant(j)));
+ }
+ }
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Ops);
+}
+
+/// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
+/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
+/// amount, or
+/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
+/// amount.
+SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
+
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
+
+ if (VTBits == 32 && nvptxSubtarget.getSmVersion() >= 35) {
+
+ // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
+ // {dHi, dLo} = {aHi, aLo} >> Amt
+ // dHi = aHi >> Amt
+ // dLo = shf.r.clamp aLo, aHi, Amt
+
+ SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
+ SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
+ ShAmt);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ else {
+
+ // {dHi, dLo} = {aHi, aLo} >> Amt
+ // - if (Amt>=size) then
+ // dLo = aHi >> (Amt-size)
+ // dHi = aHi >> Amt (this is either all 0 or all 1)
+ // else
+ // dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
+ // dHi = aHi >> Amt
+
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
+ DAG.getConstant(VTBits, MVT::i32), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
+ DAG.getConstant(VTBits, MVT::i32));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
+
+ SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
+ DAG.getConstant(VTBits, MVT::i32), ISD::SETGE);
+ SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
+ SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+ }
+}
+
+/// LowerShiftLeftParts - Lower SHL_PARTS, which
+/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
+/// amount, or
+/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
+/// amount.
+SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ assert(Op.getOpcode() == ISD::SHL_PARTS);
+
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+
+ if (VTBits == 32 && nvptxSubtarget.getSmVersion() >= 35) {
+
+ // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
+ // {dHi, dLo} = {aHi, aLo} << Amt
+ // dHi = shf.l.clamp aLo, aHi, Amt
+ // dLo = aLo << Amt
+
+ SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
+ ShAmt);
+ SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ else {
+
+ // {dHi, dLo} = {aHi, aLo} << Amt
+ // - if (Amt>=size) then
+ // dLo = aLo << Amt (all 0)
+ // dLo = aLo << (Amt-size)
+ // else
+ // dLo = aLo << Amt
+ // dHi = (aHi << Amt) | (aLo >> (size-Amt))
+
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
+ DAG.getConstant(VTBits, MVT::i32), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
+ DAG.getConstant(VTBits, MVT::i32));
+ SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
+
+ SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
+ DAG.getConstant(VTBits, MVT::i32), ISD::SETGE);
+ SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
+ SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+ }
+}
+
+SDValue
+NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ case ISD::RETURNADDR:
+ return SDValue();
+ case ISD::FRAMEADDR:
+ return SDValue();
+ case ISD::GlobalAddress:
+ return LowerGlobalAddress(Op, DAG);
+ case ISD::INTRINSIC_W_CHAIN:
+ return Op;
+ case ISD::BUILD_VECTOR:
+ case ISD::EXTRACT_SUBVECTOR:
+ return Op;
+ case ISD::CONCAT_VECTORS:
+ return LowerCONCAT_VECTORS(Op, DAG);
+ case ISD::STORE:
+ return LowerSTORE(Op, DAG);
+ case ISD::LOAD:
+ return LowerLOAD(Op, DAG);
+ case ISD::SHL_PARTS:
+ return LowerShiftLeftParts(Op, DAG);
+ case ISD::SRA_PARTS:
+ case ISD::SRL_PARTS:
+ return LowerShiftRightParts(Op, DAG);
+ default:
+ llvm_unreachable("Custom lowering not defined for operation");
+ }
+}
+
+SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ if (Op.getValueType() == MVT::i1)
+ return LowerLOADi1(Op, DAG);
+ else
+ return SDValue();
+}
+
+// v = ld i1* addr
+// =>
+// v1 = ld i8* addr (-> i16)
+// v = trunc i16 to i1
+SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
+ SDNode *Node = Op.getNode();
+ LoadSDNode *LD = cast<LoadSDNode>(Node);
+ SDLoc dl(Node);
+ assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
+ assert(Node->getValueType(0) == MVT::i1 &&
+ "Custom lowering for i1 load only");
+ SDValue newLD =
+ DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
+ LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(),
+ LD->isInvariant(), LD->getAlignment());
+ SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
+ // The legalizer (the caller) is expecting two values from the legalized
+ // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
+ // in LegalizeDAG.cpp which also uses MergeValues.
+ SDValue Ops[] = { result, LD->getChain() };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
+ EVT ValVT = Op.getOperand(1).getValueType();
+ if (ValVT == MVT::i1)
+ return LowerSTOREi1(Op, DAG);
+ else if (ValVT.isVector())
+ return LowerSTOREVector(Op, DAG);
+ else
+ return SDValue();
+}
+
+SDValue
+NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
+ SDNode *N = Op.getNode();
+ SDValue Val = N->getOperand(1);
+ SDLoc DL(N);
+ EVT ValVT = Val.getValueType();
+
+ if (ValVT.isVector()) {
+ // We only handle "native" vector sizes for now, e.g. <4 x double> is not
+ // legal. We can (and should) split that into 2 stores of <2 x double> here
+ // but I'm leaving that as a TODO for now.
+ if (!ValVT.isSimple())
+ return SDValue();
+ switch (ValVT.getSimpleVT().SimpleTy) {
+ default:
+ return SDValue();
+ case MVT::v2i8:
+ case MVT::v2i16:
+ case MVT::v2i32:
+ case MVT::v2i64:
+ case MVT::v2f32:
+ case MVT::v2f64:
+ case MVT::v4i8:
+ case MVT::v4i16:
+ case MVT::v4i32:
+ case MVT::v4f32:
+ // This is a "native" vector type
+ break;
+ }
+
+ MemSDNode *MemSD = cast<MemSDNode>(N);
+ const DataLayout *TD = getDataLayout();
+
+ unsigned Align = MemSD->getAlignment();
+ unsigned PrefAlign =
+ TD->getPrefTypeAlignment(ValVT.getTypeForEVT(*DAG.getContext()));
+ if (Align < PrefAlign) {
+ // This store is not sufficiently aligned, so bail out and let this vector
+ // store be scalarized. Note that we may still be able to emit smaller
+ // vector stores. For example, if we are storing a <4 x float> with an
+ // alignment of 8, this check will fail but the legalizer will try again
+ // with 2 x <2 x float>, which will succeed with an alignment of 8.
+ return SDValue();
+ }
+
+ unsigned Opcode = 0;
+ EVT EltVT = ValVT.getVectorElementType();
+ unsigned NumElts = ValVT.getVectorNumElements();
+
+ // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
+ // Therefore, we must ensure the type is legal. For i1 and i8, we set the
+ // stored type to i16 and propagate the "real" type as the memory type.
+ bool NeedExt = false;
+ if (EltVT.getSizeInBits() < 16)
+ NeedExt = true;
+
+ switch (NumElts) {
+ default:
+ return SDValue();
+ case 2:
+ Opcode = NVPTXISD::StoreV2;
+ break;
+ case 4: {
+ Opcode = NVPTXISD::StoreV4;
+ break;
+ }
+ }
+
+ SmallVector<SDValue, 8> Ops;
+
+ // First is the chain
+ Ops.push_back(N->getOperand(0));
+
+ // Then the split values
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
+ DAG.getIntPtrConstant(i));
+ if (NeedExt)
+ ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
+ Ops.push_back(ExtVal);
+ }
+
+ // Then any remaining arguments
+ for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
+ Ops.push_back(N->getOperand(i));
+ }
+
+ SDValue NewSt = DAG.getMemIntrinsicNode(
+ Opcode, DL, DAG.getVTList(MVT::Other), Ops,
+ MemSD->getMemoryVT(), MemSD->getMemOperand());
+
+ //return DCI.CombineTo(N, NewSt, true);
+ return NewSt;
+ }
+
+ return SDValue();
+}
+
+// st i1 v, addr
+// =>
+// v1 = zxt v to i16
+// st.u8 i16, addr
+SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
+ SDNode *Node = Op.getNode();
+ SDLoc dl(Node);
+ StoreSDNode *ST = cast<StoreSDNode>(Node);
+ SDValue Tmp1 = ST->getChain();
+ SDValue Tmp2 = ST->getBasePtr();
+ SDValue Tmp3 = ST->getValue();
+ assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
+ unsigned Alignment = ST->getAlignment();
+ bool isVolatile = ST->isVolatile();
+ bool isNonTemporal = ST->isNonTemporal();
+ Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
+ SDValue Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
+ ST->getPointerInfo(), MVT::i8, isNonTemporal,
+ isVolatile, Alignment);
+ return Result;
+}
+
+SDValue NVPTXTargetLowering::getExtSymb(SelectionDAG &DAG, const char *inname,
+ int idx, EVT v) const {
+ std::string *name = nvTM->getManagedStrPool()->getManagedString(inname);
+ std::stringstream suffix;
+ suffix << idx;
+ *name += suffix.str();
+ return DAG.getTargetExternalSymbol(name->c_str(), v);
+}
+
+SDValue
+NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
+ std::string ParamSym;
+ raw_string_ostream ParamStr(ParamSym);
+
+ ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
+ ParamStr.flush();
+
+ std::string *SavedStr =
+ nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
+ return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
+}
+
+SDValue NVPTXTargetLowering::getParamHelpSymbol(SelectionDAG &DAG, int idx) {
+ return getExtSymb(DAG, ".HLPPARAM", idx);
+}
+
+// Check to see if the kernel argument is image*_t or sampler_t
+
+bool llvm::isImageOrSamplerVal(const Value *arg, const Module *context) {
+ static const char *const specialTypes[] = { "struct._image2d_t",
+ "struct._image3d_t",
+ "struct._sampler_t" };
+
+ const Type *Ty = arg->getType();
+ const PointerType *PTy = dyn_cast<PointerType>(Ty);
+
+ if (!PTy)
+ return false;
+
+ if (!context)
+ return false;
+
+ const StructType *STy = dyn_cast<StructType>(PTy->getElementType());
+ const std::string TypeName = STy && !STy->isLiteral() ? STy->getName() : "";
+
+ for (int i = 0, e = array_lengthof(specialTypes); i != e; ++i)
+ if (TypeName == specialTypes[i])
+ return true;
+
+ return false;
+}
+
+SDValue NVPTXTargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ const DataLayout *TD = getDataLayout();
+
+ const Function *F = MF.getFunction();
+ const AttributeSet &PAL = F->getAttributes();
+ const TargetLowering *TLI = DAG.getTarget().getTargetLowering();
+
+ SDValue Root = DAG.getRoot();
+ std::vector<SDValue> OutChains;
+
+ bool isKernel = llvm::isKernelFunction(*F);
+ bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
+ assert(isABI && "Non-ABI compilation is not supported");
+ if (!isABI)
+ return Chain;
+
+ std::vector<Type *> argTypes;
+ std::vector<const Argument *> theArgs;
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I) {
+ theArgs.push_back(I);
+ argTypes.push_back(I->getType());
+ }
+ // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
+ // Ins.size() will be larger
+ // * if there is an aggregate argument with multiple fields (each field
+ // showing up separately in Ins)
+ // * if there is a vector argument with more than typical vector-length
+ // elements (generally if more than 4) where each vector element is
+ // individually present in Ins.
+ // So a different index should be used for indexing into Ins.
+ // See similar issue in LowerCall.
+ unsigned InsIdx = 0;
+
+ int idx = 0;
+ for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
+ Type *Ty = argTypes[i];
+
+ // If the kernel argument is image*_t or sampler_t, convert it to
+ // a i32 constant holding the parameter position. This can later
+ // matched in the AsmPrinter to output the correct mangled name.
+ if (isImageOrSamplerVal(
+ theArgs[i],
+ (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
+ : nullptr))) {
+ assert(isKernel && "Only kernels can have image/sampler params");
+ InVals.push_back(DAG.getConstant(i + 1, MVT::i32));
+ continue;
+ }
+
+ if (theArgs[i]->use_empty()) {
+ // argument is dead
+ if (Ty->isAggregateType()) {
+ SmallVector<EVT, 16> vtparts;
+
+ ComputePTXValueVTs(*this, Ty, vtparts);
+ assert(vtparts.size() > 0 && "empty aggregate type not expected");
+ for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
+ ++parti) {
+ InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
+ ++InsIdx;
+ }
+ if (vtparts.size() > 0)
+ --InsIdx;
+ continue;
+ }
+ if (Ty->isVectorTy()) {
+ EVT ObjectVT = getValueType(Ty);
+ unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
+ for (unsigned parti = 0; parti < NumRegs; ++parti) {
+ InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
+ ++InsIdx;
+ }
+ if (NumRegs > 0)
+ --InsIdx;
+ continue;
+ }
+ InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
+ continue;
+ }
+
+ // In the following cases, assign a node order of "idx+1"
+ // to newly created nodes. The SDNodes for params have to
+ // appear in the same order as their order of appearance
+ // in the original function. "idx+1" holds that order.
+ if (PAL.hasAttribute(i + 1, Attribute::ByVal) == false) {
+ if (Ty->isAggregateType()) {
+ SmallVector<EVT, 16> vtparts;
+ SmallVector<uint64_t, 16> offsets;
+
+ // NOTE: Here, we lose the ability to issue vector loads for vectors
+ // that are a part of a struct. This should be investigated in the
+ // future.
+ ComputePTXValueVTs(*this, Ty, vtparts, &offsets, 0);
+ assert(vtparts.size() > 0 && "empty aggregate type not expected");
+ bool aggregateIsPacked = false;
+ if (StructType *STy = llvm::dyn_cast<StructType>(Ty))
+ aggregateIsPacked = STy->isPacked();
+
+ SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
+ for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
+ ++parti) {
+ EVT partVT = vtparts[parti];
+ Value *srcValue = Constant::getNullValue(
+ PointerType::get(partVT.getTypeForEVT(F->getContext()),
+ llvm::ADDRESS_SPACE_PARAM));
+ SDValue srcAddr =
+ DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
+ DAG.getConstant(offsets[parti], getPointerTy()));
+ unsigned partAlign =
+ aggregateIsPacked ? 1
+ : TD->getABITypeAlignment(
+ partVT.getTypeForEVT(F->getContext()));
+ SDValue p;
+ if (Ins[InsIdx].VT.getSizeInBits() > partVT.getSizeInBits()) {
+ ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ?
+ ISD::SEXTLOAD : ISD::ZEXTLOAD;
+ p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, srcAddr,
+ MachinePointerInfo(srcValue), partVT, false,
+ false, partAlign);
+ } else {
+ p = DAG.getLoad(partVT, dl, Root, srcAddr,
+ MachinePointerInfo(srcValue), false, false, false,
+ partAlign);
+ }
+ if (p.getNode())
+ p.getNode()->setIROrder(idx + 1);
+ InVals.push_back(p);
+ ++InsIdx;
+ }
+ if (vtparts.size() > 0)
+ --InsIdx;
+ continue;
+ }
+ if (Ty->isVectorTy()) {
+ EVT ObjectVT = getValueType(Ty);
+ SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
+ unsigned NumElts = ObjectVT.getVectorNumElements();
+ assert(TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts &&
+ "Vector was not scalarized");
+ unsigned Ofst = 0;
+ EVT EltVT = ObjectVT.getVectorElementType();
+
+ // V1 load
+ // f32 = load ...
+ if (NumElts == 1) {
+ // We only have one element, so just directly load it
+ Value *SrcValue = Constant::getNullValue(PointerType::get(
+ EltVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
+ SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
+ DAG.getConstant(Ofst, getPointerTy()));
+ SDValue P = DAG.getLoad(
+ EltVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
+ false, true,
+ TD->getABITypeAlignment(EltVT.getTypeForEVT(F->getContext())));
+ if (P.getNode())
+ P.getNode()->setIROrder(idx + 1);
+
+ if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
+ P = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, P);
+ InVals.push_back(P);
+ Ofst += TD->getTypeAllocSize(EltVT.getTypeForEVT(F->getContext()));
+ ++InsIdx;
+ } else if (NumElts == 2) {
+ // V2 load
+ // f32,f32 = load ...
+ EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, 2);
+ Value *SrcValue = Constant::getNullValue(PointerType::get(
+ VecVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
+ SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
+ DAG.getConstant(Ofst, getPointerTy()));
+ SDValue P = DAG.getLoad(
+ VecVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
+ false, true,
+ TD->getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
+ if (P.getNode())
+ P.getNode()->setIROrder(idx + 1);
+
+ SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
+ DAG.getIntPtrConstant(0));
+ SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
+ DAG.getIntPtrConstant(1));
+
+ if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits()) {
+ Elt0 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt0);
+ Elt1 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt1);
+ }
+
+ InVals.push_back(Elt0);
+ InVals.push_back(Elt1);
+ Ofst += TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
+ InsIdx += 2;
+ } else {
+ // V4 loads
+ // We have at least 4 elements (<3 x Ty> expands to 4 elements) and
+ // the
+ // vector will be expanded to a power of 2 elements, so we know we can
+ // always round up to the next multiple of 4 when creating the vector
+ // loads.
+ // e.g. 4 elem => 1 ld.v4
+ // 6 elem => 2 ld.v4
+ // 8 elem => 2 ld.v4
+ // 11 elem => 3 ld.v4
+ unsigned VecSize = 4;
+ if (EltVT.getSizeInBits() == 64) {
+ VecSize = 2;
+ }
+ EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
+ for (unsigned i = 0; i < NumElts; i += VecSize) {
+ Value *SrcValue = Constant::getNullValue(
+ PointerType::get(VecVT.getTypeForEVT(F->getContext()),
+ llvm::ADDRESS_SPACE_PARAM));
+ SDValue SrcAddr =
+ DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
+ DAG.getConstant(Ofst, getPointerTy()));
+ SDValue P = DAG.getLoad(
+ VecVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
+ false, true,
+ TD->getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
+ if (P.getNode())
+ P.getNode()->setIROrder(idx + 1);
+
+ for (unsigned j = 0; j < VecSize; ++j) {
+ if (i + j >= NumElts)
+ break;
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
+ DAG.getIntPtrConstant(j));
+ if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
+ Elt = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt);
+ InVals.push_back(Elt);
+ }
+ Ofst += TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
+ }
+ InsIdx += NumElts;
+ }
+
+ if (NumElts > 0)
+ --InsIdx;
+ continue;
+ }
+ // A plain scalar.
+ EVT ObjectVT = getValueType(Ty);
+ // If ABI, load from the param symbol
+ SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
+ Value *srcValue = Constant::getNullValue(PointerType::get(
+ ObjectVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
+ SDValue p;
+ if (ObjectVT.getSizeInBits() < Ins[InsIdx].VT.getSizeInBits()) {
+ ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ?
+ ISD::SEXTLOAD : ISD::ZEXTLOAD;
+ p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, Arg,
+ MachinePointerInfo(srcValue), ObjectVT, false, false,
+ TD->getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
+ } else {
+ p = DAG.getLoad(Ins[InsIdx].VT, dl, Root, Arg,
+ MachinePointerInfo(srcValue), false, false, false,
+ TD->getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
+ }
+ if (p.getNode())
+ p.getNode()->setIROrder(idx + 1);
+ InVals.push_back(p);
+ continue;
+ }
+
+ // Param has ByVal attribute
+ // Return MoveParam(param symbol).
+ // Ideally, the param symbol can be returned directly,
+ // but when SDNode builder decides to use it in a CopyToReg(),
+ // machine instruction fails because TargetExternalSymbol
+ // (not lowered) is target dependent, and CopyToReg assumes
+ // the source is lowered.
+ EVT ObjectVT = getValueType(Ty);
+ assert(ObjectVT == Ins[InsIdx].VT &&
+ "Ins type did not match function type");
+ SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
+ SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
+ if (p.getNode())
+ p.getNode()->setIROrder(idx + 1);
+ if (isKernel)
+ InVals.push_back(p);
+ else {
+ SDValue p2 = DAG.getNode(
+ ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT,
+ DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, MVT::i32), p);
+ InVals.push_back(p2);
+ }
+ }
+
+ // Clang will check explicit VarArg and issue error if any. However, Clang
+ // will let code with
+ // implicit var arg like f() pass. See bug 617733.
+ // We treat this case as if the arg list is empty.
+ // if (F.isVarArg()) {
+ // assert(0 && "VarArg not supported yet!");
+ //}
+
+ if (!OutChains.empty())
+ DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
+
+ return Chain;
+}
+
+
+SDValue
+NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ const Function *F = MF.getFunction();
+ Type *RetTy = F->getReturnType();
+ const DataLayout *TD = getDataLayout();
+
+ bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
+ assert(isABI && "Non-ABI compilation is not supported");
+ if (!isABI)
+ return Chain;
+
+ if (VectorType *VTy = dyn_cast<VectorType>(RetTy)) {
+ // If we have a vector type, the OutVals array will be the scalarized
+ // components and we have combine them into 1 or more vector stores.
+ unsigned NumElts = VTy->getNumElements();
+ assert(NumElts == Outs.size() && "Bad scalarization of return value");
+
+ // const_cast can be removed in later LLVM versions
+ EVT EltVT = getValueType(RetTy).getVectorElementType();
+ bool NeedExtend = false;
+ if (EltVT.getSizeInBits() < 16)
+ NeedExtend = true;
+
+ // V1 store
+ if (NumElts == 1) {
+ SDValue StoreVal = OutVals[0];
+ // We only have one element, so just directly store it
+ if (NeedExtend)
+ StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
+ SDValue Ops[] = { Chain, DAG.getConstant(0, MVT::i32), StoreVal };
+ Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
+ DAG.getVTList(MVT::Other), Ops,
+ EltVT, MachinePointerInfo());
+
+ } else if (NumElts == 2) {
+ // V2 store
+ SDValue StoreVal0 = OutVals[0];
+ SDValue StoreVal1 = OutVals[1];
+
+ if (NeedExtend) {
+ StoreVal0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal0);
+ StoreVal1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal1);
+ }
+
+ SDValue Ops[] = { Chain, DAG.getConstant(0, MVT::i32), StoreVal0,
+ StoreVal1 };
+ Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetvalV2, dl,
+ DAG.getVTList(MVT::Other), Ops,
+ EltVT, MachinePointerInfo());
+ } else {
+ // V4 stores
+ // We have at least 4 elements (<3 x Ty> expands to 4 elements) and the
+ // vector will be expanded to a power of 2 elements, so we know we can
+ // always round up to the next multiple of 4 when creating the vector
+ // stores.
+ // e.g. 4 elem => 1 st.v4
+ // 6 elem => 2 st.v4
+ // 8 elem => 2 st.v4
+ // 11 elem => 3 st.v4
+
+ unsigned VecSize = 4;
+ if (OutVals[0].getValueType().getSizeInBits() == 64)
+ VecSize = 2;
+
+ unsigned Offset = 0;
+
+ EVT VecVT =
+ EVT::getVectorVT(F->getContext(), EltVT, VecSize);
+ unsigned PerStoreOffset =
+ TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
+
+ for (unsigned i = 0; i < NumElts; i += VecSize) {
+ // Get values
+ SDValue StoreVal;
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(DAG.getConstant(Offset, MVT::i32));
+ unsigned Opc = NVPTXISD::StoreRetvalV2;
+ EVT ExtendedVT = (NeedExtend) ? MVT::i16 : OutVals[0].getValueType();
+
+ StoreVal = OutVals[i];
+ if (NeedExtend)
+ StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
+ Ops.push_back(StoreVal);
+
+ if (i + 1 < NumElts) {
+ StoreVal = OutVals[i + 1];
+ if (NeedExtend)
+ StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
+ } else {
+ StoreVal = DAG.getUNDEF(ExtendedVT);
+ }
+ Ops.push_back(StoreVal);
+
+ if (VecSize == 4) {
+ Opc = NVPTXISD::StoreRetvalV4;
+ if (i + 2 < NumElts) {
+ StoreVal = OutVals[i + 2];
+ if (NeedExtend)
+ StoreVal =
+ DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
+ } else {
+ StoreVal = DAG.getUNDEF(ExtendedVT);
+ }
+ Ops.push_back(StoreVal);
+
+ if (i + 3 < NumElts) {
+ StoreVal = OutVals[i + 3];
+ if (NeedExtend)
+ StoreVal =
+ DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
+ } else {
+ StoreVal = DAG.getUNDEF(ExtendedVT);
+ }
+ Ops.push_back(StoreVal);
+ }
+
+ // Chain = DAG.getNode(Opc, dl, MVT::Other, &Ops[0], Ops.size());
+ Chain =
+ DAG.getMemIntrinsicNode(Opc, dl, DAG.getVTList(MVT::Other), Ops,
+ EltVT, MachinePointerInfo());
+ Offset += PerStoreOffset;
+ }
+ }
+ } else {
+ SmallVector<EVT, 16> ValVTs;
+ SmallVector<uint64_t, 16> Offsets;
+ ComputePTXValueVTs(*this, RetTy, ValVTs, &Offsets, 0);
+ assert(ValVTs.size() == OutVals.size() && "Bad return value decomposition");
+
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ SDValue theVal = OutVals[i];
+ EVT TheValType = theVal.getValueType();
+ unsigned numElems = 1;
+ if (TheValType.isVector())
+ numElems = TheValType.getVectorNumElements();
+ for (unsigned j = 0, je = numElems; j != je; ++j) {
+ SDValue TmpVal = theVal;
+ if (TheValType.isVector())
+ TmpVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ TheValType.getVectorElementType(), TmpVal,
+ DAG.getIntPtrConstant(j));
+ EVT TheStoreType = ValVTs[i];
+ if (RetTy->isIntegerTy() &&
+ TD->getTypeAllocSizeInBits(RetTy) < 32) {
+ // The following zero-extension is for integer types only, and
+ // specifically not for aggregates.
+ TmpVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, TmpVal);
+ TheStoreType = MVT::i32;
+ }
+ else if (TmpVal.getValueType().getSizeInBits() < 16)
+ TmpVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, TmpVal);
+
+ SDValue Ops[] = {
+ Chain,
+ DAG.getConstant(Offsets[i], MVT::i32),
+ TmpVal };
+ Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
+ DAG.getVTList(MVT::Other), Ops,
+ TheStoreType,
+ MachinePointerInfo());
+ }
+ }
+ }
+
+ return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
+}
+
+
+void NVPTXTargetLowering::LowerAsmOperandForConstraint(
+ SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+ if (Constraint.length() > 1)
+ return;
+ else
+ TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+// NVPTX suuport vector of legal types of any length in Intrinsics because the
+// NVPTX specific type legalizer
+// will legalize them to the PTX supported length.
+bool NVPTXTargetLowering::isTypeSupportedInIntrinsic(MVT VT) const {
+ if (isTypeLegal(VT))
+ return true;
+ if (VT.isVector()) {
+ MVT eVT = VT.getVectorElementType();
+ if (isTypeLegal(eVT))
+ return true;
+ }
+ return false;
+}
+
+static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
+ switch (Intrinsic) {
+ default:
+ return 0;
+
+ case Intrinsic::nvvm_tex_1d_v4f32_s32:
+ return NVPTXISD::Tex1DFloatS32;
+ case Intrinsic::nvvm_tex_1d_v4f32_f32:
+ return NVPTXISD::Tex1DFloatFloat;
+ case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
+ return NVPTXISD::Tex1DFloatFloatLevel;
+ case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
+ return NVPTXISD::Tex1DFloatFloatGrad;
+ case Intrinsic::nvvm_tex_1d_v4s32_s32:
+ return NVPTXISD::Tex1DS32S32;
+ case Intrinsic::nvvm_tex_1d_v4s32_f32:
+ return NVPTXISD::Tex1DS32Float;
+ case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
+ return NVPTXISD::Tex1DS32FloatLevel;
+ case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
+ return NVPTXISD::Tex1DS32FloatGrad;
+ case Intrinsic::nvvm_tex_1d_v4u32_s32:
+ return NVPTXISD::Tex1DU32S32;
+ case Intrinsic::nvvm_tex_1d_v4u32_f32:
+ return NVPTXISD::Tex1DU32Float;
+ case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
+ return NVPTXISD::Tex1DU32FloatLevel;
+ case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
+ return NVPTXISD::Tex1DU32FloatGrad;
+
+ case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
+ return NVPTXISD::Tex1DArrayFloatS32;
+ case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
+ return NVPTXISD::Tex1DArrayFloatFloat;
+ case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
+ return NVPTXISD::Tex1DArrayFloatFloatLevel;
+ case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
+ return NVPTXISD::Tex1DArrayFloatFloatGrad;
+ case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
+ return NVPTXISD::Tex1DArrayS32S32;
+ case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
+ return NVPTXISD::Tex1DArrayS32Float;
+ case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
+ return NVPTXISD::Tex1DArrayS32FloatLevel;
+ case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
+ return NVPTXISD::Tex1DArrayS32FloatGrad;
+ case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
+ return NVPTXISD::Tex1DArrayU32S32;
+ case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
+ return NVPTXISD::Tex1DArrayU32Float;
+ case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
+ return NVPTXISD::Tex1DArrayU32FloatLevel;
+ case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
+ return NVPTXISD::Tex1DArrayU32FloatGrad;
+
+ case Intrinsic::nvvm_tex_2d_v4f32_s32:
+ return NVPTXISD::Tex2DFloatS32;
+ case Intrinsic::nvvm_tex_2d_v4f32_f32:
+ return NVPTXISD::Tex2DFloatFloat;
+ case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
+ return NVPTXISD::Tex2DFloatFloatLevel;
+ case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
+ return NVPTXISD::Tex2DFloatFloatGrad;
+ case Intrinsic::nvvm_tex_2d_v4s32_s32:
+ return NVPTXISD::Tex2DS32S32;
+ case Intrinsic::nvvm_tex_2d_v4s32_f32:
+ return NVPTXISD::Tex2DS32Float;
+ case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
+ return NVPTXISD::Tex2DS32FloatLevel;
+ case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
+ return NVPTXISD::Tex2DS32FloatGrad;
+ case Intrinsic::nvvm_tex_2d_v4u32_s32:
+ return NVPTXISD::Tex2DU32S32;
+ case Intrinsic::nvvm_tex_2d_v4u32_f32:
+ return NVPTXISD::Tex2DU32Float;
+ case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
+ return NVPTXISD::Tex2DU32FloatLevel;
+ case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
+ return NVPTXISD::Tex2DU32FloatGrad;
+
+ case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
+ return NVPTXISD::Tex2DArrayFloatS32;
+ case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
+ return NVPTXISD::Tex2DArrayFloatFloat;
+ case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
+ return NVPTXISD::Tex2DArrayFloatFloatLevel;
+ case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
+ return NVPTXISD::Tex2DArrayFloatFloatGrad;
+ case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
+ return NVPTXISD::Tex2DArrayS32S32;
+ case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
+ return NVPTXISD::Tex2DArrayS32Float;
+ case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
+ return NVPTXISD::Tex2DArrayS32FloatLevel;
+ case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
+ return NVPTXISD::Tex2DArrayS32FloatGrad;
+ case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
+ return NVPTXISD::Tex2DArrayU32S32;
+ case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
+ return NVPTXISD::Tex2DArrayU32Float;
+ case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
+ return NVPTXISD::Tex2DArrayU32FloatLevel;
+ case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
+ return NVPTXISD::Tex2DArrayU32FloatGrad;
+
+ case Intrinsic::nvvm_tex_3d_v4f32_s32:
+ return NVPTXISD::Tex3DFloatS32;
+ case Intrinsic::nvvm_tex_3d_v4f32_f32:
+ return NVPTXISD::Tex3DFloatFloat;
+ case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
+ return NVPTXISD::Tex3DFloatFloatLevel;
+ case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
+ return NVPTXISD::Tex3DFloatFloatGrad;
+ case Intrinsic::nvvm_tex_3d_v4s32_s32:
+ return NVPTXISD::Tex3DS32S32;
+ case Intrinsic::nvvm_tex_3d_v4s32_f32:
+ return NVPTXISD::Tex3DS32Float;
+ case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
+ return NVPTXISD::Tex3DS32FloatLevel;
+ case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
+ return NVPTXISD::Tex3DS32FloatGrad;
+ case Intrinsic::nvvm_tex_3d_v4u32_s32:
+ return NVPTXISD::Tex3DU32S32;
+ case Intrinsic::nvvm_tex_3d_v4u32_f32:
+ return NVPTXISD::Tex3DU32Float;
+ case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
+ return NVPTXISD::Tex3DU32FloatLevel;
+ case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
+ return NVPTXISD::Tex3DU32FloatGrad;
+
+ case Intrinsic::nvvm_tex_cube_v4f32_f32:
+ return NVPTXISD::TexCubeFloatFloat;
+ case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
+ return NVPTXISD::TexCubeFloatFloatLevel;
+ case Intrinsic::nvvm_tex_cube_v4s32_f32:
+ return NVPTXISD::TexCubeS32Float;
+ case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
+ return NVPTXISD::TexCubeS32FloatLevel;
+ case Intrinsic::nvvm_tex_cube_v4u32_f32:
+ return NVPTXISD::TexCubeU32Float;
+ case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
+ return NVPTXISD::TexCubeU32FloatLevel;
+
+ case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
+ return NVPTXISD::TexCubeArrayFloatFloat;
+ case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
+ return NVPTXISD::TexCubeArrayFloatFloatLevel;
+ case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
+ return NVPTXISD::TexCubeArrayS32Float;
+ case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
+ return NVPTXISD::TexCubeArrayS32FloatLevel;
+ case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
+ return NVPTXISD::TexCubeArrayU32Float;
+ case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
+ return NVPTXISD::TexCubeArrayU32FloatLevel;
+
+ case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
+ return NVPTXISD::Tld4R2DFloatFloat;
+ case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
+ return NVPTXISD::Tld4G2DFloatFloat;
+ case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
+ return NVPTXISD::Tld4B2DFloatFloat;
+ case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
+ return NVPTXISD::Tld4A2DFloatFloat;
+ case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
+ return NVPTXISD::Tld4R2DS64Float;
+ case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
+ return NVPTXISD::Tld4G2DS64Float;
+ case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
+ return NVPTXISD::Tld4B2DS64Float;
+ case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
+ return NVPTXISD::Tld4A2DS64Float;
+ case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
+ return NVPTXISD::Tld4R2DU64Float;
+ case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
+ return NVPTXISD::Tld4G2DU64Float;
+ case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
+ return NVPTXISD::Tld4B2DU64Float;
+ case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
+ return NVPTXISD::Tld4A2DU64Float;
+
+ case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
+ return NVPTXISD::TexUnified1DFloatS32;
+ case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
+ return NVPTXISD::TexUnified1DFloatFloat;
+ case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
+ return NVPTXISD::TexUnified1DFloatFloatLevel;
+ case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
+ return NVPTXISD::TexUnified1DFloatFloatGrad;
+ case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
+ return NVPTXISD::TexUnified1DS32S32;
+ case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
+ return NVPTXISD::TexUnified1DS32Float;
+ case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
+ return NVPTXISD::TexUnified1DS32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
+ return NVPTXISD::TexUnified1DS32FloatGrad;
+ case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
+ return NVPTXISD::TexUnified1DU32S32;
+ case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
+ return NVPTXISD::TexUnified1DU32Float;
+ case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
+ return NVPTXISD::TexUnified1DU32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
+ return NVPTXISD::TexUnified1DU32FloatGrad;
+
+ case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
+ return NVPTXISD::TexUnified1DArrayFloatS32;
+ case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
+ return NVPTXISD::TexUnified1DArrayFloatFloat;
+ case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
+ return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
+ case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
+ return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
+ case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
+ return NVPTXISD::TexUnified1DArrayS32S32;
+ case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
+ return NVPTXISD::TexUnified1DArrayS32Float;
+ case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
+ return NVPTXISD::TexUnified1DArrayS32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
+ return NVPTXISD::TexUnified1DArrayS32FloatGrad;
+ case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
+ return NVPTXISD::TexUnified1DArrayU32S32;
+ case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
+ return NVPTXISD::TexUnified1DArrayU32Float;
+ case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
+ return NVPTXISD::TexUnified1DArrayU32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
+ return NVPTXISD::TexUnified1DArrayU32FloatGrad;
+
+ case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
+ return NVPTXISD::TexUnified2DFloatS32;
+ case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
+ return NVPTXISD::TexUnified2DFloatFloat;
+ case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
+ return NVPTXISD::TexUnified2DFloatFloatLevel;
+ case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
+ return NVPTXISD::TexUnified2DFloatFloatGrad;
+ case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
+ return NVPTXISD::TexUnified2DS32S32;
+ case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
+ return NVPTXISD::TexUnified2DS32Float;
+ case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
+ return NVPTXISD::TexUnified2DS32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
+ return NVPTXISD::TexUnified2DS32FloatGrad;
+ case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
+ return NVPTXISD::TexUnified2DU32S32;
+ case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
+ return NVPTXISD::TexUnified2DU32Float;
+ case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
+ return NVPTXISD::TexUnified2DU32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
+ return NVPTXISD::TexUnified2DU32FloatGrad;
+
+ case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
+ return NVPTXISD::TexUnified2DArrayFloatS32;
+ case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
+ return NVPTXISD::TexUnified2DArrayFloatFloat;
+ case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
+ return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
+ case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
+ return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
+ case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
+ return NVPTXISD::TexUnified2DArrayS32S32;
+ case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
+ return NVPTXISD::TexUnified2DArrayS32Float;
+ case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
+ return NVPTXISD::TexUnified2DArrayS32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
+ return NVPTXISD::TexUnified2DArrayS32FloatGrad;
+ case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
+ return NVPTXISD::TexUnified2DArrayU32S32;
+ case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
+ return NVPTXISD::TexUnified2DArrayU32Float;
+ case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
+ return NVPTXISD::TexUnified2DArrayU32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
+ return NVPTXISD::TexUnified2DArrayU32FloatGrad;
+
+ case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
+ return NVPTXISD::TexUnified3DFloatS32;
+ case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
+ return NVPTXISD::TexUnified3DFloatFloat;
+ case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
+ return NVPTXISD::TexUnified3DFloatFloatLevel;
+ case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
+ return NVPTXISD::TexUnified3DFloatFloatGrad;
+ case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
+ return NVPTXISD::TexUnified3DS32S32;
+ case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
+ return NVPTXISD::TexUnified3DS32Float;
+ case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
+ return NVPTXISD::TexUnified3DS32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
+ return NVPTXISD::TexUnified3DS32FloatGrad;
+ case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
+ return NVPTXISD::TexUnified3DU32S32;
+ case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
+ return NVPTXISD::TexUnified3DU32Float;
+ case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
+ return NVPTXISD::TexUnified3DU32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
+ return NVPTXISD::TexUnified3DU32FloatGrad;
+
+ case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
+ return NVPTXISD::TexUnifiedCubeFloatFloat;
+ case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
+ return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
+ case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
+ return NVPTXISD::TexUnifiedCubeS32Float;
+ case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
+ return NVPTXISD::TexUnifiedCubeS32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
+ return NVPTXISD::TexUnifiedCubeU32Float;
+ case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
+ return NVPTXISD::TexUnifiedCubeU32FloatLevel;
+
+ case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
+ return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
+ case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
+ return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
+ case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
+ return NVPTXISD::TexUnifiedCubeArrayS32Float;
+ case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
+ return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
+ case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
+ return NVPTXISD::TexUnifiedCubeArrayU32Float;
+ case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
+ return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
+
+ case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
+ return NVPTXISD::Tld4UnifiedR2DFloatFloat;
+ case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
+ return NVPTXISD::Tld4UnifiedG2DFloatFloat;
+ case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
+ return NVPTXISD::Tld4UnifiedB2DFloatFloat;
+ case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
+ return NVPTXISD::Tld4UnifiedA2DFloatFloat;
+ case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
+ return NVPTXISD::Tld4UnifiedR2DS64Float;
+ case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
+ return NVPTXISD::Tld4UnifiedG2DS64Float;
+ case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
+ return NVPTXISD::Tld4UnifiedB2DS64Float;
+ case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
+ return NVPTXISD::Tld4UnifiedA2DS64Float;
+ case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
+ return NVPTXISD::Tld4UnifiedR2DU64Float;
+ case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
+ return NVPTXISD::Tld4UnifiedG2DU64Float;
+ case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
+ return NVPTXISD::Tld4UnifiedB2DU64Float;
+ case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
+ return NVPTXISD::Tld4UnifiedA2DU64Float;
+ }
+}
+
+static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
+ switch (Intrinsic) {
+ default:
+ return 0;
+ case Intrinsic::nvvm_suld_1d_i8_clamp:
+ return NVPTXISD::Suld1DI8Clamp;
+ case Intrinsic::nvvm_suld_1d_i16_clamp:
+ return NVPTXISD::Suld1DI16Clamp;
+ case Intrinsic::nvvm_suld_1d_i32_clamp:
+ return NVPTXISD::Suld1DI32Clamp;
+ case Intrinsic::nvvm_suld_1d_i64_clamp:
+ return NVPTXISD::Suld1DI64Clamp;
+ case Intrinsic::nvvm_suld_1d_v2i8_clamp:
+ return NVPTXISD::Suld1DV2I8Clamp;
+ case Intrinsic::nvvm_suld_1d_v2i16_clamp:
+ return NVPTXISD::Suld1DV2I16Clamp;
+ case Intrinsic::nvvm_suld_1d_v2i32_clamp:
+ return NVPTXISD::Suld1DV2I32Clamp;
+ case Intrinsic::nvvm_suld_1d_v2i64_clamp:
+ return NVPTXISD::Suld1DV2I64Clamp;
+ case Intrinsic::nvvm_suld_1d_v4i8_clamp:
+ return NVPTXISD::Suld1DV4I8Clamp;
+ case Intrinsic::nvvm_suld_1d_v4i16_clamp:
+ return NVPTXISD::Suld1DV4I16Clamp;
+ case Intrinsic::nvvm_suld_1d_v4i32_clamp:
+ return NVPTXISD::Suld1DV4I32Clamp;
+ case Intrinsic::nvvm_suld_1d_array_i8_clamp:
+ return NVPTXISD::Suld1DArrayI8Clamp;
+ case Intrinsic::nvvm_suld_1d_array_i16_clamp:
+ return NVPTXISD::Suld1DArrayI16Clamp;
+ case Intrinsic::nvvm_suld_1d_array_i32_clamp:
+ return NVPTXISD::Suld1DArrayI32Clamp;
+ case Intrinsic::nvvm_suld_1d_array_i64_clamp:
+ return NVPTXISD::Suld1DArrayI64Clamp;
+ case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
+ return NVPTXISD::Suld1DArrayV2I8Clamp;
+ case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
+ return NVPTXISD::Suld1DArrayV2I16Clamp;
+ case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
+ return NVPTXISD::Suld1DArrayV2I32Clamp;
+ case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
+ return NVPTXISD::Suld1DArrayV2I64Clamp;
+ case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
+ return NVPTXISD::Suld1DArrayV4I8Clamp;
+ case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
+ return NVPTXISD::Suld1DArrayV4I16Clamp;
+ case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
+ return NVPTXISD::Suld1DArrayV4I32Clamp;
+ case Intrinsic::nvvm_suld_2d_i8_clamp:
+ return NVPTXISD::Suld2DI8Clamp;
+ case Intrinsic::nvvm_suld_2d_i16_clamp:
+ return NVPTXISD::Suld2DI16Clamp;
+ case Intrinsic::nvvm_suld_2d_i32_clamp:
+ return NVPTXISD::Suld2DI32Clamp;
+ case Intrinsic::nvvm_suld_2d_i64_clamp:
+ return NVPTXISD::Suld2DI64Clamp;
+ case Intrinsic::nvvm_suld_2d_v2i8_clamp:
+ return NVPTXISD::Suld2DV2I8Clamp;
+ case Intrinsic::nvvm_suld_2d_v2i16_clamp:
+ return NVPTXISD::Suld2DV2I16Clamp;
+ case Intrinsic::nvvm_suld_2d_v2i32_clamp:
+ return NVPTXISD::Suld2DV2I32Clamp;
+ case Intrinsic::nvvm_suld_2d_v2i64_clamp:
+ return NVPTXISD::Suld2DV2I64Clamp;
+ case Intrinsic::nvvm_suld_2d_v4i8_clamp:
+ return NVPTXISD::Suld2DV4I8Clamp;
+ case Intrinsic::nvvm_suld_2d_v4i16_clamp:
+ return NVPTXISD::Suld2DV4I16Clamp;
+ case Intrinsic::nvvm_suld_2d_v4i32_clamp:
+ return NVPTXISD::Suld2DV4I32Clamp;
+ case Intrinsic::nvvm_suld_2d_array_i8_clamp:
+ return NVPTXISD::Suld2DArrayI8Clamp;
+ case Intrinsic::nvvm_suld_2d_array_i16_clamp:
+ return NVPTXISD::Suld2DArrayI16Clamp;
+ case Intrinsic::nvvm_suld_2d_array_i32_clamp:
+ return NVPTXISD::Suld2DArrayI32Clamp;
+ case Intrinsic::nvvm_suld_2d_array_i64_clamp:
+ return NVPTXISD::Suld2DArrayI64Clamp;
+ case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
+ return NVPTXISD::Suld2DArrayV2I8Clamp;
+ case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
+ return NVPTXISD::Suld2DArrayV2I16Clamp;
+ case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
+ return NVPTXISD::Suld2DArrayV2I32Clamp;
+ case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
+ return NVPTXISD::Suld2DArrayV2I64Clamp;
+ case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
+ return NVPTXISD::Suld2DArrayV4I8Clamp;
+ case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
+ return NVPTXISD::Suld2DArrayV4I16Clamp;
+ case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
+ return NVPTXISD::Suld2DArrayV4I32Clamp;
+ case Intrinsic::nvvm_suld_3d_i8_clamp:
+ return NVPTXISD::Suld3DI8Clamp;
+ case Intrinsic::nvvm_suld_3d_i16_clamp:
+ return NVPTXISD::Suld3DI16Clamp;
+ case Intrinsic::nvvm_suld_3d_i32_clamp:
+ return NVPTXISD::Suld3DI32Clamp;
+ case Intrinsic::nvvm_suld_3d_i64_clamp:
+ return NVPTXISD::Suld3DI64Clamp;
+ case Intrinsic::nvvm_suld_3d_v2i8_clamp:
+ return NVPTXISD::Suld3DV2I8Clamp;
+ case Intrinsic::nvvm_suld_3d_v2i16_clamp:
+ return NVPTXISD::Suld3DV2I16Clamp;
+ case Intrinsic::nvvm_suld_3d_v2i32_clamp:
+ return NVPTXISD::Suld3DV2I32Clamp;
+ case Intrinsic::nvvm_suld_3d_v2i64_clamp:
+ return NVPTXISD::Suld3DV2I64Clamp;
+ case Intrinsic::nvvm_suld_3d_v4i8_clamp:
+ return NVPTXISD::Suld3DV4I8Clamp;
+ case Intrinsic::nvvm_suld_3d_v4i16_clamp:
+ return NVPTXISD::Suld3DV4I16Clamp;
+ case Intrinsic::nvvm_suld_3d_v4i32_clamp:
+ return NVPTXISD::Suld3DV4I32Clamp;
+ case Intrinsic::nvvm_suld_1d_i8_trap:
+ return NVPTXISD::Suld1DI8Trap;
+ case Intrinsic::nvvm_suld_1d_i16_trap:
+ return NVPTXISD::Suld1DI16Trap;
+ case Intrinsic::nvvm_suld_1d_i32_trap:
+ return NVPTXISD::Suld1DI32Trap;
+ case Intrinsic::nvvm_suld_1d_i64_trap:
+ return NVPTXISD::Suld1DI64Trap;
+ case Intrinsic::nvvm_suld_1d_v2i8_trap:
+ return NVPTXISD::Suld1DV2I8Trap;
+ case Intrinsic::nvvm_suld_1d_v2i16_trap:
+ return NVPTXISD::Suld1DV2I16Trap;
+ case Intrinsic::nvvm_suld_1d_v2i32_trap:
+ return NVPTXISD::Suld1DV2I32Trap;
+ case Intrinsic::nvvm_suld_1d_v2i64_trap:
+ return NVPTXISD::Suld1DV2I64Trap;
+ case Intrinsic::nvvm_suld_1d_v4i8_trap:
+ return NVPTXISD::Suld1DV4I8Trap;
+ case Intrinsic::nvvm_suld_1d_v4i16_trap:
+ return NVPTXISD::Suld1DV4I16Trap;
+ case Intrinsic::nvvm_suld_1d_v4i32_trap:
+ return NVPTXISD::Suld1DV4I32Trap;
+ case Intrinsic::nvvm_suld_1d_array_i8_trap:
+ return NVPTXISD::Suld1DArrayI8Trap;
+ case Intrinsic::nvvm_suld_1d_array_i16_trap:
+ return NVPTXISD::Suld1DArrayI16Trap;
+ case Intrinsic::nvvm_suld_1d_array_i32_trap:
+ return NVPTXISD::Suld1DArrayI32Trap;
+ case Intrinsic::nvvm_suld_1d_array_i64_trap:
+ return NVPTXISD::Suld1DArrayI64Trap;
+ case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
+ return NVPTXISD::Suld1DArrayV2I8Trap;
+ case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
+ return NVPTXISD::Suld1DArrayV2I16Trap;
+ case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
+ return NVPTXISD::Suld1DArrayV2I32Trap;
+ case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
+ return NVPTXISD::Suld1DArrayV2I64Trap;
+ case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
+ return NVPTXISD::Suld1DArrayV4I8Trap;
+ case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
+ return NVPTXISD::Suld1DArrayV4I16Trap;
+ case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
+ return NVPTXISD::Suld1DArrayV4I32Trap;
+ case Intrinsic::nvvm_suld_2d_i8_trap:
+ return NVPTXISD::Suld2DI8Trap;
+ case Intrinsic::nvvm_suld_2d_i16_trap:
+ return NVPTXISD::Suld2DI16Trap;
+ case Intrinsic::nvvm_suld_2d_i32_trap:
+ return NVPTXISD::Suld2DI32Trap;
+ case Intrinsic::nvvm_suld_2d_i64_trap:
+ return NVPTXISD::Suld2DI64Trap;
+ case Intrinsic::nvvm_suld_2d_v2i8_trap:
+ return NVPTXISD::Suld2DV2I8Trap;
+ case Intrinsic::nvvm_suld_2d_v2i16_trap:
+ return NVPTXISD::Suld2DV2I16Trap;
+ case Intrinsic::nvvm_suld_2d_v2i32_trap:
+ return NVPTXISD::Suld2DV2I32Trap;
+ case Intrinsic::nvvm_suld_2d_v2i64_trap:
+ return NVPTXISD::Suld2DV2I64Trap;
+ case Intrinsic::nvvm_suld_2d_v4i8_trap:
+ return NVPTXISD::Suld2DV4I8Trap;
+ case Intrinsic::nvvm_suld_2d_v4i16_trap:
+ return NVPTXISD::Suld2DV4I16Trap;
+ case Intrinsic::nvvm_suld_2d_v4i32_trap:
+ return NVPTXISD::Suld2DV4I32Trap;
+ case Intrinsic::nvvm_suld_2d_array_i8_trap:
+ return NVPTXISD::Suld2DArrayI8Trap;
+ case Intrinsic::nvvm_suld_2d_array_i16_trap:
+ return NVPTXISD::Suld2DArrayI16Trap;
+ case Intrinsic::nvvm_suld_2d_array_i32_trap:
+ return NVPTXISD::Suld2DArrayI32Trap;
+ case Intrinsic::nvvm_suld_2d_array_i64_trap:
+ return NVPTXISD::Suld2DArrayI64Trap;
+ case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
+ return NVPTXISD::Suld2DArrayV2I8Trap;
+ case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
+ return NVPTXISD::Suld2DArrayV2I16Trap;
+ case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
+ return NVPTXISD::Suld2DArrayV2I32Trap;
+ case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
+ return NVPTXISD::Suld2DArrayV2I64Trap;
+ case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
+ return NVPTXISD::Suld2DArrayV4I8Trap;
+ case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
+ return NVPTXISD::Suld2DArrayV4I16Trap;
+ case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
+ return NVPTXISD::Suld2DArrayV4I32Trap;
+ case Intrinsic::nvvm_suld_3d_i8_trap:
+ return NVPTXISD::Suld3DI8Trap;
+ case Intrinsic::nvvm_suld_3d_i16_trap:
+ return NVPTXISD::Suld3DI16Trap;
+ case Intrinsic::nvvm_suld_3d_i32_trap:
+ return NVPTXISD::Suld3DI32Trap;
+ case Intrinsic::nvvm_suld_3d_i64_trap:
+ return NVPTXISD::Suld3DI64Trap;
+ case Intrinsic::nvvm_suld_3d_v2i8_trap:
+ return NVPTXISD::Suld3DV2I8Trap;
+ case Intrinsic::nvvm_suld_3d_v2i16_trap:
+ return NVPTXISD::Suld3DV2I16Trap;
+ case Intrinsic::nvvm_suld_3d_v2i32_trap:
+ return NVPTXISD::Suld3DV2I32Trap;
+ case Intrinsic::nvvm_suld_3d_v2i64_trap:
+ return NVPTXISD::Suld3DV2I64Trap;
+ case Intrinsic::nvvm_suld_3d_v4i8_trap:
+ return NVPTXISD::Suld3DV4I8Trap;
+ case Intrinsic::nvvm_suld_3d_v4i16_trap:
+ return NVPTXISD::Suld3DV4I16Trap;
+ case Intrinsic::nvvm_suld_3d_v4i32_trap:
+ return NVPTXISD::Suld3DV4I32Trap;
+ case Intrinsic::nvvm_suld_1d_i8_zero:
+ return NVPTXISD::Suld1DI8Zero;
+ case Intrinsic::nvvm_suld_1d_i16_zero:
+ return NVPTXISD::Suld1DI16Zero;
+ case Intrinsic::nvvm_suld_1d_i32_zero:
+ return NVPTXISD::Suld1DI32Zero;
+ case Intrinsic::nvvm_suld_1d_i64_zero:
+ return NVPTXISD::Suld1DI64Zero;
+ case Intrinsic::nvvm_suld_1d_v2i8_zero:
+ return NVPTXISD::Suld1DV2I8Zero;
+ case Intrinsic::nvvm_suld_1d_v2i16_zero:
+ return NVPTXISD::Suld1DV2I16Zero;
+ case Intrinsic::nvvm_suld_1d_v2i32_zero:
+ return NVPTXISD::Suld1DV2I32Zero;
+ case Intrinsic::nvvm_suld_1d_v2i64_zero:
+ return NVPTXISD::Suld1DV2I64Zero;
+ case Intrinsic::nvvm_suld_1d_v4i8_zero:
+ return NVPTXISD::Suld1DV4I8Zero;
+ case Intrinsic::nvvm_suld_1d_v4i16_zero:
+ return NVPTXISD::Suld1DV4I16Zero;
+ case Intrinsic::nvvm_suld_1d_v4i32_zero:
+ return NVPTXISD::Suld1DV4I32Zero;
+ case Intrinsic::nvvm_suld_1d_array_i8_zero:
+ return NVPTXISD::Suld1DArrayI8Zero;
+ case Intrinsic::nvvm_suld_1d_array_i16_zero:
+ return NVPTXISD::Suld1DArrayI16Zero;
+ case Intrinsic::nvvm_suld_1d_array_i32_zero:
+ return NVPTXISD::Suld1DArrayI32Zero;
+ case Intrinsic::nvvm_suld_1d_array_i64_zero:
+ return NVPTXISD::Suld1DArrayI64Zero;
+ case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
+ return NVPTXISD::Suld1DArrayV2I8Zero;
+ case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
+ return NVPTXISD::Suld1DArrayV2I16Zero;
+ case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
+ return NVPTXISD::Suld1DArrayV2I32Zero;
+ case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
+ return NVPTXISD::Suld1DArrayV2I64Zero;
+ case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
+ return NVPTXISD::Suld1DArrayV4I8Zero;
+ case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
+ return NVPTXISD::Suld1DArrayV4I16Zero;
+ case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
+ return NVPTXISD::Suld1DArrayV4I32Zero;
+ case Intrinsic::nvvm_suld_2d_i8_zero:
+ return NVPTXISD::Suld2DI8Zero;
+ case Intrinsic::nvvm_suld_2d_i16_zero:
+ return NVPTXISD::Suld2DI16Zero;
+ case Intrinsic::nvvm_suld_2d_i32_zero:
+ return NVPTXISD::Suld2DI32Zero;
+ case Intrinsic::nvvm_suld_2d_i64_zero:
+ return NVPTXISD::Suld2DI64Zero;
+ case Intrinsic::nvvm_suld_2d_v2i8_zero:
+ return NVPTXISD::Suld2DV2I8Zero;
+ case Intrinsic::nvvm_suld_2d_v2i16_zero:
+ return NVPTXISD::Suld2DV2I16Zero;
+ case Intrinsic::nvvm_suld_2d_v2i32_zero:
+ return NVPTXISD::Suld2DV2I32Zero;
+ case Intrinsic::nvvm_suld_2d_v2i64_zero:
+ return NVPTXISD::Suld2DV2I64Zero;
+ case Intrinsic::nvvm_suld_2d_v4i8_zero:
+ return NVPTXISD::Suld2DV4I8Zero;
+ case Intrinsic::nvvm_suld_2d_v4i16_zero:
+ return NVPTXISD::Suld2DV4I16Zero;
+ case Intrinsic::nvvm_suld_2d_v4i32_zero:
+ return NVPTXISD::Suld2DV4I32Zero;
+ case Intrinsic::nvvm_suld_2d_array_i8_zero:
+ return NVPTXISD::Suld2DArrayI8Zero;
+ case Intrinsic::nvvm_suld_2d_array_i16_zero:
+ return NVPTXISD::Suld2DArrayI16Zero;
+ case Intrinsic::nvvm_suld_2d_array_i32_zero:
+ return NVPTXISD::Suld2DArrayI32Zero;
+ case Intrinsic::nvvm_suld_2d_array_i64_zero:
+ return NVPTXISD::Suld2DArrayI64Zero;
+ case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
+ return NVPTXISD::Suld2DArrayV2I8Zero;
+ case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
+ return NVPTXISD::Suld2DArrayV2I16Zero;
+ case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
+ return NVPTXISD::Suld2DArrayV2I32Zero;
+ case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
+ return NVPTXISD::Suld2DArrayV2I64Zero;
+ case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
+ return NVPTXISD::Suld2DArrayV4I8Zero;
+ case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
+ return NVPTXISD::Suld2DArrayV4I16Zero;
+ case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
+ return NVPTXISD::Suld2DArrayV4I32Zero;
+ case Intrinsic::nvvm_suld_3d_i8_zero:
+ return NVPTXISD::Suld3DI8Zero;
+ case Intrinsic::nvvm_suld_3d_i16_zero:
+ return NVPTXISD::Suld3DI16Zero;
+ case Intrinsic::nvvm_suld_3d_i32_zero:
+ return NVPTXISD::Suld3DI32Zero;
+ case Intrinsic::nvvm_suld_3d_i64_zero:
+ return NVPTXISD::Suld3DI64Zero;
+ case Intrinsic::nvvm_suld_3d_v2i8_zero:
+ return NVPTXISD::Suld3DV2I8Zero;
+ case Intrinsic::nvvm_suld_3d_v2i16_zero:
+ return NVPTXISD::Suld3DV2I16Zero;
+ case Intrinsic::nvvm_suld_3d_v2i32_zero:
+ return NVPTXISD::Suld3DV2I32Zero;
+ case Intrinsic::nvvm_suld_3d_v2i64_zero:
+ return NVPTXISD::Suld3DV2I64Zero;
+ case Intrinsic::nvvm_suld_3d_v4i8_zero:
+ return NVPTXISD::Suld3DV4I8Zero;
+ case Intrinsic::nvvm_suld_3d_v4i16_zero:
+ return NVPTXISD::Suld3DV4I16Zero;
+ case Intrinsic::nvvm_suld_3d_v4i32_zero:
+ return NVPTXISD::Suld3DV4I32Zero;
+ }
+}
+
+// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
+// TgtMemIntrinsic
+// because we need the information that is only available in the "Value" type
+// of destination
+// pointer. In particular, the address space information.
+bool NVPTXTargetLowering::getTgtMemIntrinsic(
+ IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const {
+ switch (Intrinsic) {
+ default:
+ return false;
+
+ case Intrinsic::nvvm_atomic_load_add_f32:
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::f32;
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.vol = 0;
+ Info.readMem = true;
+ Info.writeMem = true;
+ Info.align = 0;
+ return true;
+
+ case Intrinsic::nvvm_atomic_load_inc_32:
+ case Intrinsic::nvvm_atomic_load_dec_32:
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i32;
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.vol = 0;
+ Info.readMem = true;
+ Info.writeMem = true;
+ Info.align = 0;
+ return true;
+
+ case Intrinsic::nvvm_ldu_global_i:
+ case Intrinsic::nvvm_ldu_global_f:
+ case Intrinsic::nvvm_ldu_global_p: {
+
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
+ Info.memVT = getValueType(I.getType());
+ else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
+ Info.memVT = getPointerTy();
+ else
+ Info.memVT = getValueType(I.getType());
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.vol = 0;
+ Info.readMem = true;
+ Info.writeMem = false;
+
+ // alignment is available as metadata.
+ // Grab it and set the alignment.
+ assert(I.hasMetadataOtherThanDebugLoc() && "Must have alignment metadata");
+ MDNode *AlignMD = I.getMetadata("align");
+ assert(AlignMD && "Must have a non-null MDNode");
+ assert(AlignMD->getNumOperands() == 1 && "Must have a single operand");
+ Value *Align = AlignMD->getOperand(0);
+ int64_t Alignment = cast<ConstantInt>(Align)->getZExtValue();
+ Info.align = Alignment;
+
+ return true;
+ }
+ case Intrinsic::nvvm_ldg_global_i:
+ case Intrinsic::nvvm_ldg_global_f:
+ case Intrinsic::nvvm_ldg_global_p: {
+
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
+ Info.memVT = getValueType(I.getType());
+ else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
+ Info.memVT = getPointerTy();
+ else
+ Info.memVT = getValueType(I.getType());
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.vol = 0;
+ Info.readMem = true;
+ Info.writeMem = false;
+
+ // alignment is available as metadata.
+ // Grab it and set the alignment.
+ assert(I.hasMetadataOtherThanDebugLoc() && "Must have alignment metadata");
+ MDNode *AlignMD = I.getMetadata("align");
+ assert(AlignMD && "Must have a non-null MDNode");
+ assert(AlignMD->getNumOperands() == 1 && "Must have a single operand");
+ Value *Align = AlignMD->getOperand(0);
+ int64_t Alignment = cast<ConstantInt>(Align)->getZExtValue();
+ Info.align = Alignment;
+
+ return true;
+ }
+
+ case Intrinsic::nvvm_tex_1d_v4f32_s32:
+ case Intrinsic::nvvm_tex_1d_v4f32_f32:
+ case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
+ case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
+ case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
+ case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
+ case Intrinsic::nvvm_tex_2d_v4f32_s32:
+ case Intrinsic::nvvm_tex_2d_v4f32_f32:
+ case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
+ case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
+ case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
+ case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
+ case Intrinsic::nvvm_tex_3d_v4f32_s32:
+ case Intrinsic::nvvm_tex_3d_v4f32_f32:
+ case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
+ case Intrinsic::nvvm_tex_cube_v4f32_f32:
+ case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
+ case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
+ case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
+ case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
+ case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
+ case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
+ case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
+ case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
+ case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
+ case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
+ case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
+ case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
+ case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
+ case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
+ case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: {
+ Info.opc = getOpcForTextureInstr(Intrinsic);
+ Info.memVT = MVT::v4f32;
+ Info.ptrVal = nullptr;
+ Info.offset = 0;
+ Info.vol = 0;
+ Info.readMem = true;
+ Info.writeMem = false;
+ Info.align = 16;
+ return true;
+ }
+ case Intrinsic::nvvm_tex_1d_v4s32_s32:
+ case Intrinsic::nvvm_tex_1d_v4s32_f32:
+ case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
+ case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
+ case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
+ case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
+ case Intrinsic::nvvm_tex_2d_v4s32_s32:
+ case Intrinsic::nvvm_tex_2d_v4s32_f32:
+ case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
+ case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
+ case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
+ case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
+ case Intrinsic::nvvm_tex_3d_v4s32_s32:
+ case Intrinsic::nvvm_tex_3d_v4s32_f32:
+ case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
+ case Intrinsic::nvvm_tex_cube_v4s32_f32:
+ case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
+ case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_cube_v4u32_f32:
+ case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
+ case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_1d_v4u32_s32:
+ case Intrinsic::nvvm_tex_1d_v4u32_f32:
+ case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
+ case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
+ case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
+ case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
+ case Intrinsic::nvvm_tex_2d_v4u32_s32:
+ case Intrinsic::nvvm_tex_2d_v4u32_f32:
+ case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
+ case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
+ case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
+ case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
+ case Intrinsic::nvvm_tex_3d_v4u32_s32:
+ case Intrinsic::nvvm_tex_3d_v4u32_f32:
+ case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
+ case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
+ case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
+ case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
+ case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
+ case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
+ case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
+ case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
+ case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
+ case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
+ case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
+ case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
+ case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
+ case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
+ case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
+ case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
+ case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
+ case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
+ case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
+ case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
+ case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
+ case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
+ case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
+ case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
+ case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
+ case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
+ case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
+ case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: {
+ Info.opc = getOpcForTextureInstr(Intrinsic);
+ Info.memVT = MVT::v4i32;
+ Info.ptrVal = nullptr;
+ Info.offset = 0;
+ Info.vol = 0;
+ Info.readMem = true;
+ Info.writeMem = false;
+ Info.align = 16;
+ return true;
+ }
+ case Intrinsic::nvvm_suld_1d_i8_clamp:
+ case Intrinsic::nvvm_suld_1d_v2i8_clamp:
+ case Intrinsic::nvvm_suld_1d_v4i8_clamp:
+ case Intrinsic::nvvm_suld_1d_array_i8_clamp:
+ case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
+ case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
+ case Intrinsic::nvvm_suld_2d_i8_clamp:
+ case Intrinsic::nvvm_suld_2d_v2i8_clamp:
+ case Intrinsic::nvvm_suld_2d_v4i8_clamp:
+ case Intrinsic::nvvm_suld_2d_array_i8_clamp:
+ case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
+ case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
+ case Intrinsic::nvvm_suld_3d_i8_clamp:
+ case Intrinsic::nvvm_suld_3d_v2i8_clamp:
+ case Intrinsic::nvvm_suld_3d_v4i8_clamp:
+ case Intrinsic::nvvm_suld_1d_i8_trap:
+ case Intrinsic::nvvm_suld_1d_v2i8_trap:
+ case Intrinsic::nvvm_suld_1d_v4i8_trap:
+ case Intrinsic::nvvm_suld_1d_array_i8_trap:
+ case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
+ case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
+ case Intrinsic::nvvm_suld_2d_i8_trap:
+ case Intrinsic::nvvm_suld_2d_v2i8_trap:
+ case Intrinsic::nvvm_suld_2d_v4i8_trap:
+ case Intrinsic::nvvm_suld_2d_array_i8_trap:
+ case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
+ case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
+ case Intrinsic::nvvm_suld_3d_i8_trap:
+ case Intrinsic::nvvm_suld_3d_v2i8_trap:
+ case Intrinsic::nvvm_suld_3d_v4i8_trap:
+ case Intrinsic::nvvm_suld_1d_i8_zero:
+ case Intrinsic::nvvm_suld_1d_v2i8_zero:
+ case Intrinsic::nvvm_suld_1d_v4i8_zero:
+ case Intrinsic::nvvm_suld_1d_array_i8_zero:
+ case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
+ case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
+ case Intrinsic::nvvm_suld_2d_i8_zero:
+ case Intrinsic::nvvm_suld_2d_v2i8_zero:
+ case Intrinsic::nvvm_suld_2d_v4i8_zero:
+ case Intrinsic::nvvm_suld_2d_array_i8_zero:
+ case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
+ case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
+ case Intrinsic::nvvm_suld_3d_i8_zero:
+ case Intrinsic::nvvm_suld_3d_v2i8_zero:
+ case Intrinsic::nvvm_suld_3d_v4i8_zero: {
+ Info.opc = getOpcForSurfaceInstr(Intrinsic);
+ Info.memVT = MVT::i8;
+ Info.ptrVal = nullptr;
+ Info.offset = 0;
+ Info.vol = 0;
+ Info.readMem = true;
+ Info.writeMem = false;
+ Info.align = 16;
+ return true;
+ }
+ case Intrinsic::nvvm_suld_1d_i16_clamp:
+ case Intrinsic::nvvm_suld_1d_v2i16_clamp:
+ case Intrinsic::nvvm_suld_1d_v4i16_clamp:
+ case Intrinsic::nvvm_suld_1d_array_i16_clamp:
+ case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
+ case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
+ case Intrinsic::nvvm_suld_2d_i16_clamp:
+ case Intrinsic::nvvm_suld_2d_v2i16_clamp:
+ case Intrinsic::nvvm_suld_2d_v4i16_clamp:
+ case Intrinsic::nvvm_suld_2d_array_i16_clamp:
+ case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
+ case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
+ case Intrinsic::nvvm_suld_3d_i16_clamp:
+ case Intrinsic::nvvm_suld_3d_v2i16_clamp:
+ case Intrinsic::nvvm_suld_3d_v4i16_clamp:
+ case Intrinsic::nvvm_suld_1d_i16_trap:
+ case Intrinsic::nvvm_suld_1d_v2i16_trap:
+ case Intrinsic::nvvm_suld_1d_v4i16_trap:
+ case Intrinsic::nvvm_suld_1d_array_i16_trap:
+ case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
+ case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
+ case Intrinsic::nvvm_suld_2d_i16_trap:
+ case Intrinsic::nvvm_suld_2d_v2i16_trap:
+ case Intrinsic::nvvm_suld_2d_v4i16_trap:
+ case Intrinsic::nvvm_suld_2d_array_i16_trap:
+ case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
+ case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
+ case Intrinsic::nvvm_suld_3d_i16_trap:
+ case Intrinsic::nvvm_suld_3d_v2i16_trap:
+ case Intrinsic::nvvm_suld_3d_v4i16_trap:
+ case Intrinsic::nvvm_suld_1d_i16_zero:
+ case Intrinsic::nvvm_suld_1d_v2i16_zero:
+ case Intrinsic::nvvm_suld_1d_v4i16_zero:
+ case Intrinsic::nvvm_suld_1d_array_i16_zero:
+ case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
+ case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
+ case Intrinsic::nvvm_suld_2d_i16_zero:
+ case Intrinsic::nvvm_suld_2d_v2i16_zero:
+ case Intrinsic::nvvm_suld_2d_v4i16_zero:
+ case Intrinsic::nvvm_suld_2d_array_i16_zero:
+ case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
+ case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
+ case Intrinsic::nvvm_suld_3d_i16_zero:
+ case Intrinsic::nvvm_suld_3d_v2i16_zero:
+ case Intrinsic::nvvm_suld_3d_v4i16_zero: {
+ Info.opc = getOpcForSurfaceInstr(Intrinsic);
+ Info.memVT = MVT::i16;
+ Info.ptrVal = nullptr;
+ Info.offset = 0;
+ Info.vol = 0;
+ Info.readMem = true;
+ Info.writeMem = false;
+ Info.align = 16;
+ return true;
+ }
+ case Intrinsic::nvvm_suld_1d_i32_clamp:
+ case Intrinsic::nvvm_suld_1d_v2i32_clamp:
+ case Intrinsic::nvvm_suld_1d_v4i32_clamp:
+ case Intrinsic::nvvm_suld_1d_array_i32_clamp:
+ case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
+ case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
+ case Intrinsic::nvvm_suld_2d_i32_clamp:
+ case Intrinsic::nvvm_suld_2d_v2i32_clamp:
+ case Intrinsic::nvvm_suld_2d_v4i32_clamp:
+ case Intrinsic::nvvm_suld_2d_array_i32_clamp:
+ case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
+ case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
+ case Intrinsic::nvvm_suld_3d_i32_clamp:
+ case Intrinsic::nvvm_suld_3d_v2i32_clamp:
+ case Intrinsic::nvvm_suld_3d_v4i32_clamp:
+ case Intrinsic::nvvm_suld_1d_i32_trap:
+ case Intrinsic::nvvm_suld_1d_v2i32_trap:
+ case Intrinsic::nvvm_suld_1d_v4i32_trap:
+ case Intrinsic::nvvm_suld_1d_array_i32_trap:
+ case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
+ case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
+ case Intrinsic::nvvm_suld_2d_i32_trap:
+ case Intrinsic::nvvm_suld_2d_v2i32_trap:
+ case Intrinsic::nvvm_suld_2d_v4i32_trap:
+ case Intrinsic::nvvm_suld_2d_array_i32_trap:
+ case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
+ case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
+ case Intrinsic::nvvm_suld_3d_i32_trap:
+ case Intrinsic::nvvm_suld_3d_v2i32_trap:
+ case Intrinsic::nvvm_suld_3d_v4i32_trap:
+ case Intrinsic::nvvm_suld_1d_i32_zero:
+ case Intrinsic::nvvm_suld_1d_v2i32_zero:
+ case Intrinsic::nvvm_suld_1d_v4i32_zero:
+ case Intrinsic::nvvm_suld_1d_array_i32_zero:
+ case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
+ case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
+ case Intrinsic::nvvm_suld_2d_i32_zero:
+ case Intrinsic::nvvm_suld_2d_v2i32_zero:
+ case Intrinsic::nvvm_suld_2d_v4i32_zero:
+ case Intrinsic::nvvm_suld_2d_array_i32_zero:
+ case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
+ case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
+ case Intrinsic::nvvm_suld_3d_i32_zero:
+ case Intrinsic::nvvm_suld_3d_v2i32_zero:
+ case Intrinsic::nvvm_suld_3d_v4i32_zero: {
+ Info.opc = getOpcForSurfaceInstr(Intrinsic);
+ Info.memVT = MVT::i32;
+ Info.ptrVal = nullptr;
+ Info.offset = 0;
+ Info.vol = 0;
+ Info.readMem = true;
+ Info.writeMem = false;
+ Info.align = 16;
+ return true;
+ }
+ case Intrinsic::nvvm_suld_1d_i64_clamp:
+ case Intrinsic::nvvm_suld_1d_v2i64_clamp:
+ case Intrinsic::nvvm_suld_1d_array_i64_clamp:
+ case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
+ case Intrinsic::nvvm_suld_2d_i64_clamp:
+ case Intrinsic::nvvm_suld_2d_v2i64_clamp:
+ case Intrinsic::nvvm_suld_2d_array_i64_clamp:
+ case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
+ case Intrinsic::nvvm_suld_3d_i64_clamp:
+ case Intrinsic::nvvm_suld_3d_v2i64_clamp:
+ case Intrinsic::nvvm_suld_1d_i64_trap:
+ case Intrinsic::nvvm_suld_1d_v2i64_trap:
+ case Intrinsic::nvvm_suld_1d_array_i64_trap:
+ case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
+ case Intrinsic::nvvm_suld_2d_i64_trap:
+ case Intrinsic::nvvm_suld_2d_v2i64_trap:
+ case Intrinsic::nvvm_suld_2d_array_i64_trap:
+ case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
+ case Intrinsic::nvvm_suld_3d_i64_trap:
+ case Intrinsic::nvvm_suld_3d_v2i64_trap:
+ case Intrinsic::nvvm_suld_1d_i64_zero:
+ case Intrinsic::nvvm_suld_1d_v2i64_zero:
+ case Intrinsic::nvvm_suld_1d_array_i64_zero:
+ case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
+ case Intrinsic::nvvm_suld_2d_i64_zero:
+ case Intrinsic::nvvm_suld_2d_v2i64_zero:
+ case Intrinsic::nvvm_suld_2d_array_i64_zero:
+ case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
+ case Intrinsic::nvvm_suld_3d_i64_zero:
+ case Intrinsic::nvvm_suld_3d_v2i64_zero: {
+ Info.opc = getOpcForSurfaceInstr(Intrinsic);
+ Info.memVT = MVT::i64;
+ Info.ptrVal = nullptr;
+ Info.offset = 0;
+ Info.vol = 0;
+ Info.readMem = true;
+ Info.writeMem = false;
+ Info.align = 16;
+ return true;
+ }
+ }
+ return false;
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+/// Used to guide target specific optimizations, like loop strength reduction
+/// (LoopStrengthReduce.cpp) and memory optimization for address mode
+/// (CodeGenPrepare.cpp)
+bool NVPTXTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+
+ // AddrMode - This represents an addressing mode of:
+ // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
+ //
+ // The legal address modes are
+ // - [avar]
+ // - [areg]
+ // - [areg+immoff]
+ // - [immAddr]
+
+ if (AM.BaseGV) {
+ if (AM.BaseOffs || AM.HasBaseReg || AM.Scale)
+ return false;
+ return true;
+ }
+
+ switch (AM.Scale) {
+ case 0: // "r", "r+i" or "i" is allowed
+ break;
+ case 1:
+ if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
+ return false;
+ // Otherwise we have r+i.
+ break;
+ default:
+ // No scale > 1 is allowed
+ return false;
+ }
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// NVPTX Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+NVPTXTargetLowering::ConstraintType
+NVPTXTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default:
+ break;
+ case 'b':
+ case 'r':
+ case 'h':
+ case 'c':
+ case 'l':
+ case 'f':
+ case 'd':
+ case '0':
+ case 'N':
+ return C_RegisterClass;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+std::pair<unsigned, const TargetRegisterClass *>
+NVPTXTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'b':
+ return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
+ case 'c':
+ return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
+ case 'h':
+ return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
+ case 'r':
+ return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
+ case 'l':
+ case 'N':
+ return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
+ case 'f':
+ return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
+ case 'd':
+ return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
+ }
+ }
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+/// getFunctionAlignment - Return the Log2 alignment of this function.
+unsigned NVPTXTargetLowering::getFunctionAlignment(const Function *) const {
+ return 4;
+}
+
+//===----------------------------------------------------------------------===//
+// NVPTX DAG Combining
+//===----------------------------------------------------------------------===//
+
+bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
+ CodeGenOpt::Level OptLevel) const {
+ const Function *F = MF.getFunction();
+ const TargetOptions &TO = MF.getTarget().Options;
+
+ // Always honor command-line argument
+ if (FMAContractLevelOpt.getNumOccurrences() > 0) {
+ return FMAContractLevelOpt > 0;
+ } else if (OptLevel == 0) {
+ // Do not contract if we're not optimizing the code
+ return false;
+ } else if (TO.AllowFPOpFusion == FPOpFusion::Fast || TO.UnsafeFPMath) {
+ // Honor TargetOptions flags that explicitly say fusion is okay
+ return true;
+ } else if (F->hasFnAttribute("unsafe-fp-math")) {
+ // Check for unsafe-fp-math=true coming from Clang
+ Attribute Attr = F->getFnAttribute("unsafe-fp-math");
+ StringRef Val = Attr.getValueAsString();
+ if (Val == "true")
+ return true;
+ }
+
+ // We did not have a clear indication that fusion is allowed, so assume not
+ return false;
+}
+
+/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
+/// operands N0 and N1. This is a helper for PerformADDCombine that is
+/// called with the default operands, and if that fails, with commuted
+/// operands.
+static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const NVPTXSubtarget &Subtarget,
+ CodeGenOpt::Level OptLevel) {
+ SelectionDAG &DAG = DCI.DAG;
+ // Skip non-integer, non-scalar case
+ EVT VT=N0.getValueType();
+ if (VT.isVector())
+ return SDValue();
+
+ // fold (add (mul a, b), c) -> (mad a, b, c)
+ //
+ if (N0.getOpcode() == ISD::MUL) {
+ assert (VT.isInteger());
+ // For integer:
+ // Since integer multiply-add costs the same as integer multiply
+ // but is more costly than integer add, do the fusion only when
+ // the mul is only used in the add.
+ if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
+ !N0.getNode()->hasOneUse())
+ return SDValue();
+
+ // Do the folding
+ return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
+ N0.getOperand(0), N0.getOperand(1), N1);
+ }
+ else if (N0.getOpcode() == ISD::FMUL) {
+ if (VT == MVT::f32 || VT == MVT::f64) {
+ NVPTXTargetLowering *TLI =
+ (NVPTXTargetLowering *)&DAG.getTargetLoweringInfo();
+ if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
+ return SDValue();
+
+ // For floating point:
+ // Do the fusion only when the mul has less than 5 uses and all
+ // are add.
+ // The heuristic is that if a use is not an add, then that use
+ // cannot be fused into fma, therefore mul is still needed anyway.
+ // If there are more than 4 uses, even if they are all add, fusing
+ // them will increase register pressue.
+ //
+ int numUses = 0;
+ int nonAddCount = 0;
+ for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
+ UE = N0.getNode()->use_end();
+ UI != UE; ++UI) {
+ numUses++;
+ SDNode *User = *UI;
+ if (User->getOpcode() != ISD::FADD)
+ ++nonAddCount;
+ }
+ if (numUses >= 5)
+ return SDValue();
+ if (nonAddCount) {
+ int orderNo = N->getIROrder();
+ int orderNo2 = N0.getNode()->getIROrder();
+ // simple heuristics here for considering potential register
+ // pressure, the logics here is that the differnce are used
+ // to measure the distance between def and use, the longer distance
+ // more likely cause register pressure.
+ if (orderNo - orderNo2 < 500)
+ return SDValue();
+
+ // Now, check if at least one of the FMUL's operands is live beyond the node N,
+ // which guarantees that the FMA will not increase register pressure at node N.
+ bool opIsLive = false;
+ const SDNode *left = N0.getOperand(0).getNode();
+ const SDNode *right = N0.getOperand(1).getNode();
+
+ if (dyn_cast<ConstantSDNode>(left) || dyn_cast<ConstantSDNode>(right))
+ opIsLive = true;
+
+ if (!opIsLive)
+ for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ int orderNo3 = User->getIROrder();
+ if (orderNo3 > orderNo) {
+ opIsLive = true;
+ break;
+ }
+ }
+
+ if (!opIsLive)
+ for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ int orderNo3 = User->getIROrder();
+ if (orderNo3 > orderNo) {
+ opIsLive = true;
+ break;
+ }
+ }
+
+ if (!opIsLive)
+ return SDValue();
+ }
+
+ return DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ N0.getOperand(0), N0.getOperand(1), N1);
+ }
+ }
+
+ return SDValue();
+}
+
+/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
+///
+static SDValue PerformADDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const NVPTXSubtarget &Subtarget,
+ CodeGenOpt::Level OptLevel) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // First try with the default operand order.
+ SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget,
+ OptLevel);
+ if (Result.getNode())
+ return Result;
+
+ // If that didn't work, try again with the operands commuted.
+ return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
+}
+
+static SDValue PerformANDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // The type legalizer turns a vector load of i8 values into a zextload to i16
+ // registers, optionally ANY_EXTENDs it (if target type is integer),
+ // and ANDs off the high 8 bits. Since we turn this load into a
+ // target-specific DAG node, the DAG combiner fails to eliminate these AND
+ // nodes. Do that here.
+ SDValue Val = N->getOperand(0);
+ SDValue Mask = N->getOperand(1);
+
+ if (isa<ConstantSDNode>(Val)) {
+ std::swap(Val, Mask);
+ }
+
+ SDValue AExt;
+ // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
+ if (Val.getOpcode() == ISD::ANY_EXTEND) {
+ AExt = Val;
+ Val = Val->getOperand(0);
+ }
+
+ if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
+ Val = Val->getOperand(0);
+ }
+
+ if (Val->getOpcode() == NVPTXISD::LoadV2 ||
+ Val->getOpcode() == NVPTXISD::LoadV4) {
+ ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
+ if (!MaskCnst) {
+ // Not an AND with a constant
+ return SDValue();
+ }
+
+ uint64_t MaskVal = MaskCnst->getZExtValue();
+ if (MaskVal != 0xff) {
+ // Not an AND that chops off top 8 bits
+ return SDValue();
+ }
+
+ MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
+ if (!Mem) {
+ // Not a MemSDNode?!?
+ return SDValue();
+ }
+
+ EVT MemVT = Mem->getMemoryVT();
+ if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
+ // We only handle the i8 case
+ return SDValue();
+ }
+
+ unsigned ExtType =
+ cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
+ getZExtValue();
+ if (ExtType == ISD::SEXTLOAD) {
+ // If for some reason the load is a sextload, the and is needed to zero
+ // out the high 8 bits
+ return SDValue();
+ }
+
+ bool AddTo = false;
+ if (AExt.getNode() != 0) {
+ // Re-insert the ext as a zext.
+ Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
+ AExt.getValueType(), Val);
+ AddTo = true;
+ }
+
+ // If we get here, the AND is unnecessary. Just replace it with the load
+ DCI.CombineTo(N, Val, AddTo);
+ }
+
+ return SDValue();
+}
+
+enum OperandSignedness {
+ Signed = 0,
+ Unsigned,
+ Unknown
+};
+
+/// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
+/// that can be demoted to \p OptSize bits without loss of information. The
+/// signedness of the operand, if determinable, is placed in \p S.
+static bool IsMulWideOperandDemotable(SDValue Op,
+ unsigned OptSize,
+ OperandSignedness &S) {
+ S = Unknown;
+
+ if (Op.getOpcode() == ISD::SIGN_EXTEND ||
+ Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ EVT OrigVT = Op.getOperand(0).getValueType();
+ if (OrigVT.getSizeInBits() == OptSize) {
+ S = Signed;
+ return true;
+ }
+ } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
+ EVT OrigVT = Op.getOperand(0).getValueType();
+ if (OrigVT.getSizeInBits() == OptSize) {
+ S = Unsigned;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
+/// be demoted to \p OptSize bits without loss of information. If the operands
+/// contain a constant, it should appear as the RHS operand. The signedness of
+/// the operands is placed in \p IsSigned.
+static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
+ unsigned OptSize,
+ bool &IsSigned) {
+
+ OperandSignedness LHSSign;
+
+ // The LHS operand must be a demotable op
+ if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
+ return false;
+
+ // We should have been able to determine the signedness from the LHS
+ if (LHSSign == Unknown)
+ return false;
+
+ IsSigned = (LHSSign == Signed);
+
+ // The RHS can be a demotable op or a constant
+ if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
+ APInt Val = CI->getAPIntValue();
+ if (LHSSign == Unsigned) {
+ if (Val.isIntN(OptSize)) {
+ return true;
+ }
+ return false;
+ } else {
+ if (Val.isSignedIntN(OptSize)) {
+ return true;
+ }
+ return false;
+ }
+ } else {
+ OperandSignedness RHSSign;
+ if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
+ return false;
+
+ if (LHSSign != RHSSign)
+ return false;
+
+ return true;
+ }
+}
+
+/// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
+/// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
+/// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
+/// amount.
+static SDValue TryMULWIDECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ EVT MulType = N->getValueType(0);
+ if (MulType != MVT::i32 && MulType != MVT::i64) {
+ return SDValue();
+ }
+
+ unsigned OptSize = MulType.getSizeInBits() >> 1;
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ // Canonicalize the multiply so the constant (if any) is on the right
+ if (N->getOpcode() == ISD::MUL) {
+ if (isa<ConstantSDNode>(LHS)) {
+ std::swap(LHS, RHS);
+ }
+ }
+
+ // If we have a SHL, determine the actual multiply amount
+ if (N->getOpcode() == ISD::SHL) {
+ ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
+ if (!ShlRHS) {
+ return SDValue();
+ }
+
+ APInt ShiftAmt = ShlRHS->getAPIntValue();
+ unsigned BitWidth = MulType.getSizeInBits();
+ if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
+ APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
+ RHS = DCI.DAG.getConstant(MulVal, MulType);
+ } else {
+ return SDValue();
+ }
+ }
+
+ bool Signed;
+ // Verify that our operands are demotable
+ if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
+ return SDValue();
+ }
+
+ EVT DemotedVT;
+ if (MulType == MVT::i32) {
+ DemotedVT = MVT::i16;
+ } else {
+ DemotedVT = MVT::i32;
+ }
+
+ // Truncate the operands to the correct size. Note that these are just for
+ // type consistency and will (likely) be eliminated in later phases.
+ SDValue TruncLHS =
+ DCI.DAG.getNode(ISD::TRUNCATE, SDLoc(N), DemotedVT, LHS);
+ SDValue TruncRHS =
+ DCI.DAG.getNode(ISD::TRUNCATE, SDLoc(N), DemotedVT, RHS);
+
+ unsigned Opc;
+ if (Signed) {
+ Opc = NVPTXISD::MUL_WIDE_SIGNED;
+ } else {
+ Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
+ }
+
+ return DCI.DAG.getNode(Opc, SDLoc(N), MulType, TruncLHS, TruncRHS);
+}
+
+/// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
+static SDValue PerformMULCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ CodeGenOpt::Level OptLevel) {
+ if (OptLevel > 0) {
+ // Try mul.wide combining at OptLevel > 0
+ SDValue Ret = TryMULWIDECombine(N, DCI);
+ if (Ret.getNode())
+ return Ret;
+ }
+
+ return SDValue();
+}
+
+/// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
+static SDValue PerformSHLCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ CodeGenOpt::Level OptLevel) {
+ if (OptLevel > 0) {
+ // Try mul.wide combining at OptLevel > 0
+ SDValue Ret = TryMULWIDECombine(N, DCI);
+ if (Ret.getNode())
+ return Ret;
+ }
+
+ return SDValue();
+}
+
+SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::ADD:
+ case ISD::FADD:
+ return PerformADDCombine(N, DCI, nvptxSubtarget, OptLevel);
+ case ISD::MUL:
+ return PerformMULCombine(N, DCI, OptLevel);
+ case ISD::SHL:
+ return PerformSHLCombine(N, DCI, OptLevel);
+ case ISD::AND:
+ return PerformANDCombine(N, DCI);
+ }
+ return SDValue();
+}
+
+/// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
+static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
+ const DataLayout *TD,
+ SmallVectorImpl<SDValue> &Results) {
+ EVT ResVT = N->getValueType(0);
+ SDLoc DL(N);
+
+ assert(ResVT.isVector() && "Vector load must have vector type");
+
+ // We only handle "native" vector sizes for now, e.g. <4 x double> is not
+ // legal. We can (and should) split that into 2 loads of <2 x double> here
+ // but I'm leaving that as a TODO for now.
+ assert(ResVT.isSimple() && "Can only handle simple types");
+ switch (ResVT.getSimpleVT().SimpleTy) {
+ default:
+ return;
+ case MVT::v2i8:
+ case MVT::v2i16:
+ case MVT::v2i32:
+ case MVT::v2i64:
+ case MVT::v2f32:
+ case MVT::v2f64:
+ case MVT::v4i8:
+ case MVT::v4i16:
+ case MVT::v4i32:
+ case MVT::v4f32:
+ // This is a "native" vector type
+ break;
+ }
+
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+
+ unsigned Align = LD->getAlignment();
+ unsigned PrefAlign =
+ TD->getPrefTypeAlignment(ResVT.getTypeForEVT(*DAG.getContext()));
+ if (Align < PrefAlign) {
+ // This load is not sufficiently aligned, so bail out and let this vector
+ // load be scalarized. Note that we may still be able to emit smaller
+ // vector loads. For example, if we are loading a <4 x float> with an
+ // alignment of 8, this check will fail but the legalizer will try again
+ // with 2 x <2 x float>, which will succeed with an alignment of 8.
+ return;
+ }
+
+ EVT EltVT = ResVT.getVectorElementType();
+ unsigned NumElts = ResVT.getVectorNumElements();
+
+ // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
+ // Therefore, we must ensure the type is legal. For i1 and i8, we set the
+ // loaded type to i16 and propagate the "real" type as the memory type.
+ bool NeedTrunc = false;
+ if (EltVT.getSizeInBits() < 16) {
+ EltVT = MVT::i16;
+ NeedTrunc = true;
+ }
+
+ unsigned Opcode = 0;
+ SDVTList LdResVTs;
+
+ switch (NumElts) {
+ default:
+ return;
+ case 2:
+ Opcode = NVPTXISD::LoadV2;
+ LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
+ break;
+ case 4: {
+ Opcode = NVPTXISD::LoadV4;
+ EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
+ LdResVTs = DAG.getVTList(ListVTs);
+ break;
+ }
+ }
+
+ SmallVector<SDValue, 8> OtherOps;
+
+ // Copy regular operands
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ OtherOps.push_back(N->getOperand(i));
+
+ // The select routine does not have access to the LoadSDNode instance, so
+ // pass along the extension information
+ OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType()));
+
+ SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
+ LD->getMemoryVT(),
+ LD->getMemOperand());
+
+ SmallVector<SDValue, 4> ScalarRes;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue Res = NewLD.getValue(i);
+ if (NeedTrunc)
+ Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
+ ScalarRes.push_back(Res);
+ }
+
+ SDValue LoadChain = NewLD.getValue(NumElts);
+
+ SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes);
+
+ Results.push_back(BuildVec);
+ Results.push_back(LoadChain);
+}
+
+static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &Results) {
+ SDValue Chain = N->getOperand(0);
+ SDValue Intrin = N->getOperand(1);
+ SDLoc DL(N);
+
+ // Get the intrinsic ID
+ unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
+ switch (IntrinNo) {
+ default:
+ return;
+ case Intrinsic::nvvm_ldg_global_i:
+ case Intrinsic::nvvm_ldg_global_f:
+ case Intrinsic::nvvm_ldg_global_p:
+ case Intrinsic::nvvm_ldu_global_i:
+ case Intrinsic::nvvm_ldu_global_f:
+ case Intrinsic::nvvm_ldu_global_p: {
+ EVT ResVT = N->getValueType(0);
+
+ if (ResVT.isVector()) {
+ // Vector LDG/LDU
+
+ unsigned NumElts = ResVT.getVectorNumElements();
+ EVT EltVT = ResVT.getVectorElementType();
+
+ // Since LDU/LDG are target nodes, we cannot rely on DAG type
+ // legalization.
+ // Therefore, we must ensure the type is legal. For i1 and i8, we set the
+ // loaded type to i16 and propagate the "real" type as the memory type.
+ bool NeedTrunc = false;
+ if (EltVT.getSizeInBits() < 16) {
+ EltVT = MVT::i16;
+ NeedTrunc = true;
+ }
+
+ unsigned Opcode = 0;
+ SDVTList LdResVTs;
+
+ switch (NumElts) {
+ default:
+ return;
+ case 2:
+ switch (IntrinNo) {
+ default:
+ return;
+ case Intrinsic::nvvm_ldg_global_i:
+ case Intrinsic::nvvm_ldg_global_f:
+ case Intrinsic::nvvm_ldg_global_p:
+ Opcode = NVPTXISD::LDGV2;
+ break;
+ case Intrinsic::nvvm_ldu_global_i:
+ case Intrinsic::nvvm_ldu_global_f:
+ case Intrinsic::nvvm_ldu_global_p:
+ Opcode = NVPTXISD::LDUV2;
+ break;
+ }
+ LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
+ break;
+ case 4: {
+ switch (IntrinNo) {
+ default:
+ return;
+ case Intrinsic::nvvm_ldg_global_i:
+ case Intrinsic::nvvm_ldg_global_f:
+ case Intrinsic::nvvm_ldg_global_p:
+ Opcode = NVPTXISD::LDGV4;
+ break;
+ case Intrinsic::nvvm_ldu_global_i:
+ case Intrinsic::nvvm_ldu_global_f:
+ case Intrinsic::nvvm_ldu_global_p:
+ Opcode = NVPTXISD::LDUV4;
+ break;
+ }
+ EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
+ LdResVTs = DAG.getVTList(ListVTs);
+ break;
+ }
+ }
+
+ SmallVector<SDValue, 8> OtherOps;
+
+ // Copy regular operands
+
+ OtherOps.push_back(Chain); // Chain
+ // Skip operand 1 (intrinsic ID)
+ // Others
+ for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i)
+ OtherOps.push_back(N->getOperand(i));
+
+ MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
+
+ SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
+ MemSD->getMemoryVT(),
+ MemSD->getMemOperand());
+
+ SmallVector<SDValue, 4> ScalarRes;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue Res = NewLD.getValue(i);
+ if (NeedTrunc)
+ Res =
+ DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
+ ScalarRes.push_back(Res);
+ }
+
+ SDValue LoadChain = NewLD.getValue(NumElts);
+
+ SDValue BuildVec =
+ DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes);
+
+ Results.push_back(BuildVec);
+ Results.push_back(LoadChain);
+ } else {
+ // i8 LDG/LDU
+ assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
+ "Custom handling of non-i8 ldu/ldg?");
+
+ // Just copy all operands as-is
+ SmallVector<SDValue, 4> Ops;
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ Ops.push_back(N->getOperand(i));
+
+ // Force output to i16
+ SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
+
+ MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
+
+ // We make sure the memory type is i8, which will be used during isel
+ // to select the proper instruction.
+ SDValue NewLD =
+ DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
+ MVT::i8, MemSD->getMemOperand());
+
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
+ NewLD.getValue(0)));
+ Results.push_back(NewLD.getValue(1));
+ }
+ }
+ }
+}
+
+void NVPTXTargetLowering::ReplaceNodeResults(
+ SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
+ switch (N->getOpcode()) {
+ default:
+ report_fatal_error("Unhandled custom legalization");
+ case ISD::LOAD:
+ ReplaceLoadVector(N, DAG, getDataLayout(), Results);
+ return;
+ case ISD::INTRINSIC_W_CHAIN:
+ ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
+ return;
+ }
+}
+
+// Pin NVPTXSection's and NVPTXTargetObjectFile's vtables to this file.
+void NVPTXSection::anchor() {}
+
+NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {
+ delete TextSection;
+ delete DataSection;
+ delete BSSSection;
+ delete ReadOnlySection;
+
+ delete StaticCtorSection;
+ delete StaticDtorSection;
+ delete LSDASection;
+ delete EHFrameSection;
+ delete DwarfAbbrevSection;
+ delete DwarfInfoSection;
+ delete DwarfLineSection;
+ delete DwarfFrameSection;
+ delete DwarfPubTypesSection;
+ delete DwarfDebugInlineSection;
+ delete DwarfStrSection;
+ delete DwarfLocSection;
+ delete DwarfARangesSection;
+ delete DwarfRangesSection;
+ delete DwarfMacroInfoSection;
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.h b/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.h
new file mode 100644
index 0000000..bef6ed9
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.h
@@ -0,0 +1,541 @@
+//===-- NVPTXISelLowering.h - NVPTX DAG Lowering Interface ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that NVPTX uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTXISELLOWERING_H
+#define NVPTXISELLOWERING_H
+
+#include "NVPTX.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLowering.h"
+
+namespace llvm {
+namespace NVPTXISD {
+enum NodeType {
+ // Start the numbering from where ISD NodeType finishes.
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+ Wrapper,
+ CALL,
+ RET_FLAG,
+ LOAD_PARAM,
+ DeclareParam,
+ DeclareScalarParam,
+ DeclareRetParam,
+ DeclareRet,
+ DeclareScalarRet,
+ PrintCall,
+ PrintCallUni,
+ CallArgBegin,
+ CallArg,
+ LastCallArg,
+ CallArgEnd,
+ CallVoid,
+ CallVal,
+ CallSymbol,
+ Prototype,
+ MoveParam,
+ PseudoUseParam,
+ RETURN,
+ CallSeqBegin,
+ CallSeqEnd,
+ CallPrototype,
+ FUN_SHFL_CLAMP,
+ FUN_SHFR_CLAMP,
+ MUL_WIDE_SIGNED,
+ MUL_WIDE_UNSIGNED,
+ IMAD,
+ Dummy,
+
+ LoadV2 = ISD::FIRST_TARGET_MEMORY_OPCODE,
+ LoadV4,
+ LDGV2, // LDG.v2
+ LDGV4, // LDG.v4
+ LDUV2, // LDU.v2
+ LDUV4, // LDU.v4
+ StoreV2,
+ StoreV4,
+ LoadParam,
+ LoadParamV2,
+ LoadParamV4,
+ StoreParam,
+ StoreParamV2,
+ StoreParamV4,
+ StoreParamS32, // to sext and store a <32bit value, not used currently
+ StoreParamU32, // to zext and store a <32bit value, not used currently
+ StoreRetval,
+ StoreRetvalV2,
+ StoreRetvalV4,
+
+ // Texture intrinsics
+ Tex1DFloatS32,
+ Tex1DFloatFloat,
+ Tex1DFloatFloatLevel,
+ Tex1DFloatFloatGrad,
+ Tex1DS32S32,
+ Tex1DS32Float,
+ Tex1DS32FloatLevel,
+ Tex1DS32FloatGrad,
+ Tex1DU32S32,
+ Tex1DU32Float,
+ Tex1DU32FloatLevel,
+ Tex1DU32FloatGrad,
+ Tex1DArrayFloatS32,
+ Tex1DArrayFloatFloat,
+ Tex1DArrayFloatFloatLevel,
+ Tex1DArrayFloatFloatGrad,
+ Tex1DArrayS32S32,
+ Tex1DArrayS32Float,
+ Tex1DArrayS32FloatLevel,
+ Tex1DArrayS32FloatGrad,
+ Tex1DArrayU32S32,
+ Tex1DArrayU32Float,
+ Tex1DArrayU32FloatLevel,
+ Tex1DArrayU32FloatGrad,
+ Tex2DFloatS32,
+ Tex2DFloatFloat,
+ Tex2DFloatFloatLevel,
+ Tex2DFloatFloatGrad,
+ Tex2DS32S32,
+ Tex2DS32Float,
+ Tex2DS32FloatLevel,
+ Tex2DS32FloatGrad,
+ Tex2DU32S32,
+ Tex2DU32Float,
+ Tex2DU32FloatLevel,
+ Tex2DU32FloatGrad,
+ Tex2DArrayFloatS32,
+ Tex2DArrayFloatFloat,
+ Tex2DArrayFloatFloatLevel,
+ Tex2DArrayFloatFloatGrad,
+ Tex2DArrayS32S32,
+ Tex2DArrayS32Float,
+ Tex2DArrayS32FloatLevel,
+ Tex2DArrayS32FloatGrad,
+ Tex2DArrayU32S32,
+ Tex2DArrayU32Float,
+ Tex2DArrayU32FloatLevel,
+ Tex2DArrayU32FloatGrad,
+ Tex3DFloatS32,
+ Tex3DFloatFloat,
+ Tex3DFloatFloatLevel,
+ Tex3DFloatFloatGrad,
+ Tex3DS32S32,
+ Tex3DS32Float,
+ Tex3DS32FloatLevel,
+ Tex3DS32FloatGrad,
+ Tex3DU32S32,
+ Tex3DU32Float,
+ Tex3DU32FloatLevel,
+ Tex3DU32FloatGrad,
+ TexCubeFloatFloat,
+ TexCubeFloatFloatLevel,
+ TexCubeS32Float,
+ TexCubeS32FloatLevel,
+ TexCubeU32Float,
+ TexCubeU32FloatLevel,
+ TexCubeArrayFloatFloat,
+ TexCubeArrayFloatFloatLevel,
+ TexCubeArrayS32Float,
+ TexCubeArrayS32FloatLevel,
+ TexCubeArrayU32Float,
+ TexCubeArrayU32FloatLevel,
+ Tld4R2DFloatFloat,
+ Tld4G2DFloatFloat,
+ Tld4B2DFloatFloat,
+ Tld4A2DFloatFloat,
+ Tld4R2DS64Float,
+ Tld4G2DS64Float,
+ Tld4B2DS64Float,
+ Tld4A2DS64Float,
+ Tld4R2DU64Float,
+ Tld4G2DU64Float,
+ Tld4B2DU64Float,
+ Tld4A2DU64Float,
+ TexUnified1DFloatS32,
+ TexUnified1DFloatFloat,
+ TexUnified1DFloatFloatLevel,
+ TexUnified1DFloatFloatGrad,
+ TexUnified1DS32S32,
+ TexUnified1DS32Float,
+ TexUnified1DS32FloatLevel,
+ TexUnified1DS32FloatGrad,
+ TexUnified1DU32S32,
+ TexUnified1DU32Float,
+ TexUnified1DU32FloatLevel,
+ TexUnified1DU32FloatGrad,
+ TexUnified1DArrayFloatS32,
+ TexUnified1DArrayFloatFloat,
+ TexUnified1DArrayFloatFloatLevel,
+ TexUnified1DArrayFloatFloatGrad,
+ TexUnified1DArrayS32S32,
+ TexUnified1DArrayS32Float,
+ TexUnified1DArrayS32FloatLevel,
+ TexUnified1DArrayS32FloatGrad,
+ TexUnified1DArrayU32S32,
+ TexUnified1DArrayU32Float,
+ TexUnified1DArrayU32FloatLevel,
+ TexUnified1DArrayU32FloatGrad,
+ TexUnified2DFloatS32,
+ TexUnified2DFloatFloat,
+ TexUnified2DFloatFloatLevel,
+ TexUnified2DFloatFloatGrad,
+ TexUnified2DS32S32,
+ TexUnified2DS32Float,
+ TexUnified2DS32FloatLevel,
+ TexUnified2DS32FloatGrad,
+ TexUnified2DU32S32,
+ TexUnified2DU32Float,
+ TexUnified2DU32FloatLevel,
+ TexUnified2DU32FloatGrad,
+ TexUnified2DArrayFloatS32,
+ TexUnified2DArrayFloatFloat,
+ TexUnified2DArrayFloatFloatLevel,
+ TexUnified2DArrayFloatFloatGrad,
+ TexUnified2DArrayS32S32,
+ TexUnified2DArrayS32Float,
+ TexUnified2DArrayS32FloatLevel,
+ TexUnified2DArrayS32FloatGrad,
+ TexUnified2DArrayU32S32,
+ TexUnified2DArrayU32Float,
+ TexUnified2DArrayU32FloatLevel,
+ TexUnified2DArrayU32FloatGrad,
+ TexUnified3DFloatS32,
+ TexUnified3DFloatFloat,
+ TexUnified3DFloatFloatLevel,
+ TexUnified3DFloatFloatGrad,
+ TexUnified3DS32S32,
+ TexUnified3DS32Float,
+ TexUnified3DS32FloatLevel,
+ TexUnified3DS32FloatGrad,
+ TexUnified3DU32S32,
+ TexUnified3DU32Float,
+ TexUnified3DU32FloatLevel,
+ TexUnified3DU32FloatGrad,
+ TexUnifiedCubeFloatFloat,
+ TexUnifiedCubeFloatFloatLevel,
+ TexUnifiedCubeS32Float,
+ TexUnifiedCubeS32FloatLevel,
+ TexUnifiedCubeU32Float,
+ TexUnifiedCubeU32FloatLevel,
+ TexUnifiedCubeArrayFloatFloat,
+ TexUnifiedCubeArrayFloatFloatLevel,
+ TexUnifiedCubeArrayS32Float,
+ TexUnifiedCubeArrayS32FloatLevel,
+ TexUnifiedCubeArrayU32Float,
+ TexUnifiedCubeArrayU32FloatLevel,
+ Tld4UnifiedR2DFloatFloat,
+ Tld4UnifiedG2DFloatFloat,
+ Tld4UnifiedB2DFloatFloat,
+ Tld4UnifiedA2DFloatFloat,
+ Tld4UnifiedR2DS64Float,
+ Tld4UnifiedG2DS64Float,
+ Tld4UnifiedB2DS64Float,
+ Tld4UnifiedA2DS64Float,
+ Tld4UnifiedR2DU64Float,
+ Tld4UnifiedG2DU64Float,
+ Tld4UnifiedB2DU64Float,
+ Tld4UnifiedA2DU64Float,
+
+ // Surface intrinsics
+ Suld1DI8Clamp,
+ Suld1DI16Clamp,
+ Suld1DI32Clamp,
+ Suld1DI64Clamp,
+ Suld1DV2I8Clamp,
+ Suld1DV2I16Clamp,
+ Suld1DV2I32Clamp,
+ Suld1DV2I64Clamp,
+ Suld1DV4I8Clamp,
+ Suld1DV4I16Clamp,
+ Suld1DV4I32Clamp,
+
+ Suld1DArrayI8Clamp,
+ Suld1DArrayI16Clamp,
+ Suld1DArrayI32Clamp,
+ Suld1DArrayI64Clamp,
+ Suld1DArrayV2I8Clamp,
+ Suld1DArrayV2I16Clamp,
+ Suld1DArrayV2I32Clamp,
+ Suld1DArrayV2I64Clamp,
+ Suld1DArrayV4I8Clamp,
+ Suld1DArrayV4I16Clamp,
+ Suld1DArrayV4I32Clamp,
+
+ Suld2DI8Clamp,
+ Suld2DI16Clamp,
+ Suld2DI32Clamp,
+ Suld2DI64Clamp,
+ Suld2DV2I8Clamp,
+ Suld2DV2I16Clamp,
+ Suld2DV2I32Clamp,
+ Suld2DV2I64Clamp,
+ Suld2DV4I8Clamp,
+ Suld2DV4I16Clamp,
+ Suld2DV4I32Clamp,
+
+ Suld2DArrayI8Clamp,
+ Suld2DArrayI16Clamp,
+ Suld2DArrayI32Clamp,
+ Suld2DArrayI64Clamp,
+ Suld2DArrayV2I8Clamp,
+ Suld2DArrayV2I16Clamp,
+ Suld2DArrayV2I32Clamp,
+ Suld2DArrayV2I64Clamp,
+ Suld2DArrayV4I8Clamp,
+ Suld2DArrayV4I16Clamp,
+ Suld2DArrayV4I32Clamp,
+
+ Suld3DI8Clamp,
+ Suld3DI16Clamp,
+ Suld3DI32Clamp,
+ Suld3DI64Clamp,
+ Suld3DV2I8Clamp,
+ Suld3DV2I16Clamp,
+ Suld3DV2I32Clamp,
+ Suld3DV2I64Clamp,
+ Suld3DV4I8Clamp,
+ Suld3DV4I16Clamp,
+ Suld3DV4I32Clamp,
+
+ Suld1DI8Trap,
+ Suld1DI16Trap,
+ Suld1DI32Trap,
+ Suld1DI64Trap,
+ Suld1DV2I8Trap,
+ Suld1DV2I16Trap,
+ Suld1DV2I32Trap,
+ Suld1DV2I64Trap,
+ Suld1DV4I8Trap,
+ Suld1DV4I16Trap,
+ Suld1DV4I32Trap,
+
+ Suld1DArrayI8Trap,
+ Suld1DArrayI16Trap,
+ Suld1DArrayI32Trap,
+ Suld1DArrayI64Trap,
+ Suld1DArrayV2I8Trap,
+ Suld1DArrayV2I16Trap,
+ Suld1DArrayV2I32Trap,
+ Suld1DArrayV2I64Trap,
+ Suld1DArrayV4I8Trap,
+ Suld1DArrayV4I16Trap,
+ Suld1DArrayV4I32Trap,
+
+ Suld2DI8Trap,
+ Suld2DI16Trap,
+ Suld2DI32Trap,
+ Suld2DI64Trap,
+ Suld2DV2I8Trap,
+ Suld2DV2I16Trap,
+ Suld2DV2I32Trap,
+ Suld2DV2I64Trap,
+ Suld2DV4I8Trap,
+ Suld2DV4I16Trap,
+ Suld2DV4I32Trap,
+
+ Suld2DArrayI8Trap,
+ Suld2DArrayI16Trap,
+ Suld2DArrayI32Trap,
+ Suld2DArrayI64Trap,
+ Suld2DArrayV2I8Trap,
+ Suld2DArrayV2I16Trap,
+ Suld2DArrayV2I32Trap,
+ Suld2DArrayV2I64Trap,
+ Suld2DArrayV4I8Trap,
+ Suld2DArrayV4I16Trap,
+ Suld2DArrayV4I32Trap,
+
+ Suld3DI8Trap,
+ Suld3DI16Trap,
+ Suld3DI32Trap,
+ Suld3DI64Trap,
+ Suld3DV2I8Trap,
+ Suld3DV2I16Trap,
+ Suld3DV2I32Trap,
+ Suld3DV2I64Trap,
+ Suld3DV4I8Trap,
+ Suld3DV4I16Trap,
+ Suld3DV4I32Trap,
+
+ Suld1DI8Zero,
+ Suld1DI16Zero,
+ Suld1DI32Zero,
+ Suld1DI64Zero,
+ Suld1DV2I8Zero,
+ Suld1DV2I16Zero,
+ Suld1DV2I32Zero,
+ Suld1DV2I64Zero,
+ Suld1DV4I8Zero,
+ Suld1DV4I16Zero,
+ Suld1DV4I32Zero,
+
+ Suld1DArrayI8Zero,
+ Suld1DArrayI16Zero,
+ Suld1DArrayI32Zero,
+ Suld1DArrayI64Zero,
+ Suld1DArrayV2I8Zero,
+ Suld1DArrayV2I16Zero,
+ Suld1DArrayV2I32Zero,
+ Suld1DArrayV2I64Zero,
+ Suld1DArrayV4I8Zero,
+ Suld1DArrayV4I16Zero,
+ Suld1DArrayV4I32Zero,
+
+ Suld2DI8Zero,
+ Suld2DI16Zero,
+ Suld2DI32Zero,
+ Suld2DI64Zero,
+ Suld2DV2I8Zero,
+ Suld2DV2I16Zero,
+ Suld2DV2I32Zero,
+ Suld2DV2I64Zero,
+ Suld2DV4I8Zero,
+ Suld2DV4I16Zero,
+ Suld2DV4I32Zero,
+
+ Suld2DArrayI8Zero,
+ Suld2DArrayI16Zero,
+ Suld2DArrayI32Zero,
+ Suld2DArrayI64Zero,
+ Suld2DArrayV2I8Zero,
+ Suld2DArrayV2I16Zero,
+ Suld2DArrayV2I32Zero,
+ Suld2DArrayV2I64Zero,
+ Suld2DArrayV4I8Zero,
+ Suld2DArrayV4I16Zero,
+ Suld2DArrayV4I32Zero,
+
+ Suld3DI8Zero,
+ Suld3DI16Zero,
+ Suld3DI32Zero,
+ Suld3DI64Zero,
+ Suld3DV2I8Zero,
+ Suld3DV2I16Zero,
+ Suld3DV2I32Zero,
+ Suld3DV2I64Zero,
+ Suld3DV4I8Zero,
+ Suld3DV4I16Zero,
+ Suld3DV4I32Zero
+};
+}
+
+class NVPTXSubtarget;
+
+//===--------------------------------------------------------------------===//
+// TargetLowering Implementation
+//===--------------------------------------------------------------------===//
+class NVPTXTargetLowering : public TargetLowering {
+public:
+ explicit NVPTXTargetLowering(NVPTXTargetMachine &TM);
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+
+ SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddress(const GlobalValue *GV, int64_t Offset,
+ SelectionDAG &DAG) const;
+
+ const char *getTargetNodeName(unsigned Opcode) const override;
+
+ bool isTypeSupportedInIntrinsic(MVT VT) const;
+
+ bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
+ unsigned Intrinsic) const override;
+
+ /// isLegalAddressingMode - Return true if the addressing mode represented
+ /// by AM is legal for this target, for a load/store of the specified type
+ /// Used to guide target specific optimizations, like loop strength
+ /// reduction (LoopStrengthReduce.cpp) and memory optimization for
+ /// address mode (CodeGenPrepare.cpp)
+ bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
+
+ /// getFunctionAlignment - Return the Log2 alignment of this function.
+ unsigned getFunctionAlignment(const Function *F) const;
+
+ EVT getSetCCResultType(LLVMContext &Ctx, EVT VT) const override {
+ if (VT.isVector())
+ return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
+ return MVT::i1;
+ }
+
+ ConstraintType
+ getConstraintType(const std::string &Constraint) const override;
+ std::pair<unsigned, const TargetRegisterClass *>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const override;
+
+ SDValue LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ std::string getPrototype(Type *, const ArgListTy &,
+ const SmallVectorImpl<ISD::OutputArg> &,
+ unsigned retAlignment,
+ const ImmutableCallSite *CS) const;
+
+ SDValue
+ LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals, SDLoc dl,
+ SelectionDAG &DAG) const override;
+
+ void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const override;
+
+ NVPTXTargetMachine *nvTM;
+
+ // PTX always uses 32-bit shift amounts
+ MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
+
+ TargetLoweringBase::LegalizeTypeAction
+ getPreferredVectorAction(EVT VT) const override;
+
+ bool allowFMA(MachineFunction &MF, CodeGenOpt::Level OptLevel) const;
+
+ virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
+ return true;
+ }
+
+private:
+ const NVPTXSubtarget &nvptxSubtarget; // cache the subtarget here
+
+ SDValue getExtSymb(SelectionDAG &DAG, const char *name, int idx,
+ EVT = MVT::i32) const;
+ SDValue getParamSymbol(SelectionDAG &DAG, int idx, EVT) const;
+ SDValue getParamHelpSymbol(SelectionDAG &DAG, int idx);
+
+ SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerLOADi1(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const;
+
+ void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const override;
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+
+ unsigned getArgumentAlignment(SDValue Callee, const ImmutableCallSite *CS,
+ Type *Ty, unsigned Idx) const;
+};
+} // namespace llvm
+
+#endif // NVPTXISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXImageOptimizer.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXImageOptimizer.cpp
new file mode 100644
index 0000000..a98fb37
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXImageOptimizer.cpp
@@ -0,0 +1,178 @@
+//===-- NVPTXImageOptimizer.cpp - Image optimization pass -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements IR-level optimizations of image access code,
+// including:
+//
+// 1. Eliminate istypep intrinsics when image access qualifier is known
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTX.h"
+#include "NVPTXUtilities.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/ConstantFolding.h"
+
+using namespace llvm;
+
+namespace {
+class NVPTXImageOptimizer : public FunctionPass {
+private:
+ static char ID;
+ SmallVector<Instruction*, 4> InstrToDelete;
+
+public:
+ NVPTXImageOptimizer();
+
+ bool runOnFunction(Function &F) override;
+
+private:
+ bool replaceIsTypePSampler(Instruction &I);
+ bool replaceIsTypePSurface(Instruction &I);
+ bool replaceIsTypePTexture(Instruction &I);
+ Value *cleanupValue(Value *V);
+ void replaceWith(Instruction *From, ConstantInt *To);
+};
+}
+
+char NVPTXImageOptimizer::ID = 0;
+
+NVPTXImageOptimizer::NVPTXImageOptimizer()
+ : FunctionPass(ID) {}
+
+bool NVPTXImageOptimizer::runOnFunction(Function &F) {
+ bool Changed = false;
+ InstrToDelete.clear();
+
+ // Look for call instructions in the function
+ for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;
+ ++BI) {
+ for (BasicBlock::iterator I = (*BI).begin(), E = (*BI).end();
+ I != E; ++I) {
+ Instruction &Instr = *I;
+ if (CallInst *CI = dyn_cast<CallInst>(I)) {
+ Function *CalledF = CI->getCalledFunction();
+ if (CalledF && CalledF->isIntrinsic()) {
+ // This is an intrinsic function call, check if its an istypep
+ switch (CalledF->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::nvvm_istypep_sampler:
+ Changed |= replaceIsTypePSampler(Instr);
+ break;
+ case Intrinsic::nvvm_istypep_surface:
+ Changed |= replaceIsTypePSurface(Instr);
+ break;
+ case Intrinsic::nvvm_istypep_texture:
+ Changed |= replaceIsTypePTexture(Instr);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // Delete any istypep instances we replaced in the IR
+ for (unsigned i = 0, e = InstrToDelete.size(); i != e; ++i)
+ InstrToDelete[i]->eraseFromParent();
+
+ return Changed;
+}
+
+bool NVPTXImageOptimizer::replaceIsTypePSampler(Instruction &I) {
+ Value *TexHandle = cleanupValue(I.getOperand(0));
+ if (isSampler(*TexHandle)) {
+ // This is an OpenCL sampler, so it must be a samplerref
+ replaceWith(&I, ConstantInt::getTrue(I.getContext()));
+ return true;
+ } else if (isImageWriteOnly(*TexHandle) ||
+ isImageReadWrite(*TexHandle) ||
+ isImageReadOnly(*TexHandle)) {
+ // This is an OpenCL image, so it cannot be a samplerref
+ replaceWith(&I, ConstantInt::getFalse(I.getContext()));
+ return true;
+ } else {
+ // The image type is unknown, so we cannot eliminate the intrinsic
+ return false;
+ }
+}
+
+bool NVPTXImageOptimizer::replaceIsTypePSurface(Instruction &I) {
+ Value *TexHandle = cleanupValue(I.getOperand(0));
+ if (isImageReadWrite(*TexHandle) ||
+ isImageWriteOnly(*TexHandle)) {
+ // This is an OpenCL read-only/read-write image, so it must be a surfref
+ replaceWith(&I, ConstantInt::getTrue(I.getContext()));
+ return true;
+ } else if (isImageReadOnly(*TexHandle) ||
+ isSampler(*TexHandle)) {
+ // This is an OpenCL read-only/ imageor sampler, so it cannot be
+ // a surfref
+ replaceWith(&I, ConstantInt::getFalse(I.getContext()));
+ return true;
+ } else {
+ // The image type is unknown, so we cannot eliminate the intrinsic
+ return false;
+ }
+}
+
+bool NVPTXImageOptimizer::replaceIsTypePTexture(Instruction &I) {
+ Value *TexHandle = cleanupValue(I.getOperand(0));
+ if (isImageReadOnly(*TexHandle)) {
+ // This is an OpenCL read-only image, so it must be a texref
+ replaceWith(&I, ConstantInt::getTrue(I.getContext()));
+ return true;
+ } else if (isImageWriteOnly(*TexHandle) ||
+ isImageReadWrite(*TexHandle) ||
+ isSampler(*TexHandle)) {
+ // This is an OpenCL read-write/write-only image or a sampler, so it
+ // cannot be a texref
+ replaceWith(&I, ConstantInt::getFalse(I.getContext()));
+ return true;
+ } else {
+ // The image type is unknown, so we cannot eliminate the intrinsic
+ return false;
+ }
+}
+
+void NVPTXImageOptimizer::replaceWith(Instruction *From, ConstantInt *To) {
+ // We implement "poor man's DCE" here to make sure any code that is no longer
+ // live is actually unreachable and can be trivially eliminated by the
+ // unreachable block elimination pass.
+ for (CallInst::use_iterator UI = From->use_begin(), UE = From->use_end();
+ UI != UE; ++UI) {
+ if (BranchInst *BI = dyn_cast<BranchInst>(*UI)) {
+ if (BI->isUnconditional()) continue;
+ BasicBlock *Dest;
+ if (To->isZero())
+ // Get false block
+ Dest = BI->getSuccessor(1);
+ else
+ // Get true block
+ Dest = BI->getSuccessor(0);
+ BranchInst::Create(Dest, BI);
+ InstrToDelete.push_back(BI);
+ }
+ }
+ From->replaceAllUsesWith(To);
+ InstrToDelete.push_back(From);
+}
+
+Value *NVPTXImageOptimizer::cleanupValue(Value *V) {
+ if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
+ return cleanupValue(EVI->getAggregateOperand());
+ }
+ return V;
+}
+
+FunctionPass *llvm::createNVPTXImageOptimizerPass() {
+ return new NVPTXImageOptimizer();
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXInstrFormats.td b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrFormats.td
new file mode 100644
index 0000000..ffcb5d5
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrFormats.td
@@ -0,0 +1,59 @@
+//===- NVPTXInstrFormats.td - NVPTX Instruction Formats-------*- tblgen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Describe NVPTX instructions format
+//
+//===----------------------------------------------------------------------===//
+
+// Vector instruction type enum
+class VecInstTypeEnum<bits<4> val> {
+ bits<4> Value=val;
+}
+def VecNOP : VecInstTypeEnum<0>;
+
+// Generic NVPTX Format
+
+class NVPTXInst<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : Instruction {
+ field bits<14> Inst;
+
+ let Namespace = "NVPTX";
+ dag OutOperandList = outs;
+ dag InOperandList = ins;
+ let AsmString = asmstr;
+ let Pattern = pattern;
+
+ // TSFlagFields
+ bits<4> VecInstType = VecNOP.Value;
+ bit IsSimpleMove = 0;
+ bit IsLoad = 0;
+ bit IsStore = 0;
+
+ bit IsTex = 0;
+ bit IsSust = 0;
+ bit IsSurfTexQuery = 0;
+ bit IsTexModeUnified = 0;
+
+ // The following field is encoded as log2 of the vector size minus one,
+ // with 0 meaning the operation is not a surface instruction. For example,
+ // if IsSuld == 2, then the instruction is a suld instruction with vector size
+ // 2**(2-1) = 2.
+ bits<2> IsSuld = 0;
+
+ let TSFlags{3-0} = VecInstType;
+ let TSFlags{4-4} = IsSimpleMove;
+ let TSFlags{5-5} = IsLoad;
+ let TSFlags{6-6} = IsStore;
+ let TSFlags{7} = IsTex;
+ let TSFlags{9-8} = IsSuld;
+ let TSFlags{10} = IsSust;
+ let TSFlags{11} = IsSurfTexQuery;
+ let TSFlags{12} = IsTexModeUnified;
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.cpp
new file mode 100644
index 0000000..b5b4fbe
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.cpp
@@ -0,0 +1,273 @@
+//===- NVPTXInstrInfo.cpp - NVPTX Instruction Information -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the NVPTX implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTX.h"
+#include "NVPTXInstrInfo.h"
+#include "NVPTXTargetMachine.h"
+#include "llvm/IR/Function.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "NVPTXGenInstrInfo.inc"
+
+// Pin the vtable to this file.
+void NVPTXInstrInfo::anchor() {}
+
+// FIXME: Add the subtarget support on this constructor.
+NVPTXInstrInfo::NVPTXInstrInfo(NVPTXSubtarget &STI)
+ : NVPTXGenInstrInfo(), RegInfo(STI) {}
+
+void NVPTXInstrInfo::copyPhysReg(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg, bool KillSrc) const {
+ const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ const TargetRegisterClass *DestRC = MRI.getRegClass(DestReg);
+ const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
+
+ if (DestRC != SrcRC)
+ report_fatal_error("Attempted to created cross-class register copy");
+
+ if (DestRC == &NVPTX::Int32RegsRegClass)
+ BuildMI(MBB, I, DL, get(NVPTX::IMOV32rr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ else if (DestRC == &NVPTX::Int1RegsRegClass)
+ BuildMI(MBB, I, DL, get(NVPTX::IMOV1rr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ else if (DestRC == &NVPTX::Float32RegsRegClass)
+ BuildMI(MBB, I, DL, get(NVPTX::FMOV32rr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ else if (DestRC == &NVPTX::Int16RegsRegClass)
+ BuildMI(MBB, I, DL, get(NVPTX::IMOV16rr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ else if (DestRC == &NVPTX::Int64RegsRegClass)
+ BuildMI(MBB, I, DL, get(NVPTX::IMOV64rr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ else if (DestRC == &NVPTX::Float64RegsRegClass)
+ BuildMI(MBB, I, DL, get(NVPTX::FMOV64rr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ else {
+ llvm_unreachable("Bad register copy");
+ }
+}
+
+bool NVPTXInstrInfo::isMoveInstr(const MachineInstr &MI, unsigned &SrcReg,
+ unsigned &DestReg) const {
+ // Look for the appropriate part of TSFlags
+ bool isMove = false;
+
+ unsigned TSFlags =
+ (MI.getDesc().TSFlags & NVPTX::SimpleMoveMask) >> NVPTX::SimpleMoveShift;
+ isMove = (TSFlags == 1);
+
+ if (isMove) {
+ MachineOperand dest = MI.getOperand(0);
+ MachineOperand src = MI.getOperand(1);
+ assert(dest.isReg() && "dest of a movrr is not a reg");
+ assert(src.isReg() && "src of a movrr is not a reg");
+
+ SrcReg = src.getReg();
+ DestReg = dest.getReg();
+ return true;
+ }
+
+ return false;
+}
+
+bool NVPTXInstrInfo::isReadSpecialReg(MachineInstr &MI) const {
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case NVPTX::INT_PTX_SREG_NTID_X:
+ case NVPTX::INT_PTX_SREG_NTID_Y:
+ case NVPTX::INT_PTX_SREG_NTID_Z:
+ case NVPTX::INT_PTX_SREG_TID_X:
+ case NVPTX::INT_PTX_SREG_TID_Y:
+ case NVPTX::INT_PTX_SREG_TID_Z:
+ case NVPTX::INT_PTX_SREG_CTAID_X:
+ case NVPTX::INT_PTX_SREG_CTAID_Y:
+ case NVPTX::INT_PTX_SREG_CTAID_Z:
+ case NVPTX::INT_PTX_SREG_NCTAID_X:
+ case NVPTX::INT_PTX_SREG_NCTAID_Y:
+ case NVPTX::INT_PTX_SREG_NCTAID_Z:
+ case NVPTX::INT_PTX_SREG_WARPSIZE:
+ return true;
+ }
+}
+
+bool NVPTXInstrInfo::isLoadInstr(const MachineInstr &MI,
+ unsigned &AddrSpace) const {
+ bool isLoad = false;
+ unsigned TSFlags =
+ (MI.getDesc().TSFlags & NVPTX::isLoadMask) >> NVPTX::isLoadShift;
+ isLoad = (TSFlags == 1);
+ if (isLoad)
+ AddrSpace = getLdStCodeAddrSpace(MI);
+ return isLoad;
+}
+
+bool NVPTXInstrInfo::isStoreInstr(const MachineInstr &MI,
+ unsigned &AddrSpace) const {
+ bool isStore = false;
+ unsigned TSFlags =
+ (MI.getDesc().TSFlags & NVPTX::isStoreMask) >> NVPTX::isStoreShift;
+ isStore = (TSFlags == 1);
+ if (isStore)
+ AddrSpace = getLdStCodeAddrSpace(MI);
+ return isStore;
+}
+
+bool NVPTXInstrInfo::CanTailMerge(const MachineInstr *MI) const {
+ unsigned addrspace = 0;
+ if (MI->getOpcode() == NVPTX::INT_CUDA_SYNCTHREADS)
+ return false;
+ if (isLoadInstr(*MI, addrspace))
+ if (addrspace == NVPTX::PTXLdStInstCode::SHARED)
+ return false;
+ if (isStoreInstr(*MI, addrspace))
+ if (addrspace == NVPTX::PTXLdStInstCode::SHARED)
+ return false;
+ return true;
+}
+
+/// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
+/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
+/// implemented for a target). Upon success, this returns false and returns
+/// with the following information in various cases:
+///
+/// 1. If this block ends with no branches (it just falls through to its succ)
+/// just return false, leaving TBB/FBB null.
+/// 2. If this block ends with only an unconditional branch, it sets TBB to be
+/// the destination block.
+/// 3. If this block ends with an conditional branch and it falls through to
+/// an successor block, it sets TBB to be the branch destination block and a
+/// list of operands that evaluate the condition. These
+/// operands can be passed to other TargetInstrInfo methods to create new
+/// branches.
+/// 4. If this block ends with an conditional branch and an unconditional
+/// block, it returns the 'true' destination in TBB, the 'false' destination
+/// in FBB, and a list of operands that evaluate the condition. These
+/// operands can be passed to other TargetInstrInfo methods to create new
+/// branches.
+///
+/// Note that RemoveBranch and InsertBranch must be implemented to support
+/// cases where this method returns success.
+///
+bool NVPTXInstrInfo::AnalyzeBranch(
+ MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const {
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ if (LastInst->getOpcode() == NVPTX::GOTO) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else if (LastInst->getOpcode() == NVPTX::CBranch) {
+ // Block ends with fall-through condbranch.
+ TBB = LastInst->getOperand(1).getMBB();
+ Cond.push_back(LastInst->getOperand(0));
+ return false;
+ }
+ // Otherwise, don't know what this is.
+ return true;
+ }
+
+ // Get the instruction before it if it's a terminator.
+ MachineInstr *SecondLastInst = I;
+
+ // If there are three terminators, we don't know what sort of block this is.
+ if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
+ return true;
+
+ // If the block ends with NVPTX::GOTO and NVPTX:CBranch, handle it.
+ if (SecondLastInst->getOpcode() == NVPTX::CBranch &&
+ LastInst->getOpcode() == NVPTX::GOTO) {
+ TBB = SecondLastInst->getOperand(1).getMBB();
+ Cond.push_back(SecondLastInst->getOperand(0));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two NVPTX:GOTOs, handle it. The second one is not
+ // executed, so remove it.
+ if (SecondLastInst->getOpcode() == NVPTX::GOTO &&
+ LastInst->getOpcode() == NVPTX::GOTO) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+unsigned NVPTXInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return 0;
+ --I;
+ if (I->getOpcode() != NVPTX::GOTO && I->getOpcode() != NVPTX::CBranch)
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin())
+ return 1;
+ --I;
+ if (I->getOpcode() != NVPTX::CBranch)
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+unsigned NVPTXInstrInfo::InsertBranch(
+ MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const {
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 1 || Cond.size() == 0) &&
+ "NVPTX branch conditions have two components!");
+
+ // One-way branch.
+ if (!FBB) {
+ if (Cond.empty()) // Unconditional branch
+ BuildMI(&MBB, DL, get(NVPTX::GOTO)).addMBB(TBB);
+ else // Conditional branch
+ BuildMI(&MBB, DL, get(NVPTX::CBranch)).addReg(Cond[0].getReg())
+ .addMBB(TBB);
+ return 1;
+ }
+
+ // Two-way Conditional Branch.
+ BuildMI(&MBB, DL, get(NVPTX::CBranch)).addReg(Cond[0].getReg()).addMBB(TBB);
+ BuildMI(&MBB, DL, get(NVPTX::GOTO)).addMBB(FBB);
+ return 2;
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.h b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.h
new file mode 100644
index 0000000..2ac2974
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.h
@@ -0,0 +1,78 @@
+//===- NVPTXInstrInfo.h - NVPTX Instruction Information----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the niversity of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the NVPTX implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTXINSTRUCTIONINFO_H
+#define NVPTXINSTRUCTIONINFO_H
+
+#include "NVPTX.h"
+#include "NVPTXRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "NVPTXGenInstrInfo.inc"
+
+namespace llvm {
+
+class NVPTXInstrInfo : public NVPTXGenInstrInfo {
+ const NVPTXRegisterInfo RegInfo;
+ virtual void anchor();
+public:
+ explicit NVPTXInstrInfo(NVPTXSubtarget &STI);
+
+ const NVPTXRegisterInfo &getRegisterInfo() const { return RegInfo; }
+
+ /* The following virtual functions are used in register allocation.
+ * They are not implemented because the existing interface and the logic
+ * at the caller side do not work for the elementized vector load and store.
+ *
+ * virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ * int &FrameIndex) const;
+ * virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
+ * int &FrameIndex) const;
+ * virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
+ * MachineBasicBlock::iterator MBBI,
+ * unsigned SrcReg, bool isKill, int FrameIndex,
+ * const TargetRegisterClass *RC) const;
+ * virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ * MachineBasicBlock::iterator MBBI,
+ * unsigned DestReg, int FrameIndex,
+ * const TargetRegisterClass *RC) const;
+ */
+
+ void copyPhysReg(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg, bool KillSrc) const override;
+ virtual bool isMoveInstr(const MachineInstr &MI, unsigned &SrcReg,
+ unsigned &DestReg) const;
+ bool isLoadInstr(const MachineInstr &MI, unsigned &AddrSpace) const;
+ bool isStoreInstr(const MachineInstr &MI, unsigned &AddrSpace) const;
+ bool isReadSpecialReg(MachineInstr &MI) const;
+
+ virtual bool CanTailMerge(const MachineInstr *MI) const;
+ // Branch analysis.
+ bool AnalyzeBranch(
+ MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const override;
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+ unsigned InsertBranch(
+ MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const override;
+ unsigned getLdStCodeAddrSpace(const MachineInstr &MI) const {
+ return MI.getOperand(2).getImm();
+ }
+
+};
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td
new file mode 100644
index 0000000..9900b8c
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td
@@ -0,0 +1,2741 @@
+//===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the PTX instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+include "NVPTXInstrFormats.td"
+
+// A NOP instruction
+def NOP : NVPTXInst<(outs), (ins), "", []>;
+
+// List of vector specific properties
+def isVecLD : VecInstTypeEnum<1>;
+def isVecST : VecInstTypeEnum<2>;
+def isVecBuild : VecInstTypeEnum<3>;
+def isVecShuffle : VecInstTypeEnum<4>;
+def isVecExtract : VecInstTypeEnum<5>;
+def isVecInsert : VecInstTypeEnum<6>;
+def isVecDest : VecInstTypeEnum<7>;
+def isVecOther : VecInstTypeEnum<15>;
+
+//===----------------------------------------------------------------------===//
+// NVPTX Operand Definitions.
+//===----------------------------------------------------------------------===//
+
+def brtarget : Operand<OtherVT>;
+
+// CVT conversion modes
+// These must match the enum in NVPTX.h
+def CvtNONE : PatLeaf<(i32 0x0)>;
+def CvtRNI : PatLeaf<(i32 0x1)>;
+def CvtRZI : PatLeaf<(i32 0x2)>;
+def CvtRMI : PatLeaf<(i32 0x3)>;
+def CvtRPI : PatLeaf<(i32 0x4)>;
+def CvtRN : PatLeaf<(i32 0x5)>;
+def CvtRZ : PatLeaf<(i32 0x6)>;
+def CvtRM : PatLeaf<(i32 0x7)>;
+def CvtRP : PatLeaf<(i32 0x8)>;
+
+def CvtNONE_FTZ : PatLeaf<(i32 0x10)>;
+def CvtRNI_FTZ : PatLeaf<(i32 0x11)>;
+def CvtRZI_FTZ : PatLeaf<(i32 0x12)>;
+def CvtRMI_FTZ : PatLeaf<(i32 0x13)>;
+def CvtRPI_FTZ : PatLeaf<(i32 0x14)>;
+def CvtRN_FTZ : PatLeaf<(i32 0x15)>;
+def CvtRZ_FTZ : PatLeaf<(i32 0x16)>;
+def CvtRM_FTZ : PatLeaf<(i32 0x17)>;
+def CvtRP_FTZ : PatLeaf<(i32 0x18)>;
+
+def CvtSAT : PatLeaf<(i32 0x20)>;
+def CvtSAT_FTZ : PatLeaf<(i32 0x30)>;
+
+def CvtMode : Operand<i32> {
+ let PrintMethod = "printCvtMode";
+}
+
+// Compare modes
+// These must match the enum in NVPTX.h
+def CmpEQ : PatLeaf<(i32 0)>;
+def CmpNE : PatLeaf<(i32 1)>;
+def CmpLT : PatLeaf<(i32 2)>;
+def CmpLE : PatLeaf<(i32 3)>;
+def CmpGT : PatLeaf<(i32 4)>;
+def CmpGE : PatLeaf<(i32 5)>;
+def CmpLO : PatLeaf<(i32 6)>;
+def CmpLS : PatLeaf<(i32 7)>;
+def CmpHI : PatLeaf<(i32 8)>;
+def CmpHS : PatLeaf<(i32 9)>;
+def CmpEQU : PatLeaf<(i32 10)>;
+def CmpNEU : PatLeaf<(i32 11)>;
+def CmpLTU : PatLeaf<(i32 12)>;
+def CmpLEU : PatLeaf<(i32 13)>;
+def CmpGTU : PatLeaf<(i32 14)>;
+def CmpGEU : PatLeaf<(i32 15)>;
+def CmpNUM : PatLeaf<(i32 16)>;
+def CmpNAN : PatLeaf<(i32 17)>;
+
+def CmpEQ_FTZ : PatLeaf<(i32 0x100)>;
+def CmpNE_FTZ : PatLeaf<(i32 0x101)>;
+def CmpLT_FTZ : PatLeaf<(i32 0x102)>;
+def CmpLE_FTZ : PatLeaf<(i32 0x103)>;
+def CmpGT_FTZ : PatLeaf<(i32 0x104)>;
+def CmpGE_FTZ : PatLeaf<(i32 0x105)>;
+def CmpLO_FTZ : PatLeaf<(i32 0x106)>;
+def CmpLS_FTZ : PatLeaf<(i32 0x107)>;
+def CmpHI_FTZ : PatLeaf<(i32 0x108)>;
+def CmpHS_FTZ : PatLeaf<(i32 0x109)>;
+def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>;
+def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>;
+def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>;
+def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>;
+def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>;
+def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>;
+def CmpNUM_FTZ : PatLeaf<(i32 0x110)>;
+def CmpNAN_FTZ : PatLeaf<(i32 0x111)>;
+
+def CmpMode : Operand<i32> {
+ let PrintMethod = "printCmpMode";
+}
+
+def F32ConstZero : Operand<f32>, PatLeaf<(f32 fpimm)>, SDNodeXForm<fpimm, [{
+ return CurDAG->getTargetConstantFP(0.0, MVT::f32);
+ }]>;
+def F32ConstOne : Operand<f32>, PatLeaf<(f32 fpimm)>, SDNodeXForm<fpimm, [{
+ return CurDAG->getTargetConstantFP(1.0, MVT::f32);
+ }]>;
+
+//===----------------------------------------------------------------------===//
+// NVPTX Instruction Predicate Definitions
+//===----------------------------------------------------------------------===//
+
+
+def hasAtomRedG32 : Predicate<"Subtarget.hasAtomRedG32()">;
+def hasAtomRedS32 : Predicate<"Subtarget.hasAtomRedS32()">;
+def hasAtomRedGen32 : Predicate<"Subtarget.hasAtomRedGen32()">;
+def useAtomRedG32forGen32 :
+ Predicate<"!Subtarget.hasAtomRedGen32() && Subtarget.hasAtomRedG32()">;
+def hasBrkPt : Predicate<"Subtarget.hasBrkPt()">;
+def hasAtomRedG64 : Predicate<"Subtarget.hasAtomRedG64()">;
+def hasAtomRedS64 : Predicate<"Subtarget.hasAtomRedS64()">;
+def hasAtomRedGen64 : Predicate<"Subtarget.hasAtomRedGen64()">;
+def useAtomRedG64forGen64 :
+ Predicate<"!Subtarget.hasAtomRedGen64() && Subtarget.hasAtomRedG64()">;
+def hasAtomAddF32 : Predicate<"Subtarget.hasAtomAddF32()">;
+def hasVote : Predicate<"Subtarget.hasVote()">;
+def hasDouble : Predicate<"Subtarget.hasDouble()">;
+def reqPTX20 : Predicate<"Subtarget.reqPTX20()">;
+def hasLDG : Predicate<"Subtarget.hasLDG()">;
+def hasLDU : Predicate<"Subtarget.hasLDU()">;
+def hasGenericLdSt : Predicate<"Subtarget.hasGenericLdSt()">;
+
+def doF32FTZ : Predicate<"useF32FTZ()">;
+def doNoF32FTZ : Predicate<"!useF32FTZ()">;
+
+def doMulWide : Predicate<"doMulWide">;
+
+def allowFMA : Predicate<"allowFMA()">;
+def noFMA : Predicate<"!allowFMA()">;
+
+def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">;
+def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">;
+
+def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">;
+def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">;
+
+def hasHWROT32 : Predicate<"Subtarget.hasHWROT32()">;
+def noHWROT32 : Predicate<"!Subtarget.hasHWROT32()">;
+
+def true : Predicate<"1">;
+
+def hasPTX31 : Predicate<"Subtarget.getPTXVersion() >= 31">;
+
+
+//===----------------------------------------------------------------------===//
+// Some Common Instruction Class Templates
+//===----------------------------------------------------------------------===//
+
+multiclass I3<string OpcStr, SDNode OpNode> {
+ def i64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
+ !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a,
+ Int64Regs:$b))]>;
+ def i64ri : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
+ !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
+ def i32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a,
+ Int32Regs:$b))]>;
+ def i32ri : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
+ def i16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
+ !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a,
+ Int16Regs:$b))]>;
+ def i16ri : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
+ !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>;
+}
+
+multiclass ADD_SUB_INT_32<string OpcStr, SDNode OpNode> {
+ def i32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a,
+ Int32Regs:$b),
+ !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a,
+ Int32Regs:$b))]>;
+ def i32ri : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
+}
+
+multiclass F3<string OpcStr, SDNode OpNode> {
+ def f64rr : NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, Float64Regs:$b),
+ !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
+ [(set Float64Regs:$dst,
+ (OpNode Float64Regs:$a, Float64Regs:$b))]>,
+ Requires<[allowFMA]>;
+ def f64ri : NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, f64imm:$b),
+ !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
+ [(set Float64Regs:$dst,
+ (OpNode Float64Regs:$a, fpimm:$b))]>,
+ Requires<[allowFMA]>;
+ def f32rr_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst,
+ (OpNode Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[allowFMA, doF32FTZ]>;
+ def f32ri_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst,
+ (OpNode Float32Regs:$a, fpimm:$b))]>,
+ Requires<[allowFMA, doF32FTZ]>;
+ def f32rr : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst,
+ (OpNode Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[allowFMA]>;
+ def f32ri : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst,
+ (OpNode Float32Regs:$a, fpimm:$b))]>,
+ Requires<[allowFMA]>;
+}
+
+multiclass F3_rn<string OpcStr, SDNode OpNode> {
+ def f64rr : NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, Float64Regs:$b),
+ !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
+ [(set Float64Regs:$dst,
+ (OpNode Float64Regs:$a, Float64Regs:$b))]>,
+ Requires<[noFMA]>;
+ def f64ri : NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, f64imm:$b),
+ !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
+ [(set Float64Regs:$dst,
+ (OpNode Float64Regs:$a, fpimm:$b))]>,
+ Requires<[noFMA]>;
+ def f32rr_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst,
+ (OpNode Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[noFMA, doF32FTZ]>;
+ def f32ri_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst,
+ (OpNode Float32Regs:$a, fpimm:$b))]>,
+ Requires<[noFMA, doF32FTZ]>;
+ def f32rr : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst,
+ (OpNode Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[noFMA]>;
+ def f32ri : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst,
+ (OpNode Float32Regs:$a, fpimm:$b))]>,
+ Requires<[noFMA]>;
+}
+
+multiclass F2<string OpcStr, SDNode OpNode> {
+ def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a),
+ !strconcat(OpcStr, ".f64 \t$dst, $a;"),
+ [(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>;
+ def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
+ !strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>,
+ Requires<[doF32FTZ]>;
+ def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
+ !strconcat(OpcStr, ".f32 \t$dst, $a;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>;
+}
+
+//===----------------------------------------------------------------------===//
+// NVPTX Instructions.
+//===----------------------------------------------------------------------===//
+
+//-----------------------------------
+// General Type Conversion
+//-----------------------------------
+
+let neverHasSideEffects = 1 in {
+// Generate a cvt to the given type from all possible types.
+// Each instance takes a CvtMode immediate that defines the conversion mode to
+// use. It can be CvtNONE to omit a conversion mode.
+multiclass CVT_FROM_ALL<string FromName, RegisterClass RC> {
+ def _s16 : NVPTXInst<(outs RC:$dst),
+ (ins Int16Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".s16\t$dst, $src;"),
+ []>;
+ def _u16 : NVPTXInst<(outs RC:$dst),
+ (ins Int16Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".u16\t$dst, $src;"),
+ []>;
+ def _f16 : NVPTXInst<(outs RC:$dst),
+ (ins Int16Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".f16\t$dst, $src;"),
+ []>;
+ def _s32 : NVPTXInst<(outs RC:$dst),
+ (ins Int32Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".s32\t$dst, $src;"),
+ []>;
+ def _u32 : NVPTXInst<(outs RC:$dst),
+ (ins Int32Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".u32\t$dst, $src;"),
+ []>;
+ def _s64 : NVPTXInst<(outs RC:$dst),
+ (ins Int64Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".s64\t$dst, $src;"),
+ []>;
+ def _u64 : NVPTXInst<(outs RC:$dst),
+ (ins Int64Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".u64\t$dst, $src;"),
+ []>;
+ def _f32 : NVPTXInst<(outs RC:$dst),
+ (ins Float32Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".f32\t$dst, $src;"),
+ []>;
+ def _f64 : NVPTXInst<(outs RC:$dst),
+ (ins Float64Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".f64\t$dst, $src;"),
+ []>;
+}
+
+// Generate a cvt to all possible types.
+defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>;
+defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>;
+defm CVT_f16 : CVT_FROM_ALL<"f16", Int16Regs>;
+defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>;
+defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>;
+defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>;
+defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>;
+defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>;
+defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>;
+
+// This set of cvt is different from the above. The type of the source
+// and target are the same.
+//
+def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
+ "cvt.s16.s8 \t$dst, $src;", []>;
+def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
+ "cvt.s32.s8 \t$dst, $src;", []>;
+def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
+ "cvt.s32.s16 \t$dst, $src;", []>;
+def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
+ "cvt.s64.s8 \t$dst, $src;", []>;
+def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
+ "cvt.s64.s16 \t$dst, $src;", []>;
+def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
+ "cvt.s64.s32 \t$dst, $src;", []>;
+}
+
+//-----------------------------------
+// Integer Arithmetic
+//-----------------------------------
+
+multiclass ADD_SUB_i1<SDNode OpNode> {
+ def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
+ "xor.pred \t$dst, $a, $b;",
+ [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
+ def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
+ "xor.pred \t$dst, $a, $b;",
+ [(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>;
+}
+
+defm ADD_i1 : ADD_SUB_i1<add>;
+defm SUB_i1 : ADD_SUB_i1<sub>;
+
+
+defm ADD : I3<"add.s", add>;
+defm SUB : I3<"sub.s", sub>;
+
+defm ADDCC : ADD_SUB_INT_32<"add.cc", addc>;
+defm SUBCC : ADD_SUB_INT_32<"sub.cc", subc>;
+
+defm ADDCCC : ADD_SUB_INT_32<"addc.cc", adde>;
+defm SUBCCC : ADD_SUB_INT_32<"subc.cc", sube>;
+
+//mul.wide PTX instruction
+def SInt32Const : PatLeaf<(imm), [{
+ const APInt &v = N->getAPIntValue();
+ if (v.isSignedIntN(32))
+ return true;
+ return false;
+}]>;
+
+def UInt32Const : PatLeaf<(imm), [{
+ const APInt &v = N->getAPIntValue();
+ if (v.isIntN(32))
+ return true;
+ return false;
+}]>;
+
+def SInt16Const : PatLeaf<(imm), [{
+ const APInt &v = N->getAPIntValue();
+ if (v.isSignedIntN(16))
+ return true;
+ return false;
+}]>;
+
+def UInt16Const : PatLeaf<(imm), [{
+ const APInt &v = N->getAPIntValue();
+ if (v.isIntN(16))
+ return true;
+ return false;
+}]>;
+
+def Int5Const : PatLeaf<(imm), [{
+ const APInt &v = N->getAPIntValue();
+ // Check if 0 <= v < 32
+ // Only then the result from (x << v) will be i32
+ if (v.sge(0) && v.slt(32))
+ return true;
+ return false;
+}]>;
+
+def Int4Const : PatLeaf<(imm), [{
+ const APInt &v = N->getAPIntValue();
+ // Check if 0 <= v < 16
+ // Only then the result from (x << v) will be i16
+ if (v.sge(0) && v.slt(16))
+ return true;
+ return false;
+}]>;
+
+def SHL2MUL32 : SDNodeXForm<imm, [{
+ const APInt &v = N->getAPIntValue();
+ APInt temp(32, 1);
+ return CurDAG->getTargetConstant(temp.shl(v), MVT::i32);
+}]>;
+
+def SHL2MUL16 : SDNodeXForm<imm, [{
+ const APInt &v = N->getAPIntValue();
+ APInt temp(16, 1);
+ return CurDAG->getTargetConstant(temp.shl(v), MVT::i16);
+}]>;
+
+def MULWIDES64
+ : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
+ "mul.wide.s32 \t$dst, $a, $b;", []>;
+def MULWIDES64Imm
+ : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ "mul.wide.s32 \t$dst, $a, $b;", []>;
+def MULWIDES64Imm64
+ : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
+ "mul.wide.s32 \t$dst, $a, $b;", []>;
+
+def MULWIDEU64
+ : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
+ "mul.wide.u32 \t$dst, $a, $b;", []>;
+def MULWIDEU64Imm
+ : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ "mul.wide.u32 \t$dst, $a, $b;", []>;
+def MULWIDEU64Imm64
+ : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
+ "mul.wide.u32 \t$dst, $a, $b;", []>;
+
+def MULWIDES32
+ : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
+ "mul.wide.s16 \t$dst, $a, $b;", []>;
+def MULWIDES32Imm
+ : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
+ "mul.wide.s16 \t$dst, $a, $b;", []>;
+def MULWIDES32Imm32
+ : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
+ "mul.wide.s16 \t$dst, $a, $b;", []>;
+
+def MULWIDEU32
+ : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
+ "mul.wide.u16 \t$dst, $a, $b;", []>;
+def MULWIDEU32Imm
+ : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
+ "mul.wide.u16 \t$dst, $a, $b;", []>;
+def MULWIDEU32Imm32
+ : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
+ "mul.wide.u16 \t$dst, $a, $b;", []>;
+
+def : Pat<(shl (sext Int32Regs:$a), (i32 Int5Const:$b)),
+ (MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
+ Requires<[doMulWide]>;
+def : Pat<(shl (zext Int32Regs:$a), (i32 Int5Const:$b)),
+ (MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
+ Requires<[doMulWide]>;
+
+def : Pat<(shl (sext Int16Regs:$a), (i16 Int4Const:$b)),
+ (MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
+ Requires<[doMulWide]>;
+def : Pat<(shl (zext Int16Regs:$a), (i16 Int4Const:$b)),
+ (MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
+ Requires<[doMulWide]>;
+
+def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)),
+ (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)),
+ (MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>,
+ Requires<[doMulWide]>;
+
+def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)),
+ (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)),
+ (MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>,
+ Requires<[doMulWide]>;
+
+def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)),
+ (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)),
+ (MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>,
+ Requires<[doMulWide]>;
+
+def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)),
+ (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)),
+ (MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>,
+ Requires<[doMulWide]>;
+
+
+def SDTMulWide
+ : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>;
+def mul_wide_signed
+ : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>;
+def mul_wide_unsigned
+ : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>;
+
+def : Pat<(i32 (mul_wide_signed Int16Regs:$a, Int16Regs:$b)),
+ (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)),
+ (MULWIDES32Imm Int16Regs:$a, imm:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, Int16Regs:$b)),
+ (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)),
+ (MULWIDEU32Imm Int16Regs:$a, imm:$b)>,
+ Requires<[doMulWide]>;
+
+
+def : Pat<(i64 (mul_wide_signed Int32Regs:$a, Int32Regs:$b)),
+ (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i64 (mul_wide_signed Int32Regs:$a, imm:$b)),
+ (MULWIDES64Imm Int32Regs:$a, imm:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, Int32Regs:$b)),
+ (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, imm:$b)),
+ (MULWIDEU64Imm Int32Regs:$a, imm:$b)>,
+ Requires<[doMulWide]>;
+
+defm MULT : I3<"mul.lo.s", mul>;
+
+defm MULTHS : I3<"mul.hi.s", mulhs>;
+defm MULTHU : I3<"mul.hi.u", mulhu>;
+
+defm SDIV : I3<"div.s", sdiv>;
+defm UDIV : I3<"div.u", udiv>;
+
+defm SREM : I3<"rem.s", srem>;
+// The ri version will not be selected as DAGCombiner::visitSREM will lower it.
+defm UREM : I3<"rem.u", urem>;
+// The ri version will not be selected as DAGCombiner::visitUREM will lower it.
+
+def SDTIMAD
+ : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>,
+ SDTCisInt<2>, SDTCisSameAs<0, 2>,
+ SDTCisSameAs<0, 3>]>;
+def imad
+ : SDNode<"NVPTXISD::IMAD", SDTIMAD>;
+
+def MAD16rrr : NVPTXInst<(outs Int16Regs:$dst),
+ (ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c),
+ "mad.lo.s16 \t$dst, $a, $b, $c;",
+ [(set Int16Regs:$dst,
+ (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>;
+def MAD16rri : NVPTXInst<(outs Int16Regs:$dst),
+ (ins Int16Regs:$a, Int16Regs:$b, i16imm:$c),
+ "mad.lo.s16 \t$dst, $a, $b, $c;",
+ [(set Int16Regs:$dst,
+ (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>;
+def MAD16rir : NVPTXInst<(outs Int16Regs:$dst),
+ (ins Int16Regs:$a, i16imm:$b, Int16Regs:$c),
+ "mad.lo.s16 \t$dst, $a, $b, $c;",
+ [(set Int16Regs:$dst,
+ (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>;
+def MAD16rii : NVPTXInst<(outs Int16Regs:$dst),
+ (ins Int16Regs:$a, i16imm:$b, i16imm:$c),
+ "mad.lo.s16 \t$dst, $a, $b, $c;",
+ [(set Int16Regs:$dst,
+ (imad Int16Regs:$a, imm:$b, imm:$c))]>;
+
+def MAD32rrr : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c),
+ "mad.lo.s32 \t$dst, $a, $b, $c;",
+ [(set Int32Regs:$dst,
+ (imad Int32Regs:$a, Int32Regs:$b, Int32Regs:$c))]>;
+def MAD32rri : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$a, Int32Regs:$b, i32imm:$c),
+ "mad.lo.s32 \t$dst, $a, $b, $c;",
+ [(set Int32Regs:$dst,
+ (imad Int32Regs:$a, Int32Regs:$b, imm:$c))]>;
+def MAD32rir : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$a, i32imm:$b, Int32Regs:$c),
+ "mad.lo.s32 \t$dst, $a, $b, $c;",
+ [(set Int32Regs:$dst,
+ (imad Int32Regs:$a, imm:$b, Int32Regs:$c))]>;
+def MAD32rii : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$a, i32imm:$b, i32imm:$c),
+ "mad.lo.s32 \t$dst, $a, $b, $c;",
+ [(set Int32Regs:$dst,
+ (imad Int32Regs:$a, imm:$b, imm:$c))]>;
+
+def MAD64rrr : NVPTXInst<(outs Int64Regs:$dst),
+ (ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c),
+ "mad.lo.s64 \t$dst, $a, $b, $c;",
+ [(set Int64Regs:$dst,
+ (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>;
+def MAD64rri : NVPTXInst<(outs Int64Regs:$dst),
+ (ins Int64Regs:$a, Int64Regs:$b, i64imm:$c),
+ "mad.lo.s64 \t$dst, $a, $b, $c;",
+ [(set Int64Regs:$dst,
+ (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>;
+def MAD64rir : NVPTXInst<(outs Int64Regs:$dst),
+ (ins Int64Regs:$a, i64imm:$b, Int64Regs:$c),
+ "mad.lo.s64 \t$dst, $a, $b, $c;",
+ [(set Int64Regs:$dst,
+ (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>;
+def MAD64rii : NVPTXInst<(outs Int64Regs:$dst),
+ (ins Int64Regs:$a, i64imm:$b, i64imm:$c),
+ "mad.lo.s64 \t$dst, $a, $b, $c;",
+ [(set Int64Regs:$dst,
+ (imad Int64Regs:$a, imm:$b, imm:$c))]>;
+
+def INEG16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
+ "neg.s16 \t$dst, $src;",
+ [(set Int16Regs:$dst, (ineg Int16Regs:$src))]>;
+def INEG32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
+ "neg.s32 \t$dst, $src;",
+ [(set Int32Regs:$dst, (ineg Int32Regs:$src))]>;
+def INEG64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
+ "neg.s64 \t$dst, $src;",
+ [(set Int64Regs:$dst, (ineg Int64Regs:$src))]>;
+
+//-----------------------------------
+// Floating Point Arithmetic
+//-----------------------------------
+
+// Constant 1.0f
+def FloatConst1 : PatLeaf<(fpimm), [{
+ if (&(N->getValueAPF().getSemantics()) != &llvm::APFloat::IEEEsingle)
+ return false;
+ float f = (float)N->getValueAPF().convertToFloat();
+ return (f==1.0f);
+}]>;
+// Constand (double)1.0
+def DoubleConst1 : PatLeaf<(fpimm), [{
+ if (&(N->getValueAPF().getSemantics()) != &llvm::APFloat::IEEEdouble)
+ return false;
+ double d = (double)N->getValueAPF().convertToDouble();
+ return (d==1.0);
+}]>;
+
+defm FADD : F3<"add", fadd>;
+defm FSUB : F3<"sub", fsub>;
+defm FMUL : F3<"mul", fmul>;
+
+defm FADD_rn : F3_rn<"add", fadd>;
+defm FSUB_rn : F3_rn<"sub", fsub>;
+defm FMUL_rn : F3_rn<"mul", fmul>;
+
+defm FABS : F2<"abs", fabs>;
+defm FNEG : F2<"neg", fneg>;
+defm FSQRT : F2<"sqrt.rn", fsqrt>;
+
+//
+// F64 division
+//
+def FDIV641r : NVPTXInst<(outs Float64Regs:$dst),
+ (ins f64imm:$a, Float64Regs:$b),
+ "rcp.rn.f64 \t$dst, $b;",
+ [(set Float64Regs:$dst,
+ (fdiv DoubleConst1:$a, Float64Regs:$b))]>;
+def FDIV64rr : NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, Float64Regs:$b),
+ "div.rn.f64 \t$dst, $a, $b;",
+ [(set Float64Regs:$dst,
+ (fdiv Float64Regs:$a, Float64Regs:$b))]>;
+def FDIV64ri : NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, f64imm:$b),
+ "div.rn.f64 \t$dst, $a, $b;",
+ [(set Float64Regs:$dst,
+ (fdiv Float64Regs:$a, fpimm:$b))]>;
+
+//
+// F32 Approximate reciprocal
+//
+def FDIV321r_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.approx.ftz.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv FloatConst1:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_APPROX, doF32FTZ]>;
+def FDIV321r : NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.approx.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv FloatConst1:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_APPROX]>;
+//
+// F32 Approximate division
+//
+def FDIV32approxrr_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.approx.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_APPROX, doF32FTZ]>;
+def FDIV32approxri_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.approx.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, fpimm:$b))]>,
+ Requires<[do_DIVF32_APPROX, doF32FTZ]>;
+def FDIV32approxrr : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.approx.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_APPROX]>;
+def FDIV32approxri : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.approx.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, fpimm:$b))]>,
+ Requires<[do_DIVF32_APPROX]>;
+//
+// F32 Semi-accurate reciprocal
+//
+// rcp.approx gives the same result as div.full(1.0f, a) and is faster.
+//
+def FDIV321r_approx_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.approx.ftz.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv FloatConst1:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_FULL, doF32FTZ]>;
+def FDIV321r_approx : NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.approx.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv FloatConst1:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_FULL]>;
+//
+// F32 Semi-accurate division
+//
+def FDIV32rr_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.full.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_FULL, doF32FTZ]>;
+def FDIV32ri_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.full.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, fpimm:$b))]>,
+ Requires<[do_DIVF32_FULL, doF32FTZ]>;
+def FDIV32rr : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.full.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_FULL]>;
+def FDIV32ri : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.full.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, fpimm:$b))]>,
+ Requires<[do_DIVF32_FULL]>;
+//
+// F32 Accurate reciprocal
+//
+def FDIV321r_prec_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.rn.ftz.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv FloatConst1:$a, Float32Regs:$b))]>,
+ Requires<[reqPTX20, doF32FTZ]>;
+def FDIV321r_prec : NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.rn.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv FloatConst1:$a, Float32Regs:$b))]>,
+ Requires<[reqPTX20]>;
+//
+// F32 Accurate division
+//
+def FDIV32rr_prec_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.rn.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[doF32FTZ, reqPTX20]>;
+def FDIV32ri_prec_ftz : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.rn.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, fpimm:$b))]>,
+ Requires<[doF32FTZ, reqPTX20]>;
+def FDIV32rr_prec : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.rn.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[reqPTX20]>;
+def FDIV32ri_prec : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.rn.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst,
+ (fdiv Float32Regs:$a, fpimm:$b))]>,
+ Requires<[reqPTX20]>;
+
+//
+// F32 rsqrt
+//
+
+def RSQRTF32approx1r : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$b),
+ "rsqrt.approx.f32 \t$dst, $b;", []>;
+
+def: Pat<(fdiv FloatConst1, (int_nvvm_sqrt_f Float32Regs:$b)),
+ (RSQRTF32approx1r Float32Regs:$b)>,
+ Requires<[do_DIVF32_FULL, do_SQRTF32_APPROX, doNoF32FTZ]>;
+
+multiclass FPCONTRACT32<string OpcStr, Predicate Pred> {
+ def rrr : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b, Float32Regs:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set Float32Regs:$dst,
+ (fma Float32Regs:$a, Float32Regs:$b, Float32Regs:$c))]>,
+ Requires<[Pred]>;
+ def rri : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b, f32imm:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set Float32Regs:$dst,
+ (fma Float32Regs:$a, Float32Regs:$b, fpimm:$c))]>,
+ Requires<[Pred]>;
+ def rir : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b, Float32Regs:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set Float32Regs:$dst,
+ (fma Float32Regs:$a, fpimm:$b, Float32Regs:$c))]>,
+ Requires<[Pred]>;
+ def rii : NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b, f32imm:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set Float32Regs:$dst,
+ (fma Float32Regs:$a, fpimm:$b, fpimm:$c))]>,
+ Requires<[Pred]>;
+}
+
+multiclass FPCONTRACT64<string OpcStr, Predicate Pred> {
+ def rrr : NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, Float64Regs:$b, Float64Regs:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set Float64Regs:$dst,
+ (fma Float64Regs:$a, Float64Regs:$b, Float64Regs:$c))]>,
+ Requires<[Pred]>;
+ def rri : NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, Float64Regs:$b, f64imm:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set Float64Regs:$dst,
+ (fma Float64Regs:$a, Float64Regs:$b, fpimm:$c))]>,
+ Requires<[Pred]>;
+ def rir : NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, f64imm:$b, Float64Regs:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set Float64Regs:$dst,
+ (fma Float64Regs:$a, fpimm:$b, Float64Regs:$c))]>,
+ Requires<[Pred]>;
+ def rii : NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, f64imm:$b, f64imm:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set Float64Regs:$dst,
+ (fma Float64Regs:$a, fpimm:$b, fpimm:$c))]>,
+ Requires<[Pred]>;
+}
+
+defm FMA32_ftz : FPCONTRACT32<"fma.rn.ftz.f32", doF32FTZ>;
+defm FMA32 : FPCONTRACT32<"fma.rn.f32", true>;
+defm FMA64 : FPCONTRACT64<"fma.rn.f64", true>;
+
+def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
+ "sin.approx.f32 \t$dst, $src;",
+ [(set Float32Regs:$dst, (fsin Float32Regs:$src))]>;
+def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
+ "cos.approx.f32 \t$dst, $src;",
+ [(set Float32Regs:$dst, (fcos Float32Regs:$src))]>;
+
+// Lower (frem x, y) into (sub x, (mul (floor (div x, y)) y))
+// e.g. "poor man's fmod()"
+
+// frem - f32 FTZ
+def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
+ (FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32
+ (FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRMI_FTZ),
+ Float32Regs:$y))>,
+ Requires<[doF32FTZ]>;
+def : Pat<(frem Float32Regs:$x, fpimm:$y),
+ (FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32
+ (FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRMI_FTZ),
+ fpimm:$y))>,
+ Requires<[doF32FTZ]>;
+
+// frem - f32
+def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
+ (FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32
+ (FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRMI),
+ Float32Regs:$y))>;
+def : Pat<(frem Float32Regs:$x, fpimm:$y),
+ (FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32
+ (FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRMI),
+ fpimm:$y))>;
+
+// frem - f64
+def : Pat<(frem Float64Regs:$x, Float64Regs:$y),
+ (FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64
+ (FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRMI),
+ Float64Regs:$y))>;
+def : Pat<(frem Float64Regs:$x, fpimm:$y),
+ (FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64
+ (FDIV64ri Float64Regs:$x, fpimm:$y), CvtRMI),
+ fpimm:$y))>;
+
+//-----------------------------------
+// Logical Arithmetic
+//-----------------------------------
+
+multiclass LOG_FORMAT<string OpcStr, SDNode OpNode> {
+ def b1rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
+ !strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
+ [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
+ def b1ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
+ !strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
+ [(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>;
+ def b16rr: NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
+ !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a,
+ Int16Regs:$b))]>;
+ def b16ri: NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
+ !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>;
+ def b32rr: NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
+ !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a,
+ Int32Regs:$b))]>;
+ def b32ri: NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
+ def b64rr: NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
+ !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a,
+ Int64Regs:$b))]>;
+ def b64ri: NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
+ !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
+}
+
+defm OR : LOG_FORMAT<"or", or>;
+defm AND : LOG_FORMAT<"and", and>;
+defm XOR : LOG_FORMAT<"xor", xor>;
+
+def NOT1: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src),
+ "not.pred \t$dst, $src;",
+ [(set Int1Regs:$dst, (not Int1Regs:$src))]>;
+def NOT16: NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
+ "not.b16 \t$dst, $src;",
+ [(set Int16Regs:$dst, (not Int16Regs:$src))]>;
+def NOT32: NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
+ "not.b32 \t$dst, $src;",
+ [(set Int32Regs:$dst, (not Int32Regs:$src))]>;
+def NOT64: NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
+ "not.b64 \t$dst, $src;",
+ [(set Int64Regs:$dst, (not Int64Regs:$src))]>;
+
+// For shifts, the second src operand must be 32-bit value
+multiclass LSHIFT_FORMAT<string OpcStr, SDNode OpNode> {
+ def i64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a,
+ Int32Regs:$b),
+ !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a,
+ Int32Regs:$b))]>;
+ def i64ri : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a,
+ (i32 imm:$b)))]>;
+ def i32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a,
+ Int32Regs:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a,
+ Int32Regs:$b))]>;
+ def i32ri : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a,
+ (i32 imm:$b)))]>;
+ def i32ii : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode (i32 imm:$a),
+ (i32 imm:$b)))]>;
+ def i16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a,
+ Int32Regs:$b),
+ !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a,
+ Int32Regs:$b))]>;
+ def i16ri : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a,
+ (i32 imm:$b)))]>;
+}
+
+defm SHL : LSHIFT_FORMAT<"shl.b", shl>;
+
+// For shifts, the second src operand must be 32-bit value
+// Need to add cvt for the 8-bits.
+multiclass RSHIFT_FORMAT<string OpcStr, SDNode OpNode> {
+ def i64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a,
+ Int32Regs:$b),
+ !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a,
+ Int32Regs:$b))]>;
+ def i64ri : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a,
+ (i32 imm:$b)))]>;
+ def i32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a,
+ Int32Regs:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a,
+ Int32Regs:$b))]>;
+ def i32ri : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a,
+ (i32 imm:$b)))]>;
+ def i32ii : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode (i32 imm:$a),
+ (i32 imm:$b)))]>;
+ def i16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a,
+ Int32Regs:$b),
+ !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a,
+ Int32Regs:$b))]>;
+ def i16ri : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a,
+ (i32 imm:$b)))]>;
+}
+
+defm SRA : RSHIFT_FORMAT<"shr.s", sra>;
+defm SRL : RSHIFT_FORMAT<"shr.u", srl>;
+
+//
+// Rotate: use ptx shf instruction if available.
+//
+
+// 32 bit r2 = rotl r1, n
+// =>
+// r2 = shf.l r1, r1, n
+def ROTL32imm_hw : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$src, i32imm:$amt),
+ "shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
+ [(set Int32Regs:$dst, (rotl Int32Regs:$src, (i32 imm:$amt)))]>,
+ Requires<[hasHWROT32]> ;
+
+def ROTL32reg_hw : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$src, Int32Regs:$amt),
+ "shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
+ [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
+ Requires<[hasHWROT32]>;
+
+// 32 bit r2 = rotr r1, n
+// =>
+// r2 = shf.r r1, r1, n
+def ROTR32imm_hw : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$src, i32imm:$amt),
+ "shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
+ [(set Int32Regs:$dst, (rotr Int32Regs:$src, (i32 imm:$amt)))]>,
+ Requires<[hasHWROT32]>;
+
+def ROTR32reg_hw : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$src, Int32Regs:$amt),
+ "shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
+ [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
+ Requires<[hasHWROT32]>;
+
+//
+// Rotate: if ptx shf instruction is not available, then use shift+add
+//
+// 32bit
+def ROT32imm_sw : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2),
+ !strconcat("{{\n\t",
+ !strconcat(".reg .b32 %lhs;\n\t",
+ !strconcat(".reg .b32 %rhs;\n\t",
+ !strconcat("shl.b32 \t%lhs, $src, $amt1;\n\t",
+ !strconcat("shr.b32 \t%rhs, $src, $amt2;\n\t",
+ !strconcat("add.u32 \t$dst, %lhs, %rhs;\n\t",
+ !strconcat("}}", ""))))))),
+ []>;
+
+def SUB_FRM_32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(32-N->getZExtValue(), MVT::i32);
+}]>;
+
+def : Pat<(rotl Int32Regs:$src, (i32 imm:$amt)),
+ (ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>,
+ Requires<[noHWROT32]>;
+def : Pat<(rotr Int32Regs:$src, (i32 imm:$amt)),
+ (ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>,
+ Requires<[noHWROT32]>;
+
+def ROTL32reg_sw : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src,
+ Int32Regs:$amt),
+ !strconcat("{{\n\t",
+ !strconcat(".reg .b32 %lhs;\n\t",
+ !strconcat(".reg .b32 %rhs;\n\t",
+ !strconcat(".reg .b32 %amt2;\n\t",
+ !strconcat("shl.b32 \t%lhs, $src, $amt;\n\t",
+ !strconcat("sub.s32 \t%amt2, 32, $amt;\n\t",
+ !strconcat("shr.b32 \t%rhs, $src, %amt2;\n\t",
+ !strconcat("add.u32 \t$dst, %lhs, %rhs;\n\t",
+ !strconcat("}}", ""))))))))),
+ [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
+ Requires<[noHWROT32]>;
+
+def ROTR32reg_sw : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src,
+ Int32Regs:$amt),
+ !strconcat("{{\n\t",
+ !strconcat(".reg .b32 %lhs;\n\t",
+ !strconcat(".reg .b32 %rhs;\n\t",
+ !strconcat(".reg .b32 %amt2;\n\t",
+ !strconcat("shr.b32 \t%lhs, $src, $amt;\n\t",
+ !strconcat("sub.s32 \t%amt2, 32, $amt;\n\t",
+ !strconcat("shl.b32 \t%rhs, $src, %amt2;\n\t",
+ !strconcat("add.u32 \t$dst, %lhs, %rhs;\n\t",
+ !strconcat("}}", ""))))))))),
+ [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
+ Requires<[noHWROT32]>;
+
+// 64bit
+def ROT64imm_sw : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src,
+ i32imm:$amt1, i32imm:$amt2),
+ !strconcat("{{\n\t",
+ !strconcat(".reg .b64 %lhs;\n\t",
+ !strconcat(".reg .b64 %rhs;\n\t",
+ !strconcat("shl.b64 \t%lhs, $src, $amt1;\n\t",
+ !strconcat("shr.b64 \t%rhs, $src, $amt2;\n\t",
+ !strconcat("add.u64 \t$dst, %lhs, %rhs;\n\t",
+ !strconcat("}}", ""))))))),
+ []>;
+
+def SUB_FRM_64 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(64-N->getZExtValue(), MVT::i32);
+}]>;
+
+def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)),
+ (ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>;
+def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)),
+ (ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>;
+
+def ROTL64reg_sw : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src,
+ Int32Regs:$amt),
+ !strconcat("{{\n\t",
+ !strconcat(".reg .b64 %lhs;\n\t",
+ !strconcat(".reg .b64 %rhs;\n\t",
+ !strconcat(".reg .u32 %amt2;\n\t",
+ !strconcat("shl.b64 \t%lhs, $src, $amt;\n\t",
+ !strconcat("sub.u32 \t%amt2, 64, $amt;\n\t",
+ !strconcat("shr.b64 \t%rhs, $src, %amt2;\n\t",
+ !strconcat("add.u64 \t$dst, %lhs, %rhs;\n\t",
+ !strconcat("}}", ""))))))))),
+ [(set Int64Regs:$dst, (rotl Int64Regs:$src, Int32Regs:$amt))]>;
+
+def ROTR64reg_sw : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src,
+ Int32Regs:$amt),
+ !strconcat("{{\n\t",
+ !strconcat(".reg .b64 %lhs;\n\t",
+ !strconcat(".reg .b64 %rhs;\n\t",
+ !strconcat(".reg .u32 %amt2;\n\t",
+ !strconcat("shr.b64 \t%lhs, $src, $amt;\n\t",
+ !strconcat("sub.u32 \t%amt2, 64, $amt;\n\t",
+ !strconcat("shl.b64 \t%rhs, $src, %amt2;\n\t",
+ !strconcat("add.u64 \t$dst, %lhs, %rhs;\n\t",
+ !strconcat("}}", ""))))))))),
+ [(set Int64Regs:$dst, (rotr Int64Regs:$src, Int32Regs:$amt))]>;
+
+// BFE - bit-field extract
+
+multiclass BFE<string TyStr, RegisterClass RC> {
+ // BFE supports both 32-bit and 64-bit values, but the start and length
+ // operands are always 32-bit
+ def rrr
+ : NVPTXInst<(outs RC:$d),
+ (ins RC:$a, Int32Regs:$b, Int32Regs:$c),
+ !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
+ def rri
+ : NVPTXInst<(outs RC:$d),
+ (ins RC:$a, Int32Regs:$b, i32imm:$c),
+ !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
+ def rii
+ : NVPTXInst<(outs RC:$d),
+ (ins RC:$a, i32imm:$b, i32imm:$c),
+ !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
+}
+
+defm BFE_S32 : BFE<"s32", Int32Regs>;
+defm BFE_U32 : BFE<"u32", Int32Regs>;
+defm BFE_S64 : BFE<"s64", Int64Regs>;
+defm BFE_U64 : BFE<"u64", Int64Regs>;
+
+//-----------------------------------
+// General Comparison
+//-----------------------------------
+
+// General setp instructions
+multiclass SETP<string TypeStr, RegisterClass RC, Operand ImmCls> {
+ def rr : NVPTXInst<(outs Int1Regs:$dst),
+ (ins RC:$a, RC:$b, CmpMode:$cmp),
+ !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, "\t$dst, $a, $b;"),
+ []>;
+ def ri : NVPTXInst<(outs Int1Regs:$dst),
+ (ins RC:$a, ImmCls:$b, CmpMode:$cmp),
+ !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, "\t$dst, $a, $b;"),
+ []>;
+ def ir : NVPTXInst<(outs Int1Regs:$dst),
+ (ins ImmCls:$a, RC:$b, CmpMode:$cmp),
+ !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, "\t$dst, $a, $b;"),
+ []>;
+}
+
+defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>;
+defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>;
+defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>;
+defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>;
+defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>;
+defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>;
+defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>;
+defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>;
+defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>;
+defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>;
+defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>;
+
+// General set instructions
+multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> {
+ def rr : NVPTXInst<(outs Int32Regs:$dst),
+ (ins RC:$a, RC:$b, CmpMode:$cmp),
+ !strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>;
+ def ri : NVPTXInst<(outs Int32Regs:$dst),
+ (ins RC:$a, ImmCls:$b, CmpMode:$cmp),
+ !strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>;
+ def ir : NVPTXInst<(outs Int32Regs:$dst),
+ (ins ImmCls:$a, RC:$b, CmpMode:$cmp),
+ !strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>;
+}
+
+defm SET_b16 : SET<"b16", Int16Regs, i16imm>;
+defm SET_s16 : SET<"s16", Int16Regs, i16imm>;
+defm SET_u16 : SET<"u16", Int16Regs, i16imm>;
+defm SET_b32 : SET<"b32", Int32Regs, i32imm>;
+defm SET_s32 : SET<"s32", Int32Regs, i32imm>;
+defm SET_u32 : SET<"u32", Int32Regs, i32imm>;
+defm SET_b64 : SET<"b64", Int64Regs, i64imm>;
+defm SET_s64 : SET<"s64", Int64Regs, i64imm>;
+defm SET_u64 : SET<"u64", Int64Regs, i64imm>;
+defm SET_f32 : SET<"f32", Float32Regs, f32imm>;
+defm SET_f64 : SET<"f64", Float64Regs, f64imm>;
+
+//-----------------------------------
+// General Selection
+//-----------------------------------
+
+// General selp instructions
+multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> {
+ def rr : NVPTXInst<(outs RC:$dst),
+ (ins RC:$a, RC:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
+ def ri : NVPTXInst<(outs RC:$dst),
+ (ins RC:$a, ImmCls:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
+ def ir : NVPTXInst<(outs RC:$dst),
+ (ins ImmCls:$a, RC:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
+ def ii : NVPTXInst<(outs RC:$dst),
+ (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
+}
+
+multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls,
+ SDNode ImmNode> {
+ def rr : NVPTXInst<(outs RC:$dst),
+ (ins RC:$a, RC:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
+ [(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>;
+ def ri : NVPTXInst<(outs RC:$dst),
+ (ins RC:$a, ImmCls:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
+ [(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>;
+ def ir : NVPTXInst<(outs RC:$dst),
+ (ins ImmCls:$a, RC:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
+ [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>;
+ def ii : NVPTXInst<(outs RC:$dst),
+ (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
+ [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>;
+}
+
+defm SELP_b16 : SELP_PATTERN<"b16", Int16Regs, i16imm, imm>;
+defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>;
+defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>;
+defm SELP_b32 : SELP_PATTERN<"b32", Int32Regs, i32imm, imm>;
+defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>;
+defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>;
+defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>;
+defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>;
+defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>;
+defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>;
+defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>;
+
+// Special select for predicate operands
+def : Pat<(i1 (select Int1Regs:$p, Int1Regs:$a, Int1Regs:$b)),
+ (ORb1rr (ANDb1rr Int1Regs:$p, Int1Regs:$a),
+ (ANDb1rr (NOT1 Int1Regs:$p), Int1Regs:$b))>;
+
+//
+// Funnnel shift in clamp mode
+//
+// - SDNodes are created so they can be used in the DAG code,
+// e.g. NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts)
+//
+def SDTIntShiftDOp: SDTypeProfile<1, 3,
+ [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
+ SDTCisInt<0>, SDTCisInt<3>]>;
+def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>;
+def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>;
+
+def FUNSHFLCLAMP : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
+ "shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;",
+ [(set Int32Regs:$dst,
+ (FUN_SHFL_CLAMP Int32Regs:$lo,
+ Int32Regs:$hi, Int32Regs:$amt))]>;
+
+def FUNSHFRCLAMP : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
+ "shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;",
+ [(set Int32Regs:$dst,
+ (FUN_SHFR_CLAMP Int32Regs:$lo,
+ Int32Regs:$hi, Int32Regs:$amt))]>;
+
+//-----------------------------------
+// Data Movement (Load / Store, Move)
+//-----------------------------------
+
+def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex],
+ [SDNPWantRoot]>;
+def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri64", [frameindex],
+ [SDNPWantRoot]>;
+
+def MEMri : Operand<i32> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops Int32Regs, i32imm);
+}
+def MEMri64 : Operand<i64> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops Int64Regs, i64imm);
+}
+
+def imem : Operand<iPTR> {
+ let PrintMethod = "printOperand";
+}
+
+def imemAny : Operand<iPTRAny> {
+ let PrintMethod = "printOperand";
+}
+
+def LdStCode : Operand<i32> {
+ let PrintMethod = "printLdStCode";
+}
+
+def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
+def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>;
+
+def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a),
+ "mov.u32 \t$dst, $a;",
+ [(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>;
+
+def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a),
+ "mov.u64 \t$dst, $a;",
+ [(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>;
+
+// Get pointer to local stack
+def MOV_DEPOT_ADDR
+ : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num),
+ "mov.u32 \t$d, __local_depot$num;", []>;
+def MOV_DEPOT_ADDR_64
+ : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num),
+ "mov.u64 \t$d, __local_depot$num;", []>;
+
+
+// copyPhysreg is hard-coded in NVPTXInstrInfo.cpp
+let IsSimpleMove=1 in {
+def IMOV1rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss),
+ "mov.pred \t$dst, $sss;", []>;
+def IMOV16rr: NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss),
+ "mov.u16 \t$dst, $sss;", []>;
+def IMOV32rr: NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss),
+ "mov.u32 \t$dst, $sss;", []>;
+def IMOV64rr: NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss),
+ "mov.u64 \t$dst, $sss;", []>;
+
+def FMOV32rr: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
+ "mov.f32 \t$dst, $src;", []>;
+def FMOV64rr: NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src),
+ "mov.f64 \t$dst, $src;", []>;
+}
+def IMOV1ri: NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src),
+ "mov.pred \t$dst, $src;",
+ [(set Int1Regs:$dst, imm:$src)]>;
+def IMOV16ri: NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src),
+ "mov.u16 \t$dst, $src;",
+ [(set Int16Regs:$dst, imm:$src)]>;
+def IMOV32ri: NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src),
+ "mov.u32 \t$dst, $src;",
+ [(set Int32Regs:$dst, imm:$src)]>;
+def IMOV64i: NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src),
+ "mov.u64 \t$dst, $src;",
+ [(set Int64Regs:$dst, imm:$src)]>;
+
+def FMOV32ri: NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src),
+ "mov.f32 \t$dst, $src;",
+ [(set Float32Regs:$dst, fpimm:$src)]>;
+def FMOV64ri: NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src),
+ "mov.f64 \t$dst, $src;",
+ [(set Float64Regs:$dst, fpimm:$src)]>;
+
+def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>;
+
+//---- Copy Frame Index ----
+def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr),
+ "add.u32 \t$dst, ${addr:add};",
+ [(set Int32Regs:$dst, ADDRri:$addr)]>;
+def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr),
+ "add.u64 \t$dst, ${addr:add};",
+ [(set Int64Regs:$dst, ADDRri64:$addr)]>;
+
+//-----------------------------------
+// Comparison and Selection
+//-----------------------------------
+
+multiclass ISET_FORMAT<PatFrag OpNode, PatLeaf Mode,
+ Instruction setp_16rr,
+ Instruction setp_16ri,
+ Instruction setp_16ir,
+ Instruction setp_32rr,
+ Instruction setp_32ri,
+ Instruction setp_32ir,
+ Instruction setp_64rr,
+ Instruction setp_64ri,
+ Instruction setp_64ir,
+ Instruction set_16rr,
+ Instruction set_16ri,
+ Instruction set_16ir,
+ Instruction set_32rr,
+ Instruction set_32ri,
+ Instruction set_32ir,
+ Instruction set_64rr,
+ Instruction set_64ri,
+ Instruction set_64ir> {
+ // i16 -> pred
+ def : Pat<(i1 (OpNode Int16Regs:$a, Int16Regs:$b)),
+ (setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
+ def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)),
+ (setp_16ri Int16Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)),
+ (setp_16ir imm:$a, Int16Regs:$b, Mode)>;
+ // i32 -> pred
+ def : Pat<(i1 (OpNode Int32Regs:$a, Int32Regs:$b)),
+ (setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
+ def : Pat<(i1 (OpNode Int32Regs:$a, imm:$b)),
+ (setp_32ri Int32Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i1 (OpNode imm:$a, Int32Regs:$b)),
+ (setp_32ir imm:$a, Int32Regs:$b, Mode)>;
+ // i64 -> pred
+ def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)),
+ (setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
+ def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)),
+ (setp_64ri Int64Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)),
+ (setp_64ir imm:$a, Int64Regs:$b, Mode)>;
+
+ // i16 -> i32
+ def : Pat<(i32 (OpNode Int16Regs:$a, Int16Regs:$b)),
+ (set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
+ def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)),
+ (set_16ri Int16Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)),
+ (set_16ir imm:$a, Int16Regs:$b, Mode)>;
+ // i32 -> i32
+ def : Pat<(i32 (OpNode Int32Regs:$a, Int32Regs:$b)),
+ (set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
+ def : Pat<(i32 (OpNode Int32Regs:$a, imm:$b)),
+ (set_32ri Int32Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i32 (OpNode imm:$a, Int32Regs:$b)),
+ (set_32ir imm:$a, Int32Regs:$b, Mode)>;
+ // i64 -> i32
+ def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)),
+ (set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
+ def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)),
+ (set_64ri Int64Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)),
+ (set_64ir imm:$a, Int64Regs:$b, Mode)>;
+}
+
+multiclass ISET_FORMAT_SIGNED<PatFrag OpNode, PatLeaf Mode>
+ : ISET_FORMAT<OpNode, Mode,
+ SETP_s16rr, SETP_s16ri, SETP_s16ir,
+ SETP_s32rr, SETP_s32ri, SETP_s32ir,
+ SETP_s64rr, SETP_s64ri, SETP_s64ir,
+ SET_s16rr, SET_s16ri, SET_s16ir,
+ SET_s32rr, SET_s32ri, SET_s32ir,
+ SET_s64rr, SET_s64ri, SET_s64ir> {
+ // TableGen doesn't like empty multiclasses
+ def : PatLeaf<(i32 0)>;
+}
+
+multiclass ISET_FORMAT_UNSIGNED<PatFrag OpNode, PatLeaf Mode>
+ : ISET_FORMAT<OpNode, Mode,
+ SETP_u16rr, SETP_u16ri, SETP_u16ir,
+ SETP_u32rr, SETP_u32ri, SETP_u32ir,
+ SETP_u64rr, SETP_u64ri, SETP_u64ir,
+ SET_u16rr, SET_u16ri, SET_u16ir,
+ SET_u32rr, SET_u32ri, SET_u32ir,
+ SET_u64rr, SET_u64ri, SET_u64ir> {
+ // TableGen doesn't like empty multiclasses
+ def : PatLeaf<(i32 0)>;
+}
+
+defm : ISET_FORMAT_SIGNED<setgt, CmpGT>;
+defm : ISET_FORMAT_UNSIGNED<setugt, CmpGT>;
+defm : ISET_FORMAT_SIGNED<setlt, CmpLT>;
+defm : ISET_FORMAT_UNSIGNED<setult, CmpLT>;
+defm : ISET_FORMAT_SIGNED<setge, CmpGE>;
+defm : ISET_FORMAT_UNSIGNED<setuge, CmpGE>;
+defm : ISET_FORMAT_SIGNED<setle, CmpLE>;
+defm : ISET_FORMAT_UNSIGNED<setule, CmpLE>;
+defm : ISET_FORMAT_SIGNED<seteq, CmpEQ>;
+defm : ISET_FORMAT_UNSIGNED<setueq, CmpEQ>;
+defm : ISET_FORMAT_SIGNED<setne, CmpNE>;
+defm : ISET_FORMAT_UNSIGNED<setune, CmpNE>;
+
+// i1 compares
+def : Pat<(setne Int1Regs:$a, Int1Regs:$b),
+ (XORb1rr Int1Regs:$a, Int1Regs:$b)>;
+def : Pat<(setune Int1Regs:$a, Int1Regs:$b),
+ (XORb1rr Int1Regs:$a, Int1Regs:$b)>;
+
+def : Pat<(seteq Int1Regs:$a, Int1Regs:$b),
+ (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
+def : Pat<(setueq Int1Regs:$a, Int1Regs:$b),
+ (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
+
+// i1 compare -> i32
+def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
+ (SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
+def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
+ (SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
+
+
+
+multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> {
+ // f32 -> pred
+ def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
+ (SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
+ (SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
+ def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
+ (SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
+ (SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
+ def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
+ (SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
+ (SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
+
+ // f64 -> pred
+ def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)),
+ (SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
+ def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)),
+ (SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
+ def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)),
+ (SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
+
+ // f32 -> i32
+ def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
+ (SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
+ (SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
+ def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
+ (SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
+ (SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
+ def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
+ (SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
+ (SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
+
+ // f64 -> i32
+ def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)),
+ (SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
+ def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)),
+ (SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
+ def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)),
+ (SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
+}
+
+defm FSetGT : FSET_FORMAT<setogt, CmpGT, CmpGT_FTZ>;
+defm FSetLT : FSET_FORMAT<setolt, CmpLT, CmpLT_FTZ>;
+defm FSetGE : FSET_FORMAT<setoge, CmpGE, CmpGE_FTZ>;
+defm FSetLE : FSET_FORMAT<setole, CmpLE, CmpLE_FTZ>;
+defm FSetEQ : FSET_FORMAT<setoeq, CmpEQ, CmpEQ_FTZ>;
+defm FSetNE : FSET_FORMAT<setone, CmpNE, CmpNE_FTZ>;
+
+defm FSetUGT : FSET_FORMAT<setugt, CmpGTU, CmpGTU_FTZ>;
+defm FSetULT : FSET_FORMAT<setult, CmpLTU, CmpLTU_FTZ>;
+defm FSetUGE : FSET_FORMAT<setuge, CmpGEU, CmpGEU_FTZ>;
+defm FSetULE : FSET_FORMAT<setule, CmpLEU, CmpLEU_FTZ>;
+defm FSetUEQ : FSET_FORMAT<setueq, CmpEQU, CmpEQU_FTZ>;
+defm FSetUNE : FSET_FORMAT<setune, CmpNEU, CmpNEU_FTZ>;
+
+defm FSetNUM : FSET_FORMAT<seto, CmpNUM, CmpNUM_FTZ>;
+defm FSetNAN : FSET_FORMAT<setuo, CmpNAN, CmpNAN_FTZ>;
+
+//def ld_param : SDNode<"NVPTXISD::LOAD_PARAM", SDTLoad,
+// [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
+
+def SDTDeclareParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
+ SDTCisInt<2>]>;
+def SDTDeclareScalarParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>,
+ SDTCisInt<1>, SDTCisInt<2>]>;
+def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
+def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>;
+def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>;
+def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
+def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>;
+def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>;
+def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
+def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
+def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>;
+def SDTCallVoidProfile : SDTypeProfile<0, 1, []>;
+def SDTCallValProfile : SDTypeProfile<1, 0, []>;
+def SDTMoveParamProfile : SDTypeProfile<1, 1, []>;
+def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
+def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>;
+def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>;
+def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>;
+
+def DeclareParam : SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def DeclareScalarParam : SDNode<"NVPTXISD::DeclareScalarParam",
+ SDTDeclareScalarParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def DeclareRetParam : SDNode<"NVPTXISD::DeclareRetParam",
+ SDTDeclareParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def DeclareRet : SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def LoadParam : SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile,
+ [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
+def LoadParamV2 : SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile,
+ [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
+def LoadParamV4 : SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile,
+ [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
+def PrintCall : SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def PrintCallUni : SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def StoreParam : SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def StoreParamV2 : SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def StoreParamV4 : SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def StoreParamU32 : SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def StoreParamS32 : SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def CallArgBegin : SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def CallArg : SDNode<"NVPTXISD::CallArg", SDTCallArgProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def LastCallArg : SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def CallArgEnd : SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def CallVoid : SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def Prototype : SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def CallVal : SDNode<"NVPTXISD::CallVal", SDTCallValProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def MoveParam : SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile,
+ []>;
+def StoreRetval : SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile,
+ [SDNPHasChain, SDNPSideEffect]>;
+def StoreRetvalV2 : SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile,
+ [SDNPHasChain, SDNPSideEffect]>;
+def StoreRetvalV4 : SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile,
+ [SDNPHasChain, SDNPSideEffect]>;
+def PseudoUseParam : SDNode<"NVPTXISD::PseudoUseParam",
+ SDTPseudoUseParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def RETURNNode : SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile,
+ [SDNPHasChain, SDNPSideEffect]>;
+
+class LoadParamMemInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
+ !strconcat(!strconcat("ld.param", opstr),
+ "\t$dst, [retval0+$b];"),
+ []>;
+
+class LoadParamRegInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
+ !strconcat(!strconcat("mov", opstr),
+ "\t$dst, retval$b;"),
+ [(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>;
+
+class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b),
+ !strconcat(!strconcat("ld.param.v2", opstr),
+ "\t{{$dst, $dst2}}, [retval0+$b];"), []>;
+
+class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4),
+ (ins i32imm:$b),
+ !strconcat(!strconcat("ld.param.v4", opstr),
+ "\t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"), []>;
+
+class StoreParamInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b),
+ !strconcat(!strconcat("st.param", opstr),
+ "\t[param$a+$b], $val;"),
+ []>;
+
+class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs), (ins regclass:$val, regclass:$val2,
+ i32imm:$a, i32imm:$b),
+ !strconcat(!strconcat("st.param.v2", opstr),
+ "\t[param$a+$b], {{$val, $val2}};"),
+ []>;
+
+class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs), (ins regclass:$val, regclass:$val1, regclass:$val2,
+ regclass:$val3, i32imm:$a, i32imm:$b),
+ !strconcat(!strconcat("st.param.v4", opstr),
+ "\t[param$a+$b], {{$val, $val2, $val3, $val4}};"),
+ []>;
+
+class StoreRetvalInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs), (ins regclass:$val, i32imm:$a),
+ !strconcat(!strconcat("st.param", opstr),
+ "\t[func_retval0+$a], $val;"),
+ []>;
+
+class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a),
+ !strconcat(!strconcat("st.param.v2", opstr),
+ "\t[func_retval0+$a], {{$val, $val2}};"),
+ []>;
+
+class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs),
+ (ins regclass:$val, regclass:$val2, regclass:$val3,
+ regclass:$val4, i32imm:$a),
+ !strconcat(!strconcat("st.param.v4", opstr),
+ "\t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"),
+ []>;
+
+def PrintCallRetInst1 : NVPTXInst<(outs), (ins),
+"call (retval0), ",
+ [(PrintCall (i32 1))]>;
+def PrintCallRetInst2 : NVPTXInst<(outs), (ins),
+"call (retval0, retval1), ",
+ [(PrintCall (i32 2))]>;
+def PrintCallRetInst3 : NVPTXInst<(outs), (ins),
+"call (retval0, retval1, retval2), ",
+ [(PrintCall (i32 3))]>;
+def PrintCallRetInst4 : NVPTXInst<(outs), (ins),
+"call (retval0, retval1, retval2, retval3), ",
+ [(PrintCall (i32 4))]>;
+def PrintCallRetInst5 : NVPTXInst<(outs), (ins),
+"call (retval0, retval1, retval2, retval3, retval4), ",
+ [(PrintCall (i32 5))]>;
+def PrintCallRetInst6 : NVPTXInst<(outs), (ins),
+"call (retval0, retval1, retval2, retval3, retval4, retval5), ",
+ [(PrintCall (i32 6))]>;
+def PrintCallRetInst7 : NVPTXInst<(outs), (ins),
+"call (retval0, retval1, retval2, retval3, retval4, retval5, retval6), ",
+ [(PrintCall (i32 7))]>;
+def PrintCallRetInst8 : NVPTXInst<(outs), (ins),
+!strconcat("call (retval0, retval1, retval2, retval3, retval4",
+ ", retval5, retval6, retval7), "),
+ [(PrintCall (i32 8))]>;
+
+def PrintCallNoRetInst : NVPTXInst<(outs), (ins), "call ",
+ [(PrintCall (i32 0))]>;
+
+def PrintCallUniRetInst1 : NVPTXInst<(outs), (ins),
+"call.uni (retval0), ",
+ [(PrintCallUni (i32 1))]>;
+def PrintCallUniRetInst2 : NVPTXInst<(outs), (ins),
+"call.uni (retval0, retval1), ",
+ [(PrintCallUni (i32 2))]>;
+def PrintCallUniRetInst3 : NVPTXInst<(outs), (ins),
+"call.uni (retval0, retval1, retval2), ",
+ [(PrintCallUni (i32 3))]>;
+def PrintCallUniRetInst4 : NVPTXInst<(outs), (ins),
+"call.uni (retval0, retval1, retval2, retval3), ",
+ [(PrintCallUni (i32 4))]>;
+def PrintCallUniRetInst5 : NVPTXInst<(outs), (ins),
+"call.uni (retval0, retval1, retval2, retval3, retval4), ",
+ [(PrintCallUni (i32 5))]>;
+def PrintCallUniRetInst6 : NVPTXInst<(outs), (ins),
+"call.uni (retval0, retval1, retval2, retval3, retval4, retval5), ",
+ [(PrintCallUni (i32 6))]>;
+def PrintCallUniRetInst7 : NVPTXInst<(outs), (ins),
+"call.uni (retval0, retval1, retval2, retval3, retval4, retval5, retval6), ",
+ [(PrintCallUni (i32 7))]>;
+def PrintCallUniRetInst8 : NVPTXInst<(outs), (ins),
+!strconcat("call.uni (retval0, retval1, retval2, retval3, retval4",
+ ", retval5, retval6, retval7), "),
+ [(PrintCallUni (i32 8))]>;
+
+def PrintCallUniNoRetInst : NVPTXInst<(outs), (ins), "call.uni ",
+ [(PrintCallUni (i32 0))]>;
+
+def LoadParamMemI64 : LoadParamMemInst<Int64Regs, ".b64">;
+def LoadParamMemI32 : LoadParamMemInst<Int32Regs, ".b32">;
+def LoadParamMemI16 : LoadParamMemInst<Int16Regs, ".b16">;
+def LoadParamMemI8 : LoadParamMemInst<Int16Regs, ".b8">;
+def LoadParamMemV2I64 : LoadParamV2MemInst<Int64Regs, ".b64">;
+def LoadParamMemV2I32 : LoadParamV2MemInst<Int32Regs, ".b32">;
+def LoadParamMemV2I16 : LoadParamV2MemInst<Int16Regs, ".b16">;
+def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">;
+def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">;
+def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">;
+def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">;
+def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">;
+def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">;
+def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">;
+def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">;
+def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">;
+
+def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">;
+def StoreParamI32 : StoreParamInst<Int32Regs, ".b32">;
+
+def StoreParamI16 : StoreParamInst<Int16Regs, ".b16">;
+def StoreParamI8 : StoreParamInst<Int16Regs, ".b8">;
+def StoreParamV2I64 : StoreParamV2Inst<Int64Regs, ".b64">;
+def StoreParamV2I32 : StoreParamV2Inst<Int32Regs, ".b32">;
+def StoreParamV2I16 : StoreParamV2Inst<Int16Regs, ".b16">;
+def StoreParamV2I8 : StoreParamV2Inst<Int16Regs, ".b8">;
+
+// FIXME: StoreParamV4Inst crashes llvm-tblgen :(
+//def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">;
+def StoreParamV4I32 : NVPTXInst<(outs), (ins Int32Regs:$val, Int32Regs:$val2,
+ Int32Regs:$val3, Int32Regs:$val4,
+ i32imm:$a, i32imm:$b),
+ "st.param.v4.b32\t[param$a+$b], {{$val, $val2, $val3, $val4}};",
+ []>;
+
+def StoreParamV4I16 : NVPTXInst<(outs), (ins Int16Regs:$val, Int16Regs:$val2,
+ Int16Regs:$val3, Int16Regs:$val4,
+ i32imm:$a, i32imm:$b),
+ "st.param.v4.b16\t[param$a+$b], {{$val, $val2, $val3, $val4}};",
+ []>;
+
+def StoreParamV4I8 : NVPTXInst<(outs), (ins Int16Regs:$val, Int16Regs:$val2,
+ Int16Regs:$val3, Int16Regs:$val4,
+ i32imm:$a, i32imm:$b),
+ "st.param.v4.b8\t[param$a+$b], {{$val, $val2, $val3, $val4}};",
+ []>;
+
+def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">;
+def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">;
+def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">;
+def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">;
+// FIXME: StoreParamV4Inst crashes llvm-tblgen :(
+//def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">;
+def StoreParamV4F32 : NVPTXInst<(outs),
+ (ins Float32Regs:$val, Float32Regs:$val2,
+ Float32Regs:$val3, Float32Regs:$val4,
+ i32imm:$a, i32imm:$b),
+ "st.param.v4.f32\t[param$a+$b], {{$val, $val2, $val3, $val4}};",
+ []>;
+
+
+def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">;
+def StoreRetvalI32 : StoreRetvalInst<Int32Regs, ".b32">;
+def StoreRetvalI16 : StoreRetvalInst<Int16Regs, ".b16">;
+def StoreRetvalI8 : StoreRetvalInst<Int16Regs, ".b8">;
+def StoreRetvalV2I64 : StoreRetvalV2Inst<Int64Regs, ".b64">;
+def StoreRetvalV2I32 : StoreRetvalV2Inst<Int32Regs, ".b32">;
+def StoreRetvalV2I16 : StoreRetvalV2Inst<Int16Regs, ".b16">;
+def StoreRetvalV2I8 : StoreRetvalV2Inst<Int16Regs, ".b8">;
+def StoreRetvalV4I32 : StoreRetvalV4Inst<Int32Regs, ".b32">;
+def StoreRetvalV4I16 : StoreRetvalV4Inst<Int16Regs, ".b16">;
+def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">;
+
+def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">;
+def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">;
+def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">;
+def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">;
+def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">;
+
+def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>;
+def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>;
+def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>;
+def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>;
+
+class CallArgInst<NVPTXRegClass regclass> :
+ NVPTXInst<(outs), (ins regclass:$a), "$a, ",
+ [(CallArg (i32 0), regclass:$a)]>;
+
+class LastCallArgInst<NVPTXRegClass regclass> :
+ NVPTXInst<(outs), (ins regclass:$a), "$a",
+ [(LastCallArg (i32 0), regclass:$a)]>;
+
+def CallArgI64 : CallArgInst<Int64Regs>;
+def CallArgI32 : CallArgInst<Int32Regs>;
+def CallArgI16 : CallArgInst<Int16Regs>;
+
+def CallArgF64 : CallArgInst<Float64Regs>;
+def CallArgF32 : CallArgInst<Float32Regs>;
+
+def LastCallArgI64 : LastCallArgInst<Int64Regs>;
+def LastCallArgI32 : LastCallArgInst<Int32Regs>;
+def LastCallArgI16 : LastCallArgInst<Int16Regs>;
+
+def LastCallArgF64 : LastCallArgInst<Float64Regs>;
+def LastCallArgF32 : LastCallArgInst<Float32Regs>;
+
+def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ",
+ [(CallArg (i32 0), (i32 imm:$a))]>;
+def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a",
+ [(LastCallArg (i32 0), (i32 imm:$a))]>;
+
+def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ",
+ [(CallArg (i32 1), (i32 imm:$a))]>;
+def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a",
+ [(LastCallArg (i32 1), (i32 imm:$a))]>;
+
+def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr),
+ "$addr, ",
+ [(CallVoid (Wrapper tglobaladdr:$addr))]>;
+def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr),
+ "$addr, ",
+ [(CallVoid Int32Regs:$addr)]>;
+def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr),
+ "$addr, ",
+ [(CallVoid Int64Regs:$addr)]>;
+def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val),
+ ", prototype_$val;",
+ [(Prototype (i32 imm:$val))]>;
+
+def DeclareRetMemInst : NVPTXInst<(outs),
+ (ins i32imm:$align, i32imm:$size, i32imm:$num),
+ ".param .align $align .b8 retval$num[$size];",
+ [(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>;
+def DeclareRetScalarInst : NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
+ ".param .b$size retval$num;",
+ [(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>;
+def DeclareRetRegInst : NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
+ ".reg .b$size retval$num;",
+ [(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>;
+
+def DeclareParamInst : NVPTXInst<(outs),
+ (ins i32imm:$align, i32imm:$a, i32imm:$size),
+ ".param .align $align .b8 param$a[$size];",
+ [(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>;
+def DeclareScalarParamInst : NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
+ ".param .b$size param$a;",
+ [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>;
+def DeclareScalarRegInst : NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
+ ".reg .b$size param$a;",
+ [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>;
+
+class MoveParamInst<NVPTXRegClass regclass, string asmstr> :
+ NVPTXInst<(outs regclass:$dst), (ins regclass:$src),
+ !strconcat(!strconcat("mov", asmstr), "\t$dst, $src;"),
+ [(set regclass:$dst, (MoveParam regclass:$src))]>;
+
+def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">;
+def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">;
+def MoveParamI16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
+ "cvt.u16.u32\t$dst, $src;",
+ [(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>;
+def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">;
+def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">;
+
+class PseudoUseParamInst<NVPTXRegClass regclass> :
+ NVPTXInst<(outs), (ins regclass:$src),
+ "// Pseudo use of $src",
+ [(PseudoUseParam regclass:$src)]>;
+
+def PseudoUseParamI64 : PseudoUseParamInst<Int64Regs>;
+def PseudoUseParamI32 : PseudoUseParamInst<Int32Regs>;
+def PseudoUseParamI16 : PseudoUseParamInst<Int16Regs>;
+def PseudoUseParamF64 : PseudoUseParamInst<Float64Regs>;
+def PseudoUseParamF32 : PseudoUseParamInst<Float32Regs>;
+
+
+//
+// Load / Store Handling
+//
+multiclass LD<NVPTXRegClass regclass> {
+ def _avar : NVPTXInst<(outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr),
+!strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t$dst, [$addr];"), []>;
+ def _areg : NVPTXInst<(outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr),
+!strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t$dst, [$addr];"), []>;
+ def _areg_64 : NVPTXInst<(outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth",
+ " \t$dst, [$addr];"), []>;
+ def _ari : NVPTXInst<(outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
+!strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t$dst, [$addr+$offset];"), []>;
+ def _ari_64 : NVPTXInst<(outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth",
+ " \t$dst, [$addr+$offset];"), []>;
+ def _asi : NVPTXInst<(outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr, i32imm:$offset),
+!strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t$dst, [$addr+$offset];"), []>;
+}
+
+let mayLoad=1, neverHasSideEffects=1 in {
+defm LD_i8 : LD<Int16Regs>;
+defm LD_i16 : LD<Int16Regs>;
+defm LD_i32 : LD<Int32Regs>;
+defm LD_i64 : LD<Int64Regs>;
+defm LD_f32 : LD<Float32Regs>;
+defm LD_f64 : LD<Float64Regs>;
+}
+
+multiclass ST<NVPTXRegClass regclass> {
+ def _avar : NVPTXInst<(outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$toWidth, imem:$addr),
+!strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth",
+ " \t[$addr], $src;"), []>;
+ def _areg : NVPTXInst<(outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr),
+!strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth",
+ " \t[$addr], $src;"), []>;
+ def _areg_64 : NVPTXInst<(outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth ",
+ "\t[$addr], $src;"), []>;
+ def _ari : NVPTXInst<(outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset),
+!strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth",
+ " \t[$addr+$offset], $src;"), []>;
+ def _ari_64 : NVPTXInst<(outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth ",
+ "\t[$addr+$offset], $src;"), []>;
+ def _asi : NVPTXInst<(outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset),
+!strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth",
+ " \t[$addr+$offset], $src;"), []>;
+}
+
+let mayStore=1, neverHasSideEffects=1 in {
+defm ST_i8 : ST<Int16Regs>;
+defm ST_i16 : ST<Int16Regs>;
+defm ST_i32 : ST<Int32Regs>;
+defm ST_i64 : ST<Int64Regs>;
+defm ST_f32 : ST<Float32Regs>;
+defm ST_f64 : ST<Float64Regs>;
+}
+
+// The following is used only in and after vector elementizations.
+// Vector elementization happens at the machine instruction level, so the
+// following instruction
+// never appears in the DAG.
+multiclass LD_VEC<NVPTXRegClass regclass> {
+ def _v2_avar : NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2}}, [$addr];"), []>;
+ def _v2_areg : NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2}}, [$addr];"), []>;
+ def _v2_areg_64 : NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2}}, [$addr];"), []>;
+ def _v2_ari : NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2}}, [$addr+$offset];"), []>;
+ def _v2_ari_64 : NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2}}, [$addr+$offset];"), []>;
+ def _v2_asi : NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr, i32imm:$offset),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2}}, [$addr+$offset];"), []>;
+ def _v4_avar : NVPTXInst<(outs regclass:$dst1, regclass:$dst2,
+ regclass:$dst3, regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];"), []>;
+ def _v4_areg : NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];"), []>;
+ def _v4_areg_64 : NVPTXInst<(outs regclass:$dst1, regclass:$dst2,
+ regclass:$dst3, regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];"), []>;
+ def _v4_ari : NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];"),
+ []>;
+ def _v4_ari_64 : NVPTXInst<(outs regclass:$dst1, regclass:$dst2,
+ regclass:$dst3, regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];"),
+ []>;
+ def _v4_asi : NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr, i32imm:$offset),
+ !strconcat("ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];"),
+ []>;
+}
+let mayLoad=1, neverHasSideEffects=1 in {
+defm LDV_i8 : LD_VEC<Int16Regs>;
+defm LDV_i16 : LD_VEC<Int16Regs>;
+defm LDV_i32 : LD_VEC<Int32Regs>;
+defm LDV_i64 : LD_VEC<Int64Regs>;
+defm LDV_f32 : LD_VEC<Float32Regs>;
+defm LDV_f64 : LD_VEC<Float64Regs>;
+}
+
+multiclass ST_VEC<NVPTXRegClass regclass> {
+ def _v2_avar : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr], {{$src1, $src2}};"), []>;
+ def _v2_areg : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr], {{$src1, $src2}};"), []>;
+ def _v2_areg_64 : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr], {{$src1, $src2}};"), []>;
+ def _v2_ari : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr,
+ i32imm:$offset),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr+$offset], {{$src1, $src2}};"), []>;
+ def _v2_ari_64 : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr,
+ i32imm:$offset),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr+$offset], {{$src1, $src2}};"), []>;
+ def _v2_asi : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr,
+ i32imm:$offset),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr+$offset], {{$src1, $src2}};"), []>;
+ def _v4_avar : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr], {{$src1, $src2, $src3, $src4}};"), []>;
+ def _v4_areg : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr], {{$src1, $src2, $src3, $src4}};"), []>;
+ def _v4_areg_64 : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr], {{$src1, $src2, $src3, $src4}};"), []>;
+ def _v4_ari : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};"),
+ []>;
+ def _v4_ari_64 : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};"),
+ []>;
+ def _v4_asi : NVPTXInst<(outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr, i32imm:$offset),
+ !strconcat("st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}",
+ "$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};"),
+ []>;
+}
+let mayStore=1, neverHasSideEffects=1 in {
+defm STV_i8 : ST_VEC<Int16Regs>;
+defm STV_i16 : ST_VEC<Int16Regs>;
+defm STV_i32 : ST_VEC<Int32Regs>;
+defm STV_i64 : ST_VEC<Int64Regs>;
+defm STV_f32 : ST_VEC<Float32Regs>;
+defm STV_f64 : ST_VEC<Float64Regs>;
+}
+
+
+//---- Conversion ----
+
+class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn,
+ NVPTXRegClass regclassOut> :
+ NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a),
+ !strconcat("mov.b", !strconcat(SzStr, " \t $d, $a;")),
+ [(set regclassOut:$d, (bitconvert regclassIn:$a))]>;
+
+def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>;
+def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>;
+def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>;
+def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>;
+
+// NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where
+// we cannot specify floating-point literals in isel patterns. Therefore, we
+// use an integer selp to select either 1 or 0 and then cvt to floating-point.
+
+// sint -> f32
+def : Pat<(f32 (sint_to_fp Int1Regs:$a)),
+ (CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
+def : Pat<(f32 (sint_to_fp Int16Regs:$a)),
+ (CVT_f32_s16 Int16Regs:$a, CvtRN)>;
+def : Pat<(f32 (sint_to_fp Int32Regs:$a)),
+ (CVT_f32_s32 Int32Regs:$a, CvtRN)>;
+def : Pat<(f32 (sint_to_fp Int64Regs:$a)),
+ (CVT_f32_s64 Int64Regs:$a, CvtRN)>;
+
+// uint -> f32
+def : Pat<(f32 (uint_to_fp Int1Regs:$a)),
+ (CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
+def : Pat<(f32 (uint_to_fp Int16Regs:$a)),
+ (CVT_f32_u16 Int16Regs:$a, CvtRN)>;
+def : Pat<(f32 (uint_to_fp Int32Regs:$a)),
+ (CVT_f32_u32 Int32Regs:$a, CvtRN)>;
+def : Pat<(f32 (uint_to_fp Int64Regs:$a)),
+ (CVT_f32_u64 Int64Regs:$a, CvtRN)>;
+
+// sint -> f64
+def : Pat<(f64 (sint_to_fp Int1Regs:$a)),
+ (CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
+def : Pat<(f64 (sint_to_fp Int16Regs:$a)),
+ (CVT_f64_s16 Int16Regs:$a, CvtRN)>;
+def : Pat<(f64 (sint_to_fp Int32Regs:$a)),
+ (CVT_f64_s32 Int32Regs:$a, CvtRN)>;
+def : Pat<(f64 (sint_to_fp Int64Regs:$a)),
+ (CVT_f64_s64 Int64Regs:$a, CvtRN)>;
+
+// uint -> f64
+def : Pat<(f64 (uint_to_fp Int1Regs:$a)),
+ (CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
+def : Pat<(f64 (uint_to_fp Int16Regs:$a)),
+ (CVT_f64_u16 Int16Regs:$a, CvtRN)>;
+def : Pat<(f64 (uint_to_fp Int32Regs:$a)),
+ (CVT_f64_u32 Int32Regs:$a, CvtRN)>;
+def : Pat<(f64 (uint_to_fp Int64Regs:$a)),
+ (CVT_f64_u64 Int64Regs:$a, CvtRN)>;
+
+
+// f32 -> sint
+def : Pat<(i1 (fp_to_sint Float32Regs:$a)),
+ (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
+def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
+ (CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
+ (CVT_s16_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
+ (CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
+ (CVT_s32_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
+ (CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
+ (CVT_s64_f32 Float32Regs:$a, CvtRZI)>;
+
+// f32 -> uint
+def : Pat<(i1 (fp_to_uint Float32Regs:$a)),
+ (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
+def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
+ (CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
+ (CVT_u16_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
+ (CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
+ (CVT_u32_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
+ (CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
+ (CVT_u64_f32 Float32Regs:$a, CvtRZI)>;
+
+// f64 -> sint
+def : Pat<(i1 (fp_to_sint Float64Regs:$a)),
+ (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
+def : Pat<(i16 (fp_to_sint Float64Regs:$a)),
+ (CVT_s16_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(i32 (fp_to_sint Float64Regs:$a)),
+ (CVT_s32_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(i64 (fp_to_sint Float64Regs:$a)),
+ (CVT_s64_f64 Float64Regs:$a, CvtRZI)>;
+
+// f64 -> uint
+def : Pat<(i1 (fp_to_uint Float64Regs:$a)),
+ (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
+def : Pat<(i16 (fp_to_uint Float64Regs:$a)),
+ (CVT_u16_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(i32 (fp_to_uint Float64Regs:$a)),
+ (CVT_u32_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(i64 (fp_to_uint Float64Regs:$a)),
+ (CVT_u64_f64 Float64Regs:$a, CvtRZI)>;
+
+// sext i1
+def : Pat<(i16 (sext Int1Regs:$a)),
+ (SELP_s16ii -1, 0, Int1Regs:$a)>;
+def : Pat<(i32 (sext Int1Regs:$a)),
+ (SELP_s32ii -1, 0, Int1Regs:$a)>;
+def : Pat<(i64 (sext Int1Regs:$a)),
+ (SELP_s64ii -1, 0, Int1Regs:$a)>;
+
+// zext i1
+def : Pat<(i16 (zext Int1Regs:$a)),
+ (SELP_u16ii 1, 0, Int1Regs:$a)>;
+def : Pat<(i32 (zext Int1Regs:$a)),
+ (SELP_u32ii 1, 0, Int1Regs:$a)>;
+def : Pat<(i64 (zext Int1Regs:$a)),
+ (SELP_u64ii 1, 0, Int1Regs:$a)>;
+
+// anyext i1
+def : Pat<(i16 (anyext Int1Regs:$a)),
+ (SELP_u16ii -1, 0, Int1Regs:$a)>;
+def : Pat<(i32 (anyext Int1Regs:$a)),
+ (SELP_u32ii -1, 0, Int1Regs:$a)>;
+def : Pat<(i64 (anyext Int1Regs:$a)),
+ (SELP_u64ii -1, 0, Int1Regs:$a)>;
+
+// sext i16
+def : Pat<(i32 (sext Int16Regs:$a)),
+ (CVT_s32_s16 Int16Regs:$a, CvtNONE)>;
+def : Pat<(i64 (sext Int16Regs:$a)),
+ (CVT_s64_s16 Int16Regs:$a, CvtNONE)>;
+
+// zext i16
+def : Pat<(i32 (zext Int16Regs:$a)),
+ (CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
+def : Pat<(i64 (zext Int16Regs:$a)),
+ (CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
+
+// anyext i16
+def : Pat<(i32 (anyext Int16Regs:$a)),
+ (CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
+def : Pat<(i64 (anyext Int16Regs:$a)),
+ (CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
+
+// sext i32
+def : Pat<(i64 (sext Int32Regs:$a)),
+ (CVT_s64_s32 Int32Regs:$a, CvtNONE)>;
+
+// zext i32
+def : Pat<(i64 (zext Int32Regs:$a)),
+ (CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
+
+// anyext i32
+def : Pat<(i64 (anyext Int32Regs:$a)),
+ (CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
+
+
+// truncate i64
+def : Pat<(i32 (trunc Int64Regs:$a)),
+ (CVT_u32_u64 Int64Regs:$a, CvtNONE)>;
+def : Pat<(i16 (trunc Int64Regs:$a)),
+ (CVT_u16_u64 Int64Regs:$a, CvtNONE)>;
+def : Pat<(i1 (trunc Int64Regs:$a)),
+ (SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>;
+
+// truncate i32
+def : Pat<(i16 (trunc Int32Regs:$a)),
+ (CVT_u16_u32 Int32Regs:$a, CvtNONE)>;
+def : Pat<(i1 (trunc Int32Regs:$a)),
+ (SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>;
+
+// truncate i16
+def : Pat<(i1 (trunc Int16Regs:$a)),
+ (SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>;
+
+// sext_inreg
+def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>;
+def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>;
+def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>;
+def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>;
+def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>;
+def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>;
+
+
+// Select instructions with 32-bit predicates
+def : Pat<(select Int32Regs:$pred, Int16Regs:$a, Int16Regs:$b),
+ (SELP_b16rr Int16Regs:$a, Int16Regs:$b,
+ (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
+def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b),
+ (SELP_b32rr Int32Regs:$a, Int32Regs:$b,
+ (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
+def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b),
+ (SELP_b64rr Int64Regs:$a, Int64Regs:$b,
+ (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
+def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b),
+ (SELP_f32rr Float32Regs:$a, Float32Regs:$b,
+ (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
+def : Pat<(select Int32Regs:$pred, Float64Regs:$a, Float64Regs:$b),
+ (SELP_f64rr Float64Regs:$a, Float64Regs:$b,
+ (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
+
+
+// pack a set of smaller int registers to a larger int register
+def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d),
+ (ins Int16Regs:$s1, Int16Regs:$s2,
+ Int16Regs:$s3, Int16Regs:$s4),
+ "mov.b64\t$d, {{$s1, $s2, $s3, $s4}};",
+ []>;
+def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d),
+ (ins Int16Regs:$s1, Int16Regs:$s2),
+ "mov.b32\t$d, {{$s1, $s2}};",
+ []>;
+def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d),
+ (ins Int32Regs:$s1, Int32Regs:$s2),
+ "mov.b64\t$d, {{$s1, $s2}};",
+ []>;
+def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d),
+ (ins Float32Regs:$s1, Float32Regs:$s2),
+ "mov.b64\t$d, {{$s1, $s2}};",
+ []>;
+
+// unpack a larger int register to a set of smaller int registers
+def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2,
+ Int16Regs:$d3, Int16Regs:$d4),
+ (ins Int64Regs:$s),
+ "mov.b64\t{{$d1, $d2, $d3, $d4}}, $s;",
+ []>;
+def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2),
+ (ins Int32Regs:$s),
+ "mov.b32\t{{$d1, $d2}}, $s;",
+ []>;
+def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2),
+ (ins Int64Regs:$s),
+ "mov.b64\t{{$d1, $d2}}, $s;",
+ []>;
+def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2),
+ (ins Float64Regs:$s),
+ "mov.b64\t{{$d1, $d2}}, $s;",
+ []>;
+
+// Count leading zeros
+def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
+ "clz.b32\t$d, $a;",
+ []>;
+def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "clz.b64\t$d, $a;",
+ []>;
+
+// 32-bit has a direct PTX instruction
+def : Pat<(ctlz Int32Regs:$a),
+ (CLZr32 Int32Regs:$a)>;
+def : Pat<(ctlz_zero_undef Int32Regs:$a),
+ (CLZr32 Int32Regs:$a)>;
+
+// For 64-bit, the result in PTX is actually 32-bit so we zero-extend
+// to 64-bit to match the LLVM semantics
+def : Pat<(ctlz Int64Regs:$a),
+ (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>;
+def : Pat<(ctlz_zero_undef Int64Regs:$a),
+ (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>;
+
+// For 16-bit, we zero-extend to 32-bit, then trunc the result back
+// to 16-bits (ctlz of a 16-bit value is guaranteed to require less
+// than 16 bits to store). We also need to subtract 16 because the
+// high-order 16 zeros were counted.
+def : Pat<(ctlz Int16Regs:$a),
+ (SUBi16ri (CVT_u16_u32 (CLZr32
+ (CVT_u32_u16 Int16Regs:$a, CvtNONE)),
+ CvtNONE), 16)>;
+def : Pat<(ctlz_zero_undef Int16Regs:$a),
+ (SUBi16ri (CVT_u16_u32 (CLZr32
+ (CVT_u32_u16 Int16Regs:$a, CvtNONE)),
+ CvtNONE), 16)>;
+
+// Population count
+def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
+ "popc.b32\t$d, $a;",
+ []>;
+def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "popc.b64\t$d, $a;",
+ []>;
+
+// 32-bit has a direct PTX instruction
+def : Pat<(ctpop Int32Regs:$a),
+ (POPCr32 Int32Regs:$a)>;
+
+// For 64-bit, the result in PTX is actually 32-bit so we zero-extend
+// to 64-bit to match the LLVM semantics
+def : Pat<(ctpop Int64Regs:$a),
+ (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>;
+
+// For 16-bit, we zero-extend to 32-bit, then trunc the result back
+// to 16-bits (ctpop of a 16-bit value is guaranteed to require less
+// than 16 bits to store)
+def : Pat<(ctpop Int16Regs:$a),
+ (CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)),
+ CvtNONE)>;
+
+// fround f64 -> f32
+def : Pat<(f32 (fround Float64Regs:$a)),
+ (CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(f32 (fround Float64Regs:$a)),
+ (CVT_f32_f64 Float64Regs:$a, CvtRN)>;
+
+// fextend f32 -> f64
+def : Pat<(f64 (fextend Float32Regs:$a)),
+ (CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(f64 (fextend Float32Regs:$a)),
+ (CVT_f64_f32 Float32Regs:$a, CvtNONE)>;
+
+def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue]>;
+
+//-----------------------------------
+// Control-flow
+//-----------------------------------
+
+let isTerminator=1 in {
+ let isReturn=1, isBarrier=1 in
+ def Return : NVPTXInst<(outs), (ins), "ret;", [(retflag)]>;
+
+ let isBranch=1 in
+ def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
+ "@$a bra \t$target;",
+ [(brcond Int1Regs:$a, bb:$target)]>;
+ let isBranch=1 in
+ def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
+ "@!$a bra \t$target;",
+ []>;
+
+ let isBranch=1, isBarrier=1 in
+ def GOTO : NVPTXInst<(outs), (ins brtarget:$target),
+ "bra.uni \t$target;",
+ [(br bb:$target)]>;
+}
+
+def : Pat<(brcond Int32Regs:$a, bb:$target),
+ (CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>;
+
+// SelectionDAGBuilder::visitSWitchCase() will invert the condition of a
+// conditional branch if
+// the target block is the next block so that the code can fall through to the
+// target block.
+// The invertion is done by 'xor condition, 1', which will be translated to
+// (setne condition, -1).
+// Since ptx supports '@!pred bra target', we should use it.
+def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target),
+ (CBranchOther Int1Regs:$a, bb:$target)>;
+
+// Call
+def SDT_NVPTXCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
+def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32> ]>;
+
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart,
+ [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPSideEffect]>;
+
+def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
+def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+def calltarget : Operand<i32>;
+let isCall=1 in {
+ def CALL : NVPTXInst<(outs), (ins calltarget:$dst),
+ "call \t$dst, (1);", []>;
+}
+
+def : Pat<(call tglobaladdr:$dst),
+ (CALL tglobaladdr:$dst)>;
+def : Pat<(call texternalsym:$dst),
+ (CALL texternalsym:$dst)>;
+
+// Pseudo instructions.
+class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : NVPTXInst<outs, ins, asmstr, pattern>;
+
+// @TODO: We use some tricks here to emit curly braces. Can we clean this up
+// a bit without TableGen modifications?
+def Callseq_Start : NVPTXInst<(outs), (ins i32imm:$amt),
+ "// Callseq Start $amt\n\t{{\n\t.reg .b32 temp_param_reg;\n\t// <end>}}",
+ [(callseq_start timm:$amt)]>;
+def Callseq_End : NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "\n\t//{{\n\t}}// Callseq End $amt1",
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+
+// trap instruction
+
+def trapinst : NVPTXInst<(outs), (ins),
+ "trap;",
+ [(trap)]>;
+
+// Call prototype wrapper
+def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+def CallPrototype
+ : SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def ProtoIdent : Operand<i32> {
+ let PrintMethod = "printProtoIdent";
+}
+def CALL_PROTOTYPE
+ : NVPTXInst<(outs), (ins ProtoIdent:$ident),
+ "$ident", [(CallPrototype (i32 texternalsym:$ident))]>;
+
+
+
+include "NVPTXIntrinsics.td"
+
+
+//-----------------------------------
+// Notes
+//-----------------------------------
+// BSWAP is currently expanded. The following is a more efficient
+// - for < sm_20, use vector scalar mov, as tesla support native 16-bit register
+// - for sm_20, use pmpt (use vector scalar mov to get the pack and
+// unpack). sm_20 supports native 32-bit register, but not native 16-bit
+// register.
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXIntrinsics.td b/contrib/llvm/lib/Target/NVPTX/NVPTXIntrinsics.td
new file mode 100644
index 0000000..14e51aa
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXIntrinsics.td
@@ -0,0 +1,7047 @@
+//===- NVPTXIntrinsics.td - PTX Intrinsics Instructions -------*- tblgen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+def immFloat0 : PatLeaf<(fpimm), [{
+ float f = (float)N->getValueAPF().convertToFloat();
+ return (f==0.0f);
+}]>;
+
+def immFloat1 : PatLeaf<(fpimm), [{
+ float f = (float)N->getValueAPF().convertToFloat();
+ return (f==1.0f);
+}]>;
+
+def immDouble0 : PatLeaf<(fpimm), [{
+ double d = (double)N->getValueAPF().convertToDouble();
+ return (d==0.0);
+}]>;
+
+def immDouble1 : PatLeaf<(fpimm), [{
+ double d = (double)N->getValueAPF().convertToDouble();
+ return (d==1.0);
+}]>;
+
+
+
+//-----------------------------------
+// Synchronization Functions
+//-----------------------------------
+def INT_CUDA_SYNCTHREADS : NVPTXInst<(outs), (ins),
+ "bar.sync \t0;",
+ [(int_cuda_syncthreads)]>;
+def INT_BARRIER0 : NVPTXInst<(outs), (ins),
+ "bar.sync \t0;",
+ [(int_nvvm_barrier0)]>;
+def INT_BARRIER0_POPC : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$pred),
+ !strconcat("{{ \n\t",
+ !strconcat(".reg .pred \t%p1; \n\t",
+ !strconcat("setp.ne.u32 \t%p1, $pred, 0; \n\t",
+ !strconcat("bar.red.popc.u32 \t$dst, 0, %p1; \n\t",
+ !strconcat("}}", ""))))),
+ [(set Int32Regs:$dst, (int_nvvm_barrier0_popc Int32Regs:$pred))]>;
+def INT_BARRIER0_AND : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$pred),
+ !strconcat("{{ \n\t",
+ !strconcat(".reg .pred \t%p1; \n\t",
+ !strconcat(".reg .pred \t%p2; \n\t",
+ !strconcat("setp.ne.u32 \t%p1, $pred, 0; \n\t",
+ !strconcat("bar.red.and.pred \t%p2, 0, %p1; \n\t",
+ !strconcat("selp.u32 \t$dst, 1, 0, %p2; \n\t",
+ !strconcat("}}", ""))))))),
+ [(set Int32Regs:$dst, (int_nvvm_barrier0_and Int32Regs:$pred))]>;
+def INT_BARRIER0_OR : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$pred),
+ !strconcat("{{ \n\t",
+ !strconcat(".reg .pred \t%p1; \n\t",
+ !strconcat(".reg .pred \t%p2; \n\t",
+ !strconcat("setp.ne.u32 \t%p1, $pred, 0; \n\t",
+ !strconcat("bar.red.or.pred \t%p2, 0, %p1; \n\t",
+ !strconcat("selp.u32 \t$dst, 1, 0, %p2; \n\t",
+ !strconcat("}}", ""))))))),
+ [(set Int32Regs:$dst, (int_nvvm_barrier0_or Int32Regs:$pred))]>;
+
+
+//-----------------------------------
+// Explicit Memory Fence Functions
+//-----------------------------------
+class MEMBAR<string StrOp, Intrinsic IntOP> :
+ NVPTXInst<(outs), (ins),
+ StrOp, [(IntOP)]>;
+
+def INT_MEMBAR_CTA : MEMBAR<"membar.cta;", int_nvvm_membar_cta>;
+def INT_MEMBAR_GL : MEMBAR<"membar.gl;", int_nvvm_membar_gl>;
+def INT_MEMBAR_SYS : MEMBAR<"membar.sys;", int_nvvm_membar_sys>;
+
+
+//-----------------------------------
+// Math Functions
+//-----------------------------------
+
+// Map min(1.0, max(0.0, x)) to sat(x)
+// Note that max(0.0, min(x, 1.0)) cannot be mapped to sat(x) because when x is
+// NaN
+// max(0.0, min(x, 1.0)) is 1.0 while sat(x) is 0.
+// Same story for fmax, fmin.
+
+def : Pat<(int_nvvm_fmin_f immFloat1,
+ (int_nvvm_fmax_f immFloat0, Float32Regs:$a)),
+ (CVT_f32_f32 Float32Regs:$a, CvtSAT)>;
+def : Pat<(int_nvvm_fmin_f immFloat1,
+ (int_nvvm_fmax_f Float32Regs:$a, immFloat0)),
+ (CVT_f32_f32 Float32Regs:$a, CvtSAT)>;
+def : Pat<(int_nvvm_fmin_f
+ (int_nvvm_fmax_f immFloat0, Float32Regs:$a), immFloat1),
+ (CVT_f32_f32 Float32Regs:$a, CvtSAT)>;
+def : Pat<(int_nvvm_fmin_f
+ (int_nvvm_fmax_f Float32Regs:$a, immFloat0), immFloat1),
+ (CVT_f32_f32 Float32Regs:$a, CvtSAT)>;
+
+def : Pat<(int_nvvm_fmin_d immDouble1,
+ (int_nvvm_fmax_d immDouble0, Float64Regs:$a)),
+ (CVT_f64_f64 Float64Regs:$a, CvtSAT)>;
+def : Pat<(int_nvvm_fmin_d immDouble1,
+ (int_nvvm_fmax_d Float64Regs:$a, immDouble0)),
+ (CVT_f64_f64 Float64Regs:$a, CvtSAT)>;
+def : Pat<(int_nvvm_fmin_d
+ (int_nvvm_fmax_d immDouble0, Float64Regs:$a), immDouble1),
+ (CVT_f64_f64 Float64Regs:$a, CvtSAT)>;
+def : Pat<(int_nvvm_fmin_d
+ (int_nvvm_fmax_d Float64Regs:$a, immDouble0), immDouble1),
+ (CVT_f64_f64 Float64Regs:$a, CvtSAT)>;
+
+
+// We need a full string for OpcStr here because we need to deal with case like
+// INT_PTX_RECIP.
+class F_MATH_1<string OpcStr, NVPTXRegClass target_regclass,
+ NVPTXRegClass src_regclass, Intrinsic IntOP>
+ : NVPTXInst<(outs target_regclass:$dst), (ins src_regclass:$src0),
+ OpcStr,
+ [(set target_regclass:$dst, (IntOP src_regclass:$src0))]>;
+
+// We need a full string for OpcStr here because we need to deal with the case
+// like INT_PTX_NATIVE_POWR_F.
+class F_MATH_2<string OpcStr, NVPTXRegClass t_regclass,
+ NVPTXRegClass s0_regclass, NVPTXRegClass s1_regclass, Intrinsic IntOP>
+ : NVPTXInst<(outs t_regclass:$dst),
+ (ins s0_regclass:$src0, s1_regclass:$src1),
+ OpcStr,
+ [(set t_regclass:$dst, (IntOP s0_regclass:$src0, s1_regclass:$src1))]>;
+
+class F_MATH_3<string OpcStr, NVPTXRegClass t_regclass,
+ NVPTXRegClass s0_regclass, NVPTXRegClass s1_regclass,
+ NVPTXRegClass s2_regclass, Intrinsic IntOP>
+ : NVPTXInst<(outs t_regclass:$dst),
+ (ins s0_regclass:$src0, s1_regclass:$src1, s2_regclass:$src2),
+ OpcStr,
+ [(set t_regclass:$dst,
+ (IntOP s0_regclass:$src0, s1_regclass:$src1, s2_regclass:$src2))]>;
+
+//
+// MISC
+//
+
+def INT_NVVM_CLZ_I : F_MATH_1<"clz.b32 \t$dst, $src0;", Int32Regs, Int32Regs,
+ int_nvvm_clz_i>;
+def INT_NVVM_CLZ_LL : F_MATH_1<"clz.b64 \t$dst, $src0;", Int32Regs, Int64Regs,
+ int_nvvm_clz_ll>;
+
+def INT_NVVM_POPC_I : F_MATH_1<"popc.b32 \t$dst, $src0;", Int32Regs, Int32Regs,
+ int_nvvm_popc_i>;
+def INT_NVVM_POPC_LL : F_MATH_1<"popc.b64 \t$dst, $src0;", Int32Regs, Int64Regs,
+ int_nvvm_popc_ll>;
+
+def INT_NVVM_PRMT : F_MATH_3<"prmt.b32 \t$dst, $src0, $src1, $src2;", Int32Regs,
+ Int32Regs, Int32Regs, Int32Regs, int_nvvm_prmt>;
+
+//
+// Min Max
+//
+
+def INT_NVVM_MIN_I : F_MATH_2<"min.s32 \t$dst, $src0, $src1;", Int32Regs,
+ Int32Regs, Int32Regs, int_nvvm_min_i>;
+def INT_NVVM_MIN_UI : F_MATH_2<"min.u32 \t$dst, $src0, $src1;", Int32Regs,
+ Int32Regs, Int32Regs, int_nvvm_min_ui>;
+
+def INT_NVVM_MIN_LL : F_MATH_2<"min.s64 \t$dst, $src0, $src1;", Int64Regs,
+ Int64Regs, Int64Regs, int_nvvm_min_ll>;
+def INT_NVVM_MIN_ULL : F_MATH_2<"min.u64 \t$dst, $src0, $src1;", Int64Regs,
+ Int64Regs, Int64Regs, int_nvvm_min_ull>;
+
+def INT_NVVM_MAX_I : F_MATH_2<"max.s32 \t$dst, $src0, $src1;", Int32Regs,
+ Int32Regs, Int32Regs, int_nvvm_max_i>;
+def INT_NVVM_MAX_UI : F_MATH_2<"max.u32 \t$dst, $src0, $src1;", Int32Regs,
+ Int32Regs, Int32Regs, int_nvvm_max_ui>;
+
+def INT_NVVM_MAX_LL : F_MATH_2<"max.s64 \t$dst, $src0, $src1;", Int64Regs,
+ Int64Regs, Int64Regs, int_nvvm_max_ll>;
+def INT_NVVM_MAX_ULL : F_MATH_2<"max.u64 \t$dst, $src0, $src1;", Int64Regs,
+ Int64Regs, Int64Regs, int_nvvm_max_ull>;
+
+def INT_NVVM_FMIN_F : F_MATH_2<"min.f32 \t$dst, $src0, $src1;", Float32Regs,
+ Float32Regs, Float32Regs, int_nvvm_fmin_f>;
+def INT_NVVM_FMIN_FTZ_F : F_MATH_2<"min.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_fmin_ftz_f>;
+
+def INT_NVVM_FMAX_F : F_MATH_2<"max.f32 \t$dst, $src0, $src1;", Float32Regs,
+ Float32Regs, Float32Regs, int_nvvm_fmax_f>;
+def INT_NVVM_FMAX_FTZ_F : F_MATH_2<"max.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_fmax_ftz_f>;
+
+def INT_NVVM_FMIN_D : F_MATH_2<"min.f64 \t$dst, $src0, $src1;", Float64Regs,
+ Float64Regs, Float64Regs, int_nvvm_fmin_d>;
+def INT_NVVM_FMAX_D : F_MATH_2<"max.f64 \t$dst, $src0, $src1;", Float64Regs,
+ Float64Regs, Float64Regs, int_nvvm_fmax_d>;
+
+//
+// Multiplication
+//
+
+def INT_NVVM_MULHI_I : F_MATH_2<"mul.hi.s32 \t$dst, $src0, $src1;", Int32Regs,
+ Int32Regs, Int32Regs, int_nvvm_mulhi_i>;
+def INT_NVVM_MULHI_UI : F_MATH_2<"mul.hi.u32 \t$dst, $src0, $src1;", Int32Regs,
+ Int32Regs, Int32Regs, int_nvvm_mulhi_ui>;
+
+def INT_NVVM_MULHI_LL : F_MATH_2<"mul.hi.s64 \t$dst, $src0, $src1;", Int64Regs,
+ Int64Regs, Int64Regs, int_nvvm_mulhi_ll>;
+def INT_NVVM_MULHI_ULL : F_MATH_2<"mul.hi.u64 \t$dst, $src0, $src1;", Int64Regs,
+ Int64Regs, Int64Regs, int_nvvm_mulhi_ull>;
+
+def INT_NVVM_MUL_RN_FTZ_F : F_MATH_2<"mul.rn.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rn_ftz_f>;
+def INT_NVVM_MUL_RN_F : F_MATH_2<"mul.rn.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rn_f>;
+def INT_NVVM_MUL_RZ_FTZ_F : F_MATH_2<"mul.rz.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rz_ftz_f>;
+def INT_NVVM_MUL_RZ_F : F_MATH_2<"mul.rz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rz_f>;
+def INT_NVVM_MUL_RM_FTZ_F : F_MATH_2<"mul.rm.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rm_ftz_f>;
+def INT_NVVM_MUL_RM_F : F_MATH_2<"mul.rm.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rm_f>;
+def INT_NVVM_MUL_RP_FTZ_F : F_MATH_2<"mul.rp.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rp_ftz_f>;
+def INT_NVVM_MUL_RP_F : F_MATH_2<"mul.rp.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rp_f>;
+
+def INT_NVVM_MUL_RN_D : F_MATH_2<"mul.rn.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_mul_rn_d>;
+def INT_NVVM_MUL_RZ_D : F_MATH_2<"mul.rz.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_mul_rz_d>;
+def INT_NVVM_MUL_RM_D : F_MATH_2<"mul.rm.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_mul_rm_d>;
+def INT_NVVM_MUL_RP_D : F_MATH_2<"mul.rp.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_mul_rp_d>;
+
+def INT_NVVM_MUL24_I : F_MATH_2<"mul24.lo.s32 \t$dst, $src0, $src1;",
+ Int32Regs, Int32Regs, Int32Regs, int_nvvm_mul24_i>;
+def INT_NVVM_MUL24_UI : F_MATH_2<"mul24.lo.u32 \t$dst, $src0, $src1;",
+ Int32Regs, Int32Regs, Int32Regs, int_nvvm_mul24_ui>;
+
+//
+// Div
+//
+
+def INT_NVVM_DIV_APPROX_FTZ_F
+ : F_MATH_2<"div.approx.ftz.f32 \t$dst, $src0, $src1;", Float32Regs,
+ Float32Regs, Float32Regs, int_nvvm_div_approx_ftz_f>;
+def INT_NVVM_DIV_APPROX_F : F_MATH_2<"div.approx.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_approx_f>;
+
+def INT_NVVM_DIV_RN_FTZ_F : F_MATH_2<"div.rn.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rn_ftz_f>;
+def INT_NVVM_DIV_RN_F : F_MATH_2<"div.rn.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rn_f>;
+def INT_NVVM_DIV_RZ_FTZ_F : F_MATH_2<"div.rz.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rz_ftz_f>;
+def INT_NVVM_DIV_RZ_F : F_MATH_2<"div.rz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rz_f>;
+def INT_NVVM_DIV_RM_FTZ_F : F_MATH_2<"div.rm.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rm_ftz_f>;
+def INT_NVVM_DIV_RM_F : F_MATH_2<"div.rm.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rm_f>;
+def INT_NVVM_DIV_RP_FTZ_F : F_MATH_2<"div.rp.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rp_ftz_f>;
+def INT_NVVM_DIV_RP_F : F_MATH_2<"div.rp.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rp_f>;
+
+def INT_NVVM_DIV_RN_D : F_MATH_2<"div.rn.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_div_rn_d>;
+def INT_NVVM_DIV_RZ_D : F_MATH_2<"div.rz.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_div_rz_d>;
+def INT_NVVM_DIV_RM_D : F_MATH_2<"div.rm.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_div_rm_d>;
+def INT_NVVM_DIV_RP_D : F_MATH_2<"div.rp.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_div_rp_d>;
+
+//
+// Brev
+//
+
+def INT_NVVM_BREV32 : F_MATH_1<"brev.b32 \t$dst, $src0;", Int32Regs, Int32Regs,
+ int_nvvm_brev32>;
+def INT_NVVM_BREV64 : F_MATH_1<"brev.b64 \t$dst, $src0;", Int64Regs, Int64Regs,
+ int_nvvm_brev64>;
+
+//
+// Sad
+//
+
+def INT_NVVM_SAD_I : F_MATH_3<"sad.s32 \t$dst, $src0, $src1, $src2;",
+ Int32Regs, Int32Regs, Int32Regs, Int32Regs, int_nvvm_sad_i>;
+def INT_NVVM_SAD_UI : F_MATH_3<"sad.u32 \t$dst, $src0, $src1, $src2;",
+ Int32Regs, Int32Regs, Int32Regs, Int32Regs, int_nvvm_sad_ui>;
+
+//
+// Floor Ceil
+//
+
+def : Pat<(int_nvvm_floor_ftz_f Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRMI_FTZ)>;
+def : Pat<(int_nvvm_floor_f Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRMI)>;
+def : Pat<(int_nvvm_floor_d Float64Regs:$a),
+ (CVT_f64_f64 Float64Regs:$a, CvtRMI)>;
+
+def : Pat<(int_nvvm_ceil_ftz_f Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRPI_FTZ)>;
+def : Pat<(int_nvvm_ceil_f Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRPI)>;
+def : Pat<(int_nvvm_ceil_d Float64Regs:$a),
+ (CVT_f64_f64 Float64Regs:$a, CvtRPI)>;
+
+//
+// Abs
+//
+
+def INT_NVVM_ABS_I : F_MATH_1<"abs.s32 \t$dst, $src0;", Int32Regs, Int32Regs,
+ int_nvvm_abs_i>;
+def INT_NVVM_ABS_LL : F_MATH_1<"abs.s64 \t$dst, $src0;", Int64Regs, Int64Regs,
+ int_nvvm_abs_ll>;
+
+def INT_NVVM_FABS_FTZ_F : F_MATH_1<"abs.ftz.f32 \t$dst, $src0;", Float32Regs,
+ Float32Regs, int_nvvm_fabs_ftz_f>;
+def INT_NVVM_FABS_F : F_MATH_1<"abs.f32 \t$dst, $src0;", Float32Regs,
+ Float32Regs, int_nvvm_fabs_f>;
+
+def INT_NVVM_FABS_D : F_MATH_1<"abs.f64 \t$dst, $src0;", Float64Regs,
+ Float64Regs, int_nvvm_fabs_d>;
+
+//
+// Round
+//
+
+def : Pat<(int_nvvm_round_ftz_f Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>;
+def : Pat<(int_nvvm_round_f Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRNI)>;
+def : Pat<(int_nvvm_round_d Float64Regs:$a),
+ (CVT_f64_f64 Float64Regs:$a, CvtRNI)>;
+
+//
+// Trunc
+//
+
+def : Pat<(int_nvvm_trunc_ftz_f Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRZI_FTZ)>;
+def : Pat<(int_nvvm_trunc_f Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(int_nvvm_trunc_d Float64Regs:$a),
+ (CVT_f64_f64 Float64Regs:$a, CvtRZI)>;
+
+//
+// Saturate
+//
+
+def : Pat<(int_nvvm_saturate_ftz_f Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtSAT_FTZ)>;
+def : Pat<(int_nvvm_saturate_f Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtSAT)>;
+def : Pat<(int_nvvm_saturate_d Float64Regs:$a),
+ (CVT_f64_f64 Float64Regs:$a, CvtSAT)>;
+
+//
+// Exp2 Log2
+//
+
+def INT_NVVM_EX2_APPROX_FTZ_F : F_MATH_1<"ex2.approx.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_ex2_approx_ftz_f>;
+def INT_NVVM_EX2_APPROX_F : F_MATH_1<"ex2.approx.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_ex2_approx_f>;
+def INT_NVVM_EX2_APPROX_D : F_MATH_1<"ex2.approx.f64 \t$dst, $src0;",
+ Float64Regs, Float64Regs, int_nvvm_ex2_approx_d>;
+
+def INT_NVVM_LG2_APPROX_FTZ_F : F_MATH_1<"lg2.approx.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_lg2_approx_ftz_f>;
+def INT_NVVM_LG2_APPROX_F : F_MATH_1<"lg2.approx.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_lg2_approx_f>;
+def INT_NVVM_LG2_APPROX_D : F_MATH_1<"lg2.approx.f64 \t$dst, $src0;",
+ Float64Regs, Float64Regs, int_nvvm_lg2_approx_d>;
+
+//
+// Sin Cos
+//
+
+def INT_NVVM_SIN_APPROX_FTZ_F : F_MATH_1<"sin.approx.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_sin_approx_ftz_f>;
+def INT_NVVM_SIN_APPROX_F : F_MATH_1<"sin.approx.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_sin_approx_f>;
+
+def INT_NVVM_COS_APPROX_FTZ_F : F_MATH_1<"cos.approx.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_cos_approx_ftz_f>;
+def INT_NVVM_COS_APPROX_F : F_MATH_1<"cos.approx.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_cos_approx_f>;
+
+//
+// Fma
+//
+
+def INT_NVVM_FMA_RN_FTZ_F
+ : F_MATH_3<"fma.rn.ftz.f32 \t$dst, $src0, $src1, $src2;", Float32Regs,
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rn_ftz_f>;
+def INT_NVVM_FMA_RN_F : F_MATH_3<"fma.rn.f32 \t$dst, $src0, $src1, $src2;",
+ Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rn_f>;
+def INT_NVVM_FMA_RZ_FTZ_F
+ : F_MATH_3<"fma.rz.ftz.f32 \t$dst, $src0, $src1, $src2;", Float32Regs,
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rz_ftz_f>;
+def INT_NVVM_FMA_RZ_F : F_MATH_3<"fma.rz.f32 \t$dst, $src0, $src1, $src2;",
+ Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rz_f>;
+def INT_NVVM_FMA_RM_FTZ_F
+ : F_MATH_3<"fma.rm.ftz.f32 \t$dst, $src0, $src1, $src2;", Float32Regs,
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rm_ftz_f>;
+def INT_NVVM_FMA_RM_F : F_MATH_3<"fma.rm.f32 \t$dst, $src0, $src1, $src2;",
+ Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rm_f>;
+def INT_NVVM_FMA_RP_FTZ_F
+ : F_MATH_3<"fma.rp.ftz.f32 \t$dst, $src0, $src1, $src2;", Float32Regs,
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rp_ftz_f>;
+def INT_NVVM_FMA_RP_F : F_MATH_3<"fma.rp.f32 \t$dst, $src0, $src1, $src2;",
+ Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rp_f>;
+
+def INT_NVVM_FMA_RN_D : F_MATH_3<"fma.rn.f64 \t$dst, $src0, $src1, $src2;",
+ Float64Regs, Float64Regs, Float64Regs, Float64Regs, int_nvvm_fma_rn_d>;
+def INT_NVVM_FMA_RZ_D : F_MATH_3<"fma.rz.f64 \t$dst, $src0, $src1, $src2;",
+ Float64Regs, Float64Regs, Float64Regs, Float64Regs, int_nvvm_fma_rz_d>;
+def INT_NVVM_FMA_RM_D : F_MATH_3<"fma.rm.f64 \t$dst, $src0, $src1, $src2;",
+ Float64Regs, Float64Regs, Float64Regs, Float64Regs, int_nvvm_fma_rm_d>;
+def INT_NVVM_FMA_RP_D : F_MATH_3<"fma.rp.f64 \t$dst, $src0, $src1, $src2;",
+ Float64Regs, Float64Regs, Float64Regs, Float64Regs, int_nvvm_fma_rp_d>;
+
+//
+// Rcp
+//
+
+def INT_NVVM_RCP_RN_FTZ_F : F_MATH_1<"rcp.rn.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_rcp_rn_ftz_f>;
+def INT_NVVM_RCP_RN_F : F_MATH_1<"rcp.rn.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_rcp_rn_f>;
+def INT_NVVM_RCP_RZ_FTZ_F : F_MATH_1<"rcp.rz.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_rcp_rz_ftz_f>;
+def INT_NVVM_RCP_RZ_F : F_MATH_1<"rcp.rz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_rcp_rz_f>;
+def INT_NVVM_RCP_RM_FTZ_F : F_MATH_1<"rcp.rm.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_rcp_rm_ftz_f>;
+def INT_NVVM_RCP_RM_F : F_MATH_1<"rcp.rm.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_rcp_rm_f>;
+def INT_NVVM_RCP_RP_FTZ_F : F_MATH_1<"rcp.rp.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_rcp_rp_ftz_f>;
+def INT_NVVM_RCP_RP_F : F_MATH_1<"rcp.rp.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_rcp_rp_f>;
+
+def INT_NVVM_RCP_RN_D : F_MATH_1<"rcp.rn.f64 \t$dst, $src0;", Float64Regs,
+ Float64Regs, int_nvvm_rcp_rn_d>;
+def INT_NVVM_RCP_RZ_D : F_MATH_1<"rcp.rz.f64 \t$dst, $src0;", Float64Regs,
+ Float64Regs, int_nvvm_rcp_rz_d>;
+def INT_NVVM_RCP_RM_D : F_MATH_1<"rcp.rm.f64 \t$dst, $src0;", Float64Regs,
+ Float64Regs, int_nvvm_rcp_rm_d>;
+def INT_NVVM_RCP_RP_D : F_MATH_1<"rcp.rp.f64 \t$dst, $src0;", Float64Regs,
+ Float64Regs, int_nvvm_rcp_rp_d>;
+
+def INT_NVVM_RCP_APPROX_FTZ_D : F_MATH_1<"rcp.approx.ftz.f64 \t$dst, $src0;",
+ Float64Regs, Float64Regs, int_nvvm_rcp_approx_ftz_d>;
+
+//
+// Sqrt
+//
+
+def INT_NVVM_SQRT_RN_FTZ_F : F_MATH_1<"sqrt.rn.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_sqrt_rn_ftz_f>;
+def INT_NVVM_SQRT_RN_F : F_MATH_1<"sqrt.rn.f32 \t$dst, $src0;", Float32Regs,
+ Float32Regs, int_nvvm_sqrt_rn_f>;
+def INT_NVVM_SQRT_RZ_FTZ_F : F_MATH_1<"sqrt.rz.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_sqrt_rz_ftz_f>;
+def INT_NVVM_SQRT_RZ_F : F_MATH_1<"sqrt.rz.f32 \t$dst, $src0;", Float32Regs,
+ Float32Regs, int_nvvm_sqrt_rz_f>;
+def INT_NVVM_SQRT_RM_FTZ_F : F_MATH_1<"sqrt.rm.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_sqrt_rm_ftz_f>;
+def INT_NVVM_SQRT_RM_F : F_MATH_1<"sqrt.rm.f32 \t$dst, $src0;", Float32Regs,
+ Float32Regs, int_nvvm_sqrt_rm_f>;
+def INT_NVVM_SQRT_RP_FTZ_F : F_MATH_1<"sqrt.rp.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_sqrt_rp_ftz_f>;
+def INT_NVVM_SQRT_RP_F : F_MATH_1<"sqrt.rp.f32 \t$dst, $src0;", Float32Regs,
+ Float32Regs, int_nvvm_sqrt_rp_f>;
+def INT_NVVM_SQRT_APPROX_FTZ_F : F_MATH_1<"sqrt.approx.ftz.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_sqrt_approx_ftz_f>;
+def INT_NVVM_SQRT_APPROX_F : F_MATH_1<"sqrt.approx.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_sqrt_approx_f>;
+
+def INT_NVVM_SQRT_RN_D : F_MATH_1<"sqrt.rn.f64 \t$dst, $src0;", Float64Regs,
+ Float64Regs, int_nvvm_sqrt_rn_d>;
+def INT_NVVM_SQRT_RZ_D : F_MATH_1<"sqrt.rz.f64 \t$dst, $src0;", Float64Regs,
+ Float64Regs, int_nvvm_sqrt_rz_d>;
+def INT_NVVM_SQRT_RM_D : F_MATH_1<"sqrt.rm.f64 \t$dst, $src0;", Float64Regs,
+ Float64Regs, int_nvvm_sqrt_rm_d>;
+def INT_NVVM_SQRT_RP_D : F_MATH_1<"sqrt.rp.f64 \t$dst, $src0;", Float64Regs,
+ Float64Regs, int_nvvm_sqrt_rp_d>;
+
+// nvvm_sqrt intrinsic
+def : Pat<(int_nvvm_sqrt_f Float32Regs:$a),
+ (INT_NVVM_SQRT_RN_FTZ_F Float32Regs:$a)>, Requires<[doF32FTZ, do_SQRTF32_RN]>;
+def : Pat<(int_nvvm_sqrt_f Float32Regs:$a),
+ (INT_NVVM_SQRT_RN_F Float32Regs:$a)>, Requires<[do_SQRTF32_RN]>;
+def : Pat<(int_nvvm_sqrt_f Float32Regs:$a),
+ (INT_NVVM_SQRT_APPROX_FTZ_F Float32Regs:$a)>, Requires<[doF32FTZ]>;
+def : Pat<(int_nvvm_sqrt_f Float32Regs:$a),
+ (INT_NVVM_SQRT_APPROX_F Float32Regs:$a)>;
+
+//
+// Rsqrt
+//
+
+def INT_NVVM_RSQRT_APPROX_FTZ_F
+ : F_MATH_1<"rsqrt.approx.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs,
+ int_nvvm_rsqrt_approx_ftz_f>;
+def INT_NVVM_RSQRT_APPROX_F : F_MATH_1<"rsqrt.approx.f32 \t$dst, $src0;",
+ Float32Regs, Float32Regs, int_nvvm_rsqrt_approx_f>;
+def INT_NVVM_RSQRT_APPROX_D : F_MATH_1<"rsqrt.approx.f64 \t$dst, $src0;",
+ Float64Regs, Float64Regs, int_nvvm_rsqrt_approx_d>;
+
+//
+// Add
+//
+
+def INT_NVVM_ADD_RN_FTZ_F : F_MATH_2<"add.rn.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rn_ftz_f>;
+def INT_NVVM_ADD_RN_F : F_MATH_2<"add.rn.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rn_f>;
+def INT_NVVM_ADD_RZ_FTZ_F : F_MATH_2<"add.rz.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rz_ftz_f>;
+def INT_NVVM_ADD_RZ_F : F_MATH_2<"add.rz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rz_f>;
+def INT_NVVM_ADD_RM_FTZ_F : F_MATH_2<"add.rm.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rm_ftz_f>;
+def INT_NVVM_ADD_RM_F : F_MATH_2<"add.rm.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rm_f>;
+def INT_NVVM_ADD_RP_FTZ_F : F_MATH_2<"add.rp.ftz.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rp_ftz_f>;
+def INT_NVVM_ADD_RP_F : F_MATH_2<"add.rp.f32 \t$dst, $src0, $src1;",
+ Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rp_f>;
+
+def INT_NVVM_ADD_RN_D : F_MATH_2<"add.rn.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_add_rn_d>;
+def INT_NVVM_ADD_RZ_D : F_MATH_2<"add.rz.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_add_rz_d>;
+def INT_NVVM_ADD_RM_D : F_MATH_2<"add.rm.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_add_rm_d>;
+def INT_NVVM_ADD_RP_D : F_MATH_2<"add.rp.f64 \t$dst, $src0, $src1;",
+ Float64Regs, Float64Regs, Float64Regs, int_nvvm_add_rp_d>;
+
+//
+// Convert
+//
+
+def : Pat<(int_nvvm_d2f_rn_ftz Float64Regs:$a),
+ (CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>;
+def : Pat<(int_nvvm_d2f_rn Float64Regs:$a),
+ (CVT_f32_f64 Float64Regs:$a, CvtRN)>;
+def : Pat<(int_nvvm_d2f_rz_ftz Float64Regs:$a),
+ (CVT_f32_f64 Float64Regs:$a, CvtRZ_FTZ)>;
+def : Pat<(int_nvvm_d2f_rz Float64Regs:$a),
+ (CVT_f32_f64 Float64Regs:$a, CvtRZ)>;
+def : Pat<(int_nvvm_d2f_rm_ftz Float64Regs:$a),
+ (CVT_f32_f64 Float64Regs:$a, CvtRM_FTZ)>;
+def : Pat<(int_nvvm_d2f_rm Float64Regs:$a),
+ (CVT_f32_f64 Float64Regs:$a, CvtRM)>;
+def : Pat<(int_nvvm_d2f_rp_ftz Float64Regs:$a),
+ (CVT_f32_f64 Float64Regs:$a, CvtRP_FTZ)>;
+def : Pat<(int_nvvm_d2f_rp Float64Regs:$a),
+ (CVT_f32_f64 Float64Regs:$a, CvtRP)>;
+
+def : Pat<(int_nvvm_d2i_rn Float64Regs:$a),
+ (CVT_s32_f64 Float64Regs:$a, CvtRNI)>;
+def : Pat<(int_nvvm_d2i_rz Float64Regs:$a),
+ (CVT_s32_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(int_nvvm_d2i_rm Float64Regs:$a),
+ (CVT_s32_f64 Float64Regs:$a, CvtRMI)>;
+def : Pat<(int_nvvm_d2i_rp Float64Regs:$a),
+ (CVT_s32_f64 Float64Regs:$a, CvtRPI)>;
+
+def : Pat<(int_nvvm_d2ui_rn Float64Regs:$a),
+ (CVT_u32_f64 Float64Regs:$a, CvtRNI)>;
+def : Pat<(int_nvvm_d2ui_rz Float64Regs:$a),
+ (CVT_u32_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(int_nvvm_d2ui_rm Float64Regs:$a),
+ (CVT_u32_f64 Float64Regs:$a, CvtRMI)>;
+def : Pat<(int_nvvm_d2ui_rp Float64Regs:$a),
+ (CVT_u32_f64 Float64Regs:$a, CvtRPI)>;
+
+def : Pat<(int_nvvm_i2d_rn Int32Regs:$a),
+ (CVT_f64_s32 Int32Regs:$a, CvtRN)>;
+def : Pat<(int_nvvm_i2d_rz Int32Regs:$a),
+ (CVT_f64_s32 Int32Regs:$a, CvtRZ)>;
+def : Pat<(int_nvvm_i2d_rm Int32Regs:$a),
+ (CVT_f64_s32 Int32Regs:$a, CvtRM)>;
+def : Pat<(int_nvvm_i2d_rp Int32Regs:$a),
+ (CVT_f64_s32 Int32Regs:$a, CvtRP)>;
+
+def : Pat<(int_nvvm_ui2d_rn Int32Regs:$a),
+ (CVT_f64_u32 Int32Regs:$a, CvtRN)>;
+def : Pat<(int_nvvm_ui2d_rz Int32Regs:$a),
+ (CVT_f64_u32 Int32Regs:$a, CvtRZ)>;
+def : Pat<(int_nvvm_ui2d_rm Int32Regs:$a),
+ (CVT_f64_u32 Int32Regs:$a, CvtRM)>;
+def : Pat<(int_nvvm_ui2d_rp Int32Regs:$a),
+ (CVT_f64_u32 Int32Regs:$a, CvtRP)>;
+
+def : Pat<(int_nvvm_f2i_rn_ftz Float32Regs:$a),
+ (CVT_s32_f32 Float32Regs:$a, CvtRNI_FTZ)>;
+def : Pat<(int_nvvm_f2i_rn Float32Regs:$a),
+ (CVT_s32_f32 Float32Regs:$a, CvtRNI)>;
+def : Pat<(int_nvvm_f2i_rz_ftz Float32Regs:$a),
+ (CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>;
+def : Pat<(int_nvvm_f2i_rz Float32Regs:$a),
+ (CVT_s32_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(int_nvvm_f2i_rm_ftz Float32Regs:$a),
+ (CVT_s32_f32 Float32Regs:$a, CvtRMI_FTZ)>;
+def : Pat<(int_nvvm_f2i_rm Float32Regs:$a),
+ (CVT_s32_f32 Float32Regs:$a, CvtRMI)>;
+def : Pat<(int_nvvm_f2i_rp_ftz Float32Regs:$a),
+ (CVT_s32_f32 Float32Regs:$a, CvtRPI_FTZ)>;
+def : Pat<(int_nvvm_f2i_rp Float32Regs:$a),
+ (CVT_s32_f32 Float32Regs:$a, CvtRPI)>;
+
+def : Pat<(int_nvvm_f2ui_rn_ftz Float32Regs:$a),
+ (CVT_u32_f32 Float32Regs:$a, CvtRNI_FTZ)>;
+def : Pat<(int_nvvm_f2ui_rn Float32Regs:$a),
+ (CVT_u32_f32 Float32Regs:$a, CvtRNI)>;
+def : Pat<(int_nvvm_f2ui_rz_ftz Float32Regs:$a),
+ (CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>;
+def : Pat<(int_nvvm_f2ui_rz Float32Regs:$a),
+ (CVT_u32_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(int_nvvm_f2ui_rm_ftz Float32Regs:$a),
+ (CVT_u32_f32 Float32Regs:$a, CvtRMI_FTZ)>;
+def : Pat<(int_nvvm_f2ui_rm Float32Regs:$a),
+ (CVT_u32_f32 Float32Regs:$a, CvtRMI)>;
+def : Pat<(int_nvvm_f2ui_rp_ftz Float32Regs:$a),
+ (CVT_u32_f32 Float32Regs:$a, CvtRPI_FTZ)>;
+def : Pat<(int_nvvm_f2ui_rp Float32Regs:$a),
+ (CVT_u32_f32 Float32Regs:$a, CvtRPI)>;
+
+def : Pat<(int_nvvm_i2f_rn Int32Regs:$a),
+ (CVT_f32_s32 Int32Regs:$a, CvtRN)>;
+def : Pat<(int_nvvm_i2f_rz Int32Regs:$a),
+ (CVT_f32_s32 Int32Regs:$a, CvtRZ)>;
+def : Pat<(int_nvvm_i2f_rm Int32Regs:$a),
+ (CVT_f32_s32 Int32Regs:$a, CvtRM)>;
+def : Pat<(int_nvvm_i2f_rp Int32Regs:$a),
+ (CVT_f32_s32 Int32Regs:$a, CvtRP)>;
+
+def : Pat<(int_nvvm_ui2f_rn Int32Regs:$a),
+ (CVT_f32_u32 Int32Regs:$a, CvtRN)>;
+def : Pat<(int_nvvm_ui2f_rz Int32Regs:$a),
+ (CVT_f32_u32 Int32Regs:$a, CvtRZ)>;
+def : Pat<(int_nvvm_ui2f_rm Int32Regs:$a),
+ (CVT_f32_u32 Int32Regs:$a, CvtRM)>;
+def : Pat<(int_nvvm_ui2f_rp Int32Regs:$a),
+ (CVT_f32_u32 Int32Regs:$a, CvtRP)>;
+
+def INT_NVVM_LOHI_I2D : F_MATH_2<"mov.b64 \t$dst, {{$src0, $src1}};",
+ Float64Regs, Int32Regs, Int32Regs, int_nvvm_lohi_i2d>;
+
+def INT_NVVM_D2I_LO : F_MATH_1<!strconcat("{{\n\t",
+ !strconcat(".reg .b32 %temp; \n\t",
+ !strconcat("mov.b64 \t{$dst, %temp}, $src0;\n\t",
+ "}}"))),
+ Int32Regs, Float64Regs, int_nvvm_d2i_lo>;
+def INT_NVVM_D2I_HI : F_MATH_1<!strconcat("{{\n\t",
+ !strconcat(".reg .b32 %temp; \n\t",
+ !strconcat("mov.b64 \t{%temp, $dst}, $src0;\n\t",
+ "}}"))),
+ Int32Regs, Float64Regs, int_nvvm_d2i_hi>;
+
+def : Pat<(int_nvvm_f2ll_rn_ftz Float32Regs:$a),
+ (CVT_s64_f32 Float32Regs:$a, CvtRNI_FTZ)>;
+def : Pat<(int_nvvm_f2ll_rn Float32Regs:$a),
+ (CVT_s64_f32 Float32Regs:$a, CvtRNI)>;
+def : Pat<(int_nvvm_f2ll_rz_ftz Float32Regs:$a),
+ (CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>;
+def : Pat<(int_nvvm_f2ll_rz Float32Regs:$a),
+ (CVT_s64_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(int_nvvm_f2ll_rm_ftz Float32Regs:$a),
+ (CVT_s64_f32 Float32Regs:$a, CvtRMI_FTZ)>;
+def : Pat<(int_nvvm_f2ll_rm Float32Regs:$a),
+ (CVT_s64_f32 Float32Regs:$a, CvtRMI)>;
+def : Pat<(int_nvvm_f2ll_rp_ftz Float32Regs:$a),
+ (CVT_s64_f32 Float32Regs:$a, CvtRPI_FTZ)>;
+def : Pat<(int_nvvm_f2ll_rp Float32Regs:$a),
+ (CVT_s64_f32 Float32Regs:$a, CvtRPI)>;
+
+def : Pat<(int_nvvm_f2ull_rn_ftz Float32Regs:$a),
+ (CVT_u64_f32 Float32Regs:$a, CvtRNI_FTZ)>;
+def : Pat<(int_nvvm_f2ull_rn Float32Regs:$a),
+ (CVT_u64_f32 Float32Regs:$a, CvtRNI)>;
+def : Pat<(int_nvvm_f2ull_rz_ftz Float32Regs:$a),
+ (CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>;
+def : Pat<(int_nvvm_f2ull_rz Float32Regs:$a),
+ (CVT_u64_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(int_nvvm_f2ull_rm_ftz Float32Regs:$a),
+ (CVT_u64_f32 Float32Regs:$a, CvtRMI_FTZ)>;
+def : Pat<(int_nvvm_f2ull_rm Float32Regs:$a),
+ (CVT_u64_f32 Float32Regs:$a, CvtRMI)>;
+def : Pat<(int_nvvm_f2ull_rp_ftz Float32Regs:$a),
+ (CVT_u64_f32 Float32Regs:$a, CvtRPI_FTZ)>;
+def : Pat<(int_nvvm_f2ull_rp Float32Regs:$a),
+ (CVT_u64_f32 Float32Regs:$a, CvtRPI)>;
+
+def : Pat<(int_nvvm_d2ll_rn Float64Regs:$a),
+ (CVT_s64_f64 Float64Regs:$a, CvtRNI)>;
+def : Pat<(int_nvvm_d2ll_rz Float64Regs:$a),
+ (CVT_s64_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(int_nvvm_d2ll_rm Float64Regs:$a),
+ (CVT_s64_f64 Float64Regs:$a, CvtRMI)>;
+def : Pat<(int_nvvm_d2ll_rp Float64Regs:$a),
+ (CVT_s64_f64 Float64Regs:$a, CvtRPI)>;
+
+def : Pat<(int_nvvm_d2ull_rn Float64Regs:$a),
+ (CVT_u64_f64 Float64Regs:$a, CvtRNI)>;
+def : Pat<(int_nvvm_d2ull_rz Float64Regs:$a),
+ (CVT_u64_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(int_nvvm_d2ull_rm Float64Regs:$a),
+ (CVT_u64_f64 Float64Regs:$a, CvtRMI)>;
+def : Pat<(int_nvvm_d2ull_rp Float64Regs:$a),
+ (CVT_u64_f64 Float64Regs:$a, CvtRPI)>;
+
+def : Pat<(int_nvvm_ll2f_rn Int64Regs:$a),
+ (CVT_f32_s64 Int64Regs:$a, CvtRN)>;
+def : Pat<(int_nvvm_ll2f_rz Int64Regs:$a),
+ (CVT_f32_s64 Int64Regs:$a, CvtRZ)>;
+def : Pat<(int_nvvm_ll2f_rm Int64Regs:$a),
+ (CVT_f32_s64 Int64Regs:$a, CvtRM)>;
+def : Pat<(int_nvvm_ll2f_rp Int64Regs:$a),
+ (CVT_f32_s64 Int64Regs:$a, CvtRP)>;
+
+def : Pat<(int_nvvm_ull2f_rn Int64Regs:$a),
+ (CVT_f32_u64 Int64Regs:$a, CvtRN)>;
+def : Pat<(int_nvvm_ull2f_rz Int64Regs:$a),
+ (CVT_f32_u64 Int64Regs:$a, CvtRZ)>;
+def : Pat<(int_nvvm_ull2f_rm Int64Regs:$a),
+ (CVT_f32_u64 Int64Regs:$a, CvtRM)>;
+def : Pat<(int_nvvm_ull2f_rp Int64Regs:$a),
+ (CVT_f32_u64 Int64Regs:$a, CvtRP)>;
+
+def : Pat<(int_nvvm_ll2d_rn Int64Regs:$a),
+ (CVT_f64_s64 Int64Regs:$a, CvtRN)>;
+def : Pat<(int_nvvm_ll2d_rz Int64Regs:$a),
+ (CVT_f64_s64 Int64Regs:$a, CvtRZ)>;
+def : Pat<(int_nvvm_ll2d_rm Int64Regs:$a),
+ (CVT_f64_s64 Int64Regs:$a, CvtRM)>;
+def : Pat<(int_nvvm_ll2d_rp Int64Regs:$a),
+ (CVT_f64_s64 Int64Regs:$a, CvtRP)>;
+
+def : Pat<(int_nvvm_ull2d_rn Int64Regs:$a),
+ (CVT_f64_u64 Int64Regs:$a, CvtRN)>;
+def : Pat<(int_nvvm_ull2d_rz Int64Regs:$a),
+ (CVT_f64_u64 Int64Regs:$a, CvtRZ)>;
+def : Pat<(int_nvvm_ull2d_rm Int64Regs:$a),
+ (CVT_f64_u64 Int64Regs:$a, CvtRM)>;
+def : Pat<(int_nvvm_ull2d_rp Int64Regs:$a),
+ (CVT_f64_u64 Int64Regs:$a, CvtRP)>;
+
+
+// FIXME: Ideally, we could use these patterns instead of the scope-creating
+// patterns, but ptxas does not like these since .s16 is not compatible with
+// .f16. The solution is to use .bXX for all integer register types, but we
+// are not there yet.
+//def : Pat<(int_nvvm_f2h_rn_ftz Float32Regs:$a),
+// (CVT_f16_f32 Float32Regs:$a, CvtRN_FTZ)>;
+//def : Pat<(int_nvvm_f2h_rn Float32Regs:$a),
+// (CVT_f16_f32 Float32Regs:$a, CvtRN)>;
+//
+//def : Pat<(int_nvvm_h2f Int16Regs:$a),
+// (CVT_f32_f16 Int16Regs:$a, CvtNONE)>;
+
+def INT_NVVM_F2H_RN_FTZ : F_MATH_1<!strconcat("{{\n\t",
+ !strconcat(".reg .b16 %temp;\n\t",
+ !strconcat("cvt.rn.ftz.f16.f32 \t%temp, $src0;\n\t",
+ !strconcat("mov.b16 \t$dst, %temp;\n",
+ "}}")))),
+ Int16Regs, Float32Regs, int_nvvm_f2h_rn_ftz>;
+def INT_NVVM_F2H_RN : F_MATH_1<!strconcat("{{\n\t",
+ !strconcat(".reg .b16 %temp;\n\t",
+ !strconcat("cvt.rn.f16.f32 \t%temp, $src0;\n\t",
+ !strconcat("mov.b16 \t$dst, %temp;\n",
+ "}}")))),
+ Int16Regs, Float32Regs, int_nvvm_f2h_rn>;
+
+def INT_NVVM_H2F : F_MATH_1<!strconcat("{{\n\t",
+ !strconcat(".reg .b16 %temp;\n\t",
+ !strconcat("mov.b16 \t%temp, $src0;\n\t",
+ !strconcat("cvt.f32.f16 \t$dst, %temp;\n\t",
+ "}}")))),
+ Float32Regs, Int16Regs, int_nvvm_h2f>;
+
+def : Pat<(f32 (f16_to_fp Int16Regs:$a)),
+ (CVT_f32_f16 Int16Regs:$a, CvtNONE)>;
+def : Pat<(i16 (fp_to_f16 Float32Regs:$a)),
+ (CVT_f16_f32 Float32Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i16 (fp_to_f16 Float32Regs:$a)),
+ (CVT_f16_f32 Float32Regs:$a, CvtRN)>;
+
+def : Pat<(f64 (f16_to_fp Int16Regs:$a)),
+ (CVT_f64_f16 Int16Regs:$a, CvtNONE)>;
+def : Pat<(i16 (fp_to_f16 Float64Regs:$a)),
+ (CVT_f16_f64 Float64Regs:$a, CvtRN)>;
+
+//
+// Bitcast
+//
+
+def INT_NVVM_BITCAST_F2I : F_MATH_1<"mov.b32 \t$dst, $src0;", Int32Regs,
+ Float32Regs, int_nvvm_bitcast_f2i>;
+def INT_NVVM_BITCAST_I2F : F_MATH_1<"mov.b32 \t$dst, $src0;", Float32Regs,
+ Int32Regs, int_nvvm_bitcast_i2f>;
+
+def INT_NVVM_BITCAST_LL2D : F_MATH_1<"mov.b64 \t$dst, $src0;", Float64Regs,
+ Int64Regs, int_nvvm_bitcast_ll2d>;
+def INT_NVVM_BITCAST_D2LL : F_MATH_1<"mov.b64 \t$dst, $src0;", Int64Regs,
+ Float64Regs, int_nvvm_bitcast_d2ll>;
+
+//-----------------------------------
+// Atomic Functions
+//-----------------------------------
+
+class ATOMIC_GLOBAL_CHK <dag ops, dag frag>
+ : PatFrag<ops, frag, [{
+ return ChkMemSDNodeAddressSpace(N, llvm::ADDRESS_SPACE_GLOBAL);
+}]>;
+class ATOMIC_SHARED_CHK <dag ops, dag frag>
+ : PatFrag<ops, frag, [{
+ return ChkMemSDNodeAddressSpace(N, llvm::ADDRESS_SPACE_SHARED);
+}]>;
+class ATOMIC_GENERIC_CHK <dag ops, dag frag>
+ : PatFrag<ops, frag, [{
+ return ChkMemSDNodeAddressSpace(N, llvm::ADDRESS_SPACE_GENERIC);
+}]>;
+
+multiclass F_ATOMIC_2_imp<NVPTXRegClass ptrclass, NVPTXRegClass regclass,
+ string SpaceStr, string TypeStr, string OpcStr, PatFrag IntOp,
+ Operand IMMType, SDNode IMM, Predicate Pred> {
+ def reg : NVPTXInst<(outs regclass:$dst), (ins ptrclass:$addr, regclass:$b),
+ !strconcat("atom",
+ !strconcat(SpaceStr,
+ !strconcat(OpcStr,
+ !strconcat(TypeStr,
+ !strconcat(" \t$dst, [$addr], $b;", ""))))),
+ [(set regclass:$dst, (IntOp ptrclass:$addr, regclass:$b))]>,
+ Requires<[Pred]>;
+ def imm : NVPTXInst<(outs regclass:$dst), (ins ptrclass:$addr, IMMType:$b),
+ !strconcat("atom",
+ !strconcat(SpaceStr,
+ !strconcat(OpcStr,
+ !strconcat(TypeStr,
+ !strconcat(" \t$dst, [$addr], $b;", ""))))),
+ [(set regclass:$dst, (IntOp ptrclass:$addr, IMM:$b))]>,
+ Requires<[Pred]>;
+}
+multiclass F_ATOMIC_2<NVPTXRegClass regclass, string SpaceStr, string TypeStr,
+ string OpcStr, PatFrag IntOp, Operand IMMType, SDNode IMM, Predicate Pred> {
+ defm p32 : F_ATOMIC_2_imp<Int32Regs, regclass, SpaceStr, TypeStr, OpcStr,
+ IntOp, IMMType, IMM, Pred>;
+ defm p64 : F_ATOMIC_2_imp<Int64Regs, regclass, SpaceStr, TypeStr, OpcStr,
+ IntOp, IMMType, IMM, Pred>;
+}
+
+// has 2 operands, neg the second one
+multiclass F_ATOMIC_2_NEG_imp<NVPTXRegClass ptrclass, NVPTXRegClass regclass,
+ string SpaceStr, string TypeStr, string OpcStr, PatFrag IntOp,
+ Operand IMMType, Predicate Pred> {
+ def reg : NVPTXInst<(outs regclass:$dst), (ins ptrclass:$addr, regclass:$b),
+ !strconcat("{{ \n\t",
+ !strconcat(".reg \t.s",
+ !strconcat(TypeStr,
+ !strconcat(" temp; \n\t",
+ !strconcat("neg.s",
+ !strconcat(TypeStr,
+ !strconcat(" \ttemp, $b; \n\t",
+ !strconcat("atom",
+ !strconcat(SpaceStr,
+ !strconcat(OpcStr,
+ !strconcat(".u",
+ !strconcat(TypeStr,
+ !strconcat(" \t$dst, [$addr], temp; \n\t",
+ !strconcat("}}", "")))))))))))))),
+ [(set regclass:$dst, (IntOp ptrclass:$addr, regclass:$b))]>,
+ Requires<[Pred]>;
+}
+multiclass F_ATOMIC_2_NEG<NVPTXRegClass regclass, string SpaceStr,
+ string TypeStr, string OpcStr, PatFrag IntOp, Operand IMMType,
+ Predicate Pred> {
+ defm p32: F_ATOMIC_2_NEG_imp<Int32Regs, regclass, SpaceStr, TypeStr, OpcStr,
+ IntOp, IMMType, Pred> ;
+ defm p64: F_ATOMIC_2_NEG_imp<Int64Regs, regclass, SpaceStr, TypeStr, OpcStr,
+ IntOp, IMMType, Pred> ;
+}
+
+// has 3 operands
+multiclass F_ATOMIC_3_imp<NVPTXRegClass ptrclass, NVPTXRegClass regclass,
+ string SpaceStr, string TypeStr, string OpcStr, PatFrag IntOp,
+ Operand IMMType, Predicate Pred> {
+ def reg : NVPTXInst<(outs regclass:$dst),
+ (ins ptrclass:$addr, regclass:$b, regclass:$c),
+ !strconcat("atom",
+ !strconcat(SpaceStr,
+ !strconcat(OpcStr,
+ !strconcat(TypeStr,
+ !strconcat(" \t$dst, [$addr], $b, $c;", ""))))),
+ [(set regclass:$dst,
+ (IntOp ptrclass:$addr, regclass:$b, regclass:$c))]>,
+ Requires<[Pred]>;
+ def imm1 : NVPTXInst<(outs regclass:$dst),
+ (ins ptrclass:$addr, IMMType:$b, regclass:$c),
+ !strconcat("atom",
+ !strconcat(SpaceStr,
+ !strconcat(OpcStr,
+ !strconcat(TypeStr,
+ !strconcat(" \t$dst, [$addr], $b, $c;", ""))))),
+ [(set regclass:$dst, (IntOp ptrclass:$addr, imm:$b, regclass:$c))]>,
+ Requires<[Pred]>;
+ def imm2 : NVPTXInst<(outs regclass:$dst),
+ (ins ptrclass:$addr, regclass:$b, IMMType:$c),
+ !strconcat("atom",
+ !strconcat(SpaceStr,
+ !strconcat(OpcStr,
+ !strconcat(TypeStr,
+ !strconcat(" \t$dst, [$addr], $b, $c;", ""))))),
+ [(set regclass:$dst, (IntOp ptrclass:$addr, regclass:$b, imm:$c))]>,
+ Requires<[Pred]>;
+ def imm3 : NVPTXInst<(outs regclass:$dst),
+ (ins ptrclass:$addr, IMMType:$b, IMMType:$c),
+ !strconcat("atom",
+ !strconcat(SpaceStr,
+ !strconcat(OpcStr,
+ !strconcat(TypeStr,
+ !strconcat(" \t$dst, [$addr], $b, $c;", ""))))),
+ [(set regclass:$dst, (IntOp ptrclass:$addr, imm:$b, imm:$c))]>,
+ Requires<[Pred]>;
+}
+multiclass F_ATOMIC_3<NVPTXRegClass regclass, string SpaceStr, string TypeStr,
+ string OpcStr, PatFrag IntOp, Operand IMMType, Predicate Pred> {
+ defm p32 : F_ATOMIC_3_imp<Int32Regs, regclass, SpaceStr, TypeStr, OpcStr,
+ IntOp, IMMType, Pred>;
+ defm p64 : F_ATOMIC_3_imp<Int64Regs, regclass, SpaceStr, TypeStr, OpcStr,
+ IntOp, IMMType, Pred>;
+}
+
+// atom_add
+
+def atomic_load_add_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_add_32 node:$a, node:$b)>;
+def atomic_load_add_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_add_32 node:$a, node:$b)>;
+def atomic_load_add_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_add_32 node:$a, node:$b)>;
+def atomic_load_add_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_add_64 node:$a, node:$b)>;
+def atomic_load_add_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_add_64 node:$a, node:$b)>;
+def atomic_load_add_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_add_64 node:$a, node:$b)>;
+def atomic_load_add_f32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (int_nvvm_atomic_load_add_f32 node:$a, node:$b)>;
+def atomic_load_add_f32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (int_nvvm_atomic_load_add_f32 node:$a, node:$b)>;
+def atomic_load_add_f32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (int_nvvm_atomic_load_add_f32 node:$a, node:$b)>;
+
+defm INT_PTX_ATOM_ADD_G_32 : F_ATOMIC_2<Int32Regs, ".global", ".u32", ".add",
+ atomic_load_add_32_g, i32imm, imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_ADD_S_32 : F_ATOMIC_2<Int32Regs, ".shared", ".u32", ".add",
+ atomic_load_add_32_s, i32imm, imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_ADD_GEN_32 : F_ATOMIC_2<Int32Regs, "", ".u32", ".add",
+ atomic_load_add_32_gen, i32imm, imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_ADD_GEN_32_USE_G : F_ATOMIC_2<Int32Regs, ".global", ".u32",
+ ".add", atomic_load_add_32_gen, i32imm, imm, useAtomRedG32forGen32>;
+
+defm INT_PTX_ATOM_ADD_G_64 : F_ATOMIC_2<Int64Regs, ".global", ".u64", ".add",
+ atomic_load_add_64_g, i64imm, imm, hasAtomRedG64>;
+defm INT_PTX_ATOM_ADD_S_64 : F_ATOMIC_2<Int64Regs, ".shared", ".u64", ".add",
+ atomic_load_add_64_s, i64imm, imm, hasAtomRedS64>;
+defm INT_PTX_ATOM_ADD_GEN_64 : F_ATOMIC_2<Int64Regs, "", ".u64", ".add",
+ atomic_load_add_64_gen, i64imm, imm, hasAtomRedGen64>;
+defm INT_PTX_ATOM_ADD_GEN_64_USE_G : F_ATOMIC_2<Int64Regs, ".global", ".u64",
+ ".add", atomic_load_add_64_gen, i64imm, imm, useAtomRedG64forGen64>;
+
+defm INT_PTX_ATOM_ADD_G_F32 : F_ATOMIC_2<Float32Regs, ".global", ".f32", ".add",
+ atomic_load_add_f32_g, f32imm, fpimm, hasAtomAddF32>;
+defm INT_PTX_ATOM_ADD_S_F32 : F_ATOMIC_2<Float32Regs, ".shared", ".f32", ".add",
+ atomic_load_add_f32_s, f32imm, fpimm, hasAtomAddF32>;
+defm INT_PTX_ATOM_ADD_GEN_F32 : F_ATOMIC_2<Float32Regs, "", ".f32", ".add",
+ atomic_load_add_f32_gen, f32imm, fpimm, hasAtomAddF32>;
+
+// atom_sub
+
+def atomic_load_sub_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_sub_32 node:$a, node:$b)>;
+def atomic_load_sub_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_sub_32 node:$a, node:$b)>;
+def atomic_load_sub_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_sub_32 node:$a, node:$b)>;
+def atomic_load_sub_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_sub_64 node:$a, node:$b)>;
+def atomic_load_sub_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_sub_64 node:$a, node:$b)>;
+def atomic_load_sub_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_sub_64 node:$a, node:$b)>;
+
+defm INT_PTX_ATOM_SUB_G_32 : F_ATOMIC_2_NEG<Int32Regs, ".global", "32", ".add",
+ atomic_load_sub_32_g, i32imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_SUB_G_64 : F_ATOMIC_2_NEG<Int64Regs, ".global", "64", ".add",
+ atomic_load_sub_64_g, i64imm, hasAtomRedG64>;
+defm INT_PTX_ATOM_SUB_GEN_32 : F_ATOMIC_2_NEG<Int32Regs, "", "32", ".add",
+ atomic_load_sub_32_gen, i32imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_SUB_GEN_32_USE_G : F_ATOMIC_2_NEG<Int32Regs, ".global", "32",
+ ".add", atomic_load_sub_32_gen, i32imm, useAtomRedG32forGen32>;
+defm INT_PTX_ATOM_SUB_S_32 : F_ATOMIC_2_NEG<Int32Regs, ".shared", "32", ".add",
+ atomic_load_sub_32_s, i32imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_SUB_S_64 : F_ATOMIC_2_NEG<Int64Regs, ".shared", "64", ".add",
+ atomic_load_sub_64_s, i64imm, hasAtomRedS64>;
+defm INT_PTX_ATOM_SUB_GEN_64 : F_ATOMIC_2_NEG<Int64Regs, "", "64", ".add",
+ atomic_load_sub_64_gen, i64imm, hasAtomRedGen64>;
+defm INT_PTX_ATOM_SUB_GEN_64_USE_G : F_ATOMIC_2_NEG<Int64Regs, ".global", "64",
+ ".add", atomic_load_sub_64_gen, i64imm, useAtomRedG64forGen64>;
+
+// atom_swap
+
+def atomic_swap_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_swap_32 node:$a, node:$b)>;
+def atomic_swap_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_swap_32 node:$a, node:$b)>;
+def atomic_swap_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_swap_32 node:$a, node:$b)>;
+def atomic_swap_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_swap_64 node:$a, node:$b)>;
+def atomic_swap_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_swap_64 node:$a, node:$b)>;
+def atomic_swap_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_swap_64 node:$a, node:$b)>;
+
+defm INT_PTX_ATOM_SWAP_G_32 : F_ATOMIC_2<Int32Regs, ".global", ".b32", ".exch",
+ atomic_swap_32_g, i32imm, imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_SWAP_S_32 : F_ATOMIC_2<Int32Regs, ".shared", ".b32", ".exch",
+ atomic_swap_32_s, i32imm, imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_SWAP_GEN_32 : F_ATOMIC_2<Int32Regs, "", ".b32", ".exch",
+ atomic_swap_32_gen, i32imm, imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_SWAP_GEN_32_USE_G : F_ATOMIC_2<Int32Regs, ".global", ".b32",
+ ".exch", atomic_swap_32_gen, i32imm, imm, useAtomRedG32forGen32>;
+defm INT_PTX_ATOM_SWAP_G_64 : F_ATOMIC_2<Int64Regs, ".global", ".b64", ".exch",
+ atomic_swap_64_g, i64imm, imm, hasAtomRedG64>;
+defm INT_PTX_ATOM_SWAP_S_64 : F_ATOMIC_2<Int64Regs, ".shared", ".b64", ".exch",
+ atomic_swap_64_s, i64imm, imm, hasAtomRedS64>;
+defm INT_PTX_ATOM_SWAP_GEN_64 : F_ATOMIC_2<Int64Regs, "", ".b64", ".exch",
+ atomic_swap_64_gen, i64imm, imm, hasAtomRedGen64>;
+defm INT_PTX_ATOM_SWAP_GEN_64_USE_G : F_ATOMIC_2<Int64Regs, ".global", ".b64",
+ ".exch", atomic_swap_64_gen, i64imm, imm, useAtomRedG64forGen64>;
+
+// atom_max
+
+def atomic_load_max_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b)
+ , (atomic_load_max_32 node:$a, node:$b)>;
+def atomic_load_max_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_max_32 node:$a, node:$b)>;
+def atomic_load_max_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_max_32 node:$a, node:$b)>;
+def atomic_load_max_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b)
+ , (atomic_load_max_64 node:$a, node:$b)>;
+def atomic_load_max_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_max_64 node:$a, node:$b)>;
+def atomic_load_max_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_max_64 node:$a, node:$b)>;
+def atomic_load_umax_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_umax_32 node:$a, node:$b)>;
+def atomic_load_umax_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_umax_32 node:$a, node:$b)>;
+def atomic_load_umax_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_umax_32 node:$a, node:$b)>;
+def atomic_load_umax_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_umax_64 node:$a, node:$b)>;
+def atomic_load_umax_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_umax_64 node:$a, node:$b)>;
+def atomic_load_umax_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_umax_64 node:$a, node:$b)>;
+
+defm INT_PTX_ATOM_LOAD_MAX_G_32 : F_ATOMIC_2<Int32Regs, ".global", ".s32",
+ ".max", atomic_load_max_32_g, i32imm, imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_LOAD_MAX_S_32 : F_ATOMIC_2<Int32Regs, ".shared", ".s32",
+ ".max", atomic_load_max_32_s, i32imm, imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_LOAD_MAX_GEN_32 : F_ATOMIC_2<Int32Regs, "", ".s32", ".max",
+ atomic_load_max_32_gen, i32imm, imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_LOAD_MAX_GEN_32_USE_G : F_ATOMIC_2<Int32Regs, ".global",
+ ".s32", ".max", atomic_load_max_32_gen, i32imm, imm, useAtomRedG32forGen32>;
+defm INT_PTX_ATOM_LOAD_MAX_G_64 : F_ATOMIC_2<Int64Regs, ".global", ".s64",
+ ".max", atomic_load_max_64_g, i64imm, imm, hasAtomRedG64>;
+defm INT_PTX_ATOM_LOAD_MAX_S_64 : F_ATOMIC_2<Int64Regs, ".shared", ".s64",
+ ".max", atomic_load_max_64_s, i64imm, imm, hasAtomRedS64>;
+defm INT_PTX_ATOM_LOAD_MAX_GEN_64 : F_ATOMIC_2<Int64Regs, "", ".s64", ".max",
+ atomic_load_max_64_gen, i64imm, imm, hasAtomRedGen64>;
+defm INT_PTX_ATOM_LOAD_MAX_GEN_64_USE_G : F_ATOMIC_2<Int64Regs, ".global",
+ ".s64", ".max", atomic_load_max_64_gen, i64imm, imm, useAtomRedG64forGen64>;
+defm INT_PTX_ATOM_LOAD_UMAX_G_32 : F_ATOMIC_2<Int32Regs, ".global", ".u32",
+ ".max", atomic_load_umax_32_g, i32imm, imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_LOAD_UMAX_S_32 : F_ATOMIC_2<Int32Regs, ".shared", ".u32",
+ ".max", atomic_load_umax_32_s, i32imm, imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_LOAD_UMAX_GEN_32 : F_ATOMIC_2<Int32Regs, "", ".u32", ".max",
+ atomic_load_umax_32_gen, i32imm, imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_LOAD_UMAX_GEN_32_USE_G : F_ATOMIC_2<Int32Regs, ".global",
+ ".u32", ".max", atomic_load_umax_32_gen, i32imm, imm, useAtomRedG32forGen32>;
+defm INT_PTX_ATOM_LOAD_UMAX_G_64 : F_ATOMIC_2<Int64Regs, ".global", ".u64",
+ ".max", atomic_load_umax_64_g, i64imm, imm, hasAtomRedG64>;
+defm INT_PTX_ATOM_LOAD_UMAX_S_64 : F_ATOMIC_2<Int64Regs, ".shared", ".u64",
+ ".max", atomic_load_umax_64_s, i64imm, imm, hasAtomRedS64>;
+defm INT_PTX_ATOM_LOAD_UMAX_GEN_64 : F_ATOMIC_2<Int64Regs, "", ".u64", ".max",
+ atomic_load_umax_64_gen, i64imm, imm, hasAtomRedGen64>;
+defm INT_PTX_ATOM_LOAD_UMAX_GEN_64_USE_G : F_ATOMIC_2<Int64Regs, ".global",
+ ".u64", ".max", atomic_load_umax_64_gen, i64imm, imm, useAtomRedG64forGen64>;
+
+// atom_min
+
+def atomic_load_min_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_min_32 node:$a, node:$b)>;
+def atomic_load_min_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_min_32 node:$a, node:$b)>;
+def atomic_load_min_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_min_32 node:$a, node:$b)>;
+def atomic_load_min_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_min_64 node:$a, node:$b)>;
+def atomic_load_min_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_min_64 node:$a, node:$b)>;
+def atomic_load_min_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_min_64 node:$a, node:$b)>;
+def atomic_load_umin_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_umin_32 node:$a, node:$b)>;
+def atomic_load_umin_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_umin_32 node:$a, node:$b)>;
+def atomic_load_umin_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_umin_32 node:$a, node:$b)>;
+def atomic_load_umin_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_umin_64 node:$a, node:$b)>;
+def atomic_load_umin_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_umin_64 node:$a, node:$b)>;
+def atomic_load_umin_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_umin_64 node:$a, node:$b)>;
+
+defm INT_PTX_ATOM_LOAD_MIN_G_32 : F_ATOMIC_2<Int32Regs, ".global", ".s32",
+ ".min", atomic_load_min_32_g, i32imm, imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_LOAD_MIN_S_32 : F_ATOMIC_2<Int32Regs, ".shared", ".s32",
+ ".min", atomic_load_min_32_s, i32imm, imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_LOAD_MIN_GEN_32 : F_ATOMIC_2<Int32Regs, "", ".s32", ".min",
+ atomic_load_min_32_gen, i32imm, imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_LOAD_MIN_GEN_32_USE_G : F_ATOMIC_2<Int32Regs, ".global",
+ ".s32", ".min", atomic_load_min_32_gen, i32imm, imm, useAtomRedG32forGen32>;
+defm INT_PTX_ATOM_LOAD_MIN_G_64 : F_ATOMIC_2<Int64Regs, ".global", ".s64",
+ ".min", atomic_load_min_64_g, i64imm, imm, hasAtomRedG64>;
+defm INT_PTX_ATOM_LOAD_MIN_S_64 : F_ATOMIC_2<Int64Regs, ".shared", ".s64",
+ ".min", atomic_load_min_64_s, i64imm, imm, hasAtomRedS64>;
+defm INT_PTX_ATOM_LOAD_MIN_GEN_64 : F_ATOMIC_2<Int64Regs, "", ".s64", ".min",
+ atomic_load_min_64_gen, i64imm, imm, hasAtomRedGen64>;
+defm INT_PTX_ATOM_LOAD_MIN_GEN_64_USE_G : F_ATOMIC_2<Int64Regs, ".global",
+ ".s64", ".min", atomic_load_min_64_gen, i64imm, imm, useAtomRedG64forGen64>;
+defm INT_PTX_ATOM_LOAD_UMIN_G_32 : F_ATOMIC_2<Int32Regs, ".global", ".u32",
+ ".min", atomic_load_umin_32_g, i32imm, imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_LOAD_UMIN_S_32 : F_ATOMIC_2<Int32Regs, ".shared", ".u32",
+ ".min", atomic_load_umin_32_s, i32imm, imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_LOAD_UMIN_GEN_32 : F_ATOMIC_2<Int32Regs, "", ".u32", ".min",
+ atomic_load_umin_32_gen, i32imm, imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_LOAD_UMIN_GEN_32_USE_G : F_ATOMIC_2<Int32Regs, ".global",
+ ".u32", ".min", atomic_load_umin_32_gen, i32imm, imm, useAtomRedG32forGen32>;
+defm INT_PTX_ATOM_LOAD_UMIN_G_64 : F_ATOMIC_2<Int64Regs, ".global", ".u64",
+ ".min", atomic_load_umin_64_g, i64imm, imm, hasAtomRedG64>;
+defm INT_PTX_ATOM_LOAD_UMIN_S_64 : F_ATOMIC_2<Int64Regs, ".shared", ".u64",
+ ".min", atomic_load_umin_64_s, i64imm, imm, hasAtomRedS64>;
+defm INT_PTX_ATOM_LOAD_UMIN_GEN_64 : F_ATOMIC_2<Int64Regs, "", ".u64", ".min",
+ atomic_load_umin_64_gen, i64imm, imm, hasAtomRedGen64>;
+defm INT_PTX_ATOM_LOAD_UMIN_GEN_64_USE_G : F_ATOMIC_2<Int64Regs, ".global",
+ ".u64", ".min", atomic_load_umin_64_gen, i64imm, imm, useAtomRedG64forGen64>;
+
+// atom_inc atom_dec
+
+def atomic_load_inc_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (int_nvvm_atomic_load_inc_32 node:$a, node:$b)>;
+def atomic_load_inc_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (int_nvvm_atomic_load_inc_32 node:$a, node:$b)>;
+def atomic_load_inc_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (int_nvvm_atomic_load_inc_32 node:$a, node:$b)>;
+def atomic_load_dec_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (int_nvvm_atomic_load_dec_32 node:$a, node:$b)>;
+def atomic_load_dec_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (int_nvvm_atomic_load_dec_32 node:$a, node:$b)>;
+def atomic_load_dec_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (int_nvvm_atomic_load_dec_32 node:$a, node:$b)>;
+
+defm INT_PTX_ATOM_INC_G_32 : F_ATOMIC_2<Int32Regs, ".global", ".u32", ".inc",
+ atomic_load_inc_32_g, i32imm, imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_INC_S_32 : F_ATOMIC_2<Int32Regs, ".shared", ".u32", ".inc",
+ atomic_load_inc_32_s, i32imm, imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_INC_GEN_32 : F_ATOMIC_2<Int32Regs, "", ".u32", ".inc",
+ atomic_load_inc_32_gen, i32imm, imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_INC_GEN_32_USE_G : F_ATOMIC_2<Int32Regs, ".global", ".u32",
+ ".inc", atomic_load_inc_32_gen, i32imm, imm, useAtomRedG32forGen32>;
+defm INT_PTX_ATOM_DEC_G_32 : F_ATOMIC_2<Int32Regs, ".global", ".u32", ".dec",
+ atomic_load_dec_32_g, i32imm, imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_DEC_S_32 : F_ATOMIC_2<Int32Regs, ".shared", ".u32", ".dec",
+ atomic_load_dec_32_s, i32imm, imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_DEC_GEN_32 : F_ATOMIC_2<Int32Regs, "", ".u32", ".dec",
+ atomic_load_dec_32_gen, i32imm, imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_DEC_GEN_32_USE_G : F_ATOMIC_2<Int32Regs, ".global", ".u32",
+ ".dec", atomic_load_dec_32_gen, i32imm, imm, useAtomRedG32forGen32>;
+
+// atom_and
+
+def atomic_load_and_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_and_32 node:$a, node:$b)>;
+def atomic_load_and_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_and_32 node:$a, node:$b)>;
+def atomic_load_and_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_and_32 node:$a, node:$b)>;
+def atomic_load_and_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_and_64 node:$a, node:$b)>;
+def atomic_load_and_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_and_64 node:$a, node:$b)>;
+def atomic_load_and_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_and_64 node:$a, node:$b)>;
+
+defm INT_PTX_ATOM_AND_G_32 : F_ATOMIC_2<Int32Regs, ".global", ".b32", ".and",
+ atomic_load_and_32_g, i32imm, imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_AND_S_32 : F_ATOMIC_2<Int32Regs, ".shared", ".b32", ".and",
+ atomic_load_and_32_s, i32imm, imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_AND_GEN_32 : F_ATOMIC_2<Int32Regs, "", ".b32", ".and",
+ atomic_load_and_32_gen, i32imm, imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_AND_GEN_32_USE_G : F_ATOMIC_2<Int32Regs, ".global", ".b32",
+ ".and", atomic_load_and_32_gen, i32imm, imm, useAtomRedG32forGen32>;
+defm INT_PTX_ATOM_AND_G_64 : F_ATOMIC_2<Int64Regs, ".global", ".b64", ".and",
+ atomic_load_and_64_g, i64imm, imm, hasAtomRedG64>;
+defm INT_PTX_ATOM_AND_S_64 : F_ATOMIC_2<Int64Regs, ".shared", ".b64", ".and",
+ atomic_load_and_64_s, i64imm, imm, hasAtomRedS64>;
+defm INT_PTX_ATOM_AND_GEN_64 : F_ATOMIC_2<Int64Regs, "", ".b64", ".and",
+ atomic_load_and_64_gen, i64imm, imm, hasAtomRedGen64>;
+defm INT_PTX_ATOM_AND_GEN_64_USE_G : F_ATOMIC_2<Int64Regs, ".global", ".b64",
+ ".and", atomic_load_and_64_gen, i64imm, imm, useAtomRedG64forGen64>;
+
+// atom_or
+
+def atomic_load_or_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_or_32 node:$a, node:$b)>;
+def atomic_load_or_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_or_32 node:$a, node:$b)>;
+def atomic_load_or_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_or_32 node:$a, node:$b)>;
+def atomic_load_or_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_or_64 node:$a, node:$b)>;
+def atomic_load_or_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_or_64 node:$a, node:$b)>;
+def atomic_load_or_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_or_64 node:$a, node:$b)>;
+
+defm INT_PTX_ATOM_OR_G_32 : F_ATOMIC_2<Int32Regs, ".global", ".b32", ".or",
+ atomic_load_or_32_g, i32imm, imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_OR_GEN_32 : F_ATOMIC_2<Int32Regs, "", ".b32", ".or",
+ atomic_load_or_32_gen, i32imm, imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_OR_GEN_32_USE_G : F_ATOMIC_2<Int32Regs, ".global", ".b32",
+ ".or", atomic_load_or_32_gen, i32imm, imm, useAtomRedG32forGen32>;
+defm INT_PTX_ATOM_OR_S_32 : F_ATOMIC_2<Int32Regs, ".shared", ".b32", ".or",
+ atomic_load_or_32_s, i32imm, imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_OR_G_64 : F_ATOMIC_2<Int64Regs, ".global", ".b64", ".or",
+ atomic_load_or_64_g, i64imm, imm, hasAtomRedG64>;
+defm INT_PTX_ATOM_OR_GEN_64 : F_ATOMIC_2<Int64Regs, "", ".b64", ".or",
+ atomic_load_or_64_gen, i64imm, imm, hasAtomRedGen64>;
+defm INT_PTX_ATOM_OR_GEN_64_USE_G : F_ATOMIC_2<Int64Regs, ".global", ".b64",
+ ".or", atomic_load_or_64_gen, i64imm, imm, useAtomRedG64forGen64>;
+defm INT_PTX_ATOM_OR_S_64 : F_ATOMIC_2<Int64Regs, ".shared", ".b64", ".or",
+ atomic_load_or_64_s, i64imm, imm, hasAtomRedS64>;
+
+// atom_xor
+
+def atomic_load_xor_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_xor_32 node:$a, node:$b)>;
+def atomic_load_xor_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_xor_32 node:$a, node:$b)>;
+def atomic_load_xor_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_xor_32 node:$a, node:$b)>;
+def atomic_load_xor_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b),
+ (atomic_load_xor_64 node:$a, node:$b)>;
+def atomic_load_xor_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b),
+ (atomic_load_xor_64 node:$a, node:$b)>;
+def atomic_load_xor_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b),
+ (atomic_load_xor_64 node:$a, node:$b)>;
+
+defm INT_PTX_ATOM_XOR_G_32 : F_ATOMIC_2<Int32Regs, ".global", ".b32", ".xor",
+ atomic_load_xor_32_g, i32imm, imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_XOR_S_32 : F_ATOMIC_2<Int32Regs, ".shared", ".b32", ".xor",
+ atomic_load_xor_32_s, i32imm, imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_XOR_GEN_32 : F_ATOMIC_2<Int32Regs, "", ".b32", ".xor",
+ atomic_load_xor_32_gen, i32imm, imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_XOR_GEN_32_USE_G : F_ATOMIC_2<Int32Regs, ".global", ".b32",
+ ".xor", atomic_load_xor_32_gen, i32imm, imm, useAtomRedG32forGen32>;
+defm INT_PTX_ATOM_XOR_G_64 : F_ATOMIC_2<Int64Regs, ".global", ".b64", ".xor",
+ atomic_load_xor_64_g, i64imm, imm, hasAtomRedG64>;
+defm INT_PTX_ATOM_XOR_S_64 : F_ATOMIC_2<Int64Regs, ".shared", ".b64", ".xor",
+ atomic_load_xor_64_s, i64imm, imm, hasAtomRedS64>;
+defm INT_PTX_ATOM_XOR_GEN_64 : F_ATOMIC_2<Int64Regs, "", ".b64", ".xor",
+ atomic_load_xor_64_gen, i64imm, imm, hasAtomRedGen64>;
+defm INT_PTX_ATOM_XOR_GEN_64_USE_G : F_ATOMIC_2<Int64Regs, ".global", ".b64",
+ ".xor", atomic_load_xor_64_gen, i64imm, imm, useAtomRedG64forGen64>;
+
+// atom_cas
+
+def atomic_cmp_swap_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b, node:$c),
+ (atomic_cmp_swap_32 node:$a, node:$b, node:$c)>;
+def atomic_cmp_swap_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b, node:$c),
+ (atomic_cmp_swap_32 node:$a, node:$b, node:$c)>;
+def atomic_cmp_swap_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b, node:$c),
+ (atomic_cmp_swap_32 node:$a, node:$b, node:$c)>;
+def atomic_cmp_swap_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b, node:$c),
+ (atomic_cmp_swap_64 node:$a, node:$b, node:$c)>;
+def atomic_cmp_swap_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b, node:$c),
+ (atomic_cmp_swap_64 node:$a, node:$b, node:$c)>;
+def atomic_cmp_swap_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b, node:$c),
+ (atomic_cmp_swap_64 node:$a, node:$b, node:$c)>;
+
+defm INT_PTX_ATOM_CAS_G_32 : F_ATOMIC_3<Int32Regs, ".global", ".b32", ".cas",
+ atomic_cmp_swap_32_g, i32imm, hasAtomRedG32>;
+defm INT_PTX_ATOM_CAS_S_32 : F_ATOMIC_3<Int32Regs, ".shared", ".b32", ".cas",
+ atomic_cmp_swap_32_s, i32imm, hasAtomRedS32>;
+defm INT_PTX_ATOM_CAS_GEN_32 : F_ATOMIC_3<Int32Regs, "", ".b32", ".cas",
+ atomic_cmp_swap_32_gen, i32imm, hasAtomRedGen32>;
+defm INT_PTX_ATOM_CAS_GEN_32_USE_G : F_ATOMIC_3<Int32Regs, ".global", ".b32",
+ ".cas", atomic_cmp_swap_32_gen, i32imm, useAtomRedG32forGen32>;
+defm INT_PTX_ATOM_CAS_G_64 : F_ATOMIC_3<Int64Regs, ".global", ".b64", ".cas",
+ atomic_cmp_swap_64_g, i64imm, hasAtomRedG64>;
+defm INT_PTX_ATOM_CAS_S_64 : F_ATOMIC_3<Int64Regs, ".shared", ".b64", ".cas",
+ atomic_cmp_swap_64_s, i64imm, hasAtomRedS64>;
+defm INT_PTX_ATOM_CAS_GEN_64 : F_ATOMIC_3<Int64Regs, "", ".b64", ".cas",
+ atomic_cmp_swap_64_gen, i64imm, hasAtomRedGen64>;
+defm INT_PTX_ATOM_CAS_GEN_64_USE_G : F_ATOMIC_3<Int64Regs, ".global", ".b64",
+ ".cas", atomic_cmp_swap_64_gen, i64imm, useAtomRedG64forGen64>;
+
+
+//-----------------------------------
+// Read Special Registers
+//-----------------------------------
+class F_SREG<string OpStr, NVPTXRegClass regclassOut, Intrinsic IntOp> :
+ NVPTXInst<(outs regclassOut:$dst), (ins),
+ OpStr,
+ [(set regclassOut:$dst, (IntOp))]>;
+
+def INT_PTX_SREG_TID_X : F_SREG<"mov.u32 \t$dst, %tid.x;", Int32Regs,
+ int_nvvm_read_ptx_sreg_tid_x>;
+def INT_PTX_SREG_TID_Y : F_SREG<"mov.u32 \t$dst, %tid.y;", Int32Regs,
+ int_nvvm_read_ptx_sreg_tid_y>;
+def INT_PTX_SREG_TID_Z : F_SREG<"mov.u32 \t$dst, %tid.z;", Int32Regs,
+ int_nvvm_read_ptx_sreg_tid_z>;
+
+def INT_PTX_SREG_NTID_X : F_SREG<"mov.u32 \t$dst, %ntid.x;", Int32Regs,
+ int_nvvm_read_ptx_sreg_ntid_x>;
+def INT_PTX_SREG_NTID_Y : F_SREG<"mov.u32 \t$dst, %ntid.y;", Int32Regs,
+ int_nvvm_read_ptx_sreg_ntid_y>;
+def INT_PTX_SREG_NTID_Z : F_SREG<"mov.u32 \t$dst, %ntid.z;", Int32Regs,
+ int_nvvm_read_ptx_sreg_ntid_z>;
+
+def INT_PTX_SREG_CTAID_X : F_SREG<"mov.u32 \t$dst, %ctaid.x;", Int32Regs,
+ int_nvvm_read_ptx_sreg_ctaid_x>;
+def INT_PTX_SREG_CTAID_Y : F_SREG<"mov.u32 \t$dst, %ctaid.y;", Int32Regs,
+ int_nvvm_read_ptx_sreg_ctaid_y>;
+def INT_PTX_SREG_CTAID_Z : F_SREG<"mov.u32 \t$dst, %ctaid.z;", Int32Regs,
+ int_nvvm_read_ptx_sreg_ctaid_z>;
+
+def INT_PTX_SREG_NCTAID_X : F_SREG<"mov.u32 \t$dst, %nctaid.x;", Int32Regs,
+ int_nvvm_read_ptx_sreg_nctaid_x>;
+def INT_PTX_SREG_NCTAID_Y : F_SREG<"mov.u32 \t$dst, %nctaid.y;", Int32Regs,
+ int_nvvm_read_ptx_sreg_nctaid_y>;
+def INT_PTX_SREG_NCTAID_Z : F_SREG<"mov.u32 \t$dst, %nctaid.z;", Int32Regs,
+ int_nvvm_read_ptx_sreg_nctaid_z>;
+
+def INT_PTX_SREG_WARPSIZE : F_SREG<"mov.u32 \t$dst, WARP_SZ;", Int32Regs,
+ int_nvvm_read_ptx_sreg_warpsize>;
+
+
+//-----------------------------------
+// Support for ldu on sm_20 or later
+//-----------------------------------
+
+// Scalar
+multiclass LDU_G<string TyStr, NVPTXRegClass regclass> {
+ def areg: NVPTXInst<(outs regclass:$result), (ins Int32Regs:$src),
+ !strconcat("ldu.global.", TyStr),
+ []>, Requires<[hasLDU]>;
+ def areg64: NVPTXInst<(outs regclass:$result), (ins Int64Regs:$src),
+ !strconcat("ldu.global.", TyStr),
+ []>, Requires<[hasLDU]>;
+ def avar: NVPTXInst<(outs regclass:$result), (ins imemAny:$src),
+ !strconcat("ldu.global.", TyStr),
+ []>, Requires<[hasLDU]>;
+ def ari : NVPTXInst<(outs regclass:$result), (ins MEMri:$src),
+ !strconcat("ldu.global.", TyStr),
+ []>, Requires<[hasLDU]>;
+ def ari64 : NVPTXInst<(outs regclass:$result), (ins MEMri64:$src),
+ !strconcat("ldu.global.", TyStr),
+ []>, Requires<[hasLDU]>;
+}
+
+defm INT_PTX_LDU_GLOBAL_i8 : LDU_G<"u8 \t$result, [$src];", Int16Regs>;
+defm INT_PTX_LDU_GLOBAL_i16 : LDU_G<"u16 \t$result, [$src];", Int16Regs>;
+defm INT_PTX_LDU_GLOBAL_i32 : LDU_G<"u32 \t$result, [$src];", Int32Regs>;
+defm INT_PTX_LDU_GLOBAL_i64 : LDU_G<"u64 \t$result, [$src];", Int64Regs>;
+defm INT_PTX_LDU_GLOBAL_f32 : LDU_G<"f32 \t$result, [$src];", Float32Regs>;
+defm INT_PTX_LDU_GLOBAL_f64 : LDU_G<"f64 \t$result, [$src];", Float64Regs>;
+defm INT_PTX_LDU_GLOBAL_p32 : LDU_G<"u32 \t$result, [$src];", Int32Regs>;
+defm INT_PTX_LDU_GLOBAL_p64 : LDU_G<"u64 \t$result, [$src];", Int64Regs>;
+
+// vector
+
+// Elementized vector ldu
+multiclass VLDU_G_ELE_V2<string TyStr, NVPTXRegClass regclass> {
+ def _areg32: NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins Int32Regs:$src),
+ !strconcat("ldu.global.", TyStr), []>;
+ def _areg64: NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins Int64Regs:$src),
+ !strconcat("ldu.global.", TyStr), []>;
+ def _ari32: NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins MEMri:$src),
+ !strconcat("ldu.global.", TyStr), []>;
+ def _ari64: NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins MEMri64:$src),
+ !strconcat("ldu.global.", TyStr), []>;
+ def _avar: NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins imemAny:$src),
+ !strconcat("ldu.global.", TyStr), []>;
+}
+
+multiclass VLDU_G_ELE_V4<string TyStr, NVPTXRegClass regclass> {
+ def _areg32: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4), (ins Int32Regs:$src),
+ !strconcat("ldu.global.", TyStr), []>;
+ def _areg64: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4), (ins Int64Regs:$src),
+ !strconcat("ldu.global.", TyStr), []>;
+ def _ari32: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4), (ins MEMri:$src),
+ !strconcat("ldu.global.", TyStr), []>;
+ def _ari64: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4), (ins MEMri64:$src),
+ !strconcat("ldu.global.", TyStr), []>;
+ def _avar: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4), (ins imemAny:$src),
+ !strconcat("ldu.global.", TyStr), []>;
+}
+
+defm INT_PTX_LDU_G_v2i8_ELE
+ : VLDU_G_ELE_V2<"v2.u8 \t{{$dst1, $dst2}}, [$src];", Int16Regs>;
+defm INT_PTX_LDU_G_v2i16_ELE
+ : VLDU_G_ELE_V2<"v2.u16 \t{{$dst1, $dst2}}, [$src];", Int16Regs>;
+defm INT_PTX_LDU_G_v2i32_ELE
+ : VLDU_G_ELE_V2<"v2.u32 \t{{$dst1, $dst2}}, [$src];", Int32Regs>;
+defm INT_PTX_LDU_G_v2f32_ELE
+ : VLDU_G_ELE_V2<"v2.f32 \t{{$dst1, $dst2}}, [$src];", Float32Regs>;
+defm INT_PTX_LDU_G_v2i64_ELE
+ : VLDU_G_ELE_V2<"v2.u64 \t{{$dst1, $dst2}}, [$src];", Int64Regs>;
+defm INT_PTX_LDU_G_v2f64_ELE
+ : VLDU_G_ELE_V2<"v2.f64 \t{{$dst1, $dst2}}, [$src];", Float64Regs>;
+defm INT_PTX_LDU_G_v4i8_ELE
+ : VLDU_G_ELE_V4<"v4.u8 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Int16Regs>;
+defm INT_PTX_LDU_G_v4i16_ELE
+ : VLDU_G_ELE_V4<"v4.u16 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];",
+ Int16Regs>;
+defm INT_PTX_LDU_G_v4i32_ELE
+ : VLDU_G_ELE_V4<"v4.u32 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];",
+ Int32Regs>;
+defm INT_PTX_LDU_G_v4f32_ELE
+ : VLDU_G_ELE_V4<"v4.f32 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];",
+ Float32Regs>;
+
+
+//-----------------------------------
+// Support for ldg on sm_35 or later
+//-----------------------------------
+
+multiclass LDG_G<string TyStr, NVPTXRegClass regclass> {
+ def areg: NVPTXInst<(outs regclass:$result), (ins Int32Regs:$src),
+ !strconcat("ld.global.nc.", TyStr),
+ []>, Requires<[hasLDG]>;
+ def areg64: NVPTXInst<(outs regclass:$result), (ins Int64Regs:$src),
+ !strconcat("ld.global.nc.", TyStr),
+ []>, Requires<[hasLDG]>;
+ def avar: NVPTXInst<(outs regclass:$result), (ins imemAny:$src),
+ !strconcat("ld.global.nc.", TyStr),
+ []>, Requires<[hasLDG]>;
+ def ari : NVPTXInst<(outs regclass:$result), (ins MEMri:$src),
+ !strconcat("ld.global.nc.", TyStr),
+ []>, Requires<[hasLDG]>;
+ def ari64 : NVPTXInst<(outs regclass:$result), (ins MEMri64:$src),
+ !strconcat("ld.global.nc.", TyStr),
+ []>, Requires<[hasLDG]>;
+}
+
+defm INT_PTX_LDG_GLOBAL_i8
+ : LDG_G<"u8 \t$result, [$src];", Int16Regs>;
+defm INT_PTX_LDG_GLOBAL_i16
+ : LDG_G<"u16 \t$result, [$src];", Int16Regs>;
+defm INT_PTX_LDG_GLOBAL_i32
+ : LDG_G<"u32 \t$result, [$src];", Int32Regs>;
+defm INT_PTX_LDG_GLOBAL_i64
+ : LDG_G<"u64 \t$result, [$src];", Int64Regs>;
+defm INT_PTX_LDG_GLOBAL_f32
+ : LDG_G<"f32 \t$result, [$src];", Float32Regs>;
+defm INT_PTX_LDG_GLOBAL_f64
+ : LDG_G<"f64 \t$result, [$src];", Float64Regs>;
+defm INT_PTX_LDG_GLOBAL_p32
+ : LDG_G<"u32 \t$result, [$src];", Int32Regs>;
+defm INT_PTX_LDG_GLOBAL_p64
+ : LDG_G<"u64 \t$result, [$src];", Int64Regs>;
+
+// vector
+
+// Elementized vector ldg
+multiclass VLDG_G_ELE_V2<string TyStr, NVPTXRegClass regclass> {
+ def _areg32: NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins Int32Regs:$src),
+ !strconcat("ld.global.nc.", TyStr), []>;
+ def _areg64: NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins Int64Regs:$src),
+ !strconcat("ld.global.nc.", TyStr), []>;
+ def _ari32: NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins MEMri:$src),
+ !strconcat("ld.global.nc.", TyStr), []>;
+ def _ari64: NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins MEMri64:$src),
+ !strconcat("ld.global.nc.", TyStr), []>;
+ def _avar: NVPTXInst<(outs regclass:$dst1, regclass:$dst2),
+ (ins imemAny:$src),
+ !strconcat("ld.global.nc.", TyStr), []>;
+}
+
+multiclass VLDG_G_ELE_V4<string TyStr, NVPTXRegClass regclass> {
+ def _areg32: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4), (ins Int32Regs:$src),
+ !strconcat("ld.global.nc.", TyStr), []>;
+ def _areg64: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4), (ins Int64Regs:$src),
+ !strconcat("ld.global.nc.", TyStr), []>;
+ def _ari32: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4), (ins MEMri:$src),
+ !strconcat("ld.global.nc.", TyStr), []>;
+ def _ari64: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4), (ins MEMri64:$src),
+ !strconcat("ld.global.nc.", TyStr), []>;
+ def _avar: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4), (ins imemAny:$src),
+ !strconcat("ld.global.nc.", TyStr), []>;
+}
+
+// FIXME: 8-bit LDG should be fixed once LDG/LDU nodes are made into proper loads.
+defm INT_PTX_LDG_G_v2i8_ELE
+ : VLDG_G_ELE_V2<"v2.u8 \t{{$dst1, $dst2}}, [$src];", Int16Regs>;
+defm INT_PTX_LDG_G_v2i16_ELE
+ : VLDG_G_ELE_V2<"v2.u16 \t{{$dst1, $dst2}}, [$src];", Int16Regs>;
+defm INT_PTX_LDG_G_v2i32_ELE
+ : VLDG_G_ELE_V2<"v2.u32 \t{{$dst1, $dst2}}, [$src];", Int32Regs>;
+defm INT_PTX_LDG_G_v2f32_ELE
+ : VLDG_G_ELE_V2<"v2.f32 \t{{$dst1, $dst2}}, [$src];", Float32Regs>;
+defm INT_PTX_LDG_G_v2i64_ELE
+ : VLDG_G_ELE_V2<"v2.u64 \t{{$dst1, $dst2}}, [$src];", Int64Regs>;
+defm INT_PTX_LDG_G_v2f64_ELE
+ : VLDG_G_ELE_V2<"v2.f64 \t{{$dst1, $dst2}}, [$src];", Float64Regs>;
+defm INT_PTX_LDG_G_v4i8_ELE
+ : VLDG_G_ELE_V4<"v4.u8 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Int16Regs>;
+defm INT_PTX_LDG_G_v4i16_ELE
+ : VLDG_G_ELE_V4<"v4.u16 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Int16Regs>;
+defm INT_PTX_LDG_G_v4i32_ELE
+ : VLDG_G_ELE_V4<"v4.u32 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Int32Regs>;
+defm INT_PTX_LDG_G_v4f32_ELE
+ : VLDG_G_ELE_V4<"v4.f32 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Float32Regs>;
+
+
+multiclass NG_TO_G<string Str, Intrinsic Intrin> {
+ def _yes : NVPTXInst<(outs Int32Regs:$result), (ins Int32Regs:$src),
+ !strconcat("cvta.", !strconcat(Str, ".u32 \t$result, $src;")),
+ [(set Int32Regs:$result, (Intrin Int32Regs:$src))]>,
+ Requires<[hasGenericLdSt]>;
+ def _yes_64 : NVPTXInst<(outs Int64Regs:$result), (ins Int64Regs:$src),
+ !strconcat("cvta.", !strconcat(Str, ".u64 \t$result, $src;")),
+ [(set Int64Regs:$result, (Intrin Int64Regs:$src))]>,
+ Requires<[hasGenericLdSt]>;
+
+// @TODO: Are these actually needed? I believe global addresses will be copied
+// to register values anyway.
+ /*def __addr_yes : NVPTXInst<(outs Int32Regs:$result), (ins imemAny:$src),
+ !strconcat("cvta.", !strconcat(Str, ".u32 \t$result, $src;")),
+ [(set Int32Regs:$result, (Intrin (Wrapper tglobaladdr:$src)))]>,
+ Requires<[hasGenericLdSt]>;
+ def __addr_yes_64 : NVPTXInst<(outs Int64Regs:$result), (ins imemAny:$src),
+ !strconcat("cvta.", !strconcat(Str, ".u64 \t$result, $src;")),
+ [(set Int64Regs:$result, (Intrin (Wrapper tglobaladdr:$src)))]>,
+ Requires<[hasGenericLdSt]>;*/
+
+ def _no : NVPTXInst<(outs Int32Regs:$result), (ins Int32Regs:$src),
+ "mov.u32 \t$result, $src;",
+ [(set Int32Regs:$result, (Intrin Int32Regs:$src))]>;
+ def _no_64 : NVPTXInst<(outs Int64Regs:$result), (ins Int64Regs:$src),
+ "mov.u64 \t$result, $src;",
+ [(set Int64Regs:$result, (Intrin Int64Regs:$src))]>;
+
+// @TODO: Are these actually needed? I believe global addresses will be copied
+// to register values anyway.
+ /*def _addr_no : NVPTXInst<(outs Int32Regs:$result), (ins imem:$src),
+ "mov.u32 \t$result, $src;",
+ [(set Int32Regs:$result, (Intrin (Wrapper tglobaladdr:$src)))]>;
+ def _addr_no_64 : NVPTXInst<(outs Int64Regs:$result), (ins imem:$src),
+ "mov.u64 \t$result, $src;",
+ [(set Int64Regs:$result, (Intrin (Wrapper tglobaladdr:$src)))]>;*/
+}
+
+multiclass G_TO_NG<string Str, Intrinsic Intrin> {
+ def _yes : NVPTXInst<(outs Int32Regs:$result), (ins Int32Regs:$src),
+ !strconcat("cvta.to.", !strconcat(Str, ".u32 \t$result, $src;")),
+ [(set Int32Regs:$result, (Intrin Int32Regs:$src))]>,
+ Requires<[hasGenericLdSt]>;
+ def _yes_64 : NVPTXInst<(outs Int64Regs:$result), (ins Int64Regs:$src),
+ !strconcat("cvta.to.", !strconcat(Str, ".u64 \t$result, $src;")),
+ [(set Int64Regs:$result, (Intrin Int64Regs:$src))]>,
+ Requires<[hasGenericLdSt]>;
+ def _no : NVPTXInst<(outs Int32Regs:$result), (ins Int32Regs:$src),
+ "mov.u32 \t$result, $src;",
+ [(set Int32Regs:$result, (Intrin Int32Regs:$src))]>;
+ def _no_64 : NVPTXInst<(outs Int64Regs:$result), (ins Int64Regs:$src),
+ "mov.u64 \t$result, $src;",
+ [(set Int64Regs:$result, (Intrin Int64Regs:$src))]>;
+}
+
+defm cvta_local : NG_TO_G<"local", int_nvvm_ptr_local_to_gen>;
+defm cvta_shared : NG_TO_G<"shared", int_nvvm_ptr_shared_to_gen>;
+defm cvta_global : NG_TO_G<"global", int_nvvm_ptr_global_to_gen>;
+defm cvta_const : NG_TO_G<"const", int_nvvm_ptr_constant_to_gen>;
+
+defm cvta_to_local : G_TO_NG<"local", int_nvvm_ptr_gen_to_local>;
+defm cvta_to_shared : G_TO_NG<"shared", int_nvvm_ptr_gen_to_shared>;
+defm cvta_to_global : G_TO_NG<"global", int_nvvm_ptr_gen_to_global>;
+defm cvta_to_const : G_TO_NG<"const", int_nvvm_ptr_gen_to_constant>;
+
+
+// nvvm.ptr.gen.to.param
+def nvvm_ptr_gen_to_param : NVPTXInst<(outs Int32Regs:$result),
+ (ins Int32Regs:$src),
+ "mov.u32 \t$result, $src;",
+ [(set Int32Regs:$result,
+ (int_nvvm_ptr_gen_to_param Int32Regs:$src))]>;
+def nvvm_ptr_gen_to_param_64 : NVPTXInst<(outs Int64Regs:$result),
+ (ins Int64Regs:$src),
+ "mov.u64 \t$result, $src;",
+ [(set Int64Regs:$result,
+ (int_nvvm_ptr_gen_to_param Int64Regs:$src))]>;
+
+
+// nvvm.move intrinsicc
+def nvvm_move_i16 : NVPTXInst<(outs Int16Regs:$r), (ins Int16Regs:$s),
+ "mov.b16 \t$r, $s;",
+ [(set Int16Regs:$r,
+ (int_nvvm_move_i16 Int16Regs:$s))]>;
+def nvvm_move_i32 : NVPTXInst<(outs Int32Regs:$r), (ins Int32Regs:$s),
+ "mov.b32 \t$r, $s;",
+ [(set Int32Regs:$r,
+ (int_nvvm_move_i32 Int32Regs:$s))]>;
+def nvvm_move_i64 : NVPTXInst<(outs Int64Regs:$r), (ins Int64Regs:$s),
+ "mov.b64 \t$r, $s;",
+ [(set Int64Regs:$r,
+ (int_nvvm_move_i64 Int64Regs:$s))]>;
+def nvvm_move_float : NVPTXInst<(outs Float32Regs:$r), (ins Float32Regs:$s),
+ "mov.f32 \t$r, $s;",
+ [(set Float32Regs:$r,
+ (int_nvvm_move_float Float32Regs:$s))]>;
+def nvvm_move_double : NVPTXInst<(outs Float64Regs:$r), (ins Float64Regs:$s),
+ "mov.f64 \t$r, $s;",
+ [(set Float64Regs:$r,
+ (int_nvvm_move_double Float64Regs:$s))]>;
+def nvvm_move_ptr32 : NVPTXInst<(outs Int32Regs:$r), (ins Int32Regs:$s),
+ "mov.u32 \t$r, $s;",
+ [(set Int32Regs:$r,
+ (int_nvvm_move_ptr Int32Regs:$s))]>;
+def nvvm_move_ptr64 : NVPTXInst<(outs Int64Regs:$r), (ins Int64Regs:$s),
+ "mov.u64 \t$r, $s;",
+ [(set Int64Regs:$r,
+ (int_nvvm_move_ptr Int64Regs:$s))]>;
+
+// @TODO: Are these actually needed, or will we always just see symbols
+// copied to registers first?
+/*def nvvm_move_sym32 : NVPTXInst<(outs Int32Regs:$r), (ins imem:$s),
+ "mov.u32 \t$r, $s;",
+ [(set Int32Regs:$r,
+ (int_nvvm_move_ptr texternalsym:$s))]>;
+def nvvm_move_sym64 : NVPTXInst<(outs Int64Regs:$r), (ins imem:$s),
+ "mov.u64 \t$r, $s;",
+ [(set Int64Regs:$r,
+ (int_nvvm_move_ptr texternalsym:$s))]>;*/
+
+
+// MoveParam %r1, param
+// ptr_local_to_gen %r2, %r1
+// ptr_gen_to_local %r3, %r2
+// ->
+// mov %r1, param
+
+// @TODO: Revisit this. There is a type
+// contradiction between iPTRAny and iPTR for the addr defs, so the move_sym
+// instructions are not currently defined. However, we can use the ptr
+// variants and the asm printer will do the right thing.
+def : Pat<(i64 (int_nvvm_ptr_gen_to_local (int_nvvm_ptr_local_to_gen
+ (MoveParam texternalsym:$src)))),
+ (nvvm_move_ptr64 texternalsym:$src)>;
+def : Pat<(i32 (int_nvvm_ptr_gen_to_local (int_nvvm_ptr_local_to_gen
+ (MoveParam texternalsym:$src)))),
+ (nvvm_move_ptr32 texternalsym:$src)>;
+
+def texsurf_handles
+ : NVPTXInst<(outs Int64Regs:$result), (ins imem:$src),
+ "mov.u64 \t$result, $src;", []>;
+
+//-----------------------------------
+// Compiler Error Warn
+// - Just ignore them in codegen
+//-----------------------------------
+
+def INT_NVVM_COMPILER_WARN_32 : NVPTXInst<(outs), (ins Int32Regs:$a),
+ "// llvm.nvvm.compiler.warn()",
+ [(int_nvvm_compiler_warn Int32Regs:$a)]>;
+def INT_NVVM_COMPILER_WARN_64 : NVPTXInst<(outs), (ins Int64Regs:$a),
+ "// llvm.nvvm.compiler.warn()",
+ [(int_nvvm_compiler_warn Int64Regs:$a)]>;
+def INT_NVVM_COMPILER_ERROR_32 : NVPTXInst<(outs), (ins Int32Regs:$a),
+ "// llvm.nvvm.compiler.error()",
+ [(int_nvvm_compiler_error Int32Regs:$a)]>;
+def INT_NVVM_COMPILER_ERROR_64 : NVPTXInst<(outs), (ins Int64Regs:$a),
+ "// llvm.nvvm.compiler.error()",
+ [(int_nvvm_compiler_error Int64Regs:$a)]>;
+
+
+// isspacep
+
+def ISSPACEP_CONST_32
+ : NVPTXInst<(outs Int1Regs:$d), (ins Int32Regs:$a),
+ "isspacep.const \t$d, $a;",
+ [(set Int1Regs:$d, (int_nvvm_isspacep_const Int32Regs:$a))]>,
+ Requires<[hasPTX31]>;
+def ISSPACEP_CONST_64
+ : NVPTXInst<(outs Int1Regs:$d), (ins Int64Regs:$a),
+ "isspacep.const \t$d, $a;",
+ [(set Int1Regs:$d, (int_nvvm_isspacep_const Int64Regs:$a))]>,
+ Requires<[hasPTX31]>;
+def ISSPACEP_GLOBAL_32
+ : NVPTXInst<(outs Int1Regs:$d), (ins Int32Regs:$a),
+ "isspacep.global \t$d, $a;",
+ [(set Int1Regs:$d, (int_nvvm_isspacep_global Int32Regs:$a))]>;
+def ISSPACEP_GLOBAL_64
+ : NVPTXInst<(outs Int1Regs:$d), (ins Int64Regs:$a),
+ "isspacep.global \t$d, $a;",
+ [(set Int1Regs:$d, (int_nvvm_isspacep_global Int64Regs:$a))]>;
+def ISSPACEP_LOCAL_32
+ : NVPTXInst<(outs Int1Regs:$d), (ins Int32Regs:$a),
+ "isspacep.local \t$d, $a;",
+ [(set Int1Regs:$d, (int_nvvm_isspacep_local Int32Regs:$a))]>;
+def ISSPACEP_LOCAL_64
+ : NVPTXInst<(outs Int1Regs:$d), (ins Int64Regs:$a),
+ "isspacep.local \t$d, $a;",
+ [(set Int1Regs:$d, (int_nvvm_isspacep_local Int64Regs:$a))]>;
+def ISSPACEP_SHARED_32
+ : NVPTXInst<(outs Int1Regs:$d), (ins Int32Regs:$a),
+ "isspacep.shared \t$d, $a;",
+ [(set Int1Regs:$d, (int_nvvm_isspacep_shared Int32Regs:$a))]>;
+def ISSPACEP_SHARED_64
+ : NVPTXInst<(outs Int1Regs:$d), (ins Int64Regs:$a),
+ "isspacep.shared \t$d, $a;",
+ [(set Int1Regs:$d, (int_nvvm_isspacep_shared Int64Regs:$a))]>;
+
+
+// Special register reads
+def MOV_SPECIAL : NVPTXInst<(outs Int32Regs:$d),
+ (ins SpecialRegs:$r),
+ "mov.b32\t$d, $r;", []>;
+
+def : Pat<(int_nvvm_read_ptx_sreg_envreg0), (MOV_SPECIAL ENVREG0)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg1), (MOV_SPECIAL ENVREG1)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg2), (MOV_SPECIAL ENVREG2)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg3), (MOV_SPECIAL ENVREG3)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg4), (MOV_SPECIAL ENVREG4)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg5), (MOV_SPECIAL ENVREG5)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg6), (MOV_SPECIAL ENVREG6)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg7), (MOV_SPECIAL ENVREG7)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg8), (MOV_SPECIAL ENVREG8)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg9), (MOV_SPECIAL ENVREG9)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg10), (MOV_SPECIAL ENVREG10)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg11), (MOV_SPECIAL ENVREG11)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg12), (MOV_SPECIAL ENVREG12)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg13), (MOV_SPECIAL ENVREG13)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg14), (MOV_SPECIAL ENVREG14)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg15), (MOV_SPECIAL ENVREG15)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg16), (MOV_SPECIAL ENVREG16)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg17), (MOV_SPECIAL ENVREG17)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg18), (MOV_SPECIAL ENVREG18)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg19), (MOV_SPECIAL ENVREG19)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg20), (MOV_SPECIAL ENVREG20)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg21), (MOV_SPECIAL ENVREG21)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg22), (MOV_SPECIAL ENVREG22)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg23), (MOV_SPECIAL ENVREG23)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg24), (MOV_SPECIAL ENVREG24)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg25), (MOV_SPECIAL ENVREG25)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg26), (MOV_SPECIAL ENVREG26)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg27), (MOV_SPECIAL ENVREG27)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg28), (MOV_SPECIAL ENVREG28)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg29), (MOV_SPECIAL ENVREG29)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg30), (MOV_SPECIAL ENVREG30)>;
+def : Pat<(int_nvvm_read_ptx_sreg_envreg31), (MOV_SPECIAL ENVREG31)>;
+
+
+// rotate builtin support
+
+def ROTATE_B32_HW_IMM
+ : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$src, i32imm:$amt),
+ "shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
+ [(set Int32Regs:$dst,
+ (int_nvvm_rotate_b32 Int32Regs:$src, (i32 imm:$amt)))]>,
+ Requires<[hasHWROT32]> ;
+
+def ROTATE_B32_HW_REG
+ : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$src, Int32Regs:$amt),
+ "shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
+ [(set Int32Regs:$dst,
+ (int_nvvm_rotate_b32 Int32Regs:$src, Int32Regs:$amt))]>,
+ Requires<[hasHWROT32]> ;
+
+def : Pat<(int_nvvm_rotate_b32 Int32Regs:$src, (i32 imm:$amt)),
+ (ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>,
+ Requires<[noHWROT32]> ;
+
+def : Pat<(int_nvvm_rotate_b32 Int32Regs:$src, Int32Regs:$amt),
+ (ROTL32reg_sw Int32Regs:$src, Int32Regs:$amt)>,
+ Requires<[noHWROT32]> ;
+
+def GET_LO_INT64
+ : NVPTXInst<(outs Int32Regs:$dst), (ins Int64Regs:$src),
+ !strconcat("{{\n\t",
+ !strconcat(".reg .b32 %dummy;\n\t",
+ !strconcat("mov.b64 \t{$dst,%dummy}, $src;\n\t",
+ !strconcat("}}", "")))),
+ []> ;
+
+def GET_HI_INT64
+ : NVPTXInst<(outs Int32Regs:$dst), (ins Int64Regs:$src),
+ !strconcat("{{\n\t",
+ !strconcat(".reg .b32 %dummy;\n\t",
+ !strconcat("mov.b64 \t{%dummy,$dst}, $src;\n\t",
+ !strconcat("}}", "")))),
+ []> ;
+
+def PACK_TWO_INT32
+ : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$lo, Int32Regs:$hi),
+ "mov.b64 \t$dst, {{$lo, $hi}};", []> ;
+
+def : Pat<(int_nvvm_swap_lo_hi_b64 Int64Regs:$src),
+ (PACK_TWO_INT32 (GET_HI_INT64 Int64Regs:$src),
+ (GET_LO_INT64 Int64Regs:$src))> ;
+
+// funnel shift, requires >= sm_32
+def SHF_L_WRAP_B32_IMM
+ : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$lo, Int32Regs:$hi, i32imm:$amt),
+ "shf.l.wrap.b32 \t$dst, $lo, $hi, $amt;",[]>,
+ Requires<[hasHWROT32]>;
+
+def SHF_L_WRAP_B32_REG
+ : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
+ "shf.l.wrap.b32 \t$dst, $lo, $hi, $amt;",[]>,
+ Requires<[hasHWROT32]>;
+
+def SHF_R_WRAP_B32_IMM
+ : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$lo, Int32Regs:$hi, i32imm:$amt),
+ "shf.r.wrap.b32 \t$dst, $lo, $hi, $amt;",[]>,
+ Requires<[hasHWROT32]>;
+
+def SHF_R_WRAP_B32_REG
+ : NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
+ "shf.r.wrap.b32 \t$dst, $lo, $hi, $amt;",[]>,
+ Requires<[hasHWROT32]>;
+
+// HW version of rotate 64
+def : Pat<(int_nvvm_rotate_b64 Int64Regs:$src, (i32 imm:$amt)),
+ (PACK_TWO_INT32
+ (SHF_L_WRAP_B32_IMM (GET_HI_INT64 Int64Regs:$src),
+ (GET_LO_INT64 Int64Regs:$src), imm:$amt),
+ (SHF_L_WRAP_B32_IMM (GET_LO_INT64 Int64Regs:$src),
+ (GET_HI_INT64 Int64Regs:$src), imm:$amt))>,
+ Requires<[hasHWROT32]>;
+
+def : Pat<(int_nvvm_rotate_b64 Int64Regs:$src, Int32Regs:$amt),
+ (PACK_TWO_INT32
+ (SHF_L_WRAP_B32_REG (GET_HI_INT64 Int64Regs:$src),
+ (GET_LO_INT64 Int64Regs:$src), Int32Regs:$amt),
+ (SHF_L_WRAP_B32_REG (GET_LO_INT64 Int64Regs:$src),
+ (GET_HI_INT64 Int64Regs:$src), Int32Regs:$amt))>,
+ Requires<[hasHWROT32]>;
+
+
+def : Pat<(int_nvvm_rotate_right_b64 Int64Regs:$src, (i32 imm:$amt)),
+ (PACK_TWO_INT32
+ (SHF_R_WRAP_B32_IMM (GET_LO_INT64 Int64Regs:$src),
+ (GET_HI_INT64 Int64Regs:$src), imm:$amt),
+ (SHF_R_WRAP_B32_IMM (GET_HI_INT64 Int64Regs:$src),
+ (GET_LO_INT64 Int64Regs:$src), imm:$amt))>,
+ Requires<[hasHWROT32]>;
+
+def : Pat<(int_nvvm_rotate_right_b64 Int64Regs:$src, Int32Regs:$amt),
+ (PACK_TWO_INT32
+ (SHF_R_WRAP_B32_REG (GET_LO_INT64 Int64Regs:$src),
+ (GET_HI_INT64 Int64Regs:$src), Int32Regs:$amt),
+ (SHF_R_WRAP_B32_REG (GET_HI_INT64 Int64Regs:$src),
+ (GET_LO_INT64 Int64Regs:$src), Int32Regs:$amt))>,
+ Requires<[hasHWROT32]>;
+
+// SW version of rotate 64
+def : Pat<(int_nvvm_rotate_b64 Int64Regs:$src, (i32 imm:$amt)),
+ (ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>,
+ Requires<[noHWROT32]>;
+def : Pat<(int_nvvm_rotate_b64 Int64Regs:$src, Int32Regs:$amt),
+ (ROTL64reg_sw Int64Regs:$src, Int32Regs:$amt)>,
+ Requires<[noHWROT32]>;
+def : Pat<(int_nvvm_rotate_right_b64 Int64Regs:$src, (i32 imm:$amt)),
+ (ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>,
+ Requires<[noHWROT32]>;
+def : Pat<(int_nvvm_rotate_right_b64 Int64Regs:$src, Int32Regs:$amt),
+ (ROTR64reg_sw Int64Regs:$src, Int32Regs:$amt)>,
+ Requires<[noHWROT32]>;
+
+
+//-----------------------------------
+// Texture Intrinsics
+//-----------------------------------
+
+// NOTE: For Fermi support, any new texture/surface/sampler intrinsics must be
+// also defined in NVPTXReplaceImageHandles.cpp
+
+// texmode_independent
+let IsTex = 1, IsTexModeUnified = 0 in {
+// Texture fetch instructions using handles
+def TEX_1D_F32_S32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$x),
+ "tex.1d.v4.f32.s32\t\\{$r, $g, $b, $a\\}, [$t, $s, \\{$x\\}];",
+ []>;
+def TEX_1D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x),
+ "tex.1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, [$t, $s, \\{$x\\}];",
+ []>;
+def TEX_1D_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$lod),
+ "tex.level.1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x\\}], $lod;",
+ []>;
+def TEX_1D_F32_F32_GRAD
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+def TEX_1D_S32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$x),
+ "tex.1d.v4.s32.s32\t\\{$r, $g, $b, $a\\}, [$t, $s, \\{$x\\}];",
+ []>;
+def TEX_1D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x),
+ "tex.1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, [$t, $s, \\{$x\\}];",
+ []>;
+def TEX_1D_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x,
+ Float32Regs:$lod),
+ "tex.level.1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x\\}], $lod;",
+ []>;
+def TEX_1D_S32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+def TEX_1D_U32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$x),
+ "tex.1d.v4.u32.s32\t\\{$r, $g, $b, $a\\}, [$t, $s, \\{$x\\}];",
+ []>;
+def TEX_1D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x),
+ "tex.1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, [$t, $s, \\{$x\\}];",
+ []>;
+def TEX_1D_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x,
+ Float32Regs:$lod),
+ "tex.level.1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x\\}], $lod;",
+ []>;
+def TEX_1D_U32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+
+def TEX_1D_ARRAY_F32_S32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "tex.a1d.v4.f32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}];",
+ []>;
+def TEX_1D_ARRAY_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x),
+ "tex.a1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}];",
+ []>;
+def TEX_1D_ARRAY_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$lod),
+ "tex.level.a1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}], $lod;",
+ []>;
+def TEX_1D_ARRAY_F32_F32_GRAD
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.a1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+def TEX_1D_ARRAY_S32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "tex.a1d.v4.s32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}];",
+ []>;
+def TEX_1D_ARRAY_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x),
+ "tex.a1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}];",
+ []>;
+def TEX_1D_ARRAY_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$lod),
+ "tex.level.a1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}], $lod;",
+ []>;
+def TEX_1D_ARRAY_S32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.a1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+def TEX_1D_ARRAY_U32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "tex.a1d.v4.u32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}];",
+ []>;
+def TEX_1D_ARRAY_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x),
+ "tex.a1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}];",
+ []>;
+def TEX_1D_ARRAY_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$lod),
+ "tex.level.a1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}], $lod;",
+ []>;
+def TEX_1D_ARRAY_U32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.a1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+
+def TEX_2D_F32_S32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "tex.2d.v4.f32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TEX_2D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tex.2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TEX_2D_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$lod),
+ "tex.level.2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}], $lod;",
+ []>;
+def TEX_2D_F32_F32_GRAD
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+def TEX_2D_S32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "tex.2d.v4.s32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TEX_2D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tex.2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TEX_2D_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$lod),
+ "tex.level.2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}], $lod;",
+ []>;
+def TEX_2D_S32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+def TEX_2D_U32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "tex.2d.v4.u32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TEX_2D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tex.2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TEX_2D_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$lod),
+ "tex.level.2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}], $lod;",
+ []>;
+def TEX_2D_U32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+
+def TEX_2D_ARRAY_F32_S32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$y),
+ "tex.a2d.v4.f32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_2D_ARRAY_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y),
+ "tex.a2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_2D_ARRAY_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y, Float32Regs:$lod),
+ "tex.level.a2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}], $lod;",
+ []>;
+def TEX_2D_ARRAY_F32_F32_GRAD
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y, Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.a2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+def TEX_2D_ARRAY_S32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$y),
+ "tex.a2d.v4.s32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_2D_ARRAY_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y),
+ "tex.a2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_2D_ARRAY_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y, Float32Regs:$lod),
+ "tex.level.a2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}], $lod;",
+ []>;
+def TEX_2D_ARRAY_S32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.a2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+def TEX_2D_ARRAY_U32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$y),
+ "tex.a2d.v4.u32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_2D_ARRAY_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y),
+ "tex.a2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_2D_ARRAY_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y, Float32Regs:$lod),
+ "tex.level.a2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}], $lod;",
+ []>;
+def TEX_2D_ARRAY_U32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.a2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+
+def TEX_3D_F32_S32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$z),
+ "tex.3d.v4.f32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_3D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z),
+ "tex.3d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_3D_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z, Float32Regs:$lod),
+ "tex.level.3d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+def TEX_3D_F32_F32_GRAD
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$gradx2, Float32Regs:$grady0,
+ Float32Regs:$grady1, Float32Regs:$grady2),
+ "tex.grad.3d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}], "
+ "\\{$gradx0, $gradx1, $gradx2, $gradx2\\}, "
+ "\\{$grady0, $grady1, $grady2, $grady2\\};",
+ []>;
+def TEX_3D_S32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$z),
+ "tex.3d.v4.s32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_3D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z),
+ "tex.3d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_3D_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z, Float32Regs:$lod),
+ "tex.level.3d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+def TEX_3D_S32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$gradx2, Float32Regs:$grady0,
+ Float32Regs:$grady1, Float32Regs:$grady2),
+ "tex.grad.3d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}], "
+ "\\{$gradx0, $gradx1, $gradx2, $gradx2\\}, "
+ "\\{$grady0, $grady1, $grady2, $grady2\\};",
+ []>;
+def TEX_3D_U32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$z),
+ "tex.3d.v4.u32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_3D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z),
+ "tex.3d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_3D_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z, Float32Regs:$lod),
+ "tex.level.3d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+def TEX_3D_U32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$gradx2, Float32Regs:$grady0,
+ Float32Regs:$grady1, Float32Regs:$grady2),
+ "tex.grad.3d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}], "
+ "\\{$gradx0, $gradx1, $gradx2, $gradx2\\}, "
+ "\\{$grady0, $grady1, $grady2, $grady2\\};",
+ []>;
+
+def TEX_CUBE_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.cube.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_CUBE_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.cube.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+def TEX_CUBE_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.cube.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_CUBE_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.cube.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+def TEX_CUBE_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.cube.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_CUBE_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.cube.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+
+def TEX_CUBE_ARRAY_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.acube.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $z\\}];",
+ []>;
+def TEX_CUBE_ARRAY_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.acube.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $z\\}], $lod;",
+ []>;
+def TEX_CUBE_ARRAY_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.acube.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $z\\}];",
+ []>;
+def TEX_CUBE_ARRAY_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.acube.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $z\\}], $lod;",
+ []>;
+def TEX_CUBE_ARRAY_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.acube.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $z\\}];",
+ []>;
+def TEX_CUBE_ARRAY_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int64Regs:$s, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.acube.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, $s, \\{$l, $x, $y, $z\\}], $lod;",
+ []>;
+
+def TLD4_R_2D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$v0, Float32Regs:$v1,
+ Float32Regs:$v2, Float32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.r.2d.v4.f32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TLD4_G_2D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$v0, Float32Regs:$v1,
+ Float32Regs:$v2, Float32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.g.2d.v4.f32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TLD4_B_2D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$v0, Float32Regs:$v1,
+ Float32Regs:$v2, Float32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.b.2d.v4.f32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TLD4_A_2D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$v0, Float32Regs:$v1,
+ Float32Regs:$v2, Float32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.a.2d.v4.f32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TLD4_R_2D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.r.2d.v4.s32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TLD4_G_2D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.g.2d.v4.s32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TLD4_B_2D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.b.2d.v4.s32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TLD4_A_2D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.a.2d.v4.s32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TLD4_R_2D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.r.2d.v4.u32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TLD4_G_2D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.g.2d.v4.u32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TLD4_B_2D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.b.2d.v4.u32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+def TLD4_A_2D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Int64Regs:$s, Float32Regs:$x, Float32Regs:$y),
+ "tld4.a.2d.v4.u32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, $s, \\{$x, $y\\}];",
+ []>;
+}
+
+
+// texmode_unified
+let IsTex = 1, IsTexModeUnified = 1 in {
+// Texture fetch instructions using handles
+def TEX_UNIFIED_1D_F32_S32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$x),
+ "tex.1d.v4.f32.s32\t\\{$r, $g, $b, $a\\}, [$t, \\{$x\\}];",
+ []>;
+def TEX_UNIFIED_1D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x),
+ "tex.1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, [$t, \\{$x\\}];",
+ []>;
+def TEX_UNIFIED_1D_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$lod),
+ "tex.level.1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x\\}], $lod;",
+ []>;
+def TEX_UNIFIED_1D_F32_F32_GRAD
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+def TEX_UNIFIED_1D_S32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$x),
+ "tex.1d.v4.s32.s32\t\\{$r, $g, $b, $a\\}, [$t, \\{$x\\}];",
+ []>;
+def TEX_UNIFIED_1D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x),
+ "tex.1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, [$t, \\{$x\\}];",
+ []>;
+def TEX_UNIFIED_1D_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x,
+ Float32Regs:$lod),
+ "tex.level.1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x\\}], $lod;",
+ []>;
+def TEX_UNIFIED_1D_S32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+def TEX_UNIFIED_1D_U32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$x),
+ "tex.1d.v4.u32.s32\t\\{$r, $g, $b, $a\\}, [$t, \\{$x\\}];",
+ []>;
+def TEX_UNIFIED_1D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x),
+ "tex.1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, [$t, \\{$x\\}];",
+ []>;
+def TEX_UNIFIED_1D_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x,
+ Float32Regs:$lod),
+ "tex.level.1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x\\}], $lod;",
+ []>;
+def TEX_UNIFIED_1D_U32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+
+def TEX_UNIFIED_1D_ARRAY_F32_S32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Int32Regs:$x),
+ "tex.a1d.v4.f32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}];",
+ []>;
+def TEX_UNIFIED_1D_ARRAY_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x),
+ "tex.a1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}];",
+ []>;
+def TEX_UNIFIED_1D_ARRAY_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$lod),
+ "tex.level.a1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}], $lod;",
+ []>;
+def TEX_UNIFIED_1D_ARRAY_F32_F32_GRAD
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.a1d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+def TEX_UNIFIED_1D_ARRAY_S32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Int32Regs:$x),
+ "tex.a1d.v4.s32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}];",
+ []>;
+def TEX_UNIFIED_1D_ARRAY_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x),
+ "tex.a1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}];",
+ []>;
+def TEX_UNIFIED_1D_ARRAY_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$lod),
+ "tex.level.a1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}], $lod;",
+ []>;
+def TEX_UNIFIED_1D_ARRAY_S32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.a1d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+def TEX_UNIFIED_1D_ARRAY_U32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Int32Regs:$x),
+ "tex.a1d.v4.u32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}];",
+ []>;
+def TEX_UNIFIED_1D_ARRAY_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x),
+ "tex.a1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}];",
+ []>;
+def TEX_UNIFIED_1D_ARRAY_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$lod),
+ "tex.level.a1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}], $lod;",
+ []>;
+def TEX_UNIFIED_1D_ARRAY_U32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$gradx, Float32Regs:$grady),
+ "tex.grad.a1d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x\\}], \\{$gradx\\}, \\{$grady\\};",
+ []>;
+
+def TEX_UNIFIED_2D_F32_S32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$x, Int32Regs:$y),
+ "tex.2d.v4.f32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tex.2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$lod),
+ "tex.level.2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}], $lod;",
+ []>;
+def TEX_UNIFIED_2D_F32_F32_GRAD
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+def TEX_UNIFIED_2D_S32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$x, Int32Regs:$y),
+ "tex.2d.v4.s32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tex.2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$lod),
+ "tex.level.2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}], $lod;",
+ []>;
+def TEX_UNIFIED_2D_S32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+def TEX_UNIFIED_2D_U32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$x, Int32Regs:$y),
+ "tex.2d.v4.u32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tex.2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$lod),
+ "tex.level.2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}], $lod;",
+ []>;
+def TEX_UNIFIED_2D_U32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+
+def TEX_UNIFIED_2D_ARRAY_F32_S32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$y),
+ "tex.a2d.v4.f32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_ARRAY_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y),
+ "tex.a2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_ARRAY_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y, Float32Regs:$lod),
+ "tex.level.a2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}], $lod;",
+ []>;
+def TEX_UNIFIED_2D_ARRAY_F32_F32_GRAD
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y, Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.a2d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+def TEX_UNIFIED_2D_ARRAY_S32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$y),
+ "tex.a2d.v4.s32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_ARRAY_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y),
+ "tex.a2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_ARRAY_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y, Float32Regs:$lod),
+ "tex.level.a2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}], $lod;",
+ []>;
+def TEX_UNIFIED_2D_ARRAY_S32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.a2d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+def TEX_UNIFIED_2D_ARRAY_U32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$y),
+ "tex.a2d.v4.u32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_ARRAY_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y),
+ "tex.a2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}];",
+ []>;
+def TEX_UNIFIED_2D_ARRAY_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y, Float32Regs:$lod),
+ "tex.level.a2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}], $lod;",
+ []>;
+def TEX_UNIFIED_2D_ARRAY_U32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l, Float32Regs:$x,
+ Float32Regs:$y,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$grady0, Float32Regs:$grady1),
+ "tex.grad.a2d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $y\\}], \\{$gradx0, $gradx1\\}, "
+ "\\{$grady0, $grady1\\};",
+ []>;
+
+def TEX_UNIFIED_3D_F32_S32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$z),
+ "tex.3d.v4.f32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_UNIFIED_3D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z),
+ "tex.3d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_UNIFIED_3D_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z, Float32Regs:$lod),
+ "tex.level.3d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+def TEX_UNIFIED_3D_F32_F32_GRAD
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$gradx2, Float32Regs:$grady0,
+ Float32Regs:$grady1, Float32Regs:$grady2),
+ "tex.grad.3d.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}], "
+ "\\{$gradx0, $gradx1, $gradx2, $gradx2\\}, "
+ "\\{$grady0, $grady1, $grady2, $grady2\\};",
+ []>;
+def TEX_UNIFIED_3D_S32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$z),
+ "tex.3d.v4.s32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_UNIFIED_3D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z),
+ "tex.3d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_UNIFIED_3D_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z, Float32Regs:$lod),
+ "tex.level.3d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+def TEX_UNIFIED_3D_S32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$gradx2, Float32Regs:$grady0,
+ Float32Regs:$grady1, Float32Regs:$grady2),
+ "tex.grad.3d.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}], "
+ "\\{$gradx0, $gradx1, $gradx2, $gradx2\\}, "
+ "\\{$grady0, $grady1, $grady2, $grady2\\};",
+ []>;
+def TEX_UNIFIED_3D_U32_S32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$z),
+ "tex.3d.v4.u32.s32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_UNIFIED_3D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z),
+ "tex.3d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_UNIFIED_3D_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z, Float32Regs:$lod),
+ "tex.level.3d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+def TEX_UNIFIED_3D_U32_F32_GRAD
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y,
+ Float32Regs:$z,
+ Float32Regs:$gradx0, Float32Regs:$gradx1,
+ Float32Regs:$gradx2, Float32Regs:$grady0,
+ Float32Regs:$grady1, Float32Regs:$grady2),
+ "tex.grad.3d.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}], "
+ "\\{$gradx0, $gradx1, $gradx2, $gradx2\\}, "
+ "\\{$grady0, $grady1, $grady2, $grady2\\};",
+ []>;
+
+def TEX_UNIFIED_CUBE_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.cube.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_UNIFIED_CUBE_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.cube.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+def TEX_UNIFIED_CUBE_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.cube.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_UNIFIED_CUBE_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.cube.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+def TEX_UNIFIED_CUBE_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.cube.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}];",
+ []>;
+def TEX_UNIFIED_CUBE_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.cube.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$x, $y, $z, $z\\}], $lod;",
+ []>;
+
+def TEX_UNIFIED_CUBE_ARRAY_F32_F32
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.acube.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $z\\}];",
+ []>;
+def TEX_UNIFIED_CUBE_ARRAY_F32_F32_LEVEL
+ : NVPTXInst<(outs Float32Regs:$r, Float32Regs:$g,
+ Float32Regs:$b, Float32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.acube.v4.f32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $z\\}], $lod;",
+ []>;
+def TEX_UNIFIED_CUBE_ARRAY_S32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.acube.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $z\\}];",
+ []>;
+def TEX_UNIFIED_CUBE_ARRAY_S32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.acube.v4.s32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $z\\}], $lod;",
+ []>;
+def TEX_UNIFIED_CUBE_ARRAY_U32_F32
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z),
+ "tex.acube.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $z\\}];",
+ []>;
+def TEX_UNIFIED_CUBE_ARRAY_U32_F32_LEVEL
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$t, Int32Regs:$l,
+ Float32Regs:$x, Float32Regs:$y, Float32Regs:$z,
+ Float32Regs:$lod),
+ "tex.level.acube.v4.u32.f32\t\\{$r, $g, $b, $a\\}, "
+ "[$t, \\{$l, $x, $y, $z\\}], $lod;",
+ []>;
+
+def TLD4_UNIFIED_R_2D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$v0, Float32Regs:$v1,
+ Float32Regs:$v2, Float32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.r.2d.v4.f32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TLD4_UNIFIED_G_2D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$v0, Float32Regs:$v1,
+ Float32Regs:$v2, Float32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.g.2d.v4.f32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TLD4_UNIFIED_B_2D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$v0, Float32Regs:$v1,
+ Float32Regs:$v2, Float32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.b.2d.v4.f32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TLD4_UNIFIED_A_2D_F32_F32
+ : NVPTXInst<(outs Float32Regs:$v0, Float32Regs:$v1,
+ Float32Regs:$v2, Float32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.a.2d.v4.f32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TLD4_UNIFIED_R_2D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.r.2d.v4.s32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TLD4_UNIFIED_G_2D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.g.2d.v4.s32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TLD4_UNIFIED_B_2D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.b.2d.v4.s32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TLD4_UNIFIED_A_2D_S32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.a.2d.v4.s32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TLD4_UNIFIED_R_2D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.r.2d.v4.u32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TLD4_UNIFIED_G_2D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.g.2d.v4.u32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TLD4_UNIFIED_B_2D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.b.2d.v4.u32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+def TLD4_UNIFIED_A_2D_U32_F32
+ : NVPTXInst<(outs Int32Regs:$v0, Int32Regs:$v1,
+ Int32Regs:$v2, Int32Regs:$v3),
+ (ins Int64Regs:$t, Float32Regs:$x, Float32Regs:$y),
+ "tld4.a.2d.v4.u32.f32\t\\{$v0, $v1, $v2, $v3\\}, "
+ "[$t, \\{$x, $y\\}];",
+ []>;
+}
+
+
+
+//=== Surface load instructions
+// .clamp variant
+let IsSuld = 1 in {
+def SULD_1D_I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b8.clamp \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b16.clamp \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b32.clamp \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_I64_CLAMP
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b64.clamp \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+
+def SULD_1D_ARRAY_I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b8.clamp \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b16.clamp \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b32.clamp \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_I64_CLAMP
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b64.clamp \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+
+def SULD_2D_I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b8.clamp \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b16.clamp \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b32.clamp \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_I64_CLAMP
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b64.clamp \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+
+def SULD_2D_ARRAY_I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b8.clamp \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b16.clamp \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b32.clamp \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_I64_CLAMP
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b64.clamp \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+
+def SULD_3D_I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b8.clamp \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b16.clamp \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b32.clamp \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_I64_CLAMP
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b64.clamp \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+}
+
+let IsSuld = 2 in {
+def SULD_1D_V2I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b8.clamp \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V2I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b16.clamp \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V2I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b32.clamp \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V2I64_CLAMP
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b64.clamp \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+
+def SULD_1D_ARRAY_V2I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b8.clamp \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V2I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b16.clamp \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V2I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b32.clamp \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V2I64_CLAMP
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b64.clamp \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+
+def SULD_2D_V2I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b8.clamp \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V2I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b16.clamp \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V2I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b32.clamp \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V2I64_CLAMP
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b64.clamp \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+
+def SULD_2D_ARRAY_V2I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b8.clamp \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V2I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b16.clamp \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V2I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b32.clamp \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V2I64_CLAMP
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b64.clamp \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+
+def SULD_3D_V2I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b8.clamp \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V2I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b16.clamp \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V2I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b32.clamp \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V2I64_CLAMP
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b64.clamp \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+}
+
+let IsSuld = 3 in {
+def SULD_1D_V4I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v4.b8.clamp \\{$r, $g, $b, $a\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V4I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v4.b16.clamp \\{$r, $g, $b, $a\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V4I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v4.b32.clamp \\{$r, $g, $b, $a\\}, [$s, \\{$x\\}];",
+ []>;
+
+def SULD_1D_ARRAY_V4I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v4.b8.clamp \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V4I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v4.b16.clamp \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V4I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v4.b32.clamp \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x\\}];",
+ []>;
+
+def SULD_2D_V4I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v4.b8.clamp \\{$r, $g, $b, $a\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V4I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v4.b16.clamp \\{$r, $g, $b, $a\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V4I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v4.b32.clamp \\{$r, $g, $b, $a\\}, [$s, \\{$x, $y\\}];",
+ []>;
+
+def SULD_2D_ARRAY_V4I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v4.b8.clamp \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V4I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v4.b16.clamp \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V4I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v4.b32.clamp \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+
+
+def SULD_3D_V4I8_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v4.b8.clamp \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V4I16_CLAMP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v4.b16.clamp \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V4I32_CLAMP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v4.b32.clamp \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+}
+
+
+// .trap variant
+let IsSuld = 1 in {
+def SULD_1D_I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b8.trap \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b16.trap \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b32.trap \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_I64_TRAP
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b64.trap \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+
+def SULD_1D_ARRAY_I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b8.trap \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b16.trap \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b32.trap \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_I64_TRAP
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b64.trap \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+
+def SULD_2D_I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b8.trap \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b16.trap \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b32.trap \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_I64_TRAP
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b64.trap \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+
+def SULD_2D_ARRAY_I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b8.trap \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b16.trap \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b32.trap \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_I64_TRAP
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b64.trap \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+
+def SULD_3D_I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b8.trap \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b16.trap \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b32.trap \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_I64_TRAP
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b64.trap \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+}
+
+let IsSuld = 2 in {
+def SULD_1D_V2I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b8.trap \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V2I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b16.trap \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V2I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b32.trap \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V2I64_TRAP
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b64.trap \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+
+def SULD_1D_ARRAY_V2I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b8.trap \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V2I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b16.trap \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V2I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b32.trap \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V2I64_TRAP
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b64.trap \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+
+def SULD_2D_V2I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b8.trap \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V2I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b16.trap \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V2I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b32.trap \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V2I64_TRAP
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b64.trap \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+
+def SULD_2D_ARRAY_V2I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b8.trap \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V2I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b16.trap \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V2I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b32.trap \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V2I64_TRAP
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b64.trap \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+
+def SULD_3D_V2I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b8.trap \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V2I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b16.trap \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V2I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b32.trap \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V2I64_TRAP
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b64.trap \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+}
+
+let IsSuld = 3 in {
+def SULD_1D_V4I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v4.b8.trap \\{$r, $g, $b, $a\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V4I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v4.b16.trap \\{$r, $g, $b, $a\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V4I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v4.b32.trap \\{$r, $g, $b, $a\\}, [$s, \\{$x\\}];",
+ []>;
+
+def SULD_1D_ARRAY_V4I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v4.b8.trap \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V4I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v4.b16.trap \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V4I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v4.b32.trap \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x\\}];",
+ []>;
+
+def SULD_2D_V4I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v4.b8.trap \\{$r, $g, $b, $a\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V4I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v4.b16.trap \\{$r, $g, $b, $a\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V4I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v4.b32.trap \\{$r, $g, $b, $a\\}, [$s, \\{$x, $y\\}];",
+ []>;
+
+def SULD_2D_ARRAY_V4I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v4.b8.trap \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V4I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v4.b16.trap \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V4I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v4.b32.trap \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+
+
+def SULD_3D_V4I8_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v4.b8.trap \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V4I16_TRAP
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v4.b16.trap \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V4I32_TRAP
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v4.b32.trap \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+}
+
+// .zero variant
+let IsSuld = 1 in {
+def SULD_1D_I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b8.zero \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b16.zero \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b32.zero \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_I64_ZERO
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.b64.zero \\{$r\\}, [$s, \\{$x\\}];",
+ []>;
+
+def SULD_1D_ARRAY_I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b8.zero \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b16.zero \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b32.zero \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_I64_ZERO
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.b64.zero \\{$r\\}, [$s, \\{$l, $x\\}];",
+ []>;
+
+def SULD_2D_I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b8.zero \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b16.zero \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b32.zero \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_I64_ZERO
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.b64.zero \\{$r\\}, [$s, \\{$x, $y\\}];",
+ []>;
+
+def SULD_2D_ARRAY_I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b8.zero \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b16.zero \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b32.zero \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_I64_ZERO
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.b64.zero \\{$r\\}, [$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+
+def SULD_3D_I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b8.zero \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b16.zero \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b32.zero \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_I64_ZERO
+ : NVPTXInst<(outs Int64Regs:$r),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.b64.zero \\{$r\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+}
+
+let IsSuld = 2 in {
+def SULD_1D_V2I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b8.zero \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V2I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b16.zero \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V2I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b32.zero \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V2I64_ZERO
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v2.b64.zero \\{$r, $g\\}, [$s, \\{$x\\}];",
+ []>;
+
+def SULD_1D_ARRAY_V2I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b8.zero \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V2I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b16.zero \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V2I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b32.zero \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V2I64_ZERO
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v2.b64.zero \\{$r, $g\\}, [$s, \\{$l, $x\\}];",
+ []>;
+
+def SULD_2D_V2I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b8.zero \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V2I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b16.zero \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V2I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b32.zero \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V2I64_ZERO
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v2.b64.zero \\{$r, $g\\}, [$s, \\{$x, $y\\}];",
+ []>;
+
+def SULD_2D_ARRAY_V2I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b8.zero \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V2I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b16.zero \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V2I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b32.zero \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V2I64_ZERO
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v2.b64.zero \\{$r, $g\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+
+def SULD_3D_V2I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b8.zero \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V2I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b16.zero \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V2I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b32.zero \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V2I64_ZERO
+ : NVPTXInst<(outs Int64Regs:$r, Int64Regs:$g),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v2.b64.zero \\{$r, $g\\}, [$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+}
+
+let IsSuld = 3 in {
+def SULD_1D_V4I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v4.b8.zero \\{$r, $g, $b, $a\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V4I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v4.b16.zero \\{$r, $g, $b, $a\\}, [$s, \\{$x\\}];",
+ []>;
+def SULD_1D_V4I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x),
+ "suld.b.1d.v4.b32.zero \\{$r, $g, $b, $a\\}, [$s, \\{$x\\}];",
+ []>;
+
+def SULD_1D_ARRAY_V4I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v4.b8.zero \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V4I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v4.b16.zero \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x\\}];",
+ []>;
+def SULD_1D_ARRAY_V4I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x),
+ "suld.b.a1d.v4.b32.zero \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x\\}];",
+ []>;
+
+def SULD_2D_V4I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v4.b8.zero \\{$r, $g, $b, $a\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V4I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v4.b16.zero \\{$r, $g, $b, $a\\}, [$s, \\{$x, $y\\}];",
+ []>;
+def SULD_2D_V4I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.2d.v4.b32.zero \\{$r, $g, $b, $a\\}, [$s, \\{$x, $y\\}];",
+ []>;
+
+def SULD_2D_ARRAY_V4I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v4.b8.zero \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V4I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v4.b16.zero \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+def SULD_2D_ARRAY_V4I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y),
+ "suld.b.a2d.v4.b32.zero \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$l, $x, $y, $y\\}];",
+ []>;
+
+
+def SULD_3D_V4I8_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v4.b8.zero \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V4I16_ZERO
+ : NVPTXInst<(outs Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v4.b16.zero \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+def SULD_3D_V4I32_ZERO
+ : NVPTXInst<(outs Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z),
+ "suld.b.3d.v4.b32.zero \\{$r, $g, $b, $a\\}, "
+ "[$s, \\{$x, $y, $z, $z\\}];",
+ []>;
+}
+
+//-----------------------------------
+// Texture Query Intrinsics
+//-----------------------------------
+
+let IsSurfTexQuery = 1 in {
+def TXQ_CHANNEL_ORDER
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "txq.channel_order.b32 \t$d, [$a];",
+ []>;
+def TXQ_CHANNEL_DATA_TYPE
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "txq.channel_data_type.b32 \t$d, [$a];",
+ []>;
+def TXQ_WIDTH
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "txq.width.b32 \t$d, [$a];",
+ []>;
+def TXQ_HEIGHT
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "txq.height.b32 \t$d, [$a];",
+ []>;
+def TXQ_DEPTH
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "txq.depth.b32 \t$d, [$a];",
+ []>;
+def TXQ_ARRAY_SIZE
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "txq.array_size.b32 \t$d, [$a];",
+ []>;
+def TXQ_NUM_SAMPLES
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "txq.num_samples.b32 \t$d, [$a];",
+ []>;
+def TXQ_NUM_MIPMAP_LEVELS
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "txq.num_mipmap_levels.b32 \t$d, [$a];",
+ []>;
+}
+
+def : Pat<(int_nvvm_txq_channel_order Int64Regs:$a),
+ (TXQ_CHANNEL_ORDER Int64Regs:$a)>;
+def : Pat<(int_nvvm_txq_channel_data_type Int64Regs:$a),
+ (TXQ_CHANNEL_DATA_TYPE Int64Regs:$a)>;
+def : Pat<(int_nvvm_txq_width Int64Regs:$a),
+ (TXQ_WIDTH Int64Regs:$a)>;
+def : Pat<(int_nvvm_txq_height Int64Regs:$a),
+ (TXQ_HEIGHT Int64Regs:$a)>;
+def : Pat<(int_nvvm_txq_depth Int64Regs:$a),
+ (TXQ_DEPTH Int64Regs:$a)>;
+def : Pat<(int_nvvm_txq_array_size Int64Regs:$a),
+ (TXQ_ARRAY_SIZE Int64Regs:$a)>;
+def : Pat<(int_nvvm_txq_num_samples Int64Regs:$a),
+ (TXQ_NUM_SAMPLES Int64Regs:$a)>;
+def : Pat<(int_nvvm_txq_num_mipmap_levels Int64Regs:$a),
+ (TXQ_NUM_MIPMAP_LEVELS Int64Regs:$a)>;
+
+
+//-----------------------------------
+// Surface Query Intrinsics
+//-----------------------------------
+
+let IsSurfTexQuery = 1 in {
+def SUQ_CHANNEL_ORDER
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "suq.channel_order.b32 \t$d, [$a];",
+ []>;
+def SUQ_CHANNEL_DATA_TYPE
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "suq.channel_data_type.b32 \t$d, [$a];",
+ []>;
+def SUQ_WIDTH
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "suq.width.b32 \t$d, [$a];",
+ []>;
+def SUQ_HEIGHT
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "suq.height.b32 \t$d, [$a];",
+ []>;
+def SUQ_DEPTH
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "suq.depth.b32 \t$d, [$a];",
+ []>;
+def SUQ_ARRAY_SIZE
+ : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "suq.array_size.b32 \t$d, [$a];",
+ []>;
+}
+
+def : Pat<(int_nvvm_suq_channel_order Int64Regs:$a),
+ (SUQ_CHANNEL_ORDER Int64Regs:$a)>;
+def : Pat<(int_nvvm_suq_channel_data_type Int64Regs:$a),
+ (SUQ_CHANNEL_DATA_TYPE Int64Regs:$a)>;
+def : Pat<(int_nvvm_suq_width Int64Regs:$a),
+ (SUQ_WIDTH Int64Regs:$a)>;
+def : Pat<(int_nvvm_suq_height Int64Regs:$a),
+ (SUQ_HEIGHT Int64Regs:$a)>;
+def : Pat<(int_nvvm_suq_depth Int64Regs:$a),
+ (SUQ_DEPTH Int64Regs:$a)>;
+def : Pat<(int_nvvm_suq_array_size Int64Regs:$a),
+ (SUQ_ARRAY_SIZE Int64Regs:$a)>;
+
+
+//===- Handle Query -------------------------------------------------------===//
+
+// TODO: These intrinsics are not yet finalized, pending PTX ISA design work
+def ISTYPEP_SAMPLER
+ : NVPTXInst<(outs Int1Regs:$d), (ins Int64Regs:$a),
+ "istypep.samplerref \t$d, $a;",
+ [(set Int1Regs:$d, (int_nvvm_istypep_sampler Int64Regs:$a))]>;
+def ISTYPEP_SURFACE
+ : NVPTXInst<(outs Int1Regs:$d), (ins Int64Regs:$a),
+ "istypep.surfref \t$d, $a;",
+ [(set Int1Regs:$d, (int_nvvm_istypep_surface Int64Regs:$a))]>;
+def ISTYPEP_TEXTURE
+ : NVPTXInst<(outs Int1Regs:$d), (ins Int64Regs:$a),
+ "istypep.texref \t$d, $a;",
+ [(set Int1Regs:$d, (int_nvvm_istypep_texture Int64Regs:$a))]>;
+
+//===- Surface Stores -----------------------------------------------------===//
+
+let IsSust = 1 in {
+// Unformatted
+// .clamp variant
+def SUST_B_1D_B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.1d.b8.clamp \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.1d.b16.clamp \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r),
+ "sust.b.1d.b32.clamp \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_B64_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int64Regs:$r),
+ "sust.b.1d.b64.clamp \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_V2B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ "sust.b.1d.v2.b8.clamp \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V2B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ "sust.b.1d.v2.b16.clamp \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V2B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ "sust.b.1d.v2.b32.clamp \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V2B64_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int64Regs:$r, Int64Regs:$g),
+ "sust.b.1d.v2.b64.clamp \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V4B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g,
+ Int16Regs:$b, Int16Regs:$a),
+ "sust.b.1d.v4.b8.clamp \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_V4B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g,
+ Int16Regs:$b, Int16Regs:$a),
+ "sust.b.1d.v4.b16.clamp \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_V4B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ "sust.b.1d.v4.b32.clamp \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_1D_ARRAY_B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.a1d.b8.clamp \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.a1d.b16.clamp \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r),
+ "sust.b.a1d.b32.clamp \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_B64_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int64Regs:$r),
+ "sust.b.a1d.b64.clamp \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.a1d.v2.b8.clamp \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.a1d.v2.b16.clamp \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r,
+ Int32Regs:$g),
+ "sust.b.a1d.v2.b32.clamp \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B64_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int64Regs:$r,
+ Int64Regs:$g),
+ "sust.b.a1d.v2.b64.clamp \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V4B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a1d.v4.b8.clamp \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_ARRAY_V4B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a1d.v4.b16.clamp \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_ARRAY_V4B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r,
+ Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.a1d.v4.b32.clamp \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_2D_B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ "sust.b.2d.b8.clamp \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ "sust.b.2d.b16.clamp \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ "sust.b.2d.b32.clamp \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_B64_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r),
+ "sust.b.2d.b64.clamp \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_V2B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.2d.v2.b8.clamp \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V2B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.2d.v2.b16.clamp \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V2B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g),
+ "sust.b.2d.v2.b32.clamp \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V2B64_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r,
+ Int64Regs:$g),
+ "sust.b.2d.v2.b64.clamp \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V4B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.2d.v4.b8.clamp \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_V4B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.2d.v4.b16.clamp \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_V4B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.2d.v4.b32.clamp \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_2D_ARRAY_B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r),
+ "sust.b.a2d.b8.clamp \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r),
+ "sust.b.a2d.b16.clamp \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r),
+ "sust.b.a2d.b32.clamp \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_B64_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r),
+ "sust.b.a2d.b64.clamp \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.a2d.v2.b8.clamp \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.a2d.v2.b16.clamp \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g),
+ "sust.b.a2d.v2.b32.clamp \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B64_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r, Int64Regs:$g),
+ "sust.b.a2d.v2.b64.clamp \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V4B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a2d.v4.b8.clamp \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_ARRAY_V4B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a2d.v4.b16.clamp \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_ARRAY_V4B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.a2d.v4.b32.clamp \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_3D_B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ "sust.b.3d.b8.clamp \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ "sust.b.3d.b16.clamp \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r),
+ "sust.b.3d.b32.clamp \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_B64_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r),
+ "sust.b.3d.b64.clamp \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_V2B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.3d.v2.b8.clamp \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V2B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.3d.v2.b16.clamp \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V2B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g),
+ "sust.b.3d.v2.b32.clamp \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V2B64_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r, Int64Regs:$g),
+ "sust.b.3d.v2.b64.clamp \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V4B8_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.3d.v4.b8.clamp \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_3D_V4B16_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.3d.v4.b16.clamp \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_3D_V4B32_CLAMP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.3d.v4.b32.clamp \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+// .trap variant
+def SUST_B_1D_B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.1d.b8.trap \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.1d.b16.trap \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r),
+ "sust.b.1d.b32.trap \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_B64_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int64Regs:$r),
+ "sust.b.1d.b64.trap \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_V2B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ "sust.b.1d.v2.b8.trap \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V2B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ "sust.b.1d.v2.b16.trap \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V2B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ "sust.b.1d.v2.b32.trap \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V2B64_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int64Regs:$r, Int64Regs:$g),
+ "sust.b.1d.v2.b64.trap \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V4B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g,
+ Int16Regs:$b, Int16Regs:$a),
+ "sust.b.1d.v4.b8.trap \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_V4B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g,
+ Int16Regs:$b, Int16Regs:$a),
+ "sust.b.1d.v4.b16.trap \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_V4B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ "sust.b.1d.v4.b32.trap \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_1D_ARRAY_B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.a1d.b8.trap \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.a1d.b16.trap \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r),
+ "sust.b.a1d.b32.trap \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_B64_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int64Regs:$r),
+ "sust.b.a1d.b64.trap \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.a1d.v2.b8.trap \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.a1d.v2.b16.trap \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r,
+ Int32Regs:$g),
+ "sust.b.a1d.v2.b32.trap \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B64_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int64Regs:$r,
+ Int64Regs:$g),
+ "sust.b.a1d.v2.b64.trap \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V4B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a1d.v4.b8.trap \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_ARRAY_V4B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a1d.v4.b16.trap \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_ARRAY_V4B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r,
+ Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.a1d.v4.b32.trap \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_2D_B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ "sust.b.2d.b8.trap \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ "sust.b.2d.b16.trap \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ "sust.b.2d.b32.trap \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_B64_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r),
+ "sust.b.2d.b64.trap \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_V2B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.2d.v2.b8.trap \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V2B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.2d.v2.b16.trap \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V2B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g),
+ "sust.b.2d.v2.b32.trap \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V2B64_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r,
+ Int64Regs:$g),
+ "sust.b.2d.v2.b64.trap \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V4B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.2d.v4.b8.trap \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_V4B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.2d.v4.b16.trap \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_V4B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.2d.v4.b32.trap \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_2D_ARRAY_B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r),
+ "sust.b.a2d.b8.trap \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r),
+ "sust.b.a2d.b16.trap \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r),
+ "sust.b.a2d.b32.trap \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_B64_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r),
+ "sust.b.a2d.b64.trap \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.a2d.v2.b8.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.a2d.v2.b16.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g),
+ "sust.b.a2d.v2.b32.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B64_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r, Int64Regs:$g),
+ "sust.b.a2d.v2.b64.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V4B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a2d.v4.b8.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_ARRAY_V4B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a2d.v4.b16.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_ARRAY_V4B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.a2d.v4.b32.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_3D_B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ "sust.b.3d.b8.trap \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ "sust.b.3d.b16.trap \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r),
+ "sust.b.3d.b32.trap \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_B64_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r),
+ "sust.b.3d.b64.trap \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_V2B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.3d.v2.b8.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V2B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.3d.v2.b16.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V2B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g),
+ "sust.b.3d.v2.b32.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V2B64_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r, Int64Regs:$g),
+ "sust.b.3d.v2.b64.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V4B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.3d.v4.b8.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_3D_V4B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.3d.v4.b16.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_3D_V4B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.3d.v4.b32.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+// .zero variant
+def SUST_B_1D_B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.1d.b8.zero \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.1d.b16.zero \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r),
+ "sust.b.1d.b32.zero \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_B64_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int64Regs:$r),
+ "sust.b.1d.b64.zero \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_V2B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ "sust.b.1d.v2.b8.zero \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V2B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ "sust.b.1d.v2.b16.zero \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V2B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ "sust.b.1d.v2.b32.zero \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V2B64_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int64Regs:$r, Int64Regs:$g),
+ "sust.b.1d.v2.b64.zero \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_V4B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g,
+ Int16Regs:$b, Int16Regs:$a),
+ "sust.b.1d.v4.b8.zero \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_V4B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g,
+ Int16Regs:$b, Int16Regs:$a),
+ "sust.b.1d.v4.b16.zero \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_V4B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ "sust.b.1d.v4.b32.zero \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_1D_ARRAY_B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.a1d.b8.zero \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r),
+ "sust.b.a1d.b16.zero \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r),
+ "sust.b.a1d.b32.zero \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_B64_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int64Regs:$r),
+ "sust.b.a1d.b64.zero \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.a1d.v2.b8.zero \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.a1d.v2.b16.zero \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r,
+ Int32Regs:$g),
+ "sust.b.a1d.v2.b32.zero \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V2B64_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int64Regs:$r,
+ Int64Regs:$g),
+ "sust.b.a1d.v2.b64.zero \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_1D_ARRAY_V4B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a1d.v4.b8.zero \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_ARRAY_V4B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a1d.v4.b16.zero \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_1D_ARRAY_V4B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r,
+ Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.a1d.v4.b32.zero \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_2D_B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ "sust.b.2d.b8.zero \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ "sust.b.2d.b16.zero \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ "sust.b.2d.b32.zero \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_B64_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r),
+ "sust.b.2d.b64.zero \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_V2B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.2d.v2.b8.zero \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V2B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.b.2d.v2.b16.zero \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V2B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g),
+ "sust.b.2d.v2.b32.zero \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V2B64_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r,
+ Int64Regs:$g),
+ "sust.b.2d.v2.b64.zero \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_B_2D_V4B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.2d.v4.b8.zero \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_V4B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.2d.v4.b16.zero \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_V4B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.2d.v4.b32.zero \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_2D_ARRAY_B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r),
+ "sust.b.a2d.b8.zero \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r),
+ "sust.b.a2d.b16.zero \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r),
+ "sust.b.a2d.b32.zero \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_B64_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r),
+ "sust.b.a2d.b64.zero \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.a2d.v2.b8.zero \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.a2d.v2.b16.zero \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g),
+ "sust.b.a2d.v2.b32.zero \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V2B64_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r, Int64Regs:$g),
+ "sust.b.a2d.v2.b64.zero \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_2D_ARRAY_V4B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a2d.v4.b8.zero \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_ARRAY_V4B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.a2d.v4.b16.zero \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_2D_ARRAY_V4B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.a2d.v4.b32.zero \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_B_3D_B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ "sust.b.3d.b8.zero \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ "sust.b.3d.b16.zero \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r),
+ "sust.b.3d.b32.zero \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_B64_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r),
+ "sust.b.3d.b64.zero \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_B_3D_V2B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.3d.v2.b8.zero \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V2B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.b.3d.v2.b16.zero \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V2B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g),
+ "sust.b.3d.v2.b32.zero \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V2B64_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r, Int64Regs:$g),
+ "sust.b.3d.v2.b64.zero \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_B_3D_V4B8_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.3d.v4.b8.zero \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_3D_V4B16_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.b.3d.v4.b16.zero \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_B_3D_V4B32_ZERO
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.b.3d.v4.b32.zero \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+
+// Formatted
+
+def SUST_P_1D_B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ "sust.p.1d.b8.trap \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_P_1D_B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ "sust.p.1d.b16.trap \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_P_1D_B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r),
+ "sust.p.1d.b32.trap \t[$s, \\{$x\\}], \\{$r\\};",
+ []>;
+def SUST_P_1D_V2B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ "sust.p.1d.v2.b8.trap \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_P_1D_V2B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ "sust.p.1d.v2.b16.trap \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_P_1D_V2B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ "sust.p.1d.v2.b32.trap \t[$s, \\{$x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_P_1D_V4B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g,
+ Int16Regs:$b, Int16Regs:$a),
+ "sust.p.1d.v4.b8.trap \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_P_1D_V4B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g,
+ Int16Regs:$b, Int16Regs:$a),
+ "sust.p.1d.v4.b16.trap \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_P_1D_V4B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g,
+ Int32Regs:$b, Int32Regs:$a),
+ "sust.p.1d.v4.b32.trap \t[$s, \\{$x\\}], \\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_P_1D_ARRAY_B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r),
+ "sust.p.a1d.b8.trap \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_P_1D_ARRAY_B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r),
+ "sust.p.a1d.b16.trap \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_P_1D_ARRAY_B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r),
+ "sust.p.a1d.b32.trap \t[$s, \\{$idx, $x\\}], \\{$r\\};",
+ []>;
+def SUST_P_1D_ARRAY_V2B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.p.a1d.v2.b8.trap \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_P_1D_ARRAY_V2B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.p.a1d.v2.b16.trap \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_P_1D_ARRAY_V2B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r,
+ Int32Regs:$g),
+ "sust.p.a1d.v2.b32.trap \t[$s, \\{$idx, $x\\}], \\{$r, $g\\};",
+ []>;
+def SUST_P_1D_ARRAY_V4B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.p.a1d.v4.b8.trap \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_P_1D_ARRAY_V4B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.p.a1d.v4.b16.trap \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_P_1D_ARRAY_V4B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$r,
+ Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.p.a1d.v4.b32.trap \t[$s, \\{$idx, $x\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_P_2D_B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ "sust.p.2d.b8.trap \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_P_2D_B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ "sust.p.2d.b16.trap \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_P_2D_B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ "sust.p.2d.b32.trap \t[$s, \\{$x, $y\\}], \\{$r\\};",
+ []>;
+def SUST_P_2D_V2B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.p.2d.v2.b8.trap \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_P_2D_V2B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g),
+ "sust.p.2d.v2.b16.trap \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_P_2D_V2B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g),
+ "sust.p.2d.v2.b32.trap \t[$s, \\{$x, $y\\}], \\{$r, $g\\};",
+ []>;
+def SUST_P_2D_V4B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.p.2d.v4.b8.trap \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_P_2D_V4B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r,
+ Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.p.2d.v4.b16.trap \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_P_2D_V4B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.p.2d.v4.b32.trap \t[$s, \\{$x, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_P_2D_ARRAY_B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r),
+ "sust.p.a2d.b8.trap \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_P_2D_ARRAY_B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r),
+ "sust.p.a2d.b16.trap \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_P_2D_ARRAY_B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r),
+ "sust.p.a2d.b32.trap \t[$s, \\{$idx, $x, $y, $y\\}], \\{$r\\};",
+ []>;
+def SUST_P_2D_ARRAY_V2B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.p.a2d.v2.b8.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_P_2D_ARRAY_V2B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.p.a2d.v2.b16.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_P_2D_ARRAY_V2B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g),
+ "sust.p.a2d.v2.b32.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_P_2D_ARRAY_V4B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.p.a2d.v4.b8.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_P_2D_ARRAY_V4B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.p.a2d.v4.b16.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_P_2D_ARRAY_V4B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$idx, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.p.a2d.v4.b32.trap \t[$s, \\{$idx, $x, $y, $y\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+
+
+def SUST_P_3D_B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ "sust.p.3d.b8.trap \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_P_3D_B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ "sust.p.3d.b16.trap \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_P_3D_B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r),
+ "sust.p.3d.b32.trap \t[$s, \\{$x, $y, $z, $z\\}], \\{$r\\};",
+ []>;
+def SUST_P_3D_V2B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.p.3d.v2.b8.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_P_3D_V2B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ "sust.p.3d.v2.b16.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_P_3D_V2B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g),
+ "sust.p.3d.v2.b32.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g\\};",
+ []>;
+def SUST_P_3D_V4B8_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.p.3d.v4.b8.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_P_3D_V4B16_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ "sust.p.3d.v4.b16.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+def SUST_P_3D_V4B32_TRAP
+ : NVPTXInst<(outs),
+ (ins Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ "sust.p.3d.v4.b32.trap \t[$s, \\{$x, $y, $z, $z\\}], "
+ "\\{$r, $g, $b, $a\\};",
+ []>;
+}
+
+// Surface store instruction patterns
+// I'm not sure why we can't just include these in the instruction definitions,
+// but TableGen complains of type errors :(
+
+// .clamp variant
+def : Pat<(int_nvvm_sust_b_1d_i8_clamp
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_B8_CLAMP Int64Regs:$s, Int32Regs:$x, Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_i16_clamp
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_B16_CLAMP Int64Regs:$s, Int32Regs:$x, Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_i32_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$r),
+ (SUST_B_1D_B32_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_i64_clamp
+ Int64Regs:$s, Int32Regs:$x, Int64Regs:$r),
+ (SUST_B_1D_B64_CLAMP Int64Regs:$s, Int32Regs:$x, Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i8_clamp
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_V2B8_CLAMP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i16_clamp
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_V2B16_CLAMP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i32_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_1D_V2B32_CLAMP Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i64_clamp
+ Int64Regs:$s, Int32Regs:$x, Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_1D_V2B64_CLAMP Int64Regs:$s, Int32Regs:$x,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v4i8_clamp
+ Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_V4B8_CLAMP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v4i16_clamp
+ Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_V4B16_CLAMP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v4i32_clamp
+ Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_1D_V4B32_CLAMP Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_1d_array_i8_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_ARRAY_B8_CLAMP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_i16_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_ARRAY_B16_CLAMP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_i32_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$r),
+ (SUST_B_1D_ARRAY_B32_CLAMP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_i64_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int64Regs:$r),
+ (SUST_B_1D_ARRAY_B64_CLAMP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i8_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_ARRAY_V2B8_CLAMP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i16_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_ARRAY_V2B16_CLAMP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i32_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_1D_ARRAY_V2B32_CLAMP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i64_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_1D_ARRAY_V2B64_CLAMP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v4i8_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_ARRAY_V4B8_CLAMP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v4i16_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_ARRAY_V4B16_CLAMP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v4i32_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_1D_ARRAY_V4B32_CLAMP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_2d_i8_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_B8_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_i16_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_B16_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_i32_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ (SUST_B_2D_B32_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_i64_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r),
+ (SUST_B_2D_B64_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i8_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_V2B8_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i16_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_V2B16_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i32_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_2D_V2B32_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i64_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_2D_V2B64_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v4i8_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_V4B8_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v4i16_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_V4B16_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v4i32_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_2D_V4B32_CLAMP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_2d_array_i8_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_ARRAY_B8_CLAMP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_i16_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_ARRAY_B16_CLAMP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_i32_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ (SUST_B_2D_ARRAY_B32_CLAMP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_i64_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r),
+ (SUST_B_2D_ARRAY_B64_CLAMP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i8_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_ARRAY_V2B8_CLAMP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i16_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_ARRAY_V2B16_CLAMP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i32_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g),
+ (SUST_B_2D_ARRAY_V2B32_CLAMP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i64_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r,
+ Int64Regs:$g),
+ (SUST_B_2D_ARRAY_V2B64_CLAMP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y, Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v4i8_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_ARRAY_V4B8_CLAMP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v4i16_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_ARRAY_V4B16_CLAMP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v4i32_clamp
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_2D_ARRAY_V4B32_CLAMP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_3d_i8_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ (SUST_B_3D_B8_CLAMP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_i16_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ (SUST_B_3D_B16_CLAMP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_i32_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r),
+ (SUST_B_3D_B32_CLAMP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_i64_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r),
+ (SUST_B_3D_B64_CLAMP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i8_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_3D_V2B8_CLAMP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i16_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_3D_V2B16_CLAMP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i32_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_3D_V2B32_CLAMP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i64_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_3D_V2B64_CLAMP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v4i8_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_3D_V4B8_CLAMP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v4i16_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_3D_V4B16_CLAMP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v4i32_clamp
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_3D_V4B32_CLAMP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+// .trap variant
+def : Pat<(int_nvvm_sust_b_1d_i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_B8_TRAP Int64Regs:$s, Int32Regs:$x, Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_B16_TRAP Int64Regs:$s, Int32Regs:$x, Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$r),
+ (SUST_B_1D_B32_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_i64_trap
+ Int64Regs:$s, Int32Regs:$x, Int64Regs:$r),
+ (SUST_B_1D_B64_TRAP Int64Regs:$s, Int32Regs:$x, Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_V2B8_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_V2B16_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_1D_V2B32_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i64_trap
+ Int64Regs:$s, Int32Regs:$x, Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_1D_V2B64_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v4i8_trap
+ Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_V4B8_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v4i16_trap
+ Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_V4B16_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v4i32_trap
+ Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_1D_V4B32_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_1d_array_i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_ARRAY_B8_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_ARRAY_B16_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$r),
+ (SUST_B_1D_ARRAY_B32_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_i64_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int64Regs:$r),
+ (SUST_B_1D_ARRAY_B64_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_ARRAY_V2B8_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_ARRAY_V2B16_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_1D_ARRAY_V2B32_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i64_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_1D_ARRAY_V2B64_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v4i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_ARRAY_V4B8_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v4i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_ARRAY_V4B16_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v4i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_1D_ARRAY_V4B32_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_2d_i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_B8_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_B16_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ (SUST_B_2D_B32_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_i64_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r),
+ (SUST_B_2D_B64_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_V2B8_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_V2B16_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_2D_V2B32_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i64_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_2D_V2B64_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v4i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_V4B8_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v4i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_V4B16_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v4i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_2D_V4B32_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_2d_array_i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_ARRAY_B8_TRAP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_ARRAY_B16_TRAP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ (SUST_B_2D_ARRAY_B32_TRAP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_i64_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r),
+ (SUST_B_2D_ARRAY_B64_TRAP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_ARRAY_V2B8_TRAP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_ARRAY_V2B16_TRAP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g),
+ (SUST_B_2D_ARRAY_V2B32_TRAP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i64_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r,
+ Int64Regs:$g),
+ (SUST_B_2D_ARRAY_V2B64_TRAP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y, Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v4i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_ARRAY_V4B8_TRAP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v4i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_ARRAY_V4B16_TRAP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v4i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_2D_ARRAY_V4B32_TRAP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_3d_i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ (SUST_B_3D_B8_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ (SUST_B_3D_B16_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r),
+ (SUST_B_3D_B32_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_i64_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r),
+ (SUST_B_3D_B64_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_3D_V2B8_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_3D_V2B16_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_3D_V2B32_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i64_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_3D_V2B64_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v4i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_3D_V4B8_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v4i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_3D_V4B16_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v4i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_3D_V4B32_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+// .zero variant
+def : Pat<(int_nvvm_sust_b_1d_i8_zero
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_B8_ZERO Int64Regs:$s, Int32Regs:$x, Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_i16_zero
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_B16_ZERO Int64Regs:$s, Int32Regs:$x, Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_i32_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$r),
+ (SUST_B_1D_B32_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_i64_zero
+ Int64Regs:$s, Int32Regs:$x, Int64Regs:$r),
+ (SUST_B_1D_B64_ZERO Int64Regs:$s, Int32Regs:$x, Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i8_zero
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_V2B8_ZERO Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i16_zero
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_V2B16_ZERO Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i32_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_1D_V2B32_ZERO Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v2i64_zero
+ Int64Regs:$s, Int32Regs:$x, Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_1D_V2B64_ZERO Int64Regs:$s, Int32Regs:$x,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v4i8_zero
+ Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_V4B8_ZERO Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v4i16_zero
+ Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_V4B16_ZERO Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_v4i32_zero
+ Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_1D_V4B32_ZERO Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_1d_array_i8_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_ARRAY_B8_ZERO Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_i16_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r),
+ (SUST_B_1D_ARRAY_B16_ZERO Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_i32_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$r),
+ (SUST_B_1D_ARRAY_B32_ZERO Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_i64_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int64Regs:$r),
+ (SUST_B_1D_ARRAY_B64_ZERO Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i8_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_ARRAY_V2B8_ZERO Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i16_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_1D_ARRAY_V2B16_ZERO Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i32_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_1D_ARRAY_V2B32_ZERO Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v2i64_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_1D_ARRAY_V2B64_ZERO Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v4i8_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_ARRAY_V4B8_ZERO Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v4i16_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_1D_ARRAY_V4B16_ZERO Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_1d_array_v4i32_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_1D_ARRAY_V4B32_ZERO Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_2d_i8_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_B8_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_i16_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_B16_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_i32_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ (SUST_B_2D_B32_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_i64_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r),
+ (SUST_B_2D_B64_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i8_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_V2B8_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i16_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_V2B16_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i32_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_2D_V2B32_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v2i64_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_2D_V2B64_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v4i8_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_V4B8_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v4i16_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_V4B16_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_v4i32_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_2D_V4B32_ZERO Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_2d_array_i8_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_ARRAY_B8_ZERO Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_i16_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_B_2D_ARRAY_B16_ZERO Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_i32_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ (SUST_B_2D_ARRAY_B32_ZERO Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_i64_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r),
+ (SUST_B_2D_ARRAY_B64_ZERO Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i8_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_ARRAY_V2B8_ZERO Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i16_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_2D_ARRAY_V2B16_ZERO Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i32_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g),
+ (SUST_B_2D_ARRAY_V2B32_ZERO Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v2i64_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int64Regs:$r,
+ Int64Regs:$g),
+ (SUST_B_2D_ARRAY_V2B64_ZERO Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y, Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v4i8_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_ARRAY_V4B8_ZERO Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v4i16_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_2D_ARRAY_V4B16_ZERO Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_2d_array_v4i32_zero
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_2D_ARRAY_V4B32_ZERO Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_b_3d_i8_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ (SUST_B_3D_B8_ZERO Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_i16_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ (SUST_B_3D_B16_ZERO Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_i32_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r),
+ (SUST_B_3D_B32_ZERO Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_i64_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r),
+ (SUST_B_3D_B64_ZERO Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i8_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_3D_V2B8_ZERO Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i16_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_B_3D_V2B16_ZERO Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i32_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g),
+ (SUST_B_3D_V2B32_ZERO Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v2i64_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r, Int64Regs:$g),
+ (SUST_B_3D_V2B64_ZERO Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int64Regs:$r, Int64Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v4i8_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_3D_V4B8_ZERO Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v4i16_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_B_3D_V4B16_ZERO Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_b_3d_v4i32_zero
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_B_3D_V4B32_ZERO Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+
+def : Pat<(int_nvvm_sust_p_1d_i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ (SUST_P_1D_B8_TRAP Int64Regs:$s, Int32Regs:$x, Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_1d_i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r),
+ (SUST_P_1D_B16_TRAP Int64Regs:$s, Int32Regs:$x, Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_1d_i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$r),
+ (SUST_P_1D_B32_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_1d_v2i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_P_1D_V2B8_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_1d_v2i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_P_1D_V2B16_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_1d_v2i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ (SUST_P_1D_V2B32_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_1d_v4i8_trap
+ Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_P_1D_V4B8_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_p_1d_v4i16_trap
+ Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_P_1D_V4B16_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_p_1d_v4i32_trap
+ Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_P_1D_V4B32_TRAP Int64Regs:$s, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_p_1d_array_i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r),
+ (SUST_P_1D_ARRAY_B8_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_1d_array_i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r),
+ (SUST_P_1D_ARRAY_B16_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_1d_array_i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$r),
+ (SUST_P_1D_ARRAY_B32_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_1d_array_v2i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_P_1D_ARRAY_V2B8_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_1d_array_v2i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int16Regs:$r, Int16Regs:$g),
+ (SUST_P_1D_ARRAY_V2B16_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_1d_array_v2i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$r, Int32Regs:$g),
+ (SUST_P_1D_ARRAY_V2B32_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_1d_array_v4i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_P_1D_ARRAY_V4B8_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_p_1d_array_v4i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_P_1D_ARRAY_V4B16_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_p_1d_array_v4i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_P_1D_ARRAY_V4B32_TRAP Int64Regs:$s, Int32Regs:$l, Int32Regs:$x,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_p_2d_i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_P_2D_B8_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_2d_i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_P_2D_B16_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_2d_i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ (SUST_P_2D_B32_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_2d_v2i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r, Int16Regs:$g),
+ (SUST_P_2D_V2B8_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_2d_v2i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r, Int16Regs:$g),
+ (SUST_P_2D_V2B16_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_2d_v2i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r, Int32Regs:$g),
+ (SUST_P_2D_V2B32_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_2d_v4i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_P_2D_V4B8_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_p_2d_v4i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_P_2D_V4B16_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_p_2d_v4i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_P_2D_V4B32_TRAP Int64Regs:$s, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_p_2d_array_i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_P_2D_ARRAY_B8_TRAP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_2d_array_i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int16Regs:$r),
+ (SUST_P_2D_ARRAY_B16_TRAP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_2d_array_i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r),
+ (SUST_P_2D_ARRAY_B32_TRAP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_2d_array_v2i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_P_2D_ARRAY_V2B8_TRAP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_2d_array_v2i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_P_2D_ARRAY_V2B16_TRAP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_2d_array_v2i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y, Int32Regs:$r,
+ Int32Regs:$g),
+ (SUST_P_2D_ARRAY_V2B32_TRAP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_2d_array_v4i8_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_P_2D_ARRAY_V4B8_TRAP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_p_2d_array_v4i16_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_P_2D_ARRAY_V4B16_TRAP Int64Regs:$s,
+ Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_p_2d_array_v4i32_trap
+ Int64Regs:$s, Int32Regs:$l, Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_P_2D_ARRAY_V4B32_TRAP Int64Regs:$s, Int32Regs:$l,
+ Int32Regs:$x, Int32Regs:$y,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+def : Pat<(int_nvvm_sust_p_3d_i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ (SUST_P_3D_B8_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_3d_i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r),
+ (SUST_P_3D_B16_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_3d_i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r),
+ (SUST_P_3D_B32_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r)>;
+
+def : Pat<(int_nvvm_sust_p_3d_v2i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_P_3D_V2B8_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_3d_v2i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g),
+ (SUST_P_3D_V2B16_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_3d_v2i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g),
+ (SUST_P_3D_V2B32_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g)>;
+
+def : Pat<(int_nvvm_sust_p_3d_v4i8_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_P_3D_V4B8_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_p_3d_v4i16_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a),
+ (SUST_P_3D_V4B16_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int16Regs:$r, Int16Regs:$g, Int16Regs:$b, Int16Regs:$a)>;
+
+def : Pat<(int_nvvm_sust_p_3d_v4i32_trap
+ Int64Regs:$s, Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a),
+ (SUST_P_3D_V4B32_TRAP Int64Regs:$s,
+ Int32Regs:$x, Int32Regs:$y, Int32Regs:$z,
+ Int32Regs:$r, Int32Regs:$g, Int32Regs:$b, Int32Regs:$a)>;
+
+
+
+//===-- Old PTX Back-end Intrinsics ---------------------------------------===//
+
+// These intrinsics are handled to retain compatibility with the old backend.
+
+// PTX Special Purpose Register Accessor Intrinsics
+
+class PTX_READ_SPECIAL_REGISTER_R64<string regname, Intrinsic intop>
+ : NVPTXInst<(outs Int64Regs:$d), (ins),
+ !strconcat(!strconcat("mov.u64\t$d, %", regname), ";"),
+ [(set Int64Regs:$d, (intop))]>;
+
+class PTX_READ_SPECIAL_REGISTER_R32<string regname, Intrinsic intop>
+ : NVPTXInst<(outs Int32Regs:$d), (ins),
+ !strconcat(!strconcat("mov.u32\t$d, %", regname), ";"),
+ [(set Int32Regs:$d, (intop))]>;
+
+// TODO Add read vector-version of special registers
+
+def PTX_READ_TID_X : PTX_READ_SPECIAL_REGISTER_R32<"tid.x",
+ int_ptx_read_tid_x>;
+def PTX_READ_TID_Y : PTX_READ_SPECIAL_REGISTER_R32<"tid.y",
+ int_ptx_read_tid_y>;
+def PTX_READ_TID_Z : PTX_READ_SPECIAL_REGISTER_R32<"tid.z",
+ int_ptx_read_tid_z>;
+def PTX_READ_TID_W : PTX_READ_SPECIAL_REGISTER_R32<"tid.w",
+ int_ptx_read_tid_w>;
+
+def PTX_READ_NTID_X : PTX_READ_SPECIAL_REGISTER_R32<"ntid.x",
+ int_ptx_read_ntid_x>;
+def PTX_READ_NTID_Y : PTX_READ_SPECIAL_REGISTER_R32<"ntid.y",
+ int_ptx_read_ntid_y>;
+def PTX_READ_NTID_Z : PTX_READ_SPECIAL_REGISTER_R32<"ntid.z",
+ int_ptx_read_ntid_z>;
+def PTX_READ_NTID_W : PTX_READ_SPECIAL_REGISTER_R32<"ntid.w",
+ int_ptx_read_ntid_w>;
+
+def PTX_READ_LANEID : PTX_READ_SPECIAL_REGISTER_R32<"laneid",
+ int_ptx_read_laneid>;
+def PTX_READ_WARPID : PTX_READ_SPECIAL_REGISTER_R32<"warpid",
+ int_ptx_read_warpid>;
+def PTX_READ_NWARPID : PTX_READ_SPECIAL_REGISTER_R32<"nwarpid",
+ int_ptx_read_nwarpid>;
+
+def PTX_READ_CTAID_X : PTX_READ_SPECIAL_REGISTER_R32<"ctaid.x",
+ int_ptx_read_ctaid_x>;
+def PTX_READ_CTAID_Y : PTX_READ_SPECIAL_REGISTER_R32<"ctaid.y",
+ int_ptx_read_ctaid_y>;
+def PTX_READ_CTAID_Z : PTX_READ_SPECIAL_REGISTER_R32<"ctaid.z",
+ int_ptx_read_ctaid_z>;
+def PTX_READ_CTAID_W : PTX_READ_SPECIAL_REGISTER_R32<"ctaid.w",
+ int_ptx_read_ctaid_w>;
+
+def PTX_READ_NCTAID_X : PTX_READ_SPECIAL_REGISTER_R32<"nctaid.x",
+ int_ptx_read_nctaid_x>;
+def PTX_READ_NCTAID_Y : PTX_READ_SPECIAL_REGISTER_R32<"nctaid.y",
+ int_ptx_read_nctaid_y>;
+def PTX_READ_NCTAID_Z : PTX_READ_SPECIAL_REGISTER_R32<"nctaid.z",
+ int_ptx_read_nctaid_z>;
+def PTX_READ_NCTAID_W : PTX_READ_SPECIAL_REGISTER_R32<"nctaid.w",
+ int_ptx_read_nctaid_w>;
+
+def PTX_READ_SMID : PTX_READ_SPECIAL_REGISTER_R32<"smid",
+ int_ptx_read_smid>;
+def PTX_READ_NSMID : PTX_READ_SPECIAL_REGISTER_R32<"nsmid",
+ int_ptx_read_nsmid>;
+def PTX_READ_GRIDID : PTX_READ_SPECIAL_REGISTER_R32<"gridid",
+ int_ptx_read_gridid>;
+
+def PTX_READ_LANEMASK_EQ
+ : PTX_READ_SPECIAL_REGISTER_R32<"lanemask_eq", int_ptx_read_lanemask_eq>;
+def PTX_READ_LANEMASK_LE
+ : PTX_READ_SPECIAL_REGISTER_R32<"lanemask_le", int_ptx_read_lanemask_le>;
+def PTX_READ_LANEMASK_LT
+ : PTX_READ_SPECIAL_REGISTER_R32<"lanemask_lt", int_ptx_read_lanemask_lt>;
+def PTX_READ_LANEMASK_GE
+ : PTX_READ_SPECIAL_REGISTER_R32<"lanemask_ge", int_ptx_read_lanemask_ge>;
+def PTX_READ_LANEMASK_GT
+ : PTX_READ_SPECIAL_REGISTER_R32<"lanemask_gt", int_ptx_read_lanemask_gt>;
+
+def PTX_READ_CLOCK
+ : PTX_READ_SPECIAL_REGISTER_R32<"clock", int_ptx_read_clock>;
+def PTX_READ_CLOCK64
+ : PTX_READ_SPECIAL_REGISTER_R64<"clock64", int_ptx_read_clock64>;
+
+def PTX_READ_PM0 : PTX_READ_SPECIAL_REGISTER_R32<"pm0", int_ptx_read_pm0>;
+def PTX_READ_PM1 : PTX_READ_SPECIAL_REGISTER_R32<"pm1", int_ptx_read_pm1>;
+def PTX_READ_PM2 : PTX_READ_SPECIAL_REGISTER_R32<"pm2", int_ptx_read_pm2>;
+def PTX_READ_PM3 : PTX_READ_SPECIAL_REGISTER_R32<"pm3", int_ptx_read_pm3>;
+
+// PTX Parallel Synchronization and Communication Intrinsics
+
+def PTX_BAR_SYNC : NVPTXInst<(outs), (ins i32imm:$i), "bar.sync\t$i;",
+ [(int_ptx_bar_sync imm:$i)]>;
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.cpp
new file mode 100644
index 0000000..f0c3663
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.cpp
@@ -0,0 +1,205 @@
+//===- NVPTXLowerAggrCopies.cpp - ------------------------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// Lower aggregate copies, memset, memcpy, memmov intrinsics into loops when
+// the size is large or is not a compile-time constant.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXLowerAggrCopies.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+
+using namespace llvm;
+
+namespace llvm { FunctionPass *createLowerAggrCopies(); }
+
+char NVPTXLowerAggrCopies::ID = 0;
+
+// Lower MemTransferInst or load-store pair to loop
+static void convertTransferToLoop(
+ Instruction *splitAt, Value *srcAddr, Value *dstAddr, Value *len,
+ //unsigned numLoads,
+ bool srcVolatile, bool dstVolatile, LLVMContext &Context, Function &F) {
+ Type *indType = len->getType();
+
+ BasicBlock *origBB = splitAt->getParent();
+ BasicBlock *newBB = splitAt->getParent()->splitBasicBlock(splitAt, "split");
+ BasicBlock *loopBB = BasicBlock::Create(Context, "loadstoreloop", &F, newBB);
+
+ origBB->getTerminator()->setSuccessor(0, loopBB);
+ IRBuilder<> builder(origBB, origBB->getTerminator());
+
+ // srcAddr and dstAddr are expected to be pointer types,
+ // so no check is made here.
+ unsigned srcAS = dyn_cast<PointerType>(srcAddr->getType())->getAddressSpace();
+ unsigned dstAS = dyn_cast<PointerType>(dstAddr->getType())->getAddressSpace();
+
+ // Cast pointers to (char *)
+ srcAddr = builder.CreateBitCast(srcAddr, Type::getInt8PtrTy(Context, srcAS));
+ dstAddr = builder.CreateBitCast(dstAddr, Type::getInt8PtrTy(Context, dstAS));
+
+ IRBuilder<> loop(loopBB);
+ // The loop index (ind) is a phi node.
+ PHINode *ind = loop.CreatePHI(indType, 0);
+ // Incoming value for ind is 0
+ ind->addIncoming(ConstantInt::get(indType, 0), origBB);
+
+ // load from srcAddr+ind
+ Value *val = loop.CreateLoad(loop.CreateGEP(srcAddr, ind), srcVolatile);
+ // store at dstAddr+ind
+ loop.CreateStore(val, loop.CreateGEP(dstAddr, ind), dstVolatile);
+
+ // The value for ind coming from backedge is (ind + 1)
+ Value *newind = loop.CreateAdd(ind, ConstantInt::get(indType, 1));
+ ind->addIncoming(newind, loopBB);
+
+ loop.CreateCondBr(loop.CreateICmpULT(newind, len), loopBB, newBB);
+}
+
+// Lower MemSetInst to loop
+static void convertMemSetToLoop(Instruction *splitAt, Value *dstAddr,
+ Value *len, Value *val, LLVMContext &Context,
+ Function &F) {
+ BasicBlock *origBB = splitAt->getParent();
+ BasicBlock *newBB = splitAt->getParent()->splitBasicBlock(splitAt, "split");
+ BasicBlock *loopBB = BasicBlock::Create(Context, "loadstoreloop", &F, newBB);
+
+ origBB->getTerminator()->setSuccessor(0, loopBB);
+ IRBuilder<> builder(origBB, origBB->getTerminator());
+
+ unsigned dstAS = dyn_cast<PointerType>(dstAddr->getType())->getAddressSpace();
+
+ // Cast pointer to the type of value getting stored
+ dstAddr =
+ builder.CreateBitCast(dstAddr, PointerType::get(val->getType(), dstAS));
+
+ IRBuilder<> loop(loopBB);
+ PHINode *ind = loop.CreatePHI(len->getType(), 0);
+ ind->addIncoming(ConstantInt::get(len->getType(), 0), origBB);
+
+ loop.CreateStore(val, loop.CreateGEP(dstAddr, ind), false);
+
+ Value *newind = loop.CreateAdd(ind, ConstantInt::get(len->getType(), 1));
+ ind->addIncoming(newind, loopBB);
+
+ loop.CreateCondBr(loop.CreateICmpULT(newind, len), loopBB, newBB);
+}
+
+bool NVPTXLowerAggrCopies::runOnFunction(Function &F) {
+ SmallVector<LoadInst *, 4> aggrLoads;
+ SmallVector<MemTransferInst *, 4> aggrMemcpys;
+ SmallVector<MemSetInst *, 4> aggrMemsets;
+
+ const DataLayout *DL = &getAnalysis<DataLayoutPass>().getDataLayout();
+ LLVMContext &Context = F.getParent()->getContext();
+
+ //
+ // Collect all the aggrLoads, aggrMemcpys and addrMemsets.
+ //
+ //const BasicBlock *firstBB = &F.front(); // first BB in F
+ for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
+ //BasicBlock *bb = BI;
+ for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
+ ++II) {
+ if (LoadInst *load = dyn_cast<LoadInst>(II)) {
+
+ if (load->hasOneUse() == false)
+ continue;
+
+ if (DL->getTypeStoreSize(load->getType()) < MaxAggrCopySize)
+ continue;
+
+ User *use = load->user_back();
+ if (StoreInst *store = dyn_cast<StoreInst>(use)) {
+ if (store->getOperand(0) != load) //getValueOperand
+ continue;
+ aggrLoads.push_back(load);
+ }
+ } else if (MemTransferInst *intr = dyn_cast<MemTransferInst>(II)) {
+ Value *len = intr->getLength();
+ // If the number of elements being copied is greater
+ // than MaxAggrCopySize, lower it to a loop
+ if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) {
+ if (len_int->getZExtValue() >= MaxAggrCopySize) {
+ aggrMemcpys.push_back(intr);
+ }
+ } else {
+ // turn variable length memcpy/memmov into loop
+ aggrMemcpys.push_back(intr);
+ }
+ } else if (MemSetInst *memsetintr = dyn_cast<MemSetInst>(II)) {
+ Value *len = memsetintr->getLength();
+ if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) {
+ if (len_int->getZExtValue() >= MaxAggrCopySize) {
+ aggrMemsets.push_back(memsetintr);
+ }
+ } else {
+ // turn variable length memset into loop
+ aggrMemsets.push_back(memsetintr);
+ }
+ }
+ }
+ }
+ if ((aggrLoads.size() == 0) && (aggrMemcpys.size() == 0) &&
+ (aggrMemsets.size() == 0))
+ return false;
+
+ //
+ // Do the transformation of an aggr load/copy/set to a loop
+ //
+ for (unsigned i = 0, e = aggrLoads.size(); i != e; ++i) {
+ LoadInst *load = aggrLoads[i];
+ StoreInst *store = dyn_cast<StoreInst>(*load->user_begin());
+ Value *srcAddr = load->getOperand(0);
+ Value *dstAddr = store->getOperand(1);
+ unsigned numLoads = DL->getTypeStoreSize(load->getType());
+ Value *len = ConstantInt::get(Type::getInt32Ty(Context), numLoads);
+
+ convertTransferToLoop(store, srcAddr, dstAddr, len, load->isVolatile(),
+ store->isVolatile(), Context, F);
+
+ store->eraseFromParent();
+ load->eraseFromParent();
+ }
+
+ for (unsigned i = 0, e = aggrMemcpys.size(); i != e; ++i) {
+ MemTransferInst *cpy = aggrMemcpys[i];
+ Value *len = cpy->getLength();
+ // llvm 2.7 version of memcpy does not have volatile
+ // operand yet. So always making it non-volatile
+ // optimistically, so that we don't see unnecessary
+ // st.volatile in ptx
+ convertTransferToLoop(cpy, cpy->getSource(), cpy->getDest(), len, false,
+ false, Context, F);
+ cpy->eraseFromParent();
+ }
+
+ for (unsigned i = 0, e = aggrMemsets.size(); i != e; ++i) {
+ MemSetInst *memsetinst = aggrMemsets[i];
+ Value *len = memsetinst->getLength();
+ Value *val = memsetinst->getValue();
+ convertMemSetToLoop(memsetinst, memsetinst->getDest(), len, val, Context,
+ F);
+ memsetinst->eraseFromParent();
+ }
+
+ return true;
+}
+
+FunctionPass *llvm::createLowerAggrCopies() {
+ return new NVPTXLowerAggrCopies();
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.h b/contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.h
new file mode 100644
index 0000000..5ec1fc9
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.h
@@ -0,0 +1,48 @@
+//===-- llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.h ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the NVIDIA specific lowering of
+// aggregate copies
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTX_LOWER_AGGR_COPIES_H
+#define NVPTX_LOWER_AGGR_COPIES_H
+
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Pass.h"
+
+namespace llvm {
+
+// actual analysis class, which is a functionpass
+struct NVPTXLowerAggrCopies : public FunctionPass {
+ static char ID;
+
+ NVPTXLowerAggrCopies() : FunctionPass(ID) {}
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DataLayoutPass>();
+ AU.addPreserved("stack-protector");
+ AU.addPreserved<MachineFunctionAnalysis>();
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ static const unsigned MaxAggrCopySize = 128;
+
+ const char *getPassName() const override {
+ return "Lower aggregate copies/intrinsics into loops";
+ }
+};
+
+extern FunctionPass *createLowerAggrCopies();
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.cpp
new file mode 100644
index 0000000..137248b
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.cpp
@@ -0,0 +1,47 @@
+//===-- NVPTXMCExpr.cpp - NVPTX specific MC expression classes ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXMCExpr.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "nvptx-mcexpr"
+
+const NVPTXFloatMCExpr*
+NVPTXFloatMCExpr::Create(VariantKind Kind, APFloat Flt, MCContext &Ctx) {
+ return new (Ctx) NVPTXFloatMCExpr(Kind, Flt);
+}
+
+void NVPTXFloatMCExpr::PrintImpl(raw_ostream &OS) const {
+ bool Ignored;
+ unsigned NumHex;
+ APFloat APF = getAPFloat();
+
+ switch (Kind) {
+ default: llvm_unreachable("Invalid kind!");
+ case VK_NVPTX_SINGLE_PREC_FLOAT:
+ OS << "0f";
+ NumHex = 8;
+ APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Ignored);
+ break;
+ case VK_NVPTX_DOUBLE_PREC_FLOAT:
+ OS << "0d";
+ NumHex = 16;
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Ignored);
+ break;
+ }
+
+ APInt API = APF.bitcastToAPInt();
+ std::string HexStr(utohexstr(API.getZExtValue()));
+ if (HexStr.length() < NumHex)
+ OS << std::string(NumHex - HexStr.length(), '0');
+ OS << utohexstr(API.getZExtValue());
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.h b/contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.h
new file mode 100644
index 0000000..5547649
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.h
@@ -0,0 +1,83 @@
+//===-- NVPTXMCExpr.h - NVPTX specific MC expression classes ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// Modeled after ARMMCExpr
+
+#ifndef NVPTXMCEXPR_H
+#define NVPTXMCEXPR_H
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/MC/MCExpr.h"
+
+namespace llvm {
+
+class NVPTXFloatMCExpr : public MCTargetExpr {
+public:
+ enum VariantKind {
+ VK_NVPTX_None,
+ VK_NVPTX_SINGLE_PREC_FLOAT, // FP constant in single-precision
+ VK_NVPTX_DOUBLE_PREC_FLOAT // FP constant in double-precision
+ };
+
+private:
+ const VariantKind Kind;
+ const APFloat Flt;
+
+ explicit NVPTXFloatMCExpr(VariantKind _Kind, APFloat _Flt)
+ : Kind(_Kind), Flt(_Flt) {}
+
+public:
+ /// @name Construction
+ /// @{
+
+ static const NVPTXFloatMCExpr *Create(VariantKind Kind, APFloat Flt,
+ MCContext &Ctx);
+
+ static const NVPTXFloatMCExpr *CreateConstantFPSingle(APFloat Flt,
+ MCContext &Ctx) {
+ return Create(VK_NVPTX_SINGLE_PREC_FLOAT, Flt, Ctx);
+ }
+
+ static const NVPTXFloatMCExpr *CreateConstantFPDouble(APFloat Flt,
+ MCContext &Ctx) {
+ return Create(VK_NVPTX_DOUBLE_PREC_FLOAT, Flt, Ctx);
+ }
+
+ /// @}
+ /// @name Accessors
+ /// @{
+
+ /// getOpcode - Get the kind of this expression.
+ VariantKind getKind() const { return Kind; }
+
+ /// getSubExpr - Get the child of this expression.
+ APFloat getAPFloat() const { return Flt; }
+
+/// @}
+
+ void PrintImpl(raw_ostream &OS) const override;
+ bool EvaluateAsRelocatableImpl(MCValue &Res,
+ const MCAsmLayout *Layout) const override {
+ return false;
+ }
+ void visitUsedExpr(MCStreamer &Streamer) const override {};
+ const MCSection *FindAssociatedSection() const override {
+ return nullptr;
+ }
+
+ // There are no TLS NVPTXMCExprs at the moment.
+ void fixELFSymbolsInTLSFixups(MCAssembler &Asm) const override {}
+
+ static bool classof(const MCExpr *E) {
+ return E->getKind() == MCExpr::Target;
+ }
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXMachineFunctionInfo.h b/contrib/llvm/lib/Target/NVPTX/NVPTXMachineFunctionInfo.h
new file mode 100644
index 0000000..67fb390
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXMachineFunctionInfo.h
@@ -0,0 +1,46 @@
+//===-- NVPTXMachineFunctionInfo.h - NVPTX-specific Function Info --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class is attached to a MachineFunction instance and tracks target-
+// dependent information
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/MachineFunction.h"
+
+namespace llvm {
+class NVPTXMachineFunctionInfo : public MachineFunctionInfo {
+private:
+ /// Stores a mapping from index to symbol name for removing image handles
+ /// on Fermi.
+ SmallVector<std::string, 8> ImageHandleList;
+
+public:
+ NVPTXMachineFunctionInfo(MachineFunction &MF) {}
+
+ /// Returns the index for the symbol \p Symbol. If the symbol was previously,
+ /// added, the same index is returned. Otherwise, the symbol is added and the
+ /// new index is returned.
+ unsigned getImageHandleSymbolIndex(const char *Symbol) {
+ // Is the symbol already present?
+ for (unsigned i = 0, e = ImageHandleList.size(); i != e; ++i)
+ if (ImageHandleList[i] == std::string(Symbol))
+ return i;
+ // Nope, insert it
+ ImageHandleList.push_back(Symbol);
+ return ImageHandleList.size()-1;
+ }
+
+ /// Returns the symbol name at the given index.
+ const char *getImageHandleSymbol(unsigned Idx) const {
+ assert(ImageHandleList.size() > Idx && "Bad index");
+ return ImageHandleList[Idx].c_str();
+ }
+};
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXPrologEpilogPass.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXPrologEpilogPass.cpp
new file mode 100644
index 0000000..348ab0c
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXPrologEpilogPass.cpp
@@ -0,0 +1,227 @@
+//===-- NVPTXPrologEpilogPass.cpp - NVPTX prolog/epilog inserter ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a copy of the generic LLVM PrologEpilogInserter pass, modified
+// to remove unneeded functionality and to handle virtual registers. Most code
+// here is a copy of PrologEpilogInserter.cpp.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTX.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "nvptx-prolog-epilog"
+
+namespace {
+class NVPTXPrologEpilogPass : public MachineFunctionPass {
+public:
+ static char ID;
+ NVPTXPrologEpilogPass() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+private:
+ void calculateFrameObjectOffsets(MachineFunction &Fn);
+};
+}
+
+MachineFunctionPass *llvm::createNVPTXPrologEpilogPass() {
+ return new NVPTXPrologEpilogPass();
+}
+
+char NVPTXPrologEpilogPass::ID = 0;
+
+bool NVPTXPrologEpilogPass::runOnMachineFunction(MachineFunction &MF) {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetFrameLowering &TFI = *TM.getFrameLowering();
+ const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
+ bool Modified = false;
+
+ calculateFrameObjectOffsets(MF);
+
+ for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) {
+ for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
+ MachineInstr *MI = I;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ if (!MI->getOperand(i).isFI())
+ continue;
+ TRI.eliminateFrameIndex(MI, 0, i, nullptr);
+ Modified = true;
+ }
+ }
+ }
+
+ // Add function prolog/epilog
+ TFI.emitPrologue(MF);
+
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
+ // If last instruction is a return instruction, add an epilogue
+ if (!I->empty() && I->back().isReturn())
+ TFI.emitEpilogue(MF, *I);
+ }
+
+ return Modified;
+}
+
+/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
+static inline void
+AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx,
+ bool StackGrowsDown, int64_t &Offset,
+ unsigned &MaxAlign) {
+ // If the stack grows down, add the object size to find the lowest address.
+ if (StackGrowsDown)
+ Offset += MFI->getObjectSize(FrameIdx);
+
+ unsigned Align = MFI->getObjectAlignment(FrameIdx);
+
+ // If the alignment of this object is greater than that of the stack, then
+ // increase the stack alignment to match.
+ MaxAlign = std::max(MaxAlign, Align);
+
+ // Adjust to alignment boundary.
+ Offset = (Offset + Align - 1) / Align * Align;
+
+ if (StackGrowsDown) {
+ DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset << "]\n");
+ MFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset
+ } else {
+ DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset << "]\n");
+ MFI->setObjectOffset(FrameIdx, Offset);
+ Offset += MFI->getObjectSize(FrameIdx);
+ }
+}
+
+void
+NVPTXPrologEpilogPass::calculateFrameObjectOffsets(MachineFunction &Fn) {
+ const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering();
+ const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
+
+ bool StackGrowsDown =
+ TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
+
+ // Loop over all of the stack objects, assigning sequential addresses...
+ MachineFrameInfo *MFI = Fn.getFrameInfo();
+
+ // Start at the beginning of the local area.
+ // The Offset is the distance from the stack top in the direction
+ // of stack growth -- so it's always nonnegative.
+ int LocalAreaOffset = TFI.getOffsetOfLocalArea();
+ if (StackGrowsDown)
+ LocalAreaOffset = -LocalAreaOffset;
+ assert(LocalAreaOffset >= 0
+ && "Local area offset should be in direction of stack growth");
+ int64_t Offset = LocalAreaOffset;
+
+ // If there are fixed sized objects that are preallocated in the local area,
+ // non-fixed objects can't be allocated right at the start of local area.
+ // We currently don't support filling in holes in between fixed sized
+ // objects, so we adjust 'Offset' to point to the end of last fixed sized
+ // preallocated object.
+ for (int i = MFI->getObjectIndexBegin(); i != 0; ++i) {
+ int64_t FixedOff;
+ if (StackGrowsDown) {
+ // The maximum distance from the stack pointer is at lower address of
+ // the object -- which is given by offset. For down growing stack
+ // the offset is negative, so we negate the offset to get the distance.
+ FixedOff = -MFI->getObjectOffset(i);
+ } else {
+ // The maximum distance from the start pointer is at the upper
+ // address of the object.
+ FixedOff = MFI->getObjectOffset(i) + MFI->getObjectSize(i);
+ }
+ if (FixedOff > Offset) Offset = FixedOff;
+ }
+
+ // NOTE: We do not have a call stack
+
+ unsigned MaxAlign = MFI->getMaxAlignment();
+
+ // No scavenger
+
+ // FIXME: Once this is working, then enable flag will change to a target
+ // check for whether the frame is large enough to want to use virtual
+ // frame index registers. Functions which don't want/need this optimization
+ // will continue to use the existing code path.
+ if (MFI->getUseLocalStackAllocationBlock()) {
+ unsigned Align = MFI->getLocalFrameMaxAlign();
+
+ // Adjust to alignment boundary.
+ Offset = (Offset + Align - 1) / Align * Align;
+
+ DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n");
+
+ // Resolve offsets for objects in the local block.
+ for (unsigned i = 0, e = MFI->getLocalFrameObjectCount(); i != e; ++i) {
+ std::pair<int, int64_t> Entry = MFI->getLocalFrameObjectMap(i);
+ int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second;
+ DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" <<
+ FIOffset << "]\n");
+ MFI->setObjectOffset(Entry.first, FIOffset);
+ }
+ // Allocate the local block
+ Offset += MFI->getLocalFrameSize();
+
+ MaxAlign = std::max(Align, MaxAlign);
+ }
+
+ // No stack protector
+
+ // Then assign frame offsets to stack objects that are not used to spill
+ // callee saved registers.
+ for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
+ if (MFI->isObjectPreAllocated(i) &&
+ MFI->getUseLocalStackAllocationBlock())
+ continue;
+ if (MFI->isDeadObjectIndex(i))
+ continue;
+
+ AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign);
+ }
+
+ // No scavenger
+
+ if (!TFI.targetHandlesStackFrameRounding()) {
+ // If we have reserved argument space for call sites in the function
+ // immediately on entry to the current function, count it as part of the
+ // overall stack size.
+ if (MFI->adjustsStack() && TFI.hasReservedCallFrame(Fn))
+ Offset += MFI->getMaxCallFrameSize();
+
+ // Round up the size to a multiple of the alignment. If the function has
+ // any calls or alloca's, align to the target's StackAlignment value to
+ // ensure that the callee's frame or the alloca data is suitably aligned;
+ // otherwise, for leaf functions, align to the TransientStackAlignment
+ // value.
+ unsigned StackAlign;
+ if (MFI->adjustsStack() || MFI->hasVarSizedObjects() ||
+ (RegInfo->needsStackRealignment(Fn) && MFI->getObjectIndexEnd() != 0))
+ StackAlign = TFI.getStackAlignment();
+ else
+ StackAlign = TFI.getTransientStackAlignment();
+
+ // If the frame pointer is eliminated, all frame offsets will be relative to
+ // SP not FP. Align to MaxAlign so this works.
+ StackAlign = std::max(StackAlign, MaxAlign);
+ unsigned AlignMask = StackAlign - 1;
+ Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
+ }
+
+ // Update frame info to pretend that this is part of the stack...
+ int64_t StackSize = Offset - LocalAreaOffset;
+ MFI->setStackSize(StackSize);
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.cpp
new file mode 100644
index 0000000..358ccce
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.cpp
@@ -0,0 +1,111 @@
+//===- NVPTXRegisterInfo.cpp - NVPTX Register Information -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the NVPTX implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXRegisterInfo.h"
+#include "NVPTX.h"
+#include "NVPTXSubtarget.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "nvptx-reg-info"
+
+namespace llvm {
+std::string getNVPTXRegClassName(TargetRegisterClass const *RC) {
+ if (RC == &NVPTX::Float32RegsRegClass) {
+ return ".f32";
+ }
+ if (RC == &NVPTX::Float64RegsRegClass) {
+ return ".f64";
+ } else if (RC == &NVPTX::Int64RegsRegClass) {
+ return ".s64";
+ } else if (RC == &NVPTX::Int32RegsRegClass) {
+ return ".s32";
+ } else if (RC == &NVPTX::Int16RegsRegClass) {
+ return ".s16";
+ } else if (RC == &NVPTX::Int1RegsRegClass) {
+ return ".pred";
+ } else if (RC == &NVPTX::SpecialRegsRegClass) {
+ return "!Special!";
+ } else {
+ return "INTERNAL";
+ }
+ return "";
+}
+
+std::string getNVPTXRegClassStr(TargetRegisterClass const *RC) {
+ if (RC == &NVPTX::Float32RegsRegClass) {
+ return "%f";
+ }
+ if (RC == &NVPTX::Float64RegsRegClass) {
+ return "%fd";
+ } else if (RC == &NVPTX::Int64RegsRegClass) {
+ return "%rd";
+ } else if (RC == &NVPTX::Int32RegsRegClass) {
+ return "%r";
+ } else if (RC == &NVPTX::Int16RegsRegClass) {
+ return "%rs";
+ } else if (RC == &NVPTX::Int1RegsRegClass) {
+ return "%p";
+ } else if (RC == &NVPTX::SpecialRegsRegClass) {
+ return "!Special!";
+ } else {
+ return "INTERNAL";
+ }
+ return "";
+}
+}
+
+NVPTXRegisterInfo::NVPTXRegisterInfo(const NVPTXSubtarget &st)
+ : NVPTXGenRegisterInfo(0), Is64Bit(st.is64Bit()) {}
+
+#define GET_REGINFO_TARGET_DESC
+#include "NVPTXGenRegisterInfo.inc"
+
+/// NVPTX Callee Saved Registers
+const MCPhysReg *
+NVPTXRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ static const MCPhysReg CalleeSavedRegs[] = { 0 };
+ return CalleeSavedRegs;
+}
+
+BitVector NVPTXRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ BitVector Reserved(getNumRegs());
+ return Reserved;
+}
+
+void NVPTXRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ assert(SPAdj == 0 && "Unexpected");
+
+ MachineInstr &MI = *II;
+ int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
+
+ MachineFunction &MF = *MI.getParent()->getParent();
+ int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
+ MI.getOperand(FIOperandNum + 1).getImm();
+
+ // Using I0 as the frame pointer
+ MI.getOperand(FIOperandNum).ChangeToRegister(NVPTX::VRFrame, false);
+ MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
+}
+
+unsigned NVPTXRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
+ return NVPTX::VRFrame;
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.h b/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.h
new file mode 100644
index 0000000..a7594be
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.h
@@ -0,0 +1,72 @@
+//===- NVPTXRegisterInfo.h - NVPTX Register Information Impl ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the NVPTX implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTXREGISTERINFO_H
+#define NVPTXREGISTERINFO_H
+
+#include "ManagedStringPool.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <sstream>
+
+#define GET_REGINFO_HEADER
+#include "NVPTXGenRegisterInfo.inc"
+
+namespace llvm {
+
+// Forward Declarations.
+class TargetInstrInfo;
+class NVPTXSubtarget;
+
+class NVPTXRegisterInfo : public NVPTXGenRegisterInfo {
+private:
+ bool Is64Bit;
+ // Hold Strings that can be free'd all together with NVPTXRegisterInfo
+ ManagedStringPool ManagedStrPool;
+
+public:
+ NVPTXRegisterInfo(const NVPTXSubtarget &st);
+
+ //------------------------------------------------------
+ // Pure virtual functions from TargetRegisterInfo
+ //------------------------------------------------------
+
+ // NVPTX callee saved registers
+ const MCPhysReg *
+ getCalleeSavedRegs(const MachineFunction *MF = nullptr) const override;
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+
+ void eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj,
+ unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const override;
+
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+
+ ManagedStringPool *getStrPool() const {
+ return const_cast<ManagedStringPool *>(&ManagedStrPool);
+ }
+
+ const char *getName(unsigned RegNo) const {
+ std::stringstream O;
+ O << "reg" << RegNo;
+ return getStrPool()->getManagedString(O.str().c_str())->c_str();
+ }
+
+};
+
+std::string getNVPTXRegClassName(const TargetRegisterClass *RC);
+std::string getNVPTXRegClassStr(const TargetRegisterClass *RC);
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.td b/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.td
new file mode 100644
index 0000000..efcee6b
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.td
@@ -0,0 +1,69 @@
+//===-- NVPTXRegisterInfo.td - NVPTX Register defs ---------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Declarations that describe the PTX register file
+//===----------------------------------------------------------------------===//
+
+class NVPTXReg<string n> : Register<n> {
+ let Namespace = "NVPTX";
+}
+
+class NVPTXRegClass<list<ValueType> regTypes, int alignment, dag regList>
+ : RegisterClass <"NVPTX", regTypes, alignment, regList>;
+
+//===----------------------------------------------------------------------===//
+// Registers
+//===----------------------------------------------------------------------===//
+
+// Special Registers used as stack pointer
+def VRFrame : NVPTXReg<"%SP">;
+def VRFrameLocal : NVPTXReg<"%SPL">;
+
+// Special Registers used as the stack
+def VRDepot : NVPTXReg<"%Depot">;
+
+// We use virtual registers, but define a few physical registers here to keep
+// SDAG and the MachineInstr layers happy.
+foreach i = 0-4 in {
+ def P#i : NVPTXReg<"%p"#i>; // Predicate
+ def RS#i : NVPTXReg<"%rs"#i>; // 16-bit
+ def R#i : NVPTXReg<"%r"#i>; // 32-bit
+ def RL#i : NVPTXReg<"%rd"#i>; // 64-bit
+ def F#i : NVPTXReg<"%f"#i>; // 32-bit float
+ def FL#i : NVPTXReg<"%fd"#i>; // 64-bit float
+
+ // Arguments
+ def ia#i : NVPTXReg<"%ia"#i>;
+ def la#i : NVPTXReg<"%la"#i>;
+ def fa#i : NVPTXReg<"%fa"#i>;
+ def da#i : NVPTXReg<"%da"#i>;
+}
+
+foreach i = 0-31 in {
+ def ENVREG#i : NVPTXReg<"%envreg"#i>;
+}
+
+//===----------------------------------------------------------------------===//
+// Register classes
+//===----------------------------------------------------------------------===//
+def Int1Regs : NVPTXRegClass<[i1], 8, (add (sequence "P%u", 0, 4))>;
+def Int16Regs : NVPTXRegClass<[i16], 16, (add (sequence "RS%u", 0, 4))>;
+def Int32Regs : NVPTXRegClass<[i32], 32, (add (sequence "R%u", 0, 4))>;
+def Int64Regs : NVPTXRegClass<[i64], 64, (add (sequence "RL%u", 0, 4))>;
+def Float32Regs : NVPTXRegClass<[f32], 32, (add (sequence "F%u", 0, 4))>;
+def Float64Regs : NVPTXRegClass<[f64], 64, (add (sequence "FL%u", 0, 4))>;
+def Int32ArgRegs : NVPTXRegClass<[i32], 32, (add (sequence "ia%u", 0, 4))>;
+def Int64ArgRegs : NVPTXRegClass<[i64], 64, (add (sequence "la%u", 0, 4))>;
+def Float32ArgRegs : NVPTXRegClass<[f32], 32, (add (sequence "fa%u", 0, 4))>;
+def Float64ArgRegs : NVPTXRegClass<[f64], 64, (add (sequence "da%u", 0, 4))>;
+
+// Read NVPTXRegisterInfo.cpp to see how VRFrame and VRDepot are used.
+def SpecialRegs : NVPTXRegClass<[i32], 32, (add VRFrame, VRDepot,
+ (sequence "ENVREG%u", 0, 31))>;
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXReplaceImageHandles.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXReplaceImageHandles.cpp
new file mode 100644
index 0000000..20d4e27
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXReplaceImageHandles.cpp
@@ -0,0 +1,189 @@
+//===-- NVPTXReplaceImageHandles.cpp - Replace image handles for Fermi ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// On Fermi, image handles are not supported. To work around this, we traverse
+// the machine code and replace image handles with concrete symbols. For this
+// to work reliably, inlining of all function call must be performed.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTX.h"
+#include "NVPTXMachineFunctionInfo.h"
+#include "NVPTXSubtarget.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/DenseSet.h"
+
+using namespace llvm;
+
+namespace {
+class NVPTXReplaceImageHandles : public MachineFunctionPass {
+private:
+ static char ID;
+ DenseSet<MachineInstr *> InstrsToRemove;
+
+public:
+ NVPTXReplaceImageHandles();
+
+ bool runOnMachineFunction(MachineFunction &MF);
+
+ virtual const char *getPassName() const {
+ return "NVPTX Replace Image Handles";
+ }
+private:
+ bool processInstr(MachineInstr &MI);
+ void replaceImageHandle(MachineOperand &Op, MachineFunction &MF);
+ bool findIndexForHandle(MachineOperand &Op, MachineFunction &MF,
+ unsigned &Idx);
+};
+}
+
+char NVPTXReplaceImageHandles::ID = 0;
+
+NVPTXReplaceImageHandles::NVPTXReplaceImageHandles()
+ : MachineFunctionPass(ID) {}
+
+bool NVPTXReplaceImageHandles::runOnMachineFunction(MachineFunction &MF) {
+ bool Changed = false;
+ InstrsToRemove.clear();
+
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
+ ++BI) {
+ for (MachineBasicBlock::iterator I = (*BI).begin(), E = (*BI).end();
+ I != E; ++I) {
+ MachineInstr &MI = *I;
+ Changed |= processInstr(MI);
+ }
+ }
+
+ // Now clean up any handle-access instructions
+ // This is needed in debug mode when code cleanup passes are not executed,
+ // but we need the handle access to be eliminated because they are not
+ // valid instructions when image handles are disabled.
+ for (DenseSet<MachineInstr *>::iterator I = InstrsToRemove.begin(),
+ E = InstrsToRemove.end(); I != E; ++I) {
+ (*I)->eraseFromParent();
+ }
+ return Changed;
+}
+
+bool NVPTXReplaceImageHandles::processInstr(MachineInstr &MI) {
+ MachineFunction &MF = *MI.getParent()->getParent();
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ if (MCID.TSFlags & NVPTXII::IsTexFlag) {
+ // This is a texture fetch, so operand 4 is a texref and operand 5 is
+ // a samplerref
+ MachineOperand &TexHandle = MI.getOperand(4);
+ replaceImageHandle(TexHandle, MF);
+
+ if (!(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) {
+ MachineOperand &SampHandle = MI.getOperand(5);
+ replaceImageHandle(SampHandle, MF);
+ }
+
+ return true;
+ } else if (MCID.TSFlags & NVPTXII::IsSuldMask) {
+ unsigned VecSize =
+ 1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1);
+
+ // For a surface load of vector size N, the Nth operand will be the surfref
+ MachineOperand &SurfHandle = MI.getOperand(VecSize);
+
+ replaceImageHandle(SurfHandle, MF);
+
+ return true;
+ } else if (MCID.TSFlags & NVPTXII::IsSustFlag) {
+ // This is a surface store, so operand 0 is a surfref
+ MachineOperand &SurfHandle = MI.getOperand(0);
+
+ replaceImageHandle(SurfHandle, MF);
+
+ return true;
+ } else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) {
+ // This is a query, so operand 1 is a surfref/texref
+ MachineOperand &Handle = MI.getOperand(1);
+
+ replaceImageHandle(Handle, MF);
+
+ return true;
+ }
+
+ return false;
+}
+
+void NVPTXReplaceImageHandles::
+replaceImageHandle(MachineOperand &Op, MachineFunction &MF) {
+ unsigned Idx;
+ if (findIndexForHandle(Op, MF, Idx)) {
+ Op.ChangeToImmediate(Idx);
+ }
+}
+
+bool NVPTXReplaceImageHandles::
+findIndexForHandle(MachineOperand &Op, MachineFunction &MF, unsigned &Idx) {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ NVPTXMachineFunctionInfo *MFI = MF.getInfo<NVPTXMachineFunctionInfo>();
+
+ assert(Op.isReg() && "Handle is not in a reg?");
+
+ // Which instruction defines the handle?
+ MachineInstr &TexHandleDef = *MRI.getVRegDef(Op.getReg());
+
+ switch (TexHandleDef.getOpcode()) {
+ case NVPTX::LD_i64_avar: {
+ // The handle is a parameter value being loaded, replace with the
+ // parameter symbol
+ const NVPTXSubtarget &ST = MF.getTarget().getSubtarget<NVPTXSubtarget>();
+ if (ST.getDrvInterface() == NVPTX::CUDA) {
+ // For CUDA, we preserve the param loads coming from function arguments
+ return false;
+ }
+
+ assert(TexHandleDef.getOperand(6).isSymbol() && "Load is not a symbol!");
+ StringRef Sym = TexHandleDef.getOperand(6).getSymbolName();
+ std::string ParamBaseName = MF.getName();
+ ParamBaseName += "_param_";
+ assert(Sym.startswith(ParamBaseName) && "Invalid symbol reference");
+ unsigned Param = atoi(Sym.data()+ParamBaseName.size());
+ std::string NewSym;
+ raw_string_ostream NewSymStr(NewSym);
+ NewSymStr << MF.getFunction()->getName() << "_param_" << Param;
+
+ InstrsToRemove.insert(&TexHandleDef);
+ Idx = MFI->getImageHandleSymbolIndex(NewSymStr.str().c_str());
+ return true;
+ }
+ case NVPTX::texsurf_handles: {
+ // The handle is a global variable, replace with the global variable name
+ assert(TexHandleDef.getOperand(1).isGlobal() && "Load is not a global!");
+ const GlobalValue *GV = TexHandleDef.getOperand(1).getGlobal();
+ assert(GV->hasName() && "Global sampler must be named!");
+ InstrsToRemove.insert(&TexHandleDef);
+ Idx = MFI->getImageHandleSymbolIndex(GV->getName().data());
+ return true;
+ }
+ case NVPTX::nvvm_move_i64:
+ case TargetOpcode::COPY: {
+ bool Res = findIndexForHandle(TexHandleDef.getOperand(1), MF, Idx);
+ if (Res) {
+ InstrsToRemove.insert(&TexHandleDef);
+ }
+ return Res;
+ }
+ default:
+ llvm_unreachable("Unknown instruction operating on handle");
+ }
+}
+
+MachineFunctionPass *llvm::createNVPTXReplaceImageHandlesPass() {
+ return new NVPTXReplaceImageHandles();
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXSection.h b/contrib/llvm/lib/Target/NVPTX/NVPTXSection.h
new file mode 100644
index 0000000..aa0436b
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXSection.h
@@ -0,0 +1,48 @@
+//===- NVPTXSection.h - NVPTX-specific section representation -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the NVPTXSection class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_NVPTXSECTION_H
+#define LLVM_NVPTXSECTION_H
+
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/MC/MCSection.h"
+#include <vector>
+
+namespace llvm {
+/// NVPTXSection - Represents a section in PTX
+/// PTX does not have sections. We create this class in order to use
+/// the ASMPrint interface.
+///
+class NVPTXSection : public MCSection {
+ virtual void anchor();
+public:
+ NVPTXSection(SectionVariant V, SectionKind K) : MCSection(V, K) {}
+ virtual ~NVPTXSection() {}
+
+ /// Override this as NVPTX has its own way of printing switching
+ /// to a section.
+ void PrintSwitchToSection(const MCAsmInfo &MAI,
+ raw_ostream &OS,
+ const MCExpr *Subsection) const override {}
+
+ /// Base address of PTX sections is zero.
+ bool isBaseAddressKnownZero() const override { return true; }
+ bool UseCodeAlign() const override { return false; }
+ bool isVirtualSection() const override { return false; }
+ std::string getLabelBeginName() const override { return ""; }
+ std::string getLabelEndName() const override { return ""; }
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.cpp
new file mode 100644
index 0000000..d5cded2
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.cpp
@@ -0,0 +1,70 @@
+//===- NVPTXSubtarget.cpp - NVPTX Subtarget Information -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the NVPTX specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXSubtarget.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "nvptx-subtarget"
+
+#define GET_SUBTARGETINFO_ENUM
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#include "NVPTXGenSubtargetInfo.inc"
+
+// Pin the vtable to this file.
+void NVPTXSubtarget::anchor() {}
+
+static std::string computeDataLayout(bool is64Bit) {
+ std::string Ret = "e";
+
+ if (!is64Bit)
+ Ret += "-p:32:32";
+
+ Ret += "-i64:64-v16:16-v32:32-n16:32:64";
+
+ return Ret;
+}
+
+NVPTXSubtarget &NVPTXSubtarget::initializeSubtargetDependencies(StringRef CPU,
+ StringRef FS) {
+ // Provide the default CPU if we don't have one.
+ if (CPU.empty() && FS.size())
+ llvm_unreachable("we are not using FeatureStr");
+ TargetName = CPU.empty() ? "sm_20" : CPU;
+
+ ParseSubtargetFeatures(TargetName, FS);
+
+ // Set default to PTX 3.2 (CUDA 5.5)
+ if (PTXVersion == 0) {
+ PTXVersion = 32;
+ }
+
+ return *this;
+}
+
+NVPTXSubtarget::NVPTXSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, const TargetMachine &TM,
+ bool is64Bit)
+ : NVPTXGenSubtargetInfo(TT, CPU, FS), Is64Bit(is64Bit), PTXVersion(0),
+ SmVersion(20), DL(computeDataLayout(is64Bit)),
+ InstrInfo(initializeSubtargetDependencies(CPU, FS)),
+ TLInfo((NVPTXTargetMachine &)TM), TSInfo(&DL), FrameLowering(*this) {
+
+ Triple T(TT);
+
+ if (T.getOS() == Triple::NVCL)
+ drvInterface = NVPTX::NVCL;
+ else
+ drvInterface = NVPTX::CUDA;
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.h b/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.h
new file mode 100644
index 0000000..4c41e4e
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.h
@@ -0,0 +1,116 @@
+//=====-- NVPTXSubtarget.h - Define Subtarget for the NVPTX ---*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the NVPTX specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTXSUBTARGET_H
+#define NVPTXSUBTARGET_H
+
+#include "NVPTX.h"
+#include "NVPTXFrameLowering.h"
+#include "NVPTXISelLowering.h"
+#include "NVPTXInstrInfo.h"
+#include "NVPTXRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "NVPTXGenSubtargetInfo.inc"
+
+namespace llvm {
+
+class NVPTXSubtarget : public NVPTXGenSubtargetInfo {
+ virtual void anchor();
+ std::string TargetName;
+ NVPTX::DrvInterface drvInterface;
+ bool Is64Bit;
+
+ // PTX version x.y is represented as 10*x+y, e.g. 3.1 == 31
+ unsigned PTXVersion;
+
+ // SM version x.y is represented as 10*x+y, e.g. 3.1 == 31
+ unsigned int SmVersion;
+
+ const DataLayout DL; // Calculates type size & alignment
+ NVPTXInstrInfo InstrInfo;
+ NVPTXTargetLowering TLInfo;
+ TargetSelectionDAGInfo TSInfo;
+
+ // NVPTX does not have any call stack frame, but need a NVPTX specific
+ // FrameLowering class because TargetFrameLowering is abstract.
+ NVPTXFrameLowering FrameLowering;
+
+public:
+ /// This constructor initializes the data members to match that
+ /// of the specified module.
+ ///
+ NVPTXSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, const TargetMachine &TM, bool is64Bit);
+
+ const TargetFrameLowering *getFrameLowering() const { return &FrameLowering; }
+ const NVPTXInstrInfo *getInstrInfo() const { return &InstrInfo; }
+ const DataLayout *getDataLayout() const { return &DL; }
+ const NVPTXRegisterInfo *getRegisterInfo() const {
+ return &InstrInfo.getRegisterInfo();
+ }
+ const NVPTXTargetLowering *getTargetLowering() const { return &TLInfo; }
+ const TargetSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+
+ bool hasBrkPt() const { return SmVersion >= 11; }
+ bool hasAtomRedG32() const { return SmVersion >= 11; }
+ bool hasAtomRedS32() const { return SmVersion >= 12; }
+ bool hasAtomRedG64() const { return SmVersion >= 12; }
+ bool hasAtomRedS64() const { return SmVersion >= 20; }
+ bool hasAtomRedGen32() const { return SmVersion >= 20; }
+ bool hasAtomRedGen64() const { return SmVersion >= 20; }
+ bool hasAtomAddF32() const { return SmVersion >= 20; }
+ bool hasVote() const { return SmVersion >= 12; }
+ bool hasDouble() const { return SmVersion >= 13; }
+ bool reqPTX20() const { return SmVersion >= 20; }
+ bool hasF32FTZ() const { return SmVersion >= 20; }
+ bool hasFMAF32() const { return SmVersion >= 20; }
+ bool hasFMAF64() const { return SmVersion >= 13; }
+ bool hasLDG() const { return SmVersion >= 32; }
+ bool hasLDU() const { return ((SmVersion >= 20) && (SmVersion < 30)); }
+ bool hasGenericLdSt() const { return SmVersion >= 20; }
+ inline bool hasHWROT32() const { return SmVersion >= 32; }
+ inline bool hasSWROT32() const {
+ return ((SmVersion >= 20) && (SmVersion < 32));
+ }
+ inline bool hasROT32() const { return hasHWROT32() || hasSWROT32(); }
+ inline bool hasROT64() const { return SmVersion >= 20; }
+
+ bool hasImageHandles() const {
+ // Enable handles for Kepler+, where CUDA supports indirect surfaces and
+ // textures
+ if (getDrvInterface() == NVPTX::CUDA)
+ return (SmVersion >= 30);
+
+ // Disabled, otherwise
+ return false;
+ }
+ bool is64Bit() const { return Is64Bit; }
+
+ unsigned int getSmVersion() const { return SmVersion; }
+ NVPTX::DrvInterface getDrvInterface() const { return drvInterface; }
+ std::string getTargetName() const { return TargetName; }
+
+ unsigned getPTXVersion() const { return PTXVersion; }
+
+ NVPTXSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+};
+
+} // End llvm namespace
+
+#endif // NVPTXSUBTARGET_H
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp
new file mode 100644
index 0000000..069a1b9
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp
@@ -0,0 +1,250 @@
+//===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Top-level implementation for the NVPTX target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXTargetMachine.h"
+#include "MCTargetDesc/NVPTXMCAsmInfo.h"
+#include "NVPTX.h"
+#include "NVPTXAllocaHoisting.h"
+#include "NVPTXLowerAggrCopies.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRPrintingPasses.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include "llvm/Transforms/Scalar.h"
+
+using namespace llvm;
+
+namespace llvm {
+void initializeNVVMReflectPass(PassRegistry&);
+void initializeGenericToNVVMPass(PassRegistry&);
+void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
+void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
+}
+
+extern "C" void LLVMInitializeNVPTXTarget() {
+ // Register the target.
+ RegisterTargetMachine<NVPTXTargetMachine32> X(TheNVPTXTarget32);
+ RegisterTargetMachine<NVPTXTargetMachine64> Y(TheNVPTXTarget64);
+
+ // FIXME: This pass is really intended to be invoked during IR optimization,
+ // but it's very NVPTX-specific.
+ initializeNVVMReflectPass(*PassRegistry::getPassRegistry());
+ initializeGenericToNVVMPass(*PassRegistry::getPassRegistry());
+ initializeNVPTXAssignValidGlobalNamesPass(*PassRegistry::getPassRegistry());
+ initializeNVPTXFavorNonGenericAddrSpacesPass(
+ *PassRegistry::getPassRegistry());
+}
+
+NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL, bool is64bit)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS, *this, is64bit) {
+ initAsmInfo();
+}
+
+void NVPTXTargetMachine32::anchor() {}
+
+NVPTXTargetMachine32::NVPTXTargetMachine32(
+ const Target &T, StringRef TT, StringRef CPU, StringRef FS,
+ const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
+
+void NVPTXTargetMachine64::anchor() {}
+
+NVPTXTargetMachine64::NVPTXTargetMachine64(
+ const Target &T, StringRef TT, StringRef CPU, StringRef FS,
+ const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
+
+namespace {
+class NVPTXPassConfig : public TargetPassConfig {
+public:
+ NVPTXPassConfig(NVPTXTargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ NVPTXTargetMachine &getNVPTXTargetMachine() const {
+ return getTM<NVPTXTargetMachine>();
+ }
+
+ void addIRPasses() override;
+ bool addInstSelector() override;
+ bool addPreRegAlloc() override;
+ bool addPostRegAlloc() override;
+ void addMachineSSAOptimization() override;
+
+ FunctionPass *createTargetRegisterAllocator(bool) override;
+ void addFastRegAlloc(FunctionPass *RegAllocPass) override;
+ void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
+};
+} // end anonymous namespace
+
+TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
+ NVPTXPassConfig *PassConfig = new NVPTXPassConfig(this, PM);
+ return PassConfig;
+}
+
+void NVPTXPassConfig::addIRPasses() {
+ // The following passes are known to not play well with virtual regs hanging
+ // around after register allocation (which in our case, is *all* registers).
+ // We explicitly disable them here. We do, however, need some functionality
+ // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
+ // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
+ disablePass(&PrologEpilogCodeInserterID);
+ disablePass(&MachineCopyPropagationID);
+ disablePass(&BranchFolderPassID);
+ disablePass(&TailDuplicateID);
+
+ addPass(createNVPTXImageOptimizerPass());
+ TargetPassConfig::addIRPasses();
+ addPass(createNVPTXAssignValidGlobalNamesPass());
+ addPass(createGenericToNVVMPass());
+ addPass(createNVPTXFavorNonGenericAddrSpacesPass());
+ addPass(createSeparateConstOffsetFromGEPPass());
+ // The SeparateConstOffsetFromGEP pass creates variadic bases that can be used
+ // by multiple GEPs. Run GVN or EarlyCSE to really reuse them. GVN generates
+ // significantly better code than EarlyCSE for some of our benchmarks.
+ if (getOptLevel() == CodeGenOpt::Aggressive)
+ addPass(createGVNPass());
+ else
+ addPass(createEarlyCSEPass());
+ // Both FavorNonGenericAddrSpaces and SeparateConstOffsetFromGEP may leave
+ // some dead code. We could remove dead code in an ad-hoc manner, but that
+ // requires manual work and might be error-prone.
+ //
+ // The FavorNonGenericAddrSpaces pass shortcuts unnecessary addrspacecasts,
+ // and leave them unused.
+ //
+ // SeparateConstOffsetFromGEP rebuilds a new index from the old index, and the
+ // old index and some of its intermediate results may become unused.
+ addPass(createDeadCodeEliminationPass());
+}
+
+bool NVPTXPassConfig::addInstSelector() {
+ const NVPTXSubtarget &ST =
+ getTM<NVPTXTargetMachine>().getSubtarget<NVPTXSubtarget>();
+
+ addPass(createLowerAggrCopies());
+ addPass(createAllocaHoisting());
+ addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
+
+ if (!ST.hasImageHandles())
+ addPass(createNVPTXReplaceImageHandlesPass());
+
+ return false;
+}
+
+bool NVPTXPassConfig::addPreRegAlloc() { return false; }
+bool NVPTXPassConfig::addPostRegAlloc() {
+ addPass(createNVPTXPrologEpilogPass());
+ return false;
+}
+
+FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
+ return nullptr; // No reg alloc
+}
+
+void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
+ assert(!RegAllocPass && "NVPTX uses no regalloc!");
+ addPass(&PHIEliminationID);
+ addPass(&TwoAddressInstructionPassID);
+}
+
+void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
+ assert(!RegAllocPass && "NVPTX uses no regalloc!");
+
+ addPass(&ProcessImplicitDefsID);
+ addPass(&LiveVariablesID);
+ addPass(&MachineLoopInfoID);
+ addPass(&PHIEliminationID);
+
+ addPass(&TwoAddressInstructionPassID);
+ addPass(&RegisterCoalescerID);
+
+ // PreRA instruction scheduling.
+ if (addPass(&MachineSchedulerID))
+ printAndVerify("After Machine Scheduling");
+
+
+ addPass(&StackSlotColoringID);
+
+ // FIXME: Needs physical registers
+ //addPass(&PostRAMachineLICMID);
+
+ printAndVerify("After StackSlotColoring");
+}
+
+void NVPTXPassConfig::addMachineSSAOptimization() {
+ // Pre-ra tail duplication.
+ if (addPass(&EarlyTailDuplicateID))
+ printAndVerify("After Pre-RegAlloc TailDuplicate");
+
+ // Optimize PHIs before DCE: removing dead PHI cycles may make more
+ // instructions dead.
+ addPass(&OptimizePHIsID);
+
+ // This pass merges large allocas. StackSlotColoring is a different pass
+ // which merges spill slots.
+ addPass(&StackColoringID);
+
+ // If the target requests it, assign local variables to stack slots relative
+ // to one another and simplify frame index references where possible.
+ addPass(&LocalStackSlotAllocationID);
+
+ // With optimization, dead code should already be eliminated. However
+ // there is one known exception: lowered code for arguments that are only
+ // used by tail calls, where the tail calls reuse the incoming stack
+ // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
+ addPass(&DeadMachineInstructionElimID);
+ printAndVerify("After codegen DCE pass");
+
+ // Allow targets to insert passes that improve instruction level parallelism,
+ // like if-conversion. Such passes will typically need dominator trees and
+ // loop info, just like LICM and CSE below.
+ if (addILPOpts())
+ printAndVerify("After ILP optimizations");
+
+ addPass(&MachineLICMID);
+ addPass(&MachineCSEID);
+
+ addPass(&MachineSinkingID);
+ printAndVerify("After Machine LICM, CSE and Sinking passes");
+
+ addPass(&PeepholeOptimizerID);
+ printAndVerify("After codegen peephole optimization pass");
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.h b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.h
new file mode 100644
index 0000000..a7a1c8f
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.h
@@ -0,0 +1,100 @@
+//===-- NVPTXTargetMachine.h - Define TargetMachine for NVPTX ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the NVPTX specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTX_TARGETMACHINE_H
+#define NVPTX_TARGETMACHINE_H
+
+#include "NVPTXSubtarget.h"
+#include "ManagedStringPool.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+/// NVPTXTargetMachine
+///
+class NVPTXTargetMachine : public LLVMTargetMachine {
+ NVPTXSubtarget Subtarget;
+
+ // Hold Strings that can be free'd all together with NVPTXTargetMachine
+ ManagedStringPool ManagedStrPool;
+
+public:
+ NVPTXTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS,
+ const TargetOptions &Options, Reloc::Model RM,
+ CodeModel::Model CM, CodeGenOpt::Level OP, bool is64bit);
+
+ const TargetFrameLowering *getFrameLowering() const override {
+ return getSubtargetImpl()->getFrameLowering();
+ }
+ const NVPTXInstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const DataLayout *getDataLayout() const override {
+ return getSubtargetImpl()->getDataLayout();
+ }
+ const NVPTXSubtarget *getSubtargetImpl() const override { return &Subtarget; }
+ const NVPTXRegisterInfo *getRegisterInfo() const override {
+ return getSubtargetImpl()->getRegisterInfo();
+ }
+
+ const NVPTXTargetLowering *getTargetLowering() const override {
+ return getSubtargetImpl()->getTargetLowering();
+ }
+
+ const TargetSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return getSubtargetImpl()->getSelectionDAGInfo();
+ }
+
+ ManagedStringPool *getManagedStrPool() const {
+ return const_cast<ManagedStringPool *>(&ManagedStrPool);
+ }
+
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+
+ // Emission of machine code through JITCodeEmitter is not supported.
+ bool addPassesToEmitMachineCode(PassManagerBase &, JITCodeEmitter &,
+ bool = true) override {
+ return true;
+ }
+
+ // Emission of machine code through MCJIT is not supported.
+ bool addPassesToEmitMC(PassManagerBase &, MCContext *&, raw_ostream &,
+ bool = true) override {
+ return true;
+ }
+
+}; // NVPTXTargetMachine.
+
+class NVPTXTargetMachine32 : public NVPTXTargetMachine {
+ virtual void anchor();
+public:
+ NVPTXTargetMachine32(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+class NVPTXTargetMachine64 : public NVPTXTargetMachine {
+ virtual void anchor();
+public:
+ NVPTXTargetMachine64(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXTargetObjectFile.h b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetObjectFile.h
new file mode 100644
index 0000000..ba8086d
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetObjectFile.h
@@ -0,0 +1,105 @@
+//===-- NVPTXTargetObjectFile.h - NVPTX Object Info -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_NVPTX_TARGETOBJECTFILE_H
+#define LLVM_TARGET_NVPTX_TARGETOBJECTFILE_H
+
+#include "NVPTXSection.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include <string>
+
+namespace llvm {
+class GlobalVariable;
+class Module;
+
+class NVPTXTargetObjectFile : public TargetLoweringObjectFile {
+
+public:
+ NVPTXTargetObjectFile() {
+ TextSection = nullptr;
+ DataSection = nullptr;
+ BSSSection = nullptr;
+ ReadOnlySection = nullptr;
+
+ StaticCtorSection = nullptr;
+ StaticDtorSection = nullptr;
+ LSDASection = nullptr;
+ EHFrameSection = nullptr;
+ DwarfAbbrevSection = nullptr;
+ DwarfInfoSection = nullptr;
+ DwarfLineSection = nullptr;
+ DwarfFrameSection = nullptr;
+ DwarfPubTypesSection = nullptr;
+ DwarfDebugInlineSection = nullptr;
+ DwarfStrSection = nullptr;
+ DwarfLocSection = nullptr;
+ DwarfARangesSection = nullptr;
+ DwarfRangesSection = nullptr;
+ DwarfMacroInfoSection = nullptr;
+ }
+
+ virtual ~NVPTXTargetObjectFile();
+
+ void Initialize(MCContext &ctx, const TargetMachine &TM) override {
+ TargetLoweringObjectFile::Initialize(ctx, TM);
+ TextSection = new NVPTXSection(MCSection::SV_ELF, SectionKind::getText());
+ DataSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getDataRel());
+ BSSSection = new NVPTXSection(MCSection::SV_ELF, SectionKind::getBSS());
+ ReadOnlySection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getReadOnly());
+
+ StaticCtorSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ StaticDtorSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ LSDASection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ EHFrameSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ DwarfAbbrevSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ DwarfInfoSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ DwarfLineSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ DwarfFrameSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ DwarfPubTypesSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ DwarfDebugInlineSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ DwarfStrSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ DwarfLocSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ DwarfARangesSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ DwarfRangesSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ DwarfMacroInfoSection =
+ new NVPTXSection(MCSection::SV_ELF, SectionKind::getMetadata());
+ }
+
+ const MCSection *getSectionForConstant(SectionKind Kind,
+ const Constant *C) const override {
+ return ReadOnlySection;
+ }
+
+ const MCSection *getExplicitSectionGlobal(const GlobalValue *GV,
+ SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const override {
+ return DataSection;
+ }
+
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.cpp
new file mode 100644
index 0000000..a9fd190
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.cpp
@@ -0,0 +1,543 @@
+//===- NVPTXUtilities.cpp - Utility Functions -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains miscellaneous utility functions
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXUtilities.h"
+#include "NVPTX.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include <algorithm>
+#include <cstring>
+#include <map>
+#include <string>
+#include <vector>
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/Support/MutexGuard.h"
+
+using namespace llvm;
+
+typedef std::map<std::string, std::vector<unsigned> > key_val_pair_t;
+typedef std::map<const GlobalValue *, key_val_pair_t> global_val_annot_t;
+typedef std::map<const Module *, global_val_annot_t> per_module_annot_t;
+
+ManagedStatic<per_module_annot_t> annotationCache;
+static sys::Mutex Lock;
+
+void llvm::clearAnnotationCache(const llvm::Module *Mod) {
+ MutexGuard Guard(Lock);
+ annotationCache->erase(Mod);
+}
+
+static void cacheAnnotationFromMD(const MDNode *md, key_val_pair_t &retval) {
+ MutexGuard Guard(Lock);
+ assert(md && "Invalid mdnode for annotation");
+ assert((md->getNumOperands() % 2) == 1 && "Invalid number of operands");
+ // start index = 1, to skip the global variable key
+ // increment = 2, to skip the value for each property-value pairs
+ for (unsigned i = 1, e = md->getNumOperands(); i != e; i += 2) {
+ // property
+ const MDString *prop = dyn_cast<MDString>(md->getOperand(i));
+ assert(prop && "Annotation property not a string");
+
+ // value
+ ConstantInt *Val = dyn_cast<ConstantInt>(md->getOperand(i + 1));
+ assert(Val && "Value operand not a constant int");
+
+ std::string keyname = prop->getString().str();
+ if (retval.find(keyname) != retval.end())
+ retval[keyname].push_back(Val->getZExtValue());
+ else {
+ std::vector<unsigned> tmp;
+ tmp.push_back(Val->getZExtValue());
+ retval[keyname] = tmp;
+ }
+ }
+}
+
+static void cacheAnnotationFromMD(const Module *m, const GlobalValue *gv) {
+ MutexGuard Guard(Lock);
+ NamedMDNode *NMD = m->getNamedMetadata(llvm::NamedMDForAnnotations);
+ if (!NMD)
+ return;
+ key_val_pair_t tmp;
+ for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
+ const MDNode *elem = NMD->getOperand(i);
+
+ Value *entity = elem->getOperand(0);
+ // entity may be null due to DCE
+ if (!entity)
+ continue;
+ if (entity != gv)
+ continue;
+
+ // accumulate annotations for entity in tmp
+ cacheAnnotationFromMD(elem, tmp);
+ }
+
+ if (tmp.empty()) // no annotations for this gv
+ return;
+
+ if ((*annotationCache).find(m) != (*annotationCache).end())
+ (*annotationCache)[m][gv] = tmp;
+ else {
+ global_val_annot_t tmp1;
+ tmp1[gv] = tmp;
+ (*annotationCache)[m] = tmp1;
+ }
+}
+
+bool llvm::findOneNVVMAnnotation(const GlobalValue *gv, std::string prop,
+ unsigned &retval) {
+ MutexGuard Guard(Lock);
+ const Module *m = gv->getParent();
+ if ((*annotationCache).find(m) == (*annotationCache).end())
+ cacheAnnotationFromMD(m, gv);
+ else if ((*annotationCache)[m].find(gv) == (*annotationCache)[m].end())
+ cacheAnnotationFromMD(m, gv);
+ if ((*annotationCache)[m][gv].find(prop) == (*annotationCache)[m][gv].end())
+ return false;
+ retval = (*annotationCache)[m][gv][prop][0];
+ return true;
+}
+
+bool llvm::findAllNVVMAnnotation(const GlobalValue *gv, std::string prop,
+ std::vector<unsigned> &retval) {
+ MutexGuard Guard(Lock);
+ const Module *m = gv->getParent();
+ if ((*annotationCache).find(m) == (*annotationCache).end())
+ cacheAnnotationFromMD(m, gv);
+ else if ((*annotationCache)[m].find(gv) == (*annotationCache)[m].end())
+ cacheAnnotationFromMD(m, gv);
+ if ((*annotationCache)[m][gv].find(prop) == (*annotationCache)[m][gv].end())
+ return false;
+ retval = (*annotationCache)[m][gv][prop];
+ return true;
+}
+
+bool llvm::isTexture(const llvm::Value &val) {
+ if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
+ unsigned annot;
+ if (llvm::findOneNVVMAnnotation(
+ gv, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISTEXTURE],
+ annot)) {
+ assert((annot == 1) && "Unexpected annotation on a texture symbol");
+ return true;
+ }
+ }
+ return false;
+}
+
+bool llvm::isSurface(const llvm::Value &val) {
+ if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
+ unsigned annot;
+ if (llvm::findOneNVVMAnnotation(
+ gv, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISSURFACE],
+ annot)) {
+ assert((annot == 1) && "Unexpected annotation on a surface symbol");
+ return true;
+ }
+ }
+ return false;
+}
+
+bool llvm::isSampler(const llvm::Value &val) {
+ if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
+ unsigned annot;
+ if (llvm::findOneNVVMAnnotation(
+ gv, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISSAMPLER],
+ annot)) {
+ assert((annot == 1) && "Unexpected annotation on a sampler symbol");
+ return true;
+ }
+ }
+ if (const Argument *arg = dyn_cast<Argument>(&val)) {
+ const Function *func = arg->getParent();
+ std::vector<unsigned> annot;
+ if (llvm::findAllNVVMAnnotation(
+ func, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISSAMPLER],
+ annot)) {
+ if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
+ return true;
+ }
+ }
+ return false;
+}
+
+bool llvm::isImageReadOnly(const llvm::Value &val) {
+ if (const Argument *arg = dyn_cast<Argument>(&val)) {
+ const Function *func = arg->getParent();
+ std::vector<unsigned> annot;
+ if (llvm::findAllNVVMAnnotation(func,
+ llvm::PropertyAnnotationNames[
+ llvm::PROPERTY_ISREADONLY_IMAGE_PARAM],
+ annot)) {
+ if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
+ return true;
+ }
+ }
+ return false;
+}
+
+bool llvm::isImageWriteOnly(const llvm::Value &val) {
+ if (const Argument *arg = dyn_cast<Argument>(&val)) {
+ const Function *func = arg->getParent();
+ std::vector<unsigned> annot;
+ if (llvm::findAllNVVMAnnotation(func,
+ llvm::PropertyAnnotationNames[
+ llvm::PROPERTY_ISWRITEONLY_IMAGE_PARAM],
+ annot)) {
+ if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
+ return true;
+ }
+ }
+ return false;
+}
+
+bool llvm::isImageReadWrite(const llvm::Value &val) {
+ if (const Argument *arg = dyn_cast<Argument>(&val)) {
+ const Function *func = arg->getParent();
+ std::vector<unsigned> annot;
+ if (llvm::findAllNVVMAnnotation(func,
+ llvm::PropertyAnnotationNames[
+ llvm::PROPERTY_ISREADWRITE_IMAGE_PARAM],
+ annot)) {
+ if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
+ return true;
+ }
+ }
+ return false;
+}
+
+bool llvm::isImage(const llvm::Value &val) {
+ return llvm::isImageReadOnly(val) || llvm::isImageWriteOnly(val) ||
+ llvm::isImageReadWrite(val);
+}
+
+bool llvm::isManaged(const llvm::Value &val) {
+ if(const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
+ unsigned annot;
+ if(llvm::findOneNVVMAnnotation(gv,
+ llvm::PropertyAnnotationNames[llvm::PROPERTY_MANAGED],
+ annot)) {
+ assert((annot == 1) && "Unexpected annotation on a managed symbol");
+ return true;
+ }
+ }
+ return false;
+}
+
+std::string llvm::getTextureName(const llvm::Value &val) {
+ assert(val.hasName() && "Found texture variable with no name");
+ return val.getName();
+}
+
+std::string llvm::getSurfaceName(const llvm::Value &val) {
+ assert(val.hasName() && "Found surface variable with no name");
+ return val.getName();
+}
+
+std::string llvm::getSamplerName(const llvm::Value &val) {
+ assert(val.hasName() && "Found sampler variable with no name");
+ return val.getName();
+}
+
+bool llvm::getMaxNTIDx(const Function &F, unsigned &x) {
+ return (llvm::findOneNVVMAnnotation(
+ &F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MAXNTID_X], x));
+}
+
+bool llvm::getMaxNTIDy(const Function &F, unsigned &y) {
+ return (llvm::findOneNVVMAnnotation(
+ &F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MAXNTID_Y], y));
+}
+
+bool llvm::getMaxNTIDz(const Function &F, unsigned &z) {
+ return (llvm::findOneNVVMAnnotation(
+ &F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MAXNTID_Z], z));
+}
+
+bool llvm::getReqNTIDx(const Function &F, unsigned &x) {
+ return (llvm::findOneNVVMAnnotation(
+ &F, llvm::PropertyAnnotationNames[llvm::PROPERTY_REQNTID_X], x));
+}
+
+bool llvm::getReqNTIDy(const Function &F, unsigned &y) {
+ return (llvm::findOneNVVMAnnotation(
+ &F, llvm::PropertyAnnotationNames[llvm::PROPERTY_REQNTID_Y], y));
+}
+
+bool llvm::getReqNTIDz(const Function &F, unsigned &z) {
+ return (llvm::findOneNVVMAnnotation(
+ &F, llvm::PropertyAnnotationNames[llvm::PROPERTY_REQNTID_Z], z));
+}
+
+bool llvm::getMinCTASm(const Function &F, unsigned &x) {
+ return (llvm::findOneNVVMAnnotation(
+ &F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MINNCTAPERSM], x));
+}
+
+bool llvm::isKernelFunction(const Function &F) {
+ unsigned x = 0;
+ bool retval = llvm::findOneNVVMAnnotation(
+ &F, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISKERNEL_FUNCTION], x);
+ if (retval == false) {
+ // There is no NVVM metadata, check the calling convention
+ if (F.getCallingConv() == llvm::CallingConv::PTX_Kernel)
+ return true;
+ else
+ return false;
+ }
+ return (x == 1);
+}
+
+bool llvm::getAlign(const Function &F, unsigned index, unsigned &align) {
+ std::vector<unsigned> Vs;
+ bool retval = llvm::findAllNVVMAnnotation(
+ &F, llvm::PropertyAnnotationNames[llvm::PROPERTY_ALIGN], Vs);
+ if (retval == false)
+ return false;
+ for (int i = 0, e = Vs.size(); i < e; i++) {
+ unsigned v = Vs[i];
+ if ((v >> 16) == index) {
+ align = v & 0xFFFF;
+ return true;
+ }
+ }
+ return false;
+}
+
+bool llvm::getAlign(const CallInst &I, unsigned index, unsigned &align) {
+ if (MDNode *alignNode = I.getMetadata("callalign")) {
+ for (int i = 0, n = alignNode->getNumOperands(); i < n; i++) {
+ if (const ConstantInt *CI =
+ dyn_cast<ConstantInt>(alignNode->getOperand(i))) {
+ unsigned v = CI->getZExtValue();
+ if ((v >> 16) == index) {
+ align = v & 0xFFFF;
+ return true;
+ }
+ if ((v >> 16) > index) {
+ return false;
+ }
+ }
+ }
+ }
+ return false;
+}
+
+bool llvm::isBarrierIntrinsic(Intrinsic::ID id) {
+ if ((id == Intrinsic::nvvm_barrier0) ||
+ (id == Intrinsic::nvvm_barrier0_popc) ||
+ (id == Intrinsic::nvvm_barrier0_and) ||
+ (id == Intrinsic::nvvm_barrier0_or) ||
+ (id == Intrinsic::cuda_syncthreads))
+ return true;
+ return false;
+}
+
+// Interface for checking all memory space transfer related intrinsics
+bool llvm::isMemorySpaceTransferIntrinsic(Intrinsic::ID id) {
+ if (id == Intrinsic::nvvm_ptr_local_to_gen ||
+ id == Intrinsic::nvvm_ptr_shared_to_gen ||
+ id == Intrinsic::nvvm_ptr_global_to_gen ||
+ id == Intrinsic::nvvm_ptr_constant_to_gen ||
+ id == Intrinsic::nvvm_ptr_gen_to_global ||
+ id == Intrinsic::nvvm_ptr_gen_to_shared ||
+ id == Intrinsic::nvvm_ptr_gen_to_local ||
+ id == Intrinsic::nvvm_ptr_gen_to_constant ||
+ id == Intrinsic::nvvm_ptr_gen_to_param) {
+ return true;
+ }
+
+ return false;
+}
+
+// consider several special intrinsics in striping pointer casts, and
+// provide an option to ignore GEP indicies for find out the base address only
+// which could be used in simple alias disambigurate.
+const Value *
+llvm::skipPointerTransfer(const Value *V, bool ignore_GEP_indices) {
+ V = V->stripPointerCasts();
+ while (true) {
+ if (const IntrinsicInst *IS = dyn_cast<IntrinsicInst>(V)) {
+ if (isMemorySpaceTransferIntrinsic(IS->getIntrinsicID())) {
+ V = IS->getArgOperand(0)->stripPointerCasts();
+ continue;
+ }
+ } else if (ignore_GEP_indices)
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ V = GEP->getPointerOperand()->stripPointerCasts();
+ continue;
+ }
+ break;
+ }
+ return V;
+}
+
+// consider several special intrinsics in striping pointer casts, and
+// - ignore GEP indicies for find out the base address only, and
+// - tracking PHINode
+// which could be used in simple alias disambigurate.
+const Value *
+llvm::skipPointerTransfer(const Value *V, std::set<const Value *> &processed) {
+ if (processed.find(V) != processed.end())
+ return nullptr;
+ processed.insert(V);
+
+ const Value *V2 = V->stripPointerCasts();
+ if (V2 != V && processed.find(V2) != processed.end())
+ return nullptr;
+ processed.insert(V2);
+
+ V = V2;
+
+ while (true) {
+ if (const IntrinsicInst *IS = dyn_cast<IntrinsicInst>(V)) {
+ if (isMemorySpaceTransferIntrinsic(IS->getIntrinsicID())) {
+ V = IS->getArgOperand(0)->stripPointerCasts();
+ continue;
+ }
+ } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ V = GEP->getPointerOperand()->stripPointerCasts();
+ continue;
+ } else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
+ if (V != V2 && processed.find(V) != processed.end())
+ return nullptr;
+ processed.insert(PN);
+ const Value *common = nullptr;
+ for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
+ const Value *pv = PN->getIncomingValue(i);
+ const Value *base = skipPointerTransfer(pv, processed);
+ if (base) {
+ if (!common)
+ common = base;
+ else if (common != base)
+ return PN;
+ }
+ }
+ if (!common)
+ return PN;
+ V = common;
+ }
+ break;
+ }
+ return V;
+}
+
+// The following are some useful utilities for debuggung
+
+BasicBlock *llvm::getParentBlock(Value *v) {
+ if (BasicBlock *B = dyn_cast<BasicBlock>(v))
+ return B;
+
+ if (Instruction *I = dyn_cast<Instruction>(v))
+ return I->getParent();
+
+ return nullptr;
+}
+
+Function *llvm::getParentFunction(Value *v) {
+ if (Function *F = dyn_cast<Function>(v))
+ return F;
+
+ if (Instruction *I = dyn_cast<Instruction>(v))
+ return I->getParent()->getParent();
+
+ if (BasicBlock *B = dyn_cast<BasicBlock>(v))
+ return B->getParent();
+
+ return nullptr;
+}
+
+// Dump a block by name
+void llvm::dumpBlock(Value *v, char *blockName) {
+ Function *F = getParentFunction(v);
+ if (!F)
+ return;
+
+ for (Function::iterator it = F->begin(), ie = F->end(); it != ie; ++it) {
+ BasicBlock *B = it;
+ if (strcmp(B->getName().data(), blockName) == 0) {
+ B->dump();
+ return;
+ }
+ }
+}
+
+// Find an instruction by name
+Instruction *llvm::getInst(Value *base, char *instName) {
+ Function *F = getParentFunction(base);
+ if (!F)
+ return nullptr;
+
+ for (inst_iterator it = inst_begin(F), ie = inst_end(F); it != ie; ++it) {
+ Instruction *I = &*it;
+ if (strcmp(I->getName().data(), instName) == 0) {
+ return I;
+ }
+ }
+
+ return nullptr;
+}
+
+// Dump an instruction by nane
+void llvm::dumpInst(Value *base, char *instName) {
+ Instruction *I = getInst(base, instName);
+ if (I)
+ I->dump();
+}
+
+// Dump an instruction and all dependent instructions
+void llvm::dumpInstRec(Value *v, std::set<Instruction *> *visited) {
+ if (Instruction *I = dyn_cast<Instruction>(v)) {
+
+ if (visited->find(I) != visited->end())
+ return;
+
+ visited->insert(I);
+
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ dumpInstRec(I->getOperand(i), visited);
+
+ I->dump();
+ }
+}
+
+// Dump an instruction and all dependent instructions
+void llvm::dumpInstRec(Value *v) {
+ std::set<Instruction *> visited;
+
+ //BasicBlock *B = getParentBlock(v);
+
+ dumpInstRec(v, &visited);
+}
+
+// Dump the parent for Instruction, block or function
+void llvm::dumpParent(Value *v) {
+ if (Instruction *I = dyn_cast<Instruction>(v)) {
+ I->getParent()->dump();
+ return;
+ }
+
+ if (BasicBlock *B = dyn_cast<BasicBlock>(v)) {
+ B->getParent()->dump();
+ return;
+ }
+
+ if (Function *F = dyn_cast<Function>(v)) {
+ F->getParent()->dump();
+ return;
+ }
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.h b/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.h
new file mode 100644
index 0000000..446bfa1
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.h
@@ -0,0 +1,96 @@
+//===-- NVPTXUtilities - Utilities -----------------------------*- C++ -*-====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the NVVM specific utility functions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef NVPTXUTILITIES_H
+#define NVPTXUTILITIES_H
+
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Value.h"
+#include <cstdarg>
+#include <set>
+#include <string>
+#include <vector>
+
+namespace llvm {
+
+#define NVCL_IMAGE2D_READONLY_FUNCNAME "__is_image2D_readonly"
+#define NVCL_IMAGE3D_READONLY_FUNCNAME "__is_image3D_readonly"
+
+void clearAnnotationCache(const llvm::Module *);
+
+bool findOneNVVMAnnotation(const llvm::GlobalValue *, std::string, unsigned &);
+bool findAllNVVMAnnotation(const llvm::GlobalValue *, std::string,
+ std::vector<unsigned> &);
+
+bool isTexture(const llvm::Value &);
+bool isSurface(const llvm::Value &);
+bool isSampler(const llvm::Value &);
+bool isImage(const llvm::Value &);
+bool isImageReadOnly(const llvm::Value &);
+bool isImageWriteOnly(const llvm::Value &);
+bool isImageReadWrite(const llvm::Value &);
+bool isManaged(const llvm::Value &);
+
+std::string getTextureName(const llvm::Value &);
+std::string getSurfaceName(const llvm::Value &);
+std::string getSamplerName(const llvm::Value &);
+
+bool getMaxNTIDx(const llvm::Function &, unsigned &);
+bool getMaxNTIDy(const llvm::Function &, unsigned &);
+bool getMaxNTIDz(const llvm::Function &, unsigned &);
+
+bool getReqNTIDx(const llvm::Function &, unsigned &);
+bool getReqNTIDy(const llvm::Function &, unsigned &);
+bool getReqNTIDz(const llvm::Function &, unsigned &);
+
+bool getMinCTASm(const llvm::Function &, unsigned &);
+bool isKernelFunction(const llvm::Function &);
+
+bool getAlign(const llvm::Function &, unsigned index, unsigned &);
+bool getAlign(const llvm::CallInst &, unsigned index, unsigned &);
+
+bool isBarrierIntrinsic(llvm::Intrinsic::ID);
+
+/// make_vector - Helper function which is useful for building temporary vectors
+/// to pass into type construction of CallInst ctors. This turns a null
+/// terminated list of pointers (or other value types) into a real live vector.
+///
+template <typename T> inline std::vector<T> make_vector(T A, ...) {
+ va_list Args;
+ va_start(Args, A);
+ std::vector<T> Result;
+ Result.push_back(A);
+ while (T Val = va_arg(Args, T))
+ Result.push_back(Val);
+ va_end(Args);
+ return Result;
+}
+
+bool isMemorySpaceTransferIntrinsic(Intrinsic::ID id);
+const Value *skipPointerTransfer(const Value *V, bool ignore_GEP_indices);
+const Value *
+skipPointerTransfer(const Value *V, std::set<const Value *> &processed);
+BasicBlock *getParentBlock(Value *v);
+Function *getParentFunction(Value *v);
+void dumpBlock(Value *v, char *blockName);
+Instruction *getInst(Value *base, char *instName);
+void dumpInst(Value *base, char *instName);
+void dumpInstRec(Value *v, std::set<Instruction *> *visited);
+void dumpInstRec(Value *v);
+void dumpParent(Value *v);
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXVector.td b/contrib/llvm/lib/Target/NVPTX/NVPTXVector.td
new file mode 100644
index 0000000..775df19
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXVector.td
@@ -0,0 +1,1481 @@
+//===- NVPTXVector.td - NVPTX Vector Specific Instruction defs -*- tblgen-*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//-----------------------------------
+// Vector Specific
+//-----------------------------------
+
+//
+// All vector instructions derive from NVPTXVecInst
+//
+
+class NVPTXVecInst<dag outs, dag ins, string asmstr, list<dag> pattern,
+ NVPTXInst sInst=NOP>
+ : NVPTXInst<outs, ins, asmstr, pattern> {
+ NVPTXInst scalarInst=sInst;
+}
+
+let isAsCheapAsAMove=1, VecInstType=isVecExtract.Value in {
+// Extract v2i16
+def V2i16Extract : NVPTXVecInst<(outs Int16Regs:$dst),
+ (ins V2I16Regs:$src, i8imm:$c),
+ "mov.u16 \t$dst, $src${c:vecelem};",
+ [(set Int16Regs:$dst, (vector_extract
+ (v2i16 V2I16Regs:$src), imm:$c))],
+ IMOV16rr>;
+
+// Extract v4i16
+def V4i16Extract : NVPTXVecInst<(outs Int16Regs:$dst),
+ (ins V4I16Regs:$src, i8imm:$c),
+ "mov.u16 \t$dst, $src${c:vecelem};",
+ [(set Int16Regs:$dst, (vector_extract
+ (v4i16 V4I16Regs:$src), imm:$c))],
+ IMOV16rr>;
+
+// Extract v2i8
+def V2i8Extract : NVPTXVecInst<(outs Int8Regs:$dst),
+ (ins V2I8Regs:$src, i8imm:$c),
+ "mov.u16 \t$dst, $src${c:vecelem};",
+ [(set Int8Regs:$dst, (vector_extract
+ (v2i8 V2I8Regs:$src), imm:$c))],
+ IMOV8rr>;
+
+// Extract v4i8
+def V4i8Extract : NVPTXVecInst<(outs Int8Regs:$dst),
+ (ins V4I8Regs:$src, i8imm:$c),
+ "mov.u16 \t$dst, $src${c:vecelem};",
+ [(set Int8Regs:$dst, (vector_extract
+ (v4i8 V4I8Regs:$src), imm:$c))],
+ IMOV8rr>;
+
+// Extract v2i32
+def V2i32Extract : NVPTXVecInst<(outs Int32Regs:$dst),
+ (ins V2I32Regs:$src, i8imm:$c),
+ "mov.u32 \t$dst, $src${c:vecelem};",
+ [(set Int32Regs:$dst, (vector_extract
+ (v2i32 V2I32Regs:$src), imm:$c))],
+ IMOV32rr>;
+
+// Extract v2f32
+def V2f32Extract : NVPTXVecInst<(outs Float32Regs:$dst),
+ (ins V2F32Regs:$src, i8imm:$c),
+ "mov.f32 \t$dst, $src${c:vecelem};",
+ [(set Float32Regs:$dst, (vector_extract
+ (v2f32 V2F32Regs:$src), imm:$c))],
+ FMOV32rr>;
+
+// Extract v2i64
+def V2i64Extract : NVPTXVecInst<(outs Int64Regs:$dst),
+ (ins V2I64Regs:$src, i8imm:$c),
+ "mov.u64 \t$dst, $src${c:vecelem};",
+ [(set Int64Regs:$dst, (vector_extract
+ (v2i64 V2I64Regs:$src), imm:$c))],
+ IMOV64rr>;
+
+// Extract v2f64
+def V2f64Extract : NVPTXVecInst<(outs Float64Regs:$dst),
+ (ins V2F64Regs:$src, i8imm:$c),
+ "mov.f64 \t$dst, $src${c:vecelem};",
+ [(set Float64Regs:$dst, (vector_extract
+ (v2f64 V2F64Regs:$src), imm:$c))],
+ FMOV64rr>;
+
+// Extract v4i32
+def V4i32Extract : NVPTXVecInst<(outs Int32Regs:$dst),
+ (ins V4I32Regs:$src, i8imm:$c),
+ "mov.u32 \t$dst, $src${c:vecelem};",
+ [(set Int32Regs:$dst, (vector_extract
+ (v4i32 V4I32Regs:$src), imm:$c))],
+ IMOV32rr>;
+
+// Extract v4f32
+def V4f32Extract : NVPTXVecInst<(outs Float32Regs:$dst),
+ (ins V4F32Regs:$src, i8imm:$c),
+ "mov.f32 \t$dst, $src${c:vecelem};",
+ [(set Float32Regs:$dst, (vector_extract
+ (v4f32 V4F32Regs:$src), imm:$c))],
+ FMOV32rr>;
+}
+
+let isAsCheapAsAMove=1, VecInstType=isVecInsert.Value in {
+// Insert v2i8
+def V2i8Insert : NVPTXVecInst<(outs V2I8Regs:$dst),
+ (ins V2I8Regs:$src, Int8Regs:$val, i8imm:$c),
+ "mov.v2.u16 \t${dst:vecfull}, ${src:vecfull};"
+ "\n\tmov.u16 \t$dst${c:vecelem}, $val;",
+ [(set V2I8Regs:$dst,
+ (vector_insert V2I8Regs:$src, Int8Regs:$val, imm:$c))],
+ IMOV8rr>;
+
+// Insert v4i8
+def V4i8Insert : NVPTXVecInst<(outs V4I8Regs:$dst),
+ (ins V4I8Regs:$src, Int8Regs:$val, i8imm:$c),
+ "mov.v4.u16 \t${dst:vecfull}, ${src:vecfull};"
+ "\n\tmov.u16 \t$dst${c:vecelem}, $val;",
+ [(set V4I8Regs:$dst,
+ (vector_insert V4I8Regs:$src, Int8Regs:$val, imm:$c))],
+ IMOV8rr>;
+
+// Insert v2i16
+def V2i16Insert : NVPTXVecInst<(outs V2I16Regs:$dst),
+ (ins V2I16Regs:$src, Int16Regs:$val, i8imm:$c),
+ "mov.v2.u16 \t${dst:vecfull}, ${src:vecfull};"
+ "\n\tmov.u16 \t$dst${c:vecelem}, $val;",
+ [(set V2I16Regs:$dst,
+ (vector_insert V2I16Regs:$src, Int16Regs:$val, imm:$c))],
+ IMOV16rr>;
+
+// Insert v4i16
+def V4i16Insert : NVPTXVecInst<(outs V4I16Regs:$dst),
+ (ins V4I16Regs:$src, Int16Regs:$val, i8imm:$c),
+ "mov.v4.u16 \t${dst:vecfull}, ${src:vecfull};"
+ "\n\tmov.u16 \t$dst${c:vecelem}, $val;",
+ [(set V4I16Regs:$dst,
+ (vector_insert V4I16Regs:$src, Int16Regs:$val, imm:$c))],
+ IMOV16rr>;
+
+// Insert v2i32
+def V2i32Insert : NVPTXVecInst<(outs V2I32Regs:$dst),
+ (ins V2I32Regs:$src, Int32Regs:$val, i8imm:$c),
+ "mov.v2.u32 \t${dst:vecfull}, ${src:vecfull};"
+ "\n\tmov.u32 \t$dst${c:vecelem}, $val;",
+ [(set V2I32Regs:$dst,
+ (vector_insert V2I32Regs:$src, Int32Regs:$val, imm:$c))],
+ IMOV32rr>;
+
+// Insert v2f32
+def V2f32Insert : NVPTXVecInst<(outs V2F32Regs:$dst),
+ (ins V2F32Regs:$src, Float32Regs:$val, i8imm:$c),
+ "mov.v2.f32 \t${dst:vecfull}, ${src:vecfull};"
+ "\n\tmov.f32 \t$dst${c:vecelem}, $val;",
+ [(set V2F32Regs:$dst,
+ (vector_insert V2F32Regs:$src, Float32Regs:$val, imm:$c))],
+ FMOV32rr>;
+
+// Insert v2i64
+def V2i64Insert : NVPTXVecInst<(outs V2I64Regs:$dst),
+ (ins V2I64Regs:$src, Int64Regs:$val, i8imm:$c),
+ "mov.v2.u64 \t${dst:vecfull}, ${src:vecfull};"
+ "\n\tmov.u64 \t$dst${c:vecelem}, $val;",
+ [(set V2I64Regs:$dst,
+ (vector_insert V2I64Regs:$src, Int64Regs:$val, imm:$c))],
+ IMOV64rr>;
+
+// Insert v2f64
+def V2f64Insert : NVPTXVecInst<(outs V2F64Regs:$dst),
+ (ins V2F64Regs:$src, Float64Regs:$val, i8imm:$c),
+ "mov.v2.f64 \t${dst:vecfull}, ${src:vecfull};"
+ "\n\tmov.f64 \t$dst${c:vecelem}, $val;",
+ [(set V2F64Regs:$dst,
+ (vector_insert V2F64Regs:$src, Float64Regs:$val, imm:$c))],
+ FMOV64rr>;
+
+// Insert v4i32
+def V4i32Insert : NVPTXVecInst<(outs V4I32Regs:$dst),
+ (ins V4I32Regs:$src, Int32Regs:$val, i8imm:$c),
+ "mov.v4.u32 \t${dst:vecfull}, ${src:vecfull};"
+ "\n\tmov.u32 \t$dst${c:vecelem}, $val;",
+ [(set V4I32Regs:$dst,
+ (vector_insert V4I32Regs:$src, Int32Regs:$val, imm:$c))],
+ IMOV32rr>;
+
+// Insert v4f32
+def V4f32Insert : NVPTXVecInst<(outs V4F32Regs:$dst),
+ (ins V4F32Regs:$src, Float32Regs:$val, i8imm:$c),
+ "mov.v4.f32 \t${dst:vecfull}, ${src:vecfull};"
+ "\n\tmov.f32 \t$dst${c:vecelem}, $val;",
+ [(set V4F32Regs:$dst,
+ (vector_insert V4F32Regs:$src, Float32Regs:$val, imm:$c))],
+ FMOV32rr>;
+}
+
+class BinOpAsmString<string c> {
+ string s = c;
+}
+
+class V4AsmStr<string opcode> : BinOpAsmString<
+ !strconcat(!strconcat(!strconcat(!strconcat(
+ !strconcat(!strconcat(!strconcat(
+ opcode, " \t${dst}_0, ${a}_0, ${b}_0;\n\t"),
+ opcode), " \t${dst}_1, ${a}_1, ${b}_1;\n\t"),
+ opcode), " \t${dst}_2, ${a}_2, ${b}_2;\n\t"),
+ opcode), " \t${dst}_3, ${a}_3, ${b}_3;")>;
+
+class V2AsmStr<string opcode> : BinOpAsmString<
+ !strconcat(!strconcat(!strconcat(
+ opcode, " \t${dst}_0, ${a}_0, ${b}_0;\n\t"),
+ opcode), " \t${dst}_1, ${a}_1, ${b}_1;")>;
+
+class V4MADStr<string opcode> : BinOpAsmString<
+ !strconcat(!strconcat(!strconcat(!strconcat(
+ !strconcat(!strconcat(!strconcat(
+ opcode, " \t${dst}_0, ${a}_0, ${b}_0, ${c}_0;\n\t"),
+ opcode), " \t${dst}_1, ${a}_1, ${b}_1, ${c}_1;\n\t"),
+ opcode), " \t${dst}_2, ${a}_2, ${b}_2, ${c}_2;\n\t"),
+ opcode), " \t${dst}_3, ${a}_3, ${b}_3, ${c}_3;")>;
+
+class V2MADStr<string opcode> : BinOpAsmString<
+ !strconcat(!strconcat(!strconcat(
+ opcode, " \t${dst}_0, ${a}_0, ${b}_0, ${c}_0;\n\t"),
+ opcode), " \t${dst}_1, ${a}_1, ${b}_1, ${c}_1;")>;
+
+class V4UnaryStr<string opcode> : BinOpAsmString<
+ !strconcat(!strconcat(!strconcat(!strconcat(
+ !strconcat(!strconcat(!strconcat(
+ opcode, " \t${dst}_0, ${a}_0;\n\t"),
+ opcode), " \t${dst}_1, ${a}_1;\n\t"),
+ opcode), " \t${dst}_2, ${a}_2;\n\t"),
+ opcode), " \t${dst}_3, ${a}_3;")>;
+
+class V2UnaryStr<string opcode> : BinOpAsmString<
+ !strconcat(!strconcat(!strconcat(
+ opcode, " \t${dst}_0, ${a}_0;\n\t"),
+ opcode), " \t${dst}_1, ${a}_1;")>;
+
+class VecBinaryOp<BinOpAsmString asmstr, SDNode OpNode, NVPTXRegClass regclass,
+ NVPTXInst sInst=NOP> :
+ NVPTXVecInst<(outs regclass:$dst), (ins regclass:$a, regclass:$b),
+ asmstr.s,
+ [(set regclass:$dst, (OpNode regclass:$a, regclass:$b))],
+ sInst>;
+
+class VecShiftOp<BinOpAsmString asmstr, SDNode OpNode, NVPTXRegClass regclass1,
+ NVPTXRegClass regclass2, NVPTXInst sInst=NOP> :
+ NVPTXVecInst<(outs regclass1:$dst), (ins regclass1:$a, regclass2:$b),
+ asmstr.s,
+ [(set regclass1:$dst, (OpNode regclass1:$a, regclass2:$b))],
+ sInst>;
+
+class VecUnaryOp<BinOpAsmString asmstr, PatFrag OpNode, NVPTXRegClass regclass,
+ NVPTXInst sInst=NOP> :
+ NVPTXVecInst<(outs regclass:$dst), (ins regclass:$a),
+ asmstr.s,
+ [(set regclass:$dst, (OpNode regclass:$a))], sInst>;
+
+multiclass IntBinVOp<string asmstr, SDNode OpNode,
+ NVPTXInst i64op=NOP, NVPTXInst i32op=NOP, NVPTXInst
+ i16op=NOP, NVPTXInst i8op=NOP> {
+ def V2I64 : VecBinaryOp<V2AsmStr<!strconcat(asmstr, "64")>, OpNode, V2I64Regs,
+ i64op>;
+ def V4I32 : VecBinaryOp<V4AsmStr<!strconcat(asmstr, "32")>, OpNode, V4I32Regs,
+ i32op>;
+ def V2I32 : VecBinaryOp<V2AsmStr<!strconcat(asmstr, "32")>, OpNode, V2I32Regs,
+ i32op>;
+ def V4I16 : VecBinaryOp<V4AsmStr<!strconcat(asmstr, "16")>, OpNode, V4I16Regs,
+ i16op>;
+ def V2I16 : VecBinaryOp<V2AsmStr<!strconcat(asmstr, "16")>, OpNode, V2I16Regs,
+ i16op>;
+ def V4I8 : VecBinaryOp<V4AsmStr<!strconcat(asmstr, "16")>, OpNode, V4I8Regs,
+ i8op>;
+ def V2I8 : VecBinaryOp<V2AsmStr<!strconcat(asmstr, "16")>, OpNode, V2I8Regs,
+ i8op>;
+}
+
+multiclass FloatBinVOp<string asmstr, SDNode OpNode,
+ NVPTXInst f64=NOP, NVPTXInst f32=NOP,
+ NVPTXInst f32_ftz=NOP> {
+ def V2F64 : VecBinaryOp<V2AsmStr<!strconcat(asmstr, "f64")>, OpNode,
+ V2F64Regs, f64>;
+ def V4F32_ftz : VecBinaryOp<V4AsmStr<!strconcat(asmstr, "ftz.f32")>, OpNode,
+ V4F32Regs, f32_ftz>, Requires<[doF32FTZ]>;
+ def V2F32_ftz : VecBinaryOp<V2AsmStr<!strconcat(asmstr, "ftz.f32")>, OpNode,
+ V2F32Regs, f32_ftz>, Requires<[doF32FTZ]>;
+ def V4F32 : VecBinaryOp<V4AsmStr<!strconcat(asmstr, "f32")>, OpNode,
+ V4F32Regs, f32>;
+ def V2F32 : VecBinaryOp<V2AsmStr<!strconcat(asmstr, "f32")>, OpNode,
+ V2F32Regs, f32>;
+}
+
+multiclass IntUnaryVOp<string asmstr, PatFrag OpNode,
+ NVPTXInst i64op=NOP, NVPTXInst i32op=NOP,
+ NVPTXInst i16op=NOP, NVPTXInst i8op=NOP> {
+ def V2I64 : VecUnaryOp<V2UnaryStr<!strconcat(asmstr, "64")>, OpNode,
+ V2I64Regs, i64op>;
+ def V4I32 : VecUnaryOp<V4UnaryStr<!strconcat(asmstr, "32")>, OpNode,
+ V4I32Regs, i32op>;
+ def V2I32 : VecUnaryOp<V2UnaryStr<!strconcat(asmstr, "32")>, OpNode,
+ V2I32Regs, i32op>;
+ def V4I16 : VecUnaryOp<V4UnaryStr<!strconcat(asmstr, "16")>, OpNode,
+ V4I16Regs, i16op>;
+ def V2I16 : VecUnaryOp<V2UnaryStr<!strconcat(asmstr, "16")>, OpNode,
+ V2I16Regs, i16op>;
+ def V4I8 : VecUnaryOp<V4UnaryStr<!strconcat(asmstr, "16")>, OpNode,
+ V4I8Regs, i8op>;
+ def V2I8 : VecUnaryOp<V2UnaryStr<!strconcat(asmstr, "16")>, OpNode,
+ V2I8Regs, i8op>;
+}
+
+
+// Integer Arithmetic
+let VecInstType=isVecOther.Value in {
+defm VAdd : IntBinVOp<"add.s", add, ADDi64rr, ADDi32rr, ADDi16rr, ADDi8rr>;
+defm VSub : IntBinVOp<"sub.s", sub, SUBi64rr, SUBi32rr, SUBi16rr, SUBi8rr>;
+
+def AddCCV4I32 : VecBinaryOp<V4AsmStr<"add.cc.s32">, addc, V4I32Regs,
+ ADDCCi32rr>;
+def AddCCV2I32 : VecBinaryOp<V2AsmStr<"add.cc.s32">, addc, V2I32Regs,
+ ADDCCi32rr>;
+def SubCCV4I32 : VecBinaryOp<V4AsmStr<"sub.cc.s32">, subc, V4I32Regs,
+ SUBCCi32rr>;
+def SubCCV2I32 : VecBinaryOp<V2AsmStr<"sub.cc.s32">, subc, V2I32Regs,
+ SUBCCi32rr>;
+def AddCCCV4I32 : VecBinaryOp<V4AsmStr<"addc.cc.s32">, adde, V4I32Regs,
+ ADDCCCi32rr>;
+def AddCCCV2I32 : VecBinaryOp<V2AsmStr<"addc.cc.s32">, adde, V2I32Regs,
+ ADDCCCi32rr>;
+def SubCCCV4I32 : VecBinaryOp<V4AsmStr<"subc.cc.s32">, sube, V4I32Regs,
+ SUBCCCi32rr>;
+def SubCCCV2I32 : VecBinaryOp<V2AsmStr<"subc.cc.s32">, sube, V2I32Regs,
+ SUBCCCi32rr>;
+
+def ShiftLV2I64 : VecShiftOp<V2AsmStr<"shl.b64">, shl, V2I64Regs, V2I32Regs,
+ SHLi64rr>;
+def ShiftLV2I32 : VecShiftOp<V2AsmStr<"shl.b32">, shl, V2I32Regs, V2I32Regs,
+ SHLi32rr>;
+def ShiftLV4I32 : VecShiftOp<V4AsmStr<"shl.b32">, shl, V4I32Regs, V4I32Regs,
+ SHLi32rr>;
+def ShiftLV2I16 : VecShiftOp<V2AsmStr<"shl.b16">, shl, V2I16Regs, V2I32Regs,
+ SHLi16rr>;
+def ShiftLV4I16 : VecShiftOp<V4AsmStr<"shl.b16">, shl, V4I16Regs, V4I32Regs,
+ SHLi16rr>;
+def ShiftLV2I8 : VecShiftOp<V2AsmStr<"shl.b16">, shl, V2I8Regs, V2I32Regs,
+ SHLi8rr>;
+def ShiftLV4I8 : VecShiftOp<V4AsmStr<"shl.b16">, shl, V4I8Regs, V4I32Regs,
+ SHLi8rr>;
+}
+
+// cvt to v*i32, helpers for shift
+class CVTtoVeci32<NVPTXRegClass inclass, NVPTXRegClass outclass, string asmstr,
+ NVPTXInst sInst=NOP> :
+ NVPTXVecInst<(outs outclass:$d), (ins inclass:$s), asmstr, [], sInst>;
+
+class VecCVTStrHelper<string op, string dest, string src> {
+ string s=!strconcat(op, !strconcat("\t",
+ !strconcat(dest, !strconcat(", ", !strconcat(src, ";")))));
+}
+
+class Vec2CVTStr<string op> {
+ string s=!strconcat(VecCVTStrHelper<op, "${d}_0", "${s}_0">.s,
+ !strconcat("\n\t", VecCVTStrHelper<op, "${d}_1", "${s}_1">.s));
+}
+
+class Vec4CVTStr<string op> {
+ string s=!strconcat(VecCVTStrHelper<op, "${d}_0", "${s}_0">.s,
+ !strconcat("\n\t",
+ !strconcat(VecCVTStrHelper<op, "${d}_1", "${s}_1">.s,
+ !strconcat("\n\t",
+ !strconcat(VecCVTStrHelper<op, "${d}_2", "${s}_2">.s,
+ !strconcat("\n\t", VecCVTStrHelper<op, "${d}_3", "${s}_3">.s))))));
+}
+
+let VecInstType=isVecOther.Value in {
+def CVTv2i8tov2i32 : CVTtoVeci32<V2I8Regs, V2I32Regs,
+ Vec2CVTStr<"cvt.u32.u16">.s, Zint_extendext8to32>;
+def CVTv2i16tov2i32 : CVTtoVeci32<V2I16Regs, V2I32Regs,
+ Vec2CVTStr<"cvt.u32.u16">.s, Zint_extendext16to32>;
+def CVTv4i8tov4i32 : CVTtoVeci32<V4I8Regs, V4I32Regs,
+ Vec4CVTStr<"cvt.u32.u16">.s, Zint_extendext8to32>;
+def CVTv4i16tov4i32 : CVTtoVeci32<V4I16Regs, V4I32Regs,
+ Vec4CVTStr<"cvt.u32.u16">.s, Zint_extendext16to32>;
+def CVTv2i64tov2i32 : CVTtoVeci32<V2I64Regs, V2I32Regs,
+ Vec2CVTStr<"cvt.u32.u64">.s, TRUNC_64to32>;
+}
+
+def : Pat<(shl V2I16Regs:$src1, V2I16Regs:$src2),
+ (ShiftLV2I16 V2I16Regs:$src1, (CVTv2i16tov2i32 V2I16Regs:$src2))>;
+def : Pat<(shl V2I8Regs:$src1, V2I8Regs:$src2),
+ (ShiftLV2I8 V2I8Regs:$src1, (CVTv2i8tov2i32 V2I8Regs:$src2))>;
+def : Pat<(shl V2I64Regs:$src1, V2I64Regs:$src2),
+ (ShiftLV2I64 V2I64Regs:$src1, (CVTv2i64tov2i32 V2I64Regs:$src2))>;
+
+def : Pat<(shl V4I16Regs:$src1, V4I16Regs:$src2),
+ (ShiftLV4I16 V4I16Regs:$src1, (CVTv4i16tov4i32 V4I16Regs:$src2))>;
+def : Pat<(shl V4I8Regs:$src1, V4I8Regs:$src2),
+ (ShiftLV4I8 V4I8Regs:$src1, (CVTv4i8tov4i32 V4I8Regs:$src2))>;
+
+let VecInstType=isVecOther.Value in {
+def ShiftRAV2I64 : VecShiftOp<V2AsmStr<"shr.s64">, sra, V2I64Regs, V2I32Regs,
+ SRAi64rr>;
+def ShiftRAV2I32 : VecShiftOp<V2AsmStr<"shr.s32">, sra, V2I32Regs, V2I32Regs,
+ SRAi32rr>;
+def ShiftRAV4I32 : VecShiftOp<V4AsmStr<"shr.s32">, sra, V4I32Regs, V4I32Regs,
+ SRAi32rr>;
+def ShiftRAV2I16 : VecShiftOp<V2AsmStr<"shr.s16">, sra, V2I16Regs, V2I32Regs,
+ SRAi16rr>;
+def ShiftRAV4I16 : VecShiftOp<V4AsmStr<"shr.s16">, sra, V4I16Regs, V4I32Regs,
+ SRAi16rr>;
+def ShiftRAV2I8 : VecShiftOp<V2AsmStr<"shr.s16">, sra, V2I8Regs, V2I32Regs,
+ SRAi8rr>;
+def ShiftRAV4I8 : VecShiftOp<V4AsmStr<"shr.s16">, sra, V4I8Regs, V4I32Regs,
+ SRAi8rr>;
+
+def ShiftRLV2I64 : VecShiftOp<V2AsmStr<"shr.u64">, srl, V2I64Regs, V2I32Regs,
+ SRLi64rr>;
+def ShiftRLV2I32 : VecShiftOp<V2AsmStr<"shr.u32">, srl, V2I32Regs, V2I32Regs,
+ SRLi32rr>;
+def ShiftRLV4I32 : VecShiftOp<V4AsmStr<"shr.u32">, srl, V4I32Regs, V4I32Regs,
+ SRLi32rr>;
+def ShiftRLV2I16 : VecShiftOp<V2AsmStr<"shr.u16">, srl, V2I16Regs, V2I32Regs,
+ SRLi16rr>;
+def ShiftRLV4I16 : VecShiftOp<V4AsmStr<"shr.u16">, srl, V4I16Regs, V4I32Regs,
+ SRLi16rr>;
+def ShiftRLV2I8 : VecShiftOp<V2AsmStr<"shr.u16">, srl, V2I8Regs, V2I32Regs,
+ SRLi8rr>;
+def ShiftRLV4I8 : VecShiftOp<V4AsmStr<"shr.u16">, srl, V4I8Regs, V4I32Regs,
+ SRLi8rr>;
+
+defm VMult : IntBinVOp<"mul.lo.s", mul, MULTi64rr, MULTi32rr, MULTi16rr,
+ MULTi8rr>;
+defm VMultHS : IntBinVOp<"mul.hi.s", mulhs, MULTHSi64rr, MULTHSi32rr,
+ MULTHSi16rr,
+ MULTHSi8rr>;
+defm VMultHU : IntBinVOp<"mul.hi.u", mulhu, MULTHUi64rr, MULTHUi32rr,
+ MULTHUi16rr,
+ MULTHUi8rr>;
+defm VSDiv : IntBinVOp<"div.s", sdiv, SDIVi64rr, SDIVi32rr, SDIVi16rr,
+ SDIVi8rr>;
+defm VUDiv : IntBinVOp<"div.u", udiv, UDIVi64rr, UDIVi32rr, UDIVi16rr,
+ UDIVi8rr>;
+defm VSRem : IntBinVOp<"rem.s", srem, SREMi64rr, SREMi32rr, SREMi16rr,
+ SREMi8rr>;
+defm VURem : IntBinVOp<"rem.u", urem, UREMi64rr, UREMi32rr, UREMi16rr,
+ UREMi8rr>;
+}
+
+def : Pat<(sra V2I16Regs:$src1, V2I16Regs:$src2),
+ (ShiftRAV2I16 V2I16Regs:$src1, (CVTv2i16tov2i32 V2I16Regs:$src2))>;
+def : Pat<(sra V2I8Regs:$src1, V2I8Regs:$src2),
+ (ShiftRAV2I8 V2I8Regs:$src1, (CVTv2i8tov2i32 V2I8Regs:$src2))>;
+def : Pat<(sra V2I64Regs:$src1, V2I64Regs:$src2),
+ (ShiftRAV2I64 V2I64Regs:$src1, (CVTv2i64tov2i32 V2I64Regs:$src2))>;
+
+def : Pat<(sra V4I16Regs:$src1, V4I16Regs:$src2),
+ (ShiftRAV4I16 V4I16Regs:$src1, (CVTv4i16tov4i32 V4I16Regs:$src2))>;
+def : Pat<(sra V4I8Regs:$src1, V4I8Regs:$src2),
+ (ShiftRAV4I8 V4I8Regs:$src1, (CVTv4i8tov4i32 V4I8Regs:$src2))>;
+
+def : Pat<(srl V2I16Regs:$src1, V2I16Regs:$src2),
+ (ShiftRLV2I16 V2I16Regs:$src1, (CVTv2i16tov2i32 V2I16Regs:$src2))>;
+def : Pat<(srl V2I8Regs:$src1, V2I8Regs:$src2),
+ (ShiftRLV2I8 V2I8Regs:$src1, (CVTv2i8tov2i32 V2I8Regs:$src2))>;
+def : Pat<(srl V2I64Regs:$src1, V2I64Regs:$src2),
+ (ShiftRLV2I64 V2I64Regs:$src1, (CVTv2i64tov2i32 V2I64Regs:$src2))>;
+
+def : Pat<(srl V4I16Regs:$src1, V4I16Regs:$src2),
+ (ShiftRLV4I16 V4I16Regs:$src1, (CVTv4i16tov4i32 V4I16Regs:$src2))>;
+def : Pat<(srl V4I8Regs:$src1, V4I8Regs:$src2),
+ (ShiftRLV4I8 V4I8Regs:$src1, (CVTv4i8tov4i32 V4I8Regs:$src2))>;
+
+multiclass VMAD<string asmstr, NVPTXRegClass regclassv4,
+ NVPTXRegClass regclassv2,
+ SDNode an=add, SDNode mn=mul, NVPTXInst sop=NOP,
+ Predicate Pred> {
+ def V4 : NVPTXVecInst<(outs regclassv4:$dst),
+ (ins regclassv4:$a, regclassv4:$b, regclassv4:$c),
+ V4MADStr<asmstr>.s,
+ [(set regclassv4:$dst,
+ (an (mn regclassv4:$a, regclassv4:$b), regclassv4:$c))],
+ sop>,
+ Requires<[Pred]>;
+ def V2 : NVPTXVecInst<(outs regclassv2:$dst),
+ (ins regclassv2:$a, regclassv2:$b, regclassv2:$c),
+ V2MADStr<asmstr>.s,
+ [(set regclassv2:$dst,
+ (an (mn regclassv2:$a, regclassv2:$b), regclassv2:$c))],
+ sop>,
+ Requires<[Pred]>;
+}
+
+multiclass VMADV2Only<string asmstr, NVPTXRegClass regclass, NVPTXInst sop=NOP,
+ Predicate Pred> {
+ def V2 : NVPTXVecInst<(outs regclass:$dst),
+ (ins regclass:$a, regclass:$b, regclass:$c),
+ V2MADStr<asmstr>.s,
+ [(set regclass:$dst, (add
+ (mul regclass:$a, regclass:$b), regclass:$c))], sop>,
+ Requires<[Pred]>;
+}
+multiclass VFMADV2Only<string asmstr, NVPTXRegClass regclass, NVPTXInst sop=NOP,
+ Predicate Pred> {
+ def V2 : NVPTXVecInst<(outs regclass:$dst),
+ (ins regclass:$a, regclass:$b, regclass:$c),
+ V2MADStr<asmstr>.s,
+ [(set regclass:$dst, (fadd
+ (fmul regclass:$a, regclass:$b), regclass:$c))], sop>,
+ Requires<[Pred]>;
+}
+
+let VecInstType=isVecOther.Value in {
+defm I8MAD : VMAD<"mad.lo.s16", V4I8Regs, V2I8Regs, add, mul, MAD8rrr, true>;
+defm I16MAD : VMAD<"mad.lo.s16", V4I16Regs, V2I16Regs, add, mul, MAD16rrr,
+ true>;
+defm I32MAD : VMAD<"mad.lo.s32", V4I32Regs, V2I32Regs, add, mul, MAD32rrr,
+ true>;
+defm I64MAD : VMADV2Only<"mad.lo.s64", V2I64Regs, MAD64rrr, true>;
+
+defm VNeg : IntUnaryVOp<"neg.s", ineg, INEG64, INEG32, INEG16, INEG8>;
+
+defm VAddf : FloatBinVOp<"add.", fadd, FADDf64rr, FADDf32rr, FADDf32rr_ftz>;
+defm VSubf : FloatBinVOp<"sub.", fsub, FSUBf64rr, FSUBf32rr, FSUBf32rr_ftz>;
+defm VMulf : FloatBinVOp<"mul.", fmul, FMULf64rr, FMULf32rr, FMULf32rr_ftz>;
+
+defm F32MAD_ftz : VMAD<"mad.ftz.f32", V4F32Regs, V2F32Regs, fadd, fmul,
+ FMAD32_ftzrrr, doFMADF32_ftz>;
+defm F32FMA_ftz : VMAD<"fma.rn.ftz.f32", V4F32Regs, V2F32Regs, fadd, fmul,
+ FMA32_ftzrrr, doFMAF32_ftz>;
+defm F32MAD : VMAD<"mad.f32", V4F32Regs, V2F32Regs, fadd, fmul, FMAD32rrr,
+ doFMADF32>;
+defm F32FMA : VMAD<"fma.rn.f32", V4F32Regs, V2F32Regs, fadd, fmul, FMA32rrr,
+ doFMAF32>;
+defm F64FMA : VFMADV2Only<"fma.rn.f64", V2F64Regs, FMA64rrr, doFMAF64>;
+}
+
+let VecInstType=isVecOther.Value in {
+def V4F32Div_prec_ftz : VecBinaryOp<V4AsmStr<"div.rn.ftz.f32">, fdiv, V4F32Regs,
+ FDIV32rr_prec_ftz>, Requires<[doF32FTZ, reqPTX20]>;
+def V2F32Div_prec_ftz : VecBinaryOp<V2AsmStr<"div.rn.ftz.f32">, fdiv, V2F32Regs,
+ FDIV32rr_prec_ftz>, Requires<[doF32FTZ, reqPTX20]>;
+def V4F32Div_prec : VecBinaryOp<V4AsmStr<"div.rn.f32">, fdiv, V4F32Regs,
+ FDIV32rr_prec>, Requires<[reqPTX20]>;
+def V2F32Div_prec : VecBinaryOp<V2AsmStr<"div.rn.f32">, fdiv, V2F32Regs,
+ FDIV32rr_prec>, Requires<[reqPTX20]>;
+def V2F32Div_ftz : VecBinaryOp<V2AsmStr<"div.full.ftz.f32">, fdiv, V2F32Regs,
+ FDIV32rr_ftz>, Requires<[doF32FTZ]>;
+def V4F32Div_ftz : VecBinaryOp<V4AsmStr<"div.full.ftz.f32">, fdiv, V4F32Regs,
+ FDIV32rr_ftz>, Requires<[doF32FTZ]>;
+def V2F32Div : VecBinaryOp<V2AsmStr<"div.full.f32">, fdiv, V2F32Regs, FDIV32rr>;
+def V4F32Div : VecBinaryOp<V4AsmStr<"div.full.f32">, fdiv, V4F32Regs, FDIV32rr>;
+def V2F64Div : VecBinaryOp<V2AsmStr<"div.rn.f64">, fdiv, V2F64Regs, FDIV64rr>;
+}
+
+def fnegpat : PatFrag<(ops node:$in), (fneg node:$in)>;
+
+let VecInstType=isVecOther.Value in {
+def VNegv2f32_ftz : VecUnaryOp<V2UnaryStr<"neg.ftz.f32">, fnegpat, V2F32Regs,
+ FNEGf32_ftz>, Requires<[doF32FTZ]>;
+def VNegv4f32_ftz : VecUnaryOp<V4UnaryStr<"neg.ftz.f32">, fnegpat, V4F32Regs,
+ FNEGf32_ftz>, Requires<[doF32FTZ]>;
+def VNegv2f32 : VecUnaryOp<V2UnaryStr<"neg.f32">, fnegpat, V2F32Regs, FNEGf32>;
+def VNegv4f32 : VecUnaryOp<V4UnaryStr<"neg.f32">, fnegpat, V4F32Regs, FNEGf32>;
+def VNegv2f64 : VecUnaryOp<V2UnaryStr<"neg.f64">, fnegpat, V2F64Regs, FNEGf64>;
+
+// Logical Arithmetic
+defm VAnd : IntBinVOp<"and.b", and, ANDb64rr, ANDb32rr, ANDb16rr, ANDb8rr>;
+defm VOr : IntBinVOp<"or.b", or, ORb64rr, ORb32rr, ORb16rr, ORb8rr>;
+defm VXor : IntBinVOp<"xor.b", xor, XORb64rr, XORb32rr, XORb16rr, XORb8rr>;
+
+defm VNot : IntUnaryVOp<"not.b", not, NOT64, NOT32, NOT16, NOT8>;
+}
+
+
+multiclass V2FPCONTRACT32_SUB_PAT<NVPTXInst Inst, Predicate Pred> {
+ def : Pat<(fsub V2F32Regs:$a, (fmul V2F32Regs:$b, V2F32Regs:$c)),
+ (Inst (VNegv2f32 V2F32Regs:$b), V2F32Regs:$c, V2F32Regs:$a)>,
+ Requires<[Pred]>;
+
+ def : Pat<(fsub (fmul V2F32Regs:$a, V2F32Regs:$b), V2F32Regs:$c),
+ (Inst V2F32Regs:$a, V2F32Regs:$b, (VNegv2f32 V2F32Regs:$c))>,
+ Requires<[Pred]>;
+}
+
+defm V2FMAF32ext_ftz : V2FPCONTRACT32_SUB_PAT<F32FMA_ftzV2, doFMAF32AGG_ftz>;
+defm V2FMADF32ext_ftz : V2FPCONTRACT32_SUB_PAT<F32MAD_ftzV2, doFMADF32_ftz>;
+defm V2FMAF32ext : V2FPCONTRACT32_SUB_PAT<F32FMAV2, doFMAF32AGG>;
+defm V2FMADF32ext : V2FPCONTRACT32_SUB_PAT<F32MADV2, doFMADF32>;
+
+multiclass V4FPCONTRACT32_SUB_PAT<NVPTXInst Inst, Predicate Pred> {
+ def : Pat<(fsub V4F32Regs:$a, (fmul V4F32Regs:$b, V4F32Regs:$c)),
+ (Inst (VNegv4f32 V4F32Regs:$b), V4F32Regs:$c, V4F32Regs:$a)>,
+ Requires<[Pred]>;
+
+ def : Pat<(fsub (fmul V4F32Regs:$a, V4F32Regs:$b), V4F32Regs:$c),
+ (Inst V4F32Regs:$a, V4F32Regs:$b, (VNegv4f32 V4F32Regs:$c))>,
+ Requires<[Pred]>;
+}
+
+defm V4FMAF32ext_ftz : V4FPCONTRACT32_SUB_PAT<F32FMA_ftzV4, doFMAF32AGG_ftz>;
+defm V4FMADF32ext_ftz : V4FPCONTRACT32_SUB_PAT<F32MAD_ftzV4, doFMADF32_ftz>;
+defm V4FMAF32ext : V4FPCONTRACT32_SUB_PAT<F32FMAV4, doFMAF32AGG>;
+defm V4FMADF32ext : V4FPCONTRACT32_SUB_PAT<F32MADV4, doFMADF32>;
+
+multiclass V2FPCONTRACT64_SUB_PAT<NVPTXInst Inst, Predicate Pred> {
+ def : Pat<(fsub V2F64Regs:$a, (fmul V2F64Regs:$b, V2F64Regs:$c)),
+ (Inst (VNegv2f64 V2F64Regs:$b), V2F64Regs:$c, V2F64Regs:$a)>,
+ Requires<[Pred]>;
+
+ def : Pat<(fsub (fmul V2F64Regs:$a, V2F64Regs:$b), V2F64Regs:$c),
+ (Inst V2F64Regs:$a, V2F64Regs:$b, (VNegv2f64 V2F64Regs:$c))>,
+ Requires<[Pred]>;
+}
+
+defm V2FMAF64ext : V2FPCONTRACT64_SUB_PAT<F64FMAV2, doFMAF64AGG>;
+
+class VecModStr<string vecsize, string elem, string extra, string l="">
+{
+ string t1 = !strconcat("${c", elem);
+ string t2 = !strconcat(t1, ":vecv");
+ string t3 = !strconcat(t2, vecsize);
+ string t4 = !strconcat(t3, extra);
+ string t5 = !strconcat(t4, l);
+ string s = !strconcat(t5, "}");
+}
+class ShuffleOneLine<string vecsize, string elem, string type>
+{
+ string t1 = VecModStr<vecsize, elem, "comm", "1">.s;
+ string t2 = !strconcat(t1, "mov.");
+ string t3 = !strconcat(t2, type);
+ string t4 = !strconcat(t3, " \t${dst}_");
+ string t5 = !strconcat(t4, elem);
+ string t6 = !strconcat(t5, ", $src1");
+ string t7 = !strconcat(t6, VecModStr<vecsize, elem, "pos">.s);
+ string t8 = !strconcat(t7, ";\n\t");
+ string t9 = !strconcat(t8, VecModStr<vecsize, elem, "comm", "2">.s);
+ string t10 = !strconcat(t9, "mov.");
+ string t11 = !strconcat(t10, type);
+ string t12 = !strconcat(t11, " \t${dst}_");
+ string t13 = !strconcat(t12, elem);
+ string t14 = !strconcat(t13, ", $src2");
+ string t15 = !strconcat(t14, VecModStr<vecsize, elem, "pos">.s);
+ string s = !strconcat(t15, ";");
+}
+class ShuffleAsmStr2<string type>
+{
+ string t1 = ShuffleOneLine<"2", "0", type>.s;
+ string t2 = !strconcat(t1, "\n\t");
+ string s = !strconcat(t2, ShuffleOneLine<"2", "1", type>.s);
+}
+class ShuffleAsmStr4<string type>
+{
+ string t1 = ShuffleOneLine<"4", "0", type>.s;
+ string t2 = !strconcat(t1, "\n\t");
+ string t3 = !strconcat(t2, ShuffleOneLine<"4", "1", type>.s);
+ string t4 = !strconcat(t3, "\n\t");
+ string t5 = !strconcat(t4, ShuffleOneLine<"4", "2", type>.s);
+ string t6 = !strconcat(t5, "\n\t");
+ string s = !strconcat(t6, ShuffleOneLine<"4", "3", type>.s);
+}
+
+let neverHasSideEffects=1, VecInstType=isVecShuffle.Value in {
+def VecShuffle_v4f32 : NVPTXVecInst<(outs V4F32Regs:$dst),
+ (ins V4F32Regs:$src1, V4F32Regs:$src2,
+ i8imm:$c0, i8imm:$c1, i8imm:$c2, i8imm:$c3),
+ !strconcat("//Mov $dst, $src1, $src2, $c0, $c1, $c2, $c3;\n\t",
+ ShuffleAsmStr4<"f32">.s),
+ [], FMOV32rr>;
+
+def VecShuffle_v4i32 : NVPTXVecInst<(outs V4I32Regs:$dst),
+ (ins V4I32Regs:$src1, V4I32Regs:$src2,
+ i8imm:$c0, i8imm:$c1, i8imm:$c2, i8imm:$c3),
+ !strconcat("//Mov $dst, $src1, $src2, $c0, $c1, $c2, $c3;\n\t",
+ ShuffleAsmStr4<"u32">.s),
+ [], IMOV32rr>;
+
+def VecShuffle_v4i16 : NVPTXVecInst<(outs V4I16Regs:$dst),
+ (ins V4I16Regs:$src1, V4I16Regs:$src2,
+ i8imm:$c0, i8imm:$c1, i8imm:$c2, i8imm:$c3),
+ !strconcat("//Mov $dst, $src1, $src2, $c0, $c1, $c2, $c3;\n\t",
+ ShuffleAsmStr4<"u16">.s),
+ [], IMOV16rr>;
+
+def VecShuffle_v4i8 : NVPTXVecInst<(outs V4I8Regs:$dst),
+ (ins V4I8Regs:$src1, V4I8Regs:$src2,
+ i8imm:$c0, i8imm:$c1, i8imm:$c2, i8imm:$c3),
+ !strconcat("//Mov $dst, $src1, $src2, $c0, $c1, $c2, $c3;\n\t",
+ ShuffleAsmStr4<"u16">.s),
+ [], IMOV8rr>;
+
+def VecShuffle_v2f32 : NVPTXVecInst<(outs V2F32Regs:$dst),
+ (ins V2F32Regs:$src1, V2F32Regs:$src2,
+ i8imm:$c0, i8imm:$c1),
+ !strconcat("//Mov $dst, $src1, $src2, $c0, $c1;\n\t",
+ ShuffleAsmStr2<"f32">.s),
+ [], FMOV32rr>;
+
+def VecShuffle_v2i32 : NVPTXVecInst<(outs V2I32Regs:$dst),
+ (ins V2I32Regs:$src1, V2I32Regs:$src2,
+ i8imm:$c0, i8imm:$c1),
+ !strconcat("//Mov $dst, $src1, $src2, $c0, $c1;\n\t",
+ ShuffleAsmStr2<"u32">.s),
+ [], IMOV32rr>;
+
+def VecShuffle_v2i8 : NVPTXVecInst<(outs V2I8Regs:$dst),
+ (ins V2I8Regs:$src1, V2I8Regs:$src2,
+ i8imm:$c0, i8imm:$c1),
+ !strconcat("//Mov $dst, $src1, $src2, $c0, $c1;\n\t",
+ ShuffleAsmStr2<"u16">.s),
+ [], IMOV8rr>;
+
+def VecShuffle_v2i16 : NVPTXVecInst<(outs V2I16Regs:$dst),
+ (ins V2I16Regs:$src1, V2I16Regs:$src2,
+ i8imm:$c0, i8imm:$c1),
+ !strconcat("//Mov $dst, $src1, $src2, $c0, $c1;\n\t",
+ ShuffleAsmStr2<"u16">.s),
+ [], IMOV16rr>;
+
+def VecShuffle_v2f64 : NVPTXVecInst<(outs V2F64Regs:$dst),
+ (ins V2F64Regs:$src1, V2F64Regs:$src2,
+ i8imm:$c0, i8imm:$c1),
+ !strconcat("//Mov $dst, $src1, $src2, $c0, $c1;\n\t",
+ ShuffleAsmStr2<"f64">.s),
+ [], FMOV64rr>;
+
+def VecShuffle_v2i64 : NVPTXVecInst<(outs V2I64Regs:$dst),
+ (ins V2I64Regs:$src1, V2I64Regs:$src2,
+ i8imm:$c0, i8imm:$c1),
+ !strconcat("//Mov $dst, $src1, $src2, $c0, $c1;\n\t",
+ ShuffleAsmStr2<"u64">.s),
+ [], IMOV64rr>;
+}
+
+def ShuffleMask0 : SDNodeXForm<vector_shuffle, [{
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ return CurDAG->getTargetConstant(SVOp->getMaskElt(0), MVT::i32);
+}]>;
+def ShuffleMask1 : SDNodeXForm<vector_shuffle, [{
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ return CurDAG->getTargetConstant(SVOp->getMaskElt(1), MVT::i32);
+}]>;
+def ShuffleMask2 : SDNodeXForm<vector_shuffle, [{
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ return CurDAG->getTargetConstant(SVOp->getMaskElt(2), MVT::i32);
+}]>;
+def ShuffleMask3 : SDNodeXForm<vector_shuffle, [{
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ return CurDAG->getTargetConstant(SVOp->getMaskElt(3), MVT::i32);
+}]>;
+
+// The spurious call is here to silence a compiler warning about N being
+// unused.
+def vec_shuf : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs),
+ [{ N->getGluedNode(); return true; }]>;
+
+def : Pat<(v2f64 (vec_shuf:$op V2F64Regs:$src1, V2F64Regs:$src2)),
+ (VecShuffle_v2f64 V2F64Regs:$src1, V2F64Regs:$src2,
+ (ShuffleMask0 node:$op), (ShuffleMask1 node:$op))>;
+
+def : Pat<(v4f32 (vec_shuf:$op V4F32Regs:$src1, V4F32Regs:$src2)),
+ (VecShuffle_v4f32 V4F32Regs:$src1, V4F32Regs:$src2,
+ (ShuffleMask0 node:$op), (ShuffleMask1 node:$op),
+ (ShuffleMask2 node:$op), (ShuffleMask3 node:$op))>;
+
+def : Pat<(v2f32 (vec_shuf:$op V2F32Regs:$src1, V2F32Regs:$src2)),
+ (VecShuffle_v2f32 V2F32Regs:$src1, V2F32Regs:$src2,
+ (ShuffleMask0 node:$op), (ShuffleMask1 node:$op))>;
+
+def : Pat<(v2i64 (vec_shuf:$op V2I64Regs:$src1, V2I64Regs:$src2)),
+ (VecShuffle_v2i64 V2I64Regs:$src1, V2I64Regs:$src2,
+ (ShuffleMask0 node:$op), (ShuffleMask1 node:$op))>;
+
+def : Pat<(v4i32 (vec_shuf:$op V4I32Regs:$src1, V4I32Regs:$src2)),
+ (VecShuffle_v4i32 V4I32Regs:$src1, V4I32Regs:$src2,
+ (ShuffleMask0 node:$op), (ShuffleMask1 node:$op),
+ (ShuffleMask2 node:$op), (ShuffleMask3 node:$op))>;
+
+def : Pat<(v2i32 (vec_shuf:$op V2I32Regs:$src1, V2I32Regs:$src2)),
+ (VecShuffle_v2i32 V2I32Regs:$src1, V2I32Regs:$src2,
+ (ShuffleMask0 node:$op), (ShuffleMask1 node:$op))>;
+
+def : Pat<(v4i16 (vec_shuf:$op V4I16Regs:$src1, V4I16Regs:$src2)),
+ (VecShuffle_v4i16 V4I16Regs:$src1, V4I16Regs:$src2,
+ (ShuffleMask0 node:$op), (ShuffleMask1 node:$op),
+ (ShuffleMask2 node:$op), (ShuffleMask3 node:$op))>;
+
+def : Pat<(v2i16 (vec_shuf:$op V2I16Regs:$src1, V2I16Regs:$src2)),
+ (VecShuffle_v2i16 V2I16Regs:$src1, V2I16Regs:$src2,
+ (ShuffleMask0 node:$op), (ShuffleMask1 node:$op))>;
+
+def : Pat<(v4i8 (vec_shuf:$op V4I8Regs:$src1, V4I8Regs:$src2)),
+ (VecShuffle_v4i8 V4I8Regs:$src1, V4I8Regs:$src2,
+ (ShuffleMask0 node:$op), (ShuffleMask1 node:$op),
+ (ShuffleMask2 node:$op), (ShuffleMask3 node:$op))>;
+
+def : Pat<(v2i8 (vec_shuf:$op V2I8Regs:$src1, V2I8Regs:$src2)),
+ (VecShuffle_v2i8 V2I8Regs:$src1, V2I8Regs:$src2,
+ (ShuffleMask0 node:$op), (ShuffleMask1 node:$op))>;
+
+class Build_Vector2<string asmstr, NVPTXRegClass vclass, NVPTXRegClass sclass,
+ NVPTXInst si>
+ : NVPTXVecInst<(outs vclass:$dst),
+ (ins sclass:$a1, sclass:$a2),
+ !strconcat(asmstr, "\t${dst:vecfull}, {{$a1, $a2}};"),
+ [(set vclass:$dst, (build_vector sclass:$a1, sclass:$a2))],
+ si>;
+class Build_Vector4<string asmstr, NVPTXRegClass vclass, NVPTXRegClass sclass,
+ NVPTXInst si>
+ : NVPTXVecInst<(outs vclass:$dst),
+ (ins sclass:$a1, sclass:$a2, sclass:$a3, sclass:$a4),
+ !strconcat(asmstr, "\t${dst:vecfull}, {{$a1, $a2, $a3, $a4}};"),
+ [(set vclass:$dst,
+ (build_vector sclass:$a1, sclass:$a2,
+ sclass:$a3, sclass:$a4))], si>;
+
+let isAsCheapAsAMove=1, VecInstType=isVecBuild.Value in {
+def Build_Vector2_f32 : Build_Vector2<"mov.v2.f32", V2F32Regs, Float32Regs,
+ FMOV32rr>;
+def Build_Vector2_f64 : Build_Vector2<"mov.v2.f64", V2F64Regs, Float64Regs,
+ FMOV64rr>;
+
+def Build_Vector2_i32 : Build_Vector2<"mov.v2.u32", V2I32Regs, Int32Regs,
+ IMOV32rr>;
+def Build_Vector2_i64 : Build_Vector2<"mov.v2.u64", V2I64Regs, Int64Regs,
+ IMOV64rr>;
+def Build_Vector2_i16 : Build_Vector2<"mov.v2.u16", V2I16Regs, Int16Regs,
+ IMOV16rr>;
+def Build_Vector2_i8 : Build_Vector2<"mov.v2.u16", V2I8Regs, Int8Regs,
+ IMOV8rr>;
+
+def Build_Vector4_f32 : Build_Vector4<"mov.v4.f32", V4F32Regs, Float32Regs,
+ FMOV32rr>;
+
+def Build_Vector4_i32 : Build_Vector4<"mov.v4.u32", V4I32Regs, Int32Regs,
+ IMOV32rr>;
+def Build_Vector4_i16 : Build_Vector4<"mov.v4.u16", V4I16Regs, Int16Regs,
+ IMOV16rr>;
+def Build_Vector4_i8 : Build_Vector4<"mov.v4.u16", V4I8Regs, Int8Regs,
+ IMOV8rr>;
+}
+
+class Vec_Move<string asmstr, NVPTXRegClass vclass, NVPTXInst sop=NOP>
+ : NVPTXVecInst<(outs vclass:$dst), (ins vclass:$src),
+ !strconcat(asmstr, "\t${dst:vecfull}, ${src:vecfull};"),
+ [], sop>;
+
+let isAsCheapAsAMove=1, neverHasSideEffects=1, IsSimpleMove=1,
+ VecInstType=isVecOther.Value in {
+def V4f32Mov : Vec_Move<"mov.v4.f32", V4F32Regs, FMOV32rr>;
+def V2f32Mov : Vec_Move<"mov.v2.f32", V2F32Regs, FMOV32rr>;
+
+def V4i32Mov : Vec_Move<"mov.v4.u32", V4I32Regs, IMOV32rr>;
+def V2i32Mov : Vec_Move<"mov.v2.u32", V2I32Regs, IMOV32rr>;
+
+def V4i16Mov : Vec_Move<"mov.v4.u16", V4I16Regs, IMOV16rr>;
+def V2i16Mov : Vec_Move<"mov.v2.u16", V2I16Regs, IMOV16rr>;
+
+def V4i8Mov : Vec_Move<"mov.v4.u16", V4I8Regs, IMOV8rr>;
+def V2i8Mov : Vec_Move<"mov.v2.u16", V2I8Regs, IMOV8rr>;
+
+def V2f64Mov : Vec_Move<"mov.v2.f64", V2F64Regs, FMOV64rr>;
+def V2i64Mov : Vec_Move<"mov.v2.u64", V2I64Regs, IMOV64rr>;
+}
+
+// extract subvector patterns
+def extract_subvec : SDNode<"ISD::EXTRACT_SUBVECTOR",
+ SDTypeProfile<1, 2, [SDTCisPtrTy<2>]>>;
+
+def : Pat<(v2f32 (extract_subvec V4F32Regs:$src, 0)),
+ (Build_Vector2_f32 (V4f32Extract V4F32Regs:$src, 0),
+ (V4f32Extract V4F32Regs:$src, 1))>;
+def : Pat<(v2f32 (extract_subvec V4F32Regs:$src, 2)),
+ (Build_Vector2_f32 (V4f32Extract V4F32Regs:$src, 2),
+ (V4f32Extract V4F32Regs:$src, 3))>;
+def : Pat<(v2i32 (extract_subvec V4I32Regs:$src, 0)),
+ (Build_Vector2_i32 (V4i32Extract V4I32Regs:$src, 0),
+ (V4i32Extract V4I32Regs:$src, 1))>;
+def : Pat<(v2i32 (extract_subvec V4I32Regs:$src, 2)),
+ (Build_Vector2_i32 (V4i32Extract V4I32Regs:$src, 2),
+ (V4i32Extract V4I32Regs:$src, 3))>;
+def : Pat<(v2i16 (extract_subvec V4I16Regs:$src, 0)),
+ (Build_Vector2_i16 (V4i16Extract V4I16Regs:$src, 0),
+ (V4i16Extract V4I16Regs:$src, 1))>;
+def : Pat<(v2i16 (extract_subvec V4I16Regs:$src, 2)),
+ (Build_Vector2_i16 (V4i16Extract V4I16Regs:$src, 2),
+ (V4i16Extract V4I16Regs:$src, 3))>;
+def : Pat<(v2i8 (extract_subvec V4I8Regs:$src, 0)),
+ (Build_Vector2_i8 (V4i8Extract V4I8Regs:$src, 0),
+ (V4i8Extract V4I8Regs:$src, 1))>;
+def : Pat<(v2i8 (extract_subvec V4I8Regs:$src, 2)),
+ (Build_Vector2_i8 (V4i8Extract V4I8Regs:$src, 2),
+ (V4i8Extract V4I8Regs:$src, 3))>;
+
+// Select instructions
+class Select_OneLine<string type, string pos> {
+ string t1 = !strconcat("selp.", type);
+ string t2 = !strconcat(t1, " \t${dst}_");
+ string t3 = !strconcat(t2, pos);
+ string t4 = !strconcat(t3, ", ${src1}_");
+ string t5 = !strconcat(t4, pos);
+ string t6 = !strconcat(t5, ", ${src2}_");
+ string t7 = !strconcat(t6, pos);
+ string s = !strconcat(t7, ", $p;");
+}
+
+class Select_Str2<string type> {
+ string t1 = Select_OneLine<type, "0">.s;
+ string t2 = !strconcat(t1, "\n\t");
+ string s = !strconcat(t2, Select_OneLine<type, "1">.s);
+}
+
+class Select_Str4<string type> {
+ string t1 = Select_OneLine<type, "0">.s;
+ string t2 = !strconcat(t1, "\n\t");
+ string t3 = !strconcat(t2, Select_OneLine<type, "1">.s);
+ string t4 = !strconcat(t3, "\n\t");
+ string t5 = !strconcat(t4, Select_OneLine<type, "2">.s);
+ string t6 = !strconcat(t5, "\n\t");
+ string s = !strconcat(t6, Select_OneLine<type, "3">.s);
+
+}
+
+class Vec_Select<NVPTXRegClass vclass, string asmstr, NVPTXInst sop>
+ : NVPTXVecInst<(outs vclass:$dst),
+ (ins vclass:$src1, vclass:$src2, Int1Regs:$p),
+ asmstr,
+ [(set vclass:$dst, (select Int1Regs:$p, vclass:$src1,
+ vclass:$src2))],
+ sop>;
+
+let VecInstType=isVecOther.Value in {
+def V2I64_Select : Vec_Select<V2I64Regs, Select_Str2<"b64">.s, SELECTi64rr>;
+def V4I32_Select : Vec_Select<V4I32Regs, Select_Str4<"b32">.s, SELECTi32rr>;
+def V2I32_Select : Vec_Select<V2I32Regs, Select_Str2<"b32">.s, SELECTi32rr>;
+def V4I16_Select : Vec_Select<V4I16Regs, Select_Str4<"b16">.s, SELECTi16rr>;
+def V2I16_Select : Vec_Select<V2I16Regs, Select_Str2<"b16">.s, SELECTi16rr>;
+def V4I8_Select : Vec_Select<V4I8Regs, Select_Str4<"b16">.s, SELECTi8rr>;
+def V2I8_Select : Vec_Select<V2I8Regs, Select_Str2<"b16">.s, SELECTi8rr>;
+
+def V2F64_Select : Vec_Select<V2F64Regs, Select_Str2<"f64">.s, SELECTf64rr>;
+def V4F32_Select : Vec_Select<V4F32Regs, Select_Str4<"f32">.s, SELECTf32rr>;
+def V2F32_Select : Vec_Select<V2F32Regs, Select_Str2<"f32">.s, SELECTf32rr>;
+}
+
+// Comparison instructions
+
+// setcc convenience fragments.
+def vsetoeq : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETOEQ)>;
+def vsetogt : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETOGT)>;
+def vsetoge : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETOGE)>;
+def vsetolt : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETOLT)>;
+def vsetole : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETOLE)>;
+def vsetone : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETONE)>;
+def vseto : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETO)>;
+def vsetuo : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETUO)>;
+def vsetueq : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETUEQ)>;
+def vsetugt : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETUGT)>;
+def vsetuge : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETUGE)>;
+def vsetult : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETULT)>;
+def vsetule : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETULE)>;
+def vsetune : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETUNE)>;
+def vseteq : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETEQ)>;
+def vsetgt : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETGT)>;
+def vsetge : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETGE)>;
+def vsetlt : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETLT)>;
+def vsetle : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETLE)>;
+def vsetne : PatFrag<(ops node:$lhs, node:$rhs),
+ (setcc node:$lhs, node:$rhs, SETNE)>;
+
+class Vec_Compare<PatFrag op, NVPTXRegClass outrclass, NVPTXRegClass inrclass,
+ NVPTXInst sop>
+ : NVPTXVecInst<(outs outrclass:$dst),
+ (ins inrclass:$a, inrclass:$b),
+ "Unsupported",
+ [(set outrclass:$dst, (op inrclass:$a, inrclass:$b))],
+ sop>;
+
+multiclass Vec_Compare_All<PatFrag op,
+ NVPTXInst inst8,
+ NVPTXInst inst16,
+ NVPTXInst inst32,
+ NVPTXInst inst64>
+{
+ def V2I8 : Vec_Compare<op, V2I8Regs, V2I8Regs, inst8>;
+ def V4I8 : Vec_Compare<op, V4I8Regs, V4I8Regs, inst8>;
+ def V2I16 : Vec_Compare<op, V2I16Regs, V2I16Regs, inst16>;
+ def V4I16 : Vec_Compare<op, V4I16Regs, V4I16Regs, inst16>;
+ def V2I32 : Vec_Compare<op, V2I32Regs, V2I32Regs, inst32>;
+ def V4I32 : Vec_Compare<op, V4I32Regs, V4I32Regs, inst32>;
+ def V2I64 : Vec_Compare<op, V2I64Regs, V2I64Regs, inst64>;
+}
+
+let VecInstType=isVecOther.Value in {
+ defm VecSGT : Vec_Compare_All<vsetgt, ISetSGTi8rr_toi8, ISetSGTi16rr_toi16,
+ ISetSGTi32rr_toi32, ISetSGTi64rr_toi64>;
+ defm VecUGT : Vec_Compare_All<vsetugt, ISetUGTi8rr_toi8, ISetUGTi16rr_toi16,
+ ISetUGTi32rr_toi32, ISetUGTi64rr_toi64>;
+ defm VecSLT : Vec_Compare_All<vsetlt, ISetSLTi8rr_toi8, ISetSLTi16rr_toi16,
+ ISetSLTi32rr_toi32, ISetSLTi64rr_toi64>;
+ defm VecULT : Vec_Compare_All<vsetult, ISetULTi8rr_toi8, ISetULTi16rr_toi16,
+ ISetULTi32rr_toi32, ISetULTi64rr_toi64>;
+ defm VecSGE : Vec_Compare_All<vsetge, ISetSGEi8rr_toi8, ISetSGEi16rr_toi16,
+ ISetSGEi32rr_toi32, ISetSGEi64rr_toi64>;
+ defm VecUGE : Vec_Compare_All<vsetuge, ISetUGEi8rr_toi8, ISetUGEi16rr_toi16,
+ ISetUGEi32rr_toi32, ISetUGEi64rr_toi64>;
+ defm VecSLE : Vec_Compare_All<vsetle, ISetSLEi8rr_toi8, ISetSLEi16rr_toi16,
+ ISetSLEi32rr_toi32, ISetSLEi64rr_toi64>;
+ defm VecULE : Vec_Compare_All<vsetule, ISetULEi8rr_toi8, ISetULEi16rr_toi16,
+ ISetULEi32rr_toi32, ISetULEi64rr_toi64>;
+ defm VecSEQ : Vec_Compare_All<vseteq, ISetSEQi8rr_toi8, ISetSEQi16rr_toi16,
+ ISetSEQi32rr_toi32, ISetSEQi64rr_toi64>;
+ defm VecUEQ : Vec_Compare_All<vsetueq, ISetUEQi8rr_toi8, ISetUEQi16rr_toi16,
+ ISetUEQi32rr_toi32, ISetUEQi64rr_toi64>;
+ defm VecSNE : Vec_Compare_All<vsetne, ISetSNEi8rr_toi8, ISetSNEi16rr_toi16,
+ ISetSNEi32rr_toi32, ISetSNEi64rr_toi64>;
+ defm VecUNE : Vec_Compare_All<vsetune, ISetUNEi8rr_toi8, ISetUNEi16rr_toi16,
+ ISetUNEi32rr_toi32, ISetUNEi64rr_toi64>;
+}
+
+multiclass FVec_Compare_All<PatFrag op,
+ NVPTXInst instf32,
+ NVPTXInst instf64>
+{
+ def V2F32 : Vec_Compare<op, V2I32Regs, V2F32Regs, instf32>;
+ def V4F32 : Vec_Compare<op, V4I32Regs, V4F32Regs, instf32>;
+ def V2F64 : Vec_Compare<op, V2I64Regs, V2F64Regs, instf64>;
+}
+
+let VecInstType=isVecOther.Value in {
+ defm FVecGT : FVec_Compare_All<vsetogt, FSetGTf32rr_toi32,
+ FSetGTf64rr_toi64>;
+ defm FVecLT : FVec_Compare_All<vsetolt, FSetLTf32rr_toi32,
+ FSetLTf64rr_toi64>;
+ defm FVecGE : FVec_Compare_All<vsetoge, FSetGEf32rr_toi32,
+ FSetGEf64rr_toi64>;
+ defm FVecLE : FVec_Compare_All<vsetole, FSetLEf32rr_toi32,
+ FSetLEf64rr_toi64>;
+ defm FVecEQ : FVec_Compare_All<vsetoeq, FSetEQf32rr_toi32,
+ FSetEQf64rr_toi64>;
+ defm FVecNE : FVec_Compare_All<vsetone, FSetNEf32rr_toi32,
+ FSetNEf64rr_toi64>;
+
+ defm FVecUGT : FVec_Compare_All<vsetugt, FSetUGTf32rr_toi32,
+ FSetUGTf64rr_toi64>;
+ defm FVecULT : FVec_Compare_All<vsetult, FSetULTf32rr_toi32,
+ FSetULTf64rr_toi64>;
+ defm FVecUGE : FVec_Compare_All<vsetuge, FSetUGEf32rr_toi32,
+ FSetUGEf64rr_toi64>;
+ defm FVecULE : FVec_Compare_All<vsetule, FSetULEf32rr_toi32,
+ FSetULEf64rr_toi64>;
+ defm FVecUEQ : FVec_Compare_All<vsetueq, FSetUEQf32rr_toi32,
+ FSetUEQf64rr_toi64>;
+ defm FVecUNE : FVec_Compare_All<vsetune, FSetUNEf32rr_toi32,
+ FSetUNEf64rr_toi64>;
+
+ defm FVecNUM : FVec_Compare_All<vseto, FSetNUMf32rr_toi32,
+ FSetNUMf64rr_toi64>;
+ defm FVecNAN : FVec_Compare_All<vsetuo, FSetNANf32rr_toi32,
+ FSetNANf64rr_toi64>;
+}
+
+class LoadParamScalar4Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs regclass:$d1, regclass:$d2, regclass:$d3, regclass:$d4),
+ (ins i32imm:$a, i32imm:$b),
+ !strconcat(!strconcat("ld.param", opstr),
+ "\t{{$d1, $d2, $d3, $d4}}, [retval0+$b];"), []>;
+
+class LoadParamScalar2Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs regclass:$d1, regclass:$d2),
+ (ins i32imm:$a, i32imm:$b),
+ !strconcat(!strconcat("ld.param", opstr),
+ "\t{{$d1, $d2}}, [retval0+$b];"), []>;
+
+
+class StoreParamScalar4Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs),
+ (ins regclass:$s1, regclass:$s2, regclass:$s3, regclass:$s4,
+ i32imm:$a, i32imm:$b),
+ !strconcat(!strconcat("st.param", opstr),
+ "\t[param$a+$b], {{$s1, $s2, $s3, $s4}};"), []>;
+
+class StoreParamScalar2Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs),
+ (ins regclass:$s1, regclass:$s2, i32imm:$a, i32imm:$b),
+ !strconcat(!strconcat("st.param", opstr),
+ "\t[param$a+$b], {{$s1, $s2}};"), []>;
+
+class StoreRetvalScalar4Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs),
+ (ins regclass:$s1, regclass:$s2, regclass:$s3, regclass:$s4,
+ i32imm:$a),
+ !strconcat(!strconcat("st.param", opstr),
+ "\t[func_retval+$a], {{$s1, $s2, $s3, $s4}};"), []>;
+
+class StoreRetvalScalar2Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs),
+ (ins regclass:$s1, regclass:$s2, i32imm:$a),
+ !strconcat(!strconcat("st.param", opstr),
+ "\t[func_retval+$a], {{$s1, $s2}};"), []>;
+
+def LoadParamScalar4I32 : LoadParamScalar4Inst<Int32Regs, ".v4.b32">;
+def LoadParamScalar4I16 : LoadParamScalar4Inst<Int16Regs, ".v4.b16">;
+def LoadParamScalar4I8 : LoadParamScalar4Inst<Int8Regs, ".v4.b8">;
+
+def LoadParamScalar2I64 : LoadParamScalar2Inst<Int32Regs, ".v2.b64">;
+def LoadParamScalar2I32 : LoadParamScalar2Inst<Int32Regs, ".v2.b32">;
+def LoadParamScalar2I16 : LoadParamScalar2Inst<Int32Regs, ".v2.b16">;
+def LoadParamScalar2I8 : LoadParamScalar2Inst<Int32Regs, ".v2.b8">;
+
+def LoadParamScalar4F32 : LoadParamScalar4Inst<Float32Regs, ".v4.f32">;
+def LoadParamScalar2F32 : LoadParamScalar2Inst<Float32Regs, ".v2.f32">;
+def LoadParamScalar2F64 : LoadParamScalar2Inst<Float64Regs, ".v2.f64">;
+
+def StoreParamScalar4I32 : StoreParamScalar4Inst<Int32Regs, ".v4.b32">;
+def StoreParamScalar4I16 : StoreParamScalar4Inst<Int16Regs, ".v4.b16">;
+def StoreParamScalar4I8 : StoreParamScalar4Inst<Int8Regs, ".v4.b8">;
+
+def StoreParamScalar2I64 : StoreParamScalar2Inst<Int64Regs, ".v2.b64">;
+def StoreParamScalar2I32 : StoreParamScalar2Inst<Int32Regs, ".v2.b32">;
+def StoreParamScalar2I16 : StoreParamScalar2Inst<Int16Regs, ".v2.b16">;
+def StoreParamScalar2I8 : StoreParamScalar2Inst<Int8Regs, ".v2.b8">;
+
+def StoreParamScalar4F32 : StoreParamScalar4Inst<Float32Regs, ".v4.f32">;
+def StoreParamScalar2F32 : StoreParamScalar2Inst<Float32Regs, ".v2.f32">;
+def StoreParamScalar2F64 : StoreParamScalar2Inst<Float64Regs, ".v2.f64">;
+
+def StoreRetvalScalar4I32 : StoreRetvalScalar4Inst<Int32Regs, ".v4.b32">;
+def StoreRetvalScalar4I16 : StoreRetvalScalar4Inst<Int16Regs, ".v4.b16">;
+def StoreRetvalScalar4I8 : StoreRetvalScalar4Inst<Int8Regs, ".v4.b8">;
+
+def StoreRetvalScalar2I64 : StoreRetvalScalar2Inst<Int64Regs, ".v2.b64">;
+def StoreRetvalScalar2I32 : StoreRetvalScalar2Inst<Int32Regs, ".v2.b32">;
+def StoreRetvalScalar2I16 : StoreRetvalScalar2Inst<Int16Regs, ".v2.b16">;
+def StoreRetvalScalar2I8 : StoreRetvalScalar2Inst<Int8Regs, ".v2.b8">;
+
+def StoreRetvalScalar4F32 : StoreRetvalScalar4Inst<Float32Regs, ".v4.f32">;
+def StoreRetvalScalar2F32 : StoreRetvalScalar2Inst<Float32Regs, ".v2.f32">;
+def StoreRetvalScalar2F64 : StoreRetvalScalar2Inst<Float64Regs, ".v2.f64">;
+
+class LoadParamVecInst<NVPTXRegClass regclass, string opstr, NVPTXInst sop=NOP>:
+ NVPTXVecInst<(outs regclass:$dst), (ins i32imm:$a, i32imm:$b),
+ "loadparam : $dst <- [$a, $b]",
+ [(set regclass:$dst, (LoadParam (i32 imm:$a), (i32 imm:$b)))],
+ sop>;
+
+class StoreParamVecInst<NVPTXRegClass regclass, string opstr, NVPTXInst sop=NOP>
+ : NVPTXVecInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b),
+ "storeparam : [$a, $b] <- $val",
+ [(StoreParam (i32 imm:$a), (i32 imm:$b), regclass:$val)], sop>;
+
+class StoreRetvalVecInst<NVPTXRegClass regclass, string opstr,
+ NVPTXInst sop=NOP>
+ : NVPTXVecInst<(outs), (ins regclass:$val, i32imm:$a),
+ "storeretval : retval[$a] <- $val",
+ [(StoreRetval (i32 imm:$a), regclass:$val)], sop>;
+
+let VecInstType=isVecLD.Value in {
+def LoadParamV4I32 : LoadParamVecInst<V4I32Regs, ".v4.b32",
+ LoadParamScalar4I32>;
+def LoadParamV4I16 : LoadParamVecInst<V4I16Regs, ".v4.b16",
+ LoadParamScalar4I16>;
+def LoadParamV4I8 : LoadParamVecInst<V4I8Regs, ".v4.b8",
+ LoadParamScalar4I8>;
+
+def LoadParamV2I64 : LoadParamVecInst<V2I64Regs, ".v2.b64",
+ LoadParamScalar2I64>;
+def LoadParamV2I32 : LoadParamVecInst<V2I32Regs, ".v2.b32",
+ LoadParamScalar2I32>;
+def LoadParamV2I16 : LoadParamVecInst<V2I16Regs, ".v2.b16",
+ LoadParamScalar2I16>;
+def LoadParamV2I8 : LoadParamVecInst<V2I8Regs, ".v2.b8",
+ LoadParamScalar2I8>;
+
+def LoadParamV4F32 : LoadParamVecInst<V4F32Regs, ".v4.f32",
+ LoadParamScalar4F32>;
+def LoadParamV2F32 : LoadParamVecInst<V2F32Regs, ".v2.f32",
+ LoadParamScalar2F32>;
+def LoadParamV2F64 : LoadParamVecInst<V2F64Regs, ".v2.f64",
+ LoadParamScalar2F64>;
+}
+
+let VecInstType=isVecST.Value in {
+def StoreParamV4I32 : StoreParamVecInst<V4I32Regs, ".v4.b32",
+ StoreParamScalar4I32>;
+def StoreParamV4I16 : StoreParamVecInst<V4I16Regs, ".v4.b16",
+ StoreParamScalar4I16>;
+def StoreParamV4I8 : StoreParamVecInst<V4I8Regs, ".v4.b8",
+ StoreParamScalar4I8>;
+
+def StoreParamV2I64 : StoreParamVecInst<V2I64Regs, ".v2.b64",
+ StoreParamScalar2I64>;
+def StoreParamV2I32 : StoreParamVecInst<V2I32Regs, ".v2.b32",
+ StoreParamScalar2I32>;
+def StoreParamV2I16 : StoreParamVecInst<V2I16Regs, ".v2.b16",
+ StoreParamScalar2I16>;
+def StoreParamV2I8 : StoreParamVecInst<V2I8Regs, ".v2.b8",
+ StoreParamScalar2I8>;
+
+def StoreParamV4F32 : StoreParamVecInst<V4F32Regs, ".v4.f32",
+ StoreParamScalar4F32>;
+def StoreParamV2F32 : StoreParamVecInst<V2F32Regs, ".v2.f32",
+ StoreParamScalar2F32>;
+def StoreParamV2F64 : StoreParamVecInst<V2F64Regs, ".v2.f64",
+ StoreParamScalar2F64>;
+
+def StoreRetvalV4I32 : StoreRetvalVecInst<V4I32Regs, ".v4.b32",
+ StoreRetvalScalar4I32>;
+def StoreRetvalV4I16 : StoreRetvalVecInst<V4I16Regs, ".v4.b16",
+ StoreRetvalScalar4I16>;
+def StoreRetvalV4I8 : StoreRetvalVecInst<V4I8Regs, ".v4.b8",
+ StoreRetvalScalar4I8>;
+
+def StoreRetvalV2I64 : StoreRetvalVecInst<V2I64Regs, ".v2.b64",
+ StoreRetvalScalar2I64>;
+def StoreRetvalV2I32 : StoreRetvalVecInst<V2I32Regs, ".v2.b32",
+ StoreRetvalScalar2I32>;
+def StoreRetvalV2I16 : StoreRetvalVecInst<V2I16Regs, ".v2.b16",
+ StoreRetvalScalar2I16>;
+def StoreRetvalV2I8 : StoreRetvalVecInst<V2I8Regs, ".v2.b8",
+ StoreRetvalScalar2I8>;
+
+def StoreRetvalV4F32 : StoreRetvalVecInst<V4F32Regs, ".v4.f32",
+ StoreRetvalScalar4F32>;
+def StoreRetvalV2F32 : StoreRetvalVecInst<V2F32Regs, ".v2.f32",
+ StoreRetvalScalar2F32>;
+def StoreRetvalV2F64 : StoreRetvalVecInst<V2F64Regs, ".v2.f64",
+ StoreRetvalScalar2F64>;
+
+}
+
+
+// Int vector to int scalar bit convert
+// v4i8 -> i32
+def : Pat<(i32 (bitconvert V4I8Regs:$s)),
+ (V4I8toI32 (V4i8Extract V4I8Regs:$s,0), (V4i8Extract V4I8Regs:$s,1),
+ (V4i8Extract V4I8Regs:$s,2), (V4i8Extract V4I8Regs:$s,3))>;
+// v4i16 -> i64
+def : Pat<(i64 (bitconvert V4I16Regs:$s)),
+ (V4I16toI64 (V4i16Extract V4I16Regs:$s,0),
+ (V4i16Extract V4I16Regs:$s,1),
+ (V4i16Extract V4I16Regs:$s,2),
+ (V4i16Extract V4I16Regs:$s,3))>;
+// v2i8 -> i16
+def : Pat<(i16 (bitconvert V2I8Regs:$s)),
+ (V2I8toI16 (V2i8Extract V2I8Regs:$s,0), (V2i8Extract V2I8Regs:$s,1))>;
+// v2i16 -> i32
+def : Pat<(i32 (bitconvert V2I16Regs:$s)),
+ (V2I16toI32 (V2i16Extract V2I16Regs:$s,0),
+ (V2i16Extract V2I16Regs:$s,1))>;
+// v2i32 -> i64
+def : Pat<(i64 (bitconvert V2I32Regs:$s)),
+ (V2I32toI64 (V2i32Extract V2I32Regs:$s,0),
+ (V2i32Extract V2I32Regs:$s,1))>;
+
+// Int scalar to int vector bit convert
+let VecInstType=isVecDest.Value in {
+// i32 -> v4i8
+def VecI32toV4I8 : NVPTXVecInst<(outs V4I8Regs:$d), (ins Int32Regs:$s),
+ "Error!",
+ [(set V4I8Regs:$d, (bitconvert Int32Regs:$s))],
+ I32toV4I8>;
+// i64 -> v4i16
+def VecI64toV4I16 : NVPTXVecInst<(outs V4I16Regs:$d), (ins Int64Regs:$s),
+ "Error!",
+ [(set V4I16Regs:$d, (bitconvert Int64Regs:$s))],
+ I64toV4I16>;
+// i16 -> v2i8
+def VecI16toV2I8 : NVPTXVecInst<(outs V2I8Regs:$d), (ins Int16Regs:$s),
+ "Error!",
+ [(set V2I8Regs:$d, (bitconvert Int16Regs:$s))],
+ I16toV2I8>;
+// i32 -> v2i16
+def VecI32toV2I16 : NVPTXVecInst<(outs V2I16Regs:$d), (ins Int32Regs:$s),
+ "Error!",
+ [(set V2I16Regs:$d, (bitconvert Int32Regs:$s))],
+ I32toV2I16>;
+// i64 -> v2i32
+def VecI64toV2I32 : NVPTXVecInst<(outs V2I32Regs:$d), (ins Int64Regs:$s),
+ "Error!",
+ [(set V2I32Regs:$d, (bitconvert Int64Regs:$s))],
+ I64toV2I32>;
+}
+
+// Int vector to int vector bit convert
+// v4i8 -> v2i16
+def : Pat<(v2i16 (bitconvert V4I8Regs:$s)),
+ (VecI32toV2I16
+ (V4I8toI32 (V4i8Extract V4I8Regs:$s,0), (V4i8Extract V4I8Regs:$s,1),
+ (V4i8Extract V4I8Regs:$s,2), (V4i8Extract V4I8Regs:$s,3)))>;
+// v4i16 -> v2i32
+def : Pat<(v2i32 (bitconvert V4I16Regs:$s)),
+ (VecI64toV2I32
+ (V4I16toI64 (V4i16Extract V4I16Regs:$s,0), (V4i16Extract V4I16Regs:$s,1),
+ (V4i16Extract V4I16Regs:$s,2), (V4i16Extract V4I16Regs:$s,3)))>;
+// v2i16 -> v4i8
+def : Pat<(v4i8 (bitconvert V2I16Regs:$s)),
+ (VecI32toV4I8
+ (V2I16toI32 (V2i16Extract V2I16Regs:$s,0), (V2i16Extract V2I16Regs:$s,1)))>;
+// v2i32 -> v4i16
+def : Pat<(v4i16 (bitconvert V2I32Regs:$s)),
+ (VecI64toV4I16
+ (V2I32toI64 (V2i32Extract V2I32Regs:$s,0), (V2i32Extract V2I32Regs:$s,1)))>;
+// v2i64 -> v4i32
+def : Pat<(v4i32 (bitconvert V2I64Regs:$s)),
+ (Build_Vector4_i32
+ (V2i32Extract (VecI64toV2I32 (V2i64Extract V2I64Regs:$s, 0)), 0),
+ (V2i32Extract (VecI64toV2I32 (V2i64Extract V2I64Regs:$s, 0)), 1),
+ (V2i32Extract (VecI64toV2I32 (V2i64Extract V2I64Regs:$s, 1)), 0),
+ (V2i32Extract (VecI64toV2I32 (V2i64Extract V2I64Regs:$s, 1)), 1))>;
+// v4i32 -> v2i64
+def : Pat<(v2i64 (bitconvert V4I32Regs:$s)),
+ (Build_Vector2_i64
+ (V2I32toI64 (V4i32Extract V4I32Regs:$s,0), (V4i32Extract V4I32Regs:$s,1)),
+ (V2I32toI64 (V4i32Extract V4I32Regs:$s,2), (V4i32Extract V4I32Regs:$s,3)))>;
+
+// Fp scalar to fp vector convert
+// f64 -> v2f32
+let VecInstType=isVecDest.Value in {
+def VecF64toV2F32 : NVPTXVecInst<(outs V2F32Regs:$d), (ins Float64Regs:$s),
+ "Error!",
+ [(set V2F32Regs:$d, (bitconvert Float64Regs:$s))],
+ F64toV2F32>;
+}
+
+// Fp vector to fp scalar convert
+// v2f32 -> f64
+def : Pat<(f64 (bitconvert V2F32Regs:$s)),
+ (V2F32toF64 (V2f32Extract V2F32Regs:$s,0), (V2f32Extract V2F32Regs:$s,1))>;
+
+// Fp scalar to int vector convert
+// f32 -> v4i8
+def : Pat<(v4i8 (bitconvert Float32Regs:$s)),
+ (VecI32toV4I8 (BITCONVERT_32_F2I Float32Regs:$s))>;
+// f32 -> v2i16
+def : Pat<(v2i16 (bitconvert Float32Regs:$s)),
+ (VecI32toV2I16 (BITCONVERT_32_F2I Float32Regs:$s))>;
+// f64 -> v4i16
+def : Pat<(v4i16 (bitconvert Float64Regs:$s)),
+ (VecI64toV4I16 (BITCONVERT_64_F2I Float64Regs:$s))>;
+// f64 -> v2i32
+def : Pat<(v2i32 (bitconvert Float64Regs:$s)),
+ (VecI64toV2I32 (BITCONVERT_64_F2I Float64Regs:$s))>;
+
+// Int vector to fp scalar convert
+// v4i8 -> f32
+def : Pat<(f32 (bitconvert V4I8Regs:$s)),
+ (BITCONVERT_32_I2F
+ (V4I8toI32 (V4i8Extract V4I8Regs:$s,0), (V4i8Extract V4I8Regs:$s,1),
+ (V4i8Extract V4I8Regs:$s,2), (V4i8Extract V4I8Regs:$s,3)))>;
+// v4i16 -> f64
+def : Pat<(f64 (bitconvert V4I16Regs:$s)),
+ (BITCONVERT_64_I2F
+ (V4I16toI64 (V4i16Extract V4I16Regs:$s,0), (V4i16Extract V4I16Regs:$s,1),
+ (V4i16Extract V4I16Regs:$s,2), (V4i16Extract V4I16Regs:$s,3)))>;
+// v2i16 -> f32
+def : Pat<(f32 (bitconvert V2I16Regs:$s)),
+ (BITCONVERT_32_I2F
+ (V2I16toI32 (V2i16Extract V2I16Regs:$s,0), (V2i16Extract V2I16Regs:$s,1)))>;
+// v2i32 -> f64
+def : Pat<(f64 (bitconvert V2I32Regs:$s)),
+ (BITCONVERT_64_I2F
+ (V2I32toI64 (V2i32Extract V2I32Regs:$s,0), (V2i32Extract V2I32Regs:$s,1)))>;
+
+// Int scalar to fp vector convert
+// i64 -> v2f32
+def : Pat<(v2f32 (bitconvert Int64Regs:$s)),
+ (VecF64toV2F32 (BITCONVERT_64_I2F Int64Regs:$s))>;
+
+// Fp vector to int scalar convert
+// v2f32 -> i64
+def : Pat<(i64 (bitconvert V2F32Regs:$s)),
+ (BITCONVERT_64_F2I
+ (V2F32toF64 (V2f32Extract V2F32Regs:$s,0), (V2f32Extract V2F32Regs:$s,1)))>;
+
+// Int vector to fp vector convert
+// v2i64 -> v4f32
+def : Pat<(v4f32 (bitconvert V2I64Regs:$s)),
+ (Build_Vector4_f32
+ (BITCONVERT_32_I2F (V2i32Extract (VecI64toV2I32
+ (V2i64Extract V2I64Regs:$s, 0)), 0)),
+ (BITCONVERT_32_I2F (V2i32Extract (VecI64toV2I32
+ (V2i64Extract V2I64Regs:$s, 0)), 1)),
+ (BITCONVERT_32_I2F (V2i32Extract (VecI64toV2I32
+ (V2i64Extract V2I64Regs:$s, 1)), 0)),
+ (BITCONVERT_32_I2F (V2i32Extract (VecI64toV2I32
+ (V2i64Extract V2I64Regs:$s, 1)), 1)))>;
+// v2i64 -> v2f64
+def : Pat<(v2f64 (bitconvert V2I64Regs:$s)),
+ (Build_Vector2_f64
+ (BITCONVERT_64_I2F (V2i64Extract V2I64Regs:$s,0)),
+ (BITCONVERT_64_I2F (V2i64Extract V2I64Regs:$s,1)))>;
+// v2i32 -> v2f32
+def : Pat<(v2f32 (bitconvert V2I32Regs:$s)),
+ (Build_Vector2_f32
+ (BITCONVERT_32_I2F (V2i32Extract V2I32Regs:$s,0)),
+ (BITCONVERT_32_I2F (V2i32Extract V2I32Regs:$s,1)))>;
+// v4i32 -> v2f64
+def : Pat<(v2f64 (bitconvert V4I32Regs:$s)),
+ (Build_Vector2_f64
+ (BITCONVERT_64_I2F (V2I32toI64 (V4i32Extract V4I32Regs:$s,0),
+ (V4i32Extract V4I32Regs:$s,1))),
+ (BITCONVERT_64_I2F (V2I32toI64 (V4i32Extract V4I32Regs:$s,2),
+ (V4i32Extract V4I32Regs:$s,3))))>;
+// v4i32 -> v4f32
+def : Pat<(v4f32 (bitconvert V4I32Regs:$s)),
+ (Build_Vector4_f32
+ (BITCONVERT_32_I2F (V4i32Extract V4I32Regs:$s,0)),
+ (BITCONVERT_32_I2F (V4i32Extract V4I32Regs:$s,1)),
+ (BITCONVERT_32_I2F (V4i32Extract V4I32Regs:$s,2)),
+ (BITCONVERT_32_I2F (V4i32Extract V4I32Regs:$s,3)))>;
+// v4i16 -> v2f32
+def : Pat<(v2f32 (bitconvert V4I16Regs:$s)),
+ (VecF64toV2F32 (BITCONVERT_64_I2F
+ (V4I16toI64 (V4i16Extract V4I16Regs:$s,0),
+ (V4i16Extract V4I16Regs:$s,1),
+ (V4i16Extract V4I16Regs:$s,2),
+ (V4i16Extract V4I16Regs:$s,3))))>;
+
+// Fp vector to int vector convert
+// v2i64 <- v4f32
+def : Pat<(v2i64 (bitconvert V4F32Regs:$s)),
+ (Build_Vector2_i64
+ (BITCONVERT_64_F2I (V2F32toF64 (V4f32Extract V4F32Regs:$s,0),
+ (V4f32Extract V4F32Regs:$s,1))),
+ (BITCONVERT_64_F2I (V2F32toF64 (V4f32Extract V4F32Regs:$s,2),
+ (V4f32Extract V4F32Regs:$s,3))))>;
+// v2i64 <- v2f64
+def : Pat<(v2i64 (bitconvert V2F64Regs:$s)),
+ (Build_Vector2_i64
+ (BITCONVERT_64_F2I (V2f64Extract V2F64Regs:$s,0)),
+ (BITCONVERT_64_F2I (V2f64Extract V2F64Regs:$s,1)))>;
+// v2i32 <- v2f32
+def : Pat<(v2i32 (bitconvert V2F32Regs:$s)),
+ (Build_Vector2_i32
+ (BITCONVERT_32_F2I (V2f32Extract V2F32Regs:$s,0)),
+ (BITCONVERT_32_F2I (V2f32Extract V2F32Regs:$s,1)))>;
+// v4i32 <- v2f64
+def : Pat<(v4i32 (bitconvert V2F64Regs:$s)),
+ (Build_Vector4_i32
+ (BITCONVERT_32_F2I (V2f32Extract (VecF64toV2F32
+ (V2f64Extract V2F64Regs:$s, 0)), 0)),
+ (BITCONVERT_32_F2I (V2f32Extract (VecF64toV2F32
+ (V2f64Extract V2F64Regs:$s, 0)), 1)),
+ (BITCONVERT_32_F2I (V2f32Extract (VecF64toV2F32
+ (V2f64Extract V2F64Regs:$s, 1)), 0)),
+ (BITCONVERT_32_F2I (V2f32Extract (VecF64toV2F32
+ (V2f64Extract V2F64Regs:$s, 1)), 1)))>;
+// v4i32 <- v4f32
+def : Pat<(v4i32 (bitconvert V4F32Regs:$s)),
+ (Build_Vector4_i32
+ (BITCONVERT_32_F2I (V4f32Extract V4F32Regs:$s,0)),
+ (BITCONVERT_32_F2I (V4f32Extract V4F32Regs:$s,1)),
+ (BITCONVERT_32_F2I (V4f32Extract V4F32Regs:$s,2)),
+ (BITCONVERT_32_F2I (V4f32Extract V4F32Regs:$s,3)))>;
+// v4i16 <- v2f32
+def : Pat<(v4i16 (bitconvert V2F32Regs:$s)),
+ (VecI64toV4I16 (BITCONVERT_64_F2I
+ (V2F32toF64 (V2f32Extract V2F32Regs:$s,0),
+ (V2f32Extract V2F32Regs:$s,1))))>;
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXutil.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXutil.cpp
new file mode 100644
index 0000000..5f074b3
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXutil.cpp
@@ -0,0 +1,90 @@
+//===-- NVPTXutil.cpp - Functions exported to CodeGen --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the functions that can be used in CodeGen.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXutil.h"
+#include "NVPTX.h"
+
+using namespace llvm;
+
+namespace llvm {
+
+bool isParamLoad(const MachineInstr *MI) {
+ if ((MI->getOpcode() != NVPTX::LD_i32_avar) &&
+ (MI->getOpcode() != NVPTX::LD_i64_avar))
+ return false;
+ if (MI->getOperand(2).isImm() == false)
+ return false;
+ if (MI->getOperand(2).getImm() != NVPTX::PTXLdStInstCode::PARAM)
+ return false;
+ return true;
+}
+
+#define DATA_MASK 0x7f
+#define DIGIT_WIDTH 7
+#define MORE_BYTES 0x80
+
+static int encode_leb128(uint64_t val, int *nbytes, char *space, int splen) {
+ char *a;
+ char *end = space + splen;
+
+ a = space;
+ do {
+ unsigned char uc;
+
+ if (a >= end)
+ return 1;
+ uc = val & DATA_MASK;
+ val >>= DIGIT_WIDTH;
+ if (val != 0)
+ uc |= MORE_BYTES;
+ *a = uc;
+ a++;
+ } while (val);
+ *nbytes = a - space;
+ return 0;
+}
+
+#undef DATA_MASK
+#undef DIGIT_WIDTH
+#undef MORE_BYTES
+
+uint64_t encode_leb128(const char *str) {
+ union {
+ uint64_t x;
+ char a[8];
+ } temp64;
+
+ temp64.x = 0;
+
+ for (unsigned i = 0, e = strlen(str); i != e; ++i)
+ temp64.a[i] = str[e - 1 - i];
+
+ char encoded[16];
+ int nbytes;
+
+ int retval = encode_leb128(temp64.x, &nbytes, encoded, 16);
+
+ (void) retval;
+ assert(retval == 0 && "Encoding to leb128 failed");
+
+ assert(nbytes <= 8 &&
+ "Cannot support register names with leb128 encoding > 8 bytes");
+
+ temp64.x = 0;
+ for (int i = 0; i < nbytes; ++i)
+ temp64.a[i] = encoded[i];
+
+ return temp64.x;
+}
+
+} // end namespace llvm
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXutil.h b/contrib/llvm/lib/Target/NVPTX/NVPTXutil.h
new file mode 100644
index 0000000..d1d1171
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXutil.h
@@ -0,0 +1,25 @@
+//===-- NVPTXutil.h - Functions exported to CodeGen --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the functions that can be used in CodeGen.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_NVPTX_UTIL_H
+#define LLVM_TARGET_NVPTX_UTIL_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+
+namespace llvm {
+bool isParamLoad(const MachineInstr *);
+uint64_t encode_leb128(const char *str);
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVVMReflect.cpp b/contrib/llvm/lib/Target/NVPTX/NVVMReflect.cpp
new file mode 100644
index 0000000..a8d6b95
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVVMReflect.cpp
@@ -0,0 +1,222 @@
+//===- NVVMReflect.cpp - NVVM Emulate conditional compilation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass replaces occurrences of __nvvm_reflect("string") with an
+// integer based on -nvvm-reflect-list string=<int> option given to this pass.
+// If an undefined string value is seen in a call to __nvvm_reflect("string"),
+// a default value of 0 will be used.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTX.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_os_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include <map>
+#include <sstream>
+#include <string>
+#include <vector>
+
+#define NVVM_REFLECT_FUNCTION "__nvvm_reflect"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "nvptx-reflect"
+
+namespace llvm { void initializeNVVMReflectPass(PassRegistry &); }
+
+namespace {
+class NVVMReflect : public ModulePass {
+private:
+ StringMap<int> VarMap;
+ typedef DenseMap<std::string, int>::iterator VarMapIter;
+
+public:
+ static char ID;
+ NVVMReflect() : ModulePass(ID) {
+ initializeNVVMReflectPass(*PassRegistry::getPassRegistry());
+ VarMap.clear();
+ }
+
+ NVVMReflect(const StringMap<int> &Mapping)
+ : ModulePass(ID) {
+ initializeNVVMReflectPass(*PassRegistry::getPassRegistry());
+ for (StringMap<int>::const_iterator I = Mapping.begin(), E = Mapping.end();
+ I != E; ++I) {
+ VarMap[(*I).getKey()] = (*I).getValue();
+ }
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ }
+ bool runOnModule(Module &) override;
+
+private:
+ bool handleFunction(Function *ReflectFunction);
+ void setVarMap();
+};
+}
+
+ModulePass *llvm::createNVVMReflectPass() {
+ return new NVVMReflect();
+}
+
+ModulePass *llvm::createNVVMReflectPass(const StringMap<int>& Mapping) {
+ return new NVVMReflect(Mapping);
+}
+
+static cl::opt<bool>
+NVVMReflectEnabled("nvvm-reflect-enable", cl::init(true), cl::Hidden,
+ cl::desc("NVVM reflection, enabled by default"));
+
+char NVVMReflect::ID = 0;
+INITIALIZE_PASS(NVVMReflect, "nvvm-reflect",
+ "Replace occurrences of __nvvm_reflect() calls with 0/1", false,
+ false)
+
+static cl::list<std::string>
+ReflectList("nvvm-reflect-list", cl::value_desc("name=<int>"), cl::Hidden,
+ cl::desc("A list of string=num assignments"),
+ cl::ValueRequired);
+
+/// The command line can look as follows :
+/// -nvvm-reflect-list a=1,b=2 -nvvm-reflect-list c=3,d=0 -R e=2
+/// The strings "a=1,b=2", "c=3,d=0", "e=2" are available in the
+/// ReflectList vector. First, each of ReflectList[i] is 'split'
+/// using "," as the delimiter. Then each of this part is split
+/// using "=" as the delimiter.
+void NVVMReflect::setVarMap() {
+ for (unsigned i = 0, e = ReflectList.size(); i != e; ++i) {
+ DEBUG(dbgs() << "Option : " << ReflectList[i] << "\n");
+ SmallVector<StringRef, 4> NameValList;
+ StringRef(ReflectList[i]).split(NameValList, ",");
+ for (unsigned j = 0, ej = NameValList.size(); j != ej; ++j) {
+ SmallVector<StringRef, 2> NameValPair;
+ NameValList[j].split(NameValPair, "=");
+ assert(NameValPair.size() == 2 && "name=val expected");
+ std::stringstream ValStream(NameValPair[1]);
+ int Val;
+ ValStream >> Val;
+ assert((!(ValStream.fail())) && "integer value expected");
+ VarMap[NameValPair[0]] = Val;
+ }
+ }
+}
+
+bool NVVMReflect::handleFunction(Function *ReflectFunction) {
+ // Validate _reflect function
+ assert(ReflectFunction->isDeclaration() &&
+ "_reflect function should not have a body");
+ assert(ReflectFunction->getReturnType()->isIntegerTy() &&
+ "_reflect's return type should be integer");
+
+ std::vector<Instruction *> ToRemove;
+
+ // Go through the uses of ReflectFunction in this Function.
+ // Each of them should a CallInst with a ConstantArray argument.
+ // First validate that. If the c-string corresponding to the
+ // ConstantArray can be found successfully, see if it can be
+ // found in VarMap. If so, replace the uses of CallInst with the
+ // value found in VarMap. If not, replace the use with value 0.
+ for (User *U : ReflectFunction->users()) {
+ assert(isa<CallInst>(U) && "Only a call instruction can use _reflect");
+ CallInst *Reflect = cast<CallInst>(U);
+
+ assert((Reflect->getNumOperands() == 2) &&
+ "Only one operand expect for _reflect function");
+ // In cuda, we will have an extra constant-to-generic conversion of
+ // the string.
+ const Value *Str = Reflect->getArgOperand(0);
+ if (isa<CallInst>(Str)) {
+ // CUDA path
+ const CallInst *ConvCall = cast<CallInst>(Str);
+ Str = ConvCall->getArgOperand(0);
+ }
+ assert(isa<ConstantExpr>(Str) &&
+ "Format of _reflect function not recognized");
+ const ConstantExpr *GEP = cast<ConstantExpr>(Str);
+
+ const Value *Sym = GEP->getOperand(0);
+ assert(isa<Constant>(Sym) && "Format of _reflect function not recognized");
+
+ const Constant *SymStr = cast<Constant>(Sym);
+
+ assert(isa<ConstantDataSequential>(SymStr->getOperand(0)) &&
+ "Format of _reflect function not recognized");
+
+ assert(cast<ConstantDataSequential>(SymStr->getOperand(0))->isCString() &&
+ "Format of _reflect function not recognized");
+
+ std::string ReflectArg =
+ cast<ConstantDataSequential>(SymStr->getOperand(0))->getAsString();
+
+ ReflectArg = ReflectArg.substr(0, ReflectArg.size() - 1);
+ DEBUG(dbgs() << "Arg of _reflect : " << ReflectArg << "\n");
+
+ int ReflectVal = 0; // The default value is 0
+ if (VarMap.find(ReflectArg) != VarMap.end()) {
+ ReflectVal = VarMap[ReflectArg];
+ }
+ Reflect->replaceAllUsesWith(
+ ConstantInt::get(Reflect->getType(), ReflectVal));
+ ToRemove.push_back(Reflect);
+ }
+ if (ToRemove.size() == 0)
+ return false;
+
+ for (unsigned i = 0, e = ToRemove.size(); i != e; ++i)
+ ToRemove[i]->eraseFromParent();
+ return true;
+}
+
+bool NVVMReflect::runOnModule(Module &M) {
+ if (!NVVMReflectEnabled)
+ return false;
+
+ setVarMap();
+
+
+ bool Res = false;
+ std::string Name;
+ Type *Tys[1];
+ Type *I8Ty = Type::getInt8Ty(M.getContext());
+ Function *ReflectFunction;
+
+ // Check for standard overloaded versions of llvm.nvvm.reflect
+
+ for (unsigned i = 0; i != 5; ++i) {
+ Tys[0] = PointerType::get(I8Ty, i);
+ Name = Intrinsic::getName(Intrinsic::nvvm_reflect, Tys);
+ ReflectFunction = M.getFunction(Name);
+ if(ReflectFunction != 0) {
+ Res |= handleFunction(ReflectFunction);
+ }
+ }
+
+ ReflectFunction = M.getFunction(NVVM_REFLECT_FUNCTION);
+ // If reflect function is not used, then there will be
+ // no entry in the module.
+ if (ReflectFunction != 0)
+ Res |= handleFunction(ReflectFunction);
+
+ return Res;
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/TargetInfo/NVPTXTargetInfo.cpp b/contrib/llvm/lib/Target/NVPTX/TargetInfo/NVPTXTargetInfo.cpp
new file mode 100644
index 0000000..cc7d4dc
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/TargetInfo/NVPTXTargetInfo.cpp
@@ -0,0 +1,23 @@
+//===-- NVPTXTargetInfo.cpp - NVPTX Target Implementation -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTX.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheNVPTXTarget32;
+Target llvm::TheNVPTXTarget64;
+
+extern "C" void LLVMInitializeNVPTXTargetInfo() {
+ RegisterTarget<Triple::nvptx> X(TheNVPTXTarget32, "nvptx",
+ "NVIDIA PTX 32-bit");
+ RegisterTarget<Triple::nvptx64> Y(TheNVPTXTarget64, "nvptx64",
+ "NVIDIA PTX 64-bit");
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/cl_common_defines.h b/contrib/llvm/lib/Target/NVPTX/cl_common_defines.h
new file mode 100644
index 0000000..02c5a94
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/cl_common_defines.h
@@ -0,0 +1,122 @@
+#ifndef CL_COMMON_DEFINES_H
+#define CL_COMMON_DEFINES_H
+// This file includes defines that are common to both kernel code and
+// the NVPTX back-end.
+
+//
+// Common defines for Image intrinsics
+// Channel order
+enum {
+ CLK_R = 0x10B0,
+ CLK_A = 0x10B1,
+ CLK_RG = 0x10B2,
+ CLK_RA = 0x10B3,
+ CLK_RGB = 0x10B4,
+ CLK_RGBA = 0x10B5,
+ CLK_BGRA = 0x10B6,
+ CLK_ARGB = 0x10B7,
+
+#if (__NV_CL_C_VERSION == __NV_CL_C_VERSION_1_0)
+ CLK_xRGB = 0x10B7,
+#endif
+
+ CLK_INTENSITY = 0x10B8,
+ CLK_LUMINANCE = 0x10B9
+
+#if (__NV_CL_C_VERSION >= __NV_CL_C_VERSION_1_1)
+ ,
+ CLK_Rx = 0x10BA,
+ CLK_RGx = 0x10BB,
+ CLK_RGBx = 0x10BC
+#endif
+};
+
+typedef enum clk_channel_type {
+ // valid formats for float return types
+ CLK_SNORM_INT8 = 0x10D0, // four channel RGBA unorm8
+ CLK_SNORM_INT16 = 0x10D1, // four channel RGBA unorm16
+ CLK_UNORM_INT8 = 0x10D2, // four channel RGBA unorm8
+ CLK_UNORM_INT16 = 0x10D3, // four channel RGBA unorm16
+ CLK_HALF_FLOAT = 0x10DD, // four channel RGBA half
+ CLK_FLOAT = 0x10DE, // four channel RGBA float
+
+#if (__NV_CL_C_VERSION >= __NV_CL_C_VERSION_1_1)
+ CLK_UNORM_SHORT_565 = 0x10D4,
+ CLK_UNORM_SHORT_555 = 0x10D5,
+ CLK_UNORM_INT_101010 = 0x10D6,
+#endif
+
+ // valid only for integer return types
+ CLK_SIGNED_INT8 = 0x10D7,
+ CLK_SIGNED_INT16 = 0x10D8,
+ CLK_SIGNED_INT32 = 0x10D9,
+ CLK_UNSIGNED_INT8 = 0x10DA,
+ CLK_UNSIGNED_INT16 = 0x10DB,
+ CLK_UNSIGNED_INT32 = 0x10DC,
+
+ // CI SPI for CPU
+ __CLK_UNORM_INT8888, // four channel ARGB unorm8
+ __CLK_UNORM_INT8888R, // four channel BGRA unorm8
+
+ __CLK_VALID_IMAGE_TYPE_COUNT,
+ __CLK_INVALID_IMAGE_TYPE = __CLK_VALID_IMAGE_TYPE_COUNT,
+ __CLK_VALID_IMAGE_TYPE_MASK_BITS = 4, // number of bits required to
+ // represent any image type
+ __CLK_VALID_IMAGE_TYPE_MASK = (1 << __CLK_VALID_IMAGE_TYPE_MASK_BITS) - 1
+} clk_channel_type;
+
+typedef enum clk_sampler_type {
+ __CLK_ADDRESS_BASE = 0,
+ CLK_ADDRESS_NONE = 0 << __CLK_ADDRESS_BASE,
+ CLK_ADDRESS_CLAMP = 1 << __CLK_ADDRESS_BASE,
+ CLK_ADDRESS_CLAMP_TO_EDGE = 2 << __CLK_ADDRESS_BASE,
+ CLK_ADDRESS_REPEAT = 3 << __CLK_ADDRESS_BASE,
+ CLK_ADDRESS_MIRROR = 4 << __CLK_ADDRESS_BASE,
+
+#if (__NV_CL_C_VERSION >= __NV_CL_C_VERSION_1_1)
+ CLK_ADDRESS_MIRRORED_REPEAT = CLK_ADDRESS_MIRROR,
+#endif
+ __CLK_ADDRESS_MASK =
+ CLK_ADDRESS_NONE | CLK_ADDRESS_CLAMP | CLK_ADDRESS_CLAMP_TO_EDGE |
+ CLK_ADDRESS_REPEAT | CLK_ADDRESS_MIRROR,
+ __CLK_ADDRESS_BITS = 3, // number of bits required to
+ // represent address info
+
+ __CLK_NORMALIZED_BASE = __CLK_ADDRESS_BITS,
+ CLK_NORMALIZED_COORDS_FALSE = 0,
+ CLK_NORMALIZED_COORDS_TRUE = 1 << __CLK_NORMALIZED_BASE,
+ __CLK_NORMALIZED_MASK =
+ CLK_NORMALIZED_COORDS_FALSE | CLK_NORMALIZED_COORDS_TRUE,
+ __CLK_NORMALIZED_BITS = 1, // number of bits required to
+ // represent normalization
+
+ __CLK_FILTER_BASE = __CLK_NORMALIZED_BASE + __CLK_NORMALIZED_BITS,
+ CLK_FILTER_NEAREST = 0 << __CLK_FILTER_BASE,
+ CLK_FILTER_LINEAR = 1 << __CLK_FILTER_BASE,
+ CLK_FILTER_ANISOTROPIC = 2 << __CLK_FILTER_BASE,
+ __CLK_FILTER_MASK =
+ CLK_FILTER_NEAREST | CLK_FILTER_LINEAR | CLK_FILTER_ANISOTROPIC,
+ __CLK_FILTER_BITS = 2, // number of bits required to
+ // represent address info
+
+ __CLK_MIP_BASE = __CLK_FILTER_BASE + __CLK_FILTER_BITS,
+ CLK_MIP_NEAREST = 0 << __CLK_MIP_BASE,
+ CLK_MIP_LINEAR = 1 << __CLK_MIP_BASE,
+ CLK_MIP_ANISOTROPIC = 2 << __CLK_MIP_BASE,
+ __CLK_MIP_MASK = CLK_MIP_NEAREST | CLK_MIP_LINEAR | CLK_MIP_ANISOTROPIC,
+ __CLK_MIP_BITS = 2,
+
+ __CLK_SAMPLER_BITS = __CLK_MIP_BASE + __CLK_MIP_BITS,
+ __CLK_SAMPLER_MASK = __CLK_MIP_MASK | __CLK_FILTER_MASK |
+ __CLK_NORMALIZED_MASK | __CLK_ADDRESS_MASK,
+
+ __CLK_ANISOTROPIC_RATIO_BITS = 5,
+ __CLK_ANISOTROPIC_RATIO_MASK =
+ (int) 0x80000000 >> (__CLK_ANISOTROPIC_RATIO_BITS - 1)
+} clk_sampler_type;
+
+// Memory synchronization
+#define CLK_LOCAL_MEM_FENCE (1 << 0)
+#define CLK_GLOBAL_MEM_FENCE (1 << 1)
+
+#endif // CL_COMMON_DEFINES_H
diff --git a/contrib/llvm/lib/Target/PowerPC/AsmParser/PPCAsmParser.cpp b/contrib/llvm/lib/Target/PowerPC/AsmParser/PPCAsmParser.cpp
new file mode 100644
index 0000000..d7066d5
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/AsmParser/PPCAsmParser.cpp
@@ -0,0 +1,1658 @@
+//===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/PPCMCTargetDesc.h"
+#include "MCTargetDesc/PPCMCExpr.h"
+#include "PPCTargetStreamer.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+namespace {
+
+static unsigned RRegs[32] = {
+ PPC::R0, PPC::R1, PPC::R2, PPC::R3,
+ PPC::R4, PPC::R5, PPC::R6, PPC::R7,
+ PPC::R8, PPC::R9, PPC::R10, PPC::R11,
+ PPC::R12, PPC::R13, PPC::R14, PPC::R15,
+ PPC::R16, PPC::R17, PPC::R18, PPC::R19,
+ PPC::R20, PPC::R21, PPC::R22, PPC::R23,
+ PPC::R24, PPC::R25, PPC::R26, PPC::R27,
+ PPC::R28, PPC::R29, PPC::R30, PPC::R31
+};
+static unsigned RRegsNoR0[32] = {
+ PPC::ZERO,
+ PPC::R1, PPC::R2, PPC::R3,
+ PPC::R4, PPC::R5, PPC::R6, PPC::R7,
+ PPC::R8, PPC::R9, PPC::R10, PPC::R11,
+ PPC::R12, PPC::R13, PPC::R14, PPC::R15,
+ PPC::R16, PPC::R17, PPC::R18, PPC::R19,
+ PPC::R20, PPC::R21, PPC::R22, PPC::R23,
+ PPC::R24, PPC::R25, PPC::R26, PPC::R27,
+ PPC::R28, PPC::R29, PPC::R30, PPC::R31
+};
+static unsigned XRegs[32] = {
+ PPC::X0, PPC::X1, PPC::X2, PPC::X3,
+ PPC::X4, PPC::X5, PPC::X6, PPC::X7,
+ PPC::X8, PPC::X9, PPC::X10, PPC::X11,
+ PPC::X12, PPC::X13, PPC::X14, PPC::X15,
+ PPC::X16, PPC::X17, PPC::X18, PPC::X19,
+ PPC::X20, PPC::X21, PPC::X22, PPC::X23,
+ PPC::X24, PPC::X25, PPC::X26, PPC::X27,
+ PPC::X28, PPC::X29, PPC::X30, PPC::X31
+};
+static unsigned XRegsNoX0[32] = {
+ PPC::ZERO8,
+ PPC::X1, PPC::X2, PPC::X3,
+ PPC::X4, PPC::X5, PPC::X6, PPC::X7,
+ PPC::X8, PPC::X9, PPC::X10, PPC::X11,
+ PPC::X12, PPC::X13, PPC::X14, PPC::X15,
+ PPC::X16, PPC::X17, PPC::X18, PPC::X19,
+ PPC::X20, PPC::X21, PPC::X22, PPC::X23,
+ PPC::X24, PPC::X25, PPC::X26, PPC::X27,
+ PPC::X28, PPC::X29, PPC::X30, PPC::X31
+};
+static unsigned FRegs[32] = {
+ PPC::F0, PPC::F1, PPC::F2, PPC::F3,
+ PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11,
+ PPC::F12, PPC::F13, PPC::F14, PPC::F15,
+ PPC::F16, PPC::F17, PPC::F18, PPC::F19,
+ PPC::F20, PPC::F21, PPC::F22, PPC::F23,
+ PPC::F24, PPC::F25, PPC::F26, PPC::F27,
+ PPC::F28, PPC::F29, PPC::F30, PPC::F31
+};
+static unsigned VRegs[32] = {
+ PPC::V0, PPC::V1, PPC::V2, PPC::V3,
+ PPC::V4, PPC::V5, PPC::V6, PPC::V7,
+ PPC::V8, PPC::V9, PPC::V10, PPC::V11,
+ PPC::V12, PPC::V13, PPC::V14, PPC::V15,
+ PPC::V16, PPC::V17, PPC::V18, PPC::V19,
+ PPC::V20, PPC::V21, PPC::V22, PPC::V23,
+ PPC::V24, PPC::V25, PPC::V26, PPC::V27,
+ PPC::V28, PPC::V29, PPC::V30, PPC::V31
+};
+static unsigned VSRegs[64] = {
+ PPC::VSL0, PPC::VSL1, PPC::VSL2, PPC::VSL3,
+ PPC::VSL4, PPC::VSL5, PPC::VSL6, PPC::VSL7,
+ PPC::VSL8, PPC::VSL9, PPC::VSL10, PPC::VSL11,
+ PPC::VSL12, PPC::VSL13, PPC::VSL14, PPC::VSL15,
+ PPC::VSL16, PPC::VSL17, PPC::VSL18, PPC::VSL19,
+ PPC::VSL20, PPC::VSL21, PPC::VSL22, PPC::VSL23,
+ PPC::VSL24, PPC::VSL25, PPC::VSL26, PPC::VSL27,
+ PPC::VSL28, PPC::VSL29, PPC::VSL30, PPC::VSL31,
+
+ PPC::VSH0, PPC::VSH1, PPC::VSH2, PPC::VSH3,
+ PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7,
+ PPC::VSH8, PPC::VSH9, PPC::VSH10, PPC::VSH11,
+ PPC::VSH12, PPC::VSH13, PPC::VSH14, PPC::VSH15,
+ PPC::VSH16, PPC::VSH17, PPC::VSH18, PPC::VSH19,
+ PPC::VSH20, PPC::VSH21, PPC::VSH22, PPC::VSH23,
+ PPC::VSH24, PPC::VSH25, PPC::VSH26, PPC::VSH27,
+ PPC::VSH28, PPC::VSH29, PPC::VSH30, PPC::VSH31
+};
+static unsigned VSFRegs[64] = {
+ PPC::F0, PPC::F1, PPC::F2, PPC::F3,
+ PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11,
+ PPC::F12, PPC::F13, PPC::F14, PPC::F15,
+ PPC::F16, PPC::F17, PPC::F18, PPC::F19,
+ PPC::F20, PPC::F21, PPC::F22, PPC::F23,
+ PPC::F24, PPC::F25, PPC::F26, PPC::F27,
+ PPC::F28, PPC::F29, PPC::F30, PPC::F31,
+
+ PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3,
+ PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7,
+ PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11,
+ PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15,
+ PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19,
+ PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23,
+ PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27,
+ PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31
+};
+static unsigned CRBITRegs[32] = {
+ PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN,
+ PPC::CR1LT, PPC::CR1GT, PPC::CR1EQ, PPC::CR1UN,
+ PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN,
+ PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN,
+ PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN,
+ PPC::CR5LT, PPC::CR5GT, PPC::CR5EQ, PPC::CR5UN,
+ PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN,
+ PPC::CR7LT, PPC::CR7GT, PPC::CR7EQ, PPC::CR7UN
+};
+static unsigned CRRegs[8] = {
+ PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
+ PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7
+};
+
+// Evaluate an expression containing condition register
+// or condition register field symbols. Returns positive
+// value on success, or -1 on error.
+static int64_t
+EvaluateCRExpr(const MCExpr *E) {
+ switch (E->getKind()) {
+ case MCExpr::Target:
+ return -1;
+
+ case MCExpr::Constant: {
+ int64_t Res = cast<MCConstantExpr>(E)->getValue();
+ return Res < 0 ? -1 : Res;
+ }
+
+ case MCExpr::SymbolRef: {
+ const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
+ StringRef Name = SRE->getSymbol().getName();
+
+ if (Name == "lt") return 0;
+ if (Name == "gt") return 1;
+ if (Name == "eq") return 2;
+ if (Name == "so") return 3;
+ if (Name == "un") return 3;
+
+ if (Name == "cr0") return 0;
+ if (Name == "cr1") return 1;
+ if (Name == "cr2") return 2;
+ if (Name == "cr3") return 3;
+ if (Name == "cr4") return 4;
+ if (Name == "cr5") return 5;
+ if (Name == "cr6") return 6;
+ if (Name == "cr7") return 7;
+
+ return -1;
+ }
+
+ case MCExpr::Unary:
+ return -1;
+
+ case MCExpr::Binary: {
+ const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
+ int64_t LHSVal = EvaluateCRExpr(BE->getLHS());
+ int64_t RHSVal = EvaluateCRExpr(BE->getRHS());
+ int64_t Res;
+
+ if (LHSVal < 0 || RHSVal < 0)
+ return -1;
+
+ switch (BE->getOpcode()) {
+ default: return -1;
+ case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break;
+ case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break;
+ }
+
+ return Res < 0 ? -1 : Res;
+ }
+ }
+
+ llvm_unreachable("Invalid expression kind!");
+}
+
+struct PPCOperand;
+
+class PPCAsmParser : public MCTargetAsmParser {
+ MCSubtargetInfo &STI;
+ MCAsmParser &Parser;
+ const MCInstrInfo &MII;
+ bool IsPPC64;
+ bool IsDarwin;
+
+ MCAsmParser &getParser() const { return Parser; }
+ MCAsmLexer &getLexer() const { return Parser.getLexer(); }
+
+ void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
+ bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
+
+ bool isPPC64() const { return IsPPC64; }
+ bool isDarwin() const { return IsDarwin; }
+
+ bool MatchRegisterName(const AsmToken &Tok,
+ unsigned &RegNo, int64_t &IntVal);
+
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+
+ const MCExpr *ExtractModifierFromExpr(const MCExpr *E,
+ PPCMCExpr::VariantKind &Variant);
+ const MCExpr *FixupVariantKind(const MCExpr *E);
+ bool ParseExpression(const MCExpr *&EVal);
+ bool ParseDarwinExpression(const MCExpr *&EVal);
+
+ bool ParseOperand(OperandVector &Operands);
+
+ bool ParseDirectiveWord(unsigned Size, SMLoc L);
+ bool ParseDirectiveTC(unsigned Size, SMLoc L);
+ bool ParseDirectiveMachine(SMLoc L);
+ bool ParseDarwinDirectiveMachine(SMLoc L);
+ bool ParseDirectiveAbiVersion(SMLoc L);
+ bool ParseDirectiveLocalEntry(SMLoc L);
+
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ unsigned &ErrorInfo,
+ bool MatchingInlineAsm) override;
+
+ void ProcessInstruction(MCInst &Inst, const OperandVector &Ops);
+
+ /// @name Auto-generated Match Functions
+ /// {
+
+#define GET_ASSEMBLER_HEADER
+#include "PPCGenAsmMatcher.inc"
+
+ /// }
+
+
+public:
+ PPCAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
+ const MCInstrInfo &_MII,
+ const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(_STI), Parser(_Parser), MII(_MII) {
+ // Check for 64-bit vs. 32-bit pointer mode.
+ Triple TheTriple(STI.getTargetTriple());
+ IsPPC64 = (TheTriple.getArch() == Triple::ppc64 ||
+ TheTriple.getArch() == Triple::ppc64le);
+ IsDarwin = TheTriple.isMacOSX();
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+ }
+
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+
+ bool ParseDirective(AsmToken DirectiveID) override;
+
+ unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
+ unsigned Kind) override;
+
+ const MCExpr *applyModifierToExpr(const MCExpr *E,
+ MCSymbolRefExpr::VariantKind,
+ MCContext &Ctx) override;
+};
+
+/// PPCOperand - Instances of this class represent a parsed PowerPC machine
+/// instruction.
+struct PPCOperand : public MCParsedAsmOperand {
+ enum KindTy {
+ Token,
+ Immediate,
+ Expression,
+ TLSRegister
+ } Kind;
+
+ SMLoc StartLoc, EndLoc;
+ bool IsPPC64;
+
+ struct TokOp {
+ const char *Data;
+ unsigned Length;
+ };
+
+ struct ImmOp {
+ int64_t Val;
+ };
+
+ struct ExprOp {
+ const MCExpr *Val;
+ int64_t CRVal; // Cached result of EvaluateCRExpr(Val)
+ };
+
+ struct TLSRegOp {
+ const MCSymbolRefExpr *Sym;
+ };
+
+ union {
+ struct TokOp Tok;
+ struct ImmOp Imm;
+ struct ExprOp Expr;
+ struct TLSRegOp TLSReg;
+ };
+
+ PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
+public:
+ PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() {
+ Kind = o.Kind;
+ StartLoc = o.StartLoc;
+ EndLoc = o.EndLoc;
+ IsPPC64 = o.IsPPC64;
+ switch (Kind) {
+ case Token:
+ Tok = o.Tok;
+ break;
+ case Immediate:
+ Imm = o.Imm;
+ break;
+ case Expression:
+ Expr = o.Expr;
+ break;
+ case TLSRegister:
+ TLSReg = o.TLSReg;
+ break;
+ }
+ }
+
+ /// getStartLoc - Get the location of the first token of this operand.
+ SMLoc getStartLoc() const override { return StartLoc; }
+
+ /// getEndLoc - Get the location of the last token of this operand.
+ SMLoc getEndLoc() const override { return EndLoc; }
+
+ /// isPPC64 - True if this operand is for an instruction in 64-bit mode.
+ bool isPPC64() const { return IsPPC64; }
+
+ int64_t getImm() const {
+ assert(Kind == Immediate && "Invalid access!");
+ return Imm.Val;
+ }
+
+ const MCExpr *getExpr() const {
+ assert(Kind == Expression && "Invalid access!");
+ return Expr.Val;
+ }
+
+ int64_t getExprCRVal() const {
+ assert(Kind == Expression && "Invalid access!");
+ return Expr.CRVal;
+ }
+
+ const MCExpr *getTLSReg() const {
+ assert(Kind == TLSRegister && "Invalid access!");
+ return TLSReg.Sym;
+ }
+
+ unsigned getReg() const override {
+ assert(isRegNumber() && "Invalid access!");
+ return (unsigned) Imm.Val;
+ }
+
+ unsigned getVSReg() const {
+ assert(isVSRegNumber() && "Invalid access!");
+ return (unsigned) Imm.Val;
+ }
+
+ unsigned getCCReg() const {
+ assert(isCCRegNumber() && "Invalid access!");
+ return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal);
+ }
+
+ unsigned getCRBit() const {
+ assert(isCRBitNumber() && "Invalid access!");
+ return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal);
+ }
+
+ unsigned getCRBitMask() const {
+ assert(isCRBitMask() && "Invalid access!");
+ return 7 - countTrailingZeros<uint64_t>(Imm.Val);
+ }
+
+ bool isToken() const override { return Kind == Token; }
+ bool isImm() const override { return Kind == Immediate || Kind == Expression; }
+ bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); }
+ bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); }
+ bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); }
+ bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); }
+ bool isU16Imm() const { return Kind == Expression ||
+ (Kind == Immediate && isUInt<16>(getImm())); }
+ bool isS16Imm() const { return Kind == Expression ||
+ (Kind == Immediate && isInt<16>(getImm())); }
+ bool isS16ImmX4() const { return Kind == Expression ||
+ (Kind == Immediate && isInt<16>(getImm()) &&
+ (getImm() & 3) == 0); }
+ bool isS17Imm() const { return Kind == Expression ||
+ (Kind == Immediate && isInt<17>(getImm())); }
+ bool isTLSReg() const { return Kind == TLSRegister; }
+ bool isDirectBr() const { return Kind == Expression ||
+ (Kind == Immediate && isInt<26>(getImm()) &&
+ (getImm() & 3) == 0); }
+ bool isCondBr() const { return Kind == Expression ||
+ (Kind == Immediate && isInt<16>(getImm()) &&
+ (getImm() & 3) == 0); }
+ bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); }
+ bool isVSRegNumber() const { return Kind == Immediate && isUInt<6>(getImm()); }
+ bool isCCRegNumber() const { return (Kind == Expression
+ && isUInt<3>(getExprCRVal())) ||
+ (Kind == Immediate
+ && isUInt<3>(getImm())); }
+ bool isCRBitNumber() const { return (Kind == Expression
+ && isUInt<5>(getExprCRVal())) ||
+ (Kind == Immediate
+ && isUInt<5>(getImm())); }
+ bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) &&
+ isPowerOf2_32(getImm()); }
+ bool isMem() const override { return false; }
+ bool isReg() const override { return false; }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ llvm_unreachable("addRegOperands");
+ }
+
+ void addRegGPRCOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(RRegs[getReg()]));
+ }
+
+ void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(RRegsNoR0[getReg()]));
+ }
+
+ void addRegG8RCOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(XRegs[getReg()]));
+ }
+
+ void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(XRegsNoX0[getReg()]));
+ }
+
+ void addRegGxRCOperands(MCInst &Inst, unsigned N) const {
+ if (isPPC64())
+ addRegG8RCOperands(Inst, N);
+ else
+ addRegGPRCOperands(Inst, N);
+ }
+
+ void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const {
+ if (isPPC64())
+ addRegG8RCNoX0Operands(Inst, N);
+ else
+ addRegGPRCNoR0Operands(Inst, N);
+ }
+
+ void addRegF4RCOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(FRegs[getReg()]));
+ }
+
+ void addRegF8RCOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(FRegs[getReg()]));
+ }
+
+ void addRegVRRCOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(VRegs[getReg()]));
+ }
+
+ void addRegVSRCOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(VSRegs[getVSReg()]));
+ }
+
+ void addRegVSFRCOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(VSFRegs[getVSReg()]));
+ }
+
+ void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(CRBITRegs[getCRBit()]));
+ }
+
+ void addRegCRRCOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(CRRegs[getCCReg()]));
+ }
+
+ void addCRBitMaskOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(CRRegs[getCRBitMask()]));
+ }
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ if (Kind == Immediate)
+ Inst.addOperand(MCOperand::CreateImm(getImm()));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(getExpr()));
+ }
+
+ void addBranchTargetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ if (Kind == Immediate)
+ Inst.addOperand(MCOperand::CreateImm(getImm() / 4));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(getExpr()));
+ }
+
+ void addTLSRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateExpr(getTLSReg()));
+ }
+
+ StringRef getToken() const {
+ assert(Kind == Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+
+ void print(raw_ostream &OS) const override;
+
+ static std::unique_ptr<PPCOperand> CreateToken(StringRef Str, SMLoc S,
+ bool IsPPC64) {
+ auto Op = make_unique<PPCOperand>(Token);
+ Op->Tok.Data = Str.data();
+ Op->Tok.Length = Str.size();
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ Op->IsPPC64 = IsPPC64;
+ return Op;
+ }
+
+ static std::unique_ptr<PPCOperand>
+ CreateTokenWithStringCopy(StringRef Str, SMLoc S, bool IsPPC64) {
+ // Allocate extra memory for the string and copy it.
+ // FIXME: This is incorrect, Operands are owned by unique_ptr with a default
+ // deleter which will destroy them by simply using "delete", not correctly
+ // calling operator delete on this extra memory after calling the dtor
+ // explicitly.
+ void *Mem = ::operator new(sizeof(PPCOperand) + Str.size());
+ std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token));
+ Op->Tok.Data = (const char *)(Op.get() + 1);
+ Op->Tok.Length = Str.size();
+ std::memcpy((void *)Op->Tok.Data, Str.data(), Str.size());
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ Op->IsPPC64 = IsPPC64;
+ return Op;
+ }
+
+ static std::unique_ptr<PPCOperand> CreateImm(int64_t Val, SMLoc S, SMLoc E,
+ bool IsPPC64) {
+ auto Op = make_unique<PPCOperand>(Immediate);
+ Op->Imm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ Op->IsPPC64 = IsPPC64;
+ return Op;
+ }
+
+ static std::unique_ptr<PPCOperand> CreateExpr(const MCExpr *Val, SMLoc S,
+ SMLoc E, bool IsPPC64) {
+ auto Op = make_unique<PPCOperand>(Expression);
+ Op->Expr.Val = Val;
+ Op->Expr.CRVal = EvaluateCRExpr(Val);
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ Op->IsPPC64 = IsPPC64;
+ return Op;
+ }
+
+ static std::unique_ptr<PPCOperand>
+ CreateTLSReg(const MCSymbolRefExpr *Sym, SMLoc S, SMLoc E, bool IsPPC64) {
+ auto Op = make_unique<PPCOperand>(TLSRegister);
+ Op->TLSReg.Sym = Sym;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ Op->IsPPC64 = IsPPC64;
+ return Op;
+ }
+
+ static std::unique_ptr<PPCOperand>
+ CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) {
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val))
+ return CreateImm(CE->getValue(), S, E, IsPPC64);
+
+ if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val))
+ if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS)
+ return CreateTLSReg(SRE, S, E, IsPPC64);
+
+ return CreateExpr(Val, S, E, IsPPC64);
+ }
+};
+
+} // end anonymous namespace.
+
+void PPCOperand::print(raw_ostream &OS) const {
+ switch (Kind) {
+ case Token:
+ OS << "'" << getToken() << "'";
+ break;
+ case Immediate:
+ OS << getImm();
+ break;
+ case Expression:
+ getExpr()->print(OS);
+ break;
+ case TLSRegister:
+ getTLSReg()->print(OS);
+ break;
+ }
+}
+
+void PPCAsmParser::ProcessInstruction(MCInst &Inst,
+ const OperandVector &Operands) {
+ int Opcode = Inst.getOpcode();
+ switch (Opcode) {
+ case PPC::LAx: {
+ MCInst TmpInst;
+ TmpInst.setOpcode(PPC::LA);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(1));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::SUBI: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(PPC::ADDI);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(-N));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::SUBIS: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(PPC::ADDIS);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(-N));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::SUBIC: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(PPC::ADDIC);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(-N));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::SUBICo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(PPC::ADDICo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(-N));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::EXTLWI:
+ case PPC::EXTLWIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ int64_t B = Inst.getOperand(3).getImm();
+ TmpInst.setOpcode(Opcode == PPC::EXTLWI? PPC::RLWINM : PPC::RLWINMo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(B));
+ TmpInst.addOperand(MCOperand::CreateImm(0));
+ TmpInst.addOperand(MCOperand::CreateImm(N - 1));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::EXTRWI:
+ case PPC::EXTRWIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ int64_t B = Inst.getOperand(3).getImm();
+ TmpInst.setOpcode(Opcode == PPC::EXTRWI? PPC::RLWINM : PPC::RLWINMo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(B + N));
+ TmpInst.addOperand(MCOperand::CreateImm(32 - N));
+ TmpInst.addOperand(MCOperand::CreateImm(31));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::INSLWI:
+ case PPC::INSLWIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ int64_t B = Inst.getOperand(3).getImm();
+ TmpInst.setOpcode(Opcode == PPC::INSLWI? PPC::RLWIMI : PPC::RLWIMIo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(32 - B));
+ TmpInst.addOperand(MCOperand::CreateImm(B));
+ TmpInst.addOperand(MCOperand::CreateImm((B + N) - 1));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::INSRWI:
+ case PPC::INSRWIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ int64_t B = Inst.getOperand(3).getImm();
+ TmpInst.setOpcode(Opcode == PPC::INSRWI? PPC::RLWIMI : PPC::RLWIMIo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(32 - (B + N)));
+ TmpInst.addOperand(MCOperand::CreateImm(B));
+ TmpInst.addOperand(MCOperand::CreateImm((B + N) - 1));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::ROTRWI:
+ case PPC::ROTRWIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(Opcode == PPC::ROTRWI? PPC::RLWINM : PPC::RLWINMo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(32 - N));
+ TmpInst.addOperand(MCOperand::CreateImm(0));
+ TmpInst.addOperand(MCOperand::CreateImm(31));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::SLWI:
+ case PPC::SLWIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(Opcode == PPC::SLWI? PPC::RLWINM : PPC::RLWINMo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(N));
+ TmpInst.addOperand(MCOperand::CreateImm(0));
+ TmpInst.addOperand(MCOperand::CreateImm(31 - N));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::SRWI:
+ case PPC::SRWIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(Opcode == PPC::SRWI? PPC::RLWINM : PPC::RLWINMo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(32 - N));
+ TmpInst.addOperand(MCOperand::CreateImm(N));
+ TmpInst.addOperand(MCOperand::CreateImm(31));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::CLRRWI:
+ case PPC::CLRRWIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(Opcode == PPC::CLRRWI? PPC::RLWINM : PPC::RLWINMo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(0));
+ TmpInst.addOperand(MCOperand::CreateImm(0));
+ TmpInst.addOperand(MCOperand::CreateImm(31 - N));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::CLRLSLWI:
+ case PPC::CLRLSLWIo: {
+ MCInst TmpInst;
+ int64_t B = Inst.getOperand(2).getImm();
+ int64_t N = Inst.getOperand(3).getImm();
+ TmpInst.setOpcode(Opcode == PPC::CLRLSLWI? PPC::RLWINM : PPC::RLWINMo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(N));
+ TmpInst.addOperand(MCOperand::CreateImm(B - N));
+ TmpInst.addOperand(MCOperand::CreateImm(31 - N));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::EXTLDI:
+ case PPC::EXTLDIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ int64_t B = Inst.getOperand(3).getImm();
+ TmpInst.setOpcode(Opcode == PPC::EXTLDI? PPC::RLDICR : PPC::RLDICRo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(B));
+ TmpInst.addOperand(MCOperand::CreateImm(N - 1));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::EXTRDI:
+ case PPC::EXTRDIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ int64_t B = Inst.getOperand(3).getImm();
+ TmpInst.setOpcode(Opcode == PPC::EXTRDI? PPC::RLDICL : PPC::RLDICLo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(B + N));
+ TmpInst.addOperand(MCOperand::CreateImm(64 - N));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::INSRDI:
+ case PPC::INSRDIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ int64_t B = Inst.getOperand(3).getImm();
+ TmpInst.setOpcode(Opcode == PPC::INSRDI? PPC::RLDIMI : PPC::RLDIMIo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(64 - (B + N)));
+ TmpInst.addOperand(MCOperand::CreateImm(B));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::ROTRDI:
+ case PPC::ROTRDIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(Opcode == PPC::ROTRDI? PPC::RLDICL : PPC::RLDICLo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(64 - N));
+ TmpInst.addOperand(MCOperand::CreateImm(0));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::SLDI:
+ case PPC::SLDIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(Opcode == PPC::SLDI? PPC::RLDICR : PPC::RLDICRo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(N));
+ TmpInst.addOperand(MCOperand::CreateImm(63 - N));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::SRDI:
+ case PPC::SRDIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(Opcode == PPC::SRDI? PPC::RLDICL : PPC::RLDICLo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(64 - N));
+ TmpInst.addOperand(MCOperand::CreateImm(N));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::CLRRDI:
+ case PPC::CLRRDIo: {
+ MCInst TmpInst;
+ int64_t N = Inst.getOperand(2).getImm();
+ TmpInst.setOpcode(Opcode == PPC::CLRRDI? PPC::RLDICR : PPC::RLDICRo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(0));
+ TmpInst.addOperand(MCOperand::CreateImm(63 - N));
+ Inst = TmpInst;
+ break;
+ }
+ case PPC::CLRLSLDI:
+ case PPC::CLRLSLDIo: {
+ MCInst TmpInst;
+ int64_t B = Inst.getOperand(2).getImm();
+ int64_t N = Inst.getOperand(3).getImm();
+ TmpInst.setOpcode(Opcode == PPC::CLRLSLDI? PPC::RLDIC : PPC::RLDICo);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(MCOperand::CreateImm(N));
+ TmpInst.addOperand(MCOperand::CreateImm(B - N));
+ Inst = TmpInst;
+ break;
+ }
+ }
+}
+
+bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out, unsigned &ErrorInfo,
+ bool MatchingInlineAsm) {
+ MCInst Inst;
+
+ switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) {
+ default: break;
+ case Match_Success:
+ // Post-process instructions (typically extended mnemonics)
+ ProcessInstruction(Inst, Operands);
+ Inst.setLoc(IDLoc);
+ Out.EmitInstruction(Inst, STI);
+ return false;
+ case Match_MissingFeature:
+ return Error(IDLoc, "instruction use requires an option to be enabled");
+ case Match_MnemonicFail:
+ return Error(IDLoc, "unrecognized instruction mnemonic");
+ case Match_InvalidOperand: {
+ SMLoc ErrorLoc = IDLoc;
+ if (ErrorInfo != ~0U) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ ErrorLoc = ((PPCOperand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
+ }
+
+ return Error(ErrorLoc, "invalid operand for instruction");
+ }
+ }
+
+ llvm_unreachable("Implement any new match types added!");
+}
+
+bool PPCAsmParser::
+MatchRegisterName(const AsmToken &Tok, unsigned &RegNo, int64_t &IntVal) {
+ if (Tok.is(AsmToken::Identifier)) {
+ StringRef Name = Tok.getString();
+
+ if (Name.equals_lower("lr")) {
+ RegNo = isPPC64()? PPC::LR8 : PPC::LR;
+ IntVal = 8;
+ return false;
+ } else if (Name.equals_lower("ctr")) {
+ RegNo = isPPC64()? PPC::CTR8 : PPC::CTR;
+ IntVal = 9;
+ return false;
+ } else if (Name.equals_lower("vrsave")) {
+ RegNo = PPC::VRSAVE;
+ IntVal = 256;
+ return false;
+ } else if (Name.startswith_lower("r") &&
+ !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) {
+ RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal];
+ return false;
+ } else if (Name.startswith_lower("f") &&
+ !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) {
+ RegNo = FRegs[IntVal];
+ return false;
+ } else if (Name.startswith_lower("v") &&
+ !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) {
+ RegNo = VRegs[IntVal];
+ return false;
+ } else if (Name.startswith_lower("cr") &&
+ !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) {
+ RegNo = CRRegs[IntVal];
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool PPCAsmParser::
+ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
+ const AsmToken &Tok = Parser.getTok();
+ StartLoc = Tok.getLoc();
+ EndLoc = Tok.getEndLoc();
+ RegNo = 0;
+ int64_t IntVal;
+
+ if (!MatchRegisterName(Tok, RegNo, IntVal)) {
+ Parser.Lex(); // Eat identifier token.
+ return false;
+ }
+
+ return Error(StartLoc, "invalid register name");
+}
+
+/// Extract \code @l/@ha \endcode modifier from expression. Recursively scan
+/// the expression and check for VK_PPC_LO/HI/HA
+/// symbol variants. If all symbols with modifier use the same
+/// variant, return the corresponding PPCMCExpr::VariantKind,
+/// and a modified expression using the default symbol variant.
+/// Otherwise, return NULL.
+const MCExpr *PPCAsmParser::
+ExtractModifierFromExpr(const MCExpr *E,
+ PPCMCExpr::VariantKind &Variant) {
+ MCContext &Context = getParser().getContext();
+ Variant = PPCMCExpr::VK_PPC_None;
+
+ switch (E->getKind()) {
+ case MCExpr::Target:
+ case MCExpr::Constant:
+ return nullptr;
+
+ case MCExpr::SymbolRef: {
+ const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
+
+ switch (SRE->getKind()) {
+ case MCSymbolRefExpr::VK_PPC_LO:
+ Variant = PPCMCExpr::VK_PPC_LO;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HI:
+ Variant = PPCMCExpr::VK_PPC_HI;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HA:
+ Variant = PPCMCExpr::VK_PPC_HA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HIGHER:
+ Variant = PPCMCExpr::VK_PPC_HIGHER;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HIGHERA:
+ Variant = PPCMCExpr::VK_PPC_HIGHERA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HIGHEST:
+ Variant = PPCMCExpr::VK_PPC_HIGHEST;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HIGHESTA:
+ Variant = PPCMCExpr::VK_PPC_HIGHESTA;
+ break;
+ default:
+ return nullptr;
+ }
+
+ return MCSymbolRefExpr::Create(&SRE->getSymbol(), Context);
+ }
+
+ case MCExpr::Unary: {
+ const MCUnaryExpr *UE = cast<MCUnaryExpr>(E);
+ const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant);
+ if (!Sub)
+ return nullptr;
+ return MCUnaryExpr::Create(UE->getOpcode(), Sub, Context);
+ }
+
+ case MCExpr::Binary: {
+ const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
+ PPCMCExpr::VariantKind LHSVariant, RHSVariant;
+ const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant);
+ const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant);
+
+ if (!LHS && !RHS)
+ return nullptr;
+
+ if (!LHS) LHS = BE->getLHS();
+ if (!RHS) RHS = BE->getRHS();
+
+ if (LHSVariant == PPCMCExpr::VK_PPC_None)
+ Variant = RHSVariant;
+ else if (RHSVariant == PPCMCExpr::VK_PPC_None)
+ Variant = LHSVariant;
+ else if (LHSVariant == RHSVariant)
+ Variant = LHSVariant;
+ else
+ return nullptr;
+
+ return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, Context);
+ }
+ }
+
+ llvm_unreachable("Invalid expression kind!");
+}
+
+/// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace
+/// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having
+/// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT.
+/// FIXME: This is a hack.
+const MCExpr *PPCAsmParser::
+FixupVariantKind(const MCExpr *E) {
+ MCContext &Context = getParser().getContext();
+
+ switch (E->getKind()) {
+ case MCExpr::Target:
+ case MCExpr::Constant:
+ return E;
+
+ case MCExpr::SymbolRef: {
+ const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
+ MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
+
+ switch (SRE->getKind()) {
+ case MCSymbolRefExpr::VK_TLSGD:
+ Variant = MCSymbolRefExpr::VK_PPC_TLSGD;
+ break;
+ case MCSymbolRefExpr::VK_TLSLD:
+ Variant = MCSymbolRefExpr::VK_PPC_TLSLD;
+ break;
+ default:
+ return E;
+ }
+ return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, Context);
+ }
+
+ case MCExpr::Unary: {
+ const MCUnaryExpr *UE = cast<MCUnaryExpr>(E);
+ const MCExpr *Sub = FixupVariantKind(UE->getSubExpr());
+ if (Sub == UE->getSubExpr())
+ return E;
+ return MCUnaryExpr::Create(UE->getOpcode(), Sub, Context);
+ }
+
+ case MCExpr::Binary: {
+ const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
+ const MCExpr *LHS = FixupVariantKind(BE->getLHS());
+ const MCExpr *RHS = FixupVariantKind(BE->getRHS());
+ if (LHS == BE->getLHS() && RHS == BE->getRHS())
+ return E;
+ return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, Context);
+ }
+ }
+
+ llvm_unreachable("Invalid expression kind!");
+}
+
+/// ParseExpression. This differs from the default "parseExpression" in that
+/// it handles modifiers.
+bool PPCAsmParser::
+ParseExpression(const MCExpr *&EVal) {
+
+ if (isDarwin())
+ return ParseDarwinExpression(EVal);
+
+ // (ELF Platforms)
+ // Handle \code @l/@ha \endcode
+ if (getParser().parseExpression(EVal))
+ return true;
+
+ EVal = FixupVariantKind(EVal);
+
+ PPCMCExpr::VariantKind Variant;
+ const MCExpr *E = ExtractModifierFromExpr(EVal, Variant);
+ if (E)
+ EVal = PPCMCExpr::Create(Variant, E, false, getParser().getContext());
+
+ return false;
+}
+
+/// ParseDarwinExpression. (MachO Platforms)
+/// This differs from the default "parseExpression" in that it handles detection
+/// of the \code hi16(), ha16() and lo16() \endcode modifiers. At present,
+/// parseExpression() doesn't recognise the modifiers when in the Darwin/MachO
+/// syntax form so it is done here. TODO: Determine if there is merit in arranging
+/// for this to be done at a higher level.
+bool PPCAsmParser::
+ParseDarwinExpression(const MCExpr *&EVal) {
+ PPCMCExpr::VariantKind Variant = PPCMCExpr::VK_PPC_None;
+ switch (getLexer().getKind()) {
+ default:
+ break;
+ case AsmToken::Identifier:
+ // Compiler-generated Darwin identifiers begin with L,l,_ or "; thus
+ // something starting with any other char should be part of the
+ // asm syntax. If handwritten asm includes an identifier like lo16,
+ // then all bets are off - but no-one would do that, right?
+ StringRef poss = Parser.getTok().getString();
+ if (poss.equals_lower("lo16")) {
+ Variant = PPCMCExpr::VK_PPC_LO;
+ } else if (poss.equals_lower("hi16")) {
+ Variant = PPCMCExpr::VK_PPC_HI;
+ } else if (poss.equals_lower("ha16")) {
+ Variant = PPCMCExpr::VK_PPC_HA;
+ }
+ if (Variant != PPCMCExpr::VK_PPC_None) {
+ Parser.Lex(); // Eat the xx16
+ if (getLexer().isNot(AsmToken::LParen))
+ return Error(Parser.getTok().getLoc(), "expected '('");
+ Parser.Lex(); // Eat the '('
+ }
+ break;
+ }
+
+ if (getParser().parseExpression(EVal))
+ return true;
+
+ if (Variant != PPCMCExpr::VK_PPC_None) {
+ if (getLexer().isNot(AsmToken::RParen))
+ return Error(Parser.getTok().getLoc(), "expected ')'");
+ Parser.Lex(); // Eat the ')'
+ EVal = PPCMCExpr::Create(Variant, EVal, false, getParser().getContext());
+ }
+ return false;
+}
+
+/// ParseOperand
+/// This handles registers in the form 'NN', '%rNN' for ELF platforms and
+/// rNN for MachO.
+bool PPCAsmParser::ParseOperand(OperandVector &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ const MCExpr *EVal;
+
+ // Attempt to parse the next token as an immediate
+ switch (getLexer().getKind()) {
+ // Special handling for register names. These are interpreted
+ // as immediates corresponding to the register number.
+ case AsmToken::Percent:
+ Parser.Lex(); // Eat the '%'.
+ unsigned RegNo;
+ int64_t IntVal;
+ if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) {
+ Parser.Lex(); // Eat the identifier token.
+ Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64()));
+ return false;
+ }
+ return Error(S, "invalid register name");
+
+ case AsmToken::Identifier:
+ // Note that non-register-name identifiers from the compiler will begin
+ // with '_', 'L'/'l' or '"'. Of course, handwritten asm could include
+ // identifiers like r31foo - so we fall through in the event that parsing
+ // a register name fails.
+ if (isDarwin()) {
+ unsigned RegNo;
+ int64_t IntVal;
+ if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) {
+ Parser.Lex(); // Eat the identifier token.
+ Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64()));
+ return false;
+ }
+ }
+ // Fall-through to process non-register-name identifiers as expression.
+ // All other expressions
+ case AsmToken::LParen:
+ case AsmToken::Plus:
+ case AsmToken::Minus:
+ case AsmToken::Integer:
+ case AsmToken::Dot:
+ case AsmToken::Dollar:
+ case AsmToken::Exclaim:
+ case AsmToken::Tilde:
+ if (!ParseExpression(EVal))
+ break;
+ /* fall through */
+ default:
+ return Error(S, "unknown operand");
+ }
+
+ // Push the parsed operand into the list of operands
+ Operands.push_back(PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64()));
+
+ // Check whether this is a TLS call expression
+ bool TLSCall = false;
+ if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(EVal))
+ TLSCall = Ref->getSymbol().getName() == "__tls_get_addr";
+
+ if (TLSCall && getLexer().is(AsmToken::LParen)) {
+ const MCExpr *TLSSym;
+
+ Parser.Lex(); // Eat the '('.
+ S = Parser.getTok().getLoc();
+ if (ParseExpression(TLSSym))
+ return Error(S, "invalid TLS call expression");
+ if (getLexer().isNot(AsmToken::RParen))
+ return Error(Parser.getTok().getLoc(), "missing ')'");
+ E = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat the ')'.
+
+ Operands.push_back(PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64()));
+ }
+
+ // Otherwise, check for D-form memory operands
+ if (!TLSCall && getLexer().is(AsmToken::LParen)) {
+ Parser.Lex(); // Eat the '('.
+ S = Parser.getTok().getLoc();
+
+ int64_t IntVal;
+ switch (getLexer().getKind()) {
+ case AsmToken::Percent:
+ Parser.Lex(); // Eat the '%'.
+ unsigned RegNo;
+ if (MatchRegisterName(Parser.getTok(), RegNo, IntVal))
+ return Error(S, "invalid register name");
+ Parser.Lex(); // Eat the identifier token.
+ break;
+
+ case AsmToken::Integer:
+ if (!isDarwin()) {
+ if (getParser().parseAbsoluteExpression(IntVal) ||
+ IntVal < 0 || IntVal > 31)
+ return Error(S, "invalid register number");
+ } else {
+ return Error(S, "unexpected integer value");
+ }
+ break;
+
+ case AsmToken::Identifier:
+ if (isDarwin()) {
+ unsigned RegNo;
+ if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) {
+ Parser.Lex(); // Eat the identifier token.
+ break;
+ }
+ }
+ // Fall-through..
+
+ default:
+ return Error(S, "invalid memory operand");
+ }
+
+ if (getLexer().isNot(AsmToken::RParen))
+ return Error(Parser.getTok().getLoc(), "missing ')'");
+ E = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat the ')'.
+
+ Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64()));
+ }
+
+ return false;
+}
+
+/// Parse an instruction mnemonic followed by its operands.
+bool PPCAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) {
+ // The first operand is the token for the instruction name.
+ // If the next character is a '+' or '-', we need to add it to the
+ // instruction name, to match what TableGen is doing.
+ std::string NewOpcode;
+ if (getLexer().is(AsmToken::Plus)) {
+ getLexer().Lex();
+ NewOpcode = Name;
+ NewOpcode += '+';
+ Name = NewOpcode;
+ }
+ if (getLexer().is(AsmToken::Minus)) {
+ getLexer().Lex();
+ NewOpcode = Name;
+ NewOpcode += '-';
+ Name = NewOpcode;
+ }
+ // If the instruction ends in a '.', we need to create a separate
+ // token for it, to match what TableGen is doing.
+ size_t Dot = Name.find('.');
+ StringRef Mnemonic = Name.slice(0, Dot);
+ if (!NewOpcode.empty()) // Underlying memory for Name is volatile.
+ Operands.push_back(
+ PPCOperand::CreateTokenWithStringCopy(Mnemonic, NameLoc, isPPC64()));
+ else
+ Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64()));
+ if (Dot != StringRef::npos) {
+ SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot);
+ StringRef DotStr = Name.slice(Dot, StringRef::npos);
+ if (!NewOpcode.empty()) // Underlying memory for Name is volatile.
+ Operands.push_back(
+ PPCOperand::CreateTokenWithStringCopy(DotStr, DotLoc, isPPC64()));
+ else
+ Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64()));
+ }
+
+ // If there are no more operands then finish
+ if (getLexer().is(AsmToken::EndOfStatement))
+ return false;
+
+ // Parse the first operand
+ if (ParseOperand(Operands))
+ return true;
+
+ while (getLexer().isNot(AsmToken::EndOfStatement) &&
+ getLexer().is(AsmToken::Comma)) {
+ // Consume the comma token
+ getLexer().Lex();
+
+ // Parse the next operand
+ if (ParseOperand(Operands))
+ return true;
+ }
+
+ return false;
+}
+
+/// ParseDirective parses the PPC specific directives
+bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) {
+ StringRef IDVal = DirectiveID.getIdentifier();
+ if (!isDarwin()) {
+ if (IDVal == ".word")
+ return ParseDirectiveWord(2, DirectiveID.getLoc());
+ if (IDVal == ".llong")
+ return ParseDirectiveWord(8, DirectiveID.getLoc());
+ if (IDVal == ".tc")
+ return ParseDirectiveTC(isPPC64()? 8 : 4, DirectiveID.getLoc());
+ if (IDVal == ".machine")
+ return ParseDirectiveMachine(DirectiveID.getLoc());
+ if (IDVal == ".abiversion")
+ return ParseDirectiveAbiVersion(DirectiveID.getLoc());
+ if (IDVal == ".localentry")
+ return ParseDirectiveLocalEntry(DirectiveID.getLoc());
+ } else {
+ if (IDVal == ".machine")
+ return ParseDarwinDirectiveMachine(DirectiveID.getLoc());
+ }
+ return true;
+}
+
+/// ParseDirectiveWord
+/// ::= .word [ expression (, expression)* ]
+bool PPCAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ for (;;) {
+ const MCExpr *Value;
+ if (getParser().parseExpression(Value))
+ return false;
+
+ getParser().getStreamer().EmitValue(Value, Size);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ if (getLexer().isNot(AsmToken::Comma))
+ return Error(L, "unexpected token in directive");
+ Parser.Lex();
+ }
+ }
+
+ Parser.Lex();
+ return false;
+}
+
+/// ParseDirectiveTC
+/// ::= .tc [ symbol (, expression)* ]
+bool PPCAsmParser::ParseDirectiveTC(unsigned Size, SMLoc L) {
+ // Skip TC symbol, which is only used with XCOFF.
+ while (getLexer().isNot(AsmToken::EndOfStatement)
+ && getLexer().isNot(AsmToken::Comma))
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::Comma)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+ Parser.Lex();
+
+ // Align to word size.
+ getParser().getStreamer().EmitValueToAlignment(Size);
+
+ // Emit expressions.
+ return ParseDirectiveWord(Size, L);
+}
+
+/// ParseDirectiveMachine (ELF platforms)
+/// ::= .machine [ cpu | "push" | "pop" ]
+bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) {
+ if (getLexer().isNot(AsmToken::Identifier) &&
+ getLexer().isNot(AsmToken::String)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+
+ StringRef CPU = Parser.getTok().getIdentifier();
+ Parser.Lex();
+
+ // FIXME: Right now, the parser always allows any available
+ // instruction, so the .machine directive is not useful.
+ // Implement ".machine any" (by doing nothing) for the benefit
+ // of existing assembler code. Likewise, we can then implement
+ // ".machine push" and ".machine pop" as no-op.
+ if (CPU != "any" && CPU != "push" && CPU != "pop") {
+ Error(L, "unrecognized machine type");
+ return false;
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+ PPCTargetStreamer &TStreamer =
+ *static_cast<PPCTargetStreamer *>(
+ getParser().getStreamer().getTargetStreamer());
+ TStreamer.emitMachine(CPU);
+
+ return false;
+}
+
+/// ParseDarwinDirectiveMachine (Mach-o platforms)
+/// ::= .machine cpu-identifier
+bool PPCAsmParser::ParseDarwinDirectiveMachine(SMLoc L) {
+ if (getLexer().isNot(AsmToken::Identifier) &&
+ getLexer().isNot(AsmToken::String)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+
+ StringRef CPU = Parser.getTok().getIdentifier();
+ Parser.Lex();
+
+ // FIXME: this is only the 'default' set of cpu variants.
+ // However we don't act on this information at present, this is simply
+ // allowing parsing to proceed with minimal sanity checking.
+ if (CPU != "ppc7400" && CPU != "ppc" && CPU != "ppc64") {
+ Error(L, "unrecognized cpu type");
+ return false;
+ }
+
+ if (isPPC64() && (CPU == "ppc7400" || CPU == "ppc")) {
+ Error(L, "wrong cpu type specified for 64bit");
+ return false;
+ }
+ if (!isPPC64() && CPU == "ppc64") {
+ Error(L, "wrong cpu type specified for 32bit");
+ return false;
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+
+ return false;
+}
+
+/// ParseDirectiveAbiVersion
+/// ::= .abiversion constant-expression
+bool PPCAsmParser::ParseDirectiveAbiVersion(SMLoc L) {
+ int64_t AbiVersion;
+ if (getParser().parseAbsoluteExpression(AbiVersion)){
+ Error(L, "expected constant expression");
+ return false;
+ }
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+
+ PPCTargetStreamer &TStreamer =
+ *static_cast<PPCTargetStreamer *>(
+ getParser().getStreamer().getTargetStreamer());
+ TStreamer.emitAbiVersion(AbiVersion);
+
+ return false;
+}
+
+/// ParseDirectiveLocalEntry
+/// ::= .localentry symbol, expression
+bool PPCAsmParser::ParseDirectiveLocalEntry(SMLoc L) {
+ StringRef Name;
+ if (getParser().parseIdentifier(Name)) {
+ Error(L, "expected identifier in directive");
+ return false;
+ }
+ MCSymbol *Sym = getContext().GetOrCreateSymbol(Name);
+
+ if (getLexer().isNot(AsmToken::Comma)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+ Lex();
+
+ const MCExpr *Expr;
+ if (getParser().parseExpression(Expr)) {
+ Error(L, "expected expression");
+ return false;
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+
+ PPCTargetStreamer &TStreamer =
+ *static_cast<PPCTargetStreamer *>(
+ getParser().getStreamer().getTargetStreamer());
+ TStreamer.emitLocalEntry(Sym, Expr);
+
+ return false;
+}
+
+
+
+/// Force static initialization.
+extern "C" void LLVMInitializePowerPCAsmParser() {
+ RegisterMCAsmParser<PPCAsmParser> A(ThePPC32Target);
+ RegisterMCAsmParser<PPCAsmParser> B(ThePPC64Target);
+ RegisterMCAsmParser<PPCAsmParser> C(ThePPC64LETarget);
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_MATCHER_IMPLEMENTATION
+#include "PPCGenAsmMatcher.inc"
+
+// Define this matcher function after the auto-generated include so we
+// have the match class enum definitions.
+unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
+ unsigned Kind) {
+ // If the kind is a token for a literal immediate, check if our asm
+ // operand matches. This is for InstAliases which have a fixed-value
+ // immediate in the syntax.
+ int64_t ImmVal;
+ switch (Kind) {
+ case MCK_0: ImmVal = 0; break;
+ case MCK_1: ImmVal = 1; break;
+ case MCK_2: ImmVal = 2; break;
+ case MCK_3: ImmVal = 3; break;
+ default: return Match_InvalidOperand;
+ }
+
+ PPCOperand &Op = static_cast<PPCOperand &>(AsmOp);
+ if (Op.isImm() && Op.getImm() == ImmVal)
+ return Match_Success;
+
+ return Match_InvalidOperand;
+}
+
+const MCExpr *
+PPCAsmParser::applyModifierToExpr(const MCExpr *E,
+ MCSymbolRefExpr::VariantKind Variant,
+ MCContext &Ctx) {
+ switch (Variant) {
+ case MCSymbolRefExpr::VK_PPC_LO:
+ return PPCMCExpr::Create(PPCMCExpr::VK_PPC_LO, E, false, Ctx);
+ case MCSymbolRefExpr::VK_PPC_HI:
+ return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HI, E, false, Ctx);
+ case MCSymbolRefExpr::VK_PPC_HA:
+ return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HA, E, false, Ctx);
+ case MCSymbolRefExpr::VK_PPC_HIGHER:
+ return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHER, E, false, Ctx);
+ case MCSymbolRefExpr::VK_PPC_HIGHERA:
+ return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHERA, E, false, Ctx);
+ case MCSymbolRefExpr::VK_PPC_HIGHEST:
+ return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHEST, E, false, Ctx);
+ case MCSymbolRefExpr::VK_PPC_HIGHESTA:
+ return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHESTA, E, false, Ctx);
+ default:
+ return nullptr;
+ }
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/Disassembler/CMakeLists.txt b/contrib/llvm/lib/Target/PowerPC/Disassembler/CMakeLists.txt
new file mode 100644
index 0000000..ca457df
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/Disassembler/CMakeLists.txt
@@ -0,0 +1,3 @@
+add_llvm_library(LLVMPowerPCDisassembler
+ PPCDisassembler.cpp
+ )
diff --git a/contrib/llvm/lib/Target/PowerPC/Disassembler/LLVMBuild.txt b/contrib/llvm/lib/Target/PowerPC/Disassembler/LLVMBuild.txt
new file mode 100644
index 0000000..b0978c2
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/Disassembler/LLVMBuild.txt
@@ -0,0 +1,23 @@
+;===-- ./lib/Target/PowerPC/Disassembler/LLVMBuild.txt ---------*- Conf -*--===;
+;
+; The LLVM Compiler Infrastructure
+;
+; This file is distributed under the University of Illinois Open Source
+; License. See LICENSE.TXT for details.
+;
+;===------------------------------------------------------------------------===;
+;
+; This is an LLVMBuild description file for the components in this subdirectory.
+;
+; For more information on the LLVMBuild system, please see:
+;
+; http://llvm.org/docs/LLVMBuild.html
+;
+;===------------------------------------------------------------------------===;
+
+[component_0]
+type = Library
+name = PowerPCDisassembler
+parent = PowerPC
+required_libraries = MC PowerPCInfo Support
+add_to_library_groups = PowerPC
diff --git a/contrib/llvm/lib/Target/PowerPC/Disassembler/Makefile b/contrib/llvm/lib/Target/PowerPC/Disassembler/Makefile
new file mode 100644
index 0000000..86e3b47
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/Disassembler/Makefile
@@ -0,0 +1,16 @@
+##===-- lib/Target/PowerPC/Disassembler/Makefile -----------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../../..
+LIBRARYNAME = LLVMPowerPCDisassembler
+
+# Hack: we need to include 'main' PPC target directory to grab private headers
+CPP.Flags += -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/contrib/llvm/lib/Target/PowerPC/Disassembler/PPCDisassembler.cpp b/contrib/llvm/lib/Target/PowerPC/Disassembler/PPCDisassembler.cpp
new file mode 100644
index 0000000..a2305a9
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/Disassembler/PPCDisassembler.cpp
@@ -0,0 +1,348 @@
+//===------ PPCDisassembler.cpp - Disassembler for PowerPC ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPC.h"
+#include "llvm/MC/MCDisassembler.h"
+#include "llvm/MC/MCFixedLenDisassembler.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/MemoryObject.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "ppc-disassembler"
+
+typedef MCDisassembler::DecodeStatus DecodeStatus;
+
+namespace {
+class PPCDisassembler : public MCDisassembler {
+public:
+ PPCDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx)
+ : MCDisassembler(STI, Ctx) {}
+ virtual ~PPCDisassembler() {}
+
+ // Override MCDisassembler.
+ virtual DecodeStatus getInstruction(MCInst &instr,
+ uint64_t &size,
+ const MemoryObject &region,
+ uint64_t address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const override;
+};
+} // end anonymous namespace
+
+static MCDisassembler *createPPCDisassembler(const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new PPCDisassembler(STI, Ctx);
+}
+
+extern "C" void LLVMInitializePowerPCDisassembler() {
+ // Register the disassembler for each target.
+ TargetRegistry::RegisterMCDisassembler(ThePPC32Target,
+ createPPCDisassembler);
+ TargetRegistry::RegisterMCDisassembler(ThePPC64Target,
+ createPPCDisassembler);
+ TargetRegistry::RegisterMCDisassembler(ThePPC64LETarget,
+ createPPCDisassembler);
+}
+
+// FIXME: These can be generated by TableGen from the existing register
+// encoding values!
+
+static const unsigned CRRegs[] = {
+ PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
+ PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7
+};
+
+static const unsigned CRBITRegs[] = {
+ PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN,
+ PPC::CR1LT, PPC::CR1GT, PPC::CR1EQ, PPC::CR1UN,
+ PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN,
+ PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN,
+ PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN,
+ PPC::CR5LT, PPC::CR5GT, PPC::CR5EQ, PPC::CR5UN,
+ PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN,
+ PPC::CR7LT, PPC::CR7GT, PPC::CR7EQ, PPC::CR7UN
+};
+
+static const unsigned FRegs[] = {
+ PPC::F0, PPC::F1, PPC::F2, PPC::F3,
+ PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11,
+ PPC::F12, PPC::F13, PPC::F14, PPC::F15,
+ PPC::F16, PPC::F17, PPC::F18, PPC::F19,
+ PPC::F20, PPC::F21, PPC::F22, PPC::F23,
+ PPC::F24, PPC::F25, PPC::F26, PPC::F27,
+ PPC::F28, PPC::F29, PPC::F30, PPC::F31
+};
+
+static const unsigned VRegs[] = {
+ PPC::V0, PPC::V1, PPC::V2, PPC::V3,
+ PPC::V4, PPC::V5, PPC::V6, PPC::V7,
+ PPC::V8, PPC::V9, PPC::V10, PPC::V11,
+ PPC::V12, PPC::V13, PPC::V14, PPC::V15,
+ PPC::V16, PPC::V17, PPC::V18, PPC::V19,
+ PPC::V20, PPC::V21, PPC::V22, PPC::V23,
+ PPC::V24, PPC::V25, PPC::V26, PPC::V27,
+ PPC::V28, PPC::V29, PPC::V30, PPC::V31
+};
+
+static const unsigned VSRegs[] = {
+ PPC::VSL0, PPC::VSL1, PPC::VSL2, PPC::VSL3,
+ PPC::VSL4, PPC::VSL5, PPC::VSL6, PPC::VSL7,
+ PPC::VSL8, PPC::VSL9, PPC::VSL10, PPC::VSL11,
+ PPC::VSL12, PPC::VSL13, PPC::VSL14, PPC::VSL15,
+ PPC::VSL16, PPC::VSL17, PPC::VSL18, PPC::VSL19,
+ PPC::VSL20, PPC::VSL21, PPC::VSL22, PPC::VSL23,
+ PPC::VSL24, PPC::VSL25, PPC::VSL26, PPC::VSL27,
+ PPC::VSL28, PPC::VSL29, PPC::VSL30, PPC::VSL31,
+
+ PPC::VSH0, PPC::VSH1, PPC::VSH2, PPC::VSH3,
+ PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7,
+ PPC::VSH8, PPC::VSH9, PPC::VSH10, PPC::VSH11,
+ PPC::VSH12, PPC::VSH13, PPC::VSH14, PPC::VSH15,
+ PPC::VSH16, PPC::VSH17, PPC::VSH18, PPC::VSH19,
+ PPC::VSH20, PPC::VSH21, PPC::VSH22, PPC::VSH23,
+ PPC::VSH24, PPC::VSH25, PPC::VSH26, PPC::VSH27,
+ PPC::VSH28, PPC::VSH29, PPC::VSH30, PPC::VSH31
+};
+
+static const unsigned VSFRegs[] = {
+ PPC::F0, PPC::F1, PPC::F2, PPC::F3,
+ PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11,
+ PPC::F12, PPC::F13, PPC::F14, PPC::F15,
+ PPC::F16, PPC::F17, PPC::F18, PPC::F19,
+ PPC::F20, PPC::F21, PPC::F22, PPC::F23,
+ PPC::F24, PPC::F25, PPC::F26, PPC::F27,
+ PPC::F28, PPC::F29, PPC::F30, PPC::F31,
+
+ PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3,
+ PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7,
+ PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11,
+ PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15,
+ PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19,
+ PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23,
+ PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27,
+ PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31
+};
+
+static const unsigned GPRegs[] = {
+ PPC::R0, PPC::R1, PPC::R2, PPC::R3,
+ PPC::R4, PPC::R5, PPC::R6, PPC::R7,
+ PPC::R8, PPC::R9, PPC::R10, PPC::R11,
+ PPC::R12, PPC::R13, PPC::R14, PPC::R15,
+ PPC::R16, PPC::R17, PPC::R18, PPC::R19,
+ PPC::R20, PPC::R21, PPC::R22, PPC::R23,
+ PPC::R24, PPC::R25, PPC::R26, PPC::R27,
+ PPC::R28, PPC::R29, PPC::R30, PPC::R31
+};
+
+static const unsigned GP0Regs[] = {
+ PPC::ZERO, PPC::R1, PPC::R2, PPC::R3,
+ PPC::R4, PPC::R5, PPC::R6, PPC::R7,
+ PPC::R8, PPC::R9, PPC::R10, PPC::R11,
+ PPC::R12, PPC::R13, PPC::R14, PPC::R15,
+ PPC::R16, PPC::R17, PPC::R18, PPC::R19,
+ PPC::R20, PPC::R21, PPC::R22, PPC::R23,
+ PPC::R24, PPC::R25, PPC::R26, PPC::R27,
+ PPC::R28, PPC::R29, PPC::R30, PPC::R31
+};
+
+static const unsigned G8Regs[] = {
+ PPC::X0, PPC::X1, PPC::X2, PPC::X3,
+ PPC::X4, PPC::X5, PPC::X6, PPC::X7,
+ PPC::X8, PPC::X9, PPC::X10, PPC::X11,
+ PPC::X12, PPC::X13, PPC::X14, PPC::X15,
+ PPC::X16, PPC::X17, PPC::X18, PPC::X19,
+ PPC::X20, PPC::X21, PPC::X22, PPC::X23,
+ PPC::X24, PPC::X25, PPC::X26, PPC::X27,
+ PPC::X28, PPC::X29, PPC::X30, PPC::X31
+};
+
+template <std::size_t N>
+static DecodeStatus decodeRegisterClass(MCInst &Inst, uint64_t RegNo,
+ const unsigned (&Regs)[N]) {
+ assert(RegNo < N && "Invalid register number");
+ Inst.addOperand(MCOperand::CreateReg(Regs[RegNo]));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeCRRCRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, CRRegs);
+}
+
+static DecodeStatus DecodeCRBITRCRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, CRBITRegs);
+}
+
+static DecodeStatus DecodeF4RCRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, FRegs);
+}
+
+static DecodeStatus DecodeF8RCRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, FRegs);
+}
+
+static DecodeStatus DecodeVRRCRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, VRegs);
+}
+
+static DecodeStatus DecodeVSRCRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, VSRegs);
+}
+
+static DecodeStatus DecodeVSFRCRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, VSFRegs);
+}
+
+static DecodeStatus DecodeGPRCRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, GPRegs);
+}
+
+static DecodeStatus DecodeGPRC_NOR0RegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, GP0Regs);
+}
+
+static DecodeStatus DecodeG8RCRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, G8Regs);
+}
+
+#define DecodePointerLikeRegClass0 DecodeGPRCRegisterClass
+#define DecodePointerLikeRegClass1 DecodeGPRC_NOR0RegisterClass
+
+template<unsigned N>
+static DecodeStatus decodeUImmOperand(MCInst &Inst, uint64_t Imm,
+ int64_t Address, const void *Decoder) {
+ assert(isUInt<N>(Imm) && "Invalid immediate");
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ return MCDisassembler::Success;
+}
+
+template<unsigned N>
+static DecodeStatus decodeSImmOperand(MCInst &Inst, uint64_t Imm,
+ int64_t Address, const void *Decoder) {
+ assert(isUInt<N>(Imm) && "Invalid immediate");
+ Inst.addOperand(MCOperand::CreateImm(SignExtend64<N>(Imm)));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus decodeMemRIOperands(MCInst &Inst, uint64_t Imm,
+ int64_t Address, const void *Decoder) {
+ // Decode the memri field (imm, reg), which has the low 16-bits as the
+ // displacement and the next 5 bits as the register #.
+
+ uint64_t Base = Imm >> 16;
+ uint64_t Disp = Imm & 0xFFFF;
+
+ assert(Base < 32 && "Invalid base register");
+
+ switch (Inst.getOpcode()) {
+ default: break;
+ case PPC::LBZU:
+ case PPC::LHAU:
+ case PPC::LHZU:
+ case PPC::LWZU:
+ case PPC::LFSU:
+ case PPC::LFDU:
+ // Add the tied output operand.
+ Inst.addOperand(MCOperand::CreateReg(GP0Regs[Base]));
+ break;
+ case PPC::STBU:
+ case PPC::STHU:
+ case PPC::STWU:
+ case PPC::STFSU:
+ case PPC::STFDU:
+ Inst.insert(Inst.begin(), MCOperand::CreateReg(GP0Regs[Base]));
+ break;
+ }
+
+ Inst.addOperand(MCOperand::CreateImm(SignExtend64<16>(Disp)));
+ Inst.addOperand(MCOperand::CreateReg(GP0Regs[Base]));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus decodeMemRIXOperands(MCInst &Inst, uint64_t Imm,
+ int64_t Address, const void *Decoder) {
+ // Decode the memrix field (imm, reg), which has the low 14-bits as the
+ // displacement and the next 5 bits as the register #.
+
+ uint64_t Base = Imm >> 14;
+ uint64_t Disp = Imm & 0x3FFF;
+
+ assert(Base < 32 && "Invalid base register");
+
+ if (Inst.getOpcode() == PPC::LDU)
+ // Add the tied output operand.
+ Inst.addOperand(MCOperand::CreateReg(GP0Regs[Base]));
+ else if (Inst.getOpcode() == PPC::STDU)
+ Inst.insert(Inst.begin(), MCOperand::CreateReg(GP0Regs[Base]));
+
+ Inst.addOperand(MCOperand::CreateImm(SignExtend64<16>(Disp << 2)));
+ Inst.addOperand(MCOperand::CreateReg(GP0Regs[Base]));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus decodeCRBitMOperand(MCInst &Inst, uint64_t Imm,
+ int64_t Address, const void *Decoder) {
+ // The cr bit encoding is 0x80 >> cr_reg_num.
+
+ unsigned Zeros = countTrailingZeros(Imm);
+ assert(Zeros < 8 && "Invalid CR bit value");
+
+ Inst.addOperand(MCOperand::CreateReg(CRRegs[7 - Zeros]));
+ return MCDisassembler::Success;
+}
+
+#include "PPCGenDisassemblerTables.inc"
+
+DecodeStatus PPCDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &os,
+ raw_ostream &cs) const {
+ // Get the four bytes of the instruction.
+ uint8_t Bytes[4];
+ Size = 4;
+ if (Region.readBytes(Address, Size, Bytes) == -1) {
+ Size = 0;
+ return MCDisassembler::Fail;
+ }
+
+ // The instruction is big-endian encoded.
+ uint32_t Inst = (Bytes[0] << 24) |
+ (Bytes[1] << 16) |
+ (Bytes[2] << 8) |
+ (Bytes[3] << 0);
+
+ return decodeInstruction(DecoderTable32, MI, Inst, Address, this, STI);
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.cpp b/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.cpp
new file mode 100644
index 0000000..771b6f5
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.cpp
@@ -0,0 +1,365 @@
+//===-- PPCInstPrinter.cpp - Convert PPC MCInst to assembly syntax --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an PPC MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCInstPrinter.h"
+#include "MCTargetDesc/PPCMCTargetDesc.h"
+#include "MCTargetDesc/PPCPredicates.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOpcodes.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+// FIXME: Once the integrated assembler supports full register names, tie this
+// to the verbose-asm setting.
+static cl::opt<bool>
+FullRegNames("ppc-asm-full-reg-names", cl::Hidden, cl::init(false),
+ cl::desc("Use full register names when printing assembly"));
+
+#include "PPCGenAsmWriter.inc"
+
+void PPCInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
+ OS << getRegisterName(RegNo);
+}
+
+void PPCInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
+ StringRef Annot) {
+ // Check for slwi/srwi mnemonics.
+ if (MI->getOpcode() == PPC::RLWINM) {
+ unsigned char SH = MI->getOperand(2).getImm();
+ unsigned char MB = MI->getOperand(3).getImm();
+ unsigned char ME = MI->getOperand(4).getImm();
+ bool useSubstituteMnemonic = false;
+ if (SH <= 31 && MB == 0 && ME == (31-SH)) {
+ O << "\tslwi "; useSubstituteMnemonic = true;
+ }
+ if (SH <= 31 && MB == (32-SH) && ME == 31) {
+ O << "\tsrwi "; useSubstituteMnemonic = true;
+ SH = 32-SH;
+ }
+ if (useSubstituteMnemonic) {
+ printOperand(MI, 0, O);
+ O << ", ";
+ printOperand(MI, 1, O);
+ O << ", " << (unsigned int)SH;
+
+ printAnnotation(O, Annot);
+ return;
+ }
+ }
+
+ if ((MI->getOpcode() == PPC::OR || MI->getOpcode() == PPC::OR8) &&
+ MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) {
+ O << "\tmr ";
+ printOperand(MI, 0, O);
+ O << ", ";
+ printOperand(MI, 1, O);
+ printAnnotation(O, Annot);
+ return;
+ }
+
+ if (MI->getOpcode() == PPC::RLDICR) {
+ unsigned char SH = MI->getOperand(2).getImm();
+ unsigned char ME = MI->getOperand(3).getImm();
+ // rldicr RA, RS, SH, 63-SH == sldi RA, RS, SH
+ if (63-SH == ME) {
+ O << "\tsldi ";
+ printOperand(MI, 0, O);
+ O << ", ";
+ printOperand(MI, 1, O);
+ O << ", " << (unsigned int)SH;
+ printAnnotation(O, Annot);
+ return;
+ }
+ }
+
+ // For fast-isel, a COPY_TO_REGCLASS may survive this long. This is
+ // used when converting a 32-bit float to a 64-bit float as part of
+ // conversion to an integer (see PPCFastISel.cpp:SelectFPToI()),
+ // as otherwise we have problems with incorrect register classes
+ // in machine instruction verification. For now, just avoid trying
+ // to print it as such an instruction has no effect (a 32-bit float
+ // in a register is already in 64-bit form, just with lower
+ // precision). FIXME: Is there a better solution?
+ if (MI->getOpcode() == TargetOpcode::COPY_TO_REGCLASS)
+ return;
+
+ printInstruction(MI, O);
+ printAnnotation(O, Annot);
+}
+
+
+void PPCInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O,
+ const char *Modifier) {
+ unsigned Code = MI->getOperand(OpNo).getImm();
+
+ if (StringRef(Modifier) == "cc") {
+ switch ((PPC::Predicate)Code) {
+ case PPC::PRED_LT_MINUS:
+ case PPC::PRED_LT_PLUS:
+ case PPC::PRED_LT:
+ O << "lt";
+ return;
+ case PPC::PRED_LE_MINUS:
+ case PPC::PRED_LE_PLUS:
+ case PPC::PRED_LE:
+ O << "le";
+ return;
+ case PPC::PRED_EQ_MINUS:
+ case PPC::PRED_EQ_PLUS:
+ case PPC::PRED_EQ:
+ O << "eq";
+ return;
+ case PPC::PRED_GE_MINUS:
+ case PPC::PRED_GE_PLUS:
+ case PPC::PRED_GE:
+ O << "ge";
+ return;
+ case PPC::PRED_GT_MINUS:
+ case PPC::PRED_GT_PLUS:
+ case PPC::PRED_GT:
+ O << "gt";
+ return;
+ case PPC::PRED_NE_MINUS:
+ case PPC::PRED_NE_PLUS:
+ case PPC::PRED_NE:
+ O << "ne";
+ return;
+ case PPC::PRED_UN_MINUS:
+ case PPC::PRED_UN_PLUS:
+ case PPC::PRED_UN:
+ O << "un";
+ return;
+ case PPC::PRED_NU_MINUS:
+ case PPC::PRED_NU_PLUS:
+ case PPC::PRED_NU:
+ O << "nu";
+ return;
+ case PPC::PRED_BIT_SET:
+ case PPC::PRED_BIT_UNSET:
+ llvm_unreachable("Invalid use of bit predicate code");
+ }
+ llvm_unreachable("Invalid predicate code");
+ }
+
+ if (StringRef(Modifier) == "pm") {
+ switch ((PPC::Predicate)Code) {
+ case PPC::PRED_LT:
+ case PPC::PRED_LE:
+ case PPC::PRED_EQ:
+ case PPC::PRED_GE:
+ case PPC::PRED_GT:
+ case PPC::PRED_NE:
+ case PPC::PRED_UN:
+ case PPC::PRED_NU:
+ return;
+ case PPC::PRED_LT_MINUS:
+ case PPC::PRED_LE_MINUS:
+ case PPC::PRED_EQ_MINUS:
+ case PPC::PRED_GE_MINUS:
+ case PPC::PRED_GT_MINUS:
+ case PPC::PRED_NE_MINUS:
+ case PPC::PRED_UN_MINUS:
+ case PPC::PRED_NU_MINUS:
+ O << "-";
+ return;
+ case PPC::PRED_LT_PLUS:
+ case PPC::PRED_LE_PLUS:
+ case PPC::PRED_EQ_PLUS:
+ case PPC::PRED_GE_PLUS:
+ case PPC::PRED_GT_PLUS:
+ case PPC::PRED_NE_PLUS:
+ case PPC::PRED_UN_PLUS:
+ case PPC::PRED_NU_PLUS:
+ O << "+";
+ return;
+ case PPC::PRED_BIT_SET:
+ case PPC::PRED_BIT_UNSET:
+ llvm_unreachable("Invalid use of bit predicate code");
+ }
+ llvm_unreachable("Invalid predicate code");
+ }
+
+ assert(StringRef(Modifier) == "reg" &&
+ "Need to specify 'cc', 'pm' or 'reg' as predicate op modifier!");
+ printOperand(MI, OpNo+1, O);
+}
+
+void PPCInstPrinter::printU2ImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned int Value = MI->getOperand(OpNo).getImm();
+ assert(Value <= 3 && "Invalid u2imm argument!");
+ O << (unsigned int)Value;
+}
+
+void PPCInstPrinter::printS5ImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ int Value = MI->getOperand(OpNo).getImm();
+ Value = SignExtend32<5>(Value);
+ O << (int)Value;
+}
+
+void PPCInstPrinter::printU5ImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned int Value = MI->getOperand(OpNo).getImm();
+ assert(Value <= 31 && "Invalid u5imm argument!");
+ O << (unsigned int)Value;
+}
+
+void PPCInstPrinter::printU6ImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned int Value = MI->getOperand(OpNo).getImm();
+ assert(Value <= 63 && "Invalid u6imm argument!");
+ O << (unsigned int)Value;
+}
+
+void PPCInstPrinter::printS16ImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (MI->getOperand(OpNo).isImm())
+ O << (short)MI->getOperand(OpNo).getImm();
+ else
+ printOperand(MI, OpNo, O);
+}
+
+void PPCInstPrinter::printU16ImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (MI->getOperand(OpNo).isImm())
+ O << (unsigned short)MI->getOperand(OpNo).getImm();
+ else
+ printOperand(MI, OpNo, O);
+}
+
+void PPCInstPrinter::printBranchOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (!MI->getOperand(OpNo).isImm())
+ return printOperand(MI, OpNo, O);
+
+ // Branches can take an immediate operand. This is used by the branch
+ // selection pass to print .+8, an eight byte displacement from the PC.
+ O << ".+";
+ printAbsBranchOperand(MI, OpNo, O);
+}
+
+void PPCInstPrinter::printAbsBranchOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (!MI->getOperand(OpNo).isImm())
+ return printOperand(MI, OpNo, O);
+
+ O << (int)MI->getOperand(OpNo).getImm()*4;
+}
+
+
+void PPCInstPrinter::printcrbitm(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned CCReg = MI->getOperand(OpNo).getReg();
+ unsigned RegNo;
+ switch (CCReg) {
+ default: llvm_unreachable("Unknown CR register");
+ case PPC::CR0: RegNo = 0; break;
+ case PPC::CR1: RegNo = 1; break;
+ case PPC::CR2: RegNo = 2; break;
+ case PPC::CR3: RegNo = 3; break;
+ case PPC::CR4: RegNo = 4; break;
+ case PPC::CR5: RegNo = 5; break;
+ case PPC::CR6: RegNo = 6; break;
+ case PPC::CR7: RegNo = 7; break;
+ }
+ O << (0x80 >> RegNo);
+}
+
+void PPCInstPrinter::printMemRegImm(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ printS16ImmOperand(MI, OpNo, O);
+ O << '(';
+ if (MI->getOperand(OpNo+1).getReg() == PPC::R0)
+ O << "0";
+ else
+ printOperand(MI, OpNo+1, O);
+ O << ')';
+}
+
+void PPCInstPrinter::printMemRegReg(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ // When used as the base register, r0 reads constant zero rather than
+ // the value contained in the register. For this reason, the darwin
+ // assembler requires that we print r0 as 0 (no r) when used as the base.
+ if (MI->getOperand(OpNo).getReg() == PPC::R0)
+ O << "0";
+ else
+ printOperand(MI, OpNo, O);
+ O << ", ";
+ printOperand(MI, OpNo+1, O);
+}
+
+void PPCInstPrinter::printTLSCall(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ // On PPC64, VariantKind is VK_None, but on PPC32, it's VK_PLT, and it must
+ // come at the _end_ of the expression.
+ const MCOperand &Op = MI->getOperand(OpNo);
+ const MCSymbolRefExpr &refExp = cast<MCSymbolRefExpr>(*Op.getExpr());
+ O << refExp.getSymbol().getName();
+ O << '(';
+ printOperand(MI, OpNo+1, O);
+ O << ')';
+ if (refExp.getKind() != MCSymbolRefExpr::VK_None)
+ O << '@' << MCSymbolRefExpr::getVariantKindName(refExp.getKind());
+}
+
+
+/// stripRegisterPrefix - This method strips the character prefix from a
+/// register name so that only the number is left. Used by for linux asm.
+static const char *stripRegisterPrefix(const char *RegName) {
+ if (FullRegNames)
+ return RegName;
+
+ switch (RegName[0]) {
+ case 'r':
+ case 'f':
+ case 'v':
+ if (RegName[1] == 's')
+ return RegName + 2;
+ return RegName + 1;
+ case 'c': if (RegName[1] == 'r') return RegName + 2;
+ }
+
+ return RegName;
+}
+
+void PPCInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ const char *RegName = getRegisterName(Op.getReg());
+ // The linux and AIX assembler does not take register prefixes.
+ if (!isDarwinSyntax())
+ RegName = stripRegisterPrefix(RegName);
+
+ O << RegName;
+ return;
+ }
+
+ if (Op.isImm()) {
+ O << Op.getImm();
+ return;
+ }
+
+ assert(Op.isExpr() && "unknown operand kind in printOperand");
+ O << *Op.getExpr();
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.h b/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.h
new file mode 100644
index 0000000..211a628
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.h
@@ -0,0 +1,63 @@
+//===- PPCInstPrinter.h - Convert PPC MCInst to assembly syntax -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an PPC MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PPCINSTPRINTER_H
+#define PPCINSTPRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+
+namespace llvm {
+
+class MCOperand;
+
+class PPCInstPrinter : public MCInstPrinter {
+ bool IsDarwin;
+public:
+ PPCInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI, bool isDarwin)
+ : MCInstPrinter(MAI, MII, MRI), IsDarwin(isDarwin) {}
+
+ bool isDarwinSyntax() const {
+ return IsDarwin;
+ }
+
+ void printRegName(raw_ostream &OS, unsigned RegNo) const override;
+ void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot) override;
+
+ // Autogenerated by tblgen.
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ static const char *getRegisterName(unsigned RegNo);
+
+
+ void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printPredicateOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O, const char *Modifier = nullptr);
+
+ void printU2ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printS5ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printU5ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printU6ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printS16ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printU16ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printBranchOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printAbsBranchOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printTLSCall(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+
+ void printcrbitm(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+
+ void printMemRegImm(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printMemRegReg(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCAsmBackend.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCAsmBackend.cpp
new file mode 100644
index 0000000..c54d5e7
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCAsmBackend.cpp
@@ -0,0 +1,245 @@
+//===-- PPCAsmBackend.cpp - PPC Assembler Backend -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/PPCMCTargetDesc.h"
+#include "MCTargetDesc/PPCFixupKinds.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCELF.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCFixupKindInfo.h"
+#include "llvm/MC/MCMachObjectWriter.h"
+#include "llvm/MC/MCObjectWriter.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachO.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+static uint64_t adjustFixupValue(unsigned Kind, uint64_t Value) {
+ switch (Kind) {
+ default:
+ llvm_unreachable("Unknown fixup kind!");
+ case FK_Data_1:
+ case FK_Data_2:
+ case FK_Data_4:
+ case FK_Data_8:
+ case PPC::fixup_ppc_nofixup:
+ return Value;
+ case PPC::fixup_ppc_brcond14:
+ case PPC::fixup_ppc_brcond14abs:
+ return Value & 0xfffc;
+ case PPC::fixup_ppc_br24:
+ case PPC::fixup_ppc_br24abs:
+ return Value & 0x3fffffc;
+ case PPC::fixup_ppc_half16:
+ return Value & 0xffff;
+ case PPC::fixup_ppc_half16ds:
+ return Value & 0xfffc;
+ }
+}
+
+static unsigned getFixupKindNumBytes(unsigned Kind) {
+ switch (Kind) {
+ default:
+ llvm_unreachable("Unknown fixup kind!");
+ case FK_Data_1:
+ return 1;
+ case FK_Data_2:
+ case PPC::fixup_ppc_half16:
+ case PPC::fixup_ppc_half16ds:
+ return 2;
+ case FK_Data_4:
+ case PPC::fixup_ppc_brcond14:
+ case PPC::fixup_ppc_brcond14abs:
+ case PPC::fixup_ppc_br24:
+ case PPC::fixup_ppc_br24abs:
+ return 4;
+ case FK_Data_8:
+ return 8;
+ case PPC::fixup_ppc_nofixup:
+ return 0;
+ }
+}
+
+namespace {
+
+class PPCAsmBackend : public MCAsmBackend {
+ const Target &TheTarget;
+ bool IsLittleEndian;
+public:
+ PPCAsmBackend(const Target &T, bool isLittle) : MCAsmBackend(), TheTarget(T),
+ IsLittleEndian(isLittle) {}
+
+ unsigned getNumFixupKinds() const override {
+ return PPC::NumTargetFixupKinds;
+ }
+
+ const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
+ const static MCFixupKindInfo InfosBE[PPC::NumTargetFixupKinds] = {
+ // name offset bits flags
+ { "fixup_ppc_br24", 6, 24, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_ppc_brcond14", 16, 14, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_ppc_br24abs", 6, 24, 0 },
+ { "fixup_ppc_brcond14abs", 16, 14, 0 },
+ { "fixup_ppc_half16", 0, 16, 0 },
+ { "fixup_ppc_half16ds", 0, 14, 0 },
+ { "fixup_ppc_nofixup", 0, 0, 0 }
+ };
+ const static MCFixupKindInfo InfosLE[PPC::NumTargetFixupKinds] = {
+ // name offset bits flags
+ { "fixup_ppc_br24", 2, 24, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_ppc_brcond14", 2, 14, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_ppc_br24abs", 2, 24, 0 },
+ { "fixup_ppc_brcond14abs", 2, 14, 0 },
+ { "fixup_ppc_half16", 0, 16, 0 },
+ { "fixup_ppc_half16ds", 2, 14, 0 },
+ { "fixup_ppc_nofixup", 0, 0, 0 }
+ };
+
+ if (Kind < FirstTargetFixupKind)
+ return MCAsmBackend::getFixupKindInfo(Kind);
+
+ assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
+ "Invalid kind!");
+ return (IsLittleEndian? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
+ }
+
+ void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
+ uint64_t Value, bool IsPCRel) const override {
+ Value = adjustFixupValue(Fixup.getKind(), Value);
+ if (!Value) return; // Doesn't change encoding.
+
+ unsigned Offset = Fixup.getOffset();
+ unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
+
+ // For each byte of the fragment that the fixup touches, mask in the bits
+ // from the fixup value. The Value has been "split up" into the appropriate
+ // bitfields above.
+ for (unsigned i = 0; i != NumBytes; ++i) {
+ unsigned Idx = IsLittleEndian ? i : (NumBytes - 1 - i);
+ Data[Offset + i] |= uint8_t((Value >> (Idx * 8)) & 0xff);
+ }
+ }
+
+ void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFixup &Fixup, const MCFragment *DF,
+ const MCValue &Target, uint64_t &Value,
+ bool &IsResolved) override {
+ switch ((PPC::Fixups)Fixup.getKind()) {
+ default: break;
+ case PPC::fixup_ppc_br24:
+ case PPC::fixup_ppc_br24abs:
+ // If the target symbol has a local entry point we must not attempt
+ // to resolve the fixup directly. Emit a relocation and leave
+ // resolution of the final target address to the linker.
+ if (const MCSymbolRefExpr *A = Target.getSymA()) {
+ const MCSymbolData &Data = Asm.getSymbolData(A->getSymbol());
+ // The "other" values are stored in the last 6 bits of the second byte.
+ // The traditional defines for STO values assume the full byte and thus
+ // the shift to pack it.
+ unsigned Other = MCELF::getOther(Data) << 2;
+ if ((Other & ELF::STO_PPC64_LOCAL_MASK) != 0)
+ IsResolved = false;
+ }
+ break;
+ }
+ }
+
+ bool mayNeedRelaxation(const MCInst &Inst) const override {
+ // FIXME.
+ return false;
+ }
+
+ bool fixupNeedsRelaxation(const MCFixup &Fixup,
+ uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const override {
+ // FIXME.
+ llvm_unreachable("relaxInstruction() unimplemented");
+ }
+
+
+ void relaxInstruction(const MCInst &Inst, MCInst &Res) const override {
+ // FIXME.
+ llvm_unreachable("relaxInstruction() unimplemented");
+ }
+
+ bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override {
+ uint64_t NumNops = Count / 4;
+ for (uint64_t i = 0; i != NumNops; ++i)
+ OW->Write32(0x60000000);
+
+ switch (Count % 4) {
+ default: break; // No leftover bytes to write
+ case 1: OW->Write8(0); break;
+ case 2: OW->Write16(0); break;
+ case 3: OW->Write16(0); OW->Write8(0); break;
+ }
+
+ return true;
+ }
+
+ unsigned getPointerSize() const {
+ StringRef Name = TheTarget.getName();
+ if (Name == "ppc64" || Name == "ppc64le") return 8;
+ assert(Name == "ppc32" && "Unknown target name!");
+ return 4;
+ }
+
+ bool isLittleEndian() const {
+ return IsLittleEndian;
+ }
+};
+} // end anonymous namespace
+
+
+// FIXME: This should be in a separate file.
+namespace {
+ class DarwinPPCAsmBackend : public PPCAsmBackend {
+ public:
+ DarwinPPCAsmBackend(const Target &T) : PPCAsmBackend(T, false) { }
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ bool is64 = getPointerSize() == 8;
+ return createPPCMachObjectWriter(
+ OS,
+ /*Is64Bit=*/is64,
+ (is64 ? MachO::CPU_TYPE_POWERPC64 : MachO::CPU_TYPE_POWERPC),
+ MachO::CPU_SUBTYPE_POWERPC_ALL);
+ }
+ };
+
+ class ELFPPCAsmBackend : public PPCAsmBackend {
+ uint8_t OSABI;
+ public:
+ ELFPPCAsmBackend(const Target &T, bool IsLittleEndian, uint8_t OSABI) :
+ PPCAsmBackend(T, IsLittleEndian), OSABI(OSABI) { }
+
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ bool is64 = getPointerSize() == 8;
+ return createPPCELFObjectWriter(OS, is64, isLittleEndian(), OSABI);
+ }
+ };
+
+} // end anonymous namespace
+
+MCAsmBackend *llvm::createPPCAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU) {
+ if (Triple(TT).isOSDarwin())
+ return new DarwinPPCAsmBackend(T);
+
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS());
+ bool IsLittleEndian = Triple(TT).getArch() == Triple::ppc64le;
+ return new ELFPPCAsmBackend(T, IsLittleEndian, OSABI);
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCELFObjectWriter.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCELFObjectWriter.cpp
new file mode 100644
index 0000000..ca81317
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCELFObjectWriter.cpp
@@ -0,0 +1,432 @@
+//===-- PPCELFObjectWriter.cpp - PPC ELF Writer ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/PPCMCTargetDesc.h"
+#include "MCTargetDesc/PPCFixupKinds.h"
+#include "MCTargetDesc/PPCMCExpr.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/MC/MCELF.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace llvm;
+
+namespace {
+ class PPCELFObjectWriter : public MCELFObjectTargetWriter {
+ public:
+ PPCELFObjectWriter(bool Is64Bit, uint8_t OSABI);
+
+ virtual ~PPCELFObjectWriter();
+ protected:
+ virtual unsigned getRelocTypeInner(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const;
+ unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsPCRel) const override;
+
+ bool needsRelocateWithSymbol(const MCSymbolData &SD,
+ unsigned Type) const override;
+ };
+}
+
+PPCELFObjectWriter::PPCELFObjectWriter(bool Is64Bit, uint8_t OSABI)
+ : MCELFObjectTargetWriter(Is64Bit, OSABI,
+ Is64Bit ? ELF::EM_PPC64 : ELF::EM_PPC,
+ /*HasRelocationAddend*/ true) {}
+
+PPCELFObjectWriter::~PPCELFObjectWriter() {
+}
+
+static MCSymbolRefExpr::VariantKind getAccessVariant(const MCValue &Target,
+ const MCFixup &Fixup) {
+ const MCExpr *Expr = Fixup.getValue();
+
+ if (Expr->getKind() != MCExpr::Target)
+ return Target.getAccessVariant();
+
+ switch (cast<PPCMCExpr>(Expr)->getKind()) {
+ case PPCMCExpr::VK_PPC_None:
+ return MCSymbolRefExpr::VK_None;
+ case PPCMCExpr::VK_PPC_LO:
+ return MCSymbolRefExpr::VK_PPC_LO;
+ case PPCMCExpr::VK_PPC_HI:
+ return MCSymbolRefExpr::VK_PPC_HI;
+ case PPCMCExpr::VK_PPC_HA:
+ return MCSymbolRefExpr::VK_PPC_HA;
+ case PPCMCExpr::VK_PPC_HIGHERA:
+ return MCSymbolRefExpr::VK_PPC_HIGHERA;
+ case PPCMCExpr::VK_PPC_HIGHER:
+ return MCSymbolRefExpr::VK_PPC_HIGHER;
+ case PPCMCExpr::VK_PPC_HIGHEST:
+ return MCSymbolRefExpr::VK_PPC_HIGHEST;
+ case PPCMCExpr::VK_PPC_HIGHESTA:
+ return MCSymbolRefExpr::VK_PPC_HIGHESTA;
+ }
+ llvm_unreachable("unknown PPCMCExpr kind");
+}
+
+unsigned PPCELFObjectWriter::getRelocTypeInner(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const
+{
+ MCSymbolRefExpr::VariantKind Modifier = getAccessVariant(Target, Fixup);
+
+ // determine the type of the relocation
+ unsigned Type;
+ if (IsPCRel) {
+ switch ((unsigned)Fixup.getKind()) {
+ default:
+ llvm_unreachable("Unimplemented");
+ case PPC::fixup_ppc_br24:
+ case PPC::fixup_ppc_br24abs:
+ switch (Modifier) {
+ default: llvm_unreachable("Unsupported Modifier");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_PPC_REL24;
+ break;
+ case MCSymbolRefExpr::VK_PLT:
+ Type = ELF::R_PPC_PLTREL24;
+ break;
+ }
+ break;
+ case PPC::fixup_ppc_brcond14:
+ case PPC::fixup_ppc_brcond14abs:
+ Type = ELF::R_PPC_REL14;
+ break;
+ case PPC::fixup_ppc_half16:
+ switch (Modifier) {
+ default: llvm_unreachable("Unsupported Modifier");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_PPC_REL16;
+ break;
+ case MCSymbolRefExpr::VK_PPC_LO:
+ Type = ELF::R_PPC_REL16_LO;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HI:
+ Type = ELF::R_PPC_REL16_HI;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HA:
+ Type = ELF::R_PPC_REL16_HA;
+ break;
+ }
+ break;
+ case FK_Data_4:
+ case FK_PCRel_4:
+ Type = ELF::R_PPC_REL32;
+ break;
+ case FK_Data_8:
+ case FK_PCRel_8:
+ Type = ELF::R_PPC64_REL64;
+ break;
+ }
+ } else {
+ switch ((unsigned)Fixup.getKind()) {
+ default: llvm_unreachable("invalid fixup kind!");
+ case PPC::fixup_ppc_br24abs:
+ Type = ELF::R_PPC_ADDR24;
+ break;
+ case PPC::fixup_ppc_brcond14abs:
+ Type = ELF::R_PPC_ADDR14; // XXX: or BRNTAKEN?_
+ break;
+ case PPC::fixup_ppc_half16:
+ switch (Modifier) {
+ default: llvm_unreachable("Unsupported Modifier");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_PPC_ADDR16;
+ break;
+ case MCSymbolRefExpr::VK_PPC_LO:
+ Type = ELF::R_PPC_ADDR16_LO;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HI:
+ Type = ELF::R_PPC_ADDR16_HI;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HA:
+ Type = ELF::R_PPC_ADDR16_HA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HIGHER:
+ Type = ELF::R_PPC64_ADDR16_HIGHER;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HIGHERA:
+ Type = ELF::R_PPC64_ADDR16_HIGHERA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HIGHEST:
+ Type = ELF::R_PPC64_ADDR16_HIGHEST;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HIGHESTA:
+ Type = ELF::R_PPC64_ADDR16_HIGHESTA;
+ break;
+ case MCSymbolRefExpr::VK_GOT:
+ Type = ELF::R_PPC_GOT16;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_LO:
+ Type = ELF::R_PPC_GOT16_LO;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_HI:
+ Type = ELF::R_PPC_GOT16_HI;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_HA:
+ Type = ELF::R_PPC_GOT16_HA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TOC:
+ Type = ELF::R_PPC64_TOC16;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TOC_LO:
+ Type = ELF::R_PPC64_TOC16_LO;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TOC_HI:
+ Type = ELF::R_PPC64_TOC16_HI;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TOC_HA:
+ Type = ELF::R_PPC64_TOC16_HA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TPREL:
+ Type = ELF::R_PPC_TPREL16;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TPREL_LO:
+ Type = ELF::R_PPC_TPREL16_LO;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TPREL_HI:
+ Type = ELF::R_PPC_TPREL16_HI;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TPREL_HA:
+ Type = ELF::R_PPC_TPREL16_HA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TPREL_HIGHER:
+ Type = ELF::R_PPC64_TPREL16_HIGHER;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TPREL_HIGHERA:
+ Type = ELF::R_PPC64_TPREL16_HIGHERA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TPREL_HIGHEST:
+ Type = ELF::R_PPC64_TPREL16_HIGHEST;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TPREL_HIGHESTA:
+ Type = ELF::R_PPC64_TPREL16_HIGHESTA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPREL:
+ Type = ELF::R_PPC64_DTPREL16;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPREL_LO:
+ Type = ELF::R_PPC64_DTPREL16_LO;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPREL_HI:
+ Type = ELF::R_PPC64_DTPREL16_HI;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPREL_HA:
+ Type = ELF::R_PPC64_DTPREL16_HA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHER:
+ Type = ELF::R_PPC64_DTPREL16_HIGHER;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHERA:
+ Type = ELF::R_PPC64_DTPREL16_HIGHERA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHEST:
+ Type = ELF::R_PPC64_DTPREL16_HIGHEST;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHESTA:
+ Type = ELF::R_PPC64_DTPREL16_HIGHESTA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TLSGD:
+ if (is64Bit())
+ Type = ELF::R_PPC64_GOT_TLSGD16;
+ else
+ Type = ELF::R_PPC_GOT_TLSGD16;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO:
+ Type = ELF::R_PPC64_GOT_TLSGD16_LO;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HI:
+ Type = ELF::R_PPC64_GOT_TLSGD16_HI;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA:
+ Type = ELF::R_PPC64_GOT_TLSGD16_HA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TLSLD:
+ if (is64Bit())
+ Type = ELF::R_PPC64_GOT_TLSLD16;
+ else
+ Type = ELF::R_PPC_GOT_TLSLD16;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO:
+ Type = ELF::R_PPC64_GOT_TLSLD16_LO;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HI:
+ Type = ELF::R_PPC64_GOT_TLSLD16_HI;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA:
+ Type = ELF::R_PPC64_GOT_TLSLD16_HA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TPREL:
+ /* We don't have R_PPC64_GOT_TPREL16, but since GOT offsets
+ are always 4-aligned, we can use R_PPC64_GOT_TPREL16_DS. */
+ Type = ELF::R_PPC64_GOT_TPREL16_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO:
+ /* We don't have R_PPC64_GOT_TPREL16_LO, but since GOT offsets
+ are always 4-aligned, we can use R_PPC64_GOT_TPREL16_LO_DS. */
+ Type = ELF::R_PPC64_GOT_TPREL16_LO_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TPREL_HI:
+ Type = ELF::R_PPC64_GOT_TPREL16_HI;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_DTPREL:
+ /* We don't have R_PPC64_GOT_DTPREL16, but since GOT offsets
+ are always 4-aligned, we can use R_PPC64_GOT_DTPREL16_DS. */
+ Type = ELF::R_PPC64_GOT_DTPREL16_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_LO:
+ /* We don't have R_PPC64_GOT_DTPREL16_LO, but since GOT offsets
+ are always 4-aligned, we can use R_PPC64_GOT_DTPREL16_LO_DS. */
+ Type = ELF::R_PPC64_GOT_DTPREL16_LO_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA:
+ Type = ELF::R_PPC64_GOT_TPREL16_HA;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_HI:
+ Type = ELF::R_PPC64_GOT_DTPREL16_HI;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_HA:
+ Type = ELF::R_PPC64_GOT_DTPREL16_HA;
+ break;
+ }
+ break;
+ case PPC::fixup_ppc_half16ds:
+ switch (Modifier) {
+ default: llvm_unreachable("Unsupported Modifier");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_PPC64_ADDR16_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_LO:
+ Type = ELF::R_PPC64_ADDR16_LO_DS;
+ break;
+ case MCSymbolRefExpr::VK_GOT:
+ Type = ELF::R_PPC64_GOT16_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_LO:
+ Type = ELF::R_PPC64_GOT16_LO_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TOC:
+ Type = ELF::R_PPC64_TOC16_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TOC_LO:
+ Type = ELF::R_PPC64_TOC16_LO_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TPREL:
+ Type = ELF::R_PPC64_TPREL16_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TPREL_LO:
+ Type = ELF::R_PPC64_TPREL16_LO_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPREL:
+ Type = ELF::R_PPC64_DTPREL16_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPREL_LO:
+ Type = ELF::R_PPC64_DTPREL16_LO_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TPREL:
+ Type = ELF::R_PPC64_GOT_TPREL16_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO:
+ Type = ELF::R_PPC64_GOT_TPREL16_LO_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_DTPREL:
+ Type = ELF::R_PPC64_GOT_DTPREL16_DS;
+ break;
+ case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_LO:
+ Type = ELF::R_PPC64_GOT_DTPREL16_LO_DS;
+ break;
+ }
+ break;
+ case PPC::fixup_ppc_nofixup:
+ switch (Modifier) {
+ default: llvm_unreachable("Unsupported Modifier");
+ case MCSymbolRefExpr::VK_PPC_TLSGD:
+ if (is64Bit())
+ Type = ELF::R_PPC64_TLSGD;
+ else
+ Type = ELF::R_PPC_TLSGD;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TLSLD:
+ if (is64Bit())
+ Type = ELF::R_PPC64_TLSLD;
+ else
+ Type = ELF::R_PPC_TLSLD;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TLS:
+ if (is64Bit())
+ Type = ELF::R_PPC64_TLS;
+ else
+ Type = ELF::R_PPC_TLS;
+ break;
+ }
+ break;
+ case FK_Data_8:
+ switch (Modifier) {
+ default: llvm_unreachable("Unsupported Modifier");
+ case MCSymbolRefExpr::VK_PPC_TOCBASE:
+ Type = ELF::R_PPC64_TOC;
+ break;
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_PPC64_ADDR64;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPMOD:
+ Type = ELF::R_PPC64_DTPMOD64;
+ break;
+ case MCSymbolRefExpr::VK_PPC_TPREL:
+ Type = ELF::R_PPC64_TPREL64;
+ break;
+ case MCSymbolRefExpr::VK_PPC_DTPREL:
+ Type = ELF::R_PPC64_DTPREL64;
+ break;
+ }
+ break;
+ case FK_Data_4:
+ Type = ELF::R_PPC_ADDR32;
+ break;
+ case FK_Data_2:
+ Type = ELF::R_PPC_ADDR16;
+ break;
+ }
+ }
+ return Type;
+}
+
+unsigned PPCELFObjectWriter::GetRelocType(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const {
+ return getRelocTypeInner(Target, Fixup, IsPCRel);
+}
+
+bool PPCELFObjectWriter::needsRelocateWithSymbol(const MCSymbolData &SD,
+ unsigned Type) const {
+ switch (Type) {
+ default:
+ return false;
+
+ case ELF::R_PPC_REL24:
+ // If the target symbol has a local entry point, we must keep the
+ // target symbol to preserve that information for the linker.
+ // The "other" values are stored in the last 6 bits of the second byte.
+ // The traditional defines for STO values assume the full byte and thus
+ // the shift to pack it.
+ unsigned Other = MCELF::getOther(SD) << 2;
+ return (Other & ELF::STO_PPC64_LOCAL_MASK) != 0;
+ }
+}
+
+MCObjectWriter *llvm::createPPCELFObjectWriter(raw_ostream &OS,
+ bool Is64Bit,
+ bool IsLittleEndian,
+ uint8_t OSABI) {
+ MCELFObjectTargetWriter *MOTW = new PPCELFObjectWriter(Is64Bit, OSABI);
+ return createELFObjectWriter(MOTW, OS, IsLittleEndian);
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCFixupKinds.h b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCFixupKinds.h
new file mode 100644
index 0000000..68de8c1
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCFixupKinds.h
@@ -0,0 +1,56 @@
+//===-- PPCFixupKinds.h - PPC Specific Fixup Entries ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_PPC_PPCFIXUPKINDS_H
+#define LLVM_PPC_PPCFIXUPKINDS_H
+
+#include "llvm/MC/MCFixup.h"
+
+#undef PPC
+
+namespace llvm {
+namespace PPC {
+enum Fixups {
+ // fixup_ppc_br24 - 24-bit PC relative relocation for direct branches like 'b'
+ // and 'bl'.
+ fixup_ppc_br24 = FirstTargetFixupKind,
+
+ /// fixup_ppc_brcond14 - 14-bit PC relative relocation for conditional
+ /// branches.
+ fixup_ppc_brcond14,
+
+ /// fixup_ppc_br24abs - 24-bit absolute relocation for direct branches
+ /// like 'ba' and 'bla'.
+ fixup_ppc_br24abs,
+
+ /// fixup_ppc_brcond14abs - 14-bit absolute relocation for conditional
+ /// branches.
+ fixup_ppc_brcond14abs,
+
+ /// fixup_ppc_half16 - A 16-bit fixup corresponding to lo16(_foo)
+ /// or ha16(_foo) for instrs like 'li' or 'addis'.
+ fixup_ppc_half16,
+
+ /// fixup_ppc_half16ds - A 14-bit fixup corresponding to lo16(_foo) with
+ /// implied 2 zero bits for instrs like 'std'.
+ fixup_ppc_half16ds,
+
+ /// fixup_ppc_nofixup - Not a true fixup, but ties a symbol to a call
+ /// to __tls_get_addr for the TLS general and local dynamic models,
+ /// or inserts the thread-pointer register number.
+ fixup_ppc_nofixup,
+
+ // Marker
+ LastTargetFixupKind,
+ NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind
+};
+}
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.cpp
new file mode 100644
index 0000000..b95a2ac
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.cpp
@@ -0,0 +1,82 @@
+//===-- PPCMCAsmInfo.cpp - PPC asm properties -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the MCAsmInfoDarwin properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCMCAsmInfo.h"
+#include "llvm/ADT/Triple.h"
+
+using namespace llvm;
+
+void PPCMCAsmInfoDarwin::anchor() { }
+
+PPCMCAsmInfoDarwin::PPCMCAsmInfoDarwin(bool is64Bit, const Triple& T) {
+ if (is64Bit) {
+ PointerSize = CalleeSaveStackSlotSize = 8;
+ }
+ IsLittleEndian = false;
+
+ CommentString = ";";
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+
+ if (!is64Bit)
+ Data64bitsDirective = nullptr; // We can't emit a 64-bit unit in PPC32 mode.
+
+ AssemblerDialect = 1; // New-Style mnemonics.
+ SupportsDebugInformation= true; // Debug information.
+
+ // The installed assembler for OSX < 10.6 lacks some directives.
+ // FIXME: this should really be a check on the assembler characteristics
+ // rather than OS version
+ if (T.isMacOSX() && T.isMacOSXVersionLT(10, 6))
+ HasWeakDefCanBeHiddenDirective = false;
+
+ UseIntegratedAssembler = true;
+}
+
+void PPCLinuxMCAsmInfo::anchor() { }
+
+PPCLinuxMCAsmInfo::PPCLinuxMCAsmInfo(bool is64Bit, const Triple& T) {
+ if (is64Bit) {
+ PointerSize = CalleeSaveStackSlotSize = 8;
+ }
+ IsLittleEndian = T.getArch() == Triple::ppc64le;
+
+ // ".comm align is in bytes but .align is pow-2."
+ AlignmentIsInBytes = false;
+
+ CommentString = "#";
+
+ // Uses '.section' before '.bss' directive
+ UsesELFSectionDirectiveForBSS = true;
+
+ // Debug Information
+ SupportsDebugInformation = true;
+
+ DollarIsPC = true;
+
+ // Set up DWARF directives
+ HasLEB128 = true; // Target asm supports leb128 directives (little-endian)
+ MinInstAlignment = 4;
+
+ // Exceptions handling
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+
+ ZeroDirective = "\t.space\t";
+ Data64bitsDirective = is64Bit ? "\t.quad\t" : nullptr;
+ AssemblerDialect = 1; // New-Style mnemonics.
+
+ if (T.getOS() == llvm::Triple::FreeBSD ||
+ (T.getOS() == llvm::Triple::NetBSD && !is64Bit) ||
+ (T.getOS() == llvm::Triple::OpenBSD && !is64Bit))
+ UseIntegratedAssembler = true;
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.h b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.h
new file mode 100644
index 0000000..754330b
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.h
@@ -0,0 +1,37 @@
+//===-- PPCMCAsmInfo.h - PPC asm properties --------------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the MCAsmInfoDarwin class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PPCTARGETASMINFO_H
+#define PPCTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfoDarwin.h"
+#include "llvm/MC/MCAsmInfoELF.h"
+
+namespace llvm {
+class Triple;
+
+ class PPCMCAsmInfoDarwin : public MCAsmInfoDarwin {
+ void anchor() override;
+ public:
+ explicit PPCMCAsmInfoDarwin(bool is64Bit, const Triple&);
+ };
+
+ class PPCLinuxMCAsmInfo : public MCAsmInfoELF {
+ void anchor() override;
+ public:
+ explicit PPCLinuxMCAsmInfo(bool is64Bit, const Triple&);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCCodeEmitter.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCCodeEmitter.cpp
new file mode 100644
index 0000000..435a93f
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCCodeEmitter.cpp
@@ -0,0 +1,322 @@
+//===-- PPCMCCodeEmitter.cpp - Convert PPC code to machine code -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PPCMCCodeEmitter class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/PPCMCTargetDesc.h"
+#include "MCTargetDesc/PPCFixupKinds.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOpcodes.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "mccodeemitter"
+
+STATISTIC(MCNumEmitted, "Number of MC instructions emitted");
+
+namespace {
+class PPCMCCodeEmitter : public MCCodeEmitter {
+ PPCMCCodeEmitter(const PPCMCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ void operator=(const PPCMCCodeEmitter &) LLVM_DELETED_FUNCTION;
+
+ const MCInstrInfo &MCII;
+ const MCContext &CTX;
+ bool IsLittleEndian;
+
+public:
+ PPCMCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx, bool isLittle)
+ : MCII(mcii), CTX(ctx), IsLittleEndian(isLittle) {
+ }
+
+ ~PPCMCCodeEmitter() {}
+
+ unsigned getDirectBrEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getCondBrEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getAbsDirectBrEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getAbsCondBrEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getImm16Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getMemRIEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getMemRIXEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getTLSRegEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getTLSCallEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned get_crbitm_encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getMachineOpValue - Return binary encoding of operand. If the machine
+ /// operand requires relocation, record the relocation and return zero.
+ unsigned getMachineOpValue(const MCInst &MI,const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // getBinaryCodeForInstr - TableGen'erated function for getting the
+ // binary encoding for an instruction.
+ uint64_t getBinaryCodeForInstr(const MCInst &MI,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override {
+ // For fast-isel, a float COPY_TO_REGCLASS can survive this long.
+ // It's just a nop to keep the register classes happy, so don't
+ // generate anything.
+ unsigned Opcode = MI.getOpcode();
+ const MCInstrDesc &Desc = MCII.get(Opcode);
+ if (Opcode == TargetOpcode::COPY_TO_REGCLASS)
+ return;
+
+ uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI);
+
+ // Output the constant in big/little endian byte order.
+ unsigned Size = Desc.getSize();
+ switch (Size) {
+ case 4:
+ if (IsLittleEndian) {
+ OS << (char)(Bits);
+ OS << (char)(Bits >> 8);
+ OS << (char)(Bits >> 16);
+ OS << (char)(Bits >> 24);
+ } else {
+ OS << (char)(Bits >> 24);
+ OS << (char)(Bits >> 16);
+ OS << (char)(Bits >> 8);
+ OS << (char)(Bits);
+ }
+ break;
+ case 8:
+ // If we emit a pair of instructions, the first one is
+ // always in the top 32 bits, even on little-endian.
+ if (IsLittleEndian) {
+ OS << (char)(Bits >> 32);
+ OS << (char)(Bits >> 40);
+ OS << (char)(Bits >> 48);
+ OS << (char)(Bits >> 56);
+ OS << (char)(Bits);
+ OS << (char)(Bits >> 8);
+ OS << (char)(Bits >> 16);
+ OS << (char)(Bits >> 24);
+ } else {
+ OS << (char)(Bits >> 56);
+ OS << (char)(Bits >> 48);
+ OS << (char)(Bits >> 40);
+ OS << (char)(Bits >> 32);
+ OS << (char)(Bits >> 24);
+ OS << (char)(Bits >> 16);
+ OS << (char)(Bits >> 8);
+ OS << (char)(Bits);
+ }
+ break;
+ default:
+ llvm_unreachable ("Invalid instruction size");
+ }
+
+ ++MCNumEmitted; // Keep track of the # of mi's emitted.
+ }
+
+};
+
+} // end anonymous namespace
+
+MCCodeEmitter *llvm::createPPCMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ Triple TT(STI.getTargetTriple());
+ bool IsLittleEndian = TT.getArch() == Triple::ppc64le;
+ return new PPCMCCodeEmitter(MCII, Ctx, IsLittleEndian);
+}
+
+unsigned PPCMCCodeEmitter::
+getDirectBrEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
+
+ // Add a fixup for the branch target.
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
+ (MCFixupKind)PPC::fixup_ppc_br24));
+ return 0;
+}
+
+unsigned PPCMCCodeEmitter::getCondBrEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
+
+ // Add a fixup for the branch target.
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
+ (MCFixupKind)PPC::fixup_ppc_brcond14));
+ return 0;
+}
+
+unsigned PPCMCCodeEmitter::
+getAbsDirectBrEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
+
+ // Add a fixup for the branch target.
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
+ (MCFixupKind)PPC::fixup_ppc_br24abs));
+ return 0;
+}
+
+unsigned PPCMCCodeEmitter::
+getAbsCondBrEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
+
+ // Add a fixup for the branch target.
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
+ (MCFixupKind)PPC::fixup_ppc_brcond14abs));
+ return 0;
+}
+
+unsigned PPCMCCodeEmitter::getImm16Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
+
+ // Add a fixup for the immediate field.
+ Fixups.push_back(MCFixup::Create(IsLittleEndian? 0 : 2, MO.getExpr(),
+ (MCFixupKind)PPC::fixup_ppc_half16));
+ return 0;
+}
+
+unsigned PPCMCCodeEmitter::getMemRIEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Encode (imm, reg) as a memri, which has the low 16-bits as the
+ // displacement and the next 5 bits as the register #.
+ assert(MI.getOperand(OpNo+1).isReg());
+ unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 16;
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isImm())
+ return (getMachineOpValue(MI, MO, Fixups, STI) & 0xFFFF) | RegBits;
+
+ // Add a fixup for the displacement field.
+ Fixups.push_back(MCFixup::Create(IsLittleEndian? 0 : 2, MO.getExpr(),
+ (MCFixupKind)PPC::fixup_ppc_half16));
+ return RegBits;
+}
+
+
+unsigned PPCMCCodeEmitter::getMemRIXEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Encode (imm, reg) as a memrix, which has the low 14-bits as the
+ // displacement and the next 5 bits as the register #.
+ assert(MI.getOperand(OpNo+1).isReg());
+ unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 14;
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isImm())
+ return ((getMachineOpValue(MI, MO, Fixups, STI) >> 2) & 0x3FFF) | RegBits;
+
+ // Add a fixup for the displacement field.
+ Fixups.push_back(MCFixup::Create(IsLittleEndian? 0 : 2, MO.getExpr(),
+ (MCFixupKind)PPC::fixup_ppc_half16ds));
+ return RegBits;
+}
+
+
+unsigned PPCMCCodeEmitter::getTLSRegEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg()) return getMachineOpValue(MI, MO, Fixups, STI);
+
+ // Add a fixup for the TLS register, which simply provides a relocation
+ // hint to the linker that this statement is part of a relocation sequence.
+ // Return the thread-pointer register's encoding.
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
+ (MCFixupKind)PPC::fixup_ppc_nofixup));
+ Triple TT(STI.getTargetTriple());
+ bool isPPC64 = TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le;
+ return CTX.getRegisterInfo()->getEncodingValue(isPPC64 ? PPC::X13 : PPC::R2);
+}
+
+unsigned PPCMCCodeEmitter::getTLSCallEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // For special TLS calls, we need two fixups; one for the branch target
+ // (__tls_get_addr), which we create via getDirectBrEncoding as usual,
+ // and one for the TLSGD or TLSLD symbol, which is emitted here.
+ const MCOperand &MO = MI.getOperand(OpNo+1);
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
+ (MCFixupKind)PPC::fixup_ppc_nofixup));
+ return getDirectBrEncoding(MI, OpNo, Fixups, STI);
+}
+
+unsigned PPCMCCodeEmitter::
+get_crbitm_encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ assert((MI.getOpcode() == PPC::MTOCRF || MI.getOpcode() == PPC::MTOCRF8 ||
+ MI.getOpcode() == PPC::MFOCRF || MI.getOpcode() == PPC::MFOCRF8) &&
+ (MO.getReg() >= PPC::CR0 && MO.getReg() <= PPC::CR7));
+ return 0x80 >> CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+}
+
+
+unsigned PPCMCCodeEmitter::
+getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ if (MO.isReg()) {
+ // MTOCRF/MFOCRF should go through get_crbitm_encoding for the CR operand.
+ // The GPR operand should come through here though.
+ assert((MI.getOpcode() != PPC::MTOCRF && MI.getOpcode() != PPC::MTOCRF8 &&
+ MI.getOpcode() != PPC::MFOCRF && MI.getOpcode() != PPC::MFOCRF8) ||
+ MO.getReg() < PPC::CR0 || MO.getReg() > PPC::CR7);
+ return CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
+ }
+
+ assert(MO.isImm() &&
+ "Relocation required in an instruction that we cannot encode!");
+ return MO.getImm();
+}
+
+
+#include "PPCGenMCCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.cpp
new file mode 100644
index 0000000..3ac0aca
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.cpp
@@ -0,0 +1,133 @@
+//===-- PPCMCExpr.cpp - PPC specific MC expression classes ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCMCExpr.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCObjectStreamer.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "ppcmcexpr"
+
+const PPCMCExpr*
+PPCMCExpr::Create(VariantKind Kind, const MCExpr *Expr,
+ bool isDarwin, MCContext &Ctx) {
+ return new (Ctx) PPCMCExpr(Kind, Expr, isDarwin);
+}
+
+void PPCMCExpr::PrintImpl(raw_ostream &OS) const {
+ if (isDarwinSyntax()) {
+ switch (Kind) {
+ default: llvm_unreachable("Invalid kind!");
+ case VK_PPC_LO: OS << "lo16"; break;
+ case VK_PPC_HI: OS << "hi16"; break;
+ case VK_PPC_HA: OS << "ha16"; break;
+ }
+
+ OS << '(';
+ getSubExpr()->print(OS);
+ OS << ')';
+ } else {
+ getSubExpr()->print(OS);
+
+ switch (Kind) {
+ default: llvm_unreachable("Invalid kind!");
+ case VK_PPC_LO: OS << "@l"; break;
+ case VK_PPC_HI: OS << "@h"; break;
+ case VK_PPC_HA: OS << "@ha"; break;
+ case VK_PPC_HIGHER: OS << "@higher"; break;
+ case VK_PPC_HIGHERA: OS << "@highera"; break;
+ case VK_PPC_HIGHEST: OS << "@highest"; break;
+ case VK_PPC_HIGHESTA: OS << "@highesta"; break;
+ }
+ }
+}
+
+bool
+PPCMCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
+ const MCAsmLayout *Layout) const {
+ MCValue Value;
+
+ if (!getSubExpr()->EvaluateAsRelocatable(Value, Layout))
+ return false;
+
+ if (Value.isAbsolute()) {
+ int64_t Result = Value.getConstant();
+ switch (Kind) {
+ default:
+ llvm_unreachable("Invalid kind!");
+ case VK_PPC_LO:
+ Result = Result & 0xffff;
+ break;
+ case VK_PPC_HI:
+ Result = (Result >> 16) & 0xffff;
+ break;
+ case VK_PPC_HA:
+ Result = ((Result + 0x8000) >> 16) & 0xffff;
+ break;
+ case VK_PPC_HIGHER:
+ Result = (Result >> 32) & 0xffff;
+ break;
+ case VK_PPC_HIGHERA:
+ Result = ((Result + 0x8000) >> 32) & 0xffff;
+ break;
+ case VK_PPC_HIGHEST:
+ Result = (Result >> 48) & 0xffff;
+ break;
+ case VK_PPC_HIGHESTA:
+ Result = ((Result + 0x8000) >> 48) & 0xffff;
+ break;
+ }
+ Res = MCValue::get(Result);
+ } else {
+ if (!Layout)
+ return false;
+
+ MCContext &Context = Layout->getAssembler().getContext();
+ const MCSymbolRefExpr *Sym = Value.getSymA();
+ MCSymbolRefExpr::VariantKind Modifier = Sym->getKind();
+ if (Modifier != MCSymbolRefExpr::VK_None)
+ return false;
+ switch (Kind) {
+ default:
+ llvm_unreachable("Invalid kind!");
+ case VK_PPC_LO:
+ Modifier = MCSymbolRefExpr::VK_PPC_LO;
+ break;
+ case VK_PPC_HI:
+ Modifier = MCSymbolRefExpr::VK_PPC_HI;
+ break;
+ case VK_PPC_HA:
+ Modifier = MCSymbolRefExpr::VK_PPC_HA;
+ break;
+ case VK_PPC_HIGHERA:
+ Modifier = MCSymbolRefExpr::VK_PPC_HIGHERA;
+ break;
+ case VK_PPC_HIGHER:
+ Modifier = MCSymbolRefExpr::VK_PPC_HIGHER;
+ break;
+ case VK_PPC_HIGHEST:
+ Modifier = MCSymbolRefExpr::VK_PPC_HIGHEST;
+ break;
+ case VK_PPC_HIGHESTA:
+ Modifier = MCSymbolRefExpr::VK_PPC_HIGHESTA;
+ break;
+ }
+ Sym = MCSymbolRefExpr::Create(&Sym->getSymbol(), Modifier, Context);
+ Res = MCValue::get(Sym, Value.getSymB(), Value.getConstant());
+ }
+
+ return true;
+}
+
+void PPCMCExpr::visitUsedExpr(MCStreamer &Streamer) const {
+ Streamer.visitUsedExpr(*getSubExpr());
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.h b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.h
new file mode 100644
index 0000000..bca4085
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.h
@@ -0,0 +1,96 @@
+//===-- PPCMCExpr.h - PPC specific MC expression classes --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PPCMCEXPR_H
+#define PPCMCEXPR_H
+
+#include "llvm/MC/MCAsmLayout.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCValue.h"
+
+namespace llvm {
+
+class PPCMCExpr : public MCTargetExpr {
+public:
+ enum VariantKind {
+ VK_PPC_None,
+ VK_PPC_LO,
+ VK_PPC_HI,
+ VK_PPC_HA,
+ VK_PPC_HIGHER,
+ VK_PPC_HIGHERA,
+ VK_PPC_HIGHEST,
+ VK_PPC_HIGHESTA
+ };
+
+private:
+ const VariantKind Kind;
+ const MCExpr *Expr;
+ bool IsDarwin;
+
+ explicit PPCMCExpr(VariantKind _Kind, const MCExpr *_Expr,
+ bool _IsDarwin)
+ : Kind(_Kind), Expr(_Expr), IsDarwin(_IsDarwin) {}
+
+public:
+ /// @name Construction
+ /// @{
+
+ static const PPCMCExpr *Create(VariantKind Kind, const MCExpr *Expr,
+ bool isDarwin, MCContext &Ctx);
+
+ static const PPCMCExpr *CreateLo(const MCExpr *Expr,
+ bool isDarwin, MCContext &Ctx) {
+ return Create(VK_PPC_LO, Expr, isDarwin, Ctx);
+ }
+
+ static const PPCMCExpr *CreateHi(const MCExpr *Expr,
+ bool isDarwin, MCContext &Ctx) {
+ return Create(VK_PPC_HI, Expr, isDarwin, Ctx);
+ }
+
+ static const PPCMCExpr *CreateHa(const MCExpr *Expr,
+ bool isDarwin, MCContext &Ctx) {
+ return Create(VK_PPC_HA, Expr, isDarwin, Ctx);
+ }
+
+ /// @}
+ /// @name Accessors
+ /// @{
+
+ /// getOpcode - Get the kind of this expression.
+ VariantKind getKind() const { return Kind; }
+
+ /// getSubExpr - Get the child of this expression.
+ const MCExpr *getSubExpr() const { return Expr; }
+
+ /// isDarwinSyntax - True if expression is to be printed using Darwin syntax.
+ bool isDarwinSyntax() const { return IsDarwin; }
+
+
+ /// @}
+
+ void PrintImpl(raw_ostream &OS) const override;
+ bool EvaluateAsRelocatableImpl(MCValue &Res,
+ const MCAsmLayout *Layout) const override;
+ void visitUsedExpr(MCStreamer &Streamer) const override;
+ const MCSection *FindAssociatedSection() const override {
+ return getSubExpr()->FindAssociatedSection();
+ }
+
+ // There are no TLS PPCMCExprs at the moment.
+ void fixELFSymbolsInTLSFixups(MCAssembler &Asm) const override {}
+
+ static bool classof(const MCExpr *E) {
+ return E->getKind() == MCExpr::Target;
+ }
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.cpp
new file mode 100644
index 0000000..4c6780f
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.cpp
@@ -0,0 +1,307 @@
+//===-- PPCMCTargetDesc.cpp - PowerPC Target Descriptions -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides PowerPC specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCMCTargetDesc.h"
+#include "InstPrinter/PPCInstPrinter.h"
+#include "PPCMCAsmInfo.h"
+#include "PPCTargetStreamer.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCELF.h"
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_MC_DESC
+#include "PPCGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "PPCGenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "PPCGenRegisterInfo.inc"
+
+// Pin the vtable to this file.
+PPCTargetStreamer::~PPCTargetStreamer() {}
+PPCTargetStreamer::PPCTargetStreamer(MCStreamer &S) : MCTargetStreamer(S) {}
+
+static MCInstrInfo *createPPCMCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitPPCMCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createPPCMCRegisterInfo(StringRef TT) {
+ Triple TheTriple(TT);
+ bool isPPC64 = (TheTriple.getArch() == Triple::ppc64 ||
+ TheTriple.getArch() == Triple::ppc64le);
+ unsigned Flavour = isPPC64 ? 0 : 1;
+ unsigned RA = isPPC64 ? PPC::LR8 : PPC::LR;
+
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitPPCMCRegisterInfo(X, RA, Flavour, Flavour);
+ return X;
+}
+
+static MCSubtargetInfo *createPPCMCSubtargetInfo(StringRef TT, StringRef CPU,
+ StringRef FS) {
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+ InitPPCMCSubtargetInfo(X, TT, CPU, FS);
+ return X;
+}
+
+static MCAsmInfo *createPPCMCAsmInfo(const MCRegisterInfo &MRI, StringRef TT) {
+ Triple TheTriple(TT);
+ bool isPPC64 = (TheTriple.getArch() == Triple::ppc64 ||
+ TheTriple.getArch() == Triple::ppc64le);
+
+ MCAsmInfo *MAI;
+ if (TheTriple.isOSDarwin())
+ MAI = new PPCMCAsmInfoDarwin(isPPC64, TheTriple);
+ else
+ MAI = new PPCLinuxMCAsmInfo(isPPC64, TheTriple);
+
+ // Initial state of the frame pointer is R1.
+ unsigned Reg = isPPC64 ? PPC::X1 : PPC::R1;
+ MCCFIInstruction Inst =
+ MCCFIInstruction::createDefCfa(nullptr, MRI.getDwarfRegNum(Reg, true), 0);
+ MAI->addInitialFrameState(Inst);
+
+ return MAI;
+}
+
+static MCCodeGenInfo *createPPCMCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+
+ if (RM == Reloc::Default) {
+ Triple T(TT);
+ if (T.isOSDarwin())
+ RM = Reloc::DynamicNoPIC;
+ else
+ RM = Reloc::Static;
+ }
+ if (CM == CodeModel::Default) {
+ Triple T(TT);
+ if (!T.isOSDarwin() &&
+ (T.getArch() == Triple::ppc64 || T.getArch() == Triple::ppc64le))
+ CM = CodeModel::Medium;
+ }
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+namespace {
+class PPCTargetAsmStreamer : public PPCTargetStreamer {
+ formatted_raw_ostream &OS;
+
+public:
+ PPCTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS)
+ : PPCTargetStreamer(S), OS(OS) {}
+ void emitTCEntry(const MCSymbol &S) override {
+ OS << "\t.tc ";
+ OS << S.getName();
+ OS << "[TC],";
+ OS << S.getName();
+ OS << '\n';
+ }
+ void emitMachine(StringRef CPU) override {
+ OS << "\t.machine " << CPU << '\n';
+ }
+ virtual void emitAbiVersion(int AbiVersion) override {
+ OS << "\t.abiversion " << AbiVersion << '\n';
+ }
+ virtual void emitLocalEntry(MCSymbol *S, const MCExpr *LocalOffset) {
+ OS << "\t.localentry\t" << *S << ", " << *LocalOffset << '\n';
+ }
+};
+
+class PPCTargetELFStreamer : public PPCTargetStreamer {
+public:
+ PPCTargetELFStreamer(MCStreamer &S) : PPCTargetStreamer(S) {}
+ MCELFStreamer &getStreamer() {
+ return static_cast<MCELFStreamer &>(Streamer);
+ }
+ virtual void emitTCEntry(const MCSymbol &S) override {
+ // Creates a R_PPC64_TOC relocation
+ Streamer.EmitSymbolValue(&S, 8);
+ }
+ void emitMachine(StringRef CPU) override {
+ // FIXME: Is there anything to do in here or does this directive only
+ // limit the parser?
+ }
+ virtual void emitAbiVersion(int AbiVersion) override {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ unsigned Flags = MCA.getELFHeaderEFlags();
+ Flags &= ~ELF::EF_PPC64_ABI;
+ Flags |= (AbiVersion & ELF::EF_PPC64_ABI);
+ MCA.setELFHeaderEFlags(Flags);
+ }
+ virtual void emitLocalEntry(MCSymbol *S, const MCExpr *LocalOffset) {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ MCSymbolData &Data = getStreamer().getOrCreateSymbolData(S);
+
+ int64_t Res;
+ if (!LocalOffset->EvaluateAsAbsolute(Res, MCA))
+ report_fatal_error(".localentry expression must be absolute.");
+
+ unsigned Encoded = ELF::encodePPC64LocalEntryOffset(Res);
+ if (Res != ELF::decodePPC64LocalEntryOffset(Encoded))
+ report_fatal_error(".localentry expression cannot be encoded.");
+
+ // The "other" values are stored in the last 6 bits of the second byte.
+ // The traditional defines for STO values assume the full byte and thus
+ // the shift to pack it.
+ unsigned Other = MCELF::getOther(Data) << 2;
+ Other &= ~ELF::STO_PPC64_LOCAL_MASK;
+ Other |= Encoded;
+ MCELF::setOther(Data, Other >> 2);
+
+ // For GAS compatibility, unless we already saw a .abiversion directive,
+ // set e_flags to indicate ELFv2 ABI.
+ unsigned Flags = MCA.getELFHeaderEFlags();
+ if ((Flags & ELF::EF_PPC64_ABI) == 0)
+ MCA.setELFHeaderEFlags(Flags | 2);
+ }
+};
+
+class PPCTargetMachOStreamer : public PPCTargetStreamer {
+public:
+ PPCTargetMachOStreamer(MCStreamer &S) : PPCTargetStreamer(S) {}
+ void emitTCEntry(const MCSymbol &S) override {
+ llvm_unreachable("Unknown pseudo-op: .tc");
+ }
+ void emitMachine(StringRef CPU) override {
+ // FIXME: We should update the CPUType, CPUSubType in the Object file if
+ // the new values are different from the defaults.
+ }
+ virtual void emitAbiVersion(int AbiVersion) override {
+ llvm_unreachable("Unknown pseudo-op: .abiversion");
+ }
+ virtual void emitLocalEntry(MCSymbol *S, const MCExpr *LocalOffset) {
+ llvm_unreachable("Unknown pseudo-op: .localentry");
+ }
+};
+}
+
+// This is duplicated code. Refactor this.
+static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
+ MCContext &Ctx, MCAsmBackend &MAB,
+ raw_ostream &OS,
+ MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI,
+ bool RelaxAll,
+ bool NoExecStack) {
+ if (Triple(TT).isOSDarwin()) {
+ MCStreamer *S = createMachOStreamer(Ctx, MAB, OS, Emitter, RelaxAll);
+ new PPCTargetMachOStreamer(*S);
+ return S;
+ }
+
+ MCStreamer *S =
+ createELFStreamer(Ctx, MAB, OS, Emitter, RelaxAll, NoExecStack);
+ new PPCTargetELFStreamer(*S);
+ return S;
+}
+
+static MCStreamer *
+createMCAsmStreamer(MCContext &Ctx, formatted_raw_ostream &OS,
+ bool isVerboseAsm, bool useDwarfDirectory,
+ MCInstPrinter *InstPrint, MCCodeEmitter *CE,
+ MCAsmBackend *TAB, bool ShowInst) {
+
+ MCStreamer *S = llvm::createAsmStreamer(
+ Ctx, OS, isVerboseAsm, useDwarfDirectory, InstPrint, CE, TAB, ShowInst);
+ new PPCTargetAsmStreamer(*S, OS);
+ return S;
+}
+
+static MCInstPrinter *createPPCMCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ bool isDarwin = Triple(STI.getTargetTriple()).isOSDarwin();
+ return new PPCInstPrinter(MAI, MII, MRI, isDarwin);
+}
+
+extern "C" void LLVMInitializePowerPCTargetMC() {
+ // Register the MC asm info.
+ RegisterMCAsmInfoFn C(ThePPC32Target, createPPCMCAsmInfo);
+ RegisterMCAsmInfoFn D(ThePPC64Target, createPPCMCAsmInfo);
+ RegisterMCAsmInfoFn E(ThePPC64LETarget, createPPCMCAsmInfo);
+
+ // Register the MC codegen info.
+ TargetRegistry::RegisterMCCodeGenInfo(ThePPC32Target, createPPCMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(ThePPC64Target, createPPCMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(ThePPC64LETarget,
+ createPPCMCCodeGenInfo);
+
+ // Register the MC instruction info.
+ TargetRegistry::RegisterMCInstrInfo(ThePPC32Target, createPPCMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(ThePPC64Target, createPPCMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(ThePPC64LETarget,
+ createPPCMCInstrInfo);
+
+ // Register the MC register info.
+ TargetRegistry::RegisterMCRegInfo(ThePPC32Target, createPPCMCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(ThePPC64Target, createPPCMCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(ThePPC64LETarget, createPPCMCRegisterInfo);
+
+ // Register the MC subtarget info.
+ TargetRegistry::RegisterMCSubtargetInfo(ThePPC32Target,
+ createPPCMCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(ThePPC64Target,
+ createPPCMCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(ThePPC64LETarget,
+ createPPCMCSubtargetInfo);
+
+ // Register the MC Code Emitter
+ TargetRegistry::RegisterMCCodeEmitter(ThePPC32Target, createPPCMCCodeEmitter);
+ TargetRegistry::RegisterMCCodeEmitter(ThePPC64Target, createPPCMCCodeEmitter);
+ TargetRegistry::RegisterMCCodeEmitter(ThePPC64LETarget,
+ createPPCMCCodeEmitter);
+
+ // Register the asm backend.
+ TargetRegistry::RegisterMCAsmBackend(ThePPC32Target, createPPCAsmBackend);
+ TargetRegistry::RegisterMCAsmBackend(ThePPC64Target, createPPCAsmBackend);
+ TargetRegistry::RegisterMCAsmBackend(ThePPC64LETarget, createPPCAsmBackend);
+
+ // Register the object streamer.
+ TargetRegistry::RegisterMCObjectStreamer(ThePPC32Target, createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(ThePPC64Target, createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(ThePPC64LETarget, createMCStreamer);
+
+ // Register the asm streamer.
+ TargetRegistry::RegisterAsmStreamer(ThePPC32Target, createMCAsmStreamer);
+ TargetRegistry::RegisterAsmStreamer(ThePPC64Target, createMCAsmStreamer);
+ TargetRegistry::RegisterAsmStreamer(ThePPC64LETarget, createMCAsmStreamer);
+
+ // Register the MCInstPrinter.
+ TargetRegistry::RegisterMCInstPrinter(ThePPC32Target, createPPCMCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(ThePPC64Target, createPPCMCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(ThePPC64LETarget,
+ createPPCMCInstPrinter);
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.h b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.h
new file mode 100644
index 0000000..474395b
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.h
@@ -0,0 +1,75 @@
+//===-- PPCMCTargetDesc.h - PowerPC Target Descriptions ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides PowerPC specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PPCMCTARGETDESC_H
+#define PPCMCTARGETDESC_H
+
+// GCC #defines PPC on Linux but we use it as our namespace name
+#undef PPC
+
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+class MCAsmBackend;
+class MCCodeEmitter;
+class MCContext;
+class MCInstrInfo;
+class MCObjectWriter;
+class MCRegisterInfo;
+class MCSubtargetInfo;
+class Target;
+class StringRef;
+class raw_ostream;
+
+extern Target ThePPC32Target;
+extern Target ThePPC64Target;
+extern Target ThePPC64LETarget;
+
+MCCodeEmitter *createPPCMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+
+MCAsmBackend *createPPCAsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU);
+
+/// createPPCELFObjectWriter - Construct an PPC ELF object writer.
+MCObjectWriter *createPPCELFObjectWriter(raw_ostream &OS,
+ bool Is64Bit,
+ bool IsLittleEndian,
+ uint8_t OSABI);
+/// createPPCELFObjectWriter - Construct a PPC Mach-O object writer.
+MCObjectWriter *createPPCMachObjectWriter(raw_ostream &OS, bool Is64Bit,
+ uint32_t CPUType,
+ uint32_t CPUSubtype);
+} // End llvm namespace
+
+// Generated files will use "namespace PPC". To avoid symbol clash,
+// undefine PPC here. PPC may be predefined on some hosts.
+#undef PPC
+
+// Defines symbolic names for PowerPC registers. This defines a mapping from
+// register name to register number.
+//
+#define GET_REGINFO_ENUM
+#include "PPCGenRegisterInfo.inc"
+
+// Defines symbolic names for the PowerPC instructions.
+//
+#define GET_INSTRINFO_ENUM
+#include "PPCGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "PPCGenSubtargetInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMachObjectWriter.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMachObjectWriter.cpp
new file mode 100644
index 0000000..cff27ba
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMachObjectWriter.cpp
@@ -0,0 +1,389 @@
+//===-- PPCMachObjectWriter.cpp - PPC Mach-O Writer -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/PPCMCTargetDesc.h"
+#include "MCTargetDesc/PPCFixupKinds.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCAsmLayout.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCMachObjectWriter.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/MachO.h"
+
+using namespace llvm;
+
+namespace {
+class PPCMachObjectWriter : public MCMachObjectTargetWriter {
+ bool RecordScatteredRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup, MCValue Target,
+ unsigned Log2Size, uint64_t &FixedValue);
+
+ void RecordPPCRelocation(MachObjectWriter *Writer, const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment, const MCFixup &Fixup,
+ MCValue Target, uint64_t &FixedValue);
+
+public:
+ PPCMachObjectWriter(bool Is64Bit, uint32_t CPUType, uint32_t CPUSubtype)
+ : MCMachObjectTargetWriter(Is64Bit, CPUType, CPUSubtype,
+ /*UseAggressiveSymbolFolding=*/Is64Bit) {}
+
+ void RecordRelocation(MachObjectWriter *Writer, const MCAssembler &Asm,
+ const MCAsmLayout &Layout, const MCFragment *Fragment,
+ const MCFixup &Fixup, MCValue Target,
+ uint64_t &FixedValue) override {
+ if (Writer->is64Bit()) {
+ report_fatal_error("Relocation emission for MachO/PPC64 unimplemented.");
+ } else
+ RecordPPCRelocation(Writer, Asm, Layout, Fragment, Fixup, Target,
+ FixedValue);
+ }
+};
+}
+
+/// computes the log2 of the size of the relocation,
+/// used for relocation_info::r_length.
+static unsigned getFixupKindLog2Size(unsigned Kind) {
+ switch (Kind) {
+ default:
+ report_fatal_error("log2size(FixupKind): Unhandled fixup kind!");
+ case FK_PCRel_1:
+ case FK_Data_1:
+ return 0;
+ case FK_PCRel_2:
+ case FK_Data_2:
+ return 1;
+ case FK_PCRel_4:
+ case PPC::fixup_ppc_brcond14:
+ case PPC::fixup_ppc_half16:
+ case PPC::fixup_ppc_br24:
+ case FK_Data_4:
+ return 2;
+ case FK_PCRel_8:
+ case FK_Data_8:
+ return 3;
+ }
+ return 0;
+}
+
+/// Translates generic PPC fixup kind to Mach-O/PPC relocation type enum.
+/// Outline based on PPCELFObjectWriter::getRelocTypeInner().
+static unsigned getRelocType(const MCValue &Target,
+ const MCFixupKind FixupKind, // from
+ // Fixup.getKind()
+ const bool IsPCRel) {
+ const MCSymbolRefExpr::VariantKind Modifier =
+ Target.isAbsolute() ? MCSymbolRefExpr::VK_None
+ : Target.getSymA()->getKind();
+ // determine the type of the relocation
+ unsigned Type = MachO::GENERIC_RELOC_VANILLA;
+ if (IsPCRel) { // relative to PC
+ switch ((unsigned)FixupKind) {
+ default:
+ report_fatal_error("Unimplemented fixup kind (relative)");
+ case PPC::fixup_ppc_br24:
+ Type = MachO::PPC_RELOC_BR24; // R_PPC_REL24
+ break;
+ case PPC::fixup_ppc_brcond14:
+ Type = MachO::PPC_RELOC_BR14;
+ break;
+ case PPC::fixup_ppc_half16:
+ switch (Modifier) {
+ default:
+ llvm_unreachable("Unsupported modifier for half16 fixup");
+ case MCSymbolRefExpr::VK_PPC_HA:
+ Type = MachO::PPC_RELOC_HA16;
+ break;
+ case MCSymbolRefExpr::VK_PPC_LO:
+ Type = MachO::PPC_RELOC_LO16;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HI:
+ Type = MachO::PPC_RELOC_HI16;
+ break;
+ }
+ break;
+ }
+ } else {
+ switch ((unsigned)FixupKind) {
+ default:
+ report_fatal_error("Unimplemented fixup kind (absolute)!");
+ case PPC::fixup_ppc_half16:
+ switch (Modifier) {
+ default:
+ llvm_unreachable("Unsupported modifier for half16 fixup");
+ case MCSymbolRefExpr::VK_PPC_HA:
+ Type = MachO::PPC_RELOC_HA16_SECTDIFF;
+ break;
+ case MCSymbolRefExpr::VK_PPC_LO:
+ Type = MachO::PPC_RELOC_LO16_SECTDIFF;
+ break;
+ case MCSymbolRefExpr::VK_PPC_HI:
+ Type = MachO::PPC_RELOC_HI16_SECTDIFF;
+ break;
+ }
+ break;
+ case FK_Data_4:
+ break;
+ case FK_Data_2:
+ break;
+ }
+ }
+ return Type;
+}
+
+static void makeRelocationInfo(MachO::any_relocation_info &MRE,
+ const uint32_t FixupOffset, const uint32_t Index,
+ const unsigned IsPCRel, const unsigned Log2Size,
+ const unsigned IsExtern, const unsigned Type) {
+ MRE.r_word0 = FixupOffset;
+ // The bitfield offsets that work (as determined by trial-and-error)
+ // are different than what is documented in the mach-o manuals.
+ // This appears to be an endianness issue; reversing the order of the
+ // documented bitfields in <llvm/Support/MachO.h> fixes this (but
+ // breaks x86/ARM assembly).
+ MRE.r_word1 = ((Index << 8) | // was << 0
+ (IsPCRel << 7) | // was << 24
+ (Log2Size << 5) | // was << 25
+ (IsExtern << 4) | // was << 27
+ (Type << 0)); // was << 28
+}
+
+static void
+makeScatteredRelocationInfo(MachO::any_relocation_info &MRE,
+ const uint32_t Addr, const unsigned Type,
+ const unsigned Log2Size, const unsigned IsPCRel,
+ const uint32_t Value2) {
+ // For notes on bitfield positions and endianness, see:
+ // https://developer.apple.com/library/mac/documentation/developertools/conceptual/MachORuntime/Reference/reference.html#//apple_ref/doc/uid/20001298-scattered_relocation_entry
+ MRE.r_word0 = ((Addr << 0) | (Type << 24) | (Log2Size << 28) |
+ (IsPCRel << 30) | MachO::R_SCATTERED);
+ MRE.r_word1 = Value2;
+}
+
+/// Compute fixup offset (address).
+static uint32_t getFixupOffset(const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup) {
+ uint32_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
+ // On Mach-O, ppc_fixup_half16 relocations must refer to the
+ // start of the instruction, not the second halfword, as ELF does
+ if (unsigned(Fixup.getKind()) == PPC::fixup_ppc_half16)
+ FixupOffset &= ~uint32_t(3);
+ return FixupOffset;
+}
+
+/// \return false if falling back to using non-scattered relocation,
+/// otherwise true for normal scattered relocation.
+/// based on X86MachObjectWriter::RecordScatteredRelocation
+/// and ARMMachObjectWriter::RecordScatteredRelocation
+bool PPCMachObjectWriter::RecordScatteredRelocation(
+ MachObjectWriter *Writer, const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target,
+ unsigned Log2Size, uint64_t &FixedValue) {
+ // caller already computes these, can we just pass and reuse?
+ const uint32_t FixupOffset = getFixupOffset(Layout, Fragment, Fixup);
+ const MCFixupKind FK = Fixup.getKind();
+ const unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, FK);
+ const unsigned Type = getRelocType(Target, FK, IsPCRel);
+
+ // Is this a local or SECTDIFF relocation entry?
+ // SECTDIFF relocation entries have symbol subtractions,
+ // and require two entries, the first for the add-symbol value,
+ // the second for the subtract-symbol value.
+
+ // See <reloc.h>.
+ const MCSymbol *A = &Target.getSymA()->getSymbol();
+ const MCSymbolData *A_SD = &Asm.getSymbolData(*A);
+
+ if (!A_SD->getFragment())
+ report_fatal_error("symbol '" + A->getName() +
+ "' can not be undefined in a subtraction expression");
+
+ uint32_t Value = Writer->getSymbolAddress(A_SD, Layout);
+ uint64_t SecAddr =
+ Writer->getSectionAddress(A_SD->getFragment()->getParent());
+ FixedValue += SecAddr;
+ uint32_t Value2 = 0;
+
+ if (const MCSymbolRefExpr *B = Target.getSymB()) {
+ const MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());
+
+ if (!B_SD->getFragment())
+ report_fatal_error("symbol '" + B->getSymbol().getName() +
+ "' can not be undefined in a subtraction expression");
+
+ // FIXME: is Type correct? see include/llvm/Support/MachO.h
+ Value2 = Writer->getSymbolAddress(B_SD, Layout);
+ FixedValue -= Writer->getSectionAddress(B_SD->getFragment()->getParent());
+ }
+ // FIXME: does FixedValue get used??
+
+ // Relocations are written out in reverse order, so the PAIR comes first.
+ if (Type == MachO::PPC_RELOC_SECTDIFF ||
+ Type == MachO::PPC_RELOC_HI16_SECTDIFF ||
+ Type == MachO::PPC_RELOC_LO16_SECTDIFF ||
+ Type == MachO::PPC_RELOC_HA16_SECTDIFF ||
+ Type == MachO::PPC_RELOC_LO14_SECTDIFF ||
+ Type == MachO::PPC_RELOC_LOCAL_SECTDIFF) {
+ // X86 had this piece, but ARM does not
+ // If the offset is too large to fit in a scattered relocation,
+ // we're hosed. It's an unfortunate limitation of the MachO format.
+ if (FixupOffset > 0xffffff) {
+ char Buffer[32];
+ format("0x%x", FixupOffset).print(Buffer, sizeof(Buffer));
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ Twine("Section too large, can't encode "
+ "r_address (") +
+ Buffer + ") into 24 bits of scattered "
+ "relocation entry.");
+ llvm_unreachable("fatal error returned?!");
+ }
+
+ // Is this supposed to follow MCTarget/PPCAsmBackend.cpp:adjustFixupValue()?
+ // see PPCMCExpr::EvaluateAsRelocatableImpl()
+ uint32_t other_half = 0;
+ switch (Type) {
+ case MachO::PPC_RELOC_LO16_SECTDIFF:
+ other_half = (FixedValue >> 16) & 0xffff;
+ // applyFixupOffset longer extracts the high part because it now assumes
+ // this was already done.
+ // It looks like this is not true for the FixedValue needed with Mach-O
+ // relocs.
+ // So we need to adjust FixedValue again here.
+ FixedValue &= 0xffff;
+ break;
+ case MachO::PPC_RELOC_HA16_SECTDIFF:
+ other_half = FixedValue & 0xffff;
+ FixedValue =
+ ((FixedValue >> 16) + ((FixedValue & 0x8000) ? 1 : 0)) & 0xffff;
+ break;
+ case MachO::PPC_RELOC_HI16_SECTDIFF:
+ other_half = FixedValue & 0xffff;
+ FixedValue = (FixedValue >> 16) & 0xffff;
+ break;
+ default:
+ llvm_unreachable("Invalid PPC scattered relocation type.");
+ break;
+ }
+
+ MachO::any_relocation_info MRE;
+ makeScatteredRelocationInfo(MRE, other_half, MachO::GENERIC_RELOC_PAIR,
+ Log2Size, IsPCRel, Value2);
+ Writer->addRelocation(Fragment->getParent(), MRE);
+ } else {
+ // If the offset is more than 24-bits, it won't fit in a scattered
+ // relocation offset field, so we fall back to using a non-scattered
+ // relocation. This is a bit risky, as if the offset reaches out of
+ // the block and the linker is doing scattered loading on this
+ // symbol, things can go badly.
+ //
+ // Required for 'as' compatibility.
+ if (FixupOffset > 0xffffff)
+ return false;
+ }
+ MachO::any_relocation_info MRE;
+ makeScatteredRelocationInfo(MRE, FixupOffset, Type, Log2Size, IsPCRel, Value);
+ Writer->addRelocation(Fragment->getParent(), MRE);
+ return true;
+}
+
+// see PPCELFObjectWriter for a general outline of cases
+void PPCMachObjectWriter::RecordPPCRelocation(
+ MachObjectWriter *Writer, const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target,
+ uint64_t &FixedValue) {
+ const MCFixupKind FK = Fixup.getKind(); // unsigned
+ const unsigned Log2Size = getFixupKindLog2Size(FK);
+ const bool IsPCRel = Writer->isFixupKindPCRel(Asm, FK);
+ const unsigned RelocType = getRelocType(Target, FK, IsPCRel);
+
+ // If this is a difference or a defined symbol plus an offset, then we need a
+ // scattered relocation entry. Differences always require scattered
+ // relocations.
+ if (Target.getSymB() &&
+ // Q: are branch targets ever scattered?
+ RelocType != MachO::PPC_RELOC_BR24 &&
+ RelocType != MachO::PPC_RELOC_BR14) {
+ RecordScatteredRelocation(Writer, Asm, Layout, Fragment, Fixup, Target,
+ Log2Size, FixedValue);
+ return;
+ }
+
+ // this doesn't seem right for RIT_PPC_BR24
+ // Get the symbol data, if any.
+ const MCSymbolData *SD = nullptr;
+ if (Target.getSymA())
+ SD = &Asm.getSymbolData(Target.getSymA()->getSymbol());
+
+ // See <reloc.h>.
+ const uint32_t FixupOffset = getFixupOffset(Layout, Fragment, Fixup);
+ unsigned Index = 0;
+ unsigned IsExtern = 0;
+ unsigned Type = RelocType;
+
+ if (Target.isAbsolute()) { // constant
+ // SymbolNum of 0 indicates the absolute section.
+ //
+ // FIXME: Currently, these are never generated (see code below). I cannot
+ // find a case where they are actually emitted.
+ report_fatal_error("FIXME: relocations to absolute targets "
+ "not yet implemented");
+ // the above line stolen from ARM, not sure
+ } else {
+ // Resolve constant variables.
+ if (SD->getSymbol().isVariable()) {
+ int64_t Res;
+ if (SD->getSymbol().getVariableValue()->EvaluateAsAbsolute(
+ Res, Layout, Writer->getSectionAddressMap())) {
+ FixedValue = Res;
+ return;
+ }
+ }
+
+ // Check whether we need an external or internal relocation.
+ if (Writer->doesSymbolRequireExternRelocation(SD)) {
+ IsExtern = 1;
+ Index = SD->getIndex();
+ // For external relocations, make sure to offset the fixup value to
+ // compensate for the addend of the symbol address, if it was
+ // undefined. This occurs with weak definitions, for example.
+ if (!SD->Symbol->isUndefined())
+ FixedValue -= Layout.getSymbolOffset(SD);
+ } else {
+ // The index is the section ordinal (1-based).
+ const MCSectionData &SymSD =
+ Asm.getSectionData(SD->getSymbol().getSection());
+ Index = SymSD.getOrdinal() + 1;
+ FixedValue += Writer->getSectionAddress(&SymSD);
+ }
+ if (IsPCRel)
+ FixedValue -= Writer->getSectionAddress(Fragment->getParent());
+ }
+
+ // struct relocation_info (8 bytes)
+ MachO::any_relocation_info MRE;
+ makeRelocationInfo(MRE, FixupOffset, Index, IsPCRel, Log2Size, IsExtern,
+ Type);
+ Writer->addRelocation(Fragment->getParent(), MRE);
+}
+
+MCObjectWriter *llvm::createPPCMachObjectWriter(raw_ostream &OS, bool Is64Bit,
+ uint32_t CPUType,
+ uint32_t CPUSubtype) {
+ return createMachObjectWriter(
+ new PPCMachObjectWriter(Is64Bit, CPUType, CPUSubtype), OS,
+ /*IsLittleEndian=*/false);
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.cpp
new file mode 100644
index 0000000..c2987b6
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.cpp
@@ -0,0 +1,86 @@
+//===-- PPCPredicates.cpp - PPC Branch Predicate Information --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PowerPC branch predicates.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCPredicates.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cassert>
+using namespace llvm;
+
+PPC::Predicate PPC::InvertPredicate(PPC::Predicate Opcode) {
+ switch (Opcode) {
+ case PPC::PRED_EQ: return PPC::PRED_NE;
+ case PPC::PRED_NE: return PPC::PRED_EQ;
+ case PPC::PRED_LT: return PPC::PRED_GE;
+ case PPC::PRED_GE: return PPC::PRED_LT;
+ case PPC::PRED_GT: return PPC::PRED_LE;
+ case PPC::PRED_LE: return PPC::PRED_GT;
+ case PPC::PRED_NU: return PPC::PRED_UN;
+ case PPC::PRED_UN: return PPC::PRED_NU;
+ case PPC::PRED_EQ_MINUS: return PPC::PRED_NE_PLUS;
+ case PPC::PRED_NE_MINUS: return PPC::PRED_EQ_PLUS;
+ case PPC::PRED_LT_MINUS: return PPC::PRED_GE_PLUS;
+ case PPC::PRED_GE_MINUS: return PPC::PRED_LT_PLUS;
+ case PPC::PRED_GT_MINUS: return PPC::PRED_LE_PLUS;
+ case PPC::PRED_LE_MINUS: return PPC::PRED_GT_PLUS;
+ case PPC::PRED_NU_MINUS: return PPC::PRED_UN_PLUS;
+ case PPC::PRED_UN_MINUS: return PPC::PRED_NU_PLUS;
+ case PPC::PRED_EQ_PLUS: return PPC::PRED_NE_MINUS;
+ case PPC::PRED_NE_PLUS: return PPC::PRED_EQ_MINUS;
+ case PPC::PRED_LT_PLUS: return PPC::PRED_GE_MINUS;
+ case PPC::PRED_GE_PLUS: return PPC::PRED_LT_MINUS;
+ case PPC::PRED_GT_PLUS: return PPC::PRED_LE_MINUS;
+ case PPC::PRED_LE_PLUS: return PPC::PRED_GT_MINUS;
+ case PPC::PRED_NU_PLUS: return PPC::PRED_UN_MINUS;
+ case PPC::PRED_UN_PLUS: return PPC::PRED_NU_MINUS;
+
+ // Simple predicates for single condition-register bits.
+ case PPC::PRED_BIT_SET: return PPC::PRED_BIT_UNSET;
+ case PPC::PRED_BIT_UNSET: return PPC::PRED_BIT_SET;
+ }
+ llvm_unreachable("Unknown PPC branch opcode!");
+}
+
+PPC::Predicate PPC::getSwappedPredicate(PPC::Predicate Opcode) {
+ switch (Opcode) {
+ case PPC::PRED_EQ: return PPC::PRED_EQ;
+ case PPC::PRED_NE: return PPC::PRED_NE;
+ case PPC::PRED_LT: return PPC::PRED_GT;
+ case PPC::PRED_GE: return PPC::PRED_LE;
+ case PPC::PRED_GT: return PPC::PRED_LT;
+ case PPC::PRED_LE: return PPC::PRED_GE;
+ case PPC::PRED_NU: return PPC::PRED_NU;
+ case PPC::PRED_UN: return PPC::PRED_UN;
+ case PPC::PRED_EQ_MINUS: return PPC::PRED_EQ_MINUS;
+ case PPC::PRED_NE_MINUS: return PPC::PRED_NE_MINUS;
+ case PPC::PRED_LT_MINUS: return PPC::PRED_GT_MINUS;
+ case PPC::PRED_GE_MINUS: return PPC::PRED_LE_MINUS;
+ case PPC::PRED_GT_MINUS: return PPC::PRED_LT_MINUS;
+ case PPC::PRED_LE_MINUS: return PPC::PRED_GE_MINUS;
+ case PPC::PRED_NU_MINUS: return PPC::PRED_NU_MINUS;
+ case PPC::PRED_UN_MINUS: return PPC::PRED_UN_MINUS;
+ case PPC::PRED_EQ_PLUS: return PPC::PRED_EQ_PLUS;
+ case PPC::PRED_NE_PLUS: return PPC::PRED_NE_PLUS;
+ case PPC::PRED_LT_PLUS: return PPC::PRED_GT_PLUS;
+ case PPC::PRED_GE_PLUS: return PPC::PRED_LE_PLUS;
+ case PPC::PRED_GT_PLUS: return PPC::PRED_LT_PLUS;
+ case PPC::PRED_LE_PLUS: return PPC::PRED_GE_PLUS;
+ case PPC::PRED_NU_PLUS: return PPC::PRED_NU_PLUS;
+ case PPC::PRED_UN_PLUS: return PPC::PRED_UN_PLUS;
+
+ case PPC::PRED_BIT_SET:
+ case PPC::PRED_BIT_UNSET:
+ llvm_unreachable("Invalid use of bit predicate code");
+ }
+ llvm_unreachable("Unknown PPC branch opcode!");
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.h b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.h
new file mode 100644
index 0000000..10e328a
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.h
@@ -0,0 +1,68 @@
+//===-- PPCPredicates.h - PPC Branch Predicate Information ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the PowerPC branch predicates.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_POWERPC_PPCPREDICATES_H
+#define LLVM_TARGET_POWERPC_PPCPREDICATES_H
+
+// GCC #defines PPC on Linux but we use it as our namespace name
+#undef PPC
+
+// Generated files will use "namespace PPC". To avoid symbol clash,
+// undefine PPC here. PPC may be predefined on some hosts.
+#undef PPC
+
+namespace llvm {
+namespace PPC {
+ /// Predicate - These are "(BI << 5) | BO" for various predicates.
+ enum Predicate {
+ PRED_LT = (0 << 5) | 12,
+ PRED_LE = (1 << 5) | 4,
+ PRED_EQ = (2 << 5) | 12,
+ PRED_GE = (0 << 5) | 4,
+ PRED_GT = (1 << 5) | 12,
+ PRED_NE = (2 << 5) | 4,
+ PRED_UN = (3 << 5) | 12,
+ PRED_NU = (3 << 5) | 4,
+ PRED_LT_MINUS = (0 << 5) | 14,
+ PRED_LE_MINUS = (1 << 5) | 6,
+ PRED_EQ_MINUS = (2 << 5) | 14,
+ PRED_GE_MINUS = (0 << 5) | 6,
+ PRED_GT_MINUS = (1 << 5) | 14,
+ PRED_NE_MINUS = (2 << 5) | 6,
+ PRED_UN_MINUS = (3 << 5) | 14,
+ PRED_NU_MINUS = (3 << 5) | 6,
+ PRED_LT_PLUS = (0 << 5) | 15,
+ PRED_LE_PLUS = (1 << 5) | 7,
+ PRED_EQ_PLUS = (2 << 5) | 15,
+ PRED_GE_PLUS = (0 << 5) | 7,
+ PRED_GT_PLUS = (1 << 5) | 15,
+ PRED_NE_PLUS = (2 << 5) | 7,
+ PRED_UN_PLUS = (3 << 5) | 15,
+ PRED_NU_PLUS = (3 << 5) | 7,
+
+ // When dealing with individual condition-register bits, we have simple set
+ // and unset predicates.
+ PRED_BIT_SET = 1024,
+ PRED_BIT_UNSET = 1025
+ };
+
+ /// Invert the specified predicate. != -> ==, < -> >=.
+ Predicate InvertPredicate(Predicate Opcode);
+
+ /// Assume the condition register is set by MI(a,b), return the predicate if
+ /// we modify the instructions such that condition register is set by MI(b,a).
+ Predicate getSwappedPredicate(Predicate Opcode);
+}
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPC.h b/contrib/llvm/lib/Target/PowerPC/PPC.h
new file mode 100644
index 0000000..ba5fa4f
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPC.h
@@ -0,0 +1,105 @@
+//===-- PPC.h - Top-level interface for PowerPC Target ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in the LLVM
+// PowerPC back-end.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_POWERPC_H
+#define LLVM_TARGET_POWERPC_H
+
+#include "MCTargetDesc/PPCMCTargetDesc.h"
+#include <string>
+
+// GCC #defines PPC on Linux but we use it as our namespace name
+#undef PPC
+
+namespace llvm {
+ class PPCTargetMachine;
+ class PassRegistry;
+ class FunctionPass;
+ class ImmutablePass;
+ class JITCodeEmitter;
+ class MachineInstr;
+ class AsmPrinter;
+ class MCInst;
+
+ FunctionPass *createPPCCTRLoops(PPCTargetMachine &TM);
+#ifndef NDEBUG
+ FunctionPass *createPPCCTRLoopsVerify();
+#endif
+ FunctionPass *createPPCEarlyReturnPass();
+ FunctionPass *createPPCVSXCopyPass();
+ FunctionPass *createPPCVSXCopyCleanupPass();
+ FunctionPass *createPPCVSXFMAMutatePass();
+ FunctionPass *createPPCBranchSelectionPass();
+ FunctionPass *createPPCISelDag(PPCTargetMachine &TM);
+ FunctionPass *createPPCJITCodeEmitterPass(PPCTargetMachine &TM,
+ JITCodeEmitter &MCE);
+ void LowerPPCMachineInstrToMCInst(const MachineInstr *MI, MCInst &OutMI,
+ AsmPrinter &AP, bool isDarwin);
+
+ /// \brief Creates an PPC-specific Target Transformation Info pass.
+ ImmutablePass *createPPCTargetTransformInfoPass(const PPCTargetMachine *TM);
+
+ void initializePPCVSXFMAMutatePass(PassRegistry&);
+ extern char &PPCVSXFMAMutateID;
+
+ namespace PPCII {
+
+ /// Target Operand Flag enum.
+ enum TOF {
+ //===------------------------------------------------------------------===//
+ // PPC Specific MachineOperand flags.
+ MO_NO_FLAG,
+
+ /// MO_PLT_OR_STUB - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "FOO$stub" or "FOO@plt" symbol. This is
+ /// used for calls and jumps to external functions on Tiger and earlier, and
+ /// for PIC calls on Linux and ELF systems.
+ MO_PLT_OR_STUB = 1,
+
+ /// MO_PIC_FLAG - If this bit is set, the symbol reference is relative to
+ /// the function's picbase, e.g. lo16(symbol-picbase).
+ MO_PIC_FLAG = 2,
+
+ /// MO_NLP_FLAG - If this bit is set, the symbol reference is actually to
+ /// the non_lazy_ptr for the global, e.g. lo16(symbol$non_lazy_ptr-picbase).
+ MO_NLP_FLAG = 4,
+
+ /// MO_NLP_HIDDEN_FLAG - If this bit is set, the symbol reference is to a
+ /// symbol with hidden visibility. This causes a different kind of
+ /// non-lazy-pointer to be generated.
+ MO_NLP_HIDDEN_FLAG = 8,
+
+ /// The next are not flags but distinct values.
+ MO_ACCESS_MASK = 0xf0,
+
+ /// MO_LO, MO_HA - lo16(symbol) and ha16(symbol)
+ MO_LO = 1 << 4,
+ MO_HA = 2 << 4,
+
+ MO_TPREL_LO = 4 << 4,
+ MO_TPREL_HA = 3 << 4,
+
+ /// These values identify relocations on immediates folded
+ /// into memory operations.
+ MO_DTPREL_LO = 5 << 4,
+ MO_TLSLD_LO = 6 << 4,
+ MO_TOC_LO = 7 << 4,
+
+ // Symbol for VK_PPC_TLS fixup attached to an ADD instruction
+ MO_TLS = 8 << 4
+ };
+ } // end namespace PPCII
+
+} // end namespace llvm;
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPC.td b/contrib/llvm/lib/Target/PowerPC/PPC.td
new file mode 100644
index 0000000..a9842b2
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPC.td
@@ -0,0 +1,344 @@
+//===-- PPC.td - Describe the PowerPC Target Machine -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the top level entry point for the PowerPC target.
+//
+//===----------------------------------------------------------------------===//
+
+// Get the target-independent interfaces which we are implementing.
+//
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// PowerPC Subtarget features.
+//
+
+//===----------------------------------------------------------------------===//
+// CPU Directives //
+//===----------------------------------------------------------------------===//
+
+def Directive440 : SubtargetFeature<"", "DarwinDirective", "PPC::DIR_440", "">;
+def Directive601 : SubtargetFeature<"", "DarwinDirective", "PPC::DIR_601", "">;
+def Directive602 : SubtargetFeature<"", "DarwinDirective", "PPC::DIR_602", "">;
+def Directive603 : SubtargetFeature<"", "DarwinDirective", "PPC::DIR_603", "">;
+def Directive604 : SubtargetFeature<"", "DarwinDirective", "PPC::DIR_603", "">;
+def Directive620 : SubtargetFeature<"", "DarwinDirective", "PPC::DIR_603", "">;
+def Directive7400: SubtargetFeature<"", "DarwinDirective", "PPC::DIR_7400", "">;
+def Directive750 : SubtargetFeature<"", "DarwinDirective", "PPC::DIR_750", "">;
+def Directive970 : SubtargetFeature<"", "DarwinDirective", "PPC::DIR_970", "">;
+def Directive32 : SubtargetFeature<"", "DarwinDirective", "PPC::DIR_32", "">;
+def Directive64 : SubtargetFeature<"", "DarwinDirective", "PPC::DIR_64", "">;
+def DirectiveA2 : SubtargetFeature<"", "DarwinDirective", "PPC::DIR_A2", "">;
+def DirectiveE500mc : SubtargetFeature<"", "DarwinDirective",
+ "PPC::DIR_E500mc", "">;
+def DirectiveE5500 : SubtargetFeature<"", "DarwinDirective",
+ "PPC::DIR_E5500", "">;
+def DirectivePwr3: SubtargetFeature<"", "DarwinDirective", "PPC::DIR_PWR3", "">;
+def DirectivePwr4: SubtargetFeature<"", "DarwinDirective", "PPC::DIR_PWR4", "">;
+def DirectivePwr5: SubtargetFeature<"", "DarwinDirective", "PPC::DIR_PWR5", "">;
+def DirectivePwr5x: SubtargetFeature<"", "DarwinDirective", "PPC::DIR_PWR5X", "">;
+def DirectivePwr6: SubtargetFeature<"", "DarwinDirective", "PPC::DIR_PWR6", "">;
+def DirectivePwr6x: SubtargetFeature<"", "DarwinDirective", "PPC::DIR_PWR6X", "">;
+def DirectivePwr7: SubtargetFeature<"", "DarwinDirective", "PPC::DIR_PWR7", "">;
+def DirectivePwr8: SubtargetFeature<"", "DarwinDirective", "PPC::DIR_PWR8", "">;
+
+def Feature64Bit : SubtargetFeature<"64bit","Has64BitSupport", "true",
+ "Enable 64-bit instructions">;
+def Feature64BitRegs : SubtargetFeature<"64bitregs","Use64BitRegs", "true",
+ "Enable 64-bit registers usage for ppc32 [beta]">;
+def FeatureCRBits : SubtargetFeature<"crbits", "UseCRBits", "true",
+ "Use condition-register bits individually">;
+def FeatureAltivec : SubtargetFeature<"altivec","HasAltivec", "true",
+ "Enable Altivec instructions">;
+def FeatureMFOCRF : SubtargetFeature<"mfocrf","HasMFOCRF", "true",
+ "Enable the MFOCRF instruction">;
+def FeatureFSqrt : SubtargetFeature<"fsqrt","HasFSQRT", "true",
+ "Enable the fsqrt instruction">;
+def FeatureFCPSGN : SubtargetFeature<"fcpsgn", "HasFCPSGN", "true",
+ "Enable the fcpsgn instruction">;
+def FeatureFRE : SubtargetFeature<"fre", "HasFRE", "true",
+ "Enable the fre instruction">;
+def FeatureFRES : SubtargetFeature<"fres", "HasFRES", "true",
+ "Enable the fres instruction">;
+def FeatureFRSQRTE : SubtargetFeature<"frsqrte", "HasFRSQRTE", "true",
+ "Enable the frsqrte instruction">;
+def FeatureFRSQRTES : SubtargetFeature<"frsqrtes", "HasFRSQRTES", "true",
+ "Enable the frsqrtes instruction">;
+def FeatureRecipPrec : SubtargetFeature<"recipprec", "HasRecipPrec", "true",
+ "Assume higher precision reciprocal estimates">;
+def FeatureSTFIWX : SubtargetFeature<"stfiwx","HasSTFIWX", "true",
+ "Enable the stfiwx instruction">;
+def FeatureLFIWAX : SubtargetFeature<"lfiwax","HasLFIWAX", "true",
+ "Enable the lfiwax instruction">;
+def FeatureFPRND : SubtargetFeature<"fprnd", "HasFPRND", "true",
+ "Enable the fri[mnpz] instructions">;
+def FeatureFPCVT : SubtargetFeature<"fpcvt", "HasFPCVT", "true",
+ "Enable fc[ft]* (unsigned and single-precision) and lfiwzx instructions">;
+def FeatureISEL : SubtargetFeature<"isel","HasISEL", "true",
+ "Enable the isel instruction">;
+def FeaturePOPCNTD : SubtargetFeature<"popcntd","HasPOPCNTD", "true",
+ "Enable the popcnt[dw] instructions">;
+def FeatureLDBRX : SubtargetFeature<"ldbrx","HasLDBRX", "true",
+ "Enable the ldbrx instruction">;
+def FeatureBookE : SubtargetFeature<"booke", "IsBookE", "true",
+ "Enable Book E instructions">;
+def FeatureQPX : SubtargetFeature<"qpx","HasQPX", "true",
+ "Enable QPX instructions">;
+def FeatureVSX : SubtargetFeature<"vsx","HasVSX", "true",
+ "Enable VSX instructions",
+ [FeatureAltivec]>;
+
+def DeprecatedMFTB : SubtargetFeature<"", "DeprecatedMFTB", "true",
+ "Treat mftb as deprecated">;
+def DeprecatedDST : SubtargetFeature<"", "DeprecatedDST", "true",
+ "Treat vector data stream cache control instructions as deprecated">;
+
+// Note: Future features to add when support is extended to more
+// recent ISA levels:
+//
+// CMPB p6, p6x, p7 cmpb
+// DFP p6, p6x, p7 decimal floating-point instructions
+// POPCNTB p5 through p7 popcntb and related instructions
+// VSX p7 vector-scalar instruction set
+
+//===----------------------------------------------------------------------===//
+// Classes used for relation maps.
+//===----------------------------------------------------------------------===//
+// RecFormRel - Filter class used to relate non-record-form instructions with
+// their record-form variants.
+class RecFormRel;
+
+// AltVSXFMARel - Filter class used to relate the primary addend-killing VSX
+// FMA instruction forms with their corresponding factor-killing forms.
+class AltVSXFMARel {
+ bit IsVSXFMAAlt = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Relation Map Definitions.
+//===----------------------------------------------------------------------===//
+
+def getRecordFormOpcode : InstrMapping {
+ let FilterClass = "RecFormRel";
+ // Instructions with the same BaseName and Interpretation64Bit values
+ // form a row.
+ let RowFields = ["BaseName", "Interpretation64Bit"];
+ // Instructions with the same RC value form a column.
+ let ColFields = ["RC"];
+ // The key column are the non-record-form instructions.
+ let KeyCol = ["0"];
+ // Value columns RC=1
+ let ValueCols = [["1"]];
+}
+
+def getNonRecordFormOpcode : InstrMapping {
+ let FilterClass = "RecFormRel";
+ // Instructions with the same BaseName and Interpretation64Bit values
+ // form a row.
+ let RowFields = ["BaseName", "Interpretation64Bit"];
+ // Instructions with the same RC value form a column.
+ let ColFields = ["RC"];
+ // The key column are the record-form instructions.
+ let KeyCol = ["1"];
+ // Value columns are RC=0
+ let ValueCols = [["0"]];
+}
+
+def getAltVSXFMAOpcode : InstrMapping {
+ let FilterClass = "AltVSXFMARel";
+ // Instructions with the same BaseName and Interpretation64Bit values
+ // form a row.
+ let RowFields = ["BaseName"];
+ // Instructions with the same RC value form a column.
+ let ColFields = ["IsVSXFMAAlt"];
+ // The key column are the (default) addend-killing instructions.
+ let KeyCol = ["0"];
+ // Value columns IsVSXFMAAlt=1
+ let ValueCols = [["1"]];
+}
+
+//===----------------------------------------------------------------------===//
+// Register File Description
+//===----------------------------------------------------------------------===//
+
+include "PPCRegisterInfo.td"
+include "PPCSchedule.td"
+include "PPCInstrInfo.td"
+
+//===----------------------------------------------------------------------===//
+// PowerPC processors supported.
+//
+
+def : Processor<"generic", G3Itineraries, [Directive32]>;
+def : ProcessorModel<"440", PPC440Model, [Directive440, FeatureISEL,
+ FeatureFRES, FeatureFRSQRTE,
+ FeatureBookE, DeprecatedMFTB]>;
+def : ProcessorModel<"450", PPC440Model, [Directive440, FeatureISEL,
+ FeatureFRES, FeatureFRSQRTE,
+ FeatureBookE, DeprecatedMFTB]>;
+def : Processor<"601", G3Itineraries, [Directive601]>;
+def : Processor<"602", G3Itineraries, [Directive602]>;
+def : Processor<"603", G3Itineraries, [Directive603,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : Processor<"603e", G3Itineraries, [Directive603,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : Processor<"603ev", G3Itineraries, [Directive603,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : Processor<"604", G3Itineraries, [Directive604,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : Processor<"604e", G3Itineraries, [Directive604,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : Processor<"620", G3Itineraries, [Directive620,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : Processor<"750", G4Itineraries, [Directive750,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : Processor<"g3", G3Itineraries, [Directive750,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : Processor<"7400", G4Itineraries, [Directive7400, FeatureAltivec,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : Processor<"g4", G4Itineraries, [Directive7400, FeatureAltivec,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : Processor<"7450", G4PlusItineraries, [Directive7400, FeatureAltivec,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : Processor<"g4+", G4PlusItineraries, [Directive7400, FeatureAltivec,
+ FeatureFRES, FeatureFRSQRTE]>;
+def : ProcessorModel<"970", G5Model,
+ [Directive970, FeatureAltivec,
+ FeatureMFOCRF, FeatureFSqrt,
+ FeatureFRES, FeatureFRSQRTE, FeatureSTFIWX,
+ Feature64Bit /*, Feature64BitRegs */]>;
+def : ProcessorModel<"g5", G5Model,
+ [Directive970, FeatureAltivec,
+ FeatureMFOCRF, FeatureFSqrt, FeatureSTFIWX,
+ FeatureFRES, FeatureFRSQRTE,
+ Feature64Bit /*, Feature64BitRegs */,
+ DeprecatedMFTB, DeprecatedDST]>;
+def : ProcessorModel<"e500mc", PPCE500mcModel,
+ [DirectiveE500mc, FeatureMFOCRF,
+ FeatureSTFIWX, FeatureBookE, FeatureISEL,
+ DeprecatedMFTB]>;
+def : ProcessorModel<"e5500", PPCE5500Model,
+ [DirectiveE5500, FeatureMFOCRF, Feature64Bit,
+ FeatureSTFIWX, FeatureBookE, FeatureISEL,
+ DeprecatedMFTB]>;
+def : ProcessorModel<"a2", PPCA2Model,
+ [DirectiveA2, FeatureBookE, FeatureMFOCRF,
+ FeatureFCPSGN, FeatureFSqrt, FeatureFRE, FeatureFRES,
+ FeatureFRSQRTE, FeatureFRSQRTES, FeatureRecipPrec,
+ FeatureSTFIWX, FeatureLFIWAX,
+ FeatureFPRND, FeatureFPCVT, FeatureISEL,
+ FeaturePOPCNTD, FeatureLDBRX, Feature64Bit
+ /*, Feature64BitRegs */, DeprecatedMFTB]>;
+def : ProcessorModel<"a2q", PPCA2Model,
+ [DirectiveA2, FeatureBookE, FeatureMFOCRF,
+ FeatureFCPSGN, FeatureFSqrt, FeatureFRE, FeatureFRES,
+ FeatureFRSQRTE, FeatureFRSQRTES, FeatureRecipPrec,
+ FeatureSTFIWX, FeatureLFIWAX,
+ FeatureFPRND, FeatureFPCVT, FeatureISEL,
+ FeaturePOPCNTD, FeatureLDBRX, Feature64Bit
+ /*, Feature64BitRegs */, FeatureQPX, DeprecatedMFTB]>;
+def : ProcessorModel<"pwr3", G5Model,
+ [DirectivePwr3, FeatureAltivec,
+ FeatureFRES, FeatureFRSQRTE, FeatureMFOCRF,
+ FeatureSTFIWX, Feature64Bit]>;
+def : ProcessorModel<"pwr4", G5Model,
+ [DirectivePwr4, FeatureAltivec, FeatureMFOCRF,
+ FeatureFSqrt, FeatureFRES, FeatureFRSQRTE,
+ FeatureSTFIWX, Feature64Bit]>;
+def : ProcessorModel<"pwr5", G5Model,
+ [DirectivePwr5, FeatureAltivec, FeatureMFOCRF,
+ FeatureFSqrt, FeatureFRE, FeatureFRES,
+ FeatureFRSQRTE, FeatureFRSQRTES,
+ FeatureSTFIWX, Feature64Bit,
+ DeprecatedMFTB, DeprecatedDST]>;
+def : ProcessorModel<"pwr5x", G5Model,
+ [DirectivePwr5x, FeatureAltivec, FeatureMFOCRF,
+ FeatureFSqrt, FeatureFRE, FeatureFRES,
+ FeatureFRSQRTE, FeatureFRSQRTES,
+ FeatureSTFIWX, FeatureFPRND, Feature64Bit,
+ DeprecatedMFTB, DeprecatedDST]>;
+def : ProcessorModel<"pwr6", G5Model,
+ [DirectivePwr6, FeatureAltivec,
+ FeatureMFOCRF, FeatureFCPSGN, FeatureFSqrt, FeatureFRE,
+ FeatureFRES, FeatureFRSQRTE, FeatureFRSQRTES,
+ FeatureRecipPrec, FeatureSTFIWX, FeatureLFIWAX,
+ FeatureFPRND, Feature64Bit /*, Feature64BitRegs */,
+ DeprecatedMFTB, DeprecatedDST]>;
+def : ProcessorModel<"pwr6x", G5Model,
+ [DirectivePwr5x, FeatureAltivec, FeatureMFOCRF,
+ FeatureFCPSGN, FeatureFSqrt, FeatureFRE, FeatureFRES,
+ FeatureFRSQRTE, FeatureFRSQRTES, FeatureRecipPrec,
+ FeatureSTFIWX, FeatureLFIWAX,
+ FeatureFPRND, Feature64Bit,
+ DeprecatedMFTB, DeprecatedDST]>;
+def : ProcessorModel<"pwr7", P7Model,
+ [DirectivePwr7, FeatureAltivec,
+ FeatureMFOCRF, FeatureFCPSGN, FeatureFSqrt, FeatureFRE,
+ FeatureFRES, FeatureFRSQRTE, FeatureFRSQRTES,
+ FeatureRecipPrec, FeatureSTFIWX, FeatureLFIWAX,
+ FeatureFPRND, FeatureFPCVT, FeatureISEL,
+ FeaturePOPCNTD, FeatureLDBRX,
+ Feature64Bit /*, Feature64BitRegs */,
+ DeprecatedMFTB, DeprecatedDST]>;
+def : ProcessorModel<"pwr8", P7Model /* FIXME: Update to P8Model when available */,
+ [DirectivePwr8, FeatureAltivec,
+ FeatureMFOCRF, FeatureFCPSGN, FeatureFSqrt, FeatureFRE,
+ FeatureFRES, FeatureFRSQRTE, FeatureFRSQRTES,
+ FeatureRecipPrec, FeatureSTFIWX, FeatureLFIWAX,
+ FeatureFPRND, FeatureFPCVT, FeatureISEL,
+ FeaturePOPCNTD, FeatureLDBRX,
+ Feature64Bit /*, Feature64BitRegs */,
+ DeprecatedMFTB, DeprecatedDST]>;
+def : Processor<"ppc", G3Itineraries, [Directive32]>;
+def : ProcessorModel<"ppc64", G5Model,
+ [Directive64, FeatureAltivec,
+ FeatureMFOCRF, FeatureFSqrt, FeatureFRES,
+ FeatureFRSQRTE, FeatureSTFIWX,
+ Feature64Bit /*, Feature64BitRegs */]>;
+def : ProcessorModel<"ppc64le", G5Model,
+ [Directive64, FeatureAltivec,
+ FeatureMFOCRF, FeatureFSqrt, FeatureFRES,
+ FeatureFRSQRTE, FeatureSTFIWX,
+ Feature64Bit /*, Feature64BitRegs */]>;
+
+//===----------------------------------------------------------------------===//
+// Calling Conventions
+//===----------------------------------------------------------------------===//
+
+include "PPCCallingConv.td"
+
+def PPCInstrInfo : InstrInfo {
+ let isLittleEndianEncoding = 1;
+
+ // FIXME: Unset this when no longer needed!
+ let decodePositionallyEncodedOperands = 1;
+
+ let noNamedPositionallyEncodedOperands = 1;
+}
+
+def PPCAsmParser : AsmParser {
+ let ShouldEmitMatchRegisterName = 0;
+}
+
+def PPCAsmParserVariant : AsmParserVariant {
+ int Variant = 0;
+
+ // We do not use hard coded registers in asm strings. However, some
+ // InstAlias definitions use immediate literals. Set RegisterPrefix
+ // so that those are not misinterpreted as registers.
+ string RegisterPrefix = "%";
+}
+
+def PPC : Target {
+ // Information about the instructions.
+ let InstructionSet = PPCInstrInfo;
+
+ let AssemblyParsers = [PPCAsmParser];
+ let AssemblyParserVariants = [PPCAsmParserVariant];
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp b/contrib/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp
new file mode 100644
index 0000000..1384022
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp
@@ -0,0 +1,1397 @@
+//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to PowerPC assembly language. This printer is
+// the output mechanism used by `llc'.
+//
+// Documentation at http://developer.apple.com/documentation/DeveloperTools/
+// Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPC.h"
+#include "InstPrinter/PPCInstPrinter.h"
+#include "PPCMachineFunctionInfo.h"
+#include "MCTargetDesc/PPCMCExpr.h"
+#include "MCTargetDesc/PPCPredicates.h"
+#include "PPCSubtarget.h"
+#include "PPCTargetMachine.h"
+#include "PPCTargetStreamer.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstBuilder.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "asmprinter"
+
+namespace {
+ class PPCAsmPrinter : public AsmPrinter {
+ protected:
+ MapVector<MCSymbol*, MCSymbol*> TOC;
+ const PPCSubtarget &Subtarget;
+ uint64_t TOCLabelID;
+ public:
+ explicit PPCAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer),
+ Subtarget(TM.getSubtarget<PPCSubtarget>()), TOCLabelID(0) {}
+
+ const char *getPassName() const override {
+ return "PowerPC Assembly Printer";
+ }
+
+ MCSymbol *lookUpOrCreateTOCEntry(MCSymbol *Sym);
+
+ void EmitInstruction(const MachineInstr *MI) override;
+
+ void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
+
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+ };
+
+ /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
+ class PPCLinuxAsmPrinter : public PPCAsmPrinter {
+ public:
+ explicit PPCLinuxAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : PPCAsmPrinter(TM, Streamer) {}
+
+ const char *getPassName() const override {
+ return "Linux PPC Assembly Printer";
+ }
+
+ bool doFinalization(Module &M) override;
+ void EmitStartOfAsmFile(Module &M) override;
+
+ void EmitFunctionEntryLabel() override;
+
+ void EmitFunctionBodyStart() override;
+ void EmitFunctionBodyEnd() override;
+ };
+
+ /// PPCDarwinAsmPrinter - PowerPC assembly printer, customized for Darwin/Mac
+ /// OS X
+ class PPCDarwinAsmPrinter : public PPCAsmPrinter {
+ public:
+ explicit PPCDarwinAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : PPCAsmPrinter(TM, Streamer) {}
+
+ const char *getPassName() const override {
+ return "Darwin PPC Assembly Printer";
+ }
+
+ bool doFinalization(Module &M) override;
+ void EmitStartOfAsmFile(Module &M) override;
+
+ void EmitFunctionStubs(const MachineModuleInfoMachO::SymbolListTy &Stubs);
+ };
+} // end of anonymous namespace
+
+/// stripRegisterPrefix - This method strips the character prefix from a
+/// register name so that only the number is left. Used by for linux asm.
+static const char *stripRegisterPrefix(const char *RegName) {
+ switch (RegName[0]) {
+ case 'r':
+ case 'f':
+ case 'v':
+ if (RegName[1] == 's')
+ return RegName + 2;
+ return RegName + 1;
+ case 'c': if (RegName[1] == 'r') return RegName + 2;
+ }
+
+ return RegName;
+}
+
+void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const DataLayout *DL = TM.getDataLayout();
+ const MachineOperand &MO = MI->getOperand(OpNo);
+
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register: {
+ const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg());
+ // Linux assembler (Others?) does not take register mnemonics.
+ // FIXME - What about special registers used in mfspr/mtspr?
+ if (!Subtarget.isDarwin()) RegName = stripRegisterPrefix(RegName);
+ O << RegName;
+ return;
+ }
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ return;
+
+ case MachineOperand::MO_MachineBasicBlock:
+ O << *MO.getMBB()->getSymbol();
+ return;
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << DL->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
+ << '_' << MO.getIndex();
+ return;
+ case MachineOperand::MO_BlockAddress:
+ O << *GetBlockAddressSymbol(MO.getBlockAddress());
+ return;
+ case MachineOperand::MO_GlobalAddress: {
+ // Computing the address of a global symbol, not calling it.
+ const GlobalValue *GV = MO.getGlobal();
+ MCSymbol *SymToPrint;
+
+ // External or weakly linked global variables need non-lazily-resolved stubs
+ if (TM.getRelocationModel() != Reloc::Static &&
+ (GV->isDeclaration() || GV->isWeakForLinker())) {
+ if (!GV->hasHiddenVisibility()) {
+ SymToPrint = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>()
+ .getGVStubEntry(SymToPrint);
+ if (!StubSym.getPointer())
+ StubSym = MachineModuleInfoImpl::
+ StubValueTy(getSymbol(GV), !GV->hasInternalLinkage());
+ } else if (GV->isDeclaration() || GV->hasCommonLinkage() ||
+ GV->hasAvailableExternallyLinkage()) {
+ SymToPrint = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
+
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>().
+ getHiddenGVStubEntry(SymToPrint);
+ if (!StubSym.getPointer())
+ StubSym = MachineModuleInfoImpl::
+ StubValueTy(getSymbol(GV), !GV->hasInternalLinkage());
+ } else {
+ SymToPrint = getSymbol(GV);
+ }
+ } else {
+ SymToPrint = getSymbol(GV);
+ }
+
+ O << *SymToPrint;
+
+ printOffset(MO.getOffset(), O);
+ return;
+ }
+
+ default:
+ O << "<unknown operand type: " << (unsigned)MO.getType() << ">";
+ return;
+ }
+}
+
+/// PrintAsmOperand - Print out an operand for an inline asm expression.
+///
+bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode, raw_ostream &O) {
+ // Does this asm operand have a single letter operand modifier?
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ default:
+ // See if this is a generic print operand
+ return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
+ case 'c': // Don't print "$" before a global var name or constant.
+ break; // PPC never has a prefix.
+ case 'L': // Write second word of DImode reference.
+ // Verify that this operand has two consecutive registers.
+ if (!MI->getOperand(OpNo).isReg() ||
+ OpNo+1 == MI->getNumOperands() ||
+ !MI->getOperand(OpNo+1).isReg())
+ return true;
+ ++OpNo; // Return the high-part.
+ break;
+ case 'I':
+ // Write 'i' if an integer constant, otherwise nothing. Used to print
+ // addi vs add, etc.
+ if (MI->getOperand(OpNo).isImm())
+ O << "i";
+ return false;
+ }
+ }
+
+ printOperand(MI, OpNo, O);
+ return false;
+}
+
+// At the moment, all inline asm memory operands are a single register.
+// In any case, the output of this routine should always be just one
+// assembler operand.
+
+bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &O) {
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ default: return true; // Unknown modifier.
+ case 'y': // A memory reference for an X-form instruction
+ {
+ const char *RegName = "r0";
+ if (!Subtarget.isDarwin()) RegName = stripRegisterPrefix(RegName);
+ O << RegName << ", ";
+ printOperand(MI, OpNo, O);
+ return false;
+ }
+ }
+ }
+
+ assert(MI->getOperand(OpNo).isReg());
+ O << "0(";
+ printOperand(MI, OpNo, O);
+ O << ")";
+ return false;
+}
+
+
+/// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
+/// exists for it. If not, create one. Then return a symbol that references
+/// the TOC entry.
+MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(MCSymbol *Sym) {
+ const DataLayout *DL = TM.getDataLayout();
+ MCSymbol *&TOCEntry = TOC[Sym];
+
+ // To avoid name clash check if the name already exists.
+ while (!TOCEntry) {
+ if (OutContext.LookupSymbol(Twine(DL->getPrivateGlobalPrefix()) +
+ "C" + Twine(TOCLabelID++)) == nullptr) {
+ TOCEntry = GetTempSymbol("C", TOCLabelID);
+ }
+ }
+
+ return TOCEntry;
+}
+
+
+/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
+/// the current output stream.
+///
+void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ MCInst TmpInst;
+ bool isPPC64 = Subtarget.isPPC64();
+
+ // Lower multi-instruction pseudo operations.
+ switch (MI->getOpcode()) {
+ default: break;
+ case TargetOpcode::DBG_VALUE:
+ llvm_unreachable("Should be handled target independently");
+ case PPC::MovePCtoLR:
+ case PPC::MovePCtoLR8: {
+ // Transform %LR = MovePCtoLR
+ // Into this, where the label is the PIC base:
+ // bl L1$pb
+ // L1$pb:
+ MCSymbol *PICBase = MF->getPICBaseSymbol();
+
+ // Emit the 'bl'.
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::BL)
+ // FIXME: We would like an efficient form for this, so we don't have to do
+ // a lot of extra uniquing.
+ .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext)));
+
+ // Emit the label.
+ OutStreamer.EmitLabel(PICBase);
+ return;
+ }
+ case PPC::GetGBRO: {
+ // Get the offset from the GOT Base Register to the GOT
+ LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
+ MCSymbol *PICOffset = MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol();
+ TmpInst.setOpcode(PPC::LWZ);
+ const MCExpr *Exp =
+ MCSymbolRefExpr::Create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
+ const MCExpr *PB =
+ MCSymbolRefExpr::Create(MF->getPICBaseSymbol(),
+ MCSymbolRefExpr::VK_None,
+ OutContext);
+ const MCOperand MO = TmpInst.getOperand(1);
+ TmpInst.getOperand(1) = MCOperand::CreateExpr(MCBinaryExpr::CreateSub(Exp,
+ PB,
+ OutContext));
+ TmpInst.addOperand(MO);
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+ case PPC::UpdateGBR: {
+ // Update the GOT Base Register to point to the GOT. It may be possible to
+ // merge this with the PPC::GetGBRO, doing it all in one step.
+ LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
+ TmpInst.setOpcode(PPC::ADD4);
+ TmpInst.addOperand(TmpInst.getOperand(0));
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+ case PPC::LWZtoc: {
+ // Transform %X3 = LWZtoc <ga:@min1>, %X2
+ LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
+
+ // Change the opcode to LWZ, and the global address operand to be a
+ // reference to the GOT entry we will synthesize later.
+ TmpInst.setOpcode(PPC::LWZ);
+ const MachineOperand &MO = MI->getOperand(1);
+
+ // Map symbol -> label of TOC entry
+ assert(MO.isGlobal() || MO.isCPI() || MO.isJTI());
+ MCSymbol *MOSymbol = nullptr;
+ if (MO.isGlobal())
+ MOSymbol = getSymbol(MO.getGlobal());
+ else if (MO.isCPI())
+ MOSymbol = GetCPISymbol(MO.getIndex());
+ else if (MO.isJTI())
+ MOSymbol = GetJTISymbol(MO.getIndex());
+
+ MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol);
+
+ const MCExpr *Exp =
+ MCSymbolRefExpr::Create(TOCEntry, MCSymbolRefExpr::VK_None,
+ OutContext);
+ const MCExpr *PB =
+ MCSymbolRefExpr::Create(OutContext.GetOrCreateSymbol(Twine(".L.TOC.")),
+ OutContext);
+ Exp = MCBinaryExpr::CreateSub(Exp, PB, OutContext);
+ TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+ case PPC::LDtocJTI:
+ case PPC::LDtocCPT:
+ case PPC::LDtoc: {
+ // Transform %X3 = LDtoc <ga:@min1>, %X2
+ LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
+
+ // Change the opcode to LD, and the global address operand to be a
+ // reference to the TOC entry we will synthesize later.
+ TmpInst.setOpcode(PPC::LD);
+ const MachineOperand &MO = MI->getOperand(1);
+
+ // Map symbol -> label of TOC entry
+ assert(MO.isGlobal() || MO.isCPI() || MO.isJTI());
+ MCSymbol *MOSymbol = nullptr;
+ if (MO.isGlobal())
+ MOSymbol = getSymbol(MO.getGlobal());
+ else if (MO.isCPI())
+ MOSymbol = GetCPISymbol(MO.getIndex());
+ else if (MO.isJTI())
+ MOSymbol = GetJTISymbol(MO.getIndex());
+
+ MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol);
+
+ const MCExpr *Exp =
+ MCSymbolRefExpr::Create(TOCEntry, MCSymbolRefExpr::VK_PPC_TOC,
+ OutContext);
+ TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+
+ case PPC::ADDIStocHA: {
+ // Transform %Xd = ADDIStocHA %X2, <ga:@sym>
+ LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
+
+ // Change the opcode to ADDIS8. If the global address is external, has
+ // common linkage, is a non-local function address, or is a jump table
+ // address, then generate a TOC entry and reference that. Otherwise
+ // reference the symbol directly.
+ TmpInst.setOpcode(PPC::ADDIS8);
+ const MachineOperand &MO = MI->getOperand(2);
+ assert((MO.isGlobal() || MO.isCPI() || MO.isJTI()) &&
+ "Invalid operand for ADDIStocHA!");
+ MCSymbol *MOSymbol = nullptr;
+ bool IsExternal = false;
+ bool IsNonLocalFunction = false;
+ bool IsCommon = false;
+ bool IsAvailExt = false;
+
+ if (MO.isGlobal()) {
+ const GlobalValue *GV = MO.getGlobal();
+ MOSymbol = getSymbol(GV);
+ IsExternal = GV->isDeclaration();
+ IsCommon = GV->hasCommonLinkage();
+ IsNonLocalFunction = GV->getType()->getElementType()->isFunctionTy() &&
+ (GV->isDeclaration() || GV->isWeakForLinker());
+ IsAvailExt = GV->hasAvailableExternallyLinkage();
+ } else if (MO.isCPI())
+ MOSymbol = GetCPISymbol(MO.getIndex());
+ else if (MO.isJTI())
+ MOSymbol = GetJTISymbol(MO.getIndex());
+
+ if (IsExternal || IsNonLocalFunction || IsCommon || IsAvailExt ||
+ MO.isJTI() || TM.getCodeModel() == CodeModel::Large)
+ MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
+
+ const MCExpr *Exp =
+ MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_HA,
+ OutContext);
+ TmpInst.getOperand(2) = MCOperand::CreateExpr(Exp);
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+ case PPC::LDtocL: {
+ // Transform %Xd = LDtocL <ga:@sym>, %Xs
+ LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
+
+ // Change the opcode to LD. If the global address is external, has
+ // common linkage, or is a jump table address, then reference the
+ // associated TOC entry. Otherwise reference the symbol directly.
+ TmpInst.setOpcode(PPC::LD);
+ const MachineOperand &MO = MI->getOperand(1);
+ assert((MO.isGlobal() || MO.isJTI() || MO.isCPI()) &&
+ "Invalid operand for LDtocL!");
+ MCSymbol *MOSymbol = nullptr;
+
+ if (MO.isJTI())
+ MOSymbol = lookUpOrCreateTOCEntry(GetJTISymbol(MO.getIndex()));
+ else if (MO.isCPI()) {
+ MOSymbol = GetCPISymbol(MO.getIndex());
+ if (TM.getCodeModel() == CodeModel::Large)
+ MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
+ }
+ else if (MO.isGlobal()) {
+ const GlobalValue *GValue = MO.getGlobal();
+ MOSymbol = getSymbol(GValue);
+ if (GValue->getType()->getElementType()->isFunctionTy() ||
+ GValue->isDeclaration() || GValue->hasCommonLinkage() ||
+ GValue->hasAvailableExternallyLinkage() ||
+ TM.getCodeModel() == CodeModel::Large)
+ MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
+ }
+
+ const MCExpr *Exp =
+ MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
+ OutContext);
+ TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+ case PPC::ADDItocL: {
+ // Transform %Xd = ADDItocL %Xs, <ga:@sym>
+ LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
+
+ // Change the opcode to ADDI8. If the global address is external, then
+ // generate a TOC entry and reference that. Otherwise reference the
+ // symbol directly.
+ TmpInst.setOpcode(PPC::ADDI8);
+ const MachineOperand &MO = MI->getOperand(2);
+ assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL");
+ MCSymbol *MOSymbol = nullptr;
+ bool IsExternal = false;
+ bool IsNonLocalFunction = false;
+
+ if (MO.isGlobal()) {
+ const GlobalValue *GV = MO.getGlobal();
+ MOSymbol = getSymbol(GV);
+ IsExternal = GV->isDeclaration();
+ IsNonLocalFunction = GV->getType()->getElementType()->isFunctionTy() &&
+ (GV->isDeclaration() || GV->isWeakForLinker());
+ } else if (MO.isCPI())
+ MOSymbol = GetCPISymbol(MO.getIndex());
+
+ if (IsNonLocalFunction || IsExternal ||
+ TM.getCodeModel() == CodeModel::Large)
+ MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
+
+ const MCExpr *Exp =
+ MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
+ OutContext);
+ TmpInst.getOperand(2) = MCOperand::CreateExpr(Exp);
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+ case PPC::ADDISgotTprelHA: {
+ // Transform: %Xd = ADDISgotTprelHA %X2, <ga:@sym>
+ // Into: %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
+ assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
+ const MachineOperand &MO = MI->getOperand(2);
+ const GlobalValue *GValue = MO.getGlobal();
+ MCSymbol *MOSymbol = getSymbol(GValue);
+ const MCExpr *SymGotTprel =
+ MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
+ OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDIS8)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(PPC::X2)
+ .addExpr(SymGotTprel));
+ return;
+ }
+ case PPC::LDgotTprelL:
+ case PPC::LDgotTprelL32: {
+ // Transform %Xd = LDgotTprelL <ga:@sym>, %Xs
+ LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
+
+ // Change the opcode to LD.
+ TmpInst.setOpcode(isPPC64 ? PPC::LD : PPC::LWZ);
+ const MachineOperand &MO = MI->getOperand(1);
+ const GlobalValue *GValue = MO.getGlobal();
+ MCSymbol *MOSymbol = getSymbol(GValue);
+ const MCExpr *Exp =
+ MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO,
+ OutContext);
+ TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
+ EmitToStreamer(OutStreamer, TmpInst);
+ return;
+ }
+
+ case PPC::PPC32PICGOT: {
+ MCSymbol *GOTSymbol = OutContext.GetOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
+ MCSymbol *GOTRef = OutContext.CreateTempSymbol();
+ MCSymbol *NextInstr = OutContext.CreateTempSymbol();
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::BL)
+ // FIXME: We would like an efficient form for this, so we don't have to do
+ // a lot of extra uniquing.
+ .addExpr(MCSymbolRefExpr::Create(NextInstr, OutContext)));
+ const MCExpr *OffsExpr =
+ MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(GOTSymbol, OutContext),
+ MCSymbolRefExpr::Create(GOTRef, OutContext),
+ OutContext);
+ OutStreamer.EmitLabel(GOTRef);
+ OutStreamer.EmitValue(OffsExpr, 4);
+ OutStreamer.EmitLabel(NextInstr);
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::MFLR)
+ .addReg(MI->getOperand(0).getReg()));
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::LWZ)
+ .addReg(MI->getOperand(1).getReg())
+ .addImm(0)
+ .addReg(MI->getOperand(0).getReg()));
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADD4)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg())
+ .addReg(MI->getOperand(0).getReg()));
+ return;
+ }
+ case PPC::PPC32GOT: {
+ MCSymbol *GOTSymbol = OutContext.GetOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
+ const MCExpr *SymGotTlsL =
+ MCSymbolRefExpr::Create(GOTSymbol, MCSymbolRefExpr::VK_PPC_LO,
+ OutContext);
+ const MCExpr *SymGotTlsHA =
+ MCSymbolRefExpr::Create(GOTSymbol, MCSymbolRefExpr::VK_PPC_HA,
+ OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::LI)
+ .addReg(MI->getOperand(0).getReg())
+ .addExpr(SymGotTlsL));
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDIS)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(0).getReg())
+ .addExpr(SymGotTlsHA));
+ return;
+ }
+ case PPC::ADDIStlsgdHA: {
+ // Transform: %Xd = ADDIStlsgdHA %X2, <ga:@sym>
+ // Into: %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
+ assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
+ const MachineOperand &MO = MI->getOperand(2);
+ const GlobalValue *GValue = MO.getGlobal();
+ MCSymbol *MOSymbol = getSymbol(GValue);
+ const MCExpr *SymGotTlsGD =
+ MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
+ OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDIS8)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(PPC::X2)
+ .addExpr(SymGotTlsGD));
+ return;
+ }
+ case PPC::ADDItlsgdL:
+ // Transform: %Xd = ADDItlsgdL %Xs, <ga:@sym>
+ // Into: %Xd = ADDI8 %Xs, sym@got@tlsgd@l
+ case PPC::ADDItlsgdL32: {
+ // Transform: %Rd = ADDItlsgdL32 %Rs, <ga:@sym>
+ // Into: %Rd = ADDI %Rs, sym@got@tlsgd
+ const MachineOperand &MO = MI->getOperand(2);
+ const GlobalValue *GValue = MO.getGlobal();
+ MCSymbol *MOSymbol = getSymbol(GValue);
+ const MCExpr *SymGotTlsGD =
+ MCSymbolRefExpr::Create(MOSymbol, Subtarget.isPPC64() ?
+ MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO :
+ MCSymbolRefExpr::VK_PPC_GOT_TLSGD,
+ OutContext);
+ EmitToStreamer(OutStreamer,
+ MCInstBuilder(Subtarget.isPPC64() ? PPC::ADDI8 : PPC::ADDI)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg())
+ .addExpr(SymGotTlsGD));
+ return;
+ }
+ case PPC::GETtlsADDR:
+ // Transform: %X3 = GETtlsADDR %X3, <ga:@sym>
+ // Into: BL8_NOP_TLS __tls_get_addr(sym@tlsgd)
+ case PPC::GETtlsADDR32: {
+ // Transform: %R3 = GETtlsADDR32 %R3, <ga:@sym>
+ // Into: BL_TLS __tls_get_addr(sym@tlsgd)@PLT
+
+ StringRef Name = "__tls_get_addr";
+ MCSymbol *TlsGetAddr = OutContext.GetOrCreateSymbol(Name);
+ MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
+
+ if (!Subtarget.isPPC64() && !Subtarget.isDarwin() &&
+ TM.getRelocationModel() == Reloc::PIC_)
+ Kind = MCSymbolRefExpr::VK_PLT;
+ const MCSymbolRefExpr *TlsRef =
+ MCSymbolRefExpr::Create(TlsGetAddr, Kind, OutContext);
+ const MachineOperand &MO = MI->getOperand(2);
+ const GlobalValue *GValue = MO.getGlobal();
+ MCSymbol *MOSymbol = getSymbol(GValue);
+ const MCExpr *SymVar =
+ MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TLSGD,
+ OutContext);
+ EmitToStreamer(OutStreamer,
+ MCInstBuilder(Subtarget.isPPC64() ?
+ PPC::BL8_NOP_TLS : PPC::BL_TLS)
+ .addExpr(TlsRef)
+ .addExpr(SymVar));
+ return;
+ }
+ case PPC::ADDIStlsldHA: {
+ // Transform: %Xd = ADDIStlsldHA %X2, <ga:@sym>
+ // Into: %Xd = ADDIS8 %X2, sym@got@tlsld@ha
+ assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
+ const MachineOperand &MO = MI->getOperand(2);
+ const GlobalValue *GValue = MO.getGlobal();
+ MCSymbol *MOSymbol = getSymbol(GValue);
+ const MCExpr *SymGotTlsLD =
+ MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
+ OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDIS8)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(PPC::X2)
+ .addExpr(SymGotTlsLD));
+ return;
+ }
+ case PPC::ADDItlsldL:
+ // Transform: %Xd = ADDItlsldL %Xs, <ga:@sym>
+ // Into: %Xd = ADDI8 %Xs, sym@got@tlsld@l
+ case PPC::ADDItlsldL32: {
+ // Transform: %Rd = ADDItlsldL32 %Rs, <ga:@sym>
+ // Into: %Rd = ADDI %Rs, sym@got@tlsld
+ const MachineOperand &MO = MI->getOperand(2);
+ const GlobalValue *GValue = MO.getGlobal();
+ MCSymbol *MOSymbol = getSymbol(GValue);
+ const MCExpr *SymGotTlsLD =
+ MCSymbolRefExpr::Create(MOSymbol, Subtarget.isPPC64() ?
+ MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO :
+ MCSymbolRefExpr::VK_PPC_GOT_TLSLD,
+ OutContext);
+ EmitToStreamer(OutStreamer,
+ MCInstBuilder(Subtarget.isPPC64() ? PPC::ADDI8 : PPC::ADDI)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg())
+ .addExpr(SymGotTlsLD));
+ return;
+ }
+ case PPC::GETtlsldADDR:
+ // Transform: %X3 = GETtlsldADDR %X3, <ga:@sym>
+ // Into: BL8_NOP_TLS __tls_get_addr(sym@tlsld)
+ case PPC::GETtlsldADDR32: {
+ // Transform: %R3 = GETtlsldADDR32 %R3, <ga:@sym>
+ // Into: BL_TLS __tls_get_addr(sym@tlsld)@PLT
+
+ StringRef Name = "__tls_get_addr";
+ MCSymbol *TlsGetAddr = OutContext.GetOrCreateSymbol(Name);
+ MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
+
+ if (!Subtarget.isPPC64() && !Subtarget.isDarwin() &&
+ TM.getRelocationModel() == Reloc::PIC_)
+ Kind = MCSymbolRefExpr::VK_PLT;
+
+ const MCSymbolRefExpr *TlsRef =
+ MCSymbolRefExpr::Create(TlsGetAddr, Kind, OutContext);
+ const MachineOperand &MO = MI->getOperand(2);
+ const GlobalValue *GValue = MO.getGlobal();
+ MCSymbol *MOSymbol = getSymbol(GValue);
+ const MCExpr *SymVar =
+ MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TLSLD,
+ OutContext);
+ EmitToStreamer(OutStreamer,
+ MCInstBuilder(Subtarget.isPPC64() ?
+ PPC::BL8_NOP_TLS : PPC::BL_TLS)
+ .addExpr(TlsRef)
+ .addExpr(SymVar));
+ return;
+ }
+ case PPC::ADDISdtprelHA:
+ // Transform: %Xd = ADDISdtprelHA %X3, <ga:@sym>
+ // Into: %Xd = ADDIS8 %X3, sym@dtprel@ha
+ case PPC::ADDISdtprelHA32: {
+ // Transform: %Rd = ADDISdtprelHA32 %R3, <ga:@sym>
+ // Into: %Rd = ADDIS %R3, sym@dtprel@ha
+ const MachineOperand &MO = MI->getOperand(2);
+ const GlobalValue *GValue = MO.getGlobal();
+ MCSymbol *MOSymbol = getSymbol(GValue);
+ const MCExpr *SymDtprel =
+ MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
+ OutContext);
+ EmitToStreamer(OutStreamer,
+ MCInstBuilder(Subtarget.isPPC64() ? PPC::ADDIS8 : PPC::ADDIS)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(Subtarget.isPPC64() ? PPC::X3 : PPC::R3)
+ .addExpr(SymDtprel));
+ return;
+ }
+ case PPC::ADDIdtprelL:
+ // Transform: %Xd = ADDIdtprelL %Xs, <ga:@sym>
+ // Into: %Xd = ADDI8 %Xs, sym@dtprel@l
+ case PPC::ADDIdtprelL32: {
+ // Transform: %Rd = ADDIdtprelL32 %Rs, <ga:@sym>
+ // Into: %Rd = ADDI %Rs, sym@dtprel@l
+ const MachineOperand &MO = MI->getOperand(2);
+ const GlobalValue *GValue = MO.getGlobal();
+ MCSymbol *MOSymbol = getSymbol(GValue);
+ const MCExpr *SymDtprel =
+ MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
+ OutContext);
+ EmitToStreamer(OutStreamer,
+ MCInstBuilder(Subtarget.isPPC64() ? PPC::ADDI8 : PPC::ADDI)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg())
+ .addExpr(SymDtprel));
+ return;
+ }
+ case PPC::MFOCRF:
+ case PPC::MFOCRF8:
+ if (!Subtarget.hasMFOCRF()) {
+ // Transform: %R3 = MFOCRF %CR7
+ // Into: %R3 = MFCR ;; cr7
+ unsigned NewOpcode =
+ MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
+ OutStreamer.AddComment(PPCInstPrinter::
+ getRegisterName(MI->getOperand(1).getReg()));
+ EmitToStreamer(OutStreamer, MCInstBuilder(NewOpcode)
+ .addReg(MI->getOperand(0).getReg()));
+ return;
+ }
+ break;
+ case PPC::MTOCRF:
+ case PPC::MTOCRF8:
+ if (!Subtarget.hasMFOCRF()) {
+ // Transform: %CR7 = MTOCRF %R3
+ // Into: MTCRF mask, %R3 ;; cr7
+ unsigned NewOpcode =
+ MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
+ unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
+ ->getEncodingValue(MI->getOperand(0).getReg());
+ OutStreamer.AddComment(PPCInstPrinter::
+ getRegisterName(MI->getOperand(0).getReg()));
+ EmitToStreamer(OutStreamer, MCInstBuilder(NewOpcode)
+ .addImm(Mask)
+ .addReg(MI->getOperand(1).getReg()));
+ return;
+ }
+ break;
+ case PPC::LD:
+ case PPC::STD:
+ case PPC::LWA_32:
+ case PPC::LWA: {
+ // Verify alignment is legal, so we don't create relocations
+ // that can't be supported.
+ // FIXME: This test is currently disabled for Darwin. The test
+ // suite shows a handful of test cases that fail this check for
+ // Darwin. Those need to be investigated before this sanity test
+ // can be enabled for those subtargets.
+ if (!Subtarget.isDarwin()) {
+ unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ if (MO.isGlobal() && MO.getGlobal()->getAlignment() < 4)
+ llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
+ }
+ // Now process the instruction normally.
+ break;
+ }
+ }
+
+ LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
+ EmitToStreamer(OutStreamer, TmpInst);
+}
+
+void PPCLinuxAsmPrinter::EmitStartOfAsmFile(Module &M) {
+ if (Subtarget.isELFv2ABI()) {
+ PPCTargetStreamer *TS =
+ static_cast<PPCTargetStreamer *>(OutStreamer.getTargetStreamer());
+
+ if (TS)
+ TS->emitAbiVersion(2);
+ }
+
+ if (Subtarget.isPPC64() || TM.getRelocationModel() != Reloc::PIC_)
+ return AsmPrinter::EmitStartOfAsmFile(M);
+
+ // FIXME: The use of .got2 assumes large GOT model (-fPIC), which is not
+ // optimal for some cases. We should consider supporting small model (-fpic)
+ // as well in the future.
+ assert(TM.getCodeModel() != CodeModel::Small &&
+ "Small code model PIC is currently unsupported.");
+ OutStreamer.SwitchSection(OutContext.getELFSection(".got2",
+ ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC,
+ SectionKind::getReadOnly()));
+
+ MCSymbol *TOCSym = OutContext.GetOrCreateSymbol(Twine(".L.TOC."));
+ MCSymbol *CurrentPos = OutContext.CreateTempSymbol();
+
+ OutStreamer.EmitLabel(CurrentPos);
+
+ // The GOT pointer points to the middle of the GOT, in order to reference the
+ // entire 64kB range. 0x8000 is the midpoint.
+ const MCExpr *tocExpr =
+ MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(CurrentPos, OutContext),
+ MCConstantExpr::Create(0x8000, OutContext),
+ OutContext);
+
+ OutStreamer.EmitAssignment(TOCSym, tocExpr);
+
+ OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
+}
+
+void PPCLinuxAsmPrinter::EmitFunctionEntryLabel() {
+ // linux/ppc32 - Normal entry label.
+ if (!Subtarget.isPPC64() && TM.getRelocationModel() != Reloc::PIC_)
+ return AsmPrinter::EmitFunctionEntryLabel();
+
+ if (!Subtarget.isPPC64()) {
+ const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
+ if (PPCFI->usesPICBase()) {
+ MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol();
+ MCSymbol *PICBase = MF->getPICBaseSymbol();
+ OutStreamer.EmitLabel(RelocSymbol);
+
+ const MCExpr *OffsExpr =
+ MCBinaryExpr::CreateSub(
+ MCSymbolRefExpr::Create(OutContext.GetOrCreateSymbol(Twine(".L.TOC.")),
+ OutContext),
+ MCSymbolRefExpr::Create(PICBase, OutContext),
+ OutContext);
+ OutStreamer.EmitValue(OffsExpr, 4);
+ OutStreamer.EmitLabel(CurrentFnSym);
+ return;
+ } else
+ return AsmPrinter::EmitFunctionEntryLabel();
+ }
+
+ // ELFv2 ABI - Normal entry label.
+ if (Subtarget.isELFv2ABI())
+ return AsmPrinter::EmitFunctionEntryLabel();
+
+ // Emit an official procedure descriptor.
+ MCSectionSubPair Current = OutStreamer.getCurrentSection();
+ const MCSectionELF *Section = OutStreamer.getContext().getELFSection(".opd",
+ ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC,
+ SectionKind::getReadOnly());
+ OutStreamer.SwitchSection(Section);
+ OutStreamer.EmitLabel(CurrentFnSym);
+ OutStreamer.EmitValueToAlignment(8);
+ MCSymbol *Symbol1 =
+ OutContext.GetOrCreateSymbol(".L." + Twine(CurrentFnSym->getName()));
+ // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
+ // entry point.
+ OutStreamer.EmitValue(MCSymbolRefExpr::Create(Symbol1, OutContext),
+ 8 /*size*/);
+ MCSymbol *Symbol2 = OutContext.GetOrCreateSymbol(StringRef(".TOC."));
+ // Generates a R_PPC64_TOC relocation for TOC base insertion.
+ OutStreamer.EmitValue(MCSymbolRefExpr::Create(Symbol2,
+ MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext),
+ 8/*size*/);
+ // Emit a null environment pointer.
+ OutStreamer.EmitIntValue(0, 8 /* size */);
+ OutStreamer.SwitchSection(Current.first, Current.second);
+
+ MCSymbol *RealFnSym = OutContext.GetOrCreateSymbol(
+ ".L." + Twine(CurrentFnSym->getName()));
+ OutStreamer.EmitLabel(RealFnSym);
+ CurrentFnSymForSize = RealFnSym;
+}
+
+
+bool PPCLinuxAsmPrinter::doFinalization(Module &M) {
+ const DataLayout *TD = TM.getDataLayout();
+
+ bool isPPC64 = TD->getPointerSizeInBits() == 64;
+
+ PPCTargetStreamer &TS =
+ static_cast<PPCTargetStreamer &>(*OutStreamer.getTargetStreamer());
+
+ if (!TOC.empty()) {
+ const MCSectionELF *Section;
+
+ if (isPPC64)
+ Section = OutStreamer.getContext().getELFSection(".toc",
+ ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC,
+ SectionKind::getReadOnly());
+ else
+ Section = OutStreamer.getContext().getELFSection(".got2",
+ ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC,
+ SectionKind::getReadOnly());
+ OutStreamer.SwitchSection(Section);
+
+ for (MapVector<MCSymbol*, MCSymbol*>::iterator I = TOC.begin(),
+ E = TOC.end(); I != E; ++I) {
+ OutStreamer.EmitLabel(I->second);
+ MCSymbol *S = OutContext.GetOrCreateSymbol(I->first->getName());
+ if (isPPC64)
+ TS.emitTCEntry(*S);
+ else
+ OutStreamer.EmitSymbolValue(S, 4);
+ }
+ }
+
+ MachineModuleInfoELF &MMIELF =
+ MMI->getObjFileInfo<MachineModuleInfoELF>();
+
+ MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
+ if (!Stubs.empty()) {
+ OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ // L_foo$stub:
+ OutStreamer.EmitLabel(Stubs[i].first);
+ // .long _foo
+ OutStreamer.EmitValue(MCSymbolRefExpr::Create(Stubs[i].second.getPointer(),
+ OutContext),
+ isPPC64 ? 8 : 4/*size*/);
+ }
+
+ Stubs.clear();
+ OutStreamer.AddBlankLine();
+ }
+
+ return AsmPrinter::doFinalization(M);
+}
+
+/// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2.
+void PPCLinuxAsmPrinter::EmitFunctionBodyStart() {
+ // In the ELFv2 ABI, in functions that use the TOC register, we need to
+ // provide two entry points. The ABI guarantees that when calling the
+ // local entry point, r2 is set up by the caller to contain the TOC base
+ // for this function, and when calling the global entry point, r12 is set
+ // up by the caller to hold the address of the global entry point. We
+ // thus emit a prefix sequence along the following lines:
+ //
+ // func:
+ // # global entry point
+ // addis r2,r12,(.TOC.-func)@ha
+ // addi r2,r2,(.TOC.-func)@l
+ // .localentry func, .-func
+ // # local entry point, followed by function body
+ //
+ // This ensures we have r2 set up correctly while executing the function
+ // body, no matter which entry point is called.
+ if (Subtarget.isELFv2ABI()
+ // Only do all that if the function uses r2 in the first place.
+ && !MF->getRegInfo().use_empty(PPC::X2)) {
+
+ MCSymbol *GlobalEntryLabel = OutContext.CreateTempSymbol();
+ OutStreamer.EmitLabel(GlobalEntryLabel);
+ const MCSymbolRefExpr *GlobalEntryLabelExp =
+ MCSymbolRefExpr::Create(GlobalEntryLabel, OutContext);
+
+ MCSymbol *TOCSymbol = OutContext.GetOrCreateSymbol(StringRef(".TOC."));
+ const MCExpr *TOCDeltaExpr =
+ MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(TOCSymbol, OutContext),
+ GlobalEntryLabelExp, OutContext);
+
+ const MCExpr *TOCDeltaHi =
+ PPCMCExpr::CreateHa(TOCDeltaExpr, false, OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDIS)
+ .addReg(PPC::X2)
+ .addReg(PPC::X12)
+ .addExpr(TOCDeltaHi));
+
+ const MCExpr *TOCDeltaLo =
+ PPCMCExpr::CreateLo(TOCDeltaExpr, false, OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDI)
+ .addReg(PPC::X2)
+ .addReg(PPC::X2)
+ .addExpr(TOCDeltaLo));
+
+ MCSymbol *LocalEntryLabel = OutContext.CreateTempSymbol();
+ OutStreamer.EmitLabel(LocalEntryLabel);
+ const MCSymbolRefExpr *LocalEntryLabelExp =
+ MCSymbolRefExpr::Create(LocalEntryLabel, OutContext);
+ const MCExpr *LocalOffsetExp =
+ MCBinaryExpr::CreateSub(LocalEntryLabelExp,
+ GlobalEntryLabelExp, OutContext);
+
+ PPCTargetStreamer *TS =
+ static_cast<PPCTargetStreamer *>(OutStreamer.getTargetStreamer());
+
+ if (TS)
+ TS->emitLocalEntry(CurrentFnSym, LocalOffsetExp);
+ }
+}
+
+/// EmitFunctionBodyEnd - Print the traceback table before the .size
+/// directive.
+///
+void PPCLinuxAsmPrinter::EmitFunctionBodyEnd() {
+ // Only the 64-bit target requires a traceback table. For now,
+ // we only emit the word of zeroes that GDB requires to find
+ // the end of the function, and zeroes for the eight-byte
+ // mandatory fields.
+ // FIXME: We should fill in the eight-byte mandatory fields as described in
+ // the PPC64 ELF ABI (this is a low-priority item because GDB does not
+ // currently make use of these fields).
+ if (Subtarget.isPPC64()) {
+ OutStreamer.EmitIntValue(0, 4/*size*/);
+ OutStreamer.EmitIntValue(0, 8/*size*/);
+ }
+}
+
+void PPCDarwinAsmPrinter::EmitStartOfAsmFile(Module &M) {
+ static const char *const CPUDirectives[] = {
+ "",
+ "ppc",
+ "ppc440",
+ "ppc601",
+ "ppc602",
+ "ppc603",
+ "ppc7400",
+ "ppc750",
+ "ppc970",
+ "ppcA2",
+ "ppce500mc",
+ "ppce5500",
+ "power3",
+ "power4",
+ "power5",
+ "power5x",
+ "power6",
+ "power6x",
+ "power7",
+ "ppc64",
+ "ppc64le"
+ };
+
+ unsigned Directive = Subtarget.getDarwinDirective();
+ if (Subtarget.hasMFOCRF() && Directive < PPC::DIR_970)
+ Directive = PPC::DIR_970;
+ if (Subtarget.hasAltivec() && Directive < PPC::DIR_7400)
+ Directive = PPC::DIR_7400;
+ if (Subtarget.isPPC64() && Directive < PPC::DIR_64)
+ Directive = PPC::DIR_64;
+ assert(Directive <= PPC::DIR_64 && "Directive out of range.");
+
+ assert(Directive < array_lengthof(CPUDirectives) &&
+ "CPUDirectives[] might not be up-to-date!");
+ PPCTargetStreamer &TStreamer =
+ *static_cast<PPCTargetStreamer *>(OutStreamer.getTargetStreamer());
+ TStreamer.emitMachine(CPUDirectives[Directive]);
+
+ // Prime text sections so they are adjacent. This reduces the likelihood a
+ // large data or debug section causes a branch to exceed 16M limit.
+ const TargetLoweringObjectFileMachO &TLOFMacho =
+ static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
+ OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection());
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ OutStreamer.SwitchSection(
+ OutContext.getMachOSection("__TEXT", "__picsymbolstub1",
+ MachO::S_SYMBOL_STUBS |
+ MachO::S_ATTR_PURE_INSTRUCTIONS,
+ 32, SectionKind::getText()));
+ } else if (TM.getRelocationModel() == Reloc::DynamicNoPIC) {
+ OutStreamer.SwitchSection(
+ OutContext.getMachOSection("__TEXT","__symbol_stub1",
+ MachO::S_SYMBOL_STUBS |
+ MachO::S_ATTR_PURE_INSTRUCTIONS,
+ 16, SectionKind::getText()));
+ }
+ OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
+}
+
+static MCSymbol *GetLazyPtr(MCSymbol *Sym, MCContext &Ctx) {
+ // Remove $stub suffix, add $lazy_ptr.
+ StringRef NoStub = Sym->getName().substr(0, Sym->getName().size()-5);
+ return Ctx.GetOrCreateSymbol(NoStub + "$lazy_ptr");
+}
+
+static MCSymbol *GetAnonSym(MCSymbol *Sym, MCContext &Ctx) {
+ // Add $tmp suffix to $stub, yielding $stub$tmp.
+ return Ctx.GetOrCreateSymbol(Sym->getName() + "$tmp");
+}
+
+void PPCDarwinAsmPrinter::
+EmitFunctionStubs(const MachineModuleInfoMachO::SymbolListTy &Stubs) {
+ bool isPPC64 = TM.getDataLayout()->getPointerSizeInBits() == 64;
+ bool isDarwin = Subtarget.isDarwin();
+
+ const TargetLoweringObjectFileMachO &TLOFMacho =
+ static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
+
+ // .lazy_symbol_pointer
+ const MCSection *LSPSection = TLOFMacho.getLazySymbolPointerSection();
+
+ // Output stubs for dynamically-linked functions
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ const MCSection *StubSection =
+ OutContext.getMachOSection("__TEXT", "__picsymbolstub1",
+ MachO::S_SYMBOL_STUBS |
+ MachO::S_ATTR_PURE_INSTRUCTIONS,
+ 32, SectionKind::getText());
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ OutStreamer.SwitchSection(StubSection);
+ EmitAlignment(4);
+
+ MCSymbol *Stub = Stubs[i].first;
+ MCSymbol *RawSym = Stubs[i].second.getPointer();
+ MCSymbol *LazyPtr = GetLazyPtr(Stub, OutContext);
+ MCSymbol *AnonSymbol = GetAnonSym(Stub, OutContext);
+
+ OutStreamer.EmitLabel(Stub);
+ OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
+
+ const MCExpr *Anon = MCSymbolRefExpr::Create(AnonSymbol, OutContext);
+ const MCExpr *LazyPtrExpr = MCSymbolRefExpr::Create(LazyPtr, OutContext);
+ const MCExpr *Sub =
+ MCBinaryExpr::CreateSub(LazyPtrExpr, Anon, OutContext);
+
+ // mflr r0
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::MFLR).addReg(PPC::R0));
+ // bcl 20, 31, AnonSymbol
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::BCLalways).addExpr(Anon));
+ OutStreamer.EmitLabel(AnonSymbol);
+ // mflr r11
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::MFLR).addReg(PPC::R11));
+ // addis r11, r11, ha16(LazyPtr - AnonSymbol)
+ const MCExpr *SubHa16 = PPCMCExpr::CreateHa(Sub, isDarwin, OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDIS)
+ .addReg(PPC::R11)
+ .addReg(PPC::R11)
+ .addExpr(SubHa16));
+ // mtlr r0
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::MTLR).addReg(PPC::R0));
+
+ // ldu r12, lo16(LazyPtr - AnonSymbol)(r11)
+ // lwzu r12, lo16(LazyPtr - AnonSymbol)(r11)
+ const MCExpr *SubLo16 = PPCMCExpr::CreateLo(Sub, isDarwin, OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(isPPC64 ? PPC::LDU : PPC::LWZU)
+ .addReg(PPC::R12)
+ .addExpr(SubLo16).addExpr(SubLo16)
+ .addReg(PPC::R11));
+ // mtctr r12
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::MTCTR).addReg(PPC::R12));
+ // bctr
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::BCTR));
+
+ OutStreamer.SwitchSection(LSPSection);
+ OutStreamer.EmitLabel(LazyPtr);
+ OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
+
+ MCSymbol *DyldStubBindingHelper =
+ OutContext.GetOrCreateSymbol(StringRef("dyld_stub_binding_helper"));
+ if (isPPC64) {
+ // .quad dyld_stub_binding_helper
+ OutStreamer.EmitSymbolValue(DyldStubBindingHelper, 8);
+ } else {
+ // .long dyld_stub_binding_helper
+ OutStreamer.EmitSymbolValue(DyldStubBindingHelper, 4);
+ }
+ }
+ OutStreamer.AddBlankLine();
+ return;
+ }
+
+ const MCSection *StubSection =
+ OutContext.getMachOSection("__TEXT","__symbol_stub1",
+ MachO::S_SYMBOL_STUBS |
+ MachO::S_ATTR_PURE_INSTRUCTIONS,
+ 16, SectionKind::getText());
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ MCSymbol *Stub = Stubs[i].first;
+ MCSymbol *RawSym = Stubs[i].second.getPointer();
+ MCSymbol *LazyPtr = GetLazyPtr(Stub, OutContext);
+ const MCExpr *LazyPtrExpr = MCSymbolRefExpr::Create(LazyPtr, OutContext);
+
+ OutStreamer.SwitchSection(StubSection);
+ EmitAlignment(4);
+ OutStreamer.EmitLabel(Stub);
+ OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
+
+ // lis r11, ha16(LazyPtr)
+ const MCExpr *LazyPtrHa16 =
+ PPCMCExpr::CreateHa(LazyPtrExpr, isDarwin, OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::LIS)
+ .addReg(PPC::R11)
+ .addExpr(LazyPtrHa16));
+
+ // ldu r12, lo16(LazyPtr)(r11)
+ // lwzu r12, lo16(LazyPtr)(r11)
+ const MCExpr *LazyPtrLo16 =
+ PPCMCExpr::CreateLo(LazyPtrExpr, isDarwin, OutContext);
+ EmitToStreamer(OutStreamer, MCInstBuilder(isPPC64 ? PPC::LDU : PPC::LWZU)
+ .addReg(PPC::R12)
+ .addExpr(LazyPtrLo16).addExpr(LazyPtrLo16)
+ .addReg(PPC::R11));
+
+ // mtctr r12
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::MTCTR).addReg(PPC::R12));
+ // bctr
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::BCTR));
+
+ OutStreamer.SwitchSection(LSPSection);
+ OutStreamer.EmitLabel(LazyPtr);
+ OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
+
+ MCSymbol *DyldStubBindingHelper =
+ OutContext.GetOrCreateSymbol(StringRef("dyld_stub_binding_helper"));
+ if (isPPC64) {
+ // .quad dyld_stub_binding_helper
+ OutStreamer.EmitSymbolValue(DyldStubBindingHelper, 8);
+ } else {
+ // .long dyld_stub_binding_helper
+ OutStreamer.EmitSymbolValue(DyldStubBindingHelper, 4);
+ }
+ }
+
+ OutStreamer.AddBlankLine();
+}
+
+
+bool PPCDarwinAsmPrinter::doFinalization(Module &M) {
+ bool isPPC64 = TM.getDataLayout()->getPointerSizeInBits() == 64;
+
+ // Darwin/PPC always uses mach-o.
+ const TargetLoweringObjectFileMachO &TLOFMacho =
+ static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
+ MachineModuleInfoMachO &MMIMacho =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>();
+
+ MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetFnStubList();
+ if (!Stubs.empty())
+ EmitFunctionStubs(Stubs);
+
+ if (MAI->doesSupportExceptionHandling() && MMI) {
+ // Add the (possibly multiple) personalities to the set of global values.
+ // Only referenced functions get into the Personalities list.
+ const std::vector<const Function*> &Personalities = MMI->getPersonalities();
+ for (std::vector<const Function*>::const_iterator I = Personalities.begin(),
+ E = Personalities.end(); I != E; ++I) {
+ if (*I) {
+ MCSymbol *NLPSym = getSymbolWithGlobalValueBase(*I, "$non_lazy_ptr");
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ MMIMacho.getGVStubEntry(NLPSym);
+ StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(*I), true);
+ }
+ }
+ }
+
+ // Output stubs for dynamically-linked functions.
+ Stubs = MMIMacho.GetGVStubList();
+
+ // Output macho stubs for external and common global variables.
+ if (!Stubs.empty()) {
+ // Switch with ".non_lazy_symbol_pointer" directive.
+ OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
+ EmitAlignment(isPPC64 ? 3 : 2);
+
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ // L_foo$stub:
+ OutStreamer.EmitLabel(Stubs[i].first);
+ // .indirect_symbol _foo
+ MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
+ OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
+
+ if (MCSym.getInt())
+ // External to current translation unit.
+ OutStreamer.EmitIntValue(0, isPPC64 ? 8 : 4/*size*/);
+ else
+ // Internal to current translation unit.
+ //
+ // When we place the LSDA into the TEXT section, the type info pointers
+ // need to be indirect and pc-rel. We accomplish this by using NLPs.
+ // However, sometimes the types are local to the file. So we need to
+ // fill in the value for the NLP in those cases.
+ OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
+ OutContext),
+ isPPC64 ? 8 : 4/*size*/);
+ }
+
+ Stubs.clear();
+ OutStreamer.AddBlankLine();
+ }
+
+ Stubs = MMIMacho.GetHiddenGVStubList();
+ if (!Stubs.empty()) {
+ OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
+ EmitAlignment(isPPC64 ? 3 : 2);
+
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ // L_foo$stub:
+ OutStreamer.EmitLabel(Stubs[i].first);
+ // .long _foo
+ OutStreamer.EmitValue(MCSymbolRefExpr::
+ Create(Stubs[i].second.getPointer(),
+ OutContext),
+ isPPC64 ? 8 : 4/*size*/);
+ }
+
+ Stubs.clear();
+ OutStreamer.AddBlankLine();
+ }
+
+ // Funny Darwin hack: This flag tells the linker that no global symbols
+ // contain code that falls through to other global symbols (e.g. the obvious
+ // implementation of multiple entry points). If this doesn't occur, the
+ // linker can safely perform dead code stripping. Since LLVM never generates
+ // code that does this, it is always safe to set.
+ OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
+
+ return AsmPrinter::doFinalization(M);
+}
+
+/// createPPCAsmPrinterPass - Returns a pass that prints the PPC assembly code
+/// for a MachineFunction to the given output stream, in a format that the
+/// Darwin assembler can deal with.
+///
+static AsmPrinter *createPPCAsmPrinterPass(TargetMachine &tm,
+ MCStreamer &Streamer) {
+ const PPCSubtarget *Subtarget = &tm.getSubtarget<PPCSubtarget>();
+
+ if (Subtarget->isDarwin())
+ return new PPCDarwinAsmPrinter(tm, Streamer);
+ return new PPCLinuxAsmPrinter(tm, Streamer);
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializePowerPCAsmPrinter() {
+ TargetRegistry::RegisterAsmPrinter(ThePPC32Target, createPPCAsmPrinterPass);
+ TargetRegistry::RegisterAsmPrinter(ThePPC64Target, createPPCAsmPrinterPass);
+ TargetRegistry::RegisterAsmPrinter(ThePPC64LETarget, createPPCAsmPrinterPass);
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCBranchSelector.cpp b/contrib/llvm/lib/Target/PowerPC/PPCBranchSelector.cpp
new file mode 100644
index 0000000..ee90671
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCBranchSelector.cpp
@@ -0,0 +1,211 @@
+//===-- PPCBranchSelector.cpp - Emit long conditional branches ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that scans a machine function to determine which
+// conditional branches need more than 16 bits of displacement to reach their
+// target basic block. It does this in two passes; a calculation of basic block
+// positions pass, and a branch pseudo op to machine branch opcode pass. This
+// pass should be run last, just before the assembly printer.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPC.h"
+#include "MCTargetDesc/PPCPredicates.h"
+#include "PPCInstrBuilder.h"
+#include "PPCInstrInfo.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "ppc-branch-select"
+
+STATISTIC(NumExpanded, "Number of branches expanded to long format");
+
+namespace llvm {
+ void initializePPCBSelPass(PassRegistry&);
+}
+
+namespace {
+ struct PPCBSel : public MachineFunctionPass {
+ static char ID;
+ PPCBSel() : MachineFunctionPass(ID) {
+ initializePPCBSelPass(*PassRegistry::getPassRegistry());
+ }
+
+ /// BlockSizes - The sizes of the basic blocks in the function.
+ std::vector<unsigned> BlockSizes;
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "PowerPC Branch Selector";
+ }
+ };
+ char PPCBSel::ID = 0;
+}
+
+INITIALIZE_PASS(PPCBSel, "ppc-branch-select", "PowerPC Branch Selector",
+ false, false)
+
+/// createPPCBranchSelectionPass - returns an instance of the Branch Selection
+/// Pass
+///
+FunctionPass *llvm::createPPCBranchSelectionPass() {
+ return new PPCBSel();
+}
+
+bool PPCBSel::runOnMachineFunction(MachineFunction &Fn) {
+ const PPCInstrInfo *TII =
+ static_cast<const PPCInstrInfo*>(Fn.getTarget().getInstrInfo());
+ // Give the blocks of the function a dense, in-order, numbering.
+ Fn.RenumberBlocks();
+ BlockSizes.resize(Fn.getNumBlockIDs());
+
+ // Measure each MBB and compute a size for the entire function.
+ unsigned FuncSize = 0;
+ for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
+ ++MFI) {
+ MachineBasicBlock *MBB = MFI;
+
+ unsigned BlockSize = 0;
+ for (MachineBasicBlock::iterator MBBI = MBB->begin(), EE = MBB->end();
+ MBBI != EE; ++MBBI)
+ BlockSize += TII->GetInstSizeInBytes(MBBI);
+
+ BlockSizes[MBB->getNumber()] = BlockSize;
+ FuncSize += BlockSize;
+ }
+
+ // If the entire function is smaller than the displacement of a branch field,
+ // we know we don't need to shrink any branches in this function. This is a
+ // common case.
+ if (FuncSize < (1 << 15)) {
+ BlockSizes.clear();
+ return false;
+ }
+
+ // For each conditional branch, if the offset to its destination is larger
+ // than the offset field allows, transform it into a long branch sequence
+ // like this:
+ // short branch:
+ // bCC MBB
+ // long branch:
+ // b!CC $PC+8
+ // b MBB
+ //
+ bool MadeChange = true;
+ bool EverMadeChange = false;
+ while (MadeChange) {
+ // Iteratively expand branches until we reach a fixed point.
+ MadeChange = false;
+
+ for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
+ ++MFI) {
+ MachineBasicBlock &MBB = *MFI;
+ unsigned MBBStartOffset = 0;
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ I != E; ++I) {
+ MachineBasicBlock *Dest = nullptr;
+ if (I->getOpcode() == PPC::BCC && !I->getOperand(2).isImm())
+ Dest = I->getOperand(2).getMBB();
+ else if ((I->getOpcode() == PPC::BC || I->getOpcode() == PPC::BCn) &&
+ !I->getOperand(1).isImm())
+ Dest = I->getOperand(1).getMBB();
+ else if ((I->getOpcode() == PPC::BDNZ8 || I->getOpcode() == PPC::BDNZ ||
+ I->getOpcode() == PPC::BDZ8 || I->getOpcode() == PPC::BDZ) &&
+ !I->getOperand(0).isImm())
+ Dest = I->getOperand(0).getMBB();
+
+ if (!Dest) {
+ MBBStartOffset += TII->GetInstSizeInBytes(I);
+ continue;
+ }
+
+ // Determine the offset from the current branch to the destination
+ // block.
+ int BranchSize;
+ if (Dest->getNumber() <= MBB.getNumber()) {
+ // If this is a backwards branch, the delta is the offset from the
+ // start of this block to this branch, plus the sizes of all blocks
+ // from this block to the dest.
+ BranchSize = MBBStartOffset;
+
+ for (unsigned i = Dest->getNumber(), e = MBB.getNumber(); i != e; ++i)
+ BranchSize += BlockSizes[i];
+ } else {
+ // Otherwise, add the size of the blocks between this block and the
+ // dest to the number of bytes left in this block.
+ BranchSize = -MBBStartOffset;
+
+ for (unsigned i = MBB.getNumber(), e = Dest->getNumber(); i != e; ++i)
+ BranchSize += BlockSizes[i];
+ }
+
+ // If this branch is in range, ignore it.
+ if (isInt<16>(BranchSize)) {
+ MBBStartOffset += 4;
+ continue;
+ }
+
+ // Otherwise, we have to expand it to a long branch.
+ MachineInstr *OldBranch = I;
+ DebugLoc dl = OldBranch->getDebugLoc();
+
+ if (I->getOpcode() == PPC::BCC) {
+ // The BCC operands are:
+ // 0. PPC branch predicate
+ // 1. CR register
+ // 2. Target MBB
+ PPC::Predicate Pred = (PPC::Predicate)I->getOperand(0).getImm();
+ unsigned CRReg = I->getOperand(1).getReg();
+
+ // Jump over the uncond branch inst (i.e. $PC+8) on opposite condition.
+ BuildMI(MBB, I, dl, TII->get(PPC::BCC))
+ .addImm(PPC::InvertPredicate(Pred)).addReg(CRReg).addImm(2);
+ } else if (I->getOpcode() == PPC::BC) {
+ unsigned CRBit = I->getOperand(0).getReg();
+ BuildMI(MBB, I, dl, TII->get(PPC::BCn)).addReg(CRBit).addImm(2);
+ } else if (I->getOpcode() == PPC::BCn) {
+ unsigned CRBit = I->getOperand(0).getReg();
+ BuildMI(MBB, I, dl, TII->get(PPC::BC)).addReg(CRBit).addImm(2);
+ } else if (I->getOpcode() == PPC::BDNZ) {
+ BuildMI(MBB, I, dl, TII->get(PPC::BDZ)).addImm(2);
+ } else if (I->getOpcode() == PPC::BDNZ8) {
+ BuildMI(MBB, I, dl, TII->get(PPC::BDZ8)).addImm(2);
+ } else if (I->getOpcode() == PPC::BDZ) {
+ BuildMI(MBB, I, dl, TII->get(PPC::BDNZ)).addImm(2);
+ } else if (I->getOpcode() == PPC::BDZ8) {
+ BuildMI(MBB, I, dl, TII->get(PPC::BDNZ8)).addImm(2);
+ } else {
+ llvm_unreachable("Unhandled branch type!");
+ }
+
+ // Uncond branch to the real destination.
+ I = BuildMI(MBB, I, dl, TII->get(PPC::B)).addMBB(Dest);
+
+ // Remove the old branch from the function.
+ OldBranch->eraseFromParent();
+
+ // Remember that this instruction is 8-bytes, increase the size of the
+ // block by 4, remember to iterate.
+ BlockSizes[MBB.getNumber()] += 4;
+ MBBStartOffset += 8;
+ ++NumExpanded;
+ MadeChange = true;
+ }
+ }
+ EverMadeChange |= MadeChange;
+ }
+
+ BlockSizes.clear();
+ return true;
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp b/contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp
new file mode 100644
index 0000000..ec1e34d
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp
@@ -0,0 +1,663 @@
+//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass identifies loops where we can generate the PPC branch instructions
+// that decrement and test the count register (CTR) (bdnz and friends).
+//
+// The pattern that defines the induction variable can changed depending on
+// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
+// normalizes induction variables, and the Loop Strength Reduction pass
+// run by 'llc' may also make changes to the induction variable.
+//
+// Criteria for CTR loops:
+// - Countable loops (w/ ind. var for a trip count)
+// - Try inner-most loops first
+// - No nested CTR loops.
+// - No function calls in loops.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar.h"
+#include "PPC.h"
+#include "PPCTargetMachine.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/PassSupport.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+
+#ifndef NDEBUG
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#endif
+
+#include <algorithm>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "ctrloops"
+
+#ifndef NDEBUG
+static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1));
+#endif
+
+STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
+
+namespace llvm {
+ void initializePPCCTRLoopsPass(PassRegistry&);
+#ifndef NDEBUG
+ void initializePPCCTRLoopsVerifyPass(PassRegistry&);
+#endif
+}
+
+namespace {
+ struct PPCCTRLoops : public FunctionPass {
+
+#ifndef NDEBUG
+ static int Counter;
+#endif
+
+ public:
+ static char ID;
+
+ PPCCTRLoops() : FunctionPass(ID), TM(nullptr) {
+ initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
+ }
+ PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
+ initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<LoopInfo>();
+ AU.addPreserved<LoopInfo>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addRequired<ScalarEvolution>();
+ }
+
+ private:
+ bool mightUseCTR(const Triple &TT, BasicBlock *BB);
+ bool convertToCTRLoop(Loop *L);
+
+ private:
+ PPCTargetMachine *TM;
+ LoopInfo *LI;
+ ScalarEvolution *SE;
+ const DataLayout *DL;
+ DominatorTree *DT;
+ const TargetLibraryInfo *LibInfo;
+ };
+
+ char PPCCTRLoops::ID = 0;
+#ifndef NDEBUG
+ int PPCCTRLoops::Counter = 0;
+#endif
+
+#ifndef NDEBUG
+ struct PPCCTRLoopsVerify : public MachineFunctionPass {
+ public:
+ static char ID;
+
+ PPCCTRLoopsVerify() : MachineFunctionPass(ID) {
+ initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ private:
+ MachineDominatorTree *MDT;
+ };
+
+ char PPCCTRLoopsVerify::ID = 0;
+#endif // NDEBUG
+} // end anonymous namespace
+
+INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
+ false, false)
+
+FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) {
+ return new PPCCTRLoops(TM);
+}
+
+#ifndef NDEBUG
+INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
+ "PowerPC CTR Loops Verify", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
+ "PowerPC CTR Loops Verify", false, false)
+
+FunctionPass *llvm::createPPCCTRLoopsVerify() {
+ return new PPCCTRLoopsVerify();
+}
+#endif // NDEBUG
+
+bool PPCCTRLoops::runOnFunction(Function &F) {
+ LI = &getAnalysis<LoopInfo>();
+ SE = &getAnalysis<ScalarEvolution>();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
+ LibInfo = getAnalysisIfAvailable<TargetLibraryInfo>();
+
+ bool MadeChange = false;
+
+ for (LoopInfo::iterator I = LI->begin(), E = LI->end();
+ I != E; ++I) {
+ Loop *L = *I;
+ if (!L->getParentLoop())
+ MadeChange |= convertToCTRLoop(L);
+ }
+
+ return MadeChange;
+}
+
+static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) {
+ if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
+ return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
+
+ return false;
+}
+
+bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) {
+ for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
+ J != JE; ++J) {
+ if (CallInst *CI = dyn_cast<CallInst>(J)) {
+ if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
+ // Inline ASM is okay, unless it clobbers the ctr register.
+ InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
+ for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
+ InlineAsm::ConstraintInfo &C = CIV[i];
+ if (C.Type != InlineAsm::isInput)
+ for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
+ if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
+ return true;
+ }
+
+ continue;
+ }
+
+ if (!TM)
+ return true;
+ const TargetLowering *TLI = TM->getTargetLowering();
+
+ if (Function *F = CI->getCalledFunction()) {
+ // Most intrinsics don't become function calls, but some might.
+ // sin, cos, exp and log are always calls.
+ unsigned Opcode;
+ if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
+ switch (F->getIntrinsicID()) {
+ default: continue;
+
+// VisualStudio defines setjmp as _setjmp
+#if defined(_MSC_VER) && defined(setjmp) && \
+ !defined(setjmp_undefined_for_msvc)
+# pragma push_macro("setjmp")
+# undef setjmp
+# define setjmp_undefined_for_msvc
+#endif
+
+ case Intrinsic::setjmp:
+
+#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
+ // let's return it to _setjmp state
+# pragma pop_macro("setjmp")
+# undef setjmp_undefined_for_msvc
+#endif
+
+ case Intrinsic::longjmp:
+
+ // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
+ // because, although it does clobber the counter register, the
+ // control can't then return to inside the loop unless there is also
+ // an eh_sjlj_setjmp.
+ case Intrinsic::eh_sjlj_setjmp:
+
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove:
+ case Intrinsic::memset:
+ case Intrinsic::powi:
+ case Intrinsic::log:
+ case Intrinsic::log2:
+ case Intrinsic::log10:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::pow:
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ return true;
+ case Intrinsic::copysign:
+ if (CI->getArgOperand(0)->getType()->getScalarType()->
+ isPPC_FP128Ty())
+ return true;
+ else
+ continue; // ISD::FCOPYSIGN is never a library call.
+ case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
+ case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
+ case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
+ case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
+ case Intrinsic::rint: Opcode = ISD::FRINT; break;
+ case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
+ case Intrinsic::round: Opcode = ISD::FROUND; break;
+ }
+ }
+
+ // PowerPC does not use [US]DIVREM or other library calls for
+ // operations on regular types which are not otherwise library calls
+ // (i.e. soft float or atomics). If adapting for targets that do,
+ // additional care is required here.
+
+ LibFunc::Func Func;
+ if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
+ LibInfo->getLibFunc(F->getName(), Func) &&
+ LibInfo->hasOptimizedCodeGen(Func)) {
+ // Non-read-only functions are never treated as intrinsics.
+ if (!CI->onlyReadsMemory())
+ return true;
+
+ // Conversion happens only for FP calls.
+ if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
+ return true;
+
+ switch (Func) {
+ default: return true;
+ case LibFunc::copysign:
+ case LibFunc::copysignf:
+ continue; // ISD::FCOPYSIGN is never a library call.
+ case LibFunc::copysignl:
+ return true;
+ case LibFunc::fabs:
+ case LibFunc::fabsf:
+ case LibFunc::fabsl:
+ continue; // ISD::FABS is never a library call.
+ case LibFunc::sqrt:
+ case LibFunc::sqrtf:
+ case LibFunc::sqrtl:
+ Opcode = ISD::FSQRT; break;
+ case LibFunc::floor:
+ case LibFunc::floorf:
+ case LibFunc::floorl:
+ Opcode = ISD::FFLOOR; break;
+ case LibFunc::nearbyint:
+ case LibFunc::nearbyintf:
+ case LibFunc::nearbyintl:
+ Opcode = ISD::FNEARBYINT; break;
+ case LibFunc::ceil:
+ case LibFunc::ceilf:
+ case LibFunc::ceill:
+ Opcode = ISD::FCEIL; break;
+ case LibFunc::rint:
+ case LibFunc::rintf:
+ case LibFunc::rintl:
+ Opcode = ISD::FRINT; break;
+ case LibFunc::round:
+ case LibFunc::roundf:
+ case LibFunc::roundl:
+ Opcode = ISD::FROUND; break;
+ case LibFunc::trunc:
+ case LibFunc::truncf:
+ case LibFunc::truncl:
+ Opcode = ISD::FTRUNC; break;
+ }
+
+ MVT VTy =
+ TLI->getSimpleValueType(CI->getArgOperand(0)->getType(), true);
+ if (VTy == MVT::Other)
+ return true;
+
+ if (TLI->isOperationLegalOrCustom(Opcode, VTy))
+ continue;
+ else if (VTy.isVector() &&
+ TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType()))
+ continue;
+
+ return true;
+ }
+ }
+
+ return true;
+ } else if (isa<BinaryOperator>(J) &&
+ J->getType()->getScalarType()->isPPC_FP128Ty()) {
+ // Most operations on ppc_f128 values become calls.
+ return true;
+ } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
+ isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
+ CastInst *CI = cast<CastInst>(J);
+ if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
+ CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
+ isLargeIntegerTy(TT.isArch32Bit(), CI->getSrcTy()->getScalarType()) ||
+ isLargeIntegerTy(TT.isArch32Bit(), CI->getDestTy()->getScalarType()))
+ return true;
+ } else if (isLargeIntegerTy(TT.isArch32Bit(),
+ J->getType()->getScalarType()) &&
+ (J->getOpcode() == Instruction::UDiv ||
+ J->getOpcode() == Instruction::SDiv ||
+ J->getOpcode() == Instruction::URem ||
+ J->getOpcode() == Instruction::SRem)) {
+ return true;
+ } else if (TT.isArch32Bit() &&
+ isLargeIntegerTy(false, J->getType()->getScalarType()) &&
+ (J->getOpcode() == Instruction::Shl ||
+ J->getOpcode() == Instruction::AShr ||
+ J->getOpcode() == Instruction::LShr)) {
+ // Only on PPC32, for 128-bit integers (specifically not 64-bit
+ // integers), these might be runtime calls.
+ return true;
+ } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
+ // On PowerPC, indirect jumps use the counter register.
+ return true;
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
+ if (!TM)
+ return true;
+ const TargetLowering *TLI = TM->getTargetLowering();
+
+ if (TLI->supportJumpTables() &&
+ SI->getNumCases()+1 >= (unsigned) TLI->getMinimumJumpTableEntries())
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool PPCCTRLoops::convertToCTRLoop(Loop *L) {
+ bool MadeChange = false;
+
+ Triple TT = Triple(L->getHeader()->getParent()->getParent()->
+ getTargetTriple());
+ if (!TT.isArch32Bit() && !TT.isArch64Bit())
+ return MadeChange; // Unknown arch. type.
+
+ // Process nested loops first.
+ for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
+ MadeChange |= convertToCTRLoop(*I);
+ }
+
+ // If a nested loop has been converted, then we can't convert this loop.
+ if (MadeChange)
+ return MadeChange;
+
+#ifndef NDEBUG
+ // Stop trying after reaching the limit (if any).
+ int Limit = CTRLoopLimit;
+ if (Limit >= 0) {
+ if (Counter >= CTRLoopLimit)
+ return false;
+ Counter++;
+ }
+#endif
+
+ // We don't want to spill/restore the counter register, and so we don't
+ // want to use the counter register if the loop contains calls.
+ for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
+ I != IE; ++I)
+ if (mightUseCTR(TT, *I))
+ return MadeChange;
+
+ SmallVector<BasicBlock*, 4> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+
+ BasicBlock *CountedExitBlock = nullptr;
+ const SCEV *ExitCount = nullptr;
+ BranchInst *CountedExitBranch = nullptr;
+ for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
+ IE = ExitingBlocks.end(); I != IE; ++I) {
+ const SCEV *EC = SE->getExitCount(L, *I);
+ DEBUG(dbgs() << "Exit Count for " << *L << " from block " <<
+ (*I)->getName() << ": " << *EC << "\n");
+ if (isa<SCEVCouldNotCompute>(EC))
+ continue;
+ if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
+ if (ConstEC->getValue()->isZero())
+ continue;
+ } else if (!SE->isLoopInvariant(EC, L))
+ continue;
+
+ if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32))
+ continue;
+
+ // We now have a loop-invariant count of loop iterations (which is not the
+ // constant zero) for which we know that this loop will not exit via this
+ // exisiting block.
+
+ // We need to make sure that this block will run on every loop iteration.
+ // For this to be true, we must dominate all blocks with backedges. Such
+ // blocks are in-loop predecessors to the header block.
+ bool NotAlways = false;
+ for (pred_iterator PI = pred_begin(L->getHeader()),
+ PIE = pred_end(L->getHeader()); PI != PIE; ++PI) {
+ if (!L->contains(*PI))
+ continue;
+
+ if (!DT->dominates(*I, *PI)) {
+ NotAlways = true;
+ break;
+ }
+ }
+
+ if (NotAlways)
+ continue;
+
+ // Make sure this blocks ends with a conditional branch.
+ Instruction *TI = (*I)->getTerminator();
+ if (!TI)
+ continue;
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (!BI->isConditional())
+ continue;
+
+ CountedExitBranch = BI;
+ } else
+ continue;
+
+ // Note that this block may not be the loop latch block, even if the loop
+ // has a latch block.
+ CountedExitBlock = *I;
+ ExitCount = EC;
+ break;
+ }
+
+ if (!CountedExitBlock)
+ return MadeChange;
+
+ BasicBlock *Preheader = L->getLoopPreheader();
+
+ // If we don't have a preheader, then insert one. If we already have a
+ // preheader, then we can use it (except if the preheader contains a use of
+ // the CTR register because some such uses might be reordered by the
+ // selection DAG after the mtctr instruction).
+ if (!Preheader || mightUseCTR(TT, Preheader))
+ Preheader = InsertPreheaderForLoop(L, this);
+ if (!Preheader)
+ return MadeChange;
+
+ DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n");
+
+ // Insert the count into the preheader and replace the condition used by the
+ // selected branch.
+ MadeChange = true;
+
+ SCEVExpander SCEVE(*SE, "loopcnt");
+ LLVMContext &C = SE->getContext();
+ Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) :
+ Type::getInt32Ty(C);
+ if (!ExitCount->getType()->isPointerTy() &&
+ ExitCount->getType() != CountType)
+ ExitCount = SE->getZeroExtendExpr(ExitCount, CountType);
+ ExitCount = SE->getAddExpr(ExitCount,
+ SE->getConstant(CountType, 1));
+ Value *ECValue = SCEVE.expandCodeFor(ExitCount, CountType,
+ Preheader->getTerminator());
+
+ IRBuilder<> CountBuilder(Preheader->getTerminator());
+ Module *M = Preheader->getParent()->getParent();
+ Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr,
+ CountType);
+ CountBuilder.CreateCall(MTCTRFunc, ECValue);
+
+ IRBuilder<> CondBuilder(CountedExitBranch);
+ Value *DecFunc =
+ Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero);
+ Value *NewCond = CondBuilder.CreateCall(DecFunc);
+ Value *OldCond = CountedExitBranch->getCondition();
+ CountedExitBranch->setCondition(NewCond);
+
+ // The false branch must exit the loop.
+ if (!L->contains(CountedExitBranch->getSuccessor(0)))
+ CountedExitBranch->swapSuccessors();
+
+ // The old condition may be dead now, and may have even created a dead PHI
+ // (the original induction variable).
+ RecursivelyDeleteTriviallyDeadInstructions(OldCond);
+ DeleteDeadPHIs(CountedExitBlock);
+
+ ++NumCTRLoops;
+ return MadeChange;
+}
+
+#ifndef NDEBUG
+static bool clobbersCTR(const MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg()) {
+ if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8))
+ return true;
+ } else if (MO.isRegMask()) {
+ if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool verifyCTRBranch(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I) {
+ MachineBasicBlock::iterator BI = I;
+ SmallSet<MachineBasicBlock *, 16> Visited;
+ SmallVector<MachineBasicBlock *, 8> Preds;
+ bool CheckPreds;
+
+ if (I == MBB->begin()) {
+ Visited.insert(MBB);
+ goto queue_preds;
+ } else
+ --I;
+
+check_block:
+ Visited.insert(MBB);
+ if (I == MBB->end())
+ goto queue_preds;
+
+ CheckPreds = true;
+ for (MachineBasicBlock::iterator IE = MBB->begin();; --I) {
+ unsigned Opc = I->getOpcode();
+ if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) {
+ CheckPreds = false;
+ break;
+ }
+
+ if (I != BI && clobbersCTR(I)) {
+ DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" <<
+ MBB->getFullName() << ") instruction " << *I <<
+ " clobbers CTR, invalidating " << "BB#" <<
+ BI->getParent()->getNumber() << " (" <<
+ BI->getParent()->getFullName() << ") instruction " <<
+ *BI << "\n");
+ return false;
+ }
+
+ if (I == IE)
+ break;
+ }
+
+ if (!CheckPreds && Preds.empty())
+ return true;
+
+ if (CheckPreds) {
+queue_preds:
+ if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) {
+ DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" <<
+ BI->getParent()->getNumber() << " (" <<
+ BI->getParent()->getFullName() << ") instruction " <<
+ *BI << "\n");
+ return false;
+ }
+
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PIE = MBB->pred_end(); PI != PIE; ++PI)
+ Preds.push_back(*PI);
+ }
+
+ do {
+ MBB = Preds.pop_back_val();
+ if (!Visited.count(MBB)) {
+ I = MBB->getLastNonDebugInstr();
+ goto check_block;
+ }
+ } while (!Preds.empty());
+
+ return true;
+}
+
+bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) {
+ MDT = &getAnalysis<MachineDominatorTree>();
+
+ // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before
+ // any other instructions that might clobber the ctr register.
+ for (MachineFunction::iterator I = MF.begin(), IE = MF.end();
+ I != IE; ++I) {
+ MachineBasicBlock *MBB = I;
+ if (!MDT->isReachableFromEntry(MBB))
+ continue;
+
+ for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(),
+ MIIE = MBB->end(); MII != MIIE; ++MII) {
+ unsigned Opc = MII->getOpcode();
+ if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ ||
+ Opc == PPC::BDZ8 || Opc == PPC::BDZ)
+ if (!verifyCTRBranch(MBB, MII))
+ llvm_unreachable("Invalid PPC CTR loop!");
+ }
+ }
+
+ return false;
+}
+#endif // NDEBUG
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCCallingConv.td b/contrib/llvm/lib/Target/PowerPC/PPCCallingConv.td
new file mode 100644
index 0000000..222760a
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCCallingConv.td
@@ -0,0 +1,199 @@
+//===- PPCCallingConv.td - Calling Conventions for PowerPC -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This describes the calling conventions for the PowerPC 32- and 64-bit
+// architectures.
+//
+//===----------------------------------------------------------------------===//
+
+/// CCIfSubtarget - Match if the current subtarget has a feature F.
+class CCIfSubtarget<string F, CCAction A>
+ : CCIf<!strconcat("State.getTarget().getSubtarget<PPCSubtarget>().", F), A>;
+class CCIfNotSubtarget<string F, CCAction A>
+ : CCIf<!strconcat("!State.getTarget().getSubtarget<PPCSubtarget>().", F), A>;
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Convention
+//===----------------------------------------------------------------------===//
+
+// Return-value convention for PowerPC
+def RetCC_PPC : CallingConv<[
+ // On PPC64, integer return values are always promoted to i64
+ CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
+ CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>,
+
+ CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
+ CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6]>>,
+ CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
+
+ // Floating point types returned as "direct" go into F1 .. F8; note that
+ // only the ELFv2 ABI fully utilizes all these registers.
+ CCIfType<[f32], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
+ CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
+
+ // Vector types returned as "direct" go into V2 .. V9; note that only the
+ // ELFv2 ABI fully utilizes all these registers.
+ CCIfType<[v16i8, v8i16, v4i32, v4f32],
+ CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>,
+ CCIfType<[v2f64, v2i64],
+ CCAssignToReg<[VSH2, VSH3, VSH4, VSH5, VSH6, VSH7, VSH8, VSH9]>>
+]>;
+
+
+// Note that we don't currently have calling conventions for 64-bit
+// PowerPC, but handle all the complexities of the ABI in the lowering
+// logic. FIXME: See if the logic can be simplified with use of CCs.
+// This may require some extensions to current table generation.
+
+// Simple calling convention for 64-bit ELF PowerPC fast isel.
+// Only handle ints and floats. All ints are promoted to i64.
+// Vector types and quadword ints are not handled.
+def CC_PPC64_ELF_FIS : CallingConv<[
+ CCIfType<[i1], CCPromoteToType<i64>>,
+ CCIfType<[i8], CCPromoteToType<i64>>,
+ CCIfType<[i16], CCPromoteToType<i64>>,
+ CCIfType<[i32], CCPromoteToType<i64>>,
+ CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6, X7, X8, X9, X10]>>,
+ CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>
+]>;
+
+// Simple return-value convention for 64-bit ELF PowerPC fast isel.
+// All small ints are promoted to i64. Vector types, quadword ints,
+// and multiple register returns are "supported" to avoid compile
+// errors, but none are handled by the fast selector.
+def RetCC_PPC64_ELF_FIS : CallingConv<[
+ CCIfType<[i1], CCPromoteToType<i64>>,
+ CCIfType<[i8], CCPromoteToType<i64>>,
+ CCIfType<[i16], CCPromoteToType<i64>>,
+ CCIfType<[i32], CCPromoteToType<i64>>,
+ CCIfType<[i64], CCAssignToReg<[X3, X4]>>,
+ CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
+ CCIfType<[f32], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
+ CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
+ CCIfType<[v16i8, v8i16, v4i32, v4f32],
+ CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>,
+ CCIfType<[v2f64, v2i64],
+ CCAssignToReg<[VSH2, VSH3, VSH4, VSH5, VSH6, VSH7, VSH8, VSH9]>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// PowerPC System V Release 4 32-bit ABI
+//===----------------------------------------------------------------------===//
+
+def CC_PPC32_SVR4_Common : CallingConv<[
+ CCIfType<[i1], CCPromoteToType<i32>>,
+
+ // The ABI requires i64 to be passed in two adjacent registers with the first
+ // register having an odd register number.
+ CCIfType<[i32], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>,
+
+ // The first 8 integer arguments are passed in integer registers.
+ CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
+
+ // Make sure the i64 words from a long double are either both passed in
+ // registers or both passed on the stack.
+ CCIfType<[f64], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignFPArgRegs">>>,
+
+ // FP values are passed in F1 - F8.
+ CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
+
+ // Split arguments have an alignment of 8 bytes on the stack.
+ CCIfType<[i32], CCIfSplit<CCAssignToStack<4, 8>>>,
+
+ CCIfType<[i32], CCAssignToStack<4, 4>>,
+
+ // Floats are stored in double precision format, thus they have the same
+ // alignment and size as doubles.
+ CCIfType<[f32,f64], CCAssignToStack<8, 8>>,
+
+ // Vectors get 16-byte stack slots that are 16-byte aligned.
+ CCIfType<[v16i8, v8i16, v4i32, v4f32, v2f64, v2i64], CCAssignToStack<16, 16>>
+]>;
+
+// This calling convention puts vector arguments always on the stack. It is used
+// to assign vector arguments which belong to the variable portion of the
+// parameter list of a variable argument function.
+def CC_PPC32_SVR4_VarArg : CallingConv<[
+ CCDelegateTo<CC_PPC32_SVR4_Common>
+]>;
+
+// In contrast to CC_PPC32_SVR4_VarArg, this calling convention first tries to
+// put vector arguments in vector registers before putting them on the stack.
+def CC_PPC32_SVR4 : CallingConv<[
+ // The first 12 Vector arguments are passed in AltiVec registers.
+ CCIfType<[v16i8, v8i16, v4i32, v4f32],
+ CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13]>>,
+ CCIfType<[v2f64, v2i64],
+ CCAssignToReg<[VSH2, VSH3, VSH4, VSH5, VSH6, VSH7, VSH8, VSH9,
+ VSH10, VSH11, VSH12, VSH13]>>,
+
+ CCDelegateTo<CC_PPC32_SVR4_Common>
+]>;
+
+// Helper "calling convention" to handle aggregate by value arguments.
+// Aggregate by value arguments are always placed in the local variable space
+// of the caller. This calling convention is only used to assign those stack
+// offsets in the callers stack frame.
+//
+// Still, the address of the aggregate copy in the callers stack frame is passed
+// in a GPR (or in the parameter list area if all GPRs are allocated) from the
+// caller to the callee. The location for the address argument is assigned by
+// the CC_PPC32_SVR4 calling convention.
+//
+// The only purpose of CC_PPC32_SVR4_Custom_Dummy is to skip arguments which are
+// not passed by value.
+
+def CC_PPC32_SVR4_ByVal : CallingConv<[
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ CCCustom<"CC_PPC32_SVR4_Custom_Dummy">
+]>;
+
+def CSR_Altivec : CalleeSavedRegs<(add V20, V21, V22, V23, V24, V25, V26, V27,
+ V28, V29, V30, V31)>;
+
+def CSR_Darwin32 : CalleeSavedRegs<(add R13, R14, R15, R16, R17, R18, R19, R20,
+ R21, R22, R23, R24, R25, R26, R27, R28,
+ R29, R30, R31, F14, F15, F16, F17, F18,
+ F19, F20, F21, F22, F23, F24, F25, F26,
+ F27, F28, F29, F30, F31, CR2, CR3, CR4
+ )>;
+
+def CSR_Darwin32_Altivec : CalleeSavedRegs<(add CSR_Darwin32, CSR_Altivec)>;
+
+def CSR_SVR432 : CalleeSavedRegs<(add R14, R15, R16, R17, R18, R19, R20,
+ R21, R22, R23, R24, R25, R26, R27, R28,
+ R29, R30, R31, F14, F15, F16, F17, F18,
+ F19, F20, F21, F22, F23, F24, F25, F26,
+ F27, F28, F29, F30, F31, CR2, CR3, CR4
+ )>;
+
+def CSR_SVR432_Altivec : CalleeSavedRegs<(add CSR_SVR432, CSR_Altivec)>;
+
+def CSR_Darwin64 : CalleeSavedRegs<(add X13, X14, X15, X16, X17, X18, X19, X20,
+ X21, X22, X23, X24, X25, X26, X27, X28,
+ X29, X30, X31, F14, F15, F16, F17, F18,
+ F19, F20, F21, F22, F23, F24, F25, F26,
+ F27, F28, F29, F30, F31, CR2, CR3, CR4
+ )>;
+
+def CSR_Darwin64_Altivec : CalleeSavedRegs<(add CSR_Darwin64, CSR_Altivec)>;
+
+def CSR_SVR464 : CalleeSavedRegs<(add X14, X15, X16, X17, X18, X19, X20,
+ X21, X22, X23, X24, X25, X26, X27, X28,
+ X29, X30, X31, F14, F15, F16, F17, F18,
+ F19, F20, F21, F22, F23, F24, F25, F26,
+ F27, F28, F29, F30, F31, CR2, CR3, CR4
+ )>;
+
+
+def CSR_SVR464_Altivec : CalleeSavedRegs<(add CSR_SVR464, CSR_Altivec)>;
+
+def CSR_NoRegs : CalleeSavedRegs<(add)>;
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCCodeEmitter.cpp b/contrib/llvm/lib/Target/PowerPC/PPCCodeEmitter.cpp
new file mode 100644
index 0000000..0875523
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCCodeEmitter.cpp
@@ -0,0 +1,293 @@
+//===-- PPCCodeEmitter.cpp - JIT Code Emitter for PowerPC -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PowerPC 32-bit CodeEmitter and associated machinery to
+// JIT-compile bitcode to native PowerPC.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPC.h"
+#include "PPCRelocations.h"
+#include "PPCTargetMachine.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/IR/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+namespace {
+ class PPCCodeEmitter : public MachineFunctionPass {
+ TargetMachine &TM;
+ JITCodeEmitter &MCE;
+ MachineModuleInfo *MMI;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineModuleInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ static char ID;
+
+ /// MovePCtoLROffset - When/if we see a MovePCtoLR instruction, we record
+ /// its address in the function into this pointer.
+ void *MovePCtoLROffset;
+ public:
+
+ PPCCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
+ : MachineFunctionPass(ID), TM(tm), MCE(mce) {}
+
+ /// getBinaryCodeForInstr - This function, generated by the
+ /// CodeEmitterGenerator using TableGen, produces the binary encoding for
+ /// machine instructions.
+ uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
+
+
+ MachineRelocation GetRelocation(const MachineOperand &MO,
+ unsigned RelocID) const;
+
+ /// getMachineOpValue - evaluates the MachineOperand of a given MachineInstr
+ unsigned getMachineOpValue(const MachineInstr &MI,
+ const MachineOperand &MO) const;
+
+ unsigned get_crbitm_encoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getDirectBrEncoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getCondBrEncoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getAbsDirectBrEncoding(const MachineInstr &MI,
+ unsigned OpNo) const;
+ unsigned getAbsCondBrEncoding(const MachineInstr &MI, unsigned OpNo) const;
+
+ unsigned getImm16Encoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getMemRIEncoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getMemRIXEncoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getTLSRegEncoding(const MachineInstr &MI, unsigned OpNo) const;
+ unsigned getTLSCallEncoding(const MachineInstr &MI, unsigned OpNo) const;
+
+ const char *getPassName() const override {
+ return "PowerPC Machine Code Emitter";
+ }
+
+ /// runOnMachineFunction - emits the given MachineFunction to memory
+ ///
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ /// emitBasicBlock - emits the given MachineBasicBlock to memory
+ ///
+ void emitBasicBlock(MachineBasicBlock &MBB);
+ };
+}
+
+char PPCCodeEmitter::ID = 0;
+
+/// createPPCCodeEmitterPass - Return a pass that emits the collected PPC code
+/// to the specified MCE object.
+FunctionPass *llvm::createPPCJITCodeEmitterPass(PPCTargetMachine &TM,
+ JITCodeEmitter &JCE) {
+ return new PPCCodeEmitter(TM, JCE);
+}
+
+bool PPCCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
+ assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
+ MF.getTarget().getRelocationModel() != Reloc::Static) &&
+ "JIT relocation model must be set to static or default!");
+
+ MMI = &getAnalysis<MachineModuleInfo>();
+ MCE.setModuleInfo(MMI);
+ do {
+ MovePCtoLROffset = nullptr;
+ MCE.startFunction(MF);
+ for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
+ emitBasicBlock(*BB);
+ } while (MCE.finishFunction(MF));
+
+ return false;
+}
+
+void PPCCodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
+ MCE.StartMachineBasicBlock(&MBB);
+
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
+ const MachineInstr &MI = *I;
+ MCE.processDebugLoc(MI.getDebugLoc(), true);
+ switch (MI.getOpcode()) {
+ default:
+ MCE.emitWordBE(getBinaryCodeForInstr(MI));
+ break;
+ case TargetOpcode::CFI_INSTRUCTION:
+ break;
+ case TargetOpcode::EH_LABEL:
+ MCE.emitLabel(MI.getOperand(0).getMCSymbol());
+ break;
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ break; // pseudo opcode, no side effects
+ case PPC::MovePCtoLR:
+ case PPC::MovePCtoLR8:
+ assert(TM.getRelocationModel() == Reloc::PIC_);
+ MovePCtoLROffset = (void*)MCE.getCurrentPCValue();
+ MCE.emitWordBE(0x48000005); // bl 1
+ break;
+ }
+ MCE.processDebugLoc(MI.getDebugLoc(), false);
+ }
+}
+
+unsigned PPCCodeEmitter::get_crbitm_encoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ const MachineOperand &MO = MI.getOperand(OpNo);
+ assert((MI.getOpcode() == PPC::MTOCRF || MI.getOpcode() == PPC::MTOCRF8 ||
+ MI.getOpcode() == PPC::MFOCRF || MI.getOpcode() == PPC::MFOCRF8) &&
+ (MO.getReg() >= PPC::CR0 && MO.getReg() <= PPC::CR7));
+ return 0x80 >> TM.getRegisterInfo()->getEncodingValue(MO.getReg());
+}
+
+MachineRelocation PPCCodeEmitter::GetRelocation(const MachineOperand &MO,
+ unsigned RelocID) const {
+ // If in PIC mode, we need to encode the negated address of the
+ // 'movepctolr' into the unrelocated field. After relocation, we'll have
+ // &gv-&movepctolr-4 in the imm field. Once &movepctolr is added to the imm
+ // field, we get &gv. This doesn't happen for branch relocations, which are
+ // always implicitly pc relative.
+ intptr_t Cst = 0;
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ assert(MovePCtoLROffset && "MovePCtoLR not seen yet?");
+ Cst = -(intptr_t)MovePCtoLROffset - 4;
+ }
+
+ if (MO.isGlobal())
+ return MachineRelocation::getGV(MCE.getCurrentPCOffset(), RelocID,
+ const_cast<GlobalValue *>(MO.getGlobal()),
+ Cst, isa<Function>(MO.getGlobal()));
+ if (MO.isSymbol())
+ return MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
+ RelocID, MO.getSymbolName(), Cst);
+ if (MO.isCPI())
+ return MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
+ RelocID, MO.getIndex(), Cst);
+
+ if (MO.isMBB())
+ return MachineRelocation::getBB(MCE.getCurrentPCOffset(),
+ RelocID, MO.getMBB());
+
+ assert(MO.isJTI());
+ return MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
+ RelocID, MO.getIndex(), Cst);
+}
+
+unsigned PPCCodeEmitter::getDirectBrEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ const MachineOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO);
+
+ MCE.addRelocation(GetRelocation(MO, PPC::reloc_pcrel_bx));
+ return 0;
+}
+
+unsigned PPCCodeEmitter::getCondBrEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ const MachineOperand &MO = MI.getOperand(OpNo);
+ MCE.addRelocation(GetRelocation(MO, PPC::reloc_pcrel_bcx));
+ return 0;
+}
+
+unsigned PPCCodeEmitter::getAbsDirectBrEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ const MachineOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO);
+
+ llvm_unreachable("Absolute branch relocations unsupported on the old JIT.");
+}
+
+unsigned PPCCodeEmitter::getAbsCondBrEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("Absolute branch relocations unsupported on the old JIT.");
+}
+
+unsigned PPCCodeEmitter::getImm16Encoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ const MachineOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO);
+
+ unsigned RelocID;
+ switch (MO.getTargetFlags() & PPCII::MO_ACCESS_MASK) {
+ default: llvm_unreachable("Unsupported target operand flags!");
+ case PPCII::MO_LO: RelocID = PPC::reloc_absolute_low; break;
+ case PPCII::MO_HA: RelocID = PPC::reloc_absolute_high; break;
+ }
+
+ MCE.addRelocation(GetRelocation(MO, RelocID));
+ return 0;
+}
+
+unsigned PPCCodeEmitter::getMemRIEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ // Encode (imm, reg) as a memri, which has the low 16-bits as the
+ // displacement and the next 5 bits as the register #.
+ assert(MI.getOperand(OpNo+1).isReg());
+ unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1)) << 16;
+
+ const MachineOperand &MO = MI.getOperand(OpNo);
+ if (MO.isImm())
+ return (getMachineOpValue(MI, MO) & 0xFFFF) | RegBits;
+
+ // Add a fixup for the displacement field.
+ MCE.addRelocation(GetRelocation(MO, PPC::reloc_absolute_low));
+ return RegBits;
+}
+
+unsigned PPCCodeEmitter::getMemRIXEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ // Encode (imm, reg) as a memrix, which has the low 14-bits as the
+ // displacement and the next 5 bits as the register #.
+ assert(MI.getOperand(OpNo+1).isReg());
+ unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1)) << 14;
+
+ const MachineOperand &MO = MI.getOperand(OpNo);
+ if (MO.isImm())
+ return ((getMachineOpValue(MI, MO) >> 2) & 0x3FFF) | RegBits;
+
+ MCE.addRelocation(GetRelocation(MO, PPC::reloc_absolute_low_ix));
+ return RegBits;
+}
+
+
+unsigned PPCCodeEmitter::getTLSRegEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("TLS not supported on the old JIT.");
+ return 0;
+}
+
+unsigned PPCCodeEmitter::getTLSCallEncoding(const MachineInstr &MI,
+ unsigned OpNo) const {
+ llvm_unreachable("TLS not supported on the old JIT.");
+ return 0;
+}
+
+unsigned PPCCodeEmitter::getMachineOpValue(const MachineInstr &MI,
+ const MachineOperand &MO) const {
+
+ if (MO.isReg()) {
+ // MTOCRF/MFOCRF should go through get_crbitm_encoding for the CR operand.
+ // The GPR operand should come through here though.
+ assert((MI.getOpcode() != PPC::MTOCRF && MI.getOpcode() != PPC::MTOCRF8 &&
+ MI.getOpcode() != PPC::MFOCRF && MI.getOpcode() != PPC::MFOCRF8) ||
+ MO.getReg() < PPC::CR0 || MO.getReg() > PPC::CR7);
+ return TM.getRegisterInfo()->getEncodingValue(MO.getReg());
+ }
+
+ assert(MO.isImm() &&
+ "Relocation required in an instruction that we cannot encode!");
+ return MO.getImm();
+}
+
+#include "PPCGenCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCFastISel.cpp b/contrib/llvm/lib/Target/PowerPC/PPCFastISel.cpp
new file mode 100644
index 0000000..2e524d6
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCFastISel.cpp
@@ -0,0 +1,2282 @@
+//===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PowerPC-specific support for the FastISel class. Some
+// of the target-specific code is generated by tablegen in the file
+// PPCGenFastISel.inc, which is #included here.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPC.h"
+#include "MCTargetDesc/PPCPredicates.h"
+#include "PPCISelLowering.h"
+#include "PPCSubtarget.h"
+#include "PPCTargetMachine.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+
+//===----------------------------------------------------------------------===//
+//
+// TBD:
+// FastLowerArguments: Handle simple cases.
+// PPCMaterializeGV: Handle TLS.
+// SelectCall: Handle function pointers.
+// SelectCall: Handle multi-register return values.
+// SelectCall: Optimize away nops for local calls.
+// processCallArgs: Handle bit-converted arguments.
+// finishCall: Handle multi-register return values.
+// PPCComputeAddress: Handle parameter references as FrameIndex's.
+// PPCEmitCmp: Handle immediate as operand 1.
+// SelectCall: Handle small byval arguments.
+// SelectIntrinsicCall: Implement.
+// SelectSelect: Implement.
+// Consider factoring isTypeLegal into the base class.
+// Implement switches and jump tables.
+//
+//===----------------------------------------------------------------------===//
+using namespace llvm;
+
+#define DEBUG_TYPE "ppcfastisel"
+
+namespace {
+
+typedef struct Address {
+ enum {
+ RegBase,
+ FrameIndexBase
+ } BaseType;
+
+ union {
+ unsigned Reg;
+ int FI;
+ } Base;
+
+ long Offset;
+
+ // Innocuous defaults for our address.
+ Address()
+ : BaseType(RegBase), Offset(0) {
+ Base.Reg = 0;
+ }
+} Address;
+
+class PPCFastISel final : public FastISel {
+
+ const TargetMachine &TM;
+ const TargetInstrInfo &TII;
+ const TargetLowering &TLI;
+ const PPCSubtarget *PPCSubTarget;
+ LLVMContext *Context;
+
+ public:
+ explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo)
+ : FastISel(FuncInfo, LibInfo),
+ TM(FuncInfo.MF->getTarget()),
+ TII(*TM.getInstrInfo()),
+ TLI(*TM.getTargetLowering()),
+ PPCSubTarget(&TM.getSubtarget<PPCSubtarget>()),
+ Context(&FuncInfo.Fn->getContext()) { }
+
+ // Backend specific FastISel code.
+ private:
+ bool TargetSelectInstruction(const Instruction *I) override;
+ unsigned TargetMaterializeConstant(const Constant *C) override;
+ unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
+ bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI) override;
+ bool FastLowerArguments() override;
+ unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
+ unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ uint64_t Imm);
+ unsigned FastEmitInst_r(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill);
+ unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill);
+
+ // Instruction selection routines.
+ private:
+ bool SelectLoad(const Instruction *I);
+ bool SelectStore(const Instruction *I);
+ bool SelectBranch(const Instruction *I);
+ bool SelectIndirectBr(const Instruction *I);
+ bool SelectFPExt(const Instruction *I);
+ bool SelectFPTrunc(const Instruction *I);
+ bool SelectIToFP(const Instruction *I, bool IsSigned);
+ bool SelectFPToI(const Instruction *I, bool IsSigned);
+ bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
+ bool SelectCall(const Instruction *I);
+ bool SelectRet(const Instruction *I);
+ bool SelectTrunc(const Instruction *I);
+ bool SelectIntExt(const Instruction *I);
+
+ // Utility routines.
+ private:
+ bool isTypeLegal(Type *Ty, MVT &VT);
+ bool isLoadTypeLegal(Type *Ty, MVT &VT);
+ bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
+ bool isZExt, unsigned DestReg);
+ bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
+ const TargetRegisterClass *RC, bool IsZExt = true,
+ unsigned FP64LoadOpc = PPC::LFD);
+ bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
+ bool PPCComputeAddress(const Value *Obj, Address &Addr);
+ void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
+ unsigned &IndexReg);
+ bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ unsigned DestReg, bool IsZExt);
+ unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
+ unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
+ unsigned PPCMaterializeInt(const Constant *C, MVT VT);
+ unsigned PPCMaterialize32BitInt(int64_t Imm,
+ const TargetRegisterClass *RC);
+ unsigned PPCMaterialize64BitInt(int64_t Imm,
+ const TargetRegisterClass *RC);
+ unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
+ unsigned SrcReg, bool IsSigned);
+ unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
+
+ // Call handling routines.
+ private:
+ bool processCallArgs(SmallVectorImpl<Value*> &Args,
+ SmallVectorImpl<unsigned> &ArgRegs,
+ SmallVectorImpl<MVT> &ArgVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+ SmallVectorImpl<unsigned> &RegArgs,
+ CallingConv::ID CC,
+ unsigned &NumBytes,
+ bool IsVarArg);
+ void finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+ const Instruction *I, CallingConv::ID CC,
+ unsigned &NumBytes, bool IsVarArg);
+ CCAssignFn *usePPC32CCs(unsigned Flag);
+
+ private:
+ #include "PPCGenFastISel.inc"
+
+};
+
+} // end anonymous namespace
+
+#include "PPCGenCallingConv.inc"
+
+// Function whose sole purpose is to kill compiler warnings
+// stemming from unused functions included from PPCGenCallingConv.inc.
+CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
+ if (Flag == 1)
+ return CC_PPC32_SVR4;
+ else if (Flag == 2)
+ return CC_PPC32_SVR4_ByVal;
+ else if (Flag == 3)
+ return CC_PPC32_SVR4_VarArg;
+ else
+ return RetCC_PPC;
+}
+
+static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
+ switch (Pred) {
+ // These are not representable with any single compare.
+ case CmpInst::FCMP_FALSE:
+ case CmpInst::FCMP_UEQ:
+ case CmpInst::FCMP_UGT:
+ case CmpInst::FCMP_UGE:
+ case CmpInst::FCMP_ULT:
+ case CmpInst::FCMP_ULE:
+ case CmpInst::FCMP_UNE:
+ case CmpInst::FCMP_TRUE:
+ default:
+ return Optional<PPC::Predicate>();
+
+ case CmpInst::FCMP_OEQ:
+ case CmpInst::ICMP_EQ:
+ return PPC::PRED_EQ;
+
+ case CmpInst::FCMP_OGT:
+ case CmpInst::ICMP_UGT:
+ case CmpInst::ICMP_SGT:
+ return PPC::PRED_GT;
+
+ case CmpInst::FCMP_OGE:
+ case CmpInst::ICMP_UGE:
+ case CmpInst::ICMP_SGE:
+ return PPC::PRED_GE;
+
+ case CmpInst::FCMP_OLT:
+ case CmpInst::ICMP_ULT:
+ case CmpInst::ICMP_SLT:
+ return PPC::PRED_LT;
+
+ case CmpInst::FCMP_OLE:
+ case CmpInst::ICMP_ULE:
+ case CmpInst::ICMP_SLE:
+ return PPC::PRED_LE;
+
+ case CmpInst::FCMP_ONE:
+ case CmpInst::ICMP_NE:
+ return PPC::PRED_NE;
+
+ case CmpInst::FCMP_ORD:
+ return PPC::PRED_NU;
+
+ case CmpInst::FCMP_UNO:
+ return PPC::PRED_UN;
+ }
+}
+
+// Determine whether the type Ty is simple enough to be handled by
+// fast-isel, and return its equivalent machine type in VT.
+// FIXME: Copied directly from ARM -- factor into base class?
+bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
+ EVT Evt = TLI.getValueType(Ty, true);
+
+ // Only handle simple types.
+ if (Evt == MVT::Other || !Evt.isSimple()) return false;
+ VT = Evt.getSimpleVT();
+
+ // Handle all legal types, i.e. a register that will directly hold this
+ // value.
+ return TLI.isTypeLegal(VT);
+}
+
+// Determine whether the type Ty is simple enough to be handled by
+// fast-isel as a load target, and return its equivalent machine type in VT.
+bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
+ if (isTypeLegal(Ty, VT)) return true;
+
+ // If this is a type than can be sign or zero-extended to a basic operation
+ // go ahead and accept it now.
+ if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
+ return true;
+ }
+
+ return false;
+}
+
+// Given a value Obj, create an Address object Addr that represents its
+// address. Return false if we can't handle it.
+bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
+ const User *U = nullptr;
+ unsigned Opcode = Instruction::UserOp1;
+ if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
+ // Don't walk into other basic blocks unless the object is an alloca from
+ // another block, otherwise it may not have a virtual register assigned.
+ if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
+ FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
+ Opcode = I->getOpcode();
+ U = I;
+ }
+ } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::BitCast:
+ // Look through bitcasts.
+ return PPCComputeAddress(U->getOperand(0), Addr);
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs.
+ if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return PPCComputeAddress(U->getOperand(0), Addr);
+ break;
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints.
+ if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return PPCComputeAddress(U->getOperand(0), Addr);
+ break;
+ case Instruction::GetElementPtr: {
+ Address SavedAddr = Addr;
+ long TmpOffset = Addr.Offset;
+
+ // Iterate through the GEP folding the constants into offsets where
+ // we can.
+ gep_type_iterator GTI = gep_type_begin(U);
+ for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
+ II != IE; ++II, ++GTI) {
+ const Value *Op = *II;
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
+ TmpOffset += SL->getElementOffset(Idx);
+ } else {
+ uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
+ for (;;) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // Constant-offset addressing.
+ TmpOffset += CI->getSExtValue() * S;
+ break;
+ }
+ if (canFoldAddIntoGEP(U, Op)) {
+ // A compatible add with a constant operand. Fold the constant.
+ ConstantInt *CI =
+ cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
+ TmpOffset += CI->getSExtValue() * S;
+ // Iterate on the other operand.
+ Op = cast<AddOperator>(Op)->getOperand(0);
+ continue;
+ }
+ // Unsupported
+ goto unsupported_gep;
+ }
+ }
+ }
+
+ // Try to grab the base operand now.
+ Addr.Offset = TmpOffset;
+ if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
+
+ // We failed, restore everything and try the other options.
+ Addr = SavedAddr;
+
+ unsupported_gep:
+ break;
+ }
+ case Instruction::Alloca: {
+ const AllocaInst *AI = cast<AllocaInst>(Obj);
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ Addr.BaseType = Address::FrameIndexBase;
+ Addr.Base.FI = SI->second;
+ return true;
+ }
+ break;
+ }
+ }
+
+ // FIXME: References to parameters fall through to the behavior
+ // below. They should be able to reference a frame index since
+ // they are stored to the stack, so we can get "ld rx, offset(r1)"
+ // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
+ // just contain the parameter. Try to handle this with a FI.
+
+ // Try to get this in a register if nothing else has worked.
+ if (Addr.Base.Reg == 0)
+ Addr.Base.Reg = getRegForValue(Obj);
+
+ // Prevent assignment of base register to X0, which is inappropriate
+ // for loads and stores alike.
+ if (Addr.Base.Reg != 0)
+ MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
+
+ return Addr.Base.Reg != 0;
+}
+
+// Fix up some addresses that can't be used directly. For example, if
+// an offset won't fit in an instruction field, we may need to move it
+// into an index register.
+void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
+ unsigned &IndexReg) {
+
+ // Check whether the offset fits in the instruction field.
+ if (!isInt<16>(Addr.Offset))
+ UseOffset = false;
+
+ // If this is a stack pointer and the offset needs to be simplified then
+ // put the alloca address into a register, set the base type back to
+ // register and continue. This should almost never happen.
+ if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
+ unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
+ ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
+ Addr.Base.Reg = ResultReg;
+ Addr.BaseType = Address::RegBase;
+ }
+
+ if (!UseOffset) {
+ IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
+ : Type::getInt64Ty(*Context));
+ const ConstantInt *Offset =
+ ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
+ IndexReg = PPCMaterializeInt(Offset, MVT::i64);
+ assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
+ }
+}
+
+// Emit a load instruction if possible, returning true if we succeeded,
+// otherwise false. See commentary below for how the register class of
+// the load is determined.
+bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
+ const TargetRegisterClass *RC,
+ bool IsZExt, unsigned FP64LoadOpc) {
+ unsigned Opc;
+ bool UseOffset = true;
+
+ // If ResultReg is given, it determines the register class of the load.
+ // Otherwise, RC is the register class to use. If the result of the
+ // load isn't anticipated in this block, both may be zero, in which
+ // case we must make a conservative guess. In particular, don't assign
+ // R0 or X0 to the result register, as the result may be used in a load,
+ // store, add-immediate, or isel that won't permit this. (Though
+ // perhaps the spill and reload of live-exit values would handle this?)
+ const TargetRegisterClass *UseRC =
+ (ResultReg ? MRI.getRegClass(ResultReg) :
+ (RC ? RC :
+ (VT == MVT::f64 ? &PPC::F8RCRegClass :
+ (VT == MVT::f32 ? &PPC::F4RCRegClass :
+ (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
+ &PPC::GPRC_and_GPRC_NOR0RegClass)))));
+
+ bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
+
+ switch (VT.SimpleTy) {
+ default: // e.g., vector types not handled
+ return false;
+ case MVT::i8:
+ Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
+ break;
+ case MVT::i16:
+ Opc = (IsZExt ?
+ (Is32BitInt ? PPC::LHZ : PPC::LHZ8) :
+ (Is32BitInt ? PPC::LHA : PPC::LHA8));
+ break;
+ case MVT::i32:
+ Opc = (IsZExt ?
+ (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
+ (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
+ if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
+ UseOffset = false;
+ break;
+ case MVT::i64:
+ Opc = PPC::LD;
+ assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
+ "64-bit load with 32-bit target??");
+ UseOffset = ((Addr.Offset & 3) == 0);
+ break;
+ case MVT::f32:
+ Opc = PPC::LFS;
+ break;
+ case MVT::f64:
+ Opc = FP64LoadOpc;
+ break;
+ }
+
+ // If necessary, materialize the offset into a register and use
+ // the indexed form. Also handle stack pointers with special needs.
+ unsigned IndexReg = 0;
+ PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
+ if (ResultReg == 0)
+ ResultReg = createResultReg(UseRC);
+
+ // Note: If we still have a frame index here, we know the offset is
+ // in range, as otherwise PPCSimplifyAddress would have converted it
+ // into a RegBase.
+ if (Addr.BaseType == Address::FrameIndexBase) {
+
+ MachineMemOperand *MMO =
+ FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
+ MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
+ MFI.getObjectAlignment(Addr.Base.FI));
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
+
+ // Base reg with offset in range.
+ } else if (UseOffset) {
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addImm(Addr.Offset).addReg(Addr.Base.Reg);
+
+ // Indexed form.
+ } else {
+ // Get the RR opcode corresponding to the RI one. FIXME: It would be
+ // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
+ // is hard to get at.
+ switch (Opc) {
+ default: llvm_unreachable("Unexpected opcode!");
+ case PPC::LBZ: Opc = PPC::LBZX; break;
+ case PPC::LBZ8: Opc = PPC::LBZX8; break;
+ case PPC::LHZ: Opc = PPC::LHZX; break;
+ case PPC::LHZ8: Opc = PPC::LHZX8; break;
+ case PPC::LHA: Opc = PPC::LHAX; break;
+ case PPC::LHA8: Opc = PPC::LHAX8; break;
+ case PPC::LWZ: Opc = PPC::LWZX; break;
+ case PPC::LWZ8: Opc = PPC::LWZX8; break;
+ case PPC::LWA: Opc = PPC::LWAX; break;
+ case PPC::LWA_32: Opc = PPC::LWAX_32; break;
+ case PPC::LD: Opc = PPC::LDX; break;
+ case PPC::LFS: Opc = PPC::LFSX; break;
+ case PPC::LFD: Opc = PPC::LFDX; break;
+ }
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(Addr.Base.Reg).addReg(IndexReg);
+ }
+
+ return true;
+}
+
+// Attempt to fast-select a load instruction.
+bool PPCFastISel::SelectLoad(const Instruction *I) {
+ // FIXME: No atomic loads are supported.
+ if (cast<LoadInst>(I)->isAtomic())
+ return false;
+
+ // Verify we have a legal type before going any further.
+ MVT VT;
+ if (!isLoadTypeLegal(I->getType(), VT))
+ return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!PPCComputeAddress(I->getOperand(0), Addr))
+ return false;
+
+ // Look at the currently assigned register for this instruction
+ // to determine the required register class. This is necessary
+ // to constrain RA from using R0/X0 when this is not legal.
+ unsigned AssignedReg = FuncInfo.ValueMap[I];
+ const TargetRegisterClass *RC =
+ AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
+
+ unsigned ResultReg = 0;
+ if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
+ return false;
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+// Emit a store instruction to store SrcReg at Addr.
+bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
+ assert(SrcReg && "Nothing to store!");
+ unsigned Opc;
+ bool UseOffset = true;
+
+ const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
+ bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
+
+ switch (VT.SimpleTy) {
+ default: // e.g., vector types not handled
+ return false;
+ case MVT::i8:
+ Opc = Is32BitInt ? PPC::STB : PPC::STB8;
+ break;
+ case MVT::i16:
+ Opc = Is32BitInt ? PPC::STH : PPC::STH8;
+ break;
+ case MVT::i32:
+ assert(Is32BitInt && "Not GPRC for i32??");
+ Opc = PPC::STW;
+ break;
+ case MVT::i64:
+ Opc = PPC::STD;
+ UseOffset = ((Addr.Offset & 3) == 0);
+ break;
+ case MVT::f32:
+ Opc = PPC::STFS;
+ break;
+ case MVT::f64:
+ Opc = PPC::STFD;
+ break;
+ }
+
+ // If necessary, materialize the offset into a register and use
+ // the indexed form. Also handle stack pointers with special needs.
+ unsigned IndexReg = 0;
+ PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
+
+ // Note: If we still have a frame index here, we know the offset is
+ // in range, as otherwise PPCSimplifyAddress would have converted it
+ // into a RegBase.
+ if (Addr.BaseType == Address::FrameIndexBase) {
+ MachineMemOperand *MMO =
+ FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
+ MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
+ MFI.getObjectAlignment(Addr.Base.FI));
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
+ .addReg(SrcReg)
+ .addImm(Addr.Offset)
+ .addFrameIndex(Addr.Base.FI)
+ .addMemOperand(MMO);
+
+ // Base reg with offset in range.
+ } else if (UseOffset)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
+ .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
+
+ // Indexed form.
+ else {
+ // Get the RR opcode corresponding to the RI one. FIXME: It would be
+ // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
+ // is hard to get at.
+ switch (Opc) {
+ default: llvm_unreachable("Unexpected opcode!");
+ case PPC::STB: Opc = PPC::STBX; break;
+ case PPC::STH : Opc = PPC::STHX; break;
+ case PPC::STW : Opc = PPC::STWX; break;
+ case PPC::STB8: Opc = PPC::STBX8; break;
+ case PPC::STH8: Opc = PPC::STHX8; break;
+ case PPC::STW8: Opc = PPC::STWX8; break;
+ case PPC::STD: Opc = PPC::STDX; break;
+ case PPC::STFS: Opc = PPC::STFSX; break;
+ case PPC::STFD: Opc = PPC::STFDX; break;
+ }
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
+ .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg);
+ }
+
+ return true;
+}
+
+// Attempt to fast-select a store instruction.
+bool PPCFastISel::SelectStore(const Instruction *I) {
+ Value *Op0 = I->getOperand(0);
+ unsigned SrcReg = 0;
+
+ // FIXME: No atomics loads are supported.
+ if (cast<StoreInst>(I)->isAtomic())
+ return false;
+
+ // Verify we have a legal type before going any further.
+ MVT VT;
+ if (!isLoadTypeLegal(Op0->getType(), VT))
+ return false;
+
+ // Get the value to be stored into a register.
+ SrcReg = getRegForValue(Op0);
+ if (SrcReg == 0)
+ return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!PPCComputeAddress(I->getOperand(1), Addr))
+ return false;
+
+ if (!PPCEmitStore(VT, SrcReg, Addr))
+ return false;
+
+ return true;
+}
+
+// Attempt to fast-select a branch instruction.
+bool PPCFastISel::SelectBranch(const Instruction *I) {
+ const BranchInst *BI = cast<BranchInst>(I);
+ MachineBasicBlock *BrBB = FuncInfo.MBB;
+ MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+ // For now, just try the simplest case where it's fed by a compare.
+ if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
+ Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
+ if (!OptPPCPred)
+ return false;
+
+ PPC::Predicate PPCPred = OptPPCPred.getValue();
+
+ // Take advantage of fall-through opportunities.
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ PPCPred = PPC::InvertPredicate(PPCPred);
+ }
+
+ unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
+
+ if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
+ CondReg))
+ return false;
+
+ BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
+ .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
+ FastEmitBranch(FBB, DbgLoc);
+ FuncInfo.MBB->addSuccessor(TBB);
+ return true;
+
+ } else if (const ConstantInt *CI =
+ dyn_cast<ConstantInt>(BI->getCondition())) {
+ uint64_t Imm = CI->getZExtValue();
+ MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
+ FastEmitBranch(Target, DbgLoc);
+ return true;
+ }
+
+ // FIXME: ARM looks for a case where the block containing the compare
+ // has been split from the block containing the branch. If this happens,
+ // there is a vreg available containing the result of the compare. I'm
+ // not sure we can do much, as we've lost the predicate information with
+ // the compare instruction -- we have a 4-bit CR but don't know which bit
+ // to test here.
+ return false;
+}
+
+// Attempt to emit a compare of the two source values. Signed and unsigned
+// comparisons are supported. Return false if we can't handle it.
+bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
+ bool IsZExt, unsigned DestReg) {
+ Type *Ty = SrcValue1->getType();
+ EVT SrcEVT = TLI.getValueType(Ty, true);
+ if (!SrcEVT.isSimple())
+ return false;
+ MVT SrcVT = SrcEVT.getSimpleVT();
+
+ if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
+ return false;
+
+ // See if operand 2 is an immediate encodeable in the compare.
+ // FIXME: Operands are not in canonical order at -O0, so an immediate
+ // operand in position 1 is a lost opportunity for now. We are
+ // similar to ARM in this regard.
+ long Imm = 0;
+ bool UseImm = false;
+
+ // Only 16-bit integer constants can be represented in compares for
+ // PowerPC. Others will be materialized into a register.
+ if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
+ if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
+ SrcVT == MVT::i8 || SrcVT == MVT::i1) {
+ const APInt &CIVal = ConstInt->getValue();
+ Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
+ if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
+ UseImm = true;
+ }
+ }
+
+ unsigned CmpOpc;
+ bool NeedsExt = false;
+ switch (SrcVT.SimpleTy) {
+ default: return false;
+ case MVT::f32:
+ CmpOpc = PPC::FCMPUS;
+ break;
+ case MVT::f64:
+ CmpOpc = PPC::FCMPUD;
+ break;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ NeedsExt = true;
+ // Intentional fall-through.
+ case MVT::i32:
+ if (!UseImm)
+ CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
+ else
+ CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
+ break;
+ case MVT::i64:
+ if (!UseImm)
+ CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
+ else
+ CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
+ break;
+ }
+
+ unsigned SrcReg1 = getRegForValue(SrcValue1);
+ if (SrcReg1 == 0)
+ return false;
+
+ unsigned SrcReg2 = 0;
+ if (!UseImm) {
+ SrcReg2 = getRegForValue(SrcValue2);
+ if (SrcReg2 == 0)
+ return false;
+ }
+
+ if (NeedsExt) {
+ unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
+ if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
+ return false;
+ SrcReg1 = ExtReg;
+
+ if (!UseImm) {
+ unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
+ if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
+ return false;
+ SrcReg2 = ExtReg;
+ }
+ }
+
+ if (!UseImm)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
+ .addReg(SrcReg1).addReg(SrcReg2);
+ else
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
+ .addReg(SrcReg1).addImm(Imm);
+
+ return true;
+}
+
+// Attempt to fast-select a floating-point extend instruction.
+bool PPCFastISel::SelectFPExt(const Instruction *I) {
+ Value *Src = I->getOperand(0);
+ EVT SrcVT = TLI.getValueType(Src->getType(), true);
+ EVT DestVT = TLI.getValueType(I->getType(), true);
+
+ if (SrcVT != MVT::f32 || DestVT != MVT::f64)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Src);
+ if (!SrcReg)
+ return false;
+
+ // No code is generated for a FP extend.
+ UpdateValueMap(I, SrcReg);
+ return true;
+}
+
+// Attempt to fast-select a floating-point truncate instruction.
+bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
+ Value *Src = I->getOperand(0);
+ EVT SrcVT = TLI.getValueType(Src->getType(), true);
+ EVT DestVT = TLI.getValueType(I->getType(), true);
+
+ if (SrcVT != MVT::f64 || DestVT != MVT::f32)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Src);
+ if (!SrcReg)
+ return false;
+
+ // Round the result to single precision.
+ unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg)
+ .addReg(SrcReg);
+
+ UpdateValueMap(I, DestReg);
+ return true;
+}
+
+// Move an i32 or i64 value in a GPR to an f64 value in an FPR.
+// FIXME: When direct register moves are implemented (see PowerISA 2.08),
+// those should be used instead of moving via a stack slot when the
+// subtarget permits.
+// FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
+// stack slot and 4-byte store/load sequence. Or just sext the 4-byte
+// case to 8 bytes which produces tighter code but wastes stack space.
+unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
+ bool IsSigned) {
+
+ // If necessary, extend 32-bit int to 64-bit.
+ if (SrcVT == MVT::i32) {
+ unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
+ if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
+ return 0;
+ SrcReg = TmpReg;
+ }
+
+ // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
+ Address Addr;
+ Addr.BaseType = Address::FrameIndexBase;
+ Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
+
+ // Store the value from the GPR.
+ if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
+ return 0;
+
+ // Load the integer value into an FPR. The kind of load used depends
+ // on a number of conditions.
+ unsigned LoadOpc = PPC::LFD;
+
+ if (SrcVT == MVT::i32) {
+ if (!IsSigned) {
+ LoadOpc = PPC::LFIWZX;
+ Addr.Offset = 4;
+ } else if (PPCSubTarget->hasLFIWAX()) {
+ LoadOpc = PPC::LFIWAX;
+ Addr.Offset = 4;
+ }
+ }
+
+ const TargetRegisterClass *RC = &PPC::F8RCRegClass;
+ unsigned ResultReg = 0;
+ if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
+ return 0;
+
+ return ResultReg;
+}
+
+// Attempt to fast-select an integer-to-floating-point conversion.
+bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
+ MVT DstVT;
+ Type *DstTy = I->getType();
+ if (!isTypeLegal(DstTy, DstVT))
+ return false;
+
+ if (DstVT != MVT::f32 && DstVT != MVT::f64)
+ return false;
+
+ Value *Src = I->getOperand(0);
+ EVT SrcEVT = TLI.getValueType(Src->getType(), true);
+ if (!SrcEVT.isSimple())
+ return false;
+
+ MVT SrcVT = SrcEVT.getSimpleVT();
+
+ if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
+ SrcVT != MVT::i32 && SrcVT != MVT::i64)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Src);
+ if (SrcReg == 0)
+ return false;
+
+ // We can only lower an unsigned convert if we have the newer
+ // floating-point conversion operations.
+ if (!IsSigned && !PPCSubTarget->hasFPCVT())
+ return false;
+
+ // FIXME: For now we require the newer floating-point conversion operations
+ // (which are present only on P7 and A2 server models) when converting
+ // to single-precision float. Otherwise we have to generate a lot of
+ // fiddly code to avoid double rounding. If necessary, the fiddly code
+ // can be found in PPCTargetLowering::LowerINT_TO_FP().
+ if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
+ return false;
+
+ // Extend the input if necessary.
+ if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
+ unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
+ if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
+ return false;
+ SrcVT = MVT::i64;
+ SrcReg = TmpReg;
+ }
+
+ // Move the integer value to an FPR.
+ unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
+ if (FPReg == 0)
+ return false;
+
+ // Determine the opcode for the conversion.
+ const TargetRegisterClass *RC = &PPC::F8RCRegClass;
+ unsigned DestReg = createResultReg(RC);
+ unsigned Opc;
+
+ if (DstVT == MVT::f32)
+ Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
+ else
+ Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
+
+ // Generate the convert.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
+ .addReg(FPReg);
+
+ UpdateValueMap(I, DestReg);
+ return true;
+}
+
+// Move the floating-point value in SrcReg into an integer destination
+// register, and return the register (or zero if we can't handle it).
+// FIXME: When direct register moves are implemented (see PowerISA 2.08),
+// those should be used instead of moving via a stack slot when the
+// subtarget permits.
+unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
+ unsigned SrcReg, bool IsSigned) {
+ // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
+ // Note that if have STFIWX available, we could use a 4-byte stack
+ // slot for i32, but this being fast-isel we'll just go with the
+ // easiest code gen possible.
+ Address Addr;
+ Addr.BaseType = Address::FrameIndexBase;
+ Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
+
+ // Store the value from the FPR.
+ if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
+ return 0;
+
+ // Reload it into a GPR. If we want an i32, modify the address
+ // to have a 4-byte offset so we load from the right place.
+ if (VT == MVT::i32)
+ Addr.Offset = 4;
+
+ // Look at the currently assigned register for this instruction
+ // to determine the required register class.
+ unsigned AssignedReg = FuncInfo.ValueMap[I];
+ const TargetRegisterClass *RC =
+ AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
+
+ unsigned ResultReg = 0;
+ if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
+ return 0;
+
+ return ResultReg;
+}
+
+// Attempt to fast-select a floating-point-to-integer conversion.
+bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
+ MVT DstVT, SrcVT;
+ Type *DstTy = I->getType();
+ if (!isTypeLegal(DstTy, DstVT))
+ return false;
+
+ if (DstVT != MVT::i32 && DstVT != MVT::i64)
+ return false;
+
+ // If we don't have FCTIDUZ and we need it, punt to SelectionDAG.
+ if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT())
+ return false;
+
+ Value *Src = I->getOperand(0);
+ Type *SrcTy = Src->getType();
+ if (!isTypeLegal(SrcTy, SrcVT))
+ return false;
+
+ if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Src);
+ if (SrcReg == 0)
+ return false;
+
+ // Convert f32 to f64 if necessary. This is just a meaningless copy
+ // to get the register class right. COPY_TO_REGCLASS is needed since
+ // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream.
+ const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
+ if (InRC == &PPC::F4RCRegClass) {
+ unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg)
+ .addReg(SrcReg).addImm(PPC::F8RCRegClassID);
+ SrcReg = TmpReg;
+ }
+
+ // Determine the opcode for the conversion, which takes place
+ // entirely within FPRs.
+ unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
+ unsigned Opc;
+
+ if (DstVT == MVT::i32)
+ if (IsSigned)
+ Opc = PPC::FCTIWZ;
+ else
+ Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
+ else
+ Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
+
+ // Generate the convert.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
+ .addReg(SrcReg);
+
+ // Now move the integer value from a float register to an integer register.
+ unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
+ if (IntReg == 0)
+ return false;
+
+ UpdateValueMap(I, IntReg);
+ return true;
+}
+
+// Attempt to fast-select a binary integer operation that isn't already
+// handled automatically.
+bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
+ EVT DestVT = TLI.getValueType(I->getType(), true);
+
+ // We can get here in the case when we have a binary operation on a non-legal
+ // type and the target independent selector doesn't know how to handle it.
+ if (DestVT != MVT::i16 && DestVT != MVT::i8)
+ return false;
+
+ // Look at the currently assigned register for this instruction
+ // to determine the required register class. If there is no register,
+ // make a conservative choice (don't assign R0).
+ unsigned AssignedReg = FuncInfo.ValueMap[I];
+ const TargetRegisterClass *RC =
+ (AssignedReg ? MRI.getRegClass(AssignedReg) :
+ &PPC::GPRC_and_GPRC_NOR0RegClass);
+ bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
+
+ unsigned Opc;
+ switch (ISDOpcode) {
+ default: return false;
+ case ISD::ADD:
+ Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
+ break;
+ case ISD::OR:
+ Opc = IsGPRC ? PPC::OR : PPC::OR8;
+ break;
+ case ISD::SUB:
+ Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
+ break;
+ }
+
+ unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
+ unsigned SrcReg1 = getRegForValue(I->getOperand(0));
+ if (SrcReg1 == 0) return false;
+
+ // Handle case of small immediate operand.
+ if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ const APInt &CIVal = ConstInt->getValue();
+ int Imm = (int)CIVal.getSExtValue();
+ bool UseImm = true;
+ if (isInt<16>(Imm)) {
+ switch (Opc) {
+ default:
+ llvm_unreachable("Missing case!");
+ case PPC::ADD4:
+ Opc = PPC::ADDI;
+ MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
+ break;
+ case PPC::ADD8:
+ Opc = PPC::ADDI8;
+ MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
+ break;
+ case PPC::OR:
+ Opc = PPC::ORI;
+ break;
+ case PPC::OR8:
+ Opc = PPC::ORI8;
+ break;
+ case PPC::SUBF:
+ if (Imm == -32768)
+ UseImm = false;
+ else {
+ Opc = PPC::ADDI;
+ MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
+ Imm = -Imm;
+ }
+ break;
+ case PPC::SUBF8:
+ if (Imm == -32768)
+ UseImm = false;
+ else {
+ Opc = PPC::ADDI8;
+ MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
+ Imm = -Imm;
+ }
+ break;
+ }
+
+ if (UseImm) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
+ ResultReg)
+ .addReg(SrcReg1)
+ .addImm(Imm);
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+ }
+
+ // Reg-reg case.
+ unsigned SrcReg2 = getRegForValue(I->getOperand(1));
+ if (SrcReg2 == 0) return false;
+
+ // Reverse operands for subtract-from.
+ if (ISDOpcode == ISD::SUB)
+ std::swap(SrcReg1, SrcReg2);
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(SrcReg1).addReg(SrcReg2);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+// Handle arguments to a call that we're attempting to fast-select.
+// Return false if the arguments are too complex for us at the moment.
+bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
+ SmallVectorImpl<unsigned> &ArgRegs,
+ SmallVectorImpl<MVT> &ArgVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+ SmallVectorImpl<unsigned> &RegArgs,
+ CallingConv::ID CC,
+ unsigned &NumBytes,
+ bool IsVarArg) {
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
+
+ // Reserve space for the linkage area on the stack.
+ bool isELFv2ABI = PPCSubTarget->isELFv2ABI();
+ unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false,
+ isELFv2ABI);
+ CCInfo.AllocateStack(LinkageSize, 8);
+
+ CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
+
+ // Bail out if we can't handle any of the arguments.
+ for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
+ CCValAssign &VA = ArgLocs[I];
+ MVT ArgVT = ArgVTs[VA.getValNo()];
+
+ // Skip vector arguments for now, as well as long double and
+ // uint128_t, and anything that isn't passed in a register.
+ if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
+ !VA.isRegLoc() || VA.needsCustom())
+ return false;
+
+ // Skip bit-converted arguments for now.
+ if (VA.getLocInfo() == CCValAssign::BCvt)
+ return false;
+ }
+
+ // Get a count of how many bytes are to be pushed onto the stack.
+ NumBytes = CCInfo.getNextStackOffset();
+
+ // The prolog code of the callee may store up to 8 GPR argument registers to
+ // the stack, allowing va_start to index over them in memory if its varargs.
+ // Because we cannot tell if this is needed on the caller side, we have to
+ // conservatively assume that it is needed. As such, make sure we have at
+ // least enough stack space for the caller to store the 8 GPRs.
+ // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
+ NumBytes = std::max(NumBytes, LinkageSize + 64);
+
+ // Issue CALLSEQ_START.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TII.getCallFrameSetupOpcode()))
+ .addImm(NumBytes);
+
+ // Prepare to assign register arguments. Every argument uses up a
+ // GPR protocol register even if it's passed in a floating-point
+ // register.
+ unsigned NextGPR = PPC::X3;
+ unsigned NextFPR = PPC::F1;
+
+ // Process arguments.
+ for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
+ CCValAssign &VA = ArgLocs[I];
+ unsigned Arg = ArgRegs[VA.getValNo()];
+ MVT ArgVT = ArgVTs[VA.getValNo()];
+
+ // Handle argument promotion and bitcasts.
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::SExt: {
+ MVT DestVT = VA.getLocVT();
+ const TargetRegisterClass *RC =
+ (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
+ unsigned TmpReg = createResultReg(RC);
+ if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
+ llvm_unreachable("Failed to emit a sext!");
+ ArgVT = DestVT;
+ Arg = TmpReg;
+ break;
+ }
+ case CCValAssign::AExt:
+ case CCValAssign::ZExt: {
+ MVT DestVT = VA.getLocVT();
+ const TargetRegisterClass *RC =
+ (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
+ unsigned TmpReg = createResultReg(RC);
+ if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
+ llvm_unreachable("Failed to emit a zext!");
+ ArgVT = DestVT;
+ Arg = TmpReg;
+ break;
+ }
+ case CCValAssign::BCvt: {
+ // FIXME: Not yet handled.
+ llvm_unreachable("Should have bailed before getting here!");
+ break;
+ }
+ }
+
+ // Copy this argument to the appropriate register.
+ unsigned ArgReg;
+ if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
+ ArgReg = NextFPR++;
+ ++NextGPR;
+ } else
+ ArgReg = NextGPR++;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
+ RegArgs.push_back(ArgReg);
+ }
+
+ return true;
+}
+
+// For a call that we've determined we can fast-select, finish the
+// call sequence and generate a copy to obtain the return value (if any).
+void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+ const Instruction *I, CallingConv::ID CC,
+ unsigned &NumBytes, bool IsVarArg) {
+ // Issue CallSEQ_END.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TII.getCallFrameDestroyOpcode()))
+ .addImm(NumBytes).addImm(0);
+
+ // Next, generate a copy to obtain the return value.
+ // FIXME: No multi-register return values yet, though I don't foresee
+ // any real difficulties there.
+ if (RetVT != MVT::isVoid) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
+ CCValAssign &VA = RVLocs[0];
+ assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ MVT DestVT = VA.getValVT();
+ MVT CopyVT = DestVT;
+
+ // Ints smaller than a register still arrive in a full 64-bit
+ // register, so make sure we recognize this.
+ if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
+ CopyVT = MVT::i64;
+
+ unsigned SourcePhysReg = VA.getLocReg();
+ unsigned ResultReg = 0;
+
+ if (RetVT == CopyVT) {
+ const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
+ ResultReg = createResultReg(CpyRC);
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(SourcePhysReg);
+
+ // If necessary, round the floating result to single precision.
+ } else if (CopyVT == MVT::f64) {
+ ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
+ ResultReg).addReg(SourcePhysReg);
+
+ // If only the low half of a general register is needed, generate
+ // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
+ // used along the fast-isel path (not lowered), and downstream logic
+ // also doesn't like a direct subreg copy on a physical reg.)
+ } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
+ ResultReg = createResultReg(&PPC::GPRCRegClass);
+ // Convert physical register from G8RC to GPRC.
+ SourcePhysReg -= PPC::X0 - PPC::R0;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(SourcePhysReg);
+ }
+
+ assert(ResultReg && "ResultReg unset!");
+ UsedRegs.push_back(SourcePhysReg);
+ UpdateValueMap(I, ResultReg);
+ }
+}
+
+// Attempt to fast-select a call instruction.
+bool PPCFastISel::SelectCall(const Instruction *I) {
+ const CallInst *CI = cast<CallInst>(I);
+ const Value *Callee = CI->getCalledValue();
+
+ // Can't handle inline asm.
+ if (isa<InlineAsm>(Callee))
+ return false;
+
+ // Allow SelectionDAG isel to handle tail calls.
+ if (CI->isTailCall())
+ return false;
+
+ // Obtain calling convention.
+ ImmutableCallSite CS(CI);
+ CallingConv::ID CC = CS.getCallingConv();
+
+ PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+ FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+ bool IsVarArg = FTy->isVarArg();
+
+ // Not ready for varargs yet.
+ if (IsVarArg)
+ return false;
+
+ // Handle simple calls for now, with legal return types and
+ // those that can be extended.
+ Type *RetTy = I->getType();
+ MVT RetVT;
+ if (RetTy->isVoidTy())
+ RetVT = MVT::isVoid;
+ else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
+ RetVT != MVT::i8)
+ return false;
+
+ // FIXME: No multi-register return values yet.
+ if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
+ RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
+ RetVT != MVT::f64) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
+ if (RVLocs.size() > 1)
+ return false;
+ }
+
+ // Bail early if more than 8 arguments, as we only currently
+ // handle arguments passed in registers.
+ unsigned NumArgs = CS.arg_size();
+ if (NumArgs > 8)
+ return false;
+
+ // Set up the argument vectors.
+ SmallVector<Value*, 8> Args;
+ SmallVector<unsigned, 8> ArgRegs;
+ SmallVector<MVT, 8> ArgVTs;
+ SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
+
+ Args.reserve(NumArgs);
+ ArgRegs.reserve(NumArgs);
+ ArgVTs.reserve(NumArgs);
+ ArgFlags.reserve(NumArgs);
+
+ for (ImmutableCallSite::arg_iterator II = CS.arg_begin(), IE = CS.arg_end();
+ II != IE; ++II) {
+ // FIXME: ARM does something for intrinsic calls here, check into that.
+
+ unsigned AttrIdx = II - CS.arg_begin() + 1;
+
+ // Only handle easy calls for now. It would be reasonably easy
+ // to handle <= 8-byte structures passed ByVal in registers, but we
+ // have to ensure they are right-justified in the register.
+ if (CS.paramHasAttr(AttrIdx, Attribute::InReg) ||
+ CS.paramHasAttr(AttrIdx, Attribute::StructRet) ||
+ CS.paramHasAttr(AttrIdx, Attribute::Nest) ||
+ CS.paramHasAttr(AttrIdx, Attribute::ByVal))
+ return false;
+
+ ISD::ArgFlagsTy Flags;
+ if (CS.paramHasAttr(AttrIdx, Attribute::SExt))
+ Flags.setSExt();
+ if (CS.paramHasAttr(AttrIdx, Attribute::ZExt))
+ Flags.setZExt();
+
+ Type *ArgTy = (*II)->getType();
+ MVT ArgVT;
+ if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
+ return false;
+
+ if (ArgVT.isVector())
+ return false;
+
+ unsigned Arg = getRegForValue(*II);
+ if (Arg == 0)
+ return false;
+
+ unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
+ Flags.setOrigAlign(OriginalAlignment);
+
+ Args.push_back(*II);
+ ArgRegs.push_back(Arg);
+ ArgVTs.push_back(ArgVT);
+ ArgFlags.push_back(Flags);
+ }
+
+ // Process the arguments.
+ SmallVector<unsigned, 8> RegArgs;
+ unsigned NumBytes;
+
+ if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
+ RegArgs, CC, NumBytes, IsVarArg))
+ return false;
+
+ // FIXME: No handling for function pointers yet. This requires
+ // implementing the function descriptor (OPD) setup.
+ const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
+ if (!GV)
+ return false;
+
+ // Build direct call with NOP for TOC restore.
+ // FIXME: We can and should optimize away the NOP for local calls.
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(PPC::BL8_NOP));
+ // Add callee.
+ MIB.addGlobalAddress(GV);
+
+ // Add implicit physical register uses to the call.
+ for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
+ MIB.addReg(RegArgs[II], RegState::Implicit);
+
+ // Direct calls in the ELFv2 ABI need the TOC register live into the call.
+ if (PPCSubTarget->isELFv2ABI())
+ MIB.addReg(PPC::X2, RegState::Implicit);
+
+ // Add a register mask with the call-preserved registers. Proper
+ // defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(CC));
+
+ // Finish off the call including any return values.
+ SmallVector<unsigned, 4> UsedRegs;
+ finishCall(RetVT, UsedRegs, I, CC, NumBytes, IsVarArg);
+
+ // Set all unused physregs defs as dead.
+ static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+
+ return true;
+}
+
+// Attempt to fast-select a return instruction.
+bool PPCFastISel::SelectRet(const Instruction *I) {
+
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ const ReturnInst *Ret = cast<ReturnInst>(I);
+ const Function &F = *I->getParent()->getParent();
+
+ // Build a list of return value registers.
+ SmallVector<unsigned, 4> RetRegs;
+ CallingConv::ID CC = F.getCallingConv();
+
+ if (Ret->getNumOperands() > 0) {
+ SmallVector<ISD::OutputArg, 4> Outs;
+ GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ValLocs;
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context);
+ CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
+ const Value *RV = Ret->getOperand(0);
+
+ // FIXME: Only one output register for now.
+ if (ValLocs.size() > 1)
+ return false;
+
+ // Special case for returning a constant integer of any size.
+ // Materialize the constant as an i64 and copy it to the return
+ // register. This avoids an unnecessary extend or truncate.
+ if (isa<ConstantInt>(*RV)) {
+ const Constant *C = cast<Constant>(RV);
+ unsigned SrcReg = PPCMaterializeInt(C, MVT::i64);
+ unsigned RetReg = ValLocs[0].getLocReg();
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
+ RetRegs.push_back(RetReg);
+
+ } else {
+ unsigned Reg = getRegForValue(RV);
+
+ if (Reg == 0)
+ return false;
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i < ValLocs.size(); ++i) {
+
+ CCValAssign &VA = ValLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ RetRegs.push_back(VA.getLocReg());
+ unsigned SrcReg = Reg + VA.getValNo();
+
+ EVT RVEVT = TLI.getValueType(RV->getType());
+ if (!RVEVT.isSimple())
+ return false;
+ MVT RVVT = RVEVT.getSimpleVT();
+ MVT DestVT = VA.getLocVT();
+
+ if (RVVT != DestVT && RVVT != MVT::i8 &&
+ RVVT != MVT::i16 && RVVT != MVT::i32)
+ return false;
+
+ if (RVVT != DestVT) {
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ llvm_unreachable("Full value assign but types don't match?");
+ case CCValAssign::AExt:
+ case CCValAssign::ZExt: {
+ const TargetRegisterClass *RC =
+ (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
+ unsigned TmpReg = createResultReg(RC);
+ if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
+ return false;
+ SrcReg = TmpReg;
+ break;
+ }
+ case CCValAssign::SExt: {
+ const TargetRegisterClass *RC =
+ (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
+ unsigned TmpReg = createResultReg(RC);
+ if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
+ return false;
+ SrcReg = TmpReg;
+ break;
+ }
+ }
+ }
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), RetRegs[i])
+ .addReg(SrcReg);
+ }
+ }
+ }
+
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(PPC::BLR));
+
+ for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
+ MIB.addReg(RetRegs[i], RegState::Implicit);
+
+ return true;
+}
+
+// Attempt to emit an integer extend of SrcReg into DestReg. Both
+// signed and zero extensions are supported. Return false if we
+// can't handle it.
+bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ unsigned DestReg, bool IsZExt) {
+ if (DestVT != MVT::i32 && DestVT != MVT::i64)
+ return false;
+ if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
+ return false;
+
+ // Signed extensions use EXTSB, EXTSH, EXTSW.
+ if (!IsZExt) {
+ unsigned Opc;
+ if (SrcVT == MVT::i8)
+ Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
+ else if (SrcVT == MVT::i16)
+ Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
+ else {
+ assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
+ Opc = PPC::EXTSW_32_64;
+ }
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
+ .addReg(SrcReg);
+
+ // Unsigned 32-bit extensions use RLWINM.
+ } else if (DestVT == MVT::i32) {
+ unsigned MB;
+ if (SrcVT == MVT::i8)
+ MB = 24;
+ else {
+ assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
+ MB = 16;
+ }
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
+ DestReg)
+ .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
+
+ // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
+ } else {
+ unsigned MB;
+ if (SrcVT == MVT::i8)
+ MB = 56;
+ else if (SrcVT == MVT::i16)
+ MB = 48;
+ else
+ MB = 32;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(PPC::RLDICL_32_64), DestReg)
+ .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
+ }
+
+ return true;
+}
+
+// Attempt to fast-select an indirect branch instruction.
+bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
+ unsigned AddrReg = getRegForValue(I->getOperand(0));
+ if (AddrReg == 0)
+ return false;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
+ .addReg(AddrReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
+
+ const IndirectBrInst *IB = cast<IndirectBrInst>(I);
+ for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
+ FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
+
+ return true;
+}
+
+// Attempt to fast-select an integer truncate instruction.
+bool PPCFastISel::SelectTrunc(const Instruction *I) {
+ Value *Src = I->getOperand(0);
+ EVT SrcVT = TLI.getValueType(Src->getType(), true);
+ EVT DestVT = TLI.getValueType(I->getType(), true);
+
+ if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
+ return false;
+
+ if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Src);
+ if (!SrcReg)
+ return false;
+
+ // The only interesting case is when we need to switch register classes.
+ if (SrcVT == MVT::i64) {
+ unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(SrcReg, 0, PPC::sub_32);
+ SrcReg = ResultReg;
+ }
+
+ UpdateValueMap(I, SrcReg);
+ return true;
+}
+
+// Attempt to fast-select an integer extend instruction.
+bool PPCFastISel::SelectIntExt(const Instruction *I) {
+ Type *DestTy = I->getType();
+ Value *Src = I->getOperand(0);
+ Type *SrcTy = Src->getType();
+
+ bool IsZExt = isa<ZExtInst>(I);
+ unsigned SrcReg = getRegForValue(Src);
+ if (!SrcReg) return false;
+
+ EVT SrcEVT, DestEVT;
+ SrcEVT = TLI.getValueType(SrcTy, true);
+ DestEVT = TLI.getValueType(DestTy, true);
+ if (!SrcEVT.isSimple())
+ return false;
+ if (!DestEVT.isSimple())
+ return false;
+
+ MVT SrcVT = SrcEVT.getSimpleVT();
+ MVT DestVT = DestEVT.getSimpleVT();
+
+ // If we know the register class needed for the result of this
+ // instruction, use it. Otherwise pick the register class of the
+ // correct size that does not contain X0/R0, since we don't know
+ // whether downstream uses permit that assignment.
+ unsigned AssignedReg = FuncInfo.ValueMap[I];
+ const TargetRegisterClass *RC =
+ (AssignedReg ? MRI.getRegClass(AssignedReg) :
+ (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
+ &PPC::GPRC_and_GPRC_NOR0RegClass));
+ unsigned ResultReg = createResultReg(RC);
+
+ if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+// Attempt to fast-select an instruction that wasn't handled by
+// the table-generated machinery.
+bool PPCFastISel::TargetSelectInstruction(const Instruction *I) {
+
+ switch (I->getOpcode()) {
+ case Instruction::Load:
+ return SelectLoad(I);
+ case Instruction::Store:
+ return SelectStore(I);
+ case Instruction::Br:
+ return SelectBranch(I);
+ case Instruction::IndirectBr:
+ return SelectIndirectBr(I);
+ case Instruction::FPExt:
+ return SelectFPExt(I);
+ case Instruction::FPTrunc:
+ return SelectFPTrunc(I);
+ case Instruction::SIToFP:
+ return SelectIToFP(I, /*IsSigned*/ true);
+ case Instruction::UIToFP:
+ return SelectIToFP(I, /*IsSigned*/ false);
+ case Instruction::FPToSI:
+ return SelectFPToI(I, /*IsSigned*/ true);
+ case Instruction::FPToUI:
+ return SelectFPToI(I, /*IsSigned*/ false);
+ case Instruction::Add:
+ return SelectBinaryIntOp(I, ISD::ADD);
+ case Instruction::Or:
+ return SelectBinaryIntOp(I, ISD::OR);
+ case Instruction::Sub:
+ return SelectBinaryIntOp(I, ISD::SUB);
+ case Instruction::Call:
+ if (dyn_cast<IntrinsicInst>(I))
+ return false;
+ return SelectCall(I);
+ case Instruction::Ret:
+ return SelectRet(I);
+ case Instruction::Trunc:
+ return SelectTrunc(I);
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ return SelectIntExt(I);
+ // Here add other flavors of Instruction::XXX that automated
+ // cases don't catch. For example, switches are terminators
+ // that aren't yet handled.
+ default:
+ break;
+ }
+ return false;
+}
+
+// Materialize a floating-point constant into a register, and return
+// the register number (or zero if we failed to handle it).
+unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
+ // No plans to handle long double here.
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return 0;
+
+ // All FP constants are loaded from the constant pool.
+ unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
+ assert(Align > 0 && "Unexpectedly missing alignment information!");
+ unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
+ unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
+ CodeModel::Model CModel = TM.getCodeModel();
+
+ MachineMemOperand *MMO =
+ FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
+ (VT == MVT::f32) ? 4 : 8, Align);
+
+ unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
+ unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
+
+ // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
+ if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
+ TmpReg)
+ .addConstantPoolIndex(Idx).addReg(PPC::X2);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
+ .addImm(0).addReg(TmpReg).addMemOperand(MMO);
+ } else {
+ // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
+ TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
+ // But for large code model, we must generate a LDtocL followed
+ // by the LF[SD].
+ if (CModel == CodeModel::Large) {
+ unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
+ TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
+ .addImm(0).addReg(TmpReg2);
+ } else
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
+ .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
+ .addReg(TmpReg)
+ .addMemOperand(MMO);
+ }
+
+ return DestReg;
+}
+
+// Materialize the address of a global value into a register, and return
+// the register number (or zero if we failed to handle it).
+unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
+ assert(VT == MVT::i64 && "Non-address!");
+ const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
+ unsigned DestReg = createResultReg(RC);
+
+ // Global values may be plain old object addresses, TLS object
+ // addresses, constant pool entries, or jump tables. How we generate
+ // code for these may depend on small, medium, or large code model.
+ CodeModel::Model CModel = TM.getCodeModel();
+
+ // FIXME: Jump tables are not yet required because fast-isel doesn't
+ // handle switches; if that changes, we need them as well. For now,
+ // what follows assumes everything's a generic (or TLS) global address.
+
+ // FIXME: We don't yet handle the complexity of TLS.
+ if (GV->isThreadLocal())
+ return 0;
+
+ // For small code model, generate a simple TOC load.
+ if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
+ DestReg)
+ .addGlobalAddress(GV)
+ .addReg(PPC::X2);
+ else {
+ // If the address is an externally defined symbol, a symbol with common
+ // or externally available linkage, a non-local function address, or a
+ // jump table address (not yet needed), or if we are generating code
+ // for large code model, we generate:
+ // LDtocL(GV, ADDIStocHA(%X2, GV))
+ // Otherwise we generate:
+ // ADDItocL(ADDIStocHA(%X2, GV), GV)
+ // Either way, start with the ADDIStocHA:
+ unsigned HighPartReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
+ HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
+
+ // If/when switches are implemented, jump tables should be handled
+ // on the "if" path here.
+ if (CModel == CodeModel::Large ||
+ (GV->getType()->getElementType()->isFunctionTy() &&
+ (GV->isDeclaration() || GV->isWeakForLinker())) ||
+ GV->isDeclaration() || GV->hasCommonLinkage() ||
+ GV->hasAvailableExternallyLinkage())
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
+ DestReg).addGlobalAddress(GV).addReg(HighPartReg);
+ else
+ // Otherwise generate the ADDItocL.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
+ DestReg).addReg(HighPartReg).addGlobalAddress(GV);
+ }
+
+ return DestReg;
+}
+
+// Materialize a 32-bit integer constant into a register, and return
+// the register number (or zero if we failed to handle it).
+unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
+ const TargetRegisterClass *RC) {
+ unsigned Lo = Imm & 0xFFFF;
+ unsigned Hi = (Imm >> 16) & 0xFFFF;
+
+ unsigned ResultReg = createResultReg(RC);
+ bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
+
+ if (isInt<16>(Imm))
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
+ .addImm(Imm);
+ else if (Lo) {
+ // Both Lo and Hi have nonzero bits.
+ unsigned TmpReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
+ .addImm(Hi);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
+ .addReg(TmpReg).addImm(Lo);
+ } else
+ // Just Hi bits.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
+ .addImm(Hi);
+
+ return ResultReg;
+}
+
+// Materialize a 64-bit integer constant into a register, and return
+// the register number (or zero if we failed to handle it).
+unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
+ const TargetRegisterClass *RC) {
+ unsigned Remainder = 0;
+ unsigned Shift = 0;
+
+ // If the value doesn't fit in 32 bits, see if we can shift it
+ // so that it fits in 32 bits.
+ if (!isInt<32>(Imm)) {
+ Shift = countTrailingZeros<uint64_t>(Imm);
+ int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
+
+ if (isInt<32>(ImmSh))
+ Imm = ImmSh;
+ else {
+ Remainder = Imm;
+ Shift = 32;
+ Imm >>= 32;
+ }
+ }
+
+ // Handle the high-order 32 bits (if shifted) or the whole 32 bits
+ // (if not shifted).
+ unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
+ if (!Shift)
+ return TmpReg1;
+
+ // If upper 32 bits were not zero, we've built them and need to shift
+ // them into place.
+ unsigned TmpReg2;
+ if (Imm) {
+ TmpReg2 = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
+ TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
+ } else
+ TmpReg2 = TmpReg1;
+
+ unsigned TmpReg3, Hi, Lo;
+ if ((Hi = (Remainder >> 16) & 0xFFFF)) {
+ TmpReg3 = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
+ TmpReg3).addReg(TmpReg2).addImm(Hi);
+ } else
+ TmpReg3 = TmpReg2;
+
+ if ((Lo = Remainder & 0xFFFF)) {
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
+ ResultReg).addReg(TmpReg3).addImm(Lo);
+ return ResultReg;
+ }
+
+ return TmpReg3;
+}
+
+
+// Materialize an integer constant into a register, and return
+// the register number (or zero if we failed to handle it).
+unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) {
+ // If we're using CR bit registers for i1 values, handle that as a special
+ // case first.
+ if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
+ const ConstantInt *CI = cast<ConstantInt>(C);
+ unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
+ return ImmReg;
+ }
+
+ if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
+ VT != MVT::i8 && VT != MVT::i1)
+ return 0;
+
+ const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
+ &PPC::GPRCRegClass);
+
+ // If the constant is in range, use a load-immediate.
+ const ConstantInt *CI = cast<ConstantInt>(C);
+ if (isInt<16>(CI->getSExtValue())) {
+ unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
+ unsigned ImmReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
+ .addImm(CI->getSExtValue());
+ return ImmReg;
+ }
+
+ // Construct the constant piecewise.
+ int64_t Imm = CI->getZExtValue();
+
+ if (VT == MVT::i64)
+ return PPCMaterialize64BitInt(Imm, RC);
+ else if (VT == MVT::i32)
+ return PPCMaterialize32BitInt(Imm, RC);
+
+ return 0;
+}
+
+// Materialize a constant into a register, and return the register
+// number (or zero if we failed to handle it).
+unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) {
+ EVT CEVT = TLI.getValueType(C->getType(), true);
+
+ // Only handle simple types.
+ if (!CEVT.isSimple()) return 0;
+ MVT VT = CEVT.getSimpleVT();
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return PPCMaterializeFP(CFP, VT);
+ else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return PPCMaterializeGV(GV, VT);
+ else if (isa<ConstantInt>(C))
+ return PPCMaterializeInt(C, VT);
+
+ return 0;
+}
+
+// Materialize the address created by an alloca into a register, and
+// return the register number (or zero if we failed to handle it).
+unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
+ // Don't handle dynamic allocas.
+ if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
+
+ MVT VT;
+ if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
+
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
+ ResultReg).addFrameIndex(SI->second).addImm(0);
+ return ResultReg;
+ }
+
+ return 0;
+}
+
+// Fold loads into extends when possible.
+// FIXME: We can have multiple redundant extend/trunc instructions
+// following a load. The folding only picks up one. Extend this
+// to check subsequent instructions for the same pattern and remove
+// them. Thus ResultReg should be the def reg for the last redundant
+// instruction in a chain, and all intervening instructions can be
+// removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
+// to add ELF64-NOT: rldicl to the appropriate tests when this works.
+bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI) {
+ // Verify we have a legal type before going any further.
+ MVT VT;
+ if (!isLoadTypeLegal(LI->getType(), VT))
+ return false;
+
+ // Combine load followed by zero- or sign-extend.
+ bool IsZExt = false;
+ switch(MI->getOpcode()) {
+ default:
+ return false;
+
+ case PPC::RLDICL:
+ case PPC::RLDICL_32_64: {
+ IsZExt = true;
+ unsigned MB = MI->getOperand(3).getImm();
+ if ((VT == MVT::i8 && MB <= 56) ||
+ (VT == MVT::i16 && MB <= 48) ||
+ (VT == MVT::i32 && MB <= 32))
+ break;
+ return false;
+ }
+
+ case PPC::RLWINM:
+ case PPC::RLWINM8: {
+ IsZExt = true;
+ unsigned MB = MI->getOperand(3).getImm();
+ if ((VT == MVT::i8 && MB <= 24) ||
+ (VT == MVT::i16 && MB <= 16))
+ break;
+ return false;
+ }
+
+ case PPC::EXTSB:
+ case PPC::EXTSB8:
+ case PPC::EXTSB8_32_64:
+ /* There is no sign-extending load-byte instruction. */
+ return false;
+
+ case PPC::EXTSH:
+ case PPC::EXTSH8:
+ case PPC::EXTSH8_32_64: {
+ if (VT != MVT::i16 && VT != MVT::i8)
+ return false;
+ break;
+ }
+
+ case PPC::EXTSW:
+ case PPC::EXTSW_32_64: {
+ if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
+ return false;
+ break;
+ }
+ }
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!PPCComputeAddress(LI->getOperand(0), Addr))
+ return false;
+
+ unsigned ResultReg = MI->getOperand(0).getReg();
+
+ if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt))
+ return false;
+
+ MI->eraseFromParent();
+ return true;
+}
+
+// Attempt to lower call arguments in a faster way than done by
+// the selection DAG code.
+bool PPCFastISel::FastLowerArguments() {
+ // Defer to normal argument lowering for now. It's reasonably
+ // efficient. Consider doing something like ARM to handle the
+ // case where all args fit in registers, no varargs, no float
+ // or vector args.
+ return false;
+}
+
+// Handle materializing integer constants into a register. This is not
+// automatically generated for PowerPC, so must be explicitly created here.
+unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
+
+ if (Opc != ISD::Constant)
+ return 0;
+
+ // If we're using CR bit registers for i1 values, handle that as a special
+ // case first.
+ if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
+ unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
+ return ImmReg;
+ }
+
+ if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
+ VT != MVT::i8 && VT != MVT::i1)
+ return 0;
+
+ const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
+ &PPC::GPRCRegClass);
+ if (VT == MVT::i64)
+ return PPCMaterialize64BitInt(Imm, RC);
+ else
+ return PPCMaterialize32BitInt(Imm, RC);
+}
+
+// Override for ADDI and ADDI8 to set the correct register class
+// on RHS operand 0. The automatic infrastructure naively assumes
+// GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
+// for these cases. At the moment, none of the other automatically
+// generated RI instructions require special treatment. However, once
+// SelectSelect is implemented, "isel" requires similar handling.
+//
+// Also be conservative about the output register class. Avoid
+// assigning R0 or X0 to the output register for GPRC and G8RC
+// register classes, as any such result could be used in ADDI, etc.,
+// where those regs have another meaning.
+unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ uint64_t Imm) {
+ if (MachineInstOpcode == PPC::ADDI)
+ MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
+ else if (MachineInstOpcode == PPC::ADDI8)
+ MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
+
+ const TargetRegisterClass *UseRC =
+ (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
+ (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
+
+ return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC,
+ Op0, Op0IsKill, Imm);
+}
+
+// Override for instructions with one register operand to avoid use of
+// R0/X0. The automatic infrastructure isn't aware of the context so
+// we must be conservative.
+unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
+ const TargetRegisterClass* RC,
+ unsigned Op0, bool Op0IsKill) {
+ const TargetRegisterClass *UseRC =
+ (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
+ (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
+
+ return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
+}
+
+// Override for instructions with two register operands to avoid use
+// of R0/X0. The automatic infrastructure isn't aware of the context
+// so we must be conservative.
+unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
+ const TargetRegisterClass* RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill) {
+ const TargetRegisterClass *UseRC =
+ (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
+ (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
+
+ return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
+ Op1, Op1IsKill);
+}
+
+namespace llvm {
+ // Create the fast instruction selector for PowerPC64 ELF.
+ FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo) {
+ const TargetMachine &TM = FuncInfo.MF->getTarget();
+
+ // Only available on 64-bit ELF for now.
+ const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
+ if (Subtarget->isPPC64() && Subtarget->isSVR4ABI())
+ return new PPCFastISel(FuncInfo, LibInfo);
+
+ return nullptr;
+ }
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp b/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp
new file mode 100644
index 0000000..b2577a9
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp
@@ -0,0 +1,1604 @@
+//===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PPC implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCFrameLowering.h"
+#include "PPCInstrBuilder.h"
+#include "PPCInstrInfo.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCSubtarget.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+/// VRRegNo - Map from a numbered VR register to its enum value.
+///
+static const uint16_t VRRegNo[] = {
+ PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 , PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
+ PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, PPC::V12, PPC::V13, PPC::V14, PPC::V15,
+ PPC::V16, PPC::V17, PPC::V18, PPC::V19, PPC::V20, PPC::V21, PPC::V22, PPC::V23,
+ PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31
+};
+
+PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI)
+ : TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
+ (STI.hasQPX() || STI.isBGQ()) ? 32 : 16, 0),
+ Subtarget(STI) {}
+
+// With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
+const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots(
+ unsigned &NumEntries) const {
+ if (Subtarget.isDarwinABI()) {
+ NumEntries = 1;
+ if (Subtarget.isPPC64()) {
+ static const SpillSlot darwin64Offsets = {PPC::X31, -8};
+ return &darwin64Offsets;
+ } else {
+ static const SpillSlot darwinOffsets = {PPC::R31, -4};
+ return &darwinOffsets;
+ }
+ }
+
+ // Early exit if not using the SVR4 ABI.
+ if (!Subtarget.isSVR4ABI()) {
+ NumEntries = 0;
+ return nullptr;
+ }
+
+ // Note that the offsets here overlap, but this is fixed up in
+ // processFunctionBeforeFrameFinalized.
+
+ static const SpillSlot Offsets[] = {
+ // Floating-point register save area offsets.
+ {PPC::F31, -8},
+ {PPC::F30, -16},
+ {PPC::F29, -24},
+ {PPC::F28, -32},
+ {PPC::F27, -40},
+ {PPC::F26, -48},
+ {PPC::F25, -56},
+ {PPC::F24, -64},
+ {PPC::F23, -72},
+ {PPC::F22, -80},
+ {PPC::F21, -88},
+ {PPC::F20, -96},
+ {PPC::F19, -104},
+ {PPC::F18, -112},
+ {PPC::F17, -120},
+ {PPC::F16, -128},
+ {PPC::F15, -136},
+ {PPC::F14, -144},
+
+ // General register save area offsets.
+ {PPC::R31, -4},
+ {PPC::R30, -8},
+ {PPC::R29, -12},
+ {PPC::R28, -16},
+ {PPC::R27, -20},
+ {PPC::R26, -24},
+ {PPC::R25, -28},
+ {PPC::R24, -32},
+ {PPC::R23, -36},
+ {PPC::R22, -40},
+ {PPC::R21, -44},
+ {PPC::R20, -48},
+ {PPC::R19, -52},
+ {PPC::R18, -56},
+ {PPC::R17, -60},
+ {PPC::R16, -64},
+ {PPC::R15, -68},
+ {PPC::R14, -72},
+
+ // CR save area offset. We map each of the nonvolatile CR fields
+ // to the slot for CR2, which is the first of the nonvolatile CR
+ // fields to be assigned, so that we only allocate one save slot.
+ // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
+ {PPC::CR2, -4},
+
+ // VRSAVE save area offset.
+ {PPC::VRSAVE, -4},
+
+ // Vector register save area
+ {PPC::V31, -16},
+ {PPC::V30, -32},
+ {PPC::V29, -48},
+ {PPC::V28, -64},
+ {PPC::V27, -80},
+ {PPC::V26, -96},
+ {PPC::V25, -112},
+ {PPC::V24, -128},
+ {PPC::V23, -144},
+ {PPC::V22, -160},
+ {PPC::V21, -176},
+ {PPC::V20, -192}};
+
+ static const SpillSlot Offsets64[] = {
+ // Floating-point register save area offsets.
+ {PPC::F31, -8},
+ {PPC::F30, -16},
+ {PPC::F29, -24},
+ {PPC::F28, -32},
+ {PPC::F27, -40},
+ {PPC::F26, -48},
+ {PPC::F25, -56},
+ {PPC::F24, -64},
+ {PPC::F23, -72},
+ {PPC::F22, -80},
+ {PPC::F21, -88},
+ {PPC::F20, -96},
+ {PPC::F19, -104},
+ {PPC::F18, -112},
+ {PPC::F17, -120},
+ {PPC::F16, -128},
+ {PPC::F15, -136},
+ {PPC::F14, -144},
+
+ // General register save area offsets.
+ {PPC::X31, -8},
+ {PPC::X30, -16},
+ {PPC::X29, -24},
+ {PPC::X28, -32},
+ {PPC::X27, -40},
+ {PPC::X26, -48},
+ {PPC::X25, -56},
+ {PPC::X24, -64},
+ {PPC::X23, -72},
+ {PPC::X22, -80},
+ {PPC::X21, -88},
+ {PPC::X20, -96},
+ {PPC::X19, -104},
+ {PPC::X18, -112},
+ {PPC::X17, -120},
+ {PPC::X16, -128},
+ {PPC::X15, -136},
+ {PPC::X14, -144},
+
+ // VRSAVE save area offset.
+ {PPC::VRSAVE, -4},
+
+ // Vector register save area
+ {PPC::V31, -16},
+ {PPC::V30, -32},
+ {PPC::V29, -48},
+ {PPC::V28, -64},
+ {PPC::V27, -80},
+ {PPC::V26, -96},
+ {PPC::V25, -112},
+ {PPC::V24, -128},
+ {PPC::V23, -144},
+ {PPC::V22, -160},
+ {PPC::V21, -176},
+ {PPC::V20, -192}};
+
+ if (Subtarget.isPPC64()) {
+ NumEntries = array_lengthof(Offsets64);
+
+ return Offsets64;
+ } else {
+ NumEntries = array_lengthof(Offsets);
+
+ return Offsets;
+ }
+}
+
+/// RemoveVRSaveCode - We have found that this function does not need any code
+/// to manipulate the VRSAVE register, even though it uses vector registers.
+/// This can happen when the only registers used are known to be live in or out
+/// of the function. Remove all of the VRSAVE related code from the function.
+/// FIXME: The removal of the code results in a compile failure at -O0 when the
+/// function contains a function call, as the GPR containing original VRSAVE
+/// contents is spilled and reloaded around the call. Without the prolog code,
+/// the spill instruction refers to an undefined register. This code needs
+/// to account for all uses of that GPR.
+static void RemoveVRSaveCode(MachineInstr *MI) {
+ MachineBasicBlock *Entry = MI->getParent();
+ MachineFunction *MF = Entry->getParent();
+
+ // We know that the MTVRSAVE instruction immediately follows MI. Remove it.
+ MachineBasicBlock::iterator MBBI = MI;
+ ++MBBI;
+ assert(MBBI != Entry->end() && MBBI->getOpcode() == PPC::MTVRSAVE);
+ MBBI->eraseFromParent();
+
+ bool RemovedAllMTVRSAVEs = true;
+ // See if we can find and remove the MTVRSAVE instruction from all of the
+ // epilog blocks.
+ for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
+ // If last instruction is a return instruction, add an epilogue
+ if (!I->empty() && I->back().isReturn()) {
+ bool FoundIt = false;
+ for (MBBI = I->end(); MBBI != I->begin(); ) {
+ --MBBI;
+ if (MBBI->getOpcode() == PPC::MTVRSAVE) {
+ MBBI->eraseFromParent(); // remove it.
+ FoundIt = true;
+ break;
+ }
+ }
+ RemovedAllMTVRSAVEs &= FoundIt;
+ }
+ }
+
+ // If we found and removed all MTVRSAVE instructions, remove the read of
+ // VRSAVE as well.
+ if (RemovedAllMTVRSAVEs) {
+ MBBI = MI;
+ assert(MBBI != Entry->begin() && "UPDATE_VRSAVE is first instr in block?");
+ --MBBI;
+ assert(MBBI->getOpcode() == PPC::MFVRSAVE && "VRSAVE instrs wandered?");
+ MBBI->eraseFromParent();
+ }
+
+ // Finally, nuke the UPDATE_VRSAVE.
+ MI->eraseFromParent();
+}
+
+// HandleVRSaveUpdate - MI is the UPDATE_VRSAVE instruction introduced by the
+// instruction selector. Based on the vector registers that have been used,
+// transform this into the appropriate ORI instruction.
+static void HandleVRSaveUpdate(MachineInstr *MI, const TargetInstrInfo &TII) {
+ MachineFunction *MF = MI->getParent()->getParent();
+ const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ DebugLoc dl = MI->getDebugLoc();
+
+ unsigned UsedRegMask = 0;
+ for (unsigned i = 0; i != 32; ++i)
+ if (MF->getRegInfo().isPhysRegUsed(VRRegNo[i]))
+ UsedRegMask |= 1 << (31-i);
+
+ // Live in and live out values already must be in the mask, so don't bother
+ // marking them.
+ for (MachineRegisterInfo::livein_iterator
+ I = MF->getRegInfo().livein_begin(),
+ E = MF->getRegInfo().livein_end(); I != E; ++I) {
+ unsigned RegNo = TRI->getEncodingValue(I->first);
+ if (VRRegNo[RegNo] == I->first) // If this really is a vector reg.
+ UsedRegMask &= ~(1 << (31-RegNo)); // Doesn't need to be marked.
+ }
+
+ // Live out registers appear as use operands on return instructions.
+ for (MachineFunction::const_iterator BI = MF->begin(), BE = MF->end();
+ UsedRegMask != 0 && BI != BE; ++BI) {
+ const MachineBasicBlock &MBB = *BI;
+ if (MBB.empty() || !MBB.back().isReturn())
+ continue;
+ const MachineInstr &Ret = MBB.back();
+ for (unsigned I = 0, E = Ret.getNumOperands(); I != E; ++I) {
+ const MachineOperand &MO = Ret.getOperand(I);
+ if (!MO.isReg() || !PPC::VRRCRegClass.contains(MO.getReg()))
+ continue;
+ unsigned RegNo = TRI->getEncodingValue(MO.getReg());
+ UsedRegMask &= ~(1 << (31-RegNo));
+ }
+ }
+
+ // If no registers are used, turn this into a copy.
+ if (UsedRegMask == 0) {
+ // Remove all VRSAVE code.
+ RemoveVRSaveCode(MI);
+ return;
+ }
+
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ unsigned DstReg = MI->getOperand(0).getReg();
+
+ if ((UsedRegMask & 0xFFFF) == UsedRegMask) {
+ if (DstReg != SrcReg)
+ BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
+ .addReg(SrcReg)
+ .addImm(UsedRegMask);
+ else
+ BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
+ .addReg(SrcReg, RegState::Kill)
+ .addImm(UsedRegMask);
+ } else if ((UsedRegMask & 0xFFFF0000) == UsedRegMask) {
+ if (DstReg != SrcReg)
+ BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
+ .addReg(SrcReg)
+ .addImm(UsedRegMask >> 16);
+ else
+ BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
+ .addReg(SrcReg, RegState::Kill)
+ .addImm(UsedRegMask >> 16);
+ } else {
+ if (DstReg != SrcReg)
+ BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
+ .addReg(SrcReg)
+ .addImm(UsedRegMask >> 16);
+ else
+ BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
+ .addReg(SrcReg, RegState::Kill)
+ .addImm(UsedRegMask >> 16);
+
+ BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
+ .addReg(DstReg, RegState::Kill)
+ .addImm(UsedRegMask & 0xFFFF);
+ }
+
+ // Remove the old UPDATE_VRSAVE instruction.
+ MI->eraseFromParent();
+}
+
+static bool spillsCR(const MachineFunction &MF) {
+ const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ return FuncInfo->isCRSpilled();
+}
+
+static bool spillsVRSAVE(const MachineFunction &MF) {
+ const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ return FuncInfo->isVRSAVESpilled();
+}
+
+static bool hasSpills(const MachineFunction &MF) {
+ const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ return FuncInfo->hasSpills();
+}
+
+static bool hasNonRISpills(const MachineFunction &MF) {
+ const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ return FuncInfo->hasNonRISpills();
+}
+
+/// determineFrameLayout - Determine the size of the frame and maximum call
+/// frame size.
+unsigned PPCFrameLowering::determineFrameLayout(MachineFunction &MF,
+ bool UpdateMF,
+ bool UseEstimate) const {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ // Get the number of bytes to allocate from the FrameInfo
+ unsigned FrameSize =
+ UseEstimate ? MFI->estimateStackSize(MF) : MFI->getStackSize();
+
+ // Get stack alignments. The frame must be aligned to the greatest of these:
+ unsigned TargetAlign = getStackAlignment(); // alignment required per the ABI
+ unsigned MaxAlign = MFI->getMaxAlignment(); // algmt required by data in frame
+ unsigned AlignMask = std::max(MaxAlign, TargetAlign) - 1;
+
+ const PPCRegisterInfo *RegInfo =
+ static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ // If we are a leaf function, and use up to 224 bytes of stack space,
+ // don't have a frame pointer, calls, or dynamic alloca then we do not need
+ // to adjust the stack pointer (we fit in the Red Zone).
+ // The 32-bit SVR4 ABI has no Red Zone. However, it can still generate
+ // stackless code if all local vars are reg-allocated.
+ bool DisableRedZone = MF.getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::NoRedZone);
+ if (!DisableRedZone &&
+ (Subtarget.isPPC64() || // 32-bit SVR4, no stack-
+ !Subtarget.isSVR4ABI() || // allocated locals.
+ FrameSize == 0) &&
+ FrameSize <= 224 && // Fits in red zone.
+ !MFI->hasVarSizedObjects() && // No dynamic alloca.
+ !MFI->adjustsStack() && // No calls.
+ !RegInfo->hasBasePointer(MF)) { // No special alignment.
+ // No need for frame
+ if (UpdateMF)
+ MFI->setStackSize(0);
+ return 0;
+ }
+
+ // Get the maximum call frame size of all the calls.
+ unsigned maxCallFrameSize = MFI->getMaxCallFrameSize();
+
+ // Maximum call frame needs to be at least big enough for linkage area.
+ unsigned minCallFrameSize = getLinkageSize(Subtarget.isPPC64(),
+ Subtarget.isDarwinABI(),
+ Subtarget.isELFv2ABI());
+ maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
+
+ // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
+ // that allocations will be aligned.
+ if (MFI->hasVarSizedObjects())
+ maxCallFrameSize = (maxCallFrameSize + AlignMask) & ~AlignMask;
+
+ // Update maximum call frame size.
+ if (UpdateMF)
+ MFI->setMaxCallFrameSize(maxCallFrameSize);
+
+ // Include call frame size in total.
+ FrameSize += maxCallFrameSize;
+
+ // Make sure the frame is aligned.
+ FrameSize = (FrameSize + AlignMask) & ~AlignMask;
+
+ // Update frame info.
+ if (UpdateMF)
+ MFI->setStackSize(FrameSize);
+
+ return FrameSize;
+}
+
+// hasFP - Return true if the specified function actually has a dedicated frame
+// pointer register.
+bool PPCFrameLowering::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ // FIXME: This is pretty much broken by design: hasFP() might be called really
+ // early, before the stack layout was calculated and thus hasFP() might return
+ // true or false here depending on the time of call.
+ return (MFI->getStackSize()) && needsFP(MF);
+}
+
+// needsFP - Return true if the specified function should have a dedicated frame
+// pointer register. This is true if the function has variable sized allocas or
+// if frame pointer elimination is disabled.
+bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ // Naked functions have no stack frame pushed, so we don't have a frame
+ // pointer.
+ if (MF.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::Naked))
+ return false;
+
+ return MF.getTarget().Options.DisableFramePointerElim(MF) ||
+ MFI->hasVarSizedObjects() ||
+ (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ MF.getInfo<PPCFunctionInfo>()->hasFastCall());
+}
+
+void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
+ bool is31 = needsFP(MF);
+ unsigned FPReg = is31 ? PPC::R31 : PPC::R1;
+ unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
+
+ const PPCRegisterInfo *RegInfo =
+ static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ bool HasBP = RegInfo->hasBasePointer(MF);
+ unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
+ unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FPReg;
+
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
+ BI != BE; ++BI)
+ for (MachineBasicBlock::iterator MBBI = BI->end(); MBBI != BI->begin(); ) {
+ --MBBI;
+ for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
+ MachineOperand &MO = MBBI->getOperand(I);
+ if (!MO.isReg())
+ continue;
+
+ switch (MO.getReg()) {
+ case PPC::FP:
+ MO.setReg(FPReg);
+ break;
+ case PPC::FP8:
+ MO.setReg(FP8Reg);
+ break;
+ case PPC::BP:
+ MO.setReg(BPReg);
+ break;
+ case PPC::BP8:
+ MO.setReg(BP8Reg);
+ break;
+
+ }
+ }
+ }
+}
+
+void PPCFrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const PPCInstrInfo &TII =
+ *static_cast<const PPCInstrInfo*>(MF.getTarget().getInstrInfo());
+ const PPCRegisterInfo *RegInfo =
+ static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ MachineModuleInfo &MMI = MF.getMMI();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
+ DebugLoc dl;
+ bool needsFrameMoves = MMI.hasDebugInfo() ||
+ MF.getFunction()->needsUnwindTableEntry();
+ bool isPIC = MF.getTarget().getRelocationModel() == Reloc::PIC_;
+
+ // Get processor type.
+ bool isPPC64 = Subtarget.isPPC64();
+ // Get the ABI.
+ bool isDarwinABI = Subtarget.isDarwinABI();
+ bool isSVR4ABI = Subtarget.isSVR4ABI();
+ bool isELFv2ABI = Subtarget.isELFv2ABI();
+ assert((isDarwinABI || isSVR4ABI) &&
+ "Currently only Darwin and SVR4 ABIs are supported for PowerPC.");
+
+ // Scan the prolog, looking for an UPDATE_VRSAVE instruction. If we find it,
+ // process it.
+ if (!isSVR4ABI)
+ for (unsigned i = 0; MBBI != MBB.end(); ++i, ++MBBI) {
+ if (MBBI->getOpcode() == PPC::UPDATE_VRSAVE) {
+ HandleVRSaveUpdate(MBBI, TII);
+ break;
+ }
+ }
+
+ // Move MBBI back to the beginning of the function.
+ MBBI = MBB.begin();
+
+ // Work out frame sizes.
+ unsigned FrameSize = determineFrameLayout(MF);
+ int NegFrameSize = -FrameSize;
+ if (!isInt<32>(NegFrameSize))
+ llvm_unreachable("Unhandled stack size!");
+
+ if (MFI->isFrameAddressTaken())
+ replaceFPWithRealFP(MF);
+
+ // Check if the link register (LR) must be saved.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ bool MustSaveLR = FI->mustSaveLR();
+ const SmallVectorImpl<unsigned> &MustSaveCRs = FI->getMustSaveCRs();
+ // Do we have a frame pointer and/or base pointer for this function?
+ bool HasFP = hasFP(MF);
+ bool HasBP = RegInfo->hasBasePointer(MF);
+
+ unsigned SPReg = isPPC64 ? PPC::X1 : PPC::R1;
+ unsigned BPReg = RegInfo->getBaseRegister(MF);
+ unsigned FPReg = isPPC64 ? PPC::X31 : PPC::R31;
+ unsigned LRReg = isPPC64 ? PPC::LR8 : PPC::LR;
+ unsigned ScratchReg = isPPC64 ? PPC::X0 : PPC::R0;
+ unsigned TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
+ // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
+ const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
+ : PPC::MFLR );
+ const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
+ : PPC::STW );
+ const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
+ : PPC::STWU );
+ const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
+ : PPC::STWUX);
+ const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8
+ : PPC::LIS );
+ const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8
+ : PPC::ORI );
+ const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
+ : PPC::OR );
+ const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
+ : PPC::SUBFC);
+ const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
+ : PPC::SUBFIC);
+
+ // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
+ // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
+ // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
+ // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
+ assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
+ "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
+
+ int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
+
+ int FPOffset = 0;
+ if (HasFP) {
+ if (isSVR4ABI) {
+ MachineFrameInfo *FFI = MF.getFrameInfo();
+ int FPIndex = FI->getFramePointerSaveIndex();
+ assert(FPIndex && "No Frame Pointer Save Slot!");
+ FPOffset = FFI->getObjectOffset(FPIndex);
+ } else {
+ FPOffset =
+ PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
+ }
+ }
+
+ int BPOffset = 0;
+ if (HasBP) {
+ if (isSVR4ABI) {
+ MachineFrameInfo *FFI = MF.getFrameInfo();
+ int BPIndex = FI->getBasePointerSaveIndex();
+ assert(BPIndex && "No Base Pointer Save Slot!");
+ BPOffset = FFI->getObjectOffset(BPIndex);
+ } else {
+ BPOffset =
+ PPCFrameLowering::getBasePointerSaveOffset(isPPC64,
+ isDarwinABI,
+ isPIC);
+ }
+ }
+
+ // Get stack alignments.
+ unsigned MaxAlign = MFI->getMaxAlignment();
+ if (HasBP && MaxAlign > 1)
+ assert(isPowerOf2_32(MaxAlign) && isInt<16>(MaxAlign) &&
+ "Invalid alignment!");
+
+ // Frames of 32KB & larger require special handling because they cannot be
+ // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
+ bool isLargeFrame = !isInt<16>(NegFrameSize);
+
+ if (MustSaveLR)
+ BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);
+
+ assert((isPPC64 || MustSaveCRs.empty()) &&
+ "Prologue CR saving supported only in 64-bit mode");
+
+ if (!MustSaveCRs.empty()) { // will only occur for PPC64
+ // FIXME: In the ELFv2 ABI, we are not required to save all CR fields.
+ // If only one or two CR fields are clobbered, it could be more
+ // efficient to use mfocrf to selectively save just those fields.
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::MFCR8), TempReg);
+ for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
+ MIB.addReg(MustSaveCRs[i], RegState::ImplicitKill);
+ }
+
+ if (HasFP)
+ // FIXME: On PPC32 SVR4, we must not spill before claiming the stackframe.
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(FPReg)
+ .addImm(FPOffset)
+ .addReg(SPReg);
+
+ if (HasBP)
+ // FIXME: On PPC32 SVR4, we must not spill before claiming the stackframe.
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(BPReg)
+ .addImm(BPOffset)
+ .addReg(SPReg);
+
+ if (MustSaveLR)
+ // FIXME: On PPC32 SVR4, we must not spill before claiming the stackframe.
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(ScratchReg)
+ .addImm(LROffset)
+ .addReg(SPReg);
+
+ if (!MustSaveCRs.empty()) // will only occur for PPC64
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::STW8))
+ .addReg(TempReg, getKillRegState(true))
+ .addImm(8)
+ .addReg(SPReg);
+
+ // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
+ if (!FrameSize) return;
+
+ // Adjust stack pointer: r1 += NegFrameSize.
+ // If there is a preferred stack alignment, align R1 now
+
+ if (HasBP) {
+ // Save a copy of r1 as the base pointer.
+ BuildMI(MBB, MBBI, dl, OrInst, BPReg)
+ .addReg(SPReg)
+ .addReg(SPReg);
+ }
+
+ if (HasBP && MaxAlign > 1) {
+ if (isPPC64)
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
+ .addReg(SPReg)
+ .addImm(0)
+ .addImm(64 - Log2_32(MaxAlign));
+ else // PPC32...
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
+ .addReg(SPReg)
+ .addImm(0)
+ .addImm(32 - Log2_32(MaxAlign))
+ .addImm(31);
+ if (!isLargeFrame) {
+ BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addImm(NegFrameSize);
+ } else {
+ BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg)
+ .addImm(NegFrameSize >> 16);
+ BuildMI(MBB, MBBI, dl, OrImmInst, TempReg)
+ .addReg(TempReg, RegState::Kill)
+ .addImm(NegFrameSize & 0xFFFF);
+ BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addReg(TempReg, RegState::Kill);
+ }
+ BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
+ .addReg(SPReg, RegState::Kill)
+ .addReg(SPReg)
+ .addReg(ScratchReg);
+
+ } else if (!isLargeFrame) {
+ BuildMI(MBB, MBBI, dl, StoreUpdtInst, SPReg)
+ .addReg(SPReg)
+ .addImm(NegFrameSize)
+ .addReg(SPReg);
+
+ } else {
+ BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
+ .addImm(NegFrameSize >> 16);
+ BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addImm(NegFrameSize & 0xFFFF);
+ BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
+ .addReg(SPReg, RegState::Kill)
+ .addReg(SPReg)
+ .addReg(ScratchReg);
+ }
+
+ // Add the "machine moves" for the instructions we generated above, but in
+ // reverse order.
+ if (needsFrameMoves) {
+ // Show update of SP.
+ assert(NegFrameSize);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, NegFrameSize));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ if (HasFP) {
+ unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
+ CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ if (HasBP) {
+ unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
+ CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ if (MustSaveLR) {
+ unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
+ CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+
+ // If there is a frame pointer, copy R1 into R31
+ if (HasFP) {
+ BuildMI(MBB, MBBI, dl, OrInst, FPReg)
+ .addReg(SPReg)
+ .addReg(SPReg);
+
+ if (needsFrameMoves) {
+ // Mark effective beginning of when frame pointer is ready.
+ unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
+
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+
+ if (needsFrameMoves) {
+ // Add callee saved registers to move list.
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
+
+ // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
+ // subregisters of CR2. We just need to emit a move of CR2.
+ if (PPC::CRBITRCRegClass.contains(Reg))
+ continue;
+
+ // For SVR4, don't emit a move for the CR spill slot if we haven't
+ // spilled CRs.
+ if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4)
+ && MustSaveCRs.empty())
+ continue;
+
+ // For 64-bit SVR4 when we have spilled CRs, the spill location
+ // is SP+8, not a frame-relative slot.
+ if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
+ // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
+ // the whole CR word. In the ELFv2 ABI, every CR that was
+ // actually saved gets its own CFI record.
+ unsigned CRReg = isELFv2ABI? Reg : (unsigned) PPC::CR2;
+ unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(CRReg, true), 8));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ continue;
+ }
+
+ int Offset = MFI->getObjectOffset(CSI[I].getFrameIdx());
+ unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+}
+
+void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ assert(MBBI != MBB.end() && "Returning block has no terminator");
+ const PPCInstrInfo &TII =
+ *static_cast<const PPCInstrInfo*>(MF.getTarget().getInstrInfo());
+ const PPCRegisterInfo *RegInfo =
+ static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ unsigned RetOpcode = MBBI->getOpcode();
+ DebugLoc dl;
+
+ assert((RetOpcode == PPC::BLR ||
+ RetOpcode == PPC::TCRETURNri ||
+ RetOpcode == PPC::TCRETURNdi ||
+ RetOpcode == PPC::TCRETURNai ||
+ RetOpcode == PPC::TCRETURNri8 ||
+ RetOpcode == PPC::TCRETURNdi8 ||
+ RetOpcode == PPC::TCRETURNai8) &&
+ "Can only insert epilog into returning blocks");
+
+ // Get alignment info so we know how to restore the SP.
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ // Get the number of bytes allocated from the FrameInfo.
+ int FrameSize = MFI->getStackSize();
+
+ // Get processor type.
+ bool isPPC64 = Subtarget.isPPC64();
+ // Get the ABI.
+ bool isDarwinABI = Subtarget.isDarwinABI();
+ bool isSVR4ABI = Subtarget.isSVR4ABI();
+ bool isPIC = MF.getTarget().getRelocationModel() == Reloc::PIC_;
+
+ // Check if the link register (LR) has been saved.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ bool MustSaveLR = FI->mustSaveLR();
+ const SmallVectorImpl<unsigned> &MustSaveCRs = FI->getMustSaveCRs();
+ // Do we have a frame pointer and/or base pointer for this function?
+ bool HasFP = hasFP(MF);
+ bool HasBP = RegInfo->hasBasePointer(MF);
+
+ unsigned SPReg = isPPC64 ? PPC::X1 : PPC::R1;
+ unsigned BPReg = RegInfo->getBaseRegister(MF);
+ unsigned FPReg = isPPC64 ? PPC::X31 : PPC::R31;
+ unsigned ScratchReg = isPPC64 ? PPC::X0 : PPC::R0;
+ unsigned TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
+ const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
+ : PPC::MTLR );
+ const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
+ : PPC::LWZ );
+ const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
+ : PPC::LIS );
+ const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
+ : PPC::ORI );
+ const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
+ : PPC::ADDI );
+ const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
+ : PPC::ADD4 );
+
+ int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
+
+ int FPOffset = 0;
+ if (HasFP) {
+ if (isSVR4ABI) {
+ MachineFrameInfo *FFI = MF.getFrameInfo();
+ int FPIndex = FI->getFramePointerSaveIndex();
+ assert(FPIndex && "No Frame Pointer Save Slot!");
+ FPOffset = FFI->getObjectOffset(FPIndex);
+ } else {
+ FPOffset =
+ PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
+ }
+ }
+
+ int BPOffset = 0;
+ if (HasBP) {
+ if (isSVR4ABI) {
+ MachineFrameInfo *FFI = MF.getFrameInfo();
+ int BPIndex = FI->getBasePointerSaveIndex();
+ assert(BPIndex && "No Base Pointer Save Slot!");
+ BPOffset = FFI->getObjectOffset(BPIndex);
+ } else {
+ BPOffset =
+ PPCFrameLowering::getBasePointerSaveOffset(isPPC64,
+ isDarwinABI,
+ isPIC);
+ }
+ }
+
+ bool UsesTCRet = RetOpcode == PPC::TCRETURNri ||
+ RetOpcode == PPC::TCRETURNdi ||
+ RetOpcode == PPC::TCRETURNai ||
+ RetOpcode == PPC::TCRETURNri8 ||
+ RetOpcode == PPC::TCRETURNdi8 ||
+ RetOpcode == PPC::TCRETURNai8;
+
+ if (UsesTCRet) {
+ int MaxTCRetDelta = FI->getTailCallSPDelta();
+ MachineOperand &StackAdjust = MBBI->getOperand(1);
+ assert(StackAdjust.isImm() && "Expecting immediate value.");
+ // Adjust stack pointer.
+ int StackAdj = StackAdjust.getImm();
+ int Delta = StackAdj - MaxTCRetDelta;
+ assert((Delta >= 0) && "Delta must be positive");
+ if (MaxTCRetDelta>0)
+ FrameSize += (StackAdj +Delta);
+ else
+ FrameSize += StackAdj;
+ }
+
+ // Frames of 32KB & larger require special handling because they cannot be
+ // indexed into with a simple LD/LWZ immediate offset operand.
+ bool isLargeFrame = !isInt<16>(FrameSize);
+
+ if (FrameSize) {
+ // In the prologue, the loaded (or persistent) stack pointer value is offset
+ // by the STDU/STDUX/STWU/STWUX instruction. Add this offset back now.
+
+ // If this function contained a fastcc call and GuaranteedTailCallOpt is
+ // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
+ // call which invalidates the stack pointer value in SP(0). So we use the
+ // value of R31 in this case.
+ if (FI->hasFastCall()) {
+ assert(HasFP && "Expecting a valid frame pointer.");
+ if (!isLargeFrame) {
+ BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
+ .addReg(FPReg).addImm(FrameSize);
+ } else {
+ BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
+ .addImm(FrameSize >> 16);
+ BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addImm(FrameSize & 0xFFFF);
+ BuildMI(MBB, MBBI, dl, AddInst)
+ .addReg(SPReg)
+ .addReg(FPReg)
+ .addReg(ScratchReg);
+ }
+ } else if (!isLargeFrame && !HasBP && !MFI->hasVarSizedObjects()) {
+ BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
+ .addReg(SPReg)
+ .addImm(FrameSize);
+ } else {
+ BuildMI(MBB, MBBI, dl, LoadInst, SPReg)
+ .addImm(0)
+ .addReg(SPReg);
+ }
+
+ }
+
+ if (MustSaveLR)
+ BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
+ .addImm(LROffset)
+ .addReg(SPReg);
+
+ assert((isPPC64 || MustSaveCRs.empty()) &&
+ "Epilogue CR restoring supported only in 64-bit mode");
+
+ if (!MustSaveCRs.empty()) // will only occur for PPC64
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::LWZ8), TempReg)
+ .addImm(8)
+ .addReg(SPReg);
+
+ if (HasFP)
+ BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
+ .addImm(FPOffset)
+ .addReg(SPReg);
+
+ if (HasBP)
+ BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
+ .addImm(BPOffset)
+ .addReg(SPReg);
+
+ if (!MustSaveCRs.empty()) // will only occur for PPC64
+ for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::MTOCRF8), MustSaveCRs[i])
+ .addReg(TempReg, getKillRegState(i == e-1));
+
+ if (MustSaveLR)
+ BuildMI(MBB, MBBI, dl, MTLRInst).addReg(ScratchReg);
+
+ // Callee pop calling convention. Pop parameter/linkage area. Used for tail
+ // call optimization
+ if (MF.getTarget().Options.GuaranteedTailCallOpt && RetOpcode == PPC::BLR &&
+ MF.getFunction()->getCallingConv() == CallingConv::Fast) {
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ unsigned CallerAllocatedAmt = FI->getMinReservedArea();
+
+ if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
+ BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
+ .addReg(SPReg).addImm(CallerAllocatedAmt);
+ } else {
+ BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
+ .addImm(CallerAllocatedAmt >> 16);
+ BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addImm(CallerAllocatedAmt & 0xFFFF);
+ BuildMI(MBB, MBBI, dl, AddInst)
+ .addReg(SPReg)
+ .addReg(FPReg)
+ .addReg(ScratchReg);
+ }
+ } else if (RetOpcode == PPC::TCRETURNdi) {
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &JumpTarget = MBBI->getOperand(0);
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
+ addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
+ } else if (RetOpcode == PPC::TCRETURNri) {
+ MBBI = MBB.getLastNonDebugInstr();
+ assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
+ } else if (RetOpcode == PPC::TCRETURNai) {
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &JumpTarget = MBBI->getOperand(0);
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
+ } else if (RetOpcode == PPC::TCRETURNdi8) {
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &JumpTarget = MBBI->getOperand(0);
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
+ addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
+ } else if (RetOpcode == PPC::TCRETURNri8) {
+ MBBI = MBB.getLastNonDebugInstr();
+ assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
+ } else if (RetOpcode == PPC::TCRETURNai8) {
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &JumpTarget = MBBI->getOperand(0);
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
+ }
+}
+
+/// MustSaveLR - Return true if this function requires that we save the LR
+/// register onto the stack in the prolog and restore it in the epilog of the
+/// function.
+static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
+ const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
+
+ // We need a save/restore of LR if there is any def of LR (which is
+ // defined by calls, including the PIC setup sequence), or if there is
+ // some use of the LR stack slot (e.g. for builtin_return_address).
+ // (LR comes in 32 and 64 bit versions.)
+ MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
+ return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
+}
+
+void
+PPCFrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *) const {
+ const PPCRegisterInfo *RegInfo =
+ static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ // Save and clear the LR state.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ unsigned LR = RegInfo->getRARegister();
+ FI->setMustSaveLR(MustSaveLR(MF, LR));
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ MRI.setPhysRegUnused(LR);
+
+ // Save R31 if necessary
+ int FPSI = FI->getFramePointerSaveIndex();
+ bool isPPC64 = Subtarget.isPPC64();
+ bool isDarwinABI = Subtarget.isDarwinABI();
+ bool isPIC = MF.getTarget().getRelocationModel() == Reloc::PIC_;
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ // If the frame pointer save index hasn't been defined yet.
+ if (!FPSI && needsFP(MF)) {
+ // Find out what the fix offset of the frame pointer save area.
+ int FPOffset = getFramePointerSaveOffset(isPPC64, isDarwinABI);
+ // Allocate the frame index for frame pointer save area.
+ FPSI = MFI->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
+ // Save the result.
+ FI->setFramePointerSaveIndex(FPSI);
+ }
+
+ int BPSI = FI->getBasePointerSaveIndex();
+ if (!BPSI && RegInfo->hasBasePointer(MF)) {
+ int BPOffset = getBasePointerSaveOffset(isPPC64, isDarwinABI, isPIC);
+ // Allocate the frame index for the base pointer save area.
+ BPSI = MFI->CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
+ // Save the result.
+ FI->setBasePointerSaveIndex(BPSI);
+ }
+
+ // Reserve stack space to move the linkage area to in case of a tail call.
+ int TCSPDelta = 0;
+ if (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ (TCSPDelta = FI->getTailCallSPDelta()) < 0) {
+ MFI->CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
+ }
+
+ // For 32-bit SVR4, allocate the nonvolatile CR spill slot iff the
+ // function uses CR 2, 3, or 4.
+ if (!isPPC64 && !isDarwinABI &&
+ (MRI.isPhysRegUsed(PPC::CR2) ||
+ MRI.isPhysRegUsed(PPC::CR3) ||
+ MRI.isPhysRegUsed(PPC::CR4))) {
+ int FrameIdx = MFI->CreateFixedObject((uint64_t)4, (int64_t)-4, true);
+ FI->setCRSpillFrameIndex(FrameIdx);
+ }
+}
+
+void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
+ RegScavenger *RS) const {
+ // Early exit if not using the SVR4 ABI.
+ if (!Subtarget.isSVR4ABI()) {
+ addScavengingSpillSlot(MF, RS);
+ return;
+ }
+
+ // Get callee saved register information.
+ MachineFrameInfo *FFI = MF.getFrameInfo();
+ const std::vector<CalleeSavedInfo> &CSI = FFI->getCalleeSavedInfo();
+
+ // Early exit if no callee saved registers are modified!
+ if (CSI.empty() && !needsFP(MF)) {
+ addScavengingSpillSlot(MF, RS);
+ return;
+ }
+
+ unsigned MinGPR = PPC::R31;
+ unsigned MinG8R = PPC::X31;
+ unsigned MinFPR = PPC::F31;
+ unsigned MinVR = PPC::V31;
+
+ bool HasGPSaveArea = false;
+ bool HasG8SaveArea = false;
+ bool HasFPSaveArea = false;
+ bool HasVRSAVESaveArea = false;
+ bool HasVRSaveArea = false;
+
+ SmallVector<CalleeSavedInfo, 18> GPRegs;
+ SmallVector<CalleeSavedInfo, 18> G8Regs;
+ SmallVector<CalleeSavedInfo, 18> FPRegs;
+ SmallVector<CalleeSavedInfo, 18> VRegs;
+
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ if (PPC::GPRCRegClass.contains(Reg)) {
+ HasGPSaveArea = true;
+
+ GPRegs.push_back(CSI[i]);
+
+ if (Reg < MinGPR) {
+ MinGPR = Reg;
+ }
+ } else if (PPC::G8RCRegClass.contains(Reg)) {
+ HasG8SaveArea = true;
+
+ G8Regs.push_back(CSI[i]);
+
+ if (Reg < MinG8R) {
+ MinG8R = Reg;
+ }
+ } else if (PPC::F8RCRegClass.contains(Reg)) {
+ HasFPSaveArea = true;
+
+ FPRegs.push_back(CSI[i]);
+
+ if (Reg < MinFPR) {
+ MinFPR = Reg;
+ }
+ } else if (PPC::CRBITRCRegClass.contains(Reg) ||
+ PPC::CRRCRegClass.contains(Reg)) {
+ ; // do nothing, as we already know whether CRs are spilled
+ } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
+ HasVRSAVESaveArea = true;
+ } else if (PPC::VRRCRegClass.contains(Reg)) {
+ HasVRSaveArea = true;
+
+ VRegs.push_back(CSI[i]);
+
+ if (Reg < MinVR) {
+ MinVR = Reg;
+ }
+ } else {
+ llvm_unreachable("Unknown RegisterClass!");
+ }
+ }
+
+ PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
+ const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+
+ int64_t LowerBound = 0;
+
+ // Take into account stack space reserved for tail calls.
+ int TCSPDelta = 0;
+ if (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ (TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
+ LowerBound = TCSPDelta;
+ }
+
+ // The Floating-point register save area is right below the back chain word
+ // of the previous stack frame.
+ if (HasFPSaveArea) {
+ for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
+ int FI = FPRegs[i].getFrameIdx();
+
+ FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
+ }
+
+ LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
+ }
+
+ // Check whether the frame pointer register is allocated. If so, make sure it
+ // is spilled to the correct offset.
+ if (needsFP(MF)) {
+ HasGPSaveArea = true;
+
+ int FI = PFI->getFramePointerSaveIndex();
+ assert(FI && "No Frame Pointer Save Slot!");
+
+ FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
+ }
+
+ const PPCRegisterInfo *RegInfo =
+ static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ if (RegInfo->hasBasePointer(MF)) {
+ HasGPSaveArea = true;
+
+ int FI = PFI->getBasePointerSaveIndex();
+ assert(FI && "No Base Pointer Save Slot!");
+
+ FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
+ }
+
+ // General register save area starts right below the Floating-point
+ // register save area.
+ if (HasGPSaveArea || HasG8SaveArea) {
+ // Move general register save area spill slots down, taking into account
+ // the size of the Floating-point register save area.
+ for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
+ int FI = GPRegs[i].getFrameIdx();
+
+ FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
+ }
+
+ // Move general register save area spill slots down, taking into account
+ // the size of the Floating-point register save area.
+ for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
+ int FI = G8Regs[i].getFrameIdx();
+
+ FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
+ }
+
+ unsigned MinReg =
+ std::min<unsigned>(TRI->getEncodingValue(MinGPR),
+ TRI->getEncodingValue(MinG8R));
+
+ if (Subtarget.isPPC64()) {
+ LowerBound -= (31 - MinReg + 1) * 8;
+ } else {
+ LowerBound -= (31 - MinReg + 1) * 4;
+ }
+ }
+
+ // For 32-bit only, the CR save area is below the general register
+ // save area. For 64-bit SVR4, the CR save area is addressed relative
+ // to the stack pointer and hence does not need an adjustment here.
+ // Only CR2 (the first nonvolatile spilled) has an associated frame
+ // index so that we have a single uniform save area.
+ if (spillsCR(MF) && !(Subtarget.isPPC64() && Subtarget.isSVR4ABI())) {
+ // Adjust the frame index of the CR spill slot.
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+
+ if ((Subtarget.isSVR4ABI() && Reg == PPC::CR2)
+ // Leave Darwin logic as-is.
+ || (!Subtarget.isSVR4ABI() &&
+ (PPC::CRBITRCRegClass.contains(Reg) ||
+ PPC::CRRCRegClass.contains(Reg)))) {
+ int FI = CSI[i].getFrameIdx();
+
+ FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
+ }
+ }
+
+ LowerBound -= 4; // The CR save area is always 4 bytes long.
+ }
+
+ if (HasVRSAVESaveArea) {
+ // FIXME SVR4: Is it actually possible to have multiple elements in CSI
+ // which have the VRSAVE register class?
+ // Adjust the frame index of the VRSAVE spill slot.
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+
+ if (PPC::VRSAVERCRegClass.contains(Reg)) {
+ int FI = CSI[i].getFrameIdx();
+
+ FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
+ }
+ }
+
+ LowerBound -= 4; // The VRSAVE save area is always 4 bytes long.
+ }
+
+ if (HasVRSaveArea) {
+ // Insert alignment padding, we need 16-byte alignment.
+ LowerBound = (LowerBound - 15) & ~(15);
+
+ for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
+ int FI = VRegs[i].getFrameIdx();
+
+ FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
+ }
+ }
+
+ addScavengingSpillSlot(MF, RS);
+}
+
+void
+PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF,
+ RegScavenger *RS) const {
+ // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
+ // a large stack, which will require scavenging a register to materialize a
+ // large offset.
+
+ // We need to have a scavenger spill slot for spills if the frame size is
+ // large. In case there is no free register for large-offset addressing,
+ // this slot is used for the necessary emergency spill. Also, we need the
+ // slot for dynamic stack allocations.
+
+ // The scavenger might be invoked if the frame offset does not fit into
+ // the 16-bit immediate. We don't know the complete frame size here
+ // because we've not yet computed callee-saved register spills or the
+ // needed alignment padding.
+ unsigned StackSize = determineFrameLayout(MF, false, true);
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ if (MFI->hasVarSizedObjects() || spillsCR(MF) || spillsVRSAVE(MF) ||
+ hasNonRISpills(MF) || (hasSpills(MF) && !isInt<16>(StackSize))) {
+ const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
+ const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
+ const TargetRegisterClass *RC = Subtarget.isPPC64() ? G8RC : GPRC;
+ RS->addScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
+ RC->getAlignment(),
+ false));
+
+ // Might we have over-aligned allocas?
+ bool HasAlVars = MFI->hasVarSizedObjects() &&
+ MFI->getMaxAlignment() > getStackAlignment();
+
+ // These kinds of spills might need two registers.
+ if (spillsCR(MF) || spillsVRSAVE(MF) || HasAlVars)
+ RS->addScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
+ RC->getAlignment(),
+ false));
+
+ }
+}
+
+bool
+PPCFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+
+ // Currently, this function only handles SVR4 32- and 64-bit ABIs.
+ // Return false otherwise to maintain pre-existing behavior.
+ if (!Subtarget.isSVR4ABI())
+ return false;
+
+ MachineFunction *MF = MBB.getParent();
+ const PPCInstrInfo &TII =
+ *static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo());
+ DebugLoc DL;
+ bool CRSpilled = false;
+ MachineInstrBuilder CRMIB;
+
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ // Only Darwin actually uses the VRSAVE register, but it can still appear
+ // here if, for example, @llvm.eh.unwind.init() is used. If we're not on
+ // Darwin, ignore it.
+ if (Reg == PPC::VRSAVE && !Subtarget.isDarwinABI())
+ continue;
+
+ // CR2 through CR4 are the nonvolatile CR fields.
+ bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
+
+ // Add the callee-saved register as live-in; it's killed at the spill.
+ MBB.addLiveIn(Reg);
+
+ if (CRSpilled && IsCRField) {
+ CRMIB.addReg(Reg, RegState::ImplicitKill);
+ continue;
+ }
+
+ // Insert the spill to the stack frame.
+ if (IsCRField) {
+ PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
+ if (Subtarget.isPPC64()) {
+ // The actual spill will happen at the start of the prologue.
+ FuncInfo->addMustSaveCR(Reg);
+ } else {
+ CRSpilled = true;
+ FuncInfo->setSpillsCR();
+
+ // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have
+ // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
+ CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
+ .addReg(Reg, RegState::ImplicitKill);
+
+ MBB.insert(MI, CRMIB);
+ MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
+ .addReg(PPC::R12,
+ getKillRegState(true)),
+ CSI[i].getFrameIdx()));
+ }
+ } else {
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ TII.storeRegToStackSlot(MBB, MI, Reg, true,
+ CSI[i].getFrameIdx(), RC, TRI);
+ }
+ }
+ return true;
+}
+
+static void
+restoreCRs(bool isPPC64, bool is31,
+ bool CR2Spilled, bool CR3Spilled, bool CR4Spilled,
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI, unsigned CSIIndex) {
+
+ MachineFunction *MF = MBB.getParent();
+ const PPCInstrInfo &TII =
+ *static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo());
+ DebugLoc DL;
+ unsigned RestoreOp, MoveReg;
+
+ if (isPPC64)
+ // This is handled during epilogue generation.
+ return;
+ else {
+ // 32-bit: FP-relative
+ MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ),
+ PPC::R12),
+ CSI[CSIIndex].getFrameIdx()));
+ RestoreOp = PPC::MTOCRF;
+ MoveReg = PPC::R12;
+ }
+
+ if (CR2Spilled)
+ MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
+ .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));
+
+ if (CR3Spilled)
+ MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
+ .addReg(MoveReg, getKillRegState(!CR4Spilled)));
+
+ if (CR4Spilled)
+ MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
+ .addReg(MoveReg, getKillRegState(true)));
+}
+
+void PPCFrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const PPCInstrInfo &TII =
+ *static_cast<const PPCInstrInfo*>(MF.getTarget().getInstrInfo());
+ if (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ I->getOpcode() == PPC::ADJCALLSTACKUP) {
+ // Add (actually subtract) back the amount the callee popped on return.
+ if (int CalleeAmt = I->getOperand(1).getImm()) {
+ bool is64Bit = Subtarget.isPPC64();
+ CalleeAmt *= -1;
+ unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
+ unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
+ unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
+ unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
+ unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
+ unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
+ MachineInstr *MI = I;
+ DebugLoc dl = MI->getDebugLoc();
+
+ if (isInt<16>(CalleeAmt)) {
+ BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
+ .addReg(StackReg, RegState::Kill)
+ .addImm(CalleeAmt);
+ } else {
+ MachineBasicBlock::iterator MBBI = I;
+ BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
+ .addImm(CalleeAmt >> 16);
+ BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
+ .addReg(TmpReg, RegState::Kill)
+ .addImm(CalleeAmt & 0xFFFF);
+ BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
+ .addReg(StackReg, RegState::Kill)
+ .addReg(TmpReg);
+ }
+ }
+ }
+ // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
+ MBB.erase(I);
+}
+
+bool
+PPCFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+
+ // Currently, this function only handles SVR4 32- and 64-bit ABIs.
+ // Return false otherwise to maintain pre-existing behavior.
+ if (!Subtarget.isSVR4ABI())
+ return false;
+
+ MachineFunction *MF = MBB.getParent();
+ const PPCInstrInfo &TII =
+ *static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo());
+ bool CR2Spilled = false;
+ bool CR3Spilled = false;
+ bool CR4Spilled = false;
+ unsigned CSIIndex = 0;
+
+ // Initialize insertion-point logic; we will be restoring in reverse
+ // order of spill.
+ MachineBasicBlock::iterator I = MI, BeforeI = I;
+ bool AtStart = I == MBB.begin();
+
+ if (!AtStart)
+ --BeforeI;
+
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+
+ // Only Darwin actually uses the VRSAVE register, but it can still appear
+ // here if, for example, @llvm.eh.unwind.init() is used. If we're not on
+ // Darwin, ignore it.
+ if (Reg == PPC::VRSAVE && !Subtarget.isDarwinABI())
+ continue;
+
+ if (Reg == PPC::CR2) {
+ CR2Spilled = true;
+ // The spill slot is associated only with CR2, which is the
+ // first nonvolatile spilled. Save it here.
+ CSIIndex = i;
+ continue;
+ } else if (Reg == PPC::CR3) {
+ CR3Spilled = true;
+ continue;
+ } else if (Reg == PPC::CR4) {
+ CR4Spilled = true;
+ continue;
+ } else {
+ // When we first encounter a non-CR register after seeing at
+ // least one CR register, restore all spilled CRs together.
+ if ((CR2Spilled || CR3Spilled || CR4Spilled)
+ && !(PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
+ bool is31 = needsFP(*MF);
+ restoreCRs(Subtarget.isPPC64(), is31,
+ CR2Spilled, CR3Spilled, CR4Spilled,
+ MBB, I, CSI, CSIIndex);
+ CR2Spilled = CR3Spilled = CR4Spilled = false;
+ }
+
+ // Default behavior for non-CR saves.
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(),
+ RC, TRI);
+ assert(I != MBB.begin() &&
+ "loadRegFromStackSlot didn't insert any code!");
+ }
+
+ // Insert in reverse order.
+ if (AtStart)
+ I = MBB.begin();
+ else {
+ I = BeforeI;
+ ++I;
+ }
+ }
+
+ // If we haven't yet spilled the CRs, do so now.
+ if (CR2Spilled || CR3Spilled || CR4Spilled) {
+ bool is31 = needsFP(*MF);
+ restoreCRs(Subtarget.isPPC64(), is31, CR2Spilled, CR3Spilled, CR4Spilled,
+ MBB, I, CSI, CSIIndex);
+ }
+
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.h b/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.h
new file mode 100644
index 0000000..c0c7d24
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.h
@@ -0,0 +1,126 @@
+//===-- PPCFrameLowering.h - Define frame lowering for PowerPC --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef POWERPC_FRAMEINFO_H
+#define POWERPC_FRAMEINFO_H
+
+#include "PPC.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+class PPCSubtarget;
+
+class PPCFrameLowering: public TargetFrameLowering {
+ const PPCSubtarget &Subtarget;
+
+public:
+ PPCFrameLowering(const PPCSubtarget &STI);
+
+ unsigned determineFrameLayout(MachineFunction &MF,
+ bool UpdateMF = true,
+ bool UseEstimate = false) const;
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+
+ bool hasFP(const MachineFunction &MF) const override;
+ bool needsFP(const MachineFunction &MF) const;
+ void replaceFPWithRealFP(MachineFunction &MF) const;
+
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS = nullptr) const override;
+ void processFunctionBeforeFrameFinalized(MachineFunction &MF,
+ RegScavenger *RS = nullptr) const override;
+ void addScavengingSpillSlot(MachineFunction &MF, RegScavenger *RS) const;
+
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const override;
+
+ bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ /// targetHandlesStackFrameRounding - Returns true if the target is
+ /// responsible for rounding up the stack frame (probably at emitPrologue
+ /// time).
+ bool targetHandlesStackFrameRounding() const override { return true; }
+
+ /// getReturnSaveOffset - Return the previous frame offset to save the
+ /// return address.
+ static unsigned getReturnSaveOffset(bool isPPC64, bool isDarwinABI) {
+ if (isDarwinABI)
+ return isPPC64 ? 16 : 8;
+ // SVR4 ABI:
+ return isPPC64 ? 16 : 4;
+ }
+
+ /// getTOCSaveOffset - Return the previous frame offset to save the
+ /// TOC register -- 64-bit SVR4 ABI only.
+ static unsigned getTOCSaveOffset(bool isELFv2ABI) {
+ return isELFv2ABI ? 24 : 40;
+ }
+
+ /// getFramePointerSaveOffset - Return the previous frame offset to save the
+ /// frame pointer.
+ static unsigned getFramePointerSaveOffset(bool isPPC64, bool isDarwinABI) {
+ // For the Darwin ABI:
+ // We cannot use the TOC save slot (offset +20) in the PowerPC linkage area
+ // for saving the frame pointer (if needed.) While the published ABI has
+ // not used this slot since at least MacOSX 10.2, there is older code
+ // around that does use it, and that needs to continue to work.
+ if (isDarwinABI)
+ return isPPC64 ? -8U : -4U;
+
+ // SVR4 ABI: First slot in the general register save area.
+ return isPPC64 ? -8U : -4U;
+ }
+
+ /// getBasePointerSaveOffset - Return the previous frame offset to save the
+ /// base pointer.
+ static unsigned getBasePointerSaveOffset(bool isPPC64,
+ bool isDarwinABI,
+ bool isPIC) {
+ if (isDarwinABI)
+ return isPPC64 ? -16U : -8U;
+
+ // SVR4 ABI: First slot in the general register save area.
+ return isPPC64 ? -16U : isPIC ? -12U : -8U;
+ }
+
+ /// getLinkageSize - Return the size of the PowerPC ABI linkage area.
+ ///
+ static unsigned getLinkageSize(bool isPPC64, bool isDarwinABI,
+ bool isELFv2ABI) {
+ if (isDarwinABI || isPPC64)
+ return (isELFv2ABI ? 4 : 6) * (isPPC64 ? 8 : 4);
+
+ // SVR4 ABI:
+ return 8;
+ }
+
+ const SpillSlot *
+ getCalleeSavedSpillSlots(unsigned &NumEntries) const override;
+};
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.cpp b/contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.cpp
new file mode 100644
index 0000000..d9b242c
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.cpp
@@ -0,0 +1,433 @@
+//===-- PPCHazardRecognizers.cpp - PowerPC Hazard Recognizer Impls --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements hazard recognizers for scheduling on PowerPC processors.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCHazardRecognizers.h"
+#include "PPC.h"
+#include "PPCInstrInfo.h"
+#include "PPCTargetMachine.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "pre-RA-sched"
+
+bool PPCDispatchGroupSBHazardRecognizer::isLoadAfterStore(SUnit *SU) {
+ // FIXME: Move this.
+ if (isBCTRAfterSet(SU))
+ return true;
+
+ const MCInstrDesc *MCID = DAG->getInstrDesc(SU);
+ if (!MCID)
+ return false;
+
+ if (!MCID->mayLoad())
+ return false;
+
+ // SU is a load; for any predecessors in this dispatch group, that are stores,
+ // and with which we have an ordering dependency, return true.
+ for (unsigned i = 0, ie = (unsigned) SU->Preds.size(); i != ie; ++i) {
+ const MCInstrDesc *PredMCID = DAG->getInstrDesc(SU->Preds[i].getSUnit());
+ if (!PredMCID || !PredMCID->mayStore())
+ continue;
+
+ if (!SU->Preds[i].isNormalMemory() && !SU->Preds[i].isBarrier())
+ continue;
+
+ for (unsigned j = 0, je = CurGroup.size(); j != je; ++j)
+ if (SU->Preds[i].getSUnit() == CurGroup[j])
+ return true;
+ }
+
+ return false;
+}
+
+bool PPCDispatchGroupSBHazardRecognizer::isBCTRAfterSet(SUnit *SU) {
+ const MCInstrDesc *MCID = DAG->getInstrDesc(SU);
+ if (!MCID)
+ return false;
+
+ if (!MCID->isBranch())
+ return false;
+
+ // SU is a branch; for any predecessors in this dispatch group, with which we
+ // have a data dependence and set the counter register, return true.
+ for (unsigned i = 0, ie = (unsigned) SU->Preds.size(); i != ie; ++i) {
+ const MCInstrDesc *PredMCID = DAG->getInstrDesc(SU->Preds[i].getSUnit());
+ if (!PredMCID || PredMCID->getSchedClass() != PPC::Sched::IIC_SprMTSPR)
+ continue;
+
+ if (SU->Preds[i].isCtrl())
+ continue;
+
+ for (unsigned j = 0, je = CurGroup.size(); j != je; ++j)
+ if (SU->Preds[i].getSUnit() == CurGroup[j])
+ return true;
+ }
+
+ return false;
+}
+
+// FIXME: Remove this when we don't need this:
+namespace llvm { namespace PPC { extern int getNonRecordFormOpcode(uint16_t); } }
+
+// FIXME: A lot of code in PPCDispatchGroupSBHazardRecognizer is P7 specific.
+
+bool PPCDispatchGroupSBHazardRecognizer::mustComeFirst(const MCInstrDesc *MCID,
+ unsigned &NSlots) {
+ // FIXME: Indirectly, this information is contained in the itinerary, and
+ // we should derive it from there instead of separately specifying it
+ // here.
+ unsigned IIC = MCID->getSchedClass();
+ switch (IIC) {
+ default:
+ NSlots = 1;
+ break;
+ case PPC::Sched::IIC_IntDivW:
+ case PPC::Sched::IIC_IntDivD:
+ case PPC::Sched::IIC_LdStLoadUpd:
+ case PPC::Sched::IIC_LdStLDU:
+ case PPC::Sched::IIC_LdStLFDU:
+ case PPC::Sched::IIC_LdStLFDUX:
+ case PPC::Sched::IIC_LdStLHA:
+ case PPC::Sched::IIC_LdStLHAU:
+ case PPC::Sched::IIC_LdStLWA:
+ case PPC::Sched::IIC_LdStSTDU:
+ case PPC::Sched::IIC_LdStSTFDU:
+ NSlots = 2;
+ break;
+ case PPC::Sched::IIC_LdStLoadUpdX:
+ case PPC::Sched::IIC_LdStLDUX:
+ case PPC::Sched::IIC_LdStLHAUX:
+ case PPC::Sched::IIC_LdStLWARX:
+ case PPC::Sched::IIC_LdStLDARX:
+ case PPC::Sched::IIC_LdStSTDUX:
+ case PPC::Sched::IIC_LdStSTDCX:
+ case PPC::Sched::IIC_LdStSTWCX:
+ case PPC::Sched::IIC_BrMCRX: // mtcr
+ // FIXME: Add sync/isync (here and in the itinerary).
+ NSlots = 4;
+ break;
+ }
+
+ // FIXME: record-form instructions need a different itinerary class.
+ if (NSlots == 1 && PPC::getNonRecordFormOpcode(MCID->getOpcode()) != -1)
+ NSlots = 2;
+
+ switch (IIC) {
+ default:
+ // All multi-slot instructions must come first.
+ return NSlots > 1;
+ case PPC::Sched::IIC_BrCR: // cr logicals
+ case PPC::Sched::IIC_SprMFCR:
+ case PPC::Sched::IIC_SprMFCRF:
+ case PPC::Sched::IIC_SprMTSPR:
+ return true;
+ }
+}
+
+ScheduleHazardRecognizer::HazardType
+PPCDispatchGroupSBHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
+ if (Stalls == 0 && isLoadAfterStore(SU))
+ return NoopHazard;
+
+ return ScoreboardHazardRecognizer::getHazardType(SU, Stalls);
+}
+
+bool PPCDispatchGroupSBHazardRecognizer::ShouldPreferAnother(SUnit *SU) {
+ const MCInstrDesc *MCID = DAG->getInstrDesc(SU);
+ unsigned NSlots;
+ if (MCID && mustComeFirst(MCID, NSlots) && CurSlots)
+ return true;
+
+ return ScoreboardHazardRecognizer::ShouldPreferAnother(SU);
+}
+
+unsigned PPCDispatchGroupSBHazardRecognizer::PreEmitNoops(SUnit *SU) {
+ // We only need to fill out a maximum of 5 slots here: The 6th slot could
+ // only be a second branch, and otherwise the next instruction will start a
+ // new group.
+ if (isLoadAfterStore(SU) && CurSlots < 6) {
+ unsigned Directive =
+ DAG->TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
+ // If we're using a special group-terminating nop, then we need only one.
+ if (Directive == PPC::DIR_PWR6 || Directive == PPC::DIR_PWR7 ||
+ Directive == PPC::DIR_PWR8 )
+ return 1;
+
+ return 5 - CurSlots;
+ }
+
+ return ScoreboardHazardRecognizer::PreEmitNoops(SU);
+}
+
+void PPCDispatchGroupSBHazardRecognizer::EmitInstruction(SUnit *SU) {
+ const MCInstrDesc *MCID = DAG->getInstrDesc(SU);
+ if (MCID) {
+ if (CurSlots == 5 || (MCID->isBranch() && CurBranches == 1)) {
+ CurGroup.clear();
+ CurSlots = CurBranches = 0;
+ } else {
+ DEBUG(dbgs() << "**** Adding to dispatch group: SU(" <<
+ SU->NodeNum << "): ");
+ DEBUG(DAG->dumpNode(SU));
+
+ unsigned NSlots;
+ bool MustBeFirst = mustComeFirst(MCID, NSlots);
+
+ // If this instruction must come first, but does not, then it starts a
+ // new group.
+ if (MustBeFirst && CurSlots) {
+ CurSlots = CurBranches = 0;
+ CurGroup.clear();
+ }
+
+ CurSlots += NSlots;
+ CurGroup.push_back(SU);
+
+ if (MCID->isBranch())
+ ++CurBranches;
+ }
+ }
+
+ return ScoreboardHazardRecognizer::EmitInstruction(SU);
+}
+
+void PPCDispatchGroupSBHazardRecognizer::AdvanceCycle() {
+ return ScoreboardHazardRecognizer::AdvanceCycle();
+}
+
+void PPCDispatchGroupSBHazardRecognizer::RecedeCycle() {
+ llvm_unreachable("Bottom-up scheduling not supported");
+}
+
+void PPCDispatchGroupSBHazardRecognizer::Reset() {
+ CurGroup.clear();
+ CurSlots = CurBranches = 0;
+ return ScoreboardHazardRecognizer::Reset();
+}
+
+void PPCDispatchGroupSBHazardRecognizer::EmitNoop() {
+ unsigned Directive =
+ DAG->TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
+ // If the group has now filled all of its slots, or if we're using a special
+ // group-terminating nop, the group is complete.
+ if (Directive == PPC::DIR_PWR6 || Directive == PPC::DIR_PWR7 ||
+ Directive == PPC::DIR_PWR8 || CurSlots == 6) {
+ CurGroup.clear();
+ CurSlots = CurBranches = 0;
+ } else {
+ CurGroup.push_back(nullptr);
+ ++CurSlots;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// PowerPC 970 Hazard Recognizer
+//
+// This models the dispatch group formation of the PPC970 processor. Dispatch
+// groups are bundles of up to five instructions that can contain various mixes
+// of instructions. The PPC970 can dispatch a peak of 4 non-branch and one
+// branch instruction per-cycle.
+//
+// There are a number of restrictions to dispatch group formation: some
+// instructions can only be issued in the first slot of a dispatch group, & some
+// instructions fill an entire dispatch group. Additionally, only branches can
+// issue in the 5th (last) slot.
+//
+// Finally, there are a number of "structural" hazards on the PPC970. These
+// conditions cause large performance penalties due to misprediction, recovery,
+// and replay logic that has to happen. These cases include setting a CTR and
+// branching through it in the same dispatch group, and storing to an address,
+// then loading from the same address within a dispatch group. To avoid these
+// conditions, we insert no-op instructions when appropriate.
+//
+// FIXME: This is missing some significant cases:
+// 1. Modeling of microcoded instructions.
+// 2. Handling of serialized operations.
+// 3. Handling of the esoteric cases in "Resource-based Instruction Grouping".
+//
+
+PPCHazardRecognizer970::PPCHazardRecognizer970(const ScheduleDAG &DAG)
+ : DAG(DAG) {
+ EndDispatchGroup();
+}
+
+void PPCHazardRecognizer970::EndDispatchGroup() {
+ DEBUG(errs() << "=== Start of dispatch group\n");
+ NumIssued = 0;
+
+ // Structural hazard info.
+ HasCTRSet = false;
+ NumStores = 0;
+}
+
+
+PPCII::PPC970_Unit
+PPCHazardRecognizer970::GetInstrType(unsigned Opcode,
+ bool &isFirst, bool &isSingle,
+ bool &isCracked,
+ bool &isLoad, bool &isStore) {
+ const MCInstrDesc &MCID = DAG.TII->get(Opcode);
+
+ isLoad = MCID.mayLoad();
+ isStore = MCID.mayStore();
+
+ uint64_t TSFlags = MCID.TSFlags;
+
+ isFirst = TSFlags & PPCII::PPC970_First;
+ isSingle = TSFlags & PPCII::PPC970_Single;
+ isCracked = TSFlags & PPCII::PPC970_Cracked;
+ return (PPCII::PPC970_Unit)(TSFlags & PPCII::PPC970_Mask);
+}
+
+/// isLoadOfStoredAddress - If we have a load from the previously stored pointer
+/// as indicated by StorePtr1/StorePtr2/StoreSize, return true.
+bool PPCHazardRecognizer970::
+isLoadOfStoredAddress(uint64_t LoadSize, int64_t LoadOffset,
+ const Value *LoadValue) const {
+ for (unsigned i = 0, e = NumStores; i != e; ++i) {
+ // Handle exact and commuted addresses.
+ if (LoadValue == StoreValue[i] && LoadOffset == StoreOffset[i])
+ return true;
+
+ // Okay, we don't have an exact match, if this is an indexed offset, see if
+ // we have overlap (which happens during fp->int conversion for example).
+ if (StoreValue[i] == LoadValue) {
+ // Okay the base pointers match, so we have [c1+r] vs [c2+r]. Check
+ // to see if the load and store actually overlap.
+ if (StoreOffset[i] < LoadOffset) {
+ if (int64_t(StoreOffset[i]+StoreSize[i]) > LoadOffset) return true;
+ } else {
+ if (int64_t(LoadOffset+LoadSize) > StoreOffset[i]) return true;
+ }
+ }
+ }
+ return false;
+}
+
+/// getHazardType - We return hazard for any non-branch instruction that would
+/// terminate the dispatch group. We turn NoopHazard for any
+/// instructions that wouldn't terminate the dispatch group that would cause a
+/// pipeline flush.
+ScheduleHazardRecognizer::HazardType PPCHazardRecognizer970::
+getHazardType(SUnit *SU, int Stalls) {
+ assert(Stalls == 0 && "PPC hazards don't support scoreboard lookahead");
+
+ MachineInstr *MI = SU->getInstr();
+
+ if (MI->isDebugValue())
+ return NoHazard;
+
+ unsigned Opcode = MI->getOpcode();
+ bool isFirst, isSingle, isCracked, isLoad, isStore;
+ PPCII::PPC970_Unit InstrType =
+ GetInstrType(Opcode, isFirst, isSingle, isCracked,
+ isLoad, isStore);
+ if (InstrType == PPCII::PPC970_Pseudo) return NoHazard;
+
+ // We can only issue a PPC970_First/PPC970_Single instruction (such as
+ // crand/mtspr/etc) if this is the first cycle of the dispatch group.
+ if (NumIssued != 0 && (isFirst || isSingle))
+ return Hazard;
+
+ // If this instruction is cracked into two ops by the decoder, we know that
+ // it is not a branch and that it cannot issue if 3 other instructions are
+ // already in the dispatch group.
+ if (isCracked && NumIssued > 2)
+ return Hazard;
+
+ switch (InstrType) {
+ default: llvm_unreachable("Unknown instruction type!");
+ case PPCII::PPC970_FXU:
+ case PPCII::PPC970_LSU:
+ case PPCII::PPC970_FPU:
+ case PPCII::PPC970_VALU:
+ case PPCII::PPC970_VPERM:
+ // We can only issue a branch as the last instruction in a group.
+ if (NumIssued == 4) return Hazard;
+ break;
+ case PPCII::PPC970_CRU:
+ // We can only issue a CR instruction in the first two slots.
+ if (NumIssued >= 2) return Hazard;
+ break;
+ case PPCII::PPC970_BRU:
+ break;
+ }
+
+ // Do not allow MTCTR and BCTRL to be in the same dispatch group.
+ if (HasCTRSet && Opcode == PPC::BCTRL)
+ return NoopHazard;
+
+ // If this is a load following a store, make sure it's not to the same or
+ // overlapping address.
+ if (isLoad && NumStores && !MI->memoperands_empty()) {
+ MachineMemOperand *MO = *MI->memoperands_begin();
+ if (isLoadOfStoredAddress(MO->getSize(),
+ MO->getOffset(), MO->getValue()))
+ return NoopHazard;
+ }
+
+ return NoHazard;
+}
+
+void PPCHazardRecognizer970::EmitInstruction(SUnit *SU) {
+ MachineInstr *MI = SU->getInstr();
+
+ if (MI->isDebugValue())
+ return;
+
+ unsigned Opcode = MI->getOpcode();
+ bool isFirst, isSingle, isCracked, isLoad, isStore;
+ PPCII::PPC970_Unit InstrType =
+ GetInstrType(Opcode, isFirst, isSingle, isCracked,
+ isLoad, isStore);
+ if (InstrType == PPCII::PPC970_Pseudo) return;
+
+ // Update structural hazard information.
+ if (Opcode == PPC::MTCTR || Opcode == PPC::MTCTR8) HasCTRSet = true;
+
+ // Track the address stored to.
+ if (isStore && NumStores < 4 && !MI->memoperands_empty()) {
+ MachineMemOperand *MO = *MI->memoperands_begin();
+ StoreSize[NumStores] = MO->getSize();
+ StoreOffset[NumStores] = MO->getOffset();
+ StoreValue[NumStores] = MO->getValue();
+ ++NumStores;
+ }
+
+ if (InstrType == PPCII::PPC970_BRU || isSingle)
+ NumIssued = 4; // Terminate a d-group.
+ ++NumIssued;
+
+ // If this instruction is cracked into two ops by the decoder, remember that
+ // we issued two pieces.
+ if (isCracked)
+ ++NumIssued;
+
+ if (NumIssued == 5)
+ EndDispatchGroup();
+}
+
+void PPCHazardRecognizer970::AdvanceCycle() {
+ assert(NumIssued < 5 && "Illegal dispatch group!");
+ ++NumIssued;
+ if (NumIssued == 5)
+ EndDispatchGroup();
+}
+
+void PPCHazardRecognizer970::Reset() {
+ EndDispatchGroup();
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.h b/contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.h
new file mode 100644
index 0000000..23f76c16
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.h
@@ -0,0 +1,102 @@
+//===-- PPCHazardRecognizers.h - PowerPC Hazard Recognizers -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines hazard recognizers for scheduling on PowerPC processors.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PPCHAZRECS_H
+#define PPCHAZRECS_H
+
+#include "PPCInstrInfo.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+
+namespace llvm {
+
+/// PPCDispatchGroupSBHazardRecognizer - This class implements a scoreboard-based
+/// hazard recognizer for PPC ooo processors with dispatch-group hazards.
+class PPCDispatchGroupSBHazardRecognizer : public ScoreboardHazardRecognizer {
+ const ScheduleDAG *DAG;
+ SmallVector<SUnit *, 7> CurGroup;
+ unsigned CurSlots, CurBranches;
+
+ bool isLoadAfterStore(SUnit *SU);
+ bool isBCTRAfterSet(SUnit *SU);
+ bool mustComeFirst(const MCInstrDesc *MCID, unsigned &NSlots);
+public:
+ PPCDispatchGroupSBHazardRecognizer(const InstrItineraryData *ItinData,
+ const ScheduleDAG *DAG_) :
+ ScoreboardHazardRecognizer(ItinData, DAG_), DAG(DAG_),
+ CurSlots(0), CurBranches(0) {}
+
+ HazardType getHazardType(SUnit *SU, int Stalls) override;
+ bool ShouldPreferAnother(SUnit* SU) override;
+ unsigned PreEmitNoops(SUnit *SU) override;
+ void EmitInstruction(SUnit *SU) override;
+ void AdvanceCycle() override;
+ void RecedeCycle() override;
+ void Reset() override;
+ void EmitNoop() override;
+};
+
+/// PPCHazardRecognizer970 - This class defines a finite state automata that
+/// models the dispatch logic on the PowerPC 970 (aka G5) processor. This
+/// promotes good dispatch group formation and implements noop insertion to
+/// avoid structural hazards that cause significant performance penalties (e.g.
+/// setting the CTR register then branching through it within a dispatch group),
+/// or storing then loading from the same address within a dispatch group.
+class PPCHazardRecognizer970 : public ScheduleHazardRecognizer {
+ const ScheduleDAG &DAG;
+
+ unsigned NumIssued; // Number of insts issued, including advanced cycles.
+
+ // Various things that can cause a structural hazard.
+
+ // HasCTRSet - If the CTR register is set in this group, disallow BCTRL.
+ bool HasCTRSet;
+
+ // StoredPtr - Keep track of the address of any store. If we see a load from
+ // the same address (or one that aliases it), disallow the store. We can have
+ // up to four stores in one dispatch group, hence we track up to 4.
+ //
+ // This is null if we haven't seen a store yet. We keep track of both
+ // operands of the store here, since we support [r+r] and [r+i] addressing.
+ const Value *StoreValue[4];
+ int64_t StoreOffset[4];
+ uint64_t StoreSize[4];
+ unsigned NumStores;
+
+public:
+ PPCHazardRecognizer970(const ScheduleDAG &DAG);
+ virtual HazardType getHazardType(SUnit *SU, int Stalls) override;
+ virtual void EmitInstruction(SUnit *SU) override;
+ virtual void AdvanceCycle() override;
+ virtual void Reset() override;
+
+private:
+ /// EndDispatchGroup - Called when we are finishing a new dispatch group.
+ ///
+ void EndDispatchGroup();
+
+ /// GetInstrType - Classify the specified powerpc opcode according to its
+ /// pipeline.
+ PPCII::PPC970_Unit GetInstrType(unsigned Opcode,
+ bool &isFirst, bool &isSingle,bool &isCracked,
+ bool &isLoad, bool &isStore);
+
+ bool isLoadOfStoredAddress(uint64_t LoadSize, int64_t LoadOffset,
+ const Value *LoadValue) const;
+};
+
+} // end namespace llvm
+
+#endif
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp b/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
new file mode 100644
index 0000000..490f6d2
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
@@ -0,0 +1,2205 @@
+//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a pattern matching instruction selector for PowerPC,
+// converting from a legalized dag to a PPC dag.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPC.h"
+#include "MCTargetDesc/PPCPredicates.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCTargetMachine.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "ppc-codegen"
+
+// FIXME: Remove this once the bug has been fixed!
+cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
+cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
+
+namespace llvm {
+ void initializePPCDAGToDAGISelPass(PassRegistry&);
+}
+
+namespace {
+ //===--------------------------------------------------------------------===//
+ /// PPCDAGToDAGISel - PPC specific code to select PPC machine
+ /// instructions for SelectionDAG operations.
+ ///
+ class PPCDAGToDAGISel : public SelectionDAGISel {
+ const PPCTargetMachine &TM;
+ const PPCTargetLowering *PPCLowering;
+ const PPCSubtarget *PPCSubTarget;
+ unsigned GlobalBaseReg;
+ public:
+ explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
+ : SelectionDAGISel(tm), TM(tm),
+ PPCLowering(TM.getTargetLowering()),
+ PPCSubTarget(TM.getSubtargetImpl()) {
+ initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ // Make sure we re-emit a set of the global base reg if necessary
+ GlobalBaseReg = 0;
+ PPCLowering = TM.getTargetLowering();
+ PPCSubTarget = TM.getSubtargetImpl();
+ SelectionDAGISel::runOnMachineFunction(MF);
+
+ if (!PPCSubTarget->isSVR4ABI())
+ InsertVRSaveCode(MF);
+
+ return true;
+ }
+
+ void PostprocessISelDAG() override;
+
+ /// getI32Imm - Return a target constant with the specified value, of type
+ /// i32.
+ inline SDValue getI32Imm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ }
+
+ /// getI64Imm - Return a target constant with the specified value, of type
+ /// i64.
+ inline SDValue getI64Imm(uint64_t Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i64);
+ }
+
+ /// getSmallIPtrImm - Return a target constant of pointer type.
+ inline SDValue getSmallIPtrImm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, PPCLowering->getPointerTy());
+ }
+
+ /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
+ /// with any number of 0s on either side. The 1s are allowed to wrap from
+ /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
+ /// 0x0F0F0000 is not, since all 1s are not contiguous.
+ static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
+
+
+ /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
+ /// rotate and mask opcode and mask operation.
+ static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
+ unsigned &SH, unsigned &MB, unsigned &ME);
+
+ /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
+ /// base register. Return the virtual register that holds this value.
+ SDNode *getGlobalBaseReg();
+
+ // Select - Convert the specified operand from a target-independent to a
+ // target-specific node if it hasn't already been changed.
+ SDNode *Select(SDNode *N) override;
+
+ SDNode *SelectBitfieldInsert(SDNode *N);
+
+ /// SelectCC - Select a comparison of the specified values with the
+ /// specified condition code, returning the CR# of the expression.
+ SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
+
+ /// SelectAddrImm - Returns true if the address N can be represented by
+ /// a base register plus a signed 16-bit displacement [r+imm].
+ bool SelectAddrImm(SDValue N, SDValue &Disp,
+ SDValue &Base) {
+ return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
+ }
+
+ /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
+ /// immediate field. Note that the operand at this point is already the
+ /// result of a prior SelectAddressRegImm call.
+ bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
+ if (N.getOpcode() == ISD::TargetConstant ||
+ N.getOpcode() == ISD::TargetGlobalAddress) {
+ Out = N;
+ return true;
+ }
+
+ return false;
+ }
+
+ /// SelectAddrIdx - Given the specified addressed, check to see if it can be
+ /// represented as an indexed [r+r] operation. Returns false if it can
+ /// be represented by [r+imm], which are preferred.
+ bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
+ return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
+ }
+
+ /// SelectAddrIdxOnly - Given the specified addressed, force it to be
+ /// represented as an indexed [r+r] operation.
+ bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
+ return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
+ }
+
+ /// SelectAddrImmX4 - Returns true if the address N can be represented by
+ /// a base register plus a signed 16-bit displacement that is a multiple of 4.
+ /// Suitable for use by STD and friends.
+ bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
+ return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
+ }
+
+ // Select an address into a single register.
+ bool SelectAddr(SDValue N, SDValue &Base) {
+ Base = N;
+ return true;
+ }
+
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions. It is always correct to compute the value into
+ /// a register. The case of adding a (possibly relocatable) constant to a
+ /// register can be improved, but it is wrong to substitute Reg+Reg for
+ /// Reg in an asm, because the load or store opcode would have to change.
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps) override {
+ OutOps.push_back(Op);
+ return false;
+ }
+
+ void InsertVRSaveCode(MachineFunction &MF);
+
+ const char *getPassName() const override {
+ return "PowerPC DAG->DAG Pattern Instruction Selection";
+ }
+
+// Include the pieces autogenerated from the target description.
+#include "PPCGenDAGISel.inc"
+
+private:
+ SDNode *SelectSETCC(SDNode *N);
+
+ void PeepholePPC64();
+ void PeepholeCROps();
+
+ bool AllUsersSelectZero(SDNode *N);
+ void SwapAllSelectUsers(SDNode *N);
+ };
+}
+
+/// InsertVRSaveCode - Once the entire function has been instruction selected,
+/// all virtual registers are created and all machine instructions are built,
+/// check to see if we need to save/restore VRSAVE. If so, do it.
+void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
+ // Check to see if this function uses vector registers, which means we have to
+ // save and restore the VRSAVE register and update it with the regs we use.
+ //
+ // In this case, there will be virtual registers of vector type created
+ // by the scheduler. Detect them now.
+ bool HasVectorVReg = false;
+ for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
+ HasVectorVReg = true;
+ break;
+ }
+ }
+ if (!HasVectorVReg) return; // nothing to do.
+
+ // If we have a vector register, we want to emit code into the entry and exit
+ // blocks to save and restore the VRSAVE register. We do this here (instead
+ // of marking all vector instructions as clobbering VRSAVE) for two reasons:
+ //
+ // 1. This (trivially) reduces the load on the register allocator, by not
+ // having to represent the live range of the VRSAVE register.
+ // 2. This (more significantly) allows us to create a temporary virtual
+ // register to hold the saved VRSAVE value, allowing this temporary to be
+ // register allocated, instead of forcing it to be spilled to the stack.
+
+ // Create two vregs - one to hold the VRSAVE register that is live-in to the
+ // function and one for the value after having bits or'd into it.
+ unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
+ unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
+
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ MachineBasicBlock &EntryBB = *Fn.begin();
+ DebugLoc dl;
+ // Emit the following code into the entry block:
+ // InVRSAVE = MFVRSAVE
+ // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
+ // MTVRSAVE UpdatedVRSAVE
+ MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
+ BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
+ BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
+ UpdatedVRSAVE).addReg(InVRSAVE);
+ BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
+
+ // Find all return blocks, outputting a restore in each epilog.
+ for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
+ if (!BB->empty() && BB->back().isReturn()) {
+ IP = BB->end(); --IP;
+
+ // Skip over all terminator instructions, which are part of the return
+ // sequence.
+ MachineBasicBlock::iterator I2 = IP;
+ while (I2 != BB->begin() && (--I2)->isTerminator())
+ IP = I2;
+
+ // Emit: MTVRSAVE InVRSave
+ BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
+ }
+ }
+}
+
+
+/// getGlobalBaseReg - Output the instructions required to put the
+/// base address to use for accessing globals into a register.
+///
+SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
+ if (!GlobalBaseReg) {
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ // Insert the set of GlobalBaseReg into the first MBB of the function
+ MachineBasicBlock &FirstMBB = MF->front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ DebugLoc dl;
+
+ if (PPCLowering->getPointerTy() == MVT::i32) {
+ if (PPCSubTarget->isTargetELF())
+ GlobalBaseReg = PPC::R30;
+ else
+ GlobalBaseReg =
+ RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
+ BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
+ BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
+ if (PPCSubTarget->isTargetELF()) {
+ unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
+ BuildMI(FirstMBB, MBBI, dl,
+ TII.get(PPC::GetGBRO), TempReg).addReg(GlobalBaseReg);
+ BuildMI(FirstMBB, MBBI, dl,
+ TII.get(PPC::UpdateGBR)).addReg(GlobalBaseReg).addReg(TempReg);
+ MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
+ }
+ } else {
+ GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
+ BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
+ BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
+ }
+ }
+ return CurDAG->getRegister(GlobalBaseReg,
+ PPCLowering->getPointerTy()).getNode();
+}
+
+/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
+/// or 64-bit immediate, and if the value can be accurately represented as a
+/// sign extension from a 16-bit value. If so, this returns true and the
+/// immediate.
+static bool isIntS16Immediate(SDNode *N, short &Imm) {
+ if (N->getOpcode() != ISD::Constant)
+ return false;
+
+ Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
+ if (N->getValueType(0) == MVT::i32)
+ return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
+ else
+ return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
+}
+
+static bool isIntS16Immediate(SDValue Op, short &Imm) {
+ return isIntS16Immediate(Op.getNode(), Imm);
+}
+
+
+/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
+/// operand. If so Imm will receive the 32-bit value.
+static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
+ if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
+ Imm = cast<ConstantSDNode>(N)->getZExtValue();
+ return true;
+ }
+ return false;
+}
+
+/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
+/// operand. If so Imm will receive the 64-bit value.
+static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
+ if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
+ Imm = cast<ConstantSDNode>(N)->getZExtValue();
+ return true;
+ }
+ return false;
+}
+
+// isInt32Immediate - This method tests to see if a constant operand.
+// If so Imm will receive the 32 bit value.
+static bool isInt32Immediate(SDValue N, unsigned &Imm) {
+ return isInt32Immediate(N.getNode(), Imm);
+}
+
+
+// isOpcWithIntImmediate - This method tests to see if the node is a specific
+// opcode and that it has a immediate integer right operand.
+// If so Imm will receive the 32 bit value.
+static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
+ return N->getOpcode() == Opc
+ && isInt32Immediate(N->getOperand(1).getNode(), Imm);
+}
+
+bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
+ if (!Val)
+ return false;
+
+ if (isShiftedMask_32(Val)) {
+ // look for the first non-zero bit
+ MB = countLeadingZeros(Val);
+ // look for the first zero bit after the run of ones
+ ME = countLeadingZeros((Val - 1) ^ Val);
+ return true;
+ } else {
+ Val = ~Val; // invert mask
+ if (isShiftedMask_32(Val)) {
+ // effectively look for the first zero bit
+ ME = countLeadingZeros(Val) - 1;
+ // effectively look for the first one bit after the run of zeros
+ MB = countLeadingZeros((Val - 1) ^ Val) + 1;
+ return true;
+ }
+ }
+ // no run present
+ return false;
+}
+
+bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
+ bool isShiftMask, unsigned &SH,
+ unsigned &MB, unsigned &ME) {
+ // Don't even go down this path for i64, since different logic will be
+ // necessary for rldicl/rldicr/rldimi.
+ if (N->getValueType(0) != MVT::i32)
+ return false;
+
+ unsigned Shift = 32;
+ unsigned Indeterminant = ~0; // bit mask marking indeterminant results
+ unsigned Opcode = N->getOpcode();
+ if (N->getNumOperands() != 2 ||
+ !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
+ return false;
+
+ if (Opcode == ISD::SHL) {
+ // apply shift left to mask if it comes first
+ if (isShiftMask) Mask = Mask << Shift;
+ // determine which bits are made indeterminant by shift
+ Indeterminant = ~(0xFFFFFFFFu << Shift);
+ } else if (Opcode == ISD::SRL) {
+ // apply shift right to mask if it comes first
+ if (isShiftMask) Mask = Mask >> Shift;
+ // determine which bits are made indeterminant by shift
+ Indeterminant = ~(0xFFFFFFFFu >> Shift);
+ // adjust for the left rotate
+ Shift = 32 - Shift;
+ } else if (Opcode == ISD::ROTL) {
+ Indeterminant = 0;
+ } else {
+ return false;
+ }
+
+ // if the mask doesn't intersect any Indeterminant bits
+ if (Mask && !(Mask & Indeterminant)) {
+ SH = Shift & 31;
+ // make sure the mask is still a mask (wrap arounds may not be)
+ return isRunOfOnes(Mask, MB, ME);
+ }
+ return false;
+}
+
+/// SelectBitfieldInsert - turn an or of two masked values into
+/// the rotate left word immediate then mask insert (rlwimi) instruction.
+SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ SDLoc dl(N);
+
+ APInt LKZ, LKO, RKZ, RKO;
+ CurDAG->computeKnownBits(Op0, LKZ, LKO);
+ CurDAG->computeKnownBits(Op1, RKZ, RKO);
+
+ unsigned TargetMask = LKZ.getZExtValue();
+ unsigned InsertMask = RKZ.getZExtValue();
+
+ if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
+ unsigned Op0Opc = Op0.getOpcode();
+ unsigned Op1Opc = Op1.getOpcode();
+ unsigned Value, SH = 0;
+ TargetMask = ~TargetMask;
+ InsertMask = ~InsertMask;
+
+ // If the LHS has a foldable shift and the RHS does not, then swap it to the
+ // RHS so that we can fold the shift into the insert.
+ if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
+ if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
+ Op0.getOperand(0).getOpcode() == ISD::SRL) {
+ if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
+ Op1.getOperand(0).getOpcode() != ISD::SRL) {
+ std::swap(Op0, Op1);
+ std::swap(Op0Opc, Op1Opc);
+ std::swap(TargetMask, InsertMask);
+ }
+ }
+ } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
+ if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
+ Op1.getOperand(0).getOpcode() != ISD::SRL) {
+ std::swap(Op0, Op1);
+ std::swap(Op0Opc, Op1Opc);
+ std::swap(TargetMask, InsertMask);
+ }
+ }
+
+ unsigned MB, ME;
+ if (isRunOfOnes(InsertMask, MB, ME)) {
+ SDValue Tmp1, Tmp2;
+
+ if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
+ isInt32Immediate(Op1.getOperand(1), Value)) {
+ Op1 = Op1.getOperand(0);
+ SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
+ }
+ if (Op1Opc == ISD::AND) {
+ // The AND mask might not be a constant, and we need to make sure that
+ // if we're going to fold the masking with the insert, all bits not
+ // know to be zero in the mask are known to be one.
+ APInt MKZ, MKO;
+ CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
+ bool CanFoldMask = InsertMask == MKO.getZExtValue();
+
+ unsigned SHOpc = Op1.getOperand(0).getOpcode();
+ if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
+ isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
+ // Note that Value must be in range here (less than 32) because
+ // otherwise there would not be any bits set in InsertMask.
+ Op1 = Op1.getOperand(0).getOperand(0);
+ SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
+ }
+ }
+
+ SH &= 31;
+ SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
+ getI32Imm(ME) };
+ return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
+ }
+ }
+ return nullptr;
+}
+
+/// SelectCC - Select a comparison of the specified values with the specified
+/// condition code, returning the CR# of the expression.
+SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
+ ISD::CondCode CC, SDLoc dl) {
+ // Always select the LHS.
+ unsigned Opc;
+
+ if (LHS.getValueType() == MVT::i32) {
+ unsigned Imm;
+ if (CC == ISD::SETEQ || CC == ISD::SETNE) {
+ if (isInt32Immediate(RHS, Imm)) {
+ // SETEQ/SETNE comparison with 16-bit immediate, fold it.
+ if (isUInt<16>(Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
+ // If this is a 16-bit signed immediate, fold it.
+ if (isInt<16>((int)Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
+
+ // For non-equality comparisons, the default code would materialize the
+ // constant, then compare against it, like this:
+ // lis r2, 4660
+ // ori r2, r2, 22136
+ // cmpw cr0, r3, r2
+ // Since we are just comparing for equality, we can emit this instead:
+ // xoris r0,r3,0x1234
+ // cmplwi cr0,r0,0x5678
+ // beq cr0,L6
+ SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
+ getI32Imm(Imm >> 16)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
+ getI32Imm(Imm & 0xFFFF)), 0);
+ }
+ Opc = PPC::CMPLW;
+ } else if (ISD::isUnsignedIntSetCC(CC)) {
+ if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
+ Opc = PPC::CMPLW;
+ } else {
+ short SImm;
+ if (isIntS16Immediate(RHS, SImm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
+ getI32Imm((int)SImm & 0xFFFF)),
+ 0);
+ Opc = PPC::CMPW;
+ }
+ } else if (LHS.getValueType() == MVT::i64) {
+ uint64_t Imm;
+ if (CC == ISD::SETEQ || CC == ISD::SETNE) {
+ if (isInt64Immediate(RHS.getNode(), Imm)) {
+ // SETEQ/SETNE comparison with 16-bit immediate, fold it.
+ if (isUInt<16>(Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
+ // If this is a 16-bit signed immediate, fold it.
+ if (isInt<16>(Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
+
+ // For non-equality comparisons, the default code would materialize the
+ // constant, then compare against it, like this:
+ // lis r2, 4660
+ // ori r2, r2, 22136
+ // cmpd cr0, r3, r2
+ // Since we are just comparing for equality, we can emit this instead:
+ // xoris r0,r3,0x1234
+ // cmpldi cr0,r0,0x5678
+ // beq cr0,L6
+ if (isUInt<32>(Imm)) {
+ SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
+ getI64Imm(Imm >> 16)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
+ getI64Imm(Imm & 0xFFFF)), 0);
+ }
+ }
+ Opc = PPC::CMPLD;
+ } else if (ISD::isUnsignedIntSetCC(CC)) {
+ if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
+ getI64Imm(Imm & 0xFFFF)), 0);
+ Opc = PPC::CMPLD;
+ } else {
+ short SImm;
+ if (isIntS16Immediate(RHS, SImm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
+ getI64Imm(SImm & 0xFFFF)),
+ 0);
+ Opc = PPC::CMPD;
+ }
+ } else if (LHS.getValueType() == MVT::f32) {
+ Opc = PPC::FCMPUS;
+ } else {
+ assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
+ Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
+ }
+ return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
+}
+
+static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
+ switch (CC) {
+ case ISD::SETUEQ:
+ case ISD::SETONE:
+ case ISD::SETOLE:
+ case ISD::SETOGE:
+ llvm_unreachable("Should be lowered by legalize!");
+ default: llvm_unreachable("Unknown condition!");
+ case ISD::SETOEQ:
+ case ISD::SETEQ: return PPC::PRED_EQ;
+ case ISD::SETUNE:
+ case ISD::SETNE: return PPC::PRED_NE;
+ case ISD::SETOLT:
+ case ISD::SETLT: return PPC::PRED_LT;
+ case ISD::SETULE:
+ case ISD::SETLE: return PPC::PRED_LE;
+ case ISD::SETOGT:
+ case ISD::SETGT: return PPC::PRED_GT;
+ case ISD::SETUGE:
+ case ISD::SETGE: return PPC::PRED_GE;
+ case ISD::SETO: return PPC::PRED_NU;
+ case ISD::SETUO: return PPC::PRED_UN;
+ // These two are invalid for floating point. Assume we have int.
+ case ISD::SETULT: return PPC::PRED_LT;
+ case ISD::SETUGT: return PPC::PRED_GT;
+ }
+}
+
+/// getCRIdxForSetCC - Return the index of the condition register field
+/// associated with the SetCC condition, and whether or not the field is
+/// treated as inverted. That is, lt = 0; ge = 0 inverted.
+static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
+ Invert = false;
+ switch (CC) {
+ default: llvm_unreachable("Unknown condition!");
+ case ISD::SETOLT:
+ case ISD::SETLT: return 0; // Bit #0 = SETOLT
+ case ISD::SETOGT:
+ case ISD::SETGT: return 1; // Bit #1 = SETOGT
+ case ISD::SETOEQ:
+ case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
+ case ISD::SETUO: return 3; // Bit #3 = SETUO
+ case ISD::SETUGE:
+ case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
+ case ISD::SETULE:
+ case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
+ case ISD::SETUNE:
+ case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
+ case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
+ case ISD::SETUEQ:
+ case ISD::SETOGE:
+ case ISD::SETOLE:
+ case ISD::SETONE:
+ llvm_unreachable("Invalid branch code: should be expanded by legalize");
+ // These are invalid for floating point. Assume integer.
+ case ISD::SETULT: return 0;
+ case ISD::SETUGT: return 1;
+ }
+}
+
+// getVCmpInst: return the vector compare instruction for the specified
+// vector type and condition code. Since this is for altivec specific code,
+// only support the altivec types (v16i8, v8i16, v4i32, and v4f32).
+static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
+ bool HasVSX, bool &Swap, bool &Negate) {
+ Swap = false;
+ Negate = false;
+
+ if (VecVT.isFloatingPoint()) {
+ /* Handle some cases by swapping input operands. */
+ switch (CC) {
+ case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
+ case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
+ case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
+ case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
+ case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
+ case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
+ default: break;
+ }
+ /* Handle some cases by negating the result. */
+ switch (CC) {
+ case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
+ case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
+ case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
+ case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
+ default: break;
+ }
+ /* We have instructions implementing the remaining cases. */
+ switch (CC) {
+ case ISD::SETEQ:
+ case ISD::SETOEQ:
+ if (VecVT == MVT::v4f32)
+ return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
+ else if (VecVT == MVT::v2f64)
+ return PPC::XVCMPEQDP;
+ break;
+ case ISD::SETGT:
+ case ISD::SETOGT:
+ if (VecVT == MVT::v4f32)
+ return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
+ else if (VecVT == MVT::v2f64)
+ return PPC::XVCMPGTDP;
+ break;
+ case ISD::SETGE:
+ case ISD::SETOGE:
+ if (VecVT == MVT::v4f32)
+ return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
+ else if (VecVT == MVT::v2f64)
+ return PPC::XVCMPGEDP;
+ break;
+ default:
+ break;
+ }
+ llvm_unreachable("Invalid floating-point vector compare condition");
+ } else {
+ /* Handle some cases by swapping input operands. */
+ switch (CC) {
+ case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
+ case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
+ case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
+ case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
+ default: break;
+ }
+ /* Handle some cases by negating the result. */
+ switch (CC) {
+ case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
+ case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
+ case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
+ case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
+ default: break;
+ }
+ /* We have instructions implementing the remaining cases. */
+ switch (CC) {
+ case ISD::SETEQ:
+ case ISD::SETUEQ:
+ if (VecVT == MVT::v16i8)
+ return PPC::VCMPEQUB;
+ else if (VecVT == MVT::v8i16)
+ return PPC::VCMPEQUH;
+ else if (VecVT == MVT::v4i32)
+ return PPC::VCMPEQUW;
+ break;
+ case ISD::SETGT:
+ if (VecVT == MVT::v16i8)
+ return PPC::VCMPGTSB;
+ else if (VecVT == MVT::v8i16)
+ return PPC::VCMPGTSH;
+ else if (VecVT == MVT::v4i32)
+ return PPC::VCMPGTSW;
+ break;
+ case ISD::SETUGT:
+ if (VecVT == MVT::v16i8)
+ return PPC::VCMPGTUB;
+ else if (VecVT == MVT::v8i16)
+ return PPC::VCMPGTUH;
+ else if (VecVT == MVT::v4i32)
+ return PPC::VCMPGTUW;
+ break;
+ default:
+ break;
+ }
+ llvm_unreachable("Invalid integer vector compare condition");
+ }
+}
+
+SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
+ SDLoc dl(N);
+ unsigned Imm;
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
+ EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = (PtrVT == MVT::i64);
+
+ if (!PPCSubTarget->useCRBits() &&
+ isInt32Immediate(N->getOperand(1), Imm)) {
+ // We can codegen setcc op, imm very efficiently compared to a brcond.
+ // Check for those cases here.
+ // setcc op, 0
+ if (Imm == 0) {
+ SDValue Op = N->getOperand(0);
+ switch (CC) {
+ default: break;
+ case ISD::SETEQ: {
+ Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
+ SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
+ }
+ case ISD::SETNE: {
+ if (isPPC64) break;
+ SDValue AD =
+ SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
+ Op, getI32Imm(~0U)), 0);
+ return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
+ AD.getValue(1));
+ }
+ case ISD::SETLT: {
+ SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
+ }
+ case ISD::SETGT: {
+ SDValue T =
+ SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
+ T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
+ SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
+ }
+ }
+ } else if (Imm == ~0U) { // setcc op, -1
+ SDValue Op = N->getOperand(0);
+ switch (CC) {
+ default: break;
+ case ISD::SETEQ:
+ if (isPPC64) break;
+ Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
+ Op, getI32Imm(1)), 0);
+ return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
+ SDValue(CurDAG->getMachineNode(PPC::LI, dl,
+ MVT::i32,
+ getI32Imm(0)), 0),
+ Op.getValue(1));
+ case ISD::SETNE: {
+ if (isPPC64) break;
+ Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
+ SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
+ Op, getI32Imm(~0U));
+ return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
+ Op, SDValue(AD, 1));
+ }
+ case ISD::SETLT: {
+ SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
+ getI32Imm(1)), 0);
+ SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
+ Op), 0);
+ SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
+ }
+ case ISD::SETGT: {
+ SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+ Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
+ 0);
+ return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
+ getI32Imm(1));
+ }
+ }
+ }
+ }
+
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ // Altivec Vector compare instructions do not set any CR register by default and
+ // vector compare operations return the same type as the operands.
+ if (LHS.getValueType().isVector()) {
+ EVT VecVT = LHS.getValueType();
+ bool Swap, Negate;
+ unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
+ PPCSubTarget->hasVSX(), Swap, Negate);
+ if (Swap)
+ std::swap(LHS, RHS);
+
+ if (Negate) {
+ SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
+ return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
+ PPC::VNOR,
+ VecVT, VCmp, VCmp);
+ }
+
+ return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
+ }
+
+ if (PPCSubTarget->useCRBits())
+ return nullptr;
+
+ bool Inv;
+ unsigned Idx = getCRIdxForSetCC(CC, Inv);
+ SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
+ SDValue IntCR;
+
+ // Force the ccreg into CR7.
+ SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
+
+ SDValue InFlag(nullptr, 0); // Null incoming flag value.
+ CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
+ InFlag).getValue(1);
+
+ IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
+ CCReg), 0);
+
+ SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
+ getI32Imm(31), getI32Imm(31) };
+ if (!Inv)
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
+
+ // Get the specified bit.
+ SDValue Tmp =
+ SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
+ return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
+}
+
+
+// Select - Convert the specified operand from a target-independent to a
+// target-specific node if it hasn't already been changed.
+SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
+ SDLoc dl(N);
+ if (N->isMachineOpcode()) {
+ N->setNodeId(-1);
+ return nullptr; // Already selected.
+ }
+
+ switch (N->getOpcode()) {
+ default: break;
+
+ case ISD::Constant: {
+ if (N->getValueType(0) == MVT::i64) {
+ // Get 64 bit value.
+ int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
+ // Assume no remaining bits.
+ unsigned Remainder = 0;
+ // Assume no shift required.
+ unsigned Shift = 0;
+
+ // If it can't be represented as a 32 bit value.
+ if (!isInt<32>(Imm)) {
+ Shift = countTrailingZeros<uint64_t>(Imm);
+ int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
+
+ // If the shifted value fits 32 bits.
+ if (isInt<32>(ImmSh)) {
+ // Go with the shifted value.
+ Imm = ImmSh;
+ } else {
+ // Still stuck with a 64 bit value.
+ Remainder = Imm;
+ Shift = 32;
+ Imm >>= 32;
+ }
+ }
+
+ // Intermediate operand.
+ SDNode *Result;
+
+ // Handle first 32 bits.
+ unsigned Lo = Imm & 0xFFFF;
+ unsigned Hi = (Imm >> 16) & 0xFFFF;
+
+ // Simple value.
+ if (isInt<16>(Imm)) {
+ // Just the Lo bits.
+ Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
+ } else if (Lo) {
+ // Handle the Hi bits.
+ unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
+ Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
+ // And Lo bits.
+ Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Lo));
+ } else {
+ // Just the Hi bits.
+ Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
+ }
+
+ // If no shift, we're done.
+ if (!Shift) return Result;
+
+ // Shift for next step if the upper 32-bits were not zero.
+ if (Imm) {
+ Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
+ SDValue(Result, 0),
+ getI32Imm(Shift),
+ getI32Imm(63 - Shift));
+ }
+
+ // Add in the last bits as required.
+ if ((Hi = (Remainder >> 16) & 0xFFFF)) {
+ Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Hi));
+ }
+ if ((Lo = Remainder & 0xFFFF)) {
+ Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Lo));
+ }
+
+ return Result;
+ }
+ break;
+ }
+
+ case ISD::SETCC: {
+ SDNode *SN = SelectSETCC(N);
+ if (SN)
+ return SN;
+ break;
+ }
+ case PPCISD::GlobalBaseReg:
+ return getGlobalBaseReg();
+
+ case ISD::FrameIndex: {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
+ unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
+ if (N->hasOneUse())
+ return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
+ getSmallIPtrImm(0));
+ return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
+ getSmallIPtrImm(0));
+ }
+
+ case PPCISD::MFOCRF: {
+ SDValue InFlag = N->getOperand(1);
+ return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
+ N->getOperand(0), InFlag);
+ }
+
+ case ISD::SDIV: {
+ // FIXME: since this depends on the setting of the carry flag from the srawi
+ // we should really be making notes about that for the scheduler.
+ // FIXME: It sure would be nice if we could cheaply recognize the
+ // srl/add/sra pattern the dag combiner will generate for this as
+ // sra/addze rather than having to handle sdiv ourselves. oh well.
+ unsigned Imm;
+ if (isInt32Immediate(N->getOperand(1), Imm)) {
+ SDValue N0 = N->getOperand(0);
+ if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
+ SDNode *Op =
+ CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
+ N0, getI32Imm(Log2_32(Imm)));
+ return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
+ SDValue(Op, 0), SDValue(Op, 1));
+ } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
+ SDNode *Op =
+ CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
+ N0, getI32Imm(Log2_32(-Imm)));
+ SDValue PT =
+ SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
+ SDValue(Op, 0), SDValue(Op, 1)),
+ 0);
+ return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
+ }
+ }
+
+ // Other cases are autogenerated.
+ break;
+ }
+
+ case ISD::LOAD: {
+ // Handle preincrement loads.
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ EVT LoadedVT = LD->getMemoryVT();
+
+ // Normal loads are handled by code generated from the .td file.
+ if (LD->getAddressingMode() != ISD::PRE_INC)
+ break;
+
+ SDValue Offset = LD->getOffset();
+ if (Offset.getOpcode() == ISD::TargetConstant ||
+ Offset.getOpcode() == ISD::TargetGlobalAddress) {
+
+ unsigned Opcode;
+ bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
+ if (LD->getValueType(0) != MVT::i64) {
+ // Handle PPC32 integer and normal FP loads.
+ assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid PPC load type!");
+ case MVT::f64: Opcode = PPC::LFDU; break;
+ case MVT::f32: Opcode = PPC::LFSU; break;
+ case MVT::i32: Opcode = PPC::LWZU; break;
+ case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
+ case MVT::i1:
+ case MVT::i8: Opcode = PPC::LBZU; break;
+ }
+ } else {
+ assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
+ assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid PPC load type!");
+ case MVT::i64: Opcode = PPC::LDU; break;
+ case MVT::i32: Opcode = PPC::LWZU8; break;
+ case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
+ case MVT::i1:
+ case MVT::i8: Opcode = PPC::LBZU8; break;
+ }
+ }
+
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[] = { Offset, Base, Chain };
+ return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
+ PPCLowering->getPointerTy(),
+ MVT::Other, Ops);
+ } else {
+ unsigned Opcode;
+ bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
+ if (LD->getValueType(0) != MVT::i64) {
+ // Handle PPC32 integer and normal FP loads.
+ assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid PPC load type!");
+ case MVT::f64: Opcode = PPC::LFDUX; break;
+ case MVT::f32: Opcode = PPC::LFSUX; break;
+ case MVT::i32: Opcode = PPC::LWZUX; break;
+ case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
+ case MVT::i1:
+ case MVT::i8: Opcode = PPC::LBZUX; break;
+ }
+ } else {
+ assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
+ assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
+ "Invalid sext update load");
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid PPC load type!");
+ case MVT::i64: Opcode = PPC::LDUX; break;
+ case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
+ case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
+ case MVT::i1:
+ case MVT::i8: Opcode = PPC::LBZUX8; break;
+ }
+ }
+
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[] = { Base, Offset, Chain };
+ return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
+ PPCLowering->getPointerTy(),
+ MVT::Other, Ops);
+ }
+ }
+
+ case ISD::AND: {
+ unsigned Imm, Imm2, SH, MB, ME;
+ uint64_t Imm64;
+
+ // If this is an and of a value rotated between 0 and 31 bits and then and'd
+ // with a mask, emit rlwinm
+ if (isInt32Immediate(N->getOperand(1), Imm) &&
+ isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
+ SDValue Val = N->getOperand(0).getOperand(0);
+ SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
+ }
+ // If this is just a masked value where the input is not handled above, and
+ // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
+ if (isInt32Immediate(N->getOperand(1), Imm) &&
+ isRunOfOnes(Imm, MB, ME) &&
+ N->getOperand(0).getOpcode() != ISD::ROTL) {
+ SDValue Val = N->getOperand(0);
+ SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
+ }
+ // If this is a 64-bit zero-extension mask, emit rldicl.
+ if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
+ isMask_64(Imm64)) {
+ SDValue Val = N->getOperand(0);
+ MB = 64 - CountTrailingOnes_64(Imm64);
+ SH = 0;
+
+ // If the operand is a logical right shift, we can fold it into this
+ // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
+ // for n <= mb. The right shift is really a left rotate followed by a
+ // mask, and this mask is a more-restrictive sub-mask of the mask implied
+ // by the shift.
+ if (Val.getOpcode() == ISD::SRL &&
+ isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
+ assert(Imm < 64 && "Illegal shift amount");
+ Val = Val.getOperand(0);
+ SH = 64 - Imm;
+ }
+
+ SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) };
+ return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
+ }
+ // AND X, 0 -> 0, not "rlwinm 32".
+ if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
+ ReplaceUses(SDValue(N, 0), N->getOperand(1));
+ return nullptr;
+ }
+ // ISD::OR doesn't get all the bitfield insertion fun.
+ // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
+ if (isInt32Immediate(N->getOperand(1), Imm) &&
+ N->getOperand(0).getOpcode() == ISD::OR &&
+ isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
+ unsigned MB, ME;
+ Imm = ~(Imm^Imm2);
+ if (isRunOfOnes(Imm, MB, ME)) {
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ N->getOperand(0).getOperand(1),
+ getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
+ return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
+ }
+ }
+
+ // Other cases are autogenerated.
+ break;
+ }
+ case ISD::OR:
+ if (N->getValueType(0) == MVT::i32)
+ if (SDNode *I = SelectBitfieldInsert(N))
+ return I;
+
+ // Other cases are autogenerated.
+ break;
+ case ISD::SHL: {
+ unsigned Imm, SH, MB, ME;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
+ isRotateAndMask(N, Imm, true, SH, MB, ME)) {
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
+ }
+
+ // Other cases are autogenerated.
+ break;
+ }
+ case ISD::SRL: {
+ unsigned Imm, SH, MB, ME;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
+ isRotateAndMask(N, Imm, true, SH, MB, ME)) {
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
+ }
+
+ // Other cases are autogenerated.
+ break;
+ }
+ // FIXME: Remove this once the ANDI glue bug is fixed:
+ case PPCISD::ANDIo_1_EQ_BIT:
+ case PPCISD::ANDIo_1_GT_BIT: {
+ if (!ANDIGlueBug)
+ break;
+
+ EVT InVT = N->getOperand(0).getValueType();
+ assert((InVT == MVT::i64 || InVT == MVT::i32) &&
+ "Invalid input type for ANDIo_1_EQ_BIT");
+
+ unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
+ SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
+ N->getOperand(0),
+ CurDAG->getTargetConstant(1, InVT)), 0);
+ SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
+ SDValue SRIdxVal =
+ CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
+ PPC::sub_eq : PPC::sub_gt, MVT::i32);
+
+ return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
+ CR0Reg, SRIdxVal,
+ SDValue(AndI.getNode(), 1) /* glue */);
+ }
+ case ISD::SELECT_CC: {
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
+ EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = (PtrVT == MVT::i64);
+
+ // If this is a select of i1 operands, we'll pattern match it.
+ if (PPCSubTarget->useCRBits() &&
+ N->getOperand(0).getValueType() == MVT::i1)
+ break;
+
+ // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
+ if (!isPPC64)
+ if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
+ if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
+ if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
+ if (N1C->isNullValue() && N3C->isNullValue() &&
+ N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
+ // FIXME: Implement this optzn for PPC64.
+ N->getValueType(0) == MVT::i32) {
+ SDNode *Tmp =
+ CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
+ N->getOperand(0), getI32Imm(~0U));
+ return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
+ SDValue(Tmp, 0), N->getOperand(0),
+ SDValue(Tmp, 1));
+ }
+
+ SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
+
+ if (N->getValueType(0) == MVT::i1) {
+ // An i1 select is: (c & t) | (!c & f).
+ bool Inv;
+ unsigned Idx = getCRIdxForSetCC(CC, Inv);
+
+ unsigned SRI;
+ switch (Idx) {
+ default: llvm_unreachable("Invalid CC index");
+ case 0: SRI = PPC::sub_lt; break;
+ case 1: SRI = PPC::sub_gt; break;
+ case 2: SRI = PPC::sub_eq; break;
+ case 3: SRI = PPC::sub_un; break;
+ }
+
+ SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
+
+ SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
+ CCBit, CCBit), 0);
+ SDValue C = Inv ? NotCCBit : CCBit,
+ NotC = Inv ? CCBit : NotCCBit;
+
+ SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
+ C, N->getOperand(2)), 0);
+ SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
+ NotC, N->getOperand(3)), 0);
+
+ return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
+ }
+
+ unsigned BROpc = getPredicateForSetCC(CC);
+
+ unsigned SelectCCOp;
+ if (N->getValueType(0) == MVT::i32)
+ SelectCCOp = PPC::SELECT_CC_I4;
+ else if (N->getValueType(0) == MVT::i64)
+ SelectCCOp = PPC::SELECT_CC_I8;
+ else if (N->getValueType(0) == MVT::f32)
+ SelectCCOp = PPC::SELECT_CC_F4;
+ else if (N->getValueType(0) == MVT::f64)
+ SelectCCOp = PPC::SELECT_CC_F8;
+ else
+ SelectCCOp = PPC::SELECT_CC_VRRC;
+
+ SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
+ getI32Imm(BROpc) };
+ return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
+ }
+ case ISD::VSELECT:
+ if (PPCSubTarget->hasVSX()) {
+ SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
+ return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
+ }
+
+ break;
+ case ISD::VECTOR_SHUFFLE:
+ if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
+ N->getValueType(0) == MVT::v2i64)) {
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
+
+ SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
+ Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
+ unsigned DM[2];
+
+ for (int i = 0; i < 2; ++i)
+ if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
+ DM[i] = 0;
+ else
+ DM[i] = 1;
+
+ SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), MVT::i32);
+
+ if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
+ Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
+ isa<LoadSDNode>(Op1.getOperand(0))) {
+ LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
+ SDValue Base, Offset;
+
+ if (LD->isUnindexed() &&
+ SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
+ SDValue Chain = LD->getChain();
+ SDValue Ops[] = { Base, Offset, Chain };
+ return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
+ N->getValueType(0), Ops);
+ }
+ }
+
+ SDValue Ops[] = { Op1, Op2, DMV };
+ return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
+ }
+
+ break;
+ case PPCISD::BDNZ:
+ case PPCISD::BDZ: {
+ bool IsPPC64 = PPCSubTarget->isPPC64();
+ SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
+ return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
+ (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
+ (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
+ MVT::Other, Ops);
+ }
+ case PPCISD::COND_BRANCH: {
+ // Op #0 is the Chain.
+ // Op #1 is the PPC::PRED_* number.
+ // Op #2 is the CR#
+ // Op #3 is the Dest MBB
+ // Op #4 is the Flag.
+ // Prevent PPC::PRED_* from being selected into LI.
+ SDValue Pred =
+ getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
+ SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
+ N->getOperand(0), N->getOperand(4) };
+ return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
+ }
+ case ISD::BR_CC: {
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
+ unsigned PCC = getPredicateForSetCC(CC);
+
+ if (N->getOperand(2).getValueType() == MVT::i1) {
+ unsigned Opc;
+ bool Swap;
+ switch (PCC) {
+ default: llvm_unreachable("Unexpected Boolean-operand predicate");
+ case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
+ case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
+ case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
+ case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
+ case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
+ case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
+ }
+
+ SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
+ N->getOperand(Swap ? 3 : 2),
+ N->getOperand(Swap ? 2 : 3)), 0);
+ return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
+ BitComp, N->getOperand(4), N->getOperand(0));
+ }
+
+ SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
+ SDValue Ops[] = { getI32Imm(PCC), CondCode,
+ N->getOperand(4), N->getOperand(0) };
+ return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
+ }
+ case ISD::BRIND: {
+ // FIXME: Should custom lower this.
+ SDValue Chain = N->getOperand(0);
+ SDValue Target = N->getOperand(1);
+ unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
+ unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
+ Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
+ Chain), 0);
+ return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
+ }
+ case PPCISD::TOC_ENTRY: {
+ if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
+ SDValue GA = N->getOperand(0);
+ return CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
+ N->getOperand(1));
+ }
+ assert (PPCSubTarget->isPPC64() &&
+ "Only supported for 64-bit ABI and 32-bit SVR4");
+
+ // For medium and large code model, we generate two instructions as
+ // described below. Otherwise we allow SelectCodeCommon to handle this,
+ // selecting one of LDtoc, LDtocJTI, and LDtocCPT.
+ CodeModel::Model CModel = TM.getCodeModel();
+ if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
+ break;
+
+ // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
+ // If it is an externally defined symbol, a symbol with common linkage,
+ // a non-local function address, or a jump table address, or if we are
+ // generating code for large code model, we generate:
+ // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
+ // Otherwise we generate:
+ // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
+ SDValue GA = N->getOperand(0);
+ SDValue TOCbase = N->getOperand(1);
+ SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
+ TOCbase, GA);
+
+ if (isa<JumpTableSDNode>(GA) || CModel == CodeModel::Large)
+ return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
+ SDValue(Tmp, 0));
+
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
+ const GlobalValue *GValue = G->getGlobal();
+ if ((GValue->getType()->getElementType()->isFunctionTy() &&
+ (GValue->isDeclaration() || GValue->isWeakForLinker())) ||
+ GValue->isDeclaration() || GValue->hasCommonLinkage() ||
+ GValue->hasAvailableExternallyLinkage())
+ return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
+ SDValue(Tmp, 0));
+ }
+
+ return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
+ SDValue(Tmp, 0), GA);
+ }
+ case PPCISD::PPC32_PICGOT: {
+ // Generate a PIC-safe GOT reference.
+ assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
+ "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
+ return CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(), MVT::i32);
+ }
+ case PPCISD::VADD_SPLAT: {
+ // This expands into one of three sequences, depending on whether
+ // the first operand is odd or even, positive or negative.
+ assert(isa<ConstantSDNode>(N->getOperand(0)) &&
+ isa<ConstantSDNode>(N->getOperand(1)) &&
+ "Invalid operand on VADD_SPLAT!");
+
+ int Elt = N->getConstantOperandVal(0);
+ int EltSize = N->getConstantOperandVal(1);
+ unsigned Opc1, Opc2, Opc3;
+ EVT VT;
+
+ if (EltSize == 1) {
+ Opc1 = PPC::VSPLTISB;
+ Opc2 = PPC::VADDUBM;
+ Opc3 = PPC::VSUBUBM;
+ VT = MVT::v16i8;
+ } else if (EltSize == 2) {
+ Opc1 = PPC::VSPLTISH;
+ Opc2 = PPC::VADDUHM;
+ Opc3 = PPC::VSUBUHM;
+ VT = MVT::v8i16;
+ } else {
+ assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
+ Opc1 = PPC::VSPLTISW;
+ Opc2 = PPC::VADDUWM;
+ Opc3 = PPC::VSUBUWM;
+ VT = MVT::v4i32;
+ }
+
+ if ((Elt & 1) == 0) {
+ // Elt is even, in the range [-32,-18] + [16,30].
+ //
+ // Convert: VADD_SPLAT elt, size
+ // Into: tmp = VSPLTIS[BHW] elt
+ // VADDU[BHW]M tmp, tmp
+ // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
+ SDValue EltVal = getI32Imm(Elt >> 1);
+ SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
+ SDValue TmpVal = SDValue(Tmp, 0);
+ return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
+
+ } else if (Elt > 0) {
+ // Elt is odd and positive, in the range [17,31].
+ //
+ // Convert: VADD_SPLAT elt, size
+ // Into: tmp1 = VSPLTIS[BHW] elt-16
+ // tmp2 = VSPLTIS[BHW] -16
+ // VSUBU[BHW]M tmp1, tmp2
+ SDValue EltVal = getI32Imm(Elt - 16);
+ SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
+ EltVal = getI32Imm(-16);
+ SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
+ return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
+ SDValue(Tmp2, 0));
+
+ } else {
+ // Elt is odd and negative, in the range [-31,-17].
+ //
+ // Convert: VADD_SPLAT elt, size
+ // Into: tmp1 = VSPLTIS[BHW] elt+16
+ // tmp2 = VSPLTIS[BHW] -16
+ // VADDU[BHW]M tmp1, tmp2
+ SDValue EltVal = getI32Imm(Elt + 16);
+ SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
+ EltVal = getI32Imm(-16);
+ SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
+ return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
+ SDValue(Tmp2, 0));
+ }
+ }
+ }
+
+ return SelectCode(N);
+}
+
+/// PostprocessISelDAG - Perform some late peephole optimizations
+/// on the DAG representation.
+void PPCDAGToDAGISel::PostprocessISelDAG() {
+
+ // Skip peepholes at -O0.
+ if (TM.getOptLevel() == CodeGenOpt::None)
+ return;
+
+ PeepholePPC64();
+ PeepholeCROps();
+}
+
+// Check if all users of this node will become isel where the second operand
+// is the constant zero. If this is so, and if we can negate the condition,
+// then we can flip the true and false operands. This will allow the zero to
+// be folded with the isel so that we don't need to materialize a register
+// containing zero.
+bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
+ // If we're not using isel, then this does not matter.
+ if (!PPCSubTarget->hasISEL())
+ return false;
+
+ for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+ UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (!User->isMachineOpcode())
+ return false;
+ if (User->getMachineOpcode() != PPC::SELECT_I4 &&
+ User->getMachineOpcode() != PPC::SELECT_I8)
+ return false;
+
+ SDNode *Op2 = User->getOperand(2).getNode();
+ if (!Op2->isMachineOpcode())
+ return false;
+
+ if (Op2->getMachineOpcode() != PPC::LI &&
+ Op2->getMachineOpcode() != PPC::LI8)
+ return false;
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
+ if (!C)
+ return false;
+
+ if (!C->isNullValue())
+ return false;
+ }
+
+ return true;
+}
+
+void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
+ SmallVector<SDNode *, 4> ToReplace;
+ for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+ UI != UE; ++UI) {
+ SDNode *User = *UI;
+ assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
+ User->getMachineOpcode() == PPC::SELECT_I8) &&
+ "Must have all select users");
+ ToReplace.push_back(User);
+ }
+
+ for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
+ UE = ToReplace.end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ SDNode *ResNode =
+ CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
+ User->getValueType(0), User->getOperand(0),
+ User->getOperand(2),
+ User->getOperand(1));
+
+ DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
+ DEBUG(User->dump(CurDAG));
+ DEBUG(dbgs() << "\nNew: ");
+ DEBUG(ResNode->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
+
+ ReplaceUses(User, ResNode);
+ }
+}
+
+void PPCDAGToDAGISel::PeepholeCROps() {
+ bool IsModified;
+ do {
+ IsModified = false;
+ for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
+ E = CurDAG->allnodes_end(); I != E; ++I) {
+ MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
+ if (!MachineNode || MachineNode->use_empty())
+ continue;
+ SDNode *ResNode = MachineNode;
+
+ bool Op1Set = false, Op1Unset = false,
+ Op1Not = false,
+ Op2Set = false, Op2Unset = false,
+ Op2Not = false;
+
+ unsigned Opcode = MachineNode->getMachineOpcode();
+ switch (Opcode) {
+ default: break;
+ case PPC::CRAND:
+ case PPC::CRNAND:
+ case PPC::CROR:
+ case PPC::CRXOR:
+ case PPC::CRNOR:
+ case PPC::CREQV:
+ case PPC::CRANDC:
+ case PPC::CRORC: {
+ SDValue Op = MachineNode->getOperand(1);
+ if (Op.isMachineOpcode()) {
+ if (Op.getMachineOpcode() == PPC::CRSET)
+ Op2Set = true;
+ else if (Op.getMachineOpcode() == PPC::CRUNSET)
+ Op2Unset = true;
+ else if (Op.getMachineOpcode() == PPC::CRNOR &&
+ Op.getOperand(0) == Op.getOperand(1))
+ Op2Not = true;
+ }
+ } // fallthrough
+ case PPC::BC:
+ case PPC::BCn:
+ case PPC::SELECT_I4:
+ case PPC::SELECT_I8:
+ case PPC::SELECT_F4:
+ case PPC::SELECT_F8:
+ case PPC::SELECT_VRRC: {
+ SDValue Op = MachineNode->getOperand(0);
+ if (Op.isMachineOpcode()) {
+ if (Op.getMachineOpcode() == PPC::CRSET)
+ Op1Set = true;
+ else if (Op.getMachineOpcode() == PPC::CRUNSET)
+ Op1Unset = true;
+ else if (Op.getMachineOpcode() == PPC::CRNOR &&
+ Op.getOperand(0) == Op.getOperand(1))
+ Op1Not = true;
+ }
+ }
+ break;
+ }
+
+ bool SelectSwap = false;
+ switch (Opcode) {
+ default: break;
+ case PPC::CRAND:
+ if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
+ // x & x = x
+ ResNode = MachineNode->getOperand(0).getNode();
+ else if (Op1Set)
+ // 1 & y = y
+ ResNode = MachineNode->getOperand(1).getNode();
+ else if (Op2Set)
+ // x & 1 = x
+ ResNode = MachineNode->getOperand(0).getNode();
+ else if (Op1Unset || Op2Unset)
+ // x & 0 = 0 & y = 0
+ ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
+ MVT::i1);
+ else if (Op1Not)
+ // ~x & y = andc(y, x)
+ ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1),
+ MachineNode->getOperand(0).
+ getOperand(0));
+ else if (Op2Not)
+ // x & ~y = andc(x, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1).
+ getOperand(0));
+ else if (AllUsersSelectZero(MachineNode))
+ ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1)),
+ SelectSwap = true;
+ break;
+ case PPC::CRNAND:
+ if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
+ // nand(x, x) -> nor(x, x)
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(0));
+ else if (Op1Set)
+ // nand(1, y) -> nor(y, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1),
+ MachineNode->getOperand(1));
+ else if (Op2Set)
+ // nand(x, 1) -> nor(x, x)
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(0));
+ else if (Op1Unset || Op2Unset)
+ // nand(x, 0) = nand(0, y) = 1
+ ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
+ MVT::i1);
+ else if (Op1Not)
+ // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0).
+ getOperand(0),
+ MachineNode->getOperand(1));
+ else if (Op2Not)
+ // nand(x, ~y) = ~x | y = orc(y, x)
+ ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1).
+ getOperand(0),
+ MachineNode->getOperand(0));
+ else if (AllUsersSelectZero(MachineNode))
+ ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1)),
+ SelectSwap = true;
+ break;
+ case PPC::CROR:
+ if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
+ // x | x = x
+ ResNode = MachineNode->getOperand(0).getNode();
+ else if (Op1Set || Op2Set)
+ // x | 1 = 1 | y = 1
+ ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
+ MVT::i1);
+ else if (Op1Unset)
+ // 0 | y = y
+ ResNode = MachineNode->getOperand(1).getNode();
+ else if (Op2Unset)
+ // x | 0 = x
+ ResNode = MachineNode->getOperand(0).getNode();
+ else if (Op1Not)
+ // ~x | y = orc(y, x)
+ ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1),
+ MachineNode->getOperand(0).
+ getOperand(0));
+ else if (Op2Not)
+ // x | ~y = orc(x, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1).
+ getOperand(0));
+ else if (AllUsersSelectZero(MachineNode))
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1)),
+ SelectSwap = true;
+ break;
+ case PPC::CRXOR:
+ if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
+ // xor(x, x) = 0
+ ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
+ MVT::i1);
+ else if (Op1Set)
+ // xor(1, y) -> nor(y, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1),
+ MachineNode->getOperand(1));
+ else if (Op2Set)
+ // xor(x, 1) -> nor(x, x)
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(0));
+ else if (Op1Unset)
+ // xor(0, y) = y
+ ResNode = MachineNode->getOperand(1).getNode();
+ else if (Op2Unset)
+ // xor(x, 0) = x
+ ResNode = MachineNode->getOperand(0).getNode();
+ else if (Op1Not)
+ // xor(~x, y) = eqv(x, y)
+ ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0).
+ getOperand(0),
+ MachineNode->getOperand(1));
+ else if (Op2Not)
+ // xor(x, ~y) = eqv(x, y)
+ ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1).
+ getOperand(0));
+ else if (AllUsersSelectZero(MachineNode))
+ ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1)),
+ SelectSwap = true;
+ break;
+ case PPC::CRNOR:
+ if (Op1Set || Op2Set)
+ // nor(1, y) -> 0
+ ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
+ MVT::i1);
+ else if (Op1Unset)
+ // nor(0, y) = ~y -> nor(y, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1),
+ MachineNode->getOperand(1));
+ else if (Op2Unset)
+ // nor(x, 0) = ~x
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(0));
+ else if (Op1Not)
+ // nor(~x, y) = andc(x, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0).
+ getOperand(0),
+ MachineNode->getOperand(1));
+ else if (Op2Not)
+ // nor(x, ~y) = andc(y, x)
+ ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1).
+ getOperand(0),
+ MachineNode->getOperand(0));
+ else if (AllUsersSelectZero(MachineNode))
+ ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1)),
+ SelectSwap = true;
+ break;
+ case PPC::CREQV:
+ if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
+ // eqv(x, x) = 1
+ ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
+ MVT::i1);
+ else if (Op1Set)
+ // eqv(1, y) = y
+ ResNode = MachineNode->getOperand(1).getNode();
+ else if (Op2Set)
+ // eqv(x, 1) = x
+ ResNode = MachineNode->getOperand(0).getNode();
+ else if (Op1Unset)
+ // eqv(0, y) = ~y -> nor(y, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1),
+ MachineNode->getOperand(1));
+ else if (Op2Unset)
+ // eqv(x, 0) = ~x
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(0));
+ else if (Op1Not)
+ // eqv(~x, y) = xor(x, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0).
+ getOperand(0),
+ MachineNode->getOperand(1));
+ else if (Op2Not)
+ // eqv(x, ~y) = xor(x, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1).
+ getOperand(0));
+ else if (AllUsersSelectZero(MachineNode))
+ ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1)),
+ SelectSwap = true;
+ break;
+ case PPC::CRANDC:
+ if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
+ // andc(x, x) = 0
+ ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
+ MVT::i1);
+ else if (Op1Set)
+ // andc(1, y) = ~y
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1),
+ MachineNode->getOperand(1));
+ else if (Op1Unset || Op2Set)
+ // andc(0, y) = andc(x, 1) = 0
+ ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
+ MVT::i1);
+ else if (Op2Unset)
+ // andc(x, 0) = x
+ ResNode = MachineNode->getOperand(0).getNode();
+ else if (Op1Not)
+ // andc(~x, y) = ~(x | y) = nor(x, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0).
+ getOperand(0),
+ MachineNode->getOperand(1));
+ else if (Op2Not)
+ // andc(x, ~y) = x & y
+ ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1).
+ getOperand(0));
+ else if (AllUsersSelectZero(MachineNode))
+ ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1),
+ MachineNode->getOperand(0)),
+ SelectSwap = true;
+ break;
+ case PPC::CRORC:
+ if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
+ // orc(x, x) = 1
+ ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
+ MVT::i1);
+ else if (Op1Set || Op2Unset)
+ // orc(1, y) = orc(x, 0) = 1
+ ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
+ MVT::i1);
+ else if (Op2Set)
+ // orc(x, 1) = x
+ ResNode = MachineNode->getOperand(0).getNode();
+ else if (Op1Unset)
+ // orc(0, y) = ~y
+ ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1),
+ MachineNode->getOperand(1));
+ else if (Op1Not)
+ // orc(~x, y) = ~(x & y) = nand(x, y)
+ ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0).
+ getOperand(0),
+ MachineNode->getOperand(1));
+ else if (Op2Not)
+ // orc(x, ~y) = x | y
+ ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(0),
+ MachineNode->getOperand(1).
+ getOperand(0));
+ else if (AllUsersSelectZero(MachineNode))
+ ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
+ MVT::i1, MachineNode->getOperand(1),
+ MachineNode->getOperand(0)),
+ SelectSwap = true;
+ break;
+ case PPC::SELECT_I4:
+ case PPC::SELECT_I8:
+ case PPC::SELECT_F4:
+ case PPC::SELECT_F8:
+ case PPC::SELECT_VRRC:
+ if (Op1Set)
+ ResNode = MachineNode->getOperand(1).getNode();
+ else if (Op1Unset)
+ ResNode = MachineNode->getOperand(2).getNode();
+ else if (Op1Not)
+ ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
+ SDLoc(MachineNode),
+ MachineNode->getValueType(0),
+ MachineNode->getOperand(0).
+ getOperand(0),
+ MachineNode->getOperand(2),
+ MachineNode->getOperand(1));
+ break;
+ case PPC::BC:
+ case PPC::BCn:
+ if (Op1Not)
+ ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
+ PPC::BC,
+ SDLoc(MachineNode),
+ MVT::Other,
+ MachineNode->getOperand(0).
+ getOperand(0),
+ MachineNode->getOperand(1),
+ MachineNode->getOperand(2));
+ // FIXME: Handle Op1Set, Op1Unset here too.
+ break;
+ }
+
+ // If we're inverting this node because it is used only by selects that
+ // we'd like to swap, then swap the selects before the node replacement.
+ if (SelectSwap)
+ SwapAllSelectUsers(MachineNode);
+
+ if (ResNode != MachineNode) {
+ DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
+ DEBUG(MachineNode->dump(CurDAG));
+ DEBUG(dbgs() << "\nNew: ");
+ DEBUG(ResNode->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
+
+ ReplaceUses(MachineNode, ResNode);
+ IsModified = true;
+ }
+ }
+ if (IsModified)
+ CurDAG->RemoveDeadNodes();
+ } while (IsModified);
+}
+
+void PPCDAGToDAGISel::PeepholePPC64() {
+ // These optimizations are currently supported only for 64-bit SVR4.
+ if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
+ return;
+
+ SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
+ ++Position;
+
+ while (Position != CurDAG->allnodes_begin()) {
+ SDNode *N = --Position;
+ // Skip dead nodes and any non-machine opcodes.
+ if (N->use_empty() || !N->isMachineOpcode())
+ continue;
+
+ unsigned FirstOp;
+ unsigned StorageOpcode = N->getMachineOpcode();
+
+ switch (StorageOpcode) {
+ default: continue;
+
+ case PPC::LBZ:
+ case PPC::LBZ8:
+ case PPC::LD:
+ case PPC::LFD:
+ case PPC::LFS:
+ case PPC::LHA:
+ case PPC::LHA8:
+ case PPC::LHZ:
+ case PPC::LHZ8:
+ case PPC::LWA:
+ case PPC::LWZ:
+ case PPC::LWZ8:
+ FirstOp = 0;
+ break;
+
+ case PPC::STB:
+ case PPC::STB8:
+ case PPC::STD:
+ case PPC::STFD:
+ case PPC::STFS:
+ case PPC::STH:
+ case PPC::STH8:
+ case PPC::STW:
+ case PPC::STW8:
+ FirstOp = 1;
+ break;
+ }
+
+ // If this is a load or store with a zero offset, we may be able to
+ // fold an add-immediate into the memory operation.
+ if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
+ N->getConstantOperandVal(FirstOp) != 0)
+ continue;
+
+ SDValue Base = N->getOperand(FirstOp + 1);
+ if (!Base.isMachineOpcode())
+ continue;
+
+ unsigned Flags = 0;
+ bool ReplaceFlags = true;
+
+ // When the feeding operation is an add-immediate of some sort,
+ // determine whether we need to add relocation information to the
+ // target flags on the immediate operand when we fold it into the
+ // load instruction.
+ //
+ // For something like ADDItocL, the relocation information is
+ // inferred from the opcode; when we process it in the AsmPrinter,
+ // we add the necessary relocation there. A load, though, can receive
+ // relocation from various flavors of ADDIxxx, so we need to carry
+ // the relocation information in the target flags.
+ switch (Base.getMachineOpcode()) {
+ default: continue;
+
+ case PPC::ADDI8:
+ case PPC::ADDI:
+ // In some cases (such as TLS) the relocation information
+ // is already in place on the operand, so copying the operand
+ // is sufficient.
+ ReplaceFlags = false;
+ // For these cases, the immediate may not be divisible by 4, in
+ // which case the fold is illegal for DS-form instructions. (The
+ // other cases provide aligned addresses and are always safe.)
+ if ((StorageOpcode == PPC::LWA ||
+ StorageOpcode == PPC::LD ||
+ StorageOpcode == PPC::STD) &&
+ (!isa<ConstantSDNode>(Base.getOperand(1)) ||
+ Base.getConstantOperandVal(1) % 4 != 0))
+ continue;
+ break;
+ case PPC::ADDIdtprelL:
+ Flags = PPCII::MO_DTPREL_LO;
+ break;
+ case PPC::ADDItlsldL:
+ Flags = PPCII::MO_TLSLD_LO;
+ break;
+ case PPC::ADDItocL:
+ Flags = PPCII::MO_TOC_LO;
+ break;
+ }
+
+ // We found an opportunity. Reverse the operands from the add
+ // immediate and substitute them into the load or store. If
+ // needed, update the target flags for the immediate operand to
+ // reflect the necessary relocation information.
+ DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
+ DEBUG(Base->dump(CurDAG));
+ DEBUG(dbgs() << "\nN: ");
+ DEBUG(N->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
+
+ SDValue ImmOpnd = Base.getOperand(1);
+
+ // If the relocation information isn't already present on the
+ // immediate operand, add it now.
+ if (ReplaceFlags) {
+ if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
+ SDLoc dl(GA);
+ const GlobalValue *GV = GA->getGlobal();
+ // We can't perform this optimization for data whose alignment
+ // is insufficient for the instruction encoding.
+ if (GV->getAlignment() < 4 &&
+ (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
+ StorageOpcode == PPC::LWA)) {
+ DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
+ continue;
+ }
+ ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
+ } else if (ConstantPoolSDNode *CP =
+ dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
+ const Constant *C = CP->getConstVal();
+ ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
+ CP->getAlignment(),
+ 0, Flags);
+ }
+ }
+
+ if (FirstOp == 1) // Store
+ (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
+ Base.getOperand(0), N->getOperand(3));
+ else // Load
+ (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
+ N->getOperand(2));
+
+ // The add-immediate may now be dead, in which case remove it.
+ if (Base.getNode()->use_empty())
+ CurDAG->RemoveDeadNode(Base.getNode());
+ }
+}
+
+
+/// createPPCISelDag - This pass converts a legalized DAG into a
+/// PowerPC-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
+ return new PPCDAGToDAGISel(TM);
+}
+
+static void initializePassOnce(PassRegistry &Registry) {
+ const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
+ PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
+ nullptr, false, false);
+ Registry.registerPass(*PI, true);
+}
+
+void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
+ CALL_ONCE_INITIALIZATION(initializePassOnce);
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
new file mode 100644
index 0000000..1247e86
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
@@ -0,0 +1,9290 @@
+//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PPCISelLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCISelLowering.h"
+#include "MCTargetDesc/PPCPredicates.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCPerfectShuffle.h"
+#include "PPCTargetMachine.h"
+#include "PPCTargetObjectFile.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
+cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
+
+static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
+cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
+
+static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
+cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
+
+// FIXME: Remove this once the bug has been fixed!
+extern cl::opt<bool> ANDIGlueBug;
+
+static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
+ // If it isn't a Mach-O file then it's going to be a linux ELF
+ // object file.
+ if (TT.isOSDarwin())
+ return new TargetLoweringObjectFileMachO();
+
+ return new PPC64LinuxTargetObjectFile();
+}
+
+PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
+ : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))),
+ Subtarget(*TM.getSubtargetImpl()) {
+ setPow2DivIsCheap();
+
+ // Use _setjmp/_longjmp instead of setjmp/longjmp.
+ setUseUnderscoreSetJmp(true);
+ setUseUnderscoreLongJmp(true);
+
+ // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
+ // arguments are at least 4/8 bytes aligned.
+ bool isPPC64 = Subtarget.isPPC64();
+ setMinStackArgumentAlignment(isPPC64 ? 8:4);
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
+ addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
+ addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
+
+ // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ // PowerPC has pre-inc load and store's.
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
+
+ if (Subtarget.useCRBits()) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ if (isPPC64 || Subtarget.hasFPCVT()) {
+ setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
+ AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
+ isPPC64 ? MVT::i64 : MVT::i32);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
+ AddPromotedToType (ISD::UINT_TO_FP, MVT::i1,
+ isPPC64 ? MVT::i64 : MVT::i32);
+ } else {
+ setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
+ }
+
+ // PowerPC does not support direct load / store of condition registers
+ setOperationAction(ISD::LOAD, MVT::i1, Custom);
+ setOperationAction(ISD::STORE, MVT::i1, Custom);
+
+ // FIXME: Remove this once the ANDI glue bug is fixed:
+ if (ANDIGlueBug)
+ setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
+
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setTruncStoreAction(MVT::i64, MVT::i1, Expand);
+ setTruncStoreAction(MVT::i32, MVT::i1, Expand);
+ setTruncStoreAction(MVT::i16, MVT::i1, Expand);
+ setTruncStoreAction(MVT::i8, MVT::i1, Expand);
+
+ addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
+ }
+
+ // This is used in the ppcf128->int sequence. Note it has different semantics
+ // from FP_ROUND: that rounds to nearest, this rounds to zero.
+ setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
+
+ // We do not currently implement these libm ops for PowerPC.
+ setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
+ setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
+ setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
+ setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
+
+ // PowerPC has no SREM/UREM instructions
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+
+ // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
+
+ // We don't support sin/cos/sqrt/fmod/pow
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FREM , MVT::f64, Expand);
+ setOperationAction(ISD::FPOW , MVT::f64, Expand);
+ setOperationAction(ISD::FMA , MVT::f64, Legal);
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FREM , MVT::f32, Expand);
+ setOperationAction(ISD::FPOW , MVT::f32, Expand);
+ setOperationAction(ISD::FMA , MVT::f32, Legal);
+
+ setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
+
+ // If we're enabling GP optimizations, use hardware square root
+ if (!Subtarget.hasFSQRT() &&
+ !(TM.Options.UnsafeFPMath &&
+ Subtarget.hasFRSQRTE() && Subtarget.hasFRE()))
+ setOperationAction(ISD::FSQRT, MVT::f64, Expand);
+
+ if (!Subtarget.hasFSQRT() &&
+ !(TM.Options.UnsafeFPMath &&
+ Subtarget.hasFRSQRTES() && Subtarget.hasFRES()))
+ setOperationAction(ISD::FSQRT, MVT::f32, Expand);
+
+ if (Subtarget.hasFCPSGN()) {
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
+ } else {
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+ }
+
+ if (Subtarget.hasFPRND()) {
+ setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f64, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
+ setOperationAction(ISD::FROUND, MVT::f64, Legal);
+
+ setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
+ setOperationAction(ISD::FROUND, MVT::f32, Legal);
+ }
+
+ // PowerPC does not have BSWAP, CTPOP or CTTZ
+ setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
+ setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
+ setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
+
+ if (Subtarget.hasPOPCNTD()) {
+ setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
+ setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
+ } else {
+ setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
+ setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
+ }
+
+ // PowerPC does not have ROTR
+ setOperationAction(ISD::ROTR, MVT::i32 , Expand);
+ setOperationAction(ISD::ROTR, MVT::i64 , Expand);
+
+ if (!Subtarget.useCRBits()) {
+ // PowerPC does not have Select
+ setOperationAction(ISD::SELECT, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f64, Expand);
+ }
+
+ // PowerPC wants to turn select_cc of FP into fsel when possible.
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+
+ // PowerPC wants to optimize integer setcc a bit
+ if (!Subtarget.useCRBits())
+ setOperationAction(ISD::SETCC, MVT::i32, Custom);
+
+ // PowerPC does not have BRCOND which requires SetCC
+ if (!Subtarget.useCRBits())
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+
+ // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+
+ // PowerPC does not have [U|S]INT_TO_FP
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
+
+ setOperationAction(ISD::BITCAST, MVT::f32, Expand);
+ setOperationAction(ISD::BITCAST, MVT::i32, Expand);
+ setOperationAction(ISD::BITCAST, MVT::i64, Expand);
+ setOperationAction(ISD::BITCAST, MVT::f64, Expand);
+
+ // We cannot sextinreg(i1). Expand to shifts.
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
+ // SjLj exception handling but a light-weight setjmp/longjmp replacement to
+ // support continuation, user-level threading, and etc.. As a result, no
+ // other SjLj exception interfaces are implemented and please don't build
+ // your own exception handling based on them.
+ // LLVM/Clang supports zero-cost DWARF exception handling.
+ setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
+ setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
+
+ // We want to legalize GlobalAddress and ConstantPool nodes into the
+ // appropriate instructions to materialize the address.
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i64, Custom);
+
+ // TRAP is legal.
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ // TRAMPOLINE is custom lowered.
+ setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
+ setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
+
+ // VASTART needs to be custom lowered to use the VarArgsFrameIndex
+ setOperationAction(ISD::VASTART , MVT::Other, Custom);
+
+ if (Subtarget.isSVR4ABI()) {
+ if (isPPC64) {
+ // VAARG always uses double-word chunks, so promote anything smaller.
+ setOperationAction(ISD::VAARG, MVT::i1, Promote);
+ AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
+ setOperationAction(ISD::VAARG, MVT::i8, Promote);
+ AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
+ setOperationAction(ISD::VAARG, MVT::i16, Promote);
+ AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
+ setOperationAction(ISD::VAARG, MVT::i32, Promote);
+ AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+ } else {
+ // VAARG is custom lowered with the 32-bit SVR4 ABI.
+ setOperationAction(ISD::VAARG, MVT::Other, Custom);
+ setOperationAction(ISD::VAARG, MVT::i64, Custom);
+ }
+ } else
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+
+ if (Subtarget.isSVR4ABI() && !isPPC64)
+ // VACOPY is custom lowered with the 32-bit SVR4 ABI.
+ setOperationAction(ISD::VACOPY , MVT::Other, Custom);
+ else
+ setOperationAction(ISD::VACOPY , MVT::Other, Expand);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VAEND , MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+
+ // To handle counter-based loop conditions.
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
+
+ // Comparisons that require checking two conditions.
+ setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
+
+ if (Subtarget.has64BitSupport()) {
+ // They also have instructions for converting between i64 and fp.
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
+ // This is just the low 32 bits of a (signed) fp->i64 conversion.
+ // We cannot do this with Promote because i64 is not a legal type.
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+
+ if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ } else {
+ // PowerPC does not have FP_TO_UINT on 32-bit implementations.
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
+ }
+
+ // With the instructions enabled under FPCVT, we can do everything.
+ if (Subtarget.hasFPCVT()) {
+ if (Subtarget.has64BitSupport()) {
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
+ }
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ }
+
+ if (Subtarget.use64BitRegs()) {
+ // 64-bit PowerPC implementations can support i64 types directly
+ addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
+ // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
+ setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
+ // 64-bit PowerPC wants to expand i128 shifts itself.
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
+ } else {
+ // 32-bit PowerPC wants to expand i64 shifts itself.
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
+ }
+
+ if (Subtarget.hasAltivec()) {
+ // First set operation action for all vector types to expand. Then we
+ // will selectively turn on ones that can be effectively codegen'd.
+ for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
+ MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
+
+ // add/sub are legal for all supported vector VT's.
+ setOperationAction(ISD::ADD , VT, Legal);
+ setOperationAction(ISD::SUB , VT, Legal);
+
+ // We promote all shuffles to v16i8.
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
+ AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
+
+ // We promote all non-typed operations to v4i32.
+ setOperationAction(ISD::AND , VT, Promote);
+ AddPromotedToType (ISD::AND , VT, MVT::v4i32);
+ setOperationAction(ISD::OR , VT, Promote);
+ AddPromotedToType (ISD::OR , VT, MVT::v4i32);
+ setOperationAction(ISD::XOR , VT, Promote);
+ AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
+ setOperationAction(ISD::LOAD , VT, Promote);
+ AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
+ setOperationAction(ISD::SELECT, VT, Promote);
+ AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
+ setOperationAction(ISD::STORE, VT, Promote);
+ AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
+
+ // No other operations are legal.
+ setOperationAction(ISD::MUL , VT, Expand);
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::FDIV, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+ setOperationAction(ISD::FNEG, VT, Expand);
+ setOperationAction(ISD::FSQRT, VT, Expand);
+ setOperationAction(ISD::FLOG, VT, Expand);
+ setOperationAction(ISD::FLOG10, VT, Expand);
+ setOperationAction(ISD::FLOG2, VT, Expand);
+ setOperationAction(ISD::FEXP, VT, Expand);
+ setOperationAction(ISD::FEXP2, VT, Expand);
+ setOperationAction(ISD::FSIN, VT, Expand);
+ setOperationAction(ISD::FCOS, VT, Expand);
+ setOperationAction(ISD::FABS, VT, Expand);
+ setOperationAction(ISD::FPOWI, VT, Expand);
+ setOperationAction(ISD::FFLOOR, VT, Expand);
+ setOperationAction(ISD::FCEIL, VT, Expand);
+ setOperationAction(ISD::FTRUNC, VT, Expand);
+ setOperationAction(ISD::FRINT, VT, Expand);
+ setOperationAction(ISD::FNEARBYINT, VT, Expand);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
+ setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::UDIVREM, VT, Expand);
+ setOperationAction(ISD::SDIVREM, VT, Expand);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
+ setOperationAction(ISD::FPOW, VT, Expand);
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ setOperationAction(ISD::CTPOP, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
+
+ for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
+ MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
+ setTruncStoreAction(VT, InnerVT, Expand);
+ }
+ setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, Expand);
+ }
+
+ // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
+ // with merges, splats, etc.
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
+
+ setOperationAction(ISD::AND , MVT::v4i32, Legal);
+ setOperationAction(ISD::OR , MVT::v4i32, Legal);
+ setOperationAction(ISD::XOR , MVT::v4i32, Legal);
+ setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
+ setOperationAction(ISD::SELECT, MVT::v4i32,
+ Subtarget.useCRBits() ? Legal : Expand);
+ setOperationAction(ISD::STORE , MVT::v4i32, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
+
+ addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
+ addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
+ addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
+ addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
+
+ setOperationAction(ISD::MUL, MVT::v4f32, Legal);
+ setOperationAction(ISD::FMA, MVT::v4f32, Legal);
+
+ if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
+ setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
+ }
+
+ setOperationAction(ISD::MUL, MVT::v4i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v8i16, Custom);
+ setOperationAction(ISD::MUL, MVT::v16i8, Custom);
+
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
+
+ // Altivec does not contain unordered floating-point compare instructions
+ setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
+ setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
+ setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
+ setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
+
+ if (Subtarget.hasVSX()) {
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
+
+ setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
+ setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
+
+ setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
+
+ setOperationAction(ISD::MUL, MVT::v2f64, Legal);
+ setOperationAction(ISD::FMA, MVT::v2f64, Legal);
+
+ setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
+
+ setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
+ setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
+ setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
+ setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
+ setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
+
+ // Share the Altivec comparison restrictions.
+ setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
+ setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
+ setCondCodeAction(ISD::SETO, MVT::v2f64, Expand);
+ setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
+
+ setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
+ setOperationAction(ISD::STORE, MVT::v2f64, Legal);
+
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
+
+ addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
+
+ addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
+ addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
+
+ // VSX v2i64 only supports non-arithmetic operations.
+ setOperationAction(ISD::ADD, MVT::v2i64, Expand);
+ setOperationAction(ISD::SUB, MVT::v2i64, Expand);
+
+ setOperationAction(ISD::SHL, MVT::v2i64, Expand);
+ setOperationAction(ISD::SRA, MVT::v2i64, Expand);
+ setOperationAction(ISD::SRL, MVT::v2i64, Expand);
+
+ setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
+
+ setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
+ AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
+ setOperationAction(ISD::STORE, MVT::v2i64, Promote);
+ AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
+
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
+
+ setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
+
+ // Vector operation legalization checks the result type of
+ // SIGN_EXTEND_INREG, overall legalization checks the inner type.
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
+
+ addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
+ }
+ }
+
+ if (Subtarget.has64BitSupport()) {
+ setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
+ setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
+ }
+
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
+
+ setBooleanContents(ZeroOrOneBooleanContent);
+ // Altivec instructions set fields to all zeros or all ones.
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ if (!isPPC64) {
+ // These libcalls are not available in 32-bit.
+ setLibcallName(RTLIB::SHL_I128, nullptr);
+ setLibcallName(RTLIB::SRL_I128, nullptr);
+ setLibcallName(RTLIB::SRA_I128, nullptr);
+ }
+
+ if (isPPC64) {
+ setStackPointerRegisterToSaveRestore(PPC::X1);
+ setExceptionPointerRegister(PPC::X3);
+ setExceptionSelectorRegister(PPC::X4);
+ } else {
+ setStackPointerRegisterToSaveRestore(PPC::R1);
+ setExceptionPointerRegister(PPC::R3);
+ setExceptionSelectorRegister(PPC::R4);
+ }
+
+ // We have target-specific dag combine patterns for the following nodes:
+ setTargetDAGCombine(ISD::SINT_TO_FP);
+ setTargetDAGCombine(ISD::LOAD);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::BR_CC);
+ if (Subtarget.useCRBits())
+ setTargetDAGCombine(ISD::BRCOND);
+ setTargetDAGCombine(ISD::BSWAP);
+ setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
+
+ setTargetDAGCombine(ISD::SIGN_EXTEND);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ setTargetDAGCombine(ISD::ANY_EXTEND);
+
+ if (Subtarget.useCRBits()) {
+ setTargetDAGCombine(ISD::TRUNCATE);
+ setTargetDAGCombine(ISD::SETCC);
+ setTargetDAGCombine(ISD::SELECT_CC);
+ }
+
+ // Use reciprocal estimates.
+ if (TM.Options.UnsafeFPMath) {
+ setTargetDAGCombine(ISD::FDIV);
+ setTargetDAGCombine(ISD::FSQRT);
+ }
+
+ // Darwin long double math library functions have $LDBL128 appended.
+ if (Subtarget.isDarwin()) {
+ setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
+ setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
+ setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
+ setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
+ setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
+ setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
+ setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
+ setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
+ setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
+ setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
+ }
+
+ // With 32 condition bits, we don't need to sink (and duplicate) compares
+ // aggressively in CodeGenPrep.
+ if (Subtarget.useCRBits())
+ setHasMultipleConditionRegisters();
+
+ setMinFunctionAlignment(2);
+ if (Subtarget.isDarwin())
+ setPrefFunctionAlignment(4);
+
+ if (isPPC64 && Subtarget.isJITCodeModel())
+ // Temporary workaround for the inability of PPC64 JIT to handle jump
+ // tables.
+ setSupportJumpTables(false);
+
+ setInsertFencesForAtomic(true);
+
+ if (Subtarget.enableMachineScheduler())
+ setSchedulingPreference(Sched::Source);
+ else
+ setSchedulingPreference(Sched::Hybrid);
+
+ computeRegisterProperties();
+
+ // The Freescale cores does better with aggressive inlining of memcpy and
+ // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
+ if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
+ Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
+ MaxStoresPerMemset = 32;
+ MaxStoresPerMemsetOptSize = 16;
+ MaxStoresPerMemcpy = 32;
+ MaxStoresPerMemcpyOptSize = 8;
+ MaxStoresPerMemmove = 32;
+ MaxStoresPerMemmoveOptSize = 8;
+
+ setPrefFunctionAlignment(4);
+ }
+}
+
+/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
+/// the desired ByVal argument alignment.
+static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
+ unsigned MaxMaxAlign) {
+ if (MaxAlign == MaxMaxAlign)
+ return;
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+ if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
+ MaxAlign = 32;
+ else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
+ MaxAlign = 16;
+ } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ if (MaxAlign == MaxMaxAlign)
+ break;
+ }
+ }
+}
+
+/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+/// function arguments in the caller parameter area.
+unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
+ // Darwin passes everything on 4 byte boundary.
+ if (Subtarget.isDarwin())
+ return 4;
+
+ // 16byte and wider vectors are passed on 16byte boundary.
+ // The rest is 8 on PPC64 and 4 on PPC32 boundary.
+ unsigned Align = Subtarget.isPPC64() ? 8 : 4;
+ if (Subtarget.hasAltivec() || Subtarget.hasQPX())
+ getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
+ return Align;
+}
+
+const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return nullptr;
+ case PPCISD::FSEL: return "PPCISD::FSEL";
+ case PPCISD::FCFID: return "PPCISD::FCFID";
+ case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
+ case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
+ case PPCISD::FRE: return "PPCISD::FRE";
+ case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
+ case PPCISD::STFIWX: return "PPCISD::STFIWX";
+ case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
+ case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
+ case PPCISD::VPERM: return "PPCISD::VPERM";
+ case PPCISD::Hi: return "PPCISD::Hi";
+ case PPCISD::Lo: return "PPCISD::Lo";
+ case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
+ case PPCISD::LOAD: return "PPCISD::LOAD";
+ case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC";
+ case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
+ case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
+ case PPCISD::SRL: return "PPCISD::SRL";
+ case PPCISD::SRA: return "PPCISD::SRA";
+ case PPCISD::SHL: return "PPCISD::SHL";
+ case PPCISD::CALL: return "PPCISD::CALL";
+ case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
+ case PPCISD::MTCTR: return "PPCISD::MTCTR";
+ case PPCISD::BCTRL: return "PPCISD::BCTRL";
+ case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
+ case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
+ case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
+ case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
+ case PPCISD::VCMP: return "PPCISD::VCMP";
+ case PPCISD::VCMPo: return "PPCISD::VCMPo";
+ case PPCISD::LBRX: return "PPCISD::LBRX";
+ case PPCISD::STBRX: return "PPCISD::STBRX";
+ case PPCISD::LARX: return "PPCISD::LARX";
+ case PPCISD::STCX: return "PPCISD::STCX";
+ case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
+ case PPCISD::BDNZ: return "PPCISD::BDNZ";
+ case PPCISD::BDZ: return "PPCISD::BDZ";
+ case PPCISD::MFFS: return "PPCISD::MFFS";
+ case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
+ case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
+ case PPCISD::CR6SET: return "PPCISD::CR6SET";
+ case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
+ case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA";
+ case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L";
+ case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L";
+ case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT";
+ case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
+ case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
+ case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
+ case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
+ case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
+ case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
+ case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
+ case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
+ case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
+ case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
+ case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
+ case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
+ case PPCISD::SC: return "PPCISD::SC";
+ }
+}
+
+EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector())
+ return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
+ return VT.changeVectorElementTypeToInteger();
+}
+
+//===----------------------------------------------------------------------===//
+// Node matching predicates, for use by the tblgen matching code.
+//===----------------------------------------------------------------------===//
+
+/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
+static bool isFloatingPointZero(SDValue Op) {
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
+ return CFP->getValueAPF().isZero();
+ else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
+ // Maybe this has already been legalized into the constant pool?
+ if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
+ return CFP->getValueAPF().isZero();
+ }
+ return false;
+}
+
+/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
+/// true if Op is undef or if it matches the specified value.
+static bool isConstantOrUndef(int Op, int Val) {
+ return Op < 0 || Op == Val;
+}
+
+/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
+/// VPKUHUM instruction.
+/// The ShuffleKind distinguishes between big-endian operations with
+/// two different inputs (0), either-endian operations with two identical
+/// inputs (1), and little-endian operantion with two different inputs (2).
+/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
+bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
+ SelectionDAG &DAG) {
+ if (ShuffleKind == 0) {
+ if (DAG.getTarget().getDataLayout()->isLittleEndian())
+ return false;
+ for (unsigned i = 0; i != 16; ++i)
+ if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
+ return false;
+ } else if (ShuffleKind == 2) {
+ if (!DAG.getTarget().getDataLayout()->isLittleEndian())
+ return false;
+ for (unsigned i = 0; i != 16; ++i)
+ if (!isConstantOrUndef(N->getMaskElt(i), i*2))
+ return false;
+ } else if (ShuffleKind == 1) {
+ unsigned j = DAG.getTarget().getDataLayout()->isLittleEndian() ? 0 : 1;
+ for (unsigned i = 0; i != 8; ++i)
+ if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
+ !isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
+ return false;
+ }
+ return true;
+}
+
+/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
+/// VPKUWUM instruction.
+/// The ShuffleKind distinguishes between big-endian operations with
+/// two different inputs (0), either-endian operations with two identical
+/// inputs (1), and little-endian operantion with two different inputs (2).
+/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
+bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
+ SelectionDAG &DAG) {
+ if (ShuffleKind == 0) {
+ if (DAG.getTarget().getDataLayout()->isLittleEndian())
+ return false;
+ for (unsigned i = 0; i != 16; i += 2)
+ if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
+ !isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
+ return false;
+ } else if (ShuffleKind == 2) {
+ if (!DAG.getTarget().getDataLayout()->isLittleEndian())
+ return false;
+ for (unsigned i = 0; i != 16; i += 2)
+ if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
+ !isConstantOrUndef(N->getMaskElt(i+1), i*2+1))
+ return false;
+ } else if (ShuffleKind == 1) {
+ unsigned j = DAG.getTarget().getDataLayout()->isLittleEndian() ? 0 : 2;
+ for (unsigned i = 0; i != 8; i += 2)
+ if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
+ !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
+ !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
+ !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1))
+ return false;
+ }
+ return true;
+}
+
+/// isVMerge - Common function, used to match vmrg* shuffles.
+///
+static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
+ unsigned LHSStart, unsigned RHSStart) {
+ if (N->getValueType(0) != MVT::v16i8)
+ return false;
+ assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
+ "Unsupported merge size!");
+
+ for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
+ for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
+ if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
+ LHSStart+j+i*UnitSize) ||
+ !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
+ RHSStart+j+i*UnitSize))
+ return false;
+ }
+ return true;
+}
+
+/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
+/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
+/// The ShuffleKind distinguishes between big-endian merges with two
+/// different inputs (0), either-endian merges with two identical inputs (1),
+/// and little-endian merges with two different inputs (2). For the latter,
+/// the input operands are swapped (see PPCInstrAltivec.td).
+bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
+ unsigned ShuffleKind, SelectionDAG &DAG) {
+ if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
+ if (ShuffleKind == 1) // unary
+ return isVMerge(N, UnitSize, 0, 0);
+ else if (ShuffleKind == 2) // swapped
+ return isVMerge(N, UnitSize, 0, 16);
+ else
+ return false;
+ } else {
+ if (ShuffleKind == 1) // unary
+ return isVMerge(N, UnitSize, 8, 8);
+ else if (ShuffleKind == 0) // normal
+ return isVMerge(N, UnitSize, 8, 24);
+ else
+ return false;
+ }
+}
+
+/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
+/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
+/// The ShuffleKind distinguishes between big-endian merges with two
+/// different inputs (0), either-endian merges with two identical inputs (1),
+/// and little-endian merges with two different inputs (2). For the latter,
+/// the input operands are swapped (see PPCInstrAltivec.td).
+bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
+ unsigned ShuffleKind, SelectionDAG &DAG) {
+ if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
+ if (ShuffleKind == 1) // unary
+ return isVMerge(N, UnitSize, 8, 8);
+ else if (ShuffleKind == 2) // swapped
+ return isVMerge(N, UnitSize, 8, 24);
+ else
+ return false;
+ } else {
+ if (ShuffleKind == 1) // unary
+ return isVMerge(N, UnitSize, 0, 0);
+ else if (ShuffleKind == 0) // normal
+ return isVMerge(N, UnitSize, 0, 16);
+ else
+ return false;
+ }
+}
+
+
+/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
+/// amount, otherwise return -1.
+/// The ShuffleKind distinguishes between big-endian operations with two
+/// different inputs (0), either-endian operations with two identical inputs
+/// (1), and little-endian operations with two different inputs (2). For the
+/// latter, the input operands are swapped (see PPCInstrAltivec.td).
+int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
+ SelectionDAG &DAG) {
+ if (N->getValueType(0) != MVT::v16i8)
+ return -1;
+
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+
+ // Find the first non-undef value in the shuffle mask.
+ unsigned i;
+ for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
+ /*search*/;
+
+ if (i == 16) return -1; // all undef.
+
+ // Otherwise, check to see if the rest of the elements are consecutively
+ // numbered from this value.
+ unsigned ShiftAmt = SVOp->getMaskElt(i);
+ if (ShiftAmt < i) return -1;
+
+ ShiftAmt -= i;
+ bool isLE = DAG.getTarget().getDataLayout()->isLittleEndian();
+
+ if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
+ // Check the rest of the elements to see if they are consecutive.
+ for (++i; i != 16; ++i)
+ if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
+ return -1;
+ } else if (ShuffleKind == 1) {
+ // Check the rest of the elements to see if they are consecutive.
+ for (++i; i != 16; ++i)
+ if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
+ return -1;
+ } else
+ return -1;
+
+ if (ShuffleKind == 2 && isLE)
+ ShiftAmt = 16 - ShiftAmt;
+
+ return ShiftAmt;
+}
+
+/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a splat of a single element that is suitable for input to
+/// VSPLTB/VSPLTH/VSPLTW.
+bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
+ assert(N->getValueType(0) == MVT::v16i8 &&
+ (EltSize == 1 || EltSize == 2 || EltSize == 4));
+
+ // This is a splat operation if each element of the permute is the same, and
+ // if the value doesn't reference the second vector.
+ unsigned ElementBase = N->getMaskElt(0);
+
+ // FIXME: Handle UNDEF elements too!
+ if (ElementBase >= 16)
+ return false;
+
+ // Check that the indices are consecutive, in the case of a multi-byte element
+ // splatted with a v16i8 mask.
+ for (unsigned i = 1; i != EltSize; ++i)
+ if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
+ return false;
+
+ for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
+ if (N->getMaskElt(i) < 0) continue;
+ for (unsigned j = 0; j != EltSize; ++j)
+ if (N->getMaskElt(i+j) != N->getMaskElt(j))
+ return false;
+ }
+ return true;
+}
+
+/// isAllNegativeZeroVector - Returns true if all elements of build_vector
+/// are -0.0.
+bool PPC::isAllNegativeZeroVector(SDNode *N) {
+ BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
+
+ APInt APVal, APUndef;
+ unsigned BitSize;
+ bool HasAnyUndefs;
+
+ if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
+ return CFP->getValueAPF().isNegZero();
+
+ return false;
+}
+
+/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
+/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
+unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
+ SelectionDAG &DAG) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ assert(isSplatShuffleMask(SVOp, EltSize));
+ if (DAG.getTarget().getDataLayout()->isLittleEndian())
+ return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
+ else
+ return SVOp->getMaskElt(0) / EltSize;
+}
+
+/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
+/// by using a vspltis[bhw] instruction of the specified element size, return
+/// the constant being splatted. The ByteSize field indicates the number of
+/// bytes of each element [124] -> [bhw].
+SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
+ SDValue OpVal(nullptr, 0);
+
+ // If ByteSize of the splat is bigger than the element size of the
+ // build_vector, then we have a case where we are checking for a splat where
+ // multiple elements of the buildvector are folded together into a single
+ // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
+ unsigned EltSize = 16/N->getNumOperands();
+ if (EltSize < ByteSize) {
+ unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
+ SDValue UniquedVals[4];
+ assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
+
+ // See if all of the elements in the buildvector agree across.
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
+ // If the element isn't a constant, bail fully out.
+ if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
+
+
+ if (!UniquedVals[i&(Multiple-1)].getNode())
+ UniquedVals[i&(Multiple-1)] = N->getOperand(i);
+ else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
+ return SDValue(); // no match.
+ }
+
+ // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
+ // either constant or undef values that are identical for each chunk. See
+ // if these chunks can form into a larger vspltis*.
+
+ // Check to see if all of the leading entries are either 0 or -1. If
+ // neither, then this won't fit into the immediate field.
+ bool LeadingZero = true;
+ bool LeadingOnes = true;
+ for (unsigned i = 0; i != Multiple-1; ++i) {
+ if (!UniquedVals[i].getNode()) continue; // Must have been undefs.
+
+ LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
+ LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
+ }
+ // Finally, check the least significant entry.
+ if (LeadingZero) {
+ if (!UniquedVals[Multiple-1].getNode())
+ return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
+ int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
+ if (Val < 16)
+ return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
+ }
+ if (LeadingOnes) {
+ if (!UniquedVals[Multiple-1].getNode())
+ return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
+ int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
+ if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
+ return DAG.getTargetConstant(Val, MVT::i32);
+ }
+
+ return SDValue();
+ }
+
+ // Check to see if this buildvec has a single non-undef value in its elements.
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
+ if (!OpVal.getNode())
+ OpVal = N->getOperand(i);
+ else if (OpVal != N->getOperand(i))
+ return SDValue();
+ }
+
+ if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def.
+
+ unsigned ValSizeInBytes = EltSize;
+ uint64_t Value = 0;
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
+ Value = CN->getZExtValue();
+ } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
+ assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
+ Value = FloatToBits(CN->getValueAPF().convertToFloat());
+ }
+
+ // If the splat value is larger than the element value, then we can never do
+ // this splat. The only case that we could fit the replicated bits into our
+ // immediate field for would be zero, and we prefer to use vxor for it.
+ if (ValSizeInBytes < ByteSize) return SDValue();
+
+ // If the element value is larger than the splat value, cut it in half and
+ // check to see if the two halves are equal. Continue doing this until we
+ // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
+ while (ValSizeInBytes > ByteSize) {
+ ValSizeInBytes >>= 1;
+
+ // If the top half equals the bottom half, we're still ok.
+ if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
+ (Value & ((1 << (8*ValSizeInBytes))-1)))
+ return SDValue();
+ }
+
+ // Properly sign extend the value.
+ int MaskVal = SignExtend32(Value, ByteSize * 8);
+
+ // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
+ if (MaskVal == 0) return SDValue();
+
+ // Finally, if this value fits in a 5 bit sext field, return it
+ if (SignExtend32<5>(MaskVal) == MaskVal)
+ return DAG.getTargetConstant(MaskVal, MVT::i32);
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Addressing Mode Selection
+//===----------------------------------------------------------------------===//
+
+/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
+/// or 64-bit immediate, and if the value can be accurately represented as a
+/// sign extension from a 16-bit value. If so, this returns true and the
+/// immediate.
+static bool isIntS16Immediate(SDNode *N, short &Imm) {
+ if (!isa<ConstantSDNode>(N))
+ return false;
+
+ Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
+ if (N->getValueType(0) == MVT::i32)
+ return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
+ else
+ return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
+}
+static bool isIntS16Immediate(SDValue Op, short &Imm) {
+ return isIntS16Immediate(Op.getNode(), Imm);
+}
+
+
+/// SelectAddressRegReg - Given the specified addressed, check to see if it
+/// can be represented as an indexed [r+r] operation. Returns false if it
+/// can be more efficiently represented with [r+imm].
+bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
+ SDValue &Index,
+ SelectionDAG &DAG) const {
+ short imm = 0;
+ if (N.getOpcode() == ISD::ADD) {
+ if (isIntS16Immediate(N.getOperand(1), imm))
+ return false; // r+i
+ if (N.getOperand(1).getOpcode() == PPCISD::Lo)
+ return false; // r+i
+
+ Base = N.getOperand(0);
+ Index = N.getOperand(1);
+ return true;
+ } else if (N.getOpcode() == ISD::OR) {
+ if (isIntS16Immediate(N.getOperand(1), imm))
+ return false; // r+i can fold it if we can.
+
+ // If this is an or of disjoint bitfields, we can codegen this as an add
+ // (for better address arithmetic) if the LHS and RHS of the OR are provably
+ // disjoint.
+ APInt LHSKnownZero, LHSKnownOne;
+ APInt RHSKnownZero, RHSKnownOne;
+ DAG.computeKnownBits(N.getOperand(0),
+ LHSKnownZero, LHSKnownOne);
+
+ if (LHSKnownZero.getBoolValue()) {
+ DAG.computeKnownBits(N.getOperand(1),
+ RHSKnownZero, RHSKnownOne);
+ // If all of the bits are known zero on the LHS or RHS, the add won't
+ // carry.
+ if (~(LHSKnownZero | RHSKnownZero) == 0) {
+ Base = N.getOperand(0);
+ Index = N.getOperand(1);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+// If we happen to be doing an i64 load or store into a stack slot that has
+// less than a 4-byte alignment, then the frame-index elimination may need to
+// use an indexed load or store instruction (because the offset may not be a
+// multiple of 4). The extra register needed to hold the offset comes from the
+// register scavenger, and it is possible that the scavenger will need to use
+// an emergency spill slot. As a result, we need to make sure that a spill slot
+// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
+// stack slot.
+static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
+ // FIXME: This does not handle the LWA case.
+ if (VT != MVT::i64)
+ return;
+
+ // NOTE: We'll exclude negative FIs here, which come from argument
+ // lowering, because there are no known test cases triggering this problem
+ // using packed structures (or similar). We can remove this exclusion if
+ // we find such a test case. The reason why this is so test-case driven is
+ // because this entire 'fixup' is only to prevent crashes (from the
+ // register scavenger) on not-really-valid inputs. For example, if we have:
+ // %a = alloca i1
+ // %b = bitcast i1* %a to i64*
+ // store i64* a, i64 b
+ // then the store should really be marked as 'align 1', but is not. If it
+ // were marked as 'align 1' then the indexed form would have been
+ // instruction-selected initially, and the problem this 'fixup' is preventing
+ // won't happen regardless.
+ if (FrameIdx < 0)
+ return;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ unsigned Align = MFI->getObjectAlignment(FrameIdx);
+ if (Align >= 4)
+ return;
+
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ FuncInfo->setHasNonRISpills();
+}
+
+/// Returns true if the address N can be represented by a base register plus
+/// a signed 16-bit displacement [r+imm], and if it is not better
+/// represented as reg+reg. If Aligned is true, only accept displacements
+/// suitable for STD and friends, i.e. multiples of 4.
+bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
+ SDValue &Base,
+ SelectionDAG &DAG,
+ bool Aligned) const {
+ // FIXME dl should come from parent load or store, not from address
+ SDLoc dl(N);
+ // If this can be more profitably realized as r+r, fail.
+ if (SelectAddressRegReg(N, Disp, Base, DAG))
+ return false;
+
+ if (N.getOpcode() == ISD::ADD) {
+ short imm = 0;
+ if (isIntS16Immediate(N.getOperand(1), imm) &&
+ (!Aligned || (imm & 3) == 0)) {
+ Disp = DAG.getTargetConstant(imm, N.getValueType());
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
+ Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
+ fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
+ } else {
+ Base = N.getOperand(0);
+ }
+ return true; // [r+i]
+ } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
+ // Match LOAD (ADD (X, Lo(G))).
+ assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
+ && "Cannot handle constant offsets yet!");
+ Disp = N.getOperand(1).getOperand(0); // The global address.
+ assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
+ Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
+ Disp.getOpcode() == ISD::TargetConstantPool ||
+ Disp.getOpcode() == ISD::TargetJumpTable);
+ Base = N.getOperand(0);
+ return true; // [&g+r]
+ }
+ } else if (N.getOpcode() == ISD::OR) {
+ short imm = 0;
+ if (isIntS16Immediate(N.getOperand(1), imm) &&
+ (!Aligned || (imm & 3) == 0)) {
+ // If this is an or of disjoint bitfields, we can codegen this as an add
+ // (for better address arithmetic) if the LHS and RHS of the OR are
+ // provably disjoint.
+ APInt LHSKnownZero, LHSKnownOne;
+ DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
+
+ if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
+ // If all of the bits are known zero on the LHS or RHS, the add won't
+ // carry.
+ if (FrameIndexSDNode *FI =
+ dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
+ Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
+ fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
+ } else {
+ Base = N.getOperand(0);
+ }
+ Disp = DAG.getTargetConstant(imm, N.getValueType());
+ return true;
+ }
+ }
+ } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
+ // Loading from a constant address.
+
+ // If this address fits entirely in a 16-bit sext immediate field, codegen
+ // this as "d, 0"
+ short Imm;
+ if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
+ Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
+ Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
+ CN->getValueType(0));
+ return true;
+ }
+
+ // Handle 32-bit sext immediates with LIS + addr mode.
+ if ((CN->getValueType(0) == MVT::i32 ||
+ (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
+ (!Aligned || (CN->getZExtValue() & 3) == 0)) {
+ int Addr = (int)CN->getZExtValue();
+
+ // Otherwise, break this down into an LIS + disp.
+ Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
+
+ Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
+ unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
+ Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
+ return true;
+ }
+ }
+
+ Disp = DAG.getTargetConstant(0, getPointerTy());
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
+ Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
+ fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
+ } else
+ Base = N;
+ return true; // [r+0]
+}
+
+/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
+/// represented as an indexed [r+r] operation.
+bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
+ SDValue &Index,
+ SelectionDAG &DAG) const {
+ // Check to see if we can easily represent this as an [r+r] address. This
+ // will fail if it thinks that the address is more profitably represented as
+ // reg+imm, e.g. where imm = 0.
+ if (SelectAddressRegReg(N, Base, Index, DAG))
+ return true;
+
+ // If the operand is an addition, always emit this as [r+r], since this is
+ // better (for code size, and execution, as the memop does the add for free)
+ // than emitting an explicit add.
+ if (N.getOpcode() == ISD::ADD) {
+ Base = N.getOperand(0);
+ Index = N.getOperand(1);
+ return true;
+ }
+
+ // Otherwise, do it the hard way, using R0 as the base register.
+ Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
+ N.getValueType());
+ Index = N;
+ return true;
+}
+
+/// getPreIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if the node's address
+/// can be legally represented as pre-indexed load / store address.
+bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ if (DisablePPCPreinc) return false;
+
+ bool isLoad = true;
+ SDValue Ptr;
+ EVT VT;
+ unsigned Alignment;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ Ptr = LD->getBasePtr();
+ VT = LD->getMemoryVT();
+ Alignment = LD->getAlignment();
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ Ptr = ST->getBasePtr();
+ VT = ST->getMemoryVT();
+ Alignment = ST->getAlignment();
+ isLoad = false;
+ } else
+ return false;
+
+ // PowerPC doesn't have preinc load/store instructions for vectors.
+ if (VT.isVector())
+ return false;
+
+ if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
+
+ // Common code will reject creating a pre-inc form if the base pointer
+ // is a frame index, or if N is a store and the base pointer is either
+ // the same as or a predecessor of the value being stored. Check for
+ // those situations here, and try with swapped Base/Offset instead.
+ bool Swap = false;
+
+ if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
+ Swap = true;
+ else if (!isLoad) {
+ SDValue Val = cast<StoreSDNode>(N)->getValue();
+ if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
+ Swap = true;
+ }
+
+ if (Swap)
+ std::swap(Base, Offset);
+
+ AM = ISD::PRE_INC;
+ return true;
+ }
+
+ // LDU/STU can only handle immediates that are a multiple of 4.
+ if (VT != MVT::i64) {
+ if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
+ return false;
+ } else {
+ // LDU/STU need an address with at least 4-byte alignment.
+ if (Alignment < 4)
+ return false;
+
+ if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
+ return false;
+ }
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
+ // sext i32 to i64 when addr mode is r+i.
+ if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
+ LD->getExtensionType() == ISD::SEXTLOAD &&
+ isa<ConstantSDNode>(Offset))
+ return false;
+ }
+
+ AM = ISD::PRE_INC;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// LowerOperation implementation
+//===----------------------------------------------------------------------===//
+
+/// GetLabelAccessInfo - Return true if we should reference labels using a
+/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
+static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
+ unsigned &LoOpFlags,
+ const GlobalValue *GV = nullptr) {
+ HiOpFlags = PPCII::MO_HA;
+ LoOpFlags = PPCII::MO_LO;
+
+ // Don't use the pic base if not in PIC relocation model.
+ bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
+
+ if (isPIC) {
+ HiOpFlags |= PPCII::MO_PIC_FLAG;
+ LoOpFlags |= PPCII::MO_PIC_FLAG;
+ }
+
+ // If this is a reference to a global value that requires a non-lazy-ptr, make
+ // sure that instruction lowering adds it.
+ if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
+ HiOpFlags |= PPCII::MO_NLP_FLAG;
+ LoOpFlags |= PPCII::MO_NLP_FLAG;
+
+ if (GV->hasHiddenVisibility()) {
+ HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
+ LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
+ }
+ }
+
+ return isPIC;
+}
+
+static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
+ SelectionDAG &DAG) {
+ EVT PtrVT = HiPart.getValueType();
+ SDValue Zero = DAG.getConstant(0, PtrVT);
+ SDLoc DL(HiPart);
+
+ SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
+ SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
+
+ // With PIC, the first instruction is actually "GR+hi(&G)".
+ if (isPIC)
+ Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
+
+ // Generate non-pic code that has direct accesses to the constant pool.
+ // The address of the global is just (hi(&g)+lo(&g)).
+ return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
+}
+
+SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = Op.getValueType();
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ const Constant *C = CP->getConstVal();
+
+ // 64-bit SVR4 ABI code is always position-independent.
+ // The actual address of the GlobalValue is stored in the TOC.
+ if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
+ SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
+ return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
+ DAG.getRegister(PPC::X2, MVT::i64));
+ }
+
+ unsigned MOHiFlag, MOLoFlag;
+ bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
+
+ if (isPIC && Subtarget.isSVR4ABI()) {
+ SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
+ PPCII::MO_PIC_FLAG);
+ SDLoc DL(CP);
+ return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i32, GA,
+ DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT));
+ }
+
+ SDValue CPIHi =
+ DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
+ SDValue CPILo =
+ DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
+ return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
+}
+
+SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
+ EVT PtrVT = Op.getValueType();
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+
+ // 64-bit SVR4 ABI code is always position-independent.
+ // The actual address of the GlobalValue is stored in the TOC.
+ if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
+ SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
+ return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
+ DAG.getRegister(PPC::X2, MVT::i64));
+ }
+
+ unsigned MOHiFlag, MOLoFlag;
+ bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
+
+ if (isPIC && Subtarget.isSVR4ABI()) {
+ SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
+ PPCII::MO_PIC_FLAG);
+ SDLoc DL(GA);
+ return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), PtrVT, GA,
+ DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT));
+ }
+
+ SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
+ SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
+ return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
+}
+
+SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = Op.getValueType();
+
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+
+ unsigned MOHiFlag, MOLoFlag;
+ bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
+ SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
+ SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
+ return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
+}
+
+SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+
+ // FIXME: TLS addresses currently use medium model code sequences,
+ // which is the most useful form. Eventually support for small and
+ // large models could be added if users need it, at the cost of
+ // additional complexity.
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+ SDLoc dl(GA);
+ const GlobalValue *GV = GA->getGlobal();
+ EVT PtrVT = getPointerTy();
+ bool is64bit = Subtarget.isPPC64();
+
+ TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
+
+ if (Model == TLSModel::LocalExec) {
+ SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
+ PPCII::MO_TPREL_HA);
+ SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
+ PPCII::MO_TPREL_LO);
+ SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
+ is64bit ? MVT::i64 : MVT::i32);
+ SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
+ return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
+ }
+
+ if (Model == TLSModel::InitialExec) {
+ SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
+ SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
+ PPCII::MO_TLS);
+ SDValue GOTPtr;
+ if (is64bit) {
+ SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
+ GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
+ PtrVT, GOTReg, TGA);
+ } else
+ GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
+ SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
+ PtrVT, TGA, GOTPtr);
+ return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
+ }
+
+ if (Model == TLSModel::GeneralDynamic) {
+ SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
+ SDValue GOTPtr;
+ if (is64bit) {
+ SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
+ GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
+ GOTReg, TGA);
+ } else {
+ GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
+ }
+ SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
+ GOTPtr, TGA);
+
+ // We need a chain node, and don't have one handy. The underlying
+ // call has no side effects, so using the function entry node
+ // suffices.
+ SDValue Chain = DAG.getEntryNode();
+ Chain = DAG.getCopyToReg(Chain, dl,
+ is64bit ? PPC::X3 : PPC::R3, GOTEntry);
+ SDValue ParmReg = DAG.getRegister(is64bit ? PPC::X3 : PPC::R3,
+ is64bit ? MVT::i64 : MVT::i32);
+ SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
+ PtrVT, ParmReg, TGA);
+ // The return value from GET_TLS_ADDR really is in X3 already, but
+ // some hacks are needed here to tie everything together. The extra
+ // copies dissolve during subsequent transforms.
+ Chain = DAG.getCopyToReg(Chain, dl, is64bit ? PPC::X3 : PPC::R3, TLSAddr);
+ return DAG.getCopyFromReg(Chain, dl, is64bit ? PPC::X3 : PPC::R3, PtrVT);
+ }
+
+ if (Model == TLSModel::LocalDynamic) {
+ SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
+ SDValue GOTPtr;
+ if (is64bit) {
+ SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
+ GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
+ GOTReg, TGA);
+ } else {
+ GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
+ }
+ SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
+ GOTPtr, TGA);
+
+ // We need a chain node, and don't have one handy. The underlying
+ // call has no side effects, so using the function entry node
+ // suffices.
+ SDValue Chain = DAG.getEntryNode();
+ Chain = DAG.getCopyToReg(Chain, dl,
+ is64bit ? PPC::X3 : PPC::R3, GOTEntry);
+ SDValue ParmReg = DAG.getRegister(is64bit ? PPC::X3 : PPC::R3,
+ is64bit ? MVT::i64 : MVT::i32);
+ SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
+ PtrVT, ParmReg, TGA);
+ // The return value from GET_TLSLD_ADDR really is in X3 already, but
+ // some hacks are needed here to tie everything together. The extra
+ // copies dissolve during subsequent transforms.
+ Chain = DAG.getCopyToReg(Chain, dl, is64bit ? PPC::X3 : PPC::R3, TLSAddr);
+ SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
+ Chain, ParmReg, TGA);
+ return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
+ }
+
+ llvm_unreachable("Unknown TLS model!");
+}
+
+SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = Op.getValueType();
+ GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
+ SDLoc DL(GSDN);
+ const GlobalValue *GV = GSDN->getGlobal();
+
+ // 64-bit SVR4 ABI code is always position-independent.
+ // The actual address of the GlobalValue is stored in the TOC.
+ if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
+ SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
+ return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
+ DAG.getRegister(PPC::X2, MVT::i64));
+ }
+
+ unsigned MOHiFlag, MOLoFlag;
+ bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
+
+ if (isPIC && Subtarget.isSVR4ABI()) {
+ SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
+ GSDN->getOffset(),
+ PPCII::MO_PIC_FLAG);
+ return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i32, GA,
+ DAG.getNode(PPCISD::GlobalBaseReg, DL, MVT::i32));
+ }
+
+ SDValue GAHi =
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
+ SDValue GALo =
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
+
+ SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
+
+ // If the global reference is actually to a non-lazy-pointer, we have to do an
+ // extra load to get the address of the global.
+ if (MOHiFlag & PPCII::MO_NLP_FLAG)
+ Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
+ false, false, false, 0);
+ return Ptr;
+}
+
+SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDLoc dl(Op);
+
+ if (Op.getValueType() == MVT::v2i64) {
+ // When the operands themselves are v2i64 values, we need to do something
+ // special because VSX has no underlying comparison operations for these.
+ if (Op.getOperand(0).getValueType() == MVT::v2i64) {
+ // Equality can be handled by casting to the legal type for Altivec
+ // comparisons, everything else needs to be expanded.
+ if (CC == ISD::SETEQ || CC == ISD::SETNE) {
+ return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
+ DAG.getSetCC(dl, MVT::v4i32,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
+ DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
+ CC));
+ }
+
+ return SDValue();
+ }
+
+ // We handle most of these in the usual way.
+ return Op;
+ }
+
+ // If we're comparing for equality to zero, expose the fact that this is
+ // implented as a ctlz/srl pair on ppc, so that the dag combiner can
+ // fold the new nodes.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ if (C->isNullValue() && CC == ISD::SETEQ) {
+ EVT VT = Op.getOperand(0).getValueType();
+ SDValue Zext = Op.getOperand(0);
+ if (VT.bitsLT(MVT::i32)) {
+ VT = MVT::i32;
+ Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
+ }
+ unsigned Log2b = Log2_32(VT.getSizeInBits());
+ SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
+ SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
+ DAG.getConstant(Log2b, MVT::i32));
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
+ }
+ // Leave comparisons against 0 and -1 alone for now, since they're usually
+ // optimized. FIXME: revisit this when we can custom lower all setcc
+ // optimizations.
+ if (C->isAllOnesValue() || C->isNullValue())
+ return SDValue();
+ }
+
+ // If we have an integer seteq/setne, turn it into a compare against zero
+ // by xor'ing the rhs with the lhs, which is faster than setting a
+ // condition register, reading it back out, and masking the correct bit. The
+ // normal approach here uses sub to do this instead of xor. Using xor exposes
+ // the result to other bit-twiddling opportunities.
+ EVT LHSVT = Op.getOperand(0).getValueType();
+ if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+ EVT VT = Op.getValueType();
+ SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
+ Op.getOperand(1));
+ return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
+ }
+ return SDValue();
+}
+
+SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const {
+ SDNode *Node = Op.getNode();
+ EVT VT = Node->getValueType(0);
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDValue InChain = Node->getOperand(0);
+ SDValue VAListPtr = Node->getOperand(1);
+ const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
+ SDLoc dl(Node);
+
+ assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
+
+ // gpr_index
+ SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
+ VAListPtr, MachinePointerInfo(SV), MVT::i8,
+ false, false, 0);
+ InChain = GprIndex.getValue(1);
+
+ if (VT == MVT::i64) {
+ // Check if GprIndex is even
+ SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
+ DAG.getConstant(1, MVT::i32));
+ SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
+ DAG.getConstant(0, MVT::i32), ISD::SETNE);
+ SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
+ DAG.getConstant(1, MVT::i32));
+ // Align GprIndex to be even if it isn't
+ GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
+ GprIndex);
+ }
+
+ // fpr index is 1 byte after gpr
+ SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
+ DAG.getConstant(1, MVT::i32));
+
+ // fpr
+ SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
+ FprPtr, MachinePointerInfo(SV), MVT::i8,
+ false, false, 0);
+ InChain = FprIndex.getValue(1);
+
+ SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
+ DAG.getConstant(8, MVT::i32));
+
+ SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
+ DAG.getConstant(4, MVT::i32));
+
+ // areas
+ SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
+ MachinePointerInfo(), false, false,
+ false, 0);
+ InChain = OverflowArea.getValue(1);
+
+ SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
+ MachinePointerInfo(), false, false,
+ false, 0);
+ InChain = RegSaveArea.getValue(1);
+
+ // select overflow_area if index > 8
+ SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
+ DAG.getConstant(8, MVT::i32), ISD::SETLT);
+
+ // adjustment constant gpr_index * 4/8
+ SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
+ VT.isInteger() ? GprIndex : FprIndex,
+ DAG.getConstant(VT.isInteger() ? 4 : 8,
+ MVT::i32));
+
+ // OurReg = RegSaveArea + RegConstant
+ SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
+ RegConstant);
+
+ // Floating types are 32 bytes into RegSaveArea
+ if (VT.isFloatingPoint())
+ OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
+ DAG.getConstant(32, MVT::i32));
+
+ // increase {f,g}pr_index by 1 (or 2 if VT is i64)
+ SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
+ VT.isInteger() ? GprIndex : FprIndex,
+ DAG.getConstant(VT == MVT::i64 ? 2 : 1,
+ MVT::i32));
+
+ InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
+ VT.isInteger() ? VAListPtr : FprPtr,
+ MachinePointerInfo(SV),
+ MVT::i8, false, false, 0);
+
+ // determine if we should load from reg_save_area or overflow_area
+ SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
+
+ // increase overflow_area by 4/8 if gpr/fpr > 8
+ SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
+ DAG.getConstant(VT.isInteger() ? 4 : 8,
+ MVT::i32));
+
+ OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
+ OverflowAreaPlusN);
+
+ InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
+ OverflowAreaPtr,
+ MachinePointerInfo(),
+ MVT::i32, false, false, 0);
+
+ return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
+ false, false, false, 0);
+}
+
+SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const {
+ assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
+
+ // We have to copy the entire va_list struct:
+ // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
+ return DAG.getMemcpy(Op.getOperand(0), Op,
+ Op.getOperand(1), Op.getOperand(2),
+ DAG.getConstant(12, MVT::i32), 8, false, true,
+ MachinePointerInfo(), MachinePointerInfo());
+}
+
+SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
+ SelectionDAG &DAG) const {
+ return Op.getOperand(0);
+}
+
+SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Trmp = Op.getOperand(1); // trampoline
+ SDValue FPtr = Op.getOperand(2); // nested function
+ SDValue Nest = Op.getOperand(3); // 'nest' parameter value
+ SDLoc dl(Op);
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = (PtrVT == MVT::i64);
+ Type *IntPtrTy =
+ DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
+ *DAG.getContext());
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ Entry.Ty = IntPtrTy;
+ Entry.Node = Trmp; Args.push_back(Entry);
+
+ // TrampSize == (isPPC64 ? 48 : 40);
+ Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
+ isPPC64 ? MVT::i64 : MVT::i32);
+ Args.push_back(Entry);
+
+ Entry.Node = FPtr; Args.push_back(Entry);
+ Entry.Node = Nest; Args.push_back(Entry);
+
+ // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(Chain)
+ .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
+ DAG.getExternalSymbol("__trampoline_setup", PtrVT),
+ std::move(Args), 0);
+
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+ return CallResult.second;
+}
+
+SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+
+ SDLoc dl(Op);
+
+ if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
+ MachinePointerInfo(SV),
+ false, false, 0);
+ }
+
+ // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
+ // We suppose the given va_list is already allocated.
+ //
+ // typedef struct {
+ // char gpr; /* index into the array of 8 GPRs
+ // * stored in the register save area
+ // * gpr=0 corresponds to r3,
+ // * gpr=1 to r4, etc.
+ // */
+ // char fpr; /* index into the array of 8 FPRs
+ // * stored in the register save area
+ // * fpr=0 corresponds to f1,
+ // * fpr=1 to f2, etc.
+ // */
+ // char *overflow_arg_area;
+ // /* location on stack that holds
+ // * the next overflow argument
+ // */
+ // char *reg_save_area;
+ // /* where r3:r10 and f1:f8 (if saved)
+ // * are stored
+ // */
+ // } va_list[1];
+
+
+ SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
+ SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
+
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
+ PtrVT);
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
+ PtrVT);
+
+ uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
+ SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
+
+ uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
+ SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
+
+ uint64_t FPROffset = 1;
+ SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
+
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+
+ // Store first byte : number of int regs
+ SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
+ Op.getOperand(1),
+ MachinePointerInfo(SV),
+ MVT::i8, false, false, 0);
+ uint64_t nextOffset = FPROffset;
+ SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
+ ConstFPROffset);
+
+ // Store second byte : number of float regs
+ SDValue secondStore =
+ DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
+ MachinePointerInfo(SV, nextOffset), MVT::i8,
+ false, false, 0);
+ nextOffset += StackOffset;
+ nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
+
+ // Store second word : arguments given on stack
+ SDValue thirdStore =
+ DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
+ MachinePointerInfo(SV, nextOffset),
+ false, false, 0);
+ nextOffset += FrameOffset;
+ nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
+
+ // Store third word : arguments given in registers
+ return DAG.getStore(thirdStore, dl, FR, nextPtr,
+ MachinePointerInfo(SV, nextOffset),
+ false, false, 0);
+
+}
+
+#include "PPCGenCallingConv.inc"
+
+// Function whose sole purpose is to kill compiler warnings
+// stemming from unused functions included from PPCGenCallingConv.inc.
+CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
+ return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
+}
+
+bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ return true;
+}
+
+bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ static const MCPhysReg ArgRegs[] = {
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ const unsigned NumArgRegs = array_lengthof(ArgRegs);
+
+ unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
+
+ // Skip one register if the first unallocated register has an even register
+ // number and there are still argument registers available which have not been
+ // allocated yet. RegNum is actually an index into ArgRegs, which means we
+ // need to skip a register if RegNum is odd.
+ if (RegNum != NumArgRegs && RegNum % 2 == 1) {
+ State.AllocateReg(ArgRegs[RegNum]);
+ }
+
+ // Always return false here, as this function only makes sure that the first
+ // unallocated register has an odd register number and does not actually
+ // allocate a register for the current argument.
+ return false;
+}
+
+bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ static const MCPhysReg ArgRegs[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8
+ };
+
+ const unsigned NumArgRegs = array_lengthof(ArgRegs);
+
+ unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
+
+ // If there is only one Floating-point register left we need to put both f64
+ // values of a split ppc_fp128 value on the stack.
+ if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
+ State.AllocateReg(ArgRegs[RegNum]);
+ }
+
+ // Always return false here, as this function only makes sure that the two f64
+ // values a ppc_fp128 value is split into are both passed in registers or both
+ // passed on the stack and does not actually allocate a register for the
+ // current argument.
+ return false;
+}
+
+/// GetFPR - Get the set of FP registers that should be allocated for arguments,
+/// on Darwin.
+static const MCPhysReg *GetFPR() {
+ static const MCPhysReg FPR[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
+ };
+
+ return FPR;
+}
+
+/// CalculateStackSlotSize - Calculates the size reserved for this argument on
+/// the stack.
+static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
+ unsigned PtrByteSize) {
+ unsigned ArgSize = ArgVT.getStoreSize();
+ if (Flags.isByVal())
+ ArgSize = Flags.getByValSize();
+
+ // Round up to multiples of the pointer size, except for array members,
+ // which are always packed.
+ if (!Flags.isInConsecutiveRegs())
+ ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+
+ return ArgSize;
+}
+
+/// CalculateStackSlotAlignment - Calculates the alignment of this argument
+/// on the stack.
+static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
+ ISD::ArgFlagsTy Flags,
+ unsigned PtrByteSize) {
+ unsigned Align = PtrByteSize;
+
+ // Altivec parameters are padded to a 16 byte boundary.
+ if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
+ ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
+ ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
+ Align = 16;
+
+ // ByVal parameters are aligned as requested.
+ if (Flags.isByVal()) {
+ unsigned BVAlign = Flags.getByValAlign();
+ if (BVAlign > PtrByteSize) {
+ if (BVAlign % PtrByteSize != 0)
+ llvm_unreachable(
+ "ByVal alignment is not a multiple of the pointer size");
+
+ Align = BVAlign;
+ }
+ }
+
+ // Array members are always packed to their original alignment.
+ if (Flags.isInConsecutiveRegs()) {
+ // If the array member was split into multiple registers, the first
+ // needs to be aligned to the size of the full type. (Except for
+ // ppcf128, which is only aligned as its f64 components.)
+ if (Flags.isSplit() && OrigVT != MVT::ppcf128)
+ Align = OrigVT.getStoreSize();
+ else
+ Align = ArgVT.getStoreSize();
+ }
+
+ return Align;
+}
+
+/// CalculateStackSlotUsed - Return whether this argument will use its
+/// stack slot (instead of being passed in registers). ArgOffset,
+/// AvailableFPRs, and AvailableVRs must hold the current argument
+/// position, and will be updated to account for this argument.
+static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
+ ISD::ArgFlagsTy Flags,
+ unsigned PtrByteSize,
+ unsigned LinkageSize,
+ unsigned ParamAreaSize,
+ unsigned &ArgOffset,
+ unsigned &AvailableFPRs,
+ unsigned &AvailableVRs) {
+ bool UseMemory = false;
+
+ // Respect alignment of argument on the stack.
+ unsigned Align =
+ CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
+ ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
+ // If there's no space left in the argument save area, we must
+ // use memory (this check also catches zero-sized arguments).
+ if (ArgOffset >= LinkageSize + ParamAreaSize)
+ UseMemory = true;
+
+ // Allocate argument on the stack.
+ ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
+ if (Flags.isInConsecutiveRegsLast())
+ ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+ // If we overran the argument save area, we must use memory
+ // (this check catches arguments passed partially in memory)
+ if (ArgOffset > LinkageSize + ParamAreaSize)
+ UseMemory = true;
+
+ // However, if the argument is actually passed in an FPR or a VR,
+ // we don't use memory after all.
+ if (!Flags.isByVal()) {
+ if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
+ if (AvailableFPRs > 0) {
+ --AvailableFPRs;
+ return false;
+ }
+ if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
+ ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
+ ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
+ if (AvailableVRs > 0) {
+ --AvailableVRs;
+ return false;
+ }
+ }
+
+ return UseMemory;
+}
+
+/// EnsureStackAlignment - Round stack frame size up from NumBytes to
+/// ensure minimum alignment required for target.
+static unsigned EnsureStackAlignment(const TargetMachine &Target,
+ unsigned NumBytes) {
+ unsigned TargetAlign = Target.getFrameLowering()->getStackAlignment();
+ unsigned AlignMask = TargetAlign - 1;
+ NumBytes = (NumBytes + AlignMask) & ~AlignMask;
+ return NumBytes;
+}
+
+SDValue
+PPCTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+ if (Subtarget.isSVR4ABI()) {
+ if (Subtarget.isPPC64())
+ return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
+ dl, DAG, InVals);
+ else
+ return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
+ dl, DAG, InVals);
+ } else {
+ return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
+ dl, DAG, InVals);
+ }
+}
+
+SDValue
+PPCTargetLowering::LowerFormalArguments_32SVR4(
+ SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // 32-bit SVR4 ABI Stack Frame Layout:
+ // +-----------------------------------+
+ // +--> | Back chain |
+ // | +-----------------------------------+
+ // | | Floating-point register save area |
+ // | +-----------------------------------+
+ // | | General register save area |
+ // | +-----------------------------------+
+ // | | CR save word |
+ // | +-----------------------------------+
+ // | | VRSAVE save word |
+ // | +-----------------------------------+
+ // | | Alignment padding |
+ // | +-----------------------------------+
+ // | | Vector register save area |
+ // | +-----------------------------------+
+ // | | Local variable space |
+ // | +-----------------------------------+
+ // | | Parameter list area |
+ // | +-----------------------------------+
+ // | | LR save word |
+ // | +-----------------------------------+
+ // SP--> +--- | Back chain |
+ // +-----------------------------------+
+ //
+ // Specifications:
+ // System V Application Binary Interface PowerPC Processor Supplement
+ // AltiVec Technology Programming Interface Manual
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ // Potential tail calls could cause overwriting of argument stack slots.
+ bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
+ (CallConv == CallingConv::Fast));
+ unsigned PtrByteSize = 4;
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ // Reserve space for the linkage area on the stack.
+ unsigned LinkageSize = PPCFrameLowering::getLinkageSize(false, false, false);
+ CCInfo.AllocateStack(LinkageSize, PtrByteSize);
+
+ CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+
+ // Arguments stored in registers.
+ if (VA.isRegLoc()) {
+ const TargetRegisterClass *RC;
+ EVT ValVT = VA.getValVT();
+
+ switch (ValVT.getSimpleVT().SimpleTy) {
+ default:
+ llvm_unreachable("ValVT not supported by formal arguments Lowering");
+ case MVT::i1:
+ case MVT::i32:
+ RC = &PPC::GPRCRegClass;
+ break;
+ case MVT::f32:
+ RC = &PPC::F4RCRegClass;
+ break;
+ case MVT::f64:
+ if (Subtarget.hasVSX())
+ RC = &PPC::VSFRCRegClass;
+ else
+ RC = &PPC::F8RCRegClass;
+ break;
+ case MVT::v16i8:
+ case MVT::v8i16:
+ case MVT::v4i32:
+ case MVT::v4f32:
+ RC = &PPC::VRRCRegClass;
+ break;
+ case MVT::v2f64:
+ case MVT::v2i64:
+ RC = &PPC::VSHRCRegClass;
+ break;
+ }
+
+ // Transform the arguments stored in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
+ ValVT == MVT::i1 ? MVT::i32 : ValVT);
+
+ if (ValVT == MVT::i1)
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
+
+ InVals.push_back(ArgValue);
+ } else {
+ // Argument stored in memory.
+ assert(VA.isMemLoc());
+
+ unsigned ArgSize = VA.getLocVT().getStoreSize();
+ int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
+ isImmutable);
+
+ // Create load nodes to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
+ MachinePointerInfo(),
+ false, false, false, 0));
+ }
+ }
+
+ // Assign locations to all of the incoming aggregate by value arguments.
+ // Aggregates passed by value are stored in the local variable space of the
+ // caller's stack frame, right above the parameter list area.
+ SmallVector<CCValAssign, 16> ByValArgLocs;
+ CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ByValArgLocs, *DAG.getContext());
+
+ // Reserve stack space for the allocations in CCInfo.
+ CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
+
+ CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
+
+ // Area that is at least reserved in the caller of this function.
+ unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
+ MinReservedArea = std::max(MinReservedArea, LinkageSize);
+
+ // Set the size that is at least reserved in caller of this function. Tail
+ // call optimized function's reserved stack space needs to be aligned so that
+ // taking the difference between two stack areas will result in an aligned
+ // stack.
+ MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
+ FuncInfo->setMinReservedArea(MinReservedArea);
+
+ SmallVector<SDValue, 8> MemOps;
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ if (isVarArg) {
+ static const MCPhysReg GPArgRegs[] = {
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
+
+ static const MCPhysReg FPArgRegs[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8
+ };
+ const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
+
+ FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
+ NumGPArgRegs));
+ FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
+ NumFPArgRegs));
+
+ // Make room for NumGPArgRegs and NumFPArgRegs.
+ int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
+ NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
+
+ FuncInfo->setVarArgsStackOffset(
+ MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
+ CCInfo.getNextStackOffset(), true));
+
+ FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
+ SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+
+ // The fixed integer arguments of a variadic function are stored to the
+ // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
+ // the result of va_next.
+ for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
+ // Get an existing live-in vreg, or add a new one.
+ unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
+ if (!VReg)
+ VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
+
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(), false, false, 0);
+ MemOps.push_back(Store);
+ // Increment the address by four for the next argument to store
+ SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
+ FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
+ }
+
+ // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
+ // is set.
+ // The double arguments are stored to the VarArgsFrameIndex
+ // on the stack.
+ for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
+ // Get an existing live-in vreg, or add a new one.
+ unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
+ if (!VReg)
+ VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
+
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(), false, false, 0);
+ MemOps.push_back(Store);
+ // Increment the address by eight for the next argument to store
+ SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
+ PtrVT);
+ FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
+ }
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+
+ return Chain;
+}
+
+// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
+// value to MVT::i64 and then truncate to the correct register size.
+SDValue
+PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
+ SelectionDAG &DAG, SDValue ArgVal,
+ SDLoc dl) const {
+ if (Flags.isSExt())
+ ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
+ DAG.getValueType(ObjectVT));
+ else if (Flags.isZExt())
+ ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
+ DAG.getValueType(ObjectVT));
+
+ return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
+}
+
+SDValue
+PPCTargetLowering::LowerFormalArguments_64SVR4(
+ SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ // TODO: add description of PPC stack frame format, or at least some docs.
+ //
+ bool isELFv2ABI = Subtarget.isELFv2ABI();
+ bool isLittleEndian = Subtarget.isLittleEndian();
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ // Potential tail calls could cause overwriting of argument stack slots.
+ bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
+ (CallConv == CallingConv::Fast));
+ unsigned PtrByteSize = 8;
+
+ unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false,
+ isELFv2ABI);
+
+ static const MCPhysReg GPR[] = {
+ PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+ PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+ };
+
+ static const MCPhysReg *FPR = GetFPR();
+
+ static const MCPhysReg VR[] = {
+ PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+ PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+ };
+ static const MCPhysReg VSRH[] = {
+ PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
+ PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
+ };
+
+ const unsigned Num_GPR_Regs = array_lengthof(GPR);
+ const unsigned Num_FPR_Regs = 13;
+ const unsigned Num_VR_Regs = array_lengthof(VR);
+
+ // Do a first pass over the arguments to determine whether the ABI
+ // guarantees that our caller has allocated the parameter save area
+ // on its stack frame. In the ELFv1 ABI, this is always the case;
+ // in the ELFv2 ABI, it is true if this is a vararg function or if
+ // any parameter is located in a stack slot.
+
+ bool HasParameterArea = !isELFv2ABI || isVarArg;
+ unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
+ unsigned NumBytes = LinkageSize;
+ unsigned AvailableFPRs = Num_FPR_Regs;
+ unsigned AvailableVRs = Num_VR_Regs;
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i)
+ if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
+ PtrByteSize, LinkageSize, ParamAreaSize,
+ NumBytes, AvailableFPRs, AvailableVRs))
+ HasParameterArea = true;
+
+ // Add DAG nodes to load the arguments or copy them out of registers. On
+ // entry to a function on PPC, the arguments start after the linkage area,
+ // although the first ones are often in registers.
+
+ unsigned ArgOffset = LinkageSize;
+ unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
+ SmallVector<SDValue, 8> MemOps;
+ Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
+ unsigned CurArgIdx = 0;
+ for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
+ SDValue ArgVal;
+ bool needsLoad = false;
+ EVT ObjectVT = Ins[ArgNo].VT;
+ EVT OrigVT = Ins[ArgNo].ArgVT;
+ unsigned ObjSize = ObjectVT.getStoreSize();
+ unsigned ArgSize = ObjSize;
+ ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
+ std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
+ CurArgIdx = Ins[ArgNo].OrigArgIndex;
+
+ /* Respect alignment of argument on the stack. */
+ unsigned Align =
+ CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
+ ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
+ unsigned CurArgOffset = ArgOffset;
+
+ /* Compute GPR index associated with argument offset. */
+ GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
+ GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
+
+ // FIXME the codegen can be much improved in some cases.
+ // We do not have to keep everything in memory.
+ if (Flags.isByVal()) {
+ // ObjSize is the true size, ArgSize rounded up to multiple of registers.
+ ObjSize = Flags.getByValSize();
+ ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+ // Empty aggregate parameters do not take up registers. Examples:
+ // struct { } a;
+ // union { } b;
+ // int c[0];
+ // etc. However, we have to provide a place-holder in InVals, so
+ // pretend we have an 8-byte item at the current address for that
+ // purpose.
+ if (!ObjSize) {
+ int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ InVals.push_back(FIN);
+ continue;
+ }
+
+ // Create a stack object covering all stack doublewords occupied
+ // by the argument. If the argument is (fully or partially) on
+ // the stack, or if the argument is fully in registers but the
+ // caller has allocated the parameter save anyway, we can refer
+ // directly to the caller's stack frame. Otherwise, create a
+ // local copy in our own frame.
+ int FI;
+ if (HasParameterArea ||
+ ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
+ FI = MFI->CreateFixedObject(ArgSize, ArgOffset, true);
+ else
+ FI = MFI->CreateStackObject(ArgSize, Align, false);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+
+ // Handle aggregates smaller than 8 bytes.
+ if (ObjSize < PtrByteSize) {
+ // The value of the object is its address, which differs from the
+ // address of the enclosing doubleword on big-endian systems.
+ SDValue Arg = FIN;
+ if (!isLittleEndian) {
+ SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, PtrVT);
+ Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
+ }
+ InVals.push_back(Arg);
+
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Store;
+
+ if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
+ EVT ObjType = (ObjSize == 1 ? MVT::i8 :
+ (ObjSize == 2 ? MVT::i16 : MVT::i32));
+ Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
+ MachinePointerInfo(FuncArg),
+ ObjType, false, false, 0);
+ } else {
+ // For sizes that don't fit a truncating store (3, 5, 6, 7),
+ // store the whole register as-is to the parameter save area
+ // slot.
+ Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(FuncArg),
+ false, false, 0);
+ }
+
+ MemOps.push_back(Store);
+ }
+ // Whether we copied from a register or not, advance the offset
+ // into the parameter save area by a full doubleword.
+ ArgOffset += PtrByteSize;
+ continue;
+ }
+
+ // The value of the object is its address, which is the address of
+ // its first stack doubleword.
+ InVals.push_back(FIN);
+
+ // Store whatever pieces of the object are in registers to memory.
+ for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
+ if (GPR_idx == Num_GPR_Regs)
+ break;
+
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Addr = FIN;
+ if (j) {
+ SDValue Off = DAG.getConstant(j, PtrVT);
+ Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
+ }
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
+ MachinePointerInfo(FuncArg, j),
+ false, false, 0);
+ MemOps.push_back(Store);
+ ++GPR_idx;
+ }
+ ArgOffset += ArgSize;
+ continue;
+ }
+
+ switch (ObjectVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled argument type!");
+ case MVT::i1:
+ case MVT::i32:
+ case MVT::i64:
+ // These can be scalar arguments or elements of an integer array type
+ // passed directly. Clang may use those instead of "byval" aggregate
+ // types to avoid forcing arguments to memory unnecessarily.
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
+
+ if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
+ // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
+ // value to MVT::i64 and then truncate to the correct register size.
+ ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
+ } else {
+ needsLoad = true;
+ ArgSize = PtrByteSize;
+ }
+ ArgOffset += 8;
+ break;
+
+ case MVT::f32:
+ case MVT::f64:
+ // These can be scalar arguments or elements of a float array type
+ // passed directly. The latter are used to implement ELFv2 homogenous
+ // float aggregates.
+ if (FPR_idx != Num_FPR_Regs) {
+ unsigned VReg;
+
+ if (ObjectVT == MVT::f32)
+ VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
+ else
+ VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() ?
+ &PPC::VSFRCRegClass :
+ &PPC::F8RCRegClass);
+
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
+ ++FPR_idx;
+ } else if (GPR_idx != Num_GPR_Regs) {
+ // This can only ever happen in the presence of f32 array types,
+ // since otherwise we never run out of FPRs before running out
+ // of GPRs.
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
+
+ if (ObjectVT == MVT::f32) {
+ if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
+ ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
+ DAG.getConstant(32, MVT::i32));
+ ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
+ }
+
+ ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
+ } else {
+ needsLoad = true;
+ }
+
+ // When passing an array of floats, the array occupies consecutive
+ // space in the argument area; only round up to the next doubleword
+ // at the end of the array. Otherwise, each float takes 8 bytes.
+ ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
+ ArgOffset += ArgSize;
+ if (Flags.isInConsecutiveRegsLast())
+ ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ case MVT::v2f64:
+ case MVT::v2i64:
+ // These can be scalar arguments or elements of a vector array type
+ // passed directly. The latter are used to implement ELFv2 homogenous
+ // vector aggregates.
+ if (VR_idx != Num_VR_Regs) {
+ unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
+ MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
+ MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
+ ++VR_idx;
+ } else {
+ needsLoad = true;
+ }
+ ArgOffset += 16;
+ break;
+ }
+
+ // We need to load the argument to a virtual register if we determined
+ // above that we ran out of physical registers of the appropriate type.
+ if (needsLoad) {
+ if (ObjSize < ArgSize && !isLittleEndian)
+ CurArgOffset += ArgSize - ObjSize;
+ int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
+ false, false, false, 0);
+ }
+
+ InVals.push_back(ArgVal);
+ }
+
+ // Area that is at least reserved in the caller of this function.
+ unsigned MinReservedArea;
+ if (HasParameterArea)
+ MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
+ else
+ MinReservedArea = LinkageSize;
+
+ // Set the size that is at least reserved in caller of this function. Tail
+ // call optimized functions' reserved stack space needs to be aligned so that
+ // taking the difference between two stack areas will result in an aligned
+ // stack.
+ MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
+ FuncInfo->setMinReservedArea(MinReservedArea);
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ if (isVarArg) {
+ int Depth = ArgOffset;
+
+ FuncInfo->setVarArgsFrameIndex(
+ MFI->CreateFixedObject(PtrByteSize, Depth, true));
+ SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+
+ // If this function is vararg, store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing the
+ // result of va_next.
+ for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
+ GPR_idx < Num_GPR_Regs; ++GPR_idx) {
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(), false, false, 0);
+ MemOps.push_back(Store);
+ // Increment the address by four for the next argument to store
+ SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
+ FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
+ }
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+
+ return Chain;
+}
+
+SDValue
+PPCTargetLowering::LowerFormalArguments_Darwin(
+ SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ // TODO: add description of PPC stack frame format, or at least some docs.
+ //
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = PtrVT == MVT::i64;
+ // Potential tail calls could cause overwriting of argument stack slots.
+ bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
+ (CallConv == CallingConv::Fast));
+ unsigned PtrByteSize = isPPC64 ? 8 : 4;
+
+ unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true,
+ false);
+ unsigned ArgOffset = LinkageSize;
+ // Area that is at least reserved in caller of this function.
+ unsigned MinReservedArea = ArgOffset;
+
+ static const MCPhysReg GPR_32[] = { // 32-bit registers.
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const MCPhysReg GPR_64[] = { // 64-bit registers.
+ PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+ PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+ };
+
+ static const MCPhysReg *FPR = GetFPR();
+
+ static const MCPhysReg VR[] = {
+ PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+ PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+ };
+
+ const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
+ const unsigned Num_FPR_Regs = 13;
+ const unsigned Num_VR_Regs = array_lengthof( VR);
+
+ unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+
+ const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
+
+ // In 32-bit non-varargs functions, the stack space for vectors is after the
+ // stack space for non-vectors. We do not use this space unless we have
+ // too many vectors to fit in registers, something that only occurs in
+ // constructed examples:), but we have to walk the arglist to figure
+ // that out...for the pathological case, compute VecArgOffset as the
+ // start of the vector parameter area. Computing VecArgOffset is the
+ // entire point of the following loop.
+ unsigned VecArgOffset = ArgOffset;
+ if (!isVarArg && !isPPC64) {
+ for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
+ ++ArgNo) {
+ EVT ObjectVT = Ins[ArgNo].VT;
+ ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
+
+ if (Flags.isByVal()) {
+ // ObjSize is the true size, ArgSize rounded up to multiple of regs.
+ unsigned ObjSize = Flags.getByValSize();
+ unsigned ArgSize =
+ ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+ VecArgOffset += ArgSize;
+ continue;
+ }
+
+ switch(ObjectVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled argument type!");
+ case MVT::i1:
+ case MVT::i32:
+ case MVT::f32:
+ VecArgOffset += 4;
+ break;
+ case MVT::i64: // PPC64
+ case MVT::f64:
+ // FIXME: We are guaranteed to be !isPPC64 at this point.
+ // Does MVT::i64 apply?
+ VecArgOffset += 8;
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ // Nothing to do, we're only looking at Nonvector args here.
+ break;
+ }
+ }
+ }
+ // We've found where the vector parameter area in memory is. Skip the
+ // first 12 parameters; these don't use that memory.
+ VecArgOffset = ((VecArgOffset+15)/16)*16;
+ VecArgOffset += 12*16;
+
+ // Add DAG nodes to load the arguments or copy them out of registers. On
+ // entry to a function on PPC, the arguments start after the linkage area,
+ // although the first ones are often in registers.
+
+ SmallVector<SDValue, 8> MemOps;
+ unsigned nAltivecParamsAtEnd = 0;
+ Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
+ unsigned CurArgIdx = 0;
+ for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
+ SDValue ArgVal;
+ bool needsLoad = false;
+ EVT ObjectVT = Ins[ArgNo].VT;
+ unsigned ObjSize = ObjectVT.getSizeInBits()/8;
+ unsigned ArgSize = ObjSize;
+ ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
+ std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
+ CurArgIdx = Ins[ArgNo].OrigArgIndex;
+
+ unsigned CurArgOffset = ArgOffset;
+
+ // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
+ if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
+ ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
+ if (isVarArg || isPPC64) {
+ MinReservedArea = ((MinReservedArea+15)/16)*16;
+ MinReservedArea += CalculateStackSlotSize(ObjectVT,
+ Flags,
+ PtrByteSize);
+ } else nAltivecParamsAtEnd++;
+ } else
+ // Calculate min reserved area.
+ MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
+ Flags,
+ PtrByteSize);
+
+ // FIXME the codegen can be much improved in some cases.
+ // We do not have to keep everything in memory.
+ if (Flags.isByVal()) {
+ // ObjSize is the true size, ArgSize rounded up to multiple of registers.
+ ObjSize = Flags.getByValSize();
+ ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+ // Objects of size 1 and 2 are right justified, everything else is
+ // left justified. This means the memory address is adjusted forwards.
+ if (ObjSize==1 || ObjSize==2) {
+ CurArgOffset = CurArgOffset + (4 - ObjSize);
+ }
+ // The value of the object is its address.
+ int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ InVals.push_back(FIN);
+ if (ObjSize==1 || ObjSize==2) {
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg;
+ if (isPPC64)
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ else
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
+ SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(FuncArg),
+ ObjType, false, false, 0);
+ MemOps.push_back(Store);
+ ++GPR_idx;
+ }
+
+ ArgOffset += PtrByteSize;
+
+ continue;
+ }
+ for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
+ // Store whatever pieces of the object are in registers
+ // to memory. ArgOffset will be the address of the beginning
+ // of the object.
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg;
+ if (isPPC64)
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ else
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+ int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(FuncArg, j),
+ false, false, 0);
+ MemOps.push_back(Store);
+ ++GPR_idx;
+ ArgOffset += PtrByteSize;
+ } else {
+ ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
+ break;
+ }
+ }
+ continue;
+ }
+
+ switch (ObjectVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled argument type!");
+ case MVT::i1:
+ case MVT::i32:
+ if (!isPPC64) {
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
+
+ if (ObjectVT == MVT::i1)
+ ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
+
+ ++GPR_idx;
+ } else {
+ needsLoad = true;
+ ArgSize = PtrByteSize;
+ }
+ // All int arguments reserve stack space in the Darwin ABI.
+ ArgOffset += PtrByteSize;
+ break;
+ }
+ // FALLTHROUGH
+ case MVT::i64: // PPC64
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
+
+ if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
+ // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
+ // value to MVT::i64 and then truncate to the correct register size.
+ ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
+
+ ++GPR_idx;
+ } else {
+ needsLoad = true;
+ ArgSize = PtrByteSize;
+ }
+ // All int arguments reserve stack space in the Darwin ABI.
+ ArgOffset += 8;
+ break;
+
+ case MVT::f32:
+ case MVT::f64:
+ // Every 4 bytes of argument space consumes one of the GPRs available for
+ // argument passing.
+ if (GPR_idx != Num_GPR_Regs) {
+ ++GPR_idx;
+ if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
+ ++GPR_idx;
+ }
+ if (FPR_idx != Num_FPR_Regs) {
+ unsigned VReg;
+
+ if (ObjectVT == MVT::f32)
+ VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
+ else
+ VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
+
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
+ ++FPR_idx;
+ } else {
+ needsLoad = true;
+ }
+
+ // All FP arguments reserve stack space in the Darwin ABI.
+ ArgOffset += isPPC64 ? 8 : ObjSize;
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ // Note that vector arguments in registers don't reserve stack space,
+ // except in varargs functions.
+ if (VR_idx != Num_VR_Regs) {
+ unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
+ if (isVarArg) {
+ while ((ArgOffset % 16) != 0) {
+ ArgOffset += PtrByteSize;
+ if (GPR_idx != Num_GPR_Regs)
+ GPR_idx++;
+ }
+ ArgOffset += 16;
+ GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
+ }
+ ++VR_idx;
+ } else {
+ if (!isVarArg && !isPPC64) {
+ // Vectors go after all the nonvectors.
+ CurArgOffset = VecArgOffset;
+ VecArgOffset += 16;
+ } else {
+ // Vectors are aligned.
+ ArgOffset = ((ArgOffset+15)/16)*16;
+ CurArgOffset = ArgOffset;
+ ArgOffset += 16;
+ }
+ needsLoad = true;
+ }
+ break;
+ }
+
+ // We need to load the argument to a virtual register if we determined above
+ // that we ran out of physical registers of the appropriate type.
+ if (needsLoad) {
+ int FI = MFI->CreateFixedObject(ObjSize,
+ CurArgOffset + (ArgSize - ObjSize),
+ isImmutable);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
+ false, false, false, 0);
+ }
+
+ InVals.push_back(ArgVal);
+ }
+
+ // Allow for Altivec parameters at the end, if needed.
+ if (nAltivecParamsAtEnd) {
+ MinReservedArea = ((MinReservedArea+15)/16)*16;
+ MinReservedArea += 16*nAltivecParamsAtEnd;
+ }
+
+ // Area that is at least reserved in the caller of this function.
+ MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
+
+ // Set the size that is at least reserved in caller of this function. Tail
+ // call optimized functions' reserved stack space needs to be aligned so that
+ // taking the difference between two stack areas will result in an aligned
+ // stack.
+ MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
+ FuncInfo->setMinReservedArea(MinReservedArea);
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ if (isVarArg) {
+ int Depth = ArgOffset;
+
+ FuncInfo->setVarArgsFrameIndex(
+ MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
+ Depth, true));
+ SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+
+ // If this function is vararg, store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing the
+ // result of va_next.
+ for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
+ unsigned VReg;
+
+ if (isPPC64)
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ else
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(), false, false, 0);
+ MemOps.push_back(Store);
+ // Increment the address by four for the next argument to store
+ SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
+ FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
+ }
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+
+ return Chain;
+}
+
+/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
+/// adjusted to accommodate the arguments for the tailcall.
+static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
+ unsigned ParamSize) {
+
+ if (!isTailCall) return 0;
+
+ PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
+ unsigned CallerMinReservedArea = FI->getMinReservedArea();
+ int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
+ // Remember only if the new adjustement is bigger.
+ if (SPDiff < FI->getTailCallSPDelta())
+ FI->setTailCallSPDelta(SPDiff);
+
+ return SPDiff;
+}
+
+/// IsEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization. Targets which want to do tail call
+/// optimization should implement this function.
+bool
+PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const {
+ if (!getTargetMachine().Options.GuaranteedTailCallOpt)
+ return false;
+
+ // Variable argument functions are not supported.
+ if (isVarArg)
+ return false;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
+ if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
+ // Functions containing by val parameters are not supported.
+ for (unsigned i = 0; i != Ins.size(); i++) {
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ if (Flags.isByVal()) return false;
+ }
+
+ // Non-PIC/GOT tail calls are supported.
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
+ return true;
+
+ // At the moment we can only do local tail calls (in same module, hidden
+ // or protected) if we are generating PIC.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ return G->getGlobal()->hasHiddenVisibility()
+ || G->getGlobal()->hasProtectedVisibility();
+ }
+
+ return false;
+}
+
+/// isCallCompatibleAddress - Return the immediate to use if the specified
+/// 32-bit value is representable in the immediate field of a BxA instruction.
+static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C) return nullptr;
+
+ int Addr = C->getZExtValue();
+ if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
+ SignExtend32<26>(Addr) != Addr)
+ return nullptr; // Top 6 bits have to be sext of immediate.
+
+ return DAG.getConstant((int)C->getZExtValue() >> 2,
+ DAG.getTargetLoweringInfo().getPointerTy()).getNode();
+}
+
+namespace {
+
+struct TailCallArgumentInfo {
+ SDValue Arg;
+ SDValue FrameIdxOp;
+ int FrameIdx;
+
+ TailCallArgumentInfo() : FrameIdx(0) {}
+};
+
+}
+
+/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
+static void
+StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
+ SDValue Chain,
+ const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
+ SmallVectorImpl<SDValue> &MemOpChains,
+ SDLoc dl) {
+ for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
+ SDValue Arg = TailCallArgs[i].Arg;
+ SDValue FIN = TailCallArgs[i].FrameIdxOp;
+ int FI = TailCallArgs[i].FrameIdx;
+ // Store relative to framepointer.
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, 0));
+ }
+}
+
+/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
+/// the appropriate stack slot for the tail call optimized function call.
+static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
+ MachineFunction &MF,
+ SDValue Chain,
+ SDValue OldRetAddr,
+ SDValue OldFP,
+ int SPDiff,
+ bool isPPC64,
+ bool isDarwinABI,
+ SDLoc dl) {
+ if (SPDiff) {
+ // Calculate the new stack slot for the return address.
+ int SlotSize = isPPC64 ? 8 : 4;
+ int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
+ isDarwinABI);
+ int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
+ NewRetAddrLoc, true);
+ EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
+ SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
+ Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
+ MachinePointerInfo::getFixedStack(NewRetAddr),
+ false, false, 0);
+
+ // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
+ // slot as the FP is never overwritten.
+ if (isDarwinABI) {
+ int NewFPLoc =
+ SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
+ int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
+ true);
+ SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
+ Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
+ MachinePointerInfo::getFixedStack(NewFPIdx),
+ false, false, 0);
+ }
+ }
+ return Chain;
+}
+
+/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
+/// the position of the argument.
+static void
+CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
+ SDValue Arg, int SPDiff, unsigned ArgOffset,
+ SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
+ int Offset = ArgOffset + SPDiff;
+ uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
+ int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
+ EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
+ SDValue FIN = DAG.getFrameIndex(FI, VT);
+ TailCallArgumentInfo Info;
+ Info.Arg = Arg;
+ Info.FrameIdxOp = FIN;
+ Info.FrameIdx = FI;
+ TailCallArguments.push_back(Info);
+}
+
+/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
+/// stack slot. Returns the chain as result and the loaded frame pointers in
+/// LROpOut/FPOpout. Used when tail calling.
+SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
+ int SPDiff,
+ SDValue Chain,
+ SDValue &LROpOut,
+ SDValue &FPOpOut,
+ bool isDarwinABI,
+ SDLoc dl) const {
+ if (SPDiff) {
+ // Load the LR and FP stack slot for later adjusting.
+ EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
+ LROpOut = getReturnAddrFrameIndex(DAG);
+ LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
+ false, false, false, 0);
+ Chain = SDValue(LROpOut.getNode(), 1);
+
+ // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
+ // slot as the FP is never overwritten.
+ if (isDarwinABI) {
+ FPOpOut = getFramePointerFrameIndex(DAG);
+ FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
+ false, false, false, 0);
+ Chain = SDValue(FPOpOut.getNode(), 1);
+ }
+ }
+ return Chain;
+}
+
+/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
+/// by "Src" to address "Dst" of size "Size". Alignment information is
+/// specified by the specific parameter attribute. The copy will be passed as
+/// a byval function parameter.
+/// Sometimes what we are copying is the end of a larger object, the part that
+/// does not fit in registers.
+static SDValue
+CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
+ ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
+ SDLoc dl) {
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
+ return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
+ false, false, MachinePointerInfo(),
+ MachinePointerInfo());
+}
+
+/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
+/// tail calls.
+static void
+LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
+ SDValue Arg, SDValue PtrOff, int SPDiff,
+ unsigned ArgOffset, bool isPPC64, bool isTailCall,
+ bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
+ SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
+ SDLoc dl) {
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ if (!isTailCall) {
+ if (isVector) {
+ SDValue StackPtr;
+ if (isPPC64)
+ StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
+ else
+ StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
+ DAG.getConstant(ArgOffset, PtrVT));
+ }
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(), false, false, 0));
+ // Calculate and remember argument location.
+ } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
+ TailCallArguments);
+}
+
+static
+void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
+ SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
+ SDValue LROp, SDValue FPOp, bool isDarwinABI,
+ SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Emit a sequence of copyto/copyfrom virtual registers for arguments that
+ // might overwrite each other in case of tail call optimization.
+ SmallVector<SDValue, 8> MemOpChains2;
+ // Do not flag preceding copytoreg stuff together with the following stuff.
+ InFlag = SDValue();
+ StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
+ MemOpChains2, dl);
+ if (!MemOpChains2.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
+
+ // Store the return address to the appropriate stack slot.
+ Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
+ isPPC64, isDarwinABI, dl);
+
+ // Emit callseq_end just before tailcall node.
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(0, true), InFlag, dl);
+ InFlag = Chain.getValue(1);
+}
+
+static
+unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
+ SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
+ SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
+ SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
+ const PPCSubtarget &Subtarget) {
+
+ bool isPPC64 = Subtarget.isPPC64();
+ bool isSVR4ABI = Subtarget.isSVR4ABI();
+ bool isELFv2ABI = Subtarget.isELFv2ABI();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ NodeTys.push_back(MVT::Other); // Returns a chain
+ NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
+
+ unsigned CallOpc = PPCISD::CALL;
+
+ bool needIndirectCall = true;
+ if (!isSVR4ABI || !isPPC64)
+ if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
+ // If this is an absolute destination address, use the munged value.
+ Callee = SDValue(Dest, 0);
+ needIndirectCall = false;
+ }
+
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
+ // Use indirect calls for ALL functions calls in JIT mode, since the
+ // far-call stubs may be outside relocation limits for a BL instruction.
+ if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
+ unsigned OpFlags = 0;
+ if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
+ (Subtarget.getTargetTriple().isMacOSX() &&
+ Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
+ (G->getGlobal()->isDeclaration() ||
+ G->getGlobal()->isWeakForLinker())) ||
+ (Subtarget.isTargetELF() && !isPPC64 &&
+ !G->getGlobal()->hasLocalLinkage() &&
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = PPCII::MO_PLT_OR_STUB;
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
+ // every direct call is) turn it into a TargetGlobalAddress /
+ // TargetExternalSymbol node so that legalize doesn't hack it.
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
+ Callee.getValueType(),
+ 0, OpFlags);
+ needIndirectCall = false;
+ }
+ }
+
+ if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ unsigned char OpFlags = 0;
+
+ if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
+ (Subtarget.getTargetTriple().isMacOSX() &&
+ Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
+ (Subtarget.isTargetELF() && !isPPC64 &&
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_) ) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = PPCII::MO_PLT_OR_STUB;
+ }
+
+ Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
+ OpFlags);
+ needIndirectCall = false;
+ }
+
+ if (needIndirectCall) {
+ // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
+ // to do the call, we can't use PPCISD::CALL.
+ SDValue MTCTROps[] = {Chain, Callee, InFlag};
+
+ if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
+ // Function pointers in the 64-bit SVR4 ABI do not point to the function
+ // entry point, but to the function descriptor (the function entry point
+ // address is part of the function descriptor though).
+ // The function descriptor is a three doubleword structure with the
+ // following fields: function entry point, TOC base address and
+ // environment pointer.
+ // Thus for a call through a function pointer, the following actions need
+ // to be performed:
+ // 1. Save the TOC of the caller in the TOC save area of its stack
+ // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
+ // 2. Load the address of the function entry point from the function
+ // descriptor.
+ // 3. Load the TOC of the callee from the function descriptor into r2.
+ // 4. Load the environment pointer from the function descriptor into
+ // r11.
+ // 5. Branch to the function entry point address.
+ // 6. On return of the callee, the TOC of the caller needs to be
+ // restored (this is done in FinishCall()).
+ //
+ // All those operations are flagged together to ensure that no other
+ // operations can be scheduled in between. E.g. without flagging the
+ // operations together, a TOC access in the caller could be scheduled
+ // between the load of the callee TOC and the branch to the callee, which
+ // results in the TOC access going through the TOC of the callee instead
+ // of going through the TOC of the caller, which leads to incorrect code.
+
+ // Load the address of the function entry point from the function
+ // descriptor.
+ SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
+ SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs,
+ makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
+ Chain = LoadFuncPtr.getValue(1);
+ InFlag = LoadFuncPtr.getValue(2);
+
+ // Load environment pointer into r11.
+ // Offset of the environment pointer within the function descriptor.
+ SDValue PtrOff = DAG.getIntPtrConstant(16);
+
+ SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
+ SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
+ InFlag);
+ Chain = LoadEnvPtr.getValue(1);
+ InFlag = LoadEnvPtr.getValue(2);
+
+ SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
+ InFlag);
+ Chain = EnvVal.getValue(0);
+ InFlag = EnvVal.getValue(1);
+
+ // Load TOC of the callee into r2. We are using a target-specific load
+ // with r2 hard coded, because the result of a target-independent load
+ // would never go directly into r2, since r2 is a reserved register (which
+ // prevents the register allocator from allocating it), resulting in an
+ // additional register being allocated and an unnecessary move instruction
+ // being generated.
+ VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue TOCOff = DAG.getIntPtrConstant(8);
+ SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
+ SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
+ AddTOC, InFlag);
+ Chain = LoadTOCPtr.getValue(0);
+ InFlag = LoadTOCPtr.getValue(1);
+
+ MTCTROps[0] = Chain;
+ MTCTROps[1] = LoadFuncPtr;
+ MTCTROps[2] = InFlag;
+ }
+
+ Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
+ makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
+ InFlag = Chain.getValue(1);
+
+ NodeTys.clear();
+ NodeTys.push_back(MVT::Other);
+ NodeTys.push_back(MVT::Glue);
+ Ops.push_back(Chain);
+ CallOpc = PPCISD::BCTRL;
+ Callee.setNode(nullptr);
+ // Add use of X11 (holding environment pointer)
+ if (isSVR4ABI && isPPC64 && !isELFv2ABI)
+ Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
+ // Add CTR register as callee so a bctr can be emitted later.
+ if (isTailCall)
+ Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
+ }
+
+ // If this is a direct call, pass the chain and the callee.
+ if (Callee.getNode()) {
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+ }
+ // If this is a tail call add stack pointer delta.
+ if (isTailCall)
+ Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Direct calls in the ELFv2 ABI need the TOC register live into the call.
+ if (Callee.getNode() && isELFv2ABI)
+ Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
+
+ return CallOpc;
+}
+
+static
+bool isLocalCall(const SDValue &Callee)
+{
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ return !G->getGlobal()->isDeclaration() &&
+ !G->getGlobal()->isWeakForLinker();
+ return false;
+}
+
+SDValue
+PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+ CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ SDValue Val = DAG.getCopyFromReg(Chain, dl,
+ VA.getLocReg(), VA.getLocVT(), InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::AExt:
+ Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+ break;
+ case CCValAssign::ZExt:
+ Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
+ DAG.getValueType(VA.getValVT()));
+ Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+ break;
+ case CCValAssign::SExt:
+ Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
+ DAG.getValueType(VA.getValVT()));
+ Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+ break;
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+SDValue
+PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
+ bool isTailCall, bool isVarArg,
+ SelectionDAG &DAG,
+ SmallVector<std::pair<unsigned, SDValue>, 8>
+ &RegsToPass,
+ SDValue InFlag, SDValue Chain,
+ SDValue &Callee,
+ int SPDiff, unsigned NumBytes,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ bool isELFv2ABI = Subtarget.isELFv2ABI();
+ std::vector<EVT> NodeTys;
+ SmallVector<SDValue, 8> Ops;
+ unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
+ isTailCall, RegsToPass, Ops, NodeTys,
+ Subtarget);
+
+ // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
+ if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
+ Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
+
+ // When performing tail call optimization the callee pops its arguments off
+ // the stack. Account for this here so these bytes can be pushed back on in
+ // PPCFrameLowering::eliminateCallFramePseudoInstr.
+ int BytesCalleePops =
+ (CallConv == CallingConv::Fast &&
+ getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
+
+ // Add a register mask operand representing the call-preserved registers.
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ // Emit tail call.
+ if (isTailCall) {
+ assert(((Callee.getOpcode() == ISD::Register &&
+ cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
+ Callee.getOpcode() == ISD::TargetExternalSymbol ||
+ Callee.getOpcode() == ISD::TargetGlobalAddress ||
+ isa<ConstantSDNode>(Callee)) &&
+ "Expecting an global address, external symbol, absolute value or register");
+
+ return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
+ }
+
+ // Add a NOP immediately after the branch instruction when using the 64-bit
+ // SVR4 ABI. At link time, if caller and callee are in a different module and
+ // thus have a different TOC, the call will be replaced with a call to a stub
+ // function which saves the current TOC, loads the TOC of the callee and
+ // branches to the callee. The NOP will be replaced with a load instruction
+ // which restores the TOC of the caller from the TOC save slot of the current
+ // stack frame. If caller and callee belong to the same module (and have the
+ // same TOC), the NOP will remain unchanged.
+
+ bool needsTOCRestore = false;
+ if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64()) {
+ if (CallOpc == PPCISD::BCTRL) {
+ // This is a call through a function pointer.
+ // Restore the caller TOC from the save area into R2.
+ // See PrepareCall() for more information about calls through function
+ // pointers in the 64-bit SVR4 ABI.
+ // We are using a target-specific load with r2 hard coded, because the
+ // result of a target-independent load would never go directly into r2,
+ // since r2 is a reserved register (which prevents the register allocator
+ // from allocating it), resulting in an additional register being
+ // allocated and an unnecessary move instruction being generated.
+ needsTOCRestore = true;
+ } else if ((CallOpc == PPCISD::CALL) &&
+ (!isLocalCall(Callee) ||
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
+ // Otherwise insert NOP for non-local calls.
+ CallOpc = PPCISD::CALL_NOP;
+ }
+ }
+
+ Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ if (needsTOCRestore) {
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
+ unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(isELFv2ABI);
+ SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
+ SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
+ Chain = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, AddTOC, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(BytesCalleePops, true),
+ InFlag, dl);
+ if (!Ins.empty())
+ InFlag = Chain.getValue(1);
+
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
+}
+
+SDValue
+PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool isVarArg = CLI.IsVarArg;
+
+ if (isTailCall)
+ isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
+ Ins, DAG);
+
+ if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
+ report_fatal_error("failed to perform tail call elimination on a call "
+ "site marked musttail");
+
+ if (Subtarget.isSVR4ABI()) {
+ if (Subtarget.isPPC64())
+ return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
+ isTailCall, Outs, OutVals, Ins,
+ dl, DAG, InVals);
+ else
+ return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
+ isTailCall, Outs, OutVals, Ins,
+ dl, DAG, InVals);
+ }
+
+ return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
+ isTailCall, Outs, OutVals, Ins,
+ dl, DAG, InVals);
+}
+
+SDValue
+PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
+ // of the 32-bit SVR4 ABI stack frame layout.
+
+ assert((CallConv == CallingConv::C ||
+ CallConv == CallingConv::Fast) && "Unknown calling convention!");
+
+ unsigned PtrByteSize = 4;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Mark this function as potentially containing a function that contains a
+ // tail call. As a consequence the frame pointer will be used for dynamicalloc
+ // and restoring the callers stack pointer in this functions epilog. This is
+ // done because by tail calling the called function might overwrite the value
+ // in this function's (MF) stack pointer stack slot 0(SP).
+ if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+ CallConv == CallingConv::Fast)
+ MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
+
+ // Count how many bytes are to be pushed on the stack, including the linkage
+ // area, parameter list area and the part of the local variable space which
+ // contains copies of aggregates which are passed by value.
+
+ // Assign locations to all of the outgoing arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ // Reserve space for the linkage area on the stack.
+ CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false, false),
+ PtrByteSize);
+
+ if (isVarArg) {
+ // Handle fixed and variable vector arguments differently.
+ // Fixed vector arguments go into registers as long as registers are
+ // available. Variable vector arguments always go into memory.
+ unsigned NumArgs = Outs.size();
+
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT ArgVT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ bool Result;
+
+ if (Outs[i].IsFixed) {
+ Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
+ CCInfo);
+ } else {
+ Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
+ ArgFlags, CCInfo);
+ }
+
+ if (Result) {
+#ifndef NDEBUG
+ errs() << "Call operand #" << i << " has unhandled type "
+ << EVT(ArgVT).getEVTString() << "\n";
+#endif
+ llvm_unreachable(nullptr);
+ }
+ }
+ } else {
+ // All arguments are treated the same.
+ CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
+ }
+
+ // Assign locations to all of the outgoing aggregate by value arguments.
+ SmallVector<CCValAssign, 16> ByValArgLocs;
+ CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ByValArgLocs, *DAG.getContext());
+
+ // Reserve stack space for the allocations in CCInfo.
+ CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
+
+ CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
+
+ // Size of the linkage area, parameter list area and the part of the local
+ // space variable where copies of aggregates which are passed by value are
+ // stored.
+ unsigned NumBytes = CCByValInfo.getNextStackOffset();
+
+ // Calculate by how many bytes the stack has to be adjusted in case of tail
+ // call optimization.
+ int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ dl);
+ SDValue CallSeqStart = Chain;
+
+ // Load the return address and frame pointer so it can be moved somewhere else
+ // later.
+ SDValue LROp, FPOp;
+ Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
+ dl);
+
+ // Set up a copy of the stack pointer for use loading and storing any
+ // arguments that may not fit in the registers available for argument
+ // passing.
+ SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ bool seenFloatArg = false;
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, j = 0, e = ArgLocs.size();
+ i != e;
+ ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+
+ if (Flags.isByVal()) {
+ // Argument is an aggregate which is passed by value, thus we need to
+ // create a copy of it in the local variable space of the current stack
+ // frame (which is the stack frame of the caller) and pass the address of
+ // this copy to the callee.
+ assert((j < ByValArgLocs.size()) && "Index out of bounds!");
+ CCValAssign &ByValVA = ByValArgLocs[j++];
+ assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
+
+ // Memory reserved in the local variable space of the callers stack frame.
+ unsigned LocMemOffset = ByValVA.getLocMemOffset();
+
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+
+ // Create a copy of the argument in the local area of the current
+ // stack frame.
+ SDValue MemcpyCall =
+ CreateCopyOfByValArgument(Arg, PtrOff,
+ CallSeqStart.getNode()->getOperand(0),
+ Flags, DAG, dl);
+
+ // This must go outside the CALLSEQ_START..END.
+ SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
+ CallSeqStart.getNode()->getOperand(1),
+ SDLoc(MemcpyCall));
+ DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
+ NewCallSeqStart.getNode());
+ Chain = CallSeqStart = NewCallSeqStart;
+
+ // Pass the address of the aggregate copy on the stack either in a
+ // physical register or in the parameter list area of the current stack
+ // frame to the callee.
+ Arg = PtrOff;
+ }
+
+ if (VA.isRegLoc()) {
+ if (Arg.getValueType() == MVT::i1)
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
+
+ seenFloatArg |= VA.getLocVT().isFloatingPoint();
+ // Put argument in a physical register.
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ // Put argument in the parameter list area of the current stack frame.
+ assert(VA.isMemLoc());
+ unsigned LocMemOffset = VA.getLocMemOffset();
+
+ if (!isTailCall) {
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(),
+ false, false, 0));
+ } else {
+ // Calculate and remember argument location.
+ CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
+ TailCallArguments);
+ }
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Set CR bit 6 to true if this is a vararg call with floating args passed in
+ // registers.
+ if (isVarArg) {
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, InFlag };
+
+ Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
+ dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
+
+ InFlag = Chain.getValue(1);
+ }
+
+ if (isTailCall)
+ PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
+ false, TailCallArguments);
+
+ return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+ RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
+ Ins, InVals);
+}
+
+// Copy an argument into memory, being careful to do this outside the
+// call sequence for the call to which the argument belongs.
+SDValue
+PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
+ SDValue CallSeqStart,
+ ISD::ArgFlagsTy Flags,
+ SelectionDAG &DAG,
+ SDLoc dl) const {
+ SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
+ CallSeqStart.getNode()->getOperand(0),
+ Flags, DAG, dl);
+ // The MEMCPY must go outside the CALLSEQ_START..END.
+ SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
+ CallSeqStart.getNode()->getOperand(1),
+ SDLoc(MemcpyCall));
+ DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
+ NewCallSeqStart.getNode());
+ return NewCallSeqStart;
+}
+
+SDValue
+PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ bool isELFv2ABI = Subtarget.isELFv2ABI();
+ bool isLittleEndian = Subtarget.isLittleEndian();
+ unsigned NumOps = Outs.size();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ unsigned PtrByteSize = 8;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Mark this function as potentially containing a function that contains a
+ // tail call. As a consequence the frame pointer will be used for dynamicalloc
+ // and restoring the callers stack pointer in this functions epilog. This is
+ // done because by tail calling the called function might overwrite the value
+ // in this function's (MF) stack pointer stack slot 0(SP).
+ if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+ CallConv == CallingConv::Fast)
+ MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
+
+ // Count how many bytes are to be pushed on the stack, including the linkage
+ // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes
+ // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
+ // area is 32 bytes reserved space for [SP][CR][LR][TOC].
+ unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false,
+ isELFv2ABI);
+ unsigned NumBytes = LinkageSize;
+
+ // Add up all the space actually used.
+ for (unsigned i = 0; i != NumOps; ++i) {
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ EVT ArgVT = Outs[i].VT;
+ EVT OrigVT = Outs[i].ArgVT;
+
+ /* Respect alignment of argument on the stack. */
+ unsigned Align =
+ CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
+ NumBytes = ((NumBytes + Align - 1) / Align) * Align;
+
+ NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
+ if (Flags.isInConsecutiveRegsLast())
+ NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+ }
+
+ unsigned NumBytesActuallyUsed = NumBytes;
+
+ // The prolog code of the callee may store up to 8 GPR argument registers to
+ // the stack, allowing va_start to index over them in memory if its varargs.
+ // Because we cannot tell if this is needed on the caller side, we have to
+ // conservatively assume that it is needed. As such, make sure we have at
+ // least enough stack space for the caller to store the 8 GPRs.
+ // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
+ NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
+
+ // Tail call needs the stack to be aligned.
+ if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+ CallConv == CallingConv::Fast)
+ NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
+
+ // Calculate by how many bytes the stack has to be adjusted in case of tail
+ // call optimization.
+ int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
+
+ // To protect arguments on the stack from being clobbered in a tail call,
+ // force all the loads to happen before doing any other lowering.
+ if (isTailCall)
+ Chain = DAG.getStackArgumentTokenFactor(Chain);
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ dl);
+ SDValue CallSeqStart = Chain;
+
+ // Load the return address and frame pointer so it can be move somewhere else
+ // later.
+ SDValue LROp, FPOp;
+ Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
+ dl);
+
+ // Set up a copy of the stack pointer for use loading and storing any
+ // arguments that may not fit in the registers available for argument
+ // passing.
+ SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
+
+ // Figure out which arguments are going to go in registers, and which in
+ // memory. Also, if this is a vararg function, floating point operations
+ // must be stored to our stack, and loaded into integer regs as well, if
+ // any integer regs are available for argument passing.
+ unsigned ArgOffset = LinkageSize;
+ unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
+
+ static const MCPhysReg GPR[] = {
+ PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+ PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+ };
+ static const MCPhysReg *FPR = GetFPR();
+
+ static const MCPhysReg VR[] = {
+ PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+ PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+ };
+ static const MCPhysReg VSRH[] = {
+ PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
+ PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
+ };
+
+ const unsigned NumGPRs = array_lengthof(GPR);
+ const unsigned NumFPRs = 13;
+ const unsigned NumVRs = array_lengthof(VR);
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
+
+ SmallVector<SDValue, 8> MemOpChains;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ EVT ArgVT = Outs[i].VT;
+ EVT OrigVT = Outs[i].ArgVT;
+
+ /* Respect alignment of argument on the stack. */
+ unsigned Align =
+ CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
+ ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
+
+ /* Compute GPR index associated with argument offset. */
+ GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
+ GPR_idx = std::min(GPR_idx, NumGPRs);
+
+ // PtrOff will be used to store the current argument to the stack if a
+ // register cannot be found for it.
+ SDValue PtrOff;
+
+ PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
+
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
+
+ // Promote integers to 64-bit values.
+ if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
+ // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
+ unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
+ }
+
+ // FIXME memcpy is used way more than necessary. Correctness first.
+ // Note: "by value" is code for passing a structure by value, not
+ // basic types.
+ if (Flags.isByVal()) {
+ // Note: Size includes alignment padding, so
+ // struct x { short a; char b; }
+ // will have Size = 4. With #pragma pack(1), it will have Size = 3.
+ // These are the proper values we need for right-justifying the
+ // aggregate in a parameter register.
+ unsigned Size = Flags.getByValSize();
+
+ // An empty aggregate parameter takes up no storage and no
+ // registers.
+ if (Size == 0)
+ continue;
+
+ // All aggregates smaller than 8 bytes must be passed right-justified.
+ if (Size==1 || Size==2 || Size==4) {
+ EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
+ if (GPR_idx != NumGPRs) {
+ SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
+ MachinePointerInfo(), VT,
+ false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
+
+ ArgOffset += PtrByteSize;
+ continue;
+ }
+ }
+
+ if (GPR_idx == NumGPRs && Size < 8) {
+ SDValue AddPtr = PtrOff;
+ if (!isLittleEndian) {
+ SDValue Const = DAG.getConstant(PtrByteSize - Size,
+ PtrOff.getValueType());
+ AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+ }
+ Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
+ CallSeqStart,
+ Flags, DAG, dl);
+ ArgOffset += PtrByteSize;
+ continue;
+ }
+ // Copy entire object into memory. There are cases where gcc-generated
+ // code assumes it is there, even if it could be put entirely into
+ // registers. (This is not what the doc says.)
+
+ // FIXME: The above statement is likely due to a misunderstanding of the
+ // documents. All arguments must be copied into the parameter area BY
+ // THE CALLEE in the event that the callee takes the address of any
+ // formal argument. That has not yet been implemented. However, it is
+ // reasonable to use the stack area as a staging area for the register
+ // load.
+
+ // Skip this for small aggregates, as we will use the same slot for a
+ // right-justified copy, below.
+ if (Size >= 8)
+ Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
+ CallSeqStart,
+ Flags, DAG, dl);
+
+ // When a register is available, pass a small aggregate right-justified.
+ if (Size < 8 && GPR_idx != NumGPRs) {
+ // The easiest way to get this right-justified in a register
+ // is to copy the structure into the rightmost portion of a
+ // local variable slot, then load the whole slot into the
+ // register.
+ // FIXME: The memcpy seems to produce pretty awful code for
+ // small aggregates, particularly for packed ones.
+ // FIXME: It would be preferable to use the slot in the
+ // parameter save area instead of a new local variable.
+ SDValue AddPtr = PtrOff;
+ if (!isLittleEndian) {
+ SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
+ AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+ }
+ Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
+ CallSeqStart,
+ Flags, DAG, dl);
+
+ // Load the slot into the register.
+ SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
+
+ // Done with this argument.
+ ArgOffset += PtrByteSize;
+ continue;
+ }
+
+ // For aggregates larger than PtrByteSize, copy the pieces of the
+ // object that fit into registers from the parameter save area.
+ for (unsigned j=0; j<Size; j+=PtrByteSize) {
+ SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
+ SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
+ if (GPR_idx != NumGPRs) {
+ SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ ArgOffset += PtrByteSize;
+ } else {
+ ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
+ break;
+ }
+ }
+ continue;
+ }
+
+ switch (Arg.getSimpleValueType().SimpleTy) {
+ default: llvm_unreachable("Unexpected ValueType for argument!");
+ case MVT::i1:
+ case MVT::i32:
+ case MVT::i64:
+ // These can be scalar arguments or elements of an integer array type
+ // passed directly. Clang may use those instead of "byval" aggregate
+ // types to avoid forcing arguments to memory unnecessarily.
+ if (GPR_idx != NumGPRs) {
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Arg));
+ } else {
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ true, isTailCall, false, MemOpChains,
+ TailCallArguments, dl);
+ }
+ ArgOffset += PtrByteSize;
+ break;
+ case MVT::f32:
+ case MVT::f64: {
+ // These can be scalar arguments or elements of a float array type
+ // passed directly. The latter are used to implement ELFv2 homogenous
+ // float aggregates.
+
+ // Named arguments go into FPRs first, and once they overflow, the
+ // remaining arguments go into GPRs and then the parameter save area.
+ // Unnamed arguments for vararg functions always go to GPRs and
+ // then the parameter save area. For now, put all arguments to vararg
+ // routines always in both locations (FPR *and* GPR or stack slot).
+ bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
+
+ // First load the argument into the next available FPR.
+ if (FPR_idx != NumFPRs)
+ RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
+
+ // Next, load the argument into GPR or stack slot if needed.
+ if (!NeedGPROrStack)
+ ;
+ else if (GPR_idx != NumGPRs) {
+ // In the non-vararg case, this can only ever happen in the
+ // presence of f32 array types, since otherwise we never run
+ // out of FPRs before running out of GPRs.
+ SDValue ArgVal;
+
+ // Double values are always passed in a single GPR.
+ if (Arg.getValueType() != MVT::f32) {
+ ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
+
+ // Non-array float values are extended and passed in a GPR.
+ } else if (!Flags.isInConsecutiveRegs()) {
+ ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
+ ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
+
+ // If we have an array of floats, we collect every odd element
+ // together with its predecessor into one GPR.
+ } else if (ArgOffset % PtrByteSize != 0) {
+ SDValue Lo, Hi;
+ Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
+ Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
+ if (!isLittleEndian)
+ std::swap(Lo, Hi);
+ ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+
+ // The final element, if even, goes into the first half of a GPR.
+ } else if (Flags.isInConsecutiveRegsLast()) {
+ ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
+ ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
+ if (!isLittleEndian)
+ ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
+ DAG.getConstant(32, MVT::i32));
+
+ // Non-final even elements are skipped; they will be handled
+ // together the with subsequent argument on the next go-around.
+ } else
+ ArgVal = SDValue();
+
+ if (ArgVal.getNode())
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx], ArgVal));
+ } else {
+ // Single-precision floating-point values are mapped to the
+ // second (rightmost) word of the stack doubleword.
+ if (Arg.getValueType() == MVT::f32 &&
+ !isLittleEndian && !Flags.isInConsecutiveRegs()) {
+ SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
+ }
+
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ true, isTailCall, false, MemOpChains,
+ TailCallArguments, dl);
+ }
+ // When passing an array of floats, the array occupies consecutive
+ // space in the argument area; only round up to the next doubleword
+ // at the end of the array. Otherwise, each float takes 8 bytes.
+ ArgOffset += (Arg.getValueType() == MVT::f32 &&
+ Flags.isInConsecutiveRegs()) ? 4 : 8;
+ if (Flags.isInConsecutiveRegsLast())
+ ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+ break;
+ }
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ case MVT::v2f64:
+ case MVT::v2i64:
+ // These can be scalar arguments or elements of a vector array type
+ // passed directly. The latter are used to implement ELFv2 homogenous
+ // vector aggregates.
+
+ // For a varargs call, named arguments go into VRs or on the stack as
+ // usual; unnamed arguments always go to the stack or the corresponding
+ // GPRs when within range. For now, we always put the value in both
+ // locations (or even all three).
+ if (isVarArg) {
+ // We could elide this store in the case where the object fits
+ // entirely in R registers. Maybe later.
+ SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(), false, false, 0);
+ MemOpChains.push_back(Store);
+ if (VR_idx != NumVRs) {
+ SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+
+ unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
+ Arg.getSimpleValueType() == MVT::v2i64) ?
+ VSRH[VR_idx] : VR[VR_idx];
+ ++VR_idx;
+
+ RegsToPass.push_back(std::make_pair(VReg, Load));
+ }
+ ArgOffset += 16;
+ for (unsigned i=0; i<16; i+=PtrByteSize) {
+ if (GPR_idx == NumGPRs)
+ break;
+ SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
+ DAG.getConstant(i, PtrVT));
+ SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ }
+ break;
+ }
+
+ // Non-varargs Altivec params go into VRs or on the stack.
+ if (VR_idx != NumVRs) {
+ unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
+ Arg.getSimpleValueType() == MVT::v2i64) ?
+ VSRH[VR_idx] : VR[VR_idx];
+ ++VR_idx;
+
+ RegsToPass.push_back(std::make_pair(VReg, Arg));
+ } else {
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ true, isTailCall, true, MemOpChains,
+ TailCallArguments, dl);
+ }
+ ArgOffset += 16;
+ break;
+ }
+ }
+
+ assert(NumBytesActuallyUsed == ArgOffset);
+ (void)NumBytesActuallyUsed;
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // Check if this is an indirect call (MTCTR/BCTRL).
+ // See PrepareCall() for more information about calls through function
+ // pointers in the 64-bit SVR4 ABI.
+ if (!isTailCall &&
+ !dyn_cast<GlobalAddressSDNode>(Callee) &&
+ !dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ // Load r2 into a virtual register and store it to the TOC save area.
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
+ // TOC save area offset.
+ unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(isELFv2ABI);
+ SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset);
+ SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
+ Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
+ false, false, 0);
+ // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
+ // This does not mean the MTCTR instruction must use R12; it's easier
+ // to model this as an extra parameter, so do that.
+ if (isELFv2ABI)
+ RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
+ }
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ if (isTailCall)
+ PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
+ FPOp, true, TailCallArguments);
+
+ return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+ RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
+ Ins, InVals);
+}
+
+SDValue
+PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ unsigned NumOps = Outs.size();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = PtrVT == MVT::i64;
+ unsigned PtrByteSize = isPPC64 ? 8 : 4;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Mark this function as potentially containing a function that contains a
+ // tail call. As a consequence the frame pointer will be used for dynamicalloc
+ // and restoring the callers stack pointer in this functions epilog. This is
+ // done because by tail calling the called function might overwrite the value
+ // in this function's (MF) stack pointer stack slot 0(SP).
+ if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+ CallConv == CallingConv::Fast)
+ MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
+
+ // Count how many bytes are to be pushed on the stack, including the linkage
+ // area, and parameter passing area. We start with 24/48 bytes, which is
+ // prereserved space for [SP][CR][LR][3 x unused].
+ unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true,
+ false);
+ unsigned NumBytes = LinkageSize;
+
+ // Add up all the space actually used.
+ // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
+ // they all go in registers, but we must reserve stack space for them for
+ // possible use by the caller. In varargs or 64-bit calls, parameters are
+ // assigned stack space in order, with padding so Altivec parameters are
+ // 16-byte aligned.
+ unsigned nAltivecParamsAtEnd = 0;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ EVT ArgVT = Outs[i].VT;
+ // Varargs Altivec parameters are padded to a 16 byte boundary.
+ if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
+ ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
+ ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
+ if (!isVarArg && !isPPC64) {
+ // Non-varargs Altivec parameters go after all the non-Altivec
+ // parameters; handle those later so we know how much padding we need.
+ nAltivecParamsAtEnd++;
+ continue;
+ }
+ // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
+ NumBytes = ((NumBytes+15)/16)*16;
+ }
+ NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
+ }
+
+ // Allow for Altivec parameters at the end, if needed.
+ if (nAltivecParamsAtEnd) {
+ NumBytes = ((NumBytes+15)/16)*16;
+ NumBytes += 16*nAltivecParamsAtEnd;
+ }
+
+ // The prolog code of the callee may store up to 8 GPR argument registers to
+ // the stack, allowing va_start to index over them in memory if its varargs.
+ // Because we cannot tell if this is needed on the caller side, we have to
+ // conservatively assume that it is needed. As such, make sure we have at
+ // least enough stack space for the caller to store the 8 GPRs.
+ NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
+
+ // Tail call needs the stack to be aligned.
+ if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+ CallConv == CallingConv::Fast)
+ NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
+
+ // Calculate by how many bytes the stack has to be adjusted in case of tail
+ // call optimization.
+ int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
+
+ // To protect arguments on the stack from being clobbered in a tail call,
+ // force all the loads to happen before doing any other lowering.
+ if (isTailCall)
+ Chain = DAG.getStackArgumentTokenFactor(Chain);
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ dl);
+ SDValue CallSeqStart = Chain;
+
+ // Load the return address and frame pointer so it can be move somewhere else
+ // later.
+ SDValue LROp, FPOp;
+ Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
+ dl);
+
+ // Set up a copy of the stack pointer for use loading and storing any
+ // arguments that may not fit in the registers available for argument
+ // passing.
+ SDValue StackPtr;
+ if (isPPC64)
+ StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
+ else
+ StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
+
+ // Figure out which arguments are going to go in registers, and which in
+ // memory. Also, if this is a vararg function, floating point operations
+ // must be stored to our stack, and loaded into integer regs as well, if
+ // any integer regs are available for argument passing.
+ unsigned ArgOffset = LinkageSize;
+ unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+
+ static const MCPhysReg GPR_32[] = { // 32-bit registers.
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const MCPhysReg GPR_64[] = { // 64-bit registers.
+ PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+ PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+ };
+ static const MCPhysReg *FPR = GetFPR();
+
+ static const MCPhysReg VR[] = {
+ PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+ PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+ };
+ const unsigned NumGPRs = array_lengthof(GPR_32);
+ const unsigned NumFPRs = 13;
+ const unsigned NumVRs = array_lengthof(VR);
+
+ const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
+
+ SmallVector<SDValue, 8> MemOpChains;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+
+ // PtrOff will be used to store the current argument to the stack if a
+ // register cannot be found for it.
+ SDValue PtrOff;
+
+ PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
+
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
+
+ // On PPC64, promote integers to 64-bit values.
+ if (isPPC64 && Arg.getValueType() == MVT::i32) {
+ // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
+ unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
+ }
+
+ // FIXME memcpy is used way more than necessary. Correctness first.
+ // Note: "by value" is code for passing a structure by value, not
+ // basic types.
+ if (Flags.isByVal()) {
+ unsigned Size = Flags.getByValSize();
+ // Very small objects are passed right-justified. Everything else is
+ // passed left-justified.
+ if (Size==1 || Size==2) {
+ EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
+ if (GPR_idx != NumGPRs) {
+ SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
+ MachinePointerInfo(), VT,
+ false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+
+ ArgOffset += PtrByteSize;
+ } else {
+ SDValue Const = DAG.getConstant(PtrByteSize - Size,
+ PtrOff.getValueType());
+ SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+ Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
+ CallSeqStart,
+ Flags, DAG, dl);
+ ArgOffset += PtrByteSize;
+ }
+ continue;
+ }
+ // Copy entire object into memory. There are cases where gcc-generated
+ // code assumes it is there, even if it could be put entirely into
+ // registers. (This is not what the doc says.)
+ Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
+ CallSeqStart,
+ Flags, DAG, dl);
+
+ // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
+ // copy the pieces of the object that fit into registers from the
+ // parameter save area.
+ for (unsigned j=0; j<Size; j+=PtrByteSize) {
+ SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
+ SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
+ if (GPR_idx != NumGPRs) {
+ SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ ArgOffset += PtrByteSize;
+ } else {
+ ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
+ break;
+ }
+ }
+ continue;
+ }
+
+ switch (Arg.getSimpleValueType().SimpleTy) {
+ default: llvm_unreachable("Unexpected ValueType for argument!");
+ case MVT::i1:
+ case MVT::i32:
+ case MVT::i64:
+ if (GPR_idx != NumGPRs) {
+ if (Arg.getValueType() == MVT::i1)
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
+
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
+ } else {
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ isPPC64, isTailCall, false, MemOpChains,
+ TailCallArguments, dl);
+ }
+ ArgOffset += PtrByteSize;
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ if (FPR_idx != NumFPRs) {
+ RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
+
+ if (isVarArg) {
+ SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(), false, false, 0);
+ MemOpChains.push_back(Store);
+
+ // Float varargs are always shadowed in available integer registers
+ if (GPR_idx != NumGPRs) {
+ SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
+ MachinePointerInfo(), false, false,
+ false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ }
+ if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
+ SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
+ SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ }
+ } else {
+ // If we have any FPRs remaining, we may also have GPRs remaining.
+ // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
+ // GPRs.
+ if (GPR_idx != NumGPRs)
+ ++GPR_idx;
+ if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
+ !isPPC64) // PPC64 has 64-bit GPR's obviously :)
+ ++GPR_idx;
+ }
+ } else
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ isPPC64, isTailCall, false, MemOpChains,
+ TailCallArguments, dl);
+ if (isPPC64)
+ ArgOffset += 8;
+ else
+ ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ if (isVarArg) {
+ // These go aligned on the stack, or in the corresponding R registers
+ // when within range. The Darwin PPC ABI doc claims they also go in
+ // V registers; in fact gcc does this only for arguments that are
+ // prototyped, not for those that match the ... We do it for all
+ // arguments, seems to work.
+ while (ArgOffset % 16 !=0) {
+ ArgOffset += PtrByteSize;
+ if (GPR_idx != NumGPRs)
+ GPR_idx++;
+ }
+ // We could elide this store in the case where the object fits
+ // entirely in R registers. Maybe later.
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
+ DAG.getConstant(ArgOffset, PtrVT));
+ SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(), false, false, 0);
+ MemOpChains.push_back(Store);
+ if (VR_idx != NumVRs) {
+ SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
+ }
+ ArgOffset += 16;
+ for (unsigned i=0; i<16; i+=PtrByteSize) {
+ if (GPR_idx == NumGPRs)
+ break;
+ SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
+ DAG.getConstant(i, PtrVT));
+ SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ }
+ break;
+ }
+
+ // Non-varargs Altivec params generally go in registers, but have
+ // stack space allocated at the end.
+ if (VR_idx != NumVRs) {
+ // Doesn't have GPR space allocated.
+ RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
+ } else if (nAltivecParamsAtEnd==0) {
+ // We are emitting Altivec params in order.
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ isPPC64, isTailCall, true, MemOpChains,
+ TailCallArguments, dl);
+ ArgOffset += 16;
+ }
+ break;
+ }
+ }
+ // If all Altivec parameters fit in registers, as they usually do,
+ // they get stack space following the non-Altivec parameters. We
+ // don't track this here because nobody below needs it.
+ // If there are more Altivec parameters than fit in registers emit
+ // the stores here.
+ if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
+ unsigned j = 0;
+ // Offset is aligned; skip 1st 12 params which go in V registers.
+ ArgOffset = ((ArgOffset+15)/16)*16;
+ ArgOffset += 12*16;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ SDValue Arg = OutVals[i];
+ EVT ArgType = Outs[i].VT;
+ if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
+ ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
+ if (++j > NumVRs) {
+ SDValue PtrOff;
+ // We are emitting Altivec params in order.
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ isPPC64, isTailCall, true, MemOpChains,
+ TailCallArguments, dl);
+ ArgOffset += 16;
+ }
+ }
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // On Darwin, R12 must contain the address of an indirect callee. This does
+ // not mean the MTCTR instruction must use R12; it's easier to model this as
+ // an extra parameter, so do that.
+ if (!isTailCall &&
+ !dyn_cast<GlobalAddressSDNode>(Callee) &&
+ !dyn_cast<ExternalSymbolSDNode>(Callee) &&
+ !isBLACompatibleAddress(Callee, DAG))
+ RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
+ PPC::R12), Callee));
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ if (isTailCall)
+ PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
+ FPOp, true, TailCallArguments);
+
+ return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+ RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
+ Ins, InVals);
+}
+
+bool
+PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
+ MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
+ RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, RetCC_PPC);
+}
+
+SDValue
+PPCTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ SDValue Arg = OutVals[i];
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
+}
+
+SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const {
+ // When we pop the dynamic allocation we need to restore the SP link.
+ SDLoc dl(Op);
+
+ // Get the corect type for pointers.
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ // Construct the stack pointer operand.
+ bool isPPC64 = Subtarget.isPPC64();
+ unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
+ SDValue StackPtr = DAG.getRegister(SP, PtrVT);
+
+ // Get the operands for the STACKRESTORE.
+ SDValue Chain = Op.getOperand(0);
+ SDValue SaveSP = Op.getOperand(1);
+
+ // Load the old link SP.
+ SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+
+ // Restore the stack pointer.
+ Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
+
+ // Store the old link SP.
+ return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
+ false, false, 0);
+}
+
+
+
+SDValue
+PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool isPPC64 = Subtarget.isPPC64();
+ bool isDarwinABI = Subtarget.isDarwinABI();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ // Get current frame pointer save index. The users of this index will be
+ // primarily DYNALLOC instructions.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ int RASI = FI->getReturnAddrSaveIndex();
+
+ // If the frame pointer save index hasn't been defined yet.
+ if (!RASI) {
+ // Find out what the fix offset of the frame pointer save area.
+ int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
+ // Allocate the frame index for frame pointer save area.
+ RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
+ // Save the result.
+ FI->setReturnAddrSaveIndex(RASI);
+ }
+ return DAG.getFrameIndex(RASI, PtrVT);
+}
+
+SDValue
+PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool isPPC64 = Subtarget.isPPC64();
+ bool isDarwinABI = Subtarget.isDarwinABI();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ // Get current frame pointer save index. The users of this index will be
+ // primarily DYNALLOC instructions.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ int FPSI = FI->getFramePointerSaveIndex();
+
+ // If the frame pointer save index hasn't been defined yet.
+ if (!FPSI) {
+ // Find out what the fix offset of the frame pointer save area.
+ int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
+ isDarwinABI);
+
+ // Allocate the frame index for frame pointer save area.
+ FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
+ // Save the result.
+ FI->setFramePointerSaveIndex(FPSI);
+ }
+ return DAG.getFrameIndex(FPSI, PtrVT);
+}
+
+SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
+ SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const {
+ // Get the inputs.
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ SDLoc dl(Op);
+
+ // Get the corect type for pointers.
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ // Negate the size.
+ SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
+ DAG.getConstant(0, PtrVT), Size);
+ // Construct a node for the frame pointer save index.
+ SDValue FPSIdx = getFramePointerFrameIndex(DAG);
+ // Build a DYNALLOC node.
+ SDValue Ops[3] = { Chain, NegSize, FPSIdx };
+ SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
+ return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
+}
+
+SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
+ DAG.getVTList(MVT::i32, MVT::Other),
+ Op.getOperand(0), Op.getOperand(1));
+}
+
+SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
+ Op.getOperand(0), Op.getOperand(1));
+}
+
+SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getValueType() == MVT::i1 &&
+ "Custom lowering only for i1 loads");
+
+ // First, load 8 bits into 32 bits, then truncate to 1 bit.
+
+ SDLoc dl(Op);
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+
+ SDValue Chain = LD->getChain();
+ SDValue BasePtr = LD->getBasePtr();
+ MachineMemOperand *MMO = LD->getMemOperand();
+
+ SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain,
+ BasePtr, MVT::i8, MMO);
+ SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
+
+ SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getOperand(1).getValueType() == MVT::i1 &&
+ "Custom lowering only for i1 stores");
+
+ // First, zero extend to 32 bits, then use a truncating store to 8 bits.
+
+ SDLoc dl(Op);
+ StoreSDNode *ST = cast<StoreSDNode>(Op);
+
+ SDValue Chain = ST->getChain();
+ SDValue BasePtr = ST->getBasePtr();
+ SDValue Value = ST->getValue();
+ MachineMemOperand *MMO = ST->getMemOperand();
+
+ Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value);
+ return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
+}
+
+// FIXME: Remove this once the ANDI glue bug is fixed:
+SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getValueType() == MVT::i1 &&
+ "Custom lowering only for i1 results");
+
+ SDLoc DL(Op);
+ return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
+ Op.getOperand(0));
+}
+
+/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
+/// possible.
+SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
+ // Not FP? Not a fsel.
+ if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
+ !Op.getOperand(2).getValueType().isFloatingPoint())
+ return Op;
+
+ // We might be able to do better than this under some circumstances, but in
+ // general, fsel-based lowering of select is a finite-math-only optimization.
+ // For more information, see section F.3 of the 2.06 ISA specification.
+ if (!DAG.getTarget().Options.NoInfsFPMath ||
+ !DAG.getTarget().Options.NoNaNsFPMath)
+ return Op;
+
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+
+ EVT ResVT = Op.getValueType();
+ EVT CmpVT = Op.getOperand(0).getValueType();
+ SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+ SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
+ SDLoc dl(Op);
+
+ // If the RHS of the comparison is a 0.0, we don't need to do the
+ // subtraction at all.
+ SDValue Sel1;
+ if (isFloatingPointZero(RHS))
+ switch (CC) {
+ default: break; // SETUO etc aren't handled by fsel.
+ case ISD::SETNE:
+ std::swap(TV, FV);
+ case ISD::SETEQ:
+ if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
+ LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
+ Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
+ if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT,
+ DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
+ case ISD::SETULT:
+ case ISD::SETLT:
+ std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
+ case ISD::SETOGE:
+ case ISD::SETGE:
+ if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
+ LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
+ case ISD::SETUGT:
+ case ISD::SETGT:
+ std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
+ case ISD::SETOLE:
+ case ISD::SETLE:
+ if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
+ LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT,
+ DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
+ }
+
+ SDValue Cmp;
+ switch (CC) {
+ default: break; // SETUO etc aren't handled by fsel.
+ case ISD::SETNE:
+ std::swap(TV, FV);
+ case ISD::SETEQ:
+ Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
+ Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
+ if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT,
+ DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
+ case ISD::SETULT:
+ case ISD::SETLT:
+ Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
+ case ISD::SETOGE:
+ case ISD::SETGE:
+ Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
+ case ISD::SETUGT:
+ case ISD::SETGT:
+ Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
+ case ISD::SETOLE:
+ case ISD::SETLE:
+ Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
+ }
+ return Op;
+}
+
+// FIXME: Split this code up when LegalizeDAGTypes lands.
+SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
+ SDLoc dl) const {
+ assert(Op.getOperand(0).getValueType().isFloatingPoint());
+ SDValue Src = Op.getOperand(0);
+ if (Src.getValueType() == MVT::f32)
+ Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
+
+ SDValue Tmp;
+ switch (Op.getSimpleValueType().SimpleTy) {
+ default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
+ case MVT::i32:
+ Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
+ (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ :
+ PPCISD::FCTIDZ),
+ dl, MVT::f64, Src);
+ break;
+ case MVT::i64:
+ assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
+ "i64 FP_TO_UINT is supported only with FPCVT");
+ Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
+ PPCISD::FCTIDUZ,
+ dl, MVT::f64, Src);
+ break;
+ }
+
+ // Convert the FP value to an int value through memory.
+ bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
+ (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
+ SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
+ int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
+ MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
+
+ // Emit a store to the stack slot.
+ SDValue Chain;
+ if (i32Stack) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
+ SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
+ Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
+ DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
+ } else
+ Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
+ MPI, false, false, 0);
+
+ // Result is a load from the stack slot. If loading 4 bytes, make sure to
+ // add in a bias.
+ if (Op.getValueType() == MVT::i32 && !i32Stack) {
+ FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
+ DAG.getConstant(4, FIPtr.getValueType()));
+ MPI = MachinePointerInfo();
+ }
+
+ return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
+ false, false, false, 0);
+}
+
+SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ // Don't handle ppc_fp128 here; let it be lowered to a libcall.
+ if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
+ return SDValue();
+
+ if (Op.getOperand(0).getValueType() == MVT::i1)
+ return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
+ DAG.getConstantFP(1.0, Op.getValueType()),
+ DAG.getConstantFP(0.0, Op.getValueType()));
+
+ assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
+ "UINT_TO_FP is supported only with FPCVT");
+
+ // If we have FCFIDS, then use it when converting to single-precision.
+ // Otherwise, convert to double-precision and then round.
+ unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
+ (Op.getOpcode() == ISD::UINT_TO_FP ?
+ PPCISD::FCFIDUS : PPCISD::FCFIDS) :
+ (Op.getOpcode() == ISD::UINT_TO_FP ?
+ PPCISD::FCFIDU : PPCISD::FCFID);
+ MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
+ MVT::f32 : MVT::f64;
+
+ if (Op.getOperand(0).getValueType() == MVT::i64) {
+ SDValue SINT = Op.getOperand(0);
+ // When converting to single-precision, we actually need to convert
+ // to double-precision first and then round to single-precision.
+ // To avoid double-rounding effects during that operation, we have
+ // to prepare the input operand. Bits that might be truncated when
+ // converting to double-precision are replaced by a bit that won't
+ // be lost at this stage, but is below the single-precision rounding
+ // position.
+ //
+ // However, if -enable-unsafe-fp-math is in effect, accept double
+ // rounding to avoid the extra overhead.
+ if (Op.getValueType() == MVT::f32 &&
+ !Subtarget.hasFPCVT() &&
+ !DAG.getTarget().Options.UnsafeFPMath) {
+
+ // Twiddle input to make sure the low 11 bits are zero. (If this
+ // is the case, we are guaranteed the value will fit into the 53 bit
+ // mantissa of an IEEE double-precision value without rounding.)
+ // If any of those low 11 bits were not zero originally, make sure
+ // bit 12 (value 2048) is set instead, so that the final rounding
+ // to single-precision gets the correct result.
+ SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
+ SINT, DAG.getConstant(2047, MVT::i64));
+ Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
+ Round, DAG.getConstant(2047, MVT::i64));
+ Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
+ Round = DAG.getNode(ISD::AND, dl, MVT::i64,
+ Round, DAG.getConstant(-2048, MVT::i64));
+
+ // However, we cannot use that value unconditionally: if the magnitude
+ // of the input value is small, the bit-twiddling we did above might
+ // end up visibly changing the output. Fortunately, in that case, we
+ // don't need to twiddle bits since the original input will convert
+ // exactly to double-precision floating-point already. Therefore,
+ // construct a conditional to use the original value if the top 11
+ // bits are all sign-bit copies, and use the rounded value computed
+ // above otherwise.
+ SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
+ SINT, DAG.getConstant(53, MVT::i32));
+ Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
+ Cond, DAG.getConstant(1, MVT::i64));
+ Cond = DAG.getSetCC(dl, MVT::i32,
+ Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
+
+ SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
+ }
+
+ SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
+ SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
+
+ if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
+ FP = DAG.getNode(ISD::FP_ROUND, dl,
+ MVT::f32, FP, DAG.getIntPtrConstant(0));
+ return FP;
+ }
+
+ assert(Op.getOperand(0).getValueType() == MVT::i32 &&
+ "Unhandled INT_TO_FP type in custom expander!");
+ // Since we only generate this in 64-bit mode, we can take advantage of
+ // 64-bit registers. In particular, sign extend the input value into the
+ // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
+ // then lfd it and fcfid it.
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *FrameInfo = MF.getFrameInfo();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ SDValue Ld;
+ if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
+ int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
+ SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
+
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
+ MachinePointerInfo::getFixedStack(FrameIdx),
+ false, false, 0);
+
+ assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
+ "Expected an i32 store");
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
+ MachineMemOperand::MOLoad, 4, 4);
+ SDValue Ops[] = { Store, FIdx };
+ Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
+ PPCISD::LFIWZX : PPCISD::LFIWAX,
+ dl, DAG.getVTList(MVT::f64, MVT::Other),
+ Ops, MVT::i32, MMO);
+ } else {
+ assert(Subtarget.isPPC64() &&
+ "i32->FP without LFIWAX supported only on PPC64");
+
+ int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
+ SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
+
+ SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
+ Op.getOperand(0));
+
+ // STD the extended value into the stack slot.
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
+ MachinePointerInfo::getFixedStack(FrameIdx),
+ false, false, 0);
+
+ // Load the value as a double.
+ Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
+ MachinePointerInfo::getFixedStack(FrameIdx),
+ false, false, false, 0);
+ }
+
+ // FCFID it and return it.
+ SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
+ if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
+ FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
+ return FP;
+}
+
+SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ /*
+ The rounding mode is in bits 30:31 of FPSR, and has the following
+ settings:
+ 00 Round to nearest
+ 01 Round to 0
+ 10 Round to +inf
+ 11 Round to -inf
+
+ FLT_ROUNDS, on the other hand, expects the following:
+ -1 Undefined
+ 0 Round to 0
+ 1 Round to nearest
+ 2 Round to +inf
+ 3 Round to -inf
+
+ To perform the conversion, we do:
+ ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
+ */
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ EVT VT = Op.getValueType();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ // Save FP Control Word to register
+ EVT NodeTys[] = {
+ MVT::f64, // return register
+ MVT::Glue // unused in this context
+ };
+ SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
+
+ // Save FP register to stack slot
+ int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
+ StackSlot, MachinePointerInfo(), false, false,0);
+
+ // Load FP Control Word from low 32 bits of stack slot.
+ SDValue Four = DAG.getConstant(4, PtrVT);
+ SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
+ SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
+ false, false, false, 0);
+
+ // Transform as necessary
+ SDValue CWD1 =
+ DAG.getNode(ISD::AND, dl, MVT::i32,
+ CWD, DAG.getConstant(3, MVT::i32));
+ SDValue CWD2 =
+ DAG.getNode(ISD::SRL, dl, MVT::i32,
+ DAG.getNode(ISD::AND, dl, MVT::i32,
+ DAG.getNode(ISD::XOR, dl, MVT::i32,
+ CWD, DAG.getConstant(3, MVT::i32)),
+ DAG.getConstant(3, MVT::i32)),
+ DAG.getConstant(1, MVT::i32));
+
+ SDValue RetVal =
+ DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
+
+ return DAG.getNode((VT.getSizeInBits() < 16 ?
+ ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
+}
+
+SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ unsigned BitWidth = VT.getSizeInBits();
+ SDLoc dl(Op);
+ assert(Op.getNumOperands() == 3 &&
+ VT == Op.getOperand(1).getValueType() &&
+ "Unexpected SHL!");
+
+ // Expand into a bunch of logical ops. Note that these ops
+ // depend on the PPC behavior for oversized shift amounts.
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+ SDValue Amt = Op.getOperand(2);
+ EVT AmtVT = Amt.getValueType();
+
+ SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
+ DAG.getConstant(BitWidth, AmtVT), Amt);
+ SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
+ SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
+ SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
+ SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
+ DAG.getConstant(-BitWidth, AmtVT));
+ SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
+ SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
+ SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
+ SDValue OutOps[] = { OutLo, OutHi };
+ return DAG.getMergeValues(OutOps, dl);
+}
+
+SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned BitWidth = VT.getSizeInBits();
+ assert(Op.getNumOperands() == 3 &&
+ VT == Op.getOperand(1).getValueType() &&
+ "Unexpected SRL!");
+
+ // Expand into a bunch of logical ops. Note that these ops
+ // depend on the PPC behavior for oversized shift amounts.
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+ SDValue Amt = Op.getOperand(2);
+ EVT AmtVT = Amt.getValueType();
+
+ SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
+ DAG.getConstant(BitWidth, AmtVT), Amt);
+ SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
+ SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
+ SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
+ SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
+ DAG.getConstant(-BitWidth, AmtVT));
+ SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
+ SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
+ SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
+ SDValue OutOps[] = { OutLo, OutHi };
+ return DAG.getMergeValues(OutOps, dl);
+}
+
+SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ unsigned BitWidth = VT.getSizeInBits();
+ assert(Op.getNumOperands() == 3 &&
+ VT == Op.getOperand(1).getValueType() &&
+ "Unexpected SRA!");
+
+ // Expand into a bunch of logical ops, followed by a select_cc.
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+ SDValue Amt = Op.getOperand(2);
+ EVT AmtVT = Amt.getValueType();
+
+ SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
+ DAG.getConstant(BitWidth, AmtVT), Amt);
+ SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
+ SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
+ SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
+ SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
+ DAG.getConstant(-BitWidth, AmtVT));
+ SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
+ SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
+ SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
+ Tmp4, Tmp6, ISD::SETLE);
+ SDValue OutOps[] = { OutLo, OutHi };
+ return DAG.getMergeValues(OutOps, dl);
+}
+
+//===----------------------------------------------------------------------===//
+// Vector related lowering.
+//
+
+/// BuildSplatI - Build a canonical splati of Val with an element size of
+/// SplatSize. Cast the result to VT.
+static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
+
+ static const EVT VTys[] = { // canonical VT to use for each size.
+ MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
+ };
+
+ EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
+
+ // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
+ if (Val == -1)
+ SplatSize = 1;
+
+ EVT CanonicalVT = VTys[SplatSize-1];
+
+ // Build a canonical splat for this value.
+ SDValue Elt = DAG.getConstant(Val, MVT::i32);
+ SmallVector<SDValue, 8> Ops;
+ Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
+ SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
+ return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
+}
+
+/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
+/// specified intrinsic ID.
+static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
+ SelectionDAG &DAG, SDLoc dl,
+ EVT DestVT = MVT::Other) {
+ if (DestVT == MVT::Other) DestVT = Op.getValueType();
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
+ DAG.getConstant(IID, MVT::i32), Op);
+}
+
+/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
+/// specified intrinsic ID.
+static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
+ SelectionDAG &DAG, SDLoc dl,
+ EVT DestVT = MVT::Other) {
+ if (DestVT == MVT::Other) DestVT = LHS.getValueType();
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
+ DAG.getConstant(IID, MVT::i32), LHS, RHS);
+}
+
+/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
+/// specified intrinsic ID.
+static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
+ SDValue Op2, SelectionDAG &DAG,
+ SDLoc dl, EVT DestVT = MVT::Other) {
+ if (DestVT == MVT::Other) DestVT = Op0.getValueType();
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
+ DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
+}
+
+
+/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
+/// amount. The result has the specified value type.
+static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
+ EVT VT, SelectionDAG &DAG, SDLoc dl) {
+ // Force LHS/RHS to be the right type.
+ LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
+ RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
+
+ int Ops[16];
+ for (unsigned i = 0; i != 16; ++i)
+ Ops[i] = i + Amt;
+ SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
+ return DAG.getNode(ISD::BITCAST, dl, VT, T);
+}
+
+// If this is a case we can't handle, return null and let the default
+// expansion code take care of it. If we CAN select this case, and if it
+// selects to a single instruction, return Op. Otherwise, if we can codegen
+// this case more efficiently than a constant pool load, lower it to the
+// sequence of ops that should be used.
+SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
+ assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
+
+ // Check if this is a splat of a constant value.
+ APInt APSplatBits, APSplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
+ HasAnyUndefs, 0, true) || SplatBitSize > 32)
+ return SDValue();
+
+ unsigned SplatBits = APSplatBits.getZExtValue();
+ unsigned SplatUndef = APSplatUndef.getZExtValue();
+ unsigned SplatSize = SplatBitSize / 8;
+
+ // First, handle single instruction cases.
+
+ // All zeros?
+ if (SplatBits == 0) {
+ // Canonicalize all zero vectors to be v4i32.
+ if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
+ SDValue Z = DAG.getConstant(0, MVT::i32);
+ Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
+ Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
+ }
+ return Op;
+ }
+
+ // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
+ int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
+ (32-SplatBitSize));
+ if (SextVal >= -16 && SextVal <= 15)
+ return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
+
+
+ // Two instruction sequences.
+
+ // If this value is in the range [-32,30] and is even, use:
+ // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
+ // If this value is in the range [17,31] and is odd, use:
+ // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
+ // If this value is in the range [-31,-17] and is odd, use:
+ // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
+ // Note the last two are three-instruction sequences.
+ if (SextVal >= -32 && SextVal <= 31) {
+ // To avoid having these optimizations undone by constant folding,
+ // we convert to a pseudo that will be expanded later into one of
+ // the above forms.
+ SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
+ EVT VT = (SplatSize == 1 ? MVT::v16i8 :
+ (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
+ SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32);
+ SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
+ if (VT == Op.getValueType())
+ return RetVal;
+ else
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
+ }
+
+ // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
+ // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
+ // for fneg/fabs.
+ if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
+ // Make -1 and vspltisw -1:
+ SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
+
+ // Make the VSLW intrinsic, computing 0x8000_0000.
+ SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
+ OnesV, DAG, dl);
+
+ // xor by OnesV to invert it.
+ Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ }
+
+ // The remaining cases assume either big endian element order or
+ // a splat-size that equates to the element size of the vector
+ // to be built. An example that doesn't work for little endian is
+ // {0, -1, 0, -1, 0, -1, 0, -1} which has a splat size of 32 bits
+ // and a vector element size of 16 bits. The code below will
+ // produce the vector in big endian element order, which for little
+ // endian is {-1, 0, -1, 0, -1, 0, -1, 0}.
+
+ // For now, just avoid these optimizations in that case.
+ // FIXME: Develop correct optimizations for LE with mismatched
+ // splat and element sizes.
+
+ if (Subtarget.isLittleEndian() &&
+ SplatSize != Op.getValueType().getVectorElementType().getSizeInBits())
+ return SDValue();
+
+ // Check to see if this is a wide variety of vsplti*, binop self cases.
+ static const signed char SplatCsts[] = {
+ -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
+ -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
+ };
+
+ for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
+ // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
+ // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
+ int i = SplatCsts[idx];
+
+ // Figure out what shift amount will be used by altivec if shifted by i in
+ // this splat size.
+ unsigned TypeShiftAmt = i & (SplatBitSize-1);
+
+ // vsplti + shl self.
+ if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
+ SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
+ Intrinsic::ppc_altivec_vslw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ }
+
+ // vsplti + srl self.
+ if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
+ SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
+ Intrinsic::ppc_altivec_vsrw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ }
+
+ // vsplti + sra self.
+ if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
+ SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
+ Intrinsic::ppc_altivec_vsraw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ }
+
+ // vsplti + rol self.
+ if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
+ ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
+ SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
+ Intrinsic::ppc_altivec_vrlw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ }
+
+ // t = vsplti c, result = vsldoi t, t, 1
+ if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
+ SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
+ return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
+ }
+ // t = vsplti c, result = vsldoi t, t, 2
+ if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
+ SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
+ return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
+ }
+ // t = vsplti c, result = vsldoi t, t, 3
+ if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
+ SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
+ return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
+ }
+ }
+
+ return SDValue();
+}
+
+/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
+/// the specified operations to build the shuffle.
+static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
+ SDValue RHS, SelectionDAG &DAG,
+ SDLoc dl) {
+ unsigned OpNum = (PFEntry >> 26) & 0x0F;
+ unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
+ unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
+
+ enum {
+ OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
+ OP_VMRGHW,
+ OP_VMRGLW,
+ OP_VSPLTISW0,
+ OP_VSPLTISW1,
+ OP_VSPLTISW2,
+ OP_VSPLTISW3,
+ OP_VSLDOI4,
+ OP_VSLDOI8,
+ OP_VSLDOI12
+ };
+
+ if (OpNum == OP_COPY) {
+ if (LHSID == (1*9+2)*9+3) return LHS;
+ assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
+ return RHS;
+ }
+
+ SDValue OpLHS, OpRHS;
+ OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
+ OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
+
+ int ShufIdxs[16];
+ switch (OpNum) {
+ default: llvm_unreachable("Unknown i32 permute!");
+ case OP_VMRGHW:
+ ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
+ ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
+ ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
+ ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
+ break;
+ case OP_VMRGLW:
+ ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
+ ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
+ ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
+ ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
+ break;
+ case OP_VSPLTISW0:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+0;
+ break;
+ case OP_VSPLTISW1:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+4;
+ break;
+ case OP_VSPLTISW2:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+8;
+ break;
+ case OP_VSPLTISW3:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+12;
+ break;
+ case OP_VSLDOI4:
+ return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
+ case OP_VSLDOI8:
+ return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
+ case OP_VSLDOI12:
+ return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
+ }
+ EVT VT = OpLHS.getValueType();
+ OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
+ OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
+ SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
+ return DAG.getNode(ISD::BITCAST, dl, VT, T);
+}
+
+/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
+/// is a shuffle we can handle in a single instruction, return it. Otherwise,
+/// return the code it can be lowered into. Worst case, it can always be
+/// lowered into a vperm.
+SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ EVT VT = Op.getValueType();
+ bool isLittleEndian = Subtarget.isLittleEndian();
+
+ // Cases that are handled by instructions that take permute immediates
+ // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
+ // selected by the instruction selector.
+ if (V2.getOpcode() == ISD::UNDEF) {
+ if (PPC::isSplatShuffleMask(SVOp, 1) ||
+ PPC::isSplatShuffleMask(SVOp, 2) ||
+ PPC::isSplatShuffleMask(SVOp, 4) ||
+ PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
+ PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
+ PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
+ PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
+ PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
+ PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG)) {
+ return Op;
+ }
+ }
+
+ // Altivec has a variety of "shuffle immediates" that take two vector inputs
+ // and produce a fixed permutation. If any of these match, do not lower to
+ // VPERM.
+ unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
+ if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
+ PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
+ PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
+ PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
+ PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
+ PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG))
+ return Op;
+
+ // Check to see if this is a shuffle of 4-byte values. If so, we can use our
+ // perfect shuffle table to emit an optimal matching sequence.
+ ArrayRef<int> PermMask = SVOp->getMask();
+
+ unsigned PFIndexes[4];
+ bool isFourElementShuffle = true;
+ for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
+ unsigned EltNo = 8; // Start out undef.
+ for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
+ if (PermMask[i*4+j] < 0)
+ continue; // Undef, ignore it.
+
+ unsigned ByteSource = PermMask[i*4+j];
+ if ((ByteSource & 3) != j) {
+ isFourElementShuffle = false;
+ break;
+ }
+
+ if (EltNo == 8) {
+ EltNo = ByteSource/4;
+ } else if (EltNo != ByteSource/4) {
+ isFourElementShuffle = false;
+ break;
+ }
+ }
+ PFIndexes[i] = EltNo;
+ }
+
+ // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
+ // perfect shuffle vector to determine if it is cost effective to do this as
+ // discrete instructions, or whether we should use a vperm.
+ // For now, we skip this for little endian until such time as we have a
+ // little-endian perfect shuffle table.
+ if (isFourElementShuffle && !isLittleEndian) {
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ // Determining when to avoid vperm is tricky. Many things affect the cost
+ // of vperm, particularly how many times the perm mask needs to be computed.
+ // For example, if the perm mask can be hoisted out of a loop or is already
+ // used (perhaps because there are multiple permutes with the same shuffle
+ // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
+ // the loop requires an extra register.
+ //
+ // As a compromise, we only emit discrete instructions if the shuffle can be
+ // generated in 3 or fewer operations. When we have loop information
+ // available, if this block is within a loop, we should avoid using vperm
+ // for 3-operation perms and use a constant pool load instead.
+ if (Cost < 3)
+ return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
+ }
+
+ // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
+ // vector that will get spilled to the constant pool.
+ if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
+
+ // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
+ // that it is in input element units, not in bytes. Convert now.
+
+ // For little endian, the order of the input vectors is reversed, and
+ // the permutation mask is complemented with respect to 31. This is
+ // necessary to produce proper semantics with the big-endian-biased vperm
+ // instruction.
+ EVT EltVT = V1.getValueType().getVectorElementType();
+ unsigned BytesPerElement = EltVT.getSizeInBits()/8;
+
+ SmallVector<SDValue, 16> ResultMask;
+ for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
+ unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
+
+ for (unsigned j = 0; j != BytesPerElement; ++j)
+ if (isLittleEndian)
+ ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j),
+ MVT::i32));
+ else
+ ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
+ MVT::i32));
+ }
+
+ SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
+ ResultMask);
+ if (isLittleEndian)
+ return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
+ V2, V1, VPermMask);
+ else
+ return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
+ V1, V2, VPermMask);
+}
+
+/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
+/// altivec comparison. If it is, return true and fill in Opc/isDot with
+/// information about the intrinsic.
+static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
+ bool &isDot) {
+ unsigned IntrinsicID =
+ cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
+ CompareOpc = -1;
+ isDot = false;
+ switch (IntrinsicID) {
+ default: return false;
+ // Comparison predicates.
+ case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
+
+ // Normal Comparisons.
+ case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
+ }
+ return true;
+}
+
+/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
+/// lower, do it, otherwise return null.
+SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ // If this is a lowered altivec predicate compare, CompareOpc is set to the
+ // opcode number of the comparison.
+ SDLoc dl(Op);
+ int CompareOpc;
+ bool isDot;
+ if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
+ return SDValue(); // Don't custom lower most intrinsics.
+
+ // If this is a non-dot comparison, make the VCMP node and we are done.
+ if (!isDot) {
+ SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
+ Op.getOperand(1), Op.getOperand(2),
+ DAG.getConstant(CompareOpc, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
+ }
+
+ // Create the PPCISD altivec 'dot' comparison node.
+ SDValue Ops[] = {
+ Op.getOperand(2), // LHS
+ Op.getOperand(3), // RHS
+ DAG.getConstant(CompareOpc, MVT::i32)
+ };
+ EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
+ SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
+
+ // Now that we have the comparison, emit a copy from the CR to a GPR.
+ // This is flagged to the above dot comparison.
+ SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
+ DAG.getRegister(PPC::CR6, MVT::i32),
+ CompNode.getValue(1));
+
+ // Unpack the result based on how the target uses it.
+ unsigned BitNo; // Bit # of CR6.
+ bool InvertBit; // Invert result?
+ switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
+ default: // Can't happen, don't crash on invalid number though.
+ case 0: // Return the value of the EQ bit of CR6.
+ BitNo = 0; InvertBit = false;
+ break;
+ case 1: // Return the inverted value of the EQ bit of CR6.
+ BitNo = 0; InvertBit = true;
+ break;
+ case 2: // Return the value of the LT bit of CR6.
+ BitNo = 2; InvertBit = false;
+ break;
+ case 3: // Return the inverted value of the LT bit of CR6.
+ BitNo = 2; InvertBit = true;
+ break;
+ }
+
+ // Shift the bit into the low position.
+ Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
+ DAG.getConstant(8-(3-BitNo), MVT::i32));
+ // Isolate the bit.
+ Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
+ DAG.getConstant(1, MVT::i32));
+
+ // If we are supposed to, toggle the bit.
+ if (InvertBit)
+ Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
+ DAG.getConstant(1, MVT::i32));
+ return Flags;
+}
+
+SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
+ // instructions), but for smaller types, we need to first extend up to v2i32
+ // before doing going farther.
+ if (Op.getValueType() == MVT::v2i64) {
+ EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ if (ExtVT != MVT::v2i32) {
+ Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
+ Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
+ DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
+ ExtVT.getVectorElementType(), 4)));
+ Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
+ Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
+ DAG.getValueType(MVT::v2i32));
+ }
+
+ return Op;
+ }
+
+ return SDValue();
+}
+
+SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ // Create a stack slot that is 16-byte aligned.
+ MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
+ int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
+ EVT PtrVT = getPointerTy();
+ SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
+
+ // Store the input value into Value#0 of the stack slot.
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
+ Op.getOperand(0), FIdx, MachinePointerInfo(),
+ false, false, 0);
+ // Load it out.
+ return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
+ false, false, false, 0);
+}
+
+SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ if (Op.getValueType() == MVT::v4i32) {
+ SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+
+ SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
+ SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
+
+ SDValue RHSSwap = // = vrlw RHS, 16
+ BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
+
+ // Shrinkify inputs to v8i16.
+ LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
+ RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
+ RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
+
+ // Low parts multiplied together, generating 32-bit results (we ignore the
+ // top parts).
+ SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
+ LHS, RHS, DAG, dl, MVT::v4i32);
+
+ SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
+ LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
+ // Shift the high parts up 16 bits.
+ HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
+ Neg16, DAG, dl);
+ return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
+ } else if (Op.getValueType() == MVT::v8i16) {
+ SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+
+ SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
+
+ return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
+ LHS, RHS, Zero, DAG, dl);
+ } else if (Op.getValueType() == MVT::v16i8) {
+ SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+ bool isLittleEndian = Subtarget.isLittleEndian();
+
+ // Multiply the even 8-bit parts, producing 16-bit sums.
+ SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
+ LHS, RHS, DAG, dl, MVT::v8i16);
+ EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
+
+ // Multiply the odd 8-bit parts, producing 16-bit sums.
+ SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
+ LHS, RHS, DAG, dl, MVT::v8i16);
+ OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
+
+ // Merge the results together. Because vmuleub and vmuloub are
+ // instructions with a big-endian bias, we must reverse the
+ // element numbering and reverse the meaning of "odd" and "even"
+ // when generating little endian code.
+ int Ops[16];
+ for (unsigned i = 0; i != 8; ++i) {
+ if (isLittleEndian) {
+ Ops[i*2 ] = 2*i;
+ Ops[i*2+1] = 2*i+16;
+ } else {
+ Ops[i*2 ] = 2*i+1;
+ Ops[i*2+1] = 2*i+1+16;
+ }
+ }
+ if (isLittleEndian)
+ return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
+ else
+ return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
+ } else {
+ llvm_unreachable("Unknown mul to lower!");
+ }
+}
+
+/// LowerOperation - Provide custom lowering hooks for some operations.
+///
+SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Wasn't expecting to be able to lower this!");
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::SETCC: return LowerSETCC(Op, DAG);
+ case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
+ case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
+ case ISD::VASTART:
+ return LowerVASTART(Op, DAG, Subtarget);
+
+ case ISD::VAARG:
+ return LowerVAARG(Op, DAG, Subtarget);
+
+ case ISD::VACOPY:
+ return LowerVACOPY(Op, DAG, Subtarget);
+
+ case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget);
+ case ISD::DYNAMIC_STACKALLOC:
+ return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
+
+ case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
+ case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
+
+ case ISD::LOAD: return LowerLOAD(Op, DAG);
+ case ISD::STORE: return LowerSTORE(Op, DAG);
+ case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
+ case ISD::FP_TO_UINT:
+ case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
+ SDLoc(Op));
+ case ISD::UINT_TO_FP:
+ case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
+ case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
+
+ // Lower 64-bit shifts.
+ case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
+ case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
+ case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
+
+ // Vector-related lowering.
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
+ case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
+ case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
+ case ISD::MUL: return LowerMUL(Op, DAG);
+
+ // For counter-based loop handling.
+ case ISD::INTRINSIC_W_CHAIN: return SDValue();
+
+ // Frame & Return address.
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ }
+}
+
+void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const {
+ const TargetMachine &TM = getTargetMachine();
+ SDLoc dl(N);
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Do not know how to custom type legalize this operation!");
+ case ISD::INTRINSIC_W_CHAIN: {
+ if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
+ Intrinsic::ppc_is_decremented_ctr_nonzero)
+ break;
+
+ assert(N->getValueType(0) == MVT::i1 &&
+ "Unexpected result type for CTR decrement intrinsic");
+ EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
+ SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
+ SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
+ N->getOperand(1));
+
+ Results.push_back(NewInt);
+ Results.push_back(NewInt.getValue(1));
+ break;
+ }
+ case ISD::VAARG: {
+ if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
+ || TM.getSubtarget<PPCSubtarget>().isPPC64())
+ return;
+
+ EVT VT = N->getValueType(0);
+
+ if (VT == MVT::i64) {
+ SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
+
+ Results.push_back(NewNode);
+ Results.push_back(NewNode.getValue(1));
+ }
+ return;
+ }
+ case ISD::FP_ROUND_INREG: {
+ assert(N->getValueType(0) == MVT::ppcf128);
+ assert(N->getOperand(0).getValueType() == MVT::ppcf128);
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
+ MVT::f64, N->getOperand(0),
+ DAG.getIntPtrConstant(0));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
+ MVT::f64, N->getOperand(0),
+ DAG.getIntPtrConstant(1));
+
+ // Add the two halves of the long double in round-to-zero mode.
+ SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
+
+ // We know the low half is about to be thrown away, so just use something
+ // convenient.
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
+ FPreg, FPreg));
+ return;
+ }
+ case ISD::FP_TO_SINT:
+ // LowerFP_TO_INT() can only handle f32 and f64.
+ if (N->getOperand(0).getValueType() == MVT::ppcf128)
+ return;
+ Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
+ return;
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Code
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock *
+PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
+ bool is64bit, unsigned BinOpcode) const {
+ // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction *F = BB->getParent();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptrA = MI->getOperand(1).getReg();
+ unsigned ptrB = MI->getOperand(2).getReg();
+ unsigned incr = MI->getOperand(3).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, loopMBB);
+ F->insert(It, exitMBB);
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ MachineRegisterInfo &RegInfo = F->getRegInfo();
+ unsigned TmpReg = (!BinOpcode) ? incr :
+ RegInfo.createVirtualRegister(
+ is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
+ (const TargetRegisterClass *) &PPC::GPRCRegClass);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loopMBB);
+
+ // loopMBB:
+ // l[wd]arx dest, ptr
+ // add r0, dest, incr
+ // st[wd]cx. r0, ptr
+ // bne- loopMBB
+ // fallthrough --> exitMBB
+ BB = loopMBB;
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
+ .addReg(ptrA).addReg(ptrB);
+ if (BinOpcode)
+ BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
+ .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+ return BB;
+}
+
+MachineBasicBlock *
+PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ bool is8bit, // operation
+ unsigned BinOpcode) const {
+ // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ // In 64 bit mode we have to use 64 bits for addresses, even though the
+ // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
+ // registers without caring whether they're 32 or 64, but here we're
+ // doing actual arithmetic on the addresses.
+ bool is64bit = Subtarget.isPPC64();
+ unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction *F = BB->getParent();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptrA = MI->getOperand(1).getReg();
+ unsigned ptrB = MI->getOperand(2).getReg();
+ unsigned incr = MI->getOperand(3).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, loopMBB);
+ F->insert(It, exitMBB);
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ MachineRegisterInfo &RegInfo = F->getRegInfo();
+ const TargetRegisterClass *RC =
+ is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
+ (const TargetRegisterClass *) &PPC::GPRCRegClass;
+ unsigned PtrReg = RegInfo.createVirtualRegister(RC);
+ unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
+ unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
+ unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned MaskReg = RegInfo.createVirtualRegister(RC);
+ unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
+ unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
+ unsigned Ptr1Reg;
+ unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loopMBB);
+
+ // The 4-byte load must be aligned, while a char or short may be
+ // anywhere in the word. Hence all this nasty bookkeeping code.
+ // add ptr1, ptrA, ptrB [copy if ptrA==0]
+ // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
+ // xori shift, shift1, 24 [16]
+ // rlwinm ptr, ptr1, 0, 0, 29
+ // slw incr2, incr, shift
+ // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
+ // slw mask, mask2, shift
+ // loopMBB:
+ // lwarx tmpDest, ptr
+ // add tmp, tmpDest, incr2
+ // andc tmp2, tmpDest, mask
+ // and tmp3, tmp, mask
+ // or tmp4, tmp3, tmp2
+ // stwcx. tmp4, ptr
+ // bne- loopMBB
+ // fallthrough --> exitMBB
+ // srw dest, tmpDest, shift
+ if (ptrA != ZeroReg) {
+ Ptr1Reg = RegInfo.createVirtualRegister(RC);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
+ .addReg(ptrA).addReg(ptrB);
+ } else {
+ Ptr1Reg = ptrB;
+ }
+ BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
+ .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
+ .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
+ if (is64bit)
+ BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
+ .addReg(Ptr1Reg).addImm(0).addImm(61);
+ else
+ BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
+ .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
+ BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
+ .addReg(incr).addReg(ShiftReg);
+ if (is8bit)
+ BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
+ else {
+ BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
+ BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
+ }
+ BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
+ .addReg(Mask2Reg).addReg(ShiftReg);
+
+ BB = loopMBB;
+ BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
+ .addReg(ZeroReg).addReg(PtrReg);
+ if (BinOpcode)
+ BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
+ .addReg(Incr2Reg).addReg(TmpDestReg);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
+ .addReg(TmpDestReg).addReg(MaskReg);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
+ .addReg(TmpReg).addReg(MaskReg);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
+ .addReg(Tmp3Reg).addReg(Tmp2Reg);
+ BuildMI(BB, dl, TII->get(PPC::STWCX))
+ .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+ BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
+ .addReg(ShiftReg);
+ return BB;
+}
+
+llvm::MachineBasicBlock*
+PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI->getDebugLoc();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ const BasicBlock *BB = MBB->getBasicBlock();
+ MachineFunction::iterator I = MBB;
+ ++I;
+
+ // Memory Reference
+ MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
+
+ unsigned DstReg = MI->getOperand(0).getReg();
+ const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
+ assert(RC->hasType(MVT::i32) && "Invalid destination!");
+ unsigned mainDstReg = MRI.createVirtualRegister(RC);
+ unsigned restoreDstReg = MRI.createVirtualRegister(RC);
+
+ MVT PVT = getPointerTy();
+ assert((PVT == MVT::i64 || PVT == MVT::i32) &&
+ "Invalid Pointer Size!");
+ // For v = setjmp(buf), we generate
+ //
+ // thisMBB:
+ // SjLjSetup mainMBB
+ // bl mainMBB
+ // v_restore = 1
+ // b sinkMBB
+ //
+ // mainMBB:
+ // buf[LabelOffset] = LR
+ // v_main = 0
+ //
+ // sinkMBB:
+ // v = phi(main, restore)
+ //
+
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
+ MF->insert(I, mainMBB);
+ MF->insert(I, sinkMBB);
+
+ MachineInstrBuilder MIB;
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // Note that the structure of the jmp_buf used here is not compatible
+ // with that used by libc, and is not designed to be. Specifically, it
+ // stores only those 'reserved' registers that LLVM does not otherwise
+ // understand how to spill. Also, by convention, by the time this
+ // intrinsic is called, Clang has already stored the frame address in the
+ // first slot of the buffer and stack address in the third. Following the
+ // X86 target code, we'll store the jump address in the second slot. We also
+ // need to save the TOC pointer (R2) to handle jumps between shared
+ // libraries, and that will be stored in the fourth slot. The thread
+ // identifier (R13) is not affected.
+
+ // thisMBB:
+ const int64_t LabelOffset = 1 * PVT.getStoreSize();
+ const int64_t TOCOffset = 3 * PVT.getStoreSize();
+ const int64_t BPOffset = 4 * PVT.getStoreSize();
+
+ // Prepare IP either in reg.
+ const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
+ unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
+ unsigned BufReg = MI->getOperand(1).getReg();
+
+ if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
+ .addReg(PPC::X2)
+ .addImm(TOCOffset)
+ .addReg(BufReg);
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ }
+
+ // Naked functions never have a base pointer, and so we use r1. For all
+ // other functions, this decision must be delayed until during PEI.
+ unsigned BaseReg;
+ if (MF->getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::Naked))
+ BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
+ else
+ BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
+
+ MIB = BuildMI(*thisMBB, MI, DL,
+ TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
+ .addReg(BaseReg)
+ .addImm(BPOffset)
+ .addReg(BufReg);
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ // Setup
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
+ const PPCRegisterInfo *TRI =
+ static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
+ MIB.addRegMask(TRI->getNoPreservedMask());
+
+ BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
+
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
+ .addMBB(mainMBB);
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
+
+ thisMBB->addSuccessor(mainMBB, /* weight */ 0);
+ thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
+
+ // mainMBB:
+ // mainDstReg = 0
+ MIB = BuildMI(mainMBB, DL,
+ TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
+
+ // Store IP
+ if (Subtarget.isPPC64()) {
+ MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
+ .addReg(LabelReg)
+ .addImm(LabelOffset)
+ .addReg(BufReg);
+ } else {
+ MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
+ .addReg(LabelReg)
+ .addImm(LabelOffset)
+ .addReg(BufReg);
+ }
+
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
+ mainMBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ BuildMI(*sinkMBB, sinkMBB->begin(), DL,
+ TII->get(PPC::PHI), DstReg)
+ .addReg(mainDstReg).addMBB(mainMBB)
+ .addReg(restoreDstReg).addMBB(thisMBB);
+
+ MI->eraseFromParent();
+ return sinkMBB;
+}
+
+MachineBasicBlock *
+PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI->getDebugLoc();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ // Memory Reference
+ MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
+
+ MVT PVT = getPointerTy();
+ assert((PVT == MVT::i64 || PVT == MVT::i32) &&
+ "Invalid Pointer Size!");
+
+ const TargetRegisterClass *RC =
+ (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
+ unsigned Tmp = MRI.createVirtualRegister(RC);
+ // Since FP is only updated here but NOT referenced, it's treated as GPR.
+ unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
+ unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
+ unsigned BP = (PVT == MVT::i64) ? PPC::X30 :
+ (Subtarget.isSVR4ABI() &&
+ MF->getTarget().getRelocationModel() == Reloc::PIC_ ?
+ PPC::R29 : PPC::R30);
+
+ MachineInstrBuilder MIB;
+
+ const int64_t LabelOffset = 1 * PVT.getStoreSize();
+ const int64_t SPOffset = 2 * PVT.getStoreSize();
+ const int64_t TOCOffset = 3 * PVT.getStoreSize();
+ const int64_t BPOffset = 4 * PVT.getStoreSize();
+
+ unsigned BufReg = MI->getOperand(0).getReg();
+
+ // Reload FP (the jumped-to function may not have had a
+ // frame pointer, and if so, then its r31 will be restored
+ // as necessary).
+ if (PVT == MVT::i64) {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
+ .addImm(0)
+ .addReg(BufReg);
+ } else {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
+ .addImm(0)
+ .addReg(BufReg);
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ // Reload IP
+ if (PVT == MVT::i64) {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
+ .addImm(LabelOffset)
+ .addReg(BufReg);
+ } else {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
+ .addImm(LabelOffset)
+ .addReg(BufReg);
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ // Reload SP
+ if (PVT == MVT::i64) {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
+ .addImm(SPOffset)
+ .addReg(BufReg);
+ } else {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
+ .addImm(SPOffset)
+ .addReg(BufReg);
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ // Reload BP
+ if (PVT == MVT::i64) {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
+ .addImm(BPOffset)
+ .addReg(BufReg);
+ } else {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
+ .addImm(BPOffset)
+ .addReg(BufReg);
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ // Reload TOC
+ if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
+ .addImm(TOCOffset)
+ .addReg(BufReg);
+
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ }
+
+ // Jump
+ BuildMI(*MBB, MI, DL,
+ TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
+ BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
+
+ MI->eraseFromParent();
+ return MBB;
+}
+
+MachineBasicBlock *
+PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
+ MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
+ return emitEHSjLjSetJmp(MI, BB);
+ } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
+ MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
+ return emitEHSjLjLongJmp(MI, BB);
+ }
+
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ // To "insert" these instructions we actually have to insert their
+ // control-flow patterns.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ MachineFunction *F = BB->getParent();
+
+ if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
+ MI->getOpcode() == PPC::SELECT_CC_I8 ||
+ MI->getOpcode() == PPC::SELECT_I4 ||
+ MI->getOpcode() == PPC::SELECT_I8)) {
+ SmallVector<MachineOperand, 2> Cond;
+ if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
+ MI->getOpcode() == PPC::SELECT_CC_I8)
+ Cond.push_back(MI->getOperand(4));
+ else
+ Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
+ Cond.push_back(MI->getOperand(1));
+
+ DebugLoc dl = MI->getDebugLoc();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
+ Cond, MI->getOperand(2).getReg(),
+ MI->getOperand(3).getReg());
+ } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
+ MI->getOpcode() == PPC::SELECT_CC_I8 ||
+ MI->getOpcode() == PPC::SELECT_CC_F4 ||
+ MI->getOpcode() == PPC::SELECT_CC_F8 ||
+ MI->getOpcode() == PPC::SELECT_CC_VRRC ||
+ MI->getOpcode() == PPC::SELECT_I4 ||
+ MI->getOpcode() == PPC::SELECT_I8 ||
+ MI->getOpcode() == PPC::SELECT_F4 ||
+ MI->getOpcode() == PPC::SELECT_F8 ||
+ MI->getOpcode() == PPC::SELECT_VRRC) {
+ // The incoming instruction knows the destination vreg to set, the
+ // condition code register to branch on, the true/false values to
+ // select between, and a branch opcode to use.
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ DebugLoc dl = MI->getDebugLoc();
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ if (MI->getOpcode() == PPC::SELECT_I4 ||
+ MI->getOpcode() == PPC::SELECT_I8 ||
+ MI->getOpcode() == PPC::SELECT_F4 ||
+ MI->getOpcode() == PPC::SELECT_F8 ||
+ MI->getOpcode() == PPC::SELECT_VRRC) {
+ BuildMI(BB, dl, TII->get(PPC::BC))
+ .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
+ } else {
+ unsigned SelectPred = MI->getOperand(4).getImm();
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
+ }
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(*BB, BB->begin(), dl,
+ TII->get(PPC::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+ }
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::NAND);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
+ else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
+ else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
+ BB = EmitAtomicBinary(MI, BB, false, 0);
+ else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
+ BB = EmitAtomicBinary(MI, BB, true, 0);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
+ MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
+ bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptrA = MI->getOperand(1).getReg();
+ unsigned ptrB = MI->getOperand(2).getReg();
+ unsigned oldval = MI->getOperand(3).getReg();
+ unsigned newval = MI->getOperand(4).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, loop1MBB);
+ F->insert(It, loop2MBB);
+ F->insert(It, midMBB);
+ F->insert(It, exitMBB);
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loop1MBB);
+
+ // loop1MBB:
+ // l[wd]arx dest, ptr
+ // cmp[wd] dest, oldval
+ // bne- midMBB
+ // loop2MBB:
+ // st[wd]cx. newval, ptr
+ // bne- loopMBB
+ // b exitBB
+ // midMBB:
+ // st[wd]cx. dest, ptr
+ // exitBB:
+ BB = loop1MBB;
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
+ .addReg(ptrA).addReg(ptrB);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
+ .addReg(oldval).addReg(dest);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
+ BB->addSuccessor(loop2MBB);
+ BB->addSuccessor(midMBB);
+
+ BB = loop2MBB;
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
+ .addReg(newval).addReg(ptrA).addReg(ptrB);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
+ BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
+ BB->addSuccessor(loop1MBB);
+ BB->addSuccessor(exitMBB);
+
+ BB = midMBB;
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
+ .addReg(dest).addReg(ptrA).addReg(ptrB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+ } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
+ MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
+ // We must use 64-bit registers for addresses when targeting 64-bit,
+ // since we're actually doing arithmetic on them. Other registers
+ // can be 32-bit.
+ bool is64bit = Subtarget.isPPC64();
+ bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptrA = MI->getOperand(1).getReg();
+ unsigned ptrB = MI->getOperand(2).getReg();
+ unsigned oldval = MI->getOperand(3).getReg();
+ unsigned newval = MI->getOperand(4).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, loop1MBB);
+ F->insert(It, loop2MBB);
+ F->insert(It, midMBB);
+ F->insert(It, exitMBB);
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ MachineRegisterInfo &RegInfo = F->getRegInfo();
+ const TargetRegisterClass *RC =
+ is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
+ (const TargetRegisterClass *) &PPC::GPRCRegClass;
+ unsigned PtrReg = RegInfo.createVirtualRegister(RC);
+ unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
+ unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
+ unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
+ unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
+ unsigned MaskReg = RegInfo.createVirtualRegister(RC);
+ unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
+ unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
+ unsigned Ptr1Reg;
+ unsigned TmpReg = RegInfo.createVirtualRegister(RC);
+ unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loop1MBB);
+
+ // The 4-byte load must be aligned, while a char or short may be
+ // anywhere in the word. Hence all this nasty bookkeeping code.
+ // add ptr1, ptrA, ptrB [copy if ptrA==0]
+ // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
+ // xori shift, shift1, 24 [16]
+ // rlwinm ptr, ptr1, 0, 0, 29
+ // slw newval2, newval, shift
+ // slw oldval2, oldval,shift
+ // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
+ // slw mask, mask2, shift
+ // and newval3, newval2, mask
+ // and oldval3, oldval2, mask
+ // loop1MBB:
+ // lwarx tmpDest, ptr
+ // and tmp, tmpDest, mask
+ // cmpw tmp, oldval3
+ // bne- midMBB
+ // loop2MBB:
+ // andc tmp2, tmpDest, mask
+ // or tmp4, tmp2, newval3
+ // stwcx. tmp4, ptr
+ // bne- loop1MBB
+ // b exitBB
+ // midMBB:
+ // stwcx. tmpDest, ptr
+ // exitBB:
+ // srw dest, tmpDest, shift
+ if (ptrA != ZeroReg) {
+ Ptr1Reg = RegInfo.createVirtualRegister(RC);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
+ .addReg(ptrA).addReg(ptrB);
+ } else {
+ Ptr1Reg = ptrB;
+ }
+ BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
+ .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
+ .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
+ if (is64bit)
+ BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
+ .addReg(Ptr1Reg).addImm(0).addImm(61);
+ else
+ BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
+ .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
+ BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
+ .addReg(newval).addReg(ShiftReg);
+ BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
+ .addReg(oldval).addReg(ShiftReg);
+ if (is8bit)
+ BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
+ else {
+ BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
+ BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
+ .addReg(Mask3Reg).addImm(65535);
+ }
+ BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
+ .addReg(Mask2Reg).addReg(ShiftReg);
+ BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
+ .addReg(NewVal2Reg).addReg(MaskReg);
+ BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
+ .addReg(OldVal2Reg).addReg(MaskReg);
+
+ BB = loop1MBB;
+ BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
+ .addReg(ZeroReg).addReg(PtrReg);
+ BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
+ .addReg(TmpDestReg).addReg(MaskReg);
+ BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
+ .addReg(TmpReg).addReg(OldVal3Reg);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
+ BB->addSuccessor(loop2MBB);
+ BB->addSuccessor(midMBB);
+
+ BB = loop2MBB;
+ BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
+ .addReg(TmpDestReg).addReg(MaskReg);
+ BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
+ .addReg(Tmp2Reg).addReg(NewVal3Reg);
+ BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
+ .addReg(ZeroReg).addReg(PtrReg);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
+ BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
+ BB->addSuccessor(loop1MBB);
+ BB->addSuccessor(exitMBB);
+
+ BB = midMBB;
+ BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
+ .addReg(ZeroReg).addReg(PtrReg);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+ BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
+ .addReg(ShiftReg);
+ } else if (MI->getOpcode() == PPC::FADDrtz) {
+ // This pseudo performs an FADD with rounding mode temporarily forced
+ // to round-to-zero. We emit this via custom inserter since the FPSCR
+ // is not modeled at the SelectionDAG level.
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Src1 = MI->getOperand(1).getReg();
+ unsigned Src2 = MI->getOperand(2).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineRegisterInfo &RegInfo = F->getRegInfo();
+ unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
+
+ // Save FPSCR value.
+ BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
+
+ // Set rounding mode to round-to-zero.
+ BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
+ BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
+
+ // Perform addition.
+ BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
+
+ // Restore FPSCR value.
+ BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
+ } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
+ MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
+ MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
+ MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
+ unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
+ MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
+ PPC::ANDIo8 : PPC::ANDIo;
+ bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
+ MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
+
+ MachineRegisterInfo &RegInfo = F->getRegInfo();
+ unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
+ &PPC::GPRCRegClass :
+ &PPC::G8RCRegClass);
+
+ DebugLoc dl = MI->getDebugLoc();
+ BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
+ .addReg(MI->getOperand(1).getReg()).addImm(1);
+ BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
+ MI->getOperand(0).getReg())
+ .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
+ } else {
+ llvm_unreachable("Unexpected instr type to insert");
+ }
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+//===----------------------------------------------------------------------===//
+// Target Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
+ DAGCombinerInfo &DCI) const {
+ if (DCI.isAfterLegalizeVectorOps())
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+
+ if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
+ (VT == MVT::f64 && Subtarget.hasFRE()) ||
+ (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
+ (VT == MVT::v2f64 && Subtarget.hasVSX())) {
+
+ // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
+ // For the reciprocal, we need to find the zero of the function:
+ // F(X) = A X - 1 [which has a zero at X = 1/A]
+ // =>
+ // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
+ // does not require additional intermediate precision]
+
+ // Convergence is quadratic, so we essentially double the number of digits
+ // correct after every iteration. The minimum architected relative
+ // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
+ // 23 digits and double has 52 digits.
+ int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
+ if (VT.getScalarType() == MVT::f64)
+ ++Iterations;
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(Op);
+
+ SDValue FPOne =
+ DAG.getConstantFP(1.0, VT.getScalarType());
+ if (VT.isVector()) {
+ assert(VT.getVectorNumElements() == 4 &&
+ "Unknown vector type");
+ FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
+ FPOne, FPOne, FPOne, FPOne);
+ }
+
+ SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
+ DCI.AddToWorklist(Est.getNode());
+
+ // Newton iterations: Est = Est + Est (1 - Arg * Est)
+ for (int i = 0; i < Iterations; ++i) {
+ SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
+ DCI.AddToWorklist(Est.getNode());
+ }
+
+ return Est;
+ }
+
+ return SDValue();
+}
+
+SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
+ DAGCombinerInfo &DCI) const {
+ if (DCI.isAfterLegalizeVectorOps())
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+
+ if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
+ (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
+ (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
+ (VT == MVT::v2f64 && Subtarget.hasVSX())) {
+
+ // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
+ // For the reciprocal sqrt, we need to find the zero of the function:
+ // F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
+ // =>
+ // X_{i+1} = X_i (1.5 - A X_i^2 / 2)
+ // As a result, we precompute A/2 prior to the iteration loop.
+
+ // Convergence is quadratic, so we essentially double the number of digits
+ // correct after every iteration. The minimum architected relative
+ // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
+ // 23 digits and double has 52 digits.
+ int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
+ if (VT.getScalarType() == MVT::f64)
+ ++Iterations;
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(Op);
+
+ SDValue FPThreeHalves =
+ DAG.getConstantFP(1.5, VT.getScalarType());
+ if (VT.isVector()) {
+ assert(VT.getVectorNumElements() == 4 &&
+ "Unknown vector type");
+ FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
+ FPThreeHalves, FPThreeHalves,
+ FPThreeHalves, FPThreeHalves);
+ }
+
+ SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
+ DCI.AddToWorklist(Est.getNode());
+
+ // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
+ // this entire sequence requires only one FP constant.
+ SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
+ DCI.AddToWorklist(HalfArg.getNode());
+
+ HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
+ DCI.AddToWorklist(HalfArg.getNode());
+
+ // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
+ for (int i = 0; i < Iterations; ++i) {
+ SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
+ DCI.AddToWorklist(Est.getNode());
+ }
+
+ return Est;
+ }
+
+ return SDValue();
+}
+
+// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
+// not enforce equality of the chain operands.
+static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
+ unsigned Bytes, int Dist,
+ SelectionDAG &DAG) {
+ EVT VT = LS->getMemoryVT();
+ if (VT.getSizeInBits() / 8 != Bytes)
+ return false;
+
+ SDValue Loc = LS->getBasePtr();
+ SDValue BaseLoc = Base->getBasePtr();
+ if (Loc.getOpcode() == ISD::FrameIndex) {
+ if (BaseLoc.getOpcode() != ISD::FrameIndex)
+ return false;
+ const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
+ int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
+ int FS = MFI->getObjectSize(FI);
+ int BFS = MFI->getObjectSize(BFI);
+ if (FS != BFS || FS != (int)Bytes) return false;
+ return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
+ }
+
+ // Handle X+C
+ if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
+ cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
+ return true;
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ const GlobalValue *GV1 = nullptr;
+ const GlobalValue *GV2 = nullptr;
+ int64_t Offset1 = 0;
+ int64_t Offset2 = 0;
+ bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
+ bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
+ if (isGA1 && isGA2 && GV1 == GV2)
+ return Offset1 == (Offset2 + Dist*Bytes);
+ return false;
+}
+
+// Return true is there is a nearyby consecutive load to the one provided
+// (regardless of alignment). We search up and down the chain, looking though
+// token factors and other loads (but nothing else). As a result, a true
+// results indicates that it is safe to create a new consecutive load adjacent
+// to the load provided.
+static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
+ SDValue Chain = LD->getChain();
+ EVT VT = LD->getMemoryVT();
+
+ SmallSet<SDNode *, 16> LoadRoots;
+ SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
+ SmallSet<SDNode *, 16> Visited;
+
+ // First, search up the chain, branching to follow all token-factor operands.
+ // If we find a consecutive load, then we're done, otherwise, record all
+ // nodes just above the top-level loads and token factors.
+ while (!Queue.empty()) {
+ SDNode *ChainNext = Queue.pop_back_val();
+ if (!Visited.insert(ChainNext))
+ continue;
+
+ if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
+ if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
+ return true;
+
+ if (!Visited.count(ChainLD->getChain().getNode()))
+ Queue.push_back(ChainLD->getChain().getNode());
+ } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
+ for (const SDUse &O : ChainNext->ops())
+ if (!Visited.count(O.getNode()))
+ Queue.push_back(O.getNode());
+ } else
+ LoadRoots.insert(ChainNext);
+ }
+
+ // Second, search down the chain, starting from the top-level nodes recorded
+ // in the first phase. These top-level nodes are the nodes just above all
+ // loads and token factors. Starting with their uses, recursively look though
+ // all loads (just the chain uses) and token factors to find a consecutive
+ // load.
+ Visited.clear();
+ Queue.clear();
+
+ for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
+ IE = LoadRoots.end(); I != IE; ++I) {
+ Queue.push_back(*I);
+
+ while (!Queue.empty()) {
+ SDNode *LoadRoot = Queue.pop_back_val();
+ if (!Visited.insert(LoadRoot))
+ continue;
+
+ if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
+ if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
+ return true;
+
+ for (SDNode::use_iterator UI = LoadRoot->use_begin(),
+ UE = LoadRoot->use_end(); UI != UE; ++UI)
+ if (((isa<LoadSDNode>(*UI) &&
+ cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
+ UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
+ Queue.push_back(*UI);
+ }
+ }
+
+ return false;
+}
+
+SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(N);
+
+ assert(Subtarget.useCRBits() &&
+ "Expecting to be tracking CR bits");
+ // If we're tracking CR bits, we need to be careful that we don't have:
+ // trunc(binary-ops(zext(x), zext(y)))
+ // or
+ // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
+ // such that we're unnecessarily moving things into GPRs when it would be
+ // better to keep them in CR bits.
+
+ // Note that trunc here can be an actual i1 trunc, or can be the effective
+ // truncation that comes from a setcc or select_cc.
+ if (N->getOpcode() == ISD::TRUNCATE &&
+ N->getValueType(0) != MVT::i1)
+ return SDValue();
+
+ if (N->getOperand(0).getValueType() != MVT::i32 &&
+ N->getOperand(0).getValueType() != MVT::i64)
+ return SDValue();
+
+ if (N->getOpcode() == ISD::SETCC ||
+ N->getOpcode() == ISD::SELECT_CC) {
+ // If we're looking at a comparison, then we need to make sure that the
+ // high bits (all except for the first) don't matter the result.
+ ISD::CondCode CC =
+ cast<CondCodeSDNode>(N->getOperand(
+ N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
+ unsigned OpBits = N->getOperand(0).getValueSizeInBits();
+
+ if (ISD::isSignedIntSetCC(CC)) {
+ if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
+ DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
+ return SDValue();
+ } else if (ISD::isUnsignedIntSetCC(CC)) {
+ if (!DAG.MaskedValueIsZero(N->getOperand(0),
+ APInt::getHighBitsSet(OpBits, OpBits-1)) ||
+ !DAG.MaskedValueIsZero(N->getOperand(1),
+ APInt::getHighBitsSet(OpBits, OpBits-1)))
+ return SDValue();
+ } else {
+ // This is neither a signed nor an unsigned comparison, just make sure
+ // that the high bits are equal.
+ APInt Op1Zero, Op1One;
+ APInt Op2Zero, Op2One;
+ DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
+ DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
+
+ // We don't really care about what is known about the first bit (if
+ // anything), so clear it in all masks prior to comparing them.
+ Op1Zero.clearBit(0); Op1One.clearBit(0);
+ Op2Zero.clearBit(0); Op2One.clearBit(0);
+
+ if (Op1Zero != Op2Zero || Op1One != Op2One)
+ return SDValue();
+ }
+ }
+
+ // We now know that the higher-order bits are irrelevant, we just need to
+ // make sure that all of the intermediate operations are bit operations, and
+ // all inputs are extensions.
+ if (N->getOperand(0).getOpcode() != ISD::AND &&
+ N->getOperand(0).getOpcode() != ISD::OR &&
+ N->getOperand(0).getOpcode() != ISD::XOR &&
+ N->getOperand(0).getOpcode() != ISD::SELECT &&
+ N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
+ N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
+ N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
+ N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
+ N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
+ return SDValue();
+
+ if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
+ N->getOperand(1).getOpcode() != ISD::AND &&
+ N->getOperand(1).getOpcode() != ISD::OR &&
+ N->getOperand(1).getOpcode() != ISD::XOR &&
+ N->getOperand(1).getOpcode() != ISD::SELECT &&
+ N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
+ N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
+ N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
+ N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
+ N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
+ return SDValue();
+
+ SmallVector<SDValue, 4> Inputs;
+ SmallVector<SDValue, 8> BinOps, PromOps;
+ SmallPtrSet<SDNode *, 16> Visited;
+
+ for (unsigned i = 0; i < 2; ++i) {
+ if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
+ N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
+ N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
+ N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
+ isa<ConstantSDNode>(N->getOperand(i)))
+ Inputs.push_back(N->getOperand(i));
+ else
+ BinOps.push_back(N->getOperand(i));
+
+ if (N->getOpcode() == ISD::TRUNCATE)
+ break;
+ }
+
+ // Visit all inputs, collect all binary operations (and, or, xor and
+ // select) that are all fed by extensions.
+ while (!BinOps.empty()) {
+ SDValue BinOp = BinOps.back();
+ BinOps.pop_back();
+
+ if (!Visited.insert(BinOp.getNode()))
+ continue;
+
+ PromOps.push_back(BinOp);
+
+ for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
+ // The condition of the select is not promoted.
+ if (BinOp.getOpcode() == ISD::SELECT && i == 0)
+ continue;
+ if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
+ continue;
+
+ if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
+ BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
+ BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
+ BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
+ isa<ConstantSDNode>(BinOp.getOperand(i))) {
+ Inputs.push_back(BinOp.getOperand(i));
+ } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
+ BinOp.getOperand(i).getOpcode() == ISD::OR ||
+ BinOp.getOperand(i).getOpcode() == ISD::XOR ||
+ BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
+ BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
+ BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
+ BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
+ BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
+ BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
+ BinOps.push_back(BinOp.getOperand(i));
+ } else {
+ // We have an input that is not an extension or another binary
+ // operation; we'll abort this transformation.
+ return SDValue();
+ }
+ }
+ }
+
+ // Make sure that this is a self-contained cluster of operations (which
+ // is not quite the same thing as saying that everything has only one
+ // use).
+ for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
+ if (isa<ConstantSDNode>(Inputs[i]))
+ continue;
+
+ for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
+ UE = Inputs[i].getNode()->use_end();
+ UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User != N && !Visited.count(User))
+ return SDValue();
+
+ // Make sure that we're not going to promote the non-output-value
+ // operand(s) or SELECT or SELECT_CC.
+ // FIXME: Although we could sometimes handle this, and it does occur in
+ // practice that one of the condition inputs to the select is also one of
+ // the outputs, we currently can't deal with this.
+ if (User->getOpcode() == ISD::SELECT) {
+ if (User->getOperand(0) == Inputs[i])
+ return SDValue();
+ } else if (User->getOpcode() == ISD::SELECT_CC) {
+ if (User->getOperand(0) == Inputs[i] ||
+ User->getOperand(1) == Inputs[i])
+ return SDValue();
+ }
+ }
+ }
+
+ for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
+ for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
+ UE = PromOps[i].getNode()->use_end();
+ UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User != N && !Visited.count(User))
+ return SDValue();
+
+ // Make sure that we're not going to promote the non-output-value
+ // operand(s) or SELECT or SELECT_CC.
+ // FIXME: Although we could sometimes handle this, and it does occur in
+ // practice that one of the condition inputs to the select is also one of
+ // the outputs, we currently can't deal with this.
+ if (User->getOpcode() == ISD::SELECT) {
+ if (User->getOperand(0) == PromOps[i])
+ return SDValue();
+ } else if (User->getOpcode() == ISD::SELECT_CC) {
+ if (User->getOperand(0) == PromOps[i] ||
+ User->getOperand(1) == PromOps[i])
+ return SDValue();
+ }
+ }
+ }
+
+ // Replace all inputs with the extension operand.
+ for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
+ // Constants may have users outside the cluster of to-be-promoted nodes,
+ // and so we need to replace those as we do the promotions.
+ if (isa<ConstantSDNode>(Inputs[i]))
+ continue;
+ else
+ DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
+ }
+
+ // Replace all operations (these are all the same, but have a different
+ // (i1) return type). DAG.getNode will validate that the types of
+ // a binary operator match, so go through the list in reverse so that
+ // we've likely promoted both operands first. Any intermediate truncations or
+ // extensions disappear.
+ while (!PromOps.empty()) {
+ SDValue PromOp = PromOps.back();
+ PromOps.pop_back();
+
+ if (PromOp.getOpcode() == ISD::TRUNCATE ||
+ PromOp.getOpcode() == ISD::SIGN_EXTEND ||
+ PromOp.getOpcode() == ISD::ZERO_EXTEND ||
+ PromOp.getOpcode() == ISD::ANY_EXTEND) {
+ if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
+ PromOp.getOperand(0).getValueType() != MVT::i1) {
+ // The operand is not yet ready (see comment below).
+ PromOps.insert(PromOps.begin(), PromOp);
+ continue;
+ }
+
+ SDValue RepValue = PromOp.getOperand(0);
+ if (isa<ConstantSDNode>(RepValue))
+ RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
+
+ DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
+ continue;
+ }
+
+ unsigned C;
+ switch (PromOp.getOpcode()) {
+ default: C = 0; break;
+ case ISD::SELECT: C = 1; break;
+ case ISD::SELECT_CC: C = 2; break;
+ }
+
+ if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
+ PromOp.getOperand(C).getValueType() != MVT::i1) ||
+ (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
+ PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
+ // The to-be-promoted operands of this node have not yet been
+ // promoted (this should be rare because we're going through the
+ // list backward, but if one of the operands has several users in
+ // this cluster of to-be-promoted nodes, it is possible).
+ PromOps.insert(PromOps.begin(), PromOp);
+ continue;
+ }
+
+ SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
+ PromOp.getNode()->op_end());
+
+ // If there are any constant inputs, make sure they're replaced now.
+ for (unsigned i = 0; i < 2; ++i)
+ if (isa<ConstantSDNode>(Ops[C+i]))
+ Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
+
+ DAG.ReplaceAllUsesOfValueWith(PromOp,
+ DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
+ }
+
+ // Now we're left with the initial truncation itself.
+ if (N->getOpcode() == ISD::TRUNCATE)
+ return N->getOperand(0);
+
+ // Otherwise, this is a comparison. The operands to be compared have just
+ // changed type (to i1), but everything else is the same.
+ return SDValue(N, 0);
+}
+
+SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(N);
+
+ // If we're tracking CR bits, we need to be careful that we don't have:
+ // zext(binary-ops(trunc(x), trunc(y)))
+ // or
+ // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
+ // such that we're unnecessarily moving things into CR bits that can more
+ // efficiently stay in GPRs. Note that if we're not certain that the high
+ // bits are set as required by the final extension, we still may need to do
+ // some masking to get the proper behavior.
+
+ // This same functionality is important on PPC64 when dealing with
+ // 32-to-64-bit extensions; these occur often when 32-bit values are used as
+ // the return values of functions. Because it is so similar, it is handled
+ // here as well.
+
+ if (N->getValueType(0) != MVT::i32 &&
+ N->getValueType(0) != MVT::i64)
+ return SDValue();
+
+ if (!((N->getOperand(0).getValueType() == MVT::i1 &&
+ Subtarget.useCRBits()) ||
+ (N->getOperand(0).getValueType() == MVT::i32 &&
+ Subtarget.isPPC64())))
+ return SDValue();
+
+ if (N->getOperand(0).getOpcode() != ISD::AND &&
+ N->getOperand(0).getOpcode() != ISD::OR &&
+ N->getOperand(0).getOpcode() != ISD::XOR &&
+ N->getOperand(0).getOpcode() != ISD::SELECT &&
+ N->getOperand(0).getOpcode() != ISD::SELECT_CC)
+ return SDValue();
+
+ SmallVector<SDValue, 4> Inputs;
+ SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
+ SmallPtrSet<SDNode *, 16> Visited;
+
+ // Visit all inputs, collect all binary operations (and, or, xor and
+ // select) that are all fed by truncations.
+ while (!BinOps.empty()) {
+ SDValue BinOp = BinOps.back();
+ BinOps.pop_back();
+
+ if (!Visited.insert(BinOp.getNode()))
+ continue;
+
+ PromOps.push_back(BinOp);
+
+ for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
+ // The condition of the select is not promoted.
+ if (BinOp.getOpcode() == ISD::SELECT && i == 0)
+ continue;
+ if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
+ continue;
+
+ if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
+ isa<ConstantSDNode>(BinOp.getOperand(i))) {
+ Inputs.push_back(BinOp.getOperand(i));
+ } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
+ BinOp.getOperand(i).getOpcode() == ISD::OR ||
+ BinOp.getOperand(i).getOpcode() == ISD::XOR ||
+ BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
+ BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
+ BinOps.push_back(BinOp.getOperand(i));
+ } else {
+ // We have an input that is not a truncation or another binary
+ // operation; we'll abort this transformation.
+ return SDValue();
+ }
+ }
+ }
+
+ // Make sure that this is a self-contained cluster of operations (which
+ // is not quite the same thing as saying that everything has only one
+ // use).
+ for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
+ if (isa<ConstantSDNode>(Inputs[i]))
+ continue;
+
+ for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
+ UE = Inputs[i].getNode()->use_end();
+ UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User != N && !Visited.count(User))
+ return SDValue();
+
+ // Make sure that we're not going to promote the non-output-value
+ // operand(s) or SELECT or SELECT_CC.
+ // FIXME: Although we could sometimes handle this, and it does occur in
+ // practice that one of the condition inputs to the select is also one of
+ // the outputs, we currently can't deal with this.
+ if (User->getOpcode() == ISD::SELECT) {
+ if (User->getOperand(0) == Inputs[i])
+ return SDValue();
+ } else if (User->getOpcode() == ISD::SELECT_CC) {
+ if (User->getOperand(0) == Inputs[i] ||
+ User->getOperand(1) == Inputs[i])
+ return SDValue();
+ }
+ }
+ }
+
+ for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
+ for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
+ UE = PromOps[i].getNode()->use_end();
+ UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User != N && !Visited.count(User))
+ return SDValue();
+
+ // Make sure that we're not going to promote the non-output-value
+ // operand(s) or SELECT or SELECT_CC.
+ // FIXME: Although we could sometimes handle this, and it does occur in
+ // practice that one of the condition inputs to the select is also one of
+ // the outputs, we currently can't deal with this.
+ if (User->getOpcode() == ISD::SELECT) {
+ if (User->getOperand(0) == PromOps[i])
+ return SDValue();
+ } else if (User->getOpcode() == ISD::SELECT_CC) {
+ if (User->getOperand(0) == PromOps[i] ||
+ User->getOperand(1) == PromOps[i])
+ return SDValue();
+ }
+ }
+ }
+
+ unsigned PromBits = N->getOperand(0).getValueSizeInBits();
+ bool ReallyNeedsExt = false;
+ if (N->getOpcode() != ISD::ANY_EXTEND) {
+ // If all of the inputs are not already sign/zero extended, then
+ // we'll still need to do that at the end.
+ for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
+ if (isa<ConstantSDNode>(Inputs[i]))
+ continue;
+
+ unsigned OpBits =
+ Inputs[i].getOperand(0).getValueSizeInBits();
+ assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
+
+ if ((N->getOpcode() == ISD::ZERO_EXTEND &&
+ !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
+ APInt::getHighBitsSet(OpBits,
+ OpBits-PromBits))) ||
+ (N->getOpcode() == ISD::SIGN_EXTEND &&
+ DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
+ (OpBits-(PromBits-1)))) {
+ ReallyNeedsExt = true;
+ break;
+ }
+ }
+ }
+
+ // Replace all inputs, either with the truncation operand, or a
+ // truncation or extension to the final output type.
+ for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
+ // Constant inputs need to be replaced with the to-be-promoted nodes that
+ // use them because they might have users outside of the cluster of
+ // promoted nodes.
+ if (isa<ConstantSDNode>(Inputs[i]))
+ continue;
+
+ SDValue InSrc = Inputs[i].getOperand(0);
+ if (Inputs[i].getValueType() == N->getValueType(0))
+ DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
+ else if (N->getOpcode() == ISD::SIGN_EXTEND)
+ DAG.ReplaceAllUsesOfValueWith(Inputs[i],
+ DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
+ else if (N->getOpcode() == ISD::ZERO_EXTEND)
+ DAG.ReplaceAllUsesOfValueWith(Inputs[i],
+ DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
+ else
+ DAG.ReplaceAllUsesOfValueWith(Inputs[i],
+ DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
+ }
+
+ // Replace all operations (these are all the same, but have a different
+ // (promoted) return type). DAG.getNode will validate that the types of
+ // a binary operator match, so go through the list in reverse so that
+ // we've likely promoted both operands first.
+ while (!PromOps.empty()) {
+ SDValue PromOp = PromOps.back();
+ PromOps.pop_back();
+
+ unsigned C;
+ switch (PromOp.getOpcode()) {
+ default: C = 0; break;
+ case ISD::SELECT: C = 1; break;
+ case ISD::SELECT_CC: C = 2; break;
+ }
+
+ if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
+ PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
+ (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
+ PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
+ // The to-be-promoted operands of this node have not yet been
+ // promoted (this should be rare because we're going through the
+ // list backward, but if one of the operands has several users in
+ // this cluster of to-be-promoted nodes, it is possible).
+ PromOps.insert(PromOps.begin(), PromOp);
+ continue;
+ }
+
+ SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
+ PromOp.getNode()->op_end());
+
+ // If this node has constant inputs, then they'll need to be promoted here.
+ for (unsigned i = 0; i < 2; ++i) {
+ if (!isa<ConstantSDNode>(Ops[C+i]))
+ continue;
+ if (Ops[C+i].getValueType() == N->getValueType(0))
+ continue;
+
+ if (N->getOpcode() == ISD::SIGN_EXTEND)
+ Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
+ else if (N->getOpcode() == ISD::ZERO_EXTEND)
+ Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
+ else
+ Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
+ }
+
+ DAG.ReplaceAllUsesOfValueWith(PromOp,
+ DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
+ }
+
+ // Now we're left with the initial extension itself.
+ if (!ReallyNeedsExt)
+ return N->getOperand(0);
+
+ // To zero extend, just mask off everything except for the first bit (in the
+ // i1 case).
+ if (N->getOpcode() == ISD::ZERO_EXTEND)
+ return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
+ DAG.getConstant(APInt::getLowBitsSet(
+ N->getValueSizeInBits(0), PromBits),
+ N->getValueType(0)));
+
+ assert(N->getOpcode() == ISD::SIGN_EXTEND &&
+ "Invalid extension type");
+ EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0));
+ SDValue ShiftCst =
+ DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy);
+ return DAG.getNode(ISD::SRA, dl, N->getValueType(0),
+ DAG.getNode(ISD::SHL, dl, N->getValueType(0),
+ N->getOperand(0), ShiftCst), ShiftCst);
+}
+
+SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ const TargetMachine &TM = getTargetMachine();
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(N);
+ switch (N->getOpcode()) {
+ default: break;
+ case PPCISD::SHL:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ if (C->isNullValue()) // 0 << V -> 0.
+ return N->getOperand(0);
+ }
+ break;
+ case PPCISD::SRL:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ if (C->isNullValue()) // 0 >>u V -> 0.
+ return N->getOperand(0);
+ }
+ break;
+ case PPCISD::SRA:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ if (C->isNullValue() || // 0 >>s V -> 0.
+ C->isAllOnesValue()) // -1 >>s V -> -1.
+ return N->getOperand(0);
+ }
+ break;
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ return DAGCombineExtBoolTrunc(N, DCI);
+ case ISD::TRUNCATE:
+ case ISD::SETCC:
+ case ISD::SELECT_CC:
+ return DAGCombineTruncBoolExt(N, DCI);
+ case ISD::FDIV: {
+ assert(TM.Options.UnsafeFPMath &&
+ "Reciprocal estimates require UnsafeFPMath");
+
+ if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
+ SDValue RV =
+ DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
+ if (RV.getNode()) {
+ DCI.AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
+ N->getOperand(0), RV);
+ }
+ } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
+ N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
+ SDValue RV =
+ DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
+ DCI);
+ if (RV.getNode()) {
+ DCI.AddToWorklist(RV.getNode());
+ RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
+ N->getValueType(0), RV);
+ DCI.AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
+ N->getOperand(0), RV);
+ }
+ } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
+ N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
+ SDValue RV =
+ DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
+ DCI);
+ if (RV.getNode()) {
+ DCI.AddToWorklist(RV.getNode());
+ RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
+ N->getValueType(0), RV,
+ N->getOperand(1).getOperand(1));
+ DCI.AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
+ N->getOperand(0), RV);
+ }
+ }
+
+ SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
+ if (RV.getNode()) {
+ DCI.AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
+ N->getOperand(0), RV);
+ }
+
+ }
+ break;
+ case ISD::FSQRT: {
+ assert(TM.Options.UnsafeFPMath &&
+ "Reciprocal estimates require UnsafeFPMath");
+
+ // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
+ // reciprocal sqrt.
+ SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
+ if (RV.getNode()) {
+ DCI.AddToWorklist(RV.getNode());
+ RV = DAGCombineFastRecip(RV, DCI);
+ if (RV.getNode()) {
+ // Unfortunately, RV is now NaN if the input was exactly 0. Select out
+ // this case and force the answer to 0.
+
+ EVT VT = RV.getValueType();
+
+ SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType());
+ if (VT.isVector()) {
+ assert(VT.getVectorNumElements() == 4 && "Unknown vector type");
+ Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero);
+ }
+
+ SDValue ZeroCmp =
+ DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT),
+ N->getOperand(0), Zero, ISD::SETEQ);
+ DCI.AddToWorklist(ZeroCmp.getNode());
+ DCI.AddToWorklist(RV.getNode());
+
+ RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT,
+ ZeroCmp, Zero, RV);
+ return RV;
+ }
+ }
+
+ }
+ break;
+ case ISD::SINT_TO_FP:
+ if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
+ if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
+ // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
+ // We allow the src/dst to be either f32/f64, but the intermediate
+ // type must be i64.
+ if (N->getOperand(0).getValueType() == MVT::i64 &&
+ N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
+ SDValue Val = N->getOperand(0).getOperand(0);
+ if (Val.getValueType() == MVT::f32) {
+ Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
+ DCI.AddToWorklist(Val.getNode());
+ }
+
+ Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
+ DCI.AddToWorklist(Val.getNode());
+ Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
+ DCI.AddToWorklist(Val.getNode());
+ if (N->getValueType(0) == MVT::f32) {
+ Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
+ DAG.getIntPtrConstant(0));
+ DCI.AddToWorklist(Val.getNode());
+ }
+ return Val;
+ } else if (N->getOperand(0).getValueType() == MVT::i32) {
+ // If the intermediate type is i32, we can avoid the load/store here
+ // too.
+ }
+ }
+ }
+ break;
+ case ISD::STORE:
+ // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
+ if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
+ !cast<StoreSDNode>(N)->isTruncatingStore() &&
+ N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
+ N->getOperand(1).getValueType() == MVT::i32 &&
+ N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
+ SDValue Val = N->getOperand(1).getOperand(0);
+ if (Val.getValueType() == MVT::f32) {
+ Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
+ DCI.AddToWorklist(Val.getNode());
+ }
+ Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
+ DCI.AddToWorklist(Val.getNode());
+
+ SDValue Ops[] = {
+ N->getOperand(0), Val, N->getOperand(2),
+ DAG.getValueType(N->getOperand(1).getValueType())
+ };
+
+ Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
+ DAG.getVTList(MVT::Other), Ops,
+ cast<StoreSDNode>(N)->getMemoryVT(),
+ cast<StoreSDNode>(N)->getMemOperand());
+ DCI.AddToWorklist(Val.getNode());
+ return Val;
+ }
+
+ // Turn STORE (BSWAP) -> sthbrx/stwbrx.
+ if (cast<StoreSDNode>(N)->isUnindexed() &&
+ N->getOperand(1).getOpcode() == ISD::BSWAP &&
+ N->getOperand(1).getNode()->hasOneUse() &&
+ (N->getOperand(1).getValueType() == MVT::i32 ||
+ N->getOperand(1).getValueType() == MVT::i16 ||
+ (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
+ TM.getSubtarget<PPCSubtarget>().isPPC64() &&
+ N->getOperand(1).getValueType() == MVT::i64))) {
+ SDValue BSwapOp = N->getOperand(1).getOperand(0);
+ // Do an any-extend to 32-bits if this is a half-word input.
+ if (BSwapOp.getValueType() == MVT::i16)
+ BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
+
+ SDValue Ops[] = {
+ N->getOperand(0), BSwapOp, N->getOperand(2),
+ DAG.getValueType(N->getOperand(1).getValueType())
+ };
+ return
+ DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
+ Ops, cast<StoreSDNode>(N)->getMemoryVT(),
+ cast<StoreSDNode>(N)->getMemOperand());
+ }
+ break;
+ case ISD::LOAD: {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ EVT VT = LD->getValueType(0);
+ Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
+ unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
+ if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
+ TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
+ (VT == MVT::v16i8 || VT == MVT::v8i16 ||
+ VT == MVT::v4i32 || VT == MVT::v4f32) &&
+ LD->getAlignment() < ABIAlignment) {
+ // This is a type-legal unaligned Altivec load.
+ SDValue Chain = LD->getChain();
+ SDValue Ptr = LD->getBasePtr();
+ bool isLittleEndian = Subtarget.isLittleEndian();
+
+ // This implements the loading of unaligned vectors as described in
+ // the venerable Apple Velocity Engine overview. Specifically:
+ // https://developer.apple.com/hardwaredrivers/ve/alignment.html
+ // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
+ //
+ // The general idea is to expand a sequence of one or more unaligned
+ // loads into an alignment-based permutation-control instruction (lvsl
+ // or lvsr), a series of regular vector loads (which always truncate
+ // their input address to an aligned address), and a series of
+ // permutations. The results of these permutations are the requested
+ // loaded values. The trick is that the last "extra" load is not taken
+ // from the address you might suspect (sizeof(vector) bytes after the
+ // last requested load), but rather sizeof(vector) - 1 bytes after the
+ // last requested vector. The point of this is to avoid a page fault if
+ // the base address happened to be aligned. This works because if the
+ // base address is aligned, then adding less than a full vector length
+ // will cause the last vector in the sequence to be (re)loaded.
+ // Otherwise, the next vector will be fetched as you might suspect was
+ // necessary.
+
+ // We might be able to reuse the permutation generation from
+ // a different base address offset from this one by an aligned amount.
+ // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
+ // optimization later.
+ Intrinsic::ID Intr = (isLittleEndian ?
+ Intrinsic::ppc_altivec_lvsr :
+ Intrinsic::ppc_altivec_lvsl);
+ SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, MVT::v16i8);
+
+ // Refine the alignment of the original load (a "new" load created here
+ // which was identical to the first except for the alignment would be
+ // merged with the existing node regardless).
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(LD->getPointerInfo(),
+ LD->getMemOperand()->getFlags(),
+ LD->getMemoryVT().getStoreSize(),
+ ABIAlignment);
+ LD->refineAlignment(MMO);
+ SDValue BaseLoad = SDValue(LD, 0);
+
+ // Note that the value of IncOffset (which is provided to the next
+ // load's pointer info offset value, and thus used to calculate the
+ // alignment), and the value of IncValue (which is actually used to
+ // increment the pointer value) are different! This is because we
+ // require the next load to appear to be aligned, even though it
+ // is actually offset from the base pointer by a lesser amount.
+ int IncOffset = VT.getSizeInBits() / 8;
+ int IncValue = IncOffset;
+
+ // Walk (both up and down) the chain looking for another load at the real
+ // (aligned) offset (the alignment of the other load does not matter in
+ // this case). If found, then do not use the offset reduction trick, as
+ // that will prevent the loads from being later combined (as they would
+ // otherwise be duplicates).
+ if (!findConsecutiveLoad(LD, DAG))
+ --IncValue;
+
+ SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+
+ SDValue ExtraLoad =
+ DAG.getLoad(VT, dl, Chain, Ptr,
+ LD->getPointerInfo().getWithOffset(IncOffset),
+ LD->isVolatile(), LD->isNonTemporal(),
+ LD->isInvariant(), ABIAlignment);
+
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ BaseLoad.getValue(1), ExtraLoad.getValue(1));
+
+ if (BaseLoad.getValueType() != MVT::v4i32)
+ BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
+
+ if (ExtraLoad.getValueType() != MVT::v4i32)
+ ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
+
+ // Because vperm has a big-endian bias, we must reverse the order
+ // of the input vectors and complement the permute control vector
+ // when generating little endian code. We have already handled the
+ // latter by using lvsr instead of lvsl, so just reverse BaseLoad
+ // and ExtraLoad here.
+ SDValue Perm;
+ if (isLittleEndian)
+ Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
+ ExtraLoad, BaseLoad, PermCntl, DAG, dl);
+ else
+ Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
+ BaseLoad, ExtraLoad, PermCntl, DAG, dl);
+
+ if (VT != MVT::v4i32)
+ Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
+
+ // Now we need to be really careful about how we update the users of the
+ // original load. We cannot just call DCI.CombineTo (or
+ // DAG.ReplaceAllUsesWith for that matter), because the load still has
+ // uses created here (the permutation for example) that need to stay.
+ SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+ while (UI != UE) {
+ SDUse &Use = UI.getUse();
+ SDNode *User = *UI;
+ // Note: BaseLoad is checked here because it might not be N, but a
+ // bitcast of N.
+ if (User == Perm.getNode() || User == BaseLoad.getNode() ||
+ User == TF.getNode() || Use.getResNo() > 1) {
+ ++UI;
+ continue;
+ }
+
+ SDValue To = Use.getResNo() ? TF : Perm;
+ ++UI;
+
+ SmallVector<SDValue, 8> Ops;
+ for (const SDUse &O : User->ops()) {
+ if (O == Use)
+ Ops.push_back(To);
+ else
+ Ops.push_back(O);
+ }
+
+ DAG.UpdateNodeOperands(User, Ops);
+ }
+
+ return SDValue(N, 0);
+ }
+ }
+ break;
+ case ISD::INTRINSIC_WO_CHAIN: {
+ bool isLittleEndian = Subtarget.isLittleEndian();
+ Intrinsic::ID Intr = (isLittleEndian ?
+ Intrinsic::ppc_altivec_lvsr :
+ Intrinsic::ppc_altivec_lvsl);
+ if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() == Intr &&
+ N->getOperand(1)->getOpcode() == ISD::ADD) {
+ SDValue Add = N->getOperand(1);
+
+ if (DAG.MaskedValueIsZero(Add->getOperand(1),
+ APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
+ Add.getValueType().getScalarType().getSizeInBits()))) {
+ SDNode *BasePtr = Add->getOperand(0).getNode();
+ for (SDNode::use_iterator UI = BasePtr->use_begin(),
+ UE = BasePtr->use_end(); UI != UE; ++UI) {
+ if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
+ cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
+ Intr) {
+ // We've found another LVSL/LVSR, and this address is an aligned
+ // multiple of that one. The results will be the same, so use the
+ // one we've just found instead.
+
+ return SDValue(*UI, 0);
+ }
+ }
+ }
+ }
+ }
+
+ break;
+ case ISD::BSWAP:
+ // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
+ if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
+ N->getOperand(0).hasOneUse() &&
+ (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
+ (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
+ TM.getSubtarget<PPCSubtarget>().isPPC64() &&
+ N->getValueType(0) == MVT::i64))) {
+ SDValue Load = N->getOperand(0);
+ LoadSDNode *LD = cast<LoadSDNode>(Load);
+ // Create the byte-swapping load.
+ SDValue Ops[] = {
+ LD->getChain(), // Chain
+ LD->getBasePtr(), // Ptr
+ DAG.getValueType(N->getValueType(0)) // VT
+ };
+ SDValue BSLoad =
+ DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
+ DAG.getVTList(N->getValueType(0) == MVT::i64 ?
+ MVT::i64 : MVT::i32, MVT::Other),
+ Ops, LD->getMemoryVT(), LD->getMemOperand());
+
+ // If this is an i16 load, insert the truncate.
+ SDValue ResVal = BSLoad;
+ if (N->getValueType(0) == MVT::i16)
+ ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
+
+ // First, combine the bswap away. This makes the value produced by the
+ // load dead.
+ DCI.CombineTo(N, ResVal);
+
+ // Next, combine the load away, we give it a bogus result value but a real
+ // chain result. The result value is dead because the bswap is dead.
+ DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
+
+ // Return N so it doesn't get rechecked!
+ return SDValue(N, 0);
+ }
+
+ break;
+ case PPCISD::VCMP: {
+ // If a VCMPo node already exists with exactly the same operands as this
+ // node, use its result instead of this node (VCMPo computes both a CR6 and
+ // a normal output).
+ //
+ if (!N->getOperand(0).hasOneUse() &&
+ !N->getOperand(1).hasOneUse() &&
+ !N->getOperand(2).hasOneUse()) {
+
+ // Scan all of the users of the LHS, looking for VCMPo's that match.
+ SDNode *VCMPoNode = nullptr;
+
+ SDNode *LHSN = N->getOperand(0).getNode();
+ for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
+ UI != E; ++UI)
+ if (UI->getOpcode() == PPCISD::VCMPo &&
+ UI->getOperand(1) == N->getOperand(1) &&
+ UI->getOperand(2) == N->getOperand(2) &&
+ UI->getOperand(0) == N->getOperand(0)) {
+ VCMPoNode = *UI;
+ break;
+ }
+
+ // If there is no VCMPo node, or if the flag value has a single use, don't
+ // transform this.
+ if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
+ break;
+
+ // Look at the (necessarily single) use of the flag value. If it has a
+ // chain, this transformation is more complex. Note that multiple things
+ // could use the value result, which we should ignore.
+ SDNode *FlagUser = nullptr;
+ for (SDNode::use_iterator UI = VCMPoNode->use_begin();
+ FlagUser == nullptr; ++UI) {
+ assert(UI != VCMPoNode->use_end() && "Didn't find user!");
+ SDNode *User = *UI;
+ for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
+ if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
+ FlagUser = User;
+ break;
+ }
+ }
+ }
+
+ // If the user is a MFOCRF instruction, we know this is safe.
+ // Otherwise we give up for right now.
+ if (FlagUser->getOpcode() == PPCISD::MFOCRF)
+ return SDValue(VCMPoNode, 0);
+ }
+ break;
+ }
+ case ISD::BRCOND: {
+ SDValue Cond = N->getOperand(1);
+ SDValue Target = N->getOperand(2);
+
+ if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
+ cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
+ Intrinsic::ppc_is_decremented_ctr_nonzero) {
+
+ // We now need to make the intrinsic dead (it cannot be instruction
+ // selected).
+ DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
+ assert(Cond.getNode()->hasOneUse() &&
+ "Counter decrement has more than one use");
+
+ return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
+ N->getOperand(0), Target);
+ }
+ }
+ break;
+ case ISD::BR_CC: {
+ // If this is a branch on an altivec predicate comparison, lower this so
+ // that we don't have to do a MFOCRF: instead, branch directly on CR6. This
+ // lowering is done pre-legalize, because the legalizer lowers the predicate
+ // compare down to code that is difficult to reassemble.
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
+ SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
+
+ // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
+ // value. If so, pass-through the AND to get to the intrinsic.
+ if (LHS.getOpcode() == ISD::AND &&
+ LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
+ cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
+ Intrinsic::ppc_is_decremented_ctr_nonzero &&
+ isa<ConstantSDNode>(LHS.getOperand(1)) &&
+ !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
+ isZero())
+ LHS = LHS.getOperand(0);
+
+ if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
+ cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
+ Intrinsic::ppc_is_decremented_ctr_nonzero &&
+ isa<ConstantSDNode>(RHS)) {
+ assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
+ "Counter decrement comparison is not EQ or NE");
+
+ unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
+ bool isBDNZ = (CC == ISD::SETEQ && Val) ||
+ (CC == ISD::SETNE && !Val);
+
+ // We now need to make the intrinsic dead (it cannot be instruction
+ // selected).
+ DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
+ assert(LHS.getNode()->hasOneUse() &&
+ "Counter decrement has more than one use");
+
+ return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
+ N->getOperand(0), N->getOperand(4));
+ }
+
+ int CompareOpc;
+ bool isDot;
+
+ if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
+ isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
+ getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
+ assert(isDot && "Can't compare against a vector result!");
+
+ // If this is a comparison against something other than 0/1, then we know
+ // that the condition is never/always true.
+ unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
+ if (Val != 0 && Val != 1) {
+ if (CC == ISD::SETEQ) // Cond never true, remove branch.
+ return N->getOperand(0);
+ // Always !=, turn it into an unconditional branch.
+ return DAG.getNode(ISD::BR, dl, MVT::Other,
+ N->getOperand(0), N->getOperand(4));
+ }
+
+ bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
+
+ // Create the PPCISD altivec 'dot' comparison node.
+ SDValue Ops[] = {
+ LHS.getOperand(2), // LHS of compare
+ LHS.getOperand(3), // RHS of compare
+ DAG.getConstant(CompareOpc, MVT::i32)
+ };
+ EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
+ SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
+
+ // Unpack the result based on how the target uses it.
+ PPC::Predicate CompOpc;
+ switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
+ default: // Can't happen, don't crash on invalid number though.
+ case 0: // Branch on the value of the EQ bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
+ break;
+ case 1: // Branch on the inverted value of the EQ bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
+ break;
+ case 2: // Branch on the value of the LT bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
+ break;
+ case 3: // Branch on the inverted value of the LT bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
+ break;
+ }
+
+ return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
+ DAG.getConstant(CompOpc, MVT::i32),
+ DAG.getRegister(PPC::CR6, MVT::i32),
+ N->getOperand(4), CompNode.getValue(1));
+ }
+ break;
+ }
+ }
+
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
+ switch (Op.getOpcode()) {
+ default: break;
+ case PPCISD::LBRX: {
+ // lhbrx is known to have the top bits cleared out.
+ if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
+ KnownZero = 0xFFFF0000;
+ break;
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
+ default: break;
+ case Intrinsic::ppc_altivec_vcmpbfp_p:
+ case Intrinsic::ppc_altivec_vcmpeqfp_p:
+ case Intrinsic::ppc_altivec_vcmpequb_p:
+ case Intrinsic::ppc_altivec_vcmpequh_p:
+ case Intrinsic::ppc_altivec_vcmpequw_p:
+ case Intrinsic::ppc_altivec_vcmpgefp_p:
+ case Intrinsic::ppc_altivec_vcmpgtfp_p:
+ case Intrinsic::ppc_altivec_vcmpgtsb_p:
+ case Intrinsic::ppc_altivec_vcmpgtsh_p:
+ case Intrinsic::ppc_altivec_vcmpgtsw_p:
+ case Intrinsic::ppc_altivec_vcmpgtub_p:
+ case Intrinsic::ppc_altivec_vcmpgtuh_p:
+ case Intrinsic::ppc_altivec_vcmpgtuw_p:
+ KnownZero = ~1U; // All bits but the low one are known to be zero.
+ break;
+ }
+ }
+ }
+}
+
+
+/// getConstraintType - Given a constraint, return the type of
+/// constraint it is for this target.
+PPCTargetLowering::ConstraintType
+PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'b':
+ case 'r':
+ case 'f':
+ case 'v':
+ case 'y':
+ return C_RegisterClass;
+ case 'Z':
+ // FIXME: While Z does indicate a memory constraint, it specifically
+ // indicates an r+r address (used in conjunction with the 'y' modifier
+ // in the replacement string). Currently, we're forcing the base
+ // register to be r0 in the asm printer (which is interpreted as zero)
+ // and forming the complete address in the second register. This is
+ // suboptimal.
+ return C_Memory;
+ }
+ } else if (Constraint == "wc") { // individual CR bits.
+ return C_RegisterClass;
+ } else if (Constraint == "wa" || Constraint == "wd" ||
+ Constraint == "wf" || Constraint == "ws") {
+ return C_RegisterClass; // VSX registers.
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+PPCTargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+
+ // Look at the constraint type.
+ if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
+ return CW_Register; // an individual CR bit.
+ else if ((StringRef(constraint) == "wa" ||
+ StringRef(constraint) == "wd" ||
+ StringRef(constraint) == "wf") &&
+ type->isVectorTy())
+ return CW_Register;
+ else if (StringRef(constraint) == "ws" && type->isDoubleTy())
+ return CW_Register;
+
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'b':
+ if (type->isIntegerTy())
+ weight = CW_Register;
+ break;
+ case 'f':
+ if (type->isFloatTy())
+ weight = CW_Register;
+ break;
+ case 'd':
+ if (type->isDoubleTy())
+ weight = CW_Register;
+ break;
+ case 'v':
+ if (type->isVectorTy())
+ weight = CW_Register;
+ break;
+ case 'y':
+ weight = CW_Register;
+ break;
+ case 'Z':
+ weight = CW_Memory;
+ break;
+ }
+ return weight;
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const {
+ if (Constraint.size() == 1) {
+ // GCC RS6000 Constraint Letters
+ switch (Constraint[0]) {
+ case 'b': // R1-R31
+ if (VT == MVT::i64 && Subtarget.isPPC64())
+ return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
+ return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
+ case 'r': // R0-R31
+ if (VT == MVT::i64 && Subtarget.isPPC64())
+ return std::make_pair(0U, &PPC::G8RCRegClass);
+ return std::make_pair(0U, &PPC::GPRCRegClass);
+ case 'f':
+ if (VT == MVT::f32 || VT == MVT::i32)
+ return std::make_pair(0U, &PPC::F4RCRegClass);
+ if (VT == MVT::f64 || VT == MVT::i64)
+ return std::make_pair(0U, &PPC::F8RCRegClass);
+ break;
+ case 'v':
+ return std::make_pair(0U, &PPC::VRRCRegClass);
+ case 'y': // crrc
+ return std::make_pair(0U, &PPC::CRRCRegClass);
+ }
+ } else if (Constraint == "wc") { // an individual CR bit.
+ return std::make_pair(0U, &PPC::CRBITRCRegClass);
+ } else if (Constraint == "wa" || Constraint == "wd" ||
+ Constraint == "wf") {
+ return std::make_pair(0U, &PPC::VSRCRegClass);
+ } else if (Constraint == "ws") {
+ return std::make_pair(0U, &PPC::VSFRCRegClass);
+ }
+
+ std::pair<unsigned, const TargetRegisterClass*> R =
+ TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+
+ // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
+ // (which we call X[0-9]+). If a 64-bit value has been requested, and a
+ // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
+ // register.
+ // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
+ // the AsmName field from *RegisterInfo.td, then this would not be necessary.
+ if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
+ PPC::GPRCRegClass.contains(R.first)) {
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ return std::make_pair(TRI->getMatchingSuperReg(R.first,
+ PPC::sub_32, &PPC::G8RCRegClass),
+ &PPC::G8RCRegClass);
+ }
+
+ return R;
+}
+
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result;
+
+ // Only support length 1 constraints.
+ if (Constraint.length() > 1) return;
+
+ char Letter = Constraint[0];
+ switch (Letter) {
+ default: break;
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P': {
+ ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
+ if (!CST) return; // Must be an immediate to match.
+ unsigned Value = CST->getZExtValue();
+ switch (Letter) {
+ default: llvm_unreachable("Unknown constraint letter!");
+ case 'I': // "I" is a signed 16-bit constant.
+ if ((short)Value == (int)Value)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
+ case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
+ if ((short)Value == 0)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
+ if ((Value >> 16) == 0)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'M': // "M" is a constant that is greater than 31.
+ if (Value > 31)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'N': // "N" is a positive constant that is an exact power of two.
+ if ((int)Value > 0 && isPowerOf2_32(Value))
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'O': // "O" is the constant zero.
+ if (Value == 0)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
+ if ((short)-Value == (int)-Value)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ }
+ break;
+ }
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+
+ // Handle standard constraint letters.
+ TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+// isLegalAddressingMode - Return true if the addressing mode represented
+// by AM is legal for this target, for a load/store of the specified type.
+bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ // FIXME: PPC does not allow r+i addressing modes for vectors!
+
+ // PPC allows a sign-extended 16-bit immediate field.
+ if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
+ return false;
+
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ // PPC only support r+r,
+ switch (AM.Scale) {
+ case 0: // "r+i" or just "i", depending on HasBaseReg.
+ break;
+ case 1:
+ if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
+ return false;
+ // Otherwise we have r+r or r+i.
+ break;
+ case 2:
+ if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
+ return false;
+ // Allow 2*r as r+r.
+ break;
+ default:
+ // No other scales are supported.
+ return false;
+ }
+
+ return true;
+}
+
+SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+
+ // Make sure the function does not optimize away the store of the RA to
+ // the stack.
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ FuncInfo->setLRStoreRequired();
+ bool isPPC64 = Subtarget.isPPC64();
+ bool isDarwinABI = Subtarget.isDarwinABI();
+
+ if (Depth > 0) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset =
+
+ DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
+ isPPC64? MVT::i64 : MVT::i32);
+ return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Just load the return address off the stack.
+ SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
+ return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ RetAddrFI, MachinePointerInfo(), false, false, false, 0);
+}
+
+SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = PtrVT == MVT::i64;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ // Naked functions never have a frame pointer, and so we use r1. For all
+ // other functions, this decision must be delayed until during PEI.
+ unsigned FrameReg;
+ if (MF.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::Naked))
+ FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
+ else
+ FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
+
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
+ PtrVT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
+ FrameAddr, MachinePointerInfo(), false, false,
+ false, 0);
+ return FrameAddr;
+}
+
+// FIXME? Maybe this could be a TableGen attribute on some registers and
+// this table could be generated automatically from RegInfo.
+unsigned PPCTargetLowering::getRegisterByName(const char* RegName,
+ EVT VT) const {
+ bool isPPC64 = Subtarget.isPPC64();
+ bool isDarwinABI = Subtarget.isDarwinABI();
+
+ if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
+ (!isPPC64 && VT != MVT::i32))
+ report_fatal_error("Invalid register global variable type");
+
+ bool is64Bit = isPPC64 && VT == MVT::i64;
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
+ .Case("r2", isDarwinABI ? 0 : (is64Bit ? PPC::X2 : PPC::R2))
+ .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
+ (is64Bit ? PPC::X13 : PPC::R13))
+ .Default(0);
+
+ if (Reg)
+ return Reg;
+ report_fatal_error("Invalid register name global variable");
+}
+
+bool
+PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The PowerPC target isn't yet aware of offsets.
+ return false;
+}
+
+/// getOptimalMemOpType - Returns the target specific optimal type for load
+/// and store operations as a result of memset, memcpy, and memmove
+/// lowering. If DstAlign is zero that means it's safe to destination
+/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
+/// means there isn't a need to check it against alignment requirement,
+/// probably because the source does not need to be loaded. If 'IsMemset' is
+/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
+/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
+/// source is constant so it does not need to be loaded.
+/// It returns EVT::Other if the type should be determined using generic
+/// target-independent logic.
+EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ if (Subtarget.isPPC64()) {
+ return MVT::i64;
+ } else {
+ return MVT::i32;
+ }
+}
+
+/// \brief Returns true if it is beneficial to convert a load of a constant
+/// to just the constant itself.
+bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0 || BitSize > 64)
+ return false;
+ return true;
+}
+
+bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+ unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
+ unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
+ return NumBits1 == 64 && NumBits2 == 32;
+}
+
+bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
+ if (!VT1.isInteger() || !VT2.isInteger())
+ return false;
+ unsigned NumBits1 = VT1.getSizeInBits();
+ unsigned NumBits2 = VT2.getSizeInBits();
+ return NumBits1 == 64 && NumBits2 == 32;
+}
+
+bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
+ return isInt<16>(Imm) || isUInt<16>(Imm);
+}
+
+bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
+ return isInt<16>(Imm) || isUInt<16>(Imm);
+}
+
+bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
+ unsigned,
+ bool *Fast) const {
+ if (DisablePPCUnaligned)
+ return false;
+
+ // PowerPC supports unaligned memory access for simple non-vector types.
+ // Although accessing unaligned addresses is not as efficient as accessing
+ // aligned addresses, it is generally more efficient than manual expansion,
+ // and generally only traps for software emulation when crossing page
+ // boundaries.
+
+ if (!VT.isSimple())
+ return false;
+
+ if (VT.getSimpleVT().isVector()) {
+ if (Subtarget.hasVSX()) {
+ if (VT != MVT::v2f64 && VT != MVT::v2i64)
+ return false;
+ } else {
+ return false;
+ }
+ }
+
+ if (VT == MVT::ppcf128)
+ return false;
+
+ if (Fast)
+ *Fast = true;
+
+ return true;
+}
+
+bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ case MVT::f64:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+bool
+PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
+ EVT VT , unsigned DefinedValues) const {
+ if (VT == MVT::v2i64)
+ return false;
+
+ return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
+}
+
+Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
+ if (DisableILPPref || Subtarget.enableMachineScheduler())
+ return TargetLowering::getSchedulingPreference(N);
+
+ return Sched::ILP;
+}
+
+// Create a fast isel object.
+FastISel *
+PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo) const {
+ return PPC::createFastISel(FuncInfo, LibInfo);
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.h b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.h
new file mode 100644
index 0000000..74d3c65
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.h
@@ -0,0 +1,717 @@
+//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that PPC uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
+#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
+
+#include "PPC.h"
+#include "PPCInstrInfo.h"
+#include "PPCRegisterInfo.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLowering.h"
+
+namespace llvm {
+ namespace PPCISD {
+ enum NodeType {
+ // Start the numbering where the builtin ops and target ops leave off.
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ /// FSEL - Traditional three-operand fsel node.
+ ///
+ FSEL,
+
+ /// FCFID - The FCFID instruction, taking an f64 operand and producing
+ /// and f64 value containing the FP representation of the integer that
+ /// was temporarily in the f64 operand.
+ FCFID,
+
+ /// Newer FCFID[US] integer-to-floating-point conversion instructions for
+ /// unsigned integers and single-precision outputs.
+ FCFIDU, FCFIDS, FCFIDUS,
+
+ /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
+ /// operand, producing an f64 value containing the integer representation
+ /// of that FP value.
+ FCTIDZ, FCTIWZ,
+
+ /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
+ /// unsigned integers.
+ FCTIDUZ, FCTIWUZ,
+
+ /// Reciprocal estimate instructions (unary FP ops).
+ FRE, FRSQRTE,
+
+ // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
+ // three v4f32 operands and producing a v4f32 result.
+ VMADDFP, VNMSUBFP,
+
+ /// VPERM - The PPC VPERM Instruction.
+ ///
+ VPERM,
+
+ /// Hi/Lo - These represent the high and low 16-bit parts of a global
+ /// address respectively. These nodes have two operands, the first of
+ /// which must be a TargetGlobalAddress, and the second of which must be a
+ /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
+ /// though these are usually folded into other nodes.
+ Hi, Lo,
+
+ TOC_ENTRY,
+
+ /// The following two target-specific nodes are used for calls through
+ /// function pointers in the 64-bit SVR4 ABI.
+
+ /// Like a regular LOAD but additionally taking/producing a flag.
+ LOAD,
+
+ /// Like LOAD (taking/producing a flag), but using r2 as hard-coded
+ /// destination.
+ LOAD_TOC,
+
+ /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
+ /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
+ /// compute an allocation on the stack.
+ DYNALLOC,
+
+ /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
+ /// at function entry, used for PIC code.
+ GlobalBaseReg,
+
+ /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
+ /// shift amounts. These nodes are generated by the multi-precision shift
+ /// code.
+ SRL, SRA, SHL,
+
+ /// CALL - A direct function call.
+ /// CALL_NOP is a call with the special NOP which follows 64-bit
+ /// SVR4 calls.
+ CALL, CALL_NOP,
+
+ /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
+ /// MTCTR instruction.
+ MTCTR,
+
+ /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
+ /// BCTRL instruction.
+ BCTRL,
+
+ /// Return with a flag operand, matched by 'blr'
+ RET_FLAG,
+
+ /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
+ /// This copies the bits corresponding to the specified CRREG into the
+ /// resultant GPR. Bits corresponding to other CR regs are undefined.
+ MFOCRF,
+
+ // FIXME: Remove these once the ANDI glue bug is fixed:
+ /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
+ /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
+ /// implement truncation of i32 or i64 to i1.
+ ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
+
+ // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
+ EH_SJLJ_SETJMP,
+
+ // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
+ EH_SJLJ_LONGJMP,
+
+ /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
+ /// instructions. For lack of better number, we use the opcode number
+ /// encoding for the OPC field to identify the compare. For example, 838
+ /// is VCMPGTSH.
+ VCMP,
+
+ /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
+ /// altivec VCMP*o instructions. For lack of better number, we use the
+ /// opcode number encoding for the OPC field to identify the compare. For
+ /// example, 838 is VCMPGTSH.
+ VCMPo,
+
+ /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
+ /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
+ /// condition register to branch on, OPC is the branch opcode to use (e.g.
+ /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
+ /// an optional input flag argument.
+ COND_BRANCH,
+
+ /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
+ /// loops.
+ BDNZ, BDZ,
+
+ /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
+ /// towards zero. Used only as part of the long double-to-int
+ /// conversion sequence.
+ FADDRTZ,
+
+ /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
+ MFFS,
+
+ /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
+ /// reserve indexed. This is used to implement atomic operations.
+ LARX,
+
+ /// STCX = This corresponds to PPC stcx. instrcution: store conditional
+ /// indexed. This is used to implement atomic operations.
+ STCX,
+
+ /// TC_RETURN - A tail call return.
+ /// operand #0 chain
+ /// operand #1 callee (register or absolute)
+ /// operand #2 stack adjustment
+ /// operand #3 optional in flag
+ TC_RETURN,
+
+ /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
+ CR6SET,
+ CR6UNSET,
+
+ /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
+ /// on PPC32.
+ PPC32_GOT,
+
+ /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
+ /// local dynamic TLS on PPC32.
+ PPC32_PICGOT,
+
+ /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
+ /// TLS model, produces an ADDIS8 instruction that adds the GOT
+ /// base to sym\@got\@tprel\@ha.
+ ADDIS_GOT_TPREL_HA,
+
+ /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
+ /// TLS model, produces a LD instruction with base register G8RReg
+ /// and offset sym\@got\@tprel\@l. This completes the addition that
+ /// finds the offset of "sym" relative to the thread pointer.
+ LD_GOT_TPREL_L,
+
+ /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
+ /// model, produces an ADD instruction that adds the contents of
+ /// G8RReg to the thread pointer. Symbol contains a relocation
+ /// sym\@tls which is to be replaced by the thread pointer and
+ /// identifies to the linker that the instruction is part of a
+ /// TLS sequence.
+ ADD_TLS,
+
+ /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
+ /// model, produces an ADDIS8 instruction that adds the GOT base
+ /// register to sym\@got\@tlsgd\@ha.
+ ADDIS_TLSGD_HA,
+
+ /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
+ /// model, produces an ADDI8 instruction that adds G8RReg to
+ /// sym\@got\@tlsgd\@l.
+ ADDI_TLSGD_L,
+
+ /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
+ /// model, produces a call to __tls_get_addr(sym\@tlsgd).
+ GET_TLS_ADDR,
+
+ /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
+ /// model, produces an ADDIS8 instruction that adds the GOT base
+ /// register to sym\@got\@tlsld\@ha.
+ ADDIS_TLSLD_HA,
+
+ /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
+ /// model, produces an ADDI8 instruction that adds G8RReg to
+ /// sym\@got\@tlsld\@l.
+ ADDI_TLSLD_L,
+
+ /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
+ /// model, produces a call to __tls_get_addr(sym\@tlsld).
+ GET_TLSLD_ADDR,
+
+ /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
+ /// local-dynamic TLS model, produces an ADDIS8 instruction
+ /// that adds X3 to sym\@dtprel\@ha. The Chain operand is needed
+ /// to tie this in place following a copy to %X3 from the result
+ /// of a GET_TLSLD_ADDR.
+ ADDIS_DTPREL_HA,
+
+ /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
+ /// model, produces an ADDI8 instruction that adds G8RReg to
+ /// sym\@got\@dtprel\@l.
+ ADDI_DTPREL_L,
+
+ /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
+ /// during instruction selection to optimize a BUILD_VECTOR into
+ /// operations on splats. This is necessary to avoid losing these
+ /// optimizations due to constant folding.
+ VADD_SPLAT,
+
+ /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
+ /// operand identifies the operating system entry point.
+ SC,
+
+ /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
+ /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
+ /// the GPRC input, then stores it through Ptr. Type can be either i16 or
+ /// i32.
+ STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
+
+ /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
+ /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
+ /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
+ /// or i32.
+ LBRX,
+
+ /// STFIWX - The STFIWX instruction. The first operand is an input token
+ /// chain, then an f64 value to store, then an address to store it to.
+ STFIWX,
+
+ /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
+ /// load which sign-extends from a 32-bit integer value into the
+ /// destination 64-bit register.
+ LFIWAX,
+
+ /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
+ /// load which zero-extends from a 32-bit integer value into the
+ /// destination 64-bit register.
+ LFIWZX,
+
+ /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
+ /// produces an ADDIS8 instruction that adds the TOC base register to
+ /// sym\@toc\@ha.
+ ADDIS_TOC_HA,
+
+ /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
+ /// produces a LD instruction with base register G8RReg and offset
+ /// sym\@toc\@l. Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
+ LD_TOC_L,
+
+ /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
+ /// an ADDI8 instruction that adds G8RReg to sym\@toc\@l.
+ /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
+ ADDI_TOC_L
+ };
+ }
+
+ /// Define some predicates that are used for node matching.
+ namespace PPC {
+ /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
+ /// VPKUHUM instruction.
+ bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
+ SelectionDAG &DAG);
+
+ /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
+ /// VPKUWUM instruction.
+ bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
+ SelectionDAG &DAG);
+
+ /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
+ /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
+ bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
+ unsigned ShuffleKind, SelectionDAG &DAG);
+
+ /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
+ /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
+ bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
+ unsigned ShuffleKind, SelectionDAG &DAG);
+
+ /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
+ /// shift amount, otherwise return -1.
+ int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
+ SelectionDAG &DAG);
+
+ /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a splat of a single element that is suitable for input to
+ /// VSPLTB/VSPLTH/VSPLTW.
+ bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
+
+ /// isAllNegativeZeroVector - Returns true if all elements of build_vector
+ /// are -0.0.
+ bool isAllNegativeZeroVector(SDNode *N);
+
+ /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
+ /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
+ unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
+
+ /// get_VSPLTI_elt - If this is a build_vector of constants which can be
+ /// formed by using a vspltis[bhw] instruction of the specified element
+ /// size, return the constant being splatted. The ByteSize field indicates
+ /// the number of bytes of each element [124] -> [bhw].
+ SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
+ }
+
+ class PPCSubtarget;
+ class PPCTargetLowering : public TargetLowering {
+ const PPCSubtarget &Subtarget;
+
+ public:
+ explicit PPCTargetLowering(PPCTargetMachine &TM);
+
+ /// getTargetNodeName() - This method returns the name of a target specific
+ /// DAG node.
+ const char *getTargetNodeName(unsigned Opcode) const override;
+
+ MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
+
+ /// getSetCCResultType - Return the ISD::SETCC ValueType
+ EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
+
+ /// getPreIndexedAddressParts - returns true by value, base pointer and
+ /// offset pointer and addressing mode by reference if the node's address
+ /// can be legally represented as pre-indexed load / store address.
+ bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const override;
+
+ /// SelectAddressRegReg - Given the specified addressed, check to see if it
+ /// can be represented as an indexed [r+r] operation. Returns false if it
+ /// can be more efficiently represented with [r+imm].
+ bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
+ SelectionDAG &DAG) const;
+
+ /// SelectAddressRegImm - Returns true if the address N can be represented
+ /// by a base register plus a signed 16-bit displacement [r+imm], and if it
+ /// is not better represented as reg+reg. If Aligned is true, only accept
+ /// displacements suitable for STD and friends, i.e. multiples of 4.
+ bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
+ SelectionDAG &DAG, bool Aligned) const;
+
+ /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
+ /// represented as an indexed [r+r] operation.
+ bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
+ SelectionDAG &DAG) const;
+
+ Sched::Preference getSchedulingPreference(SDNode *N) const override;
+
+ /// LowerOperation - Provide custom lowering hooks for some operations.
+ ///
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+
+ /// ReplaceNodeResults - Replace the results of node with an illegal result
+ /// type with new values built out of custom code.
+ ///
+ void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const override;
+
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+
+ unsigned getRegisterByName(const char* RegName, EVT VT) const override;
+
+ void computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth = 0) const override;
+
+ MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const override;
+ MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
+ MachineBasicBlock *MBB, bool is64Bit,
+ unsigned BinOpcode) const;
+ MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ bool is8bit, unsigned Opcode) const;
+
+ MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+ MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+ ConstraintType
+ getConstraintType(const std::string &Constraint) const override;
+
+ /// Examine constraint string and operand type and determine a weight value.
+ /// The operand object must already have been set up with the operand type.
+ ConstraintWeight getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const override;
+
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const override;
+
+ /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+ /// function arguments in the caller parameter area. This is the actual
+ /// alignment, not its logarithm.
+ unsigned getByValTypeAlignment(Type *Ty) const override;
+
+ /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+ /// vector. If it is invalid, don't add anything to Ops.
+ void LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const override;
+
+ /// isLegalAddressingMode - Return true if the addressing mode represented
+ /// by AM is legal for this target, for a load/store of the specified type.
+ bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
+
+ /// isLegalICmpImmediate - Return true if the specified immediate is legal
+ /// icmp immediate, that is the target has icmp instructions which can
+ /// compare a register against the immediate without having to materialize
+ /// the immediate into a register.
+ bool isLegalICmpImmediate(int64_t Imm) const override;
+
+ /// isLegalAddImmediate - Return true if the specified immediate is legal
+ /// add immediate, that is the target has add instructions which can
+ /// add a register and the immediate without having to materialize
+ /// the immediate into a register.
+ bool isLegalAddImmediate(int64_t Imm) const override;
+
+ /// isTruncateFree - Return true if it's free to truncate a value of
+ /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
+ /// register X1 to i32 by referencing its sub-register R1.
+ bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
+ bool isTruncateFree(EVT VT1, EVT VT2) const override;
+
+ /// \brief Returns true if it is beneficial to convert a load of a constant
+ /// to just the constant itself.
+ bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const override;
+
+ bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
+
+ /// getOptimalMemOpType - Returns the target specific optimal type for load
+ /// and store operations as a result of memset, memcpy, and memmove
+ /// lowering. If DstAlign is zero that means it's safe to destination
+ /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
+ /// means there isn't a need to check it against alignment requirement,
+ /// probably because the source does not need to be loaded. If 'IsMemset' is
+ /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
+ /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
+ /// source is constant so it does not need to be loaded.
+ /// It returns EVT::Other if the type should be determined using generic
+ /// target-independent logic.
+ EVT
+ getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
+ MachineFunction &MF) const override;
+
+ /// Is unaligned memory access allowed for the given type, and is it fast
+ /// relative to software emulation.
+ bool allowsUnalignedMemoryAccesses(EVT VT,
+ unsigned AddrSpace,
+ bool *Fast = nullptr) const override;
+
+ /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
+ /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
+ /// expanded to FMAs when this method returns true, otherwise fmuladd is
+ /// expanded to fmul + fadd.
+ bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
+
+ // Should we expand the build vector with shuffles?
+ bool
+ shouldExpandBuildVectorWithShuffles(EVT VT,
+ unsigned DefinedValues) const override;
+
+ /// createFastISel - This method returns a target-specific FastISel object,
+ /// or null if the target does not support "fast" instruction selection.
+ FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo) const override;
+
+ /// \brief Returns true if an argument of type Ty needs to be passed in a
+ /// contiguous block of registers in calling convention CallConv.
+ bool functionArgumentNeedsConsecutiveRegisters(
+ Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
+ // We support any array type as "consecutive" block in the parameter
+ // save area. The element type defines the alignment requirement and
+ // whether the argument should go in GPRs, FPRs, or VRs if available.
+ //
+ // Note that clang uses this capability both to implement the ELFv2
+ // homogeneous float/vector aggregate ABI, and to avoid having to use
+ // "byval" when passing aggregates that might fully fit in registers.
+ return Ty->isArrayTy();
+ }
+
+ private:
+ SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
+ SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
+
+ bool
+ IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const;
+
+ SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
+ int SPDiff,
+ SDValue Chain,
+ SDValue &LROpOut,
+ SDValue &FPOpOut,
+ bool isDarwinABI,
+ SDLoc dl) const;
+
+ SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const;
+ SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const;
+ SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const;
+ SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const;
+ SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const;
+ SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const;
+ SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+ SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
+ bool isVarArg,
+ SelectionDAG &DAG,
+ SmallVector<std::pair<unsigned, SDValue>, 8>
+ &RegsToPass,
+ SDValue InFlag, SDValue Chain,
+ SDValue &Callee,
+ int SPDiff, unsigned NumBytes,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SmallVectorImpl<SDValue> &InVals) const;
+
+ SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue
+ LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ bool
+ CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const override;
+
+ SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const override;
+
+ SDValue
+ extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
+ SDValue ArgVal, SDLoc dl) const;
+
+ SDValue
+ LowerFormalArguments_Darwin(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+ SDValue
+ LowerFormalArguments_64SVR4(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+ SDValue
+ LowerFormalArguments_32SVR4(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+
+ SDValue
+ createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
+ SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
+ SelectionDAG &DAG, SDLoc dl) const;
+
+ SDValue
+ LowerCall_Darwin(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv,
+ bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+ SDValue
+ LowerCall_64SVR4(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv,
+ bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+ SDValue
+ LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
+ bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+
+ SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
+ SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
+ SDValue DAGCombineFastRecip(SDValue Op, DAGCombinerInfo &DCI) const;
+ SDValue DAGCombineFastRecipFSQRT(SDValue Op, DAGCombinerInfo &DCI) const;
+
+ CCAssignFn *useFastISelCCs(unsigned Flag) const;
+ };
+
+ namespace PPC {
+ FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo);
+ }
+
+ bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State);
+
+ bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State);
+
+ bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State);
+}
+
+#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstr64Bit.td b/contrib/llvm/lib/Target/PowerPC/PPCInstr64Bit.td
new file mode 100644
index 0000000..9ed384f
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstr64Bit.td
@@ -0,0 +1,1137 @@
+//===-- PPCInstr64Bit.td - The PowerPC 64-bit Support ------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the PowerPC 64-bit instructions. These patterns are used
+// both when in ppc64 mode and when in "use 64-bit extensions in 32-bit" mode.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// 64-bit operands.
+//
+def s16imm64 : Operand<i64> {
+ let PrintMethod = "printS16ImmOperand";
+ let EncoderMethod = "getImm16Encoding";
+ let ParserMatchClass = PPCS16ImmAsmOperand;
+ let DecoderMethod = "decodeSImmOperand<16>";
+}
+def u16imm64 : Operand<i64> {
+ let PrintMethod = "printU16ImmOperand";
+ let EncoderMethod = "getImm16Encoding";
+ let ParserMatchClass = PPCU16ImmAsmOperand;
+ let DecoderMethod = "decodeUImmOperand<16>";
+}
+def s17imm64 : Operand<i64> {
+ // This operand type is used for addis/lis to allow the assembler parser
+ // to accept immediates in the range -65536..65535 for compatibility with
+ // the GNU assembler. The operand is treated as 16-bit otherwise.
+ let PrintMethod = "printS16ImmOperand";
+ let EncoderMethod = "getImm16Encoding";
+ let ParserMatchClass = PPCS17ImmAsmOperand;
+ let DecoderMethod = "decodeSImmOperand<16>";
+}
+def tocentry : Operand<iPTR> {
+ let MIOperandInfo = (ops i64imm:$imm);
+}
+def tlsreg : Operand<i64> {
+ let EncoderMethod = "getTLSRegEncoding";
+ let ParserMatchClass = PPCTLSRegOperand;
+}
+def tlsgd : Operand<i64> {}
+def tlscall : Operand<i64> {
+ let PrintMethod = "printTLSCall";
+ let MIOperandInfo = (ops calltarget:$func, tlsgd:$sym);
+ let EncoderMethod = "getTLSCallEncoding";
+}
+
+//===----------------------------------------------------------------------===//
+// 64-bit transformation functions.
+//
+
+def SHL64 : SDNodeXForm<imm, [{
+ // Transformation function: 63 - imm
+ return getI32Imm(63 - N->getZExtValue());
+}]>;
+
+def SRL64 : SDNodeXForm<imm, [{
+ // Transformation function: 64 - imm
+ return N->getZExtValue() ? getI32Imm(64 - N->getZExtValue()) : getI32Imm(0);
+}]>;
+
+def HI32_48 : SDNodeXForm<imm, [{
+ // Transformation function: shift the immediate value down into the low bits.
+ return getI32Imm((unsigned short)(N->getZExtValue() >> 32));
+}]>;
+
+def HI48_64 : SDNodeXForm<imm, [{
+ // Transformation function: shift the immediate value down into the low bits.
+ return getI32Imm((unsigned short)(N->getZExtValue() >> 48));
+}]>;
+
+
+//===----------------------------------------------------------------------===//
+// Calls.
+//
+
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
+let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7 in {
+ let isBranch = 1, isIndirectBranch = 1, Uses = [CTR8] in {
+ def BCTR8 : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", IIC_BrB,
+ []>,
+ Requires<[In64BitMode]>;
+ def BCCCTR8 : XLForm_2_br<19, 528, 0, (outs), (ins pred:$cond),
+ "b${cond:cc}ctr${cond:pm} ${cond:reg}", IIC_BrB,
+ []>,
+ Requires<[In64BitMode]>;
+
+ def BCCTR8 : XLForm_2_br2<19, 528, 12, 0, (outs), (ins crbitrc:$bi),
+ "bcctr 12, $bi, 0", IIC_BrB, []>,
+ Requires<[In64BitMode]>;
+ def BCCTR8n : XLForm_2_br2<19, 528, 4, 0, (outs), (ins crbitrc:$bi),
+ "bcctr 4, $bi, 0", IIC_BrB, []>,
+ Requires<[In64BitMode]>;
+ }
+}
+
+let Defs = [LR8] in
+ def MovePCtoLR8 : Pseudo<(outs), (ins), "#MovePCtoLR8", []>,
+ PPC970_Unit_BRU;
+
+let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7 in {
+ let Defs = [CTR8], Uses = [CTR8] in {
+ def BDZ8 : BForm_1<16, 18, 0, 0, (outs), (ins condbrtarget:$dst),
+ "bdz $dst">;
+ def BDNZ8 : BForm_1<16, 16, 0, 0, (outs), (ins condbrtarget:$dst),
+ "bdnz $dst">;
+ }
+
+ let isReturn = 1, Defs = [CTR8], Uses = [CTR8, LR8, RM] in {
+ def BDZLR8 : XLForm_2_ext<19, 16, 18, 0, 0, (outs), (ins),
+ "bdzlr", IIC_BrB, []>;
+ def BDNZLR8 : XLForm_2_ext<19, 16, 16, 0, 0, (outs), (ins),
+ "bdnzlr", IIC_BrB, []>;
+ }
+}
+
+
+
+let isCall = 1, PPC970_Unit = 7, Defs = [LR8] in {
+ // Convenient aliases for call instructions
+ let Uses = [RM] in {
+ def BL8 : IForm<18, 0, 1, (outs), (ins calltarget:$func),
+ "bl $func", IIC_BrB, []>; // See Pat patterns below.
+
+ def BL8_TLS : IForm<18, 0, 1, (outs), (ins tlscall:$func),
+ "bl $func", IIC_BrB, []>;
+
+ def BLA8 : IForm<18, 1, 1, (outs), (ins abscalltarget:$func),
+ "bla $func", IIC_BrB, [(PPCcall (i64 imm:$func))]>;
+ }
+ let Uses = [RM], isCodeGenOnly = 1 in {
+ def BL8_NOP : IForm_and_DForm_4_zero<18, 0, 1, 24,
+ (outs), (ins calltarget:$func),
+ "bl $func\n\tnop", IIC_BrB, []>;
+
+ def BL8_NOP_TLS : IForm_and_DForm_4_zero<18, 0, 1, 24,
+ (outs), (ins tlscall:$func),
+ "bl $func\n\tnop", IIC_BrB, []>;
+
+ def BLA8_NOP : IForm_and_DForm_4_zero<18, 1, 1, 24,
+ (outs), (ins abscalltarget:$func),
+ "bla $func\n\tnop", IIC_BrB,
+ [(PPCcall_nop (i64 imm:$func))]>;
+ }
+ let Uses = [CTR8, RM] in {
+ def BCTRL8 : XLForm_2_ext<19, 528, 20, 0, 1, (outs), (ins),
+ "bctrl", IIC_BrB, [(PPCbctrl)]>,
+ Requires<[In64BitMode]>;
+
+ let isCodeGenOnly = 1 in {
+ def BCCCTRL8 : XLForm_2_br<19, 528, 1, (outs), (ins pred:$cond),
+ "b${cond:cc}ctrl${cond:pm} ${cond:reg}", IIC_BrB,
+ []>,
+ Requires<[In64BitMode]>;
+
+ def BCCTRL8 : XLForm_2_br2<19, 528, 12, 1, (outs), (ins crbitrc:$bi),
+ "bcctrl 12, $bi, 0", IIC_BrB, []>,
+ Requires<[In64BitMode]>;
+ def BCCTRL8n : XLForm_2_br2<19, 528, 4, 1, (outs), (ins crbitrc:$bi),
+ "bcctrl 4, $bi, 0", IIC_BrB, []>,
+ Requires<[In64BitMode]>;
+ }
+ }
+}
+} // Interpretation64Bit
+
+// FIXME: Duplicating this for the asm parser should be unnecessary, but the
+// previous definition must be marked as CodeGen only to prevent decoding
+// conflicts.
+let Interpretation64Bit = 1, isAsmParserOnly = 1 in
+let isCall = 1, PPC970_Unit = 7, Defs = [LR8], Uses = [RM] in
+def BL8_TLS_ : IForm<18, 0, 1, (outs), (ins tlscall:$func),
+ "bl $func", IIC_BrB, []>;
+
+// Calls
+def : Pat<(PPCcall (i64 tglobaladdr:$dst)),
+ (BL8 tglobaladdr:$dst)>;
+def : Pat<(PPCcall_nop (i64 tglobaladdr:$dst)),
+ (BL8_NOP tglobaladdr:$dst)>;
+
+def : Pat<(PPCcall (i64 texternalsym:$dst)),
+ (BL8 texternalsym:$dst)>;
+def : Pat<(PPCcall_nop (i64 texternalsym:$dst)),
+ (BL8_NOP texternalsym:$dst)>;
+
+// Atomic operations
+let usesCustomInserter = 1 in {
+ let Defs = [CR0] in {
+ def ATOMIC_LOAD_ADD_I64 : Pseudo<
+ (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_ADD_I64",
+ [(set i64:$dst, (atomic_load_add_64 xoaddr:$ptr, i64:$incr))]>;
+ def ATOMIC_LOAD_SUB_I64 : Pseudo<
+ (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_SUB_I64",
+ [(set i64:$dst, (atomic_load_sub_64 xoaddr:$ptr, i64:$incr))]>;
+ def ATOMIC_LOAD_OR_I64 : Pseudo<
+ (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_OR_I64",
+ [(set i64:$dst, (atomic_load_or_64 xoaddr:$ptr, i64:$incr))]>;
+ def ATOMIC_LOAD_XOR_I64 : Pseudo<
+ (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_XOR_I64",
+ [(set i64:$dst, (atomic_load_xor_64 xoaddr:$ptr, i64:$incr))]>;
+ def ATOMIC_LOAD_AND_I64 : Pseudo<
+ (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_AND_i64",
+ [(set i64:$dst, (atomic_load_and_64 xoaddr:$ptr, i64:$incr))]>;
+ def ATOMIC_LOAD_NAND_I64 : Pseudo<
+ (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_NAND_I64",
+ [(set i64:$dst, (atomic_load_nand_64 xoaddr:$ptr, i64:$incr))]>;
+
+ def ATOMIC_CMP_SWAP_I64 : Pseudo<
+ (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$old, g8rc:$new), "#ATOMIC_CMP_SWAP_I64",
+ [(set i64:$dst, (atomic_cmp_swap_64 xoaddr:$ptr, i64:$old, i64:$new))]>;
+
+ def ATOMIC_SWAP_I64 : Pseudo<
+ (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$new), "#ATOMIC_SWAP_I64",
+ [(set i64:$dst, (atomic_swap_64 xoaddr:$ptr, i64:$new))]>;
+ }
+}
+
+// Instructions to support atomic operations
+def LDARX : XForm_1<31, 84, (outs g8rc:$rD), (ins memrr:$ptr),
+ "ldarx $rD, $ptr", IIC_LdStLDARX,
+ [(set i64:$rD, (PPClarx xoaddr:$ptr))]>;
+
+let Defs = [CR0] in
+def STDCX : XForm_1<31, 214, (outs), (ins g8rc:$rS, memrr:$dst),
+ "stdcx. $rS, $dst", IIC_LdStSTDCX,
+ [(PPCstcx i64:$rS, xoaddr:$dst)]>,
+ isDOT;
+
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
+def TCRETURNdi8 :Pseudo< (outs),
+ (ins calltarget:$dst, i32imm:$offset),
+ "#TC_RETURNd8 $dst $offset",
+ []>;
+
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
+def TCRETURNai8 :Pseudo<(outs), (ins abscalltarget:$func, i32imm:$offset),
+ "#TC_RETURNa8 $func $offset",
+ [(PPCtc_return (i64 imm:$func), imm:$offset)]>;
+
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
+def TCRETURNri8 : Pseudo<(outs), (ins CTRRC8:$dst, i32imm:$offset),
+ "#TC_RETURNr8 $dst $offset",
+ []>;
+
+let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7, isBranch = 1,
+ isIndirectBranch = 1, isCall = 1, isReturn = 1, Uses = [CTR8, RM] in
+def TAILBCTR8 : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", IIC_BrB,
+ []>,
+ Requires<[In64BitMode]>;
+
+let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7,
+ isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in
+def TAILB8 : IForm<18, 0, 0, (outs), (ins calltarget:$dst),
+ "b $dst", IIC_BrB,
+ []>;
+
+let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7,
+ isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in
+def TAILBA8 : IForm<18, 0, 0, (outs), (ins abscalltarget:$dst),
+ "ba $dst", IIC_BrB,
+ []>;
+} // Interpretation64Bit
+
+def : Pat<(PPCtc_return (i64 tglobaladdr:$dst), imm:$imm),
+ (TCRETURNdi8 tglobaladdr:$dst, imm:$imm)>;
+
+def : Pat<(PPCtc_return (i64 texternalsym:$dst), imm:$imm),
+ (TCRETURNdi8 texternalsym:$dst, imm:$imm)>;
+
+def : Pat<(PPCtc_return CTRRC8:$dst, imm:$imm),
+ (TCRETURNri8 CTRRC8:$dst, imm:$imm)>;
+
+
+// 64-bit CR instructions
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
+let neverHasSideEffects = 1 in {
+def MTOCRF8: XFXForm_5a<31, 144, (outs crbitm:$FXM), (ins g8rc:$ST),
+ "mtocrf $FXM, $ST", IIC_BrMCRX>,
+ PPC970_DGroup_First, PPC970_Unit_CRU;
+
+def MTCRF8 : XFXForm_5<31, 144, (outs), (ins i32imm:$FXM, g8rc:$rS),
+ "mtcrf $FXM, $rS", IIC_BrMCRX>,
+ PPC970_MicroCode, PPC970_Unit_CRU;
+
+let hasExtraSrcRegAllocReq = 1 in // to enable post-ra anti-dep breaking.
+def MFOCRF8: XFXForm_5a<31, 19, (outs g8rc:$rT), (ins crbitm:$FXM),
+ "mfocrf $rT, $FXM", IIC_SprMFCRF>,
+ PPC970_DGroup_First, PPC970_Unit_CRU;
+
+def MFCR8 : XFXForm_3<31, 19, (outs g8rc:$rT), (ins),
+ "mfcr $rT", IIC_SprMFCR>,
+ PPC970_MicroCode, PPC970_Unit_CRU;
+} // neverHasSideEffects = 1
+
+let hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
+ let Defs = [CTR8] in
+ def EH_SjLj_SetJmp64 : Pseudo<(outs gprc:$dst), (ins memr:$buf),
+ "#EH_SJLJ_SETJMP64",
+ [(set i32:$dst, (PPCeh_sjlj_setjmp addr:$buf))]>,
+ Requires<[In64BitMode]>;
+ let isTerminator = 1 in
+ def EH_SjLj_LongJmp64 : Pseudo<(outs), (ins memr:$buf),
+ "#EH_SJLJ_LONGJMP64",
+ [(PPCeh_sjlj_longjmp addr:$buf)]>,
+ Requires<[In64BitMode]>;
+}
+
+//===----------------------------------------------------------------------===//
+// 64-bit SPR manipulation instrs.
+
+let Uses = [CTR8] in {
+def MFCTR8 : XFXForm_1_ext<31, 339, 9, (outs g8rc:$rT), (ins),
+ "mfctr $rT", IIC_SprMFSPR>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+}
+let Pattern = [(PPCmtctr i64:$rS)], Defs = [CTR8] in {
+def MTCTR8 : XFXForm_7_ext<31, 467, 9, (outs), (ins g8rc:$rS),
+ "mtctr $rS", IIC_SprMTSPR>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+}
+let hasSideEffects = 1, Defs = [CTR8] in {
+let Pattern = [(int_ppc_mtctr i64:$rS)] in
+def MTCTR8loop : XFXForm_7_ext<31, 467, 9, (outs), (ins g8rc:$rS),
+ "mtctr $rS", IIC_SprMTSPR>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+}
+
+let Pattern = [(set i64:$rT, readcyclecounter)] in
+def MFTB8 : XFXForm_1_ext<31, 339, 268, (outs g8rc:$rT), (ins),
+ "mfspr $rT, 268", IIC_SprMFTB>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+// Note that encoding mftb using mfspr is now the preferred form,
+// and has been since at least ISA v2.03. The mftb instruction has
+// now been phased out. Using mfspr, however, is known not to work on
+// the POWER3.
+
+let Defs = [X1], Uses = [X1] in
+def DYNALLOC8 : Pseudo<(outs g8rc:$result), (ins g8rc:$negsize, memri:$fpsi),"#DYNALLOC8",
+ [(set i64:$result,
+ (PPCdynalloc i64:$negsize, iaddr:$fpsi))]>;
+
+let Defs = [LR8] in {
+def MTLR8 : XFXForm_7_ext<31, 467, 8, (outs), (ins g8rc:$rS),
+ "mtlr $rS", IIC_SprMTSPR>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+}
+let Uses = [LR8] in {
+def MFLR8 : XFXForm_1_ext<31, 339, 8, (outs g8rc:$rT), (ins),
+ "mflr $rT", IIC_SprMFSPR>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+}
+} // Interpretation64Bit
+
+//===----------------------------------------------------------------------===//
+// Fixed point instructions.
+//
+
+let PPC970_Unit = 1 in { // FXU Operations.
+let Interpretation64Bit = 1 in {
+let neverHasSideEffects = 1 in {
+let isCodeGenOnly = 1 in {
+
+let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
+def LI8 : DForm_2_r0<14, (outs g8rc:$rD), (ins s16imm64:$imm),
+ "li $rD, $imm", IIC_IntSimple,
+ [(set i64:$rD, imm64SExt16:$imm)]>;
+def LIS8 : DForm_2_r0<15, (outs g8rc:$rD), (ins s17imm64:$imm),
+ "lis $rD, $imm", IIC_IntSimple,
+ [(set i64:$rD, imm16ShiftedSExt:$imm)]>;
+}
+
+// Logical ops.
+let isCommutable = 1 in {
+defm NAND8: XForm_6r<31, 476, (outs g8rc:$rA), (ins g8rc:$rS, g8rc:$rB),
+ "nand", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i64:$rA, (not (and i64:$rS, i64:$rB)))]>;
+defm AND8 : XForm_6r<31, 28, (outs g8rc:$rA), (ins g8rc:$rS, g8rc:$rB),
+ "and", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i64:$rA, (and i64:$rS, i64:$rB))]>;
+} // isCommutable
+defm ANDC8: XForm_6r<31, 60, (outs g8rc:$rA), (ins g8rc:$rS, g8rc:$rB),
+ "andc", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i64:$rA, (and i64:$rS, (not i64:$rB)))]>;
+let isCommutable = 1 in {
+defm OR8 : XForm_6r<31, 444, (outs g8rc:$rA), (ins g8rc:$rS, g8rc:$rB),
+ "or", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i64:$rA, (or i64:$rS, i64:$rB))]>;
+defm NOR8 : XForm_6r<31, 124, (outs g8rc:$rA), (ins g8rc:$rS, g8rc:$rB),
+ "nor", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i64:$rA, (not (or i64:$rS, i64:$rB)))]>;
+} // isCommutable
+defm ORC8 : XForm_6r<31, 412, (outs g8rc:$rA), (ins g8rc:$rS, g8rc:$rB),
+ "orc", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i64:$rA, (or i64:$rS, (not i64:$rB)))]>;
+let isCommutable = 1 in {
+defm EQV8 : XForm_6r<31, 284, (outs g8rc:$rA), (ins g8rc:$rS, g8rc:$rB),
+ "eqv", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i64:$rA, (not (xor i64:$rS, i64:$rB)))]>;
+defm XOR8 : XForm_6r<31, 316, (outs g8rc:$rA), (ins g8rc:$rS, g8rc:$rB),
+ "xor", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i64:$rA, (xor i64:$rS, i64:$rB))]>;
+} // let isCommutable = 1
+
+// Logical ops with immediate.
+let Defs = [CR0] in {
+def ANDIo8 : DForm_4<28, (outs g8rc:$dst), (ins g8rc:$src1, u16imm64:$src2),
+ "andi. $dst, $src1, $src2", IIC_IntGeneral,
+ [(set i64:$dst, (and i64:$src1, immZExt16:$src2))]>,
+ isDOT;
+def ANDISo8 : DForm_4<29, (outs g8rc:$dst), (ins g8rc:$src1, u16imm64:$src2),
+ "andis. $dst, $src1, $src2", IIC_IntGeneral,
+ [(set i64:$dst, (and i64:$src1, imm16ShiftedZExt:$src2))]>,
+ isDOT;
+}
+def ORI8 : DForm_4<24, (outs g8rc:$dst), (ins g8rc:$src1, u16imm64:$src2),
+ "ori $dst, $src1, $src2", IIC_IntSimple,
+ [(set i64:$dst, (or i64:$src1, immZExt16:$src2))]>;
+def ORIS8 : DForm_4<25, (outs g8rc:$dst), (ins g8rc:$src1, u16imm64:$src2),
+ "oris $dst, $src1, $src2", IIC_IntSimple,
+ [(set i64:$dst, (or i64:$src1, imm16ShiftedZExt:$src2))]>;
+def XORI8 : DForm_4<26, (outs g8rc:$dst), (ins g8rc:$src1, u16imm64:$src2),
+ "xori $dst, $src1, $src2", IIC_IntSimple,
+ [(set i64:$dst, (xor i64:$src1, immZExt16:$src2))]>;
+def XORIS8 : DForm_4<27, (outs g8rc:$dst), (ins g8rc:$src1, u16imm64:$src2),
+ "xoris $dst, $src1, $src2", IIC_IntSimple,
+ [(set i64:$dst, (xor i64:$src1, imm16ShiftedZExt:$src2))]>;
+
+let isCommutable = 1 in
+defm ADD8 : XOForm_1r<31, 266, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
+ "add", "$rT, $rA, $rB", IIC_IntSimple,
+ [(set i64:$rT, (add i64:$rA, i64:$rB))]>;
+// ADD8 has a special form: reg = ADD8(reg, sym@tls) for use by the
+// initial-exec thread-local storage model.
+def ADD8TLS : XOForm_1<31, 266, 0, (outs g8rc:$rT), (ins g8rc:$rA, tlsreg:$rB),
+ "add $rT, $rA, $rB", IIC_IntSimple,
+ [(set i64:$rT, (add i64:$rA, tglobaltlsaddr:$rB))]>;
+
+let isCommutable = 1 in
+defm ADDC8 : XOForm_1rc<31, 10, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
+ "addc", "$rT, $rA, $rB", IIC_IntGeneral,
+ [(set i64:$rT, (addc i64:$rA, i64:$rB))]>,
+ PPC970_DGroup_Cracked;
+
+let Defs = [CARRY] in
+def ADDIC8 : DForm_2<12, (outs g8rc:$rD), (ins g8rc:$rA, s16imm64:$imm),
+ "addic $rD, $rA, $imm", IIC_IntGeneral,
+ [(set i64:$rD, (addc i64:$rA, imm64SExt16:$imm))]>;
+def ADDI8 : DForm_2<14, (outs g8rc:$rD), (ins g8rc_nox0:$rA, s16imm64:$imm),
+ "addi $rD, $rA, $imm", IIC_IntSimple,
+ [(set i64:$rD, (add i64:$rA, imm64SExt16:$imm))]>;
+def ADDIS8 : DForm_2<15, (outs g8rc:$rD), (ins g8rc_nox0:$rA, s17imm64:$imm),
+ "addis $rD, $rA, $imm", IIC_IntSimple,
+ [(set i64:$rD, (add i64:$rA, imm16ShiftedSExt:$imm))]>;
+
+let Defs = [CARRY] in {
+def SUBFIC8: DForm_2< 8, (outs g8rc:$rD), (ins g8rc:$rA, s16imm64:$imm),
+ "subfic $rD, $rA, $imm", IIC_IntGeneral,
+ [(set i64:$rD, (subc imm64SExt16:$imm, i64:$rA))]>;
+defm SUBFC8 : XOForm_1r<31, 8, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
+ "subfc", "$rT, $rA, $rB", IIC_IntGeneral,
+ [(set i64:$rT, (subc i64:$rB, i64:$rA))]>,
+ PPC970_DGroup_Cracked;
+}
+defm SUBF8 : XOForm_1r<31, 40, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
+ "subf", "$rT, $rA, $rB", IIC_IntGeneral,
+ [(set i64:$rT, (sub i64:$rB, i64:$rA))]>;
+defm NEG8 : XOForm_3r<31, 104, 0, (outs g8rc:$rT), (ins g8rc:$rA),
+ "neg", "$rT, $rA", IIC_IntSimple,
+ [(set i64:$rT, (ineg i64:$rA))]>;
+let Uses = [CARRY] in {
+let isCommutable = 1 in
+defm ADDE8 : XOForm_1rc<31, 138, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
+ "adde", "$rT, $rA, $rB", IIC_IntGeneral,
+ [(set i64:$rT, (adde i64:$rA, i64:$rB))]>;
+defm ADDME8 : XOForm_3rc<31, 234, 0, (outs g8rc:$rT), (ins g8rc:$rA),
+ "addme", "$rT, $rA", IIC_IntGeneral,
+ [(set i64:$rT, (adde i64:$rA, -1))]>;
+defm ADDZE8 : XOForm_3rc<31, 202, 0, (outs g8rc:$rT), (ins g8rc:$rA),
+ "addze", "$rT, $rA", IIC_IntGeneral,
+ [(set i64:$rT, (adde i64:$rA, 0))]>;
+defm SUBFE8 : XOForm_1rc<31, 136, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
+ "subfe", "$rT, $rA, $rB", IIC_IntGeneral,
+ [(set i64:$rT, (sube i64:$rB, i64:$rA))]>;
+defm SUBFME8 : XOForm_3rc<31, 232, 0, (outs g8rc:$rT), (ins g8rc:$rA),
+ "subfme", "$rT, $rA", IIC_IntGeneral,
+ [(set i64:$rT, (sube -1, i64:$rA))]>;
+defm SUBFZE8 : XOForm_3rc<31, 200, 0, (outs g8rc:$rT), (ins g8rc:$rA),
+ "subfze", "$rT, $rA", IIC_IntGeneral,
+ [(set i64:$rT, (sube 0, i64:$rA))]>;
+}
+} // isCodeGenOnly
+
+// FIXME: Duplicating this for the asm parser should be unnecessary, but the
+// previous definition must be marked as CodeGen only to prevent decoding
+// conflicts.
+let isAsmParserOnly = 1 in
+def ADD8TLS_ : XOForm_1<31, 266, 0, (outs g8rc:$rT), (ins g8rc:$rA, tlsreg:$rB),
+ "add $rT, $rA, $rB", IIC_IntSimple, []>;
+
+let isCommutable = 1 in {
+defm MULHD : XOForm_1r<31, 73, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
+ "mulhd", "$rT, $rA, $rB", IIC_IntMulHW,
+ [(set i64:$rT, (mulhs i64:$rA, i64:$rB))]>;
+defm MULHDU : XOForm_1r<31, 9, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
+ "mulhdu", "$rT, $rA, $rB", IIC_IntMulHWU,
+ [(set i64:$rT, (mulhu i64:$rA, i64:$rB))]>;
+} // isCommutable
+}
+} // Interpretation64Bit
+
+let isCompare = 1, neverHasSideEffects = 1 in {
+ def CMPD : XForm_16_ext<31, 0, (outs crrc:$crD), (ins g8rc:$rA, g8rc:$rB),
+ "cmpd $crD, $rA, $rB", IIC_IntCompare>, isPPC64;
+ def CMPLD : XForm_16_ext<31, 32, (outs crrc:$crD), (ins g8rc:$rA, g8rc:$rB),
+ "cmpld $crD, $rA, $rB", IIC_IntCompare>, isPPC64;
+ def CMPDI : DForm_5_ext<11, (outs crrc:$crD), (ins g8rc:$rA, s16imm64:$imm),
+ "cmpdi $crD, $rA, $imm", IIC_IntCompare>, isPPC64;
+ def CMPLDI : DForm_6_ext<10, (outs crrc:$dst), (ins g8rc:$src1, u16imm64:$src2),
+ "cmpldi $dst, $src1, $src2",
+ IIC_IntCompare>, isPPC64;
+}
+
+let neverHasSideEffects = 1 in {
+defm SLD : XForm_6r<31, 27, (outs g8rc:$rA), (ins g8rc:$rS, gprc:$rB),
+ "sld", "$rA, $rS, $rB", IIC_IntRotateD,
+ [(set i64:$rA, (PPCshl i64:$rS, i32:$rB))]>, isPPC64;
+defm SRD : XForm_6r<31, 539, (outs g8rc:$rA), (ins g8rc:$rS, gprc:$rB),
+ "srd", "$rA, $rS, $rB", IIC_IntRotateD,
+ [(set i64:$rA, (PPCsrl i64:$rS, i32:$rB))]>, isPPC64;
+defm SRAD : XForm_6rc<31, 794, (outs g8rc:$rA), (ins g8rc:$rS, gprc:$rB),
+ "srad", "$rA, $rS, $rB", IIC_IntRotateD,
+ [(set i64:$rA, (PPCsra i64:$rS, i32:$rB))]>, isPPC64;
+
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
+defm EXTSB8 : XForm_11r<31, 954, (outs g8rc:$rA), (ins g8rc:$rS),
+ "extsb", "$rA, $rS", IIC_IntSimple,
+ [(set i64:$rA, (sext_inreg i64:$rS, i8))]>;
+defm EXTSH8 : XForm_11r<31, 922, (outs g8rc:$rA), (ins g8rc:$rS),
+ "extsh", "$rA, $rS", IIC_IntSimple,
+ [(set i64:$rA, (sext_inreg i64:$rS, i16))]>;
+} // Interpretation64Bit
+
+// For fast-isel:
+let isCodeGenOnly = 1 in {
+def EXTSB8_32_64 : XForm_11<31, 954, (outs g8rc:$rA), (ins gprc:$rS),
+ "extsb $rA, $rS", IIC_IntSimple, []>, isPPC64;
+def EXTSH8_32_64 : XForm_11<31, 922, (outs g8rc:$rA), (ins gprc:$rS),
+ "extsh $rA, $rS", IIC_IntSimple, []>, isPPC64;
+} // isCodeGenOnly for fast-isel
+
+defm EXTSW : XForm_11r<31, 986, (outs g8rc:$rA), (ins g8rc:$rS),
+ "extsw", "$rA, $rS", IIC_IntSimple,
+ [(set i64:$rA, (sext_inreg i64:$rS, i32))]>, isPPC64;
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+defm EXTSW_32_64 : XForm_11r<31, 986, (outs g8rc:$rA), (ins gprc:$rS),
+ "extsw", "$rA, $rS", IIC_IntSimple,
+ [(set i64:$rA, (sext i32:$rS))]>, isPPC64;
+
+defm SRADI : XSForm_1rc<31, 413, (outs g8rc:$rA), (ins g8rc:$rS, u6imm:$SH),
+ "sradi", "$rA, $rS, $SH", IIC_IntRotateDI,
+ [(set i64:$rA, (sra i64:$rS, (i32 imm:$SH)))]>, isPPC64;
+defm CNTLZD : XForm_11r<31, 58, (outs g8rc:$rA), (ins g8rc:$rS),
+ "cntlzd", "$rA, $rS", IIC_IntGeneral,
+ [(set i64:$rA, (ctlz i64:$rS))]>;
+def POPCNTD : XForm_11<31, 506, (outs g8rc:$rA), (ins g8rc:$rS),
+ "popcntd $rA, $rS", IIC_IntGeneral,
+ [(set i64:$rA, (ctpop i64:$rS))]>;
+
+// popcntw also does a population count on the high 32 bits (storing the
+// results in the high 32-bits of the output). We'll ignore that here (which is
+// safe because we never separately use the high part of the 64-bit registers).
+def POPCNTW : XForm_11<31, 378, (outs gprc:$rA), (ins gprc:$rS),
+ "popcntw $rA, $rS", IIC_IntGeneral,
+ [(set i32:$rA, (ctpop i32:$rS))]>;
+
+defm DIVD : XOForm_1r<31, 489, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
+ "divd", "$rT, $rA, $rB", IIC_IntDivD,
+ [(set i64:$rT, (sdiv i64:$rA, i64:$rB))]>, isPPC64,
+ PPC970_DGroup_First, PPC970_DGroup_Cracked;
+defm DIVDU : XOForm_1r<31, 457, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
+ "divdu", "$rT, $rA, $rB", IIC_IntDivD,
+ [(set i64:$rT, (udiv i64:$rA, i64:$rB))]>, isPPC64,
+ PPC970_DGroup_First, PPC970_DGroup_Cracked;
+let isCommutable = 1 in
+defm MULLD : XOForm_1r<31, 233, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
+ "mulld", "$rT, $rA, $rB", IIC_IntMulHD,
+ [(set i64:$rT, (mul i64:$rA, i64:$rB))]>, isPPC64;
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+def MULLI8 : DForm_2<7, (outs g8rc:$rD), (ins g8rc:$rA, s16imm64:$imm),
+ "mulli $rD, $rA, $imm", IIC_IntMulLI,
+ [(set i64:$rD, (mul i64:$rA, imm64SExt16:$imm))]>;
+}
+
+let neverHasSideEffects = 1 in {
+let isCommutable = 1 in {
+defm RLDIMI : MDForm_1r<30, 3, (outs g8rc:$rA),
+ (ins g8rc:$rSi, g8rc:$rS, u6imm:$SH, u6imm:$MBE),
+ "rldimi", "$rA, $rS, $SH, $MBE", IIC_IntRotateDI,
+ []>, isPPC64, RegConstraint<"$rSi = $rA">,
+ NoEncode<"$rSi">;
+}
+
+// Rotate instructions.
+defm RLDCL : MDSForm_1r<30, 8,
+ (outs g8rc:$rA), (ins g8rc:$rS, gprc:$rB, u6imm:$MBE),
+ "rldcl", "$rA, $rS, $rB, $MBE", IIC_IntRotateD,
+ []>, isPPC64;
+defm RLDCR : MDSForm_1r<30, 9,
+ (outs g8rc:$rA), (ins g8rc:$rS, gprc:$rB, u6imm:$MBE),
+ "rldcr", "$rA, $rS, $rB, $MBE", IIC_IntRotateD,
+ []>, isPPC64;
+defm RLDICL : MDForm_1r<30, 0,
+ (outs g8rc:$rA), (ins g8rc:$rS, u6imm:$SH, u6imm:$MBE),
+ "rldicl", "$rA, $rS, $SH, $MBE", IIC_IntRotateDI,
+ []>, isPPC64;
+// For fast-isel:
+let isCodeGenOnly = 1 in
+def RLDICL_32_64 : MDForm_1<30, 0,
+ (outs g8rc:$rA),
+ (ins gprc:$rS, u6imm:$SH, u6imm:$MBE),
+ "rldicl $rA, $rS, $SH, $MBE", IIC_IntRotateDI,
+ []>, isPPC64;
+// End fast-isel.
+defm RLDICR : MDForm_1r<30, 1,
+ (outs g8rc:$rA), (ins g8rc:$rS, u6imm:$SH, u6imm:$MBE),
+ "rldicr", "$rA, $rS, $SH, $MBE", IIC_IntRotateDI,
+ []>, isPPC64;
+defm RLDIC : MDForm_1r<30, 2,
+ (outs g8rc:$rA), (ins g8rc:$rS, u6imm:$SH, u6imm:$MBE),
+ "rldic", "$rA, $rS, $SH, $MBE", IIC_IntRotateDI,
+ []>, isPPC64;
+
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
+defm RLWINM8 : MForm_2r<21, (outs g8rc:$rA),
+ (ins g8rc:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME),
+ "rlwinm", "$rA, $rS, $SH, $MB, $ME", IIC_IntGeneral,
+ []>;
+
+let isCommutable = 1 in {
+// RLWIMI can be commuted if the rotate amount is zero.
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+defm RLWIMI8 : MForm_2r<20, (outs g8rc:$rA),
+ (ins g8rc:$rSi, g8rc:$rS, u5imm:$SH, u5imm:$MB,
+ u5imm:$ME), "rlwimi", "$rA, $rS, $SH, $MB, $ME",
+ IIC_IntRotate, []>, PPC970_DGroup_Cracked,
+ RegConstraint<"$rSi = $rA">, NoEncode<"$rSi">;
+}
+
+let isSelect = 1 in
+def ISEL8 : AForm_4<31, 15,
+ (outs g8rc:$rT), (ins g8rc_nox0:$rA, g8rc:$rB, crbitrc:$cond),
+ "isel $rT, $rA, $rB, $cond", IIC_IntGeneral,
+ []>;
+} // Interpretation64Bit
+} // neverHasSideEffects = 1
+} // End FXU Operations.
+
+
+//===----------------------------------------------------------------------===//
+// Load/Store instructions.
+//
+
+
+// Sign extending loads.
+let canFoldAsLoad = 1, PPC970_Unit = 2 in {
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+def LHA8: DForm_1<42, (outs g8rc:$rD), (ins memri:$src),
+ "lha $rD, $src", IIC_LdStLHA,
+ [(set i64:$rD, (sextloadi16 iaddr:$src))]>,
+ PPC970_DGroup_Cracked;
+def LWA : DSForm_1<58, 2, (outs g8rc:$rD), (ins memrix:$src),
+ "lwa $rD, $src", IIC_LdStLWA,
+ [(set i64:$rD,
+ (aligned4sextloadi32 ixaddr:$src))]>, isPPC64,
+ PPC970_DGroup_Cracked;
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+def LHAX8: XForm_1<31, 343, (outs g8rc:$rD), (ins memrr:$src),
+ "lhax $rD, $src", IIC_LdStLHA,
+ [(set i64:$rD, (sextloadi16 xaddr:$src))]>,
+ PPC970_DGroup_Cracked;
+def LWAX : XForm_1<31, 341, (outs g8rc:$rD), (ins memrr:$src),
+ "lwax $rD, $src", IIC_LdStLHA,
+ [(set i64:$rD, (sextloadi32 xaddr:$src))]>, isPPC64,
+ PPC970_DGroup_Cracked;
+// For fast-isel:
+let isCodeGenOnly = 1, mayLoad = 1 in {
+def LWA_32 : DSForm_1<58, 2, (outs gprc:$rD), (ins memrix:$src),
+ "lwa $rD, $src", IIC_LdStLWA, []>, isPPC64,
+ PPC970_DGroup_Cracked;
+def LWAX_32 : XForm_1<31, 341, (outs gprc:$rD), (ins memrr:$src),
+ "lwax $rD, $src", IIC_LdStLHA, []>, isPPC64,
+ PPC970_DGroup_Cracked;
+} // end fast-isel isCodeGenOnly
+
+// Update forms.
+let mayLoad = 1, neverHasSideEffects = 1 in {
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+def LHAU8 : DForm_1<43, (outs g8rc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memri:$addr),
+ "lhau $rD, $addr", IIC_LdStLHAU,
+ []>, RegConstraint<"$addr.reg = $ea_result">,
+ NoEncode<"$ea_result">;
+// NO LWAU!
+
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+def LHAUX8 : XForm_1<31, 375, (outs g8rc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "lhaux $rD, $addr", IIC_LdStLHAUX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">;
+def LWAUX : XForm_1<31, 373, (outs g8rc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "lwaux $rD, $addr", IIC_LdStLHAUX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">, isPPC64;
+}
+}
+
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
+// Zero extending loads.
+let canFoldAsLoad = 1, PPC970_Unit = 2 in {
+def LBZ8 : DForm_1<34, (outs g8rc:$rD), (ins memri:$src),
+ "lbz $rD, $src", IIC_LdStLoad,
+ [(set i64:$rD, (zextloadi8 iaddr:$src))]>;
+def LHZ8 : DForm_1<40, (outs g8rc:$rD), (ins memri:$src),
+ "lhz $rD, $src", IIC_LdStLoad,
+ [(set i64:$rD, (zextloadi16 iaddr:$src))]>;
+def LWZ8 : DForm_1<32, (outs g8rc:$rD), (ins memri:$src),
+ "lwz $rD, $src", IIC_LdStLoad,
+ [(set i64:$rD, (zextloadi32 iaddr:$src))]>, isPPC64;
+
+def LBZX8 : XForm_1<31, 87, (outs g8rc:$rD), (ins memrr:$src),
+ "lbzx $rD, $src", IIC_LdStLoad,
+ [(set i64:$rD, (zextloadi8 xaddr:$src))]>;
+def LHZX8 : XForm_1<31, 279, (outs g8rc:$rD), (ins memrr:$src),
+ "lhzx $rD, $src", IIC_LdStLoad,
+ [(set i64:$rD, (zextloadi16 xaddr:$src))]>;
+def LWZX8 : XForm_1<31, 23, (outs g8rc:$rD), (ins memrr:$src),
+ "lwzx $rD, $src", IIC_LdStLoad,
+ [(set i64:$rD, (zextloadi32 xaddr:$src))]>;
+
+
+// Update forms.
+let mayLoad = 1, neverHasSideEffects = 1 in {
+def LBZU8 : DForm_1<35, (outs g8rc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
+ "lbzu $rD, $addr", IIC_LdStLoadUpd,
+ []>, RegConstraint<"$addr.reg = $ea_result">,
+ NoEncode<"$ea_result">;
+def LHZU8 : DForm_1<41, (outs g8rc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
+ "lhzu $rD, $addr", IIC_LdStLoadUpd,
+ []>, RegConstraint<"$addr.reg = $ea_result">,
+ NoEncode<"$ea_result">;
+def LWZU8 : DForm_1<33, (outs g8rc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
+ "lwzu $rD, $addr", IIC_LdStLoadUpd,
+ []>, RegConstraint<"$addr.reg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+def LBZUX8 : XForm_1<31, 119, (outs g8rc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "lbzux $rD, $addr", IIC_LdStLoadUpdX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">;
+def LHZUX8 : XForm_1<31, 311, (outs g8rc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "lhzux $rD, $addr", IIC_LdStLoadUpdX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">;
+def LWZUX8 : XForm_1<31, 55, (outs g8rc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "lwzux $rD, $addr", IIC_LdStLoadUpdX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">;
+}
+}
+} // Interpretation64Bit
+
+
+// Full 8-byte loads.
+let canFoldAsLoad = 1, PPC970_Unit = 2 in {
+def LD : DSForm_1<58, 0, (outs g8rc:$rD), (ins memrix:$src),
+ "ld $rD, $src", IIC_LdStLD,
+ [(set i64:$rD, (aligned4load ixaddr:$src))]>, isPPC64;
+// The following three definitions are selected for small code model only.
+// Otherwise, we need to create two instructions to form a 32-bit offset,
+// so we have a custom matcher for TOC_ENTRY in PPCDAGToDAGIsel::Select().
+def LDtoc: Pseudo<(outs g8rc:$rD), (ins tocentry:$disp, g8rc:$reg),
+ "#LDtoc",
+ [(set i64:$rD,
+ (PPCtoc_entry tglobaladdr:$disp, i64:$reg))]>, isPPC64;
+def LDtocJTI: Pseudo<(outs g8rc:$rD), (ins tocentry:$disp, g8rc:$reg),
+ "#LDtocJTI",
+ [(set i64:$rD,
+ (PPCtoc_entry tjumptable:$disp, i64:$reg))]>, isPPC64;
+def LDtocCPT: Pseudo<(outs g8rc:$rD), (ins tocentry:$disp, g8rc:$reg),
+ "#LDtocCPT",
+ [(set i64:$rD,
+ (PPCtoc_entry tconstpool:$disp, i64:$reg))]>, isPPC64;
+
+let hasSideEffects = 1, isCodeGenOnly = 1, RST = 2, Defs = [X2] in
+def LDinto_toc: DSForm_1<58, 0, (outs), (ins memrix:$src),
+ "ld 2, $src", IIC_LdStLD,
+ [(PPCload_toc ixaddr:$src)]>, isPPC64;
+
+def LDX : XForm_1<31, 21, (outs g8rc:$rD), (ins memrr:$src),
+ "ldx $rD, $src", IIC_LdStLD,
+ [(set i64:$rD, (load xaddr:$src))]>, isPPC64;
+def LDBRX : XForm_1<31, 532, (outs g8rc:$rD), (ins memrr:$src),
+ "ldbrx $rD, $src", IIC_LdStLoad,
+ [(set i64:$rD, (PPClbrx xoaddr:$src, i64))]>, isPPC64;
+
+let mayLoad = 1, neverHasSideEffects = 1 in {
+def LDU : DSForm_1<58, 1, (outs g8rc:$rD, ptr_rc_nor0:$ea_result), (ins memrix:$addr),
+ "ldu $rD, $addr", IIC_LdStLDU,
+ []>, RegConstraint<"$addr.reg = $ea_result">, isPPC64,
+ NoEncode<"$ea_result">;
+
+def LDUX : XForm_1<31, 53, (outs g8rc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "ldux $rD, $addr", IIC_LdStLDUX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">, isPPC64;
+}
+}
+
+def : Pat<(PPCload ixaddr:$src),
+ (LD ixaddr:$src)>;
+def : Pat<(PPCload xaddr:$src),
+ (LDX xaddr:$src)>;
+
+// Support for medium and large code model.
+def ADDIStocHA: Pseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, tocentry:$disp),
+ "#ADDIStocHA",
+ [(set i64:$rD,
+ (PPCaddisTocHA i64:$reg, tglobaladdr:$disp))]>,
+ isPPC64;
+def LDtocL: Pseudo<(outs g8rc:$rD), (ins tocentry:$disp, g8rc_nox0:$reg),
+ "#LDtocL",
+ [(set i64:$rD,
+ (PPCldTocL tglobaladdr:$disp, i64:$reg))]>, isPPC64;
+def ADDItocL: Pseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, tocentry:$disp),
+ "#ADDItocL",
+ [(set i64:$rD,
+ (PPCaddiTocL i64:$reg, tglobaladdr:$disp))]>, isPPC64;
+
+// Support for thread-local storage.
+def ADDISgotTprelHA: Pseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp),
+ "#ADDISgotTprelHA",
+ [(set i64:$rD,
+ (PPCaddisGotTprelHA i64:$reg,
+ tglobaltlsaddr:$disp))]>,
+ isPPC64;
+def LDgotTprelL: Pseudo<(outs g8rc:$rD), (ins s16imm64:$disp, g8rc_nox0:$reg),
+ "#LDgotTprelL",
+ [(set i64:$rD,
+ (PPCldGotTprelL tglobaltlsaddr:$disp, i64:$reg))]>,
+ isPPC64;
+def : Pat<(PPCaddTls i64:$in, tglobaltlsaddr:$g),
+ (ADD8TLS $in, tglobaltlsaddr:$g)>;
+def ADDIStlsgdHA: Pseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp),
+ "#ADDIStlsgdHA",
+ [(set i64:$rD,
+ (PPCaddisTlsgdHA i64:$reg, tglobaltlsaddr:$disp))]>,
+ isPPC64;
+def ADDItlsgdL : Pseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp),
+ "#ADDItlsgdL",
+ [(set i64:$rD,
+ (PPCaddiTlsgdL i64:$reg, tglobaltlsaddr:$disp))]>,
+ isPPC64;
+def GETtlsADDR : Pseudo<(outs g8rc:$rD), (ins g8rc:$reg, tlsgd:$sym),
+ "#GETtlsADDR",
+ [(set i64:$rD,
+ (PPCgetTlsAddr i64:$reg, tglobaltlsaddr:$sym))]>,
+ isPPC64;
+def ADDIStlsldHA: Pseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp),
+ "#ADDIStlsldHA",
+ [(set i64:$rD,
+ (PPCaddisTlsldHA i64:$reg, tglobaltlsaddr:$disp))]>,
+ isPPC64;
+def ADDItlsldL : Pseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp),
+ "#ADDItlsldL",
+ [(set i64:$rD,
+ (PPCaddiTlsldL i64:$reg, tglobaltlsaddr:$disp))]>,
+ isPPC64;
+def GETtlsldADDR : Pseudo<(outs g8rc:$rD), (ins g8rc:$reg, tlsgd:$sym),
+ "#GETtlsldADDR",
+ [(set i64:$rD,
+ (PPCgetTlsldAddr i64:$reg, tglobaltlsaddr:$sym))]>,
+ isPPC64;
+def ADDISdtprelHA: Pseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp),
+ "#ADDISdtprelHA",
+ [(set i64:$rD,
+ (PPCaddisDtprelHA i64:$reg,
+ tglobaltlsaddr:$disp))]>,
+ isPPC64;
+def ADDIdtprelL : Pseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp),
+ "#ADDIdtprelL",
+ [(set i64:$rD,
+ (PPCaddiDtprelL i64:$reg, tglobaltlsaddr:$disp))]>,
+ isPPC64;
+
+let PPC970_Unit = 2 in {
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
+// Truncating stores.
+def STB8 : DForm_1<38, (outs), (ins g8rc:$rS, memri:$src),
+ "stb $rS, $src", IIC_LdStStore,
+ [(truncstorei8 i64:$rS, iaddr:$src)]>;
+def STH8 : DForm_1<44, (outs), (ins g8rc:$rS, memri:$src),
+ "sth $rS, $src", IIC_LdStStore,
+ [(truncstorei16 i64:$rS, iaddr:$src)]>;
+def STW8 : DForm_1<36, (outs), (ins g8rc:$rS, memri:$src),
+ "stw $rS, $src", IIC_LdStStore,
+ [(truncstorei32 i64:$rS, iaddr:$src)]>;
+def STBX8 : XForm_8<31, 215, (outs), (ins g8rc:$rS, memrr:$dst),
+ "stbx $rS, $dst", IIC_LdStStore,
+ [(truncstorei8 i64:$rS, xaddr:$dst)]>,
+ PPC970_DGroup_Cracked;
+def STHX8 : XForm_8<31, 407, (outs), (ins g8rc:$rS, memrr:$dst),
+ "sthx $rS, $dst", IIC_LdStStore,
+ [(truncstorei16 i64:$rS, xaddr:$dst)]>,
+ PPC970_DGroup_Cracked;
+def STWX8 : XForm_8<31, 151, (outs), (ins g8rc:$rS, memrr:$dst),
+ "stwx $rS, $dst", IIC_LdStStore,
+ [(truncstorei32 i64:$rS, xaddr:$dst)]>,
+ PPC970_DGroup_Cracked;
+} // Interpretation64Bit
+
+// Normal 8-byte stores.
+def STD : DSForm_1<62, 0, (outs), (ins g8rc:$rS, memrix:$dst),
+ "std $rS, $dst", IIC_LdStSTD,
+ [(aligned4store i64:$rS, ixaddr:$dst)]>, isPPC64;
+def STDX : XForm_8<31, 149, (outs), (ins g8rc:$rS, memrr:$dst),
+ "stdx $rS, $dst", IIC_LdStSTD,
+ [(store i64:$rS, xaddr:$dst)]>, isPPC64,
+ PPC970_DGroup_Cracked;
+def STDBRX: XForm_8<31, 660, (outs), (ins g8rc:$rS, memrr:$dst),
+ "stdbrx $rS, $dst", IIC_LdStStore,
+ [(PPCstbrx i64:$rS, xoaddr:$dst, i64)]>, isPPC64,
+ PPC970_DGroup_Cracked;
+}
+
+// Stores with Update (pre-inc).
+let PPC970_Unit = 2, mayStore = 1 in {
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
+def STBU8 : DForm_1<39, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$rS, memri:$dst),
+ "stbu $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
+def STHU8 : DForm_1<45, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$rS, memri:$dst),
+ "sthu $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
+def STWU8 : DForm_1<37, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$rS, memri:$dst),
+ "stwu $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
+
+def STBUX8: XForm_8<31, 247, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$rS, memrr:$dst),
+ "stbux $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
+ PPC970_DGroup_Cracked;
+def STHUX8: XForm_8<31, 439, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$rS, memrr:$dst),
+ "sthux $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
+ PPC970_DGroup_Cracked;
+def STWUX8: XForm_8<31, 183, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$rS, memrr:$dst),
+ "stwux $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
+ PPC970_DGroup_Cracked;
+} // Interpretation64Bit
+
+def STDU : DSForm_1<62, 1, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$rS, memrix:$dst),
+ "stdu $rS, $dst", IIC_LdStSTDU, []>,
+ RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">,
+ isPPC64;
+
+def STDUX : XForm_8<31, 181, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$rS, memrr:$dst),
+ "stdux $rS, $dst", IIC_LdStSTDUX, []>,
+ RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
+ PPC970_DGroup_Cracked, isPPC64;
+}
+
+// Patterns to match the pre-inc stores. We can't put the patterns on
+// the instruction definitions directly as ISel wants the address base
+// and offset to be separate operands, not a single complex operand.
+def : Pat<(pre_truncsti8 i64:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
+ (STBU8 $rS, iaddroff:$ptroff, $ptrreg)>;
+def : Pat<(pre_truncsti16 i64:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
+ (STHU8 $rS, iaddroff:$ptroff, $ptrreg)>;
+def : Pat<(pre_truncsti32 i64:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
+ (STWU8 $rS, iaddroff:$ptroff, $ptrreg)>;
+def : Pat<(aligned4pre_store i64:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
+ (STDU $rS, iaddroff:$ptroff, $ptrreg)>;
+
+def : Pat<(pre_truncsti8 i64:$rS, iPTR:$ptrreg, iPTR:$ptroff),
+ (STBUX8 $rS, $ptrreg, $ptroff)>;
+def : Pat<(pre_truncsti16 i64:$rS, iPTR:$ptrreg, iPTR:$ptroff),
+ (STHUX8 $rS, $ptrreg, $ptroff)>;
+def : Pat<(pre_truncsti32 i64:$rS, iPTR:$ptrreg, iPTR:$ptroff),
+ (STWUX8 $rS, $ptrreg, $ptroff)>;
+def : Pat<(pre_store i64:$rS, iPTR:$ptrreg, iPTR:$ptroff),
+ (STDUX $rS, $ptrreg, $ptroff)>;
+
+
+//===----------------------------------------------------------------------===//
+// Floating point instructions.
+//
+
+
+let PPC970_Unit = 3, neverHasSideEffects = 1,
+ Uses = [RM] in { // FPU Operations.
+defm FCFID : XForm_26r<63, 846, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fcfid", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (PPCfcfid f64:$frB))]>, isPPC64;
+defm FCTID : XForm_26r<63, 814, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fctid", "$frD, $frB", IIC_FPGeneral,
+ []>, isPPC64;
+defm FCTIDZ : XForm_26r<63, 815, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fctidz", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (PPCfctidz f64:$frB))]>, isPPC64;
+
+defm FCFIDU : XForm_26r<63, 974, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fcfidu", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (PPCfcfidu f64:$frB))]>, isPPC64;
+defm FCFIDS : XForm_26r<59, 846, (outs f4rc:$frD), (ins f8rc:$frB),
+ "fcfids", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (PPCfcfids f64:$frB))]>, isPPC64;
+defm FCFIDUS : XForm_26r<59, 974, (outs f4rc:$frD), (ins f8rc:$frB),
+ "fcfidus", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (PPCfcfidus f64:$frB))]>, isPPC64;
+defm FCTIDUZ : XForm_26r<63, 943, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fctiduz", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (PPCfctiduz f64:$frB))]>, isPPC64;
+defm FCTIWUZ : XForm_26r<63, 143, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fctiwuz", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (PPCfctiwuz f64:$frB))]>, isPPC64;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Instruction Patterns
+//
+
+// Extensions and truncates to/from 32-bit regs.
+def : Pat<(i64 (zext i32:$in)),
+ (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
+ 0, 32)>;
+def : Pat<(i64 (anyext i32:$in)),
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32)>;
+def : Pat<(i32 (trunc i64:$in)),
+ (EXTRACT_SUBREG $in, sub_32)>;
+
+// Implement the 'not' operation with the NOR instruction.
+// (we could use the default xori pattern, but nor has lower latency on some
+// cores (such as the A2)).
+def i64not : OutPatFrag<(ops node:$in),
+ (NOR8 $in, $in)>;
+def : Pat<(not i64:$in),
+ (i64not $in)>;
+
+// Extending loads with i64 targets.
+def : Pat<(zextloadi1 iaddr:$src),
+ (LBZ8 iaddr:$src)>;
+def : Pat<(zextloadi1 xaddr:$src),
+ (LBZX8 xaddr:$src)>;
+def : Pat<(extloadi1 iaddr:$src),
+ (LBZ8 iaddr:$src)>;
+def : Pat<(extloadi1 xaddr:$src),
+ (LBZX8 xaddr:$src)>;
+def : Pat<(extloadi8 iaddr:$src),
+ (LBZ8 iaddr:$src)>;
+def : Pat<(extloadi8 xaddr:$src),
+ (LBZX8 xaddr:$src)>;
+def : Pat<(extloadi16 iaddr:$src),
+ (LHZ8 iaddr:$src)>;
+def : Pat<(extloadi16 xaddr:$src),
+ (LHZX8 xaddr:$src)>;
+def : Pat<(extloadi32 iaddr:$src),
+ (LWZ8 iaddr:$src)>;
+def : Pat<(extloadi32 xaddr:$src),
+ (LWZX8 xaddr:$src)>;
+
+// Standard shifts. These are represented separately from the real shifts above
+// so that we can distinguish between shifts that allow 6-bit and 7-bit shift
+// amounts.
+def : Pat<(sra i64:$rS, i32:$rB),
+ (SRAD $rS, $rB)>;
+def : Pat<(srl i64:$rS, i32:$rB),
+ (SRD $rS, $rB)>;
+def : Pat<(shl i64:$rS, i32:$rB),
+ (SLD $rS, $rB)>;
+
+// SHL/SRL
+def : Pat<(shl i64:$in, (i32 imm:$imm)),
+ (RLDICR $in, imm:$imm, (SHL64 imm:$imm))>;
+def : Pat<(srl i64:$in, (i32 imm:$imm)),
+ (RLDICL $in, (SRL64 imm:$imm), imm:$imm)>;
+
+// ROTL
+def : Pat<(rotl i64:$in, i32:$sh),
+ (RLDCL $in, $sh, 0)>;
+def : Pat<(rotl i64:$in, (i32 imm:$imm)),
+ (RLDICL $in, imm:$imm, 0)>;
+
+// Hi and Lo for Darwin Global Addresses.
+def : Pat<(PPChi tglobaladdr:$in, 0), (LIS8 tglobaladdr:$in)>;
+def : Pat<(PPClo tglobaladdr:$in, 0), (LI8 tglobaladdr:$in)>;
+def : Pat<(PPChi tconstpool:$in , 0), (LIS8 tconstpool:$in)>;
+def : Pat<(PPClo tconstpool:$in , 0), (LI8 tconstpool:$in)>;
+def : Pat<(PPChi tjumptable:$in , 0), (LIS8 tjumptable:$in)>;
+def : Pat<(PPClo tjumptable:$in , 0), (LI8 tjumptable:$in)>;
+def : Pat<(PPChi tblockaddress:$in, 0), (LIS8 tblockaddress:$in)>;
+def : Pat<(PPClo tblockaddress:$in, 0), (LI8 tblockaddress:$in)>;
+def : Pat<(PPChi tglobaltlsaddr:$g, i64:$in),
+ (ADDIS8 $in, tglobaltlsaddr:$g)>;
+def : Pat<(PPClo tglobaltlsaddr:$g, i64:$in),
+ (ADDI8 $in, tglobaltlsaddr:$g)>;
+def : Pat<(add i64:$in, (PPChi tglobaladdr:$g, 0)),
+ (ADDIS8 $in, tglobaladdr:$g)>;
+def : Pat<(add i64:$in, (PPChi tconstpool:$g, 0)),
+ (ADDIS8 $in, tconstpool:$g)>;
+def : Pat<(add i64:$in, (PPChi tjumptable:$g, 0)),
+ (ADDIS8 $in, tjumptable:$g)>;
+def : Pat<(add i64:$in, (PPChi tblockaddress:$g, 0)),
+ (ADDIS8 $in, tblockaddress:$g)>;
+
+// Patterns to match r+r indexed loads and stores for
+// addresses without at least 4-byte alignment.
+def : Pat<(i64 (unaligned4sextloadi32 xoaddr:$src)),
+ (LWAX xoaddr:$src)>;
+def : Pat<(i64 (unaligned4load xoaddr:$src)),
+ (LDX xoaddr:$src)>;
+def : Pat<(unaligned4store i64:$rS, xoaddr:$dst),
+ (STDX $rS, xoaddr:$dst)>;
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td b/contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td
new file mode 100644
index 0000000..b271b5d
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td
@@ -0,0 +1,939 @@
+//===-- PPCInstrAltivec.td - The PowerPC Altivec Extension -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Altivec extension to the PowerPC instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Altivec transformation functions and pattern fragments.
+//
+
+// Since we canonicalize buildvectors to v16i8, all vnots "-1" operands will be
+// of that type.
+def vnot_ppc : PatFrag<(ops node:$in),
+ (xor node:$in, (bitconvert (v16i8 immAllOnesV)))>;
+
+def vpkuhum_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG);
+}]>;
+def vpkuwum_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG);
+}]>;
+def vpkuhum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG);
+}]>;
+def vpkuwum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG);
+}]>;
+
+// These fragments are provided for little-endian, where the inputs must be
+// swapped for correct semantics.
+def vpkuhum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG);
+}]>;
+def vpkuwum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG);
+}]>;
+
+def vmrglb_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
+ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 0, *CurDAG);
+}]>;
+def vmrglh_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
+ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 0, *CurDAG);
+}]>;
+def vmrglw_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
+ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 0, *CurDAG);
+}]>;
+def vmrghb_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
+ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 0, *CurDAG);
+}]>;
+def vmrghh_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
+ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 0, *CurDAG);
+}]>;
+def vmrghw_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
+ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 0, *CurDAG);
+}]>;
+
+
+def vmrglb_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
+ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 1, *CurDAG);
+}]>;
+def vmrglh_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 1, *CurDAG);
+}]>;
+def vmrglw_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 1, *CurDAG);
+}]>;
+def vmrghb_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 1, *CurDAG);
+}]>;
+def vmrghh_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 1, *CurDAG);
+}]>;
+def vmrghw_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 1, *CurDAG);
+}]>;
+
+
+// These fragments are provided for little-endian, where the inputs must be
+// swapped for correct semantics.
+def vmrglb_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
+ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 2, *CurDAG);
+}]>;
+def vmrglh_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 2, *CurDAG);
+}]>;
+def vmrglw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 2, *CurDAG);
+}]>;
+def vmrghb_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 2, *CurDAG);
+}]>;
+def vmrghh_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 2, *CurDAG);
+}]>;
+def vmrghw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 2, *CurDAG);
+}]>;
+
+
+def VSLDOI_get_imm : SDNodeXForm<vector_shuffle, [{
+ return getI32Imm(PPC::isVSLDOIShuffleMask(N, 0, *CurDAG));
+}]>;
+def vsldoi_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVSLDOIShuffleMask(N, 0, *CurDAG) != -1;
+}], VSLDOI_get_imm>;
+
+
+/// VSLDOI_unary* - These are used to match vsldoi(X,X), which is turned into
+/// vector_shuffle(X,undef,mask) by the dag combiner.
+def VSLDOI_unary_get_imm : SDNodeXForm<vector_shuffle, [{
+ return getI32Imm(PPC::isVSLDOIShuffleMask(N, 1, *CurDAG));
+}]>;
+def vsldoi_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVSLDOIShuffleMask(N, 1, *CurDAG) != -1;
+}], VSLDOI_unary_get_imm>;
+
+
+/// VSLDOI_swapped* - These fragments are provided for little-endian, where
+/// the inputs must be swapped for correct semantics.
+def VSLDOI_swapped_get_imm : SDNodeXForm<vector_shuffle, [{
+ return getI32Imm(PPC::isVSLDOIShuffleMask(N, 2, *CurDAG));
+}]>;
+def vsldoi_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isVSLDOIShuffleMask(N, 2, *CurDAG) != -1;
+}], VSLDOI_get_imm>;
+
+
+// VSPLT*_get_imm xform function: convert vector_shuffle mask to VSPLT* imm.
+def VSPLTB_get_imm : SDNodeXForm<vector_shuffle, [{
+ return getI32Imm(PPC::getVSPLTImmediate(N, 1, *CurDAG));
+}]>;
+def vspltb_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 1);
+}], VSPLTB_get_imm>;
+def VSPLTH_get_imm : SDNodeXForm<vector_shuffle, [{
+ return getI32Imm(PPC::getVSPLTImmediate(N, 2, *CurDAG));
+}]>;
+def vsplth_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 2);
+}], VSPLTH_get_imm>;
+def VSPLTW_get_imm : SDNodeXForm<vector_shuffle, [{
+ return getI32Imm(PPC::getVSPLTImmediate(N, 4, *CurDAG));
+}]>;
+def vspltw_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+ (vector_shuffle node:$lhs, node:$rhs), [{
+ return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 4);
+}], VSPLTW_get_imm>;
+
+
+// VSPLTISB_get_imm xform function: convert build_vector to VSPLTISB imm.
+def VSPLTISB_get_imm : SDNodeXForm<build_vector, [{
+ return PPC::get_VSPLTI_elt(N, 1, *CurDAG);
+}]>;
+def vecspltisb : PatLeaf<(build_vector), [{
+ return PPC::get_VSPLTI_elt(N, 1, *CurDAG).getNode() != 0;
+}], VSPLTISB_get_imm>;
+
+// VSPLTISH_get_imm xform function: convert build_vector to VSPLTISH imm.
+def VSPLTISH_get_imm : SDNodeXForm<build_vector, [{
+ return PPC::get_VSPLTI_elt(N, 2, *CurDAG);
+}]>;
+def vecspltish : PatLeaf<(build_vector), [{
+ return PPC::get_VSPLTI_elt(N, 2, *CurDAG).getNode() != 0;
+}], VSPLTISH_get_imm>;
+
+// VSPLTISW_get_imm xform function: convert build_vector to VSPLTISW imm.
+def VSPLTISW_get_imm : SDNodeXForm<build_vector, [{
+ return PPC::get_VSPLTI_elt(N, 4, *CurDAG);
+}]>;
+def vecspltisw : PatLeaf<(build_vector), [{
+ return PPC::get_VSPLTI_elt(N, 4, *CurDAG).getNode() != 0;
+}], VSPLTISW_get_imm>;
+
+//===----------------------------------------------------------------------===//
+// Helpers for defining instructions that directly correspond to intrinsics.
+
+// VA1a_Int_Ty - A VAForm_1a intrinsic definition of specific type.
+class VA1a_Int_Ty<bits<6> xo, string opc, Intrinsic IntID, ValueType Ty>
+ : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC),
+ !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP,
+ [(set Ty:$vD, (IntID Ty:$vA, Ty:$vB, Ty:$vC))]>;
+
+// VA1a_Int_Ty2 - A VAForm_1a intrinsic definition where the type of the
+// inputs doesn't match the type of the output.
+class VA1a_Int_Ty2<bits<6> xo, string opc, Intrinsic IntID, ValueType OutTy,
+ ValueType InTy>
+ : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC),
+ !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP,
+ [(set OutTy:$vD, (IntID InTy:$vA, InTy:$vB, InTy:$vC))]>;
+
+// VA1a_Int_Ty3 - A VAForm_1a intrinsic definition where there are two
+// input types and an output type.
+class VA1a_Int_Ty3<bits<6> xo, string opc, Intrinsic IntID, ValueType OutTy,
+ ValueType In1Ty, ValueType In2Ty>
+ : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC),
+ !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP,
+ [(set OutTy:$vD,
+ (IntID In1Ty:$vA, In1Ty:$vB, In2Ty:$vC))]>;
+
+// VX1_Int_Ty - A VXForm_1 intrinsic definition of specific type.
+class VX1_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty>
+ : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP,
+ [(set Ty:$vD, (IntID Ty:$vA, Ty:$vB))]>;
+
+// VX1_Int_Ty2 - A VXForm_1 intrinsic definition where the type of the
+// inputs doesn't match the type of the output.
+class VX1_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy,
+ ValueType InTy>
+ : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP,
+ [(set OutTy:$vD, (IntID InTy:$vA, InTy:$vB))]>;
+
+// VX1_Int_Ty3 - A VXForm_1 intrinsic definition where there are two
+// input types and an output type.
+class VX1_Int_Ty3<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy,
+ ValueType In1Ty, ValueType In2Ty>
+ : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP,
+ [(set OutTy:$vD, (IntID In1Ty:$vA, In2Ty:$vB))]>;
+
+// VX2_Int_SP - A VXForm_2 intrinsic definition of vector single-precision type.
+class VX2_Int_SP<bits<11> xo, string opc, Intrinsic IntID>
+ : VXForm_2<xo, (outs vrrc:$vD), (ins vrrc:$vB),
+ !strconcat(opc, " $vD, $vB"), IIC_VecFP,
+ [(set v4f32:$vD, (IntID v4f32:$vB))]>;
+
+// VX2_Int_Ty2 - A VXForm_2 intrinsic definition where the type of the
+// inputs doesn't match the type of the output.
+class VX2_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy,
+ ValueType InTy>
+ : VXForm_2<xo, (outs vrrc:$vD), (ins vrrc:$vB),
+ !strconcat(opc, " $vD, $vB"), IIC_VecFP,
+ [(set OutTy:$vD, (IntID InTy:$vB))]>;
+
+//===----------------------------------------------------------------------===//
+// Instruction Definitions.
+
+def HasAltivec : Predicate<"PPCSubTarget->hasAltivec()">;
+let Predicates = [HasAltivec] in {
+
+let isCodeGenOnly = 1 in {
+def DSS : DSS_Form<822, (outs),
+ (ins u5imm:$ZERO0, u5imm:$STRM,u5imm:$ZERO1,u5imm:$ZERO2),
+ "dss $STRM", IIC_LdStLoad /*FIXME*/, []>,
+ Deprecated<DeprecatedDST>;
+def DSSALL : DSS_Form<822, (outs),
+ (ins u5imm:$ONE, u5imm:$ZERO0,u5imm:$ZERO1,u5imm:$ZERO2),
+ "dssall", IIC_LdStLoad /*FIXME*/, []>,
+ Deprecated<DeprecatedDST>;
+def DST : DSS_Form<342, (outs),
+ (ins u5imm:$ZERO, u5imm:$STRM, gprc:$rA, gprc:$rB),
+ "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+ Deprecated<DeprecatedDST>;
+def DSTT : DSS_Form<342, (outs),
+ (ins u5imm:$ONE, u5imm:$STRM, gprc:$rA, gprc:$rB),
+ "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+ Deprecated<DeprecatedDST>;
+def DSTST : DSS_Form<374, (outs),
+ (ins u5imm:$ZERO, u5imm:$STRM, gprc:$rA, gprc:$rB),
+ "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+ Deprecated<DeprecatedDST>;
+def DSTSTT : DSS_Form<374, (outs),
+ (ins u5imm:$ONE, u5imm:$STRM, gprc:$rA, gprc:$rB),
+ "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+ Deprecated<DeprecatedDST>;
+
+def DST64 : DSS_Form<342, (outs),
+ (ins u5imm:$ZERO, u5imm:$STRM, g8rc:$rA, gprc:$rB),
+ "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+ Deprecated<DeprecatedDST>;
+def DSTT64 : DSS_Form<342, (outs),
+ (ins u5imm:$ONE, u5imm:$STRM, g8rc:$rA, gprc:$rB),
+ "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+ Deprecated<DeprecatedDST>;
+def DSTST64 : DSS_Form<374, (outs),
+ (ins u5imm:$ZERO, u5imm:$STRM, g8rc:$rA, gprc:$rB),
+ "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+ Deprecated<DeprecatedDST>;
+def DSTSTT64 : DSS_Form<374, (outs),
+ (ins u5imm:$ONE, u5imm:$STRM, g8rc:$rA, gprc:$rB),
+ "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+ Deprecated<DeprecatedDST>;
+}
+
+def MFVSCR : VXForm_4<1540, (outs vrrc:$vD), (ins),
+ "mfvscr $vD", IIC_LdStStore,
+ [(set v8i16:$vD, (int_ppc_altivec_mfvscr))]>;
+def MTVSCR : VXForm_5<1604, (outs), (ins vrrc:$vB),
+ "mtvscr $vB", IIC_LdStLoad,
+ [(int_ppc_altivec_mtvscr v4i32:$vB)]>;
+
+let canFoldAsLoad = 1, PPC970_Unit = 2 in { // Loads.
+def LVEBX: XForm_1<31, 7, (outs vrrc:$vD), (ins memrr:$src),
+ "lvebx $vD, $src", IIC_LdStLoad,
+ [(set v16i8:$vD, (int_ppc_altivec_lvebx xoaddr:$src))]>;
+def LVEHX: XForm_1<31, 39, (outs vrrc:$vD), (ins memrr:$src),
+ "lvehx $vD, $src", IIC_LdStLoad,
+ [(set v8i16:$vD, (int_ppc_altivec_lvehx xoaddr:$src))]>;
+def LVEWX: XForm_1<31, 71, (outs vrrc:$vD), (ins memrr:$src),
+ "lvewx $vD, $src", IIC_LdStLoad,
+ [(set v4i32:$vD, (int_ppc_altivec_lvewx xoaddr:$src))]>;
+def LVX : XForm_1<31, 103, (outs vrrc:$vD), (ins memrr:$src),
+ "lvx $vD, $src", IIC_LdStLoad,
+ [(set v4i32:$vD, (int_ppc_altivec_lvx xoaddr:$src))]>;
+def LVXL : XForm_1<31, 359, (outs vrrc:$vD), (ins memrr:$src),
+ "lvxl $vD, $src", IIC_LdStLoad,
+ [(set v4i32:$vD, (int_ppc_altivec_lvxl xoaddr:$src))]>;
+}
+
+def LVSL : XForm_1<31, 6, (outs vrrc:$vD), (ins memrr:$src),
+ "lvsl $vD, $src", IIC_LdStLoad,
+ [(set v16i8:$vD, (int_ppc_altivec_lvsl xoaddr:$src))]>,
+ PPC970_Unit_LSU;
+def LVSR : XForm_1<31, 38, (outs vrrc:$vD), (ins memrr:$src),
+ "lvsr $vD, $src", IIC_LdStLoad,
+ [(set v16i8:$vD, (int_ppc_altivec_lvsr xoaddr:$src))]>,
+ PPC970_Unit_LSU;
+
+let PPC970_Unit = 2 in { // Stores.
+def STVEBX: XForm_8<31, 135, (outs), (ins vrrc:$rS, memrr:$dst),
+ "stvebx $rS, $dst", IIC_LdStStore,
+ [(int_ppc_altivec_stvebx v16i8:$rS, xoaddr:$dst)]>;
+def STVEHX: XForm_8<31, 167, (outs), (ins vrrc:$rS, memrr:$dst),
+ "stvehx $rS, $dst", IIC_LdStStore,
+ [(int_ppc_altivec_stvehx v8i16:$rS, xoaddr:$dst)]>;
+def STVEWX: XForm_8<31, 199, (outs), (ins vrrc:$rS, memrr:$dst),
+ "stvewx $rS, $dst", IIC_LdStStore,
+ [(int_ppc_altivec_stvewx v4i32:$rS, xoaddr:$dst)]>;
+def STVX : XForm_8<31, 231, (outs), (ins vrrc:$rS, memrr:$dst),
+ "stvx $rS, $dst", IIC_LdStStore,
+ [(int_ppc_altivec_stvx v4i32:$rS, xoaddr:$dst)]>;
+def STVXL : XForm_8<31, 487, (outs), (ins vrrc:$rS, memrr:$dst),
+ "stvxl $rS, $dst", IIC_LdStStore,
+ [(int_ppc_altivec_stvxl v4i32:$rS, xoaddr:$dst)]>;
+}
+
+let PPC970_Unit = 5 in { // VALU Operations.
+// VA-Form instructions. 3-input AltiVec ops.
+let isCommutable = 1 in {
+def VMADDFP : VAForm_1<46, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vC, vrrc:$vB),
+ "vmaddfp $vD, $vA, $vC, $vB", IIC_VecFP,
+ [(set v4f32:$vD,
+ (fma v4f32:$vA, v4f32:$vC, v4f32:$vB))]>;
+
+// FIXME: The fma+fneg pattern won't match because fneg is not legal.
+def VNMSUBFP: VAForm_1<47, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vC, vrrc:$vB),
+ "vnmsubfp $vD, $vA, $vC, $vB", IIC_VecFP,
+ [(set v4f32:$vD, (fneg (fma v4f32:$vA, v4f32:$vC,
+ (fneg v4f32:$vB))))]>;
+
+def VMHADDSHS : VA1a_Int_Ty<32, "vmhaddshs", int_ppc_altivec_vmhaddshs, v8i16>;
+def VMHRADDSHS : VA1a_Int_Ty<33, "vmhraddshs", int_ppc_altivec_vmhraddshs,
+ v8i16>;
+def VMLADDUHM : VA1a_Int_Ty<34, "vmladduhm", int_ppc_altivec_vmladduhm, v8i16>;
+} // isCommutable
+
+def VPERM : VA1a_Int_Ty3<43, "vperm", int_ppc_altivec_vperm,
+ v4i32, v4i32, v16i8>;
+def VSEL : VA1a_Int_Ty<42, "vsel", int_ppc_altivec_vsel, v4i32>;
+
+// Shuffles.
+def VSLDOI : VAForm_2<44, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, u5imm:$SH),
+ "vsldoi $vD, $vA, $vB, $SH", IIC_VecFP,
+ [(set v16i8:$vD,
+ (vsldoi_shuffle:$SH v16i8:$vA, v16i8:$vB))]>;
+
+// VX-Form instructions. AltiVec arithmetic ops.
+let isCommutable = 1 in {
+def VADDFP : VXForm_1<10, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vaddfp $vD, $vA, $vB", IIC_VecFP,
+ [(set v4f32:$vD, (fadd v4f32:$vA, v4f32:$vB))]>;
+
+def VADDUBM : VXForm_1<0, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vaddubm $vD, $vA, $vB", IIC_VecGeneral,
+ [(set v16i8:$vD, (add v16i8:$vA, v16i8:$vB))]>;
+def VADDUHM : VXForm_1<64, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vadduhm $vD, $vA, $vB", IIC_VecGeneral,
+ [(set v8i16:$vD, (add v8i16:$vA, v8i16:$vB))]>;
+def VADDUWM : VXForm_1<128, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vadduwm $vD, $vA, $vB", IIC_VecGeneral,
+ [(set v4i32:$vD, (add v4i32:$vA, v4i32:$vB))]>;
+
+def VADDCUW : VX1_Int_Ty<384, "vaddcuw", int_ppc_altivec_vaddcuw, v4i32>;
+def VADDSBS : VX1_Int_Ty<768, "vaddsbs", int_ppc_altivec_vaddsbs, v16i8>;
+def VADDSHS : VX1_Int_Ty<832, "vaddshs", int_ppc_altivec_vaddshs, v8i16>;
+def VADDSWS : VX1_Int_Ty<896, "vaddsws", int_ppc_altivec_vaddsws, v4i32>;
+def VADDUBS : VX1_Int_Ty<512, "vaddubs", int_ppc_altivec_vaddubs, v16i8>;
+def VADDUHS : VX1_Int_Ty<576, "vadduhs", int_ppc_altivec_vadduhs, v8i16>;
+def VADDUWS : VX1_Int_Ty<640, "vadduws", int_ppc_altivec_vadduws, v4i32>;
+} // isCommutable
+
+let isCommutable = 1 in
+def VAND : VXForm_1<1028, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vand $vD, $vA, $vB", IIC_VecFP,
+ [(set v4i32:$vD, (and v4i32:$vA, v4i32:$vB))]>;
+def VANDC : VXForm_1<1092, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vandc $vD, $vA, $vB", IIC_VecFP,
+ [(set v4i32:$vD, (and v4i32:$vA,
+ (vnot_ppc v4i32:$vB)))]>;
+
+def VCFSX : VXForm_1<842, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
+ "vcfsx $vD, $vB, $UIMM", IIC_VecFP,
+ [(set v4f32:$vD,
+ (int_ppc_altivec_vcfsx v4i32:$vB, imm:$UIMM))]>;
+def VCFUX : VXForm_1<778, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
+ "vcfux $vD, $vB, $UIMM", IIC_VecFP,
+ [(set v4f32:$vD,
+ (int_ppc_altivec_vcfux v4i32:$vB, imm:$UIMM))]>;
+def VCTSXS : VXForm_1<970, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
+ "vctsxs $vD, $vB, $UIMM", IIC_VecFP,
+ [(set v4i32:$vD,
+ (int_ppc_altivec_vctsxs v4f32:$vB, imm:$UIMM))]>;
+def VCTUXS : VXForm_1<906, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
+ "vctuxs $vD, $vB, $UIMM", IIC_VecFP,
+ [(set v4i32:$vD,
+ (int_ppc_altivec_vctuxs v4f32:$vB, imm:$UIMM))]>;
+
+// Defines with the UIM field set to 0 for floating-point
+// to integer (fp_to_sint/fp_to_uint) conversions and integer
+// to floating-point (sint_to_fp/uint_to_fp) conversions.
+let isCodeGenOnly = 1, VA = 0 in {
+def VCFSX_0 : VXForm_1<842, (outs vrrc:$vD), (ins vrrc:$vB),
+ "vcfsx $vD, $vB, 0", IIC_VecFP,
+ [(set v4f32:$vD,
+ (int_ppc_altivec_vcfsx v4i32:$vB, 0))]>;
+def VCTUXS_0 : VXForm_1<906, (outs vrrc:$vD), (ins vrrc:$vB),
+ "vctuxs $vD, $vB, 0", IIC_VecFP,
+ [(set v4i32:$vD,
+ (int_ppc_altivec_vctuxs v4f32:$vB, 0))]>;
+def VCFUX_0 : VXForm_1<778, (outs vrrc:$vD), (ins vrrc:$vB),
+ "vcfux $vD, $vB, 0", IIC_VecFP,
+ [(set v4f32:$vD,
+ (int_ppc_altivec_vcfux v4i32:$vB, 0))]>;
+def VCTSXS_0 : VXForm_1<970, (outs vrrc:$vD), (ins vrrc:$vB),
+ "vctsxs $vD, $vB, 0", IIC_VecFP,
+ [(set v4i32:$vD,
+ (int_ppc_altivec_vctsxs v4f32:$vB, 0))]>;
+}
+def VEXPTEFP : VX2_Int_SP<394, "vexptefp", int_ppc_altivec_vexptefp>;
+def VLOGEFP : VX2_Int_SP<458, "vlogefp", int_ppc_altivec_vlogefp>;
+
+let isCommutable = 1 in {
+def VAVGSB : VX1_Int_Ty<1282, "vavgsb", int_ppc_altivec_vavgsb, v16i8>;
+def VAVGSH : VX1_Int_Ty<1346, "vavgsh", int_ppc_altivec_vavgsh, v8i16>;
+def VAVGSW : VX1_Int_Ty<1410, "vavgsw", int_ppc_altivec_vavgsw, v4i32>;
+def VAVGUB : VX1_Int_Ty<1026, "vavgub", int_ppc_altivec_vavgub, v16i8>;
+def VAVGUH : VX1_Int_Ty<1090, "vavguh", int_ppc_altivec_vavguh, v8i16>;
+def VAVGUW : VX1_Int_Ty<1154, "vavguw", int_ppc_altivec_vavguw, v4i32>;
+
+def VMAXFP : VX1_Int_Ty<1034, "vmaxfp", int_ppc_altivec_vmaxfp, v4f32>;
+def VMAXSB : VX1_Int_Ty< 258, "vmaxsb", int_ppc_altivec_vmaxsb, v16i8>;
+def VMAXSH : VX1_Int_Ty< 322, "vmaxsh", int_ppc_altivec_vmaxsh, v8i16>;
+def VMAXSW : VX1_Int_Ty< 386, "vmaxsw", int_ppc_altivec_vmaxsw, v4i32>;
+def VMAXUB : VX1_Int_Ty< 2, "vmaxub", int_ppc_altivec_vmaxub, v16i8>;
+def VMAXUH : VX1_Int_Ty< 66, "vmaxuh", int_ppc_altivec_vmaxuh, v8i16>;
+def VMAXUW : VX1_Int_Ty< 130, "vmaxuw", int_ppc_altivec_vmaxuw, v4i32>;
+def VMINFP : VX1_Int_Ty<1098, "vminfp", int_ppc_altivec_vminfp, v4f32>;
+def VMINSB : VX1_Int_Ty< 770, "vminsb", int_ppc_altivec_vminsb, v16i8>;
+def VMINSH : VX1_Int_Ty< 834, "vminsh", int_ppc_altivec_vminsh, v8i16>;
+def VMINSW : VX1_Int_Ty< 898, "vminsw", int_ppc_altivec_vminsw, v4i32>;
+def VMINUB : VX1_Int_Ty< 514, "vminub", int_ppc_altivec_vminub, v16i8>;
+def VMINUH : VX1_Int_Ty< 578, "vminuh", int_ppc_altivec_vminuh, v8i16>;
+def VMINUW : VX1_Int_Ty< 642, "vminuw", int_ppc_altivec_vminuw, v4i32>;
+} // isCommutable
+
+def VMRGHB : VXForm_1< 12, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vmrghb $vD, $vA, $vB", IIC_VecFP,
+ [(set v16i8:$vD, (vmrghb_shuffle v16i8:$vA, v16i8:$vB))]>;
+def VMRGHH : VXForm_1< 76, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vmrghh $vD, $vA, $vB", IIC_VecFP,
+ [(set v16i8:$vD, (vmrghh_shuffle v16i8:$vA, v16i8:$vB))]>;
+def VMRGHW : VXForm_1<140, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vmrghw $vD, $vA, $vB", IIC_VecFP,
+ [(set v16i8:$vD, (vmrghw_shuffle v16i8:$vA, v16i8:$vB))]>;
+def VMRGLB : VXForm_1<268, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vmrglb $vD, $vA, $vB", IIC_VecFP,
+ [(set v16i8:$vD, (vmrglb_shuffle v16i8:$vA, v16i8:$vB))]>;
+def VMRGLH : VXForm_1<332, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vmrglh $vD, $vA, $vB", IIC_VecFP,
+ [(set v16i8:$vD, (vmrglh_shuffle v16i8:$vA, v16i8:$vB))]>;
+def VMRGLW : VXForm_1<396, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vmrglw $vD, $vA, $vB", IIC_VecFP,
+ [(set v16i8:$vD, (vmrglw_shuffle v16i8:$vA, v16i8:$vB))]>;
+
+def VMSUMMBM : VA1a_Int_Ty3<37, "vmsummbm", int_ppc_altivec_vmsummbm,
+ v4i32, v16i8, v4i32>;
+def VMSUMSHM : VA1a_Int_Ty3<40, "vmsumshm", int_ppc_altivec_vmsumshm,
+ v4i32, v8i16, v4i32>;
+def VMSUMSHS : VA1a_Int_Ty3<41, "vmsumshs", int_ppc_altivec_vmsumshs,
+ v4i32, v8i16, v4i32>;
+def VMSUMUBM : VA1a_Int_Ty3<36, "vmsumubm", int_ppc_altivec_vmsumubm,
+ v4i32, v16i8, v4i32>;
+def VMSUMUHM : VA1a_Int_Ty3<38, "vmsumuhm", int_ppc_altivec_vmsumuhm,
+ v4i32, v8i16, v4i32>;
+def VMSUMUHS : VA1a_Int_Ty3<39, "vmsumuhs", int_ppc_altivec_vmsumuhs,
+ v4i32, v8i16, v4i32>;
+
+let isCommutable = 1 in {
+def VMULESB : VX1_Int_Ty2<776, "vmulesb", int_ppc_altivec_vmulesb,
+ v8i16, v16i8>;
+def VMULESH : VX1_Int_Ty2<840, "vmulesh", int_ppc_altivec_vmulesh,
+ v4i32, v8i16>;
+def VMULEUB : VX1_Int_Ty2<520, "vmuleub", int_ppc_altivec_vmuleub,
+ v8i16, v16i8>;
+def VMULEUH : VX1_Int_Ty2<584, "vmuleuh", int_ppc_altivec_vmuleuh,
+ v4i32, v8i16>;
+def VMULOSB : VX1_Int_Ty2<264, "vmulosb", int_ppc_altivec_vmulosb,
+ v8i16, v16i8>;
+def VMULOSH : VX1_Int_Ty2<328, "vmulosh", int_ppc_altivec_vmulosh,
+ v4i32, v8i16>;
+def VMULOUB : VX1_Int_Ty2< 8, "vmuloub", int_ppc_altivec_vmuloub,
+ v8i16, v16i8>;
+def VMULOUH : VX1_Int_Ty2< 72, "vmulouh", int_ppc_altivec_vmulouh,
+ v4i32, v8i16>;
+} // isCommutable
+
+def VREFP : VX2_Int_SP<266, "vrefp", int_ppc_altivec_vrefp>;
+def VRFIM : VX2_Int_SP<714, "vrfim", int_ppc_altivec_vrfim>;
+def VRFIN : VX2_Int_SP<522, "vrfin", int_ppc_altivec_vrfin>;
+def VRFIP : VX2_Int_SP<650, "vrfip", int_ppc_altivec_vrfip>;
+def VRFIZ : VX2_Int_SP<586, "vrfiz", int_ppc_altivec_vrfiz>;
+def VRSQRTEFP : VX2_Int_SP<330, "vrsqrtefp", int_ppc_altivec_vrsqrtefp>;
+
+def VSUBCUW : VX1_Int_Ty<1408, "vsubcuw", int_ppc_altivec_vsubcuw, v4i32>;
+
+def VSUBFP : VXForm_1<74, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vsubfp $vD, $vA, $vB", IIC_VecGeneral,
+ [(set v4f32:$vD, (fsub v4f32:$vA, v4f32:$vB))]>;
+def VSUBUBM : VXForm_1<1024, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vsububm $vD, $vA, $vB", IIC_VecGeneral,
+ [(set v16i8:$vD, (sub v16i8:$vA, v16i8:$vB))]>;
+def VSUBUHM : VXForm_1<1088, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vsubuhm $vD, $vA, $vB", IIC_VecGeneral,
+ [(set v8i16:$vD, (sub v8i16:$vA, v8i16:$vB))]>;
+def VSUBUWM : VXForm_1<1152, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vsubuwm $vD, $vA, $vB", IIC_VecGeneral,
+ [(set v4i32:$vD, (sub v4i32:$vA, v4i32:$vB))]>;
+
+def VSUBSBS : VX1_Int_Ty<1792, "vsubsbs" , int_ppc_altivec_vsubsbs, v16i8>;
+def VSUBSHS : VX1_Int_Ty<1856, "vsubshs" , int_ppc_altivec_vsubshs, v8i16>;
+def VSUBSWS : VX1_Int_Ty<1920, "vsubsws" , int_ppc_altivec_vsubsws, v4i32>;
+def VSUBUBS : VX1_Int_Ty<1536, "vsububs" , int_ppc_altivec_vsububs, v16i8>;
+def VSUBUHS : VX1_Int_Ty<1600, "vsubuhs" , int_ppc_altivec_vsubuhs, v8i16>;
+def VSUBUWS : VX1_Int_Ty<1664, "vsubuws" , int_ppc_altivec_vsubuws, v4i32>;
+
+def VSUMSWS : VX1_Int_Ty<1928, "vsumsws" , int_ppc_altivec_vsumsws, v4i32>;
+def VSUM2SWS: VX1_Int_Ty<1672, "vsum2sws", int_ppc_altivec_vsum2sws, v4i32>;
+
+def VSUM4SBS: VX1_Int_Ty3<1800, "vsum4sbs", int_ppc_altivec_vsum4sbs,
+ v4i32, v16i8, v4i32>;
+def VSUM4SHS: VX1_Int_Ty3<1608, "vsum4shs", int_ppc_altivec_vsum4shs,
+ v4i32, v8i16, v4i32>;
+def VSUM4UBS: VX1_Int_Ty3<1544, "vsum4ubs", int_ppc_altivec_vsum4ubs,
+ v4i32, v16i8, v4i32>;
+
+def VNOR : VXForm_1<1284, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vnor $vD, $vA, $vB", IIC_VecFP,
+ [(set v4i32:$vD, (vnot_ppc (or v4i32:$vA,
+ v4i32:$vB)))]>;
+let isCommutable = 1 in {
+def VOR : VXForm_1<1156, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vor $vD, $vA, $vB", IIC_VecFP,
+ [(set v4i32:$vD, (or v4i32:$vA, v4i32:$vB))]>;
+def VXOR : VXForm_1<1220, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vxor $vD, $vA, $vB", IIC_VecFP,
+ [(set v4i32:$vD, (xor v4i32:$vA, v4i32:$vB))]>;
+} // isCommutable
+
+def VRLB : VX1_Int_Ty< 4, "vrlb", int_ppc_altivec_vrlb, v16i8>;
+def VRLH : VX1_Int_Ty< 68, "vrlh", int_ppc_altivec_vrlh, v8i16>;
+def VRLW : VX1_Int_Ty< 132, "vrlw", int_ppc_altivec_vrlw, v4i32>;
+
+def VSL : VX1_Int_Ty< 452, "vsl" , int_ppc_altivec_vsl, v4i32 >;
+def VSLO : VX1_Int_Ty<1036, "vslo", int_ppc_altivec_vslo, v4i32>;
+
+def VSLB : VX1_Int_Ty< 260, "vslb", int_ppc_altivec_vslb, v16i8>;
+def VSLH : VX1_Int_Ty< 324, "vslh", int_ppc_altivec_vslh, v8i16>;
+def VSLW : VX1_Int_Ty< 388, "vslw", int_ppc_altivec_vslw, v4i32>;
+
+def VSPLTB : VXForm_1<524, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
+ "vspltb $vD, $vB, $UIMM", IIC_VecPerm,
+ [(set v16i8:$vD,
+ (vspltb_shuffle:$UIMM v16i8:$vB, (undef)))]>;
+def VSPLTH : VXForm_1<588, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
+ "vsplth $vD, $vB, $UIMM", IIC_VecPerm,
+ [(set v16i8:$vD,
+ (vsplth_shuffle:$UIMM v16i8:$vB, (undef)))]>;
+def VSPLTW : VXForm_1<652, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
+ "vspltw $vD, $vB, $UIMM", IIC_VecPerm,
+ [(set v16i8:$vD,
+ (vspltw_shuffle:$UIMM v16i8:$vB, (undef)))]>;
+
+def VSR : VX1_Int_Ty< 708, "vsr" , int_ppc_altivec_vsr, v4i32>;
+def VSRO : VX1_Int_Ty<1100, "vsro" , int_ppc_altivec_vsro, v4i32>;
+
+def VSRAB : VX1_Int_Ty< 772, "vsrab", int_ppc_altivec_vsrab, v16i8>;
+def VSRAH : VX1_Int_Ty< 836, "vsrah", int_ppc_altivec_vsrah, v8i16>;
+def VSRAW : VX1_Int_Ty< 900, "vsraw", int_ppc_altivec_vsraw, v4i32>;
+def VSRB : VX1_Int_Ty< 516, "vsrb" , int_ppc_altivec_vsrb , v16i8>;
+def VSRH : VX1_Int_Ty< 580, "vsrh" , int_ppc_altivec_vsrh , v8i16>;
+def VSRW : VX1_Int_Ty< 644, "vsrw" , int_ppc_altivec_vsrw , v4i32>;
+
+
+def VSPLTISB : VXForm_3<780, (outs vrrc:$vD), (ins s5imm:$SIMM),
+ "vspltisb $vD, $SIMM", IIC_VecPerm,
+ [(set v16i8:$vD, (v16i8 vecspltisb:$SIMM))]>;
+def VSPLTISH : VXForm_3<844, (outs vrrc:$vD), (ins s5imm:$SIMM),
+ "vspltish $vD, $SIMM", IIC_VecPerm,
+ [(set v8i16:$vD, (v8i16 vecspltish:$SIMM))]>;
+def VSPLTISW : VXForm_3<908, (outs vrrc:$vD), (ins s5imm:$SIMM),
+ "vspltisw $vD, $SIMM", IIC_VecPerm,
+ [(set v4i32:$vD, (v4i32 vecspltisw:$SIMM))]>;
+
+// Vector Pack.
+def VPKPX : VX1_Int_Ty2<782, "vpkpx", int_ppc_altivec_vpkpx,
+ v8i16, v4i32>;
+def VPKSHSS : VX1_Int_Ty2<398, "vpkshss", int_ppc_altivec_vpkshss,
+ v16i8, v8i16>;
+def VPKSHUS : VX1_Int_Ty2<270, "vpkshus", int_ppc_altivec_vpkshus,
+ v16i8, v8i16>;
+def VPKSWSS : VX1_Int_Ty2<462, "vpkswss", int_ppc_altivec_vpkswss,
+ v16i8, v4i32>;
+def VPKSWUS : VX1_Int_Ty2<334, "vpkswus", int_ppc_altivec_vpkswus,
+ v8i16, v4i32>;
+def VPKUHUM : VXForm_1<14, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vpkuhum $vD, $vA, $vB", IIC_VecFP,
+ [(set v16i8:$vD,
+ (vpkuhum_shuffle v16i8:$vA, v16i8:$vB))]>;
+def VPKUHUS : VX1_Int_Ty2<142, "vpkuhus", int_ppc_altivec_vpkuhus,
+ v16i8, v8i16>;
+def VPKUWUM : VXForm_1<78, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+ "vpkuwum $vD, $vA, $vB", IIC_VecFP,
+ [(set v16i8:$vD,
+ (vpkuwum_shuffle v16i8:$vA, v16i8:$vB))]>;
+def VPKUWUS : VX1_Int_Ty2<206, "vpkuwus", int_ppc_altivec_vpkuwus,
+ v8i16, v4i32>;
+
+// Vector Unpack.
+def VUPKHPX : VX2_Int_Ty2<846, "vupkhpx", int_ppc_altivec_vupkhpx,
+ v4i32, v8i16>;
+def VUPKHSB : VX2_Int_Ty2<526, "vupkhsb", int_ppc_altivec_vupkhsb,
+ v8i16, v16i8>;
+def VUPKHSH : VX2_Int_Ty2<590, "vupkhsh", int_ppc_altivec_vupkhsh,
+ v4i32, v8i16>;
+def VUPKLPX : VX2_Int_Ty2<974, "vupklpx", int_ppc_altivec_vupklpx,
+ v4i32, v8i16>;
+def VUPKLSB : VX2_Int_Ty2<654, "vupklsb", int_ppc_altivec_vupklsb,
+ v8i16, v16i8>;
+def VUPKLSH : VX2_Int_Ty2<718, "vupklsh", int_ppc_altivec_vupklsh,
+ v4i32, v8i16>;
+
+
+// Altivec Comparisons.
+
+class VCMP<bits<10> xo, string asmstr, ValueType Ty>
+ : VXRForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), asmstr,
+ IIC_VecFPCompare,
+ [(set Ty:$vD, (Ty (PPCvcmp Ty:$vA, Ty:$vB, xo)))]>;
+class VCMPo<bits<10> xo, string asmstr, ValueType Ty>
+ : VXRForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), asmstr,
+ IIC_VecFPCompare,
+ [(set Ty:$vD, (Ty (PPCvcmp_o Ty:$vA, Ty:$vB, xo)))]> {
+ let Defs = [CR6];
+ let RC = 1;
+}
+
+// f32 element comparisons.0
+def VCMPBFP : VCMP <966, "vcmpbfp $vD, $vA, $vB" , v4f32>;
+def VCMPBFPo : VCMPo<966, "vcmpbfp. $vD, $vA, $vB" , v4f32>;
+def VCMPEQFP : VCMP <198, "vcmpeqfp $vD, $vA, $vB" , v4f32>;
+def VCMPEQFPo : VCMPo<198, "vcmpeqfp. $vD, $vA, $vB", v4f32>;
+def VCMPGEFP : VCMP <454, "vcmpgefp $vD, $vA, $vB" , v4f32>;
+def VCMPGEFPo : VCMPo<454, "vcmpgefp. $vD, $vA, $vB", v4f32>;
+def VCMPGTFP : VCMP <710, "vcmpgtfp $vD, $vA, $vB" , v4f32>;
+def VCMPGTFPo : VCMPo<710, "vcmpgtfp. $vD, $vA, $vB", v4f32>;
+
+// i8 element comparisons.
+def VCMPEQUB : VCMP < 6, "vcmpequb $vD, $vA, $vB" , v16i8>;
+def VCMPEQUBo : VCMPo< 6, "vcmpequb. $vD, $vA, $vB", v16i8>;
+def VCMPGTSB : VCMP <774, "vcmpgtsb $vD, $vA, $vB" , v16i8>;
+def VCMPGTSBo : VCMPo<774, "vcmpgtsb. $vD, $vA, $vB", v16i8>;
+def VCMPGTUB : VCMP <518, "vcmpgtub $vD, $vA, $vB" , v16i8>;
+def VCMPGTUBo : VCMPo<518, "vcmpgtub. $vD, $vA, $vB", v16i8>;
+
+// i16 element comparisons.
+def VCMPEQUH : VCMP < 70, "vcmpequh $vD, $vA, $vB" , v8i16>;
+def VCMPEQUHo : VCMPo< 70, "vcmpequh. $vD, $vA, $vB", v8i16>;
+def VCMPGTSH : VCMP <838, "vcmpgtsh $vD, $vA, $vB" , v8i16>;
+def VCMPGTSHo : VCMPo<838, "vcmpgtsh. $vD, $vA, $vB", v8i16>;
+def VCMPGTUH : VCMP <582, "vcmpgtuh $vD, $vA, $vB" , v8i16>;
+def VCMPGTUHo : VCMPo<582, "vcmpgtuh. $vD, $vA, $vB", v8i16>;
+
+// i32 element comparisons.
+def VCMPEQUW : VCMP <134, "vcmpequw $vD, $vA, $vB" , v4i32>;
+def VCMPEQUWo : VCMPo<134, "vcmpequw. $vD, $vA, $vB", v4i32>;
+def VCMPGTSW : VCMP <902, "vcmpgtsw $vD, $vA, $vB" , v4i32>;
+def VCMPGTSWo : VCMPo<902, "vcmpgtsw. $vD, $vA, $vB", v4i32>;
+def VCMPGTUW : VCMP <646, "vcmpgtuw $vD, $vA, $vB" , v4i32>;
+def VCMPGTUWo : VCMPo<646, "vcmpgtuw. $vD, $vA, $vB", v4i32>;
+
+let isCodeGenOnly = 1 in {
+def V_SET0B : VXForm_setzero<1220, (outs vrrc:$vD), (ins),
+ "vxor $vD, $vD, $vD", IIC_VecFP,
+ [(set v16i8:$vD, (v16i8 immAllZerosV))]>;
+def V_SET0H : VXForm_setzero<1220, (outs vrrc:$vD), (ins),
+ "vxor $vD, $vD, $vD", IIC_VecFP,
+ [(set v8i16:$vD, (v8i16 immAllZerosV))]>;
+def V_SET0 : VXForm_setzero<1220, (outs vrrc:$vD), (ins),
+ "vxor $vD, $vD, $vD", IIC_VecFP,
+ [(set v4i32:$vD, (v4i32 immAllZerosV))]>;
+
+let IMM=-1 in {
+def V_SETALLONESB : VXForm_3<908, (outs vrrc:$vD), (ins),
+ "vspltisw $vD, -1", IIC_VecFP,
+ [(set v16i8:$vD, (v16i8 immAllOnesV))]>;
+def V_SETALLONESH : VXForm_3<908, (outs vrrc:$vD), (ins),
+ "vspltisw $vD, -1", IIC_VecFP,
+ [(set v8i16:$vD, (v8i16 immAllOnesV))]>;
+def V_SETALLONES : VXForm_3<908, (outs vrrc:$vD), (ins),
+ "vspltisw $vD, -1", IIC_VecFP,
+ [(set v4i32:$vD, (v4i32 immAllOnesV))]>;
+}
+}
+} // VALU Operations.
+
+//===----------------------------------------------------------------------===//
+// Additional Altivec Patterns
+//
+
+// DS* intrinsics
+def : Pat<(int_ppc_altivec_dssall), (DSSALL 1, 0, 0, 0)>;
+def : Pat<(int_ppc_altivec_dss imm:$STRM), (DSS 0, imm:$STRM, 0, 0)>;
+
+// * 32-bit
+def : Pat<(int_ppc_altivec_dst i32:$rA, i32:$rB, imm:$STRM),
+ (DST 0, imm:$STRM, $rA, $rB)>;
+def : Pat<(int_ppc_altivec_dstt i32:$rA, i32:$rB, imm:$STRM),
+ (DSTT 1, imm:$STRM, $rA, $rB)>;
+def : Pat<(int_ppc_altivec_dstst i32:$rA, i32:$rB, imm:$STRM),
+ (DSTST 0, imm:$STRM, $rA, $rB)>;
+def : Pat<(int_ppc_altivec_dststt i32:$rA, i32:$rB, imm:$STRM),
+ (DSTSTT 1, imm:$STRM, $rA, $rB)>;
+
+// * 64-bit
+def : Pat<(int_ppc_altivec_dst i64:$rA, i32:$rB, imm:$STRM),
+ (DST64 0, imm:$STRM, $rA, $rB)>;
+def : Pat<(int_ppc_altivec_dstt i64:$rA, i32:$rB, imm:$STRM),
+ (DSTT64 1, imm:$STRM, $rA, $rB)>;
+def : Pat<(int_ppc_altivec_dstst i64:$rA, i32:$rB, imm:$STRM),
+ (DSTST64 0, imm:$STRM, $rA, $rB)>;
+def : Pat<(int_ppc_altivec_dststt i64:$rA, i32:$rB, imm:$STRM),
+ (DSTSTT64 1, imm:$STRM, $rA, $rB)>;
+
+// Loads.
+def : Pat<(v4i32 (load xoaddr:$src)), (LVX xoaddr:$src)>;
+
+// Stores.
+def : Pat<(store v4i32:$rS, xoaddr:$dst),
+ (STVX $rS, xoaddr:$dst)>;
+
+// Bit conversions.
+def : Pat<(v16i8 (bitconvert (v8i16 VRRC:$src))), (v16i8 VRRC:$src)>;
+def : Pat<(v16i8 (bitconvert (v4i32 VRRC:$src))), (v16i8 VRRC:$src)>;
+def : Pat<(v16i8 (bitconvert (v4f32 VRRC:$src))), (v16i8 VRRC:$src)>;
+
+def : Pat<(v8i16 (bitconvert (v16i8 VRRC:$src))), (v8i16 VRRC:$src)>;
+def : Pat<(v8i16 (bitconvert (v4i32 VRRC:$src))), (v8i16 VRRC:$src)>;
+def : Pat<(v8i16 (bitconvert (v4f32 VRRC:$src))), (v8i16 VRRC:$src)>;
+
+def : Pat<(v4i32 (bitconvert (v16i8 VRRC:$src))), (v4i32 VRRC:$src)>;
+def : Pat<(v4i32 (bitconvert (v8i16 VRRC:$src))), (v4i32 VRRC:$src)>;
+def : Pat<(v4i32 (bitconvert (v4f32 VRRC:$src))), (v4i32 VRRC:$src)>;
+
+def : Pat<(v4f32 (bitconvert (v16i8 VRRC:$src))), (v4f32 VRRC:$src)>;
+def : Pat<(v4f32 (bitconvert (v8i16 VRRC:$src))), (v4f32 VRRC:$src)>;
+def : Pat<(v4f32 (bitconvert (v4i32 VRRC:$src))), (v4f32 VRRC:$src)>;
+
+// Shuffles.
+
+// Match vsldoi(x,x), vpkuwum(x,x), vpkuhum(x,x)
+def:Pat<(vsldoi_unary_shuffle:$in v16i8:$vA, undef),
+ (VSLDOI $vA, $vA, (VSLDOI_unary_get_imm $in))>;
+def:Pat<(vpkuwum_unary_shuffle v16i8:$vA, undef),
+ (VPKUWUM $vA, $vA)>;
+def:Pat<(vpkuhum_unary_shuffle v16i8:$vA, undef),
+ (VPKUHUM $vA, $vA)>;
+
+// Match vsldoi(y,x), vpkuwum(y,x), vpkuhum(y,x), i.e., swapped operands.
+// These fragments are matched for little-endian, where the inputs must
+// be swapped for correct semantics.
+def:Pat<(vsldoi_swapped_shuffle:$in v16i8:$vA, v16i8:$vB),
+ (VSLDOI $vB, $vA, (VSLDOI_swapped_get_imm $in))>;
+def:Pat<(vpkuwum_swapped_shuffle v16i8:$vA, v16i8:$vB),
+ (VPKUWUM $vB, $vA)>;
+def:Pat<(vpkuhum_swapped_shuffle v16i8:$vA, v16i8:$vB),
+ (VPKUHUM $vB, $vA)>;
+
+// Match vmrg*(x,x)
+def:Pat<(vmrglb_unary_shuffle v16i8:$vA, undef),
+ (VMRGLB $vA, $vA)>;
+def:Pat<(vmrglh_unary_shuffle v16i8:$vA, undef),
+ (VMRGLH $vA, $vA)>;
+def:Pat<(vmrglw_unary_shuffle v16i8:$vA, undef),
+ (VMRGLW $vA, $vA)>;
+def:Pat<(vmrghb_unary_shuffle v16i8:$vA, undef),
+ (VMRGHB $vA, $vA)>;
+def:Pat<(vmrghh_unary_shuffle v16i8:$vA, undef),
+ (VMRGHH $vA, $vA)>;
+def:Pat<(vmrghw_unary_shuffle v16i8:$vA, undef),
+ (VMRGHW $vA, $vA)>;
+
+// Match vmrg*(y,x), i.e., swapped operands. These fragments
+// are matched for little-endian, where the inputs must be
+// swapped for correct semantics.
+def:Pat<(vmrglb_swapped_shuffle v16i8:$vA, v16i8:$vB),
+ (VMRGLB $vB, $vA)>;
+def:Pat<(vmrglh_swapped_shuffle v16i8:$vA, v16i8:$vB),
+ (VMRGLH $vB, $vA)>;
+def:Pat<(vmrglw_swapped_shuffle v16i8:$vA, v16i8:$vB),
+ (VMRGLW $vB, $vA)>;
+def:Pat<(vmrghb_swapped_shuffle v16i8:$vA, v16i8:$vB),
+ (VMRGHB $vB, $vA)>;
+def:Pat<(vmrghh_swapped_shuffle v16i8:$vA, v16i8:$vB),
+ (VMRGHH $vB, $vA)>;
+def:Pat<(vmrghw_swapped_shuffle v16i8:$vA, v16i8:$vB),
+ (VMRGHW $vB, $vA)>;
+
+// Logical Operations
+def : Pat<(vnot_ppc v4i32:$vA), (VNOR $vA, $vA)>;
+
+def : Pat<(vnot_ppc (or v4i32:$A, v4i32:$B)),
+ (VNOR $A, $B)>;
+def : Pat<(and v4i32:$A, (vnot_ppc v4i32:$B)),
+ (VANDC $A, $B)>;
+
+def : Pat<(fmul v4f32:$vA, v4f32:$vB),
+ (VMADDFP $vA, $vB,
+ (v4i32 (VSLW (V_SETALLONES), (V_SETALLONES))))>;
+
+// Fused multiply add and multiply sub for packed float. These are represented
+// separately from the real instructions above, for operations that must have
+// the additional precision, such as Newton-Rhapson (used by divide, sqrt)
+def : Pat<(PPCvmaddfp v4f32:$A, v4f32:$B, v4f32:$C),
+ (VMADDFP $A, $B, $C)>;
+def : Pat<(PPCvnmsubfp v4f32:$A, v4f32:$B, v4f32:$C),
+ (VNMSUBFP $A, $B, $C)>;
+
+def : Pat<(int_ppc_altivec_vmaddfp v4f32:$A, v4f32:$B, v4f32:$C),
+ (VMADDFP $A, $B, $C)>;
+def : Pat<(int_ppc_altivec_vnmsubfp v4f32:$A, v4f32:$B, v4f32:$C),
+ (VNMSUBFP $A, $B, $C)>;
+
+def : Pat<(PPCvperm v16i8:$vA, v16i8:$vB, v16i8:$vC),
+ (VPERM $vA, $vB, $vC)>;
+
+def : Pat<(PPCfre v4f32:$A), (VREFP $A)>;
+def : Pat<(PPCfrsqrte v4f32:$A), (VRSQRTEFP $A)>;
+
+// Vector shifts
+def : Pat<(v16i8 (shl v16i8:$vA, v16i8:$vB)),
+ (v16i8 (VSLB $vA, $vB))>;
+def : Pat<(v8i16 (shl v8i16:$vA, v8i16:$vB)),
+ (v8i16 (VSLH $vA, $vB))>;
+def : Pat<(v4i32 (shl v4i32:$vA, v4i32:$vB)),
+ (v4i32 (VSLW $vA, $vB))>;
+
+def : Pat<(v16i8 (srl v16i8:$vA, v16i8:$vB)),
+ (v16i8 (VSRB $vA, $vB))>;
+def : Pat<(v8i16 (srl v8i16:$vA, v8i16:$vB)),
+ (v8i16 (VSRH $vA, $vB))>;
+def : Pat<(v4i32 (srl v4i32:$vA, v4i32:$vB)),
+ (v4i32 (VSRW $vA, $vB))>;
+
+def : Pat<(v16i8 (sra v16i8:$vA, v16i8:$vB)),
+ (v16i8 (VSRAB $vA, $vB))>;
+def : Pat<(v8i16 (sra v8i16:$vA, v8i16:$vB)),
+ (v8i16 (VSRAH $vA, $vB))>;
+def : Pat<(v4i32 (sra v4i32:$vA, v4i32:$vB)),
+ (v4i32 (VSRAW $vA, $vB))>;
+
+// Float to integer and integer to float conversions
+def : Pat<(v4i32 (fp_to_sint v4f32:$vA)),
+ (VCTSXS_0 $vA)>;
+def : Pat<(v4i32 (fp_to_uint v4f32:$vA)),
+ (VCTUXS_0 $vA)>;
+def : Pat<(v4f32 (sint_to_fp v4i32:$vA)),
+ (VCFSX_0 $vA)>;
+def : Pat<(v4f32 (uint_to_fp v4i32:$vA)),
+ (VCFUX_0 $vA)>;
+
+// Floating-point rounding
+def : Pat<(v4f32 (ffloor v4f32:$vA)),
+ (VRFIM $vA)>;
+def : Pat<(v4f32 (fceil v4f32:$vA)),
+ (VRFIP $vA)>;
+def : Pat<(v4f32 (ftrunc v4f32:$vA)),
+ (VRFIZ $vA)>;
+def : Pat<(v4f32 (fnearbyint v4f32:$vA)),
+ (VRFIN $vA)>;
+
+} // end HasAltivec
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrBuilder.h b/contrib/llvm/lib/Target/PowerPC/PPCInstrBuilder.h
new file mode 100644
index 0000000..b424d11
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrBuilder.h
@@ -0,0 +1,43 @@
+//===-- PPCInstrBuilder.h - Aides for building PPC insts --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file exposes functions that may be used with BuildMI from the
+// MachineInstrBuilder.h file to simplify generating frame and constant pool
+// references.
+//
+// For reference, the order of operands for memory references is:
+// (Operand), Dest Reg, Base Reg, and either Reg Index or Immediate
+// Displacement.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef POWERPC_INSTRBUILDER_H
+#define POWERPC_INSTRBUILDER_H
+
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+
+namespace llvm {
+
+/// addFrameReference - This function is used to add a reference to the base of
+/// an abstract object on the stack frame of the current function. This
+/// reference has base register as the FrameIndex offset until it is resolved.
+/// This allows a constant offset to be specified as well...
+///
+static inline const MachineInstrBuilder&
+addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset = 0,
+ bool mem = true) {
+ if (mem)
+ return MIB.addImm(Offset).addFrameIndex(FI);
+ else
+ return MIB.addFrameIndex(FI).addImm(Offset);
+}
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrFormats.td b/contrib/llvm/lib/Target/PowerPC/PPCInstrFormats.td
new file mode 100644
index 0000000..1e4396c
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrFormats.td
@@ -0,0 +1,1300 @@
+//===- PowerPCInstrFormats.td - PowerPC Instruction Formats --*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+//
+// PowerPC instruction formats
+
+class I<bits<6> opcode, dag OOL, dag IOL, string asmstr, InstrItinClass itin>
+ : Instruction {
+ field bits<32> Inst;
+ field bits<32> SoftFail = 0;
+ let Size = 4;
+
+ bit PPC64 = 0; // Default value, override with isPPC64
+
+ let Namespace = "PPC";
+ let Inst{0-5} = opcode;
+ let OutOperandList = OOL;
+ let InOperandList = IOL;
+ let AsmString = asmstr;
+ let Itinerary = itin;
+
+ bits<1> PPC970_First = 0;
+ bits<1> PPC970_Single = 0;
+ bits<1> PPC970_Cracked = 0;
+ bits<3> PPC970_Unit = 0;
+
+ /// These fields correspond to the fields in PPCInstrInfo.h. Any changes to
+ /// these must be reflected there! See comments there for what these are.
+ let TSFlags{0} = PPC970_First;
+ let TSFlags{1} = PPC970_Single;
+ let TSFlags{2} = PPC970_Cracked;
+ let TSFlags{5-3} = PPC970_Unit;
+
+ // Fields used for relation models.
+ string BaseName = "";
+
+ // For cases where multiple instruction definitions really represent the
+ // same underlying instruction but with one definition for 64-bit arguments
+ // and one for 32-bit arguments, this bit breaks the degeneracy between
+ // the two forms and allows TableGen to generate mapping tables.
+ bit Interpretation64Bit = 0;
+}
+
+class PPC970_DGroup_First { bits<1> PPC970_First = 1; }
+class PPC970_DGroup_Single { bits<1> PPC970_Single = 1; }
+class PPC970_DGroup_Cracked { bits<1> PPC970_Cracked = 1; }
+class PPC970_MicroCode;
+
+class PPC970_Unit_Pseudo { bits<3> PPC970_Unit = 0; }
+class PPC970_Unit_FXU { bits<3> PPC970_Unit = 1; }
+class PPC970_Unit_LSU { bits<3> PPC970_Unit = 2; }
+class PPC970_Unit_FPU { bits<3> PPC970_Unit = 3; }
+class PPC970_Unit_CRU { bits<3> PPC970_Unit = 4; }
+class PPC970_Unit_VALU { bits<3> PPC970_Unit = 5; }
+class PPC970_Unit_VPERM { bits<3> PPC970_Unit = 6; }
+class PPC970_Unit_BRU { bits<3> PPC970_Unit = 7; }
+
+// Two joined instructions; used to emit two adjacent instructions as one.
+// The itinerary from the first instruction is used for scheduling and
+// classification.
+class I2<bits<6> opcode1, bits<6> opcode2, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : Instruction {
+ field bits<64> Inst;
+ field bits<64> SoftFail = 0;
+ let Size = 8;
+
+ bit PPC64 = 0; // Default value, override with isPPC64
+
+ let Namespace = "PPC";
+ let Inst{0-5} = opcode1;
+ let Inst{32-37} = opcode2;
+ let OutOperandList = OOL;
+ let InOperandList = IOL;
+ let AsmString = asmstr;
+ let Itinerary = itin;
+
+ bits<1> PPC970_First = 0;
+ bits<1> PPC970_Single = 0;
+ bits<1> PPC970_Cracked = 0;
+ bits<3> PPC970_Unit = 0;
+
+ /// These fields correspond to the fields in PPCInstrInfo.h. Any changes to
+ /// these must be reflected there! See comments there for what these are.
+ let TSFlags{0} = PPC970_First;
+ let TSFlags{1} = PPC970_Single;
+ let TSFlags{2} = PPC970_Cracked;
+ let TSFlags{5-3} = PPC970_Unit;
+
+ // Fields used for relation models.
+ string BaseName = "";
+ bit Interpretation64Bit = 0;
+}
+
+// 1.7.1 I-Form
+class IForm<bits<6> opcode, bit aa, bit lk, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ let Pattern = pattern;
+ bits<24> LI;
+
+ let Inst{6-29} = LI;
+ let Inst{30} = aa;
+ let Inst{31} = lk;
+}
+
+// 1.7.2 B-Form
+class BForm<bits<6> opcode, bit aa, bit lk, dag OOL, dag IOL, string asmstr>
+ : I<opcode, OOL, IOL, asmstr, IIC_BrB> {
+ bits<7> BIBO; // 2 bits of BI and 5 bits of BO.
+ bits<3> CR;
+ bits<14> BD;
+
+ bits<5> BI;
+ let BI{0-1} = BIBO{5-6};
+ let BI{2-4} = CR{0-2};
+
+ let Inst{6-10} = BIBO{4-0};
+ let Inst{11-15} = BI;
+ let Inst{16-29} = BD;
+ let Inst{30} = aa;
+ let Inst{31} = lk;
+}
+
+class BForm_1<bits<6> opcode, bits<5> bo, bit aa, bit lk, dag OOL, dag IOL,
+ string asmstr>
+ : BForm<opcode, aa, lk, OOL, IOL, asmstr> {
+ let BIBO{4-0} = bo;
+ let BIBO{6-5} = 0;
+ let CR = 0;
+}
+
+class BForm_2<bits<6> opcode, bits<5> bo, bits<5> bi, bit aa, bit lk,
+ dag OOL, dag IOL, string asmstr>
+ : I<opcode, OOL, IOL, asmstr, IIC_BrB> {
+ bits<14> BD;
+
+ let Inst{6-10} = bo;
+ let Inst{11-15} = bi;
+ let Inst{16-29} = BD;
+ let Inst{30} = aa;
+ let Inst{31} = lk;
+}
+
+class BForm_3<bits<6> opcode, bit aa, bit lk,
+ dag OOL, dag IOL, string asmstr>
+ : I<opcode, OOL, IOL, asmstr, IIC_BrB> {
+ bits<5> BO;
+ bits<5> BI;
+ bits<14> BD;
+
+ let Inst{6-10} = BO;
+ let Inst{11-15} = BI;
+ let Inst{16-29} = BD;
+ let Inst{30} = aa;
+ let Inst{31} = lk;
+}
+
+class BForm_4<bits<6> opcode, bits<5> bo, bit aa, bit lk,
+ dag OOL, dag IOL, string asmstr>
+ : I<opcode, OOL, IOL, asmstr, IIC_BrB> {
+ bits<5> BI;
+ bits<14> BD;
+
+ let Inst{6-10} = bo;
+ let Inst{11-15} = BI;
+ let Inst{16-29} = BD;
+ let Inst{30} = aa;
+ let Inst{31} = lk;
+}
+
+// 1.7.3 SC-Form
+class SCForm<bits<6> opcode, bits<1> xo,
+ dag OOL, dag IOL, string asmstr, InstrItinClass itin,
+ list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<7> LEV;
+
+ let Pattern = pattern;
+
+ let Inst{20-26} = LEV;
+ let Inst{30} = xo;
+}
+
+// 1.7.4 D-Form
+class DForm_base<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> A;
+ bits<5> B;
+ bits<16> C;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = A;
+ let Inst{11-15} = B;
+ let Inst{16-31} = C;
+}
+
+class DForm_1<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> A;
+ bits<21> Addr;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = A;
+ let Inst{11-15} = Addr{20-16}; // Base Reg
+ let Inst{16-31} = Addr{15-0}; // Displacement
+}
+
+class DForm_1a<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> A;
+ bits<16> C;
+ bits<5> B;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = A;
+ let Inst{11-15} = B;
+ let Inst{16-31} = C;
+}
+
+
+class DForm_2<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : DForm_base<opcode, OOL, IOL, asmstr, itin, pattern> {
+
+ // Even though ADDICo does not really have an RC bit, provide
+ // the declaration of one here so that isDOT has something to set.
+ bit RC = 0;
+}
+
+class DForm_2_r0<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> A;
+ bits<16> B;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = A;
+ let Inst{11-15} = 0;
+ let Inst{16-31} = B;
+}
+
+class DForm_4<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> B;
+ bits<5> A;
+ bits<16> C;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = A;
+ let Inst{11-15} = B;
+ let Inst{16-31} = C;
+}
+
+class DForm_4_zero<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : DForm_1<opcode, OOL, IOL, asmstr, itin, pattern> {
+ let A = 0;
+ let Addr = 0;
+}
+
+class DForm_4_fixedreg_zero<bits<6> opcode, bits<5> R, dag OOL, dag IOL,
+ string asmstr, InstrItinClass itin,
+ list<dag> pattern>
+ : DForm_4<opcode, OOL, IOL, asmstr, itin, pattern> {
+ let A = R;
+ let B = R;
+ let C = 0;
+}
+
+class IForm_and_DForm_1<bits<6> opcode1, bit aa, bit lk, bits<6> opcode2,
+ dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I2<opcode1, opcode2, OOL, IOL, asmstr, itin> {
+ bits<5> A;
+ bits<21> Addr;
+
+ let Pattern = pattern;
+ bits<24> LI;
+
+ let Inst{6-29} = LI;
+ let Inst{30} = aa;
+ let Inst{31} = lk;
+
+ let Inst{38-42} = A;
+ let Inst{43-47} = Addr{20-16}; // Base Reg
+ let Inst{48-63} = Addr{15-0}; // Displacement
+}
+
+// This is used to emit BL8+NOP.
+class IForm_and_DForm_4_zero<bits<6> opcode1, bit aa, bit lk, bits<6> opcode2,
+ dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : IForm_and_DForm_1<opcode1, aa, lk, opcode2,
+ OOL, IOL, asmstr, itin, pattern> {
+ let A = 0;
+ let Addr = 0;
+}
+
+class DForm_5<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<3> BF;
+ bits<1> L;
+ bits<5> RA;
+ bits<16> I;
+
+ let Inst{6-8} = BF;
+ let Inst{9} = 0;
+ let Inst{10} = L;
+ let Inst{11-15} = RA;
+ let Inst{16-31} = I;
+}
+
+class DForm_5_ext<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : DForm_5<opcode, OOL, IOL, asmstr, itin> {
+ let L = PPC64;
+}
+
+class DForm_6<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : DForm_5<opcode, OOL, IOL, asmstr, itin>;
+
+class DForm_6_ext<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : DForm_6<opcode, OOL, IOL, asmstr, itin> {
+ let L = PPC64;
+}
+
+
+// 1.7.5 DS-Form
+class DSForm_1<bits<6> opcode, bits<2> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RST;
+ bits<19> DS_RA;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = RST;
+ let Inst{11-15} = DS_RA{18-14}; // Register #
+ let Inst{16-29} = DS_RA{13-0}; // Displacement.
+ let Inst{30-31} = xo;
+}
+
+
+// 1.7.6 X-Form
+class XForm_base_r3xo<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RST;
+ bits<5> A;
+ bits<5> B;
+
+ let Pattern = pattern;
+
+ bit RC = 0; // set by isDOT
+
+ let Inst{6-10} = RST;
+ let Inst{11-15} = A;
+ let Inst{16-20} = B;
+ let Inst{21-30} = xo;
+ let Inst{31} = RC;
+}
+
+// This is the same as XForm_base_r3xo, but the first two operands are swapped
+// when code is emitted.
+class XForm_base_r3xo_swapped
+ <bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> A;
+ bits<5> RST;
+ bits<5> B;
+
+ bit RC = 0; // set by isDOT
+
+ let Inst{6-10} = RST;
+ let Inst{11-15} = A;
+ let Inst{16-20} = B;
+ let Inst{21-30} = xo;
+ let Inst{31} = RC;
+}
+
+
+class XForm_1<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo<opcode, xo, OOL, IOL, asmstr, itin, pattern>;
+
+class XForm_1a<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+ let RST = 0;
+}
+
+class XForm_rs<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+ let A = 0;
+ let B = 0;
+}
+
+class XForm_6<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo_swapped<opcode, xo, OOL, IOL, asmstr, itin> {
+ let Pattern = pattern;
+}
+
+class XForm_8<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo<opcode, xo, OOL, IOL, asmstr, itin, pattern>;
+
+class XForm_10<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo_swapped<opcode, xo, OOL, IOL, asmstr, itin> {
+ let Pattern = pattern;
+}
+
+class XForm_11<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo_swapped<opcode, xo, OOL, IOL, asmstr, itin> {
+ let B = 0;
+ let Pattern = pattern;
+}
+
+class XForm_16<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<3> BF;
+ bits<1> L;
+ bits<5> RA;
+ bits<5> RB;
+
+ let Inst{6-8} = BF;
+ let Inst{9} = 0;
+ let Inst{10} = L;
+ let Inst{11-15} = RA;
+ let Inst{16-20} = RB;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+class XForm_mtmsr<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RS;
+ bits<1> L;
+
+ let Inst{6-10} = RS;
+ let Inst{15} = L;
+ let Inst{21-30} = xo;
+}
+
+class XForm_16_ext<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : XForm_16<opcode, xo, OOL, IOL, asmstr, itin> {
+ let L = PPC64;
+}
+
+class XForm_17<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<3> BF;
+ bits<5> FRA;
+ bits<5> FRB;
+
+ let Inst{6-8} = BF;
+ let Inst{9-10} = 0;
+ let Inst{11-15} = FRA;
+ let Inst{16-20} = FRB;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+class XForm_24<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ let Pattern = pattern;
+ let Inst{6-10} = 31;
+ let Inst{11-15} = 0;
+ let Inst{16-20} = 0;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+class XForm_24_sync<bits<6> opcode, bits<10> xo, dag OOL, dag IOL,
+ string asmstr, InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<2> L;
+
+ let Pattern = pattern;
+ let Inst{6-8} = 0;
+ let Inst{9-10} = L;
+ let Inst{11-15} = 0;
+ let Inst{16-20} = 0;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+class XForm_24_eieio<bits<6> opcode, bits<10> xo, dag OOL, dag IOL,
+ string asmstr, InstrItinClass itin, list<dag> pattern>
+ : XForm_24_sync<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+ let L = 0;
+}
+
+class XForm_25<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+}
+
+class XForm_26<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+ let A = 0;
+}
+
+class XForm_28<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+}
+
+// This is used for MFFS, MTFSB0, MTFSB1. 42 is arbitrary; this series of
+// numbers presumably relates to some document, but I haven't found it.
+class XForm_42<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+ let Pattern = pattern;
+
+ bit RC = 0; // set by isDOT
+
+ let Inst{6-10} = RST;
+ let Inst{11-20} = 0;
+ let Inst{21-30} = xo;
+ let Inst{31} = RC;
+}
+class XForm_43<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+ let Pattern = pattern;
+ bits<5> FM;
+
+ bit RC = 0; // set by isDOT
+
+ let Inst{6-10} = FM;
+ let Inst{11-20} = 0;
+ let Inst{21-30} = xo;
+ let Inst{31} = RC;
+}
+
+class XForm_0<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+ let RST = 0;
+ let A = 0;
+ let B = 0;
+}
+
+class XForm_16b<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XForm_base_r3xo<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+ let RST = 0;
+ let A = 0;
+}
+
+// XX*-Form (VSX)
+class XX1Form<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<6> XT;
+ bits<5> A;
+ bits<5> B;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = XT{4-0};
+ let Inst{11-15} = A;
+ let Inst{16-20} = B;
+ let Inst{21-30} = xo;
+ let Inst{31} = XT{5};
+}
+
+class XX2Form<bits<6> opcode, bits<9> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<6> XT;
+ bits<6> XB;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = XT{4-0};
+ let Inst{11-15} = 0;
+ let Inst{16-20} = XB{4-0};
+ let Inst{21-29} = xo;
+ let Inst{30} = XB{5};
+ let Inst{31} = XT{5};
+}
+
+class XX2Form_1<bits<6> opcode, bits<9> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<3> CR;
+ bits<6> XB;
+
+ let Pattern = pattern;
+
+ let Inst{6-8} = CR;
+ let Inst{9-15} = 0;
+ let Inst{16-20} = XB{4-0};
+ let Inst{21-29} = xo;
+ let Inst{30} = XB{5};
+ let Inst{31} = 0;
+}
+
+class XX2Form_2<bits<6> opcode, bits<9> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<6> XT;
+ bits<6> XB;
+ bits<2> D;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = XT{4-0};
+ let Inst{11-13} = 0;
+ let Inst{14-15} = D;
+ let Inst{16-20} = XB{4-0};
+ let Inst{21-29} = xo;
+ let Inst{30} = XB{5};
+ let Inst{31} = XT{5};
+}
+
+class XX3Form<bits<6> opcode, bits<8> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<6> XT;
+ bits<6> XA;
+ bits<6> XB;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = XT{4-0};
+ let Inst{11-15} = XA{4-0};
+ let Inst{16-20} = XB{4-0};
+ let Inst{21-28} = xo;
+ let Inst{29} = XA{5};
+ let Inst{30} = XB{5};
+ let Inst{31} = XT{5};
+}
+
+class XX3Form_1<bits<6> opcode, bits<8> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<3> CR;
+ bits<6> XA;
+ bits<6> XB;
+
+ let Pattern = pattern;
+
+ let Inst{6-8} = CR;
+ let Inst{9-10} = 0;
+ let Inst{11-15} = XA{4-0};
+ let Inst{16-20} = XB{4-0};
+ let Inst{21-28} = xo;
+ let Inst{29} = XA{5};
+ let Inst{30} = XB{5};
+ let Inst{31} = 0;
+}
+
+class XX3Form_2<bits<6> opcode, bits<5> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<6> XT;
+ bits<6> XA;
+ bits<6> XB;
+ bits<2> D;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = XT{4-0};
+ let Inst{11-15} = XA{4-0};
+ let Inst{16-20} = XB{4-0};
+ let Inst{21} = 0;
+ let Inst{22-23} = D;
+ let Inst{24-28} = xo;
+ let Inst{29} = XA{5};
+ let Inst{30} = XB{5};
+ let Inst{31} = XT{5};
+}
+
+class XX3Form_Rc<bits<6> opcode, bits<7> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<6> XT;
+ bits<6> XA;
+ bits<6> XB;
+
+ let Pattern = pattern;
+
+ bit RC = 0; // set by isDOT
+
+ let Inst{6-10} = XT{4-0};
+ let Inst{11-15} = XA{4-0};
+ let Inst{16-20} = XB{4-0};
+ let Inst{21} = RC;
+ let Inst{22-28} = xo;
+ let Inst{29} = XA{5};
+ let Inst{30} = XB{5};
+ let Inst{31} = XT{5};
+}
+
+class XX4Form<bits<6> opcode, bits<2> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<6> XT;
+ bits<6> XA;
+ bits<6> XB;
+ bits<6> XC;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = XT{4-0};
+ let Inst{11-15} = XA{4-0};
+ let Inst{16-20} = XB{4-0};
+ let Inst{21-25} = XC{4-0};
+ let Inst{26-27} = xo;
+ let Inst{28} = XC{5};
+ let Inst{29} = XA{5};
+ let Inst{30} = XB{5};
+ let Inst{31} = XT{5};
+}
+
+// DCB_Form - Form X instruction, used for dcb* instructions.
+class DCB_Form<bits<10> xo, bits<5> immfield, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<31, OOL, IOL, asmstr, itin> {
+ bits<5> A;
+ bits<5> B;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = immfield;
+ let Inst{11-15} = A;
+ let Inst{16-20} = B;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+
+// DSS_Form - Form X instruction, used for altivec dss* instructions.
+class DSS_Form<bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<31, OOL, IOL, asmstr, itin> {
+ bits<1> T;
+ bits<2> STRM;
+ bits<5> A;
+ bits<5> B;
+
+ let Pattern = pattern;
+
+ let Inst{6} = T;
+ let Inst{7-8} = 0;
+ let Inst{9-10} = STRM;
+ let Inst{11-15} = A;
+ let Inst{16-20} = B;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+// 1.7.7 XL-Form
+class XLForm_1<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> CRD;
+ bits<5> CRA;
+ bits<5> CRB;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = CRD;
+ let Inst{11-15} = CRA;
+ let Inst{16-20} = CRB;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+class XLForm_1_ext<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> CRD;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = CRD;
+ let Inst{11-15} = CRD;
+ let Inst{16-20} = CRD;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+class XLForm_2<bits<6> opcode, bits<10> xo, bit lk, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> BO;
+ bits<5> BI;
+ bits<2> BH;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = BO;
+ let Inst{11-15} = BI;
+ let Inst{16-18} = 0;
+ let Inst{19-20} = BH;
+ let Inst{21-30} = xo;
+ let Inst{31} = lk;
+}
+
+class XLForm_2_br<bits<6> opcode, bits<10> xo, bit lk,
+ dag OOL, dag IOL, string asmstr, InstrItinClass itin, list<dag> pattern>
+ : XLForm_2<opcode, xo, lk, OOL, IOL, asmstr, itin, pattern> {
+ bits<7> BIBO; // 2 bits of BI and 5 bits of BO.
+ bits<3> CR;
+
+ let BO = BIBO{4-0};
+ let BI{0-1} = BIBO{5-6};
+ let BI{2-4} = CR{0-2};
+ let BH = 0;
+}
+
+class XLForm_2_br2<bits<6> opcode, bits<10> xo, bits<5> bo, bit lk,
+ dag OOL, dag IOL, string asmstr, InstrItinClass itin, list<dag> pattern>
+ : XLForm_2<opcode, xo, lk, OOL, IOL, asmstr, itin, pattern> {
+ let BO = bo;
+ let BH = 0;
+}
+
+class XLForm_2_ext<bits<6> opcode, bits<10> xo, bits<5> bo, bits<5> bi, bit lk,
+ dag OOL, dag IOL, string asmstr, InstrItinClass itin, list<dag> pattern>
+ : XLForm_2<opcode, xo, lk, OOL, IOL, asmstr, itin, pattern> {
+ let BO = bo;
+ let BI = bi;
+ let BH = 0;
+}
+
+class XLForm_3<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<3> BF;
+ bits<3> BFA;
+
+ let Inst{6-8} = BF;
+ let Inst{9-10} = 0;
+ let Inst{11-13} = BFA;
+ let Inst{14-15} = 0;
+ let Inst{16-20} = 0;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+// 1.7.8 XFX-Form
+class XFXForm_1<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RT;
+ bits<10> SPR;
+
+ let Inst{6-10} = RT;
+ let Inst{11} = SPR{4};
+ let Inst{12} = SPR{3};
+ let Inst{13} = SPR{2};
+ let Inst{14} = SPR{1};
+ let Inst{15} = SPR{0};
+ let Inst{16} = SPR{9};
+ let Inst{17} = SPR{8};
+ let Inst{18} = SPR{7};
+ let Inst{19} = SPR{6};
+ let Inst{20} = SPR{5};
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+class XFXForm_1_ext<bits<6> opcode, bits<10> xo, bits<10> spr,
+ dag OOL, dag IOL, string asmstr, InstrItinClass itin>
+ : XFXForm_1<opcode, xo, OOL, IOL, asmstr, itin> {
+ let SPR = spr;
+}
+
+class XFXForm_3<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RT;
+
+ let Inst{6-10} = RT;
+ let Inst{11-20} = 0;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+class XFXForm_5<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<8> FXM;
+ bits<5> rS;
+
+ let Inst{6-10} = rS;
+ let Inst{11} = 0;
+ let Inst{12-19} = FXM;
+ let Inst{20} = 0;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+class XFXForm_5a<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> ST;
+ bits<8> FXM;
+
+ let Inst{6-10} = ST;
+ let Inst{11} = 1;
+ let Inst{12-19} = FXM;
+ let Inst{20} = 0;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+class XFXForm_7<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : XFXForm_1<opcode, xo, OOL, IOL, asmstr, itin>;
+
+class XFXForm_7_ext<bits<6> opcode, bits<10> xo, bits<10> spr,
+ dag OOL, dag IOL, string asmstr, InstrItinClass itin>
+ : XFXForm_7<opcode, xo, OOL, IOL, asmstr, itin> {
+ let SPR = spr;
+}
+
+// XFL-Form - MTFSF
+// This is probably 1.7.9, but I don't have the reference that uses this
+// numbering scheme...
+class XFLForm<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag>pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<8> FM;
+ bits<5> rT;
+
+ bit RC = 0; // set by isDOT
+ let Pattern = pattern;
+
+ let Inst{6} = 0;
+ let Inst{7-14} = FM;
+ let Inst{15} = 0;
+ let Inst{16-20} = rT;
+ let Inst{21-30} = xo;
+ let Inst{31} = RC;
+}
+
+// 1.7.10 XS-Form - SRADI.
+class XSForm_1<bits<6> opcode, bits<9> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> A;
+ bits<5> RS;
+ bits<6> SH;
+
+ bit RC = 0; // set by isDOT
+ let Pattern = pattern;
+
+ let Inst{6-10} = RS;
+ let Inst{11-15} = A;
+ let Inst{16-20} = SH{4,3,2,1,0};
+ let Inst{21-29} = xo;
+ let Inst{30} = SH{5};
+ let Inst{31} = RC;
+}
+
+// 1.7.11 XO-Form
+class XOForm_1<bits<6> opcode, bits<9> xo, bit oe, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RT;
+ bits<5> RA;
+ bits<5> RB;
+
+ let Pattern = pattern;
+
+ bit RC = 0; // set by isDOT
+
+ let Inst{6-10} = RT;
+ let Inst{11-15} = RA;
+ let Inst{16-20} = RB;
+ let Inst{21} = oe;
+ let Inst{22-30} = xo;
+ let Inst{31} = RC;
+}
+
+class XOForm_3<bits<6> opcode, bits<9> xo, bit oe,
+ dag OOL, dag IOL, string asmstr, InstrItinClass itin, list<dag> pattern>
+ : XOForm_1<opcode, xo, oe, OOL, IOL, asmstr, itin, pattern> {
+ let RB = 0;
+}
+
+// 1.7.12 A-Form
+class AForm_1<bits<6> opcode, bits<5> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> FRT;
+ bits<5> FRA;
+ bits<5> FRC;
+ bits<5> FRB;
+
+ let Pattern = pattern;
+
+ bit RC = 0; // set by isDOT
+
+ let Inst{6-10} = FRT;
+ let Inst{11-15} = FRA;
+ let Inst{16-20} = FRB;
+ let Inst{21-25} = FRC;
+ let Inst{26-30} = xo;
+ let Inst{31} = RC;
+}
+
+class AForm_2<bits<6> opcode, bits<5> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : AForm_1<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+ let FRC = 0;
+}
+
+class AForm_3<bits<6> opcode, bits<5> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : AForm_1<opcode, xo, OOL, IOL, asmstr, itin, pattern> {
+ let FRB = 0;
+}
+
+class AForm_4<bits<6> opcode, bits<5> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RT;
+ bits<5> RA;
+ bits<5> RB;
+ bits<5> COND;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = RT;
+ let Inst{11-15} = RA;
+ let Inst{16-20} = RB;
+ let Inst{21-25} = COND;
+ let Inst{26-30} = xo;
+ let Inst{31} = 0;
+}
+
+// 1.7.13 M-Form
+class MForm_1<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RA;
+ bits<5> RS;
+ bits<5> RB;
+ bits<5> MB;
+ bits<5> ME;
+
+ let Pattern = pattern;
+
+ bit RC = 0; // set by isDOT
+
+ let Inst{6-10} = RS;
+ let Inst{11-15} = RA;
+ let Inst{16-20} = RB;
+ let Inst{21-25} = MB;
+ let Inst{26-30} = ME;
+ let Inst{31} = RC;
+}
+
+class MForm_2<bits<6> opcode, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : MForm_1<opcode, OOL, IOL, asmstr, itin, pattern> {
+}
+
+// 1.7.14 MD-Form
+class MDForm_1<bits<6> opcode, bits<3> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RA;
+ bits<5> RS;
+ bits<6> SH;
+ bits<6> MBE;
+
+ let Pattern = pattern;
+
+ bit RC = 0; // set by isDOT
+
+ let Inst{6-10} = RS;
+ let Inst{11-15} = RA;
+ let Inst{16-20} = SH{4,3,2,1,0};
+ let Inst{21-26} = MBE{4,3,2,1,0,5};
+ let Inst{27-29} = xo;
+ let Inst{30} = SH{5};
+ let Inst{31} = RC;
+}
+
+class MDSForm_1<bits<6> opcode, bits<4> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RA;
+ bits<5> RS;
+ bits<5> RB;
+ bits<6> MBE;
+
+ let Pattern = pattern;
+
+ bit RC = 0; // set by isDOT
+
+ let Inst{6-10} = RS;
+ let Inst{11-15} = RA;
+ let Inst{16-20} = RB;
+ let Inst{21-26} = MBE{4,3,2,1,0,5};
+ let Inst{27-30} = xo;
+ let Inst{31} = RC;
+}
+
+
+// E-1 VA-Form
+
+// VAForm_1 - DACB ordering.
+class VAForm_1<bits<6> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<4, OOL, IOL, asmstr, itin> {
+ bits<5> VD;
+ bits<5> VA;
+ bits<5> VC;
+ bits<5> VB;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = VD;
+ let Inst{11-15} = VA;
+ let Inst{16-20} = VB;
+ let Inst{21-25} = VC;
+ let Inst{26-31} = xo;
+}
+
+// VAForm_1a - DABC ordering.
+class VAForm_1a<bits<6> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<4, OOL, IOL, asmstr, itin> {
+ bits<5> VD;
+ bits<5> VA;
+ bits<5> VB;
+ bits<5> VC;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = VD;
+ let Inst{11-15} = VA;
+ let Inst{16-20} = VB;
+ let Inst{21-25} = VC;
+ let Inst{26-31} = xo;
+}
+
+class VAForm_2<bits<6> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<4, OOL, IOL, asmstr, itin> {
+ bits<5> VD;
+ bits<5> VA;
+ bits<5> VB;
+ bits<4> SH;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = VD;
+ let Inst{11-15} = VA;
+ let Inst{16-20} = VB;
+ let Inst{21} = 0;
+ let Inst{22-25} = SH;
+ let Inst{26-31} = xo;
+}
+
+// E-2 VX-Form
+class VXForm_1<bits<11> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<4, OOL, IOL, asmstr, itin> {
+ bits<5> VD;
+ bits<5> VA;
+ bits<5> VB;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = VD;
+ let Inst{11-15} = VA;
+ let Inst{16-20} = VB;
+ let Inst{21-31} = xo;
+}
+
+class VXForm_setzero<bits<11> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : VXForm_1<xo, OOL, IOL, asmstr, itin, pattern> {
+ let VA = VD;
+ let VB = VD;
+}
+
+
+class VXForm_2<bits<11> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<4, OOL, IOL, asmstr, itin> {
+ bits<5> VD;
+ bits<5> VB;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = VD;
+ let Inst{11-15} = 0;
+ let Inst{16-20} = VB;
+ let Inst{21-31} = xo;
+}
+
+class VXForm_3<bits<11> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<4, OOL, IOL, asmstr, itin> {
+ bits<5> VD;
+ bits<5> IMM;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = VD;
+ let Inst{11-15} = IMM;
+ let Inst{16-20} = 0;
+ let Inst{21-31} = xo;
+}
+
+/// VXForm_4 - VX instructions with "VD,0,0" register fields, like mfvscr.
+class VXForm_4<bits<11> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<4, OOL, IOL, asmstr, itin> {
+ bits<5> VD;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = VD;
+ let Inst{11-15} = 0;
+ let Inst{16-20} = 0;
+ let Inst{21-31} = xo;
+}
+
+/// VXForm_5 - VX instructions with "0,0,VB" register fields, like mtvscr.
+class VXForm_5<bits<11> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<4, OOL, IOL, asmstr, itin> {
+ bits<5> VB;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = 0;
+ let Inst{11-15} = 0;
+ let Inst{16-20} = VB;
+ let Inst{21-31} = xo;
+}
+
+// E-4 VXR-Form
+class VXRForm_1<bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<4, OOL, IOL, asmstr, itin> {
+ bits<5> VD;
+ bits<5> VA;
+ bits<5> VB;
+ bit RC = 0;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = VD;
+ let Inst{11-15} = VA;
+ let Inst{16-20} = VB;
+ let Inst{21} = RC;
+ let Inst{22-31} = xo;
+}
+
+//===----------------------------------------------------------------------===//
+class Pseudo<dag OOL, dag IOL, string asmstr, list<dag> pattern>
+ : I<0, OOL, IOL, asmstr, NoItinerary> {
+ let isCodeGenOnly = 1;
+ let PPC64 = 0;
+ let Pattern = pattern;
+ let Inst{31-0} = 0;
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
new file mode 100644
index 0000000..9bac91d
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
@@ -0,0 +1,2246 @@
+//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCInstrInfo.h"
+#include "MCTargetDesc/PPCPredicates.h"
+#include "PPC.h"
+#include "PPCHazardRecognizers.h"
+#include "PPCInstrBuilder.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCTargetMachine.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "ppc-instr-info"
+
+#define GET_INSTRMAP_INFO
+#define GET_INSTRINFO_CTOR_DTOR
+#include "PPCGenInstrInfo.inc"
+
+static cl::
+opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
+ cl::desc("Disable analysis for CTR loops"));
+
+static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
+cl::desc("Disable compare instruction optimization"), cl::Hidden);
+
+static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation",
+cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden);
+
+static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
+cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
+cl::Hidden);
+
+// Pin the vtable to this file.
+void PPCInstrInfo::anchor() {}
+
+PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
+ : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
+ Subtarget(STI), RI(STI) {}
+
+/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
+/// this target when scheduling the DAG.
+ScheduleHazardRecognizer *
+PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
+ const ScheduleDAG *DAG) const {
+ unsigned Directive =
+ static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
+ if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
+ Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
+ const InstrItineraryData *II =
+ &static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
+ return new ScoreboardHazardRecognizer(II, DAG);
+ }
+
+ return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
+}
+
+/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
+/// to use for this target when scheduling the DAG.
+ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer(
+ const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const {
+ unsigned Directive =
+ DAG->TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
+
+ if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
+ return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
+
+ // Most subtargets use a PPC970 recognizer.
+ if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
+ Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
+ assert(DAG->TII && "No InstrInfo?");
+
+ return new PPCHazardRecognizer970(*DAG);
+ }
+
+ return new ScoreboardHazardRecognizer(II, DAG);
+}
+
+
+int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI,
+ unsigned UseIdx) const {
+ int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
+ UseMI, UseIdx);
+
+ const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
+ unsigned Reg = DefMO.getReg();
+
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ bool IsRegCR;
+ if (TRI->isVirtualRegister(Reg)) {
+ const MachineRegisterInfo *MRI =
+ &DefMI->getParent()->getParent()->getRegInfo();
+ IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
+ MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
+ } else {
+ IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
+ PPC::CRBITRCRegClass.contains(Reg);
+ }
+
+ if (UseMI->isBranch() && IsRegCR) {
+ if (Latency < 0)
+ Latency = getInstrLatency(ItinData, DefMI);
+
+ // On some cores, there is an additional delay between writing to a condition
+ // register, and using it from a branch.
+ unsigned Directive = Subtarget.getDarwinDirective();
+ switch (Directive) {
+ default: break;
+ case PPC::DIR_7400:
+ case PPC::DIR_750:
+ case PPC::DIR_970:
+ case PPC::DIR_E5500:
+ case PPC::DIR_PWR4:
+ case PPC::DIR_PWR5:
+ case PPC::DIR_PWR5X:
+ case PPC::DIR_PWR6:
+ case PPC::DIR_PWR6X:
+ case PPC::DIR_PWR7:
+ case PPC::DIR_PWR8:
+ Latency += 2;
+ break;
+ }
+ }
+
+ return Latency;
+}
+
+// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
+bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const {
+ switch (MI.getOpcode()) {
+ default: return false;
+ case PPC::EXTSW:
+ case PPC::EXTSW_32_64:
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ SubIdx = PPC::sub_32;
+ return true;
+ }
+}
+
+unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ // Note: This list must be kept consistent with LoadRegFromStackSlot.
+ switch (MI->getOpcode()) {
+ default: break;
+ case PPC::LD:
+ case PPC::LWZ:
+ case PPC::LFS:
+ case PPC::LFD:
+ case PPC::RESTORE_CR:
+ case PPC::RESTORE_CRBIT:
+ case PPC::LVX:
+ case PPC::LXVD2X:
+ case PPC::RESTORE_VRSAVE:
+ // Check for the operands added by addFrameReference (the immediate is the
+ // offset which defaults to 0).
+ if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
+ MI->getOperand(2).isFI()) {
+ FrameIndex = MI->getOperand(2).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ // Note: This list must be kept consistent with StoreRegToStackSlot.
+ switch (MI->getOpcode()) {
+ default: break;
+ case PPC::STD:
+ case PPC::STW:
+ case PPC::STFS:
+ case PPC::STFD:
+ case PPC::SPILL_CR:
+ case PPC::SPILL_CRBIT:
+ case PPC::STVX:
+ case PPC::STXVD2X:
+ case PPC::SPILL_VRSAVE:
+ // Check for the operands added by addFrameReference (the immediate is the
+ // offset which defaults to 0).
+ if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
+ MI->getOperand(2).isFI()) {
+ FrameIndex = MI->getOperand(2).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+// commuteInstruction - We can commute rlwimi instructions, but only if the
+// rotate amt is zero. We also have to munge the immediates a bit.
+MachineInstr *
+PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
+ MachineFunction &MF = *MI->getParent()->getParent();
+
+ // Normal instructions can be commuted the obvious way.
+ if (MI->getOpcode() != PPC::RLWIMI &&
+ MI->getOpcode() != PPC::RLWIMIo &&
+ MI->getOpcode() != PPC::RLWIMI8 &&
+ MI->getOpcode() != PPC::RLWIMI8o)
+ return TargetInstrInfo::commuteInstruction(MI, NewMI);
+
+ // Cannot commute if it has a non-zero rotate count.
+ if (MI->getOperand(3).getImm() != 0)
+ return nullptr;
+
+ // If we have a zero rotate count, we have:
+ // M = mask(MB,ME)
+ // Op0 = (Op1 & ~M) | (Op2 & M)
+ // Change this to:
+ // M = mask((ME+1)&31, (MB-1)&31)
+ // Op0 = (Op2 & ~M) | (Op1 & M)
+
+ // Swap op1/op2
+ unsigned Reg0 = MI->getOperand(0).getReg();
+ unsigned Reg1 = MI->getOperand(1).getReg();
+ unsigned Reg2 = MI->getOperand(2).getReg();
+ unsigned SubReg1 = MI->getOperand(1).getSubReg();
+ unsigned SubReg2 = MI->getOperand(2).getSubReg();
+ bool Reg1IsKill = MI->getOperand(1).isKill();
+ bool Reg2IsKill = MI->getOperand(2).isKill();
+ bool ChangeReg0 = false;
+ // If machine instrs are no longer in two-address forms, update
+ // destination register as well.
+ if (Reg0 == Reg1) {
+ // Must be two address instruction!
+ assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
+ "Expecting a two-address instruction!");
+ assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
+ Reg2IsKill = false;
+ ChangeReg0 = true;
+ }
+
+ // Masks.
+ unsigned MB = MI->getOperand(4).getImm();
+ unsigned ME = MI->getOperand(5).getImm();
+
+ if (NewMI) {
+ // Create a new instruction.
+ unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
+ bool Reg0IsDead = MI->getOperand(0).isDead();
+ return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
+ .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
+ .addReg(Reg2, getKillRegState(Reg2IsKill))
+ .addReg(Reg1, getKillRegState(Reg1IsKill))
+ .addImm((ME+1) & 31)
+ .addImm((MB-1) & 31);
+ }
+
+ if (ChangeReg0) {
+ MI->getOperand(0).setReg(Reg2);
+ MI->getOperand(0).setSubReg(SubReg2);
+ }
+ MI->getOperand(2).setReg(Reg1);
+ MI->getOperand(1).setReg(Reg2);
+ MI->getOperand(2).setSubReg(SubReg1);
+ MI->getOperand(1).setSubReg(SubReg2);
+ MI->getOperand(2).setIsKill(Reg1IsKill);
+ MI->getOperand(1).setIsKill(Reg2IsKill);
+
+ // Swap the mask around.
+ MI->getOperand(4).setImm((ME+1) & 31);
+ MI->getOperand(5).setImm((MB-1) & 31);
+ return MI;
+}
+
+bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const {
+ // For VSX A-Type FMA instructions, it is the first two operands that can be
+ // commuted, however, because the non-encoded tied input operand is listed
+ // first, the operands to swap are actually the second and third.
+
+ int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
+ if (AltOpc == -1)
+ return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
+
+ SrcOpIdx1 = 2;
+ SrcOpIdx2 = 3;
+ return true;
+}
+
+void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const {
+ // This function is used for scheduling, and the nop wanted here is the type
+ // that terminates dispatch groups on the POWER cores.
+ unsigned Directive = Subtarget.getDarwinDirective();
+ unsigned Opcode;
+ switch (Directive) {
+ default: Opcode = PPC::NOP; break;
+ case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
+ case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
+ case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
+ }
+
+ DebugLoc DL;
+ BuildMI(MBB, MI, DL, get(Opcode));
+}
+
+// Branch analysis.
+// Note: If the condition register is set to CTR or CTR8 then this is a
+// BDNZ (imm == 1) or BDZ (imm == 0) branch.
+bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ bool isPPC64 = Subtarget.isPPC64();
+
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return false;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return false;
+ --I;
+ }
+ if (!isUnpredicatedTerminator(I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ if (LastInst->getOpcode() == PPC::B) {
+ if (!LastInst->getOperand(0).isMBB())
+ return true;
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else if (LastInst->getOpcode() == PPC::BCC) {
+ if (!LastInst->getOperand(2).isMBB())
+ return true;
+ // Block ends with fall-through condbranch.
+ TBB = LastInst->getOperand(2).getMBB();
+ Cond.push_back(LastInst->getOperand(0));
+ Cond.push_back(LastInst->getOperand(1));
+ return false;
+ } else if (LastInst->getOpcode() == PPC::BC) {
+ if (!LastInst->getOperand(1).isMBB())
+ return true;
+ // Block ends with fall-through condbranch.
+ TBB = LastInst->getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
+ Cond.push_back(LastInst->getOperand(0));
+ return false;
+ } else if (LastInst->getOpcode() == PPC::BCn) {
+ if (!LastInst->getOperand(1).isMBB())
+ return true;
+ // Block ends with fall-through condbranch.
+ TBB = LastInst->getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
+ Cond.push_back(LastInst->getOperand(0));
+ return false;
+ } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
+ LastInst->getOpcode() == PPC::BDNZ) {
+ if (!LastInst->getOperand(0).isMBB())
+ return true;
+ if (DisableCTRLoopAnal)
+ return true;
+ TBB = LastInst->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(1));
+ Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
+ true));
+ return false;
+ } else if (LastInst->getOpcode() == PPC::BDZ8 ||
+ LastInst->getOpcode() == PPC::BDZ) {
+ if (!LastInst->getOperand(0).isMBB())
+ return true;
+ if (DisableCTRLoopAnal)
+ return true;
+ TBB = LastInst->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(0));
+ Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
+ true));
+ return false;
+ }
+
+ // Otherwise, don't know what this is.
+ return true;
+ }
+
+ // Get the instruction before it if it's a terminator.
+ MachineInstr *SecondLastInst = I;
+
+ // If there are three terminators, we don't know what sort of block this is.
+ if (SecondLastInst && I != MBB.begin() &&
+ isUnpredicatedTerminator(--I))
+ return true;
+
+ // If the block ends with PPC::B and PPC:BCC, handle it.
+ if (SecondLastInst->getOpcode() == PPC::BCC &&
+ LastInst->getOpcode() == PPC::B) {
+ if (!SecondLastInst->getOperand(2).isMBB() ||
+ !LastInst->getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst->getOperand(2).getMBB();
+ Cond.push_back(SecondLastInst->getOperand(0));
+ Cond.push_back(SecondLastInst->getOperand(1));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else if (SecondLastInst->getOpcode() == PPC::BC &&
+ LastInst->getOpcode() == PPC::B) {
+ if (!SecondLastInst->getOperand(1).isMBB() ||
+ !LastInst->getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst->getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
+ Cond.push_back(SecondLastInst->getOperand(0));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else if (SecondLastInst->getOpcode() == PPC::BCn &&
+ LastInst->getOpcode() == PPC::B) {
+ if (!SecondLastInst->getOperand(1).isMBB() ||
+ !LastInst->getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst->getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
+ Cond.push_back(SecondLastInst->getOperand(0));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
+ SecondLastInst->getOpcode() == PPC::BDNZ) &&
+ LastInst->getOpcode() == PPC::B) {
+ if (!SecondLastInst->getOperand(0).isMBB() ||
+ !LastInst->getOperand(0).isMBB())
+ return true;
+ if (DisableCTRLoopAnal)
+ return true;
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(1));
+ Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
+ true));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
+ SecondLastInst->getOpcode() == PPC::BDZ) &&
+ LastInst->getOpcode() == PPC::B) {
+ if (!SecondLastInst->getOperand(0).isMBB() ||
+ !LastInst->getOperand(0).isMBB())
+ return true;
+ if (DisableCTRLoopAnal)
+ return true;
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(0));
+ Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
+ true));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two PPC:Bs, handle it. The second one is not
+ // executed, so remove it.
+ if (SecondLastInst->getOpcode() == PPC::B &&
+ LastInst->getOpcode() == PPC::B) {
+ if (!SecondLastInst->getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin()) return 0;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return 0;
+ --I;
+ }
+ if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
+ I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
+ I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
+ I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (I->getOpcode() != PPC::BCC &&
+ I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
+ I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
+ I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+unsigned
+PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0) &&
+ "PPC branch conditions have two components!");
+
+ bool isPPC64 = Subtarget.isPPC64();
+
+ // One-way branch.
+ if (!FBB) {
+ if (Cond.empty()) // Unconditional branch
+ BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
+ else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
+ BuildMI(&MBB, DL, get(Cond[0].getImm() ?
+ (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
+ (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
+ else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
+ BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
+ else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
+ BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
+ else // Conditional branch
+ BuildMI(&MBB, DL, get(PPC::BCC))
+ .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
+ return 1;
+ }
+
+ // Two-way Conditional Branch.
+ if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
+ BuildMI(&MBB, DL, get(Cond[0].getImm() ?
+ (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
+ (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
+ else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
+ BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
+ else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
+ BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
+ else
+ BuildMI(&MBB, DL, get(PPC::BCC))
+ .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
+ BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
+ return 2;
+}
+
+// Select analysis.
+bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned TrueReg, unsigned FalseReg,
+ int &CondCycles, int &TrueCycles, int &FalseCycles) const {
+ if (!Subtarget.hasISEL())
+ return false;
+
+ if (Cond.size() != 2)
+ return false;
+
+ // If this is really a bdnz-like condition, then it cannot be turned into a
+ // select.
+ if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
+ return false;
+
+ // Check register classes.
+ const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ const TargetRegisterClass *RC =
+ RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
+ if (!RC)
+ return false;
+
+ // isel is for regular integer GPRs only.
+ if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
+ !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
+ !PPC::G8RCRegClass.hasSubClassEq(RC) &&
+ !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
+ return false;
+
+ // FIXME: These numbers are for the A2, how well they work for other cores is
+ // an open question. On the A2, the isel instruction has a 2-cycle latency
+ // but single-cycle throughput. These numbers are used in combination with
+ // the MispredictPenalty setting from the active SchedMachineModel.
+ CondCycles = 1;
+ TrueCycles = 1;
+ FalseCycles = 1;
+
+ return true;
+}
+
+void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc dl,
+ unsigned DestReg,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned TrueReg, unsigned FalseReg) const {
+ assert(Cond.size() == 2 &&
+ "PPC branch conditions have two components!");
+
+ assert(Subtarget.hasISEL() &&
+ "Cannot insert select on target without ISEL support");
+
+ // Get the register classes.
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ const TargetRegisterClass *RC =
+ RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
+ assert(RC && "TrueReg and FalseReg must have overlapping register classes");
+
+ bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
+ PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
+ assert((Is64Bit ||
+ PPC::GPRCRegClass.hasSubClassEq(RC) ||
+ PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
+ "isel is for regular integer GPRs only");
+
+ unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
+ unsigned SelectPred = Cond[0].getImm();
+
+ unsigned SubIdx;
+ bool SwapOps;
+ switch (SelectPred) {
+ default: llvm_unreachable("invalid predicate for isel");
+ case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
+ case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
+ case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
+ case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
+ case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
+ case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
+ case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
+ case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
+ case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
+ case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
+ }
+
+ unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
+ SecondReg = SwapOps ? TrueReg : FalseReg;
+
+ // The first input register of isel cannot be r0. If it is a member
+ // of a register class that can be r0, then copy it first (the
+ // register allocator should eliminate the copy).
+ if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
+ MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
+ const TargetRegisterClass *FirstRC =
+ MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
+ &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
+ unsigned OldFirstReg = FirstReg;
+ FirstReg = MRI.createVirtualRegister(FirstRC);
+ BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
+ .addReg(OldFirstReg);
+ }
+
+ BuildMI(MBB, MI, dl, get(OpCode), DestReg)
+ .addReg(FirstReg).addReg(SecondReg)
+ .addReg(Cond[1].getReg(), 0, SubIdx);
+}
+
+void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ // We can end up with self copies and similar things as a result of VSX copy
+ // legalization. Promote them here.
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ if (PPC::F8RCRegClass.contains(DestReg) &&
+ PPC::VSLRCRegClass.contains(SrcReg)) {
+ unsigned SuperReg =
+ TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
+
+ if (VSXSelfCopyCrash && SrcReg == SuperReg)
+ llvm_unreachable("nop VSX copy");
+
+ DestReg = SuperReg;
+ } else if (PPC::VRRCRegClass.contains(DestReg) &&
+ PPC::VSHRCRegClass.contains(SrcReg)) {
+ unsigned SuperReg =
+ TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
+
+ if (VSXSelfCopyCrash && SrcReg == SuperReg)
+ llvm_unreachable("nop VSX copy");
+
+ DestReg = SuperReg;
+ } else if (PPC::F8RCRegClass.contains(SrcReg) &&
+ PPC::VSLRCRegClass.contains(DestReg)) {
+ unsigned SuperReg =
+ TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
+
+ if (VSXSelfCopyCrash && DestReg == SuperReg)
+ llvm_unreachable("nop VSX copy");
+
+ SrcReg = SuperReg;
+ } else if (PPC::VRRCRegClass.contains(SrcReg) &&
+ PPC::VSHRCRegClass.contains(DestReg)) {
+ unsigned SuperReg =
+ TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
+
+ if (VSXSelfCopyCrash && DestReg == SuperReg)
+ llvm_unreachable("nop VSX copy");
+
+ SrcReg = SuperReg;
+ }
+
+ unsigned Opc;
+ if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::OR;
+ else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::OR8;
+ else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::FMR;
+ else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::MCRF;
+ else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::VOR;
+ else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
+ // There are two different ways this can be done:
+ // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
+ // issue in VSU pipeline 0.
+ // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
+ // can go to either pipeline.
+ // We'll always use xxlor here, because in practically all cases where
+ // copies are generated, they are close enough to some use that the
+ // lower-latency form is preferable.
+ Opc = PPC::XXLOR;
+ else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::XXLORf;
+ else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::CROR;
+ else
+ llvm_unreachable("Impossible reg-to-reg copy");
+
+ const MCInstrDesc &MCID = get(Opc);
+ if (MCID.getNumOperands() == 3)
+ BuildMI(MBB, I, DL, MCID, DestReg)
+ .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
+ else
+ BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
+}
+
+// This function returns true if a CR spill is necessary and false otherwise.
+bool
+PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
+ unsigned SrcReg, bool isKill,
+ int FrameIdx,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs,
+ bool &NonRI, bool &SpillsVRS) const{
+ // Note: If additional store instructions are added here,
+ // update isStoreToStackSlot.
+
+ DebugLoc DL;
+ if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
+ PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
+ PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ return true;
+ } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ return true;
+ } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ NonRI = true;
+ } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ NonRI = true;
+ } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ NonRI = true;
+ } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.isDarwin() &&
+ "VRSAVE only needs spill/restore on Darwin");
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ SpillsVRS = true;
+ } else {
+ llvm_unreachable("Unknown regclass!");
+ }
+
+ return false;
+}
+
+void
+PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction &MF = *MBB.getParent();
+ SmallVector<MachineInstr*, 4> NewMIs;
+
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ FuncInfo->setHasSpills();
+
+ bool NonRI = false, SpillsVRS = false;
+ if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
+ NonRI, SpillsVRS))
+ FuncInfo->setSpillsCR();
+
+ if (SpillsVRS)
+ FuncInfo->setSpillsVRSAVE();
+
+ if (NonRI)
+ FuncInfo->setHasNonRISpills();
+
+ for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
+ MBB.insert(MI, NewMIs[i]);
+
+ const MachineFrameInfo &MFI = *MF.getFrameInfo();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FrameIdx),
+ MFI.getObjectAlignment(FrameIdx));
+ NewMIs.back()->addMemOperand(MF, MMO);
+}
+
+bool
+PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs,
+ bool &NonRI, bool &SpillsVRS) const{
+ // Note: If additional load instructions are added here,
+ // update isLoadFromStackSlot.
+
+ if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
+ PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
+ DestReg), FrameIdx));
+ } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
+ PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
+ FrameIdx));
+ } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
+ FrameIdx));
+ } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
+ FrameIdx));
+ } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
+ get(PPC::RESTORE_CR), DestReg),
+ FrameIdx));
+ return true;
+ } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
+ get(PPC::RESTORE_CRBIT), DestReg),
+ FrameIdx));
+ return true;
+ } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
+ FrameIdx));
+ NonRI = true;
+ } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
+ FrameIdx));
+ NonRI = true;
+ } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
+ FrameIdx));
+ NonRI = true;
+ } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.isDarwin() &&
+ "VRSAVE only needs spill/restore on Darwin");
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
+ get(PPC::RESTORE_VRSAVE),
+ DestReg),
+ FrameIdx));
+ SpillsVRS = true;
+ } else {
+ llvm_unreachable("Unknown regclass!");
+ }
+
+ return false;
+}
+
+void
+PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction &MF = *MBB.getParent();
+ SmallVector<MachineInstr*, 4> NewMIs;
+ DebugLoc DL;
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ FuncInfo->setHasSpills();
+
+ bool NonRI = false, SpillsVRS = false;
+ if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
+ NonRI, SpillsVRS))
+ FuncInfo->setSpillsCR();
+
+ if (SpillsVRS)
+ FuncInfo->setSpillsVRSAVE();
+
+ if (NonRI)
+ FuncInfo->setHasNonRISpills();
+
+ for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
+ MBB.insert(MI, NewMIs[i]);
+
+ const MachineFrameInfo &MFI = *MF.getFrameInfo();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FrameIdx),
+ MFI.getObjectAlignment(FrameIdx));
+ NewMIs.back()->addMemOperand(MF, MMO);
+}
+
+bool PPCInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
+ if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
+ Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
+ else
+ // Leave the CR# the same, but invert the condition.
+ Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
+ return false;
+}
+
+bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
+ unsigned Reg, MachineRegisterInfo *MRI) const {
+ // For some instructions, it is legal to fold ZERO into the RA register field.
+ // A zero immediate should always be loaded with a single li.
+ unsigned DefOpc = DefMI->getOpcode();
+ if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
+ return false;
+ if (!DefMI->getOperand(1).isImm())
+ return false;
+ if (DefMI->getOperand(1).getImm() != 0)
+ return false;
+
+ // Note that we cannot here invert the arguments of an isel in order to fold
+ // a ZERO into what is presented as the second argument. All we have here
+ // is the condition bit, and that might come from a CR-logical bit operation.
+
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
+
+ // Only fold into real machine instructions.
+ if (UseMCID.isPseudo())
+ return false;
+
+ unsigned UseIdx;
+ for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
+ if (UseMI->getOperand(UseIdx).isReg() &&
+ UseMI->getOperand(UseIdx).getReg() == Reg)
+ break;
+
+ assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
+ assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
+
+ const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
+
+ // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
+ // register (which might also be specified as a pointer class kind).
+ if (UseInfo->isLookupPtrRegClass()) {
+ if (UseInfo->RegClass /* Kind */ != 1)
+ return false;
+ } else {
+ if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
+ UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
+ return false;
+ }
+
+ // Make sure this is not tied to an output register (or otherwise
+ // constrained). This is true for ST?UX registers, for example, which
+ // are tied to their output registers.
+ if (UseInfo->Constraints != 0)
+ return false;
+
+ unsigned ZeroReg;
+ if (UseInfo->isLookupPtrRegClass()) {
+ bool isPPC64 = Subtarget.isPPC64();
+ ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
+ } else {
+ ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
+ PPC::ZERO8 : PPC::ZERO;
+ }
+
+ bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
+ UseMI->getOperand(UseIdx).setReg(ZeroReg);
+
+ if (DeleteDef)
+ DefMI->eraseFromParent();
+
+ return true;
+}
+
+static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
+ for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
+ I != IE; ++I)
+ if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
+ return true;
+ return false;
+}
+
+// We should make sure that, if we're going to predicate both sides of a
+// condition (a diamond), that both sides don't define the counter register. We
+// can predicate counter-decrement-based branches, but while that predicates
+// the branching, it does not predicate the counter decrement. If we tried to
+// merge the triangle into one predicated block, we'd decrement the counter
+// twice.
+bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumT, unsigned ExtraT,
+ MachineBasicBlock &FMBB,
+ unsigned NumF, unsigned ExtraF,
+ const BranchProbability &Probability) const {
+ return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
+}
+
+
+bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
+ // The predicated branches are identified by their type, not really by the
+ // explicit presence of a predicate. Furthermore, some of them can be
+ // predicated more than once. Because if conversion won't try to predicate
+ // any instruction which already claims to be predicated (by returning true
+ // here), always return false. In doing so, we let isPredicable() be the
+ // final word on whether not the instruction can be (further) predicated.
+
+ return false;
+}
+
+bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
+ if (!MI->isTerminator())
+ return false;
+
+ // Conditional branch is a special case.
+ if (MI->isBranch() && !MI->isBarrier())
+ return true;
+
+ return !isPredicated(MI);
+}
+
+bool PPCInstrInfo::PredicateInstruction(
+ MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const {
+ unsigned OpC = MI->getOpcode();
+ if (OpC == PPC::BLR) {
+ if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
+ bool isPPC64 = Subtarget.isPPC64();
+ MI->setDesc(get(Pred[0].getImm() ?
+ (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
+ (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
+ } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
+ MI->setDesc(get(PPC::BCLR));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addReg(Pred[1].getReg());
+ } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
+ MI->setDesc(get(PPC::BCLRn));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addReg(Pred[1].getReg());
+ } else {
+ MI->setDesc(get(PPC::BCCLR));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addImm(Pred[0].getImm())
+ .addReg(Pred[1].getReg());
+ }
+
+ return true;
+ } else if (OpC == PPC::B) {
+ if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
+ bool isPPC64 = Subtarget.isPPC64();
+ MI->setDesc(get(Pred[0].getImm() ?
+ (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
+ (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
+ } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
+ MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
+ MI->RemoveOperand(0);
+
+ MI->setDesc(get(PPC::BC));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addReg(Pred[1].getReg())
+ .addMBB(MBB);
+ } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
+ MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
+ MI->RemoveOperand(0);
+
+ MI->setDesc(get(PPC::BCn));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addReg(Pred[1].getReg())
+ .addMBB(MBB);
+ } else {
+ MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
+ MI->RemoveOperand(0);
+
+ MI->setDesc(get(PPC::BCC));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addImm(Pred[0].getImm())
+ .addReg(Pred[1].getReg())
+ .addMBB(MBB);
+ }
+
+ return true;
+ } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 ||
+ OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
+ if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
+ llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
+
+ bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
+ bool isPPC64 = Subtarget.isPPC64();
+
+ if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
+ MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
+ (setLR ? PPC::BCCTRL : PPC::BCCTR)));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addReg(Pred[1].getReg());
+ return true;
+ } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
+ MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
+ (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addReg(Pred[1].getReg());
+ return true;
+ }
+
+ MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
+ (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addImm(Pred[0].getImm())
+ .addReg(Pred[1].getReg());
+ return true;
+ }
+
+ return false;
+}
+
+bool PPCInstrInfo::SubsumesPredicate(
+ const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const {
+ assert(Pred1.size() == 2 && "Invalid PPC first predicate");
+ assert(Pred2.size() == 2 && "Invalid PPC second predicate");
+
+ if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
+ return false;
+ if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
+ return false;
+
+ // P1 can only subsume P2 if they test the same condition register.
+ if (Pred1[1].getReg() != Pred2[1].getReg())
+ return false;
+
+ PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
+ PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
+
+ if (P1 == P2)
+ return true;
+
+ // Does P1 subsume P2, e.g. GE subsumes GT.
+ if (P1 == PPC::PRED_LE &&
+ (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
+ return true;
+ if (P1 == PPC::PRED_GE &&
+ (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
+ return true;
+
+ return false;
+}
+
+bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const {
+ // Note: At the present time, the contents of Pred from this function is
+ // unused by IfConversion. This implementation follows ARM by pushing the
+ // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
+ // predicate, instructions defining CTR or CTR8 are also included as
+ // predicate-defining instructions.
+
+ const TargetRegisterClass *RCs[] =
+ { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
+ &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
+
+ bool Found = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
+ const TargetRegisterClass *RC = RCs[c];
+ if (MO.isReg()) {
+ if (MO.isDef() && RC->contains(MO.getReg())) {
+ Pred.push_back(MO);
+ Found = true;
+ }
+ } else if (MO.isRegMask()) {
+ for (TargetRegisterClass::iterator I = RC->begin(),
+ IE = RC->end(); I != IE; ++I)
+ if (MO.clobbersPhysReg(*I)) {
+ Pred.push_back(MO);
+ Found = true;
+ }
+ }
+ }
+ }
+
+ return Found;
+}
+
+bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
+ unsigned OpC = MI->getOpcode();
+ switch (OpC) {
+ default:
+ return false;
+ case PPC::B:
+ case PPC::BLR:
+ case PPC::BCTR:
+ case PPC::BCTR8:
+ case PPC::BCTRL:
+ case PPC::BCTRL8:
+ return true;
+ }
+}
+
+bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
+ unsigned &SrcReg, unsigned &SrcReg2,
+ int &Mask, int &Value) const {
+ unsigned Opc = MI->getOpcode();
+
+ switch (Opc) {
+ default: return false;
+ case PPC::CMPWI:
+ case PPC::CMPLWI:
+ case PPC::CMPDI:
+ case PPC::CMPLDI:
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = 0;
+ Value = MI->getOperand(2).getImm();
+ Mask = 0xFFFF;
+ return true;
+ case PPC::CMPW:
+ case PPC::CMPLW:
+ case PPC::CMPD:
+ case PPC::CMPLD:
+ case PPC::FCMPUS:
+ case PPC::FCMPUD:
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = MI->getOperand(2).getReg();
+ return true;
+ }
+}
+
+bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
+ unsigned SrcReg, unsigned SrcReg2,
+ int Mask, int Value,
+ const MachineRegisterInfo *MRI) const {
+ if (DisableCmpOpt)
+ return false;
+
+ int OpC = CmpInstr->getOpcode();
+ unsigned CRReg = CmpInstr->getOperand(0).getReg();
+
+ // FP record forms set CR1 based on the execption status bits, not a
+ // comparison with zero.
+ if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
+ return false;
+
+ // The record forms set the condition register based on a signed comparison
+ // with zero (so says the ISA manual). This is not as straightforward as it
+ // seems, however, because this is always a 64-bit comparison on PPC64, even
+ // for instructions that are 32-bit in nature (like slw for example).
+ // So, on PPC32, for unsigned comparisons, we can use the record forms only
+ // for equality checks (as those don't depend on the sign). On PPC64,
+ // we are restricted to equality for unsigned 64-bit comparisons and for
+ // signed 32-bit comparisons the applicability is more restricted.
+ bool isPPC64 = Subtarget.isPPC64();
+ bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
+ bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
+ bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
+
+ // Get the unique definition of SrcReg.
+ MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
+ if (!MI) return false;
+ int MIOpC = MI->getOpcode();
+
+ bool equalityOnly = false;
+ bool noSub = false;
+ if (isPPC64) {
+ if (is32BitSignedCompare) {
+ // We can perform this optimization only if MI is sign-extending.
+ if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo ||
+ MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
+ MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
+ MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
+ MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
+ noSub = true;
+ } else
+ return false;
+ } else if (is32BitUnsignedCompare) {
+ // We can perform this optimization, equality only, if MI is
+ // zero-extending.
+ if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
+ MIOpC == PPC::SLW || MIOpC == PPC::SLWo ||
+ MIOpC == PPC::SRW || MIOpC == PPC::SRWo) {
+ noSub = true;
+ equalityOnly = true;
+ } else
+ return false;
+ } else
+ equalityOnly = is64BitUnsignedCompare;
+ } else
+ equalityOnly = is32BitUnsignedCompare;
+
+ if (equalityOnly) {
+ // We need to check the uses of the condition register in order to reject
+ // non-equality comparisons.
+ for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
+ IE = MRI->use_instr_end(); I != IE; ++I) {
+ MachineInstr *UseMI = &*I;
+ if (UseMI->getOpcode() == PPC::BCC) {
+ unsigned Pred = UseMI->getOperand(0).getImm();
+ if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
+ return false;
+ } else if (UseMI->getOpcode() == PPC::ISEL ||
+ UseMI->getOpcode() == PPC::ISEL8) {
+ unsigned SubIdx = UseMI->getOperand(3).getSubReg();
+ if (SubIdx != PPC::sub_eq)
+ return false;
+ } else
+ return false;
+ }
+ }
+
+ MachineBasicBlock::iterator I = CmpInstr;
+
+ // Scan forward to find the first use of the compare.
+ for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
+ I != EL; ++I) {
+ bool FoundUse = false;
+ for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
+ JE = MRI->use_instr_end(); J != JE; ++J)
+ if (&*J == &*I) {
+ FoundUse = true;
+ break;
+ }
+
+ if (FoundUse)
+ break;
+ }
+
+ // There are two possible candidates which can be changed to set CR[01].
+ // One is MI, the other is a SUB instruction.
+ // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
+ MachineInstr *Sub = nullptr;
+ if (SrcReg2 != 0)
+ // MI is not a candidate for CMPrr.
+ MI = nullptr;
+ // FIXME: Conservatively refuse to convert an instruction which isn't in the
+ // same BB as the comparison. This is to allow the check below to avoid calls
+ // (and other explicit clobbers); instead we should really check for these
+ // more explicitly (in at least a few predecessors).
+ else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
+ // PPC does not have a record-form SUBri.
+ return false;
+ }
+
+ // Search for Sub.
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ --I;
+
+ // Get ready to iterate backward from CmpInstr.
+ MachineBasicBlock::iterator E = MI,
+ B = CmpInstr->getParent()->begin();
+
+ for (; I != E && !noSub; --I) {
+ const MachineInstr &Instr = *I;
+ unsigned IOpC = Instr.getOpcode();
+
+ if (&*I != CmpInstr && (
+ Instr.modifiesRegister(PPC::CR0, TRI) ||
+ Instr.readsRegister(PPC::CR0, TRI)))
+ // This instruction modifies or uses the record condition register after
+ // the one we want to change. While we could do this transformation, it
+ // would likely not be profitable. This transformation removes one
+ // instruction, and so even forcing RA to generate one move probably
+ // makes it unprofitable.
+ return false;
+
+ // Check whether CmpInstr can be made redundant by the current instruction.
+ if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
+ OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
+ (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
+ ((Instr.getOperand(1).getReg() == SrcReg &&
+ Instr.getOperand(2).getReg() == SrcReg2) ||
+ (Instr.getOperand(1).getReg() == SrcReg2 &&
+ Instr.getOperand(2).getReg() == SrcReg))) {
+ Sub = &*I;
+ break;
+ }
+
+ if (I == B)
+ // The 'and' is below the comparison instruction.
+ return false;
+ }
+
+ // Return false if no candidates exist.
+ if (!MI && !Sub)
+ return false;
+
+ // The single candidate is called MI.
+ if (!MI) MI = Sub;
+
+ int NewOpC = -1;
+ MIOpC = MI->getOpcode();
+ if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
+ NewOpC = MIOpC;
+ else {
+ NewOpC = PPC::getRecordFormOpcode(MIOpC);
+ if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
+ NewOpC = MIOpC;
+ }
+
+ // FIXME: On the non-embedded POWER architectures, only some of the record
+ // forms are fast, and we should use only the fast ones.
+
+ // The defining instruction has a record form (or is already a record
+ // form). It is possible, however, that we'll need to reverse the condition
+ // code of the users.
+ if (NewOpC == -1)
+ return false;
+
+ SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
+ SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
+
+ // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
+ // needs to be updated to be based on SUB. Push the condition code
+ // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
+ // condition code of these operands will be modified.
+ bool ShouldSwap = false;
+ if (Sub) {
+ ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
+ Sub->getOperand(2).getReg() == SrcReg;
+
+ // The operands to subf are the opposite of sub, so only in the fixed-point
+ // case, invert the order.
+ ShouldSwap = !ShouldSwap;
+ }
+
+ if (ShouldSwap)
+ for (MachineRegisterInfo::use_instr_iterator
+ I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
+ I != IE; ++I) {
+ MachineInstr *UseMI = &*I;
+ if (UseMI->getOpcode() == PPC::BCC) {
+ PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
+ assert((!equalityOnly ||
+ Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
+ "Invalid predicate for equality-only optimization");
+ PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
+ PPC::getSwappedPredicate(Pred)));
+ } else if (UseMI->getOpcode() == PPC::ISEL ||
+ UseMI->getOpcode() == PPC::ISEL8) {
+ unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
+ assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
+ "Invalid CR bit for equality-only optimization");
+
+ if (NewSubReg == PPC::sub_lt)
+ NewSubReg = PPC::sub_gt;
+ else if (NewSubReg == PPC::sub_gt)
+ NewSubReg = PPC::sub_lt;
+
+ SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
+ NewSubReg));
+ } else // We need to abort on a user we don't understand.
+ return false;
+ }
+
+ // Create a new virtual register to hold the value of the CR set by the
+ // record-form instruction. If the instruction was not previously in
+ // record form, then set the kill flag on the CR.
+ CmpInstr->eraseFromParent();
+
+ MachineBasicBlock::iterator MII = MI;
+ BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
+ get(TargetOpcode::COPY), CRReg)
+ .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
+
+ if (MIOpC != NewOpC) {
+ // We need to be careful here: we're replacing one instruction with
+ // another, and we need to make sure that we get all of the right
+ // implicit uses and defs. On the other hand, the caller may be holding
+ // an iterator to this instruction, and so we can't delete it (this is
+ // specifically the case if this is the instruction directly after the
+ // compare).
+
+ const MCInstrDesc &NewDesc = get(NewOpC);
+ MI->setDesc(NewDesc);
+
+ if (NewDesc.ImplicitDefs)
+ for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
+ *ImpDefs; ++ImpDefs)
+ if (!MI->definesRegister(*ImpDefs))
+ MI->addOperand(*MI->getParent()->getParent(),
+ MachineOperand::CreateReg(*ImpDefs, true, true));
+ if (NewDesc.ImplicitUses)
+ for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
+ *ImpUses; ++ImpUses)
+ if (!MI->readsRegister(*ImpUses))
+ MI->addOperand(*MI->getParent()->getParent(),
+ MachineOperand::CreateReg(*ImpUses, false, true));
+ }
+
+ // Modify the condition code of operands in OperandsToUpdate.
+ // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
+ // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
+ for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
+ PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
+
+ for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
+ SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
+
+ return true;
+}
+
+/// GetInstSize - Return the number of bytes of code the specified
+/// instruction may be. This returns the maximum number of bytes.
+///
+unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ unsigned Opcode = MI->getOpcode();
+
+ if (Opcode == PPC::INLINEASM) {
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const char *AsmStr = MI->getOperand(0).getSymbolName();
+ return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
+ } else {
+ const MCInstrDesc &Desc = get(Opcode);
+ return Desc.getSize();
+ }
+}
+
+#undef DEBUG_TYPE
+#define DEBUG_TYPE "ppc-vsx-fma-mutate"
+
+namespace {
+ // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
+ // (Altivec and scalar floating-point registers), we need to transform the
+ // copies into subregister copies with other restrictions.
+ struct PPCVSXFMAMutate : public MachineFunctionPass {
+ static char ID;
+ PPCVSXFMAMutate() : MachineFunctionPass(ID) {
+ initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
+ }
+
+ LiveIntervals *LIS;
+
+ const PPCTargetMachine *TM;
+ const PPCInstrInfo *TII;
+
+protected:
+ bool processBlock(MachineBasicBlock &MBB) {
+ bool Changed = false;
+
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
+ I != IE; ++I) {
+ MachineInstr *MI = I;
+
+ // The default (A-type) VSX FMA form kills the addend (it is taken from
+ // the target register, which is then updated to reflect the result of
+ // the FMA). If the instruction, however, kills one of the registers
+ // used for the product, then we can use the M-form instruction (which
+ // will take that value from the to-be-defined register).
+
+ int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
+ if (AltOpc == -1)
+ continue;
+
+ // This pass is run after register coalescing, and so we're looking for
+ // a situation like this:
+ // ...
+ // %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
+ // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
+ // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
+ // ...
+ // %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
+ // %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
+ // ...
+ // Where we can eliminate the copy by changing from the A-type to the
+ // M-type instruction. Specifically, for this example, this means:
+ // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
+ // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
+ // is replaced by:
+ // %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
+ // %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9
+ // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
+
+ SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
+
+ VNInfo *AddendValNo =
+ LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn();
+ MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
+
+ // The addend and this instruction must be in the same block.
+
+ if (!AddendMI || AddendMI->getParent() != MI->getParent())
+ continue;
+
+ // The addend must be a full copy within the same register class.
+
+ if (!AddendMI->isFullCopy())
+ continue;
+
+ unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
+ if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
+ MRI.getRegClass(AddendSrcReg))
+ continue;
+ } else {
+ // If AddendSrcReg is a physical register, make sure the destination
+ // register class contains it.
+ if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
+ ->contains(AddendSrcReg))
+ continue;
+ }
+
+ // In theory, there could be other uses of the addend copy before this
+ // fma. We could deal with this, but that would require additional
+ // logic below and I suspect it will not occur in any relevant
+ // situations.
+ bool OtherUsers = false;
+ for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
+ J != JE; --J)
+ if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
+ OtherUsers = true;
+ break;
+ }
+
+ if (OtherUsers)
+ continue;
+
+ // Find one of the product operands that is killed by this instruction.
+
+ unsigned KilledProdOp = 0, OtherProdOp = 0;
+ if (LIS->getInterval(MI->getOperand(2).getReg())
+ .Query(FMAIdx).isKill()) {
+ KilledProdOp = 2;
+ OtherProdOp = 3;
+ } else if (LIS->getInterval(MI->getOperand(3).getReg())
+ .Query(FMAIdx).isKill()) {
+ KilledProdOp = 3;
+ OtherProdOp = 2;
+ }
+
+ // If there are no killed product operands, then this transformation is
+ // likely not profitable.
+ if (!KilledProdOp)
+ continue;
+
+ // In order to replace the addend here with the source of the copy,
+ // it must still be live here.
+ if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx))
+ continue;
+
+ // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
+
+ unsigned AddReg = AddendMI->getOperand(1).getReg();
+ unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg();
+ unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg();
+
+ unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
+ unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg();
+ unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg();
+
+ bool AddRegKill = AddendMI->getOperand(1).isKill();
+ bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill();
+ bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill();
+
+ bool AddRegUndef = AddendMI->getOperand(1).isUndef();
+ bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef();
+ bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef();
+
+ unsigned OldFMAReg = MI->getOperand(0).getReg();
+
+ assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
+ "Addend copy not tied to old FMA output!");
+
+ DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;);
+
+ MI->getOperand(0).setReg(KilledProdReg);
+ MI->getOperand(1).setReg(KilledProdReg);
+ MI->getOperand(3).setReg(AddReg);
+ MI->getOperand(2).setReg(OtherProdReg);
+
+ MI->getOperand(0).setSubReg(KilledProdSubReg);
+ MI->getOperand(1).setSubReg(KilledProdSubReg);
+ MI->getOperand(3).setSubReg(AddSubReg);
+ MI->getOperand(2).setSubReg(OtherProdSubReg);
+
+ MI->getOperand(1).setIsKill(KilledProdRegKill);
+ MI->getOperand(3).setIsKill(AddRegKill);
+ MI->getOperand(2).setIsKill(OtherProdRegKill);
+
+ MI->getOperand(1).setIsUndef(KilledProdRegUndef);
+ MI->getOperand(3).setIsUndef(AddRegUndef);
+ MI->getOperand(2).setIsUndef(OtherProdRegUndef);
+
+ MI->setDesc(TII->get(AltOpc));
+
+ DEBUG(dbgs() << " -> " << *MI);
+
+ // The killed product operand was killed here, so we can reuse it now
+ // for the result of the fma.
+
+ LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
+ VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
+ for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
+ UI != UE;) {
+ MachineOperand &UseMO = *UI;
+ MachineInstr *UseMI = UseMO.getParent();
+ ++UI;
+
+ // Don't replace the result register of the copy we're about to erase.
+ if (UseMI == AddendMI)
+ continue;
+
+ UseMO.setReg(KilledProdReg);
+ UseMO.setSubReg(KilledProdSubReg);
+ }
+
+ // Extend the live intervals of the killed product operand to hold the
+ // fma result.
+
+ LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
+ for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
+ AI != AE; ++AI) {
+ // Don't add the segment that corresponds to the original copy.
+ if (AI->valno == AddendValNo)
+ continue;
+
+ VNInfo *NewFMAValNo =
+ NewFMAInt.getNextValue(AI->start,
+ LIS->getVNInfoAllocator());
+
+ NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
+ NewFMAValNo));
+ }
+ DEBUG(dbgs() << " extended: " << NewFMAInt << '\n');
+
+ FMAInt.removeValNo(FMAValNo);
+ DEBUG(dbgs() << " trimmed: " << FMAInt << '\n');
+
+ // Remove the (now unused) copy.
+
+ DEBUG(dbgs() << " removing: " << *AddendMI << '\n');
+ LIS->RemoveMachineInstrFromMaps(AddendMI);
+ AddendMI->eraseFromParent();
+
+ Changed = true;
+ }
+
+ return Changed;
+ }
+
+public:
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
+ // If we don't have VSX then go ahead and return without doing
+ // anything.
+ if (!TM->getSubtargetImpl()->hasVSX())
+ return false;
+
+ LIS = &getAnalysis<LiveIntervals>();
+
+ TII = TM->getInstrInfo();
+
+ bool Changed = false;
+
+ if (DisableVSXFMAMutate)
+ return Changed;
+
+ for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
+ MachineBasicBlock &B = *I++;
+ if (processBlock(B))
+ Changed = true;
+ }
+
+ return Changed;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addRequired<SlotIndexes>();
+ AU.addPreserved<SlotIndexes>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ };
+}
+
+INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
+ "PowerPC VSX FMA Mutation", false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
+ "PowerPC VSX FMA Mutation", false, false)
+
+char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
+
+char PPCVSXFMAMutate::ID = 0;
+FunctionPass*
+llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); }
+
+#undef DEBUG_TYPE
+#define DEBUG_TYPE "ppc-vsx-copy"
+
+namespace llvm {
+ void initializePPCVSXCopyPass(PassRegistry&);
+}
+
+namespace {
+ // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers
+ // (Altivec and scalar floating-point registers), we need to transform the
+ // copies into subregister copies with other restrictions.
+ struct PPCVSXCopy : public MachineFunctionPass {
+ static char ID;
+ PPCVSXCopy() : MachineFunctionPass(ID) {
+ initializePPCVSXCopyPass(*PassRegistry::getPassRegistry());
+ }
+
+ const PPCTargetMachine *TM;
+ const PPCInstrInfo *TII;
+
+ bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC,
+ MachineRegisterInfo &MRI) {
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ return RC->hasSubClassEq(MRI.getRegClass(Reg));
+ } else if (RC->contains(Reg)) {
+ return true;
+ }
+
+ return false;
+ }
+
+ bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) {
+ return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI);
+ }
+
+ bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) {
+ return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI);
+ }
+
+ bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) {
+ return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI);
+ }
+
+protected:
+ bool processBlock(MachineBasicBlock &MBB) {
+ bool Changed = false;
+
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
+ I != IE; ++I) {
+ MachineInstr *MI = I;
+ if (!MI->isFullCopy())
+ continue;
+
+ MachineOperand &DstMO = MI->getOperand(0);
+ MachineOperand &SrcMO = MI->getOperand(1);
+
+ if ( IsVSReg(DstMO.getReg(), MRI) &&
+ !IsVSReg(SrcMO.getReg(), MRI)) {
+ // This is a copy *to* a VSX register from a non-VSX register.
+ Changed = true;
+
+ const TargetRegisterClass *SrcRC =
+ IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
+ &PPC::VSLRCRegClass;
+ assert((IsF8Reg(SrcMO.getReg(), MRI) ||
+ IsVRReg(SrcMO.getReg(), MRI)) &&
+ "Unknown source for a VSX copy");
+
+ unsigned NewVReg = MRI.createVirtualRegister(SrcRC);
+ BuildMI(MBB, MI, MI->getDebugLoc(),
+ TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg)
+ .addImm(1) // add 1, not 0, because there is no implicit clearing
+ // of the high bits.
+ .addOperand(SrcMO)
+ .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 :
+ PPC::sub_64);
+
+ // The source of the original copy is now the new virtual register.
+ SrcMO.setReg(NewVReg);
+ } else if (!IsVSReg(DstMO.getReg(), MRI) &&
+ IsVSReg(SrcMO.getReg(), MRI)) {
+ // This is a copy *from* a VSX register to a non-VSX register.
+ Changed = true;
+
+ const TargetRegisterClass *DstRC =
+ IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
+ &PPC::VSLRCRegClass;
+ assert((IsF8Reg(DstMO.getReg(), MRI) ||
+ IsVRReg(DstMO.getReg(), MRI)) &&
+ "Unknown destination for a VSX copy");
+
+ // Copy the VSX value into a new VSX register of the correct subclass.
+ unsigned NewVReg = MRI.createVirtualRegister(DstRC);
+ BuildMI(MBB, MI, MI->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), NewVReg)
+ .addOperand(SrcMO);
+
+ // Transform the original copy into a subregister extraction copy.
+ SrcMO.setReg(NewVReg);
+ SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 :
+ PPC::sub_64);
+ }
+ }
+
+ return Changed;
+ }
+
+public:
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
+ // If we don't have VSX on the subtarget, don't do anything.
+ if (!TM->getSubtargetImpl()->hasVSX())
+ return false;
+ TII = TM->getInstrInfo();
+
+ bool Changed = false;
+
+ for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
+ MachineBasicBlock &B = *I++;
+ if (processBlock(B))
+ Changed = true;
+ }
+
+ return Changed;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ };
+}
+
+INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE,
+ "PowerPC VSX Copy Legalization", false, false)
+
+char PPCVSXCopy::ID = 0;
+FunctionPass*
+llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); }
+
+#undef DEBUG_TYPE
+#define DEBUG_TYPE "ppc-vsx-copy-cleanup"
+
+namespace llvm {
+ void initializePPCVSXCopyCleanupPass(PassRegistry&);
+}
+
+namespace {
+ // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX
+ // registers (mostly because the ABI code still places all values into the
+ // "traditional" floating-point and vector registers). Remove them here.
+ struct PPCVSXCopyCleanup : public MachineFunctionPass {
+ static char ID;
+ PPCVSXCopyCleanup() : MachineFunctionPass(ID) {
+ initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry());
+ }
+
+ const PPCTargetMachine *TM;
+ const PPCInstrInfo *TII;
+
+protected:
+ bool processBlock(MachineBasicBlock &MBB) {
+ bool Changed = false;
+
+ SmallVector<MachineInstr *, 4> ToDelete;
+ for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
+ I != IE; ++I) {
+ MachineInstr *MI = I;
+ if (MI->getOpcode() == PPC::XXLOR &&
+ MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
+ MI->getOperand(0).getReg() == MI->getOperand(2).getReg())
+ ToDelete.push_back(MI);
+ }
+
+ if (!ToDelete.empty())
+ Changed = true;
+
+ for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) {
+ DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]);
+ ToDelete[i]->eraseFromParent();
+ }
+
+ return Changed;
+ }
+
+public:
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
+ // If we don't have VSX don't bother doing anything here.
+ if (!TM->getSubtargetImpl()->hasVSX())
+ return false;
+ TII = TM->getInstrInfo();
+
+ bool Changed = false;
+
+ for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
+ MachineBasicBlock &B = *I++;
+ if (processBlock(B))
+ Changed = true;
+ }
+
+ return Changed;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ };
+}
+
+INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE,
+ "PowerPC VSX Copy Cleanup", false, false)
+
+char PPCVSXCopyCleanup::ID = 0;
+FunctionPass*
+llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); }
+
+#undef DEBUG_TYPE
+#define DEBUG_TYPE "ppc-early-ret"
+STATISTIC(NumBCLR, "Number of early conditional returns");
+STATISTIC(NumBLR, "Number of early returns");
+
+namespace llvm {
+ void initializePPCEarlyReturnPass(PassRegistry&);
+}
+
+namespace {
+ // PPCEarlyReturn pass - For simple functions without epilogue code, move
+ // returns up, and create conditional returns, to avoid unnecessary
+ // branch-to-blr sequences.
+ struct PPCEarlyReturn : public MachineFunctionPass {
+ static char ID;
+ PPCEarlyReturn() : MachineFunctionPass(ID) {
+ initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry());
+ }
+
+ const PPCTargetMachine *TM;
+ const PPCInstrInfo *TII;
+
+protected:
+ bool processBlock(MachineBasicBlock &ReturnMBB) {
+ bool Changed = false;
+
+ MachineBasicBlock::iterator I = ReturnMBB.begin();
+ I = ReturnMBB.SkipPHIsAndLabels(I);
+
+ // The block must be essentially empty except for the blr.
+ if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR ||
+ I != ReturnMBB.getLastNonDebugInstr())
+ return Changed;
+
+ SmallVector<MachineBasicBlock*, 8> PredToRemove;
+ for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(),
+ PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) {
+ bool OtherReference = false, BlockChanged = false;
+ for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) {
+ if (J->getOpcode() == PPC::B) {
+ if (J->getOperand(0).getMBB() == &ReturnMBB) {
+ // This is an unconditional branch to the return. Replace the
+ // branch with a blr.
+ BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR));
+ MachineBasicBlock::iterator K = J--;
+ K->eraseFromParent();
+ BlockChanged = true;
+ ++NumBLR;
+ continue;
+ }
+ } else if (J->getOpcode() == PPC::BCC) {
+ if (J->getOperand(2).getMBB() == &ReturnMBB) {
+ // This is a conditional branch to the return. Replace the branch
+ // with a bclr.
+ BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR))
+ .addImm(J->getOperand(0).getImm())
+ .addReg(J->getOperand(1).getReg());
+ MachineBasicBlock::iterator K = J--;
+ K->eraseFromParent();
+ BlockChanged = true;
+ ++NumBCLR;
+ continue;
+ }
+ } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) {
+ if (J->getOperand(1).getMBB() == &ReturnMBB) {
+ // This is a conditional branch to the return. Replace the branch
+ // with a bclr.
+ BuildMI(**PI, J, J->getDebugLoc(),
+ TII->get(J->getOpcode() == PPC::BC ?
+ PPC::BCLR : PPC::BCLRn))
+ .addReg(J->getOperand(0).getReg());
+ MachineBasicBlock::iterator K = J--;
+ K->eraseFromParent();
+ BlockChanged = true;
+ ++NumBCLR;
+ continue;
+ }
+ } else if (J->isBranch()) {
+ if (J->isIndirectBranch()) {
+ if (ReturnMBB.hasAddressTaken())
+ OtherReference = true;
+ } else
+ for (unsigned i = 0; i < J->getNumOperands(); ++i)
+ if (J->getOperand(i).isMBB() &&
+ J->getOperand(i).getMBB() == &ReturnMBB)
+ OtherReference = true;
+ } else if (!J->isTerminator() && !J->isDebugValue())
+ break;
+
+ if (J == (*PI)->begin())
+ break;
+
+ --J;
+ }
+
+ if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB))
+ OtherReference = true;
+
+ // Predecessors are stored in a vector and can't be removed here.
+ if (!OtherReference && BlockChanged) {
+ PredToRemove.push_back(*PI);
+ }
+
+ if (BlockChanged)
+ Changed = true;
+ }
+
+ for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i)
+ PredToRemove[i]->removeSuccessor(&ReturnMBB);
+
+ if (Changed && !ReturnMBB.hasAddressTaken()) {
+ // We now might be able to merge this blr-only block into its
+ // by-layout predecessor.
+ if (ReturnMBB.pred_size() == 1 &&
+ (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) {
+ // Move the blr into the preceding block.
+ MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin();
+ PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I);
+ PrevMBB.removeSuccessor(&ReturnMBB);
+ }
+
+ if (ReturnMBB.pred_empty())
+ ReturnMBB.eraseFromParent();
+ }
+
+ return Changed;
+ }
+
+public:
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
+ TII = TM->getInstrInfo();
+
+ bool Changed = false;
+
+ // If the function does not have at least two blocks, then there is
+ // nothing to do.
+ if (MF.size() < 2)
+ return Changed;
+
+ for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
+ MachineBasicBlock &B = *I++;
+ if (processBlock(B))
+ Changed = true;
+ }
+
+ return Changed;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ };
+}
+
+INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE,
+ "PowerPC Early-Return Creation", false, false)
+
+char PPCEarlyReturn::ID = 0;
+FunctionPass*
+llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); }
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.h b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.h
new file mode 100644
index 0000000..83f14c6
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.h
@@ -0,0 +1,235 @@
+//===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef POWERPC_INSTRUCTIONINFO_H
+#define POWERPC_INSTRUCTIONINFO_H
+
+#include "PPC.h"
+#include "PPCRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "PPCGenInstrInfo.inc"
+
+namespace llvm {
+
+/// PPCII - This namespace holds all of the PowerPC target-specific
+/// per-instruction flags. These must match the corresponding definitions in
+/// PPC.td and PPCInstrFormats.td.
+namespace PPCII {
+enum {
+ // PPC970 Instruction Flags. These flags describe the characteristics of the
+ // PowerPC 970 (aka G5) dispatch groups and how they are formed out of
+ // raw machine instructions.
+
+ /// PPC970_First - This instruction starts a new dispatch group, so it will
+ /// always be the first one in the group.
+ PPC970_First = 0x1,
+
+ /// PPC970_Single - This instruction starts a new dispatch group and
+ /// terminates it, so it will be the sole instruction in the group.
+ PPC970_Single = 0x2,
+
+ /// PPC970_Cracked - This instruction is cracked into two pieces, requiring
+ /// two dispatch pipes to be available to issue.
+ PPC970_Cracked = 0x4,
+
+ /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
+ /// an instruction is issued to.
+ PPC970_Shift = 3,
+ PPC970_Mask = 0x07 << PPC970_Shift
+};
+enum PPC970_Unit {
+ /// These are the various PPC970 execution unit pipelines. Each instruction
+ /// is one of these.
+ PPC970_Pseudo = 0 << PPC970_Shift, // Pseudo instruction
+ PPC970_FXU = 1 << PPC970_Shift, // Fixed Point (aka Integer/ALU) Unit
+ PPC970_LSU = 2 << PPC970_Shift, // Load Store Unit
+ PPC970_FPU = 3 << PPC970_Shift, // Floating Point Unit
+ PPC970_CRU = 4 << PPC970_Shift, // Control Register Unit
+ PPC970_VALU = 5 << PPC970_Shift, // Vector ALU
+ PPC970_VPERM = 6 << PPC970_Shift, // Vector Permute Unit
+ PPC970_BRU = 7 << PPC970_Shift // Branch Unit
+};
+} // end namespace PPCII
+
+
+class PPCInstrInfo : public PPCGenInstrInfo {
+ PPCSubtarget &Subtarget;
+ const PPCRegisterInfo RI;
+
+ bool StoreRegToStackSlot(MachineFunction &MF,
+ unsigned SrcReg, bool isKill, int FrameIdx,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs,
+ bool &NonRI, bool &SpillsVRS) const;
+ bool LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs,
+ bool &NonRI, bool &SpillsVRS) const;
+ virtual void anchor();
+public:
+ explicit PPCInstrInfo(PPCSubtarget &STI);
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ const PPCRegisterInfo &getRegisterInfo() const { return RI; }
+
+ ScheduleHazardRecognizer *
+ CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
+ const ScheduleDAG *DAG) const override;
+ ScheduleHazardRecognizer *
+ CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const override;
+
+ int getOperandLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI,
+ unsigned UseIdx) const override;
+ int getOperandLatency(const InstrItineraryData *ItinData,
+ SDNode *DefNode, unsigned DefIdx,
+ SDNode *UseNode, unsigned UseIdx) const override {
+ return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
+ UseNode, UseIdx);
+ }
+
+ bool isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const override;
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ // commuteInstruction - We can commute rlwimi instructions, but only if the
+ // rotate amt is zero. We also have to munge the immediates a bit.
+ MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const override;
+
+ bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const override;
+
+ void insertNoop(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const override;
+
+
+ // Branch analysis.
+ bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const override;
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const override;
+
+ // Select analysis.
+ bool canInsertSelect(const MachineBasicBlock&,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned, unsigned, int&, int&, int&) const override;
+ void insertSelect(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DstReg,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned TrueReg, unsigned FalseReg) const override;
+
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool
+ ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
+
+ bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
+ unsigned Reg, MachineRegisterInfo *MRI) const override;
+
+ // If conversion by predication (only supported by some branch instructions).
+ // All of the profitability checks always return true; it is always
+ // profitable to use the predicated branches.
+ bool isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles, unsigned ExtraPredCycles,
+ const BranchProbability &Probability) const override {
+ return true;
+ }
+
+ bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumT, unsigned ExtraT,
+ MachineBasicBlock &FMBB,
+ unsigned NumF, unsigned ExtraF,
+ const BranchProbability &Probability) const override;
+
+ bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles,
+ const BranchProbability
+ &Probability) const override {
+ return true;
+ }
+
+ bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
+ MachineBasicBlock &FMBB) const override {
+ return false;
+ }
+
+ // Predication support.
+ bool isPredicated(const MachineInstr *MI) const override;
+
+ bool isUnpredicatedTerminator(const MachineInstr *MI) const override;
+
+ bool PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const override;
+
+ bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const override;
+
+ bool DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const override;
+
+ bool isPredicable(MachineInstr *MI) const override;
+
+ // Comparison optimization.
+
+
+ bool analyzeCompare(const MachineInstr *MI,
+ unsigned &SrcReg, unsigned &SrcReg2,
+ int &Mask, int &Value) const override;
+
+ bool optimizeCompareInstr(MachineInstr *CmpInstr,
+ unsigned SrcReg, unsigned SrcReg2,
+ int Mask, int Value,
+ const MachineRegisterInfo *MRI) const override;
+
+ /// GetInstSize - Return the number of bytes of code the specified
+ /// instruction may be. This returns the maximum number of bytes.
+ ///
+ unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.td b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.td
new file mode 100644
index 0000000..636ac5d
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.td
@@ -0,0 +1,3424 @@
+//===-- PPCInstrInfo.td - The PowerPC Instruction Set ------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the subset of the 32-bit PowerPC instruction set, as used
+// by the PowerPC instruction selector.
+//
+//===----------------------------------------------------------------------===//
+
+include "PPCInstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+// PowerPC specific type constraints.
+//
+def SDT_PPCstfiwx : SDTypeProfile<0, 2, [ // stfiwx
+ SDTCisVT<0, f64>, SDTCisPtrTy<1>
+]>;
+def SDT_PPClfiwx : SDTypeProfile<1, 1, [ // lfiw[az]x
+ SDTCisVT<0, f64>, SDTCisPtrTy<1>
+]>;
+
+def SDT_PPCCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
+def SDT_PPCCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32> ]>;
+def SDT_PPCvperm : SDTypeProfile<1, 3, [
+ SDTCisVT<3, v16i8>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>
+]>;
+
+def SDT_PPCvcmp : SDTypeProfile<1, 3, [
+ SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>
+]>;
+
+def SDT_PPCcondbr : SDTypeProfile<0, 3, [
+ SDTCisVT<0, i32>, SDTCisVT<2, OtherVT>
+]>;
+
+def SDT_PPClbrx : SDTypeProfile<1, 2, [
+ SDTCisInt<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>
+]>;
+def SDT_PPCstbrx : SDTypeProfile<0, 3, [
+ SDTCisInt<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>
+]>;
+
+def SDT_PPClarx : SDTypeProfile<1, 1, [
+ SDTCisInt<0>, SDTCisPtrTy<1>
+]>;
+def SDT_PPCstcx : SDTypeProfile<0, 2, [
+ SDTCisInt<0>, SDTCisPtrTy<1>
+]>;
+
+def SDT_PPCTC_ret : SDTypeProfile<0, 2, [
+ SDTCisPtrTy<0>, SDTCisVT<1, i32>
+]>;
+
+def tocentry32 : Operand<iPTR> {
+ let MIOperandInfo = (ops i32imm:$imm);
+}
+
+//===----------------------------------------------------------------------===//
+// PowerPC specific DAG Nodes.
+//
+
+def PPCfre : SDNode<"PPCISD::FRE", SDTFPUnaryOp, []>;
+def PPCfrsqrte: SDNode<"PPCISD::FRSQRTE", SDTFPUnaryOp, []>;
+
+def PPCfcfid : SDNode<"PPCISD::FCFID", SDTFPUnaryOp, []>;
+def PPCfcfidu : SDNode<"PPCISD::FCFIDU", SDTFPUnaryOp, []>;
+def PPCfcfids : SDNode<"PPCISD::FCFIDS", SDTFPRoundOp, []>;
+def PPCfcfidus: SDNode<"PPCISD::FCFIDUS", SDTFPRoundOp, []>;
+def PPCfctidz : SDNode<"PPCISD::FCTIDZ", SDTFPUnaryOp, []>;
+def PPCfctiwz : SDNode<"PPCISD::FCTIWZ", SDTFPUnaryOp, []>;
+def PPCfctiduz: SDNode<"PPCISD::FCTIDUZ",SDTFPUnaryOp, []>;
+def PPCfctiwuz: SDNode<"PPCISD::FCTIWUZ",SDTFPUnaryOp, []>;
+def PPCstfiwx : SDNode<"PPCISD::STFIWX", SDT_PPCstfiwx,
+ [SDNPHasChain, SDNPMayStore]>;
+def PPClfiwax : SDNode<"PPCISD::LFIWAX", SDT_PPClfiwx,
+ [SDNPHasChain, SDNPMayLoad]>;
+def PPClfiwzx : SDNode<"PPCISD::LFIWZX", SDT_PPClfiwx,
+ [SDNPHasChain, SDNPMayLoad]>;
+
+// Extract FPSCR (not modeled at the DAG level).
+def PPCmffs : SDNode<"PPCISD::MFFS",
+ SDTypeProfile<1, 0, [SDTCisVT<0, f64>]>, []>;
+
+// Perform FADD in round-to-zero mode.
+def PPCfaddrtz: SDNode<"PPCISD::FADDRTZ", SDTFPBinOp, []>;
+
+
+def PPCfsel : SDNode<"PPCISD::FSEL",
+ // Type constraint for fsel.
+ SDTypeProfile<1, 3, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>,
+ SDTCisFP<0>, SDTCisVT<1, f64>]>, []>;
+
+def PPChi : SDNode<"PPCISD::Hi", SDTIntBinOp, []>;
+def PPClo : SDNode<"PPCISD::Lo", SDTIntBinOp, []>;
+def PPCtoc_entry: SDNode<"PPCISD::TOC_ENTRY", SDTIntBinOp, [SDNPMayLoad]>;
+def PPCvmaddfp : SDNode<"PPCISD::VMADDFP", SDTFPTernaryOp, []>;
+def PPCvnmsubfp : SDNode<"PPCISD::VNMSUBFP", SDTFPTernaryOp, []>;
+
+def PPCppc32GOT : SDNode<"PPCISD::PPC32_GOT", SDTIntLeaf, []>;
+
+def PPCaddisGotTprelHA : SDNode<"PPCISD::ADDIS_GOT_TPREL_HA", SDTIntBinOp>;
+def PPCldGotTprelL : SDNode<"PPCISD::LD_GOT_TPREL_L", SDTIntBinOp,
+ [SDNPMayLoad]>;
+def PPCaddTls : SDNode<"PPCISD::ADD_TLS", SDTIntBinOp, []>;
+def PPCaddisTlsgdHA : SDNode<"PPCISD::ADDIS_TLSGD_HA", SDTIntBinOp>;
+def PPCaddiTlsgdL : SDNode<"PPCISD::ADDI_TLSGD_L", SDTIntBinOp>;
+def PPCgetTlsAddr : SDNode<"PPCISD::GET_TLS_ADDR", SDTIntBinOp>;
+def PPCaddisTlsldHA : SDNode<"PPCISD::ADDIS_TLSLD_HA", SDTIntBinOp>;
+def PPCaddiTlsldL : SDNode<"PPCISD::ADDI_TLSLD_L", SDTIntBinOp>;
+def PPCgetTlsldAddr : SDNode<"PPCISD::GET_TLSLD_ADDR", SDTIntBinOp>;
+def PPCaddisDtprelHA : SDNode<"PPCISD::ADDIS_DTPREL_HA", SDTIntBinOp,
+ [SDNPHasChain]>;
+def PPCaddiDtprelL : SDNode<"PPCISD::ADDI_DTPREL_L", SDTIntBinOp>;
+
+def PPCvperm : SDNode<"PPCISD::VPERM", SDT_PPCvperm, []>;
+
+// These nodes represent the 32-bit PPC shifts that operate on 6-bit shift
+// amounts. These nodes are generated by the multi-precision shift code.
+def PPCsrl : SDNode<"PPCISD::SRL" , SDTIntShiftOp>;
+def PPCsra : SDNode<"PPCISD::SRA" , SDTIntShiftOp>;
+def PPCshl : SDNode<"PPCISD::SHL" , SDTIntShiftOp>;
+
+// These are target-independent nodes, but have target-specific formats.
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_PPCCallSeqStart,
+ [SDNPHasChain, SDNPOutGlue]>;
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_PPCCallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+def SDT_PPCCall : SDTypeProfile<0, -1, [SDTCisInt<0>]>;
+def PPCcall : SDNode<"PPCISD::CALL", SDT_PPCCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+def PPCcall_nop : SDNode<"PPCISD::CALL_NOP", SDT_PPCCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+def PPCload : SDNode<"PPCISD::LOAD", SDTypeProfile<1, 1, []>,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+def PPCload_toc : SDNode<"PPCISD::LOAD_TOC", SDTypeProfile<0, 1, []>,
+ [SDNPHasChain, SDNPSideEffect,
+ SDNPInGlue, SDNPOutGlue]>;
+def PPCmtctr : SDNode<"PPCISD::MTCTR", SDT_PPCCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+def PPCbctrl : SDNode<"PPCISD::BCTRL", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+
+def retflag : SDNode<"PPCISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+def PPCtc_return : SDNode<"PPCISD::TC_RETURN", SDT_PPCTC_ret,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+def PPCeh_sjlj_setjmp : SDNode<"PPCISD::EH_SJLJ_SETJMP",
+ SDTypeProfile<1, 1, [SDTCisInt<0>,
+ SDTCisPtrTy<1>]>,
+ [SDNPHasChain, SDNPSideEffect]>;
+def PPCeh_sjlj_longjmp : SDNode<"PPCISD::EH_SJLJ_LONGJMP",
+ SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>,
+ [SDNPHasChain, SDNPSideEffect]>;
+
+def SDT_PPCsc : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+def PPCsc : SDNode<"PPCISD::SC", SDT_PPCsc,
+ [SDNPHasChain, SDNPSideEffect]>;
+
+def PPCvcmp : SDNode<"PPCISD::VCMP" , SDT_PPCvcmp, []>;
+def PPCvcmp_o : SDNode<"PPCISD::VCMPo", SDT_PPCvcmp, [SDNPOutGlue]>;
+
+def PPCcondbranch : SDNode<"PPCISD::COND_BRANCH", SDT_PPCcondbr,
+ [SDNPHasChain, SDNPOptInGlue]>;
+
+def PPClbrx : SDNode<"PPCISD::LBRX", SDT_PPClbrx,
+ [SDNPHasChain, SDNPMayLoad]>;
+def PPCstbrx : SDNode<"PPCISD::STBRX", SDT_PPCstbrx,
+ [SDNPHasChain, SDNPMayStore]>;
+
+// Instructions to set/unset CR bit 6 for SVR4 vararg calls
+def PPCcr6set : SDNode<"PPCISD::CR6SET", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+def PPCcr6unset : SDNode<"PPCISD::CR6UNSET", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+// Instructions to support atomic operations
+def PPClarx : SDNode<"PPCISD::LARX", SDT_PPClarx,
+ [SDNPHasChain, SDNPMayLoad]>;
+def PPCstcx : SDNode<"PPCISD::STCX", SDT_PPCstcx,
+ [SDNPHasChain, SDNPMayStore]>;
+
+// Instructions to support medium and large code model
+def PPCaddisTocHA : SDNode<"PPCISD::ADDIS_TOC_HA", SDTIntBinOp, []>;
+def PPCldTocL : SDNode<"PPCISD::LD_TOC_L", SDTIntBinOp, [SDNPMayLoad]>;
+def PPCaddiTocL : SDNode<"PPCISD::ADDI_TOC_L", SDTIntBinOp, []>;
+
+
+// Instructions to support dynamic alloca.
+def SDTDynOp : SDTypeProfile<1, 2, []>;
+def PPCdynalloc : SDNode<"PPCISD::DYNALLOC", SDTDynOp, [SDNPHasChain]>;
+
+//===----------------------------------------------------------------------===//
+// PowerPC specific transformation functions and pattern fragments.
+//
+
+def SHL32 : SDNodeXForm<imm, [{
+ // Transformation function: 31 - imm
+ return getI32Imm(31 - N->getZExtValue());
+}]>;
+
+def SRL32 : SDNodeXForm<imm, [{
+ // Transformation function: 32 - imm
+ return N->getZExtValue() ? getI32Imm(32 - N->getZExtValue()) : getI32Imm(0);
+}]>;
+
+def LO16 : SDNodeXForm<imm, [{
+ // Transformation function: get the low 16 bits.
+ return getI32Imm((unsigned short)N->getZExtValue());
+}]>;
+
+def HI16 : SDNodeXForm<imm, [{
+ // Transformation function: shift the immediate value down into the low bits.
+ return getI32Imm((unsigned)N->getZExtValue() >> 16);
+}]>;
+
+def HA16 : SDNodeXForm<imm, [{
+ // Transformation function: shift the immediate value down into the low bits.
+ signed int Val = N->getZExtValue();
+ return getI32Imm((Val - (signed short)Val) >> 16);
+}]>;
+def MB : SDNodeXForm<imm, [{
+ // Transformation function: get the start bit of a mask
+ unsigned mb = 0, me;
+ (void)isRunOfOnes((unsigned)N->getZExtValue(), mb, me);
+ return getI32Imm(mb);
+}]>;
+
+def ME : SDNodeXForm<imm, [{
+ // Transformation function: get the end bit of a mask
+ unsigned mb, me = 0;
+ (void)isRunOfOnes((unsigned)N->getZExtValue(), mb, me);
+ return getI32Imm(me);
+}]>;
+def maskimm32 : PatLeaf<(imm), [{
+ // maskImm predicate - True if immediate is a run of ones.
+ unsigned mb, me;
+ if (N->getValueType(0) == MVT::i32)
+ return isRunOfOnes((unsigned)N->getZExtValue(), mb, me);
+ else
+ return false;
+}]>;
+
+def imm32SExt16 : Operand<i32>, ImmLeaf<i32, [{
+ // imm32SExt16 predicate - True if the i32 immediate fits in a 16-bit
+ // sign extended field. Used by instructions like 'addi'.
+ return (int32_t)Imm == (short)Imm;
+}]>;
+def imm64SExt16 : Operand<i64>, ImmLeaf<i64, [{
+ // imm64SExt16 predicate - True if the i64 immediate fits in a 16-bit
+ // sign extended field. Used by instructions like 'addi'.
+ return (int64_t)Imm == (short)Imm;
+}]>;
+def immZExt16 : PatLeaf<(imm), [{
+ // immZExt16 predicate - True if the immediate fits in a 16-bit zero extended
+ // field. Used by instructions like 'ori'.
+ return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
+}], LO16>;
+
+// imm16Shifted* - These match immediates where the low 16-bits are zero. There
+// are two forms: imm16ShiftedSExt and imm16ShiftedZExt. These two forms are
+// identical in 32-bit mode, but in 64-bit mode, they return true if the
+// immediate fits into a sign/zero extended 32-bit immediate (with the low bits
+// clear).
+def imm16ShiftedZExt : PatLeaf<(imm), [{
+ // imm16ShiftedZExt predicate - True if only bits in the top 16-bits of the
+ // immediate are set. Used by instructions like 'xoris'.
+ return (N->getZExtValue() & ~uint64_t(0xFFFF0000)) == 0;
+}], HI16>;
+
+def imm16ShiftedSExt : PatLeaf<(imm), [{
+ // imm16ShiftedSExt predicate - True if only bits in the top 16-bits of the
+ // immediate are set. Used by instructions like 'addis'. Identical to
+ // imm16ShiftedZExt in 32-bit mode.
+ if (N->getZExtValue() & 0xFFFF) return false;
+ if (N->getValueType(0) == MVT::i32)
+ return true;
+ // For 64-bit, make sure it is sext right.
+ return N->getZExtValue() == (uint64_t)(int)N->getZExtValue();
+}], HI16>;
+
+def imm64ZExt32 : Operand<i64>, ImmLeaf<i64, [{
+ // imm64ZExt32 predicate - True if the i64 immediate fits in a 32-bit
+ // zero extended field.
+ return isUInt<32>(Imm);
+}]>;
+
+// Some r+i load/store instructions (such as LD, STD, LDU, etc.) that require
+// restricted memrix (4-aligned) constants are alignment sensitive. If these
+// offsets are hidden behind TOC entries than the values of the lower-order
+// bits cannot be checked directly. As a result, we need to also incorporate
+// an alignment check into the relevant patterns.
+
+def aligned4load : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() >= 4;
+}]>;
+def aligned4store : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getAlignment() >= 4;
+}]>;
+def aligned4sextloadi32 : PatFrag<(ops node:$ptr), (sextloadi32 node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() >= 4;
+}]>;
+def aligned4pre_store : PatFrag<
+ (ops node:$val, node:$base, node:$offset),
+ (pre_store node:$val, node:$base, node:$offset), [{
+ return cast<StoreSDNode>(N)->getAlignment() >= 4;
+}]>;
+
+def unaligned4load : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() < 4;
+}]>;
+def unaligned4store : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getAlignment() < 4;
+}]>;
+def unaligned4sextloadi32 : PatFrag<(ops node:$ptr), (sextloadi32 node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() < 4;
+}]>;
+
+//===----------------------------------------------------------------------===//
+// PowerPC Flag Definitions.
+
+class isPPC64 { bit PPC64 = 1; }
+class isDOT { bit RC = 1; }
+
+class RegConstraint<string C> {
+ string Constraints = C;
+}
+class NoEncode<string E> {
+ string DisableEncoding = E;
+}
+
+
+//===----------------------------------------------------------------------===//
+// PowerPC Operand Definitions.
+
+// In the default PowerPC assembler syntax, registers are specified simply
+// by number, so they cannot be distinguished from immediate values (without
+// looking at the opcode). This means that the default operand matching logic
+// for the asm parser does not work, and we need to specify custom matchers.
+// Since those can only be specified with RegisterOperand classes and not
+// directly on the RegisterClass, all instructions patterns used by the asm
+// parser need to use a RegisterOperand (instead of a RegisterClass) for
+// all their register operands.
+// For this purpose, we define one RegisterOperand for each RegisterClass,
+// using the same name as the class, just in lower case.
+
+def PPCRegGPRCAsmOperand : AsmOperandClass {
+ let Name = "RegGPRC"; let PredicateMethod = "isRegNumber";
+}
+def gprc : RegisterOperand<GPRC> {
+ let ParserMatchClass = PPCRegGPRCAsmOperand;
+}
+def PPCRegG8RCAsmOperand : AsmOperandClass {
+ let Name = "RegG8RC"; let PredicateMethod = "isRegNumber";
+}
+def g8rc : RegisterOperand<G8RC> {
+ let ParserMatchClass = PPCRegG8RCAsmOperand;
+}
+def PPCRegGPRCNoR0AsmOperand : AsmOperandClass {
+ let Name = "RegGPRCNoR0"; let PredicateMethod = "isRegNumber";
+}
+def gprc_nor0 : RegisterOperand<GPRC_NOR0> {
+ let ParserMatchClass = PPCRegGPRCNoR0AsmOperand;
+}
+def PPCRegG8RCNoX0AsmOperand : AsmOperandClass {
+ let Name = "RegG8RCNoX0"; let PredicateMethod = "isRegNumber";
+}
+def g8rc_nox0 : RegisterOperand<G8RC_NOX0> {
+ let ParserMatchClass = PPCRegG8RCNoX0AsmOperand;
+}
+def PPCRegF8RCAsmOperand : AsmOperandClass {
+ let Name = "RegF8RC"; let PredicateMethod = "isRegNumber";
+}
+def f8rc : RegisterOperand<F8RC> {
+ let ParserMatchClass = PPCRegF8RCAsmOperand;
+}
+def PPCRegF4RCAsmOperand : AsmOperandClass {
+ let Name = "RegF4RC"; let PredicateMethod = "isRegNumber";
+}
+def f4rc : RegisterOperand<F4RC> {
+ let ParserMatchClass = PPCRegF4RCAsmOperand;
+}
+def PPCRegVRRCAsmOperand : AsmOperandClass {
+ let Name = "RegVRRC"; let PredicateMethod = "isRegNumber";
+}
+def vrrc : RegisterOperand<VRRC> {
+ let ParserMatchClass = PPCRegVRRCAsmOperand;
+}
+def PPCRegCRBITRCAsmOperand : AsmOperandClass {
+ let Name = "RegCRBITRC"; let PredicateMethod = "isCRBitNumber";
+}
+def crbitrc : RegisterOperand<CRBITRC> {
+ let ParserMatchClass = PPCRegCRBITRCAsmOperand;
+}
+def PPCRegCRRCAsmOperand : AsmOperandClass {
+ let Name = "RegCRRC"; let PredicateMethod = "isCCRegNumber";
+}
+def crrc : RegisterOperand<CRRC> {
+ let ParserMatchClass = PPCRegCRRCAsmOperand;
+}
+
+def PPCU2ImmAsmOperand : AsmOperandClass {
+ let Name = "U2Imm"; let PredicateMethod = "isU2Imm";
+ let RenderMethod = "addImmOperands";
+}
+def u2imm : Operand<i32> {
+ let PrintMethod = "printU2ImmOperand";
+ let ParserMatchClass = PPCU2ImmAsmOperand;
+}
+def PPCS5ImmAsmOperand : AsmOperandClass {
+ let Name = "S5Imm"; let PredicateMethod = "isS5Imm";
+ let RenderMethod = "addImmOperands";
+}
+def s5imm : Operand<i32> {
+ let PrintMethod = "printS5ImmOperand";
+ let ParserMatchClass = PPCS5ImmAsmOperand;
+ let DecoderMethod = "decodeSImmOperand<5>";
+}
+def PPCU5ImmAsmOperand : AsmOperandClass {
+ let Name = "U5Imm"; let PredicateMethod = "isU5Imm";
+ let RenderMethod = "addImmOperands";
+}
+def u5imm : Operand<i32> {
+ let PrintMethod = "printU5ImmOperand";
+ let ParserMatchClass = PPCU5ImmAsmOperand;
+ let DecoderMethod = "decodeUImmOperand<5>";
+}
+def PPCU6ImmAsmOperand : AsmOperandClass {
+ let Name = "U6Imm"; let PredicateMethod = "isU6Imm";
+ let RenderMethod = "addImmOperands";
+}
+def u6imm : Operand<i32> {
+ let PrintMethod = "printU6ImmOperand";
+ let ParserMatchClass = PPCU6ImmAsmOperand;
+ let DecoderMethod = "decodeUImmOperand<6>";
+}
+def PPCS16ImmAsmOperand : AsmOperandClass {
+ let Name = "S16Imm"; let PredicateMethod = "isS16Imm";
+ let RenderMethod = "addImmOperands";
+}
+def s16imm : Operand<i32> {
+ let PrintMethod = "printS16ImmOperand";
+ let EncoderMethod = "getImm16Encoding";
+ let ParserMatchClass = PPCS16ImmAsmOperand;
+ let DecoderMethod = "decodeSImmOperand<16>";
+}
+def PPCU16ImmAsmOperand : AsmOperandClass {
+ let Name = "U16Imm"; let PredicateMethod = "isU16Imm";
+ let RenderMethod = "addImmOperands";
+}
+def u16imm : Operand<i32> {
+ let PrintMethod = "printU16ImmOperand";
+ let EncoderMethod = "getImm16Encoding";
+ let ParserMatchClass = PPCU16ImmAsmOperand;
+ let DecoderMethod = "decodeUImmOperand<16>";
+}
+def PPCS17ImmAsmOperand : AsmOperandClass {
+ let Name = "S17Imm"; let PredicateMethod = "isS17Imm";
+ let RenderMethod = "addImmOperands";
+}
+def s17imm : Operand<i32> {
+ // This operand type is used for addis/lis to allow the assembler parser
+ // to accept immediates in the range -65536..65535 for compatibility with
+ // the GNU assembler. The operand is treated as 16-bit otherwise.
+ let PrintMethod = "printS16ImmOperand";
+ let EncoderMethod = "getImm16Encoding";
+ let ParserMatchClass = PPCS17ImmAsmOperand;
+ let DecoderMethod = "decodeSImmOperand<16>";
+}
+def PPCDirectBrAsmOperand : AsmOperandClass {
+ let Name = "DirectBr"; let PredicateMethod = "isDirectBr";
+ let RenderMethod = "addBranchTargetOperands";
+}
+def directbrtarget : Operand<OtherVT> {
+ let PrintMethod = "printBranchOperand";
+ let EncoderMethod = "getDirectBrEncoding";
+ let ParserMatchClass = PPCDirectBrAsmOperand;
+}
+def absdirectbrtarget : Operand<OtherVT> {
+ let PrintMethod = "printAbsBranchOperand";
+ let EncoderMethod = "getAbsDirectBrEncoding";
+ let ParserMatchClass = PPCDirectBrAsmOperand;
+}
+def PPCCondBrAsmOperand : AsmOperandClass {
+ let Name = "CondBr"; let PredicateMethod = "isCondBr";
+ let RenderMethod = "addBranchTargetOperands";
+}
+def condbrtarget : Operand<OtherVT> {
+ let PrintMethod = "printBranchOperand";
+ let EncoderMethod = "getCondBrEncoding";
+ let ParserMatchClass = PPCCondBrAsmOperand;
+}
+def abscondbrtarget : Operand<OtherVT> {
+ let PrintMethod = "printAbsBranchOperand";
+ let EncoderMethod = "getAbsCondBrEncoding";
+ let ParserMatchClass = PPCCondBrAsmOperand;
+}
+def calltarget : Operand<iPTR> {
+ let PrintMethod = "printBranchOperand";
+ let EncoderMethod = "getDirectBrEncoding";
+ let ParserMatchClass = PPCDirectBrAsmOperand;
+}
+def abscalltarget : Operand<iPTR> {
+ let PrintMethod = "printAbsBranchOperand";
+ let EncoderMethod = "getAbsDirectBrEncoding";
+ let ParserMatchClass = PPCDirectBrAsmOperand;
+}
+def PPCCRBitMaskOperand : AsmOperandClass {
+ let Name = "CRBitMask"; let PredicateMethod = "isCRBitMask";
+}
+def crbitm: Operand<i8> {
+ let PrintMethod = "printcrbitm";
+ let EncoderMethod = "get_crbitm_encoding";
+ let DecoderMethod = "decodeCRBitMOperand";
+ let ParserMatchClass = PPCCRBitMaskOperand;
+}
+// Address operands
+// A version of ptr_rc which excludes R0 (or X0 in 64-bit mode).
+def PPCRegGxRCNoR0Operand : AsmOperandClass {
+ let Name = "RegGxRCNoR0"; let PredicateMethod = "isRegNumber";
+}
+def ptr_rc_nor0 : Operand<iPTR>, PointerLikeRegClass<1> {
+ let ParserMatchClass = PPCRegGxRCNoR0Operand;
+}
+// A version of ptr_rc usable with the asm parser.
+def PPCRegGxRCOperand : AsmOperandClass {
+ let Name = "RegGxRC"; let PredicateMethod = "isRegNumber";
+}
+def ptr_rc_idx : Operand<iPTR>, PointerLikeRegClass<0> {
+ let ParserMatchClass = PPCRegGxRCOperand;
+}
+
+def PPCDispRIOperand : AsmOperandClass {
+ let Name = "DispRI"; let PredicateMethod = "isS16Imm";
+ let RenderMethod = "addImmOperands";
+}
+def dispRI : Operand<iPTR> {
+ let ParserMatchClass = PPCDispRIOperand;
+}
+def PPCDispRIXOperand : AsmOperandClass {
+ let Name = "DispRIX"; let PredicateMethod = "isS16ImmX4";
+ let RenderMethod = "addImmOperands";
+}
+def dispRIX : Operand<iPTR> {
+ let ParserMatchClass = PPCDispRIXOperand;
+}
+
+def memri : Operand<iPTR> {
+ let PrintMethod = "printMemRegImm";
+ let MIOperandInfo = (ops dispRI:$imm, ptr_rc_nor0:$reg);
+ let EncoderMethod = "getMemRIEncoding";
+ let DecoderMethod = "decodeMemRIOperands";
+}
+def memrr : Operand<iPTR> {
+ let PrintMethod = "printMemRegReg";
+ let MIOperandInfo = (ops ptr_rc_nor0:$ptrreg, ptr_rc_idx:$offreg);
+}
+def memrix : Operand<iPTR> { // memri where the imm is 4-aligned.
+ let PrintMethod = "printMemRegImm";
+ let MIOperandInfo = (ops dispRIX:$imm, ptr_rc_nor0:$reg);
+ let EncoderMethod = "getMemRIXEncoding";
+ let DecoderMethod = "decodeMemRIXOperands";
+}
+
+// A single-register address. This is used with the SjLj
+// pseudo-instructions.
+def memr : Operand<iPTR> {
+ let MIOperandInfo = (ops ptr_rc:$ptrreg);
+}
+def PPCTLSRegOperand : AsmOperandClass {
+ let Name = "TLSReg"; let PredicateMethod = "isTLSReg";
+ let RenderMethod = "addTLSRegOperands";
+}
+def tlsreg32 : Operand<i32> {
+ let EncoderMethod = "getTLSRegEncoding";
+ let ParserMatchClass = PPCTLSRegOperand;
+}
+def tlsgd32 : Operand<i32> {}
+def tlscall32 : Operand<i32> {
+ let PrintMethod = "printTLSCall";
+ let MIOperandInfo = (ops calltarget:$func, tlsgd32:$sym);
+ let EncoderMethod = "getTLSCallEncoding";
+}
+
+// PowerPC Predicate operand.
+def pred : Operand<OtherVT> {
+ let PrintMethod = "printPredicateOperand";
+ let MIOperandInfo = (ops i32imm:$bibo, crrc:$reg);
+}
+
+// Define PowerPC specific addressing mode.
+def iaddr : ComplexPattern<iPTR, 2, "SelectAddrImm", [], []>;
+def xaddr : ComplexPattern<iPTR, 2, "SelectAddrIdx", [], []>;
+def xoaddr : ComplexPattern<iPTR, 2, "SelectAddrIdxOnly",[], []>;
+def ixaddr : ComplexPattern<iPTR, 2, "SelectAddrImmX4", [], []>; // "std"
+
+// The address in a single register. This is used with the SjLj
+// pseudo-instructions.
+def addr : ComplexPattern<iPTR, 1, "SelectAddr",[], []>;
+
+/// This is just the offset part of iaddr, used for preinc.
+def iaddroff : ComplexPattern<iPTR, 1, "SelectAddrImmOffs", [], []>;
+
+//===----------------------------------------------------------------------===//
+// PowerPC Instruction Predicate Definitions.
+def In32BitMode : Predicate<"!PPCSubTarget->isPPC64()">;
+def In64BitMode : Predicate<"PPCSubTarget->isPPC64()">;
+def IsBookE : Predicate<"PPCSubTarget->isBookE()">;
+def IsNotBookE : Predicate<"!PPCSubTarget->isBookE()">;
+
+//===----------------------------------------------------------------------===//
+// PowerPC Multiclass Definitions.
+
+multiclass XForm_6r<bits<6> opcode, bits<10> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : XForm_6<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR0] in
+ def o : XForm_6<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass XForm_6rc<bits<6> opcode, bits<10> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ let Defs = [CARRY] in
+ def NAME : XForm_6<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CARRY, CR0] in
+ def o : XForm_6<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass XForm_10rc<bits<6> opcode, bits<10> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ let Defs = [CARRY] in
+ def NAME : XForm_10<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CARRY, CR0] in
+ def o : XForm_10<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass XForm_11r<bits<6> opcode, bits<10> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : XForm_11<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR0] in
+ def o : XForm_11<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass XOForm_1r<bits<6> opcode, bits<9> xo, bit oe, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : XOForm_1<opcode, xo, oe, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR0] in
+ def o : XOForm_1<opcode, xo, oe, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass XOForm_1rc<bits<6> opcode, bits<9> xo, bit oe, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ let Defs = [CARRY] in
+ def NAME : XOForm_1<opcode, xo, oe, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CARRY, CR0] in
+ def o : XOForm_1<opcode, xo, oe, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass XOForm_3r<bits<6> opcode, bits<9> xo, bit oe, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : XOForm_3<opcode, xo, oe, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR0] in
+ def o : XOForm_3<opcode, xo, oe, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass XOForm_3rc<bits<6> opcode, bits<9> xo, bit oe, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ let Defs = [CARRY] in
+ def NAME : XOForm_3<opcode, xo, oe, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CARRY, CR0] in
+ def o : XOForm_3<opcode, xo, oe, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass MForm_2r<bits<6> opcode, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : MForm_2<opcode, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR0] in
+ def o : MForm_2<opcode, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass MDForm_1r<bits<6> opcode, bits<3> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : MDForm_1<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR0] in
+ def o : MDForm_1<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass MDSForm_1r<bits<6> opcode, bits<4> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : MDSForm_1<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR0] in
+ def o : MDSForm_1<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass XSForm_1rc<bits<6> opcode, bits<9> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ let Defs = [CARRY] in
+ def NAME : XSForm_1<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CARRY, CR0] in
+ def o : XSForm_1<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass XForm_26r<bits<6> opcode, bits<10> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : XForm_26<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR1] in
+ def o : XForm_26<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass XForm_28r<bits<6> opcode, bits<10> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : XForm_28<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR1] in
+ def o : XForm_28<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass AForm_1r<bits<6> opcode, bits<5> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : AForm_1<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR1] in
+ def o : AForm_1<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass AForm_2r<bits<6> opcode, bits<5> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : AForm_2<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR1] in
+ def o : AForm_2<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+multiclass AForm_3r<bits<6> opcode, bits<5> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : AForm_3<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>, RecFormRel;
+ let Defs = [CR1] in
+ def o : AForm_3<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT, RecFormRel;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// PowerPC Instruction Definitions.
+
+// Pseudo-instructions:
+
+let hasCtrlDep = 1 in {
+let Defs = [R1], Uses = [R1] in {
+def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm:$amt), "#ADJCALLSTACKDOWN $amt",
+ [(callseq_start timm:$amt)]>;
+def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm:$amt1, u16imm:$amt2), "#ADJCALLSTACKUP $amt1 $amt2",
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+}
+
+def UPDATE_VRSAVE : Pseudo<(outs gprc:$rD), (ins gprc:$rS),
+ "UPDATE_VRSAVE $rD, $rS", []>;
+}
+
+let Defs = [R1], Uses = [R1] in
+def DYNALLOC : Pseudo<(outs gprc:$result), (ins gprc:$negsize, memri:$fpsi), "#DYNALLOC",
+ [(set i32:$result,
+ (PPCdynalloc i32:$negsize, iaddr:$fpsi))]>;
+
+// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
+// instruction selection into a branch sequence.
+let usesCustomInserter = 1, // Expanded after instruction selection.
+ PPC970_Single = 1 in {
+ // Note that SELECT_CC_I4 and SELECT_CC_I8 use the no-r0 register classes
+ // because either operand might become the first operand in an isel, and
+ // that operand cannot be r0.
+ def SELECT_CC_I4 : Pseudo<(outs gprc:$dst), (ins crrc:$cond,
+ gprc_nor0:$T, gprc_nor0:$F,
+ i32imm:$BROPC), "#SELECT_CC_I4",
+ []>;
+ def SELECT_CC_I8 : Pseudo<(outs g8rc:$dst), (ins crrc:$cond,
+ g8rc_nox0:$T, g8rc_nox0:$F,
+ i32imm:$BROPC), "#SELECT_CC_I8",
+ []>;
+ def SELECT_CC_F4 : Pseudo<(outs f4rc:$dst), (ins crrc:$cond, f4rc:$T, f4rc:$F,
+ i32imm:$BROPC), "#SELECT_CC_F4",
+ []>;
+ def SELECT_CC_F8 : Pseudo<(outs f8rc:$dst), (ins crrc:$cond, f8rc:$T, f8rc:$F,
+ i32imm:$BROPC), "#SELECT_CC_F8",
+ []>;
+ def SELECT_CC_VRRC: Pseudo<(outs vrrc:$dst), (ins crrc:$cond, vrrc:$T, vrrc:$F,
+ i32imm:$BROPC), "#SELECT_CC_VRRC",
+ []>;
+
+ // SELECT_* pseudo instructions, like SELECT_CC_* but taking condition
+ // register bit directly.
+ def SELECT_I4 : Pseudo<(outs gprc:$dst), (ins crbitrc:$cond,
+ gprc_nor0:$T, gprc_nor0:$F), "#SELECT_I4",
+ [(set i32:$dst, (select i1:$cond, i32:$T, i32:$F))]>;
+ def SELECT_I8 : Pseudo<(outs g8rc:$dst), (ins crbitrc:$cond,
+ g8rc_nox0:$T, g8rc_nox0:$F), "#SELECT_I8",
+ [(set i64:$dst, (select i1:$cond, i64:$T, i64:$F))]>;
+ def SELECT_F4 : Pseudo<(outs f4rc:$dst), (ins crbitrc:$cond,
+ f4rc:$T, f4rc:$F), "#SELECT_F4",
+ [(set f32:$dst, (select i1:$cond, f32:$T, f32:$F))]>;
+ def SELECT_F8 : Pseudo<(outs f8rc:$dst), (ins crbitrc:$cond,
+ f8rc:$T, f8rc:$F), "#SELECT_F8",
+ [(set f64:$dst, (select i1:$cond, f64:$T, f64:$F))]>;
+ def SELECT_VRRC: Pseudo<(outs vrrc:$dst), (ins crbitrc:$cond,
+ vrrc:$T, vrrc:$F), "#SELECT_VRRC",
+ [(set v4i32:$dst,
+ (select i1:$cond, v4i32:$T, v4i32:$F))]>;
+}
+
+// SPILL_CR - Indicate that we're dumping the CR register, so we'll need to
+// scavenge a register for it.
+let mayStore = 1 in {
+def SPILL_CR : Pseudo<(outs), (ins crrc:$cond, memri:$F),
+ "#SPILL_CR", []>;
+def SPILL_CRBIT : Pseudo<(outs), (ins crbitrc:$cond, memri:$F),
+ "#SPILL_CRBIT", []>;
+}
+
+// RESTORE_CR - Indicate that we're restoring the CR register (previously
+// spilled), so we'll need to scavenge a register for it.
+let mayLoad = 1 in {
+def RESTORE_CR : Pseudo<(outs crrc:$cond), (ins memri:$F),
+ "#RESTORE_CR", []>;
+def RESTORE_CRBIT : Pseudo<(outs crbitrc:$cond), (ins memri:$F),
+ "#RESTORE_CRBIT", []>;
+}
+
+let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7 in {
+ let isReturn = 1, Uses = [LR, RM] in
+ def BLR : XLForm_2_ext<19, 16, 20, 0, 0, (outs), (ins), "blr", IIC_BrB,
+ [(retflag)]>;
+ let isBranch = 1, isIndirectBranch = 1, Uses = [CTR] in {
+ def BCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", IIC_BrB,
+ []>;
+
+ let isCodeGenOnly = 1 in {
+ def BCCCTR : XLForm_2_br<19, 528, 0, (outs), (ins pred:$cond),
+ "b${cond:cc}ctr${cond:pm} ${cond:reg}", IIC_BrB,
+ []>;
+
+ def BCCTR : XLForm_2_br2<19, 528, 12, 0, (outs), (ins crbitrc:$bi),
+ "bcctr 12, $bi, 0", IIC_BrB, []>;
+ def BCCTRn : XLForm_2_br2<19, 528, 4, 0, (outs), (ins crbitrc:$bi),
+ "bcctr 4, $bi, 0", IIC_BrB, []>;
+ }
+ }
+}
+
+let Defs = [LR] in
+ def MovePCtoLR : Pseudo<(outs), (ins), "#MovePCtoLR", []>,
+ PPC970_Unit_BRU;
+
+let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7 in {
+ let isBarrier = 1 in {
+ def B : IForm<18, 0, 0, (outs), (ins directbrtarget:$dst),
+ "b $dst", IIC_BrB,
+ [(br bb:$dst)]>;
+ def BA : IForm<18, 1, 0, (outs), (ins absdirectbrtarget:$dst),
+ "ba $dst", IIC_BrB, []>;
+ }
+
+ // BCC represents an arbitrary conditional branch on a predicate.
+ // FIXME: should be able to write a pattern for PPCcondbranch, but can't use
+ // a two-value operand where a dag node expects two operands. :(
+ let isCodeGenOnly = 1 in {
+ def BCC : BForm<16, 0, 0, (outs), (ins pred:$cond, condbrtarget:$dst),
+ "b${cond:cc}${cond:pm} ${cond:reg}, $dst"
+ /*[(PPCcondbranch crrc:$crS, imm:$opc, bb:$dst)]*/>;
+ def BCCA : BForm<16, 1, 0, (outs), (ins pred:$cond, abscondbrtarget:$dst),
+ "b${cond:cc}a${cond:pm} ${cond:reg}, $dst">;
+
+ let isReturn = 1, Uses = [LR, RM] in
+ def BCCLR : XLForm_2_br<19, 16, 0, (outs), (ins pred:$cond),
+ "b${cond:cc}lr${cond:pm} ${cond:reg}", IIC_BrB, []>;
+ }
+
+ let isCodeGenOnly = 1 in {
+ let Pattern = [(brcond i1:$bi, bb:$dst)] in
+ def BC : BForm_4<16, 12, 0, 0, (outs), (ins crbitrc:$bi, condbrtarget:$dst),
+ "bc 12, $bi, $dst">;
+
+ let Pattern = [(brcond (not i1:$bi), bb:$dst)] in
+ def BCn : BForm_4<16, 4, 0, 0, (outs), (ins crbitrc:$bi, condbrtarget:$dst),
+ "bc 4, $bi, $dst">;
+
+ let isReturn = 1, Uses = [LR, RM] in
+ def BCLR : XLForm_2_br2<19, 16, 12, 0, (outs), (ins crbitrc:$bi),
+ "bclr 12, $bi, 0", IIC_BrB, []>;
+ def BCLRn : XLForm_2_br2<19, 16, 4, 0, (outs), (ins crbitrc:$bi),
+ "bclr 4, $bi, 0", IIC_BrB, []>;
+ }
+
+ let isReturn = 1, Defs = [CTR], Uses = [CTR, LR, RM] in {
+ def BDZLR : XLForm_2_ext<19, 16, 18, 0, 0, (outs), (ins),
+ "bdzlr", IIC_BrB, []>;
+ def BDNZLR : XLForm_2_ext<19, 16, 16, 0, 0, (outs), (ins),
+ "bdnzlr", IIC_BrB, []>;
+ def BDZLRp : XLForm_2_ext<19, 16, 27, 0, 0, (outs), (ins),
+ "bdzlr+", IIC_BrB, []>;
+ def BDNZLRp: XLForm_2_ext<19, 16, 25, 0, 0, (outs), (ins),
+ "bdnzlr+", IIC_BrB, []>;
+ def BDZLRm : XLForm_2_ext<19, 16, 26, 0, 0, (outs), (ins),
+ "bdzlr-", IIC_BrB, []>;
+ def BDNZLRm: XLForm_2_ext<19, 16, 24, 0, 0, (outs), (ins),
+ "bdnzlr-", IIC_BrB, []>;
+ }
+
+ let Defs = [CTR], Uses = [CTR] in {
+ def BDZ : BForm_1<16, 18, 0, 0, (outs), (ins condbrtarget:$dst),
+ "bdz $dst">;
+ def BDNZ : BForm_1<16, 16, 0, 0, (outs), (ins condbrtarget:$dst),
+ "bdnz $dst">;
+ def BDZA : BForm_1<16, 18, 1, 0, (outs), (ins abscondbrtarget:$dst),
+ "bdza $dst">;
+ def BDNZA : BForm_1<16, 16, 1, 0, (outs), (ins abscondbrtarget:$dst),
+ "bdnza $dst">;
+ def BDZp : BForm_1<16, 27, 0, 0, (outs), (ins condbrtarget:$dst),
+ "bdz+ $dst">;
+ def BDNZp: BForm_1<16, 25, 0, 0, (outs), (ins condbrtarget:$dst),
+ "bdnz+ $dst">;
+ def BDZAp : BForm_1<16, 27, 1, 0, (outs), (ins abscondbrtarget:$dst),
+ "bdza+ $dst">;
+ def BDNZAp: BForm_1<16, 25, 1, 0, (outs), (ins abscondbrtarget:$dst),
+ "bdnza+ $dst">;
+ def BDZm : BForm_1<16, 26, 0, 0, (outs), (ins condbrtarget:$dst),
+ "bdz- $dst">;
+ def BDNZm: BForm_1<16, 24, 0, 0, (outs), (ins condbrtarget:$dst),
+ "bdnz- $dst">;
+ def BDZAm : BForm_1<16, 26, 1, 0, (outs), (ins abscondbrtarget:$dst),
+ "bdza- $dst">;
+ def BDNZAm: BForm_1<16, 24, 1, 0, (outs), (ins abscondbrtarget:$dst),
+ "bdnza- $dst">;
+ }
+}
+
+// The unconditional BCL used by the SjLj setjmp code.
+let isCall = 1, hasCtrlDep = 1, isCodeGenOnly = 1, PPC970_Unit = 7 in {
+ let Defs = [LR], Uses = [RM] in {
+ def BCLalways : BForm_2<16, 20, 31, 0, 1, (outs), (ins condbrtarget:$dst),
+ "bcl 20, 31, $dst">;
+ }
+}
+
+let isCall = 1, PPC970_Unit = 7, Defs = [LR] in {
+ // Convenient aliases for call instructions
+ let Uses = [RM] in {
+ def BL : IForm<18, 0, 1, (outs), (ins calltarget:$func),
+ "bl $func", IIC_BrB, []>; // See Pat patterns below.
+ def BLA : IForm<18, 1, 1, (outs), (ins abscalltarget:$func),
+ "bla $func", IIC_BrB, [(PPCcall (i32 imm:$func))]>;
+
+ let isCodeGenOnly = 1 in {
+ def BL_TLS : IForm<18, 0, 1, (outs), (ins tlscall32:$func),
+ "bl $func", IIC_BrB, []>;
+ def BCCL : BForm<16, 0, 1, (outs), (ins pred:$cond, condbrtarget:$dst),
+ "b${cond:cc}l${cond:pm} ${cond:reg}, $dst">;
+ def BCCLA : BForm<16, 1, 1, (outs), (ins pred:$cond, abscondbrtarget:$dst),
+ "b${cond:cc}la${cond:pm} ${cond:reg}, $dst">;
+
+ def BCL : BForm_4<16, 12, 0, 1, (outs),
+ (ins crbitrc:$bi, condbrtarget:$dst),
+ "bcl 12, $bi, $dst">;
+ def BCLn : BForm_4<16, 4, 0, 1, (outs),
+ (ins crbitrc:$bi, condbrtarget:$dst),
+ "bcl 4, $bi, $dst">;
+ }
+ }
+ let Uses = [CTR, RM] in {
+ def BCTRL : XLForm_2_ext<19, 528, 20, 0, 1, (outs), (ins),
+ "bctrl", IIC_BrB, [(PPCbctrl)]>,
+ Requires<[In32BitMode]>;
+
+ let isCodeGenOnly = 1 in {
+ def BCCCTRL : XLForm_2_br<19, 528, 1, (outs), (ins pred:$cond),
+ "b${cond:cc}ctrl${cond:pm} ${cond:reg}", IIC_BrB,
+ []>;
+
+ def BCCTRL : XLForm_2_br2<19, 528, 12, 1, (outs), (ins crbitrc:$bi),
+ "bcctrl 12, $bi, 0", IIC_BrB, []>;
+ def BCCTRLn : XLForm_2_br2<19, 528, 4, 1, (outs), (ins crbitrc:$bi),
+ "bcctrl 4, $bi, 0", IIC_BrB, []>;
+ }
+ }
+ let Uses = [LR, RM] in {
+ def BLRL : XLForm_2_ext<19, 16, 20, 0, 1, (outs), (ins),
+ "blrl", IIC_BrB, []>;
+
+ let isCodeGenOnly = 1 in {
+ def BCCLRL : XLForm_2_br<19, 16, 1, (outs), (ins pred:$cond),
+ "b${cond:cc}lrl${cond:pm} ${cond:reg}", IIC_BrB,
+ []>;
+
+ def BCLRL : XLForm_2_br2<19, 16, 12, 1, (outs), (ins crbitrc:$bi),
+ "bclrl 12, $bi, 0", IIC_BrB, []>;
+ def BCLRLn : XLForm_2_br2<19, 16, 4, 1, (outs), (ins crbitrc:$bi),
+ "bclrl 4, $bi, 0", IIC_BrB, []>;
+ }
+ }
+ let Defs = [CTR], Uses = [CTR, RM] in {
+ def BDZL : BForm_1<16, 18, 0, 1, (outs), (ins condbrtarget:$dst),
+ "bdzl $dst">;
+ def BDNZL : BForm_1<16, 16, 0, 1, (outs), (ins condbrtarget:$dst),
+ "bdnzl $dst">;
+ def BDZLA : BForm_1<16, 18, 1, 1, (outs), (ins abscondbrtarget:$dst),
+ "bdzla $dst">;
+ def BDNZLA : BForm_1<16, 16, 1, 1, (outs), (ins abscondbrtarget:$dst),
+ "bdnzla $dst">;
+ def BDZLp : BForm_1<16, 27, 0, 1, (outs), (ins condbrtarget:$dst),
+ "bdzl+ $dst">;
+ def BDNZLp: BForm_1<16, 25, 0, 1, (outs), (ins condbrtarget:$dst),
+ "bdnzl+ $dst">;
+ def BDZLAp : BForm_1<16, 27, 1, 1, (outs), (ins abscondbrtarget:$dst),
+ "bdzla+ $dst">;
+ def BDNZLAp: BForm_1<16, 25, 1, 1, (outs), (ins abscondbrtarget:$dst),
+ "bdnzla+ $dst">;
+ def BDZLm : BForm_1<16, 26, 0, 1, (outs), (ins condbrtarget:$dst),
+ "bdzl- $dst">;
+ def BDNZLm: BForm_1<16, 24, 0, 1, (outs), (ins condbrtarget:$dst),
+ "bdnzl- $dst">;
+ def BDZLAm : BForm_1<16, 26, 1, 1, (outs), (ins abscondbrtarget:$dst),
+ "bdzla- $dst">;
+ def BDNZLAm: BForm_1<16, 24, 1, 1, (outs), (ins abscondbrtarget:$dst),
+ "bdnzla- $dst">;
+ }
+ let Defs = [CTR], Uses = [CTR, LR, RM] in {
+ def BDZLRL : XLForm_2_ext<19, 16, 18, 0, 1, (outs), (ins),
+ "bdzlrl", IIC_BrB, []>;
+ def BDNZLRL : XLForm_2_ext<19, 16, 16, 0, 1, (outs), (ins),
+ "bdnzlrl", IIC_BrB, []>;
+ def BDZLRLp : XLForm_2_ext<19, 16, 27, 0, 1, (outs), (ins),
+ "bdzlrl+", IIC_BrB, []>;
+ def BDNZLRLp: XLForm_2_ext<19, 16, 25, 0, 1, (outs), (ins),
+ "bdnzlrl+", IIC_BrB, []>;
+ def BDZLRLm : XLForm_2_ext<19, 16, 26, 0, 1, (outs), (ins),
+ "bdzlrl-", IIC_BrB, []>;
+ def BDNZLRLm: XLForm_2_ext<19, 16, 24, 0, 1, (outs), (ins),
+ "bdnzlrl-", IIC_BrB, []>;
+ }
+}
+
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
+def TCRETURNdi :Pseudo< (outs),
+ (ins calltarget:$dst, i32imm:$offset),
+ "#TC_RETURNd $dst $offset",
+ []>;
+
+
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
+def TCRETURNai :Pseudo<(outs), (ins abscalltarget:$func, i32imm:$offset),
+ "#TC_RETURNa $func $offset",
+ [(PPCtc_return (i32 imm:$func), imm:$offset)]>;
+
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
+def TCRETURNri : Pseudo<(outs), (ins CTRRC:$dst, i32imm:$offset),
+ "#TC_RETURNr $dst $offset",
+ []>;
+
+
+let isCodeGenOnly = 1 in {
+
+let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7, isBranch = 1,
+ isIndirectBranch = 1, isCall = 1, isReturn = 1, Uses = [CTR, RM] in
+def TAILBCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", IIC_BrB,
+ []>, Requires<[In32BitMode]>;
+
+let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7,
+ isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in
+def TAILB : IForm<18, 0, 0, (outs), (ins calltarget:$dst),
+ "b $dst", IIC_BrB,
+ []>;
+
+let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7,
+ isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in
+def TAILBA : IForm<18, 0, 0, (outs), (ins abscalltarget:$dst),
+ "ba $dst", IIC_BrB,
+ []>;
+
+}
+
+let hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
+ let Defs = [CTR] in
+ def EH_SjLj_SetJmp32 : Pseudo<(outs gprc:$dst), (ins memr:$buf),
+ "#EH_SJLJ_SETJMP32",
+ [(set i32:$dst, (PPCeh_sjlj_setjmp addr:$buf))]>,
+ Requires<[In32BitMode]>;
+ let isTerminator = 1 in
+ def EH_SjLj_LongJmp32 : Pseudo<(outs), (ins memr:$buf),
+ "#EH_SJLJ_LONGJMP32",
+ [(PPCeh_sjlj_longjmp addr:$buf)]>,
+ Requires<[In32BitMode]>;
+}
+
+let isBranch = 1, isTerminator = 1 in {
+ def EH_SjLj_Setup : Pseudo<(outs), (ins directbrtarget:$dst),
+ "#EH_SjLj_Setup\t$dst", []>;
+}
+
+// System call.
+let PPC970_Unit = 7 in {
+ def SC : SCForm<17, 1, (outs), (ins i32imm:$lev),
+ "sc $lev", IIC_BrB, [(PPCsc (i32 imm:$lev))]>;
+}
+
+// DCB* instructions.
+def DCBA : DCB_Form<758, 0, (outs), (ins memrr:$dst), "dcba $dst",
+ IIC_LdStDCBF, [(int_ppc_dcba xoaddr:$dst)]>,
+ PPC970_DGroup_Single;
+def DCBF : DCB_Form<86, 0, (outs), (ins memrr:$dst), "dcbf $dst",
+ IIC_LdStDCBF, [(int_ppc_dcbf xoaddr:$dst)]>,
+ PPC970_DGroup_Single;
+def DCBI : DCB_Form<470, 0, (outs), (ins memrr:$dst), "dcbi $dst",
+ IIC_LdStDCBF, [(int_ppc_dcbi xoaddr:$dst)]>,
+ PPC970_DGroup_Single;
+def DCBST : DCB_Form<54, 0, (outs), (ins memrr:$dst), "dcbst $dst",
+ IIC_LdStDCBF, [(int_ppc_dcbst xoaddr:$dst)]>,
+ PPC970_DGroup_Single;
+def DCBT : DCB_Form<278, 0, (outs), (ins memrr:$dst), "dcbt $dst",
+ IIC_LdStDCBF, [(int_ppc_dcbt xoaddr:$dst)]>,
+ PPC970_DGroup_Single;
+def DCBTST : DCB_Form<246, 0, (outs), (ins memrr:$dst), "dcbtst $dst",
+ IIC_LdStDCBF, [(int_ppc_dcbtst xoaddr:$dst)]>,
+ PPC970_DGroup_Single;
+def DCBZ : DCB_Form<1014, 0, (outs), (ins memrr:$dst), "dcbz $dst",
+ IIC_LdStDCBF, [(int_ppc_dcbz xoaddr:$dst)]>,
+ PPC970_DGroup_Single;
+def DCBZL : DCB_Form<1014, 1, (outs), (ins memrr:$dst), "dcbzl $dst",
+ IIC_LdStDCBF, [(int_ppc_dcbzl xoaddr:$dst)]>,
+ PPC970_DGroup_Single;
+
+def : Pat<(prefetch xoaddr:$dst, (i32 0), imm, (i32 1)),
+ (DCBT xoaddr:$dst)>;
+
+// Atomic operations
+let usesCustomInserter = 1 in {
+ let Defs = [CR0] in {
+ def ATOMIC_LOAD_ADD_I8 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_ADD_I8",
+ [(set i32:$dst, (atomic_load_add_8 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_SUB_I8 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_SUB_I8",
+ [(set i32:$dst, (atomic_load_sub_8 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_AND_I8 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_AND_I8",
+ [(set i32:$dst, (atomic_load_and_8 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_OR_I8 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_OR_I8",
+ [(set i32:$dst, (atomic_load_or_8 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_XOR_I8 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "ATOMIC_LOAD_XOR_I8",
+ [(set i32:$dst, (atomic_load_xor_8 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_NAND_I8 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_NAND_I8",
+ [(set i32:$dst, (atomic_load_nand_8 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_ADD_I16 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_ADD_I16",
+ [(set i32:$dst, (atomic_load_add_16 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_SUB_I16 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_SUB_I16",
+ [(set i32:$dst, (atomic_load_sub_16 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_AND_I16 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_AND_I16",
+ [(set i32:$dst, (atomic_load_and_16 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_OR_I16 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_OR_I16",
+ [(set i32:$dst, (atomic_load_or_16 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_XOR_I16 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_XOR_I16",
+ [(set i32:$dst, (atomic_load_xor_16 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_NAND_I16 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_NAND_I16",
+ [(set i32:$dst, (atomic_load_nand_16 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_ADD_I32 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_ADD_I32",
+ [(set i32:$dst, (atomic_load_add_32 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_SUB_I32 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_SUB_I32",
+ [(set i32:$dst, (atomic_load_sub_32 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_AND_I32 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_AND_I32",
+ [(set i32:$dst, (atomic_load_and_32 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_OR_I32 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_OR_I32",
+ [(set i32:$dst, (atomic_load_or_32 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_XOR_I32 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_XOR_I32",
+ [(set i32:$dst, (atomic_load_xor_32 xoaddr:$ptr, i32:$incr))]>;
+ def ATOMIC_LOAD_NAND_I32 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_NAND_I32",
+ [(set i32:$dst, (atomic_load_nand_32 xoaddr:$ptr, i32:$incr))]>;
+
+ def ATOMIC_CMP_SWAP_I8 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$old, gprc:$new), "#ATOMIC_CMP_SWAP_I8",
+ [(set i32:$dst, (atomic_cmp_swap_8 xoaddr:$ptr, i32:$old, i32:$new))]>;
+ def ATOMIC_CMP_SWAP_I16 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$old, gprc:$new), "#ATOMIC_CMP_SWAP_I16 $dst $ptr $old $new",
+ [(set i32:$dst, (atomic_cmp_swap_16 xoaddr:$ptr, i32:$old, i32:$new))]>;
+ def ATOMIC_CMP_SWAP_I32 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$old, gprc:$new), "#ATOMIC_CMP_SWAP_I32 $dst $ptr $old $new",
+ [(set i32:$dst, (atomic_cmp_swap_32 xoaddr:$ptr, i32:$old, i32:$new))]>;
+
+ def ATOMIC_SWAP_I8 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$new), "#ATOMIC_SWAP_i8",
+ [(set i32:$dst, (atomic_swap_8 xoaddr:$ptr, i32:$new))]>;
+ def ATOMIC_SWAP_I16 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$new), "#ATOMIC_SWAP_I16",
+ [(set i32:$dst, (atomic_swap_16 xoaddr:$ptr, i32:$new))]>;
+ def ATOMIC_SWAP_I32 : Pseudo<
+ (outs gprc:$dst), (ins memrr:$ptr, gprc:$new), "#ATOMIC_SWAP_I32",
+ [(set i32:$dst, (atomic_swap_32 xoaddr:$ptr, i32:$new))]>;
+ }
+}
+
+// Instructions to support atomic operations
+def LWARX : XForm_1<31, 20, (outs gprc:$rD), (ins memrr:$src),
+ "lwarx $rD, $src", IIC_LdStLWARX,
+ [(set i32:$rD, (PPClarx xoaddr:$src))]>;
+
+let Defs = [CR0] in
+def STWCX : XForm_1<31, 150, (outs), (ins gprc:$rS, memrr:$dst),
+ "stwcx. $rS, $dst", IIC_LdStSTWCX,
+ [(PPCstcx i32:$rS, xoaddr:$dst)]>,
+ isDOT;
+
+let isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
+def TRAP : XForm_24<31, 4, (outs), (ins), "trap", IIC_LdStLoad, [(trap)]>;
+
+def TWI : DForm_base<3, (outs), (ins u5imm:$to, gprc:$rA, s16imm:$imm),
+ "twi $to, $rA, $imm", IIC_IntTrapW, []>;
+def TW : XForm_1<31, 4, (outs), (ins u5imm:$to, gprc:$rA, gprc:$rB),
+ "tw $to, $rA, $rB", IIC_IntTrapW, []>;
+def TDI : DForm_base<2, (outs), (ins u5imm:$to, g8rc:$rA, s16imm:$imm),
+ "tdi $to, $rA, $imm", IIC_IntTrapD, []>;
+def TD : XForm_1<31, 68, (outs), (ins u5imm:$to, g8rc:$rA, g8rc:$rB),
+ "td $to, $rA, $rB", IIC_IntTrapD, []>;
+
+//===----------------------------------------------------------------------===//
+// PPC32 Load Instructions.
+//
+
+// Unindexed (r+i) Loads.
+let canFoldAsLoad = 1, PPC970_Unit = 2 in {
+def LBZ : DForm_1<34, (outs gprc:$rD), (ins memri:$src),
+ "lbz $rD, $src", IIC_LdStLoad,
+ [(set i32:$rD, (zextloadi8 iaddr:$src))]>;
+def LHA : DForm_1<42, (outs gprc:$rD), (ins memri:$src),
+ "lha $rD, $src", IIC_LdStLHA,
+ [(set i32:$rD, (sextloadi16 iaddr:$src))]>,
+ PPC970_DGroup_Cracked;
+def LHZ : DForm_1<40, (outs gprc:$rD), (ins memri:$src),
+ "lhz $rD, $src", IIC_LdStLoad,
+ [(set i32:$rD, (zextloadi16 iaddr:$src))]>;
+def LWZ : DForm_1<32, (outs gprc:$rD), (ins memri:$src),
+ "lwz $rD, $src", IIC_LdStLoad,
+ [(set i32:$rD, (load iaddr:$src))]>;
+
+def LFS : DForm_1<48, (outs f4rc:$rD), (ins memri:$src),
+ "lfs $rD, $src", IIC_LdStLFD,
+ [(set f32:$rD, (load iaddr:$src))]>;
+def LFD : DForm_1<50, (outs f8rc:$rD), (ins memri:$src),
+ "lfd $rD, $src", IIC_LdStLFD,
+ [(set f64:$rD, (load iaddr:$src))]>;
+
+
+// Unindexed (r+i) Loads with Update (preinc).
+let mayLoad = 1, neverHasSideEffects = 1 in {
+def LBZU : DForm_1<35, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
+ "lbzu $rD, $addr", IIC_LdStLoadUpd,
+ []>, RegConstraint<"$addr.reg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+def LHAU : DForm_1<43, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
+ "lhau $rD, $addr", IIC_LdStLHAU,
+ []>, RegConstraint<"$addr.reg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+def LHZU : DForm_1<41, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
+ "lhzu $rD, $addr", IIC_LdStLoadUpd,
+ []>, RegConstraint<"$addr.reg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+def LWZU : DForm_1<33, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
+ "lwzu $rD, $addr", IIC_LdStLoadUpd,
+ []>, RegConstraint<"$addr.reg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+def LFSU : DForm_1<49, (outs f4rc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
+ "lfsu $rD, $addr", IIC_LdStLFDU,
+ []>, RegConstraint<"$addr.reg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+def LFDU : DForm_1<51, (outs f8rc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
+ "lfdu $rD, $addr", IIC_LdStLFDU,
+ []>, RegConstraint<"$addr.reg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+
+// Indexed (r+r) Loads with Update (preinc).
+def LBZUX : XForm_1<31, 119, (outs gprc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "lbzux $rD, $addr", IIC_LdStLoadUpdX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+def LHAUX : XForm_1<31, 375, (outs gprc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "lhaux $rD, $addr", IIC_LdStLHAUX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+def LHZUX : XForm_1<31, 311, (outs gprc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "lhzux $rD, $addr", IIC_LdStLoadUpdX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+def LWZUX : XForm_1<31, 55, (outs gprc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "lwzux $rD, $addr", IIC_LdStLoadUpdX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+def LFSUX : XForm_1<31, 567, (outs f4rc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "lfsux $rD, $addr", IIC_LdStLFDUX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">;
+
+def LFDUX : XForm_1<31, 631, (outs f8rc:$rD, ptr_rc_nor0:$ea_result),
+ (ins memrr:$addr),
+ "lfdux $rD, $addr", IIC_LdStLFDUX,
+ []>, RegConstraint<"$addr.ptrreg = $ea_result">,
+ NoEncode<"$ea_result">;
+}
+}
+
+// Indexed (r+r) Loads.
+//
+let canFoldAsLoad = 1, PPC970_Unit = 2 in {
+def LBZX : XForm_1<31, 87, (outs gprc:$rD), (ins memrr:$src),
+ "lbzx $rD, $src", IIC_LdStLoad,
+ [(set i32:$rD, (zextloadi8 xaddr:$src))]>;
+def LHAX : XForm_1<31, 343, (outs gprc:$rD), (ins memrr:$src),
+ "lhax $rD, $src", IIC_LdStLHA,
+ [(set i32:$rD, (sextloadi16 xaddr:$src))]>,
+ PPC970_DGroup_Cracked;
+def LHZX : XForm_1<31, 279, (outs gprc:$rD), (ins memrr:$src),
+ "lhzx $rD, $src", IIC_LdStLoad,
+ [(set i32:$rD, (zextloadi16 xaddr:$src))]>;
+def LWZX : XForm_1<31, 23, (outs gprc:$rD), (ins memrr:$src),
+ "lwzx $rD, $src", IIC_LdStLoad,
+ [(set i32:$rD, (load xaddr:$src))]>;
+
+
+def LHBRX : XForm_1<31, 790, (outs gprc:$rD), (ins memrr:$src),
+ "lhbrx $rD, $src", IIC_LdStLoad,
+ [(set i32:$rD, (PPClbrx xoaddr:$src, i16))]>;
+def LWBRX : XForm_1<31, 534, (outs gprc:$rD), (ins memrr:$src),
+ "lwbrx $rD, $src", IIC_LdStLoad,
+ [(set i32:$rD, (PPClbrx xoaddr:$src, i32))]>;
+
+def LFSX : XForm_25<31, 535, (outs f4rc:$frD), (ins memrr:$src),
+ "lfsx $frD, $src", IIC_LdStLFD,
+ [(set f32:$frD, (load xaddr:$src))]>;
+def LFDX : XForm_25<31, 599, (outs f8rc:$frD), (ins memrr:$src),
+ "lfdx $frD, $src", IIC_LdStLFD,
+ [(set f64:$frD, (load xaddr:$src))]>;
+
+def LFIWAX : XForm_25<31, 855, (outs f8rc:$frD), (ins memrr:$src),
+ "lfiwax $frD, $src", IIC_LdStLFD,
+ [(set f64:$frD, (PPClfiwax xoaddr:$src))]>;
+def LFIWZX : XForm_25<31, 887, (outs f8rc:$frD), (ins memrr:$src),
+ "lfiwzx $frD, $src", IIC_LdStLFD,
+ [(set f64:$frD, (PPClfiwzx xoaddr:$src))]>;
+}
+
+// Load Multiple
+def LMW : DForm_1<46, (outs gprc:$rD), (ins memri:$src),
+ "lmw $rD, $src", IIC_LdStLMW, []>;
+
+//===----------------------------------------------------------------------===//
+// PPC32 Store Instructions.
+//
+
+// Unindexed (r+i) Stores.
+let PPC970_Unit = 2 in {
+def STB : DForm_1<38, (outs), (ins gprc:$rS, memri:$src),
+ "stb $rS, $src", IIC_LdStStore,
+ [(truncstorei8 i32:$rS, iaddr:$src)]>;
+def STH : DForm_1<44, (outs), (ins gprc:$rS, memri:$src),
+ "sth $rS, $src", IIC_LdStStore,
+ [(truncstorei16 i32:$rS, iaddr:$src)]>;
+def STW : DForm_1<36, (outs), (ins gprc:$rS, memri:$src),
+ "stw $rS, $src", IIC_LdStStore,
+ [(store i32:$rS, iaddr:$src)]>;
+def STFS : DForm_1<52, (outs), (ins f4rc:$rS, memri:$dst),
+ "stfs $rS, $dst", IIC_LdStSTFD,
+ [(store f32:$rS, iaddr:$dst)]>;
+def STFD : DForm_1<54, (outs), (ins f8rc:$rS, memri:$dst),
+ "stfd $rS, $dst", IIC_LdStSTFD,
+ [(store f64:$rS, iaddr:$dst)]>;
+}
+
+// Unindexed (r+i) Stores with Update (preinc).
+let PPC970_Unit = 2, mayStore = 1 in {
+def STBU : DForm_1<39, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memri:$dst),
+ "stbu $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
+def STHU : DForm_1<45, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memri:$dst),
+ "sthu $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
+def STWU : DForm_1<37, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memri:$dst),
+ "stwu $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
+def STFSU : DForm_1<53, (outs ptr_rc_nor0:$ea_res), (ins f4rc:$rS, memri:$dst),
+ "stfsu $rS, $dst", IIC_LdStSTFDU, []>,
+ RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
+def STFDU : DForm_1<55, (outs ptr_rc_nor0:$ea_res), (ins f8rc:$rS, memri:$dst),
+ "stfdu $rS, $dst", IIC_LdStSTFDU, []>,
+ RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
+}
+
+// Patterns to match the pre-inc stores. We can't put the patterns on
+// the instruction definitions directly as ISel wants the address base
+// and offset to be separate operands, not a single complex operand.
+def : Pat<(pre_truncsti8 i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
+ (STBU $rS, iaddroff:$ptroff, $ptrreg)>;
+def : Pat<(pre_truncsti16 i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
+ (STHU $rS, iaddroff:$ptroff, $ptrreg)>;
+def : Pat<(pre_store i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
+ (STWU $rS, iaddroff:$ptroff, $ptrreg)>;
+def : Pat<(pre_store f32:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
+ (STFSU $rS, iaddroff:$ptroff, $ptrreg)>;
+def : Pat<(pre_store f64:$rS, iPTR:$ptrreg, iaddroff:$ptroff),
+ (STFDU $rS, iaddroff:$ptroff, $ptrreg)>;
+
+// Indexed (r+r) Stores.
+let PPC970_Unit = 2 in {
+def STBX : XForm_8<31, 215, (outs), (ins gprc:$rS, memrr:$dst),
+ "stbx $rS, $dst", IIC_LdStStore,
+ [(truncstorei8 i32:$rS, xaddr:$dst)]>,
+ PPC970_DGroup_Cracked;
+def STHX : XForm_8<31, 407, (outs), (ins gprc:$rS, memrr:$dst),
+ "sthx $rS, $dst", IIC_LdStStore,
+ [(truncstorei16 i32:$rS, xaddr:$dst)]>,
+ PPC970_DGroup_Cracked;
+def STWX : XForm_8<31, 151, (outs), (ins gprc:$rS, memrr:$dst),
+ "stwx $rS, $dst", IIC_LdStStore,
+ [(store i32:$rS, xaddr:$dst)]>,
+ PPC970_DGroup_Cracked;
+
+def STHBRX: XForm_8<31, 918, (outs), (ins gprc:$rS, memrr:$dst),
+ "sthbrx $rS, $dst", IIC_LdStStore,
+ [(PPCstbrx i32:$rS, xoaddr:$dst, i16)]>,
+ PPC970_DGroup_Cracked;
+def STWBRX: XForm_8<31, 662, (outs), (ins gprc:$rS, memrr:$dst),
+ "stwbrx $rS, $dst", IIC_LdStStore,
+ [(PPCstbrx i32:$rS, xoaddr:$dst, i32)]>,
+ PPC970_DGroup_Cracked;
+
+def STFIWX: XForm_28<31, 983, (outs), (ins f8rc:$frS, memrr:$dst),
+ "stfiwx $frS, $dst", IIC_LdStSTFD,
+ [(PPCstfiwx f64:$frS, xoaddr:$dst)]>;
+
+def STFSX : XForm_28<31, 663, (outs), (ins f4rc:$frS, memrr:$dst),
+ "stfsx $frS, $dst", IIC_LdStSTFD,
+ [(store f32:$frS, xaddr:$dst)]>;
+def STFDX : XForm_28<31, 727, (outs), (ins f8rc:$frS, memrr:$dst),
+ "stfdx $frS, $dst", IIC_LdStSTFD,
+ [(store f64:$frS, xaddr:$dst)]>;
+}
+
+// Indexed (r+r) Stores with Update (preinc).
+let PPC970_Unit = 2, mayStore = 1 in {
+def STBUX : XForm_8<31, 247, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memrr:$dst),
+ "stbux $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
+ PPC970_DGroup_Cracked;
+def STHUX : XForm_8<31, 439, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memrr:$dst),
+ "sthux $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
+ PPC970_DGroup_Cracked;
+def STWUX : XForm_8<31, 183, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memrr:$dst),
+ "stwux $rS, $dst", IIC_LdStStoreUpd, []>,
+ RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
+ PPC970_DGroup_Cracked;
+def STFSUX: XForm_8<31, 695, (outs ptr_rc_nor0:$ea_res), (ins f4rc:$rS, memrr:$dst),
+ "stfsux $rS, $dst", IIC_LdStSTFDU, []>,
+ RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
+ PPC970_DGroup_Cracked;
+def STFDUX: XForm_8<31, 759, (outs ptr_rc_nor0:$ea_res), (ins f8rc:$rS, memrr:$dst),
+ "stfdux $rS, $dst", IIC_LdStSTFDU, []>,
+ RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">,
+ PPC970_DGroup_Cracked;
+}
+
+// Patterns to match the pre-inc stores. We can't put the patterns on
+// the instruction definitions directly as ISel wants the address base
+// and offset to be separate operands, not a single complex operand.
+def : Pat<(pre_truncsti8 i32:$rS, iPTR:$ptrreg, iPTR:$ptroff),
+ (STBUX $rS, $ptrreg, $ptroff)>;
+def : Pat<(pre_truncsti16 i32:$rS, iPTR:$ptrreg, iPTR:$ptroff),
+ (STHUX $rS, $ptrreg, $ptroff)>;
+def : Pat<(pre_store i32:$rS, iPTR:$ptrreg, iPTR:$ptroff),
+ (STWUX $rS, $ptrreg, $ptroff)>;
+def : Pat<(pre_store f32:$rS, iPTR:$ptrreg, iPTR:$ptroff),
+ (STFSUX $rS, $ptrreg, $ptroff)>;
+def : Pat<(pre_store f64:$rS, iPTR:$ptrreg, iPTR:$ptroff),
+ (STFDUX $rS, $ptrreg, $ptroff)>;
+
+// Store Multiple
+def STMW : DForm_1<47, (outs), (ins gprc:$rS, memri:$dst),
+ "stmw $rS, $dst", IIC_LdStLMW, []>;
+
+def SYNC : XForm_24_sync<31, 598, (outs), (ins i32imm:$L),
+ "sync $L", IIC_LdStSync, []>, Requires<[IsNotBookE]>;
+
+let isCodeGenOnly = 1 in {
+ def MSYNC : XForm_24_sync<31, 598, (outs), (ins),
+ "msync", IIC_LdStSync, []>, Requires<[IsBookE]> {
+ let L = 0;
+ }
+}
+
+def : Pat<(int_ppc_sync), (SYNC 0)>, Requires<[IsNotBookE]>;
+def : Pat<(int_ppc_sync), (MSYNC)>, Requires<[IsBookE]>;
+
+//===----------------------------------------------------------------------===//
+// PPC32 Arithmetic Instructions.
+//
+
+let PPC970_Unit = 1 in { // FXU Operations.
+def ADDI : DForm_2<14, (outs gprc:$rD), (ins gprc_nor0:$rA, s16imm:$imm),
+ "addi $rD, $rA, $imm", IIC_IntSimple,
+ [(set i32:$rD, (add i32:$rA, imm32SExt16:$imm))]>;
+let BaseName = "addic" in {
+let Defs = [CARRY] in
+def ADDIC : DForm_2<12, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm),
+ "addic $rD, $rA, $imm", IIC_IntGeneral,
+ [(set i32:$rD, (addc i32:$rA, imm32SExt16:$imm))]>,
+ RecFormRel, PPC970_DGroup_Cracked;
+let Defs = [CARRY, CR0] in
+def ADDICo : DForm_2<13, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm),
+ "addic. $rD, $rA, $imm", IIC_IntGeneral,
+ []>, isDOT, RecFormRel;
+}
+def ADDIS : DForm_2<15, (outs gprc:$rD), (ins gprc_nor0:$rA, s17imm:$imm),
+ "addis $rD, $rA, $imm", IIC_IntSimple,
+ [(set i32:$rD, (add i32:$rA, imm16ShiftedSExt:$imm))]>;
+let isCodeGenOnly = 1 in
+def LA : DForm_2<14, (outs gprc:$rD), (ins gprc_nor0:$rA, s16imm:$sym),
+ "la $rD, $sym($rA)", IIC_IntGeneral,
+ [(set i32:$rD, (add i32:$rA,
+ (PPClo tglobaladdr:$sym, 0)))]>;
+def MULLI : DForm_2< 7, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm),
+ "mulli $rD, $rA, $imm", IIC_IntMulLI,
+ [(set i32:$rD, (mul i32:$rA, imm32SExt16:$imm))]>;
+let Defs = [CARRY] in
+def SUBFIC : DForm_2< 8, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm),
+ "subfic $rD, $rA, $imm", IIC_IntGeneral,
+ [(set i32:$rD, (subc imm32SExt16:$imm, i32:$rA))]>;
+
+let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
+ def LI : DForm_2_r0<14, (outs gprc:$rD), (ins s16imm:$imm),
+ "li $rD, $imm", IIC_IntSimple,
+ [(set i32:$rD, imm32SExt16:$imm)]>;
+ def LIS : DForm_2_r0<15, (outs gprc:$rD), (ins s17imm:$imm),
+ "lis $rD, $imm", IIC_IntSimple,
+ [(set i32:$rD, imm16ShiftedSExt:$imm)]>;
+}
+}
+
+let PPC970_Unit = 1 in { // FXU Operations.
+let Defs = [CR0] in {
+def ANDIo : DForm_4<28, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2),
+ "andi. $dst, $src1, $src2", IIC_IntGeneral,
+ [(set i32:$dst, (and i32:$src1, immZExt16:$src2))]>,
+ isDOT;
+def ANDISo : DForm_4<29, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2),
+ "andis. $dst, $src1, $src2", IIC_IntGeneral,
+ [(set i32:$dst, (and i32:$src1, imm16ShiftedZExt:$src2))]>,
+ isDOT;
+}
+def ORI : DForm_4<24, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2),
+ "ori $dst, $src1, $src2", IIC_IntSimple,
+ [(set i32:$dst, (or i32:$src1, immZExt16:$src2))]>;
+def ORIS : DForm_4<25, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2),
+ "oris $dst, $src1, $src2", IIC_IntSimple,
+ [(set i32:$dst, (or i32:$src1, imm16ShiftedZExt:$src2))]>;
+def XORI : DForm_4<26, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2),
+ "xori $dst, $src1, $src2", IIC_IntSimple,
+ [(set i32:$dst, (xor i32:$src1, immZExt16:$src2))]>;
+def XORIS : DForm_4<27, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2),
+ "xoris $dst, $src1, $src2", IIC_IntSimple,
+ [(set i32:$dst, (xor i32:$src1, imm16ShiftedZExt:$src2))]>;
+
+def NOP : DForm_4_zero<24, (outs), (ins), "nop", IIC_IntSimple,
+ []>;
+let isCodeGenOnly = 1 in {
+// The POWER6 and POWER7 have special group-terminating nops.
+def NOP_GT_PWR6 : DForm_4_fixedreg_zero<24, 1, (outs), (ins),
+ "ori 1, 1, 0", IIC_IntSimple, []>;
+def NOP_GT_PWR7 : DForm_4_fixedreg_zero<24, 2, (outs), (ins),
+ "ori 2, 2, 0", IIC_IntSimple, []>;
+}
+
+let isCompare = 1, neverHasSideEffects = 1 in {
+ def CMPWI : DForm_5_ext<11, (outs crrc:$crD), (ins gprc:$rA, s16imm:$imm),
+ "cmpwi $crD, $rA, $imm", IIC_IntCompare>;
+ def CMPLWI : DForm_6_ext<10, (outs crrc:$dst), (ins gprc:$src1, u16imm:$src2),
+ "cmplwi $dst, $src1, $src2", IIC_IntCompare>;
+}
+}
+
+let PPC970_Unit = 1, neverHasSideEffects = 1 in { // FXU Operations.
+let isCommutable = 1 in {
+defm NAND : XForm_6r<31, 476, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "nand", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i32:$rA, (not (and i32:$rS, i32:$rB)))]>;
+defm AND : XForm_6r<31, 28, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "and", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i32:$rA, (and i32:$rS, i32:$rB))]>;
+} // isCommutable
+defm ANDC : XForm_6r<31, 60, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "andc", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i32:$rA, (and i32:$rS, (not i32:$rB)))]>;
+let isCommutable = 1 in {
+defm OR : XForm_6r<31, 444, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "or", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i32:$rA, (or i32:$rS, i32:$rB))]>;
+defm NOR : XForm_6r<31, 124, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "nor", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i32:$rA, (not (or i32:$rS, i32:$rB)))]>;
+} // isCommutable
+defm ORC : XForm_6r<31, 412, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "orc", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i32:$rA, (or i32:$rS, (not i32:$rB)))]>;
+let isCommutable = 1 in {
+defm EQV : XForm_6r<31, 284, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "eqv", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i32:$rA, (not (xor i32:$rS, i32:$rB)))]>;
+defm XOR : XForm_6r<31, 316, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "xor", "$rA, $rS, $rB", IIC_IntSimple,
+ [(set i32:$rA, (xor i32:$rS, i32:$rB))]>;
+} // isCommutable
+defm SLW : XForm_6r<31, 24, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "slw", "$rA, $rS, $rB", IIC_IntGeneral,
+ [(set i32:$rA, (PPCshl i32:$rS, i32:$rB))]>;
+defm SRW : XForm_6r<31, 536, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "srw", "$rA, $rS, $rB", IIC_IntGeneral,
+ [(set i32:$rA, (PPCsrl i32:$rS, i32:$rB))]>;
+defm SRAW : XForm_6rc<31, 792, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "sraw", "$rA, $rS, $rB", IIC_IntShift,
+ [(set i32:$rA, (PPCsra i32:$rS, i32:$rB))]>;
+}
+
+let PPC970_Unit = 1 in { // FXU Operations.
+let neverHasSideEffects = 1 in {
+defm SRAWI : XForm_10rc<31, 824, (outs gprc:$rA), (ins gprc:$rS, u5imm:$SH),
+ "srawi", "$rA, $rS, $SH", IIC_IntShift,
+ [(set i32:$rA, (sra i32:$rS, (i32 imm:$SH)))]>;
+defm CNTLZW : XForm_11r<31, 26, (outs gprc:$rA), (ins gprc:$rS),
+ "cntlzw", "$rA, $rS", IIC_IntGeneral,
+ [(set i32:$rA, (ctlz i32:$rS))]>;
+defm EXTSB : XForm_11r<31, 954, (outs gprc:$rA), (ins gprc:$rS),
+ "extsb", "$rA, $rS", IIC_IntSimple,
+ [(set i32:$rA, (sext_inreg i32:$rS, i8))]>;
+defm EXTSH : XForm_11r<31, 922, (outs gprc:$rA), (ins gprc:$rS),
+ "extsh", "$rA, $rS", IIC_IntSimple,
+ [(set i32:$rA, (sext_inreg i32:$rS, i16))]>;
+}
+let isCompare = 1, neverHasSideEffects = 1 in {
+ def CMPW : XForm_16_ext<31, 0, (outs crrc:$crD), (ins gprc:$rA, gprc:$rB),
+ "cmpw $crD, $rA, $rB", IIC_IntCompare>;
+ def CMPLW : XForm_16_ext<31, 32, (outs crrc:$crD), (ins gprc:$rA, gprc:$rB),
+ "cmplw $crD, $rA, $rB", IIC_IntCompare>;
+}
+}
+let PPC970_Unit = 3 in { // FPU Operations.
+//def FCMPO : XForm_17<63, 32, (outs CRRC:$crD), (ins FPRC:$fA, FPRC:$fB),
+// "fcmpo $crD, $fA, $fB", IIC_FPCompare>;
+let isCompare = 1, neverHasSideEffects = 1 in {
+ def FCMPUS : XForm_17<63, 0, (outs crrc:$crD), (ins f4rc:$fA, f4rc:$fB),
+ "fcmpu $crD, $fA, $fB", IIC_FPCompare>;
+ let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+ def FCMPUD : XForm_17<63, 0, (outs crrc:$crD), (ins f8rc:$fA, f8rc:$fB),
+ "fcmpu $crD, $fA, $fB", IIC_FPCompare>;
+}
+
+let Uses = [RM] in {
+ let neverHasSideEffects = 1 in {
+ defm FCTIW : XForm_26r<63, 14, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fctiw", "$frD, $frB", IIC_FPGeneral,
+ []>;
+ defm FCTIWZ : XForm_26r<63, 15, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fctiwz", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (PPCfctiwz f64:$frB))]>;
+
+ defm FRSP : XForm_26r<63, 12, (outs f4rc:$frD), (ins f8rc:$frB),
+ "frsp", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (fround f64:$frB))]>;
+
+ let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+ defm FRIND : XForm_26r<63, 392, (outs f8rc:$frD), (ins f8rc:$frB),
+ "frin", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (frnd f64:$frB))]>;
+ defm FRINS : XForm_26r<63, 392, (outs f4rc:$frD), (ins f4rc:$frB),
+ "frin", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (frnd f32:$frB))]>;
+ }
+
+ let neverHasSideEffects = 1 in {
+ let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+ defm FRIPD : XForm_26r<63, 456, (outs f8rc:$frD), (ins f8rc:$frB),
+ "frip", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (fceil f64:$frB))]>;
+ defm FRIPS : XForm_26r<63, 456, (outs f4rc:$frD), (ins f4rc:$frB),
+ "frip", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (fceil f32:$frB))]>;
+ let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+ defm FRIZD : XForm_26r<63, 424, (outs f8rc:$frD), (ins f8rc:$frB),
+ "friz", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (ftrunc f64:$frB))]>;
+ defm FRIZS : XForm_26r<63, 424, (outs f4rc:$frD), (ins f4rc:$frB),
+ "friz", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (ftrunc f32:$frB))]>;
+ let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+ defm FRIMD : XForm_26r<63, 488, (outs f8rc:$frD), (ins f8rc:$frB),
+ "frim", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (ffloor f64:$frB))]>;
+ defm FRIMS : XForm_26r<63, 488, (outs f4rc:$frD), (ins f4rc:$frB),
+ "frim", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (ffloor f32:$frB))]>;
+
+ defm FSQRT : XForm_26r<63, 22, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fsqrt", "$frD, $frB", IIC_FPSqrtD,
+ [(set f64:$frD, (fsqrt f64:$frB))]>;
+ defm FSQRTS : XForm_26r<59, 22, (outs f4rc:$frD), (ins f4rc:$frB),
+ "fsqrts", "$frD, $frB", IIC_FPSqrtS,
+ [(set f32:$frD, (fsqrt f32:$frB))]>;
+ }
+ }
+}
+
+/// Note that FMR is defined as pseudo-ops on the PPC970 because they are
+/// often coalesced away and we don't want the dispatch group builder to think
+/// that they will fill slots (which could cause the load of a LSU reject to
+/// sneak into a d-group with a store).
+let neverHasSideEffects = 1 in
+defm FMR : XForm_26r<63, 72, (outs f4rc:$frD), (ins f4rc:$frB),
+ "fmr", "$frD, $frB", IIC_FPGeneral,
+ []>, // (set f32:$frD, f32:$frB)
+ PPC970_Unit_Pseudo;
+
+let PPC970_Unit = 3, neverHasSideEffects = 1 in { // FPU Operations.
+// These are artificially split into two different forms, for 4/8 byte FP.
+defm FABSS : XForm_26r<63, 264, (outs f4rc:$frD), (ins f4rc:$frB),
+ "fabs", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (fabs f32:$frB))]>;
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+defm FABSD : XForm_26r<63, 264, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fabs", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (fabs f64:$frB))]>;
+defm FNABSS : XForm_26r<63, 136, (outs f4rc:$frD), (ins f4rc:$frB),
+ "fnabs", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (fneg (fabs f32:$frB)))]>;
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+defm FNABSD : XForm_26r<63, 136, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fnabs", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (fneg (fabs f64:$frB)))]>;
+defm FNEGS : XForm_26r<63, 40, (outs f4rc:$frD), (ins f4rc:$frB),
+ "fneg", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (fneg f32:$frB))]>;
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+defm FNEGD : XForm_26r<63, 40, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fneg", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (fneg f64:$frB))]>;
+
+defm FCPSGNS : XForm_28r<63, 8, (outs f4rc:$frD), (ins f4rc:$frA, f4rc:$frB),
+ "fcpsgn", "$frD, $frA, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (fcopysign f32:$frB, f32:$frA))]>;
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+defm FCPSGND : XForm_28r<63, 8, (outs f8rc:$frD), (ins f8rc:$frA, f8rc:$frB),
+ "fcpsgn", "$frD, $frA, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (fcopysign f64:$frB, f64:$frA))]>;
+
+// Reciprocal estimates.
+defm FRE : XForm_26r<63, 24, (outs f8rc:$frD), (ins f8rc:$frB),
+ "fre", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (PPCfre f64:$frB))]>;
+defm FRES : XForm_26r<59, 24, (outs f4rc:$frD), (ins f4rc:$frB),
+ "fres", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (PPCfre f32:$frB))]>;
+defm FRSQRTE : XForm_26r<63, 26, (outs f8rc:$frD), (ins f8rc:$frB),
+ "frsqrte", "$frD, $frB", IIC_FPGeneral,
+ [(set f64:$frD, (PPCfrsqrte f64:$frB))]>;
+defm FRSQRTES : XForm_26r<59, 26, (outs f4rc:$frD), (ins f4rc:$frB),
+ "frsqrtes", "$frD, $frB", IIC_FPGeneral,
+ [(set f32:$frD, (PPCfrsqrte f32:$frB))]>;
+}
+
+// XL-Form instructions. condition register logical ops.
+//
+let neverHasSideEffects = 1 in
+def MCRF : XLForm_3<19, 0, (outs crrc:$BF), (ins crrc:$BFA),
+ "mcrf $BF, $BFA", IIC_BrMCR>,
+ PPC970_DGroup_First, PPC970_Unit_CRU;
+
+let isCommutable = 1 in {
+def CRAND : XLForm_1<19, 257, (outs crbitrc:$CRD),
+ (ins crbitrc:$CRA, crbitrc:$CRB),
+ "crand $CRD, $CRA, $CRB", IIC_BrCR,
+ [(set i1:$CRD, (and i1:$CRA, i1:$CRB))]>;
+
+def CRNAND : XLForm_1<19, 225, (outs crbitrc:$CRD),
+ (ins crbitrc:$CRA, crbitrc:$CRB),
+ "crnand $CRD, $CRA, $CRB", IIC_BrCR,
+ [(set i1:$CRD, (not (and i1:$CRA, i1:$CRB)))]>;
+
+def CROR : XLForm_1<19, 449, (outs crbitrc:$CRD),
+ (ins crbitrc:$CRA, crbitrc:$CRB),
+ "cror $CRD, $CRA, $CRB", IIC_BrCR,
+ [(set i1:$CRD, (or i1:$CRA, i1:$CRB))]>;
+
+def CRXOR : XLForm_1<19, 193, (outs crbitrc:$CRD),
+ (ins crbitrc:$CRA, crbitrc:$CRB),
+ "crxor $CRD, $CRA, $CRB", IIC_BrCR,
+ [(set i1:$CRD, (xor i1:$CRA, i1:$CRB))]>;
+
+def CRNOR : XLForm_1<19, 33, (outs crbitrc:$CRD),
+ (ins crbitrc:$CRA, crbitrc:$CRB),
+ "crnor $CRD, $CRA, $CRB", IIC_BrCR,
+ [(set i1:$CRD, (not (or i1:$CRA, i1:$CRB)))]>;
+
+def CREQV : XLForm_1<19, 289, (outs crbitrc:$CRD),
+ (ins crbitrc:$CRA, crbitrc:$CRB),
+ "creqv $CRD, $CRA, $CRB", IIC_BrCR,
+ [(set i1:$CRD, (not (xor i1:$CRA, i1:$CRB)))]>;
+} // isCommutable
+
+def CRANDC : XLForm_1<19, 129, (outs crbitrc:$CRD),
+ (ins crbitrc:$CRA, crbitrc:$CRB),
+ "crandc $CRD, $CRA, $CRB", IIC_BrCR,
+ [(set i1:$CRD, (and i1:$CRA, (not i1:$CRB)))]>;
+
+def CRORC : XLForm_1<19, 417, (outs crbitrc:$CRD),
+ (ins crbitrc:$CRA, crbitrc:$CRB),
+ "crorc $CRD, $CRA, $CRB", IIC_BrCR,
+ [(set i1:$CRD, (or i1:$CRA, (not i1:$CRB)))]>;
+
+let isCodeGenOnly = 1 in {
+def CRSET : XLForm_1_ext<19, 289, (outs crbitrc:$dst), (ins),
+ "creqv $dst, $dst, $dst", IIC_BrCR,
+ [(set i1:$dst, 1)]>;
+
+def CRUNSET: XLForm_1_ext<19, 193, (outs crbitrc:$dst), (ins),
+ "crxor $dst, $dst, $dst", IIC_BrCR,
+ [(set i1:$dst, 0)]>;
+
+let Defs = [CR1EQ], CRD = 6 in {
+def CR6SET : XLForm_1_ext<19, 289, (outs), (ins),
+ "creqv 6, 6, 6", IIC_BrCR,
+ [(PPCcr6set)]>;
+
+def CR6UNSET: XLForm_1_ext<19, 193, (outs), (ins),
+ "crxor 6, 6, 6", IIC_BrCR,
+ [(PPCcr6unset)]>;
+}
+}
+
+// XFX-Form instructions. Instructions that deal with SPRs.
+//
+
+def MFSPR : XFXForm_1<31, 339, (outs gprc:$RT), (ins i32imm:$SPR),
+ "mfspr $RT, $SPR", IIC_SprMFSPR>;
+def MTSPR : XFXForm_1<31, 467, (outs), (ins i32imm:$SPR, gprc:$RT),
+ "mtspr $SPR, $RT", IIC_SprMTSPR>;
+
+def MFTB : XFXForm_1<31, 371, (outs gprc:$RT), (ins i32imm:$SPR),
+ "mftb $RT, $SPR", IIC_SprMFTB>, Deprecated<DeprecatedMFTB>;
+
+let Uses = [CTR] in {
+def MFCTR : XFXForm_1_ext<31, 339, 9, (outs gprc:$rT), (ins),
+ "mfctr $rT", IIC_SprMFSPR>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+}
+let Defs = [CTR], Pattern = [(PPCmtctr i32:$rS)] in {
+def MTCTR : XFXForm_7_ext<31, 467, 9, (outs), (ins gprc:$rS),
+ "mtctr $rS", IIC_SprMTSPR>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+}
+let hasSideEffects = 1, isCodeGenOnly = 1, Defs = [CTR] in {
+let Pattern = [(int_ppc_mtctr i32:$rS)] in
+def MTCTRloop : XFXForm_7_ext<31, 467, 9, (outs), (ins gprc:$rS),
+ "mtctr $rS", IIC_SprMTSPR>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+}
+
+let Defs = [LR] in {
+def MTLR : XFXForm_7_ext<31, 467, 8, (outs), (ins gprc:$rS),
+ "mtlr $rS", IIC_SprMTSPR>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+}
+let Uses = [LR] in {
+def MFLR : XFXForm_1_ext<31, 339, 8, (outs gprc:$rT), (ins),
+ "mflr $rT", IIC_SprMFSPR>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+}
+
+let isCodeGenOnly = 1 in {
+ // Move to/from VRSAVE: despite being a SPR, the VRSAVE register is renamed
+ // like a GPR on the PPC970. As such, copies in and out have the same
+ // performance characteristics as an OR instruction.
+ def MTVRSAVE : XFXForm_7_ext<31, 467, 256, (outs), (ins gprc:$rS),
+ "mtspr 256, $rS", IIC_IntGeneral>,
+ PPC970_DGroup_Single, PPC970_Unit_FXU;
+ def MFVRSAVE : XFXForm_1_ext<31, 339, 256, (outs gprc:$rT), (ins),
+ "mfspr $rT, 256", IIC_IntGeneral>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+
+ def MTVRSAVEv : XFXForm_7_ext<31, 467, 256,
+ (outs VRSAVERC:$reg), (ins gprc:$rS),
+ "mtspr 256, $rS", IIC_IntGeneral>,
+ PPC970_DGroup_Single, PPC970_Unit_FXU;
+ def MFVRSAVEv : XFXForm_1_ext<31, 339, 256, (outs gprc:$rT),
+ (ins VRSAVERC:$reg),
+ "mfspr $rT, 256", IIC_IntGeneral>,
+ PPC970_DGroup_First, PPC970_Unit_FXU;
+}
+
+// SPILL_VRSAVE - Indicate that we're dumping the VRSAVE register,
+// so we'll need to scavenge a register for it.
+let mayStore = 1 in
+def SPILL_VRSAVE : Pseudo<(outs), (ins VRSAVERC:$vrsave, memri:$F),
+ "#SPILL_VRSAVE", []>;
+
+// RESTORE_VRSAVE - Indicate that we're restoring the VRSAVE register (previously
+// spilled), so we'll need to scavenge a register for it.
+let mayLoad = 1 in
+def RESTORE_VRSAVE : Pseudo<(outs VRSAVERC:$vrsave), (ins memri:$F),
+ "#RESTORE_VRSAVE", []>;
+
+let neverHasSideEffects = 1 in {
+def MTOCRF: XFXForm_5a<31, 144, (outs crbitm:$FXM), (ins gprc:$ST),
+ "mtocrf $FXM, $ST", IIC_BrMCRX>,
+ PPC970_DGroup_First, PPC970_Unit_CRU;
+
+def MTCRF : XFXForm_5<31, 144, (outs), (ins i32imm:$FXM, gprc:$rS),
+ "mtcrf $FXM, $rS", IIC_BrMCRX>,
+ PPC970_MicroCode, PPC970_Unit_CRU;
+
+let hasExtraSrcRegAllocReq = 1 in // to enable post-ra anti-dep breaking.
+def MFOCRF: XFXForm_5a<31, 19, (outs gprc:$rT), (ins crbitm:$FXM),
+ "mfocrf $rT, $FXM", IIC_SprMFCRF>,
+ PPC970_DGroup_First, PPC970_Unit_CRU;
+
+def MFCR : XFXForm_3<31, 19, (outs gprc:$rT), (ins),
+ "mfcr $rT", IIC_SprMFCR>,
+ PPC970_MicroCode, PPC970_Unit_CRU;
+} // neverHasSideEffects = 1
+
+// Pseudo instruction to perform FADD in round-to-zero mode.
+let usesCustomInserter = 1, Uses = [RM] in {
+ def FADDrtz: Pseudo<(outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB), "",
+ [(set f64:$FRT, (PPCfaddrtz f64:$FRA, f64:$FRB))]>;
+}
+
+// The above pseudo gets expanded to make use of the following instructions
+// to manipulate FPSCR. Note that FPSCR is not modeled at the DAG level.
+let Uses = [RM], Defs = [RM] in {
+ def MTFSB0 : XForm_43<63, 70, (outs), (ins u5imm:$FM),
+ "mtfsb0 $FM", IIC_IntMTFSB0, []>,
+ PPC970_DGroup_Single, PPC970_Unit_FPU;
+ def MTFSB1 : XForm_43<63, 38, (outs), (ins u5imm:$FM),
+ "mtfsb1 $FM", IIC_IntMTFSB0, []>,
+ PPC970_DGroup_Single, PPC970_Unit_FPU;
+ def MTFSF : XFLForm<63, 711, (outs), (ins i32imm:$FM, f8rc:$rT),
+ "mtfsf $FM, $rT", IIC_IntMTFSB0, []>,
+ PPC970_DGroup_Single, PPC970_Unit_FPU;
+}
+let Uses = [RM] in {
+ def MFFS : XForm_42<63, 583, (outs f8rc:$rT), (ins),
+ "mffs $rT", IIC_IntMFFS,
+ [(set f64:$rT, (PPCmffs))]>,
+ PPC970_DGroup_Single, PPC970_Unit_FPU;
+}
+
+
+let PPC970_Unit = 1, neverHasSideEffects = 1 in { // FXU Operations.
+// XO-Form instructions. Arithmetic instructions that can set overflow bit
+let isCommutable = 1 in
+defm ADD4 : XOForm_1r<31, 266, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
+ "add", "$rT, $rA, $rB", IIC_IntSimple,
+ [(set i32:$rT, (add i32:$rA, i32:$rB))]>;
+let isCodeGenOnly = 1 in
+def ADD4TLS : XOForm_1<31, 266, 0, (outs gprc:$rT), (ins gprc:$rA, tlsreg32:$rB),
+ "add $rT, $rA, $rB", IIC_IntSimple,
+ [(set i32:$rT, (add i32:$rA, tglobaltlsaddr:$rB))]>;
+let isCommutable = 1 in
+defm ADDC : XOForm_1rc<31, 10, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
+ "addc", "$rT, $rA, $rB", IIC_IntGeneral,
+ [(set i32:$rT, (addc i32:$rA, i32:$rB))]>,
+ PPC970_DGroup_Cracked;
+
+defm DIVW : XOForm_1r<31, 491, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
+ "divw", "$rT, $rA, $rB", IIC_IntDivW,
+ [(set i32:$rT, (sdiv i32:$rA, i32:$rB))]>,
+ PPC970_DGroup_First, PPC970_DGroup_Cracked;
+defm DIVWU : XOForm_1r<31, 459, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
+ "divwu", "$rT, $rA, $rB", IIC_IntDivW,
+ [(set i32:$rT, (udiv i32:$rA, i32:$rB))]>,
+ PPC970_DGroup_First, PPC970_DGroup_Cracked;
+let isCommutable = 1 in {
+defm MULHW : XOForm_1r<31, 75, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
+ "mulhw", "$rT, $rA, $rB", IIC_IntMulHW,
+ [(set i32:$rT, (mulhs i32:$rA, i32:$rB))]>;
+defm MULHWU : XOForm_1r<31, 11, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
+ "mulhwu", "$rT, $rA, $rB", IIC_IntMulHWU,
+ [(set i32:$rT, (mulhu i32:$rA, i32:$rB))]>;
+defm MULLW : XOForm_1r<31, 235, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
+ "mullw", "$rT, $rA, $rB", IIC_IntMulHW,
+ [(set i32:$rT, (mul i32:$rA, i32:$rB))]>;
+} // isCommutable
+defm SUBF : XOForm_1r<31, 40, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
+ "subf", "$rT, $rA, $rB", IIC_IntGeneral,
+ [(set i32:$rT, (sub i32:$rB, i32:$rA))]>;
+defm SUBFC : XOForm_1rc<31, 8, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
+ "subfc", "$rT, $rA, $rB", IIC_IntGeneral,
+ [(set i32:$rT, (subc i32:$rB, i32:$rA))]>,
+ PPC970_DGroup_Cracked;
+defm NEG : XOForm_3r<31, 104, 0, (outs gprc:$rT), (ins gprc:$rA),
+ "neg", "$rT, $rA", IIC_IntSimple,
+ [(set i32:$rT, (ineg i32:$rA))]>;
+let Uses = [CARRY] in {
+let isCommutable = 1 in
+defm ADDE : XOForm_1rc<31, 138, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
+ "adde", "$rT, $rA, $rB", IIC_IntGeneral,
+ [(set i32:$rT, (adde i32:$rA, i32:$rB))]>;
+defm ADDME : XOForm_3rc<31, 234, 0, (outs gprc:$rT), (ins gprc:$rA),
+ "addme", "$rT, $rA", IIC_IntGeneral,
+ [(set i32:$rT, (adde i32:$rA, -1))]>;
+defm ADDZE : XOForm_3rc<31, 202, 0, (outs gprc:$rT), (ins gprc:$rA),
+ "addze", "$rT, $rA", IIC_IntGeneral,
+ [(set i32:$rT, (adde i32:$rA, 0))]>;
+defm SUBFE : XOForm_1rc<31, 136, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
+ "subfe", "$rT, $rA, $rB", IIC_IntGeneral,
+ [(set i32:$rT, (sube i32:$rB, i32:$rA))]>;
+defm SUBFME : XOForm_3rc<31, 232, 0, (outs gprc:$rT), (ins gprc:$rA),
+ "subfme", "$rT, $rA", IIC_IntGeneral,
+ [(set i32:$rT, (sube -1, i32:$rA))]>;
+defm SUBFZE : XOForm_3rc<31, 200, 0, (outs gprc:$rT), (ins gprc:$rA),
+ "subfze", "$rT, $rA", IIC_IntGeneral,
+ [(set i32:$rT, (sube 0, i32:$rA))]>;
+}
+}
+
+// A-Form instructions. Most of the instructions executed in the FPU are of
+// this type.
+//
+let PPC970_Unit = 3, neverHasSideEffects = 1 in { // FPU Operations.
+let Uses = [RM] in {
+let isCommutable = 1 in {
+ defm FMADD : AForm_1r<63, 29,
+ (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB),
+ "fmadd", "$FRT, $FRA, $FRC, $FRB", IIC_FPFused,
+ [(set f64:$FRT, (fma f64:$FRA, f64:$FRC, f64:$FRB))]>;
+ defm FMADDS : AForm_1r<59, 29,
+ (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB),
+ "fmadds", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral,
+ [(set f32:$FRT, (fma f32:$FRA, f32:$FRC, f32:$FRB))]>;
+ defm FMSUB : AForm_1r<63, 28,
+ (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB),
+ "fmsub", "$FRT, $FRA, $FRC, $FRB", IIC_FPFused,
+ [(set f64:$FRT,
+ (fma f64:$FRA, f64:$FRC, (fneg f64:$FRB)))]>;
+ defm FMSUBS : AForm_1r<59, 28,
+ (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB),
+ "fmsubs", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral,
+ [(set f32:$FRT,
+ (fma f32:$FRA, f32:$FRC, (fneg f32:$FRB)))]>;
+ defm FNMADD : AForm_1r<63, 31,
+ (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB),
+ "fnmadd", "$FRT, $FRA, $FRC, $FRB", IIC_FPFused,
+ [(set f64:$FRT,
+ (fneg (fma f64:$FRA, f64:$FRC, f64:$FRB)))]>;
+ defm FNMADDS : AForm_1r<59, 31,
+ (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB),
+ "fnmadds", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral,
+ [(set f32:$FRT,
+ (fneg (fma f32:$FRA, f32:$FRC, f32:$FRB)))]>;
+ defm FNMSUB : AForm_1r<63, 30,
+ (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB),
+ "fnmsub", "$FRT, $FRA, $FRC, $FRB", IIC_FPFused,
+ [(set f64:$FRT, (fneg (fma f64:$FRA, f64:$FRC,
+ (fneg f64:$FRB))))]>;
+ defm FNMSUBS : AForm_1r<59, 30,
+ (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB),
+ "fnmsubs", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral,
+ [(set f32:$FRT, (fneg (fma f32:$FRA, f32:$FRC,
+ (fneg f32:$FRB))))]>;
+} // isCommutable
+}
+// FSEL is artificially split into 4 and 8-byte forms for the result. To avoid
+// having 4 of these, force the comparison to always be an 8-byte double (code
+// should use an FMRSD if the input comparison value really wants to be a float)
+// and 4/8 byte forms for the result and operand type..
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in
+defm FSELD : AForm_1r<63, 23,
+ (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB),
+ "fsel", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral,
+ [(set f64:$FRT, (PPCfsel f64:$FRA, f64:$FRC, f64:$FRB))]>;
+defm FSELS : AForm_1r<63, 23,
+ (outs f4rc:$FRT), (ins f8rc:$FRA, f4rc:$FRC, f4rc:$FRB),
+ "fsel", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral,
+ [(set f32:$FRT, (PPCfsel f64:$FRA, f32:$FRC, f32:$FRB))]>;
+let Uses = [RM] in {
+ let isCommutable = 1 in {
+ defm FADD : AForm_2r<63, 21,
+ (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB),
+ "fadd", "$FRT, $FRA, $FRB", IIC_FPAddSub,
+ [(set f64:$FRT, (fadd f64:$FRA, f64:$FRB))]>;
+ defm FADDS : AForm_2r<59, 21,
+ (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRB),
+ "fadds", "$FRT, $FRA, $FRB", IIC_FPGeneral,
+ [(set f32:$FRT, (fadd f32:$FRA, f32:$FRB))]>;
+ } // isCommutable
+ defm FDIV : AForm_2r<63, 18,
+ (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB),
+ "fdiv", "$FRT, $FRA, $FRB", IIC_FPDivD,
+ [(set f64:$FRT, (fdiv f64:$FRA, f64:$FRB))]>;
+ defm FDIVS : AForm_2r<59, 18,
+ (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRB),
+ "fdivs", "$FRT, $FRA, $FRB", IIC_FPDivS,
+ [(set f32:$FRT, (fdiv f32:$FRA, f32:$FRB))]>;
+ let isCommutable = 1 in {
+ defm FMUL : AForm_3r<63, 25,
+ (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC),
+ "fmul", "$FRT, $FRA, $FRC", IIC_FPFused,
+ [(set f64:$FRT, (fmul f64:$FRA, f64:$FRC))]>;
+ defm FMULS : AForm_3r<59, 25,
+ (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC),
+ "fmuls", "$FRT, $FRA, $FRC", IIC_FPGeneral,
+ [(set f32:$FRT, (fmul f32:$FRA, f32:$FRC))]>;
+ } // isCommutable
+ defm FSUB : AForm_2r<63, 20,
+ (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB),
+ "fsub", "$FRT, $FRA, $FRB", IIC_FPAddSub,
+ [(set f64:$FRT, (fsub f64:$FRA, f64:$FRB))]>;
+ defm FSUBS : AForm_2r<59, 20,
+ (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRB),
+ "fsubs", "$FRT, $FRA, $FRB", IIC_FPGeneral,
+ [(set f32:$FRT, (fsub f32:$FRA, f32:$FRB))]>;
+ }
+}
+
+let neverHasSideEffects = 1 in {
+let PPC970_Unit = 1 in { // FXU Operations.
+ let isSelect = 1 in
+ def ISEL : AForm_4<31, 15,
+ (outs gprc:$rT), (ins gprc_nor0:$rA, gprc:$rB, crbitrc:$cond),
+ "isel $rT, $rA, $rB, $cond", IIC_IntGeneral,
+ []>;
+}
+
+let PPC970_Unit = 1 in { // FXU Operations.
+// M-Form instructions. rotate and mask instructions.
+//
+let isCommutable = 1 in {
+// RLWIMI can be commuted if the rotate amount is zero.
+defm RLWIMI : MForm_2r<20, (outs gprc:$rA),
+ (ins gprc:$rSi, gprc:$rS, u5imm:$SH, u5imm:$MB,
+ u5imm:$ME), "rlwimi", "$rA, $rS, $SH, $MB, $ME",
+ IIC_IntRotate, []>, PPC970_DGroup_Cracked,
+ RegConstraint<"$rSi = $rA">, NoEncode<"$rSi">;
+}
+let BaseName = "rlwinm" in {
+def RLWINM : MForm_2<21,
+ (outs gprc:$rA), (ins gprc:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME),
+ "rlwinm $rA, $rS, $SH, $MB, $ME", IIC_IntGeneral,
+ []>, RecFormRel;
+let Defs = [CR0] in
+def RLWINMo : MForm_2<21,
+ (outs gprc:$rA), (ins gprc:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME),
+ "rlwinm. $rA, $rS, $SH, $MB, $ME", IIC_IntGeneral,
+ []>, isDOT, RecFormRel, PPC970_DGroup_Cracked;
+}
+defm RLWNM : MForm_2r<23, (outs gprc:$rA),
+ (ins gprc:$rS, gprc:$rB, u5imm:$MB, u5imm:$ME),
+ "rlwnm", "$rA, $rS, $rB, $MB, $ME", IIC_IntGeneral,
+ []>;
+}
+} // neverHasSideEffects = 1
+
+//===----------------------------------------------------------------------===//
+// PowerPC Instruction Patterns
+//
+
+// Arbitrary immediate support. Implement in terms of LIS/ORI.
+def : Pat<(i32 imm:$imm),
+ (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>;
+
+// Implement the 'not' operation with the NOR instruction.
+def i32not : OutPatFrag<(ops node:$in),
+ (NOR $in, $in)>;
+def : Pat<(not i32:$in),
+ (i32not $in)>;
+
+// ADD an arbitrary immediate.
+def : Pat<(add i32:$in, imm:$imm),
+ (ADDIS (ADDI $in, (LO16 imm:$imm)), (HA16 imm:$imm))>;
+// OR an arbitrary immediate.
+def : Pat<(or i32:$in, imm:$imm),
+ (ORIS (ORI $in, (LO16 imm:$imm)), (HI16 imm:$imm))>;
+// XOR an arbitrary immediate.
+def : Pat<(xor i32:$in, imm:$imm),
+ (XORIS (XORI $in, (LO16 imm:$imm)), (HI16 imm:$imm))>;
+// SUBFIC
+def : Pat<(sub imm32SExt16:$imm, i32:$in),
+ (SUBFIC $in, imm:$imm)>;
+
+// SHL/SRL
+def : Pat<(shl i32:$in, (i32 imm:$imm)),
+ (RLWINM $in, imm:$imm, 0, (SHL32 imm:$imm))>;
+def : Pat<(srl i32:$in, (i32 imm:$imm)),
+ (RLWINM $in, (SRL32 imm:$imm), imm:$imm, 31)>;
+
+// ROTL
+def : Pat<(rotl i32:$in, i32:$sh),
+ (RLWNM $in, $sh, 0, 31)>;
+def : Pat<(rotl i32:$in, (i32 imm:$imm)),
+ (RLWINM $in, imm:$imm, 0, 31)>;
+
+// RLWNM
+def : Pat<(and (rotl i32:$in, i32:$sh), maskimm32:$imm),
+ (RLWNM $in, $sh, (MB maskimm32:$imm), (ME maskimm32:$imm))>;
+
+// Calls
+def : Pat<(PPCcall (i32 tglobaladdr:$dst)),
+ (BL tglobaladdr:$dst)>;
+def : Pat<(PPCcall (i32 texternalsym:$dst)),
+ (BL texternalsym:$dst)>;
+
+
+def : Pat<(PPCtc_return (i32 tglobaladdr:$dst), imm:$imm),
+ (TCRETURNdi tglobaladdr:$dst, imm:$imm)>;
+
+def : Pat<(PPCtc_return (i32 texternalsym:$dst), imm:$imm),
+ (TCRETURNdi texternalsym:$dst, imm:$imm)>;
+
+def : Pat<(PPCtc_return CTRRC:$dst, imm:$imm),
+ (TCRETURNri CTRRC:$dst, imm:$imm)>;
+
+
+
+// Hi and Lo for Darwin Global Addresses.
+def : Pat<(PPChi tglobaladdr:$in, 0), (LIS tglobaladdr:$in)>;
+def : Pat<(PPClo tglobaladdr:$in, 0), (LI tglobaladdr:$in)>;
+def : Pat<(PPChi tconstpool:$in, 0), (LIS tconstpool:$in)>;
+def : Pat<(PPClo tconstpool:$in, 0), (LI tconstpool:$in)>;
+def : Pat<(PPChi tjumptable:$in, 0), (LIS tjumptable:$in)>;
+def : Pat<(PPClo tjumptable:$in, 0), (LI tjumptable:$in)>;
+def : Pat<(PPChi tblockaddress:$in, 0), (LIS tblockaddress:$in)>;
+def : Pat<(PPClo tblockaddress:$in, 0), (LI tblockaddress:$in)>;
+def : Pat<(PPChi tglobaltlsaddr:$g, i32:$in),
+ (ADDIS $in, tglobaltlsaddr:$g)>;
+def : Pat<(PPClo tglobaltlsaddr:$g, i32:$in),
+ (ADDI $in, tglobaltlsaddr:$g)>;
+def : Pat<(add i32:$in, (PPChi tglobaladdr:$g, 0)),
+ (ADDIS $in, tglobaladdr:$g)>;
+def : Pat<(add i32:$in, (PPChi tconstpool:$g, 0)),
+ (ADDIS $in, tconstpool:$g)>;
+def : Pat<(add i32:$in, (PPChi tjumptable:$g, 0)),
+ (ADDIS $in, tjumptable:$g)>;
+def : Pat<(add i32:$in, (PPChi tblockaddress:$g, 0)),
+ (ADDIS $in, tblockaddress:$g)>;
+
+// Support for thread-local storage.
+def PPC32GOT: Pseudo<(outs gprc:$rD), (ins), "#PPC32GOT",
+ [(set i32:$rD, (PPCppc32GOT))]>;
+
+// Get the _GLOBAL_OFFSET_TABLE_ in PIC mode.
+// This uses two output registers, the first as the real output, the second as a
+// temporary register, used internally in code generation.
+def PPC32PICGOT: Pseudo<(outs gprc:$rD, gprc:$rT), (ins), "#PPC32PICGOT",
+ []>, NoEncode<"$rT">;
+
+def LDgotTprelL32: Pseudo<(outs gprc:$rD), (ins s16imm:$disp, gprc_nor0:$reg),
+ "#LDgotTprelL32",
+ [(set i32:$rD,
+ (PPCldGotTprelL tglobaltlsaddr:$disp, i32:$reg))]>;
+def : Pat<(PPCaddTls i32:$in, tglobaltlsaddr:$g),
+ (ADD4TLS $in, tglobaltlsaddr:$g)>;
+
+def ADDItlsgdL32 : Pseudo<(outs gprc:$rD), (ins gprc_nor0:$reg, s16imm:$disp),
+ "#ADDItlsgdL32",
+ [(set i32:$rD,
+ (PPCaddiTlsgdL i32:$reg, tglobaltlsaddr:$disp))]>;
+def GETtlsADDR32 : Pseudo<(outs gprc:$rD), (ins gprc:$reg, tlsgd32:$sym),
+ "#GETtlsADDR32",
+ [(set i32:$rD,
+ (PPCgetTlsAddr i32:$reg, tglobaltlsaddr:$sym))]>;
+def ADDItlsldL32 : Pseudo<(outs gprc:$rD), (ins gprc_nor0:$reg, s16imm:$disp),
+ "#ADDItlsldL32",
+ [(set i32:$rD,
+ (PPCaddiTlsldL i32:$reg, tglobaltlsaddr:$disp))]>;
+def GETtlsldADDR32 : Pseudo<(outs gprc:$rD), (ins gprc:$reg, tlsgd32:$sym),
+ "#GETtlsldADDR32",
+ [(set i32:$rD,
+ (PPCgetTlsldAddr i32:$reg, tglobaltlsaddr:$sym))]>;
+def ADDIdtprelL32 : Pseudo<(outs gprc:$rD), (ins gprc_nor0:$reg, s16imm:$disp),
+ "#ADDIdtprelL32",
+ [(set i32:$rD,
+ (PPCaddiDtprelL i32:$reg, tglobaltlsaddr:$disp))]>;
+def ADDISdtprelHA32 : Pseudo<(outs gprc:$rD), (ins gprc_nor0:$reg, s16imm:$disp),
+ "#ADDISdtprelHA32",
+ [(set i32:$rD,
+ (PPCaddisDtprelHA i32:$reg,
+ tglobaltlsaddr:$disp))]>;
+
+// Support for Position-independent code
+def LWZtoc: Pseudo<(outs gprc:$rD), (ins tocentry32:$disp, gprc:$reg),
+ "#LWZtoc",
+ [(set i32:$rD,
+ (PPCtoc_entry tglobaladdr:$disp, i32:$reg))]>;
+// Get Global (GOT) Base Register offset, from the word immediately preceding
+// the function label.
+def GetGBRO: Pseudo<(outs gprc:$rT), (ins gprc:$rI), "#GetGBRO", []>;
+// Update the Global(GOT) Base Register with the above offset.
+def UpdateGBR: Pseudo<(outs gprc:$rT), (ins gprc:$rI), "#UpdateGBR", []>;
+
+
+// Standard shifts. These are represented separately from the real shifts above
+// so that we can distinguish between shifts that allow 5-bit and 6-bit shift
+// amounts.
+def : Pat<(sra i32:$rS, i32:$rB),
+ (SRAW $rS, $rB)>;
+def : Pat<(srl i32:$rS, i32:$rB),
+ (SRW $rS, $rB)>;
+def : Pat<(shl i32:$rS, i32:$rB),
+ (SLW $rS, $rB)>;
+
+def : Pat<(zextloadi1 iaddr:$src),
+ (LBZ iaddr:$src)>;
+def : Pat<(zextloadi1 xaddr:$src),
+ (LBZX xaddr:$src)>;
+def : Pat<(extloadi1 iaddr:$src),
+ (LBZ iaddr:$src)>;
+def : Pat<(extloadi1 xaddr:$src),
+ (LBZX xaddr:$src)>;
+def : Pat<(extloadi8 iaddr:$src),
+ (LBZ iaddr:$src)>;
+def : Pat<(extloadi8 xaddr:$src),
+ (LBZX xaddr:$src)>;
+def : Pat<(extloadi16 iaddr:$src),
+ (LHZ iaddr:$src)>;
+def : Pat<(extloadi16 xaddr:$src),
+ (LHZX xaddr:$src)>;
+def : Pat<(f64 (extloadf32 iaddr:$src)),
+ (COPY_TO_REGCLASS (LFS iaddr:$src), F8RC)>;
+def : Pat<(f64 (extloadf32 xaddr:$src)),
+ (COPY_TO_REGCLASS (LFSX xaddr:$src), F8RC)>;
+
+def : Pat<(f64 (fextend f32:$src)),
+ (COPY_TO_REGCLASS $src, F8RC)>;
+
+def : Pat<(atomic_fence (imm), (imm)), (SYNC 0)>, Requires<[IsNotBookE]>;
+def : Pat<(atomic_fence (imm), (imm)), (MSYNC)>, Requires<[IsBookE]>;
+
+// Additional FNMSUB patterns: -a*c + b == -(a*c - b)
+def : Pat<(fma (fneg f64:$A), f64:$C, f64:$B),
+ (FNMSUB $A, $C, $B)>;
+def : Pat<(fma f64:$A, (fneg f64:$C), f64:$B),
+ (FNMSUB $A, $C, $B)>;
+def : Pat<(fma (fneg f32:$A), f32:$C, f32:$B),
+ (FNMSUBS $A, $C, $B)>;
+def : Pat<(fma f32:$A, (fneg f32:$C), f32:$B),
+ (FNMSUBS $A, $C, $B)>;
+
+// FCOPYSIGN's operand types need not agree.
+def : Pat<(fcopysign f64:$frB, f32:$frA),
+ (FCPSGND (COPY_TO_REGCLASS $frA, F8RC), $frB)>;
+def : Pat<(fcopysign f32:$frB, f64:$frA),
+ (FCPSGNS (COPY_TO_REGCLASS $frA, F4RC), $frB)>;
+
+include "PPCInstrAltivec.td"
+include "PPCInstr64Bit.td"
+include "PPCInstrVSX.td"
+
+def crnot : OutPatFrag<(ops node:$in),
+ (CRNOR $in, $in)>;
+def : Pat<(not i1:$in),
+ (crnot $in)>;
+
+// Patterns for arithmetic i1 operations.
+def : Pat<(add i1:$a, i1:$b),
+ (CRXOR $a, $b)>;
+def : Pat<(sub i1:$a, i1:$b),
+ (CRXOR $a, $b)>;
+def : Pat<(mul i1:$a, i1:$b),
+ (CRAND $a, $b)>;
+
+// We're sometimes asked to materialize i1 -1, which is just 1 in this case
+// (-1 is used to mean all bits set).
+def : Pat<(i1 -1), (CRSET)>;
+
+// i1 extensions, implemented in terms of isel.
+def : Pat<(i32 (zext i1:$in)),
+ (SELECT_I4 $in, (LI 1), (LI 0))>;
+def : Pat<(i32 (sext i1:$in)),
+ (SELECT_I4 $in, (LI -1), (LI 0))>;
+
+def : Pat<(i64 (zext i1:$in)),
+ (SELECT_I8 $in, (LI8 1), (LI8 0))>;
+def : Pat<(i64 (sext i1:$in)),
+ (SELECT_I8 $in, (LI8 -1), (LI8 0))>;
+
+// FIXME: We should choose either a zext or a sext based on other constants
+// already around.
+def : Pat<(i32 (anyext i1:$in)),
+ (SELECT_I4 $in, (LI 1), (LI 0))>;
+def : Pat<(i64 (anyext i1:$in)),
+ (SELECT_I8 $in, (LI8 1), (LI8 0))>;
+
+// match setcc on i1 variables.
+def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETLT)),
+ (CRANDC $s2, $s1)>;
+def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETULT)),
+ (CRANDC $s2, $s1)>;
+def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETLE)),
+ (CRORC $s2, $s1)>;
+def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETULE)),
+ (CRORC $s2, $s1)>;
+def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETEQ)),
+ (CREQV $s1, $s2)>;
+def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETGE)),
+ (CRORC $s1, $s2)>;
+def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETUGE)),
+ (CRORC $s1, $s2)>;
+def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETGT)),
+ (CRANDC $s1, $s2)>;
+def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETUGT)),
+ (CRANDC $s1, $s2)>;
+def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETNE)),
+ (CRXOR $s1, $s2)>;
+
+// match setcc on non-i1 (non-vector) variables. Note that SETUEQ, SETOGE,
+// SETOLE, SETONE, SETULT and SETUGT should be expanded by legalize for
+// floating-point types.
+
+multiclass CRNotPat<dag pattern, dag result> {
+ def : Pat<pattern, (crnot result)>;
+ def : Pat<(not pattern), result>;
+
+ // We can also fold the crnot into an extension:
+ def : Pat<(i32 (zext pattern)),
+ (SELECT_I4 result, (LI 0), (LI 1))>;
+ def : Pat<(i32 (sext pattern)),
+ (SELECT_I4 result, (LI 0), (LI -1))>;
+
+ // We can also fold the crnot into an extension:
+ def : Pat<(i64 (zext pattern)),
+ (SELECT_I8 result, (LI8 0), (LI8 1))>;
+ def : Pat<(i64 (sext pattern)),
+ (SELECT_I8 result, (LI8 0), (LI8 -1))>;
+
+ // FIXME: We should choose either a zext or a sext based on other constants
+ // already around.
+ def : Pat<(i32 (anyext pattern)),
+ (SELECT_I4 result, (LI 0), (LI 1))>;
+
+ def : Pat<(i64 (anyext pattern)),
+ (SELECT_I8 result, (LI8 0), (LI8 1))>;
+}
+
+// FIXME: Because of what seems like a bug in TableGen's type-inference code,
+// we need to write imm:$imm in the output patterns below, not just $imm, or
+// else the resulting matcher will not correctly add the immediate operand
+// (making it a register operand instead).
+
+// extended SETCC.
+multiclass ExtSetCCPat<CondCode cc, PatFrag pfrag,
+ OutPatFrag rfrag, OutPatFrag rfrag8> {
+ def : Pat<(i32 (zext (i1 (pfrag i32:$s1, cc)))),
+ (rfrag $s1)>;
+ def : Pat<(i64 (zext (i1 (pfrag i64:$s1, cc)))),
+ (rfrag8 $s1)>;
+ def : Pat<(i64 (zext (i1 (pfrag i32:$s1, cc)))),
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (rfrag $s1), sub_32)>;
+ def : Pat<(i32 (zext (i1 (pfrag i64:$s1, cc)))),
+ (EXTRACT_SUBREG (rfrag8 $s1), sub_32)>;
+
+ def : Pat<(i32 (anyext (i1 (pfrag i32:$s1, cc)))),
+ (rfrag $s1)>;
+ def : Pat<(i64 (anyext (i1 (pfrag i64:$s1, cc)))),
+ (rfrag8 $s1)>;
+ def : Pat<(i64 (anyext (i1 (pfrag i32:$s1, cc)))),
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (rfrag $s1), sub_32)>;
+ def : Pat<(i32 (anyext (i1 (pfrag i64:$s1, cc)))),
+ (EXTRACT_SUBREG (rfrag8 $s1), sub_32)>;
+}
+
+// Note that we do all inversions below with i(32|64)not, instead of using
+// (xori x, 1) because on the A2 nor has single-cycle latency while xori
+// has 2-cycle latency.
+
+defm : ExtSetCCPat<SETEQ,
+ PatFrag<(ops node:$in, node:$cc),
+ (setcc $in, 0, $cc)>,
+ OutPatFrag<(ops node:$in),
+ (RLWINM (CNTLZW $in), 27, 31, 31)>,
+ OutPatFrag<(ops node:$in),
+ (RLDICL (CNTLZD $in), 58, 63)> >;
+
+defm : ExtSetCCPat<SETNE,
+ PatFrag<(ops node:$in, node:$cc),
+ (setcc $in, 0, $cc)>,
+ OutPatFrag<(ops node:$in),
+ (RLWINM (i32not (CNTLZW $in)), 27, 31, 31)>,
+ OutPatFrag<(ops node:$in),
+ (RLDICL (i64not (CNTLZD $in)), 58, 63)> >;
+
+defm : ExtSetCCPat<SETLT,
+ PatFrag<(ops node:$in, node:$cc),
+ (setcc $in, 0, $cc)>,
+ OutPatFrag<(ops node:$in),
+ (RLWINM $in, 1, 31, 31)>,
+ OutPatFrag<(ops node:$in),
+ (RLDICL $in, 1, 63)> >;
+
+defm : ExtSetCCPat<SETGE,
+ PatFrag<(ops node:$in, node:$cc),
+ (setcc $in, 0, $cc)>,
+ OutPatFrag<(ops node:$in),
+ (RLWINM (i32not $in), 1, 31, 31)>,
+ OutPatFrag<(ops node:$in),
+ (RLDICL (i64not $in), 1, 63)> >;
+
+defm : ExtSetCCPat<SETGT,
+ PatFrag<(ops node:$in, node:$cc),
+ (setcc $in, 0, $cc)>,
+ OutPatFrag<(ops node:$in),
+ (RLWINM (ANDC (NEG $in), $in), 1, 31, 31)>,
+ OutPatFrag<(ops node:$in),
+ (RLDICL (ANDC8 (NEG8 $in), $in), 1, 63)> >;
+
+defm : ExtSetCCPat<SETLE,
+ PatFrag<(ops node:$in, node:$cc),
+ (setcc $in, 0, $cc)>,
+ OutPatFrag<(ops node:$in),
+ (RLWINM (ORC $in, (NEG $in)), 1, 31, 31)>,
+ OutPatFrag<(ops node:$in),
+ (RLDICL (ORC8 $in, (NEG8 $in)), 1, 63)> >;
+
+defm : ExtSetCCPat<SETLT,
+ PatFrag<(ops node:$in, node:$cc),
+ (setcc $in, -1, $cc)>,
+ OutPatFrag<(ops node:$in),
+ (RLWINM (AND $in, (ADDI $in, 1)), 1, 31, 31)>,
+ OutPatFrag<(ops node:$in),
+ (RLDICL (AND8 $in, (ADDI8 $in, 1)), 1, 63)> >;
+
+defm : ExtSetCCPat<SETGE,
+ PatFrag<(ops node:$in, node:$cc),
+ (setcc $in, -1, $cc)>,
+ OutPatFrag<(ops node:$in),
+ (RLWINM (NAND $in, (ADDI $in, 1)), 1, 31, 31)>,
+ OutPatFrag<(ops node:$in),
+ (RLDICL (NAND8 $in, (ADDI8 $in, 1)), 1, 63)> >;
+
+defm : ExtSetCCPat<SETGT,
+ PatFrag<(ops node:$in, node:$cc),
+ (setcc $in, -1, $cc)>,
+ OutPatFrag<(ops node:$in),
+ (RLWINM (i32not $in), 1, 31, 31)>,
+ OutPatFrag<(ops node:$in),
+ (RLDICL (i64not $in), 1, 63)> >;
+
+defm : ExtSetCCPat<SETLE,
+ PatFrag<(ops node:$in, node:$cc),
+ (setcc $in, -1, $cc)>,
+ OutPatFrag<(ops node:$in),
+ (RLWINM $in, 1, 31, 31)>,
+ OutPatFrag<(ops node:$in),
+ (RLDICL $in, 1, 63)> >;
+
+// SETCC for i32.
+def : Pat<(i1 (setcc i32:$s1, immZExt16:$imm, SETULT)),
+ (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_lt)>;
+def : Pat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETLT)),
+ (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_lt)>;
+def : Pat<(i1 (setcc i32:$s1, immZExt16:$imm, SETUGT)),
+ (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_gt)>;
+def : Pat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETGT)),
+ (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_gt)>;
+def : Pat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETEQ)),
+ (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_eq)>;
+def : Pat<(i1 (setcc i32:$s1, immZExt16:$imm, SETEQ)),
+ (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_eq)>;
+
+// For non-equality comparisons, the default code would materialize the
+// constant, then compare against it, like this:
+// lis r2, 4660
+// ori r2, r2, 22136
+// cmpw cr0, r3, r2
+// beq cr0,L6
+// Since we are just comparing for equality, we can emit this instead:
+// xoris r0,r3,0x1234
+// cmplwi cr0,r0,0x5678
+// beq cr0,L6
+
+def : Pat<(i1 (setcc i32:$s1, imm:$imm, SETEQ)),
+ (EXTRACT_SUBREG (CMPLWI (XORIS $s1, (HI16 imm:$imm)),
+ (LO16 imm:$imm)), sub_eq)>;
+
+defm : CRNotPat<(i1 (setcc i32:$s1, immZExt16:$imm, SETUGE)),
+ (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_lt)>;
+defm : CRNotPat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETGE)),
+ (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_lt)>;
+defm : CRNotPat<(i1 (setcc i32:$s1, immZExt16:$imm, SETULE)),
+ (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_gt)>;
+defm : CRNotPat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETLE)),
+ (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_gt)>;
+defm : CRNotPat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETNE)),
+ (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_eq)>;
+defm : CRNotPat<(i1 (setcc i32:$s1, immZExt16:$imm, SETNE)),
+ (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_eq)>;
+
+defm : CRNotPat<(i1 (setcc i32:$s1, imm:$imm, SETNE)),
+ (EXTRACT_SUBREG (CMPLWI (XORIS $s1, (HI16 imm:$imm)),
+ (LO16 imm:$imm)), sub_eq)>;
+
+def : Pat<(i1 (setcc i32:$s1, i32:$s2, SETULT)),
+ (EXTRACT_SUBREG (CMPLW $s1, $s2), sub_lt)>;
+def : Pat<(i1 (setcc i32:$s1, i32:$s2, SETLT)),
+ (EXTRACT_SUBREG (CMPW $s1, $s2), sub_lt)>;
+def : Pat<(i1 (setcc i32:$s1, i32:$s2, SETUGT)),
+ (EXTRACT_SUBREG (CMPLW $s1, $s2), sub_gt)>;
+def : Pat<(i1 (setcc i32:$s1, i32:$s2, SETGT)),
+ (EXTRACT_SUBREG (CMPW $s1, $s2), sub_gt)>;
+def : Pat<(i1 (setcc i32:$s1, i32:$s2, SETEQ)),
+ (EXTRACT_SUBREG (CMPW $s1, $s2), sub_eq)>;
+
+defm : CRNotPat<(i1 (setcc i32:$s1, i32:$s2, SETUGE)),
+ (EXTRACT_SUBREG (CMPLW $s1, $s2), sub_lt)>;
+defm : CRNotPat<(i1 (setcc i32:$s1, i32:$s2, SETGE)),
+ (EXTRACT_SUBREG (CMPW $s1, $s2), sub_lt)>;
+defm : CRNotPat<(i1 (setcc i32:$s1, i32:$s2, SETULE)),
+ (EXTRACT_SUBREG (CMPLW $s1, $s2), sub_gt)>;
+defm : CRNotPat<(i1 (setcc i32:$s1, i32:$s2, SETLE)),
+ (EXTRACT_SUBREG (CMPW $s1, $s2), sub_gt)>;
+defm : CRNotPat<(i1 (setcc i32:$s1, i32:$s2, SETNE)),
+ (EXTRACT_SUBREG (CMPW $s1, $s2), sub_eq)>;
+
+// SETCC for i64.
+def : Pat<(i1 (setcc i64:$s1, immZExt16:$imm, SETULT)),
+ (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_lt)>;
+def : Pat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETLT)),
+ (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_lt)>;
+def : Pat<(i1 (setcc i64:$s1, immZExt16:$imm, SETUGT)),
+ (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_gt)>;
+def : Pat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETGT)),
+ (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_gt)>;
+def : Pat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETEQ)),
+ (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_eq)>;
+def : Pat<(i1 (setcc i64:$s1, immZExt16:$imm, SETEQ)),
+ (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_eq)>;
+
+// For non-equality comparisons, the default code would materialize the
+// constant, then compare against it, like this:
+// lis r2, 4660
+// ori r2, r2, 22136
+// cmpd cr0, r3, r2
+// beq cr0,L6
+// Since we are just comparing for equality, we can emit this instead:
+// xoris r0,r3,0x1234
+// cmpldi cr0,r0,0x5678
+// beq cr0,L6
+
+def : Pat<(i1 (setcc i64:$s1, imm64ZExt32:$imm, SETEQ)),
+ (EXTRACT_SUBREG (CMPLDI (XORIS8 $s1, (HI16 imm:$imm)),
+ (LO16 imm:$imm)), sub_eq)>;
+
+defm : CRNotPat<(i1 (setcc i64:$s1, immZExt16:$imm, SETUGE)),
+ (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_lt)>;
+defm : CRNotPat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETGE)),
+ (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_lt)>;
+defm : CRNotPat<(i1 (setcc i64:$s1, immZExt16:$imm, SETULE)),
+ (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_gt)>;
+defm : CRNotPat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETLE)),
+ (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_gt)>;
+defm : CRNotPat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETNE)),
+ (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_eq)>;
+defm : CRNotPat<(i1 (setcc i64:$s1, immZExt16:$imm, SETNE)),
+ (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_eq)>;
+
+defm : CRNotPat<(i1 (setcc i64:$s1, imm64ZExt32:$imm, SETNE)),
+ (EXTRACT_SUBREG (CMPLDI (XORIS8 $s1, (HI16 imm:$imm)),
+ (LO16 imm:$imm)), sub_eq)>;
+
+def : Pat<(i1 (setcc i64:$s1, i64:$s2, SETULT)),
+ (EXTRACT_SUBREG (CMPLD $s1, $s2), sub_lt)>;
+def : Pat<(i1 (setcc i64:$s1, i64:$s2, SETLT)),
+ (EXTRACT_SUBREG (CMPD $s1, $s2), sub_lt)>;
+def : Pat<(i1 (setcc i64:$s1, i64:$s2, SETUGT)),
+ (EXTRACT_SUBREG (CMPLD $s1, $s2), sub_gt)>;
+def : Pat<(i1 (setcc i64:$s1, i64:$s2, SETGT)),
+ (EXTRACT_SUBREG (CMPD $s1, $s2), sub_gt)>;
+def : Pat<(i1 (setcc i64:$s1, i64:$s2, SETEQ)),
+ (EXTRACT_SUBREG (CMPD $s1, $s2), sub_eq)>;
+
+defm : CRNotPat<(i1 (setcc i64:$s1, i64:$s2, SETUGE)),
+ (EXTRACT_SUBREG (CMPLD $s1, $s2), sub_lt)>;
+defm : CRNotPat<(i1 (setcc i64:$s1, i64:$s2, SETGE)),
+ (EXTRACT_SUBREG (CMPD $s1, $s2), sub_lt)>;
+defm : CRNotPat<(i1 (setcc i64:$s1, i64:$s2, SETULE)),
+ (EXTRACT_SUBREG (CMPLD $s1, $s2), sub_gt)>;
+defm : CRNotPat<(i1 (setcc i64:$s1, i64:$s2, SETLE)),
+ (EXTRACT_SUBREG (CMPD $s1, $s2), sub_gt)>;
+defm : CRNotPat<(i1 (setcc i64:$s1, i64:$s2, SETNE)),
+ (EXTRACT_SUBREG (CMPD $s1, $s2), sub_eq)>;
+
+// SETCC for f32.
+def : Pat<(i1 (setcc f32:$s1, f32:$s2, SETOLT)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_lt)>;
+def : Pat<(i1 (setcc f32:$s1, f32:$s2, SETLT)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_lt)>;
+def : Pat<(i1 (setcc f32:$s1, f32:$s2, SETOGT)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_gt)>;
+def : Pat<(i1 (setcc f32:$s1, f32:$s2, SETGT)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_gt)>;
+def : Pat<(i1 (setcc f32:$s1, f32:$s2, SETOEQ)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_eq)>;
+def : Pat<(i1 (setcc f32:$s1, f32:$s2, SETEQ)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_eq)>;
+def : Pat<(i1 (setcc f32:$s1, f32:$s2, SETUO)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_un)>;
+
+defm : CRNotPat<(i1 (setcc f32:$s1, f32:$s2, SETUGE)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_lt)>;
+defm : CRNotPat<(i1 (setcc f32:$s1, f32:$s2, SETGE)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_lt)>;
+defm : CRNotPat<(i1 (setcc f32:$s1, f32:$s2, SETULE)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_gt)>;
+defm : CRNotPat<(i1 (setcc f32:$s1, f32:$s2, SETLE)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_gt)>;
+defm : CRNotPat<(i1 (setcc f32:$s1, f32:$s2, SETUNE)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_eq)>;
+defm : CRNotPat<(i1 (setcc f32:$s1, f32:$s2, SETNE)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_eq)>;
+defm : CRNotPat<(i1 (setcc f32:$s1, f32:$s2, SETO)),
+ (EXTRACT_SUBREG (FCMPUS $s1, $s2), sub_un)>;
+
+// SETCC for f64.
+def : Pat<(i1 (setcc f64:$s1, f64:$s2, SETOLT)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_lt)>;
+def : Pat<(i1 (setcc f64:$s1, f64:$s2, SETLT)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_lt)>;
+def : Pat<(i1 (setcc f64:$s1, f64:$s2, SETOGT)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_gt)>;
+def : Pat<(i1 (setcc f64:$s1, f64:$s2, SETGT)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_gt)>;
+def : Pat<(i1 (setcc f64:$s1, f64:$s2, SETOEQ)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_eq)>;
+def : Pat<(i1 (setcc f64:$s1, f64:$s2, SETEQ)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_eq)>;
+def : Pat<(i1 (setcc f64:$s1, f64:$s2, SETUO)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_un)>;
+
+defm : CRNotPat<(i1 (setcc f64:$s1, f64:$s2, SETUGE)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_lt)>;
+defm : CRNotPat<(i1 (setcc f64:$s1, f64:$s2, SETGE)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_lt)>;
+defm : CRNotPat<(i1 (setcc f64:$s1, f64:$s2, SETULE)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_gt)>;
+defm : CRNotPat<(i1 (setcc f64:$s1, f64:$s2, SETLE)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_gt)>;
+defm : CRNotPat<(i1 (setcc f64:$s1, f64:$s2, SETUNE)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_eq)>;
+defm : CRNotPat<(i1 (setcc f64:$s1, f64:$s2, SETNE)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_eq)>;
+defm : CRNotPat<(i1 (setcc f64:$s1, f64:$s2, SETO)),
+ (EXTRACT_SUBREG (FCMPUD $s1, $s2), sub_un)>;
+
+// match select on i1 variables:
+def : Pat<(i1 (select i1:$cond, i1:$tval, i1:$fval)),
+ (CROR (CRAND $cond , $tval),
+ (CRAND (crnot $cond), $fval))>;
+
+// match selectcc on i1 variables:
+// select (lhs == rhs), tval, fval is:
+// ((lhs == rhs) & tval) | (!(lhs == rhs) & fval)
+def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETLT)),
+ (CROR (CRAND (CRANDC $rhs, $lhs), $tval),
+ (CRAND (CRORC $lhs, $rhs), $fval))>;
+def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETLE)),
+ (CROR (CRAND (CRORC $rhs, $lhs), $tval),
+ (CRAND (CRANDC $lhs, $rhs), $fval))>;
+def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETEQ)),
+ (CROR (CRAND (CREQV $lhs, $rhs), $tval),
+ (CRAND (CRXOR $lhs, $rhs), $fval))>;
+def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETGE)),
+ (CROR (CRAND (CRORC $lhs, $rhs), $tval),
+ (CRAND (CRANDC $rhs, $lhs), $fval))>;
+def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETGT)),
+ (CROR (CRAND (CRANDC $lhs, $rhs), $tval),
+ (CRAND (CRORC $rhs, $lhs), $fval))>;
+def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETNE)),
+ (CROR (CRAND (CREQV $lhs, $rhs), $fval),
+ (CRAND (CRXOR $lhs, $rhs), $tval))>;
+
+// match selectcc on i1 variables with non-i1 output.
+def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETLT)),
+ (SELECT_I4 (CRANDC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETLE)),
+ (SELECT_I4 (CRORC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETEQ)),
+ (SELECT_I4 (CREQV $lhs, $rhs), $tval, $fval)>;
+def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETGE)),
+ (SELECT_I4 (CRORC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETGT)),
+ (SELECT_I4 (CRANDC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETNE)),
+ (SELECT_I4 (CRXOR $lhs, $rhs), $tval, $fval)>;
+
+def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETLT)),
+ (SELECT_I8 (CRANDC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETLE)),
+ (SELECT_I8 (CRORC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETEQ)),
+ (SELECT_I8 (CREQV $lhs, $rhs), $tval, $fval)>;
+def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETGE)),
+ (SELECT_I8 (CRORC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETGT)),
+ (SELECT_I8 (CRANDC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETNE)),
+ (SELECT_I8 (CRXOR $lhs, $rhs), $tval, $fval)>;
+
+def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETLT)),
+ (SELECT_F4 (CRANDC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETLE)),
+ (SELECT_F4 (CRORC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETEQ)),
+ (SELECT_F4 (CREQV $lhs, $rhs), $tval, $fval)>;
+def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETGE)),
+ (SELECT_F4 (CRORC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETGT)),
+ (SELECT_F4 (CRANDC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETNE)),
+ (SELECT_F4 (CRXOR $lhs, $rhs), $tval, $fval)>;
+
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETLT)),
+ (SELECT_F8 (CRANDC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETLE)),
+ (SELECT_F8 (CRORC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETEQ)),
+ (SELECT_F8 (CREQV $lhs, $rhs), $tval, $fval)>;
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETGE)),
+ (SELECT_F8 (CRORC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETGT)),
+ (SELECT_F8 (CRANDC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETNE)),
+ (SELECT_F8 (CRXOR $lhs, $rhs), $tval, $fval)>;
+
+def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETLT)),
+ (SELECT_VRRC (CRANDC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETLE)),
+ (SELECT_VRRC (CRORC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETEQ)),
+ (SELECT_VRRC (CREQV $lhs, $rhs), $tval, $fval)>;
+def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETGE)),
+ (SELECT_VRRC (CRORC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETGT)),
+ (SELECT_VRRC (CRANDC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETNE)),
+ (SELECT_VRRC (CRXOR $lhs, $rhs), $tval, $fval)>;
+
+let usesCustomInserter = 1 in {
+def ANDIo_1_EQ_BIT : Pseudo<(outs crbitrc:$dst), (ins gprc:$in),
+ "#ANDIo_1_EQ_BIT",
+ [(set i1:$dst, (trunc (not i32:$in)))]>;
+def ANDIo_1_GT_BIT : Pseudo<(outs crbitrc:$dst), (ins gprc:$in),
+ "#ANDIo_1_GT_BIT",
+ [(set i1:$dst, (trunc i32:$in))]>;
+
+def ANDIo_1_EQ_BIT8 : Pseudo<(outs crbitrc:$dst), (ins g8rc:$in),
+ "#ANDIo_1_EQ_BIT8",
+ [(set i1:$dst, (trunc (not i64:$in)))]>;
+def ANDIo_1_GT_BIT8 : Pseudo<(outs crbitrc:$dst), (ins g8rc:$in),
+ "#ANDIo_1_GT_BIT8",
+ [(set i1:$dst, (trunc i64:$in))]>;
+}
+
+def : Pat<(i1 (not (trunc i32:$in))),
+ (ANDIo_1_EQ_BIT $in)>;
+def : Pat<(i1 (not (trunc i64:$in))),
+ (ANDIo_1_EQ_BIT8 $in)>;
+
+//===----------------------------------------------------------------------===//
+// PowerPC Instructions used for assembler/disassembler only
+//
+
+def ISYNC : XLForm_2_ext<19, 150, 0, 0, 0, (outs), (ins),
+ "isync", IIC_SprISYNC, []>;
+
+def ICBI : XForm_1a<31, 982, (outs), (ins memrr:$src),
+ "icbi $src", IIC_LdStICBI, []>;
+
+def EIEIO : XForm_24_eieio<31, 854, (outs), (ins),
+ "eieio", IIC_LdStLoad, []>;
+
+def WAIT : XForm_24_sync<31, 62, (outs), (ins i32imm:$L),
+ "wait $L", IIC_LdStLoad, []>;
+
+def MTMSR: XForm_mtmsr<31, 146, (outs), (ins gprc:$RS, i32imm:$L),
+ "mtmsr $RS, $L", IIC_SprMTMSR>;
+
+def MFMSR : XForm_rs<31, 83, (outs gprc:$RT), (ins),
+ "mfmsr $RT", IIC_SprMFMSR, []>;
+
+def MTMSRD : XForm_mtmsr<31, 178, (outs), (ins gprc:$RS, i32imm:$L),
+ "mtmsrd $RS, $L", IIC_SprMTMSRD>;
+
+def SLBIE : XForm_16b<31, 434, (outs), (ins gprc:$RB),
+ "slbie $RB", IIC_SprSLBIE, []>;
+
+def SLBMTE : XForm_26<31, 402, (outs), (ins gprc:$RS, gprc:$RB),
+ "slbmte $RS, $RB", IIC_SprSLBMTE, []>;
+
+def SLBMFEE : XForm_26<31, 915, (outs gprc:$RT), (ins gprc:$RB),
+ "slbmfee $RT, $RB", IIC_SprSLBMFEE, []>;
+
+def SLBIA : XForm_0<31, 498, (outs), (ins), "slbia", IIC_SprSLBIA, []>;
+
+def TLBSYNC : XForm_0<31, 566, (outs), (ins),
+ "tlbsync", IIC_SprTLBSYNC, []>;
+
+def TLBIEL : XForm_16b<31, 274, (outs), (ins gprc:$RB),
+ "tlbiel $RB", IIC_SprTLBIEL, []>;
+
+def TLBIE : XForm_26<31, 306, (outs), (ins gprc:$RS, gprc:$RB),
+ "tlbie $RB,$RS", IIC_SprTLBIE, []>;
+
+//===----------------------------------------------------------------------===//
+// PowerPC Assembler Instruction Aliases
+//
+
+// Pseudo-instructions for alternate assembly syntax (never used by codegen).
+// These are aliases that require C++ handling to convert to the target
+// instruction, while InstAliases can be handled directly by tblgen.
+class PPCAsmPseudo<string asm, dag iops>
+ : Instruction {
+ let Namespace = "PPC";
+ bit PPC64 = 0; // Default value, override with isPPC64
+
+ let OutOperandList = (outs);
+ let InOperandList = iops;
+ let Pattern = [];
+ let AsmString = asm;
+ let isAsmParserOnly = 1;
+ let isPseudo = 1;
+}
+
+def : InstAlias<"sc", (SC 0)>;
+
+def : InstAlias<"sync", (SYNC 0)>, Requires<[IsNotBookE]>;
+def : InstAlias<"msync", (SYNC 0)>, Requires<[IsNotBookE]>;
+def : InstAlias<"lwsync", (SYNC 1)>, Requires<[IsNotBookE]>;
+def : InstAlias<"ptesync", (SYNC 2)>, Requires<[IsNotBookE]>;
+
+def : InstAlias<"wait", (WAIT 0)>;
+def : InstAlias<"waitrsv", (WAIT 1)>;
+def : InstAlias<"waitimpl", (WAIT 2)>;
+
+def : InstAlias<"crset $bx", (CREQV crbitrc:$bx, crbitrc:$bx, crbitrc:$bx)>;
+def : InstAlias<"crclr $bx", (CRXOR crbitrc:$bx, crbitrc:$bx, crbitrc:$bx)>;
+def : InstAlias<"crmove $bx, $by", (CROR crbitrc:$bx, crbitrc:$by, crbitrc:$by)>;
+def : InstAlias<"crnot $bx, $by", (CRNOR crbitrc:$bx, crbitrc:$by, crbitrc:$by)>;
+
+def : InstAlias<"mtxer $Rx", (MTSPR 1, gprc:$Rx)>;
+def : InstAlias<"mfxer $Rx", (MFSPR gprc:$Rx, 1)>;
+
+def : InstAlias<"mftb $Rx", (MFTB gprc:$Rx, 268)>;
+def : InstAlias<"mftbu $Rx", (MFTB gprc:$Rx, 269)>;
+
+def : InstAlias<"xnop", (XORI R0, R0, 0)>;
+
+def : InstAlias<"mr $rA, $rB", (OR8 g8rc:$rA, g8rc:$rB, g8rc:$rB)>;
+def : InstAlias<"mr. $rA, $rB", (OR8o g8rc:$rA, g8rc:$rB, g8rc:$rB)>;
+
+def : InstAlias<"not $rA, $rB", (NOR8 g8rc:$rA, g8rc:$rB, g8rc:$rB)>;
+def : InstAlias<"not. $rA, $rB", (NOR8o g8rc:$rA, g8rc:$rB, g8rc:$rB)>;
+
+def : InstAlias<"mtcr $rA", (MTCRF8 255, g8rc:$rA)>;
+
+def LAx : PPCAsmPseudo<"la $rA, $addr", (ins gprc:$rA, memri:$addr)>;
+
+def SUBI : PPCAsmPseudo<"subi $rA, $rB, $imm",
+ (ins gprc:$rA, gprc:$rB, s16imm:$imm)>;
+def SUBIS : PPCAsmPseudo<"subis $rA, $rB, $imm",
+ (ins gprc:$rA, gprc:$rB, s16imm:$imm)>;
+def SUBIC : PPCAsmPseudo<"subic $rA, $rB, $imm",
+ (ins gprc:$rA, gprc:$rB, s16imm:$imm)>;
+def SUBICo : PPCAsmPseudo<"subic. $rA, $rB, $imm",
+ (ins gprc:$rA, gprc:$rB, s16imm:$imm)>;
+
+def : InstAlias<"sub $rA, $rB, $rC", (SUBF8 g8rc:$rA, g8rc:$rC, g8rc:$rB)>;
+def : InstAlias<"sub. $rA, $rB, $rC", (SUBF8o g8rc:$rA, g8rc:$rC, g8rc:$rB)>;
+def : InstAlias<"subc $rA, $rB, $rC", (SUBFC8 g8rc:$rA, g8rc:$rC, g8rc:$rB)>;
+def : InstAlias<"subc. $rA, $rB, $rC", (SUBFC8o g8rc:$rA, g8rc:$rC, g8rc:$rB)>;
+
+def : InstAlias<"mtmsrd $RS", (MTMSRD gprc:$RS, 0)>;
+def : InstAlias<"mtmsr $RS", (MTMSR gprc:$RS, 0)>;
+
+def : InstAlias<"mfsprg $RT, 0", (MFSPR gprc:$RT, 272)>;
+def : InstAlias<"mfsprg $RT, 1", (MFSPR gprc:$RT, 273)>;
+def : InstAlias<"mfsprg $RT, 2", (MFSPR gprc:$RT, 274)>;
+def : InstAlias<"mfsprg $RT, 3", (MFSPR gprc:$RT, 275)>;
+
+def : InstAlias<"mfsprg0 $RT", (MFSPR gprc:$RT, 272)>;
+def : InstAlias<"mfsprg1 $RT", (MFSPR gprc:$RT, 273)>;
+def : InstAlias<"mfsprg2 $RT", (MFSPR gprc:$RT, 274)>;
+def : InstAlias<"mfsprg3 $RT", (MFSPR gprc:$RT, 275)>;
+
+def : InstAlias<"mtsprg 0, $RT", (MTSPR 272, gprc:$RT)>;
+def : InstAlias<"mtsprg 1, $RT", (MTSPR 273, gprc:$RT)>;
+def : InstAlias<"mtsprg 2, $RT", (MTSPR 274, gprc:$RT)>;
+def : InstAlias<"mtsprg 3, $RT", (MTSPR 275, gprc:$RT)>;
+
+def : InstAlias<"mtsprg0 $RT", (MTSPR 272, gprc:$RT)>;
+def : InstAlias<"mtsprg1 $RT", (MTSPR 273, gprc:$RT)>;
+def : InstAlias<"mtsprg2 $RT", (MTSPR 274, gprc:$RT)>;
+def : InstAlias<"mtsprg3 $RT", (MTSPR 275, gprc:$RT)>;
+
+def : InstAlias<"mtasr $RS", (MTSPR 280, gprc:$RS)>;
+
+def : InstAlias<"mfdec $RT", (MFSPR gprc:$RT, 22)>;
+def : InstAlias<"mtdec $RT", (MTSPR 22, gprc:$RT)>;
+
+def : InstAlias<"mfpvr $RT", (MFSPR gprc:$RT, 287)>;
+
+def : InstAlias<"mfsdr1 $RT", (MFSPR gprc:$RT, 25)>;
+def : InstAlias<"mtsdr1 $RT", (MTSPR 25, gprc:$RT)>;
+
+def : InstAlias<"mfsrr0 $RT", (MFSPR gprc:$RT, 26)>;
+def : InstAlias<"mfsrr1 $RT", (MFSPR gprc:$RT, 27)>;
+def : InstAlias<"mtsrr0 $RT", (MTSPR 26, gprc:$RT)>;
+def : InstAlias<"mtsrr1 $RT", (MTSPR 27, gprc:$RT)>;
+
+def : InstAlias<"tlbie $RB", (TLBIE R0, gprc:$RB)>;
+
+def EXTLWI : PPCAsmPseudo<"extlwi $rA, $rS, $n, $b",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>;
+def EXTLWIo : PPCAsmPseudo<"extlwi. $rA, $rS, $n, $b",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>;
+def EXTRWI : PPCAsmPseudo<"extrwi $rA, $rS, $n, $b",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>;
+def EXTRWIo : PPCAsmPseudo<"extrwi. $rA, $rS, $n, $b",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>;
+def INSLWI : PPCAsmPseudo<"inslwi $rA, $rS, $n, $b",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>;
+def INSLWIo : PPCAsmPseudo<"inslwi. $rA, $rS, $n, $b",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>;
+def INSRWI : PPCAsmPseudo<"insrwi $rA, $rS, $n, $b",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>;
+def INSRWIo : PPCAsmPseudo<"insrwi. $rA, $rS, $n, $b",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>;
+def ROTRWI : PPCAsmPseudo<"rotrwi $rA, $rS, $n",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n)>;
+def ROTRWIo : PPCAsmPseudo<"rotrwi. $rA, $rS, $n",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n)>;
+def SLWI : PPCAsmPseudo<"slwi $rA, $rS, $n",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n)>;
+def SLWIo : PPCAsmPseudo<"slwi. $rA, $rS, $n",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n)>;
+def SRWI : PPCAsmPseudo<"srwi $rA, $rS, $n",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n)>;
+def SRWIo : PPCAsmPseudo<"srwi. $rA, $rS, $n",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n)>;
+def CLRRWI : PPCAsmPseudo<"clrrwi $rA, $rS, $n",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n)>;
+def CLRRWIo : PPCAsmPseudo<"clrrwi. $rA, $rS, $n",
+ (ins gprc:$rA, gprc:$rS, u5imm:$n)>;
+def CLRLSLWI : PPCAsmPseudo<"clrlslwi $rA, $rS, $b, $n",
+ (ins gprc:$rA, gprc:$rS, u5imm:$b, u5imm:$n)>;
+def CLRLSLWIo : PPCAsmPseudo<"clrlslwi. $rA, $rS, $b, $n",
+ (ins gprc:$rA, gprc:$rS, u5imm:$b, u5imm:$n)>;
+
+def : InstAlias<"rotlwi $rA, $rS, $n", (RLWINM gprc:$rA, gprc:$rS, u5imm:$n, 0, 31)>;
+def : InstAlias<"rotlwi. $rA, $rS, $n", (RLWINMo gprc:$rA, gprc:$rS, u5imm:$n, 0, 31)>;
+def : InstAlias<"rotlw $rA, $rS, $rB", (RLWNM gprc:$rA, gprc:$rS, gprc:$rB, 0, 31)>;
+def : InstAlias<"rotlw. $rA, $rS, $rB", (RLWNMo gprc:$rA, gprc:$rS, gprc:$rB, 0, 31)>;
+def : InstAlias<"clrlwi $rA, $rS, $n", (RLWINM gprc:$rA, gprc:$rS, 0, u5imm:$n, 31)>;
+def : InstAlias<"clrlwi. $rA, $rS, $n", (RLWINMo gprc:$rA, gprc:$rS, 0, u5imm:$n, 31)>;
+
+def EXTLDI : PPCAsmPseudo<"extldi $rA, $rS, $n, $b",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>;
+def EXTLDIo : PPCAsmPseudo<"extldi. $rA, $rS, $n, $b",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>;
+def EXTRDI : PPCAsmPseudo<"extrdi $rA, $rS, $n, $b",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>;
+def EXTRDIo : PPCAsmPseudo<"extrdi. $rA, $rS, $n, $b",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>;
+def INSRDI : PPCAsmPseudo<"insrdi $rA, $rS, $n, $b",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>;
+def INSRDIo : PPCAsmPseudo<"insrdi. $rA, $rS, $n, $b",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>;
+def ROTRDI : PPCAsmPseudo<"rotrdi $rA, $rS, $n",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>;
+def ROTRDIo : PPCAsmPseudo<"rotrdi. $rA, $rS, $n",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>;
+def SLDI : PPCAsmPseudo<"sldi $rA, $rS, $n",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>;
+def SLDIo : PPCAsmPseudo<"sldi. $rA, $rS, $n",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>;
+def SRDI : PPCAsmPseudo<"srdi $rA, $rS, $n",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>;
+def SRDIo : PPCAsmPseudo<"srdi. $rA, $rS, $n",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>;
+def CLRRDI : PPCAsmPseudo<"clrrdi $rA, $rS, $n",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>;
+def CLRRDIo : PPCAsmPseudo<"clrrdi. $rA, $rS, $n",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>;
+def CLRLSLDI : PPCAsmPseudo<"clrlsldi $rA, $rS, $b, $n",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$b, u6imm:$n)>;
+def CLRLSLDIo : PPCAsmPseudo<"clrlsldi. $rA, $rS, $b, $n",
+ (ins g8rc:$rA, g8rc:$rS, u6imm:$b, u6imm:$n)>;
+
+def : InstAlias<"rotldi $rA, $rS, $n", (RLDICL g8rc:$rA, g8rc:$rS, u6imm:$n, 0)>;
+def : InstAlias<"rotldi. $rA, $rS, $n", (RLDICLo g8rc:$rA, g8rc:$rS, u6imm:$n, 0)>;
+def : InstAlias<"rotld $rA, $rS, $rB", (RLDCL g8rc:$rA, g8rc:$rS, gprc:$rB, 0)>;
+def : InstAlias<"rotld. $rA, $rS, $rB", (RLDCLo g8rc:$rA, g8rc:$rS, gprc:$rB, 0)>;
+def : InstAlias<"clrldi $rA, $rS, $n", (RLDICL g8rc:$rA, g8rc:$rS, 0, u6imm:$n)>;
+def : InstAlias<"clrldi. $rA, $rS, $n", (RLDICLo g8rc:$rA, g8rc:$rS, 0, u6imm:$n)>;
+
+// These generic branch instruction forms are used for the assembler parser only.
+// Defs and Uses are conservative, since we don't know the BO value.
+let PPC970_Unit = 7 in {
+ let Defs = [CTR], Uses = [CTR, RM] in {
+ def gBC : BForm_3<16, 0, 0, (outs),
+ (ins u5imm:$bo, crbitrc:$bi, condbrtarget:$dst),
+ "bc $bo, $bi, $dst">;
+ def gBCA : BForm_3<16, 1, 0, (outs),
+ (ins u5imm:$bo, crbitrc:$bi, abscondbrtarget:$dst),
+ "bca $bo, $bi, $dst">;
+ }
+ let Defs = [LR, CTR], Uses = [CTR, RM] in {
+ def gBCL : BForm_3<16, 0, 1, (outs),
+ (ins u5imm:$bo, crbitrc:$bi, condbrtarget:$dst),
+ "bcl $bo, $bi, $dst">;
+ def gBCLA : BForm_3<16, 1, 1, (outs),
+ (ins u5imm:$bo, crbitrc:$bi, abscondbrtarget:$dst),
+ "bcla $bo, $bi, $dst">;
+ }
+ let Defs = [CTR], Uses = [CTR, LR, RM] in
+ def gBCLR : XLForm_2<19, 16, 0, (outs),
+ (ins u5imm:$bo, crbitrc:$bi, i32imm:$bh),
+ "bclr $bo, $bi, $bh", IIC_BrB, []>;
+ let Defs = [LR, CTR], Uses = [CTR, LR, RM] in
+ def gBCLRL : XLForm_2<19, 16, 1, (outs),
+ (ins u5imm:$bo, crbitrc:$bi, i32imm:$bh),
+ "bclrl $bo, $bi, $bh", IIC_BrB, []>;
+ let Defs = [CTR], Uses = [CTR, LR, RM] in
+ def gBCCTR : XLForm_2<19, 528, 0, (outs),
+ (ins u5imm:$bo, crbitrc:$bi, i32imm:$bh),
+ "bcctr $bo, $bi, $bh", IIC_BrB, []>;
+ let Defs = [LR, CTR], Uses = [CTR, LR, RM] in
+ def gBCCTRL : XLForm_2<19, 528, 1, (outs),
+ (ins u5imm:$bo, crbitrc:$bi, i32imm:$bh),
+ "bcctrl $bo, $bi, $bh", IIC_BrB, []>;
+}
+def : InstAlias<"bclr $bo, $bi", (gBCLR u5imm:$bo, crbitrc:$bi, 0)>;
+def : InstAlias<"bclrl $bo, $bi", (gBCLRL u5imm:$bo, crbitrc:$bi, 0)>;
+def : InstAlias<"bcctr $bo, $bi", (gBCCTR u5imm:$bo, crbitrc:$bi, 0)>;
+def : InstAlias<"bcctrl $bo, $bi", (gBCCTRL u5imm:$bo, crbitrc:$bi, 0)>;
+
+multiclass BranchSimpleMnemonic1<string name, string pm, int bo> {
+ def : InstAlias<"b"#name#pm#" $bi, $dst", (gBC bo, crbitrc:$bi, condbrtarget:$dst)>;
+ def : InstAlias<"b"#name#"a"#pm#" $bi, $dst", (gBCA bo, crbitrc:$bi, abscondbrtarget:$dst)>;
+ def : InstAlias<"b"#name#"lr"#pm#" $bi", (gBCLR bo, crbitrc:$bi, 0)>;
+ def : InstAlias<"b"#name#"l"#pm#" $bi, $dst", (gBCL bo, crbitrc:$bi, condbrtarget:$dst)>;
+ def : InstAlias<"b"#name#"la"#pm#" $bi, $dst", (gBCLA bo, crbitrc:$bi, abscondbrtarget:$dst)>;
+ def : InstAlias<"b"#name#"lrl"#pm#" $bi", (gBCLRL bo, crbitrc:$bi, 0)>;
+}
+multiclass BranchSimpleMnemonic2<string name, string pm, int bo>
+ : BranchSimpleMnemonic1<name, pm, bo> {
+ def : InstAlias<"b"#name#"ctr"#pm#" $bi", (gBCCTR bo, crbitrc:$bi, 0)>;
+ def : InstAlias<"b"#name#"ctrl"#pm#" $bi", (gBCCTRL bo, crbitrc:$bi, 0)>;
+}
+defm : BranchSimpleMnemonic2<"t", "", 12>;
+defm : BranchSimpleMnemonic2<"f", "", 4>;
+defm : BranchSimpleMnemonic2<"t", "-", 14>;
+defm : BranchSimpleMnemonic2<"f", "-", 6>;
+defm : BranchSimpleMnemonic2<"t", "+", 15>;
+defm : BranchSimpleMnemonic2<"f", "+", 7>;
+defm : BranchSimpleMnemonic1<"dnzt", "", 8>;
+defm : BranchSimpleMnemonic1<"dnzf", "", 0>;
+defm : BranchSimpleMnemonic1<"dzt", "", 10>;
+defm : BranchSimpleMnemonic1<"dzf", "", 2>;
+
+multiclass BranchExtendedMnemonicPM<string name, string pm, int bibo> {
+ def : InstAlias<"b"#name#pm#" $cc, $dst",
+ (BCC bibo, crrc:$cc, condbrtarget:$dst)>;
+ def : InstAlias<"b"#name#pm#" $dst",
+ (BCC bibo, CR0, condbrtarget:$dst)>;
+
+ def : InstAlias<"b"#name#"a"#pm#" $cc, $dst",
+ (BCCA bibo, crrc:$cc, abscondbrtarget:$dst)>;
+ def : InstAlias<"b"#name#"a"#pm#" $dst",
+ (BCCA bibo, CR0, abscondbrtarget:$dst)>;
+
+ def : InstAlias<"b"#name#"lr"#pm#" $cc",
+ (BCCLR bibo, crrc:$cc)>;
+ def : InstAlias<"b"#name#"lr"#pm,
+ (BCCLR bibo, CR0)>;
+
+ def : InstAlias<"b"#name#"ctr"#pm#" $cc",
+ (BCCCTR bibo, crrc:$cc)>;
+ def : InstAlias<"b"#name#"ctr"#pm,
+ (BCCCTR bibo, CR0)>;
+
+ def : InstAlias<"b"#name#"l"#pm#" $cc, $dst",
+ (BCCL bibo, crrc:$cc, condbrtarget:$dst)>;
+ def : InstAlias<"b"#name#"l"#pm#" $dst",
+ (BCCL bibo, CR0, condbrtarget:$dst)>;
+
+ def : InstAlias<"b"#name#"la"#pm#" $cc, $dst",
+ (BCCLA bibo, crrc:$cc, abscondbrtarget:$dst)>;
+ def : InstAlias<"b"#name#"la"#pm#" $dst",
+ (BCCLA bibo, CR0, abscondbrtarget:$dst)>;
+
+ def : InstAlias<"b"#name#"lrl"#pm#" $cc",
+ (BCCLRL bibo, crrc:$cc)>;
+ def : InstAlias<"b"#name#"lrl"#pm,
+ (BCCLRL bibo, CR0)>;
+
+ def : InstAlias<"b"#name#"ctrl"#pm#" $cc",
+ (BCCCTRL bibo, crrc:$cc)>;
+ def : InstAlias<"b"#name#"ctrl"#pm,
+ (BCCCTRL bibo, CR0)>;
+}
+multiclass BranchExtendedMnemonic<string name, int bibo> {
+ defm : BranchExtendedMnemonicPM<name, "", bibo>;
+ defm : BranchExtendedMnemonicPM<name, "-", !add(bibo, 2)>;
+ defm : BranchExtendedMnemonicPM<name, "+", !add(bibo, 3)>;
+}
+defm : BranchExtendedMnemonic<"lt", 12>;
+defm : BranchExtendedMnemonic<"gt", 44>;
+defm : BranchExtendedMnemonic<"eq", 76>;
+defm : BranchExtendedMnemonic<"un", 108>;
+defm : BranchExtendedMnemonic<"so", 108>;
+defm : BranchExtendedMnemonic<"ge", 4>;
+defm : BranchExtendedMnemonic<"nl", 4>;
+defm : BranchExtendedMnemonic<"le", 36>;
+defm : BranchExtendedMnemonic<"ng", 36>;
+defm : BranchExtendedMnemonic<"ne", 68>;
+defm : BranchExtendedMnemonic<"nu", 100>;
+defm : BranchExtendedMnemonic<"ns", 100>;
+
+def : InstAlias<"cmpwi $rA, $imm", (CMPWI CR0, gprc:$rA, s16imm:$imm)>;
+def : InstAlias<"cmpw $rA, $rB", (CMPW CR0, gprc:$rA, gprc:$rB)>;
+def : InstAlias<"cmplwi $rA, $imm", (CMPLWI CR0, gprc:$rA, u16imm:$imm)>;
+def : InstAlias<"cmplw $rA, $rB", (CMPLW CR0, gprc:$rA, gprc:$rB)>;
+def : InstAlias<"cmpdi $rA, $imm", (CMPDI CR0, g8rc:$rA, s16imm64:$imm)>;
+def : InstAlias<"cmpd $rA, $rB", (CMPD CR0, g8rc:$rA, g8rc:$rB)>;
+def : InstAlias<"cmpldi $rA, $imm", (CMPLDI CR0, g8rc:$rA, u16imm64:$imm)>;
+def : InstAlias<"cmpld $rA, $rB", (CMPLD CR0, g8rc:$rA, g8rc:$rB)>;
+
+def : InstAlias<"cmpi $bf, 0, $rA, $imm", (CMPWI crrc:$bf, gprc:$rA, s16imm:$imm)>;
+def : InstAlias<"cmp $bf, 0, $rA, $rB", (CMPW crrc:$bf, gprc:$rA, gprc:$rB)>;
+def : InstAlias<"cmpli $bf, 0, $rA, $imm", (CMPLWI crrc:$bf, gprc:$rA, u16imm:$imm)>;
+def : InstAlias<"cmpl $bf, 0, $rA, $rB", (CMPLW crrc:$bf, gprc:$rA, gprc:$rB)>;
+def : InstAlias<"cmpi $bf, 1, $rA, $imm", (CMPDI crrc:$bf, g8rc:$rA, s16imm64:$imm)>;
+def : InstAlias<"cmp $bf, 1, $rA, $rB", (CMPD crrc:$bf, g8rc:$rA, g8rc:$rB)>;
+def : InstAlias<"cmpli $bf, 1, $rA, $imm", (CMPLDI crrc:$bf, g8rc:$rA, u16imm64:$imm)>;
+def : InstAlias<"cmpl $bf, 1, $rA, $rB", (CMPLD crrc:$bf, g8rc:$rA, g8rc:$rB)>;
+
+multiclass TrapExtendedMnemonic<string name, int to> {
+ def : InstAlias<"td"#name#"i $rA, $imm", (TDI to, g8rc:$rA, s16imm:$imm)>;
+ def : InstAlias<"td"#name#" $rA, $rB", (TD to, g8rc:$rA, g8rc:$rB)>;
+ def : InstAlias<"tw"#name#"i $rA, $imm", (TWI to, gprc:$rA, s16imm:$imm)>;
+ def : InstAlias<"tw"#name#" $rA, $rB", (TW to, gprc:$rA, gprc:$rB)>;
+}
+defm : TrapExtendedMnemonic<"lt", 16>;
+defm : TrapExtendedMnemonic<"le", 20>;
+defm : TrapExtendedMnemonic<"eq", 4>;
+defm : TrapExtendedMnemonic<"ge", 12>;
+defm : TrapExtendedMnemonic<"gt", 8>;
+defm : TrapExtendedMnemonic<"nl", 12>;
+defm : TrapExtendedMnemonic<"ne", 24>;
+defm : TrapExtendedMnemonic<"ng", 20>;
+defm : TrapExtendedMnemonic<"llt", 2>;
+defm : TrapExtendedMnemonic<"lle", 6>;
+defm : TrapExtendedMnemonic<"lge", 5>;
+defm : TrapExtendedMnemonic<"lgt", 1>;
+defm : TrapExtendedMnemonic<"lnl", 5>;
+defm : TrapExtendedMnemonic<"lng", 6>;
+defm : TrapExtendedMnemonic<"u", 31>;
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrVSX.td b/contrib/llvm/lib/Target/PowerPC/PPCInstrVSX.td
new file mode 100644
index 0000000..49bcc48
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrVSX.td
@@ -0,0 +1,816 @@
+//===- PPCInstrVSX.td - The PowerPC VSX Extension --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the VSX extension to the PowerPC instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+def PPCRegVSRCAsmOperand : AsmOperandClass {
+ let Name = "RegVSRC"; let PredicateMethod = "isVSRegNumber";
+}
+def vsrc : RegisterOperand<VSRC> {
+ let ParserMatchClass = PPCRegVSRCAsmOperand;
+}
+
+def PPCRegVSFRCAsmOperand : AsmOperandClass {
+ let Name = "RegVSFRC"; let PredicateMethod = "isVSRegNumber";
+}
+def vsfrc : RegisterOperand<VSFRC> {
+ let ParserMatchClass = PPCRegVSFRCAsmOperand;
+}
+
+multiclass XX3Form_Rcr<bits<6> opcode, bits<7> xo, dag OOL, dag IOL,
+ string asmbase, string asmstr, InstrItinClass itin,
+ list<dag> pattern> {
+ let BaseName = asmbase in {
+ def NAME : XX3Form_Rc<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(" ", asmstr)), itin,
+ pattern>;
+ let Defs = [CR6] in
+ def o : XX3Form_Rc<opcode, xo, OOL, IOL,
+ !strconcat(asmbase, !strconcat(". ", asmstr)), itin,
+ []>, isDOT;
+ }
+}
+
+def HasVSX : Predicate<"PPCSubTarget->hasVSX()">;
+let Predicates = [HasVSX] in {
+let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns.
+let neverHasSideEffects = 1 in { // VSX instructions don't have side effects.
+let Uses = [RM] in {
+
+ // Load indexed instructions
+ let mayLoad = 1, canFoldAsLoad = 1 in {
+ def LXSDX : XForm_1<31, 588,
+ (outs vsfrc:$XT), (ins memrr:$src),
+ "lxsdx $XT, $src", IIC_LdStLFD,
+ [(set f64:$XT, (load xoaddr:$src))]>;
+
+ def LXVD2X : XForm_1<31, 844,
+ (outs vsrc:$XT), (ins memrr:$src),
+ "lxvd2x $XT, $src", IIC_LdStLFD,
+ [(set v2f64:$XT, (load xoaddr:$src))]>;
+
+ def LXVDSX : XForm_1<31, 332,
+ (outs vsrc:$XT), (ins memrr:$src),
+ "lxvdsx $XT, $src", IIC_LdStLFD, []>;
+
+ def LXVW4X : XForm_1<31, 780,
+ (outs vsrc:$XT), (ins memrr:$src),
+ "lxvw4x $XT, $src", IIC_LdStLFD, []>;
+ }
+
+ // Store indexed instructions
+ let mayStore = 1 in {
+ def STXSDX : XX1Form<31, 716,
+ (outs), (ins vsfrc:$XT, memrr:$dst),
+ "stxsdx $XT, $dst", IIC_LdStSTFD,
+ [(store f64:$XT, xoaddr:$dst)]>;
+
+ def STXVD2X : XX1Form<31, 972,
+ (outs), (ins vsrc:$XT, memrr:$dst),
+ "stxvd2x $XT, $dst", IIC_LdStSTFD,
+ [(store v2f64:$XT, xoaddr:$dst)]>;
+
+ def STXVW4X : XX1Form<31, 908,
+ (outs), (ins vsrc:$XT, memrr:$dst),
+ "stxvw4x $XT, $dst", IIC_LdStSTFD, []>;
+ }
+
+ // Add/Mul Instructions
+ let isCommutable = 1 in {
+ def XSADDDP : XX3Form<60, 32,
+ (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
+ "xsadddp $XT, $XA, $XB", IIC_VecFP,
+ [(set f64:$XT, (fadd f64:$XA, f64:$XB))]>;
+ def XSMULDP : XX3Form<60, 48,
+ (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
+ "xsmuldp $XT, $XA, $XB", IIC_VecFP,
+ [(set f64:$XT, (fmul f64:$XA, f64:$XB))]>;
+
+ def XVADDDP : XX3Form<60, 96,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvadddp $XT, $XA, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fadd v2f64:$XA, v2f64:$XB))]>;
+
+ def XVADDSP : XX3Form<60, 64,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvaddsp $XT, $XA, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fadd v4f32:$XA, v4f32:$XB))]>;
+
+ def XVMULDP : XX3Form<60, 112,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvmuldp $XT, $XA, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fmul v2f64:$XA, v2f64:$XB))]>;
+
+ def XVMULSP : XX3Form<60, 80,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvmulsp $XT, $XA, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fmul v4f32:$XA, v4f32:$XB))]>;
+ }
+
+ // Subtract Instructions
+ def XSSUBDP : XX3Form<60, 40,
+ (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
+ "xssubdp $XT, $XA, $XB", IIC_VecFP,
+ [(set f64:$XT, (fsub f64:$XA, f64:$XB))]>;
+
+ def XVSUBDP : XX3Form<60, 104,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvsubdp $XT, $XA, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fsub v2f64:$XA, v2f64:$XB))]>;
+ def XVSUBSP : XX3Form<60, 72,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvsubsp $XT, $XA, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fsub v4f32:$XA, v4f32:$XB))]>;
+
+ // FMA Instructions
+ let BaseName = "XSMADDADP" in {
+ let isCommutable = 1 in
+ def XSMADDADP : XX3Form<60, 33,
+ (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
+ "xsmaddadp $XT, $XA, $XB", IIC_VecFP,
+ [(set f64:$XT, (fma f64:$XA, f64:$XB, f64:$XTi))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XSMADDMDP : XX3Form<60, 41,
+ (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
+ "xsmaddmdp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ let BaseName = "XSMSUBADP" in {
+ let isCommutable = 1 in
+ def XSMSUBADP : XX3Form<60, 49,
+ (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
+ "xsmsubadp $XT, $XA, $XB", IIC_VecFP,
+ [(set f64:$XT, (fma f64:$XA, f64:$XB, (fneg f64:$XTi)))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XSMSUBMDP : XX3Form<60, 57,
+ (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
+ "xsmsubmdp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ let BaseName = "XSNMADDADP" in {
+ let isCommutable = 1 in
+ def XSNMADDADP : XX3Form<60, 161,
+ (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
+ "xsnmaddadp $XT, $XA, $XB", IIC_VecFP,
+ [(set f64:$XT, (fneg (fma f64:$XA, f64:$XB, f64:$XTi)))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XSNMADDMDP : XX3Form<60, 169,
+ (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
+ "xsnmaddmdp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ let BaseName = "XSNMSUBADP" in {
+ let isCommutable = 1 in
+ def XSNMSUBADP : XX3Form<60, 177,
+ (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
+ "xsnmsubadp $XT, $XA, $XB", IIC_VecFP,
+ [(set f64:$XT, (fneg (fma f64:$XA, f64:$XB, (fneg f64:$XTi))))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XSNMSUBMDP : XX3Form<60, 185,
+ (outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
+ "xsnmsubmdp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ let BaseName = "XVMADDADP" in {
+ let isCommutable = 1 in
+ def XVMADDADP : XX3Form<60, 97,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvmaddadp $XT, $XA, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fma v2f64:$XA, v2f64:$XB, v2f64:$XTi))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XVMADDMDP : XX3Form<60, 105,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvmaddmdp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ let BaseName = "XVMADDASP" in {
+ let isCommutable = 1 in
+ def XVMADDASP : XX3Form<60, 65,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvmaddasp $XT, $XA, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fma v4f32:$XA, v4f32:$XB, v4f32:$XTi))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XVMADDMSP : XX3Form<60, 73,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvmaddmsp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ let BaseName = "XVMSUBADP" in {
+ let isCommutable = 1 in
+ def XVMSUBADP : XX3Form<60, 113,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvmsubadp $XT, $XA, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fma v2f64:$XA, v2f64:$XB, (fneg v2f64:$XTi)))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XVMSUBMDP : XX3Form<60, 121,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvmsubmdp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ let BaseName = "XVMSUBASP" in {
+ let isCommutable = 1 in
+ def XVMSUBASP : XX3Form<60, 81,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvmsubasp $XT, $XA, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fma v4f32:$XA, v4f32:$XB, (fneg v4f32:$XTi)))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XVMSUBMSP : XX3Form<60, 89,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvmsubmsp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ let BaseName = "XVNMADDADP" in {
+ let isCommutable = 1 in
+ def XVNMADDADP : XX3Form<60, 225,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvnmaddadp $XT, $XA, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fneg (fma v2f64:$XA, v2f64:$XB, v2f64:$XTi)))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XVNMADDMDP : XX3Form<60, 233,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvnmaddmdp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ let BaseName = "XVNMADDASP" in {
+ let isCommutable = 1 in
+ def XVNMADDASP : XX3Form<60, 193,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvnmaddasp $XT, $XA, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fneg (fma v4f32:$XA, v4f32:$XB, v4f32:$XTi)))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XVNMADDMSP : XX3Form<60, 201,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvnmaddmsp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ let BaseName = "XVNMSUBADP" in {
+ let isCommutable = 1 in
+ def XVNMSUBADP : XX3Form<60, 241,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvnmsubadp $XT, $XA, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fneg (fma v2f64:$XA, v2f64:$XB, (fneg v2f64:$XTi))))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XVNMSUBMDP : XX3Form<60, 249,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvnmsubmdp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ let BaseName = "XVNMSUBASP" in {
+ let isCommutable = 1 in
+ def XVNMSUBASP : XX3Form<60, 209,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvnmsubasp $XT, $XA, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fneg (fma v4f32:$XA, v4f32:$XB, (fneg v4f32:$XTi))))]>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ let IsVSXFMAAlt = 1 in
+ def XVNMSUBMSP : XX3Form<60, 217,
+ (outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
+ "xvnmsubmsp $XT, $XA, $XB", IIC_VecFP, []>,
+ RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
+ AltVSXFMARel;
+ }
+
+ // Division Instructions
+ def XSDIVDP : XX3Form<60, 56,
+ (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
+ "xsdivdp $XT, $XA, $XB", IIC_FPDivD,
+ [(set f64:$XT, (fdiv f64:$XA, f64:$XB))]>;
+ def XSSQRTDP : XX2Form<60, 75,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xssqrtdp $XT, $XB", IIC_FPSqrtD,
+ [(set f64:$XT, (fsqrt f64:$XB))]>;
+
+ def XSREDP : XX2Form<60, 90,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xsredp $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (PPCfre f64:$XB))]>;
+ def XSRSQRTEDP : XX2Form<60, 74,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xsrsqrtedp $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (PPCfrsqrte f64:$XB))]>;
+
+ def XSTDIVDP : XX3Form_1<60, 61,
+ (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
+ "xstdivdp $crD, $XA, $XB", IIC_FPCompare, []>;
+ def XSTSQRTDP : XX2Form_1<60, 106,
+ (outs crrc:$crD), (ins vsfrc:$XB),
+ "xstsqrtdp $crD, $XB", IIC_FPCompare, []>;
+
+ def XVDIVDP : XX3Form<60, 120,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvdivdp $XT, $XA, $XB", IIC_FPDivD,
+ [(set v2f64:$XT, (fdiv v2f64:$XA, v2f64:$XB))]>;
+ def XVDIVSP : XX3Form<60, 88,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvdivsp $XT, $XA, $XB", IIC_FPDivS,
+ [(set v4f32:$XT, (fdiv v4f32:$XA, v4f32:$XB))]>;
+
+ def XVSQRTDP : XX2Form<60, 203,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvsqrtdp $XT, $XB", IIC_FPSqrtD,
+ [(set v2f64:$XT, (fsqrt v2f64:$XB))]>;
+ def XVSQRTSP : XX2Form<60, 139,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvsqrtsp $XT, $XB", IIC_FPSqrtS,
+ [(set v4f32:$XT, (fsqrt v4f32:$XB))]>;
+
+ def XVTDIVDP : XX3Form_1<60, 125,
+ (outs crrc:$crD), (ins vsrc:$XA, vsrc:$XB),
+ "xvtdivdp $crD, $XA, $XB", IIC_FPCompare, []>;
+ def XVTDIVSP : XX3Form_1<60, 93,
+ (outs crrc:$crD), (ins vsrc:$XA, vsrc:$XB),
+ "xvtdivsp $crD, $XA, $XB", IIC_FPCompare, []>;
+
+ def XVTSQRTDP : XX2Form_1<60, 234,
+ (outs crrc:$crD), (ins vsrc:$XB),
+ "xvtsqrtdp $crD, $XB", IIC_FPCompare, []>;
+ def XVTSQRTSP : XX2Form_1<60, 170,
+ (outs crrc:$crD), (ins vsrc:$XB),
+ "xvtsqrtsp $crD, $XB", IIC_FPCompare, []>;
+
+ def XVREDP : XX2Form<60, 218,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvredp $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (PPCfre v2f64:$XB))]>;
+ def XVRESP : XX2Form<60, 154,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvresp $XT, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (PPCfre v4f32:$XB))]>;
+
+ def XVRSQRTEDP : XX2Form<60, 202,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrsqrtedp $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (PPCfrsqrte v2f64:$XB))]>;
+ def XVRSQRTESP : XX2Form<60, 138,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrsqrtesp $XT, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (PPCfrsqrte v4f32:$XB))]>;
+
+ // Compare Instructions
+ def XSCMPODP : XX3Form_1<60, 43,
+ (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
+ "xscmpodp $crD, $XA, $XB", IIC_FPCompare, []>;
+ def XSCMPUDP : XX3Form_1<60, 35,
+ (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
+ "xscmpudp $crD, $XA, $XB", IIC_FPCompare, []>;
+
+ defm XVCMPEQDP : XX3Form_Rcr<60, 99,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvcmpeqdp", "$XT, $XA, $XB", IIC_VecFPCompare, []>;
+ defm XVCMPEQSP : XX3Form_Rcr<60, 67,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvcmpeqsp", "$XT, $XA, $XB", IIC_VecFPCompare, []>;
+ defm XVCMPGEDP : XX3Form_Rcr<60, 115,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvcmpgedp", "$XT, $XA, $XB", IIC_VecFPCompare, []>;
+ defm XVCMPGESP : XX3Form_Rcr<60, 83,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvcmpgesp", "$XT, $XA, $XB", IIC_VecFPCompare, []>;
+ defm XVCMPGTDP : XX3Form_Rcr<60, 107,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvcmpgtdp", "$XT, $XA, $XB", IIC_VecFPCompare, []>;
+ defm XVCMPGTSP : XX3Form_Rcr<60, 75,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvcmpgtsp", "$XT, $XA, $XB", IIC_VecFPCompare, []>;
+
+ // Move Instructions
+ def XSABSDP : XX2Form<60, 345,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xsabsdp $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (fabs f64:$XB))]>;
+ def XSNABSDP : XX2Form<60, 361,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xsnabsdp $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (fneg (fabs f64:$XB)))]>;
+ def XSNEGDP : XX2Form<60, 377,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xsnegdp $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (fneg f64:$XB))]>;
+ def XSCPSGNDP : XX3Form<60, 176,
+ (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
+ "xscpsgndp $XT, $XA, $XB", IIC_VecFP,
+ [(set f64:$XT, (fcopysign f64:$XB, f64:$XA))]>;
+
+ def XVABSDP : XX2Form<60, 473,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvabsdp $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fabs v2f64:$XB))]>;
+
+ def XVABSSP : XX2Form<60, 409,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvabssp $XT, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fabs v4f32:$XB))]>;
+
+ def XVCPSGNDP : XX3Form<60, 240,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvcpsgndp $XT, $XA, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fcopysign v2f64:$XB, v2f64:$XA))]>;
+ def XVCPSGNSP : XX3Form<60, 208,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvcpsgnsp $XT, $XA, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fcopysign v4f32:$XB, v4f32:$XA))]>;
+
+ def XVNABSDP : XX2Form<60, 489,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvnabsdp $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fneg (fabs v2f64:$XB)))]>;
+ def XVNABSSP : XX2Form<60, 425,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvnabssp $XT, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fneg (fabs v4f32:$XB)))]>;
+
+ def XVNEGDP : XX2Form<60, 505,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvnegdp $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fneg v2f64:$XB))]>;
+ def XVNEGSP : XX2Form<60, 441,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvnegsp $XT, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fneg v4f32:$XB))]>;
+
+ // Conversion Instructions
+ def XSCVDPSP : XX2Form<60, 265,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xscvdpsp $XT, $XB", IIC_VecFP, []>;
+ def XSCVDPSXDS : XX2Form<60, 344,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xscvdpsxds $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (PPCfctidz f64:$XB))]>;
+ def XSCVDPSXWS : XX2Form<60, 88,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xscvdpsxws $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (PPCfctiwz f64:$XB))]>;
+ def XSCVDPUXDS : XX2Form<60, 328,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xscvdpuxds $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (PPCfctiduz f64:$XB))]>;
+ def XSCVDPUXWS : XX2Form<60, 72,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xscvdpuxws $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (PPCfctiwuz f64:$XB))]>;
+ def XSCVSPDP : XX2Form<60, 329,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xscvspdp $XT, $XB", IIC_VecFP, []>;
+ def XSCVSXDDP : XX2Form<60, 376,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xscvsxddp $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (PPCfcfid f64:$XB))]>;
+ def XSCVUXDDP : XX2Form<60, 360,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xscvuxddp $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (PPCfcfidu f64:$XB))]>;
+
+ def XVCVDPSP : XX2Form<60, 393,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvdpsp $XT, $XB", IIC_VecFP, []>;
+ def XVCVDPSXDS : XX2Form<60, 472,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvdpsxds $XT, $XB", IIC_VecFP,
+ [(set v2i64:$XT, (fp_to_sint v2f64:$XB))]>;
+ def XVCVDPSXWS : XX2Form<60, 216,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvdpsxws $XT, $XB", IIC_VecFP, []>;
+ def XVCVDPUXDS : XX2Form<60, 456,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvdpuxds $XT, $XB", IIC_VecFP,
+ [(set v2i64:$XT, (fp_to_uint v2f64:$XB))]>;
+ def XVCVDPUXWS : XX2Form<60, 200,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvdpuxws $XT, $XB", IIC_VecFP, []>;
+
+ def XVCVSPDP : XX2Form<60, 457,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvspdp $XT, $XB", IIC_VecFP, []>;
+ def XVCVSPSXDS : XX2Form<60, 408,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvspsxds $XT, $XB", IIC_VecFP, []>;
+ def XVCVSPSXWS : XX2Form<60, 152,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvspsxws $XT, $XB", IIC_VecFP, []>;
+ def XVCVSPUXDS : XX2Form<60, 392,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvspuxds $XT, $XB", IIC_VecFP, []>;
+ def XVCVSPUXWS : XX2Form<60, 136,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvspuxws $XT, $XB", IIC_VecFP, []>;
+ def XVCVSXDDP : XX2Form<60, 504,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvsxddp $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (sint_to_fp v2i64:$XB))]>;
+ def XVCVSXDSP : XX2Form<60, 440,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvsxdsp $XT, $XB", IIC_VecFP, []>;
+ def XVCVSXWDP : XX2Form<60, 248,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvsxwdp $XT, $XB", IIC_VecFP, []>;
+ def XVCVSXWSP : XX2Form<60, 184,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvsxwsp $XT, $XB", IIC_VecFP, []>;
+ def XVCVUXDDP : XX2Form<60, 488,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvuxddp $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (uint_to_fp v2i64:$XB))]>;
+ def XVCVUXDSP : XX2Form<60, 424,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvuxdsp $XT, $XB", IIC_VecFP, []>;
+ def XVCVUXWDP : XX2Form<60, 232,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvuxwdp $XT, $XB", IIC_VecFP, []>;
+ def XVCVUXWSP : XX2Form<60, 168,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvcvuxwsp $XT, $XB", IIC_VecFP, []>;
+
+ // Rounding Instructions
+ def XSRDPI : XX2Form<60, 73,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xsrdpi $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (frnd f64:$XB))]>;
+ def XSRDPIC : XX2Form<60, 107,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xsrdpic $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (fnearbyint f64:$XB))]>;
+ def XSRDPIM : XX2Form<60, 121,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xsrdpim $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (ffloor f64:$XB))]>;
+ def XSRDPIP : XX2Form<60, 105,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xsrdpip $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (fceil f64:$XB))]>;
+ def XSRDPIZ : XX2Form<60, 89,
+ (outs vsfrc:$XT), (ins vsfrc:$XB),
+ "xsrdpiz $XT, $XB", IIC_VecFP,
+ [(set f64:$XT, (ftrunc f64:$XB))]>;
+
+ def XVRDPI : XX2Form<60, 201,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrdpi $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (frnd v2f64:$XB))]>;
+ def XVRDPIC : XX2Form<60, 235,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrdpic $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fnearbyint v2f64:$XB))]>;
+ def XVRDPIM : XX2Form<60, 249,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrdpim $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (ffloor v2f64:$XB))]>;
+ def XVRDPIP : XX2Form<60, 233,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrdpip $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (fceil v2f64:$XB))]>;
+ def XVRDPIZ : XX2Form<60, 217,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrdpiz $XT, $XB", IIC_VecFP,
+ [(set v2f64:$XT, (ftrunc v2f64:$XB))]>;
+
+ def XVRSPI : XX2Form<60, 137,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrspi $XT, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (frnd v4f32:$XB))]>;
+ def XVRSPIC : XX2Form<60, 171,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrspic $XT, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fnearbyint v4f32:$XB))]>;
+ def XVRSPIM : XX2Form<60, 185,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrspim $XT, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (ffloor v4f32:$XB))]>;
+ def XVRSPIP : XX2Form<60, 169,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrspip $XT, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (fceil v4f32:$XB))]>;
+ def XVRSPIZ : XX2Form<60, 153,
+ (outs vsrc:$XT), (ins vsrc:$XB),
+ "xvrspiz $XT, $XB", IIC_VecFP,
+ [(set v4f32:$XT, (ftrunc v4f32:$XB))]>;
+
+ // Max/Min Instructions
+ let isCommutable = 1 in {
+ def XSMAXDP : XX3Form<60, 160,
+ (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
+ "xsmaxdp $XT, $XA, $XB", IIC_VecFP, []>;
+ def XSMINDP : XX3Form<60, 168,
+ (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
+ "xsmindp $XT, $XA, $XB", IIC_VecFP, []>;
+
+ def XVMAXDP : XX3Form<60, 224,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvmaxdp $XT, $XA, $XB", IIC_VecFP, []>;
+ def XVMINDP : XX3Form<60, 232,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvmindp $XT, $XA, $XB", IIC_VecFP, []>;
+
+ def XVMAXSP : XX3Form<60, 192,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvmaxsp $XT, $XA, $XB", IIC_VecFP, []>;
+ def XVMINSP : XX3Form<60, 200,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xvminsp $XT, $XA, $XB", IIC_VecFP, []>;
+ } // isCommutable
+} // Uses = [RM]
+
+ // Logical Instructions
+ let isCommutable = 1 in
+ def XXLAND : XX3Form<60, 130,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xxland $XT, $XA, $XB", IIC_VecGeneral,
+ [(set v4i32:$XT, (and v4i32:$XA, v4i32:$XB))]>;
+ def XXLANDC : XX3Form<60, 138,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xxlandc $XT, $XA, $XB", IIC_VecGeneral,
+ [(set v4i32:$XT, (and v4i32:$XA,
+ (vnot_ppc v4i32:$XB)))]>;
+ let isCommutable = 1 in {
+ def XXLNOR : XX3Form<60, 162,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xxlnor $XT, $XA, $XB", IIC_VecGeneral,
+ [(set v4i32:$XT, (vnot_ppc (or v4i32:$XA,
+ v4i32:$XB)))]>;
+ def XXLOR : XX3Form<60, 146,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xxlor $XT, $XA, $XB", IIC_VecGeneral,
+ [(set v4i32:$XT, (or v4i32:$XA, v4i32:$XB))]>;
+ let isCodeGenOnly = 1 in
+ def XXLORf: XX3Form<60, 146,
+ (outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
+ "xxlor $XT, $XA, $XB", IIC_VecGeneral, []>;
+ def XXLXOR : XX3Form<60, 154,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xxlxor $XT, $XA, $XB", IIC_VecGeneral,
+ [(set v4i32:$XT, (xor v4i32:$XA, v4i32:$XB))]>;
+ } // isCommutable
+
+ // Permutation Instructions
+ def XXMRGHW : XX3Form<60, 18,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xxmrghw $XT, $XA, $XB", IIC_VecPerm, []>;
+ def XXMRGLW : XX3Form<60, 50,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
+ "xxmrglw $XT, $XA, $XB", IIC_VecPerm, []>;
+
+ def XXPERMDI : XX3Form_2<60, 10,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB, u2imm:$DM),
+ "xxpermdi $XT, $XA, $XB, $DM", IIC_VecPerm, []>;
+ def XXSEL : XX4Form<60, 3,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB, vsrc:$XC),
+ "xxsel $XT, $XA, $XB, $XC", IIC_VecPerm, []>;
+
+ def XXSLDWI : XX3Form_2<60, 2,
+ (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB, u2imm:$SHW),
+ "xxsldwi $XT, $XA, $XB, $SHW", IIC_VecPerm, []>;
+ def XXSPLTW : XX2Form_2<60, 164,
+ (outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM),
+ "xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>;
+} // neverHasSideEffects
+} // AddedComplexity
+
+def : InstAlias<"xvmovdp $XT, $XB",
+ (XVCPSGNDP vsrc:$XT, vsrc:$XB, vsrc:$XB)>;
+def : InstAlias<"xvmovsp $XT, $XB",
+ (XVCPSGNSP vsrc:$XT, vsrc:$XB, vsrc:$XB)>;
+
+def : InstAlias<"xxspltd $XT, $XB, 0",
+ (XXPERMDI vsrc:$XT, vsrc:$XB, vsrc:$XB, 0)>;
+def : InstAlias<"xxspltd $XT, $XB, 1",
+ (XXPERMDI vsrc:$XT, vsrc:$XB, vsrc:$XB, 3)>;
+def : InstAlias<"xxmrghd $XT, $XA, $XB",
+ (XXPERMDI vsrc:$XT, vsrc:$XA, vsrc:$XB, 0)>;
+def : InstAlias<"xxmrgld $XT, $XA, $XB",
+ (XXPERMDI vsrc:$XT, vsrc:$XA, vsrc:$XB, 3)>;
+def : InstAlias<"xxswapd $XT, $XB",
+ (XXPERMDI vsrc:$XT, vsrc:$XB, vsrc:$XB, 2)>;
+
+let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns.
+def : Pat<(v2f64 (scalar_to_vector f64:$A)),
+ (v2f64 (SUBREG_TO_REG (i64 1), $A, sub_64))>;
+
+def : Pat<(f64 (vector_extract v2f64:$S, 0)),
+ (f64 (EXTRACT_SUBREG $S, sub_64))>;
+def : Pat<(f64 (vector_extract v2f64:$S, 1)),
+ (f64 (EXTRACT_SUBREG (XXPERMDI $S, $S, 2), sub_64))>;
+
+// Additional fnmsub patterns: -a*c + b == -(a*c - b)
+def : Pat<(fma (fneg f64:$A), f64:$C, f64:$B),
+ (XSNMSUBADP $B, $C, $A)>;
+def : Pat<(fma f64:$A, (fneg f64:$C), f64:$B),
+ (XSNMSUBADP $B, $C, $A)>;
+
+def : Pat<(fma (fneg v2f64:$A), v2f64:$C, v2f64:$B),
+ (XVNMSUBADP $B, $C, $A)>;
+def : Pat<(fma v2f64:$A, (fneg v2f64:$C), v2f64:$B),
+ (XVNMSUBADP $B, $C, $A)>;
+
+def : Pat<(fma (fneg v4f32:$A), v4f32:$C, v4f32:$B),
+ (XVNMSUBASP $B, $C, $A)>;
+def : Pat<(fma v4f32:$A, (fneg v4f32:$C), v4f32:$B),
+ (XVNMSUBASP $B, $C, $A)>;
+
+def : Pat<(v2f64 (bitconvert v4f32:$A)),
+ (COPY_TO_REGCLASS $A, VSRC)>;
+def : Pat<(v2f64 (bitconvert v4i32:$A)),
+ (COPY_TO_REGCLASS $A, VSRC)>;
+def : Pat<(v2f64 (bitconvert v8i16:$A)),
+ (COPY_TO_REGCLASS $A, VSRC)>;
+def : Pat<(v2f64 (bitconvert v16i8:$A)),
+ (COPY_TO_REGCLASS $A, VSRC)>;
+
+def : Pat<(v4f32 (bitconvert v2f64:$A)),
+ (COPY_TO_REGCLASS $A, VRRC)>;
+def : Pat<(v4i32 (bitconvert v2f64:$A)),
+ (COPY_TO_REGCLASS $A, VRRC)>;
+def : Pat<(v8i16 (bitconvert v2f64:$A)),
+ (COPY_TO_REGCLASS $A, VRRC)>;
+def : Pat<(v16i8 (bitconvert v2f64:$A)),
+ (COPY_TO_REGCLASS $A, VRRC)>;
+
+def : Pat<(v2i64 (bitconvert v4f32:$A)),
+ (COPY_TO_REGCLASS $A, VSRC)>;
+def : Pat<(v2i64 (bitconvert v4i32:$A)),
+ (COPY_TO_REGCLASS $A, VSRC)>;
+def : Pat<(v2i64 (bitconvert v8i16:$A)),
+ (COPY_TO_REGCLASS $A, VSRC)>;
+def : Pat<(v2i64 (bitconvert v16i8:$A)),
+ (COPY_TO_REGCLASS $A, VSRC)>;
+
+def : Pat<(v4f32 (bitconvert v2i64:$A)),
+ (COPY_TO_REGCLASS $A, VRRC)>;
+def : Pat<(v4i32 (bitconvert v2i64:$A)),
+ (COPY_TO_REGCLASS $A, VRRC)>;
+def : Pat<(v8i16 (bitconvert v2i64:$A)),
+ (COPY_TO_REGCLASS $A, VRRC)>;
+def : Pat<(v16i8 (bitconvert v2i64:$A)),
+ (COPY_TO_REGCLASS $A, VRRC)>;
+
+def : Pat<(v2f64 (bitconvert v2i64:$A)),
+ (COPY_TO_REGCLASS $A, VRRC)>;
+def : Pat<(v2i64 (bitconvert v2f64:$A)),
+ (COPY_TO_REGCLASS $A, VRRC)>;
+
+// sign extension patterns
+// To extend "in place" from v2i32 to v2i64, we have input data like:
+// | undef | i32 | undef | i32 |
+// but xvcvsxwdp expects the input in big-Endian format:
+// | i32 | undef | i32 | undef |
+// so we need to shift everything to the left by one i32 (word) before
+// the conversion.
+def : Pat<(sext_inreg v2i64:$C, v2i32),
+ (XVCVDPSXDS (XVCVSXWDP (XXSLDWI $C, $C, 1)))>;
+def : Pat<(v2f64 (sint_to_fp (sext_inreg v2i64:$C, v2i32))),
+ (XVCVSXWDP (XXSLDWI $C, $C, 1))>;
+
+} // AddedComplexity
+} // HasVSX
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.cpp
new file mode 100644
index 0000000..e5f113a
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.cpp
@@ -0,0 +1,482 @@
+//===-- PPCJITInfo.cpp - Implement the JIT interfaces for the PowerPC -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the JIT interfaces for the 32-bit PowerPC target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCJITInfo.h"
+#include "PPCRelocations.h"
+#include "PPCSubtarget.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Memory.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+static TargetJITInfo::JITCompilerFn JITCompilerFunction;
+
+PPCJITInfo::PPCJITInfo(PPCSubtarget &STI)
+ : Subtarget(STI), is64Bit(STI.isPPC64()) {
+ useGOT = 0;
+}
+
+#define BUILD_ADDIS(RD,RS,IMM16) \
+ ((15 << 26) | ((RD) << 21) | ((RS) << 16) | ((IMM16) & 65535))
+#define BUILD_ORI(RD,RS,UIMM16) \
+ ((24 << 26) | ((RS) << 21) | ((RD) << 16) | ((UIMM16) & 65535))
+#define BUILD_ORIS(RD,RS,UIMM16) \
+ ((25 << 26) | ((RS) << 21) | ((RD) << 16) | ((UIMM16) & 65535))
+#define BUILD_RLDICR(RD,RS,SH,ME) \
+ ((30 << 26) | ((RS) << 21) | ((RD) << 16) | (((SH) & 31) << 11) | \
+ (((ME) & 63) << 6) | (1 << 2) | ((((SH) >> 5) & 1) << 1))
+#define BUILD_MTSPR(RS,SPR) \
+ ((31 << 26) | ((RS) << 21) | ((SPR) << 16) | (467 << 1))
+#define BUILD_BCCTRx(BO,BI,LINK) \
+ ((19 << 26) | ((BO) << 21) | ((BI) << 16) | (528 << 1) | ((LINK) & 1))
+#define BUILD_B(TARGET, LINK) \
+ ((18 << 26) | (((TARGET) & 0x00FFFFFF) << 2) | ((LINK) & 1))
+
+// Pseudo-ops
+#define BUILD_LIS(RD,IMM16) BUILD_ADDIS(RD,0,IMM16)
+#define BUILD_SLDI(RD,RS,IMM6) BUILD_RLDICR(RD,RS,IMM6,63-IMM6)
+#define BUILD_MTCTR(RS) BUILD_MTSPR(RS,9)
+#define BUILD_BCTR(LINK) BUILD_BCCTRx(20,0,LINK)
+
+static void EmitBranchToAt(uint64_t At, uint64_t To, bool isCall, bool is64Bit){
+ intptr_t Offset = ((intptr_t)To - (intptr_t)At) >> 2;
+ unsigned *AtI = (unsigned*)(intptr_t)At;
+
+ if (Offset >= -(1 << 23) && Offset < (1 << 23)) { // In range?
+ AtI[0] = BUILD_B(Offset, isCall); // b/bl target
+ } else if (!is64Bit) {
+ AtI[0] = BUILD_LIS(12, To >> 16); // lis r12, hi16(address)
+ AtI[1] = BUILD_ORI(12, 12, To); // ori r12, r12, lo16(address)
+ AtI[2] = BUILD_MTCTR(12); // mtctr r12
+ AtI[3] = BUILD_BCTR(isCall); // bctr/bctrl
+ } else {
+ AtI[0] = BUILD_LIS(12, To >> 48); // lis r12, hi16(address)
+ AtI[1] = BUILD_ORI(12, 12, To >> 32); // ori r12, r12, lo16(address)
+ AtI[2] = BUILD_SLDI(12, 12, 32); // sldi r12, r12, 32
+ AtI[3] = BUILD_ORIS(12, 12, To >> 16); // oris r12, r12, hi16(address)
+ AtI[4] = BUILD_ORI(12, 12, To); // ori r12, r12, lo16(address)
+ AtI[5] = BUILD_MTCTR(12); // mtctr r12
+ AtI[6] = BUILD_BCTR(isCall); // bctr/bctrl
+ }
+}
+
+extern "C" void PPC32CompilationCallback();
+extern "C" void PPC64CompilationCallback();
+
+// The first clause of the preprocessor directive looks wrong, but it is
+// necessary when compiling this code on non-PowerPC hosts.
+#if (!defined(__ppc__) && !defined(__powerpc__)) || defined(__powerpc64__) || defined(__ppc64__)
+void PPC32CompilationCallback() {
+ llvm_unreachable("This is not a 32bit PowerPC, you can't execute this!");
+}
+#elif !defined(__ELF__)
+// CompilationCallback stub - We can't use a C function with inline assembly in
+// it, because we the prolog/epilog inserted by GCC won't work for us. Instead,
+// write our own wrapper, which does things our way, so we have complete control
+// over register saving and restoring.
+asm(
+ ".text\n"
+ ".align 2\n"
+ ".globl _PPC32CompilationCallback\n"
+"_PPC32CompilationCallback:\n"
+ // Make space for 8 ints r[3-10] and 13 doubles f[1-13] and the
+ // FIXME: need to save v[0-19] for altivec?
+ // FIXME: could shrink frame
+ // Set up a proper stack frame
+ // FIXME Layout
+ // PowerPC32 ABI linkage - 24 bytes
+ // parameters - 32 bytes
+ // 13 double registers - 104 bytes
+ // 8 int registers - 32 bytes
+ "mflr r0\n"
+ "stw r0, 8(r1)\n"
+ "stwu r1, -208(r1)\n"
+ // Save all int arg registers
+ "stw r10, 204(r1)\n" "stw r9, 200(r1)\n"
+ "stw r8, 196(r1)\n" "stw r7, 192(r1)\n"
+ "stw r6, 188(r1)\n" "stw r5, 184(r1)\n"
+ "stw r4, 180(r1)\n" "stw r3, 176(r1)\n"
+ // Save all call-clobbered FP regs.
+ "stfd f13, 168(r1)\n" "stfd f12, 160(r1)\n"
+ "stfd f11, 152(r1)\n" "stfd f10, 144(r1)\n"
+ "stfd f9, 136(r1)\n" "stfd f8, 128(r1)\n"
+ "stfd f7, 120(r1)\n" "stfd f6, 112(r1)\n"
+ "stfd f5, 104(r1)\n" "stfd f4, 96(r1)\n"
+ "stfd f3, 88(r1)\n" "stfd f2, 80(r1)\n"
+ "stfd f1, 72(r1)\n"
+ // Arguments to Compilation Callback:
+ // r3 - our lr (address of the call instruction in stub plus 4)
+ // r4 - stub's lr (address of instruction that called the stub plus 4)
+ // r5 - is64Bit - always 0.
+ "mr r3, r0\n"
+ "lwz r2, 208(r1)\n" // stub's frame
+ "lwz r4, 8(r2)\n" // stub's lr
+ "li r5, 0\n" // 0 == 32 bit
+ "bl _LLVMPPCCompilationCallback\n"
+ "mtctr r3\n"
+ // Restore all int arg registers
+ "lwz r10, 204(r1)\n" "lwz r9, 200(r1)\n"
+ "lwz r8, 196(r1)\n" "lwz r7, 192(r1)\n"
+ "lwz r6, 188(r1)\n" "lwz r5, 184(r1)\n"
+ "lwz r4, 180(r1)\n" "lwz r3, 176(r1)\n"
+ // Restore all FP arg registers
+ "lfd f13, 168(r1)\n" "lfd f12, 160(r1)\n"
+ "lfd f11, 152(r1)\n" "lfd f10, 144(r1)\n"
+ "lfd f9, 136(r1)\n" "lfd f8, 128(r1)\n"
+ "lfd f7, 120(r1)\n" "lfd f6, 112(r1)\n"
+ "lfd f5, 104(r1)\n" "lfd f4, 96(r1)\n"
+ "lfd f3, 88(r1)\n" "lfd f2, 80(r1)\n"
+ "lfd f1, 72(r1)\n"
+ // Pop 3 frames off the stack and branch to target
+ "lwz r1, 208(r1)\n"
+ "lwz r2, 8(r1)\n"
+ "mtlr r2\n"
+ "bctr\n"
+ );
+
+#else
+// ELF PPC 32 support
+
+// CompilationCallback stub - We can't use a C function with inline assembly in
+// it, because we the prolog/epilog inserted by GCC won't work for us. Instead,
+// write our own wrapper, which does things our way, so we have complete control
+// over register saving and restoring.
+asm(
+ ".text\n"
+ ".align 2\n"
+ ".globl PPC32CompilationCallback\n"
+"PPC32CompilationCallback:\n"
+ // Make space for 8 ints r[3-10] and 8 doubles f[1-8] and the
+ // FIXME: need to save v[0-19] for altivec?
+ // FIXME: could shrink frame
+ // Set up a proper stack frame
+ // FIXME Layout
+ // 8 double registers - 64 bytes
+ // 8 int registers - 32 bytes
+ "mflr 0\n"
+ "stw 0, 4(1)\n"
+ "stwu 1, -104(1)\n"
+ // Save all int arg registers
+ "stw 10, 100(1)\n" "stw 9, 96(1)\n"
+ "stw 8, 92(1)\n" "stw 7, 88(1)\n"
+ "stw 6, 84(1)\n" "stw 5, 80(1)\n"
+ "stw 4, 76(1)\n" "stw 3, 72(1)\n"
+ // Save all call-clobbered FP regs.
+ "stfd 8, 64(1)\n"
+ "stfd 7, 56(1)\n" "stfd 6, 48(1)\n"
+ "stfd 5, 40(1)\n" "stfd 4, 32(1)\n"
+ "stfd 3, 24(1)\n" "stfd 2, 16(1)\n"
+ "stfd 1, 8(1)\n"
+ // Arguments to Compilation Callback:
+ // r3 - our lr (address of the call instruction in stub plus 4)
+ // r4 - stub's lr (address of instruction that called the stub plus 4)
+ // r5 - is64Bit - always 0.
+ "mr 3, 0\n"
+ "lwz 5, 104(1)\n" // stub's frame
+ "lwz 4, 4(5)\n" // stub's lr
+ "li 5, 0\n" // 0 == 32 bit
+ "bl LLVMPPCCompilationCallback\n"
+ "mtctr 3\n"
+ // Restore all int arg registers
+ "lwz 10, 100(1)\n" "lwz 9, 96(1)\n"
+ "lwz 8, 92(1)\n" "lwz 7, 88(1)\n"
+ "lwz 6, 84(1)\n" "lwz 5, 80(1)\n"
+ "lwz 4, 76(1)\n" "lwz 3, 72(1)\n"
+ // Restore all FP arg registers
+ "lfd 8, 64(1)\n"
+ "lfd 7, 56(1)\n" "lfd 6, 48(1)\n"
+ "lfd 5, 40(1)\n" "lfd 4, 32(1)\n"
+ "lfd 3, 24(1)\n" "lfd 2, 16(1)\n"
+ "lfd 1, 8(1)\n"
+ // Pop 3 frames off the stack and branch to target
+ "lwz 1, 104(1)\n"
+ "lwz 0, 4(1)\n"
+ "mtlr 0\n"
+ "bctr\n"
+ );
+#endif
+
+#if !defined(__powerpc64__) && !defined(__ppc64__)
+void PPC64CompilationCallback() {
+ llvm_unreachable("This is not a 64bit PowerPC, you can't execute this!");
+}
+#else
+# ifdef __ELF__
+asm(
+ ".text\n"
+ ".align 2\n"
+ ".globl PPC64CompilationCallback\n"
+#if _CALL_ELF == 2
+ ".type PPC64CompilationCallback,@function\n"
+"PPC64CompilationCallback:\n"
+#else
+ ".section \".opd\",\"aw\",@progbits\n"
+ ".align 3\n"
+"PPC64CompilationCallback:\n"
+ ".quad .L.PPC64CompilationCallback,.TOC.@tocbase,0\n"
+ ".size PPC64CompilationCallback,24\n"
+ ".previous\n"
+ ".align 4\n"
+ ".type PPC64CompilationCallback,@function\n"
+".L.PPC64CompilationCallback:\n"
+#endif
+# else
+asm(
+ ".text\n"
+ ".align 2\n"
+ ".globl _PPC64CompilationCallback\n"
+"_PPC64CompilationCallback:\n"
+# endif
+ // Make space for 8 ints r[3-10] and 13 doubles f[1-13] and the
+ // FIXME: need to save v[0-19] for altivec?
+ // Set up a proper stack frame
+ // Layout
+ // PowerPC64 ABI linkage - 48 bytes
+ // parameters - 64 bytes
+ // 13 double registers - 104 bytes
+ // 8 int registers - 64 bytes
+ "mflr 0\n"
+ "std 0, 16(1)\n"
+ "stdu 1, -280(1)\n"
+ // Save all int arg registers
+ "std 10, 272(1)\n" "std 9, 264(1)\n"
+ "std 8, 256(1)\n" "std 7, 248(1)\n"
+ "std 6, 240(1)\n" "std 5, 232(1)\n"
+ "std 4, 224(1)\n" "std 3, 216(1)\n"
+ // Save all call-clobbered FP regs.
+ "stfd 13, 208(1)\n" "stfd 12, 200(1)\n"
+ "stfd 11, 192(1)\n" "stfd 10, 184(1)\n"
+ "stfd 9, 176(1)\n" "stfd 8, 168(1)\n"
+ "stfd 7, 160(1)\n" "stfd 6, 152(1)\n"
+ "stfd 5, 144(1)\n" "stfd 4, 136(1)\n"
+ "stfd 3, 128(1)\n" "stfd 2, 120(1)\n"
+ "stfd 1, 112(1)\n"
+ // Arguments to Compilation Callback:
+ // r3 - our lr (address of the call instruction in stub plus 4)
+ // r4 - stub's lr (address of instruction that called the stub plus 4)
+ // r5 - is64Bit - always 1.
+ "mr 3, 0\n" // return address (still in r0)
+ "ld 5, 280(1)\n" // stub's frame
+ "ld 4, 16(5)\n" // stub's lr
+ "li 5, 1\n" // 1 == 64 bit
+# ifdef __ELF__
+ "bl LLVMPPCCompilationCallback\n"
+ "nop\n"
+# else
+ "bl _LLVMPPCCompilationCallback\n"
+# endif
+ "mtctr 3\n"
+ // Restore all int arg registers
+ "ld 10, 272(1)\n" "ld 9, 264(1)\n"
+ "ld 8, 256(1)\n" "ld 7, 248(1)\n"
+ "ld 6, 240(1)\n" "ld 5, 232(1)\n"
+ "ld 4, 224(1)\n" "ld 3, 216(1)\n"
+ // Restore all FP arg registers
+ "lfd 13, 208(1)\n" "lfd 12, 200(1)\n"
+ "lfd 11, 192(1)\n" "lfd 10, 184(1)\n"
+ "lfd 9, 176(1)\n" "lfd 8, 168(1)\n"
+ "lfd 7, 160(1)\n" "lfd 6, 152(1)\n"
+ "lfd 5, 144(1)\n" "lfd 4, 136(1)\n"
+ "lfd 3, 128(1)\n" "lfd 2, 120(1)\n"
+ "lfd 1, 112(1)\n"
+ // Pop 3 frames off the stack and branch to target
+ "ld 1, 280(1)\n"
+ "ld 0, 16(1)\n"
+ "mtlr 0\n"
+ // XXX: any special TOC handling in the ELF case for JIT?
+ "bctr\n"
+ );
+#endif
+
+extern "C" {
+LLVM_LIBRARY_VISIBILITY void *
+LLVMPPCCompilationCallback(unsigned *StubCallAddrPlus4,
+ unsigned *OrigCallAddrPlus4,
+ bool is64Bit) {
+ // Adjust the pointer to the address of the call instruction in the stub
+ // emitted by emitFunctionStub, rather than the instruction after it.
+ unsigned *StubCallAddr = StubCallAddrPlus4 - 1;
+ unsigned *OrigCallAddr = OrigCallAddrPlus4 - 1;
+
+ void *Target = JITCompilerFunction(StubCallAddr);
+
+ // Check to see if *OrigCallAddr is a 'bl' instruction, and if we can rewrite
+ // it to branch directly to the destination. If so, rewrite it so it does not
+ // need to go through the stub anymore.
+ unsigned OrigCallInst = *OrigCallAddr;
+ if ((OrigCallInst >> 26) == 18) { // Direct call.
+ intptr_t Offset = ((intptr_t)Target - (intptr_t)OrigCallAddr) >> 2;
+
+ if (Offset >= -(1 << 23) && Offset < (1 << 23)) { // In range?
+ // Clear the original target out.
+ OrigCallInst &= (63 << 26) | 3;
+ // Fill in the new target.
+ OrigCallInst |= (Offset & ((1 << 24)-1)) << 2;
+ // Replace the call.
+ *OrigCallAddr = OrigCallInst;
+ }
+ }
+
+ // Assert that we are coming from a stub that was created with our
+ // emitFunctionStub.
+ if ((*StubCallAddr >> 26) == 18)
+ StubCallAddr -= 3;
+ else {
+ assert((*StubCallAddr >> 26) == 19 && "Call in stub is not indirect!");
+ StubCallAddr -= is64Bit ? 9 : 6;
+ }
+
+ // Rewrite the stub with an unconditional branch to the target, for any users
+ // who took the address of the stub.
+ EmitBranchToAt((intptr_t)StubCallAddr, (intptr_t)Target, false, is64Bit);
+ sys::Memory::InvalidateInstructionCache(StubCallAddr, 7*4);
+
+ // Put the address of the target function to call and the address to return to
+ // after calling the target function in a place that is easy to get on the
+ // stack after we restore all regs.
+ return Target;
+}
+}
+
+
+
+TargetJITInfo::LazyResolverFn
+PPCJITInfo::getLazyResolverFunction(JITCompilerFn Fn) {
+ JITCompilerFunction = Fn;
+ return is64Bit ? PPC64CompilationCallback : PPC32CompilationCallback;
+}
+
+TargetJITInfo::StubLayout PPCJITInfo::getStubLayout() {
+ // The stub contains up to 10 4-byte instructions, aligned at 4 bytes: 3
+ // instructions to save the caller's address if this is a lazy-compilation
+ // stub, plus a 1-, 4-, or 7-instruction sequence to load an arbitrary address
+ // into a register and jump through it.
+ StubLayout Result = {10*4, 4};
+ return Result;
+}
+
+#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
+defined(__APPLE__)
+extern "C" void sys_icache_invalidate(const void *Addr, size_t len);
+#endif
+
+void *PPCJITInfo::emitFunctionStub(const Function* F, void *Fn,
+ JITCodeEmitter &JCE) {
+ // If this is just a call to an external function, emit a branch instead of a
+ // call. The code is the same except for one bit of the last instruction.
+ if (Fn != (void*)(intptr_t)PPC32CompilationCallback &&
+ Fn != (void*)(intptr_t)PPC64CompilationCallback) {
+ void *Addr = (void*)JCE.getCurrentPCValue();
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ EmitBranchToAt((intptr_t)Addr, (intptr_t)Fn, false, is64Bit);
+ sys::Memory::InvalidateInstructionCache(Addr, 7*4);
+ return Addr;
+ }
+
+ void *Addr = (void*)JCE.getCurrentPCValue();
+ if (is64Bit) {
+ JCE.emitWordBE(0xf821ffb1); // stdu r1,-80(r1)
+ JCE.emitWordBE(0x7d6802a6); // mflr r11
+ JCE.emitWordBE(0xf9610060); // std r11, 96(r1)
+ } else if (Subtarget.isDarwinABI()){
+ JCE.emitWordBE(0x9421ffe0); // stwu r1,-32(r1)
+ JCE.emitWordBE(0x7d6802a6); // mflr r11
+ JCE.emitWordBE(0x91610028); // stw r11, 40(r1)
+ } else {
+ JCE.emitWordBE(0x9421ffe0); // stwu r1,-32(r1)
+ JCE.emitWordBE(0x7d6802a6); // mflr r11
+ JCE.emitWordBE(0x91610024); // stw r11, 36(r1)
+ }
+ intptr_t BranchAddr = (intptr_t)JCE.getCurrentPCValue();
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ JCE.emitWordBE(0);
+ EmitBranchToAt(BranchAddr, (intptr_t)Fn, true, is64Bit);
+ sys::Memory::InvalidateInstructionCache(Addr, 10*4);
+ return Addr;
+}
+
+
+void PPCJITInfo::relocate(void *Function, MachineRelocation *MR,
+ unsigned NumRelocs, unsigned char* GOTBase) {
+ for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
+ unsigned *RelocPos = (unsigned*)Function + MR->getMachineCodeOffset()/4;
+ intptr_t ResultPtr = (intptr_t)MR->getResultPointer();
+ switch ((PPC::RelocationType)MR->getRelocationType()) {
+ default: llvm_unreachable("Unknown relocation type!");
+ case PPC::reloc_pcrel_bx:
+ // PC-relative relocation for b and bl instructions.
+ ResultPtr = (ResultPtr-(intptr_t)RelocPos) >> 2;
+ assert(ResultPtr >= -(1 << 23) && ResultPtr < (1 << 23) &&
+ "Relocation out of range!");
+ *RelocPos |= (ResultPtr & ((1 << 24)-1)) << 2;
+ break;
+ case PPC::reloc_pcrel_bcx:
+ // PC-relative relocation for BLT,BLE,BEQ,BGE,BGT,BNE, or other
+ // bcx instructions.
+ ResultPtr = (ResultPtr-(intptr_t)RelocPos) >> 2;
+ assert(ResultPtr >= -(1 << 13) && ResultPtr < (1 << 13) &&
+ "Relocation out of range!");
+ *RelocPos |= (ResultPtr & ((1 << 14)-1)) << 2;
+ break;
+ case PPC::reloc_absolute_high: // high bits of ref -> low 16 of instr
+ case PPC::reloc_absolute_low: { // low bits of ref -> low 16 of instr
+ ResultPtr += MR->getConstantVal();
+
+ // If this is a high-part access, get the high-part.
+ if (MR->getRelocationType() == PPC::reloc_absolute_high) {
+ // If the low part will have a carry (really a borrow) from the low
+ // 16-bits into the high 16, add a bit to borrow from.
+ if (((int)ResultPtr << 16) < 0)
+ ResultPtr += 1 << 16;
+ ResultPtr >>= 16;
+ }
+
+ // Do the addition then mask, so the addition does not overflow the 16-bit
+ // immediate section of the instruction.
+ unsigned LowBits = (*RelocPos + ResultPtr) & 65535;
+ unsigned HighBits = *RelocPos & ~65535;
+ *RelocPos = LowBits | HighBits; // Slam into low 16-bits
+ break;
+ }
+ case PPC::reloc_absolute_low_ix: { // low bits of ref -> low 14 of instr
+ ResultPtr += MR->getConstantVal();
+ // Do the addition then mask, so the addition does not overflow the 16-bit
+ // immediate section of the instruction.
+ unsigned LowBits = (*RelocPos + ResultPtr) & 0xFFFC;
+ unsigned HighBits = *RelocPos & 0xFFFF0003;
+ *RelocPos = LowBits | HighBits; // Slam into low 14-bits.
+ break;
+ }
+ }
+ }
+}
+
+void PPCJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
+ EmitBranchToAt((intptr_t)Old, (intptr_t)New, false, is64Bit);
+ sys::Memory::InvalidateInstructionCache(Old, 7*4);
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.h b/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.h
new file mode 100644
index 0000000..b6b37ff
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.h
@@ -0,0 +1,46 @@
+//===-- PPCJITInfo.h - PowerPC impl. of the JIT interface -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the TargetJITInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef POWERPC_JITINFO_H
+#define POWERPC_JITINFO_H
+
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/Target/TargetJITInfo.h"
+
+namespace llvm {
+class PPCSubtarget;
+class PPCJITInfo : public TargetJITInfo {
+protected:
+ PPCSubtarget &Subtarget;
+ bool is64Bit;
+
+public:
+ PPCJITInfo(PPCSubtarget &STI);
+
+ StubLayout getStubLayout() override;
+ void *emitFunctionStub(const Function *F, void *Fn,
+ JITCodeEmitter &JCE) override;
+ LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
+ void relocate(void *Function, MachineRelocation *MR, unsigned NumRelocs,
+ unsigned char *GOTBase) override;
+
+ /// replaceMachineCodeForFunction - Make it so that calling the function
+ /// whose machine code is at OLD turns into a call to NEW, perhaps by
+ /// overwriting OLD with a branch to NEW. This is used for self-modifying
+ /// code.
+ ///
+ void replaceMachineCodeForFunction(void *Old, void *New) override;
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp b/contrib/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp
new file mode 100644
index 0000000..6680413
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp
@@ -0,0 +1,216 @@
+//===-- PPCMCInstLower.cpp - Convert PPC MachineInstr to an MCInst --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code to lower PPC MachineInstrs to their corresponding
+// MCInst records.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPC.h"
+#include "PPCSubtarget.h"
+#include "MCTargetDesc/PPCMCExpr.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+using namespace llvm;
+
+static MachineModuleInfoMachO &getMachOMMI(AsmPrinter &AP) {
+ return AP.MMI->getObjFileInfo<MachineModuleInfoMachO>();
+}
+
+
+static MCSymbol *GetSymbolFromOperand(const MachineOperand &MO, AsmPrinter &AP){
+ const TargetMachine &TM = AP.TM;
+ Mangler *Mang = AP.Mang;
+ const DataLayout *DL = TM.getDataLayout();
+ MCContext &Ctx = AP.OutContext;
+ bool isDarwin = TM.getSubtarget<PPCSubtarget>().isDarwin();
+
+ SmallString<128> Name;
+ StringRef Suffix;
+ if (MO.getTargetFlags() == PPCII::MO_PLT_OR_STUB) {
+ if (isDarwin)
+ Suffix = "$stub";
+ } else if (MO.getTargetFlags() & PPCII::MO_NLP_FLAG)
+ Suffix = "$non_lazy_ptr";
+
+ if (!Suffix.empty())
+ Name += DL->getPrivateGlobalPrefix();
+
+ unsigned PrefixLen = Name.size();
+
+ if (!MO.isGlobal()) {
+ assert(MO.isSymbol() && "Isn't a symbol reference");
+ Mang->getNameWithPrefix(Name, MO.getSymbolName());
+ } else {
+ const GlobalValue *GV = MO.getGlobal();
+ TM.getNameWithPrefix(Name, GV, *Mang);
+ }
+
+ unsigned OrigLen = Name.size() - PrefixLen;
+
+ Name += Suffix;
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
+ StringRef OrigName = StringRef(Name).substr(PrefixLen, OrigLen);
+
+ // If the target flags on the operand changes the name of the symbol, do that
+ // before we return the symbol.
+ if (MO.getTargetFlags() == PPCII::MO_PLT_OR_STUB && isDarwin) {
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ getMachOMMI(AP).getFnStubEntry(Sym);
+ if (StubSym.getPointer())
+ return Sym;
+
+ if (MO.isGlobal()) {
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(AP.getSymbol(MO.getGlobal()),
+ !MO.getGlobal()->hasInternalLinkage());
+ } else {
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(Ctx.GetOrCreateSymbol(OrigName), false);
+ }
+ return Sym;
+ }
+
+ // If the symbol reference is actually to a non_lazy_ptr, not to the symbol,
+ // then add the suffix.
+ if (MO.getTargetFlags() & PPCII::MO_NLP_FLAG) {
+ MachineModuleInfoMachO &MachO = getMachOMMI(AP);
+
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ (MO.getTargetFlags() & PPCII::MO_NLP_HIDDEN_FLAG) ?
+ MachO.getHiddenGVStubEntry(Sym) : MachO.getGVStubEntry(Sym);
+
+ if (!StubSym.getPointer()) {
+ assert(MO.isGlobal() && "Extern symbol not handled yet");
+ StubSym = MachineModuleInfoImpl::
+ StubValueTy(AP.getSymbol(MO.getGlobal()),
+ !MO.getGlobal()->hasInternalLinkage());
+ }
+ return Sym;
+ }
+
+ return Sym;
+}
+
+static MCOperand GetSymbolRef(const MachineOperand &MO, const MCSymbol *Symbol,
+ AsmPrinter &Printer, bool isDarwin) {
+ MCContext &Ctx = Printer.OutContext;
+ MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
+
+ unsigned access = MO.getTargetFlags() & PPCII::MO_ACCESS_MASK;
+
+ switch (access) {
+ case PPCII::MO_TPREL_LO:
+ RefKind = MCSymbolRefExpr::VK_PPC_TPREL_LO;
+ break;
+ case PPCII::MO_TPREL_HA:
+ RefKind = MCSymbolRefExpr::VK_PPC_TPREL_HA;
+ break;
+ case PPCII::MO_DTPREL_LO:
+ RefKind = MCSymbolRefExpr::VK_PPC_DTPREL_LO;
+ break;
+ case PPCII::MO_TLSLD_LO:
+ RefKind = MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO;
+ break;
+ case PPCII::MO_TOC_LO:
+ RefKind = MCSymbolRefExpr::VK_PPC_TOC_LO;
+ break;
+ case PPCII::MO_TLS:
+ RefKind = MCSymbolRefExpr::VK_PPC_TLS;
+ break;
+ }
+
+ if (MO.getTargetFlags() == PPCII::MO_PLT_OR_STUB && !isDarwin)
+ RefKind = MCSymbolRefExpr::VK_PLT;
+
+ const MCExpr *Expr = MCSymbolRefExpr::Create(Symbol, RefKind, Ctx);
+
+ if (!MO.isJTI() && MO.getOffset())
+ Expr = MCBinaryExpr::CreateAdd(Expr,
+ MCConstantExpr::Create(MO.getOffset(), Ctx),
+ Ctx);
+
+ // Subtract off the PIC base if required.
+ if (MO.getTargetFlags() & PPCII::MO_PIC_FLAG) {
+ const MachineFunction *MF = MO.getParent()->getParent()->getParent();
+
+ const MCExpr *PB = MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
+ Expr = MCBinaryExpr::CreateSub(Expr, PB, Ctx);
+ }
+
+ // Add ha16() / lo16() markers if required.
+ switch (access) {
+ case PPCII::MO_LO:
+ Expr = PPCMCExpr::CreateLo(Expr, isDarwin, Ctx);
+ break;
+ case PPCII::MO_HA:
+ Expr = PPCMCExpr::CreateHa(Expr, isDarwin, Ctx);
+ break;
+ }
+
+ return MCOperand::CreateExpr(Expr);
+}
+
+void llvm::LowerPPCMachineInstrToMCInst(const MachineInstr *MI, MCInst &OutMI,
+ AsmPrinter &AP, bool isDarwin) {
+ OutMI.setOpcode(MI->getOpcode());
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+
+ MCOperand MCOp;
+ switch (MO.getType()) {
+ default:
+ MI->dump();
+ llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ assert(!MO.getSubReg() && "Subregs should be eliminated!");
+ MCOp = MCOperand::CreateReg(MO.getReg());
+ break;
+ case MachineOperand::MO_Immediate:
+ MCOp = MCOperand::CreateImm(MO.getImm());
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
+ MO.getMBB()->getSymbol(), AP.OutContext));
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ MCOp = GetSymbolRef(MO, GetSymbolFromOperand(MO, AP), AP, isDarwin);
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ MCOp = GetSymbolRef(MO, AP.GetJTISymbol(MO.getIndex()), AP, isDarwin);
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ MCOp = GetSymbolRef(MO, AP.GetCPISymbol(MO.getIndex()), AP, isDarwin);
+ break;
+ case MachineOperand::MO_BlockAddress:
+ MCOp = GetSymbolRef(MO,AP.GetBlockAddressSymbol(MO.getBlockAddress()),AP,
+ isDarwin);
+ break;
+ case MachineOperand::MO_RegisterMask:
+ continue;
+ }
+
+ OutMI.addOperand(MCOp);
+ }
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.cpp
new file mode 100644
index 0000000..9da1b1b
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.cpp
@@ -0,0 +1,23 @@
+//===-- PPCMachineFunctionInfo.cpp - Private data used for PowerPC --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCMachineFunctionInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+void PPCFunctionInfo::anchor() { }
+
+MCSymbol *PPCFunctionInfo::getPICOffsetSymbol() const {
+ const DataLayout *DL = MF.getTarget().getDataLayout();
+ return MF.getContext().GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+
+ Twine(MF.getFunctionNumber())+"$poff");
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.h b/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.h
new file mode 100644
index 0000000..9a2cec7
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.h
@@ -0,0 +1,191 @@
+//===-- PPCMachineFunctionInfo.h - Private data used for PowerPC --*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the PowerPC specific subclass of MachineFunctionInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PPC_MACHINE_FUNCTION_INFO_H
+#define PPC_MACHINE_FUNCTION_INFO_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+
+namespace llvm {
+
+/// PPCFunctionInfo - This class is derived from MachineFunction private
+/// PowerPC target-specific information for each MachineFunction.
+class PPCFunctionInfo : public MachineFunctionInfo {
+ virtual void anchor();
+
+ /// FramePointerSaveIndex - Frame index of where the old frame pointer is
+ /// stored. Also used as an anchor for instructions that need to be altered
+ /// when using frame pointers (dyna_add, dyna_sub.)
+ int FramePointerSaveIndex;
+
+ /// ReturnAddrSaveIndex - Frame index of where the return address is stored.
+ ///
+ int ReturnAddrSaveIndex;
+
+ /// Frame index where the old base pointer is stored.
+ int BasePointerSaveIndex;
+
+ /// MustSaveLR - Indicates whether LR is defined (or clobbered) in the current
+ /// function. This is only valid after the initial scan of the function by
+ /// PEI.
+ bool MustSaveLR;
+
+ /// Does this function have any stack spills.
+ bool HasSpills;
+
+ /// Does this function spill using instructions with only r+r (not r+i)
+ /// forms.
+ bool HasNonRISpills;
+
+ /// SpillsCR - Indicates whether CR is spilled in the current function.
+ bool SpillsCR;
+
+ /// Indicates whether VRSAVE is spilled in the current function.
+ bool SpillsVRSAVE;
+
+ /// LRStoreRequired - The bool indicates whether there is some explicit use of
+ /// the LR/LR8 stack slot that is not obvious from scanning the code. This
+ /// requires that the code generator produce a store of LR to the stack on
+ /// entry, even though LR may otherwise apparently not be used.
+ bool LRStoreRequired;
+
+ /// MinReservedArea - This is the frame size that is at least reserved in a
+ /// potential caller (parameter+linkage area).
+ unsigned MinReservedArea;
+
+ /// TailCallSPDelta - Stack pointer delta used when tail calling. Maximum
+ /// amount the stack pointer is adjusted to make the frame bigger for tail
+ /// calls. Used for creating an area before the register spill area.
+ int TailCallSPDelta;
+
+ /// HasFastCall - Does this function contain a fast call. Used to determine
+ /// how the caller's stack pointer should be calculated (epilog/dynamicalloc).
+ bool HasFastCall;
+
+ /// VarArgsFrameIndex - FrameIndex for start of varargs area.
+ int VarArgsFrameIndex;
+ /// VarArgsStackOffset - StackOffset for start of stack
+ /// arguments.
+ int VarArgsStackOffset;
+ /// VarArgsNumGPR - Index of the first unused integer
+ /// register for parameter passing.
+ unsigned VarArgsNumGPR;
+ /// VarArgsNumFPR - Index of the first unused double
+ /// register for parameter passing.
+ unsigned VarArgsNumFPR;
+
+ /// CRSpillFrameIndex - FrameIndex for CR spill slot for 32-bit SVR4.
+ int CRSpillFrameIndex;
+
+ /// If any of CR[2-4] need to be saved in the prologue and restored in the
+ /// epilogue then they are added to this array. This is used for the
+ /// 64-bit SVR4 ABI.
+ SmallVector<unsigned, 3> MustSaveCRs;
+
+ /// Hold onto our MachineFunction context.
+ MachineFunction &MF;
+
+ /// Whether this uses the PIC Base register or not.
+ bool UsesPICBase;
+
+public:
+ explicit PPCFunctionInfo(MachineFunction &MF)
+ : FramePointerSaveIndex(0),
+ ReturnAddrSaveIndex(0),
+ BasePointerSaveIndex(0),
+ HasSpills(false),
+ HasNonRISpills(false),
+ SpillsCR(false),
+ SpillsVRSAVE(false),
+ LRStoreRequired(false),
+ MinReservedArea(0),
+ TailCallSPDelta(0),
+ HasFastCall(false),
+ VarArgsFrameIndex(0),
+ VarArgsStackOffset(0),
+ VarArgsNumGPR(0),
+ VarArgsNumFPR(0),
+ CRSpillFrameIndex(0),
+ MF(MF),
+ UsesPICBase(0) {}
+
+ int getFramePointerSaveIndex() const { return FramePointerSaveIndex; }
+ void setFramePointerSaveIndex(int Idx) { FramePointerSaveIndex = Idx; }
+
+ int getReturnAddrSaveIndex() const { return ReturnAddrSaveIndex; }
+ void setReturnAddrSaveIndex(int idx) { ReturnAddrSaveIndex = idx; }
+
+ int getBasePointerSaveIndex() const { return BasePointerSaveIndex; }
+ void setBasePointerSaveIndex(int Idx) { BasePointerSaveIndex = Idx; }
+
+ unsigned getMinReservedArea() const { return MinReservedArea; }
+ void setMinReservedArea(unsigned size) { MinReservedArea = size; }
+
+ int getTailCallSPDelta() const { return TailCallSPDelta; }
+ void setTailCallSPDelta(int size) { TailCallSPDelta = size; }
+
+ /// MustSaveLR - This is set when the prolog/epilog inserter does its initial
+ /// scan of the function. It is true if the LR/LR8 register is ever explicitly
+ /// defined/clobbered in the machine function (e.g. by calls and movpctolr,
+ /// which is used in PIC generation), or if the LR stack slot is explicitly
+ /// referenced by builtin_return_address.
+ void setMustSaveLR(bool U) { MustSaveLR = U; }
+ bool mustSaveLR() const { return MustSaveLR; }
+
+ void setHasSpills() { HasSpills = true; }
+ bool hasSpills() const { return HasSpills; }
+
+ void setHasNonRISpills() { HasNonRISpills = true; }
+ bool hasNonRISpills() const { return HasNonRISpills; }
+
+ void setSpillsCR() { SpillsCR = true; }
+ bool isCRSpilled() const { return SpillsCR; }
+
+ void setSpillsVRSAVE() { SpillsVRSAVE = true; }
+ bool isVRSAVESpilled() const { return SpillsVRSAVE; }
+
+ void setLRStoreRequired() { LRStoreRequired = true; }
+ bool isLRStoreRequired() const { return LRStoreRequired; }
+
+ void setHasFastCall() { HasFastCall = true; }
+ bool hasFastCall() const { return HasFastCall;}
+
+ int getVarArgsFrameIndex() const { return VarArgsFrameIndex; }
+ void setVarArgsFrameIndex(int Index) { VarArgsFrameIndex = Index; }
+
+ int getVarArgsStackOffset() const { return VarArgsStackOffset; }
+ void setVarArgsStackOffset(int Offset) { VarArgsStackOffset = Offset; }
+
+ unsigned getVarArgsNumGPR() const { return VarArgsNumGPR; }
+ void setVarArgsNumGPR(unsigned Num) { VarArgsNumGPR = Num; }
+
+ unsigned getVarArgsNumFPR() const { return VarArgsNumFPR; }
+ void setVarArgsNumFPR(unsigned Num) { VarArgsNumFPR = Num; }
+
+ int getCRSpillFrameIndex() const { return CRSpillFrameIndex; }
+ void setCRSpillFrameIndex(int idx) { CRSpillFrameIndex = idx; }
+
+ const SmallVectorImpl<unsigned> &
+ getMustSaveCRs() const { return MustSaveCRs; }
+ void addMustSaveCR(unsigned Reg) { MustSaveCRs.push_back(Reg); }
+
+ void setUsesPICBase(bool uses) { UsesPICBase = uses; }
+ bool usesPICBase() const { return UsesPICBase; }
+
+ MCSymbol *getPICOffsetSymbol() const;
+};
+
+} // end of namespace llvm
+
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCPerfectShuffle.h b/contrib/llvm/lib/Target/PowerPC/PPCPerfectShuffle.h
new file mode 100644
index 0000000..17b836d
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCPerfectShuffle.h
@@ -0,0 +1,6586 @@
+//===-- PPCPerfectShuffle.h - Altivec Perfect Shuffle Table -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file, which was autogenerated by llvm-PerfectShuffle, contains data
+// for the optimal way to build a perfect shuffle without using vperm.
+//
+//===----------------------------------------------------------------------===//
+
+// 31 entries have cost 0
+// 292 entries have cost 1
+// 1384 entries have cost 2
+// 3061 entries have cost 3
+// 1733 entries have cost 4
+// 60 entries have cost 5
+
+// This table is 6561*4 = 26244 bytes in size.
+static const unsigned PerfectShuffleTable[6561+1] = {
+ 202162278U, // <0,0,0,0>: Cost 1 vspltisw0 LHS
+ 1140850790U, // <0,0,0,1>: Cost 2 vmrghw <0,0,0,0>, LHS
+ 2617247181U, // <0,0,0,2>: Cost 3 vsldoi4 <0,0,0,0>, <2,0,3,0>
+ 2635163787U, // <0,0,0,3>: Cost 3 vsldoi4 <3,0,0,0>, <3,0,0,0>
+ 1543507254U, // <0,0,0,4>: Cost 2 vsldoi4 <0,0,0,0>, RHS
+ 2281701705U, // <0,0,0,5>: Cost 3 vmrglw <0,0,0,0>, <0,4,0,5>
+ 2617250133U, // <0,0,0,6>: Cost 3 vsldoi4 <0,0,0,0>, <6,0,7,0>
+ 2659054575U, // <0,0,0,7>: Cost 3 vsldoi4 <7,0,0,0>, <7,0,0,0>
+ 202162278U, // <0,0,0,u>: Cost 1 vspltisw0 LHS
+ 1141686282U, // <0,0,1,0>: Cost 2 vmrghw LHS, <0,0,1,1>
+ 67944550U, // <0,0,1,1>: Cost 1 vmrghw LHS, LHS
+ 1685241958U, // <0,0,1,2>: Cost 2 vsldoi12 <1,2,3,0>, LHS
+ 2215870716U, // <0,0,1,3>: Cost 3 vmrghw LHS, <0,3,1,0>
+ 1141727570U, // <0,0,1,4>: Cost 2 vmrghw LHS, <0,4,1,5>
+ 2215428562U, // <0,0,1,5>: Cost 3 vmrghw LHS, <0,5,6,7>
+ 2215428589U, // <0,0,1,6>: Cost 3 vmrghw LHS, <0,6,0,7>
+ 2659062768U, // <0,0,1,7>: Cost 3 vsldoi4 <7,0,0,1>, <7,0,0,1>
+ 67945117U, // <0,0,1,u>: Cost 1 vmrghw LHS, LHS
+ 2684356045U, // <0,0,2,0>: Cost 3 vsldoi8 <0,0,0,0>, <2,0,3,0>
+ 2216009830U, // <0,0,2,1>: Cost 3 vmrghw <0,2,1,2>, LHS
+ 2216009901U, // <0,0,2,2>: Cost 3 vmrghw <0,2,1,2>, <0,2,1,2>
+ 2698290853U, // <0,0,2,3>: Cost 3 vsldoi8 <2,3,0,0>, <2,3,0,0>
+ 3289751890U, // <0,0,2,4>: Cost 4 vmrghw <0,2,1,2>, <0,4,1,5>
+ 3758098275U, // <0,0,2,5>: Cost 4 vsldoi8 <0,0,0,0>, <2,5,3,1>
+ 2684356538U, // <0,0,2,6>: Cost 3 vsldoi8 <0,0,0,0>, <2,6,3,7>
+ 3758098410U, // <0,0,2,7>: Cost 4 vsldoi8 <0,0,0,0>, <2,7,0,1>
+ 2216010397U, // <0,0,2,u>: Cost 3 vmrghw <0,2,1,2>, LHS
+ 2702272651U, // <0,0,3,0>: Cost 3 vsldoi8 <3,0,0,0>, <3,0,0,0>
+ 2216656998U, // <0,0,3,1>: Cost 3 vmrghw <0,3,1,0>, LHS
+ 3844669704U, // <0,0,3,2>: Cost 4 vsldoi12 <3,2,3,0>, <0,3,2,3>
+ 2216657148U, // <0,0,3,3>: Cost 3 vmrghw <0,3,1,0>, <0,3,1,0>
+ 2684357122U, // <0,0,3,4>: Cost 3 vsldoi8 <0,0,0,0>, <3,4,5,6>
+ 3732820066U, // <0,0,3,5>: Cost 4 vsldoi4 <7,0,0,3>, <5,6,7,0>
+ 3778005624U, // <0,0,3,6>: Cost 4 vsldoi8 <3,3,0,0>, <3,6,0,7>
+ 3374713464U, // <0,0,3,7>: Cost 4 vmrglw <3,2,0,3>, <3,6,0,7>
+ 2216657565U, // <0,0,3,u>: Cost 3 vmrghw <0,3,1,0>, LHS
+ 2217361408U, // <0,0,4,0>: Cost 3 vmrghw <0,4,1,5>, <0,0,0,0>
+ 1143619686U, // <0,0,4,1>: Cost 2 vmrghw <0,4,1,5>, LHS
+ 3291103405U, // <0,0,4,2>: Cost 4 vmrghw <0,4,1,5>, <0,2,1,2>
+ 3827269988U, // <0,0,4,3>: Cost 4 vsldoi12 <0,3,1,0>, <0,4,3,5>
+ 1143619922U, // <0,0,4,4>: Cost 2 vmrghw <0,4,1,5>, <0,4,1,5>
+ 1610616118U, // <0,0,4,5>: Cost 2 vsldoi8 <0,0,0,0>, RHS
+ 3758099833U, // <0,0,4,6>: Cost 4 vsldoi8 <0,0,0,0>, <4,6,5,2>
+ 3854107016U, // <0,0,4,7>: Cost 4 vsldoi12 <4,7,5,0>, <0,4,7,5>
+ 1143620253U, // <0,0,4,u>: Cost 2 vmrghw <0,4,1,5>, LHS
+ 2284396544U, // <0,0,5,0>: Cost 3 vmrglw <0,4,0,5>, <0,0,0,0>
+ 2218025062U, // <0,0,5,1>: Cost 3 vmrghw <0,5,1,5>, LHS
+ 3758100203U, // <0,0,5,2>: Cost 4 vsldoi8 <0,0,0,0>, <5,2,1,3>
+ 3395966100U, // <0,0,5,3>: Cost 4 vmrglw <6,7,0,5>, <7,2,0,3>
+ 3804549052U, // <0,0,5,4>: Cost 4 vsldoi8 <7,7,0,0>, <5,4,6,5>
+ 2302314964U, // <0,0,5,5>: Cost 3 vmrglw <3,4,0,5>, <3,4,0,5>
+ 2785821138U, // <0,0,5,6>: Cost 3 vsldoi12 <5,6,7,0>, <0,5,6,7>
+ 3395966428U, // <0,0,5,7>: Cost 4 vmrglw <6,7,0,5>, <7,6,0,7>
+ 2787148260U, // <0,0,5,u>: Cost 3 vsldoi12 <5,u,7,0>, <0,5,u,7>
+ 2684358997U, // <0,0,6,0>: Cost 3 vsldoi8 <0,0,0,0>, <6,0,7,0>
+ 2218631270U, // <0,0,6,1>: Cost 3 vmrghw <0,6,0,7>, LHS
+ 2684359162U, // <0,0,6,2>: Cost 3 vsldoi8 <0,0,0,0>, <6,2,7,3>
+ 3758101042U, // <0,0,6,3>: Cost 4 vsldoi8 <0,0,0,0>, <6,3,4,5>
+ 3732843830U, // <0,0,6,4>: Cost 4 vsldoi4 <7,0,0,6>, RHS
+ 3758101227U, // <0,0,6,5>: Cost 4 vsldoi8 <0,0,0,0>, <6,5,7,1>
+ 2684359480U, // <0,0,6,6>: Cost 3 vsldoi8 <0,0,0,0>, <6,6,6,6>
+ 2724836173U, // <0,0,6,7>: Cost 3 vsldoi8 <6,7,0,0>, <6,7,0,0>
+ 2725499806U, // <0,0,6,u>: Cost 3 vsldoi8 <6,u,0,0>, <6,u,0,0>
+ 2726163439U, // <0,0,7,0>: Cost 3 vsldoi8 <7,0,0,0>, <7,0,0,0>
+ 2219311206U, // <0,0,7,1>: Cost 3 vmrghw <0,7,1,0>, LHS
+ 3868557900U, // <0,0,7,2>: Cost 4 vsldoi12 <7,2,3,0>, <0,7,2,3>
+ 3377400112U, // <0,0,7,3>: Cost 4 vmrglw <3,6,0,7>, <3,2,0,3>
+ 2684360038U, // <0,0,7,4>: Cost 3 vsldoi8 <0,0,0,0>, <7,4,5,6>
+ 3732852834U, // <0,0,7,5>: Cost 4 vsldoi4 <7,0,0,7>, <5,6,7,0>
+ 3871507060U, // <0,0,7,6>: Cost 4 vsldoi12 <7,6,7,0>, <0,7,6,7>
+ 2303658616U, // <0,0,7,7>: Cost 3 vmrglw <3,6,0,7>, <3,6,0,7>
+ 2726163439U, // <0,0,7,u>: Cost 3 vsldoi8 <7,0,0,0>, <7,0,0,0>
+ 202162278U, // <0,0,u,0>: Cost 1 vspltisw0 LHS
+ 72589414U, // <0,0,u,1>: Cost 1 vmrghw LHS, LHS
+ 1685242525U, // <0,0,u,2>: Cost 2 vsldoi12 <1,2,3,0>, LHS
+ 2220073212U, // <0,0,u,3>: Cost 3 vmrghw LHS, <0,3,1,0>
+ 1146331474U, // <0,0,u,4>: Cost 2 vmrghw LHS, <0,4,1,5>
+ 1610619034U, // <0,0,u,5>: Cost 2 vsldoi8 <0,0,0,0>, RHS
+ 2785821138U, // <0,0,u,6>: Cost 3 vsldoi12 <5,6,7,0>, <0,5,6,7>
+ 2659120119U, // <0,0,u,7>: Cost 3 vsldoi4 <7,0,0,u>, <7,0,0,u>
+ 72589981U, // <0,0,u,u>: Cost 1 vmrghw LHS, LHS
+ 2698297344U, // <0,1,0,0>: Cost 3 vsldoi8 <2,3,0,1>, <0,0,0,0>
+ 1624555622U, // <0,1,0,1>: Cost 2 vsldoi8 <2,3,0,1>, LHS
+ 2758984428U, // <0,1,0,2>: Cost 3 vsldoi12 <1,2,3,0>, <1,0,2,1>
+ 2635237524U, // <0,1,0,3>: Cost 3 vsldoi4 <3,0,1,0>, <3,0,1,0>
+ 2693652818U, // <0,1,0,4>: Cost 3 vsldoi8 <1,5,0,1>, <0,4,1,5>
+ 2281701714U, // <0,1,0,5>: Cost 3 vmrglw <0,0,0,0>, <0,4,1,5>
+ 2698297846U, // <0,1,0,6>: Cost 3 vsldoi8 <2,3,0,1>, <0,6,1,7>
+ 2659128312U, // <0,1,0,7>: Cost 3 vsldoi4 <7,0,1,0>, <7,0,1,0>
+ 1624556189U, // <0,1,0,u>: Cost 2 vsldoi8 <2,3,0,1>, LHS
+ 1543585802U, // <0,1,1,0>: Cost 2 vsldoi4 <0,0,1,1>, <0,0,1,1>
+ 1141728052U, // <0,1,1,1>: Cost 2 vmrghw LHS, <1,1,1,1>
+ 1141728150U, // <0,1,1,2>: Cost 2 vmrghw LHS, <1,2,3,0>
+ 2295644334U, // <0,1,1,3>: Cost 3 vmrglw <2,3,0,1>, <0,2,1,3>
+ 1543589174U, // <0,1,1,4>: Cost 2 vsldoi4 <0,0,1,1>, RHS
+ 2290999634U, // <0,1,1,5>: Cost 3 vmrglw <1,5,0,1>, <0,4,1,5>
+ 2617332135U, // <0,1,1,6>: Cost 3 vsldoi4 <0,0,1,1>, <6,1,7,1>
+ 2617332720U, // <0,1,1,7>: Cost 3 vsldoi4 <0,0,1,1>, <7,0,0,1>
+ 1142171004U, // <0,1,1,u>: Cost 2 vmrghw LHS, <1,u,3,0>
+ 1561509990U, // <0,1,2,0>: Cost 2 vsldoi4 <3,0,1,2>, LHS
+ 2623308516U, // <0,1,2,1>: Cost 3 vsldoi4 <1,0,1,2>, <1,0,1,2>
+ 2698298984U, // <0,1,2,2>: Cost 3 vsldoi8 <2,3,0,1>, <2,2,2,2>
+ 835584U, // <0,1,2,3>: Cost 0 copy LHS
+ 1561513270U, // <0,1,2,4>: Cost 2 vsldoi4 <3,0,1,2>, RHS
+ 2647199304U, // <0,1,2,5>: Cost 3 vsldoi4 <5,0,1,2>, <5,0,1,2>
+ 2698299322U, // <0,1,2,6>: Cost 3 vsldoi8 <2,3,0,1>, <2,6,3,7>
+ 1585402874U, // <0,1,2,7>: Cost 2 vsldoi4 <7,0,1,2>, <7,0,1,2>
+ 835584U, // <0,1,2,u>: Cost 0 copy LHS
+ 2698299540U, // <0,1,3,0>: Cost 3 vsldoi8 <2,3,0,1>, <3,0,1,0>
+ 3290399540U, // <0,1,3,1>: Cost 4 vmrghw <0,3,1,0>, <1,1,1,1>
+ 2698299720U, // <0,1,3,2>: Cost 3 vsldoi8 <2,3,0,1>, <3,2,3,0>
+ 2698299804U, // <0,1,3,3>: Cost 3 vsldoi8 <2,3,0,1>, <3,3,3,3>
+ 2698299906U, // <0,1,3,4>: Cost 3 vsldoi8 <2,3,0,1>, <3,4,5,6>
+ 3832726521U, // <0,1,3,5>: Cost 4 vsldoi12 <1,2,3,0>, <1,3,5,0>
+ 2724842160U, // <0,1,3,6>: Cost 3 vsldoi8 <6,7,0,1>, <3,6,7,0>
+ 2706926275U, // <0,1,3,7>: Cost 3 vsldoi8 <3,7,0,1>, <3,7,0,1>
+ 2698300190U, // <0,1,3,u>: Cost 3 vsldoi8 <2,3,0,1>, <3,u,1,2>
+ 2635268198U, // <0,1,4,0>: Cost 3 vsldoi4 <3,0,1,4>, LHS
+ 2217362228U, // <0,1,4,1>: Cost 3 vmrghw <0,4,1,5>, <1,1,1,1>
+ 2217362326U, // <0,1,4,2>: Cost 3 vmrghw <0,4,1,5>, <1,2,3,0>
+ 2635270296U, // <0,1,4,3>: Cost 3 vsldoi4 <3,0,1,4>, <3,0,1,4>
+ 2635271478U, // <0,1,4,4>: Cost 3 vsldoi4 <3,0,1,4>, RHS
+ 1624558902U, // <0,1,4,5>: Cost 2 vsldoi8 <2,3,0,1>, RHS
+ 2659160910U, // <0,1,4,6>: Cost 3 vsldoi4 <7,0,1,4>, <6,7,0,1>
+ 2659161084U, // <0,1,4,7>: Cost 3 vsldoi4 <7,0,1,4>, <7,0,1,4>
+ 1624559145U, // <0,1,4,u>: Cost 2 vsldoi8 <2,3,0,1>, RHS
+ 3832726639U, // <0,1,5,0>: Cost 4 vsldoi12 <1,2,3,0>, <1,5,0,1>
+ 2714889871U, // <0,1,5,1>: Cost 3 vsldoi8 <5,1,0,1>, <5,1,0,1>
+ 2302314646U, // <0,1,5,2>: Cost 3 vmrglw <3,4,0,5>, <3,0,1,2>
+ 3834717321U, // <0,1,5,3>: Cost 4 vsldoi12 <1,5,3,0>, <1,5,3,0>
+ 3832726679U, // <0,1,5,4>: Cost 4 vsldoi12 <1,2,3,0>, <1,5,4,5>
+ 2717544403U, // <0,1,5,5>: Cost 3 vsldoi8 <5,5,0,1>, <5,5,0,1>
+ 2718208036U, // <0,1,5,6>: Cost 3 vsldoi8 <5,6,0,1>, <5,6,0,1>
+ 3792613493U, // <0,1,5,7>: Cost 4 vsldoi8 <5,7,0,1>, <5,7,0,1>
+ 2719535302U, // <0,1,5,u>: Cost 3 vsldoi8 <5,u,0,1>, <5,u,0,1>
+ 2659172454U, // <0,1,6,0>: Cost 3 vsldoi4 <7,0,1,6>, LHS
+ 3832726735U, // <0,1,6,1>: Cost 4 vsldoi12 <1,2,3,0>, <1,6,1,7>
+ 2724844026U, // <0,1,6,2>: Cost 3 vsldoi8 <6,7,0,1>, <6,2,7,3>
+ 3775361608U, // <0,1,6,3>: Cost 4 vsldoi8 <2,u,0,1>, <6,3,7,0>
+ 2659175734U, // <0,1,6,4>: Cost 3 vsldoi4 <7,0,1,6>, RHS
+ 3832726771U, // <0,1,6,5>: Cost 4 vsldoi12 <1,2,3,0>, <1,6,5,7>
+ 2724844344U, // <0,1,6,6>: Cost 3 vsldoi8 <6,7,0,1>, <6,6,6,6>
+ 1651102542U, // <0,1,6,7>: Cost 2 vsldoi8 <6,7,0,1>, <6,7,0,1>
+ 1651766175U, // <0,1,6,u>: Cost 2 vsldoi8 <6,u,0,1>, <6,u,0,1>
+ 2724844536U, // <0,1,7,0>: Cost 3 vsldoi8 <6,7,0,1>, <7,0,1,0>
+ 3377397770U, // <0,1,7,1>: Cost 4 vmrglw <3,6,0,7>, <0,0,1,1>
+ 2698302636U, // <0,1,7,2>: Cost 3 vsldoi8 <2,3,0,1>, <7,2,3,0>
+ 2728162531U, // <0,1,7,3>: Cost 3 vsldoi8 <7,3,0,1>, <7,3,0,1>
+ 2724844902U, // <0,1,7,4>: Cost 3 vsldoi8 <6,7,0,1>, <7,4,5,6>
+ 3377398098U, // <0,1,7,5>: Cost 4 vmrglw <3,6,0,7>, <0,4,1,5>
+ 2724845076U, // <0,1,7,6>: Cost 3 vsldoi8 <6,7,0,1>, <7,6,7,0>
+ 2724845164U, // <0,1,7,7>: Cost 3 vsldoi8 <6,7,0,1>, <7,7,7,7>
+ 2724845186U, // <0,1,7,u>: Cost 3 vsldoi8 <6,7,0,1>, <7,u,1,2>
+ 1561559142U, // <0,1,u,0>: Cost 2 vsldoi4 <3,0,1,u>, LHS
+ 1146331956U, // <0,1,u,1>: Cost 2 vmrghw LHS, <1,1,1,1>
+ 1146332054U, // <0,1,u,2>: Cost 2 vmrghw LHS, <1,2,3,0>
+ 835584U, // <0,1,u,3>: Cost 0 copy LHS
+ 1561562422U, // <0,1,u,4>: Cost 2 vsldoi4 <3,0,1,u>, RHS
+ 1624561818U, // <0,1,u,5>: Cost 2 vsldoi8 <2,3,0,1>, RHS
+ 2220074191U, // <0,1,u,6>: Cost 3 vmrghw LHS, <1,6,1,7>
+ 1585452032U, // <0,1,u,7>: Cost 2 vsldoi4 <7,0,1,u>, <7,0,1,u>
+ 835584U, // <0,1,u,u>: Cost 0 copy LHS
+ 2214593997U, // <0,2,0,0>: Cost 3 vmrghw <0,0,0,0>, <2,0,3,0>
+ 2214675999U, // <0,2,0,1>: Cost 3 vmrghw <0,0,1,1>, <2,1,3,1>
+ 2214594152U, // <0,2,0,2>: Cost 3 vmrghw <0,0,0,0>, <2,2,2,2>
+ 1207959654U, // <0,2,0,3>: Cost 2 vmrglw <0,0,0,0>, LHS
+ 3709054262U, // <0,2,0,4>: Cost 4 vsldoi4 <3,0,2,0>, RHS
+ 3375350836U, // <0,2,0,5>: Cost 4 vmrglw <3,3,0,0>, <1,4,2,5>
+ 2214594490U, // <0,2,0,6>: Cost 3 vmrghw <0,0,0,0>, <2,6,3,7>
+ 3288336362U, // <0,2,0,7>: Cost 4 vmrghw <0,0,0,0>, <2,7,0,1>
+ 1207959659U, // <0,2,0,u>: Cost 2 vmrglw <0,0,0,0>, LHS
+ 2215871994U, // <0,2,1,0>: Cost 3 vmrghw LHS, <2,0,u,0>
+ 2215470623U, // <0,2,1,1>: Cost 3 vmrghw LHS, <2,1,3,1>
+ 1141728872U, // <0,2,1,2>: Cost 2 vmrghw LHS, <2,2,2,2>
+ 1141728934U, // <0,2,1,3>: Cost 2 vmrghw LHS, <2,3,0,1>
+ 2215872323U, // <0,2,1,4>: Cost 3 vmrghw LHS, <2,4,u,5>
+ 2215872405U, // <0,2,1,5>: Cost 3 vmrghw LHS, <2,5,u,6>
+ 1141729210U, // <0,2,1,6>: Cost 2 vmrghw LHS, <2,6,3,7>
+ 2215430122U, // <0,2,1,7>: Cost 3 vmrghw LHS, <2,7,0,1>
+ 1141729368U, // <0,2,1,u>: Cost 2 vmrghw LHS, <2,u,3,3>
+ 3289736698U, // <0,2,2,0>: Cost 4 vmrghw <0,2,1,0>, <2,0,u,0>
+ 3289744927U, // <0,2,2,1>: Cost 4 vmrghw <0,2,1,1>, <2,1,3,1>
+ 2216011368U, // <0,2,2,2>: Cost 3 vmrghw <0,2,1,2>, <2,2,2,2>
+ 2216019622U, // <0,2,2,3>: Cost 3 vmrghw <0,2,1,3>, <2,3,0,1>
+ 3289769795U, // <0,2,2,4>: Cost 4 vmrghw <0,2,1,4>, <2,4,u,5>
+ 3289778069U, // <0,2,2,5>: Cost 4 vmrghw <0,2,1,5>, <2,5,u,6>
+ 2216044474U, // <0,2,2,6>: Cost 3 vmrghw <0,2,1,6>, <2,6,3,7>
+ 3732960259U, // <0,2,2,7>: Cost 4 vsldoi4 <7,0,2,2>, <7,0,2,2>
+ 2216061016U, // <0,2,2,u>: Cost 3 vmrghw <0,2,1,u>, <2,u,3,3>
+ 2758985382U, // <0,2,3,0>: Cost 3 vsldoi12 <1,2,3,0>, <2,3,0,1>
+ 2758985392U, // <0,2,3,1>: Cost 3 vsldoi12 <1,2,3,0>, <2,3,1,2>
+ 3290400360U, // <0,2,3,2>: Cost 4 vmrghw <0,3,1,0>, <2,2,2,2>
+ 2758985408U, // <0,2,3,3>: Cost 3 vsldoi12 <1,2,3,0>, <2,3,3,0>
+ 2758985422U, // <0,2,3,4>: Cost 3 vsldoi12 <1,2,3,0>, <2,3,4,5>
+ 2785822424U, // <0,2,3,5>: Cost 3 vsldoi12 <5,6,7,0>, <2,3,5,6>
+ 3290400698U, // <0,2,3,6>: Cost 4 vmrghw <0,3,1,0>, <2,6,3,7>
+ 2765915876U, // <0,2,3,7>: Cost 3 vsldoi12 <2,3,7,0>, <2,3,7,0>
+ 2758985453U, // <0,2,3,u>: Cost 3 vsldoi12 <1,2,3,0>, <2,3,u,0>
+ 3291104762U, // <0,2,4,0>: Cost 4 vmrghw <0,4,1,5>, <2,0,u,0>
+ 2217362979U, // <0,2,4,1>: Cost 3 vmrghw <0,4,1,5>, <2,1,3,5>
+ 2217363048U, // <0,2,4,2>: Cost 3 vmrghw <0,4,1,5>, <2,2,2,2>
+ 2217363110U, // <0,2,4,3>: Cost 3 vmrghw <0,4,1,5>, <2,3,0,1>
+ 3291105087U, // <0,2,4,4>: Cost 4 vmrghw <0,4,1,5>, <2,4,u,1>
+ 3291105173U, // <0,2,4,5>: Cost 4 vmrghw <0,4,1,5>, <2,5,u,6>
+ 2217363386U, // <0,2,4,6>: Cost 3 vmrghw <0,4,1,5>, <2,6,3,7>
+ 3788639688U, // <0,2,4,7>: Cost 4 vsldoi8 <5,1,0,2>, <4,7,5,0>
+ 2217363515U, // <0,2,4,u>: Cost 3 vmrghw <0,4,1,5>, <2,u,0,1>
+ 3376054371U, // <0,2,5,0>: Cost 4 vmrglw <3,4,0,5>, <0,1,2,0>
+ 3788639888U, // <0,2,5,1>: Cost 4 vsldoi8 <5,1,0,2>, <5,1,0,2>
+ 3376055912U, // <0,2,5,2>: Cost 4 vmrglw <3,4,0,5>, <2,2,2,2>
+ 2302312550U, // <0,2,5,3>: Cost 3 vmrglw <3,4,0,5>, LHS
+ 3376054375U, // <0,2,5,4>: Cost 4 vmrglw <3,4,0,5>, <0,1,2,4>
+ 3374728244U, // <0,2,5,5>: Cost 4 vmrglw <3,2,0,5>, <1,4,2,5>
+ 3805229154U, // <0,2,5,6>: Cost 4 vsldoi8 <7,u,0,2>, <5,6,7,0>
+ 3376055512U, // <0,2,5,7>: Cost 4 vmrglw <3,4,0,5>, <1,6,2,7>
+ 2302312555U, // <0,2,5,u>: Cost 3 vmrglw <3,4,0,5>, LHS
+ 3709100134U, // <0,2,6,0>: Cost 4 vsldoi4 <3,0,2,6>, LHS
+ 3709100950U, // <0,2,6,1>: Cost 4 vsldoi4 <3,0,2,6>, <1,2,3,0>
+ 3709102010U, // <0,2,6,2>: Cost 4 vsldoi4 <3,0,2,6>, <2,6,3,7>
+ 2758985658U, // <0,2,6,3>: Cost 3 vsldoi12 <1,2,3,0>, <2,6,3,7>
+ 3709103414U, // <0,2,6,4>: Cost 4 vsldoi4 <3,0,2,6>, RHS
+ 3732992098U, // <0,2,6,5>: Cost 4 vsldoi4 <7,0,2,6>, <5,6,7,0>
+ 3292374970U, // <0,2,6,6>: Cost 4 vmrghw <0,6,0,7>, <2,6,3,7>
+ 3798594383U, // <0,2,6,7>: Cost 4 vsldoi8 <6,7,0,2>, <6,7,0,2>
+ 2758985703U, // <0,2,6,u>: Cost 3 vsldoi12 <1,2,3,0>, <2,6,u,7>
+ 3788641274U, // <0,2,7,0>: Cost 4 vsldoi8 <5,1,0,2>, <7,0,1,2>
+ 3377398508U, // <0,2,7,1>: Cost 4 vmrglw <3,6,0,7>, <1,0,2,1>
+ 3377398590U, // <0,2,7,2>: Cost 4 vmrglw <3,6,0,7>, <1,1,2,2>
+ 2303656038U, // <0,2,7,3>: Cost 3 vmrglw <3,6,0,7>, LHS
+ 3709111606U, // <0,2,7,4>: Cost 4 vsldoi4 <3,0,2,7>, RHS
+ 3377398836U, // <0,2,7,5>: Cost 4 vmrglw <3,6,0,7>, <1,4,2,5>
+ 3803903447U, // <0,2,7,6>: Cost 4 vsldoi8 <7,6,0,2>, <7,6,0,2>
+ 3293054954U, // <0,2,7,7>: Cost 4 vmrghw <0,7,1,0>, <2,7,0,1>
+ 2303656043U, // <0,2,7,u>: Cost 3 vmrglw <3,6,0,7>, LHS
+ 2220074490U, // <0,2,u,0>: Cost 3 vmrghw LHS, <2,0,u,0>
+ 2220074527U, // <0,2,u,1>: Cost 3 vmrghw LHS, <2,1,3,1>
+ 1146332776U, // <0,2,u,2>: Cost 2 vmrghw LHS, <2,2,2,2>
+ 1146332838U, // <0,2,u,3>: Cost 2 vmrghw LHS, <2,3,0,1>
+ 2220074819U, // <0,2,u,4>: Cost 3 vmrghw LHS, <2,4,u,5>
+ 2220074901U, // <0,2,u,5>: Cost 3 vmrghw LHS, <2,5,u,6>
+ 1146333114U, // <0,2,u,6>: Cost 2 vmrghw LHS, <2,6,3,7>
+ 2220074986U, // <0,2,u,7>: Cost 3 vmrghw LHS, <2,7,0,1>
+ 1146333243U, // <0,2,u,u>: Cost 2 vmrghw LHS, <2,u,0,1>
+ 2629410816U, // <0,3,0,0>: Cost 3 vsldoi4 <2,0,3,0>, <0,0,0,0>
+ 2753530006U, // <0,3,0,1>: Cost 3 vsldoi12 <0,3,1,0>, <3,0,1,2>
+ 2629412301U, // <0,3,0,2>: Cost 3 vsldoi4 <2,0,3,0>, <2,0,3,0>
+ 2214594972U, // <0,3,0,3>: Cost 3 vmrghw <0,0,0,0>, <3,3,3,3>
+ 2758985908U, // <0,3,0,4>: Cost 3 vsldoi12 <1,2,3,0>, <3,0,4,5>
+ 3733016674U, // <0,3,0,5>: Cost 4 vsldoi4 <7,0,3,0>, <5,6,7,0>
+ 3777364488U, // <0,3,0,6>: Cost 4 vsldoi8 <3,2,0,3>, <0,6,3,7>
+ 2281703354U, // <0,3,0,7>: Cost 3 vmrglw <0,0,0,0>, <2,6,3,7>
+ 2758985941U, // <0,3,0,u>: Cost 3 vsldoi12 <1,2,3,0>, <3,0,u,2>
+ 1141729430U, // <0,3,1,0>: Cost 2 vmrghw LHS, <3,0,1,2>
+ 2215471334U, // <0,3,1,1>: Cost 3 vmrghw LHS, <3,1,1,1>
+ 2215471425U, // <0,3,1,2>: Cost 3 vmrghw LHS, <3,2,2,2>
+ 1141729692U, // <0,3,1,3>: Cost 2 vmrghw LHS, <3,3,3,3>
+ 1141729794U, // <0,3,1,4>: Cost 2 vmrghw LHS, <3,4,5,6>
+ 2215430738U, // <0,3,1,5>: Cost 3 vmrghw LHS, <3,5,5,5>
+ 2215430776U, // <0,3,1,6>: Cost 3 vmrghw LHS, <3,6,0,7>
+ 2295646138U, // <0,3,1,7>: Cost 3 vmrglw <2,3,0,1>, <2,6,3,7>
+ 1141730078U, // <0,3,1,u>: Cost 2 vmrghw LHS, <3,u,1,2>
+ 2758986032U, // <0,3,2,0>: Cost 3 vsldoi12 <1,2,3,0>, <3,2,0,3>
+ 3709141910U, // <0,3,2,1>: Cost 4 vsldoi4 <3,0,3,2>, <1,2,3,0>
+ 3289753921U, // <0,3,2,2>: Cost 4 vmrghw <0,2,1,2>, <3,2,2,2>
+ 2770929992U, // <0,3,2,3>: Cost 3 vsldoi12 <3,2,3,0>, <3,2,3,0>
+ 3289754114U, // <0,3,2,4>: Cost 4 vmrghw <0,2,1,2>, <3,4,5,6>
+ 3362095460U, // <0,3,2,5>: Cost 5 vmrglw <1,1,0,2>, <0,4,3,5>
+ 3832727910U, // <0,3,2,6>: Cost 4 vsldoi12 <1,2,3,0>, <3,2,6,3>
+ 3365414842U, // <0,3,2,7>: Cost 4 vmrglw <1,6,0,2>, <2,6,3,7>
+ 2771298677U, // <0,3,2,u>: Cost 3 vsldoi12 <3,2,u,0>, <3,2,u,0>
+ 2216659094U, // <0,3,3,0>: Cost 3 vmrghw <0,3,1,0>, <3,0,1,2>
+ 3290409190U, // <0,3,3,1>: Cost 4 vmrghw <0,3,1,1>, <3,1,1,1>
+ 2703624496U, // <0,3,3,2>: Cost 3 vsldoi8 <3,2,0,3>, <3,2,0,3>
+ 2216683932U, // <0,3,3,3>: Cost 3 vmrghw <0,3,1,3>, <3,3,3,3>
+ 2216692226U, // <0,3,3,4>: Cost 3 vmrghw <0,3,1,4>, <3,4,5,6>
+ 3733041250U, // <0,3,3,5>: Cost 4 vsldoi4 <7,0,3,3>, <5,6,7,0>
+ 3832727988U, // <0,3,3,6>: Cost 4 vsldoi12 <1,2,3,0>, <3,3,6,0>
+ 3374712762U, // <0,3,3,7>: Cost 4 vmrglw <3,2,0,3>, <2,6,3,7>
+ 2216725278U, // <0,3,3,u>: Cost 3 vmrghw <0,3,1,u>, <3,u,1,2>
+ 2217363606U, // <0,3,4,0>: Cost 3 vmrghw <0,4,1,5>, <3,0,1,2>
+ 3291105510U, // <0,3,4,1>: Cost 4 vmrghw <0,4,1,5>, <3,1,1,1>
+ 3291105601U, // <0,3,4,2>: Cost 4 vmrghw <0,4,1,5>, <3,2,2,2>
+ 2217363868U, // <0,3,4,3>: Cost 3 vmrghw <0,4,1,5>, <3,3,3,3>
+ 2217363970U, // <0,3,4,4>: Cost 3 vmrghw <0,4,1,5>, <3,4,5,6>
+ 2758986242U, // <0,3,4,5>: Cost 3 vsldoi12 <1,2,3,0>, <3,4,5,6>
+ 3727077685U, // <0,3,4,6>: Cost 4 vsldoi4 <6,0,3,4>, <6,0,3,4>
+ 3364767674U, // <0,3,4,7>: Cost 4 vmrglw <1,5,0,4>, <2,6,3,7>
+ 2217364254U, // <0,3,4,u>: Cost 3 vmrghw <0,4,1,5>, <3,u,1,2>
+ 3832728102U, // <0,3,5,0>: Cost 4 vsldoi12 <1,2,3,0>, <3,5,0,6>
+ 3405916003U, // <0,3,5,1>: Cost 4 vmrglw <u,4,0,5>, <2,5,3,1>
+ 3376055840U, // <0,3,5,2>: Cost 4 vmrglw <3,4,0,5>, <2,1,3,2>
+ 3376055679U, // <0,3,5,3>: Cost 4 vmrglw <3,4,0,5>, <1,u,3,3>
+ 3376055194U, // <0,3,5,4>: Cost 4 vmrglw <3,4,0,5>, <1,2,3,4>
+ 3859565138U, // <0,3,5,5>: Cost 4 vsldoi12 <5,6,7,0>, <3,5,5,5>
+ 2727514210U, // <0,3,5,6>: Cost 3 vsldoi8 <7,2,0,3>, <5,6,7,0>
+ 3376056250U, // <0,3,5,7>: Cost 4 vmrglw <3,4,0,5>, <2,6,3,7>
+ 2727514210U, // <0,3,5,u>: Cost 3 vsldoi8 <7,2,0,3>, <5,6,7,0>
+ 2758986360U, // <0,3,6,0>: Cost 3 vsldoi12 <1,2,3,0>, <3,6,0,7>
+ 3709174678U, // <0,3,6,1>: Cost 4 vsldoi4 <3,0,3,6>, <1,2,3,0>
+ 3795284411U, // <0,3,6,2>: Cost 4 vsldoi8 <6,2,0,3>, <6,2,0,3>
+ 3709175980U, // <0,3,6,3>: Cost 4 vsldoi4 <3,0,3,6>, <3,0,3,6>
+ 3833096860U, // <0,3,6,4>: Cost 4 vsldoi12 <1,2,u,0>, <3,6,4,7>
+ 3376728235U, // <0,3,6,5>: Cost 5 vmrglw <3,5,0,6>, <3,0,3,5>
+ 3859565229U, // <0,3,6,6>: Cost 4 vsldoi12 <5,6,7,0>, <3,6,6,6>
+ 2773879472U, // <0,3,6,7>: Cost 3 vsldoi12 <3,6,7,0>, <3,6,7,0>
+ 2758986360U, // <0,3,6,u>: Cost 3 vsldoi12 <1,2,3,0>, <3,6,0,7>
+ 2303656854U, // <0,3,7,0>: Cost 3 vmrglw <3,6,0,7>, <1,2,3,0>
+ 3807229018U, // <0,3,7,1>: Cost 4 vsldoi8 <u,2,0,3>, <7,1,2,u>
+ 2727515284U, // <0,3,7,2>: Cost 3 vsldoi8 <7,2,0,3>, <7,2,0,3>
+ 3377399410U, // <0,3,7,3>: Cost 4 vmrglw <3,6,0,7>, <2,2,3,3>
+ 3377398682U, // <0,3,7,4>: Cost 4 vmrglw <3,6,0,7>, <1,2,3,4>
+ 3801257409U, // <0,3,7,5>: Cost 4 vsldoi8 <7,2,0,3>, <7,5,6,7>
+ 3377399980U, // <0,3,7,6>: Cost 4 vmrglw <3,6,0,7>, <3,0,3,6>
+ 3375409082U, // <0,3,7,7>: Cost 4 vmrglw <3,3,0,7>, <2,6,3,7>
+ 2731497082U, // <0,3,7,u>: Cost 3 vsldoi8 <7,u,0,3>, <7,u,0,3>
+ 1146333334U, // <0,3,u,0>: Cost 2 vmrghw LHS, <3,0,1,2>
+ 2220075238U, // <0,3,u,1>: Cost 3 vmrghw LHS, <3,1,1,1>
+ 2220075329U, // <0,3,u,2>: Cost 3 vmrghw LHS, <3,2,2,2>
+ 1146333596U, // <0,3,u,3>: Cost 2 vmrghw LHS, <3,3,3,3>
+ 1146333698U, // <0,3,u,4>: Cost 2 vmrghw LHS, <3,4,5,6>
+ 2758986566U, // <0,3,u,5>: Cost 3 vsldoi12 <1,2,3,0>, <3,u,5,6>
+ 2803739472U, // <0,3,u,6>: Cost 3 vsldoi12 <u,6,7,0>, <3,u,6,7>
+ 2295703482U, // <0,3,u,7>: Cost 3 vmrglw <2,3,0,u>, <2,6,3,7>
+ 1146333982U, // <0,3,u,u>: Cost 2 vmrghw LHS, <3,u,1,2>
+ 2214595473U, // <0,4,0,0>: Cost 3 vmrghw <0,0,0,0>, <4,0,5,0>
+ 2693677158U, // <0,4,0,1>: Cost 3 vsldoi8 <1,5,0,4>, LHS
+ 3839437689U, // <0,4,0,2>: Cost 4 vsldoi12 <2,3,4,0>, <4,0,2,3>
+ 3709200559U, // <0,4,0,3>: Cost 4 vsldoi4 <3,0,4,0>, <3,0,4,0>
+ 2693677394U, // <0,4,0,4>: Cost 3 vsldoi8 <1,5,0,4>, <0,4,1,5>
+ 1140854070U, // <0,4,0,5>: Cost 2 vmrghw <0,0,0,0>, RHS
+ 3767419409U, // <0,4,0,6>: Cost 4 vsldoi8 <1,5,0,4>, <0,6,4,7>
+ 3854109604U, // <0,4,0,7>: Cost 4 vsldoi12 <4,7,5,0>, <4,0,7,1>
+ 1140854313U, // <0,4,0,u>: Cost 2 vmrghw <0,0,0,0>, RHS
+ 1141689234U, // <0,4,1,0>: Cost 2 vmrghw LHS, <4,0,5,1>
+ 2215431114U, // <0,4,1,1>: Cost 3 vmrghw LHS, <4,1,2,3>
+ 2215431221U, // <0,4,1,2>: Cost 3 vmrghw LHS, <4,2,5,2>
+ 2635466928U, // <0,4,1,3>: Cost 3 vsldoi4 <3,0,4,1>, <3,0,4,1>
+ 1141689552U, // <0,4,1,4>: Cost 2 vmrghw LHS, <4,4,4,4>
+ 67947830U, // <0,4,1,5>: Cost 1 vmrghw LHS, RHS
+ 2215431545U, // <0,4,1,6>: Cost 3 vmrghw LHS, <4,6,5,2>
+ 2659357716U, // <0,4,1,7>: Cost 3 vsldoi4 <7,0,4,1>, <7,0,4,1>
+ 67948073U, // <0,4,1,u>: Cost 1 vmrghw LHS, RHS
+ 3767420369U, // <0,4,2,0>: Cost 4 vsldoi8 <1,5,0,4>, <2,0,3,4>
+ 3767420451U, // <0,4,2,1>: Cost 4 vsldoi8 <1,5,0,4>, <2,1,3,5>
+ 3767420520U, // <0,4,2,2>: Cost 4 vsldoi8 <1,5,0,4>, <2,2,2,2>
+ 2698323625U, // <0,4,2,3>: Cost 3 vsldoi8 <2,3,0,4>, <2,3,0,4>
+ 3709218102U, // <0,4,2,4>: Cost 4 vsldoi4 <3,0,4,2>, RHS
+ 2216013110U, // <0,4,2,5>: Cost 3 vmrghw <0,2,1,2>, RHS
+ 3767420858U, // <0,4,2,6>: Cost 4 vsldoi8 <1,5,0,4>, <2,6,3,7>
+ 3774719981U, // <0,4,2,7>: Cost 4 vsldoi8 <2,7,0,4>, <2,7,0,4>
+ 2216013353U, // <0,4,2,u>: Cost 3 vmrghw <0,2,1,2>, RHS
+ 3767421078U, // <0,4,3,0>: Cost 4 vsldoi8 <1,5,0,4>, <3,0,1,2>
+ 3776710880U, // <0,4,3,1>: Cost 4 vsldoi8 <3,1,0,4>, <3,1,0,4>
+ 3833097325U, // <0,4,3,2>: Cost 5 vsldoi12 <1,2,u,0>, <4,3,2,4>
+ 3767421340U, // <0,4,3,3>: Cost 4 vsldoi8 <1,5,0,4>, <3,3,3,3>
+ 3767421442U, // <0,4,3,4>: Cost 4 vsldoi8 <1,5,0,4>, <3,4,5,6>
+ 2216660278U, // <0,4,3,5>: Cost 3 vmrghw <0,3,1,0>, RHS
+ 3833097361U, // <0,4,3,6>: Cost 5 vsldoi12 <1,2,u,0>, <4,3,6,4>
+ 3780692678U, // <0,4,3,7>: Cost 4 vsldoi8 <3,7,0,4>, <3,7,0,4>
+ 2216660521U, // <0,4,3,u>: Cost 3 vmrghw <0,3,1,0>, RHS
+ 2617573416U, // <0,4,4,0>: Cost 3 vsldoi4 <0,0,4,4>, <0,0,4,4>
+ 2217364450U, // <0,4,4,1>: Cost 3 vmrghw <0,4,1,5>, <4,1,5,0>
+ 3691316771U, // <0,4,4,2>: Cost 4 vsldoi4 <0,0,4,4>, <2,1,3,5>
+ 3709233331U, // <0,4,4,3>: Cost 4 vsldoi4 <3,0,4,4>, <3,0,4,4>
+ 2785823952U, // <0,4,4,4>: Cost 3 vsldoi12 <5,6,7,0>, <4,4,4,4>
+ 1143622966U, // <0,4,4,5>: Cost 2 vmrghw <0,4,1,5>, RHS
+ 3691319723U, // <0,4,4,6>: Cost 4 vsldoi4 <0,0,4,4>, <6,1,7,5>
+ 3854109932U, // <0,4,4,7>: Cost 4 vsldoi12 <4,7,5,0>, <4,4,7,5>
+ 1143623209U, // <0,4,4,u>: Cost 2 vmrghw <0,4,1,5>, RHS
+ 2635497574U, // <0,4,5,0>: Cost 3 vsldoi4 <3,0,4,5>, LHS
+ 2635498390U, // <0,4,5,1>: Cost 3 vsldoi4 <3,0,4,5>, <1,2,3,0>
+ 3709240936U, // <0,4,5,2>: Cost 4 vsldoi4 <3,0,4,5>, <2,2,2,2>
+ 2635499700U, // <0,4,5,3>: Cost 3 vsldoi4 <3,0,4,5>, <3,0,4,5>
+ 2635500854U, // <0,4,5,4>: Cost 3 vsldoi4 <3,0,4,5>, RHS
+ 2785824044U, // <0,4,5,5>: Cost 3 vsldoi12 <5,6,7,0>, <4,5,5,6>
+ 1685245238U, // <0,4,5,6>: Cost 2 vsldoi12 <1,2,3,0>, RHS
+ 2659390488U, // <0,4,5,7>: Cost 3 vsldoi4 <7,0,4,5>, <7,0,4,5>
+ 1685245256U, // <0,4,5,u>: Cost 2 vsldoi12 <1,2,3,0>, RHS
+ 3839438161U, // <0,4,6,0>: Cost 4 vsldoi12 <2,3,4,0>, <4,6,0,7>
+ 3798610347U, // <0,4,6,1>: Cost 4 vsldoi8 <6,7,0,4>, <6,1,7,5>
+ 3798610426U, // <0,4,6,2>: Cost 4 vsldoi8 <6,7,0,4>, <6,2,7,3>
+ 3795956237U, // <0,4,6,3>: Cost 4 vsldoi8 <6,3,0,4>, <6,3,0,4>
+ 3733138742U, // <0,4,6,4>: Cost 4 vsldoi4 <7,0,4,6>, RHS
+ 2218634550U, // <0,4,6,5>: Cost 3 vmrghw <0,6,0,7>, RHS
+ 3798610744U, // <0,4,6,6>: Cost 4 vsldoi8 <6,7,0,4>, <6,6,6,6>
+ 2724868945U, // <0,4,6,7>: Cost 3 vsldoi8 <6,7,0,4>, <6,7,0,4>
+ 2725532578U, // <0,4,6,u>: Cost 3 vsldoi8 <6,u,0,4>, <6,u,0,4>
+ 3383371465U, // <0,4,7,0>: Cost 4 vmrglw <4,6,0,7>, <2,3,4,0>
+ 3800601668U, // <0,4,7,1>: Cost 4 vsldoi8 <7,1,0,4>, <7,1,0,4>
+ 3775386826U, // <0,4,7,2>: Cost 5 vsldoi8 <2,u,0,4>, <7,2,6,3>
+ 3801928934U, // <0,4,7,3>: Cost 4 vsldoi8 <7,3,0,4>, <7,3,0,4>
+ 3721202998U, // <0,4,7,4>: Cost 4 vsldoi4 <5,0,4,7>, RHS
+ 2780368328U, // <0,4,7,5>: Cost 3 vsldoi12 <4,7,5,0>, <4,7,5,0>
+ 3383372686U, // <0,4,7,6>: Cost 5 vmrglw <4,6,0,7>, <4,0,4,6>
+ 3854110170U, // <0,4,7,7>: Cost 4 vsldoi12 <4,7,5,0>, <4,7,7,0>
+ 2780368328U, // <0,4,7,u>: Cost 3 vsldoi12 <4,7,5,0>, <4,7,5,0>
+ 1146334098U, // <0,4,u,0>: Cost 2 vmrghw LHS, <4,0,5,1>
+ 2220076002U, // <0,4,u,1>: Cost 3 vmrghw LHS, <4,1,5,0>
+ 2220076085U, // <0,4,u,2>: Cost 3 vmrghw LHS, <4,2,5,2>
+ 2635524279U, // <0,4,u,3>: Cost 3 vsldoi4 <3,0,4,u>, <3,0,4,u>
+ 1146334416U, // <0,4,u,4>: Cost 2 vmrghw LHS, <4,4,4,4>
+ 72592694U, // <0,4,u,5>: Cost 1 vmrghw LHS, RHS
+ 1685245481U, // <0,4,u,6>: Cost 2 vsldoi12 <1,2,3,0>, RHS
+ 2659415067U, // <0,4,u,7>: Cost 3 vsldoi4 <7,0,4,u>, <7,0,4,u>
+ 72592937U, // <0,4,u,u>: Cost 1 vmrghw LHS, RHS
+ 2281704337U, // <0,5,0,0>: Cost 3 vmrglw <0,0,0,0>, <4,0,5,0>
+ 2704965734U, // <0,5,0,1>: Cost 3 vsldoi8 <3,4,0,5>, LHS
+ 3778707666U, // <0,5,0,2>: Cost 4 vsldoi8 <3,4,0,5>, <0,2,5,3>
+ 3778707708U, // <0,5,0,3>: Cost 4 vsldoi8 <3,4,0,5>, <0,3,1,0>
+ 2687050057U, // <0,5,0,4>: Cost 3 vsldoi8 <0,4,0,5>, <0,4,0,5>
+ 2214596612U, // <0,5,0,5>: Cost 3 vmrghw <0,0,0,0>, <5,5,5,5>
+ 2785824372U, // <0,5,0,6>: Cost 3 vsldoi12 <5,6,7,0>, <5,0,6,1>
+ 3854110332U, // <0,5,0,7>: Cost 4 vsldoi12 <4,7,5,0>, <5,0,7,0>
+ 2704966301U, // <0,5,0,u>: Cost 3 vsldoi8 <3,4,0,5>, LHS
+ 1567768678U, // <0,5,1,0>: Cost 2 vsldoi4 <4,0,5,1>, LHS
+ 2312236570U, // <0,5,1,1>: Cost 3 vmrglw <5,1,0,1>, <4,u,5,1>
+ 2215431915U, // <0,5,1,2>: Cost 3 vmrghw LHS, <5,2,1,3>
+ 2641512598U, // <0,5,1,3>: Cost 3 vsldoi4 <4,0,5,1>, <3,0,1,2>
+ 1567771538U, // <0,5,1,4>: Cost 2 vsldoi4 <4,0,5,1>, <4,0,5,1>
+ 1141690372U, // <0,5,1,5>: Cost 2 vmrghw LHS, <5,5,5,5>
+ 1141690466U, // <0,5,1,6>: Cost 2 vmrghw LHS, <5,6,7,0>
+ 2641515514U, // <0,5,1,7>: Cost 3 vsldoi4 <4,0,5,1>, <7,0,1,2>
+ 1141690615U, // <0,5,1,u>: Cost 2 vmrghw LHS, <5,u,5,5>
+ 3772736973U, // <0,5,2,0>: Cost 4 vsldoi8 <2,4,0,5>, <2,0,3,0>
+ 3778709024U, // <0,5,2,1>: Cost 4 vsldoi8 <3,4,0,5>, <2,1,3,2>
+ 3778709096U, // <0,5,2,2>: Cost 4 vsldoi8 <3,4,0,5>, <2,2,2,2>
+ 3778709158U, // <0,5,2,3>: Cost 4 vsldoi8 <3,4,0,5>, <2,3,0,1>
+ 3772737275U, // <0,5,2,4>: Cost 4 vsldoi8 <2,4,0,5>, <2,4,0,5>
+ 3859566351U, // <0,5,2,5>: Cost 4 vsldoi12 <5,6,7,0>, <5,2,5,3>
+ 3778709434U, // <0,5,2,6>: Cost 4 vsldoi8 <3,4,0,5>, <2,6,3,7>
+ 3805251562U, // <0,5,2,7>: Cost 4 vsldoi8 <7,u,0,5>, <2,7,0,1>
+ 3775391807U, // <0,5,2,u>: Cost 4 vsldoi8 <2,u,0,5>, <2,u,0,5>
+ 2704967830U, // <0,5,3,0>: Cost 3 vsldoi8 <3,4,0,5>, <3,0,1,2>
+ 3776719073U, // <0,5,3,1>: Cost 4 vsldoi8 <3,1,0,5>, <3,1,0,5>
+ 3777382706U, // <0,5,3,2>: Cost 4 vsldoi8 <3,2,0,5>, <3,2,0,5>
+ 3778709887U, // <0,5,3,3>: Cost 4 vsldoi8 <3,4,0,5>, <3,3,0,1>
+ 2704968148U, // <0,5,3,4>: Cost 3 vsldoi8 <3,4,0,5>, <3,4,0,5>
+ 3857428317U, // <0,5,3,5>: Cost 4 vsldoi12 <5,3,5,0>, <5,3,5,0>
+ 3364096514U, // <0,5,3,6>: Cost 4 vmrglw <1,4,0,3>, <3,4,5,6>
+ 3780700871U, // <0,5,3,7>: Cost 4 vsldoi8 <3,7,0,5>, <3,7,0,5>
+ 2707622680U, // <0,5,3,u>: Cost 3 vsldoi8 <3,u,0,5>, <3,u,0,5>
+ 2728856466U, // <0,5,4,0>: Cost 3 vsldoi8 <7,4,0,5>, <4,0,5,1>
+ 3697361674U, // <0,5,4,1>: Cost 4 vsldoi4 <1,0,5,4>, <1,0,5,4>
+ 3697362601U, // <0,5,4,2>: Cost 4 vsldoi4 <1,0,5,4>, <2,3,0,4>
+ 3364766635U, // <0,5,4,3>: Cost 4 vmrglw <1,5,0,4>, <1,2,5,3>
+ 2217365428U, // <0,5,4,4>: Cost 3 vmrghw <0,4,1,5>, <5,4,5,6>
+ 2704969014U, // <0,5,4,5>: Cost 3 vsldoi8 <3,4,0,5>, RHS
+ 2785824700U, // <0,5,4,6>: Cost 3 vsldoi12 <5,6,7,0>, <5,4,6,5>
+ 3364766963U, // <0,5,4,7>: Cost 4 vmrglw <1,5,0,4>, <1,6,5,7>
+ 2704969257U, // <0,5,4,u>: Cost 3 vsldoi8 <3,4,0,5>, RHS
+ 3846148050U, // <0,5,5,0>: Cost 4 vsldoi12 <3,4,5,0>, <5,5,0,0>
+ 2326203282U, // <0,5,5,1>: Cost 3 vmrglw <7,4,0,5>, <4,0,5,1>
+ 3291746027U, // <0,5,5,2>: Cost 4 vmrghw <0,5,1,2>, <5,2,1,3>
+ 3376054482U, // <0,5,5,3>: Cost 4 vmrglw <3,4,0,5>, <0,2,5,3>
+ 3790655366U, // <0,5,5,4>: Cost 4 vsldoi8 <5,4,0,5>, <5,4,0,5>
+ 2785824772U, // <0,5,5,5>: Cost 3 vsldoi12 <5,6,7,0>, <5,5,5,5>
+ 2724876386U, // <0,5,5,6>: Cost 3 vsldoi8 <6,7,0,5>, <5,6,7,0>
+ 3858903057U, // <0,5,5,7>: Cost 4 vsldoi12 <5,5,7,0>, <5,5,7,0>
+ 2736820484U, // <0,5,5,u>: Cost 3 vsldoi8 <u,7,0,5>, <5,u,7,0>
+ 2659467366U, // <0,5,6,0>: Cost 3 vsldoi4 <7,0,5,6>, LHS
+ 3859566643U, // <0,5,6,1>: Cost 4 vsldoi12 <5,6,7,0>, <5,6,1,7>
+ 3798618618U, // <0,5,6,2>: Cost 4 vsldoi8 <6,7,0,5>, <6,2,7,3>
+ 3852857410U, // <0,5,6,3>: Cost 4 vsldoi12 <4,5,6,0>, <5,6,3,4>
+ 2659470646U, // <0,5,6,4>: Cost 3 vsldoi4 <7,0,5,6>, RHS
+ 2659471458U, // <0,5,6,5>: Cost 3 vsldoi4 <7,0,5,6>, <5,6,7,0>
+ 3832729696U, // <0,5,6,6>: Cost 4 vsldoi12 <1,2,3,0>, <5,6,6,7>
+ 1712083042U, // <0,5,6,7>: Cost 2 vsldoi12 <5,6,7,0>, <5,6,7,0>
+ 1712156779U, // <0,5,6,u>: Cost 2 vsldoi12 <5,6,u,0>, <5,6,u,0>
+ 2731512826U, // <0,5,7,0>: Cost 3 vsldoi8 <7,u,0,5>, <7,0,1,2>
+ 3859566717U, // <0,5,7,1>: Cost 4 vsldoi12 <5,6,7,0>, <5,7,1,0>
+ 3798619284U, // <0,5,7,2>: Cost 4 vsldoi8 <6,7,0,5>, <7,2,0,3>
+ 3778712803U, // <0,5,7,3>: Cost 4 vsldoi8 <3,4,0,5>, <7,3,0,1>
+ 2728858936U, // <0,5,7,4>: Cost 3 vsldoi8 <7,4,0,5>, <7,4,0,5>
+ 3859566753U, // <0,5,7,5>: Cost 4 vsldoi12 <5,6,7,0>, <5,7,5,0>
+ 3377398135U, // <0,5,7,6>: Cost 4 vmrglw <3,6,0,7>, <0,4,5,6>
+ 3798619686U, // <0,5,7,7>: Cost 4 vsldoi8 <6,7,0,5>, <7,7,0,0>
+ 2731513468U, // <0,5,7,u>: Cost 3 vsldoi8 <7,u,0,5>, <7,u,0,5>
+ 1567826022U, // <0,5,u,0>: Cost 2 vsldoi4 <4,0,5,u>, LHS
+ 2704971566U, // <0,5,u,1>: Cost 3 vsldoi8 <3,4,0,5>, LHS
+ 2220076779U, // <0,5,u,2>: Cost 3 vmrghw LHS, <5,2,1,3>
+ 2641569942U, // <0,5,u,3>: Cost 3 vsldoi4 <4,0,5,u>, <3,0,1,2>
+ 1567828889U, // <0,5,u,4>: Cost 2 vsldoi4 <4,0,5,u>, <4,0,5,u>
+ 1146335236U, // <0,5,u,5>: Cost 2 vmrghw LHS, <5,5,5,5>
+ 1146335330U, // <0,5,u,6>: Cost 2 vmrghw LHS, <5,6,7,0>
+ 1713410308U, // <0,5,u,7>: Cost 2 vsldoi12 <5,u,7,0>, <5,u,7,0>
+ 1713484045U, // <0,5,u,u>: Cost 2 vsldoi12 <5,u,u,0>, <5,u,u,0>
+ 2214596949U, // <0,6,0,0>: Cost 3 vmrghw <0,0,0,0>, <6,0,7,0>
+ 2214678951U, // <0,6,0,1>: Cost 3 vmrghw <0,0,1,1>, <6,1,7,1>
+ 2214597114U, // <0,6,0,2>: Cost 3 vmrghw <0,0,0,0>, <6,2,7,3>
+ 3852857653U, // <0,6,0,3>: Cost 4 vsldoi12 <4,5,6,0>, <6,0,3,4>
+ 3832729919U, // <0,6,0,4>: Cost 4 vsldoi12 <1,2,3,0>, <6,0,4,5>
+ 3721293427U, // <0,6,0,5>: Cost 4 vsldoi4 <5,0,6,0>, <5,0,6,0>
+ 2214597432U, // <0,6,0,6>: Cost 3 vmrghw <0,0,0,0>, <6,6,6,6>
+ 1207962934U, // <0,6,0,7>: Cost 2 vmrglw <0,0,0,0>, RHS
+ 1207962935U, // <0,6,0,u>: Cost 2 vmrglw <0,0,0,0>, RHS
+ 2215432481U, // <0,6,1,0>: Cost 3 vmrghw LHS, <6,0,1,2>
+ 2215432615U, // <0,6,1,1>: Cost 3 vmrghw LHS, <6,1,7,1>
+ 1141690874U, // <0,6,1,2>: Cost 2 vmrghw LHS, <6,2,7,3>
+ 2215432754U, // <0,6,1,3>: Cost 3 vmrghw LHS, <6,3,4,5>
+ 2215432817U, // <0,6,1,4>: Cost 3 vmrghw LHS, <6,4,2,5>
+ 2215432939U, // <0,6,1,5>: Cost 3 vmrghw LHS, <6,5,7,1>
+ 1141691192U, // <0,6,1,6>: Cost 2 vmrghw LHS, <6,6,6,6>
+ 1221905718U, // <0,6,1,7>: Cost 2 vmrglw <2,3,0,1>, RHS
+ 1221905719U, // <0,6,1,u>: Cost 2 vmrglw <2,3,0,1>, RHS
+ 3852857787U, // <0,6,2,0>: Cost 4 vsldoi12 <4,5,6,0>, <6,2,0,3>
+ 3289764265U, // <0,6,2,1>: Cost 4 vmrghw <0,2,1,3>, <6,1,7,3>
+ 3289690618U, // <0,6,2,2>: Cost 4 vmrghw <0,2,0,3>, <6,2,7,3>
+ 3862589907U, // <0,6,2,3>: Cost 4 vsldoi12 <6,2,3,0>, <6,2,3,0>
+ 3733253430U, // <0,6,2,4>: Cost 4 vsldoi4 <7,0,6,2>, RHS
+ 3733254242U, // <0,6,2,5>: Cost 4 vsldoi4 <7,0,6,2>, <5,6,7,0>
+ 3777390522U, // <0,6,2,6>: Cost 4 vsldoi8 <3,2,0,6>, <2,6,3,7>
+ 2785825274U, // <0,6,2,7>: Cost 3 vsldoi12 <5,6,7,0>, <6,2,7,3>
+ 2785825283U, // <0,6,2,u>: Cost 3 vsldoi12 <5,6,7,0>, <6,2,u,3>
+ 3777390742U, // <0,6,3,0>: Cost 4 vsldoi8 <3,2,0,6>, <3,0,1,2>
+ 3863106066U, // <0,6,3,1>: Cost 4 vsldoi12 <6,3,1,0>, <6,3,1,0>
+ 3777390899U, // <0,6,3,2>: Cost 4 vsldoi8 <3,2,0,6>, <3,2,0,6>
+ 3290436146U, // <0,6,3,3>: Cost 4 vmrghw <0,3,1,4>, <6,3,4,5>
+ 3779381762U, // <0,6,3,4>: Cost 4 vsldoi8 <3,5,0,6>, <3,4,5,6>
+ 3779381798U, // <0,6,3,5>: Cost 4 vsldoi8 <3,5,0,6>, <3,5,0,6>
+ 3733262920U, // <0,6,3,6>: Cost 4 vsldoi4 <7,0,6,3>, <6,3,7,0>
+ 2300972342U, // <0,6,3,7>: Cost 3 vmrglw <3,2,0,3>, RHS
+ 2300972343U, // <0,6,3,u>: Cost 3 vmrglw <3,2,0,3>, RHS
+ 3802606482U, // <0,6,4,0>: Cost 4 vsldoi8 <7,4,0,6>, <4,0,5,1>
+ 2217365931U, // <0,6,4,1>: Cost 3 vmrghw <0,4,1,5>, <6,1,7,5>
+ 2217366010U, // <0,6,4,2>: Cost 3 vmrghw <0,4,1,5>, <6,2,7,3>
+ 3291107890U, // <0,6,4,3>: Cost 4 vmrghw <0,4,1,5>, <6,3,4,5>
+ 3291099805U, // <0,6,4,4>: Cost 4 vmrghw <0,4,1,4>, <6,4,7,4>
+ 3777391926U, // <0,6,4,5>: Cost 4 vsldoi8 <3,2,0,6>, RHS
+ 2217366328U, // <0,6,4,6>: Cost 3 vmrghw <0,4,1,5>, <6,6,6,6>
+ 2291027254U, // <0,6,4,7>: Cost 3 vmrglw <1,5,0,4>, RHS
+ 2291027255U, // <0,6,4,u>: Cost 3 vmrglw <1,5,0,4>, RHS
+ 3852858033U, // <0,6,5,0>: Cost 4 vsldoi12 <4,5,6,0>, <6,5,0,6>
+ 3395964532U, // <0,6,5,1>: Cost 4 vmrglw <6,7,0,5>, <5,0,6,1>
+ 3864507069U, // <0,6,5,2>: Cost 4 vsldoi12 <6,5,2,0>, <6,5,2,0>
+ 3376056678U, // <0,6,5,3>: Cost 5 vmrglw <3,4,0,5>, <3,2,6,3>
+ 3721334070U, // <0,6,5,4>: Cost 4 vsldoi4 <5,0,6,5>, RHS
+ 3395964860U, // <0,6,5,5>: Cost 4 vmrglw <6,7,0,5>, <5,4,6,5>
+ 3864802017U, // <0,6,5,6>: Cost 4 vsldoi12 <6,5,6,0>, <6,5,6,0>
+ 2302315830U, // <0,6,5,7>: Cost 3 vmrglw <3,4,0,5>, RHS
+ 2302315831U, // <0,6,5,u>: Cost 3 vmrglw <3,4,0,5>, RHS
+ 3852858108U, // <0,6,6,0>: Cost 4 vsldoi12 <4,5,6,0>, <6,6,0,0>
+ 3398624745U, // <0,6,6,1>: Cost 4 vmrglw <7,2,0,6>, <2,0,6,1>
+ 2218668538U, // <0,6,6,2>: Cost 3 vmrghw <0,6,1,2>, <6,2,7,3>
+ 3292418610U, // <0,6,6,3>: Cost 4 vmrghw <0,6,1,3>, <6,3,4,5>
+ 3733286198U, // <0,6,6,4>: Cost 4 vsldoi4 <7,0,6,6>, RHS
+ 3797299889U, // <0,6,6,5>: Cost 4 vsldoi8 <6,5,0,6>, <6,5,0,6>
+ 2785825592U, // <0,6,6,6>: Cost 3 vsldoi12 <5,6,7,0>, <6,6,6,6>
+ 2785825602U, // <0,6,6,7>: Cost 3 vsldoi12 <5,6,7,0>, <6,6,7,7>
+ 2785825611U, // <0,6,6,u>: Cost 3 vsldoi12 <5,6,7,0>, <6,6,u,7>
+ 2785825614U, // <0,6,7,0>: Cost 3 vsldoi12 <5,6,7,0>, <6,7,0,1>
+ 2758988632U, // <0,6,7,1>: Cost 3 vsldoi12 <1,2,3,0>, <6,7,1,2>
+ 3377400084U, // <0,6,7,2>: Cost 4 vmrglw <3,6,0,7>, <3,1,6,2>
+ 2792166248U, // <0,6,7,3>: Cost 3 vsldoi12 <6,7,3,0>, <6,7,3,0>
+ 2785825654U, // <0,6,7,4>: Cost 3 vsldoi12 <5,6,7,0>, <6,7,4,5>
+ 2785825664U, // <0,6,7,5>: Cost 3 vsldoi12 <5,6,7,0>, <6,7,5,6>
+ 3859567493U, // <0,6,7,6>: Cost 4 vsldoi12 <5,6,7,0>, <6,7,6,2>
+ 2303659318U, // <0,6,7,7>: Cost 3 vmrglw <3,6,0,7>, RHS
+ 2303659319U, // <0,6,7,u>: Cost 3 vmrglw <3,6,0,7>, RHS
+ 2785825695U, // <0,6,u,0>: Cost 3 vsldoi12 <5,6,7,0>, <6,u,0,1>
+ 2220077479U, // <0,6,u,1>: Cost 3 vmrghw LHS, <6,1,7,1>
+ 1146335738U, // <0,6,u,2>: Cost 2 vmrghw LHS, <6,2,7,3>
+ 2792829881U, // <0,6,u,3>: Cost 3 vsldoi12 <6,u,3,0>, <6,u,3,0>
+ 2785825735U, // <0,6,u,4>: Cost 3 vsldoi12 <5,6,7,0>, <6,u,4,5>
+ 2785825664U, // <0,6,u,5>: Cost 3 vsldoi12 <5,6,7,0>, <6,7,5,6>
+ 1146336056U, // <0,6,u,6>: Cost 2 vmrghw LHS, <6,6,6,6>
+ 1221963062U, // <0,6,u,7>: Cost 2 vmrglw <2,3,0,u>, RHS
+ 1221963063U, // <0,6,u,u>: Cost 2 vmrglw <2,3,0,u>, RHS
+ 2653593600U, // <0,7,0,0>: Cost 3 vsldoi4 <6,0,7,0>, <0,0,0,0>
+ 2706309222U, // <0,7,0,1>: Cost 3 vsldoi8 <3,6,0,7>, LHS
+ 3709421498U, // <0,7,0,2>: Cost 4 vsldoi4 <3,0,7,0>, <2,6,3,7>
+ 2281705978U, // <0,7,0,3>: Cost 3 vmrglw <0,0,0,0>, <6,2,7,3>
+ 2785825816U, // <0,7,0,4>: Cost 3 vsldoi12 <5,6,7,0>, <7,0,4,5>
+ 2785825826U, // <0,7,0,5>: Cost 3 vsldoi12 <5,6,7,0>, <7,0,5,6>
+ 2653598037U, // <0,7,0,6>: Cost 3 vsldoi4 <6,0,7,0>, <6,0,7,0>
+ 2214598252U, // <0,7,0,7>: Cost 3 vmrghw <0,0,0,0>, <7,7,7,7>
+ 2706309789U, // <0,7,0,u>: Cost 3 vsldoi8 <3,6,0,7>, LHS
+ 1141691386U, // <0,7,1,0>: Cost 2 vmrghw LHS, <7,0,1,2>
+ 2215433290U, // <0,7,1,1>: Cost 3 vmrghw LHS, <7,1,1,1>
+ 2706310038U, // <0,7,1,2>: Cost 3 vsldoi8 <3,6,0,7>, <1,2,3,0>
+ 2322190842U, // <0,7,1,3>: Cost 3 vmrglw <6,7,0,1>, <6,2,7,3>
+ 1141691750U, // <0,7,1,4>: Cost 2 vmrghw LHS, <7,4,5,6>
+ 2215433654U, // <0,7,1,5>: Cost 3 vmrghw LHS, <7,5,5,5>
+ 2653606230U, // <0,7,1,6>: Cost 3 vsldoi4 <6,0,7,1>, <6,0,7,1>
+ 1141692012U, // <0,7,1,7>: Cost 2 vmrghw LHS, <7,7,7,7>
+ 1141692034U, // <0,7,1,u>: Cost 2 vmrghw LHS, <7,u,1,2>
+ 2785825940U, // <0,7,2,0>: Cost 3 vsldoi12 <5,6,7,0>, <7,2,0,3>
+ 3768108576U, // <0,7,2,1>: Cost 5 vsldoi8 <1,6,0,7>, <2,1,3,2>
+ 3780052584U, // <0,7,2,2>: Cost 4 vsldoi8 <3,6,0,7>, <2,2,2,2>
+ 2794820780U, // <0,7,2,3>: Cost 3 vsldoi12 <7,2,3,0>, <7,2,3,0>
+ 3859641528U, // <0,7,2,4>: Cost 4 vsldoi12 <5,6,u,0>, <7,2,4,3>
+ 3733327970U, // <0,7,2,5>: Cost 4 vsldoi4 <7,0,7,2>, <5,6,7,0>
+ 3778062266U, // <0,7,2,6>: Cost 4 vsldoi8 <3,3,0,7>, <2,6,3,7>
+ 3733328944U, // <0,7,2,7>: Cost 4 vsldoi4 <7,0,7,2>, <7,0,7,2>
+ 2795189465U, // <0,7,2,u>: Cost 3 vsldoi12 <7,2,u,0>, <7,2,u,0>
+ 2324861026U, // <0,7,3,0>: Cost 3 vmrglw <7,2,0,3>, <5,6,7,0>
+ 3780053233U, // <0,7,3,1>: Cost 4 vsldoi8 <3,6,0,7>, <3,1,2,3>
+ 3780053296U, // <0,7,3,2>: Cost 4 vsldoi8 <3,6,0,7>, <3,2,0,3>
+ 3778062725U, // <0,7,3,3>: Cost 4 vsldoi8 <3,3,0,7>, <3,3,0,7>
+ 3780053506U, // <0,7,3,4>: Cost 4 vsldoi8 <3,6,0,7>, <3,4,5,6>
+ 3803941469U, // <0,7,3,5>: Cost 4 vsldoi8 <7,6,0,7>, <3,5,6,7>
+ 2706311800U, // <0,7,3,6>: Cost 3 vsldoi8 <3,6,0,7>, <3,6,0,7>
+ 3398603586U, // <0,7,3,7>: Cost 4 vmrglw <7,2,0,3>, <6,6,7,7>
+ 2707639066U, // <0,7,3,u>: Cost 3 vsldoi8 <3,u,0,7>, <3,u,0,7>
+ 2217366522U, // <0,7,4,0>: Cost 3 vmrghw <0,4,1,5>, <7,0,1,2>
+ 3727369110U, // <0,7,4,1>: Cost 4 vsldoi4 <6,0,7,4>, <1,2,3,0>
+ 3291108500U, // <0,7,4,2>: Cost 4 vmrghw <0,4,1,5>, <7,2,0,3>
+ 3727370872U, // <0,7,4,3>: Cost 4 vsldoi4 <6,0,7,4>, <3,6,0,7>
+ 2217366886U, // <0,7,4,4>: Cost 3 vmrghw <0,4,1,5>, <7,4,5,6>
+ 2706312502U, // <0,7,4,5>: Cost 3 vsldoi8 <3,6,0,7>, RHS
+ 3786026321U, // <0,7,4,6>: Cost 4 vsldoi8 <4,6,0,7>, <4,6,0,7>
+ 2217367148U, // <0,7,4,7>: Cost 3 vmrghw <0,4,1,5>, <7,7,7,7>
+ 2706312745U, // <0,7,4,u>: Cost 3 vsldoi8 <3,6,0,7>, RHS
+ 2322223202U, // <0,7,5,0>: Cost 3 vmrglw <6,7,0,5>, <5,6,7,0>
+ 3399946987U, // <0,7,5,1>: Cost 4 vmrglw <7,4,0,5>, <6,5,7,1>
+ 3291780244U, // <0,7,5,2>: Cost 4 vmrghw <0,5,1,6>, <7,2,0,3>
+ 3727378582U, // <0,7,5,3>: Cost 4 vsldoi4 <6,0,7,5>, <3,0,1,2>
+ 3727379766U, // <0,7,5,4>: Cost 4 vsldoi4 <6,0,7,5>, RHS
+ 3859568054U, // <0,7,5,5>: Cost 4 vsldoi12 <5,6,7,0>, <7,5,5,5>
+ 2785826241U, // <0,7,5,6>: Cost 3 vsldoi12 <5,6,7,0>, <7,5,6,7>
+ 3395965762U, // <0,7,5,7>: Cost 4 vmrglw <6,7,0,5>, <6,6,7,7>
+ 2787153363U, // <0,7,5,u>: Cost 3 vsldoi12 <5,u,7,0>, <7,5,u,7>
+ 2785826268U, // <0,7,6,0>: Cost 3 vsldoi12 <5,6,7,0>, <7,6,0,7>
+ 3780055420U, // <0,7,6,1>: Cost 5 vsldoi8 <3,6,0,7>, <6,1,2,3>
+ 3859568110U, // <0,7,6,2>: Cost 4 vsldoi12 <5,6,7,0>, <7,6,2,7>
+ 3874534903U, // <0,7,6,3>: Cost 4 vsldoi12 <u,2,3,0>, <7,6,3,7>
+ 3859641856U, // <0,7,6,4>: Cost 4 vsldoi12 <5,6,u,0>, <7,6,4,7>
+ 3733360738U, // <0,7,6,5>: Cost 4 vsldoi4 <7,0,7,6>, <5,6,7,0>
+ 3859568145U, // <0,7,6,6>: Cost 4 vsldoi12 <5,6,7,0>, <7,6,6,6>
+ 2797770260U, // <0,7,6,7>: Cost 3 vsldoi12 <7,6,7,0>, <7,6,7,0>
+ 2797843997U, // <0,7,6,u>: Cost 3 vsldoi12 <7,6,u,0>, <7,6,u,0>
+ 2785826342U, // <0,7,7,0>: Cost 3 vsldoi12 <5,6,7,0>, <7,7,0,0>
+ 3727393686U, // <0,7,7,1>: Cost 4 vsldoi4 <6,0,7,7>, <1,2,3,0>
+ 3868563003U, // <0,7,7,2>: Cost 4 vsldoi12 <7,2,3,0>, <7,7,2,3>
+ 3377397988U, // <0,7,7,3>: Cost 4 vmrglw <3,6,0,7>, <0,2,7,3>
+ 2219349350U, // <0,7,7,4>: Cost 3 vmrghw <0,7,1,4>, <7,4,5,6>
+ 3859568217U, // <0,7,7,5>: Cost 4 vsldoi12 <5,6,7,0>, <7,7,5,6>
+ 2730202588U, // <0,7,7,6>: Cost 3 vsldoi8 <7,6,0,7>, <7,6,0,7>
+ 2785826412U, // <0,7,7,7>: Cost 3 vsldoi12 <5,6,7,0>, <7,7,7,7>
+ 2731529854U, // <0,7,7,u>: Cost 3 vsldoi8 <7,u,0,7>, <7,u,0,7>
+ 1146336250U, // <0,7,u,0>: Cost 2 vmrghw LHS, <7,0,1,2>
+ 2706315054U, // <0,7,u,1>: Cost 3 vsldoi8 <3,6,0,7>, LHS
+ 2653660845U, // <0,7,u,2>: Cost 3 vsldoi4 <6,0,7,u>, <2,3,0,u>
+ 2322248186U, // <0,7,u,3>: Cost 3 vmrglw <6,7,0,u>, <6,2,7,3>
+ 1146336614U, // <0,7,u,4>: Cost 2 vmrghw LHS, <7,4,5,6>
+ 2706315418U, // <0,7,u,5>: Cost 3 vsldoi8 <3,6,0,7>, RHS
+ 2653663581U, // <0,7,u,6>: Cost 3 vsldoi4 <6,0,7,u>, <6,0,7,u>
+ 1146336876U, // <0,7,u,7>: Cost 2 vmrghw LHS, <7,7,7,7>
+ 1146336898U, // <0,7,u,u>: Cost 2 vmrghw LHS, <7,u,1,2>
+ 202162278U, // <0,u,0,0>: Cost 1 vspltisw0 LHS
+ 1624612966U, // <0,u,0,1>: Cost 2 vsldoi8 <2,3,0,u>, LHS
+ 2629780986U, // <0,u,0,2>: Cost 3 vsldoi4 <2,0,u,0>, <2,0,u,0>
+ 1207959708U, // <0,u,0,3>: Cost 2 vmrglw <0,0,0,0>, LHS
+ 1544097078U, // <0,u,0,4>: Cost 2 vsldoi4 <0,0,u,0>, RHS
+ 1140856986U, // <0,u,0,5>: Cost 2 vmrghw <0,0,0,0>, RHS
+ 2698355253U, // <0,u,0,6>: Cost 3 vsldoi8 <2,3,0,u>, <0,6,u,7>
+ 1207962952U, // <0,u,0,7>: Cost 2 vmrglw <0,0,0,0>, RHS
+ 202162278U, // <0,u,0,u>: Cost 1 vspltisw0 LHS
+ 1142134483U, // <0,u,1,0>: Cost 2 vmrghw LHS, <u,0,1,2>
+ 67950382U, // <0,u,1,1>: Cost 1 vmrghw LHS, LHS
+ 1142175624U, // <0,u,1,2>: Cost 2 vmrghw LHS, <u,2,3,3>
+ 1142175676U, // <0,u,1,3>: Cost 2 vmrghw LHS, <u,3,0,1>
+ 1142134847U, // <0,u,1,4>: Cost 2 vmrghw LHS, <u,4,5,6>
+ 67950746U, // <0,u,1,5>: Cost 1 vmrghw LHS, RHS
+ 1142175952U, // <0,u,1,6>: Cost 2 vmrghw LHS, <u,6,3,7>
+ 1221905736U, // <0,u,1,7>: Cost 2 vmrglw <2,3,0,1>, RHS
+ 67950949U, // <0,u,1,u>: Cost 1 vmrghw LHS, LHS
+ 1562026086U, // <0,u,2,0>: Cost 2 vsldoi4 <3,0,u,2>, LHS
+ 2216015662U, // <0,u,2,1>: Cost 3 vmrghw <0,2,1,2>, LHS
+ 2698356328U, // <0,u,2,2>: Cost 3 vsldoi8 <2,3,0,u>, <2,2,2,2>
+ 835584U, // <0,u,2,3>: Cost 0 copy LHS
+ 1562029366U, // <0,u,2,4>: Cost 2 vsldoi4 <3,0,u,2>, RHS
+ 2216016026U, // <0,u,2,5>: Cost 3 vmrghw <0,2,1,2>, RHS
+ 2698356666U, // <0,u,2,6>: Cost 3 vsldoi8 <2,3,0,u>, <2,6,3,7>
+ 1585919033U, // <0,u,2,7>: Cost 2 vsldoi4 <7,0,u,2>, <7,0,u,2>
+ 835584U, // <0,u,2,u>: Cost 0 copy LHS
+ 2758989756U, // <0,u,3,0>: Cost 3 vsldoi12 <1,2,3,0>, <u,3,0,1>
+ 2216662830U, // <0,u,3,1>: Cost 3 vmrghw <0,3,1,0>, LHS
+ 2703665461U, // <0,u,3,2>: Cost 3 vsldoi8 <3,2,0,u>, <3,2,0,u>
+ 2758989782U, // <0,u,3,3>: Cost 3 vsldoi12 <1,2,3,0>, <u,3,3,0>
+ 2758989796U, // <0,u,3,4>: Cost 3 vsldoi12 <1,2,3,0>, <u,3,4,5>
+ 2216663194U, // <0,u,3,5>: Cost 3 vmrghw <0,3,1,0>, RHS
+ 2706319993U, // <0,u,3,6>: Cost 3 vsldoi8 <3,6,0,u>, <3,6,0,u>
+ 2300972360U, // <0,u,3,7>: Cost 3 vmrglw <3,2,0,3>, RHS
+ 2216663397U, // <0,u,3,u>: Cost 3 vmrghw <0,3,1,0>, LHS
+ 2217367251U, // <0,u,4,0>: Cost 3 vmrghw <0,4,1,5>, <u,0,1,2>
+ 1143625518U, // <0,u,4,1>: Cost 2 vmrghw <0,4,1,5>, LHS
+ 2217367432U, // <0,u,4,2>: Cost 3 vmrghw <0,4,1,5>, <u,2,3,3>
+ 2217367484U, // <0,u,4,3>: Cost 3 vmrghw <0,4,1,5>, <u,3,0,1>
+ 1143619922U, // <0,u,4,4>: Cost 2 vmrghw <0,4,1,5>, <0,4,1,5>
+ 1143625882U, // <0,u,4,5>: Cost 2 vmrghw <0,4,1,5>, RHS
+ 2217367760U, // <0,u,4,6>: Cost 3 vmrghw <0,4,1,5>, <u,6,3,7>
+ 2291027272U, // <0,u,4,7>: Cost 3 vmrglw <1,5,0,4>, RHS
+ 1143626085U, // <0,u,4,u>: Cost 2 vmrghw <0,4,1,5>, LHS
+ 2635792486U, // <0,u,5,0>: Cost 3 vsldoi4 <3,0,u,5>, LHS
+ 2635793302U, // <0,u,5,1>: Cost 3 vsldoi4 <3,0,u,5>, <1,2,3,0>
+ 2302314646U, // <0,u,5,2>: Cost 3 vmrglw <3,4,0,5>, <3,0,1,2>
+ 2635794648U, // <0,u,5,3>: Cost 3 vsldoi4 <3,0,u,5>, <3,0,u,5>
+ 2635795766U, // <0,u,5,4>: Cost 3 vsldoi4 <3,0,u,5>, RHS
+ 2717601754U, // <0,u,5,5>: Cost 3 vsldoi8 <5,5,0,u>, <5,5,0,u>
+ 1685248154U, // <0,u,5,6>: Cost 2 vsldoi12 <1,2,3,0>, RHS
+ 2302315848U, // <0,u,5,7>: Cost 3 vmrglw <3,4,0,5>, RHS
+ 1685248172U, // <0,u,5,u>: Cost 2 vsldoi12 <1,2,3,0>, RHS
+ 2759358645U, // <0,u,6,0>: Cost 3 vsldoi12 <1,2,u,0>, <u,6,0,7>
+ 2218637102U, // <0,u,6,1>: Cost 3 vmrghw <0,6,0,7>, LHS
+ 2724901370U, // <0,u,6,2>: Cost 3 vsldoi8 <6,7,0,u>, <6,2,7,3>
+ 2758990032U, // <0,u,6,3>: Cost 3 vsldoi12 <1,2,3,0>, <u,6,3,7>
+ 2659691830U, // <0,u,6,4>: Cost 3 vsldoi4 <7,0,u,6>, RHS
+ 2659471458U, // <0,u,6,5>: Cost 3 vsldoi4 <7,0,5,6>, <5,6,7,0>
+ 2724901688U, // <0,u,6,6>: Cost 3 vsldoi8 <6,7,0,u>, <6,6,6,6>
+ 1651159893U, // <0,u,6,7>: Cost 2 vsldoi8 <6,7,0,u>, <6,7,0,u>
+ 1651823526U, // <0,u,6,u>: Cost 2 vsldoi8 <6,u,0,u>, <6,u,0,u>
+ 2785827072U, // <0,u,7,0>: Cost 3 vsldoi12 <5,6,7,0>, <u,7,0,1>
+ 2803964168U, // <0,u,7,1>: Cost 3 vsldoi12 <u,7,1,0>, <u,7,1,0>
+ 2727556249U, // <0,u,7,2>: Cost 3 vsldoi8 <7,2,0,u>, <7,2,0,u>
+ 2303656092U, // <0,u,7,3>: Cost 3 vmrglw <3,6,0,7>, LHS
+ 2785827112U, // <0,u,7,4>: Cost 3 vsldoi12 <5,6,7,0>, <u,7,4,5>
+ 2785827122U, // <0,u,7,5>: Cost 3 vsldoi12 <5,6,7,0>, <u,7,5,6>
+ 2730210781U, // <0,u,7,6>: Cost 3 vsldoi8 <7,6,0,u>, <7,6,0,u>
+ 2303659336U, // <0,u,7,7>: Cost 3 vmrglw <3,6,0,7>, RHS
+ 2303656097U, // <0,u,7,u>: Cost 3 vmrglw <3,6,0,7>, LHS
+ 202162278U, // <0,u,u,0>: Cost 1 vspltisw0 LHS
+ 72595246U, // <0,u,u,1>: Cost 1 vmrghw LHS, LHS
+ 1146337160U, // <0,u,u,2>: Cost 2 vmrghw LHS, <u,2,3,3>
+ 835584U, // <0,u,u,3>: Cost 0 copy LHS
+ 1146337343U, // <0,u,u,4>: Cost 2 vmrghw LHS, <u,4,5,6>
+ 72595610U, // <0,u,u,5>: Cost 1 vmrghw LHS, RHS
+ 1146337488U, // <0,u,u,6>: Cost 2 vmrghw LHS, <u,6,3,7>
+ 1221963080U, // <0,u,u,7>: Cost 2 vmrglw <2,3,0,u>, RHS
+ 835584U, // <0,u,u,u>: Cost 0 copy LHS
+ 2756853760U, // <1,0,0,0>: Cost 3 vsldoi12 <0,u,1,1>, <0,0,0,0>
+ 1677803530U, // <1,0,0,1>: Cost 2 vsldoi12 <0,0,1,1>, <0,0,1,1>
+ 3759497387U, // <1,0,0,2>: Cost 4 vsldoi8 <0,2,1,0>, <0,2,1,0>
+ 2686419196U, // <1,0,0,3>: Cost 3 vsldoi8 <0,3,1,0>, <0,3,1,0>
+ 2751766565U, // <1,0,0,4>: Cost 3 vsldoi12 <0,0,4,1>, <0,0,4,1>
+ 2687746462U, // <1,0,0,5>: Cost 3 vsldoi8 <0,5,1,0>, <0,5,1,0>
+ 3776086518U, // <1,0,0,6>: Cost 4 vsldoi8 <3,0,1,0>, <0,6,1,7>
+ 2689073728U, // <1,0,0,7>: Cost 3 vsldoi8 <0,7,1,0>, <0,7,1,0>
+ 1678319689U, // <1,0,0,u>: Cost 2 vsldoi12 <0,0,u,1>, <0,0,u,1>
+ 2287091712U, // <1,0,1,0>: Cost 3 vmrglw <0,u,1,1>, <0,0,0,0>
+ 1147568230U, // <1,0,1,1>: Cost 2 vmrghw <1,1,1,1>, LHS
+ 1683112038U, // <1,0,1,2>: Cost 2 vsldoi12 <0,u,1,1>, LHS
+ 3294970108U, // <1,0,1,3>: Cost 4 vmrghw <1,1,0,0>, <0,3,1,0>
+ 2623892790U, // <1,0,1,4>: Cost 3 vsldoi4 <1,1,0,1>, RHS
+ 2647781007U, // <1,0,1,5>: Cost 3 vsldoi4 <5,1,0,1>, <5,1,0,1>
+ 2791948430U, // <1,0,1,6>: Cost 3 vsldoi12 <6,7,0,1>, <0,1,6,7>
+ 3721524218U, // <1,0,1,7>: Cost 4 vsldoi4 <5,1,0,1>, <7,0,1,2>
+ 1683112092U, // <1,0,1,u>: Cost 2 vsldoi12 <0,u,1,1>, LHS
+ 2222112768U, // <1,0,2,0>: Cost 3 vmrghw <1,2,3,0>, <0,0,0,0>
+ 1148371046U, // <1,0,2,1>: Cost 2 vmrghw <1,2,3,0>, LHS
+ 3356862524U, // <1,0,2,2>: Cost 4 vmrglw <0,2,1,2>, <2,u,0,2>
+ 2702345894U, // <1,0,2,3>: Cost 3 vsldoi8 <3,0,1,0>, <2,3,0,1>
+ 2222113106U, // <1,0,2,4>: Cost 3 vmrghw <1,2,3,0>, <0,4,1,5>
+ 2299709908U, // <1,0,2,5>: Cost 3 vmrglw <3,0,1,2>, <3,4,0,5>
+ 3760162746U, // <1,0,2,6>: Cost 4 vsldoi8 <0,3,1,0>, <2,6,3,7>
+ 3369470584U, // <1,0,2,7>: Cost 4 vmrglw <2,3,1,2>, <3,6,0,7>
+ 1148371613U, // <1,0,2,u>: Cost 2 vmrghw <1,2,3,0>, LHS
+ 2686421142U, // <1,0,3,0>: Cost 3 vsldoi8 <0,3,1,0>, <3,0,1,2>
+ 2283128486U, // <1,0,3,1>: Cost 3 vmrglw <0,2,1,3>, <2,3,0,1>
+ 3296305326U, // <1,0,3,2>: Cost 4 vmrghw <1,3,0,1>, <0,2,1,3>
+ 3760163199U, // <1,0,3,3>: Cost 4 vsldoi8 <0,3,1,0>, <3,3,0,1>
+ 3760163330U, // <1,0,3,4>: Cost 4 vsldoi8 <0,3,1,0>, <3,4,5,6>
+ 3779406377U, // <1,0,3,5>: Cost 4 vsldoi8 <3,5,1,0>, <3,5,1,0>
+ 3865690416U, // <1,0,3,6>: Cost 4 vsldoi12 <6,7,0,1>, <0,3,6,7>
+ 3366824568U, // <1,0,3,7>: Cost 5 vmrglw <1,u,1,3>, <3,6,0,7>
+ 2707655452U, // <1,0,3,u>: Cost 3 vsldoi8 <3,u,1,0>, <3,u,1,0>
+ 2734861202U, // <1,0,4,0>: Cost 3 vsldoi8 <u,4,1,0>, <4,0,5,1>
+ 2756854098U, // <1,0,4,1>: Cost 3 vsldoi12 <0,u,1,1>, <0,4,1,5>
+ 3830595931U, // <1,0,4,2>: Cost 5 vsldoi12 <0,u,1,1>, <0,4,2,5>
+ 3296968960U, // <1,0,4,3>: Cost 4 vmrghw <1,4,0,1>, <0,3,1,4>
+ 3830595949U, // <1,0,4,4>: Cost 4 vsldoi12 <0,u,1,1>, <0,4,4,5>
+ 2686422326U, // <1,0,4,5>: Cost 3 vsldoi8 <0,3,1,0>, RHS
+ 3297378806U, // <1,0,4,6>: Cost 5 vmrghw <1,4,5,6>, <0,6,1,7>
+ 3810594248U, // <1,0,4,7>: Cost 4 vsldoi8 <u,7,1,0>, <4,7,5,0>
+ 2686422569U, // <1,0,4,u>: Cost 3 vsldoi8 <0,3,1,0>, RHS
+ 2284470272U, // <1,0,5,0>: Cost 3 vmrglw <0,4,1,5>, <0,0,0,0>
+ 2284471974U, // <1,0,5,1>: Cost 3 vmrglw <0,4,1,5>, <2,3,0,1>
+ 3809267435U, // <1,0,5,2>: Cost 4 vsldoi8 <u,5,1,0>, <5,2,1,3>
+ 3297968384U, // <1,0,5,3>: Cost 4 vmrghw <1,5,4,6>, <0,3,1,4>
+ 2284471977U, // <1,0,5,4>: Cost 3 vmrglw <0,4,1,5>, <2,3,0,4>
+ 3721555603U, // <1,0,5,5>: Cost 4 vsldoi4 <5,1,0,5>, <5,1,0,5>
+ 3792679010U, // <1,0,5,6>: Cost 4 vsldoi8 <5,7,1,0>, <5,6,7,0>
+ 3792679037U, // <1,0,5,7>: Cost 4 vsldoi8 <5,7,1,0>, <5,7,1,0>
+ 2284471981U, // <1,0,5,u>: Cost 3 vmrglw <0,4,1,5>, <2,3,0,u>
+ 3356893184U, // <1,0,6,0>: Cost 4 vmrglw <0,2,1,6>, <0,0,0,0>
+ 2224676966U, // <1,0,6,1>: Cost 3 vmrghw <1,6,1,7>, LHS
+ 3298295985U, // <1,0,6,2>: Cost 4 vmrghw <1,6,0,1>, <0,2,1,6>
+ 3298345212U, // <1,0,6,3>: Cost 4 vmrghw <1,6,0,7>, <0,3,1,0>
+ 2224972114U, // <1,0,6,4>: Cost 3 vmrghw <1,6,5,7>, <0,4,1,5>
+ 3808604907U, // <1,0,6,5>: Cost 4 vsldoi8 <u,4,1,0>, <6,5,7,1>
+ 3799978808U, // <1,0,6,6>: Cost 4 vsldoi8 <7,0,1,0>, <6,6,6,6>
+ 2726237006U, // <1,0,6,7>: Cost 3 vsldoi8 <7,0,1,0>, <6,7,0,1>
+ 2224677522U, // <1,0,6,u>: Cost 3 vmrghw <1,6,1,7>, <0,u,1,1>
+ 2726237176U, // <1,0,7,0>: Cost 3 vsldoi8 <7,0,1,0>, <7,0,1,0>
+ 2285815462U, // <1,0,7,1>: Cost 3 vmrglw <0,6,1,7>, <2,3,0,1>
+ 3805951193U, // <1,0,7,2>: Cost 4 vsldoi8 <u,0,1,0>, <7,2,u,0>
+ 3807941859U, // <1,0,7,3>: Cost 4 vsldoi8 <u,3,1,0>, <7,3,0,1>
+ 3799979366U, // <1,0,7,4>: Cost 4 vsldoi8 <7,0,1,0>, <7,4,5,6>
+ 3803297165U, // <1,0,7,5>: Cost 4 vsldoi8 <7,5,1,0>, <7,5,1,0>
+ 3799979540U, // <1,0,7,6>: Cost 4 vsldoi8 <7,0,1,0>, <7,6,7,0>
+ 3799979628U, // <1,0,7,7>: Cost 4 vsldoi8 <7,0,1,0>, <7,7,7,7>
+ 2731546240U, // <1,0,7,u>: Cost 3 vsldoi8 <7,u,1,0>, <7,u,1,0>
+ 2284494848U, // <1,0,u,0>: Cost 3 vmrglw <0,4,1,u>, <0,0,0,0>
+ 1683112594U, // <1,0,u,1>: Cost 2 vsldoi12 <0,u,1,1>, <0,u,1,1>
+ 1683112605U, // <1,0,u,2>: Cost 2 vsldoi12 <0,u,1,1>, LHS
+ 2734200772U, // <1,0,u,3>: Cost 3 vsldoi8 <u,3,1,0>, <u,3,1,0>
+ 2757075629U, // <1,0,u,4>: Cost 3 vsldoi12 <0,u,4,1>, <0,u,4,1>
+ 2686425242U, // <1,0,u,5>: Cost 3 vsldoi8 <0,3,1,0>, RHS
+ 2791948430U, // <1,0,u,6>: Cost 3 vsldoi12 <6,7,0,1>, <0,1,6,7>
+ 2736855304U, // <1,0,u,7>: Cost 3 vsldoi8 <u,7,1,0>, <u,7,1,0>
+ 1683112659U, // <1,0,u,u>: Cost 2 vsldoi12 <0,u,1,1>, LHS
+ 1610694666U, // <1,1,0,0>: Cost 2 vsldoi8 <0,0,1,1>, <0,0,1,1>
+ 1616003174U, // <1,1,0,1>: Cost 2 vsldoi8 <0,u,1,1>, LHS
+ 2283767958U, // <1,1,0,2>: Cost 3 vmrglw <0,3,1,0>, <3,0,1,2>
+ 3357507596U, // <1,1,0,3>: Cost 4 vmrglw <0,3,1,0>, <0,0,1,3>
+ 2689745234U, // <1,1,0,4>: Cost 3 vsldoi8 <0,u,1,1>, <0,4,1,5>
+ 3357507922U, // <1,1,0,5>: Cost 4 vmrglw <0,3,1,0>, <0,4,1,5>
+ 3294397647U, // <1,1,0,6>: Cost 4 vmrghw <1,0,1,2>, <1,6,1,7>
+ 3373433334U, // <1,1,0,7>: Cost 4 vmrglw <3,0,1,0>, <0,6,1,7>
+ 1616003730U, // <1,1,0,u>: Cost 2 vsldoi8 <0,u,1,1>, <0,u,1,1>
+ 1550221414U, // <1,1,1,0>: Cost 2 vsldoi4 <1,1,1,1>, LHS
+ 269271142U, // <1,1,1,1>: Cost 1 vspltisw1 LHS
+ 2287093910U, // <1,1,1,2>: Cost 3 vmrglw <0,u,1,1>, <3,0,1,2>
+ 2287092615U, // <1,1,1,3>: Cost 3 vmrglw <0,u,1,1>, <1,2,1,3>
+ 1550224694U, // <1,1,1,4>: Cost 2 vsldoi4 <1,1,1,1>, RHS
+ 2287092050U, // <1,1,1,5>: Cost 3 vmrglw <0,u,1,1>, <0,4,1,5>
+ 2689746127U, // <1,1,1,6>: Cost 3 vsldoi8 <0,u,1,1>, <1,6,1,7>
+ 2659800138U, // <1,1,1,7>: Cost 3 vsldoi4 <7,1,1,1>, <7,1,1,1>
+ 269271142U, // <1,1,1,u>: Cost 1 vspltisw1 LHS
+ 2222113516U, // <1,1,2,0>: Cost 3 vmrghw <1,2,3,0>, <1,0,2,1>
+ 2756854663U, // <1,1,2,1>: Cost 3 vsldoi12 <0,u,1,1>, <1,2,1,3>
+ 1148371862U, // <1,1,2,2>: Cost 2 vmrghw <1,2,3,0>, <1,2,3,0>
+ 2689746598U, // <1,1,2,3>: Cost 3 vsldoi8 <0,u,1,1>, <2,3,0,1>
+ 2618002742U, // <1,1,2,4>: Cost 3 vsldoi4 <0,1,1,2>, RHS
+ 2299707730U, // <1,1,2,5>: Cost 3 vmrglw <3,0,1,2>, <0,4,1,5>
+ 2689746874U, // <1,1,2,6>: Cost 3 vsldoi8 <0,u,1,1>, <2,6,3,7>
+ 3361506511U, // <1,1,2,7>: Cost 4 vmrglw <1,0,1,2>, <1,6,1,7>
+ 1148371862U, // <1,1,2,u>: Cost 2 vmrghw <1,2,3,0>, <1,2,3,0>
+ 2689747094U, // <1,1,3,0>: Cost 3 vsldoi8 <0,u,1,1>, <3,0,1,2>
+ 2691074278U, // <1,1,3,1>: Cost 3 vsldoi8 <1,1,1,1>, <3,1,1,1>
+ 3356870806U, // <1,1,3,2>: Cost 4 vmrglw <0,2,1,3>, <3,0,1,2>
+ 2283126958U, // <1,1,3,3>: Cost 3 vmrglw <0,2,1,3>, <0,2,1,3>
+ 2689747458U, // <1,1,3,4>: Cost 3 vsldoi8 <0,u,1,1>, <3,4,5,6>
+ 3356868946U, // <1,1,3,5>: Cost 4 vmrglw <0,2,1,3>, <0,4,1,5>
+ 3811265144U, // <1,1,3,6>: Cost 4 vsldoi8 <u,u,1,1>, <3,6,0,7>
+ 3362841807U, // <1,1,3,7>: Cost 4 vmrglw <1,2,1,3>, <1,6,1,7>
+ 2689747742U, // <1,1,3,u>: Cost 3 vsldoi8 <0,u,1,1>, <3,u,1,2>
+ 2623987814U, // <1,1,4,0>: Cost 3 vsldoi4 <1,1,1,4>, LHS
+ 2758181931U, // <1,1,4,1>: Cost 3 vsldoi12 <1,1,1,1>, <1,4,1,5>
+ 2223408022U, // <1,1,4,2>: Cost 3 vmrghw <1,4,2,5>, <1,2,3,0>
+ 3697731734U, // <1,1,4,3>: Cost 4 vsldoi4 <1,1,1,4>, <3,0,1,2>
+ 2283798784U, // <1,1,4,4>: Cost 3 vmrglw <0,3,1,4>, <0,3,1,4>
+ 1616006454U, // <1,1,4,5>: Cost 2 vsldoi8 <0,u,1,1>, RHS
+ 3297379535U, // <1,1,4,6>: Cost 4 vmrghw <1,4,5,6>, <1,6,1,7>
+ 3373466102U, // <1,1,4,7>: Cost 4 vmrglw <3,0,1,4>, <0,6,1,7>
+ 1616006697U, // <1,1,4,u>: Cost 2 vsldoi8 <0,u,1,1>, RHS
+ 2760762479U, // <1,1,5,0>: Cost 3 vsldoi12 <1,5,0,1>, <1,5,0,1>
+ 2284470282U, // <1,1,5,1>: Cost 3 vmrglw <0,4,1,5>, <0,0,1,1>
+ 2284472470U, // <1,1,5,2>: Cost 3 vmrglw <0,4,1,5>, <3,0,1,2>
+ 3358212270U, // <1,1,5,3>: Cost 4 vmrglw <0,4,1,5>, <0,2,1,3>
+ 2284470285U, // <1,1,5,4>: Cost 3 vmrglw <0,4,1,5>, <0,0,1,4>
+ 1210728786U, // <1,1,5,5>: Cost 2 vmrglw <0,4,1,5>, <0,4,1,5>
+ 2737524834U, // <1,1,5,6>: Cost 3 vsldoi8 <u,u,1,1>, <5,6,7,0>
+ 3360867535U, // <1,1,5,7>: Cost 4 vmrglw <0,u,1,5>, <1,6,1,7>
+ 1210728786U, // <1,1,5,u>: Cost 2 vmrglw <0,4,1,5>, <0,4,1,5>
+ 3697746022U, // <1,1,6,0>: Cost 4 vsldoi4 <1,1,1,6>, LHS
+ 2756854991U, // <1,1,6,1>: Cost 3 vsldoi12 <0,u,1,1>, <1,6,1,7>
+ 2737525242U, // <1,1,6,2>: Cost 3 vsldoi8 <u,u,1,1>, <6,2,7,3>
+ 3839149281U, // <1,1,6,3>: Cost 4 vsldoi12 <2,3,0,1>, <1,6,3,7>
+ 3697749302U, // <1,1,6,4>: Cost 4 vsldoi4 <1,1,1,6>, RHS
+ 3356893522U, // <1,1,6,5>: Cost 4 vmrglw <0,2,1,6>, <0,4,1,5>
+ 2283151537U, // <1,1,6,6>: Cost 3 vmrglw <0,2,1,6>, <0,2,1,6>
+ 2791949566U, // <1,1,6,7>: Cost 3 vsldoi12 <6,7,0,1>, <1,6,7,0>
+ 2792613127U, // <1,1,6,u>: Cost 3 vsldoi12 <6,u,0,1>, <1,6,u,0>
+ 2737525754U, // <1,1,7,0>: Cost 3 vsldoi8 <u,u,1,1>, <7,0,1,2>
+ 2291786386U, // <1,1,7,1>: Cost 3 vmrglw <1,6,1,7>, <0,u,1,1>
+ 3365528292U, // <1,1,7,2>: Cost 4 vmrglw <1,6,1,7>, <1,0,1,2>
+ 3365528455U, // <1,1,7,3>: Cost 4 vmrglw <1,6,1,7>, <1,2,1,3>
+ 2737526118U, // <1,1,7,4>: Cost 3 vsldoi8 <u,u,1,1>, <7,4,5,6>
+ 3365527890U, // <1,1,7,5>: Cost 4 vmrglw <1,6,1,7>, <0,4,1,5>
+ 3365528377U, // <1,1,7,6>: Cost 4 vmrglw <1,6,1,7>, <1,1,1,6>
+ 2291786959U, // <1,1,7,7>: Cost 3 vmrglw <1,6,1,7>, <1,6,1,7>
+ 2737526402U, // <1,1,7,u>: Cost 3 vsldoi8 <u,u,1,1>, <7,u,1,2>
+ 1550221414U, // <1,1,u,0>: Cost 2 vsldoi4 <1,1,1,1>, LHS
+ 269271142U, // <1,1,u,1>: Cost 1 vspltisw1 LHS
+ 1148371862U, // <1,1,u,2>: Cost 2 vmrghw <1,2,3,0>, <1,2,3,0>
+ 2689750972U, // <1,1,u,3>: Cost 3 vsldoi8 <0,u,1,1>, <u,3,0,1>
+ 1550224694U, // <1,1,u,4>: Cost 2 vsldoi4 <1,1,1,1>, RHS
+ 1616009370U, // <1,1,u,5>: Cost 2 vsldoi8 <0,u,1,1>, RHS
+ 2689751248U, // <1,1,u,6>: Cost 3 vsldoi8 <0,u,1,1>, <u,6,3,7>
+ 2736863497U, // <1,1,u,7>: Cost 3 vsldoi8 <u,7,1,1>, <u,7,1,1>
+ 269271142U, // <1,1,u,u>: Cost 1 vspltisw1 LHS
+ 2702360576U, // <1,2,0,0>: Cost 3 vsldoi8 <3,0,1,2>, <0,0,0,0>
+ 1628618854U, // <1,2,0,1>: Cost 2 vsldoi8 <3,0,1,2>, LHS
+ 2685771949U, // <1,2,0,2>: Cost 3 vsldoi8 <0,2,1,2>, <0,2,1,2>
+ 2283765862U, // <1,2,0,3>: Cost 3 vmrglw <0,3,1,0>, LHS
+ 2702360914U, // <1,2,0,4>: Cost 3 vsldoi8 <3,0,1,2>, <0,4,1,5>
+ 3788046813U, // <1,2,0,5>: Cost 4 vsldoi8 <5,0,1,2>, <0,5,u,0>
+ 2688426481U, // <1,2,0,6>: Cost 3 vsldoi8 <0,6,1,2>, <0,6,1,2>
+ 2726249024U, // <1,2,0,7>: Cost 3 vsldoi8 <7,0,1,2>, <0,7,1,0>
+ 1628619421U, // <1,2,0,u>: Cost 2 vsldoi8 <3,0,1,2>, LHS
+ 2690417380U, // <1,2,1,0>: Cost 3 vsldoi8 <1,0,1,2>, <1,0,1,2>
+ 2702361396U, // <1,2,1,1>: Cost 3 vsldoi8 <3,0,1,2>, <1,1,1,1>
+ 2287093352U, // <1,2,1,2>: Cost 3 vmrglw <0,u,1,1>, <2,2,2,2>
+ 1213349990U, // <1,2,1,3>: Cost 2 vmrglw <0,u,1,1>, LHS
+ 3764159522U, // <1,2,1,4>: Cost 4 vsldoi8 <1,0,1,2>, <1,4,0,5>
+ 3295053672U, // <1,2,1,5>: Cost 4 vmrghw <1,1,1,1>, <2,5,3,6>
+ 2221311930U, // <1,2,1,6>: Cost 3 vmrghw <1,1,1,1>, <2,6,3,7>
+ 3799991593U, // <1,2,1,7>: Cost 4 vsldoi8 <7,0,1,2>, <1,7,2,7>
+ 1213349995U, // <1,2,1,u>: Cost 2 vmrglw <0,u,1,1>, LHS
+ 2624045158U, // <1,2,2,0>: Cost 3 vsldoi4 <1,1,2,2>, LHS
+ 2702362144U, // <1,2,2,1>: Cost 3 vsldoi8 <3,0,1,2>, <2,1,3,2>
+ 2283120232U, // <1,2,2,2>: Cost 3 vmrglw <0,2,1,2>, <2,2,2,2>
+ 1225965670U, // <1,2,2,3>: Cost 2 vmrglw <3,0,1,2>, LHS
+ 2624048438U, // <1,2,2,4>: Cost 3 vsldoi4 <1,1,2,2>, RHS
+ 3356860763U, // <1,2,2,5>: Cost 4 vmrglw <0,2,1,2>, <0,4,2,5>
+ 2222114746U, // <1,2,2,6>: Cost 3 vmrghw <1,2,3,0>, <2,6,3,7>
+ 2299708632U, // <1,2,2,7>: Cost 3 vmrglw <3,0,1,2>, <1,6,2,7>
+ 1225965675U, // <1,2,2,u>: Cost 2 vmrglw <3,0,1,2>, LHS
+ 470597734U, // <1,2,3,0>: Cost 1 vsldoi4 LHS, LHS
+ 1544340276U, // <1,2,3,1>: Cost 2 vsldoi4 LHS, <1,1,1,1>
+ 1544341096U, // <1,2,3,2>: Cost 2 vsldoi4 LHS, <2,2,2,2>
+ 1544341916U, // <1,2,3,3>: Cost 2 vsldoi4 LHS, <3,3,3,3>
+ 470601014U, // <1,2,3,4>: Cost 1 vsldoi4 LHS, RHS
+ 1592119300U, // <1,2,3,5>: Cost 2 vsldoi4 LHS, <5,5,5,5>
+ 1592119802U, // <1,2,3,6>: Cost 2 vsldoi4 LHS, <6,2,7,3>
+ 1592120314U, // <1,2,3,7>: Cost 2 vsldoi4 LHS, <7,0,1,2>
+ 470603566U, // <1,2,3,u>: Cost 1 vsldoi4 LHS, LHS
+ 2708335471U, // <1,2,4,0>: Cost 3 vsldoi8 <4,0,1,2>, <4,0,1,2>
+ 3838043908U, // <1,2,4,1>: Cost 4 vsldoi12 <2,1,3,1>, <2,4,1,5>
+ 3357541992U, // <1,2,4,2>: Cost 4 vmrglw <0,3,1,4>, <2,2,2,2>
+ 2283798630U, // <1,2,4,3>: Cost 3 vmrglw <0,3,1,4>, LHS
+ 2726251728U, // <1,2,4,4>: Cost 3 vsldoi8 <7,0,1,2>, <4,4,4,4>
+ 1628622134U, // <1,2,4,5>: Cost 2 vsldoi8 <3,0,1,2>, RHS
+ 3297077178U, // <1,2,4,6>: Cost 4 vmrghw <1,4,1,5>, <2,6,3,7>
+ 2726251976U, // <1,2,4,7>: Cost 3 vsldoi8 <7,0,1,2>, <4,7,5,0>
+ 1628622377U, // <1,2,4,u>: Cost 2 vsldoi8 <3,0,1,2>, RHS
+ 2714308168U, // <1,2,5,0>: Cost 3 vsldoi8 <5,0,1,2>, <5,0,1,2>
+ 3297633827U, // <1,2,5,1>: Cost 4 vmrghw <1,5,0,1>, <2,1,3,5>
+ 2284471912U, // <1,2,5,2>: Cost 3 vmrglw <0,4,1,5>, <2,2,2,2>
+ 1210728550U, // <1,2,5,3>: Cost 2 vmrglw <0,4,1,5>, LHS
+ 3776106420U, // <1,2,5,4>: Cost 4 vsldoi8 <3,0,1,2>, <5,4,5,6>
+ 2726252548U, // <1,2,5,5>: Cost 3 vsldoi8 <7,0,1,2>, <5,5,5,5>
+ 2726252642U, // <1,2,5,6>: Cost 3 vsldoi8 <7,0,1,2>, <5,6,7,0>
+ 3799994538U, // <1,2,5,7>: Cost 4 vsldoi8 <7,0,1,2>, <5,7,6,0>
+ 1210728555U, // <1,2,5,u>: Cost 2 vmrglw <0,4,1,5>, LHS
+ 2720280865U, // <1,2,6,0>: Cost 3 vsldoi8 <6,0,1,2>, <6,0,1,2>
+ 2702365096U, // <1,2,6,1>: Cost 3 vsldoi8 <3,0,1,2>, <6,1,7,2>
+ 2726253050U, // <1,2,6,2>: Cost 3 vsldoi8 <7,0,1,2>, <6,2,7,3>
+ 2283151462U, // <1,2,6,3>: Cost 3 vmrglw <0,2,1,6>, LHS
+ 3697823030U, // <1,2,6,4>: Cost 4 vsldoi4 <1,1,2,6>, RHS
+ 3298715497U, // <1,2,6,5>: Cost 4 vmrghw <1,6,5,7>, <2,5,3,7>
+ 2726253368U, // <1,2,6,6>: Cost 3 vsldoi8 <7,0,1,2>, <6,6,6,6>
+ 2724926296U, // <1,2,6,7>: Cost 3 vsldoi8 <6,7,1,2>, <6,7,1,2>
+ 2283151467U, // <1,2,6,u>: Cost 3 vmrglw <0,2,1,6>, LHS
+ 1652511738U, // <1,2,7,0>: Cost 2 vsldoi8 <7,0,1,2>, <7,0,1,2>
+ 3371500916U, // <1,2,7,1>: Cost 4 vmrglw <2,6,1,7>, <1,u,2,1>
+ 3365529192U, // <1,2,7,2>: Cost 4 vmrglw <1,6,1,7>, <2,2,2,2>
+ 2291785830U, // <1,2,7,3>: Cost 3 vmrglw <1,6,1,7>, LHS
+ 2726253926U, // <1,2,7,4>: Cost 3 vsldoi8 <7,0,1,2>, <7,4,5,6>
+ 3788051845U, // <1,2,7,5>: Cost 4 vsldoi8 <5,0,1,2>, <7,5,0,1>
+ 3794023894U, // <1,2,7,6>: Cost 4 vsldoi8 <6,0,1,2>, <7,6,0,1>
+ 2726254119U, // <1,2,7,7>: Cost 3 vsldoi8 <7,0,1,2>, <7,7,0,1>
+ 1657820802U, // <1,2,7,u>: Cost 2 vsldoi8 <7,u,1,2>, <7,u,1,2>
+ 470638699U, // <1,2,u,0>: Cost 1 vsldoi4 LHS, LHS
+ 1544381236U, // <1,2,u,1>: Cost 2 vsldoi4 LHS, <1,1,1,1>
+ 1544382056U, // <1,2,u,2>: Cost 2 vsldoi4 LHS, <2,2,2,2>
+ 1544382614U, // <1,2,u,3>: Cost 2 vsldoi4 LHS, <3,0,1,2>
+ 470641974U, // <1,2,u,4>: Cost 1 vsldoi4 LHS, RHS
+ 1628625050U, // <1,2,u,5>: Cost 2 vsldoi8 <3,0,1,2>, RHS
+ 1592160762U, // <1,2,u,6>: Cost 2 vsldoi4 LHS, <6,2,7,3>
+ 1592161274U, // <1,2,u,7>: Cost 2 vsldoi4 LHS, <7,0,1,2>
+ 470644526U, // <1,2,u,u>: Cost 1 vsldoi4 LHS, LHS
+ 2769389708U, // <1,3,0,0>: Cost 3 vsldoi12 <3,0,0,1>, <3,0,0,1>
+ 2685780070U, // <1,3,0,1>: Cost 3 vsldoi8 <0,2,1,3>, LHS
+ 2685780142U, // <1,3,0,2>: Cost 3 vsldoi8 <0,2,1,3>, <0,2,1,3>
+ 2686443775U, // <1,3,0,3>: Cost 3 vsldoi8 <0,3,1,3>, <0,3,1,3>
+ 2769684656U, // <1,3,0,4>: Cost 3 vsldoi12 <3,0,4,1>, <3,0,4,1>
+ 3357507940U, // <1,3,0,5>: Cost 4 vmrglw <0,3,1,0>, <0,4,3,5>
+ 3759522294U, // <1,3,0,6>: Cost 4 vsldoi8 <0,2,1,3>, <0,6,1,7>
+ 3357509562U, // <1,3,0,7>: Cost 4 vmrglw <0,3,1,0>, <2,6,3,7>
+ 2685780637U, // <1,3,0,u>: Cost 3 vsldoi8 <0,2,1,3>, LHS
+ 2287092630U, // <1,3,1,0>: Cost 3 vmrglw <0,u,1,1>, <1,2,3,0>
+ 2221312230U, // <1,3,1,1>: Cost 3 vmrghw <1,1,1,1>, <3,1,1,1>
+ 2691752839U, // <1,3,1,2>: Cost 3 vsldoi8 <1,2,1,3>, <1,2,1,3>
+ 2287093362U, // <1,3,1,3>: Cost 3 vmrglw <0,u,1,1>, <2,2,3,3>
+ 2287092634U, // <1,3,1,4>: Cost 3 vmrglw <0,u,1,1>, <1,2,3,4>
+ 3360835107U, // <1,3,1,5>: Cost 4 vmrglw <0,u,1,1>, <2,1,3,5>
+ 3759523041U, // <1,3,1,6>: Cost 4 vsldoi8 <0,2,1,3>, <1,6,3,7>
+ 2287093690U, // <1,3,1,7>: Cost 3 vmrglw <0,u,1,1>, <2,6,3,7>
+ 2287092638U, // <1,3,1,u>: Cost 3 vmrglw <0,u,1,1>, <1,2,3,u>
+ 2222114966U, // <1,3,2,0>: Cost 3 vmrghw <1,2,3,0>, <3,0,1,2>
+ 2222115057U, // <1,3,2,1>: Cost 3 vmrghw <1,2,3,0>, <3,1,2,3>
+ 2630092320U, // <1,3,2,2>: Cost 3 vsldoi4 <2,1,3,2>, <2,1,3,2>
+ 2685781670U, // <1,3,2,3>: Cost 3 vsldoi8 <0,2,1,3>, <2,3,0,1>
+ 2222115330U, // <1,3,2,4>: Cost 3 vmrghw <1,2,3,0>, <3,4,5,6>
+ 3373449572U, // <1,3,2,5>: Cost 4 vmrglw <3,0,1,2>, <0,4,3,5>
+ 2222115448U, // <1,3,2,6>: Cost 3 vmrghw <1,2,3,0>, <3,6,0,7>
+ 2299709370U, // <1,3,2,7>: Cost 3 vmrglw <3,0,1,2>, <2,6,3,7>
+ 2222115614U, // <1,3,2,u>: Cost 3 vmrghw <1,2,3,0>, <3,u,1,2>
+ 2771380607U, // <1,3,3,0>: Cost 3 vsldoi12 <3,3,0,1>, <3,3,0,1>
+ 3356874468U, // <1,3,3,1>: Cost 4 vmrglw <0,2,1,3>, <u,0,3,1>
+ 3759524168U, // <1,3,3,2>: Cost 4 vsldoi8 <0,2,1,3>, <3,2,3,0>
+ 2283792796U, // <1,3,3,3>: Cost 3 vmrglw <0,3,1,3>, <3,3,3,3>
+ 3356869530U, // <1,3,3,4>: Cost 4 vmrglw <0,2,1,3>, <1,2,3,4>
+ 3721760428U, // <1,3,3,5>: Cost 4 vsldoi4 <5,1,3,3>, <5,1,3,3>
+ 3296496248U, // <1,3,3,6>: Cost 4 vmrghw <1,3,2,6>, <3,6,0,7>
+ 3356870586U, // <1,3,3,7>: Cost 4 vmrglw <0,2,1,3>, <2,6,3,7>
+ 2771970503U, // <1,3,3,u>: Cost 3 vsldoi12 <3,3,u,1>, <3,3,u,1>
+ 2772044240U, // <1,3,4,0>: Cost 3 vsldoi12 <3,4,0,1>, <3,4,0,1>
+ 3362186135U, // <1,3,4,1>: Cost 4 vmrglw <1,1,1,4>, <1,2,3,1>
+ 3297151280U, // <1,3,4,2>: Cost 4 vmrghw <1,4,2,5>, <3,2,0,3>
+ 3357542002U, // <1,3,4,3>: Cost 4 vmrglw <0,3,1,4>, <2,2,3,3>
+ 3357540626U, // <1,3,4,4>: Cost 4 vmrglw <0,3,1,4>, <0,3,3,4>
+ 2685783350U, // <1,3,4,5>: Cost 3 vsldoi8 <0,2,1,3>, RHS
+ 3357546622U, // <1,3,4,6>: Cost 4 vmrglw <0,3,1,4>, <u,5,3,6>
+ 3357542330U, // <1,3,4,7>: Cost 4 vmrglw <0,3,1,4>, <2,6,3,7>
+ 2685783593U, // <1,3,4,u>: Cost 3 vsldoi8 <0,2,1,3>, RHS
+ 2284471190U, // <1,3,5,0>: Cost 3 vmrglw <0,4,1,5>, <1,2,3,0>
+ 3358213015U, // <1,3,5,1>: Cost 4 vmrglw <0,4,1,5>, <1,2,3,1>
+ 2630116899U, // <1,3,5,2>: Cost 3 vsldoi4 <2,1,3,5>, <2,1,3,5>
+ 2284471922U, // <1,3,5,3>: Cost 3 vmrglw <0,4,1,5>, <2,2,3,3>
+ 2284471194U, // <1,3,5,4>: Cost 3 vmrglw <0,4,1,5>, <1,2,3,4>
+ 2284471843U, // <1,3,5,5>: Cost 3 vmrglw <0,4,1,5>, <2,1,3,5>
+ 3358218366U, // <1,3,5,6>: Cost 4 vmrglw <0,4,1,5>, <u,5,3,6>
+ 2284472250U, // <1,3,5,7>: Cost 3 vmrglw <0,4,1,5>, <2,6,3,7>
+ 2284471198U, // <1,3,5,u>: Cost 3 vmrglw <0,4,1,5>, <1,2,3,u>
+ 2224752790U, // <1,3,6,0>: Cost 3 vmrghw <1,6,2,7>, <3,0,1,2>
+ 3832736385U, // <1,3,6,1>: Cost 4 vsldoi12 <1,2,3,1>, <3,6,1,7>
+ 3703866916U, // <1,3,6,2>: Cost 4 vsldoi4 <2,1,3,6>, <2,1,3,6>
+ 3356894834U, // <1,3,6,3>: Cost 4 vmrglw <0,2,1,6>, <2,2,3,3>
+ 3356894106U, // <1,3,6,4>: Cost 4 vmrglw <0,2,1,6>, <1,2,3,4>
+ 3356894755U, // <1,3,6,5>: Cost 5 vmrglw <0,2,1,6>, <2,1,3,5>
+ 3356899130U, // <1,3,6,6>: Cost 4 vmrglw <0,2,1,6>, <u,1,3,6>
+ 2283153338U, // <1,3,6,7>: Cost 3 vmrglw <0,2,1,6>, <2,6,3,7>
+ 2283153338U, // <1,3,6,u>: Cost 3 vmrglw <0,2,1,6>, <2,6,3,7>
+ 2774035139U, // <1,3,7,0>: Cost 3 vsldoi12 <3,7,0,1>, <3,7,0,1>
+ 3703874767U, // <1,3,7,1>: Cost 4 vsldoi4 <2,1,3,7>, <1,6,1,7>
+ 3703875109U, // <1,3,7,2>: Cost 4 vsldoi4 <2,1,3,7>, <2,1,3,7>
+ 3365529202U, // <1,3,7,3>: Cost 4 vmrglw <1,6,1,7>, <2,2,3,3>
+ 3365528474U, // <1,3,7,4>: Cost 4 vmrglw <1,6,1,7>, <1,2,3,4>
+ 3789387159U, // <1,3,7,5>: Cost 4 vsldoi8 <5,2,1,3>, <7,5,2,1>
+ 3865692927U, // <1,3,7,6>: Cost 4 vsldoi12 <6,7,0,1>, <3,7,6,7>
+ 3363538874U, // <1,3,7,7>: Cost 4 vmrglw <1,3,1,7>, <2,6,3,7>
+ 2774625035U, // <1,3,7,u>: Cost 3 vsldoi12 <3,7,u,1>, <3,7,u,1>
+ 2284495766U, // <1,3,u,0>: Cost 3 vmrglw <0,4,1,u>, <1,2,3,0>
+ 2685785902U, // <1,3,u,1>: Cost 3 vsldoi8 <0,2,1,3>, LHS
+ 2630141478U, // <1,3,u,2>: Cost 3 vsldoi4 <2,1,3,u>, <2,1,3,u>
+ 2283169880U, // <1,3,u,3>: Cost 3 vmrglw <0,2,1,u>, <2,u,3,3>
+ 2284495770U, // <1,3,u,4>: Cost 3 vmrglw <0,4,1,u>, <1,2,3,4>
+ 2685786266U, // <1,3,u,5>: Cost 3 vsldoi8 <0,2,1,3>, RHS
+ 2222115448U, // <1,3,u,6>: Cost 3 vmrghw <1,2,3,0>, <3,6,0,7>
+ 2284496826U, // <1,3,u,7>: Cost 3 vmrglw <0,4,1,u>, <2,6,3,7>
+ 2685786469U, // <1,3,u,u>: Cost 3 vsldoi8 <0,2,1,3>, LHS
+ 2684461069U, // <1,4,0,0>: Cost 3 vsldoi8 <0,0,1,4>, <0,0,1,4>
+ 2686451814U, // <1,4,0,1>: Cost 3 vsldoi8 <0,3,1,4>, LHS
+ 3759530159U, // <1,4,0,2>: Cost 4 vsldoi8 <0,2,1,4>, <0,2,1,4>
+ 2686451968U, // <1,4,0,3>: Cost 3 vsldoi8 <0,3,1,4>, <0,3,1,4>
+ 2684461394U, // <1,4,0,4>: Cost 3 vsldoi8 <0,0,1,4>, <0,4,1,5>
+ 1701989266U, // <1,4,0,5>: Cost 2 vsldoi12 <4,0,5,1>, <4,0,5,1>
+ 3776119286U, // <1,4,0,6>: Cost 4 vsldoi8 <3,0,1,4>, <0,6,1,7>
+ 2689106500U, // <1,4,0,7>: Cost 3 vsldoi8 <0,7,1,4>, <0,7,1,4>
+ 1702210477U, // <1,4,0,u>: Cost 2 vsldoi12 <4,0,u,1>, <4,0,u,1>
+ 2221312914U, // <1,4,1,0>: Cost 3 vmrghw <1,1,1,1>, <4,0,5,1>
+ 2691097399U, // <1,4,1,1>: Cost 3 vsldoi8 <1,1,1,4>, <1,1,1,4>
+ 3760194454U, // <1,4,1,2>: Cost 4 vsldoi8 <0,3,1,4>, <1,2,3,0>
+ 3766166489U, // <1,4,1,3>: Cost 4 vsldoi8 <1,3,1,4>, <1,3,1,4>
+ 2334870736U, // <1,4,1,4>: Cost 3 vmrglw <u,u,1,1>, <4,4,4,4>
+ 1147571510U, // <1,4,1,5>: Cost 2 vmrghw <1,1,1,1>, RHS
+ 3760194794U, // <1,4,1,6>: Cost 4 vsldoi8 <0,3,1,4>, <1,6,4,7>
+ 3867315188U, // <1,4,1,7>: Cost 4 vsldoi12 <7,0,4,1>, <4,1,7,0>
+ 1147571753U, // <1,4,1,u>: Cost 2 vmrghw <1,1,1,1>, RHS
+ 2222115730U, // <1,4,2,0>: Cost 3 vmrghw <1,2,3,0>, <4,0,5,1>
+ 2222115812U, // <1,4,2,1>: Cost 3 vmrghw <1,2,3,0>, <4,1,5,2>
+ 3760195176U, // <1,4,2,2>: Cost 4 vsldoi8 <0,3,1,4>, <2,2,2,2>
+ 2702378662U, // <1,4,2,3>: Cost 3 vsldoi8 <3,0,1,4>, <2,3,0,1>
+ 2323598544U, // <1,4,2,4>: Cost 3 vmrglw <7,0,1,2>, <4,4,4,4>
+ 1148374326U, // <1,4,2,5>: Cost 2 vmrghw <1,2,3,0>, RHS
+ 3760195514U, // <1,4,2,6>: Cost 4 vsldoi8 <0,3,1,4>, <2,6,3,7>
+ 3373451932U, // <1,4,2,7>: Cost 4 vmrglw <3,0,1,2>, <3,6,4,7>
+ 1148374569U, // <1,4,2,u>: Cost 2 vmrghw <1,2,3,0>, RHS
+ 2702379160U, // <1,4,3,0>: Cost 3 vsldoi8 <3,0,1,4>, <3,0,1,4>
+ 3760195840U, // <1,4,3,1>: Cost 4 vsldoi8 <0,3,1,4>, <3,1,4,0>
+ 3776121160U, // <1,4,3,2>: Cost 4 vsldoi8 <3,0,1,4>, <3,2,3,0>
+ 3760195996U, // <1,4,3,3>: Cost 4 vsldoi8 <0,3,1,4>, <3,3,3,3>
+ 2686454274U, // <1,4,3,4>: Cost 3 vsldoi8 <0,3,1,4>, <3,4,5,6>
+ 3356870350U, // <1,4,3,5>: Cost 4 vmrglw <0,2,1,3>, <2,3,4,5>
+ 3800009392U, // <1,4,3,6>: Cost 4 vsldoi8 <7,0,1,4>, <3,6,7,0>
+ 3366824604U, // <1,4,3,7>: Cost 5 vmrglw <1,u,1,3>, <3,6,4,7>
+ 2707688224U, // <1,4,3,u>: Cost 3 vsldoi8 <3,u,1,4>, <3,u,1,4>
+ 2775731368U, // <1,4,4,0>: Cost 3 vsldoi12 <4,0,5,1>, <4,4,0,0>
+ 3830820018U, // <1,4,4,1>: Cost 4 vsldoi12 <0,u,4,1>, <4,4,1,1>
+ 3691980454U, // <1,4,4,2>: Cost 4 vsldoi4 <0,1,4,4>, <2,3,0,1>
+ 3357541282U, // <1,4,4,3>: Cost 4 vmrglw <0,3,1,4>, <1,2,4,3>
+ 2781039824U, // <1,4,4,4>: Cost 3 vsldoi12 <4,u,5,1>, <4,4,4,4>
+ 2686455094U, // <1,4,4,5>: Cost 3 vsldoi8 <0,3,1,4>, RHS
+ 3357541528U, // <1,4,4,6>: Cost 4 vmrglw <0,3,1,4>, <1,5,4,6>
+ 3810627020U, // <1,4,4,7>: Cost 4 vsldoi8 <u,7,1,4>, <4,7,5,4>
+ 2686455337U, // <1,4,4,u>: Cost 3 vsldoi8 <0,3,1,4>, RHS
+ 2624217190U, // <1,4,5,0>: Cost 3 vsldoi4 <1,1,4,5>, LHS
+ 2284470309U, // <1,4,5,1>: Cost 3 vmrglw <0,4,1,5>, <0,0,4,1>
+ 2618246822U, // <1,4,5,2>: Cost 3 vsldoi4 <0,1,4,5>, <2,3,0,1>
+ 3358212297U, // <1,4,5,3>: Cost 4 vmrglw <0,4,1,5>, <0,2,4,3>
+ 2284470312U, // <1,4,5,4>: Cost 3 vmrglw <0,4,1,5>, <0,0,4,4>
+ 2284470637U, // <1,4,5,5>: Cost 3 vmrglw <0,4,1,5>, <0,4,4,5>
+ 1683115318U, // <1,4,5,6>: Cost 2 vsldoi12 <0,u,1,1>, RHS
+ 3721851898U, // <1,4,5,7>: Cost 4 vsldoi4 <5,1,4,5>, <7,0,1,2>
+ 1683115336U, // <1,4,5,u>: Cost 2 vsldoi12 <0,u,1,1>, RHS
+ 3794039075U, // <1,4,6,0>: Cost 4 vsldoi8 <6,0,1,4>, <6,0,1,4>
+ 3830820186U, // <1,4,6,1>: Cost 4 vsldoi12 <0,u,4,1>, <4,6,1,7>
+ 3800011258U, // <1,4,6,2>: Cost 4 vsldoi8 <7,0,1,4>, <6,2,7,3>
+ 3807973938U, // <1,4,6,3>: Cost 4 vsldoi8 <u,3,1,4>, <6,3,4,5>
+ 3298716880U, // <1,4,6,4>: Cost 4 vmrghw <1,6,5,7>, <4,4,4,4>
+ 2224680246U, // <1,4,6,5>: Cost 3 vmrghw <1,6,1,7>, RHS
+ 3800011576U, // <1,4,6,6>: Cost 4 vsldoi8 <7,0,1,4>, <6,6,6,6>
+ 2726269774U, // <1,4,6,7>: Cost 3 vsldoi8 <7,0,1,4>, <6,7,0,1>
+ 2224680489U, // <1,4,6,u>: Cost 3 vmrghw <1,6,1,7>, RHS
+ 2726269948U, // <1,4,7,0>: Cost 3 vsldoi8 <7,0,1,4>, <7,0,1,4>
+ 3383444141U, // <1,4,7,1>: Cost 4 vmrglw <4,6,1,7>, <0,u,4,1>
+ 3805983961U, // <1,4,7,2>: Cost 4 vsldoi8 <u,0,1,4>, <7,2,u,0>
+ 3807974667U, // <1,4,7,3>: Cost 4 vsldoi8 <u,3,1,4>, <7,3,4,5>
+ 2736887142U, // <1,4,7,4>: Cost 3 vsldoi8 <u,7,1,4>, <7,4,5,6>
+ 3365528403U, // <1,4,7,5>: Cost 4 vmrglw <1,6,1,7>, <1,1,4,5>
+ 3800012308U, // <1,4,7,6>: Cost 4 vsldoi8 <7,0,1,4>, <7,6,7,0>
+ 3800012396U, // <1,4,7,7>: Cost 4 vsldoi8 <7,0,1,4>, <7,7,7,7>
+ 2731579012U, // <1,4,7,u>: Cost 3 vsldoi8 <7,u,1,4>, <7,u,1,4>
+ 2624241766U, // <1,4,u,0>: Cost 3 vsldoi4 <1,1,4,u>, LHS
+ 2686457646U, // <1,4,u,1>: Cost 3 vsldoi8 <0,3,1,4>, LHS
+ 2618271398U, // <1,4,u,2>: Cost 3 vsldoi4 <0,1,4,u>, <2,3,0,1>
+ 2734233544U, // <1,4,u,3>: Cost 3 vsldoi8 <u,3,1,4>, <u,3,1,4>
+ 2689775679U, // <1,4,u,4>: Cost 3 vsldoi8 <0,u,1,4>, <u,4,5,6>
+ 1152355638U, // <1,4,u,5>: Cost 2 vmrghw <1,u,3,0>, RHS
+ 1683115561U, // <1,4,u,6>: Cost 2 vsldoi12 <0,u,1,1>, RHS
+ 2736888076U, // <1,4,u,7>: Cost 3 vsldoi8 <u,7,1,4>, <u,7,1,4>
+ 1683115579U, // <1,4,u,u>: Cost 2 vsldoi12 <0,u,1,1>, RHS
+ 2687123456U, // <1,5,0,0>: Cost 3 vsldoi8 <0,4,1,5>, <0,0,0,0>
+ 1613381734U, // <1,5,0,1>: Cost 2 vsldoi8 <0,4,1,5>, LHS
+ 3759538352U, // <1,5,0,2>: Cost 4 vsldoi8 <0,2,1,5>, <0,2,1,5>
+ 3760865532U, // <1,5,0,3>: Cost 4 vsldoi8 <0,4,1,5>, <0,3,1,0>
+ 1613381970U, // <1,5,0,4>: Cost 2 vsldoi8 <0,4,1,5>, <0,4,1,5>
+ 2687787427U, // <1,5,0,5>: Cost 3 vsldoi8 <0,5,1,5>, <0,5,1,5>
+ 2781777524U, // <1,5,0,6>: Cost 3 vsldoi12 <5,0,6,1>, <5,0,6,1>
+ 3733828717U, // <1,5,0,7>: Cost 4 vsldoi4 <7,1,5,0>, <7,1,5,0>
+ 1613382301U, // <1,5,0,u>: Cost 2 vsldoi8 <0,4,1,5>, LHS
+ 2781040271U, // <1,5,1,0>: Cost 3 vsldoi12 <4,u,5,1>, <5,1,0,1>
+ 2687124276U, // <1,5,1,1>: Cost 3 vsldoi8 <0,4,1,5>, <1,1,1,1>
+ 2687124374U, // <1,5,1,2>: Cost 3 vsldoi8 <0,4,1,5>, <1,2,3,0>
+ 3760866297U, // <1,5,1,3>: Cost 4 vsldoi8 <0,4,1,5>, <1,3,5,0>
+ 2693096491U, // <1,5,1,4>: Cost 3 vsldoi8 <1,4,1,5>, <1,4,1,5>
+ 2687124591U, // <1,5,1,5>: Cost 3 vsldoi8 <0,4,1,5>, <1,5,0,1>
+ 2687124723U, // <1,5,1,6>: Cost 3 vsldoi8 <0,4,1,5>, <1,6,5,7>
+ 3360834803U, // <1,5,1,7>: Cost 4 vmrglw <0,u,1,1>, <1,6,5,7>
+ 2687124860U, // <1,5,1,u>: Cost 3 vsldoi8 <0,4,1,5>, <1,u,3,0>
+ 2323598792U, // <1,5,2,0>: Cost 3 vmrglw <7,0,1,2>, <4,7,5,0>
+ 2687125027U, // <1,5,2,1>: Cost 3 vsldoi8 <0,4,1,5>, <2,1,3,5>
+ 2687125096U, // <1,5,2,2>: Cost 3 vsldoi8 <0,4,1,5>, <2,2,2,2>
+ 2687125158U, // <1,5,2,3>: Cost 3 vsldoi8 <0,4,1,5>, <2,3,0,1>
+ 2642185188U, // <1,5,2,4>: Cost 3 vsldoi4 <4,1,5,2>, <4,1,5,2>
+ 2323598554U, // <1,5,2,5>: Cost 3 vmrglw <7,0,1,2>, <4,4,5,5>
+ 2687125434U, // <1,5,2,6>: Cost 3 vsldoi8 <0,4,1,5>, <2,6,3,7>
+ 3373450483U, // <1,5,2,7>: Cost 4 vmrglw <3,0,1,2>, <1,6,5,7>
+ 2687125563U, // <1,5,2,u>: Cost 3 vsldoi8 <0,4,1,5>, <2,u,0,1>
+ 2687125654U, // <1,5,3,0>: Cost 3 vsldoi8 <0,4,1,5>, <3,0,1,2>
+ 2312990234U, // <1,5,3,1>: Cost 3 vmrglw <5,2,1,3>, <4,u,5,1>
+ 3760867649U, // <1,5,3,2>: Cost 4 vsldoi8 <0,4,1,5>, <3,2,2,2>
+ 2687125916U, // <1,5,3,3>: Cost 3 vsldoi8 <0,4,1,5>, <3,3,3,3>
+ 2687126018U, // <1,5,3,4>: Cost 3 vsldoi8 <0,4,1,5>, <3,4,5,6>
+ 3386731738U, // <1,5,3,5>: Cost 4 vmrglw <5,2,1,3>, <4,4,5,5>
+ 3356871170U, // <1,5,3,6>: Cost 4 vmrglw <0,2,1,3>, <3,4,5,6>
+ 3808643779U, // <1,5,3,7>: Cost 4 vsldoi8 <u,4,1,5>, <3,7,0,1>
+ 2687126302U, // <1,5,3,u>: Cost 3 vsldoi8 <0,4,1,5>, <3,u,1,2>
+ 2642198630U, // <1,5,4,0>: Cost 3 vsldoi4 <4,1,5,4>, LHS
+ 2687126498U, // <1,5,4,1>: Cost 3 vsldoi8 <0,4,1,5>, <4,1,5,0>
+ 3715941923U, // <1,5,4,2>: Cost 4 vsldoi4 <4,1,5,4>, <2,1,3,5>
+ 3709970701U, // <1,5,4,3>: Cost 4 vsldoi4 <3,1,5,4>, <3,1,5,4>
+ 2687126736U, // <1,5,4,4>: Cost 3 vsldoi8 <0,4,1,5>, <4,4,4,4>
+ 1613385014U, // <1,5,4,5>: Cost 2 vsldoi8 <0,4,1,5>, RHS
+ 2283801090U, // <1,5,4,6>: Cost 3 vmrglw <0,3,1,4>, <3,4,5,6>
+ 3733861489U, // <1,5,4,7>: Cost 4 vsldoi4 <7,1,5,4>, <7,1,5,4>
+ 1613385257U, // <1,5,4,u>: Cost 2 vsldoi8 <0,4,1,5>, RHS
+ 2624290918U, // <1,5,5,0>: Cost 3 vsldoi4 <1,1,5,5>, LHS
+ 2624291676U, // <1,5,5,1>: Cost 3 vsldoi4 <1,1,5,5>, <1,1,5,5>
+ 3698034211U, // <1,5,5,2>: Cost 4 vsldoi4 <1,1,5,5>, <2,1,3,5>
+ 2284471211U, // <1,5,5,3>: Cost 3 vmrglw <0,4,1,5>, <1,2,5,3>
+ 2624294198U, // <1,5,5,4>: Cost 3 vsldoi4 <1,1,5,5>, RHS
+ 2284471132U, // <1,5,5,5>: Cost 3 vmrglw <0,4,1,5>, <1,1,5,5>
+ 2284472834U, // <1,5,5,6>: Cost 3 vmrglw <0,4,1,5>, <3,4,5,6>
+ 2284471539U, // <1,5,5,7>: Cost 3 vmrglw <0,4,1,5>, <1,6,5,7>
+ 2284471216U, // <1,5,5,u>: Cost 3 vmrglw <0,4,1,5>, <1,2,5,u>
+ 2785316900U, // <1,5,6,0>: Cost 3 vsldoi12 <5,6,0,1>, <5,6,0,1>
+ 2781040691U, // <1,5,6,1>: Cost 3 vsldoi12 <4,u,5,1>, <5,6,1,7>
+ 2734903802U, // <1,5,6,2>: Cost 3 vsldoi8 <u,4,1,5>, <6,2,7,3>
+ 3848736834U, // <1,5,6,3>: Cost 4 vsldoi12 <3,u,4,1>, <5,6,3,4>
+ 3298717620U, // <1,5,6,4>: Cost 4 vmrghw <1,6,5,7>, <5,4,5,6>
+ 3298717700U, // <1,5,6,5>: Cost 4 vmrghw <1,6,5,7>, <5,5,5,5>
+ 2734904120U, // <1,5,6,6>: Cost 3 vsldoi8 <u,4,1,5>, <6,6,6,6>
+ 2781040738U, // <1,5,6,7>: Cost 3 vsldoi12 <4,u,5,1>, <5,6,7,0>
+ 2781040747U, // <1,5,6,u>: Cost 3 vsldoi12 <4,u,5,1>, <5,6,u,0>
+ 2734904314U, // <1,5,7,0>: Cost 3 vsldoi8 <u,4,1,5>, <7,0,1,2>
+ 2315677210U, // <1,5,7,1>: Cost 3 vmrglw <5,6,1,7>, <4,u,5,1>
+ 3808646292U, // <1,5,7,2>: Cost 4 vsldoi8 <u,4,1,5>, <7,2,0,3>
+ 3808646371U, // <1,5,7,3>: Cost 4 vsldoi8 <u,4,1,5>, <7,3,0,1>
+ 2734904678U, // <1,5,7,4>: Cost 3 vsldoi8 <u,4,1,5>, <7,4,5,6>
+ 3389418714U, // <1,5,7,5>: Cost 4 vmrglw <5,6,1,7>, <4,4,5,5>
+ 3365528656U, // <1,5,7,6>: Cost 4 vmrglw <1,6,1,7>, <1,4,5,6>
+ 2734904940U, // <1,5,7,7>: Cost 3 vsldoi8 <u,4,1,5>, <7,7,7,7>
+ 2734904962U, // <1,5,7,u>: Cost 3 vsldoi8 <u,4,1,5>, <7,u,1,2>
+ 2687129299U, // <1,5,u,0>: Cost 3 vsldoi8 <0,4,1,5>, <u,0,1,2>
+ 1613387566U, // <1,5,u,1>: Cost 2 vsldoi8 <0,4,1,5>, LHS
+ 2687129480U, // <1,5,u,2>: Cost 3 vsldoi8 <0,4,1,5>, <u,2,3,3>
+ 2687129532U, // <1,5,u,3>: Cost 3 vsldoi8 <0,4,1,5>, <u,3,0,1>
+ 1661163546U, // <1,5,u,4>: Cost 2 vsldoi8 <u,4,1,5>, <u,4,1,5>
+ 1613387930U, // <1,5,u,5>: Cost 2 vsldoi8 <0,4,1,5>, RHS
+ 2687129808U, // <1,5,u,6>: Cost 3 vsldoi8 <0,4,1,5>, <u,6,3,7>
+ 2781040900U, // <1,5,u,7>: Cost 3 vsldoi12 <4,u,5,1>, <5,u,7,0>
+ 1613388133U, // <1,5,u,u>: Cost 2 vsldoi8 <0,4,1,5>, LHS
+ 3759546368U, // <1,6,0,0>: Cost 4 vsldoi8 <0,2,1,6>, <0,0,0,0>
+ 2685804646U, // <1,6,0,1>: Cost 3 vsldoi8 <0,2,1,6>, LHS
+ 2685804721U, // <1,6,0,2>: Cost 3 vsldoi8 <0,2,1,6>, <0,2,1,6>
+ 3861270834U, // <1,6,0,3>: Cost 4 vsldoi12 <6,0,3,1>, <6,0,3,1>
+ 3759546706U, // <1,6,0,4>: Cost 4 vsldoi8 <0,2,1,6>, <0,4,1,5>
+ 2687795620U, // <1,6,0,5>: Cost 3 vsldoi8 <0,5,1,6>, <0,5,1,6>
+ 2688459253U, // <1,6,0,6>: Cost 3 vsldoi8 <0,6,1,6>, <0,6,1,6>
+ 2283769142U, // <1,6,0,7>: Cost 3 vmrglw <0,3,1,0>, RHS
+ 2685805213U, // <1,6,0,u>: Cost 3 vsldoi8 <0,2,1,6>, LHS
+ 3698073702U, // <1,6,1,0>: Cost 4 vsldoi4 <1,1,6,1>, LHS
+ 3759547188U, // <1,6,1,1>: Cost 4 vsldoi8 <0,2,1,6>, <1,1,1,1>
+ 2221314554U, // <1,6,1,2>: Cost 3 vmrghw <1,1,1,1>, <6,2,7,3>
+ 3759547401U, // <1,6,1,3>: Cost 4 vsldoi8 <0,2,1,6>, <1,3,6,7>
+ 3698076982U, // <1,6,1,4>: Cost 4 vsldoi4 <1,1,6,1>, RHS
+ 3767510141U, // <1,6,1,5>: Cost 4 vsldoi8 <1,5,1,6>, <1,5,1,6>
+ 2334872376U, // <1,6,1,6>: Cost 3 vmrglw <u,u,1,1>, <6,6,6,6>
+ 1213353270U, // <1,6,1,7>: Cost 2 vmrglw <0,u,1,1>, RHS
+ 1213353271U, // <1,6,1,u>: Cost 2 vmrglw <0,u,1,1>, RHS
+ 3704053862U, // <1,6,2,0>: Cost 4 vsldoi4 <2,1,6,2>, LHS
+ 3759547961U, // <1,6,2,1>: Cost 4 vsldoi8 <0,2,1,6>, <2,1,6,0>
+ 2222117370U, // <1,6,2,2>: Cost 3 vmrghw <1,2,3,0>, <6,2,7,3>
+ 3759548070U, // <1,6,2,3>: Cost 4 vsldoi8 <0,2,1,6>, <2,3,0,1>
+ 3704057142U, // <1,6,2,4>: Cost 4 vsldoi4 <2,1,6,2>, RHS
+ 3373451057U, // <1,6,2,5>: Cost 4 vmrglw <3,0,1,2>, <2,4,6,5>
+ 2685806522U, // <1,6,2,6>: Cost 3 vsldoi8 <0,2,1,6>, <2,6,3,7>
+ 1225968950U, // <1,6,2,7>: Cost 2 vmrglw <3,0,1,2>, RHS
+ 1225968951U, // <1,6,2,u>: Cost 2 vmrglw <3,0,1,2>, RHS
+ 3759548566U, // <1,6,3,0>: Cost 4 vsldoi8 <0,2,1,6>, <3,0,1,2>
+ 3842912793U, // <1,6,3,1>: Cost 4 vsldoi12 <2,u,6,1>, <6,3,1,7>
+ 3759548774U, // <1,6,3,2>: Cost 4 vsldoi8 <0,2,1,6>, <3,2,6,3>
+ 3759548828U, // <1,6,3,3>: Cost 4 vsldoi8 <0,2,1,6>, <3,3,3,3>
+ 3759548930U, // <1,6,3,4>: Cost 4 vsldoi8 <0,2,1,6>, <3,4,5,6>
+ 3809315421U, // <1,6,3,5>: Cost 4 vsldoi8 <u,5,1,6>, <3,5,6,7>
+ 3386733368U, // <1,6,3,6>: Cost 4 vmrglw <5,2,1,3>, <6,6,6,6>
+ 2283130166U, // <1,6,3,7>: Cost 3 vmrglw <0,2,1,3>, RHS
+ 2283130167U, // <1,6,3,u>: Cost 3 vmrglw <0,2,1,3>, RHS
+ 3704070246U, // <1,6,4,0>: Cost 4 vsldoi4 <2,1,6,4>, LHS
+ 3862229608U, // <1,6,4,1>: Cost 4 vsldoi12 <6,1,7,1>, <6,4,1,5>
+ 3704071741U, // <1,6,4,2>: Cost 4 vsldoi4 <2,1,6,4>, <2,1,6,4>
+ 3721988610U, // <1,6,4,3>: Cost 4 vsldoi4 <5,1,6,4>, <3,4,5,6>
+ 3704073526U, // <1,6,4,4>: Cost 4 vsldoi4 <2,1,6,4>, RHS
+ 2685807926U, // <1,6,4,5>: Cost 3 vsldoi8 <0,2,1,6>, RHS
+ 3865621141U, // <1,6,4,6>: Cost 4 vsldoi12 <6,6,u,1>, <6,4,6,5>
+ 2283801910U, // <1,6,4,7>: Cost 3 vmrglw <0,3,1,4>, RHS
+ 2685808169U, // <1,6,4,u>: Cost 3 vsldoi8 <0,2,1,6>, RHS
+ 3710050406U, // <1,6,5,0>: Cost 4 vsldoi4 <3,1,6,5>, LHS
+ 3710051571U, // <1,6,5,1>: Cost 4 vsldoi4 <3,1,6,5>, <1,6,5,7>
+ 3405989597U, // <1,6,5,2>: Cost 4 vmrglw <u,4,1,5>, <2,3,6,2>
+ 3358214502U, // <1,6,5,3>: Cost 4 vmrglw <0,4,1,5>, <3,2,6,3>
+ 3710053686U, // <1,6,5,4>: Cost 4 vsldoi4 <3,1,6,5>, RHS
+ 3721998025U, // <1,6,5,5>: Cost 4 vsldoi4 <5,1,6,5>, <5,1,6,5>
+ 2332250936U, // <1,6,5,6>: Cost 3 vmrglw <u,4,1,5>, <6,6,6,6>
+ 1210731830U, // <1,6,5,7>: Cost 2 vmrglw <0,4,1,5>, RHS
+ 1210731831U, // <1,6,5,u>: Cost 2 vmrglw <0,4,1,5>, RHS
+ 2791289597U, // <1,6,6,0>: Cost 3 vsldoi12 <6,6,0,1>, <6,6,0,1>
+ 3698115430U, // <1,6,6,1>: Cost 4 vsldoi4 <1,1,6,6>, <1,1,6,6>
+ 3698116538U, // <1,6,6,2>: Cost 4 vsldoi4 <1,1,6,6>, <2,6,3,7>
+ 3356894132U, // <1,6,6,3>: Cost 4 vmrglw <0,2,1,6>, <1,2,6,3>
+ 3698117942U, // <1,6,6,4>: Cost 4 vsldoi4 <1,1,6,6>, RHS
+ 3722006218U, // <1,6,6,5>: Cost 4 vsldoi4 <5,1,6,6>, <5,1,6,6>
+ 2781041464U, // <1,6,6,6>: Cost 3 vsldoi12 <4,u,5,1>, <6,6,6,6>
+ 2283154742U, // <1,6,6,7>: Cost 3 vmrglw <0,2,1,6>, RHS
+ 2283154743U, // <1,6,6,u>: Cost 3 vmrglw <0,2,1,6>, RHS
+ 1718211406U, // <1,6,7,0>: Cost 2 vsldoi12 <6,7,0,1>, <6,7,0,1>
+ 2792026967U, // <1,6,7,1>: Cost 3 vsldoi12 <6,7,1,1>, <6,7,1,1>
+ 2765411170U, // <1,6,7,2>: Cost 3 vsldoi12 <2,3,0,1>, <6,7,2,3>
+ 3854783336U, // <1,6,7,3>: Cost 4 vsldoi12 <4,u,5,1>, <6,7,3,0>
+ 2781041526U, // <1,6,7,4>: Cost 3 vsldoi12 <4,u,5,1>, <6,7,4,5>
+ 3365528664U, // <1,6,7,5>: Cost 4 vmrglw <1,6,1,7>, <1,4,6,5>
+ 2791953290U, // <1,6,7,6>: Cost 3 vsldoi12 <6,7,0,1>, <6,7,6,7>
+ 2291789110U, // <1,6,7,7>: Cost 3 vmrglw <1,6,1,7>, RHS
+ 1718801302U, // <1,6,7,u>: Cost 2 vsldoi12 <6,7,u,1>, <6,7,u,1>
+ 1718875039U, // <1,6,u,0>: Cost 2 vsldoi12 <6,u,0,1>, <6,u,0,1>
+ 2685810478U, // <1,6,u,1>: Cost 3 vsldoi8 <0,2,1,6>, LHS
+ 2792764337U, // <1,6,u,2>: Cost 3 vsldoi12 <6,u,2,1>, <6,u,2,1>
+ 3759552444U, // <1,6,u,3>: Cost 4 vsldoi8 <0,2,1,6>, <u,3,0,1>
+ 2781041607U, // <1,6,u,4>: Cost 3 vsldoi12 <4,u,5,1>, <6,u,4,5>
+ 2685810842U, // <1,6,u,5>: Cost 3 vsldoi8 <0,2,1,6>, RHS
+ 2689792208U, // <1,6,u,6>: Cost 3 vsldoi8 <0,u,1,6>, <u,6,3,7>
+ 1210756406U, // <1,6,u,7>: Cost 2 vmrglw <0,4,1,u>, RHS
+ 1210756407U, // <1,6,u,u>: Cost 2 vmrglw <0,4,1,u>, RHS
+ 2793280496U, // <1,7,0,0>: Cost 3 vsldoi12 <7,0,0,1>, <7,0,0,1>
+ 2694439014U, // <1,7,0,1>: Cost 3 vsldoi8 <1,6,1,7>, LHS
+ 3393343912U, // <1,7,0,2>: Cost 4 vmrglw <6,3,1,0>, <6,1,7,2>
+ 3397325306U, // <1,7,0,3>: Cost 4 vmrglw <7,0,1,0>, <6,2,7,3>
+ 2793575444U, // <1,7,0,4>: Cost 3 vsldoi12 <7,0,4,1>, <7,0,4,1>
+ 3722030797U, // <1,7,0,5>: Cost 4 vsldoi4 <5,1,7,0>, <5,1,7,0>
+ 2688467446U, // <1,7,0,6>: Cost 3 vsldoi8 <0,6,1,7>, <0,6,1,7>
+ 2689131079U, // <1,7,0,7>: Cost 3 vsldoi8 <0,7,1,7>, <0,7,1,7>
+ 2694439570U, // <1,7,0,u>: Cost 3 vsldoi8 <1,6,1,7>, <0,u,1,1>
+ 2654265354U, // <1,7,1,0>: Cost 3 vsldoi4 <6,1,7,1>, <0,0,1,1>
+ 2794017866U, // <1,7,1,1>: Cost 3 vsldoi12 <7,1,1,1>, <7,1,1,1>
+ 3768181639U, // <1,7,1,2>: Cost 4 vsldoi8 <1,6,1,7>, <1,2,1,3>
+ 2334872058U, // <1,7,1,3>: Cost 3 vmrglw <u,u,1,1>, <6,2,7,3>
+ 2654268726U, // <1,7,1,4>: Cost 3 vsldoi4 <6,1,7,1>, RHS
+ 3792069797U, // <1,7,1,5>: Cost 4 vsldoi8 <5,6,1,7>, <1,5,6,1>
+ 2694440143U, // <1,7,1,6>: Cost 3 vsldoi8 <1,6,1,7>, <1,6,1,7>
+ 2334872386U, // <1,7,1,7>: Cost 3 vmrglw <u,u,1,1>, <6,6,7,7>
+ 2695767409U, // <1,7,1,u>: Cost 3 vsldoi8 <1,u,1,7>, <1,u,1,7>
+ 2654273638U, // <1,7,2,0>: Cost 3 vsldoi4 <6,1,7,2>, LHS
+ 2222117973U, // <1,7,2,1>: Cost 3 vmrghw <1,2,3,0>, <7,1,2,3>
+ 2299711912U, // <1,7,2,2>: Cost 3 vmrglw <3,0,1,2>, <6,1,7,2>
+ 2654275734U, // <1,7,2,3>: Cost 3 vsldoi4 <6,1,7,2>, <3,0,1,2>
+ 2654276918U, // <1,7,2,4>: Cost 3 vsldoi4 <6,1,7,2>, RHS
+ 3385397675U, // <1,7,2,5>: Cost 4 vmrglw <5,0,1,2>, <6,1,7,5>
+ 2654278056U, // <1,7,2,6>: Cost 3 vsldoi4 <6,1,7,2>, <6,1,7,2>
+ 2323599627U, // <1,7,2,7>: Cost 3 vmrglw <7,0,1,2>, <5,u,7,7>
+ 2654279470U, // <1,7,2,u>: Cost 3 vsldoi4 <6,1,7,2>, LHS
+ 2795271395U, // <1,7,3,0>: Cost 3 vsldoi12 <7,3,0,1>, <7,3,0,1>
+ 3768183059U, // <1,7,3,1>: Cost 4 vsldoi8 <1,6,1,7>, <3,1,6,1>
+ 3728025254U, // <1,7,3,2>: Cost 4 vsldoi4 <6,1,7,3>, <2,3,0,1>
+ 3768183196U, // <1,7,3,3>: Cost 4 vsldoi8 <1,6,1,7>, <3,3,3,3>
+ 3768183298U, // <1,7,3,4>: Cost 4 vsldoi8 <1,6,1,7>, <3,4,5,6>
+ 3792071255U, // <1,7,3,5>: Cost 4 vsldoi8 <5,6,1,7>, <3,5,6,1>
+ 3780127361U, // <1,7,3,6>: Cost 4 vsldoi8 <3,6,1,7>, <3,6,1,7>
+ 3847779617U, // <1,7,3,7>: Cost 4 vsldoi12 <3,7,0,1>, <7,3,7,0>
+ 2795861291U, // <1,7,3,u>: Cost 3 vsldoi12 <7,3,u,1>, <7,3,u,1>
+ 2795935028U, // <1,7,4,0>: Cost 3 vsldoi12 <7,4,0,1>, <7,4,0,1>
+ 3728032975U, // <1,7,4,1>: Cost 4 vsldoi4 <6,1,7,4>, <1,6,1,7>
+ 3839153480U, // <1,7,4,2>: Cost 4 vsldoi12 <2,3,0,1>, <7,4,2,3>
+ 3397358074U, // <1,7,4,3>: Cost 4 vmrglw <7,0,1,4>, <6,2,7,3>
+ 3854783835U, // <1,7,4,4>: Cost 4 vsldoi12 <4,u,5,1>, <7,4,4,4>
+ 2694442294U, // <1,7,4,5>: Cost 3 vsldoi8 <1,6,1,7>, RHS
+ 3786100058U, // <1,7,4,6>: Cost 4 vsldoi8 <4,6,1,7>, <4,6,1,7>
+ 3722065254U, // <1,7,4,7>: Cost 4 vsldoi4 <5,1,7,4>, <7,4,5,6>
+ 2694442537U, // <1,7,4,u>: Cost 3 vsldoi8 <1,6,1,7>, RHS
+ 2654298214U, // <1,7,5,0>: Cost 3 vsldoi4 <6,1,7,5>, LHS
+ 3854783893U, // <1,7,5,1>: Cost 4 vsldoi12 <4,u,5,1>, <7,5,1,u>
+ 3710126010U, // <1,7,5,2>: Cost 4 vsldoi4 <3,1,7,5>, <2,6,3,7>
+ 2332250618U, // <1,7,5,3>: Cost 3 vmrglw <u,4,1,5>, <6,2,7,3>
+ 2654301494U, // <1,7,5,4>: Cost 3 vsldoi4 <6,1,7,5>, RHS
+ 2284474795U, // <1,7,5,5>: Cost 3 vmrglw <0,4,1,5>, <6,1,7,5>
+ 2718330931U, // <1,7,5,6>: Cost 3 vsldoi8 <5,6,1,7>, <5,6,1,7>
+ 2332250946U, // <1,7,5,7>: Cost 3 vmrglw <u,4,1,5>, <6,6,7,7>
+ 2719658197U, // <1,7,5,u>: Cost 3 vsldoi8 <5,u,1,7>, <5,u,1,7>
+ 2332921954U, // <1,7,6,0>: Cost 3 vmrglw <u,5,1,6>, <5,6,7,0>
+ 3768185254U, // <1,7,6,1>: Cost 4 vsldoi8 <1,6,1,7>, <6,1,7,0>
+ 3710134202U, // <1,7,6,2>: Cost 4 vsldoi4 <3,1,7,6>, <2,6,3,7>
+ 3710134561U, // <1,7,6,3>: Cost 4 vsldoi4 <3,1,7,6>, <3,1,7,6>
+ 3710135606U, // <1,7,6,4>: Cost 4 vsldoi4 <3,1,7,6>, RHS
+ 3864884745U, // <1,7,6,5>: Cost 4 vsldoi12 <6,5,7,1>, <7,6,5,7>
+ 3854784017U, // <1,7,6,6>: Cost 4 vsldoi12 <4,u,5,1>, <7,6,6,6>
+ 2791953940U, // <1,7,6,7>: Cost 3 vsldoi12 <6,7,0,1>, <7,6,7,0>
+ 2792617501U, // <1,7,6,u>: Cost 3 vsldoi12 <6,u,0,1>, <7,6,u,0>
+ 2797925927U, // <1,7,7,0>: Cost 3 vsldoi12 <7,7,0,1>, <7,7,0,1>
+ 3365528426U, // <1,7,7,1>: Cost 4 vmrglw <1,6,1,7>, <1,1,7,1>
+ 3728058022U, // <1,7,7,2>: Cost 4 vsldoi4 <6,1,7,7>, <2,3,0,1>
+ 3365528509U, // <1,7,7,3>: Cost 4 vmrglw <1,6,1,7>, <1,2,7,3>
+ 3854784079U, // <1,7,7,4>: Cost 4 vsldoi12 <4,u,5,1>, <7,7,4,5>
+ 3722088148U, // <1,7,7,5>: Cost 4 vsldoi4 <5,1,7,7>, <5,1,7,7>
+ 3728060845U, // <1,7,7,6>: Cost 4 vsldoi4 <6,1,7,7>, <6,1,7,7>
+ 2781042284U, // <1,7,7,7>: Cost 3 vsldoi12 <4,u,5,1>, <7,7,7,7>
+ 2798515823U, // <1,7,7,u>: Cost 3 vsldoi12 <7,7,u,1>, <7,7,u,1>
+ 2654322705U, // <1,7,u,0>: Cost 3 vsldoi4 <6,1,7,u>, <0,0,1,u>
+ 2694444846U, // <1,7,u,1>: Cost 3 vsldoi8 <1,6,1,7>, LHS
+ 2299711912U, // <1,7,u,2>: Cost 3 vmrglw <3,0,1,2>, <6,1,7,2>
+ 2323649018U, // <1,7,u,3>: Cost 3 vmrglw <7,0,1,u>, <6,2,7,3>
+ 2654326070U, // <1,7,u,4>: Cost 3 vsldoi4 <6,1,7,u>, RHS
+ 2694445210U, // <1,7,u,5>: Cost 3 vsldoi8 <1,6,1,7>, RHS
+ 2654327214U, // <1,7,u,6>: Cost 3 vsldoi4 <6,1,7,u>, <6,1,7,u>
+ 2323649346U, // <1,7,u,7>: Cost 3 vmrglw <7,0,1,u>, <6,6,7,7>
+ 2694445413U, // <1,7,u,u>: Cost 3 vsldoi8 <1,6,1,7>, LHS
+ 1610752017U, // <1,u,0,0>: Cost 2 vsldoi8 <0,0,1,u>, <0,0,1,u>
+ 1613406310U, // <1,u,0,1>: Cost 2 vsldoi8 <0,4,1,u>, LHS
+ 2685821107U, // <1,u,0,2>: Cost 3 vsldoi8 <0,2,1,u>, <0,2,1,u>
+ 2283765916U, // <1,u,0,3>: Cost 3 vmrglw <0,3,1,0>, LHS
+ 1613406549U, // <1,u,0,4>: Cost 2 vsldoi8 <0,4,1,u>, <0,4,1,u>
+ 1725880054U, // <1,u,0,5>: Cost 2 vsldoi12 <u,0,5,1>, <u,0,5,1>
+ 2688475639U, // <1,u,0,6>: Cost 3 vsldoi8 <0,6,1,u>, <0,6,1,u>
+ 2283769160U, // <1,u,0,7>: Cost 3 vmrglw <0,3,1,0>, RHS
+ 1613406877U, // <1,u,0,u>: Cost 2 vsldoi8 <0,4,1,u>, LHS
+ 1550221414U, // <1,u,1,0>: Cost 2 vsldoi4 <1,1,1,1>, LHS
+ 269271142U, // <1,u,1,1>: Cost 1 vspltisw1 LHS
+ 1683117870U, // <1,u,1,2>: Cost 2 vsldoi12 <0,u,1,1>, LHS
+ 1213350044U, // <1,u,1,3>: Cost 2 vmrglw <0,u,1,1>, LHS
+ 1550224694U, // <1,u,1,4>: Cost 2 vsldoi4 <1,1,1,1>, RHS
+ 1147574426U, // <1,u,1,5>: Cost 2 vmrghw <1,1,1,1>, RHS
+ 2687149326U, // <1,u,1,6>: Cost 3 vsldoi8 <0,4,1,u>, <1,6,u,7>
+ 1213353288U, // <1,u,1,7>: Cost 2 vmrglw <0,u,1,1>, RHS
+ 269271142U, // <1,u,1,u>: Cost 1 vspltisw1 LHS
+ 2222118611U, // <1,u,2,0>: Cost 3 vmrghw <1,2,3,0>, <u,0,1,2>
+ 1148376878U, // <1,u,2,1>: Cost 2 vmrghw <1,2,3,0>, LHS
+ 1148371862U, // <1,u,2,2>: Cost 2 vmrghw <1,2,3,0>, <1,2,3,0>
+ 1225965724U, // <1,u,2,3>: Cost 2 vmrglw <3,0,1,2>, LHS
+ 2222118975U, // <1,u,2,4>: Cost 3 vmrghw <1,2,3,0>, <u,4,5,6>
+ 1148377242U, // <1,u,2,5>: Cost 2 vmrghw <1,2,3,0>, RHS
+ 2687150010U, // <1,u,2,6>: Cost 3 vsldoi8 <0,4,1,u>, <2,6,3,7>
+ 1225968968U, // <1,u,2,7>: Cost 2 vmrglw <3,0,1,2>, RHS
+ 1148377445U, // <1,u,2,u>: Cost 2 vmrghw <1,2,3,0>, LHS
+ 471040156U, // <1,u,3,0>: Cost 1 vsldoi4 LHS, LHS
+ 1544782644U, // <1,u,3,1>: Cost 2 vsldoi4 LHS, <1,1,1,1>
+ 1544783464U, // <1,u,3,2>: Cost 2 vsldoi4 LHS, <2,2,2,2>
+ 1544784022U, // <1,u,3,3>: Cost 2 vsldoi4 LHS, <3,0,1,2>
+ 471043382U, // <1,u,3,4>: Cost 1 vsldoi4 LHS, RHS
+ 1592561668U, // <1,u,3,5>: Cost 2 vsldoi4 LHS, <5,5,5,5>
+ 1592562170U, // <1,u,3,6>: Cost 2 vsldoi4 LHS, <6,2,7,3>
+ 1592562682U, // <1,u,3,7>: Cost 2 vsldoi4 LHS, <7,0,1,2>
+ 471045934U, // <1,u,3,u>: Cost 1 vsldoi4 LHS, LHS
+ 2708384629U, // <1,u,4,0>: Cost 3 vsldoi8 <4,0,1,u>, <4,0,1,u>
+ 2687151101U, // <1,u,4,1>: Cost 3 vsldoi8 <0,4,1,u>, <4,1,u,0>
+ 2223408022U, // <1,u,4,2>: Cost 3 vmrghw <1,4,2,5>, <1,2,3,0>
+ 2283798684U, // <1,u,4,3>: Cost 3 vmrglw <0,3,1,4>, LHS
+ 2642422785U, // <1,u,4,4>: Cost 3 vsldoi4 <4,1,u,4>, <4,1,u,4>
+ 1613409590U, // <1,u,4,5>: Cost 2 vsldoi8 <0,4,1,u>, RHS
+ 2283801090U, // <1,u,4,6>: Cost 3 vmrglw <0,3,1,4>, <3,4,5,6>
+ 2283801928U, // <1,u,4,7>: Cost 3 vmrglw <0,3,1,4>, RHS
+ 1613409833U, // <1,u,4,u>: Cost 2 vsldoi8 <0,4,1,u>, RHS
+ 2284471235U, // <1,u,5,0>: Cost 3 vmrglw <0,4,1,5>, <1,2,u,0>
+ 2284472046U, // <1,u,5,1>: Cost 3 vmrglw <0,4,1,5>, <2,3,u,1>
+ 2284472533U, // <1,u,5,2>: Cost 3 vmrglw <0,4,1,5>, <3,0,u,2>
+ 1210728604U, // <1,u,5,3>: Cost 2 vmrglw <0,4,1,5>, LHS
+ 2284471239U, // <1,u,5,4>: Cost 3 vmrglw <0,4,1,5>, <1,2,u,4>
+ 1210728786U, // <1,u,5,5>: Cost 2 vmrglw <0,4,1,5>, <0,4,1,5>
+ 1683118234U, // <1,u,5,6>: Cost 2 vsldoi12 <0,u,1,1>, RHS
+ 1210731848U, // <1,u,5,7>: Cost 2 vmrglw <0,4,1,5>, RHS
+ 1210728609U, // <1,u,5,u>: Cost 2 vmrglw <0,4,1,5>, LHS
+ 2720330023U, // <1,u,6,0>: Cost 3 vsldoi8 <6,0,1,u>, <6,0,1,u>
+ 2757376190U, // <1,u,6,1>: Cost 3 vsldoi12 <0,u,u,1>, <u,6,1,7>
+ 2726302202U, // <1,u,6,2>: Cost 3 vsldoi8 <7,0,1,u>, <6,2,7,3>
+ 2283151516U, // <1,u,6,3>: Cost 3 vmrglw <0,2,1,6>, LHS
+ 2224972114U, // <1,u,6,4>: Cost 3 vmrghw <1,6,5,7>, <0,4,1,5>
+ 2224683162U, // <1,u,6,5>: Cost 3 vmrghw <1,6,1,7>, RHS
+ 2726302520U, // <1,u,6,6>: Cost 3 vsldoi8 <7,0,1,u>, <6,6,6,6>
+ 2283154760U, // <1,u,6,7>: Cost 3 vmrglw <0,2,1,6>, RHS
+ 2283151521U, // <1,u,6,u>: Cost 3 vmrglw <0,2,1,6>, LHS
+ 1652560896U, // <1,u,7,0>: Cost 2 vsldoi8 <7,0,1,u>, <7,0,1,u>
+ 2333590225U, // <1,u,7,1>: Cost 3 vmrglw <u,6,1,7>, <0,u,u,1>
+ 2765412628U, // <1,u,7,2>: Cost 3 vsldoi12 <2,3,0,1>, <u,7,2,3>
+ 2291785884U, // <1,u,7,3>: Cost 3 vmrglw <1,6,1,7>, LHS
+ 2781042984U, // <1,u,7,4>: Cost 3 vsldoi12 <4,u,5,1>, <u,7,4,5>
+ 3365527953U, // <1,u,7,5>: Cost 4 vmrglw <1,6,1,7>, <0,4,u,5>
+ 2791954748U, // <1,u,7,6>: Cost 3 vsldoi12 <6,7,0,1>, <u,7,6,7>
+ 2291789128U, // <1,u,7,7>: Cost 3 vmrglw <1,6,1,7>, RHS
+ 1657869960U, // <1,u,7,u>: Cost 2 vsldoi8 <7,u,1,u>, <7,u,1,u>
+ 471081121U, // <1,u,u,0>: Cost 1 vsldoi4 LHS, LHS
+ 269271142U, // <1,u,u,1>: Cost 1 vspltisw1 LHS
+ 1544824424U, // <1,u,u,2>: Cost 2 vsldoi4 LHS, <2,2,2,2>
+ 1544824982U, // <1,u,u,3>: Cost 2 vsldoi4 LHS, <3,0,1,2>
+ 471084342U, // <1,u,u,4>: Cost 1 vsldoi4 LHS, RHS
+ 1613412506U, // <1,u,u,5>: Cost 2 vsldoi8 <0,4,1,u>, RHS
+ 1683118477U, // <1,u,u,6>: Cost 2 vsldoi12 <0,u,1,1>, RHS
+ 1210756424U, // <1,u,u,7>: Cost 2 vmrglw <0,4,1,u>, RHS
+ 471086894U, // <1,u,u,u>: Cost 1 vsldoi4 LHS, LHS
+ 2226757632U, // <2,0,0,0>: Cost 3 vmrghw <2,0,3,0>, <0,0,0,0>
+ 2226757734U, // <2,0,0,1>: Cost 3 vmrghw <2,0,3,0>, LHS
+ 3826622483U, // <2,0,0,2>: Cost 4 vsldoi12 <0,2,1,2>, <0,0,2,1>
+ 3843211292U, // <2,0,0,3>: Cost 4 vsldoi12 <3,0,1,2>, <0,0,3,1>
+ 3300499794U, // <2,0,0,4>: Cost 4 vmrghw <2,0,3,0>, <0,4,1,5>
+ 3356256724U, // <2,0,0,5>: Cost 4 vmrglw <0,1,2,0>, <3,4,0,5>
+ 3825664056U, // <2,0,0,6>: Cost 4 vsldoi12 <0,0,6,2>, <0,0,6,2>
+ 3762889289U, // <2,0,0,7>: Cost 4 vsldoi8 <0,7,2,0>, <0,7,2,0>
+ 2226758301U, // <2,0,0,u>: Cost 3 vmrghw <2,0,3,0>, LHS
+ 2227429386U, // <2,0,1,0>: Cost 3 vmrghw <2,1,3,1>, <0,0,1,1>
+ 2227429478U, // <2,0,1,1>: Cost 3 vmrghw <2,1,3,1>, LHS
+ 1691156582U, // <2,0,1,2>: Cost 2 vsldoi12 <2,2,2,2>, LHS
+ 2666358997U, // <2,0,1,3>: Cost 3 vsldoi4 <u,2,0,1>, <3,0,u,2>
+ 2227462482U, // <2,0,1,4>: Cost 3 vmrghw <2,1,3,5>, <0,4,1,5>
+ 3722186464U, // <2,0,1,5>: Cost 4 vsldoi4 <5,2,0,1>, <5,2,0,1>
+ 3867099278U, // <2,0,1,6>: Cost 4 vsldoi12 <7,0,1,2>, <0,1,6,7>
+ 3366881912U, // <2,0,1,7>: Cost 4 vmrglw <1,u,2,1>, <3,6,0,7>
+ 1691156636U, // <2,0,1,u>: Cost 2 vsldoi12 <2,2,2,2>, LHS
+ 2228027392U, // <2,0,2,0>: Cost 3 vmrghw <2,2,2,2>, <0,0,0,0>
+ 1154285670U, // <2,0,2,1>: Cost 2 vmrghw <2,2,2,2>, LHS
+ 2228027565U, // <2,0,2,2>: Cost 3 vmrghw <2,2,2,2>, <0,2,1,2>
+ 3301769468U, // <2,0,2,3>: Cost 4 vmrghw <2,2,2,2>, <0,3,1,0>
+ 2228027730U, // <2,0,2,4>: Cost 3 vmrghw <2,2,2,2>, <0,4,1,5>
+ 3301769635U, // <2,0,2,5>: Cost 4 vmrghw <2,2,2,2>, <0,5,1,5>
+ 3780806586U, // <2,0,2,6>: Cost 4 vsldoi8 <3,7,2,0>, <2,6,3,7>
+ 3368880760U, // <2,0,2,7>: Cost 4 vmrglw <2,2,2,2>, <3,6,0,7>
+ 1154286237U, // <2,0,2,u>: Cost 2 vmrghw <2,2,2,2>, LHS
+ 1213440000U, // <2,0,3,0>: Cost 2 vmrglw LHS, <0,0,0,0>
+ 1213441702U, // <2,0,3,1>: Cost 2 vmrglw LHS, <2,3,0,1>
+ 2228535470U, // <2,0,3,2>: Cost 3 vmrghw <2,3,0,1>, <0,2,1,3>
+ 2636515632U, // <2,0,3,3>: Cost 3 vsldoi4 <3,2,0,3>, <3,2,0,3>
+ 2287182962U, // <2,0,3,4>: Cost 3 vmrglw LHS, <1,5,0,4>
+ 2660405346U, // <2,0,3,5>: Cost 3 vsldoi4 <7,2,0,3>, <5,6,7,0>
+ 2228535798U, // <2,0,3,6>: Cost 3 vmrghw <2,3,0,1>, <0,6,1,7>
+ 2660406420U, // <2,0,3,7>: Cost 3 vsldoi4 <7,2,0,3>, <7,2,0,3>
+ 1213441709U, // <2,0,3,u>: Cost 2 vmrglw LHS, <2,3,0,u>
+ 3368894464U, // <2,0,4,0>: Cost 4 vmrglw <2,2,2,4>, <0,0,0,0>
+ 2764898642U, // <2,0,4,1>: Cost 3 vsldoi12 <2,2,2,2>, <0,4,1,5>
+ 3826622811U, // <2,0,4,2>: Cost 4 vsldoi12 <0,2,1,2>, <0,4,2,5>
+ 3843211620U, // <2,0,4,3>: Cost 4 vsldoi12 <3,0,1,2>, <0,4,3,5>
+ 3838640493U, // <2,0,4,4>: Cost 4 vsldoi12 <2,2,2,2>, <0,4,4,5>
+ 2732944694U, // <2,0,4,5>: Cost 3 vsldoi8 <u,1,2,0>, RHS
+ 3797396857U, // <2,0,4,6>: Cost 4 vsldoi8 <6,5,2,0>, <4,6,5,2>
+ 3867099528U, // <2,0,4,7>: Cost 4 vsldoi12 <7,0,1,2>, <0,4,7,5>
+ 2764898705U, // <2,0,4,u>: Cost 3 vsldoi12 <2,2,2,2>, <0,4,u,5>
+ 3364257792U, // <2,0,5,0>: Cost 4 vmrglw <1,4,2,5>, <0,0,0,0>
+ 2230124646U, // <2,0,5,1>: Cost 3 vmrghw <2,5,3,6>, LHS
+ 3304235184U, // <2,0,5,2>: Cost 4 vmrghw <2,5,u,6>, <0,2,1,5>
+ 3364260144U, // <2,0,5,3>: Cost 4 vmrglw <1,4,2,5>, <3,2,0,3>
+ 3303817554U, // <2,0,5,4>: Cost 4 vmrghw <2,5,3,0>, <0,4,1,5>
+ 3364260146U, // <2,0,5,5>: Cost 4 vmrglw <1,4,2,5>, <3,2,0,5>
+ 3867099602U, // <2,0,5,6>: Cost 4 vsldoi12 <7,0,1,2>, <0,5,6,7>
+ 3364260472U, // <2,0,5,7>: Cost 4 vmrglw <1,4,2,5>, <3,6,0,7>
+ 2230125213U, // <2,0,5,u>: Cost 3 vmrghw <2,5,3,6>, LHS
+ 2230796288U, // <2,0,6,0>: Cost 3 vmrghw <2,6,3,7>, <0,0,0,0>
+ 1157054566U, // <2,0,6,1>: Cost 2 vmrghw <2,6,3,7>, LHS
+ 2230796465U, // <2,0,6,2>: Cost 3 vmrghw <2,6,3,7>, <0,2,1,6>
+ 3304538364U, // <2,0,6,3>: Cost 4 vmrghw <2,6,3,7>, <0,3,1,0>
+ 2230796626U, // <2,0,6,4>: Cost 3 vmrghw <2,6,3,7>, <0,4,1,5>
+ 3797398205U, // <2,0,6,5>: Cost 4 vsldoi8 <6,5,2,0>, <6,5,2,0>
+ 3304538614U, // <2,0,6,6>: Cost 4 vmrghw <2,6,3,7>, <0,6,1,7>
+ 3798725471U, // <2,0,6,7>: Cost 4 vsldoi8 <6,7,2,0>, <6,7,2,0>
+ 1157055133U, // <2,0,6,u>: Cost 2 vmrghw <2,6,3,7>, LHS
+ 3371573248U, // <2,0,7,0>: Cost 4 vmrglw <2,6,2,7>, <0,0,0,0>
+ 2231189606U, // <2,0,7,1>: Cost 3 vmrghw <2,7,0,1>, LHS
+ 3801380003U, // <2,0,7,2>: Cost 4 vsldoi8 <7,2,2,0>, <7,2,2,0>
+ 3802043636U, // <2,0,7,3>: Cost 4 vsldoi8 <7,3,2,0>, <7,3,2,0>
+ 3806688614U, // <2,0,7,4>: Cost 4 vsldoi8 <u,1,2,0>, <7,4,5,6>
+ 3356317308U, // <2,0,7,5>: Cost 4 vmrglw <0,1,2,7>, <7,u,0,5>
+ 3804034535U, // <2,0,7,6>: Cost 4 vsldoi8 <7,6,2,0>, <7,6,2,0>
+ 3806688876U, // <2,0,7,7>: Cost 4 vsldoi8 <u,1,2,0>, <7,7,7,7>
+ 2231190173U, // <2,0,7,u>: Cost 3 vmrghw <2,7,0,1>, LHS
+ 1208836096U, // <2,0,u,0>: Cost 2 vmrglw LHS, <0,0,0,0>
+ 1208837798U, // <2,0,u,1>: Cost 2 vmrglw LHS, <2,3,0,1>
+ 1691157149U, // <2,0,u,2>: Cost 2 vsldoi12 <2,2,2,2>, LHS
+ 2636556597U, // <2,0,u,3>: Cost 3 vsldoi4 <3,2,0,u>, <3,2,0,u>
+ 2282579625U, // <2,0,u,4>: Cost 3 vmrglw LHS, <2,3,0,4>
+ 2660446306U, // <2,0,u,5>: Cost 3 vsldoi4 <7,2,0,u>, <5,6,7,0>
+ 2228535798U, // <2,0,u,6>: Cost 3 vmrghw <2,3,0,1>, <0,6,1,7>
+ 2660447385U, // <2,0,u,7>: Cost 3 vsldoi4 <7,2,0,u>, <7,2,0,u>
+ 1208837805U, // <2,0,u,u>: Cost 2 vmrglw LHS, <2,3,0,u>
+ 3692388523U, // <2,1,0,0>: Cost 4 vsldoi4 <0,2,1,0>, <0,2,1,0>
+ 2757526244U, // <2,1,0,1>: Cost 3 vsldoi12 <1,0,1,2>, <1,0,1,2>
+ 2330290974U, // <2,1,0,2>: Cost 3 vmrglw <u,1,2,0>, <3,u,1,2>
+ 3843212020U, // <2,1,0,3>: Cost 4 vsldoi12 <3,0,1,2>, <1,0,3,0>
+ 3692391734U, // <2,1,0,4>: Cost 4 vsldoi4 <0,2,1,0>, RHS
+ 3300533362U, // <2,1,0,5>: Cost 4 vmrghw <2,0,3,4>, <1,5,0,4>
+ 3794084337U, // <2,1,0,6>: Cost 4 vsldoi8 <6,0,2,1>, <0,6,1,2>
+ 3374170614U, // <2,1,0,7>: Cost 5 vmrglw <3,1,2,0>, <0,6,1,7>
+ 2758042403U, // <2,1,0,u>: Cost 3 vsldoi12 <1,0,u,2>, <1,0,u,2>
+ 2690482924U, // <2,1,1,0>: Cost 3 vsldoi8 <1,0,2,1>, <1,0,2,1>
+ 2764899124U, // <2,1,1,1>: Cost 3 vsldoi12 <2,2,2,2>, <1,1,1,1>
+ 2695791510U, // <2,1,1,2>: Cost 3 vsldoi8 <1,u,2,1>, <1,2,3,0>
+ 3362235271U, // <2,1,1,3>: Cost 4 vmrglw <1,1,2,1>, <1,2,1,3>
+ 3692399926U, // <2,1,1,4>: Cost 4 vsldoi4 <0,2,1,1>, RHS
+ 3832226649U, // <2,1,1,5>: Cost 4 vsldoi12 <1,1,5,2>, <1,1,5,2>
+ 3301205235U, // <2,1,1,6>: Cost 4 vmrghw <2,1,3,5>, <1,6,5,7>
+ 3768870179U, // <2,1,1,7>: Cost 4 vsldoi8 <1,7,2,1>, <1,7,2,1>
+ 2695791988U, // <2,1,1,u>: Cost 3 vsldoi8 <1,u,2,1>, <1,u,2,1>
+ 2618663085U, // <2,1,2,0>: Cost 3 vsldoi4 <0,2,1,2>, <0,2,1,2>
+ 2228028212U, // <2,1,2,1>: Cost 3 vmrghw <2,2,2,2>, <1,1,1,1>
+ 2618664552U, // <2,1,2,2>: Cost 3 vsldoi4 <0,2,1,2>, <2,2,2,2>
+ 2759000984U, // <2,1,2,3>: Cost 3 vsldoi12 <1,2,3,2>, <1,2,3,2>
+ 2618666294U, // <2,1,2,4>: Cost 3 vsldoi4 <0,2,1,2>, RHS
+ 2295136594U, // <2,1,2,5>: Cost 3 vmrglw <2,2,2,2>, <0,4,1,5>
+ 3769534376U, // <2,1,2,6>: Cost 4 vsldoi8 <1,u,2,1>, <2,6,1,7>
+ 2793358266U, // <2,1,2,7>: Cost 3 vsldoi12 <7,0,1,2>, <1,2,7,0>
+ 2618668846U, // <2,1,2,u>: Cost 3 vsldoi4 <0,2,1,2>, LHS
+ 2282536969U, // <2,1,3,0>: Cost 3 vmrglw LHS, <0,0,1,0>
+ 1208795146U, // <2,1,3,1>: Cost 2 vmrglw LHS, <0,0,1,1>
+ 1213442198U, // <2,1,3,2>: Cost 2 vmrglw LHS, <3,0,1,2>
+ 2287181998U, // <2,1,3,3>: Cost 3 vmrglw LHS, <0,2,1,3>
+ 2618674486U, // <2,1,3,4>: Cost 3 vsldoi4 <0,2,1,3>, RHS
+ 1208795474U, // <2,1,3,5>: Cost 2 vmrglw LHS, <0,4,1,5>
+ 2287182001U, // <2,1,3,6>: Cost 3 vmrglw LHS, <0,2,1,6>
+ 2287183055U, // <2,1,3,7>: Cost 3 vmrglw LHS, <1,6,1,7>
+ 1208795153U, // <2,1,3,u>: Cost 2 vmrglw LHS, <0,0,1,u>
+ 3692421295U, // <2,1,4,0>: Cost 4 vsldoi4 <0,2,1,4>, <0,2,1,4>
+ 3838641195U, // <2,1,4,1>: Cost 4 vsldoi12 <2,2,2,2>, <1,4,1,5>
+ 2330323742U, // <2,1,4,2>: Cost 3 vmrglw <u,1,2,4>, <3,u,1,2>
+ 3692423318U, // <2,1,4,3>: Cost 5 vsldoi4 <0,2,1,4>, <3,0,1,2>
+ 3692424502U, // <2,1,4,4>: Cost 4 vsldoi4 <0,2,1,4>, RHS
+ 2695793974U, // <2,1,4,5>: Cost 3 vsldoi8 <1,u,2,1>, RHS
+ 3799395705U, // <2,1,4,6>: Cost 4 vsldoi8 <6,u,2,1>, <4,6,5,2>
+ 3368895695U, // <2,1,4,7>: Cost 5 vmrglw <2,2,2,4>, <1,6,1,7>
+ 2695794217U, // <2,1,4,u>: Cost 3 vsldoi8 <1,u,2,1>, RHS
+ 3692429488U, // <2,1,5,0>: Cost 4 vsldoi4 <0,2,1,5>, <0,2,1,5>
+ 3364257802U, // <2,1,5,1>: Cost 4 vmrglw <1,4,2,5>, <0,0,1,1>
+ 3692431253U, // <2,1,5,2>: Cost 4 vsldoi4 <0,2,1,5>, <2,5,u,6>
+ 3692431874U, // <2,1,5,3>: Cost 4 vsldoi4 <0,2,1,5>, <3,4,5,6>
+ 3692432694U, // <2,1,5,4>: Cost 4 vsldoi4 <0,2,1,5>, RHS
+ 3364258130U, // <2,1,5,5>: Cost 4 vmrglw <1,4,2,5>, <0,4,1,5>
+ 3303875827U, // <2,1,5,6>: Cost 4 vmrghw <2,5,3,7>, <1,6,5,7>
+ 3867100333U, // <2,1,5,7>: Cost 4 vsldoi12 <7,0,1,2>, <1,5,7,0>
+ 3692435246U, // <2,1,5,u>: Cost 4 vsldoi4 <0,2,1,5>, LHS
+ 2618695857U, // <2,1,6,0>: Cost 3 vsldoi4 <0,2,1,6>, <0,2,1,6>
+ 2230797108U, // <2,1,6,1>: Cost 3 vmrghw <2,6,3,7>, <1,1,1,1>
+ 2618697658U, // <2,1,6,2>: Cost 3 vsldoi4 <0,2,1,6>, <2,6,3,7>
+ 3692439702U, // <2,1,6,3>: Cost 4 vsldoi4 <0,2,1,6>, <3,0,1,2>
+ 2618699062U, // <2,1,6,4>: Cost 3 vsldoi4 <0,2,1,6>, RHS
+ 3364929874U, // <2,1,6,5>: Cost 4 vmrglw <1,5,2,6>, <0,4,1,5>
+ 3692442424U, // <2,1,6,6>: Cost 4 vsldoi4 <0,2,1,6>, <6,6,6,6>
+ 3798733664U, // <2,1,6,7>: Cost 4 vsldoi8 <6,7,2,1>, <6,7,2,1>
+ 2618701614U, // <2,1,6,u>: Cost 3 vsldoi4 <0,2,1,6>, LHS
+ 3799397370U, // <2,1,7,0>: Cost 4 vsldoi8 <6,u,2,1>, <7,0,1,2>
+ 3371573258U, // <2,1,7,1>: Cost 4 vmrglw <2,6,2,7>, <0,0,1,1>
+ 2330351234U, // <2,1,7,2>: Cost 3 vmrglw <u,1,2,7>, <7,u,1,2>
+ 3799397658U, // <2,1,7,3>: Cost 4 vsldoi8 <6,u,2,1>, <7,3,6,2>
+ 3799397734U, // <2,1,7,4>: Cost 4 vsldoi8 <6,u,2,1>, <7,4,5,6>
+ 3371573586U, // <2,1,7,5>: Cost 4 vmrglw <2,6,2,7>, <0,4,1,5>
+ 3799397870U, // <2,1,7,6>: Cost 4 vsldoi8 <6,u,2,1>, <7,6,2,7>
+ 3799397956U, // <2,1,7,7>: Cost 4 vsldoi8 <6,u,2,1>, <7,7,3,3>
+ 2330351234U, // <2,1,7,u>: Cost 3 vmrglw <u,1,2,7>, <7,u,1,2>
+ 2282577929U, // <2,1,u,0>: Cost 3 vmrglw LHS, <0,0,1,0>
+ 1208836106U, // <2,1,u,1>: Cost 2 vmrglw LHS, <0,0,1,1>
+ 1208838294U, // <2,1,u,2>: Cost 2 vmrglw LHS, <3,0,1,2>
+ 2282578094U, // <2,1,u,3>: Cost 3 vmrglw LHS, <0,2,1,3>
+ 2282577933U, // <2,1,u,4>: Cost 3 vmrglw LHS, <0,0,1,4>
+ 1208836434U, // <2,1,u,5>: Cost 2 vmrglw LHS, <0,4,1,5>
+ 2282578097U, // <2,1,u,6>: Cost 3 vmrglw LHS, <0,2,1,6>
+ 2287224015U, // <2,1,u,7>: Cost 3 vmrglw LHS, <1,6,1,7>
+ 1208836113U, // <2,1,u,u>: Cost 2 vmrglw LHS, <0,0,1,u>
+ 2226759117U, // <2,2,0,0>: Cost 3 vmrghw <2,0,3,0>, <2,0,3,0>
+ 1624047718U, // <2,2,0,1>: Cost 2 vsldoi8 <2,2,2,2>, LHS
+ 2697789613U, // <2,2,0,2>: Cost 3 vsldoi8 <2,2,2,2>, <0,2,1,2>
+ 2226767526U, // <2,2,0,3>: Cost 3 vmrghw <2,0,3,1>, <2,3,0,1>
+ 2697789778U, // <2,2,0,4>: Cost 3 vsldoi8 <2,2,2,2>, <0,4,1,5>
+ 3300657000U, // <2,2,0,5>: Cost 4 vmrghw <2,0,5,1>, <2,5,3,6>
+ 2226988986U, // <2,2,0,6>: Cost 3 vmrghw <2,0,6,1>, <2,6,3,7>
+ 3734271139U, // <2,2,0,7>: Cost 4 vsldoi4 <7,2,2,0>, <7,2,2,0>
+ 1624048285U, // <2,2,0,u>: Cost 2 vsldoi8 <2,2,2,2>, LHS
+ 3831268868U, // <2,2,1,0>: Cost 4 vsldoi12 <1,0,1,2>, <2,1,0,1>
+ 2293138804U, // <2,2,1,1>: Cost 3 vmrglw <1,u,2,1>, <1,u,2,1>
+ 2697790358U, // <2,2,1,2>: Cost 3 vsldoi8 <2,2,2,2>, <1,2,3,0>
+ 2293137510U, // <2,2,1,3>: Cost 3 vmrglw <1,u,2,1>, LHS
+ 3771532331U, // <2,2,1,4>: Cost 4 vsldoi8 <2,2,2,2>, <1,4,1,5>
+ 3767551106U, // <2,2,1,5>: Cost 4 vsldoi8 <1,5,2,2>, <1,5,2,2>
+ 3301173178U, // <2,2,1,6>: Cost 4 vmrghw <2,1,3,1>, <2,6,3,7>
+ 3372853169U, // <2,2,1,7>: Cost 4 vmrglw <2,u,2,1>, <2,6,2,7>
+ 2293137515U, // <2,2,1,u>: Cost 3 vmrglw <1,u,2,1>, LHS
+ 1556938854U, // <2,2,2,0>: Cost 2 vsldoi4 <2,2,2,2>, LHS
+ 2295137733U, // <2,2,2,1>: Cost 3 vmrglw <2,2,2,2>, <2,0,2,1>
+ 336380006U, // <2,2,2,2>: Cost 1 vspltisw2 LHS
+ 1221394534U, // <2,2,2,3>: Cost 2 vmrglw <2,2,2,2>, LHS
+ 1556942134U, // <2,2,2,4>: Cost 2 vsldoi4 <2,2,2,2>, RHS
+ 2295138061U, // <2,2,2,5>: Cost 3 vmrglw <2,2,2,2>, <2,4,2,5>
+ 2228029370U, // <2,2,2,6>: Cost 3 vmrghw <2,2,2,2>, <2,6,3,7>
+ 2660545701U, // <2,2,2,7>: Cost 3 vsldoi4 <7,2,2,2>, <7,2,2,2>
+ 336380006U, // <2,2,2,u>: Cost 1 vspltisw2 LHS
+ 2697791638U, // <2,2,3,0>: Cost 3 vsldoi8 <2,2,2,2>, <3,0,1,2>
+ 2765489840U, // <2,2,3,1>: Cost 3 vsldoi12 <2,3,1,2>, <2,3,1,2>
+ 1213441640U, // <2,2,3,2>: Cost 2 vmrglw LHS, <2,2,2,2>
+ 135053414U, // <2,2,3,3>: Cost 1 vmrglw LHS, LHS
+ 2697792002U, // <2,2,3,4>: Cost 3 vsldoi8 <2,2,2,2>, <3,4,5,6>
+ 2330313780U, // <2,2,3,5>: Cost 3 vmrglw LHS, <1,4,2,5>
+ 2287183549U, // <2,2,3,6>: Cost 3 vmrglw LHS, <2,3,2,6>
+ 2660553894U, // <2,2,3,7>: Cost 3 vsldoi4 <7,2,2,3>, <7,2,2,3>
+ 135053419U, // <2,2,3,u>: Cost 1 vmrglw LHS, LHS
+ 2630697062U, // <2,2,4,0>: Cost 3 vsldoi4 <2,2,2,4>, LHS
+ 3771534282U, // <2,2,4,1>: Cost 4 vsldoi8 <2,2,2,2>, <4,1,2,3>
+ 2764900109U, // <2,2,4,2>: Cost 3 vsldoi12 <2,2,2,2>, <2,4,2,5>
+ 2295152742U, // <2,2,4,3>: Cost 3 vmrglw <2,2,2,4>, LHS
+ 2295154282U, // <2,2,4,4>: Cost 3 vmrglw <2,2,2,4>, <2,2,2,4>
+ 1624050998U, // <2,2,4,5>: Cost 2 vsldoi8 <2,2,2,2>, RHS
+ 2229675962U, // <2,2,4,6>: Cost 3 vmrghw <2,4,6,5>, <2,6,3,7>
+ 3368896433U, // <2,2,4,7>: Cost 4 vmrglw <2,2,2,4>, <2,6,2,7>
+ 1624051241U, // <2,2,4,u>: Cost 2 vsldoi8 <2,2,2,2>, RHS
+ 3771534920U, // <2,2,5,0>: Cost 4 vsldoi8 <2,2,2,2>, <5,0,1,2>
+ 3364258540U, // <2,2,5,1>: Cost 4 vmrglw <1,4,2,5>, <1,0,2,1>
+ 2296489576U, // <2,2,5,2>: Cost 3 vmrglw <2,4,2,5>, <2,2,2,2>
+ 2290516070U, // <2,2,5,3>: Cost 3 vmrglw <1,4,2,5>, LHS
+ 3771535284U, // <2,2,5,4>: Cost 4 vsldoi8 <2,2,2,2>, <5,4,5,6>
+ 2290517044U, // <2,2,5,5>: Cost 3 vmrglw <1,4,2,5>, <1,4,2,5>
+ 2697793634U, // <2,2,5,6>: Cost 3 vsldoi8 <2,2,2,2>, <5,6,7,0>
+ 3370231729U, // <2,2,5,7>: Cost 4 vmrglw <2,4,2,5>, <2,6,2,7>
+ 2290516075U, // <2,2,5,u>: Cost 3 vmrglw <1,4,2,5>, LHS
+ 2230797801U, // <2,2,6,0>: Cost 3 vmrghw <2,6,3,7>, <2,0,6,1>
+ 3304539679U, // <2,2,6,1>: Cost 4 vmrghw <2,6,3,7>, <2,1,3,1>
+ 2764900273U, // <2,2,6,2>: Cost 3 vsldoi12 <2,2,2,2>, <2,6,2,7>
+ 2764900282U, // <2,2,6,3>: Cost 3 vsldoi12 <2,2,2,2>, <2,6,3,7>
+ 2230798129U, // <2,2,6,4>: Cost 3 vmrghw <2,6,3,7>, <2,4,6,5>
+ 3304540008U, // <2,2,6,5>: Cost 4 vmrghw <2,6,3,7>, <2,5,3,6>
+ 1157056442U, // <2,2,6,6>: Cost 2 vmrghw <2,6,3,7>, <2,6,3,7>
+ 2725000033U, // <2,2,6,7>: Cost 3 vsldoi8 <6,7,2,2>, <6,7,2,2>
+ 1157056442U, // <2,2,6,u>: Cost 2 vmrghw <2,6,3,7>, <2,6,3,7>
+ 2793359338U, // <2,2,7,0>: Cost 3 vsldoi12 <7,0,1,2>, <2,7,0,1>
+ 3371574725U, // <2,2,7,1>: Cost 4 vmrglw <2,6,2,7>, <2,0,2,1>
+ 2297833064U, // <2,2,7,2>: Cost 3 vmrglw <2,6,2,7>, <2,2,2,2>
+ 2297831526U, // <2,2,7,3>: Cost 3 vmrglw <2,6,2,7>, LHS
+ 2697794918U, // <2,2,7,4>: Cost 3 vsldoi8 <2,2,2,2>, <7,4,5,6>
+ 3371575053U, // <2,2,7,5>: Cost 4 vmrglw <2,6,2,7>, <2,4,2,5>
+ 3304933297U, // <2,2,7,6>: Cost 4 vmrghw <2,7,0,1>, <2,6,2,7>
+ 2297833393U, // <2,2,7,7>: Cost 3 vmrglw <2,6,2,7>, <2,6,2,7>
+ 2297831531U, // <2,2,7,u>: Cost 3 vmrglw <2,6,2,7>, LHS
+ 1556938854U, // <2,2,u,0>: Cost 2 vsldoi4 <2,2,2,2>, LHS
+ 1624053550U, // <2,2,u,1>: Cost 2 vsldoi8 <2,2,2,2>, LHS
+ 336380006U, // <2,2,u,2>: Cost 1 vspltisw2 LHS
+ 135094374U, // <2,2,u,3>: Cost 1 vmrglw LHS, LHS
+ 1556942134U, // <2,2,u,4>: Cost 2 vsldoi4 <2,2,2,2>, RHS
+ 1624053914U, // <2,2,u,5>: Cost 2 vsldoi8 <2,2,2,2>, RHS
+ 1157056442U, // <2,2,u,6>: Cost 2 vmrghw <2,6,3,7>, <2,6,3,7>
+ 2660594859U, // <2,2,u,7>: Cost 3 vsldoi4 <7,2,2,u>, <7,2,2,u>
+ 135094379U, // <2,2,u,u>: Cost 1 vmrglw LHS, LHS
+ 1611448320U, // <2,3,0,0>: Cost 2 vsldoi8 LHS, <0,0,0,0>
+ 537706598U, // <2,3,0,1>: Cost 1 vsldoi8 LHS, LHS
+ 2689835181U, // <2,3,0,2>: Cost 3 vsldoi8 LHS, <0,2,1,2>
+ 2689835260U, // <2,3,0,3>: Cost 3 vsldoi8 LHS, <0,3,1,0>
+ 1611448658U, // <2,3,0,4>: Cost 2 vsldoi8 LHS, <0,4,1,5>
+ 2732966354U, // <2,3,0,5>: Cost 3 vsldoi8 LHS, <0,5,6,7>
+ 2732966390U, // <2,3,0,6>: Cost 3 vsldoi8 LHS, <0,6,1,7>
+ 2660603052U, // <2,3,0,7>: Cost 3 vsldoi4 <7,2,3,0>, <7,2,3,0>
+ 537707165U, // <2,3,0,u>: Cost 1 vsldoi8 LHS, LHS
+ 2689835748U, // <2,3,1,0>: Cost 3 vsldoi8 LHS, <1,0,1,2>
+ 1611449140U, // <2,3,1,1>: Cost 2 vsldoi8 LHS, <1,1,1,1>
+ 1611449238U, // <2,3,1,2>: Cost 2 vsldoi8 LHS, <1,2,3,0>
+ 3763577805U, // <2,3,1,3>: Cost 4 vsldoi8 LHS, <1,3,0,1>
+ 2689836112U, // <2,3,1,4>: Cost 3 vsldoi8 LHS, <1,4,5,6>
+ 2689836143U, // <2,3,1,5>: Cost 3 vsldoi8 LHS, <1,5,0,1>
+ 2689836239U, // <2,3,1,6>: Cost 3 vsldoi8 LHS, <1,6,1,7>
+ 3366881210U, // <2,3,1,7>: Cost 4 vmrglw <1,u,2,1>, <2,6,3,7>
+ 1616094588U, // <2,3,1,u>: Cost 2 vsldoi8 LHS, <1,u,3,0>
+ 2689836493U, // <2,3,2,0>: Cost 3 vsldoi8 LHS, <2,0,3,0>
+ 2685191711U, // <2,3,2,1>: Cost 3 vsldoi8 LHS, <2,1,3,1>
+ 1611449960U, // <2,3,2,2>: Cost 2 vsldoi8 LHS, <2,2,2,2>
+ 1611450022U, // <2,3,2,3>: Cost 2 vsldoi8 LHS, <2,3,0,1>
+ 2689836822U, // <2,3,2,4>: Cost 3 vsldoi8 LHS, <2,4,3,5>
+ 2689836904U, // <2,3,2,5>: Cost 3 vsldoi8 LHS, <2,5,3,6>
+ 1611450298U, // <2,3,2,6>: Cost 2 vsldoi8 LHS, <2,6,3,7>
+ 2295138234U, // <2,3,2,7>: Cost 3 vmrglw <2,2,2,2>, <2,6,3,7>
+ 1611450456U, // <2,3,2,u>: Cost 2 vsldoi8 LHS, <2,u,3,3>
+ 1213440918U, // <2,3,3,0>: Cost 2 vmrglw LHS, <1,2,3,0>
+ 2282538527U, // <2,3,3,1>: Cost 3 vmrglw LHS, <2,1,3,1>
+ 1557022322U, // <2,3,3,2>: Cost 2 vsldoi4 <2,2,3,3>, <2,2,3,3>
+ 1208796786U, // <2,3,3,3>: Cost 2 vmrglw LHS, <2,2,3,3>
+ 1213440922U, // <2,3,3,4>: Cost 2 vmrglw LHS, <1,2,3,4>
+ 2282538531U, // <2,3,3,5>: Cost 3 vmrglw LHS, <2,1,3,5>
+ 2287188094U, // <2,3,3,6>: Cost 3 vmrglw LHS, <u,5,3,6>
+ 1213441978U, // <2,3,3,7>: Cost 2 vmrglw LHS, <2,6,3,7>
+ 1208796791U, // <2,3,3,u>: Cost 2 vmrglw LHS, <2,2,3,u>
+ 1551056998U, // <2,3,4,0>: Cost 2 vsldoi4 <1,2,3,4>, LHS
+ 1551057818U, // <2,3,4,1>: Cost 2 vsldoi4 <1,2,3,4>, <1,2,3,4>
+ 2624800360U, // <2,3,4,2>: Cost 3 vsldoi4 <1,2,3,4>, <2,2,2,2>
+ 2624800918U, // <2,3,4,3>: Cost 3 vsldoi4 <1,2,3,4>, <3,0,1,2>
+ 1551060278U, // <2,3,4,4>: Cost 2 vsldoi4 <1,2,3,4>, RHS
+ 537709878U, // <2,3,4,5>: Cost 1 vsldoi8 LHS, RHS
+ 2732969337U, // <2,3,4,6>: Cost 3 vsldoi8 LHS, <4,6,5,2>
+ 2660635824U, // <2,3,4,7>: Cost 3 vsldoi4 <7,2,3,4>, <7,2,3,4>
+ 537710121U, // <2,3,4,u>: Cost 1 vsldoi8 LHS, RHS
+ 2689838664U, // <2,3,5,0>: Cost 3 vsldoi8 LHS, <5,0,1,2>
+ 2732969615U, // <2,3,5,1>: Cost 3 vsldoi8 LHS, <5,1,0,1>
+ 2732969707U, // <2,3,5,2>: Cost 3 vsldoi8 LHS, <5,2,1,3>
+ 3763580721U, // <2,3,5,3>: Cost 4 vsldoi8 LHS, <5,3,0,1>
+ 2689839028U, // <2,3,5,4>: Cost 3 vsldoi8 LHS, <5,4,5,6>
+ 1659228164U, // <2,3,5,5>: Cost 2 vsldoi8 LHS, <5,5,5,5>
+ 1659228258U, // <2,3,5,6>: Cost 2 vsldoi8 LHS, <5,6,7,0>
+ 3364259770U, // <2,3,5,7>: Cost 4 vmrglw <1,4,2,5>, <2,6,3,7>
+ 1659228420U, // <2,3,5,u>: Cost 2 vsldoi8 LHS, <5,u,7,0>
+ 2230798486U, // <2,3,6,0>: Cost 3 vmrghw <2,6,3,7>, <3,0,1,2>
+ 2732970407U, // <2,3,6,1>: Cost 3 vsldoi8 LHS, <6,1,7,1>
+ 1659228666U, // <2,3,6,2>: Cost 2 vsldoi8 LHS, <6,2,7,3>
+ 2230798748U, // <2,3,6,3>: Cost 3 vmrghw <2,6,3,7>, <3,3,3,3>
+ 2230798850U, // <2,3,6,4>: Cost 3 vmrghw <2,6,3,7>, <3,4,5,6>
+ 2732970731U, // <2,3,6,5>: Cost 3 vsldoi8 LHS, <6,5,7,1>
+ 1659228984U, // <2,3,6,6>: Cost 2 vsldoi8 LHS, <6,6,6,6>
+ 1659229006U, // <2,3,6,7>: Cost 2 vsldoi8 LHS, <6,7,0,1>
+ 1659229087U, // <2,3,6,u>: Cost 2 vsldoi8 LHS, <6,u,0,1>
+ 1659229178U, // <2,3,7,0>: Cost 2 vsldoi8 LHS, <7,0,1,2>
+ 2726999125U, // <2,3,7,1>: Cost 3 vsldoi8 <7,1,2,3>, <7,1,2,3>
+ 2727662758U, // <2,3,7,2>: Cost 3 vsldoi8 <7,2,2,3>, <7,2,2,3>
+ 2732971235U, // <2,3,7,3>: Cost 3 vsldoi8 LHS, <7,3,0,1>
+ 1659229542U, // <2,3,7,4>: Cost 2 vsldoi8 LHS, <7,4,5,6>
+ 2732971446U, // <2,3,7,5>: Cost 3 vsldoi8 LHS, <7,5,5,5>
+ 2732971484U, // <2,3,7,6>: Cost 3 vsldoi8 LHS, <7,6,0,7>
+ 1659229804U, // <2,3,7,7>: Cost 2 vsldoi8 LHS, <7,7,7,7>
+ 1659229826U, // <2,3,7,u>: Cost 2 vsldoi8 LHS, <7,u,1,2>
+ 1208837014U, // <2,3,u,0>: Cost 2 vmrglw LHS, <1,2,3,0>
+ 537712430U, // <2,3,u,1>: Cost 1 vsldoi8 LHS, LHS
+ 1616099205U, // <2,3,u,2>: Cost 2 vsldoi8 LHS, <u,2,3,0>
+ 1208837746U, // <2,3,u,3>: Cost 2 vmrglw LHS, <2,2,3,3>
+ 1208837018U, // <2,3,u,4>: Cost 2 vmrglw LHS, <1,2,3,4>
+ 537712794U, // <2,3,u,5>: Cost 1 vsldoi8 LHS, RHS
+ 1616099536U, // <2,3,u,6>: Cost 2 vsldoi8 LHS, <u,6,3,7>
+ 1208838074U, // <2,3,u,7>: Cost 2 vmrglw LHS, <2,6,3,7>
+ 537712997U, // <2,3,u,u>: Cost 1 vsldoi8 LHS, LHS
+ 3771547648U, // <2,4,0,0>: Cost 4 vsldoi8 <2,2,2,4>, <0,0,0,0>
+ 2697805926U, // <2,4,0,1>: Cost 3 vsldoi8 <2,2,2,4>, LHS
+ 3770884269U, // <2,4,0,2>: Cost 4 vsldoi8 <2,1,2,4>, <0,2,1,2>
+ 3806716164U, // <2,4,0,3>: Cost 4 vsldoi8 <u,1,2,4>, <0,3,1,u>
+ 3771547986U, // <2,4,0,4>: Cost 4 vsldoi8 <2,2,2,4>, <0,4,1,5>
+ 2226761014U, // <2,4,0,5>: Cost 3 vmrghw <2,0,3,0>, RHS
+ 3853462427U, // <2,4,0,6>: Cost 4 vsldoi12 <4,6,5,2>, <4,0,6,1>
+ 3867102116U, // <2,4,0,7>: Cost 4 vsldoi12 <7,0,1,2>, <4,0,7,1>
+ 2226761257U, // <2,4,0,u>: Cost 3 vmrghw <2,0,3,0>, RHS
+ 3849186231U, // <2,4,1,0>: Cost 4 vsldoi12 <4,0,1,2>, <4,1,0,2>
+ 3301207010U, // <2,4,1,1>: Cost 4 vmrghw <2,1,3,5>, <4,1,5,0>
+ 3766240150U, // <2,4,1,2>: Cost 4 vsldoi8 <1,3,2,4>, <1,2,3,0>
+ 3766240226U, // <2,4,1,3>: Cost 4 vsldoi8 <1,3,2,4>, <1,3,2,4>
+ 3301207248U, // <2,4,1,4>: Cost 4 vmrghw <2,1,3,5>, <4,4,4,4>
+ 2227432758U, // <2,4,1,5>: Cost 3 vmrghw <2,1,3,1>, RHS
+ 3758941400U, // <2,4,1,6>: Cost 4 vsldoi8 <0,1,2,4>, <1,6,2,7>
+ 3768894758U, // <2,4,1,7>: Cost 4 vsldoi8 <1,7,2,4>, <1,7,2,4>
+ 2227433001U, // <2,4,1,u>: Cost 3 vmrghw <2,1,3,1>, RHS
+ 2228030354U, // <2,4,2,0>: Cost 3 vmrghw <2,2,2,2>, <4,0,5,1>
+ 3770885657U, // <2,4,2,1>: Cost 4 vsldoi8 <2,1,2,4>, <2,1,2,4>
+ 2697807466U, // <2,4,2,2>: Cost 3 vsldoi8 <2,2,2,4>, <2,2,2,4>
+ 3368880468U, // <2,4,2,3>: Cost 4 vmrglw <2,2,2,2>, <3,2,4,3>
+ 2228030672U, // <2,4,2,4>: Cost 3 vmrghw <2,2,2,2>, <4,4,4,4>
+ 1154288950U, // <2,4,2,5>: Cost 2 vmrghw <2,2,2,2>, RHS
+ 3771549617U, // <2,4,2,6>: Cost 4 vsldoi8 <2,2,2,4>, <2,6,2,7>
+ 3368880796U, // <2,4,2,7>: Cost 4 vmrglw <2,2,2,2>, <3,6,4,7>
+ 1154289193U, // <2,4,2,u>: Cost 2 vmrghw <2,2,2,2>, RHS
+ 2636808294U, // <2,4,3,0>: Cost 3 vsldoi4 <3,2,4,3>, LHS
+ 2287181861U, // <2,4,3,1>: Cost 3 vmrglw LHS, <0,0,4,1>
+ 2228866102U, // <2,4,3,2>: Cost 3 vmrghw <2,3,4,5>, <4,2,5,3>
+ 2636810580U, // <2,4,3,3>: Cost 3 vsldoi4 <3,2,4,3>, <3,2,4,3>
+ 1256574160U, // <2,4,3,4>: Cost 2 vmrglw LHS, <4,4,4,4>
+ 1213441742U, // <2,4,3,5>: Cost 2 vmrglw LHS, <2,3,4,5>
+ 2228866430U, // <2,4,3,6>: Cost 3 vmrghw <2,3,4,5>, <4,6,5,7>
+ 2660701368U, // <2,4,3,7>: Cost 3 vsldoi4 <7,2,4,3>, <7,2,4,3>
+ 1213441745U, // <2,4,3,u>: Cost 2 vmrglw LHS, <2,3,4,u>
+ 3704586342U, // <2,4,4,0>: Cost 4 vsldoi4 <2,2,4,4>, LHS
+ 3782831051U, // <2,4,4,1>: Cost 4 vsldoi8 <4,1,2,4>, <4,1,2,4>
+ 3704587900U, // <2,4,4,2>: Cost 4 vsldoi4 <2,2,4,4>, <2,2,4,4>
+ 3368896123U, // <2,4,4,3>: Cost 4 vmrglw <2,2,2,4>, <2,2,4,3>
+ 2793360592U, // <2,4,4,4>: Cost 3 vsldoi12 <7,0,1,2>, <4,4,4,4>
+ 2697809206U, // <2,4,4,5>: Cost 3 vsldoi8 <2,2,2,4>, RHS
+ 3303198078U, // <2,4,4,6>: Cost 4 vmrghw <2,4,3,5>, <4,6,5,7>
+ 3867102444U, // <2,4,4,7>: Cost 4 vsldoi12 <7,0,1,2>, <4,4,7,5>
+ 2697809449U, // <2,4,4,u>: Cost 3 vsldoi8 <2,2,2,4>, RHS
+ 2630852710U, // <2,4,5,0>: Cost 3 vsldoi4 <2,2,4,5>, LHS
+ 2624881572U, // <2,4,5,1>: Cost 3 vsldoi4 <1,2,4,5>, <1,2,4,5>
+ 2630854269U, // <2,4,5,2>: Cost 3 vsldoi4 <2,2,4,5>, <2,2,4,5>
+ 2666686677U, // <2,4,5,3>: Cost 3 vsldoi4 <u,2,4,5>, <3,0,u,2>
+ 2630855990U, // <2,4,5,4>: Cost 3 vsldoi4 <2,2,4,5>, RHS
+ 2230127926U, // <2,4,5,5>: Cost 3 vmrghw <2,5,3,6>, RHS
+ 1691159862U, // <2,4,5,6>: Cost 2 vsldoi12 <2,2,2,2>, RHS
+ 3867102520U, // <2,4,5,7>: Cost 4 vsldoi12 <7,0,1,2>, <4,5,7,0>
+ 1691159880U, // <2,4,5,u>: Cost 2 vsldoi12 <2,2,2,2>, RHS
+ 2230799250U, // <2,4,6,0>: Cost 3 vmrghw <2,6,3,7>, <4,0,5,1>
+ 3304541130U, // <2,4,6,1>: Cost 4 vmrghw <2,6,3,7>, <4,1,2,3>
+ 2230799417U, // <2,4,6,2>: Cost 3 vmrghw <2,6,3,7>, <4,2,5,6>
+ 3304541323U, // <2,4,6,3>: Cost 4 vmrghw <2,6,3,7>, <4,3,5,7>
+ 2230799568U, // <2,4,6,4>: Cost 3 vmrghw <2,6,3,7>, <4,4,4,4>
+ 1157057846U, // <2,4,6,5>: Cost 2 vmrghw <2,6,3,7>, RHS
+ 3304541566U, // <2,4,6,6>: Cost 4 vmrghw <2,6,3,7>, <4,6,5,7>
+ 3798758243U, // <2,4,6,7>: Cost 4 vsldoi8 <6,7,2,4>, <6,7,2,4>
+ 1157058089U, // <2,4,6,u>: Cost 2 vmrghw <2,6,3,7>, RHS
+ 3806721018U, // <2,4,7,0>: Cost 4 vsldoi8 <u,1,2,4>, <7,0,1,2>
+ 3853831590U, // <2,4,7,1>: Cost 4 vsldoi12 <4,7,1,2>, <4,7,1,2>
+ 3801412775U, // <2,4,7,2>: Cost 4 vsldoi8 <7,2,2,4>, <7,2,2,4>
+ 3802076408U, // <2,4,7,3>: Cost 4 vsldoi8 <7,3,2,4>, <7,3,2,4>
+ 3401436368U, // <2,4,7,4>: Cost 4 vmrglw <7,6,2,7>, <4,4,4,4>
+ 2793360840U, // <2,4,7,5>: Cost 3 vsldoi12 <7,0,1,2>, <4,7,5,0>
+ 3804067307U, // <2,4,7,6>: Cost 4 vsldoi8 <7,6,2,4>, <7,6,2,4>
+ 3867102682U, // <2,4,7,7>: Cost 4 vsldoi12 <7,0,1,2>, <4,7,7,0>
+ 2793360867U, // <2,4,7,u>: Cost 3 vsldoi12 <7,0,1,2>, <4,7,u,0>
+ 2630877286U, // <2,4,u,0>: Cost 3 vsldoi4 <2,2,4,u>, LHS
+ 2282580144U, // <2,4,u,1>: Cost 3 vmrglw LHS, <3,0,4,1>
+ 2630878848U, // <2,4,u,2>: Cost 3 vsldoi4 <2,2,4,u>, <2,2,4,u>
+ 2636851545U, // <2,4,u,3>: Cost 3 vsldoi4 <3,2,4,u>, <3,2,4,u>
+ 1256615120U, // <2,4,u,4>: Cost 2 vmrglw LHS, <4,4,4,4>
+ 1208837838U, // <2,4,u,5>: Cost 2 vmrglw LHS, <2,3,4,5>
+ 1691160105U, // <2,4,u,6>: Cost 2 vsldoi12 <2,2,2,2>, RHS
+ 2660742333U, // <2,4,u,7>: Cost 3 vsldoi4 <7,2,4,u>, <7,2,4,u>
+ 1208837841U, // <2,4,u,u>: Cost 2 vmrglw LHS, <2,3,4,u>
+ 3766910976U, // <2,5,0,0>: Cost 4 vsldoi8 <1,4,2,5>, <0,0,0,0>
+ 2693169254U, // <2,5,0,1>: Cost 3 vsldoi8 <1,4,2,5>, LHS
+ 3760939181U, // <2,5,0,2>: Cost 4 vsldoi8 <0,4,2,5>, <0,2,1,2>
+ 3843214936U, // <2,5,0,3>: Cost 4 vsldoi12 <3,0,1,2>, <5,0,3,0>
+ 3760939355U, // <2,5,0,4>: Cost 4 vsldoi8 <0,4,2,5>, <0,4,2,5>
+ 3867102827U, // <2,5,0,5>: Cost 4 vsldoi12 <7,0,1,2>, <5,0,5,1>
+ 3867102836U, // <2,5,0,6>: Cost 4 vsldoi12 <7,0,1,2>, <5,0,6,1>
+ 3867102844U, // <2,5,0,7>: Cost 4 vsldoi12 <7,0,1,2>, <5,0,7,0>
+ 2693169821U, // <2,5,0,u>: Cost 3 vsldoi8 <1,4,2,5>, LHS
+ 3766911724U, // <2,5,1,0>: Cost 4 vsldoi8 <1,4,2,5>, <1,0,2,1>
+ 3766911796U, // <2,5,1,1>: Cost 4 vsldoi8 <1,4,2,5>, <1,1,1,1>
+ 2693170070U, // <2,5,1,2>: Cost 3 vsldoi8 <1,4,2,5>, <1,2,3,0>
+ 3384798262U, // <2,5,1,3>: Cost 4 vmrglw <4,u,2,1>, <4,2,5,3>
+ 2693170228U, // <2,5,1,4>: Cost 3 vsldoi8 <1,4,2,5>, <1,4,2,5>
+ 3301208068U, // <2,5,1,5>: Cost 4 vmrghw <2,1,3,5>, <5,5,5,5>
+ 3366879607U, // <2,5,1,6>: Cost 4 vmrglw <1,u,2,1>, <0,4,5,6>
+ 3867102925U, // <2,5,1,7>: Cost 4 vsldoi12 <7,0,1,2>, <5,1,7,0>
+ 2695824760U, // <2,5,1,u>: Cost 3 vsldoi8 <1,u,2,5>, <1,u,2,5>
+ 2642845798U, // <2,5,2,0>: Cost 3 vsldoi4 <4,2,5,2>, LHS
+ 2295139218U, // <2,5,2,1>: Cost 3 vmrglw <2,2,2,2>, <4,0,5,1>
+ 2699142760U, // <2,5,2,2>: Cost 3 vsldoi8 <2,4,2,5>, <2,2,2,2>
+ 3766912678U, // <2,5,2,3>: Cost 4 vsldoi8 <1,4,2,5>, <2,3,0,1>
+ 2699142925U, // <2,5,2,4>: Cost 3 vsldoi8 <2,4,2,5>, <2,4,2,5>
+ 2228031492U, // <2,5,2,5>: Cost 3 vmrghw <2,2,2,2>, <5,5,5,5>
+ 2295138818U, // <2,5,2,6>: Cost 3 vmrglw <2,2,2,2>, <3,4,5,6>
+ 3368879347U, // <2,5,2,7>: Cost 4 vmrglw <2,2,2,2>, <1,6,5,7>
+ 2295138820U, // <2,5,2,u>: Cost 3 vmrglw <2,2,2,2>, <3,4,5,u>
+ 2287184866U, // <2,5,3,0>: Cost 3 vmrglw LHS, <4,1,5,0>
+ 1256573842U, // <2,5,3,1>: Cost 2 vmrglw LHS, <4,0,5,1>
+ 2642855630U, // <2,5,3,2>: Cost 3 vsldoi4 <4,2,5,3>, <2,3,4,5>
+ 2287182763U, // <2,5,3,3>: Cost 3 vmrglw LHS, <1,2,5,3>
+ 2287184870U, // <2,5,3,4>: Cost 3 vmrglw LHS, <4,1,5,4>
+ 1256574170U, // <2,5,3,5>: Cost 2 vmrglw LHS, <4,4,5,5>
+ 1213442562U, // <2,5,3,6>: Cost 2 vmrglw LHS, <3,4,5,6>
+ 2287183091U, // <2,5,3,7>: Cost 3 vmrglw LHS, <1,6,5,7>
+ 1213442564U, // <2,5,3,u>: Cost 2 vmrglw LHS, <3,4,5,u>
+ 3716604006U, // <2,5,4,0>: Cost 4 vsldoi4 <4,2,5,4>, LHS
+ 3716604822U, // <2,5,4,1>: Cost 4 vsldoi4 <4,2,5,4>, <1,2,3,0>
+ 3766914099U, // <2,5,4,2>: Cost 4 vsldoi8 <1,4,2,5>, <4,2,5,0>
+ 3368895403U, // <2,5,4,3>: Cost 5 vmrglw <2,2,2,4>, <1,2,5,3>
+ 3716607031U, // <2,5,4,4>: Cost 4 vsldoi4 <4,2,5,4>, <4,2,5,4>
+ 2693172534U, // <2,5,4,5>: Cost 3 vsldoi8 <1,4,2,5>, RHS
+ 3363588610U, // <2,5,4,6>: Cost 4 vmrglw <1,3,2,4>, <3,4,5,6>
+ 3368895731U, // <2,5,4,7>: Cost 5 vmrglw <2,2,2,4>, <1,6,5,7>
+ 2693172777U, // <2,5,4,u>: Cost 3 vsldoi8 <1,4,2,5>, RHS
+ 3704668262U, // <2,5,5,0>: Cost 4 vsldoi4 <2,2,5,5>, LHS
+ 3704669078U, // <2,5,5,1>: Cost 4 vsldoi4 <2,2,5,5>, <1,2,3,0>
+ 3704669830U, // <2,5,5,2>: Cost 4 vsldoi4 <2,2,5,5>, <2,2,5,5>
+ 3364259460U, // <2,5,5,3>: Cost 4 vmrglw <1,4,2,5>, <2,2,5,3>
+ 3704671542U, // <2,5,5,4>: Cost 4 vsldoi4 <2,2,5,5>, RHS
+ 2793361412U, // <2,5,5,5>: Cost 3 vsldoi12 <7,0,1,2>, <5,5,5,5>
+ 3364258167U, // <2,5,5,6>: Cost 4 vmrglw <1,4,2,5>, <0,4,5,6>
+ 3867103249U, // <2,5,5,7>: Cost 4 vsldoi12 <7,0,1,2>, <5,5,7,0>
+ 2793361412U, // <2,5,5,u>: Cost 3 vsldoi12 <7,0,1,2>, <5,5,5,5>
+ 2642878566U, // <2,5,6,0>: Cost 3 vsldoi4 <4,2,5,6>, LHS
+ 3386166810U, // <2,5,6,1>: Cost 4 vmrglw <5,1,2,6>, <4,u,5,1>
+ 2723033594U, // <2,5,6,2>: Cost 3 vsldoi8 <6,4,2,5>, <6,2,7,3>
+ 3848523842U, // <2,5,6,3>: Cost 4 vsldoi12 <3,u,1,2>, <5,6,3,4>
+ 2723033713U, // <2,5,6,4>: Cost 3 vsldoi8 <6,4,2,5>, <6,4,2,5>
+ 2230800388U, // <2,5,6,5>: Cost 3 vmrghw <2,6,3,7>, <5,5,5,5>
+ 2230800482U, // <2,5,6,6>: Cost 3 vmrghw <2,6,3,7>, <5,6,7,0>
+ 2785841252U, // <2,5,6,7>: Cost 3 vsldoi12 <5,6,7,2>, <5,6,7,2>
+ 2785914989U, // <2,5,6,u>: Cost 3 vsldoi12 <5,6,u,2>, <5,6,u,2>
+ 3796775930U, // <2,5,7,0>: Cost 4 vsldoi8 <6,4,2,5>, <7,0,1,2>
+ 3800757335U, // <2,5,7,1>: Cost 4 vsldoi8 <7,1,2,5>, <7,1,2,5>
+ 3853463689U, // <2,5,7,2>: Cost 4 vsldoi12 <4,6,5,2>, <5,7,2,3>
+ 3796776218U, // <2,5,7,3>: Cost 4 vsldoi8 <6,4,2,5>, <7,3,6,2>
+ 3796776294U, // <2,5,7,4>: Cost 4 vsldoi8 <6,4,2,5>, <7,4,5,6>
+ 3803411867U, // <2,5,7,5>: Cost 4 vsldoi8 <7,5,2,5>, <7,5,2,5>
+ 3371575081U, // <2,5,7,6>: Cost 4 vmrglw <2,6,2,7>, <2,4,5,6>
+ 3796776516U, // <2,5,7,7>: Cost 4 vsldoi8 <6,4,2,5>, <7,7,3,3>
+ 3371575083U, // <2,5,7,u>: Cost 4 vmrglw <2,6,2,7>, <2,4,5,u>
+ 2287225826U, // <2,5,u,0>: Cost 3 vmrglw LHS, <4,1,5,0>
+ 1256614802U, // <2,5,u,1>: Cost 2 vmrglw LHS, <4,0,5,1>
+ 2642896590U, // <2,5,u,2>: Cost 3 vsldoi4 <4,2,5,u>, <2,3,4,5>
+ 2287223723U, // <2,5,u,3>: Cost 3 vmrglw LHS, <1,2,5,3>
+ 2287225830U, // <2,5,u,4>: Cost 3 vmrglw LHS, <4,1,5,4>
+ 1256615130U, // <2,5,u,5>: Cost 2 vmrglw LHS, <4,4,5,5>
+ 1208838658U, // <2,5,u,6>: Cost 2 vmrglw LHS, <3,4,5,6>
+ 2287224051U, // <2,5,u,7>: Cost 3 vmrglw LHS, <1,6,5,7>
+ 1208838660U, // <2,5,u,u>: Cost 2 vmrglw LHS, <3,4,5,u>
+ 3772227584U, // <2,6,0,0>: Cost 4 vsldoi8 <2,3,2,6>, <0,0,0,0>
+ 2698485862U, // <2,6,0,1>: Cost 3 vsldoi8 <2,3,2,6>, LHS
+ 3759620282U, // <2,6,0,2>: Cost 4 vsldoi8 <0,2,2,6>, <0,2,2,6>
+ 3710675299U, // <2,6,0,3>: Cost 4 vsldoi4 <3,2,6,0>, <3,2,6,0>
+ 3767583058U, // <2,6,0,4>: Cost 4 vsldoi8 <1,5,2,6>, <0,4,1,5>
+ 3378153265U, // <2,6,0,5>: Cost 5 vmrglw <3,7,2,0>, <2,4,6,5>
+ 3865186637U, // <2,6,0,6>: Cost 4 vsldoi12 <6,6,2,2>, <6,0,6,1>
+ 2330291510U, // <2,6,0,7>: Cost 3 vmrglw <u,1,2,0>, RHS
+ 2698486429U, // <2,6,0,u>: Cost 3 vsldoi8 <2,3,2,6>, LHS
+ 3734569062U, // <2,6,1,0>: Cost 4 vsldoi4 <7,2,6,1>, LHS
+ 3764929346U, // <2,6,1,1>: Cost 4 vsldoi8 <1,1,2,6>, <1,1,2,6>
+ 3772228502U, // <2,6,1,2>: Cost 4 vsldoi8 <2,3,2,6>, <1,2,3,0>
+ 3734571158U, // <2,6,1,3>: Cost 4 vsldoi4 <7,2,6,1>, <3,0,1,2>
+ 3734572342U, // <2,6,1,4>: Cost 4 vsldoi4 <7,2,6,1>, RHS
+ 3767583878U, // <2,6,1,5>: Cost 4 vsldoi8 <1,5,2,6>, <1,5,2,6>
+ 3768247511U, // <2,6,1,6>: Cost 4 vsldoi8 <1,6,2,6>, <1,6,2,6>
+ 2293140790U, // <2,6,1,7>: Cost 3 vmrglw <1,u,2,1>, RHS
+ 2293140791U, // <2,6,1,u>: Cost 3 vmrglw <1,u,2,1>, RHS
+ 3704717414U, // <2,6,2,0>: Cost 4 vsldoi4 <2,2,6,2>, LHS
+ 3395424589U, // <2,6,2,1>: Cost 4 vmrglw <6,6,2,2>, <6,0,6,1>
+ 2228031993U, // <2,6,2,2>: Cost 3 vmrghw <2,2,2,2>, <6,2,7,2>
+ 2698487485U, // <2,6,2,3>: Cost 3 vsldoi8 <2,3,2,6>, <2,3,2,6>
+ 3704720694U, // <2,6,2,4>: Cost 4 vsldoi4 <2,2,6,2>, RHS
+ 3773556575U, // <2,6,2,5>: Cost 4 vsldoi8 <2,5,2,6>, <2,5,2,6>
+ 2698487738U, // <2,6,2,6>: Cost 3 vsldoi8 <2,3,2,6>, <2,6,3,7>
+ 1221397814U, // <2,6,2,7>: Cost 2 vmrglw <2,2,2,2>, RHS
+ 1221397815U, // <2,6,2,u>: Cost 2 vmrglw <2,2,2,2>, RHS
+ 2636955750U, // <2,6,3,0>: Cost 3 vsldoi4 <3,2,6,3>, LHS
+ 2330314217U, // <2,6,3,1>: Cost 3 vmrglw LHS, <2,0,6,1>
+ 2636957626U, // <2,6,3,2>: Cost 3 vsldoi4 <3,2,6,3>, <2,6,3,7>
+ 2287184230U, // <2,6,3,3>: Cost 3 vmrglw LHS, <3,2,6,3>
+ 2636959030U, // <2,6,3,4>: Cost 3 vsldoi4 <3,2,6,3>, RHS
+ 2648903448U, // <2,6,3,5>: Cost 3 vsldoi4 <5,2,6,3>, <5,2,6,3>
+ 1256575800U, // <2,6,3,6>: Cost 2 vmrglw LHS, <6,6,6,6>
+ 135056694U, // <2,6,3,7>: Cost 1 vmrglw LHS, RHS
+ 135056695U, // <2,6,3,u>: Cost 1 vmrglw LHS, RHS
+ 3710705766U, // <2,6,4,0>: Cost 4 vsldoi4 <3,2,6,4>, LHS
+ 3698762677U, // <2,6,4,1>: Cost 5 vsldoi4 <1,2,6,4>, <1,2,6,4>
+ 3710707389U, // <2,6,4,2>: Cost 4 vsldoi4 <3,2,6,4>, <2,3,2,6>
+ 3710708071U, // <2,6,4,3>: Cost 4 vsldoi4 <3,2,6,4>, <3,2,6,4>
+ 3710709046U, // <2,6,4,4>: Cost 4 vsldoi4 <3,2,6,4>, RHS
+ 2698489142U, // <2,6,4,5>: Cost 3 vsldoi8 <2,3,2,6>, RHS
+ 3796782457U, // <2,6,4,6>: Cost 4 vsldoi8 <6,4,2,6>, <4,6,5,2>
+ 2295156022U, // <2,6,4,7>: Cost 3 vmrglw <2,2,2,4>, RHS
+ 2295156023U, // <2,6,4,u>: Cost 3 vmrglw <2,2,2,4>, RHS
+ 3303870753U, // <2,6,5,0>: Cost 4 vmrghw <2,5,3,6>, <6,0,1,2>
+ 3788820134U, // <2,6,5,1>: Cost 4 vsldoi8 <5,1,2,6>, <5,1,2,6>
+ 3779530520U, // <2,6,5,2>: Cost 4 vsldoi8 <3,5,2,6>, <5,2,6,3>
+ 3303871026U, // <2,6,5,3>: Cost 4 vmrghw <2,5,3,6>, <6,3,4,5>
+ 3303871117U, // <2,6,5,4>: Cost 4 vmrghw <2,5,3,6>, <6,4,5,6>
+ 3791474666U, // <2,6,5,5>: Cost 4 vsldoi8 <5,5,2,6>, <5,5,2,6>
+ 3792138299U, // <2,6,5,6>: Cost 4 vsldoi8 <5,6,2,6>, <5,6,2,6>
+ 2290519350U, // <2,6,5,7>: Cost 3 vmrglw <1,4,2,5>, RHS
+ 2290519351U, // <2,6,5,u>: Cost 3 vmrglw <1,4,2,5>, RHS
+ 2631008358U, // <2,6,6,0>: Cost 3 vsldoi4 <2,2,6,6>, LHS
+ 3372893673U, // <2,6,6,1>: Cost 4 vmrglw <2,u,2,6>, <2,0,6,1>
+ 2791445264U, // <2,6,6,2>: Cost 3 vsldoi12 <6,6,2,2>, <6,6,2,2>
+ 2230800968U, // <2,6,6,3>: Cost 3 vmrghw <2,6,3,7>, <6,3,7,0>
+ 2631011638U, // <2,6,6,4>: Cost 3 vsldoi4 <2,2,6,6>, RHS
+ 3372894001U, // <2,6,6,5>: Cost 4 vmrglw <2,u,2,6>, <2,4,6,5>
+ 2793362232U, // <2,6,6,6>: Cost 3 vsldoi12 <7,0,1,2>, <6,6,6,6>
+ 2295835958U, // <2,6,6,7>: Cost 3 vmrglw <2,3,2,6>, RHS
+ 2295835959U, // <2,6,6,u>: Cost 3 vmrglw <2,3,2,6>, RHS
+ 2793362254U, // <2,6,7,0>: Cost 3 vsldoi12 <7,0,1,2>, <6,7,0,1>
+ 2792035160U, // <2,6,7,1>: Cost 3 vsldoi12 <6,7,1,2>, <6,7,1,2>
+ 2792108897U, // <2,6,7,2>: Cost 3 vsldoi12 <6,7,2,2>, <6,7,2,2>
+ 2769474408U, // <2,6,7,3>: Cost 3 vsldoi12 <3,0,1,2>, <6,7,3,0>
+ 2793362294U, // <2,6,7,4>: Cost 3 vsldoi12 <7,0,1,2>, <6,7,4,5>
+ 3371575089U, // <2,6,7,5>: Cost 4 vmrglw <2,6,2,7>, <2,4,6,5>
+ 2792403845U, // <2,6,7,6>: Cost 3 vsldoi12 <6,7,6,2>, <6,7,6,2>
+ 2297834806U, // <2,6,7,7>: Cost 3 vmrglw <2,6,2,7>, RHS
+ 2297834807U, // <2,6,7,u>: Cost 3 vmrglw <2,6,2,7>, RHS
+ 2636996710U, // <2,6,u,0>: Cost 3 vsldoi4 <3,2,6,u>, LHS
+ 2698491694U, // <2,6,u,1>: Cost 3 vsldoi8 <2,3,2,6>, LHS
+ 2636998631U, // <2,6,u,2>: Cost 3 vsldoi4 <3,2,6,u>, <2,6,u,7>
+ 2282580326U, // <2,6,u,3>: Cost 3 vmrglw LHS, <3,2,6,3>
+ 2636999990U, // <2,6,u,4>: Cost 3 vsldoi4 <3,2,6,u>, RHS
+ 2698492058U, // <2,6,u,5>: Cost 3 vsldoi8 <2,3,2,6>, RHS
+ 1256616760U, // <2,6,u,6>: Cost 2 vmrglw LHS, <6,6,6,6>
+ 135097654U, // <2,6,u,7>: Cost 1 vmrglw LHS, RHS
+ 135097655U, // <2,6,u,u>: Cost 1 vmrglw LHS, RHS
+ 2666864742U, // <2,7,0,0>: Cost 3 vsldoi4 <u,2,7,0>, LHS
+ 1719620602U, // <2,7,0,1>: Cost 2 vsldoi12 <7,0,1,2>, <7,0,1,2>
+ 3768254637U, // <2,7,0,2>: Cost 4 vsldoi8 <1,6,2,7>, <0,2,1,2>
+ 3393417722U, // <2,7,0,3>: Cost 4 vmrglw <6,3,2,0>, <6,2,7,3>
+ 2666868022U, // <2,7,0,4>: Cost 3 vsldoi4 <u,2,7,0>, RHS
+ 3867104290U, // <2,7,0,5>: Cost 4 vsldoi12 <7,0,1,2>, <7,0,5,6>
+ 3728667127U, // <2,7,0,6>: Cost 4 vsldoi4 <6,2,7,0>, <6,2,7,0>
+ 2666869817U, // <2,7,0,7>: Cost 3 vsldoi4 <u,2,7,0>, <7,0,u,2>
+ 1720136761U, // <2,7,0,u>: Cost 2 vsldoi12 <7,0,u,2>, <7,0,u,2>
+ 3728670822U, // <2,7,1,0>: Cost 4 vsldoi4 <6,2,7,1>, LHS
+ 3774227252U, // <2,7,1,1>: Cost 4 vsldoi8 <2,6,2,7>, <1,1,1,1>
+ 3774227350U, // <2,7,1,2>: Cost 4 vsldoi8 <2,6,2,7>, <1,2,3,0>
+ 2323001850U, // <2,7,1,3>: Cost 3 vmrglw <6,u,2,1>, <6,2,7,3>
+ 3728674102U, // <2,7,1,4>: Cost 4 vsldoi4 <6,2,7,1>, RHS
+ 3774227567U, // <2,7,1,5>: Cost 5 vsldoi8 <2,6,2,7>, <1,5,0,1>
+ 2694513880U, // <2,7,1,6>: Cost 3 vsldoi8 <1,6,2,7>, <1,6,2,7>
+ 3396744002U, // <2,7,1,7>: Cost 4 vmrglw <6,u,2,1>, <6,6,7,7>
+ 2323001850U, // <2,7,1,u>: Cost 3 vmrglw <6,u,2,1>, <6,2,7,3>
+ 2654937190U, // <2,7,2,0>: Cost 3 vsldoi4 <6,2,7,2>, LHS
+ 3728679732U, // <2,7,2,1>: Cost 4 vsldoi4 <6,2,7,2>, <1,1,1,1>
+ 2700486248U, // <2,7,2,2>: Cost 3 vsldoi8 <2,6,2,7>, <2,2,2,2>
+ 2321682938U, // <2,7,2,3>: Cost 3 vmrglw <6,6,2,2>, <6,2,7,3>
+ 2654940470U, // <2,7,2,4>: Cost 3 vsldoi4 <6,2,7,2>, RHS
+ 3859584196U, // <2,7,2,5>: Cost 4 vsldoi12 <5,6,7,2>, <7,2,5,6>
+ 2700486577U, // <2,7,2,6>: Cost 3 vsldoi8 <2,6,2,7>, <2,6,2,7>
+ 2228033132U, // <2,7,2,7>: Cost 3 vmrghw <2,2,2,2>, <7,7,7,7>
+ 2701813843U, // <2,7,2,u>: Cost 3 vsldoi8 <2,u,2,7>, <2,u,2,7>
+ 1581203558U, // <2,7,3,0>: Cost 2 vsldoi4 <6,2,7,3>, LHS
+ 2654946100U, // <2,7,3,1>: Cost 3 vsldoi4 <6,2,7,3>, <1,1,1,1>
+ 2637031354U, // <2,7,3,2>: Cost 3 vsldoi4 <3,2,7,3>, <2,6,3,7>
+ 1256575482U, // <2,7,3,3>: Cost 2 vmrglw LHS, <6,2,7,3>
+ 1581206838U, // <2,7,3,4>: Cost 2 vsldoi4 <6,2,7,3>, RHS
+ 2654949380U, // <2,7,3,5>: Cost 3 vsldoi4 <6,2,7,3>, <5,5,5,5>
+ 1581208058U, // <2,7,3,6>: Cost 2 vsldoi4 <6,2,7,3>, <6,2,7,3>
+ 1256575810U, // <2,7,3,7>: Cost 2 vmrglw LHS, <6,6,7,7>
+ 1581209390U, // <2,7,3,u>: Cost 2 vsldoi4 <6,2,7,3>, LHS
+ 3728695398U, // <2,7,4,0>: Cost 4 vsldoi4 <6,2,7,4>, LHS
+ 3869758782U, // <2,7,4,1>: Cost 4 vsldoi12 <7,4,1,2>, <7,4,1,2>
+ 3728696936U, // <2,7,4,2>: Cost 4 vsldoi4 <6,2,7,4>, <2,2,2,2>
+ 3393450490U, // <2,7,4,3>: Cost 4 vmrglw <6,3,2,4>, <6,2,7,3>
+ 3728698678U, // <2,7,4,4>: Cost 4 vsldoi4 <6,2,7,4>, RHS
+ 2700487990U, // <2,7,4,5>: Cost 3 vsldoi8 <2,6,2,7>, RHS
+ 3728699899U, // <2,7,4,6>: Cost 4 vsldoi4 <6,2,7,4>, <6,2,7,4>
+ 3867104626U, // <2,7,4,7>: Cost 4 vsldoi12 <7,0,1,2>, <7,4,7,0>
+ 2700488233U, // <2,7,4,u>: Cost 3 vsldoi8 <2,6,2,7>, RHS
+ 3855160709U, // <2,7,5,0>: Cost 4 vsldoi12 <5,0,1,2>, <7,5,0,1>
+ 3728704406U, // <2,7,5,1>: Cost 4 vsldoi4 <6,2,7,5>, <1,2,3,0>
+ 3370233956U, // <2,7,5,2>: Cost 4 vmrglw <2,4,2,5>, <5,6,7,2>
+ 2320380410U, // <2,7,5,3>: Cost 3 vmrglw <6,4,2,5>, <6,2,7,3>
+ 3728706870U, // <2,7,5,4>: Cost 4 vsldoi4 <6,2,7,5>, RHS
+ 3867104694U, // <2,7,5,5>: Cost 4 vsldoi12 <7,0,1,2>, <7,5,5,5>
+ 3792146492U, // <2,7,5,6>: Cost 4 vsldoi8 <5,6,2,7>, <5,6,2,7>
+ 3394122562U, // <2,7,5,7>: Cost 4 vmrglw <6,4,2,5>, <6,6,7,7>
+ 2320380410U, // <2,7,5,u>: Cost 3 vmrglw <6,4,2,5>, <6,2,7,3>
+ 2230801402U, // <2,7,6,0>: Cost 3 vmrghw <2,6,3,7>, <7,0,1,2>
+ 3768258984U, // <2,7,6,1>: Cost 4 vsldoi8 <1,6,2,7>, <6,1,7,2>
+ 2730349050U, // <2,7,6,2>: Cost 3 vsldoi8 <7,6,2,7>, <6,2,7,3>
+ 3372894575U, // <2,7,6,3>: Cost 4 vmrglw <2,u,2,6>, <3,2,7,3>
+ 2230801766U, // <2,7,6,4>: Cost 3 vmrghw <2,6,3,7>, <7,4,5,6>
+ 3304543670U, // <2,7,6,5>: Cost 4 vmrghw <2,6,3,7>, <7,5,5,5>
+ 3728716285U, // <2,7,6,6>: Cost 4 vsldoi4 <6,2,7,6>, <6,2,7,6>
+ 2230802028U, // <2,7,6,7>: Cost 3 vmrghw <2,6,3,7>, <7,7,7,7>
+ 2730349050U, // <2,7,6,u>: Cost 3 vsldoi8 <7,6,2,7>, <6,2,7,3>
+ 2793362983U, // <2,7,7,0>: Cost 3 vsldoi12 <7,0,1,2>, <7,7,0,1>
+ 3728721112U, // <2,7,7,1>: Cost 4 vsldoi4 <6,2,7,7>, <1,6,2,7>
+ 3371574933U, // <2,7,7,2>: Cost 4 vmrglw <2,6,2,7>, <2,2,7,2>
+ 2327695866U, // <2,7,7,3>: Cost 3 vmrglw <7,6,2,7>, <6,2,7,3>
+ 3728723254U, // <2,7,7,4>: Cost 4 vsldoi4 <6,2,7,7>, RHS
+ 3371574855U, // <2,7,7,5>: Cost 5 vmrglw <2,6,2,7>, <2,1,7,5>
+ 2730350062U, // <2,7,7,6>: Cost 3 vsldoi8 <7,6,2,7>, <7,6,2,7>
+ 2793363052U, // <2,7,7,7>: Cost 3 vsldoi12 <7,0,1,2>, <7,7,7,7>
+ 2798671471U, // <2,7,7,u>: Cost 3 vsldoi12 <7,u,1,2>, <7,7,u,1>
+ 1581244518U, // <2,7,u,0>: Cost 2 vsldoi4 <6,2,7,u>, LHS
+ 1724929666U, // <2,7,u,1>: Cost 2 vsldoi12 <7,u,1,2>, <7,u,1,2>
+ 2637072314U, // <2,7,u,2>: Cost 3 vsldoi4 <3,2,7,u>, <2,6,3,7>
+ 1256616442U, // <2,7,u,3>: Cost 2 vmrglw LHS, <6,2,7,3>
+ 1581247798U, // <2,7,u,4>: Cost 2 vsldoi4 <6,2,7,u>, RHS
+ 2700490906U, // <2,7,u,5>: Cost 3 vsldoi8 <2,6,2,7>, RHS
+ 1581249023U, // <2,7,u,6>: Cost 2 vsldoi4 <6,2,7,u>, <6,2,7,u>
+ 1256616770U, // <2,7,u,7>: Cost 2 vmrglw LHS, <6,6,7,7>
+ 1581250350U, // <2,7,u,u>: Cost 2 vsldoi4 <6,2,7,u>, LHS
+ 1611489280U, // <2,u,0,0>: Cost 2 vsldoi8 LHS, <0,0,0,0>
+ 537747563U, // <2,u,0,1>: Cost 1 vsldoi8 LHS, LHS
+ 2685231277U, // <2,u,0,2>: Cost 3 vsldoi8 LHS, <0,2,1,2>
+ 2685231356U, // <2,u,0,3>: Cost 3 vsldoi8 LHS, <0,3,1,0>
+ 1611489618U, // <2,u,0,4>: Cost 2 vsldoi8 LHS, <0,4,1,5>
+ 2226763930U, // <2,u,0,5>: Cost 3 vmrghw <2,0,3,0>, RHS
+ 2733007350U, // <2,u,0,6>: Cost 3 vsldoi8 LHS, <0,6,1,7>
+ 2660971737U, // <2,u,0,7>: Cost 3 vsldoi4 <7,2,u,0>, <7,2,u,0>
+ 537748125U, // <2,u,0,u>: Cost 1 vsldoi8 LHS, LHS
+ 2689876708U, // <2,u,1,0>: Cost 3 vsldoi8 LHS, <1,0,1,2>
+ 1611490100U, // <2,u,1,1>: Cost 2 vsldoi8 LHS, <1,1,1,1>
+ 1611490198U, // <2,u,1,2>: Cost 2 vsldoi8 LHS, <1,2,3,0>
+ 2293137564U, // <2,u,1,3>: Cost 3 vmrglw <1,u,2,1>, LHS
+ 2689877072U, // <2,u,1,4>: Cost 3 vsldoi8 LHS, <1,4,5,6>
+ 2689877103U, // <2,u,1,5>: Cost 3 vsldoi8 LHS, <1,5,0,1>
+ 2689877199U, // <2,u,1,6>: Cost 3 vsldoi8 LHS, <1,6,1,7>
+ 2293140808U, // <2,u,1,7>: Cost 3 vmrglw <1,u,2,1>, RHS
+ 1616135548U, // <2,u,1,u>: Cost 2 vsldoi8 LHS, <1,u,3,0>
+ 1556938854U, // <2,u,2,0>: Cost 2 vsldoi4 <2,2,2,2>, LHS
+ 1154291502U, // <2,u,2,1>: Cost 2 vmrghw <2,2,2,2>, LHS
+ 336380006U, // <2,u,2,2>: Cost 1 vspltisw2 LHS
+ 1611490982U, // <2,u,2,3>: Cost 2 vsldoi8 LHS, <2,3,0,1>
+ 1556942134U, // <2,u,2,4>: Cost 2 vsldoi4 <2,2,2,2>, RHS
+ 1154291866U, // <2,u,2,5>: Cost 2 vmrghw <2,2,2,2>, RHS
+ 1611491258U, // <2,u,2,6>: Cost 2 vsldoi8 LHS, <2,6,3,7>
+ 1221397832U, // <2,u,2,7>: Cost 2 vmrglw <2,2,2,2>, RHS
+ 336380006U, // <2,u,2,u>: Cost 1 vspltisw2 LHS
+ 1611491478U, // <2,u,3,0>: Cost 2 vsldoi8 LHS, <3,0,1,2>
+ 1213440073U, // <2,u,3,1>: Cost 2 vmrglw LHS, <0,0,u,1>
+ 1213442261U, // <2,u,3,2>: Cost 2 vmrglw LHS, <3,0,u,2>
+ 135053468U, // <2,u,3,3>: Cost 1 vmrglw LHS, LHS
+ 1611491842U, // <2,u,3,4>: Cost 2 vsldoi8 LHS, <3,4,5,6>
+ 1213440401U, // <2,u,3,5>: Cost 2 vmrglw LHS, <0,4,u,5>
+ 1213442589U, // <2,u,3,6>: Cost 2 vmrglw LHS, <3,4,u,6>
+ 135056712U, // <2,u,3,7>: Cost 1 vmrglw LHS, RHS
+ 135053473U, // <2,u,3,u>: Cost 1 vmrglw LHS, LHS
+ 1551425638U, // <2,u,4,0>: Cost 2 vsldoi4 <1,2,u,4>, LHS
+ 1551426503U, // <2,u,4,1>: Cost 2 vsldoi4 <1,2,u,4>, <1,2,u,4>
+ 2625169000U, // <2,u,4,2>: Cost 3 vsldoi4 <1,2,u,4>, <2,2,2,2>
+ 2625169558U, // <2,u,4,3>: Cost 3 vsldoi4 <1,2,u,4>, <3,0,1,2>
+ 1551428918U, // <2,u,4,4>: Cost 2 vsldoi4 <1,2,u,4>, RHS
+ 537750838U, // <2,u,4,5>: Cost 1 vsldoi8 LHS, RHS
+ 2733010297U, // <2,u,4,6>: Cost 3 vsldoi8 LHS, <4,6,5,2>
+ 2295156040U, // <2,u,4,7>: Cost 3 vmrglw <2,2,2,4>, RHS
+ 537751081U, // <2,u,4,u>: Cost 1 vsldoi8 LHS, RHS
+ 2689879624U, // <2,u,5,0>: Cost 3 vsldoi8 LHS, <5,0,1,2>
+ 2230130478U, // <2,u,5,1>: Cost 3 vmrghw <2,5,3,6>, LHS
+ 2631149217U, // <2,u,5,2>: Cost 3 vsldoi4 <2,2,u,5>, <2,2,u,5>
+ 2290516124U, // <2,u,5,3>: Cost 3 vmrglw <1,4,2,5>, LHS
+ 2689879988U, // <2,u,5,4>: Cost 3 vsldoi8 LHS, <5,4,5,6>
+ 1659269124U, // <2,u,5,5>: Cost 2 vsldoi8 LHS, <5,5,5,5>
+ 1691162778U, // <2,u,5,6>: Cost 2 vsldoi12 <2,2,2,2>, RHS
+ 2290519368U, // <2,u,5,7>: Cost 3 vmrglw <1,4,2,5>, RHS
+ 1691162796U, // <2,u,5,u>: Cost 2 vsldoi12 <2,2,2,2>, RHS
+ 2230802131U, // <2,u,6,0>: Cost 3 vmrghw <2,6,3,7>, <u,0,1,2>
+ 1157060398U, // <2,u,6,1>: Cost 2 vmrghw <2,6,3,7>, LHS
+ 1659269626U, // <2,u,6,2>: Cost 2 vsldoi8 LHS, <6,2,7,3>
+ 2764904656U, // <2,u,6,3>: Cost 3 vsldoi12 <2,2,2,2>, <u,6,3,7>
+ 2230802495U, // <2,u,6,4>: Cost 3 vmrghw <2,6,3,7>, <u,4,5,6>
+ 1157060762U, // <2,u,6,5>: Cost 2 vmrghw <2,6,3,7>, RHS
+ 1659269944U, // <2,u,6,6>: Cost 2 vsldoi8 LHS, <6,6,6,6>
+ 1659269966U, // <2,u,6,7>: Cost 2 vsldoi8 LHS, <6,7,0,1>
+ 1157060965U, // <2,u,6,u>: Cost 2 vmrghw <2,6,3,7>, LHS
+ 1659270138U, // <2,u,7,0>: Cost 2 vsldoi8 LHS, <7,0,1,2>
+ 2727040090U, // <2,u,7,1>: Cost 3 vsldoi8 <7,1,2,u>, <7,1,2,u>
+ 2727703723U, // <2,u,7,2>: Cost 3 vsldoi8 <7,2,2,u>, <7,2,2,u>
+ 2297831580U, // <2,u,7,3>: Cost 3 vmrglw <2,6,2,7>, LHS
+ 1659270502U, // <2,u,7,4>: Cost 2 vsldoi8 LHS, <7,4,5,6>
+ 2733012406U, // <2,u,7,5>: Cost 3 vsldoi8 LHS, <7,5,5,5>
+ 2730358255U, // <2,u,7,6>: Cost 3 vsldoi8 <7,6,2,u>, <7,6,2,u>
+ 1659270764U, // <2,u,7,7>: Cost 2 vsldoi8 LHS, <7,7,7,7>
+ 1659270786U, // <2,u,7,u>: Cost 2 vsldoi8 LHS, <7,u,1,2>
+ 1213481923U, // <2,u,u,0>: Cost 2 vmrglw LHS, <1,2,u,0>
+ 537753390U, // <2,u,u,1>: Cost 1 vsldoi8 LHS, LHS
+ 336380006U, // <2,u,u,2>: Cost 1 vspltisw2 LHS
+ 135094428U, // <2,u,u,3>: Cost 1 vmrglw LHS, LHS
+ 1213481927U, // <2,u,u,4>: Cost 2 vmrglw LHS, <1,2,u,4>
+ 537753754U, // <2,u,u,5>: Cost 1 vsldoi8 LHS, RHS
+ 1208838685U, // <2,u,u,6>: Cost 2 vmrglw LHS, <3,4,u,6>
+ 135097672U, // <2,u,u,7>: Cost 1 vmrglw LHS, RHS
+ 135094433U, // <2,u,u,u>: Cost 1 vmrglw LHS, LHS
+ 1678557184U, // <3,0,0,0>: Cost 2 vsldoi12 LHS, <0,0,0,0>
+ 1678557194U, // <3,0,0,1>: Cost 2 vsldoi12 LHS, <0,0,1,1>
+ 2631181989U, // <3,0,0,2>: Cost 3 vsldoi4 <2,3,0,0>, <2,3,0,0>
+ 2289223984U, // <3,0,0,3>: Cost 3 vmrglw <1,2,3,0>, <3,2,0,3>
+ 2756943909U, // <3,0,0,4>: Cost 3 vsldoi12 LHS, <0,0,4,1>
+ 3362965729U, // <3,0,0,5>: Cost 4 vmrglw <1,2,3,0>, <3,1,0,5>
+ 3362966054U, // <3,0,0,6>: Cost 4 vmrglw <1,2,3,0>, <3,5,0,6>
+ 2289224312U, // <3,0,0,7>: Cost 3 vmrglw <1,2,3,0>, <3,6,0,7>
+ 1683202121U, // <3,0,0,u>: Cost 2 vsldoi12 LHS, <0,0,u,1>
+ 1557446758U, // <3,0,1,0>: Cost 2 vsldoi4 <2,3,0,1>, LHS
+ 2752741467U, // <3,0,1,1>: Cost 3 vsldoi12 LHS, <0,1,1,1>
+ 604815462U, // <3,0,1,2>: Cost 1 vsldoi12 LHS, LHS
+ 2631190676U, // <3,0,1,3>: Cost 3 vsldoi4 <2,3,0,1>, <3,0,1,0>
+ 1557450038U, // <3,0,1,4>: Cost 2 vsldoi4 <2,3,0,1>, RHS
+ 2667024388U, // <3,0,1,5>: Cost 3 vsldoi4 <u,3,0,1>, <5,5,5,5>
+ 2800074894U, // <3,0,1,6>: Cost 3 vsldoi12 LHS, <0,1,6,7>
+ 2661053667U, // <3,0,1,7>: Cost 3 vsldoi4 <7,3,0,1>, <7,3,0,1>
+ 604815516U, // <3,0,1,u>: Cost 1 vsldoi12 LHS, LHS
+ 2696521165U, // <3,0,2,0>: Cost 3 vsldoi8 <2,0,3,0>, <2,0,3,0>
+ 2752741549U, // <3,0,2,1>: Cost 3 vsldoi12 LHS, <0,2,1,2>
+ 2691876456U, // <3,0,2,2>: Cost 3 vsldoi8 <1,2,3,0>, <2,2,2,2>
+ 2691876518U, // <3,0,2,3>: Cost 3 vsldoi8 <1,2,3,0>, <2,3,0,1>
+ 3830685895U, // <3,0,2,4>: Cost 4 vsldoi12 LHS, <0,2,4,1>
+ 3765618536U, // <3,0,2,5>: Cost 4 vsldoi8 <1,2,3,0>, <2,5,3,6>
+ 2691876794U, // <3,0,2,6>: Cost 3 vsldoi8 <1,2,3,0>, <2,6,3,7>
+ 2701166596U, // <3,0,2,7>: Cost 3 vsldoi8 <2,7,3,0>, <2,7,3,0>
+ 2756944108U, // <3,0,2,u>: Cost 3 vsldoi12 LHS, <0,2,u,2>
+ 2691877014U, // <3,0,3,0>: Cost 3 vsldoi8 <1,2,3,0>, <3,0,1,2>
+ 1161003110U, // <3,0,3,1>: Cost 2 vmrghw <3,3,3,3>, LHS
+ 2691877168U, // <3,0,3,2>: Cost 3 vsldoi8 <1,2,3,0>, <3,2,0,3>
+ 2691877246U, // <3,0,3,3>: Cost 3 vsldoi8 <1,2,3,0>, <3,3,0,0>
+ 2691877378U, // <3,0,3,4>: Cost 3 vsldoi8 <1,2,3,0>, <3,4,5,6>
+ 3765619238U, // <3,0,3,5>: Cost 4 vsldoi8 <1,2,3,0>, <3,5,0,6>
+ 2691877496U, // <3,0,3,6>: Cost 3 vsldoi8 <1,2,3,0>, <3,6,0,7>
+ 3368962680U, // <3,0,3,7>: Cost 4 vmrglw <2,2,3,3>, <3,6,0,7>
+ 1161003677U, // <3,0,3,u>: Cost 2 vmrghw <3,3,3,3>, LHS
+ 2289254400U, // <3,0,4,0>: Cost 3 vmrglw <1,2,3,4>, <0,0,0,0>
+ 1678557522U, // <3,0,4,1>: Cost 2 vsldoi12 LHS, <0,4,1,5>
+ 2631214761U, // <3,0,4,2>: Cost 3 vsldoi4 <2,3,0,4>, <2,3,0,4>
+ 2235580672U, // <3,0,4,3>: Cost 3 vmrghw <3,4,5,6>, <0,3,1,4>
+ 2756944237U, // <3,0,4,4>: Cost 3 vsldoi12 LHS, <0,4,4,5>
+ 1618136374U, // <3,0,4,5>: Cost 2 vsldoi8 <1,2,3,0>, RHS
+ 3309322742U, // <3,0,4,6>: Cost 4 vmrghw <3,4,5,6>, <0,6,1,7>
+ 3362998904U, // <3,0,4,7>: Cost 4 vmrglw <1,2,3,4>, <3,6,0,7>
+ 1683202449U, // <3,0,4,u>: Cost 2 vsldoi12 LHS, <0,4,u,5>
+ 3765620296U, // <3,0,5,0>: Cost 4 vsldoi8 <1,2,3,0>, <5,0,1,2>
+ 2752299427U, // <3,0,5,1>: Cost 3 vsldoi12 LHS, <0,5,1,5>
+ 3789508346U, // <3,0,5,2>: Cost 4 vsldoi8 <5,2,3,0>, <5,2,3,0>
+ 3403486842U, // <3,0,5,3>: Cost 4 vmrglw <u,0,3,5>, <7,u,0,3>
+ 3765620660U, // <3,0,5,4>: Cost 4 vsldoi8 <1,2,3,0>, <5,4,5,6>
+ 2733682692U, // <3,0,5,5>: Cost 3 vsldoi8 <u,2,3,0>, <5,5,5,5>
+ 2800075218U, // <3,0,5,6>: Cost 3 vsldoi12 LHS, <0,5,6,7>
+ 3873817044U, // <3,0,5,7>: Cost 4 vsldoi12 LHS, <0,5,7,0>
+ 2800075234U, // <3,0,5,u>: Cost 3 vsldoi12 LHS, <0,5,u,5>
+ 2752299501U, // <3,0,6,0>: Cost 3 vsldoi12 LHS, <0,6,0,7>
+ 2236547174U, // <3,0,6,1>: Cost 3 vmrghw <3,6,0,7>, LHS
+ 2733683194U, // <3,0,6,2>: Cost 3 vsldoi8 <u,2,3,0>, <6,2,7,3>
+ 3844473352U, // <3,0,6,3>: Cost 4 vsldoi12 <3,2,0,3>, <0,6,3,7>
+ 3310289234U, // <3,0,6,4>: Cost 4 vmrghw <3,6,0,7>, <0,4,1,5>
+ 3873817114U, // <3,0,6,5>: Cost 4 vsldoi12 LHS, <0,6,5,7>
+ 2733683512U, // <3,0,6,6>: Cost 3 vsldoi8 <u,2,3,0>, <6,6,6,6>
+ 2725057384U, // <3,0,6,7>: Cost 3 vsldoi8 <6,7,3,0>, <6,7,3,0>
+ 2236547741U, // <3,0,6,u>: Cost 3 vmrghw <3,6,0,7>, LHS
+ 2297905152U, // <3,0,7,0>: Cost 3 vmrglw <2,6,3,7>, <0,0,0,0>
+ 2297906854U, // <3,0,7,1>: Cost 3 vmrglw <2,6,3,7>, <2,3,0,1>
+ 2727711916U, // <3,0,7,2>: Cost 3 vsldoi8 <7,2,3,0>, <7,2,3,0>
+ 3371649328U, // <3,0,7,3>: Cost 4 vmrglw <2,6,3,7>, <3,2,0,3>
+ 2733684070U, // <3,0,7,4>: Cost 3 vsldoi8 <u,2,3,0>, <7,4,5,6>
+ 3734843490U, // <3,0,7,5>: Cost 4 vsldoi4 <7,3,0,7>, <5,6,7,0>
+ 3798799895U, // <3,0,7,6>: Cost 4 vsldoi8 <6,7,3,0>, <7,6,7,3>
+ 2733684332U, // <3,0,7,7>: Cost 3 vsldoi8 <u,2,3,0>, <7,7,7,7>
+ 2297906861U, // <3,0,7,u>: Cost 3 vmrglw <2,6,3,7>, <2,3,0,u>
+ 1557504102U, // <3,0,u,0>: Cost 2 vsldoi4 <2,3,0,u>, LHS
+ 1678557842U, // <3,0,u,1>: Cost 2 vsldoi12 LHS, <0,u,1,1>
+ 604816029U, // <3,0,u,2>: Cost 1 vsldoi12 LHS, LHS
+ 2691880892U, // <3,0,u,3>: Cost 3 vsldoi8 <1,2,3,0>, <u,3,0,1>
+ 1557507382U, // <3,0,u,4>: Cost 2 vsldoi4 <2,3,0,u>, RHS
+ 1618139290U, // <3,0,u,5>: Cost 2 vsldoi8 <1,2,3,0>, RHS
+ 2691881168U, // <3,0,u,6>: Cost 3 vsldoi8 <1,2,3,0>, <u,6,3,7>
+ 2661111018U, // <3,0,u,7>: Cost 3 vsldoi4 <7,3,0,u>, <7,3,0,u>
+ 604816083U, // <3,0,u,u>: Cost 1 vsldoi12 LHS, LHS
+ 2619310332U, // <3,1,0,0>: Cost 3 vsldoi4 <0,3,1,0>, <0,3,1,0>
+ 2756944612U, // <3,1,0,1>: Cost 3 vsldoi12 LHS, <1,0,1,2>
+ 2289221724U, // <3,1,0,2>: Cost 3 vmrglw <1,2,3,0>, <0,1,1,2>
+ 2619312278U, // <3,1,0,3>: Cost 3 vsldoi4 <0,3,1,0>, <3,0,1,2>
+ 2619313462U, // <3,1,0,4>: Cost 3 vsldoi4 <0,3,1,0>, RHS
+ 2289221970U, // <3,1,0,5>: Cost 3 vmrglw <1,2,3,0>, <0,4,1,5>
+ 2232599768U, // <3,1,0,6>: Cost 3 vmrghw <3,0,1,2>, <1,6,2,7>
+ 3362964687U, // <3,1,0,7>: Cost 4 vmrglw <1,2,3,0>, <1,6,1,7>
+ 2619316014U, // <3,1,0,u>: Cost 3 vsldoi4 <0,3,1,0>, LHS
+ 2756944683U, // <3,1,1,0>: Cost 3 vsldoi12 LHS, <1,1,0,1>
+ 1678558004U, // <3,1,1,1>: Cost 2 vsldoi12 LHS, <1,1,1,1>
+ 2691883927U, // <3,1,1,2>: Cost 3 vsldoi8 <1,2,3,1>, <1,2,3,1>
+ 3826631496U, // <3,1,1,3>: Cost 4 vsldoi12 <0,2,1,3>, <1,1,3,3>
+ 2756944723U, // <3,1,1,4>: Cost 3 vsldoi12 LHS, <1,1,4,5>
+ 2756944732U, // <3,1,1,5>: Cost 3 vsldoi12 LHS, <1,1,5,5>
+ 3830686561U, // <3,1,1,6>: Cost 4 vsldoi12 LHS, <1,1,6,1>
+ 3734869228U, // <3,1,1,7>: Cost 4 vsldoi4 <7,3,1,1>, <7,3,1,1>
+ 1678558004U, // <3,1,1,u>: Cost 2 vsldoi12 LHS, <1,1,1,1>
+ 2696529358U, // <3,1,2,0>: Cost 3 vsldoi8 <2,0,3,1>, <2,0,3,1>
+ 2756944775U, // <3,1,2,1>: Cost 3 vsldoi12 LHS, <1,2,1,3>
+ 2294548630U, // <3,1,2,2>: Cost 3 vmrglw <2,1,3,2>, <3,0,1,2>
+ 1678558102U, // <3,1,2,3>: Cost 2 vsldoi12 LHS, <1,2,3,0>
+ 2631273782U, // <3,1,2,4>: Cost 3 vsldoi4 <2,3,1,2>, RHS
+ 2756944811U, // <3,1,2,5>: Cost 3 vsldoi12 LHS, <1,2,5,3>
+ 3830686644U, // <3,1,2,6>: Cost 4 vsldoi12 LHS, <1,2,6,3>
+ 2800075706U, // <3,1,2,7>: Cost 3 vsldoi12 LHS, <1,2,7,0>
+ 1679000515U, // <3,1,2,u>: Cost 2 vsldoi12 LHS, <1,2,u,0>
+ 2619334911U, // <3,1,3,0>: Cost 3 vsldoi4 <0,3,1,3>, <0,3,1,3>
+ 2295218186U, // <3,1,3,1>: Cost 3 vmrglw <2,2,3,3>, <0,0,1,1>
+ 2293229718U, // <3,1,3,2>: Cost 3 vmrglw <1,u,3,3>, <3,0,1,2>
+ 2619337116U, // <3,1,3,3>: Cost 3 vsldoi4 <0,3,1,3>, <3,3,3,3>
+ 2619338038U, // <3,1,3,4>: Cost 3 vsldoi4 <0,3,1,3>, RHS
+ 2295218514U, // <3,1,3,5>: Cost 3 vmrglw <2,2,3,3>, <0,4,1,5>
+ 3830686729U, // <3,1,3,6>: Cost 4 vsldoi12 LHS, <1,3,6,7>
+ 3368961231U, // <3,1,3,7>: Cost 4 vmrglw <2,2,3,3>, <1,6,1,7>
+ 2619340590U, // <3,1,3,u>: Cost 3 vsldoi4 <0,3,1,3>, LHS
+ 2619343104U, // <3,1,4,0>: Cost 3 vsldoi4 <0,3,1,4>, <0,3,1,4>
+ 2289254410U, // <3,1,4,1>: Cost 3 vmrglw <1,2,3,4>, <0,0,1,1>
+ 2289256598U, // <3,1,4,2>: Cost 3 vmrglw <1,2,3,4>, <3,0,1,2>
+ 2619345410U, // <3,1,4,3>: Cost 3 vsldoi4 <0,3,1,4>, <3,4,5,6>
+ 2619346230U, // <3,1,4,4>: Cost 3 vsldoi4 <0,3,1,4>, RHS
+ 2756944976U, // <3,1,4,5>: Cost 3 vsldoi12 LHS, <1,4,5,6>
+ 3362996401U, // <3,1,4,6>: Cost 4 vmrglw <1,2,3,4>, <0,2,1,6>
+ 3362997455U, // <3,1,4,7>: Cost 4 vmrglw <1,2,3,4>, <1,6,1,7>
+ 2619348782U, // <3,1,4,u>: Cost 3 vsldoi4 <0,3,1,4>, LHS
+ 2756945007U, // <3,1,5,0>: Cost 3 vsldoi12 LHS, <1,5,0,1>
+ 3830686840U, // <3,1,5,1>: Cost 4 vsldoi12 LHS, <1,5,1,1>
+ 3358361750U, // <3,1,5,2>: Cost 4 vmrglw <0,4,3,5>, <3,0,1,2>
+ 3830686857U, // <3,1,5,3>: Cost 4 vsldoi12 LHS, <1,5,3,0>
+ 2756945047U, // <3,1,5,4>: Cost 3 vsldoi12 LHS, <1,5,4,5>
+ 2294571346U, // <3,1,5,5>: Cost 3 vmrglw <2,1,3,5>, <0,4,1,5>
+ 3806105698U, // <3,1,5,6>: Cost 4 vsldoi8 <u,0,3,1>, <5,6,7,0>
+ 3873817774U, // <3,1,5,7>: Cost 4 vsldoi12 LHS, <1,5,7,1>
+ 2756945079U, // <3,1,5,u>: Cost 3 vsldoi12 LHS, <1,5,u,1>
+ 3830686912U, // <3,1,6,0>: Cost 4 vsldoi12 LHS, <1,6,0,1>
+ 2756945103U, // <3,1,6,1>: Cost 3 vsldoi12 LHS, <1,6,1,7>
+ 2236547990U, // <3,1,6,2>: Cost 3 vmrghw <3,6,0,7>, <1,2,3,0>
+ 3826631905U, // <3,1,6,3>: Cost 4 vsldoi12 <0,2,1,3>, <1,6,3,7>
+ 3830686952U, // <3,1,6,4>: Cost 4 vsldoi12 LHS, <1,6,4,5>
+ 2756945139U, // <3,1,6,5>: Cost 3 vsldoi12 LHS, <1,6,5,7>
+ 3830686972U, // <3,1,6,6>: Cost 4 vsldoi12 LHS, <1,6,6,7>
+ 2800076030U, // <3,1,6,7>: Cost 3 vsldoi12 LHS, <1,6,7,0>
+ 2756945166U, // <3,1,6,u>: Cost 3 vsldoi12 LHS, <1,6,u,7>
+ 3699081318U, // <3,1,7,0>: Cost 4 vsldoi4 <1,3,1,7>, LHS
+ 2297905162U, // <3,1,7,1>: Cost 3 vmrglw <2,6,3,7>, <0,0,1,1>
+ 2297907350U, // <3,1,7,2>: Cost 3 vmrglw <2,6,3,7>, <3,0,1,2>
+ 3365675182U, // <3,1,7,3>: Cost 4 vmrglw <1,6,3,7>, <0,2,1,3>
+ 3699084598U, // <3,1,7,4>: Cost 4 vsldoi4 <1,3,1,7>, RHS
+ 2297905490U, // <3,1,7,5>: Cost 3 vmrglw <2,6,3,7>, <0,4,1,5>
+ 2297905329U, // <3,1,7,6>: Cost 3 vmrglw <2,6,3,7>, <0,2,1,6>
+ 3368330447U, // <3,1,7,7>: Cost 4 vmrglw <2,1,3,7>, <1,6,1,7>
+ 2297905169U, // <3,1,7,u>: Cost 3 vmrglw <2,6,3,7>, <0,0,1,u>
+ 2619375876U, // <3,1,u,0>: Cost 3 vsldoi4 <0,3,1,u>, <0,3,1,u>
+ 1678558004U, // <3,1,u,1>: Cost 2 vsldoi12 LHS, <1,1,1,1>
+ 2289289366U, // <3,1,u,2>: Cost 3 vmrglw <1,2,3,u>, <3,0,1,2>
+ 1679000956U, // <3,1,u,3>: Cost 2 vsldoi12 LHS, <1,u,3,0>
+ 2619378998U, // <3,1,u,4>: Cost 3 vsldoi4 <0,3,1,u>, RHS
+ 2756945297U, // <3,1,u,5>: Cost 3 vsldoi12 LHS, <1,u,5,3>
+ 2297905329U, // <3,1,u,6>: Cost 3 vmrglw <2,6,3,7>, <0,2,1,6>
+ 2800076192U, // <3,1,u,7>: Cost 3 vsldoi12 LHS, <1,u,7,0>
+ 1683203497U, // <3,1,u,u>: Cost 2 vsldoi12 LHS, <1,u,u,0>
+ 3362964203U, // <3,2,0,0>: Cost 4 vmrglw <1,2,3,0>, <1,0,2,0>
+ 2289222380U, // <3,2,0,1>: Cost 3 vmrglw <1,2,3,0>, <1,0,2,1>
+ 2289222462U, // <3,2,0,2>: Cost 3 vmrglw <1,2,3,0>, <1,1,2,2>
+ 1215479910U, // <3,2,0,3>: Cost 2 vmrglw <1,2,3,0>, LHS
+ 3362964207U, // <3,2,0,4>: Cost 4 vmrglw <1,2,3,0>, <1,0,2,4>
+ 2289222708U, // <3,2,0,5>: Cost 3 vmrglw <1,2,3,0>, <1,4,2,5>
+ 2232600506U, // <3,2,0,6>: Cost 3 vmrghw <3,0,1,2>, <2,6,3,7>
+ 3396142296U, // <3,2,0,7>: Cost 4 vmrglw <6,7,3,0>, <1,6,2,7>
+ 1215479915U, // <3,2,0,u>: Cost 2 vmrglw <1,2,3,0>, LHS
+ 3699105894U, // <3,2,1,0>: Cost 4 vsldoi4 <1,3,2,1>, LHS
+ 3765633844U, // <3,2,1,1>: Cost 4 vsldoi8 <1,2,3,2>, <1,1,1,1>
+ 2691892120U, // <3,2,1,2>: Cost 3 vsldoi8 <1,2,3,2>, <1,2,3,2>
+ 2752300575U, // <3,2,1,3>: Cost 3 vsldoi12 LHS, <2,1,3,1>
+ 3699109174U, // <3,2,1,4>: Cost 4 vsldoi4 <1,3,2,1>, RHS
+ 3830687280U, // <3,2,1,5>: Cost 5 vsldoi12 LHS, <2,1,5,0>
+ 3830687289U, // <3,2,1,6>: Cost 4 vsldoi12 LHS, <2,1,6,0>
+ 3874260548U, // <3,2,1,7>: Cost 4 vsldoi12 LHS, <2,1,7,2>
+ 2752742988U, // <3,2,1,u>: Cost 3 vsldoi12 LHS, <2,1,u,1>
+ 2631344230U, // <3,2,2,0>: Cost 3 vsldoi4 <2,3,2,2>, LHS
+ 2697201184U, // <3,2,2,1>: Cost 3 vsldoi8 <2,1,3,2>, <2,1,3,2>
+ 1678558824U, // <3,2,2,2>: Cost 2 vsldoi12 LHS, <2,2,2,2>
+ 1678558834U, // <3,2,2,3>: Cost 2 vsldoi12 LHS, <2,2,3,3>
+ 2631347510U, // <3,2,2,4>: Cost 3 vsldoi4 <2,3,2,2>, RHS
+ 3368953613U, // <3,2,2,5>: Cost 4 vmrglw <2,2,3,2>, <2,4,2,5>
+ 2234304442U, // <3,2,2,6>: Cost 3 vmrghw <3,2,6,3>, <2,6,3,7>
+ 3368953777U, // <3,2,2,7>: Cost 4 vmrglw <2,2,3,2>, <2,6,2,7>
+ 1679001247U, // <3,2,2,u>: Cost 2 vsldoi12 LHS, <2,2,u,3>
+ 1678558886U, // <3,2,3,0>: Cost 2 vsldoi12 LHS, <2,3,0,1>
+ 2752300719U, // <3,2,3,1>: Cost 3 vsldoi12 LHS, <2,3,1,1>
+ 2752300729U, // <3,2,3,2>: Cost 3 vsldoi12 LHS, <2,3,2,2>
+ 1221476454U, // <3,2,3,3>: Cost 2 vmrglw <2,2,3,3>, LHS
+ 1678558926U, // <3,2,3,4>: Cost 2 vsldoi12 LHS, <2,3,4,5>
+ 2800076503U, // <3,2,3,5>: Cost 3 vsldoi12 LHS, <2,3,5,5>
+ 2234746810U, // <3,2,3,6>: Cost 3 vmrghw <3,3,3,3>, <2,6,3,7>
+ 2800076516U, // <3,2,3,7>: Cost 3 vsldoi12 LHS, <2,3,7,0>
+ 1678558958U, // <3,2,3,u>: Cost 2 vsldoi12 LHS, <2,3,u,1>
+ 3699130470U, // <3,2,4,0>: Cost 4 vsldoi4 <1,3,2,4>, LHS
+ 3362996972U, // <3,2,4,1>: Cost 4 vmrglw <1,2,3,4>, <1,0,2,1>
+ 2289256040U, // <3,2,4,2>: Cost 3 vmrglw <1,2,3,4>, <2,2,2,2>
+ 1215512678U, // <3,2,4,3>: Cost 2 vmrglw <1,2,3,4>, LHS
+ 3362998676U, // <3,2,4,4>: Cost 4 vmrglw <1,2,3,4>, <3,3,2,4>
+ 2691894582U, // <3,2,4,5>: Cost 3 vsldoi8 <1,2,3,2>, RHS
+ 2235582394U, // <3,2,4,6>: Cost 3 vmrghw <3,4,5,6>, <2,6,3,7>
+ 3734967544U, // <3,2,4,7>: Cost 4 vsldoi4 <7,3,2,4>, <7,3,2,4>
+ 1215512683U, // <3,2,4,u>: Cost 2 vmrglw <1,2,3,4>, LHS
+ 3705110630U, // <3,2,5,0>: Cost 4 vsldoi4 <2,3,2,5>, LHS
+ 3368313985U, // <3,2,5,1>: Cost 4 vmrglw <2,1,3,5>, <1,5,2,1>
+ 3368314472U, // <3,2,5,2>: Cost 4 vmrglw <2,1,3,5>, <2,2,2,2>
+ 2756945768U, // <3,2,5,3>: Cost 3 vsldoi12 LHS, <2,5,3,6>
+ 3705113910U, // <3,2,5,4>: Cost 4 vsldoi4 <2,3,2,5>, RHS
+ 3310061416U, // <3,2,5,5>: Cost 4 vmrghw <3,5,6,6>, <2,5,3,6>
+ 3310135226U, // <3,2,5,6>: Cost 4 vmrghw <3,5,7,6>, <2,6,3,7>
+ 3370305457U, // <3,2,5,7>: Cost 5 vmrglw <2,4,3,5>, <2,6,2,7>
+ 2752743317U, // <3,2,5,u>: Cost 3 vsldoi12 LHS, <2,5,u,6>
+ 2631376998U, // <3,2,6,0>: Cost 3 vsldoi4 <2,3,2,6>, LHS
+ 3705119540U, // <3,2,6,1>: Cost 4 vsldoi4 <2,3,2,6>, <1,1,1,1>
+ 2631378621U, // <3,2,6,2>: Cost 3 vsldoi4 <2,3,2,6>, <2,3,2,6>
+ 1678559162U, // <3,2,6,3>: Cost 2 vsldoi12 LHS, <2,6,3,7>
+ 2631380278U, // <3,2,6,4>: Cost 3 vsldoi4 <2,3,2,6>, RHS
+ 3370976956U, // <3,2,6,5>: Cost 4 vmrglw <2,5,3,6>, <2,3,2,5>
+ 2237065146U, // <3,2,6,6>: Cost 3 vmrghw <3,6,7,7>, <2,6,3,7>
+ 3798815594U, // <3,2,6,7>: Cost 4 vsldoi8 <6,7,3,2>, <6,7,3,2>
+ 1679001575U, // <3,2,6,u>: Cost 2 vsldoi12 LHS, <2,6,u,7>
+ 2800076778U, // <3,2,7,0>: Cost 3 vsldoi12 LHS, <2,7,0,1>
+ 3371647724U, // <3,2,7,1>: Cost 4 vmrglw <2,6,3,7>, <1,0,2,1>
+ 2297906792U, // <3,2,7,2>: Cost 3 vmrglw <2,6,3,7>, <2,2,2,2>
+ 1224163430U, // <3,2,7,3>: Cost 2 vmrglw <2,6,3,7>, LHS
+ 3705130294U, // <3,2,7,4>: Cost 4 vsldoi4 <2,3,2,7>, RHS
+ 3371648052U, // <3,2,7,5>: Cost 4 vmrglw <2,6,3,7>, <1,4,2,5>
+ 2297906877U, // <3,2,7,6>: Cost 3 vmrglw <2,6,3,7>, <2,3,2,6>
+ 3371648702U, // <3,2,7,7>: Cost 4 vmrglw <2,6,3,7>, <2,3,2,7>
+ 1224163435U, // <3,2,7,u>: Cost 2 vmrglw <2,6,3,7>, LHS
+ 1679001659U, // <3,2,u,0>: Cost 2 vsldoi12 LHS, <2,u,0,1>
+ 2752743492U, // <3,2,u,1>: Cost 3 vsldoi12 LHS, <2,u,1,1>
+ 1678558824U, // <3,2,u,2>: Cost 2 vsldoi12 LHS, <2,2,2,2>
+ 1678559320U, // <3,2,u,3>: Cost 2 vsldoi12 LHS, <2,u,3,3>
+ 1679001699U, // <3,2,u,4>: Cost 2 vsldoi12 LHS, <2,u,4,5>
+ 2691897498U, // <3,2,u,5>: Cost 3 vsldoi8 <1,2,3,2>, RHS
+ 2237908922U, // <3,2,u,6>: Cost 3 vmrghw <3,u,1,2>, <2,6,3,7>
+ 2800519289U, // <3,2,u,7>: Cost 3 vsldoi12 LHS, <2,u,7,0>
+ 1679001731U, // <3,2,u,u>: Cost 2 vsldoi12 LHS, <2,u,u,1>
+ 1215480726U, // <3,3,0,0>: Cost 2 vmrglw <1,2,3,0>, <1,2,3,0>
+ 1678559382U, // <3,3,0,1>: Cost 2 vsldoi12 LHS, <3,0,1,2>
+ 2631403200U, // <3,3,0,2>: Cost 3 vsldoi4 <2,3,3,0>, <2,3,3,0>
+ 2289223282U, // <3,3,0,3>: Cost 3 vmrglw <1,2,3,0>, <2,2,3,3>
+ 2752301232U, // <3,3,0,4>: Cost 3 vsldoi12 LHS, <3,0,4,1>
+ 3362965027U, // <3,3,0,5>: Cost 4 vmrglw <1,2,3,0>, <2,1,3,5>
+ 3362965352U, // <3,3,0,6>: Cost 4 vmrglw <1,2,3,0>, <2,5,3,6>
+ 2289223610U, // <3,3,0,7>: Cost 3 vmrglw <1,2,3,0>, <2,6,3,7>
+ 1678559445U, // <3,3,0,u>: Cost 2 vsldoi12 LHS, <3,0,u,2>
+ 3830687964U, // <3,3,1,0>: Cost 4 vsldoi12 LHS, <3,1,0,0>
+ 2752301286U, // <3,3,1,1>: Cost 3 vsldoi12 LHS, <3,1,1,1>
+ 2752301297U, // <3,3,1,2>: Cost 3 vsldoi12 LHS, <3,1,2,3>
+ 2305157532U, // <3,3,1,3>: Cost 3 vmrglw <3,u,3,1>, <3,3,3,3>
+ 3830688000U, // <3,3,1,4>: Cost 4 vsldoi12 LHS, <3,1,4,0>
+ 3830688009U, // <3,3,1,5>: Cost 4 vsldoi12 LHS, <3,1,5,0>
+ 3830688019U, // <3,3,1,6>: Cost 4 vsldoi12 LHS, <3,1,6,1>
+ 3362973626U, // <3,3,1,7>: Cost 4 vmrglw <1,2,3,1>, <2,6,3,7>
+ 2752743719U, // <3,3,1,u>: Cost 3 vsldoi12 LHS, <3,1,u,3>
+ 2631417958U, // <3,3,2,0>: Cost 3 vsldoi4 <2,3,3,2>, LHS
+ 3826043193U, // <3,3,2,1>: Cost 4 vsldoi12 LHS, <3,2,1,3>
+ 1624131186U, // <3,3,2,2>: Cost 2 vsldoi8 <2,2,3,3>, <2,2,3,3>
+ 2752301384U, // <3,3,2,3>: Cost 3 vsldoi12 LHS, <3,2,3,0>
+ 2631421238U, // <3,3,2,4>: Cost 3 vsldoi4 <2,3,3,2>, RHS
+ 3826485602U, // <3,3,2,5>: Cost 4 vsldoi12 LHS, <3,2,5,u>
+ 2752301414U, // <3,3,2,6>: Cost 3 vsldoi12 LHS, <3,2,6,3>
+ 2771249519U, // <3,3,2,7>: Cost 3 vsldoi12 <3,2,7,3>, <3,2,7,3>
+ 1628112984U, // <3,3,2,u>: Cost 2 vsldoi8 <2,u,3,3>, <2,u,3,3>
+ 1563656294U, // <3,3,3,0>: Cost 2 vsldoi4 <3,3,3,3>, LHS
+ 2301855911U, // <3,3,3,1>: Cost 3 vmrglw <3,3,3,3>, <3,0,3,1>
+ 2697873730U, // <3,3,3,2>: Cost 3 vsldoi8 <2,2,3,3>, <3,2,2,3>
+ 403488870U, // <3,3,3,3>: Cost 1 vspltisw3 LHS
+ 1563659574U, // <3,3,3,4>: Cost 2 vsldoi4 <3,3,3,3>, RHS
+ 2301856239U, // <3,3,3,5>: Cost 3 vmrglw <3,3,3,3>, <3,4,3,5>
+ 2697874067U, // <3,3,3,6>: Cost 3 vsldoi8 <2,2,3,3>, <3,6,3,7>
+ 2295220154U, // <3,3,3,7>: Cost 3 vmrglw <2,2,3,3>, <2,6,3,7>
+ 403488870U, // <3,3,3,u>: Cost 1 vspltisw3 LHS
+ 2289255318U, // <3,3,4,0>: Cost 3 vmrglw <1,2,3,4>, <1,2,3,0>
+ 2631435162U, // <3,3,4,1>: Cost 3 vsldoi4 <2,3,3,4>, <1,2,3,4>
+ 2631435972U, // <3,3,4,2>: Cost 3 vsldoi4 <2,3,3,4>, <2,3,3,4>
+ 2289256050U, // <3,3,4,3>: Cost 3 vmrglw <1,2,3,4>, <2,2,3,3>
+ 1215513498U, // <3,3,4,4>: Cost 2 vmrglw <1,2,3,4>, <1,2,3,4>
+ 1679002114U, // <3,3,4,5>: Cost 2 vsldoi12 LHS, <3,4,5,6>
+ 3362998120U, // <3,3,4,6>: Cost 4 vmrglw <1,2,3,4>, <2,5,3,6>
+ 2289256378U, // <3,3,4,7>: Cost 3 vmrglw <1,2,3,4>, <2,6,3,7>
+ 1679002141U, // <3,3,4,u>: Cost 2 vsldoi12 LHS, <3,4,u,6>
+ 3831130657U, // <3,3,5,0>: Cost 4 vsldoi12 LHS, <3,5,0,1>
+ 3376277671U, // <3,3,5,1>: Cost 4 vmrglw <3,4,3,5>, <3,0,3,1>
+ 3771617012U, // <3,3,5,2>: Cost 4 vsldoi8 <2,2,3,3>, <5,2,2,3>
+ 2302536092U, // <3,3,5,3>: Cost 3 vmrglw <3,4,3,5>, <3,3,3,3>
+ 3831130697U, // <3,3,5,4>: Cost 4 vsldoi12 LHS, <3,5,4,5>
+ 2294572579U, // <3,3,5,5>: Cost 3 vmrglw <2,1,3,5>, <2,1,3,5>
+ 2800519773U, // <3,3,5,6>: Cost 3 vsldoi12 LHS, <3,5,6,7>
+ 3368314810U, // <3,3,5,7>: Cost 4 vmrglw <2,1,3,5>, <2,6,3,7>
+ 2800519791U, // <3,3,5,u>: Cost 3 vsldoi12 LHS, <3,5,u,7>
+ 2800077432U, // <3,3,6,0>: Cost 3 vsldoi12 LHS, <3,6,0,7>
+ 3310291185U, // <3,3,6,1>: Cost 4 vmrghw <3,6,0,7>, <3,1,2,3>
+ 2789165706U, // <3,3,6,2>: Cost 3 vsldoi12 <6,2,7,3>, <3,6,2,7>
+ 2764982931U, // <3,3,6,3>: Cost 3 vsldoi12 <2,2,3,3>, <3,6,3,7>
+ 2800077468U, // <3,3,6,4>: Cost 3 vsldoi12 LHS, <3,6,4,7>
+ 3873819301U, // <3,3,6,5>: Cost 4 vsldoi12 LHS, <3,6,5,7>
+ 2297235304U, // <3,3,6,6>: Cost 3 vmrglw <2,5,3,6>, <2,5,3,6>
+ 2725081963U, // <3,3,6,7>: Cost 3 vsldoi8 <6,7,3,3>, <6,7,3,3>
+ 2725745596U, // <3,3,6,u>: Cost 3 vsldoi8 <6,u,3,3>, <6,u,3,3>
+ 2631458918U, // <3,3,7,0>: Cost 3 vsldoi4 <2,3,3,7>, LHS
+ 3705201460U, // <3,3,7,1>: Cost 4 vsldoi4 <2,3,3,7>, <1,1,1,1>
+ 2631460551U, // <3,3,7,2>: Cost 3 vsldoi4 <2,3,3,7>, <2,3,3,7>
+ 2297906802U, // <3,3,7,3>: Cost 3 vmrglw <2,6,3,7>, <2,2,3,3>
+ 2631462198U, // <3,3,7,4>: Cost 3 vsldoi4 <2,3,3,7>, RHS
+ 3371648547U, // <3,3,7,5>: Cost 4 vmrglw <2,6,3,7>, <2,1,3,5>
+ 3371648548U, // <3,3,7,6>: Cost 4 vmrglw <2,6,3,7>, <2,1,3,6>
+ 1224165306U, // <3,3,7,7>: Cost 2 vmrglw <2,6,3,7>, <2,6,3,7>
+ 1224165306U, // <3,3,7,u>: Cost 2 vmrglw <2,6,3,7>, <2,6,3,7>
+ 1215480726U, // <3,3,u,0>: Cost 2 vmrglw <1,2,3,0>, <1,2,3,0>
+ 1679002398U, // <3,3,u,1>: Cost 2 vsldoi12 LHS, <3,u,1,2>
+ 1659967368U, // <3,3,u,2>: Cost 2 vsldoi8 <u,2,3,3>, <u,2,3,3>
+ 403488870U, // <3,3,u,3>: Cost 1 vspltisw3 LHS
+ 1563659574U, // <3,3,u,4>: Cost 2 vsldoi4 <3,3,3,3>, RHS
+ 1679002438U, // <3,3,u,5>: Cost 2 vsldoi12 LHS, <3,u,5,6>
+ 2756946764U, // <3,3,u,6>: Cost 3 vsldoi12 LHS, <3,u,6,3>
+ 1224165306U, // <3,3,u,7>: Cost 2 vmrglw <2,6,3,7>, <2,6,3,7>
+ 403488870U, // <3,3,u,u>: Cost 1 vspltisw3 LHS
+ 2691907584U, // <3,4,0,0>: Cost 3 vsldoi8 <1,2,3,4>, <0,0,0,0>
+ 1618165862U, // <3,4,0,1>: Cost 2 vsldoi8 <1,2,3,4>, LHS
+ 2631476937U, // <3,4,0,2>: Cost 3 vsldoi4 <2,3,4,0>, <2,3,4,0>
+ 2232601732U, // <3,4,0,3>: Cost 3 vmrghw <3,0,1,2>, <4,3,5,0>
+ 2691907922U, // <3,4,0,4>: Cost 3 vsldoi8 <1,2,3,4>, <0,4,1,5>
+ 1158860086U, // <3,4,0,5>: Cost 2 vmrghw <3,0,1,2>, RHS
+ 3306343806U, // <3,4,0,6>: Cost 4 vmrghw <3,0,1,2>, <4,6,5,7>
+ 3366947484U, // <3,4,0,7>: Cost 4 vmrglw <1,u,3,0>, <3,6,4,7>
+ 1618166429U, // <3,4,0,u>: Cost 2 vsldoi8 <1,2,3,4>, LHS
+ 2631483494U, // <3,4,1,0>: Cost 3 vsldoi4 <2,3,4,1>, LHS
+ 2691908404U, // <3,4,1,1>: Cost 3 vsldoi8 <1,2,3,4>, <1,1,1,1>
+ 1618166682U, // <3,4,1,2>: Cost 2 vsldoi8 <1,2,3,4>, <1,2,3,4>
+ 3765650393U, // <3,4,1,3>: Cost 4 vsldoi8 <1,2,3,4>, <1,3,1,4>
+ 2631486774U, // <3,4,1,4>: Cost 3 vsldoi4 <2,3,4,1>, RHS
+ 2756946914U, // <3,4,1,5>: Cost 3 vsldoi12 LHS, <4,1,5,0>
+ 3765650639U, // <3,4,1,6>: Cost 4 vsldoi8 <1,2,3,4>, <1,6,1,7>
+ 3735090439U, // <3,4,1,7>: Cost 4 vsldoi4 <7,3,4,1>, <7,3,4,1>
+ 1622148480U, // <3,4,1,u>: Cost 2 vsldoi8 <1,u,3,4>, <1,u,3,4>
+ 3765650893U, // <3,4,2,0>: Cost 4 vsldoi8 <1,2,3,4>, <2,0,3,0>
+ 3831131154U, // <3,4,2,1>: Cost 4 vsldoi12 LHS, <4,2,1,3>
+ 2691909224U, // <3,4,2,2>: Cost 3 vsldoi8 <1,2,3,4>, <2,2,2,2>
+ 2691909286U, // <3,4,2,3>: Cost 3 vsldoi8 <1,2,3,4>, <2,3,0,1>
+ 2699208469U, // <3,4,2,4>: Cost 3 vsldoi8 <2,4,3,4>, <2,4,3,4>
+ 2233863478U, // <3,4,2,5>: Cost 3 vmrghw <3,2,0,3>, RHS
+ 2691909562U, // <3,4,2,6>: Cost 3 vsldoi8 <1,2,3,4>, <2,6,3,7>
+ 2701199368U, // <3,4,2,7>: Cost 3 vsldoi8 <2,7,3,4>, <2,7,3,4>
+ 2691909691U, // <3,4,2,u>: Cost 3 vsldoi8 <1,2,3,4>, <2,u,0,1>
+ 2691909782U, // <3,4,3,0>: Cost 3 vsldoi8 <1,2,3,4>, <3,0,1,2>
+ 3765651686U, // <3,4,3,1>: Cost 4 vsldoi8 <1,2,3,4>, <3,1,1,1>
+ 2691909972U, // <3,4,3,2>: Cost 3 vsldoi8 <1,2,3,4>, <3,2,4,3>
+ 2691910044U, // <3,4,3,3>: Cost 3 vsldoi8 <1,2,3,4>, <3,3,3,3>
+ 2691910096U, // <3,4,3,4>: Cost 3 vsldoi8 <1,2,3,4>, <3,4,0,1>
+ 1161006390U, // <3,4,3,5>: Cost 2 vmrghw <3,3,3,3>, RHS
+ 2691910300U, // <3,4,3,6>: Cost 3 vsldoi8 <1,2,3,4>, <3,6,4,7>
+ 3368962716U, // <3,4,3,7>: Cost 4 vmrglw <2,2,3,3>, <3,6,4,7>
+ 1161006633U, // <3,4,3,u>: Cost 2 vmrghw <3,3,3,3>, RHS
+ 2631508070U, // <3,4,4,0>: Cost 3 vsldoi4 <2,3,4,4>, LHS
+ 2631508890U, // <3,4,4,1>: Cost 3 vsldoi4 <2,3,4,4>, <1,2,3,4>
+ 2631509709U, // <3,4,4,2>: Cost 3 vsldoi4 <2,3,4,4>, <2,3,4,4>
+ 2289256788U, // <3,4,4,3>: Cost 3 vmrglw <1,2,3,4>, <3,2,4,3>
+ 1726336208U, // <3,4,4,4>: Cost 2 vsldoi12 LHS, <4,4,4,4>
+ 1618169142U, // <3,4,4,5>: Cost 2 vsldoi8 <1,2,3,4>, RHS
+ 3362998858U, // <3,4,4,6>: Cost 4 vmrglw <1,2,3,4>, <3,5,4,6>
+ 2289257116U, // <3,4,4,7>: Cost 3 vmrglw <1,2,3,4>, <3,6,4,7>
+ 1618169385U, // <3,4,4,u>: Cost 2 vsldoi8 <1,2,3,4>, RHS
+ 1557774438U, // <3,4,5,0>: Cost 2 vsldoi4 <2,3,4,5>, LHS
+ 2631516980U, // <3,4,5,1>: Cost 3 vsldoi4 <2,3,4,5>, <1,1,1,1>
+ 1557776078U, // <3,4,5,2>: Cost 2 vsldoi4 <2,3,4,5>, <2,3,4,5>
+ 2631518358U, // <3,4,5,3>: Cost 3 vsldoi4 <2,3,4,5>, <3,0,1,2>
+ 1557777718U, // <3,4,5,4>: Cost 2 vsldoi4 <2,3,4,5>, RHS
+ 2296563406U, // <3,4,5,5>: Cost 3 vmrglw <2,4,3,5>, <2,3,4,5>
+ 604818742U, // <3,4,5,6>: Cost 1 vsldoi12 LHS, RHS
+ 2661381387U, // <3,4,5,7>: Cost 3 vsldoi4 <7,3,4,5>, <7,3,4,5>
+ 604818760U, // <3,4,5,u>: Cost 1 vsldoi12 LHS, RHS
+ 3705266278U, // <3,4,6,0>: Cost 4 vsldoi4 <2,3,4,6>, LHS
+ 3831131482U, // <3,4,6,1>: Cost 4 vsldoi12 LHS, <4,6,1,7>
+ 2733715962U, // <3,4,6,2>: Cost 3 vsldoi8 <u,2,3,4>, <6,2,7,3>
+ 3844771180U, // <3,4,6,3>: Cost 4 vsldoi12 <3,2,4,3>, <4,6,3,7>
+ 2800078197U, // <3,4,6,4>: Cost 3 vsldoi12 LHS, <4,6,4,7>
+ 2236550454U, // <3,4,6,5>: Cost 3 vmrghw <3,6,0,7>, RHS
+ 2733716280U, // <3,4,6,6>: Cost 3 vsldoi8 <u,2,3,4>, <6,6,6,6>
+ 2725090156U, // <3,4,6,7>: Cost 3 vsldoi8 <6,7,3,4>, <6,7,3,4>
+ 2236550697U, // <3,4,6,u>: Cost 3 vmrghw <3,6,0,7>, RHS
+ 2733716474U, // <3,4,7,0>: Cost 3 vsldoi8 <u,2,3,4>, <7,0,1,2>
+ 3371647013U, // <3,4,7,1>: Cost 4 vmrglw <2,6,3,7>, <0,0,4,1>
+ 2727744688U, // <3,4,7,2>: Cost 3 vsldoi8 <7,2,3,4>, <7,2,3,4>
+ 3371649364U, // <3,4,7,3>: Cost 4 vmrglw <2,6,3,7>, <3,2,4,3>
+ 2733716838U, // <3,4,7,4>: Cost 3 vsldoi8 <u,2,3,4>, <7,4,5,6>
+ 2297906894U, // <3,4,7,5>: Cost 3 vmrglw <2,6,3,7>, <2,3,4,5>
+ 3371647180U, // <3,4,7,6>: Cost 4 vmrglw <2,6,3,7>, <0,2,4,6>
+ 2733717100U, // <3,4,7,7>: Cost 3 vsldoi8 <u,2,3,4>, <7,7,7,7>
+ 2297906897U, // <3,4,7,u>: Cost 3 vmrglw <2,6,3,7>, <2,3,4,u>
+ 1557799014U, // <3,4,u,0>: Cost 2 vsldoi4 <2,3,4,u>, LHS
+ 1618171694U, // <3,4,u,1>: Cost 2 vsldoi8 <1,2,3,4>, LHS
+ 1557800657U, // <3,4,u,2>: Cost 2 vsldoi4 <2,3,4,u>, <2,3,4,u>
+ 2691913660U, // <3,4,u,3>: Cost 3 vsldoi8 <1,2,3,4>, <u,3,0,1>
+ 1557802294U, // <3,4,u,4>: Cost 2 vsldoi4 <2,3,4,u>, RHS
+ 1618172058U, // <3,4,u,5>: Cost 2 vsldoi8 <1,2,3,4>, RHS
+ 604818985U, // <3,4,u,6>: Cost 1 vsldoi12 LHS, RHS
+ 2661405966U, // <3,4,u,7>: Cost 3 vsldoi4 <7,3,4,u>, <7,3,4,u>
+ 604819003U, // <3,4,u,u>: Cost 1 vsldoi12 LHS, RHS
+ 2643492966U, // <3,5,0,0>: Cost 3 vsldoi4 <4,3,5,0>, LHS
+ 2756947528U, // <3,5,0,1>: Cost 3 vsldoi12 LHS, <5,0,1,2>
+ 2331029019U, // <3,5,0,2>: Cost 3 vmrglw <u,2,3,0>, <4,u,5,2>
+ 2643495062U, // <3,5,0,3>: Cost 3 vsldoi4 <4,3,5,0>, <3,0,1,2>
+ 2756947554U, // <3,5,0,4>: Cost 3 vsldoi12 LHS, <5,0,4,1>
+ 2800078443U, // <3,5,0,5>: Cost 3 vsldoi12 LHS, <5,0,5,1>
+ 2289224194U, // <3,5,0,6>: Cost 3 vmrglw <1,2,3,0>, <3,4,5,6>
+ 3362964723U, // <3,5,0,7>: Cost 4 vmrglw <1,2,3,0>, <1,6,5,7>
+ 2756947590U, // <3,5,0,u>: Cost 3 vsldoi12 LHS, <5,0,u,1>
+ 2800078479U, // <3,5,1,0>: Cost 3 vsldoi12 LHS, <5,1,0,1>
+ 2333027218U, // <3,5,1,1>: Cost 3 vmrglw <u,5,3,1>, <4,0,5,1>
+ 2691916699U, // <3,5,1,2>: Cost 3 vsldoi8 <1,2,3,5>, <1,2,3,5>
+ 3832901294U, // <3,5,1,3>: Cost 4 vsldoi12 <1,2,5,3>, <5,1,3,5>
+ 2800078519U, // <3,5,1,4>: Cost 3 vsldoi12 LHS, <5,1,4,5>
+ 3830689467U, // <3,5,1,5>: Cost 4 vsldoi12 LHS, <5,1,5,0>
+ 3830689481U, // <3,5,1,6>: Cost 4 vsldoi12 LHS, <5,1,6,5>
+ 3873820365U, // <3,5,1,7>: Cost 4 vsldoi12 LHS, <5,1,7,0>
+ 2800078551U, // <3,5,1,u>: Cost 3 vsldoi12 LHS, <5,1,u,1>
+ 3770967487U, // <3,5,2,0>: Cost 4 vsldoi8 <2,1,3,5>, <2,0,1,4>
+ 2697225763U, // <3,5,2,1>: Cost 3 vsldoi8 <2,1,3,5>, <2,1,3,5>
+ 3830689523U, // <3,5,2,2>: Cost 4 vsldoi12 LHS, <5,2,2,2>
+ 2699216590U, // <3,5,2,3>: Cost 3 vsldoi8 <2,4,3,5>, <2,3,4,5>
+ 2699216662U, // <3,5,2,4>: Cost 3 vsldoi8 <2,4,3,5>, <2,4,3,5>
+ 2783047439U, // <3,5,2,5>: Cost 3 vsldoi12 <5,2,5,3>, <5,2,5,3>
+ 2783121176U, // <3,5,2,6>: Cost 3 vsldoi12 <5,2,6,3>, <5,2,6,3>
+ 3856936737U, // <3,5,2,7>: Cost 4 vsldoi12 <5,2,7,3>, <5,2,7,3>
+ 2701871194U, // <3,5,2,u>: Cost 3 vsldoi8 <2,u,3,5>, <2,u,3,5>
+ 2643517542U, // <3,5,3,0>: Cost 3 vsldoi4 <4,3,5,3>, LHS
+ 2331052946U, // <3,5,3,1>: Cost 3 vmrglw <u,2,3,3>, <4,0,5,1>
+ 3699345010U, // <3,5,3,2>: Cost 4 vsldoi4 <1,3,5,3>, <2,2,3,3>
+ 2705189276U, // <3,5,3,3>: Cost 3 vsldoi8 <3,4,3,5>, <3,3,3,3>
+ 2705189359U, // <3,5,3,4>: Cost 3 vsldoi8 <3,4,3,5>, <3,4,3,5>
+ 2331053274U, // <3,5,3,5>: Cost 3 vmrglw <u,2,3,3>, <4,4,5,5>
+ 2295220738U, // <3,5,3,6>: Cost 3 vmrglw <2,2,3,3>, <3,4,5,6>
+ 3368961267U, // <3,5,3,7>: Cost 4 vmrglw <2,2,3,3>, <1,6,5,7>
+ 2295220740U, // <3,5,3,u>: Cost 3 vmrglw <2,2,3,3>, <3,4,5,u>
+ 2643525734U, // <3,5,4,0>: Cost 3 vsldoi4 <4,3,5,4>, LHS
+ 2331061138U, // <3,5,4,1>: Cost 3 vmrglw <u,2,3,4>, <4,0,5,1>
+ 2235584280U, // <3,5,4,2>: Cost 3 vmrghw <3,4,5,6>, <5,2,6,3>
+ 2643528194U, // <3,5,4,3>: Cost 3 vsldoi4 <4,3,5,4>, <3,4,5,6>
+ 2735713498U, // <3,5,4,4>: Cost 3 vsldoi8 <u,5,3,5>, <4,4,5,5>
+ 2756947892U, // <3,5,4,5>: Cost 3 vsldoi12 LHS, <5,4,5,6>
+ 2289256962U, // <3,5,4,6>: Cost 3 vmrglw <1,2,3,4>, <3,4,5,6>
+ 3362997491U, // <3,5,4,7>: Cost 4 vmrglw <1,2,3,4>, <1,6,5,7>
+ 2756947919U, // <3,5,4,u>: Cost 3 vsldoi12 LHS, <5,4,u,6>
+ 2800078803U, // <3,5,5,0>: Cost 3 vsldoi12 LHS, <5,5,0,1>
+ 2800078812U, // <3,5,5,1>: Cost 3 vsldoi12 LHS, <5,5,1,1>
+ 2631591639U, // <3,5,5,2>: Cost 3 vsldoi4 <2,3,5,5>, <2,3,5,5>
+ 3832901616U, // <3,5,5,3>: Cost 4 vsldoi12 <1,2,5,3>, <5,5,3,3>
+ 2800078843U, // <3,5,5,4>: Cost 3 vsldoi12 LHS, <5,5,4,5>
+ 1726337028U, // <3,5,5,5>: Cost 2 vsldoi12 LHS, <5,5,5,5>
+ 2800078862U, // <3,5,5,6>: Cost 3 vsldoi12 LHS, <5,5,6,6>
+ 3368314099U, // <3,5,5,7>: Cost 4 vmrglw <2,1,3,5>, <1,6,5,7>
+ 1726337028U, // <3,5,5,u>: Cost 2 vsldoi12 LHS, <5,5,5,5>
+ 2800078884U, // <3,5,6,0>: Cost 3 vsldoi12 LHS, <5,6,0,1>
+ 2800078899U, // <3,5,6,1>: Cost 3 vsldoi12 LHS, <5,6,1,7>
+ 2631599832U, // <3,5,6,2>: Cost 3 vsldoi4 <2,3,5,6>, <2,3,5,6>
+ 2800078914U, // <3,5,6,3>: Cost 3 vsldoi12 LHS, <5,6,3,4>
+ 2800078924U, // <3,5,6,4>: Cost 3 vsldoi12 LHS, <5,6,4,5>
+ 2800078935U, // <3,5,6,5>: Cost 3 vsldoi12 LHS, <5,6,5,7>
+ 2297235970U, // <3,5,6,6>: Cost 3 vmrglw <2,5,3,6>, <3,4,5,6>
+ 1726337122U, // <3,5,6,7>: Cost 2 vsldoi12 LHS, <5,6,7,0>
+ 1726337131U, // <3,5,6,u>: Cost 2 vsldoi12 LHS, <5,6,u,0>
+ 3699376230U, // <3,5,7,0>: Cost 4 vsldoi4 <1,3,5,7>, LHS
+ 2333739922U, // <3,5,7,1>: Cost 3 vmrglw <u,6,3,7>, <4,0,5,1>
+ 3699378106U, // <3,5,7,2>: Cost 4 vsldoi4 <1,3,5,7>, <2,6,3,7>
+ 3371647915U, // <3,5,7,3>: Cost 4 vmrglw <2,6,3,7>, <1,2,5,3>
+ 3699379510U, // <3,5,7,4>: Cost 4 vsldoi4 <1,3,5,7>, RHS
+ 2333740250U, // <3,5,7,5>: Cost 3 vmrglw <u,6,3,7>, <4,4,5,5>
+ 2297907714U, // <3,5,7,6>: Cost 3 vmrglw <2,6,3,7>, <3,4,5,6>
+ 3370984691U, // <3,5,7,7>: Cost 4 vmrglw <2,5,3,7>, <1,6,5,7>
+ 2297907716U, // <3,5,7,u>: Cost 3 vmrglw <2,6,3,7>, <3,4,5,u>
+ 2800079046U, // <3,5,u,0>: Cost 3 vsldoi12 LHS, <5,u,0,1>
+ 2756948176U, // <3,5,u,1>: Cost 3 vsldoi12 LHS, <5,u,1,2>
+ 2331029019U, // <3,5,u,2>: Cost 3 vmrglw <u,2,3,0>, <4,u,5,2>
+ 2800079076U, // <3,5,u,3>: Cost 3 vsldoi12 LHS, <5,u,3,4>
+ 2800079085U, // <3,5,u,4>: Cost 3 vsldoi12 LHS, <5,u,4,4>
+ 1726337028U, // <3,5,u,5>: Cost 2 vsldoi12 LHS, <5,5,5,5>
+ 2289289730U, // <3,5,u,6>: Cost 3 vmrglw <1,2,3,u>, <3,4,5,6>
+ 1726337284U, // <3,5,u,7>: Cost 2 vsldoi12 LHS, <5,u,7,0>
+ 1726337293U, // <3,5,u,u>: Cost 2 vsldoi12 LHS, <5,u,u,0>
+ 3773628416U, // <3,6,0,0>: Cost 4 vsldoi8 <2,5,3,6>, <0,0,0,0>
+ 2699886694U, // <3,6,0,1>: Cost 3 vsldoi8 <2,5,3,6>, LHS
+ 2789167401U, // <3,6,0,2>: Cost 3 vsldoi12 <6,2,7,3>, <6,0,2,1>
+ 3362965862U, // <3,6,0,3>: Cost 4 vmrglw <1,2,3,0>, <3,2,6,3>
+ 3773628754U, // <3,6,0,4>: Cost 4 vsldoi8 <2,5,3,6>, <0,4,1,5>
+ 3723284326U, // <3,6,0,5>: Cost 4 vsldoi4 <5,3,6,0>, <5,3,6,0>
+ 2800079181U, // <3,6,0,6>: Cost 3 vsldoi12 LHS, <6,0,6,1>
+ 1215483190U, // <3,6,0,7>: Cost 2 vmrglw <1,2,3,0>, RHS
+ 1215483191U, // <3,6,0,u>: Cost 2 vmrglw <1,2,3,0>, RHS
+ 3873821032U, // <3,6,1,0>: Cost 4 vsldoi12 LHS, <6,1,0,1>
+ 3773629236U, // <3,6,1,1>: Cost 4 vsldoi8 <2,5,3,6>, <1,1,1,1>
+ 2691924892U, // <3,6,1,2>: Cost 3 vsldoi8 <1,2,3,6>, <1,2,3,6>
+ 3830690184U, // <3,6,1,3>: Cost 5 vsldoi12 LHS, <6,1,3,6>
+ 3873821072U, // <3,6,1,4>: Cost 4 vsldoi12 LHS, <6,1,4,5>
+ 3873821082U, // <3,6,1,5>: Cost 4 vsldoi12 LHS, <6,1,5,6>
+ 3403453240U, // <3,6,1,6>: Cost 4 vmrglw <u,0,3,1>, <6,6,6,6>
+ 2289233206U, // <3,6,1,7>: Cost 3 vmrglw <1,2,3,1>, RHS
+ 2289233207U, // <3,6,1,u>: Cost 3 vmrglw <1,2,3,1>, RHS
+ 2661498982U, // <3,6,2,0>: Cost 3 vsldoi4 <7,3,6,2>, LHS
+ 3770975780U, // <3,6,2,1>: Cost 4 vsldoi8 <2,1,3,6>, <2,1,3,6>
+ 2631640797U, // <3,6,2,2>: Cost 3 vsldoi4 <2,3,6,2>, <2,3,6,2>
+ 3771639485U, // <3,6,2,3>: Cost 4 vsldoi8 <2,2,3,6>, <2,3,2,6>
+ 2661502262U, // <3,6,2,4>: Cost 3 vsldoi4 <7,3,6,2>, RHS
+ 2699888488U, // <3,6,2,5>: Cost 3 vsldoi8 <2,5,3,6>, <2,5,3,6>
+ 2661503482U, // <3,6,2,6>: Cost 3 vsldoi4 <7,3,6,2>, <6,2,7,3>
+ 1715425786U, // <3,6,2,7>: Cost 2 vsldoi12 <6,2,7,3>, <6,2,7,3>
+ 1715499523U, // <3,6,2,u>: Cost 2 vsldoi12 <6,2,u,3>, <6,2,u,3>
+ 3773630614U, // <3,6,3,0>: Cost 4 vsldoi8 <2,5,3,6>, <3,0,1,2>
+ 3372942825U, // <3,6,3,1>: Cost 4 vmrglw <2,u,3,3>, <2,0,6,1>
+ 2234749434U, // <3,6,3,2>: Cost 3 vmrghw <3,3,3,3>, <6,2,7,3>
+ 3368962406U, // <3,6,3,3>: Cost 4 vmrglw <2,2,3,3>, <3,2,6,3>
+ 2699889154U, // <3,6,3,4>: Cost 3 vsldoi8 <2,5,3,6>, <3,4,5,6>
+ 3773631068U, // <3,6,3,5>: Cost 4 vsldoi8 <2,5,3,6>, <3,5,6,6>
+ 2331054904U, // <3,6,3,6>: Cost 3 vmrglw <u,2,3,3>, <6,6,6,6>
+ 1221479734U, // <3,6,3,7>: Cost 2 vmrglw <2,2,3,3>, RHS
+ 1221479735U, // <3,6,3,u>: Cost 2 vmrglw <2,2,3,3>, RHS
+ 2235584801U, // <3,6,4,0>: Cost 3 vmrghw <3,4,5,6>, <6,0,1,2>
+ 3717342106U, // <3,6,4,1>: Cost 4 vsldoi4 <4,3,6,4>, <1,2,3,4>
+ 2789167729U, // <3,6,4,2>: Cost 3 vsldoi12 <6,2,7,3>, <6,4,2,5>
+ 2235585074U, // <3,6,4,3>: Cost 3 vmrghw <3,4,5,6>, <6,3,4,5>
+ 2235585165U, // <3,6,4,4>: Cost 3 vmrghw <3,4,5,6>, <6,4,5,6>
+ 2699889974U, // <3,6,4,5>: Cost 3 vsldoi8 <2,5,3,6>, RHS
+ 2800079509U, // <3,6,4,6>: Cost 3 vsldoi12 LHS, <6,4,6,5>
+ 1215515958U, // <3,6,4,7>: Cost 2 vmrglw <1,2,3,4>, RHS
+ 1215515959U, // <3,6,4,u>: Cost 2 vmrglw <1,2,3,4>, RHS
+ 3873821356U, // <3,6,5,0>: Cost 4 vsldoi12 LHS, <6,5,0,1>
+ 3372959209U, // <3,6,5,1>: Cost 5 vmrglw <2,u,3,5>, <2,0,6,1>
+ 3862909629U, // <3,6,5,2>: Cost 4 vsldoi12 <6,2,7,3>, <6,5,2,0>
+ 3773632358U, // <3,6,5,3>: Cost 4 vsldoi8 <2,5,3,6>, <5,3,6,0>
+ 3873821396U, // <3,6,5,4>: Cost 4 vsldoi12 LHS, <6,5,4,5>
+ 3873821405U, // <3,6,5,5>: Cost 4 vsldoi12 LHS, <6,5,5,5>
+ 3862909672U, // <3,6,5,6>: Cost 4 vsldoi12 <6,2,7,3>, <6,5,6,7>
+ 2294574390U, // <3,6,5,7>: Cost 3 vmrglw <2,1,3,5>, RHS
+ 2294574391U, // <3,6,5,u>: Cost 3 vmrglw <2,1,3,5>, RHS
+ 2800079613U, // <3,6,6,0>: Cost 3 vsldoi12 LHS, <6,6,0,1>
+ 3873821446U, // <3,6,6,1>: Cost 4 vsldoi12 LHS, <6,6,1,1>
+ 2789167888U, // <3,6,6,2>: Cost 3 vsldoi12 <6,2,7,3>, <6,6,2,2>
+ 3844920090U, // <3,6,6,3>: Cost 4 vsldoi12 <3,2,6,3>, <6,6,3,3>
+ 2800079653U, // <3,6,6,4>: Cost 3 vsldoi12 LHS, <6,6,4,5>
+ 3723333484U, // <3,6,6,5>: Cost 4 vsldoi4 <5,3,6,6>, <5,3,6,6>
+ 1726337848U, // <3,6,6,6>: Cost 2 vsldoi12 LHS, <6,6,6,6>
+ 1726337858U, // <3,6,6,7>: Cost 2 vsldoi12 LHS, <6,6,7,7>
+ 1726337867U, // <3,6,6,u>: Cost 2 vsldoi12 LHS, <6,6,u,7>
+ 1726337870U, // <3,6,7,0>: Cost 2 vsldoi12 LHS, <6,7,0,1>
+ 2297906665U, // <3,6,7,1>: Cost 3 vmrglw <2,6,3,7>, <2,0,6,1>
+ 2792117090U, // <3,6,7,2>: Cost 3 vsldoi12 <6,7,2,3>, <6,7,2,3>
+ 2297907558U, // <3,6,7,3>: Cost 3 vmrglw <2,6,3,7>, <3,2,6,3>
+ 1726337910U, // <3,6,7,4>: Cost 2 vsldoi12 LHS, <6,7,4,5>
+ 2297906993U, // <3,6,7,5>: Cost 3 vmrglw <2,6,3,7>, <2,4,6,5>
+ 2297906832U, // <3,6,7,6>: Cost 3 vmrglw <2,6,3,7>, <2,2,6,6>
+ 1224166710U, // <3,6,7,7>: Cost 2 vmrglw <2,6,3,7>, RHS
+ 1224166711U, // <3,6,7,u>: Cost 2 vmrglw <2,6,3,7>, RHS
+ 1726337951U, // <3,6,u,0>: Cost 2 vsldoi12 LHS, <6,u,0,1>
+ 2699892526U, // <3,6,u,1>: Cost 3 vsldoi8 <2,5,3,6>, LHS
+ 2789168049U, // <3,6,u,2>: Cost 3 vsldoi12 <6,2,7,3>, <6,u,2,1>
+ 2792854460U, // <3,6,u,3>: Cost 3 vsldoi12 <6,u,3,3>, <6,u,3,3>
+ 1726337991U, // <3,6,u,4>: Cost 2 vsldoi12 LHS, <6,u,4,5>
+ 2699892890U, // <3,6,u,5>: Cost 3 vsldoi8 <2,5,3,6>, RHS
+ 1726337848U, // <3,6,u,6>: Cost 2 vsldoi12 LHS, <6,6,6,6>
+ 1215548726U, // <3,6,u,7>: Cost 2 vmrglw <1,2,3,u>, RHS
+ 1215548727U, // <3,6,u,u>: Cost 2 vmrglw <1,2,3,u>, RHS
+ 2700558336U, // <3,7,0,0>: Cost 3 vsldoi8 <2,6,3,7>, <0,0,0,0>
+ 1626816614U, // <3,7,0,1>: Cost 2 vsldoi8 <2,6,3,7>, LHS
+ 2700558513U, // <3,7,0,2>: Cost 3 vsldoi8 <2,6,3,7>, <0,2,1,6>
+ 2331030010U, // <3,7,0,3>: Cost 3 vmrglw <u,2,3,0>, <6,2,7,3>
+ 2700558674U, // <3,7,0,4>: Cost 3 vsldoi8 <2,6,3,7>, <0,4,1,5>
+ 2800079906U, // <3,7,0,5>: Cost 3 vsldoi12 LHS, <7,0,5,6>
+ 2655588936U, // <3,7,0,6>: Cost 3 vsldoi4 <6,3,7,0>, <6,3,7,0>
+ 2800079919U, // <3,7,0,7>: Cost 3 vsldoi12 LHS, <7,0,7,1>
+ 1626817181U, // <3,7,0,u>: Cost 2 vsldoi8 <2,6,3,7>, LHS
+ 3774300899U, // <3,7,1,0>: Cost 4 vsldoi8 <2,6,3,7>, <1,0,1,1>
+ 2700559156U, // <3,7,1,1>: Cost 3 vsldoi8 <2,6,3,7>, <1,1,1,1>
+ 2700559254U, // <3,7,1,2>: Cost 3 vsldoi8 <2,6,3,7>, <1,2,3,0>
+ 3774301148U, // <3,7,1,3>: Cost 4 vsldoi8 <2,6,3,7>, <1,3,1,7>
+ 3774301227U, // <3,7,1,4>: Cost 4 vsldoi8 <2,6,3,7>, <1,4,1,5>
+ 3774301295U, // <3,7,1,5>: Cost 4 vsldoi8 <2,6,3,7>, <1,5,0,1>
+ 3768329441U, // <3,7,1,6>: Cost 4 vsldoi8 <1,6,3,7>, <1,6,3,7>
+ 3403453250U, // <3,7,1,7>: Cost 4 vmrglw <u,0,3,1>, <6,6,7,7>
+ 2700559740U, // <3,7,1,u>: Cost 3 vsldoi8 <2,6,3,7>, <1,u,3,0>
+ 2700559849U, // <3,7,2,0>: Cost 3 vsldoi8 <2,6,3,7>, <2,0,6,1>
+ 3770983973U, // <3,7,2,1>: Cost 4 vsldoi8 <2,1,3,7>, <2,1,3,7>
+ 2700559976U, // <3,7,2,2>: Cost 3 vsldoi8 <2,6,3,7>, <2,2,2,2>
+ 2698569415U, // <3,7,2,3>: Cost 3 vsldoi8 <2,3,3,7>, <2,3,3,7>
+ 2700560177U, // <3,7,2,4>: Cost 3 vsldoi8 <2,6,3,7>, <2,4,6,5>
+ 3773638505U, // <3,7,2,5>: Cost 4 vsldoi8 <2,5,3,7>, <2,5,3,7>
+ 1626818490U, // <3,7,2,6>: Cost 2 vsldoi8 <2,6,3,7>, <2,6,3,7>
+ 2795140307U, // <3,7,2,7>: Cost 3 vsldoi12 <7,2,7,3>, <7,2,7,3>
+ 1628145756U, // <3,7,2,u>: Cost 2 vsldoi8 <2,u,3,7>, <2,u,3,7>
+ 2700560534U, // <3,7,3,0>: Cost 3 vsldoi8 <2,6,3,7>, <3,0,1,2>
+ 3774302438U, // <3,7,3,1>: Cost 4 vsldoi8 <2,6,3,7>, <3,1,1,1>
+ 2700560742U, // <3,7,3,2>: Cost 3 vsldoi8 <2,6,3,7>, <3,2,6,3>
+ 2700560796U, // <3,7,3,3>: Cost 3 vsldoi8 <2,6,3,7>, <3,3,3,3>
+ 2700560898U, // <3,7,3,4>: Cost 3 vsldoi8 <2,6,3,7>, <3,4,5,6>
+ 3774302821U, // <3,7,3,5>: Cost 4 vsldoi8 <2,6,3,7>, <3,5,7,6>
+ 2700561079U, // <3,7,3,6>: Cost 3 vsldoi8 <2,6,3,7>, <3,6,7,7>
+ 2700561091U, // <3,7,3,7>: Cost 3 vsldoi8 <2,6,3,7>, <3,7,0,1>
+ 2700561182U, // <3,7,3,u>: Cost 3 vsldoi8 <2,6,3,7>, <3,u,1,2>
+ 2655617126U, // <3,7,4,0>: Cost 3 vsldoi4 <6,3,7,4>, LHS
+ 3774303178U, // <3,7,4,1>: Cost 4 vsldoi8 <2,6,3,7>, <4,1,2,3>
+ 2655619002U, // <3,7,4,2>: Cost 3 vsldoi4 <6,3,7,4>, <2,6,3,7>
+ 2331062778U, // <3,7,4,3>: Cost 3 vmrglw <u,2,3,4>, <6,2,7,3>
+ 2655620406U, // <3,7,4,4>: Cost 3 vsldoi4 <6,3,7,4>, RHS
+ 1626819894U, // <3,7,4,5>: Cost 2 vsldoi8 <2,6,3,7>, RHS
+ 2655621708U, // <3,7,4,6>: Cost 3 vsldoi4 <6,3,7,4>, <6,3,7,4>
+ 2800080247U, // <3,7,4,7>: Cost 3 vsldoi12 LHS, <7,4,7,5>
+ 1626820137U, // <3,7,4,u>: Cost 2 vsldoi8 <2,6,3,7>, RHS
+ 3774303816U, // <3,7,5,0>: Cost 4 vsldoi8 <2,6,3,7>, <5,0,1,2>
+ 3873822093U, // <3,7,5,1>: Cost 4 vsldoi12 LHS, <7,5,1,0>
+ 3774303998U, // <3,7,5,2>: Cost 4 vsldoi8 <2,6,3,7>, <5,2,3,4>
+ 3862910368U, // <3,7,5,3>: Cost 4 vsldoi12 <6,2,7,3>, <7,5,3,1>
+ 3774304180U, // <3,7,5,4>: Cost 4 vsldoi8 <2,6,3,7>, <5,4,5,6>
+ 2800080310U, // <3,7,5,5>: Cost 3 vsldoi12 LHS, <7,5,5,5>
+ 2800080321U, // <3,7,5,6>: Cost 3 vsldoi12 LHS, <7,5,6,7>
+ 3873822147U, // <3,7,5,7>: Cost 4 vsldoi12 LHS, <7,5,7,0>
+ 2800080339U, // <3,7,5,u>: Cost 3 vsldoi12 LHS, <7,5,u,7>
+ 2800080348U, // <3,7,6,0>: Cost 3 vsldoi12 LHS, <7,6,0,7>
+ 3873822181U, // <3,7,6,1>: Cost 4 vsldoi12 LHS, <7,6,1,7>
+ 2789168622U, // <3,7,6,2>: Cost 3 vsldoi12 <6,2,7,3>, <7,6,2,7>
+ 2700563016U, // <3,7,6,3>: Cost 3 vsldoi8 <2,6,3,7>, <6,3,7,0>
+ 2800080384U, // <3,7,6,4>: Cost 3 vsldoi12 LHS, <7,6,4,7>
+ 3862910472U, // <3,7,6,5>: Cost 4 vsldoi12 <6,2,7,3>, <7,6,5,6>
+ 2700563256U, // <3,7,6,6>: Cost 3 vsldoi8 <2,6,3,7>, <6,6,6,6>
+ 2800080404U, // <3,7,6,7>: Cost 3 vsldoi12 LHS, <7,6,7,0>
+ 2793149988U, // <3,7,6,u>: Cost 3 vsldoi12 <6,u,7,3>, <7,6,u,7>
+ 2637725798U, // <3,7,7,0>: Cost 3 vsldoi4 <3,3,7,7>, LHS
+ 3371649227U, // <3,7,7,1>: Cost 4 vmrglw <2,6,3,7>, <3,0,7,1>
+ 2637727674U, // <3,7,7,2>: Cost 3 vsldoi4 <3,3,7,7>, <2,6,3,7>
+ 2297907567U, // <3,7,7,3>: Cost 3 vmrglw <2,6,3,7>, <3,2,7,3>
+ 2637729078U, // <3,7,7,4>: Cost 3 vsldoi4 <3,3,7,7>, RHS
+ 3371649312U, // <3,7,7,5>: Cost 4 vmrglw <2,6,3,7>, <3,1,7,5>
+ 2655646287U, // <3,7,7,6>: Cost 3 vsldoi4 <6,3,7,7>, <6,3,7,7>
+ 1726338668U, // <3,7,7,7>: Cost 2 vsldoi12 LHS, <7,7,7,7>
+ 1726338668U, // <3,7,7,u>: Cost 2 vsldoi12 LHS, <7,7,7,7>
+ 2700564179U, // <3,7,u,0>: Cost 3 vsldoi8 <2,6,3,7>, <u,0,1,2>
+ 1626822446U, // <3,7,u,1>: Cost 2 vsldoi8 <2,6,3,7>, LHS
+ 2700564357U, // <3,7,u,2>: Cost 3 vsldoi8 <2,6,3,7>, <u,2,3,0>
+ 2700564412U, // <3,7,u,3>: Cost 3 vsldoi8 <2,6,3,7>, <u,3,0,1>
+ 2700564543U, // <3,7,u,4>: Cost 3 vsldoi8 <2,6,3,7>, <u,4,5,6>
+ 1626822810U, // <3,7,u,5>: Cost 2 vsldoi8 <2,6,3,7>, RHS
+ 1662654672U, // <3,7,u,6>: Cost 2 vsldoi8 <u,6,3,7>, <u,6,3,7>
+ 1726338668U, // <3,7,u,7>: Cost 2 vsldoi12 LHS, <7,7,7,7>
+ 1626823013U, // <3,7,u,u>: Cost 2 vsldoi8 <2,6,3,7>, LHS
+ 1678557184U, // <3,u,0,0>: Cost 2 vsldoi12 LHS, <0,0,0,0>
+ 1679005395U, // <3,u,0,1>: Cost 2 vsldoi12 LHS, <u,0,1,2>
+ 2289221787U, // <3,u,0,2>: Cost 3 vmrglw <1,2,3,0>, <0,1,u,2>
+ 1215479964U, // <3,u,0,3>: Cost 2 vmrglw <1,2,3,0>, LHS
+ 2752747245U, // <3,u,0,4>: Cost 3 vsldoi12 LHS, <u,0,4,1>
+ 1158863002U, // <3,u,0,5>: Cost 2 vmrghw <3,0,1,2>, RHS
+ 2289224221U, // <3,u,0,6>: Cost 3 vmrglw <1,2,3,0>, <3,4,u,6>
+ 1215483208U, // <3,u,0,7>: Cost 2 vmrglw <1,2,3,0>, RHS
+ 1679005458U, // <3,u,0,u>: Cost 2 vsldoi12 LHS, <u,0,u,2>
+ 1558036582U, // <3,u,1,0>: Cost 2 vsldoi4 <2,3,u,1>, LHS
+ 1678558004U, // <3,u,1,1>: Cost 2 vsldoi12 LHS, <1,1,1,1>
+ 604821294U, // <3,u,1,2>: Cost 1 vsldoi12 LHS, LHS
+ 2752747317U, // <3,u,1,3>: Cost 3 vsldoi12 LHS, <u,1,3,1>
+ 1558039862U, // <3,u,1,4>: Cost 2 vsldoi4 <2,3,u,1>, RHS
+ 2756949830U, // <3,u,1,5>: Cost 3 vsldoi12 LHS, <u,1,5,0>
+ 2800080726U, // <3,u,1,6>: Cost 3 vsldoi12 LHS, <u,1,6,7>
+ 2289233224U, // <3,u,1,7>: Cost 3 vmrglw <1,2,3,1>, RHS
+ 604821348U, // <3,u,1,u>: Cost 1 vsldoi12 LHS, LHS
+ 2696586709U, // <3,u,2,0>: Cost 3 vsldoi8 <2,0,3,u>, <2,0,3,u>
+ 2757392246U, // <3,u,2,1>: Cost 3 vsldoi12 LHS, <u,2,1,3>
+ 1624172151U, // <3,u,2,2>: Cost 2 vsldoi8 <2,2,3,u>, <2,2,3,u>
+ 1679005576U, // <3,u,2,3>: Cost 2 vsldoi12 LHS, <u,2,3,3>
+ 2631789878U, // <3,u,2,4>: Cost 3 vsldoi4 <2,3,u,2>, RHS
+ 2699904874U, // <3,u,2,5>: Cost 3 vsldoi8 <2,5,3,u>, <2,5,3,u>
+ 1626826683U, // <3,u,2,6>: Cost 2 vsldoi8 <2,6,3,u>, <2,6,3,u>
+ 1726338988U, // <3,u,2,7>: Cost 2 vsldoi12 LHS, <u,2,7,3>
+ 1683208117U, // <3,u,2,u>: Cost 2 vsldoi12 LHS, <u,2,u,3>
+ 1679005628U, // <3,u,3,0>: Cost 2 vsldoi12 LHS, <u,3,0,1>
+ 1161008942U, // <3,u,3,1>: Cost 2 vmrghw <3,3,3,3>, LHS
+ 2752747471U, // <3,u,3,2>: Cost 3 vsldoi12 LHS, <u,3,2,2>
+ 403488870U, // <3,u,3,3>: Cost 1 vspltisw3 LHS
+ 1679005668U, // <3,u,3,4>: Cost 2 vsldoi12 LHS, <u,3,4,5>
+ 1161009306U, // <3,u,3,5>: Cost 2 vmrghw <3,3,3,3>, RHS
+ 2691943104U, // <3,u,3,6>: Cost 3 vsldoi8 <1,2,3,u>, <3,6,u,7>
+ 1221479752U, // <3,u,3,7>: Cost 2 vmrglw <2,2,3,3>, RHS
+ 403488870U, // <3,u,3,u>: Cost 1 vspltisw3 LHS
+ 2289255363U, // <3,u,4,0>: Cost 3 vmrglw <1,2,3,4>, <1,2,u,0>
+ 1161844526U, // <3,u,4,1>: Cost 2 vmrghw <3,4,5,6>, LHS
+ 2289256661U, // <3,u,4,2>: Cost 3 vmrglw <1,2,3,4>, <3,0,u,2>
+ 1215512732U, // <3,u,4,3>: Cost 2 vmrglw <1,2,3,4>, LHS
+ 1215513498U, // <3,u,4,4>: Cost 2 vmrglw <1,2,3,4>, <1,2,3,4>
+ 1679005759U, // <3,u,4,5>: Cost 2 vsldoi12 LHS, <u,4,5,6>
+ 2289256989U, // <3,u,4,6>: Cost 3 vmrglw <1,2,3,4>, <3,4,u,6>
+ 1215515976U, // <3,u,4,7>: Cost 2 vmrglw <1,2,3,4>, RHS
+ 1679005786U, // <3,u,4,u>: Cost 2 vsldoi12 LHS, <u,4,u,6>
+ 1558069350U, // <3,u,5,0>: Cost 2 vsldoi4 <2,3,u,5>, LHS
+ 2631811892U, // <3,u,5,1>: Cost 3 vsldoi4 <2,3,u,5>, <1,1,1,1>
+ 1558071026U, // <3,u,5,2>: Cost 2 vsldoi4 <2,3,u,5>, <2,3,u,5>
+ 2752747646U, // <3,u,5,3>: Cost 3 vsldoi12 LHS, <u,5,3,6>
+ 1558072630U, // <3,u,5,4>: Cost 2 vsldoi4 <2,3,u,5>, RHS
+ 1726337028U, // <3,u,5,5>: Cost 2 vsldoi12 LHS, <5,5,5,5>
+ 604821658U, // <3,u,5,6>: Cost 1 vsldoi12 LHS, RHS
+ 2294574408U, // <3,u,5,7>: Cost 3 vmrglw <2,1,3,5>, RHS
+ 604821676U, // <3,u,5,u>: Cost 1 vsldoi12 LHS, RHS
+ 2631819366U, // <3,u,6,0>: Cost 3 vsldoi4 <2,3,u,6>, LHS
+ 2757392574U, // <3,u,6,1>: Cost 3 vsldoi12 LHS, <u,6,1,7>
+ 2631821043U, // <3,u,6,2>: Cost 3 vsldoi4 <2,3,u,6>, <2,3,u,6>
+ 1679005904U, // <3,u,6,3>: Cost 2 vsldoi12 LHS, <u,6,3,7>
+ 2631822646U, // <3,u,6,4>: Cost 3 vsldoi4 <2,3,u,6>, RHS
+ 2236553370U, // <3,u,6,5>: Cost 3 vmrghw <3,6,0,7>, RHS
+ 1726337848U, // <3,u,6,6>: Cost 2 vsldoi12 LHS, <6,6,6,6>
+ 1726339309U, // <3,u,6,7>: Cost 2 vsldoi12 LHS, <u,6,7,0>
+ 1683208445U, // <3,u,6,u>: Cost 2 vsldoi12 LHS, <u,6,u,7>
+ 1726339328U, // <3,u,7,0>: Cost 2 vsldoi12 LHS, <u,7,0,1>
+ 2297905225U, // <3,u,7,1>: Cost 3 vmrglw <2,6,3,7>, <0,0,u,1>
+ 2631829236U, // <3,u,7,2>: Cost 3 vsldoi4 <2,3,u,7>, <2,3,u,7>
+ 1224163484U, // <3,u,7,3>: Cost 2 vmrglw <2,6,3,7>, LHS
+ 1726339368U, // <3,u,7,4>: Cost 2 vsldoi12 LHS, <u,7,4,5>
+ 2297905553U, // <3,u,7,5>: Cost 3 vmrglw <2,6,3,7>, <0,4,u,5>
+ 2297905392U, // <3,u,7,6>: Cost 3 vmrglw <2,6,3,7>, <0,2,u,6>
+ 1224166728U, // <3,u,7,7>: Cost 2 vmrglw <2,6,3,7>, RHS
+ 1224163489U, // <3,u,7,u>: Cost 2 vmrglw <2,6,3,7>, LHS
+ 1683208529U, // <3,u,u,0>: Cost 2 vsldoi12 LHS, <u,u,0,1>
+ 1679006043U, // <3,u,u,1>: Cost 2 vsldoi12 LHS, <u,u,1,2>
+ 604821861U, // <3,u,u,2>: Cost 1 vsldoi12 LHS, LHS
+ 403488870U, // <3,u,u,3>: Cost 1 vspltisw3 LHS
+ 1683208569U, // <3,u,u,4>: Cost 2 vsldoi12 LHS, <u,u,4,5>
+ 1679006083U, // <3,u,u,5>: Cost 2 vsldoi12 LHS, <u,u,5,6>
+ 604821901U, // <3,u,u,6>: Cost 1 vsldoi12 LHS, RHS
+ 1215548744U, // <3,u,u,7>: Cost 2 vmrglw <1,2,3,u>, RHS
+ 604821915U, // <3,u,u,u>: Cost 1 vsldoi12 LHS, LHS
+ 2759016448U, // <4,0,0,0>: Cost 3 vsldoi12 <1,2,3,4>, <0,0,0,0>
+ 1165115494U, // <4,0,0,1>: Cost 2 vmrghw <4,0,5,1>, LHS
+ 3717531337U, // <4,0,0,2>: Cost 4 vsldoi4 <4,4,0,0>, <2,3,4,0>
+ 3369675785U, // <4,0,0,3>: Cost 4 vmrglw <2,3,4,0>, <4,2,0,3>
+ 2751791144U, // <4,0,0,4>: Cost 3 vsldoi12 <0,0,4,4>, <0,0,4,4>
+ 2238857630U, // <4,0,0,5>: Cost 3 vmrghw <4,0,5,1>, <0,5,1,0>
+ 3312591341U, // <4,0,0,6>: Cost 4 vmrghw <4,0,5,0>, <0,6,0,7>
+ 3369676113U, // <4,0,0,7>: Cost 4 vmrglw <2,3,4,0>, <4,6,0,7>
+ 1165116061U, // <4,0,0,u>: Cost 2 vmrghw <4,0,5,1>, LHS
+ 2637824102U, // <4,0,1,0>: Cost 3 vsldoi4 <3,4,0,1>, LHS
+ 2637824922U, // <4,0,1,1>: Cost 3 vsldoi4 <3,4,0,1>, <1,2,3,4>
+ 1685274726U, // <4,0,1,2>: Cost 2 vsldoi12 <1,2,3,4>, LHS
+ 2637826512U, // <4,0,1,3>: Cost 3 vsldoi4 <3,4,0,1>, <3,4,0,1>
+ 2637827382U, // <4,0,1,4>: Cost 3 vsldoi4 <3,4,0,1>, RHS
+ 2661716070U, // <4,0,1,5>: Cost 3 vsldoi4 <7,4,0,1>, <5,6,7,4>
+ 3729486427U, // <4,0,1,6>: Cost 4 vsldoi4 <6,4,0,1>, <6,4,0,1>
+ 2661717300U, // <4,0,1,7>: Cost 3 vsldoi4 <7,4,0,1>, <7,4,0,1>
+ 1685274780U, // <4,0,1,u>: Cost 2 vsldoi12 <1,2,3,4>, LHS
+ 3711574118U, // <4,0,2,0>: Cost 4 vsldoi4 <3,4,0,2>, LHS
+ 2240200806U, // <4,0,2,1>: Cost 3 vmrghw <4,2,5,3>, LHS
+ 3771663992U, // <4,0,2,2>: Cost 4 vsldoi8 <2,2,4,0>, <2,2,4,0>
+ 2698585801U, // <4,0,2,3>: Cost 3 vsldoi8 <2,3,4,0>, <2,3,4,0>
+ 3373672105U, // <4,0,2,4>: Cost 4 vmrglw <3,0,4,2>, <2,3,0,4>
+ 3810813795U, // <4,0,2,5>: Cost 4 vsldoi8 <u,7,4,0>, <2,5,3,1>
+ 3772327866U, // <4,0,2,6>: Cost 4 vsldoi8 <2,3,4,0>, <2,6,3,7>
+ 3386280568U, // <4,0,2,7>: Cost 5 vmrglw <5,1,4,2>, <3,6,0,7>
+ 2701903966U, // <4,0,2,u>: Cost 3 vsldoi8 <2,u,4,0>, <2,u,4,0>
+ 3699638374U, // <4,0,3,0>: Cost 4 vsldoi4 <1,4,0,3>, LHS
+ 2753560832U, // <4,0,3,1>: Cost 3 vsldoi12 <0,3,1,4>, <0,3,1,4>
+ 3772328276U, // <4,0,3,2>: Cost 4 vsldoi8 <2,3,4,0>, <3,2,4,3>
+ 3827302674U, // <4,0,3,3>: Cost 4 vsldoi12 <0,3,1,4>, <0,3,3,4>
+ 3699641654U, // <4,0,3,4>: Cost 4 vsldoi4 <1,4,0,3>, RHS
+ 3779627588U, // <4,0,3,5>: Cost 4 vsldoi8 <3,5,4,0>, <3,5,4,0>
+ 3772328604U, // <4,0,3,6>: Cost 4 vsldoi8 <2,3,4,0>, <3,6,4,7>
+ 3780954854U, // <4,0,3,7>: Cost 4 vsldoi8 <3,7,4,0>, <3,7,4,0>
+ 2753560832U, // <4,0,3,u>: Cost 3 vsldoi12 <0,3,1,4>, <0,3,1,4>
+ 2725129106U, // <4,0,4,0>: Cost 3 vsldoi8 <6,7,4,0>, <4,0,5,1>
+ 1167720550U, // <4,0,4,1>: Cost 2 vmrghw <4,4,4,4>, LHS
+ 3839172953U, // <4,0,4,2>: Cost 4 vsldoi12 <2,3,0,4>, <0,4,2,3>
+ 3772329051U, // <4,0,4,3>: Cost 4 vsldoi8 <2,3,4,0>, <4,3,0,4>
+ 2241462610U, // <4,0,4,4>: Cost 3 vmrghw <4,4,4,4>, <0,4,1,5>
+ 2698587446U, // <4,0,4,5>: Cost 3 vsldoi8 <2,3,4,0>, RHS
+ 3772329297U, // <4,0,4,6>: Cost 4 vsldoi8 <2,3,4,0>, <4,6,0,7>
+ 3735483703U, // <4,0,4,7>: Cost 4 vsldoi4 <7,4,0,4>, <7,4,0,4>
+ 1167721117U, // <4,0,4,u>: Cost 2 vmrghw <4,4,4,4>, LHS
+ 1168556032U, // <4,0,5,0>: Cost 2 vmrghw RHS, <0,0,0,0>
+ 94814310U, // <4,0,5,1>: Cost 1 vmrghw RHS, LHS
+ 2242298029U, // <4,0,5,2>: Cost 3 vmrghw RHS, <0,2,1,2>
+ 2637859284U, // <4,0,5,3>: Cost 3 vsldoi4 <3,4,0,5>, <3,4,0,5>
+ 1168556370U, // <4,0,5,4>: Cost 2 vmrghw RHS, <0,4,1,5>
+ 2242306530U, // <4,0,5,5>: Cost 3 vmrghw RHS, <0,5,u,5>
+ 2242298358U, // <4,0,5,6>: Cost 3 vmrghw RHS, <0,6,1,7>
+ 2661750072U, // <4,0,5,7>: Cost 3 vsldoi4 <7,4,0,5>, <7,4,0,5>
+ 94814877U, // <4,0,5,u>: Cost 1 vmrghw RHS, LHS
+ 3316580362U, // <4,0,6,0>: Cost 4 vmrghw <4,6,5,1>, <0,0,1,1>
+ 2242846822U, // <4,0,6,1>: Cost 3 vmrghw <4,6,5,2>, LHS
+ 3798872570U, // <4,0,6,2>: Cost 4 vsldoi8 <6,7,4,0>, <6,2,7,3>
+ 3796218413U, // <4,0,6,3>: Cost 4 vsldoi8 <6,3,4,0>, <6,3,4,0>
+ 3834528273U, // <4,0,6,4>: Cost 4 vsldoi12 <1,5,0,4>, <0,6,4,7>
+ 3798872811U, // <4,0,6,5>: Cost 4 vsldoi8 <6,7,4,0>, <6,5,7,1>
+ 3316621876U, // <4,0,6,6>: Cost 4 vmrghw <4,6,5,6>, <0,6,u,6>
+ 2725131121U, // <4,0,6,7>: Cost 3 vsldoi8 <6,7,4,0>, <6,7,4,0>
+ 2242847389U, // <4,0,6,u>: Cost 3 vmrghw <4,6,5,2>, LHS
+ 3377692672U, // <4,0,7,0>: Cost 4 vmrglw <3,6,4,7>, <0,0,0,0>
+ 2243493990U, // <4,0,7,1>: Cost 3 vmrghw <4,7,5,0>, LHS
+ 3775648970U, // <4,0,7,2>: Cost 5 vsldoi8 <2,u,4,0>, <7,2,6,3>
+ 3802191110U, // <4,0,7,3>: Cost 4 vsldoi8 <7,3,4,0>, <7,3,4,0>
+ 3317236050U, // <4,0,7,4>: Cost 4 vmrghw <4,7,5,0>, <0,4,1,5>
+ 3803518376U, // <4,0,7,5>: Cost 4 vsldoi8 <7,5,4,0>, <7,5,4,0>
+ 3317236214U, // <4,0,7,6>: Cost 5 vmrghw <4,7,5,0>, <0,6,1,7>
+ 3798873708U, // <4,0,7,7>: Cost 4 vsldoi8 <6,7,4,0>, <7,7,7,7>
+ 2243494557U, // <4,0,7,u>: Cost 3 vmrghw <4,7,5,0>, LHS
+ 1170546688U, // <4,0,u,0>: Cost 2 vmrghw RHS, <0,0,0,0>
+ 96804966U, // <4,0,u,1>: Cost 1 vmrghw RHS, LHS
+ 1685275293U, // <4,0,u,2>: Cost 2 vsldoi12 <1,2,3,4>, LHS
+ 2637883863U, // <4,0,u,3>: Cost 3 vsldoi4 <3,4,0,u>, <3,4,0,u>
+ 1170547026U, // <4,0,u,4>: Cost 2 vmrghw RHS, <0,4,1,5>
+ 2698590362U, // <4,0,u,5>: Cost 3 vsldoi8 <2,3,4,0>, RHS
+ 2244289014U, // <4,0,u,6>: Cost 3 vmrghw RHS, <0,6,1,7>
+ 2661774651U, // <4,0,u,7>: Cost 3 vsldoi4 <7,4,0,u>, <7,4,0,u>
+ 96805533U, // <4,0,u,u>: Cost 1 vmrghw RHS, LHS
+ 2667749478U, // <4,1,0,0>: Cost 3 vsldoi4 <u,4,1,0>, LHS
+ 2689966182U, // <4,1,0,1>: Cost 3 vsldoi8 <0,u,4,1>, LHS
+ 2238571418U, // <4,1,0,2>: Cost 3 vmrghw <4,0,1,2>, <1,2,3,4>
+ 3711633880U, // <4,1,0,3>: Cost 4 vsldoi4 <3,4,1,0>, <3,4,1,0>
+ 2689966418U, // <4,1,0,4>: Cost 3 vsldoi8 <0,u,4,1>, <0,4,1,5>
+ 3361046866U, // <4,1,0,5>: Cost 4 vmrglw <0,u,4,0>, <0,4,1,5>
+ 3741495802U, // <4,1,0,6>: Cost 4 vsldoi4 <u,4,1,0>, <6,2,7,3>
+ 3741496314U, // <4,1,0,7>: Cost 4 vsldoi4 <u,4,1,0>, <7,0,1,2>
+ 2689966765U, // <4,1,0,u>: Cost 3 vsldoi8 <0,u,4,1>, <0,u,4,1>
+ 3764372222U, // <4,1,1,0>: Cost 4 vsldoi8 <1,0,4,1>, <1,0,4,1>
+ 2758206263U, // <4,1,1,1>: Cost 3 vsldoi12 <1,1,1,4>, <1,1,1,4>
+ 2698593178U, // <4,1,1,2>: Cost 3 vsldoi8 <2,3,4,1>, <1,2,3,4>
+ 3361057810U, // <4,1,1,3>: Cost 4 vmrglw <0,u,4,1>, <4,2,1,3>
+ 3827303250U, // <4,1,1,4>: Cost 4 vsldoi12 <0,3,1,4>, <1,1,4,4>
+ 2287313234U, // <4,1,1,5>: Cost 3 vmrglw <0,u,4,1>, <0,4,1,5>
+ 3763709171U, // <4,1,1,6>: Cost 4 vsldoi8 <0,u,4,1>, <1,6,5,7>
+ 3361058138U, // <4,1,1,7>: Cost 4 vmrglw <0,u,4,1>, <4,6,1,7>
+ 2239759744U, // <4,1,1,u>: Cost 3 vmrghw <4,1,u,3>, <1,u,3,4>
+ 2637906022U, // <4,1,2,0>: Cost 3 vsldoi4 <3,4,1,2>, LHS
+ 2637906842U, // <4,1,2,1>: Cost 3 vsldoi4 <3,4,1,2>, <1,2,3,4>
+ 3763709544U, // <4,1,2,2>: Cost 4 vsldoi8 <0,u,4,1>, <2,2,2,2>
+ 1685275546U, // <4,1,2,3>: Cost 2 vsldoi12 <1,2,3,4>, <1,2,3,4>
+ 2637909302U, // <4,1,2,4>: Cost 3 vsldoi4 <3,4,1,2>, RHS
+ 3361063250U, // <4,1,2,5>: Cost 4 vmrglw <0,u,4,2>, <0,4,1,5>
+ 3763709882U, // <4,1,2,6>: Cost 4 vsldoi8 <0,u,4,1>, <2,6,3,7>
+ 3735541054U, // <4,1,2,7>: Cost 4 vsldoi4 <7,4,1,2>, <7,4,1,2>
+ 1685644231U, // <4,1,2,u>: Cost 2 vsldoi12 <1,2,u,4>, <1,2,u,4>
+ 2702575792U, // <4,1,3,0>: Cost 3 vsldoi8 <3,0,4,1>, <3,0,4,1>
+ 3832759257U, // <4,1,3,1>: Cost 4 vsldoi12 <1,2,3,4>, <1,3,1,4>
+ 3833349090U, // <4,1,3,2>: Cost 4 vsldoi12 <1,3,2,4>, <1,3,2,4>
+ 3763710364U, // <4,1,3,3>: Cost 4 vsldoi8 <0,u,4,1>, <3,3,3,3>
+ 2707884546U, // <4,1,3,4>: Cost 3 vsldoi8 <3,u,4,1>, <3,4,5,6>
+ 3361071442U, // <4,1,3,5>: Cost 4 vmrglw <0,u,4,3>, <0,4,1,5>
+ 3772336796U, // <4,1,3,6>: Cost 4 vsldoi8 <2,3,4,1>, <3,6,4,7>
+ 3775654595U, // <4,1,3,7>: Cost 5 vsldoi8 <2,u,4,1>, <3,7,0,1>
+ 2707884856U, // <4,1,3,u>: Cost 3 vsldoi8 <3,u,4,1>, <3,u,4,1>
+ 2667782246U, // <4,1,4,0>: Cost 3 vsldoi4 <u,4,1,4>, LHS
+ 2241463092U, // <4,1,4,1>: Cost 3 vmrghw <4,4,4,4>, <1,1,1,1>
+ 2241553306U, // <4,1,4,2>: Cost 3 vmrghw <4,4,5,6>, <1,2,3,4>
+ 3827303484U, // <4,1,4,3>: Cost 4 vsldoi12 <0,3,1,4>, <1,4,3,4>
+ 2667785424U, // <4,1,4,4>: Cost 3 vsldoi4 <u,4,1,4>, <4,4,4,4>
+ 2689969462U, // <4,1,4,5>: Cost 3 vsldoi8 <0,u,4,1>, RHS
+ 3763711322U, // <4,1,4,6>: Cost 4 vsldoi8 <0,u,4,1>, <4,6,1,7>
+ 3867116636U, // <4,1,4,7>: Cost 4 vsldoi12 <7,0,1,4>, <1,4,7,0>
+ 2689969705U, // <4,1,4,u>: Cost 3 vsldoi8 <0,u,4,1>, RHS
+ 1546273106U, // <4,1,5,0>: Cost 2 vsldoi4 <0,4,1,5>, <0,4,1,5>
+ 1168556852U, // <4,1,5,1>: Cost 2 vmrghw RHS, <1,1,1,1>
+ 1168556950U, // <4,1,5,2>: Cost 2 vmrghw RHS, <1,2,3,0>
+ 2620016790U, // <4,1,5,3>: Cost 3 vsldoi4 <0,4,1,5>, <3,0,1,2>
+ 1546276150U, // <4,1,5,4>: Cost 2 vsldoi4 <0,4,1,5>, RHS
+ 2620018692U, // <4,1,5,5>: Cost 3 vsldoi4 <0,4,1,5>, <5,5,5,5>
+ 2242299087U, // <4,1,5,6>: Cost 3 vmrghw RHS, <1,6,1,7>
+ 2667795450U, // <4,1,5,7>: Cost 3 vsldoi4 <u,4,1,5>, <7,0,1,2>
+ 1546278702U, // <4,1,5,u>: Cost 2 vsldoi4 <0,4,1,5>, LHS
+ 3781628193U, // <4,1,6,0>: Cost 4 vsldoi8 <3,u,4,1>, <6,0,1,2>
+ 3832759503U, // <4,1,6,1>: Cost 4 vsldoi12 <1,2,3,4>, <1,6,1,7>
+ 3316261786U, // <4,1,6,2>: Cost 4 vmrghw <4,6,0,7>, <1,2,3,4>
+ 3781628466U, // <4,1,6,3>: Cost 4 vsldoi8 <3,u,4,1>, <6,3,4,5>
+ 3827303658U, // <4,1,6,4>: Cost 4 vsldoi12 <0,3,1,4>, <1,6,4,7>
+ 3361096018U, // <4,1,6,5>: Cost 4 vmrglw <0,u,4,6>, <0,4,1,5>
+ 3788264248U, // <4,1,6,6>: Cost 4 vsldoi8 <5,0,4,1>, <6,6,6,6>
+ 3788264270U, // <4,1,6,7>: Cost 4 vsldoi8 <5,0,4,1>, <6,7,0,1>
+ 3832759566U, // <4,1,6,u>: Cost 4 vsldoi12 <1,2,3,4>, <1,6,u,7>
+ 2726466580U, // <4,1,7,0>: Cost 3 vsldoi8 <7,0,4,1>, <7,0,4,1>
+ 3377692682U, // <4,1,7,1>: Cost 4 vmrglw <3,6,4,7>, <0,0,1,1>
+ 3377694870U, // <4,1,7,2>: Cost 4 vmrglw <3,6,4,7>, <3,0,1,2>
+ 3802199303U, // <4,1,7,3>: Cost 4 vsldoi8 <7,3,4,1>, <7,3,4,1>
+ 2731775334U, // <4,1,7,4>: Cost 3 vsldoi8 <7,u,4,1>, <7,4,5,6>
+ 3377693010U, // <4,1,7,5>: Cost 4 vmrglw <3,6,4,7>, <0,4,1,5>
+ 3365749804U, // <4,1,7,6>: Cost 5 vmrglw <1,6,4,7>, <1,4,1,6>
+ 3788265068U, // <4,1,7,7>: Cost 4 vsldoi8 <5,0,4,1>, <7,7,7,7>
+ 2731775644U, // <4,1,7,u>: Cost 3 vsldoi8 <7,u,4,1>, <7,u,4,1>
+ 1546297685U, // <4,1,u,0>: Cost 2 vsldoi4 <0,4,1,u>, <0,4,1,u>
+ 1170547508U, // <4,1,u,1>: Cost 2 vmrghw RHS, <1,1,1,1>
+ 1170547606U, // <4,1,u,2>: Cost 2 vmrghw RHS, <1,2,3,0>
+ 1689257344U, // <4,1,u,3>: Cost 2 vsldoi12 <1,u,3,4>, <1,u,3,4>
+ 1546300726U, // <4,1,u,4>: Cost 2 vsldoi4 <0,4,1,u>, RHS
+ 2284716370U, // <4,1,u,5>: Cost 3 vmrglw <0,4,4,u>, <0,4,1,5>
+ 2244289743U, // <4,1,u,6>: Cost 3 vmrghw RHS, <1,6,1,7>
+ 2667820026U, // <4,1,u,7>: Cost 3 vsldoi4 <u,4,1,u>, <7,0,1,2>
+ 1546303278U, // <4,1,u,u>: Cost 2 vsldoi4 <0,4,1,u>, LHS
+ 3729621094U, // <4,2,0,0>: Cost 4 vsldoi4 <6,4,2,0>, LHS
+ 3763716198U, // <4,2,0,1>: Cost 4 vsldoi8 <0,u,4,2>, LHS
+ 2238858856U, // <4,2,0,2>: Cost 3 vmrghw <4,0,5,1>, <2,2,2,2>
+ 2295930982U, // <4,2,0,3>: Cost 3 vmrglw <2,3,4,0>, LHS
+ 3763716434U, // <4,2,0,4>: Cost 4 vsldoi8 <0,u,4,2>, <0,4,1,5>
+ 2238859107U, // <4,2,0,5>: Cost 3 vmrghw <4,0,5,1>, <2,5,3,1>
+ 2238859194U, // <4,2,0,6>: Cost 3 vmrghw <4,0,5,1>, <2,6,3,7>
+ 3312601066U, // <4,2,0,7>: Cost 4 vmrghw <4,0,5,1>, <2,7,0,1>
+ 2295930987U, // <4,2,0,u>: Cost 3 vmrglw <2,3,4,0>, LHS
+ 3699769446U, // <4,2,1,0>: Cost 4 vsldoi4 <1,4,2,1>, LHS
+ 3313255971U, // <4,2,1,1>: Cost 4 vmrghw <4,1,5,0>, <2,1,3,5>
+ 3361056360U, // <4,2,1,2>: Cost 4 vmrglw <0,u,4,1>, <2,2,2,2>
+ 2287312998U, // <4,2,1,3>: Cost 3 vmrglw <0,u,4,1>, LHS
+ 3788932148U, // <4,2,1,4>: Cost 4 vsldoi8 <5,1,4,2>, <1,4,2,5>
+ 3313256290U, // <4,2,1,5>: Cost 4 vmrghw <4,1,5,0>, <2,5,3,0>
+ 3838289469U, // <4,2,1,6>: Cost 4 vsldoi12 <2,1,6,4>, <2,1,6,4>
+ 3369682865U, // <4,2,1,7>: Cost 5 vmrglw <2,3,4,1>, <2,6,2,7>
+ 2287313003U, // <4,2,1,u>: Cost 3 vmrglw <0,u,4,1>, LHS
+ 3838658133U, // <4,2,2,0>: Cost 4 vsldoi12 <2,2,2,4>, <2,2,0,1>
+ 3711722394U, // <4,2,2,1>: Cost 4 vsldoi4 <3,4,2,2>, <1,2,3,4>
+ 2759018088U, // <4,2,2,2>: Cost 3 vsldoi12 <1,2,3,4>, <2,2,2,2>
+ 2759018098U, // <4,2,2,3>: Cost 3 vsldoi12 <1,2,3,4>, <2,2,3,3>
+ 3838658168U, // <4,2,2,4>: Cost 4 vsldoi12 <2,2,2,4>, <2,2,4,0>
+ 3369027341U, // <4,2,2,5>: Cost 4 vmrglw <2,2,4,2>, <2,4,2,5>
+ 2240227258U, // <4,2,2,6>: Cost 3 vmrghw <4,2,5,6>, <2,6,3,7>
+ 3735614791U, // <4,2,2,7>: Cost 4 vsldoi4 <7,4,2,2>, <7,4,2,2>
+ 2759018143U, // <4,2,2,u>: Cost 3 vsldoi12 <1,2,3,4>, <2,2,u,3>
+ 2759018150U, // <4,2,3,0>: Cost 3 vsldoi12 <1,2,3,4>, <2,3,0,1>
+ 3831948975U, // <4,2,3,1>: Cost 4 vsldoi12 <1,1,1,4>, <2,3,1,1>
+ 3832759993U, // <4,2,3,2>: Cost 4 vsldoi12 <1,2,3,4>, <2,3,2,2>
+ 2759018180U, // <4,2,3,3>: Cost 3 vsldoi12 <1,2,3,4>, <2,3,3,4>
+ 2759018185U, // <4,2,3,4>: Cost 3 vsldoi12 <1,2,3,4>, <2,3,4,0>
+ 3839542998U, // <4,2,3,5>: Cost 4 vsldoi12 <2,3,5,4>, <2,3,5,4>
+ 3314640826U, // <4,2,3,6>: Cost 4 vmrghw <4,3,5,7>, <2,6,3,7>
+ 2765948648U, // <4,2,3,7>: Cost 3 vsldoi12 <2,3,7,4>, <2,3,7,4>
+ 2759018222U, // <4,2,3,u>: Cost 3 vsldoi12 <1,2,3,4>, <2,3,u,1>
+ 3838658295U, // <4,2,4,0>: Cost 4 vsldoi12 <2,2,2,4>, <2,4,0,1>
+ 3315205667U, // <4,2,4,1>: Cost 4 vmrghw <4,4,4,4>, <2,1,3,5>
+ 2241463912U, // <4,2,4,2>: Cost 3 vmrghw <4,4,4,4>, <2,2,2,2>
+ 1234829414U, // <4,2,4,3>: Cost 2 vmrglw <4,4,4,4>, LHS
+ 2241464085U, // <4,2,4,4>: Cost 3 vmrghw <4,4,4,4>, <2,4,3,4>
+ 2241546087U, // <4,2,4,5>: Cost 3 vmrghw <4,4,5,5>, <2,5,3,5>
+ 2241464250U, // <4,2,4,6>: Cost 3 vmrghw <4,4,4,4>, <2,6,3,7>
+ 3741602873U, // <4,2,4,7>: Cost 4 vsldoi4 <u,4,2,4>, <7,0,u,2>
+ 1234829419U, // <4,2,4,u>: Cost 2 vmrglw <4,4,4,4>, LHS
+ 2626060390U, // <4,2,5,0>: Cost 3 vsldoi4 <1,4,2,5>, LHS
+ 2626061364U, // <4,2,5,1>: Cost 3 vsldoi4 <1,4,2,5>, <1,4,2,5>
+ 1168557672U, // <4,2,5,2>: Cost 2 vmrghw RHS, <2,2,2,2>
+ 1222230118U, // <4,2,5,3>: Cost 2 vmrglw <2,3,4,5>, LHS
+ 2626063670U, // <4,2,5,4>: Cost 3 vsldoi4 <1,4,2,5>, RHS
+ 2242299752U, // <4,2,5,5>: Cost 3 vmrghw RHS, <2,5,3,6>
+ 1168558010U, // <4,2,5,6>: Cost 2 vmrghw RHS, <2,6,3,7>
+ 2242299882U, // <4,2,5,7>: Cost 3 vmrghw RHS, <2,7,0,1>
+ 1222230123U, // <4,2,5,u>: Cost 2 vmrglw <2,3,4,5>, LHS
+ 3711754342U, // <4,2,6,0>: Cost 4 vsldoi4 <3,4,2,6>, LHS
+ 3711755162U, // <4,2,6,1>: Cost 4 vsldoi4 <3,4,2,6>, <1,2,3,4>
+ 3838658481U, // <4,2,6,2>: Cost 4 vsldoi12 <2,2,2,4>, <2,6,2,7>
+ 2759018426U, // <4,2,6,3>: Cost 3 vsldoi12 <1,2,3,4>, <2,6,3,7>
+ 3838658499U, // <4,2,6,4>: Cost 4 vsldoi12 <2,2,2,4>, <2,6,4,7>
+ 3735646310U, // <4,2,6,5>: Cost 4 vsldoi4 <7,4,2,6>, <5,6,7,4>
+ 3316590522U, // <4,2,6,6>: Cost 4 vmrghw <4,6,5,2>, <2,6,3,7>
+ 3798889331U, // <4,2,6,7>: Cost 4 vsldoi8 <6,7,4,2>, <6,7,4,2>
+ 2759018471U, // <4,2,6,u>: Cost 3 vsldoi12 <1,2,3,4>, <2,6,u,7>
+ 3874564074U, // <4,2,7,0>: Cost 4 vsldoi12 <u,2,3,4>, <2,7,0,1>
+ 3800880230U, // <4,2,7,1>: Cost 4 vsldoi8 <7,1,4,2>, <7,1,4,2>
+ 3371722344U, // <4,2,7,2>: Cost 4 vmrglw <2,6,4,7>, <2,2,2,2>
+ 2303950950U, // <4,2,7,3>: Cost 3 vmrglw <3,6,4,7>, LHS
+ 3371722346U, // <4,2,7,4>: Cost 4 vmrglw <2,6,4,7>, <2,2,2,4>
+ 3371722509U, // <4,2,7,5>: Cost 5 vmrglw <2,6,4,7>, <2,4,2,5>
+ 3317237690U, // <4,2,7,6>: Cost 4 vmrghw <4,7,5,0>, <2,6,3,7>
+ 3317237738U, // <4,2,7,7>: Cost 4 vmrghw <4,7,5,0>, <2,7,0,1>
+ 2303950955U, // <4,2,7,u>: Cost 3 vmrglw <3,6,4,7>, LHS
+ 2759018555U, // <4,2,u,0>: Cost 3 vsldoi12 <1,2,3,4>, <2,u,0,1>
+ 2626085943U, // <4,2,u,1>: Cost 3 vsldoi4 <1,4,2,u>, <1,4,2,u>
+ 1170548328U, // <4,2,u,2>: Cost 2 vmrghw RHS, <2,2,2,2>
+ 1222254694U, // <4,2,u,3>: Cost 2 vmrglw <2,3,4,u>, LHS
+ 2759018595U, // <4,2,u,4>: Cost 3 vsldoi12 <1,2,3,4>, <2,u,4,5>
+ 2244290408U, // <4,2,u,5>: Cost 3 vmrghw RHS, <2,5,3,6>
+ 1170548666U, // <4,2,u,6>: Cost 2 vmrghw RHS, <2,6,3,7>
+ 2769266813U, // <4,2,u,7>: Cost 3 vsldoi12 <2,u,7,4>, <2,u,7,4>
+ 1222254699U, // <4,2,u,u>: Cost 2 vmrglw <2,3,4,u>, LHS
+ 2238859414U, // <4,3,0,0>: Cost 3 vmrghw <4,0,5,1>, <3,0,1,2>
+ 2759018646U, // <4,3,0,1>: Cost 3 vsldoi12 <1,2,3,4>, <3,0,1,2>
+ 3312314708U, // <4,3,0,2>: Cost 4 vmrghw <4,0,1,2>, <3,2,4,3>
+ 2238859676U, // <4,3,0,3>: Cost 3 vmrghw <4,0,5,1>, <3,3,3,3>
+ 2295931802U, // <4,3,0,4>: Cost 3 vmrglw <2,3,4,0>, <1,2,3,4>
+ 3735670886U, // <4,3,0,5>: Cost 4 vsldoi4 <7,4,3,0>, <5,6,7,4>
+ 3312315036U, // <4,3,0,6>: Cost 4 vmrghw <4,0,1,2>, <3,6,4,7>
+ 3369674682U, // <4,3,0,7>: Cost 4 vmrglw <2,3,4,0>, <2,6,3,7>
+ 2759018709U, // <4,3,0,u>: Cost 3 vsldoi12 <1,2,3,4>, <3,0,u,2>
+ 3361055638U, // <4,3,1,0>: Cost 4 vmrglw <0,u,4,1>, <1,2,3,0>
+ 3831949542U, // <4,3,1,1>: Cost 4 vsldoi12 <1,1,1,4>, <3,1,1,1>
+ 2703917978U, // <4,3,1,2>: Cost 3 vsldoi8 <3,2,4,3>, <1,2,3,4>
+ 3361056370U, // <4,3,1,3>: Cost 4 vmrglw <0,u,4,1>, <2,2,3,3>
+ 2295939994U, // <4,3,1,4>: Cost 3 vmrglw <2,3,4,1>, <1,2,3,4>
+ 3361056291U, // <4,3,1,5>: Cost 4 vmrglw <0,u,4,1>, <2,1,3,5>
+ 3378972520U, // <4,3,1,6>: Cost 4 vmrglw <3,u,4,1>, <2,5,3,6>
+ 3361056698U, // <4,3,1,7>: Cost 4 vmrglw <0,u,4,1>, <2,6,3,7>
+ 2703917978U, // <4,3,1,u>: Cost 3 vsldoi8 <3,2,4,3>, <1,2,3,4>
+ 3832760624U, // <4,3,2,0>: Cost 4 vsldoi12 <1,2,3,4>, <3,2,0,3>
+ 3711796122U, // <4,3,2,1>: Cost 4 vsldoi4 <3,4,3,2>, <1,2,3,4>
+ 3832760641U, // <4,3,2,2>: Cost 4 vsldoi12 <1,2,3,4>, <3,2,2,2>
+ 2770962764U, // <4,3,2,3>: Cost 3 vsldoi12 <3,2,3,4>, <3,2,3,4>
+ 2759018836U, // <4,3,2,4>: Cost 3 vsldoi12 <1,2,3,4>, <3,2,4,3>
+ 3827304802U, // <4,3,2,5>: Cost 5 vsldoi12 <0,3,1,4>, <3,2,5,u>
+ 3832760678U, // <4,3,2,6>: Cost 4 vsldoi12 <1,2,3,4>, <3,2,6,3>
+ 3859597679U, // <4,3,2,7>: Cost 4 vsldoi12 <5,6,7,4>, <3,2,7,3>
+ 2771331449U, // <4,3,2,u>: Cost 3 vsldoi12 <3,2,u,4>, <3,2,u,4>
+ 2240841878U, // <4,3,3,0>: Cost 3 vmrghw <4,3,5,0>, <3,0,1,2>
+ 3776997635U, // <4,3,3,1>: Cost 4 vsldoi8 <3,1,4,3>, <3,1,4,3>
+ 2703919444U, // <4,3,3,2>: Cost 3 vsldoi8 <3,2,4,3>, <3,2,4,3>
+ 2759018908U, // <4,3,3,3>: Cost 3 vsldoi12 <1,2,3,4>, <3,3,3,3>
+ 2759018918U, // <4,3,3,4>: Cost 3 vsldoi12 <1,2,3,4>, <3,3,4,4>
+ 3386951446U, // <4,3,3,5>: Cost 4 vmrglw <5,2,4,3>, <2,4,3,5>
+ 3777661596U, // <4,3,3,6>: Cost 4 vsldoi8 <3,2,4,3>, <3,6,4,7>
+ 3375007674U, // <4,3,3,7>: Cost 4 vmrglw <3,2,4,3>, <2,6,3,7>
+ 2707901242U, // <4,3,3,u>: Cost 3 vsldoi8 <3,u,4,3>, <3,u,4,3>
+ 2759018960U, // <4,3,4,0>: Cost 3 vsldoi12 <1,2,3,4>, <3,4,0,1>
+ 2759018970U, // <4,3,4,1>: Cost 3 vsldoi12 <1,2,3,4>, <3,4,1,2>
+ 2632099605U, // <4,3,4,2>: Cost 3 vsldoi4 <2,4,3,4>, <2,4,3,4>
+ 2241464732U, // <4,3,4,3>: Cost 3 vmrghw <4,4,4,4>, <3,3,3,3>
+ 2759019000U, // <4,3,4,4>: Cost 3 vsldoi12 <1,2,3,4>, <3,4,4,5>
+ 2753563138U, // <4,3,4,5>: Cost 3 vsldoi12 <0,3,1,4>, <3,4,5,6>
+ 3777662316U, // <4,3,4,6>: Cost 4 vsldoi8 <3,2,4,3>, <4,6,3,7>
+ 2308573114U, // <4,3,4,7>: Cost 3 vmrglw <4,4,4,4>, <2,6,3,7>
+ 2759019032U, // <4,3,4,u>: Cost 3 vsldoi12 <1,2,3,4>, <3,4,u,1>
+ 1168558230U, // <4,3,5,0>: Cost 2 vmrghw RHS, <3,0,1,2>
+ 2242300134U, // <4,3,5,1>: Cost 3 vmrghw RHS, <3,1,1,1>
+ 2632107798U, // <4,3,5,2>: Cost 3 vsldoi4 <2,4,3,5>, <2,4,3,5>
+ 1168558492U, // <4,3,5,3>: Cost 2 vmrghw RHS, <3,3,3,3>
+ 1168558594U, // <4,3,5,4>: Cost 2 vmrghw RHS, <3,4,5,6>
+ 2295973654U, // <4,3,5,5>: Cost 3 vmrglw <2,3,4,5>, <2,4,3,5>
+ 2242300536U, // <4,3,5,6>: Cost 3 vmrghw RHS, <3,6,0,7>
+ 2295973818U, // <4,3,5,7>: Cost 3 vmrglw <2,3,4,5>, <2,6,3,7>
+ 1168558878U, // <4,3,5,u>: Cost 2 vmrghw RHS, <3,u,1,2>
+ 3832760952U, // <4,3,6,0>: Cost 4 vsldoi12 <1,2,3,4>, <3,6,0,7>
+ 3711828890U, // <4,3,6,1>: Cost 4 vsldoi4 <3,4,3,6>, <1,2,3,4>
+ 3316484436U, // <4,3,6,2>: Cost 4 vmrghw <4,6,3,7>, <3,2,4,3>
+ 3711830512U, // <4,3,6,3>: Cost 4 vsldoi4 <3,4,3,6>, <3,4,3,6>
+ 2759019164U, // <4,3,6,4>: Cost 3 vsldoi12 <1,2,3,4>, <3,6,4,7>
+ 3361097251U, // <4,3,6,5>: Cost 5 vmrglw <0,u,4,6>, <2,1,3,5>
+ 3316624045U, // <4,3,6,6>: Cost 4 vmrghw <4,6,5,6>, <3,6,6,6>
+ 2773912244U, // <4,3,6,7>: Cost 3 vsldoi12 <3,6,7,4>, <3,6,7,4>
+ 2759019164U, // <4,3,6,u>: Cost 3 vsldoi12 <1,2,3,4>, <3,6,4,7>
+ 3377693590U, // <4,3,7,0>: Cost 4 vmrglw <3,6,4,7>, <1,2,3,0>
+ 3365751680U, // <4,3,7,1>: Cost 5 vmrglw <1,6,4,7>, <4,0,3,1>
+ 2727810232U, // <4,3,7,2>: Cost 3 vsldoi8 <7,2,4,3>, <7,2,4,3>
+ 3377694322U, // <4,3,7,3>: Cost 4 vmrglw <3,6,4,7>, <2,2,3,3>
+ 2303951770U, // <4,3,7,4>: Cost 3 vmrglw <3,6,4,7>, <1,2,3,4>
+ 3741700198U, // <4,3,7,5>: Cost 4 vsldoi4 <u,4,3,7>, <5,6,7,4>
+ 3377695216U, // <4,3,7,6>: Cost 4 vmrglw <3,6,4,7>, <3,4,3,6>
+ 3375703994U, // <4,3,7,7>: Cost 4 vmrglw <3,3,4,7>, <2,6,3,7>
+ 2731792030U, // <4,3,7,u>: Cost 3 vsldoi8 <7,u,4,3>, <7,u,4,3>
+ 1170548886U, // <4,3,u,0>: Cost 2 vmrghw RHS, <3,0,1,2>
+ 2759019294U, // <4,3,u,1>: Cost 3 vsldoi12 <1,2,3,4>, <3,u,1,2>
+ 2632132377U, // <4,3,u,2>: Cost 3 vsldoi4 <2,4,3,u>, <2,4,3,u>
+ 1170549148U, // <4,3,u,3>: Cost 2 vmrghw RHS, <3,3,3,3>
+ 1170549250U, // <4,3,u,4>: Cost 2 vmrghw RHS, <3,4,5,6>
+ 2759019334U, // <4,3,u,5>: Cost 3 vsldoi12 <1,2,3,4>, <3,u,5,6>
+ 2244291192U, // <4,3,u,6>: Cost 3 vmrghw RHS, <3,6,0,7>
+ 2295998394U, // <4,3,u,7>: Cost 3 vmrglw <2,3,4,u>, <2,6,3,7>
+ 1170549534U, // <4,3,u,u>: Cost 2 vmrghw RHS, <3,u,1,2>
+ 1165118354U, // <4,4,0,0>: Cost 2 vmrghw <4,0,5,1>, <4,0,5,1>
+ 1637482598U, // <4,4,0,1>: Cost 2 vsldoi8 <4,4,4,4>, LHS
+ 3711854285U, // <4,4,0,2>: Cost 4 vsldoi4 <3,4,4,0>, <2,3,4,4>
+ 3827305344U, // <4,4,0,3>: Cost 4 vsldoi12 <0,3,1,4>, <4,0,3,1>
+ 2711224658U, // <4,4,0,4>: Cost 3 vsldoi8 <4,4,4,4>, <0,4,1,5>
+ 1165118774U, // <4,4,0,5>: Cost 2 vmrghw <4,0,5,1>, RHS
+ 3312602489U, // <4,4,0,6>: Cost 4 vmrghw <4,0,5,1>, <4,6,5,2>
+ 3369675420U, // <4,4,0,7>: Cost 4 vmrglw <2,3,4,0>, <3,6,4,7>
+ 1165119017U, // <4,4,0,u>: Cost 2 vmrghw <4,0,5,1>, RHS
+ 3369682633U, // <4,4,1,0>: Cost 4 vmrglw <2,3,4,1>, <2,3,4,0>
+ 2287313581U, // <4,4,1,1>: Cost 3 vmrglw <0,u,4,1>, <0,u,4,1>
+ 2759019466U, // <4,4,1,2>: Cost 3 vsldoi12 <1,2,3,4>, <4,1,2,3>
+ 3369683284U, // <4,4,1,3>: Cost 4 vmrglw <2,3,4,1>, <3,2,4,3>
+ 2311204048U, // <4,4,1,4>: Cost 3 vmrglw <4,u,4,1>, <4,4,4,4>
+ 2239319350U, // <4,4,1,5>: Cost 3 vmrghw <4,1,2,3>, RHS
+ 3784967411U, // <4,4,1,6>: Cost 4 vsldoi8 <4,4,4,4>, <1,6,5,7>
+ 3369683612U, // <4,4,1,7>: Cost 4 vmrglw <2,3,4,1>, <3,6,4,7>
+ 2763000832U, // <4,4,1,u>: Cost 3 vsldoi12 <1,u,3,4>, <4,1,u,3>
+ 3711869030U, // <4,4,2,0>: Cost 4 vsldoi4 <3,4,4,2>, LHS
+ 3711869850U, // <4,4,2,1>: Cost 4 vsldoi4 <3,4,4,2>, <1,2,3,4>
+ 2240203830U, // <4,4,2,2>: Cost 3 vmrghw <4,2,5,3>, <4,2,5,3>
+ 2698618573U, // <4,4,2,3>: Cost 3 vsldoi8 <2,3,4,4>, <2,3,4,4>
+ 2711226133U, // <4,4,2,4>: Cost 3 vsldoi8 <4,4,4,4>, <2,4,3,4>
+ 2240204086U, // <4,4,2,5>: Cost 3 vmrghw <4,2,5,3>, RHS
+ 2711226298U, // <4,4,2,6>: Cost 3 vsldoi8 <4,4,4,4>, <2,6,3,7>
+ 3832761416U, // <4,4,2,7>: Cost 4 vsldoi12 <1,2,3,4>, <4,2,7,3>
+ 2701936738U, // <4,4,2,u>: Cost 3 vsldoi8 <2,u,4,4>, <2,u,4,4>
+ 2711226518U, // <4,4,3,0>: Cost 3 vsldoi8 <4,4,4,4>, <3,0,1,2>
+ 3777005828U, // <4,4,3,1>: Cost 4 vsldoi8 <3,1,4,4>, <3,1,4,4>
+ 3832761453U, // <4,4,3,2>: Cost 4 vsldoi12 <1,2,3,4>, <4,3,2,4>
+ 2301266260U, // <4,4,3,3>: Cost 3 vmrglw <3,2,4,3>, <3,2,4,3>
+ 2705254903U, // <4,4,3,4>: Cost 3 vsldoi8 <3,4,4,4>, <3,4,4,4>
+ 2240843062U, // <4,4,3,5>: Cost 3 vmrghw <4,3,5,0>, RHS
+ 3832761489U, // <4,4,3,6>: Cost 4 vsldoi12 <1,2,3,4>, <4,3,6,4>
+ 3375008412U, // <4,4,3,7>: Cost 4 vmrglw <3,2,4,3>, <3,6,4,7>
+ 2301266260U, // <4,4,3,u>: Cost 3 vmrglw <3,2,4,3>, <3,2,4,3>
+ 1570373734U, // <4,4,4,0>: Cost 2 vsldoi4 <4,4,4,4>, LHS
+ 2308574089U, // <4,4,4,1>: Cost 3 vmrglw <4,4,4,4>, <4,0,4,1>
+ 2644117096U, // <4,4,4,2>: Cost 3 vsldoi4 <4,4,4,4>, <2,2,2,2>
+ 2638146039U, // <4,4,4,3>: Cost 3 vsldoi4 <3,4,4,4>, <3,4,4,4>
+ 229035318U, // <4,4,4,4>: Cost 1 vspltisw0 RHS
+ 1167723830U, // <4,4,4,5>: Cost 2 vmrghw <4,4,4,4>, RHS
+ 2644120058U, // <4,4,4,6>: Cost 3 vsldoi4 <4,4,4,4>, <6,2,7,3>
+ 2662036827U, // <4,4,4,7>: Cost 3 vsldoi4 <7,4,4,4>, <7,4,4,4>
+ 229035318U, // <4,4,4,u>: Cost 1 vspltisw0 RHS
+ 1168558994U, // <4,4,5,0>: Cost 2 vmrghw RHS, <4,0,5,1>
+ 2638152602U, // <4,4,5,1>: Cost 3 vsldoi4 <3,4,4,5>, <1,2,3,4>
+ 2242300981U, // <4,4,5,2>: Cost 3 vmrghw RHS, <4,2,5,2>
+ 2638154232U, // <4,4,5,3>: Cost 3 vsldoi4 <3,4,4,5>, <3,4,4,5>
+ 1168559322U, // <4,4,5,4>: Cost 2 vmrghw RHS, <4,4,5,5>
+ 94817590U, // <4,4,5,5>: Cost 1 vmrghw RHS, RHS
+ 1685278006U, // <4,4,5,6>: Cost 2 vsldoi12 <1,2,3,4>, RHS
+ 2242309576U, // <4,4,5,7>: Cost 3 vmrghw RHS, <4,7,5,0>
+ 94817833U, // <4,4,5,u>: Cost 1 vmrghw RHS, RHS
+ 3316591506U, // <4,4,6,0>: Cost 4 vmrghw <4,6,5,2>, <4,0,5,1>
+ 3758428587U, // <4,4,6,1>: Cost 4 vsldoi8 <0,0,4,4>, <6,1,7,5>
+ 2711228922U, // <4,4,6,2>: Cost 3 vsldoi8 <4,4,4,4>, <6,2,7,3>
+ 3796251185U, // <4,4,6,3>: Cost 4 vsldoi8 <6,3,4,4>, <6,3,4,4>
+ 2711229085U, // <4,4,6,4>: Cost 3 vsldoi8 <4,4,4,4>, <6,4,7,4>
+ 2242850102U, // <4,4,6,5>: Cost 3 vmrghw <4,6,5,2>, RHS
+ 2242850169U, // <4,4,6,6>: Cost 3 vmrghw <4,6,5,2>, <4,6,5,2>
+ 2725163893U, // <4,4,6,7>: Cost 3 vsldoi8 <6,7,4,4>, <6,7,4,4>
+ 2242850345U, // <4,4,6,u>: Cost 3 vmrghw <4,6,5,2>, RHS
+ 2711229434U, // <4,4,7,0>: Cost 3 vsldoi8 <4,4,4,4>, <7,0,1,2>
+ 3377694410U, // <4,4,7,1>: Cost 4 vmrglw <3,6,4,7>, <2,3,4,1>
+ 3868593584U, // <4,4,7,2>: Cost 4 vsldoi12 <7,2,3,4>, <4,7,2,3>
+ 3377695060U, // <4,4,7,3>: Cost 4 vmrglw <3,6,4,7>, <3,2,4,3>
+ 2729145691U, // <4,4,7,4>: Cost 3 vsldoi8 <7,4,4,4>, <7,4,4,4>
+ 2243497270U, // <4,4,7,5>: Cost 3 vmrghw <4,7,5,0>, RHS
+ 3871542744U, // <4,4,7,6>: Cost 4 vsldoi12 <7,6,7,4>, <4,7,6,7>
+ 2303953564U, // <4,4,7,7>: Cost 3 vmrglw <3,6,4,7>, <3,6,4,7>
+ 2243497513U, // <4,4,7,u>: Cost 3 vmrghw <4,7,5,0>, RHS
+ 1170549650U, // <4,4,u,0>: Cost 2 vmrghw RHS, <4,0,5,1>
+ 1637488430U, // <4,4,u,1>: Cost 2 vsldoi8 <4,4,4,4>, LHS
+ 2244291637U, // <4,4,u,2>: Cost 3 vmrghw RHS, <4,2,5,2>
+ 2638178811U, // <4,4,u,3>: Cost 3 vsldoi4 <3,4,4,u>, <3,4,4,u>
+ 229035318U, // <4,4,u,4>: Cost 1 vspltisw0 RHS
+ 96808246U, // <4,4,u,5>: Cost 1 vmrghw RHS, RHS
+ 1685278249U, // <4,4,u,6>: Cost 2 vsldoi12 <1,2,3,4>, RHS
+ 2244292040U, // <4,4,u,7>: Cost 3 vmrghw RHS, <4,7,5,0>
+ 96808489U, // <4,4,u,u>: Cost 1 vmrghw RHS, RHS
+ 2698625024U, // <4,5,0,0>: Cost 3 vsldoi8 <2,3,4,5>, <0,0,0,0>
+ 1624883302U, // <4,5,0,1>: Cost 2 vsldoi8 <2,3,4,5>, LHS
+ 2638186190U, // <4,5,0,2>: Cost 3 vsldoi4 <3,4,5,0>, <2,3,4,5>
+ 2638187004U, // <4,5,0,3>: Cost 3 vsldoi4 <3,4,5,0>, <3,4,5,0>
+ 2687345005U, // <4,5,0,4>: Cost 3 vsldoi8 <0,4,4,5>, <0,4,4,5>
+ 2238861316U, // <4,5,0,5>: Cost 3 vmrghw <4,0,5,1>, <5,5,5,5>
+ 2662077302U, // <4,5,0,6>: Cost 3 vsldoi4 <7,4,5,0>, <6,7,4,5>
+ 2662077792U, // <4,5,0,7>: Cost 3 vsldoi4 <7,4,5,0>, <7,4,5,0>
+ 1624883869U, // <4,5,0,u>: Cost 2 vsldoi8 <2,3,4,5>, LHS
+ 3361057762U, // <4,5,1,0>: Cost 4 vmrglw <0,u,4,1>, <4,1,5,0>
+ 2691326803U, // <4,5,1,1>: Cost 3 vsldoi8 <1,1,4,5>, <1,1,4,5>
+ 2698625942U, // <4,5,1,2>: Cost 3 vsldoi8 <2,3,4,5>, <1,2,3,0>
+ 3361055659U, // <4,5,1,3>: Cost 4 vmrglw <0,u,4,1>, <1,2,5,3>
+ 3761087567U, // <4,5,1,4>: Cost 4 vsldoi8 <0,4,4,5>, <1,4,5,5>
+ 2693981335U, // <4,5,1,5>: Cost 3 vsldoi8 <1,5,4,5>, <1,5,4,5>
+ 2305231362U, // <4,5,1,6>: Cost 3 vmrglw <3,u,4,1>, <3,4,5,6>
+ 3361055987U, // <4,5,1,7>: Cost 4 vmrglw <0,u,4,1>, <1,6,5,7>
+ 2695972234U, // <4,5,1,u>: Cost 3 vsldoi8 <1,u,4,5>, <1,u,4,5>
+ 2638200934U, // <4,5,2,0>: Cost 3 vsldoi4 <3,4,5,2>, LHS
+ 3761088035U, // <4,5,2,1>: Cost 4 vsldoi8 <0,4,4,5>, <2,1,3,5>
+ 2697963133U, // <4,5,2,2>: Cost 3 vsldoi8 <2,2,4,5>, <2,2,4,5>
+ 1624884942U, // <4,5,2,3>: Cost 2 vsldoi8 <2,3,4,5>, <2,3,4,5>
+ 2698626838U, // <4,5,2,4>: Cost 3 vsldoi8 <2,3,4,5>, <2,4,3,5>
+ 3772368744U, // <4,5,2,5>: Cost 4 vsldoi8 <2,3,4,5>, <2,5,3,6>
+ 2698627002U, // <4,5,2,6>: Cost 3 vsldoi8 <2,3,4,5>, <2,6,3,7>
+ 3775023122U, // <4,5,2,7>: Cost 4 vsldoi8 <2,7,4,5>, <2,7,4,5>
+ 1628203107U, // <4,5,2,u>: Cost 2 vsldoi8 <2,u,4,5>, <2,u,4,5>
+ 2698627222U, // <4,5,3,0>: Cost 3 vsldoi8 <2,3,4,5>, <3,0,1,2>
+ 3765070057U, // <4,5,3,1>: Cost 4 vsldoi8 <1,1,4,5>, <3,1,1,4>
+ 2698627404U, // <4,5,3,2>: Cost 3 vsldoi8 <2,3,4,5>, <3,2,3,4>
+ 2698627484U, // <4,5,3,3>: Cost 3 vsldoi8 <2,3,4,5>, <3,3,3,3>
+ 2698627580U, // <4,5,3,4>: Cost 3 vsldoi8 <2,3,4,5>, <3,4,5,0>
+ 3779668553U, // <4,5,3,5>: Cost 4 vsldoi8 <3,5,4,5>, <3,5,4,5>
+ 2725169844U, // <4,5,3,6>: Cost 3 vsldoi8 <6,7,4,5>, <3,6,7,4>
+ 2707253995U, // <4,5,3,7>: Cost 3 vsldoi8 <3,7,4,5>, <3,7,4,5>
+ 2698627870U, // <4,5,3,u>: Cost 3 vsldoi8 <2,3,4,5>, <3,u,1,2>
+ 2638217318U, // <4,5,4,0>: Cost 3 vsldoi4 <3,4,5,4>, LHS
+ 2308574098U, // <4,5,4,1>: Cost 3 vmrglw <4,4,4,4>, <4,0,5,1>
+ 2698628150U, // <4,5,4,2>: Cost 3 vsldoi8 <2,3,4,5>, <4,2,5,3>
+ 2638219776U, // <4,5,4,3>: Cost 3 vsldoi4 <3,4,5,4>, <3,4,5,4>
+ 2698628314U, // <4,5,4,4>: Cost 3 vsldoi8 <2,3,4,5>, <4,4,5,5>
+ 1624886582U, // <4,5,4,5>: Cost 2 vsldoi8 <2,3,4,5>, RHS
+ 2698628478U, // <4,5,4,6>: Cost 3 vsldoi8 <2,3,4,5>, <4,6,5,7>
+ 2662110564U, // <4,5,4,7>: Cost 3 vsldoi4 <7,4,5,4>, <7,4,5,4>
+ 1624886825U, // <4,5,4,u>: Cost 2 vsldoi8 <2,3,4,5>, RHS
+ 1570455654U, // <4,5,5,0>: Cost 2 vsldoi4 <4,4,5,5>, LHS
+ 2312564250U, // <4,5,5,1>: Cost 3 vmrglw <5,1,4,5>, <4,u,5,1>
+ 2644199118U, // <4,5,5,2>: Cost 3 vsldoi4 <4,4,5,5>, <2,3,4,5>
+ 2295974966U, // <4,5,5,3>: Cost 3 vmrglw <2,3,4,5>, <4,2,5,3>
+ 1570458842U, // <4,5,5,4>: Cost 2 vsldoi4 <4,4,5,5>, <4,4,5,5>
+ 1168568324U, // <4,5,5,5>: Cost 2 vmrghw RHS, <5,5,5,5>
+ 1168568418U, // <4,5,5,6>: Cost 2 vmrghw RHS, <5,6,7,0>
+ 2295975294U, // <4,5,5,7>: Cost 3 vmrglw <2,3,4,5>, <4,6,5,7>
+ 1168716036U, // <4,5,5,u>: Cost 2 vmrghw RHS, <5,u,7,0>
+ 1564491878U, // <4,5,6,0>: Cost 2 vsldoi4 <3,4,5,6>, LHS
+ 2626290768U, // <4,5,6,1>: Cost 3 vsldoi4 <1,4,5,6>, <1,4,5,6>
+ 2632263465U, // <4,5,6,2>: Cost 3 vsldoi4 <2,4,5,6>, <2,4,5,6>
+ 1564494338U, // <4,5,6,3>: Cost 2 vsldoi4 <3,4,5,6>, <3,4,5,6>
+ 1564495158U, // <4,5,6,4>: Cost 2 vsldoi4 <3,4,5,6>, RHS
+ 2638237464U, // <4,5,6,5>: Cost 3 vsldoi4 <3,4,5,6>, <5,2,6,3>
+ 2656154253U, // <4,5,6,6>: Cost 3 vsldoi4 <6,4,5,6>, <6,4,5,6>
+ 27705344U, // <4,5,6,7>: Cost 0 copy RHS
+ 27705344U, // <4,5,6,u>: Cost 0 copy RHS
+ 2725172218U, // <4,5,7,0>: Cost 3 vsldoi8 <6,7,4,5>, <7,0,1,2>
+ 3859599489U, // <4,5,7,1>: Cost 4 vsldoi12 <5,6,7,4>, <5,7,1,4>
+ 2698630320U, // <4,5,7,2>: Cost 3 vsldoi8 <2,3,4,5>, <7,2,3,4>
+ 2728490251U, // <4,5,7,3>: Cost 3 vsldoi8 <7,3,4,5>, <7,3,4,5>
+ 2725172576U, // <4,5,7,4>: Cost 3 vsldoi8 <6,7,4,5>, <7,4,5,0>
+ 3317239812U, // <4,5,7,5>: Cost 4 vmrghw <4,7,5,0>, <5,5,5,5>
+ 2725172760U, // <4,5,7,6>: Cost 3 vsldoi8 <6,7,4,5>, <7,6,7,4>
+ 2725172844U, // <4,5,7,7>: Cost 3 vsldoi8 <6,7,4,5>, <7,7,7,7>
+ 2725172866U, // <4,5,7,u>: Cost 3 vsldoi8 <6,7,4,5>, <7,u,1,2>
+ 1564508262U, // <4,5,u,0>: Cost 2 vsldoi4 <3,4,5,u>, LHS
+ 1624889134U, // <4,5,u,1>: Cost 2 vsldoi8 <2,3,4,5>, LHS
+ 2698631045U, // <4,5,u,2>: Cost 3 vsldoi8 <2,3,4,5>, <u,2,3,0>
+ 1564510724U, // <4,5,u,3>: Cost 2 vsldoi4 <3,4,5,u>, <3,4,5,u>
+ 1564511542U, // <4,5,u,4>: Cost 2 vsldoi4 <3,4,5,u>, RHS
+ 1624889498U, // <4,5,u,5>: Cost 2 vsldoi8 <2,3,4,5>, RHS
+ 1170550882U, // <4,5,u,6>: Cost 2 vmrghw RHS, <5,6,7,0>
+ 27705344U, // <4,5,u,7>: Cost 0 copy RHS
+ 27705344U, // <4,5,u,u>: Cost 0 copy RHS
+ 3312595285U, // <4,6,0,0>: Cost 4 vmrghw <4,0,5,0>, <6,0,7,0>
+ 3763748966U, // <4,6,0,1>: Cost 4 vsldoi8 <0,u,4,6>, LHS
+ 2238861818U, // <4,6,0,2>: Cost 3 vmrghw <4,0,5,1>, <6,2,7,3>
+ 3767730432U, // <4,6,0,3>: Cost 4 vsldoi8 <1,5,4,6>, <0,3,1,4>
+ 3763749202U, // <4,6,0,4>: Cost 4 vsldoi8 <0,u,4,6>, <0,4,1,5>
+ 2238862059U, // <4,6,0,5>: Cost 3 vmrghw <4,0,5,1>, <6,5,7,1>
+ 2238862136U, // <4,6,0,6>: Cost 3 vmrghw <4,0,5,1>, <6,6,6,6>
+ 2295934262U, // <4,6,0,7>: Cost 3 vmrglw <2,3,4,0>, RHS
+ 2295934263U, // <4,6,0,u>: Cost 3 vmrglw <2,3,4,0>, RHS
+ 3378973999U, // <4,6,1,0>: Cost 4 vmrglw <3,u,4,1>, <4,5,6,0>
+ 3378974648U, // <4,6,1,1>: Cost 4 vmrglw <3,u,4,1>, <5,4,6,1>
+ 3779675034U, // <4,6,1,2>: Cost 4 vsldoi8 <3,5,4,6>, <1,2,3,4>
+ 3378974002U, // <4,6,1,3>: Cost 4 vmrglw <3,u,4,1>, <4,5,6,3>
+ 3378974003U, // <4,6,1,4>: Cost 4 vmrglw <3,u,4,1>, <4,5,6,4>
+ 3767731352U, // <4,6,1,5>: Cost 4 vsldoi8 <1,5,4,6>, <1,5,4,6>
+ 3378974734U, // <4,6,1,6>: Cost 4 vmrglw <3,u,4,1>, <5,5,6,6>
+ 2287316278U, // <4,6,1,7>: Cost 3 vmrglw <0,u,4,1>, RHS
+ 2287316279U, // <4,6,1,u>: Cost 3 vmrglw <0,u,4,1>, RHS
+ 3735904358U, // <4,6,2,0>: Cost 4 vsldoi4 <7,4,6,2>, LHS
+ 3763750435U, // <4,6,2,1>: Cost 5 vsldoi8 <0,u,4,6>, <2,1,3,5>
+ 3313938937U, // <4,6,2,2>: Cost 4 vmrghw <4,2,5,2>, <6,2,7,2>
+ 3772376782U, // <4,6,2,3>: Cost 4 vsldoi8 <2,3,4,6>, <2,3,4,5>
+ 3852890591U, // <4,6,2,4>: Cost 4 vsldoi12 <4,5,6,4>, <6,2,4,3>
+ 3735908454U, // <4,6,2,5>: Cost 4 vsldoi4 <7,4,6,2>, <5,6,7,4>
+ 3801573306U, // <4,6,2,6>: Cost 4 vsldoi8 <7,2,4,6>, <2,6,3,7>
+ 2785858042U, // <4,6,2,7>: Cost 3 vsldoi12 <5,6,7,4>, <6,2,7,3>
+ 2785858051U, // <4,6,2,u>: Cost 3 vsldoi12 <5,6,7,4>, <6,2,u,3>
+ 3863065101U, // <4,6,3,0>: Cost 4 vsldoi12 <6,3,0,4>, <6,3,0,4>
+ 3314586024U, // <4,6,3,1>: Cost 4 vmrghw <4,3,5,0>, <6,1,7,2>
+ 3863212575U, // <4,6,3,2>: Cost 4 vsldoi12 <6,3,2,4>, <6,3,2,4>
+ 3863286312U, // <4,6,3,3>: Cost 4 vsldoi12 <6,3,3,4>, <6,3,3,4>
+ 3767732738U, // <4,6,3,4>: Cost 4 vsldoi8 <1,5,4,6>, <3,4,5,6>
+ 3779676746U, // <4,6,3,5>: Cost 4 vsldoi8 <3,5,4,6>, <3,5,4,6>
+ 3398898488U, // <4,6,3,6>: Cost 4 vmrglw <7,2,4,3>, <6,6,6,6>
+ 2301267254U, // <4,6,3,7>: Cost 3 vmrglw <3,2,4,3>, RHS
+ 2301267255U, // <4,6,3,u>: Cost 3 vmrglw <3,2,4,3>, RHS
+ 3852890715U, // <4,6,4,0>: Cost 4 vsldoi12 <4,5,6,4>, <6,4,0,1>
+ 3315208615U, // <4,6,4,1>: Cost 4 vmrghw <4,4,4,4>, <6,1,7,1>
+ 2241466874U, // <4,6,4,2>: Cost 3 vmrghw <4,4,4,4>, <6,2,7,3>
+ 3852890745U, // <4,6,4,3>: Cost 4 vsldoi12 <4,5,6,4>, <6,4,3,4>
+ 2241467037U, // <4,6,4,4>: Cost 3 vmrghw <4,4,4,4>, <6,4,7,4>
+ 2241549039U, // <4,6,4,5>: Cost 3 vmrghw <4,4,5,5>, <6,5,7,5>
+ 2241467192U, // <4,6,4,6>: Cost 3 vmrghw <4,4,4,4>, <6,6,6,6>
+ 1234832694U, // <4,6,4,7>: Cost 2 vmrglw <4,4,4,4>, RHS
+ 1234832695U, // <4,6,4,u>: Cost 2 vmrglw <4,4,4,4>, RHS
+ 2242302241U, // <4,6,5,0>: Cost 3 vmrghw RHS, <6,0,1,2>
+ 2242310567U, // <4,6,5,1>: Cost 3 vmrghw RHS, <6,1,7,1>
+ 1168568826U, // <4,6,5,2>: Cost 2 vmrghw RHS, <6,2,7,3>
+ 2242302514U, // <4,6,5,3>: Cost 3 vmrghw RHS, <6,3,4,5>
+ 2242302605U, // <4,6,5,4>: Cost 3 vmrghw RHS, <6,4,5,6>
+ 2242310891U, // <4,6,5,5>: Cost 3 vmrghw RHS, <6,5,7,1>
+ 1168569144U, // <4,6,5,6>: Cost 2 vmrghw RHS, <6,6,6,6>
+ 1222233398U, // <4,6,5,7>: Cost 2 vmrglw <2,3,4,5>, RHS
+ 1222233399U, // <4,6,5,u>: Cost 2 vmrglw <2,3,4,5>, RHS
+ 3316576545U, // <4,6,6,0>: Cost 4 vmrghw <4,6,5,0>, <6,0,1,2>
+ 3316584871U, // <4,6,6,1>: Cost 4 vmrghw <4,6,5,1>, <6,1,7,1>
+ 2242851322U, // <4,6,6,2>: Cost 3 vmrghw <4,6,5,2>, <6,2,7,3>
+ 3316601394U, // <4,6,6,3>: Cost 4 vmrghw <4,6,5,3>, <6,3,4,5>
+ 3852890916U, // <4,6,6,4>: Cost 4 vsldoi12 <4,5,6,4>, <6,6,4,4>
+ 3316617963U, // <4,6,6,5>: Cost 4 vmrghw <4,6,5,5>, <6,5,7,1>
+ 2242884408U, // <4,6,6,6>: Cost 3 vmrghw <4,6,5,6>, <6,6,6,6>
+ 2785858370U, // <4,6,6,7>: Cost 3 vsldoi12 <5,6,7,4>, <6,6,7,7>
+ 2785858379U, // <4,6,6,u>: Cost 3 vsldoi12 <5,6,7,4>, <6,6,u,7>
+ 2785858382U, // <4,6,7,0>: Cost 3 vsldoi12 <5,6,7,4>, <6,7,0,1>
+ 3859600215U, // <4,6,7,1>: Cost 4 vsldoi12 <5,6,7,4>, <6,7,1,1>
+ 3317240314U, // <4,6,7,2>: Cost 4 vmrghw <4,7,5,0>, <6,2,7,3>
+ 2792199020U, // <4,6,7,3>: Cost 3 vsldoi12 <6,7,3,4>, <6,7,3,4>
+ 2785858422U, // <4,6,7,4>: Cost 3 vsldoi12 <5,6,7,4>, <6,7,4,5>
+ 3856651132U, // <4,6,7,5>: Cost 4 vsldoi12 <5,2,3,4>, <6,7,5,2>
+ 3317240632U, // <4,6,7,6>: Cost 4 vmrghw <4,7,5,0>, <6,6,6,6>
+ 2303954230U, // <4,6,7,7>: Cost 3 vmrglw <3,6,4,7>, RHS
+ 2303954231U, // <4,6,7,u>: Cost 3 vmrglw <3,6,4,7>, RHS
+ 2244292897U, // <4,6,u,0>: Cost 3 vmrghw RHS, <6,0,1,2>
+ 2244293031U, // <4,6,u,1>: Cost 3 vmrghw RHS, <6,1,7,1>
+ 1170551290U, // <4,6,u,2>: Cost 2 vmrghw RHS, <6,2,7,3>
+ 2244293170U, // <4,6,u,3>: Cost 3 vmrghw RHS, <6,3,4,5>
+ 2244293261U, // <4,6,u,4>: Cost 3 vmrghw RHS, <6,4,5,6>
+ 2244293355U, // <4,6,u,5>: Cost 3 vmrghw RHS, <6,5,7,1>
+ 1170551608U, // <4,6,u,6>: Cost 2 vmrghw RHS, <6,6,6,6>
+ 1222257974U, // <4,6,u,7>: Cost 2 vmrglw <2,3,4,u>, RHS
+ 1222257975U, // <4,6,u,u>: Cost 2 vmrglw <2,3,4,u>, RHS
+ 2238862330U, // <4,7,0,0>: Cost 3 vmrghw <4,0,5,1>, <7,0,1,2>
+ 2706604134U, // <4,7,0,1>: Cost 3 vsldoi8 <3,6,4,7>, LHS
+ 3312604308U, // <4,7,0,2>: Cost 4 vmrghw <4,0,5,1>, <7,2,0,3>
+ 3768402176U, // <4,7,0,3>: Cost 4 vsldoi8 <1,6,4,7>, <0,3,1,4>
+ 2238862648U, // <4,7,0,4>: Cost 3 vmrghw <4,0,5,1>, <7,4,0,5>
+ 3859600418U, // <4,7,0,5>: Cost 4 vsldoi12 <5,6,7,4>, <7,0,5,6>
+ 3729994393U, // <4,7,0,6>: Cost 4 vsldoi4 <6,4,7,0>, <6,4,7,0>
+ 2238862956U, // <4,7,0,7>: Cost 3 vmrghw <4,0,5,1>, <7,7,7,7>
+ 2706604701U, // <4,7,0,u>: Cost 3 vsldoi8 <3,6,4,7>, LHS
+ 3385610338U, // <4,7,1,0>: Cost 4 vmrglw <5,0,4,1>, <5,6,7,0>
+ 3780346676U, // <4,7,1,1>: Cost 4 vsldoi8 <3,6,4,7>, <1,1,1,1>
+ 2706604954U, // <4,7,1,2>: Cost 3 vsldoi8 <3,6,4,7>, <1,2,3,4>
+ 3385610746U, // <4,7,1,3>: Cost 4 vmrglw <5,0,4,1>, <6,2,7,3>
+ 3385610342U, // <4,7,1,4>: Cost 4 vmrglw <5,0,4,1>, <5,6,7,4>
+ 3385610667U, // <4,7,1,5>: Cost 4 vmrglw <5,0,4,1>, <6,1,7,5>
+ 3768403178U, // <4,7,1,6>: Cost 4 vsldoi8 <1,6,4,7>, <1,6,4,7>
+ 3385611074U, // <4,7,1,7>: Cost 4 vmrglw <5,0,4,1>, <6,6,7,7>
+ 2706604954U, // <4,7,1,u>: Cost 3 vsldoi8 <3,6,4,7>, <1,2,3,4>
+ 3859600532U, // <4,7,2,0>: Cost 4 vsldoi12 <5,6,7,4>, <7,2,0,3>
+ 3712091034U, // <4,7,2,1>: Cost 5 vsldoi4 <3,4,7,2>, <1,2,3,4>
+ 3774375528U, // <4,7,2,2>: Cost 4 vsldoi8 <2,6,4,7>, <2,2,2,2>
+ 2794853552U, // <4,7,2,3>: Cost 3 vsldoi12 <7,2,3,4>, <7,2,3,4>
+ 2785858744U, // <4,7,2,4>: Cost 3 vsldoi12 <5,6,7,4>, <7,2,4,3>
+ 3735982182U, // <4,7,2,5>: Cost 4 vsldoi4 <7,4,7,2>, <5,6,7,4>
+ 3774375875U, // <4,7,2,6>: Cost 4 vsldoi8 <2,6,4,7>, <2,6,4,7>
+ 3735983476U, // <4,7,2,7>: Cost 4 vsldoi4 <7,4,7,2>, <7,4,7,2>
+ 2795222237U, // <4,7,2,u>: Cost 3 vsldoi12 <7,2,u,4>, <7,2,u,4>
+ 3780348054U, // <4,7,3,0>: Cost 4 vsldoi8 <3,6,4,7>, <3,0,1,2>
+ 3730015130U, // <4,7,3,1>: Cost 4 vsldoi4 <6,4,7,3>, <1,2,3,4>
+ 3780348244U, // <4,7,3,2>: Cost 4 vsldoi8 <3,6,4,7>, <3,2,4,3>
+ 3778357673U, // <4,7,3,3>: Cost 4 vsldoi8 <3,3,4,7>, <3,3,4,7>
+ 2325155942U, // <4,7,3,4>: Cost 3 vmrglw <7,2,4,3>, <5,6,7,4>
+ 3779684939U, // <4,7,3,5>: Cost 5 vsldoi8 <3,5,4,7>, <3,5,4,7>
+ 2706606748U, // <4,7,3,6>: Cost 3 vsldoi8 <3,6,4,7>, <3,6,4,7>
+ 3398898498U, // <4,7,3,7>: Cost 4 vmrglw <7,2,4,3>, <6,6,7,7>
+ 2707934014U, // <4,7,3,u>: Cost 3 vsldoi8 <3,u,4,7>, <3,u,4,7>
+ 2785858868U, // <4,7,4,0>: Cost 3 vsldoi12 <5,6,7,4>, <7,4,0,1>
+ 3780348874U, // <4,7,4,1>: Cost 4 vsldoi8 <3,6,4,7>, <4,1,2,3>
+ 3780349000U, // <4,7,4,2>: Cost 4 vsldoi8 <3,6,4,7>, <4,2,7,3>
+ 2308575738U, // <4,7,4,3>: Cost 3 vmrglw <4,4,4,4>, <6,2,7,3>
+ 2656283856U, // <4,7,4,4>: Cost 3 vsldoi4 <6,4,7,4>, <4,4,4,4>
+ 2706607414U, // <4,7,4,5>: Cost 3 vsldoi8 <3,6,4,7>, RHS
+ 2656285341U, // <4,7,4,6>: Cost 3 vsldoi4 <6,4,7,4>, <6,4,7,4>
+ 2241468012U, // <4,7,4,7>: Cost 3 vmrghw <4,4,4,4>, <7,7,7,7>
+ 2706607657U, // <4,7,4,u>: Cost 3 vsldoi8 <3,6,4,7>, RHS
+ 1168569338U, // <4,7,5,0>: Cost 2 vmrghw RHS, <7,0,1,2>
+ 2242311242U, // <4,7,5,1>: Cost 3 vmrghw RHS, <7,1,1,1>
+ 2242303178U, // <4,7,5,2>: Cost 3 vmrghw RHS, <7,2,6,3>
+ 2242311395U, // <4,7,5,3>: Cost 3 vmrghw RHS, <7,3,0,1>
+ 1168569702U, // <4,7,5,4>: Cost 2 vmrghw RHS, <7,4,5,6>
+ 2242311606U, // <4,7,5,5>: Cost 3 vmrghw RHS, <7,5,5,5>
+ 2242311662U, // <4,7,5,6>: Cost 3 vmrghw RHS, <7,6,2,7>
+ 1168569964U, // <4,7,5,7>: Cost 2 vmrghw RHS, <7,7,7,7>
+ 1168569986U, // <4,7,5,u>: Cost 2 vmrghw RHS, <7,u,1,2>
+ 3316593658U, // <4,7,6,0>: Cost 4 vmrghw <4,6,5,2>, <7,0,1,2>
+ 3316593738U, // <4,7,6,1>: Cost 5 vmrghw <4,6,5,2>, <7,1,1,1>
+ 3316634800U, // <4,7,6,2>: Cost 4 vmrghw <4,6,5,7>, <7,2,3,4>
+ 3386978810U, // <4,7,6,3>: Cost 4 vmrglw <5,2,4,6>, <6,2,7,3>
+ 2785859072U, // <4,7,6,4>: Cost 3 vsldoi12 <5,6,7,4>, <7,6,4,7>
+ 3736014950U, // <4,7,6,5>: Cost 4 vsldoi4 <7,4,7,6>, <5,6,7,4>
+ 3316594158U, // <4,7,6,6>: Cost 4 vmrghw <4,6,5,2>, <7,6,2,7>
+ 2797803032U, // <4,7,6,7>: Cost 3 vsldoi12 <7,6,7,4>, <7,6,7,4>
+ 2797876769U, // <4,7,6,u>: Cost 3 vsldoi12 <7,6,u,4>, <7,6,u,4>
+ 2243499002U, // <4,7,7,0>: Cost 3 vmrghw <4,7,5,0>, <7,0,1,2>
+ 3718103962U, // <4,7,7,1>: Cost 4 vsldoi4 <4,4,7,7>, <1,2,3,4>
+ 3317257418U, // <4,7,7,2>: Cost 4 vmrghw <4,7,5,2>, <7,2,6,3>
+ 3377695816U, // <4,7,7,3>: Cost 4 vmrglw <3,6,4,7>, <4,2,7,3>
+ 2243532134U, // <4,7,7,4>: Cost 3 vmrghw <4,7,5,4>, <7,4,5,6>
+ 3317282230U, // <4,7,7,5>: Cost 4 vmrghw <4,7,5,5>, <7,5,5,5>
+ 2730497536U, // <4,7,7,6>: Cost 3 vsldoi8 <7,6,4,7>, <7,6,4,7>
+ 2243556972U, // <4,7,7,7>: Cost 3 vmrghw <4,7,5,7>, <7,7,7,7>
+ 2243565186U, // <4,7,7,u>: Cost 3 vmrghw <4,7,5,u>, <7,u,1,2>
+ 1170551802U, // <4,7,u,0>: Cost 2 vmrghw RHS, <7,0,1,2>
+ 2706609966U, // <4,7,u,1>: Cost 3 vsldoi8 <3,6,4,7>, LHS
+ 2244293797U, // <4,7,u,2>: Cost 3 vmrghw RHS, <7,2,2,2>
+ 2244293859U, // <4,7,u,3>: Cost 3 vmrghw RHS, <7,3,0,1>
+ 1170552166U, // <4,7,u,4>: Cost 2 vmrghw RHS, <7,4,5,6>
+ 2706610330U, // <4,7,u,5>: Cost 3 vsldoi8 <3,6,4,7>, RHS
+ 2244294126U, // <4,7,u,6>: Cost 3 vmrghw RHS, <7,6,2,7>
+ 1170552428U, // <4,7,u,7>: Cost 2 vmrghw RHS, <7,7,7,7>
+ 1170552450U, // <4,7,u,u>: Cost 2 vmrghw RHS, <7,u,1,2>
+ 1165118354U, // <4,u,0,0>: Cost 2 vmrghw <4,0,5,1>, <4,0,5,1>
+ 1624907878U, // <4,u,0,1>: Cost 2 vsldoi8 <2,3,4,u>, LHS
+ 2638407377U, // <4,u,0,2>: Cost 3 vsldoi4 <3,4,u,0>, <2,3,4,u>
+ 2295931036U, // <4,u,0,3>: Cost 3 vmrglw <2,3,4,0>, LHS
+ 2687369584U, // <4,u,0,4>: Cost 3 vsldoi8 <0,4,4,u>, <0,4,4,u>
+ 1165121690U, // <4,u,0,5>: Cost 2 vmrghw <4,0,5,1>, RHS
+ 2662298489U, // <4,u,0,6>: Cost 3 vsldoi4 <7,4,u,0>, <6,7,4,u>
+ 2295934280U, // <4,u,0,7>: Cost 3 vmrglw <2,3,4,0>, RHS
+ 1624908445U, // <4,u,0,u>: Cost 2 vsldoi8 <2,3,4,u>, LHS
+ 2638413926U, // <4,u,1,0>: Cost 3 vsldoi4 <3,4,u,1>, LHS
+ 2691351382U, // <4,u,1,1>: Cost 3 vsldoi8 <1,1,4,u>, <1,1,4,u>
+ 1685280558U, // <4,u,1,2>: Cost 2 vsldoi12 <1,2,3,4>, LHS
+ 2287313052U, // <4,u,1,3>: Cost 3 vmrglw <0,u,4,1>, LHS
+ 2299257799U, // <4,u,1,4>: Cost 3 vmrglw <2,u,4,1>, <1,2,u,4>
+ 2694005914U, // <4,u,1,5>: Cost 3 vsldoi8 <1,5,4,u>, <1,5,4,u>
+ 2305231362U, // <4,u,1,6>: Cost 3 vmrglw <3,u,4,1>, <3,4,5,6>
+ 2287316296U, // <4,u,1,7>: Cost 3 vmrglw <0,u,4,1>, RHS
+ 1685280612U, // <4,u,1,u>: Cost 2 vsldoi12 <1,2,3,4>, LHS
+ 2638422118U, // <4,u,2,0>: Cost 3 vsldoi4 <3,4,u,2>, LHS
+ 2240206638U, // <4,u,2,1>: Cost 3 vmrghw <4,2,5,3>, LHS
+ 2697987712U, // <4,u,2,2>: Cost 3 vsldoi8 <2,2,4,u>, <2,2,4,u>
+ 1624909521U, // <4,u,2,3>: Cost 2 vsldoi8 <2,3,4,u>, <2,3,4,u>
+ 2759391121U, // <4,u,2,4>: Cost 3 vsldoi12 <1,2,u,4>, <u,2,4,3>
+ 2240207002U, // <4,u,2,5>: Cost 3 vmrghw <4,2,5,3>, RHS
+ 2698651578U, // <4,u,2,6>: Cost 3 vsldoi8 <2,3,4,u>, <2,6,3,7>
+ 2785859500U, // <4,u,2,7>: Cost 3 vsldoi12 <5,6,7,4>, <u,2,7,3>
+ 1628227686U, // <4,u,2,u>: Cost 2 vsldoi8 <2,u,4,u>, <2,u,4,u>
+ 2759022524U, // <4,u,3,0>: Cost 3 vsldoi12 <1,2,3,4>, <u,3,0,1>
+ 2801342408U, // <4,u,3,1>: Cost 3 vsldoi12 <u,3,1,4>, <u,3,1,4>
+ 2703960409U, // <4,u,3,2>: Cost 3 vsldoi8 <3,2,4,u>, <3,2,4,u>
+ 2759022554U, // <4,u,3,3>: Cost 3 vsldoi12 <1,2,3,4>, <u,3,3,4>
+ 2759022564U, // <4,u,3,4>: Cost 3 vsldoi12 <1,2,3,4>, <u,3,4,5>
+ 2240845978U, // <4,u,3,5>: Cost 3 vmrghw <4,3,5,0>, RHS
+ 2706614941U, // <4,u,3,6>: Cost 3 vsldoi8 <3,6,4,u>, <3,6,4,u>
+ 2301267272U, // <4,u,3,7>: Cost 3 vmrglw <3,2,4,3>, RHS
+ 2759022596U, // <4,u,3,u>: Cost 3 vsldoi12 <1,2,3,4>, <u,3,u,1>
+ 1570668646U, // <4,u,4,0>: Cost 2 vsldoi4 <4,4,u,4>, LHS
+ 1167726382U, // <4,u,4,1>: Cost 2 vmrghw <4,4,4,4>, LHS
+ 2698652753U, // <4,u,4,2>: Cost 3 vsldoi8 <2,3,4,u>, <4,2,u,3>
+ 1234829468U, // <4,u,4,3>: Cost 2 vmrglw <4,4,4,4>, LHS
+ 229035318U, // <4,u,4,4>: Cost 1 vspltisw0 RHS
+ 1624911158U, // <4,u,4,5>: Cost 2 vsldoi8 <2,3,4,u>, RHS
+ 2698653081U, // <4,u,4,6>: Cost 3 vsldoi8 <2,3,4,u>, <4,6,u,7>
+ 1234832712U, // <4,u,4,7>: Cost 2 vmrglw <4,4,4,4>, RHS
+ 229035318U, // <4,u,4,u>: Cost 1 vspltisw0 RHS
+ 1168561875U, // <4,u,5,0>: Cost 2 vmrghw RHS, <u,0,1,2>
+ 94820142U, // <4,u,5,1>: Cost 1 vmrghw RHS, LHS
+ 1168562053U, // <4,u,5,2>: Cost 2 vmrghw RHS, <u,2,3,0>
+ 1222230172U, // <4,u,5,3>: Cost 2 vmrglw <2,3,4,5>, LHS
+ 1168562239U, // <4,u,5,4>: Cost 2 vmrghw RHS, <u,4,5,6>
+ 94820506U, // <4,u,5,5>: Cost 1 vmrghw RHS, RHS
+ 1685280922U, // <4,u,5,6>: Cost 2 vsldoi12 <1,2,3,4>, RHS
+ 1222233416U, // <4,u,5,7>: Cost 2 vmrglw <2,3,4,5>, RHS
+ 94820709U, // <4,u,5,u>: Cost 1 vmrghw RHS, LHS
+ 1564713062U, // <4,u,6,0>: Cost 2 vsldoi4 <3,4,u,6>, LHS
+ 2626511979U, // <4,u,6,1>: Cost 3 vsldoi4 <1,4,u,6>, <1,4,u,6>
+ 2632484676U, // <4,u,6,2>: Cost 3 vsldoi4 <2,4,u,6>, <2,4,u,6>
+ 1564715549U, // <4,u,6,3>: Cost 2 vsldoi4 <3,4,u,6>, <3,4,u,6>
+ 1564716342U, // <4,u,6,4>: Cost 2 vsldoi4 <3,4,u,6>, RHS
+ 2242853018U, // <4,u,6,5>: Cost 3 vmrghw <4,6,5,2>, RHS
+ 2656375464U, // <4,u,6,6>: Cost 3 vsldoi4 <6,4,u,6>, <6,4,u,6>
+ 27705344U, // <4,u,6,7>: Cost 0 copy RHS
+ 27705344U, // <4,u,6,u>: Cost 0 copy RHS
+ 2785859840U, // <4,u,7,0>: Cost 3 vsldoi12 <5,6,7,4>, <u,7,0,1>
+ 2243499822U, // <4,u,7,1>: Cost 3 vmrghw <4,7,5,0>, LHS
+ 2727851197U, // <4,u,7,2>: Cost 3 vsldoi8 <7,2,4,u>, <7,2,4,u>
+ 2303951004U, // <4,u,7,3>: Cost 3 vmrglw <3,6,4,7>, LHS
+ 2785859880U, // <4,u,7,4>: Cost 3 vsldoi12 <5,6,7,4>, <u,7,4,5>
+ 2243500186U, // <4,u,7,5>: Cost 3 vmrghw <4,7,5,0>, RHS
+ 2730505729U, // <4,u,7,6>: Cost 3 vsldoi8 <7,6,4,u>, <7,6,4,u>
+ 2303954248U, // <4,u,7,7>: Cost 3 vmrglw <3,6,4,7>, RHS
+ 2303951009U, // <4,u,7,u>: Cost 3 vmrglw <3,6,4,7>, LHS
+ 1564729446U, // <4,u,u,0>: Cost 2 vsldoi4 <3,4,u,u>, LHS
+ 96810798U, // <4,u,u,1>: Cost 1 vmrghw RHS, LHS
+ 1685281125U, // <4,u,u,2>: Cost 2 vsldoi12 <1,2,3,4>, LHS
+ 1222254748U, // <4,u,u,3>: Cost 2 vmrglw <2,3,4,u>, LHS
+ 229035318U, // <4,u,u,4>: Cost 1 vspltisw0 RHS
+ 96811162U, // <4,u,u,5>: Cost 1 vmrghw RHS, RHS
+ 1685281165U, // <4,u,u,6>: Cost 2 vsldoi12 <1,2,3,4>, RHS
+ 27705344U, // <4,u,u,7>: Cost 0 copy RHS
+ 27705344U, // <4,u,u,u>: Cost 0 copy RHS
+ 2754232320U, // <5,0,0,0>: Cost 3 vsldoi12 <0,4,1,5>, <0,0,0,0>
+ 2754232330U, // <5,0,0,1>: Cost 3 vsldoi12 <0,4,1,5>, <0,0,1,1>
+ 3718194894U, // <5,0,0,2>: Cost 4 vsldoi4 <4,5,0,0>, <2,3,4,5>
+ 3376385762U, // <5,0,0,3>: Cost 4 vmrglw <3,4,5,0>, <5,2,0,3>
+ 2754232357U, // <5,0,0,4>: Cost 3 vsldoi12 <0,4,1,5>, <0,0,4,1>
+ 3845816370U, // <5,0,0,5>: Cost 4 vsldoi12 <3,4,0,5>, <0,0,5,5>
+ 3782353389U, // <5,0,0,6>: Cost 4 vsldoi8 <4,0,5,0>, <0,6,0,7>
+ 3376386090U, // <5,0,0,7>: Cost 4 vmrglw <3,4,5,0>, <5,6,0,7>
+ 2757402697U, // <5,0,0,u>: Cost 3 vsldoi12 <0,u,u,5>, <0,0,u,1>
+ 2626543718U, // <5,0,1,0>: Cost 3 vsldoi4 <1,5,0,1>, LHS
+ 2626544751U, // <5,0,1,1>: Cost 3 vsldoi4 <1,5,0,1>, <1,5,0,1>
+ 1680490598U, // <5,0,1,2>: Cost 2 vsldoi12 <0,4,1,5>, LHS
+ 3766428665U, // <5,0,1,3>: Cost 4 vsldoi8 <1,3,5,0>, <1,3,5,0>
+ 2626546998U, // <5,0,1,4>: Cost 3 vsldoi4 <1,5,0,1>, RHS
+ 2650435539U, // <5,0,1,5>: Cost 3 vsldoi4 <5,5,0,1>, <5,5,0,1>
+ 3783017715U, // <5,0,1,6>: Cost 4 vsldoi8 <4,1,5,0>, <1,6,5,7>
+ 3385019000U, // <5,0,1,7>: Cost 4 vmrglw <4,u,5,1>, <3,6,0,7>
+ 1680490652U, // <5,0,1,u>: Cost 2 vsldoi12 <0,4,1,5>, LHS
+ 3376398336U, // <5,0,2,0>: Cost 4 vmrglw <3,4,5,2>, <0,0,0,0>
+ 2245877862U, // <5,0,2,1>: Cost 3 vmrghw <5,2,1,3>, LHS
+ 3773064808U, // <5,0,2,2>: Cost 4 vsldoi8 <2,4,5,0>, <2,2,2,2>
+ 2705295054U, // <5,0,2,3>: Cost 3 vsldoi8 <3,4,5,0>, <2,3,4,5>
+ 3827974343U, // <5,0,2,4>: Cost 4 vsldoi12 <0,4,1,5>, <0,2,4,1>
+ 3845816530U, // <5,0,2,5>: Cost 4 vsldoi12 <3,4,0,5>, <0,2,5,3>
+ 3779037114U, // <5,0,2,6>: Cost 4 vsldoi8 <3,4,5,0>, <2,6,3,7>
+ 3810887658U, // <5,0,2,7>: Cost 4 vsldoi8 <u,7,5,0>, <2,7,0,1>
+ 2245878429U, // <5,0,2,u>: Cost 3 vmrghw <5,2,1,3>, LHS
+ 2710603926U, // <5,0,3,0>: Cost 3 vsldoi8 <4,3,5,0>, <3,0,1,2>
+ 3827974396U, // <5,0,3,1>: Cost 4 vsldoi12 <0,4,1,5>, <0,3,1,0>
+ 3779037516U, // <5,0,3,2>: Cost 4 vsldoi8 <3,4,5,0>, <3,2,3,4>
+ 3779037596U, // <5,0,3,3>: Cost 4 vsldoi8 <3,4,5,0>, <3,3,3,3>
+ 2705295868U, // <5,0,3,4>: Cost 3 vsldoi8 <3,4,5,0>, <3,4,5,0>
+ 3379726804U, // <5,0,3,5>: Cost 4 vmrglw <4,0,5,3>, <3,4,0,5>
+ 3802925748U, // <5,0,3,6>: Cost 4 vsldoi8 <7,4,5,0>, <3,6,7,4>
+ 3363138168U, // <5,0,3,7>: Cost 5 vmrglw <1,2,5,3>, <3,6,0,7>
+ 2707950400U, // <5,0,3,u>: Cost 3 vsldoi8 <3,u,5,0>, <3,u,5,0>
+ 2626568294U, // <5,0,4,0>: Cost 3 vsldoi4 <1,5,0,4>, LHS
+ 1680490834U, // <5,0,4,1>: Cost 2 vsldoi12 <0,4,1,5>, <0,4,1,5>
+ 3828048219U, // <5,0,4,2>: Cost 4 vsldoi12 <0,4,2,5>, <0,4,2,5>
+ 2710604932U, // <5,0,4,3>: Cost 3 vsldoi8 <4,3,5,0>, <4,3,5,0>
+ 2754232685U, // <5,0,4,4>: Cost 3 vsldoi12 <0,4,1,5>, <0,4,4,5>
+ 2705296694U, // <5,0,4,5>: Cost 3 vsldoi8 <3,4,5,0>, RHS
+ 3779038590U, // <5,0,4,6>: Cost 4 vsldoi8 <3,4,5,0>, <4,6,5,7>
+ 2713259464U, // <5,0,4,7>: Cost 3 vsldoi8 <4,7,5,0>, <4,7,5,0>
+ 1680490834U, // <5,0,4,u>: Cost 2 vsldoi12 <0,4,1,5>, <0,4,1,5>
+ 2311307264U, // <5,0,5,0>: Cost 3 vmrglw <4,u,5,5>, <0,0,0,0>
+ 1174437990U, // <5,0,5,1>: Cost 2 vmrghw <5,5,5,5>, LHS
+ 3779038946U, // <5,0,5,2>: Cost 4 vsldoi8 <3,4,5,0>, <5,2,0,3>
+ 3845816752U, // <5,0,5,3>: Cost 4 vsldoi12 <3,4,0,5>, <0,5,3,0>
+ 2248180050U, // <5,0,5,4>: Cost 3 vmrghw <5,5,5,5>, <0,4,1,5>
+ 2248180194U, // <5,0,5,5>: Cost 3 vmrghw <5,5,5,5>, <0,5,u,5>
+ 3779039274U, // <5,0,5,6>: Cost 4 vsldoi8 <3,4,5,0>, <5,6,0,7>
+ 3385051768U, // <5,0,5,7>: Cost 4 vmrglw <4,u,5,5>, <3,6,0,7>
+ 1174438557U, // <5,0,5,u>: Cost 2 vmrghw <5,5,5,5>, LHS
+ 2302689280U, // <5,0,6,0>: Cost 3 vmrglw <3,4,5,6>, <0,0,0,0>
+ 1175208038U, // <5,0,6,1>: Cost 2 vmrghw <5,6,7,0>, LHS
+ 3787002362U, // <5,0,6,2>: Cost 4 vsldoi8 <4,7,5,0>, <6,2,7,3>
+ 3376432160U, // <5,0,6,3>: Cost 4 vmrglw <3,4,5,6>, <1,4,0,3>
+ 2248950098U, // <5,0,6,4>: Cost 3 vmrghw <5,6,7,0>, <0,4,1,5>
+ 2248950180U, // <5,0,6,5>: Cost 3 vmrghw <5,6,7,0>, <0,5,1,6>
+ 3376433702U, // <5,0,6,6>: Cost 4 vmrglw <3,4,5,6>, <3,5,0,6>
+ 2729186166U, // <5,0,6,7>: Cost 3 vsldoi8 <7,4,5,0>, <6,7,4,5>
+ 1175208605U, // <5,0,6,u>: Cost 2 vmrghw <5,6,7,0>, LHS
+ 2713261050U, // <5,0,7,0>: Cost 3 vsldoi8 <4,7,5,0>, <7,0,1,2>
+ 3365823599U, // <5,0,7,1>: Cost 4 vmrglw <1,6,5,7>, <1,5,0,1>
+ 3808900317U, // <5,0,7,2>: Cost 4 vsldoi8 <u,4,5,0>, <7,2,u,4>
+ 3784348899U, // <5,0,7,3>: Cost 4 vsldoi8 <4,3,5,0>, <7,3,0,1>
+ 2729186656U, // <5,0,7,4>: Cost 3 vsldoi8 <7,4,5,0>, <7,4,5,0>
+ 3787003268U, // <5,0,7,5>: Cost 4 vsldoi8 <4,7,5,0>, <7,5,0,0>
+ 3802928664U, // <5,0,7,6>: Cost 4 vsldoi8 <7,4,5,0>, <7,6,7,4>
+ 3787003431U, // <5,0,7,7>: Cost 4 vsldoi8 <4,7,5,0>, <7,7,0,1>
+ 2731841188U, // <5,0,7,u>: Cost 3 vsldoi8 <7,u,5,0>, <7,u,5,0>
+ 2626601062U, // <5,0,u,0>: Cost 3 vsldoi4 <1,5,0,u>, LHS
+ 1683145366U, // <5,0,u,1>: Cost 2 vsldoi12 <0,u,1,5>, <0,u,1,5>
+ 1680491165U, // <5,0,u,2>: Cost 2 vsldoi12 <0,4,1,5>, LHS
+ 2705295054U, // <5,0,u,3>: Cost 3 vsldoi8 <3,4,5,0>, <2,3,4,5>
+ 2754233005U, // <5,0,u,4>: Cost 3 vsldoi12 <0,4,1,5>, <0,u,4,1>
+ 2705299610U, // <5,0,u,5>: Cost 3 vsldoi8 <3,4,5,0>, RHS
+ 3779041488U, // <5,0,u,6>: Cost 4 vsldoi8 <3,4,5,0>, <u,6,3,7>
+ 2737150252U, // <5,0,u,7>: Cost 3 vsldoi8 <u,7,5,0>, <u,7,5,0>
+ 1680491219U, // <5,0,u,u>: Cost 2 vsldoi12 <0,4,1,5>, LHS
+ 2713927680U, // <5,1,0,0>: Cost 3 vsldoi8 <4,u,5,1>, <0,0,0,0>
+ 1640185958U, // <5,1,0,1>: Cost 2 vsldoi8 <4,u,5,1>, LHS
+ 2310607866U, // <5,1,0,2>: Cost 3 vmrglw <4,7,5,0>, <7,0,1,2>
+ 3787669756U, // <5,1,0,3>: Cost 4 vsldoi8 <4,u,5,1>, <0,3,1,0>
+ 2713928018U, // <5,1,0,4>: Cost 3 vsldoi8 <4,u,5,1>, <0,4,1,5>
+ 2306621778U, // <5,1,0,5>: Cost 3 vmrglw <4,1,5,0>, <0,4,1,5>
+ 3787670006U, // <5,1,0,6>: Cost 4 vsldoi8 <4,u,5,1>, <0,6,1,7>
+ 3736188301U, // <5,1,0,7>: Cost 4 vsldoi4 <7,5,1,0>, <7,5,1,0>
+ 1640186525U, // <5,1,0,u>: Cost 2 vsldoi8 <4,u,5,1>, LHS
+ 2650505318U, // <5,1,1,0>: Cost 3 vsldoi4 <5,5,1,1>, LHS
+ 2754233140U, // <5,1,1,1>: Cost 3 vsldoi12 <0,4,1,5>, <1,1,1,1>
+ 2311276694U, // <5,1,1,2>: Cost 3 vmrglw <4,u,5,1>, <3,0,1,2>
+ 2311278315U, // <5,1,1,3>: Cost 3 vmrglw <4,u,5,1>, <5,2,1,3>
+ 2758435667U, // <5,1,1,4>: Cost 3 vsldoi12 <1,1,4,5>, <1,1,4,5>
+ 2754233180U, // <5,1,1,5>: Cost 3 vsldoi12 <0,4,1,5>, <1,1,5,5>
+ 3385016497U, // <5,1,1,6>: Cost 4 vmrglw <4,u,5,1>, <0,2,1,6>
+ 2311278643U, // <5,1,1,7>: Cost 3 vmrglw <4,u,5,1>, <5,6,1,7>
+ 2758730615U, // <5,1,1,u>: Cost 3 vsldoi12 <1,1,u,5>, <1,1,u,5>
+ 3700367462U, // <5,1,2,0>: Cost 4 vsldoi4 <1,5,1,2>, LHS
+ 3830629255U, // <5,1,2,1>: Cost 4 vsldoi12 <0,u,1,5>, <1,2,1,3>
+ 2713929320U, // <5,1,2,2>: Cost 3 vsldoi8 <4,u,5,1>, <2,2,2,2>
+ 2754233238U, // <5,1,2,3>: Cost 3 vsldoi12 <0,4,1,5>, <1,2,3,0>
+ 2759099300U, // <5,1,2,4>: Cost 3 vsldoi12 <1,2,4,5>, <1,2,4,5>
+ 2754233259U, // <5,1,2,5>: Cost 3 vsldoi12 <0,4,1,5>, <1,2,5,3>
+ 2713929658U, // <5,1,2,6>: Cost 3 vsldoi8 <4,u,5,1>, <2,6,3,7>
+ 3872359354U, // <5,1,2,7>: Cost 4 vsldoi12 <7,u,0,5>, <1,2,7,0>
+ 2754233283U, // <5,1,2,u>: Cost 3 vsldoi12 <0,4,1,5>, <1,2,u,0>
+ 2713929878U, // <5,1,3,0>: Cost 3 vsldoi8 <4,u,5,1>, <3,0,1,2>
+ 3363135498U, // <5,1,3,1>: Cost 4 vmrglw <1,2,5,3>, <0,0,1,1>
+ 3363137686U, // <5,1,3,2>: Cost 4 vmrglw <1,2,5,3>, <3,0,1,2>
+ 2713930140U, // <5,1,3,3>: Cost 3 vsldoi8 <4,u,5,1>, <3,3,3,3>
+ 2713930242U, // <5,1,3,4>: Cost 3 vsldoi8 <4,u,5,1>, <3,4,5,6>
+ 2289394002U, // <5,1,3,5>: Cost 3 vmrglw <1,2,5,3>, <0,4,1,5>
+ 3787672184U, // <5,1,3,6>: Cost 4 vsldoi8 <4,u,5,1>, <3,6,0,7>
+ 3787672259U, // <5,1,3,7>: Cost 4 vsldoi8 <4,u,5,1>, <3,7,0,1>
+ 2713930526U, // <5,1,3,u>: Cost 3 vsldoi8 <4,u,5,1>, <3,u,1,2>
+ 1634880402U, // <5,1,4,0>: Cost 2 vsldoi8 <4,0,5,1>, <4,0,5,1>
+ 2760205355U, // <5,1,4,1>: Cost 3 vsldoi12 <1,4,1,5>, <1,4,1,5>
+ 2760279092U, // <5,1,4,2>: Cost 3 vsldoi12 <1,4,2,5>, <1,4,2,5>
+ 3787672708U, // <5,1,4,3>: Cost 4 vsldoi8 <4,u,5,1>, <4,3,5,0>
+ 2713930960U, // <5,1,4,4>: Cost 3 vsldoi8 <4,u,5,1>, <4,4,4,4>
+ 1640189238U, // <5,1,4,5>: Cost 2 vsldoi8 <4,u,5,1>, RHS
+ 3786345848U, // <5,1,4,6>: Cost 4 vsldoi8 <4,6,5,1>, <4,6,5,1>
+ 3787009481U, // <5,1,4,7>: Cost 4 vsldoi8 <4,7,5,1>, <4,7,5,1>
+ 1640189466U, // <5,1,4,u>: Cost 2 vsldoi8 <4,u,5,1>, <4,u,5,1>
+ 2754233455U, // <5,1,5,0>: Cost 3 vsldoi12 <0,4,1,5>, <1,5,0,1>
+ 2713931407U, // <5,1,5,1>: Cost 3 vsldoi8 <4,u,5,1>, <5,1,0,1>
+ 2713931499U, // <5,1,5,2>: Cost 3 vsldoi8 <4,u,5,1>, <5,2,1,3>
+ 3827975305U, // <5,1,5,3>: Cost 4 vsldoi12 <0,4,1,5>, <1,5,3,0>
+ 2754233495U, // <5,1,5,4>: Cost 3 vsldoi12 <0,4,1,5>, <1,5,4,5>
+ 2288746834U, // <5,1,5,5>: Cost 3 vmrglw <1,1,5,5>, <0,4,1,5>
+ 2713931827U, // <5,1,5,6>: Cost 3 vsldoi8 <4,u,5,1>, <5,6,1,7>
+ 3787673725U, // <5,1,5,7>: Cost 4 vsldoi8 <4,u,5,1>, <5,7,1,0>
+ 2754233527U, // <5,1,5,u>: Cost 3 vsldoi12 <0,4,1,5>, <1,5,u,1>
+ 2668462182U, // <5,1,6,0>: Cost 3 vsldoi4 <u,5,1,6>, LHS
+ 2290746002U, // <5,1,6,1>: Cost 3 vmrglw <1,4,5,6>, <0,u,1,1>
+ 2302691478U, // <5,1,6,2>: Cost 3 vmrglw <3,4,5,6>, <3,0,1,2>
+ 3364488071U, // <5,1,6,3>: Cost 4 vmrglw <1,4,5,6>, <1,2,1,3>
+ 2302689536U, // <5,1,6,4>: Cost 3 vmrglw <3,4,5,6>, <0,3,1,4>
+ 2754233587U, // <5,1,6,5>: Cost 3 vsldoi12 <0,4,1,5>, <1,6,5,7>
+ 2713932600U, // <5,1,6,6>: Cost 3 vsldoi8 <4,u,5,1>, <6,6,6,6>
+ 2713932622U, // <5,1,6,7>: Cost 3 vsldoi8 <4,u,5,1>, <6,7,0,1>
+ 2302689297U, // <5,1,6,u>: Cost 3 vmrglw <3,4,5,6>, <0,0,1,u>
+ 2713932794U, // <5,1,7,0>: Cost 3 vsldoi8 <4,u,5,1>, <7,0,1,2>
+ 3365822474U, // <5,1,7,1>: Cost 4 vmrglw <1,6,5,7>, <0,0,1,1>
+ 3365824662U, // <5,1,7,2>: Cost 4 vmrglw <1,6,5,7>, <3,0,1,2>
+ 3787674851U, // <5,1,7,3>: Cost 4 vsldoi8 <4,u,5,1>, <7,3,0,1>
+ 2713933158U, // <5,1,7,4>: Cost 3 vsldoi8 <4,u,5,1>, <7,4,5,6>
+ 2292080978U, // <5,1,7,5>: Cost 3 vmrglw <1,6,5,7>, <0,4,1,5>
+ 3365823613U, // <5,1,7,6>: Cost 4 vmrglw <1,6,5,7>, <1,5,1,6>
+ 2713933420U, // <5,1,7,7>: Cost 3 vsldoi8 <4,u,5,1>, <7,7,7,7>
+ 2713933442U, // <5,1,7,u>: Cost 3 vsldoi8 <4,u,5,1>, <7,u,1,2>
+ 1658771190U, // <5,1,u,0>: Cost 2 vsldoi8 <u,0,5,1>, <u,0,5,1>
+ 1640191790U, // <5,1,u,1>: Cost 2 vsldoi8 <4,u,5,1>, LHS
+ 2762933624U, // <5,1,u,2>: Cost 3 vsldoi12 <1,u,2,5>, <1,u,2,5>
+ 2754233724U, // <5,1,u,3>: Cost 3 vsldoi12 <0,4,1,5>, <1,u,3,0>
+ 2763081098U, // <5,1,u,4>: Cost 3 vsldoi12 <1,u,4,5>, <1,u,4,5>
+ 1640192154U, // <5,1,u,5>: Cost 2 vsldoi8 <4,u,5,1>, RHS
+ 2713934032U, // <5,1,u,6>: Cost 3 vsldoi8 <4,u,5,1>, <u,6,3,7>
+ 2713934080U, // <5,1,u,7>: Cost 3 vsldoi8 <4,u,5,1>, <u,7,0,1>
+ 1640192357U, // <5,1,u,u>: Cost 2 vsldoi8 <4,u,5,1>, LHS
+ 3779051520U, // <5,2,0,0>: Cost 4 vsldoi8 <3,4,5,2>, <0,0,0,0>
+ 2705309798U, // <5,2,0,1>: Cost 3 vsldoi8 <3,4,5,2>, LHS
+ 3838813637U, // <5,2,0,2>: Cost 4 vsldoi12 <2,2,4,5>, <2,0,2,1>
+ 2302640230U, // <5,2,0,3>: Cost 3 vmrglw <3,4,5,0>, LHS
+ 3765117266U, // <5,2,0,4>: Cost 4 vsldoi8 <1,1,5,2>, <0,4,1,5>
+ 3381027892U, // <5,2,0,5>: Cost 4 vmrglw <4,2,5,0>, <1,4,2,5>
+ 3842794985U, // <5,2,0,6>: Cost 4 vsldoi12 <2,u,4,5>, <2,0,6,1>
+ 3408232554U, // <5,2,0,7>: Cost 4 vmrglw <u,7,5,0>, <0,1,2,7>
+ 2302640235U, // <5,2,0,u>: Cost 3 vmrglw <3,4,5,0>, LHS
+ 3700432998U, // <5,2,1,0>: Cost 4 vsldoi4 <1,5,2,1>, LHS
+ 3765117785U, // <5,2,1,1>: Cost 4 vsldoi8 <1,1,5,2>, <1,1,5,2>
+ 2311276136U, // <5,2,1,2>: Cost 3 vmrglw <4,u,5,1>, <2,2,2,2>
+ 1237532774U, // <5,2,1,3>: Cost 2 vmrglw <4,u,5,1>, LHS
+ 3700436278U, // <5,2,1,4>: Cost 4 vsldoi4 <1,5,2,1>, RHS
+ 3381036084U, // <5,2,1,5>: Cost 4 vmrglw <4,2,5,1>, <1,4,2,5>
+ 3385018045U, // <5,2,1,6>: Cost 4 vmrglw <4,u,5,1>, <2,3,2,6>
+ 3385017560U, // <5,2,1,7>: Cost 4 vmrglw <4,u,5,1>, <1,6,2,7>
+ 1237532779U, // <5,2,1,u>: Cost 2 vmrglw <4,u,5,1>, LHS
+ 3700441190U, // <5,2,2,0>: Cost 4 vsldoi4 <1,5,2,2>, LHS
+ 3700442242U, // <5,2,2,1>: Cost 4 vsldoi4 <1,5,2,2>, <1,5,2,2>
+ 2754233960U, // <5,2,2,2>: Cost 3 vsldoi12 <0,4,1,5>, <2,2,2,2>
+ 2754233970U, // <5,2,2,3>: Cost 3 vsldoi12 <0,4,1,5>, <2,2,3,3>
+ 2765071997U, // <5,2,2,4>: Cost 3 vsldoi12 <2,2,4,5>, <2,2,4,5>
+ 3834021508U, // <5,2,2,5>: Cost 4 vsldoi12 <1,4,2,5>, <2,2,5,3>
+ 3842795152U, // <5,2,2,6>: Cost 4 vsldoi12 <2,u,4,5>, <2,2,6,6>
+ 3376402492U, // <5,2,2,7>: Cost 4 vmrglw <3,4,5,2>, <5,6,2,7>
+ 2754234015U, // <5,2,2,u>: Cost 3 vsldoi12 <0,4,1,5>, <2,2,u,3>
+ 2754234022U, // <5,2,3,0>: Cost 3 vsldoi12 <0,4,1,5>, <2,3,0,1>
+ 3827975855U, // <5,2,3,1>: Cost 4 vsldoi12 <0,4,1,5>, <2,3,1,1>
+ 2644625102U, // <5,2,3,2>: Cost 3 vsldoi4 <4,5,2,3>, <2,3,4,5>
+ 2289393766U, // <5,2,3,3>: Cost 3 vmrglw <1,2,5,3>, LHS
+ 1691993806U, // <5,2,3,4>: Cost 2 vsldoi12 <2,3,4,5>, <2,3,4,5>
+ 2785052375U, // <5,2,3,5>: Cost 3 vsldoi12 <5,5,5,5>, <2,3,5,5>
+ 3854812897U, // <5,2,3,6>: Cost 4 vsldoi12 <4,u,5,5>, <2,3,6,6>
+ 3802942187U, // <5,2,3,7>: Cost 4 vsldoi8 <7,4,5,2>, <3,7,4,5>
+ 1692288754U, // <5,2,3,u>: Cost 2 vsldoi12 <2,3,u,5>, <2,3,u,5>
+ 3839846139U, // <5,2,4,0>: Cost 4 vsldoi12 <2,4,0,5>, <2,4,0,5>
+ 2709294052U, // <5,2,4,1>: Cost 3 vsldoi8 <4,1,5,2>, <4,1,5,2>
+ 2766251789U, // <5,2,4,2>: Cost 3 vsldoi12 <2,4,2,5>, <2,4,2,5>
+ 2765735702U, // <5,2,4,3>: Cost 3 vsldoi12 <2,3,4,5>, <2,4,3,5>
+ 3840141087U, // <5,2,4,4>: Cost 4 vsldoi12 <2,4,4,5>, <2,4,4,5>
+ 2705313078U, // <5,2,4,5>: Cost 3 vsldoi8 <3,4,5,2>, RHS
+ 2712612217U, // <5,2,4,6>: Cost 3 vsldoi8 <4,6,5,2>, <4,6,5,2>
+ 3787017674U, // <5,2,4,7>: Cost 4 vsldoi8 <4,7,5,2>, <4,7,5,2>
+ 2765735747U, // <5,2,4,u>: Cost 3 vsldoi12 <2,3,4,5>, <2,4,u,5>
+ 3834021704U, // <5,2,5,0>: Cost 4 vsldoi12 <1,4,2,5>, <2,5,0,1>
+ 3834021714U, // <5,2,5,1>: Cost 4 vsldoi12 <1,4,2,5>, <2,5,1,2>
+ 2311308904U, // <5,2,5,2>: Cost 3 vmrglw <4,u,5,5>, <2,2,2,2>
+ 1237565542U, // <5,2,5,3>: Cost 2 vmrglw <4,u,5,5>, LHS
+ 3834021744U, // <5,2,5,4>: Cost 4 vsldoi12 <1,4,2,5>, <2,5,4,5>
+ 3369124916U, // <5,2,5,5>: Cost 4 vmrglw <2,2,5,5>, <1,4,2,5>
+ 2248181690U, // <5,2,5,6>: Cost 3 vmrghw <5,5,5,5>, <2,6,3,7>
+ 3786354825U, // <5,2,5,7>: Cost 4 vsldoi8 <4,6,5,2>, <5,7,2,3>
+ 1237565547U, // <5,2,5,u>: Cost 2 vmrglw <4,u,5,5>, LHS
+ 3700473958U, // <5,2,6,0>: Cost 4 vsldoi4 <1,5,2,6>, LHS
+ 3700475014U, // <5,2,6,1>: Cost 4 vsldoi4 <1,5,2,6>, <1,5,2,6>
+ 2296718952U, // <5,2,6,2>: Cost 3 vmrglw <2,4,5,6>, <2,2,2,2>
+ 1228947558U, // <5,2,6,3>: Cost 2 vmrglw <3,4,5,6>, LHS
+ 3700477238U, // <5,2,6,4>: Cost 4 vsldoi4 <1,5,2,6>, RHS
+ 3834021836U, // <5,2,6,5>: Cost 4 vsldoi12 <1,4,2,5>, <2,6,5,7>
+ 2248951738U, // <5,2,6,6>: Cost 3 vmrghw <5,6,7,0>, <2,6,3,7>
+ 3370461105U, // <5,2,6,7>: Cost 4 vmrglw <2,4,5,6>, <2,6,2,7>
+ 1228947563U, // <5,2,6,u>: Cost 2 vmrglw <3,4,5,6>, LHS
+ 3786355706U, // <5,2,7,0>: Cost 4 vsldoi8 <4,6,5,2>, <7,0,1,2>
+ 3783038037U, // <5,2,7,1>: Cost 4 vsldoi8 <4,1,5,2>, <7,1,2,3>
+ 3365824104U, // <5,2,7,2>: Cost 4 vmrglw <1,6,5,7>, <2,2,2,2>
+ 2292080742U, // <5,2,7,3>: Cost 3 vmrglw <1,6,5,7>, LHS
+ 3842131986U, // <5,2,7,4>: Cost 4 vsldoi12 <2,7,4,5>, <2,7,4,5>
+ 3371795508U, // <5,2,7,5>: Cost 4 vmrglw <2,6,5,7>, <1,4,2,5>
+ 3786356206U, // <5,2,7,6>: Cost 4 vsldoi8 <4,6,5,2>, <7,6,2,7>
+ 3786356332U, // <5,2,7,7>: Cost 4 vsldoi8 <4,6,5,2>, <7,7,7,7>
+ 2292080747U, // <5,2,7,u>: Cost 3 vmrglw <1,6,5,7>, LHS
+ 2754234427U, // <5,2,u,0>: Cost 3 vsldoi12 <0,4,1,5>, <2,u,0,1>
+ 2705315630U, // <5,2,u,1>: Cost 3 vsldoi8 <3,4,5,2>, LHS
+ 2296735336U, // <5,2,u,2>: Cost 3 vmrglw <2,4,5,u>, <2,2,2,2>
+ 1228963942U, // <5,2,u,3>: Cost 2 vmrglw <3,4,5,u>, LHS
+ 1695311971U, // <5,2,u,4>: Cost 2 vsldoi12 <2,u,4,5>, <2,u,4,5>
+ 2705315994U, // <5,2,u,5>: Cost 3 vsldoi8 <3,4,5,2>, RHS
+ 2769201269U, // <5,2,u,6>: Cost 3 vsldoi12 <2,u,6,5>, <2,u,6,5>
+ 3370477489U, // <5,2,u,7>: Cost 4 vmrglw <2,4,5,u>, <2,6,2,7>
+ 1695606919U, // <5,2,u,u>: Cost 2 vsldoi12 <2,u,u,5>, <2,u,u,5>
+ 3827976331U, // <5,3,0,0>: Cost 4 vsldoi12 <0,4,1,5>, <3,0,0,0>
+ 2754234518U, // <5,3,0,1>: Cost 3 vsldoi12 <0,4,1,5>, <3,0,1,2>
+ 3706472290U, // <5,3,0,2>: Cost 4 vsldoi4 <2,5,3,0>, <2,5,3,0>
+ 3700500630U, // <5,3,0,3>: Cost 4 vsldoi4 <1,5,3,0>, <3,0,1,2>
+ 2754234544U, // <5,3,0,4>: Cost 3 vsldoi12 <0,4,1,5>, <3,0,4,1>
+ 3376383766U, // <5,3,0,5>: Cost 4 vmrglw <3,4,5,0>, <2,4,3,5>
+ 3769770513U, // <5,3,0,6>: Cost 5 vsldoi8 <1,u,5,3>, <0,6,4,7>
+ 3376383930U, // <5,3,0,7>: Cost 4 vmrglw <3,4,5,0>, <2,6,3,7>
+ 2754234581U, // <5,3,0,u>: Cost 3 vsldoi12 <0,4,1,5>, <3,0,u,2>
+ 2311275414U, // <5,3,1,0>: Cost 3 vmrglw <4,u,5,1>, <1,2,3,0>
+ 2305967971U, // <5,3,1,1>: Cost 3 vmrglw <4,0,5,1>, <2,5,3,1>
+ 2692047787U, // <5,3,1,2>: Cost 3 vsldoi8 <1,2,5,3>, <1,2,5,3>
+ 2311276146U, // <5,3,1,3>: Cost 3 vmrglw <4,u,5,1>, <2,2,3,3>
+ 2311275418U, // <5,3,1,4>: Cost 3 vmrglw <4,u,5,1>, <1,2,3,4>
+ 3765789807U, // <5,3,1,5>: Cost 4 vsldoi8 <1,2,5,3>, <1,5,0,1>
+ 3765789939U, // <5,3,1,6>: Cost 4 vsldoi8 <1,2,5,3>, <1,6,5,7>
+ 2311276474U, // <5,3,1,7>: Cost 3 vmrglw <4,u,5,1>, <2,6,3,7>
+ 2696029585U, // <5,3,1,u>: Cost 3 vsldoi8 <1,u,5,3>, <1,u,5,3>
+ 2311288709U, // <5,3,2,0>: Cost 3 vmrglw <4,u,5,2>, <u,2,3,0>
+ 3765790243U, // <5,3,2,1>: Cost 4 vsldoi8 <1,2,5,3>, <2,1,3,5>
+ 3827976513U, // <5,3,2,2>: Cost 4 vsldoi12 <0,4,1,5>, <3,2,2,2>
+ 2765736268U, // <5,3,2,3>: Cost 3 vsldoi12 <2,3,4,5>, <3,2,3,4>
+ 2246248962U, // <5,3,2,4>: Cost 3 vmrghw <5,2,6,3>, <3,4,5,6>
+ 3765790563U, // <5,3,2,5>: Cost 4 vsldoi8 <1,2,5,3>, <2,5,3,1>
+ 3827976550U, // <5,3,2,6>: Cost 4 vsldoi12 <0,4,1,5>, <3,2,6,3>
+ 3842795887U, // <5,3,2,7>: Cost 4 vsldoi12 <2,u,4,5>, <3,2,7,3>
+ 2769054073U, // <5,3,2,u>: Cost 3 vsldoi12 <2,u,4,5>, <3,2,u,4>
+ 3827976575U, // <5,3,3,0>: Cost 4 vsldoi12 <0,4,1,5>, <3,3,0,1>
+ 3765790963U, // <5,3,3,1>: Cost 4 vsldoi8 <1,2,5,3>, <3,1,2,5>
+ 3839478162U, // <5,3,3,2>: Cost 4 vsldoi12 <2,3,4,5>, <3,3,2,2>
+ 2754234780U, // <5,3,3,3>: Cost 3 vsldoi12 <0,4,1,5>, <3,3,3,3>
+ 2771708327U, // <5,3,3,4>: Cost 3 vsldoi12 <3,3,4,5>, <3,3,4,5>
+ 3363137059U, // <5,3,3,5>: Cost 4 vmrglw <1,2,5,3>, <2,1,3,5>
+ 3375081320U, // <5,3,3,6>: Cost 4 vmrglw <3,2,5,3>, <2,5,3,6>
+ 3363137466U, // <5,3,3,7>: Cost 4 vmrglw <1,2,5,3>, <2,6,3,7>
+ 2772003275U, // <5,3,3,u>: Cost 3 vsldoi12 <3,3,u,5>, <3,3,u,5>
+ 2772077012U, // <5,3,4,0>: Cost 3 vsldoi12 <3,4,0,5>, <3,4,0,5>
+ 3765791714U, // <5,3,4,1>: Cost 4 vsldoi8 <1,2,5,3>, <4,1,5,0>
+ 2709965878U, // <5,3,4,2>: Cost 3 vsldoi8 <4,2,5,3>, <4,2,5,3>
+ 2772298223U, // <5,3,4,3>: Cost 3 vsldoi12 <3,4,3,5>, <3,4,3,5>
+ 2772371960U, // <5,3,4,4>: Cost 3 vsldoi12 <3,4,4,5>, <3,4,4,5>
+ 2754234882U, // <5,3,4,5>: Cost 3 vsldoi12 <0,4,1,5>, <3,4,5,6>
+ 3839478282U, // <5,3,4,6>: Cost 4 vsldoi12 <2,3,4,5>, <3,4,6,5>
+ 3376416698U, // <5,3,4,7>: Cost 4 vmrglw <3,4,5,4>, <2,6,3,7>
+ 2754234909U, // <5,3,4,u>: Cost 3 vsldoi12 <0,4,1,5>, <3,4,u,6>
+ 2311308182U, // <5,3,5,0>: Cost 3 vmrglw <4,u,5,5>, <1,2,3,0>
+ 3765792421U, // <5,3,5,1>: Cost 4 vsldoi8 <1,2,5,3>, <5,1,2,5>
+ 2715938575U, // <5,3,5,2>: Cost 3 vsldoi8 <5,2,5,3>, <5,2,5,3>
+ 2311308914U, // <5,3,5,3>: Cost 3 vmrglw <4,u,5,5>, <2,2,3,3>
+ 2311308186U, // <5,3,5,4>: Cost 3 vmrglw <4,u,5,5>, <1,2,3,4>
+ 2248182354U, // <5,3,5,5>: Cost 3 vmrghw <5,5,5,5>, <3,5,5,5>
+ 3765792837U, // <5,3,5,6>: Cost 4 vsldoi8 <1,2,5,3>, <5,6,3,7>
+ 2311309242U, // <5,3,5,7>: Cost 3 vmrglw <4,u,5,5>, <2,6,3,7>
+ 2311308190U, // <5,3,5,u>: Cost 3 vmrglw <4,u,5,5>, <1,2,3,u>
+ 2632777830U, // <5,3,6,0>: Cost 3 vsldoi4 <2,5,3,6>, LHS
+ 3706520372U, // <5,3,6,1>: Cost 4 vsldoi4 <2,5,3,6>, <1,1,1,1>
+ 2632779624U, // <5,3,6,2>: Cost 3 vsldoi4 <2,5,3,6>, <2,5,3,6>
+ 2632780290U, // <5,3,6,3>: Cost 3 vsldoi4 <2,5,3,6>, <3,4,5,6>
+ 2632781110U, // <5,3,6,4>: Cost 3 vsldoi4 <2,5,3,6>, RHS
+ 2248952413U, // <5,3,6,5>: Cost 3 vmrghw <5,6,7,0>, <3,5,6,7>
+ 2302691176U, // <5,3,6,6>: Cost 3 vmrglw <3,4,5,6>, <2,5,3,6>
+ 2302691258U, // <5,3,6,7>: Cost 3 vmrglw <3,4,5,6>, <2,6,3,7>
+ 2632783662U, // <5,3,6,u>: Cost 3 vsldoi4 <2,5,3,6>, LHS
+ 3365823382U, // <5,3,7,0>: Cost 4 vmrglw <1,6,5,7>, <1,2,3,0>
+ 3706529011U, // <5,3,7,1>: Cost 4 vsldoi4 <2,5,3,7>, <1,6,5,7>
+ 3706529641U, // <5,3,7,2>: Cost 4 vsldoi4 <2,5,3,7>, <2,5,3,7>
+ 3365824114U, // <5,3,7,3>: Cost 4 vmrglw <1,6,5,7>, <2,2,3,3>
+ 2774362859U, // <5,3,7,4>: Cost 3 vsldoi12 <3,7,4,5>, <3,7,4,5>
+ 3365824035U, // <5,3,7,5>: Cost 4 vmrglw <1,6,5,7>, <2,1,3,5>
+ 3383740183U, // <5,3,7,6>: Cost 4 vmrglw <4,6,5,7>, <2,4,3,6>
+ 3363833786U, // <5,3,7,7>: Cost 4 vmrglw <1,3,5,7>, <2,6,3,7>
+ 2774657807U, // <5,3,7,u>: Cost 3 vsldoi12 <3,7,u,5>, <3,7,u,5>
+ 2632794214U, // <5,3,u,0>: Cost 3 vsldoi4 <2,5,3,u>, LHS
+ 2754235166U, // <5,3,u,1>: Cost 3 vsldoi12 <0,4,1,5>, <3,u,1,2>
+ 2632796010U, // <5,3,u,2>: Cost 3 vsldoi4 <2,5,3,u>, <2,5,3,u>
+ 2632796676U, // <5,3,u,3>: Cost 3 vsldoi4 <2,5,3,u>, <3,4,5,u>
+ 2632797494U, // <5,3,u,4>: Cost 3 vsldoi4 <2,5,3,u>, RHS
+ 2754235206U, // <5,3,u,5>: Cost 3 vsldoi12 <0,4,1,5>, <3,u,5,6>
+ 2302691176U, // <5,3,u,6>: Cost 3 vmrglw <3,4,5,6>, <2,5,3,6>
+ 2302707642U, // <5,3,u,7>: Cost 3 vmrglw <3,4,5,u>, <2,6,3,7>
+ 2754235229U, // <5,3,u,u>: Cost 3 vsldoi12 <0,4,1,5>, <3,u,u,2>
+ 3765133325U, // <5,4,0,0>: Cost 4 vsldoi8 <1,1,5,4>, <0,0,1,4>
+ 2705326182U, // <5,4,0,1>: Cost 3 vsldoi8 <3,4,5,4>, LHS
+ 3718489806U, // <5,4,0,2>: Cost 4 vsldoi4 <4,5,4,0>, <2,3,4,5>
+ 3718490624U, // <5,4,0,3>: Cost 4 vsldoi4 <4,5,4,0>, <3,4,5,4>
+ 2709307730U, // <5,4,0,4>: Cost 3 vsldoi8 <4,1,5,4>, <0,4,1,5>
+ 2302641870U, // <5,4,0,5>: Cost 3 vmrglw <3,4,5,0>, <2,3,4,5>
+ 3376383695U, // <5,4,0,6>: Cost 5 vmrglw <3,4,5,0>, <2,3,4,6>
+ 3384351018U, // <5,4,0,7>: Cost 4 vmrglw <4,7,5,0>, <u,7,4,7>
+ 2705326749U, // <5,4,0,u>: Cost 3 vsldoi8 <3,4,5,4>, LHS
+ 2305971057U, // <5,4,1,0>: Cost 3 vmrglw <4,0,5,1>, <6,7,4,0>
+ 3765134171U, // <5,4,1,1>: Cost 4 vsldoi8 <1,1,5,4>, <1,1,5,4>
+ 3766461338U, // <5,4,1,2>: Cost 4 vsldoi8 <1,3,5,4>, <1,2,3,4>
+ 3766461437U, // <5,4,1,3>: Cost 4 vsldoi8 <1,3,5,4>, <1,3,5,4>
+ 2311277776U, // <5,4,1,4>: Cost 3 vmrglw <4,u,5,1>, <4,4,4,4>
+ 2754235362U, // <5,4,1,5>: Cost 3 vsldoi12 <0,4,1,5>, <4,1,5,0>
+ 3783050483U, // <5,4,1,6>: Cost 4 vsldoi8 <4,1,5,4>, <1,6,5,7>
+ 3385019036U, // <5,4,1,7>: Cost 4 vmrglw <4,u,5,1>, <3,6,4,7>
+ 2311276241U, // <5,4,1,u>: Cost 3 vmrglw <4,u,5,1>, <2,3,4,u>
+ 3718504550U, // <5,4,2,0>: Cost 4 vsldoi4 <4,5,4,2>, LHS
+ 3783050787U, // <5,4,2,1>: Cost 4 vsldoi8 <4,1,5,4>, <2,1,3,5>
+ 3773097576U, // <5,4,2,2>: Cost 4 vsldoi8 <2,4,5,4>, <2,2,2,2>
+ 2705327822U, // <5,4,2,3>: Cost 3 vsldoi8 <3,4,5,4>, <2,3,4,5>
+ 3773097767U, // <5,4,2,4>: Cost 4 vsldoi8 <2,4,5,4>, <2,4,5,4>
+ 2765737014U, // <5,4,2,5>: Cost 3 vsldoi12 <2,3,4,5>, <4,2,5,3>
+ 3779069882U, // <5,4,2,6>: Cost 4 vsldoi8 <3,4,5,4>, <2,6,3,7>
+ 3376401052U, // <5,4,2,7>: Cost 5 vmrglw <3,4,5,2>, <3,6,4,7>
+ 2245881370U, // <5,4,2,u>: Cost 3 vmrghw <5,2,1,3>, <4,u,5,1>
+ 3779070102U, // <5,4,3,0>: Cost 4 vsldoi8 <3,4,5,4>, <3,0,1,2>
+ 3363135525U, // <5,4,3,1>: Cost 4 vmrglw <1,2,5,3>, <0,0,4,1>
+ 3779070284U, // <5,4,3,2>: Cost 4 vsldoi8 <3,4,5,4>, <3,2,3,4>
+ 3779070364U, // <5,4,3,3>: Cost 4 vsldoi8 <3,4,5,4>, <3,3,3,3>
+ 2705328640U, // <5,4,3,4>: Cost 3 vsldoi8 <3,4,5,4>, <3,4,5,4>
+ 2307311310U, // <5,4,3,5>: Cost 3 vmrglw <4,2,5,3>, <2,3,4,5>
+ 3866021012U, // <5,4,3,6>: Cost 4 vsldoi12 <6,7,4,5>, <4,3,6,7>
+ 3363138204U, // <5,4,3,7>: Cost 5 vmrglw <1,2,5,3>, <3,6,4,7>
+ 2707983172U, // <5,4,3,u>: Cost 3 vsldoi8 <3,u,5,4>, <3,u,5,4>
+ 2708646805U, // <5,4,4,0>: Cost 3 vsldoi8 <4,0,5,4>, <4,0,5,4>
+ 2709310438U, // <5,4,4,1>: Cost 3 vsldoi8 <4,1,5,4>, <4,1,5,4>
+ 3779071030U, // <5,4,4,2>: Cost 4 vsldoi8 <3,4,5,4>, <4,2,5,3>
+ 2710637704U, // <5,4,4,3>: Cost 3 vsldoi8 <4,3,5,4>, <4,3,5,4>
+ 2754235600U, // <5,4,4,4>: Cost 3 vsldoi12 <0,4,1,5>, <4,4,4,4>
+ 1704676570U, // <5,4,4,5>: Cost 2 vsldoi12 <4,4,5,5>, <4,4,5,5>
+ 3779071358U, // <5,4,4,6>: Cost 4 vsldoi8 <3,4,5,4>, <4,6,5,7>
+ 2713292236U, // <5,4,4,7>: Cost 3 vsldoi8 <4,7,5,4>, <4,7,5,4>
+ 1704897781U, // <5,4,4,u>: Cost 2 vsldoi12 <4,4,u,5>, <4,4,u,5>
+ 2626871398U, // <5,4,5,0>: Cost 3 vsldoi4 <1,5,4,5>, LHS
+ 2626872471U, // <5,4,5,1>: Cost 3 vsldoi4 <1,5,4,5>, <1,5,4,5>
+ 2765737230U, // <5,4,5,2>: Cost 3 vsldoi12 <2,3,4,5>, <4,5,2,3>
+ 3700615318U, // <5,4,5,3>: Cost 4 vsldoi4 <1,5,4,5>, <3,0,1,2>
+ 2626874678U, // <5,4,5,4>: Cost 3 vsldoi4 <1,5,4,5>, RHS
+ 1174441270U, // <5,4,5,5>: Cost 2 vmrghw <5,5,5,5>, RHS
+ 1680493878U, // <5,4,5,6>: Cost 2 vsldoi12 <0,4,1,5>, RHS
+ 3385051804U, // <5,4,5,7>: Cost 4 vmrglw <4,u,5,5>, <3,6,4,7>
+ 1680493896U, // <5,4,5,u>: Cost 2 vsldoi12 <0,4,1,5>, RHS
+ 2248952722U, // <5,4,6,0>: Cost 3 vmrghw <5,6,7,0>, <4,0,5,1>
+ 2302692152U, // <5,4,6,1>: Cost 3 vmrglw <3,4,5,6>, <3,u,4,1>
+ 3382406107U, // <5,4,6,2>: Cost 4 vmrglw <4,4,5,6>, <4,1,4,2>
+ 3700623874U, // <5,4,6,3>: Cost 4 vsldoi4 <1,5,4,6>, <3,4,5,6>
+ 2248953040U, // <5,4,6,4>: Cost 3 vmrghw <5,6,7,0>, <4,4,4,4>
+ 1175211318U, // <5,4,6,5>: Cost 2 vmrghw <5,6,7,0>, RHS
+ 3376432280U, // <5,4,6,6>: Cost 4 vmrglw <3,4,5,6>, <1,5,4,6>
+ 2729218934U, // <5,4,6,7>: Cost 3 vsldoi8 <7,4,5,4>, <6,7,4,5>
+ 1175211561U, // <5,4,6,u>: Cost 2 vmrghw <5,6,7,0>, RHS
+ 3787035642U, // <5,4,7,0>: Cost 4 vsldoi8 <4,7,5,4>, <7,0,1,2>
+ 3365822501U, // <5,4,7,1>: Cost 4 vmrglw <1,6,5,7>, <0,0,4,1>
+ 3808933085U, // <5,4,7,2>: Cost 4 vsldoi8 <u,4,5,4>, <7,2,u,4>
+ 3784381707U, // <5,4,7,3>: Cost 4 vsldoi8 <4,3,5,4>, <7,3,4,5>
+ 2713294182U, // <5,4,7,4>: Cost 3 vsldoi8 <4,7,5,4>, <7,4,5,6>
+ 2309998286U, // <5,4,7,5>: Cost 3 vmrglw <4,6,5,7>, <2,3,4,5>
+ 3383740111U, // <5,4,7,6>: Cost 4 vmrglw <4,6,5,7>, <2,3,4,6>
+ 3787036239U, // <5,4,7,7>: Cost 4 vsldoi8 <4,7,5,4>, <7,7,4,5>
+ 2731873960U, // <5,4,7,u>: Cost 3 vsldoi8 <7,u,5,4>, <7,u,5,4>
+ 2626895974U, // <5,4,u,0>: Cost 3 vsldoi4 <1,5,4,u>, LHS
+ 2626897050U, // <5,4,u,1>: Cost 3 vsldoi4 <1,5,4,u>, <1,5,4,u>
+ 2644813518U, // <5,4,u,2>: Cost 3 vsldoi4 <4,5,4,u>, <2,3,4,5>
+ 2705327822U, // <5,4,u,3>: Cost 3 vsldoi8 <3,4,5,4>, <2,3,4,5>
+ 2626899254U, // <5,4,u,4>: Cost 3 vsldoi4 <1,5,4,u>, RHS
+ 1707331102U, // <5,4,u,5>: Cost 2 vsldoi12 <4,u,5,5>, <4,u,5,5>
+ 1680494121U, // <5,4,u,6>: Cost 2 vsldoi12 <0,4,1,5>, RHS
+ 2737183024U, // <5,4,u,7>: Cost 3 vsldoi8 <u,7,5,4>, <u,7,5,4>
+ 1680494139U, // <5,4,u,u>: Cost 2 vsldoi12 <0,4,1,5>, RHS
+ 2302642684U, // <5,5,0,0>: Cost 3 vmrglw <3,4,5,0>, <3,4,5,0>
+ 1640218726U, // <5,5,0,1>: Cost 2 vsldoi8 <4,u,5,5>, LHS
+ 3376384510U, // <5,5,0,2>: Cost 4 vmrglw <3,4,5,0>, <3,4,5,2>
+ 3376385078U, // <5,5,0,3>: Cost 4 vmrglw <3,4,5,0>, <4,2,5,3>
+ 2754236002U, // <5,5,0,4>: Cost 3 vsldoi12 <0,4,1,5>, <5,0,4,1>
+ 2717942242U, // <5,5,0,5>: Cost 3 vsldoi8 <5,5,5,5>, <0,5,u,5>
+ 2244907106U, // <5,5,0,6>: Cost 3 vmrghw <5,0,6,1>, <5,6,7,0>
+ 3376385406U, // <5,5,0,7>: Cost 4 vmrglw <3,4,5,0>, <4,6,5,7>
+ 1640219293U, // <5,5,0,u>: Cost 2 vsldoi8 <4,u,5,5>, LHS
+ 2305969365U, // <5,5,1,0>: Cost 3 vmrglw <4,0,5,1>, <4,4,5,0>
+ 1237536282U, // <5,5,1,1>: Cost 2 vmrglw <4,u,5,1>, <4,u,5,1>
+ 2713961366U, // <5,5,1,2>: Cost 3 vsldoi8 <4,u,5,5>, <1,2,3,0>
+ 3766469630U, // <5,5,1,3>: Cost 4 vsldoi8 <1,3,5,5>, <1,3,5,5>
+ 2782326455U, // <5,5,1,4>: Cost 3 vsldoi12 <5,1,4,5>, <5,1,4,5>
+ 2311277786U, // <5,5,1,5>: Cost 3 vmrglw <4,u,5,1>, <4,4,5,5>
+ 2311277058U, // <5,5,1,6>: Cost 3 vmrglw <4,u,5,1>, <3,4,5,6>
+ 3385017587U, // <5,5,1,7>: Cost 4 vmrglw <4,u,5,1>, <1,6,5,7>
+ 1237536282U, // <5,5,1,u>: Cost 2 vmrglw <4,u,5,1>, <4,u,5,1>
+ 3376400892U, // <5,5,2,0>: Cost 4 vmrglw <3,4,5,2>, <3,4,5,0>
+ 3827977963U, // <5,5,2,1>: Cost 4 vsldoi12 <0,4,1,5>, <5,2,1,3>
+ 2302659070U, // <5,5,2,2>: Cost 3 vmrglw <3,4,5,2>, <3,4,5,2>
+ 2765737726U, // <5,5,2,3>: Cost 3 vsldoi12 <2,3,4,5>, <5,2,3,4>
+ 3839479558U, // <5,5,2,4>: Cost 4 vsldoi12 <2,3,4,5>, <5,2,4,3>
+ 2781073167U, // <5,5,2,5>: Cost 3 vsldoi12 <4,u,5,5>, <5,2,5,3>
+ 2713962426U, // <5,5,2,6>: Cost 3 vsldoi8 <4,u,5,5>, <2,6,3,7>
+ 3376401790U, // <5,5,2,7>: Cost 4 vmrglw <3,4,5,2>, <4,6,5,7>
+ 2769055531U, // <5,5,2,u>: Cost 3 vsldoi12 <2,u,4,5>, <5,2,u,4>
+ 2713962646U, // <5,5,3,0>: Cost 3 vsldoi8 <4,u,5,5>, <3,0,1,2>
+ 3765143786U, // <5,5,3,1>: Cost 4 vsldoi8 <1,1,5,5>, <3,1,1,5>
+ 3839479621U, // <5,5,3,2>: Cost 4 vsldoi12 <2,3,4,5>, <5,3,2,3>
+ 2289394603U, // <5,5,3,3>: Cost 3 vmrglw <1,2,5,3>, <1,2,5,3>
+ 2713963010U, // <5,5,3,4>: Cost 3 vsldoi8 <4,u,5,5>, <3,4,5,6>
+ 2313285150U, // <5,5,3,5>: Cost 3 vmrglw <5,2,5,3>, <4,u,5,5>
+ 3363138050U, // <5,5,3,6>: Cost 4 vmrglw <1,2,5,3>, <3,4,5,6>
+ 3363136755U, // <5,5,3,7>: Cost 4 vmrglw <1,2,5,3>, <1,6,5,7>
+ 2713963294U, // <5,5,3,u>: Cost 3 vsldoi8 <4,u,5,5>, <3,u,1,2>
+ 2713963410U, // <5,5,4,0>: Cost 3 vsldoi8 <4,u,5,5>, <4,0,5,1>
+ 3827978127U, // <5,5,4,1>: Cost 4 vsldoi12 <0,4,1,5>, <5,4,1,5>
+ 3839479704U, // <5,5,4,2>: Cost 4 vsldoi12 <2,3,4,5>, <5,4,2,5>
+ 3376417846U, // <5,5,4,3>: Cost 4 vmrglw <3,4,5,4>, <4,2,5,3>
+ 1637567706U, // <5,5,4,4>: Cost 2 vsldoi8 <4,4,5,5>, <4,4,5,5>
+ 1640222006U, // <5,5,4,5>: Cost 2 vsldoi8 <4,u,5,5>, RHS
+ 2310640998U, // <5,5,4,6>: Cost 3 vmrglw <4,7,5,4>, <7,4,5,6>
+ 3376418174U, // <5,5,4,7>: Cost 4 vmrglw <3,4,5,4>, <4,6,5,7>
+ 1640222238U, // <5,5,4,u>: Cost 2 vsldoi8 <4,u,5,5>, <4,u,5,5>
+ 1577091174U, // <5,5,5,0>: Cost 2 vsldoi4 <5,5,5,5>, LHS
+ 2311310226U, // <5,5,5,1>: Cost 3 vmrglw <4,u,5,5>, <4,0,5,1>
+ 2713964303U, // <5,5,5,2>: Cost 3 vsldoi8 <4,u,5,5>, <5,2,5,3>
+ 2311311119U, // <5,5,5,3>: Cost 3 vmrglw <4,u,5,5>, <5,2,5,3>
+ 1577094454U, // <5,5,5,4>: Cost 2 vsldoi4 <5,5,5,5>, RHS
+ 296144182U, // <5,5,5,5>: Cost 1 vspltisw1 RHS
+ 2311309826U, // <5,5,5,6>: Cost 3 vmrglw <4,u,5,5>, <3,4,5,6>
+ 2311311447U, // <5,5,5,7>: Cost 3 vmrglw <4,u,5,5>, <5,6,5,7>
+ 296144182U, // <5,5,5,u>: Cost 1 vspltisw1 RHS
+ 2248953460U, // <5,5,6,0>: Cost 3 vmrghw <5,6,7,0>, <5,0,6,1>
+ 2326580114U, // <5,5,6,1>: Cost 3 vmrglw <7,4,5,6>, <4,0,5,1>
+ 2713965050U, // <5,5,6,2>: Cost 3 vsldoi8 <4,u,5,5>, <6,2,7,3>
+ 3700697602U, // <5,5,6,3>: Cost 4 vsldoi4 <1,5,5,6>, <3,4,5,6>
+ 2785644620U, // <5,5,6,4>: Cost 3 vsldoi12 <5,6,4,5>, <5,6,4,5>
+ 2781073495U, // <5,5,6,5>: Cost 3 vsldoi12 <4,u,5,5>, <5,6,5,7>
+ 1228950018U, // <5,5,6,6>: Cost 2 vmrglw <3,4,5,6>, <3,4,5,6>
+ 2713965390U, // <5,5,6,7>: Cost 3 vsldoi8 <4,u,5,5>, <6,7,0,1>
+ 1228950018U, // <5,5,6,u>: Cost 2 vmrglw <3,4,5,6>, <3,4,5,6>
+ 2713965562U, // <5,5,7,0>: Cost 3 vsldoi8 <4,u,5,5>, <7,0,1,2>
+ 3383741330U, // <5,5,7,1>: Cost 4 vmrglw <4,6,5,7>, <4,0,5,1>
+ 3718620878U, // <5,5,7,2>: Cost 4 vsldoi4 <4,5,5,7>, <2,3,4,5>
+ 3365823403U, // <5,5,7,3>: Cost 4 vmrglw <1,6,5,7>, <1,2,5,3>
+ 2713965926U, // <5,5,7,4>: Cost 3 vsldoi8 <4,u,5,5>, <7,4,5,6>
+ 2717947318U, // <5,5,7,5>: Cost 3 vsldoi8 <5,5,5,5>, <7,5,5,5>
+ 3365825026U, // <5,5,7,6>: Cost 4 vmrglw <1,6,5,7>, <3,4,5,6>
+ 2292081907U, // <5,5,7,7>: Cost 3 vmrglw <1,6,5,7>, <1,6,5,7>
+ 2713966210U, // <5,5,7,u>: Cost 3 vsldoi8 <4,u,5,5>, <7,u,1,2>
+ 1577091174U, // <5,5,u,0>: Cost 2 vsldoi4 <5,5,5,5>, LHS
+ 1640224558U, // <5,5,u,1>: Cost 2 vsldoi8 <4,u,5,5>, LHS
+ 2713966469U, // <5,5,u,2>: Cost 3 vsldoi8 <4,u,5,5>, <u,2,3,0>
+ 2713966524U, // <5,5,u,3>: Cost 3 vsldoi8 <4,u,5,5>, <u,3,0,1>
+ 1577094454U, // <5,5,u,4>: Cost 2 vsldoi4 <5,5,5,5>, RHS
+ 296144182U, // <5,5,u,5>: Cost 1 vspltisw1 RHS
+ 1228950018U, // <5,5,u,6>: Cost 2 vmrglw <3,4,5,6>, <3,4,5,6>
+ 2713966848U, // <5,5,u,7>: Cost 3 vsldoi8 <4,u,5,5>, <u,7,0,1>
+ 296144182U, // <5,5,u,u>: Cost 1 vspltisw1 RHS
+ 2705342464U, // <5,6,0,0>: Cost 3 vsldoi8 <3,4,5,6>, <0,0,0,0>
+ 1631600742U, // <5,6,0,1>: Cost 2 vsldoi8 <3,4,5,6>, LHS
+ 3773112493U, // <5,6,0,2>: Cost 4 vsldoi8 <2,4,5,6>, <0,2,1,2>
+ 2705342720U, // <5,6,0,3>: Cost 3 vsldoi8 <3,4,5,6>, <0,3,1,4>
+ 2705342802U, // <5,6,0,4>: Cost 3 vsldoi8 <3,4,5,6>, <0,4,1,5>
+ 3779084708U, // <5,6,0,5>: Cost 4 vsldoi8 <3,4,5,6>, <0,5,1,6>
+ 3779084790U, // <5,6,0,6>: Cost 4 vsldoi8 <3,4,5,6>, <0,6,1,7>
+ 2302643510U, // <5,6,0,7>: Cost 3 vmrglw <3,4,5,0>, RHS
+ 1631601309U, // <5,6,0,u>: Cost 2 vsldoi8 <3,4,5,6>, LHS
+ 3767141092U, // <5,6,1,0>: Cost 4 vsldoi8 <1,4,5,6>, <1,0,1,2>
+ 2705343284U, // <5,6,1,1>: Cost 3 vsldoi8 <3,4,5,6>, <1,1,1,1>
+ 2705343382U, // <5,6,1,2>: Cost 3 vsldoi8 <3,4,5,6>, <1,2,3,0>
+ 3779085282U, // <5,6,1,3>: Cost 4 vsldoi8 <3,4,5,6>, <1,3,2,4>
+ 2693399632U, // <5,6,1,4>: Cost 3 vsldoi8 <1,4,5,6>, <1,4,5,6>
+ 3767805089U, // <5,6,1,5>: Cost 4 vsldoi8 <1,5,5,6>, <1,5,5,6>
+ 2311279416U, // <5,6,1,6>: Cost 3 vmrglw <4,u,5,1>, <6,6,6,6>
+ 1237536054U, // <5,6,1,7>: Cost 2 vmrglw <4,u,5,1>, RHS
+ 1237536055U, // <5,6,1,u>: Cost 2 vmrglw <4,u,5,1>, RHS
+ 3773113789U, // <5,6,2,0>: Cost 4 vsldoi8 <2,4,5,6>, <2,0,1,2>
+ 3779085855U, // <5,6,2,1>: Cost 4 vsldoi8 <3,4,5,6>, <2,1,3,1>
+ 2699372136U, // <5,6,2,2>: Cost 3 vsldoi8 <2,4,5,6>, <2,2,2,2>
+ 2705344166U, // <5,6,2,3>: Cost 3 vsldoi8 <3,4,5,6>, <2,3,0,1>
+ 2699372329U, // <5,6,2,4>: Cost 3 vsldoi8 <2,4,5,6>, <2,4,5,6>
+ 2705344360U, // <5,6,2,5>: Cost 3 vsldoi8 <3,4,5,6>, <2,5,3,6>
+ 2705344442U, // <5,6,2,6>: Cost 3 vsldoi8 <3,4,5,6>, <2,6,3,7>
+ 2302659894U, // <5,6,2,7>: Cost 3 vmrglw <3,4,5,2>, RHS
+ 2702026861U, // <5,6,2,u>: Cost 3 vsldoi8 <2,u,5,6>, <2,u,5,6>
+ 2705344662U, // <5,6,3,0>: Cost 3 vsldoi8 <3,4,5,6>, <3,0,1,2>
+ 3767142661U, // <5,6,3,1>: Cost 4 vsldoi8 <1,4,5,6>, <3,1,4,5>
+ 3773114689U, // <5,6,3,2>: Cost 4 vsldoi8 <2,4,5,6>, <3,2,2,2>
+ 2705344924U, // <5,6,3,3>: Cost 3 vsldoi8 <3,4,5,6>, <3,3,3,3>
+ 1631603202U, // <5,6,3,4>: Cost 2 vsldoi8 <3,4,5,6>, <3,4,5,6>
+ 3842945597U, // <5,6,3,5>: Cost 4 vsldoi12 <2,u,6,5>, <6,3,5,7>
+ 3779086962U, // <5,6,3,6>: Cost 4 vsldoi8 <3,4,5,6>, <3,6,0,1>
+ 2289397046U, // <5,6,3,7>: Cost 3 vmrglw <1,2,5,3>, RHS
+ 1634257734U, // <5,6,3,u>: Cost 2 vsldoi8 <3,u,5,6>, <3,u,5,6>
+ 2644926566U, // <5,6,4,0>: Cost 3 vsldoi4 <4,5,6,4>, LHS
+ 3779087306U, // <5,6,4,1>: Cost 4 vsldoi8 <3,4,5,6>, <4,1,2,3>
+ 2790142577U, // <5,6,4,2>: Cost 3 vsldoi12 <6,4,2,5>, <6,4,2,5>
+ 2644929026U, // <5,6,4,3>: Cost 3 vsldoi4 <4,5,6,4>, <3,4,5,6>
+ 2711317723U, // <5,6,4,4>: Cost 3 vsldoi8 <4,4,5,6>, <4,4,5,6>
+ 1631604022U, // <5,6,4,5>: Cost 2 vsldoi8 <3,4,5,6>, RHS
+ 2712644989U, // <5,6,4,6>: Cost 3 vsldoi8 <4,6,5,6>, <4,6,5,6>
+ 2302676278U, // <5,6,4,7>: Cost 3 vmrglw <3,4,5,4>, RHS
+ 1631604265U, // <5,6,4,u>: Cost 2 vsldoi8 <3,4,5,6>, RHS
+ 3842945708U, // <5,6,5,0>: Cost 4 vsldoi12 <2,u,6,5>, <6,5,0,1>
+ 3767144133U, // <5,6,5,1>: Cost 4 vsldoi8 <1,4,5,6>, <5,1,6,1>
+ 2705346328U, // <5,6,5,2>: Cost 3 vsldoi8 <3,4,5,6>, <5,2,6,3>
+ 3779088207U, // <5,6,5,3>: Cost 4 vsldoi8 <3,4,5,6>, <5,3,3,4>
+ 2717290420U, // <5,6,5,4>: Cost 3 vsldoi8 <5,4,5,6>, <5,4,5,6>
+ 2705346574U, // <5,6,5,5>: Cost 3 vsldoi8 <3,4,5,6>, <5,5,6,6>
+ 2705346596U, // <5,6,5,6>: Cost 3 vsldoi8 <3,4,5,6>, <5,6,0,1>
+ 1237568822U, // <5,6,5,7>: Cost 2 vmrglw <4,u,5,5>, RHS
+ 1237568823U, // <5,6,5,u>: Cost 2 vmrglw <4,u,5,5>, RHS
+ 2650914918U, // <5,6,6,0>: Cost 3 vsldoi4 <5,5,6,6>, LHS
+ 3364490949U, // <5,6,6,1>: Cost 4 vmrglw <1,4,5,6>, <5,1,6,1>
+ 2248954362U, // <5,6,6,2>: Cost 3 vmrghw <5,6,7,0>, <6,2,7,3>
+ 2302693144U, // <5,6,6,3>: Cost 3 vmrglw <3,4,5,6>, <5,2,6,3>
+ 2650918198U, // <5,6,6,4>: Cost 3 vsldoi4 <5,5,6,6>, RHS
+ 2650918926U, // <5,6,6,5>: Cost 3 vsldoi4 <5,5,6,6>, <5,5,6,6>
+ 2302693390U, // <5,6,6,6>: Cost 3 vmrglw <3,4,5,6>, <5,5,6,6>
+ 1228950838U, // <5,6,6,7>: Cost 2 vmrglw <3,4,5,6>, RHS
+ 1228950839U, // <5,6,6,u>: Cost 2 vmrglw <3,4,5,6>, RHS
+ 497467494U, // <5,6,7,0>: Cost 1 vsldoi4 RHS, LHS
+ 1571210036U, // <5,6,7,1>: Cost 2 vsldoi4 RHS, <1,1,1,1>
+ 1571210856U, // <5,6,7,2>: Cost 2 vsldoi4 RHS, <2,2,2,2>
+ 1571211414U, // <5,6,7,3>: Cost 2 vsldoi4 RHS, <3,0,1,2>
+ 497470774U, // <5,6,7,4>: Cost 1 vsldoi4 RHS, RHS
+ 1571213316U, // <5,6,7,5>: Cost 2 vsldoi4 RHS, <5,5,5,5>
+ 1571213818U, // <5,6,7,6>: Cost 2 vsldoi4 RHS, <6,2,7,3>
+ 1571214956U, // <5,6,7,7>: Cost 2 vsldoi4 RHS, <7,7,7,7>
+ 497473326U, // <5,6,7,u>: Cost 1 vsldoi4 RHS, LHS
+ 497475686U, // <5,6,u,0>: Cost 1 vsldoi4 RHS, LHS
+ 1631606574U, // <5,6,u,1>: Cost 2 vsldoi8 <3,4,5,6>, LHS
+ 1571219048U, // <5,6,u,2>: Cost 2 vsldoi4 RHS, <2,2,2,2>
+ 1571219606U, // <5,6,u,3>: Cost 2 vsldoi4 RHS, <3,0,1,2>
+ 497478967U, // <5,6,u,4>: Cost 1 vsldoi4 RHS, RHS
+ 1631606938U, // <5,6,u,5>: Cost 2 vsldoi8 <3,4,5,6>, RHS
+ 1571222010U, // <5,6,u,6>: Cost 2 vsldoi4 RHS, <6,2,7,3>
+ 1228967222U, // <5,6,u,7>: Cost 2 vmrglw <3,4,5,u>, RHS
+ 497481518U, // <5,6,u,u>: Cost 1 vsldoi4 RHS, LHS
+ 3768475648U, // <5,7,0,0>: Cost 4 vsldoi8 <1,6,5,7>, <0,0,0,0>
+ 2694733926U, // <5,7,0,1>: Cost 3 vsldoi8 <1,6,5,7>, LHS
+ 3718711395U, // <5,7,0,2>: Cost 4 vsldoi4 <4,5,7,0>, <2,u,4,5>
+ 3384349178U, // <5,7,0,3>: Cost 4 vmrglw <4,7,5,0>, <6,2,7,3>
+ 2694734162U, // <5,7,0,4>: Cost 3 vsldoi8 <1,6,5,7>, <0,4,1,5>
+ 3384347884U, // <5,7,0,5>: Cost 4 vmrglw <4,7,5,0>, <4,4,7,5>
+ 3730658026U, // <5,7,0,6>: Cost 4 vsldoi4 <6,5,7,0>, <6,5,7,0>
+ 3718714362U, // <5,7,0,7>: Cost 4 vsldoi4 <4,5,7,0>, <7,0,1,2>
+ 2694734493U, // <5,7,0,u>: Cost 3 vsldoi8 <1,6,5,7>, LHS
+ 2311278690U, // <5,7,1,0>: Cost 3 vmrglw <4,u,5,1>, <5,6,7,0>
+ 2305970923U, // <5,7,1,1>: Cost 3 vmrglw <4,0,5,1>, <6,5,7,1>
+ 3768476566U, // <5,7,1,2>: Cost 4 vsldoi8 <1,6,5,7>, <1,2,3,0>
+ 2311279098U, // <5,7,1,3>: Cost 3 vmrglw <4,u,5,1>, <6,2,7,3>
+ 2311278694U, // <5,7,1,4>: Cost 3 vmrglw <4,u,5,1>, <5,6,7,4>
+ 3768476783U, // <5,7,1,5>: Cost 4 vsldoi8 <1,6,5,7>, <1,5,0,1>
+ 2694735091U, // <5,7,1,6>: Cost 3 vsldoi8 <1,6,5,7>, <1,6,5,7>
+ 2311279426U, // <5,7,1,7>: Cost 3 vmrglw <4,u,5,1>, <6,6,7,7>
+ 2696062357U, // <5,7,1,u>: Cost 3 vsldoi8 <1,u,5,7>, <1,u,5,7>
+ 3383701602U, // <5,7,2,0>: Cost 4 vmrglw <4,6,5,2>, <5,6,7,0>
+ 3768477219U, // <5,7,2,1>: Cost 4 vsldoi8 <1,6,5,7>, <2,1,3,5>
+ 3768477288U, // <5,7,2,2>: Cost 4 vsldoi8 <1,6,5,7>, <2,2,2,2>
+ 2309960186U, // <5,7,2,3>: Cost 3 vmrglw <4,6,5,2>, <6,2,7,3>
+ 3383701606U, // <5,7,2,4>: Cost 4 vmrglw <4,6,5,2>, <5,6,7,4>
+ 3768477545U, // <5,7,2,5>: Cost 4 vsldoi8 <1,6,5,7>, <2,5,3,7>
+ 3766486970U, // <5,7,2,6>: Cost 4 vsldoi8 <1,3,5,7>, <2,6,3,7>
+ 3383702338U, // <5,7,2,7>: Cost 4 vmrglw <4,6,5,2>, <6,6,7,7>
+ 2309960186U, // <5,7,2,u>: Cost 3 vmrglw <4,6,5,2>, <6,2,7,3>
+ 3768477846U, // <5,7,3,0>: Cost 4 vsldoi8 <1,6,5,7>, <3,0,1,2>
+ 3768477975U, // <5,7,3,1>: Cost 4 vsldoi8 <1,6,5,7>, <3,1,6,5>
+ 3786393932U, // <5,7,3,2>: Cost 4 vsldoi8 <4,6,5,7>, <3,2,3,4>
+ 3768478108U, // <5,7,3,3>: Cost 4 vsldoi8 <1,6,5,7>, <3,3,3,3>
+ 2795599115U, // <5,7,3,4>: Cost 3 vsldoi12 <7,3,4,5>, <7,3,4,5>
+ 3385037470U, // <5,7,3,5>: Cost 4 vmrglw <4,u,5,3>, <6,4,7,5>
+ 3780422309U, // <5,7,3,6>: Cost 4 vsldoi8 <3,6,5,7>, <3,6,5,7>
+ 3848107301U, // <5,7,3,7>: Cost 4 vsldoi12 <3,7,4,5>, <7,3,7,4>
+ 2795894063U, // <5,7,3,u>: Cost 3 vsldoi12 <7,3,u,5>, <7,3,u,5>
+ 2795967800U, // <5,7,4,0>: Cost 3 vsldoi12 <7,4,0,5>, <7,4,0,5>
+ 3768478690U, // <5,7,4,1>: Cost 4 vsldoi8 <1,6,5,7>, <4,1,5,0>
+ 3718744163U, // <5,7,4,2>: Cost 4 vsldoi4 <4,5,7,4>, <2,u,4,5>
+ 3784404107U, // <5,7,4,3>: Cost 4 vsldoi8 <4,3,5,7>, <4,3,5,7>
+ 2796262748U, // <5,7,4,4>: Cost 3 vsldoi12 <7,4,4,5>, <7,4,4,5>
+ 2694737206U, // <5,7,4,5>: Cost 3 vsldoi8 <1,6,5,7>, RHS
+ 2712653182U, // <5,7,4,6>: Cost 3 vsldoi8 <4,6,5,7>, <4,6,5,7>
+ 2713316815U, // <5,7,4,7>: Cost 3 vsldoi8 <4,7,5,7>, <4,7,5,7>
+ 2694737449U, // <5,7,4,u>: Cost 3 vsldoi8 <1,6,5,7>, RHS
+ 2311311458U, // <5,7,5,0>: Cost 3 vmrglw <4,u,5,5>, <5,6,7,0>
+ 3768479433U, // <5,7,5,1>: Cost 4 vsldoi8 <1,6,5,7>, <5,1,6,5>
+ 3768479521U, // <5,7,5,2>: Cost 4 vsldoi8 <1,6,5,7>, <5,2,7,3>
+ 2311311866U, // <5,7,5,3>: Cost 3 vmrglw <4,u,5,5>, <6,2,7,3>
+ 2311311462U, // <5,7,5,4>: Cost 3 vmrglw <4,u,5,5>, <5,6,7,4>
+ 2248185270U, // <5,7,5,5>: Cost 3 vmrghw <5,5,5,5>, <7,5,5,5>
+ 2718625879U, // <5,7,5,6>: Cost 3 vsldoi8 <5,6,5,7>, <5,6,5,7>
+ 2311312194U, // <5,7,5,7>: Cost 3 vmrglw <4,u,5,5>, <6,6,7,7>
+ 2311311466U, // <5,7,5,u>: Cost 3 vmrglw <4,u,5,5>, <5,6,7,u>
+ 2248954874U, // <5,7,6,0>: Cost 3 vmrghw <5,6,7,0>, <7,0,1,2>
+ 3322696778U, // <5,7,6,1>: Cost 4 vmrghw <5,6,7,0>, <7,1,1,1>
+ 2248955028U, // <5,7,6,2>: Cost 3 vmrghw <5,6,7,0>, <7,2,0,3>
+ 2656963074U, // <5,7,6,3>: Cost 3 vsldoi4 <6,5,7,6>, <3,4,5,6>
+ 2248955238U, // <5,7,6,4>: Cost 3 vmrghw <5,6,7,0>, <7,4,5,6>
+ 2248955329U, // <5,7,6,5>: Cost 3 vmrghw <5,6,7,0>, <7,5,6,7>
+ 2656965360U, // <5,7,6,6>: Cost 3 vsldoi4 <6,5,7,6>, <6,5,7,6>
+ 2248955500U, // <5,7,6,7>: Cost 3 vmrghw <5,6,7,0>, <7,7,7,7>
+ 2248955522U, // <5,7,6,u>: Cost 3 vmrghw <5,6,7,0>, <7,u,1,2>
+ 3718766694U, // <5,7,7,0>: Cost 4 vsldoi4 <4,5,7,7>, LHS
+ 3724739827U, // <5,7,7,1>: Cost 4 vsldoi4 <5,5,7,7>, <1,6,5,7>
+ 3718768739U, // <5,7,7,2>: Cost 4 vsldoi4 <4,5,7,7>, <2,u,4,5>
+ 3365826337U, // <5,7,7,3>: Cost 4 vmrglw <1,6,5,7>, <5,2,7,3>
+ 2798253647U, // <5,7,7,4>: Cost 3 vsldoi12 <7,7,4,5>, <7,7,4,5>
+ 3365826258U, // <5,7,7,5>: Cost 4 vmrglw <1,6,5,7>, <5,1,7,5>
+ 3730715377U, // <5,7,7,6>: Cost 4 vsldoi4 <6,5,7,7>, <6,5,7,7>
+ 2310665836U, // <5,7,7,7>: Cost 3 vmrglw <4,7,5,7>, <7,7,7,7>
+ 2798548595U, // <5,7,7,u>: Cost 3 vsldoi12 <7,7,u,5>, <7,7,u,5>
+ 2311336034U, // <5,7,u,0>: Cost 3 vmrglw <4,u,5,u>, <5,6,7,0>
+ 2694739758U, // <5,7,u,1>: Cost 3 vsldoi8 <1,6,5,7>, LHS
+ 2248955028U, // <5,7,u,2>: Cost 3 vmrghw <5,6,7,0>, <7,2,0,3>
+ 2311336442U, // <5,7,u,3>: Cost 3 vmrglw <4,u,5,u>, <6,2,7,3>
+ 2311336038U, // <5,7,u,4>: Cost 3 vmrglw <4,u,5,u>, <5,6,7,4>
+ 2694740122U, // <5,7,u,5>: Cost 3 vsldoi8 <1,6,5,7>, RHS
+ 2656981746U, // <5,7,u,6>: Cost 3 vsldoi4 <6,5,7,u>, <6,5,7,u>
+ 2311336770U, // <5,7,u,7>: Cost 3 vmrglw <4,u,5,u>, <6,6,7,7>
+ 2694740325U, // <5,7,u,u>: Cost 3 vsldoi8 <1,6,5,7>, LHS
+ 2705358848U, // <5,u,0,0>: Cost 3 vsldoi8 <3,4,5,u>, <0,0,0,0>
+ 1631617126U, // <5,u,0,1>: Cost 2 vsldoi8 <3,4,5,u>, LHS
+ 2310607866U, // <5,u,0,2>: Cost 3 vmrglw <4,7,5,0>, <7,0,1,2>
+ 2302640284U, // <5,u,0,3>: Cost 3 vmrglw <3,4,5,0>, LHS
+ 2754238189U, // <5,u,0,4>: Cost 3 vsldoi12 <0,4,1,5>, <u,0,4,1>
+ 2305296114U, // <5,u,0,5>: Cost 3 vmrglw <3,u,5,0>, <2,3,u,5>
+ 2244907106U, // <5,u,0,6>: Cost 3 vmrghw <5,0,6,1>, <5,6,7,0>
+ 2302643528U, // <5,u,0,7>: Cost 3 vmrglw <3,4,5,0>, RHS
+ 1631617693U, // <5,u,0,u>: Cost 2 vsldoi8 <3,4,5,u>, LHS
+ 2627133542U, // <5,u,1,0>: Cost 3 vsldoi4 <1,5,u,1>, LHS
+ 1237536282U, // <5,u,1,1>: Cost 2 vmrglw <4,u,5,1>, <4,u,5,1>
+ 1680496430U, // <5,u,1,2>: Cost 2 vsldoi12 <0,4,1,5>, LHS
+ 1237532828U, // <5,u,1,3>: Cost 2 vmrglw <4,u,5,1>, LHS
+ 2693416018U, // <5,u,1,4>: Cost 3 vsldoi8 <1,4,5,u>, <1,4,5,u>
+ 2756892486U, // <5,u,1,5>: Cost 3 vsldoi12 <0,u,1,5>, <u,1,5,0>
+ 2694743284U, // <5,u,1,6>: Cost 3 vsldoi8 <1,6,5,u>, <1,6,5,u>
+ 1237536072U, // <5,u,1,7>: Cost 2 vmrglw <4,u,5,1>, RHS
+ 1680496484U, // <5,u,1,u>: Cost 2 vsldoi12 <0,4,1,5>, LHS
+ 2311288709U, // <5,u,2,0>: Cost 3 vmrglw <4,u,5,2>, <u,2,3,0>
+ 2245883694U, // <5,u,2,1>: Cost 3 vmrghw <5,2,1,3>, LHS
+ 2699388520U, // <5,u,2,2>: Cost 3 vsldoi8 <2,4,5,u>, <2,2,2,2>
+ 2754238344U, // <5,u,2,3>: Cost 3 vsldoi12 <0,4,1,5>, <u,2,3,3>
+ 2699388715U, // <5,u,2,4>: Cost 3 vsldoi8 <2,4,5,u>, <2,4,5,u>
+ 2757408666U, // <5,u,2,5>: Cost 3 vsldoi12 <0,u,u,5>, <u,2,5,3>
+ 2705360826U, // <5,u,2,6>: Cost 3 vsldoi8 <3,4,5,u>, <2,6,3,7>
+ 2302659912U, // <5,u,2,7>: Cost 3 vmrglw <3,4,5,2>, RHS
+ 2754238389U, // <5,u,2,u>: Cost 3 vsldoi12 <0,4,1,5>, <u,2,u,3>
+ 2754238396U, // <5,u,3,0>: Cost 3 vsldoi12 <0,4,1,5>, <u,3,0,1>
+ 3827980229U, // <5,u,3,1>: Cost 4 vsldoi12 <0,4,1,5>, <u,3,1,1>
+ 2644625102U, // <5,u,3,2>: Cost 3 vsldoi4 <4,5,2,3>, <2,3,4,5>
+ 2289393820U, // <5,u,3,3>: Cost 3 vmrglw <1,2,5,3>, LHS
+ 1631619588U, // <5,u,3,4>: Cost 2 vsldoi8 <3,4,5,u>, <3,4,5,u>
+ 2785056749U, // <5,u,3,5>: Cost 3 vsldoi12 <5,5,5,5>, <u,3,5,5>
+ 3363138077U, // <5,u,3,6>: Cost 4 vmrglw <1,2,5,3>, <3,4,u,6>
+ 2289397064U, // <5,u,3,7>: Cost 3 vmrglw <1,2,5,3>, RHS
+ 1634274120U, // <5,u,3,u>: Cost 2 vsldoi8 <3,u,5,u>, <3,u,5,u>
+ 1634937753U, // <5,u,4,0>: Cost 2 vsldoi8 <4,0,5,u>, <4,0,5,u>
+ 1728272410U, // <5,u,4,1>: Cost 2 vsldoi12 <u,4,1,5>, <u,4,1,5>
+ 2710006843U, // <5,u,4,2>: Cost 3 vsldoi8 <4,2,5,u>, <4,2,5,u>
+ 2765740076U, // <5,u,4,3>: Cost 3 vsldoi12 <2,3,4,5>, <u,4,3,5>
+ 1637592285U, // <5,u,4,4>: Cost 2 vsldoi8 <4,4,5,u>, <4,4,5,u>
+ 1631620406U, // <5,u,4,5>: Cost 2 vsldoi8 <3,4,5,u>, RHS
+ 2712661375U, // <5,u,4,6>: Cost 3 vsldoi8 <4,6,5,u>, <4,6,5,u>
+ 2302676296U, // <5,u,4,7>: Cost 3 vmrglw <3,4,5,4>, RHS
+ 1631620649U, // <5,u,4,u>: Cost 2 vsldoi8 <3,4,5,u>, RHS
+ 1577091174U, // <5,u,5,0>: Cost 2 vsldoi4 <5,5,5,5>, LHS
+ 1174443822U, // <5,u,5,1>: Cost 2 vmrghw <5,5,5,5>, LHS
+ 2766035058U, // <5,u,5,2>: Cost 3 vsldoi12 <2,3,u,5>, <u,5,2,3>
+ 1237565596U, // <5,u,5,3>: Cost 2 vmrglw <4,u,5,5>, LHS
+ 1577094454U, // <5,u,5,4>: Cost 2 vsldoi4 <5,5,5,5>, RHS
+ 296144182U, // <5,u,5,5>: Cost 1 vspltisw1 RHS
+ 1680496794U, // <5,u,5,6>: Cost 2 vsldoi12 <0,4,1,5>, RHS
+ 1237568840U, // <5,u,5,7>: Cost 2 vmrglw <4,u,5,5>, RHS
+ 296144182U, // <5,u,5,u>: Cost 1 vspltisw1 RHS
+ 2633146470U, // <5,u,6,0>: Cost 3 vsldoi4 <2,5,u,6>, LHS
+ 1175213870U, // <5,u,6,1>: Cost 2 vmrghw <5,6,7,0>, LHS
+ 2633148309U, // <5,u,6,2>: Cost 3 vsldoi4 <2,5,u,6>, <2,5,u,6>
+ 1228947612U, // <5,u,6,3>: Cost 2 vmrglw <3,4,5,6>, LHS
+ 2633149750U, // <5,u,6,4>: Cost 3 vsldoi4 <2,5,u,6>, RHS
+ 1175214234U, // <5,u,6,5>: Cost 2 vmrghw <5,6,7,0>, RHS
+ 1228950018U, // <5,u,6,6>: Cost 2 vmrglw <3,4,5,6>, <3,4,5,6>
+ 1228950856U, // <5,u,6,7>: Cost 2 vmrglw <3,4,5,6>, RHS
+ 1228947617U, // <5,u,6,u>: Cost 2 vmrglw <3,4,5,6>, LHS
+ 497614950U, // <5,u,7,0>: Cost 1 vsldoi4 RHS, LHS
+ 1571357492U, // <5,u,7,1>: Cost 2 vsldoi4 RHS, <1,1,1,1>
+ 1571358312U, // <5,u,7,2>: Cost 2 vsldoi4 RHS, <2,2,2,2>
+ 1571358870U, // <5,u,7,3>: Cost 2 vsldoi4 RHS, <3,0,1,2>
+ 497618248U, // <5,u,7,4>: Cost 1 vsldoi4 RHS, RHS
+ 1571360772U, // <5,u,7,5>: Cost 2 vsldoi4 RHS, <5,5,5,5>
+ 1571361274U, // <5,u,7,6>: Cost 2 vsldoi4 RHS, <6,2,7,3>
+ 1571361786U, // <5,u,7,7>: Cost 2 vsldoi4 RHS, <7,0,1,2>
+ 497620782U, // <5,u,7,u>: Cost 1 vsldoi4 RHS, LHS
+ 497623142U, // <5,u,u,0>: Cost 1 vsldoi4 RHS, LHS
+ 1631622958U, // <5,u,u,1>: Cost 2 vsldoi8 <3,4,5,u>, LHS
+ 1680496997U, // <5,u,u,2>: Cost 2 vsldoi12 <0,4,1,5>, LHS
+ 1228963996U, // <5,u,u,3>: Cost 2 vmrglw <3,4,5,u>, LHS
+ 497626441U, // <5,u,u,4>: Cost 1 vsldoi4 RHS, RHS
+ 296144182U, // <5,u,u,5>: Cost 1 vspltisw1 RHS
+ 1680497037U, // <5,u,u,6>: Cost 2 vsldoi12 <0,4,1,5>, RHS
+ 1228967240U, // <5,u,u,7>: Cost 2 vmrglw <3,4,5,u>, RHS
+ 497628974U, // <5,u,u,u>: Cost 1 vsldoi4 RHS, LHS
+ 2772451328U, // <6,0,0,0>: Cost 3 vsldoi12 <3,4,5,6>, <0,0,0,0>
+ 2772451338U, // <6,0,0,1>: Cost 3 vsldoi12 <3,4,5,6>, <0,0,1,1>
+ 3771146417U, // <6,0,0,2>: Cost 4 vsldoi8 <2,1,6,0>, <0,2,1,6>
+ 3383095739U, // <6,0,0,3>: Cost 4 vmrglw <4,5,6,0>, <6,2,0,3>
+ 3846193189U, // <6,0,0,4>: Cost 4 vsldoi12 <3,4,5,6>, <0,0,4,1>
+ 3724832803U, // <6,0,0,5>: Cost 4 vsldoi4 <5,6,0,0>, <5,6,0,0>
+ 3383095985U, // <6,0,0,6>: Cost 4 vmrglw <4,5,6,0>, <6,5,0,6>
+ 3383096067U, // <6,0,0,7>: Cost 4 vmrglw <4,5,6,0>, <6,6,0,7>
+ 2772451401U, // <6,0,0,u>: Cost 3 vsldoi12 <3,4,5,6>, <0,0,u,1>
+ 2651095142U, // <6,0,1,0>: Cost 3 vsldoi4 <5,6,0,1>, LHS
+ 2251612262U, // <6,0,1,1>: Cost 3 vmrghw <6,1,7,1>, LHS
+ 1698709606U, // <6,0,1,2>: Cost 2 vsldoi12 <3,4,5,6>, LHS
+ 2651097602U, // <6,0,1,3>: Cost 3 vsldoi4 <5,6,0,1>, <3,4,5,6>
+ 2651098422U, // <6,0,1,4>: Cost 3 vsldoi4 <5,6,0,1>, RHS
+ 2651099172U, // <6,0,1,5>: Cost 3 vsldoi4 <5,6,0,1>, <5,6,0,1>
+ 2657071869U, // <6,0,1,6>: Cost 3 vsldoi4 <6,6,0,1>, <6,6,0,1>
+ 3724841978U, // <6,0,1,7>: Cost 4 vsldoi4 <5,6,0,1>, <7,0,1,2>
+ 1698709660U, // <6,0,1,u>: Cost 2 vsldoi12 <3,4,5,6>, LHS
+ 2252292096U, // <6,0,2,0>: Cost 3 vmrghw <6,2,7,3>, <0,0,0,0>
+ 1178550374U, // <6,0,2,1>: Cost 2 vmrghw <6,2,7,3>, LHS
+ 3826655418U, // <6,0,2,2>: Cost 4 vsldoi12 <0,2,1,6>, <0,2,2,6>
+ 3777783485U, // <6,0,2,3>: Cost 4 vsldoi8 <3,2,6,0>, <2,3,2,6>
+ 2252292434U, // <6,0,2,4>: Cost 3 vmrghw <6,2,7,3>, <0,4,1,5>
+ 3785746280U, // <6,0,2,5>: Cost 4 vsldoi8 <4,5,6,0>, <2,5,3,6>
+ 2252292593U, // <6,0,2,6>: Cost 3 vmrghw <6,2,7,3>, <0,6,1,2>
+ 3736794583U, // <6,0,2,7>: Cost 4 vsldoi4 <7,6,0,2>, <7,6,0,2>
+ 1178550941U, // <6,0,2,u>: Cost 2 vmrghw <6,2,7,3>, LHS
+ 3375153152U, // <6,0,3,0>: Cost 4 vmrglw <3,2,6,3>, <0,0,0,0>
+ 2772451584U, // <6,0,3,1>: Cost 3 vsldoi12 <3,4,5,6>, <0,3,1,4>
+ 3777784163U, // <6,0,3,2>: Cost 4 vsldoi8 <3,2,6,0>, <3,2,6,0>
+ 3846193426U, // <6,0,3,3>: Cost 4 vsldoi12 <3,4,5,6>, <0,3,3,4>
+ 2712005122U, // <6,0,3,4>: Cost 3 vsldoi8 <4,5,6,0>, <3,4,5,6>
+ 3724857382U, // <6,0,3,5>: Cost 4 vsldoi4 <5,6,0,3>, <5,6,0,3>
+ 3802335864U, // <6,0,3,6>: Cost 4 vsldoi8 <7,3,6,0>, <3,6,0,7>
+ 3801672410U, // <6,0,3,7>: Cost 4 vsldoi8 <7,2,6,0>, <3,7,2,6>
+ 2772451647U, // <6,0,3,u>: Cost 3 vsldoi12 <3,4,5,6>, <0,3,u,4>
+ 3383123968U, // <6,0,4,0>: Cost 4 vmrglw <4,5,6,4>, <0,0,0,0>
+ 2772451666U, // <6,0,4,1>: Cost 3 vsldoi12 <3,4,5,6>, <0,4,1,5>
+ 3773803577U, // <6,0,4,2>: Cost 4 vsldoi8 <2,5,6,0>, <4,2,5,6>
+ 3724864002U, // <6,0,4,3>: Cost 4 vsldoi4 <5,6,0,4>, <3,4,5,6>
+ 3846193517U, // <6,0,4,4>: Cost 4 vsldoi12 <3,4,5,6>, <0,4,4,5>
+ 2712005935U, // <6,0,4,5>: Cost 3 vsldoi8 <4,5,6,0>, <4,5,6,0>
+ 3327009265U, // <6,0,4,6>: Cost 4 vmrghw <6,4,2,5>, <0,6,1,2>
+ 3383126648U, // <6,0,4,7>: Cost 5 vmrglw <4,5,6,4>, <3,6,0,7>
+ 2772451729U, // <6,0,4,u>: Cost 3 vsldoi12 <3,4,5,6>, <0,4,u,5>
+ 3373178880U, // <6,0,5,0>: Cost 4 vmrglw <2,u,6,5>, <0,0,0,0>
+ 2254266470U, // <6,0,5,1>: Cost 3 vmrghw <6,5,7,1>, LHS
+ 3785748248U, // <6,0,5,2>: Cost 4 vsldoi8 <4,5,6,0>, <5,2,6,3>
+ 3790393190U, // <6,0,5,3>: Cost 4 vsldoi8 <5,3,6,0>, <5,3,6,0>
+ 3328000338U, // <6,0,5,4>: Cost 4 vmrghw <6,5,7,0>, <0,4,1,5>
+ 3785748494U, // <6,0,5,5>: Cost 4 vsldoi8 <4,5,6,0>, <5,5,6,6>
+ 3785748516U, // <6,0,5,6>: Cost 4 vsldoi8 <4,5,6,0>, <5,6,0,1>
+ 3379153528U, // <6,0,5,7>: Cost 4 vmrglw <3,u,6,5>, <3,6,0,7>
+ 2254267037U, // <6,0,5,u>: Cost 3 vmrghw <6,5,7,1>, LHS
+ 2254897152U, // <6,0,6,0>: Cost 3 vmrghw <6,6,6,6>, <0,0,0,0>
+ 1181155430U, // <6,0,6,1>: Cost 2 vmrghw <6,6,6,6>, LHS
+ 3785748923U, // <6,0,6,2>: Cost 4 vsldoi8 <4,5,6,0>, <6,2,0,3>
+ 3785749042U, // <6,0,6,3>: Cost 4 vsldoi8 <4,5,6,0>, <6,3,4,5>
+ 2254897490U, // <6,0,6,4>: Cost 3 vmrghw <6,6,6,6>, <0,4,1,5>
+ 3785749169U, // <6,0,6,5>: Cost 4 vsldoi8 <4,5,6,0>, <6,5,0,6>
+ 2724614962U, // <6,0,6,6>: Cost 3 vsldoi8 <6,6,6,0>, <6,6,6,0>
+ 3787739982U, // <6,0,6,7>: Cost 4 vsldoi8 <4,u,6,0>, <6,7,0,1>
+ 1181155997U, // <6,0,6,u>: Cost 2 vmrghw <6,6,6,6>, LHS
+ 1235664896U, // <6,0,7,0>: Cost 2 vmrglw RHS, <0,0,0,0>
+ 1235666598U, // <6,0,7,1>: Cost 2 vmrglw RHS, <2,3,0,1>
+ 3712943720U, // <6,0,7,2>: Cost 4 vsldoi4 <3,6,0,7>, <2,2,2,2>
+ 2639202936U, // <6,0,7,3>: Cost 3 vsldoi4 <3,6,0,7>, <3,6,0,7>
+ 2639203638U, // <6,0,7,4>: Cost 3 vsldoi4 <3,6,0,7>, RHS
+ 2309409236U, // <6,0,7,5>: Cost 3 vmrglw RHS, <3,4,0,5>
+ 3712946517U, // <6,0,7,6>: Cost 4 vsldoi4 <3,6,0,7>, <6,0,7,0>
+ 2309409400U, // <6,0,7,7>: Cost 3 vmrglw RHS, <3,6,0,7>
+ 1235666605U, // <6,0,7,u>: Cost 2 vmrglw RHS, <2,3,0,u>
+ 1235673088U, // <6,0,u,0>: Cost 2 vmrglw RHS, <0,0,0,0>
+ 1235674790U, // <6,0,u,1>: Cost 2 vmrglw RHS, <2,3,0,1>
+ 1698710173U, // <6,0,u,2>: Cost 2 vsldoi12 <3,4,5,6>, LHS
+ 2639211129U, // <6,0,u,3>: Cost 3 vsldoi4 <3,6,0,u>, <3,6,0,u>
+ 2639211830U, // <6,0,u,4>: Cost 3 vsldoi4 <3,6,0,u>, RHS
+ 2712008858U, // <6,0,u,5>: Cost 3 vsldoi8 <4,5,6,0>, RHS
+ 2657129220U, // <6,0,u,6>: Cost 3 vsldoi4 <6,6,0,u>, <6,6,0,u>
+ 2309417592U, // <6,0,u,7>: Cost 3 vmrglw RHS, <3,6,0,7>
+ 1698710227U, // <6,0,u,u>: Cost 2 vsldoi12 <3,4,5,6>, LHS
+ 3775799296U, // <6,1,0,0>: Cost 4 vsldoi8 <2,u,6,1>, <0,0,0,0>
+ 2702057574U, // <6,1,0,1>: Cost 3 vsldoi8 <2,u,6,1>, LHS
+ 3373143763U, // <6,1,0,2>: Cost 4 vmrglw <2,u,6,0>, <u,0,1,2>
+ 3695045122U, // <6,1,0,3>: Cost 4 vsldoi4 <0,6,1,0>, <3,4,5,6>
+ 3775799634U, // <6,1,0,4>: Cost 4 vsldoi8 <2,u,6,1>, <0,4,1,5>
+ 3383091538U, // <6,1,0,5>: Cost 4 vmrglw <4,5,6,0>, <0,4,1,5>
+ 3368493233U, // <6,1,0,6>: Cost 4 vmrglw <2,1,6,0>, <0,2,1,6>
+ 3362522319U, // <6,1,0,7>: Cost 5 vmrglw <1,1,6,0>, <1,6,1,7>
+ 2702058141U, // <6,1,0,u>: Cost 3 vsldoi8 <2,u,6,1>, LHS
+ 3834250027U, // <6,1,1,0>: Cost 4 vsldoi12 <1,4,5,6>, <1,1,0,1>
+ 2772452148U, // <6,1,1,1>: Cost 3 vsldoi12 <3,4,5,6>, <1,1,1,1>
+ 3832038210U, // <6,1,1,2>: Cost 4 vsldoi12 <1,1,2,6>, <1,1,2,6>
+ 3373150660U, // <6,1,1,3>: Cost 4 vmrglw <2,u,6,1>, <6,2,1,3>
+ 3834250067U, // <6,1,1,4>: Cost 4 vsldoi12 <1,4,5,6>, <1,1,4,5>
+ 3373146450U, // <6,1,1,5>: Cost 4 vmrglw <2,u,6,1>, <0,4,1,5>
+ 3826656102U, // <6,1,1,6>: Cost 4 vsldoi12 <0,2,1,6>, <1,1,6,6>
+ 3362530511U, // <6,1,1,7>: Cost 4 vmrglw <1,1,6,1>, <1,6,1,7>
+ 2772452148U, // <6,1,1,u>: Cost 3 vsldoi12 <3,4,5,6>, <1,1,1,1>
+ 2669092966U, // <6,1,2,0>: Cost 3 vsldoi4 <u,6,1,2>, LHS
+ 2252292916U, // <6,1,2,1>: Cost 3 vmrghw <6,2,7,3>, <1,1,1,1>
+ 2252293014U, // <6,1,2,2>: Cost 3 vmrghw <6,2,7,3>, <1,2,3,0>
+ 2772452246U, // <6,1,2,3>: Cost 3 vsldoi12 <3,4,5,6>, <1,2,3,0>
+ 2669096246U, // <6,1,2,4>: Cost 3 vsldoi4 <u,6,1,2>, RHS
+ 3846194091U, // <6,1,2,5>: Cost 4 vsldoi12 <3,4,5,6>, <1,2,5,3>
+ 2702059450U, // <6,1,2,6>: Cost 3 vsldoi8 <2,u,6,1>, <2,6,3,7>
+ 3870081978U, // <6,1,2,7>: Cost 4 vsldoi12 <7,4,5,6>, <1,2,7,0>
+ 2702059633U, // <6,1,2,u>: Cost 3 vsldoi8 <2,u,6,1>, <2,u,6,1>
+ 3775801494U, // <6,1,3,0>: Cost 4 vsldoi8 <2,u,6,1>, <3,0,1,2>
+ 3777128723U, // <6,1,3,1>: Cost 4 vsldoi8 <3,1,6,1>, <3,1,6,1>
+ 3775801702U, // <6,1,3,2>: Cost 4 vsldoi8 <2,u,6,1>, <3,2,6,3>
+ 3775801756U, // <6,1,3,3>: Cost 4 vsldoi8 <2,u,6,1>, <3,3,3,3>
+ 3775801858U, // <6,1,3,4>: Cost 4 vsldoi8 <2,u,6,1>, <3,4,5,6>
+ 3375153490U, // <6,1,3,5>: Cost 4 vmrglw <3,2,6,3>, <0,4,1,5>
+ 3826656265U, // <6,1,3,6>: Cost 4 vsldoi12 <0,2,1,6>, <1,3,6,7>
+ 3775802051U, // <6,1,3,7>: Cost 4 vsldoi8 <2,u,6,1>, <3,7,0,1>
+ 3775802142U, // <6,1,3,u>: Cost 4 vsldoi8 <2,u,6,1>, <3,u,1,2>
+ 3846194206U, // <6,1,4,0>: Cost 4 vsldoi12 <3,4,5,6>, <1,4,0,1>
+ 3846194219U, // <6,1,4,1>: Cost 4 vsldoi12 <3,4,5,6>, <1,4,1,5>
+ 3846194228U, // <6,1,4,2>: Cost 4 vsldoi12 <3,4,5,6>, <1,4,2,5>
+ 3846194236U, // <6,1,4,3>: Cost 4 vsldoi12 <3,4,5,6>, <1,4,3,4>
+ 3846194246U, // <6,1,4,4>: Cost 4 vsldoi12 <3,4,5,6>, <1,4,4,5>
+ 2760508496U, // <6,1,4,5>: Cost 3 vsldoi12 <1,4,5,6>, <1,4,5,6>
+ 3368526001U, // <6,1,4,6>: Cost 4 vmrglw <2,1,6,4>, <0,2,1,6>
+ 3870082144U, // <6,1,4,7>: Cost 4 vsldoi12 <7,4,5,6>, <1,4,7,4>
+ 2760729707U, // <6,1,4,u>: Cost 3 vsldoi12 <1,4,u,6>, <1,4,u,6>
+ 2714668660U, // <6,1,5,0>: Cost 3 vsldoi8 <5,0,6,1>, <5,0,6,1>
+ 3834619005U, // <6,1,5,1>: Cost 4 vsldoi12 <1,5,1,6>, <1,5,1,6>
+ 3834692742U, // <6,1,5,2>: Cost 4 vsldoi12 <1,5,2,6>, <1,5,2,6>
+ 3846194317U, // <6,1,5,3>: Cost 4 vsldoi12 <3,4,5,6>, <1,5,3,4>
+ 3834840216U, // <6,1,5,4>: Cost 4 vsldoi12 <1,5,4,6>, <1,5,4,6>
+ 3834913953U, // <6,1,5,5>: Cost 4 vsldoi12 <1,5,5,6>, <1,5,5,6>
+ 2719977570U, // <6,1,5,6>: Cost 3 vsldoi8 <5,u,6,1>, <5,6,7,0>
+ 3367208143U, // <6,1,5,7>: Cost 4 vmrglw <1,u,6,5>, <1,6,1,7>
+ 2719977724U, // <6,1,5,u>: Cost 3 vsldoi8 <5,u,6,1>, <5,u,6,1>
+ 2669125734U, // <6,1,6,0>: Cost 3 vsldoi4 <u,6,1,6>, LHS
+ 2254897972U, // <6,1,6,1>: Cost 3 vmrghw <6,6,6,6>, <1,1,1,1>
+ 2254898070U, // <6,1,6,2>: Cost 3 vmrghw <6,6,6,6>, <1,2,3,0>
+ 3775803929U, // <6,1,6,3>: Cost 4 vsldoi8 <2,u,6,1>, <6,3,1,7>
+ 2669129014U, // <6,1,6,4>: Cost 3 vsldoi4 <u,6,1,6>, RHS
+ 2322006354U, // <6,1,6,5>: Cost 3 vmrglw <6,6,6,6>, <0,4,1,5>
+ 2725950264U, // <6,1,6,6>: Cost 3 vsldoi8 <6,u,6,1>, <6,6,6,6>
+ 3793720142U, // <6,1,6,7>: Cost 4 vsldoi8 <5,u,6,1>, <6,7,0,1>
+ 2254898556U, // <6,1,6,u>: Cost 3 vmrghw <6,6,6,6>, <1,u,3,0>
+ 2627330150U, // <6,1,7,0>: Cost 3 vsldoi4 <1,6,1,7>, LHS
+ 1235664906U, // <6,1,7,1>: Cost 2 vmrglw RHS, <0,0,1,1>
+ 1235667094U, // <6,1,7,2>: Cost 2 vmrglw RHS, <3,0,1,2>
+ 2309406894U, // <6,1,7,3>: Cost 3 vmrglw RHS, <0,2,1,3>
+ 2627333430U, // <6,1,7,4>: Cost 3 vsldoi4 <1,6,1,7>, RHS
+ 1235665234U, // <6,1,7,5>: Cost 2 vmrglw RHS, <0,4,1,5>
+ 2309406897U, // <6,1,7,6>: Cost 3 vmrglw RHS, <0,2,1,6>
+ 2309407222U, // <6,1,7,7>: Cost 3 vmrglw RHS, <0,6,1,7>
+ 1235664913U, // <6,1,7,u>: Cost 2 vmrglw RHS, <0,0,1,u>
+ 2627338342U, // <6,1,u,0>: Cost 3 vsldoi4 <1,6,1,u>, LHS
+ 1235673098U, // <6,1,u,1>: Cost 2 vmrglw RHS, <0,0,1,1>
+ 1235675286U, // <6,1,u,2>: Cost 2 vmrglw RHS, <3,0,1,2>
+ 2772452732U, // <6,1,u,3>: Cost 3 vsldoi12 <3,4,5,6>, <1,u,3,0>
+ 2627341622U, // <6,1,u,4>: Cost 3 vsldoi4 <1,6,1,u>, RHS
+ 1235673426U, // <6,1,u,5>: Cost 2 vmrglw RHS, <0,4,1,5>
+ 2309415089U, // <6,1,u,6>: Cost 3 vmrglw RHS, <0,2,1,6>
+ 2309415414U, // <6,1,u,7>: Cost 3 vmrglw RHS, <0,6,1,7>
+ 1235673105U, // <6,1,u,u>: Cost 2 vmrglw RHS, <0,0,1,u>
+ 3324683725U, // <6,2,0,0>: Cost 4 vmrghw <6,0,7,0>, <2,0,3,0>
+ 2725290086U, // <6,2,0,1>: Cost 3 vsldoi8 <6,7,6,2>, LHS
+ 3771162801U, // <6,2,0,2>: Cost 4 vsldoi8 <2,1,6,2>, <0,2,1,6>
+ 2309349478U, // <6,2,0,3>: Cost 3 vmrglw <4,5,6,0>, LHS
+ 3730951478U, // <6,2,0,4>: Cost 4 vsldoi4 <6,6,2,0>, RHS
+ 3840738784U, // <6,2,0,5>: Cost 4 vsldoi12 <2,5,3,6>, <2,0,5,1>
+ 3842655721U, // <6,2,0,6>: Cost 4 vsldoi12 <2,u,2,6>, <2,0,6,1>
+ 3736925671U, // <6,2,0,7>: Cost 4 vsldoi4 <7,6,2,0>, <7,6,2,0>
+ 2309349483U, // <6,2,0,u>: Cost 3 vmrglw <4,5,6,0>, LHS
+ 3367840468U, // <6,2,1,0>: Cost 4 vmrglw <2,0,6,1>, <3,7,2,0>
+ 3325355551U, // <6,2,1,1>: Cost 4 vmrghw <6,1,7,1>, <2,1,3,1>
+ 3373147752U, // <6,2,1,2>: Cost 4 vmrglw <2,u,6,1>, <2,2,2,2>
+ 2299404390U, // <6,2,1,3>: Cost 3 vmrglw <2,u,6,1>, LHS
+ 3701099830U, // <6,2,1,4>: Cost 5 vsldoi4 <1,6,2,1>, RHS
+ 3767846054U, // <6,2,1,5>: Cost 4 vsldoi8 <1,5,6,2>, <1,5,6,2>
+ 3826656825U, // <6,2,1,6>: Cost 4 vsldoi12 <0,2,1,6>, <2,1,6,0>
+ 3373147838U, // <6,2,1,7>: Cost 5 vmrglw <2,u,6,1>, <2,3,2,7>
+ 2299404395U, // <6,2,1,u>: Cost 3 vmrglw <2,u,6,1>, LHS
+ 2657222758U, // <6,2,2,0>: Cost 3 vsldoi4 <6,6,2,2>, LHS
+ 3771164219U, // <6,2,2,1>: Cost 4 vsldoi8 <2,1,6,2>, <2,1,6,2>
+ 2766481000U, // <6,2,2,2>: Cost 3 vsldoi12 <2,4,5,6>, <2,2,2,2>
+ 2772452978U, // <6,2,2,3>: Cost 3 vsldoi12 <3,4,5,6>, <2,2,3,3>
+ 2657226038U, // <6,2,2,4>: Cost 3 vsldoi4 <6,6,2,2>, RHS
+ 3790407528U, // <6,2,2,5>: Cost 4 vsldoi8 <5,3,6,2>, <2,5,3,6>
+ 2252294074U, // <6,2,2,6>: Cost 3 vmrghw <6,2,7,3>, <2,6,3,7>
+ 2252294148U, // <6,2,2,7>: Cost 3 vmrghw <6,2,7,3>, <2,7,3,0>
+ 2772453023U, // <6,2,2,u>: Cost 3 vsldoi12 <3,4,5,6>, <2,2,u,3>
+ 2772453030U, // <6,2,3,0>: Cost 3 vsldoi12 <3,4,5,6>, <2,3,0,1>
+ 3834250930U, // <6,2,3,1>: Cost 4 vsldoi12 <1,4,5,6>, <2,3,1,4>
+ 2765596349U, // <6,2,3,2>: Cost 3 vsldoi12 <2,3,2,6>, <2,3,2,6>
+ 2301411430U, // <6,2,3,3>: Cost 3 vmrglw <3,2,6,3>, LHS
+ 2772453070U, // <6,2,3,4>: Cost 3 vsldoi12 <3,4,5,6>, <2,3,4,5>
+ 2765817560U, // <6,2,3,5>: Cost 3 vsldoi12 <2,3,5,6>, <2,3,5,6>
+ 2252933050U, // <6,2,3,6>: Cost 3 vmrghw <6,3,7,0>, <2,6,3,7>
+ 2796340968U, // <6,2,3,7>: Cost 3 vsldoi12 <7,4,5,6>, <2,3,7,4>
+ 2766038771U, // <6,2,3,u>: Cost 3 vsldoi12 <2,3,u,6>, <2,3,u,6>
+ 3725008998U, // <6,2,4,0>: Cost 4 vsldoi4 <5,6,2,4>, LHS
+ 3368530217U, // <6,2,4,1>: Cost 5 vmrglw <2,1,6,4>, <6,0,2,1>
+ 3840222989U, // <6,2,4,2>: Cost 4 vsldoi12 <2,4,5,6>, <2,4,2,5>
+ 2309382246U, // <6,2,4,3>: Cost 3 vmrglw <4,5,6,4>, LHS
+ 3725012278U, // <6,2,4,4>: Cost 4 vsldoi4 <5,6,2,4>, RHS
+ 2766481193U, // <6,2,4,5>: Cost 3 vsldoi12 <2,4,5,6>, <2,4,5,6>
+ 3842656049U, // <6,2,4,6>: Cost 4 vsldoi12 <2,u,2,6>, <2,4,6,5>
+ 3327010820U, // <6,2,4,7>: Cost 4 vmrghw <6,4,2,5>, <2,7,3,0>
+ 2766702404U, // <6,2,4,u>: Cost 3 vsldoi12 <2,4,u,6>, <2,4,u,6>
+ 3713073254U, // <6,2,5,0>: Cost 4 vsldoi4 <3,6,2,5>, LHS
+ 3789082310U, // <6,2,5,1>: Cost 4 vsldoi8 <5,1,6,2>, <5,1,6,2>
+ 3840665439U, // <6,2,5,2>: Cost 4 vsldoi12 <2,5,2,6>, <2,5,2,6>
+ 2766997352U, // <6,2,5,3>: Cost 3 vsldoi12 <2,5,3,6>, <2,5,3,6>
+ 3713076534U, // <6,2,5,4>: Cost 4 vsldoi4 <3,6,2,5>, RHS
+ 3791736842U, // <6,2,5,5>: Cost 4 vsldoi8 <5,5,6,2>, <5,5,6,2>
+ 3373180605U, // <6,2,5,6>: Cost 4 vmrglw <2,u,6,5>, <2,3,2,6>
+ 3793064108U, // <6,2,5,7>: Cost 4 vsldoi8 <5,7,6,2>, <5,7,6,2>
+ 2767366037U, // <6,2,5,u>: Cost 3 vsldoi12 <2,5,u,6>, <2,5,u,6>
+ 3701137510U, // <6,2,6,0>: Cost 4 vsldoi4 <1,6,2,6>, LHS
+ 3701138647U, // <6,2,6,1>: Cost 4 vsldoi4 <1,6,2,6>, <1,6,2,6>
+ 2254898792U, // <6,2,6,2>: Cost 3 vmrghw <6,6,6,6>, <2,2,2,2>
+ 1248264294U, // <6,2,6,3>: Cost 2 vmrglw <6,6,6,6>, LHS
+ 3701140790U, // <6,2,6,4>: Cost 4 vsldoi4 <1,6,2,6>, RHS
+ 3725029435U, // <6,2,6,5>: Cost 4 vsldoi4 <5,6,2,6>, <5,6,2,6>
+ 2254899130U, // <6,2,6,6>: Cost 3 vmrghw <6,6,6,6>, <2,6,3,7>
+ 2725294981U, // <6,2,6,7>: Cost 3 vsldoi8 <6,7,6,2>, <6,7,6,2>
+ 1248264299U, // <6,2,6,u>: Cost 2 vmrglw <6,6,6,6>, LHS
+ 2633375846U, // <6,2,7,0>: Cost 3 vsldoi4 <2,6,2,7>, LHS
+ 2309407468U, // <6,2,7,1>: Cost 3 vmrglw RHS, <1,0,2,1>
+ 1235666536U, // <6,2,7,2>: Cost 2 vmrglw RHS, <2,2,2,2>
+ 161923174U, // <6,2,7,3>: Cost 1 vmrglw RHS, LHS
+ 2633379126U, // <6,2,7,4>: Cost 3 vsldoi4 <2,6,2,7>, RHS
+ 2309407796U, // <6,2,7,5>: Cost 3 vmrglw RHS, <1,4,2,5>
+ 2309408445U, // <6,2,7,6>: Cost 3 vmrglw RHS, <2,3,2,6>
+ 2309407960U, // <6,2,7,7>: Cost 3 vmrglw RHS, <1,6,2,7>
+ 161923179U, // <6,2,7,u>: Cost 1 vmrglw RHS, LHS
+ 2633384038U, // <6,2,u,0>: Cost 3 vsldoi4 <2,6,2,u>, LHS
+ 2309415660U, // <6,2,u,1>: Cost 3 vmrglw RHS, <1,0,2,1>
+ 1235674728U, // <6,2,u,2>: Cost 2 vmrglw RHS, <2,2,2,2>
+ 161931366U, // <6,2,u,3>: Cost 1 vmrglw RHS, LHS
+ 2633387318U, // <6,2,u,4>: Cost 3 vsldoi4 <2,6,2,u>, RHS
+ 2769135725U, // <6,2,u,5>: Cost 3 vsldoi12 <2,u,5,6>, <2,u,5,6>
+ 2309416637U, // <6,2,u,6>: Cost 3 vmrglw RHS, <2,3,2,6>
+ 2309416152U, // <6,2,u,7>: Cost 3 vmrglw RHS, <1,6,2,7>
+ 161931371U, // <6,2,u,u>: Cost 1 vmrglw RHS, LHS
+ 3777806336U, // <6,3,0,0>: Cost 4 vsldoi8 <3,2,6,3>, <0,0,0,0>
+ 2704064614U, // <6,3,0,1>: Cost 3 vsldoi8 <3,2,6,3>, LHS
+ 3765862577U, // <6,3,0,2>: Cost 4 vsldoi8 <1,2,6,3>, <0,2,1,6>
+ 3843393708U, // <6,3,0,3>: Cost 4 vsldoi12 <3,0,3,6>, <3,0,3,6>
+ 2250516994U, // <6,3,0,4>: Cost 3 vmrghw <6,0,1,2>, <3,4,5,6>
+ 3725054014U, // <6,3,0,5>: Cost 4 vsldoi4 <5,6,3,0>, <5,6,3,0>
+ 3383093096U, // <6,3,0,6>: Cost 4 vmrglw <4,5,6,0>, <2,5,3,6>
+ 3368495034U, // <6,3,0,7>: Cost 4 vmrglw <2,1,6,0>, <2,6,3,7>
+ 2704065181U, // <6,3,0,u>: Cost 3 vsldoi8 <3,2,6,3>, LHS
+ 2251622550U, // <6,3,1,0>: Cost 3 vmrghw <6,1,7,2>, <3,0,1,2>
+ 3777807156U, // <6,3,1,1>: Cost 4 vsldoi8 <3,2,6,3>, <1,1,1,1>
+ 3765863348U, // <6,3,1,2>: Cost 4 vsldoi8 <1,2,6,3>, <1,2,6,3>
+ 3373147762U, // <6,3,1,3>: Cost 4 vmrglw <2,u,6,1>, <2,2,3,3>
+ 3834251525U, // <6,3,1,4>: Cost 4 vsldoi12 <1,4,5,6>, <3,1,4,5>
+ 3373147683U, // <6,3,1,5>: Cost 5 vmrglw <2,u,6,1>, <2,1,3,5>
+ 3391727545U, // <6,3,1,6>: Cost 4 vmrglw <6,0,6,1>, <2,6,3,6>
+ 2299406266U, // <6,3,1,7>: Cost 3 vmrglw <2,u,6,1>, <2,6,3,7>
+ 2251622550U, // <6,3,1,u>: Cost 3 vmrghw <6,1,7,2>, <3,0,1,2>
+ 2252294294U, // <6,3,2,0>: Cost 3 vmrghw <6,2,7,3>, <3,0,1,2>
+ 3326036198U, // <6,3,2,1>: Cost 4 vmrghw <6,2,7,3>, <3,1,1,1>
+ 3771836045U, // <6,3,2,2>: Cost 4 vsldoi8 <2,2,6,3>, <2,2,6,3>
+ 2252294556U, // <6,3,2,3>: Cost 3 vmrghw <6,2,7,3>, <3,3,3,3>
+ 2252294658U, // <6,3,2,4>: Cost 3 vmrghw <6,2,7,3>, <3,4,5,6>
+ 3840739677U, // <6,3,2,5>: Cost 4 vsldoi12 <2,5,3,6>, <3,2,5,3>
+ 2704066490U, // <6,3,2,6>: Cost 3 vsldoi8 <3,2,6,3>, <2,6,3,7>
+ 3368511418U, // <6,3,2,7>: Cost 4 vmrglw <2,1,6,2>, <2,6,3,7>
+ 2252294942U, // <6,3,2,u>: Cost 3 vmrghw <6,2,7,3>, <3,u,1,2>
+ 3707158630U, // <6,3,3,0>: Cost 4 vsldoi4 <2,6,3,3>, LHS
+ 3765864692U, // <6,3,3,1>: Cost 5 vsldoi8 <1,2,6,3>, <3,1,2,6>
+ 2704066918U, // <6,3,3,2>: Cost 3 vsldoi8 <3,2,6,3>, <3,2,6,3>
+ 2772453788U, // <6,3,3,3>: Cost 3 vsldoi12 <3,4,5,6>, <3,3,3,3>
+ 2772453799U, // <6,3,3,4>: Cost 3 vsldoi12 <3,4,5,6>, <3,3,4,5>
+ 3789752888U, // <6,3,3,5>: Cost 4 vsldoi8 <5,2,6,3>, <3,5,2,6>
+ 3840739770U, // <6,3,3,6>: Cost 4 vsldoi12 <2,5,3,6>, <3,3,6,6>
+ 2301413306U, // <6,3,3,7>: Cost 3 vmrglw <3,2,6,3>, <2,6,3,7>
+ 2775108043U, // <6,3,3,u>: Cost 3 vsldoi12 <3,u,5,6>, <3,3,u,5>
+ 2651340902U, // <6,3,4,0>: Cost 3 vsldoi4 <5,6,3,4>, LHS
+ 3846195674U, // <6,3,4,1>: Cost 4 vsldoi12 <3,4,5,6>, <3,4,1,2>
+ 3845974503U, // <6,3,4,2>: Cost 4 vsldoi12 <3,4,2,6>, <3,4,2,6>
+ 2651343362U, // <6,3,4,3>: Cost 3 vsldoi4 <5,6,3,4>, <3,4,5,6>
+ 2651344182U, // <6,3,4,4>: Cost 3 vsldoi4 <5,6,3,4>, RHS
+ 1698712066U, // <6,3,4,5>: Cost 2 vsldoi12 <3,4,5,6>, <3,4,5,6>
+ 3383125864U, // <6,3,4,6>: Cost 4 vmrglw <4,5,6,4>, <2,5,3,6>
+ 3368527802U, // <6,3,4,7>: Cost 4 vmrglw <2,1,6,4>, <2,6,3,7>
+ 1698933277U, // <6,3,4,u>: Cost 2 vsldoi12 <3,4,u,6>, <3,4,u,6>
+ 3373179798U, // <6,3,5,0>: Cost 4 vmrglw <2,u,6,5>, <1,2,3,0>
+ 3707176179U, // <6,3,5,1>: Cost 5 vsldoi4 <2,6,3,5>, <1,6,5,7>
+ 2716012312U, // <6,3,5,2>: Cost 3 vsldoi8 <5,2,6,3>, <5,2,6,3>
+ 3373180530U, // <6,3,5,3>: Cost 4 vmrglw <2,u,6,5>, <2,2,3,3>
+ 2254309890U, // <6,3,5,4>: Cost 3 vmrghw <6,5,7,6>, <3,4,5,6>
+ 3785773070U, // <6,3,5,5>: Cost 4 vsldoi8 <4,5,6,3>, <5,5,6,6>
+ 3840739932U, // <6,3,5,6>: Cost 4 vsldoi12 <2,5,3,6>, <3,5,6,6>
+ 2299439034U, // <6,3,5,7>: Cost 3 vmrglw <2,u,6,5>, <2,6,3,7>
+ 2719994110U, // <6,3,5,u>: Cost 3 vsldoi8 <5,u,6,3>, <5,u,6,3>
+ 2254899350U, // <6,3,6,0>: Cost 3 vmrghw <6,6,6,6>, <3,0,1,2>
+ 3328641254U, // <6,3,6,1>: Cost 4 vmrghw <6,6,6,6>, <3,1,1,1>
+ 2633443257U, // <6,3,6,2>: Cost 3 vsldoi4 <2,6,3,6>, <2,6,3,6>
+ 2254899612U, // <6,3,6,3>: Cost 3 vmrghw <6,6,6,6>, <3,3,3,3>
+ 2254899714U, // <6,3,6,4>: Cost 3 vmrghw <6,6,6,6>, <3,4,5,6>
+ 3785773772U, // <6,3,6,5>: Cost 4 vsldoi8 <4,5,6,3>, <6,5,3,6>
+ 2725966648U, // <6,3,6,6>: Cost 3 vsldoi8 <6,u,6,3>, <6,6,6,6>
+ 2322007994U, // <6,3,6,7>: Cost 3 vmrglw <6,6,6,6>, <2,6,3,7>
+ 2254899998U, // <6,3,6,u>: Cost 3 vmrghw <6,6,6,6>, <3,u,1,2>
+ 1559707750U, // <6,3,7,0>: Cost 2 vsldoi4 <2,6,3,7>, LHS
+ 2633450292U, // <6,3,7,1>: Cost 3 vsldoi4 <2,6,3,7>, <1,1,1,1>
+ 1559709626U, // <6,3,7,2>: Cost 2 vsldoi4 <2,6,3,7>, <2,6,3,7>
+ 1235666546U, // <6,3,7,3>: Cost 2 vmrglw RHS, <2,2,3,3>
+ 1559711030U, // <6,3,7,4>: Cost 2 vsldoi4 <2,6,3,7>, RHS
+ 2309408291U, // <6,3,7,5>: Cost 3 vmrglw RHS, <2,1,3,5>
+ 2633454152U, // <6,3,7,6>: Cost 3 vsldoi4 <2,6,3,7>, <6,3,7,0>
+ 1235666874U, // <6,3,7,7>: Cost 2 vmrglw RHS, <2,6,3,7>
+ 1559713582U, // <6,3,7,u>: Cost 2 vsldoi4 <2,6,3,7>, LHS
+ 1559715942U, // <6,3,u,0>: Cost 2 vsldoi4 <2,6,3,u>, LHS
+ 2633458484U, // <6,3,u,1>: Cost 3 vsldoi4 <2,6,3,u>, <1,1,1,1>
+ 1559717819U, // <6,3,u,2>: Cost 2 vsldoi4 <2,6,3,u>, <2,6,3,u>
+ 1235674738U, // <6,3,u,3>: Cost 2 vmrglw RHS, <2,2,3,3>
+ 1559719222U, // <6,3,u,4>: Cost 2 vsldoi4 <2,6,3,u>, RHS
+ 1701366598U, // <6,3,u,5>: Cost 2 vsldoi12 <3,u,5,6>, <3,u,5,6>
+ 2633462353U, // <6,3,u,6>: Cost 3 vsldoi4 <2,6,3,u>, <6,3,u,0>
+ 1235675066U, // <6,3,u,7>: Cost 2 vmrglw RHS, <2,6,3,7>
+ 1559721774U, // <6,3,u,u>: Cost 2 vsldoi4 <2,6,3,u>, LHS
+ 3785777152U, // <6,4,0,0>: Cost 4 vsldoi8 <4,5,6,4>, <0,0,0,0>
+ 2712035430U, // <6,4,0,1>: Cost 3 vsldoi8 <4,5,6,4>, LHS
+ 3771179185U, // <6,4,0,2>: Cost 4 vsldoi8 <2,1,6,4>, <0,2,1,6>
+ 3846196096U, // <6,4,0,3>: Cost 4 vsldoi12 <3,4,5,6>, <4,0,3,1>
+ 3785777490U, // <6,4,0,4>: Cost 4 vsldoi8 <4,5,6,4>, <0,4,1,5>
+ 2250517814U, // <6,4,0,5>: Cost 3 vmrghw <6,0,1,2>, RHS
+ 3324259703U, // <6,4,0,6>: Cost 4 vmrghw <6,0,1,2>, <4,6,5,0>
+ 3383092458U, // <6,4,0,7>: Cost 5 vmrglw <4,5,6,0>, <1,6,4,7>
+ 2712035997U, // <6,4,0,u>: Cost 3 vsldoi8 <4,5,6,4>, LHS
+ 3325356946U, // <6,4,1,0>: Cost 4 vmrghw <6,1,7,1>, <4,0,5,1>
+ 3785777972U, // <6,4,1,1>: Cost 4 vsldoi8 <4,5,6,4>, <1,1,1,1>
+ 3846196170U, // <6,4,1,2>: Cost 4 vsldoi12 <3,4,5,6>, <4,1,2,3>
+ 3325365380U, // <6,4,1,3>: Cost 4 vmrghw <6,1,7,2>, <4,3,5,0>
+ 3852168155U, // <6,4,1,4>: Cost 4 vsldoi12 <4,4,5,6>, <4,1,4,2>
+ 2251615542U, // <6,4,1,5>: Cost 3 vmrghw <6,1,7,1>, RHS
+ 3325357432U, // <6,4,1,6>: Cost 4 vmrghw <6,1,7,1>, <4,6,5,1>
+ 3870084088U, // <6,4,1,7>: Cost 4 vsldoi12 <7,4,5,6>, <4,1,7,4>
+ 2251615785U, // <6,4,1,u>: Cost 3 vmrghw <6,1,7,1>, RHS
+ 2252295058U, // <6,4,2,0>: Cost 3 vmrghw <6,2,7,3>, <4,0,5,1>
+ 3771180605U, // <6,4,2,1>: Cost 4 vsldoi8 <2,1,6,4>, <2,1,6,4>
+ 3785778792U, // <6,4,2,2>: Cost 4 vsldoi8 <4,5,6,4>, <2,2,2,2>
+ 3777816253U, // <6,4,2,3>: Cost 4 vsldoi8 <3,2,6,4>, <2,3,2,6>
+ 2252295376U, // <6,4,2,4>: Cost 3 vmrghw <6,2,7,3>, <4,4,4,4>
+ 1178553654U, // <6,4,2,5>: Cost 2 vmrghw <6,2,7,3>, RHS
+ 2252295545U, // <6,4,2,6>: Cost 3 vmrghw <6,2,7,3>, <4,6,5,2>
+ 3326037448U, // <6,4,2,7>: Cost 4 vmrghw <6,2,7,3>, <4,7,5,0>
+ 1178553897U, // <6,4,2,u>: Cost 2 vmrghw <6,2,7,3>, RHS
+ 3785779350U, // <6,4,3,0>: Cost 4 vsldoi8 <4,5,6,4>, <3,0,1,2>
+ 3383118648U, // <6,4,3,1>: Cost 4 vmrglw <4,5,6,3>, <3,u,4,1>
+ 3777816935U, // <6,4,3,2>: Cost 4 vsldoi8 <3,2,6,4>, <3,2,6,4>
+ 3785779612U, // <6,4,3,3>: Cost 4 vsldoi8 <4,5,6,4>, <3,3,3,3>
+ 2712037890U, // <6,4,3,4>: Cost 3 vsldoi8 <4,5,6,4>, <3,4,5,6>
+ 2252754230U, // <6,4,3,5>: Cost 3 vmrghw <6,3,4,5>, RHS
+ 3784452764U, // <6,4,3,6>: Cost 4 vsldoi8 <4,3,6,4>, <3,6,4,7>
+ 3801705178U, // <6,4,3,7>: Cost 4 vsldoi8 <7,2,6,4>, <3,7,2,6>
+ 2252754473U, // <6,4,3,u>: Cost 3 vmrghw <6,3,4,5>, RHS
+ 3787770770U, // <6,4,4,0>: Cost 4 vsldoi8 <4,u,6,4>, <4,0,5,1>
+ 3383126840U, // <6,4,4,1>: Cost 4 vmrglw <4,5,6,4>, <3,u,4,1>
+ 3327380534U, // <6,4,4,2>: Cost 4 vmrghw <6,4,7,5>, <4,2,5,3>
+ 3784453265U, // <6,4,4,3>: Cost 4 vsldoi8 <4,3,6,4>, <4,3,6,4>
+ 2253630672U, // <6,4,4,4>: Cost 3 vmrghw <6,4,7,4>, <4,4,4,4>
+ 2778426587U, // <6,4,4,5>: Cost 3 vsldoi12 <4,4,5,6>, <4,4,5,6>
+ 3383128789U, // <6,4,4,6>: Cost 4 vmrglw <4,5,6,4>, <6,5,4,6>
+ 3381799580U, // <6,4,4,7>: Cost 4 vmrglw <4,3,6,4>, <3,6,4,7>
+ 2778647798U, // <6,4,4,u>: Cost 3 vsldoi12 <4,4,u,6>, <4,4,u,6>
+ 2651422822U, // <6,4,5,0>: Cost 3 vsldoi4 <5,6,4,5>, LHS
+ 3701277928U, // <6,4,5,1>: Cost 4 vsldoi4 <1,6,4,5>, <1,6,4,5>
+ 3701278650U, // <6,4,5,2>: Cost 4 vsldoi4 <1,6,4,5>, <2,6,3,7>
+ 2651425282U, // <6,4,5,3>: Cost 3 vsldoi4 <5,6,4,5>, <3,4,5,6>
+ 2651426102U, // <6,4,5,4>: Cost 3 vsldoi4 <5,6,4,5>, RHS
+ 2651426892U, // <6,4,5,5>: Cost 3 vsldoi4 <5,6,4,5>, <5,6,4,5>
+ 1698712886U, // <6,4,5,6>: Cost 2 vsldoi12 <3,4,5,6>, RHS
+ 3725169658U, // <6,4,5,7>: Cost 4 vsldoi4 <5,6,4,5>, <7,0,1,2>
+ 1698712904U, // <6,4,5,u>: Cost 2 vsldoi12 <3,4,5,6>, RHS
+ 2254900114U, // <6,4,6,0>: Cost 3 vmrghw <6,6,6,6>, <4,0,5,1>
+ 3389115192U, // <6,4,6,1>: Cost 4 vmrglw <5,5,6,6>, <3,u,4,1>
+ 3785781727U, // <6,4,6,2>: Cost 4 vsldoi8 <4,5,6,4>, <6,2,4,3>
+ 3785781810U, // <6,4,6,3>: Cost 4 vsldoi8 <4,5,6,4>, <6,3,4,5>
+ 2254900432U, // <6,4,6,4>: Cost 3 vmrghw <6,6,6,6>, <4,4,4,4>
+ 1181158710U, // <6,4,6,5>: Cost 2 vmrghw <6,6,6,6>, RHS
+ 2254900605U, // <6,4,6,6>: Cost 3 vmrghw <6,6,6,6>, <4,6,5,6>
+ 3787772750U, // <6,4,6,7>: Cost 4 vsldoi8 <4,u,6,4>, <6,7,0,1>
+ 1181158953U, // <6,4,6,u>: Cost 2 vmrghw <6,6,6,6>, RHS
+ 2639495270U, // <6,4,7,0>: Cost 3 vsldoi4 <3,6,4,7>, LHS
+ 2639496090U, // <6,4,7,1>: Cost 3 vsldoi4 <3,6,4,7>, <1,2,3,4>
+ 3707267011U, // <6,4,7,2>: Cost 4 vsldoi4 <2,6,4,7>, <2,6,4,7>
+ 2639497884U, // <6,4,7,3>: Cost 3 vsldoi4 <3,6,4,7>, <3,6,4,7>
+ 1237658832U, // <6,4,7,4>: Cost 2 vmrglw RHS, <4,4,4,4>
+ 1235666638U, // <6,4,7,5>: Cost 2 vmrglw RHS, <2,3,4,5>
+ 3713241753U, // <6,4,7,6>: Cost 4 vsldoi4 <3,6,4,7>, <6,4,7,0>
+ 2309409436U, // <6,4,7,7>: Cost 3 vmrglw RHS, <3,6,4,7>
+ 1235666641U, // <6,4,7,u>: Cost 2 vmrglw RHS, <2,3,4,u>
+ 2639503462U, // <6,4,u,0>: Cost 3 vsldoi4 <3,6,4,u>, LHS
+ 2639504282U, // <6,4,u,1>: Cost 3 vsldoi4 <3,6,4,u>, <1,2,3,4>
+ 3701303226U, // <6,4,u,2>: Cost 4 vsldoi4 <1,6,4,u>, <2,6,3,7>
+ 2639506077U, // <6,4,u,3>: Cost 3 vsldoi4 <3,6,4,u>, <3,6,4,u>
+ 1235676368U, // <6,4,u,4>: Cost 2 vmrglw RHS, <4,4,4,4>
+ 1235674830U, // <6,4,u,5>: Cost 2 vmrglw RHS, <2,3,4,5>
+ 1698713129U, // <6,4,u,6>: Cost 2 vsldoi12 <3,4,5,6>, RHS
+ 2309417628U, // <6,4,u,7>: Cost 3 vmrglw RHS, <3,6,4,7>
+ 1698713147U, // <6,4,u,u>: Cost 2 vsldoi12 <3,4,5,6>, RHS
+ 3775832064U, // <6,5,0,0>: Cost 4 vsldoi8 <2,u,6,5>, <0,0,0,0>
+ 2702090342U, // <6,5,0,1>: Cost 3 vsldoi8 <2,u,6,5>, LHS
+ 3775832241U, // <6,5,0,2>: Cost 4 vsldoi8 <2,u,6,5>, <0,2,1,6>
+ 3719227906U, // <6,5,0,3>: Cost 4 vsldoi4 <4,6,5,0>, <3,4,5,6>
+ 3775832402U, // <6,5,0,4>: Cost 4 vsldoi8 <2,u,6,5>, <0,4,1,5>
+ 3385085146U, // <6,5,0,5>: Cost 4 vmrglw <4,u,6,0>, <4,4,5,5>
+ 2309351938U, // <6,5,0,6>: Cost 3 vmrglw <4,5,6,0>, <3,4,5,6>
+ 3376459134U, // <6,5,0,7>: Cost 5 vmrglw <3,4,6,0>, <4,6,5,7>
+ 2702090909U, // <6,5,0,u>: Cost 3 vsldoi8 <2,u,6,5>, LHS
+ 3719233546U, // <6,5,1,0>: Cost 4 vsldoi4 <4,6,5,1>, <0,0,1,1>
+ 3775832884U, // <6,5,1,1>: Cost 4 vsldoi8 <2,u,6,5>, <1,1,1,1>
+ 3775832982U, // <6,5,1,2>: Cost 4 vsldoi8 <2,u,6,5>, <1,2,3,0>
+ 3846196909U, // <6,5,1,3>: Cost 4 vsldoi12 <3,4,5,6>, <5,1,3,4>
+ 3719236984U, // <6,5,1,4>: Cost 4 vsldoi4 <4,6,5,1>, <4,6,5,1>
+ 3856150209U, // <6,5,1,5>: Cost 4 vsldoi12 <5,1,5,6>, <5,1,5,6>
+ 3834252997U, // <6,5,1,6>: Cost 4 vsldoi12 <1,4,5,6>, <5,1,6,1>
+ 3870084817U, // <6,5,1,7>: Cost 4 vsldoi12 <7,4,5,6>, <5,1,7,4>
+ 3769861532U, // <6,5,1,u>: Cost 4 vsldoi8 <1,u,6,5>, <1,u,6,5>
+ 2645500006U, // <6,5,2,0>: Cost 3 vsldoi4 <4,6,5,2>, LHS
+ 3719242548U, // <6,5,2,1>: Cost 4 vsldoi4 <4,6,5,2>, <1,1,1,1>
+ 3775833704U, // <6,5,2,2>: Cost 4 vsldoi8 <2,u,6,5>, <2,2,2,2>
+ 3775833766U, // <6,5,2,3>: Cost 4 vsldoi8 <2,u,6,5>, <2,3,0,1>
+ 2645503353U, // <6,5,2,4>: Cost 3 vsldoi4 <4,6,5,2>, <4,6,5,2>
+ 2252296196U, // <6,5,2,5>: Cost 3 vmrghw <6,2,7,3>, <5,5,5,5>
+ 2702092218U, // <6,5,2,6>: Cost 3 vsldoi8 <2,u,6,5>, <2,6,3,7>
+ 3719246842U, // <6,5,2,7>: Cost 4 vsldoi4 <4,6,5,2>, <7,0,1,2>
+ 2702092405U, // <6,5,2,u>: Cost 3 vsldoi8 <2,u,6,5>, <2,u,6,5>
+ 3775834262U, // <6,5,3,0>: Cost 4 vsldoi8 <2,u,6,5>, <3,0,1,2>
+ 3777161495U, // <6,5,3,1>: Cost 4 vsldoi8 <3,1,6,5>, <3,1,6,5>
+ 3775834470U, // <6,5,3,2>: Cost 4 vsldoi8 <2,u,6,5>, <3,2,6,3>
+ 3775834524U, // <6,5,3,3>: Cost 4 vsldoi8 <2,u,6,5>, <3,3,3,3>
+ 3775834626U, // <6,5,3,4>: Cost 4 vsldoi8 <2,u,6,5>, <3,4,5,6>
+ 3385109722U, // <6,5,3,5>: Cost 4 vmrglw <4,u,6,3>, <4,4,5,5>
+ 2309376514U, // <6,5,3,6>: Cost 3 vmrglw <4,5,6,3>, <3,4,5,6>
+ 3775834819U, // <6,5,3,7>: Cost 4 vsldoi8 <2,u,6,5>, <3,7,0,1>
+ 2309376514U, // <6,5,3,u>: Cost 3 vmrglw <4,5,6,3>, <3,4,5,6>
+ 3719258214U, // <6,5,4,0>: Cost 4 vsldoi4 <4,6,5,4>, LHS
+ 3385117586U, // <6,5,4,1>: Cost 4 vmrglw <4,u,6,4>, <4,0,5,1>
+ 3327242008U, // <6,5,4,2>: Cost 4 vmrghw <6,4,5,6>, <5,2,6,3>
+ 3719260674U, // <6,5,4,3>: Cost 4 vsldoi4 <4,6,5,4>, <3,4,5,6>
+ 3719261563U, // <6,5,4,4>: Cost 4 vsldoi4 <4,6,5,4>, <4,6,5,4>
+ 2702093622U, // <6,5,4,5>: Cost 3 vsldoi8 <2,u,6,5>, RHS
+ 2309384706U, // <6,5,4,6>: Cost 3 vmrglw <4,5,6,4>, <3,4,5,6>
+ 3870085060U, // <6,5,4,7>: Cost 4 vsldoi12 <7,4,5,6>, <5,4,7,4>
+ 2702093865U, // <6,5,4,u>: Cost 3 vsldoi8 <2,u,6,5>, RHS
+ 3719266406U, // <6,5,5,0>: Cost 4 vsldoi4 <4,6,5,5>, LHS
+ 3789106889U, // <6,5,5,1>: Cost 4 vsldoi8 <5,1,6,5>, <5,1,6,5>
+ 3785789208U, // <6,5,5,2>: Cost 4 vsldoi8 <4,5,6,5>, <5,2,6,3>
+ 3373183950U, // <6,5,5,3>: Cost 4 vmrglw <2,u,6,5>, <6,u,5,3>
+ 2717355964U, // <6,5,5,4>: Cost 3 vsldoi8 <5,4,6,5>, <5,4,6,5>
+ 2791772164U, // <6,5,5,5>: Cost 3 vsldoi12 <6,6,6,6>, <5,5,5,5>
+ 2772455438U, // <6,5,5,6>: Cost 3 vsldoi12 <3,4,5,6>, <5,5,6,6>
+ 3373183549U, // <6,5,5,7>: Cost 4 vmrglw <2,u,6,5>, <6,3,5,7>
+ 2720010496U, // <6,5,5,u>: Cost 3 vsldoi8 <5,u,6,5>, <5,u,6,5>
+ 2772455460U, // <6,5,6,0>: Cost 3 vsldoi12 <3,4,5,6>, <5,6,0,1>
+ 2322008978U, // <6,5,6,1>: Cost 3 vmrglw <6,6,6,6>, <4,0,5,1>
+ 3840225335U, // <6,5,6,2>: Cost 4 vsldoi12 <2,4,5,6>, <5,6,2,2>
+ 2772455490U, // <6,5,6,3>: Cost 3 vsldoi12 <3,4,5,6>, <5,6,3,4>
+ 2772455500U, // <6,5,6,4>: Cost 3 vsldoi12 <3,4,5,6>, <5,6,4,5>
+ 2254901252U, // <6,5,6,5>: Cost 3 vmrghw <6,6,6,6>, <5,5,5,5>
+ 2772455520U, // <6,5,6,6>: Cost 3 vsldoi12 <3,4,5,6>, <5,6,6,7>
+ 2785874024U, // <6,5,6,7>: Cost 3 vsldoi12 <5,6,7,6>, <5,6,7,6>
+ 2772455532U, // <6,5,6,u>: Cost 3 vsldoi12 <3,4,5,6>, <5,6,u,1>
+ 2627625062U, // <6,5,7,0>: Cost 3 vsldoi4 <1,6,5,7>, LHS
+ 1235667858U, // <6,5,7,1>: Cost 2 vmrglw RHS, <4,0,5,1>
+ 2309409278U, // <6,5,7,2>: Cost 3 vmrglw RHS, <3,4,5,2>
+ 2309407659U, // <6,5,7,3>: Cost 3 vmrglw RHS, <1,2,5,3>
+ 2627628342U, // <6,5,7,4>: Cost 3 vsldoi4 <1,6,5,7>, RHS
+ 1235668186U, // <6,5,7,5>: Cost 2 vmrglw RHS, <4,4,5,5>
+ 1235667458U, // <6,5,7,6>: Cost 2 vmrglw RHS, <3,4,5,6>
+ 2309407987U, // <6,5,7,7>: Cost 3 vmrglw RHS, <1,6,5,7>
+ 1235667460U, // <6,5,7,u>: Cost 2 vmrglw RHS, <3,4,5,u>
+ 2627633254U, // <6,5,u,0>: Cost 3 vsldoi4 <1,6,5,u>, LHS
+ 1235676050U, // <6,5,u,1>: Cost 2 vmrglw RHS, <4,0,5,1>
+ 2309417470U, // <6,5,u,2>: Cost 3 vmrglw RHS, <3,4,5,2>
+ 2309415851U, // <6,5,u,3>: Cost 3 vmrglw RHS, <1,2,5,3>
+ 2627636534U, // <6,5,u,4>: Cost 3 vsldoi4 <1,6,5,u>, RHS
+ 1235676378U, // <6,5,u,5>: Cost 2 vmrglw RHS, <4,4,5,5>
+ 1235675650U, // <6,5,u,6>: Cost 2 vmrglw RHS, <3,4,5,6>
+ 2309416179U, // <6,5,u,7>: Cost 3 vmrglw RHS, <1,6,5,7>
+ 1235675652U, // <6,5,u,u>: Cost 2 vmrglw RHS, <3,4,5,u>
+ 2309352751U, // <6,6,0,0>: Cost 3 vmrglw <4,5,6,0>, <4,5,6,0>
+ 1650917478U, // <6,6,0,1>: Cost 2 vsldoi8 <6,6,6,6>, LHS
+ 2250584570U, // <6,6,0,2>: Cost 3 vmrghw <6,0,2,1>, <6,2,7,3>
+ 3846197554U, // <6,6,0,3>: Cost 4 vsldoi12 <3,4,5,6>, <6,0,3,1>
+ 2724659538U, // <6,6,0,4>: Cost 3 vsldoi8 <6,6,6,6>, <0,4,1,5>
+ 3725275225U, // <6,6,0,5>: Cost 4 vsldoi4 <5,6,6,0>, <5,6,6,0>
+ 2791772493U, // <6,6,0,6>: Cost 3 vsldoi12 <6,6,6,6>, <6,0,6,1>
+ 2309352758U, // <6,6,0,7>: Cost 3 vmrglw <4,5,6,0>, RHS
+ 1650918045U, // <6,6,0,u>: Cost 2 vsldoi8 <6,6,6,6>, LHS
+ 3325358368U, // <6,6,1,0>: Cost 4 vmrghw <6,1,7,1>, <6,0,1,1>
+ 2299406449U, // <6,6,1,1>: Cost 3 vmrglw <2,u,6,1>, <2,u,6,1>
+ 2724660118U, // <6,6,1,2>: Cost 3 vsldoi8 <6,6,6,6>, <1,2,3,0>
+ 3373148518U, // <6,6,1,3>: Cost 4 vmrglw <2,u,6,1>, <3,2,6,3>
+ 3834253712U, // <6,6,1,4>: Cost 4 vsldoi12 <1,4,5,6>, <6,1,4,5>
+ 3373147953U, // <6,6,1,5>: Cost 4 vmrglw <2,u,6,1>, <2,4,6,5>
+ 2323297080U, // <6,6,1,6>: Cost 3 vmrglw <6,u,6,1>, <6,6,6,6>
+ 2299407670U, // <6,6,1,7>: Cost 3 vmrglw <2,u,6,1>, RHS
+ 2299407671U, // <6,6,1,u>: Cost 3 vmrglw <2,u,6,1>, RHS
+ 2252296489U, // <6,6,2,0>: Cost 3 vmrghw <6,2,7,3>, <6,0,2,1>
+ 3326038394U, // <6,6,2,1>: Cost 4 vmrghw <6,2,7,3>, <6,1,2,1>
+ 1178554874U, // <6,6,2,2>: Cost 2 vmrghw <6,2,7,3>, <6,2,7,3>
+ 2724660902U, // <6,6,2,3>: Cost 3 vsldoi8 <6,6,6,6>, <2,3,0,1>
+ 2252296817U, // <6,6,2,4>: Cost 3 vmrghw <6,2,7,3>, <6,4,2,5>
+ 3840741864U, // <6,6,2,5>: Cost 4 vsldoi12 <2,5,3,6>, <6,2,5,3>
+ 2252296976U, // <6,6,2,6>: Cost 3 vmrghw <6,2,7,3>, <6,6,2,2>
+ 2785874426U, // <6,6,2,7>: Cost 3 vsldoi12 <5,6,7,6>, <6,2,7,3>
+ 1178554874U, // <6,6,2,u>: Cost 2 vmrghw <6,2,7,3>, <6,2,7,3>
+ 2724661398U, // <6,6,3,0>: Cost 3 vsldoi8 <6,6,6,6>, <3,0,1,2>
+ 3375154665U, // <6,6,3,1>: Cost 4 vmrglw <3,2,6,3>, <2,0,6,1>
+ 3375154909U, // <6,6,3,2>: Cost 4 vmrglw <3,2,6,3>, <2,3,6,2>
+ 2301413734U, // <6,6,3,3>: Cost 3 vmrglw <3,2,6,3>, <3,2,6,3>
+ 2772455986U, // <6,6,3,4>: Cost 3 vsldoi12 <3,4,5,6>, <6,3,4,5>
+ 3375154993U, // <6,6,3,5>: Cost 4 vmrglw <3,2,6,3>, <2,4,6,5>
+ 2323313464U, // <6,6,3,6>: Cost 3 vmrglw <6,u,6,3>, <6,6,6,6>
+ 2301414710U, // <6,6,3,7>: Cost 3 vmrglw <3,2,6,3>, RHS
+ 2301414711U, // <6,6,3,u>: Cost 3 vmrglw <3,2,6,3>, RHS
+ 2724662162U, // <6,6,4,0>: Cost 3 vsldoi8 <6,6,6,6>, <4,0,5,1>
+ 3326939559U, // <6,6,4,1>: Cost 4 vmrghw <6,4,1,5>, <6,1,7,1>
+ 2253271546U, // <6,6,4,2>: Cost 3 vmrghw <6,4,2,5>, <6,2,7,3>
+ 3383127346U, // <6,6,4,3>: Cost 4 vmrglw <4,5,6,4>, <4,5,6,3>
+ 2309385523U, // <6,6,4,4>: Cost 3 vmrglw <4,5,6,4>, <4,5,6,4>
+ 1650920758U, // <6,6,4,5>: Cost 2 vsldoi8 <6,6,6,6>, RHS
+ 2724662653U, // <6,6,4,6>: Cost 3 vsldoi8 <6,6,6,6>, <4,6,5,6>
+ 2309385526U, // <6,6,4,7>: Cost 3 vmrglw <4,5,6,4>, RHS
+ 1650921001U, // <6,6,4,u>: Cost 2 vsldoi8 <6,6,6,6>, RHS
+ 3725312102U, // <6,6,5,0>: Cost 4 vsldoi4 <5,6,6,5>, LHS
+ 3373180393U, // <6,6,5,1>: Cost 4 vmrglw <2,u,6,5>, <2,0,6,1>
+ 3791769368U, // <6,6,5,2>: Cost 4 vsldoi8 <5,5,6,6>, <5,2,6,3>
+ 3373181286U, // <6,6,5,3>: Cost 4 vmrglw <2,u,6,5>, <3,2,6,3>
+ 3725315382U, // <6,6,5,4>: Cost 4 vsldoi4 <5,6,6,5>, RHS
+ 2299439221U, // <6,6,5,5>: Cost 3 vmrglw <2,u,6,5>, <2,u,6,5>
+ 2724663394U, // <6,6,5,6>: Cost 3 vsldoi8 <6,6,6,6>, <5,6,7,0>
+ 2299440438U, // <6,6,5,7>: Cost 3 vmrglw <2,u,6,5>, RHS
+ 2299440439U, // <6,6,5,u>: Cost 3 vmrglw <2,u,6,5>, RHS
+ 1583808614U, // <6,6,6,0>: Cost 2 vsldoi4 <6,6,6,6>, LHS
+ 2322010445U, // <6,6,6,1>: Cost 3 vmrglw <6,6,6,6>, <6,0,6,1>
+ 2254574074U, // <6,6,6,2>: Cost 3 vmrghw <6,6,2,2>, <6,2,7,3>
+ 2322010609U, // <6,6,6,3>: Cost 3 vmrglw <6,6,6,6>, <6,2,6,3>
+ 1583811894U, // <6,6,6,4>: Cost 2 vsldoi4 <6,6,6,6>, RHS
+ 2322010773U, // <6,6,6,5>: Cost 3 vmrglw <6,6,6,6>, <6,4,6,5>
+ 363253046U, // <6,6,6,6>: Cost 1 vspltisw2 RHS
+ 1248267574U, // <6,6,6,7>: Cost 2 vmrglw <6,6,6,6>, RHS
+ 363253046U, // <6,6,6,u>: Cost 1 vspltisw2 RHS
+ 2309410095U, // <6,6,7,0>: Cost 3 vmrglw RHS, <4,5,6,0>
+ 2309408233U, // <6,6,7,1>: Cost 3 vmrglw RHS, <2,0,6,1>
+ 2311402373U, // <6,6,7,2>: Cost 3 vmrglw RHS, <6,7,6,2>
+ 2309409126U, // <6,6,7,3>: Cost 3 vmrglw RHS, <3,2,6,3>
+ 2309410099U, // <6,6,7,4>: Cost 3 vmrglw RHS, <4,5,6,4>
+ 2309408561U, // <6,6,7,5>: Cost 3 vmrglw RHS, <2,4,6,5>
+ 1237660472U, // <6,6,7,6>: Cost 2 vmrglw RHS, <6,6,6,6>
+ 161926454U, // <6,6,7,7>: Cost 1 vmrglw RHS, RHS
+ 161926455U, // <6,6,7,u>: Cost 1 vmrglw RHS, RHS
+ 1583808614U, // <6,6,u,0>: Cost 2 vsldoi4 <6,6,6,6>, LHS
+ 1650923310U, // <6,6,u,1>: Cost 2 vsldoi8 <6,6,6,6>, LHS
+ 1178554874U, // <6,6,u,2>: Cost 2 vmrghw <6,2,7,3>, <6,2,7,3>
+ 2309417318U, // <6,6,u,3>: Cost 3 vmrglw RHS, <3,2,6,3>
+ 1583811894U, // <6,6,u,4>: Cost 2 vsldoi4 <6,6,6,6>, RHS
+ 1650923674U, // <6,6,u,5>: Cost 2 vsldoi8 <6,6,6,6>, RHS
+ 363253046U, // <6,6,u,6>: Cost 1 vspltisw2 RHS
+ 161934646U, // <6,6,u,7>: Cost 1 vmrglw RHS, RHS
+ 161934647U, // <6,6,u,u>: Cost 1 vmrglw RHS, RHS
+ 1638318080U, // <6,7,0,0>: Cost 2 vsldoi8 RHS, <0,0,0,0>
+ 564576358U, // <6,7,0,1>: Cost 1 vsldoi8 RHS, LHS
+ 2712060077U, // <6,7,0,2>: Cost 3 vsldoi8 RHS, <0,2,1,2>
+ 2712060156U, // <6,7,0,3>: Cost 3 vsldoi8 RHS, <0,3,1,0>
+ 1638318418U, // <6,7,0,4>: Cost 2 vsldoi8 RHS, <0,4,1,5>
+ 1577865314U, // <6,7,0,5>: Cost 2 vsldoi4 <5,6,7,0>, <5,6,7,0>
+ 2712060406U, // <6,7,0,6>: Cost 3 vsldoi8 RHS, <0,6,1,7>
+ 2651608058U, // <6,7,0,7>: Cost 3 vsldoi4 <5,6,7,0>, <7,0,1,2>
+ 564576925U, // <6,7,0,u>: Cost 1 vsldoi8 RHS, LHS
+ 2712060643U, // <6,7,1,0>: Cost 3 vsldoi8 RHS, <1,0,1,1>
+ 1638318900U, // <6,7,1,1>: Cost 2 vsldoi8 RHS, <1,1,1,1>
+ 1638318998U, // <6,7,1,2>: Cost 2 vsldoi8 RHS, <1,2,3,0>
+ 3766559753U, // <6,7,1,3>: Cost 4 vsldoi8 <1,3,6,7>, <1,3,6,7>
+ 2712060971U, // <6,7,1,4>: Cost 3 vsldoi8 RHS, <1,4,1,5>
+ 2712061039U, // <6,7,1,5>: Cost 3 vsldoi8 RHS, <1,5,0,1>
+ 2712061135U, // <6,7,1,6>: Cost 3 vsldoi8 RHS, <1,6,1,7>
+ 3373148612U, // <6,7,1,7>: Cost 4 vmrglw <2,u,6,1>, <3,3,7,7>
+ 1638319484U, // <6,7,1,u>: Cost 2 vsldoi8 RHS, <1,u,3,0>
+ 2712061373U, // <6,7,2,0>: Cost 3 vsldoi8 RHS, <2,0,1,2>
+ 2712061471U, // <6,7,2,1>: Cost 3 vsldoi8 RHS, <2,1,3,1>
+ 1638319720U, // <6,7,2,2>: Cost 2 vsldoi8 RHS, <2,2,2,2>
+ 1638319782U, // <6,7,2,3>: Cost 2 vsldoi8 RHS, <2,3,0,1>
+ 2712061709U, // <6,7,2,4>: Cost 3 vsldoi8 RHS, <2,4,2,5>
+ 2712061800U, // <6,7,2,5>: Cost 3 vsldoi8 RHS, <2,5,3,6>
+ 1638320058U, // <6,7,2,6>: Cost 2 vsldoi8 RHS, <2,6,3,7>
+ 2252297836U, // <6,7,2,7>: Cost 3 vmrghw <6,2,7,3>, <7,7,7,7>
+ 1638320187U, // <6,7,2,u>: Cost 2 vsldoi8 RHS, <2,u,0,1>
+ 1638320278U, // <6,7,3,0>: Cost 2 vsldoi8 RHS, <3,0,1,2>
+ 2712062182U, // <6,7,3,1>: Cost 3 vsldoi8 RHS, <3,1,1,1>
+ 2712062256U, // <6,7,3,2>: Cost 3 vsldoi8 RHS, <3,2,0,3>
+ 1638320540U, // <6,7,3,3>: Cost 2 vsldoi8 RHS, <3,3,3,3>
+ 1638320642U, // <6,7,3,4>: Cost 2 vsldoi8 RHS, <3,4,5,6>
+ 2712062546U, // <6,7,3,5>: Cost 3 vsldoi8 RHS, <3,5,5,5>
+ 2712062584U, // <6,7,3,6>: Cost 3 vsldoi8 RHS, <3,6,0,7>
+ 2712062659U, // <6,7,3,7>: Cost 3 vsldoi8 RHS, <3,7,0,1>
+ 1638320926U, // <6,7,3,u>: Cost 2 vsldoi8 RHS, <3,u,1,2>
+ 1638321042U, // <6,7,4,0>: Cost 2 vsldoi8 RHS, <4,0,5,1>
+ 2712062922U, // <6,7,4,1>: Cost 3 vsldoi8 RHS, <4,1,2,3>
+ 2712063029U, // <6,7,4,2>: Cost 3 vsldoi8 RHS, <4,2,5,2>
+ 2712063108U, // <6,7,4,3>: Cost 3 vsldoi8 RHS, <4,3,5,0>
+ 1638321360U, // <6,7,4,4>: Cost 2 vsldoi8 RHS, <4,4,4,4>
+ 564579638U, // <6,7,4,5>: Cost 1 vsldoi8 RHS, RHS
+ 2712063357U, // <6,7,4,6>: Cost 3 vsldoi8 RHS, <4,6,5,6>
+ 2712063439U, // <6,7,4,7>: Cost 3 vsldoi8 RHS, <4,7,5,7>
+ 564579881U, // <6,7,4,u>: Cost 1 vsldoi8 RHS, RHS
+ 2712063560U, // <6,7,5,0>: Cost 3 vsldoi8 RHS, <5,0,1,2>
+ 2714054287U, // <6,7,5,1>: Cost 3 vsldoi8 RHS, <5,1,0,1>
+ 2712063742U, // <6,7,5,2>: Cost 3 vsldoi8 RHS, <5,2,3,4>
+ 3373181295U, // <6,7,5,3>: Cost 4 vmrglw <2,u,6,5>, <3,2,7,3>
+ 2712063924U, // <6,7,5,4>: Cost 3 vsldoi8 RHS, <5,4,5,6>
+ 1638322180U, // <6,7,5,5>: Cost 2 vsldoi8 RHS, <5,5,5,5>
+ 1638322274U, // <6,7,5,6>: Cost 2 vsldoi8 RHS, <5,6,7,0>
+ 3373181380U, // <6,7,5,7>: Cost 4 vmrglw <2,u,6,5>, <3,3,7,7>
+ 1640313092U, // <6,7,5,u>: Cost 2 vsldoi8 RHS, <5,u,7,0>
+ 2712064289U, // <6,7,6,0>: Cost 3 vsldoi8 RHS, <6,0,1,2>
+ 2712064423U, // <6,7,6,1>: Cost 3 vsldoi8 RHS, <6,1,7,1>
+ 1638322682U, // <6,7,6,2>: Cost 2 vsldoi8 RHS, <6,2,7,3>
+ 2712064562U, // <6,7,6,3>: Cost 3 vsldoi8 RHS, <6,3,4,5>
+ 2712064653U, // <6,7,6,4>: Cost 3 vsldoi8 RHS, <6,4,5,6>
+ 2712064747U, // <6,7,6,5>: Cost 3 vsldoi8 RHS, <6,5,7,1>
+ 1638323000U, // <6,7,6,6>: Cost 2 vsldoi8 RHS, <6,6,6,6>
+ 1638323022U, // <6,7,6,7>: Cost 2 vsldoi8 RHS, <6,7,0,1>
+ 1638323168U, // <6,7,6,u>: Cost 2 vsldoi8 RHS, <6,u,7,3>
+ 1237659746U, // <6,7,7,0>: Cost 2 vmrglw RHS, <5,6,7,0>
+ 2309411158U, // <6,7,7,1>: Cost 3 vmrglw RHS, <6,0,7,1>
+ 2639718330U, // <6,7,7,2>: Cost 3 vsldoi4 <3,6,7,7>, <2,6,3,7>
+ 1235669498U, // <6,7,7,3>: Cost 2 vmrglw RHS, <6,2,7,3>
+ 1237659750U, // <6,7,7,4>: Cost 2 vmrglw RHS, <5,6,7,4>
+ 2309411243U, // <6,7,7,5>: Cost 3 vmrglw RHS, <6,1,7,5>
+ 1583895362U, // <6,7,7,6>: Cost 2 vsldoi4 <6,6,7,7>, <6,6,7,7>
+ 1235669826U, // <6,7,7,7>: Cost 2 vmrglw RHS, <6,6,7,7>
+ 1235669503U, // <6,7,7,u>: Cost 2 vmrglw RHS, <6,2,7,u>
+ 1638323923U, // <6,7,u,0>: Cost 2 vsldoi8 RHS, <u,0,1,2>
+ 564582190U, // <6,7,u,1>: Cost 1 vsldoi8 RHS, LHS
+ 1638324101U, // <6,7,u,2>: Cost 2 vsldoi8 RHS, <u,2,3,0>
+ 1638324156U, // <6,7,u,3>: Cost 2 vsldoi8 RHS, <u,3,0,1>
+ 1638324287U, // <6,7,u,4>: Cost 2 vsldoi8 RHS, <u,4,5,6>
+ 564582554U, // <6,7,u,5>: Cost 1 vsldoi8 RHS, RHS
+ 1638324432U, // <6,7,u,6>: Cost 2 vsldoi8 RHS, <u,6,3,7>
+ 1235678018U, // <6,7,u,7>: Cost 2 vmrglw RHS, <6,6,7,7>
+ 564582757U, // <6,7,u,u>: Cost 1 vsldoi8 RHS, LHS
+ 1638326272U, // <6,u,0,0>: Cost 2 vsldoi8 RHS, <0,0,0,0>
+ 564584550U, // <6,u,0,1>: Cost 1 vsldoi8 RHS, LHS
+ 2712068269U, // <6,u,0,2>: Cost 3 vsldoi8 RHS, <0,2,1,2>
+ 2309349532U, // <6,u,0,3>: Cost 3 vmrglw <4,5,6,0>, LHS
+ 1638326610U, // <6,u,0,4>: Cost 2 vsldoi8 RHS, <0,4,1,5>
+ 1577939051U, // <6,u,0,5>: Cost 2 vsldoi4 <5,6,u,0>, <5,6,u,0>
+ 2712068598U, // <6,u,0,6>: Cost 3 vsldoi8 RHS, <0,6,1,7>
+ 2309352776U, // <6,u,0,7>: Cost 3 vmrglw <4,5,6,0>, RHS
+ 564585117U, // <6,u,0,u>: Cost 1 vsldoi8 RHS, LHS
+ 2712068835U, // <6,u,1,0>: Cost 3 vsldoi8 RHS, <1,0,1,1>
+ 1638327092U, // <6,u,1,1>: Cost 2 vsldoi8 RHS, <1,1,1,1>
+ 1698715438U, // <6,u,1,2>: Cost 2 vsldoi12 <3,4,5,6>, LHS
+ 2299404444U, // <6,u,1,3>: Cost 3 vmrglw <2,u,6,1>, LHS
+ 2712069163U, // <6,u,1,4>: Cost 3 vsldoi8 RHS, <1,4,1,5>
+ 2712069231U, // <6,u,1,5>: Cost 3 vsldoi8 RHS, <1,5,0,1>
+ 2712069327U, // <6,u,1,6>: Cost 3 vsldoi8 RHS, <1,6,1,7>
+ 2299407688U, // <6,u,1,7>: Cost 3 vmrglw <2,u,6,1>, RHS
+ 1698715492U, // <6,u,1,u>: Cost 2 vsldoi12 <3,4,5,6>, LHS
+ 2712069565U, // <6,u,2,0>: Cost 3 vsldoi8 RHS, <2,0,1,2>
+ 1178556206U, // <6,u,2,1>: Cost 2 vmrghw <6,2,7,3>, LHS
+ 1638327912U, // <6,u,2,2>: Cost 2 vsldoi8 RHS, <2,2,2,2>
+ 1638327974U, // <6,u,2,3>: Cost 2 vsldoi8 RHS, <2,3,0,1>
+ 2712069901U, // <6,u,2,4>: Cost 3 vsldoi8 RHS, <2,4,2,5>
+ 1178556570U, // <6,u,2,5>: Cost 2 vmrghw <6,2,7,3>, RHS
+ 1638328250U, // <6,u,2,6>: Cost 2 vsldoi8 RHS, <2,6,3,7>
+ 2252298496U, // <6,u,2,7>: Cost 3 vmrghw <6,2,7,3>, <u,7,0,1>
+ 1638328379U, // <6,u,2,u>: Cost 2 vsldoi8 RHS, <2,u,0,1>
+ 1638328470U, // <6,u,3,0>: Cost 2 vsldoi8 RHS, <3,0,1,2>
+ 2712070374U, // <6,u,3,1>: Cost 3 vsldoi8 RHS, <3,1,1,1>
+ 2704107883U, // <6,u,3,2>: Cost 3 vsldoi8 <3,2,6,u>, <3,2,6,u>
+ 1638328732U, // <6,u,3,3>: Cost 2 vsldoi8 RHS, <3,3,3,3>
+ 1638328834U, // <6,u,3,4>: Cost 2 vsldoi8 RHS, <3,4,5,6>
+ 2712070738U, // <6,u,3,5>: Cost 3 vsldoi8 RHS, <3,5,5,5>
+ 2712070776U, // <6,u,3,6>: Cost 3 vsldoi8 RHS, <3,6,0,7>
+ 2301414728U, // <6,u,3,7>: Cost 3 vmrglw <3,2,6,3>, RHS
+ 1638329118U, // <6,u,3,u>: Cost 2 vsldoi8 RHS, <3,u,1,2>
+ 1638329234U, // <6,u,4,0>: Cost 2 vsldoi8 RHS, <4,0,5,1>
+ 2712071114U, // <6,u,4,1>: Cost 3 vsldoi8 RHS, <4,1,2,3>
+ 2712071221U, // <6,u,4,2>: Cost 3 vsldoi8 RHS, <4,2,5,2>
+ 2309382300U, // <6,u,4,3>: Cost 3 vmrglw <4,5,6,4>, LHS
+ 1638329552U, // <6,u,4,4>: Cost 2 vsldoi8 RHS, <4,4,4,4>
+ 564587831U, // <6,u,4,5>: Cost 1 vsldoi8 RHS, RHS
+ 2712071545U, // <6,u,4,6>: Cost 3 vsldoi8 RHS, <4,6,5,2>
+ 2309385544U, // <6,u,4,7>: Cost 3 vmrglw <4,5,6,4>, RHS
+ 564588073U, // <6,u,4,u>: Cost 1 vsldoi8 RHS, RHS
+ 2712071752U, // <6,u,5,0>: Cost 3 vsldoi8 RHS, <5,0,1,2>
+ 2714062479U, // <6,u,5,1>: Cost 3 vsldoi8 RHS, <5,1,0,1>
+ 2712071934U, // <6,u,5,2>: Cost 3 vsldoi8 RHS, <5,2,3,4>
+ 2299437212U, // <6,u,5,3>: Cost 3 vmrglw <2,u,6,5>, LHS
+ 2712072116U, // <6,u,5,4>: Cost 3 vsldoi8 RHS, <5,4,5,6>
+ 1638330372U, // <6,u,5,5>: Cost 2 vsldoi8 RHS, <5,5,5,5>
+ 1698715802U, // <6,u,5,6>: Cost 2 vsldoi12 <3,4,5,6>, RHS
+ 2299440456U, // <6,u,5,7>: Cost 3 vmrglw <2,u,6,5>, RHS
+ 1698715820U, // <6,u,5,u>: Cost 2 vsldoi12 <3,4,5,6>, RHS
+ 1583808614U, // <6,u,6,0>: Cost 2 vsldoi4 <6,6,6,6>, LHS
+ 1181161262U, // <6,u,6,1>: Cost 2 vmrghw <6,6,6,6>, LHS
+ 1638330874U, // <6,u,6,2>: Cost 2 vsldoi8 RHS, <6,2,7,3>
+ 1248264348U, // <6,u,6,3>: Cost 2 vmrglw <6,6,6,6>, LHS
+ 1583811894U, // <6,u,6,4>: Cost 2 vsldoi4 <6,6,6,6>, RHS
+ 1181161626U, // <6,u,6,5>: Cost 2 vmrghw <6,6,6,6>, RHS
+ 363253046U, // <6,u,6,6>: Cost 1 vspltisw2 RHS
+ 1638331214U, // <6,u,6,7>: Cost 2 vsldoi8 RHS, <6,7,0,1>
+ 363253046U, // <6,u,6,u>: Cost 1 vspltisw2 RHS
+ 1560076390U, // <6,u,7,0>: Cost 2 vsldoi4 <2,6,u,7>, LHS
+ 1235664969U, // <6,u,7,1>: Cost 2 vmrglw RHS, <0,0,u,1>
+ 1560078311U, // <6,u,7,2>: Cost 2 vsldoi4 <2,6,u,7>, <2,6,u,7>
+ 161923228U, // <6,u,7,3>: Cost 1 vmrglw RHS, LHS
+ 1560079670U, // <6,u,7,4>: Cost 2 vsldoi4 <2,6,u,7>, RHS
+ 1235665297U, // <6,u,7,5>: Cost 2 vmrglw RHS, <0,4,u,5>
+ 1235667485U, // <6,u,7,6>: Cost 2 vmrglw RHS, <3,4,u,6>
+ 161926472U, // <6,u,7,7>: Cost 1 vmrglw RHS, RHS
+ 161923233U, // <6,u,7,u>: Cost 1 vmrglw RHS, LHS
+ 1560084582U, // <6,u,u,0>: Cost 2 vsldoi4 <2,6,u,u>, LHS
+ 564590382U, // <6,u,u,1>: Cost 1 vsldoi8 RHS, LHS
+ 1560086504U, // <6,u,u,2>: Cost 2 vsldoi4 <2,6,u,u>, <2,6,u,u>
+ 161931420U, // <6,u,u,3>: Cost 1 vmrglw RHS, LHS
+ 1560087862U, // <6,u,u,4>: Cost 2 vsldoi4 <2,6,u,u>, RHS
+ 564590746U, // <6,u,u,5>: Cost 1 vsldoi8 RHS, RHS
+ 363253046U, // <6,u,u,6>: Cost 1 vspltisw2 RHS
+ 161934664U, // <6,u,u,7>: Cost 1 vmrglw RHS, RHS
+ 161931425U, // <6,u,u,u>: Cost 1 vmrglw RHS, LHS
+ 1705426944U, // <7,0,0,0>: Cost 2 vsldoi12 RHS, <0,0,0,0>
+ 1705426954U, // <7,0,0,1>: Cost 2 vsldoi12 RHS, <0,0,1,1>
+ 3713550266U, // <7,0,0,2>: Cost 4 vsldoi4 <3,7,0,0>, <2,6,3,7>
+ 2316063892U, // <7,0,0,3>: Cost 3 vmrglw <5,6,7,0>, <7,2,0,3>
+ 2779168805U, // <7,0,0,4>: Cost 3 vsldoi12 RHS, <0,0,4,1>
+ 2663698530U, // <7,0,0,5>: Cost 3 vsldoi4 <7,7,0,0>, <5,6,7,0>
+ 2657727309U, // <7,0,0,6>: Cost 3 vsldoi4 <6,7,0,0>, <6,7,0,0>
+ 2316064220U, // <7,0,0,7>: Cost 3 vmrglw <5,6,7,0>, <7,6,0,7>
+ 1705427017U, // <7,0,0,u>: Cost 2 vsldoi12 RHS, <0,0,u,1>
+ 1583988838U, // <7,0,1,0>: Cost 2 vsldoi4 <6,7,0,1>, LHS
+ 2779168859U, // <7,0,1,1>: Cost 3 vsldoi12 RHS, <0,1,1,1>
+ 631685222U, // <7,0,1,2>: Cost 1 vsldoi12 RHS, LHS
+ 2639817411U, // <7,0,1,3>: Cost 3 vsldoi4 <3,7,0,1>, <3,7,0,1>
+ 1583992118U, // <7,0,1,4>: Cost 2 vsldoi4 <6,7,0,1>, RHS
+ 2657734660U, // <7,0,1,5>: Cost 3 vsldoi4 <6,7,0,1>, <5,5,5,5>
+ 1583993678U, // <7,0,1,6>: Cost 2 vsldoi4 <6,7,0,1>, <6,7,0,1>
+ 2657735672U, // <7,0,1,7>: Cost 3 vsldoi4 <6,7,0,1>, <7,0,1,0>
+ 631685276U, // <7,0,1,u>: Cost 1 vsldoi12 RHS, LHS
+ 2779168933U, // <7,0,2,0>: Cost 3 vsldoi12 RHS, <0,2,0,3>
+ 2767667377U, // <7,0,2,1>: Cost 3 vsldoi12 <2,6,3,7>, <0,2,1,6>
+ 2718713448U, // <7,0,2,2>: Cost 3 vsldoi8 <5,6,7,0>, <2,2,2,2>
+ 2718713510U, // <7,0,2,3>: Cost 3 vsldoi8 <5,6,7,0>, <2,3,0,1>
+ 3841409228U, // <7,0,2,4>: Cost 4 vsldoi12 <2,6,3,7>, <0,2,4,6>
+ 3852910802U, // <7,0,2,5>: Cost 4 vsldoi12 RHS, <0,2,5,3>
+ 2718713786U, // <7,0,2,6>: Cost 3 vsldoi8 <5,6,7,0>, <2,6,3,7>
+ 3847160036U, // <7,0,2,7>: Cost 4 vsldoi12 <3,6,0,7>, <0,2,7,3>
+ 2767667440U, // <7,0,2,u>: Cost 3 vsldoi12 <2,6,3,7>, <0,2,u,6>
+ 2718714006U, // <7,0,3,0>: Cost 3 vsldoi8 <5,6,7,0>, <3,0,1,2>
+ 2779169020U, // <7,0,3,1>: Cost 3 vsldoi12 RHS, <0,3,1,0>
+ 3852910853U, // <7,0,3,2>: Cost 4 vsldoi12 RHS, <0,3,2,0>
+ 2718714268U, // <7,0,3,3>: Cost 3 vsldoi8 <5,6,7,0>, <3,3,3,3>
+ 2718714370U, // <7,0,3,4>: Cost 3 vsldoi8 <5,6,7,0>, <3,4,5,6>
+ 2718714461U, // <7,0,3,5>: Cost 3 vsldoi8 <5,6,7,0>, <3,5,6,7>
+ 2706770608U, // <7,0,3,6>: Cost 3 vsldoi8 <3,6,7,0>, <3,6,7,0>
+ 3847160114U, // <7,0,3,7>: Cost 4 vsldoi12 <3,6,0,7>, <0,3,7,0>
+ 2779169083U, // <7,0,3,u>: Cost 3 vsldoi12 RHS, <0,3,u,0>
+ 2718714770U, // <7,0,4,0>: Cost 3 vsldoi8 <5,6,7,0>, <4,0,5,1>
+ 1705427282U, // <7,0,4,1>: Cost 2 vsldoi12 RHS, <0,4,1,5>
+ 3713583034U, // <7,0,4,2>: Cost 4 vsldoi4 <3,7,0,4>, <2,6,3,7>
+ 3713583814U, // <7,0,4,3>: Cost 4 vsldoi4 <3,7,0,4>, <3,7,0,4>
+ 2779169133U, // <7,0,4,4>: Cost 3 vsldoi12 RHS, <0,4,4,5>
+ 1644973366U, // <7,0,4,5>: Cost 2 vsldoi8 <5,6,7,0>, RHS
+ 2657760081U, // <7,0,4,6>: Cost 3 vsldoi4 <6,7,0,4>, <6,7,0,4>
+ 2259468868U, // <7,0,4,7>: Cost 3 vmrghw <7,4,5,6>, <0,7,1,4>
+ 1705427345U, // <7,0,4,u>: Cost 2 vsldoi12 RHS, <0,4,u,5>
+ 2718715508U, // <7,0,5,0>: Cost 3 vsldoi8 <5,6,7,0>, <5,0,6,1>
+ 2260123750U, // <7,0,5,1>: Cost 3 vmrghw <7,5,5,5>, LHS
+ 3792457451U, // <7,0,5,2>: Cost 4 vsldoi8 <5,6,7,0>, <5,2,1,3>
+ 3852911024U, // <7,0,5,3>: Cost 4 vsldoi12 RHS, <0,5,3,0>
+ 2718715836U, // <7,0,5,4>: Cost 3 vsldoi8 <5,6,7,0>, <5,4,6,5>
+ 2718715908U, // <7,0,5,5>: Cost 3 vsldoi8 <5,6,7,0>, <5,5,5,5>
+ 1644974178U, // <7,0,5,6>: Cost 2 vsldoi8 <5,6,7,0>, <5,6,7,0>
+ 3792457853U, // <7,0,5,7>: Cost 4 vsldoi8 <5,6,7,0>, <5,7,1,0>
+ 1646301444U, // <7,0,5,u>: Cost 2 vsldoi8 <5,u,7,0>, <5,u,7,0>
+ 2720706901U, // <7,0,6,0>: Cost 3 vsldoi8 <6,0,7,0>, <6,0,7,0>
+ 2779169270U, // <7,0,6,1>: Cost 3 vsldoi12 RHS, <0,6,1,7>
+ 2718716410U, // <7,0,6,2>: Cost 3 vsldoi8 <5,6,7,0>, <6,2,7,3>
+ 2722697800U, // <7,0,6,3>: Cost 3 vsldoi8 <6,3,7,0>, <6,3,7,0>
+ 3852911121U, // <7,0,6,4>: Cost 4 vsldoi12 RHS, <0,6,4,7>
+ 3852911130U, // <7,0,6,5>: Cost 4 vsldoi12 RHS, <0,6,5,7>
+ 2718716728U, // <7,0,6,6>: Cost 3 vsldoi8 <5,6,7,0>, <6,6,6,6>
+ 2718716750U, // <7,0,6,7>: Cost 3 vsldoi8 <5,6,7,0>, <6,7,0,1>
+ 2779169333U, // <7,0,6,u>: Cost 3 vsldoi12 RHS, <0,6,u,7>
+ 2718716922U, // <7,0,7,0>: Cost 3 vsldoi8 <5,6,7,0>, <7,0,1,2>
+ 1187872870U, // <7,0,7,1>: Cost 2 vmrghw <7,7,7,7>, LHS
+ 2718717076U, // <7,0,7,2>: Cost 3 vsldoi8 <5,6,7,0>, <7,2,0,3>
+ 3847160408U, // <7,0,7,3>: Cost 4 vsldoi12 <3,6,0,7>, <0,7,3,6>
+ 2718717286U, // <7,0,7,4>: Cost 3 vsldoi8 <5,6,7,0>, <7,4,5,6>
+ 2718717377U, // <7,0,7,5>: Cost 3 vsldoi8 <5,6,7,0>, <7,5,6,7>
+ 2718717404U, // <7,0,7,6>: Cost 3 vsldoi8 <5,6,7,0>, <7,6,0,7>
+ 2718717478U, // <7,0,7,7>: Cost 3 vsldoi8 <5,6,7,0>, <7,7,0,0>
+ 1187873437U, // <7,0,7,u>: Cost 2 vmrghw <7,7,7,7>, LHS
+ 1584046182U, // <7,0,u,0>: Cost 2 vsldoi4 <6,7,0,u>, LHS
+ 1705427602U, // <7,0,u,1>: Cost 2 vsldoi12 RHS, <0,u,1,1>
+ 631685789U, // <7,0,u,2>: Cost 1 vsldoi12 RHS, LHS
+ 2639874762U, // <7,0,u,3>: Cost 3 vsldoi4 <3,7,0,u>, <3,7,0,u>
+ 1584049462U, // <7,0,u,4>: Cost 2 vsldoi4 <6,7,0,u>, RHS
+ 1644976282U, // <7,0,u,5>: Cost 2 vsldoi8 <5,6,7,0>, RHS
+ 1584051029U, // <7,0,u,6>: Cost 2 vsldoi4 <6,7,0,u>, <6,7,0,u>
+ 2718718208U, // <7,0,u,7>: Cost 3 vsldoi8 <5,6,7,0>, <u,7,0,1>
+ 631685843U, // <7,0,u,u>: Cost 1 vsldoi12 RHS, LHS
+ 2721374218U, // <7,1,0,0>: Cost 3 vsldoi8 <6,1,7,1>, <0,0,1,1>
+ 2779169507U, // <7,1,0,1>: Cost 3 vsldoi12 RHS, <1,0,1,1>
+ 2779169516U, // <7,1,0,2>: Cost 3 vsldoi12 RHS, <1,0,2,1>
+ 3852911348U, // <7,1,0,3>: Cost 4 vsldoi12 RHS, <1,0,3,0>
+ 2669743414U, // <7,1,0,4>: Cost 3 vsldoi4 <u,7,1,0>, RHS
+ 2316058962U, // <7,1,0,5>: Cost 3 vmrglw <5,6,7,0>, <0,4,1,5>
+ 2316059044U, // <7,1,0,6>: Cost 3 vmrglw <5,6,7,0>, <0,5,1,6>
+ 2669745146U, // <7,1,0,7>: Cost 3 vsldoi4 <u,7,1,0>, <7,0,1,2>
+ 2779169570U, // <7,1,0,u>: Cost 3 vsldoi12 RHS, <1,0,u,1>
+ 2779169579U, // <7,1,1,0>: Cost 3 vsldoi12 RHS, <1,1,0,1>
+ 1705427764U, // <7,1,1,1>: Cost 2 vsldoi12 RHS, <1,1,1,1>
+ 2779169598U, // <7,1,1,2>: Cost 3 vsldoi12 RHS, <1,1,2,2>
+ 3713632972U, // <7,1,1,3>: Cost 4 vsldoi4 <3,7,1,1>, <3,7,1,1>
+ 2779169619U, // <7,1,1,4>: Cost 3 vsldoi12 RHS, <1,1,4,5>
+ 2779169628U, // <7,1,1,5>: Cost 3 vsldoi12 RHS, <1,1,5,5>
+ 2657809239U, // <7,1,1,6>: Cost 3 vsldoi4 <6,7,1,1>, <6,7,1,1>
+ 3835290474U, // <7,1,1,7>: Cost 4 vsldoi12 <1,6,1,7>, <1,1,7,1>
+ 1705427764U, // <7,1,1,u>: Cost 2 vsldoi12 RHS, <1,1,1,1>
+ 2779169660U, // <7,1,2,0>: Cost 3 vsldoi12 RHS, <1,2,0,1>
+ 2779169671U, // <7,1,2,1>: Cost 3 vsldoi12 RHS, <1,2,1,3>
+ 2779169680U, // <7,1,2,2>: Cost 3 vsldoi12 RHS, <1,2,2,3>
+ 1705427862U, // <7,1,2,3>: Cost 2 vsldoi12 RHS, <1,2,3,0>
+ 2779169700U, // <7,1,2,4>: Cost 3 vsldoi12 RHS, <1,2,4,5>
+ 2779169707U, // <7,1,2,5>: Cost 3 vsldoi12 RHS, <1,2,5,3>
+ 2657817432U, // <7,1,2,6>: Cost 3 vsldoi4 <6,7,1,2>, <6,7,1,2>
+ 2803057594U, // <7,1,2,7>: Cost 3 vsldoi12 RHS, <1,2,7,0>
+ 1705427907U, // <7,1,2,u>: Cost 2 vsldoi12 RHS, <1,2,u,0>
+ 3776538827U, // <7,1,3,0>: Cost 4 vsldoi8 <3,0,7,1>, <3,0,7,1>
+ 2319400970U, // <7,1,3,1>: Cost 3 vmrglw <6,2,7,3>, <0,0,1,1>
+ 2316085398U, // <7,1,3,2>: Cost 3 vmrglw <5,6,7,3>, <3,0,1,2>
+ 3852911591U, // <7,1,3,3>: Cost 4 vsldoi12 RHS, <1,3,3,0>
+ 3852911600U, // <7,1,3,4>: Cost 4 vsldoi12 RHS, <1,3,4,0>
+ 2319401298U, // <7,1,3,5>: Cost 3 vmrglw <6,2,7,3>, <0,4,1,5>
+ 3833668617U, // <7,1,3,6>: Cost 4 vsldoi12 <1,3,6,7>, <1,3,6,7>
+ 3367265487U, // <7,1,3,7>: Cost 4 vmrglw <1,u,7,3>, <1,6,1,7>
+ 2319400977U, // <7,1,3,u>: Cost 3 vmrglw <6,2,7,3>, <0,0,1,u>
+ 2724031378U, // <7,1,4,0>: Cost 3 vsldoi8 <6,5,7,1>, <4,0,5,1>
+ 2779169835U, // <7,1,4,1>: Cost 3 vsldoi12 RHS, <1,4,1,5>
+ 2779169844U, // <7,1,4,2>: Cost 3 vsldoi12 RHS, <1,4,2,5>
+ 3852911672U, // <7,1,4,3>: Cost 4 vsldoi12 RHS, <1,4,3,0>
+ 2669776182U, // <7,1,4,4>: Cost 3 vsldoi4 <u,7,1,4>, RHS
+ 2779169872U, // <7,1,4,5>: Cost 3 vsldoi12 RHS, <1,4,5,6>
+ 3835290712U, // <7,1,4,6>: Cost 4 vsldoi12 <1,6,1,7>, <1,4,6,5>
+ 2669778278U, // <7,1,4,7>: Cost 3 vsldoi4 <u,7,1,4>, <7,4,5,6>
+ 2779169898U, // <7,1,4,u>: Cost 3 vsldoi12 RHS, <1,4,u,5>
+ 2779169903U, // <7,1,5,0>: Cost 3 vsldoi12 RHS, <1,5,0,1>
+ 3835585661U, // <7,1,5,1>: Cost 4 vsldoi12 <1,6,5,7>, <1,5,1,6>
+ 3841410182U, // <7,1,5,2>: Cost 4 vsldoi12 <2,6,3,7>, <1,5,2,6>
+ 3852911753U, // <7,1,5,3>: Cost 4 vsldoi12 RHS, <1,5,3,0>
+ 2779169943U, // <7,1,5,4>: Cost 3 vsldoi12 RHS, <1,5,4,5>
+ 2318754130U, // <7,1,5,5>: Cost 3 vmrglw <6,1,7,5>, <0,4,1,5>
+ 2718724195U, // <7,1,5,6>: Cost 3 vsldoi8 <5,6,7,1>, <5,6,7,1>
+ 3859178670U, // <7,1,5,7>: Cost 4 vsldoi12 <5,6,1,7>, <1,5,7,1>
+ 2779169975U, // <7,1,5,u>: Cost 3 vsldoi12 RHS, <1,5,u,1>
+ 2720715094U, // <7,1,6,0>: Cost 3 vsldoi8 <6,0,7,1>, <6,0,7,1>
+ 2761549007U, // <7,1,6,1>: Cost 3 vsldoi12 <1,6,1,7>, <1,6,1,7>
+ 2779170008U, // <7,1,6,2>: Cost 3 vsldoi12 RHS, <1,6,2,7>
+ 3835438305U, // <7,1,6,3>: Cost 4 vsldoi12 <1,6,3,7>, <1,6,3,7>
+ 3835512042U, // <7,1,6,4>: Cost 4 vsldoi12 <1,6,4,7>, <1,6,4,7>
+ 2761843955U, // <7,1,6,5>: Cost 3 vsldoi12 <1,6,5,7>, <1,6,5,7>
+ 3835659516U, // <7,1,6,6>: Cost 4 vsldoi12 <1,6,6,7>, <1,6,6,7>
+ 2803057918U, // <7,1,6,7>: Cost 3 vsldoi12 RHS, <1,6,7,0>
+ 2762065166U, // <7,1,6,u>: Cost 3 vsldoi12 <1,6,u,7>, <1,6,u,7>
+ 2669797478U, // <7,1,7,0>: Cost 3 vsldoi4 <u,7,1,7>, LHS
+ 2322087946U, // <7,1,7,1>: Cost 3 vmrglw <6,6,7,7>, <0,0,1,1>
+ 2317448186U, // <7,1,7,2>: Cost 3 vmrglw <5,u,7,7>, <7,0,1,2>
+ 3395829934U, // <7,1,7,3>: Cost 4 vmrglw <6,6,7,7>, <0,2,1,3>
+ 2669800758U, // <7,1,7,4>: Cost 3 vsldoi4 <u,7,1,7>, RHS
+ 2322088274U, // <7,1,7,5>: Cost 3 vmrglw <6,6,7,7>, <0,4,1,5>
+ 3375923377U, // <7,1,7,6>: Cost 4 vmrglw <3,3,7,7>, <0,2,1,6>
+ 2731996780U, // <7,1,7,7>: Cost 3 vsldoi8 <7,u,7,1>, <7,7,7,7>
+ 2322087953U, // <7,1,7,u>: Cost 3 vmrglw <6,6,7,7>, <0,0,1,u>
+ 2779170146U, // <7,1,u,0>: Cost 3 vsldoi12 RHS, <1,u,0,1>
+ 1705427764U, // <7,1,u,1>: Cost 2 vsldoi12 RHS, <1,1,1,1>
+ 2779170164U, // <7,1,u,2>: Cost 3 vsldoi12 RHS, <1,u,2,1>
+ 1705428348U, // <7,1,u,3>: Cost 2 vsldoi12 RHS, <1,u,3,0>
+ 2779170186U, // <7,1,u,4>: Cost 3 vsldoi12 RHS, <1,u,4,5>
+ 2763171221U, // <7,1,u,5>: Cost 3 vsldoi12 <1,u,5,7>, <1,u,5,7>
+ 2657866590U, // <7,1,u,6>: Cost 3 vsldoi4 <6,7,1,u>, <6,7,1,u>
+ 2803058080U, // <7,1,u,7>: Cost 3 vsldoi12 RHS, <1,u,7,0>
+ 1705428393U, // <7,1,u,u>: Cost 2 vsldoi12 RHS, <1,u,u,0>
+ 3713695846U, // <7,2,0,0>: Cost 4 vsldoi4 <3,7,2,0>, LHS
+ 2779170237U, // <7,2,0,1>: Cost 3 vsldoi12 RHS, <2,0,1,2>
+ 2779170245U, // <7,2,0,2>: Cost 3 vsldoi12 RHS, <2,0,2,1>
+ 1242316902U, // <7,2,0,3>: Cost 2 vmrglw <5,6,7,0>, LHS
+ 3713699126U, // <7,2,0,4>: Cost 4 vsldoi4 <3,7,2,0>, RHS
+ 3852912096U, // <7,2,0,5>: Cost 4 vsldoi12 RHS, <2,0,5,1>
+ 2767668713U, // <7,2,0,6>: Cost 3 vsldoi12 <2,6,3,7>, <2,0,6,1>
+ 2256488426U, // <7,2,0,7>: Cost 3 vmrghw <7,0,1,2>, <2,7,0,1>
+ 1242316907U, // <7,2,0,u>: Cost 2 vmrglw <5,6,7,0>, LHS
+ 3852912132U, // <7,2,1,0>: Cost 4 vsldoi12 RHS, <2,1,0,1>
+ 3852912141U, // <7,2,1,1>: Cost 4 vsldoi12 RHS, <2,1,1,1>
+ 3852912149U, // <7,2,1,2>: Cost 4 vsldoi12 RHS, <2,1,2,0>
+ 2779170335U, // <7,2,1,3>: Cost 3 vsldoi12 RHS, <2,1,3,1>
+ 3852912172U, // <7,2,1,4>: Cost 4 vsldoi12 RHS, <2,1,4,5>
+ 3840747062U, // <7,2,1,5>: Cost 5 vsldoi12 <2,5,3,7>, <2,1,5,6>
+ 3841410617U, // <7,2,1,6>: Cost 4 vsldoi12 <2,6,3,7>, <2,1,6,0>
+ 3795125538U, // <7,2,1,7>: Cost 4 vsldoi8 <6,1,7,2>, <1,7,2,0>
+ 2779170380U, // <7,2,1,u>: Cost 3 vsldoi12 RHS, <2,1,u,1>
+ 2779170389U, // <7,2,2,0>: Cost 3 vsldoi12 RHS, <2,2,0,1>
+ 3852912222U, // <7,2,2,1>: Cost 4 vsldoi12 RHS, <2,2,1,1>
+ 1705428584U, // <7,2,2,2>: Cost 2 vsldoi12 RHS, <2,2,2,2>
+ 1705428594U, // <7,2,2,3>: Cost 2 vsldoi12 RHS, <2,2,3,3>
+ 2779170429U, // <7,2,2,4>: Cost 3 vsldoi12 RHS, <2,2,4,5>
+ 3852912259U, // <7,2,2,5>: Cost 4 vsldoi12 RHS, <2,2,5,2>
+ 2767668880U, // <7,2,2,6>: Cost 3 vsldoi12 <2,6,3,7>, <2,2,6,6>
+ 3841336981U, // <7,2,2,7>: Cost 4 vsldoi12 <2,6,2,7>, <2,2,7,2>
+ 1705428639U, // <7,2,2,u>: Cost 2 vsldoi12 RHS, <2,2,u,3>
+ 1705428646U, // <7,2,3,0>: Cost 2 vsldoi12 RHS, <2,3,0,1>
+ 2779170479U, // <7,2,3,1>: Cost 3 vsldoi12 RHS, <2,3,1,1>
+ 2767668925U, // <7,2,3,2>: Cost 3 vsldoi12 <2,6,3,7>, <2,3,2,6>
+ 1245659238U, // <7,2,3,3>: Cost 2 vmrglw <6,2,7,3>, LHS
+ 1705428686U, // <7,2,3,4>: Cost 2 vsldoi12 RHS, <2,3,4,5>
+ 2779170519U, // <7,2,3,5>: Cost 3 vsldoi12 RHS, <2,3,5,5>
+ 2657899362U, // <7,2,3,6>: Cost 3 vsldoi4 <6,7,2,3>, <6,7,2,3>
+ 2319406574U, // <7,2,3,7>: Cost 3 vmrglw <6,2,7,3>, <7,6,2,7>
+ 1705428718U, // <7,2,3,u>: Cost 2 vsldoi12 RHS, <2,3,u,1>
+ 3713728614U, // <7,2,4,0>: Cost 4 vsldoi4 <3,7,2,4>, LHS
+ 3852912388U, // <7,2,4,1>: Cost 4 vsldoi12 RHS, <2,4,1,5>
+ 2779170573U, // <7,2,4,2>: Cost 3 vsldoi12 RHS, <2,4,2,5>
+ 1242349670U, // <7,2,4,3>: Cost 2 vmrglw <5,6,7,4>, LHS
+ 3713731894U, // <7,2,4,4>: Cost 4 vsldoi4 <3,7,2,4>, RHS
+ 2779170601U, // <7,2,4,5>: Cost 3 vsldoi12 RHS, <2,4,5,6>
+ 2767669041U, // <7,2,4,6>: Cost 3 vsldoi12 <2,6,3,7>, <2,4,6,5>
+ 3389834456U, // <7,2,4,7>: Cost 4 vmrglw <5,6,7,4>, <1,6,2,7>
+ 1242349675U, // <7,2,4,u>: Cost 2 vmrglw <5,6,7,4>, LHS
+ 3852912456U, // <7,2,5,0>: Cost 4 vsldoi12 RHS, <2,5,0,1>
+ 3852912466U, // <7,2,5,1>: Cost 4 vsldoi12 RHS, <2,5,1,2>
+ 3852912475U, // <7,2,5,2>: Cost 4 vsldoi12 RHS, <2,5,2,2>
+ 2779170664U, // <7,2,5,3>: Cost 3 vsldoi12 RHS, <2,5,3,6>
+ 3852912496U, // <7,2,5,4>: Cost 4 vsldoi12 RHS, <2,5,4,5>
+ 3792474116U, // <7,2,5,5>: Cost 4 vsldoi8 <5,6,7,2>, <5,5,5,5>
+ 2718732388U, // <7,2,5,6>: Cost 3 vsldoi8 <5,6,7,2>, <5,6,7,2>
+ 3841337228U, // <7,2,5,7>: Cost 5 vsldoi12 <2,6,2,7>, <2,5,7,6>
+ 2779170709U, // <7,2,5,u>: Cost 3 vsldoi12 RHS, <2,5,u,6>
+ 2640003174U, // <7,2,6,0>: Cost 3 vsldoi4 <3,7,2,6>, LHS
+ 2721386920U, // <7,2,6,1>: Cost 3 vsldoi8 <6,1,7,2>, <6,1,7,2>
+ 2767595441U, // <7,2,6,2>: Cost 3 vsldoi12 <2,6,2,7>, <2,6,2,7>
+ 1693927354U, // <7,2,6,3>: Cost 2 vsldoi12 <2,6,3,7>, <2,6,3,7>
+ 2640006454U, // <7,2,6,4>: Cost 3 vsldoi4 <3,7,2,6>, RHS
+ 3841558476U, // <7,2,6,5>: Cost 4 vsldoi12 <2,6,5,7>, <2,6,5,7>
+ 2657923941U, // <7,2,6,6>: Cost 3 vsldoi4 <6,7,2,6>, <6,7,2,6>
+ 3841337310U, // <7,2,6,7>: Cost 4 vsldoi12 <2,6,2,7>, <2,6,7,7>
+ 1694296039U, // <7,2,6,u>: Cost 2 vsldoi12 <2,6,u,7>, <2,6,u,7>
+ 2803058666U, // <7,2,7,0>: Cost 3 vsldoi12 RHS, <2,7,0,1>
+ 3852912632U, // <7,2,7,1>: Cost 4 vsldoi12 RHS, <2,7,1,6>
+ 2322089576U, // <7,2,7,2>: Cost 3 vmrglw <6,6,7,7>, <2,2,2,2>
+ 1248346214U, // <7,2,7,3>: Cost 2 vmrglw <6,6,7,7>, LHS
+ 3841337362U, // <7,2,7,4>: Cost 4 vsldoi12 <2,6,2,7>, <2,7,4,5>
+ 3395830836U, // <7,2,7,5>: Cost 4 vmrglw <6,6,7,7>, <1,4,2,5>
+ 2261616570U, // <7,2,7,6>: Cost 3 vmrghw <7,7,7,7>, <2,6,3,7>
+ 3371943857U, // <7,2,7,7>: Cost 4 vmrglw <2,6,7,7>, <2,6,2,7>
+ 1248346219U, // <7,2,7,u>: Cost 2 vmrglw <6,6,7,7>, LHS
+ 1705429051U, // <7,2,u,0>: Cost 2 vsldoi12 RHS, <2,u,0,1>
+ 2779170884U, // <7,2,u,1>: Cost 3 vsldoi12 RHS, <2,u,1,1>
+ 1705428584U, // <7,2,u,2>: Cost 2 vsldoi12 RHS, <2,2,2,2>
+ 1695254620U, // <7,2,u,3>: Cost 2 vsldoi12 <2,u,3,7>, <2,u,3,7>
+ 1705429091U, // <7,2,u,4>: Cost 2 vsldoi12 RHS, <2,u,4,5>
+ 2779170924U, // <7,2,u,5>: Cost 3 vsldoi12 RHS, <2,u,5,5>
+ 2767669361U, // <7,2,u,6>: Cost 3 vsldoi12 <2,6,3,7>, <2,u,6,1>
+ 2803058809U, // <7,2,u,7>: Cost 3 vsldoi12 RHS, <2,u,7,0>
+ 1695623305U, // <7,2,u,u>: Cost 2 vsldoi12 <2,u,u,7>, <2,u,u,7>
+ 2779170955U, // <7,3,0,0>: Cost 3 vsldoi12 RHS, <3,0,0,0>
+ 1705429142U, // <7,3,0,1>: Cost 2 vsldoi12 RHS, <3,0,1,2>
+ 2634057732U, // <7,3,0,2>: Cost 3 vsldoi4 <2,7,3,0>, <2,7,3,0>
+ 2779170983U, // <7,3,0,3>: Cost 3 vsldoi12 RHS, <3,0,3,1>
+ 2779170992U, // <7,3,0,4>: Cost 3 vsldoi12 RHS, <3,0,4,1>
+ 3852912829U, // <7,3,0,5>: Cost 4 vsldoi12 RHS, <3,0,5,5>
+ 2657948520U, // <7,3,0,6>: Cost 3 vsldoi4 <6,7,3,0>, <6,7,3,0>
+ 2316060602U, // <7,3,0,7>: Cost 3 vmrglw <5,6,7,0>, <2,6,3,7>
+ 1705429205U, // <7,3,0,u>: Cost 2 vsldoi12 RHS, <3,0,u,2>
+ 3852912860U, // <7,3,1,0>: Cost 4 vsldoi12 RHS, <3,1,0,0>
+ 2779171046U, // <7,3,1,1>: Cost 3 vsldoi12 RHS, <3,1,1,1>
+ 2779171057U, // <7,3,1,2>: Cost 3 vsldoi12 RHS, <3,1,2,3>
+ 3852912887U, // <7,3,1,3>: Cost 4 vsldoi12 RHS, <3,1,3,0>
+ 3852912896U, // <7,3,1,4>: Cost 4 vsldoi12 RHS, <3,1,4,0>
+ 3852912905U, // <7,3,1,5>: Cost 4 vsldoi12 RHS, <3,1,5,0>
+ 3835291923U, // <7,3,1,6>: Cost 4 vsldoi12 <1,6,1,7>, <3,1,6,1>
+ 3841411356U, // <7,3,1,7>: Cost 4 vsldoi12 <2,6,3,7>, <3,1,7,1>
+ 2779171111U, // <7,3,1,u>: Cost 3 vsldoi12 RHS, <3,1,u,3>
+ 2779171120U, // <7,3,2,0>: Cost 3 vsldoi12 RHS, <3,2,0,3>
+ 3852912952U, // <7,3,2,1>: Cost 4 vsldoi12 RHS, <3,2,1,2>
+ 2779171137U, // <7,3,2,2>: Cost 3 vsldoi12 RHS, <3,2,2,2>
+ 2779171144U, // <7,3,2,3>: Cost 3 vsldoi12 RHS, <3,2,3,0>
+ 2779171156U, // <7,3,2,4>: Cost 3 vsldoi12 RHS, <3,2,4,3>
+ 3852912989U, // <7,3,2,5>: Cost 4 vsldoi12 RHS, <3,2,5,3>
+ 2767669606U, // <7,3,2,6>: Cost 3 vsldoi12 <2,6,3,7>, <3,2,6,3>
+ 2767669615U, // <7,3,2,7>: Cost 3 vsldoi12 <2,6,3,7>, <3,2,7,3>
+ 2779171189U, // <7,3,2,u>: Cost 3 vsldoi12 RHS, <3,2,u,0>
+ 2779171198U, // <7,3,3,0>: Cost 3 vsldoi12 RHS, <3,3,0,0>
+ 3852913032U, // <7,3,3,1>: Cost 4 vsldoi12 RHS, <3,3,1,1>
+ 2704140655U, // <7,3,3,2>: Cost 3 vsldoi8 <3,2,7,3>, <3,2,7,3>
+ 1705429404U, // <7,3,3,3>: Cost 2 vsldoi12 RHS, <3,3,3,3>
+ 2779171238U, // <7,3,3,4>: Cost 3 vsldoi12 RHS, <3,3,4,4>
+ 3852913070U, // <7,3,3,5>: Cost 4 vsldoi12 RHS, <3,3,5,3>
+ 2657973099U, // <7,3,3,6>: Cost 3 vsldoi4 <6,7,3,3>, <6,7,3,3>
+ 2767669700U, // <7,3,3,7>: Cost 3 vsldoi12 <2,6,3,7>, <3,3,7,7>
+ 1705429404U, // <7,3,3,u>: Cost 2 vsldoi12 RHS, <3,3,3,3>
+ 2779171280U, // <7,3,4,0>: Cost 3 vsldoi12 RHS, <3,4,0,1>
+ 2779171290U, // <7,3,4,1>: Cost 3 vsldoi12 RHS, <3,4,1,2>
+ 2634090504U, // <7,3,4,2>: Cost 3 vsldoi4 <2,7,3,4>, <2,7,3,4>
+ 2779171311U, // <7,3,4,3>: Cost 3 vsldoi12 RHS, <3,4,3,5>
+ 2779171319U, // <7,3,4,4>: Cost 3 vsldoi12 RHS, <3,4,4,4>
+ 1705429506U, // <7,3,4,5>: Cost 2 vsldoi12 RHS, <3,4,5,6>
+ 2722057593U, // <7,3,4,6>: Cost 3 vsldoi8 <6,2,7,3>, <4,6,5,2>
+ 2316093370U, // <7,3,4,7>: Cost 3 vmrglw <5,6,7,4>, <2,6,3,7>
+ 1705429533U, // <7,3,4,u>: Cost 2 vsldoi12 RHS, <3,4,u,6>
+ 3852913185U, // <7,3,5,0>: Cost 4 vsldoi12 RHS, <3,5,0,1>
+ 3795799695U, // <7,3,5,1>: Cost 4 vsldoi8 <6,2,7,3>, <5,1,0,1>
+ 3852913203U, // <7,3,5,2>: Cost 4 vsldoi12 RHS, <3,5,2,1>
+ 3852913214U, // <7,3,5,3>: Cost 4 vsldoi12 RHS, <3,5,3,3>
+ 3852913225U, // <7,3,5,4>: Cost 4 vsldoi12 RHS, <3,5,4,5>
+ 2779171410U, // <7,3,5,5>: Cost 3 vsldoi12 RHS, <3,5,5,5>
+ 2718740581U, // <7,3,5,6>: Cost 3 vsldoi8 <5,6,7,3>, <5,6,7,3>
+ 3841411685U, // <7,3,5,7>: Cost 4 vsldoi12 <2,6,3,7>, <3,5,7,6>
+ 2720067847U, // <7,3,5,u>: Cost 3 vsldoi8 <5,u,7,3>, <5,u,7,3>
+ 2773420664U, // <7,3,6,0>: Cost 3 vsldoi12 <3,6,0,7>, <3,6,0,7>
+ 3847236225U, // <7,3,6,1>: Cost 4 vsldoi12 <3,6,1,7>, <3,6,1,7>
+ 1648316922U, // <7,3,6,2>: Cost 2 vsldoi8 <6,2,7,3>, <6,2,7,3>
+ 2773641875U, // <7,3,6,3>: Cost 3 vsldoi12 <3,6,3,7>, <3,6,3,7>
+ 2773715612U, // <7,3,6,4>: Cost 3 vsldoi12 <3,6,4,7>, <3,6,4,7>
+ 3847531173U, // <7,3,6,5>: Cost 4 vsldoi12 <3,6,5,7>, <3,6,5,7>
+ 2722059024U, // <7,3,6,6>: Cost 3 vsldoi8 <6,2,7,3>, <6,6,2,2>
+ 2767669943U, // <7,3,6,7>: Cost 3 vsldoi12 <2,6,3,7>, <3,6,7,7>
+ 1652298720U, // <7,3,6,u>: Cost 2 vsldoi8 <6,u,7,3>, <6,u,7,3>
+ 2767669955U, // <7,3,7,0>: Cost 3 vsldoi12 <2,6,3,7>, <3,7,0,1>
+ 3841411788U, // <7,3,7,1>: Cost 4 vsldoi12 <2,6,3,7>, <3,7,1,1>
+ 2767669978U, // <7,3,7,2>: Cost 3 vsldoi12 <2,6,3,7>, <3,7,2,6>
+ 2722059546U, // <7,3,7,3>: Cost 3 vsldoi8 <6,2,7,3>, <7,3,6,2>
+ 2767669995U, // <7,3,7,4>: Cost 3 vsldoi12 <2,6,3,7>, <3,7,4,5>
+ 3852913396U, // <7,3,7,5>: Cost 4 vsldoi12 RHS, <3,7,5,5>
+ 2722059758U, // <7,3,7,6>: Cost 3 vsldoi8 <6,2,7,3>, <7,6,2,7>
+ 2302183354U, // <7,3,7,7>: Cost 3 vmrglw <3,3,7,7>, <2,6,3,7>
+ 2767670027U, // <7,3,7,u>: Cost 3 vsldoi12 <2,6,3,7>, <3,7,u,1>
+ 2774747930U, // <7,3,u,0>: Cost 3 vsldoi12 <3,u,0,7>, <3,u,0,7>
+ 1705429790U, // <7,3,u,1>: Cost 2 vsldoi12 RHS, <3,u,1,2>
+ 1660262316U, // <7,3,u,2>: Cost 2 vsldoi8 <u,2,7,3>, <u,2,7,3>
+ 1705429404U, // <7,3,u,3>: Cost 2 vsldoi12 RHS, <3,3,3,3>
+ 2775042878U, // <7,3,u,4>: Cost 3 vsldoi12 <3,u,4,7>, <3,u,4,7>
+ 1705429830U, // <7,3,u,5>: Cost 2 vsldoi12 RHS, <3,u,5,6>
+ 2779171660U, // <7,3,u,6>: Cost 3 vsldoi12 RHS, <3,u,6,3>
+ 2767670101U, // <7,3,u,7>: Cost 3 vsldoi12 <2,6,3,7>, <3,u,7,3>
+ 1705429853U, // <7,3,u,u>: Cost 2 vsldoi12 RHS, <3,u,u,2>
+ 2718744576U, // <7,4,0,0>: Cost 3 vsldoi8 <5,6,7,4>, <0,0,0,0>
+ 1645002854U, // <7,4,0,1>: Cost 2 vsldoi8 <5,6,7,4>, LHS
+ 3852913527U, // <7,4,0,2>: Cost 4 vsldoi12 RHS, <4,0,2,1>
+ 3852913536U, // <7,4,0,3>: Cost 4 vsldoi12 RHS, <4,0,3,1>
+ 2316061904U, // <7,4,0,4>: Cost 3 vmrglw <5,6,7,0>, <4,4,4,4>
+ 1705429906U, // <7,4,0,5>: Cost 2 vsldoi12 RHS, <4,0,5,1>
+ 2658022257U, // <7,4,0,6>: Cost 3 vsldoi4 <6,7,4,0>, <6,7,4,0>
+ 2256489928U, // <7,4,0,7>: Cost 3 vmrghw <7,0,1,2>, <4,7,5,0>
+ 1707420589U, // <7,4,0,u>: Cost 2 vsldoi12 RHS, <4,0,u,1>
+ 3852913590U, // <7,4,1,0>: Cost 4 vsldoi12 RHS, <4,1,0,1>
+ 2718745396U, // <7,4,1,1>: Cost 3 vsldoi8 <5,6,7,4>, <1,1,1,1>
+ 2779171786U, // <7,4,1,2>: Cost 3 vsldoi12 RHS, <4,1,2,3>
+ 3852913616U, // <7,4,1,3>: Cost 4 vsldoi12 RHS, <4,1,3,0>
+ 3852913627U, // <7,4,1,4>: Cost 4 vsldoi12 RHS, <4,1,4,2>
+ 2779171810U, // <7,4,1,5>: Cost 3 vsldoi12 RHS, <4,1,5,0>
+ 3792487631U, // <7,4,1,6>: Cost 4 vsldoi8 <5,6,7,4>, <1,6,1,7>
+ 3394456220U, // <7,4,1,7>: Cost 4 vmrglw <6,4,7,1>, <3,6,4,7>
+ 2779171837U, // <7,4,1,u>: Cost 3 vsldoi12 RHS, <4,1,u,0>
+ 3852913673U, // <7,4,2,0>: Cost 4 vsldoi12 RHS, <4,2,0,3>
+ 3852913682U, // <7,4,2,1>: Cost 4 vsldoi12 RHS, <4,2,1,3>
+ 2718746216U, // <7,4,2,2>: Cost 3 vsldoi8 <5,6,7,4>, <2,2,2,2>
+ 2718746278U, // <7,4,2,3>: Cost 3 vsldoi8 <5,6,7,4>, <2,3,0,1>
+ 2779171885U, // <7,4,2,4>: Cost 3 vsldoi12 RHS, <4,2,4,3>
+ 2779171893U, // <7,4,2,5>: Cost 3 vsldoi12 RHS, <4,2,5,2>
+ 2718746554U, // <7,4,2,6>: Cost 3 vsldoi8 <5,6,7,4>, <2,6,3,7>
+ 3847457864U, // <7,4,2,7>: Cost 4 vsldoi12 <3,6,4,7>, <4,2,7,3>
+ 2779171921U, // <7,4,2,u>: Cost 3 vsldoi12 RHS, <4,2,u,3>
+ 2718746774U, // <7,4,3,0>: Cost 3 vsldoi8 <5,6,7,4>, <3,0,1,2>
+ 3852913762U, // <7,4,3,1>: Cost 4 vsldoi12 RHS, <4,3,1,2>
+ 3852913772U, // <7,4,3,2>: Cost 4 vsldoi12 RHS, <4,3,2,3>
+ 2718747036U, // <7,4,3,3>: Cost 3 vsldoi8 <5,6,7,4>, <3,3,3,3>
+ 2718747138U, // <7,4,3,4>: Cost 3 vsldoi8 <5,6,7,4>, <3,4,5,6>
+ 2779171972U, // <7,4,3,5>: Cost 3 vsldoi12 RHS, <4,3,5,0>
+ 2706803380U, // <7,4,3,6>: Cost 3 vsldoi8 <3,6,7,4>, <3,6,7,4>
+ 3847457946U, // <7,4,3,7>: Cost 4 vsldoi12 <3,6,4,7>, <4,3,7,4>
+ 2781162655U, // <7,4,3,u>: Cost 3 vsldoi12 RHS, <4,3,u,0>
+ 2718747538U, // <7,4,4,0>: Cost 3 vsldoi8 <5,6,7,4>, <4,0,5,1>
+ 3852913842U, // <7,4,4,1>: Cost 4 vsldoi12 RHS, <4,4,1,1>
+ 3852913852U, // <7,4,4,2>: Cost 4 vsldoi12 RHS, <4,4,2,2>
+ 2316096696U, // <7,4,4,3>: Cost 3 vmrglw <5,6,7,4>, <7,2,4,3>
+ 1705430224U, // <7,4,4,4>: Cost 2 vsldoi12 RHS, <4,4,4,4>
+ 1705430234U, // <7,4,4,5>: Cost 2 vsldoi12 RHS, <4,4,5,5>
+ 2658055029U, // <7,4,4,6>: Cost 3 vsldoi4 <6,7,4,4>, <6,7,4,4>
+ 2316097024U, // <7,4,4,7>: Cost 3 vmrglw <5,6,7,4>, <7,6,4,7>
+ 1707420917U, // <7,4,4,u>: Cost 2 vsldoi12 RHS, <4,4,u,5>
+ 1584316518U, // <7,4,5,0>: Cost 2 vsldoi4 <6,7,4,5>, LHS
+ 2658059060U, // <7,4,5,1>: Cost 3 vsldoi4 <6,7,4,5>, <1,1,1,1>
+ 2640144314U, // <7,4,5,2>: Cost 3 vsldoi4 <3,7,4,5>, <2,6,3,7>
+ 2640145131U, // <7,4,5,3>: Cost 3 vsldoi4 <3,7,4,5>, <3,7,4,5>
+ 1584319798U, // <7,4,5,4>: Cost 2 vsldoi4 <6,7,4,5>, RHS
+ 2779172134U, // <7,4,5,5>: Cost 3 vsldoi12 RHS, <4,5,5,0>
+ 631688502U, // <7,4,5,6>: Cost 1 vsldoi12 RHS, RHS
+ 2658063354U, // <7,4,5,7>: Cost 3 vsldoi4 <6,7,4,5>, <7,0,1,2>
+ 631688520U, // <7,4,5,u>: Cost 1 vsldoi12 RHS, RHS
+ 3852914001U, // <7,4,6,0>: Cost 4 vsldoi12 RHS, <4,6,0,7>
+ 3852914010U, // <7,4,6,1>: Cost 4 vsldoi12 RHS, <4,6,1,7>
+ 2718749178U, // <7,4,6,2>: Cost 3 vsldoi8 <5,6,7,4>, <6,2,7,3>
+ 2722730572U, // <7,4,6,3>: Cost 3 vsldoi8 <6,3,7,4>, <6,3,7,4>
+ 2723394205U, // <7,4,6,4>: Cost 3 vsldoi8 <6,4,7,4>, <6,4,7,4>
+ 2779172221U, // <7,4,6,5>: Cost 3 vsldoi12 RHS, <4,6,5,6>
+ 2718749496U, // <7,4,6,6>: Cost 3 vsldoi8 <5,6,7,4>, <6,6,6,6>
+ 2718749518U, // <7,4,6,7>: Cost 3 vsldoi8 <5,6,7,4>, <6,7,0,1>
+ 2779172249U, // <7,4,6,u>: Cost 3 vsldoi12 RHS, <4,6,u,7>
+ 2718749690U, // <7,4,7,0>: Cost 3 vsldoi8 <5,6,7,4>, <7,0,1,2>
+ 3847458214U, // <7,4,7,1>: Cost 4 vsldoi12 <3,6,4,7>, <4,7,1,2>
+ 2718749880U, // <7,4,7,2>: Cost 3 vsldoi8 <5,6,7,4>, <7,2,4,3>
+ 3847458236U, // <7,4,7,3>: Cost 4 vsldoi12 <3,6,4,7>, <4,7,3,6>
+ 2718750004U, // <7,4,7,4>: Cost 3 vsldoi8 <5,6,7,4>, <7,4,0,1>
+ 1187876150U, // <7,4,7,5>: Cost 2 vmrghw <7,7,7,7>, RHS
+ 2718750208U, // <7,4,7,6>: Cost 3 vsldoi8 <5,6,7,4>, <7,6,4,7>
+ 2718750286U, // <7,4,7,7>: Cost 3 vsldoi8 <5,6,7,4>, <7,7,4,4>
+ 1187876393U, // <7,4,7,u>: Cost 2 vmrghw <7,7,7,7>, RHS
+ 1584341094U, // <7,4,u,0>: Cost 2 vsldoi4 <6,7,4,u>, LHS
+ 1645008686U, // <7,4,u,1>: Cost 2 vsldoi8 <5,6,7,4>, LHS
+ 2640168890U, // <7,4,u,2>: Cost 3 vsldoi4 <3,7,4,u>, <2,6,3,7>
+ 2640169710U, // <7,4,u,3>: Cost 3 vsldoi4 <3,7,4,u>, <3,7,4,u>
+ 1584344374U, // <7,4,u,4>: Cost 2 vsldoi4 <6,7,4,u>, RHS
+ 1705430554U, // <7,4,u,5>: Cost 2 vsldoi12 RHS, <4,u,5,1>
+ 631688745U, // <7,4,u,6>: Cost 1 vsldoi12 RHS, RHS
+ 2718750976U, // <7,4,u,7>: Cost 3 vsldoi8 <5,6,7,4>, <u,7,0,1>
+ 631688763U, // <7,4,u,u>: Cost 1 vsldoi12 RHS, RHS
+ 2646147174U, // <7,5,0,0>: Cost 3 vsldoi4 <4,7,5,0>, LHS
+ 2779172424U, // <7,5,0,1>: Cost 3 vsldoi12 RHS, <5,0,1,2>
+ 3852914258U, // <7,5,0,2>: Cost 4 vsldoi12 RHS, <5,0,2,3>
+ 3852914268U, // <7,5,0,3>: Cost 4 vsldoi12 RHS, <5,0,3,4>
+ 2779172450U, // <7,5,0,4>: Cost 3 vsldoi12 RHS, <5,0,4,1>
+ 2316061914U, // <7,5,0,5>: Cost 3 vmrglw <5,6,7,0>, <4,4,5,5>
+ 2316061186U, // <7,5,0,6>: Cost 3 vmrglw <5,6,7,0>, <3,4,5,6>
+ 2646152186U, // <7,5,0,7>: Cost 3 vsldoi4 <4,7,5,0>, <7,0,1,2>
+ 2779172486U, // <7,5,0,u>: Cost 3 vsldoi12 RHS, <5,0,u,1>
+ 2781163151U, // <7,5,1,0>: Cost 3 vsldoi12 RHS, <5,1,0,1>
+ 2321378194U, // <7,5,1,1>: Cost 3 vmrglw <6,5,7,1>, <4,0,5,1>
+ 3852914339U, // <7,5,1,2>: Cost 4 vsldoi12 RHS, <5,1,2,3>
+ 3852914350U, // <7,5,1,3>: Cost 4 vsldoi12 RHS, <5,1,3,5>
+ 2781163191U, // <7,5,1,4>: Cost 3 vsldoi12 RHS, <5,1,4,5>
+ 3852914363U, // <7,5,1,5>: Cost 4 vsldoi12 RHS, <5,1,5,0>
+ 3835588297U, // <7,5,1,6>: Cost 4 vsldoi12 <1,6,5,7>, <5,1,6,5>
+ 3835588306U, // <7,5,1,7>: Cost 4 vsldoi12 <1,6,5,7>, <5,1,7,5>
+ 2781163223U, // <7,5,1,u>: Cost 3 vsldoi12 RHS, <5,1,u,1>
+ 3852914400U, // <7,5,2,0>: Cost 4 vsldoi12 RHS, <5,2,0,1>
+ 2781163243U, // <7,5,2,1>: Cost 3 vsldoi12 RHS, <5,2,1,3>
+ 3852914419U, // <7,5,2,2>: Cost 4 vsldoi12 RHS, <5,2,2,2>
+ 2779172606U, // <7,5,2,3>: Cost 3 vsldoi12 RHS, <5,2,3,4>
+ 3780552497U, // <7,5,2,4>: Cost 4 vsldoi8 <3,6,7,5>, <2,4,6,5>
+ 2781163279U, // <7,5,2,5>: Cost 3 vsldoi12 RHS, <5,2,5,3>
+ 2779172632U, // <7,5,2,6>: Cost 3 vsldoi12 RHS, <5,2,6,3>
+ 3835588385U, // <7,5,2,7>: Cost 4 vsldoi12 <1,6,5,7>, <5,2,7,3>
+ 2779172650U, // <7,5,2,u>: Cost 3 vsldoi12 RHS, <5,2,u,3>
+ 3852914481U, // <7,5,3,0>: Cost 4 vsldoi12 RHS, <5,3,0,1>
+ 2319403922U, // <7,5,3,1>: Cost 3 vmrglw <6,2,7,3>, <4,0,5,1>
+ 2319404409U, // <7,5,3,2>: Cost 3 vmrglw <6,2,7,3>, <4,6,5,2>
+ 3852914510U, // <7,5,3,3>: Cost 4 vsldoi12 RHS, <5,3,3,3>
+ 3779226131U, // <7,5,3,4>: Cost 4 vsldoi8 <3,4,7,5>, <3,4,7,5>
+ 2319404250U, // <7,5,3,5>: Cost 3 vmrglw <6,2,7,3>, <4,4,5,5>
+ 2319403522U, // <7,5,3,6>: Cost 3 vmrglw <6,2,7,3>, <3,4,5,6>
+ 3852914547U, // <7,5,3,7>: Cost 4 vsldoi12 RHS, <5,3,7,4>
+ 2319403524U, // <7,5,3,u>: Cost 3 vmrglw <6,2,7,3>, <3,4,5,u>
+ 2646179942U, // <7,5,4,0>: Cost 3 vsldoi4 <4,7,5,4>, LHS
+ 2316094354U, // <7,5,4,1>: Cost 3 vmrglw <5,6,7,4>, <4,0,5,1>
+ 3852914582U, // <7,5,4,2>: Cost 4 vsldoi12 RHS, <5,4,2,3>
+ 3852914592U, // <7,5,4,3>: Cost 4 vsldoi12 RHS, <5,4,3,4>
+ 2646183372U, // <7,5,4,4>: Cost 3 vsldoi4 <4,7,5,4>, <4,7,5,4>
+ 2779172788U, // <7,5,4,5>: Cost 3 vsldoi12 RHS, <5,4,5,6>
+ 2316093954U, // <7,5,4,6>: Cost 3 vmrglw <5,6,7,4>, <3,4,5,6>
+ 2646185318U, // <7,5,4,7>: Cost 3 vsldoi4 <4,7,5,4>, <7,4,5,6>
+ 2779172815U, // <7,5,4,u>: Cost 3 vsldoi12 RHS, <5,4,u,6>
+ 2781163475U, // <7,5,5,0>: Cost 3 vsldoi12 RHS, <5,5,0,1>
+ 2781163484U, // <7,5,5,1>: Cost 3 vsldoi12 RHS, <5,5,1,1>
+ 3852914662U, // <7,5,5,2>: Cost 4 vsldoi12 RHS, <5,5,2,2>
+ 3852914672U, // <7,5,5,3>: Cost 4 vsldoi12 RHS, <5,5,3,3>
+ 2781163515U, // <7,5,5,4>: Cost 3 vsldoi12 RHS, <5,5,4,5>
+ 1705431044U, // <7,5,5,5>: Cost 2 vsldoi12 RHS, <5,5,5,5>
+ 2779172878U, // <7,5,5,6>: Cost 3 vsldoi12 RHS, <5,5,6,6>
+ 3835588632U, // <7,5,5,7>: Cost 4 vsldoi12 <1,6,5,7>, <5,5,7,7>
+ 1705431044U, // <7,5,5,u>: Cost 2 vsldoi12 RHS, <5,5,5,5>
+ 2779172900U, // <7,5,6,0>: Cost 3 vsldoi12 RHS, <5,6,0,1>
+ 2781163571U, // <7,5,6,1>: Cost 3 vsldoi12 RHS, <5,6,1,7>
+ 3852914743U, // <7,5,6,2>: Cost 4 vsldoi12 RHS, <5,6,2,2>
+ 2779172930U, // <7,5,6,3>: Cost 3 vsldoi12 RHS, <5,6,3,4>
+ 2779172940U, // <7,5,6,4>: Cost 3 vsldoi12 RHS, <5,6,4,5>
+ 2781163607U, // <7,5,6,5>: Cost 3 vsldoi12 RHS, <5,6,5,7>
+ 2779172960U, // <7,5,6,6>: Cost 3 vsldoi12 RHS, <5,6,6,7>
+ 1705431138U, // <7,5,6,7>: Cost 2 vsldoi12 RHS, <5,6,7,0>
+ 1705578603U, // <7,5,6,u>: Cost 2 vsldoi12 RHS, <5,6,u,0>
+ 2646204518U, // <7,5,7,0>: Cost 3 vsldoi4 <4,7,5,7>, LHS
+ 2322090898U, // <7,5,7,1>: Cost 3 vmrglw <6,6,7,7>, <4,0,5,1>
+ 3719947880U, // <7,5,7,2>: Cost 4 vsldoi4 <4,7,5,7>, <2,2,2,2>
+ 3719948438U, // <7,5,7,3>: Cost 4 vsldoi4 <4,7,5,7>, <3,0,1,2>
+ 2646207951U, // <7,5,7,4>: Cost 3 vsldoi4 <4,7,5,7>, <4,7,5,7>
+ 2322091226U, // <7,5,7,5>: Cost 3 vmrglw <6,6,7,7>, <4,4,5,5>
+ 2322090498U, // <7,5,7,6>: Cost 3 vmrglw <6,6,7,7>, <3,4,5,6>
+ 2646210156U, // <7,5,7,7>: Cost 3 vsldoi4 <4,7,5,7>, <7,7,7,7>
+ 2646210350U, // <7,5,7,u>: Cost 3 vsldoi4 <4,7,5,7>, LHS
+ 2779173062U, // <7,5,u,0>: Cost 3 vsldoi12 RHS, <5,u,0,1>
+ 2779173072U, // <7,5,u,1>: Cost 3 vsldoi12 RHS, <5,u,1,2>
+ 2319404409U, // <7,5,u,2>: Cost 3 vmrglw <6,2,7,3>, <4,6,5,2>
+ 2779173092U, // <7,5,u,3>: Cost 3 vsldoi12 RHS, <5,u,3,4>
+ 2779173101U, // <7,5,u,4>: Cost 3 vsldoi12 RHS, <5,u,4,4>
+ 1705431044U, // <7,5,u,5>: Cost 2 vsldoi12 RHS, <5,5,5,5>
+ 2779173118U, // <7,5,u,6>: Cost 3 vsldoi12 RHS, <5,u,6,3>
+ 1705578756U, // <7,5,u,7>: Cost 2 vsldoi12 RHS, <5,u,7,0>
+ 1707421965U, // <7,5,u,u>: Cost 2 vsldoi12 RHS, <5,u,u,0>
+ 3852914966U, // <7,6,0,0>: Cost 4 vsldoi12 RHS, <6,0,0,0>
+ 2779173153U, // <7,6,0,1>: Cost 3 vsldoi12 RHS, <6,0,1,2>
+ 2256491002U, // <7,6,0,2>: Cost 3 vmrghw <7,0,1,2>, <6,2,7,3>
+ 3852914994U, // <7,6,0,3>: Cost 4 vsldoi12 RHS, <6,0,3,1>
+ 3852915003U, // <7,6,0,4>: Cost 4 vsldoi12 RHS, <6,0,4,1>
+ 2316062652U, // <7,6,0,5>: Cost 3 vmrglw <5,6,7,0>, <5,4,6,5>
+ 2316063544U, // <7,6,0,6>: Cost 3 vmrglw <5,6,7,0>, <6,6,6,6>
+ 1242320182U, // <7,6,0,7>: Cost 2 vmrglw <5,6,7,0>, RHS
+ 1242320183U, // <7,6,0,u>: Cost 2 vmrglw <5,6,7,0>, RHS
+ 3852915048U, // <7,6,1,0>: Cost 4 vsldoi12 RHS, <6,1,0,1>
+ 3377866217U, // <7,6,1,1>: Cost 4 vmrglw <3,6,7,1>, <2,0,6,1>
+ 3852915068U, // <7,6,1,2>: Cost 4 vsldoi12 RHS, <6,1,2,3>
+ 3833672072U, // <7,6,1,3>: Cost 5 vsldoi12 <1,3,6,7>, <6,1,3,6>
+ 3852915088U, // <7,6,1,4>: Cost 4 vsldoi12 RHS, <6,1,4,5>
+ 3395122056U, // <7,6,1,5>: Cost 4 vmrglw <6,5,7,1>, <6,7,6,5>
+ 3389813560U, // <7,6,1,6>: Cost 4 vmrglw <5,6,7,1>, <6,6,6,6>
+ 2779173287U, // <7,6,1,7>: Cost 3 vsldoi12 RHS, <6,1,7,1>
+ 2779320752U, // <7,6,1,u>: Cost 3 vsldoi12 RHS, <6,1,u,1>
+ 2658181222U, // <7,6,2,0>: Cost 3 vsldoi4 <6,7,6,2>, LHS
+ 3852915140U, // <7,6,2,1>: Cost 4 vsldoi12 RHS, <6,2,1,3>
+ 2257973754U, // <7,6,2,2>: Cost 3 vmrghw <7,2,3,3>, <6,2,7,3>
+ 3841413589U, // <7,6,2,3>: Cost 4 vsldoi12 <2,6,3,7>, <6,2,3,2>
+ 2658184502U, // <7,6,2,4>: Cost 3 vsldoi4 <6,7,6,2>, RHS
+ 3852915176U, // <7,6,2,5>: Cost 4 vsldoi12 RHS, <6,2,5,3>
+ 2658186117U, // <7,6,2,6>: Cost 3 vsldoi4 <6,7,6,2>, <6,7,6,2>
+ 1705431546U, // <7,6,2,7>: Cost 2 vsldoi12 RHS, <6,2,7,3>
+ 1705579011U, // <7,6,2,u>: Cost 2 vsldoi12 RHS, <6,2,u,3>
+ 3714015334U, // <7,6,3,0>: Cost 4 vsldoi4 <3,7,6,3>, LHS
+ 3777243425U, // <7,6,3,1>: Cost 4 vsldoi8 <3,1,7,6>, <3,1,7,6>
+ 2319405957U, // <7,6,3,2>: Cost 3 vmrglw <6,2,7,3>, <6,7,6,2>
+ 3375229286U, // <7,6,3,3>: Cost 4 vmrglw <3,2,7,3>, <3,2,6,3>
+ 2779173426U, // <7,6,3,4>: Cost 3 vsldoi12 RHS, <6,3,4,5>
+ 3375228721U, // <7,6,3,5>: Cost 4 vmrglw <3,2,7,3>, <2,4,6,5>
+ 2319405880U, // <7,6,3,6>: Cost 3 vmrglw <6,2,7,3>, <6,6,6,6>
+ 1245662518U, // <7,6,3,7>: Cost 2 vmrglw <6,2,7,3>, RHS
+ 1245662519U, // <7,6,3,u>: Cost 2 vmrglw <6,2,7,3>, RHS
+ 3852915291U, // <7,6,4,0>: Cost 4 vsldoi12 RHS, <6,4,0,1>
+ 3389834729U, // <7,6,4,1>: Cost 4 vmrglw <5,6,7,4>, <2,0,6,1>
+ 2259472890U, // <7,6,4,2>: Cost 3 vmrghw <7,4,5,6>, <6,2,7,3>
+ 3852915321U, // <7,6,4,3>: Cost 4 vsldoi12 RHS, <6,4,3,4>
+ 3852915330U, // <7,6,4,4>: Cost 4 vsldoi12 RHS, <6,4,4,4>
+ 2779173517U, // <7,6,4,5>: Cost 3 vsldoi12 RHS, <6,4,5,6>
+ 2316096312U, // <7,6,4,6>: Cost 3 vmrglw <5,6,7,4>, <6,6,6,6>
+ 1242352950U, // <7,6,4,7>: Cost 2 vmrglw <5,6,7,4>, RHS
+ 1242352951U, // <7,6,4,u>: Cost 2 vmrglw <5,6,7,4>, RHS
+ 3852915372U, // <7,6,5,0>: Cost 4 vsldoi12 RHS, <6,5,0,1>
+ 3835294392U, // <7,6,5,1>: Cost 5 vsldoi12 <1,6,1,7>, <6,5,1,4>
+ 3852915395U, // <7,6,5,2>: Cost 4 vsldoi12 RHS, <6,5,2,6>
+ 3852915404U, // <7,6,5,3>: Cost 4 vsldoi12 RHS, <6,5,3,6>
+ 3852915412U, // <7,6,5,4>: Cost 4 vsldoi12 RHS, <6,5,4,5>
+ 3377899313U, // <7,6,5,5>: Cost 4 vmrglw <3,6,7,5>, <2,4,6,5>
+ 2718765160U, // <7,6,5,6>: Cost 3 vsldoi8 <5,6,7,6>, <5,6,7,6>
+ 2779173611U, // <7,6,5,7>: Cost 3 vsldoi12 RHS, <6,5,7,1>
+ 2779321076U, // <7,6,5,u>: Cost 3 vsldoi12 RHS, <6,5,u,1>
+ 2658213990U, // <7,6,6,0>: Cost 3 vsldoi4 <6,7,6,6>, LHS
+ 3852915462U, // <7,6,6,1>: Cost 4 vsldoi12 RHS, <6,6,1,1>
+ 2718765562U, // <7,6,6,2>: Cost 3 vsldoi8 <5,6,7,6>, <6,2,7,3>
+ 3714042622U, // <7,6,6,3>: Cost 4 vsldoi4 <3,7,6,6>, <3,7,6,6>
+ 2658217270U, // <7,6,6,4>: Cost 3 vsldoi4 <6,7,6,6>, RHS
+ 2724074224U, // <7,6,6,5>: Cost 3 vsldoi8 <6,5,7,6>, <6,5,7,6>
+ 1705431864U, // <7,6,6,6>: Cost 2 vsldoi12 RHS, <6,6,6,6>
+ 1705431874U, // <7,6,6,7>: Cost 2 vsldoi12 RHS, <6,6,7,7>
+ 1705579339U, // <7,6,6,u>: Cost 2 vsldoi12 RHS, <6,6,u,7>
+ 1705431886U, // <7,6,7,0>: Cost 2 vsldoi12 RHS, <6,7,0,1>
+ 2779173719U, // <7,6,7,1>: Cost 3 vsldoi12 RHS, <6,7,1,1>
+ 2779173729U, // <7,6,7,2>: Cost 3 vsldoi12 RHS, <6,7,2,2>
+ 2779173736U, // <7,6,7,3>: Cost 3 vsldoi12 RHS, <6,7,3,0>
+ 1705431926U, // <7,6,7,4>: Cost 2 vsldoi12 RHS, <6,7,4,5>
+ 2779173759U, // <7,6,7,5>: Cost 3 vsldoi12 RHS, <6,7,5,5>
+ 2779173765U, // <7,6,7,6>: Cost 3 vsldoi12 RHS, <6,7,6,2>
+ 1248349494U, // <7,6,7,7>: Cost 2 vmrglw <6,6,7,7>, RHS
+ 1705431958U, // <7,6,7,u>: Cost 2 vsldoi12 RHS, <6,7,u,1>
+ 1705579423U, // <7,6,u,0>: Cost 2 vsldoi12 RHS, <6,u,0,1>
+ 2779173801U, // <7,6,u,1>: Cost 3 vsldoi12 RHS, <6,u,1,2>
+ 2779321266U, // <7,6,u,2>: Cost 3 vsldoi12 RHS, <6,u,2,2>
+ 2779321273U, // <7,6,u,3>: Cost 3 vsldoi12 RHS, <6,u,3,0>
+ 1705579463U, // <7,6,u,4>: Cost 2 vsldoi12 RHS, <6,u,4,5>
+ 2779173841U, // <7,6,u,5>: Cost 3 vsldoi12 RHS, <6,u,5,6>
+ 1705431864U, // <7,6,u,6>: Cost 2 vsldoi12 RHS, <6,6,6,6>
+ 1705432032U, // <7,6,u,7>: Cost 2 vsldoi12 RHS, <6,u,7,3>
+ 1705579495U, // <7,6,u,u>: Cost 2 vsldoi12 RHS, <6,u,u,1>
+ 1242320994U, // <7,7,0,0>: Cost 2 vmrglw <5,6,7,0>, <5,6,7,0>
+ 1705432058U, // <7,7,0,1>: Cost 2 vsldoi12 RHS, <7,0,1,2>
+ 3841414146U, // <7,7,0,2>: Cost 4 vsldoi12 <2,6,3,7>, <7,0,2,1>
+ 2316063226U, // <7,7,0,3>: Cost 3 vmrglw <5,6,7,0>, <6,2,7,3>
+ 2779173908U, // <7,7,0,4>: Cost 3 vsldoi12 RHS, <7,0,4,1>
+ 2658242658U, // <7,7,0,5>: Cost 3 vsldoi4 <6,7,7,0>, <5,6,7,0>
+ 2658243468U, // <7,7,0,6>: Cost 3 vsldoi4 <6,7,7,0>, <6,7,7,0>
+ 2316063554U, // <7,7,0,7>: Cost 3 vmrglw <5,6,7,0>, <6,6,7,7>
+ 1705432121U, // <7,7,0,u>: Cost 2 vsldoi12 RHS, <7,0,u,2>
+ 3852915777U, // <7,7,1,0>: Cost 4 vsldoi12 RHS, <7,1,0,1>
+ 2779173962U, // <7,7,1,1>: Cost 3 vsldoi12 RHS, <7,1,1,1>
+ 2779173973U, // <7,7,1,2>: Cost 3 vsldoi12 RHS, <7,1,2,3>
+ 3389813242U, // <7,7,1,3>: Cost 4 vmrglw <5,6,7,1>, <6,2,7,3>
+ 3852915813U, // <7,7,1,4>: Cost 4 vsldoi12 RHS, <7,1,4,1>
+ 3852915821U, // <7,7,1,5>: Cost 4 vsldoi12 RHS, <7,1,5,0>
+ 3835294839U, // <7,7,1,6>: Cost 4 vsldoi12 <1,6,1,7>, <7,1,6,1>
+ 2329343596U, // <7,7,1,7>: Cost 3 vmrglw <7,u,7,1>, <7,7,7,7>
+ 2779174027U, // <7,7,1,u>: Cost 3 vsldoi12 RHS, <7,1,u,3>
+ 2803061908U, // <7,7,2,0>: Cost 3 vsldoi12 RHS, <7,2,0,3>
+ 3852915869U, // <7,7,2,1>: Cost 4 vsldoi12 RHS, <7,2,1,3>
+ 2779174053U, // <7,7,2,2>: Cost 3 vsldoi12 RHS, <7,2,2,2>
+ 2779174060U, // <7,7,2,3>: Cost 3 vsldoi12 RHS, <7,2,3,0>
+ 2803061944U, // <7,7,2,4>: Cost 3 vsldoi12 RHS, <7,2,4,3>
+ 3852915905U, // <7,7,2,5>: Cost 4 vsldoi12 RHS, <7,2,5,3>
+ 2767672522U, // <7,7,2,6>: Cost 3 vsldoi12 <2,6,3,7>, <7,2,6,3>
+ 2791855315U, // <7,7,2,7>: Cost 3 vsldoi12 <6,6,7,7>, <7,2,7,3>
+ 2768999644U, // <7,7,2,u>: Cost 3 vsldoi12 <2,u,3,7>, <7,2,u,3>
+ 2779174115U, // <7,7,3,0>: Cost 3 vsldoi12 RHS, <7,3,0,1>
+ 3852915948U, // <7,7,3,1>: Cost 4 vsldoi12 RHS, <7,3,1,1>
+ 3841414394U, // <7,7,3,2>: Cost 4 vsldoi12 <2,6,3,7>, <7,3,2,6>
+ 1245663738U, // <7,7,3,3>: Cost 2 vmrglw <6,2,7,3>, <6,2,7,3>
+ 2779174155U, // <7,7,3,4>: Cost 3 vsldoi12 RHS, <7,3,4,5>
+ 3852915988U, // <7,7,3,5>: Cost 4 vsldoi12 RHS, <7,3,5,5>
+ 2706827959U, // <7,7,3,6>: Cost 3 vsldoi8 <3,6,7,7>, <3,6,7,7>
+ 2319405890U, // <7,7,3,7>: Cost 3 vmrglw <6,2,7,3>, <6,6,7,7>
+ 1245663738U, // <7,7,3,u>: Cost 2 vmrglw <6,2,7,3>, <6,2,7,3>
+ 2779174200U, // <7,7,4,0>: Cost 3 vsldoi12 RHS, <7,4,0,5>
+ 3852916030U, // <7,7,4,1>: Cost 4 vsldoi12 RHS, <7,4,1,2>
+ 3714099130U, // <7,7,4,2>: Cost 4 vsldoi4 <3,7,7,4>, <2,6,3,7>
+ 2316095994U, // <7,7,4,3>: Cost 3 vmrglw <5,6,7,4>, <6,2,7,3>
+ 1242353766U, // <7,7,4,4>: Cost 2 vmrglw <5,6,7,4>, <5,6,7,4>
+ 1705432422U, // <7,7,4,5>: Cost 2 vsldoi12 RHS, <7,4,5,6>
+ 2658276240U, // <7,7,4,6>: Cost 3 vsldoi4 <6,7,7,4>, <6,7,7,4>
+ 2316096322U, // <7,7,4,7>: Cost 3 vmrglw <5,6,7,4>, <6,6,7,7>
+ 1705432449U, // <7,7,4,u>: Cost 2 vsldoi12 RHS, <7,4,u,6>
+ 3852916101U, // <7,7,5,0>: Cost 4 vsldoi12 RHS, <7,5,0,1>
+ 3854906765U, // <7,7,5,1>: Cost 4 vsldoi12 RHS, <7,5,1,0>
+ 3852916121U, // <7,7,5,2>: Cost 4 vsldoi12 RHS, <7,5,2,3>
+ 3389846010U, // <7,7,5,3>: Cost 4 vmrglw <5,6,7,5>, <6,2,7,3>
+ 3852916141U, // <7,7,5,4>: Cost 4 vsldoi12 RHS, <7,5,4,5>
+ 2779174326U, // <7,7,5,5>: Cost 3 vsldoi12 RHS, <7,5,5,5>
+ 2779174337U, // <7,7,5,6>: Cost 3 vsldoi12 RHS, <7,5,6,7>
+ 2329376364U, // <7,7,5,7>: Cost 3 vmrglw <7,u,7,5>, <7,7,7,7>
+ 2779321811U, // <7,7,5,u>: Cost 3 vsldoi12 RHS, <7,5,u,7>
+ 2658287718U, // <7,7,6,0>: Cost 3 vsldoi4 <6,7,7,6>, LHS
+ 3852916197U, // <7,7,6,1>: Cost 4 vsldoi12 RHS, <7,6,1,7>
+ 2779174382U, // <7,7,6,2>: Cost 3 vsldoi12 RHS, <7,6,2,7>
+ 2316112378U, // <7,7,6,3>: Cost 3 vmrglw <5,6,7,6>, <6,2,7,3>
+ 2658290998U, // <7,7,6,4>: Cost 3 vsldoi4 <6,7,7,6>, RHS
+ 3852916233U, // <7,7,6,5>: Cost 4 vsldoi12 RHS, <7,6,5,7>
+ 1651004226U, // <7,7,6,6>: Cost 2 vsldoi8 <6,6,7,7>, <6,6,7,7>
+ 2779174420U, // <7,7,6,7>: Cost 3 vsldoi12 RHS, <7,6,7,0>
+ 1652331492U, // <7,7,6,u>: Cost 2 vsldoi8 <6,u,7,7>, <6,u,7,7>
+ 1590526054U, // <7,7,7,0>: Cost 2 vsldoi4 <7,7,7,7>, LHS
+ 2328728623U, // <7,7,7,1>: Cost 3 vmrglw <7,7,7,7>, <7,0,7,1>
+ 2724746451U, // <7,7,7,2>: Cost 3 vsldoi8 <6,6,7,7>, <7,2,7,3>
+ 2322092538U, // <7,7,7,3>: Cost 3 vmrglw <6,6,7,7>, <6,2,7,3>
+ 1590529334U, // <7,7,7,4>: Cost 2 vsldoi4 <7,7,7,7>, RHS
+ 2328728951U, // <7,7,7,5>: Cost 3 vmrglw <7,7,7,7>, <7,4,7,5>
+ 2724746770U, // <7,7,7,6>: Cost 3 vsldoi8 <6,6,7,7>, <7,6,6,7>
+ 430361910U, // <7,7,7,7>: Cost 1 vspltisw3 RHS
+ 430361910U, // <7,7,7,u>: Cost 1 vspltisw3 RHS
+ 1242320994U, // <7,7,u,0>: Cost 2 vmrglw <5,6,7,0>, <5,6,7,0>
+ 1705580162U, // <7,7,u,1>: Cost 2 vsldoi12 RHS, <7,u,1,2>
+ 2779321996U, // <7,7,u,2>: Cost 3 vsldoi12 RHS, <7,u,2,3>
+ 1245663738U, // <7,7,u,3>: Cost 2 vmrglw <6,2,7,3>, <6,2,7,3>
+ 1242353766U, // <7,7,u,4>: Cost 2 vmrglw <5,6,7,4>, <5,6,7,4>
+ 1705580202U, // <7,7,u,5>: Cost 2 vsldoi12 RHS, <7,u,5,6>
+ 1662949620U, // <7,7,u,6>: Cost 2 vsldoi8 <u,6,7,7>, <u,6,7,7>
+ 430361910U, // <7,7,u,7>: Cost 1 vspltisw3 RHS
+ 430361910U, // <7,7,u,u>: Cost 1 vspltisw3 RHS
+ 1705426944U, // <7,u,0,0>: Cost 2 vsldoi12 RHS, <0,0,0,0>
+ 1705432787U, // <7,u,0,1>: Cost 2 vsldoi12 RHS, <u,0,1,2>
+ 2316060885U, // <7,u,0,2>: Cost 3 vmrglw <5,6,7,0>, <3,0,u,2>
+ 1242316956U, // <7,u,0,3>: Cost 2 vmrglw <5,6,7,0>, LHS
+ 2779174637U, // <7,u,0,4>: Cost 3 vsldoi12 RHS, <u,0,4,1>
+ 1182750874U, // <7,u,0,5>: Cost 2 vmrghw <7,0,1,2>, RHS
+ 2316061213U, // <7,u,0,6>: Cost 3 vmrglw <5,6,7,0>, <3,4,u,6>
+ 1242320200U, // <7,u,0,7>: Cost 2 vmrglw <5,6,7,0>, RHS
+ 1705432850U, // <7,u,0,u>: Cost 2 vsldoi12 RHS, <u,0,u,2>
+ 1584578662U, // <7,u,1,0>: Cost 2 vsldoi4 <6,7,u,1>, LHS
+ 1705427764U, // <7,u,1,1>: Cost 2 vsldoi12 RHS, <1,1,1,1>
+ 631691054U, // <7,u,1,2>: Cost 1 vsldoi12 RHS, LHS
+ 2640407307U, // <7,u,1,3>: Cost 3 vsldoi4 <3,7,u,1>, <3,7,u,1>
+ 1584581942U, // <7,u,1,4>: Cost 2 vsldoi4 <6,7,u,1>, RHS
+ 2779174726U, // <7,u,1,5>: Cost 3 vsldoi12 RHS, <u,1,5,0>
+ 1584583574U, // <7,u,1,6>: Cost 2 vsldoi4 <6,7,u,1>, <6,7,u,1>
+ 2779322201U, // <7,u,1,7>: Cost 3 vsldoi12 RHS, <u,1,7,1>
+ 631691108U, // <7,u,1,u>: Cost 1 vsldoi12 RHS, LHS
+ 2779174763U, // <7,u,2,0>: Cost 3 vsldoi12 RHS, <u,2,0,1>
+ 2779174774U, // <7,u,2,1>: Cost 3 vsldoi12 RHS, <u,2,1,3>
+ 1705428584U, // <7,u,2,2>: Cost 2 vsldoi12 RHS, <2,2,2,2>
+ 1705432965U, // <7,u,2,3>: Cost 2 vsldoi12 RHS, <u,2,3,0>
+ 2779174801U, // <7,u,2,4>: Cost 3 vsldoi12 RHS, <u,2,4,3>
+ 2779174810U, // <7,u,2,5>: Cost 3 vsldoi12 RHS, <u,2,5,3>
+ 2767673251U, // <7,u,2,6>: Cost 3 vsldoi12 <2,6,3,7>, <u,2,6,3>
+ 1705580460U, // <7,u,2,7>: Cost 2 vsldoi12 RHS, <u,2,7,3>
+ 1705433010U, // <7,u,2,u>: Cost 2 vsldoi12 RHS, <u,2,u,0>
+ 1705433020U, // <7,u,3,0>: Cost 2 vsldoi12 RHS, <u,3,0,1>
+ 2779174853U, // <7,u,3,1>: Cost 3 vsldoi12 RHS, <u,3,1,1>
+ 2767673299U, // <7,u,3,2>: Cost 3 vsldoi12 <2,6,3,7>, <u,3,2,6>
+ 1245659292U, // <7,u,3,3>: Cost 2 vmrglw <6,2,7,3>, LHS
+ 1705433060U, // <7,u,3,4>: Cost 2 vsldoi12 RHS, <u,3,4,5>
+ 2779174893U, // <7,u,3,5>: Cost 3 vsldoi12 RHS, <u,3,5,5>
+ 2706836152U, // <7,u,3,6>: Cost 3 vsldoi8 <3,6,7,u>, <3,6,7,u>
+ 1245662536U, // <7,u,3,7>: Cost 2 vmrglw <6,2,7,3>, RHS
+ 1705433092U, // <7,u,3,u>: Cost 2 vsldoi12 RHS, <u,3,u,1>
+ 2779174925U, // <7,u,4,0>: Cost 3 vsldoi12 RHS, <u,4,0,1>
+ 1185732398U, // <7,u,4,1>: Cost 2 vmrghw <7,4,5,6>, LHS
+ 2316093653U, // <7,u,4,2>: Cost 3 vmrglw <5,6,7,4>, <3,0,u,2>
+ 1242349724U, // <7,u,4,3>: Cost 2 vmrglw <5,6,7,4>, LHS
+ 1705430224U, // <7,u,4,4>: Cost 2 vsldoi12 RHS, <4,4,4,4>
+ 1705433151U, // <7,u,4,5>: Cost 2 vsldoi12 RHS, <u,4,5,6>
+ 2316093981U, // <7,u,4,6>: Cost 3 vmrglw <5,6,7,4>, <3,4,u,6>
+ 1242352968U, // <7,u,4,7>: Cost 2 vmrglw <5,6,7,4>, RHS
+ 1705433178U, // <7,u,4,u>: Cost 2 vsldoi12 RHS, <u,4,u,6>
+ 1584611430U, // <7,u,5,0>: Cost 2 vsldoi4 <6,7,u,5>, LHS
+ 2781165670U, // <7,u,5,1>: Cost 3 vsldoi12 RHS, <u,5,1,0>
+ 2640439226U, // <7,u,5,2>: Cost 3 vsldoi4 <3,7,u,5>, <2,6,3,7>
+ 2640440079U, // <7,u,5,3>: Cost 3 vsldoi4 <3,7,u,5>, <3,7,u,5>
+ 1584614710U, // <7,u,5,4>: Cost 2 vsldoi4 <6,7,u,5>, RHS
+ 1705431044U, // <7,u,5,5>: Cost 2 vsldoi12 RHS, <5,5,5,5>
+ 631691418U, // <7,u,5,6>: Cost 1 vsldoi12 RHS, RHS
+ 2779322525U, // <7,u,5,7>: Cost 3 vsldoi12 RHS, <u,5,7,1>
+ 631691436U, // <7,u,5,u>: Cost 1 vsldoi12 RHS, RHS
+ 2779175087U, // <7,u,6,0>: Cost 3 vsldoi12 RHS, <u,6,0,1>
+ 2779175102U, // <7,u,6,1>: Cost 3 vsldoi12 RHS, <u,6,1,7>
+ 1648357887U, // <7,u,6,2>: Cost 2 vsldoi8 <6,2,7,u>, <6,2,7,u>
+ 1705433296U, // <7,u,6,3>: Cost 2 vsldoi12 RHS, <u,6,3,7>
+ 2779175127U, // <7,u,6,4>: Cost 3 vsldoi12 RHS, <u,6,4,5>
+ 2779175138U, // <7,u,6,5>: Cost 3 vsldoi12 RHS, <u,6,5,7>
+ 1651012419U, // <7,u,6,6>: Cost 2 vsldoi8 <6,6,7,u>, <6,6,7,u>
+ 1705580788U, // <7,u,6,7>: Cost 2 vsldoi12 RHS, <u,6,7,7>
+ 1705433341U, // <7,u,6,u>: Cost 2 vsldoi12 RHS, <u,6,u,7>
+ 1705580800U, // <7,u,7,0>: Cost 2 vsldoi12 RHS, <u,7,0,1>
+ 1187878702U, // <7,u,7,1>: Cost 2 vmrghw <7,7,7,7>, LHS
+ 2768042263U, // <7,u,7,2>: Cost 3 vsldoi12 <2,6,u,7>, <u,7,2,6>
+ 1248346268U, // <7,u,7,3>: Cost 2 vmrglw <6,6,7,7>, LHS
+ 1705580840U, // <7,u,7,4>: Cost 2 vsldoi12 RHS, <u,7,4,5>
+ 1187879066U, // <7,u,7,5>: Cost 2 vmrghw <7,7,7,7>, RHS
+ 2779322679U, // <7,u,7,6>: Cost 3 vsldoi12 RHS, <u,7,6,2>
+ 430361910U, // <7,u,7,7>: Cost 1 vspltisw3 RHS
+ 430361910U, // <7,u,7,u>: Cost 1 vspltisw3 RHS
+ 1705433425U, // <7,u,u,0>: Cost 2 vsldoi12 RHS, <u,u,0,1>
+ 1705433435U, // <7,u,u,1>: Cost 2 vsldoi12 RHS, <u,u,1,2>
+ 631691621U, // <7,u,u,2>: Cost 1 vsldoi12 RHS, LHS
+ 1705433451U, // <7,u,u,3>: Cost 2 vsldoi12 RHS, <u,u,3,0>
+ 1705433465U, // <7,u,u,4>: Cost 2 vsldoi12 RHS, <u,u,4,5>
+ 1705433475U, // <7,u,u,5>: Cost 2 vsldoi12 RHS, <u,u,5,6>
+ 631691661U, // <7,u,u,6>: Cost 1 vsldoi12 RHS, RHS
+ 430361910U, // <7,u,u,7>: Cost 1 vspltisw3 RHS
+ 631691675U, // <7,u,u,u>: Cost 1 vsldoi12 RHS, LHS
+ 202162278U, // <u,0,0,0>: Cost 1 vspltisw0 LHS
+ 1678598154U, // <u,0,0,1>: Cost 2 vsldoi12 LHS, <0,0,1,1>
+ 2634500154U, // <u,0,0,2>: Cost 3 vsldoi4 <2,u,0,0>, <2,u,0,0>
+ 2289596269U, // <u,0,0,3>: Cost 3 vmrglw <1,2,u,0>, <u,2,0,3>
+ 1548815670U, // <u,0,0,4>: Cost 2 vsldoi4 <0,u,0,0>, RHS
+ 2663698530U, // <u,0,0,5>: Cost 3 vsldoi4 <7,7,0,0>, <5,6,7,0>
+ 2658390942U, // <u,0,0,6>: Cost 3 vsldoi4 <6,u,0,0>, <6,u,0,0>
+ 2289596597U, // <u,0,0,7>: Cost 3 vmrglw <1,2,u,0>, <u,6,0,7>
+ 202162278U, // <u,0,0,u>: Cost 1 vspltisw0 LHS
+ 1560764518U, // <u,0,1,0>: Cost 2 vsldoi4 <2,u,0,1>, LHS
+ 115720294U, // <u,0,1,1>: Cost 1 vmrghw LHS, LHS
+ 604856427U, // <u,0,1,2>: Cost 1 vsldoi12 LHS, LHS
+ 2634508438U, // <u,0,1,3>: Cost 3 vsldoi4 <2,u,0,1>, <3,0,1,2>
+ 1560767798U, // <u,0,1,4>: Cost 2 vsldoi4 <2,u,0,1>, RHS
+ 2652426438U, // <u,0,1,5>: Cost 3 vsldoi4 <5,u,0,1>, <5,u,0,1>
+ 1584657311U, // <u,0,1,6>: Cost 2 vsldoi4 <6,u,0,1>, <6,u,0,1>
+ 2658399226U, // <u,0,1,7>: Cost 3 vsldoi4 <6,u,0,1>, <7,0,1,2>
+ 604856476U, // <u,0,1,u>: Cost 1 vsldoi12 LHS, LHS
+ 2696889850U, // <u,0,2,0>: Cost 3 vsldoi8 <2,0,u,0>, <2,0,u,0>
+ 1190174822U, // <u,0,2,1>: Cost 2 vmrghw <u,2,3,0>, LHS
+ 2692245096U, // <u,0,2,2>: Cost 3 vsldoi8 <1,2,u,0>, <2,2,2,2>
+ 2692245158U, // <u,0,2,3>: Cost 3 vsldoi8 <1,2,u,0>, <2,3,0,1>
+ 2263916882U, // <u,0,2,4>: Cost 3 vmrghw <u,2,3,0>, <0,4,1,5>
+ 2299709908U, // <u,0,2,5>: Cost 3 vmrglw <3,0,1,2>, <3,4,0,5>
+ 2692245434U, // <u,0,2,6>: Cost 3 vsldoi8 <1,2,u,0>, <2,6,3,7>
+ 2701535281U, // <u,0,2,7>: Cost 3 vsldoi8 <2,7,u,0>, <2,7,u,0>
+ 1190175389U, // <u,0,2,u>: Cost 2 vmrghw <u,2,3,0>, LHS
+ 1209237504U, // <u,0,3,0>: Cost 2 vmrglw LHS, <0,0,0,0>
+ 1209239206U, // <u,0,3,1>: Cost 2 vmrglw LHS, <2,3,0,1>
+ 2704189813U, // <u,0,3,2>: Cost 3 vsldoi8 <3,2,u,0>, <3,2,u,0>
+ 2692245916U, // <u,0,3,3>: Cost 3 vsldoi8 <1,2,u,0>, <3,3,3,3>
+ 2282981033U, // <u,0,3,4>: Cost 3 vmrglw LHS, <2,3,0,4>
+ 2664386658U, // <u,0,3,5>: Cost 3 vsldoi4 <7,u,0,3>, <5,6,7,0>
+ 2691877496U, // <u,0,3,6>: Cost 3 vsldoi8 <1,2,3,0>, <3,6,0,7>
+ 2664388218U, // <u,0,3,7>: Cost 3 vsldoi4 <7,u,0,3>, <7,u,0,3>
+ 1209239213U, // <u,0,3,u>: Cost 2 vmrglw LHS, <2,3,0,u>
+ 2289623040U, // <u,0,4,0>: Cost 3 vmrglw <1,2,u,4>, <0,0,0,0>
+ 1678598482U, // <u,0,4,1>: Cost 2 vsldoi12 LHS, <0,4,1,5>
+ 2634532926U, // <u,0,4,2>: Cost 3 vsldoi4 <2,u,0,4>, <2,u,0,4>
+ 2235580672U, // <u,0,4,3>: Cost 3 vmrghw <3,4,5,6>, <0,3,1,4>
+ 1143619922U, // <u,0,4,4>: Cost 2 vmrghw <0,4,1,5>, <0,4,1,5>
+ 1618505014U, // <u,0,4,5>: Cost 2 vsldoi8 <1,2,u,0>, RHS
+ 2658423714U, // <u,0,4,6>: Cost 3 vsldoi4 <6,u,0,4>, <6,u,0,4>
+ 2713259464U, // <u,0,4,7>: Cost 3 vsldoi8 <4,7,5,0>, <4,7,5,0>
+ 1683243409U, // <u,0,4,u>: Cost 2 vsldoi12 LHS, <0,4,u,5>
+ 1192443904U, // <u,0,5,0>: Cost 2 vmrghw RHS, <0,0,0,0>
+ 118702182U, // <u,0,5,1>: Cost 1 vmrghw RHS, LHS
+ 2266185901U, // <u,0,5,2>: Cost 3 vmrghw RHS, <0,2,1,2>
+ 2640513816U, // <u,0,5,3>: Cost 3 vsldoi4 <3,u,0,5>, <3,u,0,5>
+ 1192444242U, // <u,0,5,4>: Cost 2 vmrghw RHS, <0,4,1,5>
+ 2718789636U, // <u,0,5,5>: Cost 3 vsldoi8 <5,6,u,0>, <5,5,5,5>
+ 1645047915U, // <u,0,5,6>: Cost 2 vsldoi8 <5,6,u,0>, <5,6,u,0>
+ 2664404604U, // <u,0,5,7>: Cost 3 vsldoi4 <7,u,0,5>, <7,u,0,5>
+ 118702749U, // <u,0,5,u>: Cost 1 vmrghw RHS, LHS
+ 2302910464U, // <u,0,6,0>: Cost 3 vmrglw <3,4,u,6>, <0,0,0,0>
+ 1192886374U, // <u,0,6,1>: Cost 2 vmrghw <u,6,3,7>, LHS
+ 2718790138U, // <u,0,6,2>: Cost 3 vsldoi8 <5,6,u,0>, <6,2,7,3>
+ 2722771537U, // <u,0,6,3>: Cost 3 vsldoi8 <6,3,u,0>, <6,3,u,0>
+ 2266628434U, // <u,0,6,4>: Cost 3 vmrghw <u,6,3,7>, <0,4,1,5>
+ 2248950180U, // <u,0,6,5>: Cost 3 vmrghw <5,6,7,0>, <0,5,1,6>
+ 2718790456U, // <u,0,6,6>: Cost 3 vsldoi8 <5,6,u,0>, <6,6,6,6>
+ 2718790478U, // <u,0,6,7>: Cost 3 vsldoi8 <5,6,u,0>, <6,7,0,1>
+ 1192886941U, // <u,0,6,u>: Cost 2 vmrghw <u,6,3,7>, LHS
+ 1235812352U, // <u,0,7,0>: Cost 2 vmrglw RHS, <0,0,0,0>
+ 1235814054U, // <u,0,7,1>: Cost 2 vmrglw RHS, <2,3,0,1>
+ 2728080601U, // <u,0,7,2>: Cost 3 vsldoi8 <7,2,u,0>, <7,2,u,0>
+ 2640530202U, // <u,0,7,3>: Cost 3 vsldoi4 <3,u,0,7>, <3,u,0,7>
+ 2640530742U, // <u,0,7,4>: Cost 3 vsldoi4 <3,u,0,7>, RHS
+ 2309556692U, // <u,0,7,5>: Cost 3 vmrglw RHS, <3,4,0,5>
+ 2730735133U, // <u,0,7,6>: Cost 3 vsldoi8 <7,6,u,0>, <7,6,u,0>
+ 2309556856U, // <u,0,7,7>: Cost 3 vmrglw RHS, <3,6,0,7>
+ 1235814061U, // <u,0,7,u>: Cost 2 vmrglw RHS, <2,3,0,u>
+ 202162278U, // <u,0,u,0>: Cost 1 vspltisw0 LHS
+ 120365158U, // <u,0,u,1>: Cost 1 vmrghw LHS, LHS
+ 604856989U, // <u,0,u,2>: Cost 1 vsldoi12 LHS, LHS
+ 2692249532U, // <u,0,u,3>: Cost 3 vsldoi8 <1,2,u,0>, <u,3,0,1>
+ 1560825142U, // <u,0,u,4>: Cost 2 vsldoi4 <2,u,0,u>, RHS
+ 1618507930U, // <u,0,u,5>: Cost 2 vsldoi8 <1,2,u,0>, RHS
+ 1584714662U, // <u,0,u,6>: Cost 2 vsldoi4 <6,u,0,u>, <6,u,0,u>
+ 2309565048U, // <u,0,u,7>: Cost 3 vmrglw RHS, <3,6,0,7>
+ 604857043U, // <u,0,u,u>: Cost 1 vsldoi12 LHS, LHS
+ 1611210825U, // <u,1,0,0>: Cost 2 vsldoi8 <0,0,u,1>, <0,0,u,1>
+ 1616519270U, // <u,1,0,1>: Cost 2 vsldoi8 <0,u,u,1>, LHS
+ 2287605459U, // <u,1,0,2>: Cost 3 vmrglw <0,u,u,0>, <u,0,1,2>
+ 2640546588U, // <u,1,0,3>: Cost 3 vsldoi4 <3,u,1,0>, <3,u,1,0>
+ 2622631222U, // <u,1,0,4>: Cost 3 vsldoi4 <0,u,1,0>, RHS
+ 2289590610U, // <u,1,0,5>: Cost 3 vmrglw <1,2,u,0>, <0,4,1,5>
+ 2664436630U, // <u,1,0,6>: Cost 3 vsldoi4 <7,u,1,0>, <6,7,u,1>
+ 2664437376U, // <u,1,0,7>: Cost 3 vsldoi4 <7,u,1,0>, <7,u,1,0>
+ 1616519889U, // <u,1,0,u>: Cost 2 vsldoi8 <0,u,u,1>, <0,u,u,1>
+ 1548894866U, // <u,1,1,0>: Cost 2 vsldoi4 <0,u,1,1>, <0,u,1,1>
+ 269271142U, // <u,1,1,1>: Cost 1 vspltisw1 LHS
+ 1189462934U, // <u,1,1,2>: Cost 2 vmrghw LHS, <1,2,3,0>
+ 2622638230U, // <u,1,1,3>: Cost 3 vsldoi4 <0,u,1,1>, <3,0,1,2>
+ 1548897590U, // <u,1,1,4>: Cost 2 vsldoi4 <0,u,1,1>, RHS
+ 2756985692U, // <u,1,1,5>: Cost 3 vsldoi12 LHS, <1,1,5,5>
+ 2658472872U, // <u,1,1,6>: Cost 3 vsldoi4 <6,u,1,1>, <6,u,1,1>
+ 2287614142U, // <u,1,1,7>: Cost 3 vmrglw <0,u,u,1>, <u,6,1,7>
+ 269271142U, // <u,1,1,u>: Cost 1 vspltisw1 LHS
+ 1566818406U, // <u,1,2,0>: Cost 2 vsldoi4 <3,u,1,2>, LHS
+ 2756985735U, // <u,1,2,1>: Cost 3 vsldoi12 LHS, <1,2,1,3>
+ 1148371862U, // <u,1,2,2>: Cost 2 vmrghw <1,2,3,0>, <1,2,3,0>
+ 835584U, // <u,1,2,3>: Cost 0 copy LHS
+ 1566821686U, // <u,1,2,4>: Cost 2 vsldoi4 <3,u,1,2>, RHS
+ 2756985771U, // <u,1,2,5>: Cost 3 vsldoi12 LHS, <1,2,5,3>
+ 2690262970U, // <u,1,2,6>: Cost 3 vsldoi8 <0,u,u,1>, <2,6,3,7>
+ 1590711938U, // <u,1,2,7>: Cost 2 vsldoi4 <7,u,1,2>, <7,u,1,2>
+ 835584U, // <u,1,2,u>: Cost 0 copy LHS
+ 2282979337U, // <u,1,3,0>: Cost 3 vmrglw LHS, <0,0,1,0>
+ 1209237514U, // <u,1,3,1>: Cost 2 vmrglw LHS, <0,0,1,1>
+ 1209239702U, // <u,1,3,2>: Cost 2 vmrglw LHS, <3,0,1,2>
+ 2282979502U, // <u,1,3,3>: Cost 3 vmrglw LHS, <0,2,1,3>
+ 2282979341U, // <u,1,3,4>: Cost 3 vmrglw LHS, <0,0,1,4>
+ 1209237842U, // <u,1,3,5>: Cost 2 vmrglw LHS, <0,4,1,5>
+ 2282979505U, // <u,1,3,6>: Cost 3 vmrglw LHS, <0,2,1,6>
+ 2287625423U, // <u,1,3,7>: Cost 3 vmrglw LHS, <1,6,1,7>
+ 1209237521U, // <u,1,3,u>: Cost 2 vmrglw LHS, <0,0,1,u>
+ 1635101613U, // <u,1,4,0>: Cost 2 vsldoi8 <4,0,u,1>, <4,0,u,1>
+ 2289623050U, // <u,1,4,1>: Cost 3 vmrglw <1,2,u,4>, <0,0,1,1>
+ 2289625238U, // <u,1,4,2>: Cost 3 vmrglw <1,2,u,4>, <3,0,1,2>
+ 2640579360U, // <u,1,4,3>: Cost 3 vsldoi4 <3,u,1,4>, <3,u,1,4>
+ 2622663990U, // <u,1,4,4>: Cost 3 vsldoi4 <0,u,1,4>, RHS
+ 1616522550U, // <u,1,4,5>: Cost 2 vsldoi8 <0,u,u,1>, RHS
+ 2664469398U, // <u,1,4,6>: Cost 3 vsldoi4 <7,u,1,4>, <6,7,u,1>
+ 2664470148U, // <u,1,4,7>: Cost 3 vsldoi4 <7,u,1,4>, <7,u,1,4>
+ 1616522793U, // <u,1,4,u>: Cost 2 vsldoi8 <0,u,u,1>, RHS
+ 1548927638U, // <u,1,5,0>: Cost 2 vsldoi4 <0,u,1,5>, <0,u,1,5>
+ 1192444724U, // <u,1,5,1>: Cost 2 vmrghw RHS, <1,1,1,1>
+ 1192444822U, // <u,1,5,2>: Cost 2 vmrghw RHS, <1,2,3,0>
+ 2622670998U, // <u,1,5,3>: Cost 3 vsldoi4 <0,u,1,5>, <3,0,1,2>
+ 1548930358U, // <u,1,5,4>: Cost 2 vsldoi4 <0,u,1,5>, RHS
+ 1210728786U, // <u,1,5,5>: Cost 2 vmrglw <0,4,1,5>, <0,4,1,5>
+ 2714153058U, // <u,1,5,6>: Cost 3 vsldoi8 <4,u,u,1>, <5,6,7,0>
+ 2670449658U, // <u,1,5,7>: Cost 3 vsldoi4 <u,u,1,5>, <7,0,1,2>
+ 1548932910U, // <u,1,5,u>: Cost 2 vsldoi4 <0,u,1,5>, LHS
+ 2622677655U, // <u,1,6,0>: Cost 3 vsldoi4 <0,u,1,6>, <0,u,1,6>
+ 2756986063U, // <u,1,6,1>: Cost 3 vsldoi12 LHS, <1,6,1,7>
+ 2302912662U, // <u,1,6,2>: Cost 3 vmrglw <3,4,u,6>, <3,0,1,2>
+ 3696421014U, // <u,1,6,3>: Cost 4 vsldoi4 <0,u,1,6>, <3,0,1,2>
+ 2622680374U, // <u,1,6,4>: Cost 3 vsldoi4 <0,u,1,6>, RHS
+ 2756986099U, // <u,1,6,5>: Cost 3 vsldoi12 LHS, <1,6,5,7>
+ 2714153784U, // <u,1,6,6>: Cost 3 vsldoi8 <4,u,u,1>, <6,6,6,6>
+ 1651692438U, // <u,1,6,7>: Cost 2 vsldoi8 <6,7,u,1>, <6,7,u,1>
+ 1652356071U, // <u,1,6,u>: Cost 2 vsldoi8 <6,u,u,1>, <6,u,u,1>
+ 2628657254U, // <u,1,7,0>: Cost 3 vsldoi4 <1,u,1,7>, LHS
+ 1235812362U, // <u,1,7,1>: Cost 2 vmrglw RHS, <0,0,1,1>
+ 1235814550U, // <u,1,7,2>: Cost 2 vmrglw RHS, <3,0,1,2>
+ 2309554350U, // <u,1,7,3>: Cost 3 vmrglw RHS, <0,2,1,3>
+ 2628660534U, // <u,1,7,4>: Cost 3 vsldoi4 <1,u,1,7>, RHS
+ 1235812690U, // <u,1,7,5>: Cost 2 vmrglw RHS, <0,4,1,5>
+ 2309554353U, // <u,1,7,6>: Cost 3 vmrglw RHS, <0,2,1,6>
+ 2309554678U, // <u,1,7,7>: Cost 3 vmrglw RHS, <0,6,1,7>
+ 1235812369U, // <u,1,7,u>: Cost 2 vmrglw RHS, <0,0,1,u>
+ 1548952217U, // <u,1,u,0>: Cost 2 vsldoi4 <0,u,1,u>, <0,u,1,u>
+ 269271142U, // <u,1,u,1>: Cost 1 vspltisw1 LHS
+ 1209280662U, // <u,1,u,2>: Cost 2 vmrglw LHS, <3,0,1,2>
+ 835584U, // <u,1,u,3>: Cost 0 copy LHS
+ 1548954934U, // <u,1,u,4>: Cost 2 vsldoi4 <0,u,1,u>, RHS
+ 1209278802U, // <u,1,u,5>: Cost 2 vmrglw LHS, <0,4,1,5>
+ 2283020465U, // <u,1,u,6>: Cost 3 vmrglw LHS, <0,2,1,6>
+ 1590761096U, // <u,1,u,7>: Cost 2 vsldoi4 <7,u,1,u>, <7,u,1,u>
+ 835584U, // <u,1,u,u>: Cost 0 copy LHS
+ 2702876672U, // <u,2,0,0>: Cost 3 vsldoi8 <3,0,u,2>, <0,0,0,0>
+ 1629134950U, // <u,2,0,1>: Cost 2 vsldoi8 <3,0,u,2>, LHS
+ 2289591912U, // <u,2,0,2>: Cost 3 vmrglw <1,2,u,0>, <2,2,2,2>
+ 1215848550U, // <u,2,0,3>: Cost 2 vmrglw <1,2,u,0>, LHS
+ 2702877010U, // <u,2,0,4>: Cost 3 vsldoi8 <3,0,u,2>, <0,4,1,5>
+ 2289222708U, // <u,2,0,5>: Cost 3 vmrglw <1,2,3,0>, <1,4,2,5>
+ 2779178473U, // <u,2,0,6>: Cost 3 vsldoi12 RHS, <2,0,6,1>
+ 2726249024U, // <u,2,0,7>: Cost 3 vsldoi8 <7,0,1,2>, <0,7,1,0>
+ 1215848555U, // <u,2,0,u>: Cost 2 vmrglw <1,2,u,0>, LHS
+ 2690933539U, // <u,2,1,0>: Cost 3 vsldoi8 <1,0,u,2>, <1,0,u,2>
+ 2628683124U, // <u,2,1,1>: Cost 3 vsldoi4 <1,u,2,1>, <1,u,2,1>
+ 1189463656U, // <u,2,1,2>: Cost 2 vmrghw LHS, <2,2,2,2>
+ 1213866086U, // <u,2,1,3>: Cost 2 vmrglw <0,u,u,1>, LHS
+ 2628685110U, // <u,2,1,4>: Cost 3 vsldoi4 <1,u,2,1>, RHS
+ 2263205736U, // <u,2,1,5>: Cost 3 vmrghw LHS, <2,5,3,6>
+ 1189463994U, // <u,2,1,6>: Cost 2 vmrghw LHS, <2,6,3,7>
+ 2263205866U, // <u,2,1,7>: Cost 3 vmrghw LHS, <2,7,0,1>
+ 1213866091U, // <u,2,1,u>: Cost 2 vmrglw <0,u,u,1>, LHS
+ 1556938854U, // <u,2,2,0>: Cost 2 vsldoi4 <2,2,2,2>, LHS
+ 2697569869U, // <u,2,2,1>: Cost 3 vsldoi8 <2,1,u,2>, <2,1,u,2>
+ 336380006U, // <u,2,2,2>: Cost 1 vspltisw2 LHS
+ 1678599794U, // <u,2,2,3>: Cost 2 vsldoi12 LHS, <2,2,3,3>
+ 1556942134U, // <u,2,2,4>: Cost 2 vsldoi4 <2,2,2,2>, RHS
+ 2295138061U, // <u,2,2,5>: Cost 3 vmrglw <2,2,2,2>, <2,4,2,5>
+ 2702878650U, // <u,2,2,6>: Cost 3 vsldoi8 <3,0,u,2>, <2,6,3,7>
+ 2300229831U, // <u,2,2,7>: Cost 3 vmrglw <3,0,u,2>, <u,6,2,7>
+ 336380006U, // <u,2,2,u>: Cost 1 vspltisw2 LHS
+ 475243165U, // <u,2,3,0>: Cost 1 vsldoi4 LHS, LHS
+ 1548985140U, // <u,2,3,1>: Cost 2 vsldoi4 LHS, <1,1,1,1>
+ 1209239144U, // <u,2,3,2>: Cost 2 vmrglw LHS, <2,2,2,2>
+ 135495782U, // <u,2,3,3>: Cost 1 vmrglw LHS, LHS
+ 475245878U, // <u,2,3,4>: Cost 1 vsldoi4 LHS, RHS
+ 1596764164U, // <u,2,3,5>: Cost 2 vsldoi4 LHS, <5,5,5,5>
+ 1596764666U, // <u,2,3,6>: Cost 2 vsldoi4 LHS, <6,2,7,3>
+ 1596765178U, // <u,2,3,7>: Cost 2 vsldoi4 LHS, <7,0,1,2>
+ 135495787U, // <u,2,3,u>: Cost 1 vmrglw LHS, LHS
+ 2708851630U, // <u,2,4,0>: Cost 3 vsldoi8 <4,0,u,2>, <4,0,u,2>
+ 2217362979U, // <u,2,4,1>: Cost 3 vmrghw <0,4,1,5>, <2,1,3,5>
+ 2289624680U, // <u,2,4,2>: Cost 3 vmrglw <1,2,u,4>, <2,2,2,2>
+ 1215881318U, // <u,2,4,3>: Cost 2 vmrglw <1,2,u,4>, LHS
+ 2726767824U, // <u,2,4,4>: Cost 3 vsldoi8 <7,0,u,2>, <4,4,4,4>
+ 1629138230U, // <u,2,4,5>: Cost 2 vsldoi8 <3,0,u,2>, RHS
+ 2779178801U, // <u,2,4,6>: Cost 3 vsldoi12 RHS, <2,4,6,5>
+ 2726251976U, // <u,2,4,7>: Cost 3 vsldoi8 <7,0,1,2>, <4,7,5,0>
+ 1215881323U, // <u,2,4,u>: Cost 2 vmrglw <1,2,u,4>, LHS
+ 2628714598U, // <u,2,5,0>: Cost 3 vsldoi4 <1,u,2,5>, LHS
+ 2628715896U, // <u,2,5,1>: Cost 3 vsldoi4 <1,u,2,5>, <1,u,2,5>
+ 1192445544U, // <u,2,5,2>: Cost 2 vmrghw RHS, <2,2,2,2>
+ 1213898854U, // <u,2,5,3>: Cost 2 vmrglw <0,u,u,5>, LHS
+ 2628717878U, // <u,2,5,4>: Cost 3 vsldoi4 <1,u,2,5>, RHS
+ 2726768644U, // <u,2,5,5>: Cost 3 vsldoi8 <7,0,u,2>, <5,5,5,5>
+ 1192445882U, // <u,2,5,6>: Cost 2 vmrghw RHS, <2,6,3,7>
+ 2266187754U, // <u,2,5,7>: Cost 3 vmrghw RHS, <2,7,0,1>
+ 1213898859U, // <u,2,5,u>: Cost 2 vmrglw <0,u,u,5>, LHS
+ 2634694758U, // <u,2,6,0>: Cost 3 vsldoi4 <2,u,2,6>, LHS
+ 2721460657U, // <u,2,6,1>: Cost 3 vsldoi8 <6,1,u,2>, <6,1,u,2>
+ 2296940136U, // <u,2,6,2>: Cost 3 vmrglw <2,4,u,6>, <2,2,2,2>
+ 1678600122U, // <u,2,6,3>: Cost 2 vsldoi12 LHS, <2,6,3,7>
+ 2634698038U, // <u,2,6,4>: Cost 3 vsldoi4 <2,u,2,6>, RHS
+ 3370682125U, // <u,2,6,5>: Cost 4 vmrglw <2,4,u,6>, <2,4,2,5>
+ 1157056442U, // <u,2,6,6>: Cost 2 vmrghw <2,6,3,7>, <2,6,3,7>
+ 2725442455U, // <u,2,6,7>: Cost 3 vsldoi8 <6,7,u,2>, <6,7,u,2>
+ 1678600167U, // <u,2,6,u>: Cost 2 vsldoi12 LHS, <2,6,u,7>
+ 1653027897U, // <u,2,7,0>: Cost 2 vsldoi8 <7,0,u,2>, <7,0,u,2>
+ 2309554924U, // <u,2,7,1>: Cost 3 vmrglw RHS, <1,0,2,1>
+ 1235813992U, // <u,2,7,2>: Cost 2 vmrglw RHS, <2,2,2,2>
+ 162070630U, // <u,2,7,3>: Cost 1 vmrglw RHS, LHS
+ 2634706230U, // <u,2,7,4>: Cost 3 vsldoi4 <2,u,2,7>, RHS
+ 2309555252U, // <u,2,7,5>: Cost 3 vmrglw RHS, <1,4,2,5>
+ 2309555901U, // <u,2,7,6>: Cost 3 vmrglw RHS, <2,3,2,6>
+ 2309555416U, // <u,2,7,7>: Cost 3 vmrglw RHS, <1,6,2,7>
+ 162070635U, // <u,2,7,u>: Cost 1 vmrglw RHS, LHS
+ 475284130U, // <u,2,u,0>: Cost 1 vsldoi4 LHS, LHS
+ 1549026100U, // <u,2,u,1>: Cost 2 vsldoi4 LHS, <1,1,1,1>
+ 336380006U, // <u,2,u,2>: Cost 1 vspltisw2 LHS
+ 135536742U, // <u,2,u,3>: Cost 1 vmrglw LHS, LHS
+ 475286838U, // <u,2,u,4>: Cost 1 vsldoi4 LHS, RHS
+ 1629141146U, // <u,2,u,5>: Cost 2 vsldoi8 <3,0,u,2>, RHS
+ 1194108858U, // <u,2,u,6>: Cost 2 vmrghw LHS, <2,6,3,7>
+ 1596806138U, // <u,2,u,7>: Cost 2 vsldoi4 LHS, <7,0,1,2>
+ 135536747U, // <u,2,u,u>: Cost 1 vmrglw LHS, LHS
+ 1611890688U, // <u,3,0,0>: Cost 2 vsldoi8 LHS, <0,0,0,0>
+ 538149020U, // <u,3,0,1>: Cost 1 vsldoi8 LHS, LHS
+ 2685632685U, // <u,3,0,2>: Cost 3 vsldoi8 LHS, <0,2,1,2>
+ 2685632764U, // <u,3,0,3>: Cost 3 vsldoi8 LHS, <0,3,1,0>
+ 1611891026U, // <u,3,0,4>: Cost 2 vsldoi8 LHS, <0,4,1,5>
+ 2733408722U, // <u,3,0,5>: Cost 3 vsldoi8 LHS, <0,5,6,7>
+ 2658612153U, // <u,3,0,6>: Cost 3 vsldoi4 <6,u,3,0>, <6,u,3,0>
+ 2289592250U, // <u,3,0,7>: Cost 3 vmrglw <1,2,u,0>, <2,6,3,7>
+ 538149533U, // <u,3,0,u>: Cost 1 vsldoi8 LHS, LHS
+ 1189464214U, // <u,3,1,0>: Cost 2 vmrghw LHS, <3,0,1,2>
+ 1611891508U, // <u,3,1,1>: Cost 2 vsldoi8 LHS, <1,1,1,1>
+ 1611891606U, // <u,3,1,2>: Cost 2 vsldoi8 LHS, <1,2,3,0>
+ 1189464476U, // <u,3,1,3>: Cost 2 vmrghw LHS, <3,3,3,3>
+ 1189464578U, // <u,3,1,4>: Cost 2 vmrghw LHS, <3,4,5,6>
+ 2690278511U, // <u,3,1,5>: Cost 3 vsldoi8 LHS, <1,5,0,1>
+ 2690278607U, // <u,3,1,6>: Cost 3 vsldoi8 LHS, <1,6,1,7>
+ 2287609786U, // <u,3,1,7>: Cost 3 vmrglw <0,u,u,1>, <2,6,3,7>
+ 1611892092U, // <u,3,1,u>: Cost 2 vsldoi8 LHS, <1,u,3,0>
+ 2685634042U, // <u,3,2,0>: Cost 3 vsldoi8 LHS, <2,0,u,0>
+ 2685634079U, // <u,3,2,1>: Cost 3 vsldoi8 LHS, <2,1,3,1>
+ 1611892328U, // <u,3,2,2>: Cost 2 vsldoi8 LHS, <2,2,2,2>
+ 1611892390U, // <u,3,2,3>: Cost 2 vsldoi8 LHS, <2,3,0,1>
+ 2685634371U, // <u,3,2,4>: Cost 3 vsldoi8 LHS, <2,4,u,5>
+ 2685634453U, // <u,3,2,5>: Cost 3 vsldoi8 LHS, <2,5,u,6>
+ 1611892666U, // <u,3,2,6>: Cost 2 vsldoi8 LHS, <2,6,3,7>
+ 2300225466U, // <u,3,2,7>: Cost 3 vmrglw <3,0,u,2>, <2,6,3,7>
+ 1611892795U, // <u,3,2,u>: Cost 2 vsldoi8 LHS, <2,u,0,1>
+ 1209238422U, // <u,3,3,0>: Cost 2 vmrglw LHS, <1,2,3,0>
+ 2282980247U, // <u,3,3,1>: Cost 3 vmrglw LHS, <1,2,3,1>
+ 1561004120U, // <u,3,3,2>: Cost 2 vsldoi4 <2,u,3,3>, <2,u,3,3>
+ 403488870U, // <u,3,3,3>: Cost 1 vspltisw3 LHS
+ 1209238426U, // <u,3,3,4>: Cost 2 vmrglw LHS, <1,2,3,4>
+ 2282980899U, // <u,3,3,5>: Cost 3 vmrglw LHS, <2,1,3,5>
+ 2282985598U, // <u,3,3,6>: Cost 3 vmrglw LHS, <u,5,3,6>
+ 1209239482U, // <u,3,3,7>: Cost 2 vmrglw LHS, <2,6,3,7>
+ 403488870U, // <u,3,3,u>: Cost 1 vspltisw3 LHS
+ 1555038310U, // <u,3,4,0>: Cost 2 vsldoi4 <1,u,3,4>, LHS
+ 1555039616U, // <u,3,4,1>: Cost 2 vsldoi4 <1,u,3,4>, <1,u,3,4>
+ 2628781672U, // <u,3,4,2>: Cost 3 vsldoi4 <1,u,3,4>, <2,2,2,2>
+ 2289624690U, // <u,3,4,3>: Cost 3 vmrglw <1,2,u,4>, <2,2,3,3>
+ 1555041590U, // <u,3,4,4>: Cost 2 vsldoi4 <1,u,3,4>, RHS
+ 538152246U, // <u,3,4,5>: Cost 1 vsldoi8 LHS, RHS
+ 2658644925U, // <u,3,4,6>: Cost 3 vsldoi4 <6,u,3,4>, <6,u,3,4>
+ 2289625018U, // <u,3,4,7>: Cost 3 vmrglw <1,2,u,4>, <2,6,3,7>
+ 538152489U, // <u,3,4,u>: Cost 1 vsldoi8 LHS, RHS
+ 1192446102U, // <u,3,5,0>: Cost 2 vmrghw RHS, <3,0,1,2>
+ 2733411983U, // <u,3,5,1>: Cost 3 vsldoi8 LHS, <5,1,0,1>
+ 2634762330U, // <u,3,5,2>: Cost 3 vsldoi4 <2,u,3,5>, <2,u,3,5>
+ 1192446364U, // <u,3,5,3>: Cost 2 vmrghw RHS, <3,3,3,3>
+ 1192446466U, // <u,3,5,4>: Cost 2 vmrghw RHS, <3,4,5,6>
+ 1659670532U, // <u,3,5,5>: Cost 2 vsldoi8 LHS, <5,5,5,5>
+ 1659670626U, // <u,3,5,6>: Cost 2 vsldoi8 LHS, <5,6,7,0>
+ 2287642554U, // <u,3,5,7>: Cost 3 vmrglw <0,u,u,5>, <2,6,3,7>
+ 1659670788U, // <u,3,5,u>: Cost 2 vsldoi8 LHS, <5,u,7,0>
+ 2634768486U, // <u,3,6,0>: Cost 3 vsldoi4 <2,u,3,6>, LHS
+ 2733412775U, // <u,3,6,1>: Cost 3 vsldoi8 LHS, <6,1,7,1>
+ 1648390659U, // <u,3,6,2>: Cost 2 vsldoi8 <6,2,u,3>, <6,2,u,3>
+ 2634770973U, // <u,3,6,3>: Cost 3 vsldoi4 <2,u,3,6>, <3,4,u,6>
+ 2634771766U, // <u,3,6,4>: Cost 3 vsldoi4 <2,u,3,6>, RHS
+ 2733413099U, // <u,3,6,5>: Cost 3 vsldoi8 LHS, <6,5,7,1>
+ 1659671352U, // <u,3,6,6>: Cost 2 vsldoi8 LHS, <6,6,6,6>
+ 1659671374U, // <u,3,6,7>: Cost 2 vsldoi8 LHS, <6,7,0,1>
+ 1652372457U, // <u,3,6,u>: Cost 2 vsldoi8 <6,u,u,3>, <6,u,u,3>
+ 1561034854U, // <u,3,7,0>: Cost 2 vsldoi4 <2,u,3,7>, LHS
+ 2634777396U, // <u,3,7,1>: Cost 3 vsldoi4 <2,u,3,7>, <1,1,1,1>
+ 1561036892U, // <u,3,7,2>: Cost 2 vsldoi4 <2,u,3,7>, <2,u,3,7>
+ 1235814002U, // <u,3,7,3>: Cost 2 vmrglw RHS, <2,2,3,3>
+ 1561038134U, // <u,3,7,4>: Cost 2 vsldoi4 <2,u,3,7>, RHS
+ 2309555747U, // <u,3,7,5>: Cost 3 vmrglw RHS, <2,1,3,5>
+ 2309556072U, // <u,3,7,6>: Cost 3 vmrglw RHS, <2,5,3,6>
+ 1235814330U, // <u,3,7,7>: Cost 2 vmrglw RHS, <2,6,3,7>
+ 1561040686U, // <u,3,7,u>: Cost 2 vsldoi4 <2,u,3,7>, LHS
+ 1611896531U, // <u,3,u,0>: Cost 2 vsldoi8 LHS, <u,0,1,2>
+ 538154798U, // <u,3,u,1>: Cost 1 vsldoi8 LHS, LHS
+ 1611896712U, // <u,3,u,2>: Cost 2 vsldoi8 LHS, <u,2,3,3>
+ 403488870U, // <u,3,u,3>: Cost 1 vspltisw3 LHS
+ 1611896895U, // <u,3,u,4>: Cost 2 vsldoi8 LHS, <u,4,5,6>
+ 538155162U, // <u,3,u,5>: Cost 1 vsldoi8 LHS, RHS
+ 1611897040U, // <u,3,u,6>: Cost 2 vsldoi8 LHS, <u,6,3,7>
+ 1209280442U, // <u,3,u,7>: Cost 2 vmrglw LHS, <2,6,3,7>
+ 538155365U, // <u,3,u,u>: Cost 1 vsldoi8 LHS, LHS
+ 1165118354U, // <u,4,0,0>: Cost 2 vmrghw <4,0,5,1>, <4,0,5,1>
+ 1618534502U, // <u,4,0,1>: Cost 2 vsldoi8 <1,2,u,4>, LHS
+ 2634795102U, // <u,4,0,2>: Cost 3 vsldoi4 <2,u,4,0>, <2,u,4,0>
+ 2686451968U, // <u,4,0,3>: Cost 3 vsldoi8 <0,3,1,4>, <0,3,1,4>
+ 2692276562U, // <u,4,0,4>: Cost 3 vsldoi8 <1,2,u,4>, <0,4,1,5>
+ 1705438098U, // <u,4,0,5>: Cost 2 vsldoi12 RHS, <4,0,5,1>
+ 2658685890U, // <u,4,0,6>: Cost 3 vsldoi4 <6,u,4,0>, <6,u,4,0>
+ 2256489928U, // <u,4,0,7>: Cost 3 vmrghw <7,0,1,2>, <4,7,5,0>
+ 1618535069U, // <u,4,0,u>: Cost 2 vsldoi8 <1,2,u,4>, LHS
+ 1189464978U, // <u,4,1,0>: Cost 2 vmrghw LHS, <4,0,5,1>
+ 2692277044U, // <u,4,1,1>: Cost 3 vsldoi8 <1,2,u,4>, <1,1,1,1>
+ 1618535367U, // <u,4,1,2>: Cost 2 vsldoi8 <1,2,u,4>, <1,2,u,4>
+ 2640775992U, // <u,4,1,3>: Cost 3 vsldoi4 <3,u,4,1>, <3,u,4,1>
+ 1189465296U, // <u,4,1,4>: Cost 2 vmrghw LHS, <4,4,4,4>
+ 115723574U, // <u,4,1,5>: Cost 1 vmrghw LHS, RHS
+ 2263207289U, // <u,4,1,6>: Cost 3 vmrghw LHS, <4,6,5,2>
+ 2664666780U, // <u,4,1,7>: Cost 3 vsldoi4 <7,u,4,1>, <7,u,4,1>
+ 115723817U, // <u,4,1,u>: Cost 1 vmrghw LHS, RHS
+ 2263919506U, // <u,4,2,0>: Cost 3 vmrghw <u,2,3,0>, <4,0,5,1>
+ 2222115812U, // <u,4,2,1>: Cost 3 vmrghw <1,2,3,0>, <4,1,5,2>
+ 2692277864U, // <u,4,2,2>: Cost 3 vsldoi8 <1,2,u,4>, <2,2,2,2>
+ 2692277926U, // <u,4,2,3>: Cost 3 vsldoi8 <1,2,u,4>, <2,3,0,1>
+ 2324114640U, // <u,4,2,4>: Cost 3 vmrglw <7,0,u,2>, <4,4,4,4>
+ 1190178102U, // <u,4,2,5>: Cost 2 vmrghw <u,2,3,0>, RHS
+ 2692278202U, // <u,4,2,6>: Cost 3 vsldoi8 <1,2,u,4>, <2,6,3,7>
+ 2701568053U, // <u,4,2,7>: Cost 3 vsldoi8 <2,7,u,4>, <2,7,u,4>
+ 1190178345U, // <u,4,2,u>: Cost 2 vmrghw <u,2,3,0>, RHS
+ 2692278422U, // <u,4,3,0>: Cost 3 vsldoi8 <1,2,u,4>, <3,0,1,2>
+ 2282981552U, // <u,4,3,1>: Cost 3 vmrglw LHS, <3,0,4,1>
+ 2704222585U, // <u,4,3,2>: Cost 3 vsldoi8 <3,2,u,4>, <3,2,u,4>
+ 2692278684U, // <u,4,3,3>: Cost 3 vsldoi8 <1,2,u,4>, <3,3,3,3>
+ 1257016528U, // <u,4,3,4>: Cost 2 vmrglw LHS, <4,4,4,4>
+ 1209239246U, // <u,4,3,5>: Cost 2 vmrglw LHS, <2,3,4,5>
+ 2691910300U, // <u,4,3,6>: Cost 3 vsldoi8 <1,2,3,4>, <3,6,4,7>
+ 2664683166U, // <u,4,3,7>: Cost 3 vsldoi4 <7,u,4,3>, <7,u,4,3>
+ 1209239249U, // <u,4,3,u>: Cost 2 vmrglw LHS, <2,3,4,u>
+ 1573027942U, // <u,4,4,0>: Cost 2 vsldoi4 <4,u,4,4>, LHS
+ 2634826695U, // <u,4,4,1>: Cost 3 vsldoi4 <2,u,4,4>, <1,2,u,4>
+ 2634827874U, // <u,4,4,2>: Cost 3 vsldoi4 <2,u,4,4>, <2,u,4,4>
+ 2289629073U, // <u,4,4,3>: Cost 3 vmrglw <1,2,u,4>, <u,2,4,3>
+ 229035318U, // <u,4,4,4>: Cost 1 vspltisw0 RHS
+ 1618537782U, // <u,4,4,5>: Cost 2 vsldoi8 <1,2,u,4>, RHS
+ 2658718662U, // <u,4,4,6>: Cost 3 vsldoi4 <6,u,4,4>, <6,u,4,4>
+ 2289629401U, // <u,4,4,7>: Cost 3 vmrglw <1,2,u,4>, <u,6,4,7>
+ 229035318U, // <u,4,4,u>: Cost 1 vspltisw0 RHS
+ 1561092198U, // <u,4,5,0>: Cost 2 vsldoi4 <2,u,4,5>, LHS
+ 2628863370U, // <u,4,5,1>: Cost 3 vsldoi4 <1,u,4,5>, <1,u,4,5>
+ 1561094243U, // <u,4,5,2>: Cost 2 vsldoi4 <2,u,4,5>, <2,u,4,5>
+ 2634836118U, // <u,4,5,3>: Cost 3 vsldoi4 <2,u,4,5>, <3,0,1,2>
+ 1561095478U, // <u,4,5,4>: Cost 2 vsldoi4 <2,u,4,5>, RHS
+ 118705462U, // <u,4,5,5>: Cost 1 vmrghw RHS, RHS
+ 604859702U, // <u,4,5,6>: Cost 1 vsldoi12 LHS, RHS
+ 2658726906U, // <u,4,5,7>: Cost 3 vsldoi4 <6,u,4,5>, <7,0,1,2>
+ 604859720U, // <u,4,5,u>: Cost 1 vsldoi12 LHS, RHS
+ 2266631058U, // <u,4,6,0>: Cost 3 vmrghw <u,6,3,7>, <4,0,5,1>
+ 2302692152U, // <u,4,6,1>: Cost 3 vmrglw <3,4,5,6>, <3,u,4,1>
+ 2718822906U, // <u,4,6,2>: Cost 3 vsldoi8 <5,6,u,4>, <6,2,7,3>
+ 2722804309U, // <u,4,6,3>: Cost 3 vsldoi8 <6,3,u,4>, <6,3,u,4>
+ 2723467942U, // <u,4,6,4>: Cost 3 vsldoi8 <6,4,u,4>, <6,4,u,4>
+ 1192889654U, // <u,4,6,5>: Cost 2 vmrghw <u,6,3,7>, RHS
+ 2718823224U, // <u,4,6,6>: Cost 3 vsldoi8 <5,6,u,4>, <6,6,6,6>
+ 2718823246U, // <u,4,6,7>: Cost 3 vsldoi8 <5,6,u,4>, <6,7,0,1>
+ 1192889897U, // <u,4,6,u>: Cost 2 vmrghw <u,6,3,7>, RHS
+ 2640822374U, // <u,4,7,0>: Cost 3 vsldoi4 <3,u,4,7>, LHS
+ 2640823194U, // <u,4,7,1>: Cost 3 vsldoi4 <3,u,4,7>, <1,2,3,4>
+ 2728113373U, // <u,4,7,2>: Cost 3 vsldoi8 <7,2,u,4>, <7,2,u,4>
+ 2640825150U, // <u,4,7,3>: Cost 3 vsldoi4 <3,u,4,7>, <3,u,4,7>
+ 1235815632U, // <u,4,7,4>: Cost 2 vmrglw RHS, <4,4,4,4>
+ 1235814094U, // <u,4,7,5>: Cost 2 vmrglw RHS, <2,3,4,5>
+ 2730767905U, // <u,4,7,6>: Cost 3 vsldoi8 <7,6,u,4>, <7,6,u,4>
+ 2309556892U, // <u,4,7,7>: Cost 3 vmrglw RHS, <3,6,4,7>
+ 1235814097U, // <u,4,7,u>: Cost 2 vmrglw RHS, <2,3,4,u>
+ 1561116774U, // <u,4,u,0>: Cost 2 vsldoi4 <2,u,4,u>, LHS
+ 1618540334U, // <u,4,u,1>: Cost 2 vsldoi8 <1,2,u,4>, LHS
+ 1561118822U, // <u,4,u,2>: Cost 2 vsldoi4 <2,u,4,u>, <2,u,4,u>
+ 2692282300U, // <u,4,u,3>: Cost 3 vsldoi8 <1,2,u,4>, <u,3,0,1>
+ 229035318U, // <u,4,u,4>: Cost 1 vspltisw0 RHS
+ 120368438U, // <u,4,u,5>: Cost 1 vmrghw LHS, RHS
+ 604859945U, // <u,4,u,6>: Cost 1 vsldoi12 LHS, RHS
+ 2309565084U, // <u,4,u,7>: Cost 3 vmrglw RHS, <3,6,4,7>
+ 604859963U, // <u,4,u,u>: Cost 1 vsldoi12 LHS, RHS
+ 2690293760U, // <u,5,0,0>: Cost 3 vsldoi8 <0,u,u,5>, <0,0,0,0>
+ 1616552038U, // <u,5,0,1>: Cost 2 vsldoi8 <0,u,u,5>, LHS
+ 2640840434U, // <u,5,0,2>: Cost 3 vsldoi4 <3,u,5,0>, <2,3,u,5>
+ 2640841536U, // <u,5,0,3>: Cost 3 vsldoi4 <3,u,5,0>, <3,u,5,0>
+ 1613381970U, // <u,5,0,4>: Cost 2 vsldoi8 <0,4,1,5>, <0,4,1,5>
+ 2316135642U, // <u,5,0,5>: Cost 3 vmrglw <5,6,u,0>, <4,4,5,5>
+ 2289592834U, // <u,5,0,6>: Cost 3 vmrglw <1,2,u,0>, <3,4,5,6>
+ 2664732324U, // <u,5,0,7>: Cost 3 vsldoi4 <7,u,5,0>, <7,u,5,0>
+ 1616552661U, // <u,5,0,u>: Cost 2 vsldoi8 <0,u,u,5>, <0,u,u,5>
+ 1573077094U, // <u,5,1,0>: Cost 2 vsldoi4 <4,u,5,1>, LHS
+ 1237536282U, // <u,5,1,1>: Cost 2 vmrglw <4,u,5,1>, <4,u,5,1>
+ 2690294678U, // <u,5,1,2>: Cost 3 vsldoi8 <0,u,u,5>, <1,2,3,0>
+ 2646821014U, // <u,5,1,3>: Cost 3 vsldoi4 <4,u,5,1>, <3,0,1,2>
+ 1573080602U, // <u,5,1,4>: Cost 2 vsldoi4 <4,u,5,1>, <4,u,5,1>
+ 1189466116U, // <u,5,1,5>: Cost 2 vmrghw LHS, <5,5,5,5>
+ 1189466210U, // <u,5,1,6>: Cost 2 vmrghw LHS, <5,6,7,0>
+ 2646823930U, // <u,5,1,7>: Cost 3 vsldoi4 <4,u,5,1>, <7,0,1,2>
+ 1573082926U, // <u,5,1,u>: Cost 2 vsldoi4 <4,u,5,1>, LHS
+ 2640855142U, // <u,5,2,0>: Cost 3 vsldoi4 <3,u,5,2>, LHS
+ 2697594448U, // <u,5,2,1>: Cost 3 vsldoi8 <2,1,u,5>, <2,1,u,5>
+ 2690295400U, // <u,5,2,2>: Cost 3 vsldoi8 <0,u,u,5>, <2,2,2,2>
+ 1625179890U, // <u,5,2,3>: Cost 2 vsldoi8 <2,3,u,5>, <2,3,u,5>
+ 2699585347U, // <u,5,2,4>: Cost 3 vsldoi8 <2,4,u,5>, <2,4,u,5>
+ 2781171471U, // <u,5,2,5>: Cost 3 vsldoi12 RHS, <5,2,5,3>
+ 2690295738U, // <u,5,2,6>: Cost 3 vsldoi8 <0,u,u,5>, <2,6,3,7>
+ 3775318070U, // <u,5,2,7>: Cost 4 vsldoi8 <2,7,u,5>, <2,7,u,5>
+ 1628498055U, // <u,5,2,u>: Cost 2 vsldoi8 <2,u,u,5>, <2,u,u,5>
+ 2287627234U, // <u,5,3,0>: Cost 3 vmrglw LHS, <4,1,5,0>
+ 1257016210U, // <u,5,3,1>: Cost 2 vmrglw LHS, <4,0,5,1>
+ 2646836942U, // <u,5,3,2>: Cost 3 vsldoi4 <4,u,5,3>, <2,3,4,5>
+ 2287625131U, // <u,5,3,3>: Cost 3 vmrglw LHS, <1,2,5,3>
+ 2287627238U, // <u,5,3,4>: Cost 3 vmrglw LHS, <4,1,5,4>
+ 1257016538U, // <u,5,3,5>: Cost 2 vmrglw LHS, <4,4,5,5>
+ 1209240066U, // <u,5,3,6>: Cost 2 vmrglw LHS, <3,4,5,6>
+ 2287625459U, // <u,5,3,7>: Cost 3 vmrglw LHS, <1,6,5,7>
+ 1209240068U, // <u,5,3,u>: Cost 2 vmrglw LHS, <3,4,5,u>
+ 2640871526U, // <u,5,4,0>: Cost 3 vsldoi4 <3,u,5,4>, LHS
+ 2316168082U, // <u,5,4,1>: Cost 3 vmrglw <5,6,u,4>, <4,0,5,1>
+ 2640873202U, // <u,5,4,2>: Cost 3 vsldoi4 <3,u,5,4>, <2,3,u,5>
+ 2640874308U, // <u,5,4,3>: Cost 3 vsldoi4 <3,u,5,4>, <3,u,5,4>
+ 1637788917U, // <u,5,4,4>: Cost 2 vsldoi8 <4,4,u,5>, <4,4,u,5>
+ 1616555318U, // <u,5,4,5>: Cost 2 vsldoi8 <0,u,u,5>, RHS
+ 2287638591U, // <u,5,4,6>: Cost 3 vmrglw <0,u,u,4>, <u,4,5,6>
+ 2664765096U, // <u,5,4,7>: Cost 3 vsldoi4 <7,u,5,4>, <7,u,5,4>
+ 1616555561U, // <u,5,4,u>: Cost 2 vsldoi8 <0,u,u,5>, RHS
+ 1573109862U, // <u,5,5,0>: Cost 2 vsldoi4 <4,u,5,5>, LHS
+ 2646852404U, // <u,5,5,1>: Cost 3 vsldoi4 <4,u,5,5>, <1,1,1,1>
+ 2646853224U, // <u,5,5,2>: Cost 3 vsldoi4 <4,u,5,5>, <2,2,2,2>
+ 2287646618U, // <u,5,5,3>: Cost 3 vmrglw <0,u,u,5>, <u,2,5,3>
+ 1573113374U, // <u,5,5,4>: Cost 2 vsldoi4 <4,u,5,5>, <4,u,5,5>
+ 296144182U, // <u,5,5,5>: Cost 1 vspltisw1 RHS
+ 1192448098U, // <u,5,5,6>: Cost 2 vmrghw RHS, <5,6,7,0>
+ 2287646946U, // <u,5,5,7>: Cost 3 vmrglw <0,u,u,5>, <u,6,5,7>
+ 296144182U, // <u,5,5,u>: Cost 1 vspltisw1 RHS
+ 1567146086U, // <u,5,6,0>: Cost 2 vsldoi4 <3,u,5,6>, LHS
+ 2628945300U, // <u,5,6,1>: Cost 3 vsldoi4 <1,u,5,6>, <1,u,5,6>
+ 2634917997U, // <u,5,6,2>: Cost 3 vsldoi4 <2,u,5,6>, <2,u,5,6>
+ 1567148870U, // <u,5,6,3>: Cost 2 vsldoi4 <3,u,5,6>, <3,u,5,6>
+ 1567149366U, // <u,5,6,4>: Cost 2 vsldoi4 <3,u,5,6>, RHS
+ 2781171799U, // <u,5,6,5>: Cost 3 vsldoi12 RHS, <5,6,5,7>
+ 1228950018U, // <u,5,6,6>: Cost 2 vmrglw <3,4,5,6>, <3,4,5,6>
+ 27705344U, // <u,5,6,7>: Cost 0 copy RHS
+ 27705344U, // <u,5,6,u>: Cost 0 copy RHS
+ 2628952166U, // <u,5,7,0>: Cost 3 vsldoi4 <1,u,5,7>, LHS
+ 1235815314U, // <u,5,7,1>: Cost 2 vmrglw RHS, <4,0,5,1>
+ 2309556734U, // <u,5,7,2>: Cost 3 vmrglw RHS, <3,4,5,2>
+ 2309555115U, // <u,5,7,3>: Cost 3 vmrglw RHS, <1,2,5,3>
+ 2628955446U, // <u,5,7,4>: Cost 3 vsldoi4 <1,u,5,7>, RHS
+ 1235815642U, // <u,5,7,5>: Cost 2 vmrglw RHS, <4,4,5,5>
+ 1235814914U, // <u,5,7,6>: Cost 2 vmrglw RHS, <3,4,5,6>
+ 2309555443U, // <u,5,7,7>: Cost 3 vmrglw RHS, <1,6,5,7>
+ 1235814916U, // <u,5,7,u>: Cost 2 vmrglw RHS, <3,4,5,u>
+ 1567162470U, // <u,5,u,0>: Cost 2 vsldoi4 <3,u,5,u>, LHS
+ 1616557870U, // <u,5,u,1>: Cost 2 vsldoi8 <0,u,u,5>, LHS
+ 2690299781U, // <u,5,u,2>: Cost 3 vsldoi8 <0,u,u,5>, <u,2,3,0>
+ 1567165256U, // <u,5,u,3>: Cost 2 vsldoi4 <3,u,5,u>, <3,u,5,u>
+ 1567165750U, // <u,5,u,4>: Cost 2 vsldoi4 <3,u,5,u>, RHS
+ 296144182U, // <u,5,u,5>: Cost 1 vspltisw1 RHS
+ 1209281026U, // <u,5,u,6>: Cost 2 vmrglw LHS, <3,4,5,6>
+ 27705344U, // <u,5,u,7>: Cost 0 copy RHS
+ 27705344U, // <u,5,u,u>: Cost 0 copy RHS
+ 2705563648U, // <u,6,0,0>: Cost 3 vsldoi8 <3,4,u,6>, <0,0,0,0>
+ 1631821926U, // <u,6,0,1>: Cost 2 vsldoi8 <3,4,u,6>, LHS
+ 2262462970U, // <u,6,0,2>: Cost 3 vmrghw <u,0,1,2>, <6,2,7,3>
+ 2646886941U, // <u,6,0,3>: Cost 3 vsldoi4 <4,u,6,0>, <3,4,u,6>
+ 2705563986U, // <u,6,0,4>: Cost 3 vsldoi8 <3,4,u,6>, <0,4,1,5>
+ 2316062652U, // <u,6,0,5>: Cost 3 vmrglw <5,6,7,0>, <5,4,6,5>
+ 2316137272U, // <u,6,0,6>: Cost 3 vmrglw <5,6,u,0>, <6,6,6,6>
+ 1215851830U, // <u,6,0,7>: Cost 2 vmrglw <1,2,u,0>, RHS
+ 1215851831U, // <u,6,0,u>: Cost 2 vmrglw <1,2,u,0>, RHS
+ 2634948710U, // <u,6,1,0>: Cost 3 vsldoi4 <2,u,6,1>, LHS
+ 2705564468U, // <u,6,1,1>: Cost 3 vsldoi8 <3,4,u,6>, <1,1,1,1>
+ 1189466618U, // <u,6,1,2>: Cost 2 vmrghw LHS, <6,2,7,3>
+ 2263208498U, // <u,6,1,3>: Cost 3 vmrghw LHS, <6,3,4,5>
+ 2693620843U, // <u,6,1,4>: Cost 3 vsldoi8 <1,4,u,6>, <1,4,u,6>
+ 2652868860U, // <u,6,1,5>: Cost 3 vsldoi4 <5,u,6,1>, <5,u,6,1>
+ 1189466936U, // <u,6,1,6>: Cost 2 vmrghw LHS, <6,6,6,6>
+ 1213869366U, // <u,6,1,7>: Cost 2 vmrglw <0,u,u,1>, RHS
+ 1213869367U, // <u,6,1,u>: Cost 2 vmrglw <0,u,u,1>, RHS
+ 2658844774U, // <u,6,2,0>: Cost 3 vsldoi4 <6,u,6,2>, LHS
+ 3771344465U, // <u,6,2,1>: Cost 4 vsldoi8 <2,1,u,6>, <2,1,u,6>
+ 1178554874U, // <u,6,2,2>: Cost 2 vmrghw <6,2,7,3>, <6,2,7,3>
+ 2698929907U, // <u,6,2,3>: Cost 3 vsldoi8 <2,3,u,6>, <2,3,u,6>
+ 2699593540U, // <u,6,2,4>: Cost 3 vsldoi8 <2,4,u,6>, <2,4,u,6>
+ 2700257173U, // <u,6,2,5>: Cost 3 vsldoi8 <2,5,u,6>, <2,5,u,6>
+ 2705565626U, // <u,6,2,6>: Cost 3 vsldoi8 <3,4,u,6>, <2,6,3,7>
+ 1226485046U, // <u,6,2,7>: Cost 2 vmrglw <3,0,u,2>, RHS
+ 1226485047U, // <u,6,2,u>: Cost 2 vmrglw <3,0,u,2>, RHS
+ 2705565846U, // <u,6,3,0>: Cost 3 vsldoi8 <3,4,u,6>, <3,0,1,2>
+ 2330756585U, // <u,6,3,1>: Cost 3 vmrglw LHS, <2,0,6,1>
+ 2330756829U, // <u,6,3,2>: Cost 3 vmrglw LHS, <2,3,6,2>
+ 2282981734U, // <u,6,3,3>: Cost 3 vmrglw LHS, <3,2,6,3>
+ 1631824413U, // <u,6,3,4>: Cost 2 vsldoi8 <3,4,u,6>, <3,4,u,6>
+ 2652885246U, // <u,6,3,5>: Cost 3 vsldoi4 <5,u,6,3>, <5,u,6,3>
+ 1257018168U, // <u,6,3,6>: Cost 2 vmrglw LHS, <6,6,6,6>
+ 135499062U, // <u,6,3,7>: Cost 1 vmrglw LHS, RHS
+ 135499063U, // <u,6,3,u>: Cost 1 vmrglw LHS, RHS
+ 2646917222U, // <u,6,4,0>: Cost 3 vsldoi4 <4,u,6,4>, LHS
+ 2217365931U, // <u,6,4,1>: Cost 3 vmrghw <0,4,1,5>, <6,1,7,5>
+ 2790167156U, // <u,6,4,2>: Cost 3 vsldoi12 <6,4,2,u>, <6,4,2,u>
+ 2646919709U, // <u,6,4,3>: Cost 3 vsldoi4 <4,u,6,4>, <3,4,u,6>
+ 2711538934U, // <u,6,4,4>: Cost 3 vsldoi8 <4,4,u,6>, <4,4,u,6>
+ 1631825206U, // <u,6,4,5>: Cost 2 vsldoi8 <3,4,u,6>, RHS
+ 2316170040U, // <u,6,4,6>: Cost 3 vmrglw <5,6,u,4>, <6,6,6,6>
+ 1215884598U, // <u,6,4,7>: Cost 2 vmrglw <1,2,u,4>, RHS
+ 1215884599U, // <u,6,4,u>: Cost 2 vmrglw <1,2,u,4>, RHS
+ 2634981478U, // <u,6,5,0>: Cost 3 vsldoi4 <2,u,6,5>, LHS
+ 2266190247U, // <u,6,5,1>: Cost 3 vmrghw RHS, <6,1,7,1>
+ 1192448506U, // <u,6,5,2>: Cost 2 vmrghw RHS, <6,2,7,3>
+ 2266190386U, // <u,6,5,3>: Cost 3 vmrghw RHS, <6,3,4,5>
+ 2634984758U, // <u,6,5,4>: Cost 3 vsldoi4 <2,u,6,5>, RHS
+ 2652901632U, // <u,6,5,5>: Cost 3 vsldoi4 <5,u,6,5>, <5,u,6,5>
+ 1192448824U, // <u,6,5,6>: Cost 2 vmrghw RHS, <6,6,6,6>
+ 1213902134U, // <u,6,5,7>: Cost 2 vmrglw <0,u,u,5>, RHS
+ 1213902135U, // <u,6,5,u>: Cost 2 vmrglw <0,u,u,5>, RHS
+ 1583808614U, // <u,6,6,0>: Cost 2 vsldoi4 <6,6,6,6>, LHS
+ 2322010445U, // <u,6,6,1>: Cost 3 vmrglw <6,6,6,6>, <6,0,6,1>
+ 2718839290U, // <u,6,6,2>: Cost 3 vsldoi8 <5,6,u,6>, <6,2,7,3>
+ 2670823965U, // <u,6,6,3>: Cost 3 vsldoi4 <u,u,6,6>, <3,4,u,6>
+ 1583811894U, // <u,6,6,4>: Cost 2 vsldoi4 <6,6,6,6>, RHS
+ 2724147961U, // <u,6,6,5>: Cost 3 vsldoi8 <6,5,u,6>, <6,5,u,6>
+ 363253046U, // <u,6,6,6>: Cost 1 vspltisw2 RHS
+ 1229172022U, // <u,6,6,7>: Cost 2 vmrglw <3,4,u,6>, RHS
+ 363253046U, // <u,6,6,u>: Cost 1 vspltisw2 RHS
+ 499458150U, // <u,6,7,0>: Cost 1 vsldoi4 RHS, LHS
+ 1573200692U, // <u,6,7,1>: Cost 2 vsldoi4 RHS, <1,1,1,1>
+ 1573201512U, // <u,6,7,2>: Cost 2 vsldoi4 RHS, <2,2,2,2>
+ 1573202070U, // <u,6,7,3>: Cost 2 vsldoi4 RHS, <3,0,1,2>
+ 499461673U, // <u,6,7,4>: Cost 1 vsldoi4 RHS, RHS
+ 1573203972U, // <u,6,7,5>: Cost 2 vsldoi4 RHS, <5,5,5,5>
+ 1235817272U, // <u,6,7,6>: Cost 2 vmrglw RHS, <6,6,6,6>
+ 162073910U, // <u,6,7,7>: Cost 1 vmrglw RHS, RHS
+ 162073911U, // <u,6,7,u>: Cost 1 vmrglw RHS, RHS
+ 499466342U, // <u,6,u,0>: Cost 1 vsldoi4 RHS, LHS
+ 1631827758U, // <u,6,u,1>: Cost 2 vsldoi8 <3,4,u,6>, LHS
+ 1573209704U, // <u,6,u,2>: Cost 2 vsldoi4 RHS, <2,2,2,2>
+ 1573210262U, // <u,6,u,3>: Cost 2 vsldoi4 RHS, <3,0,1,2>
+ 499469866U, // <u,6,u,4>: Cost 1 vsldoi4 RHS, RHS
+ 1631828122U, // <u,6,u,5>: Cost 2 vsldoi8 <3,4,u,6>, RHS
+ 363253046U, // <u,6,u,6>: Cost 1 vspltisw2 RHS
+ 135540022U, // <u,6,u,7>: Cost 1 vmrglw LHS, RHS
+ 135540023U, // <u,6,u,u>: Cost 1 vmrglw LHS, RHS
+ 1638465536U, // <u,7,0,0>: Cost 2 vsldoi8 RHS, <0,0,0,0>
+ 564723814U, // <u,7,0,1>: Cost 1 vsldoi8 RHS, LHS
+ 2712207533U, // <u,7,0,2>: Cost 3 vsldoi8 RHS, <0,2,1,2>
+ 2712207612U, // <u,7,0,3>: Cost 3 vsldoi8 RHS, <0,3,1,0>
+ 1638465874U, // <u,7,0,4>: Cost 2 vsldoi8 RHS, <0,4,1,5>
+ 1579192580U, // <u,7,0,5>: Cost 2 vsldoi4 <5,u,7,0>, <5,u,7,0>
+ 2712207862U, // <u,7,0,6>: Cost 3 vsldoi8 RHS, <0,6,1,7>
+ 2316137282U, // <u,7,0,7>: Cost 3 vmrglw <5,6,u,0>, <6,6,7,7>
+ 564724381U, // <u,7,0,u>: Cost 1 vsldoi8 RHS, LHS
+ 1189467130U, // <u,7,1,0>: Cost 2 vmrghw LHS, <7,0,1,2>
+ 1638466356U, // <u,7,1,1>: Cost 2 vsldoi8 RHS, <1,1,1,1>
+ 1638466454U, // <u,7,1,2>: Cost 2 vsldoi8 RHS, <1,2,3,0>
+ 2311500282U, // <u,7,1,3>: Cost 3 vmrglw <4,u,u,1>, <6,2,7,3>
+ 1189467494U, // <u,7,1,4>: Cost 2 vmrghw LHS, <7,4,5,6>
+ 2712208495U, // <u,7,1,5>: Cost 3 vsldoi8 RHS, <1,5,0,1>
+ 2694956302U, // <u,7,1,6>: Cost 3 vsldoi8 <1,6,u,7>, <1,6,u,7>
+ 1189467756U, // <u,7,1,7>: Cost 2 vmrghw LHS, <7,7,7,7>
+ 1638466940U, // <u,7,1,u>: Cost 2 vsldoi8 RHS, <1,u,3,0>
+ 2712208829U, // <u,7,2,0>: Cost 3 vsldoi8 RHS, <2,0,1,2>
+ 2712208927U, // <u,7,2,1>: Cost 3 vsldoi8 RHS, <2,1,3,1>
+ 1638467176U, // <u,7,2,2>: Cost 2 vsldoi8 RHS, <2,2,2,2>
+ 1638467238U, // <u,7,2,3>: Cost 2 vsldoi8 RHS, <2,3,0,1>
+ 2712209165U, // <u,7,2,4>: Cost 3 vsldoi8 RHS, <2,4,2,5>
+ 2712209256U, // <u,7,2,5>: Cost 3 vsldoi8 RHS, <2,5,3,6>
+ 1627187175U, // <u,7,2,6>: Cost 2 vsldoi8 <2,6,u,7>, <2,6,u,7>
+ 2324116290U, // <u,7,2,7>: Cost 3 vmrglw <7,0,u,2>, <6,6,7,7>
+ 1628514441U, // <u,7,2,u>: Cost 2 vsldoi8 <2,u,u,7>, <2,u,u,7>
+ 1638467734U, // <u,7,3,0>: Cost 2 vsldoi8 RHS, <3,0,1,2>
+ 2712209638U, // <u,7,3,1>: Cost 3 vsldoi8 RHS, <3,1,1,1>
+ 2700929387U, // <u,7,3,2>: Cost 3 vsldoi8 <2,6,u,7>, <3,2,6,u>
+ 1638467996U, // <u,7,3,3>: Cost 2 vsldoi8 RHS, <3,3,3,3>
+ 1638468098U, // <u,7,3,4>: Cost 2 vsldoi8 RHS, <3,4,5,6>
+ 2712210002U, // <u,7,3,5>: Cost 3 vsldoi8 RHS, <3,5,5,5>
+ 1585189856U, // <u,7,3,6>: Cost 2 vsldoi4 <6,u,7,3>, <6,u,7,3>
+ 1257018178U, // <u,7,3,7>: Cost 2 vmrglw LHS, <6,6,7,7>
+ 1638468382U, // <u,7,3,u>: Cost 2 vsldoi8 RHS, <3,u,1,2>
+ 1638468498U, // <u,7,4,0>: Cost 2 vsldoi8 RHS, <4,0,5,1>
+ 2712210378U, // <u,7,4,1>: Cost 3 vsldoi8 RHS, <4,1,2,3>
+ 2712210485U, // <u,7,4,2>: Cost 3 vsldoi8 RHS, <4,2,5,2>
+ 2712210564U, // <u,7,4,3>: Cost 3 vsldoi8 RHS, <4,3,5,0>
+ 1638468816U, // <u,7,4,4>: Cost 2 vsldoi8 RHS, <4,4,4,4>
+ 564727112U, // <u,7,4,5>: Cost 1 vsldoi8 RHS, RHS
+ 2712210809U, // <u,7,4,6>: Cost 3 vsldoi8 RHS, <4,6,5,2>
+ 2712210888U, // <u,7,4,7>: Cost 3 vsldoi8 RHS, <4,7,5,0>
+ 564727337U, // <u,7,4,u>: Cost 1 vsldoi8 RHS, RHS
+ 1192449018U, // <u,7,5,0>: Cost 2 vmrghw RHS, <7,0,1,2>
+ 2714201743U, // <u,7,5,1>: Cost 3 vsldoi8 RHS, <5,1,0,1>
+ 2712211198U, // <u,7,5,2>: Cost 3 vsldoi8 RHS, <5,2,3,4>
+ 2311533050U, // <u,7,5,3>: Cost 3 vmrglw <4,u,u,5>, <6,2,7,3>
+ 1192449382U, // <u,7,5,4>: Cost 2 vmrghw RHS, <7,4,5,6>
+ 1638469636U, // <u,7,5,5>: Cost 2 vsldoi8 RHS, <5,5,5,5>
+ 1638469730U, // <u,7,5,6>: Cost 2 vsldoi8 RHS, <5,6,7,0>
+ 1192449644U, // <u,7,5,7>: Cost 2 vmrghw RHS, <7,7,7,7>
+ 1638469892U, // <u,7,5,u>: Cost 2 vsldoi8 RHS, <5,u,7,0>
+ 2712211745U, // <u,7,6,0>: Cost 3 vsldoi8 RHS, <6,0,1,2>
+ 2712211879U, // <u,7,6,1>: Cost 3 vsldoi8 RHS, <6,1,7,1>
+ 1638470138U, // <u,7,6,2>: Cost 2 vsldoi8 RHS, <6,2,7,3>
+ 2712212018U, // <u,7,6,3>: Cost 3 vsldoi8 RHS, <6,3,4,5>
+ 2712212109U, // <u,7,6,4>: Cost 3 vsldoi8 RHS, <6,4,5,6>
+ 2712212203U, // <u,7,6,5>: Cost 3 vsldoi8 RHS, <6,5,7,1>
+ 1638470456U, // <u,7,6,6>: Cost 2 vsldoi8 RHS, <6,6,6,6>
+ 1638470478U, // <u,7,6,7>: Cost 2 vsldoi8 RHS, <6,7,0,1>
+ 1638470559U, // <u,7,6,u>: Cost 2 vsldoi8 RHS, <6,u,0,1>
+ 1235816546U, // <u,7,7,0>: Cost 2 vmrglw RHS, <5,6,7,0>
+ 2309558371U, // <u,7,7,1>: Cost 3 vmrglw RHS, <5,6,7,1>
+ 2641045434U, // <u,7,7,2>: Cost 3 vsldoi4 <3,u,7,7>, <2,6,3,7>
+ 1235816954U, // <u,7,7,3>: Cost 2 vmrglw RHS, <6,2,7,3>
+ 1235816550U, // <u,7,7,4>: Cost 2 vmrglw RHS, <5,6,7,4>
+ 2309558375U, // <u,7,7,5>: Cost 3 vmrglw RHS, <5,6,7,5>
+ 1585222628U, // <u,7,7,6>: Cost 2 vsldoi4 <6,u,7,7>, <6,u,7,7>
+ 430361910U, // <u,7,7,7>: Cost 1 vspltisw3 RHS
+ 430361910U, // <u,7,7,u>: Cost 1 vspltisw3 RHS
+ 1638471379U, // <u,7,u,0>: Cost 2 vsldoi8 RHS, <u,0,1,2>
+ 564729646U, // <u,7,u,1>: Cost 1 vsldoi8 RHS, LHS
+ 1638471557U, // <u,7,u,2>: Cost 2 vsldoi8 RHS, <u,2,3,0>
+ 1638471612U, // <u,7,u,3>: Cost 2 vsldoi8 RHS, <u,3,0,1>
+ 1638471743U, // <u,7,u,4>: Cost 2 vsldoi8 RHS, <u,4,5,6>
+ 564730010U, // <u,7,u,5>: Cost 1 vsldoi8 RHS, RHS
+ 1638471888U, // <u,7,u,6>: Cost 2 vsldoi8 RHS, <u,6,3,7>
+ 430361910U, // <u,7,u,7>: Cost 1 vspltisw3 RHS
+ 564730213U, // <u,7,u,u>: Cost 1 vsldoi8 RHS, LHS
+ 202162278U, // <u,u,0,0>: Cost 1 vspltisw0 LHS
+ 538189985U, // <u,u,0,1>: Cost 1 vsldoi8 LHS, LHS
+ 2685673645U, // <u,u,0,2>: Cost 3 vsldoi8 LHS, <0,2,1,2>
+ 1215848604U, // <u,u,0,3>: Cost 2 vmrglw <1,2,u,0>, LHS
+ 1611931986U, // <u,u,0,4>: Cost 2 vsldoi8 LHS, <0,4,1,5>
+ 1579266317U, // <u,u,0,5>: Cost 2 vsldoi4 <5,u,u,0>, <5,u,u,0>
+ 2289592861U, // <u,u,0,6>: Cost 3 vmrglw <1,2,u,0>, <3,4,u,6>
+ 1215851848U, // <u,u,0,7>: Cost 2 vmrglw <1,2,u,0>, RHS
+ 538190493U, // <u,u,0,u>: Cost 1 vsldoi8 LHS, LHS
+ 1549411025U, // <u,u,1,0>: Cost 2 vsldoi4 <0,u,u,1>, <0,u,u,1>
+ 115726126U, // <u,u,1,1>: Cost 1 vmrghw LHS, LHS
+ 604862254U, // <u,u,1,2>: Cost 1 vsldoi12 LHS, LHS
+ 1213866140U, // <u,u,1,3>: Cost 2 vmrglw <0,u,u,1>, LHS
+ 1549413686U, // <u,u,1,4>: Cost 2 vsldoi4 <0,u,u,1>, RHS
+ 115726490U, // <u,u,1,5>: Cost 1 vmrghw LHS, RHS
+ 1585247207U, // <u,u,1,6>: Cost 2 vsldoi4 <6,u,u,1>, <6,u,u,1>
+ 1213869384U, // <u,u,1,7>: Cost 2 vmrglw <0,u,u,1>, RHS
+ 604862308U, // <u,u,1,u>: Cost 1 vsldoi12 LHS, LHS
+ 1567334502U, // <u,u,2,0>: Cost 2 vsldoi4 <3,u,u,2>, LHS
+ 1190180654U, // <u,u,2,1>: Cost 2 vmrghw <u,2,3,0>, LHS
+ 336380006U, // <u,u,2,2>: Cost 1 vspltisw2 LHS
+ 835584U, // <u,u,2,3>: Cost 0 copy LHS
+ 1567337782U, // <u,u,2,4>: Cost 2 vsldoi4 <3,u,u,2>, RHS
+ 1190181018U, // <u,u,2,5>: Cost 2 vmrghw <u,2,3,0>, RHS
+ 1611933626U, // <u,u,2,6>: Cost 2 vsldoi8 LHS, <2,6,3,7>
+ 1226485064U, // <u,u,2,7>: Cost 2 vmrglw <3,0,u,2>, RHS
+ 835584U, // <u,u,2,u>: Cost 0 copy LHS
+ 475685587U, // <u,u,3,0>: Cost 1 vsldoi4 LHS, LHS
+ 1209239278U, // <u,u,3,1>: Cost 2 vmrglw LHS, <2,3,u,1>
+ 1209239765U, // <u,u,3,2>: Cost 2 vmrglw LHS, <3,0,u,2>
+ 135495836U, // <u,u,3,3>: Cost 1 vmrglw LHS, LHS
+ 475688246U, // <u,u,3,4>: Cost 1 vsldoi4 LHS, RHS
+ 1209239282U, // <u,u,3,5>: Cost 2 vmrglw LHS, <2,3,u,5>
+ 1209240093U, // <u,u,3,6>: Cost 2 vmrglw LHS, <3,4,u,6>
+ 135499080U, // <u,u,3,7>: Cost 1 vmrglw LHS, RHS
+ 135495841U, // <u,u,3,u>: Cost 1 vmrglw LHS, LHS
+ 1555406950U, // <u,u,4,0>: Cost 2 vsldoi4 <1,u,u,4>, LHS
+ 1555408301U, // <u,u,4,1>: Cost 2 vsldoi4 <1,u,u,4>, <1,u,u,4>
+ 2289625301U, // <u,u,4,2>: Cost 3 vmrglw <1,2,u,4>, <3,0,u,2>
+ 1215881372U, // <u,u,4,3>: Cost 2 vmrglw <1,2,u,4>, LHS
+ 229035318U, // <u,u,4,4>: Cost 1 vspltisw0 RHS
+ 538193206U, // <u,u,4,5>: Cost 1 vsldoi8 LHS, RHS
+ 2289625629U, // <u,u,4,6>: Cost 3 vmrglw <1,2,u,4>, <3,4,u,6>
+ 1215884616U, // <u,u,4,7>: Cost 2 vmrglw <1,2,u,4>, RHS
+ 538193449U, // <u,u,4,u>: Cost 1 vsldoi8 LHS, RHS
+ 1549443797U, // <u,u,5,0>: Cost 2 vsldoi4 <0,u,u,5>, <0,u,u,5>
+ 118708014U, // <u,u,5,1>: Cost 1 vmrghw RHS, LHS
+ 1561389191U, // <u,u,5,2>: Cost 2 vsldoi4 <2,u,u,5>, <2,u,u,5>
+ 1213898908U, // <u,u,5,3>: Cost 2 vmrglw <0,u,u,5>, LHS
+ 1549446454U, // <u,u,5,4>: Cost 2 vsldoi4 <0,u,u,5>, RHS
+ 118708378U, // <u,u,5,5>: Cost 1 vmrghw RHS, RHS
+ 604862618U, // <u,u,5,6>: Cost 1 vsldoi12 LHS, RHS
+ 1213902152U, // <u,u,5,7>: Cost 2 vmrglw <0,u,u,5>, RHS
+ 604862636U, // <u,u,5,u>: Cost 1 vsldoi12 LHS, RHS
+ 1567367270U, // <u,u,6,0>: Cost 2 vsldoi4 <3,u,u,6>, LHS
+ 1192892206U, // <u,u,6,1>: Cost 2 vmrghw <u,6,3,7>, LHS
+ 1638478330U, // <u,u,6,2>: Cost 2 vsldoi8 RHS, <6,2,7,3>
+ 1679046864U, // <u,u,6,3>: Cost 2 vsldoi12 LHS, <u,6,3,7>
+ 1567370550U, // <u,u,6,4>: Cost 2 vsldoi4 <3,u,u,6>, RHS
+ 1192892570U, // <u,u,6,5>: Cost 2 vmrghw <u,6,3,7>, RHS
+ 363253046U, // <u,u,6,6>: Cost 1 vspltisw2 RHS
+ 27705344U, // <u,u,6,7>: Cost 0 copy RHS
+ 27705344U, // <u,u,6,u>: Cost 0 copy RHS
+ 499605606U, // <u,u,7,0>: Cost 1 vsldoi4 RHS, LHS
+ 1235812425U, // <u,u,7,1>: Cost 2 vmrglw RHS, <0,0,u,1>
+ 1561405577U, // <u,u,7,2>: Cost 2 vsldoi4 <2,u,u,7>, <2,u,u,7>
+ 162070684U, // <u,u,7,3>: Cost 1 vmrglw RHS, LHS
+ 499609147U, // <u,u,7,4>: Cost 1 vsldoi4 RHS, RHS
+ 1235812753U, // <u,u,7,5>: Cost 2 vmrglw RHS, <0,4,u,5>
+ 1235814941U, // <u,u,7,6>: Cost 2 vmrglw RHS, <3,4,u,6>
+ 162073928U, // <u,u,7,7>: Cost 1 vmrglw RHS, RHS
+ 162070689U, // <u,u,7,u>: Cost 1 vmrglw RHS, LHS
+ 475726552U, // <u,u,u,0>: Cost 1 vsldoi4 LHS, LHS
+ 538195758U, // <u,u,u,1>: Cost 1 vsldoi8 LHS, LHS
+ 604862821U, // <u,u,u,2>: Cost 1 vsldoi12 LHS, LHS
+ 835584U, // <u,u,u,3>: Cost 0 copy LHS
+ 475729206U, // <u,u,u,4>: Cost 1 vsldoi4 LHS, RHS
+ 538196122U, // <u,u,u,5>: Cost 1 vsldoi8 LHS, RHS
+ 604862861U, // <u,u,u,6>: Cost 1 vsldoi12 LHS, RHS
+ 27705344U, // <u,u,u,7>: Cost 0 copy RHS
+ 835584U, // <u,u,u,u>: Cost 0 copy LHS
+ 0
+};
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp
new file mode 100644
index 0000000..9895ee6
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp
@@ -0,0 +1,1007 @@
+//===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCRegisterInfo.h"
+#include "PPC.h"
+#include "PPCFrameLowering.h"
+#include "PPCInstrBuilder.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCSubtarget.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include <cstdlib>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "reginfo"
+
+#define GET_REGINFO_TARGET_DESC
+#include "PPCGenRegisterInfo.inc"
+
+static cl::opt<bool>
+EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
+ cl::desc("Enable use of a base pointer for complex stack frames"));
+
+static cl::opt<bool>
+AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
+ cl::desc("Force the use of a base pointer in every function"));
+
+PPCRegisterInfo::PPCRegisterInfo(const PPCSubtarget &ST)
+ : PPCGenRegisterInfo(ST.isPPC64() ? PPC::LR8 : PPC::LR,
+ ST.isPPC64() ? 0 : 1,
+ ST.isPPC64() ? 0 : 1),
+ Subtarget(ST) {
+ ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX;
+ ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX;
+ ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX;
+ ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX;
+ ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX;
+ ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX;
+ ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX;
+ ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
+ ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
+
+ // 64-bit
+ ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
+ ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
+ ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
+ ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
+ ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
+}
+
+/// getPointerRegClass - Return the register class to use to hold pointers.
+/// This is used for addressing modes.
+const TargetRegisterClass *
+PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
+ const {
+ // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
+ // when it checks for ZERO folding.
+ if (Kind == 1) {
+ if (Subtarget.isPPC64())
+ return &PPC::G8RC_NOX0RegClass;
+ return &PPC::GPRC_NOR0RegClass;
+ }
+
+ if (Subtarget.isPPC64())
+ return &PPC::G8RCRegClass;
+ return &PPC::GPRCRegClass;
+}
+
+const MCPhysReg*
+PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ if (Subtarget.isDarwinABI())
+ return Subtarget.isPPC64() ? (Subtarget.hasAltivec() ?
+ CSR_Darwin64_Altivec_SaveList :
+ CSR_Darwin64_SaveList) :
+ (Subtarget.hasAltivec() ?
+ CSR_Darwin32_Altivec_SaveList :
+ CSR_Darwin32_SaveList);
+
+ return Subtarget.isPPC64() ? (Subtarget.hasAltivec() ?
+ CSR_SVR464_Altivec_SaveList :
+ CSR_SVR464_SaveList) :
+ (Subtarget.hasAltivec() ?
+ CSR_SVR432_Altivec_SaveList :
+ CSR_SVR432_SaveList);
+}
+
+const uint32_t*
+PPCRegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
+ if (Subtarget.isDarwinABI())
+ return Subtarget.isPPC64() ? (Subtarget.hasAltivec() ?
+ CSR_Darwin64_Altivec_RegMask :
+ CSR_Darwin64_RegMask) :
+ (Subtarget.hasAltivec() ?
+ CSR_Darwin32_Altivec_RegMask :
+ CSR_Darwin32_RegMask);
+
+ return Subtarget.isPPC64() ? (Subtarget.hasAltivec() ?
+ CSR_SVR464_Altivec_RegMask :
+ CSR_SVR464_RegMask) :
+ (Subtarget.hasAltivec() ?
+ CSR_SVR432_Altivec_RegMask :
+ CSR_SVR432_RegMask);
+}
+
+const uint32_t*
+PPCRegisterInfo::getNoPreservedMask() const {
+ return CSR_NoRegs_RegMask;
+}
+
+BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ BitVector Reserved(getNumRegs());
+ const PPCFrameLowering *PPCFI =
+ static_cast<const PPCFrameLowering*>(MF.getTarget().getFrameLowering());
+
+ // The ZERO register is not really a register, but the representation of r0
+ // when used in instructions that treat r0 as the constant 0.
+ Reserved.set(PPC::ZERO);
+ Reserved.set(PPC::ZERO8);
+
+ // The FP register is also not really a register, but is the representation
+ // of the frame pointer register used by ISD::FRAMEADDR.
+ Reserved.set(PPC::FP);
+ Reserved.set(PPC::FP8);
+
+ // The BP register is also not really a register, but is the representation
+ // of the base pointer register used by setjmp.
+ Reserved.set(PPC::BP);
+ Reserved.set(PPC::BP8);
+
+ // The counter registers must be reserved so that counter-based loops can
+ // be correctly formed (and the mtctr instructions are not DCE'd).
+ Reserved.set(PPC::CTR);
+ Reserved.set(PPC::CTR8);
+
+ Reserved.set(PPC::R1);
+ Reserved.set(PPC::LR);
+ Reserved.set(PPC::LR8);
+ Reserved.set(PPC::RM);
+
+ if (!Subtarget.isDarwinABI() || !Subtarget.hasAltivec())
+ Reserved.set(PPC::VRSAVE);
+
+ // The SVR4 ABI reserves r2 and r13
+ if (Subtarget.isSVR4ABI()) {
+ Reserved.set(PPC::R2); // System-reserved register
+ Reserved.set(PPC::R13); // Small Data Area pointer register
+ }
+
+ // On PPC64, r13 is the thread pointer. Never allocate this register.
+ if (Subtarget.isPPC64()) {
+ Reserved.set(PPC::R13);
+
+ Reserved.set(PPC::X1);
+ Reserved.set(PPC::X13);
+
+ if (PPCFI->needsFP(MF))
+ Reserved.set(PPC::X31);
+
+ if (hasBasePointer(MF))
+ Reserved.set(PPC::X30);
+
+ // The 64-bit SVR4 ABI reserves r2 for the TOC pointer.
+ if (Subtarget.isSVR4ABI()) {
+ Reserved.set(PPC::X2);
+ }
+ }
+
+ if (PPCFI->needsFP(MF))
+ Reserved.set(PPC::R31);
+
+ if (hasBasePointer(MF)) {
+ if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64() &&
+ MF.getTarget().getRelocationModel() == Reloc::PIC_)
+ Reserved.set(PPC::R29);
+ else
+ Reserved.set(PPC::R30);
+ }
+
+ if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64() &&
+ MF.getTarget().getRelocationModel() == Reloc::PIC_)
+ Reserved.set(PPC::R30);
+
+ // Reserve Altivec registers when Altivec is unavailable.
+ if (!Subtarget.hasAltivec())
+ for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(),
+ IE = PPC::VRRCRegClass.end(); I != IE; ++I)
+ Reserved.set(*I);
+
+ return Reserved;
+}
+
+unsigned
+PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const unsigned DefaultSafety = 1;
+
+ switch (RC->getID()) {
+ default:
+ return 0;
+ case PPC::G8RC_NOX0RegClassID:
+ case PPC::GPRC_NOR0RegClassID:
+ case PPC::G8RCRegClassID:
+ case PPC::GPRCRegClassID: {
+ unsigned FP = TFI->hasFP(MF) ? 1 : 0;
+ return 32 - FP - DefaultSafety;
+ }
+ case PPC::F8RCRegClassID:
+ case PPC::F4RCRegClassID:
+ case PPC::VRRCRegClassID:
+ case PPC::VFRCRegClassID:
+ case PPC::VSLRCRegClassID:
+ case PPC::VSHRCRegClassID:
+ return 32 - DefaultSafety;
+ case PPC::VSRCRegClassID:
+ case PPC::VSFRCRegClassID:
+ return 64 - DefaultSafety;
+ case PPC::CRRCRegClassID:
+ return 8 - DefaultSafety;
+ }
+}
+
+const TargetRegisterClass*
+PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC)const {
+ if (Subtarget.hasVSX()) {
+ // With VSX, we can inflate various sub-register classes to the full VSX
+ // register set.
+
+ if (RC == &PPC::F8RCRegClass)
+ return &PPC::VSFRCRegClass;
+ else if (RC == &PPC::VRRCRegClass)
+ return &PPC::VSRCRegClass;
+ }
+
+ return TargetRegisterInfo::getLargestLegalSuperClass(RC);
+}
+
+//===----------------------------------------------------------------------===//
+// Stack Frame Processing methods
+//===----------------------------------------------------------------------===//
+
+/// lowerDynamicAlloc - Generate the code for allocating an object in the
+/// current frame. The sequence of code with be in the general form
+///
+/// addi R0, SP, \#frameSize ; get the address of the previous frame
+/// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size
+/// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
+///
+void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
+ // Get the instruction.
+ MachineInstr &MI = *II;
+ // Get the instruction's basic block.
+ MachineBasicBlock &MBB = *MI.getParent();
+ // Get the basic block's function.
+ MachineFunction &MF = *MBB.getParent();
+ // Get the frame info.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ // Get the instruction info.
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ // Determine whether 64-bit pointers are used.
+ bool LP64 = Subtarget.isPPC64();
+ DebugLoc dl = MI.getDebugLoc();
+
+ // Get the maximum call stack size.
+ unsigned maxCallFrameSize = MFI->getMaxCallFrameSize();
+ // Get the total frame size.
+ unsigned FrameSize = MFI->getStackSize();
+
+ // Get stack alignments.
+ unsigned TargetAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned MaxAlign = MFI->getMaxAlignment();
+ assert((maxCallFrameSize & (MaxAlign-1)) == 0 &&
+ "Maximum call-frame size not sufficiently aligned");
+
+ // Determine the previous frame's address. If FrameSize can't be
+ // represented as 16 bits or we need special alignment, then we load the
+ // previous frame's address from 0(SP). Why not do an addis of the hi?
+ // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
+ // Constructing the constant and adding would take 3 instructions.
+ // Fortunately, a frame greater than 32K is rare.
+ const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
+ const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
+ unsigned Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
+
+ if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
+ BuildMI(MBB, II, dl, TII.get(PPC::ADDI), Reg)
+ .addReg(PPC::R31)
+ .addImm(FrameSize);
+ } else if (LP64) {
+ BuildMI(MBB, II, dl, TII.get(PPC::LD), Reg)
+ .addImm(0)
+ .addReg(PPC::X1);
+ } else {
+ BuildMI(MBB, II, dl, TII.get(PPC::LWZ), Reg)
+ .addImm(0)
+ .addReg(PPC::R1);
+ }
+
+ bool KillNegSizeReg = MI.getOperand(1).isKill();
+ unsigned NegSizeReg = MI.getOperand(1).getReg();
+
+ // Grow the stack and update the stack pointer link, then determine the
+ // address of new allocated space.
+ if (LP64) {
+ if (MaxAlign > TargetAlign) {
+ unsigned UnalNegSizeReg = NegSizeReg;
+ NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
+
+ // Unfortunately, there is no andi, only andi., and we can't insert that
+ // here because we might clobber cr0 while it is live.
+ BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
+ .addImm(~(MaxAlign-1));
+
+ unsigned NegSizeReg1 = NegSizeReg;
+ NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
+ BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
+ .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
+ .addReg(NegSizeReg1, RegState::Kill);
+ KillNegSizeReg = true;
+ }
+
+ BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
+ .addReg(Reg, RegState::Kill)
+ .addReg(PPC::X1)
+ .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
+ BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
+ .addReg(PPC::X1)
+ .addImm(maxCallFrameSize);
+ } else {
+ if (MaxAlign > TargetAlign) {
+ unsigned UnalNegSizeReg = NegSizeReg;
+ NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
+
+ // Unfortunately, there is no andi, only andi., and we can't insert that
+ // here because we might clobber cr0 while it is live.
+ BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
+ .addImm(~(MaxAlign-1));
+
+ unsigned NegSizeReg1 = NegSizeReg;
+ NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
+ BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
+ .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
+ .addReg(NegSizeReg1, RegState::Kill);
+ KillNegSizeReg = true;
+ }
+
+ BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
+ .addReg(Reg, RegState::Kill)
+ .addReg(PPC::R1)
+ .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
+ BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
+ .addReg(PPC::R1)
+ .addImm(maxCallFrameSize);
+ }
+
+ // Discard the DYNALLOC instruction.
+ MBB.erase(II);
+}
+
+/// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
+/// reserving a whole register (R0), we scrounge for one here. This generates
+/// code like this:
+///
+/// mfcr rA ; Move the conditional register into GPR rA.
+/// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
+/// stw rA, FI ; Store rA to the frame.
+///
+void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const {
+ // Get the instruction.
+ MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset>
+ // Get the instruction's basic block.
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ DebugLoc dl = MI.getDebugLoc();
+
+ bool LP64 = Subtarget.isPPC64();
+ const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
+ const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
+
+ unsigned Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
+ unsigned SrcReg = MI.getOperand(0).getReg();
+
+ // We need to store the CR in the low 4-bits of the saved value. First, issue
+ // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
+ BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
+ .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
+
+ // If the saved register wasn't CR0, shift the bits left so that they are in
+ // CR0's slot.
+ if (SrcReg != PPC::CR0) {
+ unsigned Reg1 = Reg;
+ Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
+
+ // rlwinm rA, rA, ShiftBits, 0, 31.
+ BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
+ .addReg(Reg1, RegState::Kill)
+ .addImm(getEncodingValue(SrcReg) * 4)
+ .addImm(0)
+ .addImm(31);
+ }
+
+ addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
+ .addReg(Reg, RegState::Kill),
+ FrameIndex);
+
+ // Discard the pseudo instruction.
+ MBB.erase(II);
+}
+
+void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const {
+ // Get the instruction.
+ MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset>
+ // Get the instruction's basic block.
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ DebugLoc dl = MI.getDebugLoc();
+
+ bool LP64 = Subtarget.isPPC64();
+ const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
+ const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
+
+ unsigned Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
+ unsigned DestReg = MI.getOperand(0).getReg();
+ assert(MI.definesRegister(DestReg) &&
+ "RESTORE_CR does not define its destination");
+
+ addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
+ Reg), FrameIndex);
+
+ // If the reloaded register isn't CR0, shift the bits right so that they are
+ // in the right CR's slot.
+ if (DestReg != PPC::CR0) {
+ unsigned Reg1 = Reg;
+ Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
+
+ unsigned ShiftBits = getEncodingValue(DestReg)*4;
+ // rlwinm r11, r11, 32-ShiftBits, 0, 31.
+ BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
+ .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
+ .addImm(31);
+ }
+
+ BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
+ .addReg(Reg, RegState::Kill);
+
+ // Discard the pseudo instruction.
+ MBB.erase(II);
+}
+
+static unsigned getCRFromCRBit(unsigned SrcReg) {
+ unsigned Reg = 0;
+ if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT ||
+ SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN)
+ Reg = PPC::CR0;
+ else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT ||
+ SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN)
+ Reg = PPC::CR1;
+ else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT ||
+ SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN)
+ Reg = PPC::CR2;
+ else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT ||
+ SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN)
+ Reg = PPC::CR3;
+ else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT ||
+ SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN)
+ Reg = PPC::CR4;
+ else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT ||
+ SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN)
+ Reg = PPC::CR5;
+ else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT ||
+ SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN)
+ Reg = PPC::CR6;
+ else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT ||
+ SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN)
+ Reg = PPC::CR7;
+
+ assert(Reg != 0 && "Invalid CR bit register");
+ return Reg;
+}
+
+void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const {
+ // Get the instruction.
+ MachineInstr &MI = *II; // ; SPILL_CRBIT <SrcReg>, <offset>
+ // Get the instruction's basic block.
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ DebugLoc dl = MI.getDebugLoc();
+
+ bool LP64 = Subtarget.isPPC64();
+ const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
+ const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
+
+ unsigned Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
+ unsigned SrcReg = MI.getOperand(0).getReg();
+
+ BuildMI(MBB, II, dl, TII.get(TargetOpcode::KILL),
+ getCRFromCRBit(SrcReg))
+ .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
+
+ BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
+ .addReg(getCRFromCRBit(SrcReg));
+
+ // If the saved register wasn't CR0LT, shift the bits left so that the bit to
+ // store is the first one. Mask all but that bit.
+ unsigned Reg1 = Reg;
+ Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
+
+ // rlwinm rA, rA, ShiftBits, 0, 0.
+ BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
+ .addReg(Reg1, RegState::Kill)
+ .addImm(getEncodingValue(SrcReg))
+ .addImm(0).addImm(0);
+
+ addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
+ .addReg(Reg, RegState::Kill),
+ FrameIndex);
+
+ // Discard the pseudo instruction.
+ MBB.erase(II);
+}
+
+void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const {
+ // Get the instruction.
+ MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CRBIT <offset>
+ // Get the instruction's basic block.
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ DebugLoc dl = MI.getDebugLoc();
+
+ bool LP64 = Subtarget.isPPC64();
+ const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
+ const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
+
+ unsigned Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
+ unsigned DestReg = MI.getOperand(0).getReg();
+ assert(MI.definesRegister(DestReg) &&
+ "RESTORE_CRBIT does not define its destination");
+
+ addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
+ Reg), FrameIndex);
+
+ BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
+
+ unsigned RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
+ BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
+ .addReg(getCRFromCRBit(DestReg));
+
+ unsigned ShiftBits = getEncodingValue(DestReg);
+ // rlwimi r11, r10, 32-ShiftBits, ..., ...
+ BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
+ .addReg(RegO, RegState::Kill).addReg(Reg, RegState::Kill)
+ .addImm(ShiftBits ? 32-ShiftBits : 0)
+ .addImm(ShiftBits).addImm(ShiftBits);
+
+ BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
+ getCRFromCRBit(DestReg))
+ .addReg(RegO, RegState::Kill)
+ // Make sure we have a use dependency all the way through this
+ // sequence of instructions. We can't have the other bits in the CR
+ // modified in between the mfocrf and the mtocrf.
+ .addReg(getCRFromCRBit(DestReg), RegState::Implicit);
+
+ // Discard the pseudo instruction.
+ MBB.erase(II);
+}
+
+void PPCRegisterInfo::lowerVRSAVESpilling(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const {
+ // Get the instruction.
+ MachineInstr &MI = *II; // ; SPILL_VRSAVE <SrcReg>, <offset>
+ // Get the instruction's basic block.
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ DebugLoc dl = MI.getDebugLoc();
+
+ const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
+ unsigned Reg = MF.getRegInfo().createVirtualRegister(GPRC);
+ unsigned SrcReg = MI.getOperand(0).getReg();
+
+ BuildMI(MBB, II, dl, TII.get(PPC::MFVRSAVEv), Reg)
+ .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
+
+ addFrameReference(BuildMI(MBB, II, dl, TII.get(PPC::STW))
+ .addReg(Reg, RegState::Kill),
+ FrameIndex);
+
+ // Discard the pseudo instruction.
+ MBB.erase(II);
+}
+
+void PPCRegisterInfo::lowerVRSAVERestore(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const {
+ // Get the instruction.
+ MachineInstr &MI = *II; // ; <DestReg> = RESTORE_VRSAVE <offset>
+ // Get the instruction's basic block.
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ DebugLoc dl = MI.getDebugLoc();
+
+ const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
+ unsigned Reg = MF.getRegInfo().createVirtualRegister(GPRC);
+ unsigned DestReg = MI.getOperand(0).getReg();
+ assert(MI.definesRegister(DestReg) &&
+ "RESTORE_VRSAVE does not define its destination");
+
+ addFrameReference(BuildMI(MBB, II, dl, TII.get(PPC::LWZ),
+ Reg), FrameIndex);
+
+ BuildMI(MBB, II, dl, TII.get(PPC::MTVRSAVEv), DestReg)
+ .addReg(Reg, RegState::Kill);
+
+ // Discard the pseudo instruction.
+ MBB.erase(II);
+}
+
+bool
+PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
+ unsigned Reg, int &FrameIdx) const {
+
+ // For the nonvolatile condition registers (CR2, CR3, CR4) in an SVR4
+ // ABI, return true to prevent allocating an additional frame slot.
+ // For 64-bit, the CR save area is at SP+8; the value of FrameIdx = 0
+ // is arbitrary and will be subsequently ignored. For 32-bit, we have
+ // previously created the stack slot if needed, so return its FrameIdx.
+ if (Subtarget.isSVR4ABI() && PPC::CR2 <= Reg && Reg <= PPC::CR4) {
+ if (Subtarget.isPPC64())
+ FrameIdx = 0;
+ else {
+ const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ FrameIdx = FI->getCRSpillFrameIndex();
+ }
+ return true;
+ }
+ return false;
+}
+
+// Figure out if the offset in the instruction must be a multiple of 4.
+// This is true for instructions like "STD".
+static bool usesIXAddr(const MachineInstr &MI) {
+ unsigned OpC = MI.getOpcode();
+
+ switch (OpC) {
+ default:
+ return false;
+ case PPC::LWA:
+ case PPC::LWA_32:
+ case PPC::LD:
+ case PPC::STD:
+ return true;
+ }
+}
+
+// Return the OffsetOperandNo given the FIOperandNum (and the instruction).
+static unsigned getOffsetONFromFION(const MachineInstr &MI,
+ unsigned FIOperandNum) {
+ // Take into account whether it's an add or mem instruction
+ unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
+ if (MI.isInlineAsm())
+ OffsetOperandNo = FIOperandNum-1;
+
+ return OffsetOperandNo;
+}
+
+void
+PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ assert(SPAdj == 0 && "Unexpected");
+
+ // Get the instruction.
+ MachineInstr &MI = *II;
+ // Get the instruction's basic block.
+ MachineBasicBlock &MBB = *MI.getParent();
+ // Get the basic block's function.
+ MachineFunction &MF = *MBB.getParent();
+ // Get the instruction info.
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ // Get the frame info.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ DebugLoc dl = MI.getDebugLoc();
+
+ unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
+
+ // Get the frame index.
+ int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
+
+ // Get the frame pointer save index. Users of this index are primarily
+ // DYNALLOC instructions.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ int FPSI = FI->getFramePointerSaveIndex();
+ // Get the instruction opcode.
+ unsigned OpC = MI.getOpcode();
+
+ // Special case for dynamic alloca.
+ if (FPSI && FrameIndex == FPSI &&
+ (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
+ lowerDynamicAlloc(II);
+ return;
+ }
+
+ // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
+ if (OpC == PPC::SPILL_CR) {
+ lowerCRSpilling(II, FrameIndex);
+ return;
+ } else if (OpC == PPC::RESTORE_CR) {
+ lowerCRRestore(II, FrameIndex);
+ return;
+ } else if (OpC == PPC::SPILL_CRBIT) {
+ lowerCRBitSpilling(II, FrameIndex);
+ return;
+ } else if (OpC == PPC::RESTORE_CRBIT) {
+ lowerCRBitRestore(II, FrameIndex);
+ return;
+ } else if (OpC == PPC::SPILL_VRSAVE) {
+ lowerVRSAVESpilling(II, FrameIndex);
+ return;
+ } else if (OpC == PPC::RESTORE_VRSAVE) {
+ lowerVRSAVERestore(II, FrameIndex);
+ return;
+ }
+
+ // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
+ MI.getOperand(FIOperandNum).ChangeToRegister(
+ FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
+
+ // Figure out if the offset in the instruction is shifted right two bits.
+ bool isIXAddr = usesIXAddr(MI);
+
+ // If the instruction is not present in ImmToIdxMap, then it has no immediate
+ // form (and must be r+r).
+ bool noImmForm = !MI.isInlineAsm() && !ImmToIdxMap.count(OpC);
+
+ // Now add the frame object offset to the offset from r1.
+ int Offset = MFI->getObjectOffset(FrameIndex);
+ Offset += MI.getOperand(OffsetOperandNo).getImm();
+
+ // If we're not using a Frame Pointer that has been set to the value of the
+ // SP before having the stack size subtracted from it, then add the stack size
+ // to Offset to get the correct offset.
+ // Naked functions have stack size 0, although getStackSize may not reflect that
+ // because we didn't call all the pieces that compute it for naked functions.
+ if (!MF.getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::Naked)) {
+ if (!(hasBasePointer(MF) && FrameIndex < 0))
+ Offset += MFI->getStackSize();
+ }
+
+ // If we can, encode the offset directly into the instruction. If this is a
+ // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If
+ // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
+ // clear can be encoded. This is extremely uncommon, because normally you
+ // only "std" to a stack slot that is at least 4-byte aligned, but it can
+ // happen in invalid code.
+ assert(OpC != PPC::DBG_VALUE &&
+ "This should be handle in a target independent way");
+ if (!noImmForm && isInt<16>(Offset) && (!isIXAddr || (Offset & 3) == 0)) {
+ MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
+ return;
+ }
+
+ // The offset doesn't fit into a single register, scavenge one to build the
+ // offset in.
+
+ bool is64Bit = Subtarget.isPPC64();
+ const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
+ const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
+ const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
+ unsigned SRegHi = MF.getRegInfo().createVirtualRegister(RC),
+ SReg = MF.getRegInfo().createVirtualRegister(RC);
+
+ // Insert a set of rA with the full offset value before the ld, st, or add
+ BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
+ .addImm(Offset >> 16);
+ BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
+ .addReg(SRegHi, RegState::Kill)
+ .addImm(Offset);
+
+ // Convert into indexed form of the instruction:
+ //
+ // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
+ // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
+ unsigned OperandBase;
+
+ if (noImmForm)
+ OperandBase = 1;
+ else if (OpC != TargetOpcode::INLINEASM) {
+ assert(ImmToIdxMap.count(OpC) &&
+ "No indexed form of load or store available!");
+ unsigned NewOpcode = ImmToIdxMap.find(OpC)->second;
+ MI.setDesc(TII.get(NewOpcode));
+ OperandBase = 1;
+ } else {
+ OperandBase = OffsetOperandNo;
+ }
+
+ unsigned StackReg = MI.getOperand(FIOperandNum).getReg();
+ MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
+ MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
+}
+
+unsigned PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ if (!Subtarget.isPPC64())
+ return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
+ else
+ return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
+}
+
+unsigned PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
+ if (!hasBasePointer(MF))
+ return getFrameRegister(MF);
+
+ if (Subtarget.isPPC64())
+ return PPC::X30;
+
+ if (Subtarget.isSVR4ABI() &&
+ MF.getTarget().getRelocationModel() == Reloc::PIC_)
+ return PPC::R29;
+
+ return PPC::R30;
+}
+
+bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
+ if (!EnableBasePointer)
+ return false;
+ if (AlwaysBasePointer)
+ return true;
+
+ // If we need to realign the stack, then the stack pointer can no longer
+ // serve as an offset into the caller's stack space. As a result, we need a
+ // base pointer.
+ return needsStackRealignment(MF);
+}
+
+bool PPCRegisterInfo::canRealignStack(const MachineFunction &MF) const {
+ if (MF.getFunction()->hasFnAttribute("no-realign-stack"))
+ return false;
+
+ return true;
+}
+
+bool PPCRegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const Function *F = MF.getFunction();
+ unsigned StackAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
+ bool requiresRealignment =
+ ((MFI->getMaxAlignment() > StackAlign) ||
+ F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackAlignment));
+
+ return requiresRealignment && canRealignStack(MF);
+}
+
+/// Returns true if the instruction's frame index
+/// reference would be better served by a base register other than FP
+/// or SP. Used by LocalStackFrameAllocation to determine which frame index
+/// references it should create new base registers for.
+bool PPCRegisterInfo::
+needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
+ assert(Offset < 0 && "Local offset must be negative");
+
+ // It's the load/store FI references that cause issues, as it can be difficult
+ // to materialize the offset if it won't fit in the literal field. Estimate
+ // based on the size of the local frame and some conservative assumptions
+ // about the rest of the stack frame (note, this is pre-regalloc, so
+ // we don't know everything for certain yet) whether this offset is likely
+ // to be out of range of the immediate. Return true if so.
+
+ // We only generate virtual base registers for loads and stores that have
+ // an r+i form. Return false for everything else.
+ unsigned OpC = MI->getOpcode();
+ if (!ImmToIdxMap.count(OpC))
+ return false;
+
+ // Don't generate a new virtual base register just to add zero to it.
+ if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
+ MI->getOperand(2).getImm() == 0)
+ return false;
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ MachineFunction &MF = *MBB.getParent();
+
+ const PPCFrameLowering *PPCFI =
+ static_cast<const PPCFrameLowering*>(MF.getTarget().getFrameLowering());
+ unsigned StackEst =
+ PPCFI->determineFrameLayout(MF, false, true);
+
+ // If we likely don't need a stack frame, then we probably don't need a
+ // virtual base register either.
+ if (!StackEst)
+ return false;
+
+ // Estimate an offset from the stack pointer.
+ // The incoming offset is relating to the SP at the start of the function,
+ // but when we access the local it'll be relative to the SP after local
+ // allocation, so adjust our SP-relative offset by that allocation size.
+ Offset += StackEst;
+
+ // The frame pointer will point to the end of the stack, so estimate the
+ // offset as the difference between the object offset and the FP location.
+ return !isFrameOffsetLegal(MI, Offset);
+}
+
+/// Insert defining instruction(s) for BaseReg to
+/// be a pointer to FrameIdx at the beginning of the basic block.
+void PPCRegisterInfo::
+materializeFrameBaseRegister(MachineBasicBlock *MBB,
+ unsigned BaseReg, int FrameIdx,
+ int64_t Offset) const {
+ unsigned ADDriOpc = Subtarget.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
+
+ MachineBasicBlock::iterator Ins = MBB->begin();
+ DebugLoc DL; // Defaults to "unknown"
+ if (Ins != MBB->end())
+ DL = Ins->getDebugLoc();
+
+ const MachineFunction &MF = *MBB->getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const MCInstrDesc &MCID = TII.get(ADDriOpc);
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
+
+ BuildMI(*MBB, Ins, DL, MCID, BaseReg)
+ .addFrameIndex(FrameIdx).addImm(Offset);
+}
+
+void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
+ int64_t Offset) const {
+ unsigned FIOperandNum = 0;
+ while (!MI.getOperand(FIOperandNum).isFI()) {
+ ++FIOperandNum;
+ assert(FIOperandNum < MI.getNumOperands() &&
+ "Instr doesn't have FrameIndex operand!");
+ }
+
+ MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
+ unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
+ Offset += MI.getOperand(OffsetOperandNo).getImm();
+ MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
+
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const MCInstrDesc &MCID = MI.getDesc();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ MRI.constrainRegClass(BaseReg,
+ TII.getRegClass(MCID, FIOperandNum, this, MF));
+}
+
+bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
+ int64_t Offset) const {
+ unsigned FIOperandNum = 0;
+ while (!MI->getOperand(FIOperandNum).isFI()) {
+ ++FIOperandNum;
+ assert(FIOperandNum < MI->getNumOperands() &&
+ "Instr doesn't have FrameIndex operand!");
+ }
+
+ unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
+ Offset += MI->getOperand(OffsetOperandNo).getImm();
+
+ return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
+ (isInt<16>(Offset) && (!usesIXAddr(*MI) || (Offset & 3) == 0));
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.h b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.h
new file mode 100644
index 0000000..13a35f6
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.h
@@ -0,0 +1,113 @@
+//===-- PPCRegisterInfo.h - PowerPC Register Information Impl ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef POWERPC32_REGISTERINFO_H
+#define POWERPC32_REGISTERINFO_H
+
+#include "PPC.h"
+#include "llvm/ADT/DenseMap.h"
+
+#define GET_REGINFO_HEADER
+#include "PPCGenRegisterInfo.inc"
+
+namespace llvm {
+class PPCSubtarget;
+class TargetInstrInfo;
+class Type;
+
+class PPCRegisterInfo : public PPCGenRegisterInfo {
+ DenseMap<unsigned, unsigned> ImmToIdxMap;
+ const PPCSubtarget &Subtarget;
+public:
+ PPCRegisterInfo(const PPCSubtarget &SubTarget);
+
+ /// getPointerRegClass - Return the register class to use to hold pointers.
+ /// This is used for addressing modes.
+ const TargetRegisterClass *
+ getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const override;
+
+ unsigned getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const override;
+
+ const TargetRegisterClass*
+ getLargestLegalSuperClass(const TargetRegisterClass *RC) const override;
+
+ /// Code Generation virtual methods...
+ const MCPhysReg *
+ getCalleeSavedRegs(const MachineFunction* MF =nullptr) const override;
+ const uint32_t *getCallPreservedMask(CallingConv::ID CC) const override;
+ const uint32_t *getNoPreservedMask() const;
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+
+ /// We require the register scavenger.
+ bool requiresRegisterScavenging(const MachineFunction &MF) const override {
+ return true;
+ }
+
+ bool requiresFrameIndexScavenging(const MachineFunction &MF) const override {
+ return true;
+ }
+
+ bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const override {
+ return true;
+ }
+
+ bool requiresVirtualBaseRegisters(const MachineFunction &MF) const override {
+ return true;
+ }
+
+ void lowerDynamicAlloc(MachineBasicBlock::iterator II) const;
+ void lowerCRSpilling(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const;
+ void lowerCRRestore(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const;
+ void lowerCRBitSpilling(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const;
+ void lowerCRBitRestore(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const;
+ void lowerVRSAVESpilling(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const;
+ void lowerVRSAVERestore(MachineBasicBlock::iterator II,
+ unsigned FrameIndex) const;
+
+ bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
+ int &FrameIdx) const override;
+ void eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const override;
+
+ // Support for virtual base registers.
+ bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const override;
+ void materializeFrameBaseRegister(MachineBasicBlock *MBB,
+ unsigned BaseReg, int FrameIdx,
+ int64_t Offset) const override;
+ void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
+ int64_t Offset) const override;
+ bool isFrameOffsetLegal(const MachineInstr *MI,
+ int64_t Offset) const override;
+
+ // Debug information queries.
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+
+ // Base pointer (stack realignment) support.
+ unsigned getBaseRegister(const MachineFunction &MF) const;
+ bool hasBasePointer(const MachineFunction &MF) const;
+ bool canRealignStack(const MachineFunction &MF) const;
+ bool needsStackRealignment(const MachineFunction &MF) const override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.td b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.td
new file mode 100644
index 0000000..b3d145b
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.td
@@ -0,0 +1,314 @@
+//===-- PPCRegisterInfo.td - The PowerPC Register File -----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+let Namespace = "PPC" in {
+def sub_lt : SubRegIndex<1>;
+def sub_gt : SubRegIndex<1, 1>;
+def sub_eq : SubRegIndex<1, 2>;
+def sub_un : SubRegIndex<1, 3>;
+def sub_32 : SubRegIndex<32>;
+def sub_64 : SubRegIndex<64>;
+def sub_128 : SubRegIndex<128>;
+}
+
+
+class PPCReg<string n> : Register<n> {
+ let Namespace = "PPC";
+}
+
+// We identify all our registers with a 5-bit ID, for consistency's sake.
+
+// GPR - One of the 32 32-bit general-purpose registers
+class GPR<bits<5> num, string n> : PPCReg<n> {
+ let HWEncoding{4-0} = num;
+}
+
+// GP8 - One of the 32 64-bit general-purpose registers
+class GP8<GPR SubReg, string n> : PPCReg<n> {
+ let HWEncoding = SubReg.HWEncoding;
+ let SubRegs = [SubReg];
+ let SubRegIndices = [sub_32];
+}
+
+// SPR - One of the 32-bit special-purpose registers
+class SPR<bits<10> num, string n> : PPCReg<n> {
+ let HWEncoding{9-0} = num;
+}
+
+// FPR - One of the 32 64-bit floating-point registers
+class FPR<bits<5> num, string n> : PPCReg<n> {
+ let HWEncoding{4-0} = num;
+}
+
+// VF - One of the 32 64-bit floating-point subregisters of the vector
+// registers (used by VSX).
+class VF<bits<5> num, string n> : PPCReg<n> {
+ let HWEncoding{4-0} = num;
+ let HWEncoding{5} = 1;
+}
+
+// VR - One of the 32 128-bit vector registers
+class VR<VF SubReg, string n> : PPCReg<n> {
+ let HWEncoding{4-0} = SubReg.HWEncoding{4-0};
+ let HWEncoding{5} = 0;
+ let SubRegs = [SubReg];
+ let SubRegIndices = [sub_64];
+}
+
+// VSRL - One of the 32 128-bit VSX registers that overlap with the scalar
+// floating-point registers.
+class VSRL<FPR SubReg, string n> : PPCReg<n> {
+ let HWEncoding = SubReg.HWEncoding;
+ let SubRegs = [SubReg];
+ let SubRegIndices = [sub_64];
+}
+
+// VSRH - One of the 32 128-bit VSX registers that overlap with the vector
+// registers.
+class VSRH<VR SubReg, string n> : PPCReg<n> {
+ let HWEncoding{4-0} = SubReg.HWEncoding{4-0};
+ let HWEncoding{5} = 1;
+ let SubRegs = [SubReg];
+ let SubRegIndices = [sub_128];
+}
+
+// CR - One of the 8 4-bit condition registers
+class CR<bits<3> num, string n, list<Register> subregs> : PPCReg<n> {
+ let HWEncoding{2-0} = num;
+ let SubRegs = subregs;
+}
+
+// CRBIT - One of the 32 1-bit condition register fields
+class CRBIT<bits<5> num, string n> : PPCReg<n> {
+ let HWEncoding{4-0} = num;
+}
+
+// General-purpose registers
+foreach Index = 0-31 in {
+ def R#Index : GPR<Index, "r"#Index>, DwarfRegNum<[-2, Index]>;
+}
+
+// 64-bit General-purpose registers
+foreach Index = 0-31 in {
+ def X#Index : GP8<!cast<GPR>("R"#Index), "r"#Index>,
+ DwarfRegNum<[Index, -2]>;
+}
+
+// Floating-point registers
+foreach Index = 0-31 in {
+ def F#Index : FPR<Index, "f"#Index>,
+ DwarfRegNum<[!add(Index, 32), !add(Index, 32)]>;
+}
+
+// Floating-point vector subregisters (for VSX)
+foreach Index = 0-31 in {
+ def VF#Index : VF<Index, "vs" # !add(Index, 32)>;
+}
+
+// Vector registers
+foreach Index = 0-31 in {
+ def V#Index : VR<!cast<VF>("VF"#Index), "v"#Index>,
+ DwarfRegNum<[!add(Index, 77), !add(Index, 77)]>;
+}
+
+// VSX registers
+foreach Index = 0-31 in {
+ def VSL#Index : VSRL<!cast<FPR>("F"#Index), "vs"#Index>,
+ DwarfRegAlias<!cast<FPR>("F"#Index)>;
+}
+foreach Index = 0-31 in {
+ def VSH#Index : VSRH<!cast<VR>("V"#Index), "vs" # !add(Index, 32)>,
+ DwarfRegAlias<!cast<VR>("V"#Index)>;
+}
+
+// The reprsentation of r0 when treated as the constant 0.
+def ZERO : GPR<0, "0">;
+def ZERO8 : GP8<ZERO, "0">;
+
+// Representations of the frame pointer used by ISD::FRAMEADDR.
+def FP : GPR<0 /* arbitrary */, "**FRAME POINTER**">;
+def FP8 : GP8<FP, "**FRAME POINTER**">;
+
+// Representations of the base pointer used by setjmp.
+def BP : GPR<0 /* arbitrary */, "**BASE POINTER**">;
+def BP8 : GP8<BP, "**BASE POINTER**">;
+
+// Condition register bits
+def CR0LT : CRBIT< 0, "0">;
+def CR0GT : CRBIT< 1, "1">;
+def CR0EQ : CRBIT< 2, "2">;
+def CR0UN : CRBIT< 3, "3">;
+def CR1LT : CRBIT< 4, "4">;
+def CR1GT : CRBIT< 5, "5">;
+def CR1EQ : CRBIT< 6, "6">;
+def CR1UN : CRBIT< 7, "7">;
+def CR2LT : CRBIT< 8, "8">;
+def CR2GT : CRBIT< 9, "9">;
+def CR2EQ : CRBIT<10, "10">;
+def CR2UN : CRBIT<11, "11">;
+def CR3LT : CRBIT<12, "12">;
+def CR3GT : CRBIT<13, "13">;
+def CR3EQ : CRBIT<14, "14">;
+def CR3UN : CRBIT<15, "15">;
+def CR4LT : CRBIT<16, "16">;
+def CR4GT : CRBIT<17, "17">;
+def CR4EQ : CRBIT<18, "18">;
+def CR4UN : CRBIT<19, "19">;
+def CR5LT : CRBIT<20, "20">;
+def CR5GT : CRBIT<21, "21">;
+def CR5EQ : CRBIT<22, "22">;
+def CR5UN : CRBIT<23, "23">;
+def CR6LT : CRBIT<24, "24">;
+def CR6GT : CRBIT<25, "25">;
+def CR6EQ : CRBIT<26, "26">;
+def CR6UN : CRBIT<27, "27">;
+def CR7LT : CRBIT<28, "28">;
+def CR7GT : CRBIT<29, "29">;
+def CR7EQ : CRBIT<30, "30">;
+def CR7UN : CRBIT<31, "31">;
+
+// Condition registers
+let SubRegIndices = [sub_lt, sub_gt, sub_eq, sub_un] in {
+def CR0 : CR<0, "cr0", [CR0LT, CR0GT, CR0EQ, CR0UN]>, DwarfRegNum<[68, 68]>;
+def CR1 : CR<1, "cr1", [CR1LT, CR1GT, CR1EQ, CR1UN]>, DwarfRegNum<[69, 69]>;
+def CR2 : CR<2, "cr2", [CR2LT, CR2GT, CR2EQ, CR2UN]>, DwarfRegNum<[70, 70]>;
+def CR3 : CR<3, "cr3", [CR3LT, CR3GT, CR3EQ, CR3UN]>, DwarfRegNum<[71, 71]>;
+def CR4 : CR<4, "cr4", [CR4LT, CR4GT, CR4EQ, CR4UN]>, DwarfRegNum<[72, 72]>;
+def CR5 : CR<5, "cr5", [CR5LT, CR5GT, CR5EQ, CR5UN]>, DwarfRegNum<[73, 73]>;
+def CR6 : CR<6, "cr6", [CR6LT, CR6GT, CR6EQ, CR6UN]>, DwarfRegNum<[74, 74]>;
+def CR7 : CR<7, "cr7", [CR7LT, CR7GT, CR7EQ, CR7UN]>, DwarfRegNum<[75, 75]>;
+}
+
+// The full condition-code register. This is not modeled fully, but defined
+// here primarily, for compatibility with gcc, to allow the inline asm "cc"
+// clobber specification to work.
+def CC : PPCReg<"cc">, DwarfRegAlias<CR0> {
+ let Aliases = [CR0, CR1, CR2, CR3, CR4, CR5, CR6, CR7];
+}
+
+// Link register
+def LR : SPR<8, "lr">, DwarfRegNum<[-2, 65]>;
+//let Aliases = [LR] in
+def LR8 : SPR<8, "lr">, DwarfRegNum<[65, -2]>;
+
+// Count register
+def CTR : SPR<9, "ctr">, DwarfRegNum<[-2, 66]>;
+def CTR8 : SPR<9, "ctr">, DwarfRegNum<[66, -2]>;
+
+// VRsave register
+def VRSAVE: SPR<256, "vrsave">, DwarfRegNum<[109]>;
+
+// Carry bit. In the architecture this is really bit 0 of the XER register
+// (which really is SPR register 1); this is the only bit interesting to a
+// compiler.
+def CARRY: SPR<1, "ca">;
+
+// FP rounding mode: bits 30 and 31 of the FP status and control register
+// This is not allocated as a normal register; it appears only in
+// Uses and Defs. The ABI says it needs to be preserved by a function,
+// but this is not achieved by saving and restoring it as with
+// most registers, it has to be done in code; to make this work all the
+// return and call instructions are described as Uses of RM, so instructions
+// that do nothing but change RM will not get deleted.
+// Also, in the architecture it is not really a SPR; 512 is arbitrary.
+def RM: SPR<512, "**ROUNDING MODE**">;
+
+/// Register classes
+// Allocate volatiles first
+// then nonvolatiles in reverse order since stmw/lmw save from rN to r31
+def GPRC : RegisterClass<"PPC", [i32], 32, (add (sequence "R%u", 2, 12),
+ (sequence "R%u", 30, 13),
+ R31, R0, R1, FP, BP)>;
+
+def G8RC : RegisterClass<"PPC", [i64], 64, (add (sequence "X%u", 2, 12),
+ (sequence "X%u", 30, 14),
+ X31, X13, X0, X1, FP8, BP8)>;
+
+// For some instructions r0 is special (representing the value 0 instead of
+// the value in the r0 register), and we use these register subclasses to
+// prevent r0 from being allocated for use by those instructions.
+def GPRC_NOR0 : RegisterClass<"PPC", [i32], 32, (add (sub GPRC, R0), ZERO)>;
+def G8RC_NOX0 : RegisterClass<"PPC", [i64], 64, (add (sub G8RC, X0), ZERO8)>;
+
+// Allocate volatiles first, then non-volatiles in reverse order. With the SVR4
+// ABI the size of the Floating-point register save area is determined by the
+// allocated non-volatile register with the lowest register number, as FP
+// register N is spilled to offset 8 * (32 - N) below the back chain word of the
+// previous stack frame. By allocating non-volatiles in reverse order we make
+// sure that the Floating-point register save area is always as small as
+// possible because there aren't any unused spill slots.
+def F8RC : RegisterClass<"PPC", [f64], 64, (add (sequence "F%u", 0, 13),
+ (sequence "F%u", 31, 14))>;
+def F4RC : RegisterClass<"PPC", [f32], 32, (add F8RC)>;
+
+def VRRC : RegisterClass<"PPC", [v16i8,v8i16,v4i32,v4f32], 128,
+ (add V2, V3, V4, V5, V0, V1, V6, V7, V8, V9, V10, V11,
+ V12, V13, V14, V15, V16, V17, V18, V19, V31, V30,
+ V29, V28, V27, V26, V25, V24, V23, V22, V21, V20)>;
+
+// VSX register classes (the allocation order mirrors that of the corresponding
+// subregister classes).
+def VSLRC : RegisterClass<"PPC", [v4i32,v4f32,v2f64,v2i64], 128,
+ (add (sequence "VSL%u", 0, 13),
+ (sequence "VSL%u", 31, 14))>;
+def VSHRC : RegisterClass<"PPC", [v4i32,v4f32,v2f64,v2i64], 128,
+ (add VSH2, VSH3, VSH4, VSH5, VSH0, VSH1, VSH6, VSH7,
+ VSH8, VSH9, VSH10, VSH11, VSH12, VSH13, VSH14,
+ VSH15, VSH16, VSH17, VSH18, VSH19, VSH31, VSH30,
+ VSH29, VSH28, VSH27, VSH26, VSH25, VSH24, VSH23,
+ VSH22, VSH21, VSH20)>;
+def VSRC : RegisterClass<"PPC", [v4i32,v4f32,v2f64,v2i64], 128,
+ (add VSLRC, VSHRC)>;
+
+// Register classes for the 64-bit "scalar" VSX subregisters.
+def VFRC : RegisterClass<"PPC", [f64], 64,
+ (add VF2, VF3, VF4, VF5, VF0, VF1, VF6, VF7,
+ VF8, VF9, VF10, VF11, VF12, VF13, VF14,
+ VF15, VF16, VF17, VF18, VF19, VF31, VF30,
+ VF29, VF28, VF27, VF26, VF25, VF24, VF23,
+ VF22, VF21, VF20)>;
+def VSFRC : RegisterClass<"PPC", [f64], 64, (add F8RC, VFRC)>;
+
+def CRBITRC : RegisterClass<"PPC", [i1], 32,
+ (add CR2LT, CR2GT, CR2EQ, CR2UN,
+ CR3LT, CR3GT, CR3EQ, CR3UN,
+ CR4LT, CR4GT, CR4EQ, CR4UN,
+ CR5LT, CR5GT, CR5EQ, CR5UN,
+ CR6LT, CR6GT, CR6EQ, CR6UN,
+ CR7LT, CR7GT, CR7EQ, CR7UN,
+ CR1LT, CR1GT, CR1EQ, CR1UN,
+ CR0LT, CR0GT, CR0EQ, CR0UN)> {
+ let Size = 32;
+}
+
+def CRRC : RegisterClass<"PPC", [i32], 32, (add CR0, CR1, CR5, CR6,
+ CR7, CR2, CR3, CR4)>;
+
+// The CTR registers are not allocatable because they're used by the
+// decrement-and-branch instructions, and thus need to stay live across
+// multiple basic blocks.
+def CTRRC : RegisterClass<"PPC", [i32], 32, (add CTR)> {
+ let isAllocatable = 0;
+}
+def CTRRC8 : RegisterClass<"PPC", [i64], 64, (add CTR8)> {
+ let isAllocatable = 0;
+}
+
+def VRSAVERC : RegisterClass<"PPC", [i32], 32, (add VRSAVE)>;
+def CARRYRC : RegisterClass<"PPC", [i32], 32, (add CARRY)> {
+ let CopyCost = -1;
+}
+
+def CCRC : RegisterClass<"PPC", [i32], 32, (add CC)> {
+ let isAllocatable = 0;
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCRelocations.h b/contrib/llvm/lib/Target/PowerPC/PPCRelocations.h
new file mode 100644
index 0000000..0b392f9
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCRelocations.h
@@ -0,0 +1,56 @@
+//===-- PPCRelocations.h - PPC Code Relocations -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PowerPC 32-bit target-specific relocation types.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PPCRELOCATIONS_H
+#define PPCRELOCATIONS_H
+
+#include "llvm/CodeGen/MachineRelocation.h"
+
+// Hack to rid us of a PPC pre-processor symbol which is erroneously
+// defined in a PowerPC header file (bug in Linux/PPC)
+#ifdef PPC
+#undef PPC
+#endif
+
+namespace llvm {
+ namespace PPC {
+ enum RelocationType {
+ // reloc_vanilla - A standard relocation, where the address of the
+ // relocated object completely overwrites the address of the relocation.
+ reloc_vanilla,
+
+ // reloc_pcrel_bx - PC relative relocation, for the b or bl instructions.
+ reloc_pcrel_bx,
+
+ // reloc_pcrel_bcx - PC relative relocation, for BLT,BLE,BEQ,BGE,BGT,BNE,
+ // and other bcx instructions.
+ reloc_pcrel_bcx,
+
+ // reloc_absolute_high - Absolute relocation, for the loadhi instruction
+ // (which is really addis). Add the high 16-bits of the specified global
+ // address into the low 16-bits of the instruction.
+ reloc_absolute_high,
+
+ // reloc_absolute_low - Absolute relocation, for the la instruction (which
+ // is really an addi). Add the low 16-bits of the specified global
+ // address into the low 16-bits of the instruction.
+ reloc_absolute_low,
+
+ // reloc_absolute_low_ix - Absolute relocation for the 64-bit load/store
+ // instruction which have two implicit zero bits.
+ reloc_absolute_low_ix
+ };
+ }
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCSchedule.td b/contrib/llvm/lib/Target/PowerPC/PPCSchedule.td
new file mode 100644
index 0000000..1221d41
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCSchedule.td
@@ -0,0 +1,520 @@
+//===-- PPCSchedule.td - PowerPC Scheduling Definitions ----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Instruction Itinerary classes used for PowerPC
+//
+def IIC_IntSimple : InstrItinClass;
+def IIC_IntGeneral : InstrItinClass;
+def IIC_IntCompare : InstrItinClass;
+def IIC_IntDivD : InstrItinClass;
+def IIC_IntDivW : InstrItinClass;
+def IIC_IntMFFS : InstrItinClass;
+def IIC_IntMFVSCR : InstrItinClass;
+def IIC_IntMTFSB0 : InstrItinClass;
+def IIC_IntMTSRD : InstrItinClass;
+def IIC_IntMulHD : InstrItinClass;
+def IIC_IntMulHW : InstrItinClass;
+def IIC_IntMulHWU : InstrItinClass;
+def IIC_IntMulLI : InstrItinClass;
+def IIC_IntRFID : InstrItinClass;
+def IIC_IntRotateD : InstrItinClass;
+def IIC_IntRotateDI : InstrItinClass;
+def IIC_IntRotate : InstrItinClass;
+def IIC_IntShift : InstrItinClass;
+def IIC_IntTrapD : InstrItinClass;
+def IIC_IntTrapW : InstrItinClass;
+def IIC_BrB : InstrItinClass;
+def IIC_BrCR : InstrItinClass;
+def IIC_BrMCR : InstrItinClass;
+def IIC_BrMCRX : InstrItinClass;
+def IIC_LdStDCBA : InstrItinClass;
+def IIC_LdStDCBF : InstrItinClass;
+def IIC_LdStDCBI : InstrItinClass;
+def IIC_LdStLoad : InstrItinClass;
+def IIC_LdStLoadUpd : InstrItinClass;
+def IIC_LdStLoadUpdX : InstrItinClass;
+def IIC_LdStStore : InstrItinClass;
+def IIC_LdStStoreUpd : InstrItinClass;
+def IIC_LdStDSS : InstrItinClass;
+def IIC_LdStICBI : InstrItinClass;
+def IIC_LdStLD : InstrItinClass;
+def IIC_LdStLDU : InstrItinClass;
+def IIC_LdStLDUX : InstrItinClass;
+def IIC_LdStLDARX : InstrItinClass;
+def IIC_LdStLFD : InstrItinClass;
+def IIC_LdStLFDU : InstrItinClass;
+def IIC_LdStLFDUX : InstrItinClass;
+def IIC_LdStLHA : InstrItinClass;
+def IIC_LdStLHAU : InstrItinClass;
+def IIC_LdStLHAUX : InstrItinClass;
+def IIC_LdStLMW : InstrItinClass;
+def IIC_LdStLVecX : InstrItinClass;
+def IIC_LdStLWA : InstrItinClass;
+def IIC_LdStLWARX : InstrItinClass;
+def IIC_LdStSLBIA : InstrItinClass;
+def IIC_LdStSLBIE : InstrItinClass;
+def IIC_LdStSTD : InstrItinClass;
+def IIC_LdStSTDCX : InstrItinClass;
+def IIC_LdStSTDU : InstrItinClass;
+def IIC_LdStSTDUX : InstrItinClass;
+def IIC_LdStSTFD : InstrItinClass;
+def IIC_LdStSTFDU : InstrItinClass;
+def IIC_LdStSTVEBX : InstrItinClass;
+def IIC_LdStSTWCX : InstrItinClass;
+def IIC_LdStSync : InstrItinClass;
+def IIC_SprISYNC : InstrItinClass;
+def IIC_SprMFSR : InstrItinClass;
+def IIC_SprMTMSR : InstrItinClass;
+def IIC_SprMTSR : InstrItinClass;
+def IIC_SprTLBSYNC : InstrItinClass;
+def IIC_SprMFCR : InstrItinClass;
+def IIC_SprMFCRF : InstrItinClass;
+def IIC_SprMFMSR : InstrItinClass;
+def IIC_SprMFSPR : InstrItinClass;
+def IIC_SprMFTB : InstrItinClass;
+def IIC_SprMTSPR : InstrItinClass;
+def IIC_SprMTSRIN : InstrItinClass;
+def IIC_SprRFI : InstrItinClass;
+def IIC_SprSC : InstrItinClass;
+def IIC_FPGeneral : InstrItinClass;
+def IIC_FPAddSub : InstrItinClass;
+def IIC_FPCompare : InstrItinClass;
+def IIC_FPDivD : InstrItinClass;
+def IIC_FPDivS : InstrItinClass;
+def IIC_FPFused : InstrItinClass;
+def IIC_FPRes : InstrItinClass;
+def IIC_FPSqrtD : InstrItinClass;
+def IIC_FPSqrtS : InstrItinClass;
+def IIC_VecGeneral : InstrItinClass;
+def IIC_VecFP : InstrItinClass;
+def IIC_VecFPCompare : InstrItinClass;
+def IIC_VecComplex : InstrItinClass;
+def IIC_VecPerm : InstrItinClass;
+def IIC_VecFPRound : InstrItinClass;
+def IIC_VecVSL : InstrItinClass;
+def IIC_VecVSR : InstrItinClass;
+def IIC_SprMTMSRD : InstrItinClass;
+def IIC_SprSLIE : InstrItinClass;
+def IIC_SprSLBIE : InstrItinClass;
+def IIC_SprSLBMTE : InstrItinClass;
+def IIC_SprSLBMFEE : InstrItinClass;
+def IIC_SprSLBIA : InstrItinClass;
+def IIC_SprTLBIEL : InstrItinClass;
+def IIC_SprTLBIE : InstrItinClass;
+
+//===----------------------------------------------------------------------===//
+// Processor instruction itineraries.
+
+include "PPCScheduleG3.td"
+include "PPCSchedule440.td"
+include "PPCScheduleG4.td"
+include "PPCScheduleG4Plus.td"
+include "PPCScheduleG5.td"
+include "PPCScheduleP7.td"
+include "PPCScheduleA2.td"
+include "PPCScheduleE500mc.td"
+include "PPCScheduleE5500.td"
+
+//===----------------------------------------------------------------------===//
+// Instruction to itinerary class map - When add new opcodes to the supported
+// set, refer to the following table to determine which itinerary class the
+// opcode belongs.
+//
+// opcode itinerary class
+// ====== ===============
+// add IIC_IntSimple
+// addc IIC_IntGeneral
+// adde IIC_IntGeneral
+// addi IIC_IntSimple
+// addic IIC_IntGeneral
+// addic. IIC_IntGeneral
+// addis IIC_IntSimple
+// addme IIC_IntGeneral
+// addze IIC_IntGeneral
+// and IIC_IntSimple
+// andc IIC_IntSimple
+// andi. IIC_IntGeneral
+// andis. IIC_IntGeneral
+// b IIC_BrB
+// bc IIC_BrB
+// bcctr IIC_BrB
+// bclr IIC_BrB
+// cmp IIC_IntCompare
+// cmpi IIC_IntCompare
+// cmpl IIC_IntCompare
+// cmpli IIC_IntCompare
+// cntlzd IIC_IntRotateD
+// cntlzw IIC_IntGeneral
+// crand IIC_BrCR
+// crandc IIC_BrCR
+// creqv IIC_BrCR
+// crnand IIC_BrCR
+// crnor IIC_BrCR
+// cror IIC_BrCR
+// crorc IIC_BrCR
+// crxor IIC_BrCR
+// dcba IIC_LdStDCBA
+// dcbf IIC_LdStDCBF
+// dcbi IIC_LdStDCBI
+// dcbst IIC_LdStDCBF
+// dcbt IIC_LdStLoad
+// dcbtst IIC_LdStLoad
+// dcbz IIC_LdStDCBF
+// divd IIC_IntDivD
+// divdu IIC_IntDivD
+// divw IIC_IntDivW
+// divwu IIC_IntDivW
+// dss IIC_LdStDSS
+// dst IIC_LdStDSS
+// dstst IIC_LdStDSS
+// eciwx IIC_LdStLoad
+// ecowx IIC_LdStLoad
+// eieio IIC_LdStLoad
+// eqv IIC_IntSimple
+// extsb IIC_IntSimple
+// extsh IIC_IntSimple
+// extsw IIC_IntSimple
+// fabs IIC_FPGeneral
+// fadd IIC_FPAddSub
+// fadds IIC_FPGeneral
+// fcfid IIC_FPGeneral
+// fcmpo IIC_FPCompare
+// fcmpu IIC_FPCompare
+// fctid IIC_FPGeneral
+// fctidz IIC_FPGeneral
+// fctiw IIC_FPGeneral
+// fctiwz IIC_FPGeneral
+// fdiv IIC_FPDivD
+// fdivs IIC_FPDivS
+// fmadd IIC_FPFused
+// fmadds IIC_FPGeneral
+// fmr IIC_FPGeneral
+// fmsub IIC_FPFused
+// fmsubs IIC_FPGeneral
+// fmul IIC_FPFused
+// fmuls IIC_FPGeneral
+// fnabs IIC_FPGeneral
+// fneg IIC_FPGeneral
+// fnmadd IIC_FPFused
+// fnmadds IIC_FPGeneral
+// fnmsub IIC_FPFused
+// fnmsubs IIC_FPGeneral
+// fres IIC_FPRes
+// frsp IIC_FPGeneral
+// frsqrte IIC_FPGeneral
+// fsel IIC_FPGeneral
+// fsqrt IIC_FPSqrtD
+// fsqrts IIC_FPSqrtS
+// fsub IIC_FPAddSub
+// fsubs IIC_FPGeneral
+// icbi IIC_LdStICBI
+// isync IIC_SprISYNC
+// lbz IIC_LdStLoad
+// lbzu IIC_LdStLoadUpd
+// lbzux IIC_LdStLoadUpdX
+// lbzx IIC_LdStLoad
+// ld IIC_LdStLD
+// ldarx IIC_LdStLDARX
+// ldu IIC_LdStLDU
+// ldux IIC_LdStLDUX
+// ldx IIC_LdStLD
+// lfd IIC_LdStLFD
+// lfdu IIC_LdStLFDU
+// lfdux IIC_LdStLFDUX
+// lfdx IIC_LdStLFD
+// lfs IIC_LdStLFD
+// lfsu IIC_LdStLFDU
+// lfsux IIC_LdStLFDUX
+// lfsx IIC_LdStLFD
+// lha IIC_LdStLHA
+// lhau IIC_LdStLHAU
+// lhaux IIC_LdStLHAUX
+// lhax IIC_LdStLHA
+// lhbrx IIC_LdStLoad
+// lhz IIC_LdStLoad
+// lhzu IIC_LdStLoadUpd
+// lhzux IIC_LdStLoadUpdX
+// lhzx IIC_LdStLoad
+// lmw IIC_LdStLMW
+// lswi IIC_LdStLMW
+// lswx IIC_LdStLMW
+// lvebx IIC_LdStLVecX
+// lvehx IIC_LdStLVecX
+// lvewx IIC_LdStLVecX
+// lvsl IIC_LdStLVecX
+// lvsr IIC_LdStLVecX
+// lvx IIC_LdStLVecX
+// lvxl IIC_LdStLVecX
+// lwa IIC_LdStLWA
+// lwarx IIC_LdStLWARX
+// lwaux IIC_LdStLHAUX
+// lwax IIC_LdStLHA
+// lwbrx IIC_LdStLoad
+// lwz IIC_LdStLoad
+// lwzu IIC_LdStLoadUpd
+// lwzux IIC_LdStLoadUpdX
+// lwzx IIC_LdStLoad
+// mcrf IIC_BrMCR
+// mcrfs IIC_FPGeneral
+// mcrxr IIC_BrMCRX
+// mfcr IIC_SprMFCR
+// mffs IIC_IntMFFS
+// mfmsr IIC_SprMFMSR
+// mfspr IIC_SprMFSPR
+// mfsr IIC_SprMFSR
+// mfsrin IIC_SprMFSR
+// mftb IIC_SprMFTB
+// mfvscr IIC_IntMFVSCR
+// mtcrf IIC_BrMCRX
+// mtfsb0 IIC_IntMTFSB0
+// mtfsb1 IIC_IntMTFSB0
+// mtfsf IIC_IntMTFSB0
+// mtfsfi IIC_IntMTFSB0
+// mtmsr IIC_SprMTMSR
+// mtmsrd IIC_LdStLD
+// mtspr IIC_SprMTSPR
+// mtsr IIC_SprMTSR
+// mtsrd IIC_IntMTSRD
+// mtsrdin IIC_IntMTSRD
+// mtsrin IIC_SprMTSRIN
+// mtvscr IIC_IntMFVSCR
+// mulhd IIC_IntMulHD
+// mulhdu IIC_IntMulHD
+// mulhw IIC_IntMulHW
+// mulhwu IIC_IntMulHWU
+// mulld IIC_IntMulHD
+// mulli IIC_IntMulLI
+// mullw IIC_IntMulHW
+// nand IIC_IntSimple
+// neg IIC_IntSimple
+// nor IIC_IntSimple
+// or IIC_IntSimple
+// orc IIC_IntSimple
+// ori IIC_IntSimple
+// oris IIC_IntSimple
+// rfi IIC_SprRFI
+// rfid IIC_IntRFID
+// rldcl IIC_IntRotateD
+// rldcr IIC_IntRotateD
+// rldic IIC_IntRotateDI
+// rldicl IIC_IntRotateDI
+// rldicr IIC_IntRotateDI
+// rldimi IIC_IntRotateDI
+// rlwimi IIC_IntRotate
+// rlwinm IIC_IntGeneral
+// rlwnm IIC_IntGeneral
+// sc IIC_SprSC
+// slbia IIC_LdStSLBIA
+// slbie IIC_LdStSLBIE
+// sld IIC_IntRotateD
+// slw IIC_IntGeneral
+// srad IIC_IntRotateD
+// sradi IIC_IntRotateDI
+// sraw IIC_IntShift
+// srawi IIC_IntShift
+// srd IIC_IntRotateD
+// srw IIC_IntGeneral
+// stb IIC_LdStStore
+// stbu IIC_LdStStoreUpd
+// stbux IIC_LdStStoreUpd
+// stbx IIC_LdStStore
+// std IIC_LdStSTD
+// stdcx. IIC_LdStSTDCX
+// stdu IIC_LdStSTDU
+// stdux IIC_LdStSTDUX
+// stdx IIC_LdStSTD
+// stfd IIC_LdStSTFD
+// stfdu IIC_LdStSTFDU
+// stfdux IIC_LdStSTFDU
+// stfdx IIC_LdStSTFD
+// stfiwx IIC_LdStSTFD
+// stfs IIC_LdStSTFD
+// stfsu IIC_LdStSTFDU
+// stfsux IIC_LdStSTFDU
+// stfsx IIC_LdStSTFD
+// sth IIC_LdStStore
+// sthbrx IIC_LdStStore
+// sthu IIC_LdStStoreUpd
+// sthux IIC_LdStStoreUpd
+// sthx IIC_LdStStore
+// stmw IIC_LdStLMW
+// stswi IIC_LdStLMW
+// stswx IIC_LdStLMW
+// stvebx IIC_LdStSTVEBX
+// stvehx IIC_LdStSTVEBX
+// stvewx IIC_LdStSTVEBX
+// stvx IIC_LdStSTVEBX
+// stvxl IIC_LdStSTVEBX
+// stw IIC_LdStStore
+// stwbrx IIC_LdStStore
+// stwcx. IIC_LdStSTWCX
+// stwu IIC_LdStStoreUpd
+// stwux IIC_LdStStoreUpd
+// stwx IIC_LdStStore
+// subf IIC_IntGeneral
+// subfc IIC_IntGeneral
+// subfe IIC_IntGeneral
+// subfic IIC_IntGeneral
+// subfme IIC_IntGeneral
+// subfze IIC_IntGeneral
+// sync IIC_LdStSync
+// td IIC_IntTrapD
+// tdi IIC_IntTrapD
+// tlbia IIC_LdStSLBIA
+// tlbie IIC_LdStDCBF
+// tlbsync IIC_SprTLBSYNC
+// tw IIC_IntTrapW
+// twi IIC_IntTrapW
+// vaddcuw IIC_VecGeneral
+// vaddfp IIC_VecFP
+// vaddsbs IIC_VecGeneral
+// vaddshs IIC_VecGeneral
+// vaddsws IIC_VecGeneral
+// vaddubm IIC_VecGeneral
+// vaddubs IIC_VecGeneral
+// vadduhm IIC_VecGeneral
+// vadduhs IIC_VecGeneral
+// vadduwm IIC_VecGeneral
+// vadduws IIC_VecGeneral
+// vand IIC_VecGeneral
+// vandc IIC_VecGeneral
+// vavgsb IIC_VecGeneral
+// vavgsh IIC_VecGeneral
+// vavgsw IIC_VecGeneral
+// vavgub IIC_VecGeneral
+// vavguh IIC_VecGeneral
+// vavguw IIC_VecGeneral
+// vcfsx IIC_VecFP
+// vcfux IIC_VecFP
+// vcmpbfp IIC_VecFPCompare
+// vcmpeqfp IIC_VecFPCompare
+// vcmpequb IIC_VecGeneral
+// vcmpequh IIC_VecGeneral
+// vcmpequw IIC_VecGeneral
+// vcmpgefp IIC_VecFPCompare
+// vcmpgtfp IIC_VecFPCompare
+// vcmpgtsb IIC_VecGeneral
+// vcmpgtsh IIC_VecGeneral
+// vcmpgtsw IIC_VecGeneral
+// vcmpgtub IIC_VecGeneral
+// vcmpgtuh IIC_VecGeneral
+// vcmpgtuw IIC_VecGeneral
+// vctsxs IIC_VecFP
+// vctuxs IIC_VecFP
+// vexptefp IIC_VecFP
+// vlogefp IIC_VecFP
+// vmaddfp IIC_VecFP
+// vmaxfp IIC_VecFPCompare
+// vmaxsb IIC_VecGeneral
+// vmaxsh IIC_VecGeneral
+// vmaxsw IIC_VecGeneral
+// vmaxub IIC_VecGeneral
+// vmaxuh IIC_VecGeneral
+// vmaxuw IIC_VecGeneral
+// vmhaddshs IIC_VecComplex
+// vmhraddshs IIC_VecComplex
+// vminfp IIC_VecFPCompare
+// vminsb IIC_VecGeneral
+// vminsh IIC_VecGeneral
+// vminsw IIC_VecGeneral
+// vminub IIC_VecGeneral
+// vminuh IIC_VecGeneral
+// vminuw IIC_VecGeneral
+// vmladduhm IIC_VecComplex
+// vmrghb IIC_VecPerm
+// vmrghh IIC_VecPerm
+// vmrghw IIC_VecPerm
+// vmrglb IIC_VecPerm
+// vmrglh IIC_VecPerm
+// vmrglw IIC_VecPerm
+// vmsubfp IIC_VecFP
+// vmsummbm IIC_VecComplex
+// vmsumshm IIC_VecComplex
+// vmsumshs IIC_VecComplex
+// vmsumubm IIC_VecComplex
+// vmsumuhm IIC_VecComplex
+// vmsumuhs IIC_VecComplex
+// vmulesb IIC_VecComplex
+// vmulesh IIC_VecComplex
+// vmuleub IIC_VecComplex
+// vmuleuh IIC_VecComplex
+// vmulosb IIC_VecComplex
+// vmulosh IIC_VecComplex
+// vmuloub IIC_VecComplex
+// vmulouh IIC_VecComplex
+// vnor IIC_VecGeneral
+// vor IIC_VecGeneral
+// vperm IIC_VecPerm
+// vpkpx IIC_VecPerm
+// vpkshss IIC_VecPerm
+// vpkshus IIC_VecPerm
+// vpkswss IIC_VecPerm
+// vpkswus IIC_VecPerm
+// vpkuhum IIC_VecPerm
+// vpkuhus IIC_VecPerm
+// vpkuwum IIC_VecPerm
+// vpkuwus IIC_VecPerm
+// vrefp IIC_VecFPRound
+// vrfim IIC_VecFPRound
+// vrfin IIC_VecFPRound
+// vrfip IIC_VecFPRound
+// vrfiz IIC_VecFPRound
+// vrlb IIC_VecGeneral
+// vrlh IIC_VecGeneral
+// vrlw IIC_VecGeneral
+// vrsqrtefp IIC_VecFP
+// vsel IIC_VecGeneral
+// vsl IIC_VecVSL
+// vslb IIC_VecGeneral
+// vsldoi IIC_VecPerm
+// vslh IIC_VecGeneral
+// vslo IIC_VecPerm
+// vslw IIC_VecGeneral
+// vspltb IIC_VecPerm
+// vsplth IIC_VecPerm
+// vspltisb IIC_VecPerm
+// vspltish IIC_VecPerm
+// vspltisw IIC_VecPerm
+// vspltw IIC_VecPerm
+// vsr IIC_VecVSR
+// vsrab IIC_VecGeneral
+// vsrah IIC_VecGeneral
+// vsraw IIC_VecGeneral
+// vsrb IIC_VecGeneral
+// vsrh IIC_VecGeneral
+// vsro IIC_VecPerm
+// vsrw IIC_VecGeneral
+// vsubcuw IIC_VecGeneral
+// vsubfp IIC_VecFP
+// vsubsbs IIC_VecGeneral
+// vsubshs IIC_VecGeneral
+// vsubsws IIC_VecGeneral
+// vsububm IIC_VecGeneral
+// vsububs IIC_VecGeneral
+// vsubuhm IIC_VecGeneral
+// vsubuhs IIC_VecGeneral
+// vsubuwm IIC_VecGeneral
+// vsubuws IIC_VecGeneral
+// vsum2sws IIC_VecComplex
+// vsum4sbs IIC_VecComplex
+// vsum4shs IIC_VecComplex
+// vsum4ubs IIC_VecComplex
+// vsumsws IIC_VecComplex
+// vupkhpx IIC_VecPerm
+// vupkhsb IIC_VecPerm
+// vupkhsh IIC_VecPerm
+// vupklpx IIC_VecPerm
+// vupklsb IIC_VecPerm
+// vupklsh IIC_VecPerm
+// vxor IIC_VecGeneral
+// xor IIC_IntSimple
+// xori IIC_IntSimple
+// xoris IIC_IntSimple
+//
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCSchedule440.td b/contrib/llvm/lib/Target/PowerPC/PPCSchedule440.td
new file mode 100644
index 0000000..218fed2
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCSchedule440.td
@@ -0,0 +1,599 @@
+//===-- PPCSchedule440.td - PPC 440 Scheduling Definitions -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// Primary reference:
+// PowerPC 440x6 Embedded Processor Core User's Manual.
+// IBM (as updated in) 2010.
+
+// The basic PPC 440 does not include a floating-point unit; the pipeline
+// timings here are constructed to match the FP2 unit shipped with the
+// PPC-440- and PPC-450-based Blue Gene (L and P) supercomputers.
+// References:
+// S. Chatterjee, et al. Design and exploitation of a high-performance
+// SIMD floating-point unit for Blue Gene/L.
+// IBM J. Res. & Dev. 49 (2/3) March/May 2005.
+// also:
+// Carlos Sosa and Brant Knudson. IBM System Blue Gene Solution:
+// Blue Gene/P Application Development.
+// IBM (as updated in) 2009.
+
+//===----------------------------------------------------------------------===//
+// Functional units on the PowerPC 440/450 chip sets
+//
+def P440_DISS1 : FuncUnit; // Issue unit 1
+def P440_DISS2 : FuncUnit; // Issue unit 2
+def P440_LRACC : FuncUnit; // Register access and dispatch for
+ // the simple integer (J-pipe) and
+ // load/store (L-pipe) pipelines
+def P440_IRACC : FuncUnit; // Register access and dispatch for
+ // the complex integer (I-pipe) pipeline
+def P440_FRACC : FuncUnit; // Register access and dispatch for
+ // the floating-point execution (F-pipe) pipeline
+def P440_IEXE1 : FuncUnit; // Execution stage 1 for the I pipeline
+def P440_IEXE2 : FuncUnit; // Execution stage 2 for the I pipeline
+def P440_IWB : FuncUnit; // Write-back unit for the I pipeline
+def P440_JEXE1 : FuncUnit; // Execution stage 1 for the J pipeline
+def P440_JEXE2 : FuncUnit; // Execution stage 2 for the J pipeline
+def P440_JWB : FuncUnit; // Write-back unit for the J pipeline
+def P440_AGEN : FuncUnit; // Address generation for the L pipeline
+def P440_CRD : FuncUnit; // D-cache access for the L pipeline
+def P440_LWB : FuncUnit; // Write-back unit for the L pipeline
+def P440_FEXE1 : FuncUnit; // Execution stage 1 for the F pipeline
+def P440_FEXE2 : FuncUnit; // Execution stage 2 for the F pipeline
+def P440_FEXE3 : FuncUnit; // Execution stage 3 for the F pipeline
+def P440_FEXE4 : FuncUnit; // Execution stage 4 for the F pipeline
+def P440_FEXE5 : FuncUnit; // Execution stage 5 for the F pipeline
+def P440_FEXE6 : FuncUnit; // Execution stage 6 for the F pipeline
+def P440_FWB : FuncUnit; // Write-back unit for the F pipeline
+
+def P440_LWARX_Hold : FuncUnit; // This is a pseudo-unit which is used
+ // to make sure that no lwarx/stwcx.
+ // instructions are issued while another
+ // lwarx/stwcx. is in the L pipe.
+
+def P440_GPR_Bypass : Bypass; // The bypass for general-purpose regs.
+def P440_FPR_Bypass : Bypass; // The bypass for floating-point regs.
+
+// Notes:
+// Instructions are held in the FRACC, LRACC and IRACC pipeline
+// stages until their source operands become ready. Exceptions:
+// - Store instructions will hold in the AGEN stage
+// - The integer multiply-accumulate instruction will hold in
+// the IEXE1 stage
+//
+// For most I-pipe operations, the result is available at the end of
+// the IEXE1 stage. Operations such as multiply and divide must
+// continue to execute in IEXE2 and IWB. Divide resides in IWB for
+// 33 cycles (multiply also calculates its result in IWB). For all
+// J-pipe instructions, the result is available
+// at the end of the JEXE1 stage. Loads have a 3-cycle latency
+// (data is not available until after the LWB stage).
+//
+// The L1 cache hit latency is four cycles for floating point loads
+// and three cycles for integer loads.
+//
+// The stwcx. instruction requires both the LRACC and the IRACC
+// dispatch stages. It must be issued from DISS0.
+//
+// All lwarx/stwcx. instructions hold in LRACC if another
+// uncommitted lwarx/stwcx. is in AGEN, CRD, or LWB.
+//
+// msync (a.k.a. sync) and mbar will hold in LWB until all load/store
+// resources are empty. AGEN and CRD are held empty until the msync/mbar
+// commits.
+//
+// Most floating-point instructions, computational and move,
+// have a 5-cycle latency. Divide takes longer (30 cycles). Instructions that
+// update the CR take 2 cycles. Stores take 3 cycles and, as mentioned above,
+// loads take 4 cycles (for L1 hit).
+
+//
+// This file defines the itinerary class data for the PPC 440 processor.
+//
+//===----------------------------------------------------------------------===//
+
+
+def PPC440Itineraries : ProcessorItineraries<
+ [P440_DISS1, P440_DISS2, P440_FRACC, P440_IRACC, P440_IEXE1, P440_IEXE2,
+ P440_IWB, P440_LRACC, P440_JEXE1, P440_JEXE2, P440_JWB, P440_AGEN, P440_CRD,
+ P440_LWB, P440_FEXE1, P440_FEXE2, P440_FEXE3, P440_FEXE4, P440_FEXE5,
+ P440_FEXE6, P440_FWB, P440_LWARX_Hold],
+ [P440_GPR_Bypass, P440_FPR_Bypass], [
+ InstrItinData<IIC_IntSimple, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC, P440_LRACC]>,
+ InstrStage<1, [P440_IEXE1, P440_JEXE1]>,
+ InstrStage<1, [P440_IEXE2, P440_JEXE2]>,
+ InstrStage<1, [P440_IWB, P440_JWB]>],
+ [2, 0, 0],
+ [P440_GPR_Bypass,
+ P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_IntGeneral, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC, P440_LRACC]>,
+ InstrStage<1, [P440_IEXE1, P440_JEXE1]>,
+ InstrStage<1, [P440_IEXE2, P440_JEXE2]>,
+ InstrStage<1, [P440_IWB, P440_JWB]>],
+ [2, 0, 0],
+ [P440_GPR_Bypass,
+ P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_IntCompare, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC, P440_LRACC]>,
+ InstrStage<1, [P440_IEXE1, P440_JEXE1]>,
+ InstrStage<1, [P440_IEXE2, P440_JEXE2]>,
+ InstrStage<1, [P440_IWB, P440_JWB]>],
+ [2, 0, 0],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_IntDivW, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<33, [P440_IWB]>],
+ [36, 0, 0],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_IntMFFS, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [3, 0, 0],
+ [P440_GPR_Bypass,
+ P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_IntMTFSB0, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [3, 0, 0],
+ [P440_GPR_Bypass,
+ P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_IntMulHW, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [4, 0, 0],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_IntMulHWU, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [4, 0, 0],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_IntMulLI, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [4, 0, 0],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_IntRotate, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC, P440_LRACC]>,
+ InstrStage<1, [P440_IEXE1, P440_JEXE1]>,
+ InstrStage<1, [P440_IEXE2, P440_JEXE2]>,
+ InstrStage<1, [P440_IWB, P440_JWB]>],
+ [2, 0, 0],
+ [P440_GPR_Bypass,
+ P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_IntShift, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC, P440_LRACC]>,
+ InstrStage<1, [P440_IEXE1, P440_JEXE1]>,
+ InstrStage<1, [P440_IEXE2, P440_JEXE2]>,
+ InstrStage<1, [P440_IWB, P440_JWB]>],
+ [2, 0, 0],
+ [P440_GPR_Bypass,
+ P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_IntTrapW, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [2, 0],
+ [P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_BrB, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [4, 0],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_BrCR, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [4, 0, 0],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_BrMCR, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [4, 0, 0],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_BrMCRX, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [4, 0, 0],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStDCBA, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStDCBF, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStDCBI, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLoad, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<2, [P440_LWB]>],
+ [5, 1, 1],
+ [P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLoadUpd,[InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<2, [P440_LWB]>],
+ [5, 2, 1, 1],
+ [P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLoadUpdX,[InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<2, [P440_LWB]>],
+ [5, 2, 1, 1],
+ [P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStStore, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<2, [P440_LWB]>],
+ [1, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStStoreUpd,[InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<2, [P440_LWB]>],
+ [2, 1, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStICBI, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [4, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTFD, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [1, 1, 1],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTFDU, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [2, 1, 1, 1],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLFD, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<2, [P440_LWB]>],
+ [5, 1, 1],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLFDU, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [5, 2, 1, 1],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLFDUX, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [5, 2, 1, 1],
+ [NoBypass, P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLHA, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [4, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLHAU, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [4, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLHAUX, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [4, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLMW, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [4, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLWARX, [InstrStage<1, [P440_DISS1]>,
+ InstrStage<1, [P440_IRACC], 0>,
+ InstrStage<4, [P440_LWARX_Hold], 0>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [4, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTD, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<2, [P440_LWB]>],
+ [4, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTDU, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<2, [P440_LWB]>],
+ [2, 1, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTDUX, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<2, [P440_LWB]>],
+ [2, 1, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTDCX, [InstrStage<1, [P440_DISS1]>,
+ InstrStage<1, [P440_IRACC], 0>,
+ InstrStage<4, [P440_LWARX_Hold], 0>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [4, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTWCX, [InstrStage<1, [P440_DISS1]>,
+ InstrStage<1, [P440_IRACC], 0>,
+ InstrStage<4, [P440_LWARX_Hold], 0>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<1, [P440_AGEN]>,
+ InstrStage<1, [P440_CRD]>,
+ InstrStage<1, [P440_LWB]>],
+ [4, 1, 1],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSync, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_LRACC]>,
+ InstrStage<3, [P440_AGEN], 1>,
+ InstrStage<2, [P440_CRD], 1>,
+ InstrStage<1, [P440_LWB]>]>,
+ InstrItinData<IIC_SprISYNC, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_FRACC], 0>,
+ InstrStage<1, [P440_LRACC], 0>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_FEXE1], 0>,
+ InstrStage<1, [P440_AGEN], 0>,
+ InstrStage<1, [P440_JEXE1], 0>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_FEXE2], 0>,
+ InstrStage<1, [P440_CRD], 0>,
+ InstrStage<1, [P440_JEXE2], 0>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<6, [P440_FEXE3], 0>,
+ InstrStage<6, [P440_LWB], 0>,
+ InstrStage<6, [P440_JWB], 0>,
+ InstrStage<6, [P440_IWB]>]>,
+ InstrItinData<IIC_SprMFSR, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [2, 0],
+ [P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_SprMTMSR, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [2, 0],
+ [P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_SprMTSR, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<3, [P440_IWB]>],
+ [5, 0],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_SprTLBSYNC, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>]>,
+ InstrItinData<IIC_SprMFCR, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [4, 0],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_SprMFMSR, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [3, 0],
+ [P440_GPR_Bypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_SprMFSPR, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<3, [P440_IWB]>],
+ [6, 0],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_SprMFTB, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<3, [P440_IWB]>],
+ [6, 0],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_SprMTSPR, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<3, [P440_IWB]>],
+ [6, 0],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_SprMTSRIN, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<3, [P440_IWB]>],
+ [6, 0],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_SprRFI, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [4, 0],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_SprSC, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_IRACC]>,
+ InstrStage<1, [P440_IEXE1]>,
+ InstrStage<1, [P440_IEXE2]>,
+ InstrStage<1, [P440_IWB]>],
+ [4, 0],
+ [NoBypass, P440_GPR_Bypass]>,
+ InstrItinData<IIC_FPGeneral, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_FRACC]>,
+ InstrStage<1, [P440_FEXE1]>,
+ InstrStage<1, [P440_FEXE2]>,
+ InstrStage<1, [P440_FEXE3]>,
+ InstrStage<1, [P440_FEXE4]>,
+ InstrStage<1, [P440_FEXE5]>,
+ InstrStage<1, [P440_FEXE6]>,
+ InstrStage<1, [P440_FWB]>],
+ [6, 0, 0],
+ [P440_FPR_Bypass,
+ P440_FPR_Bypass, P440_FPR_Bypass]>,
+ InstrItinData<IIC_FPAddSub, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_FRACC]>,
+ InstrStage<1, [P440_FEXE1]>,
+ InstrStage<1, [P440_FEXE2]>,
+ InstrStage<1, [P440_FEXE3]>,
+ InstrStage<1, [P440_FEXE4]>,
+ InstrStage<1, [P440_FEXE5]>,
+ InstrStage<1, [P440_FEXE6]>,
+ InstrStage<1, [P440_FWB]>],
+ [6, 0, 0],
+ [P440_FPR_Bypass,
+ P440_FPR_Bypass, P440_FPR_Bypass]>,
+ InstrItinData<IIC_FPCompare, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_FRACC]>,
+ InstrStage<1, [P440_FEXE1]>,
+ InstrStage<1, [P440_FEXE2]>,
+ InstrStage<1, [P440_FEXE3]>,
+ InstrStage<1, [P440_FEXE4]>,
+ InstrStage<1, [P440_FEXE5]>,
+ InstrStage<1, [P440_FEXE6]>,
+ InstrStage<1, [P440_FWB]>],
+ [6, 0, 0],
+ [P440_FPR_Bypass, P440_FPR_Bypass,
+ P440_FPR_Bypass]>,
+ InstrItinData<IIC_FPDivD, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_FRACC]>,
+ InstrStage<1, [P440_FEXE1]>,
+ InstrStage<1, [P440_FEXE2]>,
+ InstrStage<1, [P440_FEXE3]>,
+ InstrStage<1, [P440_FEXE4]>,
+ InstrStage<1, [P440_FEXE5]>,
+ InstrStage<1, [P440_FEXE6]>,
+ InstrStage<25, [P440_FWB]>],
+ [31, 0, 0],
+ [NoBypass, P440_FPR_Bypass, P440_FPR_Bypass]>,
+ InstrItinData<IIC_FPDivS, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_FRACC]>,
+ InstrStage<1, [P440_FEXE1]>,
+ InstrStage<1, [P440_FEXE2]>,
+ InstrStage<1, [P440_FEXE3]>,
+ InstrStage<1, [P440_FEXE4]>,
+ InstrStage<1, [P440_FEXE5]>,
+ InstrStage<1, [P440_FEXE6]>,
+ InstrStage<13, [P440_FWB]>],
+ [19, 0, 0],
+ [NoBypass, P440_FPR_Bypass, P440_FPR_Bypass]>,
+ InstrItinData<IIC_FPFused, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_FRACC]>,
+ InstrStage<1, [P440_FEXE1]>,
+ InstrStage<1, [P440_FEXE2]>,
+ InstrStage<1, [P440_FEXE3]>,
+ InstrStage<1, [P440_FEXE4]>,
+ InstrStage<1, [P440_FEXE5]>,
+ InstrStage<1, [P440_FEXE6]>,
+ InstrStage<1, [P440_FWB]>],
+ [6, 0, 0, 0],
+ [P440_FPR_Bypass,
+ P440_FPR_Bypass, P440_FPR_Bypass,
+ P440_FPR_Bypass]>,
+ InstrItinData<IIC_FPRes, [InstrStage<1, [P440_DISS1, P440_DISS2]>,
+ InstrStage<1, [P440_FRACC]>,
+ InstrStage<1, [P440_FEXE1]>,
+ InstrStage<1, [P440_FEXE2]>,
+ InstrStage<1, [P440_FEXE3]>,
+ InstrStage<1, [P440_FEXE4]>,
+ InstrStage<1, [P440_FEXE5]>,
+ InstrStage<1, [P440_FEXE6]>,
+ InstrStage<1, [P440_FWB]>],
+ [6, 0],
+ [P440_FPR_Bypass, P440_FPR_Bypass]>
+]>;
+
+// ===---------------------------------------------------------------------===//
+// PPC440 machine model for scheduling and other instruction cost heuristics.
+
+def PPC440Model : SchedMachineModel {
+ let IssueWidth = 2; // 2 instructions are dispatched per cycle.
+ let MinLatency = -1; // OperandCycles are interpreted as MinLatency.
+ let LoadLatency = 5; // Optimistic load latency assuming bypass.
+ // This is overriden by OperandCycles if the
+ // Itineraries are queried instead.
+
+ let Itineraries = PPC440Itineraries;
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCScheduleA2.td b/contrib/llvm/lib/Target/PowerPC/PPCScheduleA2.td
new file mode 100644
index 0000000..1447696
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCScheduleA2.td
@@ -0,0 +1,169 @@
+//===- PPCScheduleA2.td - PPC A2 Scheduling Definitions --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// Primary reference:
+// A2 Processor User's Manual.
+// IBM (as updated in) 2010.
+
+//===----------------------------------------------------------------------===//
+// Functional units on the PowerPC A2 chip sets
+//
+def A2_XU : FuncUnit; // A2_XU pipeline
+def A2_FU : FuncUnit; // FI pipeline
+
+//
+// This file defines the itinerary class data for the PPC A2 processor.
+//
+//===----------------------------------------------------------------------===//
+
+
+def PPCA2Itineraries : ProcessorItineraries<
+ [A2_XU, A2_FU], [], [
+ InstrItinData<IIC_IntSimple, [InstrStage<1, [A2_XU]>],
+ [1, 0, 0]>,
+ InstrItinData<IIC_IntGeneral, [InstrStage<1, [A2_XU]>],
+ [2, 0, 0]>,
+ InstrItinData<IIC_IntCompare, [InstrStage<1, [A2_XU]>],
+ [2, 0, 0]>,
+ InstrItinData<IIC_IntDivW, [InstrStage<1, [A2_XU]>],
+ [39, 0, 0]>,
+ InstrItinData<IIC_IntDivD, [InstrStage<1, [A2_XU]>],
+ [71, 0, 0]>,
+ InstrItinData<IIC_IntMulHW, [InstrStage<1, [A2_XU]>],
+ [5, 0, 0]>,
+ InstrItinData<IIC_IntMulHWU, [InstrStage<1, [A2_XU]>],
+ [5, 0, 0]>,
+ InstrItinData<IIC_IntMulLI, [InstrStage<1, [A2_XU]>],
+ [6, 0, 0]>,
+ InstrItinData<IIC_IntRotate, [InstrStage<1, [A2_XU]>],
+ [2, 0, 0]>,
+ InstrItinData<IIC_IntRotateD, [InstrStage<1, [A2_XU]>],
+ [2, 0, 0]>,
+ InstrItinData<IIC_IntRotateDI, [InstrStage<1, [A2_XU]>],
+ [2, 0, 0]>,
+ InstrItinData<IIC_IntShift, [InstrStage<1, [A2_XU]>],
+ [2, 0, 0]>,
+ InstrItinData<IIC_IntTrapW, [InstrStage<1, [A2_XU]>],
+ [2, 0]>,
+ InstrItinData<IIC_IntTrapD, [InstrStage<1, [A2_XU]>],
+ [2, 0]>,
+ InstrItinData<IIC_BrB, [InstrStage<1, [A2_XU]>],
+ [6, 0, 0]>,
+ InstrItinData<IIC_BrCR, [InstrStage<1, [A2_XU]>],
+ [1, 0, 0]>,
+ InstrItinData<IIC_BrMCR, [InstrStage<1, [A2_XU]>],
+ [5, 0, 0]>,
+ InstrItinData<IIC_BrMCRX, [InstrStage<1, [A2_XU]>],
+ [1, 0, 0]>,
+ InstrItinData<IIC_LdStDCBA, [InstrStage<1, [A2_XU]>],
+ [1, 0, 0]>,
+ InstrItinData<IIC_LdStDCBF, [InstrStage<1, [A2_XU]>],
+ [1, 0, 0]>,
+ InstrItinData<IIC_LdStDCBI, [InstrStage<1, [A2_XU]>],
+ [1, 0, 0]>,
+ InstrItinData<IIC_LdStLoad, [InstrStage<1, [A2_XU]>],
+ [6, 0, 0]>,
+ InstrItinData<IIC_LdStLoadUpd, [InstrStage<1, [A2_XU]>],
+ [6, 8, 0, 0]>,
+ InstrItinData<IIC_LdStLoadUpdX,[InstrStage<1, [A2_XU]>],
+ [6, 8, 0, 0]>,
+ InstrItinData<IIC_LdStLDU, [InstrStage<1, [A2_XU]>],
+ [6, 0, 0]>,
+ InstrItinData<IIC_LdStLDUX, [InstrStage<1, [A2_XU]>],
+ [6, 0, 0]>,
+ InstrItinData<IIC_LdStStore, [InstrStage<1, [A2_XU]>],
+ [0, 0, 0]>,
+ InstrItinData<IIC_LdStStoreUpd,[InstrStage<1, [A2_XU]>],
+ [2, 0, 0, 0]>,
+ InstrItinData<IIC_LdStICBI, [InstrStage<1, [A2_XU]>],
+ [16, 0, 0]>,
+ InstrItinData<IIC_LdStSTFD, [InstrStage<1, [A2_XU]>],
+ [0, 0, 0]>,
+ InstrItinData<IIC_LdStSTFDU, [InstrStage<1, [A2_XU]>],
+ [2, 0, 0, 0]>,
+ InstrItinData<IIC_LdStLFD, [InstrStage<1, [A2_XU]>],
+ [7, 0, 0]>,
+ InstrItinData<IIC_LdStLFDU, [InstrStage<1, [A2_XU]>],
+ [7, 9, 0, 0]>,
+ InstrItinData<IIC_LdStLFDUX, [InstrStage<1, [A2_XU]>],
+ [7, 9, 0, 0]>,
+ InstrItinData<IIC_LdStLHA, [InstrStage<1, [A2_XU]>],
+ [6, 0, 0]>,
+ InstrItinData<IIC_LdStLHAU, [InstrStage<1, [A2_XU]>],
+ [6, 8, 0, 0]>,
+ InstrItinData<IIC_LdStLHAUX, [InstrStage<1, [A2_XU]>],
+ [6, 8, 0, 0]>,
+ InstrItinData<IIC_LdStLWARX, [InstrStage<1, [A2_XU]>],
+ [82, 0, 0]>, // L2 latency
+ InstrItinData<IIC_LdStSTD, [InstrStage<1, [A2_XU]>],
+ [0, 0, 0]>,
+ InstrItinData<IIC_LdStSTDU, [InstrStage<1, [A2_XU]>],
+ [2, 0, 0, 0]>,
+ InstrItinData<IIC_LdStSTDUX, [InstrStage<1, [A2_XU]>],
+ [2, 0, 0, 0]>,
+ InstrItinData<IIC_LdStSTDCX, [InstrStage<1, [A2_XU]>],
+ [82, 0, 0]>, // L2 latency
+ InstrItinData<IIC_LdStSTWCX, [InstrStage<1, [A2_XU]>],
+ [82, 0, 0]>, // L2 latency
+ InstrItinData<IIC_LdStSync, [InstrStage<1, [A2_XU]>],
+ [6]>,
+ InstrItinData<IIC_SprISYNC, [InstrStage<1, [A2_XU]>],
+ [16]>,
+ InstrItinData<IIC_SprMTMSR, [InstrStage<1, [A2_XU]>],
+ [16, 0]>,
+ InstrItinData<IIC_SprMFCR, [InstrStage<1, [A2_XU]>],
+ [6, 0]>,
+ InstrItinData<IIC_SprMFCRF, [InstrStage<1, [A2_XU]>],
+ [1, 0]>,
+ InstrItinData<IIC_SprMFMSR, [InstrStage<1, [A2_XU]>],
+ [4, 0]>,
+ InstrItinData<IIC_SprMFSPR, [InstrStage<1, [A2_XU]>],
+ [6, 0]>,
+ InstrItinData<IIC_SprMFTB, [InstrStage<1, [A2_XU]>],
+ [4, 0]>,
+ InstrItinData<IIC_SprMTSPR, [InstrStage<1, [A2_XU]>],
+ [6, 0]>,
+ InstrItinData<IIC_SprRFI, [InstrStage<1, [A2_XU]>],
+ [16]>,
+ InstrItinData<IIC_SprSC, [InstrStage<1, [A2_XU]>],
+ [16]>,
+ InstrItinData<IIC_FPGeneral, [InstrStage<1, [A2_FU]>],
+ [6, 0, 0]>,
+ InstrItinData<IIC_FPAddSub, [InstrStage<1, [A2_FU]>],
+ [6, 0, 0]>,
+ InstrItinData<IIC_FPCompare, [InstrStage<1, [A2_FU]>],
+ [5, 0, 0]>,
+ InstrItinData<IIC_FPDivD, [InstrStage<1, [A2_FU]>],
+ [72, 0, 0]>,
+ InstrItinData<IIC_FPDivS, [InstrStage<1, [A2_FU]>],
+ [59, 0, 0]>,
+ InstrItinData<IIC_FPSqrtD, [InstrStage<1, [A2_FU]>],
+ [69, 0, 0]>,
+ InstrItinData<IIC_FPSqrtS, [InstrStage<1, [A2_FU]>],
+ [65, 0, 0]>,
+ InstrItinData<IIC_FPFused, [InstrStage<1, [A2_FU]>],
+ [6, 0, 0, 0]>,
+ InstrItinData<IIC_FPRes, [InstrStage<1, [A2_FU]>],
+ [6, 0]>
+]>;
+
+// ===---------------------------------------------------------------------===//
+// A2 machine model for scheduling and other instruction cost heuristics.
+
+def PPCA2Model : SchedMachineModel {
+ let IssueWidth = 1; // 1 instruction is dispatched per cycle.
+ let MinLatency = -1; // OperandCycles are interpreted as MinLatency.
+ let LoadLatency = 6; // Optimistic load latency assuming bypass.
+ // This is overriden by OperandCycles if the
+ // Itineraries are queried instead.
+ let MispredictPenalty = 13;
+
+ let Itineraries = PPCA2Itineraries;
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCScheduleE500mc.td b/contrib/llvm/lib/Target/PowerPC/PPCScheduleE500mc.td
new file mode 100644
index 0000000..dab89e3
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCScheduleE500mc.td
@@ -0,0 +1,314 @@
+//===-- PPCScheduleE500mc.td - e500mc Scheduling Defs ------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the Freescale e500mc 32-bit
+// Power processor.
+//
+// All information is derived from the "e500mc Core Reference Manual",
+// Freescale Document Number E500MCRM, Rev. 1, 03/2012.
+//
+//===----------------------------------------------------------------------===//
+// Relevant functional units in the Freescale e500mc core:
+//
+// * Decode & Dispatch
+// Can dispatch up to 2 instructions per clock cycle to either the GPR Issue
+// queues (GIQx), FP Issue Queue (FIQ), or Branch issue queue (BIQ).
+def E500_DIS0 : FuncUnit; // Dispatch stage - insn 1
+def E500_DIS1 : FuncUnit; // Dispatch stage - insn 2
+
+// * Execute
+// 6 pipelined execution units: SFX0, SFX1, BU, FPU, LSU, CFX.
+// Some instructions can only execute in SFX0 but not SFX1.
+// The CFX has a bypass path, allowing non-divide instructions to execute
+// while a divide instruction is executed.
+def E500_SFX0 : FuncUnit; // Simple unit 0
+def E500_SFX1 : FuncUnit; // Simple unit 1
+def E500_BU : FuncUnit; // Branch unit
+def E500_CFX_DivBypass
+ : FuncUnit; // CFX divide bypass path
+def E500_CFX_0 : FuncUnit; // CFX pipeline
+def E500_LSU_0 : FuncUnit; // LSU pipeline
+def E500_FPU_0 : FuncUnit; // FPU pipeline
+
+def E500_GPR_Bypass : Bypass;
+def E500_FPR_Bypass : Bypass;
+def E500_CR_Bypass : Bypass;
+
+def PPCE500mcItineraries : ProcessorItineraries<
+ [E500_DIS0, E500_DIS1, E500_SFX0, E500_SFX1, E500_BU, E500_CFX_DivBypass,
+ E500_CFX_0, E500_LSU_0, E500_FPU_0],
+ [E500_CR_Bypass, E500_GPR_Bypass, E500_FPR_Bypass], [
+ InstrItinData<IIC_IntSimple, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1]>],
+ [4, 1, 1], // Latency = 1
+ [E500_GPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_IntGeneral, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1]>],
+ [4, 1, 1], // Latency = 1
+ [E500_GPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_IntCompare, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1]>],
+ [5, 1, 1], // Latency = 1 or 2
+ [E500_CR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_IntDivW, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_CFX_0], 0>,
+ InstrStage<14, [E500_CFX_DivBypass]>],
+ [17, 1, 1], // Latency=4..35, Repeat= 4..35
+ [E500_GPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_IntMFFS, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<8, [E500_FPU_0]>],
+ [11], // Latency = 8
+ [E500_FPR_Bypass]>,
+ InstrItinData<IIC_IntMTFSB0, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<8, [E500_FPU_0]>],
+ [11, 1, 1], // Latency = 8
+ [NoBypass, NoBypass, NoBypass]>,
+ InstrItinData<IIC_IntMulHW, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_CFX_0]>],
+ [7, 1, 1], // Latency = 4, Repeat rate = 1
+ [E500_GPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_IntMulHWU, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_CFX_0]>],
+ [7, 1, 1], // Latency = 4, Repeat rate = 1
+ [E500_GPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_IntMulLI, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_CFX_0]>],
+ [7, 1, 1], // Latency = 4, Repeat rate = 1
+ [E500_GPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_IntRotate, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1]>],
+ [4, 1, 1], // Latency = 1
+ [E500_GPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_IntShift, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1]>],
+ [4, 1, 1], // Latency = 1
+ [E500_GPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_IntTrapW, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<2, [E500_SFX0]>],
+ [5, 1], // Latency = 2, Repeat rate = 2
+ [E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_BrB, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_BU]>],
+ [4, 1], // Latency = 1
+ [NoBypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_BrCR, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_BU]>],
+ [4, 1, 1], // Latency = 1
+ [E500_CR_Bypass,
+ E500_CR_Bypass, E500_CR_Bypass]>,
+ InstrItinData<IIC_BrMCR, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_BU]>],
+ [4, 1], // Latency = 1
+ [E500_CR_Bypass, E500_CR_Bypass]>,
+ InstrItinData<IIC_BrMCRX, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1]>],
+ [4, 1, 1], // Latency = 1
+ [E500_CR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStDCBA, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3, Repeat rate = 1
+ [E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStDCBF, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStDCBI, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLoad, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLoadUpd, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [E500_GPR_Bypass, E500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLoadUpdX,[InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [E500_GPR_Bypass, E500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStStore, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [NoBypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStStoreUpd,[InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [NoBypass, E500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStICBI, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [NoBypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTFD, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1, 1], // Latency = 3
+ [E500_GPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTFDU, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1, 1], // Latency = 3
+ [E500_GPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLFD, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [7, 1, 1], // Latency = 4
+ [E500_FPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLFDU, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [7, 1, 1], // Latency = 4
+ [E500_FPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLFDUX, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [7, 1, 1], // Latency = 4
+ [E500_FPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLHA, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLHAU, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLHAUX, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLMW, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [7, 1], // Latency = r+3
+ [NoBypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLWARX, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<3, [E500_LSU_0]>],
+ [6, 1, 1], // Latency = 3, Repeat rate = 3
+ [E500_GPR_Bypass,
+ E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTWCX, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>],
+ [6, 1], // Latency = 3
+ [NoBypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSync, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0]>]>,
+ InstrItinData<IIC_SprMFSR, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<4, [E500_SFX0]>],
+ [7, 1],
+ [E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_SprMTMSR, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<2, [E500_SFX0, E500_SFX1]>],
+ [5, 1], // Latency = 2, Repeat rate = 4
+ [E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_SprMTSR, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0]>],
+ [5, 1],
+ [NoBypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_SprTLBSYNC, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_LSU_0], 0>]>,
+ InstrItinData<IIC_SprMFCR, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<5, [E500_SFX0]>],
+ [8, 1],
+ [E500_GPR_Bypass, E500_CR_Bypass]>,
+ InstrItinData<IIC_SprMFCRF, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<5, [E500_SFX0]>],
+ [8, 1],
+ [E500_GPR_Bypass, E500_CR_Bypass]>,
+ InstrItinData<IIC_SprMFMSR, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<4, [E500_SFX0]>],
+ [7, 1], // Latency = 4, Repeat rate = 4
+ [E500_GPR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_SprMFSPR, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1]>],
+ [4, 1], // Latency = 1, Repeat rate = 1
+ [E500_GPR_Bypass, E500_CR_Bypass]>,
+ InstrItinData<IIC_SprMFTB, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<4, [E500_SFX0]>],
+ [7, 1], // Latency = 4, Repeat rate = 4
+ [NoBypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_SprMTSPR, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0, E500_SFX1]>],
+ [4, 1], // Latency = 1, Repeat rate = 1
+ [E500_CR_Bypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_SprMTSRIN, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<1, [E500_SFX0]>],
+ [4, 1],
+ [NoBypass, E500_GPR_Bypass]>,
+ InstrItinData<IIC_FPGeneral, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<2, [E500_FPU_0]>],
+ [11, 1, 1], // Latency = 8, Repeat rate = 2
+ [E500_FPR_Bypass,
+ E500_FPR_Bypass, E500_FPR_Bypass]>,
+ InstrItinData<IIC_FPAddSub, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<4, [E500_FPU_0]>],
+ [13, 1, 1], // Latency = 10, Repeat rate = 4
+ [E500_FPR_Bypass,
+ E500_FPR_Bypass, E500_FPR_Bypass]>,
+ InstrItinData<IIC_FPCompare, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<2, [E500_FPU_0]>],
+ [11, 1, 1], // Latency = 8, Repeat rate = 2
+ [E500_CR_Bypass,
+ E500_FPR_Bypass, E500_FPR_Bypass]>,
+ InstrItinData<IIC_FPDivD, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<68, [E500_FPU_0]>],
+ [71, 1, 1], // Latency = 68, Repeat rate = 68
+ [E500_FPR_Bypass,
+ E500_FPR_Bypass, E500_FPR_Bypass]>,
+ InstrItinData<IIC_FPDivS, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<38, [E500_FPU_0]>],
+ [41, 1, 1], // Latency = 38, Repeat rate = 38
+ [E500_FPR_Bypass,
+ E500_FPR_Bypass, E500_FPR_Bypass]>,
+ InstrItinData<IIC_FPFused, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<4, [E500_FPU_0]>],
+ [13, 1, 1, 1], // Latency = 10, Repeat rate = 4
+ [E500_FPR_Bypass,
+ E500_FPR_Bypass, E500_FPR_Bypass,
+ E500_FPR_Bypass]>,
+ InstrItinData<IIC_FPRes, [InstrStage<1, [E500_DIS0, E500_DIS1], 0>,
+ InstrStage<38, [E500_FPU_0]>],
+ [41, 1], // Latency = 38, Repeat rate = 38
+ [E500_FPR_Bypass, E500_FPR_Bypass]>
+]>;
+
+// ===---------------------------------------------------------------------===//
+// e500mc machine model for scheduling and other instruction cost heuristics.
+
+def PPCE500mcModel : SchedMachineModel {
+ let IssueWidth = 2; // 2 micro-ops are dispatched per cycle.
+ let MinLatency = -1; // OperandCycles are interpreted as MinLatency.
+ let LoadLatency = 5; // Optimistic load latency assuming bypass.
+ // This is overriden by OperandCycles if the
+ // Itineraries are queried instead.
+
+ let Itineraries = PPCE500mcItineraries;
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCScheduleE5500.td b/contrib/llvm/lib/Target/PowerPC/PPCScheduleE5500.td
new file mode 100644
index 0000000..de097d9
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCScheduleE5500.td
@@ -0,0 +1,374 @@
+//===-- PPCScheduleE500mc.td - e5500 Scheduling Defs -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the Freescale e5500 64-bit
+// Power processor.
+//
+// All information is derived from the "e5500 Core Reference Manual",
+// Freescale Document Number e5500RM, Rev. 1, 03/2012.
+//
+//===----------------------------------------------------------------------===//
+// Relevant functional units in the Freescale e5500 core
+// (These are the same as for the e500mc)
+//
+// * Decode & Dispatch
+// Can dispatch up to 2 instructions per clock cycle to either the GPR Issue
+// queues (GIQx), FP Issue Queue (FIQ), or Branch issue queue (BIQ).
+def E5500_DIS0 : FuncUnit;
+def E5500_DIS1 : FuncUnit;
+
+// * Execute
+// 6 pipelined execution units: SFX0, SFX1, BU, FPU, LSU, CFX.
+// The CFX has a bypass path, allowing non-divide instructions to execute
+// while a divide instruction is being executed.
+def E5500_SFX0 : FuncUnit; // Simple unit 0
+def E5500_SFX1 : FuncUnit; // Simple unit 1
+def E5500_BU : FuncUnit; // Branch unit
+def E5500_CFX_DivBypass
+ : FuncUnit; // CFX divide bypass path
+def E5500_CFX_0 : FuncUnit; // CFX pipeline stage 0
+
+def E5500_CFX_1 : FuncUnit; // CFX pipeline stage 1
+
+def E5500_LSU_0 : FuncUnit; // LSU pipeline
+def E5500_FPU_0 : FuncUnit; // FPU pipeline
+
+def E5500_GPR_Bypass : Bypass;
+def E5500_FPR_Bypass : Bypass;
+def E5500_CR_Bypass : Bypass;
+
+def PPCE5500Itineraries : ProcessorItineraries<
+ [E5500_DIS0, E5500_DIS1, E5500_SFX0, E5500_SFX1, E5500_BU,
+ E5500_CFX_DivBypass, E5500_CFX_0, E5500_CFX_1,
+ E5500_LSU_0, E5500_FPU_0],
+ [E5500_CR_Bypass, E5500_GPR_Bypass, E5500_FPR_Bypass], [
+ InstrItinData<IIC_IntSimple, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1]>],
+ [5, 2, 2], // Latency = 1
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntGeneral, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1]>],
+ [5, 2, 2], // Latency = 1
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntCompare, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1]>],
+ [6, 2, 2], // Latency = 1 or 2
+ [E5500_CR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntDivD, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_CFX_0], 0>,
+ InstrStage<26, [E5500_CFX_DivBypass]>],
+ [30, 2, 2], // Latency= 4..26, Repeat rate= 4..26
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntDivW, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_CFX_0], 0>,
+ InstrStage<16, [E5500_CFX_DivBypass]>],
+ [20, 2, 2], // Latency= 4..16, Repeat rate= 4..16
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntMFFS, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_FPU_0]>],
+ [11], // Latency = 7, Repeat rate = 1
+ [E5500_FPR_Bypass]>,
+ InstrItinData<IIC_IntMTFSB0, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<7, [E5500_FPU_0]>],
+ [11, 2, 2], // Latency = 7, Repeat rate = 7
+ [NoBypass, NoBypass, NoBypass]>,
+ InstrItinData<IIC_IntMulHD, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_CFX_0], 0>,
+ InstrStage<2, [E5500_CFX_1]>],
+ [9, 2, 2], // Latency = 4..7, Repeat rate = 2..4
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntMulHW, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_CFX_0], 0>,
+ InstrStage<1, [E5500_CFX_1]>],
+ [8, 2, 2], // Latency = 4, Repeat rate = 1
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntMulHWU, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_CFX_0], 0>,
+ InstrStage<1, [E5500_CFX_1]>],
+ [8, 2, 2], // Latency = 4, Repeat rate = 1
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntMulLI, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_CFX_0], 0>,
+ InstrStage<2, [E5500_CFX_1]>],
+ [8, 2, 2], // Latency = 4 or 5, Repeat = 2
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntRotate, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1]>],
+ [5, 2, 2], // Latency = 1
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntRotateD, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<2, [E5500_SFX0, E5500_SFX1]>],
+ [6, 2, 2], // Latency = 2, Repeat rate = 2
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntRotateDI, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1]>],
+ [5, 2, 2], // Latency = 1, Repeat rate = 1
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntShift, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<2, [E5500_SFX0, E5500_SFX1]>],
+ [6, 2, 2], // Latency = 2, Repeat rate = 2
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_IntTrapW, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<2, [E5500_SFX0]>],
+ [6, 2], // Latency = 2, Repeat rate = 2
+ [E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_BrB, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_BU]>],
+ [5, 2], // Latency = 1
+ [NoBypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_BrCR, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_BU]>],
+ [5, 2, 2], // Latency = 1
+ [E5500_CR_Bypass,
+ E5500_CR_Bypass, E5500_CR_Bypass]>,
+ InstrItinData<IIC_BrMCR, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_BU]>],
+ [5, 2], // Latency = 1
+ [E5500_CR_Bypass, E5500_CR_Bypass]>,
+ InstrItinData<IIC_BrMCRX, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_CFX_0]>],
+ [5, 2, 2], // Latency = 1
+ [E5500_CR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStDCBA, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStDCBF, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStDCBI, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLoad, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3
+ [E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLoadUpd, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLoadUpdX,[InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLD, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLDARX, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<3, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 3
+ [E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLDU, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLDUX, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStStore, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [NoBypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStStoreUpd,[InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [NoBypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStICBI, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [NoBypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTFD, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTFDU, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLFD, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [8, 2, 2], // Latency = 4, Repeat rate = 1
+ [E5500_FPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLFDU, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [8, 2, 2], // Latency = 4, Repeat rate = 1
+ [E5500_FPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLFDUX, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [8, 2, 2], // Latency = 4, Repeat rate = 1
+ [E5500_FPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLHA, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3
+ [E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLHAU, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLHAUX, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [E5500_GPR_Bypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStLMW, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<4, [E5500_LSU_0]>],
+ [8, 2], // Latency = r+3, Repeat rate = r+3
+ [NoBypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStLWARX, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<3, [E5500_LSU_0]>],
+ [7, 2, 2], // Latency = 3, Repeat rate = 3
+ [E5500_GPR_Bypass,
+ E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTD, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [NoBypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTDCX, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [NoBypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSTDU, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [NoBypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStSTDUX, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [NoBypass, E5500_GPR_Bypass],
+ 2>, // 2 micro-ops
+ InstrItinData<IIC_LdStSTWCX, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>],
+ [7, 2], // Latency = 3, Repeat rate = 1
+ [NoBypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_LdStSync, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0]>]>,
+ InstrItinData<IIC_SprMTMSR, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<2, [E5500_CFX_0]>],
+ [6, 2], // Latency = 2, Repeat rate = 4
+ [E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_SprTLBSYNC, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_LSU_0], 0>]>,
+ InstrItinData<IIC_SprMFCR, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<5, [E5500_CFX_0]>],
+ [9, 2], // Latency = 5, Repeat rate = 5
+ [E5500_GPR_Bypass, E5500_CR_Bypass]>,
+ InstrItinData<IIC_SprMFCRF, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<5, [E5500_CFX_0]>],
+ [9, 2], // Latency = 5, Repeat rate = 5
+ [E5500_GPR_Bypass, E5500_CR_Bypass]>,
+ InstrItinData<IIC_SprMFMSR, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<4, [E5500_SFX0]>],
+ [8, 2], // Latency = 4, Repeat rate = 4
+ [E5500_GPR_Bypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_SprMFSPR, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_CFX_0]>],
+ [5], // Latency = 1, Repeat rate = 1
+ [E5500_GPR_Bypass]>,
+ InstrItinData<IIC_SprMFTB, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<4, [E5500_CFX_0]>],
+ [8, 2], // Latency = 4, Repeat rate = 4
+ [NoBypass, E5500_GPR_Bypass]>,
+ InstrItinData<IIC_SprMTSPR, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_SFX0, E5500_SFX1]>],
+ [5], // Latency = 1, Repeat rate = 1
+ [E5500_GPR_Bypass]>,
+ InstrItinData<IIC_FPGeneral, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_FPU_0]>],
+ [11, 2, 2], // Latency = 7, Repeat rate = 1
+ [E5500_FPR_Bypass,
+ E5500_FPR_Bypass, E5500_FPR_Bypass]>,
+ InstrItinData<IIC_FPAddSub, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_FPU_0]>],
+ [11, 2, 2], // Latency = 7, Repeat rate = 1
+ [E5500_FPR_Bypass,
+ E5500_FPR_Bypass, E5500_FPR_Bypass]>,
+ InstrItinData<IIC_FPCompare, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_FPU_0]>],
+ [11, 2, 2], // Latency = 7, Repeat rate = 1
+ [E5500_CR_Bypass,
+ E5500_FPR_Bypass, E5500_FPR_Bypass]>,
+ InstrItinData<IIC_FPDivD, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<31, [E5500_FPU_0]>],
+ [39, 2, 2], // Latency = 35, Repeat rate = 31
+ [E5500_FPR_Bypass,
+ E5500_FPR_Bypass, E5500_FPR_Bypass]>,
+ InstrItinData<IIC_FPDivS, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<16, [E5500_FPU_0]>],
+ [24, 2, 2], // Latency = 20, Repeat rate = 16
+ [E5500_FPR_Bypass,
+ E5500_FPR_Bypass, E5500_FPR_Bypass]>,
+ InstrItinData<IIC_FPFused, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<1, [E5500_FPU_0]>],
+ [11, 2, 2, 2], // Latency = 7, Repeat rate = 1
+ [E5500_FPR_Bypass,
+ E5500_FPR_Bypass, E5500_FPR_Bypass,
+ E5500_FPR_Bypass]>,
+ InstrItinData<IIC_FPRes, [InstrStage<1, [E5500_DIS0, E5500_DIS1], 0>,
+ InstrStage<2, [E5500_FPU_0]>],
+ [12, 2], // Latency = 8, Repeat rate = 2
+ [E5500_FPR_Bypass, E5500_FPR_Bypass]>
+]>;
+
+// ===---------------------------------------------------------------------===//
+// e5500 machine model for scheduling and other instruction cost heuristics.
+
+def PPCE5500Model : SchedMachineModel {
+ let IssueWidth = 2; // 2 micro-ops are dispatched per cycle.
+ let MinLatency = -1; // OperandCycles are interpreted as MinLatency.
+ let LoadLatency = 6; // Optimistic load latency assuming bypass.
+ // This is overriden by OperandCycles if the
+ // Itineraries are queried instead.
+
+ let Itineraries = PPCE5500Itineraries;
+}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCScheduleG3.td b/contrib/llvm/lib/Target/PowerPC/PPCScheduleG3.td
new file mode 100644
index 0000000..21efd8f
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCScheduleG3.td
@@ -0,0 +1,80 @@
+//===-- PPCScheduleG3.td - PPC G3 Scheduling Definitions ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the G3 (750) processor.
+//
+//===----------------------------------------------------------------------===//
+
+def G3_BPU : FuncUnit; // Branch unit
+def G3_SLU : FuncUnit; // Store/load unit
+def G3_SRU : FuncUnit; // special register unit
+def G3_IU1 : FuncUnit; // integer unit 1 (simple)
+def G3_IU2 : FuncUnit; // integer unit 2 (complex)
+def G3_FPU1 : FuncUnit; // floating point unit 1
+
+def G3Itineraries : ProcessorItineraries<
+ [G3_IU1, G3_IU2, G3_FPU1, G3_BPU, G3_SRU, G3_SLU], [], [
+ InstrItinData<IIC_IntSimple , [InstrStage<1, [G3_IU1, G3_IU2]>]>,
+ InstrItinData<IIC_IntGeneral , [InstrStage<1, [G3_IU1, G3_IU2]>]>,
+ InstrItinData<IIC_IntCompare , [InstrStage<1, [G3_IU1, G3_IU2]>]>,
+ InstrItinData<IIC_IntDivW , [InstrStage<19, [G3_IU1]>]>,
+ InstrItinData<IIC_IntMFFS , [InstrStage<1, [G3_FPU1]>]>,
+ InstrItinData<IIC_IntMTFSB0 , [InstrStage<3, [G3_FPU1]>]>,
+ InstrItinData<IIC_IntMulHW , [InstrStage<5, [G3_IU1]>]>,
+ InstrItinData<IIC_IntMulHWU , [InstrStage<6, [G3_IU1]>]>,
+ InstrItinData<IIC_IntMulLI , [InstrStage<3, [G3_IU1]>]>,
+ InstrItinData<IIC_IntRotate , [InstrStage<1, [G3_IU1, G3_IU2]>]>,
+ InstrItinData<IIC_IntShift , [InstrStage<1, [G3_IU1, G3_IU2]>]>,
+ InstrItinData<IIC_IntTrapW , [InstrStage<2, [G3_IU1, G3_IU2]>]>,
+ InstrItinData<IIC_BrB , [InstrStage<1, [G3_BPU]>]>,
+ InstrItinData<IIC_BrCR , [InstrStage<1, [G3_SRU]>]>,
+ InstrItinData<IIC_BrMCR , [InstrStage<1, [G3_SRU]>]>,
+ InstrItinData<IIC_BrMCRX , [InstrStage<1, [G3_SRU]>]>,
+ InstrItinData<IIC_LdStDCBA , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStDCBF , [InstrStage<3, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStDCBI , [InstrStage<3, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStLoad , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStLoadUpd , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStLoadUpdX, [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStStore , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStStoreUpd, [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStICBI , [InstrStage<3, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStSTFD , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStSTFDU , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStLFD , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStLFDU , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStLFDUX , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStLHA , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStLHAU , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStLHAUX , [InstrStage<2, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStLMW , [InstrStage<34, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStLWARX , [InstrStage<3, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStSTWCX , [InstrStage<8, [G3_SLU]>]>,
+ InstrItinData<IIC_LdStSync , [InstrStage<3, [G3_SLU]>]>,
+ InstrItinData<IIC_SprISYNC , [InstrStage<2, [G3_SRU]>]>,
+ InstrItinData<IIC_SprMFSR , [InstrStage<3, [G3_SRU]>]>,
+ InstrItinData<IIC_SprMTMSR , [InstrStage<1, [G3_SRU]>]>,
+ InstrItinData<IIC_SprMTSR , [InstrStage<2, [G3_SRU]>]>,
+ InstrItinData<IIC_SprTLBSYNC , [InstrStage<3, [G3_SRU]>]>,
+ InstrItinData<IIC_SprMFCR , [InstrStage<1, [G3_SRU]>]>,
+ InstrItinData<IIC_SprMFMSR , [InstrStage<1, [G3_SRU]>]>,
+ InstrItinData<IIC_SprMFSPR , [InstrStage<3, [G3_SRU]>]>,
+ InstrItinData<IIC_SprMFTB , [InstrStage<3, [G3_SRU]>]>,
+ InstrItinData<IIC_SprMTSPR , [InstrStage<2, [G3_SRU]>]>,
+ InstrItinData<IIC_SprMTSRIN , [InstrStage<2, [G3_SRU]>]>,
+ InstrItinData<IIC_SprRFI , [InstrStage<2, [G3_SRU]>]>,
+ InstrItinData<IIC_SprSC , [InstrStage<2, [G3_SRU]>]>,
+ InstrItinData<IIC_FPGeneral , [InstrStage<1, [G3_FPU1]>]>,
+ InstrItinData<IIC_FPAddSub , [InstrStage<1, [G3_FPU1]>]>,
+ InstrItinData<IIC_FPCompare , [InstrStage<1, [G3_FPU1]>]>,
+ InstrItinData<IIC_FPDivD , [InstrStage<31, [G3_FPU1]>]>,
+ InstrItinData<IIC_FPDivS , [InstrStage<17, [G3_FPU1]>]>,
+ InstrItinData<IIC_FPFused , [InstrStage<2, [G3_FPU1]>]>,
+ InstrItinData<IIC_FPRes , [InstrStage<10, [G3_FPU1]>]>
+]>;
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCScheduleG4.td b/contrib/llvm/lib/Target/PowerPC/PPCScheduleG4.td
new file mode 100644
index 0000000..340773e
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCScheduleG4.td
@@ -0,0 +1,96 @@
+//===-- PPCScheduleG4.td - PPC G4 Scheduling Definitions ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the G4 (7400) processor.
+//
+//===----------------------------------------------------------------------===//
+
+def G4_BPU : FuncUnit; // Branch unit
+def G4_SLU : FuncUnit; // Store/load unit
+def G4_SRU : FuncUnit; // special register unit
+def G4_IU1 : FuncUnit; // integer unit 1 (simple)
+def G4_IU2 : FuncUnit; // integer unit 2 (complex)
+def G4_FPU1 : FuncUnit; // floating point unit 1
+def G4_VPU : FuncUnit; // vector permutation unit
+def G4_VIU1 : FuncUnit; // vector integer unit 1 (simple)
+def G4_VIU2 : FuncUnit; // vector integer unit 2 (complex)
+def G4_VFPU : FuncUnit; // vector floating point unit
+
+def G4Itineraries : ProcessorItineraries<
+ [G4_IU1, G4_IU2, G4_SLU, G4_SRU, G4_BPU, G4_FPU1,
+ G4_VIU1, G4_VIU2, G4_VPU, G4_VFPU], [], [
+ InstrItinData<IIC_IntSimple , [InstrStage<1, [G4_IU1, G4_IU2]>]>,
+ InstrItinData<IIC_IntGeneral , [InstrStage<1, [G4_IU1, G4_IU2]>]>,
+ InstrItinData<IIC_IntCompare , [InstrStage<1, [G4_IU1, G4_IU2]>]>,
+ InstrItinData<IIC_IntDivW , [InstrStage<19, [G4_IU1]>]>,
+ InstrItinData<IIC_IntMFFS , [InstrStage<3, [G4_FPU1]>]>,
+ InstrItinData<IIC_IntMFVSCR , [InstrStage<1, [G4_VIU1]>]>,
+ InstrItinData<IIC_IntMTFSB0 , [InstrStage<3, [G4_FPU1]>]>,
+ InstrItinData<IIC_IntMulHW , [InstrStage<5, [G4_IU1]>]>,
+ InstrItinData<IIC_IntMulHWU , [InstrStage<6, [G4_IU1]>]>,
+ InstrItinData<IIC_IntMulLI , [InstrStage<3, [G4_IU1]>]>,
+ InstrItinData<IIC_IntRotate , [InstrStage<1, [G4_IU1, G4_IU2]>]>,
+ InstrItinData<IIC_IntShift , [InstrStage<1, [G4_IU1, G4_IU2]>]>,
+ InstrItinData<IIC_IntTrapW , [InstrStage<2, [G4_IU1, G4_IU2]>]>,
+ InstrItinData<IIC_BrB , [InstrStage<1, [G4_BPU]>]>,
+ InstrItinData<IIC_BrCR , [InstrStage<1, [G4_SRU]>]>,
+ InstrItinData<IIC_BrMCR , [InstrStage<1, [G4_SRU]>]>,
+ InstrItinData<IIC_BrMCRX , [InstrStage<1, [G4_SRU]>]>,
+ InstrItinData<IIC_LdStDCBF , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStDCBI , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLoad , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLoadUpd , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLoadUpdX, [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStStore , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStStoreUpd, [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStDSS , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStICBI , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStSTFD , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStSTFDU , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLFD , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLFDU , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLFDUX , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLHA , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLHAU , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLHAUX , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLMW , [InstrStage<34, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLVecX , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStLWARX , [InstrStage<3, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStSTVEBX , [InstrStage<2, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStSTWCX , [InstrStage<5, [G4_SLU]>]>,
+ InstrItinData<IIC_LdStSync , [InstrStage<8, [G4_SLU]>]>,
+ InstrItinData<IIC_SprISYNC , [InstrStage<2, [G4_SRU]>]>,
+ InstrItinData<IIC_SprMFSR , [InstrStage<3, [G4_SRU]>]>,
+ InstrItinData<IIC_SprMTMSR , [InstrStage<1, [G4_SRU]>]>,
+ InstrItinData<IIC_SprMTSR , [InstrStage<2, [G4_SRU]>]>,
+ InstrItinData<IIC_SprTLBSYNC , [InstrStage<8, [G4_SRU]>]>,
+ InstrItinData<IIC_SprMFCR , [InstrStage<1, [G4_SRU]>]>,
+ InstrItinData<IIC_SprMFMSR , [InstrStage<1, [G4_SRU]>]>,
+ InstrItinData<IIC_SprMFSPR , [InstrStage<3, [G4_SRU]>]>,
+ InstrItinData<IIC_SprMFTB , [InstrStage<1, [G4_SRU]>]>,
+ InstrItinData<IIC_SprMTSPR , [InstrStage<2, [G4_SRU]>]>,
+ InstrItinData<IIC_SprMTSRIN , [InstrStage<2, [G4_SRU]>]>,
+ InstrItinData<IIC_SprRFI , [InstrStage<2, [G4_SRU]>]>,
+ InstrItinData<IIC_SprSC , [InstrStage<2, [G4_SRU]>]>,
+ InstrItinData<IIC_FPGeneral , [InstrStage<1, [G4_FPU1]>]>,
+ InstrItinData<IIC_FPAddSub , [InstrStage<1, [G4_FPU1]>]>,
+ InstrItinData<IIC_FPCompare , [InstrStage<1, [G4_FPU1]>]>,
+ InstrItinData<IIC_FPDivD , [InstrStage<31, [G4_FPU1]>]>,
+ InstrItinData<IIC_FPDivS , [InstrStage<17, [G4_FPU1]>]>,
+ InstrItinData<IIC_FPFused , [InstrStage<1, [G4_FPU1]>]>,
+ InstrItinData<IIC_FPRes , [InstrStage<10, [G4_FPU1]>]>,
+ InstrItinData<IIC_VecGeneral , [InstrStage<1, [G4_VIU1]>]>,
+ InstrItinData<IIC_VecFP , [InstrStage<4, [G4_VFPU]>]>,
+ InstrItinData<IIC_VecFPCompare, [InstrStage<1, [G4_VIU1]>]>,
+ InstrItinData<IIC_VecComplex , [InstrStage<3, [G4_VIU2]>]>,
+ InstrItinData<IIC_VecPerm , [InstrStage<1, [G4_VPU]>]>,
+ InstrItinData<IIC_VecFPRound , [InstrStage<4, [G4_VFPU]>]>,
+ InstrItinData<IIC_VecVSL , [InstrStage<1, [G4_VIU1]>]>,
+ InstrItinData<IIC_VecVSR , [InstrStage<1, [G4_VIU1]>]>
+]>;
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCScheduleG4Plus.td b/contrib/llvm/lib/Target/PowerPC/PPCScheduleG4Plus.td
new file mode 100644
index 0000000..1d9f13f
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCScheduleG4Plus.td
@@ -0,0 +1,112 @@
+//===-- PPCScheduleG4Plus.td - PPC G4+ Scheduling Defs. ----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the G4+ (7450) processor.
+//
+//===----------------------------------------------------------------------===//
+
+def G4P_BPU : FuncUnit; // Branch unit
+def G4P_SLU : FuncUnit; // Store/load unit
+def G4P_SRU : FuncUnit; // special register unit
+def G4P_IU1 : FuncUnit; // integer unit 1 (simple)
+def G4P_IU2 : FuncUnit; // integer unit 2 (complex)
+def G4P_IU3 : FuncUnit; // integer unit 3 (simple)
+def G4P_IU4 : FuncUnit; // integer unit 4 (simple)
+def G4P_FPU1 : FuncUnit; // floating point unit 1
+def G4P_VPU : FuncUnit; // vector permutation unit
+def G4P_VIU1 : FuncUnit; // vector integer unit 1 (simple)
+def G4P_VIU2 : FuncUnit; // vector integer unit 2 (complex)
+def G4P_VFPU : FuncUnit; // vector floating point unit
+
+def G4PlusItineraries : ProcessorItineraries<
+ [G4P_IU1, G4P_IU2, G4P_IU3, G4P_IU4, G4P_BPU, G4P_SLU, G4P_FPU1,
+ G4P_VFPU, G4P_VIU1, G4P_VIU2, G4P_VPU], [], [
+ InstrItinData<IIC_IntSimple , [InstrStage<1, [G4P_IU1, G4P_IU2,
+ G4P_IU3, G4P_IU4]>]>,
+ InstrItinData<IIC_IntGeneral , [InstrStage<1, [G4P_IU1, G4P_IU2,
+ G4P_IU3, G4P_IU4]>]>,
+ InstrItinData<IIC_IntCompare , [InstrStage<1, [G4P_IU1, G4P_IU2,
+ G4P_IU3, G4P_IU4]>]>,
+ InstrItinData<IIC_IntDivW , [InstrStage<23, [G4P_IU2]>]>,
+ InstrItinData<IIC_IntMFFS , [InstrStage<5, [G4P_FPU1]>]>,
+ InstrItinData<IIC_IntMFVSCR , [InstrStage<2, [G4P_VFPU]>]>,
+ InstrItinData<IIC_IntMTFSB0 , [InstrStage<5, [G4P_FPU1]>]>,
+ InstrItinData<IIC_IntMulHW , [InstrStage<4, [G4P_IU2]>]>,
+ InstrItinData<IIC_IntMulHWU , [InstrStage<4, [G4P_IU2]>]>,
+ InstrItinData<IIC_IntMulLI , [InstrStage<3, [G4P_IU2]>]>,
+ InstrItinData<IIC_IntRotate , [InstrStage<1, [G4P_IU1, G4P_IU2,
+ G4P_IU3, G4P_IU4]>]>,
+ InstrItinData<IIC_IntShift , [InstrStage<2, [G4P_IU1, G4P_IU2,
+ G4P_IU3, G4P_IU4]>]>,
+ InstrItinData<IIC_IntTrapW , [InstrStage<2, [G4P_IU1, G4P_IU2,
+ G4P_IU3, G4P_IU4]>]>,
+ InstrItinData<IIC_BrB , [InstrStage<1, [G4P_BPU]>]>,
+ InstrItinData<IIC_BrCR , [InstrStage<2, [G4P_IU2]>]>,
+ InstrItinData<IIC_BrMCR , [InstrStage<2, [G4P_IU2]>]>,
+ InstrItinData<IIC_BrMCRX , [InstrStage<2, [G4P_IU2]>]>,
+ InstrItinData<IIC_LdStDCBF , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStDCBI , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLoad , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLoadUpd , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLoadUpdX, [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStStore , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStStoreUpd, [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStDSS , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStICBI , [InstrStage<3, [G4P_IU2]>]>,
+ InstrItinData<IIC_LdStSTFD , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStSTFDU , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLFD , [InstrStage<4, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLFDU , [InstrStage<4, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLFDUX , [InstrStage<4, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLHA , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLHAU , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLHAUX , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLMW , [InstrStage<37, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLVecX , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLWA , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStLWARX , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStSTD , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStSTDCX , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStSTDU , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStSTDUX , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStSTVEBX , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStSTWCX , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_LdStSync , [InstrStage<35, [G4P_SLU]>]>,
+ InstrItinData<IIC_SprISYNC , [InstrStage<0, [G4P_IU1, G4P_IU2,
+ G4P_IU3, G4P_IU4]>]>,
+ InstrItinData<IIC_SprMFSR , [InstrStage<4, [G4P_IU2]>]>,
+ InstrItinData<IIC_SprMTMSR , [InstrStage<2, [G4P_IU2]>]>,
+ InstrItinData<IIC_SprMTSR , [InstrStage<2, [G4P_IU2]>]>,
+ InstrItinData<IIC_SprTLBSYNC , [InstrStage<3, [G4P_SLU]>]>,
+ InstrItinData<IIC_SprMFCR , [InstrStage<2, [G4P_IU2]>]>,
+ InstrItinData<IIC_SprMFMSR , [InstrStage<3, [G4P_IU2]>]>,
+ InstrItinData<IIC_SprMFSPR , [InstrStage<4, [G4P_IU2]>]>,
+ InstrItinData<IIC_SprMFTB , [InstrStage<5, [G4P_IU2]>]>,
+ InstrItinData<IIC_SprMTSPR , [InstrStage<2, [G4P_IU2]>]>,
+ InstrItinData<IIC_SprMTSRIN , [InstrStage<2, [G4P_IU2]>]>,
+ InstrItinData<IIC_SprRFI , [InstrStage<1, [G4P_IU1, G4P_IU2,
+ G4P_IU3, G4P_IU4]>]>,
+ InstrItinData<IIC_SprSC , [InstrStage<0, [G4P_IU1, G4P_IU2,
+ G4P_IU3, G4P_IU4]>]>,
+ InstrItinData<IIC_FPGeneral , [InstrStage<5, [G4P_FPU1]>]>,
+ InstrItinData<IIC_FPAddSub , [InstrStage<5, [G4P_FPU1]>]>,
+ InstrItinData<IIC_FPCompare , [InstrStage<5, [G4P_FPU1]>]>,
+ InstrItinData<IIC_FPDivD , [InstrStage<35, [G4P_FPU1]>]>,
+ InstrItinData<IIC_FPDivS , [InstrStage<21, [G4P_FPU1]>]>,
+ InstrItinData<IIC_FPFused , [InstrStage<5, [G4P_FPU1]>]>,
+ InstrItinData<IIC_FPRes , [InstrStage<14, [G4P_FPU1]>]>,
+ InstrItinData<IIC_VecGeneral , [InstrStage<1, [G4P_VIU1]>]>,
+ InstrItinData<IIC_VecFP , [InstrStage<4, [G4P_VFPU]>]>,
+ InstrItinData<IIC_VecFPCompare, [InstrStage<2, [G4P_VFPU]>]>,
+ InstrItinData<IIC_VecComplex , [InstrStage<4, [G4P_VIU2]>]>,
+ InstrItinData<IIC_VecPerm , [InstrStage<2, [G4P_VPU]>]>,
+ InstrItinData<IIC_VecFPRound , [InstrStage<4, [G4P_VIU1]>]>,
+ InstrItinData<IIC_VecVSL , [InstrStage<2, [G4P_VPU]>]>,
+ InstrItinData<IIC_VecVSR , [InstrStage<2, [G4P_VPU]>]>
+]>;
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCScheduleG5.td b/contrib/llvm/lib/Target/PowerPC/PPCScheduleG5.td
new file mode 100644
index 0000000..a3b73ab
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCScheduleG5.td
@@ -0,0 +1,129 @@
+//===-- PPCScheduleG5.td - PPC G5 Scheduling Definitions ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the G5 (970) processor.
+//
+//===----------------------------------------------------------------------===//
+
+def G5_BPU : FuncUnit; // Branch unit
+def G5_SLU : FuncUnit; // Store/load unit
+def G5_SRU : FuncUnit; // special register unit
+def G5_IU1 : FuncUnit; // integer unit 1 (simple)
+def G5_IU2 : FuncUnit; // integer unit 2 (complex)
+def G5_FPU1 : FuncUnit; // floating point unit 1
+def G5_FPU2 : FuncUnit; // floating point unit 2
+def G5_VPU : FuncUnit; // vector permutation unit
+def G5_VIU1 : FuncUnit; // vector integer unit 1 (simple)
+def G5_VIU2 : FuncUnit; // vector integer unit 2 (complex)
+def G5_VFPU : FuncUnit; // vector floating point unit
+
+def G5Itineraries : ProcessorItineraries<
+ [G5_IU1, G5_IU2, G5_SLU, G5_BPU, G5_FPU1, G5_FPU2,
+ G5_VFPU, G5_VIU1, G5_VIU2, G5_VPU], [], [
+ InstrItinData<IIC_IntSimple , [InstrStage<2, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntGeneral , [InstrStage<2, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntCompare , [InstrStage<3, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntDivD , [InstrStage<68, [G5_IU1]>]>,
+ InstrItinData<IIC_IntDivW , [InstrStage<36, [G5_IU1]>]>,
+ InstrItinData<IIC_IntMFFS , [InstrStage<6, [G5_IU2]>]>,
+ InstrItinData<IIC_IntMFVSCR , [InstrStage<1, [G5_VFPU]>]>,
+ InstrItinData<IIC_IntMTFSB0 , [InstrStage<6, [G5_FPU1, G5_FPU2]>]>,
+ InstrItinData<IIC_IntMulHD , [InstrStage<7, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntMulHW , [InstrStage<5, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntMulHWU , [InstrStage<5, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntMulLI , [InstrStage<4, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntRFID , [InstrStage<1, [G5_IU2]>]>,
+ InstrItinData<IIC_IntRotateD , [InstrStage<2, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntRotateDI , [InstrStage<2, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntRotate , [InstrStage<4, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntShift , [InstrStage<2, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntTrapD , [InstrStage<1, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_IntTrapW , [InstrStage<1, [G5_IU1, G5_IU2]>]>,
+ InstrItinData<IIC_BrB , [InstrStage<1, [G5_BPU]>]>,
+ InstrItinData<IIC_BrCR , [InstrStage<4, [G5_BPU]>]>,
+ InstrItinData<IIC_BrMCR , [InstrStage<2, [G5_BPU]>]>,
+ InstrItinData<IIC_BrMCRX , [InstrStage<3, [G5_BPU]>]>,
+ InstrItinData<IIC_LdStDCBF , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLoad , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLoadUpd , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLoadUpdX, [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStStore , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStStoreUpd, [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStDSS , [InstrStage<10, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStICBI , [InstrStage<40, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStSTFD , [InstrStage<4, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStSTFDU , [InstrStage<4, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLD , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLDU , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLDUX , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLDARX , [InstrStage<11, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLFD , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLFDU , [InstrStage<5, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLFDUX , [InstrStage<5, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLHA , [InstrStage<5, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLHAU , [InstrStage<5, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLHAUX , [InstrStage<5, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLMW , [InstrStage<64, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLVecX , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLWA , [InstrStage<5, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStLWARX , [InstrStage<11, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStSLBIA , [InstrStage<40, [G5_SLU]>]>, // needs work
+ InstrItinData<IIC_LdStSLBIE , [InstrStage<2, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStSTD , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStSTDU , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStSTDUX , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStSTDCX , [InstrStage<11, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStSTVEBX , [InstrStage<5, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStSTWCX , [InstrStage<11, [G5_SLU]>]>,
+ InstrItinData<IIC_LdStSync , [InstrStage<35, [G5_SLU]>]>,
+ InstrItinData<IIC_SprISYNC , [InstrStage<40, [G5_SLU]>]>, // needs work
+ InstrItinData<IIC_SprMFSR , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_SprMTMSR , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_SprMTSR , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_SprTLBSYNC , [InstrStage<3, [G5_SLU]>]>,
+ InstrItinData<IIC_SprMFCR , [InstrStage<2, [G5_IU2]>]>,
+ InstrItinData<IIC_SprMFCRF , [InstrStage<2, [G5_IU2]>]>,
+ InstrItinData<IIC_SprMFMSR , [InstrStage<3, [G5_IU2]>]>,
+ InstrItinData<IIC_SprMFSPR , [InstrStage<3, [G5_IU2]>]>,
+ InstrItinData<IIC_SprMFTB , [InstrStage<10, [G5_IU2]>]>,
+ InstrItinData<IIC_SprMTSPR , [InstrStage<8, [G5_IU2]>]>,
+ InstrItinData<IIC_SprSC , [InstrStage<1, [G5_IU2]>]>,
+ InstrItinData<IIC_FPGeneral , [InstrStage<6, [G5_FPU1, G5_FPU2]>]>,
+ InstrItinData<IIC_FPAddSub , [InstrStage<6, [G5_FPU1, G5_FPU2]>]>,
+ InstrItinData<IIC_FPCompare , [InstrStage<8, [G5_FPU1, G5_FPU2]>]>,
+ InstrItinData<IIC_FPDivD , [InstrStage<33, [G5_FPU1, G5_FPU2]>]>,
+ InstrItinData<IIC_FPDivS , [InstrStage<33, [G5_FPU1, G5_FPU2]>]>,
+ InstrItinData<IIC_FPFused , [InstrStage<6, [G5_FPU1, G5_FPU2]>]>,
+ InstrItinData<IIC_FPRes , [InstrStage<6, [G5_FPU1, G5_FPU2]>]>,
+ InstrItinData<IIC_FPSqrtD , [InstrStage<40, [G5_FPU1, G5_FPU2]>]>,
+ InstrItinData<IIC_FPSqrtS , [InstrStage<40, [G5_FPU1, G5_FPU2]>]>,
+ InstrItinData<IIC_VecGeneral , [InstrStage<2, [G5_VIU1]>]>,
+ InstrItinData<IIC_VecFP , [InstrStage<8, [G5_VFPU]>]>,
+ InstrItinData<IIC_VecFPCompare, [InstrStage<2, [G5_VFPU]>]>,
+ InstrItinData<IIC_VecComplex , [InstrStage<5, [G5_VIU2]>]>,
+ InstrItinData<IIC_VecPerm , [InstrStage<3, [G5_VPU]>]>,
+ InstrItinData<IIC_VecFPRound , [InstrStage<8, [G5_VFPU]>]>,
+ InstrItinData<IIC_VecVSL , [InstrStage<2, [G5_VIU1]>]>,
+ InstrItinData<IIC_VecVSR , [InstrStage<3, [G5_VPU]>]>
+]>;
+
+// ===---------------------------------------------------------------------===//
+// G5 machine model for scheduling and other instruction cost heuristics.
+
+def G5Model : SchedMachineModel {
+ let IssueWidth = 4; // 4 (non-branch) instructions are dispatched per cycle.
+ let MinLatency = 0; // Out-of-order dispatch.
+ let LoadLatency = 3; // Optimistic load latency assuming bypass.
+ // This is overriden by OperandCycles if the
+ // Itineraries are queried instead.
+ let MispredictPenalty = 16;
+
+ let Itineraries = G5Itineraries;
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCScheduleP7.td b/contrib/llvm/lib/Target/PowerPC/PPCScheduleP7.td
new file mode 100644
index 0000000..d3e4269
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCScheduleP7.td
@@ -0,0 +1,385 @@
+//===-- PPCScheduleP7.td - PPC P7 Scheduling Definitions ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the POWER7 processor.
+//
+//===----------------------------------------------------------------------===//
+
+// Primary reference:
+// IBM POWER7 multicore server processor
+// B. Sinharoy, et al.
+// IBM J. Res. & Dev. (55) 3. May/June 2011.
+
+// Scheduling for the P7 involves tracking two types of resources:
+// 1. The dispatch bundle slots
+// 2. The functional unit resources
+
+// Dispatch units:
+def P7_DU1 : FuncUnit;
+def P7_DU2 : FuncUnit;
+def P7_DU3 : FuncUnit;
+def P7_DU4 : FuncUnit;
+def P7_DU5 : FuncUnit;
+def P7_DU6 : FuncUnit;
+
+def P7_LS1 : FuncUnit; // Load/Store pipeline 1
+def P7_LS2 : FuncUnit; // Load/Store pipeline 2
+
+def P7_FX1 : FuncUnit; // FX pipeline 1
+def P7_FX2 : FuncUnit; // FX pipeline 2
+
+// VS pipeline 1 (vector integer ops. always here)
+def P7_VS1 : FuncUnit; // VS pipeline 1
+// VS pipeline 2 (128-bit stores and perms. here)
+def P7_VS2 : FuncUnit; // VS pipeline 2
+
+def P7_CRU : FuncUnit; // CR unit (CR logicals and move-from-SPRs)
+def P7_BRU : FuncUnit; // BR unit
+
+// Notes:
+// Each LSU pipeline can also execute FX add and logical instructions.
+// Each LSU pipeline can complete a load or store in one cycle.
+//
+// Each store is broken into two parts, AGEN goes to the LSU while a
+// "data steering" op. goes to the FXU or VSU.
+//
+// FX loads have a two cycle load-to-use latency (so one "bubble" cycle).
+// VSU loads have a three cycle load-to-use latency (so two "bubble" cycle).
+//
+// Frequent FX ops. take only one cycle and results can be used again in the
+// next cycle (there is a self-bypass). Getting results from the other FX
+// pipeline takes an additional cycle.
+//
+// The VSU XS is similar to the POWER6, but with a pipeline length of 2 cycles
+// (instead of 3 cycles on the POWER6). VSU XS handles vector FX-style ops.
+// Dispatch of an instruction to VS1 that uses four single prec. inputs
+// (either to a float or XC op). prevents dispatch in that cycle to VS2 of any
+// floating point instruction.
+//
+// The VSU PM is similar to the POWER6, but with a pipeline length of 3 cycles
+// (instead of 4 cycles on the POWER6). vsel is handled by the PM pipeline
+// (unlike on the POWER6).
+//
+// FMA from the VSUs can forward results in 6 cycles. VS1 XS and vector FP
+// share the same write-back, and have a 5-cycle latency difference, so the
+// IFU/IDU will not dispatch an XS instructon 5 cycles after a vector FP
+// op. has been dispatched to VS1.
+//
+// Three cycles after an L1 cache hit, a dependent VSU instruction can issue.
+//
+// Instruction dispatch groups have (at most) four non-branch instructions, and
+// two branches. Unlike on the POWER4/5, a branch does not automatically
+// end the dispatch group, but a second branch must be the last in the group.
+
+def P7Itineraries : ProcessorItineraries<
+ [P7_DU1, P7_DU2, P7_DU3, P7_DU4, P7_DU5, P7_DU6,
+ P7_LS1, P7_LS2, P7_FX1, P7_FX2, P7_VS1, P7_VS2, P7_CRU, P7_BRU], [], [
+ InstrItinData<IIC_IntSimple , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2,
+ P7_LS1, P7_LS2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_IntGeneral , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_IntCompare , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [1, 1, 1]>,
+ // FIXME: Add record-form itinerary data.
+ InstrItinData<IIC_IntDivW , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<36, [P7_FX1, P7_FX2]>],
+ [36, 1, 1]>,
+ InstrItinData<IIC_IntDivD , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<68, [P7_FX1, P7_FX2]>],
+ [68, 1, 1]>,
+ InstrItinData<IIC_IntMulHW , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [4, 1, 1]>,
+ InstrItinData<IIC_IntMulHWU , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [4, 1, 1]>,
+ InstrItinData<IIC_IntMulLI , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [4, 1, 1]>,
+ InstrItinData<IIC_IntRotate , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_IntRotateD , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_IntShift , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_IntTrapW , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [1, 1]>,
+ InstrItinData<IIC_IntTrapD , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [1, 1]>,
+ InstrItinData<IIC_BrB , [InstrStage<1, [P7_DU5, P7_DU6], 0>,
+ InstrStage<1, [P7_BRU]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_BrCR , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_CRU]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_BrMCR , [InstrStage<1, [P7_DU5, P7_DU6], 0>,
+ InstrStage<1, [P7_BRU]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_BrMCRX , [InstrStage<1, [P7_DU5, P7_DU6], 0>,
+ InstrStage<1, [P7_BRU]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLoad , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_LdStLoadUpd , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [2, 2, 1, 1]>,
+ InstrItinData<IIC_LdStLoadUpdX, [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_DU3], 0>,
+ InstrStage<1, [P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [3, 3, 1, 1]>,
+ InstrItinData<IIC_LdStLD , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_LdStLDU , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [2, 2, 1, 1]>,
+ InstrItinData<IIC_LdStLDUX , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_DU3], 0>,
+ InstrStage<1, [P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [3, 3, 1, 1]>,
+ InstrItinData<IIC_LdStLFD , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLVecX , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLFDU , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [3, 3, 1, 1]>,
+ InstrItinData<IIC_LdStLFDUX , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [3, 3, 1, 1]>,
+ InstrItinData<IIC_LdStLHA , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2]>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLHAU , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [4, 4, 1, 1]>,
+ InstrItinData<IIC_LdStLHAUX , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_DU3], 0>,
+ InstrStage<1, [P7_DU4], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [4, 4, 1, 1]>,
+ InstrItinData<IIC_LdStLWA , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2]>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLWARX, [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_DU3], 0>,
+ InstrStage<1, [P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLDARX, [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_DU3], 0>,
+ InstrStage<1, [P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLMW , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_LdStStore , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_LdStSTD , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_LdStSTDU , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [2, 1, 1, 1]>,
+ InstrItinData<IIC_LdStSTDUX , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_DU3], 0>,
+ InstrStage<1, [P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2]>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [2, 1, 1, 1]>,
+ InstrItinData<IIC_LdStSTFD , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_LdStSTFDU , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_FX1, P7_FX2], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [2, 1, 1, 1]>,
+ InstrItinData<IIC_LdStSTVEBX , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2], 0>,
+ InstrStage<1, [P7_VS2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_LdStSTDCX , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_DU3], 0>,
+ InstrStage<1, [P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_LdStSTWCX , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_DU3], 0>,
+ InstrStage<1, [P7_DU4], 0>,
+ InstrStage<1, [P7_LS1, P7_LS2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_BrMCRX , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_DU2], 0>,
+ InstrStage<1, [P7_DU3], 0>,
+ InstrStage<1, [P7_DU4], 0>,
+ InstrStage<1, [P7_CRU]>,
+ InstrStage<1, [P7_FX1, P7_FX2]>],
+ [3, 1]>, // mtcr
+ InstrItinData<IIC_SprMFCR , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_CRU]>],
+ [6, 1]>,
+ InstrItinData<IIC_SprMFCRF , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_CRU]>],
+ [3, 1]>,
+ InstrItinData<IIC_SprMTSPR , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_FX1]>],
+ [4, 1]>, // mtctr
+ InstrItinData<IIC_FPGeneral , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [5, 1, 1]>,
+ InstrItinData<IIC_FPCompare , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [8, 1, 1]>,
+ InstrItinData<IIC_FPDivD , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [33, 1, 1]>,
+ InstrItinData<IIC_FPDivS , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [27, 1, 1]>,
+ InstrItinData<IIC_FPSqrtD , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [44, 1, 1]>,
+ InstrItinData<IIC_FPSqrtS , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [32, 1, 1]>,
+ InstrItinData<IIC_FPFused , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [5, 1, 1, 1]>,
+ InstrItinData<IIC_FPRes , [InstrStage<1, [P7_DU1, P7_DU2,
+ P7_DU3, P7_DU4], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [5, 1, 1]>,
+ InstrItinData<IIC_VecGeneral , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_VS1]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_VecVSL , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_VS1]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_VecVSR , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_VS1]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_VecFP , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [6, 1, 1]>,
+ InstrItinData<IIC_VecFPCompare, [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [6, 1, 1]>,
+ InstrItinData<IIC_VecFPRound , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_VS1, P7_VS2]>],
+ [6, 1, 1]>,
+ InstrItinData<IIC_VecComplex , [InstrStage<1, [P7_DU1], 0>,
+ InstrStage<1, [P7_VS1]>],
+ [7, 1, 1]>,
+ InstrItinData<IIC_VecPerm , [InstrStage<1, [P7_DU1, P7_DU2], 0>,
+ InstrStage<1, [P7_VS2]>],
+ [3, 1, 1]>
+]>;
+
+// ===---------------------------------------------------------------------===//
+// P7 machine model for scheduling and other instruction cost heuristics.
+
+def P7Model : SchedMachineModel {
+ let IssueWidth = 6; // 4 (non-branch) instructions are dispatched per cycle.
+ // Note that the dispatch bundle size is 6 (including
+ // branches), but the total internal issue bandwidth per
+ // cycle (from all queues) is 8.
+
+ let MinLatency = 0; // Out-of-order dispatch.
+ let LoadLatency = 3; // Optimistic load latency assuming bypass.
+ // This is overriden by OperandCycles if the
+ // Itineraries are queried instead.
+ let MispredictPenalty = 16;
+
+ let Itineraries = P7Itineraries;
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.cpp
new file mode 100644
index 0000000..dc16742
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.cpp
@@ -0,0 +1,22 @@
+//===-- PPCSelectionDAGInfo.cpp - PowerPC SelectionDAG Info ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PPCSelectionDAGInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCTargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "powerpc-selectiondag-info"
+
+PPCSelectionDAGInfo::PPCSelectionDAGInfo(const DataLayout *DL)
+ : TargetSelectionDAGInfo(DL) {}
+
+PPCSelectionDAGInfo::~PPCSelectionDAGInfo() {}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.h b/contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.h
new file mode 100644
index 0000000..b2e7f3b
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.h
@@ -0,0 +1,31 @@
+//===-- PPCSelectionDAGInfo.h - PowerPC SelectionDAG Info -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PowerPC subclass for TargetSelectionDAGInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef POWERPCCSELECTIONDAGINFO_H
+#define POWERPCCSELECTIONDAGINFO_H
+
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+class PPCTargetMachine;
+
+class PPCSelectionDAGInfo : public TargetSelectionDAGInfo {
+public:
+ explicit PPCSelectionDAGInfo(const DataLayout *DL);
+ ~PPCSelectionDAGInfo();
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.cpp b/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.cpp
new file mode 100644
index 0000000..b51512d
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.cpp
@@ -0,0 +1,277 @@
+//===-- PowerPCSubtarget.cpp - PPC Subtarget Information ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PPC specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCSubtarget.h"
+#include "PPC.h"
+#include "PPCRegisterInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineScheduler.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cstdlib>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "ppc-subtarget"
+
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#include "PPCGenSubtargetInfo.inc"
+
+/// Return the datalayout string of a subtarget.
+static std::string getDataLayoutString(const PPCSubtarget &ST) {
+ const Triple &T = ST.getTargetTriple();
+
+ std::string Ret;
+
+ // Most PPC* platforms are big endian, PPC64LE is little endian.
+ if (ST.isLittleEndian())
+ Ret = "e";
+ else
+ Ret = "E";
+
+ Ret += DataLayout::getManglingComponent(T);
+
+ // PPC32 has 32 bit pointers. The PS3 (OS Lv2) is a PPC64 machine with 32 bit
+ // pointers.
+ if (!ST.isPPC64() || T.getOS() == Triple::Lv2)
+ Ret += "-p:32:32";
+
+ // Note, the alignment values for f64 and i64 on ppc64 in Darwin
+ // documentation are wrong; these are correct (i.e. "what gcc does").
+ if (ST.isPPC64() || ST.isSVR4ABI())
+ Ret += "-i64:64";
+ else
+ Ret += "-f64:32:64";
+
+ // PPC64 has 32 and 64 bit registers, PPC32 has only 32 bit ones.
+ if (ST.isPPC64())
+ Ret += "-n32:64";
+ else
+ Ret += "-n32";
+
+ return Ret;
+}
+
+PPCSubtarget &PPCSubtarget::initializeSubtargetDependencies(StringRef CPU,
+ StringRef FS) {
+ initializeEnvironment();
+ resetSubtargetFeatures(CPU, FS);
+ return *this;
+}
+
+PPCSubtarget::PPCSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, PPCTargetMachine &TM,
+ bool is64Bit, CodeGenOpt::Level OptLevel)
+ : PPCGenSubtargetInfo(TT, CPU, FS), IsPPC64(is64Bit), TargetTriple(TT),
+ OptLevel(OptLevel),
+ FrameLowering(initializeSubtargetDependencies(CPU, FS)),
+ DL(getDataLayoutString(*this)), InstrInfo(*this), JITInfo(*this),
+ TLInfo(TM), TSInfo(&DL) {}
+
+/// SetJITMode - This is called to inform the subtarget info that we are
+/// producing code for the JIT.
+void PPCSubtarget::SetJITMode() {
+ // JIT mode doesn't want lazy resolver stubs, it knows exactly where
+ // everything is. This matters for PPC64, which codegens in PIC mode without
+ // stubs.
+ HasLazyResolverStubs = false;
+
+ // Calls to external functions need to use indirect calls
+ IsJITCodeModel = true;
+}
+
+void PPCSubtarget::resetSubtargetFeatures(const MachineFunction *MF) {
+ AttributeSet FnAttrs = MF->getFunction()->getAttributes();
+ Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
+ "target-cpu");
+ Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
+ "target-features");
+ std::string CPU =
+ !CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString() : "";
+ std::string FS =
+ !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
+ if (!FS.empty()) {
+ initializeEnvironment();
+ resetSubtargetFeatures(CPU, FS);
+ }
+}
+
+void PPCSubtarget::initializeEnvironment() {
+ StackAlignment = 16;
+ DarwinDirective = PPC::DIR_NONE;
+ HasMFOCRF = false;
+ Has64BitSupport = false;
+ Use64BitRegs = false;
+ UseCRBits = false;
+ HasAltivec = false;
+ HasQPX = false;
+ HasVSX = false;
+ HasFCPSGN = false;
+ HasFSQRT = false;
+ HasFRE = false;
+ HasFRES = false;
+ HasFRSQRTE = false;
+ HasFRSQRTES = false;
+ HasRecipPrec = false;
+ HasSTFIWX = false;
+ HasLFIWAX = false;
+ HasFPRND = false;
+ HasFPCVT = false;
+ HasISEL = false;
+ HasPOPCNTD = false;
+ HasLDBRX = false;
+ IsBookE = false;
+ DeprecatedMFTB = false;
+ DeprecatedDST = false;
+ HasLazyResolverStubs = false;
+ IsJITCodeModel = false;
+}
+
+void PPCSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
+ // Determine default and user specified characteristics
+ std::string CPUName = CPU;
+ if (CPUName.empty())
+ CPUName = "generic";
+#if (defined(__APPLE__) || defined(__linux__)) && \
+ (defined(__ppc__) || defined(__powerpc__))
+ if (CPUName == "generic")
+ CPUName = sys::getHostCPUName();
+#endif
+
+ // Initialize scheduling itinerary for the specified CPU.
+ InstrItins = getInstrItineraryForCPU(CPUName);
+
+ // Make sure 64-bit features are available when CPUname is generic
+ std::string FullFS = FS;
+
+ // If we are generating code for ppc64, verify that options make sense.
+ if (IsPPC64) {
+ Has64BitSupport = true;
+ // Silently force 64-bit register use on ppc64.
+ Use64BitRegs = true;
+ if (!FullFS.empty())
+ FullFS = "+64bit," + FullFS;
+ else
+ FullFS = "+64bit";
+ }
+
+ // At -O2 and above, track CR bits as individual registers.
+ if (OptLevel >= CodeGenOpt::Default) {
+ if (!FullFS.empty())
+ FullFS = "+crbits," + FullFS;
+ else
+ FullFS = "+crbits";
+ }
+
+ // Parse features string.
+ ParseSubtargetFeatures(CPUName, FullFS);
+
+ // If the user requested use of 64-bit regs, but the cpu selected doesn't
+ // support it, ignore.
+ if (use64BitRegs() && !has64BitSupport())
+ Use64BitRegs = false;
+
+ // Set up darwin-specific properties.
+ if (isDarwin())
+ HasLazyResolverStubs = true;
+
+ // QPX requires a 32-byte aligned stack. Note that we need to do this if
+ // we're compiling for a BG/Q system regardless of whether or not QPX
+ // is enabled because external functions will assume this alignment.
+ if (hasQPX() || isBGQ())
+ StackAlignment = 32;
+
+ // Determine endianness.
+ IsLittleEndian = (TargetTriple.getArch() == Triple::ppc64le);
+
+ // FIXME: For now, we disable VSX in little-endian mode until endian
+ // issues in those instructions can be addressed.
+ if (IsLittleEndian)
+ HasVSX = false;
+}
+
+/// hasLazyResolverStub - Return true if accesses to the specified global have
+/// to go through a dyld lazy resolution stub. This means that an extra load
+/// is required to get the address of the global.
+bool PPCSubtarget::hasLazyResolverStub(const GlobalValue *GV,
+ const TargetMachine &TM) const {
+ // We never have stubs if HasLazyResolverStubs=false or if in static mode.
+ if (!HasLazyResolverStubs || TM.getRelocationModel() == Reloc::Static)
+ return false;
+ // If symbol visibility is hidden, the extra load is not needed if
+ // the symbol is definitely defined in the current translation unit.
+ bool isDecl = GV->isDeclaration() && !GV->isMaterializable();
+ if (GV->hasHiddenVisibility() && !isDecl && !GV->hasCommonLinkage())
+ return false;
+ return GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
+ GV->hasCommonLinkage() || isDecl;
+}
+
+// Embedded cores need aggressive scheduling (and some others also benefit).
+static bool needsAggressiveScheduling(unsigned Directive) {
+ switch (Directive) {
+ default: return false;
+ case PPC::DIR_440:
+ case PPC::DIR_A2:
+ case PPC::DIR_E500mc:
+ case PPC::DIR_E5500:
+ case PPC::DIR_PWR7:
+ case PPC::DIR_PWR8:
+ return true;
+ }
+}
+
+bool PPCSubtarget::enableMachineScheduler() const {
+ // Enable MI scheduling for the embedded cores.
+ // FIXME: Enable this for all cores (some additional modeling
+ // may be necessary).
+ return needsAggressiveScheduling(DarwinDirective);
+}
+
+// This overrides the PostRAScheduler bit in the SchedModel for each CPU.
+bool PPCSubtarget::enablePostMachineScheduler() const { return true; }
+
+PPCGenSubtargetInfo::AntiDepBreakMode PPCSubtarget::getAntiDepBreakMode() const {
+ return TargetSubtargetInfo::ANTIDEP_ALL;
+}
+
+void PPCSubtarget::getCriticalPathRCs(RegClassVector &CriticalPathRCs) const {
+ CriticalPathRCs.clear();
+ CriticalPathRCs.push_back(isPPC64() ?
+ &PPC::G8RCRegClass : &PPC::GPRCRegClass);
+}
+
+void PPCSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
+ MachineInstr *begin,
+ MachineInstr *end,
+ unsigned NumRegionInstrs) const {
+ if (needsAggressiveScheduling(DarwinDirective)) {
+ Policy.OnlyTopDown = false;
+ Policy.OnlyBottomUp = false;
+ }
+
+ // Spilling is generally expensive on all PPC cores, so always enable
+ // register-pressure tracking.
+ Policy.ShouldTrackPressure = true;
+}
+
+bool PPCSubtarget::useAA() const {
+ // Use AA during code generation for the embedded cores.
+ return needsAggressiveScheduling(DarwinDirective);
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.h b/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.h
new file mode 100644
index 0000000..a3cedaf
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.h
@@ -0,0 +1,251 @@
+//===-- PPCSubtarget.h - Define Subtarget for the PPC ----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the PowerPC specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef POWERPCSUBTARGET_H
+#define POWERPCSUBTARGET_H
+
+#include "PPCFrameLowering.h"
+#include "PPCInstrInfo.h"
+#include "PPCISelLowering.h"
+#include "PPCJITInfo.h"
+#include "PPCSelectionDAGInfo.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "PPCGenSubtargetInfo.inc"
+
+// GCC #defines PPC on Linux but we use it as our namespace name
+#undef PPC
+
+namespace llvm {
+class StringRef;
+
+namespace PPC {
+ // -m directive values.
+ enum {
+ DIR_NONE,
+ DIR_32,
+ DIR_440,
+ DIR_601,
+ DIR_602,
+ DIR_603,
+ DIR_7400,
+ DIR_750,
+ DIR_970,
+ DIR_A2,
+ DIR_E500mc,
+ DIR_E5500,
+ DIR_PWR3,
+ DIR_PWR4,
+ DIR_PWR5,
+ DIR_PWR5X,
+ DIR_PWR6,
+ DIR_PWR6X,
+ DIR_PWR7,
+ DIR_PWR8,
+ DIR_64
+ };
+}
+
+class GlobalValue;
+class TargetMachine;
+
+class PPCSubtarget : public PPCGenSubtargetInfo {
+protected:
+ /// stackAlignment - The minimum alignment known to hold of the stack frame on
+ /// entry to the function and which must be maintained by every function.
+ unsigned StackAlignment;
+
+ /// Selected instruction itineraries (one entry per itinerary class.)
+ InstrItineraryData InstrItins;
+
+ /// Which cpu directive was used.
+ unsigned DarwinDirective;
+
+ /// Used by the ISel to turn in optimizations for POWER4-derived architectures
+ bool HasMFOCRF;
+ bool Has64BitSupport;
+ bool Use64BitRegs;
+ bool UseCRBits;
+ bool IsPPC64;
+ bool HasAltivec;
+ bool HasQPX;
+ bool HasVSX;
+ bool HasFCPSGN;
+ bool HasFSQRT;
+ bool HasFRE, HasFRES, HasFRSQRTE, HasFRSQRTES;
+ bool HasRecipPrec;
+ bool HasSTFIWX;
+ bool HasLFIWAX;
+ bool HasFPRND;
+ bool HasFPCVT;
+ bool HasISEL;
+ bool HasPOPCNTD;
+ bool HasLDBRX;
+ bool IsBookE;
+ bool DeprecatedMFTB;
+ bool DeprecatedDST;
+ bool HasLazyResolverStubs;
+ bool IsJITCodeModel;
+ bool IsLittleEndian;
+
+ /// TargetTriple - What processor and OS we're targeting.
+ Triple TargetTriple;
+
+ /// OptLevel - What default optimization level we're emitting code for.
+ CodeGenOpt::Level OptLevel;
+
+ PPCFrameLowering FrameLowering;
+ const DataLayout DL;
+ PPCInstrInfo InstrInfo;
+ PPCJITInfo JITInfo;
+ PPCTargetLowering TLInfo;
+ PPCSelectionDAGInfo TSInfo;
+
+public:
+ /// This constructor initializes the data members to match that
+ /// of the specified triple.
+ ///
+ PPCSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, PPCTargetMachine &TM, bool is64Bit,
+ CodeGenOpt::Level OptLevel);
+
+ /// ParseSubtargetFeatures - Parses features string setting specified
+ /// subtarget options. Definition of function is auto generated by tblgen.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+
+ /// SetJITMode - This is called to inform the subtarget info that we are
+ /// producing code for the JIT.
+ void SetJITMode();
+
+ /// getStackAlignment - Returns the minimum alignment known to hold of the
+ /// stack frame on entry to the function and which must be maintained by every
+ /// function for this subtarget.
+ unsigned getStackAlignment() const { return StackAlignment; }
+
+ /// getDarwinDirective - Returns the -m directive specified for the cpu.
+ ///
+ unsigned getDarwinDirective() const { return DarwinDirective; }
+
+ /// getInstrItins - Return the instruction itineraries based on subtarget
+ /// selection.
+ const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
+
+ const PPCFrameLowering *getFrameLowering() const { return &FrameLowering; }
+ const DataLayout *getDataLayout() const { return &DL; }
+ const PPCInstrInfo *getInstrInfo() const { return &InstrInfo; }
+ PPCJITInfo *getJITInfo() { return &JITInfo; }
+ const PPCTargetLowering *getTargetLowering() const { return &TLInfo; }
+ const PPCSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+
+ /// initializeSubtargetDependencies - Initializes using a CPU and feature string
+ /// so that we can use initializer lists for subtarget initialization.
+ PPCSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
+
+ /// \brief Reset the features for the PowerPC target.
+ void resetSubtargetFeatures(const MachineFunction *MF) override;
+private:
+ void initializeEnvironment();
+ void resetSubtargetFeatures(StringRef CPU, StringRef FS);
+
+public:
+ /// isPPC64 - Return true if we are generating code for 64-bit pointer mode.
+ ///
+ bool isPPC64() const { return IsPPC64; }
+
+ /// has64BitSupport - Return true if the selected CPU supports 64-bit
+ /// instructions, regardless of whether we are in 32-bit or 64-bit mode.
+ bool has64BitSupport() const { return Has64BitSupport; }
+
+ /// use64BitRegs - Return true if in 64-bit mode or if we should use 64-bit
+ /// registers in 32-bit mode when possible. This can only true if
+ /// has64BitSupport() returns true.
+ bool use64BitRegs() const { return Use64BitRegs; }
+
+ /// useCRBits - Return true if we should store and manipulate i1 values in
+ /// the individual condition register bits.
+ bool useCRBits() const { return UseCRBits; }
+
+ /// hasLazyResolverStub - Return true if accesses to the specified global have
+ /// to go through a dyld lazy resolution stub. This means that an extra load
+ /// is required to get the address of the global.
+ bool hasLazyResolverStub(const GlobalValue *GV,
+ const TargetMachine &TM) const;
+
+ // isJITCodeModel - True if we're generating code for the JIT
+ bool isJITCodeModel() const { return IsJITCodeModel; }
+
+ // isLittleEndian - True if generating little-endian code
+ bool isLittleEndian() const { return IsLittleEndian; }
+
+ // Specific obvious features.
+ bool hasFCPSGN() const { return HasFCPSGN; }
+ bool hasFSQRT() const { return HasFSQRT; }
+ bool hasFRE() const { return HasFRE; }
+ bool hasFRES() const { return HasFRES; }
+ bool hasFRSQRTE() const { return HasFRSQRTE; }
+ bool hasFRSQRTES() const { return HasFRSQRTES; }
+ bool hasRecipPrec() const { return HasRecipPrec; }
+ bool hasSTFIWX() const { return HasSTFIWX; }
+ bool hasLFIWAX() const { return HasLFIWAX; }
+ bool hasFPRND() const { return HasFPRND; }
+ bool hasFPCVT() const { return HasFPCVT; }
+ bool hasAltivec() const { return HasAltivec; }
+ bool hasQPX() const { return HasQPX; }
+ bool hasVSX() const { return HasVSX; }
+ bool hasMFOCRF() const { return HasMFOCRF; }
+ bool hasISEL() const { return HasISEL; }
+ bool hasPOPCNTD() const { return HasPOPCNTD; }
+ bool hasLDBRX() const { return HasLDBRX; }
+ bool isBookE() const { return IsBookE; }
+ bool isDeprecatedMFTB() const { return DeprecatedMFTB; }
+ bool isDeprecatedDST() const { return DeprecatedDST; }
+
+ const Triple &getTargetTriple() const { return TargetTriple; }
+
+ /// isDarwin - True if this is any darwin platform.
+ bool isDarwin() const { return TargetTriple.isMacOSX(); }
+ /// isBGQ - True if this is a BG/Q platform.
+ bool isBGQ() const { return TargetTriple.getVendor() == Triple::BGQ; }
+
+ bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
+ bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
+
+ bool isDarwinABI() const { return isDarwin(); }
+ bool isSVR4ABI() const { return !isDarwin(); }
+ /// FIXME: Should use a command-line option.
+ bool isELFv2ABI() const { return isPPC64() && isSVR4ABI() &&
+ isLittleEndian(); }
+
+ bool enableEarlyIfConversion() const override { return hasISEL(); }
+
+ // Scheduling customization.
+ bool enableMachineScheduler() const override;
+ // This overrides the PostRAScheduler bit in the SchedModel for each CPU.
+ bool enablePostMachineScheduler() const override;
+ AntiDepBreakMode getAntiDepBreakMode() const override;
+ void getCriticalPathRCs(RegClassVector &CriticalPathRCs) const override;
+
+ void overrideSchedPolicy(MachineSchedPolicy &Policy,
+ MachineInstr *begin,
+ MachineInstr *end,
+ unsigned NumRegionInstrs) const override;
+ bool useAA() const override;
+};
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.cpp b/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.cpp
new file mode 100644
index 0000000..9563b90
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.cpp
@@ -0,0 +1,170 @@
+//===-- PPCTargetMachine.cpp - Define TargetMachine for PowerPC -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Top-level implementation for the PowerPC target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCTargetMachine.h"
+#include "PPC.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+static cl::
+opt<bool> DisableCTRLoops("disable-ppc-ctrloops", cl::Hidden,
+ cl::desc("Disable CTR loops for PPC"));
+
+static cl::opt<bool>
+VSXFMAMutateEarly("schedule-ppc-vsx-fma-mutation-early",
+ cl::Hidden, cl::desc("Schedule VSX FMA instruction mutation early"));
+
+extern "C" void LLVMInitializePowerPCTarget() {
+ // Register the targets
+ RegisterTargetMachine<PPC32TargetMachine> A(ThePPC32Target);
+ RegisterTargetMachine<PPC64TargetMachine> B(ThePPC64Target);
+ RegisterTargetMachine<PPC64TargetMachine> C(ThePPC64LETarget);
+}
+
+PPCTargetMachine::PPCTargetMachine(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL, bool is64Bit)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS, *this, is64Bit, OL) {
+ initAsmInfo();
+}
+
+void PPC32TargetMachine::anchor() { }
+
+PPC32TargetMachine::PPC32TargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {
+}
+
+void PPC64TargetMachine::anchor() { }
+
+PPC64TargetMachine::PPC64TargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {
+}
+
+
+//===----------------------------------------------------------------------===//
+// Pass Pipeline Configuration
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// PPC Code Generator Pass Configuration Options.
+class PPCPassConfig : public TargetPassConfig {
+public:
+ PPCPassConfig(PPCTargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ PPCTargetMachine &getPPCTargetMachine() const {
+ return getTM<PPCTargetMachine>();
+ }
+
+ const PPCSubtarget &getPPCSubtarget() const {
+ return *getPPCTargetMachine().getSubtargetImpl();
+ }
+
+ bool addPreISel() override;
+ bool addILPOpts() override;
+ bool addInstSelector() override;
+ bool addPreRegAlloc() override;
+ bool addPreSched2() override;
+ bool addPreEmitPass() override;
+};
+} // namespace
+
+TargetPassConfig *PPCTargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new PPCPassConfig(this, PM);
+}
+
+bool PPCPassConfig::addPreISel() {
+ if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None)
+ addPass(createPPCCTRLoops(getPPCTargetMachine()));
+
+ return false;
+}
+
+bool PPCPassConfig::addILPOpts() {
+ addPass(&EarlyIfConverterID);
+ return true;
+}
+
+bool PPCPassConfig::addInstSelector() {
+ // Install an instruction selector.
+ addPass(createPPCISelDag(getPPCTargetMachine()));
+
+#ifndef NDEBUG
+ if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None)
+ addPass(createPPCCTRLoopsVerify());
+#endif
+
+ addPass(createPPCVSXCopyPass());
+ return false;
+}
+
+bool PPCPassConfig::addPreRegAlloc() {
+ initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
+ insertPass(VSXFMAMutateEarly ? &RegisterCoalescerID : &MachineSchedulerID,
+ &PPCVSXFMAMutateID);
+ return false;
+}
+
+bool PPCPassConfig::addPreSched2() {
+ addPass(createPPCVSXCopyCleanupPass());
+
+ if (getOptLevel() != CodeGenOpt::None)
+ addPass(&IfConverterID);
+
+ return true;
+}
+
+bool PPCPassConfig::addPreEmitPass() {
+ if (getOptLevel() != CodeGenOpt::None)
+ addPass(createPPCEarlyReturnPass());
+ // Must run branch selection immediately preceding the asm printer.
+ addPass(createPPCBranchSelectionPass());
+ return false;
+}
+
+bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM,
+ JITCodeEmitter &JCE) {
+ // Inform the subtarget that we are in JIT mode. FIXME: does this break macho
+ // writing?
+ Subtarget.SetJITMode();
+
+ // Machine code emitter pass for PowerPC.
+ PM.add(createPPCJITCodeEmitterPass(*this, JCE));
+
+ return false;
+}
+
+void PPCTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
+ // Add first the target-independent BasicTTI pass, then our PPC pass. This
+ // allows the PPC pass to delegate to the target independent layer when
+ // appropriate.
+ PM.add(createBasicTargetTransformInfoPass(this));
+ PM.add(createPPCTargetTransformInfoPass(this));
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.h b/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.h
new file mode 100644
index 0000000..4c7029c
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.h
@@ -0,0 +1,93 @@
+//===-- PPCTargetMachine.h - Define TargetMachine for PowerPC ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the PowerPC specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PPC_TARGETMACHINE_H
+#define PPC_TARGETMACHINE_H
+
+#include "PPCInstrInfo.h"
+#include "PPCSubtarget.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+/// PPCTargetMachine - Common code between 32-bit and 64-bit PowerPC targets.
+///
+class PPCTargetMachine : public LLVMTargetMachine {
+ PPCSubtarget Subtarget;
+
+public:
+ PPCTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL, bool is64Bit);
+
+ const PPCInstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const PPCFrameLowering *getFrameLowering() const override {
+ return getSubtargetImpl()->getFrameLowering();
+ }
+ PPCJITInfo *getJITInfo() override { return Subtarget.getJITInfo(); }
+ const PPCTargetLowering *getTargetLowering() const override {
+ return getSubtargetImpl()->getTargetLowering();
+ }
+ const PPCSelectionDAGInfo* getSelectionDAGInfo() const override {
+ return getSubtargetImpl()->getSelectionDAGInfo();
+ }
+ const PPCRegisterInfo *getRegisterInfo() const override {
+ return &getInstrInfo()->getRegisterInfo();
+ }
+
+ const DataLayout *getDataLayout() const override {
+ return getSubtargetImpl()->getDataLayout();
+ }
+ const PPCSubtarget *getSubtargetImpl() const override { return &Subtarget; }
+ const InstrItineraryData *getInstrItineraryData() const override {
+ return &getSubtargetImpl()->getInstrItineraryData();
+ }
+
+ // Pass Pipeline Configuration
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+ bool addCodeEmitter(PassManagerBase &PM,
+ JITCodeEmitter &JCE) override;
+
+ /// \brief Register PPC analysis passes with a pass manager.
+ void addAnalysisPasses(PassManagerBase &PM) override;
+};
+
+/// PPC32TargetMachine - PowerPC 32-bit target machine.
+///
+class PPC32TargetMachine : public PPCTargetMachine {
+ virtual void anchor();
+public:
+ PPC32TargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+/// PPC64TargetMachine - PowerPC 64-bit target machine.
+///
+class PPC64TargetMachine : public PPCTargetMachine {
+ virtual void anchor();
+public:
+ PPC64TargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.cpp b/contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.cpp
new file mode 100644
index 0000000..2903cc1
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.cpp
@@ -0,0 +1,63 @@
+//===-- PPCTargetObjectFile.cpp - PPC Object Info -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCTargetObjectFile.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSectionELF.h"
+
+using namespace llvm;
+
+void
+PPC64LinuxTargetObjectFile::
+Initialize(MCContext &Ctx, const TargetMachine &TM) {
+ TargetLoweringObjectFileELF::Initialize(Ctx, TM);
+ InitializeELF(TM.Options.UseInitArray);
+}
+
+const MCSection *PPC64LinuxTargetObjectFile::SelectSectionForGlobal(
+ const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const {
+ // Here override ReadOnlySection to DataRelROSection for PPC64 SVR4 ABI
+ // when we have a constant that contains global relocations. This is
+ // necessary because of this ABI's handling of pointers to functions in
+ // a shared library. The address of a function is actually the address
+ // of a function descriptor, which resides in the .opd section. Generated
+ // code uses the descriptor directly rather than going via the GOT as some
+ // other ABIs do, which means that initialized function pointers must
+ // reference the descriptor. The linker must convert copy relocs of
+ // pointers to functions in shared libraries into dynamic relocations,
+ // because of an ordering problem with initialization of copy relocs and
+ // PLT entries. The dynamic relocation will be initialized by the dynamic
+ // linker, so we must use DataRelROSection instead of ReadOnlySection.
+ // For more information, see the description of ELIMINATE_COPY_RELOCS in
+ // GNU ld.
+ if (Kind.isReadOnly()) {
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+
+ if (GVar && GVar->isConstant() &&
+ (GVar->getInitializer()->getRelocationInfo() ==
+ Constant::GlobalRelocations))
+ Kind = SectionKind::getReadOnlyWithRel();
+ }
+
+ return TargetLoweringObjectFileELF::SelectSectionForGlobal(GV, Kind,
+ Mang, TM);
+}
+
+const MCExpr *PPC64LinuxTargetObjectFile::
+getDebugThreadLocalSymbol(const MCSymbol *Sym) const {
+ const MCExpr *Expr =
+ MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_PPC_DTPREL, getContext());
+ return MCBinaryExpr::CreateAdd(Expr,
+ MCConstantExpr::Create(0x8000, getContext()),
+ getContext());
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.h b/contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.h
new file mode 100644
index 0000000..3e71bbc
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.h
@@ -0,0 +1,35 @@
+//===-- PPCTargetObjectFile.h - PPC Object Info -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_PPC_TARGETOBJECTFILE_H
+#define LLVM_TARGET_PPC_TARGETOBJECTFILE_H
+
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+ /// PPC64LinuxTargetObjectFile - This implementation is used for
+ /// 64-bit PowerPC Linux.
+ class PPC64LinuxTargetObjectFile : public TargetLoweringObjectFileELF {
+
+ void Initialize(MCContext &Ctx, const TargetMachine &TM) override;
+
+ const MCSection *SelectSectionForGlobal(const GlobalValue *GV,
+ SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const override;
+
+ /// \brief Describe a TLS variable address within debug info.
+ const MCExpr *getDebugThreadLocalSymbol(const MCSymbol *Sym) const override;
+ };
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCTargetStreamer.h b/contrib/llvm/lib/Target/PowerPC/PPCTargetStreamer.h
new file mode 100644
index 0000000..73fb691
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCTargetStreamer.h
@@ -0,0 +1,27 @@
+//===-- PPCTargetStreamer.h - PPC Target Streamer --s-----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PPCTARGETSTREAMER_H
+#define PPCTARGETSTREAMER_H
+
+#include "llvm/MC/MCStreamer.h"
+
+namespace llvm {
+class PPCTargetStreamer : public MCTargetStreamer {
+public:
+ PPCTargetStreamer(MCStreamer &S);
+ virtual ~PPCTargetStreamer();
+ virtual void emitTCEntry(const MCSymbol &S) = 0;
+ virtual void emitMachine(StringRef CPU) = 0;
+ virtual void emitAbiVersion(int AbiVersion) = 0;
+ virtual void emitLocalEntry(MCSymbol *S, const MCExpr *LocalOffset) = 0;
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
new file mode 100644
index 0000000..007901b
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
@@ -0,0 +1,420 @@
+//===-- PPCTargetTransformInfo.cpp - PPC specific TTI pass ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements a TargetTransformInfo analysis pass specific to the
+/// PPC target machine. It uses the target's detailed information to provide
+/// more precise answers to certain TTI queries, while letting the target
+/// independent and default TTI implementations handle the rest.
+///
+//===----------------------------------------------------------------------===//
+
+#include "PPC.h"
+#include "PPCTargetMachine.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/CostTable.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "ppctti"
+
+static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
+cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
+
+// Declare the pass initialization routine locally as target-specific passes
+// don't have a target-wide initialization entry point, and so we rely on the
+// pass constructor initialization.
+namespace llvm {
+void initializePPCTTIPass(PassRegistry &);
+}
+
+namespace {
+
+class PPCTTI final : public ImmutablePass, public TargetTransformInfo {
+ const PPCSubtarget *ST;
+ const PPCTargetLowering *TLI;
+
+public:
+ PPCTTI() : ImmutablePass(ID), ST(nullptr), TLI(nullptr) {
+ llvm_unreachable("This pass cannot be directly constructed");
+ }
+
+ PPCTTI(const PPCTargetMachine *TM)
+ : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
+ TLI(TM->getTargetLowering()) {
+ initializePPCTTIPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual void initializePass() override {
+ pushTTIStack(this);
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ TargetTransformInfo::getAnalysisUsage(AU);
+ }
+
+ /// Pass identification.
+ static char ID;
+
+ /// Provide necessary pointer adjustments for the two base classes.
+ virtual void *getAdjustedAnalysisPointer(const void *ID) override {
+ if (ID == &TargetTransformInfo::ID)
+ return (TargetTransformInfo*)this;
+ return this;
+ }
+
+ /// \name Scalar TTI Implementations
+ /// @{
+ unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
+
+ unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty) const override;
+ unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+ Type *Ty) const override;
+
+ virtual PopcntSupportKind
+ getPopcntSupport(unsigned TyWidth) const override;
+ virtual void getUnrollingPreferences(
+ Loop *L, UnrollingPreferences &UP) const override;
+
+ /// @}
+
+ /// \name Vector TTI Implementations
+ /// @{
+
+ virtual unsigned getNumberOfRegisters(bool Vector) const override;
+ virtual unsigned getRegisterBitWidth(bool Vector) const override;
+ virtual unsigned getMaximumUnrollFactor() const override;
+ virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ OperandValueKind,
+ OperandValueKind) const override;
+ virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
+ int Index, Type *SubTp) const override;
+ virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
+ Type *Src) const override;
+ virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) const override;
+ virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) const override;
+ virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment,
+ unsigned AddressSpace) const override;
+
+ /// @}
+};
+
+} // end anonymous namespace
+
+INITIALIZE_AG_PASS(PPCTTI, TargetTransformInfo, "ppctti",
+ "PPC Target Transform Info", true, true, false)
+char PPCTTI::ID = 0;
+
+ImmutablePass *
+llvm::createPPCTargetTransformInfoPass(const PPCTargetMachine *TM) {
+ return new PPCTTI(TM);
+}
+
+
+//===----------------------------------------------------------------------===//
+//
+// PPC cost model.
+//
+//===----------------------------------------------------------------------===//
+
+PPCTTI::PopcntSupportKind PPCTTI::getPopcntSupport(unsigned TyWidth) const {
+ assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
+ if (ST->hasPOPCNTD() && TyWidth <= 64)
+ return PSK_FastHardware;
+ return PSK_Software;
+}
+
+unsigned PPCTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
+ if (DisablePPCConstHoist)
+ return TargetTransformInfo::getIntImmCost(Imm, Ty);
+
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ if (Imm == 0)
+ return TCC_Free;
+
+ if (Imm.getBitWidth() <= 64) {
+ if (isInt<16>(Imm.getSExtValue()))
+ return TCC_Basic;
+
+ if (isInt<32>(Imm.getSExtValue())) {
+ // A constant that can be materialized using lis.
+ if ((Imm.getZExtValue() & 0xFFFF) == 0)
+ return TCC_Basic;
+
+ return 2 * TCC_Basic;
+ }
+ }
+
+ return 4 * TCC_Basic;
+}
+
+unsigned PPCTTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
+ const APInt &Imm, Type *Ty) const {
+ if (DisablePPCConstHoist)
+ return TargetTransformInfo::getIntImmCost(IID, Idx, Imm, Ty);
+
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ switch (IID) {
+ default: return TCC_Free;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
+ return TCC_Free;
+ break;
+ }
+ return PPCTTI::getIntImmCost(Imm, Ty);
+}
+
+unsigned PPCTTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty) const {
+ if (DisablePPCConstHoist)
+ return TargetTransformInfo::getIntImmCost(Opcode, Idx, Imm, Ty);
+
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ unsigned ImmIdx = ~0U;
+ bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
+ ZeroFree = false;
+ switch (Opcode) {
+ default: return TCC_Free;
+ case Instruction::GetElementPtr:
+ // Always hoist the base address of a GetElementPtr. This prevents the
+ // creation of new constants for every base constant that gets constant
+ // folded with the offset.
+ if (Idx == 0)
+ return 2 * TCC_Basic;
+ return TCC_Free;
+ case Instruction::And:
+ RunFree = true; // (for the rotate-and-mask instructions)
+ // Fallthrough...
+ case Instruction::Add:
+ case Instruction::Or:
+ case Instruction::Xor:
+ ShiftedFree = true;
+ // Fallthrough...
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ ImmIdx = 1;
+ break;
+ case Instruction::ICmp:
+ UnsignedFree = true;
+ ImmIdx = 1;
+ // Fallthrough... (zero comparisons can use record-form instructions)
+ case Instruction::Select:
+ ZeroFree = true;
+ break;
+ case Instruction::PHI:
+ case Instruction::Call:
+ case Instruction::Ret:
+ case Instruction::Load:
+ case Instruction::Store:
+ break;
+ }
+
+ if (ZeroFree && Imm == 0)
+ return TCC_Free;
+
+ if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
+ if (isInt<16>(Imm.getSExtValue()))
+ return TCC_Free;
+
+ if (RunFree) {
+ if (Imm.getBitWidth() <= 32 &&
+ (isShiftedMask_32(Imm.getZExtValue()) ||
+ isShiftedMask_32(~Imm.getZExtValue())))
+ return TCC_Free;
+
+
+ if (ST->isPPC64() &&
+ (isShiftedMask_64(Imm.getZExtValue()) ||
+ isShiftedMask_64(~Imm.getZExtValue())))
+ return TCC_Free;
+ }
+
+ if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
+ return TCC_Free;
+
+ if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
+ return TCC_Free;
+ }
+
+ return PPCTTI::getIntImmCost(Imm, Ty);
+}
+
+void PPCTTI::getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const {
+ if (ST->getDarwinDirective() == PPC::DIR_A2) {
+ // The A2 is in-order with a deep pipeline, and concatenation unrolling
+ // helps expose latency-hiding opportunities to the instruction scheduler.
+ UP.Partial = UP.Runtime = true;
+ }
+}
+
+unsigned PPCTTI::getNumberOfRegisters(bool Vector) const {
+ if (Vector && !ST->hasAltivec())
+ return 0;
+ return ST->hasVSX() ? 64 : 32;
+}
+
+unsigned PPCTTI::getRegisterBitWidth(bool Vector) const {
+ if (Vector) {
+ if (ST->hasAltivec()) return 128;
+ return 0;
+ }
+
+ if (ST->isPPC64())
+ return 64;
+ return 32;
+
+}
+
+unsigned PPCTTI::getMaximumUnrollFactor() const {
+ unsigned Directive = ST->getDarwinDirective();
+ // The 440 has no SIMD support, but floating-point instructions
+ // have a 5-cycle latency, so unroll by 5x for latency hiding.
+ if (Directive == PPC::DIR_440)
+ return 5;
+
+ // The A2 has no SIMD support, but floating-point instructions
+ // have a 6-cycle latency, so unroll by 6x for latency hiding.
+ if (Directive == PPC::DIR_A2)
+ return 6;
+
+ // FIXME: For lack of any better information, do no harm...
+ if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
+ return 1;
+
+ // For most things, modern systems have two execution units (and
+ // out-of-order execution).
+ return 2;
+}
+
+unsigned PPCTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ OperandValueKind Op1Info,
+ OperandValueKind Op2Info) const {
+ assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
+
+ // Fallback to the default implementation.
+ return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
+ Op2Info);
+}
+
+unsigned PPCTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) const {
+ return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
+}
+
+unsigned PPCTTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
+ assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
+
+ return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
+}
+
+unsigned PPCTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) const {
+ return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
+}
+
+unsigned PPCTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) const {
+ assert(Val->isVectorTy() && "This must be a vector type");
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
+ // Double-precision scalars are already located in index #0.
+ if (Index == 0)
+ return 0;
+
+ return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
+ }
+
+ // Estimated cost of a load-hit-store delay. This was obtained
+ // experimentally as a minimum needed to prevent unprofitable
+ // vectorization for the paq8p benchmark. It may need to be
+ // raised further if other unprofitable cases remain.
+ unsigned LHSPenalty = 2;
+ if (ISD == ISD::INSERT_VECTOR_ELT)
+ LHSPenalty += 7;
+
+ // Vector element insert/extract with Altivec is very expensive,
+ // because they require store and reload with the attendant
+ // processor stall for load-hit-store. Until VSX is available,
+ // these need to be estimated as very costly.
+ if (ISD == ISD::EXTRACT_VECTOR_ELT ||
+ ISD == ISD::INSERT_VECTOR_ELT)
+ return LHSPenalty +
+ TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
+
+ return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
+}
+
+unsigned PPCTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
+ assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
+ "Invalid Opcode");
+
+ unsigned Cost =
+ TargetTransformInfo::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
+
+ // VSX loads/stores support unaligned access.
+ if (ST->hasVSX()) {
+ if (LT.second == MVT::v2f64 || LT.second == MVT::v2i64)
+ return Cost;
+ }
+
+ bool UnalignedAltivec =
+ Src->isVectorTy() &&
+ Src->getPrimitiveSizeInBits() >= LT.second.getSizeInBits() &&
+ LT.second.getSizeInBits() == 128 &&
+ Opcode == Instruction::Load;
+
+ // PPC in general does not support unaligned loads and stores. They'll need
+ // to be decomposed based on the alignment factor.
+ unsigned SrcBytes = LT.second.getStoreSize();
+ if (SrcBytes && Alignment && Alignment < SrcBytes && !UnalignedAltivec) {
+ Cost += LT.first*(SrcBytes/Alignment-1);
+
+ // For a vector type, there is also scalarization overhead (only for
+ // stores, loads are expanded using the vector-load + permutation sequence,
+ // which is much less expensive).
+ if (Src->isVectorTy() && Opcode == Instruction::Store)
+ for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
+ Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
+ }
+
+ return Cost;
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/TargetInfo/PowerPCTargetInfo.cpp b/contrib/llvm/lib/Target/PowerPC/TargetInfo/PowerPCTargetInfo.cpp
new file mode 100644
index 0000000..5727dbc
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/TargetInfo/PowerPCTargetInfo.cpp
@@ -0,0 +1,26 @@
+//===-- PowerPCTargetInfo.cpp - PowerPC Target Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPC.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::ThePPC32Target, llvm::ThePPC64Target, llvm::ThePPC64LETarget;
+
+extern "C" void LLVMInitializePowerPCTargetInfo() {
+ RegisterTarget<Triple::ppc, /*HasJIT=*/true>
+ X(ThePPC32Target, "ppc32", "PowerPC 32");
+
+ RegisterTarget<Triple::ppc64, /*HasJIT=*/true>
+ Y(ThePPC64Target, "ppc64", "PowerPC 64");
+
+ RegisterTarget<Triple::ppc64le, /*HasJIT=*/true>
+ Z(ThePPC64LETarget, "ppc64le", "PowerPC 64 LE");
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPU.h b/contrib/llvm/lib/Target/R600/AMDGPU.h
new file mode 100644
index 0000000..d7e94f7
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPU.h
@@ -0,0 +1,130 @@
+//===-- AMDGPU.h - MachineFunction passes hw codegen --------------*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPU_H
+#define AMDGPU_H
+
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+class AMDGPUInstrPrinter;
+class AMDGPUSubtarget;
+class AMDGPUTargetMachine;
+class FunctionPass;
+class MCAsmInfo;
+class raw_ostream;
+class Target;
+class TargetMachine;
+
+// R600 Passes
+FunctionPass *createR600VectorRegMerger(TargetMachine &tm);
+FunctionPass *createR600TextureIntrinsicsReplacer();
+FunctionPass *createR600ExpandSpecialInstrsPass(TargetMachine &tm);
+FunctionPass *createR600EmitClauseMarkers();
+FunctionPass *createR600ClauseMergePass(TargetMachine &tm);
+FunctionPass *createR600Packetizer(TargetMachine &tm);
+FunctionPass *createR600ControlFlowFinalizer(TargetMachine &tm);
+FunctionPass *createAMDGPUCFGStructurizerPass();
+
+// SI Passes
+FunctionPass *createSITypeRewriter();
+FunctionPass *createSIAnnotateControlFlowPass();
+FunctionPass *createSILowerI1CopiesPass();
+FunctionPass *createSIShrinkInstructionsPass();
+FunctionPass *createSILowerControlFlowPass(TargetMachine &tm);
+FunctionPass *createSIFixSGPRCopiesPass(TargetMachine &tm);
+FunctionPass *createSIFixSGPRLiveRangesPass();
+FunctionPass *createSICodeEmitterPass(formatted_raw_ostream &OS);
+FunctionPass *createSIInsertWaits(TargetMachine &tm);
+
+void initializeSILowerI1CopiesPass(PassRegistry &);
+extern char &SILowerI1CopiesID;
+
+// Passes common to R600 and SI
+FunctionPass *createAMDGPUPromoteAlloca(const AMDGPUSubtarget &ST);
+Pass *createAMDGPUStructurizeCFGPass();
+FunctionPass *createAMDGPUISelDag(TargetMachine &tm);
+
+/// \brief Creates an AMDGPU-specific Target Transformation Info pass.
+ImmutablePass *
+createAMDGPUTargetTransformInfoPass(const AMDGPUTargetMachine *TM);
+
+void initializeSIFixSGPRLiveRangesPass(PassRegistry&);
+extern char &SIFixSGPRLiveRangesID;
+
+
+extern Target TheAMDGPUTarget;
+
+namespace AMDGPU {
+enum TargetIndex {
+ TI_CONSTDATA_START
+};
+}
+
+#define END_OF_TEXT_LABEL_NAME "EndOfTextLabel"
+
+} // End namespace llvm
+
+namespace ShaderType {
+ enum Type {
+ PIXEL = 0,
+ VERTEX = 1,
+ GEOMETRY = 2,
+ COMPUTE = 3
+ };
+}
+
+/// OpenCL uses address spaces to differentiate between
+/// various memory regions on the hardware. On the CPU
+/// all of the address spaces point to the same memory,
+/// however on the GPU, each address space points to
+/// a separate piece of memory that is unique from other
+/// memory locations.
+namespace AMDGPUAS {
+enum AddressSpaces {
+ PRIVATE_ADDRESS = 0, ///< Address space for private memory.
+ GLOBAL_ADDRESS = 1, ///< Address space for global memory (RAT0, VTX0).
+ CONSTANT_ADDRESS = 2, ///< Address space for constant memory
+ LOCAL_ADDRESS = 3, ///< Address space for local memory.
+ FLAT_ADDRESS = 4, ///< Address space for flat memory.
+ REGION_ADDRESS = 5, ///< Address space for region memory.
+ PARAM_D_ADDRESS = 6, ///< Address space for direct addressible parameter memory (CONST0)
+ PARAM_I_ADDRESS = 7, ///< Address space for indirect addressible parameter memory (VTX1)
+
+ // Do not re-order the CONSTANT_BUFFER_* enums. Several places depend on this
+ // order to be able to dynamically index a constant buffer, for example:
+ //
+ // ConstantBufferAS = CONSTANT_BUFFER_0 + CBIdx
+
+ CONSTANT_BUFFER_0 = 8,
+ CONSTANT_BUFFER_1 = 9,
+ CONSTANT_BUFFER_2 = 10,
+ CONSTANT_BUFFER_3 = 11,
+ CONSTANT_BUFFER_4 = 12,
+ CONSTANT_BUFFER_5 = 13,
+ CONSTANT_BUFFER_6 = 14,
+ CONSTANT_BUFFER_7 = 15,
+ CONSTANT_BUFFER_8 = 16,
+ CONSTANT_BUFFER_9 = 17,
+ CONSTANT_BUFFER_10 = 18,
+ CONSTANT_BUFFER_11 = 19,
+ CONSTANT_BUFFER_12 = 20,
+ CONSTANT_BUFFER_13 = 21,
+ CONSTANT_BUFFER_14 = 22,
+ CONSTANT_BUFFER_15 = 23,
+ ADDRESS_NONE = 24, ///< Address space for unknown memory.
+ LAST_ADDRESS = ADDRESS_NONE
+};
+
+} // namespace AMDGPUAS
+
+#endif // AMDGPU_H
diff --git a/contrib/llvm/lib/Target/R600/AMDGPU.td b/contrib/llvm/lib/Target/R600/AMDGPU.td
new file mode 100644
index 0000000..5645f1a
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPU.td
@@ -0,0 +1,173 @@
+//===-- AMDIL.td - AMDIL Tablegen files --*- tablegen -*-------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//==-----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// Subtarget Features
+//===----------------------------------------------------------------------===//
+
+// Debugging Features
+
+def FeatureDumpCode : SubtargetFeature <"DumpCode",
+ "DumpCode",
+ "true",
+ "Dump MachineInstrs in the CodeEmitter">;
+
+def FeatureIRStructurizer : SubtargetFeature <"disable-irstructurizer",
+ "EnableIRStructurizer",
+ "false",
+ "Disable IR Structurizer">;
+
+def FeaturePromoteAlloca : SubtargetFeature <"promote-alloca",
+ "EnablePromoteAlloca",
+ "true",
+ "Enable promote alloca pass">;
+
+// Target features
+
+def FeatureIfCvt : SubtargetFeature <"disable-ifcvt",
+ "EnableIfCvt",
+ "false",
+ "Disable the if conversion pass">;
+
+def FeatureFP64 : SubtargetFeature<"fp64",
+ "FP64",
+ "true",
+ "Enable double precision operations">;
+
+def FeatureFP64Denormals : SubtargetFeature<"fp64-denormals",
+ "FP64Denormals",
+ "true",
+ "Enable double precision denormal handling",
+ [FeatureFP64]>;
+
+// Some instructions do not support denormals despite this flag. Using
+// fp32 denormals also causes instructions to run at the double
+// precision rate for the device.
+def FeatureFP32Denormals : SubtargetFeature<"fp32-denormals",
+ "FP32Denormals",
+ "true",
+ "Enable single precision denormal handling">;
+
+def Feature64BitPtr : SubtargetFeature<"64BitPtr",
+ "Is64bit",
+ "true",
+ "Specify if 64-bit addressing should be used">;
+
+def FeatureR600ALUInst : SubtargetFeature<"R600ALUInst",
+ "R600ALUInst",
+ "false",
+ "Older version of ALU instructions encoding">;
+
+def FeatureVertexCache : SubtargetFeature<"HasVertexCache",
+ "HasVertexCache",
+ "true",
+ "Specify use of dedicated vertex cache">;
+
+def FeatureCaymanISA : SubtargetFeature<"caymanISA",
+ "CaymanISA",
+ "true",
+ "Use Cayman ISA">;
+
+def FeatureCFALUBug : SubtargetFeature<"cfalubug",
+ "CFALUBug",
+ "true",
+ "GPU has CF_ALU bug">;
+
+class SubtargetFeatureFetchLimit <string Value> :
+ SubtargetFeature <"fetch"#Value,
+ "TexVTXClauseSize",
+ Value,
+ "Limit the maximum number of fetches in a clause to "#Value>;
+
+def FeatureFetchLimit8 : SubtargetFeatureFetchLimit <"8">;
+def FeatureFetchLimit16 : SubtargetFeatureFetchLimit <"16">;
+
+class SubtargetFeatureWavefrontSize <int Value> : SubtargetFeature<
+ "wavefrontsize"#Value,
+ "WavefrontSize",
+ !cast<string>(Value),
+ "The number of threads per wavefront">;
+
+def FeatureWavefrontSize16 : SubtargetFeatureWavefrontSize<16>;
+def FeatureWavefrontSize32 : SubtargetFeatureWavefrontSize<32>;
+def FeatureWavefrontSize64 : SubtargetFeatureWavefrontSize<64>;
+
+class SubtargetFeatureLocalMemorySize <int Value> : SubtargetFeature<
+ "localmemorysize"#Value,
+ "LocalMemorySize",
+ !cast<string>(Value),
+ "The size of local memory in bytes">;
+
+class SubtargetFeatureGeneration <string Value,
+ list<SubtargetFeature> Implies> :
+ SubtargetFeature <Value, "Gen", "AMDGPUSubtarget::"#Value,
+ Value#" GPU generation", Implies>;
+
+def FeatureLocalMemorySize0 : SubtargetFeatureLocalMemorySize<0>;
+def FeatureLocalMemorySize32768 : SubtargetFeatureLocalMemorySize<32768>;
+def FeatureLocalMemorySize65536 : SubtargetFeatureLocalMemorySize<65536>;
+
+def FeatureR600 : SubtargetFeatureGeneration<"R600",
+ [FeatureR600ALUInst, FeatureFetchLimit8, FeatureLocalMemorySize0]>;
+
+def FeatureR700 : SubtargetFeatureGeneration<"R700",
+ [FeatureFetchLimit16, FeatureLocalMemorySize0]>;
+
+def FeatureEvergreen : SubtargetFeatureGeneration<"EVERGREEN",
+ [FeatureFetchLimit16, FeatureLocalMemorySize32768]>;
+
+def FeatureNorthernIslands : SubtargetFeatureGeneration<"NORTHERN_ISLANDS",
+ [FeatureFetchLimit16, FeatureWavefrontSize64,
+ FeatureLocalMemorySize32768]
+>;
+
+def FeatureSouthernIslands : SubtargetFeatureGeneration<"SOUTHERN_ISLANDS",
+ [Feature64BitPtr, FeatureFP64, FeatureLocalMemorySize32768,
+ FeatureWavefrontSize64]>;
+
+def FeatureSeaIslands : SubtargetFeatureGeneration<"SEA_ISLANDS",
+ [Feature64BitPtr, FeatureFP64, FeatureLocalMemorySize65536,
+ FeatureWavefrontSize64]>;
+//===----------------------------------------------------------------------===//
+
+def AMDGPUInstrInfo : InstrInfo {
+ let guessInstructionProperties = 1;
+}
+
+def AMDGPU : Target {
+ // Pull in Instruction Info:
+ let InstructionSet = AMDGPUInstrInfo;
+}
+
+// Dummy Instruction itineraries for pseudo instructions
+def ALU_NULL : FuncUnit;
+def NullALU : InstrItinClass;
+
+//===----------------------------------------------------------------------===//
+// Predicate helper class
+//===----------------------------------------------------------------------===//
+
+class PredicateControl {
+ Predicate SubtargetPredicate;
+ list<Predicate> OtherPredicates = [];
+ list<Predicate> Predicates = !listconcat([SubtargetPredicate],
+ OtherPredicates);
+}
+
+// Include AMDGPU TD files
+include "R600Schedule.td"
+include "SISchedule.td"
+include "Processors.td"
+include "AMDGPUInstrInfo.td"
+include "AMDGPUIntrinsics.td"
+include "AMDGPURegisterInfo.td"
+include "AMDGPUInstructions.td"
+include "AMDGPUCallingConv.td"
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.cpp b/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.cpp
new file mode 100644
index 0000000..73faaa1
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.cpp
@@ -0,0 +1,415 @@
+//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+///
+/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
+/// code. When passed an MCAsmStreamer it prints assembly and when passed
+/// an MCObjectStreamer it outputs binary code.
+//
+//===----------------------------------------------------------------------===//
+//
+
+#include "AMDGPUAsmPrinter.h"
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "R600Defines.h"
+#include "R600MachineFunctionInfo.h"
+#include "R600RegisterInfo.h"
+#include "SIDefines.h"
+#include "SIMachineFunctionInfo.h"
+#include "SIRegisterInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+
+using namespace llvm;
+
+// TODO: This should get the default rounding mode from the kernel. We just set
+// the default here, but this could change if the OpenCL rounding mode pragmas
+// are used.
+//
+// The denormal mode here should match what is reported by the OpenCL runtime
+// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
+// can also be override to flush with the -cl-denorms-are-zero compiler flag.
+//
+// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
+// precision, and leaves single precision to flush all and does not report
+// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
+// CL_FP_DENORM for both.
+//
+// FIXME: It seems some instructions do not support single precision denormals
+// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
+// and sin_f32, cos_f32 on most parts).
+
+// We want to use these instructions, and using fp32 denormals also causes
+// instructions to run at the double precision rate for the device so it's
+// probably best to just report no single precision denormals.
+static uint32_t getFPMode(const MachineFunction &F) {
+ const AMDGPUSubtarget& ST = F.getTarget().getSubtarget<AMDGPUSubtarget>();
+ // TODO: Is there any real use for the flush in only / flush out only modes?
+
+ uint32_t FP32Denormals =
+ ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
+
+ uint32_t FP64Denormals =
+ ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
+
+ return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
+ FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
+ FP_DENORM_MODE_SP(FP32Denormals) |
+ FP_DENORM_MODE_DP(FP64Denormals);
+}
+
+static AsmPrinter *createAMDGPUAsmPrinterPass(TargetMachine &tm,
+ MCStreamer &Streamer) {
+ return new AMDGPUAsmPrinter(tm, Streamer);
+}
+
+extern "C" void LLVMInitializeR600AsmPrinter() {
+ TargetRegistry::RegisterAsmPrinter(TheAMDGPUTarget, createAMDGPUAsmPrinterPass);
+}
+
+AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer) {
+ DisasmEnabled = TM.getSubtarget<AMDGPUSubtarget>().dumpCode();
+}
+
+void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) {
+
+ // This label is used to mark the end of the .text section.
+ const TargetLoweringObjectFile &TLOF = getObjFileLowering();
+ OutStreamer.SwitchSection(TLOF.getTextSection());
+ MCSymbol *EndOfTextLabel =
+ OutContext.GetOrCreateSymbol(StringRef(END_OF_TEXT_LABEL_NAME));
+ OutStreamer.EmitLabel(EndOfTextLabel);
+}
+
+bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+ SetupMachineFunction(MF);
+
+ OutStreamer.emitRawComment(Twine('@') + MF.getName() + Twine(':'));
+
+ MCContext &Context = getObjFileLowering().getContext();
+ const MCSectionELF *ConfigSection = Context.getELFSection(".AMDGPU.config",
+ ELF::SHT_PROGBITS, 0,
+ SectionKind::getReadOnly());
+ OutStreamer.SwitchSection(ConfigSection);
+
+ const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
+ SIProgramInfo KernelInfo;
+ if (STM.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
+ getSIProgramInfo(KernelInfo, MF);
+ EmitProgramInfoSI(MF, KernelInfo);
+ } else {
+ EmitProgramInfoR600(MF);
+ }
+
+ DisasmLines.clear();
+ HexLines.clear();
+ DisasmLineMaxLen = 0;
+
+ OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
+ EmitFunctionBody();
+
+ if (isVerbose()) {
+ const MCSectionELF *CommentSection
+ = Context.getELFSection(".AMDGPU.csdata",
+ ELF::SHT_PROGBITS, 0,
+ SectionKind::getReadOnly());
+ OutStreamer.SwitchSection(CommentSection);
+
+ if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ OutStreamer.emitRawComment(" Kernel info:", false);
+ OutStreamer.emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen),
+ false);
+ OutStreamer.emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR),
+ false);
+ OutStreamer.emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR),
+ false);
+ OutStreamer.emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode),
+ false);
+ OutStreamer.emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode),
+ false);
+ OutStreamer.emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize),
+ false);
+ } else {
+ R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
+ OutStreamer.emitRawComment(
+ Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->StackSize)));
+ }
+ }
+
+ if (STM.dumpCode()) {
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ MF.dump();
+#endif
+
+ if (DisasmEnabled) {
+ OutStreamer.SwitchSection(Context.getELFSection(".AMDGPU.disasm",
+ ELF::SHT_NOTE, 0,
+ SectionKind::getReadOnly()));
+
+ for (size_t i = 0; i < DisasmLines.size(); ++i) {
+ std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
+ Comment += " ; " + HexLines[i] + "\n";
+
+ OutStreamer.EmitBytes(StringRef(DisasmLines[i]));
+ OutStreamer.EmitBytes(StringRef(Comment));
+ }
+ }
+ }
+
+ return false;
+}
+
+void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
+ unsigned MaxGPR = 0;
+ bool killPixel = false;
+ const R600RegisterInfo *RI
+ = static_cast<const R600RegisterInfo*>(TM.getRegisterInfo());
+ const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
+ const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
+
+ for (const MachineBasicBlock &MBB : MF) {
+ for (const MachineInstr &MI : MBB) {
+ if (MI.getOpcode() == AMDGPU::KILLGT)
+ killPixel = true;
+ unsigned numOperands = MI.getNumOperands();
+ for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
+ const MachineOperand &MO = MI.getOperand(op_idx);
+ if (!MO.isReg())
+ continue;
+ unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff;
+
+ // Register with value > 127 aren't GPR
+ if (HWReg > 127)
+ continue;
+ MaxGPR = std::max(MaxGPR, HWReg);
+ }
+ }
+ }
+
+ unsigned RsrcReg;
+ if (STM.getGeneration() >= AMDGPUSubtarget::EVERGREEN) {
+ // Evergreen / Northern Islands
+ switch (MFI->getShaderType()) {
+ default: // Fall through
+ case ShaderType::COMPUTE: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break;
+ case ShaderType::GEOMETRY: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break;
+ case ShaderType::PIXEL: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break;
+ case ShaderType::VERTEX: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break;
+ }
+ } else {
+ // R600 / R700
+ switch (MFI->getShaderType()) {
+ default: // Fall through
+ case ShaderType::GEOMETRY: // Fall through
+ case ShaderType::COMPUTE: // Fall through
+ case ShaderType::VERTEX: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break;
+ case ShaderType::PIXEL: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break;
+ }
+ }
+
+ OutStreamer.EmitIntValue(RsrcReg, 4);
+ OutStreamer.EmitIntValue(S_NUM_GPRS(MaxGPR + 1) |
+ S_STACK_SIZE(MFI->StackSize), 4);
+ OutStreamer.EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4);
+ OutStreamer.EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4);
+
+ if (MFI->getShaderType() == ShaderType::COMPUTE) {
+ OutStreamer.EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4);
+ OutStreamer.EmitIntValue(RoundUpToAlignment(MFI->LDSSize, 4) >> 2, 4);
+ }
+}
+
+void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
+ const MachineFunction &MF) const {
+ uint64_t CodeSize = 0;
+ unsigned MaxSGPR = 0;
+ unsigned MaxVGPR = 0;
+ bool VCCUsed = false;
+ const SIRegisterInfo *RI
+ = static_cast<const SIRegisterInfo*>(TM.getRegisterInfo());
+
+ for (const MachineBasicBlock &MBB : MF) {
+ for (const MachineInstr &MI : MBB) {
+ // TODO: CodeSize should account for multiple functions.
+ CodeSize += MI.getDesc().Size;
+
+ unsigned numOperands = MI.getNumOperands();
+ for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
+ const MachineOperand &MO = MI.getOperand(op_idx);
+ unsigned width = 0;
+ bool isSGPR = false;
+
+ if (!MO.isReg()) {
+ continue;
+ }
+ unsigned reg = MO.getReg();
+ if (reg == AMDGPU::VCC || reg == AMDGPU::VCC_LO ||
+ reg == AMDGPU::VCC_HI) {
+ VCCUsed = true;
+ continue;
+ }
+
+ switch (reg) {
+ default: break;
+ case AMDGPU::SCC:
+ case AMDGPU::EXEC:
+ case AMDGPU::M0:
+ continue;
+ }
+
+ if (AMDGPU::SReg_32RegClass.contains(reg)) {
+ isSGPR = true;
+ width = 1;
+ } else if (AMDGPU::VReg_32RegClass.contains(reg)) {
+ isSGPR = false;
+ width = 1;
+ } else if (AMDGPU::SReg_64RegClass.contains(reg)) {
+ isSGPR = true;
+ width = 2;
+ } else if (AMDGPU::VReg_64RegClass.contains(reg)) {
+ isSGPR = false;
+ width = 2;
+ } else if (AMDGPU::VReg_96RegClass.contains(reg)) {
+ isSGPR = false;
+ width = 3;
+ } else if (AMDGPU::SReg_128RegClass.contains(reg)) {
+ isSGPR = true;
+ width = 4;
+ } else if (AMDGPU::VReg_128RegClass.contains(reg)) {
+ isSGPR = false;
+ width = 4;
+ } else if (AMDGPU::SReg_256RegClass.contains(reg)) {
+ isSGPR = true;
+ width = 8;
+ } else if (AMDGPU::VReg_256RegClass.contains(reg)) {
+ isSGPR = false;
+ width = 8;
+ } else if (AMDGPU::SReg_512RegClass.contains(reg)) {
+ isSGPR = true;
+ width = 16;
+ } else if (AMDGPU::VReg_512RegClass.contains(reg)) {
+ isSGPR = false;
+ width = 16;
+ } else {
+ llvm_unreachable("Unknown register class");
+ }
+ unsigned hwReg = RI->getEncodingValue(reg) & 0xff;
+ unsigned maxUsed = hwReg + width - 1;
+ if (isSGPR) {
+ MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR;
+ } else {
+ MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR;
+ }
+ }
+ }
+ }
+
+ if (VCCUsed)
+ MaxSGPR += 2;
+
+ ProgInfo.NumVGPR = MaxVGPR;
+ ProgInfo.NumSGPR = MaxSGPR;
+
+ // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
+ // register.
+ ProgInfo.FloatMode = getFPMode(MF);
+
+ // XXX: Not quite sure what this does, but sc seems to unset this.
+ ProgInfo.IEEEMode = 0;
+
+ // Do not clamp NAN to 0.
+ ProgInfo.DX10Clamp = 0;
+
+ const MachineFrameInfo *FrameInfo = MF.getFrameInfo();
+ ProgInfo.ScratchSize = FrameInfo->estimateStackSize(MF);
+
+ ProgInfo.CodeLen = CodeSize;
+}
+
+void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
+ const SIProgramInfo &KernelInfo) {
+ const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+
+ unsigned RsrcReg;
+ switch (MFI->getShaderType()) {
+ default: // Fall through
+ case ShaderType::COMPUTE: RsrcReg = R_00B848_COMPUTE_PGM_RSRC1; break;
+ case ShaderType::GEOMETRY: RsrcReg = R_00B228_SPI_SHADER_PGM_RSRC1_GS; break;
+ case ShaderType::PIXEL: RsrcReg = R_00B028_SPI_SHADER_PGM_RSRC1_PS; break;
+ case ShaderType::VERTEX: RsrcReg = R_00B128_SPI_SHADER_PGM_RSRC1_VS; break;
+ }
+
+ unsigned LDSAlignShift;
+ if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
+ // LDS is allocated in 64 dword blocks.
+ LDSAlignShift = 8;
+ } else {
+ // LDS is allocated in 128 dword blocks.
+ LDSAlignShift = 9;
+ }
+
+ unsigned LDSBlocks =
+ RoundUpToAlignment(MFI->LDSSize, 1 << LDSAlignShift) >> LDSAlignShift;
+
+ // Scratch is allocated in 256 dword blocks.
+ unsigned ScratchAlignShift = 10;
+ // We need to program the hardware with the amount of scratch memory that
+ // is used by the entire wave. KernelInfo.ScratchSize is the amount of
+ // scratch memory used per thread.
+ unsigned ScratchBlocks =
+ RoundUpToAlignment(KernelInfo.ScratchSize * STM.getWavefrontSize(),
+ 1 << ScratchAlignShift) >> ScratchAlignShift;
+
+ if (MFI->getShaderType() == ShaderType::COMPUTE) {
+ OutStreamer.EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
+
+ const uint32_t ComputePGMRSrc1 =
+ S_00B848_VGPRS(KernelInfo.NumVGPR / 4) |
+ S_00B848_SGPRS(KernelInfo.NumSGPR / 8) |
+ S_00B848_PRIORITY(KernelInfo.Priority) |
+ S_00B848_FLOAT_MODE(KernelInfo.FloatMode) |
+ S_00B848_PRIV(KernelInfo.Priv) |
+ S_00B848_DX10_CLAMP(KernelInfo.DX10Clamp) |
+ S_00B848_IEEE_MODE(KernelInfo.DebugMode) |
+ S_00B848_IEEE_MODE(KernelInfo.IEEEMode);
+
+ OutStreamer.EmitIntValue(ComputePGMRSrc1, 4);
+
+ OutStreamer.EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
+ const uint32_t ComputePGMRSrc2 =
+ S_00B84C_LDS_SIZE(LDSBlocks) |
+ S_00B02C_SCRATCH_EN(ScratchBlocks > 0);
+
+ OutStreamer.EmitIntValue(ComputePGMRSrc2, 4);
+
+ OutStreamer.EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
+ OutStreamer.EmitIntValue(S_00B860_WAVESIZE(ScratchBlocks), 4);
+ } else {
+ OutStreamer.EmitIntValue(RsrcReg, 4);
+ OutStreamer.EmitIntValue(S_00B028_VGPRS(KernelInfo.NumVGPR / 4) |
+ S_00B028_SGPRS(KernelInfo.NumSGPR / 8), 4);
+ }
+
+ if (MFI->getShaderType() == ShaderType::PIXEL) {
+ OutStreamer.EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
+ OutStreamer.EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(LDSBlocks), 4);
+ OutStreamer.EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
+ OutStreamer.EmitIntValue(MFI->PSInputAddr, 4);
+ }
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.h b/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.h
new file mode 100644
index 0000000..19907cf
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.h
@@ -0,0 +1,85 @@
+//===-- AMDGPUAsmPrinter.h - Print AMDGPU assembly code ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief AMDGPU Assembly printer class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPU_ASMPRINTER_H
+#define AMDGPU_ASMPRINTER_H
+
+#include "llvm/CodeGen/AsmPrinter.h"
+#include <vector>
+
+namespace llvm {
+
+class AMDGPUAsmPrinter : public AsmPrinter {
+private:
+ struct SIProgramInfo {
+ SIProgramInfo() :
+ NumVGPR(0),
+ NumSGPR(0),
+ Priority(0),
+ FloatMode(0),
+ Priv(0),
+ DX10Clamp(0),
+ DebugMode(0),
+ IEEEMode(0),
+ ScratchSize(0),
+ CodeLen(0) {}
+
+ // Fields set in PGM_RSRC1 pm4 packet.
+ uint32_t NumVGPR;
+ uint32_t NumSGPR;
+ uint32_t Priority;
+ uint32_t FloatMode;
+ uint32_t Priv;
+ uint32_t DX10Clamp;
+ uint32_t DebugMode;
+ uint32_t IEEEMode;
+ uint32_t ScratchSize;
+
+ // Bonus information for debugging.
+ uint64_t CodeLen;
+ };
+
+ void getSIProgramInfo(SIProgramInfo &Out, const MachineFunction &MF) const;
+ void findNumUsedRegistersSI(const MachineFunction &MF,
+ unsigned &NumSGPR,
+ unsigned &NumVGPR) const;
+
+ /// \brief Emit register usage information so that the GPU driver
+ /// can correctly setup the GPU state.
+ void EmitProgramInfoR600(const MachineFunction &MF);
+ void EmitProgramInfoSI(const MachineFunction &MF, const SIProgramInfo &KernelInfo);
+
+public:
+ explicit AMDGPUAsmPrinter(TargetMachine &TM, MCStreamer &Streamer);
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "AMDGPU Assembly Printer";
+ }
+
+ /// Implemented in AMDGPUMCInstLower.cpp
+ void EmitInstruction(const MachineInstr *MI) override;
+
+ void EmitEndOfAsmFile(Module &M) override;
+
+protected:
+ bool DisasmEnabled;
+ std::vector<std::string> DisasmLines, HexLines;
+ size_t DisasmLineMaxLen;
+};
+
+} // End anonymous llvm
+
+#endif //AMDGPU_ASMPRINTER_H
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUCallingConv.td b/contrib/llvm/lib/Target/R600/AMDGPUCallingConv.td
new file mode 100644
index 0000000..3586c88
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUCallingConv.td
@@ -0,0 +1,74 @@
+//===---- AMDCallingConv.td - Calling Conventions for Radeon GPUs ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This describes the calling conventions for the AMD Radeon GPUs.
+//
+//===----------------------------------------------------------------------===//
+
+// Inversion of CCIfInReg
+class CCIfNotInReg<CCAction A> : CCIf<"!ArgFlags.isInReg()", A> {}
+
+// Calling convention for SI
+def CC_SI : CallingConv<[
+
+ CCIfInReg<CCIfType<[f32, i32] , CCAssignToReg<[
+ SGPR0, SGPR1, SGPR2, SGPR3, SGPR4, SGPR5, SGPR6, SGPR7,
+ SGPR8, SGPR9, SGPR10, SGPR11, SGPR12, SGPR13, SGPR14, SGPR15,
+ SGPR16, SGPR17, SGPR18, SGPR19, SGPR20, SGPR21
+ ]>>>,
+
+ CCIfInReg<CCIfType<[i64] , CCAssignToRegWithShadow<
+ [ SGPR0, SGPR2, SGPR4, SGPR6, SGPR8, SGPR10, SGPR12, SGPR14 ],
+ [ SGPR1, SGPR3, SGPR5, SGPR7, SGPR9, SGPR11, SGPR13, SGPR15 ]
+ >>>,
+
+ CCIfNotInReg<CCIfType<[f32, i32] , CCAssignToReg<[
+ VGPR0, VGPR1, VGPR2, VGPR3, VGPR4, VGPR5, VGPR6, VGPR7,
+ VGPR8, VGPR9, VGPR10, VGPR11, VGPR12, VGPR13, VGPR14, VGPR15,
+ VGPR16, VGPR17, VGPR18, VGPR19, VGPR20, VGPR21, VGPR22, VGPR23,
+ VGPR24, VGPR25, VGPR26, VGPR27, VGPR28, VGPR29, VGPR30, VGPR31
+ ]>>>,
+
+ CCIfByVal<CCIfType<[i64] , CCAssignToRegWithShadow<
+ [ SGPR0, SGPR2, SGPR4, SGPR6, SGPR8, SGPR10, SGPR12, SGPR14 ],
+ [ SGPR1, SGPR3, SGPR5, SGPR7, SGPR9, SGPR11, SGPR13, SGPR15 ]
+ >>>
+
+]>;
+
+// Calling convention for R600
+def CC_R600 : CallingConv<[
+ CCIfInReg<CCIfType<[v4f32, v4i32] , CCAssignToReg<[
+ T0_XYZW, T1_XYZW, T2_XYZW, T3_XYZW, T4_XYZW, T5_XYZW, T6_XYZW, T7_XYZW,
+ T8_XYZW, T9_XYZW, T10_XYZW, T11_XYZW, T12_XYZW, T13_XYZW, T14_XYZW, T15_XYZW,
+ T16_XYZW, T17_XYZW, T18_XYZW, T19_XYZW, T20_XYZW, T21_XYZW, T22_XYZW,
+ T23_XYZW, T24_XYZW, T25_XYZW, T26_XYZW, T27_XYZW, T28_XYZW, T29_XYZW,
+ T30_XYZW, T31_XYZW, T32_XYZW
+ ]>>>
+]>;
+
+// Calling convention for compute kernels
+def CC_AMDGPU_Kernel : CallingConv<[
+ CCCustom<"allocateStack">
+]>;
+
+def CC_AMDGPU : CallingConv<[
+ CCIf<"State.getTarget().getSubtarget<AMDGPUSubtarget>().getGeneration() >= "
+ "AMDGPUSubtarget::SOUTHERN_ISLANDS && "
+ "State.getMachineFunction().getInfo<SIMachineFunctionInfo>()->"#
+ "getShaderType() == ShaderType::COMPUTE", CCDelegateTo<CC_AMDGPU_Kernel>>,
+ CCIf<"State.getTarget().getSubtarget<AMDGPUSubtarget>().getGeneration() < "
+ "AMDGPUSubtarget::SOUTHERN_ISLANDS && "
+ "State.getMachineFunction().getInfo<R600MachineFunctionInfo>()->"
+ "getShaderType() == ShaderType::COMPUTE", CCDelegateTo<CC_AMDGPU_Kernel>>,
+ CCIf<"State.getTarget().getSubtarget<AMDGPUSubtarget>()"#
+ ".getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS", CCDelegateTo<CC_SI>>,
+ CCIf<"State.getTarget().getSubtarget<AMDGPUSubtarget>()"#
+ ".getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS", CCDelegateTo<CC_R600>>
+]>;
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.cpp b/contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.cpp
new file mode 100644
index 0000000..9e8302e
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.cpp
@@ -0,0 +1,113 @@
+//===----------------------- AMDGPUFrameLowering.cpp ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//==-----------------------------------------------------------------------===//
+//
+// Interface to describe a layout of a stack frame on a AMDIL target machine
+//
+//===----------------------------------------------------------------------===//
+#include "AMDGPUFrameLowering.h"
+#include "AMDGPURegisterInfo.h"
+#include "R600MachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Instructions.h"
+
+using namespace llvm;
+AMDGPUFrameLowering::AMDGPUFrameLowering(StackDirection D, unsigned StackAl,
+ int LAO, unsigned TransAl)
+ : TargetFrameLowering(D, StackAl, LAO, TransAl) { }
+
+AMDGPUFrameLowering::~AMDGPUFrameLowering() { }
+
+unsigned AMDGPUFrameLowering::getStackWidth(const MachineFunction &MF) const {
+
+ // XXX: Hardcoding to 1 for now.
+ //
+ // I think the StackWidth should stored as metadata associated with the
+ // MachineFunction. This metadata can either be added by a frontend, or
+ // calculated by a R600 specific LLVM IR pass.
+ //
+ // The StackWidth determines how stack objects are laid out in memory.
+ // For a vector stack variable, like: int4 stack[2], the data will be stored
+ // in the following ways depending on the StackWidth.
+ //
+ // StackWidth = 1:
+ //
+ // T0.X = stack[0].x
+ // T1.X = stack[0].y
+ // T2.X = stack[0].z
+ // T3.X = stack[0].w
+ // T4.X = stack[1].x
+ // T5.X = stack[1].y
+ // T6.X = stack[1].z
+ // T7.X = stack[1].w
+ //
+ // StackWidth = 2:
+ //
+ // T0.X = stack[0].x
+ // T0.Y = stack[0].y
+ // T1.X = stack[0].z
+ // T1.Y = stack[0].w
+ // T2.X = stack[1].x
+ // T2.Y = stack[1].y
+ // T3.X = stack[1].z
+ // T3.Y = stack[1].w
+ //
+ // StackWidth = 4:
+ // T0.X = stack[0].x
+ // T0.Y = stack[0].y
+ // T0.Z = stack[0].z
+ // T0.W = stack[0].w
+ // T1.X = stack[1].x
+ // T1.Y = stack[1].y
+ // T1.Z = stack[1].z
+ // T1.W = stack[1].w
+ return 1;
+}
+
+/// \returns The number of registers allocated for \p FI.
+int AMDGPUFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
+ int FI) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ // Start the offset at 2 so we don't overwrite work group information.
+ // XXX: We should only do this when the shader actually uses this
+ // information.
+ unsigned OffsetBytes = 2 * (getStackWidth(MF) * 4);
+ int UpperBound = FI == -1 ? MFI->getNumObjects() : FI;
+
+ for (int i = MFI->getObjectIndexBegin(); i < UpperBound; ++i) {
+ OffsetBytes = RoundUpToAlignment(OffsetBytes, MFI->getObjectAlignment(i));
+ OffsetBytes += MFI->getObjectSize(i);
+ // Each register holds 4 bytes, so we must always align the offset to at
+ // least 4 bytes, so that 2 frame objects won't share the same register.
+ OffsetBytes = RoundUpToAlignment(OffsetBytes, 4);
+ }
+
+ if (FI != -1)
+ OffsetBytes = RoundUpToAlignment(OffsetBytes, MFI->getObjectAlignment(FI));
+
+ return OffsetBytes / (getStackWidth(MF) * 4);
+}
+
+const TargetFrameLowering::SpillSlot *
+AMDGPUFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
+ NumEntries = 0;
+ return nullptr;
+}
+void
+AMDGPUFrameLowering::emitPrologue(MachineFunction &MF) const {
+}
+void
+AMDGPUFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+}
+
+bool
+AMDGPUFrameLowering::hasFP(const MachineFunction &MF) const {
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.h b/contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.h
new file mode 100644
index 0000000..d18ede5
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.h
@@ -0,0 +1,45 @@
+//===--------------------- AMDGPUFrameLowering.h ----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Interface to describe a layout of a stack frame on a AMDIL target
+/// machine.
+//
+//===----------------------------------------------------------------------===//
+#ifndef AMDILFRAME_LOWERING_H
+#define AMDILFRAME_LOWERING_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+
+/// \brief Information about the stack frame layout on the AMDGPU targets.
+///
+/// It holds the direction of the stack growth, the known stack alignment on
+/// entry to each function, and the offset to the locals area.
+/// See TargetFrameInfo for more comments.
+class AMDGPUFrameLowering : public TargetFrameLowering {
+public:
+ AMDGPUFrameLowering(StackDirection D, unsigned StackAl, int LAO,
+ unsigned TransAl = 1);
+ virtual ~AMDGPUFrameLowering();
+
+ /// \returns The number of 32-bit sub-registers that are used when storing
+ /// values to the stack.
+ unsigned getStackWidth(const MachineFunction &MF) const;
+ int getFrameIndexOffset(const MachineFunction &MF, int FI) const override;
+ const SpillSlot *
+ getCalleeSavedSpillSlots(unsigned &NumEntries) const override;
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+ bool hasFP(const MachineFunction &MF) const override;
+};
+} // namespace llvm
+#endif // AMDILFRAME_LOWERING_H
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUISelDAGToDAG.cpp b/contrib/llvm/lib/Target/R600/AMDGPUISelDAGToDAG.cpp
new file mode 100644
index 0000000..cc17b7e
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUISelDAGToDAG.cpp
@@ -0,0 +1,906 @@
+//===-- AMDILISelDAGToDAG.cpp - A dag to dag inst selector for AMDIL ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//==-----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Defines an instruction selector for the AMDGPU target.
+//
+//===----------------------------------------------------------------------===//
+#include "AMDGPUInstrInfo.h"
+#include "AMDGPUISelLowering.h" // For AMDGPUISD
+#include "AMDGPURegisterInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "R600InstrInfo.h"
+#include "SIDefines.h"
+#include "SIISelLowering.h"
+#include "SIMachineFunctionInfo.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Function.h"
+
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Instruction Selector Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// AMDGPU specific code to select AMDGPU machine instructions for
+/// SelectionDAG operations.
+class AMDGPUDAGToDAGISel : public SelectionDAGISel {
+ // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
+ // make the right decision when generating code for different targets.
+ const AMDGPUSubtarget &Subtarget;
+public:
+ AMDGPUDAGToDAGISel(TargetMachine &TM);
+ virtual ~AMDGPUDAGToDAGISel();
+
+ SDNode *Select(SDNode *N) override;
+ const char *getPassName() const override;
+ void PostprocessISelDAG() override;
+
+private:
+ bool isInlineImmediate(SDNode *N) const;
+ inline SDValue getSmallIPtrImm(unsigned Imm);
+ bool FoldOperand(SDValue &Src, SDValue &Sel, SDValue &Neg, SDValue &Abs,
+ const R600InstrInfo *TII);
+ bool FoldOperands(unsigned, const R600InstrInfo *, std::vector<SDValue> &);
+ bool FoldDotOperands(unsigned, const R600InstrInfo *, std::vector<SDValue> &);
+
+ // Complex pattern selectors
+ bool SelectADDRParam(SDValue Addr, SDValue& R1, SDValue& R2);
+ bool SelectADDR(SDValue N, SDValue &R1, SDValue &R2);
+ bool SelectADDR64(SDValue N, SDValue &R1, SDValue &R2);
+
+ static bool checkType(const Value *ptr, unsigned int addrspace);
+ static bool checkPrivateAddress(const MachineMemOperand *Op);
+
+ static bool isGlobalStore(const StoreSDNode *N);
+ static bool isPrivateStore(const StoreSDNode *N);
+ static bool isLocalStore(const StoreSDNode *N);
+ static bool isRegionStore(const StoreSDNode *N);
+
+ bool isCPLoad(const LoadSDNode *N) const;
+ bool isConstantLoad(const LoadSDNode *N, int cbID) const;
+ bool isGlobalLoad(const LoadSDNode *N) const;
+ bool isParamLoad(const LoadSDNode *N) const;
+ bool isPrivateLoad(const LoadSDNode *N) const;
+ bool isLocalLoad(const LoadSDNode *N) const;
+ bool isRegionLoad(const LoadSDNode *N) const;
+
+ /// \returns True if the current basic block being selected is at control
+ /// flow depth 0. Meaning that the current block dominates the
+ // exit block.
+ bool isCFDepth0() const;
+
+ const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
+ bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
+ bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
+ SDValue& Offset);
+ bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
+ bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
+ bool SelectMUBUFAddr64(SDValue Addr, SDValue &Ptr, SDValue &Offset,
+ SDValue &ImmOffset) const;
+ bool SelectMUBUFScratch(SDValue Addr, SDValue &RSrc, SDValue &VAddr,
+ SDValue &SOffset, SDValue &ImmOffset) const;
+ bool SelectMUBUFAddr32(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
+ SDValue &SOffset, SDValue &Offset, SDValue &Offen,
+ SDValue &Idxen, SDValue &GLC, SDValue &SLC,
+ SDValue &TFE) const;
+
+ SDNode *SelectADD_SUB_I64(SDNode *N);
+ SDNode *SelectDIV_SCALE(SDNode *N);
+
+ // Include the pieces autogenerated from the target description.
+#include "AMDGPUGenDAGISel.inc"
+};
+} // end anonymous namespace
+
+/// \brief This pass converts a legalized DAG into a AMDGPU-specific
+// DAG, ready for instruction scheduling.
+FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM) {
+ return new AMDGPUDAGToDAGISel(TM);
+}
+
+AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM)
+ : SelectionDAGISel(TM), Subtarget(TM.getSubtarget<AMDGPUSubtarget>()) {
+}
+
+AMDGPUDAGToDAGISel::~AMDGPUDAGToDAGISel() {
+}
+
+bool AMDGPUDAGToDAGISel::isInlineImmediate(SDNode *N) const {
+ const SITargetLowering *TL
+ = static_cast<const SITargetLowering *>(getTargetLowering());
+ return TL->analyzeImmediate(N) == 0;
+}
+
+/// \brief Determine the register class for \p OpNo
+/// \returns The register class of the virtual register that will be used for
+/// the given operand number \OpNo or NULL if the register class cannot be
+/// determined.
+const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
+ unsigned OpNo) const {
+ if (!N->isMachineOpcode())
+ return nullptr;
+
+ switch (N->getMachineOpcode()) {
+ default: {
+ const MCInstrDesc &Desc = TM.getInstrInfo()->get(N->getMachineOpcode());
+ unsigned OpIdx = Desc.getNumDefs() + OpNo;
+ if (OpIdx >= Desc.getNumOperands())
+ return nullptr;
+ int RegClass = Desc.OpInfo[OpIdx].RegClass;
+ if (RegClass == -1)
+ return nullptr;
+
+ return TM.getRegisterInfo()->getRegClass(RegClass);
+ }
+ case AMDGPU::REG_SEQUENCE: {
+ unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ const TargetRegisterClass *SuperRC = TM.getRegisterInfo()->getRegClass(RCID);
+
+ SDValue SubRegOp = N->getOperand(OpNo + 1);
+ unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
+ return TM.getRegisterInfo()->getSubClassWithSubReg(SuperRC, SubRegIdx);
+ }
+ }
+}
+
+SDValue AMDGPUDAGToDAGISel::getSmallIPtrImm(unsigned int Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+}
+
+bool AMDGPUDAGToDAGISel::SelectADDRParam(
+ SDValue Addr, SDValue& R1, SDValue& R2) {
+
+ if (Addr.getOpcode() == ISD::FrameIndex) {
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ R2 = CurDAG->getTargetConstant(0, MVT::i32);
+ } else {
+ R1 = Addr;
+ R2 = CurDAG->getTargetConstant(0, MVT::i32);
+ }
+ } else if (Addr.getOpcode() == ISD::ADD) {
+ R1 = Addr.getOperand(0);
+ R2 = Addr.getOperand(1);
+ } else {
+ R1 = Addr;
+ R2 = CurDAG->getTargetConstant(0, MVT::i32);
+ }
+ return true;
+}
+
+bool AMDGPUDAGToDAGISel::SelectADDR(SDValue Addr, SDValue& R1, SDValue& R2) {
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress) {
+ return false;
+ }
+ return SelectADDRParam(Addr, R1, R2);
+}
+
+
+bool AMDGPUDAGToDAGISel::SelectADDR64(SDValue Addr, SDValue& R1, SDValue& R2) {
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress) {
+ return false;
+ }
+
+ if (Addr.getOpcode() == ISD::FrameIndex) {
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i64);
+ R2 = CurDAG->getTargetConstant(0, MVT::i64);
+ } else {
+ R1 = Addr;
+ R2 = CurDAG->getTargetConstant(0, MVT::i64);
+ }
+ } else if (Addr.getOpcode() == ISD::ADD) {
+ R1 = Addr.getOperand(0);
+ R2 = Addr.getOperand(1);
+ } else {
+ R1 = Addr;
+ R2 = CurDAG->getTargetConstant(0, MVT::i64);
+ }
+ return true;
+}
+
+SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
+ unsigned int Opc = N->getOpcode();
+ if (N->isMachineOpcode()) {
+ N->setNodeId(-1);
+ return nullptr; // Already selected.
+ }
+
+ const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
+ switch (Opc) {
+ default: break;
+ // We are selecting i64 ADD here instead of custom lower it during
+ // DAG legalization, so we can fold some i64 ADDs used for address
+ // calculation into the LOAD and STORE instructions.
+ case ISD::ADD:
+ case ISD::SUB: {
+ if (N->getValueType(0) != MVT::i64 ||
+ ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS)
+ break;
+
+ return SelectADD_SUB_I64(N);
+ }
+ case ISD::SCALAR_TO_VECTOR:
+ case AMDGPUISD::BUILD_VERTICAL_VECTOR:
+ case ISD::BUILD_VECTOR: {
+ unsigned RegClassID;
+ const AMDGPURegisterInfo *TRI =
+ static_cast<const AMDGPURegisterInfo*>(TM.getRegisterInfo());
+ const SIRegisterInfo *SIRI =
+ static_cast<const SIRegisterInfo*>(TM.getRegisterInfo());
+ EVT VT = N->getValueType(0);
+ unsigned NumVectorElts = VT.getVectorNumElements();
+ EVT EltVT = VT.getVectorElementType();
+ assert(EltVT.bitsEq(MVT::i32));
+ if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ bool UseVReg = true;
+ for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
+ U != E; ++U) {
+ if (!U->isMachineOpcode()) {
+ continue;
+ }
+ const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
+ if (!RC) {
+ continue;
+ }
+ if (SIRI->isSGPRClass(RC)) {
+ UseVReg = false;
+ }
+ }
+ switch(NumVectorElts) {
+ case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID :
+ AMDGPU::SReg_32RegClassID;
+ break;
+ case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID :
+ AMDGPU::SReg_64RegClassID;
+ break;
+ case 4: RegClassID = UseVReg ? AMDGPU::VReg_128RegClassID :
+ AMDGPU::SReg_128RegClassID;
+ break;
+ case 8: RegClassID = UseVReg ? AMDGPU::VReg_256RegClassID :
+ AMDGPU::SReg_256RegClassID;
+ break;
+ case 16: RegClassID = UseVReg ? AMDGPU::VReg_512RegClassID :
+ AMDGPU::SReg_512RegClassID;
+ break;
+ default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
+ }
+ } else {
+ // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
+ // that adds a 128 bits reg copy when going through TwoAddressInstructions
+ // pass. We want to avoid 128 bits copies as much as possible because they
+ // can't be bundled by our scheduler.
+ switch(NumVectorElts) {
+ case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break;
+ case 4:
+ if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
+ RegClassID = AMDGPU::R600_Reg128VerticalRegClassID;
+ else
+ RegClassID = AMDGPU::R600_Reg128RegClassID;
+ break;
+ default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
+ }
+ }
+
+ SDValue RegClass = CurDAG->getTargetConstant(RegClassID, MVT::i32);
+
+ if (NumVectorElts == 1) {
+ return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT,
+ N->getOperand(0), RegClass);
+ }
+
+ assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not "
+ "supported yet");
+ // 16 = Max Num Vector Elements
+ // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
+ // 1 = Vector Register Class
+ SmallVector<SDValue, 16 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
+
+ RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, MVT::i32);
+ bool IsRegSeq = true;
+ unsigned NOps = N->getNumOperands();
+ for (unsigned i = 0; i < NOps; i++) {
+ // XXX: Why is this here?
+ if (dyn_cast<RegisterSDNode>(N->getOperand(i))) {
+ IsRegSeq = false;
+ break;
+ }
+ RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
+ RegSeqArgs[1 + (2 * i) + 1] =
+ CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32);
+ }
+
+ if (NOps != NumVectorElts) {
+ // Fill in the missing undef elements if this was a scalar_to_vector.
+ assert(Opc == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
+
+ MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ SDLoc(N), EltVT);
+ for (unsigned i = NOps; i < NumVectorElts; ++i) {
+ RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
+ RegSeqArgs[1 + (2 * i) + 1] =
+ CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32);
+ }
+ }
+
+ if (!IsRegSeq)
+ break;
+ return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(),
+ RegSeqArgs);
+ }
+ case ISD::BUILD_PAIR: {
+ SDValue RC, SubReg0, SubReg1;
+ if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
+ break;
+ }
+ if (N->getValueType(0) == MVT::i128) {
+ RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32);
+ SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32);
+ SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32);
+ } else if (N->getValueType(0) == MVT::i64) {
+ RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32);
+ SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32);
+ SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32);
+ } else {
+ llvm_unreachable("Unhandled value type for BUILD_PAIR");
+ }
+ const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
+ N->getOperand(1), SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
+ SDLoc(N), N->getValueType(0), Ops);
+ }
+
+ case ISD::Constant:
+ case ISD::ConstantFP: {
+ const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
+ if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS ||
+ N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
+ break;
+
+ uint64_t Imm;
+ if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
+ Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
+ else {
+ ConstantSDNode *C = cast<ConstantSDNode>(N);
+ Imm = C->getZExtValue();
+ }
+
+ SDNode *Lo = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SDLoc(N), MVT::i32,
+ CurDAG->getConstant(Imm & 0xFFFFFFFF, MVT::i32));
+ SDNode *Hi = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SDLoc(N), MVT::i32,
+ CurDAG->getConstant(Imm >> 32, MVT::i32));
+ const SDValue Ops[] = {
+ CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32),
+ SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32),
+ SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32)
+ };
+
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N),
+ N->getValueType(0), Ops);
+ }
+
+ case AMDGPUISD::REGISTER_LOAD: {
+ if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
+ break;
+ SDValue Addr, Offset;
+
+ SelectADDRIndirect(N->getOperand(1), Addr, Offset);
+ const SDValue Ops[] = {
+ Addr,
+ Offset,
+ CurDAG->getTargetConstant(0, MVT::i32),
+ N->getOperand(0),
+ };
+ return CurDAG->getMachineNode(AMDGPU::SI_RegisterLoad, SDLoc(N),
+ CurDAG->getVTList(MVT::i32, MVT::i64, MVT::Other),
+ Ops);
+ }
+ case AMDGPUISD::REGISTER_STORE: {
+ if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
+ break;
+ SDValue Addr, Offset;
+ SelectADDRIndirect(N->getOperand(2), Addr, Offset);
+ const SDValue Ops[] = {
+ N->getOperand(1),
+ Addr,
+ Offset,
+ CurDAG->getTargetConstant(0, MVT::i32),
+ N->getOperand(0),
+ };
+ return CurDAG->getMachineNode(AMDGPU::SI_RegisterStorePseudo, SDLoc(N),
+ CurDAG->getVTList(MVT::Other),
+ Ops);
+ }
+
+ case AMDGPUISD::BFE_I32:
+ case AMDGPUISD::BFE_U32: {
+ if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS)
+ break;
+
+ // There is a scalar version available, but unlike the vector version which
+ // has a separate operand for the offset and width, the scalar version packs
+ // the width and offset into a single operand. Try to move to the scalar
+ // version if the offsets are constant, so that we can try to keep extended
+ // loads of kernel arguments in SGPRs.
+
+ // TODO: Technically we could try to pattern match scalar bitshifts of
+ // dynamic values, but it's probably not useful.
+ ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!Offset)
+ break;
+
+ ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
+ if (!Width)
+ break;
+
+ bool Signed = Opc == AMDGPUISD::BFE_I32;
+
+ // Transformation function, pack the offset and width of a BFE into
+ // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
+ // source, bits [5:0] contain the offset and bits [22:16] the width.
+
+ uint32_t OffsetVal = Offset->getZExtValue();
+ uint32_t WidthVal = Width->getZExtValue();
+
+ uint32_t PackedVal = OffsetVal | WidthVal << 16;
+
+ SDValue PackedOffsetWidth = CurDAG->getTargetConstant(PackedVal, MVT::i32);
+ return CurDAG->getMachineNode(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
+ SDLoc(N),
+ MVT::i32,
+ N->getOperand(0),
+ PackedOffsetWidth);
+
+ }
+ case AMDGPUISD::DIV_SCALE: {
+ return SelectDIV_SCALE(N);
+ }
+ }
+ return SelectCode(N);
+}
+
+
+bool AMDGPUDAGToDAGISel::checkType(const Value *Ptr, unsigned AS) {
+ assert(AS != 0 && "Use checkPrivateAddress instead.");
+ if (!Ptr)
+ return false;
+
+ return Ptr->getType()->getPointerAddressSpace() == AS;
+}
+
+bool AMDGPUDAGToDAGISel::checkPrivateAddress(const MachineMemOperand *Op) {
+ if (Op->getPseudoValue())
+ return true;
+
+ if (PointerType *PT = dyn_cast<PointerType>(Op->getValue()->getType()))
+ return PT->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS;
+
+ return false;
+}
+
+bool AMDGPUDAGToDAGISel::isGlobalStore(const StoreSDNode *N) {
+ return checkType(N->getMemOperand()->getValue(), AMDGPUAS::GLOBAL_ADDRESS);
+}
+
+bool AMDGPUDAGToDAGISel::isPrivateStore(const StoreSDNode *N) {
+ const Value *MemVal = N->getMemOperand()->getValue();
+ return (!checkType(MemVal, AMDGPUAS::LOCAL_ADDRESS) &&
+ !checkType(MemVal, AMDGPUAS::GLOBAL_ADDRESS) &&
+ !checkType(MemVal, AMDGPUAS::REGION_ADDRESS));
+}
+
+bool AMDGPUDAGToDAGISel::isLocalStore(const StoreSDNode *N) {
+ return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS);
+}
+
+bool AMDGPUDAGToDAGISel::isRegionStore(const StoreSDNode *N) {
+ return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS);
+}
+
+bool AMDGPUDAGToDAGISel::isConstantLoad(const LoadSDNode *N, int CbId) const {
+ const Value *MemVal = N->getMemOperand()->getValue();
+ if (CbId == -1)
+ return checkType(MemVal, AMDGPUAS::CONSTANT_ADDRESS);
+
+ return checkType(MemVal, AMDGPUAS::CONSTANT_BUFFER_0 + CbId);
+}
+
+bool AMDGPUDAGToDAGISel::isGlobalLoad(const LoadSDNode *N) const {
+ if (N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS) {
+ const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
+ if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS ||
+ N->getMemoryVT().bitsLT(MVT::i32)) {
+ return true;
+ }
+ }
+ return checkType(N->getMemOperand()->getValue(), AMDGPUAS::GLOBAL_ADDRESS);
+}
+
+bool AMDGPUDAGToDAGISel::isParamLoad(const LoadSDNode *N) const {
+ return checkType(N->getMemOperand()->getValue(), AMDGPUAS::PARAM_I_ADDRESS);
+}
+
+bool AMDGPUDAGToDAGISel::isLocalLoad(const LoadSDNode *N) const {
+ return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS);
+}
+
+bool AMDGPUDAGToDAGISel::isRegionLoad(const LoadSDNode *N) const {
+ return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS);
+}
+
+bool AMDGPUDAGToDAGISel::isCPLoad(const LoadSDNode *N) const {
+ MachineMemOperand *MMO = N->getMemOperand();
+ if (checkPrivateAddress(N->getMemOperand())) {
+ if (MMO) {
+ const PseudoSourceValue *PSV = MMO->getPseudoValue();
+ if (PSV && PSV == PseudoSourceValue::getConstantPool()) {
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+bool AMDGPUDAGToDAGISel::isPrivateLoad(const LoadSDNode *N) const {
+ if (checkPrivateAddress(N->getMemOperand())) {
+ // Check to make sure we are not a constant pool load or a constant load
+ // that is marked as a private load
+ if (isCPLoad(N) || isConstantLoad(N, -1)) {
+ return false;
+ }
+ }
+
+ const Value *MemVal = N->getMemOperand()->getValue();
+ if (!checkType(MemVal, AMDGPUAS::LOCAL_ADDRESS) &&
+ !checkType(MemVal, AMDGPUAS::GLOBAL_ADDRESS) &&
+ !checkType(MemVal, AMDGPUAS::REGION_ADDRESS) &&
+ !checkType(MemVal, AMDGPUAS::CONSTANT_ADDRESS) &&
+ !checkType(MemVal, AMDGPUAS::PARAM_D_ADDRESS) &&
+ !checkType(MemVal, AMDGPUAS::PARAM_I_ADDRESS)){
+ return true;
+ }
+ return false;
+}
+
+bool AMDGPUDAGToDAGISel::isCFDepth0() const {
+ // FIXME: Figure out a way to use DominatorTree analysis here.
+ const BasicBlock *CurBlock = FuncInfo->MBB->getBasicBlock();
+ const Function *Fn = FuncInfo->Fn;
+ return &Fn->front() == CurBlock || &Fn->back() == CurBlock;
+}
+
+
+const char *AMDGPUDAGToDAGISel::getPassName() const {
+ return "AMDGPU DAG->DAG Pattern Instruction Selection";
+}
+
+#ifdef DEBUGTMP
+#undef INT64_C
+#endif
+#undef DEBUGTMP
+
+//===----------------------------------------------------------------------===//
+// Complex Patterns
+//===----------------------------------------------------------------------===//
+
+bool AMDGPUDAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
+ SDValue& IntPtr) {
+ if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
+ IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, true);
+ return true;
+ }
+ return false;
+}
+
+bool AMDGPUDAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
+ SDValue& BaseReg, SDValue &Offset) {
+ if (!isa<ConstantSDNode>(Addr)) {
+ BaseReg = Addr;
+ Offset = CurDAG->getIntPtrConstant(0, true);
+ return true;
+ }
+ return false;
+}
+
+bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
+ SDValue &Offset) {
+ ConstantSDNode *IMMOffset;
+
+ if (Addr.getOpcode() == ISD::ADD
+ && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
+ && isInt<16>(IMMOffset->getZExtValue())) {
+
+ Base = Addr.getOperand(0);
+ Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32);
+ return true;
+ // If the pointer address is constant, we can move it to the offset field.
+ } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
+ && isInt<16>(IMMOffset->getZExtValue())) {
+ Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
+ SDLoc(CurDAG->getEntryNode()),
+ AMDGPU::ZERO, MVT::i32);
+ Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32);
+ return true;
+ }
+
+ // Default case, no offset
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
+ SDValue &Offset) {
+ ConstantSDNode *C;
+
+ if ((C = dyn_cast<ConstantSDNode>(Addr))) {
+ Base = CurDAG->getRegister(AMDGPU::INDIRECT_BASE_ADDR, MVT::i32);
+ Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
+ } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
+ (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
+ Base = Addr.getOperand(0);
+ Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
+ } else {
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ }
+
+ return true;
+}
+
+SDNode *AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
+ SDLoc DL(N);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ bool IsAdd = (N->getOpcode() == ISD::ADD);
+
+ SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32);
+ SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32);
+
+ SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ DL, MVT::i32, LHS, Sub0);
+ SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ DL, MVT::i32, LHS, Sub1);
+
+ SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ DL, MVT::i32, RHS, Sub0);
+ SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ DL, MVT::i32, RHS, Sub1);
+
+ SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
+ SDValue AddLoArgs[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
+
+
+ unsigned Opc = IsAdd ? AMDGPU::S_ADD_I32 : AMDGPU::S_SUB_I32;
+ unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
+
+ if (!isCFDepth0()) {
+ Opc = IsAdd ? AMDGPU::V_ADD_I32_e32 : AMDGPU::V_SUB_I32_e32;
+ CarryOpc = IsAdd ? AMDGPU::V_ADDC_U32_e32 : AMDGPU::V_SUBB_U32_e32;
+ }
+
+ SDNode *AddLo = CurDAG->getMachineNode( Opc, DL, VTList, AddLoArgs);
+ SDValue Carry(AddLo, 1);
+ SDNode *AddHi
+ = CurDAG->getMachineNode(CarryOpc, DL, MVT::i32,
+ SDValue(Hi0, 0), SDValue(Hi1, 0), Carry);
+
+ SDValue Args[5] = {
+ CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32),
+ SDValue(AddLo,0),
+ Sub0,
+ SDValue(AddHi,0),
+ Sub1,
+ };
+ return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, MVT::i64, Args);
+}
+
+SDNode *AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
+ SDLoc SL(N);
+ EVT VT = N->getValueType(0);
+
+ assert(VT == MVT::f32 || VT == MVT::f64);
+
+ unsigned Opc
+ = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
+
+ const SDValue Zero = CurDAG->getTargetConstant(0, MVT::i32);
+
+ SDValue Ops[] = {
+ N->getOperand(0),
+ N->getOperand(1),
+ N->getOperand(2),
+ Zero,
+ Zero,
+ Zero,
+ Zero
+ };
+
+ return CurDAG->SelectNodeTo(N, Opc, VT, MVT::i1, Ops);
+}
+
+static SDValue wrapAddr64Rsrc(SelectionDAG *DAG, SDLoc DL, SDValue Ptr) {
+ return SDValue(DAG->getMachineNode(AMDGPU::SI_ADDR64_RSRC, DL, MVT::v4i32,
+ Ptr), 0);
+}
+
+static bool isLegalMUBUFImmOffset(const ConstantSDNode *Imm) {
+ return isUInt<12>(Imm->getZExtValue());
+}
+
+bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &Ptr,
+ SDValue &Offset,
+ SDValue &ImmOffset) const {
+ SDLoc DL(Addr);
+
+ if (CurDAG->isBaseWithConstantOffset(Addr)) {
+ SDValue N0 = Addr.getOperand(0);
+ SDValue N1 = Addr.getOperand(1);
+ ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
+
+ if (isLegalMUBUFImmOffset(C1)) {
+
+ if (N0.getOpcode() == ISD::ADD) {
+ // (add (add N2, N3), C1)
+ SDValue N2 = N0.getOperand(0);
+ SDValue N3 = N0.getOperand(1);
+ Ptr = wrapAddr64Rsrc(CurDAG, DL, N2);
+ Offset = N3;
+ ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), MVT::i16);
+ return true;
+ }
+
+ // (add N0, C1)
+ Ptr = wrapAddr64Rsrc(CurDAG, DL, CurDAG->getTargetConstant(0, MVT::i64));;
+ Offset = N0;
+ ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), MVT::i16);
+ return true;
+ }
+ }
+ if (Addr.getOpcode() == ISD::ADD) {
+ // (add N0, N1)
+ SDValue N0 = Addr.getOperand(0);
+ SDValue N1 = Addr.getOperand(1);
+ Ptr = wrapAddr64Rsrc(CurDAG, DL, N0);
+ Offset = N1;
+ ImmOffset = CurDAG->getTargetConstant(0, MVT::i16);
+ return true;
+ }
+
+ // default case
+ Ptr = wrapAddr64Rsrc(CurDAG, DL, CurDAG->getConstant(0, MVT::i64));
+ Offset = Addr;
+ ImmOffset = CurDAG->getTargetConstant(0, MVT::i16);
+ return true;
+}
+
+/// \brief Return a resource descriptor with the 'Add TID' bit enabled
+/// The TID (Thread ID) is multipled by the stride value (bits [61:48]
+/// of the resource descriptor) to create an offset, which is added to the
+/// resource ponter.
+static SDValue buildScratchRSRC(SelectionDAG *DAG, SDLoc DL, SDValue Ptr) {
+
+ uint64_t Rsrc = AMDGPU::RSRC_DATA_FORMAT | AMDGPU::RSRC_TID_ENABLE |
+ 0xffffffff;
+
+ SDValue PtrLo = DAG->getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
+ SDValue PtrHi = DAG->getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
+ SDValue DataLo = DAG->getTargetConstant(
+ Rsrc & APInt::getAllOnesValue(32).getZExtValue(), MVT::i32);
+ SDValue DataHi = DAG->getTargetConstant(Rsrc >> 32, MVT::i32);
+
+ const SDValue Ops[] = { PtrLo, PtrHi, DataLo, DataHi };
+ return SDValue(DAG->getMachineNode(AMDGPU::SI_BUFFER_RSRC, DL,
+ MVT::v4i32, Ops), 0);
+}
+
+bool AMDGPUDAGToDAGISel::SelectMUBUFScratch(SDValue Addr, SDValue &Rsrc,
+ SDValue &VAddr, SDValue &SOffset,
+ SDValue &ImmOffset) const {
+
+ SDLoc DL(Addr);
+ MachineFunction &MF = CurDAG->getMachineFunction();
+ const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+
+ unsigned ScratchPtrReg =
+ TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
+ unsigned ScratchOffsetReg =
+ TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_WAVE_OFFSET);
+
+ Rsrc = buildScratchRSRC(CurDAG, DL, CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, MRI.getLiveInVirtReg(ScratchPtrReg), MVT::i64));
+ SOffset = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
+ MRI.getLiveInVirtReg(ScratchOffsetReg), MVT::i32);
+
+ // (add n0, c1)
+ if (CurDAG->isBaseWithConstantOffset(Addr)) {
+ SDValue N1 = Addr.getOperand(1);
+ ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
+
+ if (isLegalMUBUFImmOffset(C1)) {
+ VAddr = Addr.getOperand(0);
+ ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), MVT::i16);
+ return true;
+ }
+ }
+
+ // (add FI, n0)
+ if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
+ isa<FrameIndexSDNode>(Addr.getOperand(0))) {
+ VAddr = Addr.getOperand(1);
+ ImmOffset = Addr.getOperand(0);
+ return true;
+ }
+
+ // (FI)
+ if (isa<FrameIndexSDNode>(Addr)) {
+ VAddr = SDValue(CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
+ CurDAG->getConstant(0, MVT::i32)), 0);
+ ImmOffset = Addr;
+ return true;
+ }
+
+ // (node)
+ VAddr = Addr;
+ ImmOffset = CurDAG->getTargetConstant(0, MVT::i16);
+ return true;
+}
+
+bool AMDGPUDAGToDAGISel::SelectMUBUFAddr32(SDValue Addr, SDValue &SRsrc,
+ SDValue &VAddr, SDValue &SOffset,
+ SDValue &Offset, SDValue &Offen,
+ SDValue &Idxen, SDValue &GLC,
+ SDValue &SLC, SDValue &TFE) const {
+
+ GLC = CurDAG->getTargetConstant(0, MVT::i1);
+ SLC = CurDAG->getTargetConstant(0, MVT::i1);
+ TFE = CurDAG->getTargetConstant(0, MVT::i1);
+
+ Idxen = CurDAG->getTargetConstant(0, MVT::i1);
+ Offen = CurDAG->getTargetConstant(1, MVT::i1);
+
+ return SelectMUBUFScratch(Addr, SRsrc, VAddr, SOffset, Offset);
+}
+
+void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
+ const AMDGPUTargetLowering& Lowering =
+ *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
+ bool IsModified = false;
+ do {
+ IsModified = false;
+ // Go over all selected nodes and try to fold them a bit more
+ for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
+ E = CurDAG->allnodes_end(); I != E; ++I) {
+
+ SDNode *Node = I;
+
+ MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
+ if (!MachineNode)
+ continue;
+
+ SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
+ if (ResNode != Node) {
+ ReplaceUses(Node, ResNode);
+ IsModified = true;
+ }
+ }
+ CurDAG->RemoveDeadNodes();
+ } while (IsModified);
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp b/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp
new file mode 100644
index 0000000..5a46297b
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp
@@ -0,0 +1,2325 @@
+//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief This is the parent TargetLowering class for hardware code gen
+/// targets.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUISelLowering.h"
+#include "AMDGPU.h"
+#include "AMDGPUFrameLowering.h"
+#include "AMDGPUIntrinsicInfo.h"
+#include "AMDGPURegisterInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "R600MachineFunctionInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/DiagnosticPrinter.h"
+
+using namespace llvm;
+
+namespace {
+
+/// Diagnostic information for unimplemented or unsupported feature reporting.
+class DiagnosticInfoUnsupported : public DiagnosticInfo {
+private:
+ const Twine &Description;
+ const Function &Fn;
+
+ static int KindID;
+
+ static int getKindID() {
+ if (KindID == 0)
+ KindID = llvm::getNextAvailablePluginDiagnosticKind();
+ return KindID;
+ }
+
+public:
+ DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
+ DiagnosticSeverity Severity = DS_Error)
+ : DiagnosticInfo(getKindID(), Severity),
+ Description(Desc),
+ Fn(Fn) { }
+
+ const Function &getFunction() const { return Fn; }
+ const Twine &getDescription() const { return Description; }
+
+ void print(DiagnosticPrinter &DP) const override {
+ DP << "unsupported " << getDescription() << " in " << Fn.getName();
+ }
+
+ static bool classof(const DiagnosticInfo *DI) {
+ return DI->getKind() == getKindID();
+ }
+};
+
+int DiagnosticInfoUnsupported::KindID = 0;
+}
+
+
+static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
+ ArgFlags.getOrigAlign());
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+
+ return true;
+}
+
+#include "AMDGPUGenCallingConv.inc"
+
+// Find a larger type to do a load / store of a vector with.
+EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
+ unsigned StoreSize = VT.getStoreSizeInBits();
+ if (StoreSize <= 32)
+ return EVT::getIntegerVT(Ctx, StoreSize);
+
+ assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
+ return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
+}
+
+// Type for a vector that will be loaded to.
+EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
+ unsigned StoreSize = VT.getStoreSizeInBits();
+ if (StoreSize <= 32)
+ return EVT::getIntegerVT(Ctx, 32);
+
+ return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
+}
+
+AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
+ TargetLowering(TM, new TargetLoweringObjectFileELF()) {
+
+ Subtarget = &TM.getSubtarget<AMDGPUSubtarget>();
+
+ setOperationAction(ISD::Constant, MVT::i32, Legal);
+ setOperationAction(ISD::Constant, MVT::i64, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
+
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BRIND, MVT::Other, Expand);
+
+ // We need to custom lower some of the intrinsics
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+
+ // Library functions. These default to Expand, but we have instructions
+ // for them.
+ setOperationAction(ISD::FCEIL, MVT::f32, Legal);
+ setOperationAction(ISD::FEXP2, MVT::f32, Legal);
+ setOperationAction(ISD::FPOW, MVT::f32, Legal);
+ setOperationAction(ISD::FLOG2, MVT::f32, Legal);
+ setOperationAction(ISD::FABS, MVT::f32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::f32, Legal);
+ setOperationAction(ISD::FROUND, MVT::f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
+
+ // Lower floating point store/load to integer store/load to reduce the number
+ // of patterns in tablegen.
+ setOperationAction(ISD::STORE, MVT::f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
+
+ setOperationAction(ISD::STORE, MVT::v2f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
+
+ setOperationAction(ISD::STORE, MVT::i64, Promote);
+ AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
+
+ setOperationAction(ISD::STORE, MVT::v4f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
+
+ setOperationAction(ISD::STORE, MVT::v8f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
+
+ setOperationAction(ISD::STORE, MVT::v16f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
+
+ setOperationAction(ISD::STORE, MVT::f64, Promote);
+ AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
+
+ setOperationAction(ISD::STORE, MVT::v2f64, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
+
+ // Custom lowering of vector stores is required for local address space
+ // stores.
+ setOperationAction(ISD::STORE, MVT::v4i32, Custom);
+ // XXX: Native v2i32 local address space stores are possible, but not
+ // currently implemented.
+ setOperationAction(ISD::STORE, MVT::v2i32, Custom);
+
+ setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
+ setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
+ setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
+
+ // XXX: This can be change to Custom, once ExpandVectorStores can
+ // handle 64-bit stores.
+ setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
+
+ setTruncStoreAction(MVT::i64, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i8, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i1, Expand);
+ setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
+ setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
+
+
+ setOperationAction(ISD::LOAD, MVT::f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
+
+ setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
+
+ setOperationAction(ISD::LOAD, MVT::i64, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
+
+ setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
+
+ setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
+
+ setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
+
+ setOperationAction(ISD::LOAD, MVT::f64, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
+
+ setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
+
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, Expand);
+
+ setOperationAction(ISD::BR_CC, MVT::i1, Expand);
+
+ if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
+ setOperationAction(ISD::FCEIL, MVT::f64, Custom);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
+ setOperationAction(ISD::FRINT, MVT::f64, Custom);
+ setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
+ }
+
+ if (!Subtarget->hasBFI()) {
+ // fcopysign can be done in a single instruction with BFI.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ }
+
+ setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+
+ const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
+ for (MVT VT : ScalarIntVTs) {
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::SDIV, VT, Expand);
+
+ // GPU does not have divrem function for signed or unsigned.
+ setOperationAction(ISD::SDIVREM, VT, Custom);
+ setOperationAction(ISD::UDIVREM, VT, Custom);
+
+ // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ }
+
+ if (!Subtarget->hasBCNT(32))
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+
+ if (!Subtarget->hasBCNT(64))
+ setOperationAction(ISD::CTPOP, MVT::i64, Expand);
+
+ // The hardware supports 32-bit ROTR, but not ROTL.
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL, MVT::i64, Expand);
+ setOperationAction(ISD::ROTR, MVT::i64, Expand);
+
+ setOperationAction(ISD::MUL, MVT::i64, Expand);
+ setOperationAction(ISD::MULHU, MVT::i64, Expand);
+ setOperationAction(ISD::MULHS, MVT::i64, Expand);
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+
+ if (!Subtarget->hasFFBH())
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
+
+ if (!Subtarget->hasFFBL())
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+
+ static const MVT::SimpleValueType VectorIntTypes[] = {
+ MVT::v2i32, MVT::v4i32
+ };
+
+ for (MVT VT : VectorIntTypes) {
+ // Expand the following operations for the current type by default.
+ setOperationAction(ISD::ADD, VT, Expand);
+ setOperationAction(ISD::AND, VT, Expand);
+ setOperationAction(ISD::FP_TO_SINT, VT, Expand);
+ setOperationAction(ISD::FP_TO_UINT, VT, Expand);
+ setOperationAction(ISD::MUL, VT, Expand);
+ setOperationAction(ISD::OR, VT, Expand);
+ setOperationAction(ISD::SHL, VT, Expand);
+ setOperationAction(ISD::SRA, VT, Expand);
+ setOperationAction(ISD::SRL, VT, Expand);
+ setOperationAction(ISD::ROTL, VT, Expand);
+ setOperationAction(ISD::ROTR, VT, Expand);
+ setOperationAction(ISD::SUB, VT, Expand);
+ setOperationAction(ISD::SINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::UINT_TO_FP, VT, Expand);
+ // TODO: Implement custom UREM / SREM routines.
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::SDIVREM, VT, Custom);
+ setOperationAction(ISD::UDIVREM, VT, Custom);
+ setOperationAction(ISD::ADDC, VT, Expand);
+ setOperationAction(ISD::SUBC, VT, Expand);
+ setOperationAction(ISD::ADDE, VT, Expand);
+ setOperationAction(ISD::SUBE, VT, Expand);
+ setOperationAction(ISD::SELECT, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ setOperationAction(ISD::XOR, VT, Expand);
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ setOperationAction(ISD::CTPOP, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
+ }
+
+ static const MVT::SimpleValueType FloatVectorTypes[] = {
+ MVT::v2f32, MVT::v4f32
+ };
+
+ for (MVT VT : FloatVectorTypes) {
+ setOperationAction(ISD::FABS, VT, Expand);
+ setOperationAction(ISD::FADD, VT, Expand);
+ setOperationAction(ISD::FCEIL, VT, Expand);
+ setOperationAction(ISD::FCOS, VT, Expand);
+ setOperationAction(ISD::FDIV, VT, Expand);
+ setOperationAction(ISD::FEXP2, VT, Expand);
+ setOperationAction(ISD::FLOG2, VT, Expand);
+ setOperationAction(ISD::FPOW, VT, Expand);
+ setOperationAction(ISD::FFLOOR, VT, Expand);
+ setOperationAction(ISD::FTRUNC, VT, Expand);
+ setOperationAction(ISD::FMUL, VT, Expand);
+ setOperationAction(ISD::FMA, VT, Expand);
+ setOperationAction(ISD::FRINT, VT, Expand);
+ setOperationAction(ISD::FNEARBYINT, VT, Expand);
+ setOperationAction(ISD::FSQRT, VT, Expand);
+ setOperationAction(ISD::FSIN, VT, Expand);
+ setOperationAction(ISD::FSUB, VT, Expand);
+ setOperationAction(ISD::FNEG, VT, Expand);
+ setOperationAction(ISD::SELECT, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ setOperationAction(ISD::FCOPYSIGN, VT, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
+ }
+
+ setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
+ setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
+
+ setTargetDAGCombine(ISD::MUL);
+ setTargetDAGCombine(ISD::SELECT_CC);
+ setTargetDAGCombine(ISD::STORE);
+
+ setSchedulingPreference(Sched::RegPressure);
+ setJumpIsExpensive(true);
+
+ setSelectIsExpensive(false);
+ PredictableSelectIsExpensive = false;
+
+ // There are no integer divide instructions, and these expand to a pretty
+ // large sequence of instructions.
+ setIntDivIsCheap(false);
+ setPow2DivIsCheap(false);
+
+ // TODO: Investigate this when 64-bit divides are implemented.
+ addBypassSlowDiv(64, 32);
+
+ // FIXME: Need to really handle these.
+ MaxStoresPerMemcpy = 4096;
+ MaxStoresPerMemmove = 4096;
+ MaxStoresPerMemset = 4096;
+}
+
+//===----------------------------------------------------------------------===//
+// Target Information
+//===----------------------------------------------------------------------===//
+
+MVT AMDGPUTargetLowering::getVectorIdxTy() const {
+ return MVT::i32;
+}
+
+bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
+ return true;
+}
+
+// The backend supports 32 and 64 bit floating point immediates.
+// FIXME: Why are we reporting vectors of FP immediates as legal?
+bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ EVT ScalarVT = VT.getScalarType();
+ return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
+}
+
+// We don't want to shrink f64 / f32 constants.
+bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
+ EVT ScalarVT = VT.getScalarType();
+ return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
+}
+
+bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
+ EVT CastTy) const {
+ if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
+ return true;
+
+ unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
+ unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
+
+ return ((LScalarSize <= CastScalarSize) ||
+ (CastScalarSize >= 32) ||
+ (LScalarSize < 32));
+}
+
+//===---------------------------------------------------------------------===//
+// Target Properties
+//===---------------------------------------------------------------------===//
+
+bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
+ assert(VT.isFloatingPoint());
+ return VT == MVT::f32;
+}
+
+bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
+ assert(VT.isFloatingPoint());
+ return VT == MVT::f32;
+}
+
+bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
+ // Truncate is just accessing a subregister.
+ return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
+}
+
+bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
+ // Truncate is just accessing a subregister.
+ return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
+ (Dest->getPrimitiveSizeInBits() % 32 == 0);
+}
+
+bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
+ const DataLayout *DL = getDataLayout();
+ unsigned SrcSize = DL->getTypeSizeInBits(Src->getScalarType());
+ unsigned DestSize = DL->getTypeSizeInBits(Dest->getScalarType());
+
+ return SrcSize == 32 && DestSize == 64;
+}
+
+bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
+ // Any register load of a 64-bit value really requires 2 32-bit moves. For all
+ // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
+ // this will enable reducing 64-bit operations the 32-bit, which is always
+ // good.
+ return Src == MVT::i32 && Dest == MVT::i64;
+}
+
+bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ return isZExtFree(Val.getValueType(), VT2);
+}
+
+bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
+ // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
+ // limited number of native 64-bit operations. Shrinking an operation to fit
+ // in a single 32-bit register should always be helpful. As currently used,
+ // this is much less general than the name suggests, and is only used in
+ // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
+ // not profitable, and may actually be harmful.
+ return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
+}
+
+//===---------------------------------------------------------------------===//
+// TargetLowering Callbacks
+//===---------------------------------------------------------------------===//
+
+void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
+ const SmallVectorImpl<ISD::InputArg> &Ins) const {
+
+ State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
+}
+
+SDValue AMDGPUTargetLowering::LowerReturn(
+ SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const {
+ return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
+}
+
+//===---------------------------------------------------------------------===//
+// Target specific lowering
+//===---------------------------------------------------------------------===//
+
+SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SDValue Callee = CLI.Callee;
+ SelectionDAG &DAG = CLI.DAG;
+
+ const Function &Fn = *DAG.getMachineFunction().getFunction();
+
+ StringRef FuncName("<unknown>");
+
+ if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
+ FuncName = G->getSymbol();
+ else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ FuncName = G->getGlobal()->getName();
+
+ DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
+ DAG.getContext()->diagnose(NoCalls);
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default:
+ Op.getNode()->dump();
+ llvm_unreachable("Custom lowering code for this"
+ "instruction is not implemented yet!");
+ break;
+ case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
+ case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
+ case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::SDIV: return LowerSDIV(Op, DAG);
+ case ISD::SREM: return LowerSREM(Op, DAG);
+ case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
+ case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
+ case ISD::FCEIL: return LowerFCEIL(Op, DAG);
+ case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
+ case ISD::FRINT: return LowerFRINT(Op, DAG);
+ case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
+ case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
+ case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
+ }
+ return Op;
+}
+
+void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ switch (N->getOpcode()) {
+ case ISD::SIGN_EXTEND_INREG:
+ // Different parts of legalization seem to interpret which type of
+ // sign_extend_inreg is the one to check for custom lowering. The extended
+ // from type is what really matters, but some places check for custom
+ // lowering of the result type. This results in trying to use
+ // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
+ // nothing here and let the illegal result integer be handled normally.
+ return;
+ case ISD::LOAD: {
+ SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
+ if (!Node)
+ return;
+
+ Results.push_back(SDValue(Node, 0));
+ Results.push_back(SDValue(Node, 1));
+ // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
+ // function
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
+ return;
+ }
+ case ISD::STORE: {
+ SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
+ if (Lowered.getNode())
+ Results.push_back(Lowered);
+ return;
+ }
+ default:
+ return;
+ }
+}
+
+// FIXME: This implements accesses to initialized globals in the constant
+// address space by copying them to private and accessing that. It does not
+// properly handle illegal types or vectors. The private vector loads are not
+// scalarized, and the illegal scalars hit an assertion. This technique will not
+// work well with large initializers, and this should eventually be
+// removed. Initialized globals should be placed into a data section that the
+// runtime will load into a buffer before the kernel is executed. Uses of the
+// global need to be replaced with a pointer loaded from an implicit kernel
+// argument into this buffer holding the copy of the data, which will remove the
+// need for any of this.
+SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
+ const GlobalValue *GV,
+ const SDValue &InitPtr,
+ SDValue Chain,
+ SelectionDAG &DAG) const {
+ const DataLayout *TD = getTargetMachine().getDataLayout();
+ SDLoc DL(InitPtr);
+ Type *InitTy = Init->getType();
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
+ EVT VT = EVT::getEVT(InitTy);
+ PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
+ return DAG.getStore(Chain, DL, DAG.getConstant(*CI, VT), InitPtr,
+ MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
+ TD->getPrefTypeAlignment(InitTy));
+ }
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
+ EVT VT = EVT::getEVT(CFP->getType());
+ PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
+ return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, VT), InitPtr,
+ MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
+ TD->getPrefTypeAlignment(CFP->getType()));
+ }
+
+ if (StructType *ST = dyn_cast<StructType>(InitTy)) {
+ const StructLayout *SL = TD->getStructLayout(ST);
+
+ EVT PtrVT = InitPtr.getValueType();
+ SmallVector<SDValue, 8> Chains;
+
+ for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
+ SDValue Offset = DAG.getConstant(SL->getElementOffset(I), PtrVT);
+ SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
+
+ Constant *Elt = Init->getAggregateElement(I);
+ Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
+ }
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
+ }
+
+ if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
+ EVT PtrVT = InitPtr.getValueType();
+
+ unsigned NumElements;
+ if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
+ NumElements = AT->getNumElements();
+ else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
+ NumElements = VT->getNumElements();
+ else
+ llvm_unreachable("Unexpected type");
+
+ unsigned EltSize = TD->getTypeAllocSize(SeqTy->getElementType());
+ SmallVector<SDValue, 8> Chains;
+ for (unsigned i = 0; i < NumElements; ++i) {
+ SDValue Offset = DAG.getConstant(i * EltSize, PtrVT);
+ SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
+
+ Constant *Elt = Init->getAggregateElement(i);
+ Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
+ }
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
+ }
+
+ if (isa<UndefValue>(Init)) {
+ EVT VT = EVT::getEVT(InitTy);
+ PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
+ return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
+ MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
+ TD->getPrefTypeAlignment(InitTy));
+ }
+
+ Init->dump();
+ llvm_unreachable("Unhandled constant initializer");
+}
+
+SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
+ SDValue Op,
+ SelectionDAG &DAG) const {
+
+ const DataLayout *TD = getTargetMachine().getDataLayout();
+ GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = G->getGlobal();
+
+ switch (G->getAddressSpace()) {
+ default: llvm_unreachable("Global Address lowering not implemented for this "
+ "address space");
+ case AMDGPUAS::LOCAL_ADDRESS: {
+ // XXX: What does the value of G->getOffset() mean?
+ assert(G->getOffset() == 0 &&
+ "Do not know what to do with an non-zero offset");
+
+ unsigned Offset;
+ if (MFI->LocalMemoryObjects.count(GV) == 0) {
+ uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
+ Offset = MFI->LDSSize;
+ MFI->LocalMemoryObjects[GV] = Offset;
+ // XXX: Account for alignment?
+ MFI->LDSSize += Size;
+ } else {
+ Offset = MFI->LocalMemoryObjects[GV];
+ }
+
+ return DAG.getConstant(Offset, getPointerTy(G->getAddressSpace()));
+ }
+ case AMDGPUAS::CONSTANT_ADDRESS: {
+ MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
+ Type *EltType = GV->getType()->getElementType();
+ unsigned Size = TD->getTypeAllocSize(EltType);
+ unsigned Alignment = TD->getPrefTypeAlignment(EltType);
+
+ MVT PrivPtrVT = getPointerTy(AMDGPUAS::PRIVATE_ADDRESS);
+ MVT ConstPtrVT = getPointerTy(AMDGPUAS::CONSTANT_ADDRESS);
+
+ int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
+ SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
+
+ const GlobalVariable *Var = cast<GlobalVariable>(GV);
+ if (!Var->hasInitializer()) {
+ // This has no use, but bugpoint will hit it.
+ return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
+ }
+
+ const Constant *Init = Var->getInitializer();
+ SmallVector<SDNode*, 8> WorkList;
+
+ for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
+ E = DAG.getEntryNode()->use_end(); I != E; ++I) {
+ if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
+ continue;
+ WorkList.push_back(*I);
+ }
+ SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
+ for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
+ E = WorkList.end(); I != E; ++I) {
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
+ Ops.push_back((*I)->getOperand(i));
+ }
+ DAG.UpdateNodeOperands(*I, Ops);
+ }
+ return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
+ }
+ }
+}
+
+SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
+ SelectionDAG &DAG) const {
+ SmallVector<SDValue, 8> Args;
+ SDValue A = Op.getOperand(0);
+ SDValue B = Op.getOperand(1);
+
+ DAG.ExtractVectorElements(A, Args);
+ DAG.ExtractVectorElements(B, Args);
+
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
+}
+
+SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+
+ SmallVector<SDValue, 8> Args;
+ unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ EVT VT = Op.getValueType();
+ DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
+ VT.getVectorNumElements());
+
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
+}
+
+SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
+ SelectionDAG &DAG) const {
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const AMDGPUFrameLowering *TFL =
+ static_cast<const AMDGPUFrameLowering*>(getTargetMachine().getFrameLowering());
+
+ FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
+
+ unsigned FrameIndex = FIN->getIndex();
+ unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
+ return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF),
+ Op.getValueType());
+}
+
+SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ switch (IntrinsicID) {
+ default: return Op;
+ case AMDGPUIntrinsic::AMDGPU_abs:
+ case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
+ return LowerIntrinsicIABS(Op, DAG);
+ case AMDGPUIntrinsic::AMDGPU_lrp:
+ return LowerIntrinsicLRP(Op, DAG);
+ case AMDGPUIntrinsic::AMDGPU_fract:
+ case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
+ return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_clamp:
+ case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
+ return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case Intrinsic::AMDGPU_div_scale: {
+ // 3rd parameter required to be a constant.
+ const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
+ if (!Param)
+ return DAG.getUNDEF(VT);
+
+ // Translate to the operands expected by the machine instruction. The
+ // first parameter must be the same as the first instruction.
+ SDValue Numerator = Op.getOperand(1);
+ SDValue Denominator = Op.getOperand(2);
+ SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
+
+ return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, VT,
+ Src0, Denominator, Numerator);
+ }
+
+ case Intrinsic::AMDGPU_div_fmas:
+ return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case Intrinsic::AMDGPU_div_fixup:
+ return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case Intrinsic::AMDGPU_trig_preop:
+ return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::AMDGPU_rcp:
+ return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
+
+ case Intrinsic::AMDGPU_rsq:
+ return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
+ return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
+
+ case Intrinsic::AMDGPU_rsq_clamped:
+ return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_imax:
+ return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Op.getOperand(1),
+ Op.getOperand(2));
+ case AMDGPUIntrinsic::AMDGPU_umax:
+ return DAG.getNode(AMDGPUISD::UMAX, DL, VT, Op.getOperand(1),
+ Op.getOperand(2));
+ case AMDGPUIntrinsic::AMDGPU_imin:
+ return DAG.getNode(AMDGPUISD::SMIN, DL, VT, Op.getOperand(1),
+ Op.getOperand(2));
+ case AMDGPUIntrinsic::AMDGPU_umin:
+ return DAG.getNode(AMDGPUISD::UMIN, DL, VT, Op.getOperand(1),
+ Op.getOperand(2));
+
+ case AMDGPUIntrinsic::AMDGPU_umul24:
+ return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+
+ case AMDGPUIntrinsic::AMDGPU_imul24:
+ return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+
+ case AMDGPUIntrinsic::AMDGPU_umad24:
+ return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case AMDGPUIntrinsic::AMDGPU_imad24:
+ return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
+ return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
+ return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
+ return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
+ return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_bfe_i32:
+ return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
+ Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3));
+
+ case AMDGPUIntrinsic::AMDGPU_bfe_u32:
+ return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
+ Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3));
+
+ case AMDGPUIntrinsic::AMDGPU_bfi:
+ return DAG.getNode(AMDGPUISD::BFI, DL, VT,
+ Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3));
+
+ case AMDGPUIntrinsic::AMDGPU_bfm:
+ return DAG.getNode(AMDGPUISD::BFM, DL, VT,
+ Op.getOperand(1),
+ Op.getOperand(2));
+
+ case AMDGPUIntrinsic::AMDGPU_brev:
+ return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
+ return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
+ return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
+ case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
+ return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
+ }
+}
+
+///IABS(a) = SMAX(sub(0, a), a)
+SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
+ Op.getOperand(1));
+
+ return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Neg, Op.getOperand(1));
+}
+
+/// Linear Interpolation
+/// LRP(a, b, c) = muladd(a, b, (1 - a) * c)
+SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
+ DAG.getConstantFP(1.0f, MVT::f32),
+ Op.getOperand(1));
+ SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
+ Op.getOperand(3));
+ return DAG.getNode(ISD::FADD, DL, VT,
+ DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
+ OneSubAC);
+}
+
+/// \brief Generate Min/Max node
+SDValue AMDGPUTargetLowering::CombineMinMax(SDNode *N,
+ SelectionDAG &DAG) const {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ SDValue True = N->getOperand(2);
+ SDValue False = N->getOperand(3);
+ SDValue CC = N->getOperand(4);
+
+ if (VT != MVT::f32 ||
+ !((LHS == True && RHS == False) || (LHS == False && RHS == True))) {
+ return SDValue();
+ }
+
+ ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
+ switch (CCOpcode) {
+ case ISD::SETOEQ:
+ case ISD::SETONE:
+ case ISD::SETUNE:
+ case ISD::SETNE:
+ case ISD::SETUEQ:
+ case ISD::SETEQ:
+ case ISD::SETFALSE:
+ case ISD::SETFALSE2:
+ case ISD::SETTRUE:
+ case ISD::SETTRUE2:
+ case ISD::SETUO:
+ case ISD::SETO:
+ llvm_unreachable("Operation should already be optimised!");
+ case ISD::SETULE:
+ case ISD::SETULT:
+ case ISD::SETOLE:
+ case ISD::SETOLT:
+ case ISD::SETLE:
+ case ISD::SETLT: {
+ unsigned Opc = (LHS == True) ? AMDGPUISD::FMIN : AMDGPUISD::FMAX;
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETUGE:
+ case ISD::SETOGE:
+ case ISD::SETUGT:
+ case ISD::SETOGT: {
+ unsigned Opc = (LHS == True) ? AMDGPUISD::FMAX : AMDGPUISD::FMIN;
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
+ case ISD::SETCC_INVALID:
+ llvm_unreachable("Invalid setcc condcode!");
+ }
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue &Op,
+ SelectionDAG &DAG) const {
+ LoadSDNode *Load = dyn_cast<LoadSDNode>(Op);
+ EVT MemEltVT = Load->getMemoryVT().getVectorElementType();
+ EVT LoadVT = Op.getValueType();
+ EVT EltVT = Op.getValueType().getVectorElementType();
+ EVT PtrVT = Load->getBasePtr().getValueType();
+
+ unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
+ SmallVector<SDValue, 8> Loads;
+ SmallVector<SDValue, 8> Chains;
+
+ SDLoc SL(Op);
+
+ for (unsigned i = 0, e = NumElts; i != e; ++i) {
+ SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
+ DAG.getConstant(i * (MemEltVT.getSizeInBits() / 8), PtrVT));
+
+ SDValue NewLoad
+ = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
+ Load->getChain(), Ptr,
+ MachinePointerInfo(Load->getMemOperand()->getValue()),
+ MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
+ Load->getAlignment());
+ Loads.push_back(NewLoad.getValue(0));
+ Chains.push_back(NewLoad.getValue(1));
+ }
+
+ SDValue Ops[] = {
+ DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
+ DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
+ };
+
+ return DAG.getMergeValues(Ops, SL);
+}
+
+SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
+ SelectionDAG &DAG) const {
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ EVT MemVT = Store->getMemoryVT();
+ unsigned MemBits = MemVT.getSizeInBits();
+
+ // Byte stores are really expensive, so if possible, try to pack 32-bit vector
+ // truncating store into an i32 store.
+ // XXX: We could also handle optimize other vector bitwidths.
+ if (!MemVT.isVector() || MemBits > 32) {
+ return SDValue();
+ }
+
+ SDLoc DL(Op);
+ SDValue Value = Store->getValue();
+ EVT VT = Value.getValueType();
+ EVT ElemVT = VT.getVectorElementType();
+ SDValue Ptr = Store->getBasePtr();
+ EVT MemEltVT = MemVT.getVectorElementType();
+ unsigned MemEltBits = MemEltVT.getSizeInBits();
+ unsigned MemNumElements = MemVT.getVectorNumElements();
+ unsigned PackedSize = MemVT.getStoreSizeInBits();
+ SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, MVT::i32);
+
+ assert(Value.getValueType().getScalarSizeInBits() >= 32);
+
+ SDValue PackedValue;
+ for (unsigned i = 0; i < MemNumElements; ++i) {
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
+ DAG.getConstant(i, MVT::i32));
+ Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
+ Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
+
+ SDValue Shift = DAG.getConstant(MemEltBits * i, MVT::i32);
+ Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
+
+ if (i == 0) {
+ PackedValue = Elt;
+ } else {
+ PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
+ }
+ }
+
+ if (PackedSize < 32) {
+ EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
+ return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
+ Store->getMemOperand()->getPointerInfo(),
+ PackedVT,
+ Store->isNonTemporal(), Store->isVolatile(),
+ Store->getAlignment());
+ }
+
+ return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
+ Store->getMemOperand()->getPointerInfo(),
+ Store->isVolatile(), Store->isNonTemporal(),
+ Store->getAlignment());
+}
+
+SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
+ SelectionDAG &DAG) const {
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
+ EVT EltVT = Store->getValue().getValueType().getVectorElementType();
+ EVT PtrVT = Store->getBasePtr().getValueType();
+ unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
+ SDLoc SL(Op);
+
+ SmallVector<SDValue, 8> Chains;
+
+ for (unsigned i = 0, e = NumElts; i != e; ++i) {
+ SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
+ Store->getValue(), DAG.getConstant(i, MVT::i32));
+ SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT,
+ Store->getBasePtr(),
+ DAG.getConstant(i * (MemEltVT.getSizeInBits() / 8),
+ PtrVT));
+ Chains.push_back(DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
+ MachinePointerInfo(Store->getMemOperand()->getValue()),
+ MemEltVT, Store->isVolatile(), Store->isNonTemporal(),
+ Store->getAlignment()));
+ }
+ return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
+}
+
+SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ LoadSDNode *Load = cast<LoadSDNode>(Op);
+ ISD::LoadExtType ExtType = Load->getExtensionType();
+ EVT VT = Op.getValueType();
+ EVT MemVT = Load->getMemoryVT();
+
+ if (ExtType != ISD::NON_EXTLOAD && !VT.isVector() && VT.getSizeInBits() > 32) {
+ // We can do the extload to 32-bits, and then need to separately extend to
+ // 64-bits.
+
+ SDValue ExtLoad32 = DAG.getExtLoad(ExtType, DL, MVT::i32,
+ Load->getChain(),
+ Load->getBasePtr(),
+ MemVT,
+ Load->getMemOperand());
+
+ SDValue Ops[] = {
+ DAG.getNode(ISD::getExtForLoadExtType(ExtType), DL, VT, ExtLoad32),
+ ExtLoad32.getValue(1)
+ };
+
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
+ assert(VT == MVT::i1 && "Only i1 non-extloads expected");
+ // FIXME: Copied from PPC
+ // First, load into 32 bits, then truncate to 1 bit.
+
+ SDValue Chain = Load->getChain();
+ SDValue BasePtr = Load->getBasePtr();
+ MachineMemOperand *MMO = Load->getMemOperand();
+
+ SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
+ BasePtr, MVT::i8, MMO);
+
+ SDValue Ops[] = {
+ DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
+ NewLD.getValue(1)
+ };
+
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS ||
+ Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
+ ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
+ return SDValue();
+
+
+ SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
+ DAG.getConstant(2, MVT::i32));
+ SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
+ Load->getChain(), Ptr,
+ DAG.getTargetConstant(0, MVT::i32),
+ Op.getOperand(2));
+ SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
+ Load->getBasePtr(),
+ DAG.getConstant(0x3, MVT::i32));
+ SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
+ DAG.getConstant(3, MVT::i32));
+
+ Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
+
+ EVT MemEltVT = MemVT.getScalarType();
+ if (ExtType == ISD::SEXTLOAD) {
+ SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
+
+ SDValue Ops[] = {
+ DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
+ Load->getChain()
+ };
+
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ SDValue Ops[] = {
+ DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
+ Load->getChain()
+ };
+
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
+ if (Result.getNode()) {
+ return Result;
+ }
+
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ SDValue Chain = Store->getChain();
+ if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
+ Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
+ Store->getValue().getValueType().isVector()) {
+ return SplitVectorStore(Op, DAG);
+ }
+
+ EVT MemVT = Store->getMemoryVT();
+ if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
+ MemVT.bitsLT(MVT::i32)) {
+ unsigned Mask = 0;
+ if (Store->getMemoryVT() == MVT::i8) {
+ Mask = 0xff;
+ } else if (Store->getMemoryVT() == MVT::i16) {
+ Mask = 0xffff;
+ }
+ SDValue BasePtr = Store->getBasePtr();
+ SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
+ DAG.getConstant(2, MVT::i32));
+ SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
+ Chain, Ptr, DAG.getTargetConstant(0, MVT::i32));
+
+ SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
+ DAG.getConstant(0x3, MVT::i32));
+
+ SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
+ DAG.getConstant(3, MVT::i32));
+
+ SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
+ Store->getValue());
+
+ SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
+
+ SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
+ MaskedValue, ShiftAmt);
+
+ SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, DAG.getConstant(Mask, MVT::i32),
+ ShiftAmt);
+ DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
+ DAG.getConstant(0xffffffff, MVT::i32));
+ Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
+
+ SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
+ return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
+ Chain, Value, Ptr, DAG.getTargetConstant(0, MVT::i32));
+ }
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerSDIV24(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT OVT = Op.getValueType();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ MVT INTTY;
+ MVT FLTTY;
+ if (!OVT.isVector()) {
+ INTTY = MVT::i32;
+ FLTTY = MVT::f32;
+ } else if (OVT.getVectorNumElements() == 2) {
+ INTTY = MVT::v2i32;
+ FLTTY = MVT::v2f32;
+ } else if (OVT.getVectorNumElements() == 4) {
+ INTTY = MVT::v4i32;
+ FLTTY = MVT::v4f32;
+ }
+ unsigned bitsize = OVT.getScalarType().getSizeInBits();
+ // char|short jq = ia ^ ib;
+ SDValue jq = DAG.getNode(ISD::XOR, DL, OVT, LHS, RHS);
+
+ // jq = jq >> (bitsize - 2)
+ jq = DAG.getNode(ISD::SRA, DL, OVT, jq, DAG.getConstant(bitsize - 2, OVT));
+
+ // jq = jq | 0x1
+ jq = DAG.getNode(ISD::OR, DL, OVT, jq, DAG.getConstant(1, OVT));
+
+ // jq = (int)jq
+ jq = DAG.getSExtOrTrunc(jq, DL, INTTY);
+
+ // int ia = (int)LHS;
+ SDValue ia = DAG.getSExtOrTrunc(LHS, DL, INTTY);
+
+ // int ib, (int)RHS;
+ SDValue ib = DAG.getSExtOrTrunc(RHS, DL, INTTY);
+
+ // float fa = (float)ia;
+ SDValue fa = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ia);
+
+ // float fb = (float)ib;
+ SDValue fb = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ib);
+
+ // float fq = native_divide(fa, fb);
+ SDValue fq = DAG.getNode(ISD::FMUL, DL, FLTTY,
+ fa, DAG.getNode(AMDGPUISD::RCP, DL, FLTTY, fb));
+
+ // fq = trunc(fq);
+ fq = DAG.getNode(ISD::FTRUNC, DL, FLTTY, fq);
+
+ // float fqneg = -fq;
+ SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FLTTY, fq);
+
+ // float fr = mad(fqneg, fb, fa);
+ SDValue fr = DAG.getNode(ISD::FADD, DL, FLTTY,
+ DAG.getNode(ISD::MUL, DL, FLTTY, fqneg, fb), fa);
+
+ // int iq = (int)fq;
+ SDValue iq = DAG.getNode(ISD::FP_TO_SINT, DL, INTTY, fq);
+
+ // fr = fabs(fr);
+ fr = DAG.getNode(ISD::FABS, DL, FLTTY, fr);
+
+ // fb = fabs(fb);
+ fb = DAG.getNode(ISD::FABS, DL, FLTTY, fb);
+
+ // int cv = fr >= fb;
+ SDValue cv;
+ if (INTTY == MVT::i32) {
+ cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE);
+ } else {
+ cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE);
+ }
+ // jq = (cv ? jq : 0);
+ jq = DAG.getNode(ISD::SELECT, DL, OVT, cv, jq,
+ DAG.getConstant(0, OVT));
+ // dst = iq + jq;
+ iq = DAG.getSExtOrTrunc(iq, DL, OVT);
+ iq = DAG.getNode(ISD::ADD, DL, OVT, iq, jq);
+ return iq;
+}
+
+SDValue AMDGPUTargetLowering::LowerSDIV32(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT OVT = Op.getValueType();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ // The LowerSDIV32 function generates equivalent to the following IL.
+ // mov r0, LHS
+ // mov r1, RHS
+ // ilt r10, r0, 0
+ // ilt r11, r1, 0
+ // iadd r0, r0, r10
+ // iadd r1, r1, r11
+ // ixor r0, r0, r10
+ // ixor r1, r1, r11
+ // udiv r0, r0, r1
+ // ixor r10, r10, r11
+ // iadd r0, r0, r10
+ // ixor DST, r0, r10
+
+ // mov r0, LHS
+ SDValue r0 = LHS;
+
+ // mov r1, RHS
+ SDValue r1 = RHS;
+
+ // ilt r10, r0, 0
+ SDValue r10 = DAG.getSelectCC(DL,
+ r0, DAG.getConstant(0, OVT),
+ DAG.getConstant(-1, OVT),
+ DAG.getConstant(0, OVT),
+ ISD::SETLT);
+
+ // ilt r11, r1, 0
+ SDValue r11 = DAG.getSelectCC(DL,
+ r1, DAG.getConstant(0, OVT),
+ DAG.getConstant(-1, OVT),
+ DAG.getConstant(0, OVT),
+ ISD::SETLT);
+
+ // iadd r0, r0, r10
+ r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
+
+ // iadd r1, r1, r11
+ r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11);
+
+ // ixor r0, r0, r10
+ r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
+
+ // ixor r1, r1, r11
+ r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11);
+
+ // udiv r0, r0, r1
+ r0 = DAG.getNode(ISD::UDIV, DL, OVT, r0, r1);
+
+ // ixor r10, r10, r11
+ r10 = DAG.getNode(ISD::XOR, DL, OVT, r10, r11);
+
+ // iadd r0, r0, r10
+ r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
+
+ // ixor DST, r0, r10
+ SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
+ return DST;
+}
+
+SDValue AMDGPUTargetLowering::LowerSDIV64(SDValue Op, SelectionDAG &DAG) const {
+ return SDValue(Op.getNode(), 0);
+}
+
+SDValue AMDGPUTargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
+ EVT OVT = Op.getValueType().getScalarType();
+
+ if (OVT == MVT::i64)
+ return LowerSDIV64(Op, DAG);
+
+ if (OVT.getScalarType() == MVT::i32)
+ return LowerSDIV32(Op, DAG);
+
+ if (OVT == MVT::i16 || OVT == MVT::i8) {
+ // FIXME: We should be checking for the masked bits. This isn't reached
+ // because i8 and i16 are not legal types.
+ return LowerSDIV24(Op, DAG);
+ }
+
+ return SDValue(Op.getNode(), 0);
+}
+
+SDValue AMDGPUTargetLowering::LowerSREM32(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT OVT = Op.getValueType();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ // The LowerSREM32 function generates equivalent to the following IL.
+ // mov r0, LHS
+ // mov r1, RHS
+ // ilt r10, r0, 0
+ // ilt r11, r1, 0
+ // iadd r0, r0, r10
+ // iadd r1, r1, r11
+ // ixor r0, r0, r10
+ // ixor r1, r1, r11
+ // udiv r20, r0, r1
+ // umul r20, r20, r1
+ // sub r0, r0, r20
+ // iadd r0, r0, r10
+ // ixor DST, r0, r10
+
+ // mov r0, LHS
+ SDValue r0 = LHS;
+
+ // mov r1, RHS
+ SDValue r1 = RHS;
+
+ // ilt r10, r0, 0
+ SDValue r10 = DAG.getSetCC(DL, OVT, r0, DAG.getConstant(0, OVT), ISD::SETLT);
+
+ // ilt r11, r1, 0
+ SDValue r11 = DAG.getSetCC(DL, OVT, r1, DAG.getConstant(0, OVT), ISD::SETLT);
+
+ // iadd r0, r0, r10
+ r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
+
+ // iadd r1, r1, r11
+ r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11);
+
+ // ixor r0, r0, r10
+ r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
+
+ // ixor r1, r1, r11
+ r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11);
+
+ // udiv r20, r0, r1
+ SDValue r20 = DAG.getNode(ISD::UREM, DL, OVT, r0, r1);
+
+ // umul r20, r20, r1
+ r20 = DAG.getNode(AMDGPUISD::UMUL, DL, OVT, r20, r1);
+
+ // sub r0, r0, r20
+ r0 = DAG.getNode(ISD::SUB, DL, OVT, r0, r20);
+
+ // iadd r0, r0, r10
+ r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
+
+ // ixor DST, r0, r10
+ SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
+ return DST;
+}
+
+SDValue AMDGPUTargetLowering::LowerSREM64(SDValue Op, SelectionDAG &DAG) const {
+ return SDValue(Op.getNode(), 0);
+}
+
+SDValue AMDGPUTargetLowering::LowerSREM(SDValue Op, SelectionDAG &DAG) const {
+ EVT OVT = Op.getValueType();
+
+ if (OVT.getScalarType() == MVT::i64)
+ return LowerSREM64(Op, DAG);
+
+ if (OVT.getScalarType() == MVT::i32)
+ return LowerSREM32(Op, DAG);
+
+ return SDValue(Op.getNode(), 0);
+}
+
+SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ SDValue Num = Op.getOperand(0);
+ SDValue Den = Op.getOperand(1);
+
+ // RCP = URECIP(Den) = 2^32 / Den + e
+ // e is rounding error.
+ SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
+
+ // RCP_LO = umulo(RCP, Den) */
+ SDValue RCP_LO = DAG.getNode(ISD::UMULO, DL, VT, RCP, Den);
+
+ // RCP_HI = mulhu (RCP, Den) */
+ SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
+
+ // NEG_RCP_LO = -RCP_LO
+ SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
+ RCP_LO);
+
+ // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
+ SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
+ NEG_RCP_LO, RCP_LO,
+ ISD::SETEQ);
+ // Calculate the rounding error from the URECIP instruction
+ // E = mulhu(ABS_RCP_LO, RCP)
+ SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
+
+ // RCP_A_E = RCP + E
+ SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
+
+ // RCP_S_E = RCP - E
+ SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
+
+ // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
+ SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
+ RCP_A_E, RCP_S_E,
+ ISD::SETEQ);
+ // Quotient = mulhu(Tmp0, Num)
+ SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
+
+ // Num_S_Remainder = Quotient * Den
+ SDValue Num_S_Remainder = DAG.getNode(ISD::UMULO, DL, VT, Quotient, Den);
+
+ // Remainder = Num - Num_S_Remainder
+ SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
+
+ // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
+ SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
+ DAG.getConstant(-1, VT),
+ DAG.getConstant(0, VT),
+ ISD::SETUGE);
+ // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
+ SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
+ Num_S_Remainder,
+ DAG.getConstant(-1, VT),
+ DAG.getConstant(0, VT),
+ ISD::SETUGE);
+ // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
+ SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
+ Remainder_GE_Zero);
+
+ // Calculate Division result:
+
+ // Quotient_A_One = Quotient + 1
+ SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
+ DAG.getConstant(1, VT));
+
+ // Quotient_S_One = Quotient - 1
+ SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
+ DAG.getConstant(1, VT));
+
+ // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
+ SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
+ Quotient, Quotient_A_One, ISD::SETEQ);
+
+ // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
+ Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
+ Quotient_S_One, Div, ISD::SETEQ);
+
+ // Calculate Rem result:
+
+ // Remainder_S_Den = Remainder - Den
+ SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
+
+ // Remainder_A_Den = Remainder + Den
+ SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
+
+ // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
+ SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
+ Remainder, Remainder_S_Den, ISD::SETEQ);
+
+ // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
+ Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
+ Remainder_A_Den, Rem, ISD::SETEQ);
+ SDValue Ops[2] = {
+ Div,
+ Rem
+ };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ SDValue Zero = DAG.getConstant(0, VT);
+ SDValue NegOne = DAG.getConstant(-1, VT);
+
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+
+ SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
+ SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
+ SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
+ SDValue RSign = LHSign; // Remainder sign is the same as LHS
+
+ LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
+ RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
+
+ LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
+ RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
+
+ SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
+ SDValue Rem = Div.getValue(1);
+
+ Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
+ Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
+
+ Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
+ Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
+
+ SDValue Res[2] = {
+ Div,
+ Rem
+ };
+ return DAG.getMergeValues(Res, DL);
+}
+
+SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ // result = trunc(src)
+ // if (src > 0.0 && src != result)
+ // result += 1.0
+
+ SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
+
+ const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
+ const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
+
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
+
+ SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
+ SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
+ SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
+
+ SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
+ return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
+}
+
+SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ assert(Op.getValueType() == MVT::f64);
+
+ const SDValue Zero = DAG.getConstant(0, MVT::i32);
+ const SDValue One = DAG.getConstant(1, MVT::i32);
+
+ SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
+
+ // Extract the upper half, since this is where we will find the sign and
+ // exponent.
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
+
+ const unsigned FractBits = 52;
+ const unsigned ExpBits = 11;
+
+ // Extract the exponent.
+ SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_I32, SL, MVT::i32,
+ Hi,
+ DAG.getConstant(FractBits - 32, MVT::i32),
+ DAG.getConstant(ExpBits, MVT::i32));
+ SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
+ DAG.getConstant(1023, MVT::i32));
+
+ // Extract the sign bit.
+ const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, MVT::i32);
+ SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
+
+ // Extend back to to 64-bits.
+ SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
+ Zero, SignBit);
+ SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
+
+ SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
+ const SDValue FractMask
+ = DAG.getConstant((UINT64_C(1) << FractBits) - 1, MVT::i64);
+
+ SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
+ SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
+ SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
+
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
+
+ const SDValue FiftyOne = DAG.getConstant(FractBits - 1, MVT::i32);
+
+ SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
+ SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
+
+ SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
+ SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
+
+ return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
+}
+
+SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ assert(Op.getValueType() == MVT::f64);
+
+ APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
+ SDValue C1 = DAG.getConstantFP(C1Val, MVT::f64);
+ SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
+
+ SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
+ SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
+
+ SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
+
+ APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
+ SDValue C2 = DAG.getConstantFP(C2Val, MVT::f64);
+
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
+ SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
+
+ return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
+}
+
+SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
+ // FNEARBYINT and FRINT are the same, except in their handling of FP
+ // exceptions. Those aren't really meaningful for us, and OpenCL only has
+ // rint, so just treat them as equivalent.
+ return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
+}
+
+SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ // result = trunc(src);
+ // if (src < 0.0 && src != result)
+ // result += -1.0.
+
+ SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
+
+ const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
+ const SDValue NegOne = DAG.getConstantFP(-1.0, MVT::f64);
+
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
+
+ SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
+ SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
+ SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
+
+ SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
+ return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
+}
+
+SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue S0 = Op.getOperand(0);
+ SDLoc DL(Op);
+ if (Op.getValueType() != MVT::f32 || S0.getValueType() != MVT::i64)
+ return SDValue();
+
+ // f32 uint_to_fp i64
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
+ DAG.getConstant(0, MVT::i32));
+ SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
+ DAG.getConstant(1, MVT::i32));
+ SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
+ FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
+ DAG.getConstantFP(4294967296.0f, MVT::f32)); // 2^32
+ return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
+}
+
+SDValue AMDGPUTargetLowering::ExpandSIGN_EXTEND_INREG(SDValue Op,
+ unsigned BitsDiff,
+ SelectionDAG &DAG) const {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc DL(Op);
+ SDValue Shift = DAG.getConstant(BitsDiff, VT);
+ // Shift left by 'Shift' bits.
+ SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Op.getOperand(0), Shift);
+ // Signed shift Right by 'Shift' bits.
+ return DAG.getNode(ISD::SRA, DL, VT, Shl, Shift);
+}
+
+SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ MVT VT = Op.getSimpleValueType();
+ MVT ScalarVT = VT.getScalarType();
+
+ if (!VT.isVector())
+ return SDValue();
+
+ SDValue Src = Op.getOperand(0);
+ SDLoc DL(Op);
+
+ // TODO: Don't scalarize on Evergreen?
+ unsigned NElts = VT.getVectorNumElements();
+ SmallVector<SDValue, 8> Args;
+ DAG.ExtractVectorElements(Src, Args, 0, NElts);
+
+ SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
+ for (unsigned I = 0; I < NElts; ++I)
+ Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
+
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
+}
+
+//===----------------------------------------------------------------------===//
+// Custom DAG optimizations
+//===----------------------------------------------------------------------===//
+
+static bool isU24(SDValue Op, SelectionDAG &DAG) {
+ APInt KnownZero, KnownOne;
+ EVT VT = Op.getValueType();
+ DAG.computeKnownBits(Op, KnownZero, KnownOne);
+
+ return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
+}
+
+static bool isI24(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+
+ // In order for this to be a signed 24-bit value, bit 23, must
+ // be a sign bit.
+ return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
+ // as unsigned 24-bit values.
+ (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
+}
+
+static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
+
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = Op.getValueType();
+
+ APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
+ if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
+ DCI.CommitTargetLoweringOpt(TLO);
+}
+
+template <typename IntTy>
+static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
+ uint32_t Offset, uint32_t Width) {
+ if (Width + Offset < 32) {
+ IntTy Result = (Src0 << (32 - Offset - Width)) >> (32 - Width);
+ return DAG.getConstant(Result, MVT::i32);
+ }
+
+ return DAG.getConstant(Src0 >> Offset, MVT::i32);
+}
+
+static bool usesAllNormalStores(SDNode *LoadVal) {
+ for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) {
+ if (!ISD::isNormalStore(*I))
+ return false;
+ }
+
+ return true;
+}
+
+// If we have a copy of an illegal type, replace it with a load / store of an
+// equivalently sized legal type. This avoids intermediate bit pack / unpack
+// instructions emitted when handling extloads and truncstores. Ideally we could
+// recognize the pack / unpack pattern to eliminate it.
+SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (!DCI.isBeforeLegalize())
+ return SDValue();
+
+ StoreSDNode *SN = cast<StoreSDNode>(N);
+ SDValue Value = SN->getValue();
+ EVT VT = Value.getValueType();
+
+ if (isTypeLegal(VT) || SN->isVolatile() || !ISD::isNormalLoad(Value.getNode()))
+ return SDValue();
+
+ LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
+ if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal))
+ return SDValue();
+
+ EVT MemVT = LoadVal->getMemoryVT();
+
+ SDLoc SL(N);
+ SelectionDAG &DAG = DCI.DAG;
+ EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT);
+
+ SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
+ LoadVT, SL,
+ LoadVal->getChain(),
+ LoadVal->getBasePtr(),
+ LoadVal->getOffset(),
+ LoadVT,
+ LoadVal->getMemOperand());
+
+ SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0));
+ DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false);
+
+ return DAG.getStore(SN->getChain(), SL, NewLoad,
+ SN->getBasePtr(), SN->getMemOperand());
+}
+
+SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ EVT VT = N->getValueType(0);
+
+ if (VT.isVector() || VT.getSizeInBits() > 32)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue Mul;
+
+ if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
+ N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
+ N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
+ Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
+ } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
+ N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
+ N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
+ Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
+ } else {
+ return SDValue();
+ }
+
+ // We need to use sext even for MUL_U24, because MUL_U24 is used
+ // for signed multiply of 8 and 16-bit types.
+ return DAG.getSExtOrTrunc(Mul, DL, VT);
+}
+
+SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ switch(N->getOpcode()) {
+ default: break;
+ case ISD::MUL:
+ return performMulCombine(N, DCI);
+ case AMDGPUISD::MUL_I24:
+ case AMDGPUISD::MUL_U24: {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ simplifyI24(N0, DCI);
+ simplifyI24(N1, DCI);
+ return SDValue();
+ }
+ case ISD::SELECT_CC: {
+ return CombineMinMax(N, DAG);
+ }
+ case AMDGPUISD::BFE_I32:
+ case AMDGPUISD::BFE_U32: {
+ assert(!N->getValueType(0).isVector() &&
+ "Vector handling of BFE not implemented");
+ ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
+ if (!Width)
+ break;
+
+ uint32_t WidthVal = Width->getZExtValue() & 0x1f;
+ if (WidthVal == 0)
+ return DAG.getConstant(0, MVT::i32);
+
+ ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!Offset)
+ break;
+
+ SDValue BitsFrom = N->getOperand(0);
+ uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
+
+ bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
+
+ if (OffsetVal == 0) {
+ // This is already sign / zero extended, so try to fold away extra BFEs.
+ unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
+
+ unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
+ if (OpSignBits >= SignBits)
+ return BitsFrom;
+
+ EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
+ if (Signed) {
+ // This is a sign_extend_inreg. Replace it to take advantage of existing
+ // DAG Combines. If not eliminated, we will match back to BFE during
+ // selection.
+
+ // TODO: The sext_inreg of extended types ends, although we can could
+ // handle them in a single BFE.
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
+ DAG.getValueType(SmallVT));
+ }
+
+ return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
+ }
+
+ if (ConstantSDNode *Val = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ if (Signed) {
+ return constantFoldBFE<int32_t>(DAG,
+ Val->getSExtValue(),
+ OffsetVal,
+ WidthVal);
+ }
+
+ return constantFoldBFE<uint32_t>(DAG,
+ Val->getZExtValue(),
+ OffsetVal,
+ WidthVal);
+ }
+
+ APInt Demanded = APInt::getBitsSet(32,
+ OffsetVal,
+ OffsetVal + WidthVal);
+
+ if ((OffsetVal + WidthVal) >= 32) {
+ SDValue ShiftVal = DAG.getConstant(OffsetVal, MVT::i32);
+ return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
+ BitsFrom, ShiftVal);
+ }
+
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
+ TLI.SimplifyDemandedBits(BitsFrom, Demanded, KnownZero, KnownOne, TLO)) {
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+
+ break;
+ }
+
+ case ISD::STORE:
+ return performStoreCombine(N, DCI);
+ }
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Helper functions
+//===----------------------------------------------------------------------===//
+
+void AMDGPUTargetLowering::getOriginalFunctionArgs(
+ SelectionDAG &DAG,
+ const Function *F,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SmallVectorImpl<ISD::InputArg> &OrigIns) const {
+
+ for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
+ if (Ins[i].ArgVT == Ins[i].VT) {
+ OrigIns.push_back(Ins[i]);
+ continue;
+ }
+
+ EVT VT;
+ if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
+ // Vector has been split into scalars.
+ VT = Ins[i].ArgVT.getVectorElementType();
+ } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
+ Ins[i].ArgVT.getVectorElementType() !=
+ Ins[i].VT.getVectorElementType()) {
+ // Vector elements have been promoted
+ VT = Ins[i].ArgVT;
+ } else {
+ // Vector has been spilt into smaller vectors.
+ VT = Ins[i].VT;
+ }
+
+ ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
+ Ins[i].OrigArgIndex, Ins[i].PartOffset);
+ OrigIns.push_back(Arg);
+ }
+}
+
+bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
+ if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
+ return CFP->isExactlyValue(1.0);
+ }
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ return C->isAllOnesValue();
+ }
+ return false;
+}
+
+bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
+ if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
+ return CFP->getValueAPF().isZero();
+ }
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ return C->isNullValue();
+ }
+ return false;
+}
+
+SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
+ const TargetRegisterClass *RC,
+ unsigned Reg, EVT VT) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ unsigned VirtualRegister;
+ if (!MRI.isLiveIn(Reg)) {
+ VirtualRegister = MRI.createVirtualRegister(RC);
+ MRI.addLiveIn(Reg, VirtualRegister);
+ } else {
+ VirtualRegister = MRI.getLiveInVirtReg(Reg);
+ }
+ return DAG.getRegister(VirtualRegister, VT);
+}
+
+#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
+
+const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return nullptr;
+ // AMDIL DAG nodes
+ NODE_NAME_CASE(CALL);
+ NODE_NAME_CASE(UMUL);
+ NODE_NAME_CASE(RET_FLAG);
+ NODE_NAME_CASE(BRANCH_COND);
+
+ // AMDGPU DAG nodes
+ NODE_NAME_CASE(DWORDADDR)
+ NODE_NAME_CASE(FRACT)
+ NODE_NAME_CASE(CLAMP)
+ NODE_NAME_CASE(FMAX)
+ NODE_NAME_CASE(SMAX)
+ NODE_NAME_CASE(UMAX)
+ NODE_NAME_CASE(FMIN)
+ NODE_NAME_CASE(SMIN)
+ NODE_NAME_CASE(UMIN)
+ NODE_NAME_CASE(URECIP)
+ NODE_NAME_CASE(DIV_SCALE)
+ NODE_NAME_CASE(DIV_FMAS)
+ NODE_NAME_CASE(DIV_FIXUP)
+ NODE_NAME_CASE(TRIG_PREOP)
+ NODE_NAME_CASE(RCP)
+ NODE_NAME_CASE(RSQ)
+ NODE_NAME_CASE(RSQ_LEGACY)
+ NODE_NAME_CASE(RSQ_CLAMPED)
+ NODE_NAME_CASE(DOT4)
+ NODE_NAME_CASE(BFE_U32)
+ NODE_NAME_CASE(BFE_I32)
+ NODE_NAME_CASE(BFI)
+ NODE_NAME_CASE(BFM)
+ NODE_NAME_CASE(BREV)
+ NODE_NAME_CASE(MUL_U24)
+ NODE_NAME_CASE(MUL_I24)
+ NODE_NAME_CASE(MAD_U24)
+ NODE_NAME_CASE(MAD_I24)
+ NODE_NAME_CASE(EXPORT)
+ NODE_NAME_CASE(CONST_ADDRESS)
+ NODE_NAME_CASE(REGISTER_LOAD)
+ NODE_NAME_CASE(REGISTER_STORE)
+ NODE_NAME_CASE(LOAD_CONSTANT)
+ NODE_NAME_CASE(LOAD_INPUT)
+ NODE_NAME_CASE(SAMPLE)
+ NODE_NAME_CASE(SAMPLEB)
+ NODE_NAME_CASE(SAMPLED)
+ NODE_NAME_CASE(SAMPLEL)
+ NODE_NAME_CASE(CVT_F32_UBYTE0)
+ NODE_NAME_CASE(CVT_F32_UBYTE1)
+ NODE_NAME_CASE(CVT_F32_UBYTE2)
+ NODE_NAME_CASE(CVT_F32_UBYTE3)
+ NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
+ NODE_NAME_CASE(CONST_DATA_PTR)
+ NODE_NAME_CASE(STORE_MSKOR)
+ NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
+ }
+}
+
+static void computeKnownBitsForMinMax(const SDValue Op0,
+ const SDValue Op1,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) {
+ APInt Op0Zero, Op0One;
+ APInt Op1Zero, Op1One;
+ DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
+ DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
+
+ KnownZero = Op0Zero & Op1Zero;
+ KnownOne = Op0One & Op1One;
+}
+
+void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
+ const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+
+ KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
+
+ APInt KnownZero2;
+ APInt KnownOne2;
+ unsigned Opc = Op.getOpcode();
+
+ switch (Opc) {
+ default:
+ break;
+ case ISD::INTRINSIC_WO_CHAIN: {
+ // FIXME: The intrinsic should just use the node.
+ switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
+ case AMDGPUIntrinsic::AMDGPU_imax:
+ case AMDGPUIntrinsic::AMDGPU_umax:
+ case AMDGPUIntrinsic::AMDGPU_imin:
+ case AMDGPUIntrinsic::AMDGPU_umin:
+ computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
+ KnownZero, KnownOne, DAG, Depth);
+ break;
+ default:
+ break;
+ }
+
+ break;
+ }
+ case AMDGPUISD::SMAX:
+ case AMDGPUISD::UMAX:
+ case AMDGPUISD::SMIN:
+ case AMDGPUISD::UMIN:
+ computeKnownBitsForMinMax(Op.getOperand(0), Op.getOperand(1),
+ KnownZero, KnownOne, DAG, Depth);
+ break;
+
+ case AMDGPUISD::BFE_I32:
+ case AMDGPUISD::BFE_U32: {
+ ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ if (!CWidth)
+ return;
+
+ unsigned BitWidth = 32;
+ uint32_t Width = CWidth->getZExtValue() & 0x1f;
+ if (Width == 0) {
+ KnownZero = APInt::getAllOnesValue(BitWidth);
+ KnownOne = APInt::getNullValue(BitWidth);
+ return;
+ }
+
+ // FIXME: This could do a lot more. If offset is 0, should be the same as
+ // sign_extend_inreg implementation, but that involves duplicating it.
+ if (Opc == AMDGPUISD::BFE_I32)
+ KnownOne = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
+ else
+ KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
+
+ break;
+ }
+ }
+}
+
+unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
+ SDValue Op,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ switch (Op.getOpcode()) {
+ case AMDGPUISD::BFE_I32: {
+ ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ if (!Width)
+ return 1;
+
+ unsigned SignBits = 32 - Width->getZExtValue() + 1;
+ ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!Offset || !Offset->isNullValue())
+ return SignBits;
+
+ // TODO: Could probably figure something out with non-0 offsets.
+ unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
+ return std::max(SignBits, Op0SignBits);
+ }
+
+ case AMDGPUISD::BFE_U32: {
+ ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
+ }
+
+ default:
+ return 1;
+ }
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.h b/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.h
new file mode 100644
index 0000000..624d4e0
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.h
@@ -0,0 +1,251 @@
+//===-- AMDGPUISelLowering.h - AMDGPU Lowering Interface --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Interface definition of the TargetLowering class that is common
+/// to all AMD GPUs.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPUISELLOWERING_H
+#define AMDGPUISELLOWERING_H
+
+#include "llvm/Target/TargetLowering.h"
+
+namespace llvm {
+
+class AMDGPUMachineFunction;
+class AMDGPUSubtarget;
+class MachineRegisterInfo;
+
+class AMDGPUTargetLowering : public TargetLowering {
+protected:
+ const AMDGPUSubtarget *Subtarget;
+
+private:
+ SDValue LowerConstantInitializer(const Constant* Init, const GlobalValue *GV,
+ const SDValue &InitPtr,
+ SDValue Chain,
+ SelectionDAG &DAG) const;
+ SDValue LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
+ /// \brief Lower vector stores by merging the vector elements into an integer
+ /// of the same bitwidth.
+ SDValue MergeVectorStore(const SDValue &Op, SelectionDAG &DAG) const;
+ /// \brief Split a vector store into multiple scalar stores.
+ /// \returns The resulting chain.
+
+ SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSDIV24(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSDIV32(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSDIV64(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSREM(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSREM32(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSREM64(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFCEIL(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRINT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue ExpandSIGN_EXTEND_INREG(SDValue Op,
+ unsigned BitsDiff,
+ SelectionDAG &DAG) const;
+ SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue performStoreCombine(SDNode *N, DAGCombinerInfo &DCI) const;
+ SDValue performMulCombine(SDNode *N, DAGCombinerInfo &DCI) const;
+
+protected:
+ static EVT getEquivalentMemType(LLVMContext &Context, EVT VT);
+ static EVT getEquivalentLoadRegType(LLVMContext &Context, EVT VT);
+
+ virtual SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op,
+ SelectionDAG &DAG) const;
+ /// \brief Split a vector load into multiple scalar loads.
+ SDValue SplitVectorLoad(const SDValue &Op, SelectionDAG &DAG) const;
+ SDValue SplitVectorStore(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
+ bool isHWTrueValue(SDValue Op) const;
+ bool isHWFalseValue(SDValue Op) const;
+
+ /// The SelectionDAGBuilder will automatically promote function arguments
+ /// with illegal types. However, this does not work for the AMDGPU targets
+ /// since the function arguments are stored in memory as these illegal types.
+ /// In order to handle this properly we need to get the origianl types sizes
+ /// from the LLVM IR Function and fixup the ISD:InputArg values before
+ /// passing them to AnalyzeFormalArguments()
+ void getOriginalFunctionArgs(SelectionDAG &DAG,
+ const Function *F,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SmallVectorImpl<ISD::InputArg> &OrigIns) const;
+ void AnalyzeFormalArguments(CCState &State,
+ const SmallVectorImpl<ISD::InputArg> &Ins) const;
+
+public:
+ AMDGPUTargetLowering(TargetMachine &TM);
+
+ bool isFAbsFree(EVT VT) const override;
+ bool isFNegFree(EVT VT) const override;
+ bool isTruncateFree(EVT Src, EVT Dest) const override;
+ bool isTruncateFree(Type *Src, Type *Dest) const override;
+
+ bool isZExtFree(Type *Src, Type *Dest) const override;
+ bool isZExtFree(EVT Src, EVT Dest) const override;
+ bool isZExtFree(SDValue Val, EVT VT2) const override;
+
+ bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
+
+ MVT getVectorIdxTy() const override;
+ bool isSelectSupported(SelectSupportKind) const override;
+
+ bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
+ bool ShouldShrinkFPConstant(EVT VT) const override;
+
+ bool isLoadBitCastBeneficial(EVT, EVT) const override;
+ SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const override;
+ SDValue LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+ void ReplaceNodeResults(SDNode * N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const override;
+
+ SDValue LowerIntrinsicIABS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerIntrinsicLRP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue CombineMinMax(SDNode *N, SelectionDAG &DAG) const;
+ const char* getTargetNodeName(unsigned Opcode) const override;
+
+ virtual SDNode *PostISelFolding(MachineSDNode *N,
+ SelectionDAG &DAG) const {
+ return N;
+ }
+
+ /// \brief Determine which of the bits specified in \p Mask are known to be
+ /// either zero or one and return them in the \p KnownZero and \p KnownOne
+ /// bitsets.
+ void computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth = 0) const override;
+
+ virtual unsigned ComputeNumSignBitsForTargetNode(
+ SDValue Op,
+ const SelectionDAG &DAG,
+ unsigned Depth = 0) const override;
+
+ /// \brief Helper function that adds Reg to the LiveIn list of the DAG's
+ /// MachineFunction.
+ ///
+ /// \returns a RegisterSDNode representing Reg.
+ virtual SDValue CreateLiveInRegister(SelectionDAG &DAG,
+ const TargetRegisterClass *RC,
+ unsigned Reg, EVT VT) const;
+};
+
+namespace AMDGPUISD {
+
+enum {
+ // AMDIL ISD Opcodes
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+ CALL, // Function call based on a single integer
+ UMUL, // 32bit unsigned multiplication
+ RET_FLAG,
+ BRANCH_COND,
+ // End AMDIL ISD Opcodes
+ DWORDADDR,
+ FRACT,
+ CLAMP,
+
+ // SIN_HW, COS_HW - f32 for SI, 1 ULP max error, valid from -100 pi to 100 pi.
+ // Denormals handled on some parts.
+ COS_HW,
+ SIN_HW,
+ FMAX,
+ SMAX,
+ UMAX,
+ FMIN,
+ SMIN,
+ UMIN,
+ URECIP,
+ DIV_SCALE,
+ DIV_FMAS,
+ DIV_FIXUP,
+ TRIG_PREOP, // 1 ULP max error for f64
+
+ // RCP, RSQ - For f32, 1 ULP max error, no denormal handling.
+ // For f64, max error 2^29 ULP, handles denormals.
+ RCP,
+ RSQ,
+ RSQ_LEGACY,
+ RSQ_CLAMPED,
+ DOT4,
+ BFE_U32, // Extract range of bits with zero extension to 32-bits.
+ BFE_I32, // Extract range of bits with sign extension to 32-bits.
+ BFI, // (src0 & src1) | (~src0 & src2)
+ BFM, // Insert a range of bits into a 32-bit word.
+ BREV, // Reverse bits.
+ MUL_U24,
+ MUL_I24,
+ MAD_U24,
+ MAD_I24,
+ TEXTURE_FETCH,
+ EXPORT,
+ CONST_ADDRESS,
+ REGISTER_LOAD,
+ REGISTER_STORE,
+ LOAD_INPUT,
+ SAMPLE,
+ SAMPLEB,
+ SAMPLED,
+ SAMPLEL,
+
+ // These cvt_f32_ubyte* nodes need to remain consecutive and in order.
+ CVT_F32_UBYTE0,
+ CVT_F32_UBYTE1,
+ CVT_F32_UBYTE2,
+ CVT_F32_UBYTE3,
+ /// This node is for VLIW targets and it is used to represent a vector
+ /// that is stored in consecutive registers with the same channel.
+ /// For example:
+ /// |X |Y|Z|W|
+ /// T0|v.x| | | |
+ /// T1|v.y| | | |
+ /// T2|v.z| | | |
+ /// T3|v.w| | | |
+ BUILD_VERTICAL_VECTOR,
+ /// Pointer to the start of the shader's constant data.
+ CONST_DATA_PTR,
+ FIRST_MEM_OPCODE_NUMBER = ISD::FIRST_TARGET_MEMORY_OPCODE,
+ STORE_MSKOR,
+ LOAD_CONSTANT,
+ TBUFFER_STORE_FORMAT,
+ LAST_AMDGPU_ISD_NUMBER
+};
+
+
+} // End namespace AMDGPUISD
+
+} // End namespace llvm
+
+#endif // AMDGPUISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.cpp b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.cpp
new file mode 100644
index 0000000..fef5b8c
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.cpp
@@ -0,0 +1,346 @@
+//===-- AMDGPUInstrInfo.cpp - Base class for AMD GPU InstrInfo ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Implementation of the TargetInstrInfo class that is common to all
+/// AMD GPUs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUInstrInfo.h"
+#include "AMDGPURegisterInfo.h"
+#include "AMDGPUTargetMachine.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#define GET_INSTRINFO_NAMED_OPS
+#define GET_INSTRMAP_INFO
+#include "AMDGPUGenInstrInfo.inc"
+
+// Pin the vtable to this file.
+void AMDGPUInstrInfo::anchor() {}
+
+AMDGPUInstrInfo::AMDGPUInstrInfo(const AMDGPUSubtarget &st)
+ : AMDGPUGenInstrInfo(-1,-1), RI(st), ST(st) { }
+
+const AMDGPURegisterInfo &AMDGPUInstrInfo::getRegisterInfo() const {
+ return RI;
+}
+
+bool AMDGPUInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const {
+// TODO: Implement this function
+ return false;
+}
+
+unsigned AMDGPUInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+// TODO: Implement this function
+ return 0;
+}
+
+unsigned AMDGPUInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+// TODO: Implement this function
+ return 0;
+}
+
+bool AMDGPUInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
+ const MachineMemOperand *&MMO,
+ int &FrameIndex) const {
+// TODO: Implement this function
+ return false;
+}
+unsigned AMDGPUInstrInfo::isStoreFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+// TODO: Implement this function
+ return 0;
+}
+unsigned AMDGPUInstrInfo::isStoreFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+// TODO: Implement this function
+ return 0;
+}
+bool AMDGPUInstrInfo::hasStoreFromStackSlot(const MachineInstr *MI,
+ const MachineMemOperand *&MMO,
+ int &FrameIndex) const {
+// TODO: Implement this function
+ return false;
+}
+
+MachineInstr *
+AMDGPUInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+// TODO: Implement this function
+ return nullptr;
+}
+bool AMDGPUInstrInfo::getNextBranchInstr(MachineBasicBlock::iterator &iter,
+ MachineBasicBlock &MBB) const {
+ while (iter != MBB.end()) {
+ switch (iter->getOpcode()) {
+ default:
+ break;
+ case AMDGPU::BRANCH_COND_i32:
+ case AMDGPU::BRANCH_COND_f32:
+ case AMDGPU::BRANCH:
+ return true;
+ };
+ ++iter;
+ }
+ return false;
+}
+
+void
+AMDGPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill,
+ int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ llvm_unreachable("Not Implemented");
+}
+
+void
+AMDGPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ llvm_unreachable("Not Implemented");
+}
+
+bool AMDGPUInstrInfo::expandPostRAPseudo (MachineBasicBlock::iterator MI) const {
+ MachineBasicBlock *MBB = MI->getParent();
+ int OffsetOpIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::addr);
+ // addr is a custom operand with multiple MI operands, and only the
+ // first MI operand is given a name.
+ int RegOpIdx = OffsetOpIdx + 1;
+ int ChanOpIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::chan);
+ if (isRegisterLoad(*MI)) {
+ int DstOpIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::dst);
+ unsigned RegIndex = MI->getOperand(RegOpIdx).getImm();
+ unsigned Channel = MI->getOperand(ChanOpIdx).getImm();
+ unsigned Address = calculateIndirectAddress(RegIndex, Channel);
+ unsigned OffsetReg = MI->getOperand(OffsetOpIdx).getReg();
+ if (OffsetReg == AMDGPU::INDIRECT_BASE_ADDR) {
+ buildMovInstr(MBB, MI, MI->getOperand(DstOpIdx).getReg(),
+ getIndirectAddrRegClass()->getRegister(Address));
+ } else {
+ buildIndirectRead(MBB, MI, MI->getOperand(DstOpIdx).getReg(),
+ Address, OffsetReg);
+ }
+ } else if (isRegisterStore(*MI)) {
+ int ValOpIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::val);
+ AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst);
+ unsigned RegIndex = MI->getOperand(RegOpIdx).getImm();
+ unsigned Channel = MI->getOperand(ChanOpIdx).getImm();
+ unsigned Address = calculateIndirectAddress(RegIndex, Channel);
+ unsigned OffsetReg = MI->getOperand(OffsetOpIdx).getReg();
+ if (OffsetReg == AMDGPU::INDIRECT_BASE_ADDR) {
+ buildMovInstr(MBB, MI, getIndirectAddrRegClass()->getRegister(Address),
+ MI->getOperand(ValOpIdx).getReg());
+ } else {
+ buildIndirectWrite(MBB, MI, MI->getOperand(ValOpIdx).getReg(),
+ calculateIndirectAddress(RegIndex, Channel),
+ OffsetReg);
+ }
+ } else {
+ return false;
+ }
+
+ MBB->erase(MI);
+ return true;
+}
+
+
+MachineInstr *
+AMDGPUInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const {
+// TODO: Implement this function
+ return nullptr;
+}
+MachineInstr*
+AMDGPUInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr *LoadMI) const {
+ // TODO: Implement this function
+ return nullptr;
+}
+bool
+AMDGPUInstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops) const {
+ // TODO: Implement this function
+ return false;
+}
+bool
+AMDGPUInstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
+ unsigned Reg, bool UnfoldLoad,
+ bool UnfoldStore,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ // TODO: Implement this function
+ return false;
+}
+
+bool
+AMDGPUInstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
+ SmallVectorImpl<SDNode*> &NewNodes) const {
+ // TODO: Implement this function
+ return false;
+}
+
+unsigned
+AMDGPUInstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
+ bool UnfoldLoad, bool UnfoldStore,
+ unsigned *LoadRegIndex) const {
+ // TODO: Implement this function
+ return 0;
+}
+
+bool AMDGPUInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const {
+ assert(Offset2 > Offset1
+ && "Second offset should be larger than first offset!");
+ // If we have less than 16 loads in a row, and the offsets are within 16,
+ // then schedule together.
+ // TODO: Make the loads schedule near if it fits in a cacheline
+ return (NumLoads < 16 && (Offset2 - Offset1) < 16);
+}
+
+bool
+AMDGPUInstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
+ const {
+ // TODO: Implement this function
+ return true;
+}
+void AMDGPUInstrInfo::insertNoop(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const {
+ // TODO: Implement this function
+}
+
+bool AMDGPUInstrInfo::isPredicated(const MachineInstr *MI) const {
+ // TODO: Implement this function
+ return false;
+}
+bool
+AMDGPUInstrInfo::SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2)
+ const {
+ // TODO: Implement this function
+ return false;
+}
+
+bool AMDGPUInstrInfo::DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const {
+ // TODO: Implement this function
+ return false;
+}
+
+bool AMDGPUInstrInfo::isPredicable(MachineInstr *MI) const {
+ // TODO: Implement this function
+ return MI->getDesc().isPredicable();
+}
+
+bool
+AMDGPUInstrInfo::isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
+ // TODO: Implement this function
+ return true;
+}
+
+bool AMDGPUInstrInfo::isRegisterStore(const MachineInstr &MI) const {
+ return get(MI.getOpcode()).TSFlags & AMDGPU_FLAG_REGISTER_STORE;
+}
+
+bool AMDGPUInstrInfo::isRegisterLoad(const MachineInstr &MI) const {
+ return get(MI.getOpcode()).TSFlags & AMDGPU_FLAG_REGISTER_LOAD;
+}
+
+int AMDGPUInstrInfo::getIndirectIndexBegin(const MachineFunction &MF) const {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ int Offset = -1;
+
+ if (MFI->getNumObjects() == 0) {
+ return -1;
+ }
+
+ if (MRI.livein_empty()) {
+ return 0;
+ }
+
+ const TargetRegisterClass *IndirectRC = getIndirectAddrRegClass();
+ for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
+ LE = MRI.livein_end();
+ LI != LE; ++LI) {
+ unsigned Reg = LI->first;
+ if (TargetRegisterInfo::isVirtualRegister(Reg) ||
+ !IndirectRC->contains(Reg))
+ continue;
+
+ unsigned RegIndex;
+ unsigned RegEnd;
+ for (RegIndex = 0, RegEnd = IndirectRC->getNumRegs(); RegIndex != RegEnd;
+ ++RegIndex) {
+ if (IndirectRC->getRegister(RegIndex) == Reg)
+ break;
+ }
+ Offset = std::max(Offset, (int)RegIndex);
+ }
+
+ return Offset + 1;
+}
+
+int AMDGPUInstrInfo::getIndirectIndexEnd(const MachineFunction &MF) const {
+ int Offset = 0;
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ // Variable sized objects are not supported
+ assert(!MFI->hasVarSizedObjects());
+
+ if (MFI->getNumObjects() == 0) {
+ return -1;
+ }
+
+ Offset = MF.getTarget().getFrameLowering()->getFrameIndexOffset(MF, -1);
+
+ return getIndirectIndexBegin(MF) + Offset;
+}
+
+int AMDGPUInstrInfo::getMaskedMIMGOp(uint16_t Opcode, unsigned Channels) const {
+ switch (Channels) {
+ default: return Opcode;
+ case 1: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_1);
+ case 2: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_2);
+ case 3: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_3);
+ }
+}
+
+// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
+// header files, so we need to wrap it in a function that takes unsigned
+// instead.
+namespace llvm {
+namespace AMDGPU {
+int getMCOpcode(uint16_t Opcode, unsigned Gen) {
+ return getMCOpcode(Opcode);
+}
+}
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.h b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.h
new file mode 100644
index 0000000..d5041f5
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.h
@@ -0,0 +1,199 @@
+//===-- AMDGPUInstrInfo.h - AMDGPU Instruction Information ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Contains the definition of a TargetInstrInfo class that is common
+/// to all AMD GPUs.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPUINSTRUCTIONINFO_H
+#define AMDGPUINSTRUCTIONINFO_H
+
+#include "AMDGPUInstrInfo.h"
+#include "AMDGPURegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include <map>
+
+#define GET_INSTRINFO_HEADER
+#define GET_INSTRINFO_ENUM
+#define GET_INSTRINFO_OPERAND_ENUM
+#include "AMDGPUGenInstrInfo.inc"
+
+#define OPCODE_IS_ZERO_INT AMDGPU::PRED_SETE_INT
+#define OPCODE_IS_NOT_ZERO_INT AMDGPU::PRED_SETNE_INT
+#define OPCODE_IS_ZERO AMDGPU::PRED_SETE
+#define OPCODE_IS_NOT_ZERO AMDGPU::PRED_SETNE
+
+namespace llvm {
+
+class AMDGPUSubtarget;
+class MachineFunction;
+class MachineInstr;
+class MachineInstrBuilder;
+
+class AMDGPUInstrInfo : public AMDGPUGenInstrInfo {
+private:
+ const AMDGPURegisterInfo RI;
+ bool getNextBranchInstr(MachineBasicBlock::iterator &iter,
+ MachineBasicBlock &MBB) const;
+ virtual void anchor();
+protected:
+ const AMDGPUSubtarget &ST;
+public:
+ explicit AMDGPUInstrInfo(const AMDGPUSubtarget &st);
+
+ virtual const AMDGPURegisterInfo &getRegisterInfo() const = 0;
+
+ bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
+ unsigned &DstReg, unsigned &SubIdx) const override;
+
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ bool hasLoadFromStackSlot(const MachineInstr *MI,
+ const MachineMemOperand *&MMO,
+ int &FrameIndex) const override;
+ unsigned isStoreFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
+ unsigned isStoreFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const;
+ bool hasStoreFromStackSlot(const MachineInstr *MI,
+ const MachineMemOperand *&MMO,
+ int &FrameIndex) const;
+
+ MachineInstr *
+ convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const override;
+
+
+ virtual void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const = 0;
+
+ bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
+
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+protected:
+ MachineInstr *foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const override;
+ MachineInstr *foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr *LoadMI) const override;
+ /// \returns the smallest register index that will be accessed by an indirect
+ /// read or write or -1 if indirect addressing is not used by this program.
+ int getIndirectIndexBegin(const MachineFunction &MF) const;
+
+ /// \returns the largest register index that will be accessed by an indirect
+ /// read or write or -1 if indirect addressing is not used by this program.
+ int getIndirectIndexEnd(const MachineFunction &MF) const;
+
+public:
+ bool canFoldMemoryOperand(const MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops) const override;
+ bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
+ unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
+ SmallVectorImpl<MachineInstr *> &NewMIs) const override;
+ bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
+ SmallVectorImpl<SDNode *> &NewNodes) const override;
+ unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
+ bool UnfoldLoad, bool UnfoldStore,
+ unsigned *LoadRegIndex = nullptr) const override;
+ bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const override;
+
+ bool
+ ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
+ void insertNoop(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const override;
+ bool isPredicated(const MachineInstr *MI) const override;
+ bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const override;
+ bool DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const override;
+ bool isPredicable(MachineInstr *MI) const override;
+ bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
+
+ // Helper functions that check the opcode for status information
+ bool isRegisterStore(const MachineInstr &MI) const;
+ bool isRegisterLoad(const MachineInstr &MI) const;
+
+//===---------------------------------------------------------------------===//
+// Pure virtual funtions to be implemented by sub-classes.
+//===---------------------------------------------------------------------===//
+
+ virtual bool isMov(unsigned opcode) const = 0;
+
+ /// \brief Calculate the "Indirect Address" for the given \p RegIndex and
+ /// \p Channel
+ ///
+ /// We model indirect addressing using a virtual address space that can be
+ /// accesed with loads and stores. The "Indirect Address" is the memory
+ /// address in this virtual address space that maps to the given \p RegIndex
+ /// and \p Channel.
+ virtual unsigned calculateIndirectAddress(unsigned RegIndex,
+ unsigned Channel) const = 0;
+
+ /// \returns The register class to be used for loading and storing values
+ /// from an "Indirect Address" .
+ virtual const TargetRegisterClass *getIndirectAddrRegClass() const = 0;
+
+ /// \brief Build instruction(s) for an indirect register write.
+ ///
+ /// \returns The instruction that performs the indirect register write
+ virtual MachineInstrBuilder buildIndirectWrite(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg) const = 0;
+
+ /// \brief Build instruction(s) for an indirect register read.
+ ///
+ /// \returns The instruction that performs the indirect register read
+ virtual MachineInstrBuilder buildIndirectRead(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg) const = 0;
+
+ /// \brief Build a MOV instruction.
+ virtual MachineInstr *buildMovInstr(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DstReg, unsigned SrcReg) const = 0;
+
+ /// \brief Given a MIMG \p Opcode that writes all 4 channels, return the
+ /// equivalent opcode that writes \p Channels Channels.
+ int getMaskedMIMGOp(uint16_t Opcode, unsigned Channels) const;
+
+};
+
+namespace AMDGPU {
+ int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
+} // End namespace AMDGPU
+
+} // End llvm namespace
+
+#define AMDGPU_FLAG_REGISTER_LOAD (UINT64_C(1) << 63)
+#define AMDGPU_FLAG_REGISTER_STORE (UINT64_C(1) << 62)
+
+#endif // AMDGPUINSTRINFO_H
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.td b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.td
new file mode 100644
index 0000000..820f1a8
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.td
@@ -0,0 +1,181 @@
+//===-- AMDGPUInstrInfo.td - AMDGPU DAG nodes --------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains DAG node defintions for the AMDGPU target.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// AMDGPU DAG Profiles
+//===----------------------------------------------------------------------===//
+
+def AMDGPUDTIntTernaryOp : SDTypeProfile<1, 3, [
+ SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3>
+]>;
+
+def AMDGPUTrigPreOp : SDTypeProfile<1, 2,
+ [SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisInt<2>]
+>;
+
+def AMDGPUDivScaleOp : SDTypeProfile<2, 3,
+ [SDTCisFP<0>, SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisSameAs<0, 4>]
+>;
+
+//===----------------------------------------------------------------------===//
+// AMDGPU DAG Nodes
+//
+
+// This argument to this node is a dword address.
+def AMDGPUdwordaddr : SDNode<"AMDGPUISD::DWORDADDR", SDTIntUnaryOp>;
+
+def AMDGPUcos : SDNode<"AMDGPUISD::COS_HW", SDTFPUnaryOp>;
+def AMDGPUsin : SDNode<"AMDGPUISD::SIN_HW", SDTFPUnaryOp>;
+
+// out = a - floor(a)
+def AMDGPUfract : SDNode<"AMDGPUISD::FRACT", SDTFPUnaryOp>;
+
+// out = 1.0 / a
+def AMDGPUrcp : SDNode<"AMDGPUISD::RCP", SDTFPUnaryOp>;
+
+// out = 1.0 / sqrt(a)
+def AMDGPUrsq : SDNode<"AMDGPUISD::RSQ", SDTFPUnaryOp>;
+
+// out = 1.0 / sqrt(a)
+def AMDGPUrsq_legacy : SDNode<"AMDGPUISD::RSQ_LEGACY", SDTFPUnaryOp>;
+
+// out = 1.0 / sqrt(a) result clamped to +/- max_float.
+def AMDGPUrsq_clamped : SDNode<"AMDGPUISD::RSQ_CLAMPED", SDTFPUnaryOp>;
+
+// out = max(a, b) a and b are floats
+def AMDGPUfmax : SDNode<"AMDGPUISD::FMAX", SDTFPBinOp,
+ [SDNPCommutative, SDNPAssociative]
+>;
+
+def AMDGPUclamp : SDNode<"AMDGPUISD::CLAMP", SDTFPTernaryOp, []>;
+
+// out = max(a, b) a and b are signed ints
+def AMDGPUsmax : SDNode<"AMDGPUISD::SMAX", SDTIntBinOp,
+ [SDNPCommutative, SDNPAssociative]
+>;
+
+// out = max(a, b) a and b are unsigned ints
+def AMDGPUumax : SDNode<"AMDGPUISD::UMAX", SDTIntBinOp,
+ [SDNPCommutative, SDNPAssociative]
+>;
+
+// out = min(a, b) a and b are floats
+def AMDGPUfmin : SDNode<"AMDGPUISD::FMIN", SDTFPBinOp,
+ [SDNPCommutative, SDNPAssociative]
+>;
+
+// out = min(a, b) a snd b are signed ints
+def AMDGPUsmin : SDNode<"AMDGPUISD::SMIN", SDTIntBinOp,
+ [SDNPCommutative, SDNPAssociative]
+>;
+
+// out = min(a, b) a and b are unsigned ints
+def AMDGPUumin : SDNode<"AMDGPUISD::UMIN", SDTIntBinOp,
+ [SDNPCommutative, SDNPAssociative]
+>;
+
+
+def AMDGPUcvt_f32_ubyte0 : SDNode<"AMDGPUISD::CVT_F32_UBYTE0",
+ SDTIntToFPOp, []>;
+def AMDGPUcvt_f32_ubyte1 : SDNode<"AMDGPUISD::CVT_F32_UBYTE1",
+ SDTIntToFPOp, []>;
+def AMDGPUcvt_f32_ubyte2 : SDNode<"AMDGPUISD::CVT_F32_UBYTE2",
+ SDTIntToFPOp, []>;
+def AMDGPUcvt_f32_ubyte3 : SDNode<"AMDGPUISD::CVT_F32_UBYTE3",
+ SDTIntToFPOp, []>;
+
+
+// urecip - This operation is a helper for integer division, it returns the
+// result of 1 / a as a fractional unsigned integer.
+// out = (2^32 / a) + e
+// e is rounding error
+def AMDGPUurecip : SDNode<"AMDGPUISD::URECIP", SDTIntUnaryOp>;
+
+// Special case divide preop and flags.
+def AMDGPUdiv_scale : SDNode<"AMDGPUISD::DIV_SCALE", AMDGPUDivScaleOp>;
+
+// Special case divide FMA with scale and flags (src0 = Quotient,
+// src1 = Denominator, src2 = Numerator).
+def AMDGPUdiv_fmas : SDNode<"AMDGPUISD::DIV_FMAS", SDTFPTernaryOp>;
+
+// Single or double precision division fixup.
+// Special case divide fixup and flags(src0 = Quotient, src1 =
+// Denominator, src2 = Numerator).
+def AMDGPUdiv_fixup : SDNode<"AMDGPUISD::DIV_FIXUP", SDTFPTernaryOp>;
+
+// Look Up 2.0 / pi src0 with segment select src1[4:0]
+def AMDGPUtrig_preop : SDNode<"AMDGPUISD::TRIG_PREOP", AMDGPUTrigPreOp>;
+
+def AMDGPUregister_load : SDNode<"AMDGPUISD::REGISTER_LOAD",
+ SDTypeProfile<1, 2, [SDTCisPtrTy<1>, SDTCisInt<2>]>,
+ [SDNPHasChain, SDNPMayLoad]>;
+
+def AMDGPUregister_store : SDNode<"AMDGPUISD::REGISTER_STORE",
+ SDTypeProfile<0, 3, [SDTCisPtrTy<1>, SDTCisInt<2>]>,
+ [SDNPHasChain, SDNPMayStore]>;
+
+// MSKOR instructions are atomic memory instructions used mainly for storing
+// 8-bit and 16-bit values. The definition is:
+//
+// MSKOR(dst, mask, src) MEM[dst] = ((MEM[dst] & ~mask) | src)
+//
+// src0: vec4(src, 0, 0, mask)
+// src1: dst - rat offset (aka pointer) in dwords
+def AMDGPUstore_mskor : SDNode<"AMDGPUISD::STORE_MSKOR",
+ SDTypeProfile<0, 2, []>,
+ [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
+
+def AMDGPUround : SDNode<"ISD::FROUND",
+ SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>>;
+
+def AMDGPUbfe_u32 : SDNode<"AMDGPUISD::BFE_U32", AMDGPUDTIntTernaryOp>;
+def AMDGPUbfe_i32 : SDNode<"AMDGPUISD::BFE_I32", AMDGPUDTIntTernaryOp>;
+def AMDGPUbfi : SDNode<"AMDGPUISD::BFI", AMDGPUDTIntTernaryOp>;
+def AMDGPUbfm : SDNode<"AMDGPUISD::BFM", SDTIntBinOp>;
+
+def AMDGPUbrev : SDNode<"AMDGPUISD::BREV", SDTIntUnaryOp>;
+
+// Signed and unsigned 24-bit mulitply. The highest 8-bits are ignore when
+// performing the mulitply. The result is a 32-bit value.
+def AMDGPUmul_u24 : SDNode<"AMDGPUISD::MUL_U24", SDTIntBinOp,
+ [SDNPCommutative]
+>;
+def AMDGPUmul_i24 : SDNode<"AMDGPUISD::MUL_I24", SDTIntBinOp,
+ [SDNPCommutative]
+>;
+
+def AMDGPUmad_u24 : SDNode<"AMDGPUISD::MAD_U24", AMDGPUDTIntTernaryOp,
+ []
+>;
+def AMDGPUmad_i24 : SDNode<"AMDGPUISD::MAD_I24", AMDGPUDTIntTernaryOp,
+ []
+>;
+
+//===----------------------------------------------------------------------===//
+// Flow Control Profile Types
+//===----------------------------------------------------------------------===//
+// Branch instruction where second and third are basic blocks
+def SDTIL_BRCond : SDTypeProfile<0, 2, [
+ SDTCisVT<0, OtherVT>
+ ]>;
+
+//===----------------------------------------------------------------------===//
+// Flow Control DAG Nodes
+//===----------------------------------------------------------------------===//
+def IL_brcond : SDNode<"AMDGPUISD::BRANCH_COND", SDTIL_BRCond, [SDNPHasChain]>;
+
+//===----------------------------------------------------------------------===//
+// Call/Return DAG Nodes
+//===----------------------------------------------------------------------===//
+def IL_retflag : SDNode<"AMDGPUISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue]>;
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUInstructions.td b/contrib/llvm/lib/Target/R600/AMDGPUInstructions.td
new file mode 100644
index 0000000..cd35603
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUInstructions.td
@@ -0,0 +1,575 @@
+//===-- AMDGPUInstructions.td - Common instruction defs ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains instruction defs that are common to all hw codegen
+// targets.
+//
+//===----------------------------------------------------------------------===//
+
+class AMDGPUInst <dag outs, dag ins, string asm, list<dag> pattern> : Instruction {
+ field bit isRegisterLoad = 0;
+ field bit isRegisterStore = 0;
+
+ let Namespace = "AMDGPU";
+ let OutOperandList = outs;
+ let InOperandList = ins;
+ let AsmString = asm;
+ let Pattern = pattern;
+ let Itinerary = NullALU;
+
+ let TSFlags{63} = isRegisterLoad;
+ let TSFlags{62} = isRegisterStore;
+}
+
+class AMDGPUShaderInst <dag outs, dag ins, string asm, list<dag> pattern>
+ : AMDGPUInst<outs, ins, asm, pattern> {
+
+ field bits<32> Inst = 0xffffffff;
+
+}
+
+def FP32Denormals : Predicate<"Subtarget.hasFP32Denormals()">;
+def FP64Denormals : Predicate<"Subtarget.hasFP64Denormals()">;
+def UnsafeFPMath : Predicate<"TM.Options.UnsafeFPMath">;
+
+def InstFlag : OperandWithDefaultOps <i32, (ops (i32 0))>;
+def ADDRIndirect : ComplexPattern<iPTR, 2, "SelectADDRIndirect", [], []>;
+
+let OperandType = "OPERAND_IMMEDIATE" in {
+
+def u32imm : Operand<i32> {
+ let PrintMethod = "printU32ImmOperand";
+}
+
+def u16imm : Operand<i16> {
+ let PrintMethod = "printU16ImmOperand";
+}
+
+def u8imm : Operand<i8> {
+ let PrintMethod = "printU8ImmOperand";
+}
+
+} // End OperandType = "OPERAND_IMMEDIATE"
+
+//===--------------------------------------------------------------------===//
+// Custom Operands
+//===--------------------------------------------------------------------===//
+def brtarget : Operand<OtherVT>;
+
+//===----------------------------------------------------------------------===//
+// PatLeafs for floating-point comparisons
+//===----------------------------------------------------------------------===//
+
+def COND_OEQ : PatLeaf <
+ (cond),
+ [{return N->get() == ISD::SETOEQ || N->get() == ISD::SETEQ;}]
+>;
+
+def COND_OGT : PatLeaf <
+ (cond),
+ [{return N->get() == ISD::SETOGT || N->get() == ISD::SETGT;}]
+>;
+
+def COND_OGE : PatLeaf <
+ (cond),
+ [{return N->get() == ISD::SETOGE || N->get() == ISD::SETGE;}]
+>;
+
+def COND_OLT : PatLeaf <
+ (cond),
+ [{return N->get() == ISD::SETOLT || N->get() == ISD::SETLT;}]
+>;
+
+def COND_OLE : PatLeaf <
+ (cond),
+ [{return N->get() == ISD::SETOLE || N->get() == ISD::SETLE;}]
+>;
+
+def COND_UNE : PatLeaf <
+ (cond),
+ [{return N->get() == ISD::SETUNE || N->get() == ISD::SETNE;}]
+>;
+
+def COND_O : PatLeaf <(cond), [{return N->get() == ISD::SETO;}]>;
+def COND_UO : PatLeaf <(cond), [{return N->get() == ISD::SETUO;}]>;
+
+//===----------------------------------------------------------------------===//
+// PatLeafs for unsigned comparisons
+//===----------------------------------------------------------------------===//
+
+def COND_UGT : PatLeaf <(cond), [{return N->get() == ISD::SETUGT;}]>;
+def COND_UGE : PatLeaf <(cond), [{return N->get() == ISD::SETUGE;}]>;
+def COND_ULT : PatLeaf <(cond), [{return N->get() == ISD::SETULT;}]>;
+def COND_ULE : PatLeaf <(cond), [{return N->get() == ISD::SETULE;}]>;
+
+//===----------------------------------------------------------------------===//
+// PatLeafs for signed comparisons
+//===----------------------------------------------------------------------===//
+
+def COND_SGT : PatLeaf <(cond), [{return N->get() == ISD::SETGT;}]>;
+def COND_SGE : PatLeaf <(cond), [{return N->get() == ISD::SETGE;}]>;
+def COND_SLT : PatLeaf <(cond), [{return N->get() == ISD::SETLT;}]>;
+def COND_SLE : PatLeaf <(cond), [{return N->get() == ISD::SETLE;}]>;
+
+//===----------------------------------------------------------------------===//
+// PatLeafs for integer equality
+//===----------------------------------------------------------------------===//
+
+def COND_EQ : PatLeaf <
+ (cond),
+ [{return N->get() == ISD::SETEQ || N->get() == ISD::SETUEQ;}]
+>;
+
+def COND_NE : PatLeaf <
+ (cond),
+ [{return N->get() == ISD::SETNE || N->get() == ISD::SETUNE;}]
+>;
+
+def COND_NULL : PatLeaf <
+ (cond),
+ [{return false;}]
+>;
+
+//===----------------------------------------------------------------------===//
+// Load/Store Pattern Fragments
+//===----------------------------------------------------------------------===//
+
+class PrivateMemOp <dag ops, dag frag> : PatFrag <ops, frag, [{
+ return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS;
+}]>;
+
+class PrivateLoad <SDPatternOperator op> : PrivateMemOp <
+ (ops node:$ptr), (op node:$ptr)
+>;
+
+class PrivateStore <SDPatternOperator op> : PrivateMemOp <
+ (ops node:$value, node:$ptr), (op node:$value, node:$ptr)
+>;
+
+def extloadi8_private : PrivateLoad <extloadi8>;
+def sextloadi8_private : PrivateLoad <sextloadi8>;
+def extloadi16_private : PrivateLoad <extloadi16>;
+def sextloadi16_private : PrivateLoad <sextloadi16>;
+def load_private : PrivateLoad <load>;
+
+def truncstorei8_private : PrivateStore <truncstorei8>;
+def truncstorei16_private : PrivateStore <truncstorei16>;
+def store_private : PrivateStore <store>;
+
+def global_store : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return isGlobalStore(dyn_cast<StoreSDNode>(N));
+}]>;
+
+// Global address space loads
+def global_load : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return isGlobalLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+// Constant address space loads
+def constant_load : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return isConstantLoad(dyn_cast<LoadSDNode>(N), -1);
+}]>;
+
+def az_extload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{
+ LoadSDNode *L = cast<LoadSDNode>(N);
+ return L->getExtensionType() == ISD::ZEXTLOAD ||
+ L->getExtensionType() == ISD::EXTLOAD;
+}]>;
+
+def az_extloadi8 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+
+def az_extloadi8_global : PatFrag<(ops node:$ptr), (az_extloadi8 node:$ptr), [{
+ return isGlobalLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def sextloadi8_global : PatFrag<(ops node:$ptr), (sextloadi8 node:$ptr), [{
+ return isGlobalLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def az_extloadi8_constant : PatFrag<(ops node:$ptr), (az_extloadi8 node:$ptr), [{
+ return isConstantLoad(dyn_cast<LoadSDNode>(N), -1);
+}]>;
+
+def sextloadi8_constant : PatFrag<(ops node:$ptr), (sextloadi8 node:$ptr), [{
+ return isConstantLoad(dyn_cast<LoadSDNode>(N), -1);
+}]>;
+
+def az_extloadi8_local : PatFrag<(ops node:$ptr), (az_extloadi8 node:$ptr), [{
+ return isLocalLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def sextloadi8_local : PatFrag<(ops node:$ptr), (sextloadi8 node:$ptr), [{
+ return isLocalLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def az_extloadi16 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+
+def az_extloadi16_global : PatFrag<(ops node:$ptr), (az_extloadi16 node:$ptr), [{
+ return isGlobalLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def sextloadi16_global : PatFrag<(ops node:$ptr), (sextloadi16 node:$ptr), [{
+ return isGlobalLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def az_extloadi16_constant : PatFrag<(ops node:$ptr), (az_extloadi16 node:$ptr), [{
+ return isConstantLoad(dyn_cast<LoadSDNode>(N), -1);
+}]>;
+
+def sextloadi16_constant : PatFrag<(ops node:$ptr), (sextloadi16 node:$ptr), [{
+ return isConstantLoad(dyn_cast<LoadSDNode>(N), -1);
+}]>;
+
+def az_extloadi16_local : PatFrag<(ops node:$ptr), (az_extloadi16 node:$ptr), [{
+ return isLocalLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def sextloadi16_local : PatFrag<(ops node:$ptr), (sextloadi16 node:$ptr), [{
+ return isLocalLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def az_extloadi32 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+def az_extloadi32_global : PatFrag<(ops node:$ptr),
+ (az_extloadi32 node:$ptr), [{
+ return isGlobalLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def az_extloadi32_constant : PatFrag<(ops node:$ptr),
+ (az_extloadi32 node:$ptr), [{
+ return isConstantLoad(dyn_cast<LoadSDNode>(N), -1);
+}]>;
+
+def truncstorei8_global : PatFrag<(ops node:$val, node:$ptr),
+ (truncstorei8 node:$val, node:$ptr), [{
+ return isGlobalStore(dyn_cast<StoreSDNode>(N));
+}]>;
+
+def truncstorei16_global : PatFrag<(ops node:$val, node:$ptr),
+ (truncstorei16 node:$val, node:$ptr), [{
+ return isGlobalStore(dyn_cast<StoreSDNode>(N));
+}]>;
+
+def local_store : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return isLocalStore(dyn_cast<StoreSDNode>(N));
+}]>;
+
+def truncstorei8_local : PatFrag<(ops node:$val, node:$ptr),
+ (truncstorei8 node:$val, node:$ptr), [{
+ return isLocalStore(dyn_cast<StoreSDNode>(N));
+}]>;
+
+def truncstorei16_local : PatFrag<(ops node:$val, node:$ptr),
+ (truncstorei16 node:$val, node:$ptr), [{
+ return isLocalStore(dyn_cast<StoreSDNode>(N));
+}]>;
+
+def local_load : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return isLocalLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+
+class local_binary_atomic_op<SDNode atomic_op> :
+ PatFrag<(ops node:$ptr, node:$value),
+ (atomic_op node:$ptr, node:$value), [{
+ return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
+}]>;
+
+
+def atomic_swap_local : local_binary_atomic_op<atomic_swap>;
+def atomic_load_add_local : local_binary_atomic_op<atomic_load_add>;
+def atomic_load_sub_local : local_binary_atomic_op<atomic_load_sub>;
+def atomic_load_and_local : local_binary_atomic_op<atomic_load_and>;
+def atomic_load_or_local : local_binary_atomic_op<atomic_load_or>;
+def atomic_load_xor_local : local_binary_atomic_op<atomic_load_xor>;
+def atomic_load_nand_local : local_binary_atomic_op<atomic_load_nand>;
+def atomic_load_min_local : local_binary_atomic_op<atomic_load_min>;
+def atomic_load_max_local : local_binary_atomic_op<atomic_load_max>;
+def atomic_load_umin_local : local_binary_atomic_op<atomic_load_umin>;
+def atomic_load_umax_local : local_binary_atomic_op<atomic_load_umax>;
+
+def mskor_global : PatFrag<(ops node:$val, node:$ptr),
+ (AMDGPUstore_mskor node:$val, node:$ptr), [{
+ return dyn_cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
+}]>;
+
+def atomic_cmp_swap_32_local :
+ PatFrag<(ops node:$ptr, node:$cmp, node:$swap),
+ (atomic_cmp_swap node:$ptr, node:$cmp, node:$swap), [{
+ AtomicSDNode *AN = cast<AtomicSDNode>(N);
+ return AN->getMemoryVT() == MVT::i32 &&
+ AN->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
+}]>;
+
+def atomic_cmp_swap_64_local :
+ PatFrag<(ops node:$ptr, node:$cmp, node:$swap),
+ (atomic_cmp_swap node:$ptr, node:$cmp, node:$swap), [{
+ AtomicSDNode *AN = cast<AtomicSDNode>(N);
+ return AN->getMemoryVT() == MVT::i64 &&
+ AN->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
+}]>;
+
+
+class Constants {
+int TWO_PI = 0x40c90fdb;
+int PI = 0x40490fdb;
+int TWO_PI_INV = 0x3e22f983;
+int FP_UINT_MAX_PLUS_1 = 0x4f800000; // 1 << 32 in floating point encoding
+int FP32_NEG_ONE = 0xbf800000;
+int FP32_ONE = 0x3f800000;
+}
+def CONST : Constants;
+
+def FP_ZERO : PatLeaf <
+ (fpimm),
+ [{return N->getValueAPF().isZero();}]
+>;
+
+def FP_ONE : PatLeaf <
+ (fpimm),
+ [{return N->isExactlyValue(1.0);}]
+>;
+
+let isCodeGenOnly = 1, isPseudo = 1 in {
+
+let usesCustomInserter = 1 in {
+
+class CLAMP <RegisterClass rc> : AMDGPUShaderInst <
+ (outs rc:$dst),
+ (ins rc:$src0),
+ "CLAMP $dst, $src0",
+ [(set f32:$dst, (AMDGPUclamp f32:$src0, (f32 FP_ZERO), (f32 FP_ONE)))]
+>;
+
+class FABS <RegisterClass rc> : AMDGPUShaderInst <
+ (outs rc:$dst),
+ (ins rc:$src0),
+ "FABS $dst, $src0",
+ [(set f32:$dst, (fabs f32:$src0))]
+>;
+
+class FNEG <RegisterClass rc> : AMDGPUShaderInst <
+ (outs rc:$dst),
+ (ins rc:$src0),
+ "FNEG $dst, $src0",
+ [(set f32:$dst, (fneg f32:$src0))]
+>;
+
+} // usesCustomInserter = 1
+
+multiclass RegisterLoadStore <RegisterClass dstClass, Operand addrClass,
+ ComplexPattern addrPat> {
+let UseNamedOperandTable = 1 in {
+
+ def RegisterLoad : AMDGPUShaderInst <
+ (outs dstClass:$dst),
+ (ins addrClass:$addr, i32imm:$chan),
+ "RegisterLoad $dst, $addr",
+ [(set i32:$dst, (AMDGPUregister_load addrPat:$addr, (i32 timm:$chan)))]
+ > {
+ let isRegisterLoad = 1;
+ }
+
+ def RegisterStore : AMDGPUShaderInst <
+ (outs),
+ (ins dstClass:$val, addrClass:$addr, i32imm:$chan),
+ "RegisterStore $val, $addr",
+ [(AMDGPUregister_store i32:$val, addrPat:$addr, (i32 timm:$chan))]
+ > {
+ let isRegisterStore = 1;
+ }
+}
+}
+
+} // End isCodeGenOnly = 1, isPseudo = 1
+
+/* Generic helper patterns for intrinsics */
+/* -------------------------------------- */
+
+class POW_Common <AMDGPUInst log_ieee, AMDGPUInst exp_ieee, AMDGPUInst mul>
+ : Pat <
+ (fpow f32:$src0, f32:$src1),
+ (exp_ieee (mul f32:$src1, (log_ieee f32:$src0)))
+>;
+
+/* Other helper patterns */
+/* --------------------- */
+
+/* Extract element pattern */
+class Extract_Element <ValueType sub_type, ValueType vec_type, int sub_idx,
+ SubRegIndex sub_reg>
+ : Pat<
+ (sub_type (vector_extract vec_type:$src, sub_idx)),
+ (EXTRACT_SUBREG $src, sub_reg)
+>;
+
+/* Insert element pattern */
+class Insert_Element <ValueType elem_type, ValueType vec_type,
+ int sub_idx, SubRegIndex sub_reg>
+ : Pat <
+ (vector_insert vec_type:$vec, elem_type:$elem, sub_idx),
+ (INSERT_SUBREG $vec, $elem, sub_reg)
+>;
+
+// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer
+// can handle COPY instructions.
+// bitconvert pattern
+class BitConvert <ValueType dt, ValueType st, RegisterClass rc> : Pat <
+ (dt (bitconvert (st rc:$src0))),
+ (dt rc:$src0)
+>;
+
+// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer
+// can handle COPY instructions.
+class DwordAddrPat<ValueType vt, RegisterClass rc> : Pat <
+ (vt (AMDGPUdwordaddr (vt rc:$addr))),
+ (vt rc:$addr)
+>;
+
+// BFI_INT patterns
+
+multiclass BFIPatterns <Instruction BFI_INT, Instruction LoadImm32> {
+
+ // Definition from ISA doc:
+ // (y & x) | (z & ~x)
+ def : Pat <
+ (or (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
+ (BFI_INT $x, $y, $z)
+ >;
+
+ // SHA-256 Ch function
+ // z ^ (x & (y ^ z))
+ def : Pat <
+ (xor i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
+ (BFI_INT $x, $y, $z)
+ >;
+
+ def : Pat <
+ (fcopysign f32:$src0, f32:$src1),
+ (BFI_INT (LoadImm32 0x7fffffff), $src0, $src1)
+ >;
+
+ def : Pat <
+ (f64 (fcopysign f64:$src0, f64:$src1)),
+ (INSERT_SUBREG (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ (i32 (EXTRACT_SUBREG $src0, sub0)), sub0),
+ (BFI_INT (LoadImm32 0x7fffffff),
+ (i32 (EXTRACT_SUBREG $src0, sub1)),
+ (i32 (EXTRACT_SUBREG $src1, sub1))), sub1)
+ >;
+}
+
+// SHA-256 Ma patterns
+
+// ((x & z) | (y & (x | z))) -> BFI_INT (XOR x, y), z, y
+class SHA256MaPattern <Instruction BFI_INT, Instruction XOR> : Pat <
+ (or (and i32:$x, i32:$z), (and i32:$y, (or i32:$x, i32:$z))),
+ (BFI_INT (XOR i32:$x, i32:$y), i32:$z, i32:$y)
+>;
+
+// Bitfield extract patterns
+
+/*
+
+XXX: The BFE pattern is not working correctly because the XForm is not being
+applied.
+
+def legalshift32 : ImmLeaf <i32, [{return Imm >=0 && Imm < 32;}]>;
+def bfemask : PatLeaf <(imm), [{return isMask_32(N->getZExtValue());}],
+ SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(CountTrailingOnes_32(N->getZExtValue()), MVT::i32);}]>>;
+
+class BFEPattern <Instruction BFE> : Pat <
+ (and (srl i32:$x, legalshift32:$y), bfemask:$z),
+ (BFE $x, $y, $z)
+>;
+
+*/
+
+// rotr pattern
+class ROTRPattern <Instruction BIT_ALIGN> : Pat <
+ (rotr i32:$src0, i32:$src1),
+ (BIT_ALIGN $src0, $src0, $src1)
+>;
+
+// 24-bit arithmetic patterns
+def umul24 : PatFrag <(ops node:$x, node:$y), (mul node:$x, node:$y)>;
+
+/*
+class UMUL24Pattern <Instruction UMUL24> : Pat <
+ (mul U24:$x, U24:$y),
+ (UMUL24 $x, $y)
+>;
+*/
+
+class IMad24Pat<Instruction Inst> : Pat <
+ (add (AMDGPUmul_i24 i32:$src0, i32:$src1), i32:$src2),
+ (Inst $src0, $src1, $src2)
+>;
+
+class UMad24Pat<Instruction Inst> : Pat <
+ (add (AMDGPUmul_u24 i32:$src0, i32:$src1), i32:$src2),
+ (Inst $src0, $src1, $src2)
+>;
+
+multiclass Expand24IBitOps<Instruction MulInst, Instruction AddInst> {
+ def _expand_imad24 : Pat <
+ (AMDGPUmad_i24 i32:$src0, i32:$src1, i32:$src2),
+ (AddInst (MulInst $src0, $src1), $src2)
+ >;
+
+ def _expand_imul24 : Pat <
+ (AMDGPUmul_i24 i32:$src0, i32:$src1),
+ (MulInst $src0, $src1)
+ >;
+}
+
+multiclass Expand24UBitOps<Instruction MulInst, Instruction AddInst> {
+ def _expand_umad24 : Pat <
+ (AMDGPUmad_u24 i32:$src0, i32:$src1, i32:$src2),
+ (AddInst (MulInst $src0, $src1), $src2)
+ >;
+
+ def _expand_umul24 : Pat <
+ (AMDGPUmul_u24 i32:$src0, i32:$src1),
+ (MulInst $src0, $src1)
+ >;
+}
+
+class RcpPat<Instruction RcpInst, ValueType vt> : Pat <
+ (fdiv FP_ONE, vt:$src),
+ (RcpInst $src)
+>;
+
+multiclass RsqPat<Instruction RsqInst, ValueType vt> {
+ def : Pat <
+ (fdiv FP_ONE, (fsqrt vt:$src)),
+ (RsqInst $src)
+ >;
+
+ def : Pat <
+ (AMDGPUrcp (fsqrt vt:$src)),
+ (RsqInst $src)
+ >;
+}
+
+include "R600Instructions.td"
+include "R700Instructions.td"
+include "EvergreenInstructions.td"
+include "CaymanInstructions.td"
+
+include "SIInstrInfo.td"
+
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.cpp b/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.cpp
new file mode 100644
index 0000000..58916a9
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.cpp
@@ -0,0 +1,77 @@
+//===- AMDGPUIntrinsicInfo.cpp - AMDGPU Intrinsic Information ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//==-----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief AMDGPU Implementation of the IntrinsicInfo class.
+//
+//===-----------------------------------------------------------------------===//
+
+#include "AMDGPUIntrinsicInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+
+using namespace llvm;
+
+#define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
+#include "AMDGPUGenIntrinsics.inc"
+#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
+
+AMDGPUIntrinsicInfo::AMDGPUIntrinsicInfo(TargetMachine *tm)
+ : TargetIntrinsicInfo() {}
+
+std::string AMDGPUIntrinsicInfo::getName(unsigned IntrID, Type **Tys,
+ unsigned numTys) const {
+ static const char *const names[] = {
+#define GET_INTRINSIC_NAME_TABLE
+#include "AMDGPUGenIntrinsics.inc"
+#undef GET_INTRINSIC_NAME_TABLE
+ };
+
+ if (IntrID < Intrinsic::num_intrinsics) {
+ return nullptr;
+ }
+ assert(IntrID < AMDGPUIntrinsic::num_AMDGPU_intrinsics &&
+ "Invalid intrinsic ID");
+
+ std::string Result(names[IntrID - Intrinsic::num_intrinsics]);
+ return Result;
+}
+
+unsigned AMDGPUIntrinsicInfo::lookupName(const char *Name,
+ unsigned Len) const {
+ if (!StringRef(Name, Len).startswith("llvm."))
+ return 0; // All intrinsics start with 'llvm.'
+
+#define GET_FUNCTION_RECOGNIZER
+#include "AMDGPUGenIntrinsics.inc"
+#undef GET_FUNCTION_RECOGNIZER
+ AMDGPUIntrinsic::ID IntrinsicID =
+ (AMDGPUIntrinsic::ID)Intrinsic::not_intrinsic;
+ IntrinsicID = getIntrinsicForGCCBuiltin("AMDGPU", Name);
+
+ if (IntrinsicID != (AMDGPUIntrinsic::ID)Intrinsic::not_intrinsic) {
+ return IntrinsicID;
+ }
+ return 0;
+}
+
+bool AMDGPUIntrinsicInfo::isOverloaded(unsigned id) const {
+// Overload Table
+#define GET_INTRINSIC_OVERLOAD_TABLE
+#include "AMDGPUGenIntrinsics.inc"
+#undef GET_INTRINSIC_OVERLOAD_TABLE
+}
+
+Function *AMDGPUIntrinsicInfo::getDeclaration(Module *M, unsigned IntrID,
+ Type **Tys,
+ unsigned numTys) const {
+ llvm_unreachable("Not implemented");
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.h b/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.h
new file mode 100644
index 0000000..5be68a2
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.h
@@ -0,0 +1,48 @@
+//===- AMDGPUIntrinsicInfo.h - AMDGPU Intrinsic Information ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//==-----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Interface for the AMDGPU Implementation of the Intrinsic Info class.
+//
+//===-----------------------------------------------------------------------===//
+#ifndef AMDGPU_INTRINSICINFO_H
+#define AMDGPU_INTRINSICINFO_H
+
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+
+namespace llvm {
+class TargetMachine;
+
+namespace AMDGPUIntrinsic {
+enum ID {
+ last_non_AMDGPU_intrinsic = Intrinsic::num_intrinsics - 1,
+#define GET_INTRINSIC_ENUM_VALUES
+#include "AMDGPUGenIntrinsics.inc"
+#undef GET_INTRINSIC_ENUM_VALUES
+ , num_AMDGPU_intrinsics
+};
+
+} // end namespace AMDGPUIntrinsic
+
+class AMDGPUIntrinsicInfo : public TargetIntrinsicInfo {
+public:
+ AMDGPUIntrinsicInfo(TargetMachine *tm);
+ std::string getName(unsigned IntrId, Type **Tys = nullptr,
+ unsigned numTys = 0) const override;
+ unsigned lookupName(const char *Name, unsigned Len) const override;
+ bool isOverloaded(unsigned IID) const override;
+ Function *getDeclaration(Module *M, unsigned ID,
+ Type **Tys = nullptr,
+ unsigned numTys = 0) const override;
+};
+
+} // end namespace llvm
+
+#endif // AMDGPU_INTRINSICINFO_H
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUIntrinsics.td b/contrib/llvm/lib/Target/R600/AMDGPUIntrinsics.td
new file mode 100644
index 0000000..eee9c29
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUIntrinsics.td
@@ -0,0 +1,89 @@
+//===-- AMDGPUIntrinsics.td - Common intrinsics -*- tablegen -*-----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines intrinsics that are used by all hw codegen targets.
+//
+//===----------------------------------------------------------------------===//
+
+let TargetPrefix = "AMDGPU", isTarget = 1 in {
+
+ def int_AMDGPU_store_output : Intrinsic<[], [llvm_float_ty, llvm_i32_ty], []>;
+ def int_AMDGPU_swizzle : Intrinsic<[llvm_v4f32_ty], [llvm_v4f32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_abs : Intrinsic<[llvm_i32_ty], [llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_arl : Intrinsic<[llvm_i32_ty], [llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_cndlt : Intrinsic<[llvm_float_ty], [llvm_float_ty, llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_div : Intrinsic<[llvm_float_ty], [llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_fract : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>], [IntrNoMem]>;
+ def int_AMDGPU_clamp : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem]>;
+
+ // This is named backwards (instead of rsq_legacy) so we don't have
+ // to define it with the public builtins intrinsics. This is a
+ // workaround for how intrinsic names are parsed. If the name is
+ // llvm.AMDGPU.rsq.legacy, the parser assumes that you meant
+ // llvm.AMDGPU.rsq.{f32 | f64} and incorrectly mangled the name.
+ def int_AMDGPU_legacy_rsq : Intrinsic<[llvm_float_ty], [llvm_float_ty], [IntrNoMem]>;
+
+ def int_AMDGPU_dp4 : Intrinsic<[llvm_float_ty], [llvm_v4f32_ty, llvm_v4f32_ty], [IntrNoMem]>;
+ def int_AMDGPU_kill : Intrinsic<[], [llvm_float_ty], []>;
+ def int_AMDGPU_kilp : Intrinsic<[], [], []>;
+ def int_AMDGPU_lrp : Intrinsic<[llvm_float_ty], [llvm_float_ty, llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_mul : Intrinsic<[llvm_float_ty], [llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_pow : Intrinsic<[llvm_float_ty], [llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_seq : Intrinsic<[llvm_float_ty], [llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_sgt : Intrinsic<[llvm_float_ty], [llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_sge : Intrinsic<[llvm_float_ty], [llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_sle : Intrinsic<[llvm_float_ty], [llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_sne : Intrinsic<[llvm_float_ty], [llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_mullit : Intrinsic<[llvm_v4f32_ty], [llvm_float_ty, llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_tex : Intrinsic<[llvm_v4f32_ty], [llvm_v4f32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_txb : Intrinsic<[llvm_v4f32_ty], [llvm_v4f32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_txf : Intrinsic<[llvm_v4f32_ty], [llvm_v4f32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_txq : Intrinsic<[llvm_v4f32_ty], [llvm_v4f32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_txd : Intrinsic<[llvm_v4f32_ty], [llvm_v4f32_ty, llvm_v4f32_ty, llvm_v4f32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_txl : Intrinsic<[llvm_v4f32_ty], [llvm_v4f32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_trunc : Intrinsic<[llvm_float_ty], [llvm_float_ty], [IntrNoMem]>;
+ def int_AMDGPU_ddx : Intrinsic<[llvm_v4f32_ty], [llvm_v4f32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_ddy : Intrinsic<[llvm_v4f32_ty], [llvm_v4f32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_imax : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_imin : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_umax : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_umin : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_umul24 : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_imul24 : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_imad24 : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_umad24 : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_cvt_f32_ubyte0 : Intrinsic<[llvm_float_ty], [llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_cvt_f32_ubyte1 : Intrinsic<[llvm_float_ty], [llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_cvt_f32_ubyte2 : Intrinsic<[llvm_float_ty], [llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_cvt_f32_ubyte3 : Intrinsic<[llvm_float_ty], [llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_cube : Intrinsic<[llvm_v4f32_ty], [llvm_v4f32_ty], [IntrNoMem]>;
+ def int_AMDGPU_bfi : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_bfe_i32 : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_bfe_u32 : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_bfm : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_brev : Intrinsic<[llvm_i32_ty], [llvm_i32_ty], [IntrNoMem]>;
+ def int_AMDGPU_barrier_local : Intrinsic<[], [], []>;
+ def int_AMDGPU_barrier_global : Intrinsic<[], [], []>;
+}
+
+// Legacy names for compatibility.
+let TargetPrefix = "AMDIL", isTarget = 1 in {
+ def int_AMDIL_abs : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>], [IntrNoMem]>;
+ def int_AMDIL_fraction : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>], [IntrNoMem]>;
+ def int_AMDIL_clamp : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem]>;
+ def int_AMDIL_exp : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>], [IntrNoMem]>;
+ def int_AMDIL_round_nearest : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>], [IntrNoMem]>;
+}
+
+let TargetPrefix = "TGSI", isTarget = 1 in {
+
+ def int_TGSI_lit_z : Intrinsic<[llvm_float_ty], [llvm_float_ty, llvm_float_ty, llvm_float_ty],[IntrNoMem]>;
+}
+
+include "SIIntrinsics.td"
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.cpp b/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.cpp
new file mode 100644
index 0000000..ce5c41c
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.cpp
@@ -0,0 +1,159 @@
+//===- AMDGPUMCInstLower.cpp - Lower AMDGPU MachineInstr to an MCInst -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Code to lower AMDGPU MachineInstrs to their corresponding MCInst.
+//
+//===----------------------------------------------------------------------===//
+//
+
+#include "AMDGPUMCInstLower.h"
+#include "AMDGPUAsmPrinter.h"
+#include "AMDGPUTargetMachine.h"
+#include "InstPrinter/AMDGPUInstPrinter.h"
+#include "R600InstrInfo.h"
+#include "SIInstrInfo.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCObjectStreamer.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include <algorithm>
+
+using namespace llvm;
+
+AMDGPUMCInstLower::AMDGPUMCInstLower(MCContext &ctx, const AMDGPUSubtarget &st):
+ Ctx(ctx), ST(st)
+{ }
+
+enum AMDGPUMCInstLower::SISubtarget
+AMDGPUMCInstLower::AMDGPUSubtargetToSISubtarget(unsigned) const {
+ return AMDGPUMCInstLower::SI;
+}
+
+unsigned AMDGPUMCInstLower::getMCOpcode(unsigned MIOpcode) const {
+
+ int MCOpcode = AMDGPU::getMCOpcode(MIOpcode,
+ AMDGPUSubtargetToSISubtarget(ST.getGeneration()));
+ if (MCOpcode == -1)
+ MCOpcode = MIOpcode;
+
+ return MCOpcode;
+}
+
+void AMDGPUMCInstLower::lower(const MachineInstr *MI, MCInst &OutMI) const {
+
+ OutMI.setOpcode(getMCOpcode(MI->getOpcode()));
+
+ for (const MachineOperand &MO : MI->explicit_operands()) {
+ MCOperand MCOp;
+ switch (MO.getType()) {
+ default:
+ llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_FPImmediate: {
+ const APFloat &FloatValue = MO.getFPImm()->getValueAPF();
+ assert(&FloatValue.getSemantics() == &APFloat::IEEEsingle &&
+ "Only floating point immediates are supported at the moment.");
+ MCOp = MCOperand::CreateFPImm(FloatValue.convertToFloat());
+ break;
+ }
+ case MachineOperand::MO_Immediate:
+ MCOp = MCOperand::CreateImm(MO.getImm());
+ break;
+ case MachineOperand::MO_Register:
+ MCOp = MCOperand::CreateReg(MO.getReg());
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
+ MO.getMBB()->getSymbol(), Ctx));
+ break;
+ case MachineOperand::MO_GlobalAddress: {
+ const GlobalValue *GV = MO.getGlobal();
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(StringRef(GV->getName()));
+ MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(Sym, Ctx));
+ break;
+ }
+ case MachineOperand::MO_TargetIndex: {
+ assert(MO.getIndex() == AMDGPU::TI_CONSTDATA_START);
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(StringRef(END_OF_TEXT_LABEL_NAME));
+ const MCSymbolRefExpr *Expr = MCSymbolRefExpr::Create(Sym, Ctx);
+ MCOp = MCOperand::CreateExpr(Expr);
+ break;
+ }
+ }
+ OutMI.addOperand(MCOp);
+ }
+}
+
+void AMDGPUAsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ AMDGPUMCInstLower MCInstLowering(OutContext,
+ MF->getTarget().getSubtarget<AMDGPUSubtarget>());
+
+#ifdef _DEBUG
+ StringRef Err;
+ if (!TM.getInstrInfo()->verifyInstruction(MI, Err)) {
+ errs() << "Warning: Illegal instruction detected: " << Err << "\n";
+ MI->dump();
+ }
+#endif
+ if (MI->isBundle()) {
+ const MachineBasicBlock *MBB = MI->getParent();
+ MachineBasicBlock::const_instr_iterator I = MI;
+ ++I;
+ while (I != MBB->end() && I->isInsideBundle()) {
+ EmitInstruction(I);
+ ++I;
+ }
+ } else {
+ MCInst TmpInst;
+ MCInstLowering.lower(MI, TmpInst);
+ EmitToStreamer(OutStreamer, TmpInst);
+
+ if (DisasmEnabled) {
+ // Disassemble instruction/operands to text.
+ DisasmLines.resize(DisasmLines.size() + 1);
+ std::string &DisasmLine = DisasmLines.back();
+ raw_string_ostream DisasmStream(DisasmLine);
+
+ AMDGPUInstPrinter InstPrinter(*TM.getMCAsmInfo(), *TM.getInstrInfo(),
+ *TM.getRegisterInfo());
+ InstPrinter.printInst(&TmpInst, DisasmStream, StringRef());
+
+ // Disassemble instruction/operands to hex representation.
+ SmallVector<MCFixup, 4> Fixups;
+ SmallVector<char, 16> CodeBytes;
+ raw_svector_ostream CodeStream(CodeBytes);
+
+ MCObjectStreamer &ObjStreamer = (MCObjectStreamer &)OutStreamer;
+ MCCodeEmitter &InstEmitter = ObjStreamer.getAssembler().getEmitter();
+ InstEmitter.EncodeInstruction(TmpInst, CodeStream, Fixups,
+ TM.getSubtarget<MCSubtargetInfo>());
+ CodeStream.flush();
+
+ HexLines.resize(HexLines.size() + 1);
+ std::string &HexLine = HexLines.back();
+ raw_string_ostream HexStream(HexLine);
+
+ for (size_t i = 0; i < CodeBytes.size(); i += 4) {
+ unsigned int CodeDWord = *(unsigned int *)&CodeBytes[i];
+ HexStream << format("%s%08X", (i > 0 ? " " : ""), CodeDWord);
+ }
+
+ DisasmStream.flush();
+ DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLine.size());
+ }
+ }
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.h b/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.h
new file mode 100644
index 0000000..58fe34d
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.h
@@ -0,0 +1,48 @@
+//===- AMDGPUMCInstLower.h MachineInstr Lowering Interface ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPU_MCINSTLOWER_H
+#define AMDGPU_MCINSTLOWER_H
+
+namespace llvm {
+
+class AMDGPUSubtarget;
+class MachineInstr;
+class MCContext;
+class MCInst;
+
+class AMDGPUMCInstLower {
+
+ // This must be kept in sync with the SISubtarget class in SIInstrInfo.td
+ enum SISubtarget {
+ SI = 0
+ };
+
+ MCContext &Ctx;
+ const AMDGPUSubtarget &ST;
+
+ /// Convert a member of the AMDGPUSubtarget::Generation enum to the
+ /// SISubtarget enum.
+ enum SISubtarget AMDGPUSubtargetToSISubtarget(unsigned Gen) const;
+
+ /// Get the MC opcode for this MachineInstr.
+ unsigned getMCOpcode(unsigned MIOpcode) const;
+
+public:
+ AMDGPUMCInstLower(MCContext &ctx, const AMDGPUSubtarget &ST);
+
+ /// \brief Lower a MachineInstr to an MCInst
+ void lower(const MachineInstr *MI, MCInst &OutMI) const;
+
+};
+
+} // End namespace llvm
+
+#endif //AMDGPU_MCINSTLOWER_H
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.cpp b/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.cpp
new file mode 100644
index 0000000..90af801
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.cpp
@@ -0,0 +1,25 @@
+#include "AMDGPUMachineFunction.h"
+#include "AMDGPU.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Function.h"
+using namespace llvm;
+
+static const char *const ShaderTypeAttribute = "ShaderType";
+
+// Pin the vtable to this file.
+void AMDGPUMachineFunction::anchor() {}
+
+AMDGPUMachineFunction::AMDGPUMachineFunction(const MachineFunction &MF) :
+ MachineFunctionInfo(),
+ ShaderType(ShaderType::COMPUTE),
+ LDSSize(0) {
+ AttributeSet Set = MF.getFunction()->getAttributes();
+ Attribute A = Set.getAttribute(AttributeSet::FunctionIndex,
+ ShaderTypeAttribute);
+
+ if (A.isStringAttribute()) {
+ StringRef Str = A.getValueAsString();
+ if (Str.getAsInteger(0, ShaderType))
+ llvm_unreachable("Can't parse shader type!");
+ }
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.h b/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.h
new file mode 100644
index 0000000..0854d58
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.h
@@ -0,0 +1,39 @@
+//===-- R600MachineFunctionInfo.h - R600 Machine Function Info ----*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPUMACHINEFUNCTION_H
+#define AMDGPUMACHINEFUNCTION_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+#include <map>
+
+namespace llvm {
+
+class AMDGPUMachineFunction : public MachineFunctionInfo {
+ virtual void anchor();
+ unsigned ShaderType;
+
+public:
+ AMDGPUMachineFunction(const MachineFunction &MF);
+ /// A map to keep track of local memory objects and their offsets within
+ /// the local memory space.
+ std::map<const GlobalValue *, unsigned> LocalMemoryObjects;
+ /// Number of bytes in the LDS that are being used.
+ unsigned LDSSize;
+
+ unsigned getShaderType() const {
+ return ShaderType;
+ }
+};
+
+}
+#endif // AMDGPUMACHINEFUNCTION_H
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUPromoteAlloca.cpp b/contrib/llvm/lib/Target/R600/AMDGPUPromoteAlloca.cpp
new file mode 100644
index 0000000..218750d
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUPromoteAlloca.cpp
@@ -0,0 +1,387 @@
+//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass eliminates allocas by either converting them into vectors or
+// by migrating them to local address space.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "amdgpu-promote-alloca"
+
+using namespace llvm;
+
+namespace {
+
+class AMDGPUPromoteAlloca : public FunctionPass,
+ public InstVisitor<AMDGPUPromoteAlloca> {
+
+ static char ID;
+ Module *Mod;
+ const AMDGPUSubtarget &ST;
+ int LocalMemAvailable;
+
+public:
+ AMDGPUPromoteAlloca(const AMDGPUSubtarget &st) : FunctionPass(ID), ST(st),
+ LocalMemAvailable(0) { }
+ virtual bool doInitialization(Module &M);
+ virtual bool runOnFunction(Function &F);
+ virtual const char *getPassName() const {
+ return "AMDGPU Promote Alloca";
+ }
+ void visitAlloca(AllocaInst &I);
+};
+
+} // End anonymous namespace
+
+char AMDGPUPromoteAlloca::ID = 0;
+
+bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
+ Mod = &M;
+ return false;
+}
+
+bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
+
+ const FunctionType *FTy = F.getFunctionType();
+
+ LocalMemAvailable = ST.getLocalMemorySize();
+
+
+ // If the function has any arguments in the local address space, then it's
+ // possible these arguments require the entire local memory space, so
+ // we cannot use local memory in the pass.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
+ const Type *ParamTy = FTy->getParamType(i);
+ if (ParamTy->isPointerTy() &&
+ ParamTy->getPointerAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
+ LocalMemAvailable = 0;
+ DEBUG(dbgs() << "Function has local memory argument. Promoting to "
+ "local memory disabled.\n");
+ break;
+ }
+ }
+
+ if (LocalMemAvailable > 0) {
+ // Check how much local memory is being used by global objects
+ for (Module::global_iterator I = Mod->global_begin(),
+ E = Mod->global_end(); I != E; ++I) {
+ GlobalVariable *GV = I;
+ PointerType *GVTy = GV->getType();
+ if (GVTy->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
+ continue;
+ for (Value::use_iterator U = GV->use_begin(),
+ UE = GV->use_end(); U != UE; ++U) {
+ Instruction *Use = dyn_cast<Instruction>(*U);
+ if (!Use)
+ continue;
+ if (Use->getParent()->getParent() == &F)
+ LocalMemAvailable -=
+ Mod->getDataLayout()->getTypeAllocSize(GVTy->getElementType());
+ }
+ }
+ }
+
+ LocalMemAvailable = std::max(0, LocalMemAvailable);
+ DEBUG(dbgs() << LocalMemAvailable << "bytes free in local memory.\n");
+
+ visit(F);
+
+ return false;
+}
+
+static VectorType *arrayTypeToVecType(const Type *ArrayTy) {
+ return VectorType::get(ArrayTy->getArrayElementType(),
+ ArrayTy->getArrayNumElements());
+}
+
+static Value* calculateVectorIndex(Value *Ptr,
+ std::map<GetElementPtrInst*, Value*> GEPIdx) {
+ if (isa<AllocaInst>(Ptr))
+ return Constant::getNullValue(Type::getInt32Ty(Ptr->getContext()));
+
+ GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
+
+ return GEPIdx[GEP];
+}
+
+static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
+ // FIXME we only support simple cases
+ if (GEP->getNumOperands() != 3)
+ return NULL;
+
+ ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
+ if (!I0 || !I0->isZero())
+ return NULL;
+
+ return GEP->getOperand(2);
+}
+
+// Not an instruction handled below to turn into a vector.
+//
+// TODO: Check isTriviallyVectorizable for calls and handle other
+// instructions.
+static bool canVectorizeInst(Instruction *Inst) {
+ switch (Inst->getOpcode()) {
+ case Instruction::Load:
+ case Instruction::Store:
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
+ Type *AllocaTy = Alloca->getAllocatedType();
+
+ DEBUG(dbgs() << "Alloca Candidate for vectorization \n");
+
+ // FIXME: There is no reason why we can't support larger arrays, we
+ // are just being conservative for now.
+ if (!AllocaTy->isArrayTy() ||
+ AllocaTy->getArrayElementType()->isVectorTy() ||
+ AllocaTy->getArrayNumElements() > 4) {
+
+ DEBUG(dbgs() << " Cannot convert type to vector");
+ return false;
+ }
+
+ std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
+ std::vector<Value*> WorkList;
+ for (User *AllocaUser : Alloca->users()) {
+ GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
+ if (!GEP) {
+ if (!canVectorizeInst(cast<Instruction>(AllocaUser)))
+ return false;
+
+ WorkList.push_back(AllocaUser);
+ continue;
+ }
+
+ Value *Index = GEPToVectorIndex(GEP);
+
+ // If we can't compute a vector index from this GEP, then we can't
+ // promote this alloca to vector.
+ if (!Index) {
+ DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n');
+ return false;
+ }
+
+ GEPVectorIdx[GEP] = Index;
+ for (User *GEPUser : AllocaUser->users()) {
+ if (!canVectorizeInst(cast<Instruction>(GEPUser)))
+ return false;
+
+ WorkList.push_back(GEPUser);
+ }
+ }
+
+ VectorType *VectorTy = arrayTypeToVecType(AllocaTy);
+
+ DEBUG(dbgs() << " Converting alloca to vector "
+ << *AllocaTy << " -> " << *VectorTy << '\n');
+
+ for (std::vector<Value*>::iterator I = WorkList.begin(),
+ E = WorkList.end(); I != E; ++I) {
+ Instruction *Inst = cast<Instruction>(*I);
+ IRBuilder<> Builder(Inst);
+ switch (Inst->getOpcode()) {
+ case Instruction::Load: {
+ Value *Ptr = Inst->getOperand(0);
+ Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
+ Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0));
+ Value *VecValue = Builder.CreateLoad(BitCast);
+ Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
+ Inst->replaceAllUsesWith(ExtractElement);
+ Inst->eraseFromParent();
+ break;
+ }
+ case Instruction::Store: {
+ Value *Ptr = Inst->getOperand(1);
+ Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
+ Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0));
+ Value *VecValue = Builder.CreateLoad(BitCast);
+ Value *NewVecValue = Builder.CreateInsertElement(VecValue,
+ Inst->getOperand(0),
+ Index);
+ Builder.CreateStore(NewVecValue, BitCast);
+ Inst->eraseFromParent();
+ break;
+ }
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ break;
+
+ default:
+ Inst->dump();
+ llvm_unreachable("Inconsistency in instructions promotable to vector");
+ }
+ }
+ return true;
+}
+
+static void collectUsesWithPtrTypes(Value *Val, std::vector<Value*> &WorkList) {
+ for (User *User : Val->users()) {
+ if(std::find(WorkList.begin(), WorkList.end(), User) != WorkList.end())
+ continue;
+ if (isa<CallInst>(User)) {
+ WorkList.push_back(User);
+ continue;
+ }
+ if (!User->getType()->isPointerTy())
+ continue;
+ WorkList.push_back(User);
+ collectUsesWithPtrTypes(User, WorkList);
+ }
+}
+
+void AMDGPUPromoteAlloca::visitAlloca(AllocaInst &I) {
+ IRBuilder<> Builder(&I);
+
+ // First try to replace the alloca with a vector
+ Type *AllocaTy = I.getAllocatedType();
+
+ DEBUG(dbgs() << "Trying to promote " << I << '\n');
+
+ if (tryPromoteAllocaToVector(&I))
+ return;
+
+ DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n");
+
+ // FIXME: This is the maximum work group size. We should try to get
+ // value from the reqd_work_group_size function attribute if it is
+ // available.
+ unsigned WorkGroupSize = 256;
+ int AllocaSize = WorkGroupSize *
+ Mod->getDataLayout()->getTypeAllocSize(AllocaTy);
+
+ if (AllocaSize > LocalMemAvailable) {
+ DEBUG(dbgs() << " Not enough local memory to promote alloca.\n");
+ return;
+ }
+
+ DEBUG(dbgs() << "Promoting alloca to local memory\n");
+ LocalMemAvailable -= AllocaSize;
+
+ GlobalVariable *GV = new GlobalVariable(
+ *Mod, ArrayType::get(I.getAllocatedType(), 256), false,
+ GlobalValue::ExternalLinkage, 0, I.getName(), 0,
+ GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS);
+
+ FunctionType *FTy = FunctionType::get(
+ Type::getInt32Ty(Mod->getContext()), false);
+ AttributeSet AttrSet;
+ AttrSet.addAttribute(Mod->getContext(), 0, Attribute::ReadNone);
+
+ Value *ReadLocalSizeY = Mod->getOrInsertFunction(
+ "llvm.r600.read.local.size.y", FTy, AttrSet);
+ Value *ReadLocalSizeZ = Mod->getOrInsertFunction(
+ "llvm.r600.read.local.size.z", FTy, AttrSet);
+ Value *ReadTIDIGX = Mod->getOrInsertFunction(
+ "llvm.r600.read.tidig.x", FTy, AttrSet);
+ Value *ReadTIDIGY = Mod->getOrInsertFunction(
+ "llvm.r600.read.tidig.y", FTy, AttrSet);
+ Value *ReadTIDIGZ = Mod->getOrInsertFunction(
+ "llvm.r600.read.tidig.z", FTy, AttrSet);
+
+
+ Value *TCntY = Builder.CreateCall(ReadLocalSizeY);
+ Value *TCntZ = Builder.CreateCall(ReadLocalSizeZ);
+ Value *TIdX = Builder.CreateCall(ReadTIDIGX);
+ Value *TIdY = Builder.CreateCall(ReadTIDIGY);
+ Value *TIdZ = Builder.CreateCall(ReadTIDIGZ);
+
+ Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ);
+ Tmp0 = Builder.CreateMul(Tmp0, TIdX);
+ Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ);
+ Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
+ TID = Builder.CreateAdd(TID, TIdZ);
+
+ std::vector<Value*> Indices;
+ Indices.push_back(Constant::getNullValue(Type::getInt32Ty(Mod->getContext())));
+ Indices.push_back(TID);
+
+ Value *Offset = Builder.CreateGEP(GV, Indices);
+ I.mutateType(Offset->getType());
+ I.replaceAllUsesWith(Offset);
+ I.eraseFromParent();
+
+ std::vector<Value*> WorkList;
+
+ collectUsesWithPtrTypes(Offset, WorkList);
+
+ for (std::vector<Value*>::iterator i = WorkList.begin(),
+ e = WorkList.end(); i != e; ++i) {
+ Value *V = *i;
+ CallInst *Call = dyn_cast<CallInst>(V);
+ if (!Call) {
+ Type *EltTy = V->getType()->getPointerElementType();
+ PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
+ V->mutateType(NewTy);
+ continue;
+ }
+
+ IntrinsicInst *Intr = dyn_cast<IntrinsicInst>(Call);
+ if (!Intr) {
+ std::vector<Type*> ArgTypes;
+ for (unsigned ArgIdx = 0, ArgEnd = Call->getNumArgOperands();
+ ArgIdx != ArgEnd; ++ArgIdx) {
+ ArgTypes.push_back(Call->getArgOperand(ArgIdx)->getType());
+ }
+ Function *F = Call->getCalledFunction();
+ FunctionType *NewType = FunctionType::get(Call->getType(), ArgTypes,
+ F->isVarArg());
+ Constant *C = Mod->getOrInsertFunction(StringRef(F->getName().str() + ".local"), NewType,
+ F->getAttributes());
+ Function *NewF = cast<Function>(C);
+ Call->setCalledFunction(NewF);
+ continue;
+ }
+
+ Builder.SetInsertPoint(Intr);
+ switch (Intr->getIntrinsicID()) {
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ // These intrinsics are for address space 0 only
+ Intr->eraseFromParent();
+ continue;
+ case Intrinsic::memcpy: {
+ MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
+ Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(),
+ MemCpy->getLength(), MemCpy->getAlignment(),
+ MemCpy->isVolatile());
+ Intr->eraseFromParent();
+ continue;
+ }
+ case Intrinsic::memset: {
+ MemSetInst *MemSet = cast<MemSetInst>(Intr);
+ Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
+ MemSet->getLength(), MemSet->getAlignment(),
+ MemSet->isVolatile());
+ Intr->eraseFromParent();
+ continue;
+ }
+ default:
+ Intr->dump();
+ llvm_unreachable("Don't know how to promote alloca intrinsic use.");
+ }
+ }
+}
+
+FunctionPass *llvm::createAMDGPUPromoteAlloca(const AMDGPUSubtarget &ST) {
+ return new AMDGPUPromoteAlloca(ST);
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.cpp b/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.cpp
new file mode 100644
index 0000000..3433280
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.cpp
@@ -0,0 +1,67 @@
+//===-- AMDGPURegisterInfo.cpp - AMDGPU Register Information -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Parent TargetRegisterInfo class common to all hw codegen targets.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPURegisterInfo.h"
+#include "AMDGPUTargetMachine.h"
+
+using namespace llvm;
+
+AMDGPURegisterInfo::AMDGPURegisterInfo(const AMDGPUSubtarget &st)
+: AMDGPUGenRegisterInfo(0),
+ ST(st)
+ { }
+
+//===----------------------------------------------------------------------===//
+// Function handling callbacks - Functions are a seldom used feature of GPUS, so
+// they are not supported at this time.
+//===----------------------------------------------------------------------===//
+
+const MCPhysReg AMDGPURegisterInfo::CalleeSavedReg = AMDGPU::NoRegister;
+
+const MCPhysReg*
+AMDGPURegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ return &CalleeSavedReg;
+}
+
+void AMDGPURegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
+ int SPAdj,
+ unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ llvm_unreachable("Subroutines not supported yet");
+}
+
+unsigned AMDGPURegisterInfo::getFrameRegister(const MachineFunction &MF) const {
+ assert(!"Subroutines not supported yet");
+ return 0;
+}
+
+unsigned AMDGPURegisterInfo::getSubRegFromChannel(unsigned Channel) const {
+ static const unsigned SubRegs[] = {
+ AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, AMDGPU::sub4,
+ AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, AMDGPU::sub8, AMDGPU::sub9,
+ AMDGPU::sub10, AMDGPU::sub11, AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14,
+ AMDGPU::sub15
+ };
+
+ assert(Channel < array_lengthof(SubRegs));
+ return SubRegs[Channel];
+}
+
+unsigned AMDGPURegisterInfo::getIndirectSubReg(unsigned IndirectIndex) const {
+
+ return getSubRegFromChannel(IndirectIndex);
+}
+
+#define GET_REGINFO_TARGET_DESC
+#include "AMDGPUGenRegisterInfo.inc"
diff --git a/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.h b/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.h
new file mode 100644
index 0000000..46aa7a1
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.h
@@ -0,0 +1,65 @@
+//===-- AMDGPURegisterInfo.h - AMDGPURegisterInfo Interface -*- C++ -*-----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief TargetRegisterInfo interface that is implemented by all hw codegen
+/// targets.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPUREGISTERINFO_H
+#define AMDGPUREGISTERINFO_H
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define GET_REGINFO_HEADER
+#define GET_REGINFO_ENUM
+#include "AMDGPUGenRegisterInfo.inc"
+
+namespace llvm {
+
+class AMDGPUSubtarget;
+class TargetInstrInfo;
+
+struct AMDGPURegisterInfo : public AMDGPUGenRegisterInfo {
+ static const MCPhysReg CalleeSavedReg;
+ const AMDGPUSubtarget &ST;
+
+ AMDGPURegisterInfo(const AMDGPUSubtarget &st);
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override {
+ assert(!"Unimplemented"); return BitVector();
+ }
+
+ virtual const TargetRegisterClass* getCFGStructurizerRegClass(MVT VT) const {
+ assert(!"Unimplemented"); return nullptr;
+ }
+
+ virtual unsigned getHWRegIndex(unsigned Reg) const {
+ assert(!"Unimplemented"); return 0;
+ }
+
+ /// \returns the sub reg enum value for the given \p Channel
+ /// (e.g. getSubRegFromChannel(0) -> AMDGPU::sub0)
+ unsigned getSubRegFromChannel(unsigned Channel) const;
+
+ const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF) const override;
+ virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj,
+ unsigned FIOperandNum,
+ RegScavenger *RS) const override;
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+
+ unsigned getIndirectSubReg(unsigned IndirectIndex) const;
+
+};
+
+} // End namespace llvm
+
+#endif // AMDIDSAREGISTERINFO_H
diff --git a/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.td b/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.td
new file mode 100644
index 0000000..835a146
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.td
@@ -0,0 +1,26 @@
+//===-- AMDGPURegisterInfo.td - AMDGPU register info -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Tablegen register definitions common to all hw codegen targets.
+//
+//===----------------------------------------------------------------------===//
+
+let Namespace = "AMDGPU" in {
+
+foreach Index = 0-15 in {
+ // Indices are used in a variety of ways here, so don't set a size/offset.
+ def sub#Index : SubRegIndex<-1, -1>;
+}
+
+def INDIRECT_BASE_ADDR : Register <"INDIRECT_BASE_ADDR">;
+
+}
+
+include "R600RegisterInfo.td"
+include "SIRegisterInfo.td"
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.cpp b/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.cpp
new file mode 100644
index 0000000..e3c2a50
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.cpp
@@ -0,0 +1,89 @@
+//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Implements the AMDGPU specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUSubtarget.h"
+#include "R600InstrInfo.h"
+#include "SIInstrInfo.h"
+#include "llvm/ADT/SmallString.h"
+
+#include "llvm/ADT/SmallString.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "amdgpu-subtarget"
+
+#define GET_SUBTARGETINFO_ENUM
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#include "AMDGPUGenSubtargetInfo.inc"
+
+AMDGPUSubtarget::AMDGPUSubtarget(StringRef TT, StringRef GPU, StringRef FS) :
+ AMDGPUGenSubtargetInfo(TT, GPU, FS),
+ DevName(GPU),
+ Is64bit(false),
+ DumpCode(false),
+ R600ALUInst(false),
+ HasVertexCache(false),
+ TexVTXClauseSize(0),
+ Gen(AMDGPUSubtarget::R600),
+ FP64(false),
+ FP64Denormals(false),
+ FP32Denormals(false),
+ CaymanISA(false),
+ EnableIRStructurizer(true),
+ EnablePromoteAlloca(false),
+ EnableIfCvt(true),
+ WavefrontSize(0),
+ CFALUBug(false),
+ LocalMemorySize(0),
+ InstrItins(getInstrItineraryForCPU(GPU)) {
+ // On SI+, we want FP64 denormals to be on by default. FP32 denormals can be
+ // enabled, but some instructions do not respect them and they run at the
+ // double precision rate, so don't enable by default.
+ //
+ // We want to be able to turn these off, but making this a subtarget feature
+ // for SI has the unhelpful behavior that it unsets everything else if you
+ // disable it.
+
+ SmallString<256> FullFS("+promote-alloca,+fp64-denormals,");
+ FullFS += FS;
+
+ ParseSubtargetFeatures(GPU, FullFS);
+
+ if (getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
+ InstrInfo.reset(new R600InstrInfo(*this));
+
+ // FIXME: I don't think think Evergreen has any useful support for
+ // denormals, but should be checked. Should we issue a warning somewhere if
+ // someone tries to enable these?
+ FP32Denormals = false;
+ FP64Denormals = false;
+ } else {
+ InstrInfo.reset(new SIInstrInfo(*this));
+ }
+}
+
+unsigned AMDGPUSubtarget::getStackEntrySize() const {
+ assert(getGeneration() <= NORTHERN_ISLANDS);
+ switch(getWavefrontSize()) {
+ case 16:
+ return 8;
+ case 32:
+ return hasCaymanISA() ? 4 : 8;
+ case 64:
+ return 4;
+ default:
+ llvm_unreachable("Illegal wavefront size.");
+ }
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.h b/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.h
new file mode 100644
index 0000000..a844b37
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.h
@@ -0,0 +1,199 @@
+//=====-- AMDGPUSubtarget.h - Define Subtarget for the AMDIL ---*- C++ -*-====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//==-----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief AMDGPU specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPUSUBTARGET_H
+#define AMDGPUSUBTARGET_H
+#include "AMDGPU.h"
+#include "AMDGPUInstrInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+#define GET_SUBTARGETINFO_HEADER
+#include "AMDGPUGenSubtargetInfo.inc"
+
+#define MAX_CB_SIZE (1 << 16)
+
+namespace llvm {
+
+class AMDGPUSubtarget : public AMDGPUGenSubtargetInfo {
+
+ std::unique_ptr<AMDGPUInstrInfo> InstrInfo;
+
+public:
+ enum Generation {
+ R600 = 0,
+ R700,
+ EVERGREEN,
+ NORTHERN_ISLANDS,
+ SOUTHERN_ISLANDS,
+ SEA_ISLANDS
+ };
+
+private:
+ std::string DevName;
+ bool Is64bit;
+ bool DumpCode;
+ bool R600ALUInst;
+ bool HasVertexCache;
+ short TexVTXClauseSize;
+ Generation Gen;
+ bool FP64;
+ bool FP64Denormals;
+ bool FP32Denormals;
+ bool CaymanISA;
+ bool EnableIRStructurizer;
+ bool EnablePromoteAlloca;
+ bool EnableIfCvt;
+ unsigned WavefrontSize;
+ bool CFALUBug;
+ int LocalMemorySize;
+
+ InstrItineraryData InstrItins;
+
+public:
+ AMDGPUSubtarget(StringRef TT, StringRef CPU, StringRef FS);
+
+ const AMDGPUInstrInfo *getInstrInfo() const {
+ return InstrInfo.get();
+ }
+
+ const InstrItineraryData &getInstrItineraryData() const {
+ return InstrItins;
+ }
+
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+
+ bool is64bit() const {
+ return Is64bit;
+ }
+
+ bool hasVertexCache() const {
+ return HasVertexCache;
+ }
+
+ short getTexVTXClauseSize() const {
+ return TexVTXClauseSize;
+ }
+
+ Generation getGeneration() const {
+ return Gen;
+ }
+
+ bool hasHWFP64() const {
+ return FP64;
+ }
+
+ bool hasCaymanISA() const {
+ return CaymanISA;
+ }
+
+ bool hasFP32Denormals() const {
+ return FP32Denormals;
+ }
+
+ bool hasFP64Denormals() const {
+ return FP64Denormals;
+ }
+
+ bool hasBFE() const {
+ return (getGeneration() >= EVERGREEN);
+ }
+
+ bool hasBFI() const {
+ return (getGeneration() >= EVERGREEN);
+ }
+
+ bool hasBFM() const {
+ return hasBFE();
+ }
+
+ bool hasBCNT(unsigned Size) const {
+ if (Size == 32)
+ return (getGeneration() >= EVERGREEN);
+
+ if (Size == 64)
+ return (getGeneration() >= SOUTHERN_ISLANDS);
+
+ return false;
+ }
+
+ bool hasMulU24() const {
+ return (getGeneration() >= EVERGREEN);
+ }
+
+ bool hasMulI24() const {
+ return (getGeneration() >= SOUTHERN_ISLANDS ||
+ hasCaymanISA());
+ }
+
+ bool hasFFBL() const {
+ return (getGeneration() >= EVERGREEN);
+ }
+
+ bool hasFFBH() const {
+ return (getGeneration() >= EVERGREEN);
+ }
+
+ bool IsIRStructurizerEnabled() const {
+ return EnableIRStructurizer;
+ }
+
+ bool isPromoteAllocaEnabled() const {
+ return EnablePromoteAlloca;
+ }
+
+ bool isIfCvtEnabled() const {
+ return EnableIfCvt;
+ }
+
+ unsigned getWavefrontSize() const {
+ return WavefrontSize;
+ }
+
+ unsigned getStackEntrySize() const;
+
+ bool hasCFAluBug() const {
+ assert(getGeneration() <= NORTHERN_ISLANDS);
+ return CFALUBug;
+ }
+
+ int getLocalMemorySize() const {
+ return LocalMemorySize;
+ }
+
+ bool enableMachineScheduler() const override {
+ return getGeneration() <= NORTHERN_ISLANDS;
+ }
+
+ // Helper functions to simplify if statements
+ bool isTargetELF() const {
+ return false;
+ }
+
+ StringRef getDeviceName() const {
+ return DevName;
+ }
+
+ bool dumpCode() const {
+ return DumpCode;
+ }
+ bool r600ALUEncoding() const {
+ return R600ALUInst;
+ }
+};
+
+} // End namespace llvm
+
+#endif // AMDGPUSUBTARGET_H
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.cpp b/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.cpp
new file mode 100644
index 0000000..56ba719
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.cpp
@@ -0,0 +1,221 @@
+//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief The AMDGPU target machine contains all of the hardware specific
+/// information needed to emit code for R600 and SI GPUs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUTargetMachine.h"
+#include "AMDGPU.h"
+#include "R600ISelLowering.h"
+#include "R600InstrInfo.h"
+#include "R600MachineScheduler.h"
+#include "SIISelLowering.h"
+#include "SIInstrInfo.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_os_ostream.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/Scalar.h"
+#include <llvm/CodeGen/Passes.h>
+
+using namespace llvm;
+
+extern "C" void LLVMInitializeR600Target() {
+ // Register the target
+ RegisterTargetMachine<AMDGPUTargetMachine> X(TheAMDGPUTarget);
+}
+
+static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
+ return new ScheduleDAGMILive(C, make_unique<R600SchedStrategy>());
+}
+
+static MachineSchedRegistry
+SchedCustomRegistry("r600", "Run R600's custom scheduler",
+ createR600MachineScheduler);
+
+static std::string computeDataLayout(const AMDGPUSubtarget &ST) {
+ std::string Ret = "e-p:32:32";
+
+ if (ST.is64bit()) {
+ // 32-bit local, and region pointers. 64-bit private, global, and constant.
+ Ret += "-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32-p24:64:64";
+ }
+
+ Ret += "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128-v192:256-v256:256"
+ "-v512:512-v1024:1024-v2048:2048-n32:64";
+
+ return Ret;
+}
+
+AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ TargetOptions Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OptLevel
+)
+:
+ LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OptLevel),
+ Subtarget(TT, CPU, FS),
+ Layout(computeDataLayout(Subtarget)),
+ FrameLowering(TargetFrameLowering::StackGrowsUp,
+ 64 * 16 // Maximum stack alignment (long16)
+ , 0),
+ IntrinsicInfo(this),
+ InstrItins(&Subtarget.getInstrItineraryData()) {
+ // TLInfo uses InstrInfo so it must be initialized after.
+ if (Subtarget.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
+ TLInfo.reset(new R600TargetLowering(*this));
+ } else {
+ TLInfo.reset(new SITargetLowering(*this));
+ }
+ setRequiresStructuredCFG(true);
+ initAsmInfo();
+}
+
+AMDGPUTargetMachine::~AMDGPUTargetMachine() {
+}
+
+namespace {
+class AMDGPUPassConfig : public TargetPassConfig {
+public:
+ AMDGPUPassConfig(AMDGPUTargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
+ return getTM<AMDGPUTargetMachine>();
+ }
+
+ ScheduleDAGInstrs *
+ createMachineScheduler(MachineSchedContext *C) const override {
+ const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
+ if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
+ return createR600MachineScheduler(C);
+ return nullptr;
+ }
+
+ virtual void addCodeGenPrepare();
+ bool addPreISel() override;
+ bool addInstSelector() override;
+ bool addPreRegAlloc() override;
+ bool addPostRegAlloc() override;
+ bool addPreSched2() override;
+ bool addPreEmitPass() override;
+};
+} // End of anonymous namespace
+
+TargetPassConfig *AMDGPUTargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new AMDGPUPassConfig(this, PM);
+}
+
+//===----------------------------------------------------------------------===//
+// AMDGPU Analysis Pass Setup
+//===----------------------------------------------------------------------===//
+
+void AMDGPUTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
+ // Add first the target-independent BasicTTI pass, then our AMDGPU pass. This
+ // allows the AMDGPU pass to delegate to the target independent layer when
+ // appropriate.
+ PM.add(createBasicTargetTransformInfoPass(this));
+ PM.add(createAMDGPUTargetTransformInfoPass(this));
+}
+
+void AMDGPUPassConfig::addCodeGenPrepare() {
+ const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
+ if (ST.isPromoteAllocaEnabled()) {
+ addPass(createAMDGPUPromoteAlloca(ST));
+ addPass(createSROAPass());
+ }
+
+ TargetPassConfig::addCodeGenPrepare();
+}
+
+bool
+AMDGPUPassConfig::addPreISel() {
+ const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
+ addPass(createFlattenCFGPass());
+ if (ST.IsIRStructurizerEnabled())
+ addPass(createStructurizeCFGPass());
+ if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ addPass(createSinkingPass());
+ addPass(createSITypeRewriter());
+ addPass(createSIAnnotateControlFlowPass());
+ } else {
+ addPass(createR600TextureIntrinsicsReplacer());
+ }
+ return false;
+}
+
+bool AMDGPUPassConfig::addInstSelector() {
+ addPass(createAMDGPUISelDag(getAMDGPUTargetMachine()));
+ addPass(createSILowerI1CopiesPass());
+ return false;
+}
+
+bool AMDGPUPassConfig::addPreRegAlloc() {
+ const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
+
+ if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
+ addPass(createR600VectorRegMerger(*TM));
+ } else {
+ addPass(createSIFixSGPRCopiesPass(*TM));
+ // SIFixSGPRCopies can generate a lot of duplicate instructions,
+ // so we need to run MachineCSE afterwards.
+ addPass(&MachineCSEID);
+ addPass(createSIShrinkInstructionsPass());
+ initializeSIFixSGPRLiveRangesPass(*PassRegistry::getPassRegistry());
+ insertPass(&RegisterCoalescerID, &SIFixSGPRLiveRangesID);
+ }
+ return false;
+}
+
+bool AMDGPUPassConfig::addPostRegAlloc() {
+ const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
+
+ addPass(createSIShrinkInstructionsPass());
+ if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
+ addPass(createSIInsertWaits(*TM));
+ }
+ return false;
+}
+
+bool AMDGPUPassConfig::addPreSched2() {
+ const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
+
+ if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
+ addPass(createR600EmitClauseMarkers());
+ if (ST.isIfCvtEnabled())
+ addPass(&IfConverterID);
+ if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
+ addPass(createR600ClauseMergePass(*TM));
+ return false;
+}
+
+bool AMDGPUPassConfig::addPreEmitPass() {
+ const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
+ if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
+ addPass(createAMDGPUCFGStructurizerPass());
+ addPass(createR600ExpandSpecialInstrsPass(*TM));
+ addPass(&FinalizeMachineBundlesID);
+ addPass(createR600Packetizer(*TM));
+ addPass(createR600ControlFlowFinalizer(*TM));
+ } else {
+ addPass(createSILowerControlFlowPass(*TM));
+ }
+
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.h b/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.h
new file mode 100644
index 0000000..3bb15be
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.h
@@ -0,0 +1,71 @@
+//===-- AMDGPUTargetMachine.h - AMDGPU TargetMachine Interface --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief The AMDGPU TargetMachine interface definition for hw codgen targets.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPU_TARGET_MACHINE_H
+#define AMDGPU_TARGET_MACHINE_H
+
+#include "AMDGPUFrameLowering.h"
+#include "AMDGPUInstrInfo.h"
+#include "AMDGPUIntrinsicInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "R600ISelLowering.h"
+#include "llvm/IR/DataLayout.h"
+
+namespace llvm {
+
+class AMDGPUTargetMachine : public LLVMTargetMachine {
+
+ AMDGPUSubtarget Subtarget;
+ const DataLayout Layout;
+ AMDGPUFrameLowering FrameLowering;
+ AMDGPUIntrinsicInfo IntrinsicInfo;
+ std::unique_ptr<AMDGPUTargetLowering> TLInfo;
+ const InstrItineraryData *InstrItins;
+
+public:
+ AMDGPUTargetMachine(const Target &T, StringRef TT, StringRef FS,
+ StringRef CPU, TargetOptions Options, Reloc::Model RM,
+ CodeModel::Model CM, CodeGenOpt::Level OL);
+ ~AMDGPUTargetMachine();
+ const AMDGPUFrameLowering *getFrameLowering() const override {
+ return &FrameLowering;
+ }
+ const AMDGPUIntrinsicInfo *getIntrinsicInfo() const override {
+ return &IntrinsicInfo;
+ }
+ const AMDGPUInstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const AMDGPUSubtarget *getSubtargetImpl() const override {
+ return &Subtarget;
+ }
+ const AMDGPURegisterInfo *getRegisterInfo() const override {
+ return &getInstrInfo()->getRegisterInfo();
+ }
+ AMDGPUTargetLowering *getTargetLowering() const override {
+ return TLInfo.get();
+ }
+ const InstrItineraryData *getInstrItineraryData() const override {
+ return InstrItins;
+ }
+ const DataLayout *getDataLayout() const override { return &Layout; }
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+
+ /// \brief Register R600 analysis passes with a pass manager.
+ void addAnalysisPasses(PassManagerBase &PM) override;
+};
+
+} // End namespace llvm
+
+#endif // AMDGPU_TARGET_MACHINE_H
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUTargetTransformInfo.cpp b/contrib/llvm/lib/Target/R600/AMDGPUTargetTransformInfo.cpp
new file mode 100644
index 0000000..88934b6
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUTargetTransformInfo.cpp
@@ -0,0 +1,153 @@
+//===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// \file
+// This file implements a TargetTransformInfo analysis pass specific to the
+// AMDGPU target machine. It uses the target's detailed information to provide
+// more precise answers to certain TTI queries, while letting the target
+// independent and default TTI implementations handle the rest.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "AMDGPUTargetMachine.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/CostTable.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "AMDGPUtti"
+
+// Declare the pass initialization routine locally as target-specific passes
+// don't have a target-wide initialization entry point, and so we rely on the
+// pass constructor initialization.
+namespace llvm {
+void initializeAMDGPUTTIPass(PassRegistry &);
+}
+
+namespace {
+
+class AMDGPUTTI final : public ImmutablePass, public TargetTransformInfo {
+ const AMDGPUTargetMachine *TM;
+ const AMDGPUSubtarget *ST;
+ const AMDGPUTargetLowering *TLI;
+
+ /// Estimate the overhead of scalarizing an instruction. Insert and Extract
+ /// are set if the result needs to be inserted and/or extracted from vectors.
+ unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
+
+public:
+ AMDGPUTTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
+ llvm_unreachable("This pass cannot be directly constructed");
+ }
+
+ AMDGPUTTI(const AMDGPUTargetMachine *TM)
+ : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
+ TLI(TM->getTargetLowering()) {
+ initializeAMDGPUTTIPass(*PassRegistry::getPassRegistry());
+ }
+
+ void initializePass() override { pushTTIStack(this); }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ TargetTransformInfo::getAnalysisUsage(AU);
+ }
+
+ /// Pass identification.
+ static char ID;
+
+ /// Provide necessary pointer adjustments for the two base classes.
+ void *getAdjustedAnalysisPointer(const void *ID) override {
+ if (ID == &TargetTransformInfo::ID)
+ return (TargetTransformInfo *)this;
+ return this;
+ }
+
+ bool hasBranchDivergence() const override;
+
+ void getUnrollingPreferences(Loop *L,
+ UnrollingPreferences &UP) const override;
+
+ PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const override;
+
+ unsigned getNumberOfRegisters(bool Vector) const override;
+ unsigned getRegisterBitWidth(bool Vector) const override;
+ unsigned getMaximumUnrollFactor() const override;
+
+ /// @}
+};
+
+} // end anonymous namespace
+
+INITIALIZE_AG_PASS(AMDGPUTTI, TargetTransformInfo, "AMDGPUtti",
+ "AMDGPU Target Transform Info", true, true, false)
+char AMDGPUTTI::ID = 0;
+
+ImmutablePass *
+llvm::createAMDGPUTargetTransformInfoPass(const AMDGPUTargetMachine *TM) {
+ return new AMDGPUTTI(TM);
+}
+
+bool AMDGPUTTI::hasBranchDivergence() const { return true; }
+
+void AMDGPUTTI::getUnrollingPreferences(Loop *L,
+ UnrollingPreferences &UP) const {
+ for (const BasicBlock *BB : L->getBlocks()) {
+ for (const Instruction &I : *BB) {
+ const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
+ if (!GEP || GEP->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
+ continue;
+
+ const Value *Ptr = GEP->getPointerOperand();
+ const AllocaInst *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr));
+ if (Alloca) {
+ // We want to do whatever we can to limit the number of alloca
+ // instructions that make it through to the code generator. allocas
+ // require us to use indirect addressing, which is slow and prone to
+ // compiler bugs. If this loop does an address calculation on an
+ // alloca ptr, then we want to use a higher than normal loop unroll
+ // threshold. This will give SROA a better chance to eliminate these
+ // allocas.
+ //
+ // Don't use the maximum allowed value here as it will make some
+ // programs way too big.
+ UP.Threshold = 500;
+ }
+ }
+ }
+}
+
+AMDGPUTTI::PopcntSupportKind
+AMDGPUTTI::getPopcntSupport(unsigned TyWidth) const {
+ assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
+ return ST->hasBCNT(TyWidth) ? PSK_FastHardware : PSK_Software;
+}
+
+unsigned AMDGPUTTI::getNumberOfRegisters(bool Vec) const {
+ if (Vec)
+ return 0;
+
+ // Number of VGPRs on SI.
+ if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)
+ return 256;
+
+ return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
+}
+
+unsigned AMDGPUTTI::getRegisterBitWidth(bool) const {
+ return 32;
+}
+
+unsigned AMDGPUTTI::getMaximumUnrollFactor() const {
+ // Semi-arbitrary large amount.
+ return 64;
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDILCFGStructurizer.cpp b/contrib/llvm/lib/Target/R600/AMDILCFGStructurizer.cpp
new file mode 100644
index 0000000..f3a0391
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDILCFGStructurizer.cpp
@@ -0,0 +1,1911 @@
+//===-- AMDILCFGStructurizer.cpp - CFG Structurizer -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// \file
+//==-----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "AMDGPUInstrInfo.h"
+#include "R600InstrInfo.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "structcfg"
+
+#define DEFAULT_VEC_SLOTS 8
+
+// TODO: move-begin.
+
+//===----------------------------------------------------------------------===//
+//
+// Statistics for CFGStructurizer.
+//
+//===----------------------------------------------------------------------===//
+
+STATISTIC(numSerialPatternMatch, "CFGStructurizer number of serial pattern "
+ "matched");
+STATISTIC(numIfPatternMatch, "CFGStructurizer number of if pattern "
+ "matched");
+STATISTIC(numLoopcontPatternMatch, "CFGStructurizer number of loop-continue "
+ "pattern matched");
+STATISTIC(numClonedBlock, "CFGStructurizer cloned blocks");
+STATISTIC(numClonedInstr, "CFGStructurizer cloned instructions");
+
+namespace llvm {
+ void initializeAMDGPUCFGStructurizerPass(PassRegistry&);
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Miscellaneous utility for CFGStructurizer.
+//
+//===----------------------------------------------------------------------===//
+namespace {
+#define SHOWNEWINSTR(i) \
+ DEBUG(dbgs() << "New instr: " << *i << "\n");
+
+#define SHOWNEWBLK(b, msg) \
+DEBUG( \
+ dbgs() << msg << "BB" << b->getNumber() << "size " << b->size(); \
+ dbgs() << "\n"; \
+);
+
+#define SHOWBLK_DETAIL(b, msg) \
+DEBUG( \
+ if (b) { \
+ dbgs() << msg << "BB" << b->getNumber() << "size " << b->size(); \
+ b->print(dbgs()); \
+ dbgs() << "\n"; \
+ } \
+);
+
+#define INVALIDSCCNUM -1
+
+template<class NodeT>
+void ReverseVector(SmallVectorImpl<NodeT *> &Src) {
+ size_t sz = Src.size();
+ for (size_t i = 0; i < sz/2; ++i) {
+ NodeT *t = Src[i];
+ Src[i] = Src[sz - i - 1];
+ Src[sz - i - 1] = t;
+ }
+}
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+//
+// supporting data structure for CFGStructurizer
+//
+//===----------------------------------------------------------------------===//
+
+
+namespace {
+
+class BlockInformation {
+public:
+ bool IsRetired;
+ int SccNum;
+ BlockInformation() : IsRetired(false), SccNum(INVALIDSCCNUM) {}
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+//
+// CFGStructurizer
+//
+//===----------------------------------------------------------------------===//
+
+namespace {
+class AMDGPUCFGStructurizer : public MachineFunctionPass {
+public:
+ typedef SmallVector<MachineBasicBlock *, 32> MBBVector;
+ typedef std::map<MachineBasicBlock *, BlockInformation *> MBBInfoMap;
+ typedef std::map<MachineLoop *, MachineBasicBlock *> LoopLandInfoMap;
+
+ enum PathToKind {
+ Not_SinglePath = 0,
+ SinglePath_InPath = 1,
+ SinglePath_NotInPath = 2
+ };
+
+ static char ID;
+
+ AMDGPUCFGStructurizer() :
+ MachineFunctionPass(ID), TII(nullptr), TRI(nullptr) {
+ initializeAMDGPUCFGStructurizerPass(*PassRegistry::getPassRegistry());
+ }
+
+ const char *getPassName() const override {
+ return "AMDGPU Control Flow Graph structurizer Pass";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addPreserved<MachineFunctionAnalysis>();
+ AU.addRequired<MachineFunctionAnalysis>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachinePostDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ }
+
+ /// Perform the CFG structurization
+ bool run();
+
+ /// Perform the CFG preparation
+ /// This step will remove every unconditionnal/dead jump instructions and make
+ /// sure all loops have an exit block
+ bool prepare();
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ TII = static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo());
+ TRI = &TII->getRegisterInfo();
+ DEBUG(MF.dump(););
+ OrderedBlks.clear();
+ FuncRep = &MF;
+ MLI = &getAnalysis<MachineLoopInfo>();
+ DEBUG(dbgs() << "LoopInfo:\n"; PrintLoopinfo(*MLI););
+ MDT = &getAnalysis<MachineDominatorTree>();
+ DEBUG(MDT->print(dbgs(), (const llvm::Module*)nullptr););
+ PDT = &getAnalysis<MachinePostDominatorTree>();
+ DEBUG(PDT->print(dbgs()););
+ prepare();
+ run();
+ DEBUG(MF.dump(););
+ return true;
+ }
+
+protected:
+ MachineDominatorTree *MDT;
+ MachinePostDominatorTree *PDT;
+ MachineLoopInfo *MLI;
+ const R600InstrInfo *TII;
+ const AMDGPURegisterInfo *TRI;
+
+ // PRINT FUNCTIONS
+ /// Print the ordered Blocks.
+ void printOrderedBlocks() const {
+ size_t i = 0;
+ for (MBBVector::const_iterator iterBlk = OrderedBlks.begin(),
+ iterBlkEnd = OrderedBlks.end(); iterBlk != iterBlkEnd; ++iterBlk, ++i) {
+ dbgs() << "BB" << (*iterBlk)->getNumber();
+ dbgs() << "(" << getSCCNum(*iterBlk) << "," << (*iterBlk)->size() << ")";
+ if (i != 0 && i % 10 == 0) {
+ dbgs() << "\n";
+ } else {
+ dbgs() << " ";
+ }
+ }
+ }
+ static void PrintLoopinfo(const MachineLoopInfo &LoopInfo) {
+ for (MachineLoop::iterator iter = LoopInfo.begin(),
+ iterEnd = LoopInfo.end(); iter != iterEnd; ++iter) {
+ (*iter)->print(dbgs(), 0);
+ }
+ }
+
+ // UTILITY FUNCTIONS
+ int getSCCNum(MachineBasicBlock *MBB) const;
+ MachineBasicBlock *getLoopLandInfo(MachineLoop *LoopRep) const;
+ bool hasBackEdge(MachineBasicBlock *MBB) const;
+ static unsigned getLoopDepth(MachineLoop *LoopRep);
+ bool isRetiredBlock(MachineBasicBlock *MBB) const;
+ bool isActiveLoophead(MachineBasicBlock *MBB) const;
+ PathToKind singlePathTo(MachineBasicBlock *SrcMBB, MachineBasicBlock *DstMBB,
+ bool AllowSideEntry = true) const;
+ int countActiveBlock(MBBVector::const_iterator It,
+ MBBVector::const_iterator E) const;
+ bool needMigrateBlock(MachineBasicBlock *MBB) const;
+
+ // Utility Functions
+ void reversePredicateSetter(MachineBasicBlock::iterator I);
+ /// Compute the reversed DFS post order of Blocks
+ void orderBlocks(MachineFunction *MF);
+
+ // Function originally from CFGStructTraits
+ void insertInstrEnd(MachineBasicBlock *MBB, int NewOpcode,
+ DebugLoc DL = DebugLoc());
+ MachineInstr *insertInstrBefore(MachineBasicBlock *MBB, int NewOpcode,
+ DebugLoc DL = DebugLoc());
+ MachineInstr *insertInstrBefore(MachineBasicBlock::iterator I, int NewOpcode);
+ void insertCondBranchBefore(MachineBasicBlock::iterator I, int NewOpcode,
+ DebugLoc DL);
+ void insertCondBranchBefore(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I, int NewOpcode, int RegNum,
+ DebugLoc DL);
+ void insertCondBranchEnd(MachineBasicBlock *MBB, int NewOpcode, int RegNum);
+ static int getBranchNzeroOpcode(int OldOpcode);
+ static int getBranchZeroOpcode(int OldOpcode);
+ static int getContinueNzeroOpcode(int OldOpcode);
+ static int getContinueZeroOpcode(int OldOpcode);
+ static MachineBasicBlock *getTrueBranch(MachineInstr *MI);
+ static void setTrueBranch(MachineInstr *MI, MachineBasicBlock *MBB);
+ static MachineBasicBlock *getFalseBranch(MachineBasicBlock *MBB,
+ MachineInstr *MI);
+ static bool isCondBranch(MachineInstr *MI);
+ static bool isUncondBranch(MachineInstr *MI);
+ static DebugLoc getLastDebugLocInBB(MachineBasicBlock *MBB);
+ static MachineInstr *getNormalBlockBranchInstr(MachineBasicBlock *MBB);
+ /// The correct naming for this is getPossibleLoopendBlockBranchInstr.
+ ///
+ /// BB with backward-edge could have move instructions after the branch
+ /// instruction. Such move instruction "belong to" the loop backward-edge.
+ MachineInstr *getLoopendBlockBranchInstr(MachineBasicBlock *MBB);
+ static MachineInstr *getReturnInstr(MachineBasicBlock *MBB);
+ static MachineInstr *getContinueInstr(MachineBasicBlock *MBB);
+ static bool isReturnBlock(MachineBasicBlock *MBB);
+ static void cloneSuccessorList(MachineBasicBlock *DstMBB,
+ MachineBasicBlock *SrcMBB) ;
+ static MachineBasicBlock *clone(MachineBasicBlock *MBB);
+ /// MachineBasicBlock::ReplaceUsesOfBlockWith doesn't serve the purpose
+ /// because the AMDGPU instruction is not recognized as terminator fix this
+ /// and retire this routine
+ void replaceInstrUseOfBlockWith(MachineBasicBlock *SrcMBB,
+ MachineBasicBlock *OldMBB, MachineBasicBlock *NewBlk);
+ static void wrapup(MachineBasicBlock *MBB);
+
+
+ int patternMatch(MachineBasicBlock *MBB);
+ int patternMatchGroup(MachineBasicBlock *MBB);
+ int serialPatternMatch(MachineBasicBlock *MBB);
+ int ifPatternMatch(MachineBasicBlock *MBB);
+ int loopendPatternMatch();
+ int mergeLoop(MachineLoop *LoopRep);
+ int loopcontPatternMatch(MachineLoop *LoopRep, MachineBasicBlock *LoopHeader);
+
+ void handleLoopcontBlock(MachineBasicBlock *ContingMBB,
+ MachineLoop *ContingLoop, MachineBasicBlock *ContMBB,
+ MachineLoop *ContLoop);
+ /// return true iff src1Blk->succ_size() == 0 && src1Blk and src2Blk are in
+ /// the same loop with LoopLandInfo without explicitly keeping track of
+ /// loopContBlks and loopBreakBlks, this is a method to get the information.
+ bool isSameloopDetachedContbreak(MachineBasicBlock *Src1MBB,
+ MachineBasicBlock *Src2MBB);
+ int handleJumpintoIf(MachineBasicBlock *HeadMBB,
+ MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB);
+ int handleJumpintoIfImp(MachineBasicBlock *HeadMBB,
+ MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB);
+ int improveSimpleJumpintoIf(MachineBasicBlock *HeadMBB,
+ MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB,
+ MachineBasicBlock **LandMBBPtr);
+ void showImproveSimpleJumpintoIf(MachineBasicBlock *HeadMBB,
+ MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB,
+ MachineBasicBlock *LandMBB, bool Detail = false);
+ int cloneOnSideEntryTo(MachineBasicBlock *PreMBB,
+ MachineBasicBlock *SrcMBB, MachineBasicBlock *DstMBB);
+ void mergeSerialBlock(MachineBasicBlock *DstMBB,
+ MachineBasicBlock *SrcMBB);
+
+ void mergeIfthenelseBlock(MachineInstr *BranchMI,
+ MachineBasicBlock *MBB, MachineBasicBlock *TrueMBB,
+ MachineBasicBlock *FalseMBB, MachineBasicBlock *LandMBB);
+ void mergeLooplandBlock(MachineBasicBlock *DstMBB,
+ MachineBasicBlock *LandMBB);
+ void mergeLoopbreakBlock(MachineBasicBlock *ExitingMBB,
+ MachineBasicBlock *LandMBB);
+ void settleLoopcontBlock(MachineBasicBlock *ContingMBB,
+ MachineBasicBlock *ContMBB);
+ /// normalizeInfiniteLoopExit change
+ /// B1:
+ /// uncond_br LoopHeader
+ ///
+ /// to
+ /// B1:
+ /// cond_br 1 LoopHeader dummyExit
+ /// and return the newly added dummy exit block
+ MachineBasicBlock *normalizeInfiniteLoopExit(MachineLoop *LoopRep);
+ void removeUnconditionalBranch(MachineBasicBlock *MBB);
+ /// Remove duplicate branches instructions in a block.
+ /// For instance
+ /// B0:
+ /// cond_br X B1 B2
+ /// cond_br X B1 B2
+ /// is transformed to
+ /// B0:
+ /// cond_br X B1 B2
+ void removeRedundantConditionalBranch(MachineBasicBlock *MBB);
+ void addDummyExitBlock(SmallVectorImpl<MachineBasicBlock *> &RetMBB);
+ void removeSuccessor(MachineBasicBlock *MBB);
+ MachineBasicBlock *cloneBlockForPredecessor(MachineBasicBlock *MBB,
+ MachineBasicBlock *PredMBB);
+ void migrateInstruction(MachineBasicBlock *SrcMBB,
+ MachineBasicBlock *DstMBB, MachineBasicBlock::iterator I);
+ void recordSccnum(MachineBasicBlock *MBB, int SCCNum);
+ void retireBlock(MachineBasicBlock *MBB);
+ void setLoopLandBlock(MachineLoop *LoopRep, MachineBasicBlock *MBB = nullptr);
+
+ MachineBasicBlock *findNearestCommonPostDom(std::set<MachineBasicBlock *>&);
+ /// This is work around solution for findNearestCommonDominator not avaiable
+ /// to post dom a proper fix should go to Dominators.h.
+ MachineBasicBlock *findNearestCommonPostDom(MachineBasicBlock *MBB1,
+ MachineBasicBlock *MBB2);
+
+private:
+ MBBInfoMap BlockInfoMap;
+ LoopLandInfoMap LLInfoMap;
+ std::map<MachineLoop *, bool> Visited;
+ MachineFunction *FuncRep;
+ SmallVector<MachineBasicBlock *, DEFAULT_VEC_SLOTS> OrderedBlks;
+};
+
+int AMDGPUCFGStructurizer::getSCCNum(MachineBasicBlock *MBB) const {
+ MBBInfoMap::const_iterator It = BlockInfoMap.find(MBB);
+ if (It == BlockInfoMap.end())
+ return INVALIDSCCNUM;
+ return (*It).second->SccNum;
+}
+
+MachineBasicBlock *AMDGPUCFGStructurizer::getLoopLandInfo(MachineLoop *LoopRep)
+ const {
+ LoopLandInfoMap::const_iterator It = LLInfoMap.find(LoopRep);
+ if (It == LLInfoMap.end())
+ return nullptr;
+ return (*It).second;
+}
+
+bool AMDGPUCFGStructurizer::hasBackEdge(MachineBasicBlock *MBB) const {
+ MachineLoop *LoopRep = MLI->getLoopFor(MBB);
+ if (!LoopRep)
+ return false;
+ MachineBasicBlock *LoopHeader = LoopRep->getHeader();
+ return MBB->isSuccessor(LoopHeader);
+}
+
+unsigned AMDGPUCFGStructurizer::getLoopDepth(MachineLoop *LoopRep) {
+ return LoopRep ? LoopRep->getLoopDepth() : 0;
+}
+
+bool AMDGPUCFGStructurizer::isRetiredBlock(MachineBasicBlock *MBB) const {
+ MBBInfoMap::const_iterator It = BlockInfoMap.find(MBB);
+ if (It == BlockInfoMap.end())
+ return false;
+ return (*It).second->IsRetired;
+}
+
+bool AMDGPUCFGStructurizer::isActiveLoophead(MachineBasicBlock *MBB) const {
+ MachineLoop *LoopRep = MLI->getLoopFor(MBB);
+ while (LoopRep && LoopRep->getHeader() == MBB) {
+ MachineBasicBlock *LoopLand = getLoopLandInfo(LoopRep);
+ if(!LoopLand)
+ return true;
+ if (!isRetiredBlock(LoopLand))
+ return true;
+ LoopRep = LoopRep->getParentLoop();
+ }
+ return false;
+}
+AMDGPUCFGStructurizer::PathToKind AMDGPUCFGStructurizer::singlePathTo(
+ MachineBasicBlock *SrcMBB, MachineBasicBlock *DstMBB,
+ bool AllowSideEntry) const {
+ assert(DstMBB);
+ if (SrcMBB == DstMBB)
+ return SinglePath_InPath;
+ while (SrcMBB && SrcMBB->succ_size() == 1) {
+ SrcMBB = *SrcMBB->succ_begin();
+ if (SrcMBB == DstMBB)
+ return SinglePath_InPath;
+ if (!AllowSideEntry && SrcMBB->pred_size() > 1)
+ return Not_SinglePath;
+ }
+ if (SrcMBB && SrcMBB->succ_size()==0)
+ return SinglePath_NotInPath;
+ return Not_SinglePath;
+}
+
+int AMDGPUCFGStructurizer::countActiveBlock(MBBVector::const_iterator It,
+ MBBVector::const_iterator E) const {
+ int Count = 0;
+ while (It != E) {
+ if (!isRetiredBlock(*It))
+ ++Count;
+ ++It;
+ }
+ return Count;
+}
+
+bool AMDGPUCFGStructurizer::needMigrateBlock(MachineBasicBlock *MBB) const {
+ unsigned BlockSizeThreshold = 30;
+ unsigned CloneInstrThreshold = 100;
+ bool MultiplePreds = MBB && (MBB->pred_size() > 1);
+
+ if(!MultiplePreds)
+ return false;
+ unsigned BlkSize = MBB->size();
+ return ((BlkSize > BlockSizeThreshold) &&
+ (BlkSize * (MBB->pred_size() - 1) > CloneInstrThreshold));
+}
+
+void AMDGPUCFGStructurizer::reversePredicateSetter(
+ MachineBasicBlock::iterator I) {
+ while (I--) {
+ if (I->getOpcode() == AMDGPU::PRED_X) {
+ switch (static_cast<MachineInstr *>(I)->getOperand(2).getImm()) {
+ case OPCODE_IS_ZERO_INT:
+ static_cast<MachineInstr *>(I)->getOperand(2)
+ .setImm(OPCODE_IS_NOT_ZERO_INT);
+ return;
+ case OPCODE_IS_NOT_ZERO_INT:
+ static_cast<MachineInstr *>(I)->getOperand(2)
+ .setImm(OPCODE_IS_ZERO_INT);
+ return;
+ case OPCODE_IS_ZERO:
+ static_cast<MachineInstr *>(I)->getOperand(2)
+ .setImm(OPCODE_IS_NOT_ZERO);
+ return;
+ case OPCODE_IS_NOT_ZERO:
+ static_cast<MachineInstr *>(I)->getOperand(2)
+ .setImm(OPCODE_IS_ZERO);
+ return;
+ default:
+ llvm_unreachable("PRED_X Opcode invalid!");
+ }
+ }
+ }
+}
+
+void AMDGPUCFGStructurizer::insertInstrEnd(MachineBasicBlock *MBB,
+ int NewOpcode, DebugLoc DL) {
+ MachineInstr *MI = MBB->getParent()
+ ->CreateMachineInstr(TII->get(NewOpcode), DL);
+ MBB->push_back(MI);
+ //assume the instruction doesn't take any reg operand ...
+ SHOWNEWINSTR(MI);
+}
+
+MachineInstr *AMDGPUCFGStructurizer::insertInstrBefore(MachineBasicBlock *MBB,
+ int NewOpcode, DebugLoc DL) {
+ MachineInstr *MI =
+ MBB->getParent()->CreateMachineInstr(TII->get(NewOpcode), DL);
+ if (MBB->begin() != MBB->end())
+ MBB->insert(MBB->begin(), MI);
+ else
+ MBB->push_back(MI);
+ SHOWNEWINSTR(MI);
+ return MI;
+}
+
+MachineInstr *AMDGPUCFGStructurizer::insertInstrBefore(
+ MachineBasicBlock::iterator I, int NewOpcode) {
+ MachineInstr *OldMI = &(*I);
+ MachineBasicBlock *MBB = OldMI->getParent();
+ MachineInstr *NewMBB =
+ MBB->getParent()->CreateMachineInstr(TII->get(NewOpcode), DebugLoc());
+ MBB->insert(I, NewMBB);
+ //assume the instruction doesn't take any reg operand ...
+ SHOWNEWINSTR(NewMBB);
+ return NewMBB;
+}
+
+void AMDGPUCFGStructurizer::insertCondBranchBefore(
+ MachineBasicBlock::iterator I, int NewOpcode, DebugLoc DL) {
+ MachineInstr *OldMI = &(*I);
+ MachineBasicBlock *MBB = OldMI->getParent();
+ MachineFunction *MF = MBB->getParent();
+ MachineInstr *NewMI = MF->CreateMachineInstr(TII->get(NewOpcode), DL);
+ MBB->insert(I, NewMI);
+ MachineInstrBuilder MIB(*MF, NewMI);
+ MIB.addReg(OldMI->getOperand(1).getReg(), false);
+ SHOWNEWINSTR(NewMI);
+ //erase later oldInstr->eraseFromParent();
+}
+
+void AMDGPUCFGStructurizer::insertCondBranchBefore(MachineBasicBlock *blk,
+ MachineBasicBlock::iterator I, int NewOpcode, int RegNum,
+ DebugLoc DL) {
+ MachineFunction *MF = blk->getParent();
+ MachineInstr *NewInstr = MF->CreateMachineInstr(TII->get(NewOpcode), DL);
+ //insert before
+ blk->insert(I, NewInstr);
+ MachineInstrBuilder(*MF, NewInstr).addReg(RegNum, false);
+ SHOWNEWINSTR(NewInstr);
+}
+
+void AMDGPUCFGStructurizer::insertCondBranchEnd(MachineBasicBlock *MBB,
+ int NewOpcode, int RegNum) {
+ MachineFunction *MF = MBB->getParent();
+ MachineInstr *NewInstr =
+ MF->CreateMachineInstr(TII->get(NewOpcode), DebugLoc());
+ MBB->push_back(NewInstr);
+ MachineInstrBuilder(*MF, NewInstr).addReg(RegNum, false);
+ SHOWNEWINSTR(NewInstr);
+}
+
+int AMDGPUCFGStructurizer::getBranchNzeroOpcode(int OldOpcode) {
+ switch(OldOpcode) {
+ case AMDGPU::JUMP_COND:
+ case AMDGPU::JUMP: return AMDGPU::IF_PREDICATE_SET;
+ case AMDGPU::BRANCH_COND_i32:
+ case AMDGPU::BRANCH_COND_f32: return AMDGPU::IF_LOGICALNZ_f32;
+ default: llvm_unreachable("internal error");
+ }
+ return -1;
+}
+
+int AMDGPUCFGStructurizer::getBranchZeroOpcode(int OldOpcode) {
+ switch(OldOpcode) {
+ case AMDGPU::JUMP_COND:
+ case AMDGPU::JUMP: return AMDGPU::IF_PREDICATE_SET;
+ case AMDGPU::BRANCH_COND_i32:
+ case AMDGPU::BRANCH_COND_f32: return AMDGPU::IF_LOGICALZ_f32;
+ default: llvm_unreachable("internal error");
+ }
+ return -1;
+}
+
+int AMDGPUCFGStructurizer::getContinueNzeroOpcode(int OldOpcode) {
+ switch(OldOpcode) {
+ case AMDGPU::JUMP_COND:
+ case AMDGPU::JUMP: return AMDGPU::CONTINUE_LOGICALNZ_i32;
+ default: llvm_unreachable("internal error");
+ };
+ return -1;
+}
+
+int AMDGPUCFGStructurizer::getContinueZeroOpcode(int OldOpcode) {
+ switch(OldOpcode) {
+ case AMDGPU::JUMP_COND:
+ case AMDGPU::JUMP: return AMDGPU::CONTINUE_LOGICALZ_i32;
+ default: llvm_unreachable("internal error");
+ }
+ return -1;
+}
+
+MachineBasicBlock *AMDGPUCFGStructurizer::getTrueBranch(MachineInstr *MI) {
+ return MI->getOperand(0).getMBB();
+}
+
+void AMDGPUCFGStructurizer::setTrueBranch(MachineInstr *MI,
+ MachineBasicBlock *MBB) {
+ MI->getOperand(0).setMBB(MBB);
+}
+
+MachineBasicBlock *
+AMDGPUCFGStructurizer::getFalseBranch(MachineBasicBlock *MBB,
+ MachineInstr *MI) {
+ assert(MBB->succ_size() == 2);
+ MachineBasicBlock *TrueBranch = getTrueBranch(MI);
+ MachineBasicBlock::succ_iterator It = MBB->succ_begin();
+ MachineBasicBlock::succ_iterator Next = It;
+ ++Next;
+ return (*It == TrueBranch) ? *Next : *It;
+}
+
+bool AMDGPUCFGStructurizer::isCondBranch(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ case AMDGPU::JUMP_COND:
+ case AMDGPU::BRANCH_COND_i32:
+ case AMDGPU::BRANCH_COND_f32: return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
+bool AMDGPUCFGStructurizer::isUncondBranch(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ case AMDGPU::JUMP:
+ case AMDGPU::BRANCH:
+ return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
+DebugLoc AMDGPUCFGStructurizer::getLastDebugLocInBB(MachineBasicBlock *MBB) {
+ //get DebugLoc from the first MachineBasicBlock instruction with debug info
+ DebugLoc DL;
+ for (MachineBasicBlock::iterator It = MBB->begin(); It != MBB->end();
+ ++It) {
+ MachineInstr *instr = &(*It);
+ if (instr->getDebugLoc().isUnknown() == false)
+ DL = instr->getDebugLoc();
+ }
+ return DL;
+}
+
+MachineInstr *AMDGPUCFGStructurizer::getNormalBlockBranchInstr(
+ MachineBasicBlock *MBB) {
+ MachineBasicBlock::reverse_iterator It = MBB->rbegin();
+ MachineInstr *MI = &*It;
+ if (MI && (isCondBranch(MI) || isUncondBranch(MI)))
+ return MI;
+ return nullptr;
+}
+
+MachineInstr *AMDGPUCFGStructurizer::getLoopendBlockBranchInstr(
+ MachineBasicBlock *MBB) {
+ for (MachineBasicBlock::reverse_iterator It = MBB->rbegin(), E = MBB->rend();
+ It != E; ++It) {
+ // FIXME: Simplify
+ MachineInstr *MI = &*It;
+ if (MI) {
+ if (isCondBranch(MI) || isUncondBranch(MI))
+ return MI;
+ else if (!TII->isMov(MI->getOpcode()))
+ break;
+ }
+ }
+ return nullptr;
+}
+
+MachineInstr *AMDGPUCFGStructurizer::getReturnInstr(MachineBasicBlock *MBB) {
+ MachineBasicBlock::reverse_iterator It = MBB->rbegin();
+ if (It != MBB->rend()) {
+ MachineInstr *instr = &(*It);
+ if (instr->getOpcode() == AMDGPU::RETURN)
+ return instr;
+ }
+ return nullptr;
+}
+
+MachineInstr *AMDGPUCFGStructurizer::getContinueInstr(MachineBasicBlock *MBB) {
+ MachineBasicBlock::reverse_iterator It = MBB->rbegin();
+ if (It != MBB->rend()) {
+ MachineInstr *MI = &(*It);
+ if (MI->getOpcode() == AMDGPU::CONTINUE)
+ return MI;
+ }
+ return nullptr;
+}
+
+bool AMDGPUCFGStructurizer::isReturnBlock(MachineBasicBlock *MBB) {
+ MachineInstr *MI = getReturnInstr(MBB);
+ bool IsReturn = (MBB->succ_size() == 0);
+ if (MI)
+ assert(IsReturn);
+ else if (IsReturn)
+ DEBUG(
+ dbgs() << "BB" << MBB->getNumber()
+ <<" is return block without RETURN instr\n";);
+ return IsReturn;
+}
+
+void AMDGPUCFGStructurizer::cloneSuccessorList(MachineBasicBlock *DstMBB,
+ MachineBasicBlock *SrcMBB) {
+ for (MachineBasicBlock::succ_iterator It = SrcMBB->succ_begin(),
+ iterEnd = SrcMBB->succ_end(); It != iterEnd; ++It)
+ DstMBB->addSuccessor(*It); // *iter's predecessor is also taken care of
+}
+
+MachineBasicBlock *AMDGPUCFGStructurizer::clone(MachineBasicBlock *MBB) {
+ MachineFunction *Func = MBB->getParent();
+ MachineBasicBlock *NewMBB = Func->CreateMachineBasicBlock();
+ Func->push_back(NewMBB); //insert to function
+ for (MachineBasicBlock::iterator It = MBB->begin(), E = MBB->end();
+ It != E; ++It) {
+ MachineInstr *MI = Func->CloneMachineInstr(It);
+ NewMBB->push_back(MI);
+ }
+ return NewMBB;
+}
+
+void AMDGPUCFGStructurizer::replaceInstrUseOfBlockWith(
+ MachineBasicBlock *SrcMBB, MachineBasicBlock *OldMBB,
+ MachineBasicBlock *NewBlk) {
+ MachineInstr *BranchMI = getLoopendBlockBranchInstr(SrcMBB);
+ if (BranchMI && isCondBranch(BranchMI) &&
+ getTrueBranch(BranchMI) == OldMBB)
+ setTrueBranch(BranchMI, NewBlk);
+}
+
+void AMDGPUCFGStructurizer::wrapup(MachineBasicBlock *MBB) {
+ assert((!MBB->getParent()->getJumpTableInfo()
+ || MBB->getParent()->getJumpTableInfo()->isEmpty())
+ && "found a jump table");
+
+ //collect continue right before endloop
+ SmallVector<MachineInstr *, DEFAULT_VEC_SLOTS> ContInstr;
+ MachineBasicBlock::iterator Pre = MBB->begin();
+ MachineBasicBlock::iterator E = MBB->end();
+ MachineBasicBlock::iterator It = Pre;
+ while (It != E) {
+ if (Pre->getOpcode() == AMDGPU::CONTINUE
+ && It->getOpcode() == AMDGPU::ENDLOOP)
+ ContInstr.push_back(Pre);
+ Pre = It;
+ ++It;
+ }
+
+ //delete continue right before endloop
+ for (unsigned i = 0; i < ContInstr.size(); ++i)
+ ContInstr[i]->eraseFromParent();
+
+ // TODO to fix up jump table so later phase won't be confused. if
+ // (jumpTableInfo->isEmpty() == false) { need to clean the jump table, but
+ // there isn't such an interface yet. alternatively, replace all the other
+ // blocks in the jump table with the entryBlk //}
+
+}
+
+
+bool AMDGPUCFGStructurizer::prepare() {
+ bool Changed = false;
+
+ //FIXME: if not reducible flow graph, make it so ???
+
+ DEBUG(dbgs() << "AMDGPUCFGStructurizer::prepare\n";);
+
+ orderBlocks(FuncRep);
+
+ SmallVector<MachineBasicBlock *, DEFAULT_VEC_SLOTS> RetBlks;
+
+ // Add an ExitBlk to loop that don't have one
+ for (MachineLoopInfo::iterator It = MLI->begin(),
+ E = MLI->end(); It != E; ++It) {
+ MachineLoop *LoopRep = (*It);
+ MBBVector ExitingMBBs;
+ LoopRep->getExitingBlocks(ExitingMBBs);
+
+ if (ExitingMBBs.size() == 0) {
+ MachineBasicBlock* DummyExitBlk = normalizeInfiniteLoopExit(LoopRep);
+ if (DummyExitBlk)
+ RetBlks.push_back(DummyExitBlk);
+ }
+ }
+
+ // Remove unconditional branch instr.
+ // Add dummy exit block iff there are multiple returns.
+ for (SmallVectorImpl<MachineBasicBlock *>::const_iterator
+ It = OrderedBlks.begin(), E = OrderedBlks.end(); It != E; ++It) {
+ MachineBasicBlock *MBB = *It;
+ removeUnconditionalBranch(MBB);
+ removeRedundantConditionalBranch(MBB);
+ if (isReturnBlock(MBB)) {
+ RetBlks.push_back(MBB);
+ }
+ assert(MBB->succ_size() <= 2);
+ }
+
+ if (RetBlks.size() >= 2) {
+ addDummyExitBlock(RetBlks);
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+bool AMDGPUCFGStructurizer::run() {
+
+ //Assume reducible CFG...
+ DEBUG(dbgs() << "AMDGPUCFGStructurizer::run\n");
+
+#ifdef STRESSTEST
+ //Use the worse block ordering to test the algorithm.
+ ReverseVector(orderedBlks);
+#endif
+
+ DEBUG(dbgs() << "Ordered blocks:\n"; printOrderedBlocks(););
+ int NumIter = 0;
+ bool Finish = false;
+ MachineBasicBlock *MBB;
+ bool MakeProgress = false;
+ int NumRemainedBlk = countActiveBlock(OrderedBlks.begin(),
+ OrderedBlks.end());
+
+ do {
+ ++NumIter;
+ DEBUG(
+ dbgs() << "numIter = " << NumIter
+ << ", numRemaintedBlk = " << NumRemainedBlk << "\n";
+ );
+
+ SmallVectorImpl<MachineBasicBlock *>::const_iterator It =
+ OrderedBlks.begin();
+ SmallVectorImpl<MachineBasicBlock *>::const_iterator E =
+ OrderedBlks.end();
+
+ SmallVectorImpl<MachineBasicBlock *>::const_iterator SccBeginIter =
+ It;
+ MachineBasicBlock *SccBeginMBB = nullptr;
+ int SccNumBlk = 0; // The number of active blocks, init to a
+ // maximum possible number.
+ int SccNumIter; // Number of iteration in this SCC.
+
+ while (It != E) {
+ MBB = *It;
+
+ if (!SccBeginMBB) {
+ SccBeginIter = It;
+ SccBeginMBB = MBB;
+ SccNumIter = 0;
+ SccNumBlk = NumRemainedBlk; // Init to maximum possible number.
+ DEBUG(
+ dbgs() << "start processing SCC" << getSCCNum(SccBeginMBB);
+ dbgs() << "\n";
+ );
+ }
+
+ if (!isRetiredBlock(MBB))
+ patternMatch(MBB);
+
+ ++It;
+
+ bool ContNextScc = true;
+ if (It == E
+ || getSCCNum(SccBeginMBB) != getSCCNum(*It)) {
+ // Just finish one scc.
+ ++SccNumIter;
+ int sccRemainedNumBlk = countActiveBlock(SccBeginIter, It);
+ if (sccRemainedNumBlk != 1 && sccRemainedNumBlk >= SccNumBlk) {
+ DEBUG(
+ dbgs() << "Can't reduce SCC " << getSCCNum(MBB)
+ << ", sccNumIter = " << SccNumIter;
+ dbgs() << "doesn't make any progress\n";
+ );
+ ContNextScc = true;
+ } else if (sccRemainedNumBlk != 1 && sccRemainedNumBlk < SccNumBlk) {
+ SccNumBlk = sccRemainedNumBlk;
+ It = SccBeginIter;
+ ContNextScc = false;
+ DEBUG(
+ dbgs() << "repeat processing SCC" << getSCCNum(MBB)
+ << "sccNumIter = " << SccNumIter << '\n';
+ );
+ } else {
+ // Finish the current scc.
+ ContNextScc = true;
+ }
+ } else {
+ // Continue on next component in the current scc.
+ ContNextScc = false;
+ }
+
+ if (ContNextScc)
+ SccBeginMBB = nullptr;
+ } //while, "one iteration" over the function.
+
+ MachineBasicBlock *EntryMBB =
+ GraphTraits<MachineFunction *>::nodes_begin(FuncRep);
+ if (EntryMBB->succ_size() == 0) {
+ Finish = true;
+ DEBUG(
+ dbgs() << "Reduce to one block\n";
+ );
+ } else {
+ int NewnumRemainedBlk
+ = countActiveBlock(OrderedBlks.begin(), OrderedBlks.end());
+ // consider cloned blocks ??
+ if (NewnumRemainedBlk == 1 || NewnumRemainedBlk < NumRemainedBlk) {
+ MakeProgress = true;
+ NumRemainedBlk = NewnumRemainedBlk;
+ } else {
+ MakeProgress = false;
+ DEBUG(
+ dbgs() << "No progress\n";
+ );
+ }
+ }
+ } while (!Finish && MakeProgress);
+
+ // Misc wrap up to maintain the consistency of the Function representation.
+ wrapup(GraphTraits<MachineFunction *>::nodes_begin(FuncRep));
+
+ // Detach retired Block, release memory.
+ for (MBBInfoMap::iterator It = BlockInfoMap.begin(), E = BlockInfoMap.end();
+ It != E; ++It) {
+ if ((*It).second && (*It).second->IsRetired) {
+ assert(((*It).first)->getNumber() != -1);
+ DEBUG(
+ dbgs() << "Erase BB" << ((*It).first)->getNumber() << "\n";
+ );
+ (*It).first->eraseFromParent(); //Remove from the parent Function.
+ }
+ delete (*It).second;
+ }
+ BlockInfoMap.clear();
+ LLInfoMap.clear();
+
+ if (!Finish) {
+ DEBUG(FuncRep->viewCFG());
+ llvm_unreachable("IRREDUCIBLE_CFG");
+ }
+
+ return true;
+}
+
+
+
+void AMDGPUCFGStructurizer::orderBlocks(MachineFunction *MF) {
+ int SccNum = 0;
+ MachineBasicBlock *MBB;
+ for (scc_iterator<MachineFunction *> It = scc_begin(MF); !It.isAtEnd();
+ ++It, ++SccNum) {
+ const std::vector<MachineBasicBlock *> &SccNext = *It;
+ for (std::vector<MachineBasicBlock *>::const_iterator
+ blockIter = SccNext.begin(), blockEnd = SccNext.end();
+ blockIter != blockEnd; ++blockIter) {
+ MBB = *blockIter;
+ OrderedBlks.push_back(MBB);
+ recordSccnum(MBB, SccNum);
+ }
+ }
+
+ //walk through all the block in func to check for unreachable
+ typedef GraphTraits<MachineFunction *> GTM;
+ MachineFunction::iterator It = GTM::nodes_begin(MF), E = GTM::nodes_end(MF);
+ for (; It != E; ++It) {
+ MachineBasicBlock *MBB = &(*It);
+ SccNum = getSCCNum(MBB);
+ if (SccNum == INVALIDSCCNUM)
+ dbgs() << "unreachable block BB" << MBB->getNumber() << "\n";
+ }
+}
+
+int AMDGPUCFGStructurizer::patternMatch(MachineBasicBlock *MBB) {
+ int NumMatch = 0;
+ int CurMatch;
+
+ DEBUG(
+ dbgs() << "Begin patternMatch BB" << MBB->getNumber() << "\n";
+ );
+
+ while ((CurMatch = patternMatchGroup(MBB)) > 0)
+ NumMatch += CurMatch;
+
+ DEBUG(
+ dbgs() << "End patternMatch BB" << MBB->getNumber()
+ << ", numMatch = " << NumMatch << "\n";
+ );
+
+ return NumMatch;
+}
+
+int AMDGPUCFGStructurizer::patternMatchGroup(MachineBasicBlock *MBB) {
+ int NumMatch = 0;
+ NumMatch += loopendPatternMatch();
+ NumMatch += serialPatternMatch(MBB);
+ NumMatch += ifPatternMatch(MBB);
+ return NumMatch;
+}
+
+
+int AMDGPUCFGStructurizer::serialPatternMatch(MachineBasicBlock *MBB) {
+ if (MBB->succ_size() != 1)
+ return 0;
+
+ MachineBasicBlock *childBlk = *MBB->succ_begin();
+ if (childBlk->pred_size() != 1 || isActiveLoophead(childBlk))
+ return 0;
+
+ mergeSerialBlock(MBB, childBlk);
+ ++numSerialPatternMatch;
+ return 1;
+}
+
+int AMDGPUCFGStructurizer::ifPatternMatch(MachineBasicBlock *MBB) {
+ //two edges
+ if (MBB->succ_size() != 2)
+ return 0;
+ if (hasBackEdge(MBB))
+ return 0;
+ MachineInstr *BranchMI = getNormalBlockBranchInstr(MBB);
+ if (!BranchMI)
+ return 0;
+
+ assert(isCondBranch(BranchMI));
+ int NumMatch = 0;
+
+ MachineBasicBlock *TrueMBB = getTrueBranch(BranchMI);
+ NumMatch += serialPatternMatch(TrueMBB);
+ NumMatch += ifPatternMatch(TrueMBB);
+ MachineBasicBlock *FalseMBB = getFalseBranch(MBB, BranchMI);
+ NumMatch += serialPatternMatch(FalseMBB);
+ NumMatch += ifPatternMatch(FalseMBB);
+ MachineBasicBlock *LandBlk;
+ int Cloned = 0;
+
+ assert (!TrueMBB->succ_empty() || !FalseMBB->succ_empty());
+ // TODO: Simplify
+ if (TrueMBB->succ_size() == 1 && FalseMBB->succ_size() == 1
+ && *TrueMBB->succ_begin() == *FalseMBB->succ_begin()) {
+ // Diamond pattern
+ LandBlk = *TrueMBB->succ_begin();
+ } else if (TrueMBB->succ_size() == 1 && *TrueMBB->succ_begin() == FalseMBB) {
+ // Triangle pattern, false is empty
+ LandBlk = FalseMBB;
+ FalseMBB = nullptr;
+ } else if (FalseMBB->succ_size() == 1
+ && *FalseMBB->succ_begin() == TrueMBB) {
+ // Triangle pattern, true is empty
+ // We reverse the predicate to make a triangle, empty false pattern;
+ std::swap(TrueMBB, FalseMBB);
+ reversePredicateSetter(MBB->end());
+ LandBlk = FalseMBB;
+ FalseMBB = nullptr;
+ } else if (FalseMBB->succ_size() == 1
+ && isSameloopDetachedContbreak(TrueMBB, FalseMBB)) {
+ LandBlk = *FalseMBB->succ_begin();
+ } else if (TrueMBB->succ_size() == 1
+ && isSameloopDetachedContbreak(FalseMBB, TrueMBB)) {
+ LandBlk = *TrueMBB->succ_begin();
+ } else {
+ return NumMatch + handleJumpintoIf(MBB, TrueMBB, FalseMBB);
+ }
+
+ // improveSimpleJumpinfoIf can handle the case where landBlk == NULL but the
+ // new BB created for landBlk==NULL may introduce new challenge to the
+ // reduction process.
+ if (LandBlk &&
+ ((TrueMBB && TrueMBB->pred_size() > 1)
+ || (FalseMBB && FalseMBB->pred_size() > 1))) {
+ Cloned += improveSimpleJumpintoIf(MBB, TrueMBB, FalseMBB, &LandBlk);
+ }
+
+ if (TrueMBB && TrueMBB->pred_size() > 1) {
+ TrueMBB = cloneBlockForPredecessor(TrueMBB, MBB);
+ ++Cloned;
+ }
+
+ if (FalseMBB && FalseMBB->pred_size() > 1) {
+ FalseMBB = cloneBlockForPredecessor(FalseMBB, MBB);
+ ++Cloned;
+ }
+
+ mergeIfthenelseBlock(BranchMI, MBB, TrueMBB, FalseMBB, LandBlk);
+
+ ++numIfPatternMatch;
+
+ numClonedBlock += Cloned;
+
+ return 1 + Cloned + NumMatch;
+}
+
+int AMDGPUCFGStructurizer::loopendPatternMatch() {
+ std::vector<MachineLoop *> NestedLoops;
+ for (MachineLoopInfo::iterator It = MLI->begin(), E = MLI->end(); It != E;
+ ++It)
+ for (MachineLoop *ML : depth_first(*It))
+ NestedLoops.push_back(ML);
+
+ if (NestedLoops.size() == 0)
+ return 0;
+
+ // Process nested loop outside->inside, so "continue" to a outside loop won't
+ // be mistaken as "break" of the current loop.
+ int Num = 0;
+ for (std::vector<MachineLoop *>::reverse_iterator It = NestedLoops.rbegin(),
+ E = NestedLoops.rend(); It != E; ++It) {
+ MachineLoop *ExaminedLoop = *It;
+ if (ExaminedLoop->getNumBlocks() == 0 || Visited[ExaminedLoop])
+ continue;
+ DEBUG(dbgs() << "Processing:\n"; ExaminedLoop->dump(););
+ int NumBreak = mergeLoop(ExaminedLoop);
+ if (NumBreak == -1)
+ break;
+ Num += NumBreak;
+ }
+ return Num;
+}
+
+int AMDGPUCFGStructurizer::mergeLoop(MachineLoop *LoopRep) {
+ MachineBasicBlock *LoopHeader = LoopRep->getHeader();
+ MBBVector ExitingMBBs;
+ LoopRep->getExitingBlocks(ExitingMBBs);
+ assert(!ExitingMBBs.empty() && "Infinite Loop not supported");
+ DEBUG(dbgs() << "Loop has " << ExitingMBBs.size() << " exiting blocks\n";);
+ // We assume a single ExitBlk
+ MBBVector ExitBlks;
+ LoopRep->getExitBlocks(ExitBlks);
+ SmallPtrSet<MachineBasicBlock *, 2> ExitBlkSet;
+ for (unsigned i = 0, e = ExitBlks.size(); i < e; ++i)
+ ExitBlkSet.insert(ExitBlks[i]);
+ assert(ExitBlkSet.size() == 1);
+ MachineBasicBlock *ExitBlk = *ExitBlks.begin();
+ assert(ExitBlk && "Loop has several exit block");
+ MBBVector LatchBlks;
+ typedef GraphTraits<Inverse<MachineBasicBlock*> > InvMBBTraits;
+ InvMBBTraits::ChildIteratorType PI = InvMBBTraits::child_begin(LoopHeader),
+ PE = InvMBBTraits::child_end(LoopHeader);
+ for (; PI != PE; PI++) {
+ if (LoopRep->contains(*PI))
+ LatchBlks.push_back(*PI);
+ }
+
+ for (unsigned i = 0, e = ExitingMBBs.size(); i < e; ++i)
+ mergeLoopbreakBlock(ExitingMBBs[i], ExitBlk);
+ for (unsigned i = 0, e = LatchBlks.size(); i < e; ++i)
+ settleLoopcontBlock(LatchBlks[i], LoopHeader);
+ int Match = 0;
+ do {
+ Match = 0;
+ Match += serialPatternMatch(LoopHeader);
+ Match += ifPatternMatch(LoopHeader);
+ } while (Match > 0);
+ mergeLooplandBlock(LoopHeader, ExitBlk);
+ MachineLoop *ParentLoop = LoopRep->getParentLoop();
+ if (ParentLoop)
+ MLI->changeLoopFor(LoopHeader, ParentLoop);
+ else
+ MLI->removeBlock(LoopHeader);
+ Visited[LoopRep] = true;
+ return 1;
+}
+
+int AMDGPUCFGStructurizer::loopcontPatternMatch(MachineLoop *LoopRep,
+ MachineBasicBlock *LoopHeader) {
+ int NumCont = 0;
+ SmallVector<MachineBasicBlock *, DEFAULT_VEC_SLOTS> ContMBB;
+ typedef GraphTraits<Inverse<MachineBasicBlock *> > GTIM;
+ GTIM::ChildIteratorType It = GTIM::child_begin(LoopHeader),
+ E = GTIM::child_end(LoopHeader);
+ for (; It != E; ++It) {
+ MachineBasicBlock *MBB = *It;
+ if (LoopRep->contains(MBB)) {
+ handleLoopcontBlock(MBB, MLI->getLoopFor(MBB),
+ LoopHeader, LoopRep);
+ ContMBB.push_back(MBB);
+ ++NumCont;
+ }
+ }
+
+ for (SmallVectorImpl<MachineBasicBlock *>::iterator It = ContMBB.begin(),
+ E = ContMBB.end(); It != E; ++It) {
+ (*It)->removeSuccessor(LoopHeader);
+ }
+
+ numLoopcontPatternMatch += NumCont;
+
+ return NumCont;
+}
+
+
+bool AMDGPUCFGStructurizer::isSameloopDetachedContbreak(
+ MachineBasicBlock *Src1MBB, MachineBasicBlock *Src2MBB) {
+ if (Src1MBB->succ_size() == 0) {
+ MachineLoop *LoopRep = MLI->getLoopFor(Src1MBB);
+ if (LoopRep&& LoopRep == MLI->getLoopFor(Src2MBB)) {
+ MachineBasicBlock *&TheEntry = LLInfoMap[LoopRep];
+ if (TheEntry) {
+ DEBUG(
+ dbgs() << "isLoopContBreakBlock yes src1 = BB"
+ << Src1MBB->getNumber()
+ << " src2 = BB" << Src2MBB->getNumber() << "\n";
+ );
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+int AMDGPUCFGStructurizer::handleJumpintoIf(MachineBasicBlock *HeadMBB,
+ MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB) {
+ int Num = handleJumpintoIfImp(HeadMBB, TrueMBB, FalseMBB);
+ if (Num == 0) {
+ DEBUG(
+ dbgs() << "handleJumpintoIf swap trueBlk and FalseBlk" << "\n";
+ );
+ Num = handleJumpintoIfImp(HeadMBB, FalseMBB, TrueMBB);
+ }
+ return Num;
+}
+
+int AMDGPUCFGStructurizer::handleJumpintoIfImp(MachineBasicBlock *HeadMBB,
+ MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB) {
+ int Num = 0;
+ MachineBasicBlock *DownBlk;
+
+ //trueBlk could be the common post dominator
+ DownBlk = TrueMBB;
+
+ DEBUG(
+ dbgs() << "handleJumpintoIfImp head = BB" << HeadMBB->getNumber()
+ << " true = BB" << TrueMBB->getNumber()
+ << ", numSucc=" << TrueMBB->succ_size()
+ << " false = BB" << FalseMBB->getNumber() << "\n";
+ );
+
+ while (DownBlk) {
+ DEBUG(
+ dbgs() << "check down = BB" << DownBlk->getNumber();
+ );
+
+ if (singlePathTo(FalseMBB, DownBlk) == SinglePath_InPath) {
+ DEBUG(
+ dbgs() << " working\n";
+ );
+
+ Num += cloneOnSideEntryTo(HeadMBB, TrueMBB, DownBlk);
+ Num += cloneOnSideEntryTo(HeadMBB, FalseMBB, DownBlk);
+
+ numClonedBlock += Num;
+ Num += serialPatternMatch(*HeadMBB->succ_begin());
+ Num += serialPatternMatch(*std::next(HeadMBB->succ_begin()));
+ Num += ifPatternMatch(HeadMBB);
+ assert(Num > 0);
+
+ break;
+ }
+ DEBUG(
+ dbgs() << " not working\n";
+ );
+ DownBlk = (DownBlk->succ_size() == 1) ? (*DownBlk->succ_begin()) : nullptr;
+ } // walk down the postDomTree
+
+ return Num;
+}
+
+void AMDGPUCFGStructurizer::showImproveSimpleJumpintoIf(
+ MachineBasicBlock *HeadMBB, MachineBasicBlock *TrueMBB,
+ MachineBasicBlock *FalseMBB, MachineBasicBlock *LandMBB, bool Detail) {
+ dbgs() << "head = BB" << HeadMBB->getNumber()
+ << " size = " << HeadMBB->size();
+ if (Detail) {
+ dbgs() << "\n";
+ HeadMBB->print(dbgs());
+ dbgs() << "\n";
+ }
+
+ if (TrueMBB) {
+ dbgs() << ", true = BB" << TrueMBB->getNumber() << " size = "
+ << TrueMBB->size() << " numPred = " << TrueMBB->pred_size();
+ if (Detail) {
+ dbgs() << "\n";
+ TrueMBB->print(dbgs());
+ dbgs() << "\n";
+ }
+ }
+ if (FalseMBB) {
+ dbgs() << ", false = BB" << FalseMBB->getNumber() << " size = "
+ << FalseMBB->size() << " numPred = " << FalseMBB->pred_size();
+ if (Detail) {
+ dbgs() << "\n";
+ FalseMBB->print(dbgs());
+ dbgs() << "\n";
+ }
+ }
+ if (LandMBB) {
+ dbgs() << ", land = BB" << LandMBB->getNumber() << " size = "
+ << LandMBB->size() << " numPred = " << LandMBB->pred_size();
+ if (Detail) {
+ dbgs() << "\n";
+ LandMBB->print(dbgs());
+ dbgs() << "\n";
+ }
+ }
+
+ dbgs() << "\n";
+}
+
+int AMDGPUCFGStructurizer::improveSimpleJumpintoIf(MachineBasicBlock *HeadMBB,
+ MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB,
+ MachineBasicBlock **LandMBBPtr) {
+ bool MigrateTrue = false;
+ bool MigrateFalse = false;
+
+ MachineBasicBlock *LandBlk = *LandMBBPtr;
+
+ assert((!TrueMBB || TrueMBB->succ_size() <= 1)
+ && (!FalseMBB || FalseMBB->succ_size() <= 1));
+
+ if (TrueMBB == FalseMBB)
+ return 0;
+
+ MigrateTrue = needMigrateBlock(TrueMBB);
+ MigrateFalse = needMigrateBlock(FalseMBB);
+
+ if (!MigrateTrue && !MigrateFalse)
+ return 0;
+
+ // If we need to migrate either trueBlk and falseBlk, migrate the rest that
+ // have more than one predecessors. without doing this, its predecessor
+ // rather than headBlk will have undefined value in initReg.
+ if (!MigrateTrue && TrueMBB && TrueMBB->pred_size() > 1)
+ MigrateTrue = true;
+ if (!MigrateFalse && FalseMBB && FalseMBB->pred_size() > 1)
+ MigrateFalse = true;
+
+ DEBUG(
+ dbgs() << "before improveSimpleJumpintoIf: ";
+ showImproveSimpleJumpintoIf(HeadMBB, TrueMBB, FalseMBB, LandBlk, 0);
+ );
+
+ // org: headBlk => if () {trueBlk} else {falseBlk} => landBlk
+ //
+ // new: headBlk => if () {initReg = 1; org trueBlk branch} else
+ // {initReg = 0; org falseBlk branch }
+ // => landBlk => if (initReg) {org trueBlk} else {org falseBlk}
+ // => org landBlk
+ // if landBlk->pred_size() > 2, put the about if-else inside
+ // if (initReg !=2) {...}
+ //
+ // add initReg = initVal to headBlk
+
+ const TargetRegisterClass * I32RC = TRI->getCFGStructurizerRegClass(MVT::i32);
+ if (!MigrateTrue || !MigrateFalse) {
+ // XXX: We have an opportunity here to optimize the "branch into if" case
+ // here. Branch into if looks like this:
+ // entry
+ // / |
+ // diamond_head branch_from
+ // / \ |
+ // diamond_false diamond_true
+ // \ /
+ // done
+ //
+ // The diamond_head block begins the "if" and the diamond_true block
+ // is the block being "branched into".
+ //
+ // If MigrateTrue is true, then TrueBB is the block being "branched into"
+ // and if MigrateFalse is true, then FalseBB is the block being
+ // "branched into"
+ //
+ // Here is the pseudo code for how I think the optimization should work:
+ // 1. Insert MOV GPR0, 0 before the branch instruction in diamond_head.
+ // 2. Insert MOV GPR0, 1 before the branch instruction in branch_from.
+ // 3. Move the branch instruction from diamond_head into its own basic
+ // block (new_block).
+ // 4. Add an unconditional branch from diamond_head to new_block
+ // 5. Replace the branch instruction in branch_from with an unconditional
+ // branch to new_block. If branch_from has multiple predecessors, then
+ // we need to replace the True/False block in the branch
+ // instruction instead of replacing it.
+ // 6. Change the condition of the branch instruction in new_block from
+ // COND to (COND || GPR0)
+ //
+ // In order insert these MOV instruction, we will need to use the
+ // RegisterScavenger. Usually liveness stops being tracked during
+ // the late machine optimization passes, however if we implement
+ // bool TargetRegisterInfo::requiresRegisterScavenging(
+ // const MachineFunction &MF)
+ // and have it return true, liveness will be tracked correctly
+ // by generic optimization passes. We will also need to make sure that
+ // all of our target-specific passes that run after regalloc and before
+ // the CFGStructurizer track liveness and we will need to modify this pass
+ // to correctly track liveness.
+ //
+ // After the above changes, the new CFG should look like this:
+ // entry
+ // / |
+ // diamond_head branch_from
+ // \ /
+ // new_block
+ // / |
+ // diamond_false diamond_true
+ // \ /
+ // done
+ //
+ // Without this optimization, we are forced to duplicate the diamond_true
+ // block and we will end up with a CFG like this:
+ //
+ // entry
+ // / |
+ // diamond_head branch_from
+ // / \ |
+ // diamond_false diamond_true diamond_true (duplicate)
+ // \ / |
+ // done --------------------|
+ //
+ // Duplicating diamond_true can be very costly especially if it has a
+ // lot of instructions.
+ return 0;
+ }
+
+ int NumNewBlk = 0;
+
+ bool LandBlkHasOtherPred = (LandBlk->pred_size() > 2);
+
+ //insert AMDGPU::ENDIF to avoid special case "input landBlk == NULL"
+ MachineBasicBlock::iterator I = insertInstrBefore(LandBlk, AMDGPU::ENDIF);
+
+ if (LandBlkHasOtherPred) {
+ llvm_unreachable("Extra register needed to handle CFG");
+ unsigned CmpResReg =
+ HeadMBB->getParent()->getRegInfo().createVirtualRegister(I32RC);
+ llvm_unreachable("Extra compare instruction needed to handle CFG");
+ insertCondBranchBefore(LandBlk, I, AMDGPU::IF_PREDICATE_SET,
+ CmpResReg, DebugLoc());
+ }
+
+ // XXX: We are running this after RA, so creating virtual registers will
+ // cause an assertion failure in the PostRA scheduling pass.
+ unsigned InitReg =
+ HeadMBB->getParent()->getRegInfo().createVirtualRegister(I32RC);
+ insertCondBranchBefore(LandBlk, I, AMDGPU::IF_PREDICATE_SET, InitReg,
+ DebugLoc());
+
+ if (MigrateTrue) {
+ migrateInstruction(TrueMBB, LandBlk, I);
+ // need to uncondionally insert the assignment to ensure a path from its
+ // predecessor rather than headBlk has valid value in initReg if
+ // (initVal != 1).
+ llvm_unreachable("Extra register needed to handle CFG");
+ }
+ insertInstrBefore(I, AMDGPU::ELSE);
+
+ if (MigrateFalse) {
+ migrateInstruction(FalseMBB, LandBlk, I);
+ // need to uncondionally insert the assignment to ensure a path from its
+ // predecessor rather than headBlk has valid value in initReg if
+ // (initVal != 0)
+ llvm_unreachable("Extra register needed to handle CFG");
+ }
+
+ if (LandBlkHasOtherPred) {
+ // add endif
+ insertInstrBefore(I, AMDGPU::ENDIF);
+
+ // put initReg = 2 to other predecessors of landBlk
+ for (MachineBasicBlock::pred_iterator PI = LandBlk->pred_begin(),
+ PE = LandBlk->pred_end(); PI != PE; ++PI) {
+ MachineBasicBlock *MBB = *PI;
+ if (MBB != TrueMBB && MBB != FalseMBB)
+ llvm_unreachable("Extra register needed to handle CFG");
+ }
+ }
+ DEBUG(
+ dbgs() << "result from improveSimpleJumpintoIf: ";
+ showImproveSimpleJumpintoIf(HeadMBB, TrueMBB, FalseMBB, LandBlk, 0);
+ );
+
+ // update landBlk
+ *LandMBBPtr = LandBlk;
+
+ return NumNewBlk;
+}
+
+void AMDGPUCFGStructurizer::handleLoopcontBlock(MachineBasicBlock *ContingMBB,
+ MachineLoop *ContingLoop, MachineBasicBlock *ContMBB,
+ MachineLoop *ContLoop) {
+ DEBUG(dbgs() << "loopcontPattern cont = BB" << ContingMBB->getNumber()
+ << " header = BB" << ContMBB->getNumber() << "\n";
+ dbgs() << "Trying to continue loop-depth = "
+ << getLoopDepth(ContLoop)
+ << " from loop-depth = " << getLoopDepth(ContingLoop) << "\n";);
+ settleLoopcontBlock(ContingMBB, ContMBB);
+}
+
+void AMDGPUCFGStructurizer::mergeSerialBlock(MachineBasicBlock *DstMBB,
+ MachineBasicBlock *SrcMBB) {
+ DEBUG(
+ dbgs() << "serialPattern BB" << DstMBB->getNumber()
+ << " <= BB" << SrcMBB->getNumber() << "\n";
+ );
+ DstMBB->splice(DstMBB->end(), SrcMBB, SrcMBB->begin(), SrcMBB->end());
+
+ DstMBB->removeSuccessor(SrcMBB);
+ cloneSuccessorList(DstMBB, SrcMBB);
+
+ removeSuccessor(SrcMBB);
+ MLI->removeBlock(SrcMBB);
+ retireBlock(SrcMBB);
+}
+
+void AMDGPUCFGStructurizer::mergeIfthenelseBlock(MachineInstr *BranchMI,
+ MachineBasicBlock *MBB, MachineBasicBlock *TrueMBB,
+ MachineBasicBlock *FalseMBB, MachineBasicBlock *LandMBB) {
+ assert (TrueMBB);
+ DEBUG(
+ dbgs() << "ifPattern BB" << MBB->getNumber();
+ dbgs() << "{ ";
+ if (TrueMBB) {
+ dbgs() << "BB" << TrueMBB->getNumber();
+ }
+ dbgs() << " } else ";
+ dbgs() << "{ ";
+ if (FalseMBB) {
+ dbgs() << "BB" << FalseMBB->getNumber();
+ }
+ dbgs() << " }\n ";
+ dbgs() << "landBlock: ";
+ if (!LandMBB) {
+ dbgs() << "NULL";
+ } else {
+ dbgs() << "BB" << LandMBB->getNumber();
+ }
+ dbgs() << "\n";
+ );
+
+ int OldOpcode = BranchMI->getOpcode();
+ DebugLoc BranchDL = BranchMI->getDebugLoc();
+
+// transform to
+// if cond
+// trueBlk
+// else
+// falseBlk
+// endif
+// landBlk
+
+ MachineBasicBlock::iterator I = BranchMI;
+ insertCondBranchBefore(I, getBranchNzeroOpcode(OldOpcode),
+ BranchDL);
+
+ if (TrueMBB) {
+ MBB->splice(I, TrueMBB, TrueMBB->begin(), TrueMBB->end());
+ MBB->removeSuccessor(TrueMBB);
+ if (LandMBB && TrueMBB->succ_size()!=0)
+ TrueMBB->removeSuccessor(LandMBB);
+ retireBlock(TrueMBB);
+ MLI->removeBlock(TrueMBB);
+ }
+
+ if (FalseMBB) {
+ insertInstrBefore(I, AMDGPU::ELSE);
+ MBB->splice(I, FalseMBB, FalseMBB->begin(),
+ FalseMBB->end());
+ MBB->removeSuccessor(FalseMBB);
+ if (LandMBB && FalseMBB->succ_size() != 0)
+ FalseMBB->removeSuccessor(LandMBB);
+ retireBlock(FalseMBB);
+ MLI->removeBlock(FalseMBB);
+ }
+ insertInstrBefore(I, AMDGPU::ENDIF);
+
+ BranchMI->eraseFromParent();
+
+ if (LandMBB && TrueMBB && FalseMBB)
+ MBB->addSuccessor(LandMBB);
+
+}
+
+void AMDGPUCFGStructurizer::mergeLooplandBlock(MachineBasicBlock *DstBlk,
+ MachineBasicBlock *LandMBB) {
+ DEBUG(dbgs() << "loopPattern header = BB" << DstBlk->getNumber()
+ << " land = BB" << LandMBB->getNumber() << "\n";);
+
+ insertInstrBefore(DstBlk, AMDGPU::WHILELOOP, DebugLoc());
+ insertInstrEnd(DstBlk, AMDGPU::ENDLOOP, DebugLoc());
+ DstBlk->addSuccessor(LandMBB);
+ DstBlk->removeSuccessor(DstBlk);
+}
+
+
+void AMDGPUCFGStructurizer::mergeLoopbreakBlock(MachineBasicBlock *ExitingMBB,
+ MachineBasicBlock *LandMBB) {
+ DEBUG(dbgs() << "loopbreakPattern exiting = BB" << ExitingMBB->getNumber()
+ << " land = BB" << LandMBB->getNumber() << "\n";);
+ MachineInstr *BranchMI = getLoopendBlockBranchInstr(ExitingMBB);
+ assert(BranchMI && isCondBranch(BranchMI));
+ DebugLoc DL = BranchMI->getDebugLoc();
+ MachineBasicBlock *TrueBranch = getTrueBranch(BranchMI);
+ MachineBasicBlock::iterator I = BranchMI;
+ if (TrueBranch != LandMBB)
+ reversePredicateSetter(I);
+ insertCondBranchBefore(ExitingMBB, I, AMDGPU::IF_PREDICATE_SET, AMDGPU::PREDICATE_BIT, DL);
+ insertInstrBefore(I, AMDGPU::BREAK);
+ insertInstrBefore(I, AMDGPU::ENDIF);
+ //now branchInst can be erase safely
+ BranchMI->eraseFromParent();
+ //now take care of successors, retire blocks
+ ExitingMBB->removeSuccessor(LandMBB);
+}
+
+void AMDGPUCFGStructurizer::settleLoopcontBlock(MachineBasicBlock *ContingMBB,
+ MachineBasicBlock *ContMBB) {
+ DEBUG(dbgs() << "settleLoopcontBlock conting = BB"
+ << ContingMBB->getNumber()
+ << ", cont = BB" << ContMBB->getNumber() << "\n";);
+
+ MachineInstr *MI = getLoopendBlockBranchInstr(ContingMBB);
+ if (MI) {
+ assert(isCondBranch(MI));
+ MachineBasicBlock::iterator I = MI;
+ MachineBasicBlock *TrueBranch = getTrueBranch(MI);
+ int OldOpcode = MI->getOpcode();
+ DebugLoc DL = MI->getDebugLoc();
+
+ bool UseContinueLogical = ((&*ContingMBB->rbegin()) == MI);
+
+ if (UseContinueLogical == false) {
+ int BranchOpcode =
+ TrueBranch == ContMBB ? getBranchNzeroOpcode(OldOpcode) :
+ getBranchZeroOpcode(OldOpcode);
+ insertCondBranchBefore(I, BranchOpcode, DL);
+ // insertEnd to ensure phi-moves, if exist, go before the continue-instr.
+ insertInstrEnd(ContingMBB, AMDGPU::CONTINUE, DL);
+ insertInstrEnd(ContingMBB, AMDGPU::ENDIF, DL);
+ } else {
+ int BranchOpcode =
+ TrueBranch == ContMBB ? getContinueNzeroOpcode(OldOpcode) :
+ getContinueZeroOpcode(OldOpcode);
+ insertCondBranchBefore(I, BranchOpcode, DL);
+ }
+
+ MI->eraseFromParent();
+ } else {
+ // if we've arrived here then we've already erased the branch instruction
+ // travel back up the basic block to see the last reference of our debug
+ // location we've just inserted that reference here so it should be
+ // representative insertEnd to ensure phi-moves, if exist, go before the
+ // continue-instr.
+ insertInstrEnd(ContingMBB, AMDGPU::CONTINUE,
+ getLastDebugLocInBB(ContingMBB));
+ }
+}
+
+int AMDGPUCFGStructurizer::cloneOnSideEntryTo(MachineBasicBlock *PreMBB,
+ MachineBasicBlock *SrcMBB, MachineBasicBlock *DstMBB) {
+ int Cloned = 0;
+ assert(PreMBB->isSuccessor(SrcMBB));
+ while (SrcMBB && SrcMBB != DstMBB) {
+ assert(SrcMBB->succ_size() == 1);
+ if (SrcMBB->pred_size() > 1) {
+ SrcMBB = cloneBlockForPredecessor(SrcMBB, PreMBB);
+ ++Cloned;
+ }
+
+ PreMBB = SrcMBB;
+ SrcMBB = *SrcMBB->succ_begin();
+ }
+
+ return Cloned;
+}
+
+MachineBasicBlock *
+AMDGPUCFGStructurizer::cloneBlockForPredecessor(MachineBasicBlock *MBB,
+ MachineBasicBlock *PredMBB) {
+ assert(PredMBB->isSuccessor(MBB) &&
+ "succBlk is not a prececessor of curBlk");
+
+ MachineBasicBlock *CloneMBB = clone(MBB); //clone instructions
+ replaceInstrUseOfBlockWith(PredMBB, MBB, CloneMBB);
+ //srcBlk, oldBlk, newBlk
+
+ PredMBB->removeSuccessor(MBB);
+ PredMBB->addSuccessor(CloneMBB);
+
+ // add all successor to cloneBlk
+ cloneSuccessorList(CloneMBB, MBB);
+
+ numClonedInstr += MBB->size();
+
+ DEBUG(
+ dbgs() << "Cloned block: " << "BB"
+ << MBB->getNumber() << "size " << MBB->size() << "\n";
+ );
+
+ SHOWNEWBLK(CloneMBB, "result of Cloned block: ");
+
+ return CloneMBB;
+}
+
+void AMDGPUCFGStructurizer::migrateInstruction(MachineBasicBlock *SrcMBB,
+ MachineBasicBlock *DstMBB, MachineBasicBlock::iterator I) {
+ MachineBasicBlock::iterator SpliceEnd;
+ //look for the input branchinstr, not the AMDGPU branchinstr
+ MachineInstr *BranchMI = getNormalBlockBranchInstr(SrcMBB);
+ if (!BranchMI) {
+ DEBUG(
+ dbgs() << "migrateInstruction don't see branch instr\n" ;
+ );
+ SpliceEnd = SrcMBB->end();
+ } else {
+ DEBUG(
+ dbgs() << "migrateInstruction see branch instr\n" ;
+ BranchMI->dump();
+ );
+ SpliceEnd = BranchMI;
+ }
+ DEBUG(
+ dbgs() << "migrateInstruction before splice dstSize = " << DstMBB->size()
+ << "srcSize = " << SrcMBB->size() << "\n";
+ );
+
+ //splice insert before insertPos
+ DstMBB->splice(I, SrcMBB, SrcMBB->begin(), SpliceEnd);
+
+ DEBUG(
+ dbgs() << "migrateInstruction after splice dstSize = " << DstMBB->size()
+ << "srcSize = " << SrcMBB->size() << "\n";
+ );
+}
+
+MachineBasicBlock *
+AMDGPUCFGStructurizer::normalizeInfiniteLoopExit(MachineLoop* LoopRep) {
+ MachineBasicBlock *LoopHeader = LoopRep->getHeader();
+ MachineBasicBlock *LoopLatch = LoopRep->getLoopLatch();
+ const TargetRegisterClass * I32RC = TRI->getCFGStructurizerRegClass(MVT::i32);
+
+ if (!LoopHeader || !LoopLatch)
+ return nullptr;
+ MachineInstr *BranchMI = getLoopendBlockBranchInstr(LoopLatch);
+ // Is LoopRep an infinite loop ?
+ if (!BranchMI || !isUncondBranch(BranchMI))
+ return nullptr;
+
+ MachineBasicBlock *DummyExitBlk = FuncRep->CreateMachineBasicBlock();
+ FuncRep->push_back(DummyExitBlk); //insert to function
+ SHOWNEWBLK(DummyExitBlk, "DummyExitBlock to normalize infiniteLoop: ");
+ DEBUG(dbgs() << "Old branch instr: " << *BranchMI << "\n";);
+ MachineBasicBlock::iterator I = BranchMI;
+ unsigned ImmReg = FuncRep->getRegInfo().createVirtualRegister(I32RC);
+ llvm_unreachable("Extra register needed to handle CFG");
+ MachineInstr *NewMI = insertInstrBefore(I, AMDGPU::BRANCH_COND_i32);
+ MachineInstrBuilder MIB(*FuncRep, NewMI);
+ MIB.addMBB(LoopHeader);
+ MIB.addReg(ImmReg, false);
+ SHOWNEWINSTR(NewMI);
+ BranchMI->eraseFromParent();
+ LoopLatch->addSuccessor(DummyExitBlk);
+
+ return DummyExitBlk;
+}
+
+void AMDGPUCFGStructurizer::removeUnconditionalBranch(MachineBasicBlock *MBB) {
+ MachineInstr *BranchMI;
+
+ // I saw two unconditional branch in one basic block in example
+ // test_fc_do_while_or.c need to fix the upstream on this to remove the loop.
+ while ((BranchMI = getLoopendBlockBranchInstr(MBB))
+ && isUncondBranch(BranchMI)) {
+ DEBUG(dbgs() << "Removing uncond branch instr"; BranchMI->dump(););
+ BranchMI->eraseFromParent();
+ }
+}
+
+void AMDGPUCFGStructurizer::removeRedundantConditionalBranch(
+ MachineBasicBlock *MBB) {
+ if (MBB->succ_size() != 2)
+ return;
+ MachineBasicBlock *MBB1 = *MBB->succ_begin();
+ MachineBasicBlock *MBB2 = *std::next(MBB->succ_begin());
+ if (MBB1 != MBB2)
+ return;
+
+ MachineInstr *BranchMI = getNormalBlockBranchInstr(MBB);
+ assert(BranchMI && isCondBranch(BranchMI));
+ DEBUG(dbgs() << "Removing unneeded cond branch instr"; BranchMI->dump(););
+ BranchMI->eraseFromParent();
+ SHOWNEWBLK(MBB1, "Removing redundant successor");
+ MBB->removeSuccessor(MBB1);
+}
+
+void AMDGPUCFGStructurizer::addDummyExitBlock(
+ SmallVectorImpl<MachineBasicBlock*> &RetMBB) {
+ MachineBasicBlock *DummyExitBlk = FuncRep->CreateMachineBasicBlock();
+ FuncRep->push_back(DummyExitBlk); //insert to function
+ insertInstrEnd(DummyExitBlk, AMDGPU::RETURN);
+
+ for (SmallVectorImpl<MachineBasicBlock *>::iterator It = RetMBB.begin(),
+ E = RetMBB.end(); It != E; ++It) {
+ MachineBasicBlock *MBB = *It;
+ MachineInstr *MI = getReturnInstr(MBB);
+ if (MI)
+ MI->eraseFromParent();
+ MBB->addSuccessor(DummyExitBlk);
+ DEBUG(
+ dbgs() << "Add dummyExitBlock to BB" << MBB->getNumber()
+ << " successors\n";
+ );
+ }
+ SHOWNEWBLK(DummyExitBlk, "DummyExitBlock: ");
+}
+
+void AMDGPUCFGStructurizer::removeSuccessor(MachineBasicBlock *MBB) {
+ while (MBB->succ_size())
+ MBB->removeSuccessor(*MBB->succ_begin());
+}
+
+void AMDGPUCFGStructurizer::recordSccnum(MachineBasicBlock *MBB,
+ int SccNum) {
+ BlockInformation *&srcBlkInfo = BlockInfoMap[MBB];
+ if (!srcBlkInfo)
+ srcBlkInfo = new BlockInformation();
+ srcBlkInfo->SccNum = SccNum;
+}
+
+void AMDGPUCFGStructurizer::retireBlock(MachineBasicBlock *MBB) {
+ DEBUG(
+ dbgs() << "Retiring BB" << MBB->getNumber() << "\n";
+ );
+
+ BlockInformation *&SrcBlkInfo = BlockInfoMap[MBB];
+
+ if (!SrcBlkInfo)
+ SrcBlkInfo = new BlockInformation();
+
+ SrcBlkInfo->IsRetired = true;
+ assert(MBB->succ_size() == 0 && MBB->pred_size() == 0
+ && "can't retire block yet");
+}
+
+void AMDGPUCFGStructurizer::setLoopLandBlock(MachineLoop *loopRep,
+ MachineBasicBlock *MBB) {
+ MachineBasicBlock *&TheEntry = LLInfoMap[loopRep];
+ if (!MBB) {
+ MBB = FuncRep->CreateMachineBasicBlock();
+ FuncRep->push_back(MBB); //insert to function
+ SHOWNEWBLK(MBB, "DummyLandingBlock for loop without break: ");
+ }
+ TheEntry = MBB;
+ DEBUG(
+ dbgs() << "setLoopLandBlock loop-header = BB"
+ << loopRep->getHeader()->getNumber()
+ << " landing-block = BB" << MBB->getNumber() << "\n";
+ );
+}
+
+MachineBasicBlock *
+AMDGPUCFGStructurizer::findNearestCommonPostDom(MachineBasicBlock *MBB1,
+ MachineBasicBlock *MBB2) {
+
+ if (PDT->dominates(MBB1, MBB2))
+ return MBB1;
+ if (PDT->dominates(MBB2, MBB1))
+ return MBB2;
+
+ MachineDomTreeNode *Node1 = PDT->getNode(MBB1);
+ MachineDomTreeNode *Node2 = PDT->getNode(MBB2);
+
+ // Handle newly cloned node.
+ if (!Node1 && MBB1->succ_size() == 1)
+ return findNearestCommonPostDom(*MBB1->succ_begin(), MBB2);
+ if (!Node2 && MBB2->succ_size() == 1)
+ return findNearestCommonPostDom(MBB1, *MBB2->succ_begin());
+
+ if (!Node1 || !Node2)
+ return nullptr;
+
+ Node1 = Node1->getIDom();
+ while (Node1) {
+ if (PDT->dominates(Node1, Node2))
+ return Node1->getBlock();
+ Node1 = Node1->getIDom();
+ }
+
+ return nullptr;
+}
+
+MachineBasicBlock *
+AMDGPUCFGStructurizer::findNearestCommonPostDom(
+ std::set<MachineBasicBlock *> &MBBs) {
+ MachineBasicBlock *CommonDom;
+ std::set<MachineBasicBlock *>::const_iterator It = MBBs.begin();
+ std::set<MachineBasicBlock *>::const_iterator E = MBBs.end();
+ for (CommonDom = *It; It != E && CommonDom; ++It) {
+ MachineBasicBlock *MBB = *It;
+ if (MBB != CommonDom)
+ CommonDom = findNearestCommonPostDom(MBB, CommonDom);
+ }
+
+ DEBUG(
+ dbgs() << "Common post dominator for exit blocks is ";
+ if (CommonDom)
+ dbgs() << "BB" << CommonDom->getNumber() << "\n";
+ else
+ dbgs() << "NULL\n";
+ );
+
+ return CommonDom;
+}
+
+char AMDGPUCFGStructurizer::ID = 0;
+
+} // end anonymous namespace
+
+
+INITIALIZE_PASS_BEGIN(AMDGPUCFGStructurizer, "amdgpustructurizer",
+ "AMDGPU CFG Structurizer", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_END(AMDGPUCFGStructurizer, "amdgpustructurizer",
+ "AMDGPU CFG Structurizer", false, false)
+
+FunctionPass *llvm::createAMDGPUCFGStructurizerPass() {
+ return new AMDGPUCFGStructurizer();
+}
diff --git a/contrib/llvm/lib/Target/R600/CaymanInstructions.td b/contrib/llvm/lib/Target/R600/CaymanInstructions.td
new file mode 100644
index 0000000..2630345
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/CaymanInstructions.td
@@ -0,0 +1,224 @@
+//===-- CaymanInstructions.td - CM Instruction defs -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// TableGen definitions for instructions which are available only on Cayman
+// family GPUs.
+//
+//===----------------------------------------------------------------------===//
+
+def isCayman : Predicate<"Subtarget.hasCaymanISA()">;
+
+//===----------------------------------------------------------------------===//
+// Cayman Instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [isCayman] in {
+
+def MULADD_INT24_cm : R600_3OP <0x08, "MULADD_INT24",
+ [(set i32:$dst, (AMDGPUmad_i24 i32:$src0, i32:$src1, i32:$src2))], VecALU
+>;
+def MUL_INT24_cm : R600_2OP <0x5B, "MUL_INT24",
+ [(set i32:$dst, (AMDGPUmul_i24 i32:$src0, i32:$src1))], VecALU
+>;
+
+def : IMad24Pat<MULADD_INT24_cm>;
+
+let isVector = 1 in {
+
+def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
+
+def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
+def MULHI_INT_cm : MULHI_INT_Common<0x90>;
+def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
+def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
+def RECIPSQRT_CLAMPED_cm : RECIPSQRT_CLAMPED_Common<0x87>;
+def EXP_IEEE_cm : EXP_IEEE_Common<0x81>;
+def LOG_IEEE_cm : LOG_IEEE_Common<0x83>;
+def RECIP_CLAMPED_cm : RECIP_CLAMPED_Common<0x84>;
+def RECIPSQRT_IEEE_cm : RECIPSQRT_IEEE_Common<0x89>;
+def SIN_cm : SIN_Common<0x8D>;
+def COS_cm : COS_Common<0x8E>;
+} // End isVector = 1
+
+def : POW_Common <LOG_IEEE_cm, EXP_IEEE_cm, MUL>;
+
+defm DIV_cm : DIV_Common<RECIP_IEEE_cm>;
+defm : Expand24UBitOps<MULLO_UINT_cm, ADD_INT>;
+
+// RECIP_UINT emulation for Cayman
+// The multiplication scales from [0,1] to the unsigned integer range
+def : Pat <
+ (AMDGPUurecip i32:$src0),
+ (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg $src0)),
+ (MOV_IMM_I32 CONST.FP_UINT_MAX_PLUS_1)))
+>;
+
+ def CF_END_CM : CF_CLAUSE_EG<32, (ins), "CF_END"> {
+ let ADDR = 0;
+ let POP_COUNT = 0;
+ let COUNT = 0;
+ }
+
+
+def : Pat<(fsqrt f32:$src), (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_cm $src))>;
+
+class RAT_STORE_DWORD <RegisterClass rc, ValueType vt, bits<4> mask> :
+ CF_MEM_RAT_CACHELESS <0x14, 0, mask,
+ (ins rc:$rw_gpr, R600_TReg32_X:$index_gpr),
+ "STORE_DWORD $rw_gpr, $index_gpr",
+ [(global_store vt:$rw_gpr, i32:$index_gpr)]> {
+ let eop = 0; // This bit is not used on Cayman.
+}
+
+def RAT_STORE_DWORD32 : RAT_STORE_DWORD <R600_TReg32_X, i32, 0x1>;
+def RAT_STORE_DWORD64 : RAT_STORE_DWORD <R600_Reg64, v2i32, 0x3>;
+def RAT_STORE_DWORD128 : RAT_STORE_DWORD <R600_Reg128, v4i32, 0xf>;
+
+class VTX_READ_cm <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
+ : VTX_WORD0_cm, VTX_READ<name, buffer_id, outs, pattern> {
+
+ // Static fields
+ let VC_INST = 0;
+ let FETCH_TYPE = 2;
+ let FETCH_WHOLE_QUAD = 0;
+ let BUFFER_ID = buffer_id;
+ let SRC_REL = 0;
+ // XXX: We can infer this field based on the SRC_GPR. This would allow us
+ // to store vertex addresses in any channel, not just X.
+ let SRC_SEL_X = 0;
+ let SRC_SEL_Y = 0;
+ let STRUCTURED_READ = 0;
+ let LDS_REQ = 0;
+ let COALESCED_READ = 0;
+
+ let Inst{31-0} = Word0;
+}
+
+class VTX_READ_8_cm <bits<8> buffer_id, list<dag> pattern>
+ : VTX_READ_cm <"VTX_READ_8 $dst_gpr, $src_gpr", buffer_id,
+ (outs R600_TReg32_X:$dst_gpr), pattern> {
+
+ let DST_SEL_X = 0;
+ let DST_SEL_Y = 7; // Masked
+ let DST_SEL_Z = 7; // Masked
+ let DST_SEL_W = 7; // Masked
+ let DATA_FORMAT = 1; // FMT_8
+}
+
+class VTX_READ_16_cm <bits<8> buffer_id, list<dag> pattern>
+ : VTX_READ_cm <"VTX_READ_16 $dst_gpr, $src_gpr", buffer_id,
+ (outs R600_TReg32_X:$dst_gpr), pattern> {
+ let DST_SEL_X = 0;
+ let DST_SEL_Y = 7; // Masked
+ let DST_SEL_Z = 7; // Masked
+ let DST_SEL_W = 7; // Masked
+ let DATA_FORMAT = 5; // FMT_16
+
+}
+
+class VTX_READ_32_cm <bits<8> buffer_id, list<dag> pattern>
+ : VTX_READ_cm <"VTX_READ_32 $dst_gpr, $src_gpr", buffer_id,
+ (outs R600_TReg32_X:$dst_gpr), pattern> {
+
+ let DST_SEL_X = 0;
+ let DST_SEL_Y = 7; // Masked
+ let DST_SEL_Z = 7; // Masked
+ let DST_SEL_W = 7; // Masked
+ let DATA_FORMAT = 0xD; // COLOR_32
+
+ // This is not really necessary, but there were some GPU hangs that appeared
+ // to be caused by ALU instructions in the next instruction group that wrote
+ // to the $src_gpr registers of the VTX_READ.
+ // e.g.
+ // %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24
+ // %T2_X<def> = MOV %ZERO
+ //Adding this constraint prevents this from happening.
+ let Constraints = "$src_gpr.ptr = $dst_gpr";
+}
+
+class VTX_READ_64_cm <bits<8> buffer_id, list<dag> pattern>
+ : VTX_READ_cm <"VTX_READ_64 $dst_gpr, $src_gpr", buffer_id,
+ (outs R600_Reg64:$dst_gpr), pattern> {
+
+ let DST_SEL_X = 0;
+ let DST_SEL_Y = 1;
+ let DST_SEL_Z = 7;
+ let DST_SEL_W = 7;
+ let DATA_FORMAT = 0x1D; // COLOR_32_32
+}
+
+class VTX_READ_128_cm <bits<8> buffer_id, list<dag> pattern>
+ : VTX_READ_cm <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr", buffer_id,
+ (outs R600_Reg128:$dst_gpr), pattern> {
+
+ let DST_SEL_X = 0;
+ let DST_SEL_Y = 1;
+ let DST_SEL_Z = 2;
+ let DST_SEL_W = 3;
+ let DATA_FORMAT = 0x22; // COLOR_32_32_32_32
+
+ // XXX: Need to force VTX_READ_128 instructions to write to the same register
+ // that holds its buffer address to avoid potential hangs. We can't use
+ // the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst
+ // registers are different sizes.
+}
+
+//===----------------------------------------------------------------------===//
+// VTX Read from parameter memory space
+//===----------------------------------------------------------------------===//
+def VTX_READ_PARAM_8_cm : VTX_READ_8_cm <0,
+ [(set i32:$dst_gpr, (load_param_exti8 ADDRVTX_READ:$src_gpr))]
+>;
+
+def VTX_READ_PARAM_16_cm : VTX_READ_16_cm <0,
+ [(set i32:$dst_gpr, (load_param_exti16 ADDRVTX_READ:$src_gpr))]
+>;
+
+def VTX_READ_PARAM_32_cm : VTX_READ_32_cm <0,
+ [(set i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
+>;
+
+def VTX_READ_PARAM_64_cm : VTX_READ_64_cm <0,
+ [(set v2i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
+>;
+
+def VTX_READ_PARAM_128_cm : VTX_READ_128_cm <0,
+ [(set v4i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
+>;
+
+//===----------------------------------------------------------------------===//
+// VTX Read from global memory space
+//===----------------------------------------------------------------------===//
+
+// 8-bit reads
+def VTX_READ_GLOBAL_8_cm : VTX_READ_8_cm <1,
+ [(set i32:$dst_gpr, (az_extloadi8_global ADDRVTX_READ:$src_gpr))]
+>;
+
+def VTX_READ_GLOBAL_16_cm : VTX_READ_16_cm <1,
+ [(set i32:$dst_gpr, (az_extloadi16_global ADDRVTX_READ:$src_gpr))]
+>;
+
+// 32-bit reads
+def VTX_READ_GLOBAL_32_cm : VTX_READ_32_cm <1,
+ [(set i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
+>;
+
+// 64-bit reads
+def VTX_READ_GLOBAL_64_cm : VTX_READ_64_cm <1,
+ [(set v2i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
+>;
+
+// 128-bit reads
+def VTX_READ_GLOBAL_128_cm : VTX_READ_128_cm <1,
+ [(set v4i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
+>;
+
+} // End isCayman
+
diff --git a/contrib/llvm/lib/Target/R600/EvergreenInstructions.td b/contrib/llvm/lib/Target/R600/EvergreenInstructions.td
new file mode 100644
index 0000000..484e522
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/EvergreenInstructions.td
@@ -0,0 +1,609 @@
+//===-- EvergreenInstructions.td - EG Instruction defs ----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// TableGen definitions for instructions which are:
+// - Available to Evergreen and newer VLIW4/VLIW5 GPUs
+// - Available only on Evergreen family GPUs.
+//
+//===----------------------------------------------------------------------===//
+
+def isEG : Predicate<
+ "Subtarget.getGeneration() >= AMDGPUSubtarget::EVERGREEN && "
+ "Subtarget.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS && "
+ "!Subtarget.hasCaymanISA()"
+>;
+
+def isEGorCayman : Predicate<
+ "Subtarget.getGeneration() == AMDGPUSubtarget::EVERGREEN ||"
+ "Subtarget.getGeneration() ==AMDGPUSubtarget::NORTHERN_ISLANDS"
+>;
+
+//===----------------------------------------------------------------------===//
+// Evergreen / Cayman store instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [isEGorCayman] in {
+
+class CF_MEM_RAT_CACHELESS <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
+ string name, list<dag> pattern>
+ : EG_CF_RAT <0x57, rat_inst, rat_id, mask, (outs), ins,
+ "MEM_RAT_CACHELESS "#name, pattern>;
+
+class CF_MEM_RAT <bits<6> rat_inst, bits<4> rat_id, dag ins, string name,
+ list<dag> pattern>
+ : EG_CF_RAT <0x56, rat_inst, rat_id, 0xf /* mask */, (outs), ins,
+ "MEM_RAT "#name, pattern>;
+
+def RAT_MSKOR : CF_MEM_RAT <0x11, 0,
+ (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
+ "MSKOR $rw_gpr.XW, $index_gpr",
+ [(mskor_global v4i32:$rw_gpr, i32:$index_gpr)]
+> {
+ let eop = 0;
+}
+
+} // End let Predicates = [isEGorCayman]
+
+//===----------------------------------------------------------------------===//
+// Evergreen Only instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [isEG] in {
+
+def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
+defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
+
+def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
+def MULHI_INT_eg : MULHI_INT_Common<0x90>;
+def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
+def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
+def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
+def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
+def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
+def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
+def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
+def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
+def SIN_eg : SIN_Common<0x8D>;
+def COS_eg : COS_Common<0x8E>;
+
+def : POW_Common <LOG_IEEE_eg, EXP_IEEE_eg, MUL>;
+def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_eg $src))>;
+
+defm : Expand24IBitOps<MULLO_INT_eg, ADD_INT>;
+
+//===----------------------------------------------------------------------===//
+// Memory read/write instructions
+//===----------------------------------------------------------------------===//
+
+let usesCustomInserter = 1 in {
+
+// 32-bit store
+def RAT_WRITE_CACHELESS_32_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x1,
+ (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
+ "STORE_RAW $rw_gpr, $index_gpr, $eop",
+ [(global_store i32:$rw_gpr, i32:$index_gpr)]
+>;
+
+// 64-bit store
+def RAT_WRITE_CACHELESS_64_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x3,
+ (ins R600_Reg64:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
+ "STORE_RAW $rw_gpr.XY, $index_gpr, $eop",
+ [(global_store v2i32:$rw_gpr, i32:$index_gpr)]
+>;
+
+//128-bit store
+def RAT_WRITE_CACHELESS_128_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0xf,
+ (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
+ "STORE_RAW $rw_gpr.XYZW, $index_gpr, $eop",
+ [(global_store v4i32:$rw_gpr, i32:$index_gpr)]
+>;
+
+} // End usesCustomInserter = 1
+
+class VTX_READ_eg <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
+ : VTX_WORD0_eg, VTX_READ<name, buffer_id, outs, pattern> {
+
+ // Static fields
+ let VC_INST = 0;
+ let FETCH_TYPE = 2;
+ let FETCH_WHOLE_QUAD = 0;
+ let BUFFER_ID = buffer_id;
+ let SRC_REL = 0;
+ // XXX: We can infer this field based on the SRC_GPR. This would allow us
+ // to store vertex addresses in any channel, not just X.
+ let SRC_SEL_X = 0;
+
+ let Inst{31-0} = Word0;
+}
+
+class VTX_READ_8_eg <bits<8> buffer_id, list<dag> pattern>
+ : VTX_READ_eg <"VTX_READ_8 $dst_gpr, $src_gpr", buffer_id,
+ (outs R600_TReg32_X:$dst_gpr), pattern> {
+
+ let MEGA_FETCH_COUNT = 1;
+ let DST_SEL_X = 0;
+ let DST_SEL_Y = 7; // Masked
+ let DST_SEL_Z = 7; // Masked
+ let DST_SEL_W = 7; // Masked
+ let DATA_FORMAT = 1; // FMT_8
+}
+
+class VTX_READ_16_eg <bits<8> buffer_id, list<dag> pattern>
+ : VTX_READ_eg <"VTX_READ_16 $dst_gpr, $src_gpr", buffer_id,
+ (outs R600_TReg32_X:$dst_gpr), pattern> {
+ let MEGA_FETCH_COUNT = 2;
+ let DST_SEL_X = 0;
+ let DST_SEL_Y = 7; // Masked
+ let DST_SEL_Z = 7; // Masked
+ let DST_SEL_W = 7; // Masked
+ let DATA_FORMAT = 5; // FMT_16
+
+}
+
+class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
+ : VTX_READ_eg <"VTX_READ_32 $dst_gpr, $src_gpr", buffer_id,
+ (outs R600_TReg32_X:$dst_gpr), pattern> {
+
+ let MEGA_FETCH_COUNT = 4;
+ let DST_SEL_X = 0;
+ let DST_SEL_Y = 7; // Masked
+ let DST_SEL_Z = 7; // Masked
+ let DST_SEL_W = 7; // Masked
+ let DATA_FORMAT = 0xD; // COLOR_32
+
+ // This is not really necessary, but there were some GPU hangs that appeared
+ // to be caused by ALU instructions in the next instruction group that wrote
+ // to the $src_gpr registers of the VTX_READ.
+ // e.g.
+ // %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24
+ // %T2_X<def> = MOV %ZERO
+ //Adding this constraint prevents this from happening.
+ let Constraints = "$src_gpr.ptr = $dst_gpr";
+}
+
+class VTX_READ_64_eg <bits<8> buffer_id, list<dag> pattern>
+ : VTX_READ_eg <"VTX_READ_64 $dst_gpr.XY, $src_gpr", buffer_id,
+ (outs R600_Reg64:$dst_gpr), pattern> {
+
+ let MEGA_FETCH_COUNT = 8;
+ let DST_SEL_X = 0;
+ let DST_SEL_Y = 1;
+ let DST_SEL_Z = 7;
+ let DST_SEL_W = 7;
+ let DATA_FORMAT = 0x1D; // COLOR_32_32
+}
+
+class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
+ : VTX_READ_eg <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr", buffer_id,
+ (outs R600_Reg128:$dst_gpr), pattern> {
+
+ let MEGA_FETCH_COUNT = 16;
+ let DST_SEL_X = 0;
+ let DST_SEL_Y = 1;
+ let DST_SEL_Z = 2;
+ let DST_SEL_W = 3;
+ let DATA_FORMAT = 0x22; // COLOR_32_32_32_32
+
+ // XXX: Need to force VTX_READ_128 instructions to write to the same register
+ // that holds its buffer address to avoid potential hangs. We can't use
+ // the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst
+ // registers are different sizes.
+}
+
+//===----------------------------------------------------------------------===//
+// VTX Read from parameter memory space
+//===----------------------------------------------------------------------===//
+
+def VTX_READ_PARAM_8_eg : VTX_READ_8_eg <0,
+ [(set i32:$dst_gpr, (load_param_exti8 ADDRVTX_READ:$src_gpr))]
+>;
+
+def VTX_READ_PARAM_16_eg : VTX_READ_16_eg <0,
+ [(set i32:$dst_gpr, (load_param_exti16 ADDRVTX_READ:$src_gpr))]
+>;
+
+def VTX_READ_PARAM_32_eg : VTX_READ_32_eg <0,
+ [(set i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
+>;
+
+def VTX_READ_PARAM_64_eg : VTX_READ_64_eg <0,
+ [(set v2i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
+>;
+
+def VTX_READ_PARAM_128_eg : VTX_READ_128_eg <0,
+ [(set v4i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
+>;
+
+//===----------------------------------------------------------------------===//
+// VTX Read from global memory space
+//===----------------------------------------------------------------------===//
+
+// 8-bit reads
+def VTX_READ_GLOBAL_8_eg : VTX_READ_8_eg <1,
+ [(set i32:$dst_gpr, (az_extloadi8_global ADDRVTX_READ:$src_gpr))]
+>;
+
+def VTX_READ_GLOBAL_16_eg : VTX_READ_16_eg <1,
+ [(set i32:$dst_gpr, (az_extloadi16_global ADDRVTX_READ:$src_gpr))]
+>;
+
+// 32-bit reads
+def VTX_READ_GLOBAL_32_eg : VTX_READ_32_eg <1,
+ [(set i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
+>;
+
+// 64-bit reads
+def VTX_READ_GLOBAL_64_eg : VTX_READ_64_eg <1,
+ [(set v2i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
+>;
+
+// 128-bit reads
+def VTX_READ_GLOBAL_128_eg : VTX_READ_128_eg <1,
+ [(set v4i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
+>;
+
+} // End Predicates = [isEG]
+
+//===----------------------------------------------------------------------===//
+// Evergreen / Cayman Instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [isEGorCayman] in {
+
+// BFE_UINT - bit_extract, an optimization for mask and shift
+// Src0 = Input
+// Src1 = Offset
+// Src2 = Width
+//
+// bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
+//
+// Example Usage:
+// (Offset, Width)
+//
+// (0, 8) = (Input << 24) >> 24 = (Input & 0xff) >> 0
+// (8, 8) = (Input << 16) >> 24 = (Input & 0xffff) >> 8
+// (16, 8) = (Input << 8) >> 24 = (Input & 0xffffff) >> 16
+// (24, 8) = (Input << 0) >> 24 = (Input & 0xffffffff) >> 24
+def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
+ [(set i32:$dst, (AMDGPUbfe_u32 i32:$src0, i32:$src1, i32:$src2))],
+ VecALU
+>;
+
+def BFE_INT_eg : R600_3OP <0x5, "BFE_INT",
+ [(set i32:$dst, (AMDGPUbfe_i32 i32:$src0, i32:$src1, i32:$src2))],
+ VecALU
+>;
+
+// XXX: This pattern is broken, disabling for now. See comment in
+// AMDGPUInstructions.td for more info.
+// def : BFEPattern <BFE_UINT_eg>;
+def BFI_INT_eg : R600_3OP <0x06, "BFI_INT",
+ [(set i32:$dst, (AMDGPUbfi i32:$src0, i32:$src1, i32:$src2))],
+ VecALU
+>;
+
+def : Pat<(i32 (sext_inreg i32:$src, i1)),
+ (BFE_INT_eg i32:$src, (i32 ZERO), (i32 ONE_INT))>;
+def : Pat<(i32 (sext_inreg i32:$src, i8)),
+ (BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 8))>;
+def : Pat<(i32 (sext_inreg i32:$src, i16)),
+ (BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 16))>;
+
+defm : BFIPatterns <BFI_INT_eg, MOV_IMM_I32>;
+
+def BFM_INT_eg : R600_2OP <0xA0, "BFM_INT",
+ [(set i32:$dst, (AMDGPUbfm i32:$src0, i32:$src1))],
+ VecALU
+>;
+
+def MULADD_UINT24_eg : R600_3OP <0x10, "MULADD_UINT24",
+ [(set i32:$dst, (AMDGPUmad_u24 i32:$src0, i32:$src1, i32:$src2))], VecALU
+>;
+
+def : UMad24Pat<MULADD_UINT24_eg>;
+
+def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT", [], VecALU>;
+def : ROTRPattern <BIT_ALIGN_INT_eg>;
+def MULADD_eg : MULADD_Common<0x14>;
+def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
+def ASHR_eg : ASHR_Common<0x15>;
+def LSHR_eg : LSHR_Common<0x16>;
+def LSHL_eg : LSHL_Common<0x17>;
+def CNDE_eg : CNDE_Common<0x19>;
+def CNDGT_eg : CNDGT_Common<0x1A>;
+def CNDGE_eg : CNDGE_Common<0x1B>;
+def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
+def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
+def MUL_UINT24_eg : R600_2OP <0xB5, "MUL_UINT24",
+ [(set i32:$dst, (AMDGPUmul_u24 i32:$src0, i32:$src1))], VecALU
+>;
+def DOT4_eg : DOT4_Common<0xBE>;
+defm CUBE_eg : CUBE_Common<0xC0>;
+
+def BCNT_INT : R600_1OP_Helper <0xAA, "BCNT_INT", ctpop, VecALU>;
+
+def FFBH_UINT : R600_1OP_Helper <0xAB, "FFBH_UINT", ctlz_zero_undef, VecALU>;
+def FFBL_INT : R600_1OP_Helper <0xAC, "FFBL_INT", cttz_zero_undef, VecALU>;
+
+let hasSideEffects = 1 in {
+ def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", [], VecALU>;
+}
+
+def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
+
+def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
+ let Pattern = [];
+ let Itinerary = AnyALU;
+}
+
+def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
+
+def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
+ let Pattern = [];
+}
+
+def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
+
+def GROUP_BARRIER : InstR600 <
+ (outs), (ins), " GROUP_BARRIER", [(int_AMDGPU_barrier_local), (int_AMDGPU_barrier_global)], AnyALU>,
+ R600ALU_Word0,
+ R600ALU_Word1_OP2 <0x54> {
+
+ let dst = 0;
+ let dst_rel = 0;
+ let src0 = 0;
+ let src0_rel = 0;
+ let src0_neg = 0;
+ let src0_abs = 0;
+ let src1 = 0;
+ let src1_rel = 0;
+ let src1_neg = 0;
+ let src1_abs = 0;
+ let write = 0;
+ let omod = 0;
+ let clamp = 0;
+ let last = 1;
+ let bank_swizzle = 0;
+ let pred_sel = 0;
+ let update_exec_mask = 0;
+ let update_pred = 0;
+
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+
+ let ALUInst = 1;
+}
+
+def : Pat <
+ (int_AMDGPU_barrier_global),
+ (GROUP_BARRIER)
+>;
+
+//===----------------------------------------------------------------------===//
+// LDS Instructions
+//===----------------------------------------------------------------------===//
+class R600_LDS <bits<6> op, dag outs, dag ins, string asm,
+ list<dag> pattern = []> :
+
+ InstR600 <outs, ins, asm, pattern, XALU>,
+ R600_ALU_LDS_Word0,
+ R600LDS_Word1 {
+
+ bits<6> offset = 0;
+ let lds_op = op;
+
+ let Word1{27} = offset{0};
+ let Word1{12} = offset{1};
+ let Word1{28} = offset{2};
+ let Word1{31} = offset{3};
+ let Word0{12} = offset{4};
+ let Word0{25} = offset{5};
+
+
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+
+ let ALUInst = 1;
+ let HasNativeOperands = 1;
+ let UseNamedOperandTable = 1;
+}
+
+class R600_LDS_1A <bits<6> lds_op, string name, list<dag> pattern> : R600_LDS <
+ lds_op,
+ (outs R600_Reg32:$dst),
+ (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
+ LAST:$last, R600_Pred:$pred_sel,
+ BANK_SWIZZLE:$bank_swizzle),
+ " "#name#" $last OQAP, $src0$src0_rel $pred_sel",
+ pattern
+ > {
+
+ let src1 = 0;
+ let src1_rel = 0;
+ let src2 = 0;
+ let src2_rel = 0;
+
+ let usesCustomInserter = 1;
+ let LDS_1A = 1;
+ let DisableEncoding = "$dst";
+}
+
+class R600_LDS_1A1D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
+ string dst =""> :
+ R600_LDS <
+ lds_op, outs,
+ (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
+ R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
+ LAST:$last, R600_Pred:$pred_sel,
+ BANK_SWIZZLE:$bank_swizzle),
+ " "#name#" $last "#dst#"$src0$src0_rel, $src1$src1_rel, $pred_sel",
+ pattern
+ > {
+
+ field string BaseOp;
+
+ let src2 = 0;
+ let src2_rel = 0;
+ let LDS_1A1D = 1;
+}
+
+class R600_LDS_1A1D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
+ R600_LDS_1A1D <lds_op, (outs), name, pattern> {
+ let BaseOp = name;
+}
+
+class R600_LDS_1A1D_RET <bits<6> lds_op, string name, list<dag> pattern> :
+ R600_LDS_1A1D <lds_op, (outs R600_Reg32:$dst), name##"_RET", pattern, "OQAP, "> {
+
+ let BaseOp = name;
+ let usesCustomInserter = 1;
+ let DisableEncoding = "$dst";
+}
+
+class R600_LDS_1A2D <bits<6> lds_op, string name, list<dag> pattern> :
+ R600_LDS <
+ lds_op,
+ (outs),
+ (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
+ R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
+ R600_Reg32:$src2, REL:$src2_rel, SEL:$src2_sel,
+ LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle),
+ " "#name# "$last $src0$src0_rel, $src1$src1_rel, $src2$src2_rel, $pred_sel",
+ pattern> {
+ let LDS_1A2D = 1;
+}
+
+def LDS_ADD : R600_LDS_1A1D_NORET <0x0, "LDS_ADD", [] >;
+def LDS_SUB : R600_LDS_1A1D_NORET <0x1, "LDS_SUB", [] >;
+def LDS_WRITE : R600_LDS_1A1D_NORET <0xD, "LDS_WRITE",
+ [(local_store (i32 R600_Reg32:$src1), R600_Reg32:$src0)]
+>;
+def LDS_BYTE_WRITE : R600_LDS_1A1D_NORET<0x12, "LDS_BYTE_WRITE",
+ [(truncstorei8_local i32:$src1, i32:$src0)]
+>;
+def LDS_SHORT_WRITE : R600_LDS_1A1D_NORET<0x13, "LDS_SHORT_WRITE",
+ [(truncstorei16_local i32:$src1, i32:$src0)]
+>;
+def LDS_ADD_RET : R600_LDS_1A1D_RET <0x20, "LDS_ADD",
+ [(set i32:$dst, (atomic_load_add_local i32:$src0, i32:$src1))]
+>;
+def LDS_SUB_RET : R600_LDS_1A1D_RET <0x21, "LDS_SUB",
+ [(set i32:$dst, (atomic_load_sub_local i32:$src0, i32:$src1))]
+>;
+def LDS_READ_RET : R600_LDS_1A <0x32, "LDS_READ_RET",
+ [(set (i32 R600_Reg32:$dst), (local_load R600_Reg32:$src0))]
+>;
+def LDS_BYTE_READ_RET : R600_LDS_1A <0x36, "LDS_BYTE_READ_RET",
+ [(set i32:$dst, (sextloadi8_local i32:$src0))]
+>;
+def LDS_UBYTE_READ_RET : R600_LDS_1A <0x37, "LDS_UBYTE_READ_RET",
+ [(set i32:$dst, (az_extloadi8_local i32:$src0))]
+>;
+def LDS_SHORT_READ_RET : R600_LDS_1A <0x38, "LDS_SHORT_READ_RET",
+ [(set i32:$dst, (sextloadi16_local i32:$src0))]
+>;
+def LDS_USHORT_READ_RET : R600_LDS_1A <0x39, "LDS_USHORT_READ_RET",
+ [(set i32:$dst, (az_extloadi16_local i32:$src0))]
+>;
+
+// TRUNC is used for the FLT_TO_INT instructions to work around a
+// perceived problem where the rounding modes are applied differently
+// depending on the instruction and the slot they are in.
+// See:
+// https://bugs.freedesktop.org/show_bug.cgi?id=50232
+// Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
+//
+// XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
+// which do not need to be truncated since the fp values are 0.0f or 1.0f.
+// We should look into handling these cases separately.
+def : Pat<(fp_to_sint f32:$src0), (FLT_TO_INT_eg (TRUNC $src0))>;
+
+def : Pat<(fp_to_uint f32:$src0), (FLT_TO_UINT_eg (TRUNC $src0))>;
+
+// SHA-256 Patterns
+def : SHA256MaPattern <BFI_INT_eg, XOR_INT>;
+
+def : FROUNDPat <CNDGE_eg>;
+
+def EG_ExportSwz : ExportSwzInst {
+ let Word1{19-16} = 0; // BURST_COUNT
+ let Word1{20} = 0; // VALID_PIXEL_MODE
+ let Word1{21} = eop;
+ let Word1{29-22} = inst;
+ let Word1{30} = 0; // MARK
+ let Word1{31} = 1; // BARRIER
+}
+defm : ExportPattern<EG_ExportSwz, 83>;
+
+def EG_ExportBuf : ExportBufInst {
+ let Word1{19-16} = 0; // BURST_COUNT
+ let Word1{20} = 0; // VALID_PIXEL_MODE
+ let Word1{21} = eop;
+ let Word1{29-22} = inst;
+ let Word1{30} = 0; // MARK
+ let Word1{31} = 1; // BARRIER
+}
+defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;
+
+def CF_TC_EG : CF_CLAUSE_EG<1, (ins i32imm:$ADDR, i32imm:$COUNT),
+ "TEX $COUNT @$ADDR"> {
+ let POP_COUNT = 0;
+}
+def CF_VC_EG : CF_CLAUSE_EG<2, (ins i32imm:$ADDR, i32imm:$COUNT),
+ "VTX $COUNT @$ADDR"> {
+ let POP_COUNT = 0;
+}
+def WHILE_LOOP_EG : CF_CLAUSE_EG<6, (ins i32imm:$ADDR),
+ "LOOP_START_DX10 @$ADDR"> {
+ let POP_COUNT = 0;
+ let COUNT = 0;
+}
+def END_LOOP_EG : CF_CLAUSE_EG<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
+ let POP_COUNT = 0;
+ let COUNT = 0;
+}
+def LOOP_BREAK_EG : CF_CLAUSE_EG<9, (ins i32imm:$ADDR),
+ "LOOP_BREAK @$ADDR"> {
+ let POP_COUNT = 0;
+ let COUNT = 0;
+}
+def CF_CONTINUE_EG : CF_CLAUSE_EG<8, (ins i32imm:$ADDR),
+ "CONTINUE @$ADDR"> {
+ let POP_COUNT = 0;
+ let COUNT = 0;
+}
+def CF_JUMP_EG : CF_CLAUSE_EG<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
+ "JUMP @$ADDR POP:$POP_COUNT"> {
+ let COUNT = 0;
+}
+def CF_PUSH_EG : CF_CLAUSE_EG<11, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
+ "PUSH @$ADDR POP:$POP_COUNT"> {
+ let COUNT = 0;
+}
+def CF_ELSE_EG : CF_CLAUSE_EG<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
+ "ELSE @$ADDR POP:$POP_COUNT"> {
+ let COUNT = 0;
+}
+def CF_CALL_FS_EG : CF_CLAUSE_EG<19, (ins), "CALL_FS"> {
+ let ADDR = 0;
+ let COUNT = 0;
+ let POP_COUNT = 0;
+}
+def POP_EG : CF_CLAUSE_EG<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
+ "POP @$ADDR POP:$POP_COUNT"> {
+ let COUNT = 0;
+}
+def CF_END_EG : CF_CLAUSE_EG<0, (ins), "CF_END"> {
+ let COUNT = 0;
+ let POP_COUNT = 0;
+ let ADDR = 0;
+ let END_OF_PROGRAM = 1;
+}
+
+} // End Predicates = [isEGorCayman]
diff --git a/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.cpp b/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.cpp
new file mode 100644
index 0000000..0927040
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.cpp
@@ -0,0 +1,426 @@
+//===-- AMDGPUInstPrinter.cpp - AMDGPU MC Inst -> ASM ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+// \file
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUInstPrinter.h"
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/MathExtras.h"
+
+using namespace llvm;
+
+void AMDGPUInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
+ StringRef Annot) {
+ OS.flush();
+ printInstruction(MI, OS);
+
+ printAnnotation(OS, Annot);
+}
+
+void AMDGPUInstPrinter::printU8ImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ O << formatHex(MI->getOperand(OpNo).getImm() & 0xff);
+}
+
+void AMDGPUInstPrinter::printU16ImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ O << formatHex(MI->getOperand(OpNo).getImm() & 0xffff);
+}
+
+void AMDGPUInstPrinter::printU32ImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ O << formatHex(MI->getOperand(OpNo).getImm() & 0xffffffff);
+}
+
+void AMDGPUInstPrinter::printRegOperand(unsigned reg, raw_ostream &O) {
+ switch (reg) {
+ case AMDGPU::VCC:
+ O << "vcc";
+ return;
+ case AMDGPU::SCC:
+ O << "scc";
+ return;
+ case AMDGPU::EXEC:
+ O << "exec";
+ return;
+ case AMDGPU::M0:
+ O << "m0";
+ return;
+ default:
+ break;
+ }
+
+ char Type;
+ unsigned NumRegs;
+
+ if (MRI.getRegClass(AMDGPU::VGPR_32RegClassID).contains(reg)) {
+ Type = 'v';
+ NumRegs = 1;
+ } else if (MRI.getRegClass(AMDGPU::SGPR_32RegClassID).contains(reg)) {
+ Type = 's';
+ NumRegs = 1;
+ } else if (MRI.getRegClass(AMDGPU::VReg_64RegClassID).contains(reg)) {
+ Type = 'v';
+ NumRegs = 2;
+ } else if (MRI.getRegClass(AMDGPU::SReg_64RegClassID).contains(reg)) {
+ Type = 's';
+ NumRegs = 2;
+ } else if (MRI.getRegClass(AMDGPU::VReg_128RegClassID).contains(reg)) {
+ Type = 'v';
+ NumRegs = 4;
+ } else if (MRI.getRegClass(AMDGPU::SReg_128RegClassID).contains(reg)) {
+ Type = 's';
+ NumRegs = 4;
+ } else if (MRI.getRegClass(AMDGPU::VReg_96RegClassID).contains(reg)) {
+ Type = 'v';
+ NumRegs = 3;
+ } else if (MRI.getRegClass(AMDGPU::VReg_256RegClassID).contains(reg)) {
+ Type = 'v';
+ NumRegs = 8;
+ } else if (MRI.getRegClass(AMDGPU::SReg_256RegClassID).contains(reg)) {
+ Type = 's';
+ NumRegs = 8;
+ } else if (MRI.getRegClass(AMDGPU::VReg_512RegClassID).contains(reg)) {
+ Type = 'v';
+ NumRegs = 16;
+ } else if (MRI.getRegClass(AMDGPU::SReg_512RegClassID).contains(reg)) {
+ Type = 's';
+ NumRegs = 16;
+ } else {
+ O << getRegisterName(reg);
+ return;
+ }
+
+ // The low 8 bits of the encoding value is the register index, for both VGPRs
+ // and SGPRs.
+ unsigned RegIdx = MRI.getEncodingValue(reg) & ((1 << 8) - 1);
+ if (NumRegs == 1) {
+ O << Type << RegIdx;
+ return;
+ }
+
+ O << Type << '[' << RegIdx << ':' << (RegIdx + NumRegs - 1) << ']';
+}
+
+void AMDGPUInstPrinter::printImmediate(uint32_t Imm, raw_ostream &O) {
+ int32_t SImm = static_cast<int32_t>(Imm);
+ if (SImm >= -16 && SImm <= 64) {
+ O << SImm;
+ return;
+ }
+
+ if (Imm == FloatToBits(1.0f) ||
+ Imm == FloatToBits(-1.0f) ||
+ Imm == FloatToBits(0.5f) ||
+ Imm == FloatToBits(-0.5f) ||
+ Imm == FloatToBits(2.0f) ||
+ Imm == FloatToBits(-2.0f) ||
+ Imm == FloatToBits(4.0f) ||
+ Imm == FloatToBits(-4.0f)) {
+ O << BitsToFloat(Imm);
+ return;
+ }
+
+ O << formatHex(static_cast<uint64_t>(Imm));
+}
+
+void AMDGPUInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ switch (Op.getReg()) {
+ // This is the default predicate state, so we don't need to print it.
+ case AMDGPU::PRED_SEL_OFF:
+ break;
+
+ default:
+ printRegOperand(Op.getReg(), O);
+ break;
+ }
+ } else if (Op.isImm()) {
+ printImmediate(Op.getImm(), O);
+ } else if (Op.isFPImm()) {
+ O << Op.getFPImm();
+ } else if (Op.isExpr()) {
+ const MCExpr *Exp = Op.getExpr();
+ Exp->print(O);
+ } else {
+ assert(!"unknown operand type in printOperand");
+ }
+}
+
+void AMDGPUInstPrinter::printOperandAndMods(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned InputModifiers = MI->getOperand(OpNo).getImm();
+ if (InputModifiers & 0x1)
+ O << "-";
+ if (InputModifiers & 0x2)
+ O << "|";
+ printOperand(MI, OpNo + 1, O);
+ if (InputModifiers & 0x2)
+ O << "|";
+}
+
+void AMDGPUInstPrinter::printInterpSlot(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ unsigned Imm = MI->getOperand(OpNum).getImm();
+
+ if (Imm == 2) {
+ O << "P0";
+ } else if (Imm == 1) {
+ O << "P20";
+ } else if (Imm == 0) {
+ O << "P10";
+ } else {
+ assert(!"Invalid interpolation parameter slot");
+ }
+}
+
+void AMDGPUInstPrinter::printMemOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ printOperand(MI, OpNo, O);
+ O << ", ";
+ printOperand(MI, OpNo + 1, O);
+}
+
+void AMDGPUInstPrinter::printIfSet(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O, StringRef Asm,
+ StringRef Default) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ assert(Op.isImm());
+ if (Op.getImm() == 1) {
+ O << Asm;
+ } else {
+ O << Default;
+ }
+}
+
+void AMDGPUInstPrinter::printAbs(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ printIfSet(MI, OpNo, O, "|");
+}
+
+void AMDGPUInstPrinter::printClamp(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ printIfSet(MI, OpNo, O, "_SAT");
+}
+
+void AMDGPUInstPrinter::printLiteral(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ int32_t Imm = MI->getOperand(OpNo).getImm();
+ O << Imm << '(' << BitsToFloat(Imm) << ')';
+}
+
+void AMDGPUInstPrinter::printLast(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ printIfSet(MI, OpNo, O.indent(25 - O.GetNumBytesInBuffer()), "*", " ");
+}
+
+void AMDGPUInstPrinter::printNeg(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ printIfSet(MI, OpNo, O, "-");
+}
+
+void AMDGPUInstPrinter::printOMOD(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ switch (MI->getOperand(OpNo).getImm()) {
+ default: break;
+ case 1:
+ O << " * 2.0";
+ break;
+ case 2:
+ O << " * 4.0";
+ break;
+ case 3:
+ O << " / 2.0";
+ break;
+ }
+}
+
+void AMDGPUInstPrinter::printRel(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ printIfSet(MI, OpNo, O, "+");
+}
+
+void AMDGPUInstPrinter::printUpdateExecMask(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ printIfSet(MI, OpNo, O, "ExecMask,");
+}
+
+void AMDGPUInstPrinter::printUpdatePred(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ printIfSet(MI, OpNo, O, "Pred,");
+}
+
+void AMDGPUInstPrinter::printWrite(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.getImm() == 0) {
+ O << " (MASKED)";
+ }
+}
+
+void AMDGPUInstPrinter::printSel(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const char * chans = "XYZW";
+ int sel = MI->getOperand(OpNo).getImm();
+
+ int chan = sel & 3;
+ sel >>= 2;
+
+ if (sel >= 512) {
+ sel -= 512;
+ int cb = sel >> 12;
+ sel &= 4095;
+ O << cb << "[" << sel << "]";
+ } else if (sel >= 448) {
+ sel -= 448;
+ O << sel;
+ } else if (sel >= 0){
+ O << sel;
+ }
+
+ if (sel >= 0)
+ O << "." << chans[chan];
+}
+
+void AMDGPUInstPrinter::printBankSwizzle(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ int BankSwizzle = MI->getOperand(OpNo).getImm();
+ switch (BankSwizzle) {
+ case 1:
+ O << "BS:VEC_021/SCL_122";
+ break;
+ case 2:
+ O << "BS:VEC_120/SCL_212";
+ break;
+ case 3:
+ O << "BS:VEC_102/SCL_221";
+ break;
+ case 4:
+ O << "BS:VEC_201";
+ break;
+ case 5:
+ O << "BS:VEC_210";
+ break;
+ default:
+ break;
+ }
+ return;
+}
+
+void AMDGPUInstPrinter::printRSel(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned Sel = MI->getOperand(OpNo).getImm();
+ switch (Sel) {
+ case 0:
+ O << "X";
+ break;
+ case 1:
+ O << "Y";
+ break;
+ case 2:
+ O << "Z";
+ break;
+ case 3:
+ O << "W";
+ break;
+ case 4:
+ O << "0";
+ break;
+ case 5:
+ O << "1";
+ break;
+ case 7:
+ O << "_";
+ break;
+ default:
+ break;
+ }
+}
+
+void AMDGPUInstPrinter::printCT(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned CT = MI->getOperand(OpNo).getImm();
+ switch (CT) {
+ case 0:
+ O << "U";
+ break;
+ case 1:
+ O << "N";
+ break;
+ default:
+ break;
+ }
+}
+
+void AMDGPUInstPrinter::printKCache(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ int KCacheMode = MI->getOperand(OpNo).getImm();
+ if (KCacheMode > 0) {
+ int KCacheBank = MI->getOperand(OpNo - 2).getImm();
+ O << "CB" << KCacheBank <<":";
+ int KCacheAddr = MI->getOperand(OpNo + 2).getImm();
+ int LineSize = (KCacheMode == 1)?16:32;
+ O << KCacheAddr * 16 << "-" << KCacheAddr * 16 + LineSize;
+ }
+}
+
+void AMDGPUInstPrinter::printSendMsg(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned SImm16 = MI->getOperand(OpNo).getImm();
+ unsigned Msg = SImm16 & 0xF;
+ if (Msg == 2 || Msg == 3) {
+ unsigned Op = (SImm16 >> 4) & 0xF;
+ if (Msg == 3)
+ O << "Gs_done(";
+ else
+ O << "Gs(";
+ if (Op == 0) {
+ O << "nop";
+ } else {
+ unsigned Stream = (SImm16 >> 8) & 0x3;
+ if (Op == 1)
+ O << "cut";
+ else if (Op == 2)
+ O << "emit";
+ else if (Op == 3)
+ O << "emit-cut";
+ O << " stream " << Stream;
+ }
+ O << "), [m0] ";
+ } else if (Msg == 1)
+ O << "interrupt ";
+ else if (Msg == 15)
+ O << "system ";
+ else
+ O << "unknown(" << Msg << ") ";
+}
+
+void AMDGPUInstPrinter::printWaitFlag(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ // Note: Mask values are taken from SIInsertWaits.cpp and not from ISA docs
+ // SIInsertWaits.cpp bits usage does not match ISA docs description but it
+ // works so it might be a misprint in docs.
+ unsigned SImm16 = MI->getOperand(OpNo).getImm();
+ unsigned Vmcnt = SImm16 & 0xF;
+ unsigned Expcnt = (SImm16 >> 4) & 0xF;
+ unsigned Lgkmcnt = (SImm16 >> 8) & 0xF;
+ if (Vmcnt != 0xF)
+ O << "vmcnt(" << Vmcnt << ") ";
+ if (Expcnt != 0x7)
+ O << "expcnt(" << Expcnt << ") ";
+ if (Lgkmcnt != 0x7)
+ O << "lgkmcnt(" << Lgkmcnt << ")";
+}
+
+#include "AMDGPUGenAsmWriter.inc"
diff --git a/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.h b/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.h
new file mode 100644
index 0000000..6ca7170
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.h
@@ -0,0 +1,68 @@
+//===-- AMDGPUInstPrinter.h - AMDGPU MC Inst -> ASM interface ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPUINSTPRINTER_H
+#define AMDGPUINSTPRINTER_H
+
+#include "llvm/ADT/StringRef.h"
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+class AMDGPUInstPrinter : public MCInstPrinter {
+public:
+ AMDGPUInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI)
+ : MCInstPrinter(MAI, MII, MRI) {}
+
+ //Autogenerated by tblgen
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ static const char *getRegisterName(unsigned RegNo);
+
+ void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot) override;
+
+private:
+ void printU8ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printU16ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printU32ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printRegOperand(unsigned RegNo, raw_ostream &O);
+ void printImmediate(uint32_t Imm, raw_ostream &O);
+ void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printOperandAndMods(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printInterpSlot(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printMemOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printIfSet(const MCInst *MI, unsigned OpNo, raw_ostream &O,
+ StringRef Asm, StringRef Default = "");
+ static void printAbs(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printClamp(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printLiteral(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printLast(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printNeg(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printOMOD(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printRel(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printUpdateExecMask(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O);
+ static void printUpdatePred(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printWrite(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printSel(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printBankSwizzle(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printRSel(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printCT(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printKCache(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printSendMsg(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printWaitFlag(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+};
+
+} // End namespace llvm
+
+#endif // AMDGPUINSTRPRINTER_H
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUAsmBackend.cpp b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUAsmBackend.cpp
new file mode 100644
index 0000000..d55f27b
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUAsmBackend.cpp
@@ -0,0 +1,141 @@
+//===-- AMDGPUAsmBackend.cpp - AMDGPU Assembler Backend -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "MCTargetDesc/AMDGPUFixupKinds.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCFixupKindInfo.h"
+#include "llvm/MC/MCObjectWriter.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+namespace {
+
+class AMDGPUMCObjectWriter : public MCObjectWriter {
+public:
+ AMDGPUMCObjectWriter(raw_ostream &OS) : MCObjectWriter(OS, true) { }
+ void ExecutePostLayoutBinding(MCAssembler &Asm,
+ const MCAsmLayout &Layout) override {
+ //XXX: Implement if necessary.
+ }
+ void RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFragment *Fragment, const MCFixup &Fixup,
+ MCValue Target, bool &IsPCRel,
+ uint64_t &FixedValue) override {
+ assert(!"Not implemented");
+ }
+
+ void WriteObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
+
+};
+
+class AMDGPUAsmBackend : public MCAsmBackend {
+public:
+ AMDGPUAsmBackend(const Target &T)
+ : MCAsmBackend() {}
+
+ unsigned getNumFixupKinds() const override { return AMDGPU::NumTargetFixupKinds; };
+ void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
+ uint64_t Value, bool IsPCRel) const override;
+ bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const override {
+ return false;
+ }
+ void relaxInstruction(const MCInst &Inst, MCInst &Res) const override {
+ assert(!"Not implemented");
+ }
+ bool mayNeedRelaxation(const MCInst &Inst) const override { return false; }
+ bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override {
+ return true;
+ }
+
+ const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override;
+};
+
+} //End anonymous namespace
+
+void AMDGPUMCObjectWriter::WriteObject(MCAssembler &Asm,
+ const MCAsmLayout &Layout) {
+ for (MCAssembler::iterator I = Asm.begin(), E = Asm.end(); I != E; ++I) {
+ Asm.writeSectionData(I, Layout);
+ }
+}
+
+void AMDGPUAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
+ unsigned DataSize, uint64_t Value,
+ bool IsPCRel) const {
+
+ switch ((unsigned)Fixup.getKind()) {
+ default: llvm_unreachable("Unknown fixup kind");
+ case AMDGPU::fixup_si_sopp_br: {
+ uint16_t *Dst = (uint16_t*)(Data + Fixup.getOffset());
+ *Dst = (Value - 4) / 4;
+ break;
+ }
+
+ case AMDGPU::fixup_si_rodata: {
+ uint32_t *Dst = (uint32_t*)(Data + Fixup.getOffset());
+ *Dst = Value;
+ break;
+ }
+
+ case AMDGPU::fixup_si_end_of_text: {
+ uint32_t *Dst = (uint32_t*)(Data + Fixup.getOffset());
+ // The value points to the last instruction in the text section, so we
+ // need to add 4 bytes to get to the start of the constants.
+ *Dst = Value + 4;
+ break;
+ }
+ }
+}
+
+const MCFixupKindInfo &AMDGPUAsmBackend::getFixupKindInfo(
+ MCFixupKind Kind) const {
+ const static MCFixupKindInfo Infos[AMDGPU::NumTargetFixupKinds] = {
+ // name offset bits flags
+ { "fixup_si_sopp_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_si_rodata", 0, 32, 0 },
+ { "fixup_si_end_of_text", 0, 32, MCFixupKindInfo::FKF_IsPCRel }
+ };
+
+ if (Kind < FirstTargetFixupKind)
+ return MCAsmBackend::getFixupKindInfo(Kind);
+
+ return Infos[Kind - FirstTargetFixupKind];
+}
+
+//===----------------------------------------------------------------------===//
+// ELFAMDGPUAsmBackend class
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class ELFAMDGPUAsmBackend : public AMDGPUAsmBackend {
+public:
+ ELFAMDGPUAsmBackend(const Target &T) : AMDGPUAsmBackend(T) { }
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createAMDGPUELFObjectWriter(OS);
+ }
+};
+
+} // end anonymous namespace
+
+MCAsmBackend *llvm::createAMDGPUAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT,
+ StringRef CPU) {
+ return new ELFAMDGPUAsmBackend(T);
+}
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUELFObjectWriter.cpp b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUELFObjectWriter.cpp
new file mode 100644
index 0000000..5fb94d5
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUELFObjectWriter.cpp
@@ -0,0 +1,39 @@
+//===-- AMDGPUELFObjectWriter.cpp - AMDGPU ELF Writer ----------------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUMCTargetDesc.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCFixup.h"
+
+using namespace llvm;
+
+namespace {
+
+class AMDGPUELFObjectWriter : public MCELFObjectTargetWriter {
+public:
+ AMDGPUELFObjectWriter();
+protected:
+ unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsPCRel) const override {
+ return Fixup.getKind();
+ }
+
+};
+
+
+} // End anonymous namespace
+
+AMDGPUELFObjectWriter::AMDGPUELFObjectWriter()
+ : MCELFObjectTargetWriter(false, 0, 0, false) { }
+
+MCObjectWriter *llvm::createAMDGPUELFObjectWriter(raw_ostream &OS) {
+ MCELFObjectTargetWriter *MOTW = new AMDGPUELFObjectWriter();
+ return createELFObjectWriter(MOTW, OS, true);
+}
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUFixupKinds.h b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUFixupKinds.h
new file mode 100644
index 0000000..4b12e54
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUFixupKinds.h
@@ -0,0 +1,34 @@
+//===-- AMDGPUFixupKinds.h - AMDGPU Specific Fixup Entries ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_AMDGPUFIXUPKINDS_H
+#define LLVM_AMDGPUFIXUPKINDS_H
+
+#include "llvm/MC/MCFixup.h"
+
+namespace llvm {
+namespace AMDGPU {
+enum Fixups {
+ /// 16-bit PC relative fixup for SOPP branch instructions.
+ fixup_si_sopp_br = FirstTargetFixupKind,
+
+ /// fixup for global addresses with constant initializers
+ fixup_si_rodata,
+
+ /// fixup for offset from instruction to end of text section
+ fixup_si_end_of_text,
+
+ // Marker
+ LastTargetFixupKind,
+ NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind
+};
+}
+}
+
+#endif // LLVM_AMDGPUFIXUPKINDS_H
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.cpp b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.cpp
new file mode 100644
index 0000000..78bbe0a
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.cpp
@@ -0,0 +1,62 @@
+//===-- MCTargetDesc/AMDGPUMCAsmInfo.cpp - Assembly Info ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUMCAsmInfo.h"
+
+using namespace llvm;
+AMDGPUMCAsmInfo::AMDGPUMCAsmInfo(StringRef &TT) : MCAsmInfo() {
+ HasSingleParameterDotFile = false;
+ //===------------------------------------------------------------------===//
+ HasSubsectionsViaSymbols = true;
+ HasMachoZeroFillDirective = false;
+ HasMachoTBSSDirective = false;
+ HasStaticCtorDtorReferenceInStaticMode = false;
+ LinkerRequiresNonEmptyDwarfLines = true;
+ MaxInstLength = 16;
+ SeparatorString = "\n";
+ CommentString = ";";
+ LabelSuffix = ":";
+ InlineAsmStart = ";#ASMSTART";
+ InlineAsmEnd = ";#ASMEND";
+ AssemblerDialect = 0;
+
+ //===--- Data Emission Directives -------------------------------------===//
+ ZeroDirective = ".zero";
+ AsciiDirective = ".ascii\t";
+ AscizDirective = ".asciz\t";
+ Data8bitsDirective = ".byte\t";
+ Data16bitsDirective = ".short\t";
+ Data32bitsDirective = ".long\t";
+ Data64bitsDirective = ".quad\t";
+ GPRel32Directive = nullptr;
+ SunStyleELFSectionSwitchSyntax = true;
+ UsesELFSectionDirectiveForBSS = true;
+
+ //===--- Alignment Information ----------------------------------------===//
+ AlignmentIsInBytes = true;
+ TextAlignFillValue = 0;
+
+ //===--- Global Variable Emission Directives --------------------------===//
+ GlobalDirective = ".global";
+ HasSetDirective = false;
+ HasAggressiveSymbolFolding = true;
+ COMMDirectiveAlignmentIsInBytes = false;
+ HasDotTypeDotSizeDirective = false;
+ HasNoDeadStrip = true;
+ WeakRefDirective = ".weakref\t";
+ //===--- Dwarf Emission Directives -----------------------------------===//
+ HasLEB128 = true;
+ SupportsDebugInformation = true;
+}
+
+const MCSection*
+AMDGPUMCAsmInfo::getNonexecutableStackSection(MCContext &CTX) const {
+ return nullptr;
+}
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.h b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.h
new file mode 100644
index 0000000..59aebec
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.h
@@ -0,0 +1,28 @@
+//===-- MCTargetDesc/AMDGPUMCAsmInfo.h - AMDGPU MCAsm Interface ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPUMCASMINFO_H
+#define AMDGPUMCASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+namespace llvm {
+
+class StringRef;
+
+class AMDGPUMCAsmInfo : public MCAsmInfo {
+public:
+ explicit AMDGPUMCAsmInfo(StringRef &TT);
+ const MCSection* getNonexecutableStackSection(MCContext &CTX) const override;
+};
+} // namespace llvm
+#endif // AMDGPUMCASMINFO_H
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.cpp b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.cpp
new file mode 100644
index 0000000..521b3b3
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.cpp
@@ -0,0 +1,21 @@
+//===-- AMDGPUCodeEmitter.cpp - AMDGPU Code Emitter interface -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief CodeEmitter interface for R600 and SI codegen.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUMCCodeEmitter.h"
+
+using namespace llvm;
+
+// pin vtable to this file
+void AMDGPUMCCodeEmitter::anchor() {}
+
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.h b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.h
new file mode 100644
index 0000000..d5e432d
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.h
@@ -0,0 +1,50 @@
+//===-- AMDGPUCodeEmitter.h - AMDGPU Code Emitter interface -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief CodeEmitter interface for R600 and SI codegen.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDGPUCODEEMITTER_H
+#define AMDGPUCODEEMITTER_H
+
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+class MCInst;
+class MCOperand;
+class MCSubtargetInfo;
+
+class AMDGPUMCCodeEmitter : public MCCodeEmitter {
+ virtual void anchor();
+public:
+
+ uint64_t getBinaryCodeForInstr(const MCInst &MI,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ virtual uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ return 0;
+ }
+
+ virtual unsigned getSOPPBrEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ return 0;
+ }
+};
+
+} // End namespace llvm
+
+#endif // AMDGPUCODEEMITTER_H
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.cpp b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.cpp
new file mode 100644
index 0000000..38a2956
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.cpp
@@ -0,0 +1,114 @@
+//===-- AMDGPUMCTargetDesc.cpp - AMDGPU Target Descriptions ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief This file provides AMDGPU specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUMCTargetDesc.h"
+#include "AMDGPUMCAsmInfo.h"
+#include "InstPrinter/AMDGPUInstPrinter.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_MC_DESC
+#include "AMDGPUGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "AMDGPUGenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "AMDGPUGenRegisterInfo.inc"
+
+static MCInstrInfo *createAMDGPUMCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitAMDGPUMCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createAMDGPUMCRegisterInfo(StringRef TT) {
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitAMDGPUMCRegisterInfo(X, 0);
+ return X;
+}
+
+static MCSubtargetInfo *createAMDGPUMCSubtargetInfo(StringRef TT, StringRef CPU,
+ StringRef FS) {
+ MCSubtargetInfo * X = new MCSubtargetInfo();
+ InitAMDGPUMCSubtargetInfo(X, TT, CPU, FS);
+ return X;
+}
+
+static MCCodeGenInfo *createAMDGPUMCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+static MCInstPrinter *createAMDGPUMCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ return new AMDGPUInstPrinter(MAI, MII, MRI);
+}
+
+static MCCodeEmitter *createAMDGPUMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ if (STI.getFeatureBits() & AMDGPU::Feature64BitPtr) {
+ return createSIMCCodeEmitter(MCII, MRI, STI, Ctx);
+ } else {
+ return createR600MCCodeEmitter(MCII, MRI, STI);
+ }
+}
+
+static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
+ MCContext &Ctx, MCAsmBackend &MAB,
+ raw_ostream &_OS,
+ MCCodeEmitter *_Emitter,
+ const MCSubtargetInfo &STI,
+ bool RelaxAll,
+ bool NoExecStack) {
+ return createELFStreamer(Ctx, MAB, _OS, _Emitter, false, false);
+}
+
+extern "C" void LLVMInitializeR600TargetMC() {
+
+ RegisterMCAsmInfo<AMDGPUMCAsmInfo> Y(TheAMDGPUTarget);
+
+ TargetRegistry::RegisterMCCodeGenInfo(TheAMDGPUTarget, createAMDGPUMCCodeGenInfo);
+
+ TargetRegistry::RegisterMCInstrInfo(TheAMDGPUTarget, createAMDGPUMCInstrInfo);
+
+ TargetRegistry::RegisterMCRegInfo(TheAMDGPUTarget, createAMDGPUMCRegisterInfo);
+
+ TargetRegistry::RegisterMCSubtargetInfo(TheAMDGPUTarget, createAMDGPUMCSubtargetInfo);
+
+ TargetRegistry::RegisterMCInstPrinter(TheAMDGPUTarget, createAMDGPUMCInstPrinter);
+
+ TargetRegistry::RegisterMCCodeEmitter(TheAMDGPUTarget, createAMDGPUMCCodeEmitter);
+
+ TargetRegistry::RegisterMCAsmBackend(TheAMDGPUTarget, createAMDGPUAsmBackend);
+
+ TargetRegistry::RegisterMCObjectStreamer(TheAMDGPUTarget, createMCStreamer);
+}
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.h b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.h
new file mode 100644
index 0000000..f6b3376
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.h
@@ -0,0 +1,58 @@
+//===-- AMDGPUMCTargetDesc.h - AMDGPU Target Descriptions -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Provides AMDGPU specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+//
+
+#ifndef AMDGPUMCTARGETDESC_H
+#define AMDGPUMCTARGETDESC_H
+
+#include "llvm/ADT/StringRef.h"
+
+namespace llvm {
+class MCAsmBackend;
+class MCCodeEmitter;
+class MCContext;
+class MCInstrInfo;
+class MCObjectWriter;
+class MCRegisterInfo;
+class MCSubtargetInfo;
+class Target;
+class raw_ostream;
+
+extern Target TheAMDGPUTarget;
+
+MCCodeEmitter *createR600MCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI);
+
+MCCodeEmitter *createSIMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+
+MCAsmBackend *createAMDGPUAsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU);
+
+MCObjectWriter *createAMDGPUELFObjectWriter(raw_ostream &OS);
+} // End llvm namespace
+
+#define GET_REGINFO_ENUM
+#include "AMDGPUGenRegisterInfo.inc"
+
+#define GET_INSTRINFO_ENUM
+#include "AMDGPUGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "AMDGPUGenSubtargetInfo.inc"
+
+#endif // AMDGPUMCTARGETDESC_H
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/R600MCCodeEmitter.cpp b/contrib/llvm/lib/Target/R600/MCTargetDesc/R600MCCodeEmitter.cpp
new file mode 100644
index 0000000..dc1344f
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/R600MCCodeEmitter.cpp
@@ -0,0 +1,184 @@
+//===- R600MCCodeEmitter.cpp - Code Emitter for R600->Cayman GPU families -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+///
+/// \brief The R600 code emitter produces machine code that can be executed
+/// directly on the GPU device.
+//
+//===----------------------------------------------------------------------===//
+
+#include "R600Defines.h"
+#include "MCTargetDesc/AMDGPUMCCodeEmitter.h"
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+namespace {
+
+class R600MCCodeEmitter : public AMDGPUMCCodeEmitter {
+ R600MCCodeEmitter(const R600MCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ void operator=(const R600MCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ const MCInstrInfo &MCII;
+ const MCRegisterInfo &MRI;
+
+public:
+
+ R600MCCodeEmitter(const MCInstrInfo &mcii, const MCRegisterInfo &mri)
+ : MCII(mcii), MRI(mri) { }
+
+ /// \brief Encode the instruction and write it to the OS.
+ void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+
+ /// \returns the encoding for an MCOperand.
+ uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+private:
+
+ void EmitByte(unsigned int byte, raw_ostream &OS) const;
+
+ void Emit(uint32_t value, raw_ostream &OS) const;
+ void Emit(uint64_t value, raw_ostream &OS) const;
+
+ unsigned getHWRegChan(unsigned reg) const;
+ unsigned getHWReg(unsigned regNo) const;
+
+};
+
+} // End anonymous namespace
+
+enum RegElement {
+ ELEMENT_X = 0,
+ ELEMENT_Y,
+ ELEMENT_Z,
+ ELEMENT_W
+};
+
+enum FCInstr {
+ FC_IF_PREDICATE = 0,
+ FC_ELSE,
+ FC_ENDIF,
+ FC_BGNLOOP,
+ FC_ENDLOOP,
+ FC_BREAK_PREDICATE,
+ FC_CONTINUE
+};
+
+MCCodeEmitter *llvm::createR600MCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ return new R600MCCodeEmitter(MCII, MRI);
+}
+
+void R600MCCodeEmitter::EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
+ if (MI.getOpcode() == AMDGPU::RETURN ||
+ MI.getOpcode() == AMDGPU::FETCH_CLAUSE ||
+ MI.getOpcode() == AMDGPU::ALU_CLAUSE ||
+ MI.getOpcode() == AMDGPU::BUNDLE ||
+ MI.getOpcode() == AMDGPU::KILL) {
+ return;
+ } else if (IS_VTX(Desc)) {
+ uint64_t InstWord01 = getBinaryCodeForInstr(MI, Fixups, STI);
+ uint32_t InstWord2 = MI.getOperand(2).getImm(); // Offset
+ if (!(STI.getFeatureBits() & AMDGPU::FeatureCaymanISA)) {
+ InstWord2 |= 1 << 19; // Mega-Fetch bit
+ }
+
+ Emit(InstWord01, OS);
+ Emit(InstWord2, OS);
+ Emit((uint32_t) 0, OS);
+ } else if (IS_TEX(Desc)) {
+ int64_t Sampler = MI.getOperand(14).getImm();
+
+ int64_t SrcSelect[4] = {
+ MI.getOperand(2).getImm(),
+ MI.getOperand(3).getImm(),
+ MI.getOperand(4).getImm(),
+ MI.getOperand(5).getImm()
+ };
+ int64_t Offsets[3] = {
+ MI.getOperand(6).getImm() & 0x1F,
+ MI.getOperand(7).getImm() & 0x1F,
+ MI.getOperand(8).getImm() & 0x1F
+ };
+
+ uint64_t Word01 = getBinaryCodeForInstr(MI, Fixups, STI);
+ uint32_t Word2 = Sampler << 15 | SrcSelect[ELEMENT_X] << 20 |
+ SrcSelect[ELEMENT_Y] << 23 | SrcSelect[ELEMENT_Z] << 26 |
+ SrcSelect[ELEMENT_W] << 29 | Offsets[0] << 0 | Offsets[1] << 5 |
+ Offsets[2] << 10;
+
+ Emit(Word01, OS);
+ Emit(Word2, OS);
+ Emit((uint32_t) 0, OS);
+ } else {
+ uint64_t Inst = getBinaryCodeForInstr(MI, Fixups, STI);
+ if ((STI.getFeatureBits() & AMDGPU::FeatureR600ALUInst) &&
+ ((Desc.TSFlags & R600_InstFlag::OP1) ||
+ Desc.TSFlags & R600_InstFlag::OP2)) {
+ uint64_t ISAOpCode = Inst & (0x3FFULL << 39);
+ Inst &= ~(0x3FFULL << 39);
+ Inst |= ISAOpCode << 1;
+ }
+ Emit(Inst, OS);
+ }
+}
+
+void R600MCCodeEmitter::EmitByte(unsigned int Byte, raw_ostream &OS) const {
+ OS.write((uint8_t) Byte & 0xff);
+}
+
+void R600MCCodeEmitter::Emit(uint32_t Value, raw_ostream &OS) const {
+ for (unsigned i = 0; i < 4; i++) {
+ OS.write((uint8_t) ((Value >> (8 * i)) & 0xff));
+ }
+}
+
+void R600MCCodeEmitter::Emit(uint64_t Value, raw_ostream &OS) const {
+ for (unsigned i = 0; i < 8; i++) {
+ EmitByte((Value >> (8 * i)) & 0xff, OS);
+ }
+}
+
+unsigned R600MCCodeEmitter::getHWRegChan(unsigned reg) const {
+ return MRI.getEncodingValue(reg) >> HW_CHAN_SHIFT;
+}
+
+unsigned R600MCCodeEmitter::getHWReg(unsigned RegNo) const {
+ return MRI.getEncodingValue(RegNo) & HW_REG_MASK;
+}
+
+uint64_t R600MCCodeEmitter::getMachineOpValue(const MCInst &MI,
+ const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixup,
+ const MCSubtargetInfo &STI) const {
+ if (MO.isReg()) {
+ if (HAS_NATIVE_OPERANDS(MCII.get(MI.getOpcode()).TSFlags))
+ return MRI.getEncodingValue(MO.getReg());
+ return getHWReg(MO.getReg());
+ }
+
+ assert(MO.isImm());
+ return MO.getImm();
+}
+
+#include "AMDGPUGenMCCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/SIMCCodeEmitter.cpp b/contrib/llvm/lib/Target/R600/MCTargetDesc/SIMCCodeEmitter.cpp
new file mode 100644
index 0000000..78776c1
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/SIMCCodeEmitter.cpp
@@ -0,0 +1,245 @@
+//===-- SIMCCodeEmitter.cpp - SI Code Emitter -------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief The SI code emitter produces machine code that can be executed
+/// directly on the GPU device.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "MCTargetDesc/AMDGPUMCCodeEmitter.h"
+#include "MCTargetDesc/AMDGPUFixupKinds.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCFixup.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+namespace {
+
+/// \brief Helper type used in encoding
+typedef union {
+ int32_t I;
+ float F;
+} IntFloatUnion;
+
+class SIMCCodeEmitter : public AMDGPUMCCodeEmitter {
+ SIMCCodeEmitter(const SIMCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ void operator=(const SIMCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ const MCInstrInfo &MCII;
+ const MCRegisterInfo &MRI;
+ MCContext &Ctx;
+
+ /// \brief Can this operand also contain immediate values?
+ bool isSrcOperand(const MCInstrDesc &Desc, unsigned OpNo) const;
+
+ /// \brief Encode an fp or int literal
+ uint32_t getLitEncoding(const MCOperand &MO) const;
+
+public:
+ SIMCCodeEmitter(const MCInstrInfo &mcii, const MCRegisterInfo &mri,
+ MCContext &ctx)
+ : MCII(mcii), MRI(mri), Ctx(ctx) { }
+
+ ~SIMCCodeEmitter() { }
+
+ /// \brief Encode the instruction and write it to the OS.
+ void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+
+ /// \returns the encoding for an MCOperand.
+ uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+
+ /// \brief Use a fixup to encode the simm16 field for SOPP branch
+ /// instructions.
+ unsigned getSOPPBrEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+};
+
+} // End anonymous namespace
+
+MCCodeEmitter *llvm::createSIMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new SIMCCodeEmitter(MCII, MRI, Ctx);
+}
+
+bool SIMCCodeEmitter::isSrcOperand(const MCInstrDesc &Desc,
+ unsigned OpNo) const {
+
+ unsigned RegClass = Desc.OpInfo[OpNo].RegClass;
+ return (AMDGPU::SSrc_32RegClassID == RegClass) ||
+ (AMDGPU::SSrc_64RegClassID == RegClass) ||
+ (AMDGPU::VSrc_32RegClassID == RegClass) ||
+ (AMDGPU::VSrc_64RegClassID == RegClass);
+}
+
+uint32_t SIMCCodeEmitter::getLitEncoding(const MCOperand &MO) const {
+
+ IntFloatUnion Imm;
+ if (MO.isImm())
+ Imm.I = MO.getImm();
+ else if (MO.isFPImm())
+ Imm.F = MO.getFPImm();
+ else if (MO.isExpr())
+ return 255;
+ else
+ return ~0;
+
+ if (Imm.I >= 0 && Imm.I <= 64)
+ return 128 + Imm.I;
+
+ if (Imm.I >= -16 && Imm.I <= -1)
+ return 192 + abs(Imm.I);
+
+ if (Imm.F == 0.5f)
+ return 240;
+
+ if (Imm.F == -0.5f)
+ return 241;
+
+ if (Imm.F == 1.0f)
+ return 242;
+
+ if (Imm.F == -1.0f)
+ return 243;
+
+ if (Imm.F == 2.0f)
+ return 244;
+
+ if (Imm.F == -2.0f)
+ return 245;
+
+ if (Imm.F == 4.0f)
+ return 246;
+
+ if (Imm.F == -4.0f)
+ return 247;
+
+ return 255;
+}
+
+void SIMCCodeEmitter::EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ uint64_t Encoding = getBinaryCodeForInstr(MI, Fixups, STI);
+ const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
+ unsigned bytes = Desc.getSize();
+
+ for (unsigned i = 0; i < bytes; i++) {
+ OS.write((uint8_t) ((Encoding >> (8 * i)) & 0xff));
+ }
+
+ if (bytes > 4)
+ return;
+
+ // Check for additional literals in SRC0/1/2 (Op 1/2/3)
+ for (unsigned i = 0, e = MI.getNumOperands(); i < e; ++i) {
+
+ // Check if this operand should be encoded as [SV]Src
+ if (!isSrcOperand(Desc, i))
+ continue;
+
+ // Is this operand a literal immediate?
+ const MCOperand &Op = MI.getOperand(i);
+ if (getLitEncoding(Op) != 255)
+ continue;
+
+ // Yes! Encode it
+ IntFloatUnion Imm;
+ if (Op.isImm())
+ Imm.I = Op.getImm();
+ else if (Op.isFPImm())
+ Imm.F = Op.getFPImm();
+ else {
+ assert(Op.isExpr());
+ // This will be replaced with a fixup value.
+ Imm.I = 0;
+ }
+
+ for (unsigned j = 0; j < 4; j++) {
+ OS.write((uint8_t) ((Imm.I >> (8 * j)) & 0xff));
+ }
+
+ // Only one literal value allowed
+ break;
+ }
+}
+
+unsigned SIMCCodeEmitter::getSOPPBrEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+
+ if (MO.isExpr()) {
+ const MCExpr *Expr = MO.getExpr();
+ MCFixupKind Kind = (MCFixupKind)AMDGPU::fixup_si_sopp_br;
+ Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc()));
+ return 0;
+ }
+
+ return getMachineOpValue(MI, MO, Fixups, STI);
+}
+
+uint64_t SIMCCodeEmitter::getMachineOpValue(const MCInst &MI,
+ const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ if (MO.isReg())
+ return MRI.getEncodingValue(MO.getReg());
+
+ if (MO.isExpr()) {
+ const MCSymbolRefExpr *Expr = cast<MCSymbolRefExpr>(MO.getExpr());
+ MCFixupKind Kind;
+ const MCSymbol *Sym =
+ Ctx.GetOrCreateSymbol(StringRef(END_OF_TEXT_LABEL_NAME));
+
+ if (&Expr->getSymbol() == Sym) {
+ // Add the offset to the beginning of the constant values.
+ Kind = (MCFixupKind)AMDGPU::fixup_si_end_of_text;
+ } else {
+ // This is used for constant data stored in .rodata.
+ Kind = (MCFixupKind)AMDGPU::fixup_si_rodata;
+ }
+ Fixups.push_back(MCFixup::Create(4, Expr, Kind, MI.getLoc()));
+ }
+
+ // Figure out the operand number, needed for isSrcOperand check
+ unsigned OpNo = 0;
+ for (unsigned e = MI.getNumOperands(); OpNo < e; ++OpNo) {
+ if (&MO == &MI.getOperand(OpNo))
+ break;
+ }
+
+ const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
+ if (isSrcOperand(Desc, OpNo)) {
+ uint32_t Enc = getLitEncoding(MO);
+ if (Enc != ~0U && (Enc != 255 || Desc.getSize() == 4))
+ return Enc;
+
+ } else if (MO.isImm())
+ return MO.getImm();
+
+ llvm_unreachable("Encoding of this operand type is not supported yet.");
+ return 0;
+}
+
diff --git a/contrib/llvm/lib/Target/R600/Processors.td b/contrib/llvm/lib/Target/R600/Processors.td
new file mode 100644
index 0000000..ce17d7c
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/Processors.td
@@ -0,0 +1,110 @@
+//===-- Processors.td - R600 Processor definitions ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+class Proc<string Name, ProcessorItineraries itin, list<SubtargetFeature> Features>
+: Processor<Name, itin, Features>;
+
+//===----------------------------------------------------------------------===//
+// R600
+//===----------------------------------------------------------------------===//
+def : Proc<"", R600_VLIW5_Itin,
+ [FeatureR600, FeatureVertexCache]>;
+
+def : Proc<"r600", R600_VLIW5_Itin,
+ [FeatureR600 , FeatureVertexCache, FeatureWavefrontSize64]>;
+
+def : Proc<"r630", R600_VLIW5_Itin,
+ [FeatureR600, FeatureVertexCache, FeatureWavefrontSize32]>;
+
+def : Proc<"rs880", R600_VLIW5_Itin,
+ [FeatureR600, FeatureWavefrontSize16]>;
+
+def : Proc<"rv670", R600_VLIW5_Itin,
+ [FeatureR600, FeatureFP64, FeatureVertexCache, FeatureWavefrontSize64]>;
+
+//===----------------------------------------------------------------------===//
+// R700
+//===----------------------------------------------------------------------===//
+
+def : Proc<"rv710", R600_VLIW5_Itin,
+ [FeatureR700, FeatureVertexCache, FeatureWavefrontSize32]>;
+
+def : Proc<"rv730", R600_VLIW5_Itin,
+ [FeatureR700, FeatureVertexCache, FeatureWavefrontSize32]>;
+
+def : Proc<"rv770", R600_VLIW5_Itin,
+ [FeatureR700, FeatureFP64, FeatureVertexCache, FeatureWavefrontSize64]>;
+
+//===----------------------------------------------------------------------===//
+// Evergreen
+//===----------------------------------------------------------------------===//
+
+def : Proc<"cedar", R600_VLIW5_Itin,
+ [FeatureEvergreen, FeatureVertexCache, FeatureWavefrontSize32,
+ FeatureCFALUBug]>;
+
+def : Proc<"redwood", R600_VLIW5_Itin,
+ [FeatureEvergreen, FeatureVertexCache, FeatureWavefrontSize64,
+ FeatureCFALUBug]>;
+
+def : Proc<"sumo", R600_VLIW5_Itin,
+ [FeatureEvergreen, FeatureWavefrontSize64, FeatureCFALUBug]>;
+
+def : Proc<"juniper", R600_VLIW5_Itin,
+ [FeatureEvergreen, FeatureVertexCache, FeatureWavefrontSize64]>;
+
+def : Proc<"cypress", R600_VLIW5_Itin,
+ [FeatureEvergreen, FeatureFP64, FeatureVertexCache,
+ FeatureWavefrontSize64]>;
+
+//===----------------------------------------------------------------------===//
+// Northern Islands
+//===----------------------------------------------------------------------===//
+
+def : Proc<"barts", R600_VLIW5_Itin,
+ [FeatureNorthernIslands, FeatureVertexCache, FeatureCFALUBug]>;
+
+def : Proc<"turks", R600_VLIW5_Itin,
+ [FeatureNorthernIslands, FeatureVertexCache, FeatureCFALUBug]>;
+
+def : Proc<"caicos", R600_VLIW5_Itin,
+ [FeatureNorthernIslands, FeatureCFALUBug]>;
+
+def : Proc<"cayman", R600_VLIW4_Itin,
+ [FeatureNorthernIslands, FeatureFP64, FeatureCaymanISA]>;
+
+//===----------------------------------------------------------------------===//
+// Southern Islands
+//===----------------------------------------------------------------------===//
+
+def : Proc<"SI", SI_Itin, [FeatureSouthernIslands]>;
+
+def : Proc<"tahiti", SI_Itin, [FeatureSouthernIslands]>;
+
+def : Proc<"pitcairn", SI_Itin, [FeatureSouthernIslands]>;
+
+def : Proc<"verde", SI_Itin, [FeatureSouthernIslands]>;
+
+def : Proc<"oland", SI_Itin, [FeatureSouthernIslands]>;
+
+def : Proc<"hainan", SI_Itin, [FeatureSouthernIslands]>;
+
+//===----------------------------------------------------------------------===//
+// Sea Islands
+//===----------------------------------------------------------------------===//
+
+def : Proc<"bonaire", SI_Itin, [FeatureSeaIslands]>;
+
+def : Proc<"kabini", SI_Itin, [FeatureSeaIslands]>;
+
+def : Proc<"kaveri", SI_Itin, [FeatureSeaIslands]>;
+
+def : Proc<"hawaii", SI_Itin, [FeatureSeaIslands]>;
+
+def : Proc<"mullins", SI_Itin, [FeatureSeaIslands]>;
diff --git a/contrib/llvm/lib/Target/R600/R600ClauseMergePass.cpp b/contrib/llvm/lib/Target/R600/R600ClauseMergePass.cpp
new file mode 100644
index 0000000..92bf0df
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600ClauseMergePass.cpp
@@ -0,0 +1,205 @@
+//===-- R600ClauseMergePass - Merge consecutive CF_ALU -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// R600EmitClauseMarker pass emits CFAlu instruction in a conservative maneer.
+/// This pass is merging consecutive CFAlus where applicable.
+/// It needs to be called after IfCvt for best results.
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "R600Defines.h"
+#include "R600InstrInfo.h"
+#include "R600MachineFunctionInfo.h"
+#include "R600RegisterInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "r600mergeclause"
+
+namespace {
+
+static bool isCFAlu(const MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ case AMDGPU::CF_ALU:
+ case AMDGPU::CF_ALU_PUSH_BEFORE:
+ return true;
+ default:
+ return false;
+ }
+}
+
+class R600ClauseMergePass : public MachineFunctionPass {
+
+private:
+ static char ID;
+ const R600InstrInfo *TII;
+
+ unsigned getCFAluSize(const MachineInstr *MI) const;
+ bool isCFAluEnabled(const MachineInstr *MI) const;
+
+ /// IfCvt pass can generate "disabled" ALU clause marker that need to be
+ /// removed and their content affected to the previous alu clause.
+ /// This function parse instructions after CFAlu until it find a disabled
+ /// CFAlu and merge the content, or an enabled CFAlu.
+ void cleanPotentialDisabledCFAlu(MachineInstr *CFAlu) const;
+
+ /// Check whether LatrCFAlu can be merged into RootCFAlu and do it if
+ /// it is the case.
+ bool mergeIfPossible(MachineInstr *RootCFAlu, const MachineInstr *LatrCFAlu)
+ const;
+
+public:
+ R600ClauseMergePass(TargetMachine &tm) : MachineFunctionPass(ID) { }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override;
+};
+
+char R600ClauseMergePass::ID = 0;
+
+unsigned R600ClauseMergePass::getCFAluSize(const MachineInstr *MI) const {
+ assert(isCFAlu(MI));
+ return MI->getOperand(
+ TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::COUNT)).getImm();
+}
+
+bool R600ClauseMergePass::isCFAluEnabled(const MachineInstr *MI) const {
+ assert(isCFAlu(MI));
+ return MI->getOperand(
+ TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::Enabled)).getImm();
+}
+
+void R600ClauseMergePass::cleanPotentialDisabledCFAlu(MachineInstr *CFAlu)
+ const {
+ int CntIdx = TII->getOperandIdx(AMDGPU::CF_ALU, AMDGPU::OpName::COUNT);
+ MachineBasicBlock::iterator I = CFAlu, E = CFAlu->getParent()->end();
+ I++;
+ do {
+ while (I!= E && !isCFAlu(I))
+ I++;
+ if (I == E)
+ return;
+ MachineInstr *MI = I++;
+ if (isCFAluEnabled(MI))
+ break;
+ CFAlu->getOperand(CntIdx).setImm(getCFAluSize(CFAlu) + getCFAluSize(MI));
+ MI->eraseFromParent();
+ } while (I != E);
+}
+
+bool R600ClauseMergePass::mergeIfPossible(MachineInstr *RootCFAlu,
+ const MachineInstr *LatrCFAlu) const {
+ assert(isCFAlu(RootCFAlu) && isCFAlu(LatrCFAlu));
+ int CntIdx = TII->getOperandIdx(AMDGPU::CF_ALU, AMDGPU::OpName::COUNT);
+ unsigned RootInstCount = getCFAluSize(RootCFAlu),
+ LaterInstCount = getCFAluSize(LatrCFAlu);
+ unsigned CumuledInsts = RootInstCount + LaterInstCount;
+ if (CumuledInsts >= TII->getMaxAlusPerClause()) {
+ DEBUG(dbgs() << "Excess inst counts\n");
+ return false;
+ }
+ if (RootCFAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE)
+ return false;
+ // Is KCache Bank 0 compatible ?
+ int Mode0Idx =
+ TII->getOperandIdx(AMDGPU::CF_ALU, AMDGPU::OpName::KCACHE_MODE0);
+ int KBank0Idx =
+ TII->getOperandIdx(AMDGPU::CF_ALU, AMDGPU::OpName::KCACHE_BANK0);
+ int KBank0LineIdx =
+ TII->getOperandIdx(AMDGPU::CF_ALU, AMDGPU::OpName::KCACHE_ADDR0);
+ if (LatrCFAlu->getOperand(Mode0Idx).getImm() &&
+ RootCFAlu->getOperand(Mode0Idx).getImm() &&
+ (LatrCFAlu->getOperand(KBank0Idx).getImm() !=
+ RootCFAlu->getOperand(KBank0Idx).getImm() ||
+ LatrCFAlu->getOperand(KBank0LineIdx).getImm() !=
+ RootCFAlu->getOperand(KBank0LineIdx).getImm())) {
+ DEBUG(dbgs() << "Wrong KC0\n");
+ return false;
+ }
+ // Is KCache Bank 1 compatible ?
+ int Mode1Idx =
+ TII->getOperandIdx(AMDGPU::CF_ALU, AMDGPU::OpName::KCACHE_MODE1);
+ int KBank1Idx =
+ TII->getOperandIdx(AMDGPU::CF_ALU, AMDGPU::OpName::KCACHE_BANK1);
+ int KBank1LineIdx =
+ TII->getOperandIdx(AMDGPU::CF_ALU, AMDGPU::OpName::KCACHE_ADDR1);
+ if (LatrCFAlu->getOperand(Mode1Idx).getImm() &&
+ RootCFAlu->getOperand(Mode1Idx).getImm() &&
+ (LatrCFAlu->getOperand(KBank1Idx).getImm() !=
+ RootCFAlu->getOperand(KBank1Idx).getImm() ||
+ LatrCFAlu->getOperand(KBank1LineIdx).getImm() !=
+ RootCFAlu->getOperand(KBank1LineIdx).getImm())) {
+ DEBUG(dbgs() << "Wrong KC0\n");
+ return false;
+ }
+ if (LatrCFAlu->getOperand(Mode0Idx).getImm()) {
+ RootCFAlu->getOperand(Mode0Idx).setImm(
+ LatrCFAlu->getOperand(Mode0Idx).getImm());
+ RootCFAlu->getOperand(KBank0Idx).setImm(
+ LatrCFAlu->getOperand(KBank0Idx).getImm());
+ RootCFAlu->getOperand(KBank0LineIdx).setImm(
+ LatrCFAlu->getOperand(KBank0LineIdx).getImm());
+ }
+ if (LatrCFAlu->getOperand(Mode1Idx).getImm()) {
+ RootCFAlu->getOperand(Mode1Idx).setImm(
+ LatrCFAlu->getOperand(Mode1Idx).getImm());
+ RootCFAlu->getOperand(KBank1Idx).setImm(
+ LatrCFAlu->getOperand(KBank1Idx).getImm());
+ RootCFAlu->getOperand(KBank1LineIdx).setImm(
+ LatrCFAlu->getOperand(KBank1LineIdx).getImm());
+ }
+ RootCFAlu->getOperand(CntIdx).setImm(CumuledInsts);
+ RootCFAlu->setDesc(TII->get(LatrCFAlu->getOpcode()));
+ return true;
+}
+
+bool R600ClauseMergePass::runOnMachineFunction(MachineFunction &MF) {
+ TII = static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo());
+ for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
+ BB != BB_E; ++BB) {
+ MachineBasicBlock &MBB = *BB;
+ MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ MachineBasicBlock::iterator LatestCFAlu = E;
+ while (I != E) {
+ MachineInstr *MI = I++;
+ if ((!TII->canBeConsideredALU(MI) && !isCFAlu(MI)) ||
+ TII->mustBeLastInClause(MI->getOpcode()))
+ LatestCFAlu = E;
+ if (!isCFAlu(MI))
+ continue;
+ cleanPotentialDisabledCFAlu(MI);
+
+ if (LatestCFAlu != E && mergeIfPossible(LatestCFAlu, MI)) {
+ MI->eraseFromParent();
+ } else {
+ assert(MI->getOperand(8).getImm() && "CF ALU instruction disabled");
+ LatestCFAlu = MI;
+ }
+ }
+ }
+ return false;
+}
+
+const char *R600ClauseMergePass::getPassName() const {
+ return "R600 Merge Clause Markers Pass";
+}
+
+} // end anonymous namespace
+
+
+llvm::FunctionPass *llvm::createR600ClauseMergePass(TargetMachine &TM) {
+ return new R600ClauseMergePass(TM);
+}
diff --git a/contrib/llvm/lib/Target/R600/R600ControlFlowFinalizer.cpp b/contrib/llvm/lib/Target/R600/R600ControlFlowFinalizer.cpp
new file mode 100644
index 0000000..e37767a
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600ControlFlowFinalizer.cpp
@@ -0,0 +1,682 @@
+//===-- R600ControlFlowFinalizer.cpp - Finalize Control Flow Inst----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This pass compute turns all control flow pseudo instructions into native one
+/// computing their address on the fly ; it also sets STACK_SIZE info.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Debug.h"
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "R600Defines.h"
+#include "R600InstrInfo.h"
+#include "R600MachineFunctionInfo.h"
+#include "R600RegisterInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "r600cf"
+
+namespace {
+
+struct CFStack {
+
+ enum StackItem {
+ ENTRY = 0,
+ SUB_ENTRY = 1,
+ FIRST_NON_WQM_PUSH = 2,
+ FIRST_NON_WQM_PUSH_W_FULL_ENTRY = 3
+ };
+
+ const AMDGPUSubtarget &ST;
+ std::vector<StackItem> BranchStack;
+ std::vector<StackItem> LoopStack;
+ unsigned MaxStackSize;
+ unsigned CurrentEntries;
+ unsigned CurrentSubEntries;
+
+ CFStack(const AMDGPUSubtarget &st, unsigned ShaderType) : ST(st),
+ // We need to reserve a stack entry for CALL_FS in vertex shaders.
+ MaxStackSize(ShaderType == ShaderType::VERTEX ? 1 : 0),
+ CurrentEntries(0), CurrentSubEntries(0) { }
+
+ unsigned getLoopDepth();
+ bool branchStackContains(CFStack::StackItem);
+ bool requiresWorkAroundForInst(unsigned Opcode);
+ unsigned getSubEntrySize(CFStack::StackItem Item);
+ void updateMaxStackSize();
+ void pushBranch(unsigned Opcode, bool isWQM = false);
+ void pushLoop();
+ void popBranch();
+ void popLoop();
+};
+
+unsigned CFStack::getLoopDepth() {
+ return LoopStack.size();
+}
+
+bool CFStack::branchStackContains(CFStack::StackItem Item) {
+ for (std::vector<CFStack::StackItem>::const_iterator I = BranchStack.begin(),
+ E = BranchStack.end(); I != E; ++I) {
+ if (*I == Item)
+ return true;
+ }
+ return false;
+}
+
+bool CFStack::requiresWorkAroundForInst(unsigned Opcode) {
+ if (Opcode == AMDGPU::CF_ALU_PUSH_BEFORE && ST.hasCaymanISA() &&
+ getLoopDepth() > 1)
+ return true;
+
+ if (!ST.hasCFAluBug())
+ return false;
+
+ switch(Opcode) {
+ default: return false;
+ case AMDGPU::CF_ALU_PUSH_BEFORE:
+ case AMDGPU::CF_ALU_ELSE_AFTER:
+ case AMDGPU::CF_ALU_BREAK:
+ case AMDGPU::CF_ALU_CONTINUE:
+ if (CurrentSubEntries == 0)
+ return false;
+ if (ST.getWavefrontSize() == 64) {
+ // We are being conservative here. We only require this work-around if
+ // CurrentSubEntries > 3 &&
+ // (CurrentSubEntries % 4 == 3 || CurrentSubEntries % 4 == 0)
+ //
+ // We have to be conservative, because we don't know for certain that
+ // our stack allocation algorithm for Evergreen/NI is correct. Applying this
+ // work-around when CurrentSubEntries > 3 allows us to over-allocate stack
+ // resources without any problems.
+ return CurrentSubEntries > 3;
+ } else {
+ assert(ST.getWavefrontSize() == 32);
+ // We are being conservative here. We only require the work-around if
+ // CurrentSubEntries > 7 &&
+ // (CurrentSubEntries % 8 == 7 || CurrentSubEntries % 8 == 0)
+ // See the comment on the wavefront size == 64 case for why we are
+ // being conservative.
+ return CurrentSubEntries > 7;
+ }
+ }
+}
+
+unsigned CFStack::getSubEntrySize(CFStack::StackItem Item) {
+ switch(Item) {
+ default:
+ return 0;
+ case CFStack::FIRST_NON_WQM_PUSH:
+ assert(!ST.hasCaymanISA());
+ if (ST.getGeneration() <= AMDGPUSubtarget::R700) {
+ // +1 For the push operation.
+ // +2 Extra space required.
+ return 3;
+ } else {
+ // Some documentation says that this is not necessary on Evergreen,
+ // but experimentation has show that we need to allocate 1 extra
+ // sub-entry for the first non-WQM push.
+ // +1 For the push operation.
+ // +1 Extra space required.
+ return 2;
+ }
+ case CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY:
+ assert(ST.getGeneration() >= AMDGPUSubtarget::EVERGREEN);
+ // +1 For the push operation.
+ // +1 Extra space required.
+ return 2;
+ case CFStack::SUB_ENTRY:
+ return 1;
+ }
+}
+
+void CFStack::updateMaxStackSize() {
+ unsigned CurrentStackSize = CurrentEntries +
+ (RoundUpToAlignment(CurrentSubEntries, 4) / 4);
+ MaxStackSize = std::max(CurrentStackSize, MaxStackSize);
+}
+
+void CFStack::pushBranch(unsigned Opcode, bool isWQM) {
+ CFStack::StackItem Item = CFStack::ENTRY;
+ switch(Opcode) {
+ case AMDGPU::CF_PUSH_EG:
+ case AMDGPU::CF_ALU_PUSH_BEFORE:
+ if (!isWQM) {
+ if (!ST.hasCaymanISA() && !branchStackContains(CFStack::FIRST_NON_WQM_PUSH))
+ Item = CFStack::FIRST_NON_WQM_PUSH; // May not be required on Evergreen/NI
+ // See comment in
+ // CFStack::getSubEntrySize()
+ else if (CurrentEntries > 0 &&
+ ST.getGeneration() > AMDGPUSubtarget::EVERGREEN &&
+ !ST.hasCaymanISA() &&
+ !branchStackContains(CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY))
+ Item = CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY;
+ else
+ Item = CFStack::SUB_ENTRY;
+ } else
+ Item = CFStack::ENTRY;
+ break;
+ }
+ BranchStack.push_back(Item);
+ if (Item == CFStack::ENTRY)
+ CurrentEntries++;
+ else
+ CurrentSubEntries += getSubEntrySize(Item);
+ updateMaxStackSize();
+}
+
+void CFStack::pushLoop() {
+ LoopStack.push_back(CFStack::ENTRY);
+ CurrentEntries++;
+ updateMaxStackSize();
+}
+
+void CFStack::popBranch() {
+ CFStack::StackItem Top = BranchStack.back();
+ if (Top == CFStack::ENTRY)
+ CurrentEntries--;
+ else
+ CurrentSubEntries-= getSubEntrySize(Top);
+ BranchStack.pop_back();
+}
+
+void CFStack::popLoop() {
+ CurrentEntries--;
+ LoopStack.pop_back();
+}
+
+class R600ControlFlowFinalizer : public MachineFunctionPass {
+
+private:
+ typedef std::pair<MachineInstr *, std::vector<MachineInstr *> > ClauseFile;
+
+ enum ControlFlowInstruction {
+ CF_TC,
+ CF_VC,
+ CF_CALL_FS,
+ CF_WHILE_LOOP,
+ CF_END_LOOP,
+ CF_LOOP_BREAK,
+ CF_LOOP_CONTINUE,
+ CF_JUMP,
+ CF_ELSE,
+ CF_POP,
+ CF_END
+ };
+
+ static char ID;
+ const R600InstrInfo *TII;
+ const R600RegisterInfo *TRI;
+ unsigned MaxFetchInst;
+ const AMDGPUSubtarget &ST;
+
+ bool IsTrivialInst(MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case AMDGPU::KILL:
+ case AMDGPU::RETURN:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ const MCInstrDesc &getHWInstrDesc(ControlFlowInstruction CFI) const {
+ unsigned Opcode = 0;
+ bool isEg = (ST.getGeneration() >= AMDGPUSubtarget::EVERGREEN);
+ switch (CFI) {
+ case CF_TC:
+ Opcode = isEg ? AMDGPU::CF_TC_EG : AMDGPU::CF_TC_R600;
+ break;
+ case CF_VC:
+ Opcode = isEg ? AMDGPU::CF_VC_EG : AMDGPU::CF_VC_R600;
+ break;
+ case CF_CALL_FS:
+ Opcode = isEg ? AMDGPU::CF_CALL_FS_EG : AMDGPU::CF_CALL_FS_R600;
+ break;
+ case CF_WHILE_LOOP:
+ Opcode = isEg ? AMDGPU::WHILE_LOOP_EG : AMDGPU::WHILE_LOOP_R600;
+ break;
+ case CF_END_LOOP:
+ Opcode = isEg ? AMDGPU::END_LOOP_EG : AMDGPU::END_LOOP_R600;
+ break;
+ case CF_LOOP_BREAK:
+ Opcode = isEg ? AMDGPU::LOOP_BREAK_EG : AMDGPU::LOOP_BREAK_R600;
+ break;
+ case CF_LOOP_CONTINUE:
+ Opcode = isEg ? AMDGPU::CF_CONTINUE_EG : AMDGPU::CF_CONTINUE_R600;
+ break;
+ case CF_JUMP:
+ Opcode = isEg ? AMDGPU::CF_JUMP_EG : AMDGPU::CF_JUMP_R600;
+ break;
+ case CF_ELSE:
+ Opcode = isEg ? AMDGPU::CF_ELSE_EG : AMDGPU::CF_ELSE_R600;
+ break;
+ case CF_POP:
+ Opcode = isEg ? AMDGPU::POP_EG : AMDGPU::POP_R600;
+ break;
+ case CF_END:
+ if (ST.hasCaymanISA()) {
+ Opcode = AMDGPU::CF_END_CM;
+ break;
+ }
+ Opcode = isEg ? AMDGPU::CF_END_EG : AMDGPU::CF_END_R600;
+ break;
+ }
+ assert (Opcode && "No opcode selected");
+ return TII->get(Opcode);
+ }
+
+ bool isCompatibleWithClause(const MachineInstr *MI,
+ std::set<unsigned> &DstRegs) const {
+ unsigned DstMI, SrcMI;
+ for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
+ E = MI->operands_end(); I != E; ++I) {
+ const MachineOperand &MO = *I;
+ if (!MO.isReg())
+ continue;
+ if (MO.isDef()) {
+ unsigned Reg = MO.getReg();
+ if (AMDGPU::R600_Reg128RegClass.contains(Reg))
+ DstMI = Reg;
+ else
+ DstMI = TRI->getMatchingSuperReg(Reg,
+ TRI->getSubRegFromChannel(TRI->getHWRegChan(Reg)),
+ &AMDGPU::R600_Reg128RegClass);
+ }
+ if (MO.isUse()) {
+ unsigned Reg = MO.getReg();
+ if (AMDGPU::R600_Reg128RegClass.contains(Reg))
+ SrcMI = Reg;
+ else
+ SrcMI = TRI->getMatchingSuperReg(Reg,
+ TRI->getSubRegFromChannel(TRI->getHWRegChan(Reg)),
+ &AMDGPU::R600_Reg128RegClass);
+ }
+ }
+ if ((DstRegs.find(SrcMI) == DstRegs.end())) {
+ DstRegs.insert(DstMI);
+ return true;
+ } else
+ return false;
+ }
+
+ ClauseFile
+ MakeFetchClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I)
+ const {
+ MachineBasicBlock::iterator ClauseHead = I;
+ std::vector<MachineInstr *> ClauseContent;
+ unsigned AluInstCount = 0;
+ bool IsTex = TII->usesTextureCache(ClauseHead);
+ std::set<unsigned> DstRegs;
+ for (MachineBasicBlock::iterator E = MBB.end(); I != E; ++I) {
+ if (IsTrivialInst(I))
+ continue;
+ if (AluInstCount >= MaxFetchInst)
+ break;
+ if ((IsTex && !TII->usesTextureCache(I)) ||
+ (!IsTex && !TII->usesVertexCache(I)))
+ break;
+ if (!isCompatibleWithClause(I, DstRegs))
+ break;
+ AluInstCount ++;
+ ClauseContent.push_back(I);
+ }
+ MachineInstr *MIb = BuildMI(MBB, ClauseHead, MBB.findDebugLoc(ClauseHead),
+ getHWInstrDesc(IsTex?CF_TC:CF_VC))
+ .addImm(0) // ADDR
+ .addImm(AluInstCount - 1); // COUNT
+ return ClauseFile(MIb, ClauseContent);
+ }
+
+ void getLiteral(MachineInstr *MI, std::vector<int64_t> &Lits) const {
+ static const unsigned LiteralRegs[] = {
+ AMDGPU::ALU_LITERAL_X,
+ AMDGPU::ALU_LITERAL_Y,
+ AMDGPU::ALU_LITERAL_Z,
+ AMDGPU::ALU_LITERAL_W
+ };
+ const SmallVector<std::pair<MachineOperand *, int64_t>, 3 > Srcs =
+ TII->getSrcs(MI);
+ for (unsigned i = 0, e = Srcs.size(); i < e; ++i) {
+ if (Srcs[i].first->getReg() != AMDGPU::ALU_LITERAL_X)
+ continue;
+ int64_t Imm = Srcs[i].second;
+ std::vector<int64_t>::iterator It =
+ std::find(Lits.begin(), Lits.end(), Imm);
+ if (It != Lits.end()) {
+ unsigned Index = It - Lits.begin();
+ Srcs[i].first->setReg(LiteralRegs[Index]);
+ } else {
+ assert(Lits.size() < 4 && "Too many literals in Instruction Group");
+ Srcs[i].first->setReg(LiteralRegs[Lits.size()]);
+ Lits.push_back(Imm);
+ }
+ }
+ }
+
+ MachineBasicBlock::iterator insertLiterals(
+ MachineBasicBlock::iterator InsertPos,
+ const std::vector<unsigned> &Literals) const {
+ MachineBasicBlock *MBB = InsertPos->getParent();
+ for (unsigned i = 0, e = Literals.size(); i < e; i+=2) {
+ unsigned LiteralPair0 = Literals[i];
+ unsigned LiteralPair1 = (i + 1 < e)?Literals[i + 1]:0;
+ InsertPos = BuildMI(MBB, InsertPos->getDebugLoc(),
+ TII->get(AMDGPU::LITERALS))
+ .addImm(LiteralPair0)
+ .addImm(LiteralPair1);
+ }
+ return InsertPos;
+ }
+
+ ClauseFile
+ MakeALUClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I)
+ const {
+ MachineBasicBlock::iterator ClauseHead = I;
+ std::vector<MachineInstr *> ClauseContent;
+ I++;
+ for (MachineBasicBlock::instr_iterator E = MBB.instr_end(); I != E;) {
+ if (IsTrivialInst(I)) {
+ ++I;
+ continue;
+ }
+ if (!I->isBundle() && !TII->isALUInstr(I->getOpcode()))
+ break;
+ std::vector<int64_t> Literals;
+ if (I->isBundle()) {
+ MachineInstr *DeleteMI = I;
+ MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
+ while (++BI != E && BI->isBundledWithPred()) {
+ BI->unbundleFromPred();
+ for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = BI->getOperand(i);
+ if (MO.isReg() && MO.isInternalRead())
+ MO.setIsInternalRead(false);
+ }
+ getLiteral(BI, Literals);
+ ClauseContent.push_back(BI);
+ }
+ I = BI;
+ DeleteMI->eraseFromParent();
+ } else {
+ getLiteral(I, Literals);
+ ClauseContent.push_back(I);
+ I++;
+ }
+ for (unsigned i = 0, e = Literals.size(); i < e; i+=2) {
+ unsigned literal0 = Literals[i];
+ unsigned literal2 = (i + 1 < e)?Literals[i + 1]:0;
+ MachineInstr *MILit = BuildMI(MBB, I, I->getDebugLoc(),
+ TII->get(AMDGPU::LITERALS))
+ .addImm(literal0)
+ .addImm(literal2);
+ ClauseContent.push_back(MILit);
+ }
+ }
+ assert(ClauseContent.size() < 128 && "ALU clause is too big");
+ ClauseHead->getOperand(7).setImm(ClauseContent.size() - 1);
+ return ClauseFile(ClauseHead, ClauseContent);
+ }
+
+ void
+ EmitFetchClause(MachineBasicBlock::iterator InsertPos, ClauseFile &Clause,
+ unsigned &CfCount) {
+ CounterPropagateAddr(Clause.first, CfCount);
+ MachineBasicBlock *BB = Clause.first->getParent();
+ BuildMI(BB, InsertPos->getDebugLoc(), TII->get(AMDGPU::FETCH_CLAUSE))
+ .addImm(CfCount);
+ for (unsigned i = 0, e = Clause.second.size(); i < e; ++i) {
+ BB->splice(InsertPos, BB, Clause.second[i]);
+ }
+ CfCount += 2 * Clause.second.size();
+ }
+
+ void
+ EmitALUClause(MachineBasicBlock::iterator InsertPos, ClauseFile &Clause,
+ unsigned &CfCount) {
+ Clause.first->getOperand(0).setImm(0);
+ CounterPropagateAddr(Clause.first, CfCount);
+ MachineBasicBlock *BB = Clause.first->getParent();
+ BuildMI(BB, InsertPos->getDebugLoc(), TII->get(AMDGPU::ALU_CLAUSE))
+ .addImm(CfCount);
+ for (unsigned i = 0, e = Clause.second.size(); i < e; ++i) {
+ BB->splice(InsertPos, BB, Clause.second[i]);
+ }
+ CfCount += Clause.second.size();
+ }
+
+ void CounterPropagateAddr(MachineInstr *MI, unsigned Addr) const {
+ MI->getOperand(0).setImm(Addr + MI->getOperand(0).getImm());
+ }
+ void CounterPropagateAddr(std::set<MachineInstr *> MIs, unsigned Addr)
+ const {
+ for (std::set<MachineInstr *>::iterator It = MIs.begin(), E = MIs.end();
+ It != E; ++It) {
+ MachineInstr *MI = *It;
+ CounterPropagateAddr(MI, Addr);
+ }
+ }
+
+public:
+ R600ControlFlowFinalizer(TargetMachine &tm) : MachineFunctionPass(ID),
+ TII (nullptr), TRI(nullptr),
+ ST(tm.getSubtarget<AMDGPUSubtarget>()) {
+ const AMDGPUSubtarget &ST = tm.getSubtarget<AMDGPUSubtarget>();
+ MaxFetchInst = ST.getTexVTXClauseSize();
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ TII=static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo());
+ TRI=static_cast<const R600RegisterInfo *>(MF.getTarget().getRegisterInfo());
+ R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
+
+ CFStack CFStack(ST, MFI->getShaderType());
+ for (MachineFunction::iterator MB = MF.begin(), ME = MF.end(); MB != ME;
+ ++MB) {
+ MachineBasicBlock &MBB = *MB;
+ unsigned CfCount = 0;
+ std::vector<std::pair<unsigned, std::set<MachineInstr *> > > LoopStack;
+ std::vector<MachineInstr * > IfThenElseStack;
+ if (MFI->getShaderType() == ShaderType::VERTEX) {
+ BuildMI(MBB, MBB.begin(), MBB.findDebugLoc(MBB.begin()),
+ getHWInstrDesc(CF_CALL_FS));
+ CfCount++;
+ }
+ std::vector<ClauseFile> FetchClauses, AluClauses;
+ std::vector<MachineInstr *> LastAlu(1);
+ std::vector<MachineInstr *> ToPopAfter;
+
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ I != E;) {
+ if (TII->usesTextureCache(I) || TII->usesVertexCache(I)) {
+ DEBUG(dbgs() << CfCount << ":"; I->dump(););
+ FetchClauses.push_back(MakeFetchClause(MBB, I));
+ CfCount++;
+ LastAlu.back() = nullptr;
+ continue;
+ }
+
+ MachineBasicBlock::iterator MI = I;
+ if (MI->getOpcode() != AMDGPU::ENDIF)
+ LastAlu.back() = nullptr;
+ if (MI->getOpcode() == AMDGPU::CF_ALU)
+ LastAlu.back() = MI;
+ I++;
+ bool RequiresWorkAround =
+ CFStack.requiresWorkAroundForInst(MI->getOpcode());
+ switch (MI->getOpcode()) {
+ case AMDGPU::CF_ALU_PUSH_BEFORE:
+ if (RequiresWorkAround) {
+ DEBUG(dbgs() << "Applying bug work-around for ALU_PUSH_BEFORE\n");
+ BuildMI(MBB, MI, MBB.findDebugLoc(MI), TII->get(AMDGPU::CF_PUSH_EG))
+ .addImm(CfCount + 1)
+ .addImm(1);
+ MI->setDesc(TII->get(AMDGPU::CF_ALU));
+ CfCount++;
+ CFStack.pushBranch(AMDGPU::CF_PUSH_EG);
+ } else
+ CFStack.pushBranch(AMDGPU::CF_ALU_PUSH_BEFORE);
+
+ case AMDGPU::CF_ALU:
+ I = MI;
+ AluClauses.push_back(MakeALUClause(MBB, I));
+ DEBUG(dbgs() << CfCount << ":"; MI->dump(););
+ CfCount++;
+ break;
+ case AMDGPU::WHILELOOP: {
+ CFStack.pushLoop();
+ MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
+ getHWInstrDesc(CF_WHILE_LOOP))
+ .addImm(1);
+ std::pair<unsigned, std::set<MachineInstr *> > Pair(CfCount,
+ std::set<MachineInstr *>());
+ Pair.second.insert(MIb);
+ LoopStack.push_back(Pair);
+ MI->eraseFromParent();
+ CfCount++;
+ break;
+ }
+ case AMDGPU::ENDLOOP: {
+ CFStack.popLoop();
+ std::pair<unsigned, std::set<MachineInstr *> > Pair =
+ LoopStack.back();
+ LoopStack.pop_back();
+ CounterPropagateAddr(Pair.second, CfCount);
+ BuildMI(MBB, MI, MBB.findDebugLoc(MI), getHWInstrDesc(CF_END_LOOP))
+ .addImm(Pair.first + 1);
+ MI->eraseFromParent();
+ CfCount++;
+ break;
+ }
+ case AMDGPU::IF_PREDICATE_SET: {
+ LastAlu.push_back(nullptr);
+ MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
+ getHWInstrDesc(CF_JUMP))
+ .addImm(0)
+ .addImm(0);
+ IfThenElseStack.push_back(MIb);
+ DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
+ MI->eraseFromParent();
+ CfCount++;
+ break;
+ }
+ case AMDGPU::ELSE: {
+ MachineInstr * JumpInst = IfThenElseStack.back();
+ IfThenElseStack.pop_back();
+ CounterPropagateAddr(JumpInst, CfCount);
+ MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
+ getHWInstrDesc(CF_ELSE))
+ .addImm(0)
+ .addImm(0);
+ DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
+ IfThenElseStack.push_back(MIb);
+ MI->eraseFromParent();
+ CfCount++;
+ break;
+ }
+ case AMDGPU::ENDIF: {
+ CFStack.popBranch();
+ if (LastAlu.back()) {
+ ToPopAfter.push_back(LastAlu.back());
+ } else {
+ MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
+ getHWInstrDesc(CF_POP))
+ .addImm(CfCount + 1)
+ .addImm(1);
+ (void)MIb;
+ DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
+ CfCount++;
+ }
+
+ MachineInstr *IfOrElseInst = IfThenElseStack.back();
+ IfThenElseStack.pop_back();
+ CounterPropagateAddr(IfOrElseInst, CfCount);
+ IfOrElseInst->getOperand(1).setImm(1);
+ LastAlu.pop_back();
+ MI->eraseFromParent();
+ break;
+ }
+ case AMDGPU::BREAK: {
+ CfCount ++;
+ MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
+ getHWInstrDesc(CF_LOOP_BREAK))
+ .addImm(0);
+ LoopStack.back().second.insert(MIb);
+ MI->eraseFromParent();
+ break;
+ }
+ case AMDGPU::CONTINUE: {
+ MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
+ getHWInstrDesc(CF_LOOP_CONTINUE))
+ .addImm(0);
+ LoopStack.back().second.insert(MIb);
+ MI->eraseFromParent();
+ CfCount++;
+ break;
+ }
+ case AMDGPU::RETURN: {
+ BuildMI(MBB, MI, MBB.findDebugLoc(MI), getHWInstrDesc(CF_END));
+ CfCount++;
+ MI->eraseFromParent();
+ if (CfCount % 2) {
+ BuildMI(MBB, I, MBB.findDebugLoc(MI), TII->get(AMDGPU::PAD));
+ CfCount++;
+ }
+ for (unsigned i = 0, e = FetchClauses.size(); i < e; i++)
+ EmitFetchClause(I, FetchClauses[i], CfCount);
+ for (unsigned i = 0, e = AluClauses.size(); i < e; i++)
+ EmitALUClause(I, AluClauses[i], CfCount);
+ }
+ default:
+ if (TII->isExport(MI->getOpcode())) {
+ DEBUG(dbgs() << CfCount << ":"; MI->dump(););
+ CfCount++;
+ }
+ break;
+ }
+ }
+ for (unsigned i = 0, e = ToPopAfter.size(); i < e; ++i) {
+ MachineInstr *Alu = ToPopAfter[i];
+ BuildMI(MBB, Alu, MBB.findDebugLoc((MachineBasicBlock::iterator)Alu),
+ TII->get(AMDGPU::CF_ALU_POP_AFTER))
+ .addImm(Alu->getOperand(0).getImm())
+ .addImm(Alu->getOperand(1).getImm())
+ .addImm(Alu->getOperand(2).getImm())
+ .addImm(Alu->getOperand(3).getImm())
+ .addImm(Alu->getOperand(4).getImm())
+ .addImm(Alu->getOperand(5).getImm())
+ .addImm(Alu->getOperand(6).getImm())
+ .addImm(Alu->getOperand(7).getImm())
+ .addImm(Alu->getOperand(8).getImm());
+ Alu->eraseFromParent();
+ }
+ MFI->StackSize = CFStack.MaxStackSize;
+ }
+
+ return false;
+ }
+
+ const char *getPassName() const override {
+ return "R600 Control Flow Finalizer Pass";
+ }
+};
+
+char R600ControlFlowFinalizer::ID = 0;
+
+} // end anonymous namespace
+
+
+llvm::FunctionPass *llvm::createR600ControlFlowFinalizer(TargetMachine &TM) {
+ return new R600ControlFlowFinalizer(TM);
+}
diff --git a/contrib/llvm/lib/Target/R600/R600Defines.h b/contrib/llvm/lib/Target/R600/R600Defines.h
new file mode 100644
index 0000000..f2f28fe
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600Defines.h
@@ -0,0 +1,171 @@
+//===-- R600Defines.h - R600 Helper Macros ----------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+#ifndef R600DEFINES_H_
+#define R600DEFINES_H_
+
+#include "llvm/MC/MCRegisterInfo.h"
+
+// Operand Flags
+#define MO_FLAG_CLAMP (1 << 0)
+#define MO_FLAG_NEG (1 << 1)
+#define MO_FLAG_ABS (1 << 2)
+#define MO_FLAG_MASK (1 << 3)
+#define MO_FLAG_PUSH (1 << 4)
+#define MO_FLAG_NOT_LAST (1 << 5)
+#define MO_FLAG_LAST (1 << 6)
+#define NUM_MO_FLAGS 7
+
+/// \brief Helper for getting the operand index for the instruction flags
+/// operand.
+#define GET_FLAG_OPERAND_IDX(Flags) (((Flags) >> 7) & 0x3)
+
+namespace R600_InstFlag {
+ enum TIF {
+ TRANS_ONLY = (1 << 0),
+ TEX = (1 << 1),
+ REDUCTION = (1 << 2),
+ FC = (1 << 3),
+ TRIG = (1 << 4),
+ OP3 = (1 << 5),
+ VECTOR = (1 << 6),
+ //FlagOperand bits 7, 8
+ NATIVE_OPERANDS = (1 << 9),
+ OP1 = (1 << 10),
+ OP2 = (1 << 11),
+ VTX_INST = (1 << 12),
+ TEX_INST = (1 << 13),
+ ALU_INST = (1 << 14),
+ LDS_1A = (1 << 15),
+ LDS_1A1D = (1 << 16),
+ IS_EXPORT = (1 << 17),
+ LDS_1A2D = (1 << 18)
+ };
+}
+
+#define HAS_NATIVE_OPERANDS(Flags) ((Flags) & R600_InstFlag::NATIVE_OPERANDS)
+
+/// \brief Defines for extracting register information from register encoding
+#define HW_REG_MASK 0x1ff
+#define HW_CHAN_SHIFT 9
+
+#define GET_REG_CHAN(reg) ((reg) >> HW_CHAN_SHIFT)
+#define GET_REG_INDEX(reg) ((reg) & HW_REG_MASK)
+
+#define IS_VTX(desc) ((desc).TSFlags & R600_InstFlag::VTX_INST)
+#define IS_TEX(desc) ((desc).TSFlags & R600_InstFlag::TEX_INST)
+
+namespace OpName {
+
+ enum VecOps {
+ UPDATE_EXEC_MASK_X,
+ UPDATE_PREDICATE_X,
+ WRITE_X,
+ OMOD_X,
+ DST_REL_X,
+ CLAMP_X,
+ SRC0_X,
+ SRC0_NEG_X,
+ SRC0_REL_X,
+ SRC0_ABS_X,
+ SRC0_SEL_X,
+ SRC1_X,
+ SRC1_NEG_X,
+ SRC1_REL_X,
+ SRC1_ABS_X,
+ SRC1_SEL_X,
+ PRED_SEL_X,
+ UPDATE_EXEC_MASK_Y,
+ UPDATE_PREDICATE_Y,
+ WRITE_Y,
+ OMOD_Y,
+ DST_REL_Y,
+ CLAMP_Y,
+ SRC0_Y,
+ SRC0_NEG_Y,
+ SRC0_REL_Y,
+ SRC0_ABS_Y,
+ SRC0_SEL_Y,
+ SRC1_Y,
+ SRC1_NEG_Y,
+ SRC1_REL_Y,
+ SRC1_ABS_Y,
+ SRC1_SEL_Y,
+ PRED_SEL_Y,
+ UPDATE_EXEC_MASK_Z,
+ UPDATE_PREDICATE_Z,
+ WRITE_Z,
+ OMOD_Z,
+ DST_REL_Z,
+ CLAMP_Z,
+ SRC0_Z,
+ SRC0_NEG_Z,
+ SRC0_REL_Z,
+ SRC0_ABS_Z,
+ SRC0_SEL_Z,
+ SRC1_Z,
+ SRC1_NEG_Z,
+ SRC1_REL_Z,
+ SRC1_ABS_Z,
+ SRC1_SEL_Z,
+ PRED_SEL_Z,
+ UPDATE_EXEC_MASK_W,
+ UPDATE_PREDICATE_W,
+ WRITE_W,
+ OMOD_W,
+ DST_REL_W,
+ CLAMP_W,
+ SRC0_W,
+ SRC0_NEG_W,
+ SRC0_REL_W,
+ SRC0_ABS_W,
+ SRC0_SEL_W,
+ SRC1_W,
+ SRC1_NEG_W,
+ SRC1_REL_W,
+ SRC1_ABS_W,
+ SRC1_SEL_W,
+ PRED_SEL_W,
+ IMM_0,
+ IMM_1,
+ VEC_COUNT
+ };
+
+}
+
+//===----------------------------------------------------------------------===//
+// Config register definitions
+//===----------------------------------------------------------------------===//
+
+#define R_02880C_DB_SHADER_CONTROL 0x02880C
+#define S_02880C_KILL_ENABLE(x) (((x) & 0x1) << 6)
+
+// These fields are the same for all shader types and families.
+#define S_NUM_GPRS(x) (((x) & 0xFF) << 0)
+#define S_STACK_SIZE(x) (((x) & 0xFF) << 8)
+//===----------------------------------------------------------------------===//
+// R600, R700 Registers
+//===----------------------------------------------------------------------===//
+
+#define R_028850_SQ_PGM_RESOURCES_PS 0x028850
+#define R_028868_SQ_PGM_RESOURCES_VS 0x028868
+
+//===----------------------------------------------------------------------===//
+// Evergreen, Northern Islands Registers
+//===----------------------------------------------------------------------===//
+
+#define R_028844_SQ_PGM_RESOURCES_PS 0x028844
+#define R_028860_SQ_PGM_RESOURCES_VS 0x028860
+#define R_028878_SQ_PGM_RESOURCES_GS 0x028878
+#define R_0288D4_SQ_PGM_RESOURCES_LS 0x0288d4
+
+#define R_0288E8_SQ_LDS_ALLOC 0x0288E8
+
+#endif // R600DEFINES_H_
diff --git a/contrib/llvm/lib/Target/R600/R600EmitClauseMarkers.cpp b/contrib/llvm/lib/Target/R600/R600EmitClauseMarkers.cpp
new file mode 100644
index 0000000..38afebe
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600EmitClauseMarkers.cpp
@@ -0,0 +1,335 @@
+//===-- R600EmitClauseMarkers.cpp - Emit CF_ALU ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// Add CF_ALU. R600 Alu instructions are grouped in clause which can hold
+/// 128 Alu instructions ; these instructions can access up to 4 prefetched
+/// 4 lines of 16 registers from constant buffers. Such ALU clauses are
+/// initiated by CF_ALU instructions.
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "R600Defines.h"
+#include "R600InstrInfo.h"
+#include "R600MachineFunctionInfo.h"
+#include "R600RegisterInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+namespace llvm {
+ void initializeR600EmitClauseMarkersPass(PassRegistry&);
+}
+
+namespace {
+
+class R600EmitClauseMarkers : public MachineFunctionPass {
+
+private:
+ const R600InstrInfo *TII;
+ int Address;
+
+ unsigned OccupiedDwords(MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case AMDGPU::INTERP_PAIR_XY:
+ case AMDGPU::INTERP_PAIR_ZW:
+ case AMDGPU::INTERP_VEC_LOAD:
+ case AMDGPU::DOT_4:
+ return 4;
+ case AMDGPU::KILL:
+ return 0;
+ default:
+ break;
+ }
+
+ // These will be expanded to two ALU instructions in the
+ // ExpandSpecialInstructions pass.
+ if (TII->isLDSRetInstr(MI->getOpcode()))
+ return 2;
+
+ if(TII->isVector(*MI) ||
+ TII->isCubeOp(MI->getOpcode()) ||
+ TII->isReductionOp(MI->getOpcode()))
+ return 4;
+
+ unsigned NumLiteral = 0;
+ for (MachineInstr::mop_iterator It = MI->operands_begin(),
+ E = MI->operands_end(); It != E; ++It) {
+ MachineOperand &MO = *It;
+ if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X)
+ ++NumLiteral;
+ }
+ return 1 + NumLiteral;
+ }
+
+ bool isALU(const MachineInstr *MI) const {
+ if (TII->isALUInstr(MI->getOpcode()))
+ return true;
+ if (TII->isVector(*MI) || TII->isCubeOp(MI->getOpcode()))
+ return true;
+ switch (MI->getOpcode()) {
+ case AMDGPU::PRED_X:
+ case AMDGPU::INTERP_PAIR_XY:
+ case AMDGPU::INTERP_PAIR_ZW:
+ case AMDGPU::INTERP_VEC_LOAD:
+ case AMDGPU::COPY:
+ case AMDGPU::DOT_4:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ bool IsTrivialInst(MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case AMDGPU::KILL:
+ case AMDGPU::RETURN:
+ case AMDGPU::IMPLICIT_DEF:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ std::pair<unsigned, unsigned> getAccessedBankLine(unsigned Sel) const {
+ // Sel is (512 + (kc_bank << 12) + ConstIndex) << 2
+ // (See also R600ISelLowering.cpp)
+ // ConstIndex value is in [0, 4095];
+ return std::pair<unsigned, unsigned>(
+ ((Sel >> 2) - 512) >> 12, // KC_BANK
+ // Line Number of ConstIndex
+ // A line contains 16 constant registers however KCX bank can lock
+ // two line at the same time ; thus we want to get an even line number.
+ // Line number can be retrieved with (>>4), using (>>5) <<1 generates
+ // an even number.
+ ((((Sel >> 2) - 512) & 4095) >> 5) << 1);
+ }
+
+ bool SubstituteKCacheBank(MachineInstr *MI,
+ std::vector<std::pair<unsigned, unsigned> > &CachedConsts,
+ bool UpdateInstr = true) const {
+ std::vector<std::pair<unsigned, unsigned> > UsedKCache;
+
+ if (!TII->isALUInstr(MI->getOpcode()) && MI->getOpcode() != AMDGPU::DOT_4)
+ return true;
+
+ const SmallVectorImpl<std::pair<MachineOperand *, int64_t> > &Consts =
+ TII->getSrcs(MI);
+ assert((TII->isALUInstr(MI->getOpcode()) ||
+ MI->getOpcode() == AMDGPU::DOT_4) && "Can't assign Const");
+ for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
+ if (Consts[i].first->getReg() != AMDGPU::ALU_CONST)
+ continue;
+ unsigned Sel = Consts[i].second;
+ unsigned Chan = Sel & 3, Index = ((Sel >> 2) - 512) & 31;
+ unsigned KCacheIndex = Index * 4 + Chan;
+ const std::pair<unsigned, unsigned> &BankLine = getAccessedBankLine(Sel);
+ if (CachedConsts.empty()) {
+ CachedConsts.push_back(BankLine);
+ UsedKCache.push_back(std::pair<unsigned, unsigned>(0, KCacheIndex));
+ continue;
+ }
+ if (CachedConsts[0] == BankLine) {
+ UsedKCache.push_back(std::pair<unsigned, unsigned>(0, KCacheIndex));
+ continue;
+ }
+ if (CachedConsts.size() == 1) {
+ CachedConsts.push_back(BankLine);
+ UsedKCache.push_back(std::pair<unsigned, unsigned>(1, KCacheIndex));
+ continue;
+ }
+ if (CachedConsts[1] == BankLine) {
+ UsedKCache.push_back(std::pair<unsigned, unsigned>(1, KCacheIndex));
+ continue;
+ }
+ return false;
+ }
+
+ if (!UpdateInstr)
+ return true;
+
+ for (unsigned i = 0, j = 0, n = Consts.size(); i < n; ++i) {
+ if (Consts[i].first->getReg() != AMDGPU::ALU_CONST)
+ continue;
+ switch(UsedKCache[j].first) {
+ case 0:
+ Consts[i].first->setReg(
+ AMDGPU::R600_KC0RegClass.getRegister(UsedKCache[j].second));
+ break;
+ case 1:
+ Consts[i].first->setReg(
+ AMDGPU::R600_KC1RegClass.getRegister(UsedKCache[j].second));
+ break;
+ default:
+ llvm_unreachable("Wrong Cache Line");
+ }
+ j++;
+ }
+ return true;
+ }
+
+ bool canClauseLocalKillFitInClause(
+ unsigned AluInstCount,
+ std::vector<std::pair<unsigned, unsigned> > KCacheBanks,
+ MachineBasicBlock::iterator Def,
+ MachineBasicBlock::iterator BBEnd) {
+ const R600RegisterInfo &TRI = TII->getRegisterInfo();
+ for (MachineInstr::const_mop_iterator
+ MOI = Def->operands_begin(),
+ MOE = Def->operands_end(); MOI != MOE; ++MOI) {
+ if (!MOI->isReg() || !MOI->isDef() ||
+ TRI.isPhysRegLiveAcrossClauses(MOI->getReg()))
+ continue;
+
+ // Def defines a clause local register, so check that its use will fit
+ // in the clause.
+ unsigned LastUseCount = 0;
+ for (MachineBasicBlock::iterator UseI = Def; UseI != BBEnd; ++UseI) {
+ AluInstCount += OccupiedDwords(UseI);
+ // Make sure we won't need to end the clause due to KCache limitations.
+ if (!SubstituteKCacheBank(UseI, KCacheBanks, false))
+ return false;
+
+ // We have reached the maximum instruction limit before finding the
+ // use that kills this register, so we cannot use this def in the
+ // current clause.
+ if (AluInstCount >= TII->getMaxAlusPerClause())
+ return false;
+
+ // Register kill flags have been cleared by the time we get to this
+ // pass, but it is safe to assume that all uses of this register
+ // occur in the same basic block as its definition, because
+ // it is illegal for the scheduler to schedule them in
+ // different blocks.
+ if (UseI->findRegisterUseOperandIdx(MOI->getReg()))
+ LastUseCount = AluInstCount;
+
+ if (UseI != Def && UseI->findRegisterDefOperandIdx(MOI->getReg()) != -1)
+ break;
+ }
+ if (LastUseCount)
+ return LastUseCount <= TII->getMaxAlusPerClause();
+ llvm_unreachable("Clause local register live at end of clause.");
+ }
+ return true;
+ }
+
+ MachineBasicBlock::iterator
+ MakeALUClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) {
+ MachineBasicBlock::iterator ClauseHead = I;
+ std::vector<std::pair<unsigned, unsigned> > KCacheBanks;
+ bool PushBeforeModifier = false;
+ unsigned AluInstCount = 0;
+ for (MachineBasicBlock::iterator E = MBB.end(); I != E; ++I) {
+ if (IsTrivialInst(I))
+ continue;
+ if (!isALU(I))
+ break;
+ if (AluInstCount > TII->getMaxAlusPerClause())
+ break;
+ if (I->getOpcode() == AMDGPU::PRED_X) {
+ // We put PRED_X in its own clause to ensure that ifcvt won't create
+ // clauses with more than 128 insts.
+ // IfCvt is indeed checking that "then" and "else" branches of an if
+ // statement have less than ~60 insts thus converted clauses can't be
+ // bigger than ~121 insts (predicate setter needs to be in the same
+ // clause as predicated alus).
+ if (AluInstCount > 0)
+ break;
+ if (TII->getFlagOp(I).getImm() & MO_FLAG_PUSH)
+ PushBeforeModifier = true;
+ AluInstCount ++;
+ continue;
+ }
+ // XXX: GROUP_BARRIER instructions cannot be in the same ALU clause as:
+ //
+ // * KILL or INTERP instructions
+ // * Any instruction that sets UPDATE_EXEC_MASK or UPDATE_PRED bits
+ // * Uses waterfalling (i.e. INDEX_MODE = AR.X)
+ //
+ // XXX: These checks have not been implemented yet.
+ if (TII->mustBeLastInClause(I->getOpcode())) {
+ I++;
+ break;
+ }
+
+ // If this instruction defines a clause local register, make sure
+ // its use can fit in this clause.
+ if (!canClauseLocalKillFitInClause(AluInstCount, KCacheBanks, I, E))
+ break;
+
+ if (!SubstituteKCacheBank(I, KCacheBanks))
+ break;
+ AluInstCount += OccupiedDwords(I);
+ }
+ unsigned Opcode = PushBeforeModifier ?
+ AMDGPU::CF_ALU_PUSH_BEFORE : AMDGPU::CF_ALU;
+ BuildMI(MBB, ClauseHead, MBB.findDebugLoc(ClauseHead), TII->get(Opcode))
+ // We don't use the ADDR field until R600ControlFlowFinalizer pass, where
+ // it is safe to assume it is 0. However if we always put 0 here, the ifcvt
+ // pass may assume that identical ALU clause starter at the beginning of a
+ // true and false branch can be factorized which is not the case.
+ .addImm(Address++) // ADDR
+ .addImm(KCacheBanks.empty()?0:KCacheBanks[0].first) // KB0
+ .addImm((KCacheBanks.size() < 2)?0:KCacheBanks[1].first) // KB1
+ .addImm(KCacheBanks.empty()?0:2) // KM0
+ .addImm((KCacheBanks.size() < 2)?0:2) // KM1
+ .addImm(KCacheBanks.empty()?0:KCacheBanks[0].second) // KLINE0
+ .addImm((KCacheBanks.size() < 2)?0:KCacheBanks[1].second) // KLINE1
+ .addImm(AluInstCount) // COUNT
+ .addImm(1); // Enabled
+ return I;
+ }
+
+public:
+ static char ID;
+ R600EmitClauseMarkers() : MachineFunctionPass(ID), TII(nullptr), Address(0) {
+
+ initializeR600EmitClauseMarkersPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ TII = static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo());
+
+ for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
+ BB != BB_E; ++BB) {
+ MachineBasicBlock &MBB = *BB;
+ MachineBasicBlock::iterator I = MBB.begin();
+ if (I->getOpcode() == AMDGPU::CF_ALU)
+ continue; // BB was already parsed
+ for (MachineBasicBlock::iterator E = MBB.end(); I != E;) {
+ if (isALU(I))
+ I = MakeALUClause(MBB, I);
+ else
+ ++I;
+ }
+ }
+ return false;
+ }
+
+ const char *getPassName() const override {
+ return "R600 Emit Clause Markers Pass";
+ }
+};
+
+char R600EmitClauseMarkers::ID = 0;
+
+} // end anonymous namespace
+
+INITIALIZE_PASS_BEGIN(R600EmitClauseMarkers, "emitclausemarkers",
+ "R600 Emit Clause Markters", false, false)
+INITIALIZE_PASS_END(R600EmitClauseMarkers, "emitclausemarkers",
+ "R600 Emit Clause Markters", false, false)
+
+llvm::FunctionPass *llvm::createR600EmitClauseMarkers() {
+ return new R600EmitClauseMarkers();
+}
+
diff --git a/contrib/llvm/lib/Target/R600/R600ExpandSpecialInstrs.cpp b/contrib/llvm/lib/Target/R600/R600ExpandSpecialInstrs.cpp
new file mode 100644
index 0000000..732b06d
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600ExpandSpecialInstrs.cpp
@@ -0,0 +1,348 @@
+//===-- R600ExpandSpecialInstrs.cpp - Expand special instructions ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// Vector, Reduction, and Cube instructions need to fill the entire instruction
+/// group to work correctly. This pass expands these individual instructions
+/// into several instructions that will completely fill the instruction group.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "R600Defines.h"
+#include "R600InstrInfo.h"
+#include "R600MachineFunctionInfo.h"
+#include "R600RegisterInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+namespace {
+
+class R600ExpandSpecialInstrsPass : public MachineFunctionPass {
+
+private:
+ static char ID;
+ const R600InstrInfo *TII;
+
+ void SetFlagInNewMI(MachineInstr *NewMI, const MachineInstr *OldMI,
+ unsigned Op);
+
+public:
+ R600ExpandSpecialInstrsPass(TargetMachine &tm) : MachineFunctionPass(ID),
+ TII(nullptr) { }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "R600 Expand special instructions pass";
+ }
+};
+
+} // End anonymous namespace
+
+char R600ExpandSpecialInstrsPass::ID = 0;
+
+FunctionPass *llvm::createR600ExpandSpecialInstrsPass(TargetMachine &TM) {
+ return new R600ExpandSpecialInstrsPass(TM);
+}
+
+void R600ExpandSpecialInstrsPass::SetFlagInNewMI(MachineInstr *NewMI,
+ const MachineInstr *OldMI, unsigned Op) {
+ int OpIdx = TII->getOperandIdx(*OldMI, Op);
+ if (OpIdx > -1) {
+ uint64_t Val = OldMI->getOperand(OpIdx).getImm();
+ TII->setImmOperand(NewMI, Op, Val);
+ }
+}
+
+bool R600ExpandSpecialInstrsPass::runOnMachineFunction(MachineFunction &MF) {
+ TII = static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo());
+
+ const R600RegisterInfo &TRI = TII->getRegisterInfo();
+
+ for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
+ BB != BB_E; ++BB) {
+ MachineBasicBlock &MBB = *BB;
+ MachineBasicBlock::iterator I = MBB.begin();
+ while (I != MBB.end()) {
+ MachineInstr &MI = *I;
+ I = std::next(I);
+
+ // Expand LDS_*_RET instructions
+ if (TII->isLDSRetInstr(MI.getOpcode())) {
+ int DstIdx = TII->getOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
+ assert(DstIdx != -1);
+ MachineOperand &DstOp = MI.getOperand(DstIdx);
+ MachineInstr *Mov = TII->buildMovInstr(&MBB, I,
+ DstOp.getReg(), AMDGPU::OQAP);
+ DstOp.setReg(AMDGPU::OQAP);
+ int LDSPredSelIdx = TII->getOperandIdx(MI.getOpcode(),
+ AMDGPU::OpName::pred_sel);
+ int MovPredSelIdx = TII->getOperandIdx(Mov->getOpcode(),
+ AMDGPU::OpName::pred_sel);
+ // Copy the pred_sel bit
+ Mov->getOperand(MovPredSelIdx).setReg(
+ MI.getOperand(LDSPredSelIdx).getReg());
+ }
+
+ switch (MI.getOpcode()) {
+ default: break;
+ // Expand PRED_X to one of the PRED_SET instructions.
+ case AMDGPU::PRED_X: {
+ uint64_t Flags = MI.getOperand(3).getImm();
+ // The native opcode used by PRED_X is stored as an immediate in the
+ // third operand.
+ MachineInstr *PredSet = TII->buildDefaultInstruction(MBB, I,
+ MI.getOperand(2).getImm(), // opcode
+ MI.getOperand(0).getReg(), // dst
+ MI.getOperand(1).getReg(), // src0
+ AMDGPU::ZERO); // src1
+ TII->addFlag(PredSet, 0, MO_FLAG_MASK);
+ if (Flags & MO_FLAG_PUSH) {
+ TII->setImmOperand(PredSet, AMDGPU::OpName::update_exec_mask, 1);
+ } else {
+ TII->setImmOperand(PredSet, AMDGPU::OpName::update_pred, 1);
+ }
+ MI.eraseFromParent();
+ continue;
+ }
+
+ case AMDGPU::INTERP_PAIR_XY: {
+ MachineInstr *BMI;
+ unsigned PReg = AMDGPU::R600_ArrayBaseRegClass.getRegister(
+ MI.getOperand(2).getImm());
+
+ for (unsigned Chan = 0; Chan < 4; ++Chan) {
+ unsigned DstReg;
+
+ if (Chan < 2)
+ DstReg = MI.getOperand(Chan).getReg();
+ else
+ DstReg = Chan == 2 ? AMDGPU::T0_Z : AMDGPU::T0_W;
+
+ BMI = TII->buildDefaultInstruction(MBB, I, AMDGPU::INTERP_XY,
+ DstReg, MI.getOperand(3 + (Chan % 2)).getReg(), PReg);
+
+ if (Chan > 0) {
+ BMI->bundleWithPred();
+ }
+ if (Chan >= 2)
+ TII->addFlag(BMI, 0, MO_FLAG_MASK);
+ if (Chan != 3)
+ TII->addFlag(BMI, 0, MO_FLAG_NOT_LAST);
+ }
+
+ MI.eraseFromParent();
+ continue;
+ }
+
+ case AMDGPU::INTERP_PAIR_ZW: {
+ MachineInstr *BMI;
+ unsigned PReg = AMDGPU::R600_ArrayBaseRegClass.getRegister(
+ MI.getOperand(2).getImm());
+
+ for (unsigned Chan = 0; Chan < 4; ++Chan) {
+ unsigned DstReg;
+
+ if (Chan < 2)
+ DstReg = Chan == 0 ? AMDGPU::T0_X : AMDGPU::T0_Y;
+ else
+ DstReg = MI.getOperand(Chan-2).getReg();
+
+ BMI = TII->buildDefaultInstruction(MBB, I, AMDGPU::INTERP_ZW,
+ DstReg, MI.getOperand(3 + (Chan % 2)).getReg(), PReg);
+
+ if (Chan > 0) {
+ BMI->bundleWithPred();
+ }
+ if (Chan < 2)
+ TII->addFlag(BMI, 0, MO_FLAG_MASK);
+ if (Chan != 3)
+ TII->addFlag(BMI, 0, MO_FLAG_NOT_LAST);
+ }
+
+ MI.eraseFromParent();
+ continue;
+ }
+
+ case AMDGPU::INTERP_VEC_LOAD: {
+ const R600RegisterInfo &TRI = TII->getRegisterInfo();
+ MachineInstr *BMI;
+ unsigned PReg = AMDGPU::R600_ArrayBaseRegClass.getRegister(
+ MI.getOperand(1).getImm());
+ unsigned DstReg = MI.getOperand(0).getReg();
+
+ for (unsigned Chan = 0; Chan < 4; ++Chan) {
+ BMI = TII->buildDefaultInstruction(MBB, I, AMDGPU::INTERP_LOAD_P0,
+ TRI.getSubReg(DstReg, TRI.getSubRegFromChannel(Chan)), PReg);
+ if (Chan > 0) {
+ BMI->bundleWithPred();
+ }
+ if (Chan != 3)
+ TII->addFlag(BMI, 0, MO_FLAG_NOT_LAST);
+ }
+
+ MI.eraseFromParent();
+ continue;
+ }
+ case AMDGPU::DOT_4: {
+
+ const R600RegisterInfo &TRI = TII->getRegisterInfo();
+
+ unsigned DstReg = MI.getOperand(0).getReg();
+ unsigned DstBase = TRI.getEncodingValue(DstReg) & HW_REG_MASK;
+
+ for (unsigned Chan = 0; Chan < 4; ++Chan) {
+ bool Mask = (Chan != TRI.getHWRegChan(DstReg));
+ unsigned SubDstReg =
+ AMDGPU::R600_TReg32RegClass.getRegister((DstBase * 4) + Chan);
+ MachineInstr *BMI =
+ TII->buildSlotOfVectorInstruction(MBB, &MI, Chan, SubDstReg);
+ if (Chan > 0) {
+ BMI->bundleWithPred();
+ }
+ if (Mask) {
+ TII->addFlag(BMI, 0, MO_FLAG_MASK);
+ }
+ if (Chan != 3)
+ TII->addFlag(BMI, 0, MO_FLAG_NOT_LAST);
+ unsigned Opcode = BMI->getOpcode();
+ // While not strictly necessary from hw point of view, we force
+ // all src operands of a dot4 inst to belong to the same slot.
+ unsigned Src0 = BMI->getOperand(
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0))
+ .getReg();
+ unsigned Src1 = BMI->getOperand(
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1))
+ .getReg();
+ (void) Src0;
+ (void) Src1;
+ if ((TRI.getEncodingValue(Src0) & 0xff) < 127 &&
+ (TRI.getEncodingValue(Src1) & 0xff) < 127)
+ assert(TRI.getHWRegChan(Src0) == TRI.getHWRegChan(Src1));
+ }
+ MI.eraseFromParent();
+ continue;
+ }
+ }
+
+ bool IsReduction = TII->isReductionOp(MI.getOpcode());
+ bool IsVector = TII->isVector(MI);
+ bool IsCube = TII->isCubeOp(MI.getOpcode());
+ if (!IsReduction && !IsVector && !IsCube) {
+ continue;
+ }
+
+ // Expand the instruction
+ //
+ // Reduction instructions:
+ // T0_X = DP4 T1_XYZW, T2_XYZW
+ // becomes:
+ // TO_X = DP4 T1_X, T2_X
+ // TO_Y (write masked) = DP4 T1_Y, T2_Y
+ // TO_Z (write masked) = DP4 T1_Z, T2_Z
+ // TO_W (write masked) = DP4 T1_W, T2_W
+ //
+ // Vector instructions:
+ // T0_X = MULLO_INT T1_X, T2_X
+ // becomes:
+ // T0_X = MULLO_INT T1_X, T2_X
+ // T0_Y (write masked) = MULLO_INT T1_X, T2_X
+ // T0_Z (write masked) = MULLO_INT T1_X, T2_X
+ // T0_W (write masked) = MULLO_INT T1_X, T2_X
+ //
+ // Cube instructions:
+ // T0_XYZW = CUBE T1_XYZW
+ // becomes:
+ // TO_X = CUBE T1_Z, T1_Y
+ // T0_Y = CUBE T1_Z, T1_X
+ // T0_Z = CUBE T1_X, T1_Z
+ // T0_W = CUBE T1_Y, T1_Z
+ for (unsigned Chan = 0; Chan < 4; Chan++) {
+ unsigned DstReg = MI.getOperand(
+ TII->getOperandIdx(MI, AMDGPU::OpName::dst)).getReg();
+ unsigned Src0 = MI.getOperand(
+ TII->getOperandIdx(MI, AMDGPU::OpName::src0)).getReg();
+ unsigned Src1 = 0;
+
+ // Determine the correct source registers
+ if (!IsCube) {
+ int Src1Idx = TII->getOperandIdx(MI, AMDGPU::OpName::src1);
+ if (Src1Idx != -1) {
+ Src1 = MI.getOperand(Src1Idx).getReg();
+ }
+ }
+ if (IsReduction) {
+ unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan);
+ Src0 = TRI.getSubReg(Src0, SubRegIndex);
+ Src1 = TRI.getSubReg(Src1, SubRegIndex);
+ } else if (IsCube) {
+ static const int CubeSrcSwz[] = {2, 2, 0, 1};
+ unsigned SubRegIndex0 = TRI.getSubRegFromChannel(CubeSrcSwz[Chan]);
+ unsigned SubRegIndex1 = TRI.getSubRegFromChannel(CubeSrcSwz[3 - Chan]);
+ Src1 = TRI.getSubReg(Src0, SubRegIndex1);
+ Src0 = TRI.getSubReg(Src0, SubRegIndex0);
+ }
+
+ // Determine the correct destination registers;
+ bool Mask = false;
+ bool NotLast = true;
+ if (IsCube) {
+ unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan);
+ DstReg = TRI.getSubReg(DstReg, SubRegIndex);
+ } else {
+ // Mask the write if the original instruction does not write to
+ // the current Channel.
+ Mask = (Chan != TRI.getHWRegChan(DstReg));
+ unsigned DstBase = TRI.getEncodingValue(DstReg) & HW_REG_MASK;
+ DstReg = AMDGPU::R600_TReg32RegClass.getRegister((DstBase * 4) + Chan);
+ }
+
+ // Set the IsLast bit
+ NotLast = (Chan != 3 );
+
+ // Add the new instruction
+ unsigned Opcode = MI.getOpcode();
+ switch (Opcode) {
+ case AMDGPU::CUBE_r600_pseudo:
+ Opcode = AMDGPU::CUBE_r600_real;
+ break;
+ case AMDGPU::CUBE_eg_pseudo:
+ Opcode = AMDGPU::CUBE_eg_real;
+ break;
+ default:
+ break;
+ }
+
+ MachineInstr *NewMI =
+ TII->buildDefaultInstruction(MBB, I, Opcode, DstReg, Src0, Src1);
+
+ if (Chan != 0)
+ NewMI->bundleWithPred();
+ if (Mask) {
+ TII->addFlag(NewMI, 0, MO_FLAG_MASK);
+ }
+ if (NotLast) {
+ TII->addFlag(NewMI, 0, MO_FLAG_NOT_LAST);
+ }
+ SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::clamp);
+ SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::literal);
+ SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::src0_abs);
+ SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::src1_abs);
+ SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::src0_neg);
+ SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::src1_neg);
+ }
+ MI.eraseFromParent();
+ }
+ }
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/R600/R600ISelLowering.cpp b/contrib/llvm/lib/Target/R600/R600ISelLowering.cpp
new file mode 100644
index 0000000..52315bf
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600ISelLowering.cpp
@@ -0,0 +1,2326 @@
+//===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Custom DAG lowering for R600
+//
+//===----------------------------------------------------------------------===//
+
+#include "R600ISelLowering.h"
+#include "AMDGPUFrameLowering.h"
+#include "AMDGPUIntrinsicInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "R600Defines.h"
+#include "R600InstrInfo.h"
+#include "R600MachineFunctionInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Function.h"
+
+using namespace llvm;
+
+R600TargetLowering::R600TargetLowering(TargetMachine &TM) :
+ AMDGPUTargetLowering(TM),
+ Gen(TM.getSubtarget<AMDGPUSubtarget>().getGeneration()) {
+ addRegisterClass(MVT::v4f32, &AMDGPU::R600_Reg128RegClass);
+ addRegisterClass(MVT::f32, &AMDGPU::R600_Reg32RegClass);
+ addRegisterClass(MVT::v4i32, &AMDGPU::R600_Reg128RegClass);
+ addRegisterClass(MVT::i32, &AMDGPU::R600_Reg32RegClass);
+ addRegisterClass(MVT::v2f32, &AMDGPU::R600_Reg64RegClass);
+ addRegisterClass(MVT::v2i32, &AMDGPU::R600_Reg64RegClass);
+
+ computeRegisterProperties();
+
+ // Set condition code actions
+ setCondCodeAction(ISD::SETO, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETLT, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETLE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
+
+ setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
+ setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
+ setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
+ setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
+
+ setOperationAction(ISD::FCOS, MVT::f32, Custom);
+ setOperationAction(ISD::FSIN, MVT::f32, Custom);
+
+ setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
+ setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
+
+ setOperationAction(ISD::BR_CC, MVT::i32, Expand);
+ setOperationAction(ISD::BR_CC, MVT::f32, Expand);
+ setOperationAction(ISD::BRCOND, MVT::Other, Custom);
+
+ setOperationAction(ISD::FSUB, MVT::f32, Expand);
+
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i1, Custom);
+
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+
+ setOperationAction(ISD::SETCC, MVT::i32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f32, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
+
+ setOperationAction(ISD::SELECT, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
+ setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
+
+ // Expand sign extension of vectors
+ if (!Subtarget->hasBFE())
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
+
+ if (!Subtarget->hasBFE())
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
+
+ if (!Subtarget->hasBFE())
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
+
+
+ // Legalize loads and stores to the private address space.
+ setOperationAction(ISD::LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
+
+ // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
+ // spaces, so it is custom lowered to handle those where it isn't.
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Custom);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Custom);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i16, Custom);
+
+ setOperationAction(ISD::STORE, MVT::i8, Custom);
+ setOperationAction(ISD::STORE, MVT::i32, Custom);
+ setOperationAction(ISD::STORE, MVT::v2i32, Custom);
+ setOperationAction(ISD::STORE, MVT::v4i32, Custom);
+ setTruncStoreAction(MVT::i32, MVT::i8, Custom);
+ setTruncStoreAction(MVT::i32, MVT::i16, Custom);
+
+ setOperationAction(ISD::LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
+ setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ setTargetDAGCombine(ISD::FP_ROUND);
+ setTargetDAGCombine(ISD::FP_TO_SINT);
+ setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
+ setTargetDAGCombine(ISD::SELECT_CC);
+ setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
+
+ setOperationAction(ISD::SUB, MVT::i64, Expand);
+
+ // These should be replaced by UDVIREM, but it does not happen automatically
+ // during Type Legalization
+ setOperationAction(ISD::UDIV, MVT::i64, Custom);
+ setOperationAction(ISD::UREM, MVT::i64, Custom);
+ setOperationAction(ISD::SDIV, MVT::i64, Custom);
+ setOperationAction(ISD::SREM, MVT::i64, Custom);
+
+ // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
+ // to be Legal/Custom in order to avoid library calls.
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+
+ const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
+ for (MVT VT : ScalarIntVTs) {
+ setOperationAction(ISD::ADDC, VT, Expand);
+ setOperationAction(ISD::SUBC, VT, Expand);
+ setOperationAction(ISD::ADDE, VT, Expand);
+ setOperationAction(ISD::SUBE, VT, Expand);
+ }
+
+ setBooleanContents(ZeroOrNegativeOneBooleanContent);
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+ setSchedulingPreference(Sched::Source);
+}
+
+MachineBasicBlock * R600TargetLowering::EmitInstrWithCustomInserter(
+ MachineInstr * MI, MachineBasicBlock * BB) const {
+ MachineFunction * MF = BB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ MachineBasicBlock::iterator I = *MI;
+ const R600InstrInfo *TII =
+ static_cast<const R600InstrInfo*>(MF->getTarget().getInstrInfo());
+
+ switch (MI->getOpcode()) {
+ default:
+ // Replace LDS_*_RET instruction that don't have any uses with the
+ // equivalent LDS_*_NORET instruction.
+ if (TII->isLDSRetInstr(MI->getOpcode())) {
+ int DstIdx = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst);
+ assert(DstIdx != -1);
+ MachineInstrBuilder NewMI;
+ if (!MRI.use_empty(MI->getOperand(DstIdx).getReg()))
+ return BB;
+
+ NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
+ TII->get(AMDGPU::getLDSNoRetOp(MI->getOpcode())));
+ for (unsigned i = 1, e = MI->getNumOperands(); i < e; ++i) {
+ NewMI.addOperand(MI->getOperand(i));
+ }
+ } else {
+ return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
+ }
+ break;
+ case AMDGPU::CLAMP_R600: {
+ MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I,
+ AMDGPU::MOV,
+ MI->getOperand(0).getReg(),
+ MI->getOperand(1).getReg());
+ TII->addFlag(NewMI, 0, MO_FLAG_CLAMP);
+ break;
+ }
+
+ case AMDGPU::FABS_R600: {
+ MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I,
+ AMDGPU::MOV,
+ MI->getOperand(0).getReg(),
+ MI->getOperand(1).getReg());
+ TII->addFlag(NewMI, 0, MO_FLAG_ABS);
+ break;
+ }
+
+ case AMDGPU::FNEG_R600: {
+ MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I,
+ AMDGPU::MOV,
+ MI->getOperand(0).getReg(),
+ MI->getOperand(1).getReg());
+ TII->addFlag(NewMI, 0, MO_FLAG_NEG);
+ break;
+ }
+
+ case AMDGPU::MASK_WRITE: {
+ unsigned maskedRegister = MI->getOperand(0).getReg();
+ assert(TargetRegisterInfo::isVirtualRegister(maskedRegister));
+ MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
+ TII->addFlag(defInstr, 0, MO_FLAG_MASK);
+ break;
+ }
+
+ case AMDGPU::MOV_IMM_F32:
+ TII->buildMovImm(*BB, I, MI->getOperand(0).getReg(),
+ MI->getOperand(1).getFPImm()->getValueAPF()
+ .bitcastToAPInt().getZExtValue());
+ break;
+ case AMDGPU::MOV_IMM_I32:
+ TII->buildMovImm(*BB, I, MI->getOperand(0).getReg(),
+ MI->getOperand(1).getImm());
+ break;
+ case AMDGPU::CONST_COPY: {
+ MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, MI, AMDGPU::MOV,
+ MI->getOperand(0).getReg(), AMDGPU::ALU_CONST);
+ TII->setImmOperand(NewMI, AMDGPU::OpName::src0_sel,
+ MI->getOperand(1).getImm());
+ break;
+ }
+
+ case AMDGPU::RAT_WRITE_CACHELESS_32_eg:
+ case AMDGPU::RAT_WRITE_CACHELESS_64_eg:
+ case AMDGPU::RAT_WRITE_CACHELESS_128_eg: {
+ unsigned EOP = (std::next(I)->getOpcode() == AMDGPU::RETURN) ? 1 : 0;
+
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI->getOpcode()))
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(1))
+ .addImm(EOP); // Set End of program bit
+ break;
+ }
+
+ case AMDGPU::TXD: {
+ unsigned T0 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
+ unsigned T1 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
+ MachineOperand &RID = MI->getOperand(4);
+ MachineOperand &SID = MI->getOperand(5);
+ unsigned TextureId = MI->getOperand(6).getImm();
+ unsigned SrcX = 0, SrcY = 1, SrcZ = 2, SrcW = 3;
+ unsigned CTX = 1, CTY = 1, CTZ = 1, CTW = 1;
+
+ switch (TextureId) {
+ case 5: // Rect
+ CTX = CTY = 0;
+ break;
+ case 6: // Shadow1D
+ SrcW = SrcZ;
+ break;
+ case 7: // Shadow2D
+ SrcW = SrcZ;
+ break;
+ case 8: // ShadowRect
+ CTX = CTY = 0;
+ SrcW = SrcZ;
+ break;
+ case 9: // 1DArray
+ SrcZ = SrcY;
+ CTZ = 0;
+ break;
+ case 10: // 2DArray
+ CTZ = 0;
+ break;
+ case 11: // Shadow1DArray
+ SrcZ = SrcY;
+ CTZ = 0;
+ break;
+ case 12: // Shadow2DArray
+ CTZ = 0;
+ break;
+ }
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_H), T0)
+ .addOperand(MI->getOperand(3))
+ .addImm(SrcX)
+ .addImm(SrcY)
+ .addImm(SrcZ)
+ .addImm(SrcW)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(1)
+ .addImm(2)
+ .addImm(3)
+ .addOperand(RID)
+ .addOperand(SID)
+ .addImm(CTX)
+ .addImm(CTY)
+ .addImm(CTZ)
+ .addImm(CTW);
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_V), T1)
+ .addOperand(MI->getOperand(2))
+ .addImm(SrcX)
+ .addImm(SrcY)
+ .addImm(SrcZ)
+ .addImm(SrcW)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(1)
+ .addImm(2)
+ .addImm(3)
+ .addOperand(RID)
+ .addOperand(SID)
+ .addImm(CTX)
+ .addImm(CTY)
+ .addImm(CTZ)
+ .addImm(CTW);
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SAMPLE_G))
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(1))
+ .addImm(SrcX)
+ .addImm(SrcY)
+ .addImm(SrcZ)
+ .addImm(SrcW)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(1)
+ .addImm(2)
+ .addImm(3)
+ .addOperand(RID)
+ .addOperand(SID)
+ .addImm(CTX)
+ .addImm(CTY)
+ .addImm(CTZ)
+ .addImm(CTW)
+ .addReg(T0, RegState::Implicit)
+ .addReg(T1, RegState::Implicit);
+ break;
+ }
+
+ case AMDGPU::TXD_SHADOW: {
+ unsigned T0 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
+ unsigned T1 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
+ MachineOperand &RID = MI->getOperand(4);
+ MachineOperand &SID = MI->getOperand(5);
+ unsigned TextureId = MI->getOperand(6).getImm();
+ unsigned SrcX = 0, SrcY = 1, SrcZ = 2, SrcW = 3;
+ unsigned CTX = 1, CTY = 1, CTZ = 1, CTW = 1;
+
+ switch (TextureId) {
+ case 5: // Rect
+ CTX = CTY = 0;
+ break;
+ case 6: // Shadow1D
+ SrcW = SrcZ;
+ break;
+ case 7: // Shadow2D
+ SrcW = SrcZ;
+ break;
+ case 8: // ShadowRect
+ CTX = CTY = 0;
+ SrcW = SrcZ;
+ break;
+ case 9: // 1DArray
+ SrcZ = SrcY;
+ CTZ = 0;
+ break;
+ case 10: // 2DArray
+ CTZ = 0;
+ break;
+ case 11: // Shadow1DArray
+ SrcZ = SrcY;
+ CTZ = 0;
+ break;
+ case 12: // Shadow2DArray
+ CTZ = 0;
+ break;
+ }
+
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_H), T0)
+ .addOperand(MI->getOperand(3))
+ .addImm(SrcX)
+ .addImm(SrcY)
+ .addImm(SrcZ)
+ .addImm(SrcW)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(1)
+ .addImm(2)
+ .addImm(3)
+ .addOperand(RID)
+ .addOperand(SID)
+ .addImm(CTX)
+ .addImm(CTY)
+ .addImm(CTZ)
+ .addImm(CTW);
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_V), T1)
+ .addOperand(MI->getOperand(2))
+ .addImm(SrcX)
+ .addImm(SrcY)
+ .addImm(SrcZ)
+ .addImm(SrcW)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(1)
+ .addImm(2)
+ .addImm(3)
+ .addOperand(RID)
+ .addOperand(SID)
+ .addImm(CTX)
+ .addImm(CTY)
+ .addImm(CTZ)
+ .addImm(CTW);
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SAMPLE_C_G))
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(1))
+ .addImm(SrcX)
+ .addImm(SrcY)
+ .addImm(SrcZ)
+ .addImm(SrcW)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(1)
+ .addImm(2)
+ .addImm(3)
+ .addOperand(RID)
+ .addOperand(SID)
+ .addImm(CTX)
+ .addImm(CTY)
+ .addImm(CTZ)
+ .addImm(CTW)
+ .addReg(T0, RegState::Implicit)
+ .addReg(T1, RegState::Implicit);
+ break;
+ }
+
+ case AMDGPU::BRANCH:
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP))
+ .addOperand(MI->getOperand(0));
+ break;
+
+ case AMDGPU::BRANCH_COND_f32: {
+ MachineInstr *NewMI =
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X),
+ AMDGPU::PREDICATE_BIT)
+ .addOperand(MI->getOperand(1))
+ .addImm(OPCODE_IS_NOT_ZERO)
+ .addImm(0); // Flags
+ TII->addFlag(NewMI, 0, MO_FLAG_PUSH);
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND))
+ .addOperand(MI->getOperand(0))
+ .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
+ break;
+ }
+
+ case AMDGPU::BRANCH_COND_i32: {
+ MachineInstr *NewMI =
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X),
+ AMDGPU::PREDICATE_BIT)
+ .addOperand(MI->getOperand(1))
+ .addImm(OPCODE_IS_NOT_ZERO_INT)
+ .addImm(0); // Flags
+ TII->addFlag(NewMI, 0, MO_FLAG_PUSH);
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND))
+ .addOperand(MI->getOperand(0))
+ .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
+ break;
+ }
+
+ case AMDGPU::EG_ExportSwz:
+ case AMDGPU::R600_ExportSwz: {
+ // Instruction is left unmodified if its not the last one of its type
+ bool isLastInstructionOfItsType = true;
+ unsigned InstExportType = MI->getOperand(1).getImm();
+ for (MachineBasicBlock::iterator NextExportInst = std::next(I),
+ EndBlock = BB->end(); NextExportInst != EndBlock;
+ NextExportInst = std::next(NextExportInst)) {
+ if (NextExportInst->getOpcode() == AMDGPU::EG_ExportSwz ||
+ NextExportInst->getOpcode() == AMDGPU::R600_ExportSwz) {
+ unsigned CurrentInstExportType = NextExportInst->getOperand(1)
+ .getImm();
+ if (CurrentInstExportType == InstExportType) {
+ isLastInstructionOfItsType = false;
+ break;
+ }
+ }
+ }
+ bool EOP = (std::next(I)->getOpcode() == AMDGPU::RETURN) ? 1 : 0;
+ if (!EOP && !isLastInstructionOfItsType)
+ return BB;
+ unsigned CfInst = (MI->getOpcode() == AMDGPU::EG_ExportSwz)? 84 : 40;
+ BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI->getOpcode()))
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(1))
+ .addOperand(MI->getOperand(2))
+ .addOperand(MI->getOperand(3))
+ .addOperand(MI->getOperand(4))
+ .addOperand(MI->getOperand(5))
+ .addOperand(MI->getOperand(6))
+ .addImm(CfInst)
+ .addImm(EOP);
+ break;
+ }
+ case AMDGPU::RETURN: {
+ // RETURN instructions must have the live-out registers as implicit uses,
+ // otherwise they appear dead.
+ R600MachineFunctionInfo *MFI = MF->getInfo<R600MachineFunctionInfo>();
+ MachineInstrBuilder MIB(*MF, MI);
+ for (unsigned i = 0, e = MFI->LiveOuts.size(); i != e; ++i)
+ MIB.addReg(MFI->LiveOuts[i], RegState::Implicit);
+ return BB;
+ }
+ }
+
+ MI->eraseFromParent();
+ return BB;
+}
+
+//===----------------------------------------------------------------------===//
+// Custom DAG Lowering Operations
+//===----------------------------------------------------------------------===//
+
+SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
+ switch (Op.getOpcode()) {
+ default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
+ case ISD::SRA_PARTS:
+ case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
+ case ISD::FCOS:
+ case ISD::FSIN: return LowerTrig(Op, DAG);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
+ case ISD::STORE: return LowerSTORE(Op, DAG);
+ case ISD::LOAD: {
+ SDValue Result = LowerLOAD(Op, DAG);
+ assert((!Result.getNode() ||
+ Result.getNode()->getNumValues() == 2) &&
+ "Load should return a value and a chain");
+ return Result;
+ }
+
+ case ISD::BRCOND: return LowerBRCOND(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
+ case ISD::INTRINSIC_VOID: {
+ SDValue Chain = Op.getOperand(0);
+ unsigned IntrinsicID =
+ cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ switch (IntrinsicID) {
+ case AMDGPUIntrinsic::AMDGPU_store_output: {
+ int64_t RegIndex = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
+ unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister(RegIndex);
+ MFI->LiveOuts.push_back(Reg);
+ return DAG.getCopyToReg(Chain, SDLoc(Op), Reg, Op.getOperand(2));
+ }
+ case AMDGPUIntrinsic::R600_store_swizzle: {
+ const SDValue Args[8] = {
+ Chain,
+ Op.getOperand(2), // Export Value
+ Op.getOperand(3), // ArrayBase
+ Op.getOperand(4), // Type
+ DAG.getConstant(0, MVT::i32), // SWZ_X
+ DAG.getConstant(1, MVT::i32), // SWZ_Y
+ DAG.getConstant(2, MVT::i32), // SWZ_Z
+ DAG.getConstant(3, MVT::i32) // SWZ_W
+ };
+ return DAG.getNode(AMDGPUISD::EXPORT, SDLoc(Op), Op.getValueType(), Args);
+ }
+
+ // default for switch(IntrinsicID)
+ default: break;
+ }
+ // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
+ break;
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntrinsicID =
+ cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ switch(IntrinsicID) {
+ default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
+ case AMDGPUIntrinsic::R600_load_input: {
+ int64_t RegIndex = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister(RegIndex);
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ MRI.addLiveIn(Reg);
+ return DAG.getCopyFromReg(DAG.getEntryNode(),
+ SDLoc(DAG.getEntryNode()), Reg, VT);
+ }
+
+ case AMDGPUIntrinsic::R600_interp_input: {
+ int slot = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ int ijb = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
+ MachineSDNode *interp;
+ if (ijb < 0) {
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const R600InstrInfo *TII =
+ static_cast<const R600InstrInfo*>(MF.getTarget().getInstrInfo());
+ interp = DAG.getMachineNode(AMDGPU::INTERP_VEC_LOAD, DL,
+ MVT::v4f32, DAG.getTargetConstant(slot / 4 , MVT::i32));
+ return DAG.getTargetExtractSubreg(
+ TII->getRegisterInfo().getSubRegFromChannel(slot % 4),
+ DL, MVT::f32, SDValue(interp, 0));
+ }
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ unsigned RegisterI = AMDGPU::R600_TReg32RegClass.getRegister(2 * ijb);
+ unsigned RegisterJ = AMDGPU::R600_TReg32RegClass.getRegister(2 * ijb + 1);
+ MRI.addLiveIn(RegisterI);
+ MRI.addLiveIn(RegisterJ);
+ SDValue RegisterINode = DAG.getCopyFromReg(DAG.getEntryNode(),
+ SDLoc(DAG.getEntryNode()), RegisterI, MVT::f32);
+ SDValue RegisterJNode = DAG.getCopyFromReg(DAG.getEntryNode(),
+ SDLoc(DAG.getEntryNode()), RegisterJ, MVT::f32);
+
+ if (slot % 4 < 2)
+ interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_XY, DL,
+ MVT::f32, MVT::f32, DAG.getTargetConstant(slot / 4 , MVT::i32),
+ RegisterJNode, RegisterINode);
+ else
+ interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_ZW, DL,
+ MVT::f32, MVT::f32, DAG.getTargetConstant(slot / 4 , MVT::i32),
+ RegisterJNode, RegisterINode);
+ return SDValue(interp, slot % 2);
+ }
+ case AMDGPUIntrinsic::R600_interp_xy:
+ case AMDGPUIntrinsic::R600_interp_zw: {
+ int slot = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ MachineSDNode *interp;
+ SDValue RegisterINode = Op.getOperand(2);
+ SDValue RegisterJNode = Op.getOperand(3);
+
+ if (IntrinsicID == AMDGPUIntrinsic::R600_interp_xy)
+ interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_XY, DL,
+ MVT::f32, MVT::f32, DAG.getTargetConstant(slot, MVT::i32),
+ RegisterJNode, RegisterINode);
+ else
+ interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_ZW, DL,
+ MVT::f32, MVT::f32, DAG.getTargetConstant(slot, MVT::i32),
+ RegisterJNode, RegisterINode);
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32,
+ SDValue(interp, 0), SDValue(interp, 1));
+ }
+ case AMDGPUIntrinsic::R600_tex:
+ case AMDGPUIntrinsic::R600_texc:
+ case AMDGPUIntrinsic::R600_txl:
+ case AMDGPUIntrinsic::R600_txlc:
+ case AMDGPUIntrinsic::R600_txb:
+ case AMDGPUIntrinsic::R600_txbc:
+ case AMDGPUIntrinsic::R600_txf:
+ case AMDGPUIntrinsic::R600_txq:
+ case AMDGPUIntrinsic::R600_ddx:
+ case AMDGPUIntrinsic::R600_ddy:
+ case AMDGPUIntrinsic::R600_ldptr: {
+ unsigned TextureOp;
+ switch (IntrinsicID) {
+ case AMDGPUIntrinsic::R600_tex:
+ TextureOp = 0;
+ break;
+ case AMDGPUIntrinsic::R600_texc:
+ TextureOp = 1;
+ break;
+ case AMDGPUIntrinsic::R600_txl:
+ TextureOp = 2;
+ break;
+ case AMDGPUIntrinsic::R600_txlc:
+ TextureOp = 3;
+ break;
+ case AMDGPUIntrinsic::R600_txb:
+ TextureOp = 4;
+ break;
+ case AMDGPUIntrinsic::R600_txbc:
+ TextureOp = 5;
+ break;
+ case AMDGPUIntrinsic::R600_txf:
+ TextureOp = 6;
+ break;
+ case AMDGPUIntrinsic::R600_txq:
+ TextureOp = 7;
+ break;
+ case AMDGPUIntrinsic::R600_ddx:
+ TextureOp = 8;
+ break;
+ case AMDGPUIntrinsic::R600_ddy:
+ TextureOp = 9;
+ break;
+ case AMDGPUIntrinsic::R600_ldptr:
+ TextureOp = 10;
+ break;
+ default:
+ llvm_unreachable("Unknow Texture Operation");
+ }
+
+ SDValue TexArgs[19] = {
+ DAG.getConstant(TextureOp, MVT::i32),
+ Op.getOperand(1),
+ DAG.getConstant(0, MVT::i32),
+ DAG.getConstant(1, MVT::i32),
+ DAG.getConstant(2, MVT::i32),
+ DAG.getConstant(3, MVT::i32),
+ Op.getOperand(2),
+ Op.getOperand(3),
+ Op.getOperand(4),
+ DAG.getConstant(0, MVT::i32),
+ DAG.getConstant(1, MVT::i32),
+ DAG.getConstant(2, MVT::i32),
+ DAG.getConstant(3, MVT::i32),
+ Op.getOperand(5),
+ Op.getOperand(6),
+ Op.getOperand(7),
+ Op.getOperand(8),
+ Op.getOperand(9),
+ Op.getOperand(10)
+ };
+ return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
+ }
+ case AMDGPUIntrinsic::AMDGPU_dp4: {
+ SDValue Args[8] = {
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
+ DAG.getConstant(0, MVT::i32)),
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
+ DAG.getConstant(0, MVT::i32)),
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
+ DAG.getConstant(1, MVT::i32)),
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
+ DAG.getConstant(1, MVT::i32)),
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
+ DAG.getConstant(2, MVT::i32)),
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
+ DAG.getConstant(2, MVT::i32)),
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
+ DAG.getConstant(3, MVT::i32)),
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
+ DAG.getConstant(3, MVT::i32))
+ };
+ return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
+ }
+
+ case Intrinsic::r600_read_ngroups_x:
+ return LowerImplicitParameter(DAG, VT, DL, 0);
+ case Intrinsic::r600_read_ngroups_y:
+ return LowerImplicitParameter(DAG, VT, DL, 1);
+ case Intrinsic::r600_read_ngroups_z:
+ return LowerImplicitParameter(DAG, VT, DL, 2);
+ case Intrinsic::r600_read_global_size_x:
+ return LowerImplicitParameter(DAG, VT, DL, 3);
+ case Intrinsic::r600_read_global_size_y:
+ return LowerImplicitParameter(DAG, VT, DL, 4);
+ case Intrinsic::r600_read_global_size_z:
+ return LowerImplicitParameter(DAG, VT, DL, 5);
+ case Intrinsic::r600_read_local_size_x:
+ return LowerImplicitParameter(DAG, VT, DL, 6);
+ case Intrinsic::r600_read_local_size_y:
+ return LowerImplicitParameter(DAG, VT, DL, 7);
+ case Intrinsic::r600_read_local_size_z:
+ return LowerImplicitParameter(DAG, VT, DL, 8);
+
+ case Intrinsic::r600_read_tgid_x:
+ return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
+ AMDGPU::T1_X, VT);
+ case Intrinsic::r600_read_tgid_y:
+ return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
+ AMDGPU::T1_Y, VT);
+ case Intrinsic::r600_read_tgid_z:
+ return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
+ AMDGPU::T1_Z, VT);
+ case Intrinsic::r600_read_tidig_x:
+ return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
+ AMDGPU::T0_X, VT);
+ case Intrinsic::r600_read_tidig_y:
+ return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
+ AMDGPU::T0_Y, VT);
+ case Intrinsic::r600_read_tidig_z:
+ return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
+ AMDGPU::T0_Z, VT);
+ case Intrinsic::AMDGPU_rsq:
+ // XXX - I'm assuming SI's RSQ_LEGACY matches R600's behavior.
+ return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
+ }
+ // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
+ break;
+ }
+ } // end switch(Op.getOpcode())
+ return SDValue();
+}
+
+void R600TargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ switch (N->getOpcode()) {
+ default:
+ AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
+ return;
+ case ISD::FP_TO_UINT:
+ if (N->getValueType(0) == MVT::i1) {
+ Results.push_back(LowerFPTOUINT(N->getOperand(0), DAG));
+ return;
+ }
+ // Fall-through. Since we don't care about out of bounds values
+ // we can use FP_TO_SINT for uints too. The DAGLegalizer code for uint
+ // considers some extra cases which are not necessary here.
+ case ISD::FP_TO_SINT: {
+ SDValue Result;
+ if (expandFP_TO_SINT(N, Result, DAG))
+ Results.push_back(Result);
+ return;
+ }
+ case ISD::UDIV: {
+ SDValue Op = SDValue(N, 0);
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue UDIVREM = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT),
+ N->getOperand(0), N->getOperand(1));
+ Results.push_back(UDIVREM);
+ break;
+ }
+ case ISD::UREM: {
+ SDValue Op = SDValue(N, 0);
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue UDIVREM = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT),
+ N->getOperand(0), N->getOperand(1));
+ Results.push_back(UDIVREM.getValue(1));
+ break;
+ }
+ case ISD::SDIV: {
+ SDValue Op = SDValue(N, 0);
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue SDIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(VT, VT),
+ N->getOperand(0), N->getOperand(1));
+ Results.push_back(SDIVREM);
+ break;
+ }
+ case ISD::SREM: {
+ SDValue Op = SDValue(N, 0);
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue SDIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(VT, VT),
+ N->getOperand(0), N->getOperand(1));
+ Results.push_back(SDIVREM.getValue(1));
+ break;
+ }
+ case ISD::SDIVREM: {
+ SDValue Op = SDValue(N, 1);
+ SDValue RES = LowerSDIVREM(Op, DAG);
+ Results.push_back(RES);
+ Results.push_back(RES.getValue(1));
+ break;
+ }
+ case ISD::UDIVREM: {
+ SDValue Op = SDValue(N, 0);
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
+
+ SDValue one = DAG.getConstant(1, HalfVT);
+ SDValue zero = DAG.getConstant(0, HalfVT);
+
+ //HiLo split
+ SDValue LHS = N->getOperand(0);
+ SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
+ SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
+
+ SDValue RHS = N->getOperand(1);
+ SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
+ SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
+
+ // Get Speculative values
+ SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
+ SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
+
+ SDValue REM_Hi = zero;
+ SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
+
+ SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
+ SDValue DIV_Lo = zero;
+
+ const unsigned halfBitWidth = HalfVT.getSizeInBits();
+
+ for (unsigned i = 0; i < halfBitWidth; ++i) {
+ SDValue POS = DAG.getConstant(halfBitWidth - i - 1, HalfVT);
+ // Get Value of high bit
+ SDValue HBit;
+ if (halfBitWidth == 32 && Subtarget->hasBFE()) {
+ HBit = DAG.getNode(AMDGPUISD::BFE_U32, DL, HalfVT, LHS_Lo, POS, one);
+ } else {
+ HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
+ HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
+ }
+
+ SDValue Carry = DAG.getNode(ISD::SRL, DL, HalfVT, REM_Lo,
+ DAG.getConstant(halfBitWidth - 1, HalfVT));
+ REM_Hi = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Hi, one);
+ REM_Hi = DAG.getNode(ISD::OR, DL, HalfVT, REM_Hi, Carry);
+
+ REM_Lo = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Lo, one);
+ REM_Lo = DAG.getNode(ISD::OR, DL, HalfVT, REM_Lo, HBit);
+
+
+ SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
+
+ SDValue BIT = DAG.getConstant(1 << (halfBitWidth - i - 1), HalfVT);
+ SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETGE);
+
+ DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
+
+ // Update REM
+
+ SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
+
+ REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETGE);
+ REM_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, zero);
+ REM_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, one);
+ }
+
+ SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
+ SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
+ Results.push_back(DIV);
+ Results.push_back(REM);
+ break;
+ }
+ }
+}
+
+SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
+ SDValue Vector) const {
+
+ SDLoc DL(Vector);
+ EVT VecVT = Vector.getValueType();
+ EVT EltVT = VecVT.getVectorElementType();
+ SmallVector<SDValue, 8> Args;
+
+ for (unsigned i = 0, e = VecVT.getVectorNumElements();
+ i != e; ++i) {
+ Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
+ Vector, DAG.getConstant(i, getVectorIdxTy())));
+ }
+
+ return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
+}
+
+SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+
+ SDLoc DL(Op);
+ SDValue Vector = Op.getOperand(0);
+ SDValue Index = Op.getOperand(1);
+
+ if (isa<ConstantSDNode>(Index) ||
+ Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
+ return Op;
+
+ Vector = vectorToVerticalVector(DAG, Vector);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
+ Vector, Index);
+}
+
+SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue Vector = Op.getOperand(0);
+ SDValue Value = Op.getOperand(1);
+ SDValue Index = Op.getOperand(2);
+
+ if (isa<ConstantSDNode>(Index) ||
+ Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
+ return Op;
+
+ Vector = vectorToVerticalVector(DAG, Vector);
+ SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
+ Vector, Value, Index);
+ return vectorToVerticalVector(DAG, Insert);
+}
+
+SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
+ // On hw >= R700, COS/SIN input must be between -1. and 1.
+ // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
+ EVT VT = Op.getValueType();
+ SDValue Arg = Op.getOperand(0);
+ SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT,
+ DAG.getNode(ISD::FADD, SDLoc(Op), VT,
+ DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg,
+ DAG.getConstantFP(0.15915494309, MVT::f32)),
+ DAG.getConstantFP(0.5, MVT::f32)));
+ unsigned TrigNode;
+ switch (Op.getOpcode()) {
+ case ISD::FCOS:
+ TrigNode = AMDGPUISD::COS_HW;
+ break;
+ case ISD::FSIN:
+ TrigNode = AMDGPUISD::SIN_HW;
+ break;
+ default:
+ llvm_unreachable("Wrong trig opcode");
+ }
+ SDValue TrigVal = DAG.getNode(TrigNode, SDLoc(Op), VT,
+ DAG.getNode(ISD::FADD, SDLoc(Op), VT, FractPart,
+ DAG.getConstantFP(-0.5, MVT::f32)));
+ if (Gen >= AMDGPUSubtarget::R700)
+ return TrigVal;
+ // On R600 hw, COS/SIN input must be between -Pi and Pi.
+ return DAG.getNode(ISD::FMUL, SDLoc(Op), VT, TrigVal,
+ DAG.getConstantFP(3.14159265359, MVT::f32));
+}
+
+SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+ SDValue Shift = Op.getOperand(2);
+ SDValue Zero = DAG.getConstant(0, VT);
+ SDValue One = DAG.getConstant(1, VT);
+
+ SDValue Width = DAG.getConstant(VT.getSizeInBits(), VT);
+ SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, VT);
+ SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
+ SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
+
+ // The dance around Width1 is necessary for 0 special case.
+ // Without it the CompShift might be 32, producing incorrect results in
+ // Overflow. So we do the shift in two steps, the alternative is to
+ // add a conditional to filter the special case.
+
+ SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
+ Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);
+
+ SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
+ HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
+ SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);
+
+ SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
+ SDValue LoBig = Zero;
+
+ Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
+ Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
+
+ return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
+}
+
+SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+ SDValue Shift = Op.getOperand(2);
+ SDValue Zero = DAG.getConstant(0, VT);
+ SDValue One = DAG.getConstant(1, VT);
+
+ const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;
+
+ SDValue Width = DAG.getConstant(VT.getSizeInBits(), VT);
+ SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, VT);
+ SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
+ SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
+
+ // The dance around Width1 is necessary for 0 special case.
+ // Without it the CompShift might be 32, producing incorrect results in
+ // Overflow. So we do the shift in two steps, the alternative is to
+ // add a conditional to filter the special case.
+
+ SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
+ Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);
+
+ SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
+ SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
+ LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);
+
+ SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
+ SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;
+
+ Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
+ Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
+
+ return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
+}
+
+SDValue R600TargetLowering::LowerFPTOUINT(SDValue Op, SelectionDAG &DAG) const {
+ return DAG.getNode(
+ ISD::SETCC,
+ SDLoc(Op),
+ MVT::i1,
+ Op, DAG.getConstantFP(0.0f, MVT::f32),
+ DAG.getCondCode(ISD::SETNE)
+ );
+}
+
+SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
+ SDLoc DL,
+ unsigned DwordOffset) const {
+ unsigned ByteOffset = DwordOffset * 4;
+ PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
+ AMDGPUAS::CONSTANT_BUFFER_0);
+
+ // We shouldn't be using an offset wider than 16-bits for implicit parameters.
+ assert(isInt<16>(ByteOffset));
+
+ return DAG.getLoad(VT, DL, DAG.getEntryNode(),
+ DAG.getConstant(ByteOffset, MVT::i32), // PTR
+ MachinePointerInfo(ConstantPointerNull::get(PtrType)),
+ false, false, false, 0);
+}
+
+bool R600TargetLowering::isZero(SDValue Op) const {
+ if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
+ return Cst->isNullValue();
+ } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
+ return CstFP->isZero();
+ } else {
+ return false;
+ }
+}
+
+SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue True = Op.getOperand(2);
+ SDValue False = Op.getOperand(3);
+ SDValue CC = Op.getOperand(4);
+ SDValue Temp;
+
+ // LHS and RHS are guaranteed to be the same value type
+ EVT CompareVT = LHS.getValueType();
+
+ // Check if we can lower this to a native operation.
+
+ // Try to lower to a SET* instruction:
+ //
+ // SET* can match the following patterns:
+ //
+ // select_cc f32, f32, -1, 0, cc_supported
+ // select_cc f32, f32, 1.0f, 0.0f, cc_supported
+ // select_cc i32, i32, -1, 0, cc_supported
+ //
+
+ // Move hardware True/False values to the correct operand.
+ ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
+ ISD::CondCode InverseCC =
+ ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
+ if (isHWTrueValue(False) && isHWFalseValue(True)) {
+ if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
+ std::swap(False, True);
+ CC = DAG.getCondCode(InverseCC);
+ } else {
+ ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
+ if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
+ std::swap(False, True);
+ std::swap(LHS, RHS);
+ CC = DAG.getCondCode(SwapInvCC);
+ }
+ }
+ }
+
+ if (isHWTrueValue(True) && isHWFalseValue(False) &&
+ (CompareVT == VT || VT == MVT::i32)) {
+ // This can be matched by a SET* instruction.
+ return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
+ }
+
+ // Try to lower to a CND* instruction:
+ //
+ // CND* can match the following patterns:
+ //
+ // select_cc f32, 0.0, f32, f32, cc_supported
+ // select_cc f32, 0.0, i32, i32, cc_supported
+ // select_cc i32, 0, f32, f32, cc_supported
+ // select_cc i32, 0, i32, i32, cc_supported
+ //
+
+ // Try to move the zero value to the RHS
+ if (isZero(LHS)) {
+ ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
+ // Try swapping the operands
+ ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
+ if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
+ std::swap(LHS, RHS);
+ CC = DAG.getCondCode(CCSwapped);
+ } else {
+ // Try inverting the conditon and then swapping the operands
+ ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT.isInteger());
+ CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
+ if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
+ std::swap(True, False);
+ std::swap(LHS, RHS);
+ CC = DAG.getCondCode(CCSwapped);
+ }
+ }
+ }
+ if (isZero(RHS)) {
+ SDValue Cond = LHS;
+ SDValue Zero = RHS;
+ ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
+ if (CompareVT != VT) {
+ // Bitcast True / False to the correct types. This will end up being
+ // a nop, but it allows us to define only a single pattern in the
+ // .TD files for each CND* instruction rather than having to have
+ // one pattern for integer True/False and one for fp True/False
+ True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
+ False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
+ }
+
+ switch (CCOpcode) {
+ case ISD::SETONE:
+ case ISD::SETUNE:
+ case ISD::SETNE:
+ CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
+ Temp = True;
+ True = False;
+ False = Temp;
+ break;
+ default:
+ break;
+ }
+ SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
+ Cond, Zero,
+ True, False,
+ DAG.getCondCode(CCOpcode));
+ return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
+ }
+
+ // If we make it this for it means we have no native instructions to handle
+ // this SELECT_CC, so we must lower it.
+ SDValue HWTrue, HWFalse;
+
+ if (CompareVT == MVT::f32) {
+ HWTrue = DAG.getConstantFP(1.0f, CompareVT);
+ HWFalse = DAG.getConstantFP(0.0f, CompareVT);
+ } else if (CompareVT == MVT::i32) {
+ HWTrue = DAG.getConstant(-1, CompareVT);
+ HWFalse = DAG.getConstant(0, CompareVT);
+ }
+ else {
+ llvm_unreachable("Unhandled value type in LowerSELECT_CC");
+ }
+
+ // Lower this unsupported SELECT_CC into a combination of two supported
+ // SELECT_CC operations.
+ SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
+
+ return DAG.getNode(ISD::SELECT_CC, DL, VT,
+ Cond, HWFalse,
+ True, False,
+ DAG.getCondCode(ISD::SETNE));
+}
+
+/// LLVM generates byte-addressed pointers. For indirect addressing, we need to
+/// convert these pointers to a register index. Each register holds
+/// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
+/// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
+/// for indirect addressing.
+SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
+ unsigned StackWidth,
+ SelectionDAG &DAG) const {
+ unsigned SRLPad;
+ switch(StackWidth) {
+ case 1:
+ SRLPad = 2;
+ break;
+ case 2:
+ SRLPad = 3;
+ break;
+ case 4:
+ SRLPad = 4;
+ break;
+ default: llvm_unreachable("Invalid stack width");
+ }
+
+ return DAG.getNode(ISD::SRL, SDLoc(Ptr), Ptr.getValueType(), Ptr,
+ DAG.getConstant(SRLPad, MVT::i32));
+}
+
+void R600TargetLowering::getStackAddress(unsigned StackWidth,
+ unsigned ElemIdx,
+ unsigned &Channel,
+ unsigned &PtrIncr) const {
+ switch (StackWidth) {
+ default:
+ case 1:
+ Channel = 0;
+ if (ElemIdx > 0) {
+ PtrIncr = 1;
+ } else {
+ PtrIncr = 0;
+ }
+ break;
+ case 2:
+ Channel = ElemIdx % 2;
+ if (ElemIdx == 2) {
+ PtrIncr = 1;
+ } else {
+ PtrIncr = 0;
+ }
+ break;
+ case 4:
+ Channel = ElemIdx;
+ PtrIncr = 0;
+ break;
+ }
+}
+
+SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Value = Op.getOperand(1);
+ SDValue Ptr = Op.getOperand(2);
+
+ SDValue Result = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
+ if (Result.getNode()) {
+ return Result;
+ }
+
+ if (StoreNode->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS) {
+ if (StoreNode->isTruncatingStore()) {
+ EVT VT = Value.getValueType();
+ assert(VT.bitsLE(MVT::i32));
+ EVT MemVT = StoreNode->getMemoryVT();
+ SDValue MaskConstant;
+ if (MemVT == MVT::i8) {
+ MaskConstant = DAG.getConstant(0xFF, MVT::i32);
+ } else {
+ assert(MemVT == MVT::i16);
+ MaskConstant = DAG.getConstant(0xFFFF, MVT::i32);
+ }
+ SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, VT, Ptr,
+ DAG.getConstant(2, MVT::i32));
+ SDValue ByteIndex = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(0x00000003, VT));
+ SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
+ SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
+ DAG.getConstant(3, VT));
+ SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, Shift);
+ SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, Shift);
+ // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
+ // vector instead.
+ SDValue Src[4] = {
+ ShiftedValue,
+ DAG.getConstant(0, MVT::i32),
+ DAG.getConstant(0, MVT::i32),
+ Mask
+ };
+ SDValue Input = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, Src);
+ SDValue Args[3] = { Chain, Input, DWordAddr };
+ return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
+ Op->getVTList(), Args, MemVT,
+ StoreNode->getMemOperand());
+ } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR &&
+ Value.getValueType().bitsGE(MVT::i32)) {
+ // Convert pointer from byte address to dword address.
+ Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, Ptr.getValueType(),
+ DAG.getNode(ISD::SRL, DL, Ptr.getValueType(),
+ Ptr, DAG.getConstant(2, MVT::i32)));
+
+ if (StoreNode->isTruncatingStore() || StoreNode->isIndexed()) {
+ llvm_unreachable("Truncated and indexed stores not supported yet");
+ } else {
+ Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
+ }
+ return Chain;
+ }
+ }
+
+ EVT ValueVT = Value.getValueType();
+
+ if (StoreNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
+ return SDValue();
+ }
+
+ SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
+ if (Ret.getNode()) {
+ return Ret;
+ }
+ // Lowering for indirect addressing
+
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering*>(
+ getTargetMachine().getFrameLowering());
+ unsigned StackWidth = TFL->getStackWidth(MF);
+
+ Ptr = stackPtrToRegIndex(Ptr, StackWidth, DAG);
+
+ if (ValueVT.isVector()) {
+ unsigned NumElemVT = ValueVT.getVectorNumElements();
+ EVT ElemVT = ValueVT.getVectorElementType();
+ SmallVector<SDValue, 4> Stores(NumElemVT);
+
+ assert(NumElemVT >= StackWidth && "Stack width cannot be greater than "
+ "vector width in load");
+
+ for (unsigned i = 0; i < NumElemVT; ++i) {
+ unsigned Channel, PtrIncr;
+ getStackAddress(StackWidth, i, Channel, PtrIncr);
+ Ptr = DAG.getNode(ISD::ADD, DL, MVT::i32, Ptr,
+ DAG.getConstant(PtrIncr, MVT::i32));
+ SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT,
+ Value, DAG.getConstant(i, MVT::i32));
+
+ Stores[i] = DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
+ Chain, Elem, Ptr,
+ DAG.getTargetConstant(Channel, MVT::i32));
+ }
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
+ } else {
+ if (ValueVT == MVT::i8) {
+ Value = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Value);
+ }
+ Chain = DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, Chain, Value, Ptr,
+ DAG.getTargetConstant(0, MVT::i32)); // Channel
+ }
+
+ return Chain;
+}
+
+// return (512 + (kc_bank << 12)
+static int
+ConstantAddressBlock(unsigned AddressSpace) {
+ switch (AddressSpace) {
+ case AMDGPUAS::CONSTANT_BUFFER_0:
+ return 512;
+ case AMDGPUAS::CONSTANT_BUFFER_1:
+ return 512 + 4096;
+ case AMDGPUAS::CONSTANT_BUFFER_2:
+ return 512 + 4096 * 2;
+ case AMDGPUAS::CONSTANT_BUFFER_3:
+ return 512 + 4096 * 3;
+ case AMDGPUAS::CONSTANT_BUFFER_4:
+ return 512 + 4096 * 4;
+ case AMDGPUAS::CONSTANT_BUFFER_5:
+ return 512 + 4096 * 5;
+ case AMDGPUAS::CONSTANT_BUFFER_6:
+ return 512 + 4096 * 6;
+ case AMDGPUAS::CONSTANT_BUFFER_7:
+ return 512 + 4096 * 7;
+ case AMDGPUAS::CONSTANT_BUFFER_8:
+ return 512 + 4096 * 8;
+ case AMDGPUAS::CONSTANT_BUFFER_9:
+ return 512 + 4096 * 9;
+ case AMDGPUAS::CONSTANT_BUFFER_10:
+ return 512 + 4096 * 10;
+ case AMDGPUAS::CONSTANT_BUFFER_11:
+ return 512 + 4096 * 11;
+ case AMDGPUAS::CONSTANT_BUFFER_12:
+ return 512 + 4096 * 12;
+ case AMDGPUAS::CONSTANT_BUFFER_13:
+ return 512 + 4096 * 13;
+ case AMDGPUAS::CONSTANT_BUFFER_14:
+ return 512 + 4096 * 14;
+ case AMDGPUAS::CONSTANT_BUFFER_15:
+ return 512 + 4096 * 15;
+ default:
+ return -1;
+ }
+}
+
+SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const
+{
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Ptr = Op.getOperand(1);
+ SDValue LoweredLoad;
+
+ SDValue Ret = AMDGPUTargetLowering::LowerLOAD(Op, DAG);
+ if (Ret.getNode()) {
+ SDValue Ops[2] = {
+ Ret,
+ Chain
+ };
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ // Lower loads constant address space global variable loads
+ if (LoadNode->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS &&
+ isa<GlobalVariable>(
+ GetUnderlyingObject(LoadNode->getMemOperand()->getValue()))) {
+
+ SDValue Ptr = DAG.getZExtOrTrunc(LoadNode->getBasePtr(), DL,
+ getPointerTy(AMDGPUAS::PRIVATE_ADDRESS));
+ Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
+ DAG.getConstant(2, MVT::i32));
+ return DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op->getVTList(),
+ LoadNode->getChain(), Ptr,
+ DAG.getTargetConstant(0, MVT::i32), Op.getOperand(2));
+ }
+
+ if (LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && VT.isVector()) {
+ SDValue MergedValues[2] = {
+ SplitVectorLoad(Op, DAG),
+ Chain
+ };
+ return DAG.getMergeValues(MergedValues, DL);
+ }
+
+ int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
+ if (ConstantBlock > -1 &&
+ ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
+ (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
+ SDValue Result;
+ if (isa<ConstantExpr>(LoadNode->getMemOperand()->getValue()) ||
+ isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
+ isa<ConstantSDNode>(Ptr)) {
+ SDValue Slots[4];
+ for (unsigned i = 0; i < 4; i++) {
+ // We want Const position encoded with the following formula :
+ // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
+ // const_index is Ptr computed by llvm using an alignment of 16.
+ // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
+ // then div by 4 at the ISel step
+ SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(4 * i + ConstantBlock * 16, MVT::i32));
+ Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
+ }
+ EVT NewVT = MVT::v4i32;
+ unsigned NumElements = 4;
+ if (VT.isVector()) {
+ NewVT = VT;
+ NumElements = VT.getVectorNumElements();
+ }
+ Result = DAG.getNode(ISD::BUILD_VECTOR, DL, NewVT,
+ makeArrayRef(Slots, NumElements));
+ } else {
+ // non-constant ptr can't be folded, keeps it as a v4f32 load
+ Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
+ DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(4, MVT::i32)),
+ DAG.getConstant(LoadNode->getAddressSpace() -
+ AMDGPUAS::CONSTANT_BUFFER_0, MVT::i32)
+ );
+ }
+
+ if (!VT.isVector()) {
+ Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
+ DAG.getConstant(0, MVT::i32));
+ }
+
+ SDValue MergedValues[2] = {
+ Result,
+ Chain
+ };
+ return DAG.getMergeValues(MergedValues, DL);
+ }
+
+ // For most operations returning SDValue() will result in the node being
+ // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
+ // need to manually expand loads that may be legal in some address spaces and
+ // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
+ // compute shaders, since the data is sign extended when it is uploaded to the
+ // buffer. However SEXT loads from other address spaces are not supported, so
+ // we need to expand them here.
+ if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
+ EVT MemVT = LoadNode->getMemoryVT();
+ assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
+ SDValue ShiftAmount =
+ DAG.getConstant(VT.getSizeInBits() - MemVT.getSizeInBits(), MVT::i32);
+ SDValue NewLoad = DAG.getExtLoad(ISD::EXTLOAD, DL, VT, Chain, Ptr,
+ LoadNode->getPointerInfo(), MemVT,
+ LoadNode->isVolatile(),
+ LoadNode->isNonTemporal(),
+ LoadNode->getAlignment());
+ SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, NewLoad, ShiftAmount);
+ SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Shl, ShiftAmount);
+
+ SDValue MergedValues[2] = { Sra, Chain };
+ return DAG.getMergeValues(MergedValues, DL);
+ }
+
+ if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
+ return SDValue();
+ }
+
+ // Lowering for indirect addressing
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering*>(
+ getTargetMachine().getFrameLowering());
+ unsigned StackWidth = TFL->getStackWidth(MF);
+
+ Ptr = stackPtrToRegIndex(Ptr, StackWidth, DAG);
+
+ if (VT.isVector()) {
+ unsigned NumElemVT = VT.getVectorNumElements();
+ EVT ElemVT = VT.getVectorElementType();
+ SDValue Loads[4];
+
+ assert(NumElemVT >= StackWidth && "Stack width cannot be greater than "
+ "vector width in load");
+
+ for (unsigned i = 0; i < NumElemVT; ++i) {
+ unsigned Channel, PtrIncr;
+ getStackAddress(StackWidth, i, Channel, PtrIncr);
+ Ptr = DAG.getNode(ISD::ADD, DL, MVT::i32, Ptr,
+ DAG.getConstant(PtrIncr, MVT::i32));
+ Loads[i] = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, ElemVT,
+ Chain, Ptr,
+ DAG.getTargetConstant(Channel, MVT::i32),
+ Op.getOperand(2));
+ }
+ for (unsigned i = NumElemVT; i < 4; ++i) {
+ Loads[i] = DAG.getUNDEF(ElemVT);
+ }
+ EVT TargetVT = EVT::getVectorVT(*DAG.getContext(), ElemVT, 4);
+ LoweredLoad = DAG.getNode(ISD::BUILD_VECTOR, DL, TargetVT, Loads);
+ } else {
+ LoweredLoad = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, VT,
+ Chain, Ptr,
+ DAG.getTargetConstant(0, MVT::i32), // Channel
+ Op.getOperand(2));
+ }
+
+ SDValue Ops[2] = {
+ LoweredLoad,
+ Chain
+ };
+
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Cond = Op.getOperand(1);
+ SDValue Jump = Op.getOperand(2);
+
+ return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
+ Chain, Jump, Cond);
+}
+
+/// XXX Only kernel functions are supported, so we can assume for now that
+/// every function is a kernel function, but in the future we should use
+/// separate calling conventions for kernel and non-kernel functions.
+SDValue R600TargetLowering::LowerFormalArguments(
+ SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned ShaderType = MF.getInfo<R600MachineFunctionInfo>()->getShaderType();
+
+ SmallVector<ISD::InputArg, 8> LocalIns;
+
+ getOriginalFunctionArgs(DAG, MF.getFunction(), Ins, LocalIns);
+
+ AnalyzeFormalArguments(CCInfo, LocalIns);
+
+ for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ EVT VT = Ins[i].VT;
+ EVT MemVT = LocalIns[i].VT;
+
+ if (ShaderType != ShaderType::COMPUTE) {
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), &AMDGPU::R600_Reg128RegClass);
+ SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
+ InVals.push_back(Register);
+ continue;
+ }
+
+ PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
+ AMDGPUAS::CONSTANT_BUFFER_0);
+
+ // i64 isn't a legal type, so the register type used ends up as i32, which
+ // isn't expected here. It attempts to create this sextload, but it ends up
+ // being invalid. Somehow this seems to work with i64 arguments, but breaks
+ // for <1 x i64>.
+
+ // The first 36 bytes of the input buffer contains information about
+ // thread group and global sizes.
+
+ // FIXME: This should really check the extload type, but the handling of
+ // extload vecto parameters seems to be broken.
+ //ISD::LoadExtType Ext = Ins[i].Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
+ ISD::LoadExtType Ext = ISD::SEXTLOAD;
+ SDValue Arg = DAG.getExtLoad(Ext, DL, VT, Chain,
+ DAG.getConstant(36 + VA.getLocMemOffset(), MVT::i32),
+ MachinePointerInfo(UndefValue::get(PtrTy)),
+ MemVT, false, false, 4);
+
+ // 4 is the preferred alignment for the CONSTANT memory space.
+ InVals.push_back(Arg);
+ }
+ return Chain;
+}
+
+EVT R600TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector())
+ return MVT::i32;
+ return VT.changeVectorElementTypeToInteger();
+}
+
+static SDValue CompactSwizzlableVector(
+ SelectionDAG &DAG, SDValue VectorEntry,
+ DenseMap<unsigned, unsigned> &RemapSwizzle) {
+ assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
+ assert(RemapSwizzle.empty());
+ SDValue NewBldVec[4] = {
+ VectorEntry.getOperand(0),
+ VectorEntry.getOperand(1),
+ VectorEntry.getOperand(2),
+ VectorEntry.getOperand(3)
+ };
+
+ for (unsigned i = 0; i < 4; i++) {
+ if (NewBldVec[i].getOpcode() == ISD::UNDEF)
+ // We mask write here to teach later passes that the ith element of this
+ // vector is undef. Thus we can use it to reduce 128 bits reg usage,
+ // break false dependencies and additionnaly make assembly easier to read.
+ RemapSwizzle[i] = 7; // SEL_MASK_WRITE
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
+ if (C->isZero()) {
+ RemapSwizzle[i] = 4; // SEL_0
+ NewBldVec[i] = DAG.getUNDEF(MVT::f32);
+ } else if (C->isExactlyValue(1.0)) {
+ RemapSwizzle[i] = 5; // SEL_1
+ NewBldVec[i] = DAG.getUNDEF(MVT::f32);
+ }
+ }
+
+ if (NewBldVec[i].getOpcode() == ISD::UNDEF)
+ continue;
+ for (unsigned j = 0; j < i; j++) {
+ if (NewBldVec[i] == NewBldVec[j]) {
+ NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
+ RemapSwizzle[i] = j;
+ break;
+ }
+ }
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(VectorEntry),
+ VectorEntry.getValueType(), NewBldVec);
+}
+
+static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
+ DenseMap<unsigned, unsigned> &RemapSwizzle) {
+ assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
+ assert(RemapSwizzle.empty());
+ SDValue NewBldVec[4] = {
+ VectorEntry.getOperand(0),
+ VectorEntry.getOperand(1),
+ VectorEntry.getOperand(2),
+ VectorEntry.getOperand(3)
+ };
+ bool isUnmovable[4] = { false, false, false, false };
+ for (unsigned i = 0; i < 4; i++) {
+ RemapSwizzle[i] = i;
+ if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
+ ->getZExtValue();
+ if (i == Idx)
+ isUnmovable[Idx] = true;
+ }
+ }
+
+ for (unsigned i = 0; i < 4; i++) {
+ if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
+ ->getZExtValue();
+ if (isUnmovable[Idx])
+ continue;
+ // Swap i and Idx
+ std::swap(NewBldVec[Idx], NewBldVec[i]);
+ std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
+ break;
+ }
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(VectorEntry),
+ VectorEntry.getValueType(), NewBldVec);
+}
+
+
+SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector,
+SDValue Swz[4], SelectionDAG &DAG) const {
+ assert(BuildVector.getOpcode() == ISD::BUILD_VECTOR);
+ // Old -> New swizzle values
+ DenseMap<unsigned, unsigned> SwizzleRemap;
+
+ BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
+ for (unsigned i = 0; i < 4; i++) {
+ unsigned Idx = dyn_cast<ConstantSDNode>(Swz[i])->getZExtValue();
+ if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
+ Swz[i] = DAG.getConstant(SwizzleRemap[Idx], MVT::i32);
+ }
+
+ SwizzleRemap.clear();
+ BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
+ for (unsigned i = 0; i < 4; i++) {
+ unsigned Idx = dyn_cast<ConstantSDNode>(Swz[i])->getZExtValue();
+ if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
+ Swz[i] = DAG.getConstant(SwizzleRemap[Idx], MVT::i32);
+ }
+
+ return BuildVector;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Custom DAG Optimizations
+//===----------------------------------------------------------------------===//
+
+SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+
+ switch (N->getOpcode()) {
+ default: return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
+ // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
+ case ISD::FP_ROUND: {
+ SDValue Arg = N->getOperand(0);
+ if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
+ return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), N->getValueType(0),
+ Arg.getOperand(0));
+ }
+ break;
+ }
+
+ // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
+ // (i32 select_cc f32, f32, -1, 0 cc)
+ //
+ // Mesa's GLSL frontend generates the above pattern a lot and we can lower
+ // this to one of the SET*_DX10 instructions.
+ case ISD::FP_TO_SINT: {
+ SDValue FNeg = N->getOperand(0);
+ if (FNeg.getOpcode() != ISD::FNEG) {
+ return SDValue();
+ }
+ SDValue SelectCC = FNeg.getOperand(0);
+ if (SelectCC.getOpcode() != ISD::SELECT_CC ||
+ SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
+ SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
+ !isHWTrueValue(SelectCC.getOperand(2)) ||
+ !isHWFalseValue(SelectCC.getOperand(3))) {
+ return SDValue();
+ }
+
+ return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N->getValueType(0),
+ SelectCC.getOperand(0), // LHS
+ SelectCC.getOperand(1), // RHS
+ DAG.getConstant(-1, MVT::i32), // True
+ DAG.getConstant(0, MVT::i32), // Flase
+ SelectCC.getOperand(4)); // CC
+
+ break;
+ }
+
+ // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
+ // => build_vector elt0, ... , NewEltIdx, ... , eltN
+ case ISD::INSERT_VECTOR_ELT: {
+ SDValue InVec = N->getOperand(0);
+ SDValue InVal = N->getOperand(1);
+ SDValue EltNo = N->getOperand(2);
+ SDLoc dl(N);
+
+ // If the inserted element is an UNDEF, just use the input vector.
+ if (InVal.getOpcode() == ISD::UNDEF)
+ return InVec;
+
+ EVT VT = InVec.getValueType();
+
+ // If we can't generate a legal BUILD_VECTOR, exit
+ if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
+ return SDValue();
+
+ // Check that we know which element is being inserted
+ if (!isa<ConstantSDNode>(EltNo))
+ return SDValue();
+ unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
+
+ // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
+ // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
+ // vector elements.
+ SmallVector<SDValue, 8> Ops;
+ if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
+ Ops.append(InVec.getNode()->op_begin(),
+ InVec.getNode()->op_end());
+ } else if (InVec.getOpcode() == ISD::UNDEF) {
+ unsigned NElts = VT.getVectorNumElements();
+ Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
+ } else {
+ return SDValue();
+ }
+
+ // Insert the element
+ if (Elt < Ops.size()) {
+ // All the operands of BUILD_VECTOR must have the same type;
+ // we enforce that here.
+ EVT OpVT = Ops[0].getValueType();
+ if (InVal.getValueType() != OpVT)
+ InVal = OpVT.bitsGT(InVal.getValueType()) ?
+ DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
+ DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
+ Ops[Elt] = InVal;
+ }
+
+ // Return the new vector
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+ }
+
+ // Extract_vec (Build_vector) generated by custom lowering
+ // also needs to be customly combined
+ case ISD::EXTRACT_VECTOR_ELT: {
+ SDValue Arg = N->getOperand(0);
+ if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
+ if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
+ unsigned Element = Const->getZExtValue();
+ return Arg->getOperand(Element);
+ }
+ }
+ if (Arg.getOpcode() == ISD::BITCAST &&
+ Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
+ if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
+ unsigned Element = Const->getZExtValue();
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getVTList(),
+ Arg->getOperand(0).getOperand(Element));
+ }
+ }
+ }
+
+ case ISD::SELECT_CC: {
+ // Try common optimizations
+ SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
+ if (Ret.getNode())
+ return Ret;
+
+ // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
+ // selectcc x, y, a, b, inv(cc)
+ //
+ // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
+ // selectcc x, y, a, b, cc
+ SDValue LHS = N->getOperand(0);
+ if (LHS.getOpcode() != ISD::SELECT_CC) {
+ return SDValue();
+ }
+
+ SDValue RHS = N->getOperand(1);
+ SDValue True = N->getOperand(2);
+ SDValue False = N->getOperand(3);
+ ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
+
+ if (LHS.getOperand(2).getNode() != True.getNode() ||
+ LHS.getOperand(3).getNode() != False.getNode() ||
+ RHS.getNode() != False.getNode()) {
+ return SDValue();
+ }
+
+ switch (NCC) {
+ default: return SDValue();
+ case ISD::SETNE: return LHS;
+ case ISD::SETEQ: {
+ ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
+ LHSCC = ISD::getSetCCInverse(LHSCC,
+ LHS.getOperand(0).getValueType().isInteger());
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
+ return DAG.getSelectCC(SDLoc(N),
+ LHS.getOperand(0),
+ LHS.getOperand(1),
+ LHS.getOperand(2),
+ LHS.getOperand(3),
+ LHSCC);
+ break;
+ }
+ }
+ return SDValue();
+ }
+
+ case AMDGPUISD::EXPORT: {
+ SDValue Arg = N->getOperand(1);
+ if (Arg.getOpcode() != ISD::BUILD_VECTOR)
+ break;
+
+ SDValue NewArgs[8] = {
+ N->getOperand(0), // Chain
+ SDValue(),
+ N->getOperand(2), // ArrayBase
+ N->getOperand(3), // Type
+ N->getOperand(4), // SWZ_X
+ N->getOperand(5), // SWZ_Y
+ N->getOperand(6), // SWZ_Z
+ N->getOperand(7) // SWZ_W
+ };
+ SDLoc DL(N);
+ NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG);
+ return DAG.getNode(AMDGPUISD::EXPORT, DL, N->getVTList(), NewArgs);
+ }
+ case AMDGPUISD::TEXTURE_FETCH: {
+ SDValue Arg = N->getOperand(1);
+ if (Arg.getOpcode() != ISD::BUILD_VECTOR)
+ break;
+
+ SDValue NewArgs[19] = {
+ N->getOperand(0),
+ N->getOperand(1),
+ N->getOperand(2),
+ N->getOperand(3),
+ N->getOperand(4),
+ N->getOperand(5),
+ N->getOperand(6),
+ N->getOperand(7),
+ N->getOperand(8),
+ N->getOperand(9),
+ N->getOperand(10),
+ N->getOperand(11),
+ N->getOperand(12),
+ N->getOperand(13),
+ N->getOperand(14),
+ N->getOperand(15),
+ N->getOperand(16),
+ N->getOperand(17),
+ N->getOperand(18),
+ };
+ NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG);
+ return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, SDLoc(N), N->getVTList(),
+ NewArgs);
+ }
+ }
+
+ return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
+}
+
+static bool
+FoldOperand(SDNode *ParentNode, unsigned SrcIdx, SDValue &Src, SDValue &Neg,
+ SDValue &Abs, SDValue &Sel, SDValue &Imm, SelectionDAG &DAG) {
+ const R600InstrInfo *TII =
+ static_cast<const R600InstrInfo *>(DAG.getTarget().getInstrInfo());
+ if (!Src.isMachineOpcode())
+ return false;
+ switch (Src.getMachineOpcode()) {
+ case AMDGPU::FNEG_R600:
+ if (!Neg.getNode())
+ return false;
+ Src = Src.getOperand(0);
+ Neg = DAG.getTargetConstant(1, MVT::i32);
+ return true;
+ case AMDGPU::FABS_R600:
+ if (!Abs.getNode())
+ return false;
+ Src = Src.getOperand(0);
+ Abs = DAG.getTargetConstant(1, MVT::i32);
+ return true;
+ case AMDGPU::CONST_COPY: {
+ unsigned Opcode = ParentNode->getMachineOpcode();
+ bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
+
+ if (!Sel.getNode())
+ return false;
+
+ SDValue CstOffset = Src.getOperand(0);
+ if (ParentNode->getValueType(0).isVector())
+ return false;
+
+ // Gather constants values
+ int SrcIndices[] = {
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src2),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
+ };
+ std::vector<unsigned> Consts;
+ for (int OtherSrcIdx : SrcIndices) {
+ int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
+ if (OtherSrcIdx < 0 || OtherSelIdx < 0)
+ continue;
+ if (HasDst) {
+ OtherSrcIdx--;
+ OtherSelIdx--;
+ }
+ if (RegisterSDNode *Reg =
+ dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
+ if (Reg->getReg() == AMDGPU::ALU_CONST) {
+ ConstantSDNode *Cst
+ = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
+ Consts.push_back(Cst->getZExtValue());
+ }
+ }
+ }
+
+ ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
+ Consts.push_back(Cst->getZExtValue());
+ if (!TII->fitsConstReadLimitations(Consts)) {
+ return false;
+ }
+
+ Sel = CstOffset;
+ Src = DAG.getRegister(AMDGPU::ALU_CONST, MVT::f32);
+ return true;
+ }
+ case AMDGPU::MOV_IMM_I32:
+ case AMDGPU::MOV_IMM_F32: {
+ unsigned ImmReg = AMDGPU::ALU_LITERAL_X;
+ uint64_t ImmValue = 0;
+
+
+ if (Src.getMachineOpcode() == AMDGPU::MOV_IMM_F32) {
+ ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
+ float FloatValue = FPC->getValueAPF().convertToFloat();
+ if (FloatValue == 0.0) {
+ ImmReg = AMDGPU::ZERO;
+ } else if (FloatValue == 0.5) {
+ ImmReg = AMDGPU::HALF;
+ } else if (FloatValue == 1.0) {
+ ImmReg = AMDGPU::ONE;
+ } else {
+ ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
+ }
+ } else {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
+ uint64_t Value = C->getZExtValue();
+ if (Value == 0) {
+ ImmReg = AMDGPU::ZERO;
+ } else if (Value == 1) {
+ ImmReg = AMDGPU::ONE_INT;
+ } else {
+ ImmValue = Value;
+ }
+ }
+
+ // Check that we aren't already using an immediate.
+ // XXX: It's possible for an instruction to have more than one
+ // immediate operand, but this is not supported yet.
+ if (ImmReg == AMDGPU::ALU_LITERAL_X) {
+ if (!Imm.getNode())
+ return false;
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
+ assert(C);
+ if (C->getZExtValue())
+ return false;
+ Imm = DAG.getTargetConstant(ImmValue, MVT::i32);
+ }
+ Src = DAG.getRegister(ImmReg, MVT::i32);
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+
+/// \brief Fold the instructions after selecting them
+SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
+ SelectionDAG &DAG) const {
+ const R600InstrInfo *TII =
+ static_cast<const R600InstrInfo *>(DAG.getTarget().getInstrInfo());
+ if (!Node->isMachineOpcode())
+ return Node;
+ unsigned Opcode = Node->getMachineOpcode();
+ SDValue FakeOp;
+
+ std::vector<SDValue> Ops;
+ for (const SDUse &I : Node->ops())
+ Ops.push_back(I);
+
+ if (Opcode == AMDGPU::DOT_4) {
+ int OperandIdx[] = {
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
+ };
+ int NegIdx[] = {
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_X),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Y),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Z),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_W),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_X),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Y),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Z),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_W)
+ };
+ int AbsIdx[] = {
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_X),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Y),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Z),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_W),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_X),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Y),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Z),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_W)
+ };
+ for (unsigned i = 0; i < 8; i++) {
+ if (OperandIdx[i] < 0)
+ return Node;
+ SDValue &Src = Ops[OperandIdx[i] - 1];
+ SDValue &Neg = Ops[NegIdx[i] - 1];
+ SDValue &Abs = Ops[AbsIdx[i] - 1];
+ bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
+ int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
+ if (HasDst)
+ SelIdx--;
+ SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
+ if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
+ return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
+ }
+ } else if (Opcode == AMDGPU::REG_SEQUENCE) {
+ for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
+ SDValue &Src = Ops[i];
+ if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
+ return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
+ }
+ } else if (Opcode == AMDGPU::CLAMP_R600) {
+ SDValue Src = Node->getOperand(0);
+ if (!Src.isMachineOpcode() ||
+ !TII->hasInstrModifiers(Src.getMachineOpcode()))
+ return Node;
+ int ClampIdx = TII->getOperandIdx(Src.getMachineOpcode(),
+ AMDGPU::OpName::clamp);
+ if (ClampIdx < 0)
+ return Node;
+ std::vector<SDValue> Ops;
+ unsigned NumOp = Src.getNumOperands();
+ for(unsigned i = 0; i < NumOp; ++i)
+ Ops.push_back(Src.getOperand(i));
+ Ops[ClampIdx - 1] = DAG.getTargetConstant(1, MVT::i32);
+ return DAG.getMachineNode(Src.getMachineOpcode(), SDLoc(Node),
+ Node->getVTList(), Ops);
+ } else {
+ if (!TII->hasInstrModifiers(Opcode))
+ return Node;
+ int OperandIdx[] = {
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src2)
+ };
+ int NegIdx[] = {
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src2_neg)
+ };
+ int AbsIdx[] = {
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs),
+ TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs),
+ -1
+ };
+ for (unsigned i = 0; i < 3; i++) {
+ if (OperandIdx[i] < 0)
+ return Node;
+ SDValue &Src = Ops[OperandIdx[i] - 1];
+ SDValue &Neg = Ops[NegIdx[i] - 1];
+ SDValue FakeAbs;
+ SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
+ bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
+ int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
+ int ImmIdx = TII->getOperandIdx(Opcode, AMDGPU::OpName::literal);
+ if (HasDst) {
+ SelIdx--;
+ ImmIdx--;
+ }
+ SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
+ SDValue &Imm = Ops[ImmIdx];
+ if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
+ return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
+ }
+ }
+
+ return Node;
+}
diff --git a/contrib/llvm/lib/Target/R600/R600ISelLowering.h b/contrib/llvm/lib/Target/R600/R600ISelLowering.h
new file mode 100644
index 0000000..d22c8c9
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600ISelLowering.h
@@ -0,0 +1,77 @@
+//===-- R600ISelLowering.h - R600 DAG Lowering Interface -*- C++ -*--------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief R600 DAG Lowering interface definition
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef R600ISELLOWERING_H
+#define R600ISELLOWERING_H
+
+#include "AMDGPUISelLowering.h"
+
+namespace llvm {
+
+class R600InstrInfo;
+
+class R600TargetLowering : public AMDGPUTargetLowering {
+public:
+ R600TargetLowering(TargetMachine &TM);
+ MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock * BB) const override;
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+ void ReplaceNodeResults(SDNode * N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const override;
+ SDValue LowerFormalArguments(
+ SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+ EVT getSetCCResultType(LLVMContext &, EVT VT) const override;
+private:
+ unsigned Gen;
+ /// Each OpenCL kernel has nine implicit parameters that are stored in the
+ /// first nine dwords of a Vertex Buffer. These implicit parameters are
+ /// lowered to load instructions which retrieve the values from the Vertex
+ /// Buffer.
+ SDValue LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
+ SDLoc DL, unsigned DwordOffset) const;
+
+ void lowerImplicitParameter(MachineInstr *MI, MachineBasicBlock &BB,
+ MachineRegisterInfo & MRI, unsigned dword_offset) const;
+ SDValue OptimizeSwizzle(SDValue BuildVector, SDValue Swz[], SelectionDAG &DAG) const;
+ SDValue vectorToVerticalVector(SelectionDAG &DAG, SDValue Vector) const;
+
+ SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFPTOUINT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerTrig(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSHLParts(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSRXParts(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue stackPtrToRegIndex(SDValue Ptr, unsigned StackWidth,
+ SelectionDAG &DAG) const;
+ void getStackAddress(unsigned StackWidth, unsigned ElemIdx,
+ unsigned &Channel, unsigned &PtrIncr) const;
+ bool isZero(SDValue Op) const;
+ SDNode *PostISelFolding(MachineSDNode *N, SelectionDAG &DAG) const override;
+};
+
+} // End namespace llvm;
+
+#endif // R600ISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/R600/R600InstrFormats.td b/contrib/llvm/lib/Target/R600/R600InstrFormats.td
new file mode 100644
index 0000000..9428bab
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600InstrFormats.td
@@ -0,0 +1,492 @@
+//===-- R600InstrFormats.td - R600 Instruction Encodings ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// R600 Instruction format definitions.
+//
+//===----------------------------------------------------------------------===//
+
+class InstR600 <dag outs, dag ins, string asm, list<dag> pattern,
+ InstrItinClass itin>
+ : AMDGPUInst <outs, ins, asm, pattern> {
+
+ field bits<64> Inst;
+ bit Trig = 0;
+ bit Op3 = 0;
+ bit isVector = 0;
+ bits<2> FlagOperandIdx = 0;
+ bit Op1 = 0;
+ bit Op2 = 0;
+ bit LDS_1A = 0;
+ bit LDS_1A1D = 0;
+ bit HasNativeOperands = 0;
+ bit VTXInst = 0;
+ bit TEXInst = 0;
+ bit ALUInst = 0;
+ bit IsExport = 0;
+ bit LDS_1A2D = 0;
+
+ let Namespace = "AMDGPU";
+ let OutOperandList = outs;
+ let InOperandList = ins;
+ let AsmString = asm;
+ let Pattern = pattern;
+ let Itinerary = itin;
+
+ let TSFlags{4} = Trig;
+ let TSFlags{5} = Op3;
+
+ // Vector instructions are instructions that must fill all slots in an
+ // instruction group
+ let TSFlags{6} = isVector;
+ let TSFlags{8-7} = FlagOperandIdx;
+ let TSFlags{9} = HasNativeOperands;
+ let TSFlags{10} = Op1;
+ let TSFlags{11} = Op2;
+ let TSFlags{12} = VTXInst;
+ let TSFlags{13} = TEXInst;
+ let TSFlags{14} = ALUInst;
+ let TSFlags{15} = LDS_1A;
+ let TSFlags{16} = LDS_1A1D;
+ let TSFlags{17} = IsExport;
+ let TSFlags{18} = LDS_1A2D;
+}
+
+//===----------------------------------------------------------------------===//
+// ALU instructions
+//===----------------------------------------------------------------------===//
+
+class R600_ALU_LDS_Word0 {
+ field bits<32> Word0;
+
+ bits<11> src0;
+ bits<1> src0_rel;
+ bits<11> src1;
+ bits<1> src1_rel;
+ bits<3> index_mode = 0;
+ bits<2> pred_sel;
+ bits<1> last;
+
+ bits<9> src0_sel = src0{8-0};
+ bits<2> src0_chan = src0{10-9};
+ bits<9> src1_sel = src1{8-0};
+ bits<2> src1_chan = src1{10-9};
+
+ let Word0{8-0} = src0_sel;
+ let Word0{9} = src0_rel;
+ let Word0{11-10} = src0_chan;
+ let Word0{21-13} = src1_sel;
+ let Word0{22} = src1_rel;
+ let Word0{24-23} = src1_chan;
+ let Word0{28-26} = index_mode;
+ let Word0{30-29} = pred_sel;
+ let Word0{31} = last;
+}
+
+class R600ALU_Word0 : R600_ALU_LDS_Word0 {
+
+ bits<1> src0_neg;
+ bits<1> src1_neg;
+
+ let Word0{12} = src0_neg;
+ let Word0{25} = src1_neg;
+}
+
+class R600ALU_Word1 {
+ field bits<32> Word1;
+
+ bits<11> dst;
+ bits<3> bank_swizzle;
+ bits<1> dst_rel;
+ bits<1> clamp;
+
+ bits<7> dst_sel = dst{6-0};
+ bits<2> dst_chan = dst{10-9};
+
+ let Word1{20-18} = bank_swizzle;
+ let Word1{27-21} = dst_sel;
+ let Word1{28} = dst_rel;
+ let Word1{30-29} = dst_chan;
+ let Word1{31} = clamp;
+}
+
+class R600ALU_Word1_OP2 <bits<11> alu_inst> : R600ALU_Word1{
+
+ bits<1> src0_abs;
+ bits<1> src1_abs;
+ bits<1> update_exec_mask;
+ bits<1> update_pred;
+ bits<1> write;
+ bits<2> omod;
+
+ let Word1{0} = src0_abs;
+ let Word1{1} = src1_abs;
+ let Word1{2} = update_exec_mask;
+ let Word1{3} = update_pred;
+ let Word1{4} = write;
+ let Word1{6-5} = omod;
+ let Word1{17-7} = alu_inst;
+}
+
+class R600ALU_Word1_OP3 <bits<5> alu_inst> : R600ALU_Word1{
+
+ bits<11> src2;
+ bits<1> src2_rel;
+ bits<1> src2_neg;
+
+ bits<9> src2_sel = src2{8-0};
+ bits<2> src2_chan = src2{10-9};
+
+ let Word1{8-0} = src2_sel;
+ let Word1{9} = src2_rel;
+ let Word1{11-10} = src2_chan;
+ let Word1{12} = src2_neg;
+ let Word1{17-13} = alu_inst;
+}
+
+class R600LDS_Word1 {
+ field bits<32> Word1;
+
+ bits<11> src2;
+ bits<9> src2_sel = src2{8-0};
+ bits<2> src2_chan = src2{10-9};
+ bits<1> src2_rel;
+ // offset specifies the stride offset to the second set of data to be read
+ // from. This is a dword offset.
+ bits<5> alu_inst = 17; // OP3_INST_LDS_IDX_OP
+ bits<3> bank_swizzle;
+ bits<6> lds_op;
+ bits<2> dst_chan = 0;
+
+ let Word1{8-0} = src2_sel;
+ let Word1{9} = src2_rel;
+ let Word1{11-10} = src2_chan;
+ let Word1{17-13} = alu_inst;
+ let Word1{20-18} = bank_swizzle;
+ let Word1{26-21} = lds_op;
+ let Word1{30-29} = dst_chan;
+}
+
+
+/*
+XXX: R600 subtarget uses a slightly different encoding than the other
+subtargets. We currently handle this in R600MCCodeEmitter, but we may
+want to use these instruction classes in the future.
+
+class R600ALU_Word1_OP2_r600 : R600ALU_Word1_OP2 {
+
+ bits<1> fog_merge;
+ bits<10> alu_inst;
+
+ let Inst{37} = fog_merge;
+ let Inst{39-38} = omod;
+ let Inst{49-40} = alu_inst;
+}
+
+class R600ALU_Word1_OP2_r700 : R600ALU_Word1_OP2 {
+
+ bits<11> alu_inst;
+
+ let Inst{38-37} = omod;
+ let Inst{49-39} = alu_inst;
+}
+*/
+
+//===----------------------------------------------------------------------===//
+// Vertex Fetch instructions
+//===----------------------------------------------------------------------===//
+
+class VTX_WORD0 {
+ field bits<32> Word0;
+ bits<7> src_gpr;
+ bits<5> VC_INST;
+ bits<2> FETCH_TYPE;
+ bits<1> FETCH_WHOLE_QUAD;
+ bits<8> BUFFER_ID;
+ bits<1> SRC_REL;
+ bits<2> SRC_SEL_X;
+
+ let Word0{4-0} = VC_INST;
+ let Word0{6-5} = FETCH_TYPE;
+ let Word0{7} = FETCH_WHOLE_QUAD;
+ let Word0{15-8} = BUFFER_ID;
+ let Word0{22-16} = src_gpr;
+ let Word0{23} = SRC_REL;
+ let Word0{25-24} = SRC_SEL_X;
+}
+
+class VTX_WORD0_eg : VTX_WORD0 {
+
+ bits<6> MEGA_FETCH_COUNT;
+
+ let Word0{31-26} = MEGA_FETCH_COUNT;
+}
+
+class VTX_WORD0_cm : VTX_WORD0 {
+
+ bits<2> SRC_SEL_Y;
+ bits<2> STRUCTURED_READ;
+ bits<1> LDS_REQ;
+ bits<1> COALESCED_READ;
+
+ let Word0{27-26} = SRC_SEL_Y;
+ let Word0{29-28} = STRUCTURED_READ;
+ let Word0{30} = LDS_REQ;
+ let Word0{31} = COALESCED_READ;
+}
+
+class VTX_WORD1_GPR {
+ field bits<32> Word1;
+ bits<7> dst_gpr;
+ bits<1> DST_REL;
+ bits<3> DST_SEL_X;
+ bits<3> DST_SEL_Y;
+ bits<3> DST_SEL_Z;
+ bits<3> DST_SEL_W;
+ bits<1> USE_CONST_FIELDS;
+ bits<6> DATA_FORMAT;
+ bits<2> NUM_FORMAT_ALL;
+ bits<1> FORMAT_COMP_ALL;
+ bits<1> SRF_MODE_ALL;
+
+ let Word1{6-0} = dst_gpr;
+ let Word1{7} = DST_REL;
+ let Word1{8} = 0; // Reserved
+ let Word1{11-9} = DST_SEL_X;
+ let Word1{14-12} = DST_SEL_Y;
+ let Word1{17-15} = DST_SEL_Z;
+ let Word1{20-18} = DST_SEL_W;
+ let Word1{21} = USE_CONST_FIELDS;
+ let Word1{27-22} = DATA_FORMAT;
+ let Word1{29-28} = NUM_FORMAT_ALL;
+ let Word1{30} = FORMAT_COMP_ALL;
+ let Word1{31} = SRF_MODE_ALL;
+}
+
+//===----------------------------------------------------------------------===//
+// Texture fetch instructions
+//===----------------------------------------------------------------------===//
+
+class TEX_WORD0 {
+ field bits<32> Word0;
+
+ bits<5> TEX_INST;
+ bits<2> INST_MOD;
+ bits<1> FETCH_WHOLE_QUAD;
+ bits<8> RESOURCE_ID;
+ bits<7> SRC_GPR;
+ bits<1> SRC_REL;
+ bits<1> ALT_CONST;
+ bits<2> RESOURCE_INDEX_MODE;
+ bits<2> SAMPLER_INDEX_MODE;
+
+ let Word0{4-0} = TEX_INST;
+ let Word0{6-5} = INST_MOD;
+ let Word0{7} = FETCH_WHOLE_QUAD;
+ let Word0{15-8} = RESOURCE_ID;
+ let Word0{22-16} = SRC_GPR;
+ let Word0{23} = SRC_REL;
+ let Word0{24} = ALT_CONST;
+ let Word0{26-25} = RESOURCE_INDEX_MODE;
+ let Word0{28-27} = SAMPLER_INDEX_MODE;
+}
+
+class TEX_WORD1 {
+ field bits<32> Word1;
+
+ bits<7> DST_GPR;
+ bits<1> DST_REL;
+ bits<3> DST_SEL_X;
+ bits<3> DST_SEL_Y;
+ bits<3> DST_SEL_Z;
+ bits<3> DST_SEL_W;
+ bits<7> LOD_BIAS;
+ bits<1> COORD_TYPE_X;
+ bits<1> COORD_TYPE_Y;
+ bits<1> COORD_TYPE_Z;
+ bits<1> COORD_TYPE_W;
+
+ let Word1{6-0} = DST_GPR;
+ let Word1{7} = DST_REL;
+ let Word1{11-9} = DST_SEL_X;
+ let Word1{14-12} = DST_SEL_Y;
+ let Word1{17-15} = DST_SEL_Z;
+ let Word1{20-18} = DST_SEL_W;
+ let Word1{27-21} = LOD_BIAS;
+ let Word1{28} = COORD_TYPE_X;
+ let Word1{29} = COORD_TYPE_Y;
+ let Word1{30} = COORD_TYPE_Z;
+ let Word1{31} = COORD_TYPE_W;
+}
+
+class TEX_WORD2 {
+ field bits<32> Word2;
+
+ bits<5> OFFSET_X;
+ bits<5> OFFSET_Y;
+ bits<5> OFFSET_Z;
+ bits<5> SAMPLER_ID;
+ bits<3> SRC_SEL_X;
+ bits<3> SRC_SEL_Y;
+ bits<3> SRC_SEL_Z;
+ bits<3> SRC_SEL_W;
+
+ let Word2{4-0} = OFFSET_X;
+ let Word2{9-5} = OFFSET_Y;
+ let Word2{14-10} = OFFSET_Z;
+ let Word2{19-15} = SAMPLER_ID;
+ let Word2{22-20} = SRC_SEL_X;
+ let Word2{25-23} = SRC_SEL_Y;
+ let Word2{28-26} = SRC_SEL_Z;
+ let Word2{31-29} = SRC_SEL_W;
+}
+
+//===----------------------------------------------------------------------===//
+// Control Flow Instructions
+//===----------------------------------------------------------------------===//
+
+class CF_WORD1_R600 {
+ field bits<32> Word1;
+
+ bits<3> POP_COUNT;
+ bits<5> CF_CONST;
+ bits<2> COND;
+ bits<3> COUNT;
+ bits<6> CALL_COUNT;
+ bits<1> COUNT_3;
+ bits<1> END_OF_PROGRAM;
+ bits<1> VALID_PIXEL_MODE;
+ bits<7> CF_INST;
+ bits<1> WHOLE_QUAD_MODE;
+ bits<1> BARRIER;
+
+ let Word1{2-0} = POP_COUNT;
+ let Word1{7-3} = CF_CONST;
+ let Word1{9-8} = COND;
+ let Word1{12-10} = COUNT;
+ let Word1{18-13} = CALL_COUNT;
+ let Word1{19} = COUNT_3;
+ let Word1{21} = END_OF_PROGRAM;
+ let Word1{22} = VALID_PIXEL_MODE;
+ let Word1{29-23} = CF_INST;
+ let Word1{30} = WHOLE_QUAD_MODE;
+ let Word1{31} = BARRIER;
+}
+
+class CF_WORD0_EG {
+ field bits<32> Word0;
+
+ bits<24> ADDR;
+ bits<3> JUMPTABLE_SEL;
+
+ let Word0{23-0} = ADDR;
+ let Word0{26-24} = JUMPTABLE_SEL;
+}
+
+class CF_WORD1_EG {
+ field bits<32> Word1;
+
+ bits<3> POP_COUNT;
+ bits<5> CF_CONST;
+ bits<2> COND;
+ bits<6> COUNT;
+ bits<1> VALID_PIXEL_MODE;
+ bits<1> END_OF_PROGRAM;
+ bits<8> CF_INST;
+ bits<1> BARRIER;
+
+ let Word1{2-0} = POP_COUNT;
+ let Word1{7-3} = CF_CONST;
+ let Word1{9-8} = COND;
+ let Word1{15-10} = COUNT;
+ let Word1{20} = VALID_PIXEL_MODE;
+ let Word1{21} = END_OF_PROGRAM;
+ let Word1{29-22} = CF_INST;
+ let Word1{31} = BARRIER;
+}
+
+class CF_ALU_WORD0 {
+ field bits<32> Word0;
+
+ bits<22> ADDR;
+ bits<4> KCACHE_BANK0;
+ bits<4> KCACHE_BANK1;
+ bits<2> KCACHE_MODE0;
+
+ let Word0{21-0} = ADDR;
+ let Word0{25-22} = KCACHE_BANK0;
+ let Word0{29-26} = KCACHE_BANK1;
+ let Word0{31-30} = KCACHE_MODE0;
+}
+
+class CF_ALU_WORD1 {
+ field bits<32> Word1;
+
+ bits<2> KCACHE_MODE1;
+ bits<8> KCACHE_ADDR0;
+ bits<8> KCACHE_ADDR1;
+ bits<7> COUNT;
+ bits<1> ALT_CONST;
+ bits<4> CF_INST;
+ bits<1> WHOLE_QUAD_MODE;
+ bits<1> BARRIER;
+
+ let Word1{1-0} = KCACHE_MODE1;
+ let Word1{9-2} = KCACHE_ADDR0;
+ let Word1{17-10} = KCACHE_ADDR1;
+ let Word1{24-18} = COUNT;
+ let Word1{25} = ALT_CONST;
+ let Word1{29-26} = CF_INST;
+ let Word1{30} = WHOLE_QUAD_MODE;
+ let Word1{31} = BARRIER;
+}
+
+class CF_ALLOC_EXPORT_WORD0_RAT {
+ field bits<32> Word0;
+
+ bits<4> rat_id;
+ bits<6> rat_inst;
+ bits<2> rim;
+ bits<2> type;
+ bits<7> rw_gpr;
+ bits<1> rw_rel;
+ bits<7> index_gpr;
+ bits<2> elem_size;
+
+ let Word0{3-0} = rat_id;
+ let Word0{9-4} = rat_inst;
+ let Word0{10} = 0; // Reserved
+ let Word0{12-11} = rim;
+ let Word0{14-13} = type;
+ let Word0{21-15} = rw_gpr;
+ let Word0{22} = rw_rel;
+ let Word0{29-23} = index_gpr;
+ let Word0{31-30} = elem_size;
+}
+
+class CF_ALLOC_EXPORT_WORD1_BUF {
+ field bits<32> Word1;
+
+ bits<12> array_size;
+ bits<4> comp_mask;
+ bits<4> burst_count;
+ bits<1> vpm;
+ bits<1> eop;
+ bits<8> cf_inst;
+ bits<1> mark;
+ bits<1> barrier;
+
+ let Word1{11-0} = array_size;
+ let Word1{15-12} = comp_mask;
+ let Word1{19-16} = burst_count;
+ let Word1{20} = vpm;
+ let Word1{21} = eop;
+ let Word1{29-22} = cf_inst;
+ let Word1{30} = mark;
+ let Word1{31} = barrier;
+}
diff --git a/contrib/llvm/lib/Target/R600/R600InstrInfo.cpp b/contrib/llvm/lib/Target/R600/R600InstrInfo.cpp
new file mode 100644
index 0000000..99920b7
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600InstrInfo.cpp
@@ -0,0 +1,1441 @@
+//===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief R600 Implementation of TargetInstrInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "R600InstrInfo.h"
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "AMDGPUTargetMachine.h"
+#include "R600Defines.h"
+#include "R600MachineFunctionInfo.h"
+#include "R600RegisterInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "AMDGPUGenDFAPacketizer.inc"
+
+R600InstrInfo::R600InstrInfo(const AMDGPUSubtarget &st)
+ : AMDGPUInstrInfo(st),
+ RI(st)
+ { }
+
+const R600RegisterInfo &R600InstrInfo::getRegisterInfo() const {
+ return RI;
+}
+
+bool R600InstrInfo::isTrig(const MachineInstr &MI) const {
+ return get(MI.getOpcode()).TSFlags & R600_InstFlag::TRIG;
+}
+
+bool R600InstrInfo::isVector(const MachineInstr &MI) const {
+ return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR;
+}
+
+void
+R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ unsigned VectorComponents = 0;
+ if ((AMDGPU::R600_Reg128RegClass.contains(DestReg) ||
+ AMDGPU::R600_Reg128VerticalRegClass.contains(DestReg)) &&
+ (AMDGPU::R600_Reg128RegClass.contains(SrcReg) ||
+ AMDGPU::R600_Reg128VerticalRegClass.contains(SrcReg))) {
+ VectorComponents = 4;
+ } else if((AMDGPU::R600_Reg64RegClass.contains(DestReg) ||
+ AMDGPU::R600_Reg64VerticalRegClass.contains(DestReg)) &&
+ (AMDGPU::R600_Reg64RegClass.contains(SrcReg) ||
+ AMDGPU::R600_Reg64VerticalRegClass.contains(SrcReg))) {
+ VectorComponents = 2;
+ }
+
+ if (VectorComponents > 0) {
+ for (unsigned I = 0; I < VectorComponents; I++) {
+ unsigned SubRegIndex = RI.getSubRegFromChannel(I);
+ buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
+ RI.getSubReg(DestReg, SubRegIndex),
+ RI.getSubReg(SrcReg, SubRegIndex))
+ .addReg(DestReg,
+ RegState::Define | RegState::Implicit);
+ }
+ } else {
+ MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
+ DestReg, SrcReg);
+ NewMI->getOperand(getOperandIdx(*NewMI, AMDGPU::OpName::src0))
+ .setIsKill(KillSrc);
+ }
+}
+
+/// \returns true if \p MBBI can be moved into a new basic.
+bool R600InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI) const {
+ for (MachineInstr::const_mop_iterator I = MBBI->operands_begin(),
+ E = MBBI->operands_end(); I != E; ++I) {
+ if (I->isReg() && !TargetRegisterInfo::isVirtualRegister(I->getReg()) &&
+ I->isUse() && RI.isPhysRegLiveAcrossClauses(I->getReg()))
+ return false;
+ }
+ return true;
+}
+
+bool R600InstrInfo::isMov(unsigned Opcode) const {
+
+
+ switch(Opcode) {
+ default: return false;
+ case AMDGPU::MOV:
+ case AMDGPU::MOV_IMM_F32:
+ case AMDGPU::MOV_IMM_I32:
+ return true;
+ }
+}
+
+// Some instructions act as place holders to emulate operations that the GPU
+// hardware does automatically. This function can be used to check if
+// an opcode falls into this category.
+bool R600InstrInfo::isPlaceHolderOpcode(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return false;
+ case AMDGPU::RETURN:
+ return true;
+ }
+}
+
+bool R600InstrInfo::isReductionOp(unsigned Opcode) const {
+ return false;
+}
+
+bool R600InstrInfo::isCubeOp(unsigned Opcode) const {
+ switch(Opcode) {
+ default: return false;
+ case AMDGPU::CUBE_r600_pseudo:
+ case AMDGPU::CUBE_r600_real:
+ case AMDGPU::CUBE_eg_pseudo:
+ case AMDGPU::CUBE_eg_real:
+ return true;
+ }
+}
+
+bool R600InstrInfo::isALUInstr(unsigned Opcode) const {
+ unsigned TargetFlags = get(Opcode).TSFlags;
+
+ return (TargetFlags & R600_InstFlag::ALU_INST);
+}
+
+bool R600InstrInfo::hasInstrModifiers(unsigned Opcode) const {
+ unsigned TargetFlags = get(Opcode).TSFlags;
+
+ return ((TargetFlags & R600_InstFlag::OP1) |
+ (TargetFlags & R600_InstFlag::OP2) |
+ (TargetFlags & R600_InstFlag::OP3));
+}
+
+bool R600InstrInfo::isLDSInstr(unsigned Opcode) const {
+ unsigned TargetFlags = get(Opcode).TSFlags;
+
+ return ((TargetFlags & R600_InstFlag::LDS_1A) |
+ (TargetFlags & R600_InstFlag::LDS_1A1D) |
+ (TargetFlags & R600_InstFlag::LDS_1A2D));
+}
+
+bool R600InstrInfo::isLDSNoRetInstr(unsigned Opcode) const {
+ return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) == -1;
+}
+
+bool R600InstrInfo::isLDSRetInstr(unsigned Opcode) const {
+ return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) != -1;
+}
+
+bool R600InstrInfo::canBeConsideredALU(const MachineInstr *MI) const {
+ if (isALUInstr(MI->getOpcode()))
+ return true;
+ if (isVector(*MI) || isCubeOp(MI->getOpcode()))
+ return true;
+ switch (MI->getOpcode()) {
+ case AMDGPU::PRED_X:
+ case AMDGPU::INTERP_PAIR_XY:
+ case AMDGPU::INTERP_PAIR_ZW:
+ case AMDGPU::INTERP_VEC_LOAD:
+ case AMDGPU::COPY:
+ case AMDGPU::DOT_4:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool R600InstrInfo::isTransOnly(unsigned Opcode) const {
+ if (ST.hasCaymanISA())
+ return false;
+ return (get(Opcode).getSchedClass() == AMDGPU::Sched::TransALU);
+}
+
+bool R600InstrInfo::isTransOnly(const MachineInstr *MI) const {
+ return isTransOnly(MI->getOpcode());
+}
+
+bool R600InstrInfo::isVectorOnly(unsigned Opcode) const {
+ return (get(Opcode).getSchedClass() == AMDGPU::Sched::VecALU);
+}
+
+bool R600InstrInfo::isVectorOnly(const MachineInstr *MI) const {
+ return isVectorOnly(MI->getOpcode());
+}
+
+bool R600InstrInfo::isExport(unsigned Opcode) const {
+ return (get(Opcode).TSFlags & R600_InstFlag::IS_EXPORT);
+}
+
+bool R600InstrInfo::usesVertexCache(unsigned Opcode) const {
+ return ST.hasVertexCache() && IS_VTX(get(Opcode));
+}
+
+bool R600InstrInfo::usesVertexCache(const MachineInstr *MI) const {
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const R600MachineFunctionInfo *MFI = MF->getInfo<R600MachineFunctionInfo>();
+ return MFI->getShaderType() != ShaderType::COMPUTE &&
+ usesVertexCache(MI->getOpcode());
+}
+
+bool R600InstrInfo::usesTextureCache(unsigned Opcode) const {
+ return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode));
+}
+
+bool R600InstrInfo::usesTextureCache(const MachineInstr *MI) const {
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const R600MachineFunctionInfo *MFI = MF->getInfo<R600MachineFunctionInfo>();
+ return (MFI->getShaderType() == ShaderType::COMPUTE &&
+ usesVertexCache(MI->getOpcode())) ||
+ usesTextureCache(MI->getOpcode());
+}
+
+bool R600InstrInfo::mustBeLastInClause(unsigned Opcode) const {
+ switch (Opcode) {
+ case AMDGPU::KILLGT:
+ case AMDGPU::GROUP_BARRIER:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool R600InstrInfo::usesAddressRegister(MachineInstr *MI) const {
+ return MI->findRegisterUseOperandIdx(AMDGPU::AR_X) != -1;
+}
+
+bool R600InstrInfo::definesAddressRegister(MachineInstr *MI) const {
+ return MI->findRegisterDefOperandIdx(AMDGPU::AR_X) != -1;
+}
+
+bool R600InstrInfo::readsLDSSrcReg(const MachineInstr *MI) const {
+ if (!isALUInstr(MI->getOpcode())) {
+ return false;
+ }
+ for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
+ E = MI->operands_end(); I != E; ++I) {
+ if (!I->isReg() || !I->isUse() ||
+ TargetRegisterInfo::isVirtualRegister(I->getReg()))
+ continue;
+
+ if (AMDGPU::R600_LDS_SRC_REGRegClass.contains(I->getReg()))
+ return true;
+ }
+ return false;
+}
+
+int R600InstrInfo::getSrcIdx(unsigned Opcode, unsigned SrcNum) const {
+ static const unsigned OpTable[] = {
+ AMDGPU::OpName::src0,
+ AMDGPU::OpName::src1,
+ AMDGPU::OpName::src2
+ };
+
+ assert (SrcNum < 3);
+ return getOperandIdx(Opcode, OpTable[SrcNum]);
+}
+
+#define SRC_SEL_ROWS 11
+int R600InstrInfo::getSelIdx(unsigned Opcode, unsigned SrcIdx) const {
+ static const unsigned SrcSelTable[SRC_SEL_ROWS][2] = {
+ {AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel},
+ {AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel},
+ {AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel},
+ {AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X},
+ {AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y},
+ {AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z},
+ {AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W},
+ {AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X},
+ {AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y},
+ {AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z},
+ {AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W}
+ };
+
+ for (unsigned i = 0; i < SRC_SEL_ROWS; ++i) {
+ if (getOperandIdx(Opcode, SrcSelTable[i][0]) == (int)SrcIdx) {
+ return getOperandIdx(Opcode, SrcSelTable[i][1]);
+ }
+ }
+ return -1;
+}
+#undef SRC_SEL_ROWS
+
+SmallVector<std::pair<MachineOperand *, int64_t>, 3>
+R600InstrInfo::getSrcs(MachineInstr *MI) const {
+ SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result;
+
+ if (MI->getOpcode() == AMDGPU::DOT_4) {
+ static const unsigned OpTable[8][2] = {
+ {AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X},
+ {AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y},
+ {AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z},
+ {AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W},
+ {AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X},
+ {AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y},
+ {AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z},
+ {AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W},
+ };
+
+ for (unsigned j = 0; j < 8; j++) {
+ MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
+ OpTable[j][0]));
+ unsigned Reg = MO.getReg();
+ if (Reg == AMDGPU::ALU_CONST) {
+ unsigned Sel = MI->getOperand(getOperandIdx(MI->getOpcode(),
+ OpTable[j][1])).getImm();
+ Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
+ continue;
+ }
+
+ }
+ return Result;
+ }
+
+ static const unsigned OpTable[3][2] = {
+ {AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel},
+ {AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel},
+ {AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel},
+ };
+
+ for (unsigned j = 0; j < 3; j++) {
+ int SrcIdx = getOperandIdx(MI->getOpcode(), OpTable[j][0]);
+ if (SrcIdx < 0)
+ break;
+ MachineOperand &MO = MI->getOperand(SrcIdx);
+ unsigned Reg = MI->getOperand(SrcIdx).getReg();
+ if (Reg == AMDGPU::ALU_CONST) {
+ unsigned Sel = MI->getOperand(
+ getOperandIdx(MI->getOpcode(), OpTable[j][1])).getImm();
+ Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
+ continue;
+ }
+ if (Reg == AMDGPU::ALU_LITERAL_X) {
+ unsigned Imm = MI->getOperand(
+ getOperandIdx(MI->getOpcode(), AMDGPU::OpName::literal)).getImm();
+ Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Imm));
+ continue;
+ }
+ Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, 0));
+ }
+ return Result;
+}
+
+std::vector<std::pair<int, unsigned> >
+R600InstrInfo::ExtractSrcs(MachineInstr *MI,
+ const DenseMap<unsigned, unsigned> &PV,
+ unsigned &ConstCount) const {
+ ConstCount = 0;
+ const SmallVector<std::pair<MachineOperand *, int64_t>, 3> Srcs = getSrcs(MI);
+ const std::pair<int, unsigned> DummyPair(-1, 0);
+ std::vector<std::pair<int, unsigned> > Result;
+ unsigned i = 0;
+ for (unsigned n = Srcs.size(); i < n; ++i) {
+ unsigned Reg = Srcs[i].first->getReg();
+ unsigned Index = RI.getEncodingValue(Reg) & 0xff;
+ if (Reg == AMDGPU::OQAP) {
+ Result.push_back(std::pair<int, unsigned>(Index, 0));
+ }
+ if (PV.find(Reg) != PV.end()) {
+ // 255 is used to tells its a PS/PV reg
+ Result.push_back(std::pair<int, unsigned>(255, 0));
+ continue;
+ }
+ if (Index > 127) {
+ ConstCount++;
+ Result.push_back(DummyPair);
+ continue;
+ }
+ unsigned Chan = RI.getHWRegChan(Reg);
+ Result.push_back(std::pair<int, unsigned>(Index, Chan));
+ }
+ for (; i < 3; ++i)
+ Result.push_back(DummyPair);
+ return Result;
+}
+
+static std::vector<std::pair<int, unsigned> >
+Swizzle(std::vector<std::pair<int, unsigned> > Src,
+ R600InstrInfo::BankSwizzle Swz) {
+ if (Src[0] == Src[1])
+ Src[1].first = -1;
+ switch (Swz) {
+ case R600InstrInfo::ALU_VEC_012_SCL_210:
+ break;
+ case R600InstrInfo::ALU_VEC_021_SCL_122:
+ std::swap(Src[1], Src[2]);
+ break;
+ case R600InstrInfo::ALU_VEC_102_SCL_221:
+ std::swap(Src[0], Src[1]);
+ break;
+ case R600InstrInfo::ALU_VEC_120_SCL_212:
+ std::swap(Src[0], Src[1]);
+ std::swap(Src[0], Src[2]);
+ break;
+ case R600InstrInfo::ALU_VEC_201:
+ std::swap(Src[0], Src[2]);
+ std::swap(Src[0], Src[1]);
+ break;
+ case R600InstrInfo::ALU_VEC_210:
+ std::swap(Src[0], Src[2]);
+ break;
+ }
+ return Src;
+}
+
+static unsigned
+getTransSwizzle(R600InstrInfo::BankSwizzle Swz, unsigned Op) {
+ switch (Swz) {
+ case R600InstrInfo::ALU_VEC_012_SCL_210: {
+ unsigned Cycles[3] = { 2, 1, 0};
+ return Cycles[Op];
+ }
+ case R600InstrInfo::ALU_VEC_021_SCL_122: {
+ unsigned Cycles[3] = { 1, 2, 2};
+ return Cycles[Op];
+ }
+ case R600InstrInfo::ALU_VEC_120_SCL_212: {
+ unsigned Cycles[3] = { 2, 1, 2};
+ return Cycles[Op];
+ }
+ case R600InstrInfo::ALU_VEC_102_SCL_221: {
+ unsigned Cycles[3] = { 2, 2, 1};
+ return Cycles[Op];
+ }
+ default:
+ llvm_unreachable("Wrong Swizzle for Trans Slot");
+ return 0;
+ }
+}
+
+/// returns how many MIs (whose inputs are represented by IGSrcs) can be packed
+/// in the same Instruction Group while meeting read port limitations given a
+/// Swz swizzle sequence.
+unsigned R600InstrInfo::isLegalUpTo(
+ const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
+ const std::vector<R600InstrInfo::BankSwizzle> &Swz,
+ const std::vector<std::pair<int, unsigned> > &TransSrcs,
+ R600InstrInfo::BankSwizzle TransSwz) const {
+ int Vector[4][3];
+ memset(Vector, -1, sizeof(Vector));
+ for (unsigned i = 0, e = IGSrcs.size(); i < e; i++) {
+ const std::vector<std::pair<int, unsigned> > &Srcs =
+ Swizzle(IGSrcs[i], Swz[i]);
+ for (unsigned j = 0; j < 3; j++) {
+ const std::pair<int, unsigned> &Src = Srcs[j];
+ if (Src.first < 0 || Src.first == 255)
+ continue;
+ if (Src.first == GET_REG_INDEX(RI.getEncodingValue(AMDGPU::OQAP))) {
+ if (Swz[i] != R600InstrInfo::ALU_VEC_012_SCL_210 &&
+ Swz[i] != R600InstrInfo::ALU_VEC_021_SCL_122) {
+ // The value from output queue A (denoted by register OQAP) can
+ // only be fetched during the first cycle.
+ return false;
+ }
+ // OQAP does not count towards the normal read port restrictions
+ continue;
+ }
+ if (Vector[Src.second][j] < 0)
+ Vector[Src.second][j] = Src.first;
+ if (Vector[Src.second][j] != Src.first)
+ return i;
+ }
+ }
+ // Now check Trans Alu
+ for (unsigned i = 0, e = TransSrcs.size(); i < e; ++i) {
+ const std::pair<int, unsigned> &Src = TransSrcs[i];
+ unsigned Cycle = getTransSwizzle(TransSwz, i);
+ if (Src.first < 0)
+ continue;
+ if (Src.first == 255)
+ continue;
+ if (Vector[Src.second][Cycle] < 0)
+ Vector[Src.second][Cycle] = Src.first;
+ if (Vector[Src.second][Cycle] != Src.first)
+ return IGSrcs.size() - 1;
+ }
+ return IGSrcs.size();
+}
+
+/// Given a swizzle sequence SwzCandidate and an index Idx, returns the next
+/// (in lexicographic term) swizzle sequence assuming that all swizzles after
+/// Idx can be skipped
+static bool
+NextPossibleSolution(
+ std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
+ unsigned Idx) {
+ assert(Idx < SwzCandidate.size());
+ int ResetIdx = Idx;
+ while (ResetIdx > -1 && SwzCandidate[ResetIdx] == R600InstrInfo::ALU_VEC_210)
+ ResetIdx --;
+ for (unsigned i = ResetIdx + 1, e = SwzCandidate.size(); i < e; i++) {
+ SwzCandidate[i] = R600InstrInfo::ALU_VEC_012_SCL_210;
+ }
+ if (ResetIdx == -1)
+ return false;
+ int NextSwizzle = SwzCandidate[ResetIdx] + 1;
+ SwzCandidate[ResetIdx] = (R600InstrInfo::BankSwizzle)NextSwizzle;
+ return true;
+}
+
+/// Enumerate all possible Swizzle sequence to find one that can meet all
+/// read port requirements.
+bool R600InstrInfo::FindSwizzleForVectorSlot(
+ const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
+ std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
+ const std::vector<std::pair<int, unsigned> > &TransSrcs,
+ R600InstrInfo::BankSwizzle TransSwz) const {
+ unsigned ValidUpTo = 0;
+ do {
+ ValidUpTo = isLegalUpTo(IGSrcs, SwzCandidate, TransSrcs, TransSwz);
+ if (ValidUpTo == IGSrcs.size())
+ return true;
+ } while (NextPossibleSolution(SwzCandidate, ValidUpTo));
+ return false;
+}
+
+/// Instructions in Trans slot can't read gpr at cycle 0 if they also read
+/// a const, and can't read a gpr at cycle 1 if they read 2 const.
+static bool
+isConstCompatible(R600InstrInfo::BankSwizzle TransSwz,
+ const std::vector<std::pair<int, unsigned> > &TransOps,
+ unsigned ConstCount) {
+ // TransALU can't read 3 constants
+ if (ConstCount > 2)
+ return false;
+ for (unsigned i = 0, e = TransOps.size(); i < e; ++i) {
+ const std::pair<int, unsigned> &Src = TransOps[i];
+ unsigned Cycle = getTransSwizzle(TransSwz, i);
+ if (Src.first < 0)
+ continue;
+ if (ConstCount > 0 && Cycle == 0)
+ return false;
+ if (ConstCount > 1 && Cycle == 1)
+ return false;
+ }
+ return true;
+}
+
+bool
+R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
+ const DenseMap<unsigned, unsigned> &PV,
+ std::vector<BankSwizzle> &ValidSwizzle,
+ bool isLastAluTrans)
+ const {
+ //Todo : support shared src0 - src1 operand
+
+ std::vector<std::vector<std::pair<int, unsigned> > > IGSrcs;
+ ValidSwizzle.clear();
+ unsigned ConstCount;
+ BankSwizzle TransBS = ALU_VEC_012_SCL_210;
+ for (unsigned i = 0, e = IG.size(); i < e; ++i) {
+ IGSrcs.push_back(ExtractSrcs(IG[i], PV, ConstCount));
+ unsigned Op = getOperandIdx(IG[i]->getOpcode(),
+ AMDGPU::OpName::bank_swizzle);
+ ValidSwizzle.push_back( (R600InstrInfo::BankSwizzle)
+ IG[i]->getOperand(Op).getImm());
+ }
+ std::vector<std::pair<int, unsigned> > TransOps;
+ if (!isLastAluTrans)
+ return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS);
+
+ TransOps = IGSrcs.back();
+ IGSrcs.pop_back();
+ ValidSwizzle.pop_back();
+
+ static const R600InstrInfo::BankSwizzle TransSwz[] = {
+ ALU_VEC_012_SCL_210,
+ ALU_VEC_021_SCL_122,
+ ALU_VEC_120_SCL_212,
+ ALU_VEC_102_SCL_221
+ };
+ for (unsigned i = 0; i < 4; i++) {
+ TransBS = TransSwz[i];
+ if (!isConstCompatible(TransBS, TransOps, ConstCount))
+ continue;
+ bool Result = FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps,
+ TransBS);
+ if (Result) {
+ ValidSwizzle.push_back(TransBS);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+bool
+R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts)
+ const {
+ assert (Consts.size() <= 12 && "Too many operands in instructions group");
+ unsigned Pair1 = 0, Pair2 = 0;
+ for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
+ unsigned ReadConstHalf = Consts[i] & 2;
+ unsigned ReadConstIndex = Consts[i] & (~3);
+ unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf;
+ if (!Pair1) {
+ Pair1 = ReadHalfConst;
+ continue;
+ }
+ if (Pair1 == ReadHalfConst)
+ continue;
+ if (!Pair2) {
+ Pair2 = ReadHalfConst;
+ continue;
+ }
+ if (Pair2 != ReadHalfConst)
+ return false;
+ }
+ return true;
+}
+
+bool
+R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs)
+ const {
+ std::vector<unsigned> Consts;
+ SmallSet<int64_t, 4> Literals;
+ for (unsigned i = 0, n = MIs.size(); i < n; i++) {
+ MachineInstr *MI = MIs[i];
+ if (!isALUInstr(MI->getOpcode()))
+ continue;
+
+ const SmallVectorImpl<std::pair<MachineOperand *, int64_t> > &Srcs =
+ getSrcs(MI);
+
+ for (unsigned j = 0, e = Srcs.size(); j < e; j++) {
+ std::pair<MachineOperand *, unsigned> Src = Srcs[j];
+ if (Src.first->getReg() == AMDGPU::ALU_LITERAL_X)
+ Literals.insert(Src.second);
+ if (Literals.size() > 4)
+ return false;
+ if (Src.first->getReg() == AMDGPU::ALU_CONST)
+ Consts.push_back(Src.second);
+ if (AMDGPU::R600_KC0RegClass.contains(Src.first->getReg()) ||
+ AMDGPU::R600_KC1RegClass.contains(Src.first->getReg())) {
+ unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff;
+ unsigned Chan = RI.getHWRegChan(Src.first->getReg());
+ Consts.push_back((Index << 2) | Chan);
+ }
+ }
+ }
+ return fitsConstReadLimitations(Consts);
+}
+
+DFAPacketizer *R600InstrInfo::CreateTargetScheduleState(const TargetMachine *TM,
+ const ScheduleDAG *DAG) const {
+ const InstrItineraryData *II = TM->getInstrItineraryData();
+ return TM->getSubtarget<AMDGPUSubtarget>().createDFAPacketizer(II);
+}
+
+static bool
+isPredicateSetter(unsigned Opcode) {
+ switch (Opcode) {
+ case AMDGPU::PRED_X:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static MachineInstr *
+findFirstPredicateSetterFrom(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) {
+ while (I != MBB.begin()) {
+ --I;
+ MachineInstr *MI = I;
+ if (isPredicateSetter(MI->getOpcode()))
+ return MI;
+ }
+
+ return nullptr;
+}
+
+static
+bool isJump(unsigned Opcode) {
+ return Opcode == AMDGPU::JUMP || Opcode == AMDGPU::JUMP_COND;
+}
+
+static bool isBranch(unsigned Opcode) {
+ return Opcode == AMDGPU::BRANCH || Opcode == AMDGPU::BRANCH_COND_i32 ||
+ Opcode == AMDGPU::BRANCH_COND_f32;
+}
+
+bool
+R600InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // Most of the following comes from the ARM implementation of AnalyzeBranch
+
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return false;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return false;
+ --I;
+ }
+ // AMDGPU::BRANCH* instructions are only available after isel and are not
+ // handled
+ if (isBranch(I->getOpcode()))
+ return true;
+ if (!isJump(static_cast<MachineInstr *>(I)->getOpcode())) {
+ return false;
+ }
+
+ // Remove successive JUMP
+ while (I != MBB.begin() && std::prev(I)->getOpcode() == AMDGPU::JUMP) {
+ MachineBasicBlock::iterator PriorI = std::prev(I);
+ if (AllowModify)
+ I->removeFromParent();
+ I = PriorI;
+ }
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ unsigned LastOpc = LastInst->getOpcode();
+ if (I == MBB.begin() ||
+ !isJump(static_cast<MachineInstr *>(--I)->getOpcode())) {
+ if (LastOpc == AMDGPU::JUMP) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else if (LastOpc == AMDGPU::JUMP_COND) {
+ MachineInstr *predSet = I;
+ while (!isPredicateSetter(predSet->getOpcode())) {
+ predSet = --I;
+ }
+ TBB = LastInst->getOperand(0).getMBB();
+ Cond.push_back(predSet->getOperand(1));
+ Cond.push_back(predSet->getOperand(2));
+ Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
+ return false;
+ }
+ return true; // Can't handle indirect branch.
+ }
+
+ // Get the instruction before it if it is a terminator.
+ MachineInstr *SecondLastInst = I;
+ unsigned SecondLastOpc = SecondLastInst->getOpcode();
+
+ // If the block ends with a B and a Bcc, handle it.
+ if (SecondLastOpc == AMDGPU::JUMP_COND && LastOpc == AMDGPU::JUMP) {
+ MachineInstr *predSet = --I;
+ while (!isPredicateSetter(predSet->getOpcode())) {
+ predSet = --I;
+ }
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ FBB = LastInst->getOperand(0).getMBB();
+ Cond.push_back(predSet->getOperand(1));
+ Cond.push_back(predSet->getOperand(2));
+ Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
+ return false;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+static
+MachineBasicBlock::iterator FindLastAluClause(MachineBasicBlock &MBB) {
+ for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
+ It != E; ++It) {
+ if (It->getOpcode() == AMDGPU::CF_ALU ||
+ It->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE)
+ return std::prev(It.base());
+ }
+ return MBB.end();
+}
+
+unsigned
+R600InstrInfo::InsertBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+
+ if (!FBB) {
+ if (Cond.empty()) {
+ BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(TBB);
+ return 1;
+ } else {
+ MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
+ assert(PredSet && "No previous predicate !");
+ addFlag(PredSet, 0, MO_FLAG_PUSH);
+ PredSet->getOperand(2).setImm(Cond[1].getImm());
+
+ BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
+ .addMBB(TBB)
+ .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
+ MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
+ if (CfAlu == MBB.end())
+ return 1;
+ assert (CfAlu->getOpcode() == AMDGPU::CF_ALU);
+ CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE));
+ return 1;
+ }
+ } else {
+ MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
+ assert(PredSet && "No previous predicate !");
+ addFlag(PredSet, 0, MO_FLAG_PUSH);
+ PredSet->getOperand(2).setImm(Cond[1].getImm());
+ BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
+ .addMBB(TBB)
+ .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
+ BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(FBB);
+ MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
+ if (CfAlu == MBB.end())
+ return 2;
+ assert (CfAlu->getOpcode() == AMDGPU::CF_ALU);
+ CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE));
+ return 2;
+ }
+}
+
+unsigned
+R600InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+
+ // Note : we leave PRED* instructions there.
+ // They may be needed when predicating instructions.
+
+ MachineBasicBlock::iterator I = MBB.end();
+
+ if (I == MBB.begin()) {
+ return 0;
+ }
+ --I;
+ switch (I->getOpcode()) {
+ default:
+ return 0;
+ case AMDGPU::JUMP_COND: {
+ MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
+ clearFlag(predSet, 0, MO_FLAG_PUSH);
+ I->eraseFromParent();
+ MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
+ if (CfAlu == MBB.end())
+ break;
+ assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE);
+ CfAlu->setDesc(get(AMDGPU::CF_ALU));
+ break;
+ }
+ case AMDGPU::JUMP:
+ I->eraseFromParent();
+ break;
+ }
+ I = MBB.end();
+
+ if (I == MBB.begin()) {
+ return 1;
+ }
+ --I;
+ switch (I->getOpcode()) {
+ // FIXME: only one case??
+ default:
+ return 1;
+ case AMDGPU::JUMP_COND: {
+ MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
+ clearFlag(predSet, 0, MO_FLAG_PUSH);
+ I->eraseFromParent();
+ MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
+ if (CfAlu == MBB.end())
+ break;
+ assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE);
+ CfAlu->setDesc(get(AMDGPU::CF_ALU));
+ break;
+ }
+ case AMDGPU::JUMP:
+ I->eraseFromParent();
+ break;
+ }
+ return 2;
+}
+
+bool
+R600InstrInfo::isPredicated(const MachineInstr *MI) const {
+ int idx = MI->findFirstPredOperandIdx();
+ if (idx < 0)
+ return false;
+
+ unsigned Reg = MI->getOperand(idx).getReg();
+ switch (Reg) {
+ default: return false;
+ case AMDGPU::PRED_SEL_ONE:
+ case AMDGPU::PRED_SEL_ZERO:
+ case AMDGPU::PREDICATE_BIT:
+ return true;
+ }
+}
+
+bool
+R600InstrInfo::isPredicable(MachineInstr *MI) const {
+ // XXX: KILL* instructions can be predicated, but they must be the last
+ // instruction in a clause, so this means any instructions after them cannot
+ // be predicated. Until we have proper support for instruction clauses in the
+ // backend, we will mark KILL* instructions as unpredicable.
+
+ if (MI->getOpcode() == AMDGPU::KILLGT) {
+ return false;
+ } else if (MI->getOpcode() == AMDGPU::CF_ALU) {
+ // If the clause start in the middle of MBB then the MBB has more
+ // than a single clause, unable to predicate several clauses.
+ if (MI->getParent()->begin() != MachineBasicBlock::iterator(MI))
+ return false;
+ // TODO: We don't support KC merging atm
+ if (MI->getOperand(3).getImm() != 0 || MI->getOperand(4).getImm() != 0)
+ return false;
+ return true;
+ } else if (isVector(*MI)) {
+ return false;
+ } else {
+ return AMDGPUInstrInfo::isPredicable(MI);
+ }
+}
+
+
+bool
+R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCyles,
+ unsigned ExtraPredCycles,
+ const BranchProbability &Probability) const{
+ return true;
+}
+
+bool
+R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumTCycles,
+ unsigned ExtraTCycles,
+ MachineBasicBlock &FMBB,
+ unsigned NumFCycles,
+ unsigned ExtraFCycles,
+ const BranchProbability &Probability) const {
+ return true;
+}
+
+bool
+R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCyles,
+ const BranchProbability &Probability)
+ const {
+ return true;
+}
+
+bool
+R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
+ MachineBasicBlock &FMBB) const {
+ return false;
+}
+
+
+bool
+R600InstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ MachineOperand &MO = Cond[1];
+ switch (MO.getImm()) {
+ case OPCODE_IS_ZERO_INT:
+ MO.setImm(OPCODE_IS_NOT_ZERO_INT);
+ break;
+ case OPCODE_IS_NOT_ZERO_INT:
+ MO.setImm(OPCODE_IS_ZERO_INT);
+ break;
+ case OPCODE_IS_ZERO:
+ MO.setImm(OPCODE_IS_NOT_ZERO);
+ break;
+ case OPCODE_IS_NOT_ZERO:
+ MO.setImm(OPCODE_IS_ZERO);
+ break;
+ default:
+ return true;
+ }
+
+ MachineOperand &MO2 = Cond[2];
+ switch (MO2.getReg()) {
+ case AMDGPU::PRED_SEL_ZERO:
+ MO2.setReg(AMDGPU::PRED_SEL_ONE);
+ break;
+ case AMDGPU::PRED_SEL_ONE:
+ MO2.setReg(AMDGPU::PRED_SEL_ZERO);
+ break;
+ default:
+ return true;
+ }
+ return false;
+}
+
+bool
+R600InstrInfo::DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const {
+ return isPredicateSetter(MI->getOpcode());
+}
+
+
+bool
+R600InstrInfo::SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const {
+ return false;
+}
+
+
+bool
+R600InstrInfo::PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const {
+ int PIdx = MI->findFirstPredOperandIdx();
+
+ if (MI->getOpcode() == AMDGPU::CF_ALU) {
+ MI->getOperand(8).setImm(0);
+ return true;
+ }
+
+ if (MI->getOpcode() == AMDGPU::DOT_4) {
+ MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_X))
+ .setReg(Pred[2].getReg());
+ MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Y))
+ .setReg(Pred[2].getReg());
+ MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Z))
+ .setReg(Pred[2].getReg());
+ MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_W))
+ .setReg(Pred[2].getReg());
+ MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
+ MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit);
+ return true;
+ }
+
+ if (PIdx != -1) {
+ MachineOperand &PMO = MI->getOperand(PIdx);
+ PMO.setReg(Pred[2].getReg());
+ MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
+ MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit);
+ return true;
+ }
+
+ return false;
+}
+
+unsigned int R600InstrInfo::getPredicationCost(const MachineInstr *) const {
+ return 2;
+}
+
+unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *MI,
+ unsigned *PredCost) const {
+ if (PredCost)
+ *PredCost = 2;
+ return 2;
+}
+
+bool R600InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+
+ switch(MI->getOpcode()) {
+ default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
+ case AMDGPU::R600_EXTRACT_ELT_V2:
+ case AMDGPU::R600_EXTRACT_ELT_V4:
+ buildIndirectRead(MI->getParent(), MI, MI->getOperand(0).getReg(),
+ RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address
+ MI->getOperand(2).getReg(),
+ RI.getHWRegChan(MI->getOperand(1).getReg()));
+ break;
+ case AMDGPU::R600_INSERT_ELT_V2:
+ case AMDGPU::R600_INSERT_ELT_V4:
+ buildIndirectWrite(MI->getParent(), MI, MI->getOperand(2).getReg(), // Value
+ RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address
+ MI->getOperand(3).getReg(), // Offset
+ RI.getHWRegChan(MI->getOperand(1).getReg())); // Channel
+ break;
+ }
+ MI->eraseFromParent();
+ return true;
+}
+
+void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
+ const MachineFunction &MF) const {
+ const AMDGPUFrameLowering *TFL =
+ static_cast<const AMDGPUFrameLowering*>(
+ MF.getTarget().getFrameLowering());
+
+ unsigned StackWidth = TFL->getStackWidth(MF);
+ int End = getIndirectIndexEnd(MF);
+
+ if (End == -1)
+ return;
+
+ for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) {
+ unsigned SuperReg = AMDGPU::R600_Reg128RegClass.getRegister(Index);
+ Reserved.set(SuperReg);
+ for (unsigned Chan = 0; Chan < StackWidth; ++Chan) {
+ unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister((4 * Index) + Chan);
+ Reserved.set(Reg);
+ }
+ }
+}
+
+unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex,
+ unsigned Channel) const {
+ // XXX: Remove when we support a stack width > 2
+ assert(Channel == 0);
+ return RegIndex;
+}
+
+const TargetRegisterClass *R600InstrInfo::getIndirectAddrRegClass() const {
+ return &AMDGPU::R600_TReg32_XRegClass;
+}
+
+MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg) const {
+ return buildIndirectWrite(MBB, I, ValueReg, Address, OffsetReg, 0);
+}
+
+MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg,
+ unsigned AddrChan) const {
+ unsigned AddrReg;
+ switch (AddrChan) {
+ default: llvm_unreachable("Invalid Channel");
+ case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break;
+ case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break;
+ case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break;
+ case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break;
+ }
+ MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
+ AMDGPU::AR_X, OffsetReg);
+ setImmOperand(MOVA, AMDGPU::OpName::write, 0);
+
+ MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
+ AddrReg, ValueReg)
+ .addReg(AMDGPU::AR_X,
+ RegState::Implicit | RegState::Kill);
+ setImmOperand(Mov, AMDGPU::OpName::dst_rel, 1);
+ return Mov;
+}
+
+MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg) const {
+ return buildIndirectRead(MBB, I, ValueReg, Address, OffsetReg, 0);
+}
+
+MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg,
+ unsigned AddrChan) const {
+ unsigned AddrReg;
+ switch (AddrChan) {
+ default: llvm_unreachable("Invalid Channel");
+ case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break;
+ case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break;
+ case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break;
+ case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break;
+ }
+ MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
+ AMDGPU::AR_X,
+ OffsetReg);
+ setImmOperand(MOVA, AMDGPU::OpName::write, 0);
+ MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
+ ValueReg,
+ AddrReg)
+ .addReg(AMDGPU::AR_X,
+ RegState::Implicit | RegState::Kill);
+ setImmOperand(Mov, AMDGPU::OpName::src0_rel, 1);
+
+ return Mov;
+}
+
+unsigned R600InstrInfo::getMaxAlusPerClause() const {
+ return 115;
+}
+
+MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned Opcode,
+ unsigned DstReg,
+ unsigned Src0Reg,
+ unsigned Src1Reg) const {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode),
+ DstReg); // $dst
+
+ if (Src1Reg) {
+ MIB.addImm(0) // $update_exec_mask
+ .addImm(0); // $update_predicate
+ }
+ MIB.addImm(1) // $write
+ .addImm(0) // $omod
+ .addImm(0) // $dst_rel
+ .addImm(0) // $dst_clamp
+ .addReg(Src0Reg) // $src0
+ .addImm(0) // $src0_neg
+ .addImm(0) // $src0_rel
+ .addImm(0) // $src0_abs
+ .addImm(-1); // $src0_sel
+
+ if (Src1Reg) {
+ MIB.addReg(Src1Reg) // $src1
+ .addImm(0) // $src1_neg
+ .addImm(0) // $src1_rel
+ .addImm(0) // $src1_abs
+ .addImm(-1); // $src1_sel
+ }
+
+ //XXX: The r600g finalizer expects this to be 1, once we've moved the
+ //scheduling to the backend, we can change the default to 0.
+ MIB.addImm(1) // $last
+ .addReg(AMDGPU::PRED_SEL_OFF) // $pred_sel
+ .addImm(0) // $literal
+ .addImm(0); // $bank_swizzle
+
+ return MIB;
+}
+
+#define OPERAND_CASE(Label) \
+ case Label: { \
+ static const unsigned Ops[] = \
+ { \
+ Label##_X, \
+ Label##_Y, \
+ Label##_Z, \
+ Label##_W \
+ }; \
+ return Ops[Slot]; \
+ }
+
+static unsigned getSlotedOps(unsigned Op, unsigned Slot) {
+ switch (Op) {
+ OPERAND_CASE(AMDGPU::OpName::update_exec_mask)
+ OPERAND_CASE(AMDGPU::OpName::update_pred)
+ OPERAND_CASE(AMDGPU::OpName::write)
+ OPERAND_CASE(AMDGPU::OpName::omod)
+ OPERAND_CASE(AMDGPU::OpName::dst_rel)
+ OPERAND_CASE(AMDGPU::OpName::clamp)
+ OPERAND_CASE(AMDGPU::OpName::src0)
+ OPERAND_CASE(AMDGPU::OpName::src0_neg)
+ OPERAND_CASE(AMDGPU::OpName::src0_rel)
+ OPERAND_CASE(AMDGPU::OpName::src0_abs)
+ OPERAND_CASE(AMDGPU::OpName::src0_sel)
+ OPERAND_CASE(AMDGPU::OpName::src1)
+ OPERAND_CASE(AMDGPU::OpName::src1_neg)
+ OPERAND_CASE(AMDGPU::OpName::src1_rel)
+ OPERAND_CASE(AMDGPU::OpName::src1_abs)
+ OPERAND_CASE(AMDGPU::OpName::src1_sel)
+ OPERAND_CASE(AMDGPU::OpName::pred_sel)
+ default:
+ llvm_unreachable("Wrong Operand");
+ }
+}
+
+#undef OPERAND_CASE
+
+MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction(
+ MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg)
+ const {
+ assert (MI->getOpcode() == AMDGPU::DOT_4 && "Not Implemented");
+ unsigned Opcode;
+ if (ST.getGeneration() <= AMDGPUSubtarget::R700)
+ Opcode = AMDGPU::DOT4_r600;
+ else
+ Opcode = AMDGPU::DOT4_eg;
+ MachineBasicBlock::iterator I = MI;
+ MachineOperand &Src0 = MI->getOperand(
+ getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src0, Slot)));
+ MachineOperand &Src1 = MI->getOperand(
+ getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src1, Slot)));
+ MachineInstr *MIB = buildDefaultInstruction(
+ MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg());
+ static const unsigned Operands[14] = {
+ AMDGPU::OpName::update_exec_mask,
+ AMDGPU::OpName::update_pred,
+ AMDGPU::OpName::write,
+ AMDGPU::OpName::omod,
+ AMDGPU::OpName::dst_rel,
+ AMDGPU::OpName::clamp,
+ AMDGPU::OpName::src0_neg,
+ AMDGPU::OpName::src0_rel,
+ AMDGPU::OpName::src0_abs,
+ AMDGPU::OpName::src0_sel,
+ AMDGPU::OpName::src1_neg,
+ AMDGPU::OpName::src1_rel,
+ AMDGPU::OpName::src1_abs,
+ AMDGPU::OpName::src1_sel,
+ };
+
+ MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
+ getSlotedOps(AMDGPU::OpName::pred_sel, Slot)));
+ MIB->getOperand(getOperandIdx(Opcode, AMDGPU::OpName::pred_sel))
+ .setReg(MO.getReg());
+
+ for (unsigned i = 0; i < 14; i++) {
+ MachineOperand &MO = MI->getOperand(
+ getOperandIdx(MI->getOpcode(), getSlotedOps(Operands[i], Slot)));
+ assert (MO.isImm());
+ setImmOperand(MIB, Operands[i], MO.getImm());
+ }
+ MIB->getOperand(20).setImm(0);
+ return MIB;
+}
+
+MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB,
+ MachineBasicBlock::iterator I,
+ unsigned DstReg,
+ uint64_t Imm) const {
+ MachineInstr *MovImm = buildDefaultInstruction(BB, I, AMDGPU::MOV, DstReg,
+ AMDGPU::ALU_LITERAL_X);
+ setImmOperand(MovImm, AMDGPU::OpName::literal, Imm);
+ return MovImm;
+}
+
+MachineInstr *R600InstrInfo::buildMovInstr(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DstReg, unsigned SrcReg) const {
+ return buildDefaultInstruction(*MBB, I, AMDGPU::MOV, DstReg, SrcReg);
+}
+
+int R600InstrInfo::getOperandIdx(const MachineInstr &MI, unsigned Op) const {
+ return getOperandIdx(MI.getOpcode(), Op);
+}
+
+int R600InstrInfo::getOperandIdx(unsigned Opcode, unsigned Op) const {
+ return AMDGPU::getNamedOperandIdx(Opcode, Op);
+}
+
+void R600InstrInfo::setImmOperand(MachineInstr *MI, unsigned Op,
+ int64_t Imm) const {
+ int Idx = getOperandIdx(*MI, Op);
+ assert(Idx != -1 && "Operand not supported for this instruction.");
+ assert(MI->getOperand(Idx).isImm());
+ MI->getOperand(Idx).setImm(Imm);
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction flag getters/setters
+//===----------------------------------------------------------------------===//
+
+bool R600InstrInfo::hasFlagOperand(const MachineInstr &MI) const {
+ return GET_FLAG_OPERAND_IDX(get(MI.getOpcode()).TSFlags) != 0;
+}
+
+MachineOperand &R600InstrInfo::getFlagOp(MachineInstr *MI, unsigned SrcIdx,
+ unsigned Flag) const {
+ unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
+ int FlagIndex = 0;
+ if (Flag != 0) {
+ // If we pass something other than the default value of Flag to this
+ // function, it means we are want to set a flag on an instruction
+ // that uses native encoding.
+ assert(HAS_NATIVE_OPERANDS(TargetFlags));
+ bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3;
+ switch (Flag) {
+ case MO_FLAG_CLAMP:
+ FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::clamp);
+ break;
+ case MO_FLAG_MASK:
+ FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::write);
+ break;
+ case MO_FLAG_NOT_LAST:
+ case MO_FLAG_LAST:
+ FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::last);
+ break;
+ case MO_FLAG_NEG:
+ switch (SrcIdx) {
+ case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_neg); break;
+ case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_neg); break;
+ case 2: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src2_neg); break;
+ }
+ break;
+
+ case MO_FLAG_ABS:
+ assert(!IsOP3 && "Cannot set absolute value modifier for OP3 "
+ "instructions.");
+ (void)IsOP3;
+ switch (SrcIdx) {
+ case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_abs); break;
+ case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_abs); break;
+ }
+ break;
+
+ default:
+ FlagIndex = -1;
+ break;
+ }
+ assert(FlagIndex != -1 && "Flag not supported for this instruction");
+ } else {
+ FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags);
+ assert(FlagIndex != 0 &&
+ "Instruction flags not supported for this instruction");
+ }
+
+ MachineOperand &FlagOp = MI->getOperand(FlagIndex);
+ assert(FlagOp.isImm());
+ return FlagOp;
+}
+
+void R600InstrInfo::addFlag(MachineInstr *MI, unsigned Operand,
+ unsigned Flag) const {
+ unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
+ if (Flag == 0) {
+ return;
+ }
+ if (HAS_NATIVE_OPERANDS(TargetFlags)) {
+ MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
+ if (Flag == MO_FLAG_NOT_LAST) {
+ clearFlag(MI, Operand, MO_FLAG_LAST);
+ } else if (Flag == MO_FLAG_MASK) {
+ clearFlag(MI, Operand, Flag);
+ } else {
+ FlagOp.setImm(1);
+ }
+ } else {
+ MachineOperand &FlagOp = getFlagOp(MI, Operand);
+ FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand)));
+ }
+}
+
+void R600InstrInfo::clearFlag(MachineInstr *MI, unsigned Operand,
+ unsigned Flag) const {
+ unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
+ if (HAS_NATIVE_OPERANDS(TargetFlags)) {
+ MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
+ FlagOp.setImm(0);
+ } else {
+ MachineOperand &FlagOp = getFlagOp(MI);
+ unsigned InstFlags = FlagOp.getImm();
+ InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand));
+ FlagOp.setImm(InstFlags);
+ }
+}
diff --git a/contrib/llvm/lib/Target/R600/R600InstrInfo.h b/contrib/llvm/lib/Target/R600/R600InstrInfo.h
new file mode 100644
index 0000000..1c3cb63
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600InstrInfo.h
@@ -0,0 +1,301 @@
+//===-- R600InstrInfo.h - R600 Instruction Info Interface -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Interface definition for R600InstrInfo
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef R600INSTRUCTIONINFO_H_
+#define R600INSTRUCTIONINFO_H_
+
+#include "AMDGPUInstrInfo.h"
+#include "R600Defines.h"
+#include "R600RegisterInfo.h"
+#include <map>
+
+namespace llvm {
+
+ class AMDGPUTargetMachine;
+ class DFAPacketizer;
+ class ScheduleDAG;
+ class MachineFunction;
+ class MachineInstr;
+ class MachineInstrBuilder;
+
+ class R600InstrInfo : public AMDGPUInstrInfo {
+ private:
+ const R600RegisterInfo RI;
+
+ std::vector<std::pair<int, unsigned> >
+ ExtractSrcs(MachineInstr *MI, const DenseMap<unsigned, unsigned> &PV, unsigned &ConstCount) const;
+
+
+ MachineInstrBuilder buildIndirectRead(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg,
+ unsigned AddrChan) const;
+
+ MachineInstrBuilder buildIndirectWrite(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg,
+ unsigned AddrChan) const;
+ public:
+ enum BankSwizzle {
+ ALU_VEC_012_SCL_210 = 0,
+ ALU_VEC_021_SCL_122,
+ ALU_VEC_120_SCL_212,
+ ALU_VEC_102_SCL_221,
+ ALU_VEC_201,
+ ALU_VEC_210
+ };
+
+ explicit R600InstrInfo(const AMDGPUSubtarget &st);
+
+ const R600RegisterInfo &getRegisterInfo() const override;
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+ bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI) const override;
+
+ bool isTrig(const MachineInstr &MI) const;
+ bool isPlaceHolderOpcode(unsigned opcode) const;
+ bool isReductionOp(unsigned opcode) const;
+ bool isCubeOp(unsigned opcode) const;
+
+ /// \returns true if this \p Opcode represents an ALU instruction.
+ bool isALUInstr(unsigned Opcode) const;
+ bool hasInstrModifiers(unsigned Opcode) const;
+ bool isLDSInstr(unsigned Opcode) const;
+ bool isLDSNoRetInstr(unsigned Opcode) const;
+ bool isLDSRetInstr(unsigned Opcode) const;
+
+ /// \returns true if this \p Opcode represents an ALU instruction or an
+ /// instruction that will be lowered in ExpandSpecialInstrs Pass.
+ bool canBeConsideredALU(const MachineInstr *MI) const;
+
+ bool isTransOnly(unsigned Opcode) const;
+ bool isTransOnly(const MachineInstr *MI) const;
+ bool isVectorOnly(unsigned Opcode) const;
+ bool isVectorOnly(const MachineInstr *MI) const;
+ bool isExport(unsigned Opcode) const;
+
+ bool usesVertexCache(unsigned Opcode) const;
+ bool usesVertexCache(const MachineInstr *MI) const;
+ bool usesTextureCache(unsigned Opcode) const;
+ bool usesTextureCache(const MachineInstr *MI) const;
+
+ bool mustBeLastInClause(unsigned Opcode) const;
+ bool usesAddressRegister(MachineInstr *MI) const;
+ bool definesAddressRegister(MachineInstr *MI) const;
+ bool readsLDSSrcReg(const MachineInstr *MI) const;
+
+ /// \returns The operand index for the given source number. Legal values
+ /// for SrcNum are 0, 1, and 2.
+ int getSrcIdx(unsigned Opcode, unsigned SrcNum) const;
+ /// \returns The operand Index for the Sel operand given an index to one
+ /// of the instruction's src operands.
+ int getSelIdx(unsigned Opcode, unsigned SrcIdx) const;
+
+ /// \returns a pair for each src of an ALU instructions.
+ /// The first member of a pair is the register id.
+ /// If register is ALU_CONST, second member is SEL.
+ /// If register is ALU_LITERAL, second member is IMM.
+ /// Otherwise, second member value is undefined.
+ SmallVector<std::pair<MachineOperand *, int64_t>, 3>
+ getSrcs(MachineInstr *MI) const;
+
+ unsigned isLegalUpTo(
+ const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
+ const std::vector<R600InstrInfo::BankSwizzle> &Swz,
+ const std::vector<std::pair<int, unsigned> > &TransSrcs,
+ R600InstrInfo::BankSwizzle TransSwz) const;
+
+ bool FindSwizzleForVectorSlot(
+ const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
+ std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
+ const std::vector<std::pair<int, unsigned> > &TransSrcs,
+ R600InstrInfo::BankSwizzle TransSwz) const;
+
+ /// Given the order VEC_012 < VEC_021 < VEC_120 < VEC_102 < VEC_201 < VEC_210
+ /// returns true and the first (in lexical order) BankSwizzle affectation
+ /// starting from the one already provided in the Instruction Group MIs that
+ /// fits Read Port limitations in BS if available. Otherwise returns false
+ /// and undefined content in BS.
+ /// isLastAluTrans should be set if the last Alu of MIs will be executed on
+ /// Trans ALU. In this case, ValidTSwizzle returns the BankSwizzle value to
+ /// apply to the last instruction.
+ /// PV holds GPR to PV registers in the Instruction Group MIs.
+ bool fitsReadPortLimitations(const std::vector<MachineInstr *> &MIs,
+ const DenseMap<unsigned, unsigned> &PV,
+ std::vector<BankSwizzle> &BS,
+ bool isLastAluTrans) const;
+
+ /// An instruction group can only access 2 channel pair (either [XY] or [ZW])
+ /// from KCache bank on R700+. This function check if MI set in input meet
+ /// this limitations
+ bool fitsConstReadLimitations(const std::vector<MachineInstr *> &) const;
+ /// Same but using const index set instead of MI set.
+ bool fitsConstReadLimitations(const std::vector<unsigned>&) const;
+
+ /// \brief Vector instructions are instructions that must fill all
+ /// instruction slots within an instruction group.
+ bool isVector(const MachineInstr &MI) const;
+
+ bool isMov(unsigned Opcode) const override;
+
+ DFAPacketizer *CreateTargetScheduleState(const TargetMachine *TM,
+ const ScheduleDAG *DAG) const override;
+
+ bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
+
+ bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const override;
+
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const override;
+
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+
+ bool isPredicated(const MachineInstr *MI) const override;
+
+ bool isPredicable(MachineInstr *MI) const override;
+
+ bool
+ isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
+ const BranchProbability &Probability) const override;
+
+ bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
+ unsigned ExtraPredCycles,
+ const BranchProbability &Probability) const override ;
+
+ bool
+ isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumTCycles, unsigned ExtraTCycles,
+ MachineBasicBlock &FMBB,
+ unsigned NumFCycles, unsigned ExtraFCycles,
+ const BranchProbability &Probability) const override;
+
+ bool DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const override;
+
+ bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const override;
+
+ bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
+ MachineBasicBlock &FMBB) const override;
+
+ bool PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const override;
+
+ unsigned int getPredicationCost(const MachineInstr *) const override;
+
+ unsigned int getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *MI,
+ unsigned *PredCost = nullptr) const override;
+
+ int getInstrLatency(const InstrItineraryData *ItinData,
+ SDNode *Node) const override { return 1;}
+
+ virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const;
+
+ /// \brief Reserve the registers that may be accesed using indirect addressing.
+ void reserveIndirectRegisters(BitVector &Reserved,
+ const MachineFunction &MF) const;
+
+ unsigned calculateIndirectAddress(unsigned RegIndex,
+ unsigned Channel) const override;
+
+ const TargetRegisterClass *getIndirectAddrRegClass() const override;
+
+ MachineInstrBuilder buildIndirectWrite(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg) const override;
+
+ MachineInstrBuilder buildIndirectRead(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg) const override;
+
+ unsigned getMaxAlusPerClause() const;
+
+ ///buildDefaultInstruction - This function returns a MachineInstr with
+ /// all the instruction modifiers initialized to their default values.
+ /// You can use this function to avoid manually specifying each instruction
+ /// modifier operand when building a new instruction.
+ ///
+ /// \returns a MachineInstr with all the instruction modifiers initialized
+ /// to their default values.
+ MachineInstrBuilder buildDefaultInstruction(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned Opcode,
+ unsigned DstReg,
+ unsigned Src0Reg,
+ unsigned Src1Reg = 0) const;
+
+ MachineInstr *buildSlotOfVectorInstruction(MachineBasicBlock &MBB,
+ MachineInstr *MI,
+ unsigned Slot,
+ unsigned DstReg) const;
+
+ MachineInstr *buildMovImm(MachineBasicBlock &BB,
+ MachineBasicBlock::iterator I,
+ unsigned DstReg,
+ uint64_t Imm) const;
+
+ MachineInstr *buildMovInstr(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DstReg, unsigned SrcReg) const override;
+
+ /// \brief Get the index of Op in the MachineInstr.
+ ///
+ /// \returns -1 if the Instruction does not contain the specified \p Op.
+ int getOperandIdx(const MachineInstr &MI, unsigned Op) const;
+
+ /// \brief Get the index of \p Op for the given Opcode.
+ ///
+ /// \returns -1 if the Instruction does not contain the specified \p Op.
+ int getOperandIdx(unsigned Opcode, unsigned Op) const;
+
+ /// \brief Helper function for setting instruction flag values.
+ void setImmOperand(MachineInstr *MI, unsigned Op, int64_t Imm) const;
+
+ /// \returns true if this instruction has an operand for storing target flags.
+ bool hasFlagOperand(const MachineInstr &MI) const;
+
+ ///\brief Add one of the MO_FLAG* flags to the specified \p Operand.
+ void addFlag(MachineInstr *MI, unsigned Operand, unsigned Flag) const;
+
+ ///\brief Determine if the specified \p Flag is set on this \p Operand.
+ bool isFlagSet(const MachineInstr &MI, unsigned Operand, unsigned Flag) const;
+
+ /// \param SrcIdx The register source to set the flag on (e.g src0, src1, src2)
+ /// \param Flag The flag being set.
+ ///
+ /// \returns the operand containing the flags for this instruction.
+ MachineOperand &getFlagOp(MachineInstr *MI, unsigned SrcIdx = 0,
+ unsigned Flag = 0) const;
+
+ /// \brief Clear the specified flag on the instruction.
+ void clearFlag(MachineInstr *MI, unsigned Operand, unsigned Flag) const;
+};
+
+namespace AMDGPU {
+
+int getLDSNoRetOp(uint16_t Opcode);
+
+} //End namespace AMDGPU
+
+} // End llvm namespace
+
+#endif // R600INSTRINFO_H_
diff --git a/contrib/llvm/lib/Target/R600/R600Instructions.td b/contrib/llvm/lib/Target/R600/R600Instructions.td
new file mode 100644
index 0000000..704507d
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600Instructions.td
@@ -0,0 +1,1728 @@
+//===-- R600Instructions.td - R600 Instruction defs -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// TableGen definitions for instructions which are available on R600 family
+// GPUs.
+//
+//===----------------------------------------------------------------------===//
+
+include "R600Intrinsics.td"
+include "R600InstrFormats.td"
+
+class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
+ InstR600 <outs, ins, asm, pattern, NullALU> {
+
+ let Namespace = "AMDGPU";
+}
+
+def MEMxi : Operand<iPTR> {
+ let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
+ let PrintMethod = "printMemOperand";
+}
+
+def MEMrr : Operand<iPTR> {
+ let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
+}
+
+// Operands for non-registers
+
+class InstFlag<string PM = "printOperand", int Default = 0>
+ : OperandWithDefaultOps <i32, (ops (i32 Default))> {
+ let PrintMethod = PM;
+}
+
+// src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers
+def SEL : OperandWithDefaultOps <i32, (ops (i32 -1))> {
+ let PrintMethod = "printSel";
+}
+def BANK_SWIZZLE : OperandWithDefaultOps <i32, (ops (i32 0))> {
+ let PrintMethod = "printBankSwizzle";
+}
+
+def LITERAL : InstFlag<"printLiteral">;
+
+def WRITE : InstFlag <"printWrite", 1>;
+def OMOD : InstFlag <"printOMOD">;
+def REL : InstFlag <"printRel">;
+def CLAMP : InstFlag <"printClamp">;
+def NEG : InstFlag <"printNeg">;
+def ABS : InstFlag <"printAbs">;
+def UEM : InstFlag <"printUpdateExecMask">;
+def UP : InstFlag <"printUpdatePred">;
+
+// XXX: The r600g finalizer in Mesa expects last to be one in most cases.
+// Once we start using the packetizer in this backend we should have this
+// default to 0.
+def LAST : InstFlag<"printLast", 1>;
+def RSel : Operand<i32> {
+ let PrintMethod = "printRSel";
+}
+def CT: Operand<i32> {
+ let PrintMethod = "printCT";
+}
+
+def FRAMEri : Operand<iPTR> {
+ let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index);
+}
+
+def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
+def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
+def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
+def ADDRGA_CONST_OFFSET : ComplexPattern<i32, 1, "SelectGlobalValueConstantOffset", [], []>;
+def ADDRGA_VAR_OFFSET : ComplexPattern<i32, 2, "SelectGlobalValueVariableOffset", [], []>;
+
+
+def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
+ (ops PRED_SEL_OFF)>;
+
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
+
+// Class for instructions with only one source register.
+// If you add new ins to this instruction, make sure they are listed before
+// $literal, because the backend currently assumes that the last operand is
+// a literal. Also be sure to update the enum R600Op1OperandIndex::ROI in
+// R600Defines.h, R600InstrInfo::buildDefaultInstruction(),
+// and R600InstrInfo::getOperandIdx().
+class R600_1OP <bits<11> inst, string opName, list<dag> pattern,
+ InstrItinClass itin = AnyALU> :
+ InstR600 <(outs R600_Reg32:$dst),
+ (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
+ R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
+ LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
+ BANK_SWIZZLE:$bank_swizzle),
+ !strconcat(" ", opName,
+ "$clamp $last $dst$write$dst_rel$omod, "
+ "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
+ "$pred_sel $bank_swizzle"),
+ pattern,
+ itin>,
+ R600ALU_Word0,
+ R600ALU_Word1_OP2 <inst> {
+
+ let src1 = 0;
+ let src1_rel = 0;
+ let src1_neg = 0;
+ let src1_abs = 0;
+ let update_exec_mask = 0;
+ let update_pred = 0;
+ let HasNativeOperands = 1;
+ let Op1 = 1;
+ let ALUInst = 1;
+ let DisableEncoding = "$literal";
+ let UseNamedOperandTable = 1;
+
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+}
+
+class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
+ InstrItinClass itin = AnyALU> :
+ R600_1OP <inst, opName,
+ [(set R600_Reg32:$dst, (node R600_Reg32:$src0))], itin
+>;
+
+// If you add or change the operands for R600_2OP instructions, you must
+// also update the R600Op2OperandIndex::ROI enum in R600Defines.h,
+// R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx().
+class R600_2OP <bits<11> inst, string opName, list<dag> pattern,
+ InstrItinClass itin = AnyALU> :
+ InstR600 <(outs R600_Reg32:$dst),
+ (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write,
+ OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
+ R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
+ R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel,
+ LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
+ BANK_SWIZZLE:$bank_swizzle),
+ !strconcat(" ", opName,
+ "$clamp $last $update_exec_mask$update_pred$dst$write$dst_rel$omod, "
+ "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
+ "$src1_neg$src1_abs$src1$src1_abs$src1_rel, "
+ "$pred_sel $bank_swizzle"),
+ pattern,
+ itin>,
+ R600ALU_Word0,
+ R600ALU_Word1_OP2 <inst> {
+
+ let HasNativeOperands = 1;
+ let Op2 = 1;
+ let ALUInst = 1;
+ let DisableEncoding = "$literal";
+ let UseNamedOperandTable = 1;
+
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+}
+
+class R600_2OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
+ InstrItinClass itin = AnyALU> :
+ R600_2OP <inst, opName,
+ [(set R600_Reg32:$dst, (node R600_Reg32:$src0,
+ R600_Reg32:$src1))], itin
+>;
+
+// If you add our change the operands for R600_3OP instructions, you must
+// also update the R600Op3OperandIndex::ROI enum in R600Defines.h,
+// R600InstrInfo::buildDefaultInstruction(), and
+// R600InstrInfo::getOperandIdx().
+class R600_3OP <bits<5> inst, string opName, list<dag> pattern,
+ InstrItinClass itin = AnyALU> :
+ InstR600 <(outs R600_Reg32:$dst),
+ (ins REL:$dst_rel, CLAMP:$clamp,
+ R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel,
+ R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel,
+ R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel,
+ LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
+ BANK_SWIZZLE:$bank_swizzle),
+ !strconcat(" ", opName, "$clamp $last $dst$dst_rel, "
+ "$src0_neg$src0$src0_rel, "
+ "$src1_neg$src1$src1_rel, "
+ "$src2_neg$src2$src2_rel, "
+ "$pred_sel"
+ "$bank_swizzle"),
+ pattern,
+ itin>,
+ R600ALU_Word0,
+ R600ALU_Word1_OP3<inst>{
+
+ let HasNativeOperands = 1;
+ let DisableEncoding = "$literal";
+ let Op3 = 1;
+ let UseNamedOperandTable = 1;
+ let ALUInst = 1;
+
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+}
+
+class R600_REDUCTION <bits<11> inst, dag ins, string asm, list<dag> pattern,
+ InstrItinClass itin = VecALU> :
+ InstR600 <(outs R600_Reg32:$dst),
+ ins,
+ asm,
+ pattern,
+ itin>;
+
+
+
+} // End mayLoad = 1, mayStore = 0, hasSideEffects = 0
+
+def TEX_SHADOW : PatLeaf<
+ (imm),
+ [{uint32_t TType = (uint32_t)N->getZExtValue();
+ return (TType >= 6 && TType <= 8) || TType == 13;
+ }]
+>;
+
+def TEX_RECT : PatLeaf<
+ (imm),
+ [{uint32_t TType = (uint32_t)N->getZExtValue();
+ return TType == 5;
+ }]
+>;
+
+def TEX_ARRAY : PatLeaf<
+ (imm),
+ [{uint32_t TType = (uint32_t)N->getZExtValue();
+ return TType == 9 || TType == 10 || TType == 16;
+ }]
+>;
+
+def TEX_SHADOW_ARRAY : PatLeaf<
+ (imm),
+ [{uint32_t TType = (uint32_t)N->getZExtValue();
+ return TType == 11 || TType == 12 || TType == 17;
+ }]
+>;
+
+def TEX_MSAA : PatLeaf<
+ (imm),
+ [{uint32_t TType = (uint32_t)N->getZExtValue();
+ return TType == 14;
+ }]
+>;
+
+def TEX_ARRAY_MSAA : PatLeaf<
+ (imm),
+ [{uint32_t TType = (uint32_t)N->getZExtValue();
+ return TType == 15;
+ }]
+>;
+
+class EG_CF_RAT <bits <8> cfinst, bits <6> ratinst, bits<4> ratid, bits<4> mask,
+ dag outs, dag ins, string asm, list<dag> pattern> :
+ InstR600ISA <outs, ins, asm, pattern>,
+ CF_ALLOC_EXPORT_WORD0_RAT, CF_ALLOC_EXPORT_WORD1_BUF {
+
+ let rat_id = ratid;
+ let rat_inst = ratinst;
+ let rim = 0;
+ // XXX: Have a separate instruction for non-indexed writes.
+ let type = 1;
+ let rw_rel = 0;
+ let elem_size = 0;
+
+ let array_size = 0;
+ let comp_mask = mask;
+ let burst_count = 0;
+ let vpm = 0;
+ let cf_inst = cfinst;
+ let mark = 0;
+ let barrier = 1;
+
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+ let IsExport = 1;
+
+}
+
+class VTX_READ <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
+ : InstR600ISA <outs, (ins MEMxi:$src_gpr), name, pattern>,
+ VTX_WORD1_GPR {
+
+ // Static fields
+ let DST_REL = 0;
+ // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
+ // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
+ // however, based on my testing if USE_CONST_FIELDS is set, then all
+ // these fields need to be set to 0.
+ let USE_CONST_FIELDS = 0;
+ let NUM_FORMAT_ALL = 1;
+ let FORMAT_COMP_ALL = 0;
+ let SRF_MODE_ALL = 0;
+
+ let Inst{63-32} = Word1;
+ // LLVM can only encode 64-bit instructions, so these fields are manually
+ // encoded in R600CodeEmitter
+ //
+ // bits<16> OFFSET;
+ // bits<2> ENDIAN_SWAP = 0;
+ // bits<1> CONST_BUF_NO_STRIDE = 0;
+ // bits<1> MEGA_FETCH = 0;
+ // bits<1> ALT_CONST = 0;
+ // bits<2> BUFFER_INDEX_MODE = 0;
+
+ // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
+ // is done in R600CodeEmitter
+ //
+ // Inst{79-64} = OFFSET;
+ // Inst{81-80} = ENDIAN_SWAP;
+ // Inst{82} = CONST_BUF_NO_STRIDE;
+ // Inst{83} = MEGA_FETCH;
+ // Inst{84} = ALT_CONST;
+ // Inst{86-85} = BUFFER_INDEX_MODE;
+ // Inst{95-86} = 0; Reserved
+
+ // VTX_WORD3 (Padding)
+ //
+ // Inst{127-96} = 0;
+
+ let VTXInst = 1;
+}
+
+class LoadParamFrag <PatFrag load_type> : PatFrag <
+ (ops node:$ptr), (load_type node:$ptr),
+ [{ return isConstantLoad(dyn_cast<LoadSDNode>(N), 0); }]
+>;
+
+def load_param : LoadParamFrag<load>;
+def load_param_exti8 : LoadParamFrag<az_extloadi8>;
+def load_param_exti16 : LoadParamFrag<az_extloadi16>;
+
+def isR600 : Predicate<"Subtarget.getGeneration() <= AMDGPUSubtarget::R700">;
+
+def isR600toCayman : Predicate<
+ "Subtarget.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS">;
+
+//===----------------------------------------------------------------------===//
+// R600 SDNodes
+//===----------------------------------------------------------------------===//
+
+def INTERP_PAIR_XY : AMDGPUShaderInst <
+ (outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1),
+ (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2),
+ "INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1",
+ []>;
+
+def INTERP_PAIR_ZW : AMDGPUShaderInst <
+ (outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1),
+ (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2),
+ "INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1",
+ []>;
+
+def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS",
+ SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>,
+ [SDNPVariadic]
+>;
+
+def DOT4 : SDNode<"AMDGPUISD::DOT4",
+ SDTypeProfile<1, 8, [SDTCisFP<0>, SDTCisVT<1, f32>, SDTCisVT<2, f32>,
+ SDTCisVT<3, f32>, SDTCisVT<4, f32>, SDTCisVT<5, f32>,
+ SDTCisVT<6, f32>, SDTCisVT<7, f32>, SDTCisVT<8, f32>]>,
+ []
+>;
+
+def COS_HW : SDNode<"AMDGPUISD::COS_HW",
+ SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>
+>;
+
+def SIN_HW : SDNode<"AMDGPUISD::SIN_HW",
+ SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>
+>;
+
+def TEXTURE_FETCH_Type : SDTypeProfile<1, 19, [SDTCisFP<0>]>;
+
+def TEXTURE_FETCH: SDNode<"AMDGPUISD::TEXTURE_FETCH", TEXTURE_FETCH_Type, []>;
+
+multiclass TexPattern<bits<32> TextureOp, Instruction inst, ValueType vt = v4f32> {
+def : Pat<(TEXTURE_FETCH (i32 TextureOp), vt:$SRC_GPR,
+ (i32 imm:$srcx), (i32 imm:$srcy), (i32 imm:$srcz), (i32 imm:$srcw),
+ (i32 imm:$offsetx), (i32 imm:$offsety), (i32 imm:$offsetz),
+ (i32 imm:$DST_SEL_X), (i32 imm:$DST_SEL_Y), (i32 imm:$DST_SEL_Z),
+ (i32 imm:$DST_SEL_W),
+ (i32 imm:$RESOURCE_ID), (i32 imm:$SAMPLER_ID),
+ (i32 imm:$COORD_TYPE_X), (i32 imm:$COORD_TYPE_Y), (i32 imm:$COORD_TYPE_Z),
+ (i32 imm:$COORD_TYPE_W)),
+ (inst R600_Reg128:$SRC_GPR,
+ imm:$srcx, imm:$srcy, imm:$srcz, imm:$srcw,
+ imm:$offsetx, imm:$offsety, imm:$offsetz,
+ imm:$DST_SEL_X, imm:$DST_SEL_Y, imm:$DST_SEL_Z,
+ imm:$DST_SEL_W,
+ imm:$RESOURCE_ID, imm:$SAMPLER_ID,
+ imm:$COORD_TYPE_X, imm:$COORD_TYPE_Y, imm:$COORD_TYPE_Z,
+ imm:$COORD_TYPE_W)>;
+}
+
+//===----------------------------------------------------------------------===//
+// Interpolation Instructions
+//===----------------------------------------------------------------------===//
+
+def INTERP_VEC_LOAD : AMDGPUShaderInst <
+ (outs R600_Reg128:$dst),
+ (ins i32imm:$src0),
+ "INTERP_LOAD $src0 : $dst",
+ [(set R600_Reg128:$dst, (int_R600_interp_const imm:$src0))]>;
+
+def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> {
+ let bank_swizzle = 5;
+}
+
+def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> {
+ let bank_swizzle = 5;
+}
+
+def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>;
+
+//===----------------------------------------------------------------------===//
+// Export Instructions
+//===----------------------------------------------------------------------===//
+
+def ExportType : SDTypeProfile<0, 7, [SDTCisFP<0>, SDTCisInt<1>]>;
+
+def EXPORT: SDNode<"AMDGPUISD::EXPORT", ExportType,
+ [SDNPHasChain, SDNPSideEffect]>;
+
+class ExportWord0 {
+ field bits<32> Word0;
+
+ bits<13> arraybase;
+ bits<2> type;
+ bits<7> gpr;
+ bits<2> elem_size;
+
+ let Word0{12-0} = arraybase;
+ let Word0{14-13} = type;
+ let Word0{21-15} = gpr;
+ let Word0{22} = 0; // RW_REL
+ let Word0{29-23} = 0; // INDEX_GPR
+ let Word0{31-30} = elem_size;
+}
+
+class ExportSwzWord1 {
+ field bits<32> Word1;
+
+ bits<3> sw_x;
+ bits<3> sw_y;
+ bits<3> sw_z;
+ bits<3> sw_w;
+ bits<1> eop;
+ bits<8> inst;
+
+ let Word1{2-0} = sw_x;
+ let Word1{5-3} = sw_y;
+ let Word1{8-6} = sw_z;
+ let Word1{11-9} = sw_w;
+}
+
+class ExportBufWord1 {
+ field bits<32> Word1;
+
+ bits<12> arraySize;
+ bits<4> compMask;
+ bits<1> eop;
+ bits<8> inst;
+
+ let Word1{11-0} = arraySize;
+ let Word1{15-12} = compMask;
+}
+
+multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> {
+ def : Pat<(int_R600_store_pixel_depth R600_Reg32:$reg),
+ (ExportInst
+ (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
+ 0, 61, 0, 7, 7, 7, cf_inst, 0)
+ >;
+
+ def : Pat<(int_R600_store_pixel_stencil R600_Reg32:$reg),
+ (ExportInst
+ (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
+ 0, 61, 7, 0, 7, 7, cf_inst, 0)
+ >;
+
+ def : Pat<(int_R600_store_dummy (i32 imm:$type)),
+ (ExportInst
+ (v4f32 (IMPLICIT_DEF)), imm:$type, 0, 7, 7, 7, 7, cf_inst, 0)
+ >;
+
+ def : Pat<(int_R600_store_dummy 1),
+ (ExportInst
+ (v4f32 (IMPLICIT_DEF)), 1, 60, 7, 7, 7, 7, cf_inst, 0)
+ >;
+
+ def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type),
+ (i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)),
+ (ExportInst R600_Reg128:$src, imm:$type, imm:$base,
+ imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0)
+ >;
+
+}
+
+multiclass SteamOutputExportPattern<Instruction ExportInst,
+ bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> {
+// Stream0
+ def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
+ (i32 imm:$arraybase), (i32 0), (i32 imm:$mask)),
+ (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
+ 4095, imm:$mask, buf0inst, 0)>;
+// Stream1
+ def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
+ (i32 imm:$arraybase), (i32 1), (i32 imm:$mask)),
+ (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
+ 4095, imm:$mask, buf1inst, 0)>;
+// Stream2
+ def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
+ (i32 imm:$arraybase), (i32 2), (i32 imm:$mask)),
+ (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
+ 4095, imm:$mask, buf2inst, 0)>;
+// Stream3
+ def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
+ (i32 imm:$arraybase), (i32 3), (i32 imm:$mask)),
+ (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
+ 4095, imm:$mask, buf3inst, 0)>;
+}
+
+// Export Instructions should not be duplicated by TailDuplication pass
+// (which assumes that duplicable instruction are affected by exec mask)
+let usesCustomInserter = 1, isNotDuplicable = 1 in {
+
+class ExportSwzInst : InstR600ISA<(
+ outs),
+ (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
+ RSel:$sw_x, RSel:$sw_y, RSel:$sw_z, RSel:$sw_w, i32imm:$inst,
+ i32imm:$eop),
+ !strconcat("EXPORT", " $gpr.$sw_x$sw_y$sw_z$sw_w"),
+ []>, ExportWord0, ExportSwzWord1 {
+ let elem_size = 3;
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+ let IsExport = 1;
+}
+
+} // End usesCustomInserter = 1
+
+class ExportBufInst : InstR600ISA<(
+ outs),
+ (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
+ i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop),
+ !strconcat("EXPORT", " $gpr"),
+ []>, ExportWord0, ExportBufWord1 {
+ let elem_size = 0;
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+ let IsExport = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// Control Flow Instructions
+//===----------------------------------------------------------------------===//
+
+
+def KCACHE : InstFlag<"printKCache">;
+
+class ALU_CLAUSE<bits<4> inst, string OpName> : AMDGPUInst <(outs),
+(ins i32imm:$ADDR, i32imm:$KCACHE_BANK0, i32imm:$KCACHE_BANK1,
+KCACHE:$KCACHE_MODE0, KCACHE:$KCACHE_MODE1,
+i32imm:$KCACHE_ADDR0, i32imm:$KCACHE_ADDR1,
+i32imm:$COUNT, i32imm:$Enabled),
+!strconcat(OpName, " $COUNT, @$ADDR, "
+"KC0[$KCACHE_MODE0], KC1[$KCACHE_MODE1]"),
+[] >, CF_ALU_WORD0, CF_ALU_WORD1 {
+ field bits<64> Inst;
+
+ let CF_INST = inst;
+ let ALT_CONST = 0;
+ let WHOLE_QUAD_MODE = 0;
+ let BARRIER = 1;
+ let UseNamedOperandTable = 1;
+
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+}
+
+class CF_WORD0_R600 {
+ field bits<32> Word0;
+
+ bits<32> ADDR;
+
+ let Word0 = ADDR;
+}
+
+class CF_CLAUSE_R600 <bits<7> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
+ins, AsmPrint, [] >, CF_WORD0_R600, CF_WORD1_R600 {
+ field bits<64> Inst;
+ bits<4> CNT;
+
+ let CF_INST = inst;
+ let BARRIER = 1;
+ let CF_CONST = 0;
+ let VALID_PIXEL_MODE = 0;
+ let COND = 0;
+ let COUNT = CNT{2-0};
+ let CALL_COUNT = 0;
+ let COUNT_3 = CNT{3};
+ let END_OF_PROGRAM = 0;
+ let WHOLE_QUAD_MODE = 0;
+
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+}
+
+class CF_CLAUSE_EG <bits<8> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
+ins, AsmPrint, [] >, CF_WORD0_EG, CF_WORD1_EG {
+ field bits<64> Inst;
+
+ let CF_INST = inst;
+ let BARRIER = 1;
+ let JUMPTABLE_SEL = 0;
+ let CF_CONST = 0;
+ let VALID_PIXEL_MODE = 0;
+ let COND = 0;
+ let END_OF_PROGRAM = 0;
+
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+}
+
+def CF_ALU : ALU_CLAUSE<8, "ALU">;
+def CF_ALU_PUSH_BEFORE : ALU_CLAUSE<9, "ALU_PUSH_BEFORE">;
+def CF_ALU_POP_AFTER : ALU_CLAUSE<10, "ALU_POP_AFTER">;
+def CF_ALU_CONTINUE : ALU_CLAUSE<13, "ALU_CONTINUE">;
+def CF_ALU_BREAK : ALU_CLAUSE<14, "ALU_BREAK">;
+def CF_ALU_ELSE_AFTER : ALU_CLAUSE<15, "ALU_ELSE_AFTER">;
+
+def FETCH_CLAUSE : AMDGPUInst <(outs),
+(ins i32imm:$addr), "Fetch clause starting at $addr:", [] > {
+ field bits<8> Inst;
+ bits<8> num;
+ let Inst = num;
+}
+
+def ALU_CLAUSE : AMDGPUInst <(outs),
+(ins i32imm:$addr), "ALU clause starting at $addr:", [] > {
+ field bits<8> Inst;
+ bits<8> num;
+ let Inst = num;
+}
+
+def LITERALS : AMDGPUInst <(outs),
+(ins LITERAL:$literal1, LITERAL:$literal2), "$literal1, $literal2", [] > {
+ field bits<64> Inst;
+ bits<32> literal1;
+ bits<32> literal2;
+
+ let Inst{31-0} = literal1;
+ let Inst{63-32} = literal2;
+}
+
+def PAD : AMDGPUInst <(outs), (ins), "PAD", [] > {
+ field bits<64> Inst;
+}
+
+let Predicates = [isR600toCayman] in {
+
+//===----------------------------------------------------------------------===//
+// Common Instructions R600, R700, Evergreen, Cayman
+//===----------------------------------------------------------------------===//
+
+def ADD : R600_2OP_Helper <0x0, "ADD", fadd>;
+// Non-IEEE MUL: 0 * anything = 0
+def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE", int_AMDGPU_mul>;
+def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>;
+def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax>;
+def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin>;
+
+// For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
+// so some of the instruction names don't match the asm string.
+// XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
+def SETE : R600_2OP <
+ 0x08, "SETE",
+ [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OEQ))]
+>;
+
+def SGT : R600_2OP <
+ 0x09, "SETGT",
+ [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGT))]
+>;
+
+def SGE : R600_2OP <
+ 0xA, "SETGE",
+ [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGE))]
+>;
+
+def SNE : R600_2OP <
+ 0xB, "SETNE",
+ [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_UNE))]
+>;
+
+def SETE_DX10 : R600_2OP <
+ 0xC, "SETE_DX10",
+ [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OEQ))]
+>;
+
+def SETGT_DX10 : R600_2OP <
+ 0xD, "SETGT_DX10",
+ [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGT))]
+>;
+
+def SETGE_DX10 : R600_2OP <
+ 0xE, "SETGE_DX10",
+ [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGE))]
+>;
+
+def SETNE_DX10 : R600_2OP <
+ 0xF, "SETNE_DX10",
+ [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_UNE))]
+>;
+
+def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>;
+def TRUNC : R600_1OP_Helper <0x11, "TRUNC", ftrunc>;
+def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>;
+def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>;
+def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>;
+
+def MOV : R600_1OP <0x19, "MOV", []>;
+
+let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in {
+
+class MOV_IMM <ValueType vt, Operand immType> : AMDGPUInst <
+ (outs R600_Reg32:$dst),
+ (ins immType:$imm),
+ "",
+ []
+>;
+
+} // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1
+
+def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
+def : Pat <
+ (imm:$val),
+ (MOV_IMM_I32 imm:$val)
+>;
+
+def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
+def : Pat <
+ (fpimm:$val),
+ (MOV_IMM_F32 fpimm:$val)
+>;
+
+def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>;
+def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>;
+def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>;
+def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>;
+
+let hasSideEffects = 1 in {
+
+def KILLGT : R600_2OP <0x2D, "KILLGT", []>;
+
+} // end hasSideEffects
+
+def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>;
+def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>;
+def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>;
+def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>;
+def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>;
+def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>;
+def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", AMDGPUsmax>;
+def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", AMDGPUsmin>;
+def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", AMDGPUumax>;
+def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", AMDGPUumin>;
+
+def SETE_INT : R600_2OP <
+ 0x3A, "SETE_INT",
+ [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETEQ))]
+>;
+
+def SETGT_INT : R600_2OP <
+ 0x3B, "SETGT_INT",
+ [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGT))]
+>;
+
+def SETGE_INT : R600_2OP <
+ 0x3C, "SETGE_INT",
+ [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGE))]
+>;
+
+def SETNE_INT : R600_2OP <
+ 0x3D, "SETNE_INT",
+ [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETNE))]
+>;
+
+def SETGT_UINT : R600_2OP <
+ 0x3E, "SETGT_UINT",
+ [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGT))]
+>;
+
+def SETGE_UINT : R600_2OP <
+ 0x3F, "SETGE_UINT",
+ [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGE))]
+>;
+
+def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>;
+def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>;
+def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>;
+def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>;
+
+def CNDE_INT : R600_3OP <
+ 0x1C, "CNDE_INT",
+ [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_EQ))]
+>;
+
+def CNDGE_INT : R600_3OP <
+ 0x1E, "CNDGE_INT",
+ [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGE))]
+>;
+
+def CNDGT_INT : R600_3OP <
+ 0x1D, "CNDGT_INT",
+ [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGT))]
+>;
+
+//===----------------------------------------------------------------------===//
+// Texture instructions
+//===----------------------------------------------------------------------===//
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
+
+class R600_TEX <bits<11> inst, string opName> :
+ InstR600 <(outs R600_Reg128:$DST_GPR),
+ (ins R600_Reg128:$SRC_GPR,
+ RSel:$srcx, RSel:$srcy, RSel:$srcz, RSel:$srcw,
+ i32imm:$offsetx, i32imm:$offsety, i32imm:$offsetz,
+ RSel:$DST_SEL_X, RSel:$DST_SEL_Y, RSel:$DST_SEL_Z, RSel:$DST_SEL_W,
+ i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID,
+ CT:$COORD_TYPE_X, CT:$COORD_TYPE_Y, CT:$COORD_TYPE_Z,
+ CT:$COORD_TYPE_W),
+ !strconcat(opName,
+ " $DST_GPR.$DST_SEL_X$DST_SEL_Y$DST_SEL_Z$DST_SEL_W, "
+ "$SRC_GPR.$srcx$srcy$srcz$srcw "
+ "RID:$RESOURCE_ID SID:$SAMPLER_ID "
+ "CT:$COORD_TYPE_X$COORD_TYPE_Y$COORD_TYPE_Z$COORD_TYPE_W"),
+ [],
+ NullALU>, TEX_WORD0, TEX_WORD1, TEX_WORD2 {
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+
+ let TEX_INST = inst{4-0};
+ let SRC_REL = 0;
+ let DST_REL = 0;
+ let LOD_BIAS = 0;
+
+ let INST_MOD = 0;
+ let FETCH_WHOLE_QUAD = 0;
+ let ALT_CONST = 0;
+ let SAMPLER_INDEX_MODE = 0;
+ let RESOURCE_INDEX_MODE = 0;
+
+ let TEXInst = 1;
+}
+
+} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
+
+
+
+def TEX_SAMPLE : R600_TEX <0x10, "TEX_SAMPLE">;
+def TEX_SAMPLE_C : R600_TEX <0x18, "TEX_SAMPLE_C">;
+def TEX_SAMPLE_L : R600_TEX <0x11, "TEX_SAMPLE_L">;
+def TEX_SAMPLE_C_L : R600_TEX <0x19, "TEX_SAMPLE_C_L">;
+def TEX_SAMPLE_LB : R600_TEX <0x12, "TEX_SAMPLE_LB">;
+def TEX_SAMPLE_C_LB : R600_TEX <0x1A, "TEX_SAMPLE_C_LB">;
+def TEX_LD : R600_TEX <0x03, "TEX_LD">;
+def TEX_LDPTR : R600_TEX <0x03, "TEX_LDPTR"> {
+ let INST_MOD = 1;
+}
+def TEX_GET_TEXTURE_RESINFO : R600_TEX <0x04, "TEX_GET_TEXTURE_RESINFO">;
+def TEX_GET_GRADIENTS_H : R600_TEX <0x07, "TEX_GET_GRADIENTS_H">;
+def TEX_GET_GRADIENTS_V : R600_TEX <0x08, "TEX_GET_GRADIENTS_V">;
+def TEX_SET_GRADIENTS_H : R600_TEX <0x0B, "TEX_SET_GRADIENTS_H">;
+def TEX_SET_GRADIENTS_V : R600_TEX <0x0C, "TEX_SET_GRADIENTS_V">;
+def TEX_SAMPLE_G : R600_TEX <0x14, "TEX_SAMPLE_G">;
+def TEX_SAMPLE_C_G : R600_TEX <0x1C, "TEX_SAMPLE_C_G">;
+
+defm : TexPattern<0, TEX_SAMPLE>;
+defm : TexPattern<1, TEX_SAMPLE_C>;
+defm : TexPattern<2, TEX_SAMPLE_L>;
+defm : TexPattern<3, TEX_SAMPLE_C_L>;
+defm : TexPattern<4, TEX_SAMPLE_LB>;
+defm : TexPattern<5, TEX_SAMPLE_C_LB>;
+defm : TexPattern<6, TEX_LD, v4i32>;
+defm : TexPattern<7, TEX_GET_TEXTURE_RESINFO, v4i32>;
+defm : TexPattern<8, TEX_GET_GRADIENTS_H>;
+defm : TexPattern<9, TEX_GET_GRADIENTS_V>;
+defm : TexPattern<10, TEX_LDPTR, v4i32>;
+
+//===----------------------------------------------------------------------===//
+// Helper classes for common instructions
+//===----------------------------------------------------------------------===//
+
+class MUL_LIT_Common <bits<5> inst> : R600_3OP <
+ inst, "MUL_LIT",
+ []
+>;
+
+class MULADD_Common <bits<5> inst> : R600_3OP <
+ inst, "MULADD",
+ []
+>;
+
+class MULADD_IEEE_Common <bits<5> inst> : R600_3OP <
+ inst, "MULADD_IEEE",
+ [(set f32:$dst, (fadd (fmul f32:$src0, f32:$src1), f32:$src2))]
+>;
+
+class CNDE_Common <bits<5> inst> : R600_3OP <
+ inst, "CNDE",
+ [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OEQ))]
+>;
+
+class CNDGT_Common <bits<5> inst> : R600_3OP <
+ inst, "CNDGT",
+ [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGT))]
+> {
+ let Itinerary = VecALU;
+}
+
+class CNDGE_Common <bits<5> inst> : R600_3OP <
+ inst, "CNDGE",
+ [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGE))]
+> {
+ let Itinerary = VecALU;
+}
+
+
+let isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU" in {
+class R600_VEC2OP<list<dag> pattern> : InstR600 <(outs R600_Reg32:$dst), (ins
+// Slot X
+ UEM:$update_exec_mask_X, UP:$update_pred_X, WRITE:$write_X,
+ OMOD:$omod_X, REL:$dst_rel_X, CLAMP:$clamp_X,
+ R600_TReg32_X:$src0_X, NEG:$src0_neg_X, REL:$src0_rel_X, ABS:$src0_abs_X, SEL:$src0_sel_X,
+ R600_TReg32_X:$src1_X, NEG:$src1_neg_X, REL:$src1_rel_X, ABS:$src1_abs_X, SEL:$src1_sel_X,
+ R600_Pred:$pred_sel_X,
+// Slot Y
+ UEM:$update_exec_mask_Y, UP:$update_pred_Y, WRITE:$write_Y,
+ OMOD:$omod_Y, REL:$dst_rel_Y, CLAMP:$clamp_Y,
+ R600_TReg32_Y:$src0_Y, NEG:$src0_neg_Y, REL:$src0_rel_Y, ABS:$src0_abs_Y, SEL:$src0_sel_Y,
+ R600_TReg32_Y:$src1_Y, NEG:$src1_neg_Y, REL:$src1_rel_Y, ABS:$src1_abs_Y, SEL:$src1_sel_Y,
+ R600_Pred:$pred_sel_Y,
+// Slot Z
+ UEM:$update_exec_mask_Z, UP:$update_pred_Z, WRITE:$write_Z,
+ OMOD:$omod_Z, REL:$dst_rel_Z, CLAMP:$clamp_Z,
+ R600_TReg32_Z:$src0_Z, NEG:$src0_neg_Z, REL:$src0_rel_Z, ABS:$src0_abs_Z, SEL:$src0_sel_Z,
+ R600_TReg32_Z:$src1_Z, NEG:$src1_neg_Z, REL:$src1_rel_Z, ABS:$src1_abs_Z, SEL:$src1_sel_Z,
+ R600_Pred:$pred_sel_Z,
+// Slot W
+ UEM:$update_exec_mask_W, UP:$update_pred_W, WRITE:$write_W,
+ OMOD:$omod_W, REL:$dst_rel_W, CLAMP:$clamp_W,
+ R600_TReg32_W:$src0_W, NEG:$src0_neg_W, REL:$src0_rel_W, ABS:$src0_abs_W, SEL:$src0_sel_W,
+ R600_TReg32_W:$src1_W, NEG:$src1_neg_W, REL:$src1_rel_W, ABS:$src1_abs_W, SEL:$src1_sel_W,
+ R600_Pred:$pred_sel_W,
+ LITERAL:$literal0, LITERAL:$literal1),
+ "",
+ pattern,
+ AnyALU> {
+
+ let UseNamedOperandTable = 1;
+
+}
+}
+
+def DOT_4 : R600_VEC2OP<[(set R600_Reg32:$dst, (DOT4
+ R600_TReg32_X:$src0_X, R600_TReg32_X:$src1_X,
+ R600_TReg32_Y:$src0_Y, R600_TReg32_Y:$src1_Y,
+ R600_TReg32_Z:$src0_Z, R600_TReg32_Z:$src1_Z,
+ R600_TReg32_W:$src0_W, R600_TReg32_W:$src1_W))]>;
+
+
+class DOT4_Common <bits<11> inst> : R600_2OP <inst, "DOT4", []>;
+
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
+multiclass CUBE_Common <bits<11> inst> {
+
+ def _pseudo : InstR600 <
+ (outs R600_Reg128:$dst),
+ (ins R600_Reg128:$src0),
+ "CUBE $dst $src0",
+ [(set v4f32:$dst, (int_AMDGPU_cube v4f32:$src0))],
+ VecALU
+ > {
+ let isPseudo = 1;
+ let UseNamedOperandTable = 1;
+ }
+
+ def _real : R600_2OP <inst, "CUBE", []>;
+}
+} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
+
+class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
+ inst, "EXP_IEEE", fexp2
+> {
+ let Itinerary = TransALU;
+}
+
+class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper <
+ inst, "FLT_TO_INT", fp_to_sint
+> {
+ let Itinerary = TransALU;
+}
+
+class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
+ inst, "INT_TO_FLT", sint_to_fp
+> {
+ let Itinerary = TransALU;
+}
+
+class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper <
+ inst, "FLT_TO_UINT", fp_to_uint
+> {
+ let Itinerary = TransALU;
+}
+
+class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
+ inst, "UINT_TO_FLT", uint_to_fp
+> {
+ let Itinerary = TransALU;
+}
+
+class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP <
+ inst, "LOG_CLAMPED", []
+>;
+
+class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
+ inst, "LOG_IEEE", flog2
+> {
+ let Itinerary = TransALU;
+}
+
+class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>;
+class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>;
+class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>;
+class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper <
+ inst, "MULHI_INT", mulhs
+> {
+ let Itinerary = TransALU;
+}
+class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper <
+ inst, "MULHI", mulhu
+> {
+ let Itinerary = TransALU;
+}
+class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper <
+ inst, "MULLO_INT", mul
+> {
+ let Itinerary = TransALU;
+}
+class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []> {
+ let Itinerary = TransALU;
+}
+
+class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP <
+ inst, "RECIP_CLAMPED", []
+> {
+ let Itinerary = TransALU;
+}
+
+class RECIP_IEEE_Common <bits<11> inst> : R600_1OP <
+ inst, "RECIP_IEEE", [(set f32:$dst, (fdiv FP_ONE, f32:$src0))]
+> {
+ let Itinerary = TransALU;
+}
+
+class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper <
+ inst, "RECIP_UINT", AMDGPUurecip
+> {
+ let Itinerary = TransALU;
+}
+
+// Clamped to maximum.
+class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper <
+ inst, "RECIPSQRT_CLAMPED", AMDGPUrsq_clamped
+> {
+ let Itinerary = TransALU;
+}
+
+class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
+ inst, "RECIPSQRT_IEEE", AMDGPUrsq_legacy
+> {
+ let Itinerary = TransALU;
+}
+
+// TODO: There is also RECIPSQRT_FF which clamps to zero.
+
+class SIN_Common <bits<11> inst> : R600_1OP <
+ inst, "SIN", [(set f32:$dst, (SIN_HW f32:$src0))]>{
+ let Trig = 1;
+ let Itinerary = TransALU;
+}
+
+class COS_Common <bits<11> inst> : R600_1OP <
+ inst, "COS", [(set f32:$dst, (COS_HW f32:$src0))]> {
+ let Trig = 1;
+ let Itinerary = TransALU;
+}
+
+def CLAMP_R600 : CLAMP <R600_Reg32>;
+def FABS_R600 : FABS<R600_Reg32>;
+def FNEG_R600 : FNEG<R600_Reg32>;
+
+//===----------------------------------------------------------------------===//
+// Helper patterns for complex intrinsics
+//===----------------------------------------------------------------------===//
+
+multiclass DIV_Common <InstR600 recip_ieee> {
+def : Pat<
+ (int_AMDGPU_div f32:$src0, f32:$src1),
+ (MUL_IEEE $src0, (recip_ieee $src1))
+>;
+
+def : Pat<
+ (fdiv f32:$src0, f32:$src1),
+ (MUL_IEEE $src0, (recip_ieee $src1))
+>;
+}
+
+class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee>
+ : Pat <
+ (int_TGSI_lit_z f32:$src_x, f32:$src_y, f32:$src_w),
+ (exp_ieee (mul_lit (log_clamped (MAX $src_y, (f32 ZERO))), $src_w, $src_x))
+>;
+
+// FROUND pattern
+class FROUNDPat<Instruction CNDGE> : Pat <
+ (AMDGPUround f32:$x),
+ (CNDGE (ADD (FNEG_R600 (f32 HALF)), (FRACT $x)), (CEIL $x), (FLOOR $x))
+>;
+
+
+//===----------------------------------------------------------------------===//
+// R600 / R700 Instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [isR600] in {
+
+ def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
+ def MULADD_r600 : MULADD_Common<0x10>;
+ def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>;
+ def CNDE_r600 : CNDE_Common<0x18>;
+ def CNDGT_r600 : CNDGT_Common<0x19>;
+ def CNDGE_r600 : CNDGE_Common<0x1A>;
+ def DOT4_r600 : DOT4_Common<0x50>;
+ defm CUBE_r600 : CUBE_Common<0x52>;
+ def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
+ def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
+ def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
+ def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
+ def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
+ def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
+ def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
+ def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
+ def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
+ def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
+ def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
+ def SIN_r600 : SIN_Common<0x6E>;
+ def COS_r600 : COS_Common<0x6F>;
+ def ASHR_r600 : ASHR_Common<0x70>;
+ def LSHR_r600 : LSHR_Common<0x71>;
+ def LSHL_r600 : LSHL_Common<0x72>;
+ def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
+ def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
+ def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
+ def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
+ def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
+
+ defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
+ def : POW_Common <LOG_IEEE_r600, EXP_IEEE_r600, MUL>;
+ def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
+
+ def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_r600 $src))>;
+ def : FROUNDPat <CNDGE_r600>;
+
+ def R600_ExportSwz : ExportSwzInst {
+ let Word1{20-17} = 0; // BURST_COUNT
+ let Word1{21} = eop;
+ let Word1{22} = 0; // VALID_PIXEL_MODE
+ let Word1{30-23} = inst;
+ let Word1{31} = 1; // BARRIER
+ }
+ defm : ExportPattern<R600_ExportSwz, 39>;
+
+ def R600_ExportBuf : ExportBufInst {
+ let Word1{20-17} = 0; // BURST_COUNT
+ let Word1{21} = eop;
+ let Word1{22} = 0; // VALID_PIXEL_MODE
+ let Word1{30-23} = inst;
+ let Word1{31} = 1; // BARRIER
+ }
+ defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>;
+
+ def CF_TC_R600 : CF_CLAUSE_R600<1, (ins i32imm:$ADDR, i32imm:$CNT),
+ "TEX $CNT @$ADDR"> {
+ let POP_COUNT = 0;
+ }
+ def CF_VC_R600 : CF_CLAUSE_R600<2, (ins i32imm:$ADDR, i32imm:$CNT),
+ "VTX $CNT @$ADDR"> {
+ let POP_COUNT = 0;
+ }
+ def WHILE_LOOP_R600 : CF_CLAUSE_R600<6, (ins i32imm:$ADDR),
+ "LOOP_START_DX10 @$ADDR"> {
+ let POP_COUNT = 0;
+ let CNT = 0;
+ }
+ def END_LOOP_R600 : CF_CLAUSE_R600<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
+ let POP_COUNT = 0;
+ let CNT = 0;
+ }
+ def LOOP_BREAK_R600 : CF_CLAUSE_R600<9, (ins i32imm:$ADDR),
+ "LOOP_BREAK @$ADDR"> {
+ let POP_COUNT = 0;
+ let CNT = 0;
+ }
+ def CF_CONTINUE_R600 : CF_CLAUSE_R600<8, (ins i32imm:$ADDR),
+ "CONTINUE @$ADDR"> {
+ let POP_COUNT = 0;
+ let CNT = 0;
+ }
+ def CF_JUMP_R600 : CF_CLAUSE_R600<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
+ "JUMP @$ADDR POP:$POP_COUNT"> {
+ let CNT = 0;
+ }
+ def CF_PUSH_ELSE_R600 : CF_CLAUSE_R600<12, (ins i32imm:$ADDR),
+ "PUSH_ELSE @$ADDR"> {
+ let CNT = 0;
+ }
+ def CF_ELSE_R600 : CF_CLAUSE_R600<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
+ "ELSE @$ADDR POP:$POP_COUNT"> {
+ let CNT = 0;
+ }
+ def CF_CALL_FS_R600 : CF_CLAUSE_R600<19, (ins), "CALL_FS"> {
+ let ADDR = 0;
+ let CNT = 0;
+ let POP_COUNT = 0;
+ }
+ def POP_R600 : CF_CLAUSE_R600<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
+ "POP @$ADDR POP:$POP_COUNT"> {
+ let CNT = 0;
+ }
+ def CF_END_R600 : CF_CLAUSE_R600<0, (ins), "CF_END"> {
+ let CNT = 0;
+ let POP_COUNT = 0;
+ let ADDR = 0;
+ let END_OF_PROGRAM = 1;
+ }
+
+}
+
+
+//===----------------------------------------------------------------------===//
+// Regist loads and stores - for indirect addressing
+//===----------------------------------------------------------------------===//
+
+defm R600_ : RegisterLoadStore <R600_Reg32, FRAMEri, ADDRIndirect>;
+
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions
+//===----------------------------------------------------------------------===//
+
+let isPseudo = 1 in {
+
+def PRED_X : InstR600 <
+ (outs R600_Predicate_Bit:$dst),
+ (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
+ "", [], NullALU> {
+ let FlagOperandIdx = 3;
+}
+
+let isTerminator = 1, isBranch = 1 in {
+def JUMP_COND : InstR600 <
+ (outs),
+ (ins brtarget:$target, R600_Predicate_Bit:$p),
+ "JUMP $target ($p)",
+ [], AnyALU
+ >;
+
+def JUMP : InstR600 <
+ (outs),
+ (ins brtarget:$target),
+ "JUMP $target",
+ [], AnyALU
+ >
+{
+ let isPredicable = 1;
+ let isBarrier = 1;
+}
+
+} // End isTerminator = 1, isBranch = 1
+
+let usesCustomInserter = 1 in {
+
+let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in {
+
+def MASK_WRITE : AMDGPUShaderInst <
+ (outs),
+ (ins R600_Reg32:$src),
+ "MASK_WRITE $src",
+ []
+>;
+
+} // End mayLoad = 0, mayStore = 0, hasSideEffects = 1
+
+
+def TXD: InstR600 <
+ (outs R600_Reg128:$dst),
+ (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2,
+ i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
+ "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
+ [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2,
+ imm:$resourceId, imm:$samplerId, imm:$textureTarget))],
+ NullALU > {
+ let TEXInst = 1;
+}
+
+def TXD_SHADOW: InstR600 <
+ (outs R600_Reg128:$dst),
+ (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2,
+ i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
+ "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
+ [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2,
+ imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))],
+ NullALU
+> {
+ let TEXInst = 1;
+}
+} // End isPseudo = 1
+} // End usesCustomInserter = 1
+
+
+//===----------------------------------------------------------------------===//
+// Constant Buffer Addressing Support
+//===----------------------------------------------------------------------===//
+
+let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU" in {
+def CONST_COPY : Instruction {
+ let OutOperandList = (outs R600_Reg32:$dst);
+ let InOperandList = (ins i32imm:$src);
+ let Pattern =
+ [(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))];
+ let AsmString = "CONST_COPY";
+ let neverHasSideEffects = 1;
+ let isAsCheapAsAMove = 1;
+ let Itinerary = NullALU;
+}
+} // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"
+
+def TEX_VTX_CONSTBUF :
+ InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "VTX_READ_eg $dst, $ptr",
+ [(set v4i32:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$BUFFER_ID)))]>,
+ VTX_WORD1_GPR, VTX_WORD0_eg {
+
+ let VC_INST = 0;
+ let FETCH_TYPE = 2;
+ let FETCH_WHOLE_QUAD = 0;
+ let SRC_REL = 0;
+ let SRC_SEL_X = 0;
+ let DST_REL = 0;
+ let USE_CONST_FIELDS = 0;
+ let NUM_FORMAT_ALL = 2;
+ let FORMAT_COMP_ALL = 1;
+ let SRF_MODE_ALL = 1;
+ let MEGA_FETCH_COUNT = 16;
+ let DST_SEL_X = 0;
+ let DST_SEL_Y = 1;
+ let DST_SEL_Z = 2;
+ let DST_SEL_W = 3;
+ let DATA_FORMAT = 35;
+
+ let Inst{31-0} = Word0;
+ let Inst{63-32} = Word1;
+
+// LLVM can only encode 64-bit instructions, so these fields are manually
+// encoded in R600CodeEmitter
+//
+// bits<16> OFFSET;
+// bits<2> ENDIAN_SWAP = 0;
+// bits<1> CONST_BUF_NO_STRIDE = 0;
+// bits<1> MEGA_FETCH = 0;
+// bits<1> ALT_CONST = 0;
+// bits<2> BUFFER_INDEX_MODE = 0;
+
+
+
+// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
+// is done in R600CodeEmitter
+//
+// Inst{79-64} = OFFSET;
+// Inst{81-80} = ENDIAN_SWAP;
+// Inst{82} = CONST_BUF_NO_STRIDE;
+// Inst{83} = MEGA_FETCH;
+// Inst{84} = ALT_CONST;
+// Inst{86-85} = BUFFER_INDEX_MODE;
+// Inst{95-86} = 0; Reserved
+
+// VTX_WORD3 (Padding)
+//
+// Inst{127-96} = 0;
+ let VTXInst = 1;
+}
+
+def TEX_VTX_TEXBUF:
+ InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "TEX_VTX_EXPLICIT_READ $dst, $ptr",
+ [(set v4f32:$dst, (int_R600_load_texbuf ADDRGA_VAR_OFFSET:$ptr, imm:$BUFFER_ID))]>,
+VTX_WORD1_GPR, VTX_WORD0_eg {
+
+let VC_INST = 0;
+let FETCH_TYPE = 2;
+let FETCH_WHOLE_QUAD = 0;
+let SRC_REL = 0;
+let SRC_SEL_X = 0;
+let DST_REL = 0;
+let USE_CONST_FIELDS = 1;
+let NUM_FORMAT_ALL = 0;
+let FORMAT_COMP_ALL = 0;
+let SRF_MODE_ALL = 1;
+let MEGA_FETCH_COUNT = 16;
+let DST_SEL_X = 0;
+let DST_SEL_Y = 1;
+let DST_SEL_Z = 2;
+let DST_SEL_W = 3;
+let DATA_FORMAT = 0;
+
+let Inst{31-0} = Word0;
+let Inst{63-32} = Word1;
+
+// LLVM can only encode 64-bit instructions, so these fields are manually
+// encoded in R600CodeEmitter
+//
+// bits<16> OFFSET;
+// bits<2> ENDIAN_SWAP = 0;
+// bits<1> CONST_BUF_NO_STRIDE = 0;
+// bits<1> MEGA_FETCH = 0;
+// bits<1> ALT_CONST = 0;
+// bits<2> BUFFER_INDEX_MODE = 0;
+
+
+
+// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
+// is done in R600CodeEmitter
+//
+// Inst{79-64} = OFFSET;
+// Inst{81-80} = ENDIAN_SWAP;
+// Inst{82} = CONST_BUF_NO_STRIDE;
+// Inst{83} = MEGA_FETCH;
+// Inst{84} = ALT_CONST;
+// Inst{86-85} = BUFFER_INDEX_MODE;
+// Inst{95-86} = 0; Reserved
+
+// VTX_WORD3 (Padding)
+//
+// Inst{127-96} = 0;
+ let VTXInst = 1;
+}
+
+//===---------------------------------------------------------------------===//
+// Flow and Program control Instructions
+//===---------------------------------------------------------------------===//
+class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern>
+: Instruction {
+
+ let Namespace = "AMDGPU";
+ dag OutOperandList = outs;
+ dag InOperandList = ins;
+ let Pattern = pattern;
+ let AsmString = !strconcat(asmstr, "\n");
+ let isPseudo = 1;
+ let Itinerary = NullALU;
+ bit hasIEEEFlag = 0;
+ bit hasZeroOpFlag = 0;
+ let mayLoad = 0;
+ let mayStore = 0;
+ let hasSideEffects = 0;
+}
+
+multiclass BranchConditional<SDNode Op, RegisterClass rci, RegisterClass rcf> {
+ def _i32 : ILFormat<(outs),
+ (ins brtarget:$target, rci:$src0),
+ "; i32 Pseudo branch instruction",
+ [(Op bb:$target, (i32 rci:$src0))]>;
+ def _f32 : ILFormat<(outs),
+ (ins brtarget:$target, rcf:$src0),
+ "; f32 Pseudo branch instruction",
+ [(Op bb:$target, (f32 rcf:$src0))]>;
+}
+
+// Only scalar types should generate flow control
+multiclass BranchInstr<string name> {
+ def _i32 : ILFormat<(outs), (ins R600_Reg32:$src),
+ !strconcat(name, " $src"), []>;
+ def _f32 : ILFormat<(outs), (ins R600_Reg32:$src),
+ !strconcat(name, " $src"), []>;
+}
+// Only scalar types should generate flow control
+multiclass BranchInstr2<string name> {
+ def _i32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1),
+ !strconcat(name, " $src0, $src1"), []>;
+ def _f32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1),
+ !strconcat(name, " $src0, $src1"), []>;
+}
+
+//===---------------------------------------------------------------------===//
+// Custom Inserter for Branches and returns, this eventually will be a
+// separate pass
+//===---------------------------------------------------------------------===//
+let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in {
+ def BRANCH : ILFormat<(outs), (ins brtarget:$target),
+ "; Pseudo unconditional branch instruction",
+ [(br bb:$target)]>;
+ defm BRANCH_COND : BranchConditional<IL_brcond, R600_Reg32, R600_Reg32>;
+}
+
+//===---------------------------------------------------------------------===//
+// Return instruction
+//===---------------------------------------------------------------------===//
+let isTerminator = 1, isReturn = 1, hasCtrlDep = 1,
+ usesCustomInserter = 1 in {
+ def RETURN : ILFormat<(outs), (ins variable_ops),
+ "RETURN", [(IL_retflag)]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Branch Instructions
+//===----------------------------------------------------------------------===//
+
+def IF_PREDICATE_SET : ILFormat<(outs), (ins R600_Reg32:$src),
+ "IF_PREDICATE_SET $src", []>;
+
+let isTerminator=1 in {
+ def BREAK : ILFormat< (outs), (ins),
+ "BREAK", []>;
+ def CONTINUE : ILFormat< (outs), (ins),
+ "CONTINUE", []>;
+ def DEFAULT : ILFormat< (outs), (ins),
+ "DEFAULT", []>;
+ def ELSE : ILFormat< (outs), (ins),
+ "ELSE", []>;
+ def ENDSWITCH : ILFormat< (outs), (ins),
+ "ENDSWITCH", []>;
+ def ENDMAIN : ILFormat< (outs), (ins),
+ "ENDMAIN", []>;
+ def END : ILFormat< (outs), (ins),
+ "END", []>;
+ def ENDFUNC : ILFormat< (outs), (ins),
+ "ENDFUNC", []>;
+ def ENDIF : ILFormat< (outs), (ins),
+ "ENDIF", []>;
+ def WHILELOOP : ILFormat< (outs), (ins),
+ "WHILE", []>;
+ def ENDLOOP : ILFormat< (outs), (ins),
+ "ENDLOOP", []>;
+ def FUNC : ILFormat< (outs), (ins),
+ "FUNC", []>;
+ def RETDYN : ILFormat< (outs), (ins),
+ "RET_DYN", []>;
+ // This opcode has custom swizzle pattern encoded in Swizzle Encoder
+ defm IF_LOGICALNZ : BranchInstr<"IF_LOGICALNZ">;
+ // This opcode has custom swizzle pattern encoded in Swizzle Encoder
+ defm IF_LOGICALZ : BranchInstr<"IF_LOGICALZ">;
+ // This opcode has custom swizzle pattern encoded in Swizzle Encoder
+ defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">;
+ // This opcode has custom swizzle pattern encoded in Swizzle Encoder
+ defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">;
+ // This opcode has custom swizzle pattern encoded in Swizzle Encoder
+ defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">;
+ // This opcode has custom swizzle pattern encoded in Swizzle Encoder
+ defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">;
+ defm IFC : BranchInstr2<"IFC">;
+ defm BREAKC : BranchInstr2<"BREAKC">;
+ defm CONTINUEC : BranchInstr2<"CONTINUEC">;
+}
+
+//===----------------------------------------------------------------------===//
+// Indirect addressing pseudo instructions
+//===----------------------------------------------------------------------===//
+
+let isPseudo = 1 in {
+
+class ExtractVertical <RegisterClass vec_rc> : InstR600 <
+ (outs R600_Reg32:$dst),
+ (ins vec_rc:$vec, R600_Reg32:$index), "",
+ [],
+ AnyALU
+>;
+
+let Constraints = "$dst = $vec" in {
+
+class InsertVertical <RegisterClass vec_rc> : InstR600 <
+ (outs vec_rc:$dst),
+ (ins vec_rc:$vec, R600_Reg32:$value, R600_Reg32:$index), "",
+ [],
+ AnyALU
+>;
+
+} // End Constraints = "$dst = $vec"
+
+} // End isPseudo = 1
+
+def R600_EXTRACT_ELT_V2 : ExtractVertical <R600_Reg64Vertical>;
+def R600_EXTRACT_ELT_V4 : ExtractVertical <R600_Reg128Vertical>;
+
+def R600_INSERT_ELT_V2 : InsertVertical <R600_Reg64Vertical>;
+def R600_INSERT_ELT_V4 : InsertVertical <R600_Reg128Vertical>;
+
+class ExtractVerticalPat <Instruction inst, ValueType vec_ty,
+ ValueType scalar_ty> : Pat <
+ (scalar_ty (extractelt vec_ty:$vec, i32:$index)),
+ (inst $vec, $index)
+>;
+
+def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2i32, i32>;
+def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2f32, f32>;
+def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4i32, i32>;
+def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4f32, f32>;
+
+class InsertVerticalPat <Instruction inst, ValueType vec_ty,
+ ValueType scalar_ty> : Pat <
+ (vec_ty (insertelt vec_ty:$vec, scalar_ty:$value, i32:$index)),
+ (inst $vec, $value, $index)
+>;
+
+def : InsertVerticalPat <R600_INSERT_ELT_V2, v2i32, i32>;
+def : InsertVerticalPat <R600_INSERT_ELT_V2, v2f32, f32>;
+def : InsertVerticalPat <R600_INSERT_ELT_V4, v4i32, i32>;
+def : InsertVerticalPat <R600_INSERT_ELT_V4, v4f32, f32>;
+
+//===----------------------------------------------------------------------===//
+// ISel Patterns
+//===----------------------------------------------------------------------===//
+
+// CND*_INT Pattterns for f32 True / False values
+
+class CND_INT_f32 <InstR600 cnd, CondCode cc> : Pat <
+ (selectcc i32:$src0, 0, f32:$src1, f32:$src2, cc),
+ (cnd $src0, $src1, $src2)
+>;
+
+def : CND_INT_f32 <CNDE_INT, SETEQ>;
+def : CND_INT_f32 <CNDGT_INT, SETGT>;
+def : CND_INT_f32 <CNDGE_INT, SETGE>;
+
+//CNDGE_INT extra pattern
+def : Pat <
+ (selectcc i32:$src0, -1, i32:$src1, i32:$src2, COND_SGT),
+ (CNDGE_INT $src0, $src1, $src2)
+>;
+
+// KIL Patterns
+def KILP : Pat <
+ (int_AMDGPU_kilp),
+ (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
+>;
+
+def KIL : Pat <
+ (int_AMDGPU_kill f32:$src0),
+ (MASK_WRITE (KILLGT (f32 ZERO), $src0))
+>;
+
+def : Extract_Element <f32, v4f32, 0, sub0>;
+def : Extract_Element <f32, v4f32, 1, sub1>;
+def : Extract_Element <f32, v4f32, 2, sub2>;
+def : Extract_Element <f32, v4f32, 3, sub3>;
+
+def : Insert_Element <f32, v4f32, 0, sub0>;
+def : Insert_Element <f32, v4f32, 1, sub1>;
+def : Insert_Element <f32, v4f32, 2, sub2>;
+def : Insert_Element <f32, v4f32, 3, sub3>;
+
+def : Extract_Element <i32, v4i32, 0, sub0>;
+def : Extract_Element <i32, v4i32, 1, sub1>;
+def : Extract_Element <i32, v4i32, 2, sub2>;
+def : Extract_Element <i32, v4i32, 3, sub3>;
+
+def : Insert_Element <i32, v4i32, 0, sub0>;
+def : Insert_Element <i32, v4i32, 1, sub1>;
+def : Insert_Element <i32, v4i32, 2, sub2>;
+def : Insert_Element <i32, v4i32, 3, sub3>;
+
+def : Extract_Element <f32, v2f32, 0, sub0>;
+def : Extract_Element <f32, v2f32, 1, sub1>;
+
+def : Insert_Element <f32, v2f32, 0, sub0>;
+def : Insert_Element <f32, v2f32, 1, sub1>;
+
+def : Extract_Element <i32, v2i32, 0, sub0>;
+def : Extract_Element <i32, v2i32, 1, sub1>;
+
+def : Insert_Element <i32, v2i32, 0, sub0>;
+def : Insert_Element <i32, v2i32, 1, sub1>;
+
+// bitconvert patterns
+
+def : BitConvert <i32, f32, R600_Reg32>;
+def : BitConvert <f32, i32, R600_Reg32>;
+def : BitConvert <v2f32, v2i32, R600_Reg64>;
+def : BitConvert <v2i32, v2f32, R600_Reg64>;
+def : BitConvert <v4f32, v4i32, R600_Reg128>;
+def : BitConvert <v4i32, v4f32, R600_Reg128>;
+
+// DWORDADDR pattern
+def : DwordAddrPat <i32, R600_Reg32>;
+
+} // End isR600toCayman Predicate
+
+let Predicates = [isR600] in {
+// Intrinsic patterns
+defm : Expand24IBitOps<MULLO_INT_r600, ADD_INT>;
+defm : Expand24UBitOps<MULLO_UINT_r600, ADD_INT>;
+} // End isR600
+
+def getLDSNoRetOp : InstrMapping {
+ let FilterClass = "R600_LDS_1A1D";
+ let RowFields = ["BaseOp"];
+ let ColFields = ["DisableEncoding"];
+ let KeyCol = ["$dst"];
+ let ValueCols = [[""""]];
+}
diff --git a/contrib/llvm/lib/Target/R600/R600Intrinsics.td b/contrib/llvm/lib/Target/R600/R600Intrinsics.td
new file mode 100644
index 0000000..9681747
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600Intrinsics.td
@@ -0,0 +1,75 @@
+//===-- R600Intrinsics.td - R600 Instrinsic defs -------*- tablegen -*-----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// R600 Intrinsic Definitions
+//
+//===----------------------------------------------------------------------===//
+
+let TargetPrefix = "R600", isTarget = 1 in {
+ class TextureIntrinsicFloatInput :
+ Intrinsic<[llvm_v4f32_ty], [
+ llvm_v4f32_ty, // Coord
+ llvm_i32_ty, // offset_x
+ llvm_i32_ty, // offset_y,
+ llvm_i32_ty, // offset_z,
+ llvm_i32_ty, // resource_id
+ llvm_i32_ty, // samplerid
+ llvm_i32_ty, // coord_type_x
+ llvm_i32_ty, // coord_type_y
+ llvm_i32_ty, // coord_type_z
+ llvm_i32_ty // coord_type_w
+ ], [IntrNoMem]>;
+ class TextureIntrinsicInt32Input :
+ Intrinsic<[llvm_v4i32_ty], [
+ llvm_v4i32_ty, // Coord
+ llvm_i32_ty, // offset_x
+ llvm_i32_ty, // offset_y,
+ llvm_i32_ty, // offset_z,
+ llvm_i32_ty, // resource_id
+ llvm_i32_ty, // samplerid
+ llvm_i32_ty, // coord_type_x
+ llvm_i32_ty, // coord_type_y
+ llvm_i32_ty, // coord_type_z
+ llvm_i32_ty // coord_type_w
+ ], [IntrNoMem]>;
+
+ def int_R600_load_input :
+ Intrinsic<[llvm_float_ty], [llvm_i32_ty], [IntrNoMem]>;
+ def int_R600_interp_input :
+ Intrinsic<[llvm_float_ty], [llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_R600_interp_const :
+ Intrinsic<[llvm_v4f32_ty], [llvm_i32_ty], [IntrNoMem]>;
+def int_R600_interp_xy :
+ Intrinsic<[llvm_v2f32_ty], [llvm_i32_ty, llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+def int_R600_interp_zw :
+ Intrinsic<[llvm_v2f32_ty], [llvm_i32_ty, llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_R600_load_texbuf :
+ Intrinsic<[llvm_v4f32_ty], [llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_R600_tex : TextureIntrinsicFloatInput;
+ def int_R600_texc : TextureIntrinsicFloatInput;
+ def int_R600_txl : TextureIntrinsicFloatInput;
+ def int_R600_txlc : TextureIntrinsicFloatInput;
+ def int_R600_txb : TextureIntrinsicFloatInput;
+ def int_R600_txbc : TextureIntrinsicFloatInput;
+ def int_R600_txf : TextureIntrinsicInt32Input;
+ def int_R600_ldptr : TextureIntrinsicInt32Input;
+ def int_R600_txq : TextureIntrinsicInt32Input;
+ def int_R600_ddx : TextureIntrinsicFloatInput;
+ def int_R600_ddy : TextureIntrinsicFloatInput;
+ def int_R600_store_swizzle :
+ Intrinsic<[], [llvm_v4f32_ty, llvm_i32_ty, llvm_i32_ty], []>;
+ def int_R600_store_stream_output :
+ Intrinsic<[], [llvm_v4f32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], []>;
+ def int_R600_store_pixel_depth :
+ Intrinsic<[], [llvm_float_ty], []>;
+ def int_R600_store_pixel_stencil :
+ Intrinsic<[], [llvm_float_ty], []>;
+ def int_R600_store_dummy :
+ Intrinsic<[], [llvm_i32_ty], []>;
+}
diff --git a/contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.cpp b/contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.cpp
new file mode 100644
index 0000000..01105c6
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.cpp
@@ -0,0 +1,20 @@
+//===-- R600MachineFunctionInfo.cpp - R600 Machine Function Info-*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+#include "R600MachineFunctionInfo.h"
+
+using namespace llvm;
+
+
+// Pin the vtable to this file.
+void R600MachineFunctionInfo::anchor() {}
+
+R600MachineFunctionInfo::R600MachineFunctionInfo(const MachineFunction &MF)
+ : AMDGPUMachineFunction(MF) { }
diff --git a/contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.h b/contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.h
new file mode 100644
index 0000000..b0ae22e
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.h
@@ -0,0 +1,34 @@
+//===-- R600MachineFunctionInfo.h - R600 Machine Function Info ----*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+#ifndef R600MACHINEFUNCTIONINFO_H
+#define R600MACHINEFUNCTIONINFO_H
+
+#include "AMDGPUMachineFunction.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include <vector>
+
+namespace llvm {
+
+class R600MachineFunctionInfo : public AMDGPUMachineFunction {
+ void anchor() override;
+public:
+ R600MachineFunctionInfo(const MachineFunction &MF);
+ SmallVector<unsigned, 4> LiveOuts;
+ std::vector<unsigned> IndirectRegs;
+ unsigned StackSize;
+};
+
+} // End llvm namespace
+
+#endif //R600MACHINEFUNCTIONINFO_H
diff --git a/contrib/llvm/lib/Target/R600/R600MachineScheduler.cpp b/contrib/llvm/lib/Target/R600/R600MachineScheduler.cpp
new file mode 100644
index 0000000..7ea654c
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600MachineScheduler.cpp
@@ -0,0 +1,467 @@
+//===-- R600MachineScheduler.cpp - R600 Scheduler Interface -*- C++ -*-----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief R600 Machine Scheduler interface
+//
+//===----------------------------------------------------------------------===//
+
+#include "R600MachineScheduler.h"
+#include "AMDGPUSubtarget.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "misched"
+
+void R600SchedStrategy::initialize(ScheduleDAGMI *dag) {
+ assert(dag->hasVRegLiveness() && "R600SchedStrategy needs vreg liveness");
+ DAG = static_cast<ScheduleDAGMILive*>(dag);
+ TII = static_cast<const R600InstrInfo*>(DAG->TII);
+ TRI = static_cast<const R600RegisterInfo*>(DAG->TRI);
+ VLIW5 = !DAG->MF.getTarget().getSubtarget<AMDGPUSubtarget>().hasCaymanISA();
+ MRI = &DAG->MRI;
+ CurInstKind = IDOther;
+ CurEmitted = 0;
+ OccupedSlotsMask = 31;
+ InstKindLimit[IDAlu] = TII->getMaxAlusPerClause();
+ InstKindLimit[IDOther] = 32;
+
+ const AMDGPUSubtarget &ST = DAG->TM.getSubtarget<AMDGPUSubtarget>();
+ InstKindLimit[IDFetch] = ST.getTexVTXClauseSize();
+ AluInstCount = 0;
+ FetchInstCount = 0;
+}
+
+void R600SchedStrategy::MoveUnits(std::vector<SUnit *> &QSrc,
+ std::vector<SUnit *> &QDst)
+{
+ QDst.insert(QDst.end(), QSrc.begin(), QSrc.end());
+ QSrc.clear();
+}
+
+static
+unsigned getWFCountLimitedByGPR(unsigned GPRCount) {
+ assert (GPRCount && "GPRCount cannot be 0");
+ return 248 / GPRCount;
+}
+
+SUnit* R600SchedStrategy::pickNode(bool &IsTopNode) {
+ SUnit *SU = nullptr;
+ NextInstKind = IDOther;
+
+ IsTopNode = false;
+
+ // check if we might want to switch current clause type
+ bool AllowSwitchToAlu = (CurEmitted >= InstKindLimit[CurInstKind]) ||
+ (Available[CurInstKind].empty());
+ bool AllowSwitchFromAlu = (CurEmitted >= InstKindLimit[CurInstKind]) &&
+ (!Available[IDFetch].empty() || !Available[IDOther].empty());
+
+ if (CurInstKind == IDAlu && !Available[IDFetch].empty()) {
+ // We use the heuristic provided by AMD Accelerated Parallel Processing
+ // OpenCL Programming Guide :
+ // The approx. number of WF that allows TEX inst to hide ALU inst is :
+ // 500 (cycles for TEX) / (AluFetchRatio * 8 (cycles for ALU))
+ float ALUFetchRationEstimate =
+ (AluInstCount + AvailablesAluCount() + Pending[IDAlu].size()) /
+ (FetchInstCount + Available[IDFetch].size());
+ unsigned NeededWF = 62.5f / ALUFetchRationEstimate;
+ DEBUG( dbgs() << NeededWF << " approx. Wavefronts Required\n" );
+ // We assume the local GPR requirements to be "dominated" by the requirement
+ // of the TEX clause (which consumes 128 bits regs) ; ALU inst before and
+ // after TEX are indeed likely to consume or generate values from/for the
+ // TEX clause.
+ // Available[IDFetch].size() * 2 : GPRs required in the Fetch clause
+ // We assume that fetch instructions are either TnXYZW = TEX TnXYZW (need
+ // one GPR) or TmXYZW = TnXYZW (need 2 GPR).
+ // (TODO : use RegisterPressure)
+ // If we are going too use too many GPR, we flush Fetch instruction to lower
+ // register pressure on 128 bits regs.
+ unsigned NearRegisterRequirement = 2 * Available[IDFetch].size();
+ if (NeededWF > getWFCountLimitedByGPR(NearRegisterRequirement))
+ AllowSwitchFromAlu = true;
+ }
+
+ if (!SU && ((AllowSwitchToAlu && CurInstKind != IDAlu) ||
+ (!AllowSwitchFromAlu && CurInstKind == IDAlu))) {
+ // try to pick ALU
+ SU = pickAlu();
+ if (!SU && !PhysicalRegCopy.empty()) {
+ SU = PhysicalRegCopy.front();
+ PhysicalRegCopy.erase(PhysicalRegCopy.begin());
+ }
+ if (SU) {
+ if (CurEmitted >= InstKindLimit[IDAlu])
+ CurEmitted = 0;
+ NextInstKind = IDAlu;
+ }
+ }
+
+ if (!SU) {
+ // try to pick FETCH
+ SU = pickOther(IDFetch);
+ if (SU)
+ NextInstKind = IDFetch;
+ }
+
+ // try to pick other
+ if (!SU) {
+ SU = pickOther(IDOther);
+ if (SU)
+ NextInstKind = IDOther;
+ }
+
+ DEBUG(
+ if (SU) {
+ dbgs() << " ** Pick node **\n";
+ SU->dump(DAG);
+ } else {
+ dbgs() << "NO NODE \n";
+ for (unsigned i = 0; i < DAG->SUnits.size(); i++) {
+ const SUnit &S = DAG->SUnits[i];
+ if (!S.isScheduled)
+ S.dump(DAG);
+ }
+ }
+ );
+
+ return SU;
+}
+
+void R600SchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
+ if (NextInstKind != CurInstKind) {
+ DEBUG(dbgs() << "Instruction Type Switch\n");
+ if (NextInstKind != IDAlu)
+ OccupedSlotsMask |= 31;
+ CurEmitted = 0;
+ CurInstKind = NextInstKind;
+ }
+
+ if (CurInstKind == IDAlu) {
+ AluInstCount ++;
+ switch (getAluKind(SU)) {
+ case AluT_XYZW:
+ CurEmitted += 4;
+ break;
+ case AluDiscarded:
+ break;
+ default: {
+ ++CurEmitted;
+ for (MachineInstr::mop_iterator It = SU->getInstr()->operands_begin(),
+ E = SU->getInstr()->operands_end(); It != E; ++It) {
+ MachineOperand &MO = *It;
+ if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X)
+ ++CurEmitted;
+ }
+ }
+ }
+ } else {
+ ++CurEmitted;
+ }
+
+
+ DEBUG(dbgs() << CurEmitted << " Instructions Emitted in this clause\n");
+
+ if (CurInstKind != IDFetch) {
+ MoveUnits(Pending[IDFetch], Available[IDFetch]);
+ } else
+ FetchInstCount++;
+}
+
+static bool
+isPhysicalRegCopy(MachineInstr *MI) {
+ if (MI->getOpcode() != AMDGPU::COPY)
+ return false;
+
+ return !TargetRegisterInfo::isVirtualRegister(MI->getOperand(1).getReg());
+}
+
+void R600SchedStrategy::releaseTopNode(SUnit *SU) {
+ DEBUG(dbgs() << "Top Releasing ";SU->dump(DAG););
+}
+
+void R600SchedStrategy::releaseBottomNode(SUnit *SU) {
+ DEBUG(dbgs() << "Bottom Releasing ";SU->dump(DAG););
+ if (isPhysicalRegCopy(SU->getInstr())) {
+ PhysicalRegCopy.push_back(SU);
+ return;
+ }
+
+ int IK = getInstKind(SU);
+
+ // There is no export clause, we can schedule one as soon as its ready
+ if (IK == IDOther)
+ Available[IDOther].push_back(SU);
+ else
+ Pending[IK].push_back(SU);
+
+}
+
+bool R600SchedStrategy::regBelongsToClass(unsigned Reg,
+ const TargetRegisterClass *RC) const {
+ if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
+ return RC->contains(Reg);
+ } else {
+ return MRI->getRegClass(Reg) == RC;
+ }
+}
+
+R600SchedStrategy::AluKind R600SchedStrategy::getAluKind(SUnit *SU) const {
+ MachineInstr *MI = SU->getInstr();
+
+ if (TII->isTransOnly(MI))
+ return AluTrans;
+
+ switch (MI->getOpcode()) {
+ case AMDGPU::PRED_X:
+ return AluPredX;
+ case AMDGPU::INTERP_PAIR_XY:
+ case AMDGPU::INTERP_PAIR_ZW:
+ case AMDGPU::INTERP_VEC_LOAD:
+ case AMDGPU::DOT_4:
+ return AluT_XYZW;
+ case AMDGPU::COPY:
+ if (MI->getOperand(1).isUndef()) {
+ // MI will become a KILL, don't considers it in scheduling
+ return AluDiscarded;
+ }
+ default:
+ break;
+ }
+
+ // Does the instruction take a whole IG ?
+ // XXX: Is it possible to add a helper function in R600InstrInfo that can
+ // be used here and in R600PacketizerList::isSoloInstruction() ?
+ if(TII->isVector(*MI) ||
+ TII->isCubeOp(MI->getOpcode()) ||
+ TII->isReductionOp(MI->getOpcode()) ||
+ MI->getOpcode() == AMDGPU::GROUP_BARRIER) {
+ return AluT_XYZW;
+ }
+
+ if (TII->isLDSInstr(MI->getOpcode())) {
+ return AluT_X;
+ }
+
+ // Is the result already assigned to a channel ?
+ unsigned DestSubReg = MI->getOperand(0).getSubReg();
+ switch (DestSubReg) {
+ case AMDGPU::sub0:
+ return AluT_X;
+ case AMDGPU::sub1:
+ return AluT_Y;
+ case AMDGPU::sub2:
+ return AluT_Z;
+ case AMDGPU::sub3:
+ return AluT_W;
+ default:
+ break;
+ }
+
+ // Is the result already member of a X/Y/Z/W class ?
+ unsigned DestReg = MI->getOperand(0).getReg();
+ if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_XRegClass) ||
+ regBelongsToClass(DestReg, &AMDGPU::R600_AddrRegClass))
+ return AluT_X;
+ if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_YRegClass))
+ return AluT_Y;
+ if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass))
+ return AluT_Z;
+ if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_WRegClass))
+ return AluT_W;
+ if (regBelongsToClass(DestReg, &AMDGPU::R600_Reg128RegClass))
+ return AluT_XYZW;
+
+ // LDS src registers cannot be used in the Trans slot.
+ if (TII->readsLDSSrcReg(MI))
+ return AluT_XYZW;
+
+ return AluAny;
+
+}
+
+int R600SchedStrategy::getInstKind(SUnit* SU) {
+ int Opcode = SU->getInstr()->getOpcode();
+
+ if (TII->usesTextureCache(Opcode) || TII->usesVertexCache(Opcode))
+ return IDFetch;
+
+ if (TII->isALUInstr(Opcode)) {
+ return IDAlu;
+ }
+
+ switch (Opcode) {
+ case AMDGPU::PRED_X:
+ case AMDGPU::COPY:
+ case AMDGPU::CONST_COPY:
+ case AMDGPU::INTERP_PAIR_XY:
+ case AMDGPU::INTERP_PAIR_ZW:
+ case AMDGPU::INTERP_VEC_LOAD:
+ case AMDGPU::DOT_4:
+ return IDAlu;
+ default:
+ return IDOther;
+ }
+}
+
+SUnit *R600SchedStrategy::PopInst(std::vector<SUnit *> &Q, bool AnyALU) {
+ if (Q.empty())
+ return nullptr;
+ for (std::vector<SUnit *>::reverse_iterator It = Q.rbegin(), E = Q.rend();
+ It != E; ++It) {
+ SUnit *SU = *It;
+ InstructionsGroupCandidate.push_back(SU->getInstr());
+ if (TII->fitsConstReadLimitations(InstructionsGroupCandidate)
+ && (!AnyALU || !TII->isVectorOnly(SU->getInstr()))
+ ) {
+ InstructionsGroupCandidate.pop_back();
+ Q.erase((It + 1).base());
+ return SU;
+ } else {
+ InstructionsGroupCandidate.pop_back();
+ }
+ }
+ return nullptr;
+}
+
+void R600SchedStrategy::LoadAlu() {
+ std::vector<SUnit *> &QSrc = Pending[IDAlu];
+ for (unsigned i = 0, e = QSrc.size(); i < e; ++i) {
+ AluKind AK = getAluKind(QSrc[i]);
+ AvailableAlus[AK].push_back(QSrc[i]);
+ }
+ QSrc.clear();
+}
+
+void R600SchedStrategy::PrepareNextSlot() {
+ DEBUG(dbgs() << "New Slot\n");
+ assert (OccupedSlotsMask && "Slot wasn't filled");
+ OccupedSlotsMask = 0;
+// if (HwGen == AMDGPUSubtarget::NORTHERN_ISLANDS)
+// OccupedSlotsMask |= 16;
+ InstructionsGroupCandidate.clear();
+ LoadAlu();
+}
+
+void R600SchedStrategy::AssignSlot(MachineInstr* MI, unsigned Slot) {
+ int DstIndex = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst);
+ if (DstIndex == -1) {
+ return;
+ }
+ unsigned DestReg = MI->getOperand(DstIndex).getReg();
+ // PressureRegister crashes if an operand is def and used in the same inst
+ // and we try to constraint its regclass
+ for (MachineInstr::mop_iterator It = MI->operands_begin(),
+ E = MI->operands_end(); It != E; ++It) {
+ MachineOperand &MO = *It;
+ if (MO.isReg() && !MO.isDef() &&
+ MO.getReg() == DestReg)
+ return;
+ }
+ // Constrains the regclass of DestReg to assign it to Slot
+ switch (Slot) {
+ case 0:
+ MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_XRegClass);
+ break;
+ case 1:
+ MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_YRegClass);
+ break;
+ case 2:
+ MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass);
+ break;
+ case 3:
+ MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_WRegClass);
+ break;
+ }
+}
+
+SUnit *R600SchedStrategy::AttemptFillSlot(unsigned Slot, bool AnyAlu) {
+ static const AluKind IndexToID[] = {AluT_X, AluT_Y, AluT_Z, AluT_W};
+ SUnit *SlotedSU = PopInst(AvailableAlus[IndexToID[Slot]], AnyAlu);
+ if (SlotedSU)
+ return SlotedSU;
+ SUnit *UnslotedSU = PopInst(AvailableAlus[AluAny], AnyAlu);
+ if (UnslotedSU)
+ AssignSlot(UnslotedSU->getInstr(), Slot);
+ return UnslotedSU;
+}
+
+unsigned R600SchedStrategy::AvailablesAluCount() const {
+ return AvailableAlus[AluAny].size() + AvailableAlus[AluT_XYZW].size() +
+ AvailableAlus[AluT_X].size() + AvailableAlus[AluT_Y].size() +
+ AvailableAlus[AluT_Z].size() + AvailableAlus[AluT_W].size() +
+ AvailableAlus[AluTrans].size() + AvailableAlus[AluDiscarded].size() +
+ AvailableAlus[AluPredX].size();
+}
+
+SUnit* R600SchedStrategy::pickAlu() {
+ while (AvailablesAluCount() || !Pending[IDAlu].empty()) {
+ if (!OccupedSlotsMask) {
+ // Bottom up scheduling : predX must comes first
+ if (!AvailableAlus[AluPredX].empty()) {
+ OccupedSlotsMask |= 31;
+ return PopInst(AvailableAlus[AluPredX], false);
+ }
+ // Flush physical reg copies (RA will discard them)
+ if (!AvailableAlus[AluDiscarded].empty()) {
+ OccupedSlotsMask |= 31;
+ return PopInst(AvailableAlus[AluDiscarded], false);
+ }
+ // If there is a T_XYZW alu available, use it
+ if (!AvailableAlus[AluT_XYZW].empty()) {
+ OccupedSlotsMask |= 15;
+ return PopInst(AvailableAlus[AluT_XYZW], false);
+ }
+ }
+ bool TransSlotOccuped = OccupedSlotsMask & 16;
+ if (!TransSlotOccuped && VLIW5) {
+ if (!AvailableAlus[AluTrans].empty()) {
+ OccupedSlotsMask |= 16;
+ return PopInst(AvailableAlus[AluTrans], false);
+ }
+ SUnit *SU = AttemptFillSlot(3, true);
+ if (SU) {
+ OccupedSlotsMask |= 16;
+ return SU;
+ }
+ }
+ for (int Chan = 3; Chan > -1; --Chan) {
+ bool isOccupied = OccupedSlotsMask & (1 << Chan);
+ if (!isOccupied) {
+ SUnit *SU = AttemptFillSlot(Chan, false);
+ if (SU) {
+ OccupedSlotsMask |= (1 << Chan);
+ InstructionsGroupCandidate.push_back(SU->getInstr());
+ return SU;
+ }
+ }
+ }
+ PrepareNextSlot();
+ }
+ return nullptr;
+}
+
+SUnit* R600SchedStrategy::pickOther(int QID) {
+ SUnit *SU = nullptr;
+ std::vector<SUnit *> &AQ = Available[QID];
+
+ if (AQ.empty()) {
+ MoveUnits(Pending[QID], AQ);
+ }
+ if (!AQ.empty()) {
+ SU = AQ.back();
+ AQ.resize(AQ.size() - 1);
+ }
+ return SU;
+}
diff --git a/contrib/llvm/lib/Target/R600/R600MachineScheduler.h b/contrib/llvm/lib/Target/R600/R600MachineScheduler.h
new file mode 100644
index 0000000..fd475af
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600MachineScheduler.h
@@ -0,0 +1,103 @@
+//===-- R600MachineScheduler.h - R600 Scheduler Interface -*- C++ -*-------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief R600 Machine Scheduler interface
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef R600MACHINESCHEDULER_H_
+#define R600MACHINESCHEDULER_H_
+
+#include "R600InstrInfo.h"
+#include "llvm/ADT/PriorityQueue.h"
+#include "llvm/CodeGen/MachineScheduler.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+namespace llvm {
+
+class R600SchedStrategy : public MachineSchedStrategy {
+
+ const ScheduleDAGMILive *DAG;
+ const R600InstrInfo *TII;
+ const R600RegisterInfo *TRI;
+ MachineRegisterInfo *MRI;
+
+ enum InstKind {
+ IDAlu,
+ IDFetch,
+ IDOther,
+ IDLast
+ };
+
+ enum AluKind {
+ AluAny,
+ AluT_X,
+ AluT_Y,
+ AluT_Z,
+ AluT_W,
+ AluT_XYZW,
+ AluPredX,
+ AluTrans,
+ AluDiscarded, // LLVM Instructions that are going to be eliminated
+ AluLast
+ };
+
+ std::vector<SUnit *> Available[IDLast], Pending[IDLast];
+ std::vector<SUnit *> AvailableAlus[AluLast];
+ std::vector<SUnit *> PhysicalRegCopy;
+
+ InstKind CurInstKind;
+ int CurEmitted;
+ InstKind NextInstKind;
+
+ unsigned AluInstCount;
+ unsigned FetchInstCount;
+
+ int InstKindLimit[IDLast];
+
+ int OccupedSlotsMask;
+
+public:
+ R600SchedStrategy() :
+ DAG(nullptr), TII(nullptr), TRI(nullptr), MRI(nullptr) {
+ }
+
+ virtual ~R600SchedStrategy() {}
+
+ void initialize(ScheduleDAGMI *dag) override;
+ SUnit *pickNode(bool &IsTopNode) override;
+ void schedNode(SUnit *SU, bool IsTopNode) override;
+ void releaseTopNode(SUnit *SU) override;
+ void releaseBottomNode(SUnit *SU) override;
+
+private:
+ std::vector<MachineInstr *> InstructionsGroupCandidate;
+ bool VLIW5;
+
+ int getInstKind(SUnit *SU);
+ bool regBelongsToClass(unsigned Reg, const TargetRegisterClass *RC) const;
+ AluKind getAluKind(SUnit *SU) const;
+ void LoadAlu();
+ unsigned AvailablesAluCount() const;
+ SUnit *AttemptFillSlot (unsigned Slot, bool AnyAlu);
+ void PrepareNextSlot();
+ SUnit *PopInst(std::vector<SUnit*> &Q, bool AnyALU);
+
+ void AssignSlot(MachineInstr *MI, unsigned Slot);
+ SUnit* pickAlu();
+ SUnit* pickOther(int QID);
+ void MoveUnits(std::vector<SUnit *> &QSrc, std::vector<SUnit *> &QDst);
+};
+
+} // namespace llvm
+
+#endif /* R600MACHINESCHEDULER_H_ */
diff --git a/contrib/llvm/lib/Target/R600/R600OptimizeVectorRegisters.cpp b/contrib/llvm/lib/Target/R600/R600OptimizeVectorRegisters.cpp
new file mode 100644
index 0000000..2314136
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600OptimizeVectorRegisters.cpp
@@ -0,0 +1,382 @@
+//===--------------------- R600MergeVectorRegisters.cpp -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This pass merges inputs of swizzeable instructions into vector sharing
+/// common data and/or have enough undef subreg using swizzle abilities.
+///
+/// For instance let's consider the following pseudo code :
+/// vreg5<def> = REG_SEQ vreg1, sub0, vreg2, sub1, vreg3, sub2, undef, sub3
+/// ...
+/// vreg7<def> = REG_SEQ vreg1, sub0, vreg3, sub1, undef, sub2, vreg4, sub3
+/// (swizzable Inst) vreg7, SwizzleMask : sub0, sub1, sub2, sub3
+///
+/// is turned into :
+/// vreg5<def> = REG_SEQ vreg1, sub0, vreg2, sub1, vreg3, sub2, undef, sub3
+/// ...
+/// vreg7<def> = INSERT_SUBREG vreg4, sub3
+/// (swizzable Inst) vreg7, SwizzleMask : sub0, sub2, sub1, sub3
+///
+/// This allow regalloc to reduce register pressure for vector registers and
+/// to reduce MOV count.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Debug.h"
+#include "AMDGPU.h"
+#include "R600InstrInfo.h"
+#include "llvm/CodeGen/DFAPacketizer.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "vec-merger"
+
+namespace {
+
+static bool
+isImplicitlyDef(MachineRegisterInfo &MRI, unsigned Reg) {
+ for (MachineRegisterInfo::def_instr_iterator It = MRI.def_instr_begin(Reg),
+ E = MRI.def_instr_end(); It != E; ++It) {
+ return (*It).isImplicitDef();
+ }
+ if (MRI.isReserved(Reg)) {
+ return false;
+ }
+ llvm_unreachable("Reg without a def");
+ return false;
+}
+
+class RegSeqInfo {
+public:
+ MachineInstr *Instr;
+ DenseMap<unsigned, unsigned> RegToChan;
+ std::vector<unsigned> UndefReg;
+ RegSeqInfo(MachineRegisterInfo &MRI, MachineInstr *MI) : Instr(MI) {
+ assert(MI->getOpcode() == AMDGPU::REG_SEQUENCE);
+ for (unsigned i = 1, e = Instr->getNumOperands(); i < e; i+=2) {
+ MachineOperand &MO = Instr->getOperand(i);
+ unsigned Chan = Instr->getOperand(i + 1).getImm();
+ if (isImplicitlyDef(MRI, MO.getReg()))
+ UndefReg.push_back(Chan);
+ else
+ RegToChan[MO.getReg()] = Chan;
+ }
+ }
+ RegSeqInfo() {}
+
+ bool operator==(const RegSeqInfo &RSI) const {
+ return RSI.Instr == Instr;
+ }
+};
+
+class R600VectorRegMerger : public MachineFunctionPass {
+private:
+ MachineRegisterInfo *MRI;
+ const R600InstrInfo *TII;
+ bool canSwizzle(const MachineInstr &) const;
+ bool areAllUsesSwizzeable(unsigned Reg) const;
+ void SwizzleInput(MachineInstr &,
+ const std::vector<std::pair<unsigned, unsigned> > &) const;
+ bool tryMergeVector(const RegSeqInfo *, RegSeqInfo *,
+ std::vector<std::pair<unsigned, unsigned> > &Remap) const;
+ bool tryMergeUsingCommonSlot(RegSeqInfo &RSI, RegSeqInfo &CompatibleRSI,
+ std::vector<std::pair<unsigned, unsigned> > &RemapChan);
+ bool tryMergeUsingFreeSlot(RegSeqInfo &RSI, RegSeqInfo &CompatibleRSI,
+ std::vector<std::pair<unsigned, unsigned> > &RemapChan);
+ MachineInstr *RebuildVector(RegSeqInfo *MI,
+ const RegSeqInfo *BaseVec,
+ const std::vector<std::pair<unsigned, unsigned> > &RemapChan) const;
+ void RemoveMI(MachineInstr *);
+ void trackRSI(const RegSeqInfo &RSI);
+
+ typedef DenseMap<unsigned, std::vector<MachineInstr *> > InstructionSetMap;
+ DenseMap<MachineInstr *, RegSeqInfo> PreviousRegSeq;
+ InstructionSetMap PreviousRegSeqByReg;
+ InstructionSetMap PreviousRegSeqByUndefCount;
+public:
+ static char ID;
+ R600VectorRegMerger(TargetMachine &tm) : MachineFunctionPass(ID),
+ TII(nullptr) { }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ const char *getPassName() const override {
+ return "R600 Vector Registers Merge Pass";
+ }
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+};
+
+char R600VectorRegMerger::ID = 0;
+
+bool R600VectorRegMerger::canSwizzle(const MachineInstr &MI)
+ const {
+ if (TII->get(MI.getOpcode()).TSFlags & R600_InstFlag::TEX_INST)
+ return true;
+ switch (MI.getOpcode()) {
+ case AMDGPU::R600_ExportSwz:
+ case AMDGPU::EG_ExportSwz:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool R600VectorRegMerger::tryMergeVector(const RegSeqInfo *Untouched,
+ RegSeqInfo *ToMerge, std::vector< std::pair<unsigned, unsigned> > &Remap)
+ const {
+ unsigned CurrentUndexIdx = 0;
+ for (DenseMap<unsigned, unsigned>::iterator It = ToMerge->RegToChan.begin(),
+ E = ToMerge->RegToChan.end(); It != E; ++It) {
+ DenseMap<unsigned, unsigned>::const_iterator PosInUntouched =
+ Untouched->RegToChan.find((*It).first);
+ if (PosInUntouched != Untouched->RegToChan.end()) {
+ Remap.push_back(std::pair<unsigned, unsigned>
+ ((*It).second, (*PosInUntouched).second));
+ continue;
+ }
+ if (CurrentUndexIdx >= Untouched->UndefReg.size())
+ return false;
+ Remap.push_back(std::pair<unsigned, unsigned>
+ ((*It).second, Untouched->UndefReg[CurrentUndexIdx++]));
+ }
+
+ return true;
+}
+
+static
+unsigned getReassignedChan(
+ const std::vector<std::pair<unsigned, unsigned> > &RemapChan,
+ unsigned Chan) {
+ for (unsigned j = 0, je = RemapChan.size(); j < je; j++) {
+ if (RemapChan[j].first == Chan)
+ return RemapChan[j].second;
+ }
+ llvm_unreachable("Chan wasn't reassigned");
+}
+
+MachineInstr *R600VectorRegMerger::RebuildVector(
+ RegSeqInfo *RSI, const RegSeqInfo *BaseRSI,
+ const std::vector<std::pair<unsigned, unsigned> > &RemapChan) const {
+ unsigned Reg = RSI->Instr->getOperand(0).getReg();
+ MachineBasicBlock::iterator Pos = RSI->Instr;
+ MachineBasicBlock &MBB = *Pos->getParent();
+ DebugLoc DL = Pos->getDebugLoc();
+
+ unsigned SrcVec = BaseRSI->Instr->getOperand(0).getReg();
+ DenseMap<unsigned, unsigned> UpdatedRegToChan = BaseRSI->RegToChan;
+ std::vector<unsigned> UpdatedUndef = BaseRSI->UndefReg;
+ for (DenseMap<unsigned, unsigned>::iterator It = RSI->RegToChan.begin(),
+ E = RSI->RegToChan.end(); It != E; ++It) {
+ unsigned DstReg = MRI->createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
+ unsigned SubReg = (*It).first;
+ unsigned Swizzle = (*It).second;
+ unsigned Chan = getReassignedChan(RemapChan, Swizzle);
+
+ MachineInstr *Tmp = BuildMI(MBB, Pos, DL, TII->get(AMDGPU::INSERT_SUBREG),
+ DstReg)
+ .addReg(SrcVec)
+ .addReg(SubReg)
+ .addImm(Chan);
+ UpdatedRegToChan[SubReg] = Chan;
+ std::vector<unsigned>::iterator ChanPos =
+ std::find(UpdatedUndef.begin(), UpdatedUndef.end(), Chan);
+ if (ChanPos != UpdatedUndef.end())
+ UpdatedUndef.erase(ChanPos);
+ assert(std::find(UpdatedUndef.begin(), UpdatedUndef.end(), Chan) ==
+ UpdatedUndef.end() &&
+ "UpdatedUndef shouldn't contain Chan more than once!");
+ DEBUG(dbgs() << " ->"; Tmp->dump(););
+ (void)Tmp;
+ SrcVec = DstReg;
+ }
+ Pos = BuildMI(MBB, Pos, DL, TII->get(AMDGPU::COPY), Reg)
+ .addReg(SrcVec);
+ DEBUG(dbgs() << " ->"; Pos->dump(););
+
+ DEBUG(dbgs() << " Updating Swizzle:\n");
+ for (MachineRegisterInfo::use_instr_iterator It = MRI->use_instr_begin(Reg),
+ E = MRI->use_instr_end(); It != E; ++It) {
+ DEBUG(dbgs() << " ";(*It).dump(); dbgs() << " ->");
+ SwizzleInput(*It, RemapChan);
+ DEBUG((*It).dump());
+ }
+ RSI->Instr->eraseFromParent();
+
+ // Update RSI
+ RSI->Instr = Pos;
+ RSI->RegToChan = UpdatedRegToChan;
+ RSI->UndefReg = UpdatedUndef;
+
+ return Pos;
+}
+
+void R600VectorRegMerger::RemoveMI(MachineInstr *MI) {
+ for (InstructionSetMap::iterator It = PreviousRegSeqByReg.begin(),
+ E = PreviousRegSeqByReg.end(); It != E; ++It) {
+ std::vector<MachineInstr *> &MIs = (*It).second;
+ MIs.erase(std::find(MIs.begin(), MIs.end(), MI), MIs.end());
+ }
+ for (InstructionSetMap::iterator It = PreviousRegSeqByUndefCount.begin(),
+ E = PreviousRegSeqByUndefCount.end(); It != E; ++It) {
+ std::vector<MachineInstr *> &MIs = (*It).second;
+ MIs.erase(std::find(MIs.begin(), MIs.end(), MI), MIs.end());
+ }
+}
+
+void R600VectorRegMerger::SwizzleInput(MachineInstr &MI,
+ const std::vector<std::pair<unsigned, unsigned> > &RemapChan) const {
+ unsigned Offset;
+ if (TII->get(MI.getOpcode()).TSFlags & R600_InstFlag::TEX_INST)
+ Offset = 2;
+ else
+ Offset = 3;
+ for (unsigned i = 0; i < 4; i++) {
+ unsigned Swizzle = MI.getOperand(i + Offset).getImm() + 1;
+ for (unsigned j = 0, e = RemapChan.size(); j < e; j++) {
+ if (RemapChan[j].first == Swizzle) {
+ MI.getOperand(i + Offset).setImm(RemapChan[j].second - 1);
+ break;
+ }
+ }
+ }
+}
+
+bool R600VectorRegMerger::areAllUsesSwizzeable(unsigned Reg) const {
+ for (MachineRegisterInfo::use_instr_iterator It = MRI->use_instr_begin(Reg),
+ E = MRI->use_instr_end(); It != E; ++It) {
+ if (!canSwizzle(*It))
+ return false;
+ }
+ return true;
+}
+
+bool R600VectorRegMerger::tryMergeUsingCommonSlot(RegSeqInfo &RSI,
+ RegSeqInfo &CompatibleRSI,
+ std::vector<std::pair<unsigned, unsigned> > &RemapChan) {
+ for (MachineInstr::mop_iterator MOp = RSI.Instr->operands_begin(),
+ MOE = RSI.Instr->operands_end(); MOp != MOE; ++MOp) {
+ if (!MOp->isReg())
+ continue;
+ if (PreviousRegSeqByReg[MOp->getReg()].empty())
+ continue;
+ std::vector<MachineInstr *> MIs = PreviousRegSeqByReg[MOp->getReg()];
+ for (unsigned i = 0, e = MIs.size(); i < e; i++) {
+ CompatibleRSI = PreviousRegSeq[MIs[i]];
+ if (RSI == CompatibleRSI)
+ continue;
+ if (tryMergeVector(&CompatibleRSI, &RSI, RemapChan))
+ return true;
+ }
+ }
+ return false;
+}
+
+bool R600VectorRegMerger::tryMergeUsingFreeSlot(RegSeqInfo &RSI,
+ RegSeqInfo &CompatibleRSI,
+ std::vector<std::pair<unsigned, unsigned> > &RemapChan) {
+ unsigned NeededUndefs = 4 - RSI.UndefReg.size();
+ if (PreviousRegSeqByUndefCount[NeededUndefs].empty())
+ return false;
+ std::vector<MachineInstr *> &MIs =
+ PreviousRegSeqByUndefCount[NeededUndefs];
+ CompatibleRSI = PreviousRegSeq[MIs.back()];
+ tryMergeVector(&CompatibleRSI, &RSI, RemapChan);
+ return true;
+}
+
+void R600VectorRegMerger::trackRSI(const RegSeqInfo &RSI) {
+ for (DenseMap<unsigned, unsigned>::const_iterator
+ It = RSI.RegToChan.begin(), E = RSI.RegToChan.end(); It != E; ++It) {
+ PreviousRegSeqByReg[(*It).first].push_back(RSI.Instr);
+ }
+ PreviousRegSeqByUndefCount[RSI.UndefReg.size()].push_back(RSI.Instr);
+ PreviousRegSeq[RSI.Instr] = RSI;
+}
+
+bool R600VectorRegMerger::runOnMachineFunction(MachineFunction &Fn) {
+ TII = static_cast<const R600InstrInfo *>(Fn.getTarget().getInstrInfo());
+ MRI = &(Fn.getRegInfo());
+ for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+ MBB != MBBe; ++MBB) {
+ MachineBasicBlock *MB = MBB;
+ PreviousRegSeq.clear();
+ PreviousRegSeqByReg.clear();
+ PreviousRegSeqByUndefCount.clear();
+
+ for (MachineBasicBlock::iterator MII = MB->begin(), MIIE = MB->end();
+ MII != MIIE; ++MII) {
+ MachineInstr *MI = MII;
+ if (MI->getOpcode() != AMDGPU::REG_SEQUENCE) {
+ if (TII->get(MI->getOpcode()).TSFlags & R600_InstFlag::TEX_INST) {
+ unsigned Reg = MI->getOperand(1).getReg();
+ for (MachineRegisterInfo::def_instr_iterator
+ It = MRI->def_instr_begin(Reg), E = MRI->def_instr_end();
+ It != E; ++It) {
+ RemoveMI(&(*It));
+ }
+ }
+ continue;
+ }
+
+
+ RegSeqInfo RSI(*MRI, MI);
+
+ // All uses of MI are swizzeable ?
+ unsigned Reg = MI->getOperand(0).getReg();
+ if (!areAllUsesSwizzeable(Reg))
+ continue;
+
+ DEBUG (dbgs() << "Trying to optimize ";
+ MI->dump();
+ );
+
+ RegSeqInfo CandidateRSI;
+ std::vector<std::pair<unsigned, unsigned> > RemapChan;
+ DEBUG(dbgs() << "Using common slots...\n";);
+ if (tryMergeUsingCommonSlot(RSI, CandidateRSI, RemapChan)) {
+ // Remove CandidateRSI mapping
+ RemoveMI(CandidateRSI.Instr);
+ MII = RebuildVector(&RSI, &CandidateRSI, RemapChan);
+ trackRSI(RSI);
+ continue;
+ }
+ DEBUG(dbgs() << "Using free slots...\n";);
+ RemapChan.clear();
+ if (tryMergeUsingFreeSlot(RSI, CandidateRSI, RemapChan)) {
+ RemoveMI(CandidateRSI.Instr);
+ MII = RebuildVector(&RSI, &CandidateRSI, RemapChan);
+ trackRSI(RSI);
+ continue;
+ }
+ //Failed to merge
+ trackRSI(RSI);
+ }
+ }
+ return false;
+}
+
+}
+
+llvm::FunctionPass *llvm::createR600VectorRegMerger(TargetMachine &tm) {
+ return new R600VectorRegMerger(tm);
+}
diff --git a/contrib/llvm/lib/Target/R600/R600Packetizer.cpp b/contrib/llvm/lib/Target/R600/R600Packetizer.cpp
new file mode 100644
index 0000000..74cf309
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600Packetizer.cpp
@@ -0,0 +1,409 @@
+//===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This pass implements instructions packetization for R600. It unsets isLast
+/// bit of instructions inside a bundle and substitutes src register with
+/// PreviousVector when applicable.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Debug.h"
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "R600InstrInfo.h"
+#include "llvm/CodeGen/DFAPacketizer.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "packets"
+
+namespace {
+
+class R600Packetizer : public MachineFunctionPass {
+
+public:
+ static char ID;
+ R600Packetizer(const TargetMachine &TM) : MachineFunctionPass(ID) {}
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ const char *getPassName() const override {
+ return "R600 Packetizer";
+ }
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+};
+char R600Packetizer::ID = 0;
+
+class R600PacketizerList : public VLIWPacketizerList {
+
+private:
+ const R600InstrInfo *TII;
+ const R600RegisterInfo &TRI;
+ bool VLIW5;
+ bool ConsideredInstUsesAlreadyWrittenVectorElement;
+
+ unsigned getSlot(const MachineInstr *MI) const {
+ return TRI.getHWRegChan(MI->getOperand(0).getReg());
+ }
+
+ /// \returns register to PV chan mapping for bundle/single instructions that
+ /// immediately precedes I.
+ DenseMap<unsigned, unsigned> getPreviousVector(MachineBasicBlock::iterator I)
+ const {
+ DenseMap<unsigned, unsigned> Result;
+ I--;
+ if (!TII->isALUInstr(I->getOpcode()) && !I->isBundle())
+ return Result;
+ MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
+ if (I->isBundle())
+ BI++;
+ int LastDstChan = -1;
+ do {
+ bool isTrans = false;
+ int BISlot = getSlot(BI);
+ if (LastDstChan >= BISlot)
+ isTrans = true;
+ LastDstChan = BISlot;
+ if (TII->isPredicated(BI))
+ continue;
+ int OperandIdx = TII->getOperandIdx(BI->getOpcode(), AMDGPU::OpName::write);
+ if (OperandIdx > -1 && BI->getOperand(OperandIdx).getImm() == 0)
+ continue;
+ int DstIdx = TII->getOperandIdx(BI->getOpcode(), AMDGPU::OpName::dst);
+ if (DstIdx == -1) {
+ continue;
+ }
+ unsigned Dst = BI->getOperand(DstIdx).getReg();
+ if (isTrans || TII->isTransOnly(BI)) {
+ Result[Dst] = AMDGPU::PS;
+ continue;
+ }
+ if (BI->getOpcode() == AMDGPU::DOT4_r600 ||
+ BI->getOpcode() == AMDGPU::DOT4_eg) {
+ Result[Dst] = AMDGPU::PV_X;
+ continue;
+ }
+ if (Dst == AMDGPU::OQAP) {
+ continue;
+ }
+ unsigned PVReg = 0;
+ switch (TRI.getHWRegChan(Dst)) {
+ case 0:
+ PVReg = AMDGPU::PV_X;
+ break;
+ case 1:
+ PVReg = AMDGPU::PV_Y;
+ break;
+ case 2:
+ PVReg = AMDGPU::PV_Z;
+ break;
+ case 3:
+ PVReg = AMDGPU::PV_W;
+ break;
+ default:
+ llvm_unreachable("Invalid Chan");
+ }
+ Result[Dst] = PVReg;
+ } while ((++BI)->isBundledWithPred());
+ return Result;
+ }
+
+ void substitutePV(MachineInstr *MI, const DenseMap<unsigned, unsigned> &PVs)
+ const {
+ unsigned Ops[] = {
+ AMDGPU::OpName::src0,
+ AMDGPU::OpName::src1,
+ AMDGPU::OpName::src2
+ };
+ for (unsigned i = 0; i < 3; i++) {
+ int OperandIdx = TII->getOperandIdx(MI->getOpcode(), Ops[i]);
+ if (OperandIdx < 0)
+ continue;
+ unsigned Src = MI->getOperand(OperandIdx).getReg();
+ const DenseMap<unsigned, unsigned>::const_iterator It = PVs.find(Src);
+ if (It != PVs.end())
+ MI->getOperand(OperandIdx).setReg(It->second);
+ }
+ }
+public:
+ // Ctor.
+ R600PacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
+ MachineDominatorTree &MDT)
+ : VLIWPacketizerList(MF, MLI, MDT, true),
+ TII (static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo())),
+ TRI(TII->getRegisterInfo()) {
+ VLIW5 = !MF.getTarget().getSubtarget<AMDGPUSubtarget>().hasCaymanISA();
+ }
+
+ // initPacketizerState - initialize some internal flags.
+ void initPacketizerState() override {
+ ConsideredInstUsesAlreadyWrittenVectorElement = false;
+ }
+
+ // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
+ bool ignorePseudoInstruction(MachineInstr *MI,
+ MachineBasicBlock *MBB) override {
+ return false;
+ }
+
+ // isSoloInstruction - return true if instruction MI can not be packetized
+ // with any other instruction, which means that MI itself is a packet.
+ bool isSoloInstruction(MachineInstr *MI) override {
+ if (TII->isVector(*MI))
+ return true;
+ if (!TII->isALUInstr(MI->getOpcode()))
+ return true;
+ if (MI->getOpcode() == AMDGPU::GROUP_BARRIER)
+ return true;
+ // XXX: This can be removed once the packetizer properly handles all the
+ // LDS instruction group restrictions.
+ if (TII->isLDSInstr(MI->getOpcode()))
+ return true;
+ return false;
+ }
+
+ // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
+ // together.
+ bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override {
+ MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr();
+ if (getSlot(MII) == getSlot(MIJ))
+ ConsideredInstUsesAlreadyWrittenVectorElement = true;
+ // Does MII and MIJ share the same pred_sel ?
+ int OpI = TII->getOperandIdx(MII->getOpcode(), AMDGPU::OpName::pred_sel),
+ OpJ = TII->getOperandIdx(MIJ->getOpcode(), AMDGPU::OpName::pred_sel);
+ unsigned PredI = (OpI > -1)?MII->getOperand(OpI).getReg():0,
+ PredJ = (OpJ > -1)?MIJ->getOperand(OpJ).getReg():0;
+ if (PredI != PredJ)
+ return false;
+ if (SUJ->isSucc(SUI)) {
+ for (unsigned i = 0, e = SUJ->Succs.size(); i < e; ++i) {
+ const SDep &Dep = SUJ->Succs[i];
+ if (Dep.getSUnit() != SUI)
+ continue;
+ if (Dep.getKind() == SDep::Anti)
+ continue;
+ if (Dep.getKind() == SDep::Output)
+ if (MII->getOperand(0).getReg() != MIJ->getOperand(0).getReg())
+ continue;
+ return false;
+ }
+ }
+
+ bool ARDef = TII->definesAddressRegister(MII) ||
+ TII->definesAddressRegister(MIJ);
+ bool ARUse = TII->usesAddressRegister(MII) ||
+ TII->usesAddressRegister(MIJ);
+ if (ARDef && ARUse)
+ return false;
+
+ return true;
+ }
+
+ // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
+ // and SUJ.
+ bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override {
+ return false;
+ }
+
+ void setIsLastBit(MachineInstr *MI, unsigned Bit) const {
+ unsigned LastOp = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::last);
+ MI->getOperand(LastOp).setImm(Bit);
+ }
+
+ bool isBundlableWithCurrentPMI(MachineInstr *MI,
+ const DenseMap<unsigned, unsigned> &PV,
+ std::vector<R600InstrInfo::BankSwizzle> &BS,
+ bool &isTransSlot) {
+ isTransSlot = TII->isTransOnly(MI);
+ assert (!isTransSlot || VLIW5);
+
+ // Is the dst reg sequence legal ?
+ if (!isTransSlot && !CurrentPacketMIs.empty()) {
+ if (getSlot(MI) <= getSlot(CurrentPacketMIs.back())) {
+ if (ConsideredInstUsesAlreadyWrittenVectorElement &&
+ !TII->isVectorOnly(MI) && VLIW5) {
+ isTransSlot = true;
+ DEBUG(dbgs() << "Considering as Trans Inst :"; MI->dump(););
+ }
+ else
+ return false;
+ }
+ }
+
+ // Are the Constants limitations met ?
+ CurrentPacketMIs.push_back(MI);
+ if (!TII->fitsConstReadLimitations(CurrentPacketMIs)) {
+ DEBUG(
+ dbgs() << "Couldn't pack :\n";
+ MI->dump();
+ dbgs() << "with the following packets :\n";
+ for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
+ CurrentPacketMIs[i]->dump();
+ dbgs() << "\n";
+ }
+ dbgs() << "because of Consts read limitations\n";
+ );
+ CurrentPacketMIs.pop_back();
+ return false;
+ }
+
+ // Is there a BankSwizzle set that meet Read Port limitations ?
+ if (!TII->fitsReadPortLimitations(CurrentPacketMIs,
+ PV, BS, isTransSlot)) {
+ DEBUG(
+ dbgs() << "Couldn't pack :\n";
+ MI->dump();
+ dbgs() << "with the following packets :\n";
+ for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
+ CurrentPacketMIs[i]->dump();
+ dbgs() << "\n";
+ }
+ dbgs() << "because of Read port limitations\n";
+ );
+ CurrentPacketMIs.pop_back();
+ return false;
+ }
+
+ // We cannot read LDS source registrs from the Trans slot.
+ if (isTransSlot && TII->readsLDSSrcReg(MI))
+ return false;
+
+ CurrentPacketMIs.pop_back();
+ return true;
+ }
+
+ MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override {
+ MachineBasicBlock::iterator FirstInBundle =
+ CurrentPacketMIs.empty() ? MI : CurrentPacketMIs.front();
+ const DenseMap<unsigned, unsigned> &PV =
+ getPreviousVector(FirstInBundle);
+ std::vector<R600InstrInfo::BankSwizzle> BS;
+ bool isTransSlot;
+
+ if (isBundlableWithCurrentPMI(MI, PV, BS, isTransSlot)) {
+ for (unsigned i = 0, e = CurrentPacketMIs.size(); i < e; i++) {
+ MachineInstr *MI = CurrentPacketMIs[i];
+ unsigned Op = TII->getOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::bank_swizzle);
+ MI->getOperand(Op).setImm(BS[i]);
+ }
+ unsigned Op = TII->getOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::bank_swizzle);
+ MI->getOperand(Op).setImm(BS.back());
+ if (!CurrentPacketMIs.empty())
+ setIsLastBit(CurrentPacketMIs.back(), 0);
+ substitutePV(MI, PV);
+ MachineBasicBlock::iterator It = VLIWPacketizerList::addToPacket(MI);
+ if (isTransSlot) {
+ endPacket(std::next(It)->getParent(), std::next(It));
+ }
+ return It;
+ }
+ endPacket(MI->getParent(), MI);
+ if (TII->isTransOnly(MI))
+ return MI;
+ return VLIWPacketizerList::addToPacket(MI);
+ }
+};
+
+bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) {
+ const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
+ MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
+ MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
+
+ // Instantiate the packetizer.
+ R600PacketizerList Packetizer(Fn, MLI, MDT);
+
+ // DFA state table should not be empty.
+ assert(Packetizer.getResourceTracker() && "Empty DFA table!");
+
+ //
+ // Loop over all basic blocks and remove KILL pseudo-instructions
+ // These instructions confuse the dependence analysis. Consider:
+ // D0 = ... (Insn 0)
+ // R0 = KILL R0, D0 (Insn 1)
+ // R0 = ... (Insn 2)
+ // Here, Insn 1 will result in the dependence graph not emitting an output
+ // dependence between Insn 0 and Insn 2. This can lead to incorrect
+ // packetization
+ //
+ for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+ MBB != MBBe; ++MBB) {
+ MachineBasicBlock::iterator End = MBB->end();
+ MachineBasicBlock::iterator MI = MBB->begin();
+ while (MI != End) {
+ if (MI->isKill() || MI->getOpcode() == AMDGPU::IMPLICIT_DEF ||
+ (MI->getOpcode() == AMDGPU::CF_ALU && !MI->getOperand(8).getImm())) {
+ MachineBasicBlock::iterator DeleteMI = MI;
+ ++MI;
+ MBB->erase(DeleteMI);
+ End = MBB->end();
+ continue;
+ }
+ ++MI;
+ }
+ }
+
+ // Loop over all of the basic blocks.
+ for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+ MBB != MBBe; ++MBB) {
+ // Find scheduling regions and schedule / packetize each region.
+ unsigned RemainingCount = MBB->size();
+ for(MachineBasicBlock::iterator RegionEnd = MBB->end();
+ RegionEnd != MBB->begin();) {
+ // The next region starts above the previous region. Look backward in the
+ // instruction stream until we find the nearest boundary.
+ MachineBasicBlock::iterator I = RegionEnd;
+ for(;I != MBB->begin(); --I, --RemainingCount) {
+ if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn))
+ break;
+ }
+ I = MBB->begin();
+
+ // Skip empty scheduling regions.
+ if (I == RegionEnd) {
+ RegionEnd = std::prev(RegionEnd);
+ --RemainingCount;
+ continue;
+ }
+ // Skip regions with one instruction.
+ if (I == std::prev(RegionEnd)) {
+ RegionEnd = std::prev(RegionEnd);
+ continue;
+ }
+
+ Packetizer.PacketizeMIs(MBB, I, RegionEnd);
+ RegionEnd = I;
+ }
+ }
+
+ return true;
+
+}
+
+} // end anonymous namespace
+
+llvm::FunctionPass *llvm::createR600Packetizer(TargetMachine &tm) {
+ return new R600Packetizer(tm);
+}
diff --git a/contrib/llvm/lib/Target/R600/R600RegisterInfo.cpp b/contrib/llvm/lib/Target/R600/R600RegisterInfo.cpp
new file mode 100644
index 0000000..dc95675
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600RegisterInfo.cpp
@@ -0,0 +1,89 @@
+//===-- R600RegisterInfo.cpp - R600 Register Information ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief R600 implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "R600RegisterInfo.h"
+#include "AMDGPUTargetMachine.h"
+#include "R600Defines.h"
+#include "R600InstrInfo.h"
+#include "R600MachineFunctionInfo.h"
+
+using namespace llvm;
+
+R600RegisterInfo::R600RegisterInfo(const AMDGPUSubtarget &st)
+: AMDGPURegisterInfo(st)
+ { RCW.RegWeight = 0; RCW.WeightLimit = 0;}
+
+BitVector R600RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ BitVector Reserved(getNumRegs());
+
+ const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(ST.getInstrInfo());
+
+ Reserved.set(AMDGPU::ZERO);
+ Reserved.set(AMDGPU::HALF);
+ Reserved.set(AMDGPU::ONE);
+ Reserved.set(AMDGPU::ONE_INT);
+ Reserved.set(AMDGPU::NEG_HALF);
+ Reserved.set(AMDGPU::NEG_ONE);
+ Reserved.set(AMDGPU::PV_X);
+ Reserved.set(AMDGPU::ALU_LITERAL_X);
+ Reserved.set(AMDGPU::ALU_CONST);
+ Reserved.set(AMDGPU::PREDICATE_BIT);
+ Reserved.set(AMDGPU::PRED_SEL_OFF);
+ Reserved.set(AMDGPU::PRED_SEL_ZERO);
+ Reserved.set(AMDGPU::PRED_SEL_ONE);
+ Reserved.set(AMDGPU::INDIRECT_BASE_ADDR);
+
+ for (TargetRegisterClass::iterator I = AMDGPU::R600_AddrRegClass.begin(),
+ E = AMDGPU::R600_AddrRegClass.end(); I != E; ++I) {
+ Reserved.set(*I);
+ }
+
+ TII->reserveIndirectRegisters(Reserved, MF);
+
+ return Reserved;
+}
+
+unsigned R600RegisterInfo::getHWRegChan(unsigned reg) const {
+ return this->getEncodingValue(reg) >> HW_CHAN_SHIFT;
+}
+
+unsigned R600RegisterInfo::getHWRegIndex(unsigned Reg) const {
+ return GET_REG_INDEX(getEncodingValue(Reg));
+}
+
+const TargetRegisterClass * R600RegisterInfo::getCFGStructurizerRegClass(
+ MVT VT) const {
+ switch(VT.SimpleTy) {
+ default:
+ case MVT::i32: return &AMDGPU::R600_TReg32RegClass;
+ }
+}
+
+const RegClassWeight &R600RegisterInfo::getRegClassWeight(
+ const TargetRegisterClass *RC) const {
+ return RCW;
+}
+
+bool R600RegisterInfo::isPhysRegLiveAcrossClauses(unsigned Reg) const {
+ assert(!TargetRegisterInfo::isVirtualRegister(Reg));
+
+ switch (Reg) {
+ case AMDGPU::OQAP:
+ case AMDGPU::OQBP:
+ case AMDGPU::AR_X:
+ return false;
+ default:
+ return true;
+ }
+}
diff --git a/contrib/llvm/lib/Target/R600/R600RegisterInfo.h b/contrib/llvm/lib/Target/R600/R600RegisterInfo.h
new file mode 100644
index 0000000..247808b
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600RegisterInfo.h
@@ -0,0 +1,49 @@
+//===-- R600RegisterInfo.h - R600 Register Info Interface ------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Interface definition for R600RegisterInfo
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef R600REGISTERINFO_H_
+#define R600REGISTERINFO_H_
+
+#include "AMDGPURegisterInfo.h"
+
+namespace llvm {
+
+class AMDGPUSubtarget;
+
+struct R600RegisterInfo : public AMDGPURegisterInfo {
+ RegClassWeight RCW;
+
+ R600RegisterInfo(const AMDGPUSubtarget &st);
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+
+ /// \brief get the HW encoding for a register's channel.
+ unsigned getHWRegChan(unsigned reg) const;
+
+ unsigned getHWRegIndex(unsigned Reg) const override;
+
+ /// \brief get the register class of the specified type to use in the
+ /// CFGStructurizer
+ const TargetRegisterClass * getCFGStructurizerRegClass(MVT VT) const override;
+
+ const RegClassWeight &
+ getRegClassWeight(const TargetRegisterClass *RC) const override;
+
+ // \returns true if \p Reg can be defined in one ALU caluse and used in another.
+ bool isPhysRegLiveAcrossClauses(unsigned Reg) const;
+};
+
+} // End namespace llvm
+
+#endif // AMDIDSAREGISTERINFO_H_
diff --git a/contrib/llvm/lib/Target/R600/R600RegisterInfo.td b/contrib/llvm/lib/Target/R600/R600RegisterInfo.td
new file mode 100644
index 0000000..cc667d9
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600RegisterInfo.td
@@ -0,0 +1,252 @@
+
+class R600Reg <string name, bits<16> encoding> : Register<name> {
+ let Namespace = "AMDGPU";
+ let HWEncoding = encoding;
+}
+
+class R600RegWithChan <string name, bits<9> sel, string chan> :
+ Register <name> {
+
+ field bits<2> chan_encoding = !if(!eq(chan, "X"), 0,
+ !if(!eq(chan, "Y"), 1,
+ !if(!eq(chan, "Z"), 2,
+ !if(!eq(chan, "W"), 3, 0))));
+ let HWEncoding{8-0} = sel;
+ let HWEncoding{10-9} = chan_encoding;
+ let Namespace = "AMDGPU";
+}
+
+class R600Reg_128<string n, list<Register> subregs, bits<16> encoding> :
+ RegisterWithSubRegs<n, subregs> {
+ field bits<2> chan_encoding = 0;
+ let Namespace = "AMDGPU";
+ let SubRegIndices = [sub0, sub1, sub2, sub3];
+ let HWEncoding{8-0} = encoding{8-0};
+ let HWEncoding{10-9} = chan_encoding;
+}
+
+class R600Reg_64<string n, list<Register> subregs, bits<16> encoding> :
+ RegisterWithSubRegs<n, subregs> {
+ field bits<2> chan_encoding = 0;
+ let Namespace = "AMDGPU";
+ let SubRegIndices = [sub0, sub1];
+ let HWEncoding = encoding;
+ let HWEncoding{8-0} = encoding{8-0};
+ let HWEncoding{10-9} = chan_encoding;
+}
+
+class R600Reg_64Vertical<int lo, int hi, string chan> : R600Reg_64 <
+ "V"#lo#hi#"_"#chan,
+ [!cast<Register>("T"#lo#"_"#chan), !cast<Register>("T"#hi#"_"#chan)],
+ lo
+>;
+
+foreach Index = 0-127 in {
+ foreach Chan = [ "X", "Y", "Z", "W" ] in {
+ // 32-bit Temporary Registers
+ def T#Index#_#Chan : R600RegWithChan <"T"#Index#"."#Chan, Index, Chan>;
+
+ // Indirect addressing offset registers
+ def Addr#Index#_#Chan : R600RegWithChan <"T("#Index#" + AR.x)."#Chan,
+ Index, Chan>;
+ }
+ // 128-bit Temporary Registers
+ def T#Index#_XYZW : R600Reg_128 <"T"#Index#"",
+ [!cast<Register>("T"#Index#"_X"),
+ !cast<Register>("T"#Index#"_Y"),
+ !cast<Register>("T"#Index#"_Z"),
+ !cast<Register>("T"#Index#"_W")],
+ Index>;
+
+ def T#Index#_XY : R600Reg_64 <"T"#Index#"",
+ [!cast<Register>("T"#Index#"_X"),
+ !cast<Register>("T"#Index#"_Y")],
+ Index>;
+}
+
+foreach Chan = [ "X", "Y", "Z", "W"] in {
+
+ let chan_encoding = !if(!eq(Chan, "X"), 0,
+ !if(!eq(Chan, "Y"), 1,
+ !if(!eq(Chan, "Z"), 2,
+ !if(!eq(Chan, "W"), 3, 0)))) in {
+ def V0123_#Chan : R600Reg_128 <"V0123_"#Chan,
+ [!cast<Register>("T0_"#Chan),
+ !cast<Register>("T1_"#Chan),
+ !cast<Register>("T2_"#Chan),
+ !cast<Register>("T3_"#Chan)],
+ 0>;
+ def V01_#Chan : R600Reg_64Vertical<0, 1, Chan>;
+ def V23_#Chan : R600Reg_64Vertical<2, 3, Chan>;
+ }
+}
+
+
+// KCACHE_BANK0
+foreach Index = 159-128 in {
+ foreach Chan = [ "X", "Y", "Z", "W" ] in {
+ // 32-bit Temporary Registers
+ def KC0_#Index#_#Chan : R600RegWithChan <"KC0["#!add(Index,-128)#"]."#Chan, Index, Chan>;
+ }
+ // 128-bit Temporary Registers
+ def KC0_#Index#_XYZW : R600Reg_128 <"KC0["#!add(Index, -128)#"].XYZW",
+ [!cast<Register>("KC0_"#Index#"_X"),
+ !cast<Register>("KC0_"#Index#"_Y"),
+ !cast<Register>("KC0_"#Index#"_Z"),
+ !cast<Register>("KC0_"#Index#"_W")],
+ Index>;
+}
+
+// KCACHE_BANK1
+foreach Index = 191-160 in {
+ foreach Chan = [ "X", "Y", "Z", "W" ] in {
+ // 32-bit Temporary Registers
+ def KC1_#Index#_#Chan : R600RegWithChan <"KC1["#!add(Index,-160)#"]."#Chan, Index, Chan>;
+ }
+ // 128-bit Temporary Registers
+ def KC1_#Index#_XYZW : R600Reg_128 <"KC1["#!add(Index, -160)#"].XYZW",
+ [!cast<Register>("KC1_"#Index#"_X"),
+ !cast<Register>("KC1_"#Index#"_Y"),
+ !cast<Register>("KC1_"#Index#"_Z"),
+ !cast<Register>("KC1_"#Index#"_W")],
+ Index>;
+}
+
+
+// Array Base Register holding input in FS
+foreach Index = 448-480 in {
+ def ArrayBase#Index : R600Reg<"ARRAY_BASE", Index>;
+}
+
+
+// Special Registers
+
+def OQA : R600Reg<"OQA", 219>;
+def OQB : R600Reg<"OQB", 220>;
+def OQAP : R600Reg<"OQAP", 221>;
+def OQBP : R600Reg<"OQAP", 222>;
+def LDS_DIRECT_A : R600Reg<"LDS_DIRECT_A", 223>;
+def LDS_DIRECT_B : R600Reg<"LDS_DIRECT_B", 224>;
+def ZERO : R600Reg<"0.0", 248>;
+def ONE : R600Reg<"1.0", 249>;
+def NEG_ONE : R600Reg<"-1.0", 249>;
+def ONE_INT : R600Reg<"1", 250>;
+def HALF : R600Reg<"0.5", 252>;
+def NEG_HALF : R600Reg<"-0.5", 252>;
+def ALU_LITERAL_X : R600RegWithChan<"literal.x", 253, "X">;
+def ALU_LITERAL_Y : R600RegWithChan<"literal.y", 253, "Y">;
+def ALU_LITERAL_Z : R600RegWithChan<"literal.z", 253, "Z">;
+def ALU_LITERAL_W : R600RegWithChan<"literal.w", 253, "W">;
+def PV_X : R600RegWithChan<"PV.X", 254, "X">;
+def PV_Y : R600RegWithChan<"PV.Y", 254, "Y">;
+def PV_Z : R600RegWithChan<"PV.Z", 254, "Z">;
+def PV_W : R600RegWithChan<"PV.W", 254, "W">;
+def PS: R600Reg<"PS", 255>;
+def PREDICATE_BIT : R600Reg<"PredicateBit", 0>;
+def PRED_SEL_OFF: R600Reg<"Pred_sel_off", 0>;
+def PRED_SEL_ZERO : R600Reg<"Pred_sel_zero", 2>;
+def PRED_SEL_ONE : R600Reg<"Pred_sel_one", 3>;
+def AR_X : R600Reg<"AR.x", 0>;
+
+def R600_ArrayBase : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "ArrayBase%u", 448, 480))>;
+// special registers for ALU src operands
+// const buffer reference, SRCx_SEL contains index
+def ALU_CONST : R600Reg<"CBuf", 0>;
+// interpolation param reference, SRCx_SEL contains index
+def ALU_PARAM : R600Reg<"Param", 0>;
+
+let isAllocatable = 0 in {
+
+def R600_Addr : RegisterClass <"AMDGPU", [i32], 32, (add (sequence "Addr%u_X", 0, 127))>;
+
+// We only use Addr_[YZW] for vertical vectors.
+// FIXME if we add more vertical vector registers we will need to ad more
+// registers to these classes.
+def R600_Addr_Y : RegisterClass <"AMDGPU", [i32], 32, (add Addr0_Y)>;
+def R600_Addr_Z : RegisterClass <"AMDGPU", [i32], 32, (add Addr0_Z)>;
+def R600_Addr_W : RegisterClass <"AMDGPU", [i32], 32, (add Addr0_W)>;
+
+def R600_LDS_SRC_REG : RegisterClass<"AMDGPU", [i32], 32,
+ (add OQA, OQB, OQAP, OQBP, LDS_DIRECT_A, LDS_DIRECT_B)>;
+
+def R600_KC0_X : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "KC0_%u_X", 128, 159))>;
+
+def R600_KC0_Y : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "KC0_%u_Y", 128, 159))>;
+
+def R600_KC0_Z : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "KC0_%u_Z", 128, 159))>;
+
+def R600_KC0_W : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "KC0_%u_W", 128, 159))>;
+
+def R600_KC0 : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (interleave R600_KC0_X, R600_KC0_Y,
+ R600_KC0_Z, R600_KC0_W)>;
+
+def R600_KC1_X : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "KC1_%u_X", 160, 191))>;
+
+def R600_KC1_Y : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "KC1_%u_Y", 160, 191))>;
+
+def R600_KC1_Z : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "KC1_%u_Z", 160, 191))>;
+
+def R600_KC1_W : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "KC1_%u_W", 160, 191))>;
+
+def R600_KC1 : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (interleave R600_KC1_X, R600_KC1_Y,
+ R600_KC1_Z, R600_KC1_W)>;
+
+} // End isAllocatable = 0
+
+def R600_TReg32_X : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "T%u_X", 0, 127), AR_X)>;
+
+def R600_TReg32_Y : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "T%u_Y", 0, 127))>;
+
+def R600_TReg32_Z : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "T%u_Z", 0, 127))>;
+
+def R600_TReg32_W : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (add (sequence "T%u_W", 0, 127))>;
+
+def R600_TReg32 : RegisterClass <"AMDGPU", [f32, i32], 32,
+ (interleave R600_TReg32_X, R600_TReg32_Y,
+ R600_TReg32_Z, R600_TReg32_W)>;
+
+def R600_Reg32 : RegisterClass <"AMDGPU", [f32, i32], 32, (add
+ R600_TReg32,
+ R600_ArrayBase,
+ R600_Addr,
+ R600_KC0, R600_KC1,
+ ZERO, HALF, ONE, ONE_INT, PV_X, ALU_LITERAL_X, NEG_ONE, NEG_HALF,
+ ALU_CONST, ALU_PARAM, OQAP
+ )>;
+
+def R600_Predicate : RegisterClass <"AMDGPU", [i32], 32, (add
+ PRED_SEL_OFF, PRED_SEL_ZERO, PRED_SEL_ONE)>;
+
+def R600_Predicate_Bit: RegisterClass <"AMDGPU", [i32], 32, (add
+ PREDICATE_BIT)>;
+
+def R600_Reg128 : RegisterClass<"AMDGPU", [v4f32, v4i32], 128,
+ (add (sequence "T%u_XYZW", 0, 127))> {
+ let CopyCost = -1;
+}
+
+def R600_Reg128Vertical : RegisterClass<"AMDGPU", [v4f32, v4i32], 128,
+ (add V0123_W, V0123_Z, V0123_Y, V0123_X)
+>;
+
+def R600_Reg64 : RegisterClass<"AMDGPU", [v2f32, v2i32], 64,
+ (add (sequence "T%u_XY", 0, 63))>;
+
+def R600_Reg64Vertical : RegisterClass<"AMDGPU", [v2f32, v2i32], 64,
+ (add V01_X, V01_Y, V01_Z, V01_W,
+ V23_X, V23_Y, V23_Z, V23_W)>;
diff --git a/contrib/llvm/lib/Target/R600/R600Schedule.td b/contrib/llvm/lib/Target/R600/R600Schedule.td
new file mode 100644
index 0000000..df62bf8
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600Schedule.td
@@ -0,0 +1,49 @@
+//===-- R600Schedule.td - R600 Scheduling definitions ------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// R600 has a VLIW architecture. On pre-cayman cards there are 5 instruction
+// slots ALU.X, ALU.Y, ALU.Z, ALU.W, and TRANS. For cayman cards, the TRANS
+// slot has been removed.
+//
+//===----------------------------------------------------------------------===//
+
+
+def ALU_X : FuncUnit;
+def ALU_Y : FuncUnit;
+def ALU_Z : FuncUnit;
+def ALU_W : FuncUnit;
+def TRANS : FuncUnit;
+
+def AnyALU : InstrItinClass;
+def VecALU : InstrItinClass;
+def TransALU : InstrItinClass;
+def XALU : InstrItinClass;
+
+def R600_VLIW5_Itin : ProcessorItineraries <
+ [ALU_X, ALU_Y, ALU_Z, ALU_W, TRANS, ALU_NULL],
+ [],
+ [
+ InstrItinData<AnyALU, [InstrStage<1, [ALU_X, ALU_Y, ALU_Z, ALU_W, TRANS]>]>,
+ InstrItinData<VecALU, [InstrStage<1, [ALU_X, ALU_Y, ALU_Z, ALU_W]>]>,
+ InstrItinData<TransALU, [InstrStage<1, [TRANS]>]>,
+ InstrItinData<XALU, [InstrStage<1, [ALU_X]>]>,
+ InstrItinData<NullALU, [InstrStage<1, [ALU_NULL]>]>
+ ]
+>;
+
+def R600_VLIW4_Itin : ProcessorItineraries <
+ [ALU_X, ALU_Y, ALU_Z, ALU_W, ALU_NULL],
+ [],
+ [
+ InstrItinData<AnyALU, [InstrStage<1, [ALU_X, ALU_Y, ALU_Z, ALU_W]>]>,
+ InstrItinData<VecALU, [InstrStage<1, [ALU_X, ALU_Y, ALU_Z, ALU_W]>]>,
+ InstrItinData<TransALU, [InstrStage<1, [ALU_NULL]>]>,
+ InstrItinData<NullALU, [InstrStage<1, [ALU_NULL]>]>
+ ]
+>;
diff --git a/contrib/llvm/lib/Target/R600/R600TextureIntrinsicsReplacer.cpp b/contrib/llvm/lib/Target/R600/R600TextureIntrinsicsReplacer.cpp
new file mode 100644
index 0000000..419ec8b
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R600TextureIntrinsicsReplacer.cpp
@@ -0,0 +1,303 @@
+//===-- R600TextureIntrinsicsReplacer.cpp ---------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This pass translates tgsi-like texture intrinsics into R600 texture
+/// closer to hardware intrinsics.
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+
+using namespace llvm;
+
+namespace {
+class R600TextureIntrinsicsReplacer :
+ public FunctionPass, public InstVisitor<R600TextureIntrinsicsReplacer> {
+ static char ID;
+
+ Module *Mod;
+ Type *FloatType;
+ Type *Int32Type;
+ Type *V4f32Type;
+ Type *V4i32Type;
+ FunctionType *TexSign;
+ FunctionType *TexQSign;
+
+ void getAdjustmentFromTextureTarget(unsigned TextureType, bool hasLOD,
+ unsigned SrcSelect[4], unsigned CT[4],
+ bool &useShadowVariant) {
+ enum TextureTypes {
+ TEXTURE_1D = 1,
+ TEXTURE_2D,
+ TEXTURE_3D,
+ TEXTURE_CUBE,
+ TEXTURE_RECT,
+ TEXTURE_SHADOW1D,
+ TEXTURE_SHADOW2D,
+ TEXTURE_SHADOWRECT,
+ TEXTURE_1D_ARRAY,
+ TEXTURE_2D_ARRAY,
+ TEXTURE_SHADOW1D_ARRAY,
+ TEXTURE_SHADOW2D_ARRAY,
+ TEXTURE_SHADOWCUBE,
+ TEXTURE_2D_MSAA,
+ TEXTURE_2D_ARRAY_MSAA,
+ TEXTURE_CUBE_ARRAY,
+ TEXTURE_SHADOWCUBE_ARRAY
+ };
+
+ switch (TextureType) {
+ case 0:
+ useShadowVariant = false;
+ return;
+ case TEXTURE_RECT:
+ case TEXTURE_1D:
+ case TEXTURE_2D:
+ case TEXTURE_3D:
+ case TEXTURE_CUBE:
+ case TEXTURE_1D_ARRAY:
+ case TEXTURE_2D_ARRAY:
+ case TEXTURE_CUBE_ARRAY:
+ case TEXTURE_2D_MSAA:
+ case TEXTURE_2D_ARRAY_MSAA:
+ useShadowVariant = false;
+ break;
+ case TEXTURE_SHADOW1D:
+ case TEXTURE_SHADOW2D:
+ case TEXTURE_SHADOWRECT:
+ case TEXTURE_SHADOW1D_ARRAY:
+ case TEXTURE_SHADOW2D_ARRAY:
+ case TEXTURE_SHADOWCUBE:
+ case TEXTURE_SHADOWCUBE_ARRAY:
+ useShadowVariant = true;
+ break;
+ default:
+ llvm_unreachable("Unknow Texture Type");
+ }
+
+ if (TextureType == TEXTURE_RECT ||
+ TextureType == TEXTURE_SHADOWRECT) {
+ CT[0] = 0;
+ CT[1] = 0;
+ }
+
+ if (TextureType == TEXTURE_CUBE_ARRAY ||
+ TextureType == TEXTURE_SHADOWCUBE_ARRAY)
+ CT[2] = 0;
+
+ if (TextureType == TEXTURE_1D_ARRAY ||
+ TextureType == TEXTURE_SHADOW1D_ARRAY) {
+ if (hasLOD && useShadowVariant) {
+ CT[1] = 0;
+ } else {
+ CT[2] = 0;
+ SrcSelect[2] = 1;
+ }
+ } else if (TextureType == TEXTURE_2D_ARRAY ||
+ TextureType == TEXTURE_SHADOW2D_ARRAY) {
+ CT[2] = 0;
+ }
+
+ if ((TextureType == TEXTURE_SHADOW1D ||
+ TextureType == TEXTURE_SHADOW2D ||
+ TextureType == TEXTURE_SHADOWRECT ||
+ TextureType == TEXTURE_SHADOW1D_ARRAY) &&
+ !(hasLOD && useShadowVariant))
+ SrcSelect[3] = 2;
+ }
+
+ void ReplaceCallInst(CallInst &I, FunctionType *FT, const char *Name,
+ unsigned SrcSelect[4], Value *Offset[3], Value *Resource,
+ Value *Sampler, unsigned CT[4], Value *Coord) {
+ IRBuilder<> Builder(&I);
+ Constant *Mask[] = {
+ ConstantInt::get(Int32Type, SrcSelect[0]),
+ ConstantInt::get(Int32Type, SrcSelect[1]),
+ ConstantInt::get(Int32Type, SrcSelect[2]),
+ ConstantInt::get(Int32Type, SrcSelect[3])
+ };
+ Value *SwizzleMask = ConstantVector::get(Mask);
+ Value *SwizzledCoord =
+ Builder.CreateShuffleVector(Coord, Coord, SwizzleMask);
+
+ Value *Args[] = {
+ SwizzledCoord,
+ Offset[0],
+ Offset[1],
+ Offset[2],
+ Resource,
+ Sampler,
+ ConstantInt::get(Int32Type, CT[0]),
+ ConstantInt::get(Int32Type, CT[1]),
+ ConstantInt::get(Int32Type, CT[2]),
+ ConstantInt::get(Int32Type, CT[3])
+ };
+
+ Function *F = Mod->getFunction(Name);
+ if (!F) {
+ F = Function::Create(FT, GlobalValue::ExternalLinkage, Name, Mod);
+ F->addFnAttr(Attribute::ReadNone);
+ }
+ I.replaceAllUsesWith(Builder.CreateCall(F, Args));
+ I.eraseFromParent();
+ }
+
+ void ReplaceTexIntrinsic(CallInst &I, bool hasLOD, FunctionType *FT,
+ const char *VanillaInt,
+ const char *ShadowInt) {
+ Value *Coord = I.getArgOperand(0);
+ Value *ResourceId = I.getArgOperand(1);
+ Value *SamplerId = I.getArgOperand(2);
+
+ unsigned TextureType =
+ dyn_cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
+
+ unsigned SrcSelect[4] = { 0, 1, 2, 3 };
+ unsigned CT[4] = {1, 1, 1, 1};
+ Value *Offset[3] = {
+ ConstantInt::get(Int32Type, 0),
+ ConstantInt::get(Int32Type, 0),
+ ConstantInt::get(Int32Type, 0)
+ };
+ bool useShadowVariant;
+
+ getAdjustmentFromTextureTarget(TextureType, hasLOD, SrcSelect, CT,
+ useShadowVariant);
+
+ ReplaceCallInst(I, FT, useShadowVariant?ShadowInt:VanillaInt, SrcSelect,
+ Offset, ResourceId, SamplerId, CT, Coord);
+ }
+
+ void ReplaceTXF(CallInst &I) {
+ Value *Coord = I.getArgOperand(0);
+ Value *ResourceId = I.getArgOperand(4);
+ Value *SamplerId = I.getArgOperand(5);
+
+ unsigned TextureType =
+ dyn_cast<ConstantInt>(I.getArgOperand(6))->getZExtValue();
+
+ unsigned SrcSelect[4] = { 0, 1, 2, 3 };
+ unsigned CT[4] = {1, 1, 1, 1};
+ Value *Offset[3] = {
+ I.getArgOperand(1),
+ I.getArgOperand(2),
+ I.getArgOperand(3),
+ };
+ bool useShadowVariant;
+
+ getAdjustmentFromTextureTarget(TextureType, false, SrcSelect, CT,
+ useShadowVariant);
+
+ ReplaceCallInst(I, TexQSign, "llvm.R600.txf", SrcSelect,
+ Offset, ResourceId, SamplerId, CT, Coord);
+ }
+
+public:
+ R600TextureIntrinsicsReplacer():
+ FunctionPass(ID) {
+ }
+
+ bool doInitialization(Module &M) override {
+ LLVMContext &Ctx = M.getContext();
+ Mod = &M;
+ FloatType = Type::getFloatTy(Ctx);
+ Int32Type = Type::getInt32Ty(Ctx);
+ V4f32Type = VectorType::get(FloatType, 4);
+ V4i32Type = VectorType::get(Int32Type, 4);
+ Type *ArgsType[] = {
+ V4f32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ };
+ TexSign = FunctionType::get(V4f32Type, ArgsType, /*isVarArg=*/false);
+ Type *ArgsQType[] = {
+ V4i32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ Int32Type,
+ };
+ TexQSign = FunctionType::get(V4f32Type, ArgsQType, /*isVarArg=*/false);
+ return false;
+ }
+
+ bool runOnFunction(Function &F) override {
+ visit(F);
+ return false;
+ }
+
+ const char *getPassName() const override {
+ return "R600 Texture Intrinsics Replacer";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ }
+
+ void visitCallInst(CallInst &I) {
+ if (!I.getCalledFunction())
+ return;
+
+ StringRef Name = I.getCalledFunction()->getName();
+ if (Name == "llvm.AMDGPU.tex") {
+ ReplaceTexIntrinsic(I, false, TexSign, "llvm.R600.tex", "llvm.R600.texc");
+ return;
+ }
+ if (Name == "llvm.AMDGPU.txl") {
+ ReplaceTexIntrinsic(I, true, TexSign, "llvm.R600.txl", "llvm.R600.txlc");
+ return;
+ }
+ if (Name == "llvm.AMDGPU.txb") {
+ ReplaceTexIntrinsic(I, true, TexSign, "llvm.R600.txb", "llvm.R600.txbc");
+ return;
+ }
+ if (Name == "llvm.AMDGPU.txf") {
+ ReplaceTXF(I);
+ return;
+ }
+ if (Name == "llvm.AMDGPU.txq") {
+ ReplaceTexIntrinsic(I, false, TexQSign, "llvm.R600.txq", "llvm.R600.txq");
+ return;
+ }
+ if (Name == "llvm.AMDGPU.ddx") {
+ ReplaceTexIntrinsic(I, false, TexSign, "llvm.R600.ddx", "llvm.R600.ddx");
+ return;
+ }
+ if (Name == "llvm.AMDGPU.ddy") {
+ ReplaceTexIntrinsic(I, false, TexSign, "llvm.R600.ddy", "llvm.R600.ddy");
+ return;
+ }
+ }
+
+};
+
+char R600TextureIntrinsicsReplacer::ID = 0;
+
+}
+
+FunctionPass *llvm::createR600TextureIntrinsicsReplacer() {
+ return new R600TextureIntrinsicsReplacer();
+}
diff --git a/contrib/llvm/lib/Target/R600/R700Instructions.td b/contrib/llvm/lib/Target/R600/R700Instructions.td
new file mode 100644
index 0000000..9aad85d
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/R700Instructions.td
@@ -0,0 +1,21 @@
+//===-- R700Instructions.td - R700 Instruction defs -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// TableGen definitions for instructions which are:
+// - Available to R700 and newer VLIW4/VLIW5 GPUs
+// - Available only on R700 family GPUs.
+//
+//===----------------------------------------------------------------------===//
+
+def isR700 : Predicate<"Subtarget.getGeneration() == AMDGPUSubtarget::R700">;
+
+let Predicates = [isR700] in {
+ def SIN_r700 : SIN_Common<0x6E>;
+ def COS_r700 : COS_Common<0x6F>;
+}
diff --git a/contrib/llvm/lib/Target/R600/SIAnnotateControlFlow.cpp b/contrib/llvm/lib/Target/R600/SIAnnotateControlFlow.cpp
new file mode 100644
index 0000000..91eb60b
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIAnnotateControlFlow.cpp
@@ -0,0 +1,329 @@
+//===-- SIAnnotateControlFlow.cpp - ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// Annotates the control flow with hardware specific intrinsics.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "si-annotate-control-flow"
+
+namespace {
+
+// Complex types used in this pass
+typedef std::pair<BasicBlock *, Value *> StackEntry;
+typedef SmallVector<StackEntry, 16> StackVector;
+
+// Intrinsic names the control flow is annotated with
+static const char *const IfIntrinsic = "llvm.SI.if";
+static const char *const ElseIntrinsic = "llvm.SI.else";
+static const char *const BreakIntrinsic = "llvm.SI.break";
+static const char *const IfBreakIntrinsic = "llvm.SI.if.break";
+static const char *const ElseBreakIntrinsic = "llvm.SI.else.break";
+static const char *const LoopIntrinsic = "llvm.SI.loop";
+static const char *const EndCfIntrinsic = "llvm.SI.end.cf";
+
+class SIAnnotateControlFlow : public FunctionPass {
+
+ static char ID;
+
+ Type *Boolean;
+ Type *Void;
+ Type *Int64;
+ Type *ReturnStruct;
+
+ ConstantInt *BoolTrue;
+ ConstantInt *BoolFalse;
+ UndefValue *BoolUndef;
+ Constant *Int64Zero;
+
+ Constant *If;
+ Constant *Else;
+ Constant *Break;
+ Constant *IfBreak;
+ Constant *ElseBreak;
+ Constant *Loop;
+ Constant *EndCf;
+
+ DominatorTree *DT;
+ StackVector Stack;
+
+ bool isTopOfStack(BasicBlock *BB);
+
+ Value *popSaved();
+
+ void push(BasicBlock *BB, Value *Saved);
+
+ bool isElse(PHINode *Phi);
+
+ void eraseIfUnused(PHINode *Phi);
+
+ void openIf(BranchInst *Term);
+
+ void insertElse(BranchInst *Term);
+
+ Value *handleLoopCondition(Value *Cond, PHINode *Broken);
+
+ void handleLoop(BranchInst *Term);
+
+ void closeControlFlow(BasicBlock *BB);
+
+public:
+ SIAnnotateControlFlow():
+ FunctionPass(ID) { }
+
+ bool doInitialization(Module &M) override;
+
+ bool runOnFunction(Function &F) override;
+
+ const char *getPassName() const override {
+ return "SI annotate control flow";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ FunctionPass::getAnalysisUsage(AU);
+ }
+
+};
+
+} // end anonymous namespace
+
+char SIAnnotateControlFlow::ID = 0;
+
+/// \brief Initialize all the types and constants used in the pass
+bool SIAnnotateControlFlow::doInitialization(Module &M) {
+ LLVMContext &Context = M.getContext();
+
+ Void = Type::getVoidTy(Context);
+ Boolean = Type::getInt1Ty(Context);
+ Int64 = Type::getInt64Ty(Context);
+ ReturnStruct = StructType::get(Boolean, Int64, (Type *)nullptr);
+
+ BoolTrue = ConstantInt::getTrue(Context);
+ BoolFalse = ConstantInt::getFalse(Context);
+ BoolUndef = UndefValue::get(Boolean);
+ Int64Zero = ConstantInt::get(Int64, 0);
+
+ If = M.getOrInsertFunction(
+ IfIntrinsic, ReturnStruct, Boolean, (Type *)nullptr);
+
+ Else = M.getOrInsertFunction(
+ ElseIntrinsic, ReturnStruct, Int64, (Type *)nullptr);
+
+ Break = M.getOrInsertFunction(
+ BreakIntrinsic, Int64, Int64, (Type *)nullptr);
+
+ IfBreak = M.getOrInsertFunction(
+ IfBreakIntrinsic, Int64, Boolean, Int64, (Type *)nullptr);
+
+ ElseBreak = M.getOrInsertFunction(
+ ElseBreakIntrinsic, Int64, Int64, Int64, (Type *)nullptr);
+
+ Loop = M.getOrInsertFunction(
+ LoopIntrinsic, Boolean, Int64, (Type *)nullptr);
+
+ EndCf = M.getOrInsertFunction(
+ EndCfIntrinsic, Void, Int64, (Type *)nullptr);
+
+ return false;
+}
+
+/// \brief Is BB the last block saved on the stack ?
+bool SIAnnotateControlFlow::isTopOfStack(BasicBlock *BB) {
+ return !Stack.empty() && Stack.back().first == BB;
+}
+
+/// \brief Pop the last saved value from the control flow stack
+Value *SIAnnotateControlFlow::popSaved() {
+ return Stack.pop_back_val().second;
+}
+
+/// \brief Push a BB and saved value to the control flow stack
+void SIAnnotateControlFlow::push(BasicBlock *BB, Value *Saved) {
+ Stack.push_back(std::make_pair(BB, Saved));
+}
+
+/// \brief Can the condition represented by this PHI node treated like
+/// an "Else" block?
+bool SIAnnotateControlFlow::isElse(PHINode *Phi) {
+ BasicBlock *IDom = DT->getNode(Phi->getParent())->getIDom()->getBlock();
+ for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) {
+ if (Phi->getIncomingBlock(i) == IDom) {
+
+ if (Phi->getIncomingValue(i) != BoolTrue)
+ return false;
+
+ } else {
+ if (Phi->getIncomingValue(i) != BoolFalse)
+ return false;
+
+ }
+ }
+ return true;
+}
+
+// \brief Erase "Phi" if it is not used any more
+void SIAnnotateControlFlow::eraseIfUnused(PHINode *Phi) {
+ if (!Phi->hasNUsesOrMore(1))
+ Phi->eraseFromParent();
+}
+
+/// \brief Open a new "If" block
+void SIAnnotateControlFlow::openIf(BranchInst *Term) {
+ Value *Ret = CallInst::Create(If, Term->getCondition(), "", Term);
+ Term->setCondition(ExtractValueInst::Create(Ret, 0, "", Term));
+ push(Term->getSuccessor(1), ExtractValueInst::Create(Ret, 1, "", Term));
+}
+
+/// \brief Close the last "If" block and open a new "Else" block
+void SIAnnotateControlFlow::insertElse(BranchInst *Term) {
+ Value *Ret = CallInst::Create(Else, popSaved(), "", Term);
+ Term->setCondition(ExtractValueInst::Create(Ret, 0, "", Term));
+ push(Term->getSuccessor(1), ExtractValueInst::Create(Ret, 1, "", Term));
+}
+
+/// \brief Recursively handle the condition leading to a loop
+Value *SIAnnotateControlFlow::handleLoopCondition(Value *Cond, PHINode *Broken) {
+ if (PHINode *Phi = dyn_cast<PHINode>(Cond)) {
+ BasicBlock *Parent = Phi->getParent();
+ PHINode *NewPhi = PHINode::Create(Int64, 0, "", &Parent->front());
+ Value *Ret = NewPhi;
+
+ // Handle all non-constant incoming values first
+ for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) {
+ Value *Incoming = Phi->getIncomingValue(i);
+ BasicBlock *From = Phi->getIncomingBlock(i);
+ if (isa<ConstantInt>(Incoming)) {
+ NewPhi->addIncoming(Broken, From);
+ continue;
+ }
+
+ Phi->setIncomingValue(i, BoolFalse);
+ Value *PhiArg = handleLoopCondition(Incoming, Broken);
+ NewPhi->addIncoming(PhiArg, From);
+ }
+
+ BasicBlock *IDom = DT->getNode(Parent)->getIDom()->getBlock();
+
+ for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) {
+
+ Value *Incoming = Phi->getIncomingValue(i);
+ if (Incoming != BoolTrue)
+ continue;
+
+ BasicBlock *From = Phi->getIncomingBlock(i);
+ if (From == IDom) {
+ CallInst *OldEnd = dyn_cast<CallInst>(Parent->getFirstInsertionPt());
+ if (OldEnd && OldEnd->getCalledFunction() == EndCf) {
+ Value *Args[] = { OldEnd->getArgOperand(0), NewPhi };
+ Ret = CallInst::Create(ElseBreak, Args, "", OldEnd);
+ continue;
+ }
+ }
+ TerminatorInst *Insert = From->getTerminator();
+ Value *PhiArg = CallInst::Create(Break, Broken, "", Insert);
+ NewPhi->setIncomingValue(i, PhiArg);
+ }
+ eraseIfUnused(Phi);
+ return Ret;
+
+ } else if (Instruction *Inst = dyn_cast<Instruction>(Cond)) {
+ BasicBlock *Parent = Inst->getParent();
+ TerminatorInst *Insert = Parent->getTerminator();
+ Value *Args[] = { Cond, Broken };
+ return CallInst::Create(IfBreak, Args, "", Insert);
+
+ } else {
+ llvm_unreachable("Unhandled loop condition!");
+ }
+ return 0;
+}
+
+/// \brief Handle a back edge (loop)
+void SIAnnotateControlFlow::handleLoop(BranchInst *Term) {
+ BasicBlock *Target = Term->getSuccessor(1);
+ PHINode *Broken = PHINode::Create(Int64, 0, "", &Target->front());
+
+ Value *Cond = Term->getCondition();
+ Term->setCondition(BoolTrue);
+ Value *Arg = handleLoopCondition(Cond, Broken);
+
+ BasicBlock *BB = Term->getParent();
+ for (pred_iterator PI = pred_begin(Target), PE = pred_end(Target);
+ PI != PE; ++PI) {
+
+ Broken->addIncoming(*PI == BB ? Arg : Int64Zero, *PI);
+ }
+
+ Term->setCondition(CallInst::Create(Loop, Arg, "", Term));
+ push(Term->getSuccessor(0), Arg);
+}
+
+/// \brief Close the last opened control flow
+void SIAnnotateControlFlow::closeControlFlow(BasicBlock *BB) {
+ CallInst::Create(EndCf, popSaved(), "", BB->getFirstInsertionPt());
+}
+
+/// \brief Annotate the control flow with intrinsics so the backend can
+/// recognize if/then/else and loops.
+bool SIAnnotateControlFlow::runOnFunction(Function &F) {
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ for (df_iterator<BasicBlock *> I = df_begin(&F.getEntryBlock()),
+ E = df_end(&F.getEntryBlock()); I != E; ++I) {
+
+ BranchInst *Term = dyn_cast<BranchInst>((*I)->getTerminator());
+
+ if (!Term || Term->isUnconditional()) {
+ if (isTopOfStack(*I))
+ closeControlFlow(*I);
+ continue;
+ }
+
+ if (I.nodeVisited(Term->getSuccessor(1))) {
+ if (isTopOfStack(*I))
+ closeControlFlow(*I);
+ handleLoop(Term);
+ continue;
+ }
+
+ if (isTopOfStack(*I)) {
+ PHINode *Phi = dyn_cast<PHINode>(Term->getCondition());
+ if (Phi && Phi->getParent() == *I && isElse(Phi)) {
+ insertElse(Term);
+ eraseIfUnused(Phi);
+ continue;
+ }
+ closeControlFlow(*I);
+ }
+ openIf(Term);
+ }
+
+ assert(Stack.empty());
+ return true;
+}
+
+/// \brief Create the annotation pass
+FunctionPass *llvm::createSIAnnotateControlFlowPass() {
+ return new SIAnnotateControlFlow();
+}
diff --git a/contrib/llvm/lib/Target/R600/SIDefines.h b/contrib/llvm/lib/Target/R600/SIDefines.h
new file mode 100644
index 0000000..b7e7a2d
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIDefines.h
@@ -0,0 +1,92 @@
+//===-- SIDefines.h - SI Helper Macros ----------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+#ifndef SIDEFINES_H_
+#define SIDEFINES_H_
+
+namespace SIInstrFlags {
+enum {
+ MIMG = 1 << 3,
+ SMRD = 1 << 4,
+ VOP1 = 1 << 5,
+ VOP2 = 1 << 6,
+ VOP3 = 1 << 7,
+ VOPC = 1 << 8,
+ SALU = 1 << 9
+};
+}
+
+#define R_00B028_SPI_SHADER_PGM_RSRC1_PS 0x00B028
+#define R_00B02C_SPI_SHADER_PGM_RSRC2_PS 0x00B02C
+#define S_00B02C_EXTRA_LDS_SIZE(x) (((x) & 0xFF) << 8)
+#define R_00B128_SPI_SHADER_PGM_RSRC1_VS 0x00B128
+#define R_00B228_SPI_SHADER_PGM_RSRC1_GS 0x00B228
+#define R_00B848_COMPUTE_PGM_RSRC1 0x00B848
+#define S_00B028_VGPRS(x) (((x) & 0x3F) << 0)
+#define S_00B028_SGPRS(x) (((x) & 0x0F) << 6)
+#define R_00B84C_COMPUTE_PGM_RSRC2 0x00B84C
+#define S_00B02C_SCRATCH_EN(x) (((x) & 0x1) << 0)
+#define S_00B84C_LDS_SIZE(x) (((x) & 0x1FF) << 15)
+#define R_0286CC_SPI_PS_INPUT_ENA 0x0286CC
+
+
+#define R_00B848_COMPUTE_PGM_RSRC1 0x00B848
+#define S_00B848_VGPRS(x) (((x) & 0x3F) << 0)
+#define G_00B848_VGPRS(x) (((x) >> 0) & 0x3F)
+#define C_00B848_VGPRS 0xFFFFFFC0
+#define S_00B848_SGPRS(x) (((x) & 0x0F) << 6)
+#define G_00B848_SGPRS(x) (((x) >> 6) & 0x0F)
+#define C_00B848_SGPRS 0xFFFFFC3F
+#define S_00B848_PRIORITY(x) (((x) & 0x03) << 10)
+#define G_00B848_PRIORITY(x) (((x) >> 10) & 0x03)
+#define C_00B848_PRIORITY 0xFFFFF3FF
+#define S_00B848_FLOAT_MODE(x) (((x) & 0xFF) << 12)
+#define G_00B848_FLOAT_MODE(x) (((x) >> 12) & 0xFF)
+#define C_00B848_FLOAT_MODE 0xFFF00FFF
+#define S_00B848_PRIV(x) (((x) & 0x1) << 20)
+#define G_00B848_PRIV(x) (((x) >> 20) & 0x1)
+#define C_00B848_PRIV 0xFFEFFFFF
+#define S_00B848_DX10_CLAMP(x) (((x) & 0x1) << 21)
+#define G_00B848_DX10_CLAMP(x) (((x) >> 21) & 0x1)
+#define C_00B848_DX10_CLAMP 0xFFDFFFFF
+#define S_00B848_DEBUG_MODE(x) (((x) & 0x1) << 22)
+#define G_00B848_DEBUG_MODE(x) (((x) >> 22) & 0x1)
+#define C_00B848_DEBUG_MODE 0xFFBFFFFF
+#define S_00B848_IEEE_MODE(x) (((x) & 0x1) << 23)
+#define G_00B848_IEEE_MODE(x) (((x) >> 23) & 0x1)
+#define C_00B848_IEEE_MODE 0xFF7FFFFF
+
+
+// Helpers for setting FLOAT_MODE
+#define FP_ROUND_ROUND_TO_NEAREST 0
+#define FP_ROUND_ROUND_TO_INF 1
+#define FP_ROUND_ROUND_TO_NEGINF 2
+#define FP_ROUND_ROUND_TO_ZERO 3
+
+// Bits 3:0 control rounding mode. 1:0 control single precision, 3:2 double
+// precision.
+#define FP_ROUND_MODE_SP(x) ((x) & 0x3)
+#define FP_ROUND_MODE_DP(x) (((x) & 0x3) << 2)
+
+#define FP_DENORM_FLUSH_IN_FLUSH_OUT 0
+#define FP_DENORM_FLUSH_OUT 1
+#define FP_DENORM_FLUSH_IN 2
+#define FP_DENORM_FLUSH_NONE 3
+
+
+// Bits 7:4 control denormal handling. 5:4 control single precision, 6:7 double
+// precision.
+#define FP_DENORM_MODE_SP(x) (((x) & 0x3) << 4)
+#define FP_DENORM_MODE_DP(x) (((x) & 0x3) << 6)
+
+#define R_00B860_COMPUTE_TMPRING_SIZE 0x00B860
+#define S_00B860_WAVESIZE(x) (((x) & 0x1FFF) << 12)
+
+#endif // SIDEFINES_H_
diff --git a/contrib/llvm/lib/Target/R600/SIFixSGPRCopies.cpp b/contrib/llvm/lib/Target/R600/SIFixSGPRCopies.cpp
new file mode 100644
index 0000000..5f71453
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIFixSGPRCopies.cpp
@@ -0,0 +1,278 @@
+//===-- SIFixSGPRCopies.cpp - Remove potential VGPR => SGPR copies --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// Copies from VGPR to SGPR registers are illegal and the register coalescer
+/// will sometimes generate these illegal copies in situations like this:
+///
+/// Register Class <vsrc> is the union of <vgpr> and <sgpr>
+///
+/// BB0:
+/// %vreg0 <sgpr> = SCALAR_INST
+/// %vreg1 <vsrc> = COPY %vreg0 <sgpr>
+/// ...
+/// BRANCH %cond BB1, BB2
+/// BB1:
+/// %vreg2 <vgpr> = VECTOR_INST
+/// %vreg3 <vsrc> = COPY %vreg2 <vgpr>
+/// BB2:
+/// %vreg4 <vsrc> = PHI %vreg1 <vsrc>, <BB#0>, %vreg3 <vrsc>, <BB#1>
+/// %vreg5 <vgpr> = VECTOR_INST %vreg4 <vsrc>
+///
+///
+/// The coalescer will begin at BB0 and eliminate its copy, then the resulting
+/// code will look like this:
+///
+/// BB0:
+/// %vreg0 <sgpr> = SCALAR_INST
+/// ...
+/// BRANCH %cond BB1, BB2
+/// BB1:
+/// %vreg2 <vgpr> = VECTOR_INST
+/// %vreg3 <vsrc> = COPY %vreg2 <vgpr>
+/// BB2:
+/// %vreg4 <sgpr> = PHI %vreg0 <sgpr>, <BB#0>, %vreg3 <vsrc>, <BB#1>
+/// %vreg5 <vgpr> = VECTOR_INST %vreg4 <sgpr>
+///
+/// Now that the result of the PHI instruction is an SGPR, the register
+/// allocator is now forced to constrain the register class of %vreg3 to
+/// <sgpr> so we end up with final code like this:
+///
+/// BB0:
+/// %vreg0 <sgpr> = SCALAR_INST
+/// ...
+/// BRANCH %cond BB1, BB2
+/// BB1:
+/// %vreg2 <vgpr> = VECTOR_INST
+/// %vreg3 <sgpr> = COPY %vreg2 <vgpr>
+/// BB2:
+/// %vreg4 <sgpr> = PHI %vreg0 <sgpr>, <BB#0>, %vreg3 <sgpr>, <BB#1>
+/// %vreg5 <vgpr> = VECTOR_INST %vreg4 <sgpr>
+///
+/// Now this code contains an illegal copy from a VGPR to an SGPR.
+///
+/// In order to avoid this problem, this pass searches for PHI instructions
+/// which define a <vsrc> register and constrains its definition class to
+/// <vgpr> if the user of the PHI's definition register is a vector instruction.
+/// If the PHI's definition class is constrained to <vgpr> then the coalescer
+/// will be unable to perform the COPY removal from the above example which
+/// ultimately led to the creation of an illegal COPY.
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "SIInstrInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "sgpr-copies"
+
+namespace {
+
+class SIFixSGPRCopies : public MachineFunctionPass {
+
+private:
+ static char ID;
+ const TargetRegisterClass *inferRegClassFromUses(const SIRegisterInfo *TRI,
+ const MachineRegisterInfo &MRI,
+ unsigned Reg,
+ unsigned SubReg) const;
+ const TargetRegisterClass *inferRegClassFromDef(const SIRegisterInfo *TRI,
+ const MachineRegisterInfo &MRI,
+ unsigned Reg,
+ unsigned SubReg) const;
+ bool isVGPRToSGPRCopy(const MachineInstr &Copy, const SIRegisterInfo *TRI,
+ const MachineRegisterInfo &MRI) const;
+
+public:
+ SIFixSGPRCopies(TargetMachine &tm) : MachineFunctionPass(ID) { }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "SI Fix SGPR copies";
+ }
+
+};
+
+} // End anonymous namespace
+
+char SIFixSGPRCopies::ID = 0;
+
+FunctionPass *llvm::createSIFixSGPRCopiesPass(TargetMachine &tm) {
+ return new SIFixSGPRCopies(tm);
+}
+
+static bool hasVGPROperands(const MachineInstr &MI, const SIRegisterInfo *TRI) {
+ const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ if (!MI.getOperand(i).isReg() ||
+ !TargetRegisterInfo::isVirtualRegister(MI.getOperand(i).getReg()))
+ continue;
+
+ if (TRI->hasVGPRs(MRI.getRegClass(MI.getOperand(i).getReg())))
+ return true;
+ }
+ return false;
+}
+
+/// This functions walks the use list of Reg until it finds an Instruction
+/// that isn't a COPY returns the register class of that instruction.
+/// \return The register defined by the first non-COPY instruction.
+const TargetRegisterClass *SIFixSGPRCopies::inferRegClassFromUses(
+ const SIRegisterInfo *TRI,
+ const MachineRegisterInfo &MRI,
+ unsigned Reg,
+ unsigned SubReg) const {
+ // The Reg parameter to the function must always be defined by either a PHI
+ // or a COPY, therefore it cannot be a physical register.
+ assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
+ "Reg cannot be a physical register");
+
+ const TargetRegisterClass *RC = MRI.getRegClass(Reg);
+ RC = TRI->getSubRegClass(RC, SubReg);
+ for (MachineRegisterInfo::use_instr_iterator
+ I = MRI.use_instr_begin(Reg), E = MRI.use_instr_end(); I != E; ++I) {
+ switch (I->getOpcode()) {
+ case AMDGPU::COPY:
+ RC = TRI->getCommonSubClass(RC, inferRegClassFromUses(TRI, MRI,
+ I->getOperand(0).getReg(),
+ I->getOperand(0).getSubReg()));
+ break;
+ }
+ }
+
+ return RC;
+}
+
+const TargetRegisterClass *SIFixSGPRCopies::inferRegClassFromDef(
+ const SIRegisterInfo *TRI,
+ const MachineRegisterInfo &MRI,
+ unsigned Reg,
+ unsigned SubReg) const {
+ if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
+ const TargetRegisterClass *RC = TRI->getPhysRegClass(Reg);
+ return TRI->getSubRegClass(RC, SubReg);
+ }
+ MachineInstr *Def = MRI.getVRegDef(Reg);
+ if (Def->getOpcode() != AMDGPU::COPY) {
+ return TRI->getSubRegClass(MRI.getRegClass(Reg), SubReg);
+ }
+
+ return inferRegClassFromDef(TRI, MRI, Def->getOperand(1).getReg(),
+ Def->getOperand(1).getSubReg());
+}
+
+bool SIFixSGPRCopies::isVGPRToSGPRCopy(const MachineInstr &Copy,
+ const SIRegisterInfo *TRI,
+ const MachineRegisterInfo &MRI) const {
+
+ unsigned DstReg = Copy.getOperand(0).getReg();
+ unsigned SrcReg = Copy.getOperand(1).getReg();
+ unsigned SrcSubReg = Copy.getOperand(1).getSubReg();
+ const TargetRegisterClass *DstRC = MRI.getRegClass(DstReg);
+ const TargetRegisterClass *SrcRC;
+
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
+ DstRC == &AMDGPU::M0RegRegClass ||
+ MRI.getRegClass(SrcReg) == &AMDGPU::VReg_1RegClass)
+ return false;
+
+ SrcRC = TRI->getSubRegClass(MRI.getRegClass(SrcReg), SrcSubReg);
+ return TRI->isSGPRClass(DstRC) && TRI->hasVGPRs(SrcRC);
+}
+
+bool SIFixSGPRCopies::runOnMachineFunction(MachineFunction &MF) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(
+ MF.getTarget().getRegisterInfo());
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ MF.getTarget().getInstrInfo());
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
+ BI != BE; ++BI) {
+
+ MachineBasicBlock &MBB = *BI;
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ I != E; ++I) {
+ MachineInstr &MI = *I;
+ if (MI.getOpcode() == AMDGPU::COPY && isVGPRToSGPRCopy(MI, TRI, MRI)) {
+ DEBUG(dbgs() << "Fixing VGPR -> SGPR copy:\n");
+ DEBUG(MI.print(dbgs()));
+ TII->moveToVALU(MI);
+
+ }
+
+ switch (MI.getOpcode()) {
+ default: continue;
+ case AMDGPU::PHI: {
+ DEBUG(dbgs() << " Fixing PHI:\n");
+ DEBUG(MI.print(dbgs()));
+
+ for (unsigned i = 1; i < MI.getNumOperands(); i+=2) {
+ unsigned Reg = MI.getOperand(i).getReg();
+ const TargetRegisterClass *RC = inferRegClassFromDef(TRI, MRI, Reg,
+ MI.getOperand(0).getSubReg());
+ MRI.constrainRegClass(Reg, RC);
+ }
+ unsigned Reg = MI.getOperand(0).getReg();
+ const TargetRegisterClass *RC = inferRegClassFromUses(TRI, MRI, Reg,
+ MI.getOperand(0).getSubReg());
+ if (TRI->getCommonSubClass(RC, &AMDGPU::VReg_32RegClass)) {
+ MRI.constrainRegClass(Reg, &AMDGPU::VReg_32RegClass);
+ }
+
+ if (!TRI->isSGPRClass(MRI.getRegClass(Reg)))
+ break;
+
+ // If a PHI node defines an SGPR and any of its operands are VGPRs,
+ // then we need to move it to the VALU.
+ for (unsigned i = 1; i < MI.getNumOperands(); i+=2) {
+ unsigned Reg = MI.getOperand(i).getReg();
+ if (TRI->hasVGPRs(MRI.getRegClass(Reg))) {
+ TII->moveToVALU(MI);
+ break;
+ }
+ }
+
+ break;
+ }
+ case AMDGPU::REG_SEQUENCE: {
+ if (TRI->hasVGPRs(TII->getOpRegClass(MI, 0)) ||
+ !hasVGPROperands(MI, TRI))
+ continue;
+
+ DEBUG(dbgs() << "Fixing REG_SEQUENCE:\n");
+ DEBUG(MI.print(dbgs()));
+
+ TII->moveToVALU(MI);
+ break;
+ }
+ case AMDGPU::INSERT_SUBREG: {
+ const TargetRegisterClass *DstRC, *Src0RC, *Src1RC;
+ DstRC = MRI.getRegClass(MI.getOperand(0).getReg());
+ Src0RC = MRI.getRegClass(MI.getOperand(1).getReg());
+ Src1RC = MRI.getRegClass(MI.getOperand(2).getReg());
+ if (TRI->isSGPRClass(DstRC) &&
+ (TRI->hasVGPRs(Src0RC) || TRI->hasVGPRs(Src1RC))) {
+ DEBUG(dbgs() << " Fixing INSERT_SUBREG:\n");
+ DEBUG(MI.print(dbgs()));
+ TII->moveToVALU(MI);
+ }
+ break;
+ }
+ }
+ }
+ }
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/R600/SIFixSGPRLiveRanges.cpp b/contrib/llvm/lib/Target/R600/SIFixSGPRLiveRanges.cpp
new file mode 100644
index 0000000..7d116ee
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIFixSGPRLiveRanges.cpp
@@ -0,0 +1,110 @@
+//===-- SIFixSGPRLiveRanges.cpp - Fix SGPR live ranges ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// SALU instructions ignore control flow, so we need to modify the live ranges
+/// of the registers they define.
+///
+/// The strategy is to view the entire program as if it were a single basic
+/// block and calculate the intervals accordingly. We implement this
+/// by walking this list of segments for each LiveRange and setting the
+/// end of each segment equal to the start of the segment that immediately
+/// follows it.
+
+#include "AMDGPU.h"
+#include "SIRegisterInfo.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "si-fix-sgpr-live-ranges"
+
+namespace {
+
+class SIFixSGPRLiveRanges : public MachineFunctionPass {
+public:
+ static char ID;
+
+public:
+ SIFixSGPRLiveRanges() : MachineFunctionPass(ID) {
+ initializeSIFixSGPRLiveRangesPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual bool runOnMachineFunction(MachineFunction &MF) override;
+
+ virtual const char *getPassName() const override {
+ return "SI Fix SGPR live ranges";
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreserved<SlotIndexes>();
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+
+} // End anonymous namespace.
+
+INITIALIZE_PASS_BEGIN(SIFixSGPRLiveRanges, DEBUG_TYPE,
+ "SI Fix SGPR Live Ranges", false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_END(SIFixSGPRLiveRanges, DEBUG_TYPE,
+ "SI Fix SGPR Live Ranges", false, false)
+
+char SIFixSGPRLiveRanges::ID = 0;
+
+char &llvm::SIFixSGPRLiveRangesID = SIFixSGPRLiveRanges::ID;
+
+FunctionPass *llvm::createSIFixSGPRLiveRangesPass() {
+ return new SIFixSGPRLiveRanges();
+}
+
+bool SIFixSGPRLiveRanges::runOnMachineFunction(MachineFunction &MF) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(
+ MF.getTarget().getRegisterInfo());
+ LiveIntervals *LIS = &getAnalysis<LiveIntervals>();
+
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
+ BI != BE; ++BI) {
+
+ MachineBasicBlock &MBB = *BI;
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ I != E; ++I) {
+ MachineInstr &MI = *I;
+ MachineOperand *ExecUse = MI.findRegisterUseOperand(AMDGPU::EXEC);
+ if (ExecUse)
+ continue;
+
+ for (const MachineOperand &Def : MI.operands()) {
+ if (!Def.isReg() || !Def.isDef() ||!TargetRegisterInfo::isVirtualRegister(Def.getReg()))
+ continue;
+
+ const TargetRegisterClass *RC = MRI.getRegClass(Def.getReg());
+
+ if (!TRI->isSGPRClass(RC))
+ continue;
+ LiveInterval &LI = LIS->getInterval(Def.getReg());
+ for (unsigned i = 0, e = LI.size() - 1; i != e; ++i) {
+ LiveRange::Segment &Seg = LI.segments[i];
+ LiveRange::Segment &Next = LI.segments[i + 1];
+ Seg.end = Next.start;
+ }
+ }
+ }
+ }
+
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/R600/SIISelLowering.cpp b/contrib/llvm/lib/Target/R600/SIISelLowering.cpp
new file mode 100644
index 0000000..5a148a2
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIISelLowering.cpp
@@ -0,0 +1,1821 @@
+//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Custom DAG lowering for SI
+//
+//===----------------------------------------------------------------------===//
+
+#ifdef _MSC_VER
+// Provide M_PI.
+#define _USE_MATH_DEFINES
+#include <cmath>
+#endif
+
+#include "SIISelLowering.h"
+#include "AMDGPU.h"
+#include "AMDGPUIntrinsicInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "SIInstrInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "SIRegisterInfo.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/IR/Function.h"
+#include "llvm/ADT/SmallString.h"
+
+using namespace llvm;
+
+SITargetLowering::SITargetLowering(TargetMachine &TM) :
+ AMDGPUTargetLowering(TM) {
+ addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
+ addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
+
+ addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
+ addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
+
+ addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
+ addRegisterClass(MVT::f32, &AMDGPU::VReg_32RegClass);
+
+ addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
+ addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
+ addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
+
+ addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
+ addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
+
+ addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass);
+ addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
+
+ addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass);
+ addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
+
+ computeRegisterProperties();
+
+ // Condition Codes
+ setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
+
+ setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETULE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
+
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
+
+ setOperationAction(ISD::ADD, MVT::i32, Legal);
+ setOperationAction(ISD::ADDC, MVT::i32, Legal);
+ setOperationAction(ISD::ADDE, MVT::i32, Legal);
+ setOperationAction(ISD::SUBC, MVT::i32, Legal);
+ setOperationAction(ISD::SUBE, MVT::i32, Legal);
+
+ setOperationAction(ISD::FSIN, MVT::f32, Custom);
+ setOperationAction(ISD::FCOS, MVT::f32, Custom);
+
+ // We need to custom lower vector stores from local memory
+ setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::STORE, MVT::v8i32, Custom);
+ setOperationAction(ISD::STORE, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::STORE, MVT::i1, Custom);
+ setOperationAction(ISD::STORE, MVT::i32, Custom);
+ setOperationAction(ISD::STORE, MVT::v2i32, Custom);
+ setOperationAction(ISD::STORE, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::SELECT, MVT::f32, Promote);
+ AddPromotedToType(ISD::SELECT, MVT::f32, MVT::i32);
+ setOperationAction(ISD::SELECT, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Promote);
+ AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
+
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
+
+ setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
+ setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Custom);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
+
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
+
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
+ setOperationAction(ISD::BRCOND, MVT::Other, Custom);
+
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, Expand);
+
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Custom);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i16, Custom);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+
+ setTruncStoreAction(MVT::i32, MVT::i8, Custom);
+ setTruncStoreAction(MVT::i32, MVT::i16, Custom);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i32, Expand);
+ setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
+ setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
+
+ setOperationAction(ISD::LOAD, MVT::i1, Custom);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+ setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
+
+ // These should use UDIVREM, so set them to expand
+ setOperationAction(ISD::UDIV, MVT::i64, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+
+ // We only support LOAD/STORE and vector manipulation ops for vectors
+ // with > 4 elements.
+ MVT VecTypes[] = {
+ MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32
+ };
+
+ setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
+ setOperationAction(ISD::SELECT, MVT::i1, Promote);
+
+ for (MVT VT : VecTypes) {
+ for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
+ switch(Op) {
+ case ISD::LOAD:
+ case ISD::STORE:
+ case ISD::BUILD_VECTOR:
+ case ISD::BITCAST:
+ case ISD::EXTRACT_VECTOR_ELT:
+ case ISD::INSERT_VECTOR_ELT:
+ case ISD::CONCAT_VECTORS:
+ case ISD::INSERT_SUBVECTOR:
+ case ISD::EXTRACT_SUBVECTOR:
+ break;
+ default:
+ setOperationAction(Op, VT, Expand);
+ break;
+ }
+ }
+ }
+
+ for (int I = MVT::v1f64; I <= MVT::v8f64; ++I) {
+ MVT::SimpleValueType VT = static_cast<MVT::SimpleValueType>(I);
+ setOperationAction(ISD::FTRUNC, VT, Expand);
+ setOperationAction(ISD::FCEIL, VT, Expand);
+ setOperationAction(ISD::FFLOOR, VT, Expand);
+ }
+
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
+ setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f64, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
+ setOperationAction(ISD::FRINT, MVT::f64, Legal);
+ }
+
+ // FIXME: These should be removed and handled the same was as f32 fneg. Source
+ // modifiers also work for the double instructions.
+ setOperationAction(ISD::FNEG, MVT::f64, Expand);
+ setOperationAction(ISD::FABS, MVT::f64, Expand);
+
+ setOperationAction(ISD::FDIV, MVT::f32, Custom);
+
+ setTargetDAGCombine(ISD::SELECT_CC);
+ setTargetDAGCombine(ISD::SETCC);
+
+ setTargetDAGCombine(ISD::UINT_TO_FP);
+
+ setSchedulingPreference(Sched::RegPressure);
+}
+
+//===----------------------------------------------------------------------===//
+// TargetLowering queries
+//===----------------------------------------------------------------------===//
+
+bool SITargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
+ unsigned AddrSpace,
+ bool *IsFast) const {
+ if (IsFast)
+ *IsFast = false;
+
+ // XXX: This depends on the address space and also we may want to revist
+ // the alignment values we specify in the DataLayout.
+
+ // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
+ // which isn't a simple VT.
+ if (!VT.isSimple() || VT == MVT::Other)
+ return false;
+
+ // XXX - CI changes say "Support for unaligned memory accesses" but I don't
+ // see what for specifically. The wording everywhere else seems to be the
+ // same.
+
+ // XXX - The only mention I see of this in the ISA manual is for LDS direct
+ // reads the "byte address and must be dword aligned". Is it also true for the
+ // normal loads and stores?
+ if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS)
+ return false;
+
+ // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
+ // byte-address are ignored, thus forcing Dword alignment.
+ // This applies to private, global, and constant memory.
+ if (IsFast)
+ *IsFast = true;
+ return VT.bitsGT(MVT::i32);
+}
+
+TargetLoweringBase::LegalizeTypeAction
+SITargetLowering::getPreferredVectorAction(EVT VT) const {
+ if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
+ return TypeSplitVector;
+
+ return TargetLoweringBase::getPreferredVectorAction(VT);
+}
+
+bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ return TII->isInlineConstant(Imm);
+}
+
+SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
+ SDLoc DL, SDValue Chain,
+ unsigned Offset, bool Signed) const {
+ MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
+ PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
+ AMDGPUAS::CONSTANT_ADDRESS);
+ SDValue BasePtr = DAG.getCopyFromReg(Chain, DL,
+ MRI.getLiveInVirtReg(AMDGPU::SGPR0_SGPR1), MVT::i64);
+ SDValue Ptr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
+ DAG.getConstant(Offset, MVT::i64));
+ return DAG.getExtLoad(Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD, DL, VT, Chain, Ptr,
+ MachinePointerInfo(UndefValue::get(PtrTy)), MemVT,
+ false, false, MemVT.getSizeInBits() >> 3);
+
+}
+
+SDValue SITargetLowering::LowerFormalArguments(
+ SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ FunctionType *FType = MF.getFunction()->getFunctionType();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+
+ assert(CallConv == CallingConv::C);
+
+ SmallVector<ISD::InputArg, 16> Splits;
+ uint32_t Skipped = 0;
+
+ for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
+ const ISD::InputArg &Arg = Ins[i];
+
+ // First check if it's a PS input addr
+ if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
+ !Arg.Flags.isByVal()) {
+
+ assert((PSInputNum <= 15) && "Too many PS inputs!");
+
+ if (!Arg.Used) {
+ // We can savely skip PS inputs
+ Skipped |= 1 << i;
+ ++PSInputNum;
+ continue;
+ }
+
+ Info->PSInputAddr |= 1 << PSInputNum++;
+ }
+
+ // Second split vertices into their elements
+ if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
+ ISD::InputArg NewArg = Arg;
+ NewArg.Flags.setSplit();
+ NewArg.VT = Arg.VT.getVectorElementType();
+
+ // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
+ // three or five element vertex only needs three or five registers,
+ // NOT four or eigth.
+ Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
+ unsigned NumElements = ParamType->getVectorNumElements();
+
+ for (unsigned j = 0; j != NumElements; ++j) {
+ Splits.push_back(NewArg);
+ NewArg.PartOffset += NewArg.VT.getStoreSize();
+ }
+
+ } else if (Info->getShaderType() != ShaderType::COMPUTE) {
+ Splits.push_back(Arg);
+ }
+ }
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ // At least one interpolation mode must be enabled or else the GPU will hang.
+ if (Info->getShaderType() == ShaderType::PIXEL &&
+ (Info->PSInputAddr & 0x7F) == 0) {
+ Info->PSInputAddr |= 1;
+ CCInfo.AllocateReg(AMDGPU::VGPR0);
+ CCInfo.AllocateReg(AMDGPU::VGPR1);
+ }
+
+ // The pointer to the list of arguments is stored in SGPR0, SGPR1
+ // The pointer to the scratch buffer is stored in SGPR2, SGPR3
+ if (Info->getShaderType() == ShaderType::COMPUTE) {
+ Info->NumUserSGPRs = 4;
+ CCInfo.AllocateReg(AMDGPU::SGPR0);
+ CCInfo.AllocateReg(AMDGPU::SGPR1);
+ CCInfo.AllocateReg(AMDGPU::SGPR2);
+ CCInfo.AllocateReg(AMDGPU::SGPR3);
+ MF.addLiveIn(AMDGPU::SGPR0_SGPR1, &AMDGPU::SReg_64RegClass);
+ MF.addLiveIn(AMDGPU::SGPR2_SGPR3, &AMDGPU::SReg_64RegClass);
+ }
+
+ if (Info->getShaderType() == ShaderType::COMPUTE) {
+ getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
+ Splits);
+ }
+
+ AnalyzeFormalArguments(CCInfo, Splits);
+
+ for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
+
+ const ISD::InputArg &Arg = Ins[i];
+ if (Skipped & (1 << i)) {
+ InVals.push_back(DAG.getUNDEF(Arg.VT));
+ continue;
+ }
+
+ CCValAssign &VA = ArgLocs[ArgIdx++];
+ EVT VT = VA.getLocVT();
+
+ if (VA.isMemLoc()) {
+ VT = Ins[i].VT;
+ EVT MemVT = Splits[i].VT;
+ // The first 36 bytes of the input buffer contains information about
+ // thread group and global sizes.
+ SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, DAG.getRoot(),
+ 36 + VA.getLocMemOffset(),
+ Ins[i].Flags.isSExt());
+ InVals.push_back(Arg);
+ continue;
+ }
+ assert(VA.isRegLoc() && "Parameter must be in a register!");
+
+ unsigned Reg = VA.getLocReg();
+
+ if (VT == MVT::i64) {
+ // For now assume it is a pointer
+ Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
+ &AMDGPU::SReg_64RegClass);
+ Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
+ InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
+ continue;
+ }
+
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
+
+ Reg = MF.addLiveIn(Reg, RC);
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
+
+ if (Arg.VT.isVector()) {
+
+ // Build a vector from the registers
+ Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
+ unsigned NumElements = ParamType->getVectorNumElements();
+
+ SmallVector<SDValue, 4> Regs;
+ Regs.push_back(Val);
+ for (unsigned j = 1; j != NumElements; ++j) {
+ Reg = ArgLocs[ArgIdx++].getLocReg();
+ Reg = MF.addLiveIn(Reg, RC);
+ Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
+ }
+
+ // Fill up the missing vector elements
+ NumElements = Arg.VT.getVectorNumElements() - NumElements;
+ for (unsigned j = 0; j != NumElements; ++j)
+ Regs.push_back(DAG.getUNDEF(VT));
+
+ InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
+ continue;
+ }
+
+ InVals.push_back(Val);
+ }
+ return Chain;
+}
+
+MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
+ MachineInstr * MI, MachineBasicBlock * BB) const {
+
+ MachineBasicBlock::iterator I = *MI;
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+
+ switch (MI->getOpcode()) {
+ default:
+ return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
+ case AMDGPU::BRANCH: return BB;
+ case AMDGPU::SI_ADDR64_RSRC: {
+ unsigned SuperReg = MI->getOperand(0).getReg();
+ unsigned SubRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
+ unsigned SubRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
+ unsigned SubRegHiHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ unsigned SubRegHiLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), SubRegLo)
+ .addOperand(MI->getOperand(1));
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiLo)
+ .addImm(0);
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiHi)
+ .addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SubRegHi)
+ .addReg(SubRegHiLo)
+ .addImm(AMDGPU::sub0)
+ .addReg(SubRegHiHi)
+ .addImm(AMDGPU::sub1);
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SuperReg)
+ .addReg(SubRegLo)
+ .addImm(AMDGPU::sub0_sub1)
+ .addReg(SubRegHi)
+ .addImm(AMDGPU::sub2_sub3);
+ MI->eraseFromParent();
+ break;
+ }
+ case AMDGPU::SI_BUFFER_RSRC: {
+ unsigned SuperReg = MI->getOperand(0).getReg();
+ unsigned Args[4];
+ for (unsigned i = 0, e = 4; i < e; ++i) {
+ MachineOperand &Arg = MI->getOperand(i + 1);
+
+ if (Arg.isReg()) {
+ Args[i] = Arg.getReg();
+ continue;
+ }
+
+ assert(Arg.isImm());
+ unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), Reg)
+ .addImm(Arg.getImm());
+ Args[i] = Reg;
+ }
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE),
+ SuperReg)
+ .addReg(Args[0])
+ .addImm(AMDGPU::sub0)
+ .addReg(Args[1])
+ .addImm(AMDGPU::sub1)
+ .addReg(Args[2])
+ .addImm(AMDGPU::sub2)
+ .addReg(Args[3])
+ .addImm(AMDGPU::sub3);
+ MI->eraseFromParent();
+ break;
+ }
+ case AMDGPU::V_SUB_F64: {
+ unsigned DestReg = MI->getOperand(0).getReg();
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F64), DestReg)
+ .addImm(0) // SRC0 modifiers
+ .addReg(MI->getOperand(1).getReg())
+ .addImm(1) // SRC1 modifiers
+ .addReg(MI->getOperand(2).getReg())
+ .addImm(0) // SRC2 modifiers
+ .addImm(0) // src2
+ .addImm(0) // CLAMP
+ .addImm(0); // OMOD
+ MI->eraseFromParent();
+ break;
+ }
+ case AMDGPU::SI_RegisterStorePseudo: {
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
+ Reg);
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
+ MIB.addOperand(MI->getOperand(i));
+
+ MI->eraseFromParent();
+ break;
+ }
+ case AMDGPU::FABS_SI: {
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ unsigned Reg = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_MOV_B32_e32),
+ Reg)
+ .addImm(0x7fffffff);
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_AND_B32_e32),
+ MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg())
+ .addReg(Reg);
+ MI->eraseFromParent();
+ break;
+ }
+ case AMDGPU::FNEG_SI: {
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ unsigned Reg = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_MOV_B32_e32),
+ Reg)
+ .addImm(0x80000000);
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_XOR_B32_e32),
+ MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg())
+ .addReg(Reg);
+ MI->eraseFromParent();
+ break;
+ }
+ case AMDGPU::FCLAMP_SI: {
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F32_e64),
+ MI->getOperand(0).getReg())
+ .addImm(0) // SRC0 modifiers
+ .addOperand(MI->getOperand(1))
+ .addImm(0) // SRC1 modifiers
+ .addImm(0) // SRC1
+ .addImm(1) // CLAMP
+ .addImm(0); // OMOD
+ MI->eraseFromParent();
+ }
+ }
+ return BB;
+}
+
+EVT SITargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector()) {
+ return MVT::i1;
+ }
+ return MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+}
+
+MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
+ return MVT::i32;
+}
+
+bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ return false; /* There is V_MAD_F32 for f32 */
+ case MVT::f64:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Custom DAG Lowering Operations
+//===----------------------------------------------------------------------===//
+
+SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ switch (Op.getOpcode()) {
+ default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
+ case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
+ case ISD::BRCOND: return LowerBRCOND(Op, DAG);
+ case ISD::LOAD: {
+ SDValue Result = LowerLOAD(Op, DAG);
+ assert((!Result.getNode() ||
+ Result.getNode()->getNumValues() == 2) &&
+ "Load should return a value and a chain");
+ return Result;
+ }
+
+ case ISD::FSIN:
+ case ISD::FCOS:
+ return LowerTrig(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::FDIV: return LowerFDIV(Op, DAG);
+ case ISD::STORE: return LowerSTORE(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntrinsicID =
+ cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ switch (IntrinsicID) {
+ default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
+ case Intrinsic::r600_read_ngroups_x:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 0, false);
+ case Intrinsic::r600_read_ngroups_y:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 4, false);
+ case Intrinsic::r600_read_ngroups_z:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8, false);
+ case Intrinsic::r600_read_global_size_x:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 12, false);
+ case Intrinsic::r600_read_global_size_y:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 16, false);
+ case Intrinsic::r600_read_global_size_z:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 20, false);
+ case Intrinsic::r600_read_local_size_x:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 24, false);
+ case Intrinsic::r600_read_local_size_y:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 28, false);
+ case Intrinsic::r600_read_local_size_z:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 32, false);
+ case Intrinsic::r600_read_tgid_x:
+ return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
+ AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 0), VT);
+ case Intrinsic::r600_read_tgid_y:
+ return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
+ AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 1), VT);
+ case Intrinsic::r600_read_tgid_z:
+ return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
+ AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 2), VT);
+ case Intrinsic::r600_read_tidig_x:
+ return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
+ AMDGPU::VGPR0, VT);
+ case Intrinsic::r600_read_tidig_y:
+ return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
+ AMDGPU::VGPR1, VT);
+ case Intrinsic::r600_read_tidig_z:
+ return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
+ AMDGPU::VGPR2, VT);
+ case AMDGPUIntrinsic::SI_load_const: {
+ SDValue Ops [] = {
+ Op.getOperand(1),
+ Op.getOperand(2)
+ };
+
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo(),
+ MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
+ VT.getSizeInBits() / 8, 4);
+ return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
+ Op->getVTList(), Ops, VT, MMO);
+ }
+ case AMDGPUIntrinsic::SI_sample:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
+ case AMDGPUIntrinsic::SI_sampleb:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
+ case AMDGPUIntrinsic::SI_sampled:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
+ case AMDGPUIntrinsic::SI_samplel:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
+ case AMDGPUIntrinsic::SI_vs_load_input:
+ return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
+ Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3));
+ }
+ }
+
+ case ISD::INTRINSIC_VOID:
+ SDValue Chain = Op.getOperand(0);
+ unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+
+ switch (IntrinsicID) {
+ case AMDGPUIntrinsic::SI_tbuffer_store: {
+ SDLoc DL(Op);
+ SDValue Ops [] = {
+ Chain,
+ Op.getOperand(2),
+ Op.getOperand(3),
+ Op.getOperand(4),
+ Op.getOperand(5),
+ Op.getOperand(6),
+ Op.getOperand(7),
+ Op.getOperand(8),
+ Op.getOperand(9),
+ Op.getOperand(10),
+ Op.getOperand(11),
+ Op.getOperand(12),
+ Op.getOperand(13),
+ Op.getOperand(14)
+ };
+ EVT VT = Op.getOperand(3).getValueType();
+
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo(),
+ MachineMemOperand::MOStore,
+ VT.getSizeInBits() / 8, 4);
+ return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
+ Op->getVTList(), Ops, VT, MMO);
+ }
+ default:
+ break;
+ }
+ }
+ return SDValue();
+}
+
+/// \brief Helper function for LowerBRCOND
+static SDNode *findUser(SDValue Value, unsigned Opcode) {
+
+ SDNode *Parent = Value.getNode();
+ for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
+ I != E; ++I) {
+
+ if (I.getUse().get() != Value)
+ continue;
+
+ if (I->getOpcode() == Opcode)
+ return *I;
+ }
+ return nullptr;
+}
+
+SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ const SIRegisterInfo &TRI = TII->getRegisterInfo();
+ FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
+ unsigned FrameIndex = FINode->getIndex();
+
+ CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
+ TRI.getPreloadedValue(MF, SIRegisterInfo::SCRATCH_WAVE_OFFSET), MVT::i32);
+
+ return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
+}
+
+/// This transforms the control flow intrinsics to get the branch destination as
+/// last parameter, also switches branch target with BR if the need arise
+SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
+ SelectionDAG &DAG) const {
+
+ SDLoc DL(BRCOND);
+
+ SDNode *Intr = BRCOND.getOperand(1).getNode();
+ SDValue Target = BRCOND.getOperand(2);
+ SDNode *BR = nullptr;
+
+ if (Intr->getOpcode() == ISD::SETCC) {
+ // As long as we negate the condition everything is fine
+ SDNode *SetCC = Intr;
+ assert(SetCC->getConstantOperandVal(1) == 1);
+ assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
+ ISD::SETNE);
+ Intr = SetCC->getOperand(0).getNode();
+
+ } else {
+ // Get the target from BR if we don't negate the condition
+ BR = findUser(BRCOND, ISD::BR);
+ Target = BR->getOperand(1);
+ }
+
+ assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
+
+ // Build the result and
+ SmallVector<EVT, 4> Res;
+ for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i)
+ Res.push_back(Intr->getValueType(i));
+
+ // operands of the new intrinsic call
+ SmallVector<SDValue, 4> Ops;
+ Ops.push_back(BRCOND.getOperand(0));
+ for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i)
+ Ops.push_back(Intr->getOperand(i));
+ Ops.push_back(Target);
+
+ // build the new intrinsic call
+ SDNode *Result = DAG.getNode(
+ Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
+ DAG.getVTList(Res), Ops).getNode();
+
+ if (BR) {
+ // Give the branch instruction our target
+ SDValue Ops[] = {
+ BR->getOperand(0),
+ BRCOND.getOperand(2)
+ };
+ DAG.MorphNodeTo(BR, ISD::BR, BR->getVTList(), Ops);
+ }
+
+ SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
+
+ // Copy the intrinsic results to registers
+ for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
+ SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
+ if (!CopyToReg)
+ continue;
+
+ Chain = DAG.getCopyToReg(
+ Chain, DL,
+ CopyToReg->getOperand(1),
+ SDValue(Result, i - 1),
+ SDValue());
+
+ DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
+ }
+
+ // Remove the old intrinsic from the chain
+ DAG.ReplaceAllUsesOfValueWith(
+ SDValue(Intr, Intr->getNumValues() - 1),
+ Intr->getOperand(0));
+
+ return Chain;
+}
+
+SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
+ SDValue Op,
+ SelectionDAG &DAG) const {
+ GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
+
+ if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
+ return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
+
+ SDLoc DL(GSD);
+ const GlobalValue *GV = GSD->getGlobal();
+ MVT PtrVT = getPointerTy(GSD->getAddressSpace());
+
+ SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT);
+ SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
+
+ SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
+ DAG.getConstant(0, MVT::i32));
+ SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
+ DAG.getConstant(1, MVT::i32));
+
+ SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue),
+ PtrLo, GA);
+ SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue),
+ PtrHi, DAG.getConstant(0, MVT::i32),
+ SDValue(Lo.getNode(), 1));
+ return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
+}
+
+SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ LoadSDNode *Load = cast<LoadSDNode>(Op);
+
+ if (Op.getValueType().isVector()) {
+ assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
+ "Custom lowering for non-i32 vectors hasn't been implemented.");
+ unsigned NumElements = Op.getValueType().getVectorNumElements();
+ assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
+ switch (Load->getAddressSpace()) {
+ default: break;
+ case AMDGPUAS::GLOBAL_ADDRESS:
+ case AMDGPUAS::PRIVATE_ADDRESS:
+ // v4 loads are supported for private and global memory.
+ if (NumElements <= 4)
+ break;
+ // fall-through
+ case AMDGPUAS::LOCAL_ADDRESS:
+ return SplitVectorLoad(Op, DAG);
+ }
+ }
+
+ return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
+}
+
+SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
+ const SDValue &Op,
+ SelectionDAG &DAG) const {
+ return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3),
+ Op.getOperand(4));
+}
+
+SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ if (Op.getValueType() != MVT::i64)
+ return SDValue();
+
+ SDLoc DL(Op);
+ SDValue Cond = Op.getOperand(0);
+
+ SDValue Zero = DAG.getConstant(0, MVT::i32);
+ SDValue One = DAG.getConstant(1, MVT::i32);
+
+ SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
+ SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
+
+ SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
+ SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
+
+ SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
+
+ SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
+ SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
+
+ SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
+
+ SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
+ return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
+}
+
+// Catch division cases where we can use shortcuts with rcp and rsq
+// instructions.
+SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ EVT VT = Op.getValueType();
+ bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
+
+ if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
+ if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
+ CLHS->isExactlyValue(1.0)) {
+ // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
+ // the CI documentation has a worst case error of 1 ulp.
+ // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
+ // use it as long as we aren't trying to use denormals.
+
+ // 1.0 / sqrt(x) -> rsq(x)
+ //
+ // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
+ // error seems really high at 2^29 ULP.
+ if (RHS.getOpcode() == ISD::FSQRT)
+ return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
+
+ // 1.0 / x -> rcp(x)
+ return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
+ }
+ }
+
+ if (Unsafe) {
+ // Turn into multiply by the reciprocal.
+ // x / y -> x * (1.0 / y)
+ SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
+ return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip);
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
+ SDValue FastLowered = LowerFastFDIV(Op, DAG);
+ if (FastLowered.getNode())
+ return FastLowered;
+
+ // This uses v_rcp_f32 which does not handle denormals. Let this hit a
+ // selection error for now rather than do something incorrect.
+ if (Subtarget->hasFP32Denormals())
+ return SDValue();
+
+ SDLoc SL(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+
+ SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
+
+ const APFloat K0Val(BitsToFloat(0x6f800000));
+ const SDValue K0 = DAG.getConstantFP(K0Val, MVT::f32);
+
+ const APFloat K1Val(BitsToFloat(0x2f800000));
+ const SDValue K1 = DAG.getConstantFP(K1Val, MVT::f32);
+
+ const SDValue One = DAG.getTargetConstantFP(1.0, MVT::f32);
+
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
+
+ SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
+
+ SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
+
+ r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
+
+ SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
+
+ SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
+
+ return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
+}
+
+SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
+ return SDValue();
+}
+
+SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+
+ if (VT == MVT::f32)
+ return LowerFDIV32(Op, DAG);
+
+ if (VT == MVT::f64)
+ return LowerFDIV64(Op, DAG);
+
+ llvm_unreachable("Unexpected type for fdiv");
+}
+
+SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ EVT VT = Store->getMemoryVT();
+
+ // These stores are legal.
+ if (Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
+ VT.isVector() && VT.getVectorNumElements() == 2 &&
+ VT.getVectorElementType() == MVT::i32)
+ return SDValue();
+
+ if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
+ if (VT.isVector() && VT.getVectorNumElements() > 4)
+ return SplitVectorStore(Op, DAG);
+ return SDValue();
+ }
+
+ SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
+ if (Ret.getNode())
+ return Ret;
+
+ if (VT.isVector() && VT.getVectorNumElements() >= 8)
+ return SplitVectorStore(Op, DAG);
+
+ if (VT == MVT::i1)
+ return DAG.getTruncStore(Store->getChain(), DL,
+ DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
+ Store->getBasePtr(), MVT::i1, Store->getMemOperand());
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDValue Arg = Op.getOperand(0);
+ SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT,
+ DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg,
+ DAG.getConstantFP(0.5 / M_PI, VT)));
+
+ switch (Op.getOpcode()) {
+ case ISD::FCOS:
+ return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
+ case ISD::FSIN:
+ return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
+ default:
+ llvm_unreachable("Wrong trig opcode");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Custom DAG optimizations
+//===----------------------------------------------------------------------===//
+
+SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
+ DAGCombinerInfo &DCI) {
+ EVT VT = N->getValueType(0);
+ EVT ScalarVT = VT.getScalarType();
+ if (ScalarVT != MVT::f32)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ SDValue Src = N->getOperand(0);
+ EVT SrcVT = Src.getValueType();
+
+ // TODO: We could try to match extracting the higher bytes, which would be
+ // easier if i8 vectors weren't promoted to i32 vectors, particularly after
+ // types are legalized. v4i8 -> v4f32 is probably the only case to worry
+ // about in practice.
+ if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
+ if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
+ SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
+ DCI.AddToWorklist(Cvt.getNode());
+ return Cvt;
+ }
+ }
+
+ // We are primarily trying to catch operations on illegal vector types
+ // before they are expanded.
+ // For scalars, we can use the more flexible method of checking masked bits
+ // after legalization.
+ if (!DCI.isBeforeLegalize() ||
+ !SrcVT.isVector() ||
+ SrcVT.getVectorElementType() != MVT::i8) {
+ return SDValue();
+ }
+
+ assert(DCI.isBeforeLegalize() && "Unexpected legal type");
+
+ // Weird sized vectors are a pain to handle, but we know 3 is really the same
+ // size as 4.
+ unsigned NElts = SrcVT.getVectorNumElements();
+ if (!SrcVT.isSimple() && NElts != 3)
+ return SDValue();
+
+ // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
+ // prevent a mess from expanding to v4i32 and repacking.
+ if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
+ EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
+ EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
+
+ LoadSDNode *Load = cast<LoadSDNode>(Src);
+ SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
+ Load->getChain(),
+ Load->getBasePtr(),
+ LoadVT,
+ Load->getMemOperand());
+
+ // Make sure successors of the original load stay after it by updating
+ // them to use the new Chain.
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
+
+ SmallVector<SDValue, 4> Elts;
+ if (RegVT.isVector())
+ DAG.ExtractVectorElements(NewLoad, Elts);
+ else
+ Elts.push_back(NewLoad);
+
+ SmallVector<SDValue, 4> Ops;
+
+ unsigned EltIdx = 0;
+ for (SDValue Elt : Elts) {
+ unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
+ for (unsigned I = 0; I < ComponentsInElt; ++I) {
+ unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
+ SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
+ DCI.AddToWorklist(Cvt.getNode());
+ Ops.push_back(Cvt);
+ }
+
+ ++EltIdx;
+ }
+
+ assert(Ops.size() == NElts);
+
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+
+ switch (N->getOpcode()) {
+ default: return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
+ case ISD::SETCC: {
+ SDValue Arg0 = N->getOperand(0);
+ SDValue Arg1 = N->getOperand(1);
+ SDValue CC = N->getOperand(2);
+ ConstantSDNode * C = nullptr;
+ ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get();
+
+ // i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne)
+ if (VT == MVT::i1
+ && Arg0.getOpcode() == ISD::SIGN_EXTEND
+ && Arg0.getOperand(0).getValueType() == MVT::i1
+ && (C = dyn_cast<ConstantSDNode>(Arg1))
+ && C->isNullValue()
+ && CCOp == ISD::SETNE) {
+ return SimplifySetCC(VT, Arg0.getOperand(0),
+ DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL);
+ }
+ break;
+ }
+
+ case AMDGPUISD::CVT_F32_UBYTE0:
+ case AMDGPUISD::CVT_F32_UBYTE1:
+ case AMDGPUISD::CVT_F32_UBYTE2:
+ case AMDGPUISD::CVT_F32_UBYTE3: {
+ unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
+
+ SDValue Src = N->getOperand(0);
+ APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
+
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
+ TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+
+ break;
+ }
+
+ case ISD::UINT_TO_FP: {
+ return performUCharToFloatCombine(N, DCI);
+ }
+ }
+
+ return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
+}
+
+/// \brief Test if RegClass is one of the VSrc classes
+static bool isVSrc(unsigned RegClass) {
+ return AMDGPU::VSrc_32RegClassID == RegClass ||
+ AMDGPU::VSrc_64RegClassID == RegClass;
+}
+
+/// \brief Test if RegClass is one of the SSrc classes
+static bool isSSrc(unsigned RegClass) {
+ return AMDGPU::SSrc_32RegClassID == RegClass ||
+ AMDGPU::SSrc_64RegClassID == RegClass;
+}
+
+/// \brief Analyze the possible immediate value Op
+///
+/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
+/// and the immediate value if it's a literal immediate
+int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
+
+ union {
+ int32_t I;
+ float F;
+ } Imm;
+
+ if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
+ if (Node->getZExtValue() >> 32) {
+ return -1;
+ }
+ Imm.I = Node->getSExtValue();
+ } else if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
+ if (N->getValueType(0) != MVT::f32)
+ return -1;
+ Imm.F = Node->getValueAPF().convertToFloat();
+ } else
+ return -1; // It isn't an immediate
+
+ if ((Imm.I >= -16 && Imm.I <= 64) ||
+ Imm.F == 0.5f || Imm.F == -0.5f ||
+ Imm.F == 1.0f || Imm.F == -1.0f ||
+ Imm.F == 2.0f || Imm.F == -2.0f ||
+ Imm.F == 4.0f || Imm.F == -4.0f)
+ return 0; // It's an inline immediate
+
+ return Imm.I; // It's a literal immediate
+}
+
+/// \brief Try to fold an immediate directly into an instruction
+bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate,
+ bool &ScalarSlotUsed) const {
+
+ MachineSDNode *Mov = dyn_cast<MachineSDNode>(Operand);
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ if (!Mov || !TII->isMov(Mov->getMachineOpcode()))
+ return false;
+
+ const SDValue &Op = Mov->getOperand(0);
+ int32_t Value = analyzeImmediate(Op.getNode());
+ if (Value == -1) {
+ // Not an immediate at all
+ return false;
+
+ } else if (Value == 0) {
+ // Inline immediates can always be fold
+ Operand = Op;
+ return true;
+
+ } else if (Value == Immediate) {
+ // Already fold literal immediate
+ Operand = Op;
+ return true;
+
+ } else if (!ScalarSlotUsed && !Immediate) {
+ // Fold this literal immediate
+ ScalarSlotUsed = true;
+ Immediate = Value;
+ Operand = Op;
+ return true;
+
+ }
+
+ return false;
+}
+
+const TargetRegisterClass *SITargetLowering::getRegClassForNode(
+ SelectionDAG &DAG, const SDValue &Op) const {
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ const SIRegisterInfo &TRI = TII->getRegisterInfo();
+
+ if (!Op->isMachineOpcode()) {
+ switch(Op->getOpcode()) {
+ case ISD::CopyFromReg: {
+ MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
+ unsigned Reg = cast<RegisterSDNode>(Op->getOperand(1))->getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ return MRI.getRegClass(Reg);
+ }
+ return TRI.getPhysRegClass(Reg);
+ }
+ default: return nullptr;
+ }
+ }
+ const MCInstrDesc &Desc = TII->get(Op->getMachineOpcode());
+ int OpClassID = Desc.OpInfo[Op.getResNo()].RegClass;
+ if (OpClassID != -1) {
+ return TRI.getRegClass(OpClassID);
+ }
+ switch(Op.getMachineOpcode()) {
+ case AMDGPU::COPY_TO_REGCLASS:
+ // Operand 1 is the register class id for COPY_TO_REGCLASS instructions.
+ OpClassID = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
+
+ // If the COPY_TO_REGCLASS instruction is copying to a VSrc register
+ // class, then the register class for the value could be either a
+ // VReg or and SReg. In order to get a more accurate
+ if (OpClassID == AMDGPU::VSrc_32RegClassID ||
+ OpClassID == AMDGPU::VSrc_64RegClassID) {
+ return getRegClassForNode(DAG, Op.getOperand(0));
+ }
+ return TRI.getRegClass(OpClassID);
+ case AMDGPU::EXTRACT_SUBREG: {
+ int SubIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ const TargetRegisterClass *SuperClass =
+ getRegClassForNode(DAG, Op.getOperand(0));
+ return TRI.getSubClassWithSubReg(SuperClass, SubIdx);
+ }
+ case AMDGPU::REG_SEQUENCE:
+ // Operand 0 is the register class id for REG_SEQUENCE instructions.
+ return TRI.getRegClass(
+ cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue());
+ default:
+ return getRegClassFor(Op.getSimpleValueType());
+ }
+}
+
+/// \brief Does "Op" fit into register class "RegClass" ?
+bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
+ unsigned RegClass) const {
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterClass *RC = getRegClassForNode(DAG, Op);
+ if (!RC) {
+ return false;
+ }
+ return TRI->getRegClass(RegClass)->hasSubClassEq(RC);
+}
+
+/// \brief Make sure that we don't exeed the number of allowed scalars
+void SITargetLowering::ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand,
+ unsigned RegClass,
+ bool &ScalarSlotUsed) const {
+
+ // First map the operands register class to a destination class
+ if (RegClass == AMDGPU::VSrc_32RegClassID)
+ RegClass = AMDGPU::VReg_32RegClassID;
+ else if (RegClass == AMDGPU::VSrc_64RegClassID)
+ RegClass = AMDGPU::VReg_64RegClassID;
+ else
+ return;
+
+ // Nothing to do if they fit naturally
+ if (fitsRegClass(DAG, Operand, RegClass))
+ return;
+
+ // If the scalar slot isn't used yet use it now
+ if (!ScalarSlotUsed) {
+ ScalarSlotUsed = true;
+ return;
+ }
+
+ // This is a conservative aproach. It is possible that we can't determine the
+ // correct register class and copy too often, but better safe than sorry.
+
+ SDNode *Node;
+ // We can't use COPY_TO_REGCLASS with FrameIndex arguments.
+ if (isa<FrameIndexSDNode>(Operand)) {
+ unsigned Opcode = Operand.getValueType() == MVT::i32 ?
+ AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
+ Node = DAG.getMachineNode(Opcode, SDLoc(), Operand.getValueType(),
+ Operand);
+ } else {
+ SDValue RC = DAG.getTargetConstant(RegClass, MVT::i32);
+ Node = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, SDLoc(),
+ Operand.getValueType(), Operand, RC);
+ }
+ Operand = SDValue(Node, 0);
+}
+
+/// \returns true if \p Node's operands are different from the SDValue list
+/// \p Ops
+static bool isNodeChanged(const SDNode *Node, const std::vector<SDValue> &Ops) {
+ for (unsigned i = 0, e = Node->getNumOperands(); i < e; ++i) {
+ if (Ops[i].getNode() != Node->getOperand(i).getNode()) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/// \brief Try to fold the Nodes operands into the Node
+SDNode *SITargetLowering::foldOperands(MachineSDNode *Node,
+ SelectionDAG &DAG) const {
+
+ // Original encoding (either e32 or e64)
+ int Opcode = Node->getMachineOpcode();
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ const MCInstrDesc *Desc = &TII->get(Opcode);
+
+ unsigned NumDefs = Desc->getNumDefs();
+ unsigned NumOps = Desc->getNumOperands();
+
+ // Commuted opcode if available
+ int OpcodeRev = Desc->isCommutable() ? TII->commuteOpcode(Opcode) : -1;
+ const MCInstrDesc *DescRev = OpcodeRev == -1 ? nullptr : &TII->get(OpcodeRev);
+
+ assert(!DescRev || DescRev->getNumDefs() == NumDefs);
+ assert(!DescRev || DescRev->getNumOperands() == NumOps);
+
+ // e64 version if available, -1 otherwise
+ int OpcodeE64 = AMDGPU::getVOPe64(Opcode);
+ const MCInstrDesc *DescE64 = OpcodeE64 == -1 ? nullptr : &TII->get(OpcodeE64);
+ int InputModifiers[3] = {0};
+
+ assert(!DescE64 || DescE64->getNumDefs() == NumDefs);
+
+ int32_t Immediate = Desc->getSize() == 4 ? 0 : -1;
+ bool HaveVSrc = false, HaveSSrc = false;
+
+ // First figure out what we already have in this instruction.
+ for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
+ i != e && Op < NumOps; ++i, ++Op) {
+
+ unsigned RegClass = Desc->OpInfo[Op].RegClass;
+ if (isVSrc(RegClass))
+ HaveVSrc = true;
+ else if (isSSrc(RegClass))
+ HaveSSrc = true;
+ else
+ continue;
+
+ int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode());
+ if (Imm != -1 && Imm != 0) {
+ // Literal immediate
+ Immediate = Imm;
+ }
+ }
+
+ // If we neither have VSrc nor SSrc, it makes no sense to continue.
+ if (!HaveVSrc && !HaveSSrc)
+ return Node;
+
+ // No scalar allowed when we have both VSrc and SSrc
+ bool ScalarSlotUsed = HaveVSrc && HaveSSrc;
+
+ // Second go over the operands and try to fold them
+ std::vector<SDValue> Ops;
+ bool Promote2e64 = false;
+ for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
+ i != e && Op < NumOps; ++i, ++Op) {
+
+ const SDValue &Operand = Node->getOperand(i);
+ Ops.push_back(Operand);
+
+ // Already folded immediate?
+ if (isa<ConstantSDNode>(Operand.getNode()) ||
+ isa<ConstantFPSDNode>(Operand.getNode()))
+ continue;
+
+ // Is this a VSrc or SSrc operand?
+ unsigned RegClass = Desc->OpInfo[Op].RegClass;
+ if (isVSrc(RegClass) || isSSrc(RegClass)) {
+ // Try to fold the immediates
+ if (!foldImm(Ops[i], Immediate, ScalarSlotUsed)) {
+ // Folding didn't work, make sure we don't hit the SReg limit.
+ ensureSRegLimit(DAG, Ops[i], RegClass, ScalarSlotUsed);
+ }
+ continue;
+ } else {
+ // If it's not a VSrc or SSrc operand check if we have a GlobalAddress.
+ // These will be lowered to immediates, so we will need to insert a MOV.
+ if (isa<GlobalAddressSDNode>(Ops[i])) {
+ SDNode *Node = DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(),
+ Operand.getValueType(), Operand);
+ Ops[i] = SDValue(Node, 0);
+ }
+ }
+
+ if (i == 1 && DescRev && fitsRegClass(DAG, Ops[0], RegClass)) {
+
+ unsigned OtherRegClass = Desc->OpInfo[NumDefs].RegClass;
+ assert(isVSrc(OtherRegClass) || isSSrc(OtherRegClass));
+
+ // Test if it makes sense to swap operands
+ if (foldImm(Ops[1], Immediate, ScalarSlotUsed) ||
+ (!fitsRegClass(DAG, Ops[1], RegClass) &&
+ fitsRegClass(DAG, Ops[1], OtherRegClass))) {
+
+ // Swap commutable operands
+ std::swap(Ops[0], Ops[1]);
+
+ Desc = DescRev;
+ DescRev = nullptr;
+ continue;
+ }
+ }
+
+ if (Immediate)
+ continue;
+
+ if (DescE64) {
+ // Test if it makes sense to switch to e64 encoding
+ unsigned OtherRegClass = DescE64->OpInfo[Op].RegClass;
+ if (!isVSrc(OtherRegClass) && !isSSrc(OtherRegClass))
+ continue;
+
+ int32_t TmpImm = -1;
+ if (foldImm(Ops[i], TmpImm, ScalarSlotUsed) ||
+ (!fitsRegClass(DAG, Ops[i], RegClass) &&
+ fitsRegClass(DAG, Ops[1], OtherRegClass))) {
+
+ // Switch to e64 encoding
+ Immediate = -1;
+ Promote2e64 = true;
+ Desc = DescE64;
+ DescE64 = nullptr;
+ }
+ }
+
+ if (!DescE64 && !Promote2e64)
+ continue;
+ if (!Operand.isMachineOpcode())
+ continue;
+ if (Operand.getMachineOpcode() == AMDGPU::FNEG_SI) {
+ Ops.pop_back();
+ Ops.push_back(Operand.getOperand(0));
+ InputModifiers[i] = 1;
+ Promote2e64 = true;
+ if (!DescE64)
+ continue;
+ Desc = DescE64;
+ DescE64 = nullptr;
+ }
+ else if (Operand.getMachineOpcode() == AMDGPU::FABS_SI) {
+ Ops.pop_back();
+ Ops.push_back(Operand.getOperand(0));
+ InputModifiers[i] = 2;
+ Promote2e64 = true;
+ if (!DescE64)
+ continue;
+ Desc = DescE64;
+ DescE64 = nullptr;
+ }
+ }
+
+ if (Promote2e64) {
+ std::vector<SDValue> OldOps(Ops);
+ Ops.clear();
+ for (unsigned i = 0; i < OldOps.size(); ++i) {
+ // src_modifier
+ Ops.push_back(DAG.getTargetConstant(InputModifiers[i], MVT::i32));
+ Ops.push_back(OldOps[i]);
+ }
+ // Add the modifier flags while promoting
+ for (unsigned i = 0; i < 2; ++i)
+ Ops.push_back(DAG.getTargetConstant(0, MVT::i32));
+ }
+
+ // Add optional chain and glue
+ for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i)
+ Ops.push_back(Node->getOperand(i));
+
+ // Nodes that have a glue result are not CSE'd by getMachineNode(), so in
+ // this case a brand new node is always be created, even if the operands
+ // are the same as before. So, manually check if anything has been changed.
+ if (Desc->Opcode == Opcode && !isNodeChanged(Node, Ops)) {
+ return Node;
+ }
+
+ // Create a complete new instruction
+ return DAG.getMachineNode(Desc->Opcode, SDLoc(Node), Node->getVTList(), Ops);
+}
+
+/// \brief Helper function for adjustWritemask
+static unsigned SubIdx2Lane(unsigned Idx) {
+ switch (Idx) {
+ default: return 0;
+ case AMDGPU::sub0: return 0;
+ case AMDGPU::sub1: return 1;
+ case AMDGPU::sub2: return 2;
+ case AMDGPU::sub3: return 3;
+ }
+}
+
+/// \brief Adjust the writemask of MIMG instructions
+void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
+ SelectionDAG &DAG) const {
+ SDNode *Users[4] = { };
+ unsigned Lane = 0;
+ unsigned OldDmask = Node->getConstantOperandVal(0);
+ unsigned NewDmask = 0;
+
+ // Try to figure out the used register components
+ for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
+ I != E; ++I) {
+
+ // Abort if we can't understand the usage
+ if (!I->isMachineOpcode() ||
+ I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
+ return;
+
+ // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
+ // Note that subregs are packed, i.e. Lane==0 is the first bit set
+ // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
+ // set, etc.
+ Lane = SubIdx2Lane(I->getConstantOperandVal(1));
+
+ // Set which texture component corresponds to the lane.
+ unsigned Comp;
+ for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
+ assert(Dmask);
+ Comp = countTrailingZeros(Dmask);
+ Dmask &= ~(1 << Comp);
+ }
+
+ // Abort if we have more than one user per component
+ if (Users[Lane])
+ return;
+
+ Users[Lane] = *I;
+ NewDmask |= 1 << Comp;
+ }
+
+ // Abort if there's no change
+ if (NewDmask == OldDmask)
+ return;
+
+ // Adjust the writemask in the node
+ std::vector<SDValue> Ops;
+ Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32));
+ for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
+ Ops.push_back(Node->getOperand(i));
+ Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
+
+ // If we only got one lane, replace it with a copy
+ // (if NewDmask has only one bit set...)
+ if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
+ SDValue RC = DAG.getTargetConstant(AMDGPU::VReg_32RegClassID, MVT::i32);
+ SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
+ SDLoc(), Users[Lane]->getValueType(0),
+ SDValue(Node, 0), RC);
+ DAG.ReplaceAllUsesWith(Users[Lane], Copy);
+ return;
+ }
+
+ // Update the users of the node with the new indices
+ for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
+
+ SDNode *User = Users[i];
+ if (!User)
+ continue;
+
+ SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
+ DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
+
+ switch (Idx) {
+ default: break;
+ case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
+ case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
+ case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
+ }
+ }
+}
+
+/// \brief Fold the instructions after selecting them.
+SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
+ SelectionDAG &DAG) const {
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ Node = AdjustRegClass(Node, DAG);
+
+ if (TII->isMIMG(Node->getMachineOpcode()))
+ adjustWritemask(Node, DAG);
+
+ return foldOperands(Node, DAG);
+}
+
+/// \brief Assign the register class depending on the number of
+/// bits set in the writemask
+void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
+ SDNode *Node) const {
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ if (!TII->isMIMG(MI->getOpcode()))
+ return;
+
+ unsigned VReg = MI->getOperand(0).getReg();
+ unsigned Writemask = MI->getOperand(1).getImm();
+ unsigned BitsSet = 0;
+ for (unsigned i = 0; i < 4; ++i)
+ BitsSet += Writemask & (1 << i) ? 1 : 0;
+
+ const TargetRegisterClass *RC;
+ switch (BitsSet) {
+ default: return;
+ case 1: RC = &AMDGPU::VReg_32RegClass; break;
+ case 2: RC = &AMDGPU::VReg_64RegClass; break;
+ case 3: RC = &AMDGPU::VReg_96RegClass; break;
+ }
+
+ unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
+ MI->setDesc(TII->get(NewOpcode));
+ MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ MRI.setRegClass(VReg, RC);
+}
+
+MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N,
+ SelectionDAG &DAG) const {
+
+ SDLoc DL(N);
+ unsigned NewOpcode = N->getMachineOpcode();
+
+ switch (N->getMachineOpcode()) {
+ default: return N;
+ case AMDGPU::S_LOAD_DWORD_IMM:
+ NewOpcode = AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
+ // Fall-through
+ case AMDGPU::S_LOAD_DWORDX2_SGPR:
+ if (NewOpcode == N->getMachineOpcode()) {
+ NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
+ }
+ // Fall-through
+ case AMDGPU::S_LOAD_DWORDX4_IMM:
+ case AMDGPU::S_LOAD_DWORDX4_SGPR: {
+ if (NewOpcode == N->getMachineOpcode()) {
+ NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
+ }
+ if (fitsRegClass(DAG, N->getOperand(0), AMDGPU::SReg_64RegClassID)) {
+ return N;
+ }
+ ConstantSDNode *Offset = cast<ConstantSDNode>(N->getOperand(1));
+ SDValue Ops[] = {
+ SDValue(DAG.getMachineNode(AMDGPU::SI_ADDR64_RSRC, DL, MVT::i128,
+ DAG.getConstant(0, MVT::i64)), 0),
+ N->getOperand(0),
+ DAG.getConstant(Offset->getSExtValue() << 2, MVT::i32)
+ };
+ return DAG.getMachineNode(NewOpcode, DL, N->getVTList(), Ops);
+ }
+ }
+}
+
+SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
+ const TargetRegisterClass *RC,
+ unsigned Reg, EVT VT) const {
+ SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
+
+ return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
+ cast<RegisterSDNode>(VReg)->getReg(), VT);
+}
diff --git a/contrib/llvm/lib/Target/R600/SIISelLowering.h b/contrib/llvm/lib/Target/R600/SIISelLowering.h
new file mode 100644
index 0000000..d106d4a
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIISelLowering.h
@@ -0,0 +1,92 @@
+//===-- SIISelLowering.h - SI DAG Lowering Interface ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief SI DAG Lowering interface definition
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SIISELLOWERING_H
+#define SIISELLOWERING_H
+
+#include "AMDGPUISelLowering.h"
+#include "SIInstrInfo.h"
+
+namespace llvm {
+
+class SITargetLowering : public AMDGPUTargetLowering {
+ SDValue LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT, SDLoc DL,
+ SDValue Chain, unsigned Offset, bool Signed) const;
+ SDValue LowerSampleIntrinsic(unsigned Opcode, const SDValue &Op,
+ SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op,
+ SelectionDAG &DAG) const override;
+ SDValue LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFDIV32(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFDIV64(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFDIV(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerTrig(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
+
+ bool foldImm(SDValue &Operand, int32_t &Immediate,
+ bool &ScalarSlotUsed) const;
+ const TargetRegisterClass *getRegClassForNode(SelectionDAG &DAG,
+ const SDValue &Op) const;
+ bool fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
+ unsigned RegClass) const;
+ void ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand,
+ unsigned RegClass, bool &ScalarSlotUsed) const;
+
+ SDNode *foldOperands(MachineSDNode *N, SelectionDAG &DAG) const;
+ void adjustWritemask(MachineSDNode *&N, SelectionDAG &DAG) const;
+ MachineSDNode *AdjustRegClass(MachineSDNode *N, SelectionDAG &DAG) const;
+
+ static SDValue performUCharToFloatCombine(SDNode *N,
+ DAGCombinerInfo &DCI);
+
+public:
+ SITargetLowering(TargetMachine &tm);
+ bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AS,
+ bool *IsFast) const override;
+
+ TargetLoweringBase::LegalizeTypeAction
+ getPreferredVectorAction(EVT VT) const override;
+
+ bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const override;
+
+ SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr * MI,
+ MachineBasicBlock * BB) const override;
+ EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
+ MVT getScalarShiftAmountTy(EVT VT) const override;
+ bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+ SDNode *PostISelFolding(MachineSDNode *N, SelectionDAG &DAG) const override;
+ void AdjustInstrPostInstrSelection(MachineInstr *MI,
+ SDNode *Node) const override;
+
+ int32_t analyzeImmediate(const SDNode *N) const;
+ SDValue CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC,
+ unsigned Reg, EVT VT) const override;
+};
+
+} // End namespace llvm
+
+#endif //SIISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/R600/SIInsertWaits.cpp b/contrib/llvm/lib/Target/R600/SIInsertWaits.cpp
new file mode 100644
index 0000000..7dfc31b
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIInsertWaits.cpp
@@ -0,0 +1,376 @@
+//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Insert wait instructions for memory reads and writes.
+///
+/// Memory reads and writes are issued asynchronously, so we need to insert
+/// S_WAITCNT instructions when we want to access any of their results or
+/// overwrite any register that's used asynchronously.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "SIInstrInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+namespace {
+
+/// \brief One variable for each of the hardware counters
+typedef union {
+ struct {
+ unsigned VM;
+ unsigned EXP;
+ unsigned LGKM;
+ } Named;
+ unsigned Array[3];
+
+} Counters;
+
+typedef Counters RegCounters[512];
+typedef std::pair<unsigned, unsigned> RegInterval;
+
+class SIInsertWaits : public MachineFunctionPass {
+
+private:
+ static char ID;
+ const SIInstrInfo *TII;
+ const SIRegisterInfo *TRI;
+ const MachineRegisterInfo *MRI;
+
+ /// \brief Constant hardware limits
+ static const Counters WaitCounts;
+
+ /// \brief Constant zero value
+ static const Counters ZeroCounts;
+
+ /// \brief Counter values we have already waited on.
+ Counters WaitedOn;
+
+ /// \brief Counter values for last instruction issued.
+ Counters LastIssued;
+
+ /// \brief Registers used by async instructions.
+ RegCounters UsedRegs;
+
+ /// \brief Registers defined by async instructions.
+ RegCounters DefinedRegs;
+
+ /// \brief Different export instruction types seen since last wait.
+ unsigned ExpInstrTypesSeen;
+
+ /// \brief Get increment/decrement amount for this instruction.
+ Counters getHwCounts(MachineInstr &MI);
+
+ /// \brief Is operand relevant for async execution?
+ bool isOpRelevant(MachineOperand &Op);
+
+ /// \brief Get register interval an operand affects.
+ RegInterval getRegInterval(MachineOperand &Op);
+
+ /// \brief Handle instructions async components
+ void pushInstruction(MachineInstr &MI);
+
+ /// \brief Insert the actual wait instruction
+ bool insertWait(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ const Counters &Counts);
+
+ /// \brief Do we need def2def checks?
+ bool unorderedDefines(MachineInstr &MI);
+
+ /// \brief Resolve all operand dependencies to counter requirements
+ Counters handleOperands(MachineInstr &MI);
+
+public:
+ SIInsertWaits(TargetMachine &tm) :
+ MachineFunctionPass(ID),
+ TII(nullptr),
+ TRI(nullptr),
+ ExpInstrTypesSeen(0) { }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "SI insert wait instructions";
+ }
+
+};
+
+} // End anonymous namespace
+
+char SIInsertWaits::ID = 0;
+
+const Counters SIInsertWaits::WaitCounts = { { 15, 7, 7 } };
+const Counters SIInsertWaits::ZeroCounts = { { 0, 0, 0 } };
+
+FunctionPass *llvm::createSIInsertWaits(TargetMachine &tm) {
+ return new SIInsertWaits(tm);
+}
+
+Counters SIInsertWaits::getHwCounts(MachineInstr &MI) {
+
+ uint64_t TSFlags = TII->get(MI.getOpcode()).TSFlags;
+ Counters Result;
+
+ Result.Named.VM = !!(TSFlags & SIInstrFlags::VM_CNT);
+
+ // Only consider stores or EXP for EXP_CNT
+ Result.Named.EXP = !!(TSFlags & SIInstrFlags::EXP_CNT &&
+ (MI.getOpcode() == AMDGPU::EXP || MI.getDesc().mayStore()));
+
+ // LGKM may uses larger values
+ if (TSFlags & SIInstrFlags::LGKM_CNT) {
+
+ if (TII->isSMRD(MI.getOpcode())) {
+
+ MachineOperand &Op = MI.getOperand(0);
+ assert(Op.isReg() && "First LGKM operand must be a register!");
+
+ unsigned Reg = Op.getReg();
+ unsigned Size = TRI->getMinimalPhysRegClass(Reg)->getSize();
+ Result.Named.LGKM = Size > 4 ? 2 : 1;
+
+ } else {
+ // DS
+ Result.Named.LGKM = 1;
+ }
+
+ } else {
+ Result.Named.LGKM = 0;
+ }
+
+ return Result;
+}
+
+bool SIInsertWaits::isOpRelevant(MachineOperand &Op) {
+
+ // Constants are always irrelevant
+ if (!Op.isReg())
+ return false;
+
+ // Defines are always relevant
+ if (Op.isDef())
+ return true;
+
+ // For exports all registers are relevant
+ MachineInstr &MI = *Op.getParent();
+ if (MI.getOpcode() == AMDGPU::EXP)
+ return true;
+
+ // For stores the stored value is also relevant
+ if (!MI.getDesc().mayStore())
+ return false;
+
+ for (MachineInstr::mop_iterator I = MI.operands_begin(),
+ E = MI.operands_end(); I != E; ++I) {
+
+ if (I->isReg() && I->isUse())
+ return Op.isIdenticalTo(*I);
+ }
+
+ return false;
+}
+
+RegInterval SIInsertWaits::getRegInterval(MachineOperand &Op) {
+
+ if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()))
+ return std::make_pair(0, 0);
+
+ unsigned Reg = Op.getReg();
+ unsigned Size = TRI->getMinimalPhysRegClass(Reg)->getSize();
+
+ assert(Size >= 4);
+
+ RegInterval Result;
+ Result.first = TRI->getEncodingValue(Reg);
+ Result.second = Result.first + Size / 4;
+
+ return Result;
+}
+
+void SIInsertWaits::pushInstruction(MachineInstr &MI) {
+
+ // Get the hardware counter increments and sum them up
+ Counters Increment = getHwCounts(MI);
+ unsigned Sum = 0;
+
+ for (unsigned i = 0; i < 3; ++i) {
+ LastIssued.Array[i] += Increment.Array[i];
+ Sum += Increment.Array[i];
+ }
+
+ // If we don't increase anything then that's it
+ if (Sum == 0)
+ return;
+
+ // Remember which export instructions we have seen
+ if (Increment.Named.EXP) {
+ ExpInstrTypesSeen |= MI.getOpcode() == AMDGPU::EXP ? 1 : 2;
+ }
+
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+
+ MachineOperand &Op = MI.getOperand(i);
+ if (!isOpRelevant(Op))
+ continue;
+
+ RegInterval Interval = getRegInterval(Op);
+ for (unsigned j = Interval.first; j < Interval.second; ++j) {
+
+ // Remember which registers we define
+ if (Op.isDef())
+ DefinedRegs[j] = LastIssued;
+
+ // and which one we are using
+ if (Op.isUse())
+ UsedRegs[j] = LastIssued;
+ }
+ }
+}
+
+bool SIInsertWaits::insertWait(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ const Counters &Required) {
+
+ // End of program? No need to wait on anything
+ if (I != MBB.end() && I->getOpcode() == AMDGPU::S_ENDPGM)
+ return false;
+
+ // Figure out if the async instructions execute in order
+ bool Ordered[3];
+
+ // VM_CNT is always ordered
+ Ordered[0] = true;
+
+ // EXP_CNT is unordered if we have both EXP & VM-writes
+ Ordered[1] = ExpInstrTypesSeen == 3;
+
+ // LGKM_CNT is handled as always unordered. TODO: Handle LDS and GDS
+ Ordered[2] = false;
+
+ // The values we are going to put into the S_WAITCNT instruction
+ Counters Counts = WaitCounts;
+
+ // Do we really need to wait?
+ bool NeedWait = false;
+
+ for (unsigned i = 0; i < 3; ++i) {
+
+ if (Required.Array[i] <= WaitedOn.Array[i])
+ continue;
+
+ NeedWait = true;
+
+ if (Ordered[i]) {
+ unsigned Value = LastIssued.Array[i] - Required.Array[i];
+
+ // Adjust the value to the real hardware possibilities.
+ Counts.Array[i] = std::min(Value, WaitCounts.Array[i]);
+
+ } else
+ Counts.Array[i] = 0;
+
+ // Remember on what we have waited on.
+ WaitedOn.Array[i] = LastIssued.Array[i] - Counts.Array[i];
+ }
+
+ if (!NeedWait)
+ return false;
+
+ // Reset EXP_CNT instruction types
+ if (Counts.Named.EXP == 0)
+ ExpInstrTypesSeen = 0;
+
+ // Build the wait instruction
+ BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
+ .addImm((Counts.Named.VM & 0xF) |
+ ((Counts.Named.EXP & 0x7) << 4) |
+ ((Counts.Named.LGKM & 0x7) << 8));
+
+ return true;
+}
+
+/// \brief helper function for handleOperands
+static void increaseCounters(Counters &Dst, const Counters &Src) {
+
+ for (unsigned i = 0; i < 3; ++i)
+ Dst.Array[i] = std::max(Dst.Array[i], Src.Array[i]);
+}
+
+Counters SIInsertWaits::handleOperands(MachineInstr &MI) {
+
+ Counters Result = ZeroCounts;
+
+ // S_SENDMSG implicitly waits for all outstanding LGKM transfers to finish,
+ // but we also want to wait for any other outstanding transfers before
+ // signalling other hardware blocks
+ if (MI.getOpcode() == AMDGPU::S_SENDMSG)
+ return LastIssued;
+
+ // For each register affected by this
+ // instruction increase the result sequence
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+
+ MachineOperand &Op = MI.getOperand(i);
+ RegInterval Interval = getRegInterval(Op);
+ for (unsigned j = Interval.first; j < Interval.second; ++j) {
+
+ if (Op.isDef()) {
+ increaseCounters(Result, UsedRegs[j]);
+ increaseCounters(Result, DefinedRegs[j]);
+ }
+
+ if (Op.isUse())
+ increaseCounters(Result, DefinedRegs[j]);
+ }
+ }
+
+ return Result;
+}
+
+// FIXME: Insert waits listed in Table 4.2 "Required User-Inserted Wait States"
+// around other non-memory instructions.
+bool SIInsertWaits::runOnMachineFunction(MachineFunction &MF) {
+ bool Changes = false;
+
+ TII = static_cast<const SIInstrInfo*>(MF.getTarget().getInstrInfo());
+ TRI = static_cast<const SIRegisterInfo*>(MF.getTarget().getRegisterInfo());
+
+ MRI = &MF.getRegInfo();
+
+ WaitedOn = ZeroCounts;
+ LastIssued = ZeroCounts;
+
+ memset(&UsedRegs, 0, sizeof(UsedRegs));
+ memset(&DefinedRegs, 0, sizeof(DefinedRegs));
+
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
+ BI != BE; ++BI) {
+
+ MachineBasicBlock &MBB = *BI;
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ I != E; ++I) {
+
+ Changes |= insertWait(MBB, I, handleOperands(*I));
+ pushInstruction(*I);
+ }
+
+ // Wait for everything at the end of the MBB
+ Changes |= insertWait(MBB, MBB.getFirstTerminator(), LastIssued);
+ }
+
+ return Changes;
+}
diff --git a/contrib/llvm/lib/Target/R600/SIInstrFormats.td b/contrib/llvm/lib/Target/R600/SIInstrFormats.td
new file mode 100644
index 0000000..00e69dd
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIInstrFormats.td
@@ -0,0 +1,535 @@
+//===-- SIInstrFormats.td - SI Instruction Encodings ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// SI Instruction format definitions.
+//
+//===----------------------------------------------------------------------===//
+
+class InstSI <dag outs, dag ins, string asm, list<dag> pattern> :
+ AMDGPUInst<outs, ins, asm, pattern>, PredicateControl {
+
+ field bits<1> VM_CNT = 0;
+ field bits<1> EXP_CNT = 0;
+ field bits<1> LGKM_CNT = 0;
+ field bits<1> MIMG = 0;
+ field bits<1> SMRD = 0;
+ field bits<1> VOP1 = 0;
+ field bits<1> VOP2 = 0;
+ field bits<1> VOP3 = 0;
+ field bits<1> VOPC = 0;
+ field bits<1> SALU = 0;
+
+ let TSFlags{0} = VM_CNT;
+ let TSFlags{1} = EXP_CNT;
+ let TSFlags{2} = LGKM_CNT;
+ let TSFlags{3} = MIMG;
+ let TSFlags{4} = SMRD;
+ let TSFlags{5} = VOP1;
+ let TSFlags{6} = VOP2;
+ let TSFlags{7} = VOP3;
+ let TSFlags{8} = VOPC;
+ let TSFlags{9} = SALU;
+}
+
+class Enc32 {
+
+ field bits<32> Inst;
+ int Size = 4;
+}
+
+class Enc64 {
+
+ field bits<64> Inst;
+ int Size = 8;
+}
+
+class VOP3Common <dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins, asm, pattern> {
+
+ let mayLoad = 0;
+ let mayStore = 0;
+ let hasSideEffects = 0;
+ let UseNamedOperandTable = 1;
+ let VOP3 = 1;
+
+ int Size = 8;
+}
+
+//===----------------------------------------------------------------------===//
+// Scalar operations
+//===----------------------------------------------------------------------===//
+
+class SOP1e <bits<8> op> : Enc32 {
+
+ bits<7> SDST;
+ bits<8> SSRC0;
+
+ let Inst{7-0} = SSRC0;
+ let Inst{15-8} = op;
+ let Inst{22-16} = SDST;
+ let Inst{31-23} = 0x17d; //encoding;
+}
+
+class SOP2e <bits<7> op> : Enc32 {
+
+ bits<7> SDST;
+ bits<8> SSRC0;
+ bits<8> SSRC1;
+
+ let Inst{7-0} = SSRC0;
+ let Inst{15-8} = SSRC1;
+ let Inst{22-16} = SDST;
+ let Inst{29-23} = op;
+ let Inst{31-30} = 0x2; // encoding
+}
+
+class SOPCe <bits<7> op> : Enc32 {
+
+ bits<8> SSRC0;
+ bits<8> SSRC1;
+
+ let Inst{7-0} = SSRC0;
+ let Inst{15-8} = SSRC1;
+ let Inst{22-16} = op;
+ let Inst{31-23} = 0x17e;
+}
+
+class SOPKe <bits<5> op> : Enc32 {
+
+ bits <7> SDST;
+ bits <16> SIMM16;
+
+ let Inst{15-0} = SIMM16;
+ let Inst{22-16} = SDST;
+ let Inst{27-23} = op;
+ let Inst{31-28} = 0xb; //encoding
+}
+
+class SOPPe <bits<7> op> : Enc32 {
+
+ bits <16> simm16;
+
+ let Inst{15-0} = simm16;
+ let Inst{22-16} = op;
+ let Inst{31-23} = 0x17f; // encoding
+}
+
+class SMRDe <bits<5> op, bits<1> imm> : Enc32 {
+
+ bits<7> SDST;
+ bits<7> SBASE;
+ bits<8> OFFSET;
+
+ let Inst{7-0} = OFFSET;
+ let Inst{8} = imm;
+ let Inst{14-9} = SBASE{6-1};
+ let Inst{21-15} = SDST;
+ let Inst{26-22} = op;
+ let Inst{31-27} = 0x18; //encoding
+}
+
+class SOP1 <bits<8> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI<outs, ins, asm, pattern>, SOP1e <op> {
+
+ let mayLoad = 0;
+ let mayStore = 0;
+ let hasSideEffects = 0;
+ let SALU = 1;
+}
+
+class SOP2 <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins, asm, pattern>, SOP2e<op> {
+
+ let mayLoad = 0;
+ let mayStore = 0;
+ let hasSideEffects = 0;
+ let SALU = 1;
+}
+
+class SOPC <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI<outs, ins, asm, pattern>, SOPCe <op> {
+
+ let DisableEncoding = "$dst";
+ let mayLoad = 0;
+ let mayStore = 0;
+ let hasSideEffects = 0;
+ let SALU = 1;
+}
+
+class SOPK <bits<5> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins , asm, pattern>, SOPKe<op> {
+
+ let mayLoad = 0;
+ let mayStore = 0;
+ let hasSideEffects = 0;
+ let SALU = 1;
+}
+
+class SOPP <bits<7> op, dag ins, string asm, list<dag> pattern> :
+ InstSI <(outs), ins, asm, pattern >, SOPPe <op> {
+
+ let mayLoad = 0;
+ let mayStore = 0;
+ let hasSideEffects = 0;
+ let SALU = 1;
+}
+
+class SMRD <bits<5> op, bits<1> imm, dag outs, dag ins, string asm,
+ list<dag> pattern> : InstSI<outs, ins, asm, pattern>, SMRDe<op, imm> {
+
+ let LGKM_CNT = 1;
+ let SMRD = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// Vector ALU operations
+//===----------------------------------------------------------------------===//
+
+class VOP1e <bits<8> op> : Enc32 {
+
+ bits<8> VDST;
+ bits<9> SRC0;
+
+ let Inst{8-0} = SRC0;
+ let Inst{16-9} = op;
+ let Inst{24-17} = VDST;
+ let Inst{31-25} = 0x3f; //encoding
+}
+
+class VOP2e <bits<6> op> : Enc32 {
+
+ bits<8> VDST;
+ bits<9> SRC0;
+ bits<8> VSRC1;
+
+ let Inst{8-0} = SRC0;
+ let Inst{16-9} = VSRC1;
+ let Inst{24-17} = VDST;
+ let Inst{30-25} = op;
+ let Inst{31} = 0x0; //encoding
+}
+
+class VOP3e <bits<9> op> : Enc64 {
+
+ bits<8> dst;
+ bits<2> src0_modifiers;
+ bits<9> src0;
+ bits<2> src1_modifiers;
+ bits<9> src1;
+ bits<2> src2_modifiers;
+ bits<9> src2;
+ bits<1> clamp;
+ bits<2> omod;
+
+ let Inst{7-0} = dst;
+ let Inst{8} = src0_modifiers{1};
+ let Inst{9} = src1_modifiers{1};
+ let Inst{10} = src2_modifiers{1};
+ let Inst{11} = clamp;
+ let Inst{25-17} = op;
+ let Inst{31-26} = 0x34; //encoding
+ let Inst{40-32} = src0;
+ let Inst{49-41} = src1;
+ let Inst{58-50} = src2;
+ let Inst{60-59} = omod;
+ let Inst{61} = src0_modifiers{0};
+ let Inst{62} = src1_modifiers{0};
+ let Inst{63} = src2_modifiers{0};
+}
+
+class VOP3be <bits<9> op> : Enc64 {
+
+ bits<8> dst;
+ bits<2> src0_modifiers;
+ bits<9> src0;
+ bits<2> src1_modifiers;
+ bits<9> src1;
+ bits<2> src2_modifiers;
+ bits<9> src2;
+ bits<7> sdst;
+ bits<2> omod;
+
+ let Inst{7-0} = dst;
+ let Inst{14-8} = sdst;
+ let Inst{25-17} = op;
+ let Inst{31-26} = 0x34; //encoding
+ let Inst{40-32} = src0;
+ let Inst{49-41} = src1;
+ let Inst{58-50} = src2;
+ let Inst{60-59} = omod;
+ let Inst{61} = src0_modifiers{0};
+ let Inst{62} = src1_modifiers{0};
+ let Inst{63} = src2_modifiers{0};
+}
+
+class VOPCe <bits<8> op> : Enc32 {
+
+ bits<9> SRC0;
+ bits<8> VSRC1;
+
+ let Inst{8-0} = SRC0;
+ let Inst{16-9} = VSRC1;
+ let Inst{24-17} = op;
+ let Inst{31-25} = 0x3e;
+}
+
+class VINTRPe <bits<2> op> : Enc32 {
+
+ bits<8> VDST;
+ bits<8> VSRC;
+ bits<2> ATTRCHAN;
+ bits<6> ATTR;
+
+ let Inst{7-0} = VSRC;
+ let Inst{9-8} = ATTRCHAN;
+ let Inst{15-10} = ATTR;
+ let Inst{17-16} = op;
+ let Inst{25-18} = VDST;
+ let Inst{31-26} = 0x32; // encoding
+}
+
+class DSe <bits<8> op> : Enc64 {
+
+ bits<8> vdst;
+ bits<1> gds;
+ bits<8> addr;
+ bits<8> data0;
+ bits<8> data1;
+ bits<8> offset0;
+ bits<8> offset1;
+
+ let Inst{7-0} = offset0;
+ let Inst{15-8} = offset1;
+ let Inst{17} = gds;
+ let Inst{25-18} = op;
+ let Inst{31-26} = 0x36; //encoding
+ let Inst{39-32} = addr;
+ let Inst{47-40} = data0;
+ let Inst{55-48} = data1;
+ let Inst{63-56} = vdst;
+}
+
+class MUBUFe <bits<7> op> : Enc64 {
+
+ bits<12> offset;
+ bits<1> offen;
+ bits<1> idxen;
+ bits<1> glc;
+ bits<1> addr64;
+ bits<1> lds;
+ bits<8> vaddr;
+ bits<8> vdata;
+ bits<7> srsrc;
+ bits<1> slc;
+ bits<1> tfe;
+ bits<8> soffset;
+
+ let Inst{11-0} = offset;
+ let Inst{12} = offen;
+ let Inst{13} = idxen;
+ let Inst{14} = glc;
+ let Inst{15} = addr64;
+ let Inst{16} = lds;
+ let Inst{24-18} = op;
+ let Inst{31-26} = 0x38; //encoding
+ let Inst{39-32} = vaddr;
+ let Inst{47-40} = vdata;
+ let Inst{52-48} = srsrc{6-2};
+ let Inst{54} = slc;
+ let Inst{55} = tfe;
+ let Inst{63-56} = soffset;
+}
+
+class MTBUFe <bits<3> op> : Enc64 {
+
+ bits<8> VDATA;
+ bits<12> OFFSET;
+ bits<1> OFFEN;
+ bits<1> IDXEN;
+ bits<1> GLC;
+ bits<1> ADDR64;
+ bits<4> DFMT;
+ bits<3> NFMT;
+ bits<8> VADDR;
+ bits<7> SRSRC;
+ bits<1> SLC;
+ bits<1> TFE;
+ bits<8> SOFFSET;
+
+ let Inst{11-0} = OFFSET;
+ let Inst{12} = OFFEN;
+ let Inst{13} = IDXEN;
+ let Inst{14} = GLC;
+ let Inst{15} = ADDR64;
+ let Inst{18-16} = op;
+ let Inst{22-19} = DFMT;
+ let Inst{25-23} = NFMT;
+ let Inst{31-26} = 0x3a; //encoding
+ let Inst{39-32} = VADDR;
+ let Inst{47-40} = VDATA;
+ let Inst{52-48} = SRSRC{6-2};
+ let Inst{54} = SLC;
+ let Inst{55} = TFE;
+ let Inst{63-56} = SOFFSET;
+}
+
+class MIMGe <bits<7> op> : Enc64 {
+
+ bits<8> VDATA;
+ bits<4> DMASK;
+ bits<1> UNORM;
+ bits<1> GLC;
+ bits<1> DA;
+ bits<1> R128;
+ bits<1> TFE;
+ bits<1> LWE;
+ bits<1> SLC;
+ bits<8> VADDR;
+ bits<7> SRSRC;
+ bits<7> SSAMP;
+
+ let Inst{11-8} = DMASK;
+ let Inst{12} = UNORM;
+ let Inst{13} = GLC;
+ let Inst{14} = DA;
+ let Inst{15} = R128;
+ let Inst{16} = TFE;
+ let Inst{17} = LWE;
+ let Inst{24-18} = op;
+ let Inst{25} = SLC;
+ let Inst{31-26} = 0x3c;
+ let Inst{39-32} = VADDR;
+ let Inst{47-40} = VDATA;
+ let Inst{52-48} = SRSRC{6-2};
+ let Inst{57-53} = SSAMP{6-2};
+}
+
+class EXPe : Enc64 {
+
+ bits<4> EN;
+ bits<6> TGT;
+ bits<1> COMPR;
+ bits<1> DONE;
+ bits<1> VM;
+ bits<8> VSRC0;
+ bits<8> VSRC1;
+ bits<8> VSRC2;
+ bits<8> VSRC3;
+
+ let Inst{3-0} = EN;
+ let Inst{9-4} = TGT;
+ let Inst{10} = COMPR;
+ let Inst{11} = DONE;
+ let Inst{12} = VM;
+ let Inst{31-26} = 0x3e;
+ let Inst{39-32} = VSRC0;
+ let Inst{47-40} = VSRC1;
+ let Inst{55-48} = VSRC2;
+ let Inst{63-56} = VSRC3;
+}
+
+let Uses = [EXEC] in {
+
+class VOP1 <bits<8> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins, asm, pattern>, VOP1e<op> {
+
+ let mayLoad = 0;
+ let mayStore = 0;
+ let hasSideEffects = 0;
+ let UseNamedOperandTable = 1;
+ let VOP1 = 1;
+}
+
+class VOP2 <bits<6> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins, asm, pattern>, VOP2e<op> {
+
+ let mayLoad = 0;
+ let mayStore = 0;
+ let hasSideEffects = 0;
+ let UseNamedOperandTable = 1;
+ let VOP2 = 1;
+}
+
+class VOP3 <bits<9> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ VOP3Common <outs, ins, asm, pattern>, VOP3e<op>;
+
+class VOP3b <bits<9> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ VOP3Common <outs, ins, asm, pattern>, VOP3be<op>;
+
+class VOPC <bits<8> op, dag ins, string asm, list<dag> pattern> :
+ InstSI <(outs VCCReg:$dst), ins, asm, pattern>, VOPCe <op> {
+
+ let DisableEncoding = "$dst";
+ let mayLoad = 0;
+ let mayStore = 0;
+ let hasSideEffects = 0;
+ let UseNamedOperandTable = 1;
+ let VOPC = 1;
+}
+
+class VINTRP <bits <2> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins, asm, pattern>, VINTRPe<op> {
+
+ let neverHasSideEffects = 1;
+ let mayLoad = 1;
+ let mayStore = 0;
+}
+
+} // End Uses = [EXEC]
+
+//===----------------------------------------------------------------------===//
+// Vector I/O operations
+//===----------------------------------------------------------------------===//
+
+let Uses = [EXEC] in {
+
+class DS <bits<8> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins, asm, pattern> , DSe<op> {
+
+ let LGKM_CNT = 1;
+}
+
+class MUBUF <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI<outs, ins, asm, pattern>, MUBUFe <op> {
+
+ let VM_CNT = 1;
+ let EXP_CNT = 1;
+
+ let neverHasSideEffects = 1;
+ let UseNamedOperandTable = 1;
+}
+
+class MTBUF <bits<3> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI<outs, ins, asm, pattern>, MTBUFe <op> {
+
+ let VM_CNT = 1;
+ let EXP_CNT = 1;
+
+ let neverHasSideEffects = 1;
+}
+
+class MIMG <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins, asm, pattern>, MIMGe <op> {
+
+ let VM_CNT = 1;
+ let EXP_CNT = 1;
+ let MIMG = 1;
+}
+
+def EXP : InstSI<
+ (outs),
+ (ins i32imm:$en, i32imm:$tgt, i32imm:$compr, i32imm:$done, i32imm:$vm,
+ VReg_32:$src0, VReg_32:$src1, VReg_32:$src2, VReg_32:$src3),
+ "EXP $en, $tgt, $compr, $done, $vm, $src0, $src1, $src2, $src3",
+ [] >, EXPe {
+
+ let EXP_CNT = 1;
+}
+
+} // End Uses = [EXEC]
diff --git a/contrib/llvm/lib/Target/R600/SIInstrInfo.cpp b/contrib/llvm/lib/Target/R600/SIInstrInfo.cpp
new file mode 100644
index 0000000..51f4532
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIInstrInfo.cpp
@@ -0,0 +1,1654 @@
+//===-- SIInstrInfo.cpp - SI Instruction Information ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief SI Implementation of TargetInstrInfo.
+//
+//===----------------------------------------------------------------------===//
+
+
+#include "SIInstrInfo.h"
+#include "AMDGPUTargetMachine.h"
+#include "SIDefines.h"
+#include "SIMachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCInstrDesc.h"
+
+using namespace llvm;
+
+SIInstrInfo::SIInstrInfo(const AMDGPUSubtarget &st)
+ : AMDGPUInstrInfo(st),
+ RI(st) { }
+
+//===----------------------------------------------------------------------===//
+// TargetInstrInfo callbacks
+//===----------------------------------------------------------------------===//
+
+void
+SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+
+ // If we are trying to copy to or from SCC, there is a bug somewhere else in
+ // the backend. While it may be theoretically possible to do this, it should
+ // never be necessary.
+ assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC);
+
+ static const int16_t Sub0_15[] = {
+ AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
+ AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
+ AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
+ AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 0
+ };
+
+ static const int16_t Sub0_7[] = {
+ AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
+ AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 0
+ };
+
+ static const int16_t Sub0_3[] = {
+ AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 0
+ };
+
+ static const int16_t Sub0_2[] = {
+ AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, 0
+ };
+
+ static const int16_t Sub0_1[] = {
+ AMDGPU::sub0, AMDGPU::sub1, 0
+ };
+
+ unsigned Opcode;
+ const int16_t *SubIndices;
+
+ if (AMDGPU::M0 == DestReg) {
+ // Check if M0 isn't already set to this value
+ for (MachineBasicBlock::reverse_iterator E = MBB.rend(),
+ I = MachineBasicBlock::reverse_iterator(MI); I != E; ++I) {
+
+ if (!I->definesRegister(AMDGPU::M0))
+ continue;
+
+ unsigned Opc = I->getOpcode();
+ if (Opc != TargetOpcode::COPY && Opc != AMDGPU::S_MOV_B32)
+ break;
+
+ if (!I->readsRegister(SrcReg))
+ break;
+
+ // The copy isn't necessary
+ return;
+ }
+ }
+
+ if (AMDGPU::SReg_32RegClass.contains(DestReg)) {
+ assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
+ BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+
+ } else if (AMDGPU::SReg_64RegClass.contains(DestReg)) {
+ assert(AMDGPU::SReg_64RegClass.contains(SrcReg));
+ BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+
+ } else if (AMDGPU::SReg_128RegClass.contains(DestReg)) {
+ assert(AMDGPU::SReg_128RegClass.contains(SrcReg));
+ Opcode = AMDGPU::S_MOV_B32;
+ SubIndices = Sub0_3;
+
+ } else if (AMDGPU::SReg_256RegClass.contains(DestReg)) {
+ assert(AMDGPU::SReg_256RegClass.contains(SrcReg));
+ Opcode = AMDGPU::S_MOV_B32;
+ SubIndices = Sub0_7;
+
+ } else if (AMDGPU::SReg_512RegClass.contains(DestReg)) {
+ assert(AMDGPU::SReg_512RegClass.contains(SrcReg));
+ Opcode = AMDGPU::S_MOV_B32;
+ SubIndices = Sub0_15;
+
+ } else if (AMDGPU::VReg_32RegClass.contains(DestReg)) {
+ assert(AMDGPU::VReg_32RegClass.contains(SrcReg) ||
+ AMDGPU::SReg_32RegClass.contains(SrcReg));
+ BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+
+ } else if (AMDGPU::VReg_64RegClass.contains(DestReg)) {
+ assert(AMDGPU::VReg_64RegClass.contains(SrcReg) ||
+ AMDGPU::SReg_64RegClass.contains(SrcReg));
+ Opcode = AMDGPU::V_MOV_B32_e32;
+ SubIndices = Sub0_1;
+
+ } else if (AMDGPU::VReg_96RegClass.contains(DestReg)) {
+ assert(AMDGPU::VReg_96RegClass.contains(SrcReg));
+ Opcode = AMDGPU::V_MOV_B32_e32;
+ SubIndices = Sub0_2;
+
+ } else if (AMDGPU::VReg_128RegClass.contains(DestReg)) {
+ assert(AMDGPU::VReg_128RegClass.contains(SrcReg) ||
+ AMDGPU::SReg_128RegClass.contains(SrcReg));
+ Opcode = AMDGPU::V_MOV_B32_e32;
+ SubIndices = Sub0_3;
+
+ } else if (AMDGPU::VReg_256RegClass.contains(DestReg)) {
+ assert(AMDGPU::VReg_256RegClass.contains(SrcReg) ||
+ AMDGPU::SReg_256RegClass.contains(SrcReg));
+ Opcode = AMDGPU::V_MOV_B32_e32;
+ SubIndices = Sub0_7;
+
+ } else if (AMDGPU::VReg_512RegClass.contains(DestReg)) {
+ assert(AMDGPU::VReg_512RegClass.contains(SrcReg) ||
+ AMDGPU::SReg_512RegClass.contains(SrcReg));
+ Opcode = AMDGPU::V_MOV_B32_e32;
+ SubIndices = Sub0_15;
+
+ } else {
+ llvm_unreachable("Can't copy register!");
+ }
+
+ while (unsigned SubIdx = *SubIndices++) {
+ MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
+ get(Opcode), RI.getSubReg(DestReg, SubIdx));
+
+ Builder.addReg(RI.getSubReg(SrcReg, SubIdx), getKillRegState(KillSrc));
+
+ if (*SubIndices)
+ Builder.addReg(DestReg, RegState::Define | RegState::Implicit);
+ }
+}
+
+unsigned SIInstrInfo::commuteOpcode(unsigned Opcode) const {
+ int NewOpc;
+
+ // Try to map original to commuted opcode
+ if ((NewOpc = AMDGPU::getCommuteRev(Opcode)) != -1)
+ return NewOpc;
+
+ // Try to map commuted to original opcode
+ if ((NewOpc = AMDGPU::getCommuteOrig(Opcode)) != -1)
+ return NewOpc;
+
+ return Opcode;
+}
+
+void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill,
+ int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction *MF = MBB.getParent();
+ SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ DebugLoc DL = MBB.findDebugLoc(MI);
+ unsigned KillFlag = isKill ? RegState::Kill : 0;
+
+ if (RI.hasVGPRs(RC)) {
+ LLVMContext &Ctx = MF->getFunction()->getContext();
+ Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Can't spill VGPR!");
+ BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), AMDGPU::VGPR0)
+ .addReg(SrcReg);
+ } else if (TRI->getCommonSubClass(RC, &AMDGPU::SGPR_32RegClass)) {
+ unsigned Lane = MFI->SpillTracker.reserveLanes(MRI, MF);
+ unsigned TgtReg = MFI->SpillTracker.LaneVGPR;
+
+ BuildMI(MBB, MI, DL, get(AMDGPU::V_WRITELANE_B32), TgtReg)
+ .addReg(SrcReg, KillFlag)
+ .addImm(Lane);
+ MFI->SpillTracker.addSpilledReg(FrameIndex, TgtReg, Lane);
+ } else if (RI.isSGPRClass(RC)) {
+ // We are only allowed to create one new instruction when spilling
+ // registers, so we need to use pseudo instruction for vector
+ // registers.
+ //
+ // Reserve a spot in the spill tracker for each sub-register of
+ // the vector register.
+ unsigned NumSubRegs = RC->getSize() / 4;
+ unsigned FirstLane = MFI->SpillTracker.reserveLanes(MRI, MF, NumSubRegs);
+ MFI->SpillTracker.addSpilledReg(FrameIndex, MFI->SpillTracker.LaneVGPR,
+ FirstLane);
+
+ unsigned Opcode;
+ switch (RC->getSize() * 8) {
+ case 64: Opcode = AMDGPU::SI_SPILL_S64_SAVE; break;
+ case 128: Opcode = AMDGPU::SI_SPILL_S128_SAVE; break;
+ case 256: Opcode = AMDGPU::SI_SPILL_S256_SAVE; break;
+ case 512: Opcode = AMDGPU::SI_SPILL_S512_SAVE; break;
+ default: llvm_unreachable("Cannot spill register class");
+ }
+
+ BuildMI(MBB, MI, DL, get(Opcode), MFI->SpillTracker.LaneVGPR)
+ .addReg(SrcReg)
+ .addImm(FrameIndex);
+ } else {
+ llvm_unreachable("VGPR spilling not supported");
+ }
+}
+
+void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction *MF = MBB.getParent();
+ SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
+ DebugLoc DL = MBB.findDebugLoc(MI);
+
+ if (RI.hasVGPRs(RC)) {
+ LLVMContext &Ctx = MF->getFunction()->getContext();
+ Ctx.emitError("SIInstrInfo::loadRegToStackSlot - Can't retrieve spilled VGPR!");
+ BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
+ .addImm(0);
+ } else if (RI.isSGPRClass(RC)){
+ unsigned Opcode;
+ switch(RC->getSize() * 8) {
+ case 32: Opcode = AMDGPU::SI_SPILL_S32_RESTORE; break;
+ case 64: Opcode = AMDGPU::SI_SPILL_S64_RESTORE; break;
+ case 128: Opcode = AMDGPU::SI_SPILL_S128_RESTORE; break;
+ case 256: Opcode = AMDGPU::SI_SPILL_S256_RESTORE; break;
+ case 512: Opcode = AMDGPU::SI_SPILL_S512_RESTORE; break;
+ default: llvm_unreachable("Cannot spill register class");
+ }
+
+ SIMachineFunctionInfo::SpilledReg Spill =
+ MFI->SpillTracker.getSpilledReg(FrameIndex);
+
+ BuildMI(MBB, MI, DL, get(Opcode), DestReg)
+ .addReg(Spill.VGPR)
+ .addImm(FrameIndex);
+ } else {
+ llvm_unreachable("VGPR spilling not supported");
+ }
+}
+
+static unsigned getNumSubRegsForSpillOp(unsigned Op) {
+
+ switch (Op) {
+ case AMDGPU::SI_SPILL_S512_SAVE:
+ case AMDGPU::SI_SPILL_S512_RESTORE:
+ return 16;
+ case AMDGPU::SI_SPILL_S256_SAVE:
+ case AMDGPU::SI_SPILL_S256_RESTORE:
+ return 8;
+ case AMDGPU::SI_SPILL_S128_SAVE:
+ case AMDGPU::SI_SPILL_S128_RESTORE:
+ return 4;
+ case AMDGPU::SI_SPILL_S64_SAVE:
+ case AMDGPU::SI_SPILL_S64_RESTORE:
+ return 2;
+ case AMDGPU::SI_SPILL_S32_RESTORE:
+ return 1;
+ default: llvm_unreachable("Invalid spill opcode");
+ }
+}
+
+void SIInstrInfo::insertNOPs(MachineBasicBlock::iterator MI,
+ int Count) const {
+ while (Count > 0) {
+ int Arg;
+ if (Count >= 8)
+ Arg = 7;
+ else
+ Arg = Count - 1;
+ Count -= 8;
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(AMDGPU::S_NOP))
+ .addImm(Arg);
+ }
+}
+
+bool SIInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ SIMachineFunctionInfo *MFI =
+ MI->getParent()->getParent()->getInfo<SIMachineFunctionInfo>();
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MBB.findDebugLoc(MI);
+ switch (MI->getOpcode()) {
+ default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
+
+ // SGPR register spill
+ case AMDGPU::SI_SPILL_S512_SAVE:
+ case AMDGPU::SI_SPILL_S256_SAVE:
+ case AMDGPU::SI_SPILL_S128_SAVE:
+ case AMDGPU::SI_SPILL_S64_SAVE: {
+ unsigned NumSubRegs = getNumSubRegsForSpillOp(MI->getOpcode());
+ unsigned FrameIndex = MI->getOperand(2).getImm();
+
+ for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
+ SIMachineFunctionInfo::SpilledReg Spill;
+ unsigned SubReg = RI.getPhysRegSubReg(MI->getOperand(1).getReg(),
+ &AMDGPU::SGPR_32RegClass, i);
+ Spill = MFI->SpillTracker.getSpilledReg(FrameIndex);
+
+ BuildMI(MBB, MI, DL, get(AMDGPU::V_WRITELANE_B32),
+ MI->getOperand(0).getReg())
+ .addReg(SubReg)
+ .addImm(Spill.Lane + i);
+ }
+ MI->eraseFromParent();
+ break;
+ }
+
+ // SGPR register restore
+ case AMDGPU::SI_SPILL_S512_RESTORE:
+ case AMDGPU::SI_SPILL_S256_RESTORE:
+ case AMDGPU::SI_SPILL_S128_RESTORE:
+ case AMDGPU::SI_SPILL_S64_RESTORE:
+ case AMDGPU::SI_SPILL_S32_RESTORE: {
+ unsigned NumSubRegs = getNumSubRegsForSpillOp(MI->getOpcode());
+
+ for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
+ SIMachineFunctionInfo::SpilledReg Spill;
+ unsigned FrameIndex = MI->getOperand(2).getImm();
+ unsigned SubReg = RI.getPhysRegSubReg(MI->getOperand(0).getReg(),
+ &AMDGPU::SGPR_32RegClass, i);
+ Spill = MFI->SpillTracker.getSpilledReg(FrameIndex);
+
+ BuildMI(MBB, MI, DL, get(AMDGPU::V_READLANE_B32), SubReg)
+ .addReg(MI->getOperand(1).getReg())
+ .addImm(Spill.Lane + i);
+ }
+ insertNOPs(MI, 3);
+ MI->eraseFromParent();
+ break;
+ }
+ case AMDGPU::SI_CONSTDATA_PTR: {
+ unsigned Reg = MI->getOperand(0).getReg();
+ unsigned RegLo = RI.getSubReg(Reg, AMDGPU::sub0);
+ unsigned RegHi = RI.getSubReg(Reg, AMDGPU::sub1);
+
+ BuildMI(MBB, MI, DL, get(AMDGPU::S_GETPC_B64), Reg);
+
+ // Add 32-bit offset from this instruction to the start of the constant data.
+ BuildMI(MBB, MI, DL, get(AMDGPU::S_ADD_I32), RegLo)
+ .addReg(RegLo)
+ .addTargetIndex(AMDGPU::TI_CONSTDATA_START)
+ .addReg(AMDGPU::SCC, RegState::Define | RegState::Implicit);
+ BuildMI(MBB, MI, DL, get(AMDGPU::S_ADDC_U32), RegHi)
+ .addReg(RegHi)
+ .addImm(0)
+ .addReg(AMDGPU::SCC, RegState::Define | RegState::Implicit)
+ .addReg(AMDGPU::SCC, RegState::Implicit);
+ MI->eraseFromParent();
+ break;
+ }
+ }
+ return true;
+}
+
+MachineInstr *SIInstrInfo::commuteInstruction(MachineInstr *MI,
+ bool NewMI) const {
+
+ MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ if (MI->getNumOperands() < 3 || !MI->getOperand(1).isReg())
+ return nullptr;
+
+ // Cannot commute VOP2 if src0 is SGPR.
+ if (isVOP2(MI->getOpcode()) && MI->getOperand(1).isReg() &&
+ RI.isSGPRClass(MRI.getRegClass(MI->getOperand(1).getReg())))
+ return nullptr;
+
+ if (!MI->getOperand(2).isReg()) {
+ // XXX: Commute instructions with FPImm operands
+ if (NewMI || MI->getOperand(2).isFPImm() ||
+ (!isVOP2(MI->getOpcode()) && !isVOP3(MI->getOpcode()))) {
+ return nullptr;
+ }
+
+ // XXX: Commute VOP3 instructions with abs and neg set.
+ if (isVOP3(MI->getOpcode()) &&
+ (MI->getOperand(AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::abs)).getImm() ||
+ MI->getOperand(AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::neg)).getImm()))
+ return nullptr;
+
+ unsigned Reg = MI->getOperand(1).getReg();
+ unsigned SubReg = MI->getOperand(1).getSubReg();
+ MI->getOperand(1).ChangeToImmediate(MI->getOperand(2).getImm());
+ MI->getOperand(2).ChangeToRegister(Reg, false);
+ MI->getOperand(2).setSubReg(SubReg);
+ } else {
+ MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
+ }
+
+ if (MI)
+ MI->setDesc(get(commuteOpcode(MI->getOpcode())));
+
+ return MI;
+}
+
+MachineInstr *SIInstrInfo::buildMovInstr(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DstReg,
+ unsigned SrcReg) const {
+ return BuildMI(*MBB, I, MBB->findDebugLoc(I), get(AMDGPU::V_MOV_B32_e32),
+ DstReg) .addReg(SrcReg);
+}
+
+bool SIInstrInfo::isMov(unsigned Opcode) const {
+ switch(Opcode) {
+ default: return false;
+ case AMDGPU::S_MOV_B32:
+ case AMDGPU::S_MOV_B64:
+ case AMDGPU::V_MOV_B32_e32:
+ case AMDGPU::V_MOV_B32_e64:
+ return true;
+ }
+}
+
+bool
+SIInstrInfo::isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
+ return RC != &AMDGPU::EXECRegRegClass;
+}
+
+bool
+SIInstrInfo::isTriviallyReMaterializable(const MachineInstr *MI,
+ AliasAnalysis *AA) const {
+ switch(MI->getOpcode()) {
+ default: return AMDGPUInstrInfo::isTriviallyReMaterializable(MI, AA);
+ case AMDGPU::S_MOV_B32:
+ case AMDGPU::S_MOV_B64:
+ case AMDGPU::V_MOV_B32_e32:
+ return MI->getOperand(1).isImm();
+ }
+}
+
+namespace llvm {
+namespace AMDGPU {
+// Helper function generated by tablegen. We are wrapping this with
+// an SIInstrInfo function that reutrns bool rather than int.
+int isDS(uint16_t Opcode);
+}
+}
+
+bool SIInstrInfo::isDS(uint16_t Opcode) const {
+ return ::AMDGPU::isDS(Opcode) != -1;
+}
+
+int SIInstrInfo::isMIMG(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::MIMG;
+}
+
+int SIInstrInfo::isSMRD(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::SMRD;
+}
+
+bool SIInstrInfo::isVOP1(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::VOP1;
+}
+
+bool SIInstrInfo::isVOP2(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::VOP2;
+}
+
+bool SIInstrInfo::isVOP3(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::VOP3;
+}
+
+bool SIInstrInfo::isVOPC(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::VOPC;
+}
+
+bool SIInstrInfo::isSALUInstr(const MachineInstr &MI) const {
+ return get(MI.getOpcode()).TSFlags & SIInstrFlags::SALU;
+}
+
+bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
+ int32_t Val = Imm.getSExtValue();
+ if (Val >= -16 && Val <= 64)
+ return true;
+
+ // The actual type of the operand does not seem to matter as long
+ // as the bits match one of the inline immediate values. For example:
+ //
+ // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
+ // so it is a legal inline immediate.
+ //
+ // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
+ // floating-point, so it is a legal inline immediate.
+
+ return (APInt::floatToBits(0.0f) == Imm) ||
+ (APInt::floatToBits(1.0f) == Imm) ||
+ (APInt::floatToBits(-1.0f) == Imm) ||
+ (APInt::floatToBits(0.5f) == Imm) ||
+ (APInt::floatToBits(-0.5f) == Imm) ||
+ (APInt::floatToBits(2.0f) == Imm) ||
+ (APInt::floatToBits(-2.0f) == Imm) ||
+ (APInt::floatToBits(4.0f) == Imm) ||
+ (APInt::floatToBits(-4.0f) == Imm);
+}
+
+bool SIInstrInfo::isInlineConstant(const MachineOperand &MO) const {
+ if (MO.isImm())
+ return isInlineConstant(APInt(32, MO.getImm(), true));
+
+ if (MO.isFPImm()) {
+ APFloat FpImm = MO.getFPImm()->getValueAPF();
+ return isInlineConstant(FpImm.bitcastToAPInt());
+ }
+
+ return false;
+}
+
+bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO) const {
+ return (MO.isImm() || MO.isFPImm()) && !isInlineConstant(MO);
+}
+
+static bool compareMachineOp(const MachineOperand &Op0,
+ const MachineOperand &Op1) {
+ if (Op0.getType() != Op1.getType())
+ return false;
+
+ switch (Op0.getType()) {
+ case MachineOperand::MO_Register:
+ return Op0.getReg() == Op1.getReg();
+ case MachineOperand::MO_Immediate:
+ return Op0.getImm() == Op1.getImm();
+ case MachineOperand::MO_FPImmediate:
+ return Op0.getFPImm() == Op1.getFPImm();
+ default:
+ llvm_unreachable("Didn't expect to be comparing these operand types");
+ }
+}
+
+bool SIInstrInfo::isImmOperandLegal(const MachineInstr *MI, unsigned OpNo,
+ const MachineOperand &MO) const {
+ const MCOperandInfo &OpInfo = get(MI->getOpcode()).OpInfo[OpNo];
+
+ assert(MO.isImm() || MO.isFPImm());
+
+ if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
+ return true;
+
+ if (OpInfo.RegClass < 0)
+ return false;
+
+ return RI.regClassCanUseImmediate(OpInfo.RegClass);
+}
+
+bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
+ return AMDGPU::getVOPe32(Opcode) != -1;
+}
+
+bool SIInstrInfo::verifyInstruction(const MachineInstr *MI,
+ StringRef &ErrInfo) const {
+ uint16_t Opcode = MI->getOpcode();
+ int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
+ int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
+ int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
+
+ // Make sure the number of operands is correct.
+ const MCInstrDesc &Desc = get(Opcode);
+ if (!Desc.isVariadic() &&
+ Desc.getNumOperands() != MI->getNumExplicitOperands()) {
+ ErrInfo = "Instruction has wrong number of operands.";
+ return false;
+ }
+
+ // Make sure the register classes are correct
+ for (unsigned i = 0, e = Desc.getNumOperands(); i != e; ++i) {
+ switch (Desc.OpInfo[i].OperandType) {
+ case MCOI::OPERAND_REGISTER: {
+ int RegClass = Desc.OpInfo[i].RegClass;
+ if (!RI.regClassCanUseImmediate(RegClass) &&
+ (MI->getOperand(i).isImm() || MI->getOperand(i).isFPImm())) {
+ ErrInfo = "Expected register, but got immediate";
+ return false;
+ }
+ }
+ break;
+ case MCOI::OPERAND_IMMEDIATE:
+ // Check if this operand is an immediate.
+ // FrameIndex operands will be replaced by immediates, so they are
+ // allowed.
+ if (!MI->getOperand(i).isImm() && !MI->getOperand(i).isFPImm() &&
+ !MI->getOperand(i).isFI()) {
+ ErrInfo = "Expected immediate, but got non-immediate";
+ return false;
+ }
+ // Fall-through
+ default:
+ continue;
+ }
+
+ if (!MI->getOperand(i).isReg())
+ continue;
+
+ int RegClass = Desc.OpInfo[i].RegClass;
+ if (RegClass != -1) {
+ unsigned Reg = MI->getOperand(i).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+
+ const TargetRegisterClass *RC = RI.getRegClass(RegClass);
+ if (!RC->contains(Reg)) {
+ ErrInfo = "Operand has incorrect register class.";
+ return false;
+ }
+ }
+ }
+
+
+ // Verify VOP*
+ if (isVOP1(Opcode) || isVOP2(Opcode) || isVOP3(Opcode) || isVOPC(Opcode)) {
+ unsigned ConstantBusCount = 0;
+ unsigned SGPRUsed = AMDGPU::NoRegister;
+ for (int i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isUse() &&
+ !TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+
+ // EXEC register uses the constant bus.
+ if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC)
+ ++ConstantBusCount;
+
+ // SGPRs use the constant bus
+ if (MO.getReg() == AMDGPU::M0 || MO.getReg() == AMDGPU::VCC ||
+ (!MO.isImplicit() &&
+ (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) ||
+ AMDGPU::SGPR_64RegClass.contains(MO.getReg())))) {
+ if (SGPRUsed != MO.getReg()) {
+ ++ConstantBusCount;
+ SGPRUsed = MO.getReg();
+ }
+ }
+ }
+ // Literal constants use the constant bus.
+ if (isLiteralConstant(MO))
+ ++ConstantBusCount;
+ }
+ if (ConstantBusCount > 1) {
+ ErrInfo = "VOP* instruction uses the constant bus more than once";
+ return false;
+ }
+ }
+
+ // Verify SRC1 for VOP2 and VOPC
+ if (Src1Idx != -1 && (isVOP2(Opcode) || isVOPC(Opcode))) {
+ const MachineOperand &Src1 = MI->getOperand(Src1Idx);
+ if (Src1.isImm() || Src1.isFPImm()) {
+ ErrInfo = "VOP[2C] src1 cannot be an immediate.";
+ return false;
+ }
+ }
+
+ // Verify VOP3
+ if (isVOP3(Opcode)) {
+ if (Src0Idx != -1 && isLiteralConstant(MI->getOperand(Src0Idx))) {
+ ErrInfo = "VOP3 src0 cannot be a literal constant.";
+ return false;
+ }
+ if (Src1Idx != -1 && isLiteralConstant(MI->getOperand(Src1Idx))) {
+ ErrInfo = "VOP3 src1 cannot be a literal constant.";
+ return false;
+ }
+ if (Src2Idx != -1 && isLiteralConstant(MI->getOperand(Src2Idx))) {
+ ErrInfo = "VOP3 src2 cannot be a literal constant.";
+ return false;
+ }
+ }
+
+ // Verify misc. restrictions on specific instructions.
+ if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 ||
+ Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) {
+ MI->dump();
+
+ const MachineOperand &Src0 = MI->getOperand(2);
+ const MachineOperand &Src1 = MI->getOperand(3);
+ const MachineOperand &Src2 = MI->getOperand(4);
+ if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
+ if (!compareMachineOp(Src0, Src1) &&
+ !compareMachineOp(Src0, Src2)) {
+ ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) {
+ switch (MI.getOpcode()) {
+ default: return AMDGPU::INSTRUCTION_LIST_END;
+ case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
+ case AMDGPU::COPY: return AMDGPU::COPY;
+ case AMDGPU::PHI: return AMDGPU::PHI;
+ case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
+ case AMDGPU::S_MOV_B32:
+ return MI.getOperand(1).isReg() ?
+ AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
+ case AMDGPU::S_ADD_I32: return AMDGPU::V_ADD_I32_e32;
+ case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32;
+ case AMDGPU::S_SUB_I32: return AMDGPU::V_SUB_I32_e32;
+ case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
+ case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32;
+ case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32;
+ case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32;
+ case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32;
+ case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32;
+ case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32;
+ case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32;
+ case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
+ case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64;
+ case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
+ case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64;
+ case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
+ case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64;
+ case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32;
+ case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32;
+ case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32;
+ case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32;
+ case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
+ case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
+ case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
+ case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32;
+ case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32;
+ case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32;
+ case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32;
+ case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32;
+ case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32;
+ case AMDGPU::S_LOAD_DWORD_IMM:
+ case AMDGPU::S_LOAD_DWORD_SGPR: return AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
+ case AMDGPU::S_LOAD_DWORDX2_IMM:
+ case AMDGPU::S_LOAD_DWORDX2_SGPR: return AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
+ case AMDGPU::S_LOAD_DWORDX4_IMM:
+ case AMDGPU::S_LOAD_DWORDX4_SGPR: return AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
+ case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e32;
+ case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
+ case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
+ }
+}
+
+bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const {
+ return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END;
+}
+
+const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
+ unsigned OpNo) const {
+ const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
+ const MCInstrDesc &Desc = get(MI.getOpcode());
+ if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
+ Desc.OpInfo[OpNo].RegClass == -1)
+ return MRI.getRegClass(MI.getOperand(OpNo).getReg());
+
+ unsigned RCID = Desc.OpInfo[OpNo].RegClass;
+ return RI.getRegClass(RCID);
+}
+
+bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const {
+ switch (MI.getOpcode()) {
+ case AMDGPU::COPY:
+ case AMDGPU::REG_SEQUENCE:
+ case AMDGPU::PHI:
+ case AMDGPU::INSERT_SUBREG:
+ return RI.hasVGPRs(getOpRegClass(MI, 0));
+ default:
+ return RI.hasVGPRs(getOpRegClass(MI, OpNo));
+ }
+}
+
+void SIInstrInfo::legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const {
+ MachineBasicBlock::iterator I = MI;
+ MachineOperand &MO = MI->getOperand(OpIdx);
+ MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ unsigned RCID = get(MI->getOpcode()).OpInfo[OpIdx].RegClass;
+ const TargetRegisterClass *RC = RI.getRegClass(RCID);
+ unsigned Opcode = AMDGPU::V_MOV_B32_e32;
+ if (MO.isReg()) {
+ Opcode = AMDGPU::COPY;
+ } else if (RI.isSGPRClass(RC)) {
+ Opcode = AMDGPU::S_MOV_B32;
+ }
+
+ const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
+ unsigned Reg = MRI.createVirtualRegister(VRC);
+ BuildMI(*MI->getParent(), I, MI->getParent()->findDebugLoc(I), get(Opcode),
+ Reg).addOperand(MO);
+ MO.ChangeToRegister(Reg, false);
+}
+
+unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
+ MachineRegisterInfo &MRI,
+ MachineOperand &SuperReg,
+ const TargetRegisterClass *SuperRC,
+ unsigned SubIdx,
+ const TargetRegisterClass *SubRC)
+ const {
+ assert(SuperReg.isReg());
+
+ unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC);
+ unsigned SubReg = MRI.createVirtualRegister(SubRC);
+
+ // Just in case the super register is itself a sub-register, copy it to a new
+ // value so we don't need to worry about merging its subreg index with the
+ // SubIdx passed to this function. The register coalescer should be able to
+ // eliminate this extra copy.
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(TargetOpcode::COPY),
+ NewSuperReg)
+ .addOperand(SuperReg);
+
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(TargetOpcode::COPY),
+ SubReg)
+ .addReg(NewSuperReg, 0, SubIdx);
+ return SubReg;
+}
+
+MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
+ MachineBasicBlock::iterator MII,
+ MachineRegisterInfo &MRI,
+ MachineOperand &Op,
+ const TargetRegisterClass *SuperRC,
+ unsigned SubIdx,
+ const TargetRegisterClass *SubRC) const {
+ if (Op.isImm()) {
+ // XXX - Is there a better way to do this?
+ if (SubIdx == AMDGPU::sub0)
+ return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF);
+ if (SubIdx == AMDGPU::sub1)
+ return MachineOperand::CreateImm(Op.getImm() >> 32);
+
+ llvm_unreachable("Unhandled register index for immediate");
+ }
+
+ unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC,
+ SubIdx, SubRC);
+ return MachineOperand::CreateReg(SubReg, false);
+}
+
+unsigned SIInstrInfo::split64BitImm(SmallVectorImpl<MachineInstr *> &Worklist,
+ MachineBasicBlock::iterator MI,
+ MachineRegisterInfo &MRI,
+ const TargetRegisterClass *RC,
+ const MachineOperand &Op) const {
+ MachineBasicBlock *MBB = MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned LoDst = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ unsigned HiDst = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ unsigned Dst = MRI.createVirtualRegister(RC);
+
+ MachineInstr *Lo = BuildMI(*MBB, MI, DL, get(AMDGPU::S_MOV_B32),
+ LoDst)
+ .addImm(Op.getImm() & 0xFFFFFFFF);
+ MachineInstr *Hi = BuildMI(*MBB, MI, DL, get(AMDGPU::S_MOV_B32),
+ HiDst)
+ .addImm(Op.getImm() >> 32);
+
+ BuildMI(*MBB, MI, DL, get(TargetOpcode::REG_SEQUENCE), Dst)
+ .addReg(LoDst)
+ .addImm(AMDGPU::sub0)
+ .addReg(HiDst)
+ .addImm(AMDGPU::sub1);
+
+ Worklist.push_back(Lo);
+ Worklist.push_back(Hi);
+
+ return Dst;
+}
+
+void SIInstrInfo::legalizeOperands(MachineInstr *MI) const {
+ MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::src0);
+ int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::src1);
+ int Src2Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::src2);
+
+ // Legalize VOP2
+ if (isVOP2(MI->getOpcode()) && Src1Idx != -1) {
+ MachineOperand &Src0 = MI->getOperand(Src0Idx);
+ MachineOperand &Src1 = MI->getOperand(Src1Idx);
+
+ // If the instruction implicitly reads VCC, we can't have any SGPR operands,
+ // so move any.
+ bool ReadsVCC = MI->readsRegister(AMDGPU::VCC, &RI);
+ if (ReadsVCC && Src0.isReg() &&
+ RI.isSGPRClass(MRI.getRegClass(Src0.getReg()))) {
+ legalizeOpWithMove(MI, Src0Idx);
+ return;
+ }
+
+ if (ReadsVCC && Src1.isReg() &&
+ RI.isSGPRClass(MRI.getRegClass(Src1.getReg()))) {
+ legalizeOpWithMove(MI, Src1Idx);
+ return;
+ }
+
+ // Legalize VOP2 instructions where src1 is not a VGPR. An SGPR input must
+ // be the first operand, and there can only be one.
+ if (Src1.isImm() || Src1.isFPImm() ||
+ (Src1.isReg() && RI.isSGPRClass(MRI.getRegClass(Src1.getReg())))) {
+ if (MI->isCommutable()) {
+ if (commuteInstruction(MI))
+ return;
+ }
+ legalizeOpWithMove(MI, Src1Idx);
+ }
+ }
+
+ // XXX - Do any VOP3 instructions read VCC?
+ // Legalize VOP3
+ if (isVOP3(MI->getOpcode())) {
+ int VOP3Idx[3] = {Src0Idx, Src1Idx, Src2Idx};
+ unsigned SGPRReg = AMDGPU::NoRegister;
+ for (unsigned i = 0; i < 3; ++i) {
+ int Idx = VOP3Idx[i];
+ if (Idx == -1)
+ continue;
+ MachineOperand &MO = MI->getOperand(Idx);
+
+ if (MO.isReg()) {
+ if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
+ continue; // VGPRs are legal
+
+ assert(MO.getReg() != AMDGPU::SCC && "SCC operand to VOP3 instruction");
+
+ if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) {
+ SGPRReg = MO.getReg();
+ // We can use one SGPR in each VOP3 instruction.
+ continue;
+ }
+ } else if (!isLiteralConstant(MO)) {
+ // If it is not a register and not a literal constant, then it must be
+ // an inline constant which is always legal.
+ continue;
+ }
+ // If we make it this far, then the operand is not legal and we must
+ // legalize it.
+ legalizeOpWithMove(MI, Idx);
+ }
+ }
+
+ // Legalize REG_SEQUENCE and PHI
+ // The register class of the operands much be the same type as the register
+ // class of the output.
+ if (MI->getOpcode() == AMDGPU::REG_SEQUENCE ||
+ MI->getOpcode() == AMDGPU::PHI) {
+ const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
+ for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
+ if (!MI->getOperand(i).isReg() ||
+ !TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg()))
+ continue;
+ const TargetRegisterClass *OpRC =
+ MRI.getRegClass(MI->getOperand(i).getReg());
+ if (RI.hasVGPRs(OpRC)) {
+ VRC = OpRC;
+ } else {
+ SRC = OpRC;
+ }
+ }
+
+ // If any of the operands are VGPR registers, then they all most be
+ // otherwise we will create illegal VGPR->SGPR copies when legalizing
+ // them.
+ if (VRC || !RI.isSGPRClass(getOpRegClass(*MI, 0))) {
+ if (!VRC) {
+ assert(SRC);
+ VRC = RI.getEquivalentVGPRClass(SRC);
+ }
+ RC = VRC;
+ } else {
+ RC = SRC;
+ }
+
+ // Update all the operands so they have the same type.
+ for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
+ if (!MI->getOperand(i).isReg() ||
+ !TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg()))
+ continue;
+ unsigned DstReg = MRI.createVirtualRegister(RC);
+ MachineBasicBlock *InsertBB;
+ MachineBasicBlock::iterator Insert;
+ if (MI->getOpcode() == AMDGPU::REG_SEQUENCE) {
+ InsertBB = MI->getParent();
+ Insert = MI;
+ } else {
+ // MI is a PHI instruction.
+ InsertBB = MI->getOperand(i + 1).getMBB();
+ Insert = InsertBB->getFirstTerminator();
+ }
+ BuildMI(*InsertBB, Insert, MI->getDebugLoc(),
+ get(AMDGPU::COPY), DstReg)
+ .addOperand(MI->getOperand(i));
+ MI->getOperand(i).setReg(DstReg);
+ }
+ }
+
+ // Legalize INSERT_SUBREG
+ // src0 must have the same register class as dst
+ if (MI->getOpcode() == AMDGPU::INSERT_SUBREG) {
+ unsigned Dst = MI->getOperand(0).getReg();
+ unsigned Src0 = MI->getOperand(1).getReg();
+ const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
+ const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0);
+ if (DstRC != Src0RC) {
+ MachineBasicBlock &MBB = *MI->getParent();
+ unsigned NewSrc0 = MRI.createVirtualRegister(DstRC);
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::COPY), NewSrc0)
+ .addReg(Src0);
+ MI->getOperand(1).setReg(NewSrc0);
+ }
+ return;
+ }
+
+ // Legalize MUBUF* instructions
+ // FIXME: If we start using the non-addr64 instructions for compute, we
+ // may need to legalize them here.
+
+ int SRsrcIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::srsrc);
+ int VAddrIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::vaddr);
+ if (SRsrcIdx != -1 && VAddrIdx != -1) {
+ const TargetRegisterClass *VAddrRC =
+ RI.getRegClass(get(MI->getOpcode()).OpInfo[VAddrIdx].RegClass);
+
+ if(VAddrRC->getSize() == 8 &&
+ MRI.getRegClass(MI->getOperand(SRsrcIdx).getReg()) != VAddrRC) {
+ // We have a MUBUF instruction that uses a 64-bit vaddr register and
+ // srsrc has the incorrect register class. In order to fix this, we
+ // need to extract the pointer from the resource descriptor (srsrc),
+ // add it to the value of vadd, then store the result in the vaddr
+ // operand. Then, we need to set the pointer field of the resource
+ // descriptor to zero.
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ MachineOperand &SRsrcOp = MI->getOperand(SRsrcIdx);
+ MachineOperand &VAddrOp = MI->getOperand(VAddrIdx);
+ unsigned SRsrcPtrLo, SRsrcPtrHi, VAddrLo, VAddrHi;
+ unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
+ unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
+ unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
+ unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
+ unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
+
+ // SRsrcPtrLo = srsrc:sub0
+ SRsrcPtrLo = buildExtractSubReg(MI, MRI, SRsrcOp,
+ &AMDGPU::VReg_128RegClass, AMDGPU::sub0, &AMDGPU::VReg_32RegClass);
+
+ // SRsrcPtrHi = srsrc:sub1
+ SRsrcPtrHi = buildExtractSubReg(MI, MRI, SRsrcOp,
+ &AMDGPU::VReg_128RegClass, AMDGPU::sub1, &AMDGPU::VReg_32RegClass);
+
+ // VAddrLo = vaddr:sub0
+ VAddrLo = buildExtractSubReg(MI, MRI, VAddrOp,
+ &AMDGPU::VReg_64RegClass, AMDGPU::sub0, &AMDGPU::VReg_32RegClass);
+
+ // VAddrHi = vaddr:sub1
+ VAddrHi = buildExtractSubReg(MI, MRI, VAddrOp,
+ &AMDGPU::VReg_64RegClass, AMDGPU::sub1, &AMDGPU::VReg_32RegClass);
+
+ // NewVaddrLo = SRsrcPtrLo + VAddrLo
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_ADD_I32_e32),
+ NewVAddrLo)
+ .addReg(SRsrcPtrLo)
+ .addReg(VAddrLo)
+ .addReg(AMDGPU::VCC, RegState::Define | RegState::Implicit);
+
+ // NewVaddrHi = SRsrcPtrHi + VAddrHi
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_ADDC_U32_e32),
+ NewVAddrHi)
+ .addReg(SRsrcPtrHi)
+ .addReg(VAddrHi)
+ .addReg(AMDGPU::VCC, RegState::ImplicitDefine)
+ .addReg(AMDGPU::VCC, RegState::Implicit);
+
+ // NewVaddr = {NewVaddrHi, NewVaddrLo}
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
+ NewVAddr)
+ .addReg(NewVAddrLo)
+ .addImm(AMDGPU::sub0)
+ .addReg(NewVAddrHi)
+ .addImm(AMDGPU::sub1);
+
+ // Zero64 = 0
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B64),
+ Zero64)
+ .addImm(0);
+
+ // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
+ SRsrcFormatLo)
+ .addImm(AMDGPU::RSRC_DATA_FORMAT & 0xFFFFFFFF);
+
+ // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
+ SRsrcFormatHi)
+ .addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
+
+ // NewSRsrc = {Zero64, SRsrcFormat}
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
+ NewSRsrc)
+ .addReg(Zero64)
+ .addImm(AMDGPU::sub0_sub1)
+ .addReg(SRsrcFormatLo)
+ .addImm(AMDGPU::sub2)
+ .addReg(SRsrcFormatHi)
+ .addImm(AMDGPU::sub3);
+
+ // Update the instruction to use NewVaddr
+ MI->getOperand(VAddrIdx).setReg(NewVAddr);
+ // Update the instruction to use NewSRsrc
+ MI->getOperand(SRsrcIdx).setReg(NewSRsrc);
+ }
+ }
+}
+
+void SIInstrInfo::moveSMRDToVALU(MachineInstr *MI, MachineRegisterInfo &MRI) const {
+ MachineBasicBlock *MBB = MI->getParent();
+ switch (MI->getOpcode()) {
+ case AMDGPU::S_LOAD_DWORD_IMM:
+ case AMDGPU::S_LOAD_DWORD_SGPR:
+ case AMDGPU::S_LOAD_DWORDX2_IMM:
+ case AMDGPU::S_LOAD_DWORDX2_SGPR:
+ case AMDGPU::S_LOAD_DWORDX4_IMM:
+ case AMDGPU::S_LOAD_DWORDX4_SGPR:
+ unsigned NewOpcode = getVALUOp(*MI);
+ unsigned RegOffset;
+ unsigned ImmOffset;
+
+ if (MI->getOperand(2).isReg()) {
+ RegOffset = MI->getOperand(2).getReg();
+ ImmOffset = 0;
+ } else {
+ assert(MI->getOperand(2).isImm());
+ // SMRD instructions take a dword offsets and MUBUF instructions
+ // take a byte offset.
+ ImmOffset = MI->getOperand(2).getImm() << 2;
+ RegOffset = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ if (isUInt<12>(ImmOffset)) {
+ BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
+ RegOffset)
+ .addImm(0);
+ } else {
+ BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
+ RegOffset)
+ .addImm(ImmOffset);
+ ImmOffset = 0;
+ }
+ }
+
+ unsigned SRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
+ unsigned DWord0 = RegOffset;
+ unsigned DWord1 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ unsigned DWord2 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ unsigned DWord3 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+
+ BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord1)
+ .addImm(0);
+ BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord2)
+ .addImm(AMDGPU::RSRC_DATA_FORMAT & 0xFFFFFFFF);
+ BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord3)
+ .addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
+ BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), SRsrc)
+ .addReg(DWord0)
+ .addImm(AMDGPU::sub0)
+ .addReg(DWord1)
+ .addImm(AMDGPU::sub1)
+ .addReg(DWord2)
+ .addImm(AMDGPU::sub2)
+ .addReg(DWord3)
+ .addImm(AMDGPU::sub3);
+ MI->setDesc(get(NewOpcode));
+ if (MI->getOperand(2).isReg()) {
+ MI->getOperand(2).setReg(MI->getOperand(1).getReg());
+ } else {
+ MI->getOperand(2).ChangeToRegister(MI->getOperand(1).getReg(), false);
+ }
+ MI->getOperand(1).setReg(SRsrc);
+ MI->addOperand(*MBB->getParent(), MachineOperand::CreateImm(ImmOffset));
+ }
+}
+
+void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
+ SmallVector<MachineInstr *, 128> Worklist;
+ Worklist.push_back(&TopInst);
+
+ while (!Worklist.empty()) {
+ MachineInstr *Inst = Worklist.pop_back_val();
+ MachineBasicBlock *MBB = Inst->getParent();
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+
+ unsigned Opcode = Inst->getOpcode();
+ unsigned NewOpcode = getVALUOp(*Inst);
+
+ // Handle some special cases
+ switch (Opcode) {
+ default:
+ if (isSMRD(Inst->getOpcode())) {
+ moveSMRDToVALU(Inst, MRI);
+ }
+ break;
+ case AMDGPU::S_MOV_B64: {
+ DebugLoc DL = Inst->getDebugLoc();
+
+ // If the source operand is a register we can replace this with a
+ // copy.
+ if (Inst->getOperand(1).isReg()) {
+ MachineInstr *Copy = BuildMI(*MBB, Inst, DL, get(TargetOpcode::COPY))
+ .addOperand(Inst->getOperand(0))
+ .addOperand(Inst->getOperand(1));
+ Worklist.push_back(Copy);
+ } else {
+ // Otherwise, we need to split this into two movs, because there is
+ // no 64-bit VALU move instruction.
+ unsigned Reg = Inst->getOperand(0).getReg();
+ unsigned Dst = split64BitImm(Worklist,
+ Inst,
+ MRI,
+ MRI.getRegClass(Reg),
+ Inst->getOperand(1));
+ MRI.replaceRegWith(Reg, Dst);
+ }
+ Inst->eraseFromParent();
+ continue;
+ }
+ case AMDGPU::S_AND_B64:
+ splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32);
+ Inst->eraseFromParent();
+ continue;
+
+ case AMDGPU::S_OR_B64:
+ splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32);
+ Inst->eraseFromParent();
+ continue;
+
+ case AMDGPU::S_XOR_B64:
+ splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32);
+ Inst->eraseFromParent();
+ continue;
+
+ case AMDGPU::S_NOT_B64:
+ splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32);
+ Inst->eraseFromParent();
+ continue;
+
+ case AMDGPU::S_BCNT1_I32_B64:
+ splitScalar64BitBCNT(Worklist, Inst);
+ Inst->eraseFromParent();
+ continue;
+
+ case AMDGPU::S_BFE_U64:
+ case AMDGPU::S_BFE_I64:
+ case AMDGPU::S_BFM_B64:
+ llvm_unreachable("Moving this op to VALU not implemented");
+ }
+
+ if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
+ // We cannot move this instruction to the VALU, so we should try to
+ // legalize its operands instead.
+ legalizeOperands(Inst);
+ continue;
+ }
+
+ // Use the new VALU Opcode.
+ const MCInstrDesc &NewDesc = get(NewOpcode);
+ Inst->setDesc(NewDesc);
+
+ // Remove any references to SCC. Vector instructions can't read from it, and
+ // We're just about to add the implicit use / defs of VCC, and we don't want
+ // both.
+ for (unsigned i = Inst->getNumOperands() - 1; i > 0; --i) {
+ MachineOperand &Op = Inst->getOperand(i);
+ if (Op.isReg() && Op.getReg() == AMDGPU::SCC)
+ Inst->RemoveOperand(i);
+ }
+
+ if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
+ // We are converting these to a BFE, so we need to add the missing
+ // operands for the size and offset.
+ unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
+ Inst->addOperand(Inst->getOperand(1));
+ Inst->getOperand(1).ChangeToImmediate(0);
+ Inst->addOperand(MachineOperand::CreateImm(0));
+ Inst->addOperand(MachineOperand::CreateImm(0));
+ Inst->addOperand(MachineOperand::CreateImm(0));
+ Inst->addOperand(MachineOperand::CreateImm(Size));
+
+ // XXX - Other pointless operands. There are 4, but it seems you only need
+ // 3 to not hit an assertion later in MCInstLower.
+ Inst->addOperand(MachineOperand::CreateImm(0));
+ Inst->addOperand(MachineOperand::CreateImm(0));
+ } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
+ // The VALU version adds the second operand to the result, so insert an
+ // extra 0 operand.
+ Inst->addOperand(MachineOperand::CreateImm(0));
+ }
+
+ addDescImplicitUseDef(NewDesc, Inst);
+
+ if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
+ const MachineOperand &OffsetWidthOp = Inst->getOperand(2);
+ // If we need to move this to VGPRs, we need to unpack the second operand
+ // back into the 2 separate ones for bit offset and width.
+ assert(OffsetWidthOp.isImm() &&
+ "Scalar BFE is only implemented for constant width and offset");
+ uint32_t Imm = OffsetWidthOp.getImm();
+
+ uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
+ uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
+
+ Inst->RemoveOperand(2); // Remove old immediate.
+ Inst->addOperand(Inst->getOperand(1));
+ Inst->getOperand(1).ChangeToImmediate(0);
+ Inst->addOperand(MachineOperand::CreateImm(0));
+ Inst->addOperand(MachineOperand::CreateImm(Offset));
+ Inst->addOperand(MachineOperand::CreateImm(0));
+ Inst->addOperand(MachineOperand::CreateImm(BitWidth));
+ Inst->addOperand(MachineOperand::CreateImm(0));
+ Inst->addOperand(MachineOperand::CreateImm(0));
+ }
+
+ // Update the destination register class.
+
+ const TargetRegisterClass *NewDstRC = getOpRegClass(*Inst, 0);
+
+ switch (Opcode) {
+ // For target instructions, getOpRegClass just returns the virtual
+ // register class associated with the operand, so we need to find an
+ // equivalent VGPR register class in order to move the instruction to the
+ // VALU.
+ case AMDGPU::COPY:
+ case AMDGPU::PHI:
+ case AMDGPU::REG_SEQUENCE:
+ case AMDGPU::INSERT_SUBREG:
+ if (RI.hasVGPRs(NewDstRC))
+ continue;
+ NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
+ if (!NewDstRC)
+ continue;
+ break;
+ default:
+ break;
+ }
+
+ unsigned DstReg = Inst->getOperand(0).getReg();
+ unsigned NewDstReg = MRI.createVirtualRegister(NewDstRC);
+ MRI.replaceRegWith(DstReg, NewDstReg);
+
+ // Legalize the operands
+ legalizeOperands(Inst);
+
+ for (MachineRegisterInfo::use_iterator I = MRI.use_begin(NewDstReg),
+ E = MRI.use_end(); I != E; ++I) {
+ MachineInstr &UseMI = *I->getParent();
+ if (!canReadVGPR(UseMI, I.getOperandNo())) {
+ Worklist.push_back(&UseMI);
+ }
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Indirect addressing callbacks
+//===----------------------------------------------------------------------===//
+
+unsigned SIInstrInfo::calculateIndirectAddress(unsigned RegIndex,
+ unsigned Channel) const {
+ assert(Channel == 0);
+ return RegIndex;
+}
+
+const TargetRegisterClass *SIInstrInfo::getIndirectAddrRegClass() const {
+ return &AMDGPU::VReg_32RegClass;
+}
+
+void SIInstrInfo::splitScalar64BitUnaryOp(
+ SmallVectorImpl<MachineInstr *> &Worklist,
+ MachineInstr *Inst,
+ unsigned Opcode) const {
+ MachineBasicBlock &MBB = *Inst->getParent();
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+
+ MachineOperand &Dest = Inst->getOperand(0);
+ MachineOperand &Src0 = Inst->getOperand(1);
+ DebugLoc DL = Inst->getDebugLoc();
+
+ MachineBasicBlock::iterator MII = Inst;
+
+ const MCInstrDesc &InstDesc = get(Opcode);
+ const TargetRegisterClass *Src0RC = Src0.isReg() ?
+ MRI.getRegClass(Src0.getReg()) :
+ &AMDGPU::SGPR_32RegClass;
+
+ const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
+
+ MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
+ AMDGPU::sub0, Src0SubRC);
+
+ const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
+ const TargetRegisterClass *DestSubRC = RI.getSubRegClass(DestRC, AMDGPU::sub0);
+
+ unsigned DestSub0 = MRI.createVirtualRegister(DestRC);
+ MachineInstr *LoHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub0)
+ .addOperand(SrcReg0Sub0);
+
+ MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
+ AMDGPU::sub1, Src0SubRC);
+
+ unsigned DestSub1 = MRI.createVirtualRegister(DestSubRC);
+ MachineInstr *HiHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub1)
+ .addOperand(SrcReg0Sub1);
+
+ unsigned FullDestReg = MRI.createVirtualRegister(DestRC);
+ BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
+ .addReg(DestSub0)
+ .addImm(AMDGPU::sub0)
+ .addReg(DestSub1)
+ .addImm(AMDGPU::sub1);
+
+ MRI.replaceRegWith(Dest.getReg(), FullDestReg);
+
+ // Try to legalize the operands in case we need to swap the order to keep it
+ // valid.
+ Worklist.push_back(LoHalf);
+ Worklist.push_back(HiHalf);
+}
+
+void SIInstrInfo::splitScalar64BitBinaryOp(
+ SmallVectorImpl<MachineInstr *> &Worklist,
+ MachineInstr *Inst,
+ unsigned Opcode) const {
+ MachineBasicBlock &MBB = *Inst->getParent();
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+
+ MachineOperand &Dest = Inst->getOperand(0);
+ MachineOperand &Src0 = Inst->getOperand(1);
+ MachineOperand &Src1 = Inst->getOperand(2);
+ DebugLoc DL = Inst->getDebugLoc();
+
+ MachineBasicBlock::iterator MII = Inst;
+
+ const MCInstrDesc &InstDesc = get(Opcode);
+ const TargetRegisterClass *Src0RC = Src0.isReg() ?
+ MRI.getRegClass(Src0.getReg()) :
+ &AMDGPU::SGPR_32RegClass;
+
+ const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
+ const TargetRegisterClass *Src1RC = Src1.isReg() ?
+ MRI.getRegClass(Src1.getReg()) :
+ &AMDGPU::SGPR_32RegClass;
+
+ const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);
+
+ MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
+ AMDGPU::sub0, Src0SubRC);
+ MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
+ AMDGPU::sub0, Src1SubRC);
+
+ const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
+ const TargetRegisterClass *DestSubRC = RI.getSubRegClass(DestRC, AMDGPU::sub0);
+
+ unsigned DestSub0 = MRI.createVirtualRegister(DestRC);
+ MachineInstr *LoHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub0)
+ .addOperand(SrcReg0Sub0)
+ .addOperand(SrcReg1Sub0);
+
+ MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
+ AMDGPU::sub1, Src0SubRC);
+ MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
+ AMDGPU::sub1, Src1SubRC);
+
+ unsigned DestSub1 = MRI.createVirtualRegister(DestSubRC);
+ MachineInstr *HiHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub1)
+ .addOperand(SrcReg0Sub1)
+ .addOperand(SrcReg1Sub1);
+
+ unsigned FullDestReg = MRI.createVirtualRegister(DestRC);
+ BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
+ .addReg(DestSub0)
+ .addImm(AMDGPU::sub0)
+ .addReg(DestSub1)
+ .addImm(AMDGPU::sub1);
+
+ MRI.replaceRegWith(Dest.getReg(), FullDestReg);
+
+ // Try to legalize the operands in case we need to swap the order to keep it
+ // valid.
+ Worklist.push_back(LoHalf);
+ Worklist.push_back(HiHalf);
+}
+
+void SIInstrInfo::splitScalar64BitBCNT(SmallVectorImpl<MachineInstr *> &Worklist,
+ MachineInstr *Inst) const {
+ MachineBasicBlock &MBB = *Inst->getParent();
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+
+ MachineBasicBlock::iterator MII = Inst;
+ DebugLoc DL = Inst->getDebugLoc();
+
+ MachineOperand &Dest = Inst->getOperand(0);
+ MachineOperand &Src = Inst->getOperand(1);
+
+ const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e32);
+ const TargetRegisterClass *SrcRC = Src.isReg() ?
+ MRI.getRegClass(Src.getReg()) :
+ &AMDGPU::SGPR_32RegClass;
+
+ unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+ unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+
+ const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0);
+
+ MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
+ AMDGPU::sub0, SrcSubRC);
+ MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
+ AMDGPU::sub1, SrcSubRC);
+
+ MachineInstr *First = BuildMI(MBB, MII, DL, InstDesc, MidReg)
+ .addOperand(SrcRegSub0)
+ .addImm(0);
+
+ MachineInstr *Second = BuildMI(MBB, MII, DL, InstDesc, ResultReg)
+ .addOperand(SrcRegSub1)
+ .addReg(MidReg);
+
+ MRI.replaceRegWith(Dest.getReg(), ResultReg);
+
+ Worklist.push_back(First);
+ Worklist.push_back(Second);
+}
+
+void SIInstrInfo::addDescImplicitUseDef(const MCInstrDesc &NewDesc,
+ MachineInstr *Inst) const {
+ // Add the implict and explicit register definitions.
+ if (NewDesc.ImplicitUses) {
+ for (unsigned i = 0; NewDesc.ImplicitUses[i]; ++i) {
+ unsigned Reg = NewDesc.ImplicitUses[i];
+ Inst->addOperand(MachineOperand::CreateReg(Reg, false, true));
+ }
+ }
+
+ if (NewDesc.ImplicitDefs) {
+ for (unsigned i = 0; NewDesc.ImplicitDefs[i]; ++i) {
+ unsigned Reg = NewDesc.ImplicitDefs[i];
+ Inst->addOperand(MachineOperand::CreateReg(Reg, true, true));
+ }
+ }
+}
+
+MachineInstrBuilder SIInstrInfo::buildIndirectWrite(
+ MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg,
+ unsigned Address, unsigned OffsetReg) const {
+ const DebugLoc &DL = MBB->findDebugLoc(I);
+ unsigned IndirectBaseReg = AMDGPU::VReg_32RegClass.getRegister(
+ getIndirectIndexBegin(*MBB->getParent()));
+
+ return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_DST_V1))
+ .addReg(IndirectBaseReg, RegState::Define)
+ .addOperand(I->getOperand(0))
+ .addReg(IndirectBaseReg)
+ .addReg(OffsetReg)
+ .addImm(0)
+ .addReg(ValueReg);
+}
+
+MachineInstrBuilder SIInstrInfo::buildIndirectRead(
+ MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg,
+ unsigned Address, unsigned OffsetReg) const {
+ const DebugLoc &DL = MBB->findDebugLoc(I);
+ unsigned IndirectBaseReg = AMDGPU::VReg_32RegClass.getRegister(
+ getIndirectIndexBegin(*MBB->getParent()));
+
+ return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_SRC))
+ .addOperand(I->getOperand(0))
+ .addOperand(I->getOperand(1))
+ .addReg(IndirectBaseReg)
+ .addReg(OffsetReg)
+ .addImm(0);
+
+}
+
+void SIInstrInfo::reserveIndirectRegisters(BitVector &Reserved,
+ const MachineFunction &MF) const {
+ int End = getIndirectIndexEnd(MF);
+ int Begin = getIndirectIndexBegin(MF);
+
+ if (End == -1)
+ return;
+
+
+ for (int Index = Begin; Index <= End; ++Index)
+ Reserved.set(AMDGPU::VReg_32RegClass.getRegister(Index));
+
+ for (int Index = std::max(0, Begin - 1); Index <= End; ++Index)
+ Reserved.set(AMDGPU::VReg_64RegClass.getRegister(Index));
+
+ for (int Index = std::max(0, Begin - 2); Index <= End; ++Index)
+ Reserved.set(AMDGPU::VReg_96RegClass.getRegister(Index));
+
+ for (int Index = std::max(0, Begin - 3); Index <= End; ++Index)
+ Reserved.set(AMDGPU::VReg_128RegClass.getRegister(Index));
+
+ for (int Index = std::max(0, Begin - 7); Index <= End; ++Index)
+ Reserved.set(AMDGPU::VReg_256RegClass.getRegister(Index));
+
+ for (int Index = std::max(0, Begin - 15); Index <= End; ++Index)
+ Reserved.set(AMDGPU::VReg_512RegClass.getRegister(Index));
+}
+
+const MachineOperand *SIInstrInfo::getNamedOperand(const MachineInstr& MI,
+ unsigned OperandName) const {
+ int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName);
+ if (Idx == -1)
+ return nullptr;
+
+ return &MI.getOperand(Idx);
+}
diff --git a/contrib/llvm/lib/Target/R600/SIInstrInfo.h b/contrib/llvm/lib/Target/R600/SIInstrInfo.h
new file mode 100644
index 0000000..4687539
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIInstrInfo.h
@@ -0,0 +1,212 @@
+//===-- SIInstrInfo.h - SI Instruction Info Interface -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Interface definition for SIInstrInfo.
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef SIINSTRINFO_H
+#define SIINSTRINFO_H
+
+#include "AMDGPUInstrInfo.h"
+#include "SIRegisterInfo.h"
+
+namespace llvm {
+
+class SIInstrInfo : public AMDGPUInstrInfo {
+private:
+ const SIRegisterInfo RI;
+
+ unsigned buildExtractSubReg(MachineBasicBlock::iterator MI,
+ MachineRegisterInfo &MRI,
+ MachineOperand &SuperReg,
+ const TargetRegisterClass *SuperRC,
+ unsigned SubIdx,
+ const TargetRegisterClass *SubRC) const;
+ MachineOperand buildExtractSubRegOrImm(MachineBasicBlock::iterator MI,
+ MachineRegisterInfo &MRI,
+ MachineOperand &SuperReg,
+ const TargetRegisterClass *SuperRC,
+ unsigned SubIdx,
+ const TargetRegisterClass *SubRC) const;
+
+ unsigned split64BitImm(SmallVectorImpl<MachineInstr *> &Worklist,
+ MachineBasicBlock::iterator MI,
+ MachineRegisterInfo &MRI,
+ const TargetRegisterClass *RC,
+ const MachineOperand &Op) const;
+
+ void splitScalar64BitUnaryOp(SmallVectorImpl<MachineInstr *> &Worklist,
+ MachineInstr *Inst, unsigned Opcode) const;
+
+ void splitScalar64BitBinaryOp(SmallVectorImpl<MachineInstr *> &Worklist,
+ MachineInstr *Inst, unsigned Opcode) const;
+
+ void splitScalar64BitBCNT(SmallVectorImpl<MachineInstr *> &Worklist,
+ MachineInstr *Inst) const;
+
+ void addDescImplicitUseDef(const MCInstrDesc &Desc, MachineInstr *MI) const;
+
+public:
+ explicit SIInstrInfo(const AMDGPUSubtarget &st);
+
+ const SIRegisterInfo &getRegisterInfo() const override {
+ return RI;
+ }
+
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const;
+
+ unsigned commuteOpcode(unsigned Opcode) const;
+
+ MachineInstr *commuteInstruction(MachineInstr *MI,
+ bool NewMI=false) const override;
+
+ bool isTriviallyReMaterializable(const MachineInstr *MI,
+ AliasAnalysis *AA = nullptr) const;
+
+ MachineInstr *buildMovInstr(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DstReg, unsigned SrcReg) const override;
+ bool isMov(unsigned Opcode) const override;
+
+ bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
+ bool isDS(uint16_t Opcode) const;
+ int isMIMG(uint16_t Opcode) const;
+ int isSMRD(uint16_t Opcode) const;
+ bool isVOP1(uint16_t Opcode) const;
+ bool isVOP2(uint16_t Opcode) const;
+ bool isVOP3(uint16_t Opcode) const;
+ bool isVOPC(uint16_t Opcode) const;
+ bool isInlineConstant(const APInt &Imm) const;
+ bool isInlineConstant(const MachineOperand &MO) const;
+ bool isLiteralConstant(const MachineOperand &MO) const;
+
+ bool isImmOperandLegal(const MachineInstr *MI, unsigned OpNo,
+ const MachineOperand &MO) const;
+
+ /// \brief Return true if this 64-bit VALU instruction has a 32-bit encoding.
+ /// This function will return false if you pass it a 32-bit instruction.
+ bool hasVALU32BitEncoding(unsigned Opcode) const;
+
+ bool verifyInstruction(const MachineInstr *MI,
+ StringRef &ErrInfo) const override;
+
+ bool isSALUInstr(const MachineInstr &MI) const;
+ static unsigned getVALUOp(const MachineInstr &MI);
+
+ bool isSALUOpSupportedOnVALU(const MachineInstr &MI) const;
+
+ /// \brief Return the correct register class for \p OpNo. For target-specific
+ /// instructions, this will return the register class that has been defined
+ /// in tablegen. For generic instructions, like REG_SEQUENCE it will return
+ /// the register class of its machine operand.
+ /// to infer the correct register class base on the other operands.
+ const TargetRegisterClass *getOpRegClass(const MachineInstr &MI,
+ unsigned OpNo) const;\
+
+ /// \returns true if it is legal for the operand at index \p OpNo
+ /// to read a VGPR.
+ bool canReadVGPR(const MachineInstr &MI, unsigned OpNo) const;
+
+ /// \brief Legalize the \p OpIndex operand of this instruction by inserting
+ /// a MOV. For example:
+ /// ADD_I32_e32 VGPR0, 15
+ /// to
+ /// MOV VGPR1, 15
+ /// ADD_I32_e32 VGPR0, VGPR1
+ ///
+ /// If the operand being legalized is a register, then a COPY will be used
+ /// instead of MOV.
+ void legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const;
+
+ /// \brief Legalize all operands in this instruction. This function may
+ /// create new instruction and insert them before \p MI.
+ void legalizeOperands(MachineInstr *MI) const;
+
+ void moveSMRDToVALU(MachineInstr *MI, MachineRegisterInfo &MRI) const;
+
+ /// \brief Replace this instruction's opcode with the equivalent VALU
+ /// opcode. This function will also move the users of \p MI to the
+ /// VALU if necessary.
+ void moveToVALU(MachineInstr &MI) const;
+
+ unsigned calculateIndirectAddress(unsigned RegIndex,
+ unsigned Channel) const override;
+
+ const TargetRegisterClass *getIndirectAddrRegClass() const override;
+
+ MachineInstrBuilder buildIndirectWrite(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg,
+ unsigned Address,
+ unsigned OffsetReg) const override;
+
+ MachineInstrBuilder buildIndirectRead(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg,
+ unsigned Address,
+ unsigned OffsetReg) const override;
+ void reserveIndirectRegisters(BitVector &Reserved,
+ const MachineFunction &MF) const;
+
+ void LoadM0(MachineInstr *MoveRel, MachineBasicBlock::iterator I,
+ unsigned SavReg, unsigned IndexReg) const;
+
+ void insertNOPs(MachineBasicBlock::iterator MI, int Count) const;
+
+ /// \brief Returns the operand named \p Op. If \p MI does not have an
+ /// operand named \c Op, this function returns nullptr.
+ const MachineOperand *getNamedOperand(const MachineInstr& MI,
+ unsigned OperandName) const;
+};
+
+namespace AMDGPU {
+
+ int getVOPe64(uint16_t Opcode);
+ int getVOPe32(uint16_t Opcode);
+ int getCommuteRev(uint16_t Opcode);
+ int getCommuteOrig(uint16_t Opcode);
+ int getMCOpcode(uint16_t Opcode, unsigned Gen);
+
+ const uint64_t RSRC_DATA_FORMAT = 0xf00000000000LL;
+ const uint64_t RSRC_TID_ENABLE = 1LL << 55;
+
+} // End namespace AMDGPU
+
+} // End namespace llvm
+
+namespace SIInstrFlags {
+ enum Flags {
+ // First 4 bits are the instruction encoding
+ VM_CNT = 1 << 0,
+ EXP_CNT = 1 << 1,
+ LGKM_CNT = 1 << 2
+ };
+}
+
+#endif //SIINSTRINFO_H
diff --git a/contrib/llvm/lib/Target/R600/SIInstrInfo.td b/contrib/llvm/lib/Target/R600/SIInstrInfo.td
new file mode 100644
index 0000000..b0ac20f
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIInstrInfo.td
@@ -0,0 +1,917 @@
+//===-- SIInstrInfo.td - SI Instruction Infos -------------*- tablegen -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// Execpt for the NONE field, this must be kept in sync with the SISubtarget enum
+// in AMDGPUMCInstLower.h
+def SISubtarget {
+ int NONE = -1;
+ int SI = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// SI DAG Nodes
+//===----------------------------------------------------------------------===//
+
+def SIload_constant : SDNode<"AMDGPUISD::LOAD_CONSTANT",
+ SDTypeProfile<1, 2, [SDTCisVT<0, f32>, SDTCisVT<1, v4i32>, SDTCisVT<2, i32>]>,
+ [SDNPMayLoad, SDNPMemOperand]
+>;
+
+def SItbuffer_store : SDNode<"AMDGPUISD::TBUFFER_STORE_FORMAT",
+ SDTypeProfile<0, 13,
+ [SDTCisVT<0, v4i32>, // rsrc(SGPR)
+ SDTCisVT<1, iAny>, // vdata(VGPR)
+ SDTCisVT<2, i32>, // num_channels(imm)
+ SDTCisVT<3, i32>, // vaddr(VGPR)
+ SDTCisVT<4, i32>, // soffset(SGPR)
+ SDTCisVT<5, i32>, // inst_offset(imm)
+ SDTCisVT<6, i32>, // dfmt(imm)
+ SDTCisVT<7, i32>, // nfmt(imm)
+ SDTCisVT<8, i32>, // offen(imm)
+ SDTCisVT<9, i32>, // idxen(imm)
+ SDTCisVT<10, i32>, // glc(imm)
+ SDTCisVT<11, i32>, // slc(imm)
+ SDTCisVT<12, i32> // tfe(imm)
+ ]>,
+ [SDNPMayStore, SDNPMemOperand, SDNPHasChain]
+>;
+
+def SIload_input : SDNode<"AMDGPUISD::LOAD_INPUT",
+ SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisVT<1, v4i32>, SDTCisVT<2, i16>,
+ SDTCisVT<3, i32>]>
+>;
+
+class SDSample<string opcode> : SDNode <opcode,
+ SDTypeProfile<1, 4, [SDTCisVT<0, v4f32>, SDTCisVT<2, v32i8>,
+ SDTCisVT<3, v4i32>, SDTCisVT<4, i32>]>
+>;
+
+def SIsample : SDSample<"AMDGPUISD::SAMPLE">;
+def SIsampleb : SDSample<"AMDGPUISD::SAMPLEB">;
+def SIsampled : SDSample<"AMDGPUISD::SAMPLED">;
+def SIsamplel : SDSample<"AMDGPUISD::SAMPLEL">;
+
+def SIconstdata_ptr : SDNode<
+ "AMDGPUISD::CONST_DATA_PTR", SDTypeProfile <1, 0, [SDTCisVT<0, i64>]>
+>;
+
+// Transformation function, extract the lower 32bit of a 64bit immediate
+def LO32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getZExtValue() & 0xffffffff, MVT::i32);
+}]>;
+
+def LO32f : SDNodeXForm<fpimm, [{
+ APInt V = N->getValueAPF().bitcastToAPInt().trunc(32);
+ return CurDAG->getTargetConstantFP(APFloat(APFloat::IEEEsingle, V), MVT::f32);
+}]>;
+
+// Transformation function, extract the upper 32bit of a 64bit immediate
+def HI32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getZExtValue() >> 32, MVT::i32);
+}]>;
+
+def HI32f : SDNodeXForm<fpimm, [{
+ APInt V = N->getValueAPF().bitcastToAPInt().lshr(32).trunc(32);
+ return CurDAG->getTargetConstantFP(APFloat(APFloat::IEEEsingle, V), MVT::f32);
+}]>;
+
+def IMM8bitDWORD : PatLeaf <(imm),
+ [{return (N->getZExtValue() & ~0x3FC) == 0;}]
+>;
+
+def as_dword_i32imm : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getZExtValue() >> 2, MVT::i32);
+}]>;
+
+def as_i1imm : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getZExtValue(), MVT::i1);
+}]>;
+
+def as_i8imm : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getZExtValue(), MVT::i8);
+}]>;
+
+def as_i16imm : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i16);
+}]>;
+
+def as_i32imm: SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
+}]>;
+
+def IMM8bit : PatLeaf <(imm),
+ [{return isUInt<8>(N->getZExtValue());}]
+>;
+
+def IMM12bit : PatLeaf <(imm),
+ [{return isUInt<12>(N->getZExtValue());}]
+>;
+
+def IMM16bit : PatLeaf <(imm),
+ [{return isUInt<16>(N->getZExtValue());}]
+>;
+
+def IMM32bit : PatLeaf <(imm),
+ [{return isUInt<32>(N->getZExtValue());}]
+>;
+
+def mubuf_vaddr_offset : PatFrag<
+ (ops node:$ptr, node:$offset, node:$imm_offset),
+ (add (add node:$ptr, node:$offset), node:$imm_offset)
+>;
+
+class InlineImm <ValueType vt> : PatLeaf <(vt imm), [{
+ return isInlineImmediate(N);
+}]>;
+
+class SGPRImm <dag frag> : PatLeaf<frag, [{
+ if (TM.getSubtarget<AMDGPUSubtarget>().getGeneration() <
+ AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ return false;
+ }
+ const SIRegisterInfo *SIRI =
+ static_cast<const SIRegisterInfo*>(TM.getRegisterInfo());
+ for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
+ U != E; ++U) {
+ if (SIRI->isSGPRClass(getOperandRegClass(*U, U.getOperandNo()))) {
+ return true;
+ }
+ }
+ return false;
+}]>;
+
+//===----------------------------------------------------------------------===//
+// Custom Operands
+//===----------------------------------------------------------------------===//
+
+def FRAMEri32 : Operand<iPTR> {
+ let MIOperandInfo = (ops i32:$ptr, i32imm:$index);
+}
+
+def sopp_brtarget : Operand<OtherVT> {
+ let EncoderMethod = "getSOPPBrEncoding";
+ let OperandType = "OPERAND_PCREL";
+}
+
+//===----------------------------------------------------------------------===//
+// Complex patterns
+//===----------------------------------------------------------------------===//
+
+def MUBUFAddr32 : ComplexPattern<i64, 9, "SelectMUBUFAddr32">;
+def MUBUFAddr64 : ComplexPattern<i64, 3, "SelectMUBUFAddr64">;
+def MUBUFScratch : ComplexPattern<i64, 4, "SelectMUBUFScratch">;
+
+//===----------------------------------------------------------------------===//
+// SI assembler operands
+//===----------------------------------------------------------------------===//
+
+def SIOperand {
+ int ZERO = 0x80;
+ int VCC = 0x6A;
+}
+
+include "SIInstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+//
+// SI Instruction multiclass helpers.
+//
+// Instructions with _32 take 32-bit operands.
+// Instructions with _64 take 64-bit operands.
+//
+// VOP_* instructions can use either a 32-bit or 64-bit encoding. The 32-bit
+// encoding is the standard encoding, but instruction that make use of
+// any of the instruction modifiers must use the 64-bit encoding.
+//
+// Instructions with _e32 use the 32-bit encoding.
+// Instructions with _e64 use the 64-bit encoding.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Scalar classes
+//===----------------------------------------------------------------------===//
+
+class SOP1_32 <bits<8> op, string opName, list<dag> pattern> : SOP1 <
+ op, (outs SReg_32:$dst), (ins SSrc_32:$src0),
+ opName#" $dst, $src0", pattern
+>;
+
+class SOP1_64 <bits<8> op, string opName, list<dag> pattern> : SOP1 <
+ op, (outs SReg_64:$dst), (ins SSrc_64:$src0),
+ opName#" $dst, $src0", pattern
+>;
+
+// 64-bit input, 32-bit output.
+class SOP1_32_64 <bits<8> op, string opName, list<dag> pattern> : SOP1 <
+ op, (outs SReg_32:$dst), (ins SSrc_64:$src0),
+ opName#" $dst, $src0", pattern
+>;
+
+class SOP2_32 <bits<7> op, string opName, list<dag> pattern> : SOP2 <
+ op, (outs SReg_32:$dst), (ins SSrc_32:$src0, SSrc_32:$src1),
+ opName#" $dst, $src0, $src1", pattern
+>;
+
+class SOP2_64 <bits<7> op, string opName, list<dag> pattern> : SOP2 <
+ op, (outs SReg_64:$dst), (ins SSrc_64:$src0, SSrc_64:$src1),
+ opName#" $dst, $src0, $src1", pattern
+>;
+
+class SOP2_SHIFT_64 <bits<7> op, string opName, list<dag> pattern> : SOP2 <
+ op, (outs SReg_64:$dst), (ins SSrc_64:$src0, SSrc_32:$src1),
+ opName#" $dst, $src0, $src1", pattern
+>;
+
+
+class SOPC_Helper <bits<7> op, RegisterClass rc, ValueType vt,
+ string opName, PatLeaf cond> : SOPC <
+ op, (outs SCCReg:$dst), (ins rc:$src0, rc:$src1),
+ opName#" $dst, $src0, $src1", []>;
+
+class SOPC_32<bits<7> op, string opName, PatLeaf cond = COND_NULL>
+ : SOPC_Helper<op, SSrc_32, i32, opName, cond>;
+
+class SOPC_64<bits<7> op, string opName, PatLeaf cond = COND_NULL>
+ : SOPC_Helper<op, SSrc_64, i64, opName, cond>;
+
+class SOPK_32 <bits<5> op, string opName, list<dag> pattern> : SOPK <
+ op, (outs SReg_32:$dst), (ins i16imm:$src0),
+ opName#" $dst, $src0", pattern
+>;
+
+class SOPK_64 <bits<5> op, string opName, list<dag> pattern> : SOPK <
+ op, (outs SReg_64:$dst), (ins i16imm:$src0),
+ opName#" $dst, $src0", pattern
+>;
+
+multiclass SMRD_Helper <bits<5> op, string asm, RegisterClass baseClass,
+ RegisterClass dstClass> {
+ def _IMM : SMRD <
+ op, 1, (outs dstClass:$dst),
+ (ins baseClass:$sbase, u32imm:$offset),
+ asm#" $dst, $sbase, $offset", []
+ >;
+
+ def _SGPR : SMRD <
+ op, 0, (outs dstClass:$dst),
+ (ins baseClass:$sbase, SReg_32:$soff),
+ asm#" $dst, $sbase, $soff", []
+ >;
+}
+
+//===----------------------------------------------------------------------===//
+// Vector ALU classes
+//===----------------------------------------------------------------------===//
+
+class VOP <string opName> {
+ string OpName = opName;
+}
+
+class VOP2_REV <string revOp, bit isOrig> {
+ string RevOp = revOp;
+ bit IsOrig = isOrig;
+}
+
+class SIMCInstr <string pseudo, int subtarget> {
+ string PseudoInstr = pseudo;
+ int Subtarget = subtarget;
+}
+
+class VOP3_Pseudo <dag outs, dag ins, list<dag> pattern, string opName> :
+ VOP3Common <outs, ins, "", pattern>,
+ VOP <opName>,
+ SIMCInstr<opName, SISubtarget.NONE> {
+ let isPseudo = 1;
+}
+
+class VOP3_Real_si <bits<9> op, dag outs, dag ins, string asm, string opName> :
+ VOP3 <op, outs, ins, asm, []>,
+ SIMCInstr<opName, SISubtarget.SI>;
+
+multiclass VOP3_m <bits<9> op, dag outs, dag ins, string asm, list<dag> pattern,
+ string opName> {
+
+ def "" : VOP3_Pseudo <outs, ins, pattern, opName>;
+
+ def _si : VOP3_Real_si <op, outs, ins, asm, opName>;
+
+}
+
+multiclass VOP3_1_m <bits<8> op, dag outs, dag ins, string asm,
+ list<dag> pattern, string opName> {
+
+ def "" : VOP3_Pseudo <outs, ins, pattern, opName>;
+
+ let src1 = 0, src1_modifiers = 0, src2 = 0, src2_modifiers = 0 in {
+
+ def _si : VOP3_Real_si <
+ {1, 1, op{6}, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}},
+ outs, ins, asm, opName
+ >;
+
+ } // src1 = 0, src1_modifiers = 0, src2 = 0, src2_modifiers = 0
+}
+
+multiclass VOP3_2_m <bits<6> op, dag outs, dag ins, string asm,
+ list<dag> pattern, string opName, string revOp> {
+
+ def "" : VOP3_Pseudo <outs, ins, pattern, opName>;
+
+ let src2 = 0, src2_modifiers = 0 in {
+
+ def _si : VOP3_Real_si <
+ {1, 0, 0, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}},
+ outs, ins, asm, opName>,
+ VOP2_REV<revOp#"_e64", !eq(revOp, opName)>;
+
+ } // src2 = 0, src2_modifiers = 0
+}
+
+// This must always be right before the operand being input modified.
+def InputMods : OperandWithDefaultOps <i32, (ops (i32 0))> {
+ let PrintMethod = "printOperandAndMods";
+}
+
+multiclass VOP1_Helper <bits<8> op, RegisterClass drc, RegisterClass src,
+ string opName, list<dag> pattern> {
+
+ def _e32 : VOP1 <
+ op, (outs drc:$dst), (ins src:$src0),
+ opName#"_e32 $dst, $src0", pattern
+ >, VOP <opName>;
+
+ defm _e64 : VOP3_1_m <
+ op,
+ (outs drc:$dst),
+ (ins InputMods:$src0_modifiers, src:$src0, i32imm:$clamp, i32imm:$omod),
+ opName#"_e64 $dst, $src0_modifiers, $clamp, $omod", [], opName>;
+}
+
+multiclass VOP1_32 <bits<8> op, string opName, list<dag> pattern>
+ : VOP1_Helper <op, VReg_32, VSrc_32, opName, pattern>;
+
+multiclass VOP1_64 <bits<8> op, string opName, list<dag> pattern>
+ : VOP1_Helper <op, VReg_64, VSrc_64, opName, pattern>;
+
+multiclass VOP1_32_64 <bits<8> op, string opName, list<dag> pattern>
+ : VOP1_Helper <op, VReg_32, VSrc_64, opName, pattern>;
+
+multiclass VOP1_64_32 <bits<8> op, string opName, list<dag> pattern>
+ : VOP1_Helper <op, VReg_64, VSrc_32, opName, pattern>;
+
+multiclass VOP2_Helper <bits<6> op, RegisterClass vrc, RegisterClass arc,
+ string opName, list<dag> pattern, string revOp> {
+ def _e32 : VOP2 <
+ op, (outs vrc:$dst), (ins arc:$src0, vrc:$src1),
+ opName#"_e32 $dst, $src0, $src1", pattern
+ >, VOP <opName>, VOP2_REV<revOp#"_e32", !eq(revOp, opName)>;
+
+ defm _e64 : VOP3_2_m <
+ op,
+ (outs vrc:$dst),
+ (ins InputMods:$src0_modifiers, arc:$src0,
+ InputMods:$src1_modifiers, arc:$src1,
+ i32imm:$clamp, i32imm:$omod),
+ opName#"_e64 $dst, $src0_modifiers, $src1_modifiers, $clamp, $omod", [],
+ opName, revOp>;
+}
+
+multiclass VOP2_32 <bits<6> op, string opName, list<dag> pattern,
+ string revOp = opName>
+ : VOP2_Helper <op, VReg_32, VSrc_32, opName, pattern, revOp>;
+
+multiclass VOP2_64 <bits<6> op, string opName, list<dag> pattern,
+ string revOp = opName>
+ : VOP2_Helper <op, VReg_64, VSrc_64, opName, pattern, revOp>;
+
+multiclass VOP2b_32 <bits<6> op, string opName, list<dag> pattern,
+ RegisterClass src0_rc, string revOp = opName> {
+
+ def _e32 : VOP2 <
+ op, (outs VReg_32:$dst), (ins src0_rc:$src0, VReg_32:$src1),
+ opName#"_e32 $dst, $src0, $src1", pattern
+ >, VOP <opName>, VOP2_REV<revOp#"_e32", !eq(revOp, opName)>;
+
+ def _e64 : VOP3b <
+ {1, 0, 0, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}},
+ (outs VReg_32:$dst),
+ (ins InputMods: $src0_modifiers, VSrc_32:$src0,
+ InputMods:$src1_modifiers, VSrc_32:$src1,
+ i32imm:$clamp, i32imm:$omod),
+ opName#"_e64 $dst, $src0_modifiers, $src1_modifiers, $clamp, $omod", []
+ >, VOP <opName>, VOP2_REV<revOp#"_e64", !eq(revOp, opName)> {
+ let src2 = 0;
+ let src2_modifiers = 0;
+ /* the VOP2 variant puts the carry out into VCC, the VOP3 variant
+ can write it into any SGPR. We currently don't use the carry out,
+ so for now hardcode it to VCC as well */
+ let sdst = SIOperand.VCC;
+ }
+}
+
+multiclass VOPC_Helper <bits<8> op, RegisterClass vrc, RegisterClass arc,
+ string opName, ValueType vt, PatLeaf cond, bit defExec = 0> {
+ def _e32 : VOPC <
+ op, (ins arc:$src0, vrc:$src1),
+ opName#"_e32 $dst, $src0, $src1", []
+ >, VOP <opName> {
+ let Defs = !if(defExec, [EXEC], []);
+ }
+
+ def _e64 : VOP3 <
+ {0, op{7}, op{6}, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}},
+ (outs SReg_64:$dst),
+ (ins InputMods:$src0_modifiers, arc:$src0,
+ InputMods:$src1_modifiers, arc:$src1,
+ InstFlag:$clamp, InstFlag:$omod),
+ opName#"_e64 $dst, $src0_modifiers, $src1_modifiers, $clamp, $omod",
+ !if(!eq(!cast<string>(cond), "COND_NULL"), []<dag>,
+ [(set SReg_64:$dst, (i1 (setcc (vt arc:$src0), arc:$src1, cond)))]
+ )
+ >, VOP <opName> {
+ let Defs = !if(defExec, [EXEC], []);
+ let src2 = 0;
+ let src2_modifiers = 0;
+ }
+}
+
+multiclass VOPC_32 <bits<8> op, string opName,
+ ValueType vt = untyped, PatLeaf cond = COND_NULL>
+ : VOPC_Helper <op, VReg_32, VSrc_32, opName, vt, cond>;
+
+multiclass VOPC_64 <bits<8> op, string opName,
+ ValueType vt = untyped, PatLeaf cond = COND_NULL>
+ : VOPC_Helper <op, VReg_64, VSrc_64, opName, vt, cond>;
+
+multiclass VOPCX_32 <bits<8> op, string opName,
+ ValueType vt = untyped, PatLeaf cond = COND_NULL>
+ : VOPC_Helper <op, VReg_32, VSrc_32, opName, vt, cond, 1>;
+
+multiclass VOPCX_64 <bits<8> op, string opName,
+ ValueType vt = untyped, PatLeaf cond = COND_NULL>
+ : VOPC_Helper <op, VReg_64, VSrc_64, opName, vt, cond, 1>;
+
+multiclass VOP3_32 <bits<9> op, string opName, list<dag> pattern> : VOP3_m <
+ op, (outs VReg_32:$dst),
+ (ins InputMods: $src0_modifiers, VSrc_32:$src0, InputMods:$src1_modifiers,
+ VSrc_32:$src1, InputMods:$src2_modifiers, VSrc_32:$src2,
+ InstFlag:$clamp, InstFlag:$omod),
+ opName#" $dst, $src0_modifiers, $src1, $src2, $clamp, $omod", pattern, opName
+>;
+
+class VOP3_64_32 <bits <9> op, string opName, list<dag> pattern> : VOP3 <
+ op, (outs VReg_64:$dst),
+ (ins VSrc_64:$src0, VSrc_32:$src1),
+ opName#" $dst, $src0, $src1", pattern
+>, VOP <opName> {
+
+ let src2 = 0;
+ let src2_modifiers = 0;
+ let src0_modifiers = 0;
+ let clamp = 0;
+ let omod = 0;
+}
+
+class VOP3_64 <bits<9> op, string opName, list<dag> pattern> : VOP3 <
+ op, (outs VReg_64:$dst),
+ (ins InputMods:$src0_modifiers, VSrc_64:$src0,
+ InputMods:$src1_modifiers, VSrc_64:$src1,
+ InputMods:$src2_modifiers, VSrc_64:$src2,
+ InstFlag:$clamp, InstFlag:$omod),
+ opName#" $dst, $src0_modifiers, $src1_modifiers, $src2_modifiers, $clamp, $omod", pattern
+>, VOP <opName>;
+
+
+class VOP3b_Helper <bits<9> op, RegisterClass vrc, RegisterClass arc,
+ string opName, list<dag> pattern> : VOP3 <
+ op, (outs vrc:$dst0, SReg_64:$dst1),
+ (ins arc:$src0, arc:$src1, arc:$src2,
+ InstFlag:$abs, InstFlag:$clamp, InstFlag:$omod, InstFlag:$neg),
+ opName#" $dst0, $dst1, $src0, $src1, $src2, $abs, $clamp, $omod, $neg", pattern
+>, VOP <opName>;
+
+
+class VOP3b_64 <bits<9> op, string opName, list<dag> pattern> :
+ VOP3b_Helper <op, VReg_64, VSrc_64, opName, pattern>;
+
+class VOP3b_32 <bits<9> op, string opName, list<dag> pattern> :
+ VOP3b_Helper <op, VReg_32, VSrc_32, opName, pattern>;
+
+//===----------------------------------------------------------------------===//
+// Vector I/O classes
+//===----------------------------------------------------------------------===//
+
+class DS_1A <bits<8> op, dag outs, dag ins, string asm, list<dag> pat> :
+ DS <op, outs, ins, asm, pat> {
+ bits<16> offset;
+
+ // Single load interpret the 2 i8imm operands as a single i16 offset.
+ let offset0 = offset{7-0};
+ let offset1 = offset{15-8};
+}
+
+class DS_Load_Helper <bits<8> op, string asm, RegisterClass regClass> : DS_1A <
+ op,
+ (outs regClass:$vdst),
+ (ins i1imm:$gds, VReg_32:$addr, u16imm:$offset),
+ asm#" $vdst, $addr, $offset, [M0]",
+ []> {
+ let data0 = 0;
+ let data1 = 0;
+ let mayLoad = 1;
+ let mayStore = 0;
+}
+
+class DS_Load2_Helper <bits<8> op, string asm, RegisterClass regClass> : DS <
+ op,
+ (outs regClass:$vdst),
+ (ins i1imm:$gds, VReg_32:$addr, u8imm:$offset0, u8imm:$offset1),
+ asm#" $gds, $vdst, $addr, $offset0, $offset1, [M0]",
+ []> {
+ let data0 = 0;
+ let data1 = 0;
+ let mayLoad = 1;
+ let mayStore = 0;
+}
+
+class DS_Store_Helper <bits<8> op, string asm, RegisterClass regClass> : DS_1A <
+ op,
+ (outs),
+ (ins i1imm:$gds, VReg_32:$addr, regClass:$data0, u16imm:$offset),
+ asm#" $addr, $data0, $offset [M0]",
+ []> {
+ let data1 = 0;
+ let mayStore = 1;
+ let mayLoad = 0;
+ let vdst = 0;
+}
+
+class DS_Store2_Helper <bits<8> op, string asm, RegisterClass regClass> : DS_1A <
+ op,
+ (outs),
+ (ins i1imm:$gds, VReg_32:$addr, regClass:$data0, u8imm:$offset0, u8imm:$offset1),
+ asm#" $addr, $data0, $data1, $offset0, $offset1 [M0]",
+ []> {
+ let mayStore = 1;
+ let mayLoad = 0;
+ let vdst = 0;
+}
+
+// 1 address, 1 data.
+class DS_1A1D_RET <bits<8> op, string asm, RegisterClass rc> : DS_1A <
+ op,
+ (outs rc:$vdst),
+ (ins i1imm:$gds, VReg_32:$addr, rc:$data0, u16imm:$offset),
+ asm#" $vdst, $addr, $data0, $offset, [M0]",
+ []> {
+
+ let data1 = 0;
+ let mayStore = 1;
+ let mayLoad = 1;
+}
+
+// 1 address, 2 data.
+class DS_1A2D_RET <bits<8> op, string asm, RegisterClass rc> : DS_1A <
+ op,
+ (outs rc:$vdst),
+ (ins i1imm:$gds, VReg_32:$addr, rc:$data0, rc:$data1, u16imm:$offset),
+ asm#" $vdst, $addr, $data0, $data1, $offset, [M0]",
+ []> {
+ let mayStore = 1;
+ let mayLoad = 1;
+}
+
+// 1 address, 2 data.
+class DS_1A2D_NORET <bits<8> op, string asm, RegisterClass rc> : DS_1A <
+ op,
+ (outs),
+ (ins i1imm:$gds, VReg_32:$addr, rc:$data0, rc:$data1, u16imm:$offset),
+ asm#" $addr, $data0, $data1, $offset, [M0]",
+ []> {
+ let mayStore = 1;
+ let mayLoad = 1;
+}
+
+// 1 address, 1 data.
+class DS_1A1D_NORET <bits<8> op, string asm, RegisterClass rc> : DS_1A <
+ op,
+ (outs),
+ (ins i1imm:$gds, VReg_32:$addr, rc:$data0, u16imm:$offset),
+ asm#" $addr, $data0, $offset, [M0]",
+ []> {
+
+ let data1 = 0;
+ let mayStore = 1;
+ let mayLoad = 1;
+}
+
+class MTBUF_Store_Helper <bits<3> op, string asm, RegisterClass regClass> : MTBUF <
+ op,
+ (outs),
+ (ins regClass:$vdata, u16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc,
+ i1imm:$addr64, i8imm:$dfmt, i8imm:$nfmt, VReg_32:$vaddr,
+ SReg_128:$srsrc, i1imm:$slc, i1imm:$tfe, SSrc_32:$soffset),
+ asm#" $vdata, $offset, $offen, $idxen, $glc, $addr64, $dfmt,"
+ #" $nfmt, $vaddr, $srsrc, $slc, $tfe, $soffset",
+ []> {
+ let mayStore = 1;
+ let mayLoad = 0;
+}
+
+multiclass MUBUF_Load_Helper <bits<7> op, string asm, RegisterClass regClass,
+ ValueType load_vt = i32,
+ SDPatternOperator ld = null_frag> {
+
+ let lds = 0, mayLoad = 1 in {
+
+ let addr64 = 0 in {
+
+ let offen = 0, idxen = 0, vaddr = 0 in {
+ def _OFFSET : MUBUF <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc,
+ u16imm:$offset, SSrc_32:$soffset, i1imm:$glc,
+ i1imm:$slc, i1imm:$tfe),
+ asm#" $vdata, $srsrc + $offset + $soffset, glc=$glc, slc=$slc, tfe=$tfe", []>;
+ }
+
+ let offen = 1, idxen = 0 in {
+ def _OFFEN : MUBUF <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc, VReg_32:$vaddr,
+ SSrc_32:$soffset, u16imm:$offset, i1imm:$glc, i1imm:$slc,
+ i1imm:$tfe),
+ asm#" $vdata, $srsrc + $vaddr + $soffset + $offset, glc=$glc, slc=$slc, tfe=$tfe", []>;
+ }
+
+ let offen = 0, idxen = 1 in {
+ def _IDXEN : MUBUF <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc, VReg_32:$vaddr,
+ u16imm:$offset, SSrc_32:$soffset, i1imm:$glc,
+ i1imm:$slc, i1imm:$tfe),
+ asm#" $vdata, $srsrc[$vaddr] + $offset + $soffset, glc=$glc, slc=$slc, tfe=$tfe", []>;
+ }
+
+ let offen = 1, idxen = 1 in {
+ def _BOTHEN : MUBUF <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc, VReg_64:$vaddr,
+ SSrc_32:$soffset, i1imm:$glc,
+ i1imm:$slc, i1imm:$tfe),
+ asm#" $vdata, $srsrc[$vaddr[0]] + $vaddr[1] + $soffset, glc=$glc, slc=$slc, tfe=$tfe", []>;
+ }
+ }
+
+ let offen = 0, idxen = 0, addr64 = 1, glc = 0, slc = 0, tfe = 0, soffset = 128 /* ZERO */ in {
+ def _ADDR64 : MUBUF <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc, VReg_64:$vaddr, u16imm:$offset),
+ asm#" $vdata, $srsrc + $vaddr + $offset",
+ [(set load_vt:$vdata, (ld (MUBUFAddr64 v4i32:$srsrc,
+ i64:$vaddr, u16imm:$offset)))]>;
+ }
+ }
+}
+
+multiclass MUBUF_Store_Helper <bits<7> op, string name, RegisterClass vdataClass,
+ ValueType store_vt, SDPatternOperator st> {
+
+ def "" : MUBUF <
+ op, (outs),
+ (ins vdataClass:$vdata, SReg_128:$srsrc, VReg_32:$vaddr, SSrc_32:$soffset,
+ u16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc, i1imm:$slc,
+ i1imm:$tfe),
+ name#" $vdata, $srsrc, $vaddr, $soffset, $offset $offen $idxen $glc $slc $tfe",
+ []
+ > {
+ let addr64 = 0;
+ }
+
+ def _ADDR64 : MUBUF <
+ op, (outs),
+ (ins vdataClass:$vdata, SReg_128:$srsrc, VReg_64:$vaddr, u16imm:$offset),
+ name#" $vdata, $srsrc + $vaddr + $offset",
+ [(st store_vt:$vdata,
+ (MUBUFAddr64 v4i32:$srsrc, i64:$vaddr, u16imm:$offset))]> {
+
+ let mayLoad = 0;
+ let mayStore = 1;
+
+ // Encoding
+ let offen = 0;
+ let idxen = 0;
+ let glc = 0;
+ let addr64 = 1;
+ let lds = 0;
+ let slc = 0;
+ let tfe = 0;
+ let soffset = 128; // ZERO
+ }
+}
+
+class MTBUF_Load_Helper <bits<3> op, string asm, RegisterClass regClass> : MTBUF <
+ op,
+ (outs regClass:$dst),
+ (ins u16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc, i1imm:$addr64,
+ i8imm:$dfmt, i8imm:$nfmt, VReg_32:$vaddr, SReg_128:$srsrc,
+ i1imm:$slc, i1imm:$tfe, SSrc_32:$soffset),
+ asm#" $dst, $offset, $offen, $idxen, $glc, $addr64, $dfmt,"
+ #" $nfmt, $vaddr, $srsrc, $slc, $tfe, $soffset",
+ []> {
+ let mayLoad = 1;
+ let mayStore = 0;
+}
+
+class MIMG_Mask <string op, int channels> {
+ string Op = op;
+ int Channels = channels;
+}
+
+class MIMG_NoSampler_Helper <bits<7> op, string asm,
+ RegisterClass dst_rc,
+ RegisterClass src_rc> : MIMG <
+ op,
+ (outs dst_rc:$vdata),
+ (ins i32imm:$dmask, i1imm:$unorm, i1imm:$glc, i1imm:$da, i1imm:$r128,
+ i1imm:$tfe, i1imm:$lwe, i1imm:$slc, src_rc:$vaddr,
+ SReg_256:$srsrc),
+ asm#" $vdata, $dmask, $unorm, $glc, $da, $r128,"
+ #" $tfe, $lwe, $slc, $vaddr, $srsrc",
+ []> {
+ let SSAMP = 0;
+ let mayLoad = 1;
+ let mayStore = 0;
+ let hasPostISelHook = 1;
+}
+
+multiclass MIMG_NoSampler_Src_Helper <bits<7> op, string asm,
+ RegisterClass dst_rc,
+ int channels> {
+ def _V1 : MIMG_NoSampler_Helper <op, asm, dst_rc, VReg_32>,
+ MIMG_Mask<asm#"_V1", channels>;
+ def _V2 : MIMG_NoSampler_Helper <op, asm, dst_rc, VReg_64>,
+ MIMG_Mask<asm#"_V2", channels>;
+ def _V4 : MIMG_NoSampler_Helper <op, asm, dst_rc, VReg_128>,
+ MIMG_Mask<asm#"_V4", channels>;
+}
+
+multiclass MIMG_NoSampler <bits<7> op, string asm> {
+ defm _V1 : MIMG_NoSampler_Src_Helper <op, asm, VReg_32, 1>;
+ defm _V2 : MIMG_NoSampler_Src_Helper <op, asm, VReg_64, 2>;
+ defm _V3 : MIMG_NoSampler_Src_Helper <op, asm, VReg_96, 3>;
+ defm _V4 : MIMG_NoSampler_Src_Helper <op, asm, VReg_128, 4>;
+}
+
+class MIMG_Sampler_Helper <bits<7> op, string asm,
+ RegisterClass dst_rc,
+ RegisterClass src_rc> : MIMG <
+ op,
+ (outs dst_rc:$vdata),
+ (ins i32imm:$dmask, i1imm:$unorm, i1imm:$glc, i1imm:$da, i1imm:$r128,
+ i1imm:$tfe, i1imm:$lwe, i1imm:$slc, src_rc:$vaddr,
+ SReg_256:$srsrc, SReg_128:$ssamp),
+ asm#" $vdata, $dmask, $unorm, $glc, $da, $r128,"
+ #" $tfe, $lwe, $slc, $vaddr, $srsrc, $ssamp",
+ []> {
+ let mayLoad = 1;
+ let mayStore = 0;
+ let hasPostISelHook = 1;
+}
+
+multiclass MIMG_Sampler_Src_Helper <bits<7> op, string asm,
+ RegisterClass dst_rc,
+ int channels> {
+ def _V1 : MIMG_Sampler_Helper <op, asm, dst_rc, VReg_32>,
+ MIMG_Mask<asm#"_V1", channels>;
+ def _V2 : MIMG_Sampler_Helper <op, asm, dst_rc, VReg_64>,
+ MIMG_Mask<asm#"_V2", channels>;
+ def _V4 : MIMG_Sampler_Helper <op, asm, dst_rc, VReg_128>,
+ MIMG_Mask<asm#"_V4", channels>;
+ def _V8 : MIMG_Sampler_Helper <op, asm, dst_rc, VReg_256>,
+ MIMG_Mask<asm#"_V8", channels>;
+ def _V16 : MIMG_Sampler_Helper <op, asm, dst_rc, VReg_512>,
+ MIMG_Mask<asm#"_V16", channels>;
+}
+
+multiclass MIMG_Sampler <bits<7> op, string asm> {
+ defm _V1 : MIMG_Sampler_Src_Helper<op, asm, VReg_32, 1>;
+ defm _V2 : MIMG_Sampler_Src_Helper<op, asm, VReg_64, 2>;
+ defm _V3 : MIMG_Sampler_Src_Helper<op, asm, VReg_96, 3>;
+ defm _V4 : MIMG_Sampler_Src_Helper<op, asm, VReg_128, 4>;
+}
+
+class MIMG_Gather_Helper <bits<7> op, string asm,
+ RegisterClass dst_rc,
+ RegisterClass src_rc> : MIMG <
+ op,
+ (outs dst_rc:$vdata),
+ (ins i32imm:$dmask, i1imm:$unorm, i1imm:$glc, i1imm:$da, i1imm:$r128,
+ i1imm:$tfe, i1imm:$lwe, i1imm:$slc, src_rc:$vaddr,
+ SReg_256:$srsrc, SReg_128:$ssamp),
+ asm#" $vdata, $dmask, $unorm, $glc, $da, $r128,"
+ #" $tfe, $lwe, $slc, $vaddr, $srsrc, $ssamp",
+ []> {
+ let mayLoad = 1;
+ let mayStore = 0;
+
+ // DMASK was repurposed for GATHER4. 4 components are always
+ // returned and DMASK works like a swizzle - it selects
+ // the component to fetch. The only useful DMASK values are
+ // 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
+ // (red,red,red,red) etc.) The ISA document doesn't mention
+ // this.
+ // Therefore, disable all code which updates DMASK by setting these two:
+ let MIMG = 0;
+ let hasPostISelHook = 0;
+}
+
+multiclass MIMG_Gather_Src_Helper <bits<7> op, string asm,
+ RegisterClass dst_rc,
+ int channels> {
+ def _V1 : MIMG_Gather_Helper <op, asm, dst_rc, VReg_32>,
+ MIMG_Mask<asm#"_V1", channels>;
+ def _V2 : MIMG_Gather_Helper <op, asm, dst_rc, VReg_64>,
+ MIMG_Mask<asm#"_V2", channels>;
+ def _V4 : MIMG_Gather_Helper <op, asm, dst_rc, VReg_128>,
+ MIMG_Mask<asm#"_V4", channels>;
+ def _V8 : MIMG_Gather_Helper <op, asm, dst_rc, VReg_256>,
+ MIMG_Mask<asm#"_V8", channels>;
+ def _V16 : MIMG_Gather_Helper <op, asm, dst_rc, VReg_512>,
+ MIMG_Mask<asm#"_V16", channels>;
+}
+
+multiclass MIMG_Gather <bits<7> op, string asm> {
+ defm _V1 : MIMG_Gather_Src_Helper<op, asm, VReg_32, 1>;
+ defm _V2 : MIMG_Gather_Src_Helper<op, asm, VReg_64, 2>;
+ defm _V3 : MIMG_Gather_Src_Helper<op, asm, VReg_96, 3>;
+ defm _V4 : MIMG_Gather_Src_Helper<op, asm, VReg_128, 4>;
+}
+
+//===----------------------------------------------------------------------===//
+// Vector instruction mappings
+//===----------------------------------------------------------------------===//
+
+// Maps an opcode in e32 form to its e64 equivalent
+def getVOPe64 : InstrMapping {
+ let FilterClass = "VOP";
+ let RowFields = ["OpName"];
+ let ColFields = ["Size"];
+ let KeyCol = ["4"];
+ let ValueCols = [["8"]];
+}
+
+// Maps an opcode in e64 form to its e32 equivalent
+def getVOPe32 : InstrMapping {
+ let FilterClass = "VOP";
+ let RowFields = ["OpName"];
+ let ColFields = ["Size"];
+ let KeyCol = ["8"];
+ let ValueCols = [["4"]];
+}
+
+// Maps an original opcode to its commuted version
+def getCommuteRev : InstrMapping {
+ let FilterClass = "VOP2_REV";
+ let RowFields = ["RevOp"];
+ let ColFields = ["IsOrig"];
+ let KeyCol = ["1"];
+ let ValueCols = [["0"]];
+}
+
+def getMaskedMIMGOp : InstrMapping {
+ let FilterClass = "MIMG_Mask";
+ let RowFields = ["Op"];
+ let ColFields = ["Channels"];
+ let KeyCol = ["4"];
+ let ValueCols = [["1"], ["2"], ["3"] ];
+}
+
+// Maps an commuted opcode to its original version
+def getCommuteOrig : InstrMapping {
+ let FilterClass = "VOP2_REV";
+ let RowFields = ["RevOp"];
+ let ColFields = ["IsOrig"];
+ let KeyCol = ["0"];
+ let ValueCols = [["1"]];
+}
+
+def isDS : InstrMapping {
+ let FilterClass = "DS";
+ let RowFields = ["Inst"];
+ let ColFields = ["Size"];
+ let KeyCol = ["8"];
+ let ValueCols = [["8"]];
+}
+
+def getMCOpcode : InstrMapping {
+ let FilterClass = "SIMCInstr";
+ let RowFields = ["PseudoInstr"];
+ let ColFields = ["Subtarget"];
+ let KeyCol = [!cast<string>(SISubtarget.NONE)];
+ let ValueCols = [[!cast<string>(SISubtarget.SI)]];
+}
+
+include "SIInstructions.td"
diff --git a/contrib/llvm/lib/Target/R600/SIInstructions.td b/contrib/llvm/lib/Target/R600/SIInstructions.td
new file mode 100644
index 0000000..aecd847
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIInstructions.td
@@ -0,0 +1,2926 @@
+//===-- SIInstructions.td - SI Instruction Defintions ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This file was originally auto-generated from a GPU register header file and
+// all the instruction definitions were originally commented out. Instructions
+// that are not yet supported remain commented out.
+//===----------------------------------------------------------------------===//
+
+class InterpSlots {
+int P0 = 2;
+int P10 = 0;
+int P20 = 1;
+}
+def INTERP : InterpSlots;
+
+def InterpSlot : Operand<i32> {
+ let PrintMethod = "printInterpSlot";
+}
+
+def SendMsgImm : Operand<i32> {
+ let PrintMethod = "printSendMsg";
+}
+
+def isSI : Predicate<"Subtarget.getGeneration() "
+ ">= AMDGPUSubtarget::SOUTHERN_ISLANDS">;
+
+def isCI : Predicate<"Subtarget.getGeneration() "
+ ">= AMDGPUSubtarget::SEA_ISLANDS">;
+
+def isCFDepth0 : Predicate<"isCFDepth0()">;
+
+def WAIT_FLAG : InstFlag<"printWaitFlag">;
+
+let SubtargetPredicate = isSI in {
+let OtherPredicates = [isCFDepth0] in {
+
+//===----------------------------------------------------------------------===//
+// SMRD Instructions
+//===----------------------------------------------------------------------===//
+
+let mayLoad = 1 in {
+
+// We are using the SGPR_32 and not the SReg_32 register class for 32-bit
+// SMRD instructions, because the SGPR_32 register class does not include M0
+// and writing to M0 from an SMRD instruction will hang the GPU.
+defm S_LOAD_DWORD : SMRD_Helper <0x00, "S_LOAD_DWORD", SReg_64, SGPR_32>;
+defm S_LOAD_DWORDX2 : SMRD_Helper <0x01, "S_LOAD_DWORDX2", SReg_64, SReg_64>;
+defm S_LOAD_DWORDX4 : SMRD_Helper <0x02, "S_LOAD_DWORDX4", SReg_64, SReg_128>;
+defm S_LOAD_DWORDX8 : SMRD_Helper <0x03, "S_LOAD_DWORDX8", SReg_64, SReg_256>;
+defm S_LOAD_DWORDX16 : SMRD_Helper <0x04, "S_LOAD_DWORDX16", SReg_64, SReg_512>;
+
+defm S_BUFFER_LOAD_DWORD : SMRD_Helper <
+ 0x08, "S_BUFFER_LOAD_DWORD", SReg_128, SGPR_32
+>;
+
+defm S_BUFFER_LOAD_DWORDX2 : SMRD_Helper <
+ 0x09, "S_BUFFER_LOAD_DWORDX2", SReg_128, SReg_64
+>;
+
+defm S_BUFFER_LOAD_DWORDX4 : SMRD_Helper <
+ 0x0a, "S_BUFFER_LOAD_DWORDX4", SReg_128, SReg_128
+>;
+
+defm S_BUFFER_LOAD_DWORDX8 : SMRD_Helper <
+ 0x0b, "S_BUFFER_LOAD_DWORDX8", SReg_128, SReg_256
+>;
+
+defm S_BUFFER_LOAD_DWORDX16 : SMRD_Helper <
+ 0x0c, "S_BUFFER_LOAD_DWORDX16", SReg_128, SReg_512
+>;
+
+} // mayLoad = 1
+
+//def S_MEMTIME : SMRD_ <0x0000001e, "S_MEMTIME", []>;
+//def S_DCACHE_INV : SMRD_ <0x0000001f, "S_DCACHE_INV", []>;
+
+//===----------------------------------------------------------------------===//
+// SOP1 Instructions
+//===----------------------------------------------------------------------===//
+
+let neverHasSideEffects = 1 in {
+
+let isMoveImm = 1 in {
+def S_MOV_B32 : SOP1_32 <0x00000003, "S_MOV_B32", []>;
+def S_MOV_B64 : SOP1_64 <0x00000004, "S_MOV_B64", []>;
+def S_CMOV_B32 : SOP1_32 <0x00000005, "S_CMOV_B32", []>;
+def S_CMOV_B64 : SOP1_64 <0x00000006, "S_CMOV_B64", []>;
+} // End isMoveImm = 1
+
+def S_NOT_B32 : SOP1_32 <0x00000007, "S_NOT_B32",
+ [(set i32:$dst, (not i32:$src0))]
+>;
+
+def S_NOT_B64 : SOP1_64 <0x00000008, "S_NOT_B64",
+ [(set i64:$dst, (not i64:$src0))]
+>;
+def S_WQM_B32 : SOP1_32 <0x00000009, "S_WQM_B32", []>;
+def S_WQM_B64 : SOP1_64 <0x0000000a, "S_WQM_B64", []>;
+def S_BREV_B32 : SOP1_32 <0x0000000b, "S_BREV_B32",
+ [(set i32:$dst, (AMDGPUbrev i32:$src0))]
+>;
+def S_BREV_B64 : SOP1_64 <0x0000000c, "S_BREV_B64", []>;
+} // End neverHasSideEffects = 1
+
+////def S_BCNT0_I32_B32 : SOP1_BCNT0 <0x0000000d, "S_BCNT0_I32_B32", []>;
+////def S_BCNT0_I32_B64 : SOP1_BCNT0 <0x0000000e, "S_BCNT0_I32_B64", []>;
+def S_BCNT1_I32_B32 : SOP1_32 <0x0000000f, "S_BCNT1_I32_B32",
+ [(set i32:$dst, (ctpop i32:$src0))]
+>;
+def S_BCNT1_I32_B64 : SOP1_32_64 <0x00000010, "S_BCNT1_I32_B64", []>;
+
+////def S_FF0_I32_B32 : SOP1_32 <0x00000011, "S_FF0_I32_B32", []>;
+////def S_FF0_I32_B64 : SOP1_FF0 <0x00000012, "S_FF0_I32_B64", []>;
+def S_FF1_I32_B32 : SOP1_32 <0x00000013, "S_FF1_I32_B32",
+ [(set i32:$dst, (cttz_zero_undef i32:$src0))]
+>;
+////def S_FF1_I32_B64 : SOP1_FF1 <0x00000014, "S_FF1_I32_B64", []>;
+
+def S_FLBIT_I32_B32 : SOP1_32 <0x00000015, "S_FLBIT_I32_B32",
+ [(set i32:$dst, (ctlz_zero_undef i32:$src0))]
+>;
+
+//def S_FLBIT_I32_B64 : SOP1_32 <0x00000016, "S_FLBIT_I32_B64", []>;
+def S_FLBIT_I32 : SOP1_32 <0x00000017, "S_FLBIT_I32", []>;
+//def S_FLBIT_I32_I64 : SOP1_32 <0x00000018, "S_FLBIT_I32_I64", []>;
+def S_SEXT_I32_I8 : SOP1_32 <0x00000019, "S_SEXT_I32_I8",
+ [(set i32:$dst, (sext_inreg i32:$src0, i8))]
+>;
+def S_SEXT_I32_I16 : SOP1_32 <0x0000001a, "S_SEXT_I32_I16",
+ [(set i32:$dst, (sext_inreg i32:$src0, i16))]
+>;
+
+////def S_BITSET0_B32 : SOP1_BITSET0 <0x0000001b, "S_BITSET0_B32", []>;
+////def S_BITSET0_B64 : SOP1_BITSET0 <0x0000001c, "S_BITSET0_B64", []>;
+////def S_BITSET1_B32 : SOP1_BITSET1 <0x0000001d, "S_BITSET1_B32", []>;
+////def S_BITSET1_B64 : SOP1_BITSET1 <0x0000001e, "S_BITSET1_B64", []>;
+def S_GETPC_B64 : SOP1 <
+ 0x0000001f, (outs SReg_64:$dst), (ins), "S_GETPC_B64 $dst", []
+> {
+ let SSRC0 = 0;
+}
+def S_SETPC_B64 : SOP1_64 <0x00000020, "S_SETPC_B64", []>;
+def S_SWAPPC_B64 : SOP1_64 <0x00000021, "S_SWAPPC_B64", []>;
+def S_RFE_B64 : SOP1_64 <0x00000022, "S_RFE_B64", []>;
+
+let hasSideEffects = 1, Uses = [EXEC], Defs = [EXEC] in {
+
+def S_AND_SAVEEXEC_B64 : SOP1_64 <0x00000024, "S_AND_SAVEEXEC_B64", []>;
+def S_OR_SAVEEXEC_B64 : SOP1_64 <0x00000025, "S_OR_SAVEEXEC_B64", []>;
+def S_XOR_SAVEEXEC_B64 : SOP1_64 <0x00000026, "S_XOR_SAVEEXEC_B64", []>;
+def S_ANDN2_SAVEEXEC_B64 : SOP1_64 <0x00000027, "S_ANDN2_SAVEEXEC_B64", []>;
+def S_ORN2_SAVEEXEC_B64 : SOP1_64 <0x00000028, "S_ORN2_SAVEEXEC_B64", []>;
+def S_NAND_SAVEEXEC_B64 : SOP1_64 <0x00000029, "S_NAND_SAVEEXEC_B64", []>;
+def S_NOR_SAVEEXEC_B64 : SOP1_64 <0x0000002a, "S_NOR_SAVEEXEC_B64", []>;
+def S_XNOR_SAVEEXEC_B64 : SOP1_64 <0x0000002b, "S_XNOR_SAVEEXEC_B64", []>;
+
+} // End hasSideEffects = 1
+
+def S_QUADMASK_B32 : SOP1_32 <0x0000002c, "S_QUADMASK_B32", []>;
+def S_QUADMASK_B64 : SOP1_64 <0x0000002d, "S_QUADMASK_B64", []>;
+def S_MOVRELS_B32 : SOP1_32 <0x0000002e, "S_MOVRELS_B32", []>;
+def S_MOVRELS_B64 : SOP1_64 <0x0000002f, "S_MOVRELS_B64", []>;
+def S_MOVRELD_B32 : SOP1_32 <0x00000030, "S_MOVRELD_B32", []>;
+def S_MOVRELD_B64 : SOP1_64 <0x00000031, "S_MOVRELD_B64", []>;
+//def S_CBRANCH_JOIN : SOP1_ <0x00000032, "S_CBRANCH_JOIN", []>;
+def S_MOV_REGRD_B32 : SOP1_32 <0x00000033, "S_MOV_REGRD_B32", []>;
+def S_ABS_I32 : SOP1_32 <0x00000034, "S_ABS_I32", []>;
+def S_MOV_FED_B32 : SOP1_32 <0x00000035, "S_MOV_FED_B32", []>;
+
+//===----------------------------------------------------------------------===//
+// SOP2 Instructions
+//===----------------------------------------------------------------------===//
+
+let Defs = [SCC] in { // Carry out goes to SCC
+let isCommutable = 1 in {
+def S_ADD_U32 : SOP2_32 <0x00000000, "S_ADD_U32", []>;
+def S_ADD_I32 : SOP2_32 <0x00000002, "S_ADD_I32",
+ [(set i32:$dst, (add SSrc_32:$src0, SSrc_32:$src1))]
+>;
+} // End isCommutable = 1
+
+def S_SUB_U32 : SOP2_32 <0x00000001, "S_SUB_U32", []>;
+def S_SUB_I32 : SOP2_32 <0x00000003, "S_SUB_I32",
+ [(set i32:$dst, (sub SSrc_32:$src0, SSrc_32:$src1))]
+>;
+
+let Uses = [SCC] in { // Carry in comes from SCC
+let isCommutable = 1 in {
+def S_ADDC_U32 : SOP2_32 <0x00000004, "S_ADDC_U32",
+ [(set i32:$dst, (adde (i32 SSrc_32:$src0), (i32 SSrc_32:$src1)))]>;
+} // End isCommutable = 1
+
+def S_SUBB_U32 : SOP2_32 <0x00000005, "S_SUBB_U32",
+ [(set i32:$dst, (sube (i32 SSrc_32:$src0), (i32 SSrc_32:$src1)))]>;
+} // End Uses = [SCC]
+} // End Defs = [SCC]
+
+def S_MIN_I32 : SOP2_32 <0x00000006, "S_MIN_I32",
+ [(set i32:$dst, (AMDGPUsmin i32:$src0, i32:$src1))]
+>;
+def S_MIN_U32 : SOP2_32 <0x00000007, "S_MIN_U32",
+ [(set i32:$dst, (AMDGPUumin i32:$src0, i32:$src1))]
+>;
+def S_MAX_I32 : SOP2_32 <0x00000008, "S_MAX_I32",
+ [(set i32:$dst, (AMDGPUsmax i32:$src0, i32:$src1))]
+>;
+def S_MAX_U32 : SOP2_32 <0x00000009, "S_MAX_U32",
+ [(set i32:$dst, (AMDGPUumax i32:$src0, i32:$src1))]
+>;
+
+def S_CSELECT_B32 : SOP2 <
+ 0x0000000a, (outs SReg_32:$dst),
+ (ins SReg_32:$src0, SReg_32:$src1, SCCReg:$scc), "S_CSELECT_B32",
+ []
+>;
+
+def S_CSELECT_B64 : SOP2_64 <0x0000000b, "S_CSELECT_B64", []>;
+
+def S_AND_B32 : SOP2_32 <0x0000000e, "S_AND_B32",
+ [(set i32:$dst, (and i32:$src0, i32:$src1))]
+>;
+
+def S_AND_B64 : SOP2_64 <0x0000000f, "S_AND_B64",
+ [(set i64:$dst, (and i64:$src0, i64:$src1))]
+>;
+
+def S_OR_B32 : SOP2_32 <0x00000010, "S_OR_B32",
+ [(set i32:$dst, (or i32:$src0, i32:$src1))]
+>;
+
+def S_OR_B64 : SOP2_64 <0x00000011, "S_OR_B64",
+ [(set i64:$dst, (or i64:$src0, i64:$src1))]
+>;
+
+def S_XOR_B32 : SOP2_32 <0x00000012, "S_XOR_B32",
+ [(set i32:$dst, (xor i32:$src0, i32:$src1))]
+>;
+
+def S_XOR_B64 : SOP2_64 <0x00000013, "S_XOR_B64",
+ [(set i64:$dst, (xor i64:$src0, i64:$src1))]
+>;
+def S_ANDN2_B32 : SOP2_32 <0x00000014, "S_ANDN2_B32", []>;
+def S_ANDN2_B64 : SOP2_64 <0x00000015, "S_ANDN2_B64", []>;
+def S_ORN2_B32 : SOP2_32 <0x00000016, "S_ORN2_B32", []>;
+def S_ORN2_B64 : SOP2_64 <0x00000017, "S_ORN2_B64", []>;
+def S_NAND_B32 : SOP2_32 <0x00000018, "S_NAND_B32", []>;
+def S_NAND_B64 : SOP2_64 <0x00000019, "S_NAND_B64", []>;
+def S_NOR_B32 : SOP2_32 <0x0000001a, "S_NOR_B32", []>;
+def S_NOR_B64 : SOP2_64 <0x0000001b, "S_NOR_B64", []>;
+def S_XNOR_B32 : SOP2_32 <0x0000001c, "S_XNOR_B32", []>;
+def S_XNOR_B64 : SOP2_64 <0x0000001d, "S_XNOR_B64", []>;
+
+// Use added complexity so these patterns are preferred to the VALU patterns.
+let AddedComplexity = 1 in {
+
+def S_LSHL_B32 : SOP2_32 <0x0000001e, "S_LSHL_B32",
+ [(set i32:$dst, (shl i32:$src0, i32:$src1))]
+>;
+def S_LSHL_B64 : SOP2_SHIFT_64 <0x0000001f, "S_LSHL_B64",
+ [(set i64:$dst, (shl i64:$src0, i32:$src1))]
+>;
+def S_LSHR_B32 : SOP2_32 <0x00000020, "S_LSHR_B32",
+ [(set i32:$dst, (srl i32:$src0, i32:$src1))]
+>;
+def S_LSHR_B64 : SOP2_SHIFT_64 <0x00000021, "S_LSHR_B64",
+ [(set i64:$dst, (srl i64:$src0, i32:$src1))]
+>;
+def S_ASHR_I32 : SOP2_32 <0x00000022, "S_ASHR_I32",
+ [(set i32:$dst, (sra i32:$src0, i32:$src1))]
+>;
+def S_ASHR_I64 : SOP2_SHIFT_64 <0x00000023, "S_ASHR_I64",
+ [(set i64:$dst, (sra i64:$src0, i32:$src1))]
+>;
+
+} // End AddedComplexity = 1
+
+def S_BFM_B32 : SOP2_32 <0x00000024, "S_BFM_B32", []>;
+def S_BFM_B64 : SOP2_64 <0x00000025, "S_BFM_B64", []>;
+def S_MUL_I32 : SOP2_32 <0x00000026, "S_MUL_I32", []>;
+def S_BFE_U32 : SOP2_32 <0x00000027, "S_BFE_U32", []>;
+def S_BFE_I32 : SOP2_32 <0x00000028, "S_BFE_I32", []>;
+def S_BFE_U64 : SOP2_64 <0x00000029, "S_BFE_U64", []>;
+def S_BFE_I64 : SOP2_64 <0x0000002a, "S_BFE_I64", []>;
+//def S_CBRANCH_G_FORK : SOP2_ <0x0000002b, "S_CBRANCH_G_FORK", []>;
+def S_ABSDIFF_I32 : SOP2_32 <0x0000002c, "S_ABSDIFF_I32", []>;
+
+//===----------------------------------------------------------------------===//
+// SOPC Instructions
+//===----------------------------------------------------------------------===//
+
+def S_CMP_EQ_I32 : SOPC_32 <0x00000000, "S_CMP_EQ_I32">;
+def S_CMP_LG_I32 : SOPC_32 <0x00000001, "S_CMP_LG_I32">;
+def S_CMP_GT_I32 : SOPC_32 <0x00000002, "S_CMP_GT_I32">;
+def S_CMP_GE_I32 : SOPC_32 <0x00000003, "S_CMP_GE_I32">;
+def S_CMP_LT_I32 : SOPC_32 <0x00000004, "S_CMP_LT_I32">;
+def S_CMP_LE_I32 : SOPC_32 <0x00000005, "S_CMP_LE_I32">;
+def S_CMP_EQ_U32 : SOPC_32 <0x00000006, "S_CMP_EQ_U32">;
+def S_CMP_LG_U32 : SOPC_32 <0x00000007, "S_CMP_LG_U32">;
+def S_CMP_GT_U32 : SOPC_32 <0x00000008, "S_CMP_GT_U32">;
+def S_CMP_GE_U32 : SOPC_32 <0x00000009, "S_CMP_GE_U32">;
+def S_CMP_LT_U32 : SOPC_32 <0x0000000a, "S_CMP_LT_U32">;
+def S_CMP_LE_U32 : SOPC_32 <0x0000000b, "S_CMP_LE_U32">;
+////def S_BITCMP0_B32 : SOPC_BITCMP0 <0x0000000c, "S_BITCMP0_B32", []>;
+////def S_BITCMP1_B32 : SOPC_BITCMP1 <0x0000000d, "S_BITCMP1_B32", []>;
+////def S_BITCMP0_B64 : SOPC_BITCMP0 <0x0000000e, "S_BITCMP0_B64", []>;
+////def S_BITCMP1_B64 : SOPC_BITCMP1 <0x0000000f, "S_BITCMP1_B64", []>;
+//def S_SETVSKIP : SOPC_ <0x00000010, "S_SETVSKIP", []>;
+
+//===----------------------------------------------------------------------===//
+// SOPK Instructions
+//===----------------------------------------------------------------------===//
+
+def S_MOVK_I32 : SOPK_32 <0x00000000, "S_MOVK_I32", []>;
+def S_CMOVK_I32 : SOPK_32 <0x00000002, "S_CMOVK_I32", []>;
+
+/*
+This instruction is disabled for now until we can figure out how to teach
+the instruction selector to correctly use the S_CMP* vs V_CMP*
+instructions.
+
+When this instruction is enabled the code generator sometimes produces this
+invalid sequence:
+
+SCC = S_CMPK_EQ_I32 SGPR0, imm
+VCC = COPY SCC
+VGPR0 = V_CNDMASK VCC, VGPR0, VGPR1
+
+def S_CMPK_EQ_I32 : SOPK <
+ 0x00000003, (outs SCCReg:$dst), (ins SReg_32:$src0, i32imm:$src1),
+ "S_CMPK_EQ_I32",
+ [(set i1:$dst, (setcc i32:$src0, imm:$src1, SETEQ))]
+>;
+*/
+
+let isCompare = 1, Defs = [SCC] in {
+def S_CMPK_LG_I32 : SOPK_32 <0x00000004, "S_CMPK_LG_I32", []>;
+def S_CMPK_GT_I32 : SOPK_32 <0x00000005, "S_CMPK_GT_I32", []>;
+def S_CMPK_GE_I32 : SOPK_32 <0x00000006, "S_CMPK_GE_I32", []>;
+def S_CMPK_LT_I32 : SOPK_32 <0x00000007, "S_CMPK_LT_I32", []>;
+def S_CMPK_LE_I32 : SOPK_32 <0x00000008, "S_CMPK_LE_I32", []>;
+def S_CMPK_EQ_U32 : SOPK_32 <0x00000009, "S_CMPK_EQ_U32", []>;
+def S_CMPK_LG_U32 : SOPK_32 <0x0000000a, "S_CMPK_LG_U32", []>;
+def S_CMPK_GT_U32 : SOPK_32 <0x0000000b, "S_CMPK_GT_U32", []>;
+def S_CMPK_GE_U32 : SOPK_32 <0x0000000c, "S_CMPK_GE_U32", []>;
+def S_CMPK_LT_U32 : SOPK_32 <0x0000000d, "S_CMPK_LT_U32", []>;
+def S_CMPK_LE_U32 : SOPK_32 <0x0000000e, "S_CMPK_LE_U32", []>;
+} // End isCompare = 1, Defs = [SCC]
+
+let Defs = [SCC], isCommutable = 1 in {
+ def S_ADDK_I32 : SOPK_32 <0x0000000f, "S_ADDK_I32", []>;
+ def S_MULK_I32 : SOPK_32 <0x00000010, "S_MULK_I32", []>;
+}
+
+//def S_CBRANCH_I_FORK : SOPK_ <0x00000011, "S_CBRANCH_I_FORK", []>;
+def S_GETREG_B32 : SOPK_32 <0x00000012, "S_GETREG_B32", []>;
+def S_SETREG_B32 : SOPK_32 <0x00000013, "S_SETREG_B32", []>;
+def S_GETREG_REGRD_B32 : SOPK_32 <0x00000014, "S_GETREG_REGRD_B32", []>;
+//def S_SETREG_IMM32_B32 : SOPK_32 <0x00000015, "S_SETREG_IMM32_B32", []>;
+//def EXP : EXP_ <0x00000000, "EXP", []>;
+
+} // End let OtherPredicates = [isCFDepth0]
+
+//===----------------------------------------------------------------------===//
+// SOPP Instructions
+//===----------------------------------------------------------------------===//
+
+def S_NOP : SOPP <0x00000000, (ins i16imm:$simm16), "S_NOP $simm16", []>;
+
+let isTerminator = 1 in {
+
+def S_ENDPGM : SOPP <0x00000001, (ins), "S_ENDPGM",
+ [(IL_retflag)]> {
+ let simm16 = 0;
+ let isBarrier = 1;
+ let hasCtrlDep = 1;
+}
+
+let isBranch = 1 in {
+def S_BRANCH : SOPP <
+ 0x00000002, (ins sopp_brtarget:$simm16), "S_BRANCH $simm16",
+ [(br bb:$simm16)]> {
+ let isBarrier = 1;
+}
+
+let DisableEncoding = "$scc" in {
+def S_CBRANCH_SCC0 : SOPP <
+ 0x00000004, (ins sopp_brtarget:$simm16, SCCReg:$scc),
+ "S_CBRANCH_SCC0 $simm16", []
+>;
+def S_CBRANCH_SCC1 : SOPP <
+ 0x00000005, (ins sopp_brtarget:$simm16, SCCReg:$scc),
+ "S_CBRANCH_SCC1 $simm16",
+ []
+>;
+} // End DisableEncoding = "$scc"
+
+def S_CBRANCH_VCCZ : SOPP <
+ 0x00000006, (ins sopp_brtarget:$simm16, VCCReg:$vcc),
+ "S_CBRANCH_VCCZ $simm16",
+ []
+>;
+def S_CBRANCH_VCCNZ : SOPP <
+ 0x00000007, (ins sopp_brtarget:$simm16, VCCReg:$vcc),
+ "S_CBRANCH_VCCNZ $simm16",
+ []
+>;
+
+let DisableEncoding = "$exec" in {
+def S_CBRANCH_EXECZ : SOPP <
+ 0x00000008, (ins sopp_brtarget:$simm16, EXECReg:$exec),
+ "S_CBRANCH_EXECZ $simm16",
+ []
+>;
+def S_CBRANCH_EXECNZ : SOPP <
+ 0x00000009, (ins sopp_brtarget:$simm16, EXECReg:$exec),
+ "S_CBRANCH_EXECNZ $simm16",
+ []
+>;
+} // End DisableEncoding = "$exec"
+
+
+} // End isBranch = 1
+} // End isTerminator = 1
+
+let hasSideEffects = 1 in {
+def S_BARRIER : SOPP <0x0000000a, (ins), "S_BARRIER",
+ [(int_AMDGPU_barrier_local)]
+> {
+ let simm16 = 0;
+ let isBarrier = 1;
+ let hasCtrlDep = 1;
+ let mayLoad = 1;
+ let mayStore = 1;
+}
+
+def S_WAITCNT : SOPP <0x0000000c, (ins WAIT_FLAG:$simm16), "S_WAITCNT $simm16",
+ []
+>;
+//def S_SETHALT : SOPP_ <0x0000000d, "S_SETHALT", []>;
+//def S_SLEEP : SOPP_ <0x0000000e, "S_SLEEP", []>;
+//def S_SETPRIO : SOPP_ <0x0000000f, "S_SETPRIO", []>;
+
+let Uses = [EXEC] in {
+ def S_SENDMSG : SOPP <0x00000010, (ins SendMsgImm:$simm16, M0Reg:$m0), "S_SENDMSG $simm16",
+ [(int_SI_sendmsg imm:$simm16, M0Reg:$m0)]
+ > {
+ let DisableEncoding = "$m0";
+ }
+} // End Uses = [EXEC]
+
+//def S_SENDMSGHALT : SOPP_ <0x00000011, "S_SENDMSGHALT", []>;
+//def S_TRAP : SOPP_ <0x00000012, "S_TRAP", []>;
+//def S_ICACHE_INV : SOPP_ <0x00000013, "S_ICACHE_INV", []>;
+//def S_INCPERFLEVEL : SOPP_ <0x00000014, "S_INCPERFLEVEL", []>;
+//def S_DECPERFLEVEL : SOPP_ <0x00000015, "S_DECPERFLEVEL", []>;
+//def S_TTRACEDATA : SOPP_ <0x00000016, "S_TTRACEDATA", []>;
+} // End hasSideEffects
+
+//===----------------------------------------------------------------------===//
+// VOPC Instructions
+//===----------------------------------------------------------------------===//
+
+let isCompare = 1 in {
+
+defm V_CMP_F_F32 : VOPC_32 <0x00000000, "V_CMP_F_F32">;
+defm V_CMP_LT_F32 : VOPC_32 <0x00000001, "V_CMP_LT_F32", f32, COND_OLT>;
+defm V_CMP_EQ_F32 : VOPC_32 <0x00000002, "V_CMP_EQ_F32", f32, COND_OEQ>;
+defm V_CMP_LE_F32 : VOPC_32 <0x00000003, "V_CMP_LE_F32", f32, COND_OLE>;
+defm V_CMP_GT_F32 : VOPC_32 <0x00000004, "V_CMP_GT_F32", f32, COND_OGT>;
+defm V_CMP_LG_F32 : VOPC_32 <0x00000005, "V_CMP_LG_F32">;
+defm V_CMP_GE_F32 : VOPC_32 <0x00000006, "V_CMP_GE_F32", f32, COND_OGE>;
+defm V_CMP_O_F32 : VOPC_32 <0x00000007, "V_CMP_O_F32", f32, COND_O>;
+defm V_CMP_U_F32 : VOPC_32 <0x00000008, "V_CMP_U_F32", f32, COND_UO>;
+defm V_CMP_NGE_F32 : VOPC_32 <0x00000009, "V_CMP_NGE_F32">;
+defm V_CMP_NLG_F32 : VOPC_32 <0x0000000a, "V_CMP_NLG_F32">;
+defm V_CMP_NGT_F32 : VOPC_32 <0x0000000b, "V_CMP_NGT_F32">;
+defm V_CMP_NLE_F32 : VOPC_32 <0x0000000c, "V_CMP_NLE_F32">;
+defm V_CMP_NEQ_F32 : VOPC_32 <0x0000000d, "V_CMP_NEQ_F32", f32, COND_UNE>;
+defm V_CMP_NLT_F32 : VOPC_32 <0x0000000e, "V_CMP_NLT_F32">;
+defm V_CMP_TRU_F32 : VOPC_32 <0x0000000f, "V_CMP_TRU_F32">;
+
+let hasSideEffects = 1 in {
+
+defm V_CMPX_F_F32 : VOPCX_32 <0x00000010, "V_CMPX_F_F32">;
+defm V_CMPX_LT_F32 : VOPCX_32 <0x00000011, "V_CMPX_LT_F32">;
+defm V_CMPX_EQ_F32 : VOPCX_32 <0x00000012, "V_CMPX_EQ_F32">;
+defm V_CMPX_LE_F32 : VOPCX_32 <0x00000013, "V_CMPX_LE_F32">;
+defm V_CMPX_GT_F32 : VOPCX_32 <0x00000014, "V_CMPX_GT_F32">;
+defm V_CMPX_LG_F32 : VOPCX_32 <0x00000015, "V_CMPX_LG_F32">;
+defm V_CMPX_GE_F32 : VOPCX_32 <0x00000016, "V_CMPX_GE_F32">;
+defm V_CMPX_O_F32 : VOPCX_32 <0x00000017, "V_CMPX_O_F32">;
+defm V_CMPX_U_F32 : VOPCX_32 <0x00000018, "V_CMPX_U_F32">;
+defm V_CMPX_NGE_F32 : VOPCX_32 <0x00000019, "V_CMPX_NGE_F32">;
+defm V_CMPX_NLG_F32 : VOPCX_32 <0x0000001a, "V_CMPX_NLG_F32">;
+defm V_CMPX_NGT_F32 : VOPCX_32 <0x0000001b, "V_CMPX_NGT_F32">;
+defm V_CMPX_NLE_F32 : VOPCX_32 <0x0000001c, "V_CMPX_NLE_F32">;
+defm V_CMPX_NEQ_F32 : VOPCX_32 <0x0000001d, "V_CMPX_NEQ_F32">;
+defm V_CMPX_NLT_F32 : VOPCX_32 <0x0000001e, "V_CMPX_NLT_F32">;
+defm V_CMPX_TRU_F32 : VOPCX_32 <0x0000001f, "V_CMPX_TRU_F32">;
+
+} // End hasSideEffects = 1
+
+defm V_CMP_F_F64 : VOPC_64 <0x00000020, "V_CMP_F_F64">;
+defm V_CMP_LT_F64 : VOPC_64 <0x00000021, "V_CMP_LT_F64", f64, COND_OLT>;
+defm V_CMP_EQ_F64 : VOPC_64 <0x00000022, "V_CMP_EQ_F64", f64, COND_OEQ>;
+defm V_CMP_LE_F64 : VOPC_64 <0x00000023, "V_CMP_LE_F64", f64, COND_OLE>;
+defm V_CMP_GT_F64 : VOPC_64 <0x00000024, "V_CMP_GT_F64", f64, COND_OGT>;
+defm V_CMP_LG_F64 : VOPC_64 <0x00000025, "V_CMP_LG_F64">;
+defm V_CMP_GE_F64 : VOPC_64 <0x00000026, "V_CMP_GE_F64", f64, COND_OGE>;
+defm V_CMP_O_F64 : VOPC_64 <0x00000027, "V_CMP_O_F64", f64, COND_O>;
+defm V_CMP_U_F64 : VOPC_64 <0x00000028, "V_CMP_U_F64", f64, COND_UO>;
+defm V_CMP_NGE_F64 : VOPC_64 <0x00000029, "V_CMP_NGE_F64">;
+defm V_CMP_NLG_F64 : VOPC_64 <0x0000002a, "V_CMP_NLG_F64">;
+defm V_CMP_NGT_F64 : VOPC_64 <0x0000002b, "V_CMP_NGT_F64">;
+defm V_CMP_NLE_F64 : VOPC_64 <0x0000002c, "V_CMP_NLE_F64">;
+defm V_CMP_NEQ_F64 : VOPC_64 <0x0000002d, "V_CMP_NEQ_F64", f64, COND_UNE>;
+defm V_CMP_NLT_F64 : VOPC_64 <0x0000002e, "V_CMP_NLT_F64">;
+defm V_CMP_TRU_F64 : VOPC_64 <0x0000002f, "V_CMP_TRU_F64">;
+
+let hasSideEffects = 1 in {
+
+defm V_CMPX_F_F64 : VOPCX_64 <0x00000030, "V_CMPX_F_F64">;
+defm V_CMPX_LT_F64 : VOPCX_64 <0x00000031, "V_CMPX_LT_F64">;
+defm V_CMPX_EQ_F64 : VOPCX_64 <0x00000032, "V_CMPX_EQ_F64">;
+defm V_CMPX_LE_F64 : VOPCX_64 <0x00000033, "V_CMPX_LE_F64">;
+defm V_CMPX_GT_F64 : VOPCX_64 <0x00000034, "V_CMPX_GT_F64">;
+defm V_CMPX_LG_F64 : VOPCX_64 <0x00000035, "V_CMPX_LG_F64">;
+defm V_CMPX_GE_F64 : VOPCX_64 <0x00000036, "V_CMPX_GE_F64">;
+defm V_CMPX_O_F64 : VOPCX_64 <0x00000037, "V_CMPX_O_F64">;
+defm V_CMPX_U_F64 : VOPCX_64 <0x00000038, "V_CMPX_U_F64">;
+defm V_CMPX_NGE_F64 : VOPCX_64 <0x00000039, "V_CMPX_NGE_F64">;
+defm V_CMPX_NLG_F64 : VOPCX_64 <0x0000003a, "V_CMPX_NLG_F64">;
+defm V_CMPX_NGT_F64 : VOPCX_64 <0x0000003b, "V_CMPX_NGT_F64">;
+defm V_CMPX_NLE_F64 : VOPCX_64 <0x0000003c, "V_CMPX_NLE_F64">;
+defm V_CMPX_NEQ_F64 : VOPCX_64 <0x0000003d, "V_CMPX_NEQ_F64">;
+defm V_CMPX_NLT_F64 : VOPCX_64 <0x0000003e, "V_CMPX_NLT_F64">;
+defm V_CMPX_TRU_F64 : VOPCX_64 <0x0000003f, "V_CMPX_TRU_F64">;
+
+} // End hasSideEffects = 1
+
+defm V_CMPS_F_F32 : VOPC_32 <0x00000040, "V_CMPS_F_F32">;
+defm V_CMPS_LT_F32 : VOPC_32 <0x00000041, "V_CMPS_LT_F32">;
+defm V_CMPS_EQ_F32 : VOPC_32 <0x00000042, "V_CMPS_EQ_F32">;
+defm V_CMPS_LE_F32 : VOPC_32 <0x00000043, "V_CMPS_LE_F32">;
+defm V_CMPS_GT_F32 : VOPC_32 <0x00000044, "V_CMPS_GT_F32">;
+defm V_CMPS_LG_F32 : VOPC_32 <0x00000045, "V_CMPS_LG_F32">;
+defm V_CMPS_GE_F32 : VOPC_32 <0x00000046, "V_CMPS_GE_F32">;
+defm V_CMPS_O_F32 : VOPC_32 <0x00000047, "V_CMPS_O_F32">;
+defm V_CMPS_U_F32 : VOPC_32 <0x00000048, "V_CMPS_U_F32">;
+defm V_CMPS_NGE_F32 : VOPC_32 <0x00000049, "V_CMPS_NGE_F32">;
+defm V_CMPS_NLG_F32 : VOPC_32 <0x0000004a, "V_CMPS_NLG_F32">;
+defm V_CMPS_NGT_F32 : VOPC_32 <0x0000004b, "V_CMPS_NGT_F32">;
+defm V_CMPS_NLE_F32 : VOPC_32 <0x0000004c, "V_CMPS_NLE_F32">;
+defm V_CMPS_NEQ_F32 : VOPC_32 <0x0000004d, "V_CMPS_NEQ_F32">;
+defm V_CMPS_NLT_F32 : VOPC_32 <0x0000004e, "V_CMPS_NLT_F32">;
+defm V_CMPS_TRU_F32 : VOPC_32 <0x0000004f, "V_CMPS_TRU_F32">;
+
+let hasSideEffects = 1 in {
+
+defm V_CMPSX_F_F32 : VOPCX_32 <0x00000050, "V_CMPSX_F_F32">;
+defm V_CMPSX_LT_F32 : VOPCX_32 <0x00000051, "V_CMPSX_LT_F32">;
+defm V_CMPSX_EQ_F32 : VOPCX_32 <0x00000052, "V_CMPSX_EQ_F32">;
+defm V_CMPSX_LE_F32 : VOPCX_32 <0x00000053, "V_CMPSX_LE_F32">;
+defm V_CMPSX_GT_F32 : VOPCX_32 <0x00000054, "V_CMPSX_GT_F32">;
+defm V_CMPSX_LG_F32 : VOPCX_32 <0x00000055, "V_CMPSX_LG_F32">;
+defm V_CMPSX_GE_F32 : VOPCX_32 <0x00000056, "V_CMPSX_GE_F32">;
+defm V_CMPSX_O_F32 : VOPCX_32 <0x00000057, "V_CMPSX_O_F32">;
+defm V_CMPSX_U_F32 : VOPCX_32 <0x00000058, "V_CMPSX_U_F32">;
+defm V_CMPSX_NGE_F32 : VOPCX_32 <0x00000059, "V_CMPSX_NGE_F32">;
+defm V_CMPSX_NLG_F32 : VOPCX_32 <0x0000005a, "V_CMPSX_NLG_F32">;
+defm V_CMPSX_NGT_F32 : VOPCX_32 <0x0000005b, "V_CMPSX_NGT_F32">;
+defm V_CMPSX_NLE_F32 : VOPCX_32 <0x0000005c, "V_CMPSX_NLE_F32">;
+defm V_CMPSX_NEQ_F32 : VOPCX_32 <0x0000005d, "V_CMPSX_NEQ_F32">;
+defm V_CMPSX_NLT_F32 : VOPCX_32 <0x0000005e, "V_CMPSX_NLT_F32">;
+defm V_CMPSX_TRU_F32 : VOPCX_32 <0x0000005f, "V_CMPSX_TRU_F32">;
+
+} // End hasSideEffects = 1
+
+defm V_CMPS_F_F64 : VOPC_64 <0x00000060, "V_CMPS_F_F64">;
+defm V_CMPS_LT_F64 : VOPC_64 <0x00000061, "V_CMPS_LT_F64">;
+defm V_CMPS_EQ_F64 : VOPC_64 <0x00000062, "V_CMPS_EQ_F64">;
+defm V_CMPS_LE_F64 : VOPC_64 <0x00000063, "V_CMPS_LE_F64">;
+defm V_CMPS_GT_F64 : VOPC_64 <0x00000064, "V_CMPS_GT_F64">;
+defm V_CMPS_LG_F64 : VOPC_64 <0x00000065, "V_CMPS_LG_F64">;
+defm V_CMPS_GE_F64 : VOPC_64 <0x00000066, "V_CMPS_GE_F64">;
+defm V_CMPS_O_F64 : VOPC_64 <0x00000067, "V_CMPS_O_F64">;
+defm V_CMPS_U_F64 : VOPC_64 <0x00000068, "V_CMPS_U_F64">;
+defm V_CMPS_NGE_F64 : VOPC_64 <0x00000069, "V_CMPS_NGE_F64">;
+defm V_CMPS_NLG_F64 : VOPC_64 <0x0000006a, "V_CMPS_NLG_F64">;
+defm V_CMPS_NGT_F64 : VOPC_64 <0x0000006b, "V_CMPS_NGT_F64">;
+defm V_CMPS_NLE_F64 : VOPC_64 <0x0000006c, "V_CMPS_NLE_F64">;
+defm V_CMPS_NEQ_F64 : VOPC_64 <0x0000006d, "V_CMPS_NEQ_F64">;
+defm V_CMPS_NLT_F64 : VOPC_64 <0x0000006e, "V_CMPS_NLT_F64">;
+defm V_CMPS_TRU_F64 : VOPC_64 <0x0000006f, "V_CMPS_TRU_F64">;
+
+let hasSideEffects = 1, Defs = [EXEC] in {
+
+defm V_CMPSX_F_F64 : VOPC_64 <0x00000070, "V_CMPSX_F_F64">;
+defm V_CMPSX_LT_F64 : VOPC_64 <0x00000071, "V_CMPSX_LT_F64">;
+defm V_CMPSX_EQ_F64 : VOPC_64 <0x00000072, "V_CMPSX_EQ_F64">;
+defm V_CMPSX_LE_F64 : VOPC_64 <0x00000073, "V_CMPSX_LE_F64">;
+defm V_CMPSX_GT_F64 : VOPC_64 <0x00000074, "V_CMPSX_GT_F64">;
+defm V_CMPSX_LG_F64 : VOPC_64 <0x00000075, "V_CMPSX_LG_F64">;
+defm V_CMPSX_GE_F64 : VOPC_64 <0x00000076, "V_CMPSX_GE_F64">;
+defm V_CMPSX_O_F64 : VOPC_64 <0x00000077, "V_CMPSX_O_F64">;
+defm V_CMPSX_U_F64 : VOPC_64 <0x00000078, "V_CMPSX_U_F64">;
+defm V_CMPSX_NGE_F64 : VOPC_64 <0x00000079, "V_CMPSX_NGE_F64">;
+defm V_CMPSX_NLG_F64 : VOPC_64 <0x0000007a, "V_CMPSX_NLG_F64">;
+defm V_CMPSX_NGT_F64 : VOPC_64 <0x0000007b, "V_CMPSX_NGT_F64">;
+defm V_CMPSX_NLE_F64 : VOPC_64 <0x0000007c, "V_CMPSX_NLE_F64">;
+defm V_CMPSX_NEQ_F64 : VOPC_64 <0x0000007d, "V_CMPSX_NEQ_F64">;
+defm V_CMPSX_NLT_F64 : VOPC_64 <0x0000007e, "V_CMPSX_NLT_F64">;
+defm V_CMPSX_TRU_F64 : VOPC_64 <0x0000007f, "V_CMPSX_TRU_F64">;
+
+} // End hasSideEffects = 1, Defs = [EXEC]
+
+defm V_CMP_F_I32 : VOPC_32 <0x00000080, "V_CMP_F_I32">;
+defm V_CMP_LT_I32 : VOPC_32 <0x00000081, "V_CMP_LT_I32", i32, COND_SLT>;
+defm V_CMP_EQ_I32 : VOPC_32 <0x00000082, "V_CMP_EQ_I32", i32, COND_EQ>;
+defm V_CMP_LE_I32 : VOPC_32 <0x00000083, "V_CMP_LE_I32", i32, COND_SLE>;
+defm V_CMP_GT_I32 : VOPC_32 <0x00000084, "V_CMP_GT_I32", i32, COND_SGT>;
+defm V_CMP_NE_I32 : VOPC_32 <0x00000085, "V_CMP_NE_I32", i32, COND_NE>;
+defm V_CMP_GE_I32 : VOPC_32 <0x00000086, "V_CMP_GE_I32", i32, COND_SGE>;
+defm V_CMP_T_I32 : VOPC_32 <0x00000087, "V_CMP_T_I32">;
+
+let hasSideEffects = 1 in {
+
+defm V_CMPX_F_I32 : VOPCX_32 <0x00000090, "V_CMPX_F_I32">;
+defm V_CMPX_LT_I32 : VOPCX_32 <0x00000091, "V_CMPX_LT_I32">;
+defm V_CMPX_EQ_I32 : VOPCX_32 <0x00000092, "V_CMPX_EQ_I32">;
+defm V_CMPX_LE_I32 : VOPCX_32 <0x00000093, "V_CMPX_LE_I32">;
+defm V_CMPX_GT_I32 : VOPCX_32 <0x00000094, "V_CMPX_GT_I32">;
+defm V_CMPX_NE_I32 : VOPCX_32 <0x00000095, "V_CMPX_NE_I32">;
+defm V_CMPX_GE_I32 : VOPCX_32 <0x00000096, "V_CMPX_GE_I32">;
+defm V_CMPX_T_I32 : VOPCX_32 <0x00000097, "V_CMPX_T_I32">;
+
+} // End hasSideEffects = 1
+
+defm V_CMP_F_I64 : VOPC_64 <0x000000a0, "V_CMP_F_I64">;
+defm V_CMP_LT_I64 : VOPC_64 <0x000000a1, "V_CMP_LT_I64", i64, COND_SLT>;
+defm V_CMP_EQ_I64 : VOPC_64 <0x000000a2, "V_CMP_EQ_I64", i64, COND_EQ>;
+defm V_CMP_LE_I64 : VOPC_64 <0x000000a3, "V_CMP_LE_I64", i64, COND_SLE>;
+defm V_CMP_GT_I64 : VOPC_64 <0x000000a4, "V_CMP_GT_I64", i64, COND_SGT>;
+defm V_CMP_NE_I64 : VOPC_64 <0x000000a5, "V_CMP_NE_I64", i64, COND_NE>;
+defm V_CMP_GE_I64 : VOPC_64 <0x000000a6, "V_CMP_GE_I64", i64, COND_SGE>;
+defm V_CMP_T_I64 : VOPC_64 <0x000000a7, "V_CMP_T_I64">;
+
+let hasSideEffects = 1 in {
+
+defm V_CMPX_F_I64 : VOPCX_64 <0x000000b0, "V_CMPX_F_I64">;
+defm V_CMPX_LT_I64 : VOPCX_64 <0x000000b1, "V_CMPX_LT_I64">;
+defm V_CMPX_EQ_I64 : VOPCX_64 <0x000000b2, "V_CMPX_EQ_I64">;
+defm V_CMPX_LE_I64 : VOPCX_64 <0x000000b3, "V_CMPX_LE_I64">;
+defm V_CMPX_GT_I64 : VOPCX_64 <0x000000b4, "V_CMPX_GT_I64">;
+defm V_CMPX_NE_I64 : VOPCX_64 <0x000000b5, "V_CMPX_NE_I64">;
+defm V_CMPX_GE_I64 : VOPCX_64 <0x000000b6, "V_CMPX_GE_I64">;
+defm V_CMPX_T_I64 : VOPCX_64 <0x000000b7, "V_CMPX_T_I64">;
+
+} // End hasSideEffects = 1
+
+defm V_CMP_F_U32 : VOPC_32 <0x000000c0, "V_CMP_F_U32">;
+defm V_CMP_LT_U32 : VOPC_32 <0x000000c1, "V_CMP_LT_U32", i32, COND_ULT>;
+defm V_CMP_EQ_U32 : VOPC_32 <0x000000c2, "V_CMP_EQ_U32", i32, COND_EQ>;
+defm V_CMP_LE_U32 : VOPC_32 <0x000000c3, "V_CMP_LE_U32", i32, COND_ULE>;
+defm V_CMP_GT_U32 : VOPC_32 <0x000000c4, "V_CMP_GT_U32", i32, COND_UGT>;
+defm V_CMP_NE_U32 : VOPC_32 <0x000000c5, "V_CMP_NE_U32", i32, COND_NE>;
+defm V_CMP_GE_U32 : VOPC_32 <0x000000c6, "V_CMP_GE_U32", i32, COND_UGE>;
+defm V_CMP_T_U32 : VOPC_32 <0x000000c7, "V_CMP_T_U32">;
+
+let hasSideEffects = 1 in {
+
+defm V_CMPX_F_U32 : VOPCX_32 <0x000000d0, "V_CMPX_F_U32">;
+defm V_CMPX_LT_U32 : VOPCX_32 <0x000000d1, "V_CMPX_LT_U32">;
+defm V_CMPX_EQ_U32 : VOPCX_32 <0x000000d2, "V_CMPX_EQ_U32">;
+defm V_CMPX_LE_U32 : VOPCX_32 <0x000000d3, "V_CMPX_LE_U32">;
+defm V_CMPX_GT_U32 : VOPCX_32 <0x000000d4, "V_CMPX_GT_U32">;
+defm V_CMPX_NE_U32 : VOPCX_32 <0x000000d5, "V_CMPX_NE_U32">;
+defm V_CMPX_GE_U32 : VOPCX_32 <0x000000d6, "V_CMPX_GE_U32">;
+defm V_CMPX_T_U32 : VOPCX_32 <0x000000d7, "V_CMPX_T_U32">;
+
+} // End hasSideEffects = 1
+
+defm V_CMP_F_U64 : VOPC_64 <0x000000e0, "V_CMP_F_U64">;
+defm V_CMP_LT_U64 : VOPC_64 <0x000000e1, "V_CMP_LT_U64", i64, COND_ULT>;
+defm V_CMP_EQ_U64 : VOPC_64 <0x000000e2, "V_CMP_EQ_U64", i64, COND_EQ>;
+defm V_CMP_LE_U64 : VOPC_64 <0x000000e3, "V_CMP_LE_U64", i64, COND_ULE>;
+defm V_CMP_GT_U64 : VOPC_64 <0x000000e4, "V_CMP_GT_U64", i64, COND_UGT>;
+defm V_CMP_NE_U64 : VOPC_64 <0x000000e5, "V_CMP_NE_U64", i64, COND_NE>;
+defm V_CMP_GE_U64 : VOPC_64 <0x000000e6, "V_CMP_GE_U64", i64, COND_UGE>;
+defm V_CMP_T_U64 : VOPC_64 <0x000000e7, "V_CMP_T_U64">;
+
+let hasSideEffects = 1 in {
+
+defm V_CMPX_F_U64 : VOPCX_64 <0x000000f0, "V_CMPX_F_U64">;
+defm V_CMPX_LT_U64 : VOPCX_64 <0x000000f1, "V_CMPX_LT_U64">;
+defm V_CMPX_EQ_U64 : VOPCX_64 <0x000000f2, "V_CMPX_EQ_U64">;
+defm V_CMPX_LE_U64 : VOPCX_64 <0x000000f3, "V_CMPX_LE_U64">;
+defm V_CMPX_GT_U64 : VOPCX_64 <0x000000f4, "V_CMPX_GT_U64">;
+defm V_CMPX_NE_U64 : VOPCX_64 <0x000000f5, "V_CMPX_NE_U64">;
+defm V_CMPX_GE_U64 : VOPCX_64 <0x000000f6, "V_CMPX_GE_U64">;
+defm V_CMPX_T_U64 : VOPCX_64 <0x000000f7, "V_CMPX_T_U64">;
+
+} // End hasSideEffects = 1
+
+defm V_CMP_CLASS_F32 : VOPC_32 <0x00000088, "V_CMP_CLASS_F32">;
+
+let hasSideEffects = 1 in {
+defm V_CMPX_CLASS_F32 : VOPCX_32 <0x00000098, "V_CMPX_CLASS_F32">;
+} // End hasSideEffects = 1
+
+defm V_CMP_CLASS_F64 : VOPC_64 <0x000000a8, "V_CMP_CLASS_F64">;
+
+let hasSideEffects = 1 in {
+defm V_CMPX_CLASS_F64 : VOPCX_64 <0x000000b8, "V_CMPX_CLASS_F64">;
+} // End hasSideEffects = 1
+
+} // End isCompare = 1
+
+//===----------------------------------------------------------------------===//
+// DS Instructions
+//===----------------------------------------------------------------------===//
+
+
+def DS_ADD_U32 : DS_1A1D_NORET <0x0, "DS_ADD_U32", VReg_32>;
+def DS_SUB_U32 : DS_1A1D_NORET <0x1, "DS_SUB_U32", VReg_32>;
+def DS_RSUB_U32 : DS_1A1D_NORET <0x2, "DS_RSUB_U32", VReg_32>;
+def DS_INC_U32 : DS_1A1D_NORET <0x3, "DS_INC_U32", VReg_32>;
+def DS_DEC_U32 : DS_1A1D_NORET <0x4, "DS_DEC_U32", VReg_32>;
+def DS_MIN_I32 : DS_1A1D_NORET <0x5, "DS_MIN_I32", VReg_32>;
+def DS_MAX_I32 : DS_1A1D_NORET <0x6, "DS_MAX_I32", VReg_32>;
+def DS_MIN_U32 : DS_1A1D_NORET <0x7, "DS_MIN_U32", VReg_32>;
+def DS_MAX_U32 : DS_1A1D_NORET <0x8, "DS_MAX_U32", VReg_32>;
+def DS_AND_B32 : DS_1A1D_NORET <0x9, "DS_AND_B32", VReg_32>;
+def DS_OR_B32 : DS_1A1D_NORET <0xa, "DS_OR_B32", VReg_32>;
+def DS_XOR_B32 : DS_1A1D_NORET <0xb, "DS_XOR_B32", VReg_32>;
+def DS_MSKOR_B32 : DS_1A1D_NORET <0xc, "DS_MSKOR_B32", VReg_32>;
+def DS_CMPST_B32 : DS_1A2D_NORET <0x10, "DS_CMPST_B32", VReg_32>;
+def DS_CMPST_F32 : DS_1A2D_NORET <0x11, "DS_CMPST_F32", VReg_32>;
+def DS_MIN_F32 : DS_1A1D_NORET <0x12, "DS_MIN_F32", VReg_32>;
+def DS_MAX_F32 : DS_1A1D_NORET <0x13, "DS_MAX_F32", VReg_32>;
+
+def DS_ADD_RTN_U32 : DS_1A1D_RET <0x20, "DS_ADD_RTN_U32", VReg_32>;
+def DS_SUB_RTN_U32 : DS_1A1D_RET <0x21, "DS_SUB_RTN_U32", VReg_32>;
+def DS_RSUB_RTN_U32 : DS_1A1D_RET <0x22, "DS_RSUB_RTN_U32", VReg_32>;
+def DS_INC_RTN_U32 : DS_1A1D_RET <0x23, "DS_INC_RTN_U32", VReg_32>;
+def DS_DEC_RTN_U32 : DS_1A1D_RET <0x24, "DS_DEC_RTN_U32", VReg_32>;
+def DS_MIN_RTN_I32 : DS_1A1D_RET <0x25, "DS_MIN_RTN_I32", VReg_32>;
+def DS_MAX_RTN_I32 : DS_1A1D_RET <0x26, "DS_MAX_RTN_I32", VReg_32>;
+def DS_MIN_RTN_U32 : DS_1A1D_RET <0x27, "DS_MIN_RTN_U32", VReg_32>;
+def DS_MAX_RTN_U32 : DS_1A1D_RET <0x28, "DS_MAX_RTN_U32", VReg_32>;
+def DS_AND_RTN_B32 : DS_1A1D_RET <0x29, "DS_AND_RTN_B32", VReg_32>;
+def DS_OR_RTN_B32 : DS_1A1D_RET <0x2a, "DS_OR_RTN_B32", VReg_32>;
+def DS_XOR_RTN_B32 : DS_1A1D_RET <0x2b, "DS_XOR_RTN_B32", VReg_32>;
+def DS_MSKOR_RTN_B32 : DS_1A1D_RET <0x2c, "DS_MSKOR_RTN_B32", VReg_32>;
+def DS_WRXCHG_RTN_B32 : DS_1A1D_RET <0x2d, "DS_WRXCHG_RTN_B32", VReg_32>;
+//def DS_WRXCHG2_RTN_B32 : DS_2A0D_RET <0x2e, "DS_WRXCHG2_RTN_B32", VReg_32>;
+//def DS_WRXCHG2ST64_RTN_B32 : DS_2A0D_RET <0x2f, "DS_WRXCHG2_RTN_B32", VReg_32>;
+def DS_CMPST_RTN_B32 : DS_1A2D_RET <0x30, "DS_CMPST_RTN_B32", VReg_32>;
+def DS_CMPST_RTN_F32 : DS_1A2D_RET <0x31, "DS_CMPST_RTN_F32", VReg_32>;
+def DS_MIN_RTN_F32 : DS_1A1D_RET <0x32, "DS_MIN_RTN_F32", VReg_32>;
+def DS_MAX_RTN_F32 : DS_1A1D_RET <0x33, "DS_MAX_RTN_F32", VReg_32>;
+
+let SubtargetPredicate = isCI in {
+def DS_WRAP_RTN_F32 : DS_1A1D_RET <0x34, "DS_WRAP_RTN_F32", VReg_32>;
+} // End isCI
+
+
+def DS_ADD_U64 : DS_1A1D_NORET <0x40, "DS_ADD_U64", VReg_32>;
+def DS_SUB_U64 : DS_1A1D_NORET <0x41, "DS_SUB_U64", VReg_32>;
+def DS_RSUB_U64 : DS_1A1D_NORET <0x42, "DS_RSUB_U64", VReg_32>;
+def DS_INC_U64 : DS_1A1D_NORET <0x43, "DS_INC_U64", VReg_32>;
+def DS_DEC_U64 : DS_1A1D_NORET <0x44, "DS_DEC_U64", VReg_32>;
+def DS_MIN_I64 : DS_1A1D_NORET <0x45, "DS_MIN_I64", VReg_64>;
+def DS_MAX_I64 : DS_1A1D_NORET <0x46, "DS_MAX_I64", VReg_64>;
+def DS_MIN_U64 : DS_1A1D_NORET <0x47, "DS_MIN_U64", VReg_64>;
+def DS_MAX_U64 : DS_1A1D_NORET <0x48, "DS_MAX_U64", VReg_64>;
+def DS_AND_B64 : DS_1A1D_NORET <0x49, "DS_AND_B64", VReg_64>;
+def DS_OR_B64 : DS_1A1D_NORET <0x4a, "DS_OR_B64", VReg_64>;
+def DS_XOR_B64 : DS_1A1D_NORET <0x4b, "DS_XOR_B64", VReg_64>;
+def DS_MSKOR_B64 : DS_1A1D_NORET <0x4c, "DS_MSKOR_B64", VReg_64>;
+def DS_CMPST_B64 : DS_1A2D_NORET <0x50, "DS_CMPST_B64", VReg_64>;
+def DS_CMPST_F64 : DS_1A2D_NORET <0x51, "DS_CMPST_F64", VReg_64>;
+def DS_MIN_F64 : DS_1A1D_NORET <0x52, "DS_MIN_F64", VReg_64>;
+def DS_MAX_F64 : DS_1A1D_NORET <0x53, "DS_MAX_F64", VReg_64>;
+
+def DS_ADD_RTN_U64 : DS_1A1D_RET <0x60, "DS_ADD_RTN_U64", VReg_64>;
+def DS_SUB_RTN_U64 : DS_1A1D_RET <0x61, "DS_SUB_RTN_U64", VReg_64>;
+def DS_RSUB_RTN_U64 : DS_1A1D_RET <0x62, "DS_RSUB_RTN_U64", VReg_64>;
+def DS_INC_RTN_U64 : DS_1A1D_RET <0x63, "DS_INC_RTN_U64", VReg_64>;
+def DS_DEC_RTN_U64 : DS_1A1D_RET <0x64, "DS_DEC_RTN_U64", VReg_64>;
+def DS_MIN_RTN_I64 : DS_1A1D_RET <0x65, "DS_MIN_RTN_I64", VReg_64>;
+def DS_MAX_RTN_I64 : DS_1A1D_RET <0x66, "DS_MAX_RTN_I64", VReg_64>;
+def DS_MIN_RTN_U64 : DS_1A1D_RET <0x67, "DS_MIN_RTN_U64", VReg_64>;
+def DS_MAX_RTN_U64 : DS_1A1D_RET <0x68, "DS_MAX_RTN_U64", VReg_64>;
+def DS_AND_RTN_B64 : DS_1A1D_RET <0x69, "DS_AND_RTN_B64", VReg_64>;
+def DS_OR_RTN_B64 : DS_1A1D_RET <0x6a, "DS_OR_RTN_B64", VReg_64>;
+def DS_XOR_RTN_B64 : DS_1A1D_RET <0x6b, "DS_XOR_RTN_B64", VReg_64>;
+def DS_MSKOR_RTN_B64 : DS_1A1D_RET <0x6c, "DS_MSKOR_RTN_B64", VReg_64>;
+def DS_WRXCHG_RTN_B64 : DS_1A1D_RET <0x6d, "DS_WRXCHG_RTN_B64", VReg_64>;
+//def DS_WRXCHG2_RTN_B64 : DS_2A0D_RET <0x6e, "DS_WRXCHG2_RTN_B64", VReg_64>;
+//def DS_WRXCHG2ST64_RTN_B64 : DS_2A0D_RET <0x6f, "DS_WRXCHG2_RTN_B64", VReg_64>;
+def DS_CMPST_RTN_B64 : DS_1A2D_RET <0x70, "DS_CMPST_RTN_B64", VReg_64>;
+def DS_CMPST_RTN_F64 : DS_1A2D_RET <0x71, "DS_CMPST_RTN_F64", VReg_64>;
+def DS_MIN_RTN_F64 : DS_1A1D_RET <0x72, "DS_MIN_F64", VReg_64>;
+def DS_MAX_RTN_F64 : DS_1A1D_RET <0x73, "DS_MAX_F64", VReg_64>;
+
+//let SubtargetPredicate = isCI in {
+// DS_CONDXCHG32_RTN_B64
+// DS_CONDXCHG32_RTN_B128
+//} // End isCI
+
+// TODO: _SRC2_* forms
+
+def DS_WRITE_B32 : DS_Store_Helper <0x0000000d, "DS_WRITE_B32", VReg_32>;
+def DS_WRITE_B8 : DS_Store_Helper <0x00000001e, "DS_WRITE_B8", VReg_32>;
+def DS_WRITE_B16 : DS_Store_Helper <0x00000001f, "DS_WRITE_B16", VReg_32>;
+def DS_WRITE_B64 : DS_Store_Helper <0x00000004d, "DS_WRITE_B64", VReg_64>;
+
+def DS_READ_B32 : DS_Load_Helper <0x00000036, "DS_READ_B32", VReg_32>;
+def DS_READ_I8 : DS_Load_Helper <0x00000039, "DS_READ_I8", VReg_32>;
+def DS_READ_U8 : DS_Load_Helper <0x0000003a, "DS_READ_U8", VReg_32>;
+def DS_READ_I16 : DS_Load_Helper <0x0000003b, "DS_READ_I16", VReg_32>;
+def DS_READ_U16 : DS_Load_Helper <0x0000003c, "DS_READ_U16", VReg_32>;
+def DS_READ_B64 : DS_Load_Helper <0x00000076, "DS_READ_B64", VReg_64>;
+
+// 2 forms.
+def DS_WRITE2_B32 : DS_Load2_Helper <0x0000000E, "DS_WRITE2_B32", VReg_64>;
+def DS_WRITE2_B64 : DS_Load2_Helper <0x0000004E, "DS_WRITE2_B64", VReg_128>;
+
+def DS_READ2_B32 : DS_Load2_Helper <0x00000037, "DS_READ2_B32", VReg_64>;
+def DS_READ2_B64 : DS_Load2_Helper <0x00000075, "DS_READ2_B64", VReg_128>;
+
+// TODO: DS_READ2ST64_B32, DS_READ2ST64_B64,
+// DS_WRITE2ST64_B32, DS_WRITE2ST64_B64
+
+//===----------------------------------------------------------------------===//
+// MUBUF Instructions
+//===----------------------------------------------------------------------===//
+
+//def BUFFER_LOAD_FORMAT_X : MUBUF_ <0x00000000, "BUFFER_LOAD_FORMAT_X", []>;
+//def BUFFER_LOAD_FORMAT_XY : MUBUF_ <0x00000001, "BUFFER_LOAD_FORMAT_XY", []>;
+//def BUFFER_LOAD_FORMAT_XYZ : MUBUF_ <0x00000002, "BUFFER_LOAD_FORMAT_XYZ", []>;
+defm BUFFER_LOAD_FORMAT_XYZW : MUBUF_Load_Helper <0x00000003, "BUFFER_LOAD_FORMAT_XYZW", VReg_128>;
+//def BUFFER_STORE_FORMAT_X : MUBUF_ <0x00000004, "BUFFER_STORE_FORMAT_X", []>;
+//def BUFFER_STORE_FORMAT_XY : MUBUF_ <0x00000005, "BUFFER_STORE_FORMAT_XY", []>;
+//def BUFFER_STORE_FORMAT_XYZ : MUBUF_ <0x00000006, "BUFFER_STORE_FORMAT_XYZ", []>;
+//def BUFFER_STORE_FORMAT_XYZW : MUBUF_ <0x00000007, "BUFFER_STORE_FORMAT_XYZW", []>;
+defm BUFFER_LOAD_UBYTE : MUBUF_Load_Helper <
+ 0x00000008, "BUFFER_LOAD_UBYTE", VReg_32, i32, az_extloadi8_global
+>;
+defm BUFFER_LOAD_SBYTE : MUBUF_Load_Helper <
+ 0x00000009, "BUFFER_LOAD_SBYTE", VReg_32, i32, sextloadi8_global
+>;
+defm BUFFER_LOAD_USHORT : MUBUF_Load_Helper <
+ 0x0000000a, "BUFFER_LOAD_USHORT", VReg_32, i32, az_extloadi16_global
+>;
+defm BUFFER_LOAD_SSHORT : MUBUF_Load_Helper <
+ 0x0000000b, "BUFFER_LOAD_SSHORT", VReg_32, i32, sextloadi16_global
+>;
+defm BUFFER_LOAD_DWORD : MUBUF_Load_Helper <
+ 0x0000000c, "BUFFER_LOAD_DWORD", VReg_32, i32, global_load
+>;
+defm BUFFER_LOAD_DWORDX2 : MUBUF_Load_Helper <
+ 0x0000000d, "BUFFER_LOAD_DWORDX2", VReg_64, v2i32, global_load
+>;
+defm BUFFER_LOAD_DWORDX4 : MUBUF_Load_Helper <
+ 0x0000000e, "BUFFER_LOAD_DWORDX4", VReg_128, v4i32, global_load
+>;
+
+defm BUFFER_STORE_BYTE : MUBUF_Store_Helper <
+ 0x00000018, "BUFFER_STORE_BYTE", VReg_32, i32, truncstorei8_global
+>;
+
+defm BUFFER_STORE_SHORT : MUBUF_Store_Helper <
+ 0x0000001a, "BUFFER_STORE_SHORT", VReg_32, i32, truncstorei16_global
+>;
+
+defm BUFFER_STORE_DWORD : MUBUF_Store_Helper <
+ 0x0000001c, "BUFFER_STORE_DWORD", VReg_32, i32, global_store
+>;
+
+defm BUFFER_STORE_DWORDX2 : MUBUF_Store_Helper <
+ 0x0000001d, "BUFFER_STORE_DWORDX2", VReg_64, v2i32, global_store
+>;
+
+defm BUFFER_STORE_DWORDX4 : MUBUF_Store_Helper <
+ 0x0000001e, "BUFFER_STORE_DWORDX4", VReg_128, v4i32, global_store
+>;
+//def BUFFER_ATOMIC_SWAP : MUBUF_ <0x00000030, "BUFFER_ATOMIC_SWAP", []>;
+//def BUFFER_ATOMIC_CMPSWAP : MUBUF_ <0x00000031, "BUFFER_ATOMIC_CMPSWAP", []>;
+//def BUFFER_ATOMIC_ADD : MUBUF_ <0x00000032, "BUFFER_ATOMIC_ADD", []>;
+//def BUFFER_ATOMIC_SUB : MUBUF_ <0x00000033, "BUFFER_ATOMIC_SUB", []>;
+//def BUFFER_ATOMIC_RSUB : MUBUF_ <0x00000034, "BUFFER_ATOMIC_RSUB", []>;
+//def BUFFER_ATOMIC_SMIN : MUBUF_ <0x00000035, "BUFFER_ATOMIC_SMIN", []>;
+//def BUFFER_ATOMIC_UMIN : MUBUF_ <0x00000036, "BUFFER_ATOMIC_UMIN", []>;
+//def BUFFER_ATOMIC_SMAX : MUBUF_ <0x00000037, "BUFFER_ATOMIC_SMAX", []>;
+//def BUFFER_ATOMIC_UMAX : MUBUF_ <0x00000038, "BUFFER_ATOMIC_UMAX", []>;
+//def BUFFER_ATOMIC_AND : MUBUF_ <0x00000039, "BUFFER_ATOMIC_AND", []>;
+//def BUFFER_ATOMIC_OR : MUBUF_ <0x0000003a, "BUFFER_ATOMIC_OR", []>;
+//def BUFFER_ATOMIC_XOR : MUBUF_ <0x0000003b, "BUFFER_ATOMIC_XOR", []>;
+//def BUFFER_ATOMIC_INC : MUBUF_ <0x0000003c, "BUFFER_ATOMIC_INC", []>;
+//def BUFFER_ATOMIC_DEC : MUBUF_ <0x0000003d, "BUFFER_ATOMIC_DEC", []>;
+//def BUFFER_ATOMIC_FCMPSWAP : MUBUF_ <0x0000003e, "BUFFER_ATOMIC_FCMPSWAP", []>;
+//def BUFFER_ATOMIC_FMIN : MUBUF_ <0x0000003f, "BUFFER_ATOMIC_FMIN", []>;
+//def BUFFER_ATOMIC_FMAX : MUBUF_ <0x00000040, "BUFFER_ATOMIC_FMAX", []>;
+//def BUFFER_ATOMIC_SWAP_X2 : MUBUF_X2 <0x00000050, "BUFFER_ATOMIC_SWAP_X2", []>;
+//def BUFFER_ATOMIC_CMPSWAP_X2 : MUBUF_X2 <0x00000051, "BUFFER_ATOMIC_CMPSWAP_X2", []>;
+//def BUFFER_ATOMIC_ADD_X2 : MUBUF_X2 <0x00000052, "BUFFER_ATOMIC_ADD_X2", []>;
+//def BUFFER_ATOMIC_SUB_X2 : MUBUF_X2 <0x00000053, "BUFFER_ATOMIC_SUB_X2", []>;
+//def BUFFER_ATOMIC_RSUB_X2 : MUBUF_X2 <0x00000054, "BUFFER_ATOMIC_RSUB_X2", []>;
+//def BUFFER_ATOMIC_SMIN_X2 : MUBUF_X2 <0x00000055, "BUFFER_ATOMIC_SMIN_X2", []>;
+//def BUFFER_ATOMIC_UMIN_X2 : MUBUF_X2 <0x00000056, "BUFFER_ATOMIC_UMIN_X2", []>;
+//def BUFFER_ATOMIC_SMAX_X2 : MUBUF_X2 <0x00000057, "BUFFER_ATOMIC_SMAX_X2", []>;
+//def BUFFER_ATOMIC_UMAX_X2 : MUBUF_X2 <0x00000058, "BUFFER_ATOMIC_UMAX_X2", []>;
+//def BUFFER_ATOMIC_AND_X2 : MUBUF_X2 <0x00000059, "BUFFER_ATOMIC_AND_X2", []>;
+//def BUFFER_ATOMIC_OR_X2 : MUBUF_X2 <0x0000005a, "BUFFER_ATOMIC_OR_X2", []>;
+//def BUFFER_ATOMIC_XOR_X2 : MUBUF_X2 <0x0000005b, "BUFFER_ATOMIC_XOR_X2", []>;
+//def BUFFER_ATOMIC_INC_X2 : MUBUF_X2 <0x0000005c, "BUFFER_ATOMIC_INC_X2", []>;
+//def BUFFER_ATOMIC_DEC_X2 : MUBUF_X2 <0x0000005d, "BUFFER_ATOMIC_DEC_X2", []>;
+//def BUFFER_ATOMIC_FCMPSWAP_X2 : MUBUF_X2 <0x0000005e, "BUFFER_ATOMIC_FCMPSWAP_X2", []>;
+//def BUFFER_ATOMIC_FMIN_X2 : MUBUF_X2 <0x0000005f, "BUFFER_ATOMIC_FMIN_X2", []>;
+//def BUFFER_ATOMIC_FMAX_X2 : MUBUF_X2 <0x00000060, "BUFFER_ATOMIC_FMAX_X2", []>;
+//def BUFFER_WBINVL1_SC : MUBUF_WBINVL1 <0x00000070, "BUFFER_WBINVL1_SC", []>;
+//def BUFFER_WBINVL1 : MUBUF_WBINVL1 <0x00000071, "BUFFER_WBINVL1", []>;
+
+//===----------------------------------------------------------------------===//
+// MTBUF Instructions
+//===----------------------------------------------------------------------===//
+
+//def TBUFFER_LOAD_FORMAT_X : MTBUF_ <0x00000000, "TBUFFER_LOAD_FORMAT_X", []>;
+//def TBUFFER_LOAD_FORMAT_XY : MTBUF_ <0x00000001, "TBUFFER_LOAD_FORMAT_XY", []>;
+//def TBUFFER_LOAD_FORMAT_XYZ : MTBUF_ <0x00000002, "TBUFFER_LOAD_FORMAT_XYZ", []>;
+def TBUFFER_LOAD_FORMAT_XYZW : MTBUF_Load_Helper <0x00000003, "TBUFFER_LOAD_FORMAT_XYZW", VReg_128>;
+def TBUFFER_STORE_FORMAT_X : MTBUF_Store_Helper <0x00000004, "TBUFFER_STORE_FORMAT_X", VReg_32>;
+def TBUFFER_STORE_FORMAT_XY : MTBUF_Store_Helper <0x00000005, "TBUFFER_STORE_FORMAT_XY", VReg_64>;
+def TBUFFER_STORE_FORMAT_XYZ : MTBUF_Store_Helper <0x00000006, "TBUFFER_STORE_FORMAT_XYZ", VReg_128>;
+def TBUFFER_STORE_FORMAT_XYZW : MTBUF_Store_Helper <0x00000007, "TBUFFER_STORE_FORMAT_XYZW", VReg_128>;
+
+//===----------------------------------------------------------------------===//
+// MIMG Instructions
+//===----------------------------------------------------------------------===//
+
+defm IMAGE_LOAD : MIMG_NoSampler <0x00000000, "IMAGE_LOAD">;
+defm IMAGE_LOAD_MIP : MIMG_NoSampler <0x00000001, "IMAGE_LOAD_MIP">;
+//def IMAGE_LOAD_PCK : MIMG_NoPattern_ <"IMAGE_LOAD_PCK", 0x00000002>;
+//def IMAGE_LOAD_PCK_SGN : MIMG_NoPattern_ <"IMAGE_LOAD_PCK_SGN", 0x00000003>;
+//def IMAGE_LOAD_MIP_PCK : MIMG_NoPattern_ <"IMAGE_LOAD_MIP_PCK", 0x00000004>;
+//def IMAGE_LOAD_MIP_PCK_SGN : MIMG_NoPattern_ <"IMAGE_LOAD_MIP_PCK_SGN", 0x00000005>;
+//def IMAGE_STORE : MIMG_NoPattern_ <"IMAGE_STORE", 0x00000008>;
+//def IMAGE_STORE_MIP : MIMG_NoPattern_ <"IMAGE_STORE_MIP", 0x00000009>;
+//def IMAGE_STORE_PCK : MIMG_NoPattern_ <"IMAGE_STORE_PCK", 0x0000000a>;
+//def IMAGE_STORE_MIP_PCK : MIMG_NoPattern_ <"IMAGE_STORE_MIP_PCK", 0x0000000b>;
+defm IMAGE_GET_RESINFO : MIMG_NoSampler <0x0000000e, "IMAGE_GET_RESINFO">;
+//def IMAGE_ATOMIC_SWAP : MIMG_NoPattern_ <"IMAGE_ATOMIC_SWAP", 0x0000000f>;
+//def IMAGE_ATOMIC_CMPSWAP : MIMG_NoPattern_ <"IMAGE_ATOMIC_CMPSWAP", 0x00000010>;
+//def IMAGE_ATOMIC_ADD : MIMG_NoPattern_ <"IMAGE_ATOMIC_ADD", 0x00000011>;
+//def IMAGE_ATOMIC_SUB : MIMG_NoPattern_ <"IMAGE_ATOMIC_SUB", 0x00000012>;
+//def IMAGE_ATOMIC_RSUB : MIMG_NoPattern_ <"IMAGE_ATOMIC_RSUB", 0x00000013>;
+//def IMAGE_ATOMIC_SMIN : MIMG_NoPattern_ <"IMAGE_ATOMIC_SMIN", 0x00000014>;
+//def IMAGE_ATOMIC_UMIN : MIMG_NoPattern_ <"IMAGE_ATOMIC_UMIN", 0x00000015>;
+//def IMAGE_ATOMIC_SMAX : MIMG_NoPattern_ <"IMAGE_ATOMIC_SMAX", 0x00000016>;
+//def IMAGE_ATOMIC_UMAX : MIMG_NoPattern_ <"IMAGE_ATOMIC_UMAX", 0x00000017>;
+//def IMAGE_ATOMIC_AND : MIMG_NoPattern_ <"IMAGE_ATOMIC_AND", 0x00000018>;
+//def IMAGE_ATOMIC_OR : MIMG_NoPattern_ <"IMAGE_ATOMIC_OR", 0x00000019>;
+//def IMAGE_ATOMIC_XOR : MIMG_NoPattern_ <"IMAGE_ATOMIC_XOR", 0x0000001a>;
+//def IMAGE_ATOMIC_INC : MIMG_NoPattern_ <"IMAGE_ATOMIC_INC", 0x0000001b>;
+//def IMAGE_ATOMIC_DEC : MIMG_NoPattern_ <"IMAGE_ATOMIC_DEC", 0x0000001c>;
+//def IMAGE_ATOMIC_FCMPSWAP : MIMG_NoPattern_ <"IMAGE_ATOMIC_FCMPSWAP", 0x0000001d>;
+//def IMAGE_ATOMIC_FMIN : MIMG_NoPattern_ <"IMAGE_ATOMIC_FMIN", 0x0000001e>;
+//def IMAGE_ATOMIC_FMAX : MIMG_NoPattern_ <"IMAGE_ATOMIC_FMAX", 0x0000001f>;
+defm IMAGE_SAMPLE : MIMG_Sampler <0x00000020, "IMAGE_SAMPLE">;
+defm IMAGE_SAMPLE_CL : MIMG_Sampler <0x00000021, "IMAGE_SAMPLE_CL">;
+defm IMAGE_SAMPLE_D : MIMG_Sampler <0x00000022, "IMAGE_SAMPLE_D">;
+defm IMAGE_SAMPLE_D_CL : MIMG_Sampler <0x00000023, "IMAGE_SAMPLE_D_CL">;
+defm IMAGE_SAMPLE_L : MIMG_Sampler <0x00000024, "IMAGE_SAMPLE_L">;
+defm IMAGE_SAMPLE_B : MIMG_Sampler <0x00000025, "IMAGE_SAMPLE_B">;
+defm IMAGE_SAMPLE_B_CL : MIMG_Sampler <0x00000026, "IMAGE_SAMPLE_B_CL">;
+defm IMAGE_SAMPLE_LZ : MIMG_Sampler <0x00000027, "IMAGE_SAMPLE_LZ">;
+defm IMAGE_SAMPLE_C : MIMG_Sampler <0x00000028, "IMAGE_SAMPLE_C">;
+defm IMAGE_SAMPLE_C_CL : MIMG_Sampler <0x00000029, "IMAGE_SAMPLE_C_CL">;
+defm IMAGE_SAMPLE_C_D : MIMG_Sampler <0x0000002a, "IMAGE_SAMPLE_C_D">;
+defm IMAGE_SAMPLE_C_D_CL : MIMG_Sampler <0x0000002b, "IMAGE_SAMPLE_C_D_CL">;
+defm IMAGE_SAMPLE_C_L : MIMG_Sampler <0x0000002c, "IMAGE_SAMPLE_C_L">;
+defm IMAGE_SAMPLE_C_B : MIMG_Sampler <0x0000002d, "IMAGE_SAMPLE_C_B">;
+defm IMAGE_SAMPLE_C_B_CL : MIMG_Sampler <0x0000002e, "IMAGE_SAMPLE_C_B_CL">;
+defm IMAGE_SAMPLE_C_LZ : MIMG_Sampler <0x0000002f, "IMAGE_SAMPLE_C_LZ">;
+defm IMAGE_SAMPLE_O : MIMG_Sampler <0x00000030, "IMAGE_SAMPLE_O">;
+defm IMAGE_SAMPLE_CL_O : MIMG_Sampler <0x00000031, "IMAGE_SAMPLE_CL_O">;
+defm IMAGE_SAMPLE_D_O : MIMG_Sampler <0x00000032, "IMAGE_SAMPLE_D_O">;
+defm IMAGE_SAMPLE_D_CL_O : MIMG_Sampler <0x00000033, "IMAGE_SAMPLE_D_CL_O">;
+defm IMAGE_SAMPLE_L_O : MIMG_Sampler <0x00000034, "IMAGE_SAMPLE_L_O">;
+defm IMAGE_SAMPLE_B_O : MIMG_Sampler <0x00000035, "IMAGE_SAMPLE_B_O">;
+defm IMAGE_SAMPLE_B_CL_O : MIMG_Sampler <0x00000036, "IMAGE_SAMPLE_B_CL_O">;
+defm IMAGE_SAMPLE_LZ_O : MIMG_Sampler <0x00000037, "IMAGE_SAMPLE_LZ_O">;
+defm IMAGE_SAMPLE_C_O : MIMG_Sampler <0x00000038, "IMAGE_SAMPLE_C_O">;
+defm IMAGE_SAMPLE_C_CL_O : MIMG_Sampler <0x00000039, "IMAGE_SAMPLE_C_CL_O">;
+defm IMAGE_SAMPLE_C_D_O : MIMG_Sampler <0x0000003a, "IMAGE_SAMPLE_C_D_O">;
+defm IMAGE_SAMPLE_C_D_CL_O : MIMG_Sampler <0x0000003b, "IMAGE_SAMPLE_C_D_CL_O">;
+defm IMAGE_SAMPLE_C_L_O : MIMG_Sampler <0x0000003c, "IMAGE_SAMPLE_C_L_O">;
+defm IMAGE_SAMPLE_C_B_O : MIMG_Sampler <0x0000003d, "IMAGE_SAMPLE_C_B_O">;
+defm IMAGE_SAMPLE_C_B_CL_O : MIMG_Sampler <0x0000003e, "IMAGE_SAMPLE_C_B_CL_O">;
+defm IMAGE_SAMPLE_C_LZ_O : MIMG_Sampler <0x0000003f, "IMAGE_SAMPLE_C_LZ_O">;
+defm IMAGE_GATHER4 : MIMG_Gather <0x00000040, "IMAGE_GATHER4">;
+defm IMAGE_GATHER4_CL : MIMG_Gather <0x00000041, "IMAGE_GATHER4_CL">;
+defm IMAGE_GATHER4_L : MIMG_Gather <0x00000044, "IMAGE_GATHER4_L">;
+defm IMAGE_GATHER4_B : MIMG_Gather <0x00000045, "IMAGE_GATHER4_B">;
+defm IMAGE_GATHER4_B_CL : MIMG_Gather <0x00000046, "IMAGE_GATHER4_B_CL">;
+defm IMAGE_GATHER4_LZ : MIMG_Gather <0x00000047, "IMAGE_GATHER4_LZ">;
+defm IMAGE_GATHER4_C : MIMG_Gather <0x00000048, "IMAGE_GATHER4_C">;
+defm IMAGE_GATHER4_C_CL : MIMG_Gather <0x00000049, "IMAGE_GATHER4_C_CL">;
+defm IMAGE_GATHER4_C_L : MIMG_Gather <0x0000004c, "IMAGE_GATHER4_C_L">;
+defm IMAGE_GATHER4_C_B : MIMG_Gather <0x0000004d, "IMAGE_GATHER4_C_B">;
+defm IMAGE_GATHER4_C_B_CL : MIMG_Gather <0x0000004e, "IMAGE_GATHER4_C_B_CL">;
+defm IMAGE_GATHER4_C_LZ : MIMG_Gather <0x0000004f, "IMAGE_GATHER4_C_LZ">;
+defm IMAGE_GATHER4_O : MIMG_Gather <0x00000050, "IMAGE_GATHER4_O">;
+defm IMAGE_GATHER4_CL_O : MIMG_Gather <0x00000051, "IMAGE_GATHER4_CL_O">;
+defm IMAGE_GATHER4_L_O : MIMG_Gather <0x00000054, "IMAGE_GATHER4_L_O">;
+defm IMAGE_GATHER4_B_O : MIMG_Gather <0x00000055, "IMAGE_GATHER4_B_O">;
+defm IMAGE_GATHER4_B_CL_O : MIMG_Gather <0x00000056, "IMAGE_GATHER4_B_CL_O">;
+defm IMAGE_GATHER4_LZ_O : MIMG_Gather <0x00000057, "IMAGE_GATHER4_LZ_O">;
+defm IMAGE_GATHER4_C_O : MIMG_Gather <0x00000058, "IMAGE_GATHER4_C_O">;
+defm IMAGE_GATHER4_C_CL_O : MIMG_Gather <0x00000059, "IMAGE_GATHER4_C_CL_O">;
+defm IMAGE_GATHER4_C_L_O : MIMG_Gather <0x0000005c, "IMAGE_GATHER4_C_L_O">;
+defm IMAGE_GATHER4_C_B_O : MIMG_Gather <0x0000005d, "IMAGE_GATHER4_C_B_O">;
+defm IMAGE_GATHER4_C_B_CL_O : MIMG_Gather <0x0000005e, "IMAGE_GATHER4_C_B_CL_O">;
+defm IMAGE_GATHER4_C_LZ_O : MIMG_Gather <0x0000005f, "IMAGE_GATHER4_C_LZ_O">;
+defm IMAGE_GET_LOD : MIMG_Sampler <0x00000060, "IMAGE_GET_LOD">;
+defm IMAGE_SAMPLE_CD : MIMG_Sampler <0x00000068, "IMAGE_SAMPLE_CD">;
+defm IMAGE_SAMPLE_CD_CL : MIMG_Sampler <0x00000069, "IMAGE_SAMPLE_CD_CL">;
+defm IMAGE_SAMPLE_C_CD : MIMG_Sampler <0x0000006a, "IMAGE_SAMPLE_C_CD">;
+defm IMAGE_SAMPLE_C_CD_CL : MIMG_Sampler <0x0000006b, "IMAGE_SAMPLE_C_CD_CL">;
+defm IMAGE_SAMPLE_CD_O : MIMG_Sampler <0x0000006c, "IMAGE_SAMPLE_CD_O">;
+defm IMAGE_SAMPLE_CD_CL_O : MIMG_Sampler <0x0000006d, "IMAGE_SAMPLE_CD_CL_O">;
+defm IMAGE_SAMPLE_C_CD_O : MIMG_Sampler <0x0000006e, "IMAGE_SAMPLE_C_CD_O">;
+defm IMAGE_SAMPLE_C_CD_CL_O : MIMG_Sampler <0x0000006f, "IMAGE_SAMPLE_C_CD_CL_O">;
+//def IMAGE_RSRC256 : MIMG_NoPattern_RSRC256 <"IMAGE_RSRC256", 0x0000007e>;
+//def IMAGE_SAMPLER : MIMG_NoPattern_ <"IMAGE_SAMPLER", 0x0000007f>;
+
+//===----------------------------------------------------------------------===//
+// VOP1 Instructions
+//===----------------------------------------------------------------------===//
+
+//def V_NOP : VOP1_ <0x00000000, "V_NOP", []>;
+
+let neverHasSideEffects = 1, isMoveImm = 1 in {
+defm V_MOV_B32 : VOP1_32 <0x00000001, "V_MOV_B32", []>;
+} // End neverHasSideEffects = 1, isMoveImm = 1
+
+let Uses = [EXEC] in {
+
+def V_READFIRSTLANE_B32 : VOP1 <
+ 0x00000002,
+ (outs SReg_32:$vdst),
+ (ins VReg_32:$src0),
+ "V_READFIRSTLANE_B32 $vdst, $src0",
+ []
+>;
+
+}
+
+defm V_CVT_I32_F64 : VOP1_32_64 <0x00000003, "V_CVT_I32_F64",
+ [(set i32:$dst, (fp_to_sint f64:$src0))]
+>;
+defm V_CVT_F64_I32 : VOP1_64_32 <0x00000004, "V_CVT_F64_I32",
+ [(set f64:$dst, (sint_to_fp i32:$src0))]
+>;
+defm V_CVT_F32_I32 : VOP1_32 <0x00000005, "V_CVT_F32_I32",
+ [(set f32:$dst, (sint_to_fp i32:$src0))]
+>;
+defm V_CVT_F32_U32 : VOP1_32 <0x00000006, "V_CVT_F32_U32",
+ [(set f32:$dst, (uint_to_fp i32:$src0))]
+>;
+defm V_CVT_U32_F32 : VOP1_32 <0x00000007, "V_CVT_U32_F32",
+ [(set i32:$dst, (fp_to_uint f32:$src0))]
+>;
+defm V_CVT_I32_F32 : VOP1_32 <0x00000008, "V_CVT_I32_F32",
+ [(set i32:$dst, (fp_to_sint f32:$src0))]
+>;
+defm V_MOV_FED_B32 : VOP1_32 <0x00000009, "V_MOV_FED_B32", []>;
+defm V_CVT_F16_F32 : VOP1_32 <0x0000000a, "V_CVT_F16_F32",
+ [(set i32:$dst, (fp_to_f16 f32:$src0))]
+>;
+defm V_CVT_F32_F16 : VOP1_32 <0x0000000b, "V_CVT_F32_F16",
+ [(set f32:$dst, (f16_to_fp i32:$src0))]
+>;
+//defm V_CVT_RPI_I32_F32 : VOP1_32 <0x0000000c, "V_CVT_RPI_I32_F32", []>;
+//defm V_CVT_FLR_I32_F32 : VOP1_32 <0x0000000d, "V_CVT_FLR_I32_F32", []>;
+//defm V_CVT_OFF_F32_I4 : VOP1_32 <0x0000000e, "V_CVT_OFF_F32_I4", []>;
+defm V_CVT_F32_F64 : VOP1_32_64 <0x0000000f, "V_CVT_F32_F64",
+ [(set f32:$dst, (fround f64:$src0))]
+>;
+defm V_CVT_F64_F32 : VOP1_64_32 <0x00000010, "V_CVT_F64_F32",
+ [(set f64:$dst, (fextend f32:$src0))]
+>;
+defm V_CVT_F32_UBYTE0 : VOP1_32 <0x00000011, "V_CVT_F32_UBYTE0",
+ [(set f32:$dst, (AMDGPUcvt_f32_ubyte0 i32:$src0))]
+>;
+defm V_CVT_F32_UBYTE1 : VOP1_32 <0x00000012, "V_CVT_F32_UBYTE1",
+ [(set f32:$dst, (AMDGPUcvt_f32_ubyte1 i32:$src0))]
+>;
+defm V_CVT_F32_UBYTE2 : VOP1_32 <0x00000013, "V_CVT_F32_UBYTE2",
+ [(set f32:$dst, (AMDGPUcvt_f32_ubyte2 i32:$src0))]
+>;
+defm V_CVT_F32_UBYTE3 : VOP1_32 <0x00000014, "V_CVT_F32_UBYTE3",
+ [(set f32:$dst, (AMDGPUcvt_f32_ubyte3 i32:$src0))]
+>;
+defm V_CVT_U32_F64 : VOP1_32_64 <0x00000015, "V_CVT_U32_F64",
+ [(set i32:$dst, (fp_to_uint f64:$src0))]
+>;
+defm V_CVT_F64_U32 : VOP1_64_32 <0x00000016, "V_CVT_F64_U32",
+ [(set f64:$dst, (uint_to_fp i32:$src0))]
+>;
+
+defm V_FRACT_F32 : VOP1_32 <0x00000020, "V_FRACT_F32",
+ [(set f32:$dst, (AMDGPUfract f32:$src0))]
+>;
+defm V_TRUNC_F32 : VOP1_32 <0x00000021, "V_TRUNC_F32",
+ [(set f32:$dst, (ftrunc f32:$src0))]
+>;
+defm V_CEIL_F32 : VOP1_32 <0x00000022, "V_CEIL_F32",
+ [(set f32:$dst, (fceil f32:$src0))]
+>;
+defm V_RNDNE_F32 : VOP1_32 <0x00000023, "V_RNDNE_F32",
+ [(set f32:$dst, (frint f32:$src0))]
+>;
+defm V_FLOOR_F32 : VOP1_32 <0x00000024, "V_FLOOR_F32",
+ [(set f32:$dst, (ffloor f32:$src0))]
+>;
+defm V_EXP_F32 : VOP1_32 <0x00000025, "V_EXP_F32",
+ [(set f32:$dst, (fexp2 f32:$src0))]
+>;
+defm V_LOG_CLAMP_F32 : VOP1_32 <0x00000026, "V_LOG_CLAMP_F32", []>;
+defm V_LOG_F32 : VOP1_32 <0x00000027, "V_LOG_F32",
+ [(set f32:$dst, (flog2 f32:$src0))]
+>;
+
+defm V_RCP_CLAMP_F32 : VOP1_32 <0x00000028, "V_RCP_CLAMP_F32", []>;
+defm V_RCP_LEGACY_F32 : VOP1_32 <0x00000029, "V_RCP_LEGACY_F32", []>;
+defm V_RCP_F32 : VOP1_32 <0x0000002a, "V_RCP_F32",
+ [(set f32:$dst, (AMDGPUrcp f32:$src0))]
+>;
+defm V_RCP_IFLAG_F32 : VOP1_32 <0x0000002b, "V_RCP_IFLAG_F32", []>;
+defm V_RSQ_CLAMP_F32 : VOP1_32 <0x0000002c, "V_RSQ_CLAMP_F32",
+ [(set f32:$dst, (AMDGPUrsq_clamped f32:$src0))]
+>;
+defm V_RSQ_LEGACY_F32 : VOP1_32 <
+ 0x0000002d, "V_RSQ_LEGACY_F32",
+ [(set f32:$dst, (AMDGPUrsq_legacy f32:$src0))]
+>;
+defm V_RSQ_F32 : VOP1_32 <0x0000002e, "V_RSQ_F32",
+ [(set f32:$dst, (AMDGPUrsq f32:$src0))]
+>;
+defm V_RCP_F64 : VOP1_64 <0x0000002f, "V_RCP_F64",
+ [(set f64:$dst, (AMDGPUrcp f64:$src0))]
+>;
+defm V_RCP_CLAMP_F64 : VOP1_64 <0x00000030, "V_RCP_CLAMP_F64", []>;
+defm V_RSQ_F64 : VOP1_64 <0x00000031, "V_RSQ_F64",
+ [(set f64:$dst, (AMDGPUrsq f64:$src0))]
+>;
+defm V_RSQ_CLAMP_F64 : VOP1_64 <0x00000032, "V_RSQ_CLAMP_F64",
+ [(set f64:$dst, (AMDGPUrsq_clamped f64:$src0))]
+>;
+defm V_SQRT_F32 : VOP1_32 <0x00000033, "V_SQRT_F32",
+ [(set f32:$dst, (fsqrt f32:$src0))]
+>;
+defm V_SQRT_F64 : VOP1_64 <0x00000034, "V_SQRT_F64",
+ [(set f64:$dst, (fsqrt f64:$src0))]
+>;
+defm V_SIN_F32 : VOP1_32 <0x00000035, "V_SIN_F32",
+ [(set f32:$dst, (AMDGPUsin f32:$src0))]
+>;
+defm V_COS_F32 : VOP1_32 <0x00000036, "V_COS_F32",
+ [(set f32:$dst, (AMDGPUcos f32:$src0))]
+>;
+defm V_NOT_B32 : VOP1_32 <0x00000037, "V_NOT_B32", []>;
+defm V_BFREV_B32 : VOP1_32 <0x00000038, "V_BFREV_B32", []>;
+defm V_FFBH_U32 : VOP1_32 <0x00000039, "V_FFBH_U32", []>;
+defm V_FFBL_B32 : VOP1_32 <0x0000003a, "V_FFBL_B32", []>;
+defm V_FFBH_I32 : VOP1_32 <0x0000003b, "V_FFBH_I32", []>;
+//defm V_FREXP_EXP_I32_F64 : VOP1_32 <0x0000003c, "V_FREXP_EXP_I32_F64", []>;
+defm V_FREXP_MANT_F64 : VOP1_64 <0x0000003d, "V_FREXP_MANT_F64", []>;
+defm V_FRACT_F64 : VOP1_64 <0x0000003e, "V_FRACT_F64", []>;
+//defm V_FREXP_EXP_I32_F32 : VOP1_32 <0x0000003f, "V_FREXP_EXP_I32_F32", []>;
+defm V_FREXP_MANT_F32 : VOP1_32 <0x00000040, "V_FREXP_MANT_F32", []>;
+//def V_CLREXCP : VOP1_ <0x00000041, "V_CLREXCP", []>;
+defm V_MOVRELD_B32 : VOP1_32 <0x00000042, "V_MOVRELD_B32", []>;
+defm V_MOVRELS_B32 : VOP1_32 <0x00000043, "V_MOVRELS_B32", []>;
+defm V_MOVRELSD_B32 : VOP1_32 <0x00000044, "V_MOVRELSD_B32", []>;
+
+
+//===----------------------------------------------------------------------===//
+// VINTRP Instructions
+//===----------------------------------------------------------------------===//
+
+def V_INTERP_P1_F32 : VINTRP <
+ 0x00000000,
+ (outs VReg_32:$dst),
+ (ins VReg_32:$i, i32imm:$attr_chan, i32imm:$attr, M0Reg:$m0),
+ "V_INTERP_P1_F32 $dst, $i, $attr_chan, $attr, [$m0]",
+ []> {
+ let DisableEncoding = "$m0";
+}
+
+def V_INTERP_P2_F32 : VINTRP <
+ 0x00000001,
+ (outs VReg_32:$dst),
+ (ins VReg_32:$src0, VReg_32:$j, i32imm:$attr_chan, i32imm:$attr, M0Reg:$m0),
+ "V_INTERP_P2_F32 $dst, [$src0], $j, $attr_chan, $attr, [$m0]",
+ []> {
+
+ let Constraints = "$src0 = $dst";
+ let DisableEncoding = "$src0,$m0";
+
+}
+
+def V_INTERP_MOV_F32 : VINTRP <
+ 0x00000002,
+ (outs VReg_32:$dst),
+ (ins InterpSlot:$src0, i32imm:$attr_chan, i32imm:$attr, M0Reg:$m0),
+ "V_INTERP_MOV_F32 $dst, $src0, $attr_chan, $attr, [$m0]",
+ []> {
+ let DisableEncoding = "$m0";
+}
+
+//===----------------------------------------------------------------------===//
+// VOP2 Instructions
+//===----------------------------------------------------------------------===//
+
+def V_CNDMASK_B32_e32 : VOP2 <0x00000000, (outs VReg_32:$dst),
+ (ins VSrc_32:$src0, VReg_32:$src1, VCCReg:$vcc),
+ "V_CNDMASK_B32_e32 $dst, $src0, $src1, [$vcc]",
+ []
+>{
+ let DisableEncoding = "$vcc";
+}
+
+def V_CNDMASK_B32_e64 : VOP3 <0x00000100, (outs VReg_32:$dst),
+ (ins VSrc_32:$src0, VSrc_32:$src1, SSrc_64:$src2,
+ InstFlag:$abs, InstFlag:$clamp, InstFlag:$omod, InstFlag:$neg),
+ "V_CNDMASK_B32_e64 $dst, $src0, $src1, $src2, $abs, $clamp, $omod, $neg",
+ [(set i32:$dst, (select i1:$src2, i32:$src1, i32:$src0))]
+> {
+ let src0_modifiers = 0;
+ let src1_modifiers = 0;
+ let src2_modifiers = 0;
+}
+
+def V_READLANE_B32 : VOP2 <
+ 0x00000001,
+ (outs SReg_32:$vdst),
+ (ins VReg_32:$src0, SSrc_32:$vsrc1),
+ "V_READLANE_B32 $vdst, $src0, $vsrc1",
+ []
+>;
+
+def V_WRITELANE_B32 : VOP2 <
+ 0x00000002,
+ (outs VReg_32:$vdst),
+ (ins SReg_32:$src0, SSrc_32:$vsrc1),
+ "V_WRITELANE_B32 $vdst, $src0, $vsrc1",
+ []
+>;
+
+let isCommutable = 1 in {
+defm V_ADD_F32 : VOP2_32 <0x00000003, "V_ADD_F32",
+ [(set f32:$dst, (fadd f32:$src0, f32:$src1))]
+>;
+
+defm V_SUB_F32 : VOP2_32 <0x00000004, "V_SUB_F32",
+ [(set f32:$dst, (fsub f32:$src0, f32:$src1))]
+>;
+defm V_SUBREV_F32 : VOP2_32 <0x00000005, "V_SUBREV_F32", [], "V_SUB_F32">;
+} // End isCommutable = 1
+
+defm V_MAC_LEGACY_F32 : VOP2_32 <0x00000006, "V_MAC_LEGACY_F32", []>;
+
+let isCommutable = 1 in {
+
+defm V_MUL_LEGACY_F32 : VOP2_32 <
+ 0x00000007, "V_MUL_LEGACY_F32",
+ [(set f32:$dst, (int_AMDGPU_mul f32:$src0, f32:$src1))]
+>;
+
+defm V_MUL_F32 : VOP2_32 <0x00000008, "V_MUL_F32",
+ [(set f32:$dst, (fmul f32:$src0, f32:$src1))]
+>;
+
+
+defm V_MUL_I32_I24 : VOP2_32 <0x00000009, "V_MUL_I32_I24",
+ [(set i32:$dst, (AMDGPUmul_i24 i32:$src0, i32:$src1))]
+>;
+//defm V_MUL_HI_I32_I24 : VOP2_32 <0x0000000a, "V_MUL_HI_I32_I24", []>;
+defm V_MUL_U32_U24 : VOP2_32 <0x0000000b, "V_MUL_U32_U24",
+ [(set i32:$dst, (AMDGPUmul_u24 i32:$src0, i32:$src1))]
+>;
+//defm V_MUL_HI_U32_U24 : VOP2_32 <0x0000000c, "V_MUL_HI_U32_U24", []>;
+
+
+defm V_MIN_LEGACY_F32 : VOP2_32 <0x0000000d, "V_MIN_LEGACY_F32",
+ [(set f32:$dst, (AMDGPUfmin f32:$src0, f32:$src1))]
+>;
+
+defm V_MAX_LEGACY_F32 : VOP2_32 <0x0000000e, "V_MAX_LEGACY_F32",
+ [(set f32:$dst, (AMDGPUfmax f32:$src0, f32:$src1))]
+>;
+
+defm V_MIN_F32 : VOP2_32 <0x0000000f, "V_MIN_F32", []>;
+defm V_MAX_F32 : VOP2_32 <0x00000010, "V_MAX_F32", []>;
+defm V_MIN_I32 : VOP2_32 <0x00000011, "V_MIN_I32",
+ [(set i32:$dst, (AMDGPUsmin i32:$src0, i32:$src1))]>;
+defm V_MAX_I32 : VOP2_32 <0x00000012, "V_MAX_I32",
+ [(set i32:$dst, (AMDGPUsmax i32:$src0, i32:$src1))]>;
+defm V_MIN_U32 : VOP2_32 <0x00000013, "V_MIN_U32",
+ [(set i32:$dst, (AMDGPUumin i32:$src0, i32:$src1))]>;
+defm V_MAX_U32 : VOP2_32 <0x00000014, "V_MAX_U32",
+ [(set i32:$dst, (AMDGPUumax i32:$src0, i32:$src1))]>;
+
+defm V_LSHR_B32 : VOP2_32 <0x00000015, "V_LSHR_B32",
+ [(set i32:$dst, (srl i32:$src0, i32:$src1))]
+>;
+
+defm V_LSHRREV_B32 : VOP2_32 <0x00000016, "V_LSHRREV_B32", [], "V_LSHR_B32">;
+
+defm V_ASHR_I32 : VOP2_32 <0x00000017, "V_ASHR_I32",
+ [(set i32:$dst, (sra i32:$src0, i32:$src1))]
+>;
+defm V_ASHRREV_I32 : VOP2_32 <0x00000018, "V_ASHRREV_I32", [], "V_ASHR_I32">;
+
+let hasPostISelHook = 1 in {
+
+defm V_LSHL_B32 : VOP2_32 <0x00000019, "V_LSHL_B32",
+ [(set i32:$dst, (shl i32:$src0, i32:$src1))]
+>;
+
+}
+defm V_LSHLREV_B32 : VOP2_32 <0x0000001a, "V_LSHLREV_B32", [], "V_LSHL_B32">;
+
+defm V_AND_B32 : VOP2_32 <0x0000001b, "V_AND_B32",
+ [(set i32:$dst, (and i32:$src0, i32:$src1))]>;
+defm V_OR_B32 : VOP2_32 <0x0000001c, "V_OR_B32",
+ [(set i32:$dst, (or i32:$src0, i32:$src1))]
+>;
+defm V_XOR_B32 : VOP2_32 <0x0000001d, "V_XOR_B32",
+ [(set i32:$dst, (xor i32:$src0, i32:$src1))]
+>;
+
+} // End isCommutable = 1
+
+defm V_BFM_B32 : VOP2_32 <0x0000001e, "V_BFM_B32",
+ [(set i32:$dst, (AMDGPUbfm i32:$src0, i32:$src1))]>;
+defm V_MAC_F32 : VOP2_32 <0x0000001f, "V_MAC_F32", []>;
+defm V_MADMK_F32 : VOP2_32 <0x00000020, "V_MADMK_F32", []>;
+defm V_MADAK_F32 : VOP2_32 <0x00000021, "V_MADAK_F32", []>;
+defm V_BCNT_U32_B32 : VOP2_32 <0x00000022, "V_BCNT_U32_B32", []>;
+defm V_MBCNT_LO_U32_B32 : VOP2_32 <0x00000023, "V_MBCNT_LO_U32_B32", []>;
+defm V_MBCNT_HI_U32_B32 : VOP2_32 <0x00000024, "V_MBCNT_HI_U32_B32", []>;
+
+let isCommutable = 1, Defs = [VCC] in { // Carry-out goes to VCC
+// No patterns so that the scalar instructions are always selected.
+// The scalar versions will be replaced with vector when needed later.
+defm V_ADD_I32 : VOP2b_32 <0x00000025, "V_ADD_I32",
+ [(set i32:$dst, (add i32:$src0, i32:$src1))], VSrc_32>;
+defm V_SUB_I32 : VOP2b_32 <0x00000026, "V_SUB_I32",
+ [(set i32:$dst, (sub i32:$src0, i32:$src1))], VSrc_32>;
+defm V_SUBREV_I32 : VOP2b_32 <0x00000027, "V_SUBREV_I32", [], VSrc_32,
+ "V_SUB_I32">;
+
+let Uses = [VCC] in { // Carry-in comes from VCC
+defm V_ADDC_U32 : VOP2b_32 <0x00000028, "V_ADDC_U32",
+ [(set i32:$dst, (adde i32:$src0, i32:$src1))], VReg_32>;
+defm V_SUBB_U32 : VOP2b_32 <0x00000029, "V_SUBB_U32",
+ [(set i32:$dst, (sube i32:$src0, i32:$src1))], VReg_32>;
+defm V_SUBBREV_U32 : VOP2b_32 <0x0000002a, "V_SUBBREV_U32", [], VReg_32,
+ "V_SUBB_U32">;
+} // End Uses = [VCC]
+} // End isCommutable = 1, Defs = [VCC]
+
+defm V_LDEXP_F32 : VOP2_32 <0x0000002b, "V_LDEXP_F32", []>;
+////def V_CVT_PKACCUM_U8_F32 : VOP2_U8 <0x0000002c, "V_CVT_PKACCUM_U8_F32", []>;
+////def V_CVT_PKNORM_I16_F32 : VOP2_I16 <0x0000002d, "V_CVT_PKNORM_I16_F32", []>;
+////def V_CVT_PKNORM_U16_F32 : VOP2_U16 <0x0000002e, "V_CVT_PKNORM_U16_F32", []>;
+defm V_CVT_PKRTZ_F16_F32 : VOP2_32 <0x0000002f, "V_CVT_PKRTZ_F16_F32",
+ [(set i32:$dst, (int_SI_packf16 f32:$src0, f32:$src1))]
+>;
+////def V_CVT_PK_U16_U32 : VOP2_U16 <0x00000030, "V_CVT_PK_U16_U32", []>;
+////def V_CVT_PK_I16_I32 : VOP2_I16 <0x00000031, "V_CVT_PK_I16_I32", []>;
+
+//===----------------------------------------------------------------------===//
+// VOP3 Instructions
+//===----------------------------------------------------------------------===//
+
+let neverHasSideEffects = 1 in {
+
+defm V_MAD_LEGACY_F32 : VOP3_32 <0x00000140, "V_MAD_LEGACY_F32", []>;
+defm V_MAD_F32 : VOP3_32 <0x00000141, "V_MAD_F32",
+ [(set f32:$dst, (fadd (fmul f32:$src0, f32:$src1), f32:$src2))]
+>;
+defm V_MAD_I32_I24 : VOP3_32 <0x00000142, "V_MAD_I32_I24",
+ [(set i32:$dst, (AMDGPUmad_i24 i32:$src0, i32:$src1, i32:$src2))]
+>;
+defm V_MAD_U32_U24 : VOP3_32 <0x00000143, "V_MAD_U32_U24",
+ [(set i32:$dst, (AMDGPUmad_u24 i32:$src0, i32:$src1, i32:$src2))]
+>;
+
+} // End neverHasSideEffects
+
+defm V_CUBEID_F32 : VOP3_32 <0x00000144, "V_CUBEID_F32", []>;
+defm V_CUBESC_F32 : VOP3_32 <0x00000145, "V_CUBESC_F32", []>;
+defm V_CUBETC_F32 : VOP3_32 <0x00000146, "V_CUBETC_F32", []>;
+defm V_CUBEMA_F32 : VOP3_32 <0x00000147, "V_CUBEMA_F32", []>;
+
+let neverHasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
+defm V_BFE_U32 : VOP3_32 <0x00000148, "V_BFE_U32",
+ [(set i32:$dst, (AMDGPUbfe_u32 i32:$src0, i32:$src1, i32:$src2))]>;
+defm V_BFE_I32 : VOP3_32 <0x00000149, "V_BFE_I32",
+ [(set i32:$dst, (AMDGPUbfe_i32 i32:$src0, i32:$src1, i32:$src2))]>;
+}
+
+defm V_BFI_B32 : VOP3_32 <0x0000014a, "V_BFI_B32",
+ [(set i32:$dst, (AMDGPUbfi i32:$src0, i32:$src1, i32:$src2))]>;
+defm V_FMA_F32 : VOP3_32 <0x0000014b, "V_FMA_F32",
+ [(set f32:$dst, (fma f32:$src0, f32:$src1, f32:$src2))]
+>;
+def V_FMA_F64 : VOP3_64 <0x0000014c, "V_FMA_F64",
+ [(set f64:$dst, (fma f64:$src0, f64:$src1, f64:$src2))]
+>;
+//def V_LERP_U8 : VOP3_U8 <0x0000014d, "V_LERP_U8", []>;
+defm V_ALIGNBIT_B32 : VOP3_32 <0x0000014e, "V_ALIGNBIT_B32", []>;
+
+defm V_ALIGNBYTE_B32 : VOP3_32 <0x0000014f, "V_ALIGNBYTE_B32", []>;
+defm V_MULLIT_F32 : VOP3_32 <0x00000150, "V_MULLIT_F32", []>;
+////def V_MIN3_F32 : VOP3_MIN3 <0x00000151, "V_MIN3_F32", []>;
+////def V_MIN3_I32 : VOP3_MIN3 <0x00000152, "V_MIN3_I32", []>;
+////def V_MIN3_U32 : VOP3_MIN3 <0x00000153, "V_MIN3_U32", []>;
+////def V_MAX3_F32 : VOP3_MAX3 <0x00000154, "V_MAX3_F32", []>;
+////def V_MAX3_I32 : VOP3_MAX3 <0x00000155, "V_MAX3_I32", []>;
+////def V_MAX3_U32 : VOP3_MAX3 <0x00000156, "V_MAX3_U32", []>;
+////def V_MED3_F32 : VOP3_MED3 <0x00000157, "V_MED3_F32", []>;
+////def V_MED3_I32 : VOP3_MED3 <0x00000158, "V_MED3_I32", []>;
+////def V_MED3_U32 : VOP3_MED3 <0x00000159, "V_MED3_U32", []>;
+//def V_SAD_U8 : VOP3_U8 <0x0000015a, "V_SAD_U8", []>;
+//def V_SAD_HI_U8 : VOP3_U8 <0x0000015b, "V_SAD_HI_U8", []>;
+//def V_SAD_U16 : VOP3_U16 <0x0000015c, "V_SAD_U16", []>;
+defm V_SAD_U32 : VOP3_32 <0x0000015d, "V_SAD_U32", []>;
+////def V_CVT_PK_U8_F32 : VOP3_U8 <0x0000015e, "V_CVT_PK_U8_F32", []>;
+defm V_DIV_FIXUP_F32 : VOP3_32 <0x0000015f, "V_DIV_FIXUP_F32",
+ [(set f32:$dst, (AMDGPUdiv_fixup f32:$src0, f32:$src1, f32:$src2))]
+>;
+def V_DIV_FIXUP_F64 : VOP3_64 <0x00000160, "V_DIV_FIXUP_F64",
+ [(set f64:$dst, (AMDGPUdiv_fixup f64:$src0, f64:$src1, f64:$src2))]
+>;
+
+def V_LSHL_B64 : VOP3_64_32 <0x00000161, "V_LSHL_B64",
+ [(set i64:$dst, (shl i64:$src0, i32:$src1))]
+>;
+def V_LSHR_B64 : VOP3_64_32 <0x00000162, "V_LSHR_B64",
+ [(set i64:$dst, (srl i64:$src0, i32:$src1))]
+>;
+def V_ASHR_I64 : VOP3_64_32 <0x00000163, "V_ASHR_I64",
+ [(set i64:$dst, (sra i64:$src0, i32:$src1))]
+>;
+
+let isCommutable = 1 in {
+
+def V_ADD_F64 : VOP3_64 <0x00000164, "V_ADD_F64", []>;
+def V_MUL_F64 : VOP3_64 <0x00000165, "V_MUL_F64", []>;
+def V_MIN_F64 : VOP3_64 <0x00000166, "V_MIN_F64", []>;
+def V_MAX_F64 : VOP3_64 <0x00000167, "V_MAX_F64", []>;
+
+} // isCommutable = 1
+
+def V_LDEXP_F64 : VOP3_64 <0x00000168, "V_LDEXP_F64", []>;
+
+let isCommutable = 1 in {
+
+defm V_MUL_LO_U32 : VOP3_32 <0x00000169, "V_MUL_LO_U32", []>;
+defm V_MUL_HI_U32 : VOP3_32 <0x0000016a, "V_MUL_HI_U32", []>;
+defm V_MUL_LO_I32 : VOP3_32 <0x0000016b, "V_MUL_LO_I32", []>;
+defm V_MUL_HI_I32 : VOP3_32 <0x0000016c, "V_MUL_HI_I32", []>;
+
+} // isCommutable = 1
+
+def V_DIV_SCALE_F32 : VOP3b_32 <0x0000016d, "V_DIV_SCALE_F32", []>;
+
+// Double precision division pre-scale.
+def V_DIV_SCALE_F64 : VOP3b_64 <0x0000016e, "V_DIV_SCALE_F64", []>;
+
+defm V_DIV_FMAS_F32 : VOP3_32 <0x0000016f, "V_DIV_FMAS_F32",
+ [(set f32:$dst, (AMDGPUdiv_fmas f32:$src0, f32:$src1, f32:$src2))]
+>;
+def V_DIV_FMAS_F64 : VOP3_64 <0x00000170, "V_DIV_FMAS_F64",
+ [(set f64:$dst, (AMDGPUdiv_fmas f64:$src0, f64:$src1, f64:$src2))]
+>;
+//def V_MSAD_U8 : VOP3_U8 <0x00000171, "V_MSAD_U8", []>;
+//def V_QSAD_U8 : VOP3_U8 <0x00000172, "V_QSAD_U8", []>;
+//def V_MQSAD_U8 : VOP3_U8 <0x00000173, "V_MQSAD_U8", []>;
+def V_TRIG_PREOP_F64 : VOP3_64_32 <0x00000174, "V_TRIG_PREOP_F64",
+ [(set f64:$dst, (AMDGPUtrig_preop f64:$src0, i32:$src1))]
+>;
+
+//===----------------------------------------------------------------------===//
+// Pseudo Instructions
+//===----------------------------------------------------------------------===//
+
+let isCodeGenOnly = 1, isPseudo = 1 in {
+
+def V_MOV_I1 : InstSI <
+ (outs VReg_1:$dst),
+ (ins i1imm:$src),
+ "", [(set i1:$dst, (imm:$src))]
+>;
+
+def V_AND_I1 : InstSI <
+ (outs VReg_1:$dst), (ins VReg_1:$src0, VReg_1:$src1), "",
+ [(set i1:$dst, (and i1:$src0, i1:$src1))]
+>;
+
+def V_OR_I1 : InstSI <
+ (outs VReg_1:$dst), (ins VReg_1:$src0, VReg_1:$src1), "",
+ [(set i1:$dst, (or i1:$src0, i1:$src1))]
+>;
+
+def V_XOR_I1 : InstSI <
+ (outs VReg_1:$dst), (ins VReg_1:$src0, VReg_1:$src1), "",
+ [(set i1:$dst, (xor i1:$src0, i1:$src1))]
+>;
+
+// SI pseudo instructions. These are used by the CFG structurizer pass
+// and should be lowered to ISA instructions prior to codegen.
+
+let mayLoad = 1, mayStore = 1, hasSideEffects = 1,
+ Uses = [EXEC], Defs = [EXEC] in {
+
+let isBranch = 1, isTerminator = 1 in {
+
+def SI_IF: InstSI <
+ (outs SReg_64:$dst),
+ (ins SReg_64:$vcc, brtarget:$target),
+ "",
+ [(set i64:$dst, (int_SI_if i1:$vcc, bb:$target))]
+>;
+
+def SI_ELSE : InstSI <
+ (outs SReg_64:$dst),
+ (ins SReg_64:$src, brtarget:$target),
+ "",
+ [(set i64:$dst, (int_SI_else i64:$src, bb:$target))]
+> {
+ let Constraints = "$src = $dst";
+}
+
+def SI_LOOP : InstSI <
+ (outs),
+ (ins SReg_64:$saved, brtarget:$target),
+ "SI_LOOP $saved, $target",
+ [(int_SI_loop i64:$saved, bb:$target)]
+>;
+
+} // end isBranch = 1, isTerminator = 1
+
+def SI_BREAK : InstSI <
+ (outs SReg_64:$dst),
+ (ins SReg_64:$src),
+ "SI_ELSE $dst, $src",
+ [(set i64:$dst, (int_SI_break i64:$src))]
+>;
+
+def SI_IF_BREAK : InstSI <
+ (outs SReg_64:$dst),
+ (ins SReg_64:$vcc, SReg_64:$src),
+ "SI_IF_BREAK $dst, $vcc, $src",
+ [(set i64:$dst, (int_SI_if_break i1:$vcc, i64:$src))]
+>;
+
+def SI_ELSE_BREAK : InstSI <
+ (outs SReg_64:$dst),
+ (ins SReg_64:$src0, SReg_64:$src1),
+ "SI_ELSE_BREAK $dst, $src0, $src1",
+ [(set i64:$dst, (int_SI_else_break i64:$src0, i64:$src1))]
+>;
+
+def SI_END_CF : InstSI <
+ (outs),
+ (ins SReg_64:$saved),
+ "SI_END_CF $saved",
+ [(int_SI_end_cf i64:$saved)]
+>;
+
+def SI_KILL : InstSI <
+ (outs),
+ (ins VSrc_32:$src),
+ "SI_KILL $src",
+ [(int_AMDGPU_kill f32:$src)]
+>;
+
+} // end mayLoad = 1, mayStore = 1, hasSideEffects = 1
+ // Uses = [EXEC], Defs = [EXEC]
+
+let Uses = [EXEC], Defs = [EXEC,VCC,M0] in {
+
+//defm SI_ : RegisterLoadStore <VReg_32, FRAMEri, ADDRIndirect>;
+
+let UseNamedOperandTable = 1 in {
+
+def SI_RegisterLoad : InstSI <
+ (outs VReg_32:$dst, SReg_64:$temp),
+ (ins FRAMEri32:$addr, i32imm:$chan),
+ "", []
+> {
+ let isRegisterLoad = 1;
+ let mayLoad = 1;
+}
+
+class SIRegStore<dag outs> : InstSI <
+ outs,
+ (ins VReg_32:$val, FRAMEri32:$addr, i32imm:$chan),
+ "", []
+> {
+ let isRegisterStore = 1;
+ let mayStore = 1;
+}
+
+let usesCustomInserter = 1 in {
+def SI_RegisterStorePseudo : SIRegStore<(outs)>;
+} // End usesCustomInserter = 1
+def SI_RegisterStore : SIRegStore<(outs SReg_64:$temp)>;
+
+
+} // End UseNamedOperandTable = 1
+
+def SI_INDIRECT_SRC : InstSI <
+ (outs VReg_32:$dst, SReg_64:$temp),
+ (ins unknown:$src, VSrc_32:$idx, i32imm:$off),
+ "SI_INDIRECT_SRC $dst, $temp, $src, $idx, $off",
+ []
+>;
+
+class SI_INDIRECT_DST<RegisterClass rc> : InstSI <
+ (outs rc:$dst, SReg_64:$temp),
+ (ins unknown:$src, VSrc_32:$idx, i32imm:$off, VReg_32:$val),
+ "SI_INDIRECT_DST $dst, $temp, $src, $idx, $off, $val",
+ []
+> {
+ let Constraints = "$src = $dst";
+}
+
+def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VReg_32>;
+def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
+def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
+def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
+def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
+
+} // Uses = [EXEC,VCC,M0], Defs = [EXEC,VCC,M0]
+
+let usesCustomInserter = 1 in {
+
+// This pseudo instruction takes a pointer as input and outputs a resource
+// constant that can be used with the ADDR64 MUBUF instructions.
+def SI_ADDR64_RSRC : InstSI <
+ (outs SReg_128:$srsrc),
+ (ins SSrc_64:$ptr),
+ "", []
+>;
+
+def SI_BUFFER_RSRC : InstSI <
+ (outs SReg_128:$srsrc),
+ (ins SReg_32:$ptr_lo, SReg_32:$ptr_hi, SSrc_32:$data_lo, SSrc_32:$data_hi),
+ "", []
+>;
+
+def V_SUB_F64 : InstSI <
+ (outs VReg_64:$dst),
+ (ins VReg_64:$src0, VReg_64:$src1),
+ "V_SUB_F64 $dst, $src0, $src1",
+ [(set f64:$dst, (fsub f64:$src0, f64:$src1))]
+>;
+
+} // end usesCustomInserter
+
+multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
+
+ def _SAVE : InstSI <
+ (outs VReg_32:$dst),
+ (ins sgpr_class:$src, i32imm:$frame_idx),
+ "", []
+ >;
+
+ def _RESTORE : InstSI <
+ (outs sgpr_class:$dst),
+ (ins VReg_32:$src, i32imm:$frame_idx),
+ "", []
+ >;
+
+}
+
+defm SI_SPILL_S32 : SI_SPILL_SGPR <SReg_32>;
+defm SI_SPILL_S64 : SI_SPILL_SGPR <SReg_64>;
+defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
+defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
+defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
+
+let Defs = [SCC] in {
+
+def SI_CONSTDATA_PTR : InstSI <
+ (outs SReg_64:$dst),
+ (ins),
+ "", [(set SReg_64:$dst, (i64 SIconstdata_ptr))]
+>;
+
+} // End Defs = [SCC]
+
+} // end IsCodeGenOnly, isPseudo
+
+} // end SubtargetPredicate = SI
+
+let Predicates = [isSI] in {
+
+def : Pat<
+ (int_AMDGPU_cndlt f32:$src0, f32:$src1, f32:$src2),
+ (V_CNDMASK_B32_e64 $src2, $src1, (V_CMP_GT_F32_e64 0, $src0))
+>;
+
+def : Pat <
+ (int_AMDGPU_kilp),
+ (SI_KILL 0xbf800000)
+>;
+
+/* int_SI_vs_load_input */
+def : Pat<
+ (SIload_input v4i32:$tlst, imm:$attr_offset, i32:$buf_idx_vgpr),
+ (BUFFER_LOAD_FORMAT_XYZW_IDXEN $tlst, $buf_idx_vgpr, imm:$attr_offset, 0, 0, 0, 0)
+>;
+
+/* int_SI_export */
+def : Pat <
+ (int_SI_export imm:$en, imm:$vm, imm:$done, imm:$tgt, imm:$compr,
+ f32:$src0, f32:$src1, f32:$src2, f32:$src3),
+ (EXP imm:$en, imm:$tgt, imm:$compr, imm:$done, imm:$vm,
+ $src0, $src1, $src2, $src3)
+>;
+
+//===----------------------------------------------------------------------===//
+// SMRD Patterns
+//===----------------------------------------------------------------------===//
+
+multiclass SMRD_Pattern <SMRD Instr_IMM, SMRD Instr_SGPR, ValueType vt> {
+
+ // 1. Offset as 8bit DWORD immediate
+ def : Pat <
+ (constant_load (add i64:$sbase, (i64 IMM8bitDWORD:$offset))),
+ (vt (Instr_IMM $sbase, (as_dword_i32imm $offset)))
+ >;
+
+ // 2. Offset loaded in an 32bit SGPR
+ def : Pat <
+ (constant_load (add i64:$sbase, (i64 IMM32bit:$offset))),
+ (vt (Instr_SGPR $sbase, (S_MOV_B32 (i32 (as_i32imm $offset)))))
+ >;
+
+ // 3. No offset at all
+ def : Pat <
+ (constant_load i64:$sbase),
+ (vt (Instr_IMM $sbase, 0))
+ >;
+}
+
+defm : SMRD_Pattern <S_LOAD_DWORD_IMM, S_LOAD_DWORD_SGPR, f32>;
+defm : SMRD_Pattern <S_LOAD_DWORD_IMM, S_LOAD_DWORD_SGPR, i32>;
+defm : SMRD_Pattern <S_LOAD_DWORDX2_IMM, S_LOAD_DWORDX2_SGPR, v2i32>;
+defm : SMRD_Pattern <S_LOAD_DWORDX4_IMM, S_LOAD_DWORDX4_SGPR, v4i32>;
+defm : SMRD_Pattern <S_LOAD_DWORDX8_IMM, S_LOAD_DWORDX8_SGPR, v32i8>;
+defm : SMRD_Pattern <S_LOAD_DWORDX8_IMM, S_LOAD_DWORDX8_SGPR, v8i32>;
+defm : SMRD_Pattern <S_LOAD_DWORDX16_IMM, S_LOAD_DWORDX16_SGPR, v16i32>;
+
+// 1. Offset as 8bit DWORD immediate
+def : Pat <
+ (SIload_constant v4i32:$sbase, IMM8bitDWORD:$offset),
+ (S_BUFFER_LOAD_DWORD_IMM $sbase, (as_dword_i32imm $offset))
+>;
+
+// 2. Offset loaded in an 32bit SGPR
+def : Pat <
+ (SIload_constant v4i32:$sbase, imm:$offset),
+ (S_BUFFER_LOAD_DWORD_SGPR $sbase, (S_MOV_B32 imm:$offset))
+>;
+
+} // Predicates = [isSI] in {
+
+//===----------------------------------------------------------------------===//
+// SOP1 Patterns
+//===----------------------------------------------------------------------===//
+
+let Predicates = [isSI, isCFDepth0] in {
+
+def : Pat <
+ (i64 (ctpop i64:$src)),
+ (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
+ (S_BCNT1_I32_B64 $src), sub0),
+ (S_MOV_B32 0), sub1)
+>;
+
+//===----------------------------------------------------------------------===//
+// SOP2 Patterns
+//===----------------------------------------------------------------------===//
+
+// V_ADD_I32_e32/S_ADD_I32 produces carry in VCC/SCC. For the vector
+// case, the sgpr-copies pass will fix this to use the vector version.
+def : Pat <
+ (i32 (addc i32:$src0, i32:$src1)),
+ (S_ADD_I32 $src0, $src1)
+>;
+
+} // Predicates = [isSI, isCFDepth0]
+
+let Predicates = [isSI] in {
+
+//===----------------------------------------------------------------------===//
+// SOPP Patterns
+//===----------------------------------------------------------------------===//
+
+def : Pat <
+ (int_AMDGPU_barrier_global),
+ (S_BARRIER)
+>;
+
+//===----------------------------------------------------------------------===//
+// VOP1 Patterns
+//===----------------------------------------------------------------------===//
+
+let Predicates = [UnsafeFPMath] in {
+def : RcpPat<V_RCP_F64_e32, f64>;
+defm : RsqPat<V_RSQ_F64_e32, f64>;
+defm : RsqPat<V_RSQ_F32_e32, f32>;
+}
+
+//===----------------------------------------------------------------------===//
+// VOP2 Patterns
+//===----------------------------------------------------------------------===//
+
+class BinOp64Pat <SDNode node, Instruction inst> : Pat <
+ (node i64:$src0, i64:$src1),
+ (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
+ (inst (EXTRACT_SUBREG i64:$src0, sub0),
+ (EXTRACT_SUBREG i64:$src1, sub0)), sub0),
+ (inst (EXTRACT_SUBREG i64:$src0, sub1),
+ (EXTRACT_SUBREG i64:$src1, sub1)), sub1)
+>;
+
+def : BinOp64Pat <or, V_OR_B32_e32>;
+def : BinOp64Pat <xor, V_XOR_B32_e32>;
+
+class SextInReg <ValueType vt, int ShiftAmt> : Pat <
+ (sext_inreg i32:$src0, vt),
+ (V_ASHRREV_I32_e32 ShiftAmt, (V_LSHLREV_B32_e32 ShiftAmt, $src0))
+>;
+
+def : SextInReg <i8, 24>;
+def : SextInReg <i16, 16>;
+
+def : Pat <
+ (i32 (add (i32 (ctpop i32:$popcnt)), i32:$val)),
+ (V_BCNT_U32_B32_e32 $popcnt, $val)
+>;
+
+def : Pat <
+ (i32 (ctpop i32:$popcnt)),
+ (V_BCNT_U32_B32_e64 $popcnt, 0, 0, 0)
+>;
+
+def : Pat <
+ (i64 (ctpop i64:$src)),
+ (INSERT_SUBREG
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
+ (V_BCNT_U32_B32_e32 (EXTRACT_SUBREG $src, sub1),
+ (V_BCNT_U32_B32_e64 (EXTRACT_SUBREG $src, sub0), 0, 0, 0)),
+ sub0),
+ (V_MOV_B32_e32 0), sub1)
+>;
+
+def : Pat <
+ (addc i32:$src0, i32:$src1),
+ (V_ADD_I32_e32 $src0, $src1)
+>;
+
+/********** ======================= **********/
+/********** Image sampling patterns **********/
+/********** ======================= **********/
+
+// Image + sampler
+class SampleRawPattern<SDPatternOperator name, MIMG opcode, ValueType vt> : Pat <
+ (name vt:$addr, v8i32:$rsrc, v4i32:$sampler, i32:$dmask, i32:$unorm,
+ i32:$r128, i32:$da, i32:$glc, i32:$slc, i32:$tfe, i32:$lwe),
+ (opcode (as_i32imm $dmask), (as_i1imm $unorm), (as_i1imm $glc), (as_i1imm $da),
+ (as_i1imm $r128), (as_i1imm $tfe), (as_i1imm $lwe), (as_i1imm $slc),
+ $addr, $rsrc, $sampler)
+>;
+
+multiclass SampleRawPatterns<SDPatternOperator name, string opcode> {
+ def : SampleRawPattern<name, !cast<MIMG>(opcode # _V4_V1), i32>;
+ def : SampleRawPattern<name, !cast<MIMG>(opcode # _V4_V2), v2i32>;
+ def : SampleRawPattern<name, !cast<MIMG>(opcode # _V4_V4), v4i32>;
+ def : SampleRawPattern<name, !cast<MIMG>(opcode # _V4_V8), v8i32>;
+ def : SampleRawPattern<name, !cast<MIMG>(opcode # _V4_V16), v16i32>;
+}
+
+// Image only
+class ImagePattern<SDPatternOperator name, MIMG opcode, ValueType vt> : Pat <
+ (name vt:$addr, v8i32:$rsrc, i32:$dmask, i32:$unorm,
+ i32:$r128, i32:$da, i32:$glc, i32:$slc, i32:$tfe, i32:$lwe),
+ (opcode (as_i32imm $dmask), (as_i1imm $unorm), (as_i1imm $glc), (as_i1imm $da),
+ (as_i1imm $r128), (as_i1imm $tfe), (as_i1imm $lwe), (as_i1imm $slc),
+ $addr, $rsrc)
+>;
+
+multiclass ImagePatterns<SDPatternOperator name, string opcode> {
+ def : ImagePattern<name, !cast<MIMG>(opcode # _V4_V1), i32>;
+ def : ImagePattern<name, !cast<MIMG>(opcode # _V4_V2), v2i32>;
+ def : ImagePattern<name, !cast<MIMG>(opcode # _V4_V4), v4i32>;
+}
+
+// Basic sample
+defm : SampleRawPatterns<int_SI_image_sample, "IMAGE_SAMPLE">;
+defm : SampleRawPatterns<int_SI_image_sample_cl, "IMAGE_SAMPLE_CL">;
+defm : SampleRawPatterns<int_SI_image_sample_d, "IMAGE_SAMPLE_D">;
+defm : SampleRawPatterns<int_SI_image_sample_d_cl, "IMAGE_SAMPLE_D_CL">;
+defm : SampleRawPatterns<int_SI_image_sample_l, "IMAGE_SAMPLE_L">;
+defm : SampleRawPatterns<int_SI_image_sample_b, "IMAGE_SAMPLE_B">;
+defm : SampleRawPatterns<int_SI_image_sample_b_cl, "IMAGE_SAMPLE_B_CL">;
+defm : SampleRawPatterns<int_SI_image_sample_lz, "IMAGE_SAMPLE_LZ">;
+defm : SampleRawPatterns<int_SI_image_sample_cd, "IMAGE_SAMPLE_CD">;
+defm : SampleRawPatterns<int_SI_image_sample_cd_cl, "IMAGE_SAMPLE_CD_CL">;
+
+// Sample with comparison
+defm : SampleRawPatterns<int_SI_image_sample_c, "IMAGE_SAMPLE_C">;
+defm : SampleRawPatterns<int_SI_image_sample_c_cl, "IMAGE_SAMPLE_C_CL">;
+defm : SampleRawPatterns<int_SI_image_sample_c_d, "IMAGE_SAMPLE_C_D">;
+defm : SampleRawPatterns<int_SI_image_sample_c_d_cl, "IMAGE_SAMPLE_C_D_CL">;
+defm : SampleRawPatterns<int_SI_image_sample_c_l, "IMAGE_SAMPLE_C_L">;
+defm : SampleRawPatterns<int_SI_image_sample_c_b, "IMAGE_SAMPLE_C_B">;
+defm : SampleRawPatterns<int_SI_image_sample_c_b_cl, "IMAGE_SAMPLE_C_B_CL">;
+defm : SampleRawPatterns<int_SI_image_sample_c_lz, "IMAGE_SAMPLE_C_LZ">;
+defm : SampleRawPatterns<int_SI_image_sample_c_cd, "IMAGE_SAMPLE_C_CD">;
+defm : SampleRawPatterns<int_SI_image_sample_c_cd_cl, "IMAGE_SAMPLE_C_CD_CL">;
+
+// Sample with offsets
+defm : SampleRawPatterns<int_SI_image_sample_o, "IMAGE_SAMPLE_O">;
+defm : SampleRawPatterns<int_SI_image_sample_cl_o, "IMAGE_SAMPLE_CL_O">;
+defm : SampleRawPatterns<int_SI_image_sample_d_o, "IMAGE_SAMPLE_D_O">;
+defm : SampleRawPatterns<int_SI_image_sample_d_cl_o, "IMAGE_SAMPLE_D_CL_O">;
+defm : SampleRawPatterns<int_SI_image_sample_l_o, "IMAGE_SAMPLE_L_O">;
+defm : SampleRawPatterns<int_SI_image_sample_b_o, "IMAGE_SAMPLE_B_O">;
+defm : SampleRawPatterns<int_SI_image_sample_b_cl_o, "IMAGE_SAMPLE_B_CL_O">;
+defm : SampleRawPatterns<int_SI_image_sample_lz_o, "IMAGE_SAMPLE_LZ_O">;
+defm : SampleRawPatterns<int_SI_image_sample_cd_o, "IMAGE_SAMPLE_CD_O">;
+defm : SampleRawPatterns<int_SI_image_sample_cd_cl_o, "IMAGE_SAMPLE_CD_CL_O">;
+
+// Sample with comparison and offsets
+defm : SampleRawPatterns<int_SI_image_sample_c_o, "IMAGE_SAMPLE_C_O">;
+defm : SampleRawPatterns<int_SI_image_sample_c_cl_o, "IMAGE_SAMPLE_C_CL_O">;
+defm : SampleRawPatterns<int_SI_image_sample_c_d_o, "IMAGE_SAMPLE_C_D_O">;
+defm : SampleRawPatterns<int_SI_image_sample_c_d_cl_o, "IMAGE_SAMPLE_C_D_CL_O">;
+defm : SampleRawPatterns<int_SI_image_sample_c_l_o, "IMAGE_SAMPLE_C_L_O">;
+defm : SampleRawPatterns<int_SI_image_sample_c_b_o, "IMAGE_SAMPLE_C_B_O">;
+defm : SampleRawPatterns<int_SI_image_sample_c_b_cl_o, "IMAGE_SAMPLE_C_B_CL_O">;
+defm : SampleRawPatterns<int_SI_image_sample_c_lz_o, "IMAGE_SAMPLE_C_LZ_O">;
+defm : SampleRawPatterns<int_SI_image_sample_c_cd_o, "IMAGE_SAMPLE_C_CD_O">;
+defm : SampleRawPatterns<int_SI_image_sample_c_cd_cl_o, "IMAGE_SAMPLE_C_CD_CL_O">;
+
+// Gather opcodes
+// Only the variants which make sense are defined.
+def : SampleRawPattern<int_SI_gather4, IMAGE_GATHER4_V4_V2, v2i32>;
+def : SampleRawPattern<int_SI_gather4, IMAGE_GATHER4_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_cl, IMAGE_GATHER4_CL_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_l, IMAGE_GATHER4_L_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_b, IMAGE_GATHER4_B_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_b_cl, IMAGE_GATHER4_B_CL_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_b_cl, IMAGE_GATHER4_B_CL_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_lz, IMAGE_GATHER4_LZ_V4_V2, v2i32>;
+def : SampleRawPattern<int_SI_gather4_lz, IMAGE_GATHER4_LZ_V4_V4, v4i32>;
+
+def : SampleRawPattern<int_SI_gather4_c, IMAGE_GATHER4_C_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_c_cl, IMAGE_GATHER4_C_CL_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_c_cl, IMAGE_GATHER4_C_CL_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_c_l, IMAGE_GATHER4_C_L_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_c_l, IMAGE_GATHER4_C_L_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_c_b, IMAGE_GATHER4_C_B_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_c_b, IMAGE_GATHER4_C_B_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_c_b_cl, IMAGE_GATHER4_C_B_CL_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_c_lz, IMAGE_GATHER4_C_LZ_V4_V4, v4i32>;
+
+def : SampleRawPattern<int_SI_gather4_o, IMAGE_GATHER4_O_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_cl_o, IMAGE_GATHER4_CL_O_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_cl_o, IMAGE_GATHER4_CL_O_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_l_o, IMAGE_GATHER4_L_O_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_l_o, IMAGE_GATHER4_L_O_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_b_o, IMAGE_GATHER4_B_O_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_b_o, IMAGE_GATHER4_B_O_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_b_cl_o, IMAGE_GATHER4_B_CL_O_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_lz_o, IMAGE_GATHER4_LZ_O_V4_V4, v4i32>;
+
+def : SampleRawPattern<int_SI_gather4_c_o, IMAGE_GATHER4_C_O_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_c_o, IMAGE_GATHER4_C_O_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_c_cl_o, IMAGE_GATHER4_C_CL_O_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_c_l_o, IMAGE_GATHER4_C_L_O_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_c_b_o, IMAGE_GATHER4_C_B_O_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_c_b_cl_o, IMAGE_GATHER4_C_B_CL_O_V4_V8, v8i32>;
+def : SampleRawPattern<int_SI_gather4_c_lz_o, IMAGE_GATHER4_C_LZ_O_V4_V4, v4i32>;
+def : SampleRawPattern<int_SI_gather4_c_lz_o, IMAGE_GATHER4_C_LZ_O_V4_V8, v8i32>;
+
+def : SampleRawPattern<int_SI_getlod, IMAGE_GET_LOD_V4_V1, i32>;
+def : SampleRawPattern<int_SI_getlod, IMAGE_GET_LOD_V4_V2, v2i32>;
+def : SampleRawPattern<int_SI_getlod, IMAGE_GET_LOD_V4_V4, v4i32>;
+
+def : ImagePattern<int_SI_getresinfo, IMAGE_GET_RESINFO_V4_V1, i32>;
+defm : ImagePatterns<int_SI_image_load, "IMAGE_LOAD">;
+defm : ImagePatterns<int_SI_image_load_mip, "IMAGE_LOAD_MIP">;
+
+/* SIsample for simple 1D texture lookup */
+def : Pat <
+ (SIsample i32:$addr, v32i8:$rsrc, v4i32:$sampler, imm),
+ (IMAGE_SAMPLE_V4_V1 0xf, 0, 0, 0, 0, 0, 0, 0, $addr, $rsrc, $sampler)
+>;
+
+class SamplePattern<SDNode name, MIMG opcode, ValueType vt> : Pat <
+ (name vt:$addr, v32i8:$rsrc, v4i32:$sampler, imm),
+ (opcode 0xf, 0, 0, 0, 0, 0, 0, 0, $addr, $rsrc, $sampler)
+>;
+
+class SampleRectPattern<SDNode name, MIMG opcode, ValueType vt> : Pat <
+ (name vt:$addr, v32i8:$rsrc, v4i32:$sampler, TEX_RECT),
+ (opcode 0xf, 1, 0, 0, 0, 0, 0, 0, $addr, $rsrc, $sampler)
+>;
+
+class SampleArrayPattern<SDNode name, MIMG opcode, ValueType vt> : Pat <
+ (name vt:$addr, v32i8:$rsrc, v4i32:$sampler, TEX_ARRAY),
+ (opcode 0xf, 0, 0, 1, 0, 0, 0, 0, $addr, $rsrc, $sampler)
+>;
+
+class SampleShadowPattern<SDNode name, MIMG opcode,
+ ValueType vt> : Pat <
+ (name vt:$addr, v32i8:$rsrc, v4i32:$sampler, TEX_SHADOW),
+ (opcode 0xf, 0, 0, 0, 0, 0, 0, 0, $addr, $rsrc, $sampler)
+>;
+
+class SampleShadowArrayPattern<SDNode name, MIMG opcode,
+ ValueType vt> : Pat <
+ (name vt:$addr, v32i8:$rsrc, v4i32:$sampler, TEX_SHADOW_ARRAY),
+ (opcode 0xf, 0, 0, 1, 0, 0, 0, 0, $addr, $rsrc, $sampler)
+>;
+
+/* SIsample* for texture lookups consuming more address parameters */
+multiclass SamplePatterns<MIMG sample, MIMG sample_c, MIMG sample_l,
+ MIMG sample_c_l, MIMG sample_b, MIMG sample_c_b,
+MIMG sample_d, MIMG sample_c_d, ValueType addr_type> {
+ def : SamplePattern <SIsample, sample, addr_type>;
+ def : SampleRectPattern <SIsample, sample, addr_type>;
+ def : SampleArrayPattern <SIsample, sample, addr_type>;
+ def : SampleShadowPattern <SIsample, sample_c, addr_type>;
+ def : SampleShadowArrayPattern <SIsample, sample_c, addr_type>;
+
+ def : SamplePattern <SIsamplel, sample_l, addr_type>;
+ def : SampleArrayPattern <SIsamplel, sample_l, addr_type>;
+ def : SampleShadowPattern <SIsamplel, sample_c_l, addr_type>;
+ def : SampleShadowArrayPattern <SIsamplel, sample_c_l, addr_type>;
+
+ def : SamplePattern <SIsampleb, sample_b, addr_type>;
+ def : SampleArrayPattern <SIsampleb, sample_b, addr_type>;
+ def : SampleShadowPattern <SIsampleb, sample_c_b, addr_type>;
+ def : SampleShadowArrayPattern <SIsampleb, sample_c_b, addr_type>;
+
+ def : SamplePattern <SIsampled, sample_d, addr_type>;
+ def : SampleArrayPattern <SIsampled, sample_d, addr_type>;
+ def : SampleShadowPattern <SIsampled, sample_c_d, addr_type>;
+ def : SampleShadowArrayPattern <SIsampled, sample_c_d, addr_type>;
+}
+
+defm : SamplePatterns<IMAGE_SAMPLE_V4_V2, IMAGE_SAMPLE_C_V4_V2,
+ IMAGE_SAMPLE_L_V4_V2, IMAGE_SAMPLE_C_L_V4_V2,
+ IMAGE_SAMPLE_B_V4_V2, IMAGE_SAMPLE_C_B_V4_V2,
+ IMAGE_SAMPLE_D_V4_V2, IMAGE_SAMPLE_C_D_V4_V2,
+ v2i32>;
+defm : SamplePatterns<IMAGE_SAMPLE_V4_V4, IMAGE_SAMPLE_C_V4_V4,
+ IMAGE_SAMPLE_L_V4_V4, IMAGE_SAMPLE_C_L_V4_V4,
+ IMAGE_SAMPLE_B_V4_V4, IMAGE_SAMPLE_C_B_V4_V4,
+ IMAGE_SAMPLE_D_V4_V4, IMAGE_SAMPLE_C_D_V4_V4,
+ v4i32>;
+defm : SamplePatterns<IMAGE_SAMPLE_V4_V8, IMAGE_SAMPLE_C_V4_V8,
+ IMAGE_SAMPLE_L_V4_V8, IMAGE_SAMPLE_C_L_V4_V8,
+ IMAGE_SAMPLE_B_V4_V8, IMAGE_SAMPLE_C_B_V4_V8,
+ IMAGE_SAMPLE_D_V4_V8, IMAGE_SAMPLE_C_D_V4_V8,
+ v8i32>;
+defm : SamplePatterns<IMAGE_SAMPLE_V4_V16, IMAGE_SAMPLE_C_V4_V16,
+ IMAGE_SAMPLE_L_V4_V16, IMAGE_SAMPLE_C_L_V4_V16,
+ IMAGE_SAMPLE_B_V4_V16, IMAGE_SAMPLE_C_B_V4_V16,
+ IMAGE_SAMPLE_D_V4_V16, IMAGE_SAMPLE_C_D_V4_V16,
+ v16i32>;
+
+/* int_SI_imageload for texture fetches consuming varying address parameters */
+class ImageLoadPattern<Intrinsic name, MIMG opcode, ValueType addr_type> : Pat <
+ (name addr_type:$addr, v32i8:$rsrc, imm),
+ (opcode 0xf, 0, 0, 0, 0, 0, 0, 0, $addr, $rsrc)
+>;
+
+class ImageLoadArrayPattern<Intrinsic name, MIMG opcode, ValueType addr_type> : Pat <
+ (name addr_type:$addr, v32i8:$rsrc, TEX_ARRAY),
+ (opcode 0xf, 0, 0, 1, 0, 0, 0, 0, $addr, $rsrc)
+>;
+
+class ImageLoadMSAAPattern<Intrinsic name, MIMG opcode, ValueType addr_type> : Pat <
+ (name addr_type:$addr, v32i8:$rsrc, TEX_MSAA),
+ (opcode 0xf, 0, 0, 0, 0, 0, 0, 0, $addr, $rsrc)
+>;
+
+class ImageLoadArrayMSAAPattern<Intrinsic name, MIMG opcode, ValueType addr_type> : Pat <
+ (name addr_type:$addr, v32i8:$rsrc, TEX_ARRAY_MSAA),
+ (opcode 0xf, 0, 0, 1, 0, 0, 0, 0, $addr, $rsrc)
+>;
+
+multiclass ImageLoadPatterns<MIMG opcode, ValueType addr_type> {
+ def : ImageLoadPattern <int_SI_imageload, opcode, addr_type>;
+ def : ImageLoadArrayPattern <int_SI_imageload, opcode, addr_type>;
+}
+
+multiclass ImageLoadMSAAPatterns<MIMG opcode, ValueType addr_type> {
+ def : ImageLoadMSAAPattern <int_SI_imageload, opcode, addr_type>;
+ def : ImageLoadArrayMSAAPattern <int_SI_imageload, opcode, addr_type>;
+}
+
+defm : ImageLoadPatterns<IMAGE_LOAD_MIP_V4_V2, v2i32>;
+defm : ImageLoadPatterns<IMAGE_LOAD_MIP_V4_V4, v4i32>;
+
+defm : ImageLoadMSAAPatterns<IMAGE_LOAD_V4_V2, v2i32>;
+defm : ImageLoadMSAAPatterns<IMAGE_LOAD_V4_V4, v4i32>;
+
+/* Image resource information */
+def : Pat <
+ (int_SI_resinfo i32:$mipid, v32i8:$rsrc, imm),
+ (IMAGE_GET_RESINFO_V4_V1 0xf, 0, 0, 0, 0, 0, 0, 0, (V_MOV_B32_e32 $mipid), $rsrc)
+>;
+
+def : Pat <
+ (int_SI_resinfo i32:$mipid, v32i8:$rsrc, TEX_ARRAY),
+ (IMAGE_GET_RESINFO_V4_V1 0xf, 0, 0, 1, 0, 0, 0, 0, (V_MOV_B32_e32 $mipid), $rsrc)
+>;
+
+def : Pat <
+ (int_SI_resinfo i32:$mipid, v32i8:$rsrc, TEX_ARRAY_MSAA),
+ (IMAGE_GET_RESINFO_V4_V1 0xf, 0, 0, 1, 0, 0, 0, 0, (V_MOV_B32_e32 $mipid), $rsrc)
+>;
+
+/********** ============================================ **********/
+/********** Extraction, Insertion, Building and Casting **********/
+/********** ============================================ **********/
+
+foreach Index = 0-2 in {
+ def Extract_Element_v2i32_#Index : Extract_Element <
+ i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+ def Insert_Element_v2i32_#Index : Insert_Element <
+ i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+
+ def Extract_Element_v2f32_#Index : Extract_Element <
+ f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+ def Insert_Element_v2f32_#Index : Insert_Element <
+ f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+}
+
+foreach Index = 0-3 in {
+ def Extract_Element_v4i32_#Index : Extract_Element <
+ i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+ def Insert_Element_v4i32_#Index : Insert_Element <
+ i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+
+ def Extract_Element_v4f32_#Index : Extract_Element <
+ f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+ def Insert_Element_v4f32_#Index : Insert_Element <
+ f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+}
+
+foreach Index = 0-7 in {
+ def Extract_Element_v8i32_#Index : Extract_Element <
+ i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+ def Insert_Element_v8i32_#Index : Insert_Element <
+ i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+
+ def Extract_Element_v8f32_#Index : Extract_Element <
+ f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+ def Insert_Element_v8f32_#Index : Insert_Element <
+ f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+}
+
+foreach Index = 0-15 in {
+ def Extract_Element_v16i32_#Index : Extract_Element <
+ i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+ def Insert_Element_v16i32_#Index : Insert_Element <
+ i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+
+ def Extract_Element_v16f32_#Index : Extract_Element <
+ f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+ def Insert_Element_v16f32_#Index : Insert_Element <
+ f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
+ >;
+}
+
+def : BitConvert <i32, f32, SReg_32>;
+def : BitConvert <i32, f32, VReg_32>;
+
+def : BitConvert <f32, i32, SReg_32>;
+def : BitConvert <f32, i32, VReg_32>;
+
+def : BitConvert <i64, f64, VReg_64>;
+
+def : BitConvert <f64, i64, VReg_64>;
+
+def : BitConvert <v2f32, v2i32, VReg_64>;
+def : BitConvert <v2i32, v2f32, VReg_64>;
+def : BitConvert <v2i32, i64, VReg_64>;
+def : BitConvert <i64, v2i32, VReg_64>;
+def : BitConvert <v2f32, i64, VReg_64>;
+def : BitConvert <i64, v2f32, VReg_64>;
+def : BitConvert <v2i32, f64, VReg_64>;
+def : BitConvert <f64, v2i32, VReg_64>;
+def : BitConvert <v4f32, v4i32, VReg_128>;
+def : BitConvert <v4i32, v4f32, VReg_128>;
+
+def : BitConvert <v8f32, v8i32, SReg_256>;
+def : BitConvert <v8i32, v8f32, SReg_256>;
+def : BitConvert <v8i32, v32i8, SReg_256>;
+def : BitConvert <v32i8, v8i32, SReg_256>;
+def : BitConvert <v8i32, v32i8, VReg_256>;
+def : BitConvert <v8i32, v8f32, VReg_256>;
+def : BitConvert <v8f32, v8i32, VReg_256>;
+def : BitConvert <v32i8, v8i32, VReg_256>;
+
+def : BitConvert <v16i32, v16f32, VReg_512>;
+def : BitConvert <v16f32, v16i32, VReg_512>;
+
+/********** =================== **********/
+/********** Src & Dst modifiers **********/
+/********** =================== **********/
+
+def FCLAMP_SI : AMDGPUShaderInst <
+ (outs VReg_32:$dst),
+ (ins VSrc_32:$src0),
+ "FCLAMP_SI $dst, $src0",
+ []
+> {
+ let usesCustomInserter = 1;
+}
+
+def : Pat <
+ (AMDGPUclamp f32:$src, (f32 FP_ZERO), (f32 FP_ONE)),
+ (FCLAMP_SI f32:$src)
+>;
+
+/********** ================================ **********/
+/********** Floating point absolute/negative **********/
+/********** ================================ **********/
+
+// Manipulate the sign bit directly, as e.g. using the source negation modifier
+// in V_ADD_F32_e64 $src, 0, [...] does not result in -0.0 for $src == +0.0,
+// breaking the piglit *s-floatBitsToInt-neg* tests
+
+// TODO: Look into not implementing isFNegFree/isFAbsFree for SI, and possibly
+// removing these patterns
+
+def : Pat <
+ (fneg (fabs f32:$src)),
+ (V_OR_B32_e32 $src, (V_MOV_B32_e32 0x80000000)) /* Set sign bit */
+>;
+
+def FABS_SI : AMDGPUShaderInst <
+ (outs VReg_32:$dst),
+ (ins VSrc_32:$src0),
+ "FABS_SI $dst, $src0",
+ []
+> {
+ let usesCustomInserter = 1;
+}
+
+def : Pat <
+ (fabs f32:$src),
+ (FABS_SI f32:$src)
+>;
+
+def FNEG_SI : AMDGPUShaderInst <
+ (outs VReg_32:$dst),
+ (ins VSrc_32:$src0),
+ "FNEG_SI $dst, $src0",
+ []
+> {
+ let usesCustomInserter = 1;
+}
+
+def : Pat <
+ (fneg f32:$src),
+ (FNEG_SI f32:$src)
+>;
+
+/********** ================== **********/
+/********** Immediate Patterns **********/
+/********** ================== **********/
+
+def : Pat <
+ (SGPRImm<(i32 imm)>:$imm),
+ (S_MOV_B32 imm:$imm)
+>;
+
+def : Pat <
+ (SGPRImm<(f32 fpimm)>:$imm),
+ (S_MOV_B32 fpimm:$imm)
+>;
+
+def : Pat <
+ (i32 imm:$imm),
+ (V_MOV_B32_e32 imm:$imm)
+>;
+
+def : Pat <
+ (f32 fpimm:$imm),
+ (V_MOV_B32_e32 fpimm:$imm)
+>;
+
+def : Pat <
+ (i64 InlineImm<i64>:$imm),
+ (S_MOV_B64 InlineImm<i64>:$imm)
+>;
+
+/********** ===================== **********/
+/********** Interpolation Paterns **********/
+/********** ===================== **********/
+
+def : Pat <
+ (int_SI_fs_constant imm:$attr_chan, imm:$attr, i32:$params),
+ (V_INTERP_MOV_F32 INTERP.P0, imm:$attr_chan, imm:$attr, $params)
+>;
+
+def : Pat <
+ (int_SI_fs_interp imm:$attr_chan, imm:$attr, M0Reg:$params, v2i32:$ij),
+ (V_INTERP_P2_F32 (V_INTERP_P1_F32 (EXTRACT_SUBREG v2i32:$ij, sub0),
+ imm:$attr_chan, imm:$attr, i32:$params),
+ (EXTRACT_SUBREG $ij, sub1),
+ imm:$attr_chan, imm:$attr, $params)
+>;
+
+/********** ================== **********/
+/********** Intrinsic Patterns **********/
+/********** ================== **********/
+
+/* llvm.AMDGPU.pow */
+def : POW_Common <V_LOG_F32_e32, V_EXP_F32_e32, V_MUL_LEGACY_F32_e32>;
+
+def : Pat <
+ (int_AMDGPU_div f32:$src0, f32:$src1),
+ (V_MUL_LEGACY_F32_e32 $src0, (V_RCP_LEGACY_F32_e32 $src1))
+>;
+
+def : Pat<
+ (fdiv f64:$src0, f64:$src1),
+ (V_MUL_F64 $src0, (V_RCP_F64_e32 $src1), (i64 0))
+>;
+
+def : Pat <
+ (int_AMDGPU_cube v4f32:$src),
+ (INSERT_SUBREG (INSERT_SUBREG (INSERT_SUBREG (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)),
+ (V_CUBETC_F32 (EXTRACT_SUBREG $src, sub0),
+ (EXTRACT_SUBREG $src, sub1),
+ (EXTRACT_SUBREG $src, sub2)),
+ sub0),
+ (V_CUBESC_F32 (EXTRACT_SUBREG $src, sub0),
+ (EXTRACT_SUBREG $src, sub1),
+ (EXTRACT_SUBREG $src, sub2)),
+ sub1),
+ (V_CUBEMA_F32 (EXTRACT_SUBREG $src, sub0),
+ (EXTRACT_SUBREG $src, sub1),
+ (EXTRACT_SUBREG $src, sub2)),
+ sub2),
+ (V_CUBEID_F32 (EXTRACT_SUBREG $src, sub0),
+ (EXTRACT_SUBREG $src, sub1),
+ (EXTRACT_SUBREG $src, sub2)),
+ sub3)
+>;
+
+def : Pat <
+ (i32 (sext i1:$src0)),
+ (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src0)
+>;
+
+class Ext32Pat <SDNode ext> : Pat <
+ (i32 (ext i1:$src0)),
+ (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src0)
+>;
+
+def : Ext32Pat <zext>;
+def : Ext32Pat <anyext>;
+
+// Offset in an 32Bit VGPR
+def : Pat <
+ (SIload_constant v4i32:$sbase, i32:$voff),
+ (BUFFER_LOAD_DWORD_OFFEN $sbase, $voff, 0, 0, 0, 0, 0)
+>;
+
+// The multiplication scales from [0,1] to the unsigned integer range
+def : Pat <
+ (AMDGPUurecip i32:$src0),
+ (V_CVT_U32_F32_e32
+ (V_MUL_F32_e32 CONST.FP_UINT_MAX_PLUS_1,
+ (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
+>;
+
+def : Pat <
+ (int_SI_tid),
+ (V_MBCNT_HI_U32_B32_e32 0xffffffff,
+ (V_MBCNT_LO_U32_B32_e64 0xffffffff, 0, 0, 0))
+>;
+
+//===----------------------------------------------------------------------===//
+// VOP3 Patterns
+//===----------------------------------------------------------------------===//
+
+def : IMad24Pat<V_MAD_I32_I24>;
+def : UMad24Pat<V_MAD_U32_U24>;
+
+def : Pat <
+ (fadd f64:$src0, f64:$src1),
+ (V_ADD_F64 $src0, $src1, (i64 0))
+>;
+
+def : Pat <
+ (fmul f64:$src0, f64:$src1),
+ (V_MUL_F64 $src0, $src1, (i64 0))
+>;
+
+def : Pat <
+ (mul i32:$src0, i32:$src1),
+ (V_MUL_LO_I32 $src0, $src1, (i32 0))
+>;
+
+def : Pat <
+ (mulhu i32:$src0, i32:$src1),
+ (V_MUL_HI_U32 $src0, $src1, (i32 0))
+>;
+
+def : Pat <
+ (mulhs i32:$src0, i32:$src1),
+ (V_MUL_HI_I32 $src0, $src1, (i32 0))
+>;
+
+defm : BFIPatterns <V_BFI_B32, S_MOV_B32>;
+def : ROTRPattern <V_ALIGNBIT_B32>;
+
+/********** ======================= **********/
+/********** Load/Store Patterns **********/
+/********** ======================= **********/
+
+multiclass DSReadPat <DS inst, ValueType vt, PatFrag frag> {
+ def : Pat <
+ (vt (frag (add i32:$ptr, (i32 IMM16bit:$offset)))),
+ (inst (i1 0), $ptr, (as_i16imm $offset))
+ >;
+
+ def : Pat <
+ (frag i32:$src0),
+ (vt (inst 0, $src0, 0))
+ >;
+}
+
+defm : DSReadPat <DS_READ_I8, i32, sextloadi8_local>;
+defm : DSReadPat <DS_READ_U8, i32, az_extloadi8_local>;
+defm : DSReadPat <DS_READ_I16, i32, sextloadi16_local>;
+defm : DSReadPat <DS_READ_U16, i32, az_extloadi16_local>;
+defm : DSReadPat <DS_READ_B32, i32, local_load>;
+defm : DSReadPat <DS_READ_B64, v2i32, local_load>;
+
+multiclass DSWritePat <DS inst, ValueType vt, PatFrag frag> {
+ def : Pat <
+ (frag vt:$value, (add i32:$ptr, (i32 IMM16bit:$offset))),
+ (inst (i1 0), $ptr, $value, (as_i16imm $offset))
+ >;
+
+ def : Pat <
+ (frag vt:$val, i32:$ptr),
+ (inst 0, $ptr, $val, 0)
+ >;
+}
+
+defm : DSWritePat <DS_WRITE_B8, i32, truncstorei8_local>;
+defm : DSWritePat <DS_WRITE_B16, i32, truncstorei16_local>;
+defm : DSWritePat <DS_WRITE_B32, i32, local_store>;
+defm : DSWritePat <DS_WRITE_B64, v2i32, local_store>;
+
+multiclass DSAtomicRetPat<DS inst, ValueType vt, PatFrag frag> {
+ def : Pat <
+ (frag (add i32:$ptr, (i32 IMM16bit:$offset)), vt:$value),
+ (inst (i1 0), $ptr, $value, (as_i16imm $offset))
+ >;
+
+ def : Pat <
+ (frag i32:$ptr, vt:$val),
+ (inst 0, $ptr, $val, 0)
+ >;
+}
+
+// Special case of DSAtomicRetPat for add / sub 1 -> inc / dec
+//
+// We need to use something for the data0, so we set a register to
+// -1. For the non-rtn variants, the manual says it does
+// DS[A] = (DS[A] >= D0) ? 0 : DS[A] + 1, and setting D0 to uint_max
+// will always do the increment so I'm assuming it's the same.
+//
+// We also load this -1 with s_mov_b32 / s_mov_b64 even though this
+// needs to be a VGPR. The SGPR copy pass will fix this, and it's
+// easier since there is no v_mov_b64.
+multiclass DSAtomicIncRetPat<DS inst, ValueType vt,
+ Instruction LoadImm, PatFrag frag> {
+ def : Pat <
+ (frag (add i32:$ptr, (i32 IMM16bit:$offset)), (vt 1)),
+ (inst (i1 0), $ptr, (LoadImm (vt -1)), (as_i16imm $offset))
+ >;
+
+ def : Pat <
+ (frag i32:$ptr, (vt 1)),
+ (inst 0, $ptr, (LoadImm (vt -1)), 0)
+ >;
+}
+
+multiclass DSAtomicCmpXChg <DS inst, ValueType vt, PatFrag frag> {
+ def : Pat <
+ (frag (add i32:$ptr, (i32 IMM16bit:$offset)), vt:$cmp, vt:$swap),
+ (inst (i1 0), $ptr, $cmp, $swap, (as_i16imm $offset))
+ >;
+
+ def : Pat <
+ (frag i32:$ptr, vt:$cmp, vt:$swap),
+ (inst 0, $ptr, $cmp, $swap, 0)
+ >;
+}
+
+
+// 32-bit atomics.
+defm : DSAtomicIncRetPat<DS_INC_RTN_U32, i32,
+ S_MOV_B32, atomic_load_add_local>;
+defm : DSAtomicIncRetPat<DS_DEC_RTN_U32, i32,
+ S_MOV_B32, atomic_load_sub_local>;
+
+defm : DSAtomicRetPat<DS_WRXCHG_RTN_B32, i32, atomic_swap_local>;
+defm : DSAtomicRetPat<DS_ADD_RTN_U32, i32, atomic_load_add_local>;
+defm : DSAtomicRetPat<DS_SUB_RTN_U32, i32, atomic_load_sub_local>;
+defm : DSAtomicRetPat<DS_AND_RTN_B32, i32, atomic_load_and_local>;
+defm : DSAtomicRetPat<DS_OR_RTN_B32, i32, atomic_load_or_local>;
+defm : DSAtomicRetPat<DS_XOR_RTN_B32, i32, atomic_load_xor_local>;
+defm : DSAtomicRetPat<DS_MIN_RTN_I32, i32, atomic_load_min_local>;
+defm : DSAtomicRetPat<DS_MAX_RTN_I32, i32, atomic_load_max_local>;
+defm : DSAtomicRetPat<DS_MIN_RTN_U32, i32, atomic_load_umin_local>;
+defm : DSAtomicRetPat<DS_MAX_RTN_U32, i32, atomic_load_umax_local>;
+
+defm : DSAtomicCmpXChg<DS_CMPST_RTN_B32, i32, atomic_cmp_swap_32_local>;
+
+// 64-bit atomics.
+defm : DSAtomicIncRetPat<DS_INC_RTN_U64, i64,
+ S_MOV_B64, atomic_load_add_local>;
+defm : DSAtomicIncRetPat<DS_DEC_RTN_U64, i64,
+ S_MOV_B64, atomic_load_sub_local>;
+
+defm : DSAtomicRetPat<DS_WRXCHG_RTN_B64, i64, atomic_swap_local>;
+defm : DSAtomicRetPat<DS_ADD_RTN_U64, i64, atomic_load_add_local>;
+defm : DSAtomicRetPat<DS_SUB_RTN_U64, i64, atomic_load_sub_local>;
+defm : DSAtomicRetPat<DS_AND_RTN_B64, i64, atomic_load_and_local>;
+defm : DSAtomicRetPat<DS_OR_RTN_B64, i64, atomic_load_or_local>;
+defm : DSAtomicRetPat<DS_XOR_RTN_B64, i64, atomic_load_xor_local>;
+defm : DSAtomicRetPat<DS_MIN_RTN_I64, i64, atomic_load_min_local>;
+defm : DSAtomicRetPat<DS_MAX_RTN_I64, i64, atomic_load_max_local>;
+defm : DSAtomicRetPat<DS_MIN_RTN_U64, i64, atomic_load_umin_local>;
+defm : DSAtomicRetPat<DS_MAX_RTN_U64, i64, atomic_load_umax_local>;
+
+defm : DSAtomicCmpXChg<DS_CMPST_RTN_B64, i64, atomic_cmp_swap_64_local>;
+
+
+//===----------------------------------------------------------------------===//
+// MUBUF Patterns
+//===----------------------------------------------------------------------===//
+
+multiclass MUBUFLoad_Pattern <MUBUF Instr_ADDR64, ValueType vt,
+ PatFrag constant_ld> {
+ def : Pat <
+ (vt (constant_ld (add i64:$ptr, i64:$offset))),
+ (Instr_ADDR64 (SI_ADDR64_RSRC $ptr), $offset, 0)
+ >;
+
+}
+
+defm : MUBUFLoad_Pattern <BUFFER_LOAD_SBYTE_ADDR64, i32, sextloadi8_constant>;
+defm : MUBUFLoad_Pattern <BUFFER_LOAD_UBYTE_ADDR64, i32, az_extloadi8_constant>;
+defm : MUBUFLoad_Pattern <BUFFER_LOAD_SSHORT_ADDR64, i32, sextloadi16_constant>;
+defm : MUBUFLoad_Pattern <BUFFER_LOAD_USHORT_ADDR64, i32, az_extloadi16_constant>;
+defm : MUBUFLoad_Pattern <BUFFER_LOAD_DWORD_ADDR64, i32, constant_load>;
+defm : MUBUFLoad_Pattern <BUFFER_LOAD_DWORDX2_ADDR64, v2i32, constant_load>;
+defm : MUBUFLoad_Pattern <BUFFER_LOAD_DWORDX4_ADDR64, v4i32, constant_load>;
+
+class MUBUFScratchLoadPat <MUBUF Instr, ValueType vt, PatFrag ld> : Pat <
+ (vt (ld (MUBUFScratch v4i32:$srsrc, i32:$vaddr,
+ i32:$soffset, u16imm:$offset))),
+ (Instr $srsrc, $vaddr, $soffset, $offset, 0, 0, 0)
+>;
+
+def : MUBUFScratchLoadPat <BUFFER_LOAD_SBYTE_OFFEN, i32, sextloadi8_private>;
+def : MUBUFScratchLoadPat <BUFFER_LOAD_UBYTE_OFFEN, i32, extloadi8_private>;
+def : MUBUFScratchLoadPat <BUFFER_LOAD_SSHORT_OFFEN, i32, sextloadi16_private>;
+def : MUBUFScratchLoadPat <BUFFER_LOAD_USHORT_OFFEN, i32, extloadi16_private>;
+def : MUBUFScratchLoadPat <BUFFER_LOAD_DWORD_OFFEN, i32, load_private>;
+def : MUBUFScratchLoadPat <BUFFER_LOAD_DWORDX2_OFFEN, v2i32, load_private>;
+def : MUBUFScratchLoadPat <BUFFER_LOAD_DWORDX4_OFFEN, v4i32, load_private>;
+
+// BUFFER_LOAD_DWORD*, addr64=0
+multiclass MUBUF_Load_Dword <ValueType vt, MUBUF offset, MUBUF offen, MUBUF idxen,
+ MUBUF bothen> {
+
+ def : Pat <
+ (vt (int_SI_buffer_load_dword v4i32:$rsrc, (i32 imm), i32:$soffset,
+ imm:$offset, 0, 0, imm:$glc, imm:$slc,
+ imm:$tfe)),
+ (offset $rsrc, (as_i16imm $offset), $soffset, (as_i1imm $glc),
+ (as_i1imm $slc), (as_i1imm $tfe))
+ >;
+
+ def : Pat <
+ (vt (int_SI_buffer_load_dword v4i32:$rsrc, i32:$vaddr, i32:$soffset,
+ imm:$offset, 1, 0, imm:$glc, imm:$slc,
+ imm:$tfe)),
+ (offen $rsrc, $vaddr, $soffset, (as_i16imm $offset), (as_i1imm $glc), (as_i1imm $slc),
+ (as_i1imm $tfe))
+ >;
+
+ def : Pat <
+ (vt (int_SI_buffer_load_dword v4i32:$rsrc, i32:$vaddr, i32:$soffset,
+ imm:$offset, 0, 1, imm:$glc, imm:$slc,
+ imm:$tfe)),
+ (idxen $rsrc, $vaddr, (as_i16imm $offset), $soffset, (as_i1imm $glc),
+ (as_i1imm $slc), (as_i1imm $tfe))
+ >;
+
+ def : Pat <
+ (vt (int_SI_buffer_load_dword v4i32:$rsrc, v2i32:$vaddr, i32:$soffset,
+ imm, 1, 1, imm:$glc, imm:$slc,
+ imm:$tfe)),
+ (bothen $rsrc, $vaddr, $soffset, (as_i1imm $glc), (as_i1imm $slc),
+ (as_i1imm $tfe))
+ >;
+}
+
+defm : MUBUF_Load_Dword <i32, BUFFER_LOAD_DWORD_OFFSET, BUFFER_LOAD_DWORD_OFFEN,
+ BUFFER_LOAD_DWORD_IDXEN, BUFFER_LOAD_DWORD_BOTHEN>;
+defm : MUBUF_Load_Dword <v2i32, BUFFER_LOAD_DWORDX2_OFFSET, BUFFER_LOAD_DWORDX2_OFFEN,
+ BUFFER_LOAD_DWORDX2_IDXEN, BUFFER_LOAD_DWORDX2_BOTHEN>;
+defm : MUBUF_Load_Dword <v4i32, BUFFER_LOAD_DWORDX4_OFFSET, BUFFER_LOAD_DWORDX4_OFFEN,
+ BUFFER_LOAD_DWORDX4_IDXEN, BUFFER_LOAD_DWORDX4_BOTHEN>;
+
+class MUBUFScratchStorePat <MUBUF Instr, ValueType vt, PatFrag st> : Pat <
+ (st vt:$value, (MUBUFAddr32 v4i32:$srsrc, i32:$vaddr, i32:$soffset,
+ u16imm:$offset, i1imm:$offen, i1imm:$idxen,
+ i1imm:$glc, i1imm:$slc, i1imm:$tfe)),
+ (Instr $value, $srsrc, $vaddr, $soffset, $offset, $offen, $idxen,
+ $glc, $slc, $tfe)
+>;
+
+def : MUBUFScratchStorePat <BUFFER_STORE_BYTE, i32, truncstorei8_private>;
+def : MUBUFScratchStorePat <BUFFER_STORE_SHORT, i32, truncstorei16_private>;
+def : MUBUFScratchStorePat <BUFFER_STORE_DWORD, i32, store_private>;
+def : MUBUFScratchStorePat <BUFFER_STORE_DWORDX2, v2i32, store_private>;
+def : MUBUFScratchStorePat <BUFFER_STORE_DWORDX4, v4i32, store_private>;
+
+/*
+class MUBUFStore_Pattern <MUBUF Instr, ValueType vt, PatFrag st> : Pat <
+ (st vt:$value, (MUBUFScratch v4i32:$srsrc, i64:$vaddr, u16imm:$offset)),
+ (Instr $value, $srsrc, $vaddr, $offset)
+>;
+
+def : MUBUFStore_Pattern <BUFFER_STORE_BYTE_ADDR64, i32, truncstorei8_private>;
+def : MUBUFStore_Pattern <BUFFER_STORE_SHORT_ADDR64, i32, truncstorei16_private>;
+def : MUBUFStore_Pattern <BUFFER_STORE_DWORD_ADDR64, i32, store_private>;
+def : MUBUFStore_Pattern <BUFFER_STORE_DWORDX2_ADDR64, v2i32, store_private>;
+def : MUBUFStore_Pattern <BUFFER_STORE_DWORDX4_ADDR64, v4i32, store_private>;
+
+*/
+
+//===----------------------------------------------------------------------===//
+// MTBUF Patterns
+//===----------------------------------------------------------------------===//
+
+// TBUFFER_STORE_FORMAT_*, addr64=0
+class MTBUF_StoreResource <ValueType vt, int num_channels, MTBUF opcode> : Pat<
+ (SItbuffer_store v4i32:$rsrc, vt:$vdata, num_channels, i32:$vaddr,
+ i32:$soffset, imm:$inst_offset, imm:$dfmt,
+ imm:$nfmt, imm:$offen, imm:$idxen,
+ imm:$glc, imm:$slc, imm:$tfe),
+ (opcode
+ $vdata, (as_i16imm $inst_offset), (as_i1imm $offen), (as_i1imm $idxen),
+ (as_i1imm $glc), 0, (as_i8imm $dfmt), (as_i8imm $nfmt), $vaddr, $rsrc,
+ (as_i1imm $slc), (as_i1imm $tfe), $soffset)
+>;
+
+def : MTBUF_StoreResource <i32, 1, TBUFFER_STORE_FORMAT_X>;
+def : MTBUF_StoreResource <v2i32, 2, TBUFFER_STORE_FORMAT_XY>;
+def : MTBUF_StoreResource <v4i32, 3, TBUFFER_STORE_FORMAT_XYZ>;
+def : MTBUF_StoreResource <v4i32, 4, TBUFFER_STORE_FORMAT_XYZW>;
+
+let SubtargetPredicate = isCI in {
+
+// Sea island new arithmetic instructinos
+let neverHasSideEffects = 1 in {
+defm V_TRUNC_F64 : VOP1_64 <0x00000017, "V_TRUNC_F64",
+ [(set f64:$dst, (ftrunc f64:$src0))]
+>;
+defm V_CEIL_F64 : VOP1_64 <0x00000018, "V_CEIL_F64",
+ [(set f64:$dst, (fceil f64:$src0))]
+>;
+defm V_FLOOR_F64 : VOP1_64 <0x0000001A, "V_FLOOR_F64",
+ [(set f64:$dst, (ffloor f64:$src0))]
+>;
+defm V_RNDNE_F64 : VOP1_64 <0x00000019, "V_RNDNE_F64",
+ [(set f64:$dst, (frint f64:$src0))]
+>;
+
+defm V_QSAD_PK_U16_U8 : VOP3_32 <0x00000173, "V_QSAD_PK_U16_U8", []>;
+defm V_MQSAD_U16_U8 : VOP3_32 <0x000000172, "V_MQSAD_U16_U8", []>;
+defm V_MQSAD_U32_U8 : VOP3_32 <0x00000175, "V_MQSAD_U32_U8", []>;
+def V_MAD_U64_U32 : VOP3_64 <0x00000176, "V_MAD_U64_U32", []>;
+
+// XXX - Does this set VCC?
+def V_MAD_I64_I32 : VOP3_64 <0x00000177, "V_MAD_I64_I32", []>;
+} // End neverHasSideEffects = 1
+
+// Remaining instructions:
+// FLAT_*
+// S_CBRANCH_CDBGUSER
+// S_CBRANCH_CDBGSYS
+// S_CBRANCH_CDBGSYS_OR_USER
+// S_CBRANCH_CDBGSYS_AND_USER
+// S_DCACHE_INV_VOL
+// V_EXP_LEGACY_F32
+// V_LOG_LEGACY_F32
+// DS_NOP
+// DS_GWS_SEMA_RELEASE_ALL
+// DS_WRAP_RTN_B32
+// DS_CNDXCHG32_RTN_B64
+// DS_WRITE_B96
+// DS_WRITE_B128
+// DS_CONDXCHG32_RTN_B128
+// DS_READ_B96
+// DS_READ_B128
+// BUFFER_LOAD_DWORDX3
+// BUFFER_STORE_DWORDX3
+
+} // End iSCI
+
+
+/********** ====================== **********/
+/********** Indirect adressing **********/
+/********** ====================== **********/
+
+multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, SI_INDIRECT_DST IndDst> {
+
+ // 1. Extract with offset
+ def : Pat<
+ (vector_extract vt:$vec, (add i32:$idx, imm:$off)),
+ (eltvt (SI_INDIRECT_SRC (IMPLICIT_DEF), $vec, $idx, imm:$off))
+ >;
+
+ // 2. Extract without offset
+ def : Pat<
+ (vector_extract vt:$vec, i32:$idx),
+ (eltvt (SI_INDIRECT_SRC (IMPLICIT_DEF), $vec, $idx, 0))
+ >;
+
+ // 3. Insert with offset
+ def : Pat<
+ (vector_insert vt:$vec, eltvt:$val, (add i32:$idx, imm:$off)),
+ (IndDst (IMPLICIT_DEF), $vec, $idx, imm:$off, $val)
+ >;
+
+ // 4. Insert without offset
+ def : Pat<
+ (vector_insert vt:$vec, eltvt:$val, i32:$idx),
+ (IndDst (IMPLICIT_DEF), $vec, $idx, 0, $val)
+ >;
+}
+
+defm : SI_INDIRECT_Pattern <v2f32, f32, SI_INDIRECT_DST_V2>;
+defm : SI_INDIRECT_Pattern <v4f32, f32, SI_INDIRECT_DST_V4>;
+defm : SI_INDIRECT_Pattern <v8f32, f32, SI_INDIRECT_DST_V8>;
+defm : SI_INDIRECT_Pattern <v16f32, f32, SI_INDIRECT_DST_V16>;
+
+defm : SI_INDIRECT_Pattern <v2i32, i32, SI_INDIRECT_DST_V2>;
+defm : SI_INDIRECT_Pattern <v4i32, i32, SI_INDIRECT_DST_V4>;
+defm : SI_INDIRECT_Pattern <v8i32, i32, SI_INDIRECT_DST_V8>;
+defm : SI_INDIRECT_Pattern <v16i32, i32, SI_INDIRECT_DST_V16>;
+
+//===----------------------------------------------------------------------===//
+// Conversion Patterns
+//===----------------------------------------------------------------------===//
+
+def : Pat<(i32 (sext_inreg i32:$src, i1)),
+ (S_BFE_I32 i32:$src, 65536)>; // 0 | 1 << 16
+
+// TODO: Match 64-bit BFE. SI has a 64-bit BFE, but it's scalar only so it
+// might not be worth the effort, and will need to expand to shifts when
+// fixing SGPR copies.
+
+// Handle sext_inreg in i64
+def : Pat <
+ (i64 (sext_inreg i64:$src, i1)),
+ (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
+ (S_BFE_I32 (EXTRACT_SUBREG i64:$src, sub0), 65536), sub0), // 0 | 1 << 16
+ (S_MOV_B32 -1), sub1)
+>;
+
+def : Pat <
+ (i64 (sext_inreg i64:$src, i8)),
+ (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
+ (S_SEXT_I32_I8 (EXTRACT_SUBREG i64:$src, sub0)), sub0),
+ (S_MOV_B32 -1), sub1)
+>;
+
+def : Pat <
+ (i64 (sext_inreg i64:$src, i16)),
+ (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
+ (S_SEXT_I32_I16 (EXTRACT_SUBREG i64:$src, sub0)), sub0),
+ (S_MOV_B32 -1), sub1)
+>;
+
+class ZExt_i64_i32_Pat <SDNode ext> : Pat <
+ (i64 (ext i32:$src)),
+ (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $src, sub0),
+ (S_MOV_B32 0), sub1)
+>;
+
+class ZExt_i64_i1_Pat <SDNode ext> : Pat <
+ (i64 (ext i1:$src)),
+ (INSERT_SUBREG
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
+ (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src), sub0),
+ (S_MOV_B32 0), sub1)
+>;
+
+
+def : ZExt_i64_i32_Pat<zext>;
+def : ZExt_i64_i32_Pat<anyext>;
+def : ZExt_i64_i1_Pat<zext>;
+def : ZExt_i64_i1_Pat<anyext>;
+
+def : Pat <
+ (i64 (sext i32:$src)),
+ (INSERT_SUBREG
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $src, sub0),
+ (S_ASHR_I32 $src, 31), sub1)
+>;
+
+def : Pat <
+ (i64 (sext i1:$src)),
+ (INSERT_SUBREG
+ (INSERT_SUBREG
+ (i64 (IMPLICIT_DEF)),
+ (V_CNDMASK_B32_e64 0, -1, $src), sub0),
+ (V_CNDMASK_B32_e64 0, -1, $src), sub1)
+>;
+
+def : Pat <
+ (f32 (sint_to_fp i1:$src)),
+ (V_CNDMASK_B32_e64 (i32 0), CONST.FP32_NEG_ONE, $src)
+>;
+
+def : Pat <
+ (f32 (uint_to_fp i1:$src)),
+ (V_CNDMASK_B32_e64 (i32 0), CONST.FP32_ONE, $src)
+>;
+
+def : Pat <
+ (f64 (sint_to_fp i1:$src)),
+ (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src))
+>;
+
+def : Pat <
+ (f64 (uint_to_fp i1:$src)),
+ (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src))
+>;
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Patterns
+//===----------------------------------------------------------------------===//
+
+def : Pat <
+ (i32 (trunc i64:$a)),
+ (EXTRACT_SUBREG $a, sub0)
+>;
+
+def : Pat <
+ (i1 (trunc i32:$a)),
+ (V_CMP_EQ_I32_e64 (V_AND_B32_e32 (i32 1), $a), 1)
+>;
+
+//============================================================================//
+// Miscellaneous Optimization Patterns
+//============================================================================//
+
+def : SHA256MaPattern <V_BFI_B32, V_XOR_B32_e32>;
+
+} // End isSI predicate
diff --git a/contrib/llvm/lib/Target/R600/SIIntrinsics.td b/contrib/llvm/lib/Target/R600/SIIntrinsics.td
new file mode 100644
index 0000000..027a0a2
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIIntrinsics.td
@@ -0,0 +1,199 @@
+//===-- SIIntrinsics.td - SI Intrinsic defs ----------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// SI Intrinsic Definitions
+//
+//===----------------------------------------------------------------------===//
+
+
+let TargetPrefix = "SI", isTarget = 1 in {
+
+ def int_SI_tid : Intrinsic <[llvm_i32_ty], [], [IntrNoMem]>;
+ def int_SI_packf16 : Intrinsic <[llvm_i32_ty], [llvm_float_ty, llvm_float_ty], [IntrNoMem]>;
+ def int_SI_export : Intrinsic <[], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty, llvm_float_ty, llvm_float_ty, llvm_float_ty, llvm_float_ty], []>;
+ def int_SI_load_const : Intrinsic <[llvm_float_ty], [llvm_anyint_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_SI_vs_load_input : Intrinsic <[llvm_v4f32_ty], [llvm_anyint_ty, llvm_i16_ty, llvm_i32_ty], [IntrNoMem]> ;
+
+ // Fully-flexible TBUFFER_STORE_FORMAT_* except for the ADDR64 bit, which is not exposed
+ def int_SI_tbuffer_store : Intrinsic <
+ [],
+ [llvm_anyint_ty, // rsrc(SGPR)
+ llvm_anyint_ty, // vdata(VGPR), overloaded for types i32, v2i32, v4i32
+ llvm_i32_ty, // num_channels(imm), selects opcode suffix: 1=X, 2=XY, 3=XYZ, 4=XYZW
+ llvm_i32_ty, // vaddr(VGPR)
+ llvm_i32_ty, // soffset(SGPR)
+ llvm_i32_ty, // inst_offset(imm)
+ llvm_i32_ty, // dfmt(imm)
+ llvm_i32_ty, // nfmt(imm)
+ llvm_i32_ty, // offen(imm)
+ llvm_i32_ty, // idxen(imm)
+ llvm_i32_ty, // glc(imm)
+ llvm_i32_ty, // slc(imm)
+ llvm_i32_ty], // tfe(imm)
+ []>;
+
+ // Fully-flexible BUFFER_LOAD_DWORD_* except for the ADDR64 bit, which is not exposed
+ def int_SI_buffer_load_dword : Intrinsic <
+ [llvm_anyint_ty], // vdata(VGPR), overloaded for types i32, v2i32, v4i32
+ [llvm_anyint_ty, // rsrc(SGPR)
+ llvm_anyint_ty, // vaddr(VGPR)
+ llvm_i32_ty, // soffset(SGPR)
+ llvm_i32_ty, // inst_offset(imm)
+ llvm_i32_ty, // offen(imm)
+ llvm_i32_ty, // idxen(imm)
+ llvm_i32_ty, // glc(imm)
+ llvm_i32_ty, // slc(imm)
+ llvm_i32_ty], // tfe(imm)
+ [IntrReadArgMem]>;
+
+ def int_SI_sendmsg : Intrinsic <[], [llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+
+ // Fully-flexible SAMPLE instruction.
+ class SampleRaw : Intrinsic <
+ [llvm_v4f32_ty], // vdata(VGPR)
+ [llvm_anyint_ty, // vaddr(VGPR)
+ llvm_v8i32_ty, // rsrc(SGPR)
+ llvm_v4i32_ty, // sampler(SGPR)
+ llvm_i32_ty, // dmask(imm)
+ llvm_i32_ty, // unorm(imm)
+ llvm_i32_ty, // r128(imm)
+ llvm_i32_ty, // da(imm)
+ llvm_i32_ty, // glc(imm)
+ llvm_i32_ty, // slc(imm)
+ llvm_i32_ty, // tfe(imm)
+ llvm_i32_ty], // lwe(imm)
+ [IntrNoMem]>;
+
+ // Image instruction without a sampler.
+ class Image : Intrinsic <
+ [llvm_v4f32_ty], // vdata(VGPR)
+ [llvm_anyint_ty, // vaddr(VGPR)
+ llvm_v8i32_ty, // rsrc(SGPR)
+ llvm_i32_ty, // dmask(imm)
+ llvm_i32_ty, // unorm(imm)
+ llvm_i32_ty, // r128(imm)
+ llvm_i32_ty, // da(imm)
+ llvm_i32_ty, // glc(imm)
+ llvm_i32_ty, // slc(imm)
+ llvm_i32_ty, // tfe(imm)
+ llvm_i32_ty], // lwe(imm)
+ [IntrNoMem]>;
+
+ // Basic sample
+ def int_SI_image_sample : SampleRaw;
+ def int_SI_image_sample_cl : SampleRaw;
+ def int_SI_image_sample_d : SampleRaw;
+ def int_SI_image_sample_d_cl : SampleRaw;
+ def int_SI_image_sample_l : SampleRaw;
+ def int_SI_image_sample_b : SampleRaw;
+ def int_SI_image_sample_b_cl : SampleRaw;
+ def int_SI_image_sample_lz : SampleRaw;
+ def int_SI_image_sample_cd : SampleRaw;
+ def int_SI_image_sample_cd_cl : SampleRaw;
+
+ // Sample with comparison
+ def int_SI_image_sample_c : SampleRaw;
+ def int_SI_image_sample_c_cl : SampleRaw;
+ def int_SI_image_sample_c_d : SampleRaw;
+ def int_SI_image_sample_c_d_cl : SampleRaw;
+ def int_SI_image_sample_c_l : SampleRaw;
+ def int_SI_image_sample_c_b : SampleRaw;
+ def int_SI_image_sample_c_b_cl : SampleRaw;
+ def int_SI_image_sample_c_lz : SampleRaw;
+ def int_SI_image_sample_c_cd : SampleRaw;
+ def int_SI_image_sample_c_cd_cl : SampleRaw;
+
+ // Sample with offsets
+ def int_SI_image_sample_o : SampleRaw;
+ def int_SI_image_sample_cl_o : SampleRaw;
+ def int_SI_image_sample_d_o : SampleRaw;
+ def int_SI_image_sample_d_cl_o : SampleRaw;
+ def int_SI_image_sample_l_o : SampleRaw;
+ def int_SI_image_sample_b_o : SampleRaw;
+ def int_SI_image_sample_b_cl_o : SampleRaw;
+ def int_SI_image_sample_lz_o : SampleRaw;
+ def int_SI_image_sample_cd_o : SampleRaw;
+ def int_SI_image_sample_cd_cl_o : SampleRaw;
+
+ // Sample with comparison and offsets
+ def int_SI_image_sample_c_o : SampleRaw;
+ def int_SI_image_sample_c_cl_o : SampleRaw;
+ def int_SI_image_sample_c_d_o : SampleRaw;
+ def int_SI_image_sample_c_d_cl_o : SampleRaw;
+ def int_SI_image_sample_c_l_o : SampleRaw;
+ def int_SI_image_sample_c_b_o : SampleRaw;
+ def int_SI_image_sample_c_b_cl_o : SampleRaw;
+ def int_SI_image_sample_c_lz_o : SampleRaw;
+ def int_SI_image_sample_c_cd_o : SampleRaw;
+ def int_SI_image_sample_c_cd_cl_o : SampleRaw;
+
+ // Basic gather4
+ def int_SI_gather4 : SampleRaw;
+ def int_SI_gather4_cl : SampleRaw;
+ def int_SI_gather4_l : SampleRaw;
+ def int_SI_gather4_b : SampleRaw;
+ def int_SI_gather4_b_cl : SampleRaw;
+ def int_SI_gather4_lz : SampleRaw;
+
+ // Gather4 with comparison
+ def int_SI_gather4_c : SampleRaw;
+ def int_SI_gather4_c_cl : SampleRaw;
+ def int_SI_gather4_c_l : SampleRaw;
+ def int_SI_gather4_c_b : SampleRaw;
+ def int_SI_gather4_c_b_cl : SampleRaw;
+ def int_SI_gather4_c_lz : SampleRaw;
+
+ // Gather4 with offsets
+ def int_SI_gather4_o : SampleRaw;
+ def int_SI_gather4_cl_o : SampleRaw;
+ def int_SI_gather4_l_o : SampleRaw;
+ def int_SI_gather4_b_o : SampleRaw;
+ def int_SI_gather4_b_cl_o : SampleRaw;
+ def int_SI_gather4_lz_o : SampleRaw;
+
+ // Gather4 with comparison and offsets
+ def int_SI_gather4_c_o : SampleRaw;
+ def int_SI_gather4_c_cl_o : SampleRaw;
+ def int_SI_gather4_c_l_o : SampleRaw;
+ def int_SI_gather4_c_b_o : SampleRaw;
+ def int_SI_gather4_c_b_cl_o : SampleRaw;
+ def int_SI_gather4_c_lz_o : SampleRaw;
+
+ def int_SI_getlod : SampleRaw;
+
+ // Image instrinsics.
+ def int_SI_image_load : Image;
+ def int_SI_image_load_mip : Image;
+ def int_SI_getresinfo : Image;
+
+ // Deprecated image and sample intrinsics.
+ class Sample : Intrinsic <[llvm_v4f32_ty], [llvm_anyvector_ty, llvm_v32i8_ty, llvm_anyint_ty, llvm_i32_ty], [IntrNoMem]>;
+
+ def int_SI_sample : Sample;
+ def int_SI_sampleb : Sample;
+ def int_SI_sampled : Sample;
+ def int_SI_samplel : Sample;
+ def int_SI_imageload : Intrinsic <[llvm_v4i32_ty], [llvm_anyvector_ty, llvm_v32i8_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_SI_resinfo : Intrinsic <[llvm_v4i32_ty], [llvm_i32_ty, llvm_v32i8_ty, llvm_i32_ty], [IntrNoMem]>;
+
+ /* Interpolation Intrinsics */
+
+ def int_SI_fs_constant : Intrinsic <[llvm_float_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
+ def int_SI_fs_interp : Intrinsic <[llvm_float_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty, llvm_v2i32_ty], [IntrNoMem]>;
+
+ /* Control flow Intrinsics */
+
+ def int_SI_if : Intrinsic<[llvm_i64_ty], [llvm_i1_ty, llvm_empty_ty], []>;
+ def int_SI_else : Intrinsic<[llvm_i64_ty], [llvm_i64_ty, llvm_empty_ty], []>;
+ def int_SI_break : Intrinsic<[llvm_i64_ty], [llvm_i64_ty], []>;
+ def int_SI_if_break : Intrinsic<[llvm_i64_ty], [llvm_i1_ty, llvm_i64_ty], []>;
+ def int_SI_else_break : Intrinsic<[llvm_i64_ty], [llvm_i64_ty, llvm_i64_ty], []>;
+ def int_SI_loop : Intrinsic<[], [llvm_i64_ty, llvm_empty_ty], []>;
+ def int_SI_end_cf : Intrinsic<[], [llvm_i64_ty], []>;
+}
diff --git a/contrib/llvm/lib/Target/R600/SILowerControlFlow.cpp b/contrib/llvm/lib/Target/R600/SILowerControlFlow.cpp
new file mode 100644
index 0000000..75b5a5e
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SILowerControlFlow.cpp
@@ -0,0 +1,552 @@
+//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief This pass lowers the pseudo control flow instructions to real
+/// machine instructions.
+///
+/// All control flow is handled using predicated instructions and
+/// a predicate stack. Each Scalar ALU controls the operations of 64 Vector
+/// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs
+/// by writting to the 64-bit EXEC register (each bit corresponds to a
+/// single vector ALU). Typically, for predicates, a vector ALU will write
+/// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each
+/// Vector ALU) and then the ScalarALU will AND the VCC register with the
+/// EXEC to update the predicates.
+///
+/// For example:
+/// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2
+/// %SGPR0 = SI_IF %VCC
+/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0
+/// %SGPR0 = SI_ELSE %SGPR0
+/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0
+/// SI_END_CF %SGPR0
+///
+/// becomes:
+///
+/// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask
+/// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
+/// S_CBRANCH_EXECZ label0 // This instruction is an optional
+/// // optimization which allows us to
+/// // branch if all the bits of
+/// // EXEC are zero.
+/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch
+///
+/// label0:
+/// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC // Restore the exec mask for the Then block
+/// %EXEC = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
+/// S_BRANCH_EXECZ label1 // Use our branch optimization
+/// // instruction again.
+/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block
+/// label1:
+/// %EXEC = S_OR_B64 %EXEC, %SGPR0 // Re-enable saved exec mask bits
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "SIInstrInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Constants.h"
+
+using namespace llvm;
+
+namespace {
+
+class SILowerControlFlowPass : public MachineFunctionPass {
+
+private:
+ static const unsigned SkipThreshold = 12;
+
+ static char ID;
+ const SIRegisterInfo *TRI;
+ const SIInstrInfo *TII;
+
+ bool shouldSkip(MachineBasicBlock *From, MachineBasicBlock *To);
+
+ void Skip(MachineInstr &From, MachineOperand &To);
+ void SkipIfDead(MachineInstr &MI);
+
+ void If(MachineInstr &MI);
+ void Else(MachineInstr &MI);
+ void Break(MachineInstr &MI);
+ void IfBreak(MachineInstr &MI);
+ void ElseBreak(MachineInstr &MI);
+ void Loop(MachineInstr &MI);
+ void EndCf(MachineInstr &MI);
+
+ void Kill(MachineInstr &MI);
+ void Branch(MachineInstr &MI);
+
+ void InitM0ForLDS(MachineBasicBlock::iterator MI);
+ void LoadM0(MachineInstr &MI, MachineInstr *MovRel);
+ void IndirectSrc(MachineInstr &MI);
+ void IndirectDst(MachineInstr &MI);
+
+public:
+ SILowerControlFlowPass(TargetMachine &tm) :
+ MachineFunctionPass(ID), TRI(nullptr), TII(nullptr) { }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "SI Lower control flow instructions";
+ }
+
+};
+
+} // End anonymous namespace
+
+char SILowerControlFlowPass::ID = 0;
+
+FunctionPass *llvm::createSILowerControlFlowPass(TargetMachine &tm) {
+ return new SILowerControlFlowPass(tm);
+}
+
+bool SILowerControlFlowPass::shouldSkip(MachineBasicBlock *From,
+ MachineBasicBlock *To) {
+
+ unsigned NumInstr = 0;
+
+ for (MachineBasicBlock *MBB = From; MBB != To && !MBB->succ_empty();
+ MBB = *MBB->succ_begin()) {
+
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+ NumInstr < SkipThreshold && I != E; ++I) {
+
+ if (I->isBundle() || !I->isBundled())
+ if (++NumInstr >= SkipThreshold)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+void SILowerControlFlowPass::Skip(MachineInstr &From, MachineOperand &To) {
+
+ if (!shouldSkip(*From.getParent()->succ_begin(), To.getMBB()))
+ return;
+
+ DebugLoc DL = From.getDebugLoc();
+ BuildMI(*From.getParent(), &From, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ))
+ .addOperand(To)
+ .addReg(AMDGPU::EXEC);
+}
+
+void SILowerControlFlowPass::SkipIfDead(MachineInstr &MI) {
+
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+
+ if (MBB.getParent()->getInfo<SIMachineFunctionInfo>()->getShaderType() !=
+ ShaderType::PIXEL ||
+ !shouldSkip(&MBB, &MBB.getParent()->back()))
+ return;
+
+ MachineBasicBlock::iterator Insert = &MI;
+ ++Insert;
+
+ // If the exec mask is non-zero, skip the next two instructions
+ BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
+ .addImm(3)
+ .addReg(AMDGPU::EXEC);
+
+ // Exec mask is zero: Export to NULL target...
+ BuildMI(MBB, Insert, DL, TII->get(AMDGPU::EXP))
+ .addImm(0)
+ .addImm(0x09) // V_008DFC_SQ_EXP_NULL
+ .addImm(0)
+ .addImm(1)
+ .addImm(1)
+ .addReg(AMDGPU::VGPR0)
+ .addReg(AMDGPU::VGPR0)
+ .addReg(AMDGPU::VGPR0)
+ .addReg(AMDGPU::VGPR0);
+
+ // ... and terminate wavefront
+ BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_ENDPGM));
+}
+
+void SILowerControlFlowPass::If(MachineInstr &MI) {
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+ unsigned Reg = MI.getOperand(0).getReg();
+ unsigned Vcc = MI.getOperand(1).getReg();
+
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), Reg)
+ .addReg(Vcc);
+
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), Reg)
+ .addReg(AMDGPU::EXEC)
+ .addReg(Reg);
+
+ Skip(MI, MI.getOperand(2));
+
+ MI.eraseFromParent();
+}
+
+void SILowerControlFlowPass::Else(MachineInstr &MI) {
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+ unsigned Dst = MI.getOperand(0).getReg();
+ unsigned Src = MI.getOperand(1).getReg();
+
+ BuildMI(MBB, MBB.getFirstNonPHI(), DL,
+ TII->get(AMDGPU::S_OR_SAVEEXEC_B64), Dst)
+ .addReg(Src); // Saved EXEC
+
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
+ .addReg(AMDGPU::EXEC)
+ .addReg(Dst);
+
+ Skip(MI, MI.getOperand(2));
+
+ MI.eraseFromParent();
+}
+
+void SILowerControlFlowPass::Break(MachineInstr &MI) {
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+
+ unsigned Dst = MI.getOperand(0).getReg();
+ unsigned Src = MI.getOperand(1).getReg();
+
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
+ .addReg(AMDGPU::EXEC)
+ .addReg(Src);
+
+ MI.eraseFromParent();
+}
+
+void SILowerControlFlowPass::IfBreak(MachineInstr &MI) {
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+
+ unsigned Dst = MI.getOperand(0).getReg();
+ unsigned Vcc = MI.getOperand(1).getReg();
+ unsigned Src = MI.getOperand(2).getReg();
+
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
+ .addReg(Vcc)
+ .addReg(Src);
+
+ MI.eraseFromParent();
+}
+
+void SILowerControlFlowPass::ElseBreak(MachineInstr &MI) {
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+
+ unsigned Dst = MI.getOperand(0).getReg();
+ unsigned Saved = MI.getOperand(1).getReg();
+ unsigned Src = MI.getOperand(2).getReg();
+
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
+ .addReg(Saved)
+ .addReg(Src);
+
+ MI.eraseFromParent();
+}
+
+void SILowerControlFlowPass::Loop(MachineInstr &MI) {
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+ unsigned Src = MI.getOperand(0).getReg();
+
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ANDN2_B64), AMDGPU::EXEC)
+ .addReg(AMDGPU::EXEC)
+ .addReg(Src);
+
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
+ .addOperand(MI.getOperand(1))
+ .addReg(AMDGPU::EXEC);
+
+ MI.eraseFromParent();
+}
+
+void SILowerControlFlowPass::EndCf(MachineInstr &MI) {
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+ unsigned Reg = MI.getOperand(0).getReg();
+
+ BuildMI(MBB, MBB.getFirstNonPHI(), DL,
+ TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC)
+ .addReg(AMDGPU::EXEC)
+ .addReg(Reg);
+
+ MI.eraseFromParent();
+}
+
+void SILowerControlFlowPass::Branch(MachineInstr &MI) {
+ if (MI.getOperand(0).getMBB() == MI.getParent()->getNextNode())
+ MI.eraseFromParent();
+
+ // If these aren't equal, this is probably an infinite loop.
+}
+
+void SILowerControlFlowPass::Kill(MachineInstr &MI) {
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+ const MachineOperand &Op = MI.getOperand(0);
+
+#ifndef NDEBUG
+ const SIMachineFunctionInfo *MFI
+ = MBB.getParent()->getInfo<SIMachineFunctionInfo>();
+ // Kill is only allowed in pixel / geometry shaders.
+ assert(MFI->getShaderType() == ShaderType::PIXEL ||
+ MFI->getShaderType() == ShaderType::GEOMETRY);
+#endif
+
+ // Clear this thread from the exec mask if the operand is negative
+ if ((Op.isImm() || Op.isFPImm())) {
+ // Constant operand: Set exec mask to 0 or do nothing
+ if (Op.isImm() ? (Op.getImm() & 0x80000000) :
+ Op.getFPImm()->isNegative()) {
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
+ .addImm(0);
+ }
+ } else {
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMPX_LE_F32_e32), AMDGPU::VCC)
+ .addImm(0)
+ .addOperand(Op);
+ }
+
+ MI.eraseFromParent();
+}
+
+/// The m0 register stores the maximum allowable address for LDS reads and
+/// writes. Its value must be at least the size in bytes of LDS allocated by
+/// the shader. For simplicity, we set it to the maximum possible value.
+void SILowerControlFlowPass::InitM0ForLDS(MachineBasicBlock::iterator MI) {
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
+ AMDGPU::M0).addImm(0xffffffff);
+}
+
+void SILowerControlFlowPass::LoadM0(MachineInstr &MI, MachineInstr *MovRel) {
+
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+ MachineBasicBlock::iterator I = MI;
+
+ unsigned Save = MI.getOperand(1).getReg();
+ unsigned Idx = MI.getOperand(3).getReg();
+
+ if (AMDGPU::SReg_32RegClass.contains(Idx)) {
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
+ .addReg(Idx);
+ MBB.insert(I, MovRel);
+ } else {
+
+ assert(AMDGPU::SReg_64RegClass.contains(Save));
+ assert(AMDGPU::VReg_32RegClass.contains(Idx));
+
+ // Save the EXEC mask
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), Save)
+ .addReg(AMDGPU::EXEC);
+
+ // Read the next variant into VCC (lower 32 bits) <- also loop target
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32),
+ AMDGPU::VCC_LO)
+ .addReg(Idx);
+
+ // Move index from VCC into M0
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
+ .addReg(AMDGPU::VCC_LO);
+
+ // Compare the just read M0 value to all possible Idx values
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e32), AMDGPU::VCC)
+ .addReg(AMDGPU::M0)
+ .addReg(Idx);
+
+ // Update EXEC, save the original EXEC value to VCC
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), AMDGPU::VCC)
+ .addReg(AMDGPU::VCC);
+
+ // Do the actual move
+ MBB.insert(I, MovRel);
+
+ // Update EXEC, switch all done bits to 0 and all todo bits to 1
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
+ .addReg(AMDGPU::EXEC)
+ .addReg(AMDGPU::VCC);
+
+ // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
+ .addImm(-7)
+ .addReg(AMDGPU::EXEC);
+
+ // Restore EXEC
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
+ .addReg(Save);
+
+ }
+ // FIXME: Are there any values other than the LDS address clamp that need to
+ // be stored in the m0 register and may be live for more than a few
+ // instructions? If so, we should save the m0 register at the beginning
+ // of this function and restore it here.
+ // FIXME: Add support for LDS direct loads.
+ InitM0ForLDS(&MI);
+ MI.eraseFromParent();
+}
+
+void SILowerControlFlowPass::IndirectSrc(MachineInstr &MI) {
+
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+
+ unsigned Dst = MI.getOperand(0).getReg();
+ unsigned Vec = MI.getOperand(2).getReg();
+ unsigned Off = MI.getOperand(4).getImm();
+ unsigned SubReg = TRI->getSubReg(Vec, AMDGPU::sub0);
+ if (!SubReg)
+ SubReg = Vec;
+
+ MachineInstr *MovRel =
+ BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
+ .addReg(SubReg + Off)
+ .addReg(AMDGPU::M0, RegState::Implicit)
+ .addReg(Vec, RegState::Implicit);
+
+ LoadM0(MI, MovRel);
+}
+
+void SILowerControlFlowPass::IndirectDst(MachineInstr &MI) {
+
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+
+ unsigned Dst = MI.getOperand(0).getReg();
+ unsigned Off = MI.getOperand(4).getImm();
+ unsigned Val = MI.getOperand(5).getReg();
+ unsigned SubReg = TRI->getSubReg(Dst, AMDGPU::sub0);
+ if (!SubReg)
+ SubReg = Dst;
+
+ MachineInstr *MovRel =
+ BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELD_B32_e32))
+ .addReg(SubReg + Off, RegState::Define)
+ .addReg(Val)
+ .addReg(AMDGPU::M0, RegState::Implicit)
+ .addReg(Dst, RegState::Implicit);
+
+ LoadM0(MI, MovRel);
+}
+
+bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) {
+ TII = static_cast<const SIInstrInfo*>(MF.getTarget().getInstrInfo());
+ TRI = static_cast<const SIRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+
+ bool HaveKill = false;
+ bool NeedM0 = false;
+ bool NeedWQM = false;
+ unsigned Depth = 0;
+
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
+ BI != BE; ++BI) {
+
+ MachineBasicBlock &MBB = *BI;
+ MachineBasicBlock::iterator I, Next;
+ for (I = MBB.begin(); I != MBB.end(); I = Next) {
+ Next = std::next(I);
+
+ MachineInstr &MI = *I;
+ if (TII->isDS(MI.getOpcode())) {
+ NeedM0 = true;
+ NeedWQM = true;
+ }
+
+ switch (MI.getOpcode()) {
+ default: break;
+ case AMDGPU::SI_IF:
+ ++Depth;
+ If(MI);
+ break;
+
+ case AMDGPU::SI_ELSE:
+ Else(MI);
+ break;
+
+ case AMDGPU::SI_BREAK:
+ Break(MI);
+ break;
+
+ case AMDGPU::SI_IF_BREAK:
+ IfBreak(MI);
+ break;
+
+ case AMDGPU::SI_ELSE_BREAK:
+ ElseBreak(MI);
+ break;
+
+ case AMDGPU::SI_LOOP:
+ ++Depth;
+ Loop(MI);
+ break;
+
+ case AMDGPU::SI_END_CF:
+ if (--Depth == 0 && HaveKill) {
+ SkipIfDead(MI);
+ HaveKill = false;
+ }
+ EndCf(MI);
+ break;
+
+ case AMDGPU::SI_KILL:
+ if (Depth == 0)
+ SkipIfDead(MI);
+ else
+ HaveKill = true;
+ Kill(MI);
+ break;
+
+ case AMDGPU::S_BRANCH:
+ Branch(MI);
+ break;
+
+ case AMDGPU::SI_INDIRECT_SRC:
+ IndirectSrc(MI);
+ break;
+
+ case AMDGPU::SI_INDIRECT_DST_V1:
+ case AMDGPU::SI_INDIRECT_DST_V2:
+ case AMDGPU::SI_INDIRECT_DST_V4:
+ case AMDGPU::SI_INDIRECT_DST_V8:
+ case AMDGPU::SI_INDIRECT_DST_V16:
+ IndirectDst(MI);
+ break;
+
+ case AMDGPU::V_INTERP_P1_F32:
+ case AMDGPU::V_INTERP_P2_F32:
+ case AMDGPU::V_INTERP_MOV_F32:
+ NeedWQM = true;
+ break;
+
+ }
+ }
+ }
+
+ if (NeedM0) {
+ MachineBasicBlock &MBB = MF.front();
+ // Initialize M0 to a value that won't cause LDS access to be discarded
+ // due to offset clamping
+ InitM0ForLDS(MBB.getFirstNonPHI());
+ }
+
+ if (NeedWQM && MFI->getShaderType() == ShaderType::PIXEL) {
+ MachineBasicBlock &MBB = MF.front();
+ BuildMI(MBB, MBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
+ AMDGPU::EXEC).addReg(AMDGPU::EXEC);
+ }
+
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/R600/SILowerI1Copies.cpp b/contrib/llvm/lib/Target/R600/SILowerI1Copies.cpp
new file mode 100644
index 0000000..db19235
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SILowerI1Copies.cpp
@@ -0,0 +1,154 @@
+//===-- SILowerI1Copies.cpp - Lower I1 Copies -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// i1 values are usually inserted by the CFG Structurize pass and they are
+/// unique in that they can be copied from VALU to SALU registers.
+/// This is not possible for any other value type. Since there are no
+/// MOV instructions for i1, we to use V_CMP_* and V_CNDMASK to move the i1.
+///
+//===----------------------------------------------------------------------===//
+//
+
+#define DEBUG_TYPE "si-i1-copies"
+#include "AMDGPU.h"
+#include "SIInstrInfo.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+namespace {
+
+class SILowerI1Copies : public MachineFunctionPass {
+public:
+ static char ID;
+
+public:
+ SILowerI1Copies() : MachineFunctionPass(ID) {
+ initializeSILowerI1CopiesPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual bool runOnMachineFunction(MachineFunction &MF) override;
+
+ virtual const char *getPassName() const override {
+ return "SI Lower il Copies";
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineDominatorTree>();
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+
+} // End anonymous namespace.
+
+INITIALIZE_PASS_BEGIN(SILowerI1Copies, DEBUG_TYPE,
+ "SI Lower il Copies", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_END(SILowerI1Copies, DEBUG_TYPE,
+ "SI Lower il Copies", false, false)
+
+char SILowerI1Copies::ID = 0;
+
+char &llvm::SILowerI1CopiesID = SILowerI1Copies::ID;
+
+FunctionPass *llvm::createSILowerI1CopiesPass() {
+ return new SILowerI1Copies();
+}
+
+bool SILowerI1Copies::runOnMachineFunction(MachineFunction &MF) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ MF.getTarget().getInstrInfo());
+ const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ std::vector<unsigned> I1Defs;
+
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
+ BI != BE; ++BI) {
+
+ MachineBasicBlock &MBB = *BI;
+ MachineBasicBlock::iterator I, Next;
+ for (I = MBB.begin(); I != MBB.end(); I = Next) {
+ Next = std::next(I);
+ MachineInstr &MI = *I;
+
+ if (MI.getOpcode() == AMDGPU::V_MOV_I1) {
+ I1Defs.push_back(MI.getOperand(0).getReg());
+ MI.setDesc(TII->get(AMDGPU::V_MOV_B32_e32));
+ continue;
+ }
+
+ if (MI.getOpcode() == AMDGPU::V_AND_I1) {
+ I1Defs.push_back(MI.getOperand(0).getReg());
+ MI.setDesc(TII->get(AMDGPU::V_AND_B32_e32));
+ continue;
+ }
+
+ if (MI.getOpcode() == AMDGPU::V_OR_I1) {
+ I1Defs.push_back(MI.getOperand(0).getReg());
+ MI.setDesc(TII->get(AMDGPU::V_OR_B32_e32));
+ continue;
+ }
+
+ if (MI.getOpcode() == AMDGPU::V_XOR_I1) {
+ I1Defs.push_back(MI.getOperand(0).getReg());
+ MI.setDesc(TII->get(AMDGPU::V_XOR_B32_e32));
+ continue;
+ }
+
+ if (MI.getOpcode() != AMDGPU::COPY ||
+ !TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg()) ||
+ !TargetRegisterInfo::isVirtualRegister(MI.getOperand(1).getReg()))
+ continue;
+
+
+ const TargetRegisterClass *DstRC =
+ MRI.getRegClass(MI.getOperand(0).getReg());
+ const TargetRegisterClass *SrcRC =
+ MRI.getRegClass(MI.getOperand(1).getReg());
+
+ if (DstRC == &AMDGPU::VReg_1RegClass &&
+ TRI->getCommonSubClass(SrcRC, &AMDGPU::SGPR_64RegClass)) {
+ I1Defs.push_back(MI.getOperand(0).getReg());
+ BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(AMDGPU::V_CNDMASK_B32_e64))
+ .addOperand(MI.getOperand(0))
+ .addImm(0)
+ .addImm(-1)
+ .addOperand(MI.getOperand(1))
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0);
+ MI.eraseFromParent();
+ } else if (TRI->getCommonSubClass(DstRC, &AMDGPU::SGPR_64RegClass) &&
+ SrcRC == &AMDGPU::VReg_1RegClass) {
+ BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(AMDGPU::V_CMP_NE_I32_e64))
+ .addOperand(MI.getOperand(0))
+ .addImm(0)
+ .addOperand(MI.getOperand(1))
+ .addImm(0)
+ .addImm(0)
+ .addImm(0)
+ .addImm(0);
+ MI.eraseFromParent();
+ }
+ }
+ }
+
+ for (unsigned Reg : I1Defs)
+ MRI.setRegClass(Reg, &AMDGPU::VReg_32RegClass);
+
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.cpp b/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.cpp
new file mode 100644
index 0000000..c53a7e1
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.cpp
@@ -0,0 +1,97 @@
+//===-- SIMachineFunctionInfo.cpp - SI Machine Function Info -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// \file
+//===----------------------------------------------------------------------===//
+
+
+#include "SIMachineFunctionInfo.h"
+#include "SIInstrInfo.h"
+#include "SIRegisterInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/LLVMContext.h"
+
+#define MAX_LANES 64
+
+using namespace llvm;
+
+
+// Pin the vtable to this file.
+void SIMachineFunctionInfo::anchor() {}
+
+SIMachineFunctionInfo::SIMachineFunctionInfo(const MachineFunction &MF)
+ : AMDGPUMachineFunction(MF),
+ PSInputAddr(0),
+ SpillTracker(),
+ NumUserSGPRs(0) { }
+
+static unsigned createLaneVGPR(MachineRegisterInfo &MRI, MachineFunction *MF) {
+ unsigned VGPR = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
+
+ // We need to add this register as live out for the function, in order to
+ // have the live range calculated directly.
+ //
+ // When register spilling begins, we have already calculated the live
+ // live intervals for all the registers. Since we are spilling SGPRs to
+ // VGPRs, we need to update the Lane VGPR's live interval every time we
+ // spill or restore a register.
+ //
+ // Unfortunately, there is no good way to update the live interval as
+ // the TargetInstrInfo callbacks for spilling and restoring don't give
+ // us access to the live interval information.
+ //
+ // We are lucky, though, because the InlineSpiller calls
+ // LiveRangeEdit::calculateRegClassAndHint() which iterates through
+ // all the new register that have been created when restoring a register
+ // and calls LiveIntervals::getInterval(), which creates and computes
+ // the live interval for the newly created register. However, once this
+ // live intervals is created, it doesn't change and since we usually reuse
+ // the Lane VGPR multiple times, this means any uses after the first aren't
+ // added to the live interval.
+ //
+ // To work around this, we add Lane VGPRs to the functions live out list,
+ // so that we can guarantee its live range will cover all of its uses.
+
+ for (MachineBasicBlock &MBB : *MF) {
+ if (MBB.back().getOpcode() == AMDGPU::S_ENDPGM) {
+ MBB.back().addOperand(*MF, MachineOperand::CreateReg(VGPR, false, true));
+ return VGPR;
+ }
+ }
+
+ LLVMContext &Ctx = MF->getFunction()->getContext();
+ Ctx.emitError("Could not find S_ENDPGM instruction.");
+
+ return VGPR;
+}
+
+unsigned SIMachineFunctionInfo::RegSpillTracker::reserveLanes(
+ MachineRegisterInfo &MRI, MachineFunction *MF, unsigned NumRegs) {
+ unsigned StartLane = CurrentLane;
+ CurrentLane += NumRegs;
+ if (!LaneVGPR) {
+ LaneVGPR = createLaneVGPR(MRI, MF);
+ } else {
+ if (CurrentLane >= MAX_LANES) {
+ StartLane = CurrentLane = 0;
+ LaneVGPR = createLaneVGPR(MRI, MF);
+ }
+ }
+ return StartLane;
+}
+
+void SIMachineFunctionInfo::RegSpillTracker::addSpilledReg(unsigned FrameIndex,
+ unsigned Reg,
+ int Lane) {
+ SpilledRegisters[FrameIndex] = SpilledReg(Reg, Lane);
+}
+
+const SIMachineFunctionInfo::SpilledReg&
+SIMachineFunctionInfo::RegSpillTracker::getSpilledReg(unsigned FrameIndex) {
+ return SpilledRegisters[FrameIndex];
+}
diff --git a/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.h b/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.h
new file mode 100644
index 0000000..9684d28
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.h
@@ -0,0 +1,68 @@
+//===- SIMachineFunctionInfo.h - SIMachineFunctionInfo interface -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef SIMACHINEFUNCTIONINFO_H_
+#define SIMACHINEFUNCTIONINFO_H_
+
+#include "AMDGPUMachineFunction.h"
+#include <map>
+
+namespace llvm {
+
+class MachineRegisterInfo;
+
+/// This class keeps track of the SPI_SP_INPUT_ADDR config register, which
+/// tells the hardware which interpolation parameters to load.
+class SIMachineFunctionInfo : public AMDGPUMachineFunction {
+ void anchor() override;
+public:
+
+ struct SpilledReg {
+ unsigned VGPR;
+ int Lane;
+ SpilledReg(unsigned R, int L) : VGPR (R), Lane (L) { }
+ SpilledReg() : VGPR(0), Lane(-1) { }
+ bool hasLane() { return Lane != -1;}
+ };
+
+ struct RegSpillTracker {
+ private:
+ unsigned CurrentLane;
+ std::map<unsigned, SpilledReg> SpilledRegisters;
+ public:
+ unsigned LaneVGPR;
+ RegSpillTracker() : CurrentLane(0), SpilledRegisters(), LaneVGPR(0) { }
+ /// \p NumRegs The number of consecutive registers what need to be spilled.
+ /// This function will ensure that all registers are stored in
+ /// the same VGPR.
+ /// \returns The lane to be used for storing the first register.
+ unsigned reserveLanes(MachineRegisterInfo &MRI, MachineFunction *MF,
+ unsigned NumRegs = 1);
+ void addSpilledReg(unsigned FrameIndex, unsigned Reg, int Lane = -1);
+ const SpilledReg& getSpilledReg(unsigned FrameIndex);
+ bool programSpillsRegisters() { return !SpilledRegisters.empty(); }
+ };
+
+ // SIMachineFunctionInfo definition
+
+ SIMachineFunctionInfo(const MachineFunction &MF);
+ unsigned PSInputAddr;
+ struct RegSpillTracker SpillTracker;
+ unsigned NumUserSGPRs;
+};
+
+} // End namespace llvm
+
+
+#endif //_SIMACHINEFUNCTIONINFO_H_
diff --git a/contrib/llvm/lib/Target/R600/SIRegisterInfo.cpp b/contrib/llvm/lib/Target/R600/SIRegisterInfo.cpp
new file mode 100644
index 0000000..2a9a2ac
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIRegisterInfo.cpp
@@ -0,0 +1,188 @@
+//===-- SIRegisterInfo.cpp - SI Register Information ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief SI implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+
+#include "SIRegisterInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "SIInstrInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+
+using namespace llvm;
+
+SIRegisterInfo::SIRegisterInfo(const AMDGPUSubtarget &st)
+: AMDGPURegisterInfo(st)
+ { }
+
+BitVector SIRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ BitVector Reserved(getNumRegs());
+ Reserved.set(AMDGPU::EXEC);
+ Reserved.set(AMDGPU::INDIRECT_BASE_ADDR);
+ return Reserved;
+}
+
+unsigned SIRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const {
+ return RC->getNumRegs();
+}
+
+bool SIRegisterInfo::requiresRegisterScavenging(const MachineFunction &Fn) const {
+ return Fn.getFrameInfo()->hasStackObjects();
+}
+
+void SIRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ MachineFunction *MF = MI->getParent()->getParent();
+ MachineFrameInfo *FrameInfo = MF->getFrameInfo();
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo*>(ST.getInstrInfo());
+ MachineOperand &FIOp = MI->getOperand(FIOperandNum);
+ int Index = MI->getOperand(FIOperandNum).getIndex();
+ int64_t Offset = FrameInfo->getObjectOffset(Index);
+
+ FIOp.ChangeToImmediate(Offset);
+ if (!TII->isImmOperandLegal(MI, FIOperandNum, FIOp)) {
+ unsigned TmpReg = RS->scavengeRegister(&AMDGPU::VReg_32RegClass, MI, SPAdj);
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
+ .addImm(Offset);
+ FIOp.ChangeToRegister(TmpReg, false);
+ }
+}
+
+const TargetRegisterClass * SIRegisterInfo::getCFGStructurizerRegClass(
+ MVT VT) const {
+ switch(VT.SimpleTy) {
+ default:
+ case MVT::i32: return &AMDGPU::VReg_32RegClass;
+ }
+}
+
+unsigned SIRegisterInfo::getHWRegIndex(unsigned Reg) const {
+ return getEncodingValue(Reg) & 0xff;
+}
+
+const TargetRegisterClass *SIRegisterInfo::getPhysRegClass(unsigned Reg) const {
+ assert(!TargetRegisterInfo::isVirtualRegister(Reg));
+
+ const TargetRegisterClass *BaseClasses[] = {
+ &AMDGPU::VReg_32RegClass,
+ &AMDGPU::SReg_32RegClass,
+ &AMDGPU::VReg_64RegClass,
+ &AMDGPU::SReg_64RegClass,
+ &AMDGPU::SReg_128RegClass,
+ &AMDGPU::SReg_256RegClass
+ };
+
+ for (const TargetRegisterClass *BaseClass : BaseClasses) {
+ if (BaseClass->contains(Reg)) {
+ return BaseClass;
+ }
+ }
+ return nullptr;
+}
+
+bool SIRegisterInfo::isSGPRClass(const TargetRegisterClass *RC) const {
+ if (!RC) {
+ return false;
+ }
+ return !hasVGPRs(RC);
+}
+
+bool SIRegisterInfo::hasVGPRs(const TargetRegisterClass *RC) const {
+ return getCommonSubClass(&AMDGPU::VReg_32RegClass, RC) ||
+ getCommonSubClass(&AMDGPU::VReg_64RegClass, RC) ||
+ getCommonSubClass(&AMDGPU::VReg_96RegClass, RC) ||
+ getCommonSubClass(&AMDGPU::VReg_128RegClass, RC) ||
+ getCommonSubClass(&AMDGPU::VReg_256RegClass, RC) ||
+ getCommonSubClass(&AMDGPU::VReg_512RegClass, RC);
+}
+
+const TargetRegisterClass *SIRegisterInfo::getEquivalentVGPRClass(
+ const TargetRegisterClass *SRC) const {
+ if (hasVGPRs(SRC)) {
+ return SRC;
+ } else if (SRC == &AMDGPU::SCCRegRegClass) {
+ return &AMDGPU::VCCRegRegClass;
+ } else if (getCommonSubClass(SRC, &AMDGPU::SGPR_32RegClass)) {
+ return &AMDGPU::VReg_32RegClass;
+ } else if (getCommonSubClass(SRC, &AMDGPU::SGPR_64RegClass)) {
+ return &AMDGPU::VReg_64RegClass;
+ } else if (getCommonSubClass(SRC, &AMDGPU::SReg_128RegClass)) {
+ return &AMDGPU::VReg_128RegClass;
+ } else if (getCommonSubClass(SRC, &AMDGPU::SReg_256RegClass)) {
+ return &AMDGPU::VReg_256RegClass;
+ } else if (getCommonSubClass(SRC, &AMDGPU::SReg_512RegClass)) {
+ return &AMDGPU::VReg_512RegClass;
+ }
+ return nullptr;
+}
+
+const TargetRegisterClass *SIRegisterInfo::getSubRegClass(
+ const TargetRegisterClass *RC, unsigned SubIdx) const {
+ if (SubIdx == AMDGPU::NoSubRegister)
+ return RC;
+
+ // If this register has a sub-register, we can safely assume it is a 32-bit
+ // register, because all of SI's sub-registers are 32-bit.
+ if (isSGPRClass(RC)) {
+ return &AMDGPU::SGPR_32RegClass;
+ } else {
+ return &AMDGPU::VGPR_32RegClass;
+ }
+}
+
+unsigned SIRegisterInfo::getPhysRegSubReg(unsigned Reg,
+ const TargetRegisterClass *SubRC,
+ unsigned Channel) const {
+ unsigned Index = getHWRegIndex(Reg);
+ return SubRC->getRegister(Index + Channel);
+}
+
+bool SIRegisterInfo::regClassCanUseImmediate(int RCID) const {
+ switch (RCID) {
+ default: return false;
+ case AMDGPU::SSrc_32RegClassID:
+ case AMDGPU::SSrc_64RegClassID:
+ case AMDGPU::VSrc_32RegClassID:
+ case AMDGPU::VSrc_64RegClassID:
+ return true;
+ }
+}
+
+bool SIRegisterInfo::regClassCanUseImmediate(
+ const TargetRegisterClass *RC) const {
+ return regClassCanUseImmediate(RC->getID());
+}
+
+unsigned SIRegisterInfo::getPreloadedValue(const MachineFunction &MF,
+ enum PreloadedValue Value) const {
+
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ switch (Value) {
+ case SIRegisterInfo::TGID_X:
+ return AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 0);
+ case SIRegisterInfo::TGID_Y:
+ return AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 1);
+ case SIRegisterInfo::TGID_Z:
+ return AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 2);
+ case SIRegisterInfo::SCRATCH_WAVE_OFFSET:
+ return AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 4);
+ case SIRegisterInfo::SCRATCH_PTR:
+ return AMDGPU::SGPR2_SGPR3;
+ }
+ llvm_unreachable("unexpected preloaded value type");
+}
diff --git a/contrib/llvm/lib/Target/R600/SIRegisterInfo.h b/contrib/llvm/lib/Target/R600/SIRegisterInfo.h
new file mode 100644
index 0000000..5d0235c
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIRegisterInfo.h
@@ -0,0 +1,94 @@
+//===-- SIRegisterInfo.h - SI Register Info Interface ----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Interface definition for SIRegisterInfo
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef SIREGISTERINFO_H_
+#define SIREGISTERINFO_H_
+
+#include "AMDGPURegisterInfo.h"
+
+namespace llvm {
+
+struct SIRegisterInfo : public AMDGPURegisterInfo {
+
+ SIRegisterInfo(const AMDGPUSubtarget &st);
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+
+ unsigned getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const override;
+
+ bool requiresRegisterScavenging(const MachineFunction &Fn) const override;
+
+ void eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj,
+ unsigned FIOperandNum,
+ RegScavenger *RS) const override;
+
+ /// \brief get the register class of the specified type to use in the
+ /// CFGStructurizer
+ const TargetRegisterClass * getCFGStructurizerRegClass(MVT VT) const override;
+
+ unsigned getHWRegIndex(unsigned Reg) const override;
+
+ /// \brief Return the 'base' register class for this register.
+ /// e.g. SGPR0 => SReg_32, VGPR => VReg_32 SGPR0_SGPR1 -> SReg_32, etc.
+ const TargetRegisterClass *getPhysRegClass(unsigned Reg) const;
+
+ /// \returns true if this class contains only SGPR registers
+ bool isSGPRClass(const TargetRegisterClass *RC) const;
+
+ /// \returns true if this class contains VGPR registers.
+ bool hasVGPRs(const TargetRegisterClass *RC) const;
+
+ /// \returns A VGPR reg class with the same width as \p SRC
+ const TargetRegisterClass *getEquivalentVGPRClass(
+ const TargetRegisterClass *SRC) const;
+
+ /// \returns The register class that is used for a sub-register of \p RC for
+ /// the given \p SubIdx. If \p SubIdx equals NoSubRegister, \p RC will
+ /// be returned.
+ const TargetRegisterClass *getSubRegClass(const TargetRegisterClass *RC,
+ unsigned SubIdx) const;
+
+ /// \p Channel This is the register channel (e.g. a value from 0-16), not the
+ /// SubReg index.
+ /// \returns The sub-register of Reg that is in Channel.
+ unsigned getPhysRegSubReg(unsigned Reg, const TargetRegisterClass *SubRC,
+ unsigned Channel) const;
+
+ /// \returns True if operands defined with this register class can accept
+ /// inline immediates.
+ bool regClassCanUseImmediate(int RCID) const;
+
+ /// \returns True if operands defined with this register class can accept
+ /// inline immediates.
+ bool regClassCanUseImmediate(const TargetRegisterClass *RC) const;
+
+ enum PreloadedValue {
+ TGID_X,
+ TGID_Y,
+ TGID_Z,
+ SCRATCH_WAVE_OFFSET,
+ SCRATCH_PTR
+ };
+
+ /// \brief Returns the physical register that \p Value is stored in.
+ unsigned getPreloadedValue(const MachineFunction &MF,
+ enum PreloadedValue Value) const;
+
+};
+
+} // End namespace llvm
+
+#endif // SIREGISTERINFO_H_
diff --git a/contrib/llvm/lib/Target/R600/SIRegisterInfo.td b/contrib/llvm/lib/Target/R600/SIRegisterInfo.td
new file mode 100644
index 0000000..8974b63
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIRegisterInfo.td
@@ -0,0 +1,211 @@
+//===-- SIRegisterInfo.td - SI Register defs ---------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Declarations that describe the SI registers
+//===----------------------------------------------------------------------===//
+
+class SIReg <string n, bits<16> encoding = 0> : Register<n> {
+ let Namespace = "AMDGPU";
+ let HWEncoding = encoding;
+}
+
+// Special Registers
+def VCC_LO : SIReg<"vcc_lo", 106>;
+def VCC_HI : SIReg<"vcc_hi", 107>;
+
+// VCC for 64-bit instructions
+def VCC : RegisterWithSubRegs<"VCC", [VCC_LO, VCC_HI]> {
+ let Namespace = "AMDGPU";
+ let SubRegIndices = [sub0, sub1];
+ let HWEncoding = 106;
+}
+
+def EXEC : SIReg<"EXEC", 126>;
+def SCC : SIReg<"SCC", 253>;
+def M0 : SIReg <"M0", 124>;
+
+// SGPR registers
+foreach Index = 0-101 in {
+ def SGPR#Index : SIReg <"SGPR"#Index, Index>;
+}
+
+// VGPR registers
+foreach Index = 0-255 in {
+ def VGPR#Index : SIReg <"VGPR"#Index, Index> {
+ let HWEncoding{8} = 1;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Groupings using register classes and tuples
+//===----------------------------------------------------------------------===//
+
+// SGPR 32-bit registers
+def SGPR_32 : RegisterClass<"AMDGPU", [f32, i32], 32,
+ (add (sequence "SGPR%u", 0, 101))>;
+
+// SGPR 64-bit registers
+def SGPR_64Regs : RegisterTuples<[sub0, sub1],
+ [(add (decimate (trunc SGPR_32, 101), 2)),
+ (add (decimate (shl SGPR_32, 1), 2))]>;
+
+// SGPR 128-bit registers
+def SGPR_128 : RegisterTuples<[sub0, sub1, sub2, sub3],
+ [(add (decimate (trunc SGPR_32, 99), 4)),
+ (add (decimate (shl SGPR_32, 1), 4)),
+ (add (decimate (shl SGPR_32, 2), 4)),
+ (add (decimate (shl SGPR_32, 3), 4))]>;
+
+// SGPR 256-bit registers
+def SGPR_256 : RegisterTuples<[sub0, sub1, sub2, sub3, sub4, sub5, sub6, sub7],
+ [(add (decimate (trunc SGPR_32, 95), 4)),
+ (add (decimate (shl SGPR_32, 1), 4)),
+ (add (decimate (shl SGPR_32, 2), 4)),
+ (add (decimate (shl SGPR_32, 3), 4)),
+ (add (decimate (shl SGPR_32, 4), 4)),
+ (add (decimate (shl SGPR_32, 5), 4)),
+ (add (decimate (shl SGPR_32, 6), 4)),
+ (add (decimate (shl SGPR_32, 7), 4))]>;
+
+// SGPR 512-bit registers
+def SGPR_512 : RegisterTuples<[sub0, sub1, sub2, sub3, sub4, sub5, sub6, sub7,
+ sub8, sub9, sub10, sub11, sub12, sub13, sub14, sub15],
+ [(add (decimate (trunc SGPR_32, 87), 4)),
+ (add (decimate (shl SGPR_32, 1), 4)),
+ (add (decimate (shl SGPR_32, 2), 4)),
+ (add (decimate (shl SGPR_32, 3), 4)),
+ (add (decimate (shl SGPR_32, 4), 4)),
+ (add (decimate (shl SGPR_32, 5), 4)),
+ (add (decimate (shl SGPR_32, 6), 4)),
+ (add (decimate (shl SGPR_32, 7), 4)),
+ (add (decimate (shl SGPR_32, 8), 4)),
+ (add (decimate (shl SGPR_32, 9), 4)),
+ (add (decimate (shl SGPR_32, 10), 4)),
+ (add (decimate (shl SGPR_32, 11), 4)),
+ (add (decimate (shl SGPR_32, 12), 4)),
+ (add (decimate (shl SGPR_32, 13), 4)),
+ (add (decimate (shl SGPR_32, 14), 4)),
+ (add (decimate (shl SGPR_32, 15), 4))]>;
+
+// VGPR 32-bit registers
+def VGPR_32 : RegisterClass<"AMDGPU", [f32, i32], 32,
+ (add (sequence "VGPR%u", 0, 255))>;
+
+// VGPR 64-bit registers
+def VGPR_64 : RegisterTuples<[sub0, sub1],
+ [(add (trunc VGPR_32, 255)),
+ (add (shl VGPR_32, 1))]>;
+
+// VGPR 96-bit registers
+def VGPR_96 : RegisterTuples<[sub0, sub1, sub2],
+ [(add (trunc VGPR_32, 254)),
+ (add (shl VGPR_32, 1)),
+ (add (shl VGPR_32, 2))]>;
+
+// VGPR 128-bit registers
+def VGPR_128 : RegisterTuples<[sub0, sub1, sub2, sub3],
+ [(add (trunc VGPR_32, 253)),
+ (add (shl VGPR_32, 1)),
+ (add (shl VGPR_32, 2)),
+ (add (shl VGPR_32, 3))]>;
+
+// VGPR 256-bit registers
+def VGPR_256 : RegisterTuples<[sub0, sub1, sub2, sub3, sub4, sub5, sub6, sub7],
+ [(add (trunc VGPR_32, 249)),
+ (add (shl VGPR_32, 1)),
+ (add (shl VGPR_32, 2)),
+ (add (shl VGPR_32, 3)),
+ (add (shl VGPR_32, 4)),
+ (add (shl VGPR_32, 5)),
+ (add (shl VGPR_32, 6)),
+ (add (shl VGPR_32, 7))]>;
+
+// VGPR 512-bit registers
+def VGPR_512 : RegisterTuples<[sub0, sub1, sub2, sub3, sub4, sub5, sub6, sub7,
+ sub8, sub9, sub10, sub11, sub12, sub13, sub14, sub15],
+ [(add (trunc VGPR_32, 241)),
+ (add (shl VGPR_32, 1)),
+ (add (shl VGPR_32, 2)),
+ (add (shl VGPR_32, 3)),
+ (add (shl VGPR_32, 4)),
+ (add (shl VGPR_32, 5)),
+ (add (shl VGPR_32, 6)),
+ (add (shl VGPR_32, 7)),
+ (add (shl VGPR_32, 8)),
+ (add (shl VGPR_32, 9)),
+ (add (shl VGPR_32, 10)),
+ (add (shl VGPR_32, 11)),
+ (add (shl VGPR_32, 12)),
+ (add (shl VGPR_32, 13)),
+ (add (shl VGPR_32, 14)),
+ (add (shl VGPR_32, 15))]>;
+
+//===----------------------------------------------------------------------===//
+// Register classes used as source and destination
+//===----------------------------------------------------------------------===//
+
+// Special register classes for predicates and the M0 register
+def SCCReg : RegisterClass<"AMDGPU", [i32, i1], 32, (add SCC)>;
+def VCCReg : RegisterClass<"AMDGPU", [i64, i1], 64, (add VCC)>;
+def EXECReg : RegisterClass<"AMDGPU", [i64, i1], 64, (add EXEC)>;
+def M0Reg : RegisterClass<"AMDGPU", [i32], 32, (add M0)>;
+
+// Register class for all scalar registers (SGPRs + Special Registers)
+def SReg_32 : RegisterClass<"AMDGPU", [f32, i32], 32,
+ (add SGPR_32, M0Reg, VCC_LO)
+>;
+
+def SGPR_64 : RegisterClass<"AMDGPU", [v2i32, i64], 64, (add SGPR_64Regs)>;
+
+def SReg_64 : RegisterClass<"AMDGPU", [v2i32, i64, i1], 64,
+ (add SGPR_64Regs, VCCReg, EXECReg)
+>;
+
+def SReg_128 : RegisterClass<"AMDGPU", [v4i32, v16i8], 128, (add SGPR_128)>;
+
+def SReg_256 : RegisterClass<"AMDGPU", [v32i8, v8i32, v8f32], 256, (add SGPR_256)>;
+
+def SReg_512 : RegisterClass<"AMDGPU", [v64i8, v16i32], 512, (add SGPR_512)>;
+
+// Register class for all vector registers (VGPRs + Interploation Registers)
+def VReg_32 : RegisterClass<"AMDGPU", [i32, f32, v1i32], 32, (add VGPR_32)>;
+
+def VReg_64 : RegisterClass<"AMDGPU", [i64, f64, v2i32, v2f32], 64, (add VGPR_64)>;
+
+def VReg_96 : RegisterClass<"AMDGPU", [untyped], 96, (add VGPR_96)> {
+ let Size = 96;
+}
+
+def VReg_128 : RegisterClass<"AMDGPU", [v4i32, v4f32], 128, (add VGPR_128)>;
+
+def VReg_256 : RegisterClass<"AMDGPU", [v32i8, v8i32, v8f32], 256, (add VGPR_256)>;
+
+def VReg_512 : RegisterClass<"AMDGPU", [v16i32, v16f32], 512, (add VGPR_512)>;
+
+def VReg_1 : RegisterClass<"AMDGPU", [i1], 32, (add VGPR_32)>;
+
+//===----------------------------------------------------------------------===//
+// [SV]Src_(32|64) register classes, can have either an immediate or an register
+//===----------------------------------------------------------------------===//
+
+def SSrc_32 : RegisterClass<"AMDGPU", [i32, f32], 32, (add SReg_32)>;
+
+def SSrc_64 : RegisterClass<"AMDGPU", [i64, f64, i1], 64, (add SReg_64)>;
+
+def VSrc_32 : RegisterClass<"AMDGPU", [i32, f32], 32, (add VReg_32, SReg_32)>;
+
+def VSrc_64 : RegisterClass<"AMDGPU", [i64, f64], 64, (add VReg_64, SReg_64)>;
+
+//===----------------------------------------------------------------------===//
+// SGPR and VGPR register classes
+//===----------------------------------------------------------------------===//
+
+def VSrc_128 : RegisterClass<"AMDGPU", [v4i32, v4f32], 128,
+ (add VReg_128, SReg_128)>;
diff --git a/contrib/llvm/lib/Target/R600/SISchedule.td b/contrib/llvm/lib/Target/R600/SISchedule.td
new file mode 100644
index 0000000..28b65b8
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SISchedule.td
@@ -0,0 +1,15 @@
+//===-- SISchedule.td - SI Scheduling definitons -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// TODO: This is just a place holder for now.
+//
+//===----------------------------------------------------------------------===//
+
+
+def SI_Itin : ProcessorItineraries <[], [], []>;
diff --git a/contrib/llvm/lib/Target/R600/SIShrinkInstructions.cpp b/contrib/llvm/lib/Target/R600/SIShrinkInstructions.cpp
new file mode 100644
index 0000000..745c4b6
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIShrinkInstructions.cpp
@@ -0,0 +1,194 @@
+//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// The pass tries to use the 32-bit encoding for instructions when possible.
+//===----------------------------------------------------------------------===//
+//
+
+#include "AMDGPU.h"
+#include "SIInstrInfo.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetMachine.h"
+
+#define DEBUG_TYPE "si-shrink-instructions"
+
+STATISTIC(NumInstructionsShrunk,
+ "Number of 64-bit instruction reduced to 32-bit.");
+
+namespace llvm {
+ void initializeSIShrinkInstructionsPass(PassRegistry&);
+}
+
+using namespace llvm;
+
+namespace {
+
+class SIShrinkInstructions : public MachineFunctionPass {
+public:
+ static char ID;
+
+public:
+ SIShrinkInstructions() : MachineFunctionPass(ID) {
+ }
+
+ virtual bool runOnMachineFunction(MachineFunction &MF) override;
+
+ virtual const char *getPassName() const override {
+ return "SI Shrink Instructions";
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+
+} // End anonymous namespace.
+
+INITIALIZE_PASS_BEGIN(SIShrinkInstructions, DEBUG_TYPE,
+ "SI Lower il Copies", false, false)
+INITIALIZE_PASS_END(SIShrinkInstructions, DEBUG_TYPE,
+ "SI Lower il Copies", false, false)
+
+char SIShrinkInstructions::ID = 0;
+
+FunctionPass *llvm::createSIShrinkInstructionsPass() {
+ return new SIShrinkInstructions();
+}
+
+static bool isVGPR(const MachineOperand *MO, const SIRegisterInfo &TRI,
+ const MachineRegisterInfo &MRI) {
+ if (!MO->isReg())
+ return false;
+
+ if (TargetRegisterInfo::isVirtualRegister(MO->getReg()))
+ return TRI.hasVGPRs(MRI.getRegClass(MO->getReg()));
+
+ return TRI.hasVGPRs(TRI.getPhysRegClass(MO->getReg()));
+}
+
+static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII,
+ const SIRegisterInfo &TRI,
+ const MachineRegisterInfo &MRI) {
+
+ const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2);
+ // Can't shrink instruction with three operands.
+ if (Src2)
+ return false;
+
+ const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
+ const MachineOperand *Src1Mod =
+ TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
+
+ if (Src1 && (!isVGPR(Src1, TRI, MRI) || Src1Mod->getImm() != 0))
+ return false;
+
+ // We don't need to check src0, all input types are legal, so just make
+ // sure src0 isn't using any modifiers.
+ const MachineOperand *Src0Mod =
+ TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers);
+ if (Src0Mod && Src0Mod->getImm() != 0)
+ return false;
+
+ // Check output modifiers
+ const MachineOperand *Omod = TII->getNamedOperand(MI, AMDGPU::OpName::omod);
+ if (Omod && Omod->getImm() != 0)
+ return false;
+
+ const MachineOperand *Clamp = TII->getNamedOperand(MI, AMDGPU::OpName::clamp);
+ return !Clamp || Clamp->getImm() == 0;
+}
+
+bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ MF.getTarget().getInstrInfo());
+ const SIRegisterInfo &TRI = TII->getRegisterInfo();
+ std::vector<unsigned> I1Defs;
+
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
+ BI != BE; ++BI) {
+
+ MachineBasicBlock &MBB = *BI;
+ MachineBasicBlock::iterator I, Next;
+ for (I = MBB.begin(); I != MBB.end(); I = Next) {
+ Next = std::next(I);
+ MachineInstr &MI = *I;
+
+ if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
+ continue;
+
+ if (!canShrink(MI, TII, TRI, MRI)) {
+ // Try commtuing the instruction and see if that enables us to shrink
+ // it.
+ if (!MI.isCommutable() || !TII->commuteInstruction(&MI) ||
+ !canShrink(MI, TII, TRI, MRI))
+ continue;
+ }
+
+ int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
+
+ // Op32 could be -1 here if we started with an instruction that had a
+ // a 32-bit encoding and then commuted it to an instruction that did not.
+ if (Op32 == -1)
+ continue;
+
+ if (TII->isVOPC(Op32)) {
+ unsigned DstReg = MI.getOperand(0).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
+ // VOPC instructions can only write to the VCC register. We can't
+ // force them to use VCC here, because the register allocator
+ // has trouble with sequences like this, which cause the allocator
+ // to run out of registes if vreg0 and vreg1 belong to the VCCReg
+ // register class:
+ // vreg0 = VOPC;
+ // vreg1 = VOPC;
+ // S_AND_B64 vreg0, vreg1
+ //
+ // So, instead of forcing the instruction to write to VCC, we provide a
+ // hint to the register allocator to use VCC and then we
+ // we will run this pass again after RA and shrink it if it outpus to
+ // VCC.
+ MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
+ continue;
+ }
+ if (DstReg != AMDGPU::VCC)
+ continue;
+ }
+
+ // We can shrink this instruction
+ DEBUG(dbgs() << "Shrinking "; MI.dump(); dbgs() << "\n";);
+
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32));
+
+ // dst
+ MIB.addOperand(MI.getOperand(0));
+
+ MIB.addOperand(*TII->getNamedOperand(MI, AMDGPU::OpName::src0));
+
+ const MachineOperand *Src1 =
+ TII->getNamedOperand(MI, AMDGPU::OpName::src1);
+ if (Src1)
+ MIB.addOperand(*Src1);
+
+ for (const MachineOperand &MO : MI.implicit_operands())
+ MIB.addOperand(MO);
+
+ DEBUG(dbgs() << "e32 MI = "; MI.dump(); dbgs() << "\n";);
+ ++NumInstructionsShrunk;
+ MI.eraseFromParent();
+ }
+ }
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/R600/SITypeRewriter.cpp b/contrib/llvm/lib/Target/R600/SITypeRewriter.cpp
new file mode 100644
index 0000000..367963a
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SITypeRewriter.cpp
@@ -0,0 +1,162 @@
+//===-- SITypeRewriter.cpp - Remove unwanted types ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This pass removes performs the following type substitution on all
+/// non-compute shaders:
+///
+/// v16i8 => i128
+/// - v16i8 is used for constant memory resource descriptors. This type is
+/// legal for some compute APIs, and we don't want to declare it as legal
+/// in the backend, because we want the legalizer to expand all v16i8
+/// operations.
+/// v1* => *
+/// - Having v1* types complicates the legalizer and we can easily replace
+/// - them with the element type.
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+
+using namespace llvm;
+
+namespace {
+
+class SITypeRewriter : public FunctionPass,
+ public InstVisitor<SITypeRewriter> {
+
+ static char ID;
+ Module *Mod;
+ Type *v16i8;
+ Type *v4i32;
+
+public:
+ SITypeRewriter() : FunctionPass(ID) { }
+ bool doInitialization(Module &M) override;
+ bool runOnFunction(Function &F) override;
+ const char *getPassName() const override {
+ return "SI Type Rewriter";
+ }
+ void visitLoadInst(LoadInst &I);
+ void visitCallInst(CallInst &I);
+ void visitBitCast(BitCastInst &I);
+};
+
+} // End anonymous namespace
+
+char SITypeRewriter::ID = 0;
+
+bool SITypeRewriter::doInitialization(Module &M) {
+ Mod = &M;
+ v16i8 = VectorType::get(Type::getInt8Ty(M.getContext()), 16);
+ v4i32 = VectorType::get(Type::getInt32Ty(M.getContext()), 4);
+ return false;
+}
+
+bool SITypeRewriter::runOnFunction(Function &F) {
+ AttributeSet Set = F.getAttributes();
+ Attribute A = Set.getAttribute(AttributeSet::FunctionIndex, "ShaderType");
+
+ unsigned ShaderType = ShaderType::COMPUTE;
+ if (A.isStringAttribute()) {
+ StringRef Str = A.getValueAsString();
+ Str.getAsInteger(0, ShaderType);
+ }
+ if (ShaderType == ShaderType::COMPUTE)
+ return false;
+
+ visit(F);
+ visit(F);
+
+ return false;
+}
+
+void SITypeRewriter::visitLoadInst(LoadInst &I) {
+ Value *Ptr = I.getPointerOperand();
+ Type *PtrTy = Ptr->getType();
+ Type *ElemTy = PtrTy->getPointerElementType();
+ IRBuilder<> Builder(&I);
+ if (ElemTy == v16i8) {
+ Value *BitCast = Builder.CreateBitCast(Ptr,
+ PointerType::get(v4i32,PtrTy->getPointerAddressSpace()));
+ LoadInst *Load = Builder.CreateLoad(BitCast);
+ SmallVector <std::pair<unsigned, MDNode*>, 8> MD;
+ I.getAllMetadataOtherThanDebugLoc(MD);
+ for (unsigned i = 0, e = MD.size(); i != e; ++i) {
+ Load->setMetadata(MD[i].first, MD[i].second);
+ }
+ Value *BitCastLoad = Builder.CreateBitCast(Load, I.getType());
+ I.replaceAllUsesWith(BitCastLoad);
+ I.eraseFromParent();
+ }
+}
+
+void SITypeRewriter::visitCallInst(CallInst &I) {
+ IRBuilder<> Builder(&I);
+
+ SmallVector <Value*, 8> Args;
+ SmallVector <Type*, 8> Types;
+ bool NeedToReplace = false;
+ Function *F = I.getCalledFunction();
+ std::string Name = F->getName().str();
+ for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
+ Value *Arg = I.getArgOperand(i);
+ if (Arg->getType() == v16i8) {
+ Args.push_back(Builder.CreateBitCast(Arg, v4i32));
+ Types.push_back(v4i32);
+ NeedToReplace = true;
+ Name = Name + ".v4i32";
+ } else if (Arg->getType()->isVectorTy() &&
+ Arg->getType()->getVectorNumElements() == 1 &&
+ Arg->getType()->getVectorElementType() ==
+ Type::getInt32Ty(I.getContext())){
+ Type *ElementTy = Arg->getType()->getVectorElementType();
+ std::string TypeName = "i32";
+ InsertElementInst *Def = cast<InsertElementInst>(Arg);
+ Args.push_back(Def->getOperand(1));
+ Types.push_back(ElementTy);
+ std::string VecTypeName = "v1" + TypeName;
+ Name = Name.replace(Name.find(VecTypeName), VecTypeName.length(), TypeName);
+ NeedToReplace = true;
+ } else {
+ Args.push_back(Arg);
+ Types.push_back(Arg->getType());
+ }
+ }
+
+ if (!NeedToReplace) {
+ return;
+ }
+ Function *NewF = Mod->getFunction(Name);
+ if (!NewF) {
+ NewF = Function::Create(FunctionType::get(F->getReturnType(), Types, false), GlobalValue::ExternalLinkage, Name, Mod);
+ NewF->setAttributes(F->getAttributes());
+ }
+ I.replaceAllUsesWith(Builder.CreateCall(NewF, Args));
+ I.eraseFromParent();
+}
+
+void SITypeRewriter::visitBitCast(BitCastInst &I) {
+ IRBuilder<> Builder(&I);
+ if (I.getDestTy() != v4i32) {
+ return;
+ }
+
+ if (BitCastInst *Op = dyn_cast<BitCastInst>(I.getOperand(0))) {
+ if (Op->getSrcTy() == v4i32) {
+ I.replaceAllUsesWith(Op->getOperand(0));
+ I.eraseFromParent();
+ }
+ }
+}
+
+FunctionPass *llvm::createSITypeRewriter() {
+ return new SITypeRewriter();
+}
diff --git a/contrib/llvm/lib/Target/R600/TargetInfo/AMDGPUTargetInfo.cpp b/contrib/llvm/lib/Target/R600/TargetInfo/AMDGPUTargetInfo.cpp
new file mode 100644
index 0000000..f437564
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/TargetInfo/AMDGPUTargetInfo.cpp
@@ -0,0 +1,26 @@
+//===-- TargetInfo/AMDGPUTargetInfo.cpp - TargetInfo for AMDGPU -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUTargetMachine.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+/// \brief The target for the AMDGPU backend
+Target llvm::TheAMDGPUTarget;
+
+/// \brief Extern function to initialize the targets for the AMDGPU backend
+extern "C" void LLVMInitializeR600TargetInfo() {
+ RegisterTarget<Triple::r600, false>
+ R600(TheAMDGPUTarget, "r600", "AMD GPUs HD2XXX-HD6XXX");
+}
diff --git a/contrib/llvm/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp b/contrib/llvm/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp
new file mode 100644
index 0000000..9df0054
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp
@@ -0,0 +1,939 @@
+//===-- SparcAsmParser.cpp - Parse Sparc assembly to MCInst instructions --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/SparcMCTargetDesc.h"
+#include "MCTargetDesc/SparcMCExpr.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+// The generated AsmMatcher SparcGenAsmMatcher uses "Sparc" as the target
+// namespace. But SPARC backend uses "SP" as its namespace.
+namespace llvm {
+ namespace Sparc {
+ using namespace SP;
+ }
+}
+
+namespace {
+class SparcOperand;
+class SparcAsmParser : public MCTargetAsmParser {
+
+ MCSubtargetInfo &STI;
+ MCAsmParser &Parser;
+
+ /// @name Auto-generated Match Functions
+ /// {
+
+#define GET_ASSEMBLER_HEADER
+#include "SparcGenAsmMatcher.inc"
+
+ /// }
+
+ // public interface of the MCTargetAsmParser.
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ unsigned &ErrorInfo,
+ bool MatchingInlineAsm) override;
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+ bool ParseDirective(AsmToken DirectiveID) override;
+
+ unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
+ unsigned Kind) override;
+
+ // Custom parse functions for Sparc specific operands.
+ OperandMatchResultTy parseMEMOperand(OperandVector &Operands);
+
+ OperandMatchResultTy parseOperand(OperandVector &Operands, StringRef Name);
+
+ OperandMatchResultTy
+ parseSparcAsmOperand(std::unique_ptr<SparcOperand> &Operand,
+ bool isCall = false);
+
+ OperandMatchResultTy parseBranchModifiers(OperandVector &Operands);
+
+ // returns true if Tok is matched to a register and returns register in RegNo.
+ bool matchRegisterName(const AsmToken &Tok, unsigned &RegNo,
+ unsigned &RegKind);
+
+ bool matchSparcAsmModifiers(const MCExpr *&EVal, SMLoc &EndLoc);
+ bool parseDirectiveWord(unsigned Size, SMLoc L);
+
+ bool is64Bit() const { return STI.getTargetTriple().startswith("sparcv9"); }
+public:
+ SparcAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
+ const MCInstrInfo &MII,
+ const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(sti), Parser(parser) {
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+ }
+
+};
+
+ static unsigned IntRegs[32] = {
+ Sparc::G0, Sparc::G1, Sparc::G2, Sparc::G3,
+ Sparc::G4, Sparc::G5, Sparc::G6, Sparc::G7,
+ Sparc::O0, Sparc::O1, Sparc::O2, Sparc::O3,
+ Sparc::O4, Sparc::O5, Sparc::O6, Sparc::O7,
+ Sparc::L0, Sparc::L1, Sparc::L2, Sparc::L3,
+ Sparc::L4, Sparc::L5, Sparc::L6, Sparc::L7,
+ Sparc::I0, Sparc::I1, Sparc::I2, Sparc::I3,
+ Sparc::I4, Sparc::I5, Sparc::I6, Sparc::I7 };
+
+ static unsigned FloatRegs[32] = {
+ Sparc::F0, Sparc::F1, Sparc::F2, Sparc::F3,
+ Sparc::F4, Sparc::F5, Sparc::F6, Sparc::F7,
+ Sparc::F8, Sparc::F9, Sparc::F10, Sparc::F11,
+ Sparc::F12, Sparc::F13, Sparc::F14, Sparc::F15,
+ Sparc::F16, Sparc::F17, Sparc::F18, Sparc::F19,
+ Sparc::F20, Sparc::F21, Sparc::F22, Sparc::F23,
+ Sparc::F24, Sparc::F25, Sparc::F26, Sparc::F27,
+ Sparc::F28, Sparc::F29, Sparc::F30, Sparc::F31 };
+
+ static unsigned DoubleRegs[32] = {
+ Sparc::D0, Sparc::D1, Sparc::D2, Sparc::D3,
+ Sparc::D4, Sparc::D5, Sparc::D6, Sparc::D7,
+ Sparc::D8, Sparc::D7, Sparc::D8, Sparc::D9,
+ Sparc::D12, Sparc::D13, Sparc::D14, Sparc::D15,
+ Sparc::D16, Sparc::D17, Sparc::D18, Sparc::D19,
+ Sparc::D20, Sparc::D21, Sparc::D22, Sparc::D23,
+ Sparc::D24, Sparc::D25, Sparc::D26, Sparc::D27,
+ Sparc::D28, Sparc::D29, Sparc::D30, Sparc::D31 };
+
+ static unsigned QuadFPRegs[32] = {
+ Sparc::Q0, Sparc::Q1, Sparc::Q2, Sparc::Q3,
+ Sparc::Q4, Sparc::Q5, Sparc::Q6, Sparc::Q7,
+ Sparc::Q8, Sparc::Q9, Sparc::Q10, Sparc::Q11,
+ Sparc::Q12, Sparc::Q13, Sparc::Q14, Sparc::Q15 };
+
+
+/// SparcOperand - Instances of this class represent a parsed Sparc machine
+/// instruction.
+class SparcOperand : public MCParsedAsmOperand {
+public:
+ enum RegisterKind {
+ rk_None,
+ rk_IntReg,
+ rk_FloatReg,
+ rk_DoubleReg,
+ rk_QuadReg,
+ rk_CCReg,
+ rk_Y
+ };
+private:
+ enum KindTy {
+ k_Token,
+ k_Register,
+ k_Immediate,
+ k_MemoryReg,
+ k_MemoryImm
+ } Kind;
+
+ SMLoc StartLoc, EndLoc;
+
+ struct Token {
+ const char *Data;
+ unsigned Length;
+ };
+
+ struct RegOp {
+ unsigned RegNum;
+ RegisterKind Kind;
+ };
+
+ struct ImmOp {
+ const MCExpr *Val;
+ };
+
+ struct MemOp {
+ unsigned Base;
+ unsigned OffsetReg;
+ const MCExpr *Off;
+ };
+
+ union {
+ struct Token Tok;
+ struct RegOp Reg;
+ struct ImmOp Imm;
+ struct MemOp Mem;
+ };
+public:
+ SparcOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
+
+ bool isToken() const override { return Kind == k_Token; }
+ bool isReg() const override { return Kind == k_Register; }
+ bool isImm() const override { return Kind == k_Immediate; }
+ bool isMem() const override { return isMEMrr() || isMEMri(); }
+ bool isMEMrr() const { return Kind == k_MemoryReg; }
+ bool isMEMri() const { return Kind == k_MemoryImm; }
+
+ bool isFloatReg() const {
+ return (Kind == k_Register && Reg.Kind == rk_FloatReg);
+ }
+
+ bool isFloatOrDoubleReg() const {
+ return (Kind == k_Register && (Reg.Kind == rk_FloatReg
+ || Reg.Kind == rk_DoubleReg));
+ }
+
+
+ StringRef getToken() const {
+ assert(Kind == k_Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+
+ unsigned getReg() const override {
+ assert((Kind == k_Register) && "Invalid access!");
+ return Reg.RegNum;
+ }
+
+ const MCExpr *getImm() const {
+ assert((Kind == k_Immediate) && "Invalid access!");
+ return Imm.Val;
+ }
+
+ unsigned getMemBase() const {
+ assert((Kind == k_MemoryReg || Kind == k_MemoryImm) && "Invalid access!");
+ return Mem.Base;
+ }
+
+ unsigned getMemOffsetReg() const {
+ assert((Kind == k_MemoryReg) && "Invalid access!");
+ return Mem.OffsetReg;
+ }
+
+ const MCExpr *getMemOff() const {
+ assert((Kind == k_MemoryImm) && "Invalid access!");
+ return Mem.Off;
+ }
+
+ /// getStartLoc - Get the location of the first token of this operand.
+ SMLoc getStartLoc() const override {
+ return StartLoc;
+ }
+ /// getEndLoc - Get the location of the last token of this operand.
+ SMLoc getEndLoc() const override {
+ return EndLoc;
+ }
+
+ void print(raw_ostream &OS) const override {
+ switch (Kind) {
+ case k_Token: OS << "Token: " << getToken() << "\n"; break;
+ case k_Register: OS << "Reg: #" << getReg() << "\n"; break;
+ case k_Immediate: OS << "Imm: " << getImm() << "\n"; break;
+ case k_MemoryReg: OS << "Mem: " << getMemBase() << "+"
+ << getMemOffsetReg() << "\n"; break;
+ case k_MemoryImm: assert(getMemOff() != nullptr);
+ OS << "Mem: " << getMemBase()
+ << "+" << *getMemOff()
+ << "\n"; break;
+ }
+ }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCExpr *Expr = getImm();
+ addExpr(Inst, Expr);
+ }
+
+ void addExpr(MCInst &Inst, const MCExpr *Expr) const{
+ // Add as immediate when possible. Null MCExpr = 0.
+ if (!Expr)
+ Inst.addOperand(MCOperand::CreateImm(0));
+ else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(Expr));
+ }
+
+ void addMEMrrOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+
+ Inst.addOperand(MCOperand::CreateReg(getMemBase()));
+
+ assert(getMemOffsetReg() != 0 && "Invalid offset");
+ Inst.addOperand(MCOperand::CreateReg(getMemOffsetReg()));
+ }
+
+ void addMEMriOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+
+ Inst.addOperand(MCOperand::CreateReg(getMemBase()));
+
+ const MCExpr *Expr = getMemOff();
+ addExpr(Inst, Expr);
+ }
+
+ static std::unique_ptr<SparcOperand> CreateToken(StringRef Str, SMLoc S) {
+ auto Op = make_unique<SparcOperand>(k_Token);
+ Op->Tok.Data = Str.data();
+ Op->Tok.Length = Str.size();
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<SparcOperand> CreateReg(unsigned RegNum, unsigned Kind,
+ SMLoc S, SMLoc E) {
+ auto Op = make_unique<SparcOperand>(k_Register);
+ Op->Reg.RegNum = RegNum;
+ Op->Reg.Kind = (SparcOperand::RegisterKind)Kind;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<SparcOperand> CreateImm(const MCExpr *Val, SMLoc S,
+ SMLoc E) {
+ auto Op = make_unique<SparcOperand>(k_Immediate);
+ Op->Imm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static bool MorphToDoubleReg(SparcOperand &Op) {
+ unsigned Reg = Op.getReg();
+ assert(Op.Reg.Kind == rk_FloatReg);
+ unsigned regIdx = Reg - Sparc::F0;
+ if (regIdx % 2 || regIdx > 31)
+ return false;
+ Op.Reg.RegNum = DoubleRegs[regIdx / 2];
+ Op.Reg.Kind = rk_DoubleReg;
+ return true;
+ }
+
+ static bool MorphToQuadReg(SparcOperand &Op) {
+ unsigned Reg = Op.getReg();
+ unsigned regIdx = 0;
+ switch (Op.Reg.Kind) {
+ default: llvm_unreachable("Unexpected register kind!");
+ case rk_FloatReg:
+ regIdx = Reg - Sparc::F0;
+ if (regIdx % 4 || regIdx > 31)
+ return false;
+ Reg = QuadFPRegs[regIdx / 4];
+ break;
+ case rk_DoubleReg:
+ regIdx = Reg - Sparc::D0;
+ if (regIdx % 2 || regIdx > 31)
+ return false;
+ Reg = QuadFPRegs[regIdx / 2];
+ break;
+ }
+ Op.Reg.RegNum = Reg;
+ Op.Reg.Kind = rk_QuadReg;
+ return true;
+ }
+
+ static std::unique_ptr<SparcOperand>
+ MorphToMEMrr(unsigned Base, std::unique_ptr<SparcOperand> Op) {
+ unsigned offsetReg = Op->getReg();
+ Op->Kind = k_MemoryReg;
+ Op->Mem.Base = Base;
+ Op->Mem.OffsetReg = offsetReg;
+ Op->Mem.Off = nullptr;
+ return Op;
+ }
+
+ static std::unique_ptr<SparcOperand>
+ CreateMEMri(unsigned Base, const MCExpr *Off, SMLoc S, SMLoc E) {
+ auto Op = make_unique<SparcOperand>(k_MemoryImm);
+ Op->Mem.Base = Base;
+ Op->Mem.OffsetReg = 0;
+ Op->Mem.Off = Off;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<SparcOperand>
+ MorphToMEMri(unsigned Base, std::unique_ptr<SparcOperand> Op) {
+ const MCExpr *Imm = Op->getImm();
+ Op->Kind = k_MemoryImm;
+ Op->Mem.Base = Base;
+ Op->Mem.OffsetReg = 0;
+ Op->Mem.Off = Imm;
+ return Op;
+ }
+};
+
+} // end namespace
+
+bool SparcAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ unsigned &ErrorInfo,
+ bool MatchingInlineAsm) {
+ MCInst Inst;
+ SmallVector<MCInst, 8> Instructions;
+ unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
+ MatchingInlineAsm);
+ switch (MatchResult) {
+ default:
+ break;
+
+ case Match_Success: {
+ Inst.setLoc(IDLoc);
+ Out.EmitInstruction(Inst, STI);
+ return false;
+ }
+
+ case Match_MissingFeature:
+ return Error(IDLoc,
+ "instruction requires a CPU feature not currently enabled");
+
+ case Match_InvalidOperand: {
+ SMLoc ErrorLoc = IDLoc;
+ if (ErrorInfo != ~0U) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ ErrorLoc = ((SparcOperand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc())
+ ErrorLoc = IDLoc;
+ }
+
+ return Error(ErrorLoc, "invalid operand for instruction");
+ }
+ case Match_MnemonicFail:
+ return Error(IDLoc, "invalid instruction mnemonic");
+ }
+ return true;
+}
+
+bool SparcAsmParser::
+ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc)
+{
+ const AsmToken &Tok = Parser.getTok();
+ StartLoc = Tok.getLoc();
+ EndLoc = Tok.getEndLoc();
+ RegNo = 0;
+ if (getLexer().getKind() != AsmToken::Percent)
+ return false;
+ Parser.Lex();
+ unsigned regKind = SparcOperand::rk_None;
+ if (matchRegisterName(Tok, RegNo, regKind)) {
+ Parser.Lex();
+ return false;
+ }
+
+ return Error(StartLoc, "invalid register name");
+}
+
+static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
+ unsigned VariantID);
+
+bool SparcAsmParser::ParseInstruction(ParseInstructionInfo &Info,
+ StringRef Name, SMLoc NameLoc,
+ OperandVector &Operands) {
+
+ // First operand in MCInst is instruction mnemonic.
+ Operands.push_back(SparcOperand::CreateToken(Name, NameLoc));
+
+ // apply mnemonic aliases, if any, so that we can parse operands correctly.
+ applyMnemonicAliases(Name, getAvailableFeatures(), 0);
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ // Read the first operand.
+ if (getLexer().is(AsmToken::Comma)) {
+ if (parseBranchModifiers(Operands) != MatchOperand_Success) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token");
+ }
+ }
+ if (parseOperand(Operands, Name) != MatchOperand_Success) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token");
+ }
+
+ while (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma.
+ // Parse and remember the operand.
+ if (parseOperand(Operands, Name) != MatchOperand_Success) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token");
+ }
+ }
+ }
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token");
+ }
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool SparcAsmParser::
+ParseDirective(AsmToken DirectiveID)
+{
+ StringRef IDVal = DirectiveID.getString();
+
+ if (IDVal == ".byte")
+ return parseDirectiveWord(1, DirectiveID.getLoc());
+
+ if (IDVal == ".half")
+ return parseDirectiveWord(2, DirectiveID.getLoc());
+
+ if (IDVal == ".word")
+ return parseDirectiveWord(4, DirectiveID.getLoc());
+
+ if (IDVal == ".nword")
+ return parseDirectiveWord(is64Bit() ? 8 : 4, DirectiveID.getLoc());
+
+ if (is64Bit() && IDVal == ".xword")
+ return parseDirectiveWord(8, DirectiveID.getLoc());
+
+ if (IDVal == ".register") {
+ // For now, ignore .register directive.
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ // Let the MC layer to handle other directives.
+ return true;
+}
+
+bool SparcAsmParser:: parseDirectiveWord(unsigned Size, SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ for (;;) {
+ const MCExpr *Value;
+ if (getParser().parseExpression(Value))
+ return true;
+
+ getParser().getStreamer().EmitValue(Value, Size);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ // FIXME: Improve diagnostic.
+ if (getLexer().isNot(AsmToken::Comma))
+ return Error(L, "unexpected token in directive");
+ Parser.Lex();
+ }
+ }
+ Parser.Lex();
+ return false;
+}
+
+SparcAsmParser::OperandMatchResultTy
+SparcAsmParser::parseMEMOperand(OperandVector &Operands) {
+
+ SMLoc S, E;
+ unsigned BaseReg = 0;
+
+ if (ParseRegister(BaseReg, S, E)) {
+ return MatchOperand_NoMatch;
+ }
+
+ switch (getLexer().getKind()) {
+ default: return MatchOperand_NoMatch;
+
+ case AsmToken::Comma:
+ case AsmToken::RBrac:
+ case AsmToken::EndOfStatement:
+ Operands.push_back(SparcOperand::CreateMEMri(BaseReg, nullptr, S, E));
+ return MatchOperand_Success;
+
+ case AsmToken:: Plus:
+ Parser.Lex(); // Eat the '+'
+ break;
+ case AsmToken::Minus:
+ break;
+ }
+
+ std::unique_ptr<SparcOperand> Offset;
+ OperandMatchResultTy ResTy = parseSparcAsmOperand(Offset);
+ if (ResTy != MatchOperand_Success || !Offset)
+ return MatchOperand_NoMatch;
+
+ Operands.push_back(
+ Offset->isImm() ? SparcOperand::MorphToMEMri(BaseReg, std::move(Offset))
+ : SparcOperand::MorphToMEMrr(BaseReg, std::move(Offset)));
+
+ return MatchOperand_Success;
+}
+
+SparcAsmParser::OperandMatchResultTy
+SparcAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
+
+ OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
+
+ // If there wasn't a custom match, try the generic matcher below. Otherwise,
+ // there was a match, but an error occurred, in which case, just return that
+ // the operand parsing failed.
+ if (ResTy == MatchOperand_Success || ResTy == MatchOperand_ParseFail)
+ return ResTy;
+
+ if (getLexer().is(AsmToken::LBrac)) {
+ // Memory operand
+ Operands.push_back(SparcOperand::CreateToken("[",
+ Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat the [
+
+ if (Mnemonic == "cas" || Mnemonic == "casx") {
+ SMLoc S = Parser.getTok().getLoc();
+ if (getLexer().getKind() != AsmToken::Percent)
+ return MatchOperand_NoMatch;
+ Parser.Lex(); // eat %
+
+ unsigned RegNo, RegKind;
+ if (!matchRegisterName(Parser.getTok(), RegNo, RegKind))
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat the identifier token.
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer()-1);
+ Operands.push_back(SparcOperand::CreateReg(RegNo, RegKind, S, E));
+ ResTy = MatchOperand_Success;
+ } else {
+ ResTy = parseMEMOperand(Operands);
+ }
+
+ if (ResTy != MatchOperand_Success)
+ return ResTy;
+
+ if (!getLexer().is(AsmToken::RBrac))
+ return MatchOperand_ParseFail;
+
+ Operands.push_back(SparcOperand::CreateToken("]",
+ Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat the ]
+ return MatchOperand_Success;
+ }
+
+ std::unique_ptr<SparcOperand> Op;
+
+ ResTy = parseSparcAsmOperand(Op, (Mnemonic == "call"));
+ if (ResTy != MatchOperand_Success || !Op)
+ return MatchOperand_ParseFail;
+
+ // Push the parsed operand into the list of operands
+ Operands.push_back(std::move(Op));
+
+ return MatchOperand_Success;
+}
+
+SparcAsmParser::OperandMatchResultTy
+SparcAsmParser::parseSparcAsmOperand(std::unique_ptr<SparcOperand> &Op,
+ bool isCall) {
+
+ SMLoc S = Parser.getTok().getLoc();
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ const MCExpr *EVal;
+
+ Op = nullptr;
+ switch (getLexer().getKind()) {
+ default: break;
+
+ case AsmToken::Percent:
+ Parser.Lex(); // Eat the '%'.
+ unsigned RegNo;
+ unsigned RegKind;
+ if (matchRegisterName(Parser.getTok(), RegNo, RegKind)) {
+ StringRef name = Parser.getTok().getString();
+ Parser.Lex(); // Eat the identifier token.
+ E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ switch (RegNo) {
+ default:
+ Op = SparcOperand::CreateReg(RegNo, RegKind, S, E);
+ break;
+ case Sparc::Y:
+ Op = SparcOperand::CreateToken("%y", S);
+ break;
+
+ case Sparc::ICC:
+ if (name == "xcc")
+ Op = SparcOperand::CreateToken("%xcc", S);
+ else
+ Op = SparcOperand::CreateToken("%icc", S);
+ break;
+ }
+ break;
+ }
+ if (matchSparcAsmModifiers(EVal, E)) {
+ E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Op = SparcOperand::CreateImm(EVal, S, E);
+ }
+ break;
+
+ case AsmToken::Minus:
+ case AsmToken::Integer:
+ if (!getParser().parseExpression(EVal, E))
+ Op = SparcOperand::CreateImm(EVal, S, E);
+ break;
+
+ case AsmToken::Identifier: {
+ StringRef Identifier;
+ if (!getParser().parseIdentifier(Identifier)) {
+ E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier);
+
+ const MCExpr *Res = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None,
+ getContext());
+ if (isCall &&
+ getContext().getObjectFileInfo()->getRelocM() == Reloc::PIC_)
+ Res = SparcMCExpr::Create(SparcMCExpr::VK_Sparc_WPLT30, Res,
+ getContext());
+ Op = SparcOperand::CreateImm(Res, S, E);
+ }
+ break;
+ }
+ }
+ return (Op) ? MatchOperand_Success : MatchOperand_ParseFail;
+}
+
+SparcAsmParser::OperandMatchResultTy
+SparcAsmParser::parseBranchModifiers(OperandVector &Operands) {
+
+ // parse (,a|,pn|,pt)+
+
+ while (getLexer().is(AsmToken::Comma)) {
+
+ Parser.Lex(); // Eat the comma
+
+ if (!getLexer().is(AsmToken::Identifier))
+ return MatchOperand_ParseFail;
+ StringRef modName = Parser.getTok().getString();
+ if (modName == "a" || modName == "pn" || modName == "pt") {
+ Operands.push_back(SparcOperand::CreateToken(modName,
+ Parser.getTok().getLoc()));
+ Parser.Lex(); // eat the identifier.
+ }
+ }
+ return MatchOperand_Success;
+}
+
+bool SparcAsmParser::matchRegisterName(const AsmToken &Tok,
+ unsigned &RegNo,
+ unsigned &RegKind)
+{
+ int64_t intVal = 0;
+ RegNo = 0;
+ RegKind = SparcOperand::rk_None;
+ if (Tok.is(AsmToken::Identifier)) {
+ StringRef name = Tok.getString();
+
+ // %fp
+ if (name.equals("fp")) {
+ RegNo = Sparc::I6;
+ RegKind = SparcOperand::rk_IntReg;
+ return true;
+ }
+ // %sp
+ if (name.equals("sp")) {
+ RegNo = Sparc::O6;
+ RegKind = SparcOperand::rk_IntReg;
+ return true;
+ }
+
+ if (name.equals("y")) {
+ RegNo = Sparc::Y;
+ RegKind = SparcOperand::rk_Y;
+ return true;
+ }
+
+ if (name.equals("icc")) {
+ RegNo = Sparc::ICC;
+ RegKind = SparcOperand::rk_CCReg;
+ return true;
+ }
+
+ if (name.equals("xcc")) {
+ // FIXME:: check 64bit.
+ RegNo = Sparc::ICC;
+ RegKind = SparcOperand::rk_CCReg;
+ return true;
+ }
+
+ // %fcc0 - %fcc3
+ if (name.substr(0, 3).equals_lower("fcc")
+ && !name.substr(3).getAsInteger(10, intVal)
+ && intVal < 4) {
+ // FIXME: check 64bit and handle %fcc1 - %fcc3
+ RegNo = Sparc::FCC0 + intVal;
+ RegKind = SparcOperand::rk_CCReg;
+ return true;
+ }
+
+ // %g0 - %g7
+ if (name.substr(0, 1).equals_lower("g")
+ && !name.substr(1).getAsInteger(10, intVal)
+ && intVal < 8) {
+ RegNo = IntRegs[intVal];
+ RegKind = SparcOperand::rk_IntReg;
+ return true;
+ }
+ // %o0 - %o7
+ if (name.substr(0, 1).equals_lower("o")
+ && !name.substr(1).getAsInteger(10, intVal)
+ && intVal < 8) {
+ RegNo = IntRegs[8 + intVal];
+ RegKind = SparcOperand::rk_IntReg;
+ return true;
+ }
+ if (name.substr(0, 1).equals_lower("l")
+ && !name.substr(1).getAsInteger(10, intVal)
+ && intVal < 8) {
+ RegNo = IntRegs[16 + intVal];
+ RegKind = SparcOperand::rk_IntReg;
+ return true;
+ }
+ if (name.substr(0, 1).equals_lower("i")
+ && !name.substr(1).getAsInteger(10, intVal)
+ && intVal < 8) {
+ RegNo = IntRegs[24 + intVal];
+ RegKind = SparcOperand::rk_IntReg;
+ return true;
+ }
+ // %f0 - %f31
+ if (name.substr(0, 1).equals_lower("f")
+ && !name.substr(1, 2).getAsInteger(10, intVal) && intVal < 32) {
+ RegNo = FloatRegs[intVal];
+ RegKind = SparcOperand::rk_FloatReg;
+ return true;
+ }
+ // %f32 - %f62
+ if (name.substr(0, 1).equals_lower("f")
+ && !name.substr(1, 2).getAsInteger(10, intVal)
+ && intVal >= 32 && intVal <= 62 && (intVal % 2 == 0)) {
+ // FIXME: Check V9
+ RegNo = DoubleRegs[intVal/2];
+ RegKind = SparcOperand::rk_DoubleReg;
+ return true;
+ }
+
+ // %r0 - %r31
+ if (name.substr(0, 1).equals_lower("r")
+ && !name.substr(1, 2).getAsInteger(10, intVal) && intVal < 31) {
+ RegNo = IntRegs[intVal];
+ RegKind = SparcOperand::rk_IntReg;
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool hasGOTReference(const MCExpr *Expr) {
+ switch (Expr->getKind()) {
+ case MCExpr::Target:
+ if (const SparcMCExpr *SE = dyn_cast<SparcMCExpr>(Expr))
+ return hasGOTReference(SE->getSubExpr());
+ break;
+
+ case MCExpr::Constant:
+ break;
+
+ case MCExpr::Binary: {
+ const MCBinaryExpr *BE = cast<MCBinaryExpr>(Expr);
+ return hasGOTReference(BE->getLHS()) || hasGOTReference(BE->getRHS());
+ }
+
+ case MCExpr::SymbolRef: {
+ const MCSymbolRefExpr &SymRef = *cast<MCSymbolRefExpr>(Expr);
+ return (SymRef.getSymbol().getName() == "_GLOBAL_OFFSET_TABLE_");
+ }
+
+ case MCExpr::Unary:
+ return hasGOTReference(cast<MCUnaryExpr>(Expr)->getSubExpr());
+ }
+ return false;
+}
+
+bool SparcAsmParser::matchSparcAsmModifiers(const MCExpr *&EVal,
+ SMLoc &EndLoc)
+{
+ AsmToken Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Identifier))
+ return false;
+
+ StringRef name = Tok.getString();
+
+ SparcMCExpr::VariantKind VK = SparcMCExpr::parseVariantKind(name);
+
+ if (VK == SparcMCExpr::VK_Sparc_None)
+ return false;
+
+ Parser.Lex(); // Eat the identifier.
+ if (Parser.getTok().getKind() != AsmToken::LParen)
+ return false;
+
+ Parser.Lex(); // Eat the LParen token.
+ const MCExpr *subExpr;
+ if (Parser.parseParenExpression(subExpr, EndLoc))
+ return false;
+
+ bool isPIC = getContext().getObjectFileInfo()->getRelocM() == Reloc::PIC_;
+
+ switch(VK) {
+ default: break;
+ case SparcMCExpr::VK_Sparc_LO:
+ VK = (hasGOTReference(subExpr)
+ ? SparcMCExpr::VK_Sparc_PC10
+ : (isPIC ? SparcMCExpr::VK_Sparc_GOT10 : VK));
+ break;
+ case SparcMCExpr::VK_Sparc_HI:
+ VK = (hasGOTReference(subExpr)
+ ? SparcMCExpr::VK_Sparc_PC22
+ : (isPIC ? SparcMCExpr::VK_Sparc_GOT22 : VK));
+ break;
+ }
+
+ EVal = SparcMCExpr::Create(VK, subExpr, getContext());
+ return true;
+}
+
+
+extern "C" void LLVMInitializeSparcAsmParser() {
+ RegisterMCAsmParser<SparcAsmParser> A(TheSparcTarget);
+ RegisterMCAsmParser<SparcAsmParser> B(TheSparcV9Target);
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_MATCHER_IMPLEMENTATION
+#include "SparcGenAsmMatcher.inc"
+
+unsigned SparcAsmParser::validateTargetOperandClass(MCParsedAsmOperand &GOp,
+ unsigned Kind) {
+ SparcOperand &Op = (SparcOperand &)GOp;
+ if (Op.isFloatOrDoubleReg()) {
+ switch (Kind) {
+ default: break;
+ case MCK_DFPRegs:
+ if (!Op.isFloatReg() || SparcOperand::MorphToDoubleReg(Op))
+ return MCTargetAsmParser::Match_Success;
+ break;
+ case MCK_QFPRegs:
+ if (SparcOperand::MorphToQuadReg(Op))
+ return MCTargetAsmParser::Match_Success;
+ break;
+ }
+ }
+ return Match_InvalidOperand;
+}
diff --git a/contrib/llvm/lib/Target/Sparc/DelaySlotFiller.cpp b/contrib/llvm/lib/Target/Sparc/DelaySlotFiller.cpp
new file mode 100644
index 0000000..f3441ff
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/DelaySlotFiller.cpp
@@ -0,0 +1,497 @@
+//===-- DelaySlotFiller.cpp - SPARC delay slot filler ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a simple local pass that attempts to fill delay slots with useful
+// instructions. If no instructions can be moved into the delay slot, then a
+// NOP is placed.
+//===----------------------------------------------------------------------===//
+
+#include "Sparc.h"
+#include "SparcSubtarget.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "delay-slot-filler"
+
+STATISTIC(FilledSlots, "Number of delay slots filled");
+
+static cl::opt<bool> DisableDelaySlotFiller(
+ "disable-sparc-delay-filler",
+ cl::init(false),
+ cl::desc("Disable the Sparc delay slot filler."),
+ cl::Hidden);
+
+namespace {
+ struct Filler : public MachineFunctionPass {
+ /// Target machine description which we query for reg. names, data
+ /// layout, etc.
+ ///
+ TargetMachine &TM;
+ const SparcSubtarget *Subtarget;
+
+ static char ID;
+ Filler(TargetMachine &tm)
+ : MachineFunctionPass(ID), TM(tm),
+ Subtarget(&TM.getSubtarget<SparcSubtarget>()) {
+ }
+
+ const char *getPassName() const override {
+ return "SPARC Delay Slot Filler";
+ }
+
+ bool runOnMachineBasicBlock(MachineBasicBlock &MBB);
+ bool runOnMachineFunction(MachineFunction &F) override {
+ bool Changed = false;
+
+ // This pass invalidates liveness information when it reorders
+ // instructions to fill delay slot.
+ F.getRegInfo().invalidateLiveness();
+
+ for (MachineFunction::iterator FI = F.begin(), FE = F.end();
+ FI != FE; ++FI)
+ Changed |= runOnMachineBasicBlock(*FI);
+ return Changed;
+ }
+
+ void insertCallDefsUses(MachineBasicBlock::iterator MI,
+ SmallSet<unsigned, 32>& RegDefs,
+ SmallSet<unsigned, 32>& RegUses);
+
+ void insertDefsUses(MachineBasicBlock::iterator MI,
+ SmallSet<unsigned, 32>& RegDefs,
+ SmallSet<unsigned, 32>& RegUses);
+
+ bool IsRegInSet(SmallSet<unsigned, 32>& RegSet,
+ unsigned Reg);
+
+ bool delayHasHazard(MachineBasicBlock::iterator candidate,
+ bool &sawLoad, bool &sawStore,
+ SmallSet<unsigned, 32> &RegDefs,
+ SmallSet<unsigned, 32> &RegUses);
+
+ MachineBasicBlock::iterator
+ findDelayInstr(MachineBasicBlock &MBB, MachineBasicBlock::iterator slot);
+
+ bool needsUnimp(MachineBasicBlock::iterator I, unsigned &StructSize);
+
+ bool tryCombineRestoreWithPrevInst(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI);
+
+ };
+ char Filler::ID = 0;
+} // end of anonymous namespace
+
+/// createSparcDelaySlotFillerPass - Returns a pass that fills in delay
+/// slots in Sparc MachineFunctions
+///
+FunctionPass *llvm::createSparcDelaySlotFillerPass(TargetMachine &tm) {
+ return new Filler(tm);
+}
+
+
+/// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
+/// We assume there is only one delay slot per delayed instruction.
+///
+bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
+ bool Changed = false;
+
+ const TargetInstrInfo *TII = TM.getInstrInfo();
+
+ for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ) {
+ MachineBasicBlock::iterator MI = I;
+ ++I;
+
+ // If MI is restore, try combining it with previous inst.
+ if (!DisableDelaySlotFiller &&
+ (MI->getOpcode() == SP::RESTORErr
+ || MI->getOpcode() == SP::RESTOREri)) {
+ Changed |= tryCombineRestoreWithPrevInst(MBB, MI);
+ continue;
+ }
+
+ if (!Subtarget->isV9() &&
+ (MI->getOpcode() == SP::FCMPS || MI->getOpcode() == SP::FCMPD
+ || MI->getOpcode() == SP::FCMPQ)) {
+ BuildMI(MBB, I, MI->getDebugLoc(), TII->get(SP::NOP));
+ Changed = true;
+ continue;
+ }
+
+ // If MI has no delay slot, skip.
+ if (!MI->hasDelaySlot())
+ continue;
+
+ MachineBasicBlock::iterator D = MBB.end();
+
+ if (!DisableDelaySlotFiller)
+ D = findDelayInstr(MBB, MI);
+
+ ++FilledSlots;
+ Changed = true;
+
+ if (D == MBB.end())
+ BuildMI(MBB, I, MI->getDebugLoc(), TII->get(SP::NOP));
+ else
+ MBB.splice(I, &MBB, D);
+
+ unsigned structSize = 0;
+ if (needsUnimp(MI, structSize)) {
+ MachineBasicBlock::iterator J = MI;
+ ++J; // skip the delay filler.
+ assert (J != MBB.end() && "MI needs a delay instruction.");
+ BuildMI(MBB, ++J, MI->getDebugLoc(),
+ TII->get(SP::UNIMP)).addImm(structSize);
+ // Bundle the delay filler and unimp with the instruction.
+ MIBundleBuilder(MBB, MachineBasicBlock::iterator(MI), J);
+ } else {
+ MIBundleBuilder(MBB, MachineBasicBlock::iterator(MI), I);
+ }
+ }
+ return Changed;
+}
+
+MachineBasicBlock::iterator
+Filler::findDelayInstr(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator slot)
+{
+ SmallSet<unsigned, 32> RegDefs;
+ SmallSet<unsigned, 32> RegUses;
+ bool sawLoad = false;
+ bool sawStore = false;
+
+ if (slot == MBB.begin())
+ return MBB.end();
+
+ if (slot->getOpcode() == SP::RET || slot->getOpcode() == SP::TLS_CALL)
+ return MBB.end();
+
+ if (slot->getOpcode() == SP::RETL) {
+ MachineBasicBlock::iterator J = slot;
+ --J;
+
+ if (J->getOpcode() == SP::RESTORErr
+ || J->getOpcode() == SP::RESTOREri) {
+ // change retl to ret.
+ slot->setDesc(TM.getInstrInfo()->get(SP::RET));
+ return J;
+ }
+ }
+
+ // Call's delay filler can def some of call's uses.
+ if (slot->isCall())
+ insertCallDefsUses(slot, RegDefs, RegUses);
+ else
+ insertDefsUses(slot, RegDefs, RegUses);
+
+ bool done = false;
+
+ MachineBasicBlock::iterator I = slot;
+
+ while (!done) {
+ done = (I == MBB.begin());
+
+ if (!done)
+ --I;
+
+ // skip debug value
+ if (I->isDebugValue())
+ continue;
+
+ if (I->hasUnmodeledSideEffects() || I->isInlineAsm() || I->isPosition() ||
+ I->hasDelaySlot() || I->isBundledWithSucc())
+ break;
+
+ if (delayHasHazard(I, sawLoad, sawStore, RegDefs, RegUses)) {
+ insertDefsUses(I, RegDefs, RegUses);
+ continue;
+ }
+
+ return I;
+ }
+ return MBB.end();
+}
+
+bool Filler::delayHasHazard(MachineBasicBlock::iterator candidate,
+ bool &sawLoad,
+ bool &sawStore,
+ SmallSet<unsigned, 32> &RegDefs,
+ SmallSet<unsigned, 32> &RegUses)
+{
+
+ if (candidate->isImplicitDef() || candidate->isKill())
+ return true;
+
+ if (candidate->mayLoad()) {
+ sawLoad = true;
+ if (sawStore)
+ return true;
+ }
+
+ if (candidate->mayStore()) {
+ if (sawStore)
+ return true;
+ sawStore = true;
+ if (sawLoad)
+ return true;
+ }
+
+ for (unsigned i = 0, e = candidate->getNumOperands(); i!= e; ++i) {
+ const MachineOperand &MO = candidate->getOperand(i);
+ if (!MO.isReg())
+ continue; // skip
+
+ unsigned Reg = MO.getReg();
+
+ if (MO.isDef()) {
+ // check whether Reg is defined or used before delay slot.
+ if (IsRegInSet(RegDefs, Reg) || IsRegInSet(RegUses, Reg))
+ return true;
+ }
+ if (MO.isUse()) {
+ // check whether Reg is defined before delay slot.
+ if (IsRegInSet(RegDefs, Reg))
+ return true;
+ }
+ }
+ return false;
+}
+
+
+void Filler::insertCallDefsUses(MachineBasicBlock::iterator MI,
+ SmallSet<unsigned, 32>& RegDefs,
+ SmallSet<unsigned, 32>& RegUses)
+{
+ // Call defines o7, which is visible to the instruction in delay slot.
+ RegDefs.insert(SP::O7);
+
+ switch(MI->getOpcode()) {
+ default: llvm_unreachable("Unknown opcode.");
+ case SP::CALL: break;
+ case SP::CALLrr:
+ case SP::CALLri:
+ assert(MI->getNumOperands() >= 2);
+ const MachineOperand &Reg = MI->getOperand(0);
+ assert(Reg.isReg() && "CALL first operand is not a register.");
+ assert(Reg.isUse() && "CALL first operand is not a use.");
+ RegUses.insert(Reg.getReg());
+
+ const MachineOperand &RegOrImm = MI->getOperand(1);
+ if (RegOrImm.isImm())
+ break;
+ assert(RegOrImm.isReg() && "CALLrr second operand is not a register.");
+ assert(RegOrImm.isUse() && "CALLrr second operand is not a use.");
+ RegUses.insert(RegOrImm.getReg());
+ break;
+ }
+}
+
+// Insert Defs and Uses of MI into the sets RegDefs and RegUses.
+void Filler::insertDefsUses(MachineBasicBlock::iterator MI,
+ SmallSet<unsigned, 32>& RegDefs,
+ SmallSet<unsigned, 32>& RegUses)
+{
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+
+ unsigned Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+ if (MO.isDef())
+ RegDefs.insert(Reg);
+ if (MO.isUse()) {
+ // Implicit register uses of retl are return values and
+ // retl does not use them.
+ if (MO.isImplicit() && MI->getOpcode() == SP::RETL)
+ continue;
+ RegUses.insert(Reg);
+ }
+ }
+}
+
+// returns true if the Reg or its alias is in the RegSet.
+bool Filler::IsRegInSet(SmallSet<unsigned, 32>& RegSet, unsigned Reg)
+{
+ // Check Reg and all aliased Registers.
+ for (MCRegAliasIterator AI(Reg, TM.getRegisterInfo(), true);
+ AI.isValid(); ++AI)
+ if (RegSet.count(*AI))
+ return true;
+ return false;
+}
+
+bool Filler::needsUnimp(MachineBasicBlock::iterator I, unsigned &StructSize)
+{
+ if (!I->isCall())
+ return false;
+
+ unsigned structSizeOpNum = 0;
+ switch (I->getOpcode()) {
+ default: llvm_unreachable("Unknown call opcode.");
+ case SP::CALL: structSizeOpNum = 1; break;
+ case SP::CALLrr:
+ case SP::CALLri: structSizeOpNum = 2; break;
+ case SP::TLS_CALL: return false;
+ }
+
+ const MachineOperand &MO = I->getOperand(structSizeOpNum);
+ if (!MO.isImm())
+ return false;
+ StructSize = MO.getImm();
+ return true;
+}
+
+static bool combineRestoreADD(MachineBasicBlock::iterator RestoreMI,
+ MachineBasicBlock::iterator AddMI,
+ const TargetInstrInfo *TII)
+{
+ // Before: add <op0>, <op1>, %i[0-7]
+ // restore %g0, %g0, %i[0-7]
+ //
+ // After : restore <op0>, <op1>, %o[0-7]
+
+ unsigned reg = AddMI->getOperand(0).getReg();
+ if (reg < SP::I0 || reg > SP::I7)
+ return false;
+
+ // Erase RESTORE.
+ RestoreMI->eraseFromParent();
+
+ // Change ADD to RESTORE.
+ AddMI->setDesc(TII->get((AddMI->getOpcode() == SP::ADDrr)
+ ? SP::RESTORErr
+ : SP::RESTOREri));
+
+ // Map the destination register.
+ AddMI->getOperand(0).setReg(reg - SP::I0 + SP::O0);
+
+ return true;
+}
+
+static bool combineRestoreOR(MachineBasicBlock::iterator RestoreMI,
+ MachineBasicBlock::iterator OrMI,
+ const TargetInstrInfo *TII)
+{
+ // Before: or <op0>, <op1>, %i[0-7]
+ // restore %g0, %g0, %i[0-7]
+ // and <op0> or <op1> is zero,
+ //
+ // After : restore <op0>, <op1>, %o[0-7]
+
+ unsigned reg = OrMI->getOperand(0).getReg();
+ if (reg < SP::I0 || reg > SP::I7)
+ return false;
+
+ // check whether it is a copy.
+ if (OrMI->getOpcode() == SP::ORrr
+ && OrMI->getOperand(1).getReg() != SP::G0
+ && OrMI->getOperand(2).getReg() != SP::G0)
+ return false;
+
+ if (OrMI->getOpcode() == SP::ORri
+ && OrMI->getOperand(1).getReg() != SP::G0
+ && (!OrMI->getOperand(2).isImm() || OrMI->getOperand(2).getImm() != 0))
+ return false;
+
+ // Erase RESTORE.
+ RestoreMI->eraseFromParent();
+
+ // Change OR to RESTORE.
+ OrMI->setDesc(TII->get((OrMI->getOpcode() == SP::ORrr)
+ ? SP::RESTORErr
+ : SP::RESTOREri));
+
+ // Map the destination register.
+ OrMI->getOperand(0).setReg(reg - SP::I0 + SP::O0);
+
+ return true;
+}
+
+static bool combineRestoreSETHIi(MachineBasicBlock::iterator RestoreMI,
+ MachineBasicBlock::iterator SetHiMI,
+ const TargetInstrInfo *TII)
+{
+ // Before: sethi imm3, %i[0-7]
+ // restore %g0, %g0, %g0
+ //
+ // After : restore %g0, (imm3<<10), %o[0-7]
+
+ unsigned reg = SetHiMI->getOperand(0).getReg();
+ if (reg < SP::I0 || reg > SP::I7)
+ return false;
+
+ if (!SetHiMI->getOperand(1).isImm())
+ return false;
+
+ int64_t imm = SetHiMI->getOperand(1).getImm();
+
+ // Is it a 3 bit immediate?
+ if (!isInt<3>(imm))
+ return false;
+
+ // Make it a 13 bit immediate.
+ imm = (imm << 10) & 0x1FFF;
+
+ assert(RestoreMI->getOpcode() == SP::RESTORErr);
+
+ RestoreMI->setDesc(TII->get(SP::RESTOREri));
+
+ RestoreMI->getOperand(0).setReg(reg - SP::I0 + SP::O0);
+ RestoreMI->getOperand(1).setReg(SP::G0);
+ RestoreMI->getOperand(2).ChangeToImmediate(imm);
+
+
+ // Erase the original SETHI.
+ SetHiMI->eraseFromParent();
+
+ return true;
+}
+
+bool Filler::tryCombineRestoreWithPrevInst(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI)
+{
+ // No previous instruction.
+ if (MBBI == MBB.begin())
+ return false;
+
+ // assert that MBBI is a "restore %g0, %g0, %g0".
+ assert(MBBI->getOpcode() == SP::RESTORErr
+ && MBBI->getOperand(0).getReg() == SP::G0
+ && MBBI->getOperand(1).getReg() == SP::G0
+ && MBBI->getOperand(2).getReg() == SP::G0);
+
+ MachineBasicBlock::iterator PrevInst = std::prev(MBBI);
+
+ // It cannot be combined with a bundled instruction.
+ if (PrevInst->isBundledWithSucc())
+ return false;
+
+ const TargetInstrInfo *TII = TM.getInstrInfo();
+
+ switch (PrevInst->getOpcode()) {
+ default: break;
+ case SP::ADDrr:
+ case SP::ADDri: return combineRestoreADD(MBBI, PrevInst, TII); break;
+ case SP::ORrr:
+ case SP::ORri: return combineRestoreOR(MBBI, PrevInst, TII); break;
+ case SP::SETHIi: return combineRestoreSETHIi(MBBI, PrevInst, TII); break;
+ }
+ // It cannot combine with the previous instruction.
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/Sparc/Disassembler/SparcDisassembler.cpp b/contrib/llvm/lib/Target/Sparc/Disassembler/SparcDisassembler.cpp
new file mode 100644
index 0000000..4df0990
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/Disassembler/SparcDisassembler.cpp
@@ -0,0 +1,480 @@
+//===- SparcDisassembler.cpp - Disassembler for Sparc -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the Sparc Disassembler.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sparc.h"
+#include "SparcRegisterInfo.h"
+#include "SparcSubtarget.h"
+#include "llvm/MC/MCDisassembler.h"
+#include "llvm/MC/MCFixedLenDisassembler.h"
+#include "llvm/Support/MemoryObject.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "sparc-disassembler"
+
+typedef MCDisassembler::DecodeStatus DecodeStatus;
+
+namespace {
+
+/// SparcDisassembler - a disassembler class for Sparc.
+class SparcDisassembler : public MCDisassembler {
+public:
+ /// Constructor - Initializes the disassembler.
+ ///
+ SparcDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) :
+ MCDisassembler(STI, Ctx)
+ {}
+ virtual ~SparcDisassembler() {}
+
+ /// getInstruction - See MCDisassembler.
+ DecodeStatus getInstruction(MCInst &instr,
+ uint64_t &size,
+ const MemoryObject &region,
+ uint64_t address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const override;
+};
+
+}
+
+namespace llvm {
+ extern Target TheSparcTarget, TheSparcV9Target;
+}
+
+static MCDisassembler *createSparcDisassembler(
+ const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new SparcDisassembler(STI, Ctx);
+}
+
+
+extern "C" void LLVMInitializeSparcDisassembler() {
+ // Register the disassembler.
+ TargetRegistry::RegisterMCDisassembler(TheSparcTarget,
+ createSparcDisassembler);
+ TargetRegistry::RegisterMCDisassembler(TheSparcV9Target,
+ createSparcDisassembler);
+}
+
+
+
+static const unsigned IntRegDecoderTable[] = {
+ SP::G0, SP::G1, SP::G2, SP::G3,
+ SP::G4, SP::G5, SP::G6, SP::G7,
+ SP::O0, SP::O1, SP::O2, SP::O3,
+ SP::O4, SP::O5, SP::O6, SP::O7,
+ SP::L0, SP::L1, SP::L2, SP::L3,
+ SP::L4, SP::L5, SP::L6, SP::L7,
+ SP::I0, SP::I1, SP::I2, SP::I3,
+ SP::I4, SP::I5, SP::I6, SP::I7 };
+
+static const unsigned FPRegDecoderTable[] = {
+ SP::F0, SP::F1, SP::F2, SP::F3,
+ SP::F4, SP::F5, SP::F6, SP::F7,
+ SP::F8, SP::F9, SP::F10, SP::F11,
+ SP::F12, SP::F13, SP::F14, SP::F15,
+ SP::F16, SP::F17, SP::F18, SP::F19,
+ SP::F20, SP::F21, SP::F22, SP::F23,
+ SP::F24, SP::F25, SP::F26, SP::F27,
+ SP::F28, SP::F29, SP::F30, SP::F31 };
+
+static const unsigned DFPRegDecoderTable[] = {
+ SP::D0, SP::D16, SP::D1, SP::D17,
+ SP::D2, SP::D18, SP::D3, SP::D19,
+ SP::D4, SP::D20, SP::D5, SP::D21,
+ SP::D6, SP::D22, SP::D7, SP::D23,
+ SP::D8, SP::D24, SP::D9, SP::D25,
+ SP::D10, SP::D26, SP::D11, SP::D27,
+ SP::D12, SP::D28, SP::D13, SP::D29,
+ SP::D14, SP::D30, SP::D15, SP::D31 };
+
+static const unsigned QFPRegDecoderTable[] = {
+ SP::Q0, SP::Q8, ~0U, ~0U,
+ SP::Q1, SP::Q9, ~0U, ~0U,
+ SP::Q2, SP::Q10, ~0U, ~0U,
+ SP::Q3, SP::Q11, ~0U, ~0U,
+ SP::Q4, SP::Q12, ~0U, ~0U,
+ SP::Q5, SP::Q13, ~0U, ~0U,
+ SP::Q6, SP::Q14, ~0U, ~0U,
+ SP::Q7, SP::Q15, ~0U, ~0U } ;
+
+static const unsigned FCCRegDecoderTable[] = {
+ SP::FCC0, SP::FCC1, SP::FCC2, SP::FCC3 };
+
+static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+ unsigned Reg = IntRegDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeI64RegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+ unsigned Reg = IntRegDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+
+static DecodeStatus DecodeFPRegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+ unsigned Reg = FPRegDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+
+static DecodeStatus DecodeDFPRegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+ unsigned Reg = DFPRegDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+
+static DecodeStatus DecodeQFPRegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Reg = QFPRegDecoderTable[RegNo];
+ if (Reg == ~0U)
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeFCCRegsRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 3)
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateReg(FCCRegDecoderTable[RegNo]));
+ return MCDisassembler::Success;
+}
+
+
+static DecodeStatus DecodeLoadInt(MCInst &Inst, unsigned insn, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeLoadFP(MCInst &Inst, unsigned insn, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeLoadDFP(MCInst &Inst, unsigned insn, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeLoadQFP(MCInst &Inst, unsigned insn, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeStoreInt(MCInst &Inst, unsigned insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeStoreFP(MCInst &Inst, unsigned insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeStoreDFP(MCInst &Inst, unsigned insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeStoreQFP(MCInst &Inst, unsigned insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeCall(MCInst &Inst, unsigned insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeSIMM13(MCInst &Inst, unsigned insn,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeJMPL(MCInst &Inst, unsigned insn, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeReturn(MCInst &MI, unsigned insn, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeSWAP(MCInst &Inst, unsigned insn, uint64_t Address,
+ const void *Decoder);
+
+#include "SparcGenDisassemblerTables.inc"
+
+/// readInstruction - read four bytes from the MemoryObject
+/// and return 32 bit word.
+static DecodeStatus readInstruction32(const MemoryObject &region,
+ uint64_t address,
+ uint64_t &size,
+ uint32_t &insn) {
+ uint8_t Bytes[4];
+
+ // We want to read exactly 4 Bytes of data.
+ if (region.readBytes(address, 4, Bytes) == -1) {
+ size = 0;
+ return MCDisassembler::Fail;
+ }
+
+ // Encoded as a big-endian 32-bit word in the stream.
+ insn = (Bytes[3] << 0) |
+ (Bytes[2] << 8) |
+ (Bytes[1] << 16) |
+ (Bytes[0] << 24);
+
+ return MCDisassembler::Success;
+}
+
+
+DecodeStatus
+SparcDisassembler::getInstruction(MCInst &instr,
+ uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const {
+ uint32_t Insn;
+
+ DecodeStatus Result = readInstruction32(Region, Address, Size, Insn);
+ if (Result == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+
+
+ // Calling the auto-generated decoder function.
+ Result = decodeInstruction(DecoderTableSparc32, instr, Insn, Address,
+ this, STI);
+
+ if (Result != MCDisassembler::Fail) {
+ Size = 4;
+ return Result;
+ }
+
+ return MCDisassembler::Fail;
+}
+
+
+typedef DecodeStatus (*DecodeFunc)(MCInst &MI, unsigned insn, uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeMem(MCInst &MI, unsigned insn, uint64_t Address,
+ const void *Decoder,
+ bool isLoad, DecodeFunc DecodeRD) {
+ unsigned rd = fieldFromInstruction(insn, 25, 5);
+ unsigned rs1 = fieldFromInstruction(insn, 14, 5);
+ bool isImm = fieldFromInstruction(insn, 13, 1);
+ unsigned rs2 = 0;
+ unsigned simm13 = 0;
+ if (isImm)
+ simm13 = SignExtend32<13>(fieldFromInstruction(insn, 0, 13));
+ else
+ rs2 = fieldFromInstruction(insn, 0, 5);
+
+ DecodeStatus status;
+ if (isLoad) {
+ status = DecodeRD(MI, rd, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+ }
+
+ // Decode rs1.
+ status = DecodeIntRegsRegisterClass(MI, rs1, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+
+ // Decode imm|rs2.
+ if (isImm)
+ MI.addOperand(MCOperand::CreateImm(simm13));
+ else {
+ status = DecodeIntRegsRegisterClass(MI, rs2, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+ }
+
+ if (!isLoad) {
+ status = DecodeRD(MI, rd, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+ }
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeLoadInt(MCInst &Inst, unsigned insn, uint64_t Address,
+ const void *Decoder) {
+ return DecodeMem(Inst, insn, Address, Decoder, true,
+ DecodeIntRegsRegisterClass);
+}
+
+static DecodeStatus DecodeLoadFP(MCInst &Inst, unsigned insn, uint64_t Address,
+ const void *Decoder) {
+ return DecodeMem(Inst, insn, Address, Decoder, true,
+ DecodeFPRegsRegisterClass);
+}
+
+static DecodeStatus DecodeLoadDFP(MCInst &Inst, unsigned insn, uint64_t Address,
+ const void *Decoder) {
+ return DecodeMem(Inst, insn, Address, Decoder, true,
+ DecodeDFPRegsRegisterClass);
+}
+
+static DecodeStatus DecodeLoadQFP(MCInst &Inst, unsigned insn, uint64_t Address,
+ const void *Decoder) {
+ return DecodeMem(Inst, insn, Address, Decoder, true,
+ DecodeQFPRegsRegisterClass);
+}
+
+static DecodeStatus DecodeStoreInt(MCInst &Inst, unsigned insn,
+ uint64_t Address, const void *Decoder) {
+ return DecodeMem(Inst, insn, Address, Decoder, false,
+ DecodeIntRegsRegisterClass);
+}
+
+static DecodeStatus DecodeStoreFP(MCInst &Inst, unsigned insn, uint64_t Address,
+ const void *Decoder) {
+ return DecodeMem(Inst, insn, Address, Decoder, false,
+ DecodeFPRegsRegisterClass);
+}
+
+static DecodeStatus DecodeStoreDFP(MCInst &Inst, unsigned insn,
+ uint64_t Address, const void *Decoder) {
+ return DecodeMem(Inst, insn, Address, Decoder, false,
+ DecodeDFPRegsRegisterClass);
+}
+
+static DecodeStatus DecodeStoreQFP(MCInst &Inst, unsigned insn,
+ uint64_t Address, const void *Decoder) {
+ return DecodeMem(Inst, insn, Address, Decoder, false,
+ DecodeQFPRegsRegisterClass);
+}
+
+static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
+ uint64_t Address, uint64_t Offset,
+ uint64_t Width, MCInst &MI,
+ const void *Decoder) {
+ const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
+ return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
+ Offset, Width);
+}
+
+static DecodeStatus DecodeCall(MCInst &MI, unsigned insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned tgt = fieldFromInstruction(insn, 0, 30);
+ tgt <<= 2;
+ if (!tryAddingSymbolicOperand(tgt+Address, false, Address,
+ 0, 30, MI, Decoder))
+ MI.addOperand(MCOperand::CreateImm(tgt));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeSIMM13(MCInst &MI, unsigned insn,
+ uint64_t Address, const void *Decoder) {
+ unsigned tgt = SignExtend32<13>(fieldFromInstruction(insn, 0, 13));
+ MI.addOperand(MCOperand::CreateImm(tgt));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeJMPL(MCInst &MI, unsigned insn, uint64_t Address,
+ const void *Decoder) {
+
+ unsigned rd = fieldFromInstruction(insn, 25, 5);
+ unsigned rs1 = fieldFromInstruction(insn, 14, 5);
+ unsigned isImm = fieldFromInstruction(insn, 13, 1);
+ unsigned rs2 = 0;
+ unsigned simm13 = 0;
+ if (isImm)
+ simm13 = SignExtend32<13>(fieldFromInstruction(insn, 0, 13));
+ else
+ rs2 = fieldFromInstruction(insn, 0, 5);
+
+ // Decode RD.
+ DecodeStatus status = DecodeIntRegsRegisterClass(MI, rd, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+
+ // Decode RS1.
+ status = DecodeIntRegsRegisterClass(MI, rs1, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+
+ // Decode RS1 | SIMM13.
+ if (isImm)
+ MI.addOperand(MCOperand::CreateImm(simm13));
+ else {
+ status = DecodeIntRegsRegisterClass(MI, rs2, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+ }
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeReturn(MCInst &MI, unsigned insn, uint64_t Address,
+ const void *Decoder) {
+
+ unsigned rs1 = fieldFromInstruction(insn, 14, 5);
+ unsigned isImm = fieldFromInstruction(insn, 13, 1);
+ unsigned rs2 = 0;
+ unsigned simm13 = 0;
+ if (isImm)
+ simm13 = SignExtend32<13>(fieldFromInstruction(insn, 0, 13));
+ else
+ rs2 = fieldFromInstruction(insn, 0, 5);
+
+ // Decode RS1.
+ DecodeStatus status = DecodeIntRegsRegisterClass(MI, rs1, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+
+ // Decode RS2 | SIMM13.
+ if (isImm)
+ MI.addOperand(MCOperand::CreateImm(simm13));
+ else {
+ status = DecodeIntRegsRegisterClass(MI, rs2, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+ }
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeSWAP(MCInst &MI, unsigned insn, uint64_t Address,
+ const void *Decoder) {
+
+ unsigned rd = fieldFromInstruction(insn, 25, 5);
+ unsigned rs1 = fieldFromInstruction(insn, 14, 5);
+ unsigned isImm = fieldFromInstruction(insn, 13, 1);
+ unsigned rs2 = 0;
+ unsigned simm13 = 0;
+ if (isImm)
+ simm13 = SignExtend32<13>(fieldFromInstruction(insn, 0, 13));
+ else
+ rs2 = fieldFromInstruction(insn, 0, 5);
+
+ // Decode RD.
+ DecodeStatus status = DecodeIntRegsRegisterClass(MI, rd, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+
+ // Decode RS1.
+ status = DecodeIntRegsRegisterClass(MI, rs1, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+
+ // Decode RS1 | SIMM13.
+ if (isImm)
+ MI.addOperand(MCOperand::CreateImm(simm13));
+ else {
+ status = DecodeIntRegsRegisterClass(MI, rs2, Address, Decoder);
+ if (status != MCDisassembler::Success)
+ return status;
+ }
+ return MCDisassembler::Success;
+}
diff --git a/contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.cpp b/contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.cpp
new file mode 100644
index 0000000..5975a51
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.cpp
@@ -0,0 +1,178 @@
+//===-- SparcInstPrinter.cpp - Convert Sparc MCInst to assembly syntax -----==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an Sparc MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcInstPrinter.h"
+#include "Sparc.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+// The generated AsmMatcher SparcGenAsmWriter uses "Sparc" as the target
+// namespace. But SPARC backend uses "SP" as its namespace.
+namespace llvm {
+namespace Sparc {
+ using namespace SP;
+}
+}
+
+#define GET_INSTRUCTION_NAME
+#define PRINT_ALIAS_INSTR
+#include "SparcGenAsmWriter.inc"
+
+bool SparcInstPrinter::isV9() const {
+ return (STI.getFeatureBits() & Sparc::FeatureV9) != 0;
+}
+
+void SparcInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const
+{
+ OS << '%' << StringRef(getRegisterName(RegNo)).lower();
+}
+
+void SparcInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
+ StringRef Annot)
+{
+ if (!printAliasInstr(MI, O) && !printSparcAliasInstr(MI, O))
+ printInstruction(MI, O);
+ printAnnotation(O, Annot);
+}
+
+bool SparcInstPrinter::printSparcAliasInstr(const MCInst *MI, raw_ostream &O)
+{
+ switch (MI->getOpcode()) {
+ default: return false;
+ case SP::JMPLrr:
+ case SP::JMPLri: {
+ if (MI->getNumOperands() != 3)
+ return false;
+ if (!MI->getOperand(0).isReg())
+ return false;
+ switch (MI->getOperand(0).getReg()) {
+ default: return false;
+ case SP::G0: // jmp $addr | ret | retl
+ if (MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 8) {
+ switch(MI->getOperand(1).getReg()) {
+ default: break;
+ case SP::I7: O << "\tret"; return true;
+ case SP::O7: O << "\tretl"; return true;
+ }
+ }
+ O << "\tjmp "; printMemOperand(MI, 1, O);
+ return true;
+ case SP::O7: // call $addr
+ O << "\tcall "; printMemOperand(MI, 1, O);
+ return true;
+ }
+ }
+ case SP::V9FCMPS: case SP::V9FCMPD: case SP::V9FCMPQ:
+ case SP::V9FCMPES: case SP::V9FCMPED: case SP::V9FCMPEQ: {
+ if (isV9()
+ || (MI->getNumOperands() != 3)
+ || (!MI->getOperand(0).isReg())
+ || (MI->getOperand(0).getReg() != SP::FCC0))
+ return false;
+ // if V8, skip printing %fcc0.
+ switch(MI->getOpcode()) {
+ default:
+ case SP::V9FCMPS: O << "\tfcmps "; break;
+ case SP::V9FCMPD: O << "\tfcmpd "; break;
+ case SP::V9FCMPQ: O << "\tfcmpq "; break;
+ case SP::V9FCMPES: O << "\tfcmpes "; break;
+ case SP::V9FCMPED: O << "\tfcmped "; break;
+ case SP::V9FCMPEQ: O << "\tfcmpeq "; break;
+ }
+ printOperand(MI, 1, O);
+ O << ", ";
+ printOperand(MI, 2, O);
+ return true;
+ }
+ }
+}
+
+void SparcInstPrinter::printOperand(const MCInst *MI, int opNum,
+ raw_ostream &O)
+{
+ const MCOperand &MO = MI->getOperand (opNum);
+
+ if (MO.isReg()) {
+ printRegName(O, MO.getReg());
+ return ;
+ }
+
+ if (MO.isImm()) {
+ O << (int)MO.getImm();
+ return;
+ }
+
+ assert(MO.isExpr() && "Unknown operand kind in printOperand");
+ MO.getExpr()->print(O);
+}
+
+void SparcInstPrinter::printMemOperand(const MCInst *MI, int opNum,
+ raw_ostream &O, const char *Modifier)
+{
+ printOperand(MI, opNum, O);
+
+ // If this is an ADD operand, emit it like normal operands.
+ if (Modifier && !strcmp(Modifier, "arith")) {
+ O << ", ";
+ printOperand(MI, opNum+1, O);
+ return;
+ }
+ const MCOperand &MO = MI->getOperand(opNum+1);
+
+ if (MO.isReg() && MO.getReg() == SP::G0)
+ return; // don't print "+%g0"
+ if (MO.isImm() && MO.getImm() == 0)
+ return; // don't print "+0"
+
+ O << "+";
+
+ printOperand(MI, opNum+1, O);
+}
+
+void SparcInstPrinter::printCCOperand(const MCInst *MI, int opNum,
+ raw_ostream &O)
+{
+ int CC = (int)MI->getOperand(opNum).getImm();
+ switch (MI->getOpcode()) {
+ default: break;
+ case SP::FBCOND:
+ case SP::FBCONDA:
+ case SP::BPFCC:
+ case SP::BPFCCA:
+ case SP::BPFCCNT:
+ case SP::BPFCCANT:
+ case SP::MOVFCCrr: case SP::V9MOVFCCrr:
+ case SP::MOVFCCri: case SP::V9MOVFCCri:
+ case SP::FMOVS_FCC: case SP::V9FMOVS_FCC:
+ case SP::FMOVD_FCC: case SP::V9FMOVD_FCC:
+ case SP::FMOVQ_FCC: case SP::V9FMOVQ_FCC:
+ // Make sure CC is a fp conditional flag.
+ CC = (CC < 16) ? (CC + 16) : CC;
+ break;
+ }
+ O << SPARCCondCodeToString((SPCC::CondCodes)CC);
+}
+
+bool SparcInstPrinter::printGetPCX(const MCInst *MI, unsigned opNum,
+ raw_ostream &O)
+{
+ llvm_unreachable("FIXME: Implement SparcInstPrinter::printGetPCX.");
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.h b/contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.h
new file mode 100644
index 0000000..8fe4075
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.h
@@ -0,0 +1,54 @@
+//===-- SparcInstPrinter.h - Convert Sparc MCInst to assembly syntax ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an Sparc MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SparcINSTPRINTER_H
+#define SparcINSTPRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+
+namespace llvm {
+
+class MCOperand;
+
+class SparcInstPrinter : public MCInstPrinter {
+ const MCSubtargetInfo &STI;
+public:
+ SparcInstPrinter(const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &sti)
+ : MCInstPrinter(MAI, MII, MRI), STI(sti) {}
+
+ void printRegName(raw_ostream &OS, unsigned RegNo) const override;
+ void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot) override;
+ bool printSparcAliasInstr(const MCInst *MI, raw_ostream &OS);
+ bool isV9() const;
+
+ // Autogenerated by tblgen.
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ bool printAliasInstr(const MCInst *MI, raw_ostream &O);
+ void printCustomAliasOperand(const MCInst *MI, unsigned OpIdx,
+ unsigned PrintMethodIdx, raw_ostream &O);
+ static const char *getRegisterName(unsigned RegNo);
+
+ void printOperand(const MCInst *MI, int opNum, raw_ostream &OS);
+ void printMemOperand(const MCInst *MI, int opNum, raw_ostream &OS,
+ const char *Modifier = nullptr);
+ void printCCOperand(const MCInst *MI, int opNum, raw_ostream &OS);
+ bool printGetPCX(const MCInst *MI, unsigned OpNo, raw_ostream &OS);
+
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcAsmBackend.cpp b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcAsmBackend.cpp
new file mode 100644
index 0000000..dcd81e3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcAsmBackend.cpp
@@ -0,0 +1,261 @@
+//===-- SparcAsmBackend.cpp - Sparc Assembler Backend ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCAsmBackend.h"
+#include "MCTargetDesc/SparcFixupKinds.h"
+#include "MCTargetDesc/SparcMCTargetDesc.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCFixupKindInfo.h"
+#include "llvm/MC/MCObjectWriter.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+static unsigned adjustFixupValue(unsigned Kind, uint64_t Value) {
+ switch (Kind) {
+ default:
+ llvm_unreachable("Unknown fixup kind!");
+ case FK_Data_1:
+ case FK_Data_2:
+ case FK_Data_4:
+ case FK_Data_8:
+ return Value;
+
+ case Sparc::fixup_sparc_wplt30:
+ case Sparc::fixup_sparc_call30:
+ return (Value >> 2) & 0x3fffffff;
+
+ case Sparc::fixup_sparc_br22:
+ return (Value >> 2) & 0x3fffff;
+
+ case Sparc::fixup_sparc_br19:
+ return (Value >> 2) & 0x7ffff;
+
+ case Sparc::fixup_sparc_br16_2:
+ return (Value >> 2) & 0xc000;
+
+ case Sparc::fixup_sparc_br16_14:
+ return (Value >> 2) & 0x3fff;
+
+ case Sparc::fixup_sparc_pc22:
+ case Sparc::fixup_sparc_got22:
+ case Sparc::fixup_sparc_tls_gd_hi22:
+ case Sparc::fixup_sparc_tls_ldm_hi22:
+ case Sparc::fixup_sparc_tls_ie_hi22:
+ case Sparc::fixup_sparc_hi22:
+ return (Value >> 10) & 0x3fffff;
+
+ case Sparc::fixup_sparc_pc10:
+ case Sparc::fixup_sparc_got10:
+ case Sparc::fixup_sparc_tls_gd_lo10:
+ case Sparc::fixup_sparc_tls_ldm_lo10:
+ case Sparc::fixup_sparc_tls_ie_lo10:
+ case Sparc::fixup_sparc_lo10:
+ return Value & 0x3ff;
+
+ case Sparc::fixup_sparc_tls_ldo_hix22:
+ case Sparc::fixup_sparc_tls_le_hix22:
+ return (~Value >> 10) & 0x3fffff;
+
+ case Sparc::fixup_sparc_tls_ldo_lox10:
+ case Sparc::fixup_sparc_tls_le_lox10:
+ return (~(~Value & 0x3ff)) & 0x1fff;
+
+ case Sparc::fixup_sparc_h44:
+ return (Value >> 22) & 0x3fffff;
+
+ case Sparc::fixup_sparc_m44:
+ return (Value >> 12) & 0x3ff;
+
+ case Sparc::fixup_sparc_l44:
+ return Value & 0xfff;
+
+ case Sparc::fixup_sparc_hh:
+ return (Value >> 42) & 0x3fffff;
+
+ case Sparc::fixup_sparc_hm:
+ return (Value >> 32) & 0x3ff;
+
+ case Sparc::fixup_sparc_tls_gd_add:
+ case Sparc::fixup_sparc_tls_gd_call:
+ case Sparc::fixup_sparc_tls_ldm_add:
+ case Sparc::fixup_sparc_tls_ldm_call:
+ case Sparc::fixup_sparc_tls_ldo_add:
+ case Sparc::fixup_sparc_tls_ie_ld:
+ case Sparc::fixup_sparc_tls_ie_ldx:
+ case Sparc::fixup_sparc_tls_ie_add:
+ return 0;
+ }
+}
+
+namespace {
+ class SparcAsmBackend : public MCAsmBackend {
+ const Target &TheTarget;
+ public:
+ SparcAsmBackend(const Target &T) : MCAsmBackend(), TheTarget(T) {}
+
+ unsigned getNumFixupKinds() const override {
+ return Sparc::NumTargetFixupKinds;
+ }
+
+ const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
+ const static MCFixupKindInfo Infos[Sparc::NumTargetFixupKinds] = {
+ // name offset bits flags
+ { "fixup_sparc_call30", 2, 30, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_sparc_br22", 10, 22, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_sparc_br19", 13, 19, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_sparc_br16_2", 10, 2, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_sparc_br16_14", 18, 14, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_sparc_hi22", 10, 22, 0 },
+ { "fixup_sparc_lo10", 22, 10, 0 },
+ { "fixup_sparc_h44", 10, 22, 0 },
+ { "fixup_sparc_m44", 22, 10, 0 },
+ { "fixup_sparc_l44", 20, 12, 0 },
+ { "fixup_sparc_hh", 10, 22, 0 },
+ { "fixup_sparc_hm", 22, 10, 0 },
+ { "fixup_sparc_pc22", 10, 22, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_sparc_pc10", 22, 10, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_sparc_got22", 10, 22, 0 },
+ { "fixup_sparc_got10", 22, 10, 0 },
+ { "fixup_sparc_wplt30", 2, 30, MCFixupKindInfo::FKF_IsPCRel },
+ { "fixup_sparc_tls_gd_hi22", 10, 22, 0 },
+ { "fixup_sparc_tls_gd_lo10", 22, 10, 0 },
+ { "fixup_sparc_tls_gd_add", 0, 0, 0 },
+ { "fixup_sparc_tls_gd_call", 0, 0, 0 },
+ { "fixup_sparc_tls_ldm_hi22", 10, 22, 0 },
+ { "fixup_sparc_tls_ldm_lo10", 22, 10, 0 },
+ { "fixup_sparc_tls_ldm_add", 0, 0, 0 },
+ { "fixup_sparc_tls_ldm_call", 0, 0, 0 },
+ { "fixup_sparc_tls_ldo_hix22", 10, 22, 0 },
+ { "fixup_sparc_tls_ldo_lox10", 22, 10, 0 },
+ { "fixup_sparc_tls_ldo_add", 0, 0, 0 },
+ { "fixup_sparc_tls_ie_hi22", 10, 22, 0 },
+ { "fixup_sparc_tls_ie_lo10", 22, 10, 0 },
+ { "fixup_sparc_tls_ie_ld", 0, 0, 0 },
+ { "fixup_sparc_tls_ie_ldx", 0, 0, 0 },
+ { "fixup_sparc_tls_ie_add", 0, 0, 0 },
+ { "fixup_sparc_tls_le_hix22", 0, 0, 0 },
+ { "fixup_sparc_tls_le_lox10", 0, 0, 0 }
+ };
+
+ if (Kind < FirstTargetFixupKind)
+ return MCAsmBackend::getFixupKindInfo(Kind);
+
+ assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
+ "Invalid kind!");
+ return Infos[Kind - FirstTargetFixupKind];
+ }
+
+ void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFixup &Fixup, const MCFragment *DF,
+ const MCValue &Target, uint64_t &Value,
+ bool &IsResolved) override {
+ switch ((Sparc::Fixups)Fixup.getKind()) {
+ default: break;
+ case Sparc::fixup_sparc_wplt30:
+ if (Target.getSymA()->getSymbol().isTemporary())
+ return;
+ case Sparc::fixup_sparc_tls_gd_hi22:
+ case Sparc::fixup_sparc_tls_gd_lo10:
+ case Sparc::fixup_sparc_tls_gd_add:
+ case Sparc::fixup_sparc_tls_gd_call:
+ case Sparc::fixup_sparc_tls_ldm_hi22:
+ case Sparc::fixup_sparc_tls_ldm_lo10:
+ case Sparc::fixup_sparc_tls_ldm_add:
+ case Sparc::fixup_sparc_tls_ldm_call:
+ case Sparc::fixup_sparc_tls_ldo_hix22:
+ case Sparc::fixup_sparc_tls_ldo_lox10:
+ case Sparc::fixup_sparc_tls_ldo_add:
+ case Sparc::fixup_sparc_tls_ie_hi22:
+ case Sparc::fixup_sparc_tls_ie_lo10:
+ case Sparc::fixup_sparc_tls_ie_ld:
+ case Sparc::fixup_sparc_tls_ie_ldx:
+ case Sparc::fixup_sparc_tls_ie_add:
+ case Sparc::fixup_sparc_tls_le_hix22:
+ case Sparc::fixup_sparc_tls_le_lox10: IsResolved = false; break;
+ }
+ }
+
+ bool mayNeedRelaxation(const MCInst &Inst) const override {
+ // FIXME.
+ return false;
+ }
+
+ /// fixupNeedsRelaxation - Target specific predicate for whether a given
+ /// fixup requires the associated instruction to be relaxed.
+ bool fixupNeedsRelaxation(const MCFixup &Fixup,
+ uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const override {
+ // FIXME.
+ llvm_unreachable("fixupNeedsRelaxation() unimplemented");
+ return false;
+ }
+ void relaxInstruction(const MCInst &Inst, MCInst &Res) const override {
+ // FIXME.
+ llvm_unreachable("relaxInstruction() unimplemented");
+ }
+
+ bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override {
+ // Cannot emit NOP with size not multiple of 32 bits.
+ if (Count % 4 != 0)
+ return false;
+
+ uint64_t NumNops = Count / 4;
+ for (uint64_t i = 0; i != NumNops; ++i)
+ OW->Write32(0x01000000);
+
+ return true;
+ }
+
+ bool is64Bit() const {
+ StringRef name = TheTarget.getName();
+ return name == "sparcv9";
+ }
+ };
+
+ class ELFSparcAsmBackend : public SparcAsmBackend {
+ Triple::OSType OSType;
+ public:
+ ELFSparcAsmBackend(const Target &T, Triple::OSType OSType) :
+ SparcAsmBackend(T), OSType(OSType) { }
+
+ void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
+ uint64_t Value, bool IsPCRel) const override {
+
+ Value = adjustFixupValue(Fixup.getKind(), Value);
+ if (!Value) return; // Doesn't change encoding.
+
+ unsigned Offset = Fixup.getOffset();
+
+ // For each byte of the fragment that the fixup touches, mask in the bits
+ // from the fixup value. The Value has been "split up" into the
+ // appropriate bitfields above.
+ for (unsigned i = 0; i != 4; ++i)
+ Data[Offset + i] |= uint8_t((Value >> ((4 - i - 1)*8)) & 0xff);
+
+ }
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(OSType);
+ return createSparcELFObjectWriter(OS, is64Bit(), OSABI);
+ }
+ };
+
+} // end anonymous namespace
+
+
+MCAsmBackend *llvm::createSparcAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT,
+ StringRef CPU) {
+ return new ELFSparcAsmBackend(T, Triple(TT).getOS());
+}
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp
new file mode 100644
index 0000000..5ba82f1
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp
@@ -0,0 +1,112 @@
+//===-- SparcELFObjectWriter.cpp - Sparc ELF Writer -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/SparcFixupKinds.h"
+#include "MCTargetDesc/SparcMCExpr.h"
+#include "MCTargetDesc/SparcMCTargetDesc.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace llvm;
+
+namespace {
+ class SparcELFObjectWriter : public MCELFObjectTargetWriter {
+ public:
+ SparcELFObjectWriter(bool Is64Bit, uint8_t OSABI)
+ : MCELFObjectTargetWriter(Is64Bit, OSABI,
+ Is64Bit ? ELF::EM_SPARCV9 : ELF::EM_SPARC,
+ /*HasRelocationAddend*/ true) {}
+
+ virtual ~SparcELFObjectWriter() {}
+ protected:
+ unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsPCRel) const override;
+ };
+}
+
+unsigned SparcELFObjectWriter::GetRelocType(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const {
+
+ if (const SparcMCExpr *SExpr = dyn_cast<SparcMCExpr>(Fixup.getValue())) {
+ if (SExpr->getKind() == SparcMCExpr::VK_Sparc_R_DISP32)
+ return ELF::R_SPARC_DISP32;
+ }
+
+ if (IsPCRel) {
+ switch((unsigned)Fixup.getKind()) {
+ default:
+ llvm_unreachable("Unimplemented fixup -> relocation");
+ case FK_Data_1: return ELF::R_SPARC_DISP8;
+ case FK_Data_2: return ELF::R_SPARC_DISP16;
+ case FK_Data_4: return ELF::R_SPARC_DISP32;
+ case FK_Data_8: return ELF::R_SPARC_DISP64;
+ case Sparc::fixup_sparc_call30: return ELF::R_SPARC_WDISP30;
+ case Sparc::fixup_sparc_br22: return ELF::R_SPARC_WDISP22;
+ case Sparc::fixup_sparc_br19: return ELF::R_SPARC_WDISP19;
+ case Sparc::fixup_sparc_pc22: return ELF::R_SPARC_PC22;
+ case Sparc::fixup_sparc_pc10: return ELF::R_SPARC_PC10;
+ case Sparc::fixup_sparc_wplt30: return ELF::R_SPARC_WPLT30;
+ }
+ }
+
+ switch((unsigned)Fixup.getKind()) {
+ default:
+ llvm_unreachable("Unimplemented fixup -> relocation");
+ case FK_Data_1: return ELF::R_SPARC_8;
+ case FK_Data_2: return ((Fixup.getOffset() % 2)
+ ? ELF::R_SPARC_UA16
+ : ELF::R_SPARC_16);
+ case FK_Data_4: return ((Fixup.getOffset() % 4)
+ ? ELF::R_SPARC_UA32
+ : ELF::R_SPARC_32);
+ case FK_Data_8: return ((Fixup.getOffset() % 8)
+ ? ELF::R_SPARC_UA64
+ : ELF::R_SPARC_64);
+ case Sparc::fixup_sparc_hi22: return ELF::R_SPARC_HI22;
+ case Sparc::fixup_sparc_lo10: return ELF::R_SPARC_LO10;
+ case Sparc::fixup_sparc_h44: return ELF::R_SPARC_H44;
+ case Sparc::fixup_sparc_m44: return ELF::R_SPARC_M44;
+ case Sparc::fixup_sparc_l44: return ELF::R_SPARC_L44;
+ case Sparc::fixup_sparc_hh: return ELF::R_SPARC_HH22;
+ case Sparc::fixup_sparc_hm: return ELF::R_SPARC_HM10;
+ case Sparc::fixup_sparc_got22: return ELF::R_SPARC_GOT22;
+ case Sparc::fixup_sparc_got10: return ELF::R_SPARC_GOT10;
+ case Sparc::fixup_sparc_tls_gd_hi22: return ELF::R_SPARC_TLS_GD_HI22;
+ case Sparc::fixup_sparc_tls_gd_lo10: return ELF::R_SPARC_TLS_GD_LO10;
+ case Sparc::fixup_sparc_tls_gd_add: return ELF::R_SPARC_TLS_GD_ADD;
+ case Sparc::fixup_sparc_tls_gd_call: return ELF::R_SPARC_TLS_GD_CALL;
+ case Sparc::fixup_sparc_tls_ldm_hi22: return ELF::R_SPARC_TLS_LDM_HI22;
+ case Sparc::fixup_sparc_tls_ldm_lo10: return ELF::R_SPARC_TLS_LDM_LO10;
+ case Sparc::fixup_sparc_tls_ldm_add: return ELF::R_SPARC_TLS_LDM_ADD;
+ case Sparc::fixup_sparc_tls_ldm_call: return ELF::R_SPARC_TLS_LDM_CALL;
+ case Sparc::fixup_sparc_tls_ldo_hix22: return ELF::R_SPARC_TLS_LDO_HIX22;
+ case Sparc::fixup_sparc_tls_ldo_lox10: return ELF::R_SPARC_TLS_LDO_LOX10;
+ case Sparc::fixup_sparc_tls_ldo_add: return ELF::R_SPARC_TLS_LDO_ADD;
+ case Sparc::fixup_sparc_tls_ie_hi22: return ELF::R_SPARC_TLS_IE_HI22;
+ case Sparc::fixup_sparc_tls_ie_lo10: return ELF::R_SPARC_TLS_IE_LO10;
+ case Sparc::fixup_sparc_tls_ie_ld: return ELF::R_SPARC_TLS_IE_LD;
+ case Sparc::fixup_sparc_tls_ie_ldx: return ELF::R_SPARC_TLS_IE_LDX;
+ case Sparc::fixup_sparc_tls_ie_add: return ELF::R_SPARC_TLS_IE_ADD;
+ case Sparc::fixup_sparc_tls_le_hix22: return ELF::R_SPARC_TLS_LE_HIX22;
+ case Sparc::fixup_sparc_tls_le_lox10: return ELF::R_SPARC_TLS_LE_LOX10;
+ }
+
+ return ELF::R_SPARC_NONE;
+}
+
+MCObjectWriter *llvm::createSparcELFObjectWriter(raw_ostream &OS,
+ bool Is64Bit,
+ uint8_t OSABI) {
+ MCELFObjectTargetWriter *MOTW = new SparcELFObjectWriter(Is64Bit, OSABI);
+ return createELFObjectWriter(MOTW, OS, /*IsLittleEndian=*/false);
+}
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcFixupKinds.h b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcFixupKinds.h
new file mode 100644
index 0000000..d42bcee
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcFixupKinds.h
@@ -0,0 +1,97 @@
+//===-- SparcFixupKinds.h - Sparc Specific Fixup Entries --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SPARC_FIXUPKINDS_H
+#define LLVM_SPARC_FIXUPKINDS_H
+
+#include "llvm/MC/MCFixup.h"
+
+namespace llvm {
+ namespace Sparc {
+ enum Fixups {
+ // fixup_sparc_call30 - 30-bit PC relative relocation for call
+ fixup_sparc_call30 = FirstTargetFixupKind,
+
+ /// fixup_sparc_br22 - 22-bit PC relative relocation for
+ /// branches
+ fixup_sparc_br22,
+
+ /// fixup_sparc_br19 - 19-bit PC relative relocation for
+ /// branches on icc/xcc
+ fixup_sparc_br19,
+
+ /// fixup_sparc_bpr - 16-bit fixup for bpr
+ fixup_sparc_br16_2,
+ fixup_sparc_br16_14,
+
+ /// fixup_sparc_hi22 - 22-bit fixup corresponding to %hi(foo)
+ /// for sethi
+ fixup_sparc_hi22,
+
+ /// fixup_sparc_lo10 - 10-bit fixup corresponding to %lo(foo)
+ fixup_sparc_lo10,
+
+ /// fixup_sparc_h44 - 22-bit fixup corresponding to %h44(foo)
+ fixup_sparc_h44,
+
+ /// fixup_sparc_m44 - 10-bit fixup corresponding to %m44(foo)
+ fixup_sparc_m44,
+
+ /// fixup_sparc_l44 - 12-bit fixup corresponding to %l44(foo)
+ fixup_sparc_l44,
+
+ /// fixup_sparc_hh - 22-bit fixup corresponding to %hh(foo)
+ fixup_sparc_hh,
+
+ /// fixup_sparc_hm - 10-bit fixup corresponding to %hm(foo)
+ fixup_sparc_hm,
+
+ /// fixup_sparc_pc22 - 22-bit fixup corresponding to %pc22(foo)
+ fixup_sparc_pc22,
+
+ /// fixup_sparc_pc10 - 10-bit fixup corresponding to %pc10(foo)
+ fixup_sparc_pc10,
+
+ /// fixup_sparc_got22 - 22-bit fixup corresponding to %got22(foo)
+ fixup_sparc_got22,
+
+ /// fixup_sparc_got10 - 10-bit fixup corresponding to %got10(foo)
+ fixup_sparc_got10,
+
+ /// fixup_sparc_wplt30
+ fixup_sparc_wplt30,
+
+ /// fixups for Thread Local Storage
+ fixup_sparc_tls_gd_hi22,
+ fixup_sparc_tls_gd_lo10,
+ fixup_sparc_tls_gd_add,
+ fixup_sparc_tls_gd_call,
+ fixup_sparc_tls_ldm_hi22,
+ fixup_sparc_tls_ldm_lo10,
+ fixup_sparc_tls_ldm_add,
+ fixup_sparc_tls_ldm_call,
+ fixup_sparc_tls_ldo_hix22,
+ fixup_sparc_tls_ldo_lox10,
+ fixup_sparc_tls_ldo_add,
+ fixup_sparc_tls_ie_hi22,
+ fixup_sparc_tls_ie_lo10,
+ fixup_sparc_tls_ie_ld,
+ fixup_sparc_tls_ie_ldx,
+ fixup_sparc_tls_ie_add,
+ fixup_sparc_tls_le_hix22,
+ fixup_sparc_tls_le_lox10,
+
+ // Marker
+ LastTargetFixupKind,
+ NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind
+ };
+ }
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.cpp b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.cpp
new file mode 100644
index 0000000..df66ca9
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.cpp
@@ -0,0 +1,74 @@
+//===-- SparcMCAsmInfo.cpp - Sparc asm properties -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the SparcMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcMCAsmInfo.h"
+#include "SparcMCExpr.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/MCStreamer.h"
+
+using namespace llvm;
+
+void SparcELFMCAsmInfo::anchor() { }
+
+SparcELFMCAsmInfo::SparcELFMCAsmInfo(StringRef TT) {
+ IsLittleEndian = false;
+ Triple TheTriple(TT);
+ bool isV9 = (TheTriple.getArch() == Triple::sparcv9);
+
+ if (isV9) {
+ PointerSize = CalleeSaveStackSlotSize = 8;
+ }
+
+ Data16bitsDirective = "\t.half\t";
+ Data32bitsDirective = "\t.word\t";
+ // .xword is only supported by V9.
+ Data64bitsDirective = (isV9) ? "\t.xword\t" : nullptr;
+ ZeroDirective = "\t.skip\t";
+ CommentString = "!";
+ HasLEB128 = true;
+ SupportsDebugInformation = true;
+
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+
+ SunStyleELFSectionSwitchSyntax = true;
+ UsesELFSectionDirectiveForBSS = true;
+
+ if (TheTriple.getOS() == llvm::Triple::Solaris ||
+ TheTriple.getOS() == llvm::Triple::OpenBSD)
+ UseIntegratedAssembler = true;
+}
+
+const MCExpr*
+SparcELFMCAsmInfo::getExprForPersonalitySymbol(const MCSymbol *Sym,
+ unsigned Encoding,
+ MCStreamer &Streamer) const {
+ if (Encoding & dwarf::DW_EH_PE_pcrel) {
+ MCContext &Ctx = Streamer.getContext();
+ return SparcMCExpr::Create(SparcMCExpr::VK_Sparc_R_DISP32,
+ MCSymbolRefExpr::Create(Sym, Ctx), Ctx);
+ }
+
+ return MCAsmInfo::getExprForPersonalitySymbol(Sym, Encoding, Streamer);
+}
+
+const MCExpr*
+SparcELFMCAsmInfo::getExprForFDESymbol(const MCSymbol *Sym,
+ unsigned Encoding,
+ MCStreamer &Streamer) const {
+ if (Encoding & dwarf::DW_EH_PE_pcrel) {
+ MCContext &Ctx = Streamer.getContext();
+ return SparcMCExpr::Create(SparcMCExpr::VK_Sparc_R_DISP32,
+ MCSymbolRefExpr::Create(Sym, Ctx), Ctx);
+ }
+ return MCAsmInfo::getExprForFDESymbol(Sym, Encoding, Streamer);
+}
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.h b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.h
new file mode 100644
index 0000000..e126b68
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.h
@@ -0,0 +1,37 @@
+//===-- SparcMCAsmInfo.h - Sparc asm properties ----------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the SparcMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARCTARGETASMINFO_H
+#define SPARCTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfoELF.h"
+
+namespace llvm {
+class StringRef;
+
+class SparcELFMCAsmInfo : public MCAsmInfoELF {
+ void anchor() override;
+public:
+ explicit SparcELFMCAsmInfo(StringRef TT);
+ const MCExpr*
+ getExprForPersonalitySymbol(const MCSymbol *Sym, unsigned Encoding,
+ MCStreamer &Streamer) const override;
+ const MCExpr* getExprForFDESymbol(const MCSymbol *Sym,
+ unsigned Encoding,
+ MCStreamer &Streamer) const override;
+
+};
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCCodeEmitter.cpp b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCCodeEmitter.cpp
new file mode 100644
index 0000000..eea9626
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCCodeEmitter.cpp
@@ -0,0 +1,218 @@
+//===-- SparcMCCodeEmitter.cpp - Convert Sparc code to machine code -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SparcMCCodeEmitter class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcMCExpr.h"
+#include "MCTargetDesc/SparcFixupKinds.h"
+#include "SparcMCTargetDesc.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mccodeemitter"
+
+STATISTIC(MCNumEmitted, "Number of MC instructions emitted");
+
+namespace {
+class SparcMCCodeEmitter : public MCCodeEmitter {
+ SparcMCCodeEmitter(const SparcMCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ void operator=(const SparcMCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ MCContext &Ctx;
+
+public:
+ SparcMCCodeEmitter(MCContext &ctx): Ctx(ctx) {}
+
+ ~SparcMCCodeEmitter() {}
+
+ void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+
+ // getBinaryCodeForInstr - TableGen'erated function for getting the
+ // binary encoding for an instruction.
+ uint64_t getBinaryCodeForInstr(const MCInst &MI,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ /// getMachineOpValue - Return binary encoding of operand. If the machine
+ /// operand requires relocation, record the relocation and return zero.
+ unsigned getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getCallTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getBranchTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getBranchPredTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getBranchOnRegTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+};
+} // end anonymous namespace
+
+MCCodeEmitter *llvm::createSparcMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new SparcMCCodeEmitter(Ctx);
+}
+
+void SparcMCCodeEmitter::
+EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ unsigned Bits = getBinaryCodeForInstr(MI, Fixups, STI);
+
+ // Output the constant in big endian byte order.
+ for (unsigned i = 0; i != 4; ++i) {
+ OS << (char)(Bits >> 24);
+ Bits <<= 8;
+ }
+ unsigned tlsOpNo = 0;
+ switch (MI.getOpcode()) {
+ default: break;
+ case SP::TLS_CALL: tlsOpNo = 1; break;
+ case SP::TLS_ADDrr:
+ case SP::TLS_ADDXrr:
+ case SP::TLS_LDrr:
+ case SP::TLS_LDXrr: tlsOpNo = 3; break;
+ }
+ if (tlsOpNo != 0) {
+ const MCOperand &MO = MI.getOperand(tlsOpNo);
+ uint64_t op = getMachineOpValue(MI, MO, Fixups, STI);
+ assert(op == 0 && "Unexpected operand value!");
+ (void)op; // suppress warning.
+ }
+
+ ++MCNumEmitted; // Keep track of the # of mi's emitted.
+}
+
+
+unsigned SparcMCCodeEmitter::
+getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ if (MO.isReg())
+ return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
+
+ if (MO.isImm())
+ return MO.getImm();
+
+ assert(MO.isExpr());
+ const MCExpr *Expr = MO.getExpr();
+ if (const SparcMCExpr *SExpr = dyn_cast<SparcMCExpr>(Expr)) {
+ MCFixupKind Kind = (MCFixupKind)SExpr->getFixupKind();
+ Fixups.push_back(MCFixup::Create(0, Expr, Kind));
+ return 0;
+ }
+
+ int64_t Res;
+ if (Expr->EvaluateAsAbsolute(Res))
+ return Res;
+
+ llvm_unreachable("Unhandled expression!");
+ return 0;
+}
+
+unsigned SparcMCCodeEmitter::
+getCallTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm())
+ return getMachineOpValue(MI, MO, Fixups, STI);
+
+ if (MI.getOpcode() == SP::TLS_CALL) {
+ // No fixups for __tls_get_addr. Will emit for fixups for tls_symbol in
+ // EncodeInstruction.
+#ifndef NDEBUG
+ // Verify that the callee is actually __tls_get_addr.
+ const SparcMCExpr *SExpr = dyn_cast<SparcMCExpr>(MO.getExpr());
+ assert(SExpr && SExpr->getSubExpr()->getKind() == MCExpr::SymbolRef &&
+ "Unexpected expression in TLS_CALL");
+ const MCSymbolRefExpr *SymExpr = cast<MCSymbolRefExpr>(SExpr->getSubExpr());
+ assert(SymExpr->getSymbol().getName() == "__tls_get_addr" &&
+ "Unexpected function for TLS_CALL");
+#endif
+ return 0;
+ }
+
+ MCFixupKind fixupKind = (MCFixupKind)Sparc::fixup_sparc_call30;
+
+ if (const SparcMCExpr *SExpr = dyn_cast<SparcMCExpr>(MO.getExpr())) {
+ if (SExpr->getKind() == SparcMCExpr::VK_Sparc_WPLT30)
+ fixupKind = (MCFixupKind)Sparc::fixup_sparc_wplt30;
+ }
+
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(), fixupKind));
+
+ return 0;
+}
+
+unsigned SparcMCCodeEmitter::
+getBranchTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm())
+ return getMachineOpValue(MI, MO, Fixups, STI);
+
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
+ (MCFixupKind)Sparc::fixup_sparc_br22));
+ return 0;
+}
+
+unsigned SparcMCCodeEmitter::
+getBranchPredTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm())
+ return getMachineOpValue(MI, MO, Fixups, STI);
+
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
+ (MCFixupKind)Sparc::fixup_sparc_br19));
+ return 0;
+}
+unsigned SparcMCCodeEmitter::
+getBranchOnRegTargetOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isReg() || MO.isImm())
+ return getMachineOpValue(MI, MO, Fixups, STI);
+
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
+ (MCFixupKind)Sparc::fixup_sparc_br16_2));
+ Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
+ (MCFixupKind)Sparc::fixup_sparc_br16_14));
+
+ return 0;
+}
+
+
+
+#include "SparcGenMCCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.cpp b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.cpp
new file mode 100644
index 0000000..7f01ab0
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.cpp
@@ -0,0 +1,225 @@
+//===-- SparcMCExpr.cpp - Sparc specific MC expression classes --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the assembly expression modifiers
+// accepted by the Sparc architecture (e.g. "%hi", "%lo", ...).
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcMCExpr.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCELF.h"
+#include "llvm/MC/MCObjectStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Object/ELF.h"
+
+
+using namespace llvm;
+
+#define DEBUG_TYPE "sparcmcexpr"
+
+const SparcMCExpr*
+SparcMCExpr::Create(VariantKind Kind, const MCExpr *Expr,
+ MCContext &Ctx) {
+ return new (Ctx) SparcMCExpr(Kind, Expr);
+}
+
+
+
+void SparcMCExpr::PrintImpl(raw_ostream &OS) const
+{
+
+ bool closeParen = printVariantKind(OS, Kind);
+
+ const MCExpr *Expr = getSubExpr();
+ Expr->print(OS);
+
+ if (closeParen)
+ OS << ')';
+}
+
+bool SparcMCExpr::printVariantKind(raw_ostream &OS, VariantKind Kind)
+{
+ bool closeParen = true;
+ switch (Kind) {
+ case VK_Sparc_None: closeParen = false; break;
+ case VK_Sparc_LO: OS << "%lo("; break;
+ case VK_Sparc_HI: OS << "%hi("; break;
+ case VK_Sparc_H44: OS << "%h44("; break;
+ case VK_Sparc_M44: OS << "%m44("; break;
+ case VK_Sparc_L44: OS << "%l44("; break;
+ case VK_Sparc_HH: OS << "%hh("; break;
+ case VK_Sparc_HM: OS << "%hm("; break;
+ // FIXME: use %pc22/%pc10, if system assembler supports them.
+ case VK_Sparc_PC22: OS << "%hi("; break;
+ case VK_Sparc_PC10: OS << "%lo("; break;
+ // FIXME: use %got22/%got10, if system assembler supports them.
+ case VK_Sparc_GOT22: OS << "%hi("; break;
+ case VK_Sparc_GOT10: OS << "%lo("; break;
+ case VK_Sparc_WPLT30: closeParen = false; break;
+ case VK_Sparc_R_DISP32: OS << "%r_disp32("; break;
+ case VK_Sparc_TLS_GD_HI22: OS << "%tgd_hi22("; break;
+ case VK_Sparc_TLS_GD_LO10: OS << "%tgd_lo10("; break;
+ case VK_Sparc_TLS_GD_ADD: OS << "%tgd_add("; break;
+ case VK_Sparc_TLS_GD_CALL: OS << "%tgd_call("; break;
+ case VK_Sparc_TLS_LDM_HI22: OS << "%tldm_hi22("; break;
+ case VK_Sparc_TLS_LDM_LO10: OS << "%tldm_lo10("; break;
+ case VK_Sparc_TLS_LDM_ADD: OS << "%tldm_add("; break;
+ case VK_Sparc_TLS_LDM_CALL: OS << "%tldm_call("; break;
+ case VK_Sparc_TLS_LDO_HIX22: OS << "%tldo_hix22("; break;
+ case VK_Sparc_TLS_LDO_LOX10: OS << "%tldo_lox10("; break;
+ case VK_Sparc_TLS_LDO_ADD: OS << "%tldo_add("; break;
+ case VK_Sparc_TLS_IE_HI22: OS << "%tie_hi22("; break;
+ case VK_Sparc_TLS_IE_LO10: OS << "%tie_lo10("; break;
+ case VK_Sparc_TLS_IE_LD: OS << "%tie_ld("; break;
+ case VK_Sparc_TLS_IE_LDX: OS << "%tie_ldx("; break;
+ case VK_Sparc_TLS_IE_ADD: OS << "%tie_add("; break;
+ case VK_Sparc_TLS_LE_HIX22: OS << "%tle_hix22("; break;
+ case VK_Sparc_TLS_LE_LOX10: OS << "%tle_lox10("; break;
+ }
+ return closeParen;
+}
+
+SparcMCExpr::VariantKind SparcMCExpr::parseVariantKind(StringRef name)
+{
+ return StringSwitch<SparcMCExpr::VariantKind>(name)
+ .Case("lo", VK_Sparc_LO)
+ .Case("hi", VK_Sparc_HI)
+ .Case("h44", VK_Sparc_H44)
+ .Case("m44", VK_Sparc_M44)
+ .Case("l44", VK_Sparc_L44)
+ .Case("hh", VK_Sparc_HH)
+ .Case("hm", VK_Sparc_HM)
+ .Case("pc22", VK_Sparc_PC22)
+ .Case("pc10", VK_Sparc_PC10)
+ .Case("got22", VK_Sparc_GOT22)
+ .Case("got10", VK_Sparc_GOT10)
+ .Case("r_disp32", VK_Sparc_R_DISP32)
+ .Case("tgd_hi22", VK_Sparc_TLS_GD_HI22)
+ .Case("tgd_lo10", VK_Sparc_TLS_GD_LO10)
+ .Case("tgd_add", VK_Sparc_TLS_GD_ADD)
+ .Case("tgd_call", VK_Sparc_TLS_GD_CALL)
+ .Case("tldm_hi22", VK_Sparc_TLS_LDM_HI22)
+ .Case("tldm_lo10", VK_Sparc_TLS_LDM_LO10)
+ .Case("tldm_add", VK_Sparc_TLS_LDM_ADD)
+ .Case("tldm_call", VK_Sparc_TLS_LDM_CALL)
+ .Case("tldo_hix22", VK_Sparc_TLS_LDO_HIX22)
+ .Case("tldo_lox10", VK_Sparc_TLS_LDO_LOX10)
+ .Case("tldo_add", VK_Sparc_TLS_LDO_ADD)
+ .Case("tie_hi22", VK_Sparc_TLS_IE_HI22)
+ .Case("tie_lo10", VK_Sparc_TLS_IE_LO10)
+ .Case("tie_ld", VK_Sparc_TLS_IE_LD)
+ .Case("tie_ldx", VK_Sparc_TLS_IE_LDX)
+ .Case("tie_add", VK_Sparc_TLS_IE_ADD)
+ .Case("tle_hix22", VK_Sparc_TLS_LE_HIX22)
+ .Case("tle_lox10", VK_Sparc_TLS_LE_LOX10)
+ .Default(VK_Sparc_None);
+}
+
+Sparc::Fixups SparcMCExpr::getFixupKind(SparcMCExpr::VariantKind Kind) {
+ switch (Kind) {
+ default: llvm_unreachable("Unhandled SparcMCExpr::VariantKind");
+ case VK_Sparc_LO: return Sparc::fixup_sparc_lo10;
+ case VK_Sparc_HI: return Sparc::fixup_sparc_hi22;
+ case VK_Sparc_H44: return Sparc::fixup_sparc_h44;
+ case VK_Sparc_M44: return Sparc::fixup_sparc_m44;
+ case VK_Sparc_L44: return Sparc::fixup_sparc_l44;
+ case VK_Sparc_HH: return Sparc::fixup_sparc_hh;
+ case VK_Sparc_HM: return Sparc::fixup_sparc_hm;
+ case VK_Sparc_PC22: return Sparc::fixup_sparc_pc22;
+ case VK_Sparc_PC10: return Sparc::fixup_sparc_pc10;
+ case VK_Sparc_GOT22: return Sparc::fixup_sparc_got22;
+ case VK_Sparc_GOT10: return Sparc::fixup_sparc_got10;
+ case VK_Sparc_WPLT30: return Sparc::fixup_sparc_wplt30;
+ case VK_Sparc_TLS_GD_HI22: return Sparc::fixup_sparc_tls_gd_hi22;
+ case VK_Sparc_TLS_GD_LO10: return Sparc::fixup_sparc_tls_gd_lo10;
+ case VK_Sparc_TLS_GD_ADD: return Sparc::fixup_sparc_tls_gd_add;
+ case VK_Sparc_TLS_GD_CALL: return Sparc::fixup_sparc_tls_gd_call;
+ case VK_Sparc_TLS_LDM_HI22: return Sparc::fixup_sparc_tls_ldm_hi22;
+ case VK_Sparc_TLS_LDM_LO10: return Sparc::fixup_sparc_tls_ldm_lo10;
+ case VK_Sparc_TLS_LDM_ADD: return Sparc::fixup_sparc_tls_ldm_add;
+ case VK_Sparc_TLS_LDM_CALL: return Sparc::fixup_sparc_tls_ldm_call;
+ case VK_Sparc_TLS_LDO_HIX22: return Sparc::fixup_sparc_tls_ldo_hix22;
+ case VK_Sparc_TLS_LDO_LOX10: return Sparc::fixup_sparc_tls_ldo_lox10;
+ case VK_Sparc_TLS_LDO_ADD: return Sparc::fixup_sparc_tls_ldo_add;
+ case VK_Sparc_TLS_IE_HI22: return Sparc::fixup_sparc_tls_ie_hi22;
+ case VK_Sparc_TLS_IE_LO10: return Sparc::fixup_sparc_tls_ie_lo10;
+ case VK_Sparc_TLS_IE_LD: return Sparc::fixup_sparc_tls_ie_ld;
+ case VK_Sparc_TLS_IE_LDX: return Sparc::fixup_sparc_tls_ie_ldx;
+ case VK_Sparc_TLS_IE_ADD: return Sparc::fixup_sparc_tls_ie_add;
+ case VK_Sparc_TLS_LE_HIX22: return Sparc::fixup_sparc_tls_le_hix22;
+ case VK_Sparc_TLS_LE_LOX10: return Sparc::fixup_sparc_tls_le_lox10;
+ }
+}
+
+bool
+SparcMCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
+ const MCAsmLayout *Layout) const {
+ return getSubExpr()->EvaluateAsRelocatable(Res, Layout);
+}
+
+static void fixELFSymbolsInTLSFixupsImpl(const MCExpr *Expr, MCAssembler &Asm) {
+ switch (Expr->getKind()) {
+ case MCExpr::Target:
+ llvm_unreachable("Can't handle nested target expr!");
+ break;
+
+ case MCExpr::Constant:
+ break;
+
+ case MCExpr::Binary: {
+ const MCBinaryExpr *BE = cast<MCBinaryExpr>(Expr);
+ fixELFSymbolsInTLSFixupsImpl(BE->getLHS(), Asm);
+ fixELFSymbolsInTLSFixupsImpl(BE->getRHS(), Asm);
+ break;
+ }
+
+ case MCExpr::SymbolRef: {
+ const MCSymbolRefExpr &SymRef = *cast<MCSymbolRefExpr>(Expr);
+ MCSymbolData &SD = Asm.getOrCreateSymbolData(SymRef.getSymbol());
+ MCELF::SetType(SD, ELF::STT_TLS);
+ break;
+ }
+
+ case MCExpr::Unary:
+ fixELFSymbolsInTLSFixupsImpl(cast<MCUnaryExpr>(Expr)->getSubExpr(), Asm);
+ break;
+ }
+
+}
+
+void SparcMCExpr::fixELFSymbolsInTLSFixups(MCAssembler &Asm) const {
+ switch(getKind()) {
+ default: return;
+ case VK_Sparc_TLS_GD_HI22:
+ case VK_Sparc_TLS_GD_LO10:
+ case VK_Sparc_TLS_GD_ADD:
+ case VK_Sparc_TLS_GD_CALL:
+ case VK_Sparc_TLS_LDM_HI22:
+ case VK_Sparc_TLS_LDM_LO10:
+ case VK_Sparc_TLS_LDM_ADD:
+ case VK_Sparc_TLS_LDM_CALL:
+ case VK_Sparc_TLS_LDO_HIX22:
+ case VK_Sparc_TLS_LDO_LOX10:
+ case VK_Sparc_TLS_LDO_ADD:
+ case VK_Sparc_TLS_IE_HI22:
+ case VK_Sparc_TLS_IE_LO10:
+ case VK_Sparc_TLS_IE_LD:
+ case VK_Sparc_TLS_IE_LDX:
+ case VK_Sparc_TLS_IE_ADD:
+ case VK_Sparc_TLS_LE_HIX22:
+ case VK_Sparc_TLS_LE_LOX10: break;
+ }
+ fixELFSymbolsInTLSFixupsImpl(getSubExpr(), Asm);
+}
+
+void SparcMCExpr::visitUsedExpr(MCStreamer &Streamer) const {
+ Streamer.visitUsedExpr(*getSubExpr());
+}
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.h b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.h
new file mode 100644
index 0000000..f0d0ef3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.h
@@ -0,0 +1,111 @@
+//====- SparcMCExpr.h - Sparc specific MC expression classes --*- C++ -*-=====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes Sparc-specific MCExprs, used for modifiers like
+// "%hi" or "%lo" etc.,
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SPARCMCEXPR_H
+#define LLVM_SPARCMCEXPR_H
+
+#include "SparcFixupKinds.h"
+#include "llvm/MC/MCExpr.h"
+
+namespace llvm {
+
+class StringRef;
+class SparcMCExpr : public MCTargetExpr {
+public:
+ enum VariantKind {
+ VK_Sparc_None,
+ VK_Sparc_LO,
+ VK_Sparc_HI,
+ VK_Sparc_H44,
+ VK_Sparc_M44,
+ VK_Sparc_L44,
+ VK_Sparc_HH,
+ VK_Sparc_HM,
+ VK_Sparc_PC22,
+ VK_Sparc_PC10,
+ VK_Sparc_GOT22,
+ VK_Sparc_GOT10,
+ VK_Sparc_WPLT30,
+ VK_Sparc_R_DISP32,
+ VK_Sparc_TLS_GD_HI22,
+ VK_Sparc_TLS_GD_LO10,
+ VK_Sparc_TLS_GD_ADD,
+ VK_Sparc_TLS_GD_CALL,
+ VK_Sparc_TLS_LDM_HI22,
+ VK_Sparc_TLS_LDM_LO10,
+ VK_Sparc_TLS_LDM_ADD,
+ VK_Sparc_TLS_LDM_CALL,
+ VK_Sparc_TLS_LDO_HIX22,
+ VK_Sparc_TLS_LDO_LOX10,
+ VK_Sparc_TLS_LDO_ADD,
+ VK_Sparc_TLS_IE_HI22,
+ VK_Sparc_TLS_IE_LO10,
+ VK_Sparc_TLS_IE_LD,
+ VK_Sparc_TLS_IE_LDX,
+ VK_Sparc_TLS_IE_ADD,
+ VK_Sparc_TLS_LE_HIX22,
+ VK_Sparc_TLS_LE_LOX10
+ };
+
+private:
+ const VariantKind Kind;
+ const MCExpr *Expr;
+
+ explicit SparcMCExpr(VariantKind _Kind, const MCExpr *_Expr)
+ : Kind(_Kind), Expr(_Expr) {}
+
+public:
+ /// @name Construction
+ /// @{
+
+ static const SparcMCExpr *Create(VariantKind Kind, const MCExpr *Expr,
+ MCContext &Ctx);
+ /// @}
+ /// @name Accessors
+ /// @{
+
+ /// getOpcode - Get the kind of this expression.
+ VariantKind getKind() const { return Kind; }
+
+ /// getSubExpr - Get the child of this expression.
+ const MCExpr *getSubExpr() const { return Expr; }
+
+ /// getFixupKind - Get the fixup kind of this expression.
+ Sparc::Fixups getFixupKind() const { return getFixupKind(Kind); }
+
+ /// @}
+ void PrintImpl(raw_ostream &OS) const override;
+ bool EvaluateAsRelocatableImpl(MCValue &Res,
+ const MCAsmLayout *Layout) const override;
+ void visitUsedExpr(MCStreamer &Streamer) const override;
+ const MCSection *FindAssociatedSection() const override {
+ return getSubExpr()->FindAssociatedSection();
+ }
+
+ void fixELFSymbolsInTLSFixups(MCAssembler &Asm) const override;
+
+ static bool classof(const MCExpr *E) {
+ return E->getKind() == MCExpr::Target;
+ }
+
+ static bool classof(const SparcMCExpr *) { return true; }
+
+ static VariantKind parseVariantKind(StringRef name);
+ static bool printVariantKind(raw_ostream &OS, VariantKind Kind);
+ static Sparc::Fixups getFixupKind(VariantKind Kind);
+};
+
+} // end namespace llvm.
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp
new file mode 100644
index 0000000..571017d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp
@@ -0,0 +1,212 @@
+//===-- SparcMCTargetDesc.cpp - Sparc Target Descriptions -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Sparc specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcMCTargetDesc.h"
+#include "InstPrinter/SparcInstPrinter.h"
+#include "SparcMCAsmInfo.h"
+#include "SparcTargetStreamer.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_MC_DESC
+#include "SparcGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "SparcGenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "SparcGenRegisterInfo.inc"
+
+static MCAsmInfo *createSparcMCAsmInfo(const MCRegisterInfo &MRI,
+ StringRef TT) {
+ MCAsmInfo *MAI = new SparcELFMCAsmInfo(TT);
+ unsigned Reg = MRI.getDwarfRegNum(SP::O6, true);
+ MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(nullptr, Reg, 0);
+ MAI->addInitialFrameState(Inst);
+ return MAI;
+}
+
+static MCAsmInfo *createSparcV9MCAsmInfo(const MCRegisterInfo &MRI,
+ StringRef TT) {
+ MCAsmInfo *MAI = new SparcELFMCAsmInfo(TT);
+ unsigned Reg = MRI.getDwarfRegNum(SP::O6, true);
+ MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(nullptr, Reg, 2047);
+ MAI->addInitialFrameState(Inst);
+ return MAI;
+}
+
+static MCInstrInfo *createSparcMCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitSparcMCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createSparcMCRegisterInfo(StringRef TT) {
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitSparcMCRegisterInfo(X, SP::O7);
+ return X;
+}
+
+static MCSubtargetInfo *createSparcMCSubtargetInfo(StringRef TT, StringRef CPU,
+ StringRef FS) {
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+ Triple TheTriple(TT);
+ if (CPU.empty())
+ CPU = (TheTriple.getArch() == Triple::sparcv9) ? "v9" : "v8";
+ InitSparcMCSubtargetInfo(X, TT, CPU, FS);
+ return X;
+}
+
+// Code models. Some only make sense for 64-bit code.
+//
+// SunCC Reloc CodeModel Constraints
+// abs32 Static Small text+data+bss linked below 2^32 bytes
+// abs44 Static Medium text+data+bss linked below 2^44 bytes
+// abs64 Static Large text smaller than 2^31 bytes
+// pic13 PIC_ Small GOT < 2^13 bytes
+// pic32 PIC_ Medium GOT < 2^32 bytes
+//
+// All code models require that the text segment is smaller than 2GB.
+
+static MCCodeGenInfo *createSparcMCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+
+ // The default 32-bit code model is abs32/pic32 and the default 32-bit
+ // code model for JIT is abs32.
+ switch (CM) {
+ default: break;
+ case CodeModel::Default:
+ case CodeModel::JITDefault: CM = CodeModel::Small; break;
+ }
+
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+static MCCodeGenInfo *createSparcV9MCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+
+ // The default 64-bit code model is abs44/pic32 and the default 64-bit
+ // code model for JIT is abs64.
+ switch (CM) {
+ default: break;
+ case CodeModel::Default:
+ CM = RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
+ break;
+ case CodeModel::JITDefault:
+ CM = CodeModel::Large;
+ break;
+ }
+
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
+ MCContext &Context, MCAsmBackend &MAB,
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI, bool RelaxAll,
+ bool NoExecStack) {
+ MCStreamer *S =
+ createELFStreamer(Context, MAB, OS, Emitter, RelaxAll, NoExecStack);
+ new SparcTargetELFStreamer(*S);
+ return S;
+}
+
+static MCStreamer *
+createMCAsmStreamer(MCContext &Ctx, formatted_raw_ostream &OS,
+ bool isVerboseAsm, bool useDwarfDirectory,
+ MCInstPrinter *InstPrint, MCCodeEmitter *CE,
+ MCAsmBackend *TAB, bool ShowInst) {
+
+ MCStreamer *S = llvm::createAsmStreamer(
+ Ctx, OS, isVerboseAsm, useDwarfDirectory, InstPrint, CE, TAB, ShowInst);
+ new SparcTargetAsmStreamer(*S, OS);
+ return S;
+}
+
+static MCInstPrinter *createSparcMCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ return new SparcInstPrinter(MAI, MII, MRI, STI);
+}
+
+extern "C" void LLVMInitializeSparcTargetMC() {
+ // Register the MC asm info.
+ RegisterMCAsmInfoFn X(TheSparcTarget, createSparcMCAsmInfo);
+ RegisterMCAsmInfoFn Y(TheSparcV9Target, createSparcV9MCAsmInfo);
+
+ // Register the MC codegen info.
+ TargetRegistry::RegisterMCCodeGenInfo(TheSparcTarget,
+ createSparcMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheSparcV9Target,
+ createSparcV9MCCodeGenInfo);
+
+ // Register the MC instruction info.
+ TargetRegistry::RegisterMCInstrInfo(TheSparcTarget, createSparcMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheSparcV9Target, createSparcMCInstrInfo);
+
+ // Register the MC register info.
+ TargetRegistry::RegisterMCRegInfo(TheSparcTarget, createSparcMCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheSparcV9Target,
+ createSparcMCRegisterInfo);
+
+ // Register the MC subtarget info.
+ TargetRegistry::RegisterMCSubtargetInfo(TheSparcTarget,
+ createSparcMCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheSparcV9Target,
+ createSparcMCSubtargetInfo);
+
+ // Register the MC Code Emitter.
+ TargetRegistry::RegisterMCCodeEmitter(TheSparcTarget,
+ createSparcMCCodeEmitter);
+ TargetRegistry::RegisterMCCodeEmitter(TheSparcV9Target,
+ createSparcMCCodeEmitter);
+
+ //Register the asm backend.
+ TargetRegistry::RegisterMCAsmBackend(TheSparcTarget,
+ createSparcAsmBackend);
+ TargetRegistry::RegisterMCAsmBackend(TheSparcV9Target,
+ createSparcAsmBackend);
+
+ // Register the object streamer.
+ TargetRegistry::RegisterMCObjectStreamer(TheSparcTarget,
+ createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheSparcV9Target,
+ createMCStreamer);
+
+ // Register the asm streamer.
+ TargetRegistry::RegisterAsmStreamer(TheSparcTarget,
+ createMCAsmStreamer);
+ TargetRegistry::RegisterAsmStreamer(TheSparcV9Target,
+ createMCAsmStreamer);
+
+ // Register the MCInstPrinter
+ TargetRegistry::RegisterMCInstPrinter(TheSparcTarget,
+ createSparcMCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheSparcV9Target,
+ createSparcMCInstPrinter);
+}
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.h b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.h
new file mode 100644
index 0000000..c8029a8
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.h
@@ -0,0 +1,61 @@
+//===-- SparcMCTargetDesc.h - Sparc Target Descriptions ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Sparc specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARCMCTARGETDESC_H
+#define SPARCMCTARGETDESC_H
+
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+class MCAsmBackend;
+class MCCodeEmitter;
+class MCContext;
+class MCInstrInfo;
+class MCObjectWriter;
+class MCRegisterInfo;
+class MCSubtargetInfo;
+class Target;
+class StringRef;
+class raw_ostream;
+
+extern Target TheSparcTarget;
+extern Target TheSparcV9Target;
+
+MCCodeEmitter *createSparcMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+MCAsmBackend *createSparcAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT,
+ StringRef CPU);
+MCObjectWriter *createSparcELFObjectWriter(raw_ostream &OS,
+ bool Is64Bit,
+ uint8_t OSABI);
+} // End llvm namespace
+
+// Defines symbolic names for Sparc registers. This defines a mapping from
+// register name to register number.
+//
+#define GET_REGINFO_ENUM
+#include "SparcGenRegisterInfo.inc"
+
+// Defines symbolic names for the Sparc instructions.
+//
+#define GET_INSTRINFO_ENUM
+#include "SparcGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "SparcGenSubtargetInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcTargetStreamer.cpp b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcTargetStreamer.cpp
new file mode 100644
index 0000000..94af791
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcTargetStreamer.cpp
@@ -0,0 +1,46 @@
+//===-- SparcTargetStreamer.cpp - Sparc Target Streamer Methods -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Sparc specific target streamer methods.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcTargetStreamer.h"
+#include "InstPrinter/SparcInstPrinter.h"
+#include "llvm/Support/FormattedStream.h"
+
+using namespace llvm;
+
+// pin vtable to this file
+SparcTargetStreamer::SparcTargetStreamer(MCStreamer &S) : MCTargetStreamer(S) {}
+
+void SparcTargetStreamer::anchor() {}
+
+SparcTargetAsmStreamer::SparcTargetAsmStreamer(MCStreamer &S,
+ formatted_raw_ostream &OS)
+ : SparcTargetStreamer(S), OS(OS) {}
+
+void SparcTargetAsmStreamer::emitSparcRegisterIgnore(unsigned reg) {
+ OS << "\t.register "
+ << "%" << StringRef(SparcInstPrinter::getRegisterName(reg)).lower()
+ << ", #ignore\n";
+}
+
+void SparcTargetAsmStreamer::emitSparcRegisterScratch(unsigned reg) {
+ OS << "\t.register "
+ << "%" << StringRef(SparcInstPrinter::getRegisterName(reg)).lower()
+ << ", #scratch\n";
+}
+
+SparcTargetELFStreamer::SparcTargetELFStreamer(MCStreamer &S)
+ : SparcTargetStreamer(S) {}
+
+MCELFStreamer &SparcTargetELFStreamer::getStreamer() {
+ return static_cast<MCELFStreamer &>(Streamer);
+}
diff --git a/contrib/llvm/lib/Target/Sparc/Sparc.h b/contrib/llvm/lib/Target/Sparc/Sparc.h
new file mode 100644
index 0000000..de20aaa
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/Sparc.h
@@ -0,0 +1,136 @@
+//===-- Sparc.h - Top-level interface for Sparc representation --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in the LLVM
+// Sparc back-end.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef TARGET_SPARC_H
+#define TARGET_SPARC_H
+
+#include "MCTargetDesc/SparcMCTargetDesc.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+ class FunctionPass;
+ class SparcTargetMachine;
+ class formatted_raw_ostream;
+ class AsmPrinter;
+ class MCInst;
+ class MachineInstr;
+
+ FunctionPass *createSparcISelDag(SparcTargetMachine &TM);
+ FunctionPass *createSparcDelaySlotFillerPass(TargetMachine &TM);
+ FunctionPass *createSparcJITCodeEmitterPass(SparcTargetMachine &TM,
+ JITCodeEmitter &JCE);
+
+ void LowerSparcMachineInstrToMCInst(const MachineInstr *MI,
+ MCInst &OutMI,
+ AsmPrinter &AP);
+} // end namespace llvm;
+
+namespace llvm {
+ // Enums corresponding to Sparc condition codes, both icc's and fcc's. These
+ // values must be kept in sync with the ones in the .td file.
+ namespace SPCC {
+ enum CondCodes {
+ ICC_A = 8 , // Always
+ ICC_N = 0 , // Never
+ ICC_NE = 9 , // Not Equal
+ ICC_E = 1 , // Equal
+ ICC_G = 10 , // Greater
+ ICC_LE = 2 , // Less or Equal
+ ICC_GE = 11 , // Greater or Equal
+ ICC_L = 3 , // Less
+ ICC_GU = 12 , // Greater Unsigned
+ ICC_LEU = 4 , // Less or Equal Unsigned
+ ICC_CC = 13 , // Carry Clear/Great or Equal Unsigned
+ ICC_CS = 5 , // Carry Set/Less Unsigned
+ ICC_POS = 14 , // Positive
+ ICC_NEG = 6 , // Negative
+ ICC_VC = 15 , // Overflow Clear
+ ICC_VS = 7 , // Overflow Set
+
+ FCC_A = 8+16, // Always
+ FCC_N = 0+16, // Never
+ FCC_U = 7+16, // Unordered
+ FCC_G = 6+16, // Greater
+ FCC_UG = 5+16, // Unordered or Greater
+ FCC_L = 4+16, // Less
+ FCC_UL = 3+16, // Unordered or Less
+ FCC_LG = 2+16, // Less or Greater
+ FCC_NE = 1+16, // Not Equal
+ FCC_E = 9+16, // Equal
+ FCC_UE = 10+16, // Unordered or Equal
+ FCC_GE = 11+16, // Greater or Equal
+ FCC_UGE = 12+16, // Unordered or Greater or Equal
+ FCC_LE = 13+16, // Less or Equal
+ FCC_ULE = 14+16, // Unordered or Less or Equal
+ FCC_O = 15+16 // Ordered
+ };
+ }
+
+ inline static const char *SPARCCondCodeToString(SPCC::CondCodes CC) {
+ switch (CC) {
+ case SPCC::ICC_A: return "a";
+ case SPCC::ICC_N: return "n";
+ case SPCC::ICC_NE: return "ne";
+ case SPCC::ICC_E: return "e";
+ case SPCC::ICC_G: return "g";
+ case SPCC::ICC_LE: return "le";
+ case SPCC::ICC_GE: return "ge";
+ case SPCC::ICC_L: return "l";
+ case SPCC::ICC_GU: return "gu";
+ case SPCC::ICC_LEU: return "leu";
+ case SPCC::ICC_CC: return "cc";
+ case SPCC::ICC_CS: return "cs";
+ case SPCC::ICC_POS: return "pos";
+ case SPCC::ICC_NEG: return "neg";
+ case SPCC::ICC_VC: return "vc";
+ case SPCC::ICC_VS: return "vs";
+ case SPCC::FCC_A: return "a";
+ case SPCC::FCC_N: return "n";
+ case SPCC::FCC_U: return "u";
+ case SPCC::FCC_G: return "g";
+ case SPCC::FCC_UG: return "ug";
+ case SPCC::FCC_L: return "l";
+ case SPCC::FCC_UL: return "ul";
+ case SPCC::FCC_LG: return "lg";
+ case SPCC::FCC_NE: return "ne";
+ case SPCC::FCC_E: return "e";
+ case SPCC::FCC_UE: return "ue";
+ case SPCC::FCC_GE: return "ge";
+ case SPCC::FCC_UGE: return "uge";
+ case SPCC::FCC_LE: return "le";
+ case SPCC::FCC_ULE: return "ule";
+ case SPCC::FCC_O: return "o";
+ }
+ llvm_unreachable("Invalid cond code");
+ }
+
+ inline static unsigned HI22(int64_t imm) {
+ return (unsigned)((imm >> 10) & ((1 << 22)-1));
+ }
+
+ inline static unsigned LO10(int64_t imm) {
+ return (unsigned)(imm & 0x3FF);
+ }
+
+ inline static unsigned HIX22(int64_t imm) {
+ return HI22(~imm);
+ }
+
+ inline static unsigned LOX10(int64_t imm) {
+ return ~LO10(~imm);
+ }
+
+} // end namespace llvm
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/Sparc.td b/contrib/llvm/lib/Target/Sparc/Sparc.td
new file mode 100644
index 0000000..3159a46
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/Sparc.td
@@ -0,0 +1,99 @@
+//===-- Sparc.td - Describe the Sparc Target Machine -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces which we are implementing
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// SPARC Subtarget features.
+//
+
+def FeatureV9
+ : SubtargetFeature<"v9", "IsV9", "true",
+ "Enable SPARC-V9 instructions">;
+def FeatureV8Deprecated
+ : SubtargetFeature<"deprecated-v8", "V8DeprecatedInsts", "true",
+ "Enable deprecated V8 instructions in V9 mode">;
+def FeatureVIS
+ : SubtargetFeature<"vis", "IsVIS", "true",
+ "Enable UltraSPARC Visual Instruction Set extensions">;
+def FeatureVIS2
+ : SubtargetFeature<"vis2", "IsVIS2", "true",
+ "Enable Visual Instruction Set extensions II">;
+def FeatureVIS3
+ : SubtargetFeature<"vis3", "IsVIS3", "true",
+ "Enable Visual Instruction Set extensions III">;
+
+def FeatureHardQuad
+ : SubtargetFeature<"hard-quad-float", "HasHardQuad", "true",
+ "Enable quad-word floating point instructions">;
+
+def UsePopc : SubtargetFeature<"popc", "UsePopc", "true",
+ "Use the popc (population count) instruction">;
+
+//===----------------------------------------------------------------------===//
+// Register File, Calling Conv, Instruction Descriptions
+//===----------------------------------------------------------------------===//
+
+include "SparcRegisterInfo.td"
+include "SparcCallingConv.td"
+include "SparcInstrInfo.td"
+
+def SparcInstrInfo : InstrInfo;
+
+def SparcAsmParser : AsmParser {
+ bit ShouldEmitMatchRegisterName = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// SPARC processors supported.
+//===----------------------------------------------------------------------===//
+
+class Proc<string Name, list<SubtargetFeature> Features>
+ : Processor<Name, NoItineraries, Features>;
+
+def : Proc<"generic", []>;
+def : Proc<"v7", []>;
+def : Proc<"v8", []>;
+def : Proc<"supersparc", []>;
+def : Proc<"sparclite", []>;
+def : Proc<"f934", []>;
+def : Proc<"hypersparc", []>;
+def : Proc<"sparclite86x", []>;
+def : Proc<"sparclet", []>;
+def : Proc<"tsc701", []>;
+def : Proc<"v9", [FeatureV9]>;
+def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
+def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated, FeatureVIS,
+ FeatureVIS2]>;
+def : Proc<"niagara", [FeatureV9, FeatureV8Deprecated, FeatureVIS,
+ FeatureVIS2]>;
+def : Proc<"niagara2", [FeatureV9, FeatureV8Deprecated, UsePopc,
+ FeatureVIS, FeatureVIS2]>;
+def : Proc<"niagara3", [FeatureV9, FeatureV8Deprecated, UsePopc,
+ FeatureVIS, FeatureVIS2]>;
+def : Proc<"niagara4", [FeatureV9, FeatureV8Deprecated, UsePopc,
+ FeatureVIS, FeatureVIS2, FeatureVIS3]>;
+
+
+//===----------------------------------------------------------------------===//
+// Declare the target which we are implementing
+//===----------------------------------------------------------------------===//
+
+def Sparc : Target {
+ // Pull in Instruction Info:
+ let InstructionSet = SparcInstrInfo;
+ let AssemblyParsers = [SparcAsmParser];
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcAsmPrinter.cpp b/contrib/llvm/lib/Target/Sparc/SparcAsmPrinter.cpp
new file mode 100644
index 0000000..1b7330e
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcAsmPrinter.cpp
@@ -0,0 +1,465 @@
+//===-- SparcAsmPrinter.cpp - Sparc LLVM assembly writer ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to GAS-format SPARC assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sparc.h"
+#include "InstPrinter/SparcInstPrinter.h"
+#include "MCTargetDesc/SparcMCExpr.h"
+#include "SparcInstrInfo.h"
+#include "SparcTargetMachine.h"
+#include "SparcTargetStreamer.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+namespace {
+ class SparcAsmPrinter : public AsmPrinter {
+ SparcTargetStreamer &getTargetStreamer() {
+ return static_cast<SparcTargetStreamer &>(
+ *OutStreamer.getTargetStreamer());
+ }
+ public:
+ explicit SparcAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer) {}
+
+ const char *getPassName() const override {
+ return "Sparc Assembly Printer";
+ }
+
+ void printOperand(const MachineInstr *MI, int opNum, raw_ostream &OS);
+ void printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &OS,
+ const char *Modifier = nullptr);
+ void printCCOperand(const MachineInstr *MI, int opNum, raw_ostream &OS);
+
+ void EmitFunctionBodyStart() override;
+ void EmitInstruction(const MachineInstr *MI) override;
+ void EmitEndOfAsmFile(Module &M) override;
+
+ static const char *getRegisterName(unsigned RegNo) {
+ return SparcInstPrinter::getRegisterName(RegNo);
+ }
+
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+
+ void LowerGETPCXAndEmitMCInsts(const MachineInstr *MI,
+ const MCSubtargetInfo &STI);
+
+ };
+} // end of anonymous namespace
+
+static MCOperand createSparcMCOperand(SparcMCExpr::VariantKind Kind,
+ MCSymbol *Sym, MCContext &OutContext) {
+ const MCSymbolRefExpr *MCSym = MCSymbolRefExpr::Create(Sym,
+ OutContext);
+ const SparcMCExpr *expr = SparcMCExpr::Create(Kind, MCSym, OutContext);
+ return MCOperand::CreateExpr(expr);
+
+}
+static MCOperand createPCXCallOP(MCSymbol *Label,
+ MCContext &OutContext) {
+ return createSparcMCOperand(SparcMCExpr::VK_Sparc_None, Label, OutContext);
+}
+
+static MCOperand createPCXRelExprOp(SparcMCExpr::VariantKind Kind,
+ MCSymbol *GOTLabel, MCSymbol *StartLabel,
+ MCSymbol *CurLabel,
+ MCContext &OutContext)
+{
+ const MCSymbolRefExpr *GOT = MCSymbolRefExpr::Create(GOTLabel, OutContext);
+ const MCSymbolRefExpr *Start = MCSymbolRefExpr::Create(StartLabel,
+ OutContext);
+ const MCSymbolRefExpr *Cur = MCSymbolRefExpr::Create(CurLabel,
+ OutContext);
+
+ const MCBinaryExpr *Sub = MCBinaryExpr::CreateSub(Cur, Start, OutContext);
+ const MCBinaryExpr *Add = MCBinaryExpr::CreateAdd(GOT, Sub, OutContext);
+ const SparcMCExpr *expr = SparcMCExpr::Create(Kind,
+ Add, OutContext);
+ return MCOperand::CreateExpr(expr);
+}
+
+static void EmitCall(MCStreamer &OutStreamer,
+ MCOperand &Callee,
+ const MCSubtargetInfo &STI)
+{
+ MCInst CallInst;
+ CallInst.setOpcode(SP::CALL);
+ CallInst.addOperand(Callee);
+ OutStreamer.EmitInstruction(CallInst, STI);
+}
+
+static void EmitSETHI(MCStreamer &OutStreamer,
+ MCOperand &Imm, MCOperand &RD,
+ const MCSubtargetInfo &STI)
+{
+ MCInst SETHIInst;
+ SETHIInst.setOpcode(SP::SETHIi);
+ SETHIInst.addOperand(RD);
+ SETHIInst.addOperand(Imm);
+ OutStreamer.EmitInstruction(SETHIInst, STI);
+}
+
+static void EmitBinary(MCStreamer &OutStreamer, unsigned Opcode,
+ MCOperand &RS1, MCOperand &Src2, MCOperand &RD,
+ const MCSubtargetInfo &STI)
+{
+ MCInst Inst;
+ Inst.setOpcode(Opcode);
+ Inst.addOperand(RD);
+ Inst.addOperand(RS1);
+ Inst.addOperand(Src2);
+ OutStreamer.EmitInstruction(Inst, STI);
+}
+
+static void EmitOR(MCStreamer &OutStreamer,
+ MCOperand &RS1, MCOperand &Imm, MCOperand &RD,
+ const MCSubtargetInfo &STI) {
+ EmitBinary(OutStreamer, SP::ORri, RS1, Imm, RD, STI);
+}
+
+static void EmitADD(MCStreamer &OutStreamer,
+ MCOperand &RS1, MCOperand &RS2, MCOperand &RD,
+ const MCSubtargetInfo &STI) {
+ EmitBinary(OutStreamer, SP::ADDrr, RS1, RS2, RD, STI);
+}
+
+static void EmitSHL(MCStreamer &OutStreamer,
+ MCOperand &RS1, MCOperand &Imm, MCOperand &RD,
+ const MCSubtargetInfo &STI) {
+ EmitBinary(OutStreamer, SP::SLLri, RS1, Imm, RD, STI);
+}
+
+
+static void EmitHiLo(MCStreamer &OutStreamer, MCSymbol *GOTSym,
+ SparcMCExpr::VariantKind HiKind,
+ SparcMCExpr::VariantKind LoKind,
+ MCOperand &RD,
+ MCContext &OutContext,
+ const MCSubtargetInfo &STI) {
+
+ MCOperand hi = createSparcMCOperand(HiKind, GOTSym, OutContext);
+ MCOperand lo = createSparcMCOperand(LoKind, GOTSym, OutContext);
+ EmitSETHI(OutStreamer, hi, RD, STI);
+ EmitOR(OutStreamer, RD, lo, RD, STI);
+}
+
+void SparcAsmPrinter::LowerGETPCXAndEmitMCInsts(const MachineInstr *MI,
+ const MCSubtargetInfo &STI)
+{
+ MCSymbol *GOTLabel =
+ OutContext.GetOrCreateSymbol(Twine("_GLOBAL_OFFSET_TABLE_"));
+
+ const MachineOperand &MO = MI->getOperand(0);
+ assert(MO.getReg() != SP::O7 &&
+ "%o7 is assigned as destination for getpcx!");
+
+ MCOperand MCRegOP = MCOperand::CreateReg(MO.getReg());
+
+
+ if (TM.getRelocationModel() != Reloc::PIC_) {
+ // Just load the address of GOT to MCRegOP.
+ switch(TM.getCodeModel()) {
+ default:
+ llvm_unreachable("Unsupported absolute code model");
+ case CodeModel::Small:
+ EmitHiLo(OutStreamer, GOTLabel,
+ SparcMCExpr::VK_Sparc_HI, SparcMCExpr::VK_Sparc_LO,
+ MCRegOP, OutContext, STI);
+ break;
+ case CodeModel::Medium: {
+ EmitHiLo(OutStreamer, GOTLabel,
+ SparcMCExpr::VK_Sparc_H44, SparcMCExpr::VK_Sparc_M44,
+ MCRegOP, OutContext, STI);
+ MCOperand imm = MCOperand::CreateExpr(MCConstantExpr::Create(12,
+ OutContext));
+ EmitSHL(OutStreamer, MCRegOP, imm, MCRegOP, STI);
+ MCOperand lo = createSparcMCOperand(SparcMCExpr::VK_Sparc_L44,
+ GOTLabel, OutContext);
+ EmitOR(OutStreamer, MCRegOP, lo, MCRegOP, STI);
+ break;
+ }
+ case CodeModel::Large: {
+ EmitHiLo(OutStreamer, GOTLabel,
+ SparcMCExpr::VK_Sparc_HH, SparcMCExpr::VK_Sparc_HM,
+ MCRegOP, OutContext, STI);
+ MCOperand imm = MCOperand::CreateExpr(MCConstantExpr::Create(32,
+ OutContext));
+ EmitSHL(OutStreamer, MCRegOP, imm, MCRegOP, STI);
+ // Use register %o7 to load the lower 32 bits.
+ MCOperand RegO7 = MCOperand::CreateReg(SP::O7);
+ EmitHiLo(OutStreamer, GOTLabel,
+ SparcMCExpr::VK_Sparc_HI, SparcMCExpr::VK_Sparc_LO,
+ RegO7, OutContext, STI);
+ EmitADD(OutStreamer, MCRegOP, RegO7, MCRegOP, STI);
+ }
+ }
+ return;
+ }
+
+ MCSymbol *StartLabel = OutContext.CreateTempSymbol();
+ MCSymbol *EndLabel = OutContext.CreateTempSymbol();
+ MCSymbol *SethiLabel = OutContext.CreateTempSymbol();
+
+ MCOperand RegO7 = MCOperand::CreateReg(SP::O7);
+
+ // <StartLabel>:
+ // call <EndLabel>
+ // <SethiLabel>:
+ // sethi %hi(_GLOBAL_OFFSET_TABLE_+(<SethiLabel>-<StartLabel>)), <MO>
+ // <EndLabel>:
+ // or <MO>, %lo(_GLOBAL_OFFSET_TABLE_+(<EndLabel>-<StartLabel>))), <MO>
+ // add <MO>, %o7, <MO>
+
+ OutStreamer.EmitLabel(StartLabel);
+ MCOperand Callee = createPCXCallOP(EndLabel, OutContext);
+ EmitCall(OutStreamer, Callee, STI);
+ OutStreamer.EmitLabel(SethiLabel);
+ MCOperand hiImm = createPCXRelExprOp(SparcMCExpr::VK_Sparc_PC22,
+ GOTLabel, StartLabel, SethiLabel,
+ OutContext);
+ EmitSETHI(OutStreamer, hiImm, MCRegOP, STI);
+ OutStreamer.EmitLabel(EndLabel);
+ MCOperand loImm = createPCXRelExprOp(SparcMCExpr::VK_Sparc_PC10,
+ GOTLabel, StartLabel, EndLabel,
+ OutContext);
+ EmitOR(OutStreamer, MCRegOP, loImm, MCRegOP, STI);
+ EmitADD(OutStreamer, MCRegOP, RegO7, MCRegOP, STI);
+}
+
+void SparcAsmPrinter::EmitInstruction(const MachineInstr *MI)
+{
+
+ switch (MI->getOpcode()) {
+ default: break;
+ case TargetOpcode::DBG_VALUE:
+ // FIXME: Debug Value.
+ return;
+ case SP::GETPCX:
+ LowerGETPCXAndEmitMCInsts(MI, getSubtargetInfo());
+ return;
+ }
+ MachineBasicBlock::const_instr_iterator I = MI;
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+ do {
+ MCInst TmpInst;
+ LowerSparcMachineInstrToMCInst(I, TmpInst, *this);
+ EmitToStreamer(OutStreamer, TmpInst);
+ } while ((++I != E) && I->isInsideBundle()); // Delay slot check.
+}
+
+void SparcAsmPrinter::EmitFunctionBodyStart() {
+ if (!TM.getSubtarget<SparcSubtarget>().is64Bit())
+ return;
+
+ const MachineRegisterInfo &MRI = MF->getRegInfo();
+ const unsigned globalRegs[] = { SP::G2, SP::G3, SP::G6, SP::G7, 0 };
+ for (unsigned i = 0; globalRegs[i] != 0; ++i) {
+ unsigned reg = globalRegs[i];
+ if (MRI.use_empty(reg))
+ continue;
+
+ if (reg == SP::G6 || reg == SP::G7)
+ getTargetStreamer().emitSparcRegisterIgnore(reg);
+ else
+ getTargetStreamer().emitSparcRegisterScratch(reg);
+ }
+}
+
+void SparcAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
+ raw_ostream &O) {
+ const DataLayout *DL = TM.getDataLayout();
+ const MachineOperand &MO = MI->getOperand (opNum);
+ SparcMCExpr::VariantKind TF = (SparcMCExpr::VariantKind) MO.getTargetFlags();
+
+#ifndef NDEBUG
+ // Verify the target flags.
+ if (MO.isGlobal() || MO.isSymbol() || MO.isCPI()) {
+ if (MI->getOpcode() == SP::CALL)
+ assert(TF == SparcMCExpr::VK_Sparc_None &&
+ "Cannot handle target flags on call address");
+ else if (MI->getOpcode() == SP::SETHIi || MI->getOpcode() == SP::SETHIXi)
+ assert((TF == SparcMCExpr::VK_Sparc_HI
+ || TF == SparcMCExpr::VK_Sparc_H44
+ || TF == SparcMCExpr::VK_Sparc_HH
+ || TF == SparcMCExpr::VK_Sparc_TLS_GD_HI22
+ || TF == SparcMCExpr::VK_Sparc_TLS_LDM_HI22
+ || TF == SparcMCExpr::VK_Sparc_TLS_LDO_HIX22
+ || TF == SparcMCExpr::VK_Sparc_TLS_IE_HI22
+ || TF == SparcMCExpr::VK_Sparc_TLS_LE_HIX22) &&
+ "Invalid target flags for address operand on sethi");
+ else if (MI->getOpcode() == SP::TLS_CALL)
+ assert((TF == SparcMCExpr::VK_Sparc_None
+ || TF == SparcMCExpr::VK_Sparc_TLS_GD_CALL
+ || TF == SparcMCExpr::VK_Sparc_TLS_LDM_CALL) &&
+ "Cannot handle target flags on tls call address");
+ else if (MI->getOpcode() == SP::TLS_ADDrr)
+ assert((TF == SparcMCExpr::VK_Sparc_TLS_GD_ADD
+ || TF == SparcMCExpr::VK_Sparc_TLS_LDM_ADD
+ || TF == SparcMCExpr::VK_Sparc_TLS_LDO_ADD
+ || TF == SparcMCExpr::VK_Sparc_TLS_IE_ADD) &&
+ "Cannot handle target flags on add for TLS");
+ else if (MI->getOpcode() == SP::TLS_LDrr)
+ assert(TF == SparcMCExpr::VK_Sparc_TLS_IE_LD &&
+ "Cannot handle target flags on ld for TLS");
+ else if (MI->getOpcode() == SP::TLS_LDXrr)
+ assert(TF == SparcMCExpr::VK_Sparc_TLS_IE_LDX &&
+ "Cannot handle target flags on ldx for TLS");
+ else if (MI->getOpcode() == SP::XORri || MI->getOpcode() == SP::XORXri)
+ assert((TF == SparcMCExpr::VK_Sparc_TLS_LDO_LOX10
+ || TF == SparcMCExpr::VK_Sparc_TLS_LE_LOX10) &&
+ "Cannot handle target flags on xor for TLS");
+ else
+ assert((TF == SparcMCExpr::VK_Sparc_LO
+ || TF == SparcMCExpr::VK_Sparc_M44
+ || TF == SparcMCExpr::VK_Sparc_L44
+ || TF == SparcMCExpr::VK_Sparc_HM
+ || TF == SparcMCExpr::VK_Sparc_TLS_GD_LO10
+ || TF == SparcMCExpr::VK_Sparc_TLS_LDM_LO10
+ || TF == SparcMCExpr::VK_Sparc_TLS_IE_LO10 ) &&
+ "Invalid target flags for small address operand");
+ }
+#endif
+
+
+ bool CloseParen = SparcMCExpr::printVariantKind(O, TF);
+
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register:
+ O << "%" << StringRef(getRegisterName(MO.getReg())).lower();
+ break;
+
+ case MachineOperand::MO_Immediate:
+ O << (int)MO.getImm();
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ O << *MO.getMBB()->getSymbol();
+ return;
+ case MachineOperand::MO_GlobalAddress:
+ O << *getSymbol(MO.getGlobal());
+ break;
+ case MachineOperand::MO_BlockAddress:
+ O << GetBlockAddressSymbol(MO.getBlockAddress())->getName();
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ O << MO.getSymbolName();
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << DL->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_"
+ << MO.getIndex();
+ break;
+ default:
+ llvm_unreachable("<unknown operand type>");
+ }
+ if (CloseParen) O << ")";
+}
+
+void SparcAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
+ raw_ostream &O, const char *Modifier) {
+ printOperand(MI, opNum, O);
+
+ // If this is an ADD operand, emit it like normal operands.
+ if (Modifier && !strcmp(Modifier, "arith")) {
+ O << ", ";
+ printOperand(MI, opNum+1, O);
+ return;
+ }
+
+ if (MI->getOperand(opNum+1).isReg() &&
+ MI->getOperand(opNum+1).getReg() == SP::G0)
+ return; // don't print "+%g0"
+ if (MI->getOperand(opNum+1).isImm() &&
+ MI->getOperand(opNum+1).getImm() == 0)
+ return; // don't print "+0"
+
+ O << "+";
+ printOperand(MI, opNum+1, O);
+}
+
+/// PrintAsmOperand - Print out an operand for an inline asm expression.
+///
+bool SparcAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &O) {
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ default:
+ // See if this is a generic print operand
+ return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
+ case 'r':
+ break;
+ }
+ }
+
+ printOperand(MI, OpNo, O);
+
+ return false;
+}
+
+bool SparcAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNo, unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &O) {
+ if (ExtraCode && ExtraCode[0])
+ return true; // Unknown modifier
+
+ O << '[';
+ printMemOperand(MI, OpNo, O);
+ O << ']';
+
+ return false;
+}
+
+void SparcAsmPrinter::EmitEndOfAsmFile(Module &M) {
+ const TargetLoweringObjectFileELF &TLOFELF =
+ static_cast<const TargetLoweringObjectFileELF &>(getObjFileLowering());
+ MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
+
+ // Generate stubs for global variables.
+ MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
+ if (!Stubs.empty()) {
+ OutStreamer.SwitchSection(TLOFELF.getDataSection());
+ unsigned PtrSize = TM.getDataLayout()->getPointerSize(0);
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ OutStreamer.EmitLabel(Stubs[i].first);
+ OutStreamer.EmitSymbolValue(Stubs[i].second.getPointer(), PtrSize);
+ }
+ }
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeSparcAsmPrinter() {
+ RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
+ RegisterAsmPrinter<SparcAsmPrinter> Y(TheSparcV9Target);
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcCallingConv.td b/contrib/llvm/lib/Target/Sparc/SparcCallingConv.td
new file mode 100644
index 0000000..dfaaabf
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcCallingConv.td
@@ -0,0 +1,139 @@
+//===-- SparcCallingConv.td - Calling Conventions Sparc ----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This describes the calling conventions for the Sparc architectures.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// SPARC v8 32-bit.
+//===----------------------------------------------------------------------===//
+
+def CC_Sparc32 : CallingConv<[
+ // Custom assign SRet to [sp+64].
+ CCIfSRet<CCCustom<"CC_Sparc_Assign_SRet">>,
+ // i32 f32 arguments get passed in integer registers if there is space.
+ CCIfType<[i32, f32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
+ // f64 arguments are split and passed through registers or through stack.
+ CCIfType<[f64], CCCustom<"CC_Sparc_Assign_f64">>,
+
+ // Alternatively, they are assigned to the stack in 4-byte aligned units.
+ CCAssignToStack<4, 4>
+]>;
+
+def RetCC_Sparc32 : CallingConv<[
+ CCIfType<[i32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
+ CCIfType<[f32], CCAssignToReg<[F0, F1, F2, F3]>>,
+ CCIfType<[f64], CCAssignToReg<[D0, D1]>>
+]>;
+
+
+//===----------------------------------------------------------------------===//
+// SPARC v9 64-bit.
+//===----------------------------------------------------------------------===//
+//
+// The 64-bit ABI conceptually assigns all function arguments to a parameter
+// array starting at [%fp+BIAS+128] in the callee's stack frame. All arguments
+// occupy a multiple of 8 bytes in the array. Integer arguments are extended to
+// 64 bits by the caller. Floats are right-aligned in their 8-byte slot, the
+// first 4 bytes in the slot are undefined.
+//
+// The integer registers %i0 to %i5 shadow the first 48 bytes of the parameter
+// array at fixed offsets. Integer arguments are promoted to registers when
+// possible.
+//
+// The floating point registers %f0 to %f31 shadow the first 128 bytes of the
+// parameter array at fixed offsets. Float and double parameters are promoted
+// to these registers when possible.
+//
+// Structs up to 16 bytes in size are passed by value. They are right-aligned
+// in one or two 8-byte slots in the parameter array. Struct members are
+// promoted to both floating point and integer registers when possible. A
+// struct containing two floats would thus be passed in %f0 and %f1, while two
+// float function arguments would occupy 8 bytes each, and be passed in %f1 and
+// %f3.
+//
+// When a struct { int, float } is passed by value, the int goes in the high
+// bits of an integer register while the float goes in a floating point
+// register.
+//
+// The difference is encoded in LLVM IR using the inreg atttribute on function
+// arguments:
+//
+// C: void f(float, float);
+// IR: declare void f(float %f1, float %f3)
+//
+// C: void f(struct { float f0, f1; });
+// IR: declare void f(float inreg %f0, float inreg %f1)
+//
+// C: void f(int, float);
+// IR: declare void f(int signext %i0, float %f3)
+//
+// C: void f(struct { int i0high; float f1; });
+// IR: declare void f(i32 inreg %i0high, float inreg %f1)
+//
+// Two ints in a struct are simply coerced to i64:
+//
+// C: void f(struct { int i0high, i0low; });
+// IR: declare void f(i64 %i0.coerced)
+//
+// The frontend and backend divide the task of producing ABI compliant code for
+// C functions. The C frontend will:
+//
+// - Annotate integer arguments with zeroext or signext attributes.
+//
+// - Split structs into one or two 64-bit sized chunks, or 32-bit chunks with
+// inreg attributes.
+//
+// - Pass structs larger than 16 bytes indirectly with an explicit pointer
+// argument. The byval attribute is not used.
+//
+// The backend will:
+//
+// - Assign all arguments to 64-bit aligned stack slots, 32-bits for inreg.
+//
+// - Promote to integer or floating point registers depending on type.
+//
+// Function return values are passed exactly like function arguments, except a
+// struct up to 32 bytes in size can be returned in registers.
+
+// Function arguments AND most return values.
+def CC_Sparc64 : CallingConv<[
+ // The frontend uses the inreg flag to indicate i32 and float arguments from
+ // structs. These arguments are not promoted to 64 bits, but they can still
+ // be assigned to integer and float registers.
+ CCIfInReg<CCIfType<[i32, f32], CCCustom<"CC_Sparc64_Half">>>,
+
+ // All integers are promoted to i64 by the caller.
+ CCIfType<[i32], CCPromoteToType<i64>>,
+
+ // Custom assignment is required because stack space is reserved for all
+ // arguments whether they are passed in registers or not.
+ CCCustom<"CC_Sparc64_Full">
+]>;
+
+def RetCC_Sparc64 : CallingConv<[
+ // A single f32 return value always goes in %f0. The ABI doesn't specify what
+ // happens to multiple f32 return values outside a struct.
+ CCIfType<[f32], CCCustom<"CC_Sparc64_Half">>,
+
+ // Otherwise, return values are passed exactly like arguments.
+ CCDelegateTo<CC_Sparc64>
+]>;
+
+// Callee-saved registers are handled by the register window mechanism.
+def CSR : CalleeSavedRegs<(add)> {
+ let OtherPreserved = (add (sequence "I%u", 0, 7),
+ (sequence "L%u", 0, 7));
+}
+
+// Callee-saved registers for calls with ReturnsTwice attribute.
+def RTCSR : CalleeSavedRegs<(add)> {
+ let OtherPreserved = (add I6, I7);
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcCodeEmitter.cpp b/contrib/llvm/lib/Target/Sparc/SparcCodeEmitter.cpp
new file mode 100644
index 0000000..247da2a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcCodeEmitter.cpp
@@ -0,0 +1,280 @@
+//===-- Sparc/SparcCodeEmitter.cpp - Convert Sparc Code to Machine Code ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===---------------------------------------------------------------------===//
+//
+// This file contains the pass that transforms the Sparc machine instructions
+// into relocatable machine code.
+//
+//===---------------------------------------------------------------------===//
+
+#include "Sparc.h"
+#include "MCTargetDesc/SparcMCExpr.h"
+#include "SparcRelocations.h"
+#include "SparcTargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+STATISTIC(NumEmitted, "Number of machine instructions emitted");
+
+namespace {
+
+class SparcCodeEmitter : public MachineFunctionPass {
+ SparcJITInfo *JTI;
+ const SparcInstrInfo *II;
+ const DataLayout *TD;
+ const SparcSubtarget *Subtarget;
+ TargetMachine &TM;
+ JITCodeEmitter &MCE;
+ const std::vector<MachineConstantPoolEntry> *MCPEs;
+ bool IsPIC;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineModuleInfo> ();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ static char ID;
+
+public:
+ SparcCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
+ : MachineFunctionPass(ID), JTI(nullptr), II(nullptr), TD(nullptr),
+ TM(tm), MCE(mce), MCPEs(nullptr),
+ IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "Sparc Machine Code Emitter";
+ }
+
+ /// getBinaryCodeForInstr - This function, generated by the
+ /// CodeEmitterGenerator using TableGen, produces the binary encoding for
+ /// machine instructions.
+ uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
+
+ void emitInstruction(MachineBasicBlock::instr_iterator MI,
+ MachineBasicBlock &MBB);
+
+private:
+ /// getMachineOpValue - Return binary encoding of operand. If the machine
+ /// operand requires relocation, record the relocation and return zero.
+ unsigned getMachineOpValue(const MachineInstr &MI,
+ const MachineOperand &MO) const;
+
+ unsigned getCallTargetOpValue(const MachineInstr &MI,
+ unsigned) const;
+ unsigned getBranchTargetOpValue(const MachineInstr &MI,
+ unsigned) const;
+ unsigned getBranchPredTargetOpValue(const MachineInstr &MI,
+ unsigned) const;
+ unsigned getBranchOnRegTargetOpValue(const MachineInstr &MI,
+ unsigned) const;
+
+ void emitWord(unsigned Word);
+
+ unsigned getRelocation(const MachineInstr &MI,
+ const MachineOperand &MO) const;
+
+ void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc) const;
+ void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
+ void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
+ void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc) const;
+};
+} // end anonymous namespace.
+
+char SparcCodeEmitter::ID = 0;
+
+bool SparcCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
+ SparcTargetMachine &Target = static_cast<SparcTargetMachine &>(
+ const_cast<TargetMachine &>(MF.getTarget()));
+
+ JTI = Target.getJITInfo();
+ II = Target.getInstrInfo();
+ TD = Target.getDataLayout();
+ Subtarget = &TM.getSubtarget<SparcSubtarget> ();
+ MCPEs = &MF.getConstantPool()->getConstants();
+ JTI->Initialize(MF, IsPIC);
+ MCE.setModuleInfo(&getAnalysis<MachineModuleInfo> ());
+
+ do {
+ DEBUG(errs() << "JITTing function '"
+ << MF.getName() << "'\n");
+ MCE.startFunction(MF);
+
+ for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
+ MBB != E; ++MBB){
+ MCE.StartMachineBasicBlock(MBB);
+ for (MachineBasicBlock::instr_iterator I = MBB->instr_begin(),
+ E = MBB->instr_end(); I != E;)
+ emitInstruction(*I++, *MBB);
+ }
+ } while (MCE.finishFunction(MF));
+
+ return false;
+}
+
+void SparcCodeEmitter::emitInstruction(MachineBasicBlock::instr_iterator MI,
+ MachineBasicBlock &MBB) {
+ DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << *MI);
+
+ MCE.processDebugLoc(MI->getDebugLoc(), true);
+
+ ++NumEmitted;
+
+ switch (MI->getOpcode()) {
+ default: {
+ emitWord(getBinaryCodeForInstr(*MI));
+ break;
+ }
+ case TargetOpcode::INLINEASM: {
+ // We allow inline assembler nodes with empty bodies - they can
+ // implicitly define registers, which is ok for JIT.
+ if (MI->getOperand(0).getSymbolName()[0]) {
+ report_fatal_error("JIT does not support inline asm!");
+ }
+ break;
+ }
+ case TargetOpcode::CFI_INSTRUCTION:
+ break;
+ case TargetOpcode::EH_LABEL: {
+ MCE.emitLabel(MI->getOperand(0).getMCSymbol());
+ break;
+ }
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL: {
+ // Do nothing.
+ break;
+ }
+ case SP::GETPCX: {
+ report_fatal_error("JIT does not support pseudo instruction GETPCX yet!");
+ break;
+ }
+ }
+
+ MCE.processDebugLoc(MI->getDebugLoc(), false);
+}
+
+void SparcCodeEmitter::emitWord(unsigned Word) {
+ DEBUG(errs() << " 0x";
+ errs().write_hex(Word) << "\n");
+ MCE.emitWordBE(Word);
+}
+
+/// getMachineOpValue - Return binary encoding of operand. If the machine
+/// operand requires relocation, record the relocation and return zero.
+unsigned SparcCodeEmitter::getMachineOpValue(const MachineInstr &MI,
+ const MachineOperand &MO) const {
+ if (MO.isReg())
+ return TM.getRegisterInfo()->getEncodingValue(MO.getReg());
+ else if (MO.isImm())
+ return static_cast<unsigned>(MO.getImm());
+ else if (MO.isGlobal())
+ emitGlobalAddress(MO.getGlobal(), getRelocation(MI, MO));
+ else if (MO.isSymbol())
+ emitExternalSymbolAddress(MO.getSymbolName(), getRelocation(MI, MO));
+ else if (MO.isCPI())
+ emitConstPoolAddress(MO.getIndex(), getRelocation(MI, MO));
+ else if (MO.isMBB())
+ emitMachineBasicBlock(MO.getMBB(), getRelocation(MI, MO));
+ else
+ llvm_unreachable("Unable to encode MachineOperand!");
+ return 0;
+}
+unsigned SparcCodeEmitter::getCallTargetOpValue(const MachineInstr &MI,
+ unsigned opIdx) const {
+ const MachineOperand MO = MI.getOperand(opIdx);
+ return getMachineOpValue(MI, MO);
+}
+
+unsigned SparcCodeEmitter::getBranchTargetOpValue(const MachineInstr &MI,
+ unsigned opIdx) const {
+ const MachineOperand MO = MI.getOperand(opIdx);
+ return getMachineOpValue(MI, MO);
+}
+
+unsigned SparcCodeEmitter::getBranchPredTargetOpValue(const MachineInstr &MI,
+ unsigned opIdx) const {
+ const MachineOperand MO = MI.getOperand(opIdx);
+ return getMachineOpValue(MI, MO);
+}
+
+unsigned SparcCodeEmitter::getBranchOnRegTargetOpValue(const MachineInstr &MI,
+ unsigned opIdx) const {
+ const MachineOperand MO = MI.getOperand(opIdx);
+ return getMachineOpValue(MI, MO);
+}
+
+unsigned SparcCodeEmitter::getRelocation(const MachineInstr &MI,
+ const MachineOperand &MO) const {
+
+ unsigned TF = MO.getTargetFlags();
+ switch (TF) {
+ default:
+ case SparcMCExpr::VK_Sparc_None: break;
+ case SparcMCExpr::VK_Sparc_LO: return SP::reloc_sparc_lo;
+ case SparcMCExpr::VK_Sparc_HI: return SP::reloc_sparc_hi;
+ case SparcMCExpr::VK_Sparc_H44: return SP::reloc_sparc_h44;
+ case SparcMCExpr::VK_Sparc_M44: return SP::reloc_sparc_m44;
+ case SparcMCExpr::VK_Sparc_L44: return SP::reloc_sparc_l44;
+ case SparcMCExpr::VK_Sparc_HH: return SP::reloc_sparc_hh;
+ case SparcMCExpr::VK_Sparc_HM: return SP::reloc_sparc_hm;
+ }
+
+ unsigned Opc = MI.getOpcode();
+ switch (Opc) {
+ default: break;
+ case SP::CALL: return SP::reloc_sparc_pc30;
+ case SP::BA:
+ case SP::BCOND:
+ case SP::FBCOND: return SP::reloc_sparc_pc22;
+ case SP::BPXCC: return SP::reloc_sparc_pc19;
+ }
+ llvm_unreachable("unknown reloc!");
+}
+
+void SparcCodeEmitter::emitGlobalAddress(const GlobalValue *GV,
+ unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
+ const_cast<GlobalValue *>(GV), 0,
+ true));
+}
+
+void SparcCodeEmitter::
+emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
+ Reloc, ES, 0, 0));
+}
+
+void SparcCodeEmitter::
+emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
+ Reloc, CPI, 0, false));
+}
+
+void SparcCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
+ unsigned Reloc) const {
+ MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
+ Reloc, BB));
+}
+
+
+/// createSparcJITCodeEmitterPass - Return a pass that emits the collected Sparc
+/// code to the specified MCE object.
+FunctionPass *llvm::createSparcJITCodeEmitterPass(SparcTargetMachine &TM,
+ JITCodeEmitter &JCE) {
+ return new SparcCodeEmitter(TM, JCE);
+}
+
+#include "SparcGenCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.cpp b/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.cpp
new file mode 100644
index 0000000..3cdfda3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.cpp
@@ -0,0 +1,262 @@
+//===-- SparcFrameLowering.cpp - Sparc Frame Information ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Sparc implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcFrameLowering.h"
+#include "SparcInstrInfo.h"
+#include "SparcMachineFunctionInfo.h"
+#include "SparcSubtarget.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+static cl::opt<bool>
+DisableLeafProc("disable-sparc-leaf-proc",
+ cl::init(false),
+ cl::desc("Disable Sparc leaf procedure optimization."),
+ cl::Hidden);
+
+SparcFrameLowering::SparcFrameLowering(const SparcSubtarget &ST)
+ : TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
+ ST.is64Bit() ? 16 : 8, 0, ST.is64Bit() ? 16 : 8) {}
+
+void SparcFrameLowering::emitSPAdjustment(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ int NumBytes,
+ unsigned ADDrr,
+ unsigned ADDri) const {
+
+ DebugLoc dl = (MBBI != MBB.end()) ? MBBI->getDebugLoc() : DebugLoc();
+ const SparcInstrInfo &TII =
+ *static_cast<const SparcInstrInfo*>(MF.getTarget().getInstrInfo());
+
+ if (NumBytes >= -4096 && NumBytes < 4096) {
+ BuildMI(MBB, MBBI, dl, TII.get(ADDri), SP::O6)
+ .addReg(SP::O6).addImm(NumBytes);
+ return;
+ }
+
+ // Emit this the hard way. This clobbers G1 which we always know is
+ // available here.
+ if (NumBytes >= 0) {
+ // Emit nonnegative numbers with sethi + or.
+ // sethi %hi(NumBytes), %g1
+ // or %g1, %lo(NumBytes), %g1
+ // add %sp, %g1, %sp
+ BuildMI(MBB, MBBI, dl, TII.get(SP::SETHIi), SP::G1)
+ .addImm(HI22(NumBytes));
+ BuildMI(MBB, MBBI, dl, TII.get(SP::ORri), SP::G1)
+ .addReg(SP::G1).addImm(LO10(NumBytes));
+ BuildMI(MBB, MBBI, dl, TII.get(ADDrr), SP::O6)
+ .addReg(SP::O6).addReg(SP::G1);
+ return ;
+ }
+
+ // Emit negative numbers with sethi + xor.
+ // sethi %hix(NumBytes), %g1
+ // xor %g1, %lox(NumBytes), %g1
+ // add %sp, %g1, %sp
+ BuildMI(MBB, MBBI, dl, TII.get(SP::SETHIi), SP::G1)
+ .addImm(HIX22(NumBytes));
+ BuildMI(MBB, MBBI, dl, TII.get(SP::XORri), SP::G1)
+ .addReg(SP::G1).addImm(LOX10(NumBytes));
+ BuildMI(MBB, MBBI, dl, TII.get(ADDrr), SP::O6)
+ .addReg(SP::O6).addReg(SP::G1);
+}
+
+void SparcFrameLowering::emitPrologue(MachineFunction &MF) const {
+ SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
+
+ MachineBasicBlock &MBB = MF.front();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const SparcInstrInfo &TII =
+ *static_cast<const SparcInstrInfo*>(MF.getTarget().getInstrInfo());
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Get the number of bytes to allocate from the FrameInfo
+ int NumBytes = (int) MFI->getStackSize();
+
+ unsigned SAVEri = SP::SAVEri;
+ unsigned SAVErr = SP::SAVErr;
+ if (FuncInfo->isLeafProc()) {
+ if (NumBytes == 0)
+ return;
+ SAVEri = SP::ADDri;
+ SAVErr = SP::ADDrr;
+ }
+ NumBytes =
+ -MF.getTarget().getSubtarget<SparcSubtarget>().getAdjustedFrameSize(
+ NumBytes);
+ emitSPAdjustment(MF, MBB, MBBI, NumBytes, SAVErr, SAVEri);
+
+ MachineModuleInfo &MMI = MF.getMMI();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
+ unsigned regFP = MRI->getDwarfRegNum(SP::I6, true);
+
+ // Emit ".cfi_def_cfa_register 30".
+ unsigned CFIIndex =
+ MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, regFP));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // Emit ".cfi_window_save".
+ CFIIndex = MMI.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ unsigned regInRA = MRI->getDwarfRegNum(SP::I7, true);
+ unsigned regOutRA = MRI->getDwarfRegNum(SP::O7, true);
+ // Emit ".cfi_register 15, 31".
+ CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createRegister(nullptr, regOutRA, regInRA));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+}
+
+void SparcFrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ if (!hasReservedCallFrame(MF)) {
+ MachineInstr &MI = *I;
+ int Size = MI.getOperand(0).getImm();
+ if (MI.getOpcode() == SP::ADJCALLSTACKDOWN)
+ Size = -Size;
+
+ if (Size)
+ emitSPAdjustment(MF, MBB, I, Size, SP::ADDrr, SP::ADDri);
+ }
+ MBB.erase(I);
+}
+
+
+void SparcFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ const SparcInstrInfo &TII =
+ *static_cast<const SparcInstrInfo*>(MF.getTarget().getInstrInfo());
+ DebugLoc dl = MBBI->getDebugLoc();
+ assert(MBBI->getOpcode() == SP::RETL &&
+ "Can only put epilog before 'retl' instruction!");
+ if (!FuncInfo->isLeafProc()) {
+ BuildMI(MBB, MBBI, dl, TII.get(SP::RESTORErr), SP::G0).addReg(SP::G0)
+ .addReg(SP::G0);
+ return;
+ }
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ int NumBytes = (int) MFI->getStackSize();
+ if (NumBytes == 0)
+ return;
+
+ NumBytes = MF.getTarget().getSubtarget<SparcSubtarget>().getAdjustedFrameSize(
+ NumBytes);
+ emitSPAdjustment(MF, MBB, MBBI, NumBytes, SP::ADDrr, SP::ADDri);
+}
+
+bool SparcFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ // Reserve call frame if there are no variable sized objects on the stack.
+ return !MF.getFrameInfo()->hasVarSizedObjects();
+}
+
+// hasFP - Return true if the specified function should have a dedicated frame
+// pointer register. This is true if the function has variable sized allocas or
+// if frame pointer elimination is disabled.
+bool SparcFrameLowering::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ return MF.getTarget().Options.DisableFramePointerElim(MF) ||
+ MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken();
+}
+
+
+static bool LLVM_ATTRIBUTE_UNUSED verifyLeafProcRegUse(MachineRegisterInfo *MRI)
+{
+
+ for (unsigned reg = SP::I0; reg <= SP::I7; ++reg)
+ if (MRI->isPhysRegUsed(reg))
+ return false;
+
+ for (unsigned reg = SP::L0; reg <= SP::L7; ++reg)
+ if (MRI->isPhysRegUsed(reg))
+ return false;
+
+ return true;
+}
+
+bool SparcFrameLowering::isLeafProc(MachineFunction &MF) const
+{
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ return !(MFI->hasCalls() // has calls
+ || MRI.isPhysRegUsed(SP::L0) // Too many registers needed
+ || MRI.isPhysRegUsed(SP::O6) // %SP is used
+ || hasFP(MF)); // need %FP
+}
+
+void SparcFrameLowering::remapRegsForLeafProc(MachineFunction &MF) const {
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // Remap %i[0-7] to %o[0-7].
+ for (unsigned reg = SP::I0; reg <= SP::I7; ++reg) {
+ if (!MRI.isPhysRegUsed(reg))
+ continue;
+ unsigned mapped_reg = (reg - SP::I0 + SP::O0);
+ assert(!MRI.isPhysRegUsed(mapped_reg));
+
+ // Replace I register with O register.
+ MRI.replaceRegWith(reg, mapped_reg);
+
+ // Mark the reg unused.
+ MRI.setPhysRegUnused(reg);
+ }
+
+ // Rewrite MBB's Live-ins.
+ for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
+ MBB != E; ++MBB) {
+ for (unsigned reg = SP::I0; reg <= SP::I7; ++reg) {
+ if (!MBB->isLiveIn(reg))
+ continue;
+ MBB->removeLiveIn(reg);
+ MBB->addLiveIn(reg - SP::I0 + SP::O0);
+ }
+ }
+
+ assert(verifyLeafProcRegUse(&MRI));
+#ifdef XDEBUG
+ MF.verify(0, "After LeafProc Remapping");
+#endif
+}
+
+void SparcFrameLowering::processFunctionBeforeCalleeSavedScan
+ (MachineFunction &MF, RegScavenger *RS) const {
+
+ if (!DisableLeafProc && isLeafProc(MF)) {
+ SparcMachineFunctionInfo *MFI = MF.getInfo<SparcMachineFunctionInfo>();
+ MFI->setLeafProc(true);
+
+ remapRegsForLeafProc(MF);
+ }
+
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.h b/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.h
new file mode 100644
index 0000000..a7d1b89
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.h
@@ -0,0 +1,60 @@
+//===-- SparcFrameLowering.h - Define frame lowering for Sparc --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARC_FRAMEINFO_H
+#define SPARC_FRAMEINFO_H
+
+#include "Sparc.h"
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+
+class SparcSubtarget;
+class SparcFrameLowering : public TargetFrameLowering {
+public:
+ explicit SparcFrameLowering(const SparcSubtarget &ST);
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+
+ void
+ eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const override;
+
+ bool hasReservedCallFrame(const MachineFunction &MF) const override;
+ bool hasFP(const MachineFunction &MF) const override;
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS = nullptr) const override;
+
+private:
+ // Remap input registers to output registers for leaf procedure.
+ void remapRegsForLeafProc(MachineFunction &MF) const;
+
+ // Returns true if MF is a leaf procedure.
+ bool isLeafProc(MachineFunction &MF) const;
+
+
+ // Emits code for adjusting SP in function prologue/epilogue.
+ void emitSPAdjustment(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ int NumBytes, unsigned ADDrr, unsigned ADDri) const;
+
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Sparc/SparcISelDAGToDAG.cpp
new file mode 100644
index 0000000..2fade27
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcISelDAGToDAG.cpp
@@ -0,0 +1,221 @@
+//===-- SparcISelDAGToDAG.cpp - A dag to dag inst selector for Sparc ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the SPARC target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcTargetMachine.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Instruction Selector Implementation
+//===----------------------------------------------------------------------===//
+
+//===--------------------------------------------------------------------===//
+/// SparcDAGToDAGISel - SPARC specific code to select SPARC machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+class SparcDAGToDAGISel : public SelectionDAGISel {
+ /// Subtarget - Keep a pointer to the Sparc Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const SparcSubtarget &Subtarget;
+ SparcTargetMachine &TM;
+public:
+ explicit SparcDAGToDAGISel(SparcTargetMachine &tm)
+ : SelectionDAGISel(tm),
+ Subtarget(tm.getSubtarget<SparcSubtarget>()),
+ TM(tm) {
+ }
+
+ SDNode *Select(SDNode *N) override;
+
+ // Complex Pattern Selectors.
+ bool SelectADDRrr(SDValue N, SDValue &R1, SDValue &R2);
+ bool SelectADDRri(SDValue N, SDValue &Base, SDValue &Offset);
+
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions.
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps) override;
+
+ const char *getPassName() const override {
+ return "SPARC DAG->DAG Pattern Instruction Selection";
+ }
+
+ // Include the pieces autogenerated from the target description.
+#include "SparcGenDAGISel.inc"
+
+private:
+ SDNode* getGlobalBaseReg();
+};
+} // end anonymous namespace
+
+SDNode* SparcDAGToDAGISel::getGlobalBaseReg() {
+ unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
+ return CurDAG->getRegister(GlobalBaseReg,
+ getTargetLowering()->getPointerTy()).getNode();
+}
+
+bool SparcDAGToDAGISel::SelectADDRri(SDValue Addr,
+ SDValue &Base, SDValue &Offset) {
+ if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(),
+ getTargetLowering()->getPointerTy());
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress ||
+ Addr.getOpcode() == ISD::TargetGlobalTLSAddress)
+ return false; // direct calls.
+
+ if (Addr.getOpcode() == ISD::ADD) {
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) {
+ if (isInt<13>(CN->getSExtValue())) {
+ if (FrameIndexSDNode *FIN =
+ dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) {
+ // Constant offset from frame ref.
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(),
+ getTargetLowering()->getPointerTy());
+ } else {
+ Base = Addr.getOperand(0);
+ }
+ Offset = CurDAG->getTargetConstant(CN->getZExtValue(), MVT::i32);
+ return true;
+ }
+ }
+ if (Addr.getOperand(0).getOpcode() == SPISD::Lo) {
+ Base = Addr.getOperand(1);
+ Offset = Addr.getOperand(0).getOperand(0);
+ return true;
+ }
+ if (Addr.getOperand(1).getOpcode() == SPISD::Lo) {
+ Base = Addr.getOperand(0);
+ Offset = Addr.getOperand(1).getOperand(0);
+ return true;
+ }
+ }
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+bool SparcDAGToDAGISel::SelectADDRrr(SDValue Addr, SDValue &R1, SDValue &R2) {
+ if (Addr.getOpcode() == ISD::FrameIndex) return false;
+ if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
+ Addr.getOpcode() == ISD::TargetGlobalAddress ||
+ Addr.getOpcode() == ISD::TargetGlobalTLSAddress)
+ return false; // direct calls.
+
+ if (Addr.getOpcode() == ISD::ADD) {
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
+ if (isInt<13>(CN->getSExtValue()))
+ return false; // Let the reg+imm pattern catch this!
+ if (Addr.getOperand(0).getOpcode() == SPISD::Lo ||
+ Addr.getOperand(1).getOpcode() == SPISD::Lo)
+ return false; // Let the reg+imm pattern catch this!
+ R1 = Addr.getOperand(0);
+ R2 = Addr.getOperand(1);
+ return true;
+ }
+
+ R1 = Addr;
+ R2 = CurDAG->getRegister(SP::G0, getTargetLowering()->getPointerTy());
+ return true;
+}
+
+SDNode *SparcDAGToDAGISel::Select(SDNode *N) {
+ SDLoc dl(N);
+ if (N->isMachineOpcode()) {
+ N->setNodeId(-1);
+ return nullptr; // Already selected.
+ }
+
+ switch (N->getOpcode()) {
+ default: break;
+ case SPISD::GLOBAL_BASE_REG:
+ return getGlobalBaseReg();
+
+ case ISD::SDIV:
+ case ISD::UDIV: {
+ // sdivx / udivx handle 64-bit divides.
+ if (N->getValueType(0) == MVT::i64)
+ break;
+ // FIXME: should use a custom expander to expose the SRA to the dag.
+ SDValue DivLHS = N->getOperand(0);
+ SDValue DivRHS = N->getOperand(1);
+
+ // Set the Y register to the high-part.
+ SDValue TopPart;
+ if (N->getOpcode() == ISD::SDIV) {
+ TopPart = SDValue(CurDAG->getMachineNode(SP::SRAri, dl, MVT::i32, DivLHS,
+ CurDAG->getTargetConstant(31, MVT::i32)), 0);
+ } else {
+ TopPart = CurDAG->getRegister(SP::G0, MVT::i32);
+ }
+ TopPart = SDValue(CurDAG->getMachineNode(SP::WRYrr, dl, MVT::Glue, TopPart,
+ CurDAG->getRegister(SP::G0, MVT::i32)), 0);
+
+ // FIXME: Handle div by immediate.
+ unsigned Opcode = N->getOpcode() == ISD::SDIV ? SP::SDIVrr : SP::UDIVrr;
+ return CurDAG->SelectNodeTo(N, Opcode, MVT::i32, DivLHS, DivRHS,
+ TopPart);
+ }
+ case ISD::MULHU:
+ case ISD::MULHS: {
+ // FIXME: Handle mul by immediate.
+ SDValue MulLHS = N->getOperand(0);
+ SDValue MulRHS = N->getOperand(1);
+ unsigned Opcode = N->getOpcode() == ISD::MULHU ? SP::UMULrr : SP::SMULrr;
+ SDNode *Mul = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Glue,
+ MulLHS, MulRHS);
+ // The high part is in the Y register.
+ return CurDAG->SelectNodeTo(N, SP::RDY, MVT::i32, SDValue(Mul, 1));
+ }
+ }
+
+ return SelectCode(N);
+}
+
+
+/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+/// inline asm expressions.
+bool
+SparcDAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ SDValue Op0, Op1;
+ switch (ConstraintCode) {
+ default: return true;
+ case 'm': // memory
+ if (!SelectADDRrr(Op, Op0, Op1))
+ SelectADDRri(Op, Op0, Op1);
+ break;
+ }
+
+ OutOps.push_back(Op0);
+ OutOps.push_back(Op1);
+ return false;
+}
+
+/// createSparcISelDag - This pass converts a legalized DAG into a
+/// SPARC-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createSparcISelDag(SparcTargetMachine &TM) {
+ return new SparcDAGToDAGISel(TM);
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp
new file mode 100644
index 0000000..990f52a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp
@@ -0,0 +1,3216 @@
+//===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the interfaces that Sparc uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcISelLowering.h"
+#include "MCTargetDesc/SparcMCExpr.h"
+#include "SparcMachineFunctionInfo.h"
+#include "SparcRegisterInfo.h"
+#include "SparcTargetMachine.h"
+#include "SparcTargetObjectFile.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace llvm;
+
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT, CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State)
+{
+ assert (ArgFlags.isSRet());
+
+ // Assign SRet argument.
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ 0,
+ LocVT, LocInfo));
+ return true;
+}
+
+static bool CC_Sparc_Assign_f64(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT, CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State)
+{
+ static const MCPhysReg RegList[] = {
+ SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
+ };
+ // Try to get first reg.
+ if (unsigned Reg = State.AllocateReg(RegList, 6)) {
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ } else {
+ // Assign whole thing in stack.
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ State.AllocateStack(8,4),
+ LocVT, LocInfo));
+ return true;
+ }
+
+ // Try to get second reg.
+ if (unsigned Reg = State.AllocateReg(RegList, 6))
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ else
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ State.AllocateStack(4,4),
+ LocVT, LocInfo));
+ return true;
+}
+
+// Allocate a full-sized argument for the 64-bit ABI.
+static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT, CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ assert((LocVT == MVT::f32 || LocVT == MVT::f128
+ || LocVT.getSizeInBits() == 64) &&
+ "Can't handle non-64 bits locations");
+
+ // Stack space is allocated for all arguments starting from [%fp+BIAS+128].
+ unsigned size = (LocVT == MVT::f128) ? 16 : 8;
+ unsigned alignment = (LocVT == MVT::f128) ? 16 : 8;
+ unsigned Offset = State.AllocateStack(size, alignment);
+ unsigned Reg = 0;
+
+ if (LocVT == MVT::i64 && Offset < 6*8)
+ // Promote integers to %i0-%i5.
+ Reg = SP::I0 + Offset/8;
+ else if (LocVT == MVT::f64 && Offset < 16*8)
+ // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15).
+ Reg = SP::D0 + Offset/8;
+ else if (LocVT == MVT::f32 && Offset < 16*8)
+ // Promote floats to %f1, %f3, ...
+ Reg = SP::F1 + Offset/4;
+ else if (LocVT == MVT::f128 && Offset < 16*8)
+ // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7).
+ Reg = SP::Q0 + Offset/16;
+
+ // Promote to register when possible, otherwise use the stack slot.
+ if (Reg) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return true;
+ }
+
+ // This argument goes on the stack in an 8-byte slot.
+ // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to
+ // the right-aligned float. The first 4 bytes of the stack slot are undefined.
+ if (LocVT == MVT::f32)
+ Offset += 4;
+
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return true;
+}
+
+// Allocate a half-sized argument for the 64-bit ABI.
+//
+// This is used when passing { float, int } structs by value in registers.
+static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT, CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations");
+ unsigned Offset = State.AllocateStack(4, 4);
+
+ if (LocVT == MVT::f32 && Offset < 16*8) {
+ // Promote floats to %f0-%f31.
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4,
+ LocVT, LocInfo));
+ return true;
+ }
+
+ if (LocVT == MVT::i32 && Offset < 6*8) {
+ // Promote integers to %i0-%i5, using half the register.
+ unsigned Reg = SP::I0 + Offset/8;
+ LocVT = MVT::i64;
+ LocInfo = CCValAssign::AExt;
+
+ // Set the Custom bit if this i32 goes in the high bits of a register.
+ if (Offset % 8 == 0)
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg,
+ LocVT, LocInfo));
+ else
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return true;
+ }
+
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return true;
+}
+
+#include "SparcGenCallingConv.inc"
+
+// The calling conventions in SparcCallingConv.td are described in terms of the
+// callee's register window. This function translates registers to the
+// corresponding caller window %o register.
+static unsigned toCallerWindow(unsigned Reg) {
+ assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7 && "Unexpected enum");
+ if (Reg >= SP::I0 && Reg <= SP::I7)
+ return Reg - SP::I0 + SP::O0;
+ return Reg;
+}
+
+SDValue
+SparcTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const {
+ if (Subtarget->is64Bit())
+ return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
+ return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
+}
+
+SDValue
+SparcTargetLowering::LowerReturn_32(SDValue Chain,
+ CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // CCValAssign - represent the assignment of the return value to locations.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
+ DAG.getTarget(), RVLocs, *DAG.getContext());
+
+ // Analyze return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+ // Make room for the return address offset.
+ RetOps.push_back(SDValue());
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(),
+ OutVals[i], Flag);
+
+ // Guarantee that all emitted copies are stuck together with flags.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ unsigned RetAddrOffset = 8; // Call Inst + Delay Slot
+ // If the function returns a struct, copy the SRetReturnReg to I0
+ if (MF.getFunction()->hasStructRetAttr()) {
+ SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
+ unsigned Reg = SFI->getSRetReturnReg();
+ if (!Reg)
+ llvm_unreachable("sret virtual register not created in the entry block");
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
+ Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(SP::I0, getPointerTy()));
+ RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
+ }
+
+ RetOps[0] = Chain; // Update chain.
+ RetOps[1] = DAG.getConstant(RetAddrOffset, MVT::i32);
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
+}
+
+// Lower return values for the 64-bit ABI.
+// Return values are passed the exactly the same way as function arguments.
+SDValue
+SparcTargetLowering::LowerReturn_64(SDValue Chain,
+ CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const {
+ // CCValAssign - represent the assignment of the return value to locations.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
+ DAG.getTarget(), RVLocs, *DAG.getContext());
+
+ // Analyze return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // The second operand on the return instruction is the return address offset.
+ // The return address is always %i7+8 with the 64-bit ABI.
+ RetOps.push_back(DAG.getConstant(8, MVT::i32));
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ SDValue OutVal = OutVals[i];
+
+ // Integer return values must be sign or zero extended by the callee.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
+ break;
+ case CCValAssign::ZExt:
+ OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
+ break;
+ case CCValAssign::AExt:
+ OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
+ break;
+ default:
+ llvm_unreachable("Unknown loc info!");
+ }
+
+ // The custom bit on an i32 return value indicates that it should be passed
+ // in the high bits of the register.
+ if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
+ OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal,
+ DAG.getConstant(32, MVT::i32));
+
+ // The next value may go in the low bits of the same register.
+ // Handle both at once.
+ if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) {
+ SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]);
+ OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV);
+ // Skip the next value, it's already done.
+ ++i;
+ }
+ }
+
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);
+
+ // Guarantee that all emitted copies are stuck together with flags.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
+}
+
+SDValue SparcTargetLowering::
+LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc DL,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ if (Subtarget->is64Bit())
+ return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins,
+ DL, DAG, InVals);
+ return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins,
+ DL, DAG, InVals);
+}
+
+/// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are
+/// passed in either one or two GPRs, including FP values. TODO: we should
+/// pass FP values in FP registers for fastcc functions.
+SDValue SparcTargetLowering::
+LowerFormalArguments_32(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
+
+ const unsigned StackOffset = 92;
+
+ unsigned InIdx = 0;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) {
+ CCValAssign &VA = ArgLocs[i];
+
+ if (Ins[InIdx].Flags.isSRet()) {
+ if (InIdx != 0)
+ report_fatal_error("sparc only supports sret on the first parameter");
+ // Get SRet from [%fp+64].
+ int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, 64, true);
+ SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
+ SDValue Arg = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ InVals.push_back(Arg);
+ continue;
+ }
+
+ if (VA.isRegLoc()) {
+ if (VA.needsCustom()) {
+ assert(VA.getLocVT() == MVT::f64);
+ unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
+ MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
+ SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
+
+ assert(i+1 < e);
+ CCValAssign &NextVA = ArgLocs[++i];
+
+ SDValue LoVal;
+ if (NextVA.isMemLoc()) {
+ int FrameIdx = MF.getFrameInfo()->
+ CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
+ SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
+ LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ } else {
+ unsigned loReg = MF.addLiveIn(NextVA.getLocReg(),
+ &SP::IntRegsRegClass);
+ LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
+ }
+ SDValue WholeValue =
+ DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
+ WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue);
+ InVals.push_back(WholeValue);
+ continue;
+ }
+ unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
+ MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
+ SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
+ if (VA.getLocVT() == MVT::f32)
+ Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
+ else if (VA.getLocVT() != MVT::i32) {
+ Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
+ DAG.getValueType(VA.getLocVT()));
+ Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
+ }
+ InVals.push_back(Arg);
+ continue;
+ }
+
+ assert(VA.isMemLoc());
+
+ unsigned Offset = VA.getLocMemOffset()+StackOffset;
+
+ if (VA.needsCustom()) {
+ assert(VA.getValVT() == MVT::f64);
+ // If it is double-word aligned, just load.
+ if (Offset % 8 == 0) {
+ int FI = MF.getFrameInfo()->CreateFixedObject(8,
+ Offset,
+ true);
+ SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
+ SDValue Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr,
+ MachinePointerInfo(),
+ false,false, false, 0);
+ InVals.push_back(Load);
+ continue;
+ }
+
+ int FI = MF.getFrameInfo()->CreateFixedObject(4,
+ Offset,
+ true);
+ SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
+ SDValue HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ int FI2 = MF.getFrameInfo()->CreateFixedObject(4,
+ Offset+4,
+ true);
+ SDValue FIPtr2 = DAG.getFrameIndex(FI2, getPointerTy());
+
+ SDValue LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr2,
+ MachinePointerInfo(),
+ false, false, false, 0);
+
+ SDValue WholeValue =
+ DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
+ WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue);
+ InVals.push_back(WholeValue);
+ continue;
+ }
+
+ int FI = MF.getFrameInfo()->CreateFixedObject(4,
+ Offset,
+ true);
+ SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
+ SDValue Load ;
+ if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
+ Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ } else {
+ ISD::LoadExtType LoadOp = ISD::SEXTLOAD;
+ // Sparc is big endian, so add an offset based on the ObjectVT.
+ unsigned Offset = 4-std::max(1U, VA.getValVT().getSizeInBits()/8);
+ FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr,
+ DAG.getConstant(Offset, MVT::i32));
+ Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Chain, FIPtr,
+ MachinePointerInfo(),
+ VA.getValVT(), false, false,0);
+ Load = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Load);
+ }
+ InVals.push_back(Load);
+ }
+
+ if (MF.getFunction()->hasStructRetAttr()) {
+ // Copy the SRet Argument to SRetReturnReg.
+ SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
+ unsigned Reg = SFI->getSRetReturnReg();
+ if (!Reg) {
+ Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
+ SFI->setSRetReturnReg(Reg);
+ }
+ SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
+ }
+
+ // Store remaining ArgRegs to the stack if this is a varargs function.
+ if (isVarArg) {
+ static const MCPhysReg ArgRegs[] = {
+ SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
+ };
+ unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs, 6);
+ const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
+ unsigned ArgOffset = CCInfo.getNextStackOffset();
+ if (NumAllocated == 6)
+ ArgOffset += StackOffset;
+ else {
+ assert(!ArgOffset);
+ ArgOffset = 68+4*NumAllocated;
+ }
+
+ // Remember the vararg offset for the va_start implementation.
+ FuncInfo->setVarArgsFrameOffset(ArgOffset);
+
+ std::vector<SDValue> OutChains;
+
+ for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
+ unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
+ MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
+ SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
+
+ int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset,
+ true);
+ SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
+
+ OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr,
+ MachinePointerInfo(),
+ false, false, 0));
+ ArgOffset += 4;
+ }
+
+ if (!OutChains.empty()) {
+ OutChains.push_back(Chain);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+ }
+ }
+
+ return Chain;
+}
+
+// Lower formal arguments for the 64 bit ABI.
+SDValue SparcTargetLowering::
+LowerFormalArguments_64(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc DL,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Analyze arguments according to CC_Sparc64.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
+
+ // The argument array begins at %fp+BIAS+128, after the register save area.
+ const unsigned ArgArea = 128;
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (VA.isRegLoc()) {
+ // This argument is passed in a register.
+ // All integer register arguments are promoted by the caller to i64.
+
+ // Create a virtual register for the promoted live-in value.
+ unsigned VReg = MF.addLiveIn(VA.getLocReg(),
+ getRegClassFor(VA.getLocVT()));
+ SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
+
+ // Get the high bits for i32 struct elements.
+ if (VA.getValVT() == MVT::i32 && VA.needsCustom())
+ Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
+ DAG.getConstant(32, MVT::i32));
+
+ // The caller promoted the argument, so insert an Assert?ext SDNode so we
+ // won't promote the value again in this function.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
+ DAG.getValueType(VA.getValVT()));
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
+ DAG.getValueType(VA.getValVT()));
+ break;
+ default:
+ break;
+ }
+
+ // Truncate the register down to the argument type.
+ if (VA.isExtInLoc())
+ Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
+
+ InVals.push_back(Arg);
+ continue;
+ }
+
+ // The registers are exhausted. This argument was passed on the stack.
+ assert(VA.isMemLoc());
+ // The CC_Sparc64_Full/Half functions compute stack offsets relative to the
+ // beginning of the arguments area at %fp+BIAS+128.
+ unsigned Offset = VA.getLocMemOffset() + ArgArea;
+ unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
+ // Adjust offset for extended arguments, SPARC is big-endian.
+ // The caller will have written the full slot with extended bytes, but we
+ // prefer our own extending loads.
+ if (VA.isExtInLoc())
+ Offset += 8 - ValSize;
+ int FI = MF.getFrameInfo()->CreateFixedObject(ValSize, Offset, true);
+ InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain,
+ DAG.getFrameIndex(FI, getPointerTy()),
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0));
+ }
+
+ if (!IsVarArg)
+ return Chain;
+
+ // This function takes variable arguments, some of which may have been passed
+ // in registers %i0-%i5. Variable floating point arguments are never passed
+ // in floating point registers. They go on %i0-%i5 or on the stack like
+ // integer arguments.
+ //
+ // The va_start intrinsic needs to know the offset to the first variable
+ // argument.
+ unsigned ArgOffset = CCInfo.getNextStackOffset();
+ SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
+ // Skip the 128 bytes of register save area.
+ FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea +
+ Subtarget->getStackPointerBias());
+
+ // Save the variable arguments that were passed in registers.
+ // The caller is required to reserve stack space for 6 arguments regardless
+ // of how many arguments were actually passed.
+ SmallVector<SDValue, 8> OutChains;
+ for (; ArgOffset < 6*8; ArgOffset += 8) {
+ unsigned VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass);
+ SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
+ int FI = MF.getFrameInfo()->CreateFixedObject(8, ArgOffset + ArgArea, true);
+ OutChains.push_back(DAG.getStore(Chain, DL, VArg,
+ DAG.getFrameIndex(FI, getPointerTy()),
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, 0));
+ }
+
+ if (!OutChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
+
+ return Chain;
+}
+
+SDValue
+SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ if (Subtarget->is64Bit())
+ return LowerCall_64(CLI, InVals);
+ return LowerCall_32(CLI, InVals);
+}
+
+static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee,
+ ImmutableCallSite *CS) {
+ if (CS)
+ return CS->hasFnAttr(Attribute::ReturnsTwice);
+
+ const Function *CalleeFn = nullptr;
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ CalleeFn = dyn_cast<Function>(G->getGlobal());
+ } else if (ExternalSymbolSDNode *E =
+ dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const Function *Fn = DAG.getMachineFunction().getFunction();
+ const Module *M = Fn->getParent();
+ const char *CalleeName = E->getSymbol();
+ CalleeFn = M->getFunction(CalleeName);
+ }
+
+ if (!CalleeFn)
+ return false;
+ return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice);
+}
+
+// Lower a call for the 32-bit ABI.
+SDValue
+SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool isVarArg = CLI.IsVarArg;
+
+ // Sparc target does not yet support tail call optimization.
+ isTailCall = false;
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ DAG.getTarget(), ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
+
+ // Get the size of the outgoing arguments stack space requirement.
+ unsigned ArgsSize = CCInfo.getNextStackOffset();
+
+ // Keep stack frames 8-byte aligned.
+ ArgsSize = (ArgsSize+7) & ~7;
+
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+
+ // Create local copies for byval args.
+ SmallVector<SDValue, 8> ByValArgs;
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ if (!Flags.isByVal())
+ continue;
+
+ SDValue Arg = OutVals[i];
+ unsigned Size = Flags.getByValSize();
+ unsigned Align = Flags.getByValAlign();
+
+ int FI = MFI->CreateStackObject(Size, Align, false);
+ SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
+ SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
+
+ Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Align,
+ false, // isVolatile,
+ (Size <= 32), // AlwaysInline if size <= 32
+ MachinePointerInfo(), MachinePointerInfo());
+ ByValArgs.push_back(FIPtr);
+ }
+
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true),
+ dl);
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ const unsigned StackOffset = 92;
+ bool hasStructRetAttr = false;
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
+ i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[realArgIdx];
+
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+
+ // Use local copy if it is a byval arg.
+ if (Flags.isByVal())
+ Arg = ByValArgs[byvalArgIdx++];
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (Flags.isSRet()) {
+ assert(VA.needsCustom());
+ // store SRet argument in %sp+64
+ SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
+ SDValue PtrOff = DAG.getIntPtrConstant(64);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(),
+ false, false, 0));
+ hasStructRetAttr = true;
+ continue;
+ }
+
+ if (VA.needsCustom()) {
+ assert(VA.getLocVT() == MVT::f64);
+
+ if (VA.isMemLoc()) {
+ unsigned Offset = VA.getLocMemOffset() + StackOffset;
+ // if it is double-word aligned, just store.
+ if (Offset % 8 == 0) {
+ SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
+ SDValue PtrOff = DAG.getIntPtrConstant(Offset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(),
+ false, false, 0));
+ continue;
+ }
+ }
+
+ SDValue StackPtr = DAG.CreateStackTemporary(MVT::f64, MVT::i32);
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
+ Arg, StackPtr, MachinePointerInfo(),
+ false, false, 0);
+ // Sparc is big-endian, so the high part comes first.
+ SDValue Hi = DAG.getLoad(MVT::i32, dl, Store, StackPtr,
+ MachinePointerInfo(), false, false, false, 0);
+ // Increment the pointer to the other half.
+ StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
+ DAG.getIntPtrConstant(4));
+ // Load the low part.
+ SDValue Lo = DAG.getLoad(MVT::i32, dl, Store, StackPtr,
+ MachinePointerInfo(), false, false, false, 0);
+
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Hi));
+ assert(i+1 != e);
+ CCValAssign &NextVA = ArgLocs[++i];
+ if (NextVA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Lo));
+ } else {
+ // Store the low part in stack.
+ unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
+ SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
+ SDValue PtrOff = DAG.getIntPtrConstant(Offset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Lo, PtrOff,
+ MachinePointerInfo(),
+ false, false, 0));
+ }
+ } else {
+ unsigned Offset = VA.getLocMemOffset() + StackOffset;
+ // Store the high part.
+ SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
+ SDValue PtrOff = DAG.getIntPtrConstant(Offset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Hi, PtrOff,
+ MachinePointerInfo(),
+ false, false, 0));
+ // Store the low part.
+ PtrOff = DAG.getIntPtrConstant(Offset+4);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Lo, PtrOff,
+ MachinePointerInfo(),
+ false, false, 0));
+ }
+ continue;
+ }
+
+ // Arguments that can be passed on register must be kept at
+ // RegsToPass vector
+ if (VA.isRegLoc()) {
+ if (VA.getLocVT() != MVT::f32) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ continue;
+ }
+ Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ continue;
+ }
+
+ assert(VA.isMemLoc());
+
+ // Create a store off the stack pointer for this argument.
+ SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
+ SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset()+StackOffset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(),
+ false, false, 0));
+ }
+
+
+ // Emit all stores, make sure the occur before any copies into physregs.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // Build a sequence of copy-to-reg nodes chained together with token
+ // chain and flag operands which copy the outgoing args into registers.
+ // The InFlag in necessary since all emitted instructions must be
+ // stuck together.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ unsigned Reg = toCallerWindow(RegsToPass[i].first);
+ Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ unsigned SRetArgSize = (hasStructRetAttr)? getSRetArgSize(DAG, Callee):0;
+ bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
+
+ // If the callee is a GlobalAddress node (quite common, every direct call is)
+ // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+ // Likewise ExternalSymbol -> TargetExternalSymbol.
+ unsigned TF = ((getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ ? SparcMCExpr::VK_Sparc_WPLT30 : 0);
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF);
+ else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
+ Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF);
+
+ // Returns a chain & a flag for retval copy to use
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+ if (hasStructRetAttr)
+ Ops.push_back(DAG.getTargetConstant(SRetArgSize, MVT::i32));
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first),
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const SparcRegisterInfo *TRI =
+ ((const SparcTargetMachine&)getTargetMachine()).getRegisterInfo();
+ const uint32_t *Mask = ((hasReturnsTwice)
+ ? TRI->getRTCallPreservedMask(CallConv)
+ : TRI->getCallPreservedMask(CallConv));
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true),
+ DAG.getIntPtrConstant(0, true), InFlag, dl);
+ InFlag = Chain.getValue(1);
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ DAG.getTarget(), RVLocs, *DAG.getContext());
+
+ RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ Chain = DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()),
+ RVLocs[i].getValVT(), InFlag).getValue(1);
+ InFlag = Chain.getValue(2);
+ InVals.push_back(Chain.getValue(0));
+ }
+
+ return Chain;
+}
+
+// This functions returns true if CalleeName is a ABI function that returns
+// a long double (fp128).
+static bool isFP128ABICall(const char *CalleeName)
+{
+ static const char *const ABICalls[] =
+ { "_Q_add", "_Q_sub", "_Q_mul", "_Q_div",
+ "_Q_sqrt", "_Q_neg",
+ "_Q_itoq", "_Q_stoq", "_Q_dtoq", "_Q_utoq",
+ "_Q_lltoq", "_Q_ulltoq",
+ nullptr
+ };
+ for (const char * const *I = ABICalls; *I != nullptr; ++I)
+ if (strcmp(CalleeName, *I) == 0)
+ return true;
+ return false;
+}
+
+unsigned
+SparcTargetLowering::getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const
+{
+ const Function *CalleeFn = nullptr;
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ CalleeFn = dyn_cast<Function>(G->getGlobal());
+ } else if (ExternalSymbolSDNode *E =
+ dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const Function *Fn = DAG.getMachineFunction().getFunction();
+ const Module *M = Fn->getParent();
+ const char *CalleeName = E->getSymbol();
+ CalleeFn = M->getFunction(CalleeName);
+ if (!CalleeFn && isFP128ABICall(CalleeName))
+ return 16; // Return sizeof(fp128)
+ }
+
+ if (!CalleeFn)
+ return 0;
+
+ assert(CalleeFn->hasStructRetAttr() &&
+ "Callee does not have the StructRet attribute.");
+
+ PointerType *Ty = cast<PointerType>(CalleeFn->arg_begin()->getType());
+ Type *ElementTy = Ty->getElementType();
+ return getDataLayout()->getTypeAllocSize(ElementTy);
+}
+
+
+// Fixup floating point arguments in the ... part of a varargs call.
+//
+// The SPARC v9 ABI requires that floating point arguments are treated the same
+// as integers when calling a varargs function. This does not apply to the
+// fixed arguments that are part of the function's prototype.
+//
+// This function post-processes a CCValAssign array created by
+// AnalyzeCallOperands().
+static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs,
+ ArrayRef<ISD::OutputArg> Outs) {
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ const CCValAssign &VA = ArgLocs[i];
+ MVT ValTy = VA.getLocVT();
+ // FIXME: What about f32 arguments? C promotes them to f64 when calling
+ // varargs functions.
+ if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128))
+ continue;
+ // The fixed arguments to a varargs function still go in FP registers.
+ if (Outs[VA.getValNo()].IsFixed)
+ continue;
+
+ // This floating point argument should be reassigned.
+ CCValAssign NewVA;
+
+ // Determine the offset into the argument array.
+ unsigned firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0;
+ unsigned argSize = (ValTy == MVT::f64) ? 8 : 16;
+ unsigned Offset = argSize * (VA.getLocReg() - firstReg);
+ assert(Offset < 16*8 && "Offset out of range, bad register enum?");
+
+ if (Offset < 6*8) {
+ // This argument should go in %i0-%i5.
+ unsigned IReg = SP::I0 + Offset/8;
+ if (ValTy == MVT::f64)
+ // Full register, just bitconvert into i64.
+ NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(),
+ IReg, MVT::i64, CCValAssign::BCvt);
+ else {
+ assert(ValTy == MVT::f128 && "Unexpected type!");
+ // Full register, just bitconvert into i128 -- We will lower this into
+ // two i64s in LowerCall_64.
+ NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(),
+ IReg, MVT::i128, CCValAssign::BCvt);
+ }
+ } else {
+ // This needs to go to memory, we're out of integer registers.
+ NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(),
+ Offset, VA.getLocVT(), VA.getLocInfo());
+ }
+ ArgLocs[i] = NewVA;
+ }
+}
+
+// Lower a call for the 64-bit ABI.
+SDValue
+SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc DL = CLI.DL;
+ SDValue Chain = CLI.Chain;
+
+ // Sparc target does not yet support tail call optimization.
+ CLI.IsTailCall = false;
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
+ DAG.getTarget(), ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
+
+ // Get the size of the outgoing arguments stack space requirement.
+ // The stack offset computed by CC_Sparc64 includes all arguments.
+ // Called functions expect 6 argument words to exist in the stack frame, used
+ // or not.
+ unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset());
+
+ // Keep stack frames 16-byte aligned.
+ ArgsSize = RoundUpToAlignment(ArgsSize, 16);
+
+ // Varargs calls require special treatment.
+ if (CLI.IsVarArg)
+ fixupVariableFloatArgs(ArgLocs, CLI.Outs);
+
+ // Adjust the stack pointer to make room for the arguments.
+ // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
+ // with more than 6 arguments.
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true),
+ DL);
+
+ // Collect the set of registers to pass to the function and their values.
+ // This will be emitted as a sequence of CopyToReg nodes glued to the call
+ // instruction.
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+
+ // Collect chains from all the memory opeations that copy arguments to the
+ // stack. They must follow the stack pointer adjustment above and precede the
+ // call instruction itself.
+ SmallVector<SDValue, 8> MemOpChains;
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ const CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = CLI.OutVals[i];
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown location info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::BCvt:
+ // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But
+ // SPARC does not support i128 natively. Lower it into two i64, see below.
+ if (!VA.needsCustom() || VA.getValVT() != MVT::f128
+ || VA.getLocVT() != MVT::i128)
+ Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (VA.isRegLoc()) {
+ if (VA.needsCustom() && VA.getValVT() == MVT::f128
+ && VA.getLocVT() == MVT::i128) {
+ // Store and reload into the interger register reg and reg+1.
+ unsigned Offset = 8 * (VA.getLocReg() - SP::I0);
+ unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128;
+ SDValue StackPtr = DAG.getRegister(SP::O6, getPointerTy());
+ SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset);
+ HiPtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
+ HiPtrOff);
+ SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8);
+ LoPtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
+ LoPtrOff);
+
+ // Store to %sp+BIAS+128+Offset
+ SDValue Store = DAG.getStore(Chain, DL, Arg, HiPtrOff,
+ MachinePointerInfo(),
+ false, false, 0);
+ // Load into Reg and Reg+1
+ SDValue Hi64 = DAG.getLoad(MVT::i64, DL, Store, HiPtrOff,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ SDValue Lo64 = DAG.getLoad(MVT::i64, DL, Store, LoPtrOff,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()),
+ Hi64));
+ RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1),
+ Lo64));
+ continue;
+ }
+
+ // The custom bit on an i32 return value indicates that it should be
+ // passed in the high bits of the register.
+ if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
+ Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
+ DAG.getConstant(32, MVT::i32));
+
+ // The next value may go in the low bits of the same register.
+ // Handle both at once.
+ if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
+ ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
+ SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
+ CLI.OutVals[i+1]);
+ Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
+ // Skip the next value, it's already done.
+ ++i;
+ }
+ }
+ RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg));
+ continue;
+ }
+
+ assert(VA.isMemLoc());
+
+ // Create a store off the stack pointer for this argument.
+ SDValue StackPtr = DAG.getRegister(SP::O6, getPointerTy());
+ // The argument area starts at %fp+BIAS+128 in the callee frame,
+ // %sp+BIAS+128 in ours.
+ SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
+ Subtarget->getStackPointerBias() +
+ 128);
+ PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
+ MemOpChains.push_back(DAG.getStore(Chain, DL, Arg, PtrOff,
+ MachinePointerInfo(),
+ false, false, 0));
+ }
+
+ // Emit all stores, make sure they occur before the call.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
+
+ // Build a sequence of CopyToReg nodes glued together with token chain and
+ // glue operands which copy the outgoing args into registers. The InGlue is
+ // necessary since all emitted instructions must be stuck together in order
+ // to pass the live physical registers.
+ SDValue InGlue;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, DL,
+ RegsToPass[i].first, RegsToPass[i].second, InGlue);
+ InGlue = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress node (quite common, every direct call is)
+ // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+ // Likewise ExternalSymbol -> TargetExternalSymbol.
+ SDValue Callee = CLI.Callee;
+ bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
+ unsigned TF = ((getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ ? SparcMCExpr::VK_Sparc_WPLT30 : 0);
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
+ TF);
+ else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
+ Callee = DAG.getTargetExternalSymbol(E->getSymbol(), getPointerTy(), TF);
+
+ // Build the operands for the call instruction itself.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const SparcRegisterInfo *TRI =
+ ((const SparcTargetMachine&)getTargetMachine()).getRegisterInfo();
+ const uint32_t *Mask = ((hasReturnsTwice)
+ ? TRI->getRTCallPreservedMask(CLI.CallConv)
+ : TRI->getCallPreservedMask(CLI.CallConv));
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ // Make sure the CopyToReg nodes are glued to the call instruction which
+ // consumes the registers.
+ if (InGlue.getNode())
+ Ops.push_back(InGlue);
+
+ // Now the call itself.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops);
+ InGlue = Chain.getValue(1);
+
+ // Revert the stack pointer immediately after the call.
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true),
+ DAG.getIntPtrConstant(0, true), InGlue, DL);
+ InGlue = Chain.getValue(1);
+
+ // Now extract the return values. This is more or less the same as
+ // LowerFormalArguments_64.
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
+ DAG.getTarget(), RVLocs, *DAG.getContext());
+
+ // Set inreg flag manually for codegen generated library calls that
+ // return float.
+ if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && CLI.CS == nullptr)
+ CLI.Ins[0].Flags.setInReg();
+
+ RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ unsigned Reg = toCallerWindow(VA.getLocReg());
+
+ // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
+ // reside in the same register in the high and low bits. Reuse the
+ // CopyFromReg previous node to avoid duplicate copies.
+ SDValue RV;
+ if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
+ if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
+ RV = Chain.getValue(0);
+
+ // But usually we'll create a new CopyFromReg for a different register.
+ if (!RV.getNode()) {
+ RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
+ Chain = RV.getValue(1);
+ InGlue = Chain.getValue(2);
+ }
+
+ // Get the high bits for i32 struct elements.
+ if (VA.getValVT() == MVT::i32 && VA.needsCustom())
+ RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
+ DAG.getConstant(32, MVT::i32));
+
+ // The callee promoted the return value, so insert an Assert?ext SDNode so
+ // we won't promote the value again in this function.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::SExt:
+ RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
+ DAG.getValueType(VA.getValVT()));
+ break;
+ case CCValAssign::ZExt:
+ RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
+ DAG.getValueType(VA.getValVT()));
+ break;
+ default:
+ break;
+ }
+
+ // Truncate the register down to the return value type.
+ if (VA.isExtInLoc())
+ RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
+
+ InVals.push_back(RV);
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// TargetLowering Implementation
+//===----------------------------------------------------------------------===//
+
+/// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
+/// condition.
+static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ISD::SETEQ: return SPCC::ICC_E;
+ case ISD::SETNE: return SPCC::ICC_NE;
+ case ISD::SETLT: return SPCC::ICC_L;
+ case ISD::SETGT: return SPCC::ICC_G;
+ case ISD::SETLE: return SPCC::ICC_LE;
+ case ISD::SETGE: return SPCC::ICC_GE;
+ case ISD::SETULT: return SPCC::ICC_CS;
+ case ISD::SETULE: return SPCC::ICC_LEU;
+ case ISD::SETUGT: return SPCC::ICC_GU;
+ case ISD::SETUGE: return SPCC::ICC_CC;
+ }
+}
+
+/// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
+/// FCC condition.
+static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown fp condition code!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ: return SPCC::FCC_E;
+ case ISD::SETNE:
+ case ISD::SETUNE: return SPCC::FCC_NE;
+ case ISD::SETLT:
+ case ISD::SETOLT: return SPCC::FCC_L;
+ case ISD::SETGT:
+ case ISD::SETOGT: return SPCC::FCC_G;
+ case ISD::SETLE:
+ case ISD::SETOLE: return SPCC::FCC_LE;
+ case ISD::SETGE:
+ case ISD::SETOGE: return SPCC::FCC_GE;
+ case ISD::SETULT: return SPCC::FCC_UL;
+ case ISD::SETULE: return SPCC::FCC_ULE;
+ case ISD::SETUGT: return SPCC::FCC_UG;
+ case ISD::SETUGE: return SPCC::FCC_UGE;
+ case ISD::SETUO: return SPCC::FCC_U;
+ case ISD::SETO: return SPCC::FCC_O;
+ case ISD::SETONE: return SPCC::FCC_LG;
+ case ISD::SETUEQ: return SPCC::FCC_UE;
+ }
+}
+
+SparcTargetLowering::SparcTargetLowering(TargetMachine &TM)
+ : TargetLowering(TM, new SparcELFTargetObjectFile()) {
+ Subtarget = &TM.getSubtarget<SparcSubtarget>();
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, &SP::IntRegsRegClass);
+ addRegisterClass(MVT::f32, &SP::FPRegsRegClass);
+ addRegisterClass(MVT::f64, &SP::DFPRegsRegClass);
+ addRegisterClass(MVT::f128, &SP::QFPRegsRegClass);
+ if (Subtarget->is64Bit())
+ addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
+
+ // Turn FP extload into load/fextend
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
+
+ // Sparc doesn't have i1 sign extending load
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+
+ // Turn FP truncstore into trunc + store.
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f64, Expand);
+
+ // Custom legalize GlobalAddress nodes into LO/HI parts.
+ setOperationAction(ISD::GlobalAddress, getPointerTy(), Custom);
+ setOperationAction(ISD::GlobalTLSAddress, getPointerTy(), Custom);
+ setOperationAction(ISD::ConstantPool, getPointerTy(), Custom);
+ setOperationAction(ISD::BlockAddress, getPointerTy(), Custom);
+
+ // Sparc doesn't have sext_inreg, replace them with shl/sra
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
+
+ // Sparc has no REM or DIVREM operations.
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+
+ // ... nor does SparcV9.
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
+ }
+
+ // Custom expand fp<->sint
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+
+ // Custom Expand fp<->uint
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
+
+ setOperationAction(ISD::BITCAST, MVT::f32, Expand);
+ setOperationAction(ISD::BITCAST, MVT::i32, Expand);
+
+ // Sparc has no select or setcc: expand to SELECT_CC.
+ setOperationAction(ISD::SELECT, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT, MVT::f128, Expand);
+
+ setOperationAction(ISD::SETCC, MVT::i32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f64, Expand);
+ setOperationAction(ISD::SETCC, MVT::f128, Expand);
+
+ // Sparc doesn't have BRCOND either, it has BR_CC.
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+ setOperationAction(ISD::BRIND, MVT::Other, Expand);
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f64, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f128, Custom);
+
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::ADDC, MVT::i64, Custom);
+ setOperationAction(ISD::ADDE, MVT::i64, Custom);
+ setOperationAction(ISD::SUBC, MVT::i64, Custom);
+ setOperationAction(ISD::SUBE, MVT::i64, Custom);
+ setOperationAction(ISD::BITCAST, MVT::f64, Expand);
+ setOperationAction(ISD::BITCAST, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT, MVT::i64, Expand);
+ setOperationAction(ISD::SETCC, MVT::i64, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
+
+ setOperationAction(ISD::CTPOP, MVT::i64,
+ Subtarget->usePopc() ? Legal : Expand);
+ setOperationAction(ISD::CTTZ , MVT::i64, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ , MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i64, Expand);
+ setOperationAction(ISD::ROTL , MVT::i64, Expand);
+ setOperationAction(ISD::ROTR , MVT::i64, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
+ }
+
+ // ATOMICs.
+ // FIXME: We insert fences for each atomics and generate sub-optimal code
+ // for PSO/TSO. Also, implement other atomicrmw operations.
+
+ setInsertFencesForAtomic(true);
+
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32,
+ (Subtarget->isV9() ? Legal: Expand));
+
+
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal);
+
+ // Custom Lower Atomic LOAD/STORE
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal);
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal);
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom);
+ }
+
+ if (!Subtarget->isV9()) {
+ // SparcV8 does not have FNEGD and FABSD.
+ setOperationAction(ISD::FNEG, MVT::f64, Custom);
+ setOperationAction(ISD::FABS, MVT::f64, Custom);
+ }
+
+ setOperationAction(ISD::FSIN , MVT::f128, Expand);
+ setOperationAction(ISD::FCOS , MVT::f128, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
+ setOperationAction(ISD::FREM , MVT::f128, Expand);
+ setOperationAction(ISD::FMA , MVT::f128, Expand);
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FREM , MVT::f64, Expand);
+ setOperationAction(ISD::FMA , MVT::f64, Expand);
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FREM , MVT::f32, Expand);
+ setOperationAction(ISD::FMA , MVT::f32, Expand);
+ setOperationAction(ISD::CTTZ , MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ , MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL , MVT::i32, Expand);
+ setOperationAction(ISD::ROTR , MVT::i32, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+ setOperationAction(ISD::FPOW , MVT::f128, Expand);
+ setOperationAction(ISD::FPOW , MVT::f64, Expand);
+ setOperationAction(ISD::FPOW , MVT::f32, Expand);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
+
+ // FIXME: Sparc provides these multiplies, but we don't have them yet.
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::MULHU, MVT::i64, Expand);
+ setOperationAction(ISD::MULHS, MVT::i64, Expand);
+
+ setOperationAction(ISD::UMULO, MVT::i64, Custom);
+ setOperationAction(ISD::SMULO, MVT::i64, Custom);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
+ }
+
+ // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
+ setOperationAction(ISD::VASTART , MVT::Other, Custom);
+ // VAARG needs to be lowered to not do unaligned accesses for doubles.
+ setOperationAction(ISD::VAARG , MVT::Other, Custom);
+
+ setOperationAction(ISD::TRAP , MVT::Other, Legal);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VACOPY , MVT::Other, Expand);
+ setOperationAction(ISD::VAEND , MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
+
+ setExceptionPointerRegister(SP::I0);
+ setExceptionSelectorRegister(SP::I1);
+
+ setStackPointerRegisterToSaveRestore(SP::O6);
+
+ setOperationAction(ISD::CTPOP, MVT::i32,
+ Subtarget->usePopc() ? Legal : Expand);
+
+ if (Subtarget->isV9() && Subtarget->hasHardQuad()) {
+ setOperationAction(ISD::LOAD, MVT::f128, Legal);
+ setOperationAction(ISD::STORE, MVT::f128, Legal);
+ } else {
+ setOperationAction(ISD::LOAD, MVT::f128, Custom);
+ setOperationAction(ISD::STORE, MVT::f128, Custom);
+ }
+
+ if (Subtarget->hasHardQuad()) {
+ setOperationAction(ISD::FADD, MVT::f128, Legal);
+ setOperationAction(ISD::FSUB, MVT::f128, Legal);
+ setOperationAction(ISD::FMUL, MVT::f128, Legal);
+ setOperationAction(ISD::FDIV, MVT::f128, Legal);
+ setOperationAction(ISD::FSQRT, MVT::f128, Legal);
+ setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
+ setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
+ if (Subtarget->isV9()) {
+ setOperationAction(ISD::FNEG, MVT::f128, Legal);
+ setOperationAction(ISD::FABS, MVT::f128, Legal);
+ } else {
+ setOperationAction(ISD::FNEG, MVT::f128, Custom);
+ setOperationAction(ISD::FABS, MVT::f128, Custom);
+ }
+
+ if (!Subtarget->is64Bit()) {
+ setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
+ setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
+ setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
+ setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
+ }
+
+ } else {
+ // Custom legalize f128 operations.
+
+ setOperationAction(ISD::FADD, MVT::f128, Custom);
+ setOperationAction(ISD::FSUB, MVT::f128, Custom);
+ setOperationAction(ISD::FMUL, MVT::f128, Custom);
+ setOperationAction(ISD::FDIV, MVT::f128, Custom);
+ setOperationAction(ISD::FSQRT, MVT::f128, Custom);
+ setOperationAction(ISD::FNEG, MVT::f128, Custom);
+ setOperationAction(ISD::FABS, MVT::f128, Custom);
+
+ setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
+
+ // Setup Runtime library names.
+ if (Subtarget->is64Bit()) {
+ setLibcallName(RTLIB::ADD_F128, "_Qp_add");
+ setLibcallName(RTLIB::SUB_F128, "_Qp_sub");
+ setLibcallName(RTLIB::MUL_F128, "_Qp_mul");
+ setLibcallName(RTLIB::DIV_F128, "_Qp_div");
+ setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt");
+ setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi");
+ setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui");
+ setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq");
+ setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq");
+ setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox");
+ setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux");
+ setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq");
+ setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq");
+ setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq");
+ setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq");
+ setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos");
+ setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod");
+ } else {
+ setLibcallName(RTLIB::ADD_F128, "_Q_add");
+ setLibcallName(RTLIB::SUB_F128, "_Q_sub");
+ setLibcallName(RTLIB::MUL_F128, "_Q_mul");
+ setLibcallName(RTLIB::DIV_F128, "_Q_div");
+ setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt");
+ setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi");
+ setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou");
+ setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq");
+ setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq");
+ setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
+ setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
+ setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
+ setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
+ setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq");
+ setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq");
+ setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos");
+ setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod");
+ }
+ }
+
+ setMinFunctionAlignment(2);
+
+ computeRegisterProperties();
+}
+
+const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return nullptr;
+ case SPISD::CMPICC: return "SPISD::CMPICC";
+ case SPISD::CMPFCC: return "SPISD::CMPFCC";
+ case SPISD::BRICC: return "SPISD::BRICC";
+ case SPISD::BRXCC: return "SPISD::BRXCC";
+ case SPISD::BRFCC: return "SPISD::BRFCC";
+ case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC";
+ case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC";
+ case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC";
+ case SPISD::Hi: return "SPISD::Hi";
+ case SPISD::Lo: return "SPISD::Lo";
+ case SPISD::FTOI: return "SPISD::FTOI";
+ case SPISD::ITOF: return "SPISD::ITOF";
+ case SPISD::FTOX: return "SPISD::FTOX";
+ case SPISD::XTOF: return "SPISD::XTOF";
+ case SPISD::CALL: return "SPISD::CALL";
+ case SPISD::RET_FLAG: return "SPISD::RET_FLAG";
+ case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
+ case SPISD::FLUSHW: return "SPISD::FLUSHW";
+ case SPISD::TLS_ADD: return "SPISD::TLS_ADD";
+ case SPISD::TLS_LD: return "SPISD::TLS_LD";
+ case SPISD::TLS_CALL: return "SPISD::TLS_CALL";
+ }
+}
+
+EVT SparcTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector())
+ return MVT::i32;
+ return VT.changeVectorElementTypeToInteger();
+}
+
+/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
+/// be zero. Op is expected to be a target specific node. Used by DAG
+/// combiner.
+void SparcTargetLowering::computeKnownBitsForTargetNode
+ (const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ APInt KnownZero2, KnownOne2;
+ KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
+
+ switch (Op.getOpcode()) {
+ default: break;
+ case SPISD::SELECT_ICC:
+ case SPISD::SELECT_XCC:
+ case SPISD::SELECT_FCC:
+ DAG.computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
+ DAG.computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
+
+ // Only known if known in both the LHS and RHS.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ break;
+ }
+}
+
+// Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so
+// set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
+static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
+ ISD::CondCode CC, unsigned &SPCC) {
+ if (isa<ConstantSDNode>(RHS) &&
+ cast<ConstantSDNode>(RHS)->isNullValue() &&
+ CC == ISD::SETNE &&
+ (((LHS.getOpcode() == SPISD::SELECT_ICC ||
+ LHS.getOpcode() == SPISD::SELECT_XCC) &&
+ LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
+ (LHS.getOpcode() == SPISD::SELECT_FCC &&
+ LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) &&
+ isa<ConstantSDNode>(LHS.getOperand(0)) &&
+ isa<ConstantSDNode>(LHS.getOperand(1)) &&
+ cast<ConstantSDNode>(LHS.getOperand(0))->isOne() &&
+ cast<ConstantSDNode>(LHS.getOperand(1))->isNullValue()) {
+ SDValue CMPCC = LHS.getOperand(3);
+ SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue();
+ LHS = CMPCC.getOperand(0);
+ RHS = CMPCC.getOperand(1);
+ }
+}
+
+// Convert to a target node and set target flags.
+SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF,
+ SelectionDAG &DAG) const {
+ if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
+ return DAG.getTargetGlobalAddress(GA->getGlobal(),
+ SDLoc(GA),
+ GA->getValueType(0),
+ GA->getOffset(), TF);
+
+ if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
+ return DAG.getTargetConstantPool(CP->getConstVal(),
+ CP->getValueType(0),
+ CP->getAlignment(),
+ CP->getOffset(), TF);
+
+ if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
+ return DAG.getTargetBlockAddress(BA->getBlockAddress(),
+ Op.getValueType(),
+ 0,
+ TF);
+
+ if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
+ return DAG.getTargetExternalSymbol(ES->getSymbol(),
+ ES->getValueType(0), TF);
+
+ llvm_unreachable("Unhandled address SDNode");
+}
+
+// Split Op into high and low parts according to HiTF and LoTF.
+// Return an ADD node combining the parts.
+SDValue SparcTargetLowering::makeHiLoPair(SDValue Op,
+ unsigned HiTF, unsigned LoTF,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
+ SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
+ return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
+}
+
+// Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
+// or ExternalSymbol SDNode.
+SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = getPointerTy();
+
+ // Handle PIC mode first.
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ // This is the pic32 code model, the GOT is known to be smaller than 4GB.
+ SDValue HiLo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22,
+ SparcMCExpr::VK_Sparc_GOT10, DAG);
+ SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT);
+ SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, HiLo);
+ // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
+ // function has calls.
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setHasCalls(true);
+ return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr,
+ MachinePointerInfo::getGOT(), false, false, false, 0);
+ }
+
+ // This is one of the absolute code models.
+ switch(getTargetMachine().getCodeModel()) {
+ default:
+ llvm_unreachable("Unsupported absolute code model");
+ case CodeModel::Small:
+ // abs32.
+ return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
+ SparcMCExpr::VK_Sparc_LO, DAG);
+ case CodeModel::Medium: {
+ // abs44.
+ SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44,
+ SparcMCExpr::VK_Sparc_M44, DAG);
+ H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, MVT::i32));
+ SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG);
+ L44 = DAG.getNode(SPISD::Lo, DL, VT, L44);
+ return DAG.getNode(ISD::ADD, DL, VT, H44, L44);
+ }
+ case CodeModel::Large: {
+ // abs64.
+ SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH,
+ SparcMCExpr::VK_Sparc_HM, DAG);
+ Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, MVT::i32));
+ SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
+ SparcMCExpr::VK_Sparc_LO, DAG);
+ return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
+ }
+ }
+}
+
+SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ return makeAddress(Op, DAG);
+}
+
+SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
+ SelectionDAG &DAG) const {
+ return makeAddress(Op, DAG);
+}
+
+SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ return makeAddress(Op, DAG);
+}
+
+SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+ SDLoc DL(GA);
+ const GlobalValue *GV = GA->getGlobal();
+ EVT PtrVT = getPointerTy();
+
+ TLSModel::Model model = getTargetMachine().getTLSModel(GV);
+
+ if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
+ unsigned HiTF = ((model == TLSModel::GeneralDynamic)
+ ? SparcMCExpr::VK_Sparc_TLS_GD_HI22
+ : SparcMCExpr::VK_Sparc_TLS_LDM_HI22);
+ unsigned LoTF = ((model == TLSModel::GeneralDynamic)
+ ? SparcMCExpr::VK_Sparc_TLS_GD_LO10
+ : SparcMCExpr::VK_Sparc_TLS_LDM_LO10);
+ unsigned addTF = ((model == TLSModel::GeneralDynamic)
+ ? SparcMCExpr::VK_Sparc_TLS_GD_ADD
+ : SparcMCExpr::VK_Sparc_TLS_LDM_ADD);
+ unsigned callTF = ((model == TLSModel::GeneralDynamic)
+ ? SparcMCExpr::VK_Sparc_TLS_GD_CALL
+ : SparcMCExpr::VK_Sparc_TLS_LDM_CALL);
+
+ SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG);
+ SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
+ SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo,
+ withTargetFlags(Op, addTF, DAG));
+
+ SDValue Chain = DAG.getEntryNode();
+ SDValue InFlag;
+
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(1, true), DL);
+ Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag);
+ InFlag = Chain.getValue(1);
+ SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT);
+ SDValue Symbol = withTargetFlags(Op, callTF, DAG);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 4> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+ Ops.push_back(Symbol);
+ Ops.push_back(DAG.getRegister(SP::O0, PtrVT));
+ const uint32_t *Mask = getTargetMachine()
+ .getRegisterInfo()->getCallPreservedMask(CallingConv::C);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+ Ops.push_back(InFlag);
+ Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, true),
+ DAG.getIntPtrConstant(0, true), InFlag, DL);
+ InFlag = Chain.getValue(1);
+ SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag);
+
+ if (model != TLSModel::LocalDynamic)
+ return Ret;
+
+ SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
+ withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG));
+ SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
+ withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG));
+ HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
+ return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo,
+ withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG));
+ }
+
+ if (model == TLSModel::InitialExec) {
+ unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX
+ : SparcMCExpr::VK_Sparc_TLS_IE_LD);
+
+ SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
+
+ // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
+ // function has calls.
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setHasCalls(true);
+
+ SDValue TGA = makeHiLoPair(Op,
+ SparcMCExpr::VK_Sparc_TLS_IE_HI22,
+ SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG);
+ SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA);
+ SDValue Offset = DAG.getNode(SPISD::TLS_LD,
+ DL, PtrVT, Ptr,
+ withTargetFlags(Op, ldTF, DAG));
+ return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT,
+ DAG.getRegister(SP::G7, PtrVT), Offset,
+ withTargetFlags(Op,
+ SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG));
+ }
+
+ assert(model == TLSModel::LocalExec);
+ SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
+ withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG));
+ SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
+ withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG));
+ SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
+
+ return DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getRegister(SP::G7, PtrVT), Offset);
+}
+
+SDValue
+SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, ArgListTy &Args,
+ SDValue Arg, SDLoc DL,
+ SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ EVT ArgVT = Arg.getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+
+ ArgListEntry Entry;
+ Entry.Node = Arg;
+ Entry.Ty = ArgTy;
+
+ if (ArgTy->isFP128Ty()) {
+ // Create a stack object and pass the pointer to the library function.
+ int FI = MFI->CreateStackObject(16, 8, false);
+ SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
+ Chain = DAG.getStore(Chain,
+ DL,
+ Entry.Node,
+ FIPtr,
+ MachinePointerInfo(),
+ false,
+ false,
+ 8);
+
+ Entry.Node = FIPtr;
+ Entry.Ty = PointerType::getUnqual(ArgTy);
+ }
+ Args.push_back(Entry);
+ return Chain;
+}
+
+SDValue
+SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG,
+ const char *LibFuncName,
+ unsigned numArgs) const {
+
+ ArgListTy Args;
+
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+
+ SDValue Callee = DAG.getExternalSymbol(LibFuncName, getPointerTy());
+ Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
+ Type *RetTyABI = RetTy;
+ SDValue Chain = DAG.getEntryNode();
+ SDValue RetPtr;
+
+ if (RetTy->isFP128Ty()) {
+ // Create a Stack Object to receive the return value of type f128.
+ ArgListEntry Entry;
+ int RetFI = MFI->CreateStackObject(16, 8, false);
+ RetPtr = DAG.getFrameIndex(RetFI, getPointerTy());
+ Entry.Node = RetPtr;
+ Entry.Ty = PointerType::getUnqual(RetTy);
+ if (!Subtarget->is64Bit())
+ Entry.isSRet = true;
+ Entry.isReturned = false;
+ Args.push_back(Entry);
+ RetTyABI = Type::getVoidTy(*DAG.getContext());
+ }
+
+ assert(Op->getNumOperands() >= numArgs && "Not enough operands!");
+ for (unsigned i = 0, e = numArgs; i != e; ++i) {
+ Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG);
+ }
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(SDLoc(Op)).setChain(Chain)
+ .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args), 0);
+
+ std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
+
+ // chain is in second result.
+ if (RetTyABI == RetTy)
+ return CallInfo.first;
+
+ assert (RetTy->isFP128Ty() && "Unexpected return type!");
+
+ Chain = CallInfo.second;
+
+ // Load RetPtr to get the return value.
+ return DAG.getLoad(Op.getValueType(),
+ SDLoc(Op),
+ Chain,
+ RetPtr,
+ MachinePointerInfo(),
+ false, false, false, 8);
+}
+
+SDValue
+SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS,
+ unsigned &SPCC,
+ SDLoc DL,
+ SelectionDAG &DAG) const {
+
+ const char *LibCall = nullptr;
+ bool is64Bit = Subtarget->is64Bit();
+ switch(SPCC) {
+ default: llvm_unreachable("Unhandled conditional code!");
+ case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break;
+ case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break;
+ case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break;
+ case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break;
+ case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break;
+ case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break;
+ case SPCC::FCC_UL :
+ case SPCC::FCC_ULE:
+ case SPCC::FCC_UG :
+ case SPCC::FCC_UGE:
+ case SPCC::FCC_U :
+ case SPCC::FCC_O :
+ case SPCC::FCC_LG :
+ case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break;
+ }
+
+ SDValue Callee = DAG.getExternalSymbol(LibCall, getPointerTy());
+ Type *RetTy = Type::getInt32Ty(*DAG.getContext());
+ ArgListTy Args;
+ SDValue Chain = DAG.getEntryNode();
+ Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG);
+ Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(DL).setChain(Chain)
+ .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0);
+
+ std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
+
+ // result is in first, and chain is in second result.
+ SDValue Result = CallInfo.first;
+
+ switch(SPCC) {
+ default: {
+ SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_UL : {
+ SDValue Mask = DAG.getTargetConstant(1, Result.getValueType());
+ Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
+ SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_ULE: {
+ SDValue RHS = DAG.getTargetConstant(2, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_UG : {
+ SDValue RHS = DAG.getTargetConstant(1, Result.getValueType());
+ SPCC = SPCC::ICC_G;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_UGE: {
+ SDValue RHS = DAG.getTargetConstant(1, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+
+ case SPCC::FCC_U : {
+ SDValue RHS = DAG.getTargetConstant(3, Result.getValueType());
+ SPCC = SPCC::ICC_E;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_O : {
+ SDValue RHS = DAG.getTargetConstant(3, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_LG : {
+ SDValue Mask = DAG.getTargetConstant(3, Result.getValueType());
+ Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
+ SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_UE : {
+ SDValue Mask = DAG.getTargetConstant(3, Result.getValueType());
+ Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
+ SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
+ SPCC = SPCC::ICC_E;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ }
+}
+
+static SDValue
+LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI) {
+
+ if (Op.getOperand(0).getValueType() == MVT::f64)
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1);
+
+ if (Op.getOperand(0).getValueType() == MVT::f32)
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1);
+
+ llvm_unreachable("fpextend with non-float operand!");
+ return SDValue();
+}
+
+static SDValue
+LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI) {
+ // FP_ROUND on f64 and f32 are legal.
+ if (Op.getOperand(0).getValueType() != MVT::f128)
+ return Op;
+
+ if (Op.getValueType() == MVT::f64)
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1);
+ if (Op.getValueType() == MVT::f32)
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1);
+
+ llvm_unreachable("fpround to non-float!");
+ return SDValue();
+}
+
+static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ assert(VT == MVT::i32 || VT == MVT::i64);
+
+ // Expand f128 operations to fp128 abi calls.
+ if (Op.getOperand(0).getValueType() == MVT::f128
+ && (!hasHardQuad || !TLI.isTypeLegal(VT))) {
+ const char *libName = TLI.getLibcallName(VT == MVT::i32
+ ? RTLIB::FPTOSINT_F128_I32
+ : RTLIB::FPTOSINT_F128_I64);
+ return TLI.LowerF128Op(Op, DAG, libName, 1);
+ }
+
+ // Expand if the resulting type is illegal.
+ if (!TLI.isTypeLegal(VT))
+ return SDValue();
+
+ // Otherwise, Convert the fp value to integer in an FP register.
+ if (VT == MVT::i32)
+ Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
+ else
+ Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0));
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, Op);
+}
+
+static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDLoc dl(Op);
+ EVT OpVT = Op.getOperand(0).getValueType();
+ assert(OpVT == MVT::i32 || (OpVT == MVT::i64));
+
+ EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64;
+
+ // Expand f128 operations to fp128 ABI calls.
+ if (Op.getValueType() == MVT::f128
+ && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) {
+ const char *libName = TLI.getLibcallName(OpVT == MVT::i32
+ ? RTLIB::SINTTOFP_I32_F128
+ : RTLIB::SINTTOFP_I64_F128);
+ return TLI.LowerF128Op(Op, DAG, libName, 1);
+ }
+
+ // Expand if the operand type is illegal.
+ if (!TLI.isTypeLegal(OpVT))
+ return SDValue();
+
+ // Otherwise, Convert the int value to FP in an FP register.
+ SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0));
+ unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF;
+ return DAG.getNode(opcode, dl, Op.getValueType(), Tmp);
+}
+
+static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ // Expand if it does not involve f128 or the target has support for
+ // quad floating point instructions and the resulting type is legal.
+ if (Op.getOperand(0).getValueType() != MVT::f128 ||
+ (hasHardQuad && TLI.isTypeLegal(VT)))
+ return SDValue();
+
+ assert(VT == MVT::i32 || VT == MVT::i64);
+
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(VT == MVT::i32
+ ? RTLIB::FPTOUINT_F128_I32
+ : RTLIB::FPTOUINT_F128_I64),
+ 1);
+}
+
+static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDLoc dl(Op);
+ EVT OpVT = Op.getOperand(0).getValueType();
+ assert(OpVT == MVT::i32 || OpVT == MVT::i64);
+
+ // Expand if it does not involve f128 or the target has support for
+ // quad floating point instructions and the operand type is legal.
+ if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT)))
+ return SDValue();
+
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(OpVT == MVT::i32
+ ? RTLIB::UINTTOFP_I32_F128
+ : RTLIB::UINTTOFP_I64_F128),
+ 1);
+}
+
+static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ SDLoc dl(Op);
+ unsigned Opc, SPCC = ~0U;
+
+ // If this is a br_cc of a "setcc", and if the setcc got lowered into
+ // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
+ LookThroughSetCC(LHS, RHS, CC, SPCC);
+
+ // Get the condition flag.
+ SDValue CompareFlag;
+ if (LHS.getValueType().isInteger()) {
+ CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
+ if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
+ // 32-bit compares use the icc flags, 64-bit uses the xcc flags.
+ Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC;
+ } else {
+ if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
+ if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
+ CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
+ Opc = SPISD::BRICC;
+ } else {
+ CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
+ if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
+ Opc = SPISD::BRFCC;
+ }
+ }
+ return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
+ DAG.getConstant(SPCC, MVT::i32), CompareFlag);
+}
+
+static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDValue TrueVal = Op.getOperand(2);
+ SDValue FalseVal = Op.getOperand(3);
+ SDLoc dl(Op);
+ unsigned Opc, SPCC = ~0U;
+
+ // If this is a select_cc of a "setcc", and if the setcc got lowered into
+ // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
+ LookThroughSetCC(LHS, RHS, CC, SPCC);
+
+ SDValue CompareFlag;
+ if (LHS.getValueType().isInteger()) {
+ CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
+ Opc = LHS.getValueType() == MVT::i32 ?
+ SPISD::SELECT_ICC : SPISD::SELECT_XCC;
+ if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
+ } else {
+ if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
+ if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
+ CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
+ Opc = SPISD::SELECT_ICC;
+ } else {
+ CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
+ Opc = SPISD::SELECT_FCC;
+ if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
+ }
+ }
+ return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
+ DAG.getConstant(SPCC, MVT::i32), CompareFlag);
+}
+
+static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
+
+ // Need frame address to find the address of VarArgsFrameIndex.
+ MF.getFrameInfo()->setFrameAddressIsTaken(true);
+
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ SDLoc DL(Op);
+ SDValue Offset =
+ DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(),
+ DAG.getRegister(SP::I6, TLI.getPointerTy()),
+ DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset()));
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
+ MachinePointerInfo(SV), false, false, 0);
+}
+
+static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
+ SDNode *Node = Op.getNode();
+ EVT VT = Node->getValueType(0);
+ SDValue InChain = Node->getOperand(0);
+ SDValue VAListPtr = Node->getOperand(1);
+ EVT PtrVT = VAListPtr.getValueType();
+ const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
+ SDLoc DL(Node);
+ SDValue VAList = DAG.getLoad(PtrVT, DL, InChain, VAListPtr,
+ MachinePointerInfo(SV), false, false, false, 0);
+ // Increment the pointer, VAList, to the next vaarg.
+ SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
+ DAG.getIntPtrConstant(VT.getSizeInBits()/8));
+ // Store the incremented VAList to the legalized pointer.
+ InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr,
+ VAListPtr, MachinePointerInfo(SV), false, false, 0);
+ // Load the actual argument out of the pointer VAList.
+ // We can't count on greater alignment than the word size.
+ return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(),
+ false, false, false,
+ std::min(PtrVT.getSizeInBits(), VT.getSizeInBits())/8);
+}
+
+static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
+ const SparcSubtarget *Subtarget) {
+ SDValue Chain = Op.getOperand(0); // Legalize the chain.
+ SDValue Size = Op.getOperand(1); // Legalize the size.
+ EVT VT = Size->getValueType(0);
+ SDLoc dl(Op);
+
+ unsigned SPReg = SP::O6;
+ SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
+ SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
+ Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain
+
+ // The resultant pointer is actually 16 words from the bottom of the stack,
+ // to provide a register spill area.
+ unsigned regSpillArea = Subtarget->is64Bit() ? 128 : 96;
+ regSpillArea += Subtarget->getStackPointerBias();
+
+ SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP,
+ DAG.getConstant(regSpillArea, VT));
+ SDValue Ops[2] = { NewVal, Chain };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+
+static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ SDValue Chain = DAG.getNode(SPISD::FLUSHW,
+ dl, MVT::Other, DAG.getEntryNode());
+ return Chain;
+}
+
+static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG,
+ const SparcSubtarget *Subtarget) {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned FrameReg = SP::I6;
+ unsigned stackBias = Subtarget->getStackPointerBias();
+
+ SDValue FrameAddr;
+
+ if (depth == 0) {
+ FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
+ if (Subtarget->is64Bit())
+ FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
+ DAG.getIntPtrConstant(stackBias));
+ return FrameAddr;
+ }
+
+ // flush first to make sure the windowed registers' values are in stack
+ SDValue Chain = getFLUSHW(Op, DAG);
+ FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
+
+ unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56;
+
+ while (depth--) {
+ SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
+ DAG.getIntPtrConstant(Offset));
+ FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo(),
+ false, false, false, 0);
+ }
+ if (Subtarget->is64Bit())
+ FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
+ DAG.getIntPtrConstant(stackBias));
+ return FrameAddr;
+}
+
+
+static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
+ const SparcSubtarget *Subtarget) {
+
+ uint64_t depth = Op.getConstantOperandVal(0);
+
+ return getFRAMEADDR(depth, Op, DAG, Subtarget);
+
+}
+
+static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ const SparcSubtarget *Subtarget) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ uint64_t depth = Op.getConstantOperandVal(0);
+
+ SDValue RetAddr;
+ if (depth == 0) {
+ unsigned RetReg = MF.addLiveIn(SP::I7,
+ TLI.getRegClassFor(TLI.getPointerTy()));
+ RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
+ return RetAddr;
+ }
+
+ // Need frame address to find return address of the caller.
+ SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget);
+
+ unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60;
+ SDValue Ptr = DAG.getNode(ISD::ADD,
+ dl, VT,
+ FrameAddr,
+ DAG.getIntPtrConstant(Offset));
+ RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr,
+ MachinePointerInfo(), false, false, false, 0);
+
+ return RetAddr;
+}
+
+static SDValue LowerF64Op(SDValue Op, SelectionDAG &DAG, unsigned opcode)
+{
+ SDLoc dl(Op);
+
+ assert(Op.getValueType() == MVT::f64 && "LowerF64Op called on non-double!");
+ assert(opcode == ISD::FNEG || opcode == ISD::FABS);
+
+ // Lower fneg/fabs on f64 to fneg/fabs on f32.
+ // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd.
+ // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd.
+
+ SDValue SrcReg64 = Op.getOperand(0);
+ SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32,
+ SrcReg64);
+ SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32,
+ SrcReg64);
+
+ Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32);
+
+ SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, MVT::f64), 0);
+ DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64,
+ DstReg64, Hi32);
+ DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64,
+ DstReg64, Lo32);
+ return DstReg64;
+}
+
+// Lower a f128 load into two f64 loads.
+static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG)
+{
+ SDLoc dl(Op);
+ LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode());
+ assert(LdNode && LdNode->getOffset().getOpcode() == ISD::UNDEF
+ && "Unexpected node type");
+
+ unsigned alignment = LdNode->getAlignment();
+ if (alignment > 8)
+ alignment = 8;
+
+ SDValue Hi64 = DAG.getLoad(MVT::f64,
+ dl,
+ LdNode->getChain(),
+ LdNode->getBasePtr(),
+ LdNode->getPointerInfo(),
+ false, false, false, alignment);
+ EVT addrVT = LdNode->getBasePtr().getValueType();
+ SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
+ LdNode->getBasePtr(),
+ DAG.getConstant(8, addrVT));
+ SDValue Lo64 = DAG.getLoad(MVT::f64,
+ dl,
+ LdNode->getChain(),
+ LoPtr,
+ LdNode->getPointerInfo(),
+ false, false, false, alignment);
+
+ SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, MVT::i32);
+ SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, MVT::i32);
+
+ SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, MVT::f128);
+ InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
+ MVT::f128,
+ SDValue(InFP128, 0),
+ Hi64,
+ SubRegEven);
+ InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
+ MVT::f128,
+ SDValue(InFP128, 0),
+ Lo64,
+ SubRegOdd);
+ SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1),
+ SDValue(Lo64.getNode(), 1) };
+ SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+ SDValue Ops[2] = {SDValue(InFP128,0), OutChain};
+ return DAG.getMergeValues(Ops, dl);
+}
+
+// Lower a f128 store into two f64 stores.
+static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode());
+ assert(StNode && StNode->getOffset().getOpcode() == ISD::UNDEF
+ && "Unexpected node type");
+ SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, MVT::i32);
+ SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, MVT::i32);
+
+ SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ dl,
+ MVT::f64,
+ StNode->getValue(),
+ SubRegEven);
+ SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ dl,
+ MVT::f64,
+ StNode->getValue(),
+ SubRegOdd);
+
+ unsigned alignment = StNode->getAlignment();
+ if (alignment > 8)
+ alignment = 8;
+
+ SDValue OutChains[2];
+ OutChains[0] = DAG.getStore(StNode->getChain(),
+ dl,
+ SDValue(Hi64, 0),
+ StNode->getBasePtr(),
+ MachinePointerInfo(),
+ false, false, alignment);
+ EVT addrVT = StNode->getBasePtr().getValueType();
+ SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
+ StNode->getBasePtr(),
+ DAG.getConstant(8, addrVT));
+ OutChains[1] = DAG.getStore(StNode->getChain(),
+ dl,
+ SDValue(Lo64, 0),
+ LoPtr,
+ MachinePointerInfo(),
+ false, false, alignment);
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+}
+
+static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) {
+ assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS)
+ && "invalid opcode");
+
+ if (Op.getValueType() == MVT::f64)
+ return LowerF64Op(Op, DAG, Op.getOpcode());
+ if (Op.getValueType() != MVT::f128)
+ return Op;
+
+ // Lower fabs/fneg on f128 to fabs/fneg on f64
+ // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64
+
+ SDLoc dl(Op);
+ SDValue SrcReg128 = Op.getOperand(0);
+ SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64,
+ SrcReg128);
+ SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64,
+ SrcReg128);
+ if (isV9)
+ Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64);
+ else
+ Hi64 = LowerF64Op(Hi64, DAG, Op.getOpcode());
+
+ SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, MVT::f128), 0);
+ DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128,
+ DstReg128, Hi64);
+ DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128,
+ DstReg128, Lo64);
+ return DstReg128;
+}
+
+static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
+
+ if (Op.getValueType() != MVT::i64)
+ return Op;
+
+ SDLoc dl(Op);
+ SDValue Src1 = Op.getOperand(0);
+ SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1);
+ SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1,
+ DAG.getConstant(32, MVT::i64));
+ Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi);
+
+ SDValue Src2 = Op.getOperand(1);
+ SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2);
+ SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2,
+ DAG.getConstant(32, MVT::i64));
+ Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi);
+
+
+ bool hasChain = false;
+ unsigned hiOpc = Op.getOpcode();
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case ISD::ADDC: hiOpc = ISD::ADDE; break;
+ case ISD::ADDE: hasChain = true; break;
+ case ISD::SUBC: hiOpc = ISD::SUBE; break;
+ case ISD::SUBE: hasChain = true; break;
+ }
+ SDValue Lo;
+ SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue);
+ if (hasChain) {
+ Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo,
+ Op.getOperand(2));
+ } else {
+ Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo);
+ }
+ SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1));
+ SDValue Carry = Hi.getValue(1);
+
+ Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo);
+ Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi);
+ Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi,
+ DAG.getConstant(32, MVT::i64));
+
+ SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo);
+ SDValue Ops[2] = { Dst, Carry };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+// Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode()
+// in LegalizeDAG.cpp except the order of arguments to the library function.
+static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI)
+{
+ unsigned opcode = Op.getOpcode();
+ assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode.");
+
+ bool isSigned = (opcode == ISD::SMULO);
+ EVT VT = MVT::i64;
+ EVT WideVT = MVT::i128;
+ SDLoc dl(Op);
+ SDValue LHS = Op.getOperand(0);
+
+ if (LHS.getValueType() != VT)
+ return Op;
+
+ SDValue ShiftAmt = DAG.getConstant(63, VT);
+
+ SDValue RHS = Op.getOperand(1);
+ SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt);
+ SDValue HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt);
+ SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
+
+ SDValue MulResult = TLI.makeLibCall(DAG,
+ RTLIB::MUL_I128, WideVT,
+ Args, 4, isSigned, dl).first;
+ SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
+ MulResult, DAG.getIntPtrConstant(0));
+ SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
+ MulResult, DAG.getIntPtrConstant(1));
+ if (isSigned) {
+ SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
+ TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE);
+ } else {
+ TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, VT),
+ ISD::SETNE);
+ }
+ // MulResult is a node with an illegal type. Because such things are not
+ // generally permitted during this phase of legalization, delete the
+ // node. The above EXTRACT_ELEMENT nodes should have been folded.
+ DAG.DeleteNode(MulResult.getNode());
+
+ SDValue Ops[2] = { BottomHalf, TopHalf } ;
+ return DAG.getMergeValues(Ops, dl);
+}
+
+static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) {
+ // Monotonic load/stores are legal.
+ if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
+ return Op;
+
+ // Otherwise, expand with a fence.
+ return SDValue();
+}
+
+
+SDValue SparcTargetLowering::
+LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+
+ bool hasHardQuad = Subtarget->hasHardQuad();
+ bool isV9 = Subtarget->isV9();
+
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Should not custom lower this!");
+
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this,
+ Subtarget);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG,
+ Subtarget);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::VASTART: return LowerVASTART(Op, DAG, *this);
+ case ISD::VAARG: return LowerVAARG(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
+ Subtarget);
+
+ case ISD::LOAD: return LowerF128Load(Op, DAG);
+ case ISD::STORE: return LowerF128Store(Op, DAG);
+ case ISD::FADD: return LowerF128Op(Op, DAG,
+ getLibcallName(RTLIB::ADD_F128), 2);
+ case ISD::FSUB: return LowerF128Op(Op, DAG,
+ getLibcallName(RTLIB::SUB_F128), 2);
+ case ISD::FMUL: return LowerF128Op(Op, DAG,
+ getLibcallName(RTLIB::MUL_F128), 2);
+ case ISD::FDIV: return LowerF128Op(Op, DAG,
+ getLibcallName(RTLIB::DIV_F128), 2);
+ case ISD::FSQRT: return LowerF128Op(Op, DAG,
+ getLibcallName(RTLIB::SQRT_F128),1);
+ case ISD::FABS:
+ case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9);
+ case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this);
+ case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this);
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUBC:
+ case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
+ case ISD::UMULO:
+ case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this);
+ case ISD::ATOMIC_LOAD:
+ case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG);
+ }
+}
+
+MachineBasicBlock *
+SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unknown SELECT_CC!");
+ case SP::SELECT_CC_Int_ICC:
+ case SP::SELECT_CC_FP_ICC:
+ case SP::SELECT_CC_DFP_ICC:
+ case SP::SELECT_CC_QFP_ICC:
+ return expandSelectCC(MI, BB, SP::BCOND);
+ case SP::SELECT_CC_Int_FCC:
+ case SP::SELECT_CC_FP_FCC:
+ case SP::SELECT_CC_DFP_FCC:
+ case SP::SELECT_CC_QFP_FCC:
+ return expandSelectCC(MI, BB, SP::FBCOND);
+
+ case SP::ATOMIC_LOAD_ADD_32:
+ return expandAtomicRMW(MI, BB, SP::ADDrr);
+ case SP::ATOMIC_LOAD_ADD_64:
+ return expandAtomicRMW(MI, BB, SP::ADDXrr);
+ case SP::ATOMIC_LOAD_SUB_32:
+ return expandAtomicRMW(MI, BB, SP::SUBrr);
+ case SP::ATOMIC_LOAD_SUB_64:
+ return expandAtomicRMW(MI, BB, SP::SUBXrr);
+ case SP::ATOMIC_LOAD_AND_32:
+ return expandAtomicRMW(MI, BB, SP::ANDrr);
+ case SP::ATOMIC_LOAD_AND_64:
+ return expandAtomicRMW(MI, BB, SP::ANDXrr);
+ case SP::ATOMIC_LOAD_OR_32:
+ return expandAtomicRMW(MI, BB, SP::ORrr);
+ case SP::ATOMIC_LOAD_OR_64:
+ return expandAtomicRMW(MI, BB, SP::ORXrr);
+ case SP::ATOMIC_LOAD_XOR_32:
+ return expandAtomicRMW(MI, BB, SP::XORrr);
+ case SP::ATOMIC_LOAD_XOR_64:
+ return expandAtomicRMW(MI, BB, SP::XORXrr);
+ case SP::ATOMIC_LOAD_NAND_32:
+ return expandAtomicRMW(MI, BB, SP::ANDrr);
+ case SP::ATOMIC_LOAD_NAND_64:
+ return expandAtomicRMW(MI, BB, SP::ANDXrr);
+
+ case SP::ATOMIC_SWAP_64:
+ return expandAtomicRMW(MI, BB, 0);
+
+ case SP::ATOMIC_LOAD_MAX_32:
+ return expandAtomicRMW(MI, BB, SP::MOVICCrr, SPCC::ICC_G);
+ case SP::ATOMIC_LOAD_MAX_64:
+ return expandAtomicRMW(MI, BB, SP::MOVXCCrr, SPCC::ICC_G);
+ case SP::ATOMIC_LOAD_MIN_32:
+ return expandAtomicRMW(MI, BB, SP::MOVICCrr, SPCC::ICC_LE);
+ case SP::ATOMIC_LOAD_MIN_64:
+ return expandAtomicRMW(MI, BB, SP::MOVXCCrr, SPCC::ICC_LE);
+ case SP::ATOMIC_LOAD_UMAX_32:
+ return expandAtomicRMW(MI, BB, SP::MOVICCrr, SPCC::ICC_GU);
+ case SP::ATOMIC_LOAD_UMAX_64:
+ return expandAtomicRMW(MI, BB, SP::MOVXCCrr, SPCC::ICC_GU);
+ case SP::ATOMIC_LOAD_UMIN_32:
+ return expandAtomicRMW(MI, BB, SP::MOVICCrr, SPCC::ICC_LEU);
+ case SP::ATOMIC_LOAD_UMIN_64:
+ return expandAtomicRMW(MI, BB, SP::MOVXCCrr, SPCC::ICC_LEU);
+ }
+}
+
+MachineBasicBlock*
+SparcTargetLowering::expandSelectCC(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned BROpcode) const {
+ const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ unsigned CC = (SPCC::CondCodes)MI->getOperand(3).getImm();
+
+ // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
+ // control-flow pattern. The incoming instruction knows the destination vreg
+ // to set, the condition code register to branch on, the true/false values to
+ // select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // [f]bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ BuildMI(BB, dl, TII.get(BROpcode)).addMBB(sinkMBB).addImm(CC);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(*BB, BB->begin(), dl, TII.get(SP::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock*
+SparcTargetLowering::expandAtomicRMW(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ unsigned Opcode,
+ unsigned CondCode) const {
+ const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // MI is an atomic read-modify-write instruction of the form:
+ //
+ // rd = atomicrmw<op> addr, rs2
+ //
+ // All three operands are registers.
+ unsigned DestReg = MI->getOperand(0).getReg();
+ unsigned AddrReg = MI->getOperand(1).getReg();
+ unsigned Rs2Reg = MI->getOperand(2).getReg();
+
+ // SelectionDAG has already inserted memory barriers before and after MI, so
+ // we simply have to implement the operatiuon in terms of compare-and-swap.
+ //
+ // %val0 = load %addr
+ // loop:
+ // %val = phi %val0, %dest
+ // %upd = op %val, %rs2
+ // %dest = cas %addr, %val, %upd
+ // cmp %val, %dest
+ // bne loop
+ // done:
+ //
+ bool is64Bit = SP::I64RegsRegClass.hasSubClassEq(MRI.getRegClass(DestReg));
+ const TargetRegisterClass *ValueRC =
+ is64Bit ? &SP::I64RegsRegClass : &SP::IntRegsRegClass;
+ unsigned Val0Reg = MRI.createVirtualRegister(ValueRC);
+
+ BuildMI(*MBB, MI, DL, TII.get(is64Bit ? SP::LDXri : SP::LDri), Val0Reg)
+ .addReg(AddrReg).addImm(0);
+
+ // Split the basic block MBB before MI and insert the loop block in the hole.
+ MachineFunction::iterator MFI = MBB;
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction *MF = MBB->getParent();
+ MachineBasicBlock *LoopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *DoneMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ ++MFI;
+ MF->insert(MFI, LoopMBB);
+ MF->insert(MFI, DoneMBB);
+
+ // Move MI and following instructions to DoneMBB.
+ DoneMBB->splice(DoneMBB->begin(), MBB, MI, MBB->end());
+ DoneMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // Connect the CFG again.
+ MBB->addSuccessor(LoopMBB);
+ LoopMBB->addSuccessor(LoopMBB);
+ LoopMBB->addSuccessor(DoneMBB);
+
+ // Build the loop block.
+ unsigned ValReg = MRI.createVirtualRegister(ValueRC);
+ // Opcode == 0 means try to write Rs2Reg directly (ATOMIC_SWAP).
+ unsigned UpdReg = (Opcode ? MRI.createVirtualRegister(ValueRC) : Rs2Reg);
+
+ BuildMI(LoopMBB, DL, TII.get(SP::PHI), ValReg)
+ .addReg(Val0Reg).addMBB(MBB)
+ .addReg(DestReg).addMBB(LoopMBB);
+
+ if (CondCode) {
+ // This is one of the min/max operations. We need a CMPrr followed by a
+ // MOVXCC/MOVICC.
+ BuildMI(LoopMBB, DL, TII.get(SP::CMPrr)).addReg(ValReg).addReg(Rs2Reg);
+ BuildMI(LoopMBB, DL, TII.get(Opcode), UpdReg)
+ .addReg(ValReg).addReg(Rs2Reg).addImm(CondCode);
+ } else if (Opcode) {
+ BuildMI(LoopMBB, DL, TII.get(Opcode), UpdReg)
+ .addReg(ValReg).addReg(Rs2Reg);
+ }
+
+ if (MI->getOpcode() == SP::ATOMIC_LOAD_NAND_32 ||
+ MI->getOpcode() == SP::ATOMIC_LOAD_NAND_64) {
+ unsigned TmpReg = UpdReg;
+ UpdReg = MRI.createVirtualRegister(ValueRC);
+ BuildMI(LoopMBB, DL, TII.get(SP::XORri), UpdReg).addReg(TmpReg).addImm(-1);
+ }
+
+ BuildMI(LoopMBB, DL, TII.get(is64Bit ? SP::CASXrr : SP::CASrr), DestReg)
+ .addReg(AddrReg).addReg(ValReg).addReg(UpdReg)
+ .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+ BuildMI(LoopMBB, DL, TII.get(SP::CMPrr)).addReg(ValReg).addReg(DestReg);
+ BuildMI(LoopMBB, DL, TII.get(is64Bit ? SP::BPXCC : SP::BCOND))
+ .addMBB(LoopMBB).addImm(SPCC::ICC_NE);
+
+ MI->eraseFromParent();
+ return DoneMBB;
+}
+
+//===----------------------------------------------------------------------===//
+// Sparc Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+SparcTargetLowering::ConstraintType
+SparcTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'r': return C_RegisterClass;
+ case 'I': // SIMM13
+ return C_Other;
+ }
+ }
+
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+TargetLowering::ConstraintWeight SparcTargetLowering::
+getSingleConstraintMatchWeight(AsmOperandInfo &info,
+ const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'I': // SIMM13
+ if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
+ if (isInt<13>(C->getSExtValue()))
+ weight = CW_Constant;
+ }
+ break;
+ }
+ return weight;
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void SparcTargetLowering::
+LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result(nullptr, 0);
+
+ // Only support length 1 constraints for now.
+ if (Constraint.length() > 1)
+ return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break;
+ case 'I':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (isInt<13>(C->getSExtValue())) {
+ Result = DAG.getTargetConstant(C->getSExtValue(), Op.getValueType());
+ break;
+ }
+ return;
+ }
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+ TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+SparcTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r':
+ return std::make_pair(0U, &SP::IntRegsRegClass);
+ }
+ } else if (!Constraint.empty() && Constraint.size() <= 5
+ && Constraint[0] == '{' && *(Constraint.end()-1) == '}') {
+ // constraint = '{r<d>}'
+ // Remove the braces from around the name.
+ StringRef name(Constraint.data()+1, Constraint.size()-2);
+ // Handle register aliases:
+ // r0-r7 -> g0-g7
+ // r8-r15 -> o0-o7
+ // r16-r23 -> l0-l7
+ // r24-r31 -> i0-i7
+ uint64_t intVal = 0;
+ if (name.substr(0, 1).equals("r")
+ && !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) {
+ const char regTypes[] = { 'g', 'o', 'l', 'i' };
+ char regType = regTypes[intVal/8];
+ char regIdx = '0' + (intVal % 8);
+ char tmp[] = { '{', regType, regIdx, '}', 0 };
+ std::string newConstraint = std::string(tmp);
+ return TargetLowering::getRegForInlineAsmConstraint(newConstraint, VT);
+ }
+ }
+
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+bool
+SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The Sparc target isn't yet aware of offsets.
+ return false;
+}
+
+void SparcTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>& Results,
+ SelectionDAG &DAG) const {
+
+ SDLoc dl(N);
+
+ RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL;
+
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Do not know how to custom type legalize this operation!");
+
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ // Custom lower only if it involves f128 or i64.
+ if (N->getOperand(0).getValueType() != MVT::f128
+ || N->getValueType(0) != MVT::i64)
+ return;
+ libCall = ((N->getOpcode() == ISD::FP_TO_SINT)
+ ? RTLIB::FPTOSINT_F128_I64
+ : RTLIB::FPTOUINT_F128_I64);
+
+ Results.push_back(LowerF128Op(SDValue(N, 0),
+ DAG,
+ getLibcallName(libCall),
+ 1));
+ return;
+
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ // Custom lower only if it involves f128 or i64.
+ if (N->getValueType(0) != MVT::f128
+ || N->getOperand(0).getValueType() != MVT::i64)
+ return;
+
+ libCall = ((N->getOpcode() == ISD::SINT_TO_FP)
+ ? RTLIB::SINTTOFP_I64_F128
+ : RTLIB::UINTTOFP_I64_F128);
+
+ Results.push_back(LowerF128Op(SDValue(N, 0),
+ DAG,
+ getLibcallName(libCall),
+ 1));
+ return;
+ }
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcISelLowering.h b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.h
new file mode 100644
index 0000000..a24cc82
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.h
@@ -0,0 +1,178 @@
+//===-- SparcISelLowering.h - Sparc DAG Lowering Interface ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that Sparc uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARC_ISELLOWERING_H
+#define SPARC_ISELLOWERING_H
+
+#include "Sparc.h"
+#include "llvm/Target/TargetLowering.h"
+
+namespace llvm {
+ class SparcSubtarget;
+
+ namespace SPISD {
+ enum {
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+ CMPICC, // Compare two GPR operands, set icc+xcc.
+ CMPFCC, // Compare two FP operands, set fcc.
+ BRICC, // Branch to dest on icc condition
+ BRXCC, // Branch to dest on xcc condition (64-bit only).
+ BRFCC, // Branch to dest on fcc condition
+ SELECT_ICC, // Select between two values using the current ICC flags.
+ SELECT_XCC, // Select between two values using the current XCC flags.
+ SELECT_FCC, // Select between two values using the current FCC flags.
+
+ Hi, Lo, // Hi/Lo operations, typically on a global address.
+
+ FTOI, // FP to Int within a FP register.
+ ITOF, // Int to FP within a FP register.
+ FTOX, // FP to Int64 within a FP register.
+ XTOF, // Int64 to FP within a FP register.
+
+ CALL, // A call instruction.
+ RET_FLAG, // Return with a flag operand.
+ GLOBAL_BASE_REG, // Global base reg for PIC.
+ FLUSHW, // FLUSH register windows to stack.
+
+ TLS_ADD, // For Thread Local Storage (TLS).
+ TLS_LD,
+ TLS_CALL
+ };
+ }
+
+ class SparcTargetLowering : public TargetLowering {
+ const SparcSubtarget *Subtarget;
+ public:
+ SparcTargetLowering(TargetMachine &TM);
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+
+ /// computeKnownBitsForTargetNode - Determine which of the bits specified
+ /// in Mask are known to be either zero or one and return them in the
+ /// KnownZero/KnownOne bitsets.
+ void computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth = 0) const override;
+
+ MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const override;
+
+ const char *getTargetNodeName(unsigned Opcode) const override;
+
+ ConstraintType getConstraintType(const std::string &Constraint) const override;
+ ConstraintWeight
+ getSingleConstraintMatchWeight(AsmOperandInfo &info,
+ const char *constraint) const override;
+ void LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const override;
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const override;
+
+ bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
+ MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
+
+ /// getSetCCResultType - Return the ISD::SETCC ValueType
+ EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
+
+ SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+ SDValue LowerFormalArguments_32(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+ SDValue LowerFormalArguments_64(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+
+ SDValue
+ LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const override;
+ SDValue LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const;
+ SDValue LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const;
+
+ SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const override;
+ SDValue LowerReturn_32(SDValue Chain,
+ CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const;
+ SDValue LowerReturn_64(SDValue Chain,
+ CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const;
+
+ SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
+
+ unsigned getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const;
+ SDValue withTargetFlags(SDValue Op, unsigned TF, SelectionDAG &DAG) const;
+ SDValue makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF,
+ SelectionDAG &DAG) const;
+ SDValue makeAddress(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerF128_LibCallArg(SDValue Chain, ArgListTy &Args,
+ SDValue Arg, SDLoc DL,
+ SelectionDAG &DAG) const;
+ SDValue LowerF128Op(SDValue Op, SelectionDAG &DAG,
+ const char *LibFuncName,
+ unsigned numArgs) const;
+ SDValue LowerF128Compare(SDValue LHS, SDValue RHS,
+ unsigned &SPCC,
+ SDLoc DL,
+ SelectionDAG &DAG) const;
+
+ bool ShouldShrinkFPConstant(EVT VT) const override {
+ // Do not shrink FP constpool if VT == MVT::f128.
+ // (ldd, call _Q_fdtoq) is more expensive than two ldds.
+ return VT != MVT::f128;
+ }
+
+ void ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>& Results,
+ SelectionDAG &DAG) const override;
+
+ MachineBasicBlock *expandSelectCC(MachineInstr *MI, MachineBasicBlock *BB,
+ unsigned BROpcode) const;
+ MachineBasicBlock *expandAtomicRMW(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned Opcode,
+ unsigned CondCode = 0) const;
+ };
+} // end namespace llvm
+
+#endif // SPARC_ISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstr64Bit.td b/contrib/llvm/lib/Target/Sparc/SparcInstr64Bit.td
new file mode 100644
index 0000000..54d8240
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstr64Bit.td
@@ -0,0 +1,573 @@
+//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains instruction definitions and patterns needed for 64-bit
+// code generation on SPARC v9.
+//
+// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
+// also be used in 32-bit code running on a SPARC v9 CPU.
+//
+//===----------------------------------------------------------------------===//
+
+let Predicates = [Is64Bit] in {
+// The same integer registers are used for i32 and i64 values.
+// When registers hold i32 values, the high bits are don't care.
+// This give us free trunc and anyext.
+def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
+def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
+
+} // Predicates = [Is64Bit]
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Shift Instructions.
+//===----------------------------------------------------------------------===//
+//
+// The 32-bit shift instructions are still available. The left shift srl
+// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
+//
+// The srl instructions only shift the low 32 bits and clear the high 32 bits.
+// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
+
+let Predicates = [Is64Bit] in {
+
+def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
+def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
+
+def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
+def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
+
+defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
+defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
+defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
+
+} // Predicates = [Is64Bit]
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Immediates.
+//===----------------------------------------------------------------------===//
+//
+// All 32-bit immediates can be materialized with sethi+or, but 64-bit
+// immediates may require more code. There may be a point where it is
+// preferable to use a constant pool load instead, depending on the
+// microarchitecture.
+
+// Single-instruction patterns.
+
+// The ALU instructions want their simm13 operands as i32 immediates.
+def as_i32imm : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
+}]>;
+def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
+def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
+
+// Double-instruction patterns.
+
+// All unsigned i32 immediates can be handled by sethi+or.
+def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
+def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
+ Requires<[Is64Bit]>;
+
+// All negative i33 immediates can be handled by sethi+xor.
+def nimm33 : PatLeaf<(imm), [{
+ int64_t Imm = N->getSExtValue();
+ return Imm < 0 && isInt<33>(Imm);
+}]>;
+// Bits 10-31 inverted. Same as assembler's %hix.
+def HIX22 : SDNodeXForm<imm, [{
+ uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
+ return CurDAG->getTargetConstant(Val, MVT::i32);
+}]>;
+// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
+def LOX10 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
+}]>;
+def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
+ Requires<[Is64Bit]>;
+
+// More possible patterns:
+//
+// (sllx sethi, n)
+// (sllx simm13, n)
+//
+// 3 instrs:
+//
+// (xor (sllx sethi), simm13)
+// (sllx (xor sethi, simm13))
+//
+// 4 instrs:
+//
+// (or sethi, (sllx sethi))
+// (xnor sethi, (sllx sethi))
+//
+// 5 instrs:
+//
+// (or (sllx sethi), (or sethi, simm13))
+// (xnor (sllx sethi), (or sethi, simm13))
+// (or (sllx sethi), (sllx sethi))
+// (xnor (sllx sethi), (sllx sethi))
+//
+// Worst case is 6 instrs:
+//
+// (or (sllx (or sethi, simmm13)), (or sethi, simm13))
+
+// Bits 42-63, same as assembler's %hh.
+def HH22 : SDNodeXForm<imm, [{
+ uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
+ return CurDAG->getTargetConstant(Val, MVT::i32);
+}]>;
+// Bits 32-41, same as assembler's %hm.
+def HM10 : SDNodeXForm<imm, [{
+ uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
+ return CurDAG->getTargetConstant(Val, MVT::i32);
+}]>;
+def : Pat<(i64 imm:$val),
+ (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
+ (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
+ Requires<[Is64Bit]>;
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Integer Arithmetic and Logic.
+//===----------------------------------------------------------------------===//
+
+let Predicates = [Is64Bit] in {
+
+// Register-register instructions.
+let isCodeGenOnly = 1 in {
+defm ANDX : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>;
+defm ORX : F3_12<"or", 0b000010, or, I64Regs, i64, i64imm>;
+defm XORX : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>;
+
+def ANDXNrr : F3_1<2, 0b000101,
+ (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
+ "andn $b, $c, $dst",
+ [(set i64:$dst, (and i64:$b, (not i64:$c)))]>;
+def ORXNrr : F3_1<2, 0b000110,
+ (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
+ "orn $b, $c, $dst",
+ [(set i64:$dst, (or i64:$b, (not i64:$c)))]>;
+def XNORXrr : F3_1<2, 0b000111,
+ (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
+ "xnor $b, $c, $dst",
+ [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>;
+
+defm ADDX : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>;
+defm SUBX : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>;
+
+def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd),
+ (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym),
+ "add $rs1, $rs2, $rd, $sym",
+ [(set i64:$rd,
+ (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>;
+
+// "LEA" form of add
+def LEAX_ADDri : F3_2<2, 0b000000,
+ (outs I64Regs:$dst), (ins MEMri:$addr),
+ "add ${addr:arith}, $dst",
+ [(set iPTR:$dst, ADDRri:$addr)]>;
+}
+
+def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
+def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
+def : Pat<(ctpop i64:$src), (POPCrr $src)>;
+
+} // Predicates = [Is64Bit]
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Integer Multiply and Divide.
+//===----------------------------------------------------------------------===//
+
+let Predicates = [Is64Bit] in {
+
+def MULXrr : F3_1<2, 0b001001,
+ (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
+ "mulx $rs1, $rs2, $rd",
+ [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
+def MULXri : F3_2<2, 0b001001,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
+ "mulx $rs1, $simm13, $rd",
+ [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>;
+
+// Division can trap.
+let hasSideEffects = 1 in {
+def SDIVXrr : F3_1<2, 0b101101,
+ (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
+ "sdivx $rs1, $rs2, $rd",
+ [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
+def SDIVXri : F3_2<2, 0b101101,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
+ "sdivx $rs1, $simm13, $rd",
+ [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>;
+
+def UDIVXrr : F3_1<2, 0b001101,
+ (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
+ "udivx $rs1, $rs2, $rd",
+ [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
+def UDIVXri : F3_2<2, 0b001101,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
+ "udivx $rs1, $simm13, $rd",
+ [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>;
+} // hasSideEffects = 1
+
+} // Predicates = [Is64Bit]
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Loads and Stores.
+//===----------------------------------------------------------------------===//
+//
+// All the 32-bit loads and stores are available. The extending loads are sign
+// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
+// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
+// Word).
+//
+// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
+
+let Predicates = [Is64Bit] in {
+
+// 64-bit loads.
+let DecoderMethod = "DecodeLoadInt" in
+ defm LDX : Load<"ldx", 0b001011, load, I64Regs, i64>;
+
+let mayLoad = 1, isCodeGenOnly = 1, isAsmParserOnly = 1 in
+ def TLS_LDXrr : F3_1<3, 0b001011,
+ (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
+ "ldx [$addr], $dst, $sym",
+ [(set i64:$dst,
+ (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
+
+// Extending loads to i64.
+def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
+def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
+def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
+def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
+
+def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
+def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
+def : Pat<(i64 (extloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
+def : Pat<(i64 (extloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
+def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
+def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
+
+def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
+def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
+def : Pat<(i64 (extloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
+def : Pat<(i64 (extloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
+def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
+def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
+
+def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
+def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
+def : Pat<(i64 (extloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
+def : Pat<(i64 (extloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
+
+// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
+let DecoderMethod = "DecodeLoadInt" in
+ defm LDSW : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>;
+
+// 64-bit stores.
+let DecoderMethod = "DecodeStoreInt" in
+ defm STX : Store<"stx", 0b001110, store, I64Regs, i64>;
+
+// Truncating stores from i64 are identical to the i32 stores.
+def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
+def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
+def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
+def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
+def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>;
+def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>;
+
+// store 0, addr -> store %g0, addr
+def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
+def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
+
+} // Predicates = [Is64Bit]
+
+
+//===----------------------------------------------------------------------===//
+// 64-bit Conditionals.
+//===----------------------------------------------------------------------===//
+
+//
+// Flag-setting instructions like subcc and addcc set both icc and xcc flags.
+// The icc flags correspond to the 32-bit result, and the xcc are for the
+// full 64-bit result.
+//
+// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
+// 64-bit compares. See LowerBR_CC.
+
+let Predicates = [Is64Bit] in {
+
+let Uses = [ICC], cc = 0b10 in
+ defm BPX : IPredBranch<"%xcc", [(SPbrxcc bb:$imm19, imm:$cond)]>;
+
+// Conditional moves on %xcc.
+let Uses = [ICC], Constraints = "$f = $rd" in {
+let intcc = 1, cc = 0b10 in {
+def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd),
+ (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
+ "mov$cond %xcc, $rs2, $rd",
+ [(set i32:$rd,
+ (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
+def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd),
+ (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
+ "mov$cond %xcc, $simm11, $rd",
+ [(set i32:$rd,
+ (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>;
+} // cc
+
+let intcc = 1, opf_cc = 0b10 in {
+def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
+ (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
+ "fmovs$cond %xcc, $rs2, $rd",
+ [(set f32:$rd,
+ (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
+def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
+ (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
+ "fmovd$cond %xcc, $rs2, $rd",
+ [(set f64:$rd,
+ (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
+def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
+ (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
+ "fmovq$cond %xcc, $rs2, $rd",
+ [(set f128:$rd,
+ (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>;
+} // opf_cc
+} // Uses, Constraints
+
+// Branch On integer register with Prediction (BPr).
+let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in
+multiclass BranchOnReg<bits<3> cond, string OpcStr> {
+ def napt : F2_4<cond, 0, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
+ !strconcat(OpcStr, " $rs1, $imm16"), []>;
+ def apt : F2_4<cond, 1, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
+ !strconcat(OpcStr, ",a $rs1, $imm16"), []>;
+ def napn : F2_4<cond, 0, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
+ !strconcat(OpcStr, ",pn $rs1, $imm16"), []>;
+ def apn : F2_4<cond, 1, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
+ !strconcat(OpcStr, ",a,pn $rs1, $imm16"), []>;
+}
+
+multiclass bpr_alias<string OpcStr, Instruction NAPT, Instruction APT> {
+ def : InstAlias<!strconcat(OpcStr, ",pt $rs1, $imm16"),
+ (NAPT I64Regs:$rs1, bprtarget16:$imm16), 0>;
+ def : InstAlias<!strconcat(OpcStr, ",a,pt $rs1, $imm16"),
+ (APT I64Regs:$rs1, bprtarget16:$imm16), 0>;
+}
+
+defm BPZ : BranchOnReg<0b001, "brz">;
+defm BPLEZ : BranchOnReg<0b010, "brlez">;
+defm BPLZ : BranchOnReg<0b011, "brlz">;
+defm BPNZ : BranchOnReg<0b101, "brnz">;
+defm BPGZ : BranchOnReg<0b110, "brgz">;
+defm BPGEZ : BranchOnReg<0b111, "brgez">;
+
+defm : bpr_alias<"brz", BPZnapt, BPZapt >;
+defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>;
+defm : bpr_alias<"brlz", BPLZnapt, BPLZapt >;
+defm : bpr_alias<"brnz", BPNZnapt, BPNZapt >;
+defm : bpr_alias<"brgz", BPGZnapt, BPGZapt >;
+defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>;
+
+// Move integer register on register condition (MOVr).
+multiclass MOVR< bits<3> rcond, string OpcStr> {
+ def rr : F4_4r<0b101111, 0b00000, rcond, (outs I64Regs:$rd),
+ (ins I64Regs:$rs1, IntRegs:$rs2),
+ !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
+
+ def ri : F4_4i<0b101111, rcond, (outs I64Regs:$rd),
+ (ins I64Regs:$rs1, i64imm:$simm10),
+ !strconcat(OpcStr, " $rs1, $simm10, $rd"), []>;
+}
+
+defm MOVRRZ : MOVR<0b001, "movrz">;
+defm MOVRLEZ : MOVR<0b010, "movrlez">;
+defm MOVRLZ : MOVR<0b011, "movrlz">;
+defm MOVRNZ : MOVR<0b101, "movrnz">;
+defm MOVRGZ : MOVR<0b110, "movrgz">;
+defm MOVRGEZ : MOVR<0b111, "movrgez">;
+
+// Move FP register on integer register condition (FMOVr).
+multiclass FMOVR<bits<3> rcond, string OpcStr> {
+
+ def S : F4_4r<0b110101, 0b00101, rcond,
+ (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
+ !strconcat(!strconcat("fmovrs", OpcStr)," $rs1, $rs2, $rd"),
+ []>;
+ def D : F4_4r<0b110101, 0b00110, rcond,
+ (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
+ !strconcat(!strconcat("fmovrd", OpcStr)," $rs1, $rs2, $rd"),
+ []>;
+ def Q : F4_4r<0b110101, 0b00111, rcond,
+ (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
+ !strconcat(!strconcat("fmovrq", OpcStr)," $rs1, $rs2, $rd"),
+ []>, Requires<[HasHardQuad]>;
+}
+
+let Predicates = [HasV9] in {
+ defm FMOVRZ : FMOVR<0b001, "z">;
+ defm FMOVRLEZ : FMOVR<0b010, "lez">;
+ defm FMOVRLZ : FMOVR<0b011, "lz">;
+ defm FMOVRNZ : FMOVR<0b101, "nz">;
+ defm FMOVRGZ : FMOVR<0b110, "gz">;
+ defm FMOVRGEZ : FMOVR<0b111, "gez">;
+}
+
+//===----------------------------------------------------------------------===//
+// 64-bit Floating Point Conversions.
+//===----------------------------------------------------------------------===//
+
+let Predicates = [Is64Bit] in {
+
+def FXTOS : F3_3u<2, 0b110100, 0b010000100,
+ (outs FPRegs:$rd), (ins DFPRegs:$rs2),
+ "fxtos $rs2, $rd",
+ [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
+def FXTOD : F3_3u<2, 0b110100, 0b010001000,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fxtod $rs2, $rd",
+ [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
+def FXTOQ : F3_3u<2, 0b110100, 0b010001100,
+ (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fxtoq $rs2, $rd",
+ [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+def FSTOX : F3_3u<2, 0b110100, 0b010000001,
+ (outs DFPRegs:$rd), (ins FPRegs:$rs2),
+ "fstox $rs2, $rd",
+ [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>;
+def FDTOX : F3_3u<2, 0b110100, 0b010000010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fdtox $rs2, $rd",
+ [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>;
+def FQTOX : F3_3u<2, 0b110100, 0b010000011,
+ (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
+ "fqtox $rs2, $rd",
+ [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+} // Predicates = [Is64Bit]
+
+def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
+ (MOVXCCrr $t, $f, imm:$cond)>;
+def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
+ (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
+
+def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
+ (MOVICCrr $t, $f, imm:$cond)>;
+def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
+ (MOVICCri (as_i32imm $t), $f, imm:$cond)>;
+
+def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
+ (MOVFCCrr $t, $f, imm:$cond)>;
+def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
+ (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
+
+} // Predicates = [Is64Bit]
+
+
+// 64 bit SETHI
+let Predicates = [Is64Bit], isCodeGenOnly = 1 in {
+def SETHIXi : F2_1<0b100,
+ (outs IntRegs:$rd), (ins i64imm:$imm22),
+ "sethi $imm22, $rd",
+ [(set i64:$rd, SETHIimm:$imm22)]>;
+}
+
+// ATOMICS.
+let Predicates = [Is64Bit], Constraints = "$swap = $rd" in {
+ def CASXrr: F3_1_asi<3, 0b111110, 0b10000000,
+ (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2,
+ I64Regs:$swap),
+ "casx [$rs1], $rs2, $rd",
+ [(set i64:$rd,
+ (atomic_cmp_swap i64:$rs1, i64:$rs2, i64:$swap))]>;
+
+} // Predicates = [Is64Bit], Constraints = ...
+
+let Predicates = [Is64Bit] in {
+
+def : Pat<(atomic_fence imm, imm), (MEMBARi 0xf)>;
+
+// atomic_load_64 addr -> load addr
+def : Pat<(i64 (atomic_load ADDRrr:$src)), (LDXrr ADDRrr:$src)>;
+def : Pat<(i64 (atomic_load ADDRri:$src)), (LDXri ADDRri:$src)>;
+
+// atomic_store_64 val, addr -> store val, addr
+def : Pat<(atomic_store ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>;
+def : Pat<(atomic_store ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>;
+
+} // Predicates = [Is64Bit]
+
+let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1,
+ Defs = [ICC] in
+multiclass AtomicRMW<SDPatternOperator op32, SDPatternOperator op64> {
+
+ def _32 : Pseudo<(outs IntRegs:$rd),
+ (ins ptr_rc:$addr, IntRegs:$rs2), "",
+ [(set i32:$rd, (op32 iPTR:$addr, i32:$rs2))]>;
+
+ let Predicates = [Is64Bit] in
+ def _64 : Pseudo<(outs I64Regs:$rd),
+ (ins ptr_rc:$addr, I64Regs:$rs2), "",
+ [(set i64:$rd, (op64 iPTR:$addr, i64:$rs2))]>;
+}
+
+defm ATOMIC_LOAD_ADD : AtomicRMW<atomic_load_add_32, atomic_load_add_64>;
+defm ATOMIC_LOAD_SUB : AtomicRMW<atomic_load_sub_32, atomic_load_sub_64>;
+defm ATOMIC_LOAD_AND : AtomicRMW<atomic_load_and_32, atomic_load_and_64>;
+defm ATOMIC_LOAD_OR : AtomicRMW<atomic_load_or_32, atomic_load_or_64>;
+defm ATOMIC_LOAD_XOR : AtomicRMW<atomic_load_xor_32, atomic_load_xor_64>;
+defm ATOMIC_LOAD_NAND : AtomicRMW<atomic_load_nand_32, atomic_load_nand_64>;
+defm ATOMIC_LOAD_MIN : AtomicRMW<atomic_load_min_32, atomic_load_min_64>;
+defm ATOMIC_LOAD_MAX : AtomicRMW<atomic_load_max_32, atomic_load_max_64>;
+defm ATOMIC_LOAD_UMIN : AtomicRMW<atomic_load_umin_32, atomic_load_umin_64>;
+defm ATOMIC_LOAD_UMAX : AtomicRMW<atomic_load_umax_32, atomic_load_umax_64>;
+
+// There is no 64-bit variant of SWAP, so use a pseudo.
+let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1,
+ Defs = [ICC], Predicates = [Is64Bit] in
+def ATOMIC_SWAP_64 : Pseudo<(outs I64Regs:$rd),
+ (ins ptr_rc:$addr, I64Regs:$rs2), "",
+ [(set i64:$rd,
+ (atomic_swap_64 iPTR:$addr, i64:$rs2))]>;
+
+let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in
+ defm TXCC : TRAP<"%xcc">;
+
+// Global addresses, constant pool entries
+let Predicates = [Is64Bit] in {
+
+def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
+def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>;
+def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
+def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>;
+
+// GlobalTLS addresses
+def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
+def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>;
+def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
+ (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
+def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
+ (XORXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
+
+// Blockaddress
+def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
+def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>;
+
+// Add reg, lo. This is used when taking the addr of a global/constpool entry.
+def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>;
+def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDXri $r, tconstpool:$in)>;
+def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
+ (ADDXri $r, tblockaddress:$in)>;
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrAliases.td b/contrib/llvm/lib/Target/Sparc/SparcInstrAliases.td
new file mode 100644
index 0000000..d36f67b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrAliases.td
@@ -0,0 +1,325 @@
+//===-- SparcInstrAliases.td - Instruction Aliases for Sparc Target -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains instruction aliases for Sparc.
+//===----------------------------------------------------------------------===//
+
+// Instruction aliases for conditional moves.
+
+// mov<cond> <ccreg> rs2, rd
+multiclass intcond_mov_alias<string cond, int condVal, string ccreg,
+ Instruction movrr, Instruction movri,
+ Instruction fmovs, Instruction fmovd> {
+
+ // mov<cond> (%icc|%xcc), rs2, rd
+ def : InstAlias<!strconcat(!strconcat(!strconcat("mov", cond), ccreg),
+ ", $rs2, $rd"),
+ (movrr IntRegs:$rd, IntRegs:$rs2, condVal)>;
+
+ // mov<cond> (%icc|%xcc), simm11, rd
+ def : InstAlias<!strconcat(!strconcat(!strconcat("mov", cond), ccreg),
+ ", $simm11, $rd"),
+ (movri IntRegs:$rd, i32imm:$simm11, condVal)>;
+
+ // fmovs<cond> (%icc|%xcc), $rs2, $rd
+ def : InstAlias<!strconcat(!strconcat(!strconcat("fmovs", cond), ccreg),
+ ", $rs2, $rd"),
+ (fmovs FPRegs:$rd, FPRegs:$rs2, condVal)>;
+
+ // fmovd<cond> (%icc|%xcc), $rs2, $rd
+ def : InstAlias<!strconcat(!strconcat(!strconcat("fmovd", cond), ccreg),
+ ", $rs2, $rd"),
+ (fmovd DFPRegs:$rd, DFPRegs:$rs2, condVal)>;
+}
+
+// mov<cond> <ccreg> rs2, rd
+multiclass fpcond_mov_alias<string cond, int condVal,
+ Instruction movrr, Instruction movri,
+ Instruction fmovs, Instruction fmovd> {
+
+ // mov<cond> %fcc[0-3], rs2, rd
+ def : InstAlias<!strconcat(!strconcat("mov", cond), " $cc, $rs2, $rd"),
+ (movrr IntRegs:$rd, FCCRegs:$cc, IntRegs:$rs2, condVal)>;
+
+ // mov<cond> %fcc[0-3], simm11, rd
+ def : InstAlias<!strconcat(!strconcat("mov", cond), " $cc, $simm11, $rd"),
+ (movri IntRegs:$rd, FCCRegs:$cc, i32imm:$simm11, condVal)>;
+
+ // fmovs<cond> %fcc[0-3], $rs2, $rd
+ def : InstAlias<!strconcat(!strconcat("fmovs", cond), " $cc, $rs2, $rd"),
+ (fmovs FPRegs:$rd, FCCRegs:$cc, FPRegs:$rs2, condVal)>;
+
+ // fmovd<cond> %fcc[0-3], $rs2, $rd
+ def : InstAlias<!strconcat(!strconcat("fmovd", cond), " $cc, $rs2, $rd"),
+ (fmovd DFPRegs:$rd, FCCRegs:$cc, DFPRegs:$rs2, condVal)>;
+}
+
+// Instruction aliases for integer conditional branches and moves.
+multiclass int_cond_alias<string cond, int condVal> {
+
+ // b<cond> $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), " $imm"),
+ (BCOND brtarget:$imm, condVal)>;
+
+ // b<cond>,a $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), ",a $imm"),
+ (BCONDA brtarget:$imm, condVal)>;
+
+ // b<cond> %icc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), " %icc, $imm"),
+ (BPICC brtarget:$imm, condVal)>, Requires<[HasV9]>;
+
+ // b<cond>,pt %icc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), ",pt %icc, $imm"),
+ (BPICC brtarget:$imm, condVal)>, Requires<[HasV9]>;
+
+ // b<cond>,a %icc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), ",a %icc, $imm"),
+ (BPICCA brtarget:$imm, condVal)>, Requires<[HasV9]>;
+
+ // b<cond>,a,pt %icc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), ",a,pt %icc, $imm"),
+ (BPICCA brtarget:$imm, condVal)>, Requires<[HasV9]>;
+
+ // b<cond>,pn %icc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), ",pn %icc, $imm"),
+ (BPICCNT brtarget:$imm, condVal)>, Requires<[HasV9]>;
+
+ // b<cond>,a,pn %icc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), ",a,pn %icc, $imm"),
+ (BPICCANT brtarget:$imm, condVal)>, Requires<[HasV9]>;
+
+ // b<cond> %xcc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), " %xcc, $imm"),
+ (BPXCC brtarget:$imm, condVal)>, Requires<[Is64Bit]>;
+
+ // b<cond>,pt %xcc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), ",pt %xcc, $imm"),
+ (BPXCC brtarget:$imm, condVal)>, Requires<[Is64Bit]>;
+
+ // b<cond>,a %xcc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), ",a %xcc, $imm"),
+ (BPXCCA brtarget:$imm, condVal)>, Requires<[Is64Bit]>;
+
+ // b<cond>,a,pt %xcc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), ",a,pt %xcc, $imm"),
+ (BPXCCA brtarget:$imm, condVal)>, Requires<[Is64Bit]>;
+
+ // b<cond>,pn %xcc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), ",pn %xcc, $imm"),
+ (BPXCCNT brtarget:$imm, condVal)>, Requires<[Is64Bit]>;
+
+ // b<cond>,a,pn %xcc, $imm
+ def : InstAlias<!strconcat(!strconcat("b", cond), ",a,pn %xcc, $imm"),
+ (BPXCCANT brtarget:$imm, condVal)>, Requires<[Is64Bit]>;
+
+
+ defm : intcond_mov_alias<cond, condVal, " %icc",
+ MOVICCrr, MOVICCri,
+ FMOVS_ICC, FMOVD_ICC>, Requires<[HasV9]>;
+
+ defm : intcond_mov_alias<cond, condVal, " %xcc",
+ MOVXCCrr, MOVXCCri,
+ FMOVS_XCC, FMOVD_XCC>, Requires<[Is64Bit]>;
+
+ // fmovq<cond> (%icc|%xcc), $rs2, $rd
+ def : InstAlias<!strconcat(!strconcat("fmovq", cond), " %icc, $rs2, $rd"),
+ (FMOVQ_ICC QFPRegs:$rd, QFPRegs:$rs2, condVal)>,
+ Requires<[HasV9, HasHardQuad]>;
+ def : InstAlias<!strconcat(!strconcat("fmovq", cond), " %xcc, $rs2, $rd"),
+ (FMOVQ_XCC QFPRegs:$rd, QFPRegs:$rs2, condVal)>,
+ Requires<[Is64Bit, HasHardQuad]>;
+
+ // t<cond> %icc, rs1 + rs2
+ def : InstAlias<!strconcat(!strconcat("t", cond), " %icc, $rs1 + $rs2"),
+ (TICCrr IntRegs:$rs1, IntRegs:$rs2, condVal)>,
+ Requires<[HasV9]>;
+
+ // t<cond> %icc, rs => t<cond> %icc, G0 + rs
+ def : InstAlias<!strconcat(!strconcat("t", cond), " %icc, $rs2"),
+ (TICCrr G0, IntRegs:$rs2, condVal)>,
+ Requires<[HasV9]>;
+
+ // t<cond> %xcc, rs1 + rs2
+ def : InstAlias<!strconcat(!strconcat("t", cond), " %xcc, $rs1 + $rs2"),
+ (TXCCrr IntRegs:$rs1, IntRegs:$rs2, condVal)>,
+ Requires<[HasV9]>;
+
+ // t<cond> %xcc, rs => t<cond> %xcc, G0 + rs
+ def : InstAlias<!strconcat(!strconcat("t", cond), " %xcc, $rs2"),
+ (TXCCrr G0, IntRegs:$rs2, condVal)>,
+ Requires<[HasV9]>;
+
+ // t<cond> rs1 + rs2 => t<cond> %icc, rs1 + rs2
+ def : InstAlias<!strconcat(!strconcat("t", cond), " $rs1 + $rs2"),
+ (TICCrr IntRegs:$rs1, IntRegs:$rs2, condVal)>;
+
+ // t<cond> rs=> t<cond> %icc, G0 + rs2
+ def : InstAlias<!strconcat(!strconcat("t", cond), " $rs2"),
+ (TICCrr G0, IntRegs:$rs2, condVal)>;
+
+ // t<cond> %icc, rs1 + imm
+ def : InstAlias<!strconcat(!strconcat("t", cond), " %icc, $rs1 + $imm"),
+ (TICCri IntRegs:$rs1, i32imm:$imm, condVal)>,
+ Requires<[HasV9]>;
+ // t<cond> %icc, imm => t<cond> %icc, G0 + imm
+ def : InstAlias<!strconcat(!strconcat("t", cond), " %icc, $imm"),
+ (TICCri G0, i32imm:$imm, condVal)>,
+ Requires<[HasV9]>;
+ // t<cond> %xcc, rs1 + imm
+ def : InstAlias<!strconcat(!strconcat("t", cond), " %xcc, $rs1 + $imm"),
+ (TXCCri IntRegs:$rs1, i32imm:$imm, condVal)>,
+ Requires<[HasV9]>;
+ // t<cond> %xcc, imm => t<cond> %xcc, G0 + imm
+ def : InstAlias<!strconcat(!strconcat("t", cond), " %xcc, $imm"),
+ (TXCCri G0, i32imm:$imm, condVal)>,
+ Requires<[HasV9]>;
+
+ // t<cond> rs1 + imm => t<cond> %icc, rs1 + imm
+ def : InstAlias<!strconcat(!strconcat("t", cond), " $rs1 + $imm"),
+ (TICCri IntRegs:$rs1, i32imm:$imm, condVal)>;
+
+ // t<cond> imm => t<cond> %icc, G0 + imm
+ def : InstAlias<!strconcat(!strconcat("t", cond), " $imm"),
+ (TICCri G0, i32imm:$imm, condVal)>;
+
+}
+
+
+// Instruction aliases for floating point conditional branches and moves.
+multiclass fp_cond_alias<string cond, int condVal> {
+
+ // fb<cond> $imm
+ def : InstAlias<!strconcat(!strconcat("fb", cond), " $imm"),
+ (FBCOND brtarget:$imm, condVal), 0>;
+
+ // fb<cond>,a $imm
+ def : InstAlias<!strconcat(!strconcat("fb", cond), ",a $imm"),
+ (FBCONDA brtarget:$imm, condVal), 0>;
+
+ // fb<cond> %fcc0, $imm
+ def : InstAlias<!strconcat(!strconcat("fb", cond), " $cc, $imm"),
+ (BPFCC brtarget:$imm, condVal, FCCRegs:$cc)>,
+ Requires<[HasV9]>;
+
+ // fb<cond>,pt %fcc0, $imm
+ def : InstAlias<!strconcat(!strconcat("fb", cond), ",pt $cc, $imm"),
+ (BPFCC brtarget:$imm, condVal, FCCRegs:$cc)>,
+ Requires<[HasV9]>;
+
+ // fb<cond>,a %fcc0, $imm
+ def : InstAlias<!strconcat(!strconcat("fb", cond), ",a $cc, $imm"),
+ (BPFCCA brtarget:$imm, condVal, FCCRegs:$cc)>,
+ Requires<[HasV9]>;
+
+ // fb<cond>,a,pt %fcc0, $imm
+ def : InstAlias<!strconcat(!strconcat("fb", cond), ",a,pt $cc, $imm"),
+ (BPFCCA brtarget:$imm, condVal, FCCRegs:$cc)>,
+ Requires<[HasV9]>;
+
+ // fb<cond>,pn %fcc0, $imm
+ def : InstAlias<!strconcat(!strconcat("fb", cond), ",pn $cc, $imm"),
+ (BPFCCNT brtarget:$imm, condVal, FCCRegs:$cc)>,
+ Requires<[HasV9]>;
+
+ // fb<cond>,a,pn %fcc0, $imm
+ def : InstAlias<!strconcat(!strconcat("fb", cond), ",a,pn $cc, $imm"),
+ (BPFCCANT brtarget:$imm, condVal, FCCRegs:$cc)>,
+ Requires<[HasV9]>;
+
+ defm : fpcond_mov_alias<cond, condVal,
+ V9MOVFCCrr, V9MOVFCCri,
+ V9FMOVS_FCC, V9FMOVD_FCC>, Requires<[HasV9]>;
+
+ // fmovq<cond> %fcc0, $rs2, $rd
+ def : InstAlias<!strconcat(!strconcat("fmovq", cond), " $cc, $rs2, $rd"),
+ (V9FMOVQ_FCC QFPRegs:$rd, FCCRegs:$cc, QFPRegs:$rs2,
+ condVal)>,
+ Requires<[HasV9, HasHardQuad]>;
+}
+
+defm : int_cond_alias<"a", 0b1000>;
+defm : int_cond_alias<"n", 0b0000>;
+defm : int_cond_alias<"ne", 0b1001>;
+defm : int_cond_alias<"e", 0b0001>;
+defm : int_cond_alias<"g", 0b1010>;
+defm : int_cond_alias<"le", 0b0010>;
+defm : int_cond_alias<"ge", 0b1011>;
+defm : int_cond_alias<"l", 0b0011>;
+defm : int_cond_alias<"gu", 0b1100>;
+defm : int_cond_alias<"leu", 0b0100>;
+defm : int_cond_alias<"cc", 0b1101>;
+defm : int_cond_alias<"cs", 0b0101>;
+defm : int_cond_alias<"pos", 0b1110>;
+defm : int_cond_alias<"neg", 0b0110>;
+defm : int_cond_alias<"vc", 0b1111>;
+defm : int_cond_alias<"vs", 0b0111>;
+
+defm : fp_cond_alias<"a", 0b0000>;
+defm : fp_cond_alias<"n", 0b1000>;
+defm : fp_cond_alias<"u", 0b0111>;
+defm : fp_cond_alias<"g", 0b0110>;
+defm : fp_cond_alias<"ug", 0b0101>;
+defm : fp_cond_alias<"l", 0b0100>;
+defm : fp_cond_alias<"ul", 0b0011>;
+defm : fp_cond_alias<"lg", 0b0010>;
+defm : fp_cond_alias<"ne", 0b0001>;
+defm : fp_cond_alias<"e", 0b1001>;
+defm : fp_cond_alias<"ue", 0b1010>;
+defm : fp_cond_alias<"ge", 0b1011>;
+defm : fp_cond_alias<"uge", 0b1100>;
+defm : fp_cond_alias<"le", 0b1101>;
+defm : fp_cond_alias<"ule", 0b1110>;
+defm : fp_cond_alias<"o", 0b1111>;
+
+// Instruction aliases for JMPL.
+
+// jmp addr -> jmpl addr, %g0
+def : InstAlias<"jmp $addr", (JMPLrr G0, MEMrr:$addr), 0>;
+def : InstAlias<"jmp $addr", (JMPLri G0, MEMri:$addr), 0>;
+
+// call addr -> jmpl addr, %o7
+def : InstAlias<"call $addr", (JMPLrr O7, MEMrr:$addr), 0>;
+def : InstAlias<"call $addr", (JMPLri O7, MEMri:$addr), 0>;
+
+// retl -> RETL 8
+def : InstAlias<"retl", (RETL 8)>;
+
+// ret -> RET 8
+def : InstAlias<"ret", (RET 8)>;
+
+// mov reg, rd -> or %g0, reg, rd
+def : InstAlias<"mov $rs2, $rd", (ORrr IntRegs:$rd, G0, IntRegs:$rs2)>;
+
+// mov simm13, rd -> or %g0, simm13, rd
+def : InstAlias<"mov $simm13, $rd", (ORri IntRegs:$rd, G0, i32imm:$simm13)>;
+
+// restore -> restore %g0, %g0, %g0
+def : InstAlias<"restore", (RESTORErr G0, G0, G0)>;
+
+def : MnemonicAlias<"return", "rett">, Requires<[HasV9]>;
+
+def : MnemonicAlias<"addc", "addx">, Requires<[HasV9]>;
+def : MnemonicAlias<"addccc", "addxcc">, Requires<[HasV9]>;
+
+def : MnemonicAlias<"subc", "subx">, Requires<[HasV9]>;
+def : MnemonicAlias<"subccc", "subxcc">, Requires<[HasV9]>;
+
+
+def : InstAlias<"fcmps $rs1, $rs2", (V9FCMPS FCC0, FPRegs:$rs1, FPRegs:$rs2)>;
+def : InstAlias<"fcmpd $rs1, $rs2", (V9FCMPD FCC0, DFPRegs:$rs1, DFPRegs:$rs2)>;
+def : InstAlias<"fcmpq $rs1, $rs2", (V9FCMPQ FCC0, QFPRegs:$rs1, QFPRegs:$rs2)>,
+ Requires<[HasHardQuad]>;
+
+def : InstAlias<"fcmpes $rs1, $rs2", (V9FCMPES FCC0, FPRegs:$rs1, FPRegs:$rs2)>;
+def : InstAlias<"fcmped $rs1, $rs2", (V9FCMPED FCC0, DFPRegs:$rs1,
+ DFPRegs:$rs2)>;
+def : InstAlias<"fcmpeq $rs1, $rs2", (V9FCMPEQ FCC0, QFPRegs:$rs1,
+ QFPRegs:$rs2)>,
+ Requires<[HasHardQuad]>;
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrFormats.td b/contrib/llvm/lib/Target/Sparc/SparcInstrFormats.td
new file mode 100644
index 0000000..3b5e238
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrFormats.td
@@ -0,0 +1,330 @@
+//===-- SparcInstrFormats.td - Sparc Instruction Formats ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : Instruction {
+ field bits<32> Inst;
+
+ let Namespace = "SP";
+ let Size = 4;
+
+ bits<2> op;
+ let Inst{31-30} = op; // Top two bits are the 'op' field
+
+ dag OutOperandList = outs;
+ dag InOperandList = ins;
+ let AsmString = asmstr;
+ let Pattern = pattern;
+
+ let DecoderNamespace = "Sparc";
+ field bits<32> SoftFail = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Format #2 instruction classes in the Sparc
+//===----------------------------------------------------------------------===//
+
+// Format 2 instructions
+class F2<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSP<outs, ins, asmstr, pattern> {
+ bits<3> op2;
+ bits<22> imm22;
+ let op = 0; // op = 0
+ let Inst{24-22} = op2;
+ let Inst{21-0} = imm22;
+}
+
+// Specific F2 classes: SparcV8 manual, page 44
+//
+class F2_1<bits<3> op2Val, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : F2<outs, ins, asmstr, pattern> {
+ bits<5> rd;
+
+ let op2 = op2Val;
+
+ let Inst{29-25} = rd;
+}
+
+class F2_2<bits<3> op2Val, bit annul, dag outs, dag ins, string asmstr,
+ list<dag> pattern> : F2<outs, ins, asmstr, pattern> {
+ bits<4> cond;
+ let op2 = op2Val;
+
+ let Inst{29} = annul;
+ let Inst{28-25} = cond;
+}
+
+class F2_3<bits<3> op2Val, bit annul, bit pred,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSP<outs, ins, asmstr, pattern> {
+ bits<2> cc;
+ bits<4> cond;
+ bits<19> imm19;
+
+ let op = 0; // op = 0
+
+ let Inst{29} = annul;
+ let Inst{28-25} = cond;
+ let Inst{24-22} = op2Val;
+ let Inst{21-20} = cc;
+ let Inst{19} = pred;
+ let Inst{18-0} = imm19;
+}
+
+class F2_4<bits<3> cond, bit annul, bit pred,
+ dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSP<outs, ins, asmstr, pattern> {
+ bits<16> imm16;
+ bits<5> rs1;
+
+ let op = 0; // op = 0
+
+ let Inst{29} = annul;
+ let Inst{28} = 0;
+ let Inst{27-25} = cond;
+ let Inst{24-22} = 0b011;
+ let Inst{21-20} = imm16{15-14};
+ let Inst{19} = pred;
+ let Inst{18-14} = rs1;
+ let Inst{13-0} = imm16{13-0};
+}
+
+
+//===----------------------------------------------------------------------===//
+// Format #3 instruction classes in the Sparc
+//===----------------------------------------------------------------------===//
+
+class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSP<outs, ins, asmstr, pattern> {
+ bits<5> rd;
+ bits<6> op3;
+ bits<5> rs1;
+ let op{1} = 1; // Op = 2 or 3
+ let Inst{29-25} = rd;
+ let Inst{24-19} = op3;
+ let Inst{18-14} = rs1;
+}
+
+// Specific F3 classes: SparcV8 manual, page 44
+//
+class F3_1_asi<bits<2> opVal, bits<6> op3val, bits<8> asi, dag outs, dag ins,
+ string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
+ bits<5> rs2;
+
+ let op = opVal;
+ let op3 = op3val;
+
+ let Inst{13} = 0; // i field = 0
+ let Inst{12-5} = asi; // address space identifier
+ let Inst{4-0} = rs2;
+}
+
+class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins, string asmstr,
+ list<dag> pattern> : F3_1_asi<opVal, op3val, 0, outs, ins,
+ asmstr, pattern>;
+
+class F3_2<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
+ string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
+ bits<13> simm13;
+
+ let op = opVal;
+ let op3 = op3val;
+
+ let Inst{13} = 1; // i field = 1
+ let Inst{12-0} = simm13;
+}
+
+// floating-point
+class F3_3<bits<2> opVal, bits<6> op3val, bits<9> opfval, dag outs, dag ins,
+ string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
+ bits<5> rs2;
+
+ let op = opVal;
+ let op3 = op3val;
+
+ let Inst{13-5} = opfval; // fp opcode
+ let Inst{4-0} = rs2;
+}
+
+// floating-point unary operations.
+class F3_3u<bits<2> opVal, bits<6> op3val, bits<9> opfval, dag outs, dag ins,
+ string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
+ bits<5> rs2;
+
+ let op = opVal;
+ let op3 = op3val;
+ let rs1 = 0;
+
+ let Inst{13-5} = opfval; // fp opcode
+ let Inst{4-0} = rs2;
+}
+
+// floating-point compares.
+class F3_3c<bits<2> opVal, bits<6> op3val, bits<9> opfval, dag outs, dag ins,
+ string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
+ bits<5> rs2;
+
+ let op = opVal;
+ let op3 = op3val;
+
+ let Inst{13-5} = opfval; // fp opcode
+ let Inst{4-0} = rs2;
+}
+
+// Shift by register rs2.
+class F3_Sr<bits<2> opVal, bits<6> op3val, bit xVal, dag outs, dag ins,
+ string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
+ bit x = xVal; // 1 for 64-bit shifts.
+ bits<5> rs2;
+
+ let op = opVal;
+ let op3 = op3val;
+
+ let Inst{13} = 0; // i field = 0
+ let Inst{12} = x; // extended registers.
+ let Inst{4-0} = rs2;
+}
+
+// Shift by immediate.
+class F3_Si<bits<2> opVal, bits<6> op3val, bit xVal, dag outs, dag ins,
+ string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
+ bit x = xVal; // 1 for 64-bit shifts.
+ bits<6> shcnt; // shcnt32 / shcnt64.
+
+ let op = opVal;
+ let op3 = op3val;
+
+ let Inst{13} = 1; // i field = 1
+ let Inst{12} = x; // extended registers.
+ let Inst{5-0} = shcnt;
+}
+
+// Define rr and ri shift instructions with patterns.
+multiclass F3_S<string OpcStr, bits<6> Op3Val, bit XVal, SDNode OpNode,
+ ValueType VT, RegisterClass RC> {
+ def rr : F3_Sr<2, Op3Val, XVal, (outs RC:$rd), (ins RC:$rs1, IntRegs:$rs2),
+ !strconcat(OpcStr, " $rs1, $rs2, $rd"),
+ [(set VT:$rd, (OpNode VT:$rs1, i32:$rs2))]>;
+ def ri : F3_Si<2, Op3Val, XVal, (outs RC:$rd), (ins RC:$rs1, i32imm:$shcnt),
+ !strconcat(OpcStr, " $rs1, $shcnt, $rd"),
+ [(set VT:$rd, (OpNode VT:$rs1, (i32 imm:$shcnt)))]>;
+}
+
+class F4<bits<6> op3, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSP<outs, ins, asmstr, pattern> {
+ bits<5> rd;
+
+ let op = 2;
+ let Inst{29-25} = rd;
+ let Inst{24-19} = op3;
+}
+
+
+class F4_1<bits<6> op3, dag outs, dag ins,
+ string asmstr, list<dag> pattern>
+ : F4<op3, outs, ins, asmstr, pattern> {
+
+ bit intcc;
+ bits<2> cc;
+ bits<4> cond;
+ bits<5> rs2;
+
+ let Inst{4-0} = rs2;
+ let Inst{12-11} = cc;
+ let Inst{13} = 0;
+ let Inst{17-14} = cond;
+ let Inst{18} = intcc;
+
+}
+
+class F4_2<bits<6> op3, dag outs, dag ins,
+ string asmstr, list<dag> pattern>
+ : F4<op3, outs, ins, asmstr, pattern> {
+ bit intcc;
+ bits<2> cc;
+ bits<4> cond;
+ bits<11> simm11;
+
+ let Inst{10-0} = simm11;
+ let Inst{12-11} = cc;
+ let Inst{13} = 1;
+ let Inst{17-14} = cond;
+ let Inst{18} = intcc;
+}
+
+class F4_3<bits<6> op3, bits<6> opf_low, dag outs, dag ins,
+ string asmstr, list<dag> pattern>
+ : F4<op3, outs, ins, asmstr, pattern> {
+ bits<4> cond;
+ bit intcc;
+ bits<2> opf_cc;
+ bits<5> rs2;
+
+ let Inst{18} = 0;
+ let Inst{17-14} = cond;
+ let Inst{13} = intcc;
+ let Inst{12-11} = opf_cc;
+ let Inst{10-5} = opf_low;
+ let Inst{4-0} = rs2;
+}
+
+class F4_4r<bits<6> op3, bits<5> opf_low, bits<3> rcond, dag outs, dag ins,
+ string asmstr, list<dag> pattern>
+ : F4<op3, outs, ins, asmstr, pattern> {
+ bits <5> rs1;
+ bits <5> rs2;
+ let Inst{18-14} = rs1;
+ let Inst{13} = 0; // IsImm
+ let Inst{12-10} = rcond;
+ let Inst{9-5} = opf_low;
+ let Inst{4-0} = rs2;
+}
+
+
+class F4_4i<bits<6> op3, bits<3> rcond, dag outs, dag ins,
+ string asmstr, list<dag> pattern>
+ : F4<op3, outs, ins, asmstr, pattern> {
+ bits<5> rs1;
+ bits<10> simm10;
+ let Inst{18-14} = rs1;
+ let Inst{13} = 1; // IsImm
+ let Inst{12-10} = rcond;
+ let Inst{9-0} = simm10;
+}
+
+
+class TRAPSP<bits<6> op3Val, bit isimm, dag outs, dag ins, string asmstr,
+ list<dag> pattern>: F3<outs, ins, asmstr, pattern> {
+
+ bits<4> cond;
+ bits<2> cc;
+
+ let op = 0b10;
+ let rd{4} = 0;
+ let rd{3-0} = cond;
+ let op3 = op3Val;
+ let Inst{13} = isimm;
+ let Inst{12-11} = cc;
+
+}
+
+class TRAPSPrr<bits<6> op3Val, dag outs, dag ins, string asmstr,
+ list<dag> pattern>: TRAPSP<op3Val, 0, outs, ins, asmstr, pattern> {
+ bits<5> rs2;
+
+ let Inst{10-5} = 0;
+ let Inst{4-0} = rs2;
+}
+class TRAPSPri<bits<6> op3Val, dag outs, dag ins, string asmstr,
+ list<dag> pattern>: TRAPSP<op3Val, 1, outs, ins, asmstr, pattern> {
+ bits<8> imm;
+
+ let Inst{10-8} = 0;
+ let Inst{7-0} = imm;
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.cpp b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.cpp
new file mode 100644
index 0000000..8b2e6bc
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.cpp
@@ -0,0 +1,446 @@
+//===-- SparcInstrInfo.cpp - Sparc Instruction Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Sparc implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcInstrInfo.h"
+#include "Sparc.h"
+#include "SparcMachineFunctionInfo.h"
+#include "SparcSubtarget.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "SparcGenInstrInfo.inc"
+
+// Pin the vtable to this file.
+void SparcInstrInfo::anchor() {}
+
+SparcInstrInfo::SparcInstrInfo(SparcSubtarget &ST)
+ : SparcGenInstrInfo(SP::ADJCALLSTACKDOWN, SP::ADJCALLSTACKUP),
+ RI(ST), Subtarget(ST) {
+}
+
+/// isLoadFromStackSlot - If the specified machine instruction is a direct
+/// load from a stack slot, return the virtual or physical register number of
+/// the destination along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than loading from the stack slot.
+unsigned SparcInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (MI->getOpcode() == SP::LDri ||
+ MI->getOpcode() == SP::LDXri ||
+ MI->getOpcode() == SP::LDFri ||
+ MI->getOpcode() == SP::LDDFri ||
+ MI->getOpcode() == SP::LDQFri) {
+ if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ }
+ return 0;
+}
+
+/// isStoreToStackSlot - If the specified machine instruction is a direct
+/// store to a stack slot, return the virtual or physical register number of
+/// the source reg along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than storing to the stack slot.
+unsigned SparcInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (MI->getOpcode() == SP::STri ||
+ MI->getOpcode() == SP::STXri ||
+ MI->getOpcode() == SP::STFri ||
+ MI->getOpcode() == SP::STDFri ||
+ MI->getOpcode() == SP::STQFri) {
+ if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
+ MI->getOperand(1).getImm() == 0) {
+ FrameIndex = MI->getOperand(0).getIndex();
+ return MI->getOperand(2).getReg();
+ }
+ }
+ return 0;
+}
+
+static bool IsIntegerCC(unsigned CC)
+{
+ return (CC <= SPCC::ICC_VC);
+}
+
+
+static SPCC::CondCodes GetOppositeBranchCondition(SPCC::CondCodes CC)
+{
+ switch(CC) {
+ case SPCC::ICC_A: return SPCC::ICC_N;
+ case SPCC::ICC_N: return SPCC::ICC_A;
+ case SPCC::ICC_NE: return SPCC::ICC_E;
+ case SPCC::ICC_E: return SPCC::ICC_NE;
+ case SPCC::ICC_G: return SPCC::ICC_LE;
+ case SPCC::ICC_LE: return SPCC::ICC_G;
+ case SPCC::ICC_GE: return SPCC::ICC_L;
+ case SPCC::ICC_L: return SPCC::ICC_GE;
+ case SPCC::ICC_GU: return SPCC::ICC_LEU;
+ case SPCC::ICC_LEU: return SPCC::ICC_GU;
+ case SPCC::ICC_CC: return SPCC::ICC_CS;
+ case SPCC::ICC_CS: return SPCC::ICC_CC;
+ case SPCC::ICC_POS: return SPCC::ICC_NEG;
+ case SPCC::ICC_NEG: return SPCC::ICC_POS;
+ case SPCC::ICC_VC: return SPCC::ICC_VS;
+ case SPCC::ICC_VS: return SPCC::ICC_VC;
+
+ case SPCC::FCC_A: return SPCC::FCC_N;
+ case SPCC::FCC_N: return SPCC::FCC_A;
+ case SPCC::FCC_U: return SPCC::FCC_O;
+ case SPCC::FCC_O: return SPCC::FCC_U;
+ case SPCC::FCC_G: return SPCC::FCC_ULE;
+ case SPCC::FCC_LE: return SPCC::FCC_UG;
+ case SPCC::FCC_UG: return SPCC::FCC_LE;
+ case SPCC::FCC_ULE: return SPCC::FCC_G;
+ case SPCC::FCC_L: return SPCC::FCC_UGE;
+ case SPCC::FCC_GE: return SPCC::FCC_UL;
+ case SPCC::FCC_UL: return SPCC::FCC_GE;
+ case SPCC::FCC_UGE: return SPCC::FCC_L;
+ case SPCC::FCC_LG: return SPCC::FCC_UE;
+ case SPCC::FCC_UE: return SPCC::FCC_LG;
+ case SPCC::FCC_NE: return SPCC::FCC_E;
+ case SPCC::FCC_E: return SPCC::FCC_NE;
+ }
+ llvm_unreachable("Invalid cond code");
+}
+
+bool SparcInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const
+{
+
+ MachineBasicBlock::iterator I = MBB.end();
+ MachineBasicBlock::iterator UnCondBrIter = MBB.end();
+ while (I != MBB.begin()) {
+ --I;
+
+ if (I->isDebugValue())
+ continue;
+
+ // When we see a non-terminator, we are done.
+ if (!isUnpredicatedTerminator(I))
+ break;
+
+ // Terminator is not a branch.
+ if (!I->isBranch())
+ return true;
+
+ // Handle Unconditional branches.
+ if (I->getOpcode() == SP::BA) {
+ UnCondBrIter = I;
+
+ if (!AllowModify) {
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ while (std::next(I) != MBB.end())
+ std::next(I)->eraseFromParent();
+
+ Cond.clear();
+ FBB = nullptr;
+
+ if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
+ TBB = nullptr;
+ I->eraseFromParent();
+ I = MBB.end();
+ UnCondBrIter = MBB.end();
+ continue;
+ }
+
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ unsigned Opcode = I->getOpcode();
+ if (Opcode != SP::BCOND && Opcode != SP::FBCOND)
+ return true; // Unknown Opcode.
+
+ SPCC::CondCodes BranchCode = (SPCC::CondCodes)I->getOperand(1).getImm();
+
+ if (Cond.empty()) {
+ MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
+ if (AllowModify && UnCondBrIter != MBB.end() &&
+ MBB.isLayoutSuccessor(TargetBB)) {
+
+ // Transform the code
+ //
+ // brCC L1
+ // ba L2
+ // L1:
+ // ..
+ // L2:
+ //
+ // into
+ //
+ // brnCC L2
+ // L1:
+ // ...
+ // L2:
+ //
+ BranchCode = GetOppositeBranchCondition(BranchCode);
+ MachineBasicBlock::iterator OldInst = I;
+ BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(Opcode))
+ .addMBB(UnCondBrIter->getOperand(0).getMBB()).addImm(BranchCode);
+ BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(SP::BA))
+ .addMBB(TargetBB);
+
+ OldInst->eraseFromParent();
+ UnCondBrIter->eraseFromParent();
+
+ UnCondBrIter = MBB.end();
+ I = MBB.end();
+ continue;
+ }
+ FBB = TBB;
+ TBB = I->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(BranchCode));
+ continue;
+ }
+ // FIXME: Handle subsequent conditional branches.
+ // For now, we can't handle multiple conditional branches.
+ return true;
+ }
+ return false;
+}
+
+unsigned
+SparcInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 1 || Cond.size() == 0) &&
+ "Sparc branch conditions should have one component!");
+
+ if (Cond.empty()) {
+ assert(!FBB && "Unconditional branch with multiple successors!");
+ BuildMI(&MBB, DL, get(SP::BA)).addMBB(TBB);
+ return 1;
+ }
+
+ // Conditional branch
+ unsigned CC = Cond[0].getImm();
+
+ if (IsIntegerCC(CC))
+ BuildMI(&MBB, DL, get(SP::BCOND)).addMBB(TBB).addImm(CC);
+ else
+ BuildMI(&MBB, DL, get(SP::FBCOND)).addMBB(TBB).addImm(CC);
+ if (!FBB)
+ return 1;
+
+ BuildMI(&MBB, DL, get(SP::BA)).addMBB(FBB);
+ return 2;
+}
+
+unsigned SparcInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const
+{
+ MachineBasicBlock::iterator I = MBB.end();
+ unsigned Count = 0;
+ while (I != MBB.begin()) {
+ --I;
+
+ if (I->isDebugValue())
+ continue;
+
+ if (I->getOpcode() != SP::BA
+ && I->getOpcode() != SP::BCOND
+ && I->getOpcode() != SP::FBCOND)
+ break; // Not a branch
+
+ I->eraseFromParent();
+ I = MBB.end();
+ ++Count;
+ }
+ return Count;
+}
+
+void SparcInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ unsigned numSubRegs = 0;
+ unsigned movOpc = 0;
+ const unsigned *subRegIdx = nullptr;
+
+ const unsigned DFP_FP_SubRegsIdx[] = { SP::sub_even, SP::sub_odd };
+ const unsigned QFP_DFP_SubRegsIdx[] = { SP::sub_even64, SP::sub_odd64 };
+ const unsigned QFP_FP_SubRegsIdx[] = { SP::sub_even, SP::sub_odd,
+ SP::sub_odd64_then_sub_even,
+ SP::sub_odd64_then_sub_odd };
+
+ if (SP::IntRegsRegClass.contains(DestReg, SrcReg))
+ BuildMI(MBB, I, DL, get(SP::ORrr), DestReg).addReg(SP::G0)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ else if (SP::FPRegsRegClass.contains(DestReg, SrcReg))
+ BuildMI(MBB, I, DL, get(SP::FMOVS), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ else if (SP::DFPRegsRegClass.contains(DestReg, SrcReg)) {
+ if (Subtarget.isV9()) {
+ BuildMI(MBB, I, DL, get(SP::FMOVD), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ // Use two FMOVS instructions.
+ subRegIdx = DFP_FP_SubRegsIdx;
+ numSubRegs = 2;
+ movOpc = SP::FMOVS;
+ }
+ } else if (SP::QFPRegsRegClass.contains(DestReg, SrcReg)) {
+ if (Subtarget.isV9()) {
+ if (Subtarget.hasHardQuad()) {
+ BuildMI(MBB, I, DL, get(SP::FMOVQ), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ // Use two FMOVD instructions.
+ subRegIdx = QFP_DFP_SubRegsIdx;
+ numSubRegs = 2;
+ movOpc = SP::FMOVD;
+ }
+ } else {
+ // Use four FMOVS instructions.
+ subRegIdx = QFP_FP_SubRegsIdx;
+ numSubRegs = 4;
+ movOpc = SP::FMOVS;
+ }
+ } else
+ llvm_unreachable("Impossible reg-to-reg copy");
+
+ if (numSubRegs == 0 || subRegIdx == nullptr || movOpc == 0)
+ return;
+
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ MachineInstr *MovMI = nullptr;
+
+ for (unsigned i = 0; i != numSubRegs; ++i) {
+ unsigned Dst = TRI->getSubReg(DestReg, subRegIdx[i]);
+ unsigned Src = TRI->getSubReg(SrcReg, subRegIdx[i]);
+ assert(Dst && Src && "Bad sub-register");
+
+ MovMI = BuildMI(MBB, I, DL, get(movOpc), Dst).addReg(Src);
+ }
+ // Add implicit super-register defs and kills to the last MovMI.
+ MovMI->addRegisterDefined(DestReg, TRI);
+ if (KillSrc)
+ MovMI->addRegisterKilled(SrcReg, TRI);
+}
+
+void SparcInstrInfo::
+storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+
+ MachineFunction *MF = MBB.getParent();
+ const MachineFrameInfo &MFI = *MF->getFrameInfo();
+ MachineMemOperand *MMO =
+ MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+
+ // On the order of operands here: think "[FrameIdx + 0] = SrcReg".
+ if (RC == &SP::I64RegsRegClass)
+ BuildMI(MBB, I, DL, get(SP::STXri)).addFrameIndex(FI).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ else if (RC == &SP::IntRegsRegClass)
+ BuildMI(MBB, I, DL, get(SP::STri)).addFrameIndex(FI).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ else if (RC == &SP::FPRegsRegClass)
+ BuildMI(MBB, I, DL, get(SP::STFri)).addFrameIndex(FI).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ else if (SP::DFPRegsRegClass.hasSubClassEq(RC))
+ BuildMI(MBB, I, DL, get(SP::STDFri)).addFrameIndex(FI).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ else if (SP::QFPRegsRegClass.hasSubClassEq(RC))
+ // Use STQFri irrespective of its legality. If STQ is not legal, it will be
+ // lowered into two STDs in eliminateFrameIndex.
+ BuildMI(MBB, I, DL, get(SP::STQFri)).addFrameIndex(FI).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ else
+ llvm_unreachable("Can't store this register to stack slot");
+}
+
+void SparcInstrInfo::
+loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+
+ MachineFunction *MF = MBB.getParent();
+ const MachineFrameInfo &MFI = *MF->getFrameInfo();
+ MachineMemOperand *MMO =
+ MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+
+ if (RC == &SP::I64RegsRegClass)
+ BuildMI(MBB, I, DL, get(SP::LDXri), DestReg).addFrameIndex(FI).addImm(0)
+ .addMemOperand(MMO);
+ else if (RC == &SP::IntRegsRegClass)
+ BuildMI(MBB, I, DL, get(SP::LDri), DestReg).addFrameIndex(FI).addImm(0)
+ .addMemOperand(MMO);
+ else if (RC == &SP::FPRegsRegClass)
+ BuildMI(MBB, I, DL, get(SP::LDFri), DestReg).addFrameIndex(FI).addImm(0)
+ .addMemOperand(MMO);
+ else if (SP::DFPRegsRegClass.hasSubClassEq(RC))
+ BuildMI(MBB, I, DL, get(SP::LDDFri), DestReg).addFrameIndex(FI).addImm(0)
+ .addMemOperand(MMO);
+ else if (SP::QFPRegsRegClass.hasSubClassEq(RC))
+ // Use LDQFri irrespective of its legality. If LDQ is not legal, it will be
+ // lowered into two LDDs in eliminateFrameIndex.
+ BuildMI(MBB, I, DL, get(SP::LDQFri), DestReg).addFrameIndex(FI).addImm(0)
+ .addMemOperand(MMO);
+ else
+ llvm_unreachable("Can't load this register from stack slot");
+}
+
+unsigned SparcInstrInfo::getGlobalBaseReg(MachineFunction *MF) const
+{
+ SparcMachineFunctionInfo *SparcFI = MF->getInfo<SparcMachineFunctionInfo>();
+ unsigned GlobalBaseReg = SparcFI->getGlobalBaseReg();
+ if (GlobalBaseReg != 0)
+ return GlobalBaseReg;
+
+ // Insert the set of GlobalBaseReg into the first MBB of the function
+ MachineBasicBlock &FirstMBB = MF->front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+
+ const TargetRegisterClass *PtrRC =
+ Subtarget.is64Bit() ? &SP::I64RegsRegClass : &SP::IntRegsRegClass;
+ GlobalBaseReg = RegInfo.createVirtualRegister(PtrRC);
+
+ DebugLoc dl;
+
+ BuildMI(FirstMBB, MBBI, dl, get(SP::GETPCX), GlobalBaseReg);
+ SparcFI->setGlobalBaseReg(GlobalBaseReg);
+ return GlobalBaseReg;
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.h b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.h
new file mode 100644
index 0000000..3a1472e
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.h
@@ -0,0 +1,100 @@
+//===-- SparcInstrInfo.h - Sparc Instruction Information --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Sparc implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARCINSTRUCTIONINFO_H
+#define SPARCINSTRUCTIONINFO_H
+
+#include "SparcRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "SparcGenInstrInfo.inc"
+
+namespace llvm {
+
+/// SPII - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace SPII {
+ enum {
+ Pseudo = (1<<0),
+ Load = (1<<1),
+ Store = (1<<2),
+ DelaySlot = (1<<3)
+ };
+}
+
+class SparcInstrInfo : public SparcGenInstrInfo {
+ const SparcRegisterInfo RI;
+ const SparcSubtarget& Subtarget;
+ virtual void anchor();
+public:
+ explicit SparcInstrInfo(SparcSubtarget &ST);
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ const SparcRegisterInfo &getRegisterInfo() const { return RI; }
+
+ /// isLoadFromStackSlot - If the specified machine instruction is a direct
+ /// load from a stack slot, return the virtual or physical register number of
+ /// the destination along with the FrameIndex of the loaded stack slot. If
+ /// not, return 0. This predicate must return 0 if the instruction has
+ /// any side effects other than loading from the stack slot.
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ /// isStoreToStackSlot - If the specified machine instruction is a direct
+ /// store to a stack slot, return the virtual or physical register number of
+ /// the source reg along with the FrameIndex of the loaded stack slot. If
+ /// not, return 0. This predicate must return 0 if the instruction has
+ /// any side effects other than storing to the stack slot.
+ unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify = false) const override ;
+
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const override;
+
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ unsigned getGlobalBaseReg(MachineFunction *MF) const;
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
new file mode 100644
index 0000000..960261c
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
@@ -0,0 +1,1227 @@
+//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Sparc instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Instruction format superclass
+//===----------------------------------------------------------------------===//
+
+include "SparcInstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+// Feature predicates.
+//===----------------------------------------------------------------------===//
+
+// True when generating 32-bit code.
+def Is32Bit : Predicate<"!Subtarget.is64Bit()">;
+
+// True when generating 64-bit code. This also implies HasV9.
+def Is64Bit : Predicate<"Subtarget.is64Bit()">;
+
+// HasV9 - This predicate is true when the target processor supports V9
+// instructions. Note that the machine may be running in 32-bit mode.
+def HasV9 : Predicate<"Subtarget.isV9()">,
+ AssemblerPredicate<"FeatureV9">;
+
+// HasNoV9 - This predicate is true when the target doesn't have V9
+// instructions. Use of this is just a hack for the isel not having proper
+// costs for V8 instructions that are more expensive than their V9 ones.
+def HasNoV9 : Predicate<"!Subtarget.isV9()">;
+
+// HasVIS - This is true when the target processor has VIS extensions.
+def HasVIS : Predicate<"Subtarget.isVIS()">,
+ AssemblerPredicate<"FeatureVIS">;
+def HasVIS2 : Predicate<"Subtarget.isVIS2()">,
+ AssemblerPredicate<"FeatureVIS2">;
+def HasVIS3 : Predicate<"Subtarget.isVIS3()">,
+ AssemblerPredicate<"FeatureVIS3">;
+
+// HasHardQuad - This is true when the target processor supports quad floating
+// point instructions.
+def HasHardQuad : Predicate<"Subtarget.hasHardQuad()">;
+
+// UseDeprecatedInsts - This predicate is true when the target processor is a
+// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
+// to use when appropriate. In either of these cases, the instruction selector
+// will pick deprecated instructions.
+def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
+
+//===----------------------------------------------------------------------===//
+// Instruction Pattern Stuff
+//===----------------------------------------------------------------------===//
+
+def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
+
+def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
+
+def LO10 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
+ MVT::i32);
+}]>;
+
+def HI22 : SDNodeXForm<imm, [{
+ // Transformation function: shift the immediate value down into the low bits.
+ return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
+}]>;
+
+def SETHIimm : PatLeaf<(imm), [{
+ return isShiftedUInt<22, 10>(N->getZExtValue());
+}], HI22>;
+
+// Addressing modes.
+def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
+def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
+
+// Address operands
+def SparcMEMrrAsmOperand : AsmOperandClass {
+ let Name = "MEMrr";
+ let ParserMethod = "parseMEMOperand";
+}
+
+def SparcMEMriAsmOperand : AsmOperandClass {
+ let Name = "MEMri";
+ let ParserMethod = "parseMEMOperand";
+}
+
+def MEMrr : Operand<iPTR> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops ptr_rc, ptr_rc);
+ let ParserMatchClass = SparcMEMrrAsmOperand;
+}
+def MEMri : Operand<iPTR> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops ptr_rc, i32imm);
+ let ParserMatchClass = SparcMEMriAsmOperand;
+}
+
+def TLSSym : Operand<iPTR>;
+
+// Branch targets have OtherVT type.
+def brtarget : Operand<OtherVT> {
+ let EncoderMethod = "getBranchTargetOpValue";
+}
+
+def bprtarget : Operand<OtherVT> {
+ let EncoderMethod = "getBranchPredTargetOpValue";
+}
+
+def bprtarget16 : Operand<OtherVT> {
+ let EncoderMethod = "getBranchOnRegTargetOpValue";
+}
+
+def calltarget : Operand<i32> {
+ let EncoderMethod = "getCallTargetOpValue";
+ let DecoderMethod = "DecodeCall";
+}
+
+def simm13Op : Operand<i32> {
+ let DecoderMethod = "DecodeSIMM13";
+}
+
+// Operand for printing out a condition code.
+let PrintMethod = "printCCOperand" in
+ def CCOp : Operand<i32>;
+
+def SDTSPcmpicc :
+SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
+def SDTSPcmpfcc :
+SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
+def SDTSPbrcc :
+SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
+def SDTSPselectcc :
+SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
+def SDTSPFTOI :
+SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
+def SDTSPITOF :
+SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
+def SDTSPFTOX :
+SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
+def SDTSPXTOF :
+SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
+
+def SDTSPtlsadd :
+SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
+def SDTSPtlsld :
+SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
+
+def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
+def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
+def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
+def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
+def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
+
+def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
+def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
+
+def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
+def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
+def SPftox : SDNode<"SPISD::FTOX", SDTSPFTOX>;
+def SPxtof : SDNode<"SPISD::XTOF", SDTSPXTOF>;
+
+def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
+def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
+def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
+
+// These are target-independent nodes, but have target-specific formats.
+def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
+def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32> ]>;
+
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
+ [SDNPHasChain, SDNPOutGlue]>;
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
+def call : SDNode<"SPISD::CALL", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+
+def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
+def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+def flushw : SDNode<"SPISD::FLUSHW", SDTNone,
+ [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
+
+def tlsadd : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
+def tlsld : SDNode<"SPISD::TLS_LD", SDTSPtlsld>;
+def tlscall : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+
+def getPCX : Operand<iPTR> {
+ let PrintMethod = "printGetPCX";
+}
+
+//===----------------------------------------------------------------------===//
+// SPARC Flag Conditions
+//===----------------------------------------------------------------------===//
+
+// Note that these values must be kept in sync with the CCOp::CondCode enum
+// values.
+class ICC_VAL<int N> : PatLeaf<(i32 N)>;
+def ICC_NE : ICC_VAL< 9>; // Not Equal
+def ICC_E : ICC_VAL< 1>; // Equal
+def ICC_G : ICC_VAL<10>; // Greater
+def ICC_LE : ICC_VAL< 2>; // Less or Equal
+def ICC_GE : ICC_VAL<11>; // Greater or Equal
+def ICC_L : ICC_VAL< 3>; // Less
+def ICC_GU : ICC_VAL<12>; // Greater Unsigned
+def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
+def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
+def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
+def ICC_POS : ICC_VAL<14>; // Positive
+def ICC_NEG : ICC_VAL< 6>; // Negative
+def ICC_VC : ICC_VAL<15>; // Overflow Clear
+def ICC_VS : ICC_VAL< 7>; // Overflow Set
+
+class FCC_VAL<int N> : PatLeaf<(i32 N)>;
+def FCC_U : FCC_VAL<23>; // Unordered
+def FCC_G : FCC_VAL<22>; // Greater
+def FCC_UG : FCC_VAL<21>; // Unordered or Greater
+def FCC_L : FCC_VAL<20>; // Less
+def FCC_UL : FCC_VAL<19>; // Unordered or Less
+def FCC_LG : FCC_VAL<18>; // Less or Greater
+def FCC_NE : FCC_VAL<17>; // Not Equal
+def FCC_E : FCC_VAL<25>; // Equal
+def FCC_UE : FCC_VAL<24>; // Unordered or Equal
+def FCC_GE : FCC_VAL<25>; // Greater or Equal
+def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal
+def FCC_LE : FCC_VAL<27>; // Less or Equal
+def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal
+def FCC_O : FCC_VAL<29>; // Ordered
+
+//===----------------------------------------------------------------------===//
+// Instruction Class Templates
+//===----------------------------------------------------------------------===//
+
+/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
+multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
+ RegisterClass RC, ValueType Ty, Operand immOp> {
+ def rr : F3_1<2, Op3Val,
+ (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
+ !strconcat(OpcStr, " $rs1, $rs2, $rd"),
+ [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))]>;
+ def ri : F3_2<2, Op3Val,
+ (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
+ !strconcat(OpcStr, " $rs1, $simm13, $rd"),
+ [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))]>;
+}
+
+/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
+/// pattern.
+multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
+ def rr : F3_1<2, Op3Val,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
+ !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
+ def ri : F3_2<2, Op3Val,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
+ !strconcat(OpcStr, " $rs1, $simm13, $rd"), []>;
+}
+
+// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
+multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
+ RegisterClass RC, ValueType Ty> {
+ def rr : F3_1<3, Op3Val,
+ (outs RC:$dst), (ins MEMrr:$addr),
+ !strconcat(OpcStr, " [$addr], $dst"),
+ [(set Ty:$dst, (OpNode ADDRrr:$addr))]>;
+ def ri : F3_2<3, Op3Val,
+ (outs RC:$dst), (ins MEMri:$addr),
+ !strconcat(OpcStr, " [$addr], $dst"),
+ [(set Ty:$dst, (OpNode ADDRri:$addr))]>;
+}
+
+// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
+multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
+ RegisterClass RC, ValueType Ty> {
+ def rr : F3_1<3, Op3Val,
+ (outs), (ins MEMrr:$addr, RC:$rd),
+ !strconcat(OpcStr, " $rd, [$addr]"),
+ [(OpNode Ty:$rd, ADDRrr:$addr)]>;
+ def ri : F3_2<3, Op3Val,
+ (outs), (ins MEMri:$addr, RC:$rd),
+ !strconcat(OpcStr, " $rd, [$addr]"),
+ [(OpNode Ty:$rd, ADDRri:$addr)]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Instructions
+//===----------------------------------------------------------------------===//
+
+// Pseudo instructions.
+class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSP<outs, ins, asmstr, pattern> {
+ let isCodeGenOnly = 1;
+ let isPseudo = 1;
+}
+
+// GETPCX for PIC
+let Defs = [O7] in {
+ def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
+}
+
+let Defs = [O6], Uses = [O6] in {
+def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
+ "!ADJCALLSTACKDOWN $amt",
+ [(callseq_start timm:$amt)]>;
+def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "!ADJCALLSTACKUP $amt1",
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+}
+
+let hasSideEffects = 1, mayStore = 1 in {
+ let rd = 0, rs1 = 0, rs2 = 0 in
+ def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
+ "flushw",
+ [(flushw)]>, Requires<[HasV9]>;
+ let rd = 0, rs1 = 1, simm13 = 3 in
+ def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
+ "ta 3",
+ [(flushw)]>;
+}
+
+let isBarrier = 1, isTerminator = 1, rd = 0b1000, rs1 = 0, simm13 = 5 in
+ def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
+
+let rd = 0 in
+ def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
+ "unimp $imm22", []>;
+
+// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
+// instruction selection into a branch sequence. This has to handle all
+// permutations of selection between i32/f32/f64 on ICC and FCC.
+// Expanded after instruction selection.
+let Uses = [ICC], usesCustomInserter = 1 in {
+ def SELECT_CC_Int_ICC
+ : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_Int_ICC PSEUDO!",
+ [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
+ def SELECT_CC_FP_ICC
+ : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_FP_ICC PSEUDO!",
+ [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
+
+ def SELECT_CC_DFP_ICC
+ : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_DFP_ICC PSEUDO!",
+ [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
+
+ def SELECT_CC_QFP_ICC
+ : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_QFP_ICC PSEUDO!",
+ [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
+}
+
+let usesCustomInserter = 1, Uses = [FCC0] in {
+
+ def SELECT_CC_Int_FCC
+ : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_Int_FCC PSEUDO!",
+ [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
+
+ def SELECT_CC_FP_FCC
+ : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_FP_FCC PSEUDO!",
+ [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
+ def SELECT_CC_DFP_FCC
+ : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_DFP_FCC PSEUDO!",
+ [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
+ def SELECT_CC_QFP_FCC
+ : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_QFP_FCC PSEUDO!",
+ [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
+}
+
+// JMPL Instruction.
+let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
+ DecoderMethod = "DecodeJMPL" in {
+ def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr),
+ "jmpl $addr, $dst", []>;
+ def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr),
+ "jmpl $addr, $dst", []>;
+}
+
+// Section A.3 - Synthetic Instructions, p. 85
+// special cases of JMPL:
+let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
+ isCodeGenOnly = 1 in {
+ let rd = 0, rs1 = 15 in
+ def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
+ "jmp %o7+$val", [(retflag simm13:$val)]>;
+
+ let rd = 0, rs1 = 31 in
+ def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
+ "jmp %i7+$val", []>;
+}
+
+let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
+ isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
+ def RETTrr : F3_1<2, 0b111001, (outs), (ins MEMrr:$addr),
+ "rett $addr", []>;
+ def RETTri : F3_2<2, 0b111001, (outs), (ins MEMri:$addr),
+ "rett $addr", []>;
+}
+
+// Section B.1 - Load Integer Instructions, p. 90
+let DecoderMethod = "DecodeLoadInt" in {
+ defm LDSB : Load<"ldsb", 0b001001, sextloadi8, IntRegs, i32>;
+ defm LDSH : Load<"ldsh", 0b001010, sextloadi16, IntRegs, i32>;
+ defm LDUB : Load<"ldub", 0b000001, zextloadi8, IntRegs, i32>;
+ defm LDUH : Load<"lduh", 0b000010, zextloadi16, IntRegs, i32>;
+ defm LD : Load<"ld", 0b000000, load, IntRegs, i32>;
+}
+
+// Section B.2 - Load Floating-point Instructions, p. 92
+let DecoderMethod = "DecodeLoadFP" in
+ defm LDF : Load<"ld", 0b100000, load, FPRegs, f32>;
+let DecoderMethod = "DecodeLoadDFP" in
+ defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64>;
+let DecoderMethod = "DecodeLoadQFP" in
+ defm LDQF : Load<"ldq", 0b100010, load, QFPRegs, f128>,
+ Requires<[HasV9, HasHardQuad]>;
+
+// Section B.4 - Store Integer Instructions, p. 95
+let DecoderMethod = "DecodeStoreInt" in {
+ defm STB : Store<"stb", 0b000101, truncstorei8, IntRegs, i32>;
+ defm STH : Store<"sth", 0b000110, truncstorei16, IntRegs, i32>;
+ defm ST : Store<"st", 0b000100, store, IntRegs, i32>;
+}
+
+// Section B.5 - Store Floating-point Instructions, p. 97
+let DecoderMethod = "DecodeStoreFP" in
+ defm STF : Store<"st", 0b100100, store, FPRegs, f32>;
+let DecoderMethod = "DecodeStoreDFP" in
+ defm STDF : Store<"std", 0b100111, store, DFPRegs, f64>;
+let DecoderMethod = "DecodeStoreQFP" in
+ defm STQF : Store<"stq", 0b100110, store, QFPRegs, f128>,
+ Requires<[HasV9, HasHardQuad]>;
+
+// Section B.9 - SETHI Instruction, p. 104
+def SETHIi: F2_1<0b100,
+ (outs IntRegs:$rd), (ins i32imm:$imm22),
+ "sethi $imm22, $rd",
+ [(set i32:$rd, SETHIimm:$imm22)]>;
+
+// Section B.10 - NOP Instruction, p. 105
+// (It's a special case of SETHI)
+let rd = 0, imm22 = 0 in
+ def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
+
+// Section B.11 - Logical Instructions, p. 106
+defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
+
+def ANDNrr : F3_1<2, 0b000101,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "andn $rs1, $rs2, $rd",
+ [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
+def ANDNri : F3_2<2, 0b000101,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "andn $rs1, $simm13, $rd", []>;
+
+defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
+
+def ORNrr : F3_1<2, 0b000110,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "orn $rs1, $rs2, $rd",
+ [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
+def ORNri : F3_2<2, 0b000110,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "orn $rs1, $simm13, $rd", []>;
+defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
+
+def XNORrr : F3_1<2, 0b000111,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "xnor $rs1, $rs2, $rd",
+ [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
+def XNORri : F3_2<2, 0b000111,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "xnor $rs1, $simm13, $rd", []>;
+
+let Defs = [ICC] in {
+ defm ANDCC : F3_12np<"andcc", 0b010001>;
+ defm ANDNCC : F3_12np<"andncc", 0b010101>;
+ defm ORCC : F3_12np<"orcc", 0b010010>;
+ defm ORNCC : F3_12np<"orncc", 0b010110>;
+ defm XORCC : F3_12np<"xorcc", 0b010011>;
+ defm XNORCC : F3_12np<"xnorcc", 0b010111>;
+}
+
+// Section B.12 - Shift Instructions, p. 107
+defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
+defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
+defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;
+
+// Section B.13 - Add Instructions, p. 108
+defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
+
+// "LEA" forms of add (patterns to make tblgen happy)
+let Predicates = [Is32Bit], isCodeGenOnly = 1 in
+ def LEA_ADDri : F3_2<2, 0b000000,
+ (outs IntRegs:$dst), (ins MEMri:$addr),
+ "add ${addr:arith}, $dst",
+ [(set iPTR:$dst, ADDRri:$addr)]>;
+
+let Defs = [ICC] in
+ defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
+
+let Uses = [ICC] in
+ defm ADDC : F3_12np<"addx", 0b001000>;
+
+let Uses = [ICC], Defs = [ICC] in
+ defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
+
+// Section B.15 - Subtract Instructions, p. 110
+defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, simm13Op>;
+let Uses = [ICC], Defs = [ICC] in
+ defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
+
+let Defs = [ICC] in
+ defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
+
+let Uses = [ICC] in
+ defm SUBC : F3_12np <"subx", 0b001100>;
+
+let Defs = [ICC], rd = 0 in {
+ def CMPrr : F3_1<2, 0b010100,
+ (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "cmp $rs1, $rs2",
+ [(SPcmpicc i32:$rs1, i32:$rs2)]>;
+ def CMPri : F3_2<2, 0b010100,
+ (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "cmp $rs1, $simm13",
+ [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
+}
+
+// Section B.18 - Multiply Instructions, p. 113
+let Defs = [Y] in {
+ defm UMUL : F3_12np<"umul", 0b001010>;
+ defm SMUL : F3_12 <"smul", 0b001011, mul, IntRegs, i32, simm13Op>;
+}
+
+let Defs = [Y, ICC] in {
+ defm UMULCC : F3_12np<"umulcc", 0b011010>;
+ defm SMULCC : F3_12np<"smulcc", 0b011011>;
+}
+
+// Section B.19 - Divide Instructions, p. 115
+let Defs = [Y] in {
+ defm UDIV : F3_12np<"udiv", 0b001110>;
+ defm SDIV : F3_12np<"sdiv", 0b001111>;
+}
+
+let Defs = [Y, ICC] in {
+ defm UDIVCC : F3_12np<"udivcc", 0b011110>;
+ defm SDIVCC : F3_12np<"sdivcc", 0b011111>;
+}
+
+// Section B.20 - SAVE and RESTORE, p. 117
+defm SAVE : F3_12np<"save" , 0b111100>;
+defm RESTORE : F3_12np<"restore", 0b111101>;
+
+// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
+
+// unconditional branch class.
+class BranchAlways<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let hasDelaySlot = 1;
+ let isBarrier = 1;
+}
+
+let cond = 8 in
+ def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
+
+
+let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
+
+// conditional branch class:
+class BranchSP<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b010, 0, (outs), ins, asmstr, pattern>;
+
+// conditional branch with annul class:
+class BranchSPA<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b010, 1, (outs), ins, asmstr, pattern>;
+
+// Conditional branch class on %icc|%xcc with predication:
+multiclass IPredBranch<string regstr, list<dag> CCPattern> {
+ def CC : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
+ CCPattern>;
+ def CCA : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
+ []>;
+ def CCNT : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
+ []>;
+ def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
+ []>;
+}
+
+} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
+
+
+// Indirect branch instructions.
+let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1,
+ isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
+ def BINDrr : F3_1<2, 0b111000,
+ (outs), (ins MEMrr:$ptr),
+ "jmp $ptr",
+ [(brind ADDRrr:$ptr)]>;
+ def BINDri : F3_2<2, 0b111000,
+ (outs), (ins MEMri:$ptr),
+ "jmp $ptr",
+ [(brind ADDRri:$ptr)]>;
+}
+
+let Uses = [ICC] in {
+ def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
+ "b$cond $imm22",
+ [(SPbricc bb:$imm22, imm:$cond)]>;
+ def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
+ "b$cond,a $imm22", []>;
+
+ let Predicates = [HasV9], cc = 0b00 in
+ defm BPI : IPredBranch<"%icc", []>;
+}
+
+// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
+
+let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
+
+// floating-point conditional branch class:
+class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b110, 0, (outs), ins, asmstr, pattern>;
+
+// floating-point conditional branch with annul class:
+class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b110, 1, (outs), ins, asmstr, pattern>;
+
+// Conditional branch class on %fcc0-%fcc3 with predication:
+multiclass FPredBranch {
+ def CC : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond $cc, $imm19", []>;
+ def CCA : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond,a $cc, $imm19", []>;
+ def CCNT : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond,pn $cc, $imm19", []>;
+ def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond,a,pn $cc, $imm19", []>;
+}
+} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
+
+let Uses = [FCC0] in {
+ def FBCOND : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
+ "fb$cond $imm22",
+ [(SPbrfcc bb:$imm22, imm:$cond)]>;
+ def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
+ "fb$cond,a $imm22", []>;
+}
+
+let Predicates = [HasV9] in
+ defm BPF : FPredBranch;
+
+
+// Section B.24 - Call and Link Instruction, p. 125
+// This is the only Format 1 instruction
+let Uses = [O6],
+ hasDelaySlot = 1, isCall = 1 in {
+ def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
+ "call $disp", []> {
+ bits<30> disp;
+ let op = 1;
+ let Inst{29-0} = disp;
+ }
+
+ // indirect calls: special cases of JMPL.
+ let isCodeGenOnly = 1, rd = 15 in {
+ def CALLrr : F3_1<2, 0b111000,
+ (outs), (ins MEMrr:$ptr, variable_ops),
+ "call $ptr",
+ [(call ADDRrr:$ptr)]>;
+ def CALLri : F3_2<2, 0b111000,
+ (outs), (ins MEMri:$ptr, variable_ops),
+ "call $ptr",
+ [(call ADDRri:$ptr)]>;
+ }
+}
+
+// Section B.28 - Read State Register Instructions
+let Uses = [Y], rs1 = 0, rs2 = 0 in
+ def RDY : F3_1<2, 0b101000,
+ (outs IntRegs:$dst), (ins),
+ "rd %y, $dst", []>;
+
+// Section B.29 - Write State Register Instructions
+let Defs = [Y], rd = 0 in {
+ def WRYrr : F3_1<2, 0b110000,
+ (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "wr $rs1, $rs2, %y", []>;
+ def WRYri : F3_2<2, 0b110000,
+ (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "wr $rs1, $simm13, %y", []>;
+}
+// Convert Integer to Floating-point Instructions, p. 141
+def FITOS : F3_3u<2, 0b110100, 0b011000100,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fitos $rs2, $rd",
+ [(set FPRegs:$rd, (SPitof FPRegs:$rs2))]>;
+def FITOD : F3_3u<2, 0b110100, 0b011001000,
+ (outs DFPRegs:$rd), (ins FPRegs:$rs2),
+ "fitod $rs2, $rd",
+ [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))]>;
+def FITOQ : F3_3u<2, 0b110100, 0b011001100,
+ (outs QFPRegs:$rd), (ins FPRegs:$rs2),
+ "fitoq $rs2, $rd",
+ [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+// Convert Floating-point to Integer Instructions, p. 142
+def FSTOI : F3_3u<2, 0b110100, 0b011010001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fstoi $rs2, $rd",
+ [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))]>;
+def FDTOI : F3_3u<2, 0b110100, 0b011010010,
+ (outs FPRegs:$rd), (ins DFPRegs:$rs2),
+ "fdtoi $rs2, $rd",
+ [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))]>;
+def FQTOI : F3_3u<2, 0b110100, 0b011010011,
+ (outs FPRegs:$rd), (ins QFPRegs:$rs2),
+ "fqtoi $rs2, $rd",
+ [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+// Convert between Floating-point Formats Instructions, p. 143
+def FSTOD : F3_3u<2, 0b110100, 0b011001001,
+ (outs DFPRegs:$rd), (ins FPRegs:$rs2),
+ "fstod $rs2, $rd",
+ [(set f64:$rd, (fextend f32:$rs2))]>;
+def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
+ (outs QFPRegs:$rd), (ins FPRegs:$rs2),
+ "fstoq $rs2, $rd",
+ [(set f128:$rd, (fextend f32:$rs2))]>,
+ Requires<[HasHardQuad]>;
+def FDTOS : F3_3u<2, 0b110100, 0b011000110,
+ (outs FPRegs:$rd), (ins DFPRegs:$rs2),
+ "fdtos $rs2, $rd",
+ [(set f32:$rd, (fround f64:$rs2))]>;
+def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
+ (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fdtoq $rs2, $rd",
+ [(set f128:$rd, (fextend f64:$rs2))]>,
+ Requires<[HasHardQuad]>;
+def FQTOS : F3_3u<2, 0b110100, 0b011000111,
+ (outs FPRegs:$rd), (ins QFPRegs:$rs2),
+ "fqtos $rs2, $rd",
+ [(set f32:$rd, (fround f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+def FQTOD : F3_3u<2, 0b110100, 0b011001011,
+ (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
+ "fqtod $rs2, $rd",
+ [(set f64:$rd, (fround f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+// Floating-point Move Instructions, p. 144
+def FMOVS : F3_3u<2, 0b110100, 0b000000001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fmovs $rs2, $rd", []>;
+def FNEGS : F3_3u<2, 0b110100, 0b000000101,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fnegs $rs2, $rd",
+ [(set f32:$rd, (fneg f32:$rs2))]>;
+def FABSS : F3_3u<2, 0b110100, 0b000001001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fabss $rs2, $rd",
+ [(set f32:$rd, (fabs f32:$rs2))]>;
+
+
+// Floating-point Square Root Instructions, p.145
+def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fsqrts $rs2, $rd",
+ [(set f32:$rd, (fsqrt f32:$rs2))]>;
+def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fsqrtd $rs2, $rd",
+ [(set f64:$rd, (fsqrt f64:$rs2))]>;
+def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
+ "fsqrtq $rs2, $rd",
+ [(set f128:$rd, (fsqrt f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+
+
+// Floating-point Add and Subtract Instructions, p. 146
+def FADDS : F3_3<2, 0b110100, 0b001000001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fadds $rs1, $rs2, $rd",
+ [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))]>;
+def FADDD : F3_3<2, 0b110100, 0b001000010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "faddd $rs1, $rs2, $rd",
+ [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))]>;
+def FADDQ : F3_3<2, 0b110100, 0b001000011,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "faddq $rs1, $rs2, $rd",
+ [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+def FSUBS : F3_3<2, 0b110100, 0b001000101,
+ (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fsubs $rs1, $rs2, $rd",
+ [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))]>;
+def FSUBD : F3_3<2, 0b110100, 0b001000110,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fsubd $rs1, $rs2, $rd",
+ [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))]>;
+def FSUBQ : F3_3<2, 0b110100, 0b001000111,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fsubq $rs1, $rs2, $rd",
+ [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+
+// Floating-point Multiply and Divide Instructions, p. 147
+def FMULS : F3_3<2, 0b110100, 0b001001001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fmuls $rs1, $rs2, $rd",
+ [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))]>;
+def FMULD : F3_3<2, 0b110100, 0b001001010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fmuld $rs1, $rs2, $rd",
+ [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))]>;
+def FMULQ : F3_3<2, 0b110100, 0b001001011,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fmulq $rs1, $rs2, $rd",
+ [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+def FSMULD : F3_3<2, 0b110100, 0b001101001,
+ (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fsmuld $rs1, $rs2, $rd",
+ [(set f64:$rd, (fmul (fextend f32:$rs1),
+ (fextend f32:$rs2)))]>;
+def FDMULQ : F3_3<2, 0b110100, 0b001101110,
+ (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fdmulq $rs1, $rs2, $rd",
+ [(set f128:$rd, (fmul (fextend f64:$rs1),
+ (fextend f64:$rs2)))]>,
+ Requires<[HasHardQuad]>;
+
+def FDIVS : F3_3<2, 0b110100, 0b001001101,
+ (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fdivs $rs1, $rs2, $rd",
+ [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))]>;
+def FDIVD : F3_3<2, 0b110100, 0b001001110,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fdivd $rs1, $rs2, $rd",
+ [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))]>;
+def FDIVQ : F3_3<2, 0b110100, 0b001001111,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fdivq $rs1, $rs2, $rd",
+ [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+// Floating-point Compare Instructions, p. 148
+// Note: the 2nd template arg is different for these guys.
+// Note 2: the result of a FCMP is not available until the 2nd cycle
+// after the instr is retired, but there is no interlock in Sparc V8.
+// This behavior is modeled with a forced noop after the instruction in
+// DelaySlotFiller.
+
+let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
+ def FCMPS : F3_3c<2, 0b110101, 0b001010001,
+ (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fcmps $rs1, $rs2",
+ [(SPcmpfcc f32:$rs1, f32:$rs2)]>;
+ def FCMPD : F3_3c<2, 0b110101, 0b001010010,
+ (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fcmpd $rs1, $rs2",
+ [(SPcmpfcc f64:$rs1, f64:$rs2)]>;
+ def FCMPQ : F3_3c<2, 0b110101, 0b001010011,
+ (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fcmpq $rs1, $rs2",
+ [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
+ Requires<[HasHardQuad]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Instructions for Thread Local Storage(TLS).
+//===----------------------------------------------------------------------===//
+let isCodeGenOnly = 1, isAsmParserOnly = 1 in {
+def TLS_ADDrr : F3_1<2, 0b000000,
+ (outs IntRegs:$rd),
+ (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
+ "add $rs1, $rs2, $rd, $sym",
+ [(set i32:$rd,
+ (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
+
+let mayLoad = 1 in
+ def TLS_LDrr : F3_1<3, 0b000000,
+ (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
+ "ld [$addr], $dst, $sym",
+ [(set i32:$dst,
+ (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
+
+let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
+ def TLS_CALL : InstSP<(outs),
+ (ins calltarget:$disp, TLSSym:$sym, variable_ops),
+ "call $disp, $sym",
+ [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)]> {
+ bits<30> disp;
+ let op = 1;
+ let Inst{29-0} = disp;
+}
+}
+
+//===----------------------------------------------------------------------===//
+// V9 Instructions
+//===----------------------------------------------------------------------===//
+
+// V9 Conditional Moves.
+let Predicates = [HasV9], Constraints = "$f = $rd" in {
+ // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
+ let Uses = [ICC], intcc = 1, cc = 0b00 in {
+ def MOVICCrr
+ : F4_1<0b101100, (outs IntRegs:$rd),
+ (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
+ "mov$cond %icc, $rs2, $rd",
+ [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
+
+ def MOVICCri
+ : F4_2<0b101100, (outs IntRegs:$rd),
+ (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
+ "mov$cond %icc, $simm11, $rd",
+ [(set i32:$rd,
+ (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
+ }
+
+ let Uses = [FCC0], intcc = 0, cc = 0b00 in {
+ def MOVFCCrr
+ : F4_1<0b101100, (outs IntRegs:$rd),
+ (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
+ "mov$cond %fcc0, $rs2, $rd",
+ [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
+ def MOVFCCri
+ : F4_2<0b101100, (outs IntRegs:$rd),
+ (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
+ "mov$cond %fcc0, $simm11, $rd",
+ [(set i32:$rd,
+ (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
+ }
+
+ let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
+ def FMOVS_ICC
+ : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
+ (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
+ "fmovs$cond %icc, $rs2, $rd",
+ [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
+ def FMOVD_ICC
+ : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
+ (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
+ "fmovd$cond %icc, $rs2, $rd",
+ [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
+ def FMOVQ_ICC
+ : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
+ (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
+ "fmovq$cond %icc, $rs2, $rd",
+ [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
+ Requires<[HasHardQuad]>;
+ }
+
+ let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
+ def FMOVS_FCC
+ : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
+ (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
+ "fmovs$cond %fcc0, $rs2, $rd",
+ [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
+ def FMOVD_FCC
+ : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
+ (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
+ "fmovd$cond %fcc0, $rs2, $rd",
+ [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
+ def FMOVQ_FCC
+ : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
+ (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
+ "fmovq$cond %fcc0, $rs2, $rd",
+ [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
+ Requires<[HasHardQuad]>;
+ }
+
+}
+
+// Floating-Point Move Instructions, p. 164 of the V9 manual.
+let Predicates = [HasV9] in {
+ def FMOVD : F3_3u<2, 0b110100, 0b000000010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fmovd $rs2, $rd", []>;
+ def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
+ "fmovq $rs2, $rd", []>,
+ Requires<[HasHardQuad]>;
+ def FNEGD : F3_3u<2, 0b110100, 0b000000110,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fnegd $rs2, $rd",
+ [(set f64:$rd, (fneg f64:$rs2))]>;
+ def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
+ "fnegq $rs2, $rd",
+ [(set f128:$rd, (fneg f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+ def FABSD : F3_3u<2, 0b110100, 0b000001010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fabsd $rs2, $rd",
+ [(set f64:$rd, (fabs f64:$rs2))]>;
+ def FABSQ : F3_3u<2, 0b110100, 0b000001011,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
+ "fabsq $rs2, $rd",
+ [(set f128:$rd, (fabs f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+}
+
+// Floating-point compare instruction with %fcc0-%fcc3.
+def V9FCMPS : F3_3c<2, 0b110101, 0b001010001,
+ (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fcmps $rd, $rs1, $rs2", []>;
+def V9FCMPD : F3_3c<2, 0b110101, 0b001010010,
+ (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fcmpd $rd, $rs1, $rs2", []>;
+def V9FCMPQ : F3_3c<2, 0b110101, 0b001010011,
+ (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fcmpq $rd, $rs1, $rs2", []>,
+ Requires<[HasHardQuad]>;
+
+let hasSideEffects = 1 in {
+ def V9FCMPES : F3_3c<2, 0b110101, 0b001010101,
+ (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fcmpes $rd, $rs1, $rs2", []>;
+ def V9FCMPED : F3_3c<2, 0b110101, 0b001010110,
+ (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fcmped $rd, $rs1, $rs2", []>;
+ def V9FCMPEQ : F3_3c<2, 0b110101, 0b001010111,
+ (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fcmpeq $rd, $rs1, $rs2", []>,
+ Requires<[HasHardQuad]>;
+}
+
+// Floating point conditional move instrucitons with %fcc0-%fcc3.
+let Predicates = [HasV9] in {
+ let Constraints = "$f = $rd", intcc = 0 in {
+ def V9MOVFCCrr
+ : F4_1<0b101100, (outs IntRegs:$rd),
+ (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
+ "mov$cond $cc, $rs2, $rd", []>;
+ def V9MOVFCCri
+ : F4_2<0b101100, (outs IntRegs:$rd),
+ (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
+ "mov$cond $cc, $simm11, $rd", []>;
+ def V9FMOVS_FCC
+ : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
+ (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
+ "fmovs$cond $opf_cc, $rs2, $rd", []>;
+ def V9FMOVD_FCC
+ : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
+ (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
+ "fmovd$cond $opf_cc, $rs2, $rd", []>;
+ def V9FMOVQ_FCC
+ : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
+ (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
+ "fmovq$cond $opf_cc, $rs2, $rd", []>,
+ Requires<[HasHardQuad]>;
+ } // Constraints = "$f = $rd", ...
+} // let Predicates = [hasV9]
+
+
+// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
+// the top 32-bits before using it. To do this clearing, we use a SRLri X,0.
+let rs1 = 0 in
+ def POPCrr : F3_1<2, 0b101110,
+ (outs IntRegs:$dst), (ins IntRegs:$src),
+ "popc $src, $dst", []>, Requires<[HasV9]>;
+def : Pat<(ctpop i32:$src),
+ (POPCrr (SRLri $src, 0))>;
+
+// Atomic swap.
+let hasSideEffects =1, rd = 0, rs1 = 0b01111, rs2 = 0 in
+ def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
+
+let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
+ def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13),
+ "membar $simm13", []>;
+
+let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
+ def SWAPrr : F3_1<3, 0b001111,
+ (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
+ "swap [$addr], $dst",
+ [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
+ def SWAPri : F3_2<3, 0b001111,
+ (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
+ "swap [$addr], $dst",
+ [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
+}
+
+let Predicates = [HasV9], Constraints = "$swap = $rd" in
+ def CASrr: F3_1_asi<3, 0b111100, 0b10000000,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
+ IntRegs:$swap),
+ "cas [$rs1], $rs2, $rd",
+ [(set i32:$rd,
+ (atomic_cmp_swap iPTR:$rs1, i32:$rs2, i32:$swap))]>;
+
+let Defs = [ICC] in {
+defm TADDCC : F3_12np<"taddcc", 0b100000>;
+defm TSUBCC : F3_12np<"tsubcc", 0b100001>;
+
+let hasSideEffects = 1 in {
+ defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
+ defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
+}
+}
+
+multiclass TRAP<string regStr> {
+ def rr : TRAPSPrr<0b111010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2,
+ CCOp:$cond),
+ !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), []>;
+ def ri : TRAPSPri<0b111010, (outs), (ins IntRegs:$rs1, i32imm:$imm,
+ CCOp:$cond),
+ !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), []>;
+}
+
+let hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
+ defm TICC : TRAP<"%icc">;
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//===----------------------------------------------------------------------===//
+
+// Small immediates.
+def : Pat<(i32 simm13:$val),
+ (ORri (i32 G0), imm:$val)>;
+// Arbitrary immediates.
+def : Pat<(i32 imm:$val),
+ (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
+
+
+// Global addresses, constant pool entries
+let Predicates = [Is32Bit] in {
+
+def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
+def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
+def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
+def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
+
+// GlobalTLS addresses
+def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
+def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
+def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
+ (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
+def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
+ (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
+
+// Blockaddress
+def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
+def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
+
+// Add reg, lo. This is used when taking the addr of a global/constpool entry.
+def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
+def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>;
+def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
+ (ADDri $r, tblockaddress:$in)>;
+}
+
+// Calls:
+def : Pat<(call tglobaladdr:$dst),
+ (CALL tglobaladdr:$dst)>;
+def : Pat<(call texternalsym:$dst),
+ (CALL texternalsym:$dst)>;
+
+// Map integer extload's to zextloads.
+def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
+def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
+def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
+def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
+def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
+def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
+
+// zextload bool -> zextload byte
+def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
+def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
+
+// store 0, addr -> store %g0, addr
+def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
+def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
+
+// store bar for all atomic_fence in V8.
+let Predicates = [HasNoV9] in
+ def : Pat<(atomic_fence imm, imm), (STBAR)>;
+
+// atomic_load_32 addr -> load addr
+def : Pat<(i32 (atomic_load ADDRrr:$src)), (LDrr ADDRrr:$src)>;
+def : Pat<(i32 (atomic_load ADDRri:$src)), (LDri ADDRri:$src)>;
+
+// atomic_store_32 val, addr -> store val, addr
+def : Pat<(atomic_store ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
+def : Pat<(atomic_store ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
+
+
+include "SparcInstr64Bit.td"
+include "SparcInstrVIS.td"
+include "SparcInstrAliases.td"
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrVIS.td b/contrib/llvm/lib/Target/Sparc/SparcInstrVIS.td
new file mode 100644
index 0000000..3e2b49d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrVIS.td
@@ -0,0 +1,263 @@
+//===---- SparcInstrVIS.td - Visual Instruction Set extensions (VIS) -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains instruction formats, definitions and patterns needed for
+// VIS, VIS II, VIS II instructions on SPARC.
+//===----------------------------------------------------------------------===//
+
+// VIS Instruction Format.
+class VISInstFormat<bits<9> opfval, dag outs, dag ins, string asmstr,
+ list<dag> pattern>
+ : F3_3<0b10, 0b110110, opfval, outs, ins, asmstr, pattern>;
+
+class VISInst<bits<9> opfval, string OpcStr, RegisterClass RC = DFPRegs>
+ : VISInstFormat<opfval,
+ (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
+ !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
+
+// VIS Instruction with integer destination register.
+class VISInstID<bits<9> opfval, string OpcStr>
+ : VISInstFormat<opfval,
+ (outs I64Regs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
+
+// For VIS Instructions with no operand.
+let rd = 0, rs1 = 0, rs2 = 0 in
+class VISInst0<bits<9> opfval, string asmstr>
+ : VISInstFormat<opfval, (outs), (ins), asmstr, []>;
+
+// For VIS Instructions with only rs1, rd operands.
+let rs2 = 0 in
+class VISInst1<bits<9> opfval, string OpcStr, RegisterClass RC = DFPRegs>
+ : VISInstFormat<opfval,
+ (outs RC:$rd), (ins RC:$rs1),
+ !strconcat(OpcStr, " $rs1, $rd"), []>;
+
+// For VIS Instructions with only rs2, rd operands.
+let rs1 = 0 in
+class VISInst2<bits<9> opfval, string OpcStr, RegisterClass RC = DFPRegs>
+ : VISInstFormat<opfval,
+ (outs RC:$rd), (ins RC:$rs2),
+ !strconcat(OpcStr, " $rs2, $rd"), []>;
+
+// For VIS Instructions with only rd operand.
+let Constraints = "$rd = $f", rs1 = 0, rs2 = 0 in
+class VISInstD<bits<9> opfval, string OpcStr, RegisterClass RC = DFPRegs>
+ : VISInstFormat<opfval,
+ (outs RC:$rd), (ins RC:$f),
+ !strconcat(OpcStr, " $rd"), []>;
+
+// VIS 1 Instructions
+let Predicates = [HasVIS] in {
+
+def FPADD16 : VISInst<0b001010000, "fpadd16">;
+def FPADD16S : VISInst<0b001010001, "fpadd16s">;
+def FPADD32 : VISInst<0b001010010, "fpadd32">;
+def FPADD32S : VISInst<0b001010011, "fpadd32s">;
+def FPSUB16 : VISInst<0b001010100, "fpsub16">;
+def FPSUB16S : VISInst<0b001010101, "fpsub16S">;
+def FPSUB32 : VISInst<0b001010110, "fpsub32">;
+def FPSUB32S : VISInst<0b001010111, "fpsub32S">;
+
+def FPACK16 : VISInst2<0b000111011, "fpack16">;
+def FPACK32 : VISInst <0b000111010, "fpack32">;
+def FPACKFIX : VISInst2<0b000111101, "fpackfix">;
+def FEXPAND : VISInst2<0b001001101, "fexpand">;
+def FPMERGE : VISInst <0b001001011, "fpmerge">;
+
+def FMUL8X16 : VISInst<0b00110001, "fmul8x16">;
+def FMUL8X16AU : VISInst<0b00110011, "fmul8x16au">;
+def FMUL8X16AL : VISInst<0b00110101, "fmul8x16al">;
+def FMUL8SUX16 : VISInst<0b00110110, "fmul8sux16">;
+def FMUL8ULX16 : VISInst<0b00110111, "fmul8ulx16">;
+def FMULD8SUX16 : VISInst<0b00111000, "fmuld8sux16">;
+def FMULD8ULX16 : VISInst<0b00111001, "fmuld8ulx16">;
+
+def ALIGNADDR : VISInst<0b000011000, "alignaddr", I64Regs>;
+def ALIGNADDRL : VISInst<0b000011010, "alignaddrl", I64Regs>;
+def FALIGNADATA : VISInst<0b001001000, "faligndata">;
+
+def FZERO : VISInstD<0b001100000, "fzero">;
+def FZEROS : VISInstD<0b001100001, "fzeros", FPRegs>;
+def FONE : VISInstD<0b001111110, "fone">;
+def FONES : VISInstD<0b001111111, "fones", FPRegs>;
+def FSRC1 : VISInst1<0b001110100, "fsrc1">;
+def FSRC1S : VISInst1<0b001110101, "fsrc1s", FPRegs>;
+def FSRC2 : VISInst2<0b001111000, "fsrc2">;
+def FSRC2S : VISInst2<0b001111001, "fsrc2s", FPRegs>;
+def FNOT1 : VISInst1<0b001101010, "fnot1">;
+def FNOT1S : VISInst1<0b001101011, "fnot1s", FPRegs>;
+def FNOT2 : VISInst2<0b001100110, "fnot2">;
+def FNOT2S : VISInst2<0b001100111, "fnot2s", FPRegs>;
+def FOR : VISInst<0b001111100, "for">;
+def FORS : VISInst<0b001111101, "fors", FPRegs>;
+def FNOR : VISInst<0b001100010, "fnor">;
+def FNORS : VISInst<0b001100011, "fnors", FPRegs>;
+def FAND : VISInst<0b001110000, "fand">;
+def FANDS : VISInst<0b001110001, "fands", FPRegs>;
+def FNAND : VISInst<0b001101110, "fnand">;
+def FNANDS : VISInst<0b001101111, "fnands", FPRegs>;
+def FXOR : VISInst<0b001101100, "fxor">;
+def FXORS : VISInst<0b001101101, "fxors", FPRegs>;
+def FXNOR : VISInst<0b001110010, "fxnor">;
+def FXNORS : VISInst<0b001110011, "fxnors", FPRegs>;
+
+def FORNOT1 : VISInst<0b001111010, "fornot1">;
+def FORNOT1S : VISInst<0b001111011, "fornot1s", FPRegs>;
+def FORNOT2 : VISInst<0b001110110, "fornot2">;
+def FORNOT2S : VISInst<0b001110111, "fornot2s", FPRegs>;
+def FANDNOT1 : VISInst<0b001101000, "fandnot1">;
+def FANDNOT1S : VISInst<0b001101001, "fandnot1s", FPRegs>;
+def FANDNOT2 : VISInst<0b001100100, "fandnot2">;
+def FANDNOT2S : VISInst<0b001100101, "fandnot2s", FPRegs>;
+
+def FCMPGT16 : VISInstID<0b000101000, "fcmpgt16">;
+def FCMPGT32 : VISInstID<0b000101100, "fcmpgt32">;
+def FCMPLE16 : VISInstID<0b000100000, "fcmple16">;
+def FCMPLE32 : VISInstID<0b000100100, "fcmple32">;
+def FCMPNE16 : VISInstID<0b000100010, "fcmpne16">;
+def FCMPNE32 : VISInstID<0b000100110, "fcmpne32">;
+def FCMPEQ16 : VISInstID<0b000101010, "fcmpeq16">;
+def FCMPEQ32 : VISInstID<0b000101110, "fcmpeq32">;
+
+
+def EDGE8 : VISInst<0b000000000, "edge8", I64Regs>;
+def EDGE8L : VISInst<0b000000010, "edge8l", I64Regs>;
+def EDGE16 : VISInst<0b000000100, "edge16", I64Regs>;
+def EDGE16L : VISInst<0b000000110, "edge16l", I64Regs>;
+def EDGE32 : VISInst<0b000001000, "edge32", I64Regs>;
+def EDGE32L : VISInst<0b000001010, "edge32l", I64Regs>;
+
+def PDIST : VISInst<0b00111110, "pdist">;
+
+def ARRAY8 : VISInst<0b000010000, "array8", I64Regs>;
+def ARRAY16 : VISInst<0b000010010, "array16", I64Regs>;
+def ARRAY32 : VISInst<0b000010100, "array32", I64Regs>;
+
+def SHUTDOWN : VISInst0<0b010000000, "shutdown">;
+
+} // Predicates = [HasVIS]
+
+
+// VIS 2 Instructions.
+let Predicates = [HasVIS2] in {
+
+def BMASK : VISInst<0b000011001, "bmask", I64Regs>;
+def BSHUFFLE : VISInst<0b000011100, "bshuffle">;
+
+def SIAM : VISInst0<0b010000001, "siam">;
+
+def EDGE8N : VISInst<0b000000001, "edge8n", I64Regs>;
+def EDGE8LN : VISInst<0b000000011, "edge8ln", I64Regs>;
+def EDGE16N : VISInst<0b000000101, "edge16n", I64Regs>;
+def EDGE16LN : VISInst<0b000000111, "edge16ln", I64Regs>;
+def EDGE32N : VISInst<0b000001001, "edge32n", I64Regs>;
+def EDGE32LN : VISInst<0b000001011, "edge32ln", I64Regs>;
+} // Predicates = [HasVIS2]
+
+
+// VIS 3 Instructions.
+let Predicates = [HasVIS3] in {
+
+let Uses = [ICC] in
+def ADDXC : VISInst<0b000010001, "addxc", I64Regs>;
+
+let Defs = [ICC], Uses = [ICC] in
+def ADDXCCC : VISInst<0b000010011, "addxccc", I64Regs>;
+
+let rd = 0, rs1 = 0 in {
+def CMASK8 : VISInstFormat<0b000011011, (outs), (ins I64Regs:$rs2),
+ "cmask8 $rs2", []>;
+def CMASK16 : VISInstFormat<0b000011101, (outs), (ins I64Regs:$rs2),
+ "cmask16 $rs2", []>;
+def CMASK32 : VISInstFormat<0b000011111, (outs), (ins I64Regs:$rs2),
+ "cmask32 $rs2", []>;
+
+}
+
+def FCHKSM16 : VISInst<0b01000100, "fchksm16">;
+
+def FHADDS : F3_3<0b10, 0b110100, 0b001100001,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fhadds $rs1, $rs2, $rd", []>;
+def FHADDD : F3_3<0b10, 0b110100, 0b001100010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fhaddd $rs1, $rs2, $rd", []>;
+def FHSUBS : F3_3<0b10, 0b110100, 0b001100101,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fhsubs $rs1, $rs2, $rd", []>;
+def FHSUBD : F3_3<0b10, 0b110100, 0b001100110,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fhsubd $rs1, $rs2, $rd", []>;
+def FLCMPS : VISInstFormat<0b101010001, (outs FCCRegs:$rd),
+ (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "flcmps $rd, $rs1, $rs2", []>;
+def FLCMPD : VISInstFormat<0b101010010, (outs FCCRegs:$rd),
+ (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "flcmpd $rd, $rs1, $rs2", []>;
+
+def FMEAN16 : VISInst<0b001000000, "fmean16">;
+
+def FNADDS : F3_3<0b10, 0b110100, 0b001010001,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fnadds $rs1, $rs2, $rd", []>;
+def FNADDD : F3_3<0b10, 0b110100, 0b001010010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fnaddd $rs1, $rs2, $rd", []>;
+def FNHADDS : F3_3<0b10, 0b110100, 0b001110001,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fnhadds $rs1, $rs2, $rd", []>;
+def FNHADDD : F3_3<0b10, 0b110100, 0b001110010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fnhaddd $rs1, $rs2, $rd", []>;
+
+def FNMULS : F3_3<0b10, 0b110100, 0b001011001,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fnhadds $rs1, $rs2, $rd", []>;
+def FNMULD : F3_3<0b10, 0b110100, 0b001011010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fnhaddd $rs1, $rs2, $rd", []>;
+def FNSMULD : F3_3<0b10, 0b110100, 0b001111001,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fnhadds $rs1, $rs2, $rd", []>;
+
+def FPADD64 : VISInst<0b001000010, "fpadd64">;
+
+def FSLL16 : VISInst<0b00100001, "fsll16">;
+def FSRL16 : VISInst<0b00100011, "fsrl16">;
+def FSLL32 : VISInst<0b00100101, "fsll32">;
+def FSRL32 : VISInst<0b00100111, "fsrl32">;
+def FSLAS16 : VISInst<0b00101001, "fslas16">;
+def FSRA16 : VISInst<0b00101011, "fsra16">;
+def FSLAS32 : VISInst<0b00101101, "fslas32">;
+def FSRA32 : VISInst<0b00101111, "fsra32">;
+
+let rs1 = 0 in
+def LZCNT : VISInstFormat<0b000010111, (outs I64Regs:$rd),
+ (ins I64Regs:$rs2), "lzcnt $rs2, $rd", []>;
+
+let rs1 = 0 in {
+def MOVSTOSW : VISInstFormat<0b100010011, (outs I64Regs:$rd),
+ (ins DFPRegs:$rs2), "movstosw $rs2, $rd", []>;
+def MOVSTOUW : VISInstFormat<0b100010001, (outs I64Regs:$rd),
+ (ins DFPRegs:$rs2), "movstouw $rs2, $rd", []>;
+def MOVDTOX : VISInstFormat<0b100010000, (outs I64Regs:$rd),
+ (ins DFPRegs:$rs2), "movdtox $rs2, $rd", []>;
+def MOVWTOS : VISInstFormat<0b100011001, (outs DFPRegs:$rd),
+ (ins I64Regs:$rs2), "movdtox $rs2, $rd", []>;
+def MOVXTOD : VISInstFormat<0b100011000, (outs DFPRegs:$rd),
+ (ins I64Regs:$rs2), "movdtox $rs2, $rd", []>;
+}
+
+def PDISTN : VISInst<0b000111111, "pdistn">;
+
+def UMULXHI : VISInst<0b000010110, "umulxhi", I64Regs>;
+def XMULX : VISInst<0b100010101, "xmulx", I64Regs>;
+def XMULXHI : VISInst<0b100010111, "xmulxhi", I64Regs>;
+} // Predicates = [IsVIS3]
diff --git a/contrib/llvm/lib/Target/Sparc/SparcJITInfo.cpp b/contrib/llvm/lib/Target/Sparc/SparcJITInfo.cpp
new file mode 100644
index 0000000..d0eec98
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcJITInfo.cpp
@@ -0,0 +1,326 @@
+//===-- SparcJITInfo.cpp - Implement the Sparc JIT Interface --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the JIT interfaces for the Sparc target.
+//
+//===----------------------------------------------------------------------===//
+#include "SparcJITInfo.h"
+#include "Sparc.h"
+#include "SparcRelocations.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/Support/Memory.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+/// JITCompilerFunction - This contains the address of the JIT function used to
+/// compile a function lazily.
+static TargetJITInfo::JITCompilerFn JITCompilerFunction;
+
+extern "C" void SparcCompilationCallback();
+
+extern "C" {
+#if defined (__sparc__)
+
+#if defined(__arch64__)
+#define FRAME_PTR(X) #X "+2047"
+#else
+#define FRAME_PTR(X) #X
+#endif
+
+ asm(
+ ".text\n"
+ "\t.align 4\n"
+ "\t.global SparcCompilationCallback\n"
+ "\t.type SparcCompilationCallback, #function\n"
+ "SparcCompilationCallback:\n"
+ // Save current register window and create stack.
+ // 128 (save area) + 6*8 (for arguments) + 16*8 (for float regfile) = 304
+ "\tsave %sp, -304, %sp\n"
+ // save float regfile to the stack.
+ "\tstd %f0, [" FRAME_PTR(%fp) "-0]\n"
+ "\tstd %f2, [" FRAME_PTR(%fp) "-8]\n"
+ "\tstd %f4, [" FRAME_PTR(%fp) "-16]\n"
+ "\tstd %f6, [" FRAME_PTR(%fp) "-24]\n"
+ "\tstd %f8, [" FRAME_PTR(%fp) "-32]\n"
+ "\tstd %f10, [" FRAME_PTR(%fp) "-40]\n"
+ "\tstd %f12, [" FRAME_PTR(%fp) "-48]\n"
+ "\tstd %f14, [" FRAME_PTR(%fp) "-56]\n"
+ "\tstd %f16, [" FRAME_PTR(%fp) "-64]\n"
+ "\tstd %f18, [" FRAME_PTR(%fp) "-72]\n"
+ "\tstd %f20, [" FRAME_PTR(%fp) "-80]\n"
+ "\tstd %f22, [" FRAME_PTR(%fp) "-88]\n"
+ "\tstd %f24, [" FRAME_PTR(%fp) "-96]\n"
+ "\tstd %f26, [" FRAME_PTR(%fp) "-104]\n"
+ "\tstd %f28, [" FRAME_PTR(%fp) "-112]\n"
+ "\tstd %f30, [" FRAME_PTR(%fp) "-120]\n"
+ // stubaddr is in %g1.
+ "\tcall SparcCompilationCallbackC\n"
+ "\t mov %g1, %o0\n"
+ // restore float regfile from the stack.
+ "\tldd [" FRAME_PTR(%fp) "-0], %f0\n"
+ "\tldd [" FRAME_PTR(%fp) "-8], %f2\n"
+ "\tldd [" FRAME_PTR(%fp) "-16], %f4\n"
+ "\tldd [" FRAME_PTR(%fp) "-24], %f6\n"
+ "\tldd [" FRAME_PTR(%fp) "-32], %f8\n"
+ "\tldd [" FRAME_PTR(%fp) "-40], %f10\n"
+ "\tldd [" FRAME_PTR(%fp) "-48], %f12\n"
+ "\tldd [" FRAME_PTR(%fp) "-56], %f14\n"
+ "\tldd [" FRAME_PTR(%fp) "-64], %f16\n"
+ "\tldd [" FRAME_PTR(%fp) "-72], %f18\n"
+ "\tldd [" FRAME_PTR(%fp) "-80], %f20\n"
+ "\tldd [" FRAME_PTR(%fp) "-88], %f22\n"
+ "\tldd [" FRAME_PTR(%fp) "-96], %f24\n"
+ "\tldd [" FRAME_PTR(%fp) "-104], %f26\n"
+ "\tldd [" FRAME_PTR(%fp) "-112], %f28\n"
+ "\tldd [" FRAME_PTR(%fp) "-120], %f30\n"
+ // restore original register window and
+ // copy %o0 to %g1
+ "\trestore %o0, 0, %g1\n"
+ // call the new stub
+ "\tjmp %g1\n"
+ "\t nop\n"
+ "\t.size SparcCompilationCallback, .-SparcCompilationCallback"
+ );
+#else
+ void SparcCompilationCallback() {
+ llvm_unreachable(
+ "Cannot call SparcCompilationCallback() on a non-sparc arch!");
+ }
+#endif
+}
+
+
+#define SETHI_INST(imm, rd) (0x01000000 | ((rd) << 25) | ((imm) & 0x3FFFFF))
+#define JMP_INST(rs1, imm, rd) (0x80000000 | ((rd) << 25) | (0x38 << 19) \
+ | ((rs1) << 14) | (1 << 13) | ((imm) & 0x1FFF))
+#define NOP_INST SETHI_INST(0, 0)
+#define OR_INST_I(rs1, imm, rd) (0x80000000 | ((rd) << 25) | (0x02 << 19) \
+ | ((rs1) << 14) | (1 << 13) | ((imm) & 0x1FFF))
+#define OR_INST_R(rs1, rs2, rd) (0x80000000 | ((rd) << 25) | (0x02 << 19) \
+ | ((rs1) << 14) | (0 << 13) | ((rs2) & 0x1F))
+#define RDPC_INST(rd) (0x80000000 | ((rd) << 25) | (0x28 << 19) \
+ | (5 << 14))
+#define LDX_INST(rs1, imm, rd) (0xC0000000 | ((rd) << 25) | (0x0B << 19) \
+ | ((rs1) << 14) | (1 << 13) | ((imm) & 0x1FFF))
+#define SLLX_INST(rs1, imm, rd) (0x80000000 | ((rd) << 25) | (0x25 << 19) \
+ | ((rs1) << 14) | (3 << 12) | ((imm) & 0x3F))
+#define SUB_INST(rs1, imm, rd) (0x80000000 | ((rd) << 25) | (0x04 << 19) \
+ | ((rs1) << 14) | (1 << 13) | ((imm) & 0x1FFF))
+#define XOR_INST(rs1, imm, rd) (0x80000000 | ((rd) << 25) | (0x03 << 19) \
+ | ((rs1) << 14) | (1 << 13) | ((imm) & 0x1FFF))
+#define BA_INST(tgt) (0x10800000 | ((tgt) & 0x3FFFFF))
+
+// Emit instructions to jump to Addr and store the starting address of
+// the instructions emitted in the scratch register.
+static void emitInstrForIndirectJump(intptr_t Addr,
+ unsigned scratch,
+ SmallVectorImpl<uint32_t> &Insts) {
+
+ if (isInt<13>(Addr)) {
+ // Emit: jmpl %g0+Addr, <scratch>
+ // nop
+ Insts.push_back(JMP_INST(0, LO10(Addr), scratch));
+ Insts.push_back(NOP_INST);
+ return;
+ }
+
+ if (isUInt<32>(Addr)) {
+ // Emit: sethi %hi(Addr), scratch
+ // jmpl scratch+%lo(Addr), scratch
+ // sub scratch, 4, scratch
+ Insts.push_back(SETHI_INST(HI22(Addr), scratch));
+ Insts.push_back(JMP_INST(scratch, LO10(Addr), scratch));
+ Insts.push_back(SUB_INST(scratch, 4, scratch));
+ return;
+ }
+
+ if (Addr < 0 && isInt<33>(Addr)) {
+ // Emit: sethi %hix(Addr), scratch)
+ // xor scratch, %lox(Addr), scratch
+ // jmpl scratch+0, scratch
+ // sub scratch, 8, scratch
+ Insts.push_back(SETHI_INST(HIX22(Addr), scratch));
+ Insts.push_back(XOR_INST(scratch, LOX10(Addr), scratch));
+ Insts.push_back(JMP_INST(scratch, 0, scratch));
+ Insts.push_back(SUB_INST(scratch, 8, scratch));
+ return;
+ }
+
+ // Emit: rd %pc, scratch
+ // ldx [scratch+16], scratch
+ // jmpl scratch+0, scratch
+ // sub scratch, 8, scratch
+ // <Addr: 8 byte>
+ Insts.push_back(RDPC_INST(scratch));
+ Insts.push_back(LDX_INST(scratch, 16, scratch));
+ Insts.push_back(JMP_INST(scratch, 0, scratch));
+ Insts.push_back(SUB_INST(scratch, 8, scratch));
+ Insts.push_back((uint32_t)(((int64_t)Addr) >> 32) & 0xffffffff);
+ Insts.push_back((uint32_t)(Addr & 0xffffffff));
+
+ // Instruction sequence without rdpc instruction
+ // 7 instruction and 2 scratch register
+ // Emit: sethi %hh(Addr), scratch
+ // or scratch, %hm(Addr), scratch
+ // sllx scratch, 32, scratch
+ // sethi %hi(Addr), scratch2
+ // or scratch, scratch2, scratch
+ // jmpl scratch+%lo(Addr), scratch
+ // sub scratch, 20, scratch
+ // Insts.push_back(SETHI_INST(HH22(Addr), scratch));
+ // Insts.push_back(OR_INST_I(scratch, HM10(Addr), scratch));
+ // Insts.push_back(SLLX_INST(scratch, 32, scratch));
+ // Insts.push_back(SETHI_INST(HI22(Addr), scratch2));
+ // Insts.push_back(OR_INST_R(scratch, scratch2, scratch));
+ // Insts.push_back(JMP_INST(scratch, LO10(Addr), scratch));
+ // Insts.push_back(SUB_INST(scratch, 20, scratch));
+}
+
+extern "C" void *SparcCompilationCallbackC(intptr_t StubAddr) {
+ // Get the address of the compiled code for this function.
+ intptr_t NewVal = (intptr_t) JITCompilerFunction((void*) StubAddr);
+
+ // Rewrite the function stub so that we don't end up here every time we
+ // execute the call. We're replacing the stub instructions with code
+ // that jumps to the compiled function:
+
+ SmallVector<uint32_t, 8> Insts;
+ intptr_t diff = (NewVal - StubAddr) >> 2;
+ if (isInt<22>(diff)) {
+ // Use branch instruction to jump
+ Insts.push_back(BA_INST(diff));
+ Insts.push_back(NOP_INST);
+ } else {
+ // Otherwise, use indirect jump to the compiled function
+ emitInstrForIndirectJump(NewVal, 1, Insts);
+ }
+
+ for (unsigned i = 0, e = Insts.size(); i != e; ++i)
+ *(uint32_t *)(StubAddr + i*4) = Insts[i];
+
+ sys::Memory::InvalidateInstructionCache((void*) StubAddr, Insts.size() * 4);
+ return (void*)StubAddr;
+}
+
+
+void SparcJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
+ llvm_unreachable("FIXME: Implement SparcJITInfo::"
+ "replaceMachineCodeForFunction");
+}
+
+
+TargetJITInfo::StubLayout SparcJITInfo::getStubLayout() {
+ // The stub contains maximum of 4 4-byte instructions and 8 bytes for address,
+ // aligned at 32 bytes.
+ // See emitFunctionStub and emitInstrForIndirectJump for details.
+ StubLayout Result = { 4*4 + 8, 32 };
+ return Result;
+}
+
+void *SparcJITInfo::emitFunctionStub(const Function *F, void *Fn,
+ JITCodeEmitter &JCE)
+{
+ JCE.emitAlignment(32);
+ void *Addr = (void*) (JCE.getCurrentPCValue());
+
+ intptr_t CurrentAddr = (intptr_t)Addr;
+ intptr_t EmittedAddr;
+ SmallVector<uint32_t, 8> Insts;
+ if (Fn != (void*)(intptr_t)SparcCompilationCallback) {
+ EmittedAddr = (intptr_t)Fn;
+ intptr_t diff = (EmittedAddr - CurrentAddr) >> 2;
+ if (isInt<22>(diff)) {
+ Insts.push_back(BA_INST(diff));
+ Insts.push_back(NOP_INST);
+ }
+ } else {
+ EmittedAddr = (intptr_t)SparcCompilationCallback;
+ }
+
+ if (Insts.size() == 0)
+ emitInstrForIndirectJump(EmittedAddr, 1, Insts);
+
+
+ if (!sys::Memory::setRangeWritable(Addr, 4 * Insts.size()))
+ llvm_unreachable("ERROR: Unable to mark stub writable.");
+
+ for (unsigned i = 0, e = Insts.size(); i != e; ++i)
+ JCE.emitWordBE(Insts[i]);
+
+ sys::Memory::InvalidateInstructionCache(Addr, 4 * Insts.size());
+ if (!sys::Memory::setRangeExecutable(Addr, 4 * Insts.size()))
+ llvm_unreachable("ERROR: Unable to mark stub executable.");
+
+ return Addr;
+}
+
+
+TargetJITInfo::LazyResolverFn
+SparcJITInfo::getLazyResolverFunction(JITCompilerFn F) {
+ JITCompilerFunction = F;
+ return SparcCompilationCallback;
+}
+
+/// relocate - Before the JIT can run a block of code that has been emitted,
+/// it must rewrite the code to contain the actual addresses of any
+/// referenced global symbols.
+void SparcJITInfo::relocate(void *Function, MachineRelocation *MR,
+ unsigned NumRelocs, unsigned char *GOTBase) {
+ for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
+ void *RelocPos = (char*) Function + MR->getMachineCodeOffset();
+ intptr_t ResultPtr = (intptr_t) MR->getResultPointer();
+
+ switch ((SP::RelocationType) MR->getRelocationType()) {
+ case SP::reloc_sparc_hi:
+ ResultPtr = (ResultPtr >> 10) & 0x3fffff;
+ break;
+
+ case SP::reloc_sparc_lo:
+ ResultPtr = (ResultPtr & 0x3ff);
+ break;
+
+ case SP::reloc_sparc_pc30:
+ ResultPtr = ((ResultPtr - (intptr_t)RelocPos) >> 2) & 0x3fffffff;
+ break;
+
+ case SP::reloc_sparc_pc22:
+ ResultPtr = ((ResultPtr - (intptr_t)RelocPos) >> 2) & 0x3fffff;
+ break;
+
+ case SP::reloc_sparc_pc19:
+ ResultPtr = ((ResultPtr - (intptr_t)RelocPos) >> 2) & 0x7ffff;
+ break;
+
+ case SP::reloc_sparc_h44:
+ ResultPtr = (ResultPtr >> 22) & 0x3fffff;
+ break;
+
+ case SP::reloc_sparc_m44:
+ ResultPtr = (ResultPtr >> 12) & 0x3ff;
+ break;
+
+ case SP::reloc_sparc_l44:
+ ResultPtr = (ResultPtr & 0xfff);
+ break;
+
+ case SP::reloc_sparc_hh:
+ ResultPtr = (((int64_t)ResultPtr) >> 42) & 0x3fffff;
+ break;
+
+ case SP::reloc_sparc_hm:
+ ResultPtr = (((int64_t)ResultPtr) >> 32) & 0x3ff;
+ break;
+
+ }
+ *((unsigned*) RelocPos) |= (unsigned) ResultPtr;
+ }
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcJITInfo.h b/contrib/llvm/lib/Target/Sparc/SparcJITInfo.h
new file mode 100644
index 0000000..ff1b43a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcJITInfo.h
@@ -0,0 +1,67 @@
+//==- SparcJITInfo.h - Sparc Implementation of the JIT Interface -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the SparcJITInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARCJITINFO_H
+#define SPARCJITINFO_H
+
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/Target/TargetJITInfo.h"
+
+namespace llvm {
+class SparcTargetMachine;
+
+class SparcJITInfo : public TargetJITInfo {
+
+ bool IsPIC;
+
+ public:
+ explicit SparcJITInfo()
+ : IsPIC(false) {}
+
+ /// replaceMachineCodeForFunction - Make it so that calling the function
+ /// whose machine code is at OLD turns into a call to NEW, perhaps by
+ /// overwriting OLD with a branch to NEW. This is used for self-modifying
+ /// code.
+ ///
+ void replaceMachineCodeForFunction(void *Old, void *New) override;
+
+ // getStubLayout - Returns the size and alignment of the largest call stub
+ // on Sparc.
+ StubLayout getStubLayout() override;
+
+
+ /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a
+ /// small native function that simply calls the function at the specified
+ /// address.
+ void *emitFunctionStub(const Function *F, void *Fn,
+ JITCodeEmitter &JCE) override;
+
+ /// getLazyResolverFunction - Expose the lazy resolver to the JIT.
+ LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
+
+ /// relocate - Before the JIT can run a block of code that has been emitted,
+ /// it must rewrite the code to contain the actual addresses of any
+ /// referenced global symbols.
+ void relocate(void *Function, MachineRelocation *MR,
+ unsigned NumRelocs, unsigned char *GOTBase) override;
+
+ /// Initialize - Initialize internal stage for the function being JITted.
+ void Initialize(const MachineFunction &MF, bool isPIC) {
+ IsPIC = isPIC;
+ }
+
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcMCInstLower.cpp b/contrib/llvm/lib/Target/Sparc/SparcMCInstLower.cpp
new file mode 100644
index 0000000..9e94d2c
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcMCInstLower.cpp
@@ -0,0 +1,109 @@
+//===-- SparcMCInstLower.cpp - Convert Sparc MachineInstr to MCInst -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code to lower Sparc MachineInstrs to their corresponding
+// MCInst records.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sparc.h"
+#include "MCTargetDesc/SparcMCExpr.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+
+using namespace llvm;
+
+
+static MCOperand LowerSymbolOperand(const MachineInstr *MI,
+ const MachineOperand &MO,
+ AsmPrinter &AP) {
+
+ SparcMCExpr::VariantKind Kind =
+ (SparcMCExpr::VariantKind)MO.getTargetFlags();
+ const MCSymbol *Symbol = nullptr;
+
+ switch(MO.getType()) {
+ default: llvm_unreachable("Unknown type in LowerSymbolOperand");
+ case MachineOperand::MO_MachineBasicBlock:
+ Symbol = MO.getMBB()->getSymbol();
+ break;
+
+ case MachineOperand::MO_GlobalAddress:
+ Symbol = AP.getSymbol(MO.getGlobal());
+ break;
+
+ case MachineOperand::MO_BlockAddress:
+ Symbol = AP.GetBlockAddressSymbol(MO.getBlockAddress());
+ break;
+
+ case MachineOperand::MO_ExternalSymbol:
+ Symbol = AP.GetExternalSymbolSymbol(MO.getSymbolName());
+ break;
+
+ case MachineOperand::MO_ConstantPoolIndex:
+ Symbol = AP.GetCPISymbol(MO.getIndex());
+ break;
+ }
+
+ const MCSymbolRefExpr *MCSym = MCSymbolRefExpr::Create(Symbol,
+ AP.OutContext);
+ const SparcMCExpr *expr = SparcMCExpr::Create(Kind, MCSym,
+ AP.OutContext);
+ return MCOperand::CreateExpr(expr);
+}
+
+static MCOperand LowerOperand(const MachineInstr *MI,
+ const MachineOperand &MO,
+ AsmPrinter &AP) {
+ switch(MO.getType()) {
+ default: llvm_unreachable("unknown operand type"); break;
+ case MachineOperand::MO_Register:
+ if (MO.isImplicit())
+ break;
+ return MCOperand::CreateReg(MO.getReg());
+
+ case MachineOperand::MO_Immediate:
+ return MCOperand::CreateImm(MO.getImm());
+
+ case MachineOperand::MO_MachineBasicBlock:
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_BlockAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ case MachineOperand::MO_ConstantPoolIndex:
+ return LowerSymbolOperand(MI, MO, AP);
+
+ case MachineOperand::MO_RegisterMask: break;
+
+ }
+ return MCOperand();
+}
+
+void llvm::LowerSparcMachineInstrToMCInst(const MachineInstr *MI,
+ MCInst &OutMI,
+ AsmPrinter &AP)
+{
+
+ OutMI.setOpcode(MI->getOpcode());
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ MCOperand MCOp = LowerOperand(MI, MO, AP);
+
+ if (MCOp.isValid())
+ OutMI.addOperand(MCOp);
+ }
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.cpp b/contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.cpp
new file mode 100644
index 0000000..e744282
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.cpp
@@ -0,0 +1,14 @@
+//===-- SparcMachineFunctionInfo.cpp - Sparc Machine Function Info --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcMachineFunctionInfo.h"
+
+using namespace llvm;
+
+void SparcMachineFunctionInfo::anchor() { }
diff --git a/contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.h b/contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.h
new file mode 100644
index 0000000..3783c16
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.h
@@ -0,0 +1,56 @@
+//===- SparcMachineFunctionInfo.h - Sparc Machine Function Info -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares Sparc specific per-machine-function information.
+//
+//===----------------------------------------------------------------------===//
+#ifndef SPARCMACHINEFUNCTIONINFO_H
+#define SPARCMACHINEFUNCTIONINFO_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+
+namespace llvm {
+
+ class SparcMachineFunctionInfo : public MachineFunctionInfo {
+ virtual void anchor();
+ private:
+ unsigned GlobalBaseReg;
+
+ /// VarArgsFrameOffset - Frame offset to start of varargs area.
+ int VarArgsFrameOffset;
+
+ /// SRetReturnReg - Holds the virtual register into which the sret
+ /// argument is passed.
+ unsigned SRetReturnReg;
+
+ /// IsLeafProc - True if the function is a leaf procedure.
+ bool IsLeafProc;
+ public:
+ SparcMachineFunctionInfo()
+ : GlobalBaseReg(0), VarArgsFrameOffset(0), SRetReturnReg(0),
+ IsLeafProc(false) {}
+ explicit SparcMachineFunctionInfo(MachineFunction &MF)
+ : GlobalBaseReg(0), VarArgsFrameOffset(0), SRetReturnReg(0),
+ IsLeafProc(false) {}
+
+ unsigned getGlobalBaseReg() const { return GlobalBaseReg; }
+ void setGlobalBaseReg(unsigned Reg) { GlobalBaseReg = Reg; }
+
+ int getVarArgsFrameOffset() const { return VarArgsFrameOffset; }
+ void setVarArgsFrameOffset(int Offset) { VarArgsFrameOffset = Offset; }
+
+ unsigned getSRetReturnReg() const { return SRetReturnReg; }
+ void setSRetReturnReg(unsigned Reg) { SRetReturnReg = Reg; }
+
+ void setLeafProc(bool rhs) { IsLeafProc = rhs; }
+ bool isLeafProc() const { return IsLeafProc; }
+ };
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.cpp b/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.cpp
new file mode 100644
index 0000000..dc1ec7c
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.cpp
@@ -0,0 +1,211 @@
+//===-- SparcRegisterInfo.cpp - SPARC Register Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SPARC implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcRegisterInfo.h"
+#include "Sparc.h"
+#include "SparcMachineFunctionInfo.h"
+#include "SparcSubtarget.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+using namespace llvm;
+
+#define GET_REGINFO_TARGET_DESC
+#include "SparcGenRegisterInfo.inc"
+
+static cl::opt<bool>
+ReserveAppRegisters("sparc-reserve-app-registers", cl::Hidden, cl::init(false),
+ cl::desc("Reserve application registers (%g2-%g4)"));
+
+SparcRegisterInfo::SparcRegisterInfo(SparcSubtarget &st)
+ : SparcGenRegisterInfo(SP::O7), Subtarget(st) {
+}
+
+const MCPhysReg*
+SparcRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ return CSR_SaveList;
+}
+
+const uint32_t*
+SparcRegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
+ return CSR_RegMask;
+}
+
+const uint32_t*
+SparcRegisterInfo::getRTCallPreservedMask(CallingConv::ID CC) const {
+ return RTCSR_RegMask;
+}
+
+BitVector SparcRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ BitVector Reserved(getNumRegs());
+ // FIXME: G1 reserved for now for large imm generation by frame code.
+ Reserved.set(SP::G1);
+
+ // G1-G4 can be used in applications.
+ if (ReserveAppRegisters) {
+ Reserved.set(SP::G2);
+ Reserved.set(SP::G3);
+ Reserved.set(SP::G4);
+ }
+ // G5 is not reserved in 64 bit mode.
+ if (!Subtarget.is64Bit())
+ Reserved.set(SP::G5);
+
+ Reserved.set(SP::O6);
+ Reserved.set(SP::I6);
+ Reserved.set(SP::I7);
+ Reserved.set(SP::G0);
+ Reserved.set(SP::G6);
+ Reserved.set(SP::G7);
+
+ // Unaliased double registers are not available in non-V9 targets.
+ if (!Subtarget.isV9()) {
+ for (unsigned n = 0; n != 16; ++n) {
+ for (MCRegAliasIterator AI(SP::D16 + n, this, true); AI.isValid(); ++AI)
+ Reserved.set(*AI);
+ }
+ }
+
+ return Reserved;
+}
+
+const TargetRegisterClass*
+SparcRegisterInfo::getPointerRegClass(const MachineFunction &MF,
+ unsigned Kind) const {
+ return Subtarget.is64Bit() ? &SP::I64RegsRegClass : &SP::IntRegsRegClass;
+}
+
+static void replaceFI(MachineFunction &MF,
+ MachineBasicBlock::iterator II,
+ MachineInstr &MI,
+ DebugLoc dl,
+ unsigned FIOperandNum, int Offset,
+ unsigned FramePtr)
+{
+ // Replace frame index with a frame pointer reference.
+ if (Offset >= -4096 && Offset <= 4095) {
+ // If the offset is small enough to fit in the immediate field, directly
+ // encode it.
+ MI.getOperand(FIOperandNum).ChangeToRegister(FramePtr, false);
+ MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
+ return;
+ }
+
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+
+ // FIXME: it would be better to scavenge a register here instead of
+ // reserving G1 all of the time.
+ if (Offset >= 0) {
+ // Emit nonnegaive immediates with sethi + or.
+ // sethi %hi(Offset), %g1
+ // add %g1, %fp, %g1
+ // Insert G1+%lo(offset) into the user.
+ BuildMI(*MI.getParent(), II, dl, TII.get(SP::SETHIi), SP::G1)
+ .addImm(HI22(Offset));
+
+
+ // Emit G1 = G1 + I6
+ BuildMI(*MI.getParent(), II, dl, TII.get(SP::ADDrr), SP::G1).addReg(SP::G1)
+ .addReg(FramePtr);
+ // Insert: G1+%lo(offset) into the user.
+ MI.getOperand(FIOperandNum).ChangeToRegister(SP::G1, false);
+ MI.getOperand(FIOperandNum + 1).ChangeToImmediate(LO10(Offset));
+ return;
+ }
+
+ // Emit Negative numbers with sethi + xor
+ // sethi %hix(Offset), %g1
+ // xor %g1, %lox(offset), %g1
+ // add %g1, %fp, %g1
+ // Insert: G1 + 0 into the user.
+ BuildMI(*MI.getParent(), II, dl, TII.get(SP::SETHIi), SP::G1)
+ .addImm(HIX22(Offset));
+ BuildMI(*MI.getParent(), II, dl, TII.get(SP::XORri), SP::G1)
+ .addReg(SP::G1).addImm(LOX10(Offset));
+
+ BuildMI(*MI.getParent(), II, dl, TII.get(SP::ADDrr), SP::G1).addReg(SP::G1)
+ .addReg(FramePtr);
+ // Insert: G1+%lo(offset) into the user.
+ MI.getOperand(FIOperandNum).ChangeToRegister(SP::G1, false);
+ MI.getOperand(FIOperandNum + 1).ChangeToImmediate(0);
+}
+
+
+void
+SparcRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ assert(SPAdj == 0 && "Unexpected");
+
+ MachineInstr &MI = *II;
+ DebugLoc dl = MI.getDebugLoc();
+ int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
+
+ // Addressable stack objects are accessed using neg. offsets from %fp
+ MachineFunction &MF = *MI.getParent()->getParent();
+ int64_t Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
+ MI.getOperand(FIOperandNum + 1).getImm() +
+ Subtarget.getStackPointerBias();
+ SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
+ unsigned FramePtr = SP::I6;
+ if (FuncInfo->isLeafProc()) {
+ // Use %sp and adjust offset if needed.
+ FramePtr = SP::O6;
+ int stackSize = MF.getFrameInfo()->getStackSize();
+ Offset += (stackSize) ? Subtarget.getAdjustedFrameSize(stackSize) : 0 ;
+ }
+
+ if (!Subtarget.isV9() || !Subtarget.hasHardQuad()) {
+ if (MI.getOpcode() == SP::STQFri) {
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ unsigned SrcReg = MI.getOperand(2).getReg();
+ unsigned SrcEvenReg = getSubReg(SrcReg, SP::sub_even64);
+ unsigned SrcOddReg = getSubReg(SrcReg, SP::sub_odd64);
+ MachineInstr *StMI =
+ BuildMI(*MI.getParent(), II, dl, TII.get(SP::STDFri))
+ .addReg(FramePtr).addImm(0).addReg(SrcEvenReg);
+ replaceFI(MF, II, *StMI, dl, 0, Offset, FramePtr);
+ MI.setDesc(TII.get(SP::STDFri));
+ MI.getOperand(2).setReg(SrcOddReg);
+ Offset += 8;
+ } else if (MI.getOpcode() == SP::LDQFri) {
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ unsigned DestReg = MI.getOperand(0).getReg();
+ unsigned DestEvenReg = getSubReg(DestReg, SP::sub_even64);
+ unsigned DestOddReg = getSubReg(DestReg, SP::sub_odd64);
+ MachineInstr *StMI =
+ BuildMI(*MI.getParent(), II, dl, TII.get(SP::LDDFri), DestEvenReg)
+ .addReg(FramePtr).addImm(0);
+ replaceFI(MF, II, *StMI, dl, 1, Offset, FramePtr);
+
+ MI.setDesc(TII.get(SP::LDDFri));
+ MI.getOperand(0).setReg(DestOddReg);
+ Offset += 8;
+ }
+ }
+
+ replaceFI(MF, II, MI, dl, FIOperandNum, Offset, FramePtr);
+
+}
+
+unsigned SparcRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
+ return SP::I6;
+}
+
diff --git a/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.h b/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.h
new file mode 100644
index 0000000..77f879a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.h
@@ -0,0 +1,58 @@
+//===-- SparcRegisterInfo.h - Sparc Register Information Impl ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Sparc implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARCREGISTERINFO_H
+#define SPARCREGISTERINFO_H
+
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define GET_REGINFO_HEADER
+#include "SparcGenRegisterInfo.inc"
+
+namespace llvm {
+
+class SparcSubtarget;
+class TargetInstrInfo;
+class Type;
+
+struct SparcRegisterInfo : public SparcGenRegisterInfo {
+ SparcSubtarget &Subtarget;
+
+ SparcRegisterInfo(SparcSubtarget &st);
+
+ /// Code Generation virtual methods...
+ const MCPhysReg *
+ getCalleeSavedRegs(const MachineFunction *MF =nullptr) const override;
+ const uint32_t* getCallPreservedMask(CallingConv::ID CC) const override;
+
+ const uint32_t* getRTCallPreservedMask(CallingConv::ID CC) const;
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+
+ const TargetRegisterClass *getPointerRegClass(const MachineFunction &MF,
+ unsigned Kind) const override;
+
+ void eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const override;
+
+ void processFunctionBeforeFrameFinalized(MachineFunction &MF,
+ RegScavenger *RS = nullptr) const;
+
+ // Debug information queries.
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.td b/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.td
new file mode 100644
index 0000000..2cadff1
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.td
@@ -0,0 +1,211 @@
+//===-- SparcRegisterInfo.td - Sparc Register defs ---------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Declarations that describe the Sparc register file
+//===----------------------------------------------------------------------===//
+
+class SparcReg<bits<16> Enc, string n> : Register<n> {
+ let HWEncoding = Enc;
+ let Namespace = "SP";
+}
+
+class SparcCtrlReg<bits<16> Enc, string n>: Register<n> {
+ let HWEncoding = Enc;
+ let Namespace = "SP";
+}
+
+let Namespace = "SP" in {
+def sub_even : SubRegIndex<32>;
+def sub_odd : SubRegIndex<32, 32>;
+def sub_even64 : SubRegIndex<64>;
+def sub_odd64 : SubRegIndex<64, 64>;
+}
+
+// Registers are identified with 5-bit ID numbers.
+// Ri - 32-bit integer registers
+class Ri<bits<16> Enc, string n> : SparcReg<Enc, n>;
+
+// Rf - 32-bit floating-point registers
+class Rf<bits<16> Enc, string n> : SparcReg<Enc, n>;
+
+// Rd - Slots in the FP register file for 64-bit floating-point values.
+class Rd<bits<16> Enc, string n, list<Register> subregs> : SparcReg<Enc, n> {
+ let SubRegs = subregs;
+ let SubRegIndices = [sub_even, sub_odd];
+ let CoveredBySubRegs = 1;
+}
+
+// Rq - Slots in the FP register file for 128-bit floating-point values.
+class Rq<bits<16> Enc, string n, list<Register> subregs> : SparcReg<Enc, n> {
+ let SubRegs = subregs;
+ let SubRegIndices = [sub_even64, sub_odd64];
+ let CoveredBySubRegs = 1;
+}
+
+// Control Registers
+def ICC : SparcCtrlReg<0, "ICC">; // This represents icc and xcc in 64-bit code.
+foreach I = 0-3 in
+ def FCC#I : SparcCtrlReg<I, "FCC"#I>;
+
+// Y register
+def Y : SparcCtrlReg<0, "Y">, DwarfRegNum<[64]>;
+
+// Integer registers
+def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
+def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
+def G2 : Ri< 2, "G2">, DwarfRegNum<[2]>;
+def G3 : Ri< 3, "G3">, DwarfRegNum<[3]>;
+def G4 : Ri< 4, "G4">, DwarfRegNum<[4]>;
+def G5 : Ri< 5, "G5">, DwarfRegNum<[5]>;
+def G6 : Ri< 6, "G6">, DwarfRegNum<[6]>;
+def G7 : Ri< 7, "G7">, DwarfRegNum<[7]>;
+def O0 : Ri< 8, "O0">, DwarfRegNum<[8]>;
+def O1 : Ri< 9, "O1">, DwarfRegNum<[9]>;
+def O2 : Ri<10, "O2">, DwarfRegNum<[10]>;
+def O3 : Ri<11, "O3">, DwarfRegNum<[11]>;
+def O4 : Ri<12, "O4">, DwarfRegNum<[12]>;
+def O5 : Ri<13, "O5">, DwarfRegNum<[13]>;
+def O6 : Ri<14, "SP">, DwarfRegNum<[14]>;
+def O7 : Ri<15, "O7">, DwarfRegNum<[15]>;
+def L0 : Ri<16, "L0">, DwarfRegNum<[16]>;
+def L1 : Ri<17, "L1">, DwarfRegNum<[17]>;
+def L2 : Ri<18, "L2">, DwarfRegNum<[18]>;
+def L3 : Ri<19, "L3">, DwarfRegNum<[19]>;
+def L4 : Ri<20, "L4">, DwarfRegNum<[20]>;
+def L5 : Ri<21, "L5">, DwarfRegNum<[21]>;
+def L6 : Ri<22, "L6">, DwarfRegNum<[22]>;
+def L7 : Ri<23, "L7">, DwarfRegNum<[23]>;
+def I0 : Ri<24, "I0">, DwarfRegNum<[24]>;
+def I1 : Ri<25, "I1">, DwarfRegNum<[25]>;
+def I2 : Ri<26, "I2">, DwarfRegNum<[26]>;
+def I3 : Ri<27, "I3">, DwarfRegNum<[27]>;
+def I4 : Ri<28, "I4">, DwarfRegNum<[28]>;
+def I5 : Ri<29, "I5">, DwarfRegNum<[29]>;
+def I6 : Ri<30, "FP">, DwarfRegNum<[30]>;
+def I7 : Ri<31, "I7">, DwarfRegNum<[31]>;
+
+// Floating-point registers
+def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
+def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
+def F2 : Rf< 2, "F2">, DwarfRegNum<[34]>;
+def F3 : Rf< 3, "F3">, DwarfRegNum<[35]>;
+def F4 : Rf< 4, "F4">, DwarfRegNum<[36]>;
+def F5 : Rf< 5, "F5">, DwarfRegNum<[37]>;
+def F6 : Rf< 6, "F6">, DwarfRegNum<[38]>;
+def F7 : Rf< 7, "F7">, DwarfRegNum<[39]>;
+def F8 : Rf< 8, "F8">, DwarfRegNum<[40]>;
+def F9 : Rf< 9, "F9">, DwarfRegNum<[41]>;
+def F10 : Rf<10, "F10">, DwarfRegNum<[42]>;
+def F11 : Rf<11, "F11">, DwarfRegNum<[43]>;
+def F12 : Rf<12, "F12">, DwarfRegNum<[44]>;
+def F13 : Rf<13, "F13">, DwarfRegNum<[45]>;
+def F14 : Rf<14, "F14">, DwarfRegNum<[46]>;
+def F15 : Rf<15, "F15">, DwarfRegNum<[47]>;
+def F16 : Rf<16, "F16">, DwarfRegNum<[48]>;
+def F17 : Rf<17, "F17">, DwarfRegNum<[49]>;
+def F18 : Rf<18, "F18">, DwarfRegNum<[50]>;
+def F19 : Rf<19, "F19">, DwarfRegNum<[51]>;
+def F20 : Rf<20, "F20">, DwarfRegNum<[52]>;
+def F21 : Rf<21, "F21">, DwarfRegNum<[53]>;
+def F22 : Rf<22, "F22">, DwarfRegNum<[54]>;
+def F23 : Rf<23, "F23">, DwarfRegNum<[55]>;
+def F24 : Rf<24, "F24">, DwarfRegNum<[56]>;
+def F25 : Rf<25, "F25">, DwarfRegNum<[57]>;
+def F26 : Rf<26, "F26">, DwarfRegNum<[58]>;
+def F27 : Rf<27, "F27">, DwarfRegNum<[59]>;
+def F28 : Rf<28, "F28">, DwarfRegNum<[60]>;
+def F29 : Rf<29, "F29">, DwarfRegNum<[61]>;
+def F30 : Rf<30, "F30">, DwarfRegNum<[62]>;
+def F31 : Rf<31, "F31">, DwarfRegNum<[63]>;
+
+// Aliases of the F* registers used to hold 64-bit fp values (doubles)
+def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[72]>;
+def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[73]>;
+def D2 : Rd< 4, "F4", [F4, F5]>, DwarfRegNum<[74]>;
+def D3 : Rd< 6, "F6", [F6, F7]>, DwarfRegNum<[75]>;
+def D4 : Rd< 8, "F8", [F8, F9]>, DwarfRegNum<[76]>;
+def D5 : Rd<10, "F10", [F10, F11]>, DwarfRegNum<[77]>;
+def D6 : Rd<12, "F12", [F12, F13]>, DwarfRegNum<[78]>;
+def D7 : Rd<14, "F14", [F14, F15]>, DwarfRegNum<[79]>;
+def D8 : Rd<16, "F16", [F16, F17]>, DwarfRegNum<[80]>;
+def D9 : Rd<18, "F18", [F18, F19]>, DwarfRegNum<[81]>;
+def D10 : Rd<20, "F20", [F20, F21]>, DwarfRegNum<[82]>;
+def D11 : Rd<22, "F22", [F22, F23]>, DwarfRegNum<[83]>;
+def D12 : Rd<24, "F24", [F24, F25]>, DwarfRegNum<[84]>;
+def D13 : Rd<26, "F26", [F26, F27]>, DwarfRegNum<[85]>;
+def D14 : Rd<28, "F28", [F28, F29]>, DwarfRegNum<[86]>;
+def D15 : Rd<30, "F30", [F30, F31]>, DwarfRegNum<[87]>;
+
+// Unaliased double precision floating point registers.
+// FIXME: Define DwarfRegNum for these registers.
+def D16 : SparcReg< 1, "F32">;
+def D17 : SparcReg< 3, "F34">;
+def D18 : SparcReg< 5, "F36">;
+def D19 : SparcReg< 7, "F38">;
+def D20 : SparcReg< 9, "F40">;
+def D21 : SparcReg<11, "F42">;
+def D22 : SparcReg<13, "F44">;
+def D23 : SparcReg<15, "F46">;
+def D24 : SparcReg<17, "F48">;
+def D25 : SparcReg<19, "F50">;
+def D26 : SparcReg<21, "F52">;
+def D27 : SparcReg<23, "F54">;
+def D28 : SparcReg<25, "F56">;
+def D29 : SparcReg<27, "F58">;
+def D30 : SparcReg<29, "F60">;
+def D31 : SparcReg<31, "F62">;
+
+// Aliases of the F* registers used to hold 128-bit for values (long doubles).
+def Q0 : Rq< 0, "F0", [D0, D1]>;
+def Q1 : Rq< 4, "F4", [D2, D3]>;
+def Q2 : Rq< 8, "F8", [D4, D5]>;
+def Q3 : Rq<12, "F12", [D6, D7]>;
+def Q4 : Rq<16, "F16", [D8, D9]>;
+def Q5 : Rq<20, "F20", [D10, D11]>;
+def Q6 : Rq<24, "F24", [D12, D13]>;
+def Q7 : Rq<28, "F28", [D14, D15]>;
+def Q8 : Rq< 1, "F32", [D16, D17]>;
+def Q9 : Rq< 5, "F36", [D18, D19]>;
+def Q10 : Rq< 9, "F40", [D20, D21]>;
+def Q11 : Rq<13, "F44", [D22, D23]>;
+def Q12 : Rq<17, "F48", [D24, D25]>;
+def Q13 : Rq<21, "F52", [D26, D27]>;
+def Q14 : Rq<25, "F56", [D28, D29]>;
+def Q15 : Rq<29, "F60", [D30, D31]>;
+
+// Register classes.
+//
+// FIXME: the register order should be defined in terms of the preferred
+// allocation order...
+//
+// This register class should not be used to hold i64 values, use the I64Regs
+// register class for that. The i64 type is included here to allow i64 patterns
+// using the integer instructions.
+def IntRegs : RegisterClass<"SP", [i32, i64], 32,
+ (add (sequence "I%u", 0, 7),
+ (sequence "G%u", 0, 7),
+ (sequence "L%u", 0, 7),
+ (sequence "O%u", 0, 7))>;
+
+// Register class for 64-bit mode, with a 64-bit spill slot size.
+// These are the same as the 32-bit registers, so TableGen will consider this
+// to be a sub-class of IntRegs. That works out because requiring a 64-bit
+// spill slot is a stricter constraint than only requiring a 32-bit spill slot.
+def I64Regs : RegisterClass<"SP", [i64], 64, (add IntRegs)>;
+
+// Floating point register classes.
+def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
+
+def DFPRegs : RegisterClass<"SP", [f64], 64, (sequence "D%u", 0, 31)>;
+
+def QFPRegs : RegisterClass<"SP", [f128], 128, (sequence "Q%u", 0, 15)>;
+
+// Floating point control register classes.
+def FCCRegs : RegisterClass<"SP", [i1], 1, (sequence "FCC%u", 0, 3)>;
diff --git a/contrib/llvm/lib/Target/Sparc/SparcRelocations.h b/contrib/llvm/lib/Target/Sparc/SparcRelocations.h
new file mode 100644
index 0000000..c1ff78d
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcRelocations.h
@@ -0,0 +1,56 @@
+//===-- SparcRelocations.h - Sparc Code Relocations -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the Sparc target-specific relocation types
+// (for relocation-model=static).
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARC_RELOCATIONS_H
+#define SPARC_RELOCATIONS_H
+
+#include "llvm/CodeGen/MachineRelocation.h"
+
+namespace llvm {
+ namespace SP {
+ enum RelocationType {
+ // reloc_sparc_hi - upper 22 bits
+ reloc_sparc_hi = 1,
+
+ // reloc_sparc_lo - lower 10 bits
+ reloc_sparc_lo = 2,
+
+ // reloc_sparc_pc30 - pc rel. 30 bits for call
+ reloc_sparc_pc30 = 3,
+
+ // reloc_sparc_pc22 - pc rel. 22 bits for branch
+ reloc_sparc_pc22 = 4,
+
+ // reloc_sparc_pc22 - pc rel. 19 bits for branch with icc/xcc
+ reloc_sparc_pc19 = 5,
+
+ // reloc_sparc_h44 - 43-22 bits
+ reloc_sparc_h44 = 6,
+
+ // reloc_sparc_m44 - 21-12 bits
+ reloc_sparc_m44 = 7,
+
+ // reloc_sparc_l44 - lower 12 bits
+ reloc_sparc_l44 = 8,
+
+ // reloc_sparc_hh - 63-42 bits
+ reloc_sparc_hh = 9,
+
+ // reloc_sparc_hm - 41-32 bits
+ reloc_sparc_hm = 10
+ };
+ }
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.cpp b/contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.cpp
new file mode 100644
index 0000000..a308fc5
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.cpp
@@ -0,0 +1,24 @@
+//===-- SparcSelectionDAGInfo.cpp - Sparc SelectionDAG Info ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SparcSelectionDAGInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcSelectionDAGInfo.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "sparc-selectiondag-info"
+
+SparcSelectionDAGInfo::SparcSelectionDAGInfo(const DataLayout &DL)
+ : TargetSelectionDAGInfo(&DL) {
+}
+
+SparcSelectionDAGInfo::~SparcSelectionDAGInfo() {
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.h b/contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.h
new file mode 100644
index 0000000..2346f41
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.h
@@ -0,0 +1,31 @@
+//===-- SparcSelectionDAGInfo.h - Sparc SelectionDAG Info -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the Sparc subclass for TargetSelectionDAGInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARCSELECTIONDAGINFO_H
+#define SPARCSELECTIONDAGINFO_H
+
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+class SparcTargetMachine;
+
+class SparcSelectionDAGInfo : public TargetSelectionDAGInfo {
+public:
+ explicit SparcSelectionDAGInfo(const DataLayout &DL);
+ ~SparcSelectionDAGInfo();
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcSubtarget.cpp b/contrib/llvm/lib/Target/Sparc/SparcSubtarget.cpp
new file mode 100644
index 0000000..eea0c8c
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcSubtarget.cpp
@@ -0,0 +1,109 @@
+//===-- SparcSubtarget.cpp - SPARC Subtarget Information ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SPARC specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcSubtarget.h"
+#include "Sparc.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "sparc-subtarget"
+
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#include "SparcGenSubtargetInfo.inc"
+
+void SparcSubtarget::anchor() { }
+
+static std::string computeDataLayout(const SparcSubtarget &ST) {
+ // Sparc is big endian.
+ std::string Ret = "E-m:e";
+
+ // Some ABIs have 32bit pointers.
+ if (!ST.is64Bit())
+ Ret += "-p:32:32";
+
+ // Alignments for 64 bit integers.
+ Ret += "-i64:64";
+
+ // On SparcV9 128 floats are aligned to 128 bits, on others only to 64.
+ // On SparcV9 registers can hold 64 or 32 bits, on others only 32.
+ if (ST.is64Bit())
+ Ret += "-n32:64";
+ else
+ Ret += "-f128:64-n32";
+
+ if (ST.is64Bit())
+ Ret += "-S128";
+ else
+ Ret += "-S64";
+
+ return Ret;
+}
+
+SparcSubtarget &SparcSubtarget::initializeSubtargetDependencies(StringRef CPU,
+ StringRef FS) {
+ IsV9 = false;
+ V8DeprecatedInsts = false;
+ IsVIS = false;
+ HasHardQuad = false;
+ UsePopc = false;
+
+ // Determine default and user specified characteristics
+ std::string CPUName = CPU;
+ if (CPUName.empty())
+ CPUName = (Is64Bit) ? "v9" : "v8";
+
+ // Parse features string.
+ ParseSubtargetFeatures(CPUName, FS);
+
+ // Popc is a v9-only instruction.
+ if (!IsV9)
+ UsePopc = false;
+
+ return *this;
+}
+
+SparcSubtarget::SparcSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, TargetMachine &TM,
+ bool is64Bit)
+ : SparcGenSubtargetInfo(TT, CPU, FS), Is64Bit(is64Bit),
+ DL(computeDataLayout(initializeSubtargetDependencies(CPU, FS))),
+ InstrInfo(*this), TLInfo(TM), TSInfo(DL), FrameLowering(*this) {}
+
+int SparcSubtarget::getAdjustedFrameSize(int frameSize) const {
+
+ if (is64Bit()) {
+ // All 64-bit stack frames must be 16-byte aligned, and must reserve space
+ // for spilling the 16 window registers at %sp+BIAS..%sp+BIAS+128.
+ frameSize += 128;
+ // Frames with calls must also reserve space for 6 outgoing arguments
+ // whether they are used or not. LowerCall_64 takes care of that.
+ assert(frameSize % 16 == 0 && "Stack size not 16-byte aligned");
+ } else {
+ // Emit the correct save instruction based on the number of bytes in
+ // the frame. Minimum stack frame size according to V8 ABI is:
+ // 16 words for register window spill
+ // 1 word for address of returned aggregate-value
+ // + 6 words for passing parameters on the stack
+ // ----------
+ // 23 words * 4 bytes per word = 92 bytes
+ frameSize += 92;
+
+ // Round up to next doubleword boundary -- a double-word boundary
+ // is required by the ABI.
+ frameSize = RoundUpToAlignment(frameSize, 8);
+ }
+ return frameSize;
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcSubtarget.h b/contrib/llvm/lib/Target/Sparc/SparcSubtarget.h
new file mode 100644
index 0000000..a335778
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcSubtarget.h
@@ -0,0 +1,92 @@
+//===-- SparcSubtarget.h - Define Subtarget for the SPARC -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the SPARC specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARC_SUBTARGET_H
+#define SPARC_SUBTARGET_H
+
+#include "SparcFrameLowering.h"
+#include "SparcInstrInfo.h"
+#include "SparcISelLowering.h"
+#include "SparcJITInfo.h"
+#include "SparcSelectionDAGInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "SparcGenSubtargetInfo.inc"
+
+namespace llvm {
+class StringRef;
+
+class SparcSubtarget : public SparcGenSubtargetInfo {
+ virtual void anchor();
+ bool IsV9;
+ bool V8DeprecatedInsts;
+ bool IsVIS, IsVIS2, IsVIS3;
+ bool Is64Bit;
+ bool HasHardQuad;
+ bool UsePopc;
+ const DataLayout DL; // Calculates type size & alignment
+ SparcInstrInfo InstrInfo;
+ SparcTargetLowering TLInfo;
+ SparcSelectionDAGInfo TSInfo;
+ SparcFrameLowering FrameLowering;
+ SparcJITInfo JITInfo;
+
+public:
+ SparcSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, TargetMachine &TM, bool is64bit);
+
+ const SparcInstrInfo *getInstrInfo() const { return &InstrInfo; }
+ const TargetFrameLowering *getFrameLowering() const { return &FrameLowering; }
+ const SparcRegisterInfo *getRegisterInfo() const {
+ return &InstrInfo.getRegisterInfo();
+ }
+ const SparcTargetLowering *getTargetLowering() const { return &TLInfo; }
+ const SparcSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+ SparcJITInfo *getJITInfo() { return &JITInfo; }
+ const DataLayout *getDataLayout() const { return &DL; }
+
+ bool isV9() const { return IsV9; }
+ bool isVIS() const { return IsVIS; }
+ bool isVIS2() const { return IsVIS2; }
+ bool isVIS3() const { return IsVIS3; }
+ bool useDeprecatedV8Instructions() const { return V8DeprecatedInsts; }
+ bool hasHardQuad() const { return HasHardQuad; }
+ bool usePopc() const { return UsePopc; }
+
+ /// ParseSubtargetFeatures - Parses features string setting specified
+ /// subtarget options. Definition of function is auto generated by tblgen.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+ SparcSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
+
+ bool is64Bit() const { return Is64Bit; }
+
+ /// The 64-bit ABI uses biased stack and frame pointers, so the stack frame
+ /// of the current function is the area from [%sp+BIAS] to [%fp+BIAS].
+ int64_t getStackPointerBias() const {
+ return is64Bit() ? 2047 : 0;
+ }
+
+ /// Given a actual stack size as determined by FrameInfo, this function
+ /// returns adjusted framesize which includes space for register window
+ /// spills and arguments.
+ int getAdjustedFrameSize(int stackSize) const;
+
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.cpp b/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.cpp
new file mode 100644
index 0000000..0130fac
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.cpp
@@ -0,0 +1,101 @@
+//===-- SparcTargetMachine.cpp - Define TargetMachine for Sparc -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcTargetMachine.h"
+#include "Sparc.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+extern "C" void LLVMInitializeSparcTarget() {
+ // Register the target.
+ RegisterTargetMachine<SparcV8TargetMachine> X(TheSparcTarget);
+ RegisterTargetMachine<SparcV9TargetMachine> Y(TheSparcV9Target);
+}
+
+/// SparcTargetMachine ctor - Create an ILP32 architecture model
+///
+SparcTargetMachine::SparcTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL,
+ bool is64bit)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS, *this, is64bit) {
+ initAsmInfo();
+}
+
+namespace {
+/// Sparc Code Generator Pass Configuration Options.
+class SparcPassConfig : public TargetPassConfig {
+public:
+ SparcPassConfig(SparcTargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ SparcTargetMachine &getSparcTargetMachine() const {
+ return getTM<SparcTargetMachine>();
+ }
+
+ bool addInstSelector() override;
+ bool addPreEmitPass() override;
+};
+} // namespace
+
+TargetPassConfig *SparcTargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new SparcPassConfig(this, PM);
+}
+
+bool SparcPassConfig::addInstSelector() {
+ addPass(createSparcISelDag(getSparcTargetMachine()));
+ return false;
+}
+
+bool SparcTargetMachine::addCodeEmitter(PassManagerBase &PM,
+ JITCodeEmitter &JCE) {
+ // Machine code emitter pass for Sparc.
+ PM.add(createSparcJITCodeEmitterPass(*this, JCE));
+ return false;
+}
+
+/// addPreEmitPass - This pass may be implemented by targets that want to run
+/// passes immediately before machine code is emitted. This should return
+/// true if -print-machineinstrs should print out the code after the passes.
+bool SparcPassConfig::addPreEmitPass(){
+ addPass(createSparcDelaySlotFillerPass(getSparcTargetMachine()));
+ return true;
+}
+
+void SparcV8TargetMachine::anchor() { }
+
+SparcV8TargetMachine::SparcV8TargetMachine(const Target &T,
+ StringRef TT, StringRef CPU,
+ StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : SparcTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {
+}
+
+void SparcV9TargetMachine::anchor() { }
+
+SparcV9TargetMachine::SparcV9TargetMachine(const Target &T,
+ StringRef TT, StringRef CPU,
+ StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : SparcTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.h b/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.h
new file mode 100644
index 0000000..03b5137
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.h
@@ -0,0 +1,83 @@
+//===-- SparcTargetMachine.h - Define TargetMachine for Sparc ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the Sparc specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARCTARGETMACHINE_H
+#define SPARCTARGETMACHINE_H
+
+#include "SparcInstrInfo.h"
+#include "SparcSubtarget.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+class SparcTargetMachine : public LLVMTargetMachine {
+ SparcSubtarget Subtarget;
+public:
+ SparcTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL, bool is64bit);
+
+ const SparcInstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const TargetFrameLowering *getFrameLowering() const override {
+ return getSubtargetImpl()->getFrameLowering();
+ }
+ const SparcSubtarget *getSubtargetImpl() const override { return &Subtarget; }
+ const SparcRegisterInfo *getRegisterInfo() const override {
+ return getSubtargetImpl()->getRegisterInfo();
+ }
+ const SparcTargetLowering *getTargetLowering() const override {
+ return getSubtargetImpl()->getTargetLowering();
+ }
+ const SparcSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return getSubtargetImpl()->getSelectionDAGInfo();
+ }
+ SparcJITInfo *getJITInfo() override { return Subtarget.getJITInfo(); }
+ const DataLayout *getDataLayout() const override {
+ return getSubtargetImpl()->getDataLayout();
+ }
+
+ // Pass Pipeline Configuration
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+ bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &JCE) override;
+};
+
+/// SparcV8TargetMachine - Sparc 32-bit target machine
+///
+class SparcV8TargetMachine : public SparcTargetMachine {
+ virtual void anchor();
+public:
+ SparcV8TargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+/// SparcV9TargetMachine - Sparc 64-bit target machine
+///
+class SparcV9TargetMachine : public SparcTargetMachine {
+ virtual void anchor();
+public:
+ SparcV9TargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.cpp b/contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.cpp
new file mode 100644
index 0000000..32b2240
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.cpp
@@ -0,0 +1,43 @@
+//===------- SparcTargetObjectFile.cpp - Sparc Object Info Impl -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcTargetObjectFile.h"
+#include "MCTargetDesc/SparcMCExpr.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Target/TargetLowering.h"
+
+using namespace llvm;
+
+const MCExpr *SparcELFTargetObjectFile::getTTypeGlobalReference(
+ const GlobalValue *GV, unsigned Encoding, Mangler &Mang,
+ const TargetMachine &TM, MachineModuleInfo *MMI,
+ MCStreamer &Streamer) const {
+
+ if (Encoding & dwarf::DW_EH_PE_pcrel) {
+ MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
+
+ MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", Mang, TM);
+
+ // Add information about the stub reference to ELFMMI so that the stub
+ // gets emitted by the asmprinter.
+ MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
+ if (!StubSym.getPointer()) {
+ MCSymbol *Sym = TM.getSymbol(GV, Mang);
+ StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
+ }
+
+ MCContext &Ctx = getContext();
+ return SparcMCExpr::Create(SparcMCExpr::VK_Sparc_R_DISP32,
+ MCSymbolRefExpr::Create(SSym, Ctx), Ctx);
+ }
+
+ return TargetLoweringObjectFileELF::getTTypeGlobalReference(
+ GV, Encoding, Mang, TM, MMI, Streamer);
+}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.h b/contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.h
new file mode 100644
index 0000000..c60675b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.h
@@ -0,0 +1,35 @@
+//===-- SparcTargetObjectFile.h - Sparc Object Info -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_SPARC_TARGETOBJECTFILE_H
+#define LLVM_TARGET_SPARC_TARGETOBJECTFILE_H
+
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+
+namespace llvm {
+
+class MCContext;
+class TargetMachine;
+
+class SparcELFTargetObjectFile : public TargetLoweringObjectFileELF {
+public:
+ SparcELFTargetObjectFile() :
+ TargetLoweringObjectFileELF()
+ {}
+
+ const MCExpr *
+ getTTypeGlobalReference(const GlobalValue *GV, unsigned Encoding,
+ Mangler &Mang, const TargetMachine &TM,
+ MachineModuleInfo *MMI,
+ MCStreamer &Streamer) const override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcTargetStreamer.h b/contrib/llvm/lib/Target/Sparc/SparcTargetStreamer.h
new file mode 100644
index 0000000..3767d8e
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcTargetStreamer.h
@@ -0,0 +1,49 @@
+//===-- SparcTargetStreamer.h - Sparc Target Streamer ----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARCTARGETSTREAMER_H
+#define SPARCTARGETSTREAMER_H
+
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCStreamer.h"
+
+namespace llvm {
+class SparcTargetStreamer : public MCTargetStreamer {
+ virtual void anchor();
+
+public:
+ SparcTargetStreamer(MCStreamer &S);
+ /// Emit ".register <reg>, #ignore".
+ virtual void emitSparcRegisterIgnore(unsigned reg) = 0;
+ /// Emit ".register <reg>, #scratch".
+ virtual void emitSparcRegisterScratch(unsigned reg) = 0;
+};
+
+// This part is for ascii assembly output
+class SparcTargetAsmStreamer : public SparcTargetStreamer {
+ formatted_raw_ostream &OS;
+
+public:
+ SparcTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS);
+ void emitSparcRegisterIgnore(unsigned reg) override;
+ void emitSparcRegisterScratch(unsigned reg) override;
+
+};
+
+// This part is for ELF object output
+class SparcTargetELFStreamer : public SparcTargetStreamer {
+public:
+ SparcTargetELFStreamer(MCStreamer &S);
+ MCELFStreamer &getStreamer();
+ void emitSparcRegisterIgnore(unsigned reg) override {}
+ void emitSparcRegisterScratch(unsigned reg) override {}
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/Sparc/TargetInfo/SparcTargetInfo.cpp b/contrib/llvm/lib/Target/Sparc/TargetInfo/SparcTargetInfo.cpp
new file mode 100644
index 0000000..4eea163
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/TargetInfo/SparcTargetInfo.cpp
@@ -0,0 +1,23 @@
+//===-- SparcTargetInfo.cpp - Sparc Target Implementation -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sparc.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheSparcTarget;
+Target llvm::TheSparcV9Target;
+
+extern "C" void LLVMInitializeSparcTargetInfo() {
+ RegisterTarget<Triple::sparc, /*HasJIT=*/ true>
+ X(TheSparcTarget, "sparc", "Sparc");
+ RegisterTarget<Triple::sparcv9, /*HasJIT=*/ true>
+ Y(TheSparcV9Target, "sparcv9", "Sparc V9");
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp b/contrib/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
new file mode 100644
index 0000000..758be41
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
@@ -0,0 +1,779 @@
+//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+// Return true if Expr is in the range [MinValue, MaxValue].
+static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
+ if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
+ int64_t Value = CE->getValue();
+ return Value >= MinValue && Value <= MaxValue;
+ }
+ return false;
+}
+
+namespace {
+enum RegisterKind {
+ GR32Reg,
+ GRH32Reg,
+ GR64Reg,
+ GR128Reg,
+ ADDR32Reg,
+ ADDR64Reg,
+ FP32Reg,
+ FP64Reg,
+ FP128Reg
+};
+
+enum MemoryKind {
+ BDMem,
+ BDXMem,
+ BDLMem
+};
+
+class SystemZOperand : public MCParsedAsmOperand {
+public:
+private:
+ enum OperandKind {
+ KindInvalid,
+ KindToken,
+ KindReg,
+ KindAccessReg,
+ KindImm,
+ KindMem
+ };
+
+ OperandKind Kind;
+ SMLoc StartLoc, EndLoc;
+
+ // A string of length Length, starting at Data.
+ struct TokenOp {
+ const char *Data;
+ unsigned Length;
+ };
+
+ // LLVM register Num, which has kind Kind. In some ways it might be
+ // easier for this class to have a register bank (general, floating-point
+ // or access) and a raw register number (0-15). This would postpone the
+ // interpretation of the operand to the add*() methods and avoid the need
+ // for context-dependent parsing. However, we do things the current way
+ // because of the virtual getReg() method, which needs to distinguish
+ // between (say) %r0 used as a single register and %r0 used as a pair.
+ // Context-dependent parsing can also give us slightly better error
+ // messages when invalid pairs like %r1 are used.
+ struct RegOp {
+ RegisterKind Kind;
+ unsigned Num;
+ };
+
+ // Base + Disp + Index, where Base and Index are LLVM registers or 0.
+ // RegKind says what type the registers have (ADDR32Reg or ADDR64Reg).
+ // Length is the operand length for D(L,B)-style operands, otherwise
+ // it is null.
+ struct MemOp {
+ unsigned Base : 8;
+ unsigned Index : 8;
+ unsigned RegKind : 8;
+ unsigned Unused : 8;
+ const MCExpr *Disp;
+ const MCExpr *Length;
+ };
+
+ union {
+ TokenOp Token;
+ RegOp Reg;
+ unsigned AccessReg;
+ const MCExpr *Imm;
+ MemOp Mem;
+ };
+
+ void addExpr(MCInst &Inst, const MCExpr *Expr) const {
+ // Add as immediates when possible. Null MCExpr = 0.
+ if (!Expr)
+ Inst.addOperand(MCOperand::CreateImm(0));
+ else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(Expr));
+ }
+
+public:
+ SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
+ : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
+
+ // Create particular kinds of operand.
+ static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
+ SMLoc EndLoc) {
+ return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
+ }
+ static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
+ auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc);
+ Op->Token.Data = Str.data();
+ Op->Token.Length = Str.size();
+ return Op;
+ }
+ static std::unique_ptr<SystemZOperand>
+ createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
+ auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
+ Op->Reg.Kind = Kind;
+ Op->Reg.Num = Num;
+ return Op;
+ }
+ static std::unique_ptr<SystemZOperand>
+ createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
+ auto Op = make_unique<SystemZOperand>(KindAccessReg, StartLoc, EndLoc);
+ Op->AccessReg = Num;
+ return Op;
+ }
+ static std::unique_ptr<SystemZOperand>
+ createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
+ auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
+ Op->Imm = Expr;
+ return Op;
+ }
+ static std::unique_ptr<SystemZOperand>
+ createMem(RegisterKind RegKind, unsigned Base, const MCExpr *Disp,
+ unsigned Index, const MCExpr *Length, SMLoc StartLoc,
+ SMLoc EndLoc) {
+ auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
+ Op->Mem.RegKind = RegKind;
+ Op->Mem.Base = Base;
+ Op->Mem.Index = Index;
+ Op->Mem.Disp = Disp;
+ Op->Mem.Length = Length;
+ return Op;
+ }
+
+ // Token operands
+ bool isToken() const override {
+ return Kind == KindToken;
+ }
+ StringRef getToken() const {
+ assert(Kind == KindToken && "Not a token");
+ return StringRef(Token.Data, Token.Length);
+ }
+
+ // Register operands.
+ bool isReg() const override {
+ return Kind == KindReg;
+ }
+ bool isReg(RegisterKind RegKind) const {
+ return Kind == KindReg && Reg.Kind == RegKind;
+ }
+ unsigned getReg() const override {
+ assert(Kind == KindReg && "Not a register");
+ return Reg.Num;
+ }
+
+ // Access register operands. Access registers aren't exposed to LLVM
+ // as registers.
+ bool isAccessReg() const {
+ return Kind == KindAccessReg;
+ }
+
+ // Immediate operands.
+ bool isImm() const override {
+ return Kind == KindImm;
+ }
+ bool isImm(int64_t MinValue, int64_t MaxValue) const {
+ return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
+ }
+ const MCExpr *getImm() const {
+ assert(Kind == KindImm && "Not an immediate");
+ return Imm;
+ }
+
+ // Memory operands.
+ bool isMem() const override {
+ return Kind == KindMem;
+ }
+ bool isMem(RegisterKind RegKind, MemoryKind MemKind) const {
+ return (Kind == KindMem &&
+ Mem.RegKind == RegKind &&
+ (MemKind == BDXMem || !Mem.Index) &&
+ (MemKind == BDLMem) == (Mem.Length != nullptr));
+ }
+ bool isMemDisp12(RegisterKind RegKind, MemoryKind MemKind) const {
+ return isMem(RegKind, MemKind) && inRange(Mem.Disp, 0, 0xfff);
+ }
+ bool isMemDisp20(RegisterKind RegKind, MemoryKind MemKind) const {
+ return isMem(RegKind, MemKind) && inRange(Mem.Disp, -524288, 524287);
+ }
+ bool isMemDisp12Len8(RegisterKind RegKind) const {
+ return isMemDisp12(RegKind, BDLMem) && inRange(Mem.Length, 1, 0x100);
+ }
+
+ // Override MCParsedAsmOperand.
+ SMLoc getStartLoc() const override { return StartLoc; }
+ SMLoc getEndLoc() const override { return EndLoc; }
+ void print(raw_ostream &OS) const override;
+
+ // Used by the TableGen code to add particular types of operand
+ // to an instruction.
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+ void addAccessRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands");
+ assert(Kind == KindAccessReg && "Invalid operand type");
+ Inst.addOperand(MCOperand::CreateImm(AccessReg));
+ }
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands");
+ addExpr(Inst, getImm());
+ }
+ void addBDAddrOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands");
+ assert(Kind == KindMem && Mem.Index == 0 && "Invalid operand type");
+ Inst.addOperand(MCOperand::CreateReg(Mem.Base));
+ addExpr(Inst, Mem.Disp);
+ }
+ void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands");
+ assert(Kind == KindMem && "Invalid operand type");
+ Inst.addOperand(MCOperand::CreateReg(Mem.Base));
+ addExpr(Inst, Mem.Disp);
+ Inst.addOperand(MCOperand::CreateReg(Mem.Index));
+ }
+ void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands");
+ assert(Kind == KindMem && "Invalid operand type");
+ Inst.addOperand(MCOperand::CreateReg(Mem.Base));
+ addExpr(Inst, Mem.Disp);
+ addExpr(Inst, Mem.Length);
+ }
+
+ // Used by the TableGen code to check for particular operand types.
+ bool isGR32() const { return isReg(GR32Reg); }
+ bool isGRH32() const { return isReg(GRH32Reg); }
+ bool isGRX32() const { return false; }
+ bool isGR64() const { return isReg(GR64Reg); }
+ bool isGR128() const { return isReg(GR128Reg); }
+ bool isADDR32() const { return isReg(ADDR32Reg); }
+ bool isADDR64() const { return isReg(ADDR64Reg); }
+ bool isADDR128() const { return false; }
+ bool isFP32() const { return isReg(FP32Reg); }
+ bool isFP64() const { return isReg(FP64Reg); }
+ bool isFP128() const { return isReg(FP128Reg); }
+ bool isBDAddr32Disp12() const { return isMemDisp12(ADDR32Reg, BDMem); }
+ bool isBDAddr32Disp20() const { return isMemDisp20(ADDR32Reg, BDMem); }
+ bool isBDAddr64Disp12() const { return isMemDisp12(ADDR64Reg, BDMem); }
+ bool isBDAddr64Disp20() const { return isMemDisp20(ADDR64Reg, BDMem); }
+ bool isBDXAddr64Disp12() const { return isMemDisp12(ADDR64Reg, BDXMem); }
+ bool isBDXAddr64Disp20() const { return isMemDisp20(ADDR64Reg, BDXMem); }
+ bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); }
+ bool isU4Imm() const { return isImm(0, 15); }
+ bool isU6Imm() const { return isImm(0, 63); }
+ bool isU8Imm() const { return isImm(0, 255); }
+ bool isS8Imm() const { return isImm(-128, 127); }
+ bool isU16Imm() const { return isImm(0, 65535); }
+ bool isS16Imm() const { return isImm(-32768, 32767); }
+ bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
+ bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
+};
+
+class SystemZAsmParser : public MCTargetAsmParser {
+#define GET_ASSEMBLER_HEADER
+#include "SystemZGenAsmMatcher.inc"
+
+private:
+ MCSubtargetInfo &STI;
+ MCAsmParser &Parser;
+ enum RegisterGroup {
+ RegGR,
+ RegFP,
+ RegAccess
+ };
+ struct Register {
+ RegisterGroup Group;
+ unsigned Num;
+ SMLoc StartLoc, EndLoc;
+ };
+
+ bool parseRegister(Register &Reg);
+
+ bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs,
+ bool IsAddress = false);
+
+ OperandMatchResultTy parseRegister(OperandVector &Operands,
+ RegisterGroup Group, const unsigned *Regs,
+ RegisterKind Kind);
+
+ bool parseAddress(unsigned &Base, const MCExpr *&Disp,
+ unsigned &Index, const MCExpr *&Length,
+ const unsigned *Regs, RegisterKind RegKind);
+
+ OperandMatchResultTy parseAddress(OperandVector &Operands,
+ const unsigned *Regs, RegisterKind RegKind,
+ MemoryKind MemKind);
+
+ bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
+
+public:
+ SystemZAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
+ const MCInstrInfo &MII,
+ const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(sti), Parser(parser) {
+ MCAsmParserExtension::Initialize(Parser);
+
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+ }
+
+ // Override MCTargetAsmParser.
+ bool ParseDirective(AsmToken DirectiveID) override;
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ unsigned &ErrorInfo,
+ bool MatchingInlineAsm) override;
+
+ // Used by the TableGen code to parse particular operand types.
+ OperandMatchResultTy parseGR32(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
+ }
+ OperandMatchResultTy parseGRH32(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg);
+ }
+ OperandMatchResultTy parseGRX32(OperandVector &Operands) {
+ llvm_unreachable("GRX32 should only be used for pseudo instructions");
+ }
+ OperandMatchResultTy parseGR64(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
+ }
+ OperandMatchResultTy parseGR128(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg);
+ }
+ OperandMatchResultTy parseADDR32(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg);
+ }
+ OperandMatchResultTy parseADDR64(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg);
+ }
+ OperandMatchResultTy parseADDR128(OperandVector &Operands) {
+ llvm_unreachable("Shouldn't be used as an operand");
+ }
+ OperandMatchResultTy parseFP32(OperandVector &Operands) {
+ return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg);
+ }
+ OperandMatchResultTy parseFP64(OperandVector &Operands) {
+ return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg);
+ }
+ OperandMatchResultTy parseFP128(OperandVector &Operands) {
+ return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg);
+ }
+ OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
+ return parseAddress(Operands, SystemZMC::GR32Regs, ADDR32Reg, BDMem);
+ }
+ OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
+ return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDMem);
+ }
+ OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
+ return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDXMem);
+ }
+ OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
+ return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDLMem);
+ }
+ OperandMatchResultTy parseAccessReg(OperandVector &Operands);
+ OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
+ int64_t MaxVal);
+ OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
+ return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1);
+ }
+ OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
+ return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1);
+ }
+};
+} // end anonymous namespace
+
+#define GET_REGISTER_MATCHER
+#define GET_SUBTARGET_FEATURE_NAME
+#define GET_MATCHER_IMPLEMENTATION
+#include "SystemZGenAsmMatcher.inc"
+
+void SystemZOperand::print(raw_ostream &OS) const {
+ llvm_unreachable("Not implemented");
+}
+
+// Parse one register of the form %<prefix><number>.
+bool SystemZAsmParser::parseRegister(Register &Reg) {
+ Reg.StartLoc = Parser.getTok().getLoc();
+
+ // Eat the % prefix.
+ if (Parser.getTok().isNot(AsmToken::Percent))
+ return Error(Parser.getTok().getLoc(), "register expected");
+ Parser.Lex();
+
+ // Expect a register name.
+ if (Parser.getTok().isNot(AsmToken::Identifier))
+ return Error(Reg.StartLoc, "invalid register");
+
+ // Check that there's a prefix.
+ StringRef Name = Parser.getTok().getString();
+ if (Name.size() < 2)
+ return Error(Reg.StartLoc, "invalid register");
+ char Prefix = Name[0];
+
+ // Treat the rest of the register name as a register number.
+ if (Name.substr(1).getAsInteger(10, Reg.Num))
+ return Error(Reg.StartLoc, "invalid register");
+
+ // Look for valid combinations of prefix and number.
+ if (Prefix == 'r' && Reg.Num < 16)
+ Reg.Group = RegGR;
+ else if (Prefix == 'f' && Reg.Num < 16)
+ Reg.Group = RegFP;
+ else if (Prefix == 'a' && Reg.Num < 16)
+ Reg.Group = RegAccess;
+ else
+ return Error(Reg.StartLoc, "invalid register");
+
+ Reg.EndLoc = Parser.getTok().getLoc();
+ Parser.Lex();
+ return false;
+}
+
+// Parse a register of group Group. If Regs is nonnull, use it to map
+// the raw register number to LLVM numbering, with zero entries indicating
+// an invalid register. IsAddress says whether the register appears in an
+// address context.
+bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group,
+ const unsigned *Regs, bool IsAddress) {
+ if (parseRegister(Reg))
+ return true;
+ if (Reg.Group != Group)
+ return Error(Reg.StartLoc, "invalid operand for instruction");
+ if (Regs && Regs[Reg.Num] == 0)
+ return Error(Reg.StartLoc, "invalid register pair");
+ if (Reg.Num == 0 && IsAddress)
+ return Error(Reg.StartLoc, "%r0 used in an address");
+ if (Regs)
+ Reg.Num = Regs[Reg.Num];
+ return false;
+}
+
+// Parse a register and add it to Operands. The other arguments are as above.
+SystemZAsmParser::OperandMatchResultTy
+SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group,
+ const unsigned *Regs, RegisterKind Kind) {
+ if (Parser.getTok().isNot(AsmToken::Percent))
+ return MatchOperand_NoMatch;
+
+ Register Reg;
+ bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg);
+ if (parseRegister(Reg, Group, Regs, IsAddress))
+ return MatchOperand_ParseFail;
+
+ Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num,
+ Reg.StartLoc, Reg.EndLoc));
+ return MatchOperand_Success;
+}
+
+// Parse a memory operand into Base, Disp, Index and Length.
+// Regs maps asm register numbers to LLVM register numbers and RegKind
+// says what kind of address register we're using (ADDR32Reg or ADDR64Reg).
+bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp,
+ unsigned &Index, const MCExpr *&Length,
+ const unsigned *Regs,
+ RegisterKind RegKind) {
+ // Parse the displacement, which must always be present.
+ if (getParser().parseExpression(Disp))
+ return true;
+
+ // Parse the optional base and index.
+ Index = 0;
+ Base = 0;
+ Length = nullptr;
+ if (getLexer().is(AsmToken::LParen)) {
+ Parser.Lex();
+
+ if (getLexer().is(AsmToken::Percent)) {
+ // Parse the first register and decide whether it's a base or an index.
+ Register Reg;
+ if (parseRegister(Reg, RegGR, Regs, RegKind))
+ return true;
+ if (getLexer().is(AsmToken::Comma))
+ Index = Reg.Num;
+ else
+ Base = Reg.Num;
+ } else {
+ // Parse the length.
+ if (getParser().parseExpression(Length))
+ return true;
+ }
+
+ // Check whether there's a second register. It's the base if so.
+ if (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex();
+ Register Reg;
+ if (parseRegister(Reg, RegGR, Regs, RegKind))
+ return true;
+ Base = Reg.Num;
+ }
+
+ // Consume the closing bracket.
+ if (getLexer().isNot(AsmToken::RParen))
+ return Error(Parser.getTok().getLoc(), "unexpected token in address");
+ Parser.Lex();
+ }
+ return false;
+}
+
+// Parse a memory operand and add it to Operands. The other arguments
+// are as above.
+SystemZAsmParser::OperandMatchResultTy
+SystemZAsmParser::parseAddress(OperandVector &Operands, const unsigned *Regs,
+ RegisterKind RegKind, MemoryKind MemKind) {
+ SMLoc StartLoc = Parser.getTok().getLoc();
+ unsigned Base, Index;
+ const MCExpr *Disp;
+ const MCExpr *Length;
+ if (parseAddress(Base, Disp, Index, Length, Regs, RegKind))
+ return MatchOperand_ParseFail;
+
+ if (Index && MemKind != BDXMem)
+ {
+ Error(StartLoc, "invalid use of indexed addressing");
+ return MatchOperand_ParseFail;
+ }
+
+ if (Length && MemKind != BDLMem)
+ {
+ Error(StartLoc, "invalid use of length addressing");
+ return MatchOperand_ParseFail;
+ }
+
+ if (!Length && MemKind == BDLMem)
+ {
+ Error(StartLoc, "missing length in address");
+ return MatchOperand_ParseFail;
+ }
+
+ SMLoc EndLoc =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(SystemZOperand::createMem(RegKind, Base, Disp, Index,
+ Length, StartLoc, EndLoc));
+ return MatchOperand_Success;
+}
+
+bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
+ return true;
+}
+
+bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
+ SMLoc &EndLoc) {
+ Register Reg;
+ if (parseRegister(Reg))
+ return true;
+ if (Reg.Group == RegGR)
+ RegNo = SystemZMC::GR64Regs[Reg.Num];
+ else if (Reg.Group == RegFP)
+ RegNo = SystemZMC::FP64Regs[Reg.Num];
+ else
+ // FIXME: Access registers aren't modelled as LLVM registers yet.
+ return Error(Reg.StartLoc, "invalid operand for instruction");
+ StartLoc = Reg.StartLoc;
+ EndLoc = Reg.EndLoc;
+ return false;
+}
+
+bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
+ StringRef Name, SMLoc NameLoc,
+ OperandVector &Operands) {
+ Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
+
+ // Read the remaining operands.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ // Read the first operand.
+ if (parseOperand(Operands, Name)) {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+
+ // Read any subsequent operands.
+ while (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex();
+ if (parseOperand(Operands, Name)) {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+ }
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ }
+
+ // Consume the EndOfStatement.
+ Parser.Lex();
+ return false;
+}
+
+bool SystemZAsmParser::parseOperand(OperandVector &Operands,
+ StringRef Mnemonic) {
+ // Check if the current operand has a custom associated parser, if so, try to
+ // custom parse the operand, or fallback to the general approach.
+ OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
+ if (ResTy == MatchOperand_Success)
+ return false;
+
+ // If there wasn't a custom match, try the generic matcher below. Otherwise,
+ // there was a match, but an error occurred, in which case, just return that
+ // the operand parsing failed.
+ if (ResTy == MatchOperand_ParseFail)
+ return true;
+
+ // Check for a register. All real register operands should have used
+ // a context-dependent parse routine, which gives the required register
+ // class. The code is here to mop up other cases, like those where
+ // the instruction isn't recognized.
+ if (Parser.getTok().is(AsmToken::Percent)) {
+ Register Reg;
+ if (parseRegister(Reg))
+ return true;
+ Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
+ return false;
+ }
+
+ // The only other type of operand is an immediate or address. As above,
+ // real address operands should have used a context-dependent parse routine,
+ // so we treat any plain expression as an immediate.
+ SMLoc StartLoc = Parser.getTok().getLoc();
+ unsigned Base, Index;
+ const MCExpr *Expr, *Length;
+ if (parseAddress(Base, Expr, Index, Length, SystemZMC::GR64Regs, ADDR64Reg))
+ return true;
+
+ SMLoc EndLoc =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ if (Base || Index || Length)
+ Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
+ else
+ Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
+ return false;
+}
+
+bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ unsigned &ErrorInfo,
+ bool MatchingInlineAsm) {
+ MCInst Inst;
+ unsigned MatchResult;
+
+ MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
+ MatchingInlineAsm);
+ switch (MatchResult) {
+ default: break;
+ case Match_Success:
+ Inst.setLoc(IDLoc);
+ Out.EmitInstruction(Inst, STI);
+ return false;
+
+ case Match_MissingFeature: {
+ assert(ErrorInfo && "Unknown missing feature!");
+ // Special case the error message for the very common case where only
+ // a single subtarget feature is missing
+ std::string Msg = "instruction requires:";
+ unsigned Mask = 1;
+ for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) {
+ if (ErrorInfo & Mask) {
+ Msg += " ";
+ Msg += getSubtargetFeatureName(ErrorInfo & Mask);
+ }
+ Mask <<= 1;
+ }
+ return Error(IDLoc, Msg);
+ }
+
+ case Match_InvalidOperand: {
+ SMLoc ErrorLoc = IDLoc;
+ if (ErrorInfo != ~0U) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc())
+ ErrorLoc = IDLoc;
+ }
+ return Error(ErrorLoc, "invalid operand for instruction");
+ }
+
+ case Match_MnemonicFail:
+ return Error(IDLoc, "invalid instruction");
+ }
+
+ llvm_unreachable("Unexpected match type");
+}
+
+SystemZAsmParser::OperandMatchResultTy
+SystemZAsmParser::parseAccessReg(OperandVector &Operands) {
+ if (Parser.getTok().isNot(AsmToken::Percent))
+ return MatchOperand_NoMatch;
+
+ Register Reg;
+ if (parseRegister(Reg, RegAccess, nullptr))
+ return MatchOperand_ParseFail;
+
+ Operands.push_back(SystemZOperand::createAccessReg(Reg.Num,
+ Reg.StartLoc,
+ Reg.EndLoc));
+ return MatchOperand_Success;
+}
+
+SystemZAsmParser::OperandMatchResultTy
+SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
+ int64_t MaxVal) {
+ MCContext &Ctx = getContext();
+ MCStreamer &Out = getStreamer();
+ const MCExpr *Expr;
+ SMLoc StartLoc = Parser.getTok().getLoc();
+ if (getParser().parseExpression(Expr))
+ return MatchOperand_NoMatch;
+
+ // For consistency with the GNU assembler, treat immediates as offsets
+ // from ".".
+ if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
+ int64_t Value = CE->getValue();
+ if ((Value & 1) || Value < MinVal || Value > MaxVal) {
+ Error(StartLoc, "offset out of range");
+ return MatchOperand_ParseFail;
+ }
+ MCSymbol *Sym = Ctx.CreateTempSymbol();
+ Out.EmitLabel(Sym);
+ const MCExpr *Base = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None,
+ Ctx);
+ Expr = Value == 0 ? Base : MCBinaryExpr::CreateAdd(Base, Expr, Ctx);
+ }
+
+ SMLoc EndLoc =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
+ return MatchOperand_Success;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeSystemZAsmParser() {
+ RegisterMCAsmParser<SystemZAsmParser> X(TheSystemZTarget);
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/Disassembler/SystemZDisassembler.cpp b/contrib/llvm/lib/Target/SystemZ/Disassembler/SystemZDisassembler.cpp
new file mode 100644
index 0000000..2350776
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/Disassembler/SystemZDisassembler.cpp
@@ -0,0 +1,324 @@
+//===-- SystemZDisassembler.cpp - Disassembler for SystemZ ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZ.h"
+#include "llvm/MC/MCDisassembler.h"
+#include "llvm/MC/MCFixedLenDisassembler.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/MemoryObject.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "systemz-disassembler"
+
+typedef MCDisassembler::DecodeStatus DecodeStatus;
+
+namespace {
+class SystemZDisassembler : public MCDisassembler {
+public:
+ SystemZDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx)
+ : MCDisassembler(STI, Ctx) {}
+ virtual ~SystemZDisassembler() {}
+
+ // Override MCDisassembler.
+ DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
+ const MemoryObject &region, uint64_t address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const override;
+};
+} // end anonymous namespace
+
+static MCDisassembler *createSystemZDisassembler(const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new SystemZDisassembler(STI, Ctx);
+}
+
+extern "C" void LLVMInitializeSystemZDisassembler() {
+ // Register the disassembler.
+ TargetRegistry::RegisterMCDisassembler(TheSystemZTarget,
+ createSystemZDisassembler);
+}
+
+static DecodeStatus decodeRegisterClass(MCInst &Inst, uint64_t RegNo,
+ const unsigned *Regs) {
+ assert(RegNo < 16 && "Invalid register");
+ RegNo = Regs[RegNo];
+ if (RegNo == 0)
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateReg(RegNo));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeGR32BitRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, SystemZMC::GR32Regs);
+}
+
+static DecodeStatus DecodeGRH32BitRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, SystemZMC::GRH32Regs);
+}
+
+static DecodeStatus DecodeGR64BitRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, SystemZMC::GR64Regs);
+}
+
+static DecodeStatus DecodeGR128BitRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, SystemZMC::GR128Regs);
+}
+
+static DecodeStatus DecodeADDR64BitRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, SystemZMC::GR64Regs);
+}
+
+static DecodeStatus DecodeFP32BitRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, SystemZMC::FP32Regs);
+}
+
+static DecodeStatus DecodeFP64BitRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, SystemZMC::FP64Regs);
+}
+
+static DecodeStatus DecodeFP128BitRegisterClass(MCInst &Inst, uint64_t RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeRegisterClass(Inst, RegNo, SystemZMC::FP128Regs);
+}
+
+template<unsigned N>
+static DecodeStatus decodeUImmOperand(MCInst &Inst, uint64_t Imm) {
+ assert(isUInt<N>(Imm) && "Invalid immediate");
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ return MCDisassembler::Success;
+}
+
+template<unsigned N>
+static DecodeStatus decodeSImmOperand(MCInst &Inst, uint64_t Imm) {
+ assert(isUInt<N>(Imm) && "Invalid immediate");
+ Inst.addOperand(MCOperand::CreateImm(SignExtend64<N>(Imm)));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus decodeAccessRegOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeUImmOperand<4>(Inst, Imm);
+}
+
+static DecodeStatus decodeU4ImmOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address, const void *Decoder) {
+ return decodeUImmOperand<4>(Inst, Imm);
+}
+
+static DecodeStatus decodeU6ImmOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address, const void *Decoder) {
+ return decodeUImmOperand<6>(Inst, Imm);
+}
+
+static DecodeStatus decodeU8ImmOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address, const void *Decoder) {
+ return decodeUImmOperand<8>(Inst, Imm);
+}
+
+static DecodeStatus decodeU16ImmOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address, const void *Decoder) {
+ return decodeUImmOperand<16>(Inst, Imm);
+}
+
+static DecodeStatus decodeU32ImmOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address, const void *Decoder) {
+ return decodeUImmOperand<32>(Inst, Imm);
+}
+
+static DecodeStatus decodeS8ImmOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address, const void *Decoder) {
+ return decodeSImmOperand<8>(Inst, Imm);
+}
+
+static DecodeStatus decodeS16ImmOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address, const void *Decoder) {
+ return decodeSImmOperand<16>(Inst, Imm);
+}
+
+static DecodeStatus decodeS32ImmOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address, const void *Decoder) {
+ return decodeSImmOperand<32>(Inst, Imm);
+}
+
+template<unsigned N>
+static DecodeStatus decodePCDBLOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address) {
+ assert(isUInt<N>(Imm) && "Invalid PC-relative offset");
+ Inst.addOperand(MCOperand::CreateImm(SignExtend64<N>(Imm) * 2 + Address));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus decodePC16DBLOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodePCDBLOperand<16>(Inst, Imm, Address);
+}
+
+static DecodeStatus decodePC32DBLOperand(MCInst &Inst, uint64_t Imm,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodePCDBLOperand<32>(Inst, Imm, Address);
+}
+
+static DecodeStatus decodeBDAddr12Operand(MCInst &Inst, uint64_t Field,
+ const unsigned *Regs) {
+ uint64_t Base = Field >> 12;
+ uint64_t Disp = Field & 0xfff;
+ assert(Base < 16 && "Invalid BDAddr12");
+ Inst.addOperand(MCOperand::CreateReg(Base == 0 ? 0 : Regs[Base]));
+ Inst.addOperand(MCOperand::CreateImm(Disp));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus decodeBDAddr20Operand(MCInst &Inst, uint64_t Field,
+ const unsigned *Regs) {
+ uint64_t Base = Field >> 20;
+ uint64_t Disp = ((Field << 12) & 0xff000) | ((Field >> 8) & 0xfff);
+ assert(Base < 16 && "Invalid BDAddr20");
+ Inst.addOperand(MCOperand::CreateReg(Base == 0 ? 0 : Regs[Base]));
+ Inst.addOperand(MCOperand::CreateImm(SignExtend64<20>(Disp)));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus decodeBDXAddr12Operand(MCInst &Inst, uint64_t Field,
+ const unsigned *Regs) {
+ uint64_t Index = Field >> 16;
+ uint64_t Base = (Field >> 12) & 0xf;
+ uint64_t Disp = Field & 0xfff;
+ assert(Index < 16 && "Invalid BDXAddr12");
+ Inst.addOperand(MCOperand::CreateReg(Base == 0 ? 0 : Regs[Base]));
+ Inst.addOperand(MCOperand::CreateImm(Disp));
+ Inst.addOperand(MCOperand::CreateReg(Index == 0 ? 0 : Regs[Index]));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus decodeBDXAddr20Operand(MCInst &Inst, uint64_t Field,
+ const unsigned *Regs) {
+ uint64_t Index = Field >> 24;
+ uint64_t Base = (Field >> 20) & 0xf;
+ uint64_t Disp = ((Field & 0xfff00) >> 8) | ((Field & 0xff) << 12);
+ assert(Index < 16 && "Invalid BDXAddr20");
+ Inst.addOperand(MCOperand::CreateReg(Base == 0 ? 0 : Regs[Base]));
+ Inst.addOperand(MCOperand::CreateImm(SignExtend64<20>(Disp)));
+ Inst.addOperand(MCOperand::CreateReg(Index == 0 ? 0 : Regs[Index]));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus decodeBDLAddr12Len8Operand(MCInst &Inst, uint64_t Field,
+ const unsigned *Regs) {
+ uint64_t Length = Field >> 16;
+ uint64_t Base = (Field >> 12) & 0xf;
+ uint64_t Disp = Field & 0xfff;
+ assert(Length < 256 && "Invalid BDLAddr12Len8");
+ Inst.addOperand(MCOperand::CreateReg(Base == 0 ? 0 : Regs[Base]));
+ Inst.addOperand(MCOperand::CreateImm(Disp));
+ Inst.addOperand(MCOperand::CreateImm(Length + 1));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus decodeBDAddr32Disp12Operand(MCInst &Inst, uint64_t Field,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeBDAddr12Operand(Inst, Field, SystemZMC::GR32Regs);
+}
+
+static DecodeStatus decodeBDAddr32Disp20Operand(MCInst &Inst, uint64_t Field,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeBDAddr20Operand(Inst, Field, SystemZMC::GR32Regs);
+}
+
+static DecodeStatus decodeBDAddr64Disp12Operand(MCInst &Inst, uint64_t Field,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeBDAddr12Operand(Inst, Field, SystemZMC::GR64Regs);
+}
+
+static DecodeStatus decodeBDAddr64Disp20Operand(MCInst &Inst, uint64_t Field,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeBDAddr20Operand(Inst, Field, SystemZMC::GR64Regs);
+}
+
+static DecodeStatus decodeBDXAddr64Disp12Operand(MCInst &Inst, uint64_t Field,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeBDXAddr12Operand(Inst, Field, SystemZMC::GR64Regs);
+}
+
+static DecodeStatus decodeBDXAddr64Disp20Operand(MCInst &Inst, uint64_t Field,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeBDXAddr20Operand(Inst, Field, SystemZMC::GR64Regs);
+}
+
+static DecodeStatus decodeBDLAddr64Disp12Len8Operand(MCInst &Inst,
+ uint64_t Field,
+ uint64_t Address,
+ const void *Decoder) {
+ return decodeBDLAddr12Len8Operand(Inst, Field, SystemZMC::GR64Regs);
+}
+
+#include "SystemZGenDisassemblerTables.inc"
+
+DecodeStatus SystemZDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &os,
+ raw_ostream &cs) const {
+ // Get the first two bytes of the instruction.
+ uint8_t Bytes[6];
+ Size = 0;
+ if (Region.readBytes(Address, 2, Bytes) == -1)
+ return MCDisassembler::Fail;
+
+ // The top 2 bits of the first byte specify the size.
+ const uint8_t *Table;
+ if (Bytes[0] < 0x40) {
+ Size = 2;
+ Table = DecoderTable16;
+ } else if (Bytes[0] < 0xc0) {
+ Size = 4;
+ Table = DecoderTable32;
+ } else {
+ Size = 6;
+ Table = DecoderTable48;
+ }
+
+ // Read any remaining bytes.
+ if (Size > 2 && Region.readBytes(Address + 2, Size - 2, Bytes + 2) == -1)
+ return MCDisassembler::Fail;
+
+ // Construct the instruction.
+ uint64_t Inst = 0;
+ for (uint64_t I = 0; I < Size; ++I)
+ Inst = (Inst << 8) | Bytes[I];
+
+ return decodeInstruction(Table, MI, Inst, Address, this, STI);
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.cpp b/contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.cpp
new file mode 100644
index 0000000..d2ba9b6
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.cpp
@@ -0,0 +1,165 @@
+//===-- SystemZInstPrinter.cpp - Convert SystemZ MCInst to assembly syntax ===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZInstPrinter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+#include "SystemZGenAsmWriter.inc"
+
+void SystemZInstPrinter::printAddress(unsigned Base, int64_t Disp,
+ unsigned Index, raw_ostream &O) {
+ O << Disp;
+ if (Base) {
+ O << '(';
+ if (Index)
+ O << '%' << getRegisterName(Index) << ',';
+ O << '%' << getRegisterName(Base) << ')';
+ } else
+ assert(!Index && "Shouldn't have an index without a base");
+}
+
+void SystemZInstPrinter::printOperand(const MCOperand &MO, raw_ostream &O) {
+ if (MO.isReg())
+ O << '%' << getRegisterName(MO.getReg());
+ else if (MO.isImm())
+ O << MO.getImm();
+ else if (MO.isExpr())
+ O << *MO.getExpr();
+ else
+ llvm_unreachable("Invalid operand");
+}
+
+void SystemZInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
+ StringRef Annot) {
+ printInstruction(MI, O);
+ printAnnotation(O, Annot);
+}
+
+void SystemZInstPrinter::printRegName(raw_ostream &O, unsigned RegNo) const {
+ O << '%' << getRegisterName(RegNo);
+}
+
+void SystemZInstPrinter::printU4ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isUInt<4>(Value) && "Invalid u4imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printU6ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isUInt<6>(Value) && "Invalid u6imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printS8ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isInt<8>(Value) && "Invalid s8imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printU8ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isUInt<8>(Value) && "Invalid u8imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printS16ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isInt<16>(Value) && "Invalid s16imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printU16ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isUInt<16>(Value) && "Invalid u16imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printS32ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isInt<32>(Value) && "Invalid s32imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printU32ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isUInt<32>(Value) && "Invalid u32imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printAccessRegOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ uint64_t Value = MI->getOperand(OpNum).getImm();
+ assert(Value < 16 && "Invalid access register number");
+ O << "%a" << (unsigned int)Value;
+}
+
+void SystemZInstPrinter::printPCRelOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+ if (MO.isImm()) {
+ O << "0x";
+ O.write_hex(MO.getImm());
+ } else
+ O << *MO.getExpr();
+}
+
+void SystemZInstPrinter::printOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ printOperand(MI->getOperand(OpNum), O);
+}
+
+void SystemZInstPrinter::printBDAddrOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ printAddress(MI->getOperand(OpNum).getReg(),
+ MI->getOperand(OpNum + 1).getImm(), 0, O);
+}
+
+void SystemZInstPrinter::printBDXAddrOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ printAddress(MI->getOperand(OpNum).getReg(),
+ MI->getOperand(OpNum + 1).getImm(),
+ MI->getOperand(OpNum + 2).getReg(), O);
+}
+
+void SystemZInstPrinter::printBDLAddrOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ unsigned Base = MI->getOperand(OpNum).getReg();
+ uint64_t Disp = MI->getOperand(OpNum + 1).getImm();
+ uint64_t Length = MI->getOperand(OpNum + 2).getImm();
+ O << Disp << '(' << Length;
+ if (Base)
+ O << ",%" << getRegisterName(Base);
+ O << ')';
+}
+
+void SystemZInstPrinter::printCond4Operand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ static const char *const CondNames[] = {
+ "o", "h", "nle", "l", "nhe", "lh", "ne",
+ "e", "nlh", "he", "nl", "le", "nh", "no"
+ };
+ uint64_t Imm = MI->getOperand(OpNum).getImm();
+ assert(Imm > 0 && Imm < 15 && "Invalid condition");
+ O << CondNames[Imm - 1];
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h b/contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h
new file mode 100644
index 0000000..dce482b
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h
@@ -0,0 +1,67 @@
+//==- SystemZInstPrinter.h - Convert SystemZ MCInst to assembly --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints a SystemZ MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SYSTEMZINSTPRINTER_H
+#define LLVM_SYSTEMZINSTPRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+class MCOperand;
+
+class SystemZInstPrinter : public MCInstPrinter {
+public:
+ SystemZInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI)
+ : MCInstPrinter(MAI, MII, MRI) {}
+
+ // Automatically generated by tblgen.
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ static const char *getRegisterName(unsigned RegNo);
+
+ // Print an address with the given base, displacement and index.
+ static void printAddress(unsigned Base, int64_t Disp, unsigned Index,
+ raw_ostream &O);
+
+ // Print the given operand.
+ static void printOperand(const MCOperand &MO, raw_ostream &O);
+
+ // Override MCInstPrinter.
+ void printRegName(raw_ostream &O, unsigned RegNo) const override;
+ void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot) override;
+
+private:
+ // Print various types of operand.
+ void printOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printBDAddrOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printBDXAddrOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printBDLAddrOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printU4ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printU6ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printS8ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printU8ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printS16ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printU16ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printS32ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printU32ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printPCRelOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printAccessRegOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+
+ // Print the mnemonic for a condition-code mask ("ne", "lh", etc.)
+ // This forms part of the instruction name rather than the operand list.
+ void printCond4Operand(const MCInst *MI, int OpNum, raw_ostream &O);
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmBackend.cpp b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmBackend.cpp
new file mode 100644
index 0000000..6e7268d
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmBackend.cpp
@@ -0,0 +1,117 @@
+//===-- SystemZMCAsmBackend.cpp - SystemZ assembler backend ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "MCTargetDesc/SystemZMCFixups.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCFixupKindInfo.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCObjectWriter.h"
+
+using namespace llvm;
+
+// Value is a fully-resolved relocation value: Symbol + Addend [- Pivot].
+// Return the bits that should be installed in a relocation field for
+// fixup kind Kind.
+static uint64_t extractBitsForFixup(MCFixupKind Kind, uint64_t Value) {
+ if (Kind < FirstTargetFixupKind)
+ return Value;
+
+ switch (unsigned(Kind)) {
+ case SystemZ::FK_390_PC16DBL:
+ case SystemZ::FK_390_PC32DBL:
+ case SystemZ::FK_390_PLT16DBL:
+ case SystemZ::FK_390_PLT32DBL:
+ return (int64_t)Value / 2;
+ }
+
+ llvm_unreachable("Unknown fixup kind!");
+}
+
+namespace {
+class SystemZMCAsmBackend : public MCAsmBackend {
+ uint8_t OSABI;
+public:
+ SystemZMCAsmBackend(uint8_t osABI)
+ : OSABI(osABI) {}
+
+ // Override MCAsmBackend
+ unsigned getNumFixupKinds() const override {
+ return SystemZ::NumTargetFixupKinds;
+ }
+ const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override;
+ void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
+ uint64_t Value, bool IsPCRel) const override;
+ bool mayNeedRelaxation(const MCInst &Inst) const override {
+ return false;
+ }
+ bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
+ const MCRelaxableFragment *Fragment,
+ const MCAsmLayout &Layout) const override {
+ return false;
+ }
+ void relaxInstruction(const MCInst &Inst, MCInst &Res) const override {
+ llvm_unreachable("SystemZ does do not have assembler relaxation");
+ }
+ bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createSystemZObjectWriter(OS, OSABI);
+ }
+};
+} // end anonymous namespace
+
+const MCFixupKindInfo &
+SystemZMCAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
+ const static MCFixupKindInfo Infos[SystemZ::NumTargetFixupKinds] = {
+ { "FK_390_PC16DBL", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "FK_390_PC32DBL", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+ { "FK_390_PLT16DBL", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "FK_390_PLT32DBL", 0, 32, MCFixupKindInfo::FKF_IsPCRel }
+ };
+
+ if (Kind < FirstTargetFixupKind)
+ return MCAsmBackend::getFixupKindInfo(Kind);
+
+ assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
+ "Invalid kind!");
+ return Infos[Kind - FirstTargetFixupKind];
+}
+
+void SystemZMCAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
+ unsigned DataSize, uint64_t Value,
+ bool IsPCRel) const {
+ MCFixupKind Kind = Fixup.getKind();
+ unsigned Offset = Fixup.getOffset();
+ unsigned Size = (getFixupKindInfo(Kind).TargetSize + 7) / 8;
+
+ assert(Offset + Size <= DataSize && "Invalid fixup offset!");
+
+ // Big-endian insertion of Size bytes.
+ Value = extractBitsForFixup(Kind, Value);
+ unsigned ShiftValue = (Size * 8) - 8;
+ for (unsigned I = 0; I != Size; ++I) {
+ Data[Offset + I] |= uint8_t(Value >> ShiftValue);
+ ShiftValue -= 8;
+ }
+}
+
+bool SystemZMCAsmBackend::writeNopData(uint64_t Count,
+ MCObjectWriter *OW) const {
+ for (uint64_t I = 0; I != Count; ++I)
+ OW->Write8(7);
+ return true;
+}
+
+MCAsmBackend *llvm::createSystemZMCAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU) {
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS());
+ return new SystemZMCAsmBackend(OSABI);
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp
new file mode 100644
index 0000000..c46a36b
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp
@@ -0,0 +1,34 @@
+//===-- SystemZMCAsmInfo.cpp - SystemZ asm properties ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZMCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSectionELF.h"
+
+using namespace llvm;
+
+SystemZMCAsmInfo::SystemZMCAsmInfo(StringRef TT) {
+ PointerSize = 8;
+ CalleeSaveStackSlotSize = 8;
+ IsLittleEndian = false;
+
+ CommentString = "#";
+ ZeroDirective = "\t.space\t";
+ Data64bitsDirective = "\t.quad\t";
+ UsesELFSectionDirectiveForBSS = true;
+ SupportsDebugInformation = true;
+ HasLEB128 = true;
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+}
+
+const MCSection *
+SystemZMCAsmInfo::getNonexecutableStackSection(MCContext &Ctx) const {
+ return Ctx.getELFSection(".note.GNU-stack", ELF::SHT_PROGBITS,
+ 0, SectionKind::getMetadata());
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h
new file mode 100644
index 0000000..1de97af
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h
@@ -0,0 +1,29 @@
+//====-- SystemZMCAsmInfo.h - SystemZ asm properties -----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SystemZTARGETASMINFO_H
+#define SystemZTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfoELF.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+class StringRef;
+
+class SystemZMCAsmInfo : public MCAsmInfoELF {
+public:
+ explicit SystemZMCAsmInfo(StringRef TT);
+
+ // Override MCAsmInfo;
+ const MCSection *getNonexecutableStackSection(MCContext &Ctx) const override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCCodeEmitter.cpp b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCCodeEmitter.cpp
new file mode 100644
index 0000000..27b4bd8
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCCodeEmitter.cpp
@@ -0,0 +1,204 @@
+//===-- SystemZMCCodeEmitter.cpp - Convert SystemZ code to machine code ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SystemZMCCodeEmitter class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "MCTargetDesc/SystemZMCFixups.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInstrInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mccodeemitter"
+
+namespace {
+class SystemZMCCodeEmitter : public MCCodeEmitter {
+ const MCInstrInfo &MCII;
+ MCContext &Ctx;
+
+public:
+ SystemZMCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
+ : MCII(mcii), Ctx(ctx) {
+ }
+
+ ~SystemZMCCodeEmitter() {}
+
+ // OVerride MCCodeEmitter.
+ void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+
+private:
+ // Automatically generated by TableGen.
+ uint64_t getBinaryCodeForInstr(const MCInst &MI,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // Called by the TableGen code to get the binary encoding of operand
+ // MO in MI. Fixups is the list of fixups against MI.
+ uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // Called by the TableGen code to get the binary encoding of an address.
+ // The index or length, if any, is encoded first, followed by the base,
+ // followed by the displacement. In a 20-bit displacement,
+ // the low 12 bits are encoded before the high 8 bits.
+ uint64_t getBDAddr12Encoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint64_t getBDAddr20Encoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint64_t getBDXAddr12Encoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint64_t getBDXAddr20Encoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ uint64_t getBDLAddr12Len8Encoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // Operand OpNum of MI needs a PC-relative fixup of kind Kind at
+ // Offset bytes from the start of MI. Add the fixup to Fixups
+ // and return the in-place addend, which since we're a RELA target
+ // is always 0.
+ uint64_t getPCRelEncoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ unsigned Kind, int64_t Offset) const;
+
+ uint64_t getPC16DBLEncoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ return getPCRelEncoding(MI, OpNum, Fixups, SystemZ::FK_390_PC16DBL, 2);
+ }
+ uint64_t getPC32DBLEncoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ return getPCRelEncoding(MI, OpNum, Fixups, SystemZ::FK_390_PC32DBL, 2);
+ }
+};
+} // end anonymous namespace
+
+MCCodeEmitter *llvm::createSystemZMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &MCSTI,
+ MCContext &Ctx) {
+ return new SystemZMCCodeEmitter(MCII, Ctx);
+}
+
+void SystemZMCCodeEmitter::
+EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI);
+ unsigned Size = MCII.get(MI.getOpcode()).getSize();
+ // Big-endian insertion of Size bytes.
+ unsigned ShiftValue = (Size * 8) - 8;
+ for (unsigned I = 0; I != Size; ++I) {
+ OS << uint8_t(Bits >> ShiftValue);
+ ShiftValue -= 8;
+ }
+}
+
+uint64_t SystemZMCCodeEmitter::
+getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ if (MO.isReg())
+ return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
+ if (MO.isImm())
+ return static_cast<uint64_t>(MO.getImm());
+ llvm_unreachable("Unexpected operand type!");
+}
+
+uint64_t SystemZMCCodeEmitter::
+getBDAddr12Encoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ uint64_t Base = getMachineOpValue(MI, MI.getOperand(OpNum), Fixups, STI);
+ uint64_t Disp = getMachineOpValue(MI, MI.getOperand(OpNum + 1), Fixups, STI);
+ assert(isUInt<4>(Base) && isUInt<12>(Disp));
+ return (Base << 12) | Disp;
+}
+
+uint64_t SystemZMCCodeEmitter::
+getBDAddr20Encoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ uint64_t Base = getMachineOpValue(MI, MI.getOperand(OpNum), Fixups, STI);
+ uint64_t Disp = getMachineOpValue(MI, MI.getOperand(OpNum + 1), Fixups, STI);
+ assert(isUInt<4>(Base) && isInt<20>(Disp));
+ return (Base << 20) | ((Disp & 0xfff) << 8) | ((Disp & 0xff000) >> 12);
+}
+
+uint64_t SystemZMCCodeEmitter::
+getBDXAddr12Encoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ uint64_t Base = getMachineOpValue(MI, MI.getOperand(OpNum), Fixups, STI);
+ uint64_t Disp = getMachineOpValue(MI, MI.getOperand(OpNum + 1), Fixups, STI);
+ uint64_t Index = getMachineOpValue(MI, MI.getOperand(OpNum + 2), Fixups, STI);
+ assert(isUInt<4>(Base) && isUInt<12>(Disp) && isUInt<4>(Index));
+ return (Index << 16) | (Base << 12) | Disp;
+}
+
+uint64_t SystemZMCCodeEmitter::
+getBDXAddr20Encoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ uint64_t Base = getMachineOpValue(MI, MI.getOperand(OpNum), Fixups, STI);
+ uint64_t Disp = getMachineOpValue(MI, MI.getOperand(OpNum + 1), Fixups, STI);
+ uint64_t Index = getMachineOpValue(MI, MI.getOperand(OpNum + 2), Fixups, STI);
+ assert(isUInt<4>(Base) && isInt<20>(Disp) && isUInt<4>(Index));
+ return (Index << 24) | (Base << 20) | ((Disp & 0xfff) << 8)
+ | ((Disp & 0xff000) >> 12);
+}
+
+uint64_t SystemZMCCodeEmitter::
+getBDLAddr12Len8Encoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ uint64_t Base = getMachineOpValue(MI, MI.getOperand(OpNum), Fixups, STI);
+ uint64_t Disp = getMachineOpValue(MI, MI.getOperand(OpNum + 1), Fixups, STI);
+ uint64_t Len = getMachineOpValue(MI, MI.getOperand(OpNum + 2), Fixups, STI) - 1;
+ assert(isUInt<4>(Base) && isUInt<12>(Disp) && isUInt<8>(Len));
+ return (Len << 16) | (Base << 12) | Disp;
+}
+
+uint64_t
+SystemZMCCodeEmitter::getPCRelEncoding(const MCInst &MI, unsigned OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ unsigned Kind, int64_t Offset) const {
+ const MCOperand &MO = MI.getOperand(OpNum);
+ const MCExpr *Expr;
+ if (MO.isImm())
+ Expr = MCConstantExpr::Create(MO.getImm() + Offset, Ctx);
+ else {
+ Expr = MO.getExpr();
+ if (Offset) {
+ // The operand value is relative to the start of MI, but the fixup
+ // is relative to the operand field itself, which is Offset bytes
+ // into MI. Add Offset to the relocation value to cancel out
+ // this difference.
+ const MCExpr *OffsetExpr = MCConstantExpr::Create(Offset, Ctx);
+ Expr = MCBinaryExpr::CreateAdd(Expr, OffsetExpr, Ctx);
+ }
+ }
+ Fixups.push_back(MCFixup::Create(Offset, Expr, (MCFixupKind)Kind));
+ return 0;
+}
+
+#include "SystemZGenMCCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h
new file mode 100644
index 0000000..a3aab71
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h
@@ -0,0 +1,31 @@
+//===-- SystemZMCFixups.h - SystemZ-specific fixup entries ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SYSTEMZMCFIXUPS_H
+#define LLVM_SYSTEMZMCFIXUPS_H
+
+#include "llvm/MC/MCFixup.h"
+
+namespace llvm {
+namespace SystemZ {
+enum FixupKind {
+ // These correspond directly to R_390_* relocations.
+ FK_390_PC16DBL = FirstTargetFixupKind,
+ FK_390_PC32DBL,
+ FK_390_PLT16DBL,
+ FK_390_PLT32DBL,
+
+ // Marker
+ LastTargetFixupKind,
+ NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind
+};
+} // end namespace SystemZ
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCObjectWriter.cpp b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCObjectWriter.cpp
new file mode 100644
index 0000000..c6a1816
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCObjectWriter.cpp
@@ -0,0 +1,115 @@
+//===-- SystemZMCObjectWriter.cpp - SystemZ ELF writer --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "MCTargetDesc/SystemZMCFixups.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCValue.h"
+
+using namespace llvm;
+
+namespace {
+class SystemZObjectWriter : public MCELFObjectTargetWriter {
+public:
+ SystemZObjectWriter(uint8_t OSABI);
+
+ virtual ~SystemZObjectWriter();
+
+protected:
+ // Override MCELFObjectTargetWriter.
+ unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsPCRel) const override;
+};
+} // end anonymous namespace
+
+SystemZObjectWriter::SystemZObjectWriter(uint8_t OSABI)
+ : MCELFObjectTargetWriter(/*Is64Bit=*/true, OSABI, ELF::EM_S390,
+ /*HasRelocationAddend=*/ true) {}
+
+SystemZObjectWriter::~SystemZObjectWriter() {
+}
+
+// Return the relocation type for an absolute value of MCFixupKind Kind.
+static unsigned getAbsoluteReloc(unsigned Kind) {
+ switch (Kind) {
+ case FK_Data_1: return ELF::R_390_8;
+ case FK_Data_2: return ELF::R_390_16;
+ case FK_Data_4: return ELF::R_390_32;
+ case FK_Data_8: return ELF::R_390_64;
+ }
+ llvm_unreachable("Unsupported absolute address");
+}
+
+// Return the relocation type for a PC-relative value of MCFixupKind Kind.
+static unsigned getPCRelReloc(unsigned Kind) {
+ switch (Kind) {
+ case FK_Data_2: return ELF::R_390_PC16;
+ case FK_Data_4: return ELF::R_390_PC32;
+ case FK_Data_8: return ELF::R_390_PC64;
+ case SystemZ::FK_390_PC16DBL: return ELF::R_390_PC16DBL;
+ case SystemZ::FK_390_PC32DBL: return ELF::R_390_PC32DBL;
+ case SystemZ::FK_390_PLT16DBL: return ELF::R_390_PLT16DBL;
+ case SystemZ::FK_390_PLT32DBL: return ELF::R_390_PLT32DBL;
+ }
+ llvm_unreachable("Unsupported PC-relative address");
+}
+
+// Return the R_390_TLS_LE* relocation type for MCFixupKind Kind.
+static unsigned getTLSLEReloc(unsigned Kind) {
+ switch (Kind) {
+ case FK_Data_4: return ELF::R_390_TLS_LE32;
+ case FK_Data_8: return ELF::R_390_TLS_LE64;
+ }
+ llvm_unreachable("Unsupported absolute address");
+}
+
+// Return the PLT relocation counterpart of MCFixupKind Kind.
+static unsigned getPLTReloc(unsigned Kind) {
+ switch (Kind) {
+ case SystemZ::FK_390_PC16DBL: return ELF::R_390_PLT16DBL;
+ case SystemZ::FK_390_PC32DBL: return ELF::R_390_PLT32DBL;
+ }
+ llvm_unreachable("Unsupported absolute address");
+}
+
+unsigned SystemZObjectWriter::GetRelocType(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const {
+ MCSymbolRefExpr::VariantKind Modifier = Target.getAccessVariant();
+ unsigned Kind = Fixup.getKind();
+ switch (Modifier) {
+ case MCSymbolRefExpr::VK_None:
+ if (IsPCRel)
+ return getPCRelReloc(Kind);
+ return getAbsoluteReloc(Kind);
+
+ case MCSymbolRefExpr::VK_NTPOFF:
+ assert(!IsPCRel && "NTPOFF shouldn't be PC-relative");
+ return getTLSLEReloc(Kind);
+
+ case MCSymbolRefExpr::VK_GOT:
+ if (IsPCRel && Kind == SystemZ::FK_390_PC32DBL)
+ return ELF::R_390_GOTENT;
+ llvm_unreachable("Only PC-relative GOT accesses are supported for now");
+
+ case MCSymbolRefExpr::VK_PLT:
+ assert(IsPCRel && "@PLT shouldt be PC-relative");
+ return getPLTReloc(Kind);
+
+ default:
+ llvm_unreachable("Modifier not supported");
+ }
+}
+
+MCObjectWriter *llvm::createSystemZObjectWriter(raw_ostream &OS,
+ uint8_t OSABI) {
+ MCELFObjectTargetWriter *MOTW = new SystemZObjectWriter(OSABI);
+ return createELFObjectWriter(MOTW, OS, /*IsLittleEndian=*/false);
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp
new file mode 100644
index 0000000..cc94869
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp
@@ -0,0 +1,231 @@
+//===-- SystemZMCTargetDesc.cpp - SystemZ target descriptions -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZMCTargetDesc.h"
+#include "InstPrinter/SystemZInstPrinter.h"
+#include "SystemZMCAsmInfo.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_MC_DESC
+#include "SystemZGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "SystemZGenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "SystemZGenRegisterInfo.inc"
+
+const unsigned SystemZMC::GR32Regs[16] = {
+ SystemZ::R0L, SystemZ::R1L, SystemZ::R2L, SystemZ::R3L,
+ SystemZ::R4L, SystemZ::R5L, SystemZ::R6L, SystemZ::R7L,
+ SystemZ::R8L, SystemZ::R9L, SystemZ::R10L, SystemZ::R11L,
+ SystemZ::R12L, SystemZ::R13L, SystemZ::R14L, SystemZ::R15L
+};
+
+const unsigned SystemZMC::GRH32Regs[16] = {
+ SystemZ::R0H, SystemZ::R1H, SystemZ::R2H, SystemZ::R3H,
+ SystemZ::R4H, SystemZ::R5H, SystemZ::R6H, SystemZ::R7H,
+ SystemZ::R8H, SystemZ::R9H, SystemZ::R10H, SystemZ::R11H,
+ SystemZ::R12H, SystemZ::R13H, SystemZ::R14H, SystemZ::R15H
+};
+
+const unsigned SystemZMC::GR64Regs[16] = {
+ SystemZ::R0D, SystemZ::R1D, SystemZ::R2D, SystemZ::R3D,
+ SystemZ::R4D, SystemZ::R5D, SystemZ::R6D, SystemZ::R7D,
+ SystemZ::R8D, SystemZ::R9D, SystemZ::R10D, SystemZ::R11D,
+ SystemZ::R12D, SystemZ::R13D, SystemZ::R14D, SystemZ::R15D
+};
+
+const unsigned SystemZMC::GR128Regs[16] = {
+ SystemZ::R0Q, 0, SystemZ::R2Q, 0,
+ SystemZ::R4Q, 0, SystemZ::R6Q, 0,
+ SystemZ::R8Q, 0, SystemZ::R10Q, 0,
+ SystemZ::R12Q, 0, SystemZ::R14Q, 0
+};
+
+const unsigned SystemZMC::FP32Regs[16] = {
+ SystemZ::F0S, SystemZ::F1S, SystemZ::F2S, SystemZ::F3S,
+ SystemZ::F4S, SystemZ::F5S, SystemZ::F6S, SystemZ::F7S,
+ SystemZ::F8S, SystemZ::F9S, SystemZ::F10S, SystemZ::F11S,
+ SystemZ::F12S, SystemZ::F13S, SystemZ::F14S, SystemZ::F15S
+};
+
+const unsigned SystemZMC::FP64Regs[16] = {
+ SystemZ::F0D, SystemZ::F1D, SystemZ::F2D, SystemZ::F3D,
+ SystemZ::F4D, SystemZ::F5D, SystemZ::F6D, SystemZ::F7D,
+ SystemZ::F8D, SystemZ::F9D, SystemZ::F10D, SystemZ::F11D,
+ SystemZ::F12D, SystemZ::F13D, SystemZ::F14D, SystemZ::F15D
+};
+
+const unsigned SystemZMC::FP128Regs[16] = {
+ SystemZ::F0Q, SystemZ::F1Q, 0, 0,
+ SystemZ::F4Q, SystemZ::F5Q, 0, 0,
+ SystemZ::F8Q, SystemZ::F9Q, 0, 0,
+ SystemZ::F12Q, SystemZ::F13Q, 0, 0
+};
+
+unsigned SystemZMC::getFirstReg(unsigned Reg) {
+ static unsigned Map[SystemZ::NUM_TARGET_REGS];
+ static bool Initialized = false;
+ if (!Initialized) {
+ for (unsigned I = 0; I < 16; ++I) {
+ Map[GR32Regs[I]] = I;
+ Map[GRH32Regs[I]] = I;
+ Map[GR64Regs[I]] = I;
+ Map[GR128Regs[I]] = I;
+ Map[FP32Regs[I]] = I;
+ Map[FP64Regs[I]] = I;
+ Map[FP128Regs[I]] = I;
+ }
+ }
+ assert(Reg < SystemZ::NUM_TARGET_REGS);
+ return Map[Reg];
+}
+
+static MCAsmInfo *createSystemZMCAsmInfo(const MCRegisterInfo &MRI,
+ StringRef TT) {
+ MCAsmInfo *MAI = new SystemZMCAsmInfo(TT);
+ MCCFIInstruction Inst =
+ MCCFIInstruction::createDefCfa(nullptr,
+ MRI.getDwarfRegNum(SystemZ::R15D, true),
+ SystemZMC::CFAOffsetFromInitialSP);
+ MAI->addInitialFrameState(Inst);
+ return MAI;
+}
+
+static MCInstrInfo *createSystemZMCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitSystemZMCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createSystemZMCRegisterInfo(StringRef TT) {
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitSystemZMCRegisterInfo(X, SystemZ::R14D);
+ return X;
+}
+
+static MCSubtargetInfo *createSystemZMCSubtargetInfo(StringRef TT,
+ StringRef CPU,
+ StringRef FS) {
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+ InitSystemZMCSubtargetInfo(X, TT, CPU, FS);
+ return X;
+}
+
+static MCCodeGenInfo *createSystemZMCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+
+ // Static code is suitable for use in a dynamic executable; there is no
+ // separate DynamicNoPIC model.
+ if (RM == Reloc::Default || RM == Reloc::DynamicNoPIC)
+ RM = Reloc::Static;
+
+ // For SystemZ we define the models as follows:
+ //
+ // Small: BRASL can call any function and will use a stub if necessary.
+ // Locally-binding symbols will always be in range of LARL.
+ //
+ // Medium: BRASL can call any function and will use a stub if necessary.
+ // GOT slots and locally-defined text will always be in range
+ // of LARL, but other symbols might not be.
+ //
+ // Large: Equivalent to Medium for now.
+ //
+ // Kernel: Equivalent to Medium for now.
+ //
+ // This means that any PIC module smaller than 4GB meets the
+ // requirements of Small, so Small seems like the best default there.
+ //
+ // All symbols bind locally in a non-PIC module, so the choice is less
+ // obvious. There are two cases:
+ //
+ // - When creating an executable, PLTs and copy relocations allow
+ // us to treat external symbols as part of the executable.
+ // Any executable smaller than 4GB meets the requirements of Small,
+ // so that seems like the best default.
+ //
+ // - When creating JIT code, stubs will be in range of BRASL if the
+ // image is less than 4GB in size. GOT entries will likewise be
+ // in range of LARL. However, the JIT environment has no equivalent
+ // of copy relocs, so locally-binding data symbols might not be in
+ // the range of LARL. We need the Medium model in that case.
+ if (CM == CodeModel::Default)
+ CM = CodeModel::Small;
+ else if (CM == CodeModel::JITDefault)
+ CM = RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+static MCInstPrinter *createSystemZMCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ return new SystemZInstPrinter(MAI, MII, MRI);
+}
+
+static MCStreamer *createSystemZMCObjectStreamer(const Target &T, StringRef TT,
+ MCContext &Ctx,
+ MCAsmBackend &MAB,
+ raw_ostream &OS,
+ MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI,
+ bool RelaxAll,
+ bool NoExecStack) {
+ return createELFStreamer(Ctx, MAB, OS, Emitter, RelaxAll, NoExecStack);
+}
+
+extern "C" void LLVMInitializeSystemZTargetMC() {
+ // Register the MCAsmInfo.
+ TargetRegistry::RegisterMCAsmInfo(TheSystemZTarget,
+ createSystemZMCAsmInfo);
+
+ // Register the MCCodeGenInfo.
+ TargetRegistry::RegisterMCCodeGenInfo(TheSystemZTarget,
+ createSystemZMCCodeGenInfo);
+
+ // Register the MCCodeEmitter.
+ TargetRegistry::RegisterMCCodeEmitter(TheSystemZTarget,
+ createSystemZMCCodeEmitter);
+
+ // Register the MCInstrInfo.
+ TargetRegistry::RegisterMCInstrInfo(TheSystemZTarget,
+ createSystemZMCInstrInfo);
+
+ // Register the MCRegisterInfo.
+ TargetRegistry::RegisterMCRegInfo(TheSystemZTarget,
+ createSystemZMCRegisterInfo);
+
+ // Register the MCSubtargetInfo.
+ TargetRegistry::RegisterMCSubtargetInfo(TheSystemZTarget,
+ createSystemZMCSubtargetInfo);
+
+ // Register the MCAsmBackend.
+ TargetRegistry::RegisterMCAsmBackend(TheSystemZTarget,
+ createSystemZMCAsmBackend);
+
+ // Register the MCInstPrinter.
+ TargetRegistry::RegisterMCInstPrinter(TheSystemZTarget,
+ createSystemZMCInstPrinter);
+
+ // Register the MCObjectStreamer;
+ TargetRegistry::RegisterMCObjectStreamer(TheSystemZTarget,
+ createSystemZMCObjectStreamer);
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h
new file mode 100644
index 0000000..cbaf9a8
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h
@@ -0,0 +1,96 @@
+//===-- SystemZMCTargetDesc.h - SystemZ target descriptions -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZMCTARGETDESC_H
+#define SYSTEMZMCTARGETDESC_H
+
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+
+class MCAsmBackend;
+class MCCodeEmitter;
+class MCContext;
+class MCInstrInfo;
+class MCObjectWriter;
+class MCRegisterInfo;
+class MCSubtargetInfo;
+class StringRef;
+class Target;
+class raw_ostream;
+
+extern Target TheSystemZTarget;
+
+namespace SystemZMC {
+// How many bytes are in the ABI-defined, caller-allocated part of
+// a stack frame.
+const int64_t CallFrameSize = 160;
+
+// The offset of the DWARF CFA from the incoming stack pointer.
+const int64_t CFAOffsetFromInitialSP = CallFrameSize;
+
+// Maps of asm register numbers to LLVM register numbers, with 0 indicating
+// an invalid register. In principle we could use 32-bit and 64-bit register
+// classes directly, provided that we relegated the GPR allocation order
+// in SystemZRegisterInfo.td to an AltOrder and left the default order
+// as %r0-%r15. It seems better to provide the same interface for
+// all classes though.
+extern const unsigned GR32Regs[16];
+extern const unsigned GRH32Regs[16];
+extern const unsigned GR64Regs[16];
+extern const unsigned GR128Regs[16];
+extern const unsigned FP32Regs[16];
+extern const unsigned FP64Regs[16];
+extern const unsigned FP128Regs[16];
+
+// Return the 0-based number of the first architectural register that
+// contains the given LLVM register. E.g. R1D -> 1.
+unsigned getFirstReg(unsigned Reg);
+
+// Return the given register as a GR64.
+inline unsigned getRegAsGR64(unsigned Reg) {
+ return GR64Regs[getFirstReg(Reg)];
+}
+
+// Return the given register as a low GR32.
+inline unsigned getRegAsGR32(unsigned Reg) {
+ return GR32Regs[getFirstReg(Reg)];
+}
+
+// Return the given register as a high GR32.
+inline unsigned getRegAsGRH32(unsigned Reg) {
+ return GRH32Regs[getFirstReg(Reg)];
+}
+} // end namespace SystemZMC
+
+MCCodeEmitter *createSystemZMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+
+MCAsmBackend *createSystemZMCAsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU);
+
+MCObjectWriter *createSystemZObjectWriter(raw_ostream &OS, uint8_t OSABI);
+} // end namespace llvm
+
+// Defines symbolic names for SystemZ registers.
+// This defines a mapping from register name to register number.
+#define GET_REGINFO_ENUM
+#include "SystemZGenRegisterInfo.inc"
+
+// Defines symbolic names for the SystemZ instructions.
+#define GET_INSTRINFO_ENUM
+#include "SystemZGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "SystemZGenSubtargetInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/README.txt b/contrib/llvm/lib/Target/SystemZ/README.txt
new file mode 100644
index 0000000..e089047
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/README.txt
@@ -0,0 +1,174 @@
+//===---------------------------------------------------------------------===//
+// Random notes about and ideas for the SystemZ backend.
+//===---------------------------------------------------------------------===//
+
+The initial backend is deliberately restricted to z10. We should add support
+for later architectures at some point.
+
+--
+
+SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand() is passed "m" for all
+inline asm memory constraints; it doesn't get to see the original constraint.
+This means that it must conservatively treat all inline asm constraints
+as the most restricted type, "R".
+
+--
+
+If an inline asm ties an i32 "r" result to an i64 input, the input
+will be treated as an i32, leaving the upper bits uninitialised.
+For example:
+
+define void @f4(i32 *%dst) {
+ %val = call i32 asm "blah $0", "=r,0" (i64 103)
+ store i32 %val, i32 *%dst
+ ret void
+}
+
+from CodeGen/SystemZ/asm-09.ll will use LHI rather than LGHI.
+to load 103. This seems to be a general target-independent problem.
+
+--
+
+The tuning of the choice between LOAD ADDRESS (LA) and addition in
+SystemZISelDAGToDAG.cpp is suspect. It should be tweaked based on
+performance measurements.
+
+--
+
+There is no scheduling support.
+
+--
+
+We don't use the BRANCH ON INDEX instructions.
+
+--
+
+We might want to use BRANCH ON CONDITION for conditional indirect calls
+and conditional returns.
+
+--
+
+We don't use the TEST DATA CLASS instructions.
+
+--
+
+We could use the generic floating-point forms of LOAD COMPLEMENT,
+LOAD NEGATIVE and LOAD POSITIVE in cases where we don't need the
+condition codes. For example, we could use LCDFR instead of LCDBR.
+
+--
+
+We only use MVC, XC and CLC for constant-length block operations.
+We could extend them to variable-length operations too,
+using EXECUTE RELATIVE LONG.
+
+MVCIN, MVCLE and CLCLE may be worthwhile too.
+
+--
+
+We don't use CUSE or the TRANSLATE family of instructions for string
+operations. The TRANSLATE ones are probably more difficult to exploit.
+
+--
+
+We don't take full advantage of builtins like fabsl because the calling
+conventions require f128s to be returned by invisible reference.
+
+--
+
+ADD LOGICAL WITH SIGNED IMMEDIATE could be useful when we need to
+produce a carry. SUBTRACT LOGICAL IMMEDIATE could be useful when we
+need to produce a borrow. (Note that there are no memory forms of
+ADD LOGICAL WITH CARRY and SUBTRACT LOGICAL WITH BORROW, so the high
+part of 128-bit memory operations would probably need to be done
+via a register.)
+
+--
+
+We don't use the halfword forms of LOAD REVERSED and STORE REVERSED
+(LRVH and STRVH).
+
+--
+
+We don't use ICM or STCM.
+
+--
+
+DAGCombiner doesn't yet fold truncations of extended loads. Functions like:
+
+ unsigned long f (unsigned long x, unsigned short *y)
+ {
+ return (x << 32) | *y;
+ }
+
+therefore end up as:
+
+ sllg %r2, %r2, 32
+ llgh %r0, 0(%r3)
+ lr %r2, %r0
+ br %r14
+
+but truncating the load would give:
+
+ sllg %r2, %r2, 32
+ lh %r2, 0(%r3)
+ br %r14
+
+--
+
+Functions like:
+
+define i64 @f1(i64 %a) {
+ %and = and i64 %a, 1
+ ret i64 %and
+}
+
+ought to be implemented as:
+
+ lhi %r0, 1
+ ngr %r2, %r0
+ br %r14
+
+but two-address optimisations reverse the order of the AND and force:
+
+ lhi %r0, 1
+ ngr %r0, %r2
+ lgr %r2, %r0
+ br %r14
+
+CodeGen/SystemZ/and-04.ll has several examples of this.
+
+--
+
+Out-of-range displacements are usually handled by loading the full
+address into a register. In many cases it would be better to create
+an anchor point instead. E.g. for:
+
+define void @f4a(i128 *%aptr, i64 %base) {
+ %addr = add i64 %base, 524288
+ %bptr = inttoptr i64 %addr to i128 *
+ %a = load volatile i128 *%aptr
+ %b = load i128 *%bptr
+ %add = add i128 %a, %b
+ store i128 %add, i128 *%aptr
+ ret void
+}
+
+(from CodeGen/SystemZ/int-add-08.ll) we load %base+524288 and %base+524296
+into separate registers, rather than using %base+524288 as a base for both.
+
+--
+
+Dynamic stack allocations round the size to 8 bytes and then allocate
+that rounded amount. It would be simpler to subtract the unrounded
+size from the copy of the stack pointer and then align the result.
+See CodeGen/SystemZ/alloca-01.ll for an example.
+
+--
+
+If needed, we can support 16-byte atomics using LPQ, STPQ and CSDG.
+
+--
+
+We might want to model all access registers and use them to spill
+32-bit values.
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZ.h b/contrib/llvm/lib/Target/SystemZ/SystemZ.h
new file mode 100644
index 0000000..15792494
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZ.h
@@ -0,0 +1,116 @@
+//==- SystemZ.h - Top-Level Interface for SystemZ representation -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in
+// the LLVM SystemZ backend.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZ_H
+#define SYSTEMZ_H
+
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "llvm/Support/CodeGen.h"
+
+namespace llvm {
+class SystemZTargetMachine;
+class FunctionPass;
+
+namespace SystemZ {
+// Condition-code mask values.
+const unsigned CCMASK_0 = 1 << 3;
+const unsigned CCMASK_1 = 1 << 2;
+const unsigned CCMASK_2 = 1 << 1;
+const unsigned CCMASK_3 = 1 << 0;
+const unsigned CCMASK_ANY = CCMASK_0 | CCMASK_1 | CCMASK_2 | CCMASK_3;
+
+// Condition-code mask assignments for integer and floating-point
+// comparisons.
+const unsigned CCMASK_CMP_EQ = CCMASK_0;
+const unsigned CCMASK_CMP_LT = CCMASK_1;
+const unsigned CCMASK_CMP_GT = CCMASK_2;
+const unsigned CCMASK_CMP_NE = CCMASK_CMP_LT | CCMASK_CMP_GT;
+const unsigned CCMASK_CMP_LE = CCMASK_CMP_EQ | CCMASK_CMP_LT;
+const unsigned CCMASK_CMP_GE = CCMASK_CMP_EQ | CCMASK_CMP_GT;
+
+// Condition-code mask assignments for floating-point comparisons only.
+const unsigned CCMASK_CMP_UO = CCMASK_3;
+const unsigned CCMASK_CMP_O = CCMASK_ANY ^ CCMASK_CMP_UO;
+
+// All condition-code values produced by comparisons.
+const unsigned CCMASK_ICMP = CCMASK_0 | CCMASK_1 | CCMASK_2;
+const unsigned CCMASK_FCMP = CCMASK_0 | CCMASK_1 | CCMASK_2 | CCMASK_3;
+
+// Condition-code mask assignments for CS.
+const unsigned CCMASK_CS_EQ = CCMASK_0;
+const unsigned CCMASK_CS_NE = CCMASK_1;
+const unsigned CCMASK_CS = CCMASK_0 | CCMASK_1;
+
+// Condition-code mask assignments for a completed SRST loop.
+const unsigned CCMASK_SRST_FOUND = CCMASK_1;
+const unsigned CCMASK_SRST_NOTFOUND = CCMASK_2;
+const unsigned CCMASK_SRST = CCMASK_1 | CCMASK_2;
+
+// Condition-code mask assignments for TEST UNDER MASK.
+const unsigned CCMASK_TM_ALL_0 = CCMASK_0;
+const unsigned CCMASK_TM_MIXED_MSB_0 = CCMASK_1;
+const unsigned CCMASK_TM_MIXED_MSB_1 = CCMASK_2;
+const unsigned CCMASK_TM_ALL_1 = CCMASK_3;
+const unsigned CCMASK_TM_SOME_0 = CCMASK_TM_ALL_1 ^ CCMASK_ANY;
+const unsigned CCMASK_TM_SOME_1 = CCMASK_TM_ALL_0 ^ CCMASK_ANY;
+const unsigned CCMASK_TM_MSB_0 = CCMASK_0 | CCMASK_1;
+const unsigned CCMASK_TM_MSB_1 = CCMASK_2 | CCMASK_3;
+const unsigned CCMASK_TM = CCMASK_ANY;
+
+// The position of the low CC bit in an IPM result.
+const unsigned IPM_CC = 28;
+
+// Mask assignments for PFD.
+const unsigned PFD_READ = 1;
+const unsigned PFD_WRITE = 2;
+
+// Return true if Val fits an LLILL operand.
+static inline bool isImmLL(uint64_t Val) {
+ return (Val & ~0x000000000000ffffULL) == 0;
+}
+
+// Return true if Val fits an LLILH operand.
+static inline bool isImmLH(uint64_t Val) {
+ return (Val & ~0x00000000ffff0000ULL) == 0;
+}
+
+// Return true if Val fits an LLIHL operand.
+static inline bool isImmHL(uint64_t Val) {
+ return (Val & ~0x00000ffff00000000ULL) == 0;
+}
+
+// Return true if Val fits an LLIHH operand.
+static inline bool isImmHH(uint64_t Val) {
+ return (Val & ~0xffff000000000000ULL) == 0;
+}
+
+// Return true if Val fits an LLILF operand.
+static inline bool isImmLF(uint64_t Val) {
+ return (Val & ~0x00000000ffffffffULL) == 0;
+}
+
+// Return true if Val fits an LLIHF operand.
+static inline bool isImmHF(uint64_t Val) {
+ return (Val & ~0xffffffff00000000ULL) == 0;
+}
+} // end namespace SystemZ
+
+FunctionPass *createSystemZISelDag(SystemZTargetMachine &TM,
+ CodeGenOpt::Level OptLevel);
+FunctionPass *createSystemZElimComparePass(SystemZTargetMachine &TM);
+FunctionPass *createSystemZShortenInstPass(SystemZTargetMachine &TM);
+FunctionPass *createSystemZLongBranchPass(SystemZTargetMachine &TM);
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZ.td b/contrib/llvm/lib/Target/SystemZ/SystemZ.td
new file mode 100644
index 0000000..5f82903
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZ.td
@@ -0,0 +1,62 @@
+//===-- SystemZ.td - Describe the SystemZ target machine -----*- tblgen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces which we are implementing
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// SystemZ supported processors and features
+//===----------------------------------------------------------------------===//
+
+include "SystemZProcessors.td"
+
+//===----------------------------------------------------------------------===//
+// Register file description
+//===----------------------------------------------------------------------===//
+
+include "SystemZRegisterInfo.td"
+
+//===----------------------------------------------------------------------===//
+// Calling convention description
+//===----------------------------------------------------------------------===//
+
+include "SystemZCallingConv.td"
+
+//===----------------------------------------------------------------------===//
+// Instruction descriptions
+//===----------------------------------------------------------------------===//
+
+include "SystemZOperators.td"
+include "SystemZOperands.td"
+include "SystemZPatterns.td"
+include "SystemZInstrFormats.td"
+include "SystemZInstrInfo.td"
+include "SystemZInstrFP.td"
+
+def SystemZInstrInfo : InstrInfo {}
+
+//===----------------------------------------------------------------------===//
+// Assembly parser
+//===----------------------------------------------------------------------===//
+
+def SystemZAsmParser : AsmParser {
+ let ShouldEmitMatchRegisterName = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-level target declaration
+//===----------------------------------------------------------------------===//
+
+def SystemZ : Target {
+ let InstructionSet = SystemZInstrInfo;
+ let AssemblyParsers = [SystemZAsmParser];
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp
new file mode 100644
index 0000000..8b18bc1
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp
@@ -0,0 +1,247 @@
+//===-- SystemZAsmPrinter.cpp - SystemZ LLVM assembly printer -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Streams SystemZ assembly language and associated data, in the form of
+// MCInsts and MCExprs respectively.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZAsmPrinter.h"
+#include "InstPrinter/SystemZInstPrinter.h"
+#include "SystemZConstantPoolValue.h"
+#include "SystemZMCInstLower.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInstBuilder.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+// Return an RI instruction like MI with opcode Opcode, but with the
+// GR64 register operands turned into GR32s.
+static MCInst lowerRILow(const MachineInstr *MI, unsigned Opcode) {
+ if (MI->isCompare())
+ return MCInstBuilder(Opcode)
+ .addReg(SystemZMC::getRegAsGR32(MI->getOperand(0).getReg()))
+ .addImm(MI->getOperand(1).getImm());
+ else
+ return MCInstBuilder(Opcode)
+ .addReg(SystemZMC::getRegAsGR32(MI->getOperand(0).getReg()))
+ .addReg(SystemZMC::getRegAsGR32(MI->getOperand(1).getReg()))
+ .addImm(MI->getOperand(2).getImm());
+}
+
+// Return an RI instruction like MI with opcode Opcode, but with the
+// GR64 register operands turned into GRH32s.
+static MCInst lowerRIHigh(const MachineInstr *MI, unsigned Opcode) {
+ if (MI->isCompare())
+ return MCInstBuilder(Opcode)
+ .addReg(SystemZMC::getRegAsGRH32(MI->getOperand(0).getReg()))
+ .addImm(MI->getOperand(1).getImm());
+ else
+ return MCInstBuilder(Opcode)
+ .addReg(SystemZMC::getRegAsGRH32(MI->getOperand(0).getReg()))
+ .addReg(SystemZMC::getRegAsGRH32(MI->getOperand(1).getReg()))
+ .addImm(MI->getOperand(2).getImm());
+}
+
+// Return an RI instruction like MI with opcode Opcode, but with the
+// R2 register turned into a GR64.
+static MCInst lowerRIEfLow(const MachineInstr *MI, unsigned Opcode) {
+ return MCInstBuilder(Opcode)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg())
+ .addReg(SystemZMC::getRegAsGR64(MI->getOperand(2).getReg()))
+ .addImm(MI->getOperand(3).getImm())
+ .addImm(MI->getOperand(4).getImm())
+ .addImm(MI->getOperand(5).getImm());
+}
+
+void SystemZAsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ SystemZMCInstLower Lower(MF->getContext(), *this);
+ MCInst LoweredMI;
+ switch (MI->getOpcode()) {
+ case SystemZ::Return:
+ LoweredMI = MCInstBuilder(SystemZ::BR).addReg(SystemZ::R14D);
+ break;
+
+ case SystemZ::CallBRASL:
+ LoweredMI = MCInstBuilder(SystemZ::BRASL)
+ .addReg(SystemZ::R14D)
+ .addExpr(Lower.getExpr(MI->getOperand(0), MCSymbolRefExpr::VK_PLT));
+ break;
+
+ case SystemZ::CallBASR:
+ LoweredMI = MCInstBuilder(SystemZ::BASR)
+ .addReg(SystemZ::R14D)
+ .addReg(MI->getOperand(0).getReg());
+ break;
+
+ case SystemZ::CallJG:
+ LoweredMI = MCInstBuilder(SystemZ::JG)
+ .addExpr(Lower.getExpr(MI->getOperand(0), MCSymbolRefExpr::VK_PLT));
+ break;
+
+ case SystemZ::CallBR:
+ LoweredMI = MCInstBuilder(SystemZ::BR).addReg(SystemZ::R1D);
+ break;
+
+ case SystemZ::IILF64:
+ LoweredMI = MCInstBuilder(SystemZ::IILF)
+ .addReg(SystemZMC::getRegAsGR32(MI->getOperand(0).getReg()))
+ .addImm(MI->getOperand(2).getImm());
+ break;
+
+ case SystemZ::IIHF64:
+ LoweredMI = MCInstBuilder(SystemZ::IIHF)
+ .addReg(SystemZMC::getRegAsGRH32(MI->getOperand(0).getReg()))
+ .addImm(MI->getOperand(2).getImm());
+ break;
+
+ case SystemZ::RISBHH:
+ case SystemZ::RISBHL:
+ LoweredMI = lowerRIEfLow(MI, SystemZ::RISBHG);
+ break;
+
+ case SystemZ::RISBLH:
+ case SystemZ::RISBLL:
+ LoweredMI = lowerRIEfLow(MI, SystemZ::RISBLG);
+ break;
+
+#define LOWER_LOW(NAME) \
+ case SystemZ::NAME##64: LoweredMI = lowerRILow(MI, SystemZ::NAME); break
+
+ LOWER_LOW(IILL);
+ LOWER_LOW(IILH);
+ LOWER_LOW(TMLL);
+ LOWER_LOW(TMLH);
+ LOWER_LOW(NILL);
+ LOWER_LOW(NILH);
+ LOWER_LOW(NILF);
+ LOWER_LOW(OILL);
+ LOWER_LOW(OILH);
+ LOWER_LOW(OILF);
+ LOWER_LOW(XILF);
+
+#undef LOWER_LOW
+
+#define LOWER_HIGH(NAME) \
+ case SystemZ::NAME##64: LoweredMI = lowerRIHigh(MI, SystemZ::NAME); break
+
+ LOWER_HIGH(IIHL);
+ LOWER_HIGH(IIHH);
+ LOWER_HIGH(TMHL);
+ LOWER_HIGH(TMHH);
+ LOWER_HIGH(NIHL);
+ LOWER_HIGH(NIHH);
+ LOWER_HIGH(NIHF);
+ LOWER_HIGH(OIHL);
+ LOWER_HIGH(OIHH);
+ LOWER_HIGH(OIHF);
+ LOWER_HIGH(XIHF);
+
+#undef LOWER_HIGH
+
+ case SystemZ::Serialize:
+ if (Subtarget->hasFastSerialization())
+ LoweredMI = MCInstBuilder(SystemZ::AsmBCR)
+ .addImm(14).addReg(SystemZ::R0D);
+ else
+ LoweredMI = MCInstBuilder(SystemZ::AsmBCR)
+ .addImm(15).addReg(SystemZ::R0D);
+ break;
+
+ default:
+ Lower.lower(MI, LoweredMI);
+ break;
+ }
+ EmitToStreamer(OutStreamer, LoweredMI);
+}
+
+// Convert a SystemZ-specific constant pool modifier into the associated
+// MCSymbolRefExpr variant kind.
+static MCSymbolRefExpr::VariantKind
+getModifierVariantKind(SystemZCP::SystemZCPModifier Modifier) {
+ switch (Modifier) {
+ case SystemZCP::NTPOFF: return MCSymbolRefExpr::VK_NTPOFF;
+ }
+ llvm_unreachable("Invalid SystemCPModifier!");
+}
+
+void SystemZAsmPrinter::
+EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
+ auto *ZCPV = static_cast<SystemZConstantPoolValue*>(MCPV);
+
+ const MCExpr *Expr =
+ MCSymbolRefExpr::Create(getSymbol(ZCPV->getGlobalValue()),
+ getModifierVariantKind(ZCPV->getModifier()),
+ OutContext);
+ uint64_t Size = TM.getDataLayout()->getTypeAllocSize(ZCPV->getType());
+
+ OutStreamer.EmitValue(Expr, Size);
+}
+
+bool SystemZAsmPrinter::PrintAsmOperand(const MachineInstr *MI,
+ unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &OS) {
+ if (ExtraCode && *ExtraCode == 'n') {
+ if (!MI->getOperand(OpNo).isImm())
+ return true;
+ OS << -int64_t(MI->getOperand(OpNo).getImm());
+ } else {
+ SystemZMCInstLower Lower(MF->getContext(), *this);
+ MCOperand MO(Lower.lowerOperand(MI->getOperand(OpNo)));
+ SystemZInstPrinter::printOperand(MO, OS);
+ }
+ return false;
+}
+
+bool SystemZAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &OS) {
+ SystemZInstPrinter::printAddress(MI->getOperand(OpNo).getReg(),
+ MI->getOperand(OpNo + 1).getImm(),
+ MI->getOperand(OpNo + 2).getReg(), OS);
+ return false;
+}
+
+void SystemZAsmPrinter::EmitEndOfAsmFile(Module &M) {
+ if (Subtarget->isTargetELF()) {
+ auto &TLOFELF =
+ static_cast<const TargetLoweringObjectFileELF &>(getObjFileLowering());
+
+ MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
+
+ // Output stubs for external and common global variables.
+ MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
+ if (!Stubs.empty()) {
+ OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
+ const DataLayout *TD = TM.getDataLayout();
+
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ OutStreamer.EmitLabel(Stubs[i].first);
+ OutStreamer.EmitSymbolValue(Stubs[i].second.getPointer(),
+ TD->getPointerSize(0));
+ }
+ Stubs.clear();
+ }
+ }
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeSystemZAsmPrinter() {
+ RegisterAsmPrinter<SystemZAsmPrinter> X(TheSystemZTarget);
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.h b/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.h
new file mode 100644
index 0000000..20093bc
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.h
@@ -0,0 +1,50 @@
+//===-- SystemZAsmPrinter.h - SystemZ LLVM assembly printer ----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZASMPRINTER_H
+#define SYSTEMZASMPRINTER_H
+
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+class MCStreamer;
+class MachineBasicBlock;
+class MachineInstr;
+class Module;
+class raw_ostream;
+
+class LLVM_LIBRARY_VISIBILITY SystemZAsmPrinter : public AsmPrinter {
+private:
+ const SystemZSubtarget *Subtarget;
+
+public:
+ SystemZAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer) {
+ Subtarget = &TM.getSubtarget<SystemZSubtarget>();
+ }
+
+ // Override AsmPrinter.
+ const char *getPassName() const override {
+ return "SystemZ Assembly Printer";
+ }
+ void EmitInstruction(const MachineInstr *MI) override;
+ void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) override;
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &OS) override;
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &OS) override;
+ void EmitEndOfAsmFile(Module &M) override;
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.cpp
new file mode 100644
index 0000000..cc9c84b
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.cpp
@@ -0,0 +1,21 @@
+//===-- SystemZCallingConv.cpp - Calling conventions for SystemZ ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZCallingConv.h"
+#include "SystemZRegisterInfo.h"
+
+using namespace llvm;
+
+const unsigned SystemZ::ArgGPRs[SystemZ::NumArgGPRs] = {
+ SystemZ::R2D, SystemZ::R3D, SystemZ::R4D, SystemZ::R5D, SystemZ::R6D
+};
+
+const unsigned SystemZ::ArgFPRs[SystemZ::NumArgFPRs] = {
+ SystemZ::F0D, SystemZ::F2D, SystemZ::F4D, SystemZ::F6D
+};
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.h b/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.h
new file mode 100644
index 0000000..4b1569d
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.h
@@ -0,0 +1,23 @@
+//===-- SystemZCallingConv.h - Calling conventions for SystemZ --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZCALLINGCONV_H
+#define SYSTEMZCALLINGCONV_H
+
+namespace llvm {
+namespace SystemZ {
+ const unsigned NumArgGPRs = 5;
+ extern const unsigned ArgGPRs[NumArgGPRs];
+
+ const unsigned NumArgFPRs = 4;
+ extern const unsigned ArgFPRs[NumArgFPRs];
+} // end namespace SystemZ
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.td b/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.td
new file mode 100644
index 0000000..fb0d1d8
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.td
@@ -0,0 +1,71 @@
+//=- SystemZCallingConv.td - Calling conventions for SystemZ -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This describes the calling conventions for the SystemZ ABI.
+//===----------------------------------------------------------------------===//
+
+class CCIfExtend<CCAction A>
+ : CCIf<"ArgFlags.isSExt() || ArgFlags.isZExt()", A>;
+
+//===----------------------------------------------------------------------===//
+// z/Linux return value calling convention
+//===----------------------------------------------------------------------===//
+def RetCC_SystemZ : CallingConv<[
+ // Promote i32 to i64 if it has an explicit extension type.
+ CCIfType<[i32], CCIfExtend<CCPromoteToType<i64>>>,
+
+ // ABI-compliant code returns 64-bit integers in R2. Make the other
+ // call-clobbered argument registers available for code that doesn't
+ // care about the ABI. (R6 is an argument register too, but is
+ // call-saved and therefore not suitable for return values.)
+ CCIfType<[i32], CCAssignToReg<[R2L, R3L, R4L, R5L]>>,
+ CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D]>>,
+
+ // ABI-complaint code returns float and double in F0. Make the
+ // other floating-point argument registers available for code that
+ // doesn't care about the ABI. All floating-point argument registers
+ // are call-clobbered, so we can use all of them here.
+ CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>,
+ CCIfType<[f64], CCAssignToReg<[F0D, F2D, F4D, F6D]>>
+
+ // ABI-compliant code returns long double by reference, but that conversion
+ // is left to higher-level code. Perhaps we could add an f128 definition
+ // here for code that doesn't care about the ABI?
+]>;
+
+//===----------------------------------------------------------------------===//
+// z/Linux argument calling conventions
+//===----------------------------------------------------------------------===//
+def CC_SystemZ : CallingConv<[
+ // Promote i32 to i64 if it has an explicit extension type.
+ // The convention is that true integer arguments that are smaller
+ // than 64 bits should be marked as extended, but structures that
+ // are smaller than 64 bits shouldn't.
+ CCIfType<[i32], CCIfExtend<CCPromoteToType<i64>>>,
+
+ // Force long double values to the stack and pass i64 pointers to them.
+ CCIfType<[f128], CCPassIndirect<i64>>,
+
+ // The first 5 integer arguments are passed in R2-R6. Note that R6
+ // is call-saved.
+ CCIfType<[i32], CCAssignToReg<[R2L, R3L, R4L, R5L, R6L]>>,
+ CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D, R6D]>>,
+
+ // The first 4 float and double arguments are passed in even registers F0-F6.
+ CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>,
+ CCIfType<[f64], CCAssignToReg<[F0D, F2D, F4D, F6D]>>,
+
+ // Other arguments are passed in 8-byte-aligned 8-byte stack slots.
+ CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// z/Linux callee-saved registers
+//===----------------------------------------------------------------------===//
+def CSR_SystemZ : CalleeSavedRegs<(add (sequence "R%dD", 6, 15),
+ (sequence "F%dD", 8, 15))>;
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.cpp
new file mode 100644
index 0000000..19cec21
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.cpp
@@ -0,0 +1,62 @@
+//===-- SystemZConstantPoolValue.cpp - SystemZ constant-pool value --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZConstantPoolValue.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+SystemZConstantPoolValue::
+SystemZConstantPoolValue(const GlobalValue *gv,
+ SystemZCP::SystemZCPModifier modifier)
+ : MachineConstantPoolValue(gv->getType()), GV(gv), Modifier(modifier) {}
+
+SystemZConstantPoolValue *
+SystemZConstantPoolValue::Create(const GlobalValue *GV,
+ SystemZCP::SystemZCPModifier Modifier) {
+ return new SystemZConstantPoolValue(GV, Modifier);
+}
+
+unsigned SystemZConstantPoolValue::getRelocationInfo() const {
+ switch (Modifier) {
+ case SystemZCP::NTPOFF:
+ // May require a relocation, but the relocations are always resolved
+ // by the static linker.
+ return 1;
+ }
+ llvm_unreachable("Unknown modifier");
+}
+
+int SystemZConstantPoolValue::
+getExistingMachineCPValue(MachineConstantPool *CP, unsigned Alignment) {
+ unsigned AlignMask = Alignment - 1;
+ const std::vector<MachineConstantPoolEntry> &Constants = CP->getConstants();
+ for (unsigned I = 0, E = Constants.size(); I != E; ++I) {
+ if (Constants[I].isMachineConstantPoolEntry() &&
+ (Constants[I].getAlignment() & AlignMask) == 0) {
+ auto *ZCPV =
+ static_cast<SystemZConstantPoolValue *>(Constants[I].Val.MachineCPVal);
+ if (ZCPV->GV == GV && ZCPV->Modifier == Modifier)
+ return I;
+ }
+ }
+ return -1;
+}
+
+void SystemZConstantPoolValue::addSelectionDAGCSEId(FoldingSetNodeID &ID) {
+ ID.AddPointer(GV);
+ ID.AddInteger(Modifier);
+}
+
+void SystemZConstantPoolValue::print(raw_ostream &O) const {
+ O << GV << "@" << int(Modifier);
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.h b/contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.h
new file mode 100644
index 0000000..699718f
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.h
@@ -0,0 +1,55 @@
+//===- SystemZConstantPoolValue.h - SystemZ constant-pool value -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZCONSTANTPOOLVALUE_H
+#define SYSTEMZCONSTANTPOOLVALUE_H
+
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace llvm {
+
+class GlobalValue;
+
+namespace SystemZCP {
+enum SystemZCPModifier {
+ NTPOFF
+};
+} // end namespace SystemZCP
+
+/// A SystemZ-specific constant pool value. At present, the only
+/// defined constant pool values are offsets of thread-local variables
+/// (written x@NTPOFF).
+class SystemZConstantPoolValue : public MachineConstantPoolValue {
+ const GlobalValue *GV;
+ SystemZCP::SystemZCPModifier Modifier;
+
+protected:
+ SystemZConstantPoolValue(const GlobalValue *GV,
+ SystemZCP::SystemZCPModifier Modifier);
+
+public:
+ static SystemZConstantPoolValue *
+ Create(const GlobalValue *GV, SystemZCP::SystemZCPModifier Modifier);
+
+ // Override MachineConstantPoolValue.
+ unsigned getRelocationInfo() const override;
+ int getExistingMachineCPValue(MachineConstantPool *CP,
+ unsigned Alignment) override;
+ void addSelectionDAGCSEId(FoldingSetNodeID &ID) override;
+ void print(raw_ostream &O) const override;
+
+ // Access SystemZ-specific fields.
+ const GlobalValue *getGlobalValue() const { return GV; }
+ SystemZCP::SystemZCPModifier getModifier() const { return Modifier; }
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZElimCompare.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZElimCompare.cpp
new file mode 100644
index 0000000..dc210d60
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZElimCompare.cpp
@@ -0,0 +1,469 @@
+//===-- SystemZElimCompare.cpp - Eliminate comparison instructions --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass:
+// (1) tries to remove compares if CC already contains the required information
+// (2) fuses compares and branches into COMPARE AND BRANCH instructions
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZTargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "systemz-elim-compare"
+
+STATISTIC(BranchOnCounts, "Number of branch-on-count instructions");
+STATISTIC(EliminatedComparisons, "Number of eliminated comparisons");
+STATISTIC(FusedComparisons, "Number of fused compare-and-branch instructions");
+
+namespace {
+// Represents the references to a particular register in one or more
+// instructions.
+struct Reference {
+ Reference()
+ : Def(false), Use(false), IndirectDef(false), IndirectUse(false) {}
+
+ Reference &operator|=(const Reference &Other) {
+ Def |= Other.Def;
+ IndirectDef |= Other.IndirectDef;
+ Use |= Other.Use;
+ IndirectUse |= Other.IndirectUse;
+ return *this;
+ }
+
+ operator bool() const { return Def || Use; }
+
+ // True if the register is defined or used in some form, either directly or
+ // via a sub- or super-register.
+ bool Def;
+ bool Use;
+
+ // True if the register is defined or used indirectly, by a sub- or
+ // super-register.
+ bool IndirectDef;
+ bool IndirectUse;
+};
+
+class SystemZElimCompare : public MachineFunctionPass {
+public:
+ static char ID;
+ SystemZElimCompare(const SystemZTargetMachine &tm)
+ : MachineFunctionPass(ID), TII(nullptr), TRI(nullptr) {}
+
+ const char *getPassName() const override {
+ return "SystemZ Comparison Elimination";
+ }
+
+ bool processBlock(MachineBasicBlock &MBB);
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+private:
+ Reference getRegReferences(MachineInstr *MI, unsigned Reg);
+ bool convertToBRCT(MachineInstr *MI, MachineInstr *Compare,
+ SmallVectorImpl<MachineInstr *> &CCUsers);
+ bool convertToLoadAndTest(MachineInstr *MI);
+ bool adjustCCMasksForInstr(MachineInstr *MI, MachineInstr *Compare,
+ SmallVectorImpl<MachineInstr *> &CCUsers);
+ bool optimizeCompareZero(MachineInstr *Compare,
+ SmallVectorImpl<MachineInstr *> &CCUsers);
+ bool fuseCompareAndBranch(MachineInstr *Compare,
+ SmallVectorImpl<MachineInstr *> &CCUsers);
+
+ const SystemZInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+};
+
+char SystemZElimCompare::ID = 0;
+} // end anonymous namespace
+
+FunctionPass *llvm::createSystemZElimComparePass(SystemZTargetMachine &TM) {
+ return new SystemZElimCompare(TM);
+}
+
+// Return true if CC is live out of MBB.
+static bool isCCLiveOut(MachineBasicBlock &MBB) {
+ for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
+ if ((*SI)->isLiveIn(SystemZ::CC))
+ return true;
+ return false;
+}
+
+// Return true if any CC result of MI would reflect the value of subreg
+// SubReg of Reg.
+static bool resultTests(MachineInstr *MI, unsigned Reg, unsigned SubReg) {
+ if (MI->getNumOperands() > 0 &&
+ MI->getOperand(0).isReg() &&
+ MI->getOperand(0).isDef() &&
+ MI->getOperand(0).getReg() == Reg &&
+ MI->getOperand(0).getSubReg() == SubReg)
+ return true;
+
+ switch (MI->getOpcode()) {
+ case SystemZ::LR:
+ case SystemZ::LGR:
+ case SystemZ::LGFR:
+ case SystemZ::LTR:
+ case SystemZ::LTGR:
+ case SystemZ::LTGFR:
+ case SystemZ::LER:
+ case SystemZ::LDR:
+ case SystemZ::LXR:
+ case SystemZ::LTEBR:
+ case SystemZ::LTDBR:
+ case SystemZ::LTXBR:
+ if (MI->getOperand(1).getReg() == Reg &&
+ MI->getOperand(1).getSubReg() == SubReg)
+ return true;
+ }
+
+ return false;
+}
+
+// Describe the references to Reg in MI, including sub- and super-registers.
+Reference SystemZElimCompare::getRegReferences(MachineInstr *MI, unsigned Reg) {
+ Reference Ref;
+ for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
+ const MachineOperand &MO = MI->getOperand(I);
+ if (MO.isReg()) {
+ if (unsigned MOReg = MO.getReg()) {
+ if (MOReg == Reg || TRI->regsOverlap(MOReg, Reg)) {
+ if (MO.isUse()) {
+ Ref.Use = true;
+ Ref.IndirectUse |= (MOReg != Reg);
+ }
+ if (MO.isDef()) {
+ Ref.Def = true;
+ Ref.IndirectDef |= (MOReg != Reg);
+ }
+ }
+ }
+ }
+ }
+ return Ref;
+}
+
+// Compare compares the result of MI against zero. If MI is an addition
+// of -1 and if CCUsers is a single branch on nonzero, eliminate the addition
+// and convert the branch to a BRCT(G). Return true on success.
+bool
+SystemZElimCompare::convertToBRCT(MachineInstr *MI, MachineInstr *Compare,
+ SmallVectorImpl<MachineInstr *> &CCUsers) {
+ // Check whether we have an addition of -1.
+ unsigned Opcode = MI->getOpcode();
+ unsigned BRCT;
+ if (Opcode == SystemZ::AHI)
+ BRCT = SystemZ::BRCT;
+ else if (Opcode == SystemZ::AGHI)
+ BRCT = SystemZ::BRCTG;
+ else
+ return false;
+ if (MI->getOperand(2).getImm() != -1)
+ return false;
+
+ // Check whether we have a single JLH.
+ if (CCUsers.size() != 1)
+ return false;
+ MachineInstr *Branch = CCUsers[0];
+ if (Branch->getOpcode() != SystemZ::BRC ||
+ Branch->getOperand(0).getImm() != SystemZ::CCMASK_ICMP ||
+ Branch->getOperand(1).getImm() != SystemZ::CCMASK_CMP_NE)
+ return false;
+
+ // We already know that there are no references to the register between
+ // MI and Compare. Make sure that there are also no references between
+ // Compare and Branch.
+ unsigned SrcReg = Compare->getOperand(0).getReg();
+ MachineBasicBlock::iterator MBBI = Compare, MBBE = Branch;
+ for (++MBBI; MBBI != MBBE; ++MBBI)
+ if (getRegReferences(MBBI, SrcReg))
+ return false;
+
+ // The transformation is OK. Rebuild Branch as a BRCT(G).
+ MachineOperand Target(Branch->getOperand(2));
+ Branch->RemoveOperand(2);
+ Branch->RemoveOperand(1);
+ Branch->RemoveOperand(0);
+ Branch->setDesc(TII->get(BRCT));
+ MachineInstrBuilder(*Branch->getParent()->getParent(), Branch)
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(1))
+ .addOperand(Target)
+ .addReg(SystemZ::CC, RegState::ImplicitDefine);
+ MI->removeFromParent();
+ return true;
+}
+
+// If MI is a load instruction, try to convert it into a LOAD AND TEST.
+// Return true on success.
+bool SystemZElimCompare::convertToLoadAndTest(MachineInstr *MI) {
+ unsigned Opcode = TII->getLoadAndTest(MI->getOpcode());
+ if (!Opcode)
+ return false;
+
+ MI->setDesc(TII->get(Opcode));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addReg(SystemZ::CC, RegState::ImplicitDefine);
+ return true;
+}
+
+// The CC users in CCUsers are testing the result of a comparison of some
+// value X against zero and we know that any CC value produced by MI
+// would also reflect the value of X. Try to adjust CCUsers so that
+// they test the result of MI directly, returning true on success.
+// Leave everything unchanged on failure.
+bool SystemZElimCompare::
+adjustCCMasksForInstr(MachineInstr *MI, MachineInstr *Compare,
+ SmallVectorImpl<MachineInstr *> &CCUsers) {
+ int Opcode = MI->getOpcode();
+ const MCInstrDesc &Desc = TII->get(Opcode);
+ unsigned MIFlags = Desc.TSFlags;
+
+ // See which compare-style condition codes are available.
+ unsigned ReusableCCMask = SystemZII::getCompareZeroCCMask(MIFlags);
+
+ // For unsigned comparisons with zero, only equality makes sense.
+ unsigned CompareFlags = Compare->getDesc().TSFlags;
+ if (CompareFlags & SystemZII::IsLogical)
+ ReusableCCMask &= SystemZ::CCMASK_CMP_EQ;
+
+ if (ReusableCCMask == 0)
+ return false;
+
+ unsigned CCValues = SystemZII::getCCValues(MIFlags);
+ assert((ReusableCCMask & ~CCValues) == 0 && "Invalid CCValues");
+
+ // Now check whether these flags are enough for all users.
+ SmallVector<MachineOperand *, 4> AlterMasks;
+ for (unsigned int I = 0, E = CCUsers.size(); I != E; ++I) {
+ MachineInstr *MI = CCUsers[I];
+
+ // Fail if this isn't a use of CC that we understand.
+ unsigned Flags = MI->getDesc().TSFlags;
+ unsigned FirstOpNum;
+ if (Flags & SystemZII::CCMaskFirst)
+ FirstOpNum = 0;
+ else if (Flags & SystemZII::CCMaskLast)
+ FirstOpNum = MI->getNumExplicitOperands() - 2;
+ else
+ return false;
+
+ // Check whether the instruction predicate treats all CC values
+ // outside of ReusableCCMask in the same way. In that case it
+ // doesn't matter what those CC values mean.
+ unsigned CCValid = MI->getOperand(FirstOpNum).getImm();
+ unsigned CCMask = MI->getOperand(FirstOpNum + 1).getImm();
+ unsigned OutValid = ~ReusableCCMask & CCValid;
+ unsigned OutMask = ~ReusableCCMask & CCMask;
+ if (OutMask != 0 && OutMask != OutValid)
+ return false;
+
+ AlterMasks.push_back(&MI->getOperand(FirstOpNum));
+ AlterMasks.push_back(&MI->getOperand(FirstOpNum + 1));
+ }
+
+ // All users are OK. Adjust the masks for MI.
+ for (unsigned I = 0, E = AlterMasks.size(); I != E; I += 2) {
+ AlterMasks[I]->setImm(CCValues);
+ unsigned CCMask = AlterMasks[I + 1]->getImm();
+ if (CCMask & ~ReusableCCMask)
+ AlterMasks[I + 1]->setImm((CCMask & ReusableCCMask) |
+ (CCValues & ~ReusableCCMask));
+ }
+
+ // CC is now live after MI.
+ int CCDef = MI->findRegisterDefOperandIdx(SystemZ::CC, false, true, TRI);
+ assert(CCDef >= 0 && "Couldn't find CC set");
+ MI->getOperand(CCDef).setIsDead(false);
+
+ // Clear any intervening kills of CC.
+ MachineBasicBlock::iterator MBBI = MI, MBBE = Compare;
+ for (++MBBI; MBBI != MBBE; ++MBBI)
+ MBBI->clearRegisterKills(SystemZ::CC, TRI);
+
+ return true;
+}
+
+// Return true if Compare is a comparison against zero.
+static bool isCompareZero(MachineInstr *Compare) {
+ switch (Compare->getOpcode()) {
+ case SystemZ::LTEBRCompare:
+ case SystemZ::LTDBRCompare:
+ case SystemZ::LTXBRCompare:
+ return true;
+
+ default:
+ return (Compare->getNumExplicitOperands() == 2 &&
+ Compare->getOperand(1).isImm() &&
+ Compare->getOperand(1).getImm() == 0);
+ }
+}
+
+// Try to optimize cases where comparison instruction Compare is testing
+// a value against zero. Return true on success and if Compare should be
+// deleted as dead. CCUsers is the list of instructions that use the CC
+// value produced by Compare.
+bool SystemZElimCompare::
+optimizeCompareZero(MachineInstr *Compare,
+ SmallVectorImpl<MachineInstr *> &CCUsers) {
+ if (!isCompareZero(Compare))
+ return false;
+
+ // Search back for CC results that are based on the first operand.
+ unsigned SrcReg = Compare->getOperand(0).getReg();
+ unsigned SrcSubReg = Compare->getOperand(0).getSubReg();
+ MachineBasicBlock &MBB = *Compare->getParent();
+ MachineBasicBlock::iterator MBBI = Compare, MBBE = MBB.begin();
+ Reference CCRefs;
+ Reference SrcRefs;
+ while (MBBI != MBBE) {
+ --MBBI;
+ MachineInstr *MI = MBBI;
+ if (resultTests(MI, SrcReg, SrcSubReg)) {
+ // Try to remove both MI and Compare by converting a branch to BRCT(G).
+ // We don't care in this case whether CC is modified between MI and
+ // Compare.
+ if (!CCRefs.Use && !SrcRefs && convertToBRCT(MI, Compare, CCUsers)) {
+ BranchOnCounts += 1;
+ return true;
+ }
+ // Try to eliminate Compare by reusing a CC result from MI.
+ if ((!CCRefs && convertToLoadAndTest(MI)) ||
+ (!CCRefs.Def && adjustCCMasksForInstr(MI, Compare, CCUsers))) {
+ EliminatedComparisons += 1;
+ return true;
+ }
+ }
+ SrcRefs |= getRegReferences(MI, SrcReg);
+ if (SrcRefs.Def)
+ return false;
+ CCRefs |= getRegReferences(MI, SystemZ::CC);
+ if (CCRefs.Use && CCRefs.Def)
+ return false;
+ }
+ return false;
+}
+
+// Try to fuse comparison instruction Compare into a later branch.
+// Return true on success and if Compare is therefore redundant.
+bool SystemZElimCompare::
+fuseCompareAndBranch(MachineInstr *Compare,
+ SmallVectorImpl<MachineInstr *> &CCUsers) {
+ // See whether we have a comparison that can be fused.
+ unsigned FusedOpcode = TII->getCompareAndBranch(Compare->getOpcode(),
+ Compare);
+ if (!FusedOpcode)
+ return false;
+
+ // See whether we have a single branch with which to fuse.
+ if (CCUsers.size() != 1)
+ return false;
+ MachineInstr *Branch = CCUsers[0];
+ if (Branch->getOpcode() != SystemZ::BRC)
+ return false;
+
+ // Make sure that the operands are available at the branch.
+ unsigned SrcReg = Compare->getOperand(0).getReg();
+ unsigned SrcReg2 = (Compare->getOperand(1).isReg() ?
+ Compare->getOperand(1).getReg() : 0);
+ MachineBasicBlock::iterator MBBI = Compare, MBBE = Branch;
+ for (++MBBI; MBBI != MBBE; ++MBBI)
+ if (MBBI->modifiesRegister(SrcReg, TRI) ||
+ (SrcReg2 && MBBI->modifiesRegister(SrcReg2, TRI)))
+ return false;
+
+ // Read the branch mask and target.
+ MachineOperand CCMask(MBBI->getOperand(1));
+ MachineOperand Target(MBBI->getOperand(2));
+ assert((CCMask.getImm() & ~SystemZ::CCMASK_ICMP) == 0 &&
+ "Invalid condition-code mask for integer comparison");
+
+ // Clear out all current operands.
+ int CCUse = MBBI->findRegisterUseOperandIdx(SystemZ::CC, false, TRI);
+ assert(CCUse >= 0 && "BRC must use CC");
+ Branch->RemoveOperand(CCUse);
+ Branch->RemoveOperand(2);
+ Branch->RemoveOperand(1);
+ Branch->RemoveOperand(0);
+
+ // Rebuild Branch as a fused compare and branch.
+ Branch->setDesc(TII->get(FusedOpcode));
+ MachineInstrBuilder(*Branch->getParent()->getParent(), Branch)
+ .addOperand(Compare->getOperand(0))
+ .addOperand(Compare->getOperand(1))
+ .addOperand(CCMask)
+ .addOperand(Target)
+ .addReg(SystemZ::CC, RegState::ImplicitDefine);
+
+ // Clear any intervening kills of SrcReg and SrcReg2.
+ MBBI = Compare;
+ for (++MBBI; MBBI != MBBE; ++MBBI) {
+ MBBI->clearRegisterKills(SrcReg, TRI);
+ if (SrcReg2)
+ MBBI->clearRegisterKills(SrcReg2, TRI);
+ }
+ FusedComparisons += 1;
+ return true;
+}
+
+// Process all comparison instructions in MBB. Return true if something
+// changed.
+bool SystemZElimCompare::processBlock(MachineBasicBlock &MBB) {
+ bool Changed = false;
+
+ // Walk backwards through the block looking for comparisons, recording
+ // all CC users as we go. The subroutines can delete Compare and
+ // instructions before it.
+ bool CompleteCCUsers = !isCCLiveOut(MBB);
+ SmallVector<MachineInstr *, 4> CCUsers;
+ MachineBasicBlock::iterator MBBI = MBB.end();
+ while (MBBI != MBB.begin()) {
+ MachineInstr *MI = --MBBI;
+ if (CompleteCCUsers &&
+ MI->isCompare() &&
+ (optimizeCompareZero(MI, CCUsers) ||
+ fuseCompareAndBranch(MI, CCUsers))) {
+ ++MBBI;
+ MI->removeFromParent();
+ Changed = true;
+ CCUsers.clear();
+ CompleteCCUsers = true;
+ continue;
+ }
+
+ Reference CCRefs(getRegReferences(MI, SystemZ::CC));
+ if (CCRefs.Def) {
+ CCUsers.clear();
+ CompleteCCUsers = !CCRefs.IndirectDef;
+ }
+ if (CompleteCCUsers && CCRefs.Use)
+ CCUsers.push_back(MI);
+ }
+ return Changed;
+}
+
+bool SystemZElimCompare::runOnMachineFunction(MachineFunction &F) {
+ TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo());
+ TRI = &TII->getRegisterInfo();
+
+ bool Changed = false;
+ for (auto &MBB : F)
+ Changed |= processBlock(MBB);
+
+ return Changed;
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.cpp
new file mode 100644
index 0000000..055dbe9
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.cpp
@@ -0,0 +1,513 @@
+//===-- SystemZFrameLowering.cpp - Frame lowering for SystemZ -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZFrameLowering.h"
+#include "SystemZCallingConv.h"
+#include "SystemZInstrBuilder.h"
+#include "SystemZInstrInfo.h"
+#include "SystemZMachineFunctionInfo.h"
+#include "SystemZRegisterInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/Function.h"
+
+using namespace llvm;
+
+namespace {
+// The ABI-defined register save slots, relative to the incoming stack
+// pointer.
+static const TargetFrameLowering::SpillSlot SpillOffsetTable[] = {
+ { SystemZ::R2D, 0x10 },
+ { SystemZ::R3D, 0x18 },
+ { SystemZ::R4D, 0x20 },
+ { SystemZ::R5D, 0x28 },
+ { SystemZ::R6D, 0x30 },
+ { SystemZ::R7D, 0x38 },
+ { SystemZ::R8D, 0x40 },
+ { SystemZ::R9D, 0x48 },
+ { SystemZ::R10D, 0x50 },
+ { SystemZ::R11D, 0x58 },
+ { SystemZ::R12D, 0x60 },
+ { SystemZ::R13D, 0x68 },
+ { SystemZ::R14D, 0x70 },
+ { SystemZ::R15D, 0x78 },
+ { SystemZ::F0D, 0x80 },
+ { SystemZ::F2D, 0x88 },
+ { SystemZ::F4D, 0x90 },
+ { SystemZ::F6D, 0x98 }
+};
+} // end anonymous namespace
+
+SystemZFrameLowering::SystemZFrameLowering()
+ : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 8,
+ -SystemZMC::CallFrameSize, 8) {
+ // Create a mapping from register number to save slot offset.
+ RegSpillOffsets.grow(SystemZ::NUM_TARGET_REGS);
+ for (unsigned I = 0, E = array_lengthof(SpillOffsetTable); I != E; ++I)
+ RegSpillOffsets[SpillOffsetTable[I].Reg] = SpillOffsetTable[I].Offset;
+}
+
+const TargetFrameLowering::SpillSlot *
+SystemZFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
+ NumEntries = array_lengthof(SpillOffsetTable);
+ return SpillOffsetTable;
+}
+
+void SystemZFrameLowering::
+processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const {
+ MachineFrameInfo *MFFrame = MF.getFrameInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ bool HasFP = hasFP(MF);
+ SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
+ bool IsVarArg = MF.getFunction()->isVarArg();
+
+ // va_start stores incoming FPR varargs in the normal way, but delegates
+ // the saving of incoming GPR varargs to spillCalleeSavedRegisters().
+ // Record these pending uses, which typically include the call-saved
+ // argument register R6D.
+ if (IsVarArg)
+ for (unsigned I = MFI->getVarArgsFirstGPR(); I < SystemZ::NumArgGPRs; ++I)
+ MRI.setPhysRegUsed(SystemZ::ArgGPRs[I]);
+
+ // If the function requires a frame pointer, record that the hard
+ // frame pointer will be clobbered.
+ if (HasFP)
+ MRI.setPhysRegUsed(SystemZ::R11D);
+
+ // If the function calls other functions, record that the return
+ // address register will be clobbered.
+ if (MFFrame->hasCalls())
+ MRI.setPhysRegUsed(SystemZ::R14D);
+
+ // If we are saving GPRs other than the stack pointer, we might as well
+ // save and restore the stack pointer at the same time, via STMG and LMG.
+ // This allows the deallocation to be done by the LMG, rather than needing
+ // a separate %r15 addition.
+ const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
+ for (unsigned I = 0; CSRegs[I]; ++I) {
+ unsigned Reg = CSRegs[I];
+ if (SystemZ::GR64BitRegClass.contains(Reg) && MRI.isPhysRegUsed(Reg)) {
+ MRI.setPhysRegUsed(SystemZ::R15D);
+ break;
+ }
+ }
+}
+
+// Add GPR64 to the save instruction being built by MIB, which is in basic
+// block MBB. IsImplicit says whether this is an explicit operand to the
+// instruction, or an implicit one that comes between the explicit start
+// and end registers.
+static void addSavedGPR(MachineBasicBlock &MBB, MachineInstrBuilder &MIB,
+ unsigned GPR64, bool IsImplicit) {
+ const TargetRegisterInfo *RI = MBB.getParent()->getTarget().getRegisterInfo();
+ unsigned GPR32 = RI->getSubReg(GPR64, SystemZ::subreg_l32);
+ bool IsLive = MBB.isLiveIn(GPR64) || MBB.isLiveIn(GPR32);
+ if (!IsLive || !IsImplicit) {
+ MIB.addReg(GPR64, getImplRegState(IsImplicit) | getKillRegState(!IsLive));
+ if (!IsLive)
+ MBB.addLiveIn(GPR64);
+ }
+}
+
+bool SystemZFrameLowering::
+spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
+ bool IsVarArg = MF.getFunction()->isVarArg();
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Scan the call-saved GPRs and find the bounds of the register spill area.
+ unsigned LowGPR = 0;
+ unsigned HighGPR = SystemZ::R15D;
+ unsigned StartOffset = -1U;
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (SystemZ::GR64BitRegClass.contains(Reg)) {
+ unsigned Offset = RegSpillOffsets[Reg];
+ assert(Offset && "Unexpected GPR save");
+ if (StartOffset > Offset) {
+ LowGPR = Reg;
+ StartOffset = Offset;
+ }
+ }
+ }
+
+ // Save the range of call-saved registers, for use by the epilogue inserter.
+ ZFI->setLowSavedGPR(LowGPR);
+ ZFI->setHighSavedGPR(HighGPR);
+
+ // Include the GPR varargs, if any. R6D is call-saved, so would
+ // be included by the loop above, but we also need to handle the
+ // call-clobbered argument registers.
+ if (IsVarArg) {
+ unsigned FirstGPR = ZFI->getVarArgsFirstGPR();
+ if (FirstGPR < SystemZ::NumArgGPRs) {
+ unsigned Reg = SystemZ::ArgGPRs[FirstGPR];
+ unsigned Offset = RegSpillOffsets[Reg];
+ if (StartOffset > Offset) {
+ LowGPR = Reg; StartOffset = Offset;
+ }
+ }
+ }
+
+ // Save GPRs
+ if (LowGPR) {
+ assert(LowGPR != HighGPR && "Should be saving %r15 and something else");
+
+ // Build an STMG instruction.
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(SystemZ::STMG));
+
+ // Add the explicit register operands.
+ addSavedGPR(MBB, MIB, LowGPR, false);
+ addSavedGPR(MBB, MIB, HighGPR, false);
+
+ // Add the address.
+ MIB.addReg(SystemZ::R15D).addImm(StartOffset);
+
+ // Make sure all call-saved GPRs are included as operands and are
+ // marked as live on entry.
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (SystemZ::GR64BitRegClass.contains(Reg))
+ addSavedGPR(MBB, MIB, Reg, true);
+ }
+
+ // ...likewise GPR varargs.
+ if (IsVarArg)
+ for (unsigned I = ZFI->getVarArgsFirstGPR(); I < SystemZ::NumArgGPRs; ++I)
+ addSavedGPR(MBB, MIB, SystemZ::ArgGPRs[I], true);
+ }
+
+ // Save FPRs in the normal TargetInstrInfo way.
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (SystemZ::FP64BitRegClass.contains(Reg)) {
+ MBB.addLiveIn(Reg);
+ TII->storeRegToStackSlot(MBB, MBBI, Reg, true, CSI[I].getFrameIdx(),
+ &SystemZ::FP64BitRegClass, TRI);
+ }
+ }
+
+ return true;
+}
+
+bool SystemZFrameLowering::
+restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
+ bool HasFP = hasFP(MF);
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Restore FPRs in the normal TargetInstrInfo way.
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (SystemZ::FP64BitRegClass.contains(Reg))
+ TII->loadRegFromStackSlot(MBB, MBBI, Reg, CSI[I].getFrameIdx(),
+ &SystemZ::FP64BitRegClass, TRI);
+ }
+
+ // Restore call-saved GPRs (but not call-clobbered varargs, which at
+ // this point might hold return values).
+ unsigned LowGPR = ZFI->getLowSavedGPR();
+ unsigned HighGPR = ZFI->getHighSavedGPR();
+ unsigned StartOffset = RegSpillOffsets[LowGPR];
+ if (LowGPR) {
+ // If we saved any of %r2-%r5 as varargs, we should also be saving
+ // and restoring %r6. If we're saving %r6 or above, we should be
+ // restoring it too.
+ assert(LowGPR != HighGPR && "Should be loading %r15 and something else");
+
+ // Build an LMG instruction.
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(SystemZ::LMG));
+
+ // Add the explicit register operands.
+ MIB.addReg(LowGPR, RegState::Define);
+ MIB.addReg(HighGPR, RegState::Define);
+
+ // Add the address.
+ MIB.addReg(HasFP ? SystemZ::R11D : SystemZ::R15D);
+ MIB.addImm(StartOffset);
+
+ // Do a second scan adding regs as being defined by instruction
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (Reg != LowGPR && Reg != HighGPR)
+ MIB.addReg(Reg, RegState::ImplicitDefine);
+ }
+ }
+
+ return true;
+}
+
+void SystemZFrameLowering::
+processFunctionBeforeFrameFinalized(MachineFunction &MF,
+ RegScavenger *RS) const {
+ MachineFrameInfo *MFFrame = MF.getFrameInfo();
+ uint64_t MaxReach = (MFFrame->estimateStackSize(MF) +
+ SystemZMC::CallFrameSize * 2);
+ if (!isUInt<12>(MaxReach)) {
+ // We may need register scavenging slots if some parts of the frame
+ // are outside the reach of an unsigned 12-bit displacement.
+ // Create 2 for the case where both addresses in an MVC are
+ // out of range.
+ RS->addScavengingFrameIndex(MFFrame->CreateStackObject(8, 8, false));
+ RS->addScavengingFrameIndex(MFFrame->CreateStackObject(8, 8, false));
+ }
+}
+
+// Emit instructions before MBBI (in MBB) to add NumBytes to Reg.
+static void emitIncrement(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const DebugLoc &DL,
+ unsigned Reg, int64_t NumBytes,
+ const TargetInstrInfo *TII) {
+ while (NumBytes) {
+ unsigned Opcode;
+ int64_t ThisVal = NumBytes;
+ if (isInt<16>(NumBytes))
+ Opcode = SystemZ::AGHI;
+ else {
+ Opcode = SystemZ::AGFI;
+ // Make sure we maintain 8-byte stack alignment.
+ int64_t MinVal = -int64_t(1) << 31;
+ int64_t MaxVal = (int64_t(1) << 31) - 8;
+ if (ThisVal < MinVal)
+ ThisVal = MinVal;
+ else if (ThisVal > MaxVal)
+ ThisVal = MaxVal;
+ }
+ MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII->get(Opcode), Reg)
+ .addReg(Reg).addImm(ThisVal);
+ // The CC implicit def is dead.
+ MI->getOperand(3).setIsDead();
+ NumBytes -= ThisVal;
+ }
+}
+
+void SystemZFrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front();
+ MachineFrameInfo *MFFrame = MF.getFrameInfo();
+ auto *ZII =
+ static_cast<const SystemZInstrInfo*>(MF.getTarget().getInstrInfo());
+ SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineModuleInfo &MMI = MF.getMMI();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
+ const std::vector<CalleeSavedInfo> &CSI = MFFrame->getCalleeSavedInfo();
+ bool HasFP = hasFP(MF);
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // The current offset of the stack pointer from the CFA.
+ int64_t SPOffsetFromCFA = -SystemZMC::CFAOffsetFromInitialSP;
+
+ if (ZFI->getLowSavedGPR()) {
+ // Skip over the GPR saves.
+ if (MBBI != MBB.end() && MBBI->getOpcode() == SystemZ::STMG)
+ ++MBBI;
+ else
+ llvm_unreachable("Couldn't skip over GPR saves");
+
+ // Add CFI for the GPR saves.
+ for (auto &Save : CSI) {
+ unsigned Reg = Save.getReg();
+ if (SystemZ::GR64BitRegClass.contains(Reg)) {
+ int64_t Offset = SPOffsetFromCFA + RegSpillOffsets[Reg];
+ unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
+ BuildMI(MBB, MBBI, DL, ZII->get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+ }
+
+ uint64_t StackSize = getAllocatedStackSize(MF);
+ if (StackSize) {
+ // Allocate StackSize bytes.
+ int64_t Delta = -int64_t(StackSize);
+ emitIncrement(MBB, MBBI, DL, SystemZ::R15D, Delta, ZII);
+
+ // Add CFI for the allocation.
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, SPOffsetFromCFA + Delta));
+ BuildMI(MBB, MBBI, DL, ZII->get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ SPOffsetFromCFA += Delta;
+ }
+
+ if (HasFP) {
+ // Copy the base of the frame to R11.
+ BuildMI(MBB, MBBI, DL, ZII->get(SystemZ::LGR), SystemZ::R11D)
+ .addReg(SystemZ::R15D);
+
+ // Add CFI for the new frame location.
+ unsigned HardFP = MRI->getDwarfRegNum(SystemZ::R11D, true);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaRegister(nullptr, HardFP));
+ BuildMI(MBB, MBBI, DL, ZII->get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // Mark the FramePtr as live at the beginning of every block except
+ // the entry block. (We'll have marked R11 as live on entry when
+ // saving the GPRs.)
+ for (auto I = std::next(MF.begin()), E = MF.end(); I != E; ++I)
+ I->addLiveIn(SystemZ::R11D);
+ }
+
+ // Skip over the FPR saves.
+ SmallVector<unsigned, 8> CFIIndexes;
+ for (auto &Save : CSI) {
+ unsigned Reg = Save.getReg();
+ if (SystemZ::FP64BitRegClass.contains(Reg)) {
+ if (MBBI != MBB.end() &&
+ (MBBI->getOpcode() == SystemZ::STD ||
+ MBBI->getOpcode() == SystemZ::STDY))
+ ++MBBI;
+ else
+ llvm_unreachable("Couldn't skip over FPR save");
+
+ // Add CFI for the this save.
+ unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
+ int64_t Offset = getFrameIndexOffset(MF, Save.getFrameIdx());
+ unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, DwarfReg, SPOffsetFromCFA + Offset));
+ CFIIndexes.push_back(CFIIndex);
+ }
+ }
+ // Complete the CFI for the FPR saves, modelling them as taking effect
+ // after the last save.
+ for (auto CFIIndex : CFIIndexes) {
+ BuildMI(MBB, MBBI, DL, ZII->get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+}
+
+void SystemZFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ auto *ZII =
+ static_cast<const SystemZInstrInfo*>(MF.getTarget().getInstrInfo());
+ SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
+
+ // Skip the return instruction.
+ assert(MBBI->isReturn() && "Can only insert epilogue into returning blocks");
+
+ uint64_t StackSize = getAllocatedStackSize(MF);
+ if (ZFI->getLowSavedGPR()) {
+ --MBBI;
+ unsigned Opcode = MBBI->getOpcode();
+ if (Opcode != SystemZ::LMG)
+ llvm_unreachable("Expected to see callee-save register restore code");
+
+ unsigned AddrOpNo = 2;
+ DebugLoc DL = MBBI->getDebugLoc();
+ uint64_t Offset = StackSize + MBBI->getOperand(AddrOpNo + 1).getImm();
+ unsigned NewOpcode = ZII->getOpcodeForOffset(Opcode, Offset);
+
+ // If the offset is too large, use the largest stack-aligned offset
+ // and add the rest to the base register (the stack or frame pointer).
+ if (!NewOpcode) {
+ uint64_t NumBytes = Offset - 0x7fff8;
+ emitIncrement(MBB, MBBI, DL, MBBI->getOperand(AddrOpNo).getReg(),
+ NumBytes, ZII);
+ Offset -= NumBytes;
+ NewOpcode = ZII->getOpcodeForOffset(Opcode, Offset);
+ assert(NewOpcode && "No restore instruction available");
+ }
+
+ MBBI->setDesc(ZII->get(NewOpcode));
+ MBBI->getOperand(AddrOpNo + 1).ChangeToImmediate(Offset);
+ } else if (StackSize) {
+ DebugLoc DL = MBBI->getDebugLoc();
+ emitIncrement(MBB, MBBI, DL, SystemZ::R15D, StackSize, ZII);
+ }
+}
+
+bool SystemZFrameLowering::hasFP(const MachineFunction &MF) const {
+ return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
+ MF.getFrameInfo()->hasVarSizedObjects() ||
+ MF.getInfo<SystemZMachineFunctionInfo>()->getManipulatesSP());
+}
+
+int SystemZFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
+ int FI) const {
+ const MachineFrameInfo *MFFrame = MF.getFrameInfo();
+
+ // Start with the offset of FI from the top of the caller-allocated frame
+ // (i.e. the top of the 160 bytes allocated by the caller). This initial
+ // offset is therefore negative.
+ int64_t Offset = (MFFrame->getObjectOffset(FI) +
+ MFFrame->getOffsetAdjustment());
+
+ // Make the offset relative to the incoming stack pointer.
+ Offset -= getOffsetOfLocalArea();
+
+ // Make the offset relative to the bottom of the frame.
+ Offset += getAllocatedStackSize(MF);
+
+ return Offset;
+}
+
+uint64_t SystemZFrameLowering::
+getAllocatedStackSize(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFFrame = MF.getFrameInfo();
+
+ // Start with the size of the local variables and spill slots.
+ uint64_t StackSize = MFFrame->getStackSize();
+
+ // We need to allocate the ABI-defined 160-byte base area whenever
+ // we allocate stack space for our own use and whenever we call another
+ // function.
+ if (StackSize || MFFrame->hasVarSizedObjects() || MFFrame->hasCalls())
+ StackSize += SystemZMC::CallFrameSize;
+
+ return StackSize;
+}
+
+bool
+SystemZFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ // The ABI requires us to allocate 160 bytes of stack space for the callee,
+ // with any outgoing stack arguments being placed above that. It seems
+ // better to make that area a permanent feature of the frame even if
+ // we're using a frame pointer.
+ return true;
+}
+
+void SystemZFrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const {
+ switch (MI->getOpcode()) {
+ case SystemZ::ADJCALLSTACKDOWN:
+ case SystemZ::ADJCALLSTACKUP:
+ assert(hasReservedCallFrame(MF) &&
+ "ADJSTACKDOWN and ADJSTACKUP should be no-ops");
+ MBB.erase(MI);
+ break;
+
+ default:
+ llvm_unreachable("Unexpected call frame instruction");
+ }
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.h b/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.h
new file mode 100644
index 0000000..4d5fe6d
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.h
@@ -0,0 +1,64 @@
+//===-- SystemZFrameLowering.h - Frame lowering for SystemZ -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZFRAMELOWERING_H
+#define SYSTEMZFRAMELOWERING_H
+
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+class SystemZTargetMachine;
+class SystemZSubtarget;
+
+class SystemZFrameLowering : public TargetFrameLowering {
+ IndexedMap<unsigned> RegSpillOffsets;
+
+public:
+ SystemZFrameLowering();
+
+ // Override TargetFrameLowering.
+ bool isFPCloseToIncomingSP() const override { return false; }
+ const SpillSlot *getCalleeSavedSpillSlots(unsigned &NumEntries) const
+ override;
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const override;
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+ bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBII,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const
+ override;
+ void processFunctionBeforeFrameFinalized(MachineFunction &MF,
+ RegScavenger *RS) const override;
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+ bool hasFP(const MachineFunction &MF) const override;
+ int getFrameIndexOffset(const MachineFunction &MF, int FI) const override;
+ bool hasReservedCallFrame(const MachineFunction &MF) const override;
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const
+ override;
+
+ // Return the number of bytes in the callee-allocated part of the frame.
+ uint64_t getAllocatedStackSize(const MachineFunction &MF) const;
+
+ // Return the byte offset from the incoming stack pointer of Reg's
+ // ABI-defined save slot. Return 0 if no slot is defined for Reg.
+ unsigned getRegSpillOffset(unsigned Reg) const {
+ return RegSpillOffsets[Reg];
+ }
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
new file mode 100644
index 0000000..24f7584
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
@@ -0,0 +1,1144 @@
+//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the SystemZ target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZTargetMachine.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "systemz-isel"
+
+namespace {
+// Used to build addressing modes.
+struct SystemZAddressingMode {
+ // The shape of the address.
+ enum AddrForm {
+ // base+displacement
+ FormBD,
+
+ // base+displacement+index for load and store operands
+ FormBDXNormal,
+
+ // base+displacement+index for load address operands
+ FormBDXLA,
+
+ // base+displacement+index+ADJDYNALLOC
+ FormBDXDynAlloc
+ };
+ AddrForm Form;
+
+ // The type of displacement. The enum names here correspond directly
+ // to the definitions in SystemZOperand.td. We could split them into
+ // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
+ enum DispRange {
+ Disp12Only,
+ Disp12Pair,
+ Disp20Only,
+ Disp20Only128,
+ Disp20Pair
+ };
+ DispRange DR;
+
+ // The parts of the address. The address is equivalent to:
+ //
+ // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
+ SDValue Base;
+ int64_t Disp;
+ SDValue Index;
+ bool IncludesDynAlloc;
+
+ SystemZAddressingMode(AddrForm form, DispRange dr)
+ : Form(form), DR(dr), Base(), Disp(0), Index(),
+ IncludesDynAlloc(false) {}
+
+ // True if the address can have an index register.
+ bool hasIndexField() { return Form != FormBD; }
+
+ // True if the address can (and must) include ADJDYNALLOC.
+ bool isDynAlloc() { return Form == FormBDXDynAlloc; }
+
+ void dump() {
+ errs() << "SystemZAddressingMode " << this << '\n';
+
+ errs() << " Base ";
+ if (Base.getNode())
+ Base.getNode()->dump();
+ else
+ errs() << "null\n";
+
+ if (hasIndexField()) {
+ errs() << " Index ";
+ if (Index.getNode())
+ Index.getNode()->dump();
+ else
+ errs() << "null\n";
+ }
+
+ errs() << " Disp " << Disp;
+ if (IncludesDynAlloc)
+ errs() << " + ADJDYNALLOC";
+ errs() << '\n';
+ }
+};
+
+// Return a mask with Count low bits set.
+static uint64_t allOnes(unsigned int Count) {
+ return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
+}
+
+// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
+// given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
+// Rotate (I5). The combined operand value is effectively:
+//
+// (or (rotl Input, Rotate), ~Mask)
+//
+// for RNSBG and:
+//
+// (and (rotl Input, Rotate), Mask)
+//
+// otherwise. The output value has BitSize bits, although Input may be
+// narrower (in which case the upper bits are don't care).
+struct RxSBGOperands {
+ RxSBGOperands(unsigned Op, SDValue N)
+ : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
+ Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
+ Rotate(0) {}
+
+ unsigned Opcode;
+ unsigned BitSize;
+ uint64_t Mask;
+ SDValue Input;
+ unsigned Start;
+ unsigned End;
+ unsigned Rotate;
+};
+
+class SystemZDAGToDAGISel : public SelectionDAGISel {
+ const SystemZTargetLowering &Lowering;
+ const SystemZSubtarget &Subtarget;
+
+ // Used by SystemZOperands.td to create integer constants.
+ inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
+ return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
+ }
+
+ const SystemZTargetMachine &getTargetMachine() const {
+ return static_cast<const SystemZTargetMachine &>(TM);
+ }
+
+ const SystemZInstrInfo *getInstrInfo() const {
+ return getTargetMachine().getInstrInfo();
+ }
+
+ // Try to fold more of the base or index of AM into AM, where IsBase
+ // selects between the base and index.
+ bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
+
+ // Try to describe N in AM, returning true on success.
+ bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
+
+ // Extract individual target operands from matched address AM.
+ void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
+ SDValue &Base, SDValue &Disp) const;
+ void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
+ SDValue &Base, SDValue &Disp, SDValue &Index) const;
+
+ // Try to match Addr as a FormBD address with displacement type DR.
+ // Return true on success, storing the base and displacement in
+ // Base and Disp respectively.
+ bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
+ SDValue &Base, SDValue &Disp) const;
+
+ // Try to match Addr as a FormBDX address with displacement type DR.
+ // Return true on success and if the result had no index. Store the
+ // base and displacement in Base and Disp respectively.
+ bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
+ SDValue &Base, SDValue &Disp) const;
+
+ // Try to match Addr as a FormBDX* address of form Form with
+ // displacement type DR. Return true on success, storing the base,
+ // displacement and index in Base, Disp and Index respectively.
+ bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
+ SystemZAddressingMode::DispRange DR, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index) const;
+
+ // PC-relative address matching routines used by SystemZOperands.td.
+ bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
+ if (SystemZISD::isPCREL(Addr.getOpcode())) {
+ Target = Addr.getOperand(0);
+ return true;
+ }
+ return false;
+ }
+
+ // BD matching routines used by SystemZOperands.td.
+ bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
+ }
+ bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
+ }
+ bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
+ }
+ bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
+ }
+
+ // MVI matching routines used by SystemZOperands.td.
+ bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
+ }
+ bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
+ }
+
+ // BDX matching routines used by SystemZOperands.td.
+ bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp12Only,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp12Pair,
+ Addr, Base, Disp, Index);
+ }
+ bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
+ SystemZAddressingMode::Disp12Only,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp20Only,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp20Only128,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp20Pair,
+ Addr, Base, Disp, Index);
+ }
+ bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
+ SystemZAddressingMode::Disp12Pair,
+ Addr, Base, Disp, Index);
+ }
+ bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
+ SystemZAddressingMode::Disp20Pair,
+ Addr, Base, Disp, Index);
+ }
+
+ // Check whether (or Op (and X InsertMask)) is effectively an insertion
+ // of X into bits InsertMask of some Y != Op. Return true if so and
+ // set Op to that Y.
+ bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
+
+ // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
+ // Return true on success.
+ bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
+
+ // Try to fold some of RxSBG.Input into other fields of RxSBG.
+ // Return true on success.
+ bool expandRxSBG(RxSBGOperands &RxSBG) const;
+
+ // Return an undefined value of type VT.
+ SDValue getUNDEF(SDLoc DL, EVT VT) const;
+
+ // Convert N to VT, if it isn't already.
+ SDValue convertTo(SDLoc DL, EVT VT, SDValue N) const;
+
+ // Try to implement AND or shift node N using RISBG with the zero flag set.
+ // Return the selected node on success, otherwise return null.
+ SDNode *tryRISBGZero(SDNode *N);
+
+ // Try to use RISBG or Opcode to implement OR or XOR node N.
+ // Return the selected node on success, otherwise return null.
+ SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
+
+ // If Op0 is null, then Node is a constant that can be loaded using:
+ //
+ // (Opcode UpperVal LowerVal)
+ //
+ // If Op0 is nonnull, then Node can be implemented using:
+ //
+ // (Opcode (Opcode Op0 UpperVal) LowerVal)
+ SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
+ uint64_t UpperVal, uint64_t LowerVal);
+
+ // Return true if Load and Store are loads and stores of the same size
+ // and are guaranteed not to overlap. Such operations can be implemented
+ // using block (SS-format) instructions.
+ //
+ // Partial overlap would lead to incorrect code, since the block operations
+ // are logically bytewise, even though they have a fast path for the
+ // non-overlapping case. We also need to avoid full overlap (i.e. two
+ // addresses that might be equal at run time) because although that case
+ // would be handled correctly, it might be implemented by millicode.
+ bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
+
+ // N is a (store (load Y), X) pattern. Return true if it can use an MVC
+ // from Y to X.
+ bool storeLoadCanUseMVC(SDNode *N) const;
+
+ // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
+ // if A[1 - I] == X and if N can use a block operation like NC from A[I]
+ // to X.
+ bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
+
+public:
+ SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(TM, OptLevel),
+ Lowering(*TM.getTargetLowering()),
+ Subtarget(*TM.getSubtargetImpl()) { }
+
+ // Override MachineFunctionPass.
+ const char *getPassName() const override {
+ return "SystemZ DAG->DAG Pattern Instruction Selection";
+ }
+
+ // Override SelectionDAGISel.
+ SDNode *Select(SDNode *Node) override;
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) override;
+
+ // Include the pieces autogenerated from the target description.
+ #include "SystemZGenDAGISel.inc"
+};
+} // end anonymous namespace
+
+FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new SystemZDAGToDAGISel(TM, OptLevel);
+}
+
+// Return true if Val should be selected as a displacement for an address
+// with range DR. Here we're interested in the range of both the instruction
+// described by DR and of any pairing instruction.
+static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
+ switch (DR) {
+ case SystemZAddressingMode::Disp12Only:
+ return isUInt<12>(Val);
+
+ case SystemZAddressingMode::Disp12Pair:
+ case SystemZAddressingMode::Disp20Only:
+ case SystemZAddressingMode::Disp20Pair:
+ return isInt<20>(Val);
+
+ case SystemZAddressingMode::Disp20Only128:
+ return isInt<20>(Val) && isInt<20>(Val + 8);
+ }
+ llvm_unreachable("Unhandled displacement range");
+}
+
+// Change the base or index in AM to Value, where IsBase selects
+// between the base and index.
+static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
+ SDValue Value) {
+ if (IsBase)
+ AM.Base = Value;
+ else
+ AM.Index = Value;
+}
+
+// The base or index of AM is equivalent to Value + ADJDYNALLOC,
+// where IsBase selects between the base and index. Try to fold the
+// ADJDYNALLOC into AM.
+static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
+ SDValue Value) {
+ if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
+ changeComponent(AM, IsBase, Value);
+ AM.IncludesDynAlloc = true;
+ return true;
+ }
+ return false;
+}
+
+// The base of AM is equivalent to Base + Index. Try to use Index as
+// the index register.
+static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
+ SDValue Index) {
+ if (AM.hasIndexField() && !AM.Index.getNode()) {
+ AM.Base = Base;
+ AM.Index = Index;
+ return true;
+ }
+ return false;
+}
+
+// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
+// between the base and index. Try to fold Op1 into AM's displacement.
+static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
+ SDValue Op0, uint64_t Op1) {
+ // First try adjusting the displacement.
+ int64_t TestDisp = AM.Disp + Op1;
+ if (selectDisp(AM.DR, TestDisp)) {
+ changeComponent(AM, IsBase, Op0);
+ AM.Disp = TestDisp;
+ return true;
+ }
+
+ // We could consider forcing the displacement into a register and
+ // using it as an index, but it would need to be carefully tuned.
+ return false;
+}
+
+bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
+ bool IsBase) const {
+ SDValue N = IsBase ? AM.Base : AM.Index;
+ unsigned Opcode = N.getOpcode();
+ if (Opcode == ISD::TRUNCATE) {
+ N = N.getOperand(0);
+ Opcode = N.getOpcode();
+ }
+ if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
+ SDValue Op0 = N.getOperand(0);
+ SDValue Op1 = N.getOperand(1);
+
+ unsigned Op0Code = Op0->getOpcode();
+ unsigned Op1Code = Op1->getOpcode();
+
+ if (Op0Code == SystemZISD::ADJDYNALLOC)
+ return expandAdjDynAlloc(AM, IsBase, Op1);
+ if (Op1Code == SystemZISD::ADJDYNALLOC)
+ return expandAdjDynAlloc(AM, IsBase, Op0);
+
+ if (Op0Code == ISD::Constant)
+ return expandDisp(AM, IsBase, Op1,
+ cast<ConstantSDNode>(Op0)->getSExtValue());
+ if (Op1Code == ISD::Constant)
+ return expandDisp(AM, IsBase, Op0,
+ cast<ConstantSDNode>(Op1)->getSExtValue());
+
+ if (IsBase && expandIndex(AM, Op0, Op1))
+ return true;
+ }
+ if (Opcode == SystemZISD::PCREL_OFFSET) {
+ SDValue Full = N.getOperand(0);
+ SDValue Base = N.getOperand(1);
+ SDValue Anchor = Base.getOperand(0);
+ uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
+ cast<GlobalAddressSDNode>(Anchor)->getOffset());
+ return expandDisp(AM, IsBase, Base, Offset);
+ }
+ return false;
+}
+
+// Return true if an instruction with displacement range DR should be
+// used for displacement value Val. selectDisp(DR, Val) must already hold.
+static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
+ assert(selectDisp(DR, Val) && "Invalid displacement");
+ switch (DR) {
+ case SystemZAddressingMode::Disp12Only:
+ case SystemZAddressingMode::Disp20Only:
+ case SystemZAddressingMode::Disp20Only128:
+ return true;
+
+ case SystemZAddressingMode::Disp12Pair:
+ // Use the other instruction if the displacement is too large.
+ return isUInt<12>(Val);
+
+ case SystemZAddressingMode::Disp20Pair:
+ // Use the other instruction if the displacement is small enough.
+ return !isUInt<12>(Val);
+ }
+ llvm_unreachable("Unhandled displacement range");
+}
+
+// Return true if Base + Disp + Index should be performed by LA(Y).
+static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
+ // Don't use LA(Y) for constants.
+ if (!Base)
+ return false;
+
+ // Always use LA(Y) for frame addresses, since we know that the destination
+ // register is almost always (perhaps always) going to be different from
+ // the frame register.
+ if (Base->getOpcode() == ISD::FrameIndex)
+ return true;
+
+ if (Disp) {
+ // Always use LA(Y) if there is a base, displacement and index.
+ if (Index)
+ return true;
+
+ // Always use LA if the displacement is small enough. It should always
+ // be no worse than AGHI (and better if it avoids a move).
+ if (isUInt<12>(Disp))
+ return true;
+
+ // For similar reasons, always use LAY if the constant is too big for AGHI.
+ // LAY should be no worse than AGFI.
+ if (!isInt<16>(Disp))
+ return true;
+ } else {
+ // Don't use LA for plain registers.
+ if (!Index)
+ return false;
+
+ // Don't use LA for plain addition if the index operand is only used
+ // once. It should be a natural two-operand addition in that case.
+ if (Index->hasOneUse())
+ return false;
+
+ // Prefer addition if the second operation is sign-extended, in the
+ // hope of using AGF.
+ unsigned IndexOpcode = Index->getOpcode();
+ if (IndexOpcode == ISD::SIGN_EXTEND ||
+ IndexOpcode == ISD::SIGN_EXTEND_INREG)
+ return false;
+ }
+
+ // Don't use LA for two-operand addition if either operand is only
+ // used once. The addition instructions are better in that case.
+ if (Base->hasOneUse())
+ return false;
+
+ return true;
+}
+
+// Return true if Addr is suitable for AM, updating AM if so.
+bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
+ SystemZAddressingMode &AM) const {
+ // Start out assuming that the address will need to be loaded separately,
+ // then try to extend it as much as we can.
+ AM.Base = Addr;
+
+ // First try treating the address as a constant.
+ if (Addr.getOpcode() == ISD::Constant &&
+ expandDisp(AM, true, SDValue(),
+ cast<ConstantSDNode>(Addr)->getSExtValue()))
+ ;
+ else
+ // Otherwise try expanding each component.
+ while (expandAddress(AM, true) ||
+ (AM.Index.getNode() && expandAddress(AM, false)))
+ continue;
+
+ // Reject cases where it isn't profitable to use LA(Y).
+ if (AM.Form == SystemZAddressingMode::FormBDXLA &&
+ !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
+ return false;
+
+ // Reject cases where the other instruction in a pair should be used.
+ if (!isValidDisp(AM.DR, AM.Disp))
+ return false;
+
+ // Make sure that ADJDYNALLOC is included where necessary.
+ if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
+ return false;
+
+ DEBUG(AM.dump());
+ return true;
+}
+
+// Insert a node into the DAG at least before Pos. This will reposition
+// the node as needed, and will assign it a node ID that is <= Pos's ID.
+// Note that this does *not* preserve the uniqueness of node IDs!
+// The selection DAG must no longer depend on their uniqueness when this
+// function is used.
+static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
+ if (N.getNode()->getNodeId() == -1 ||
+ N.getNode()->getNodeId() > Pos->getNodeId()) {
+ DAG->RepositionNode(Pos, N.getNode());
+ N.getNode()->setNodeId(Pos->getNodeId());
+ }
+}
+
+void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
+ EVT VT, SDValue &Base,
+ SDValue &Disp) const {
+ Base = AM.Base;
+ if (!Base.getNode())
+ // Register 0 means "no base". This is mostly useful for shifts.
+ Base = CurDAG->getRegister(0, VT);
+ else if (Base.getOpcode() == ISD::FrameIndex) {
+ // Lower a FrameIndex to a TargetFrameIndex.
+ int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
+ } else if (Base.getValueType() != VT) {
+ // Truncate values from i64 to i32, for shifts.
+ assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
+ "Unexpected truncation");
+ SDLoc DL(Base);
+ SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
+ insertDAGNode(CurDAG, Base.getNode(), Trunc);
+ Base = Trunc;
+ }
+
+ // Lower the displacement to a TargetConstant.
+ Disp = CurDAG->getTargetConstant(AM.Disp, VT);
+}
+
+void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
+ EVT VT, SDValue &Base,
+ SDValue &Disp,
+ SDValue &Index) const {
+ getAddressOperands(AM, VT, Base, Disp);
+
+ Index = AM.Index;
+ if (!Index.getNode())
+ // Register 0 means "no index".
+ Index = CurDAG->getRegister(0, VT);
+}
+
+bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
+ SDValue Addr, SDValue &Base,
+ SDValue &Disp) const {
+ SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
+ if (!selectAddress(Addr, AM))
+ return false;
+
+ getAddressOperands(AM, Addr.getValueType(), Base, Disp);
+ return true;
+}
+
+bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
+ SDValue Addr, SDValue &Base,
+ SDValue &Disp) const {
+ SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
+ if (!selectAddress(Addr, AM) || AM.Index.getNode())
+ return false;
+
+ getAddressOperands(AM, Addr.getValueType(), Base, Disp);
+ return true;
+}
+
+bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
+ SystemZAddressingMode::DispRange DR,
+ SDValue Addr, SDValue &Base,
+ SDValue &Disp, SDValue &Index) const {
+ SystemZAddressingMode AM(Form, DR);
+ if (!selectAddress(Addr, AM))
+ return false;
+
+ getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
+ return true;
+}
+
+bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
+ uint64_t InsertMask) const {
+ // We're only interested in cases where the insertion is into some operand
+ // of Op, rather than into Op itself. The only useful case is an AND.
+ if (Op.getOpcode() != ISD::AND)
+ return false;
+
+ // We need a constant mask.
+ auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
+ if (!MaskNode)
+ return false;
+
+ // It's not an insertion of Op.getOperand(0) if the two masks overlap.
+ uint64_t AndMask = MaskNode->getZExtValue();
+ if (InsertMask & AndMask)
+ return false;
+
+ // It's only an insertion if all bits are covered or are known to be zero.
+ // The inner check covers all cases but is more expensive.
+ uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
+ if (Used != (AndMask | InsertMask)) {
+ APInt KnownZero, KnownOne;
+ CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne);
+ if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
+ return false;
+ }
+
+ Op = Op.getOperand(0);
+ return true;
+}
+
+bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
+ uint64_t Mask) const {
+ const SystemZInstrInfo *TII = getInstrInfo();
+ if (RxSBG.Rotate != 0)
+ Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
+ Mask &= RxSBG.Mask;
+ if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
+ RxSBG.Mask = Mask;
+ return true;
+ }
+ return false;
+}
+
+// Return true if any bits of (RxSBG.Input & Mask) are significant.
+static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
+ // Rotate the mask in the same way as RxSBG.Input is rotated.
+ if (RxSBG.Rotate != 0)
+ Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
+ return (Mask & RxSBG.Mask) != 0;
+}
+
+bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
+ SDValue N = RxSBG.Input;
+ unsigned Opcode = N.getOpcode();
+ switch (Opcode) {
+ case ISD::AND: {
+ if (RxSBG.Opcode == SystemZ::RNSBG)
+ return false;
+
+ auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
+ if (!MaskNode)
+ return false;
+
+ SDValue Input = N.getOperand(0);
+ uint64_t Mask = MaskNode->getZExtValue();
+ if (!refineRxSBGMask(RxSBG, Mask)) {
+ // If some bits of Input are already known zeros, those bits will have
+ // been removed from the mask. See if adding them back in makes the
+ // mask suitable.
+ APInt KnownZero, KnownOne;
+ CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
+ Mask |= KnownZero.getZExtValue();
+ if (!refineRxSBGMask(RxSBG, Mask))
+ return false;
+ }
+ RxSBG.Input = Input;
+ return true;
+ }
+
+ case ISD::OR: {
+ if (RxSBG.Opcode != SystemZ::RNSBG)
+ return false;
+
+ auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
+ if (!MaskNode)
+ return false;
+
+ SDValue Input = N.getOperand(0);
+ uint64_t Mask = ~MaskNode->getZExtValue();
+ if (!refineRxSBGMask(RxSBG, Mask)) {
+ // If some bits of Input are already known ones, those bits will have
+ // been removed from the mask. See if adding them back in makes the
+ // mask suitable.
+ APInt KnownZero, KnownOne;
+ CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
+ Mask &= ~KnownOne.getZExtValue();
+ if (!refineRxSBGMask(RxSBG, Mask))
+ return false;
+ }
+ RxSBG.Input = Input;
+ return true;
+ }
+
+ case ISD::ROTL: {
+ // Any 64-bit rotate left can be merged into the RxSBG.
+ if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
+ return false;
+ auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
+ if (!CountNode)
+ return false;
+
+ RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
+ RxSBG.Input = N.getOperand(0);
+ return true;
+ }
+
+ case ISD::ANY_EXTEND:
+ // Bits above the extended operand are don't-care.
+ RxSBG.Input = N.getOperand(0);
+ return true;
+
+ case ISD::ZERO_EXTEND:
+ if (RxSBG.Opcode != SystemZ::RNSBG) {
+ // Restrict the mask to the extended operand.
+ unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
+ if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
+ return false;
+
+ RxSBG.Input = N.getOperand(0);
+ return true;
+ }
+ // Fall through.
+
+ case ISD::SIGN_EXTEND: {
+ // Check that the extension bits are don't-care (i.e. are masked out
+ // by the final mask).
+ unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
+ if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
+ return false;
+
+ RxSBG.Input = N.getOperand(0);
+ return true;
+ }
+
+ case ISD::SHL: {
+ auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
+ if (!CountNode)
+ return false;
+
+ uint64_t Count = CountNode->getZExtValue();
+ unsigned BitSize = N.getValueType().getSizeInBits();
+ if (Count < 1 || Count >= BitSize)
+ return false;
+
+ if (RxSBG.Opcode == SystemZ::RNSBG) {
+ // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
+ // count bits from RxSBG.Input are ignored.
+ if (maskMatters(RxSBG, allOnes(Count)))
+ return false;
+ } else {
+ // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
+ if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
+ return false;
+ }
+
+ RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
+ RxSBG.Input = N.getOperand(0);
+ return true;
+ }
+
+ case ISD::SRL:
+ case ISD::SRA: {
+ auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
+ if (!CountNode)
+ return false;
+
+ uint64_t Count = CountNode->getZExtValue();
+ unsigned BitSize = N.getValueType().getSizeInBits();
+ if (Count < 1 || Count >= BitSize)
+ return false;
+
+ if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
+ // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
+ // count bits from RxSBG.Input are ignored.
+ if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
+ return false;
+ } else {
+ // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
+ // which is similar to SLL above.
+ if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
+ return false;
+ }
+
+ RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
+ RxSBG.Input = N.getOperand(0);
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+SDValue SystemZDAGToDAGISel::getUNDEF(SDLoc DL, EVT VT) const {
+ SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
+ return SDValue(N, 0);
+}
+
+SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) const {
+ if (N.getValueType() == MVT::i32 && VT == MVT::i64)
+ return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
+ DL, VT, getUNDEF(DL, MVT::i64), N);
+ if (N.getValueType() == MVT::i64 && VT == MVT::i32)
+ return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
+ assert(N.getValueType() == VT && "Unexpected value types");
+ return N;
+}
+
+SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
+ unsigned Count = 0;
+ while (expandRxSBG(RISBG))
+ if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND)
+ Count += 1;
+ if (Count == 0)
+ return nullptr;
+ if (Count == 1) {
+ // Prefer to use normal shift instructions over RISBG, since they can handle
+ // all cases and are sometimes shorter.
+ if (N->getOpcode() != ISD::AND)
+ return nullptr;
+
+ // Prefer register extensions like LLC over RISBG. Also prefer to start
+ // out with normal ANDs if one instruction would be enough. We can convert
+ // these ANDs into an RISBG later if a three-address instruction is useful.
+ if (VT == MVT::i32 ||
+ RISBG.Mask == 0xff ||
+ RISBG.Mask == 0xffff ||
+ SystemZ::isImmLF(~RISBG.Mask) ||
+ SystemZ::isImmHF(~RISBG.Mask)) {
+ // Force the new mask into the DAG, since it may include known-one bits.
+ auto *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
+ if (MaskN->getZExtValue() != RISBG.Mask) {
+ SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT);
+ N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
+ return SelectCode(N);
+ }
+ return nullptr;
+ }
+ }
+
+ unsigned Opcode = SystemZ::RISBG;
+ EVT OpcodeVT = MVT::i64;
+ if (VT == MVT::i32 && Subtarget.hasHighWord()) {
+ Opcode = SystemZ::RISBMux;
+ OpcodeVT = MVT::i32;
+ RISBG.Start &= 31;
+ RISBG.End &= 31;
+ }
+ SDValue Ops[5] = {
+ getUNDEF(SDLoc(N), OpcodeVT),
+ convertTo(SDLoc(N), OpcodeVT, RISBG.Input),
+ CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
+ CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
+ CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
+ };
+ N = CurDAG->getMachineNode(Opcode, SDLoc(N), OpcodeVT, Ops);
+ return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
+}
+
+SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
+ // Try treating each operand of N as the second operand of the RxSBG
+ // and see which goes deepest.
+ RxSBGOperands RxSBG[] = {
+ RxSBGOperands(Opcode, N->getOperand(0)),
+ RxSBGOperands(Opcode, N->getOperand(1))
+ };
+ unsigned Count[] = { 0, 0 };
+ for (unsigned I = 0; I < 2; ++I)
+ while (expandRxSBG(RxSBG[I]))
+ if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND)
+ Count[I] += 1;
+
+ // Do nothing if neither operand is suitable.
+ if (Count[0] == 0 && Count[1] == 0)
+ return nullptr;
+
+ // Pick the deepest second operand.
+ unsigned I = Count[0] > Count[1] ? 0 : 1;
+ SDValue Op0 = N->getOperand(I ^ 1);
+
+ // Prefer IC for character insertions from memory.
+ if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
+ if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
+ if (Load->getMemoryVT() == MVT::i8)
+ return nullptr;
+
+ // See whether we can avoid an AND in the first operand by converting
+ // ROSBG to RISBG.
+ if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask))
+ Opcode = SystemZ::RISBG;
+
+ EVT VT = N->getValueType(0);
+ SDValue Ops[5] = {
+ convertTo(SDLoc(N), MVT::i64, Op0),
+ convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input),
+ CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32),
+ CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32),
+ CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32)
+ };
+ N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
+ return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
+}
+
+SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
+ SDValue Op0, uint64_t UpperVal,
+ uint64_t LowerVal) {
+ EVT VT = Node->getValueType(0);
+ SDLoc DL(Node);
+ SDValue Upper = CurDAG->getConstant(UpperVal, VT);
+ if (Op0.getNode())
+ Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
+ Upper = SDValue(Select(Upper.getNode()), 0);
+
+ SDValue Lower = CurDAG->getConstant(LowerVal, VT);
+ SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
+ return Or.getNode();
+}
+
+bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
+ LoadSDNode *Load) const {
+ // Check that the two memory operands have the same size.
+ if (Load->getMemoryVT() != Store->getMemoryVT())
+ return false;
+
+ // Volatility stops an access from being decomposed.
+ if (Load->isVolatile() || Store->isVolatile())
+ return false;
+
+ // There's no chance of overlap if the load is invariant.
+ if (Load->isInvariant())
+ return true;
+
+ // Otherwise we need to check whether there's an alias.
+ const Value *V1 = Load->getMemOperand()->getValue();
+ const Value *V2 = Store->getMemOperand()->getValue();
+ if (!V1 || !V2)
+ return false;
+
+ // Reject equality.
+ uint64_t Size = Load->getMemoryVT().getStoreSize();
+ int64_t End1 = Load->getSrcValueOffset() + Size;
+ int64_t End2 = Store->getSrcValueOffset() + Size;
+ if (V1 == V2 && End1 == End2)
+ return false;
+
+ return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
+ AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
+}
+
+bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
+ auto *Store = cast<StoreSDNode>(N);
+ auto *Load = cast<LoadSDNode>(Store->getValue());
+
+ // Prefer not to use MVC if either address can use ... RELATIVE LONG
+ // instructions.
+ uint64_t Size = Load->getMemoryVT().getStoreSize();
+ if (Size > 1 && Size <= 8) {
+ // Prefer LHRL, LRL and LGRL.
+ if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
+ return false;
+ // Prefer STHRL, STRL and STGRL.
+ if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
+ return false;
+ }
+
+ return canUseBlockOperation(Store, Load);
+}
+
+bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
+ unsigned I) const {
+ auto *StoreA = cast<StoreSDNode>(N);
+ auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
+ auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
+ return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
+}
+
+SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
+ // Dump information about the Node being selected
+ DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
+
+ // If we have a custom node, we already have selected!
+ if (Node->isMachineOpcode()) {
+ DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
+ Node->setNodeId(-1);
+ return nullptr;
+ }
+
+ unsigned Opcode = Node->getOpcode();
+ SDNode *ResNode = nullptr;
+ switch (Opcode) {
+ case ISD::OR:
+ if (Node->getOperand(1).getOpcode() != ISD::Constant)
+ ResNode = tryRxSBG(Node, SystemZ::ROSBG);
+ goto or_xor;
+
+ case ISD::XOR:
+ if (Node->getOperand(1).getOpcode() != ISD::Constant)
+ ResNode = tryRxSBG(Node, SystemZ::RXSBG);
+ // Fall through.
+ or_xor:
+ // If this is a 64-bit operation in which both 32-bit halves are nonzero,
+ // split the operation into two.
+ if (!ResNode && Node->getValueType(0) == MVT::i64)
+ if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
+ uint64_t Val = Op1->getZExtValue();
+ if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
+ Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
+ Val - uint32_t(Val), uint32_t(Val));
+ }
+ break;
+
+ case ISD::AND:
+ if (Node->getOperand(1).getOpcode() != ISD::Constant)
+ ResNode = tryRxSBG(Node, SystemZ::RNSBG);
+ // Fall through.
+ case ISD::ROTL:
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::ZERO_EXTEND:
+ if (!ResNode)
+ ResNode = tryRISBGZero(Node);
+ break;
+
+ case ISD::Constant:
+ // If this is a 64-bit constant that is out of the range of LLILF,
+ // LLIHF and LGFI, split it into two 32-bit pieces.
+ if (Node->getValueType(0) == MVT::i64) {
+ uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
+ if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
+ Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
+ Val - uint32_t(Val), uint32_t(Val));
+ }
+ break;
+
+ case SystemZISD::SELECT_CCMASK: {
+ SDValue Op0 = Node->getOperand(0);
+ SDValue Op1 = Node->getOperand(1);
+ // Prefer to put any load first, so that it can be matched as a
+ // conditional load.
+ if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
+ SDValue CCValid = Node->getOperand(2);
+ SDValue CCMask = Node->getOperand(3);
+ uint64_t ConstCCValid =
+ cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
+ uint64_t ConstCCMask =
+ cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
+ // Invert the condition.
+ CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask,
+ CCMask.getValueType());
+ SDValue Op4 = Node->getOperand(4);
+ Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
+ }
+ break;
+ }
+ }
+
+ // Select the default instruction
+ if (!ResNode)
+ ResNode = SelectCode(Node);
+
+ DEBUG(errs() << "=> ";
+ if (ResNode == nullptr || ResNode == Node)
+ Node->dump(CurDAG);
+ else
+ ResNode->dump(CurDAG);
+ errs() << "\n";
+ );
+ return ResNode;
+}
+
+bool SystemZDAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ assert(ConstraintCode == 'm' && "Unexpected constraint code");
+ // Accept addresses with short displacements, which are compatible
+ // with Q, R, S and T. But keep the index operand for future expansion.
+ SDValue Base, Disp, Index;
+ if (!selectBDXAddr(SystemZAddressingMode::FormBD,
+ SystemZAddressingMode::Disp12Only,
+ Op, Base, Disp, Index))
+ return true;
+ OutOps.push_back(Base);
+ OutOps.push_back(Disp);
+ OutOps.push_back(Index);
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp
new file mode 100644
index 0000000..00c65f5
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp
@@ -0,0 +1,3588 @@
+//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SystemZTargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZISelLowering.h"
+#include "SystemZCallingConv.h"
+#include "SystemZConstantPoolValue.h"
+#include "SystemZMachineFunctionInfo.h"
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include <cctype>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "systemz-lower"
+
+namespace {
+// Represents a sequence for extracting a 0/1 value from an IPM result:
+// (((X ^ XORValue) + AddValue) >> Bit)
+struct IPMConversion {
+ IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
+ : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
+
+ int64_t XORValue;
+ int64_t AddValue;
+ unsigned Bit;
+};
+
+// Represents information about a comparison.
+struct Comparison {
+ Comparison(SDValue Op0In, SDValue Op1In)
+ : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
+
+ // The operands to the comparison.
+ SDValue Op0, Op1;
+
+ // The opcode that should be used to compare Op0 and Op1.
+ unsigned Opcode;
+
+ // A SystemZICMP value. Only used for integer comparisons.
+ unsigned ICmpType;
+
+ // The mask of CC values that Opcode can produce.
+ unsigned CCValid;
+
+ // The mask of CC values for which the original condition is true.
+ unsigned CCMask;
+};
+} // end anonymous namespace
+
+// Classify VT as either 32 or 64 bit.
+static bool is32Bit(EVT VT) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::i32:
+ return true;
+ case MVT::i64:
+ return false;
+ default:
+ llvm_unreachable("Unsupported type");
+ }
+}
+
+// Return a version of MachineOperand that can be safely used before the
+// final use.
+static MachineOperand earlyUseOperand(MachineOperand Op) {
+ if (Op.isReg())
+ Op.setIsKill(false);
+ return Op;
+}
+
+SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm)
+ : TargetLowering(tm, new TargetLoweringObjectFileELF()),
+ Subtarget(tm.getSubtarget<SystemZSubtarget>()) {
+ MVT PtrVT = getPointerTy();
+
+ // Set up the register classes.
+ if (Subtarget.hasHighWord())
+ addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
+ else
+ addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
+ addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
+ addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
+ addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
+ addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
+
+ // Compute derived properties from the register classes
+ computeRegisterProperties();
+
+ // Set up special registers.
+ setExceptionPointerRegister(SystemZ::R6D);
+ setExceptionSelectorRegister(SystemZ::R7D);
+ setStackPointerRegisterToSaveRestore(SystemZ::R15D);
+
+ // TODO: It may be better to default to latency-oriented scheduling, however
+ // LLVM's current latency-oriented scheduler can't handle physreg definitions
+ // such as SystemZ has with CC, so set this to the register-pressure
+ // scheduler, because it can.
+ setSchedulingPreference(Sched::RegPressure);
+
+ setBooleanContents(ZeroOrOneBooleanContent);
+ setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
+
+ // Instructions are strings of 2-byte aligned 2-byte values.
+ setMinFunctionAlignment(2);
+
+ // Handle operations that are handled in a similar way for all types.
+ for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
+ I <= MVT::LAST_FP_VALUETYPE;
+ ++I) {
+ MVT VT = MVT::SimpleValueType(I);
+ if (isTypeLegal(VT)) {
+ // Lower SET_CC into an IPM-based sequence.
+ setOperationAction(ISD::SETCC, VT, Custom);
+
+ // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
+ setOperationAction(ISD::SELECT, VT, Expand);
+
+ // Lower SELECT_CC and BR_CC into separate comparisons and branches.
+ setOperationAction(ISD::SELECT_CC, VT, Custom);
+ setOperationAction(ISD::BR_CC, VT, Custom);
+ }
+ }
+
+ // Expand jump table branches as address arithmetic followed by an
+ // indirect jump.
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+
+ // Expand BRCOND into a BR_CC (see above).
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+
+ // Handle integer types.
+ for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
+ I <= MVT::LAST_INTEGER_VALUETYPE;
+ ++I) {
+ MVT VT = MVT::SimpleValueType(I);
+ if (isTypeLegal(VT)) {
+ // Expand individual DIV and REMs into DIVREMs.
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::SDIVREM, VT, Custom);
+ setOperationAction(ISD::UDIVREM, VT, Custom);
+
+ // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
+ // stores, putting a serialization instruction after the stores.
+ setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
+
+ // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
+ // available, or if the operand is constant.
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
+
+ // No special instructions for these.
+ setOperationAction(ISD::CTPOP, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::ROTR, VT, Expand);
+
+ // Use *MUL_LOHI where possible instead of MULH*.
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Custom);
+ setOperationAction(ISD::UMUL_LOHI, VT, Custom);
+
+ // Only z196 and above have native support for conversions to unsigned.
+ if (!Subtarget.hasFPExtension())
+ setOperationAction(ISD::FP_TO_UINT, VT, Expand);
+ }
+ }
+
+ // Type legalization will convert 8- and 16-bit atomic operations into
+ // forms that operate on i32s (but still keeping the original memory VT).
+ // Lower them into full i32 operations.
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
+
+ // z10 has instructions for signed but not unsigned FP conversion.
+ // Handle unsigned 32-bit types as signed 64-bit types.
+ if (!Subtarget.hasFPExtension()) {
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
+ }
+
+ // We have native support for a 64-bit CTLZ, via FLOGR.
+ setOperationAction(ISD::CTLZ, MVT::i32, Promote);
+ setOperationAction(ISD::CTLZ, MVT::i64, Legal);
+
+ // Give LowerOperation the chance to replace 64-bit ORs with subregs.
+ setOperationAction(ISD::OR, MVT::i64, Custom);
+
+ // FIXME: Can we support these natively?
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
+
+ // We have native instructions for i8, i16 and i32 extensions, but not i1.
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ // Handle the various types of symbolic address.
+ setOperationAction(ISD::ConstantPool, PtrVT, Custom);
+ setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
+ setOperationAction(ISD::BlockAddress, PtrVT, Custom);
+ setOperationAction(ISD::JumpTable, PtrVT, Custom);
+
+ // We need to handle dynamic allocations specially because of the
+ // 160-byte area at the bottom of the stack.
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
+
+ // Use custom expanders so that we can force the function to use
+ // a frame pointer.
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
+
+ // Handle prefetches with PFD or PFDRL.
+ setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
+
+ // Handle floating-point types.
+ for (unsigned I = MVT::FIRST_FP_VALUETYPE;
+ I <= MVT::LAST_FP_VALUETYPE;
+ ++I) {
+ MVT VT = MVT::SimpleValueType(I);
+ if (isTypeLegal(VT)) {
+ // We can use FI for FRINT.
+ setOperationAction(ISD::FRINT, VT, Legal);
+
+ // We can use the extended form of FI for other rounding operations.
+ if (Subtarget.hasFPExtension()) {
+ setOperationAction(ISD::FNEARBYINT, VT, Legal);
+ setOperationAction(ISD::FFLOOR, VT, Legal);
+ setOperationAction(ISD::FCEIL, VT, Legal);
+ setOperationAction(ISD::FTRUNC, VT, Legal);
+ setOperationAction(ISD::FROUND, VT, Legal);
+ }
+
+ // No special instructions for these.
+ setOperationAction(ISD::FSIN, VT, Expand);
+ setOperationAction(ISD::FCOS, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+ }
+ }
+
+ // We have fused multiply-addition for f32 and f64 but not f128.
+ setOperationAction(ISD::FMA, MVT::f32, Legal);
+ setOperationAction(ISD::FMA, MVT::f64, Legal);
+ setOperationAction(ISD::FMA, MVT::f128, Expand);
+
+ // Needed so that we don't try to implement f128 constant loads using
+ // a load-and-extend of a f80 constant (in cases where the constant
+ // would fit in an f80).
+ setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
+
+ // Floating-point truncation and stores need to be done separately.
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f64, Expand);
+
+ // We have 64-bit FPR<->GPR moves, but need special handling for
+ // 32-bit forms.
+ setOperationAction(ISD::BITCAST, MVT::i32, Custom);
+ setOperationAction(ISD::BITCAST, MVT::f32, Custom);
+
+ // VASTART and VACOPY need to deal with the SystemZ-specific varargs
+ // structure, but VAEND is a no-op.
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VACOPY, MVT::Other, Custom);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+
+ // Codes for which we want to perform some z-specific combinations.
+ setTargetDAGCombine(ISD::SIGN_EXTEND);
+
+ // We want to use MVC in preference to even a single load/store pair.
+ MaxStoresPerMemcpy = 0;
+ MaxStoresPerMemcpyOptSize = 0;
+
+ // The main memset sequence is a byte store followed by an MVC.
+ // Two STC or MV..I stores win over that, but the kind of fused stores
+ // generated by target-independent code don't when the byte value is
+ // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
+ // than "STC;MVC". Handle the choice in target-specific code instead.
+ MaxStoresPerMemset = 0;
+ MaxStoresPerMemsetOptSize = 0;
+}
+
+EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector())
+ return MVT::i32;
+ return VT.changeVectorElementTypeToInteger();
+}
+
+bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ case MVT::f64:
+ return true;
+ case MVT::f128:
+ return false;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
+ return Imm.isZero() || Imm.isNegZero();
+}
+
+bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
+ unsigned,
+ bool *Fast) const {
+ // Unaligned accesses should never be slower than the expanded version.
+ // We check specifically for aligned accesses in the few cases where
+ // they are required.
+ if (Fast)
+ *Fast = true;
+ return true;
+}
+
+bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ // Punt on globals for now, although they can be used in limited
+ // RELATIVE LONG cases.
+ if (AM.BaseGV)
+ return false;
+
+ // Require a 20-bit signed offset.
+ if (!isInt<20>(AM.BaseOffs))
+ return false;
+
+ // Indexing is OK but no scale factor can be applied.
+ return AM.Scale == 0 || AM.Scale == 1;
+}
+
+bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
+ if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
+ return false;
+ unsigned FromBits = FromType->getPrimitiveSizeInBits();
+ unsigned ToBits = ToType->getPrimitiveSizeInBits();
+ return FromBits > ToBits;
+}
+
+bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
+ if (!FromVT.isInteger() || !ToVT.isInteger())
+ return false;
+ unsigned FromBits = FromVT.getSizeInBits();
+ unsigned ToBits = ToVT.getSizeInBits();
+ return FromBits > ToBits;
+}
+
+//===----------------------------------------------------------------------===//
+// Inline asm support
+//===----------------------------------------------------------------------===//
+
+TargetLowering::ConstraintType
+SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'a': // Address register
+ case 'd': // Data register (equivalent to 'r')
+ case 'f': // Floating-point register
+ case 'h': // High-part register
+ case 'r': // General-purpose register
+ return C_RegisterClass;
+
+ case 'Q': // Memory with base and unsigned 12-bit displacement
+ case 'R': // Likewise, plus an index
+ case 'S': // Memory with base and signed 20-bit displacement
+ case 'T': // Likewise, plus an index
+ case 'm': // Equivalent to 'T'.
+ return C_Memory;
+
+ case 'I': // Unsigned 8-bit constant
+ case 'J': // Unsigned 12-bit constant
+ case 'K': // Signed 16-bit constant
+ case 'L': // Signed 20-bit displacement (on all targets we support)
+ case 'M': // 0x7fffffff
+ return C_Other;
+
+ default:
+ break;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+TargetLowering::ConstraintWeight SystemZTargetLowering::
+getSingleConstraintMatchWeight(AsmOperandInfo &info,
+ const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+
+ case 'a': // Address register
+ case 'd': // Data register (equivalent to 'r')
+ case 'h': // High-part register
+ case 'r': // General-purpose register
+ if (CallOperandVal->getType()->isIntegerTy())
+ weight = CW_Register;
+ break;
+
+ case 'f': // Floating-point register
+ if (type->isFloatingPointTy())
+ weight = CW_Register;
+ break;
+
+ case 'I': // Unsigned 8-bit constant
+ if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
+ if (isUInt<8>(C->getZExtValue()))
+ weight = CW_Constant;
+ break;
+
+ case 'J': // Unsigned 12-bit constant
+ if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
+ if (isUInt<12>(C->getZExtValue()))
+ weight = CW_Constant;
+ break;
+
+ case 'K': // Signed 16-bit constant
+ if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
+ if (isInt<16>(C->getSExtValue()))
+ weight = CW_Constant;
+ break;
+
+ case 'L': // Signed 20-bit displacement (on all targets we support)
+ if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
+ if (isInt<20>(C->getSExtValue()))
+ weight = CW_Constant;
+ break;
+
+ case 'M': // 0x7fffffff
+ if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
+ if (C->getZExtValue() == 0x7fffffff)
+ weight = CW_Constant;
+ break;
+ }
+ return weight;
+}
+
+// Parse a "{tNNN}" register constraint for which the register type "t"
+// has already been verified. MC is the class associated with "t" and
+// Map maps 0-based register numbers to LLVM register numbers.
+static std::pair<unsigned, const TargetRegisterClass *>
+parseRegisterNumber(const std::string &Constraint,
+ const TargetRegisterClass *RC, const unsigned *Map) {
+ assert(*(Constraint.end()-1) == '}' && "Missing '}'");
+ if (isdigit(Constraint[2])) {
+ std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
+ unsigned Index = atoi(Suffix.c_str());
+ if (Index < 16 && Map[Index])
+ return std::make_pair(Map[Index], RC);
+ }
+ return std::make_pair(0U, nullptr);
+}
+
+std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
+ if (Constraint.size() == 1) {
+ // GCC Constraint Letters
+ switch (Constraint[0]) {
+ default: break;
+ case 'd': // Data register (equivalent to 'r')
+ case 'r': // General-purpose register
+ if (VT == MVT::i64)
+ return std::make_pair(0U, &SystemZ::GR64BitRegClass);
+ else if (VT == MVT::i128)
+ return std::make_pair(0U, &SystemZ::GR128BitRegClass);
+ return std::make_pair(0U, &SystemZ::GR32BitRegClass);
+
+ case 'a': // Address register
+ if (VT == MVT::i64)
+ return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
+ else if (VT == MVT::i128)
+ return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
+ return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
+
+ case 'h': // High-part register (an LLVM extension)
+ return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
+
+ case 'f': // Floating-point register
+ if (VT == MVT::f64)
+ return std::make_pair(0U, &SystemZ::FP64BitRegClass);
+ else if (VT == MVT::f128)
+ return std::make_pair(0U, &SystemZ::FP128BitRegClass);
+ return std::make_pair(0U, &SystemZ::FP32BitRegClass);
+ }
+ }
+ if (Constraint[0] == '{') {
+ // We need to override the default register parsing for GPRs and FPRs
+ // because the interpretation depends on VT. The internal names of
+ // the registers are also different from the external names
+ // (F0D and F0S instead of F0, etc.).
+ if (Constraint[1] == 'r') {
+ if (VT == MVT::i32)
+ return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
+ SystemZMC::GR32Regs);
+ if (VT == MVT::i128)
+ return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
+ SystemZMC::GR128Regs);
+ return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
+ SystemZMC::GR64Regs);
+ }
+ if (Constraint[1] == 'f') {
+ if (VT == MVT::f32)
+ return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
+ SystemZMC::FP32Regs);
+ if (VT == MVT::f128)
+ return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
+ SystemZMC::FP128Regs);
+ return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
+ SystemZMC::FP64Regs);
+ }
+ }
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+void SystemZTargetLowering::
+LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+ // Only support length 1 constraints for now.
+ if (Constraint.length() == 1) {
+ switch (Constraint[0]) {
+ case 'I': // Unsigned 8-bit constant
+ if (auto *C = dyn_cast<ConstantSDNode>(Op))
+ if (isUInt<8>(C->getZExtValue()))
+ Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
+ Op.getValueType()));
+ return;
+
+ case 'J': // Unsigned 12-bit constant
+ if (auto *C = dyn_cast<ConstantSDNode>(Op))
+ if (isUInt<12>(C->getZExtValue()))
+ Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
+ Op.getValueType()));
+ return;
+
+ case 'K': // Signed 16-bit constant
+ if (auto *C = dyn_cast<ConstantSDNode>(Op))
+ if (isInt<16>(C->getSExtValue()))
+ Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
+ Op.getValueType()));
+ return;
+
+ case 'L': // Signed 20-bit displacement (on all targets we support)
+ if (auto *C = dyn_cast<ConstantSDNode>(Op))
+ if (isInt<20>(C->getSExtValue()))
+ Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
+ Op.getValueType()));
+ return;
+
+ case 'M': // 0x7fffffff
+ if (auto *C = dyn_cast<ConstantSDNode>(Op))
+ if (C->getZExtValue() == 0x7fffffff)
+ Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
+ Op.getValueType()));
+ return;
+ }
+ }
+ TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+//===----------------------------------------------------------------------===//
+// Calling conventions
+//===----------------------------------------------------------------------===//
+
+#include "SystemZGenCallingConv.inc"
+
+bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
+ Type *ToType) const {
+ return isTruncateFree(FromType, ToType);
+}
+
+bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
+ if (!CI->isTailCall())
+ return false;
+ return true;
+}
+
+// Value is a value that has been passed to us in the location described by VA
+// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
+// any loads onto Chain.
+static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
+ CCValAssign &VA, SDValue Chain,
+ SDValue Value) {
+ // If the argument has been promoted from a smaller type, insert an
+ // assertion to capture this.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
+ DAG.getValueType(VA.getValVT()));
+
+ if (VA.isExtInLoc())
+ Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
+ else if (VA.getLocInfo() == CCValAssign::Indirect)
+ Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
+ MachinePointerInfo(), false, false, false, 0);
+ else
+ assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
+ return Value;
+}
+
+// Value is a value of type VA.getValVT() that we need to copy into
+// the location described by VA. Return a copy of Value converted to
+// VA.getValVT(). The caller is responsible for handling indirect values.
+static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
+ CCValAssign &VA, SDValue Value) {
+ switch (VA.getLocInfo()) {
+ case CCValAssign::SExt:
+ return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
+ case CCValAssign::ZExt:
+ return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
+ case CCValAssign::AExt:
+ return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
+ case CCValAssign::Full:
+ return Value;
+ default:
+ llvm_unreachable("Unhandled getLocInfo()");
+ }
+}
+
+SDValue SystemZTargetLowering::
+LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SystemZMachineFunctionInfo *FuncInfo =
+ MF.getInfo<SystemZMachineFunctionInfo>();
+ auto *TFL = static_cast<const SystemZFrameLowering *>(
+ DAG.getTarget().getFrameLowering());
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), ArgLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
+
+ unsigned NumFixedGPRs = 0;
+ unsigned NumFixedFPRs = 0;
+ for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
+ SDValue ArgValue;
+ CCValAssign &VA = ArgLocs[I];
+ EVT LocVT = VA.getLocVT();
+ if (VA.isRegLoc()) {
+ // Arguments passed in registers
+ const TargetRegisterClass *RC;
+ switch (LocVT.getSimpleVT().SimpleTy) {
+ default:
+ // Integers smaller than i64 should be promoted to i64.
+ llvm_unreachable("Unexpected argument type");
+ case MVT::i32:
+ NumFixedGPRs += 1;
+ RC = &SystemZ::GR32BitRegClass;
+ break;
+ case MVT::i64:
+ NumFixedGPRs += 1;
+ RC = &SystemZ::GR64BitRegClass;
+ break;
+ case MVT::f32:
+ NumFixedFPRs += 1;
+ RC = &SystemZ::FP32BitRegClass;
+ break;
+ case MVT::f64:
+ NumFixedFPRs += 1;
+ RC = &SystemZ::FP64BitRegClass;
+ break;
+ }
+
+ unsigned VReg = MRI.createVirtualRegister(RC);
+ MRI.addLiveIn(VA.getLocReg(), VReg);
+ ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
+ } else {
+ assert(VA.isMemLoc() && "Argument not register or memory");
+
+ // Create the frame index object for this incoming parameter.
+ int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
+ VA.getLocMemOffset(), true);
+
+ // Create the SelectionDAG nodes corresponding to a load
+ // from this parameter. Unpromoted ints and floats are
+ // passed as right-justified 8-byte values.
+ EVT PtrVT = getPointerTy();
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
+ FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
+ ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0);
+ }
+
+ // Convert the value of the argument register into the value that's
+ // being passed.
+ InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
+ }
+
+ if (IsVarArg) {
+ // Save the number of non-varargs registers for later use by va_start, etc.
+ FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
+ FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
+
+ // Likewise the address (in the form of a frame index) of where the
+ // first stack vararg would be. The 1-byte size here is arbitrary.
+ int64_t StackSize = CCInfo.getNextStackOffset();
+ FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
+
+ // ...and a similar frame index for the caller-allocated save area
+ // that will be used to store the incoming registers.
+ int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
+ unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
+ FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
+
+ // Store the FPR varargs in the reserved frame slots. (We store the
+ // GPRs as part of the prologue.)
+ if (NumFixedFPRs < SystemZ::NumArgFPRs) {
+ SDValue MemOps[SystemZ::NumArgFPRs];
+ for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
+ unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
+ int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
+ &SystemZ::FP64BitRegClass);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
+ MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, 0);
+
+ }
+ // Join the stores, which are independent of one another.
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
+ makeArrayRef(&MemOps[NumFixedFPRs],
+ SystemZ::NumArgFPRs-NumFixedFPRs));
+ }
+ }
+
+ return Chain;
+}
+
+static bool canUseSiblingCall(CCState ArgCCInfo,
+ SmallVectorImpl<CCValAssign> &ArgLocs) {
+ // Punt if there are any indirect or stack arguments, or if the call
+ // needs the call-saved argument register R6.
+ for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
+ CCValAssign &VA = ArgLocs[I];
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ return false;
+ if (!VA.isRegLoc())
+ return false;
+ unsigned Reg = VA.getLocReg();
+ if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
+ return false;
+ }
+ return true;
+}
+
+SDValue
+SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &DL = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &IsTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool IsVarArg = CLI.IsVarArg;
+ MachineFunction &MF = DAG.getMachineFunction();
+ EVT PtrVT = getPointerTy();
+
+ // Analyze the operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState ArgCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), ArgLocs,
+ *DAG.getContext());
+ ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
+
+ // We don't support GuaranteedTailCallOpt, only automatically-detected
+ // sibling calls.
+ if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
+ IsTailCall = false;
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = ArgCCInfo.getNextStackOffset();
+
+ // Mark the start of the call.
+ if (!IsTailCall)
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
+ DL);
+
+ // Copy argument values to their designated locations.
+ SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+ SDValue StackPtr;
+ for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
+ CCValAssign &VA = ArgLocs[I];
+ SDValue ArgValue = OutVals[I];
+
+ if (VA.getLocInfo() == CCValAssign::Indirect) {
+ // Store the argument in a stack slot and pass its address.
+ SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
+ int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+ MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, 0));
+ ArgValue = SpillSlot;
+ } else
+ ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
+
+ if (VA.isRegLoc())
+ // Queue up the argument copies and emit them at the end.
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
+ else {
+ assert(VA.isMemLoc() && "Argument not register or memory");
+
+ // Work out the address of the stack slot. Unpromoted ints and
+ // floats are passed as right-justified 8-byte values.
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
+ unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
+ if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
+ Offset += 4;
+ SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
+ DAG.getIntPtrConstant(Offset));
+
+ // Emit the store.
+ MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
+ MachinePointerInfo(),
+ false, false, 0));
+ }
+ }
+
+ // Join the stores, which are independent of one another.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
+
+ // Accept direct calls by converting symbolic call addresses to the
+ // associated Target* opcodes. Force %r1 to be used for indirect
+ // tail calls.
+ SDValue Glue;
+ if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
+ Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
+ } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
+ Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
+ } else if (IsTailCall) {
+ Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
+ Glue = Chain.getValue(1);
+ Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
+ }
+
+ // Build a sequence of copy-to-reg nodes, chained and glued together.
+ for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
+ Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
+ RegsToPass[I].second, Glue);
+ Glue = Chain.getValue(1);
+ }
+
+ // The first call operand is the chain and the second is the target address.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
+ Ops.push_back(DAG.getRegister(RegsToPass[I].first,
+ RegsToPass[I].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ // Glue the call to the argument copies, if any.
+ if (Glue.getNode())
+ Ops.push_back(Glue);
+
+ // Emit the call.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ if (IsTailCall)
+ return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
+ Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
+ Glue = Chain.getValue(1);
+
+ // Mark the end of the call, which is glued to the call itself.
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getConstant(NumBytes, PtrVT, true),
+ DAG.getConstant(0, PtrVT, true),
+ Glue, DL);
+ Glue = Chain.getValue(1);
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RetLocs;
+ CCState RetCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), RetLocs,
+ *DAG.getContext());
+ RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
+ CCValAssign &VA = RetLocs[I];
+
+ // Copy the value out, gluing the copy to the end of the call sequence.
+ SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
+ VA.getLocVT(), Glue);
+ Chain = RetValue.getValue(1);
+ Glue = RetValue.getValue(2);
+
+ // Convert the value of the return register into the value that's
+ // being returned.
+ InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
+ }
+
+ return Chain;
+}
+
+SDValue
+SystemZTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Assign locations to each returned value.
+ SmallVector<CCValAssign, 16> RetLocs;
+ CCState RetCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), RetLocs,
+ *DAG.getContext());
+ RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
+
+ // Quick exit for void returns
+ if (RetLocs.empty())
+ return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
+
+ // Copy the result values into the output registers.
+ SDValue Glue;
+ SmallVector<SDValue, 4> RetOps;
+ RetOps.push_back(Chain);
+ for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
+ CCValAssign &VA = RetLocs[I];
+ SDValue RetValue = OutVals[I];
+
+ // Make the return register live on exit.
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ // Promote the value as required.
+ RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
+
+ // Chain and glue the copies together.
+ unsigned Reg = VA.getLocReg();
+ Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
+ Glue = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
+ }
+
+ // Update chain and glue.
+ RetOps[0] = Chain;
+ if (Glue.getNode())
+ RetOps.push_back(Glue);
+
+ return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
+}
+
+SDValue SystemZTargetLowering::
+prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
+ return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
+}
+
+// CC is a comparison that will be implemented using an integer or
+// floating-point comparison. Return the condition code mask for
+// a branch on true. In the integer case, CCMASK_CMP_UO is set for
+// unsigned comparisons and clear for signed ones. In the floating-point
+// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
+static unsigned CCMaskForCondCode(ISD::CondCode CC) {
+#define CONV(X) \
+ case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
+ case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
+ case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
+
+ switch (CC) {
+ default:
+ llvm_unreachable("Invalid integer condition!");
+
+ CONV(EQ);
+ CONV(NE);
+ CONV(GT);
+ CONV(GE);
+ CONV(LT);
+ CONV(LE);
+
+ case ISD::SETO: return SystemZ::CCMASK_CMP_O;
+ case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
+ }
+#undef CONV
+}
+
+// Return a sequence for getting a 1 from an IPM result when CC has a
+// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
+// The handling of CC values outside CCValid doesn't matter.
+static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
+ // Deal with cases where the result can be taken directly from a bit
+ // of the IPM result.
+ if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
+ return IPMConversion(0, 0, SystemZ::IPM_CC);
+ if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
+ return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
+
+ // Deal with cases where we can add a value to force the sign bit
+ // to contain the right value. Putting the bit in 31 means we can
+ // use SRL rather than RISBG(L), and also makes it easier to get a
+ // 0/-1 value, so it has priority over the other tests below.
+ //
+ // These sequences rely on the fact that the upper two bits of the
+ // IPM result are zero.
+ uint64_t TopBit = uint64_t(1) << 31;
+ if (CCMask == (CCValid & SystemZ::CCMASK_0))
+ return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
+ if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
+ return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
+ if (CCMask == (CCValid & (SystemZ::CCMASK_0
+ | SystemZ::CCMASK_1
+ | SystemZ::CCMASK_2)))
+ return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
+ if (CCMask == (CCValid & SystemZ::CCMASK_3))
+ return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
+ if (CCMask == (CCValid & (SystemZ::CCMASK_1
+ | SystemZ::CCMASK_2
+ | SystemZ::CCMASK_3)))
+ return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
+
+ // Next try inverting the value and testing a bit. 0/1 could be
+ // handled this way too, but we dealt with that case above.
+ if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
+ return IPMConversion(-1, 0, SystemZ::IPM_CC);
+
+ // Handle cases where adding a value forces a non-sign bit to contain
+ // the right value.
+ if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
+ return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
+ if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
+ return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
+
+ // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
+ // can be done by inverting the low CC bit and applying one of the
+ // sign-based extractions above.
+ if (CCMask == (CCValid & SystemZ::CCMASK_1))
+ return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
+ if (CCMask == (CCValid & SystemZ::CCMASK_2))
+ return IPMConversion(1 << SystemZ::IPM_CC,
+ TopBit - (3 << SystemZ::IPM_CC), 31);
+ if (CCMask == (CCValid & (SystemZ::CCMASK_0
+ | SystemZ::CCMASK_1
+ | SystemZ::CCMASK_3)))
+ return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
+ if (CCMask == (CCValid & (SystemZ::CCMASK_0
+ | SystemZ::CCMASK_2
+ | SystemZ::CCMASK_3)))
+ return IPMConversion(1 << SystemZ::IPM_CC,
+ TopBit - (1 << SystemZ::IPM_CC), 31);
+
+ llvm_unreachable("Unexpected CC combination");
+}
+
+// If C can be converted to a comparison against zero, adjust the operands
+// as necessary.
+static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
+ if (C.ICmpType == SystemZICMP::UnsignedOnly)
+ return;
+
+ auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
+ if (!ConstOp1)
+ return;
+
+ int64_t Value = ConstOp1->getSExtValue();
+ if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
+ (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
+ (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
+ (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
+ C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
+ C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
+ }
+}
+
+// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
+// adjust the operands as necessary.
+static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
+ // For us to make any changes, it must a comparison between a single-use
+ // load and a constant.
+ if (!C.Op0.hasOneUse() ||
+ C.Op0.getOpcode() != ISD::LOAD ||
+ C.Op1.getOpcode() != ISD::Constant)
+ return;
+
+ // We must have an 8- or 16-bit load.
+ auto *Load = cast<LoadSDNode>(C.Op0);
+ unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
+ if (NumBits != 8 && NumBits != 16)
+ return;
+
+ // The load must be an extending one and the constant must be within the
+ // range of the unextended value.
+ auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
+ uint64_t Value = ConstOp1->getZExtValue();
+ uint64_t Mask = (1 << NumBits) - 1;
+ if (Load->getExtensionType() == ISD::SEXTLOAD) {
+ // Make sure that ConstOp1 is in range of C.Op0.
+ int64_t SignedValue = ConstOp1->getSExtValue();
+ if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
+ return;
+ if (C.ICmpType != SystemZICMP::SignedOnly) {
+ // Unsigned comparison between two sign-extended values is equivalent
+ // to unsigned comparison between two zero-extended values.
+ Value &= Mask;
+ } else if (NumBits == 8) {
+ // Try to treat the comparison as unsigned, so that we can use CLI.
+ // Adjust CCMask and Value as necessary.
+ if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
+ // Test whether the high bit of the byte is set.
+ Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
+ else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
+ // Test whether the high bit of the byte is clear.
+ Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
+ else
+ // No instruction exists for this combination.
+ return;
+ C.ICmpType = SystemZICMP::UnsignedOnly;
+ }
+ } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
+ if (Value > Mask)
+ return;
+ assert(C.ICmpType == SystemZICMP::Any &&
+ "Signedness shouldn't matter here.");
+ } else
+ return;
+
+ // Make sure that the first operand is an i32 of the right extension type.
+ ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
+ ISD::SEXTLOAD :
+ ISD::ZEXTLOAD);
+ if (C.Op0.getValueType() != MVT::i32 ||
+ Load->getExtensionType() != ExtType)
+ C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
+ Load->getChain(), Load->getBasePtr(),
+ Load->getPointerInfo(), Load->getMemoryVT(),
+ Load->isVolatile(), Load->isNonTemporal(),
+ Load->getAlignment());
+
+ // Make sure that the second operand is an i32 with the right value.
+ if (C.Op1.getValueType() != MVT::i32 ||
+ Value != ConstOp1->getZExtValue())
+ C.Op1 = DAG.getConstant(Value, MVT::i32);
+}
+
+// Return true if Op is either an unextended load, or a load suitable
+// for integer register-memory comparisons of type ICmpType.
+static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
+ auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
+ if (Load) {
+ // There are no instructions to compare a register with a memory byte.
+ if (Load->getMemoryVT() == MVT::i8)
+ return false;
+ // Otherwise decide on extension type.
+ switch (Load->getExtensionType()) {
+ case ISD::NON_EXTLOAD:
+ return true;
+ case ISD::SEXTLOAD:
+ return ICmpType != SystemZICMP::UnsignedOnly;
+ case ISD::ZEXTLOAD:
+ return ICmpType != SystemZICMP::SignedOnly;
+ default:
+ break;
+ }
+ }
+ return false;
+}
+
+// Return true if it is better to swap the operands of C.
+static bool shouldSwapCmpOperands(const Comparison &C) {
+ // Leave f128 comparisons alone, since they have no memory forms.
+ if (C.Op0.getValueType() == MVT::f128)
+ return false;
+
+ // Always keep a floating-point constant second, since comparisons with
+ // zero can use LOAD TEST and comparisons with other constants make a
+ // natural memory operand.
+ if (isa<ConstantFPSDNode>(C.Op1))
+ return false;
+
+ // Never swap comparisons with zero since there are many ways to optimize
+ // those later.
+ auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
+ if (ConstOp1 && ConstOp1->getZExtValue() == 0)
+ return false;
+
+ // Also keep natural memory operands second if the loaded value is
+ // only used here. Several comparisons have memory forms.
+ if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
+ return false;
+
+ // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
+ // In that case we generally prefer the memory to be second.
+ if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
+ // The only exceptions are when the second operand is a constant and
+ // we can use things like CHHSI.
+ if (!ConstOp1)
+ return true;
+ // The unsigned memory-immediate instructions can handle 16-bit
+ // unsigned integers.
+ if (C.ICmpType != SystemZICMP::SignedOnly &&
+ isUInt<16>(ConstOp1->getZExtValue()))
+ return false;
+ // The signed memory-immediate instructions can handle 16-bit
+ // signed integers.
+ if (C.ICmpType != SystemZICMP::UnsignedOnly &&
+ isInt<16>(ConstOp1->getSExtValue()))
+ return false;
+ return true;
+ }
+
+ // Try to promote the use of CGFR and CLGFR.
+ unsigned Opcode0 = C.Op0.getOpcode();
+ if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
+ return true;
+ if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
+ return true;
+ if (C.ICmpType != SystemZICMP::SignedOnly &&
+ Opcode0 == ISD::AND &&
+ C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
+ return true;
+
+ return false;
+}
+
+// Return a version of comparison CC mask CCMask in which the LT and GT
+// actions are swapped.
+static unsigned reverseCCMask(unsigned CCMask) {
+ return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
+ (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
+ (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
+ (CCMask & SystemZ::CCMASK_CMP_UO));
+}
+
+// Check whether C tests for equality between X and Y and whether X - Y
+// or Y - X is also computed. In that case it's better to compare the
+// result of the subtraction against zero.
+static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
+ if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
+ C.CCMask == SystemZ::CCMASK_CMP_NE) {
+ for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
+ SDNode *N = *I;
+ if (N->getOpcode() == ISD::SUB &&
+ ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
+ (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
+ C.Op0 = SDValue(N, 0);
+ C.Op1 = DAG.getConstant(0, N->getValueType(0));
+ return;
+ }
+ }
+ }
+}
+
+// Check whether C compares a floating-point value with zero and if that
+// floating-point value is also negated. In this case we can use the
+// negation to set CC, so avoiding separate LOAD AND TEST and
+// LOAD (NEGATIVE/COMPLEMENT) instructions.
+static void adjustForFNeg(Comparison &C) {
+ auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
+ if (C1 && C1->isZero()) {
+ for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
+ SDNode *N = *I;
+ if (N->getOpcode() == ISD::FNEG) {
+ C.Op0 = SDValue(N, 0);
+ C.CCMask = reverseCCMask(C.CCMask);
+ return;
+ }
+ }
+ }
+}
+
+// Check whether C compares (shl X, 32) with 0 and whether X is
+// also sign-extended. In that case it is better to test the result
+// of the sign extension using LTGFR.
+//
+// This case is important because InstCombine transforms a comparison
+// with (sext (trunc X)) into a comparison with (shl X, 32).
+static void adjustForLTGFR(Comparison &C) {
+ // Check for a comparison between (shl X, 32) and 0.
+ if (C.Op0.getOpcode() == ISD::SHL &&
+ C.Op0.getValueType() == MVT::i64 &&
+ C.Op1.getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
+ auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
+ if (C1 && C1->getZExtValue() == 32) {
+ SDValue ShlOp0 = C.Op0.getOperand(0);
+ // See whether X has any SIGN_EXTEND_INREG uses.
+ for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
+ SDNode *N = *I;
+ if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
+ C.Op0 = SDValue(N, 0);
+ return;
+ }
+ }
+ }
+ }
+}
+
+// If C compares the truncation of an extending load, try to compare
+// the untruncated value instead. This exposes more opportunities to
+// reuse CC.
+static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
+ if (C.Op0.getOpcode() == ISD::TRUNCATE &&
+ C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
+ C.Op1.getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
+ auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
+ if (L->getMemoryVT().getStoreSizeInBits()
+ <= C.Op0.getValueType().getSizeInBits()) {
+ unsigned Type = L->getExtensionType();
+ if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
+ (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
+ C.Op0 = C.Op0.getOperand(0);
+ C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
+ }
+ }
+ }
+}
+
+// Return true if shift operation N has an in-range constant shift value.
+// Store it in ShiftVal if so.
+static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
+ auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!Shift)
+ return false;
+
+ uint64_t Amount = Shift->getZExtValue();
+ if (Amount >= N.getValueType().getSizeInBits())
+ return false;
+
+ ShiftVal = Amount;
+ return true;
+}
+
+// Check whether an AND with Mask is suitable for a TEST UNDER MASK
+// instruction and whether the CC value is descriptive enough to handle
+// a comparison of type Opcode between the AND result and CmpVal.
+// CCMask says which comparison result is being tested and BitSize is
+// the number of bits in the operands. If TEST UNDER MASK can be used,
+// return the corresponding CC mask, otherwise return 0.
+static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
+ uint64_t Mask, uint64_t CmpVal,
+ unsigned ICmpType) {
+ assert(Mask != 0 && "ANDs with zero should have been removed by now");
+
+ // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
+ if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
+ !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
+ return 0;
+
+ // Work out the masks for the lowest and highest bits.
+ unsigned HighShift = 63 - countLeadingZeros(Mask);
+ uint64_t High = uint64_t(1) << HighShift;
+ uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
+
+ // Signed ordered comparisons are effectively unsigned if the sign
+ // bit is dropped.
+ bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
+
+ // Check for equality comparisons with 0, or the equivalent.
+ if (CmpVal == 0) {
+ if (CCMask == SystemZ::CCMASK_CMP_EQ)
+ return SystemZ::CCMASK_TM_ALL_0;
+ if (CCMask == SystemZ::CCMASK_CMP_NE)
+ return SystemZ::CCMASK_TM_SOME_1;
+ }
+ if (EffectivelyUnsigned && CmpVal <= Low) {
+ if (CCMask == SystemZ::CCMASK_CMP_LT)
+ return SystemZ::CCMASK_TM_ALL_0;
+ if (CCMask == SystemZ::CCMASK_CMP_GE)
+ return SystemZ::CCMASK_TM_SOME_1;
+ }
+ if (EffectivelyUnsigned && CmpVal < Low) {
+ if (CCMask == SystemZ::CCMASK_CMP_LE)
+ return SystemZ::CCMASK_TM_ALL_0;
+ if (CCMask == SystemZ::CCMASK_CMP_GT)
+ return SystemZ::CCMASK_TM_SOME_1;
+ }
+
+ // Check for equality comparisons with the mask, or the equivalent.
+ if (CmpVal == Mask) {
+ if (CCMask == SystemZ::CCMASK_CMP_EQ)
+ return SystemZ::CCMASK_TM_ALL_1;
+ if (CCMask == SystemZ::CCMASK_CMP_NE)
+ return SystemZ::CCMASK_TM_SOME_0;
+ }
+ if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
+ if (CCMask == SystemZ::CCMASK_CMP_GT)
+ return SystemZ::CCMASK_TM_ALL_1;
+ if (CCMask == SystemZ::CCMASK_CMP_LE)
+ return SystemZ::CCMASK_TM_SOME_0;
+ }
+ if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
+ if (CCMask == SystemZ::CCMASK_CMP_GE)
+ return SystemZ::CCMASK_TM_ALL_1;
+ if (CCMask == SystemZ::CCMASK_CMP_LT)
+ return SystemZ::CCMASK_TM_SOME_0;
+ }
+
+ // Check for ordered comparisons with the top bit.
+ if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
+ if (CCMask == SystemZ::CCMASK_CMP_LE)
+ return SystemZ::CCMASK_TM_MSB_0;
+ if (CCMask == SystemZ::CCMASK_CMP_GT)
+ return SystemZ::CCMASK_TM_MSB_1;
+ }
+ if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
+ if (CCMask == SystemZ::CCMASK_CMP_LT)
+ return SystemZ::CCMASK_TM_MSB_0;
+ if (CCMask == SystemZ::CCMASK_CMP_GE)
+ return SystemZ::CCMASK_TM_MSB_1;
+ }
+
+ // If there are just two bits, we can do equality checks for Low and High
+ // as well.
+ if (Mask == Low + High) {
+ if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
+ return SystemZ::CCMASK_TM_MIXED_MSB_0;
+ if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
+ return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
+ if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
+ return SystemZ::CCMASK_TM_MIXED_MSB_1;
+ if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
+ return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
+ }
+
+ // Looks like we've exhausted our options.
+ return 0;
+}
+
+// See whether C can be implemented as a TEST UNDER MASK instruction.
+// Update the arguments with the TM version if so.
+static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
+ // Check that we have a comparison with a constant.
+ auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
+ if (!ConstOp1)
+ return;
+ uint64_t CmpVal = ConstOp1->getZExtValue();
+
+ // Check whether the nonconstant input is an AND with a constant mask.
+ Comparison NewC(C);
+ uint64_t MaskVal;
+ ConstantSDNode *Mask = nullptr;
+ if (C.Op0.getOpcode() == ISD::AND) {
+ NewC.Op0 = C.Op0.getOperand(0);
+ NewC.Op1 = C.Op0.getOperand(1);
+ Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
+ if (!Mask)
+ return;
+ MaskVal = Mask->getZExtValue();
+ } else {
+ // There is no instruction to compare with a 64-bit immediate
+ // so use TMHH instead if possible. We need an unsigned ordered
+ // comparison with an i64 immediate.
+ if (NewC.Op0.getValueType() != MVT::i64 ||
+ NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
+ NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
+ NewC.ICmpType == SystemZICMP::SignedOnly)
+ return;
+ // Convert LE and GT comparisons into LT and GE.
+ if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
+ NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
+ if (CmpVal == uint64_t(-1))
+ return;
+ CmpVal += 1;
+ NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
+ }
+ // If the low N bits of Op1 are zero than the low N bits of Op0 can
+ // be masked off without changing the result.
+ MaskVal = -(CmpVal & -CmpVal);
+ NewC.ICmpType = SystemZICMP::UnsignedOnly;
+ }
+
+ // Check whether the combination of mask, comparison value and comparison
+ // type are suitable.
+ unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
+ unsigned NewCCMask, ShiftVal;
+ if (NewC.ICmpType != SystemZICMP::SignedOnly &&
+ NewC.Op0.getOpcode() == ISD::SHL &&
+ isSimpleShift(NewC.Op0, ShiftVal) &&
+ (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
+ MaskVal >> ShiftVal,
+ CmpVal >> ShiftVal,
+ SystemZICMP::Any))) {
+ NewC.Op0 = NewC.Op0.getOperand(0);
+ MaskVal >>= ShiftVal;
+ } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
+ NewC.Op0.getOpcode() == ISD::SRL &&
+ isSimpleShift(NewC.Op0, ShiftVal) &&
+ (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
+ MaskVal << ShiftVal,
+ CmpVal << ShiftVal,
+ SystemZICMP::UnsignedOnly))) {
+ NewC.Op0 = NewC.Op0.getOperand(0);
+ MaskVal <<= ShiftVal;
+ } else {
+ NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
+ NewC.ICmpType);
+ if (!NewCCMask)
+ return;
+ }
+
+ // Go ahead and make the change.
+ C.Opcode = SystemZISD::TM;
+ C.Op0 = NewC.Op0;
+ if (Mask && Mask->getZExtValue() == MaskVal)
+ C.Op1 = SDValue(Mask, 0);
+ else
+ C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
+ C.CCValid = SystemZ::CCMASK_TM;
+ C.CCMask = NewCCMask;
+}
+
+// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
+static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
+ ISD::CondCode Cond) {
+ Comparison C(CmpOp0, CmpOp1);
+ C.CCMask = CCMaskForCondCode(Cond);
+ if (C.Op0.getValueType().isFloatingPoint()) {
+ C.CCValid = SystemZ::CCMASK_FCMP;
+ C.Opcode = SystemZISD::FCMP;
+ adjustForFNeg(C);
+ } else {
+ C.CCValid = SystemZ::CCMASK_ICMP;
+ C.Opcode = SystemZISD::ICMP;
+ // Choose the type of comparison. Equality and inequality tests can
+ // use either signed or unsigned comparisons. The choice also doesn't
+ // matter if both sign bits are known to be clear. In those cases we
+ // want to give the main isel code the freedom to choose whichever
+ // form fits best.
+ if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
+ C.CCMask == SystemZ::CCMASK_CMP_NE ||
+ (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
+ C.ICmpType = SystemZICMP::Any;
+ else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
+ C.ICmpType = SystemZICMP::UnsignedOnly;
+ else
+ C.ICmpType = SystemZICMP::SignedOnly;
+ C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
+ adjustZeroCmp(DAG, C);
+ adjustSubwordCmp(DAG, C);
+ adjustForSubtraction(DAG, C);
+ adjustForLTGFR(C);
+ adjustICmpTruncate(DAG, C);
+ }
+
+ if (shouldSwapCmpOperands(C)) {
+ std::swap(C.Op0, C.Op1);
+ C.CCMask = reverseCCMask(C.CCMask);
+ }
+
+ adjustForTestUnderMask(DAG, C);
+ return C;
+}
+
+// Emit the comparison instruction described by C.
+static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
+ if (C.Opcode == SystemZISD::ICMP)
+ return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
+ DAG.getConstant(C.ICmpType, MVT::i32));
+ if (C.Opcode == SystemZISD::TM) {
+ bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
+ bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
+ return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
+ DAG.getConstant(RegisterOnly, MVT::i32));
+ }
+ return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
+}
+
+// Implement a 32-bit *MUL_LOHI operation by extending both operands to
+// 64 bits. Extend is the extension type to use. Store the high part
+// in Hi and the low part in Lo.
+static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
+ unsigned Extend, SDValue Op0, SDValue Op1,
+ SDValue &Hi, SDValue &Lo) {
+ Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
+ Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
+ SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
+ Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
+ Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
+ Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
+}
+
+// Lower a binary operation that produces two VT results, one in each
+// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
+// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
+// on the extended Op0 and (unextended) Op1. Store the even register result
+// in Even and the odd register result in Odd.
+static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
+ unsigned Extend, unsigned Opcode,
+ SDValue Op0, SDValue Op1,
+ SDValue &Even, SDValue &Odd) {
+ SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
+ SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
+ SDValue(In128, 0), Op1);
+ bool Is32Bit = is32Bit(VT);
+ Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
+ Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
+}
+
+// Return an i32 value that is 1 if the CC value produced by Glue is
+// in the mask CCMask and 0 otherwise. CC is known to have a value
+// in CCValid, so other values can be ignored.
+static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
+ unsigned CCValid, unsigned CCMask) {
+ IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
+ SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
+
+ if (Conversion.XORValue)
+ Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
+ DAG.getConstant(Conversion.XORValue, MVT::i32));
+
+ if (Conversion.AddValue)
+ Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
+ DAG.getConstant(Conversion.AddValue, MVT::i32));
+
+ // The SHR/AND sequence should get optimized to an RISBG.
+ Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
+ DAG.getConstant(Conversion.Bit, MVT::i32));
+ if (Conversion.Bit != 31)
+ Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
+ DAG.getConstant(1, MVT::i32));
+ return Result;
+}
+
+SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue CmpOp0 = Op.getOperand(0);
+ SDValue CmpOp1 = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDLoc DL(Op);
+
+ Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
+ SDValue Glue = emitCmp(DAG, DL, C);
+ return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
+}
+
+SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue CmpOp0 = Op.getOperand(2);
+ SDValue CmpOp1 = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ SDLoc DL(Op);
+
+ Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
+ SDValue Glue = emitCmp(DAG, DL, C);
+ return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
+ Chain, DAG.getConstant(C.CCValid, MVT::i32),
+ DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
+}
+
+// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
+// allowing Pos and Neg to be wider than CmpOp.
+static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
+ return (Neg.getOpcode() == ISD::SUB &&
+ Neg.getOperand(0).getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
+ Neg.getOperand(1) == Pos &&
+ (Pos == CmpOp ||
+ (Pos.getOpcode() == ISD::SIGN_EXTEND &&
+ Pos.getOperand(0) == CmpOp)));
+}
+
+// Return the absolute or negative absolute of Op; IsNegative decides which.
+static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
+ bool IsNegative) {
+ Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
+ if (IsNegative)
+ Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
+ DAG.getConstant(0, Op.getValueType()), Op);
+ return Op;
+}
+
+SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue CmpOp0 = Op.getOperand(0);
+ SDValue CmpOp1 = Op.getOperand(1);
+ SDValue TrueOp = Op.getOperand(2);
+ SDValue FalseOp = Op.getOperand(3);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDLoc DL(Op);
+
+ Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
+
+ // Check for absolute and negative-absolute selections, including those
+ // where the comparison value is sign-extended (for LPGFR and LNGFR).
+ // This check supplements the one in DAGCombiner.
+ if (C.Opcode == SystemZISD::ICMP &&
+ C.CCMask != SystemZ::CCMASK_CMP_EQ &&
+ C.CCMask != SystemZ::CCMASK_CMP_NE &&
+ C.Op1.getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
+ if (isAbsolute(C.Op0, TrueOp, FalseOp))
+ return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
+ if (isAbsolute(C.Op0, FalseOp, TrueOp))
+ return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
+ }
+
+ SDValue Glue = emitCmp(DAG, DL, C);
+
+ // Special case for handling -1/0 results. The shifts we use here
+ // should get optimized with the IPM conversion sequence.
+ auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
+ auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
+ if (TrueC && FalseC) {
+ int64_t TrueVal = TrueC->getSExtValue();
+ int64_t FalseVal = FalseC->getSExtValue();
+ if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
+ // Invert the condition if we want -1 on false.
+ if (TrueVal == 0)
+ C.CCMask ^= C.CCValid;
+ SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
+ EVT VT = Op.getValueType();
+ // Extend the result to VT. Upper bits are ignored.
+ if (!is32Bit(VT))
+ Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
+ // Sign-extend from the low bit.
+ SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
+ SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
+ return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
+ }
+ }
+
+ SmallVector<SDValue, 5> Ops;
+ Ops.push_back(TrueOp);
+ Ops.push_back(FalseOp);
+ Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32));
+ Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32));
+ Ops.push_back(Glue);
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
+ return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
+}
+
+SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Node);
+ const GlobalValue *GV = Node->getGlobal();
+ int64_t Offset = Node->getOffset();
+ EVT PtrVT = getPointerTy();
+ Reloc::Model RM = DAG.getTarget().getRelocationModel();
+ CodeModel::Model CM = DAG.getTarget().getCodeModel();
+
+ SDValue Result;
+ if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
+ // Assign anchors at 1<<12 byte boundaries.
+ uint64_t Anchor = Offset & ~uint64_t(0xfff);
+ Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
+ Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
+
+ // The offset can be folded into the address if it is aligned to a halfword.
+ Offset -= Anchor;
+ if (Offset != 0 && (Offset & 1) == 0) {
+ SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
+ Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
+ Offset = 0;
+ }
+ } else {
+ Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
+ Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
+ Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(), false, false, false, 0);
+ }
+
+ // If there was a non-zero offset that we didn't fold, create an explicit
+ // addition for it.
+ if (Offset != 0)
+ Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
+ DAG.getConstant(Offset, PtrVT));
+
+ return Result;
+}
+
+SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Node);
+ const GlobalValue *GV = Node->getGlobal();
+ EVT PtrVT = getPointerTy();
+ TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
+
+ if (model != TLSModel::LocalExec)
+ llvm_unreachable("only local-exec TLS mode supported");
+
+ // The high part of the thread pointer is in access register 0.
+ SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
+ DAG.getConstant(0, MVT::i32));
+ TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
+
+ // The low part of the thread pointer is in access register 1.
+ SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
+ DAG.getConstant(1, MVT::i32));
+ TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
+
+ // Merge them into a single 64-bit address.
+ SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
+ DAG.getConstant(32, PtrVT));
+ SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
+
+ // Get the offset of GA from the thread pointer.
+ SystemZConstantPoolValue *CPV =
+ SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
+
+ // Force the offset into the constant pool and load it from there.
+ SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
+ SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
+ CPAddr, MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+
+ // Add the base and offset together.
+ return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
+}
+
+SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Node);
+ const BlockAddress *BA = Node->getBlockAddress();
+ int64_t Offset = Node->getOffset();
+ EVT PtrVT = getPointerTy();
+
+ SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
+ Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
+ return Result;
+}
+
+SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
+ SelectionDAG &DAG) const {
+ SDLoc DL(JT);
+ EVT PtrVT = getPointerTy();
+ SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
+
+ // Use LARL to load the address of the table.
+ return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
+}
+
+SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
+ SelectionDAG &DAG) const {
+ SDLoc DL(CP);
+ EVT PtrVT = getPointerTy();
+
+ SDValue Result;
+ if (CP->isMachineConstantPoolEntry())
+ Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
+ CP->getAlignment());
+ else
+ Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
+ CP->getAlignment(), CP->getOffset());
+
+ // Use LARL to load the address of the constant pool entry.
+ return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
+}
+
+SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue In = Op.getOperand(0);
+ EVT InVT = In.getValueType();
+ EVT ResVT = Op.getValueType();
+
+ if (InVT == MVT::i32 && ResVT == MVT::f32) {
+ SDValue In64;
+ if (Subtarget.hasHighWord()) {
+ SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
+ MVT::i64);
+ In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
+ MVT::i64, SDValue(U64, 0), In);
+ } else {
+ In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
+ In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
+ DAG.getConstant(32, MVT::i64));
+ }
+ SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
+ return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
+ DL, MVT::f32, Out64);
+ }
+ if (InVT == MVT::f32 && ResVT == MVT::i32) {
+ SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
+ SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
+ MVT::f64, SDValue(U64, 0), In);
+ SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
+ if (Subtarget.hasHighWord())
+ return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
+ MVT::i32, Out64);
+ SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
+ DAG.getConstant(32, MVT::i64));
+ return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
+ }
+ llvm_unreachable("Unexpected bitcast combination");
+}
+
+SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SystemZMachineFunctionInfo *FuncInfo =
+ MF.getInfo<SystemZMachineFunctionInfo>();
+ EVT PtrVT = getPointerTy();
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue Addr = Op.getOperand(1);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ SDLoc DL(Op);
+
+ // The initial values of each field.
+ const unsigned NumFields = 4;
+ SDValue Fields[NumFields] = {
+ DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
+ DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
+ DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
+ DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
+ };
+
+ // Store each field into its respective slot.
+ SDValue MemOps[NumFields];
+ unsigned Offset = 0;
+ for (unsigned I = 0; I < NumFields; ++I) {
+ SDValue FieldAddr = Addr;
+ if (Offset != 0)
+ FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
+ DAG.getIntPtrConstant(Offset));
+ MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
+ MachinePointerInfo(SV, Offset),
+ false, false, 0);
+ Offset += 8;
+ }
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
+}
+
+SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue DstPtr = Op.getOperand(1);
+ SDValue SrcPtr = Op.getOperand(2);
+ const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
+ const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+ SDLoc DL(Op);
+
+ return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
+ /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
+ MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
+}
+
+SDValue SystemZTargetLowering::
+lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ SDLoc DL(Op);
+
+ unsigned SPReg = getStackPointerRegisterToSaveRestore();
+
+ // Get a reference to the stack pointer.
+ SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
+
+ // Get the new stack pointer value.
+ SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
+
+ // Copy the new stack pointer back.
+ Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
+
+ // The allocated data lives above the 160 bytes allocated for the standard
+ // frame, plus any outgoing stack arguments. We don't know how much that
+ // amounts to yet, so emit a special ADJDYNALLOC placeholder.
+ SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
+ SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
+
+ SDValue Ops[2] = { Result, Chain };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ SDValue Ops[2];
+ if (is32Bit(VT))
+ // Just do a normal 64-bit multiplication and extract the results.
+ // We define this so that it can be used for constant division.
+ lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
+ Op.getOperand(1), Ops[1], Ops[0]);
+ else {
+ // Do a full 128-bit multiplication based on UMUL_LOHI64:
+ //
+ // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
+ //
+ // but using the fact that the upper halves are either all zeros
+ // or all ones:
+ //
+ // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
+ //
+ // and grouping the right terms together since they are quicker than the
+ // multiplication:
+ //
+ // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
+ SDValue C63 = DAG.getConstant(63, MVT::i64);
+ SDValue LL = Op.getOperand(0);
+ SDValue RL = Op.getOperand(1);
+ SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
+ SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
+ // UMUL_LOHI64 returns the low result in the odd register and the high
+ // result in the even register. SMUL_LOHI is defined to return the
+ // low half first, so the results are in reverse order.
+ lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
+ LL, RL, Ops[1], Ops[0]);
+ SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
+ SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
+ SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
+ Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
+ }
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ SDValue Ops[2];
+ if (is32Bit(VT))
+ // Just do a normal 64-bit multiplication and extract the results.
+ // We define this so that it can be used for constant division.
+ lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
+ Op.getOperand(1), Ops[1], Ops[0]);
+ else
+ // UMUL_LOHI64 returns the low result in the odd register and the high
+ // result in the even register. UMUL_LOHI is defined to return the
+ // low half first, so the results are in reverse order.
+ lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
+ Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ unsigned Opcode;
+
+ // We use DSGF for 32-bit division.
+ if (is32Bit(VT)) {
+ Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
+ Opcode = SystemZISD::SDIVREM32;
+ } else if (DAG.ComputeNumSignBits(Op1) > 32) {
+ Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
+ Opcode = SystemZISD::SDIVREM32;
+ } else
+ Opcode = SystemZISD::SDIVREM64;
+
+ // DSG(F) takes a 64-bit dividend, so the even register in the GR128
+ // input is "don't care". The instruction returns the remainder in
+ // the even register and the quotient in the odd register.
+ SDValue Ops[2];
+ lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
+ Op0, Op1, Ops[1], Ops[0]);
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+
+ // DL(G) uses a double-width dividend, so we need to clear the even
+ // register in the GR128 input. The instruction returns the remainder
+ // in the even register and the quotient in the odd register.
+ SDValue Ops[2];
+ if (is32Bit(VT))
+ lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
+ Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
+ else
+ lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
+ Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
+
+ // Get the known-zero masks for each operand.
+ SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
+ APInt KnownZero[2], KnownOne[2];
+ DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
+ DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
+
+ // See if the upper 32 bits of one operand and the lower 32 bits of the
+ // other are known zero. They are the low and high operands respectively.
+ uint64_t Masks[] = { KnownZero[0].getZExtValue(),
+ KnownZero[1].getZExtValue() };
+ unsigned High, Low;
+ if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
+ High = 1, Low = 0;
+ else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
+ High = 0, Low = 1;
+ else
+ return Op;
+
+ SDValue LowOp = Ops[Low];
+ SDValue HighOp = Ops[High];
+
+ // If the high part is a constant, we're better off using IILH.
+ if (HighOp.getOpcode() == ISD::Constant)
+ return Op;
+
+ // If the low part is a constant that is outside the range of LHI,
+ // then we're better off using IILF.
+ if (LowOp.getOpcode() == ISD::Constant) {
+ int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
+ if (!isInt<16>(Value))
+ return Op;
+ }
+
+ // Check whether the high part is an AND that doesn't change the
+ // high 32 bits and just masks out low bits. We can skip it if so.
+ if (HighOp.getOpcode() == ISD::AND &&
+ HighOp.getOperand(1).getOpcode() == ISD::Constant) {
+ SDValue HighOp0 = HighOp.getOperand(0);
+ uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
+ if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
+ HighOp = HighOp0;
+ }
+
+ // Take advantage of the fact that all GR32 operations only change the
+ // low 32 bits by truncating Low to an i32 and inserting it directly
+ // using a subreg. The interesting cases are those where the truncation
+ // can be folded.
+ SDLoc DL(Op);
+ SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
+ return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
+ MVT::i64, HighOp, Low32);
+}
+
+// Op is an atomic load. Lower it into a normal volatile load.
+SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
+ SelectionDAG &DAG) const {
+ auto *Node = cast<AtomicSDNode>(Op.getNode());
+ return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
+ Node->getChain(), Node->getBasePtr(),
+ Node->getMemoryVT(), Node->getMemOperand());
+}
+
+// Op is an atomic store. Lower it into a normal volatile store followed
+// by a serialization.
+SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
+ SelectionDAG &DAG) const {
+ auto *Node = cast<AtomicSDNode>(Op.getNode());
+ SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
+ Node->getBasePtr(), Node->getMemoryVT(),
+ Node->getMemOperand());
+ return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
+ Chain), 0);
+}
+
+// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
+// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
+SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
+ SelectionDAG &DAG,
+ unsigned Opcode) const {
+ auto *Node = cast<AtomicSDNode>(Op.getNode());
+
+ // 32-bit operations need no code outside the main loop.
+ EVT NarrowVT = Node->getMemoryVT();
+ EVT WideVT = MVT::i32;
+ if (NarrowVT == WideVT)
+ return Op;
+
+ int64_t BitSize = NarrowVT.getSizeInBits();
+ SDValue ChainIn = Node->getChain();
+ SDValue Addr = Node->getBasePtr();
+ SDValue Src2 = Node->getVal();
+ MachineMemOperand *MMO = Node->getMemOperand();
+ SDLoc DL(Node);
+ EVT PtrVT = Addr.getValueType();
+
+ // Convert atomic subtracts of constants into additions.
+ if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
+ if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
+ Opcode = SystemZISD::ATOMIC_LOADW_ADD;
+ Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
+ }
+
+ // Get the address of the containing word.
+ SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
+ DAG.getConstant(-4, PtrVT));
+
+ // Get the number of bits that the word must be rotated left in order
+ // to bring the field to the top bits of a GR32.
+ SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
+ DAG.getConstant(3, PtrVT));
+ BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
+
+ // Get the complementing shift amount, for rotating a field in the top
+ // bits back to its proper position.
+ SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
+ DAG.getConstant(0, WideVT), BitShift);
+
+ // Extend the source operand to 32 bits and prepare it for the inner loop.
+ // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
+ // operations require the source to be shifted in advance. (This shift
+ // can be folded if the source is constant.) For AND and NAND, the lower
+ // bits must be set, while for other opcodes they should be left clear.
+ if (Opcode != SystemZISD::ATOMIC_SWAPW)
+ Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
+ DAG.getConstant(32 - BitSize, WideVT));
+ if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
+ Opcode == SystemZISD::ATOMIC_LOADW_NAND)
+ Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
+ DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
+
+ // Construct the ATOMIC_LOADW_* node.
+ SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
+ SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
+ DAG.getConstant(BitSize, WideVT) };
+ SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
+ NarrowVT, MMO);
+
+ // Rotate the result of the final CS so that the field is in the lower
+ // bits of a GR32, then truncate it.
+ SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
+ DAG.getConstant(BitSize, WideVT));
+ SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
+
+ SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
+ return DAG.getMergeValues(RetOps, DL);
+}
+
+// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
+// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
+// operations into additions.
+SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
+ SelectionDAG &DAG) const {
+ auto *Node = cast<AtomicSDNode>(Op.getNode());
+ EVT MemVT = Node->getMemoryVT();
+ if (MemVT == MVT::i32 || MemVT == MVT::i64) {
+ // A full-width operation.
+ assert(Op.getValueType() == MemVT && "Mismatched VTs");
+ SDValue Src2 = Node->getVal();
+ SDValue NegSrc2;
+ SDLoc DL(Src2);
+
+ if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
+ // Use an addition if the operand is constant and either LAA(G) is
+ // available or the negative value is in the range of A(G)FHI.
+ int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
+ if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
+ NegSrc2 = DAG.getConstant(Value, MemVT);
+ } else if (Subtarget.hasInterlockedAccess1())
+ // Use LAA(G) if available.
+ NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
+ Src2);
+
+ if (NegSrc2.getNode())
+ return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
+ Node->getChain(), Node->getBasePtr(), NegSrc2,
+ Node->getMemOperand(), Node->getOrdering(),
+ Node->getSynchScope());
+
+ // Use the node as-is.
+ return Op;
+ }
+
+ return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
+}
+
+// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
+// into a fullword ATOMIC_CMP_SWAPW operation.
+SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
+ SelectionDAG &DAG) const {
+ auto *Node = cast<AtomicSDNode>(Op.getNode());
+
+ // We have native support for 32-bit compare and swap.
+ EVT NarrowVT = Node->getMemoryVT();
+ EVT WideVT = MVT::i32;
+ if (NarrowVT == WideVT)
+ return Op;
+
+ int64_t BitSize = NarrowVT.getSizeInBits();
+ SDValue ChainIn = Node->getOperand(0);
+ SDValue Addr = Node->getOperand(1);
+ SDValue CmpVal = Node->getOperand(2);
+ SDValue SwapVal = Node->getOperand(3);
+ MachineMemOperand *MMO = Node->getMemOperand();
+ SDLoc DL(Node);
+ EVT PtrVT = Addr.getValueType();
+
+ // Get the address of the containing word.
+ SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
+ DAG.getConstant(-4, PtrVT));
+
+ // Get the number of bits that the word must be rotated left in order
+ // to bring the field to the top bits of a GR32.
+ SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
+ DAG.getConstant(3, PtrVT));
+ BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
+
+ // Get the complementing shift amount, for rotating a field in the top
+ // bits back to its proper position.
+ SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
+ DAG.getConstant(0, WideVT), BitShift);
+
+ // Construct the ATOMIC_CMP_SWAPW node.
+ SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
+ SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
+ NegBitShift, DAG.getConstant(BitSize, WideVT) };
+ SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
+ VTList, Ops, NarrowVT, MMO);
+ return AtomicOp;
+}
+
+SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
+ return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
+ SystemZ::R15D, Op.getValueType());
+}
+
+SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
+ return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
+ SystemZ::R15D, Op.getOperand(1));
+}
+
+SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
+ SelectionDAG &DAG) const {
+ bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
+ if (!IsData)
+ // Just preserve the chain.
+ return Op.getOperand(0);
+
+ bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
+ unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
+ auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
+ SDValue Ops[] = {
+ Op.getOperand(0),
+ DAG.getConstant(Code, MVT::i32),
+ Op.getOperand(1)
+ };
+ return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
+ Node->getVTList(), Ops,
+ Node->getMemoryVT(), Node->getMemOperand());
+}
+
+SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ case ISD::BR_CC:
+ return lowerBR_CC(Op, DAG);
+ case ISD::SELECT_CC:
+ return lowerSELECT_CC(Op, DAG);
+ case ISD::SETCC:
+ return lowerSETCC(Op, DAG);
+ case ISD::GlobalAddress:
+ return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
+ case ISD::GlobalTLSAddress:
+ return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
+ case ISD::BlockAddress:
+ return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
+ case ISD::JumpTable:
+ return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
+ case ISD::ConstantPool:
+ return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
+ case ISD::BITCAST:
+ return lowerBITCAST(Op, DAG);
+ case ISD::VASTART:
+ return lowerVASTART(Op, DAG);
+ case ISD::VACOPY:
+ return lowerVACOPY(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC:
+ return lowerDYNAMIC_STACKALLOC(Op, DAG);
+ case ISD::SMUL_LOHI:
+ return lowerSMUL_LOHI(Op, DAG);
+ case ISD::UMUL_LOHI:
+ return lowerUMUL_LOHI(Op, DAG);
+ case ISD::SDIVREM:
+ return lowerSDIVREM(Op, DAG);
+ case ISD::UDIVREM:
+ return lowerUDIVREM(Op, DAG);
+ case ISD::OR:
+ return lowerOR(Op, DAG);
+ case ISD::ATOMIC_SWAP:
+ return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
+ case ISD::ATOMIC_STORE:
+ return lowerATOMIC_STORE(Op, DAG);
+ case ISD::ATOMIC_LOAD:
+ return lowerATOMIC_LOAD(Op, DAG);
+ case ISD::ATOMIC_LOAD_ADD:
+ return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
+ case ISD::ATOMIC_LOAD_SUB:
+ return lowerATOMIC_LOAD_SUB(Op, DAG);
+ case ISD::ATOMIC_LOAD_AND:
+ return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
+ case ISD::ATOMIC_LOAD_OR:
+ return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
+ case ISD::ATOMIC_LOAD_XOR:
+ return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
+ case ISD::ATOMIC_LOAD_NAND:
+ return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
+ case ISD::ATOMIC_LOAD_MIN:
+ return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
+ case ISD::ATOMIC_LOAD_MAX:
+ return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
+ case ISD::ATOMIC_LOAD_UMIN:
+ return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
+ case ISD::ATOMIC_LOAD_UMAX:
+ return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
+ case ISD::ATOMIC_CMP_SWAP:
+ return lowerATOMIC_CMP_SWAP(Op, DAG);
+ case ISD::STACKSAVE:
+ return lowerSTACKSAVE(Op, DAG);
+ case ISD::STACKRESTORE:
+ return lowerSTACKRESTORE(Op, DAG);
+ case ISD::PREFETCH:
+ return lowerPREFETCH(Op, DAG);
+ default:
+ llvm_unreachable("Unexpected node to lower");
+ }
+}
+
+const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
+#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
+ switch (Opcode) {
+ OPCODE(RET_FLAG);
+ OPCODE(CALL);
+ OPCODE(SIBCALL);
+ OPCODE(PCREL_WRAPPER);
+ OPCODE(PCREL_OFFSET);
+ OPCODE(IABS);
+ OPCODE(ICMP);
+ OPCODE(FCMP);
+ OPCODE(TM);
+ OPCODE(BR_CCMASK);
+ OPCODE(SELECT_CCMASK);
+ OPCODE(ADJDYNALLOC);
+ OPCODE(EXTRACT_ACCESS);
+ OPCODE(UMUL_LOHI64);
+ OPCODE(SDIVREM64);
+ OPCODE(UDIVREM32);
+ OPCODE(UDIVREM64);
+ OPCODE(MVC);
+ OPCODE(MVC_LOOP);
+ OPCODE(NC);
+ OPCODE(NC_LOOP);
+ OPCODE(OC);
+ OPCODE(OC_LOOP);
+ OPCODE(XC);
+ OPCODE(XC_LOOP);
+ OPCODE(CLC);
+ OPCODE(CLC_LOOP);
+ OPCODE(STRCMP);
+ OPCODE(STPCPY);
+ OPCODE(SEARCH_STRING);
+ OPCODE(IPM);
+ OPCODE(SERIALIZE);
+ OPCODE(ATOMIC_SWAPW);
+ OPCODE(ATOMIC_LOADW_ADD);
+ OPCODE(ATOMIC_LOADW_SUB);
+ OPCODE(ATOMIC_LOADW_AND);
+ OPCODE(ATOMIC_LOADW_OR);
+ OPCODE(ATOMIC_LOADW_XOR);
+ OPCODE(ATOMIC_LOADW_NAND);
+ OPCODE(ATOMIC_LOADW_MIN);
+ OPCODE(ATOMIC_LOADW_MAX);
+ OPCODE(ATOMIC_LOADW_UMIN);
+ OPCODE(ATOMIC_LOADW_UMAX);
+ OPCODE(ATOMIC_CMP_SWAPW);
+ OPCODE(PREFETCH);
+ }
+ return nullptr;
+#undef OPCODE
+}
+
+SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ unsigned Opcode = N->getOpcode();
+ if (Opcode == ISD::SIGN_EXTEND) {
+ // Convert (sext (ashr (shl X, C1), C2)) to
+ // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
+ // cheap as narrower ones.
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
+ auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ SDValue Inner = N0.getOperand(0);
+ if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
+ if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
+ unsigned Extra = (VT.getSizeInBits() -
+ N0.getValueType().getSizeInBits());
+ unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
+ unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
+ EVT ShiftVT = N0.getOperand(1).getValueType();
+ SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
+ Inner.getOperand(0));
+ SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
+ DAG.getConstant(NewShlAmt, ShiftVT));
+ return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
+ DAG.getConstant(NewSraAmt, ShiftVT));
+ }
+ }
+ }
+ }
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Custom insertion
+//===----------------------------------------------------------------------===//
+
+// Create a new basic block after MBB.
+static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
+ MachineFunction &MF = *MBB->getParent();
+ MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
+ MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
+ return NewMBB;
+}
+
+// Split MBB after MI and return the new block (the one that contains
+// instructions after MI).
+static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
+ MachineBasicBlock *MBB) {
+ MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
+ NewMBB->splice(NewMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
+ return NewMBB;
+}
+
+// Split MBB before MI and return the new block (the one that contains MI).
+static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
+ MachineBasicBlock *MBB) {
+ MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
+ NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
+ NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
+ return NewMBB;
+}
+
+// Force base value Base into a register before MI. Return the register.
+static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
+ const SystemZInstrInfo *TII) {
+ if (Base.isReg())
+ return Base.getReg();
+
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineFunction &MF = *MBB->getParent();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
+ BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
+ .addOperand(Base).addImm(0).addReg(0);
+ return Reg;
+}
+
+// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
+MachineBasicBlock *
+SystemZTargetLowering::emitSelect(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
+ MBB->getParent()->getTarget().getInstrInfo());
+
+ unsigned DestReg = MI->getOperand(0).getReg();
+ unsigned TrueReg = MI->getOperand(1).getReg();
+ unsigned FalseReg = MI->getOperand(2).getReg();
+ unsigned CCValid = MI->getOperand(3).getImm();
+ unsigned CCMask = MI->getOperand(4).getImm();
+ DebugLoc DL = MI->getDebugLoc();
+
+ MachineBasicBlock *StartMBB = MBB;
+ MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
+ MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
+
+ // StartMBB:
+ // BRC CCMask, JoinMBB
+ // # fallthrough to FalseMBB
+ MBB = StartMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::BRC))
+ .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
+ MBB->addSuccessor(JoinMBB);
+ MBB->addSuccessor(FalseMBB);
+
+ // FalseMBB:
+ // # fallthrough to JoinMBB
+ MBB = FalseMBB;
+ MBB->addSuccessor(JoinMBB);
+
+ // JoinMBB:
+ // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
+ // ...
+ MBB = JoinMBB;
+ BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
+ .addReg(TrueReg).addMBB(StartMBB)
+ .addReg(FalseReg).addMBB(FalseMBB);
+
+ MI->eraseFromParent();
+ return JoinMBB;
+}
+
+// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
+// StoreOpcode is the store to use and Invert says whether the store should
+// happen when the condition is false rather than true. If a STORE ON
+// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
+MachineBasicBlock *
+SystemZTargetLowering::emitCondStore(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ unsigned StoreOpcode, unsigned STOCOpcode,
+ bool Invert) const {
+ const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
+ MBB->getParent()->getTarget().getInstrInfo());
+
+ unsigned SrcReg = MI->getOperand(0).getReg();
+ MachineOperand Base = MI->getOperand(1);
+ int64_t Disp = MI->getOperand(2).getImm();
+ unsigned IndexReg = MI->getOperand(3).getReg();
+ unsigned CCValid = MI->getOperand(4).getImm();
+ unsigned CCMask = MI->getOperand(5).getImm();
+ DebugLoc DL = MI->getDebugLoc();
+
+ StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
+
+ // Use STOCOpcode if possible. We could use different store patterns in
+ // order to avoid matching the index register, but the performance trade-offs
+ // might be more complicated in that case.
+ if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
+ if (Invert)
+ CCMask ^= CCValid;
+ BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
+ .addReg(SrcReg).addOperand(Base).addImm(Disp)
+ .addImm(CCValid).addImm(CCMask);
+ MI->eraseFromParent();
+ return MBB;
+ }
+
+ // Get the condition needed to branch around the store.
+ if (!Invert)
+ CCMask ^= CCValid;
+
+ MachineBasicBlock *StartMBB = MBB;
+ MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
+ MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
+
+ // StartMBB:
+ // BRC CCMask, JoinMBB
+ // # fallthrough to FalseMBB
+ MBB = StartMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::BRC))
+ .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
+ MBB->addSuccessor(JoinMBB);
+ MBB->addSuccessor(FalseMBB);
+
+ // FalseMBB:
+ // store %SrcReg, %Disp(%Index,%Base)
+ // # fallthrough to JoinMBB
+ MBB = FalseMBB;
+ BuildMI(MBB, DL, TII->get(StoreOpcode))
+ .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
+ MBB->addSuccessor(JoinMBB);
+
+ MI->eraseFromParent();
+ return JoinMBB;
+}
+
+// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
+// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
+// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
+// BitSize is the width of the field in bits, or 0 if this is a partword
+// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
+// is one of the operands. Invert says whether the field should be
+// inverted after performing BinOpcode (e.g. for NAND).
+MachineBasicBlock *
+SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ unsigned BinOpcode,
+ unsigned BitSize,
+ bool Invert) const {
+ MachineFunction &MF = *MBB->getParent();
+ const SystemZInstrInfo *TII =
+ static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ bool IsSubWord = (BitSize < 32);
+
+ // Extract the operands. Base can be a register or a frame index.
+ // Src2 can be a register or immediate.
+ unsigned Dest = MI->getOperand(0).getReg();
+ MachineOperand Base = earlyUseOperand(MI->getOperand(1));
+ int64_t Disp = MI->getOperand(2).getImm();
+ MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
+ unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
+ unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
+ DebugLoc DL = MI->getDebugLoc();
+ if (IsSubWord)
+ BitSize = MI->getOperand(6).getImm();
+
+ // Subword operations use 32-bit registers.
+ const TargetRegisterClass *RC = (BitSize <= 32 ?
+ &SystemZ::GR32BitRegClass :
+ &SystemZ::GR64BitRegClass);
+ unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
+ unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
+
+ // Get the right opcodes for the displacement.
+ LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
+ CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
+ assert(LOpcode && CSOpcode && "Displacement out of range");
+
+ // Create virtual registers for temporary results.
+ unsigned OrigVal = MRI.createVirtualRegister(RC);
+ unsigned OldVal = MRI.createVirtualRegister(RC);
+ unsigned NewVal = (BinOpcode || IsSubWord ?
+ MRI.createVirtualRegister(RC) : Src2.getReg());
+ unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
+ unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
+
+ // Insert a basic block for the main loop.
+ MachineBasicBlock *StartMBB = MBB;
+ MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
+ MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
+
+ // StartMBB:
+ // ...
+ // %OrigVal = L Disp(%Base)
+ // # fall through to LoopMMB
+ MBB = StartMBB;
+ BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
+ .addOperand(Base).addImm(Disp).addReg(0);
+ MBB->addSuccessor(LoopMBB);
+
+ // LoopMBB:
+ // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
+ // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
+ // %RotatedNewVal = OP %RotatedOldVal, %Src2
+ // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
+ // %Dest = CS %OldVal, %NewVal, Disp(%Base)
+ // JNE LoopMBB
+ // # fall through to DoneMMB
+ MBB = LoopMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
+ .addReg(OrigVal).addMBB(StartMBB)
+ .addReg(Dest).addMBB(LoopMBB);
+ if (IsSubWord)
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
+ .addReg(OldVal).addReg(BitShift).addImm(0);
+ if (Invert) {
+ // Perform the operation normally and then invert every bit of the field.
+ unsigned Tmp = MRI.createVirtualRegister(RC);
+ BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
+ .addReg(RotatedOldVal).addOperand(Src2);
+ if (BitSize < 32)
+ // XILF with the upper BitSize bits set.
+ BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
+ .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
+ else if (BitSize == 32)
+ // XILF with every bit set.
+ BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
+ .addReg(Tmp).addImm(~uint32_t(0));
+ else {
+ // Use LCGR and add -1 to the result, which is more compact than
+ // an XILF, XILH pair.
+ unsigned Tmp2 = MRI.createVirtualRegister(RC);
+ BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
+ BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
+ .addReg(Tmp2).addImm(-1);
+ }
+ } else if (BinOpcode)
+ // A simply binary operation.
+ BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
+ .addReg(RotatedOldVal).addOperand(Src2);
+ else if (IsSubWord)
+ // Use RISBG to rotate Src2 into position and use it to replace the
+ // field in RotatedOldVal.
+ BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
+ .addReg(RotatedOldVal).addReg(Src2.getReg())
+ .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
+ if (IsSubWord)
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
+ .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
+ BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
+ .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRC))
+ .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
+ MBB->addSuccessor(LoopMBB);
+ MBB->addSuccessor(DoneMBB);
+
+ MI->eraseFromParent();
+ return DoneMBB;
+}
+
+// Implement EmitInstrWithCustomInserter for pseudo
+// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
+// instruction that should be used to compare the current field with the
+// minimum or maximum value. KeepOldMask is the BRC condition-code mask
+// for when the current field should be kept. BitSize is the width of
+// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
+MachineBasicBlock *
+SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ unsigned CompareOpcode,
+ unsigned KeepOldMask,
+ unsigned BitSize) const {
+ MachineFunction &MF = *MBB->getParent();
+ const SystemZInstrInfo *TII =
+ static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ bool IsSubWord = (BitSize < 32);
+
+ // Extract the operands. Base can be a register or a frame index.
+ unsigned Dest = MI->getOperand(0).getReg();
+ MachineOperand Base = earlyUseOperand(MI->getOperand(1));
+ int64_t Disp = MI->getOperand(2).getImm();
+ unsigned Src2 = MI->getOperand(3).getReg();
+ unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
+ unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
+ DebugLoc DL = MI->getDebugLoc();
+ if (IsSubWord)
+ BitSize = MI->getOperand(6).getImm();
+
+ // Subword operations use 32-bit registers.
+ const TargetRegisterClass *RC = (BitSize <= 32 ?
+ &SystemZ::GR32BitRegClass :
+ &SystemZ::GR64BitRegClass);
+ unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
+ unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
+
+ // Get the right opcodes for the displacement.
+ LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
+ CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
+ assert(LOpcode && CSOpcode && "Displacement out of range");
+
+ // Create virtual registers for temporary results.
+ unsigned OrigVal = MRI.createVirtualRegister(RC);
+ unsigned OldVal = MRI.createVirtualRegister(RC);
+ unsigned NewVal = MRI.createVirtualRegister(RC);
+ unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
+ unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
+ unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
+
+ // Insert 3 basic blocks for the loop.
+ MachineBasicBlock *StartMBB = MBB;
+ MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
+ MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
+ MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
+ MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
+
+ // StartMBB:
+ // ...
+ // %OrigVal = L Disp(%Base)
+ // # fall through to LoopMMB
+ MBB = StartMBB;
+ BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
+ .addOperand(Base).addImm(Disp).addReg(0);
+ MBB->addSuccessor(LoopMBB);
+
+ // LoopMBB:
+ // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
+ // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
+ // CompareOpcode %RotatedOldVal, %Src2
+ // BRC KeepOldMask, UpdateMBB
+ MBB = LoopMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
+ .addReg(OrigVal).addMBB(StartMBB)
+ .addReg(Dest).addMBB(UpdateMBB);
+ if (IsSubWord)
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
+ .addReg(OldVal).addReg(BitShift).addImm(0);
+ BuildMI(MBB, DL, TII->get(CompareOpcode))
+ .addReg(RotatedOldVal).addReg(Src2);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRC))
+ .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
+ MBB->addSuccessor(UpdateMBB);
+ MBB->addSuccessor(UseAltMBB);
+
+ // UseAltMBB:
+ // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
+ // # fall through to UpdateMMB
+ MBB = UseAltMBB;
+ if (IsSubWord)
+ BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
+ .addReg(RotatedOldVal).addReg(Src2)
+ .addImm(32).addImm(31 + BitSize).addImm(0);
+ MBB->addSuccessor(UpdateMBB);
+
+ // UpdateMBB:
+ // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
+ // [ %RotatedAltVal, UseAltMBB ]
+ // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
+ // %Dest = CS %OldVal, %NewVal, Disp(%Base)
+ // JNE LoopMBB
+ // # fall through to DoneMMB
+ MBB = UpdateMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
+ .addReg(RotatedOldVal).addMBB(LoopMBB)
+ .addReg(RotatedAltVal).addMBB(UseAltMBB);
+ if (IsSubWord)
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
+ .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
+ BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
+ .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRC))
+ .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
+ MBB->addSuccessor(LoopMBB);
+ MBB->addSuccessor(DoneMBB);
+
+ MI->eraseFromParent();
+ return DoneMBB;
+}
+
+// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
+// instruction MI.
+MachineBasicBlock *
+SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ MachineFunction &MF = *MBB->getParent();
+ const SystemZInstrInfo *TII =
+ static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // Extract the operands. Base can be a register or a frame index.
+ unsigned Dest = MI->getOperand(0).getReg();
+ MachineOperand Base = earlyUseOperand(MI->getOperand(1));
+ int64_t Disp = MI->getOperand(2).getImm();
+ unsigned OrigCmpVal = MI->getOperand(3).getReg();
+ unsigned OrigSwapVal = MI->getOperand(4).getReg();
+ unsigned BitShift = MI->getOperand(5).getReg();
+ unsigned NegBitShift = MI->getOperand(6).getReg();
+ int64_t BitSize = MI->getOperand(7).getImm();
+ DebugLoc DL = MI->getDebugLoc();
+
+ const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
+
+ // Get the right opcodes for the displacement.
+ unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
+ unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
+ assert(LOpcode && CSOpcode && "Displacement out of range");
+
+ // Create virtual registers for temporary results.
+ unsigned OrigOldVal = MRI.createVirtualRegister(RC);
+ unsigned OldVal = MRI.createVirtualRegister(RC);
+ unsigned CmpVal = MRI.createVirtualRegister(RC);
+ unsigned SwapVal = MRI.createVirtualRegister(RC);
+ unsigned StoreVal = MRI.createVirtualRegister(RC);
+ unsigned RetryOldVal = MRI.createVirtualRegister(RC);
+ unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
+ unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
+
+ // Insert 2 basic blocks for the loop.
+ MachineBasicBlock *StartMBB = MBB;
+ MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
+ MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
+ MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
+
+ // StartMBB:
+ // ...
+ // %OrigOldVal = L Disp(%Base)
+ // # fall through to LoopMMB
+ MBB = StartMBB;
+ BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
+ .addOperand(Base).addImm(Disp).addReg(0);
+ MBB->addSuccessor(LoopMBB);
+
+ // LoopMBB:
+ // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
+ // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
+ // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
+ // %Dest = RLL %OldVal, BitSize(%BitShift)
+ // ^^ The low BitSize bits contain the field
+ // of interest.
+ // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
+ // ^^ Replace the upper 32-BitSize bits of the
+ // comparison value with those that we loaded,
+ // so that we can use a full word comparison.
+ // CR %Dest, %RetryCmpVal
+ // JNE DoneMBB
+ // # Fall through to SetMBB
+ MBB = LoopMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
+ .addReg(OrigOldVal).addMBB(StartMBB)
+ .addReg(RetryOldVal).addMBB(SetMBB);
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
+ .addReg(OrigCmpVal).addMBB(StartMBB)
+ .addReg(RetryCmpVal).addMBB(SetMBB);
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
+ .addReg(OrigSwapVal).addMBB(StartMBB)
+ .addReg(RetrySwapVal).addMBB(SetMBB);
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
+ .addReg(OldVal).addReg(BitShift).addImm(BitSize);
+ BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
+ .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
+ BuildMI(MBB, DL, TII->get(SystemZ::CR))
+ .addReg(Dest).addReg(RetryCmpVal);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRC))
+ .addImm(SystemZ::CCMASK_ICMP)
+ .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
+ MBB->addSuccessor(DoneMBB);
+ MBB->addSuccessor(SetMBB);
+
+ // SetMBB:
+ // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
+ // ^^ Replace the upper 32-BitSize bits of the new
+ // value with those that we loaded.
+ // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
+ // ^^ Rotate the new field to its proper position.
+ // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
+ // JNE LoopMBB
+ // # fall through to ExitMMB
+ MBB = SetMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
+ .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
+ .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
+ BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
+ .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRC))
+ .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
+ MBB->addSuccessor(LoopMBB);
+ MBB->addSuccessor(DoneMBB);
+
+ MI->eraseFromParent();
+ return DoneMBB;
+}
+
+// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
+// if the high register of the GR128 value must be cleared or false if
+// it's "don't care". SubReg is subreg_l32 when extending a GR32
+// and subreg_l64 when extending a GR64.
+MachineBasicBlock *
+SystemZTargetLowering::emitExt128(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ bool ClearEven, unsigned SubReg) const {
+ MachineFunction &MF = *MBB->getParent();
+ const SystemZInstrInfo *TII =
+ static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Src = MI->getOperand(1).getReg();
+ unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
+
+ BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
+ if (ClearEven) {
+ unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
+ unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
+
+ BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
+ .addImm(0);
+ BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
+ .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
+ In128 = NewIn128;
+ }
+ BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
+ .addReg(In128).addReg(Src).addImm(SubReg);
+
+ MI->eraseFromParent();
+ return MBB;
+}
+
+MachineBasicBlock *
+SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ unsigned Opcode) const {
+ MachineFunction &MF = *MBB->getParent();
+ const SystemZInstrInfo *TII =
+ static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
+ uint64_t DestDisp = MI->getOperand(1).getImm();
+ MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2));
+ uint64_t SrcDisp = MI->getOperand(3).getImm();
+ uint64_t Length = MI->getOperand(4).getImm();
+
+ // When generating more than one CLC, all but the last will need to
+ // branch to the end when a difference is found.
+ MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
+ splitBlockAfter(MI, MBB) : nullptr);
+
+ // Check for the loop form, in which operand 5 is the trip count.
+ if (MI->getNumExplicitOperands() > 5) {
+ bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
+
+ uint64_t StartCountReg = MI->getOperand(5).getReg();
+ uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
+ uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
+ forceReg(MI, DestBase, TII));
+
+ const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
+ uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
+ uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
+ MRI.createVirtualRegister(RC));
+ uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
+ uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
+ MRI.createVirtualRegister(RC));
+
+ RC = &SystemZ::GR64BitRegClass;
+ uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
+ uint64_t NextCountReg = MRI.createVirtualRegister(RC);
+
+ MachineBasicBlock *StartMBB = MBB;
+ MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
+ MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
+ MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
+
+ // StartMBB:
+ // # fall through to LoopMMB
+ MBB->addSuccessor(LoopMBB);
+
+ // LoopMBB:
+ // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
+ // [ %NextDestReg, NextMBB ]
+ // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
+ // [ %NextSrcReg, NextMBB ]
+ // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
+ // [ %NextCountReg, NextMBB ]
+ // ( PFD 2, 768+DestDisp(%ThisDestReg) )
+ // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
+ // ( JLH EndMBB )
+ //
+ // The prefetch is used only for MVC. The JLH is used only for CLC.
+ MBB = LoopMBB;
+
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
+ .addReg(StartDestReg).addMBB(StartMBB)
+ .addReg(NextDestReg).addMBB(NextMBB);
+ if (!HaveSingleBase)
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
+ .addReg(StartSrcReg).addMBB(StartMBB)
+ .addReg(NextSrcReg).addMBB(NextMBB);
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
+ .addReg(StartCountReg).addMBB(StartMBB)
+ .addReg(NextCountReg).addMBB(NextMBB);
+ if (Opcode == SystemZ::MVC)
+ BuildMI(MBB, DL, TII->get(SystemZ::PFD))
+ .addImm(SystemZ::PFD_WRITE)
+ .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
+ BuildMI(MBB, DL, TII->get(Opcode))
+ .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
+ .addReg(ThisSrcReg).addImm(SrcDisp);
+ if (EndMBB) {
+ BuildMI(MBB, DL, TII->get(SystemZ::BRC))
+ .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
+ .addMBB(EndMBB);
+ MBB->addSuccessor(EndMBB);
+ MBB->addSuccessor(NextMBB);
+ }
+
+ // NextMBB:
+ // %NextDestReg = LA 256(%ThisDestReg)
+ // %NextSrcReg = LA 256(%ThisSrcReg)
+ // %NextCountReg = AGHI %ThisCountReg, -1
+ // CGHI %NextCountReg, 0
+ // JLH LoopMBB
+ // # fall through to DoneMMB
+ //
+ // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
+ MBB = NextMBB;
+
+ BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
+ .addReg(ThisDestReg).addImm(256).addReg(0);
+ if (!HaveSingleBase)
+ BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
+ .addReg(ThisSrcReg).addImm(256).addReg(0);
+ BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
+ .addReg(ThisCountReg).addImm(-1);
+ BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
+ .addReg(NextCountReg).addImm(0);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRC))
+ .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
+ .addMBB(LoopMBB);
+ MBB->addSuccessor(LoopMBB);
+ MBB->addSuccessor(DoneMBB);
+
+ DestBase = MachineOperand::CreateReg(NextDestReg, false);
+ SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
+ Length &= 255;
+ MBB = DoneMBB;
+ }
+ // Handle any remaining bytes with straight-line code.
+ while (Length > 0) {
+ uint64_t ThisLength = std::min(Length, uint64_t(256));
+ // The previous iteration might have created out-of-range displacements.
+ // Apply them using LAY if so.
+ if (!isUInt<12>(DestDisp)) {
+ unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
+ BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
+ .addOperand(DestBase).addImm(DestDisp).addReg(0);
+ DestBase = MachineOperand::CreateReg(Reg, false);
+ DestDisp = 0;
+ }
+ if (!isUInt<12>(SrcDisp)) {
+ unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
+ BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
+ .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
+ SrcBase = MachineOperand::CreateReg(Reg, false);
+ SrcDisp = 0;
+ }
+ BuildMI(*MBB, MI, DL, TII->get(Opcode))
+ .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
+ .addOperand(SrcBase).addImm(SrcDisp);
+ DestDisp += ThisLength;
+ SrcDisp += ThisLength;
+ Length -= ThisLength;
+ // If there's another CLC to go, branch to the end if a difference
+ // was found.
+ if (EndMBB && Length > 0) {
+ MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRC))
+ .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
+ .addMBB(EndMBB);
+ MBB->addSuccessor(EndMBB);
+ MBB->addSuccessor(NextMBB);
+ MBB = NextMBB;
+ }
+ }
+ if (EndMBB) {
+ MBB->addSuccessor(EndMBB);
+ MBB = EndMBB;
+ MBB->addLiveIn(SystemZ::CC);
+ }
+
+ MI->eraseFromParent();
+ return MBB;
+}
+
+// Decompose string pseudo-instruction MI into a loop that continually performs
+// Opcode until CC != 3.
+MachineBasicBlock *
+SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ unsigned Opcode) const {
+ MachineFunction &MF = *MBB->getParent();
+ const SystemZInstrInfo *TII =
+ static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ uint64_t End1Reg = MI->getOperand(0).getReg();
+ uint64_t Start1Reg = MI->getOperand(1).getReg();
+ uint64_t Start2Reg = MI->getOperand(2).getReg();
+ uint64_t CharReg = MI->getOperand(3).getReg();
+
+ const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
+ uint64_t This1Reg = MRI.createVirtualRegister(RC);
+ uint64_t This2Reg = MRI.createVirtualRegister(RC);
+ uint64_t End2Reg = MRI.createVirtualRegister(RC);
+
+ MachineBasicBlock *StartMBB = MBB;
+ MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
+ MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
+
+ // StartMBB:
+ // # fall through to LoopMMB
+ MBB->addSuccessor(LoopMBB);
+
+ // LoopMBB:
+ // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
+ // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
+ // R0L = %CharReg
+ // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
+ // JO LoopMBB
+ // # fall through to DoneMMB
+ //
+ // The load of R0L can be hoisted by post-RA LICM.
+ MBB = LoopMBB;
+
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
+ .addReg(Start1Reg).addMBB(StartMBB)
+ .addReg(End1Reg).addMBB(LoopMBB);
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
+ .addReg(Start2Reg).addMBB(StartMBB)
+ .addReg(End2Reg).addMBB(LoopMBB);
+ BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
+ BuildMI(MBB, DL, TII->get(Opcode))
+ .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
+ .addReg(This1Reg).addReg(This2Reg);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRC))
+ .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
+ MBB->addSuccessor(LoopMBB);
+ MBB->addSuccessor(DoneMBB);
+
+ DoneMBB->addLiveIn(SystemZ::CC);
+
+ MI->eraseFromParent();
+ return DoneMBB;
+}
+
+MachineBasicBlock *SystemZTargetLowering::
+EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
+ switch (MI->getOpcode()) {
+ case SystemZ::Select32Mux:
+ case SystemZ::Select32:
+ case SystemZ::SelectF32:
+ case SystemZ::Select64:
+ case SystemZ::SelectF64:
+ case SystemZ::SelectF128:
+ return emitSelect(MI, MBB);
+
+ case SystemZ::CondStore8Mux:
+ return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
+ case SystemZ::CondStore8MuxInv:
+ return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
+ case SystemZ::CondStore16Mux:
+ return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
+ case SystemZ::CondStore16MuxInv:
+ return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
+ case SystemZ::CondStore8:
+ return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
+ case SystemZ::CondStore8Inv:
+ return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
+ case SystemZ::CondStore16:
+ return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
+ case SystemZ::CondStore16Inv:
+ return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
+ case SystemZ::CondStore32:
+ return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
+ case SystemZ::CondStore32Inv:
+ return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
+ case SystemZ::CondStore64:
+ return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
+ case SystemZ::CondStore64Inv:
+ return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
+ case SystemZ::CondStoreF32:
+ return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
+ case SystemZ::CondStoreF32Inv:
+ return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
+ case SystemZ::CondStoreF64:
+ return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
+ case SystemZ::CondStoreF64Inv:
+ return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
+
+ case SystemZ::AEXT128_64:
+ return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
+ case SystemZ::ZEXT128_32:
+ return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
+ case SystemZ::ZEXT128_64:
+ return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
+
+ case SystemZ::ATOMIC_SWAPW:
+ return emitAtomicLoadBinary(MI, MBB, 0, 0);
+ case SystemZ::ATOMIC_SWAP_32:
+ return emitAtomicLoadBinary(MI, MBB, 0, 32);
+ case SystemZ::ATOMIC_SWAP_64:
+ return emitAtomicLoadBinary(MI, MBB, 0, 64);
+
+ case SystemZ::ATOMIC_LOADW_AR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
+ case SystemZ::ATOMIC_LOADW_AFI:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
+ case SystemZ::ATOMIC_LOAD_AR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
+ case SystemZ::ATOMIC_LOAD_AHI:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
+ case SystemZ::ATOMIC_LOAD_AFI:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
+ case SystemZ::ATOMIC_LOAD_AGR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
+ case SystemZ::ATOMIC_LOAD_AGHI:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
+ case SystemZ::ATOMIC_LOAD_AGFI:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
+
+ case SystemZ::ATOMIC_LOADW_SR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
+ case SystemZ::ATOMIC_LOAD_SR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
+ case SystemZ::ATOMIC_LOAD_SGR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
+
+ case SystemZ::ATOMIC_LOADW_NR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
+ case SystemZ::ATOMIC_LOADW_NILH:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
+ case SystemZ::ATOMIC_LOAD_NR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
+ case SystemZ::ATOMIC_LOAD_NILL:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
+ case SystemZ::ATOMIC_LOAD_NILH:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
+ case SystemZ::ATOMIC_LOAD_NILF:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
+ case SystemZ::ATOMIC_LOAD_NGR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
+ case SystemZ::ATOMIC_LOAD_NILL64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
+ case SystemZ::ATOMIC_LOAD_NILH64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
+ case SystemZ::ATOMIC_LOAD_NIHL64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
+ case SystemZ::ATOMIC_LOAD_NIHH64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
+ case SystemZ::ATOMIC_LOAD_NILF64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
+ case SystemZ::ATOMIC_LOAD_NIHF64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
+
+ case SystemZ::ATOMIC_LOADW_OR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
+ case SystemZ::ATOMIC_LOADW_OILH:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
+ case SystemZ::ATOMIC_LOAD_OR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
+ case SystemZ::ATOMIC_LOAD_OILL:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
+ case SystemZ::ATOMIC_LOAD_OILH:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
+ case SystemZ::ATOMIC_LOAD_OILF:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
+ case SystemZ::ATOMIC_LOAD_OGR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
+ case SystemZ::ATOMIC_LOAD_OILL64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
+ case SystemZ::ATOMIC_LOAD_OILH64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
+ case SystemZ::ATOMIC_LOAD_OIHL64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
+ case SystemZ::ATOMIC_LOAD_OIHH64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
+ case SystemZ::ATOMIC_LOAD_OILF64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
+ case SystemZ::ATOMIC_LOAD_OIHF64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
+
+ case SystemZ::ATOMIC_LOADW_XR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
+ case SystemZ::ATOMIC_LOADW_XILF:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
+ case SystemZ::ATOMIC_LOAD_XR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
+ case SystemZ::ATOMIC_LOAD_XILF:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
+ case SystemZ::ATOMIC_LOAD_XGR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
+ case SystemZ::ATOMIC_LOAD_XILF64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
+ case SystemZ::ATOMIC_LOAD_XIHF64:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
+
+ case SystemZ::ATOMIC_LOADW_NRi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
+ case SystemZ::ATOMIC_LOADW_NILHi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
+ case SystemZ::ATOMIC_LOAD_NRi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
+ case SystemZ::ATOMIC_LOAD_NILLi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
+ case SystemZ::ATOMIC_LOAD_NILHi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
+ case SystemZ::ATOMIC_LOAD_NILFi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
+ case SystemZ::ATOMIC_LOAD_NGRi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
+ case SystemZ::ATOMIC_LOAD_NILL64i:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
+ case SystemZ::ATOMIC_LOAD_NILH64i:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
+ case SystemZ::ATOMIC_LOAD_NIHL64i:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
+ case SystemZ::ATOMIC_LOAD_NIHH64i:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
+ case SystemZ::ATOMIC_LOAD_NILF64i:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
+ case SystemZ::ATOMIC_LOAD_NIHF64i:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
+
+ case SystemZ::ATOMIC_LOADW_MIN:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
+ SystemZ::CCMASK_CMP_LE, 0);
+ case SystemZ::ATOMIC_LOAD_MIN_32:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
+ SystemZ::CCMASK_CMP_LE, 32);
+ case SystemZ::ATOMIC_LOAD_MIN_64:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
+ SystemZ::CCMASK_CMP_LE, 64);
+
+ case SystemZ::ATOMIC_LOADW_MAX:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
+ SystemZ::CCMASK_CMP_GE, 0);
+ case SystemZ::ATOMIC_LOAD_MAX_32:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
+ SystemZ::CCMASK_CMP_GE, 32);
+ case SystemZ::ATOMIC_LOAD_MAX_64:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
+ SystemZ::CCMASK_CMP_GE, 64);
+
+ case SystemZ::ATOMIC_LOADW_UMIN:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
+ SystemZ::CCMASK_CMP_LE, 0);
+ case SystemZ::ATOMIC_LOAD_UMIN_32:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
+ SystemZ::CCMASK_CMP_LE, 32);
+ case SystemZ::ATOMIC_LOAD_UMIN_64:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
+ SystemZ::CCMASK_CMP_LE, 64);
+
+ case SystemZ::ATOMIC_LOADW_UMAX:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
+ SystemZ::CCMASK_CMP_GE, 0);
+ case SystemZ::ATOMIC_LOAD_UMAX_32:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
+ SystemZ::CCMASK_CMP_GE, 32);
+ case SystemZ::ATOMIC_LOAD_UMAX_64:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
+ SystemZ::CCMASK_CMP_GE, 64);
+
+ case SystemZ::ATOMIC_CMP_SWAPW:
+ return emitAtomicCmpSwapW(MI, MBB);
+ case SystemZ::MVCSequence:
+ case SystemZ::MVCLoop:
+ return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
+ case SystemZ::NCSequence:
+ case SystemZ::NCLoop:
+ return emitMemMemWrapper(MI, MBB, SystemZ::NC);
+ case SystemZ::OCSequence:
+ case SystemZ::OCLoop:
+ return emitMemMemWrapper(MI, MBB, SystemZ::OC);
+ case SystemZ::XCSequence:
+ case SystemZ::XCLoop:
+ return emitMemMemWrapper(MI, MBB, SystemZ::XC);
+ case SystemZ::CLCSequence:
+ case SystemZ::CLCLoop:
+ return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
+ case SystemZ::CLSTLoop:
+ return emitStringWrapper(MI, MBB, SystemZ::CLST);
+ case SystemZ::MVSTLoop:
+ return emitStringWrapper(MI, MBB, SystemZ::MVST);
+ case SystemZ::SRSTLoop:
+ return emitStringWrapper(MI, MBB, SystemZ::SRST);
+ default:
+ llvm_unreachable("Unexpected instr type to insert");
+ }
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.h b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.h
new file mode 100644
index 0000000..e21b050
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.h
@@ -0,0 +1,324 @@
+//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that SystemZ uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_SystemZ_ISELLOWERING_H
+#define LLVM_TARGET_SystemZ_ISELLOWERING_H
+
+#include "SystemZ.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLowering.h"
+
+namespace llvm {
+namespace SystemZISD {
+enum {
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ // Return with a flag operand. Operand 0 is the chain operand.
+ RET_FLAG,
+
+ // Calls a function. Operand 0 is the chain operand and operand 1
+ // is the target address. The arguments start at operand 2.
+ // There is an optional glue operand at the end.
+ CALL,
+ SIBCALL,
+
+ // Wraps a TargetGlobalAddress that should be loaded using PC-relative
+ // accesses (LARL). Operand 0 is the address.
+ PCREL_WRAPPER,
+
+ // Used in cases where an offset is applied to a TargetGlobalAddress.
+ // Operand 0 is the full TargetGlobalAddress and operand 1 is a
+ // PCREL_WRAPPER for an anchor point. This is used so that we can
+ // cheaply refer to either the full address or the anchor point
+ // as a register base.
+ PCREL_OFFSET,
+
+ // Integer absolute.
+ IABS,
+
+ // Integer comparisons. There are three operands: the two values
+ // to compare, and an integer of type SystemZICMP.
+ ICMP,
+
+ // Floating-point comparisons. The two operands are the values to compare.
+ FCMP,
+
+ // Test under mask. The first operand is ANDed with the second operand
+ // and the condition codes are set on the result. The third operand is
+ // a boolean that is true if the condition codes need to distinguish
+ // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
+ // register forms do but the memory forms don't).
+ TM,
+
+ // Branches if a condition is true. Operand 0 is the chain operand;
+ // operand 1 is the 4-bit condition-code mask, with bit N in
+ // big-endian order meaning "branch if CC=N"; operand 2 is the
+ // target block and operand 3 is the flag operand.
+ BR_CCMASK,
+
+ // Selects between operand 0 and operand 1. Operand 2 is the
+ // mask of condition-code values for which operand 0 should be
+ // chosen over operand 1; it has the same form as BR_CCMASK.
+ // Operand 3 is the flag operand.
+ SELECT_CCMASK,
+
+ // Evaluates to the gap between the stack pointer and the
+ // base of the dynamically-allocatable area.
+ ADJDYNALLOC,
+
+ // Extracts the value of a 32-bit access register. Operand 0 is
+ // the number of the register.
+ EXTRACT_ACCESS,
+
+ // Wrappers around the ISD opcodes of the same name. The output and
+ // first input operands are GR128s. The trailing numbers are the
+ // widths of the second operand in bits.
+ UMUL_LOHI64,
+ SDIVREM32,
+ SDIVREM64,
+ UDIVREM32,
+ UDIVREM64,
+
+ // Use a series of MVCs to copy bytes from one memory location to another.
+ // The operands are:
+ // - the target address
+ // - the source address
+ // - the constant length
+ //
+ // This isn't a memory opcode because we'd need to attach two
+ // MachineMemOperands rather than one.
+ MVC,
+
+ // Like MVC, but implemented as a loop that handles X*256 bytes
+ // followed by straight-line code to handle the rest (if any).
+ // The value of X is passed as an additional operand.
+ MVC_LOOP,
+
+ // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
+ NC,
+ NC_LOOP,
+ OC,
+ OC_LOOP,
+ XC,
+ XC_LOOP,
+
+ // Use CLC to compare two blocks of memory, with the same comments
+ // as for MVC and MVC_LOOP.
+ CLC,
+ CLC_LOOP,
+
+ // Use an MVST-based sequence to implement stpcpy().
+ STPCPY,
+
+ // Use a CLST-based sequence to implement strcmp(). The two input operands
+ // are the addresses of the strings to compare.
+ STRCMP,
+
+ // Use an SRST-based sequence to search a block of memory. The first
+ // operand is the end address, the second is the start, and the third
+ // is the character to search for. CC is set to 1 on success and 2
+ // on failure.
+ SEARCH_STRING,
+
+ // Store the CC value in bits 29 and 28 of an integer.
+ IPM,
+
+ // Perform a serialization operation. (BCR 15,0 or BCR 14,0.)
+ SERIALIZE,
+
+ // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
+ // ATOMIC_LOAD_<op>.
+ //
+ // Operand 0: the address of the containing 32-bit-aligned field
+ // Operand 1: the second operand of <op>, in the high bits of an i32
+ // for everything except ATOMIC_SWAPW
+ // Operand 2: how many bits to rotate the i32 left to bring the first
+ // operand into the high bits
+ // Operand 3: the negative of operand 2, for rotating the other way
+ // Operand 4: the width of the field in bits (8 or 16)
+ ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
+ ATOMIC_LOADW_ADD,
+ ATOMIC_LOADW_SUB,
+ ATOMIC_LOADW_AND,
+ ATOMIC_LOADW_OR,
+ ATOMIC_LOADW_XOR,
+ ATOMIC_LOADW_NAND,
+ ATOMIC_LOADW_MIN,
+ ATOMIC_LOADW_MAX,
+ ATOMIC_LOADW_UMIN,
+ ATOMIC_LOADW_UMAX,
+
+ // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
+ //
+ // Operand 0: the address of the containing 32-bit-aligned field
+ // Operand 1: the compare value, in the low bits of an i32
+ // Operand 2: the swap value, in the low bits of an i32
+ // Operand 3: how many bits to rotate the i32 left to bring the first
+ // operand into the high bits
+ // Operand 4: the negative of operand 2, for rotating the other way
+ // Operand 5: the width of the field in bits (8 or 16)
+ ATOMIC_CMP_SWAPW,
+
+ // Prefetch from the second operand using the 4-bit control code in
+ // the first operand. The code is 1 for a load prefetch and 2 for
+ // a store prefetch.
+ PREFETCH
+};
+
+// Return true if OPCODE is some kind of PC-relative address.
+inline bool isPCREL(unsigned Opcode) {
+ return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
+}
+} // end namespace SystemZISD
+
+namespace SystemZICMP {
+// Describes whether an integer comparison needs to be signed or unsigned,
+// or whether either type is OK.
+enum {
+ Any,
+ UnsignedOnly,
+ SignedOnly
+};
+} // end namespace SystemZICMP
+
+class SystemZSubtarget;
+class SystemZTargetMachine;
+
+class SystemZTargetLowering : public TargetLowering {
+public:
+ explicit SystemZTargetLowering(const TargetMachine &TM);
+
+ // Override TargetLowering.
+ MVT getScalarShiftAmountTy(EVT LHSTy) const override {
+ return MVT::i32;
+ }
+ EVT getSetCCResultType(LLVMContext &, EVT) const override;
+ bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
+ bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
+ bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
+ bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AS,
+ bool *Fast) const override;
+ bool isTruncateFree(Type *, Type *) const override;
+ bool isTruncateFree(EVT, EVT) const override;
+ const char *getTargetNodeName(unsigned Opcode) const override;
+ std::pair<unsigned, const TargetRegisterClass *>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const override;
+ TargetLowering::ConstraintType
+ getConstraintType(const std::string &Constraint) const override;
+ TargetLowering::ConstraintWeight
+ getSingleConstraintMatchWeight(AsmOperandInfo &info,
+ const char *constraint) const override;
+ void LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const override;
+ MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const
+ override;
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+ bool allowTruncateForTailCall(Type *, Type *) const override;
+ bool mayBeEmittedAsTailCall(CallInst *CI) const override;
+ SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+ SDValue LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const override;
+ SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
+ SelectionDAG &DAG) const override;
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+
+private:
+ const SystemZSubtarget &Subtarget;
+
+ // Implement LowerOperation for individual opcodes.
+ SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
+ SelectionDAG &DAG) const;
+ SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
+ SelectionDAG &DAG) const;
+ SDValue lowerBlockAddress(BlockAddressSDNode *Node,
+ SelectionDAG &DAG) const;
+ SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
+ SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
+ SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
+ unsigned Opcode) const;
+ SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerLOAD_SEQUENCE_POINT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
+
+ // If the last instruction before MBBI in MBB was some form of COMPARE,
+ // try to replace it with a COMPARE AND BRANCH just before MBBI.
+ // CCMask and Target are the BRC-like operands for the branch.
+ // Return true if the change was made.
+ bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned CCMask,
+ MachineBasicBlock *Target) const;
+
+ // Implement EmitInstrWithCustomInserter for individual operation types.
+ MachineBasicBlock *emitSelect(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ MachineBasicBlock *emitCondStore(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned StoreOpcode, unsigned STOCOpcode,
+ bool Invert) const;
+ MachineBasicBlock *emitExt128(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ bool ClearEven, unsigned SubReg) const;
+ MachineBasicBlock *emitAtomicLoadBinary(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned BinOpcode, unsigned BitSize,
+ bool Invert = false) const;
+ MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ unsigned CompareOpcode,
+ unsigned KeepOldMask,
+ unsigned BitSize) const;
+ MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ MachineBasicBlock *emitMemMemWrapper(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned Opcode) const;
+ MachineBasicBlock *emitStringWrapper(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned Opcode) const;
+};
+} // end namespace llvm
+
+#endif // LLVM_TARGET_SystemZ_ISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrBuilder.h b/contrib/llvm/lib/Target/SystemZ/SystemZInstrBuilder.h
new file mode 100644
index 0000000..84196e9
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrBuilder.h
@@ -0,0 +1,48 @@
+//===-- SystemZInstrBuilder.h - Functions to aid building insts -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file exposes functions that may be used with BuildMI from the
+// MachineInstrBuilder.h file to handle SystemZ'isms in a clean way.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZINSTRBUILDER_H
+#define SYSTEMZINSTRBUILDER_H
+
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+
+namespace llvm {
+
+/// Add a BDX memory reference for frame object FI to MIB.
+static inline const MachineInstrBuilder &
+addFrameReference(const MachineInstrBuilder &MIB, int FI) {
+ MachineInstr *MI = MIB;
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MachineFrameInfo *MFFrame = MF.getFrameInfo();
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned Flags = 0;
+ if (MCID.mayLoad())
+ Flags |= MachineMemOperand::MOLoad;
+ if (MCID.mayStore())
+ Flags |= MachineMemOperand::MOStore;
+ int64_t Offset = 0;
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo(
+ PseudoSourceValue::getFixedStack(FI), Offset),
+ Flags, MFFrame->getObjectSize(FI),
+ MFFrame->getObjectAlignment(FI));
+ return MIB.addFrameIndex(FI).addImm(Offset).addReg(0).addMemOperand(MMO);
+}
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td b/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td
new file mode 100644
index 0000000..e8841e1
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td
@@ -0,0 +1,411 @@
+//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Select instructions
+//===----------------------------------------------------------------------===//
+
+// C's ?: operator for floating-point operands.
+def SelectF32 : SelectWrapper<FP32>;
+def SelectF64 : SelectWrapper<FP64>;
+def SelectF128 : SelectWrapper<FP128>;
+
+defm CondStoreF32 : CondStores<FP32, nonvolatile_store,
+ nonvolatile_load, bdxaddr20only>;
+defm CondStoreF64 : CondStores<FP64, nonvolatile_store,
+ nonvolatile_load, bdxaddr20only>;
+
+//===----------------------------------------------------------------------===//
+// Move instructions
+//===----------------------------------------------------------------------===//
+
+// Load zero.
+let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
+ def LZER : InherentRRE<"lzer", 0xB374, FP32, (fpimm0)>;
+ def LZDR : InherentRRE<"lzdr", 0xB375, FP64, (fpimm0)>;
+ def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>;
+}
+
+// Moves between two floating-point registers.
+let neverHasSideEffects = 1 in {
+ def LER : UnaryRR <"le", 0x38, null_frag, FP32, FP32>;
+ def LDR : UnaryRR <"ld", 0x28, null_frag, FP64, FP64>;
+ def LXR : UnaryRRE<"lx", 0xB365, null_frag, FP128, FP128>;
+}
+
+// Moves between two floating-point registers that also set the condition
+// codes.
+let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
+ defm LTEBR : LoadAndTestRRE<"lteb", 0xB302, FP32>;
+ defm LTDBR : LoadAndTestRRE<"ltdb", 0xB312, FP64>;
+ defm LTXBR : LoadAndTestRRE<"ltxb", 0xB342, FP128>;
+}
+defm : CompareZeroFP<LTEBRCompare, FP32>;
+defm : CompareZeroFP<LTDBRCompare, FP64>;
+defm : CompareZeroFP<LTXBRCompare, FP128>;
+
+// Moves between 64-bit integer and floating-point registers.
+def LGDR : UnaryRRE<"lgd", 0xB3CD, bitconvert, GR64, FP64>;
+def LDGR : UnaryRRE<"ldg", 0xB3C1, bitconvert, FP64, GR64>;
+
+// fcopysign with an FP32 result.
+let isCodeGenOnly = 1 in {
+ def CPSDRss : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP32>;
+ def CPSDRsd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP64>;
+}
+
+// The sign of an FP128 is in the high register.
+def : Pat<(fcopysign FP32:$src1, FP128:$src2),
+ (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
+
+// fcopysign with an FP64 result.
+let isCodeGenOnly = 1 in
+ def CPSDRds : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP32>;
+def CPSDRdd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP64>;
+
+// The sign of an FP128 is in the high register.
+def : Pat<(fcopysign FP64:$src1, FP128:$src2),
+ (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
+
+// fcopysign with an FP128 result. Use "upper" as the high half and leave
+// the low half as-is.
+class CopySign128<RegisterOperand cls, dag upper>
+ : Pat<(fcopysign FP128:$src1, cls:$src2),
+ (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>;
+
+def : CopySign128<FP32, (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64),
+ FP32:$src2)>;
+def : CopySign128<FP64, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
+ FP64:$src2)>;
+def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
+ (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
+
+defm LoadStoreF32 : MVCLoadStore<load, f32, MVCSequence, 4>;
+defm LoadStoreF64 : MVCLoadStore<load, f64, MVCSequence, 8>;
+defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>;
+
+//===----------------------------------------------------------------------===//
+// Load instructions
+//===----------------------------------------------------------------------===//
+
+let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
+ defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>;
+ defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>;
+
+ // These instructions are split after register allocation, so we don't
+ // want a custom inserter.
+ let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
+ def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
+ [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Store instructions
+//===----------------------------------------------------------------------===//
+
+let SimpleBDXStore = 1 in {
+ defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>;
+ defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>;
+
+ // These instructions are split after register allocation, so we don't
+ // want a custom inserter.
+ let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
+ def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
+ [(store FP128:$src, bdxaddr20only128:$dst)]>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Conversion instructions
+//===----------------------------------------------------------------------===//
+
+// Convert floating-point values to narrower representations, rounding
+// according to the current mode. The destination of LEXBR and LDXBR
+// is a 128-bit value, but only the first register of the pair is used.
+def LEDBR : UnaryRRE<"ledb", 0xB344, fround, FP32, FP64>;
+def LEXBR : UnaryRRE<"lexb", 0xB346, null_frag, FP128, FP128>;
+def LDXBR : UnaryRRE<"ldxb", 0xB345, null_frag, FP128, FP128>;
+
+def LEDBRA : UnaryRRF4<"ledbra", 0xB344, FP32, FP64>,
+ Requires<[FeatureFPExtension]>;
+def LEXBRA : UnaryRRF4<"lexbra", 0xB346, FP128, FP128>,
+ Requires<[FeatureFPExtension]>;
+def LDXBRA : UnaryRRF4<"ldxbra", 0xB345, FP128, FP128>,
+ Requires<[FeatureFPExtension]>;
+
+def : Pat<(f32 (fround FP128:$src)),
+ (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hh32)>;
+def : Pat<(f64 (fround FP128:$src)),
+ (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>;
+
+// Extend register floating-point values to wider representations.
+def LDEBR : UnaryRRE<"ldeb", 0xB304, fextend, FP64, FP32>;
+def LXEBR : UnaryRRE<"lxeb", 0xB306, fextend, FP128, FP32>;
+def LXDBR : UnaryRRE<"lxdb", 0xB305, fextend, FP128, FP64>;
+
+// Extend memory floating-point values to wider representations.
+def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64, 4>;
+def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128, 4>;
+def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128, 8>;
+
+// Convert a signed integer register value to a floating-point one.
+def CEFBR : UnaryRRE<"cefb", 0xB394, sint_to_fp, FP32, GR32>;
+def CDFBR : UnaryRRE<"cdfb", 0xB395, sint_to_fp, FP64, GR32>;
+def CXFBR : UnaryRRE<"cxfb", 0xB396, sint_to_fp, FP128, GR32>;
+
+def CEGBR : UnaryRRE<"cegb", 0xB3A4, sint_to_fp, FP32, GR64>;
+def CDGBR : UnaryRRE<"cdgb", 0xB3A5, sint_to_fp, FP64, GR64>;
+def CXGBR : UnaryRRE<"cxgb", 0xB3A6, sint_to_fp, FP128, GR64>;
+
+// Convert am unsigned integer register value to a floating-point one.
+let Predicates = [FeatureFPExtension] in {
+ def CELFBR : UnaryRRF4<"celfbr", 0xB390, FP32, GR32>;
+ def CDLFBR : UnaryRRF4<"cdlfbr", 0xB391, FP64, GR32>;
+ def CXLFBR : UnaryRRF4<"cxlfbr", 0xB392, FP128, GR32>;
+
+ def CELGBR : UnaryRRF4<"celgbr", 0xB3A0, FP32, GR64>;
+ def CDLGBR : UnaryRRF4<"cdlgbr", 0xB3A1, FP64, GR64>;
+ def CXLGBR : UnaryRRF4<"cxlgbr", 0xB3A2, FP128, GR64>;
+
+ def : Pat<(f32 (uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>;
+ def : Pat<(f64 (uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>;
+ def : Pat<(f128 (uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>;
+
+ def : Pat<(f32 (uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>;
+ def : Pat<(f64 (uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>;
+ def : Pat<(f128 (uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>;
+}
+
+// Convert a floating-point register value to a signed integer value,
+// with the second operand (modifier M3) specifying the rounding mode.
+let Defs = [CC] in {
+ def CFEBR : UnaryRRF<"cfeb", 0xB398, GR32, FP32>;
+ def CFDBR : UnaryRRF<"cfdb", 0xB399, GR32, FP64>;
+ def CFXBR : UnaryRRF<"cfxb", 0xB39A, GR32, FP128>;
+
+ def CGEBR : UnaryRRF<"cgeb", 0xB3A8, GR64, FP32>;
+ def CGDBR : UnaryRRF<"cgdb", 0xB3A9, GR64, FP64>;
+ def CGXBR : UnaryRRF<"cgxb", 0xB3AA, GR64, FP128>;
+}
+
+// fp_to_sint always rounds towards zero, which is modifier value 5.
+def : Pat<(i32 (fp_to_sint FP32:$src)), (CFEBR 5, FP32:$src)>;
+def : Pat<(i32 (fp_to_sint FP64:$src)), (CFDBR 5, FP64:$src)>;
+def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;
+
+def : Pat<(i64 (fp_to_sint FP32:$src)), (CGEBR 5, FP32:$src)>;
+def : Pat<(i64 (fp_to_sint FP64:$src)), (CGDBR 5, FP64:$src)>;
+def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;
+
+// Convert a floating-point register value to an unsigned integer value.
+let Predicates = [FeatureFPExtension] in {
+ let Defs = [CC] in {
+ def CLFEBR : UnaryRRF4<"clfebr", 0xB39C, GR32, FP32>;
+ def CLFDBR : UnaryRRF4<"clfdbr", 0xB39D, GR32, FP64>;
+ def CLFXBR : UnaryRRF4<"clfxbr", 0xB39E, GR32, FP128>;
+
+ def CLGEBR : UnaryRRF4<"clgebr", 0xB3AC, GR64, FP32>;
+ def CLGDBR : UnaryRRF4<"clgdbr", 0xB3AD, GR64, FP64>;
+ def CLGXBR : UnaryRRF4<"clgxbr", 0xB3AE, GR64, FP128>;
+ }
+
+ def : Pat<(i32 (fp_to_uint FP32:$src)), (CLFEBR 5, FP32:$src, 0)>;
+ def : Pat<(i32 (fp_to_uint FP64:$src)), (CLFDBR 5, FP64:$src, 0)>;
+ def : Pat<(i32 (fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>;
+
+ def : Pat<(i64 (fp_to_uint FP32:$src)), (CLGEBR 5, FP32:$src, 0)>;
+ def : Pat<(i64 (fp_to_uint FP64:$src)), (CLGDBR 5, FP64:$src, 0)>;
+ def : Pat<(i64 (fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Unary arithmetic
+//===----------------------------------------------------------------------===//
+
+// Negation (Load Complement).
+let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
+ def LCEBR : UnaryRRE<"lceb", 0xB303, fneg, FP32, FP32>;
+ def LCDBR : UnaryRRE<"lcdb", 0xB313, fneg, FP64, FP64>;
+ def LCXBR : UnaryRRE<"lcxb", 0xB343, fneg, FP128, FP128>;
+}
+
+// Absolute value (Load Positive).
+let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
+ def LPEBR : UnaryRRE<"lpeb", 0xB300, fabs, FP32, FP32>;
+ def LPDBR : UnaryRRE<"lpdb", 0xB310, fabs, FP64, FP64>;
+ def LPXBR : UnaryRRE<"lpxb", 0xB340, fabs, FP128, FP128>;
+}
+
+// Negative absolute value (Load Negative).
+let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
+ def LNEBR : UnaryRRE<"lneb", 0xB301, fnabs, FP32, FP32>;
+ def LNDBR : UnaryRRE<"lndb", 0xB311, fnabs, FP64, FP64>;
+ def LNXBR : UnaryRRE<"lnxb", 0xB341, fnabs, FP128, FP128>;
+}
+
+// Square root.
+def SQEBR : UnaryRRE<"sqeb", 0xB314, fsqrt, FP32, FP32>;
+def SQDBR : UnaryRRE<"sqdb", 0xB315, fsqrt, FP64, FP64>;
+def SQXBR : UnaryRRE<"sqxb", 0xB316, fsqrt, FP128, FP128>;
+
+def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32, 4>;
+def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64, 8>;
+
+// Round to an integer, with the second operand (modifier M3) specifying
+// the rounding mode. These forms always check for inexact conditions.
+def FIEBR : UnaryRRF<"fieb", 0xB357, FP32, FP32>;
+def FIDBR : UnaryRRF<"fidb", 0xB35F, FP64, FP64>;
+def FIXBR : UnaryRRF<"fixb", 0xB347, FP128, FP128>;
+
+// frint rounds according to the current mode (modifier 0) and detects
+// inexact conditions.
+def : Pat<(frint FP32:$src), (FIEBR 0, FP32:$src)>;
+def : Pat<(frint FP64:$src), (FIDBR 0, FP64:$src)>;
+def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>;
+
+let Predicates = [FeatureFPExtension] in {
+ // Extended forms of the FIxBR instructions. M4 can be set to 4
+ // to suppress detection of inexact conditions.
+ def FIEBRA : UnaryRRF4<"fiebra", 0xB357, FP32, FP32>;
+ def FIDBRA : UnaryRRF4<"fidbra", 0xB35F, FP64, FP64>;
+ def FIXBRA : UnaryRRF4<"fixbra", 0xB347, FP128, FP128>;
+
+ // fnearbyint is like frint but does not detect inexact conditions.
+ def : Pat<(fnearbyint FP32:$src), (FIEBRA 0, FP32:$src, 4)>;
+ def : Pat<(fnearbyint FP64:$src), (FIDBRA 0, FP64:$src, 4)>;
+ def : Pat<(fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>;
+
+ // floor is no longer allowed to raise an inexact condition,
+ // so restrict it to the cases where the condition can be suppressed.
+ // Mode 7 is round towards -inf.
+ def : Pat<(ffloor FP32:$src), (FIEBRA 7, FP32:$src, 4)>;
+ def : Pat<(ffloor FP64:$src), (FIDBRA 7, FP64:$src, 4)>;
+ def : Pat<(ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>;
+
+ // Same idea for ceil, where mode 6 is round towards +inf.
+ def : Pat<(fceil FP32:$src), (FIEBRA 6, FP32:$src, 4)>;
+ def : Pat<(fceil FP64:$src), (FIDBRA 6, FP64:$src, 4)>;
+ def : Pat<(fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>;
+
+ // Same idea for trunc, where mode 5 is round towards zero.
+ def : Pat<(ftrunc FP32:$src), (FIEBRA 5, FP32:$src, 4)>;
+ def : Pat<(ftrunc FP64:$src), (FIDBRA 5, FP64:$src, 4)>;
+ def : Pat<(ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>;
+
+ // Same idea for round, where mode 1 is round towards nearest with
+ // ties away from zero.
+ def : Pat<(frnd FP32:$src), (FIEBRA 1, FP32:$src, 4)>;
+ def : Pat<(frnd FP64:$src), (FIDBRA 1, FP64:$src, 4)>;
+ def : Pat<(frnd FP128:$src), (FIXBRA 1, FP128:$src, 4)>;
+}
+
+//===----------------------------------------------------------------------===//
+// Binary arithmetic
+//===----------------------------------------------------------------------===//
+
+// Addition.
+let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
+ let isCommutable = 1 in {
+ def AEBR : BinaryRRE<"aeb", 0xB30A, fadd, FP32, FP32>;
+ def ADBR : BinaryRRE<"adb", 0xB31A, fadd, FP64, FP64>;
+ def AXBR : BinaryRRE<"axb", 0xB34A, fadd, FP128, FP128>;
+ }
+ def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load, 4>;
+ def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load, 8>;
+}
+
+// Subtraction.
+let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
+ def SEBR : BinaryRRE<"seb", 0xB30B, fsub, FP32, FP32>;
+ def SDBR : BinaryRRE<"sdb", 0xB31B, fsub, FP64, FP64>;
+ def SXBR : BinaryRRE<"sxb", 0xB34B, fsub, FP128, FP128>;
+
+ def SEB : BinaryRXE<"seb", 0xED0B, fsub, FP32, load, 4>;
+ def SDB : BinaryRXE<"sdb", 0xED1B, fsub, FP64, load, 8>;
+}
+
+// Multiplication.
+let isCommutable = 1 in {
+ def MEEBR : BinaryRRE<"meeb", 0xB317, fmul, FP32, FP32>;
+ def MDBR : BinaryRRE<"mdb", 0xB31C, fmul, FP64, FP64>;
+ def MXBR : BinaryRRE<"mxb", 0xB34C, fmul, FP128, FP128>;
+}
+def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load, 4>;
+def MDB : BinaryRXE<"mdb", 0xED1C, fmul, FP64, load, 8>;
+
+// f64 multiplication of two FP32 registers.
+def MDEBR : BinaryRRE<"mdeb", 0xB30C, null_frag, FP64, FP32>;
+def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))),
+ (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ FP32:$src1, subreg_h32), FP32:$src2)>;
+
+// f64 multiplication of an FP32 register and an f32 memory.
+def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>;
+def : Pat<(fmul (f64 (fextend FP32:$src1)),
+ (f64 (extloadf32 bdxaddr12only:$addr))),
+ (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_h32),
+ bdxaddr12only:$addr)>;
+
+// f128 multiplication of two FP64 registers.
+def MXDBR : BinaryRRE<"mxdb", 0xB307, null_frag, FP128, FP64>;
+def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))),
+ (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
+ FP64:$src1, subreg_h64), FP64:$src2)>;
+
+// f128 multiplication of an FP64 register and an f64 memory.
+def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>;
+def : Pat<(fmul (f128 (fextend FP64:$src1)),
+ (f128 (extloadf64 bdxaddr12only:$addr))),
+ (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64),
+ bdxaddr12only:$addr)>;
+
+// Fused multiply-add.
+def MAEBR : TernaryRRD<"maeb", 0xB30E, z_fma, FP32>;
+def MADBR : TernaryRRD<"madb", 0xB31E, z_fma, FP64>;
+
+def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load, 4>;
+def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load, 8>;
+
+// Fused multiply-subtract.
+def MSEBR : TernaryRRD<"mseb", 0xB30F, z_fms, FP32>;
+def MSDBR : TernaryRRD<"msdb", 0xB31F, z_fms, FP64>;
+
+def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load, 4>;
+def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load, 8>;
+
+// Division.
+def DEBR : BinaryRRE<"deb", 0xB30D, fdiv, FP32, FP32>;
+def DDBR : BinaryRRE<"ddb", 0xB31D, fdiv, FP64, FP64>;
+def DXBR : BinaryRRE<"dxb", 0xB34D, fdiv, FP128, FP128>;
+
+def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load, 4>;
+def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load, 8>;
+
+//===----------------------------------------------------------------------===//
+// Comparisons
+//===----------------------------------------------------------------------===//
+
+let Defs = [CC], CCValues = 0xF in {
+ def CEBR : CompareRRE<"ceb", 0xB309, z_fcmp, FP32, FP32>;
+ def CDBR : CompareRRE<"cdb", 0xB319, z_fcmp, FP64, FP64>;
+ def CXBR : CompareRRE<"cxb", 0xB349, z_fcmp, FP128, FP128>;
+
+ def CEB : CompareRXE<"ceb", 0xED09, z_fcmp, FP32, load, 4>;
+ def CDB : CompareRXE<"cdb", 0xED19, z_fcmp, FP64, load, 8>;
+}
+
+//===----------------------------------------------------------------------===//
+// Peepholes
+//===----------------------------------------------------------------------===//
+
+def : Pat<(f32 fpimmneg0), (LCEBR (LZER))>;
+def : Pat<(f64 fpimmneg0), (LCDBR (LZDR))>;
+def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrFormats.td b/contrib/llvm/lib/Target/SystemZ/SystemZInstrFormats.td
new file mode 100644
index 0000000..9f59a1c
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrFormats.td
@@ -0,0 +1,1609 @@
+//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Basic SystemZ instruction definition
+//===----------------------------------------------------------------------===//
+
+class InstSystemZ<int size, dag outs, dag ins, string asmstr,
+ list<dag> pattern> : Instruction {
+ let Namespace = "SystemZ";
+
+ dag OutOperandList = outs;
+ dag InOperandList = ins;
+ let Size = size;
+ let Pattern = pattern;
+ let AsmString = asmstr;
+
+ // Some instructions come in pairs, one having a 12-bit displacement
+ // and the other having a 20-bit displacement. Both instructions in
+ // the pair have the same DispKey and their DispSizes are "12" and "20"
+ // respectively.
+ string DispKey = "";
+ string DispSize = "none";
+
+ // Many register-based <INSN>R instructions have a memory-based <INSN>
+ // counterpart. OpKey uniquely identifies <INSN>, while OpType is
+ // "reg" for <INSN>R and "mem" for <INSN>.
+ string OpKey = "";
+ string OpType = "none";
+
+ // Many distinct-operands instructions have older 2-operand equivalents.
+ // NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs,
+ // with NumOpsValue being "2" or "3" as appropriate.
+ string NumOpsKey = "";
+ string NumOpsValue = "none";
+
+ // True if this instruction is a simple D(X,B) load of a register
+ // (with no sign or zero extension).
+ bit SimpleBDXLoad = 0;
+
+ // True if this instruction is a simple D(X,B) store of a register
+ // (with no truncation).
+ bit SimpleBDXStore = 0;
+
+ // True if this instruction has a 20-bit displacement field.
+ bit Has20BitOffset = 0;
+
+ // True if addresses in this instruction have an index register.
+ bit HasIndex = 0;
+
+ // True if this is a 128-bit pseudo instruction that combines two 64-bit
+ // operations.
+ bit Is128Bit = 0;
+
+ // The access size of all memory operands in bytes, or 0 if not known.
+ bits<5> AccessBytes = 0;
+
+ // If the instruction sets CC to a useful value, this gives the mask
+ // of all possible CC results. The mask has the same form as
+ // SystemZ::CCMASK_*.
+ bits<4> CCValues = 0;
+
+ // The subset of CCValues that have the same meaning as they would after
+ // a comparison of the first operand against zero.
+ bits<4> CompareZeroCCMask = 0;
+
+ // True if the instruction is conditional and if the CC mask operand
+ // comes first (as for BRC, etc.).
+ bit CCMaskFirst = 0;
+
+ // Similar, but true if the CC mask operand comes last (as for LOC, etc.).
+ bit CCMaskLast = 0;
+
+ // True if the instruction is the "logical" rather than "arithmetic" form,
+ // in cases where a distinction exists.
+ bit IsLogical = 0;
+
+ let TSFlags{0} = SimpleBDXLoad;
+ let TSFlags{1} = SimpleBDXStore;
+ let TSFlags{2} = Has20BitOffset;
+ let TSFlags{3} = HasIndex;
+ let TSFlags{4} = Is128Bit;
+ let TSFlags{9-5} = AccessBytes;
+ let TSFlags{13-10} = CCValues;
+ let TSFlags{17-14} = CompareZeroCCMask;
+ let TSFlags{18} = CCMaskFirst;
+ let TSFlags{19} = CCMaskLast;
+ let TSFlags{20} = IsLogical;
+}
+
+//===----------------------------------------------------------------------===//
+// Mappings between instructions
+//===----------------------------------------------------------------------===//
+
+// Return the version of an instruction that has an unsigned 12-bit
+// displacement.
+def getDisp12Opcode : InstrMapping {
+ let FilterClass = "InstSystemZ";
+ let RowFields = ["DispKey"];
+ let ColFields = ["DispSize"];
+ let KeyCol = ["20"];
+ let ValueCols = [["12"]];
+}
+
+// Return the version of an instruction that has a signed 20-bit displacement.
+def getDisp20Opcode : InstrMapping {
+ let FilterClass = "InstSystemZ";
+ let RowFields = ["DispKey"];
+ let ColFields = ["DispSize"];
+ let KeyCol = ["12"];
+ let ValueCols = [["20"]];
+}
+
+// Return the memory form of a register instruction.
+def getMemOpcode : InstrMapping {
+ let FilterClass = "InstSystemZ";
+ let RowFields = ["OpKey"];
+ let ColFields = ["OpType"];
+ let KeyCol = ["reg"];
+ let ValueCols = [["mem"]];
+}
+
+// Return the 3-operand form of a 2-operand instruction.
+def getThreeOperandOpcode : InstrMapping {
+ let FilterClass = "InstSystemZ";
+ let RowFields = ["NumOpsKey"];
+ let ColFields = ["NumOpsValue"];
+ let KeyCol = ["2"];
+ let ValueCols = [["3"]];
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction formats
+//===----------------------------------------------------------------------===//
+//
+// Formats are specified using operand field declarations of the form:
+//
+// bits<4> Rn : register input or output for operand n
+// bits<m> In : immediate value of width m for operand n
+// bits<4> BDn : address operand n, which has a base and a displacement
+// bits<m> XBDn : address operand n, which has an index, a base and a
+// displacement
+// bits<4> Xn : index register for address operand n
+// bits<4> Mn : mode value for operand n
+//
+// The operand numbers ("n" in the list above) follow the architecture manual.
+// Assembly operands sometimes have a different order; in particular, R3 often
+// is often written between operands 1 and 2.
+//
+//===----------------------------------------------------------------------===//
+
+class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+ field bits<32> SoftFail = 0;
+
+ bits<4> R1;
+ bits<16> I2;
+
+ let Inst{31-24} = op{11-4};
+ let Inst{23-20} = R1;
+ let Inst{19-16} = op{3-0};
+ let Inst{15-0} = I2;
+}
+
+class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<4> R1;
+ bits<4> R2;
+ bits<4> M3;
+ bits<16> RI4;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R1;
+ let Inst{35-32} = R2;
+ let Inst{31-16} = RI4;
+ let Inst{15-12} = M3;
+ let Inst{11-8} = 0;
+ let Inst{7-0} = op{7-0};
+}
+
+class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<4> R1;
+ bits<8> I2;
+ bits<4> M3;
+ bits<16> RI4;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R1;
+ let Inst{35-32} = M3;
+ let Inst{31-16} = RI4;
+ let Inst{15-8} = I2;
+ let Inst{7-0} = op{7-0};
+}
+
+class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<4> R1;
+ bits<4> R3;
+ bits<16> I2;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R1;
+ let Inst{35-32} = R3;
+ let Inst{31-16} = I2;
+ let Inst{15-8} = 0;
+ let Inst{7-0} = op{7-0};
+}
+
+class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<4> R1;
+ bits<4> R2;
+ bits<8> I3;
+ bits<8> I4;
+ bits<8> I5;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R1;
+ let Inst{35-32} = R2;
+ let Inst{31-24} = I3;
+ let Inst{23-16} = I4;
+ let Inst{15-8} = I5;
+ let Inst{7-0} = op{7-0};
+}
+
+class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<4> R1;
+ bits<32> I2;
+
+ let Inst{47-40} = op{11-4};
+ let Inst{39-36} = R1;
+ let Inst{35-32} = op{3-0};
+ let Inst{31-0} = I2;
+}
+
+class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<2, outs, ins, asmstr, pattern> {
+ field bits<16> Inst;
+ field bits<16> SoftFail = 0;
+
+ bits<4> R1;
+ bits<4> R2;
+
+ let Inst{15-8} = op;
+ let Inst{7-4} = R1;
+ let Inst{3-0} = R2;
+}
+
+class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+ field bits<32> SoftFail = 0;
+
+ bits<4> R1;
+ bits<4> R3;
+ bits<4> R2;
+
+ let Inst{31-16} = op;
+ let Inst{15-12} = R1;
+ let Inst{11-8} = 0;
+ let Inst{7-4} = R3;
+ let Inst{3-0} = R2;
+}
+
+class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+ field bits<32> SoftFail = 0;
+
+ bits<4> R1;
+ bits<4> R2;
+
+ let Inst{31-16} = op;
+ let Inst{15-8} = 0;
+ let Inst{7-4} = R1;
+ let Inst{3-0} = R2;
+}
+
+class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+ field bits<32> SoftFail = 0;
+
+ bits<4> R1;
+ bits<4> R2;
+ bits<4> R3;
+ bits<4> R4;
+
+ let Inst{31-16} = op;
+ let Inst{15-12} = R3;
+ let Inst{11-8} = R4;
+ let Inst{7-4} = R1;
+ let Inst{3-0} = R2;
+}
+
+class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+ field bits<32> SoftFail = 0;
+
+ bits<4> R1;
+ bits<20> XBD2;
+
+ let Inst{31-24} = op;
+ let Inst{23-20} = R1;
+ let Inst{19-0} = XBD2;
+
+ let HasIndex = 1;
+}
+
+class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<4> R1;
+ bits<20> XBD2;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R1;
+ let Inst{35-16} = XBD2;
+ let Inst{15-8} = 0;
+ let Inst{7-0} = op{7-0};
+
+ let HasIndex = 1;
+}
+
+class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<4> R1;
+ bits<4> R3;
+ bits<20> XBD2;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R3;
+ let Inst{35-16} = XBD2;
+ let Inst{15-12} = R1;
+ let Inst{11-8} = 0;
+ let Inst{7-0} = op{7-0};
+
+ let HasIndex = 1;
+}
+
+class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<4> R1;
+ bits<28> XBD2;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R1;
+ let Inst{35-8} = XBD2;
+ let Inst{7-0} = op{7-0};
+
+ let Has20BitOffset = 1;
+ let HasIndex = 1;
+}
+
+class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+ field bits<32> SoftFail = 0;
+
+ bits<4> R1;
+ bits<4> R3;
+ bits<16> BD2;
+
+ let Inst{31-24} = op;
+ let Inst{23-20} = R1;
+ let Inst{19-16} = R3;
+ let Inst{15-0} = BD2;
+}
+
+class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<4> R1;
+ bits<4> R3;
+ bits<24> BD2;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R1;
+ let Inst{35-32} = R3;
+ let Inst{31-8} = BD2;
+ let Inst{7-0} = op{7-0};
+
+ let Has20BitOffset = 1;
+}
+
+class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+ field bits<32> SoftFail = 0;
+
+ bits<16> BD1;
+ bits<8> I2;
+
+ let Inst{31-24} = op;
+ let Inst{23-16} = I2;
+ let Inst{15-0} = BD1;
+}
+
+class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<16> BD1;
+ bits<16> I2;
+
+ let Inst{47-32} = op;
+ let Inst{31-16} = BD1;
+ let Inst{15-0} = I2;
+}
+
+class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<24> BD1;
+ bits<8> I2;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-32} = I2;
+ let Inst{31-8} = BD1;
+ let Inst{7-0} = op{7-0};
+
+ let Has20BitOffset = 1;
+}
+
+class InstSS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+ field bits<48> SoftFail = 0;
+
+ bits<24> BDL1;
+ bits<16> BD2;
+
+ let Inst{47-40} = op;
+ let Inst{39-16} = BDL1;
+ let Inst{15-0} = BD2;
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction definitions with semantics
+//===----------------------------------------------------------------------===//
+//
+// These classes have the form [Cond]<Category><Format>, where <Format> is one
+// of the formats defined above and where <Category> describes the inputs
+// and outputs. "Cond" is used if the instruction is conditional,
+// in which case the 4-bit condition-code mask is added as a final operand.
+// <Category> can be one of:
+//
+// Inherent:
+// One register output operand and no input operands.
+//
+// BranchUnary:
+// One register output operand, one register input operand and
+// one branch displacement. The instructions stores a modified
+// form of the source register in the destination register and
+// branches on the result.
+//
+// Store:
+// One register or immediate input operand and one address input operand.
+// The instruction stores the first operand to the address.
+//
+// This category is used for both pure and truncating stores.
+//
+// LoadMultiple:
+// One address input operand and two explicit output operands.
+// The instruction loads a range of registers from the address,
+// with the explicit operands giving the first and last register
+// to load. Other loaded registers are added as implicit definitions.
+//
+// StoreMultiple:
+// Two explicit input register operands and an address operand.
+// The instruction stores a range of registers to the address,
+// with the explicit operands giving the first and last register
+// to store. Other stored registers are added as implicit uses.
+//
+// Unary:
+// One register output operand and one input operand.
+//
+// Binary:
+// One register output operand and two input operands.
+//
+// Compare:
+// Two input operands and an implicit CC output operand.
+//
+// Ternary:
+// One register output operand and three input operands.
+//
+// LoadAndOp:
+// One output operand and two input operands, one of which is an address.
+// The instruction both reads from and writes to the address.
+//
+// CmpSwap:
+// One output operand and three input operands, one of which is an address.
+// The instruction both reads from and writes to the address.
+//
+// RotateSelect:
+// One output operand and five input operands. The first two operands
+// are registers and the other three are immediates.
+//
+// Prefetch:
+// One 4-bit immediate operand and one address operand. The immediate
+// operand is 1 for a load prefetch and 2 for a store prefetch.
+//
+// The format determines which input operands are tied to output operands,
+// and also determines the shape of any address operand.
+//
+// Multiclasses of the form <Category><Format>Pair define two instructions,
+// one with <Category><Format> and one with <Category><Format>Y. The name
+// of the first instruction has no suffix, the name of the second has
+// an extra "y".
+//
+//===----------------------------------------------------------------------===//
+
+class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
+ dag src>
+ : InstRRE<opcode, (outs cls:$R1), (ins),
+ mnemonic#"\t$R1",
+ [(set cls:$R1, src)]> {
+ let R2 = 0;
+}
+
+class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls>
+ : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$I2),
+ mnemonic##"\t$R1, $I2", []> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+}
+
+class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
+ : InstRSY<opcode, (outs cls:$R1, cls:$R3), (ins bdaddr20only:$BD2),
+ mnemonic#"\t$R1, $R3, $BD2", []> {
+ let mayLoad = 1;
+}
+
+class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls>
+ : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
+ mnemonic#"\t$R1, $I2",
+ [(operator cls:$R1, pcrel32:$I2)]> {
+ let mayStore = 1;
+ // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
+ // However, BDXs have two extra operands and are therefore 6 units more
+ // complex.
+ let AddedComplexity = 7;
+}
+
+class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls, bits<5> bytes,
+ AddressingMode mode = bdxaddr12only>
+ : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
+ mnemonic#"\t$R1, $XBD2",
+ [(operator cls:$R1, mode:$XBD2)]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let mayStore = 1;
+ let AccessBytes = bytes;
+}
+
+class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, bits<5> bytes,
+ AddressingMode mode = bdxaddr20only>
+ : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
+ mnemonic#"\t$R1, $XBD2",
+ [(operator cls:$R1, mode:$XBD2)]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let mayStore = 1;
+ let AccessBytes = bytes;
+}
+
+multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
+ SDPatternOperator operator, RegisterOperand cls,
+ bits<5> bytes> {
+ let DispKey = mnemonic ## #cls in {
+ let DispSize = "12" in
+ def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
+ let DispSize = "20" in
+ def Y : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
+ bdxaddr20pair>;
+ }
+}
+
+class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
+ : InstRSY<opcode, (outs), (ins cls:$R1, cls:$R3, bdaddr20only:$BD2),
+ mnemonic#"\t$R1, $R3, $BD2", []> {
+ let mayStore = 1;
+}
+
+// StoreSI* instructions are used to store an integer to memory, but the
+// addresses are more restricted than for normal stores. If we are in the
+// situation of having to force either the address into a register or the
+// constant into a register, it's usually better to do the latter.
+// We therefore match the address in the same way as a normal store and
+// only use the StoreSI* instruction if the matched address is suitable.
+class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ Immediate imm>
+ : InstSI<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
+ mnemonic#"\t$BD1, $I2",
+ [(operator imm:$I2, mviaddr12pair:$BD1)]> {
+ let mayStore = 1;
+}
+
+class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ Immediate imm>
+ : InstSIY<opcode, (outs), (ins mviaddr20pair:$BD1, imm:$I2),
+ mnemonic#"\t$BD1, $I2",
+ [(operator imm:$I2, mviaddr20pair:$BD1)]> {
+ let mayStore = 1;
+}
+
+class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ Immediate imm>
+ : InstSIL<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
+ mnemonic#"\t$BD1, $I2",
+ [(operator imm:$I2, mviaddr12pair:$BD1)]> {
+ let mayStore = 1;
+}
+
+multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
+ SDPatternOperator operator, Immediate imm> {
+ let DispKey = mnemonic in {
+ let DispSize = "12" in
+ def "" : StoreSI<mnemonic, siOpcode, operator, imm>;
+ let DispSize = "20" in
+ def Y : StoreSIY<mnemonic#"y", siyOpcode, operator, imm>;
+ }
+}
+
+class CondStoreRSY<string mnemonic, bits<16> opcode,
+ RegisterOperand cls, bits<5> bytes,
+ AddressingMode mode = bdaddr20only>
+ : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$R3),
+ mnemonic#"$R3\t$R1, $BD2", []>,
+ Requires<[FeatureLoadStoreOnCond]> {
+ let mayStore = 1;
+ let AccessBytes = bytes;
+ let CCMaskLast = 1;
+}
+
+// Like CondStoreRSY, but used for the raw assembly form. The condition-code
+// mask is the third operand rather than being part of the mnemonic.
+class AsmCondStoreRSY<string mnemonic, bits<16> opcode,
+ RegisterOperand cls, bits<5> bytes,
+ AddressingMode mode = bdaddr20only>
+ : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, imm32zx4:$R3),
+ mnemonic#"\t$R1, $BD2, $R3", []>,
+ Requires<[FeatureLoadStoreOnCond]> {
+ let mayStore = 1;
+ let AccessBytes = bytes;
+}
+
+// Like CondStoreRSY, but with a fixed CC mask.
+class FixedCondStoreRSY<string mnemonic, bits<16> opcode,
+ RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
+ AddressingMode mode = bdaddr20only>
+ : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2),
+ mnemonic#"\t$R1, $BD2", []>,
+ Requires<[FeatureLoadStoreOnCond]> {
+ let mayStore = 1;
+ let AccessBytes = bytes;
+ let R3 = ccmask;
+}
+
+class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
+ mnemonic#"r\t$R1, $R2",
+ [(set cls1:$R1, (operator cls2:$R2))]> {
+ let OpKey = mnemonic ## cls1;
+ let OpType = "reg";
+}
+
+class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
+ mnemonic#"r\t$R1, $R2",
+ [(set cls1:$R1, (operator cls2:$R2))]> {
+ let OpKey = mnemonic ## cls1;
+ let OpType = "reg";
+}
+
+class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
+ RegisterOperand cls2>
+ : InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2),
+ mnemonic#"r\t$R1, $R3, $R2", []> {
+ let OpKey = mnemonic ## cls1;
+ let OpType = "reg";
+ let R4 = 0;
+}
+
+class UnaryRRF4<string mnemonic, bits<16> opcode, RegisterOperand cls1,
+ RegisterOperand cls2>
+ : InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2, imm32zx4:$R4),
+ mnemonic#"\t$R1, $R3, $R2, $R4", []>;
+
+// These instructions are generated by if conversion. The old value of R1
+// is added as an implicit use.
+class CondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
+ RegisterOperand cls2>
+ : InstRRF<opcode, (outs cls1:$R1), (ins cls2:$R2, cond4:$valid, cond4:$R3),
+ mnemonic#"r$R3\t$R1, $R2", []>,
+ Requires<[FeatureLoadStoreOnCond]> {
+ let CCMaskLast = 1;
+ let R4 = 0;
+}
+
+// Like CondUnaryRRF, but used for the raw assembly form. The condition-code
+// mask is the third operand rather than being part of the mnemonic.
+class AsmCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
+ RegisterOperand cls2>
+ : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2, imm32zx4:$R3),
+ mnemonic#"r\t$R1, $R2, $R3", []>,
+ Requires<[FeatureLoadStoreOnCond]> {
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+ let R4 = 0;
+}
+
+// Like CondUnaryRRF, but with a fixed CC mask.
+class FixedCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
+ RegisterOperand cls2, bits<4> ccmask>
+ : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
+ mnemonic#"\t$R1, $R2", []>,
+ Requires<[FeatureLoadStoreOnCond]> {
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+ let R3 = ccmask;
+ let R4 = 0;
+}
+
+class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRI<opcode, (outs cls:$R1), (ins imm:$I2),
+ mnemonic#"\t$R1, $I2",
+ [(set cls:$R1, (operator imm:$I2))]>;
+
+class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRIL<opcode, (outs cls:$R1), (ins imm:$I2),
+ mnemonic#"\t$R1, $I2",
+ [(set cls:$R1, (operator imm:$I2))]>;
+
+class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls>
+ : InstRIL<opcode, (outs cls:$R1), (ins pcrel32:$I2),
+ mnemonic#"\t$R1, $I2",
+ [(set cls:$R1, (operator pcrel32:$I2))]> {
+ let mayLoad = 1;
+ // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
+ // However, BDXs have two extra operands and are therefore 6 units more
+ // complex.
+ let AddedComplexity = 7;
+}
+
+class CondUnaryRSY<string mnemonic, bits<16> opcode,
+ SDPatternOperator operator, RegisterOperand cls,
+ bits<5> bytes, AddressingMode mode = bdaddr20only>
+ : InstRSY<opcode, (outs cls:$R1),
+ (ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$R3),
+ mnemonic#"$R3\t$R1, $BD2",
+ [(set cls:$R1,
+ (z_select_ccmask (load bdaddr20only:$BD2), cls:$R1src,
+ cond4:$valid, cond4:$R3))]>,
+ Requires<[FeatureLoadStoreOnCond]> {
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+ let CCMaskLast = 1;
+}
+
+// Like CondUnaryRSY, but used for the raw assembly form. The condition-code
+// mask is the third operand rather than being part of the mnemonic.
+class AsmCondUnaryRSY<string mnemonic, bits<16> opcode,
+ RegisterOperand cls, bits<5> bytes,
+ AddressingMode mode = bdaddr20only>
+ : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, imm32zx4:$R3),
+ mnemonic#"\t$R1, $BD2, $R3", []>,
+ Requires<[FeatureLoadStoreOnCond]> {
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+}
+
+// Like CondUnaryRSY, but with a fixed CC mask.
+class FixedCondUnaryRSY<string mnemonic, bits<16> opcode,
+ RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
+ AddressingMode mode = bdaddr20only>
+ : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
+ mnemonic#"\t$R1, $BD2", []>,
+ Requires<[FeatureLoadStoreOnCond]> {
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+ let R3 = ccmask;
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+}
+
+class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls, bits<5> bytes,
+ AddressingMode mode = bdxaddr12only>
+ : InstRX<opcode, (outs cls:$R1), (ins mode:$XBD2),
+ mnemonic#"\t$R1, $XBD2",
+ [(set cls:$R1, (operator mode:$XBD2))]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+}
+
+class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, bits<5> bytes>
+ : InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
+ mnemonic#"\t$R1, $XBD2",
+ [(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+}
+
+class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, bits<5> bytes,
+ AddressingMode mode = bdxaddr20only>
+ : InstRXY<opcode, (outs cls:$R1), (ins mode:$XBD2),
+ mnemonic#"\t$R1, $XBD2",
+ [(set cls:$R1, (operator mode:$XBD2))]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+}
+
+multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
+ SDPatternOperator operator, RegisterOperand cls,
+ bits<5> bytes> {
+ let DispKey = mnemonic ## #cls in {
+ let DispSize = "12" in
+ def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
+ let DispSize = "20" in
+ def Y : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
+ bdxaddr20pair>;
+ }
+}
+
+class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
+ mnemonic#"r\t$R1, $R2",
+ [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
+ let OpKey = mnemonic ## cls1;
+ let OpType = "reg";
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+}
+
+class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
+ mnemonic#"r\t$R1, $R2",
+ [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
+ let OpKey = mnemonic ## cls1;
+ let OpType = "reg";
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+}
+
+class BinaryRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R3, cls2:$R2),
+ mnemonic#"r\t$R1, $R3, $R2",
+ [(set cls1:$R1, (operator cls1:$R3, cls2:$R2))]> {
+ let OpKey = mnemonic ## cls1;
+ let OpType = "reg";
+ let R4 = 0;
+}
+
+class BinaryRRFK<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R2, cls2:$R3),
+ mnemonic#"rk\t$R1, $R2, $R3",
+ [(set cls1:$R1, (operator cls1:$R2, cls2:$R3))]> {
+ let R4 = 0;
+}
+
+multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
+ SDPatternOperator operator, RegisterOperand cls1,
+ RegisterOperand cls2> {
+ let NumOpsKey = mnemonic in {
+ let NumOpsValue = "3" in
+ def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
+ Requires<[FeatureDistinctOps]>;
+ let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
+ def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>;
+ }
+}
+
+multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2,
+ SDPatternOperator operator, RegisterOperand cls1,
+ RegisterOperand cls2> {
+ let NumOpsKey = mnemonic in {
+ let NumOpsValue = "3" in
+ def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
+ Requires<[FeatureDistinctOps]>;
+ let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
+ def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>;
+ }
+}
+
+class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
+ mnemonic#"\t$R1, $I2",
+ [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+}
+
+class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2),
+ mnemonic#"\t$R1, $R3, $I2",
+ [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
+
+multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2,
+ SDPatternOperator operator, RegisterOperand cls,
+ Immediate imm> {
+ let NumOpsKey = mnemonic in {
+ let NumOpsValue = "3" in
+ def K : BinaryRIE<mnemonic##"k", opcode2, null_frag, cls, imm>,
+ Requires<[FeatureDistinctOps]>;
+ let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
+ def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>;
+ }
+}
+
+class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRIL<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
+ mnemonic#"\t$R1, $I2",
+ [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+}
+
+class BinaryRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls>
+ : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2),
+ mnemonic#"\t$R1, $BD2",
+ [(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> {
+ let R3 = 0;
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+}
+
+class BinaryRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls>
+ : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2),
+ mnemonic#"\t$R1, $R3, $BD2",
+ [(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>;
+
+multiclass BinaryRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
+ SDPatternOperator operator, RegisterOperand cls> {
+ let NumOpsKey = mnemonic in {
+ let NumOpsValue = "3" in
+ def K : BinaryRSY<mnemonic##"k", opcode2, null_frag, cls>,
+ Requires<[FeatureDistinctOps]>;
+ let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
+ def "" : BinaryRS<mnemonic, opcode1, operator, cls>;
+ }
+}
+
+class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
+ AddressingMode mode = bdxaddr12only>
+ : InstRX<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
+ mnemonic#"\t$R1, $XBD2",
+ [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+}
+
+class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
+ : InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
+ mnemonic#"\t$R1, $XBD2",
+ [(set cls:$R1, (operator cls:$R1src,
+ (load bdxaddr12only:$XBD2)))]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+}
+
+class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
+ AddressingMode mode = bdxaddr20only>
+ : InstRXY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
+ mnemonic#"\t$R1, $XBD2",
+ [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+}
+
+multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
+ SDPatternOperator operator, RegisterOperand cls,
+ SDPatternOperator load, bits<5> bytes> {
+ let DispKey = mnemonic ## #cls in {
+ let DispSize = "12" in
+ def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
+ bdxaddr12pair>;
+ let DispSize = "20" in
+ def Y : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes,
+ bdxaddr20pair>;
+ }
+}
+
+class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ Operand imm, AddressingMode mode = bdaddr12only>
+ : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
+ mnemonic#"\t$BD1, $I2",
+ [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
+ let mayLoad = 1;
+ let mayStore = 1;
+}
+
+class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ Operand imm, AddressingMode mode = bdaddr20only>
+ : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
+ mnemonic#"\t$BD1, $I2",
+ [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
+ let mayLoad = 1;
+ let mayStore = 1;
+}
+
+multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
+ bits<16> siyOpcode, SDPatternOperator operator,
+ Operand imm> {
+ let DispKey = mnemonic ## #cls in {
+ let DispSize = "12" in
+ def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
+ let DispSize = "20" in
+ def Y : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
+ }
+}
+
+class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
+ mnemonic#"r\t$R1, $R2",
+ [(operator cls1:$R1, cls2:$R2)]> {
+ let OpKey = mnemonic ## cls1;
+ let OpType = "reg";
+ let isCompare = 1;
+}
+
+class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
+ mnemonic#"r\t$R1, $R2",
+ [(operator cls1:$R1, cls2:$R2)]> {
+ let OpKey = mnemonic ## cls1;
+ let OpType = "reg";
+ let isCompare = 1;
+}
+
+class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRI<opcode, (outs), (ins cls:$R1, imm:$I2),
+ mnemonic#"\t$R1, $I2",
+ [(operator cls:$R1, imm:$I2)]> {
+ let isCompare = 1;
+}
+
+class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRIL<opcode, (outs), (ins cls:$R1, imm:$I2),
+ mnemonic#"\t$R1, $I2",
+ [(operator cls:$R1, imm:$I2)]> {
+ let isCompare = 1;
+}
+
+class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load>
+ : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
+ mnemonic#"\t$R1, $I2",
+ [(operator cls:$R1, (load pcrel32:$I2))]> {
+ let isCompare = 1;
+ let mayLoad = 1;
+ // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
+ // However, BDXs have two extra operands and are therefore 6 units more
+ // complex.
+ let AddedComplexity = 7;
+}
+
+class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
+ AddressingMode mode = bdxaddr12only>
+ : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
+ mnemonic#"\t$R1, $XBD2",
+ [(operator cls:$R1, (load mode:$XBD2))]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let isCompare = 1;
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+}
+
+class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
+ : InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
+ mnemonic#"\t$R1, $XBD2",
+ [(operator cls:$R1, (load bdxaddr12only:$XBD2))]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let isCompare = 1;
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+}
+
+class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
+ AddressingMode mode = bdxaddr20only>
+ : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
+ mnemonic#"\t$R1, $XBD2",
+ [(operator cls:$R1, (load mode:$XBD2))]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let isCompare = 1;
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+}
+
+multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
+ SDPatternOperator operator, RegisterOperand cls,
+ SDPatternOperator load, bits<5> bytes> {
+ let DispKey = mnemonic ## #cls in {
+ let DispSize = "12" in
+ def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
+ load, bytes, bdxaddr12pair>;
+ let DispSize = "20" in
+ def Y : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
+ load, bytes, bdxaddr20pair>;
+ }
+}
+
+class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ SDPatternOperator load, Immediate imm,
+ AddressingMode mode = bdaddr12only>
+ : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
+ mnemonic#"\t$BD1, $I2",
+ [(operator (load mode:$BD1), imm:$I2)]> {
+ let isCompare = 1;
+ let mayLoad = 1;
+}
+
+class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ SDPatternOperator load, Immediate imm>
+ : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
+ mnemonic#"\t$BD1, $I2",
+ [(operator (load bdaddr12only:$BD1), imm:$I2)]> {
+ let isCompare = 1;
+ let mayLoad = 1;
+}
+
+class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ SDPatternOperator load, Immediate imm,
+ AddressingMode mode = bdaddr20only>
+ : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
+ mnemonic#"\t$BD1, $I2",
+ [(operator (load mode:$BD1), imm:$I2)]> {
+ let isCompare = 1;
+ let mayLoad = 1;
+}
+
+multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
+ SDPatternOperator operator, SDPatternOperator load,
+ Immediate imm> {
+ let DispKey = mnemonic in {
+ let DispSize = "12" in
+ def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
+ let DispSize = "20" in
+ def Y : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
+ bdaddr20pair>;
+ }
+}
+
+class TernaryRRD<string mnemonic, bits<16> opcode,
+ SDPatternOperator operator, RegisterOperand cls>
+ : InstRRD<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, cls:$R2),
+ mnemonic#"r\t$R1, $R3, $R2",
+ [(set cls:$R1, (operator cls:$R1src, cls:$R3, cls:$R2))]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "reg";
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+}
+
+class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
+ : InstRXF<opcode, (outs cls:$R1),
+ (ins cls:$R1src, cls:$R3, bdxaddr12only:$XBD2),
+ mnemonic#"\t$R1, $R3, $XBD2",
+ [(set cls:$R1, (operator cls:$R1src, cls:$R3,
+ (load bdxaddr12only:$XBD2)))]> {
+ let OpKey = mnemonic ## cls;
+ let OpType = "mem";
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+ let mayLoad = 1;
+ let AccessBytes = bytes;
+}
+
+class LoadAndOpRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, AddressingMode mode = bdaddr20only>
+ : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, mode:$BD2),
+ mnemonic#"\t$R1, $R3, $BD2",
+ [(set cls:$R1, (operator mode:$BD2, cls:$R3))]> {
+ let mayLoad = 1;
+ let mayStore = 1;
+}
+
+class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls, AddressingMode mode = bdaddr12only>
+ : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
+ mnemonic#"\t$R1, $R3, $BD2",
+ [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+ let mayLoad = 1;
+ let mayStore = 1;
+}
+
+class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, AddressingMode mode = bdaddr20only>
+ : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
+ mnemonic#"\t$R1, $R3, $BD2",
+ [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+ let mayLoad = 1;
+ let mayStore = 1;
+}
+
+multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
+ SDPatternOperator operator, RegisterOperand cls> {
+ let DispKey = mnemonic ## #cls in {
+ let DispSize = "12" in
+ def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
+ let DispSize = "20" in
+ def Y : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
+ }
+}
+
+class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
+ RegisterOperand cls2>
+ : InstRIEf<opcode, (outs cls1:$R1),
+ (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
+ imm32zx6:$I5),
+ mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+}
+
+class PrefetchRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator>
+ : InstRXY<opcode, (outs), (ins imm32zx4:$R1, bdxaddr20only:$XBD2),
+ mnemonic##"\t$R1, $XBD2",
+ [(operator imm32zx4:$R1, bdxaddr20only:$XBD2)]>;
+
+class PrefetchRILPC<string mnemonic, bits<12> opcode,
+ SDPatternOperator operator>
+ : InstRIL<opcode, (outs), (ins imm32zx4:$R1, pcrel32:$I2),
+ mnemonic##"\t$R1, $I2",
+ [(operator imm32zx4:$R1, pcrel32:$I2)]> {
+ // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
+ // However, BDXs have two extra operands and are therefore 6 units more
+ // complex.
+ let AddedComplexity = 7;
+}
+
+// A floating-point load-and test operation. Create both a normal unary
+// operation and one that acts as a comparison against zero.
+multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode,
+ RegisterOperand cls> {
+ def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>;
+ let isCodeGenOnly = 1 in
+ def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>;
+}
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions
+//===----------------------------------------------------------------------===//
+//
+// Convenience instructions that get lowered to real instructions
+// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
+// or SystemZInstrInfo::expandPostRAPseudo().
+//
+//===----------------------------------------------------------------------===//
+
+class Pseudo<dag outs, dag ins, list<dag> pattern>
+ : InstSystemZ<0, outs, ins, "", pattern> {
+ let isPseudo = 1;
+ let isCodeGenOnly = 1;
+}
+
+// Like UnaryRI, but expanded after RA depending on the choice of register.
+class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
+ Immediate imm>
+ : Pseudo<(outs cls:$R1), (ins imm:$I2),
+ [(set cls:$R1, (operator imm:$I2))]>;
+
+// Like UnaryRXY, but expanded after RA depending on the choice of register.
+class UnaryRXYPseudo<string key, SDPatternOperator operator,
+ RegisterOperand cls, bits<5> bytes,
+ AddressingMode mode = bdxaddr20only>
+ : Pseudo<(outs cls:$R1), (ins mode:$XBD2),
+ [(set cls:$R1, (operator mode:$XBD2))]> {
+ let OpKey = key ## cls;
+ let OpType = "mem";
+ let mayLoad = 1;
+ let Has20BitOffset = 1;
+ let HasIndex = 1;
+ let AccessBytes = bytes;
+}
+
+// Like UnaryRR, but expanded after RA depending on the choice of registers.
+class UnaryRRPseudo<string key, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : Pseudo<(outs cls1:$R1), (ins cls2:$R2),
+ [(set cls1:$R1, (operator cls2:$R2))]> {
+ let OpKey = key ## cls1;
+ let OpType = "reg";
+}
+
+// Like BinaryRI, but expanded after RA depending on the choice of register.
+class BinaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
+ Immediate imm>
+ : Pseudo<(outs cls:$R1), (ins cls:$R1src, imm:$I2),
+ [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
+ let Constraints = "$R1 = $R1src";
+}
+
+// Like BinaryRIE, but expanded after RA depending on the choice of register.
+class BinaryRIEPseudo<SDPatternOperator operator, RegisterOperand cls,
+ Immediate imm>
+ : Pseudo<(outs cls:$R1), (ins cls:$R3, imm:$I2),
+ [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
+
+// Like BinaryRIAndK, but expanded after RA depending on the choice of register.
+multiclass BinaryRIAndKPseudo<string key, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm> {
+ let NumOpsKey = key in {
+ let NumOpsValue = "3" in
+ def K : BinaryRIEPseudo<null_frag, cls, imm>,
+ Requires<[FeatureHighWord, FeatureDistinctOps]>;
+ let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
+ def "" : BinaryRIPseudo<operator, cls, imm>,
+ Requires<[FeatureHighWord]>;
+ }
+}
+
+// Like CompareRI, but expanded after RA depending on the choice of register.
+class CompareRIPseudo<SDPatternOperator operator, RegisterOperand cls,
+ Immediate imm>
+ : Pseudo<(outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]>;
+
+// Like CompareRXY, but expanded after RA depending on the choice of register.
+class CompareRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
+ SDPatternOperator load, bits<5> bytes,
+ AddressingMode mode = bdxaddr20only>
+ : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
+ [(operator cls:$R1, (load mode:$XBD2))]> {
+ let mayLoad = 1;
+ let Has20BitOffset = 1;
+ let HasIndex = 1;
+ let AccessBytes = bytes;
+}
+
+// Like StoreRXY, but expanded after RA depending on the choice of register.
+class StoreRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
+ bits<5> bytes, AddressingMode mode = bdxaddr20only>
+ : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
+ [(operator cls:$R1, mode:$XBD2)]> {
+ let mayStore = 1;
+ let Has20BitOffset = 1;
+ let HasIndex = 1;
+ let AccessBytes = bytes;
+}
+
+// Like RotateSelectRIEf, but expanded after RA depending on the choice
+// of registers.
+class RotateSelectRIEfPseudo<RegisterOperand cls1, RegisterOperand cls2>
+ : Pseudo<(outs cls1:$R1),
+ (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
+ imm32zx6:$I5),
+ []> {
+ let Constraints = "$R1 = $R1src";
+ let DisableEncoding = "$R1src";
+}
+
+// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
+// the value of the PSW's 2-bit condition code field.
+class SelectWrapper<RegisterOperand cls>
+ : Pseudo<(outs cls:$dst),
+ (ins cls:$src1, cls:$src2, imm32zx4:$valid, imm32zx4:$cc),
+ [(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2,
+ imm32zx4:$valid, imm32zx4:$cc))]> {
+ let usesCustomInserter = 1;
+ // Although the instructions used by these nodes do not in themselves
+ // change CC, the insertion requires new blocks, and CC cannot be live
+ // across them.
+ let Defs = [CC];
+ let Uses = [CC];
+}
+
+// Stores $new to $addr if $cc is true ("" case) or false (Inv case).
+multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
+ SDPatternOperator load, AddressingMode mode> {
+ let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in {
+ def "" : Pseudo<(outs),
+ (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
+ [(store (z_select_ccmask cls:$new, (load mode:$addr),
+ imm32zx4:$valid, imm32zx4:$cc),
+ mode:$addr)]>;
+ def Inv : Pseudo<(outs),
+ (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
+ [(store (z_select_ccmask (load mode:$addr), cls:$new,
+ imm32zx4:$valid, imm32zx4:$cc),
+ mode:$addr)]>;
+ }
+}
+
+// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation. PAT and OPERAND
+// describe the second (non-memory) operand.
+class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
+ dag pat, DAGOperand operand>
+ : Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
+ [(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
+ let Defs = [CC];
+ let Has20BitOffset = 1;
+ let mayLoad = 1;
+ let mayStore = 1;
+ let usesCustomInserter = 1;
+}
+
+// Specializations of AtomicLoadWBinary.
+class AtomicLoadBinaryReg32<SDPatternOperator operator>
+ : AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
+class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
+ : AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
+class AtomicLoadBinaryReg64<SDPatternOperator operator>
+ : AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
+class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
+ : AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
+
+// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation. PAT and OPERAND
+// describe the second (non-memory) operand.
+class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
+ DAGOperand operand>
+ : Pseudo<(outs GR32:$dst),
+ (ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
+ ADDR32:$negbitshift, uimm32:$bitsize),
+ [(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
+ ADDR32:$negbitshift, uimm32:$bitsize))]> {
+ let Defs = [CC];
+ let Has20BitOffset = 1;
+ let mayLoad = 1;
+ let mayStore = 1;
+ let usesCustomInserter = 1;
+}
+
+// Specializations of AtomicLoadWBinary.
+class AtomicLoadWBinaryReg<SDPatternOperator operator>
+ : AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
+class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
+ : AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;
+
+// Define an instruction that operates on two fixed-length blocks of memory,
+// and associated pseudo instructions for operating on blocks of any size.
+// The Sequence form uses a straight-line sequence of instructions and
+// the Loop form uses a loop of length-256 instructions followed by
+// another instruction to handle the excess.
+multiclass MemorySS<string mnemonic, bits<8> opcode,
+ SDPatternOperator sequence, SDPatternOperator loop> {
+ def "" : InstSS<opcode, (outs), (ins bdladdr12onlylen8:$BDL1,
+ bdaddr12only:$BD2),
+ mnemonic##"\t$BDL1, $BD2", []>;
+ let usesCustomInserter = 1 in {
+ def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
+ imm64:$length),
+ [(sequence bdaddr12only:$dest, bdaddr12only:$src,
+ imm64:$length)]>;
+ def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
+ imm64:$length, GR64:$count256),
+ [(loop bdaddr12only:$dest, bdaddr12only:$src,
+ imm64:$length, GR64:$count256)]>;
+ }
+}
+
+// Define an instruction that operates on two strings, both terminated
+// by the character in R0. The instruction processes a CPU-determinated
+// number of bytes at a time and sets CC to 3 if the instruction needs
+// to be repeated. Also define a pseudo instruction that represents
+// the full loop (the main instruction plus the branch on CC==3).
+multiclass StringRRE<string mnemonic, bits<16> opcode,
+ SDPatternOperator operator> {
+ def "" : InstRRE<opcode, (outs GR64:$R1, GR64:$R2),
+ (ins GR64:$R1src, GR64:$R2src),
+ mnemonic#"\t$R1, $R2", []> {
+ let Constraints = "$R1 = $R1src, $R2 = $R2src";
+ let DisableEncoding = "$R1src, $R2src";
+ }
+ let usesCustomInserter = 1 in
+ def Loop : Pseudo<(outs GR64:$end),
+ (ins GR64:$start1, GR64:$start2, GR32:$char),
+ [(set GR64:$end, (operator GR64:$start1, GR64:$start2,
+ GR32:$char))]>;
+}
+
+// A pseudo instruction that is a direct alias of a real instruction.
+// These aliases are used in cases where a particular register operand is
+// fixed or where the same instruction is used with different register sizes.
+// The size parameter is the size in bytes of the associated real instruction.
+class Alias<int size, dag outs, dag ins, list<dag> pattern>
+ : InstSystemZ<size, outs, ins, "", pattern> {
+ let isPseudo = 1;
+ let isCodeGenOnly = 1;
+}
+
+// An alias of a BinaryRI, but with different register sizes.
+class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls,
+ Immediate imm>
+ : Alias<4, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
+ [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
+ let Constraints = "$R1 = $R1src";
+}
+
+// An alias of a BinaryRIL, but with different register sizes.
+class BinaryAliasRIL<SDPatternOperator operator, RegisterOperand cls,
+ Immediate imm>
+ : Alias<6, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
+ [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
+ let Constraints = "$R1 = $R1src";
+}
+
+// An alias of a CompareRI, but with different register sizes.
+class CompareAliasRI<SDPatternOperator operator, RegisterOperand cls,
+ Immediate imm>
+ : Alias<4, (outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]> {
+ let isCompare = 1;
+}
+
+// An alias of a RotateSelectRIEf, but with different register sizes.
+class RotateSelectAliasRIEf<RegisterOperand cls1, RegisterOperand cls2>
+ : Alias<6, (outs cls1:$R1),
+ (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
+ imm32zx6:$I5), []> {
+ let Constraints = "$R1 = $R1src";
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp
new file mode 100644
index 0000000..f58ab47
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp
@@ -0,0 +1,1247 @@
+//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SystemZ implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZInstrInfo.h"
+#include "SystemZInstrBuilder.h"
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#define GET_INSTRMAP_INFO
+#include "SystemZGenInstrInfo.inc"
+
+// Return a mask with Count low bits set.
+static uint64_t allOnes(unsigned int Count) {
+ return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
+}
+
+// Reg should be a 32-bit GPR. Return true if it is a high register rather
+// than a low register.
+static bool isHighReg(unsigned int Reg) {
+ if (SystemZ::GRH32BitRegClass.contains(Reg))
+ return true;
+ assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
+ return false;
+}
+
+// Pin the vtable to this file.
+void SystemZInstrInfo::anchor() {}
+
+SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
+ : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
+ RI(), STI(sti) {
+}
+
+// MI is a 128-bit load or store. Split it into two 64-bit loads or stores,
+// each having the opcode given by NewOpcode.
+void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
+ unsigned NewOpcode) const {
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineFunction &MF = *MBB->getParent();
+
+ // Get two load or store instructions. Use the original instruction for one
+ // of them (arbitrarily the second here) and create a clone for the other.
+ MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
+ MBB->insert(MI, EarlierMI);
+
+ // Set up the two 64-bit registers.
+ MachineOperand &HighRegOp = EarlierMI->getOperand(0);
+ MachineOperand &LowRegOp = MI->getOperand(0);
+ HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
+ LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
+
+ // The address in the first (high) instruction is already correct.
+ // Adjust the offset in the second (low) instruction.
+ MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
+ MachineOperand &LowOffsetOp = MI->getOperand(2);
+ LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
+
+ // Set the opcodes.
+ unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
+ unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
+ assert(HighOpcode && LowOpcode && "Both offsets should be in range");
+
+ EarlierMI->setDesc(get(HighOpcode));
+ MI->setDesc(get(LowOpcode));
+}
+
+// Split ADJDYNALLOC instruction MI.
+void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineFunction &MF = *MBB->getParent();
+ MachineFrameInfo *MFFrame = MF.getFrameInfo();
+ MachineOperand &OffsetMO = MI->getOperand(2);
+
+ uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
+ SystemZMC::CallFrameSize +
+ OffsetMO.getImm());
+ unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
+ assert(NewOpcode && "No support for huge argument lists yet");
+ MI->setDesc(get(NewOpcode));
+ OffsetMO.setImm(Offset);
+}
+
+// MI is an RI-style pseudo instruction. Replace it with LowOpcode
+// if the first operand is a low GR32 and HighOpcode if the first operand
+// is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand
+// and HighOpcode takes an unsigned 32-bit operand. In those cases,
+// MI has the same kind of operand as LowOpcode, so needs to be converted
+// if HighOpcode is used.
+void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned HighOpcode,
+ bool ConvertHigh) const {
+ unsigned Reg = MI->getOperand(0).getReg();
+ bool IsHigh = isHighReg(Reg);
+ MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode));
+ if (IsHigh && ConvertHigh)
+ MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm()));
+}
+
+// MI is a three-operand RIE-style pseudo instruction. Replace it with
+// LowOpcode3 if the registers are both low GR32s, otherwise use a move
+// followed by HighOpcode or LowOpcode, depending on whether the target
+// is a high or low GR32.
+void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned LowOpcodeK,
+ unsigned HighOpcode) const {
+ unsigned DestReg = MI->getOperand(0).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ bool DestIsHigh = isHighReg(DestReg);
+ bool SrcIsHigh = isHighReg(SrcReg);
+ if (!DestIsHigh && !SrcIsHigh)
+ MI->setDesc(get(LowOpcodeK));
+ else {
+ emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
+ DestReg, SrcReg, SystemZ::LR, 32,
+ MI->getOperand(1).isKill());
+ MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
+ MI->getOperand(1).setReg(DestReg);
+ }
+}
+
+// MI is an RXY-style pseudo instruction. Replace it with LowOpcode
+// if the first operand is a low GR32 and HighOpcode if the first operand
+// is a high GR32.
+void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned HighOpcode) const {
+ unsigned Reg = MI->getOperand(0).getReg();
+ unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
+ MI->getOperand(2).getImm());
+ MI->setDesc(get(Opcode));
+}
+
+// MI is an RR-style pseudo instruction that zero-extends the low Size bits
+// of one GRX32 into another. Replace it with LowOpcode if both operands
+// are low registers, otherwise use RISB[LH]G.
+void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned Size) const {
+ emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
+ MI->getOperand(0).getReg(), MI->getOperand(1).getReg(),
+ LowOpcode, Size, MI->getOperand(1).isKill());
+ MI->eraseFromParent();
+}
+
+// Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
+// DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg
+// are low registers, otherwise use RISB[LH]G. Size is the number of bits
+// taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
+// KillSrc is true if this move is the last use of SrcReg.
+void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ DebugLoc DL, unsigned DestReg,
+ unsigned SrcReg, unsigned LowLowOpcode,
+ unsigned Size, bool KillSrc) const {
+ unsigned Opcode;
+ bool DestIsHigh = isHighReg(DestReg);
+ bool SrcIsHigh = isHighReg(SrcReg);
+ if (DestIsHigh && SrcIsHigh)
+ Opcode = SystemZ::RISBHH;
+ else if (DestIsHigh && !SrcIsHigh)
+ Opcode = SystemZ::RISBHL;
+ else if (!DestIsHigh && SrcIsHigh)
+ Opcode = SystemZ::RISBLH;
+ else {
+ BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
+ BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
+ .addReg(DestReg, RegState::Undef)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
+}
+
+// If MI is a simple load or store for a frame object, return the register
+// it loads or stores and set FrameIndex to the index of the frame object.
+// Return 0 otherwise.
+//
+// Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
+static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
+ unsigned Flag) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ if ((MCID.TSFlags & Flag) &&
+ MI->getOperand(1).isFI() &&
+ MI->getOperand(2).getImm() == 0 &&
+ MI->getOperand(3).getReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ return 0;
+}
+
+unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
+}
+
+unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
+}
+
+bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
+ int &DestFrameIndex,
+ int &SrcFrameIndex) const {
+ // Check for MVC 0(Length,FI1),0(FI2)
+ const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
+ if (MI->getOpcode() != SystemZ::MVC ||
+ !MI->getOperand(0).isFI() ||
+ MI->getOperand(1).getImm() != 0 ||
+ !MI->getOperand(3).isFI() ||
+ MI->getOperand(4).getImm() != 0)
+ return false;
+
+ // Check that Length covers the full slots.
+ int64_t Length = MI->getOperand(2).getImm();
+ unsigned FI1 = MI->getOperand(0).getIndex();
+ unsigned FI2 = MI->getOperand(3).getIndex();
+ if (MFI->getObjectSize(FI1) != Length ||
+ MFI->getObjectSize(FI2) != Length)
+ return false;
+
+ DestFrameIndex = FI1;
+ SrcFrameIndex = FI2;
+ return true;
+}
+
+bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // Most of the code and comments here are boilerplate.
+
+ // Start from the bottom of the block and work up, examining the
+ // terminator instructions.
+ MachineBasicBlock::iterator I = MBB.end();
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+
+ // Working from the bottom, when we see a non-terminator instruction, we're
+ // done.
+ if (!isUnpredicatedTerminator(I))
+ break;
+
+ // A terminator that isn't a branch can't easily be handled by this
+ // analysis.
+ if (!I->isBranch())
+ return true;
+
+ // Can't handle indirect branches.
+ SystemZII::Branch Branch(getBranchInfo(I));
+ if (!Branch.Target->isMBB())
+ return true;
+
+ // Punt on compound branches.
+ if (Branch.Type != SystemZII::BranchNormal)
+ return true;
+
+ if (Branch.CCMask == SystemZ::CCMASK_ANY) {
+ // Handle unconditional branches.
+ if (!AllowModify) {
+ TBB = Branch.Target->getMBB();
+ continue;
+ }
+
+ // If the block has any instructions after a JMP, delete them.
+ while (std::next(I) != MBB.end())
+ std::next(I)->eraseFromParent();
+
+ Cond.clear();
+ FBB = nullptr;
+
+ // Delete the JMP if it's equivalent to a fall-through.
+ if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
+ TBB = nullptr;
+ I->eraseFromParent();
+ I = MBB.end();
+ continue;
+ }
+
+ // TBB is used to indicate the unconditinal destination.
+ TBB = Branch.Target->getMBB();
+ continue;
+ }
+
+ // Working from the bottom, handle the first conditional branch.
+ if (Cond.empty()) {
+ // FIXME: add X86-style branch swap
+ FBB = TBB;
+ TBB = Branch.Target->getMBB();
+ Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
+ Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
+ continue;
+ }
+
+ // Handle subsequent conditional branches.
+ assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
+
+ // Only handle the case where all conditional branches branch to the same
+ // destination.
+ if (TBB != Branch.Target->getMBB())
+ return true;
+
+ // If the conditions are the same, we can leave them alone.
+ unsigned OldCCValid = Cond[0].getImm();
+ unsigned OldCCMask = Cond[1].getImm();
+ if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
+ continue;
+
+ // FIXME: Try combining conditions like X86 does. Should be easy on Z!
+ return false;
+ }
+
+ return false;
+}
+
+unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ // Most of the code and comments here are boilerplate.
+ MachineBasicBlock::iterator I = MBB.end();
+ unsigned Count = 0;
+
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+ if (!I->isBranch())
+ break;
+ if (!getBranchInfo(I).Target->isMBB())
+ break;
+ // Remove the branch.
+ I->eraseFromParent();
+ I = MBB.end();
+ ++Count;
+ }
+
+ return Count;
+}
+
+bool SystemZInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 2 && "Invalid condition");
+ Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
+ return false;
+}
+
+unsigned
+SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ // In this function we output 32-bit branches, which should always
+ // have enough range. They can be shortened and relaxed by later code
+ // in the pipeline, if desired.
+
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0) &&
+ "SystemZ branch conditions have one component!");
+
+ if (Cond.empty()) {
+ // Unconditional branch?
+ assert(!FBB && "Unconditional branch with multiple successors!");
+ BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
+ return 1;
+ }
+
+ // Conditional branch.
+ unsigned Count = 0;
+ unsigned CCValid = Cond[0].getImm();
+ unsigned CCMask = Cond[1].getImm();
+ BuildMI(&MBB, DL, get(SystemZ::BRC))
+ .addImm(CCValid).addImm(CCMask).addMBB(TBB);
+ ++Count;
+
+ if (FBB) {
+ // Two-way Conditional branch. Insert the second branch.
+ BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
+ ++Count;
+ }
+ return Count;
+}
+
+bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI,
+ unsigned &SrcReg, unsigned &SrcReg2,
+ int &Mask, int &Value) const {
+ assert(MI->isCompare() && "Caller should have checked for a comparison");
+
+ if (MI->getNumExplicitOperands() == 2 &&
+ MI->getOperand(0).isReg() &&
+ MI->getOperand(1).isImm()) {
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = 0;
+ Value = MI->getOperand(1).getImm();
+ Mask = ~0;
+ return true;
+ }
+
+ return false;
+}
+
+// If Reg is a virtual register, return its definition, otherwise return null.
+static MachineInstr *getDef(unsigned Reg,
+ const MachineRegisterInfo *MRI) {
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return nullptr;
+ return MRI->getUniqueVRegDef(Reg);
+}
+
+// Return true if MI is a shift of type Opcode by Imm bits.
+static bool isShift(MachineInstr *MI, int Opcode, int64_t Imm) {
+ return (MI->getOpcode() == Opcode &&
+ !MI->getOperand(2).getReg() &&
+ MI->getOperand(3).getImm() == Imm);
+}
+
+// If the destination of MI has no uses, delete it as dead.
+static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
+ if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
+ MI->eraseFromParent();
+}
+
+// Compare compares SrcReg against zero. Check whether SrcReg contains
+// the result of an IPM sequence whose input CC survives until Compare,
+// and whether Compare is therefore redundant. Delete it and return
+// true if so.
+static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg,
+ const MachineRegisterInfo *MRI,
+ const TargetRegisterInfo *TRI) {
+ MachineInstr *LGFR = nullptr;
+ MachineInstr *RLL = getDef(SrcReg, MRI);
+ if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
+ LGFR = RLL;
+ RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
+ }
+ if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
+ return false;
+
+ MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
+ if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
+ return false;
+
+ MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
+ if (!IPM || IPM->getOpcode() != SystemZ::IPM)
+ return false;
+
+ // Check that there are no assignments to CC between the IPM and Compare,
+ if (IPM->getParent() != Compare->getParent())
+ return false;
+ MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare;
+ for (++MBBI; MBBI != MBBE; ++MBBI) {
+ MachineInstr *MI = MBBI;
+ if (MI->modifiesRegister(SystemZ::CC, TRI))
+ return false;
+ }
+
+ Compare->eraseFromParent();
+ if (LGFR)
+ eraseIfDead(LGFR, MRI);
+ eraseIfDead(RLL, MRI);
+ eraseIfDead(SRL, MRI);
+ eraseIfDead(IPM, MRI);
+
+ return true;
+}
+
+bool
+SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare,
+ unsigned SrcReg, unsigned SrcReg2,
+ int Mask, int Value,
+ const MachineRegisterInfo *MRI) const {
+ assert(!SrcReg2 && "Only optimizing constant comparisons so far");
+ bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0;
+ if (Value == 0 &&
+ !IsLogical &&
+ removeIPMBasedCompare(Compare, SrcReg, MRI, &RI))
+ return true;
+ return false;
+}
+
+// If Opcode is a move that has a conditional variant, return that variant,
+// otherwise return 0.
+static unsigned getConditionalMove(unsigned Opcode) {
+ switch (Opcode) {
+ case SystemZ::LR: return SystemZ::LOCR;
+ case SystemZ::LGR: return SystemZ::LOCGR;
+ default: return 0;
+ }
+}
+
+bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const {
+ unsigned Opcode = MI->getOpcode();
+ if (STI.hasLoadStoreOnCond() &&
+ getConditionalMove(Opcode))
+ return true;
+ return false;
+}
+
+bool SystemZInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles, unsigned ExtraPredCycles,
+ const BranchProbability &Probability) const {
+ // For now only convert single instructions.
+ return NumCycles == 1;
+}
+
+bool SystemZInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumCyclesT, unsigned ExtraPredCyclesT,
+ MachineBasicBlock &FMBB,
+ unsigned NumCyclesF, unsigned ExtraPredCyclesF,
+ const BranchProbability &Probability) const {
+ // For now avoid converting mutually-exclusive cases.
+ return false;
+}
+
+bool SystemZInstrInfo::
+PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const {
+ assert(Pred.size() == 2 && "Invalid condition");
+ unsigned CCValid = Pred[0].getImm();
+ unsigned CCMask = Pred[1].getImm();
+ assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
+ unsigned Opcode = MI->getOpcode();
+ if (STI.hasLoadStoreOnCond()) {
+ if (unsigned CondOpcode = getConditionalMove(Opcode)) {
+ MI->setDesc(get(CondOpcode));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addImm(CCValid).addImm(CCMask)
+ .addReg(SystemZ::CC, RegState::Implicit);
+ return true;
+ }
+ }
+ return false;
+}
+
+void
+SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too.
+ if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
+ copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
+ RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
+ copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
+ RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
+ return;
+ }
+
+ if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
+ emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc);
+ return;
+ }
+
+ // Everything else needs only one instruction.
+ unsigned Opcode;
+ if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LGR;
+ else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LER;
+ else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LDR;
+ else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LXR;
+ else
+ llvm_unreachable("Impossible reg-to-reg copy");
+
+ BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+}
+
+void
+SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill,
+ int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Callers may expect a single instruction, so keep 128-bit moves
+ // together for now and lower them after register allocation.
+ unsigned LoadOpcode, StoreOpcode;
+ getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
+ addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
+ .addReg(SrcReg, getKillRegState(isKill)), FrameIdx);
+}
+
+void
+SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Callers may expect a single instruction, so keep 128-bit moves
+ // together for now and lower them after register allocation.
+ unsigned LoadOpcode, StoreOpcode;
+ getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
+ addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
+ FrameIdx);
+}
+
+// Return true if MI is a simple load or store with a 12-bit displacement
+// and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
+static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ return ((MCID.TSFlags & Flag) &&
+ isUInt<12>(MI->getOperand(2).getImm()) &&
+ MI->getOperand(3).getReg() == 0);
+}
+
+namespace {
+struct LogicOp {
+ LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {}
+ LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
+ : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
+
+ operator bool() const { return RegSize; }
+
+ unsigned RegSize, ImmLSB, ImmSize;
+};
+} // end anonymous namespace
+
+static LogicOp interpretAndImmediate(unsigned Opcode) {
+ switch (Opcode) {
+ case SystemZ::NILMux: return LogicOp(32, 0, 16);
+ case SystemZ::NIHMux: return LogicOp(32, 16, 16);
+ case SystemZ::NILL64: return LogicOp(64, 0, 16);
+ case SystemZ::NILH64: return LogicOp(64, 16, 16);
+ case SystemZ::NIHL64: return LogicOp(64, 32, 16);
+ case SystemZ::NIHH64: return LogicOp(64, 48, 16);
+ case SystemZ::NIFMux: return LogicOp(32, 0, 32);
+ case SystemZ::NILF64: return LogicOp(64, 0, 32);
+ case SystemZ::NIHF64: return LogicOp(64, 32, 32);
+ default: return LogicOp();
+ }
+}
+
+// Used to return from convertToThreeAddress after replacing two-address
+// instruction OldMI with three-address instruction NewMI.
+static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
+ MachineInstr *NewMI,
+ LiveVariables *LV) {
+ if (LV) {
+ unsigned NumOps = OldMI->getNumOperands();
+ for (unsigned I = 1; I < NumOps; ++I) {
+ MachineOperand &Op = OldMI->getOperand(I);
+ if (Op.isReg() && Op.isKill())
+ LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI);
+ }
+ }
+ return NewMI;
+}
+
+MachineInstr *
+SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ MachineInstr *MI = MBBI;
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+
+ unsigned Opcode = MI->getOpcode();
+ unsigned NumOps = MI->getNumOperands();
+
+ // Try to convert something like SLL into SLLK, if supported.
+ // We prefer to keep the two-operand form where possible both
+ // because it tends to be shorter and because some instructions
+ // have memory forms that can be used during spilling.
+ if (STI.hasDistinctOps()) {
+ MachineOperand &Dest = MI->getOperand(0);
+ MachineOperand &Src = MI->getOperand(1);
+ unsigned DestReg = Dest.getReg();
+ unsigned SrcReg = Src.getReg();
+ // AHIMux is only really a three-operand instruction when both operands
+ // are low registers. Try to constrain both operands to be low if
+ // possible.
+ if (Opcode == SystemZ::AHIMux &&
+ TargetRegisterInfo::isVirtualRegister(DestReg) &&
+ TargetRegisterInfo::isVirtualRegister(SrcReg) &&
+ MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
+ MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
+ MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
+ MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
+ }
+ int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
+ if (ThreeOperandOpcode >= 0) {
+ MachineInstrBuilder MIB =
+ BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode))
+ .addOperand(Dest);
+ // Keep the kill state, but drop the tied flag.
+ MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
+ // Keep the remaining operands as-is.
+ for (unsigned I = 2; I < NumOps; ++I)
+ MIB.addOperand(MI->getOperand(I));
+ return finishConvertToThreeAddress(MI, MIB, LV);
+ }
+ }
+
+ // Try to convert an AND into an RISBG-type instruction.
+ if (LogicOp And = interpretAndImmediate(Opcode)) {
+ uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB;
+ // AND IMMEDIATE leaves the other bits of the register unchanged.
+ Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
+ unsigned Start, End;
+ if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
+ unsigned NewOpcode;
+ if (And.RegSize == 64)
+ NewOpcode = SystemZ::RISBG;
+ else {
+ NewOpcode = SystemZ::RISBMux;
+ Start &= 31;
+ End &= 31;
+ }
+ MachineOperand &Dest = MI->getOperand(0);
+ MachineOperand &Src = MI->getOperand(1);
+ MachineInstrBuilder MIB =
+ BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode))
+ .addOperand(Dest).addReg(0)
+ .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg())
+ .addImm(Start).addImm(End + 128).addImm(0);
+ return finishConvertToThreeAddress(MI, MIB, LV);
+ }
+ }
+ return nullptr;
+}
+
+MachineInstr *
+SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ unsigned Size = MFI->getObjectSize(FrameIndex);
+ unsigned Opcode = MI->getOpcode();
+
+ if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
+ if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
+ isInt<8>(MI->getOperand(2).getImm()) &&
+ !MI->getOperand(3).getReg()) {
+ // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
+ return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::AGSI))
+ .addFrameIndex(FrameIndex).addImm(0)
+ .addImm(MI->getOperand(2).getImm());
+ }
+ return nullptr;
+ }
+
+ // All other cases require a single operand.
+ if (Ops.size() != 1)
+ return nullptr;
+
+ unsigned OpNum = Ops[0];
+ assert(Size == MF.getRegInfo()
+ .getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
+ "Invalid size combination");
+
+ if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) &&
+ OpNum == 0 &&
+ isInt<8>(MI->getOperand(2).getImm())) {
+ // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
+ Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
+ return BuildMI(MF, MI->getDebugLoc(), get(Opcode))
+ .addFrameIndex(FrameIndex).addImm(0)
+ .addImm(MI->getOperand(2).getImm());
+ }
+
+ if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
+ bool Op0IsGPR = (Opcode == SystemZ::LGDR);
+ bool Op1IsGPR = (Opcode == SystemZ::LDGR);
+ // If we're spilling the destination of an LDGR or LGDR, store the
+ // source register instead.
+ if (OpNum == 0) {
+ unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
+ return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode))
+ .addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex)
+ .addImm(0).addReg(0);
+ }
+ // If we're spilling the source of an LDGR or LGDR, load the
+ // destination register instead.
+ if (OpNum == 1) {
+ unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
+ unsigned Dest = MI->getOperand(0).getReg();
+ return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest)
+ .addFrameIndex(FrameIndex).addImm(0).addReg(0);
+ }
+ }
+
+ // Look for cases where the source of a simple store or the destination
+ // of a simple load is being spilled. Try to use MVC instead.
+ //
+ // Although MVC is in practice a fast choice in these cases, it is still
+ // logically a bytewise copy. This means that we cannot use it if the
+ // load or store is volatile. We also wouldn't be able to use MVC if
+ // the two memories partially overlap, but that case cannot occur here,
+ // because we know that one of the memories is a full frame index.
+ //
+ // For performance reasons, we also want to avoid using MVC if the addresses
+ // might be equal. We don't worry about that case here, because spill slot
+ // coloring happens later, and because we have special code to remove
+ // MVCs that turn out to be redundant.
+ if (OpNum == 0 && MI->hasOneMemOperand()) {
+ MachineMemOperand *MMO = *MI->memoperands_begin();
+ if (MMO->getSize() == Size && !MMO->isVolatile()) {
+ // Handle conversion of loads.
+ if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
+ return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
+ .addFrameIndex(FrameIndex).addImm(0).addImm(Size)
+ .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
+ .addMemOperand(MMO);
+ }
+ // Handle conversion of stores.
+ if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
+ return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
+ .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
+ .addImm(Size).addFrameIndex(FrameIndex).addImm(0)
+ .addMemOperand(MMO);
+ }
+ }
+ }
+
+ // If the spilled operand is the final one, try to change <INSN>R
+ // into <INSN>.
+ int MemOpcode = SystemZ::getMemOpcode(Opcode);
+ if (MemOpcode >= 0) {
+ unsigned NumOps = MI->getNumExplicitOperands();
+ if (OpNum == NumOps - 1) {
+ const MCInstrDesc &MemDesc = get(MemOpcode);
+ uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
+ assert(AccessBytes != 0 && "Size of access should be known");
+ assert(AccessBytes <= Size && "Access outside the frame index");
+ uint64_t Offset = Size - AccessBytes;
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode));
+ for (unsigned I = 0; I < OpNum; ++I)
+ MIB.addOperand(MI->getOperand(I));
+ MIB.addFrameIndex(FrameIndex).addImm(Offset);
+ if (MemDesc.TSFlags & SystemZII::HasIndex)
+ MIB.addReg(0);
+ return MIB;
+ }
+ }
+
+ return nullptr;
+}
+
+MachineInstr *
+SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr* LoadMI) const {
+ return nullptr;
+}
+
+bool
+SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ switch (MI->getOpcode()) {
+ case SystemZ::L128:
+ splitMove(MI, SystemZ::LG);
+ return true;
+
+ case SystemZ::ST128:
+ splitMove(MI, SystemZ::STG);
+ return true;
+
+ case SystemZ::LX:
+ splitMove(MI, SystemZ::LD);
+ return true;
+
+ case SystemZ::STX:
+ splitMove(MI, SystemZ::STD);
+ return true;
+
+ case SystemZ::LBMux:
+ expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
+ return true;
+
+ case SystemZ::LHMux:
+ expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
+ return true;
+
+ case SystemZ::LLCRMux:
+ expandZExtPseudo(MI, SystemZ::LLCR, 8);
+ return true;
+
+ case SystemZ::LLHRMux:
+ expandZExtPseudo(MI, SystemZ::LLHR, 16);
+ return true;
+
+ case SystemZ::LLCMux:
+ expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
+ return true;
+
+ case SystemZ::LLHMux:
+ expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
+ return true;
+
+ case SystemZ::LMux:
+ expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
+ return true;
+
+ case SystemZ::STCMux:
+ expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
+ return true;
+
+ case SystemZ::STHMux:
+ expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
+ return true;
+
+ case SystemZ::STMux:
+ expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
+ return true;
+
+ case SystemZ::LHIMux:
+ expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
+ return true;
+
+ case SystemZ::IIFMux:
+ expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
+ return true;
+
+ case SystemZ::IILMux:
+ expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
+ return true;
+
+ case SystemZ::IIHMux:
+ expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
+ return true;
+
+ case SystemZ::NIFMux:
+ expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
+ return true;
+
+ case SystemZ::NILMux:
+ expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
+ return true;
+
+ case SystemZ::NIHMux:
+ expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
+ return true;
+
+ case SystemZ::OIFMux:
+ expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
+ return true;
+
+ case SystemZ::OILMux:
+ expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
+ return true;
+
+ case SystemZ::OIHMux:
+ expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
+ return true;
+
+ case SystemZ::XIFMux:
+ expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
+ return true;
+
+ case SystemZ::TMLMux:
+ expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
+ return true;
+
+ case SystemZ::TMHMux:
+ expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
+ return true;
+
+ case SystemZ::AHIMux:
+ expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
+ return true;
+
+ case SystemZ::AHIMuxK:
+ expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
+ return true;
+
+ case SystemZ::AFIMux:
+ expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
+ return true;
+
+ case SystemZ::CFIMux:
+ expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
+ return true;
+
+ case SystemZ::CLFIMux:
+ expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
+ return true;
+
+ case SystemZ::CMux:
+ expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
+ return true;
+
+ case SystemZ::CLMux:
+ expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
+ return true;
+
+ case SystemZ::RISBMux: {
+ bool DestIsHigh = isHighReg(MI->getOperand(0).getReg());
+ bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg());
+ if (SrcIsHigh == DestIsHigh)
+ MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
+ else {
+ MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
+ MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32);
+ }
+ return true;
+ }
+
+ case SystemZ::ADJDYNALLOC:
+ splitAdjDynAlloc(MI);
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
+ if (MI->getOpcode() == TargetOpcode::INLINEASM) {
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const char *AsmStr = MI->getOperand(0).getSymbolName();
+ return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
+ }
+ return MI->getDesc().getSize();
+}
+
+SystemZII::Branch
+SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case SystemZ::BR:
+ case SystemZ::J:
+ case SystemZ::JG:
+ return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
+ SystemZ::CCMASK_ANY, &MI->getOperand(0));
+
+ case SystemZ::BRC:
+ case SystemZ::BRCL:
+ return SystemZII::Branch(SystemZII::BranchNormal,
+ MI->getOperand(0).getImm(),
+ MI->getOperand(1).getImm(), &MI->getOperand(2));
+
+ case SystemZ::BRCT:
+ return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
+ SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
+
+ case SystemZ::BRCTG:
+ return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
+ SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
+
+ case SystemZ::CIJ:
+ case SystemZ::CRJ:
+ return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
+ MI->getOperand(2).getImm(), &MI->getOperand(3));
+
+ case SystemZ::CLIJ:
+ case SystemZ::CLRJ:
+ return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
+ MI->getOperand(2).getImm(), &MI->getOperand(3));
+
+ case SystemZ::CGIJ:
+ case SystemZ::CGRJ:
+ return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
+ MI->getOperand(2).getImm(), &MI->getOperand(3));
+
+ case SystemZ::CLGIJ:
+ case SystemZ::CLGRJ:
+ return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
+ MI->getOperand(2).getImm(), &MI->getOperand(3));
+
+ default:
+ llvm_unreachable("Unrecognized branch opcode");
+ }
+}
+
+void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
+ unsigned &LoadOpcode,
+ unsigned &StoreOpcode) const {
+ if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
+ LoadOpcode = SystemZ::L;
+ StoreOpcode = SystemZ::ST;
+ } else if (RC == &SystemZ::GRH32BitRegClass) {
+ LoadOpcode = SystemZ::LFH;
+ StoreOpcode = SystemZ::STFH;
+ } else if (RC == &SystemZ::GRX32BitRegClass) {
+ LoadOpcode = SystemZ::LMux;
+ StoreOpcode = SystemZ::STMux;
+ } else if (RC == &SystemZ::GR64BitRegClass ||
+ RC == &SystemZ::ADDR64BitRegClass) {
+ LoadOpcode = SystemZ::LG;
+ StoreOpcode = SystemZ::STG;
+ } else if (RC == &SystemZ::GR128BitRegClass ||
+ RC == &SystemZ::ADDR128BitRegClass) {
+ LoadOpcode = SystemZ::L128;
+ StoreOpcode = SystemZ::ST128;
+ } else if (RC == &SystemZ::FP32BitRegClass) {
+ LoadOpcode = SystemZ::LE;
+ StoreOpcode = SystemZ::STE;
+ } else if (RC == &SystemZ::FP64BitRegClass) {
+ LoadOpcode = SystemZ::LD;
+ StoreOpcode = SystemZ::STD;
+ } else if (RC == &SystemZ::FP128BitRegClass) {
+ LoadOpcode = SystemZ::LX;
+ StoreOpcode = SystemZ::STX;
+ } else
+ llvm_unreachable("Unsupported regclass to load or store");
+}
+
+unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
+ int64_t Offset) const {
+ const MCInstrDesc &MCID = get(Opcode);
+ int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
+ if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
+ // Get the instruction to use for unsigned 12-bit displacements.
+ int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
+ if (Disp12Opcode >= 0)
+ return Disp12Opcode;
+
+ // All address-related instructions can use unsigned 12-bit
+ // displacements.
+ return Opcode;
+ }
+ if (isInt<20>(Offset) && isInt<20>(Offset2)) {
+ // Get the instruction to use for signed 20-bit displacements.
+ int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
+ if (Disp20Opcode >= 0)
+ return Disp20Opcode;
+
+ // Check whether Opcode allows signed 20-bit displacements.
+ if (MCID.TSFlags & SystemZII::Has20BitOffset)
+ return Opcode;
+ }
+ return 0;
+}
+
+unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
+ switch (Opcode) {
+ case SystemZ::L: return SystemZ::LT;
+ case SystemZ::LY: return SystemZ::LT;
+ case SystemZ::LG: return SystemZ::LTG;
+ case SystemZ::LGF: return SystemZ::LTGF;
+ case SystemZ::LR: return SystemZ::LTR;
+ case SystemZ::LGFR: return SystemZ::LTGFR;
+ case SystemZ::LGR: return SystemZ::LTGR;
+ case SystemZ::LER: return SystemZ::LTEBR;
+ case SystemZ::LDR: return SystemZ::LTDBR;
+ case SystemZ::LXR: return SystemZ::LTXBR;
+ default: return 0;
+ }
+}
+
+// Return true if Mask matches the regexp 0*1+0*, given that zero masks
+// have already been filtered out. Store the first set bit in LSB and
+// the number of set bits in Length if so.
+static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
+ unsigned First = findFirstSet(Mask);
+ uint64_t Top = (Mask >> First) + 1;
+ if ((Top & -Top) == Top) {
+ LSB = First;
+ Length = findFirstSet(Top);
+ return true;
+ }
+ return false;
+}
+
+bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
+ unsigned &Start, unsigned &End) const {
+ // Reject trivial all-zero masks.
+ if (Mask == 0)
+ return false;
+
+ // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
+ // the msb and End specifies the index of the lsb.
+ unsigned LSB, Length;
+ if (isStringOfOnes(Mask, LSB, Length)) {
+ Start = 63 - (LSB + Length - 1);
+ End = 63 - LSB;
+ return true;
+ }
+
+ // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
+ // of the low 1s and End specifies the lsb of the high 1s.
+ if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
+ assert(LSB > 0 && "Bottom bit must be set");
+ assert(LSB + Length < BitSize && "Top bit must be set");
+ Start = 63 - (LSB - 1);
+ End = 63 - (LSB + Length);
+ return true;
+ }
+
+ return false;
+}
+
+unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
+ const MachineInstr *MI) const {
+ switch (Opcode) {
+ case SystemZ::CR:
+ return SystemZ::CRJ;
+ case SystemZ::CGR:
+ return SystemZ::CGRJ;
+ case SystemZ::CHI:
+ return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
+ case SystemZ::CGHI:
+ return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
+ case SystemZ::CLR:
+ return SystemZ::CLRJ;
+ case SystemZ::CLGR:
+ return SystemZ::CLGRJ;
+ case SystemZ::CLFI:
+ return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0;
+ case SystemZ::CLGFI:
+ return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0;
+ default:
+ return 0;
+ }
+}
+
+void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned Reg, uint64_t Value) const {
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+ unsigned Opcode;
+ if (isInt<16>(Value))
+ Opcode = SystemZ::LGHI;
+ else if (SystemZ::isImmLL(Value))
+ Opcode = SystemZ::LLILL;
+ else if (SystemZ::isImmLH(Value)) {
+ Opcode = SystemZ::LLILH;
+ Value >>= 16;
+ } else {
+ assert(isInt<32>(Value) && "Huge values not handled yet");
+ Opcode = SystemZ::LGFI;
+ }
+ BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.h b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.h
new file mode 100644
index 0000000..83009cb
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.h
@@ -0,0 +1,243 @@
+//===-- SystemZInstrInfo.h - SystemZ instruction information ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SystemZ implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_SYSTEMZINSTRINFO_H
+#define LLVM_TARGET_SYSTEMZINSTRINFO_H
+
+#include "SystemZ.h"
+#include "SystemZRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "SystemZGenInstrInfo.inc"
+
+namespace llvm {
+
+class SystemZTargetMachine;
+
+namespace SystemZII {
+enum {
+ // See comments in SystemZInstrFormats.td.
+ SimpleBDXLoad = (1 << 0),
+ SimpleBDXStore = (1 << 1),
+ Has20BitOffset = (1 << 2),
+ HasIndex = (1 << 3),
+ Is128Bit = (1 << 4),
+ AccessSizeMask = (31 << 5),
+ AccessSizeShift = 5,
+ CCValuesMask = (15 << 10),
+ CCValuesShift = 10,
+ CompareZeroCCMaskMask = (15 << 14),
+ CompareZeroCCMaskShift = 14,
+ CCMaskFirst = (1 << 18),
+ CCMaskLast = (1 << 19),
+ IsLogical = (1 << 20)
+};
+static inline unsigned getAccessSize(unsigned int Flags) {
+ return (Flags & AccessSizeMask) >> AccessSizeShift;
+}
+static inline unsigned getCCValues(unsigned int Flags) {
+ return (Flags & CCValuesMask) >> CCValuesShift;
+}
+static inline unsigned getCompareZeroCCMask(unsigned int Flags) {
+ return (Flags & CompareZeroCCMaskMask) >> CompareZeroCCMaskShift;
+}
+
+// SystemZ MachineOperand target flags.
+enum {
+ // Masks out the bits for the access model.
+ MO_SYMBOL_MODIFIER = (1 << 0),
+
+ // @GOT (aka @GOTENT)
+ MO_GOT = (1 << 0)
+};
+// Classifies a branch.
+enum BranchType {
+ // An instruction that branches on the current value of CC.
+ BranchNormal,
+
+ // An instruction that peforms a 32-bit signed comparison and branches
+ // on the result.
+ BranchC,
+
+ // An instruction that peforms a 32-bit unsigned comparison and branches
+ // on the result.
+ BranchCL,
+
+ // An instruction that peforms a 64-bit signed comparison and branches
+ // on the result.
+ BranchCG,
+
+ // An instruction that peforms a 64-bit unsigned comparison and branches
+ // on the result.
+ BranchCLG,
+
+ // An instruction that decrements a 32-bit register and branches if
+ // the result is nonzero.
+ BranchCT,
+
+ // An instruction that decrements a 64-bit register and branches if
+ // the result is nonzero.
+ BranchCTG
+};
+// Information about a branch instruction.
+struct Branch {
+ // The type of the branch.
+ BranchType Type;
+
+ // CCMASK_<N> is set if CC might be equal to N.
+ unsigned CCValid;
+
+ // CCMASK_<N> is set if the branch should be taken when CC == N.
+ unsigned CCMask;
+
+ // The target of the branch.
+ const MachineOperand *Target;
+
+ Branch(BranchType type, unsigned ccValid, unsigned ccMask,
+ const MachineOperand *target)
+ : Type(type), CCValid(ccValid), CCMask(ccMask), Target(target) {}
+};
+} // end namespace SystemZII
+
+class SystemZSubtarget;
+class SystemZInstrInfo : public SystemZGenInstrInfo {
+ const SystemZRegisterInfo RI;
+ SystemZSubtarget &STI;
+
+ void splitMove(MachineBasicBlock::iterator MI, unsigned NewOpcode) const;
+ void splitAdjDynAlloc(MachineBasicBlock::iterator MI) const;
+ void expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned HighOpcode, bool ConvertHigh) const;
+ void expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned LowOpcodeK, unsigned HighOpcode) const;
+ void expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned HighOpcode) const;
+ void expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned Size) const;
+ void emitGRX32Move(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ DebugLoc DL, unsigned DestReg, unsigned SrcReg,
+ unsigned LowLowOpcode, unsigned Size, bool KillSrc) const;
+ virtual void anchor();
+
+public:
+ explicit SystemZInstrInfo(SystemZSubtarget &STI);
+
+ // Override TargetInstrInfo.
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
+ int &SrcFrameIndex) const override;
+ bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const override;
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const override;
+ bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
+ unsigned &SrcReg2, int &Mask, int &Value) const override;
+ bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
+ unsigned SrcReg2, int Mask, int Value,
+ const MachineRegisterInfo *MRI) const override;
+ bool isPredicable(MachineInstr *MI) const override;
+ bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
+ unsigned ExtraPredCycles,
+ const BranchProbability &Probability) const override;
+ bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumCyclesT, unsigned ExtraPredCyclesT,
+ MachineBasicBlock &FMBB,
+ unsigned NumCyclesF, unsigned ExtraPredCyclesF,
+ const BranchProbability &Probability) const override;
+ bool PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const
+ override;
+ void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ DebugLoc DL, unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+ MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const override;
+ MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const override;
+ MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr* LoadMI) const override;
+ bool expandPostRAPseudo(MachineBasicBlock::iterator MBBI) const override;
+ bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const
+ override;
+
+ // Return the SystemZRegisterInfo, which this class owns.
+ const SystemZRegisterInfo &getRegisterInfo() const { return RI; }
+
+ // Return the size in bytes of MI.
+ uint64_t getInstSizeInBytes(const MachineInstr *MI) const;
+
+ // Return true if MI is a conditional or unconditional branch.
+ // When returning true, set Cond to the mask of condition-code
+ // values on which the instruction will branch, and set Target
+ // to the operand that contains the branch target. This target
+ // can be a register or a basic block.
+ SystemZII::Branch getBranchInfo(const MachineInstr *MI) const;
+
+ // Get the load and store opcodes for a given register class.
+ void getLoadStoreOpcodes(const TargetRegisterClass *RC,
+ unsigned &LoadOpcode, unsigned &StoreOpcode) const;
+
+ // Opcode is the opcode of an instruction that has an address operand,
+ // and the caller wants to perform that instruction's operation on an
+ // address that has displacement Offset. Return the opcode of a suitable
+ // instruction (which might be Opcode itself) or 0 if no such instruction
+ // exists.
+ unsigned getOpcodeForOffset(unsigned Opcode, int64_t Offset) const;
+
+ // If Opcode is a load instruction that has a LOAD AND TEST form,
+ // return the opcode for the testing form, otherwise return 0.
+ unsigned getLoadAndTest(unsigned Opcode) const;
+
+ // Return true if ROTATE AND ... SELECTED BITS can be used to select bits
+ // Mask of the R2 operand, given that only the low BitSize bits of Mask are
+ // significant. Set Start and End to the I3 and I4 operands if so.
+ bool isRxSBGMask(uint64_t Mask, unsigned BitSize,
+ unsigned &Start, unsigned &End) const;
+
+ // If Opcode is a COMPARE opcode for which an associated COMPARE AND
+ // BRANCH exists, return the opcode for the latter, otherwise return 0.
+ // MI, if nonnull, is the compare instruction.
+ unsigned getCompareAndBranch(unsigned Opcode,
+ const MachineInstr *MI = nullptr) const;
+
+ // Emit code before MBBI in MI to move immediate value Value into
+ // physical register Reg.
+ void loadImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned Reg, uint64_t Value) const;
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.td b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.td
new file mode 100644
index 0000000..f4951ad
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.td
@@ -0,0 +1,1428 @@
+//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Stack allocation
+//===----------------------------------------------------------------------===//
+
+def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
+ [(callseq_start timm:$amt)]>;
+def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+
+let neverHasSideEffects = 1 in {
+ // Takes as input the value of the stack pointer after a dynamic allocation
+ // has been made. Sets the output to the address of the dynamically-
+ // allocated area itself, skipping the outgoing arguments.
+ //
+ // This expands to an LA or LAY instruction. We restrict the offset
+ // to the range of LA and keep the LAY range in reserve for when
+ // the size of the outgoing arguments is added.
+ def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
+ [(set GR64:$dst, dynalloc12only:$src)]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Control flow instructions
+//===----------------------------------------------------------------------===//
+
+// A return instruction (br %r14).
+let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
+ def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
+
+// Unconditional branches. R1 is the condition-code mask (all 1s).
+let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
+ let isIndirectBranch = 1 in
+ def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
+ "br\t$R2", [(brind ADDR64:$R2)]>;
+
+ // An assembler extended mnemonic for BRC.
+ def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
+ [(br bb:$I2)]>;
+
+ // An assembler extended mnemonic for BRCL. (The extension is "G"
+ // rather than "L" because "JL" is "Jump if Less".)
+ def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
+}
+
+// Conditional branches. It's easier for LLVM to handle these branches
+// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
+// the first operand. It seems friendlier to use mnemonic forms like
+// JE and JLH when writing out the assembly though.
+let isBranch = 1, isTerminator = 1, Uses = [CC] in {
+ let isCodeGenOnly = 1, CCMaskFirst = 1 in {
+ def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1,
+ brtarget16:$I2), "j$R1\t$I2",
+ [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>;
+ def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1,
+ brtarget32:$I2), "jg$R1\t$I2", []>;
+ }
+ def AsmBRC : InstRI<0xA74, (outs), (ins imm32zx4:$R1, brtarget16:$I2),
+ "brc\t$R1, $I2", []>;
+ def AsmBRCL : InstRIL<0xC04, (outs), (ins imm32zx4:$R1, brtarget32:$I2),
+ "brcl\t$R1, $I2", []>;
+ def AsmBCR : InstRR<0x07, (outs), (ins imm32zx4:$R1, GR64:$R2),
+ "bcr\t$R1, $R2", []>;
+}
+
+// Fused compare-and-branch instructions. As for normal branches,
+// we handle these instructions internally in their raw CRJ-like form,
+// but use assembly macros like CRJE when writing them out.
+//
+// These instructions do not use or clobber the condition codes.
+// We nevertheless pretend that they clobber CC, so that we can lower
+// them to separate comparisons and BRCLs if the branch ends up being
+// out of range.
+multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
+ let isBranch = 1, isTerminator = 1, Defs = [CC] in {
+ def RJ : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
+ brtarget16:$RI4),
+ "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
+ def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
+ brtarget16:$RI4),
+ "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
+ def IJ : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
+ brtarget16:$RI4),
+ "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
+ def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
+ brtarget16:$RI4),
+ "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
+ def LRJ : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
+ brtarget16:$RI4),
+ "clrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
+ def LGRJ : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
+ brtarget16:$RI4),
+ "clgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
+ def LIJ : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, ccmask:$M3,
+ brtarget16:$RI4),
+ "clij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
+ def LGIJ : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, ccmask:$M3,
+ brtarget16:$RI4),
+ "clgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
+ }
+}
+let isCodeGenOnly = 1 in
+ defm C : CompareBranches<cond4, "$M3", "">;
+defm AsmC : CompareBranches<imm32zx4, "", "$M3, ">;
+
+// Define AsmParser mnemonics for each general condition-code mask
+// (integer or floating-point)
+multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
+ let R1 = ccmask in {
+ def J : InstRI<0xA74, (outs), (ins brtarget16:$I2),
+ "j"##name##"\t$I2", []>;
+ def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
+ "jg"##name##"\t$I2", []>;
+ def BR : InstRR<0x07, (outs), (ins ADDR64:$R2), "b"##name##"r\t$R2", []>;
+ }
+ def LOCR : FixedCondUnaryRRF<"locr"##name, 0xB9F2, GR32, GR32, ccmask>;
+ def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>;
+ def LOC : FixedCondUnaryRSY<"loc"##name, 0xEBF2, GR32, ccmask, 4>;
+ def LOCG : FixedCondUnaryRSY<"locg"##name, 0xEBE2, GR64, ccmask, 8>;
+ def STOC : FixedCondStoreRSY<"stoc"##name, 0xEBF3, GR32, ccmask, 4>;
+ def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>;
+}
+defm AsmO : CondExtendedMnemonic<1, "o">;
+defm AsmH : CondExtendedMnemonic<2, "h">;
+defm AsmNLE : CondExtendedMnemonic<3, "nle">;
+defm AsmL : CondExtendedMnemonic<4, "l">;
+defm AsmNHE : CondExtendedMnemonic<5, "nhe">;
+defm AsmLH : CondExtendedMnemonic<6, "lh">;
+defm AsmNE : CondExtendedMnemonic<7, "ne">;
+defm AsmE : CondExtendedMnemonic<8, "e">;
+defm AsmNLH : CondExtendedMnemonic<9, "nlh">;
+defm AsmHE : CondExtendedMnemonic<10, "he">;
+defm AsmNL : CondExtendedMnemonic<11, "nl">;
+defm AsmLE : CondExtendedMnemonic<12, "le">;
+defm AsmNH : CondExtendedMnemonic<13, "nh">;
+defm AsmNO : CondExtendedMnemonic<14, "no">;
+
+// Define AsmParser mnemonics for each integer condition-code mask.
+// This is like the list above, except that condition 3 is not possible
+// and that the low bit of the mask is therefore always 0. This means
+// that each condition has two names. Conditions "o" and "no" are not used.
+//
+// We don't make one of the two names an alias of the other because
+// we need the custom parsing routines to select the correct register class.
+multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
+ let M3 = ccmask in {
+ def CR : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
+ brtarget16:$RI4),
+ "crj"##name##"\t$R1, $R2, $RI4", []>;
+ def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
+ brtarget16:$RI4),
+ "cgrj"##name##"\t$R1, $R2, $RI4", []>;
+ def CI : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
+ brtarget16:$RI4),
+ "cij"##name##"\t$R1, $I2, $RI4", []>;
+ def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
+ brtarget16:$RI4),
+ "cgij"##name##"\t$R1, $I2, $RI4", []>;
+ def CLR : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2,
+ brtarget16:$RI4),
+ "clrj"##name##"\t$R1, $R2, $RI4", []>;
+ def CLGR : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2,
+ brtarget16:$RI4),
+ "clgrj"##name##"\t$R1, $R2, $RI4", []>;
+ def CLI : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2,
+ brtarget16:$RI4),
+ "clij"##name##"\t$R1, $I2, $RI4", []>;
+ def CLGI : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2,
+ brtarget16:$RI4),
+ "clgij"##name##"\t$R1, $I2, $RI4", []>;
+ }
+}
+multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
+ : IntCondExtendedMnemonicA<ccmask, name1> {
+ let isAsmParserOnly = 1 in
+ defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
+}
+defm AsmJH : IntCondExtendedMnemonic<2, "h", "nle">;
+defm AsmJL : IntCondExtendedMnemonic<4, "l", "nhe">;
+defm AsmJLH : IntCondExtendedMnemonic<6, "lh", "ne">;
+defm AsmJE : IntCondExtendedMnemonic<8, "e", "nlh">;
+defm AsmJHE : IntCondExtendedMnemonic<10, "he", "nl">;
+defm AsmJLE : IntCondExtendedMnemonic<12, "le", "nh">;
+
+// Decrement a register and branch if it is nonzero. These don't clobber CC,
+// but we might need to split long branches into sequences that do.
+let Defs = [CC] in {
+ def BRCT : BranchUnaryRI<"brct", 0xA76, GR32>;
+ def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
+}
+
+//===----------------------------------------------------------------------===//
+// Select instructions
+//===----------------------------------------------------------------------===//
+
+def Select32Mux : SelectWrapper<GRX32>, Requires<[FeatureHighWord]>;
+def Select32 : SelectWrapper<GR32>;
+def Select64 : SelectWrapper<GR64>;
+
+// We don't define 32-bit Mux stores because the low-only STOC should
+// always be used if possible.
+defm CondStore8Mux : CondStores<GRX32, nonvolatile_truncstorei8,
+ nonvolatile_anyextloadi8, bdxaddr20only>,
+ Requires<[FeatureHighWord]>;
+defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
+ nonvolatile_anyextloadi16, bdxaddr20only>,
+ Requires<[FeatureHighWord]>;
+defm CondStore8 : CondStores<GR32, nonvolatile_truncstorei8,
+ nonvolatile_anyextloadi8, bdxaddr20only>;
+defm CondStore16 : CondStores<GR32, nonvolatile_truncstorei16,
+ nonvolatile_anyextloadi16, bdxaddr20only>;
+defm CondStore32 : CondStores<GR32, nonvolatile_store,
+ nonvolatile_load, bdxaddr20only>;
+
+defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
+ nonvolatile_anyextloadi8, bdxaddr20only>;
+defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
+ nonvolatile_anyextloadi16, bdxaddr20only>;
+defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
+ nonvolatile_anyextloadi32, bdxaddr20only>;
+defm CondStore64 : CondStores<GR64, nonvolatile_store,
+ nonvolatile_load, bdxaddr20only>;
+
+//===----------------------------------------------------------------------===//
+// Call instructions
+//===----------------------------------------------------------------------===//
+
+let isCall = 1, Defs = [R14D, CC] in {
+ def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
+ [(z_call pcrel32:$I2)]>;
+ def CallBASR : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
+ [(z_call ADDR64:$R2)]>;
+}
+
+// Sibling calls. Indirect sibling calls must be via R1, since R2 upwards
+// are argument registers and since branching to R0 is a no-op.
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
+ def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
+ [(z_sibcall pcrel32:$I2)]>;
+ let Uses = [R1D] in
+ def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
+}
+
+// Define the general form of the call instructions for the asm parser.
+// These instructions don't hard-code %r14 as the return address register.
+def BRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
+ "bras\t$R1, $I2", []>;
+def BRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
+ "brasl\t$R1, $I2", []>;
+def BASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
+ "basr\t$R1, $R2", []>;
+
+//===----------------------------------------------------------------------===//
+// Move instructions
+//===----------------------------------------------------------------------===//
+
+// Register moves.
+let neverHasSideEffects = 1 in {
+ // Expands to LR, RISBHG or RISBLG, depending on the choice of registers.
+ def LRMux : UnaryRRPseudo<"l", null_frag, GRX32, GRX32>,
+ Requires<[FeatureHighWord]>;
+ def LR : UnaryRR <"l", 0x18, null_frag, GR32, GR32>;
+ def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
+}
+let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
+ def LTR : UnaryRR <"lt", 0x12, null_frag, GR32, GR32>;
+ def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>;
+}
+
+// Move on condition.
+let isCodeGenOnly = 1, Uses = [CC] in {
+ def LOCR : CondUnaryRRF<"loc", 0xB9F2, GR32, GR32>;
+ def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
+}
+let Uses = [CC] in {
+ def AsmLOCR : AsmCondUnaryRRF<"loc", 0xB9F2, GR32, GR32>;
+ def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
+}
+
+// Immediate moves.
+let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
+ isReMaterializable = 1 in {
+ // 16-bit sign-extended immediates. LHIMux expands to LHI or IIHF,
+ // deopending on the choice of register.
+ def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
+ Requires<[FeatureHighWord]>;
+ def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
+ def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
+
+ // Other 16-bit immediates.
+ def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
+ def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
+ def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
+ def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
+
+ // 32-bit immediates.
+ def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
+ def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
+ def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
+}
+
+// Register loads.
+let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
+ // Expands to L, LY or LFH, depending on the choice of register.
+ def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
+ Requires<[FeatureHighWord]>;
+ defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
+ def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
+ Requires<[FeatureHighWord]>;
+ def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
+
+ // These instructions are split after register allocation, so we don't
+ // want a custom inserter.
+ let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
+ def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
+ [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
+ }
+}
+let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
+ def LT : UnaryRXY<"lt", 0xE312, load, GR32, 4>;
+ def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
+}
+
+let canFoldAsLoad = 1 in {
+ def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
+ def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
+}
+
+// Load on condition.
+let isCodeGenOnly = 1, Uses = [CC] in {
+ def LOC : CondUnaryRSY<"loc", 0xEBF2, nonvolatile_load, GR32, 4>;
+ def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
+}
+let Uses = [CC] in {
+ def AsmLOC : AsmCondUnaryRSY<"loc", 0xEBF2, GR32, 4>;
+ def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>;
+}
+
+// Register stores.
+let SimpleBDXStore = 1 in {
+ // Expands to ST, STY or STFH, depending on the choice of register.
+ def STMux : StoreRXYPseudo<store, GRX32, 4>,
+ Requires<[FeatureHighWord]>;
+ defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
+ def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
+ Requires<[FeatureHighWord]>;
+ def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
+
+ // These instructions are split after register allocation, so we don't
+ // want a custom inserter.
+ let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
+ def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
+ [(store GR128:$src, bdxaddr20only128:$dst)]>;
+ }
+}
+def STRL : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
+def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
+
+// Store on condition.
+let isCodeGenOnly = 1, Uses = [CC] in {
+ def STOC : CondStoreRSY<"stoc", 0xEBF3, GR32, 4>;
+ def STOCG : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
+}
+let Uses = [CC] in {
+ def AsmSTOC : AsmCondStoreRSY<"stoc", 0xEBF3, GR32, 4>;
+ def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
+}
+
+// 8-bit immediate stores to 8-bit fields.
+defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
+
+// 16-bit immediate stores to 16-, 32- or 64-bit fields.
+def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
+def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
+def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
+
+// Memory-to-memory moves.
+let mayLoad = 1, mayStore = 1 in
+ defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
+
+// String moves.
+let mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L] in
+ defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
+
+//===----------------------------------------------------------------------===//
+// Sign extensions
+//===----------------------------------------------------------------------===//
+//
+// Note that putting these before zero extensions mean that we will prefer
+// them for anyextload*. There's not really much to choose between the two
+// either way, but signed-extending loads have a short LH and a long LHY,
+// while zero-extending loads have only the long LLH.
+//
+//===----------------------------------------------------------------------===//
+
+// 32-bit extensions from registers.
+let neverHasSideEffects = 1 in {
+ def LBR : UnaryRRE<"lb", 0xB926, sext8, GR32, GR32>;
+ def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
+}
+
+// 64-bit extensions from registers.
+let neverHasSideEffects = 1 in {
+ def LGBR : UnaryRRE<"lgb", 0xB906, sext8, GR64, GR64>;
+ def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
+ def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
+}
+let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
+ def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR64>;
+
+// Match 32-to-64-bit sign extensions in which the source is already
+// in a 64-bit register.
+def : Pat<(sext_inreg GR64:$src, i32),
+ (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
+
+// 32-bit extensions from 8-bit memory. LBMux expands to LB or LBH,
+// depending on the choice of register.
+def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
+ Requires<[FeatureHighWord]>;
+def LB : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
+def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
+ Requires<[FeatureHighWord]>;
+
+// 32-bit extensions from 16-bit memory. LHMux expands to LH or LHH,
+// depending on the choice of register.
+def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
+ Requires<[FeatureHighWord]>;
+defm LH : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
+def LHH : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
+ Requires<[FeatureHighWord]>;
+def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
+
+// 64-bit extensions from memory.
+def LGB : UnaryRXY<"lgb", 0xE377, asextloadi8, GR64, 1>;
+def LGH : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
+def LGF : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
+def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
+def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
+let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
+ def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
+
+//===----------------------------------------------------------------------===//
+// Zero extensions
+//===----------------------------------------------------------------------===//
+
+// 32-bit extensions from registers.
+let neverHasSideEffects = 1 in {
+ // Expands to LLCR or RISB[LH]G, depending on the choice of registers.
+ def LLCRMux : UnaryRRPseudo<"llc", zext8, GRX32, GRX32>,
+ Requires<[FeatureHighWord]>;
+ def LLCR : UnaryRRE<"llc", 0xB994, zext8, GR32, GR32>;
+ // Expands to LLHR or RISB[LH]G, depending on the choice of registers.
+ def LLHRMux : UnaryRRPseudo<"llh", zext16, GRX32, GRX32>,
+ Requires<[FeatureHighWord]>;
+ def LLHR : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
+}
+
+// 64-bit extensions from registers.
+let neverHasSideEffects = 1 in {
+ def LLGCR : UnaryRRE<"llgc", 0xB984, zext8, GR64, GR64>;
+ def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
+ def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
+}
+
+// Match 32-to-64-bit zero extensions in which the source is already
+// in a 64-bit register.
+def : Pat<(and GR64:$src, 0xffffffff),
+ (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
+
+// 32-bit extensions from 8-bit memory. LLCMux expands to LLC or LLCH,
+// depending on the choice of register.
+def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
+ Requires<[FeatureHighWord]>;
+def LLC : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
+def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GR32, 1>,
+ Requires<[FeatureHighWord]>;
+
+// 32-bit extensions from 16-bit memory. LLHMux expands to LLH or LLHH,
+// depending on the choice of register.
+def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
+ Requires<[FeatureHighWord]>;
+def LLH : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
+def LLHH : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GR32, 2>,
+ Requires<[FeatureHighWord]>;
+def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
+
+// 64-bit extensions from memory.
+def LLGC : UnaryRXY<"llgc", 0xE390, azextloadi8, GR64, 1>;
+def LLGH : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
+def LLGF : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
+def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
+def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
+
+//===----------------------------------------------------------------------===//
+// Truncations
+//===----------------------------------------------------------------------===//
+
+// Truncations of 64-bit registers to 32-bit registers.
+def : Pat<(i32 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
+
+// Truncations of 32-bit registers to 8-bit memory. STCMux expands to
+// STC, STCY or STCH, depending on the choice of register.
+def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
+ Requires<[FeatureHighWord]>;
+defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
+def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
+ Requires<[FeatureHighWord]>;
+
+// Truncations of 32-bit registers to 16-bit memory. STHMux expands to
+// STH, STHY or STHH, depending on the choice of register.
+def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
+ Requires<[FeatureHighWord]>;
+defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
+def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
+ Requires<[FeatureHighWord]>;
+def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
+
+// Truncations of 64-bit registers to memory.
+defm : StoreGR64Pair<STC, STCY, truncstorei8>;
+defm : StoreGR64Pair<STH, STHY, truncstorei16>;
+def : StoreGR64PC<STHRL, aligned_truncstorei16>;
+defm : StoreGR64Pair<ST, STY, truncstorei32>;
+def : StoreGR64PC<STRL, aligned_truncstorei32>;
+
+//===----------------------------------------------------------------------===//
+// Multi-register moves
+//===----------------------------------------------------------------------===//
+
+// Multi-register loads.
+def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
+
+// Multi-register stores.
+def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
+
+//===----------------------------------------------------------------------===//
+// Byte swaps
+//===----------------------------------------------------------------------===//
+
+// Byte-swapping register moves.
+let neverHasSideEffects = 1 in {
+ def LRVR : UnaryRRE<"lrv", 0xB91F, bswap, GR32, GR32>;
+ def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
+}
+
+// Byte-swapping loads. Unlike normal loads, these instructions are
+// allowed to access storage more than once.
+def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>;
+def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>;
+
+// Likewise byte-swapping stores.
+def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>;
+def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
+ GR64, 8>;
+
+//===----------------------------------------------------------------------===//
+// Load address instructions
+//===----------------------------------------------------------------------===//
+
+// Load BDX-style addresses.
+let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
+ DispKey = "la" in {
+ let DispSize = "12" in
+ def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
+ "la\t$R1, $XBD2",
+ [(set GR64:$R1, laaddr12pair:$XBD2)]>;
+ let DispSize = "20" in
+ def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
+ "lay\t$R1, $XBD2",
+ [(set GR64:$R1, laaddr20pair:$XBD2)]>;
+}
+
+// Load a PC-relative address. There's no version of this instruction
+// with a 16-bit offset, so there's no relaxation.
+let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
+ isReMaterializable = 1 in {
+ def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
+ "larl\t$R1, $I2",
+ [(set GR64:$R1, pcrel32:$I2)]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Absolute and Negation
+//===----------------------------------------------------------------------===//
+
+let Defs = [CC] in {
+ let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
+ def LPR : UnaryRR <"lp", 0x10, z_iabs, GR32, GR32>;
+ def LPGR : UnaryRRE<"lpg", 0xB900, z_iabs, GR64, GR64>;
+ }
+ let CCValues = 0xE, CompareZeroCCMask = 0xE in
+ def LPGFR : UnaryRRE<"lpgf", 0xB910, null_frag, GR64, GR32>;
+}
+def : Pat<(z_iabs32 GR32:$src), (LPR GR32:$src)>;
+def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
+defm : SXU<z_iabs, LPGFR>;
+defm : SXU<z_iabs64, LPGFR>;
+
+let Defs = [CC] in {
+ let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
+ def LNR : UnaryRR <"ln", 0x11, z_inegabs, GR32, GR32>;
+ def LNGR : UnaryRRE<"lng", 0xB901, z_inegabs, GR64, GR64>;
+ }
+ let CCValues = 0xE, CompareZeroCCMask = 0xE in
+ def LNGFR : UnaryRRE<"lngf", 0xB911, null_frag, GR64, GR32>;
+}
+def : Pat<(z_inegabs32 GR32:$src), (LNR GR32:$src)>;
+def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
+defm : SXU<z_inegabs, LNGFR>;
+defm : SXU<z_inegabs64, LNGFR>;
+
+let Defs = [CC] in {
+ let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
+ def LCR : UnaryRR <"lc", 0x13, ineg, GR32, GR32>;
+ def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
+ }
+ let CCValues = 0xE, CompareZeroCCMask = 0xE in
+ def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
+}
+defm : SXU<ineg, LCGFR>;
+
+//===----------------------------------------------------------------------===//
+// Insertion
+//===----------------------------------------------------------------------===//
+
+let isCodeGenOnly = 1 in
+ defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
+defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
+
+defm : InsertMem<"inserti8", IC32, GR32, azextloadi8, bdxaddr12pair>;
+defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
+
+defm : InsertMem<"inserti8", IC, GR64, azextloadi8, bdxaddr12pair>;
+defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
+
+// Insertions of a 16-bit immediate, leaving other bits unaffected.
+// We don't have or_as_insert equivalents of these operations because
+// OI is available instead.
+//
+// IIxMux expands to II[LH]x, depending on the choice of register.
+def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
+ Requires<[FeatureHighWord]>;
+def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
+ Requires<[FeatureHighWord]>;
+def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
+def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
+def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
+def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
+def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
+def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
+def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
+def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
+
+// ...likewise for 32-bit immediates. For GR32s this is a general
+// full-width move. (We use IILF rather than something like LLILF
+// for 32-bit moves because IILF leaves the upper 32 bits of the
+// GR64 unchanged.)
+let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
+ def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
+ Requires<[FeatureHighWord]>;
+ def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
+ def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
+}
+def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
+def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
+
+// An alternative model of inserthf, with the first operand being
+// a zero-extended value.
+def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
+ (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
+ imm64hf32:$imm)>;
+
+//===----------------------------------------------------------------------===//
+// Addition
+//===----------------------------------------------------------------------===//
+
+// Plain addition.
+let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
+ // Addition of a register.
+ let isCommutable = 1 in {
+ defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>;
+ defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>;
+ }
+ def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;
+
+ // Addition of signed 16-bit immediates.
+ defm AHIMux : BinaryRIAndKPseudo<"ahimux", add, GRX32, imm32sx16>;
+ defm AHI : BinaryRIAndK<"ahi", 0xA7A, 0xECD8, add, GR32, imm32sx16>;
+ defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;
+
+ // Addition of signed 32-bit immediates.
+ def AFIMux : BinaryRIPseudo<add, GRX32, simm32>,
+ Requires<[FeatureHighWord]>;
+ def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>;
+ def AIH : BinaryRIL<"aih", 0xCC8, add, GRH32, simm32>,
+ Requires<[FeatureHighWord]>;
+ def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
+
+ // Addition of memory.
+ defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, asextloadi16, 2>;
+ defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load, 4>;
+ def AGF : BinaryRXY<"agf", 0xE318, add, GR64, asextloadi32, 4>;
+ def AG : BinaryRXY<"ag", 0xE308, add, GR64, load, 8>;
+
+ // Addition to memory.
+ def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
+ def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
+}
+defm : SXB<add, GR64, AGFR>;
+
+// Addition producing a carry.
+let Defs = [CC] in {
+ // Addition of a register.
+ let isCommutable = 1 in {
+ defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>;
+ defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>;
+ }
+ def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;
+
+ // Addition of signed 16-bit immediates.
+ def ALHSIK : BinaryRIE<"alhsik", 0xECDA, addc, GR32, imm32sx16>,
+ Requires<[FeatureDistinctOps]>;
+ def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
+ Requires<[FeatureDistinctOps]>;
+
+ // Addition of unsigned 32-bit immediates.
+ def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>;
+ def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
+
+ // Addition of memory.
+ defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
+ def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, azextloadi32, 4>;
+ def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load, 8>;
+}
+defm : ZXB<addc, GR64, ALGFR>;
+
+// Addition producing and using a carry.
+let Defs = [CC], Uses = [CC] in {
+ // Addition of a register.
+ def ALCR : BinaryRRE<"alc", 0xB998, adde, GR32, GR32>;
+ def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;
+
+ // Addition of memory.
+ def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load, 4>;
+ def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
+}
+
+//===----------------------------------------------------------------------===//
+// Subtraction
+//===----------------------------------------------------------------------===//
+
+// Plain subtraction. Although immediate forms exist, we use the
+// add-immediate instruction instead.
+let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
+ // Subtraction of a register.
+ defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>;
+ def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
+ defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>;
+
+ // Subtraction of memory.
+ defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, asextloadi16, 2>;
+ defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
+ def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, asextloadi32, 4>;
+ def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load, 8>;
+}
+defm : SXB<sub, GR64, SGFR>;
+
+// Subtraction producing a carry.
+let Defs = [CC] in {
+ // Subtraction of a register.
+ defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>;
+ def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
+ defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>;
+
+ // Subtraction of unsigned 32-bit immediates. These don't match
+ // subc because we prefer addc for constants.
+ def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>;
+ def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
+
+ // Subtraction of memory.
+ defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
+ def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, azextloadi32, 4>;
+ def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load, 8>;
+}
+defm : ZXB<subc, GR64, SLGFR>;
+
+// Subtraction producing and using a carry.
+let Defs = [CC], Uses = [CC] in {
+ // Subtraction of a register.
+ def SLBR : BinaryRRE<"slb", 0xB999, sube, GR32, GR32>;
+ def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;
+
+ // Subtraction of memory.
+ def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load, 4>;
+ def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
+}
+
+//===----------------------------------------------------------------------===//
+// AND
+//===----------------------------------------------------------------------===//
+
+let Defs = [CC] in {
+ // ANDs of a register.
+ let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
+ defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>;
+ defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>;
+ }
+
+ let isConvertibleToThreeAddress = 1 in {
+ // ANDs of a 16-bit immediate, leaving other bits unaffected.
+ // The CC result only reflects the 16-bit field, not the full register.
+ //
+ // NIxMux expands to NI[LH]x, depending on the choice of register.
+ def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
+ Requires<[FeatureHighWord]>;
+ def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
+ Requires<[FeatureHighWord]>;
+ def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
+ def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
+ def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
+ def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
+ def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
+ def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
+ def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
+ def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
+
+ // ANDs of a 32-bit immediate, leaving other bits unaffected.
+ // The CC result only reflects the 32-bit field, which means we can
+ // use it as a zero indicator for i32 operations but not otherwise.
+ let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
+ // Expands to NILF or NIHF, depending on the choice of register.
+ def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
+ Requires<[FeatureHighWord]>;
+ def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
+ def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
+ }
+ def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
+ def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
+ }
+
+ // ANDs of memory.
+ let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
+ defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
+ def NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>;
+ }
+
+ // AND to memory
+ defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
+
+ // Block AND.
+ let mayLoad = 1, mayStore = 1 in
+ defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
+}
+defm : RMWIByte<and, bdaddr12pair, NI>;
+defm : RMWIByte<and, bdaddr20pair, NIY>;
+
+//===----------------------------------------------------------------------===//
+// OR
+//===----------------------------------------------------------------------===//
+
+let Defs = [CC] in {
+ // ORs of a register.
+ let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
+ defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>;
+ defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>;
+ }
+
+ // ORs of a 16-bit immediate, leaving other bits unaffected.
+ // The CC result only reflects the 16-bit field, not the full register.
+ //
+ // OIxMux expands to OI[LH]x, depending on the choice of register.
+ def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
+ Requires<[FeatureHighWord]>;
+ def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
+ Requires<[FeatureHighWord]>;
+ def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
+ def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
+ def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
+ def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
+ def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
+ def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
+ def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
+ def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
+
+ // ORs of a 32-bit immediate, leaving other bits unaffected.
+ // The CC result only reflects the 32-bit field, which means we can
+ // use it as a zero indicator for i32 operations but not otherwise.
+ let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
+ // Expands to OILF or OIHF, depending on the choice of register.
+ def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
+ Requires<[FeatureHighWord]>;
+ def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
+ def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
+ }
+ def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
+ def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
+
+ // ORs of memory.
+ let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
+ defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
+ def OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
+ }
+
+ // OR to memory
+ defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
+
+ // Block OR.
+ let mayLoad = 1, mayStore = 1 in
+ defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
+}
+defm : RMWIByte<or, bdaddr12pair, OI>;
+defm : RMWIByte<or, bdaddr20pair, OIY>;
+
+//===----------------------------------------------------------------------===//
+// XOR
+//===----------------------------------------------------------------------===//
+
+let Defs = [CC] in {
+ // XORs of a register.
+ let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
+ defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>;
+ defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>;
+ }
+
+ // XORs of a 32-bit immediate, leaving other bits unaffected.
+ // The CC result only reflects the 32-bit field, which means we can
+ // use it as a zero indicator for i32 operations but not otherwise.
+ let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
+ // Expands to XILF or XIHF, depending on the choice of register.
+ def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
+ Requires<[FeatureHighWord]>;
+ def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
+ def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
+ }
+ def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
+ def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
+
+ // XORs of memory.
+ let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
+ defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
+ def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
+ }
+
+ // XOR to memory
+ defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
+
+ // Block XOR.
+ let mayLoad = 1, mayStore = 1 in
+ defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
+}
+defm : RMWIByte<xor, bdaddr12pair, XI>;
+defm : RMWIByte<xor, bdaddr20pair, XIY>;
+
+//===----------------------------------------------------------------------===//
+// Multiplication
+//===----------------------------------------------------------------------===//
+
+// Multiplication of a register.
+let isCommutable = 1 in {
+ def MSR : BinaryRRE<"ms", 0xB252, mul, GR32, GR32>;
+ def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
+}
+def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
+defm : SXB<mul, GR64, MSGFR>;
+
+// Multiplication of a signed 16-bit immediate.
+def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
+def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
+
+// Multiplication of a signed 32-bit immediate.
+def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
+def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
+
+// Multiplication of memory.
+defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
+defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
+def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
+def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load, 8>;
+
+// Multiplication of a register, producing two results.
+def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;
+
+// Multiplication of memory, producing two results.
+def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;
+
+//===----------------------------------------------------------------------===//
+// Division and remainder
+//===----------------------------------------------------------------------===//
+
+// Division and remainder, from registers.
+def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
+def DSGR : BinaryRRE<"dsg", 0xB90D, z_sdivrem64, GR128, GR64>;
+def DLR : BinaryRRE<"dl", 0xB997, z_udivrem32, GR128, GR32>;
+def DLGR : BinaryRRE<"dlg", 0xB987, z_udivrem64, GR128, GR64>;
+
+// Division and remainder, from memory.
+def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
+def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load, 8>;
+def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load, 4>;
+def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load, 8>;
+
+//===----------------------------------------------------------------------===//
+// Shifts
+//===----------------------------------------------------------------------===//
+
+// Shift left.
+let neverHasSideEffects = 1 in {
+ defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
+ def SLLG : BinaryRSY<"sllg", 0xEB0D, shl, GR64>;
+}
+
+// Logical shift right.
+let neverHasSideEffects = 1 in {
+ defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
+ def SRLG : BinaryRSY<"srlg", 0xEB0C, srl, GR64>;
+}
+
+// Arithmetic shift right.
+let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
+ defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
+ def SRAG : BinaryRSY<"srag", 0xEB0A, sra, GR64>;
+}
+
+// Rotate left.
+let neverHasSideEffects = 1 in {
+ def RLL : BinaryRSY<"rll", 0xEB1D, rotl, GR32>;
+ def RLLG : BinaryRSY<"rllg", 0xEB1C, rotl, GR64>;
+}
+
+// Rotate second operand left and inserted selected bits into first operand.
+// These can act like 32-bit operands provided that the constant start and
+// end bits (operands 2 and 3) are in the range [32, 64).
+let Defs = [CC] in {
+ let isCodeGenOnly = 1 in
+ def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
+ let CCValues = 0xE, CompareZeroCCMask = 0xE in
+ def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
+}
+
+// Forms of RISBG that only affect one word of the destination register.
+// They do not set CC.
+let Predicates = [FeatureHighWord] in {
+ def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
+ def RISBLL : RotateSelectAliasRIEf<GR32, GR32>;
+ def RISBLH : RotateSelectAliasRIEf<GR32, GRH32>;
+ def RISBHL : RotateSelectAliasRIEf<GRH32, GR32>;
+ def RISBHH : RotateSelectAliasRIEf<GRH32, GRH32>;
+ def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
+ def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
+}
+
+// Rotate second operand left and perform a logical operation with selected
+// bits of the first operand. The CC result only describes the selected bits,
+// so isn't useful for a full comparison against zero.
+let Defs = [CC] in {
+ def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
+ def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
+ def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
+}
+
+//===----------------------------------------------------------------------===//
+// Comparison
+//===----------------------------------------------------------------------===//
+
+// Signed comparisons. We put these before the unsigned comparisons because
+// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
+// of the unsigned forms do.
+let Defs = [CC], CCValues = 0xE in {
+ // Comparison with a register.
+ def CR : CompareRR <"c", 0x19, z_scmp, GR32, GR32>;
+ def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
+ def CGR : CompareRRE<"cg", 0xB920, z_scmp, GR64, GR64>;
+
+ // Comparison with a signed 16-bit immediate.
+ def CHI : CompareRI<"chi", 0xA7E, z_scmp, GR32, imm32sx16>;
+ def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
+
+ // Comparison with a signed 32-bit immediate. CFIMux expands to CFI or CIH,
+ // depending on the choice of register.
+ def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
+ Requires<[FeatureHighWord]>;
+ def CFI : CompareRIL<"cfi", 0xC2D, z_scmp, GR32, simm32>;
+ def CIH : CompareRIL<"cih", 0xCCD, z_scmp, GRH32, simm32>,
+ Requires<[FeatureHighWord]>;
+ def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
+
+ // Comparison with memory.
+ defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
+ def CMux : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
+ Requires<[FeatureHighWord]>;
+ defm C : CompareRXPair<"c", 0x59, 0xE359, z_scmp, GR32, load, 4>;
+ def CHF : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
+ Requires<[FeatureHighWord]>;
+ def CGH : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
+ def CGF : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
+ def CG : CompareRXY<"cg", 0xE320, z_scmp, GR64, load, 8>;
+ def CHRL : CompareRILPC<"chrl", 0xC65, z_scmp, GR32, aligned_asextloadi16>;
+ def CRL : CompareRILPC<"crl", 0xC6D, z_scmp, GR32, aligned_load>;
+ def CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
+ def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
+ def CGRL : CompareRILPC<"cgrl", 0xC68, z_scmp, GR64, aligned_load>;
+
+ // Comparison between memory and a signed 16-bit immediate.
+ def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
+ def CHSI : CompareSIL<"chsi", 0xE55C, z_scmp, load, imm32sx16>;
+ def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
+}
+defm : SXB<z_scmp, GR64, CGFR>;
+
+// Unsigned comparisons.
+let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
+ // Comparison with a register.
+ def CLR : CompareRR <"cl", 0x15, z_ucmp, GR32, GR32>;
+ def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
+ def CLGR : CompareRRE<"clg", 0xB921, z_ucmp, GR64, GR64>;
+
+ // Comparison with an unsigned 32-bit immediate. CLFIMux expands to CLFI
+ // or CLIH, depending on the choice of register.
+ def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
+ Requires<[FeatureHighWord]>;
+ def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
+ def CLIH : CompareRIL<"clih", 0xCCF, z_ucmp, GR32, uimm32>,
+ Requires<[FeatureHighWord]>;
+ def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
+
+ // Comparison with memory.
+ def CLMux : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
+ Requires<[FeatureHighWord]>;
+ defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
+ def CLHF : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
+ Requires<[FeatureHighWord]>;
+ def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
+ def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load, 8>;
+ def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
+ aligned_azextloadi16>;
+ def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
+ aligned_load>;
+ def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
+ aligned_azextloadi16>;
+ def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
+ aligned_azextloadi32>;
+ def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
+ aligned_load>;
+
+ // Comparison between memory and an unsigned 8-bit immediate.
+ defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
+
+ // Comparison between memory and an unsigned 16-bit immediate.
+ def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
+ def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
+ def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
+}
+defm : ZXB<z_ucmp, GR64, CLGFR>;
+
+// Memory-to-memory comparison.
+let mayLoad = 1, Defs = [CC] in
+ defm CLC : MemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
+
+// String comparison.
+let mayLoad = 1, Defs = [CC], Uses = [R0L] in
+ defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
+
+// Test under mask.
+let Defs = [CC] in {
+ // TMxMux expands to TM[LH]x, depending on the choice of register.
+ def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
+ Requires<[FeatureHighWord]>;
+ def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
+ Requires<[FeatureHighWord]>;
+ def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
+ def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
+ def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
+ def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
+
+ def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
+ def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
+ def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
+ def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
+
+ defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
+}
+
+//===----------------------------------------------------------------------===//
+// Prefetch
+//===----------------------------------------------------------------------===//
+
+def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
+def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
+
+//===----------------------------------------------------------------------===//
+// Atomic operations
+//===----------------------------------------------------------------------===//
+
+def Serialize : Alias<2, (outs), (ins), [(z_serialize)]>;
+
+let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
+ def LAA : LoadAndOpRSY<"laa", 0xEBF8, atomic_load_add_32, GR32>;
+ def LAAG : LoadAndOpRSY<"laag", 0xEBE8, atomic_load_add_64, GR64>;
+ def LAAL : LoadAndOpRSY<"laal", 0xEBFA, null_frag, GR32>;
+ def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
+ def LAN : LoadAndOpRSY<"lan", 0xEBF4, atomic_load_and_32, GR32>;
+ def LANG : LoadAndOpRSY<"lang", 0xEBE4, atomic_load_and_64, GR64>;
+ def LAO : LoadAndOpRSY<"lao", 0xEBF6, atomic_load_or_32, GR32>;
+ def LAOG : LoadAndOpRSY<"laog", 0xEBE6, atomic_load_or_64, GR64>;
+ def LAX : LoadAndOpRSY<"lax", 0xEBF7, atomic_load_xor_32, GR32>;
+ def LAXG : LoadAndOpRSY<"laxg", 0xEBE7, atomic_load_xor_64, GR64>;
+}
+
+def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
+def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
+def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
+
+def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
+def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
+let Predicates = [FeatureNoInterlockedAccess1] in {
+ def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
+ def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
+ def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
+ def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
+ def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
+ def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
+}
+
+def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
+def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
+def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
+
+def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
+def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
+let Predicates = [FeatureNoInterlockedAccess1] in {
+ def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
+ def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm32<atomic_load_and_32,
+ imm32ll16c>;
+ def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm32<atomic_load_and_32,
+ imm32lh16c>;
+ def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
+ def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
+ def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
+ imm64ll16c>;
+ def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
+ imm64lh16c>;
+ def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
+ imm64hl16c>;
+ def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
+ imm64hh16c>;
+ def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
+ imm64lf32c>;
+ def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
+ imm64hf32c>;
+}
+
+def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
+def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
+let Predicates = [FeatureNoInterlockedAccess1] in {
+ def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
+ def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
+ def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
+ def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
+ def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
+ def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
+ def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
+ def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
+ def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
+ def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
+ def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
+}
+
+def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
+def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
+let Predicates = [FeatureNoInterlockedAccess1] in {
+ def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
+ def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
+ def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
+ def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
+ def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
+}
+
+def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
+def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
+ imm32lh16c>;
+def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
+def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm32<atomic_load_nand_32,
+ imm32ll16c>;
+def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm32<atomic_load_nand_32,
+ imm32lh16c>;
+def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
+def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
+def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64ll16c>;
+def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64lh16c>;
+def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64hl16c>;
+def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64hh16c>;
+def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64lf32c>;
+def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64hf32c>;
+
+def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
+def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
+def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
+
+def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
+def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
+def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
+
+def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
+def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
+def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
+
+def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
+def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
+def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
+
+def ATOMIC_CMP_SWAPW
+ : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
+ ADDR32:$bitshift, ADDR32:$negbitshift,
+ uimm32:$bitsize),
+ [(set GR32:$dst,
+ (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
+ ADDR32:$bitshift, ADDR32:$negbitshift,
+ uimm32:$bitsize))]> {
+ let Defs = [CC];
+ let mayLoad = 1;
+ let mayStore = 1;
+ let usesCustomInserter = 1;
+}
+
+let Defs = [CC] in {
+ defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
+ def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
+}
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instructions.
+//===----------------------------------------------------------------------===//
+
+// Extract CC into bits 29 and 28 of a register.
+let Uses = [CC] in
+ def IPM : InherentRRE<"ipm", 0xB222, GR32, (z_ipm)>;
+
+// Read a 32-bit access register into a GR32. As with all GR32 operations,
+// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
+// when a 64-bit address is stored in a pair of access registers.
+def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
+ "ear\t$R1, $R2",
+ [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
+
+// Find leftmost one, AKA count leading zeros. The instruction actually
+// returns a pair of GR64s, the first giving the number of leading zeros
+// and the second giving a copy of the source with the leftmost one bit
+// cleared. We only use the first result here.
+let Defs = [CC] in {
+ def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
+}
+def : Pat<(ctlz GR64:$src),
+ (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
+
+// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
+def : Pat<(i64 (anyext GR32:$src)),
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
+
+// Extend GR32s and GR64s to GR128s.
+let usesCustomInserter = 1 in {
+ def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
+ def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
+ def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
+}
+
+// Search a block of memory for a character.
+let mayLoad = 1, Defs = [CC], Uses = [R0L] in
+ defm SRST : StringRRE<"srst", 0xb25e, z_search_string>;
+
+//===----------------------------------------------------------------------===//
+// Peepholes.
+//===----------------------------------------------------------------------===//
+
+// Use AL* for GR64 additions of unsigned 32-bit values.
+defm : ZXB<add, GR64, ALGFR>;
+def : Pat<(add GR64:$src1, imm64zx32:$src2),
+ (ALGFI GR64:$src1, imm64zx32:$src2)>;
+def : Pat<(add GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
+ (ALGF GR64:$src1, bdxaddr20only:$addr)>;
+
+// Use SL* for GR64 subtractions of unsigned 32-bit values.
+defm : ZXB<sub, GR64, SLGFR>;
+def : Pat<(add GR64:$src1, imm64zx32n:$src2),
+ (SLGFI GR64:$src1, imm64zx32n:$src2)>;
+def : Pat<(sub GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
+ (SLGF GR64:$src1, bdxaddr20only:$addr)>;
+
+// Optimize sign-extended 1/0 selects to -1/0 selects. This is important
+// for vector legalization.
+def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, imm32zx4:$valid, imm32zx4:$cc)),
+ (i32 31)),
+ (i32 31)),
+ (Select32 (LHI -1), (LHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
+def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, imm32zx4:$valid,
+ imm32zx4:$cc)))),
+ (i32 63)),
+ (i32 63)),
+ (Select64 (LGHI -1), (LGHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
+
+// Peepholes for turning scalar operations into block operations.
+defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
+ XCSequence, 1>;
+defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
+ XCSequence, 2>;
+defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
+ XCSequence, 4>;
+defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
+ OCSequence, XCSequence, 1>;
+defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
+ XCSequence, 2>;
+defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
+ XCSequence, 4>;
+defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
+ XCSequence, 8>;
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp
new file mode 100644
index 0000000..8081334
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp
@@ -0,0 +1,460 @@
+//===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass makes sure that all branches are in range. There are several ways
+// in which this could be done. One aggressive approach is to assume that all
+// branches are in range and successively replace those that turn out not
+// to be in range with a longer form (branch relaxation). A simple
+// implementation is to continually walk through the function relaxing
+// branches until no more changes are needed and a fixed point is reached.
+// However, in the pathological worst case, this implementation is
+// quadratic in the number of blocks; relaxing branch N can make branch N-1
+// go out of range, which in turn can make branch N-2 go out of range,
+// and so on.
+//
+// An alternative approach is to assume that all branches must be
+// converted to their long forms, then reinstate the short forms of
+// branches that, even under this pessimistic assumption, turn out to be
+// in range (branch shortening). This too can be implemented as a function
+// walk that is repeated until a fixed point is reached. In general,
+// the result of shortening is not as good as that of relaxation, and
+// shortening is also quadratic in the worst case; shortening branch N
+// can bring branch N-1 in range of the short form, which in turn can do
+// the same for branch N-2, and so on. The main advantage of shortening
+// is that each walk through the function produces valid code, so it is
+// possible to stop at any point after the first walk. The quadraticness
+// could therefore be handled with a maximum pass count, although the
+// question then becomes: what maximum count should be used?
+//
+// On SystemZ, long branches are only needed for functions bigger than 64k,
+// which are relatively rare to begin with, and the long branch sequences
+// are actually relatively cheap. It therefore doesn't seem worth spending
+// much compilation time on the problem. Instead, the approach we take is:
+//
+// (1) Work out the address that each block would have if no branches
+// need relaxing. Exit the pass early if all branches are in range
+// according to this assumption.
+//
+// (2) Work out the address that each block would have if all branches
+// need relaxing.
+//
+// (3) Walk through the block calculating the final address of each instruction
+// and relaxing those that need to be relaxed. For backward branches,
+// this check uses the final address of the target block, as calculated
+// earlier in the walk. For forward branches, this check uses the
+// address of the target block that was calculated in (2). Both checks
+// give a conservatively-correct range.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZTargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "systemz-long-branch"
+
+STATISTIC(LongBranches, "Number of long branches.");
+
+namespace {
+// Represents positional information about a basic block.
+struct MBBInfo {
+ // The address that we currently assume the block has.
+ uint64_t Address;
+
+ // The size of the block in bytes, excluding terminators.
+ // This value never changes.
+ uint64_t Size;
+
+ // The minimum alignment of the block, as a log2 value.
+ // This value never changes.
+ unsigned Alignment;
+
+ // The number of terminators in this block. This value never changes.
+ unsigned NumTerminators;
+
+ MBBInfo()
+ : Address(0), Size(0), Alignment(0), NumTerminators(0) {}
+};
+
+// Represents the state of a block terminator.
+struct TerminatorInfo {
+ // If this terminator is a relaxable branch, this points to the branch
+ // instruction, otherwise it is null.
+ MachineInstr *Branch;
+
+ // The address that we currently assume the terminator has.
+ uint64_t Address;
+
+ // The current size of the terminator in bytes.
+ uint64_t Size;
+
+ // If Branch is nonnull, this is the number of the target block,
+ // otherwise it is unused.
+ unsigned TargetBlock;
+
+ // If Branch is nonnull, this is the length of the longest relaxed form,
+ // otherwise it is zero.
+ unsigned ExtraRelaxSize;
+
+ TerminatorInfo() : Branch(nullptr), Size(0), TargetBlock(0),
+ ExtraRelaxSize(0) {}
+};
+
+// Used to keep track of the current position while iterating over the blocks.
+struct BlockPosition {
+ // The address that we assume this position has.
+ uint64_t Address;
+
+ // The number of low bits in Address that are known to be the same
+ // as the runtime address.
+ unsigned KnownBits;
+
+ BlockPosition(unsigned InitialAlignment)
+ : Address(0), KnownBits(InitialAlignment) {}
+};
+
+class SystemZLongBranch : public MachineFunctionPass {
+public:
+ static char ID;
+ SystemZLongBranch(const SystemZTargetMachine &tm)
+ : MachineFunctionPass(ID), TII(nullptr) {}
+
+ const char *getPassName() const override {
+ return "SystemZ Long Branch";
+ }
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+private:
+ void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
+ void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
+ bool AssumeRelaxed);
+ TerminatorInfo describeTerminator(MachineInstr *MI);
+ uint64_t initMBBInfo();
+ bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
+ bool mustRelaxABranch();
+ void setWorstCaseAddresses();
+ void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
+ void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
+ void relaxBranch(TerminatorInfo &Terminator);
+ void relaxBranches();
+
+ const SystemZInstrInfo *TII;
+ MachineFunction *MF;
+ SmallVector<MBBInfo, 16> MBBs;
+ SmallVector<TerminatorInfo, 16> Terminators;
+};
+
+char SystemZLongBranch::ID = 0;
+
+const uint64_t MaxBackwardRange = 0x10000;
+const uint64_t MaxForwardRange = 0xfffe;
+} // end anonymous namespace
+
+FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
+ return new SystemZLongBranch(TM);
+}
+
+// Position describes the state immediately before Block. Update Block
+// accordingly and move Position to the end of the block's non-terminator
+// instructions.
+void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
+ MBBInfo &Block) {
+ if (Block.Alignment > Position.KnownBits) {
+ // When calculating the address of Block, we need to conservatively
+ // assume that Block had the worst possible misalignment.
+ Position.Address += ((uint64_t(1) << Block.Alignment) -
+ (uint64_t(1) << Position.KnownBits));
+ Position.KnownBits = Block.Alignment;
+ }
+
+ // Align the addresses.
+ uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1;
+ Position.Address = (Position.Address + AlignMask) & ~AlignMask;
+
+ // Record the block's position.
+ Block.Address = Position.Address;
+
+ // Move past the non-terminators in the block.
+ Position.Address += Block.Size;
+}
+
+// Position describes the state immediately before Terminator.
+// Update Terminator accordingly and move Position past it.
+// Assume that Terminator will be relaxed if AssumeRelaxed.
+void SystemZLongBranch::skipTerminator(BlockPosition &Position,
+ TerminatorInfo &Terminator,
+ bool AssumeRelaxed) {
+ Terminator.Address = Position.Address;
+ Position.Address += Terminator.Size;
+ if (AssumeRelaxed)
+ Position.Address += Terminator.ExtraRelaxSize;
+}
+
+// Return a description of terminator instruction MI.
+TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr *MI) {
+ TerminatorInfo Terminator;
+ Terminator.Size = TII->getInstSizeInBytes(MI);
+ if (MI->isConditionalBranch() || MI->isUnconditionalBranch()) {
+ switch (MI->getOpcode()) {
+ case SystemZ::J:
+ // Relaxes to JG, which is 2 bytes longer.
+ Terminator.ExtraRelaxSize = 2;
+ break;
+ case SystemZ::BRC:
+ // Relaxes to BRCL, which is 2 bytes longer.
+ Terminator.ExtraRelaxSize = 2;
+ break;
+ case SystemZ::BRCT:
+ case SystemZ::BRCTG:
+ // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
+ Terminator.ExtraRelaxSize = 6;
+ break;
+ case SystemZ::CRJ:
+ case SystemZ::CLRJ:
+ // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
+ Terminator.ExtraRelaxSize = 2;
+ break;
+ case SystemZ::CGRJ:
+ case SystemZ::CLGRJ:
+ // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
+ Terminator.ExtraRelaxSize = 4;
+ break;
+ case SystemZ::CIJ:
+ case SystemZ::CGIJ:
+ // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
+ Terminator.ExtraRelaxSize = 4;
+ break;
+ case SystemZ::CLIJ:
+ case SystemZ::CLGIJ:
+ // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
+ Terminator.ExtraRelaxSize = 6;
+ break;
+ default:
+ llvm_unreachable("Unrecognized branch instruction");
+ }
+ Terminator.Branch = MI;
+ Terminator.TargetBlock =
+ TII->getBranchInfo(MI).Target->getMBB()->getNumber();
+ }
+ return Terminator;
+}
+
+// Fill MBBs and Terminators, setting the addresses on the assumption
+// that no branches need relaxation. Return the size of the function under
+// this assumption.
+uint64_t SystemZLongBranch::initMBBInfo() {
+ MF->RenumberBlocks();
+ unsigned NumBlocks = MF->size();
+
+ MBBs.clear();
+ MBBs.resize(NumBlocks);
+
+ Terminators.clear();
+ Terminators.reserve(NumBlocks);
+
+ BlockPosition Position(MF->getAlignment());
+ for (unsigned I = 0; I < NumBlocks; ++I) {
+ MachineBasicBlock *MBB = MF->getBlockNumbered(I);
+ MBBInfo &Block = MBBs[I];
+
+ // Record the alignment, for quick access.
+ Block.Alignment = MBB->getAlignment();
+
+ // Calculate the size of the fixed part of the block.
+ MachineBasicBlock::iterator MI = MBB->begin();
+ MachineBasicBlock::iterator End = MBB->end();
+ while (MI != End && !MI->isTerminator()) {
+ Block.Size += TII->getInstSizeInBytes(MI);
+ ++MI;
+ }
+ skipNonTerminators(Position, Block);
+
+ // Add the terminators.
+ while (MI != End) {
+ if (!MI->isDebugValue()) {
+ assert(MI->isTerminator() && "Terminator followed by non-terminator");
+ Terminators.push_back(describeTerminator(MI));
+ skipTerminator(Position, Terminators.back(), false);
+ ++Block.NumTerminators;
+ }
+ ++MI;
+ }
+ }
+
+ return Position.Address;
+}
+
+// Return true if, under current assumptions, Terminator would need to be
+// relaxed if it were placed at address Address.
+bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
+ uint64_t Address) {
+ if (!Terminator.Branch)
+ return false;
+
+ const MBBInfo &Target = MBBs[Terminator.TargetBlock];
+ if (Address >= Target.Address) {
+ if (Address - Target.Address <= MaxBackwardRange)
+ return false;
+ } else {
+ if (Target.Address - Address <= MaxForwardRange)
+ return false;
+ }
+
+ return true;
+}
+
+// Return true if, under current assumptions, any terminator needs
+// to be relaxed.
+bool SystemZLongBranch::mustRelaxABranch() {
+ for (auto &Terminator : Terminators)
+ if (mustRelaxBranch(Terminator, Terminator.Address))
+ return true;
+ return false;
+}
+
+// Set the address of each block on the assumption that all branches
+// must be long.
+void SystemZLongBranch::setWorstCaseAddresses() {
+ SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
+ BlockPosition Position(MF->getAlignment());
+ for (auto &Block : MBBs) {
+ skipNonTerminators(Position, Block);
+ for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
+ skipTerminator(Position, *TI, true);
+ ++TI;
+ }
+ }
+}
+
+// Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
+// by a BRCL on the result.
+void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
+ unsigned AddOpcode) {
+ MachineBasicBlock *MBB = MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(1))
+ .addImm(-1);
+ MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
+ .addImm(SystemZ::CCMASK_ICMP)
+ .addImm(SystemZ::CCMASK_CMP_NE)
+ .addOperand(MI->getOperand(2));
+ // The implicit use of CC is a killing use.
+ BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
+ MI->eraseFromParent();
+}
+
+// Split MI into the comparison given by CompareOpcode followed
+// a BRCL on the result.
+void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
+ unsigned CompareOpcode) {
+ MachineBasicBlock *MBB = MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(1));
+ MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
+ .addImm(SystemZ::CCMASK_ICMP)
+ .addOperand(MI->getOperand(2))
+ .addOperand(MI->getOperand(3));
+ // The implicit use of CC is a killing use.
+ BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
+ MI->eraseFromParent();
+}
+
+// Relax the branch described by Terminator.
+void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
+ MachineInstr *Branch = Terminator.Branch;
+ switch (Branch->getOpcode()) {
+ case SystemZ::J:
+ Branch->setDesc(TII->get(SystemZ::JG));
+ break;
+ case SystemZ::BRC:
+ Branch->setDesc(TII->get(SystemZ::BRCL));
+ break;
+ case SystemZ::BRCT:
+ splitBranchOnCount(Branch, SystemZ::AHI);
+ break;
+ case SystemZ::BRCTG:
+ splitBranchOnCount(Branch, SystemZ::AGHI);
+ break;
+ case SystemZ::CRJ:
+ splitCompareBranch(Branch, SystemZ::CR);
+ break;
+ case SystemZ::CGRJ:
+ splitCompareBranch(Branch, SystemZ::CGR);
+ break;
+ case SystemZ::CIJ:
+ splitCompareBranch(Branch, SystemZ::CHI);
+ break;
+ case SystemZ::CGIJ:
+ splitCompareBranch(Branch, SystemZ::CGHI);
+ break;
+ case SystemZ::CLRJ:
+ splitCompareBranch(Branch, SystemZ::CLR);
+ break;
+ case SystemZ::CLGRJ:
+ splitCompareBranch(Branch, SystemZ::CLGR);
+ break;
+ case SystemZ::CLIJ:
+ splitCompareBranch(Branch, SystemZ::CLFI);
+ break;
+ case SystemZ::CLGIJ:
+ splitCompareBranch(Branch, SystemZ::CLGFI);
+ break;
+ default:
+ llvm_unreachable("Unrecognized branch");
+ }
+
+ Terminator.Size += Terminator.ExtraRelaxSize;
+ Terminator.ExtraRelaxSize = 0;
+ Terminator.Branch = nullptr;
+
+ ++LongBranches;
+}
+
+// Run a shortening pass and relax any branches that need to be relaxed.
+void SystemZLongBranch::relaxBranches() {
+ SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
+ BlockPosition Position(MF->getAlignment());
+ for (auto &Block : MBBs) {
+ skipNonTerminators(Position, Block);
+ for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
+ assert(Position.Address <= TI->Address &&
+ "Addresses shouldn't go forwards");
+ if (mustRelaxBranch(*TI, Position.Address))
+ relaxBranch(*TI);
+ skipTerminator(Position, *TI, false);
+ ++TI;
+ }
+ }
+}
+
+bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
+ TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo());
+ MF = &F;
+ uint64_t Size = initMBBInfo();
+ if (Size <= MaxForwardRange || !mustRelaxABranch())
+ return false;
+
+ setWorstCaseAddresses();
+ relaxBranches();
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.cpp
new file mode 100644
index 0000000..df561e2
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.cpp
@@ -0,0 +1,100 @@
+//===-- SystemZMCInstLower.cpp - Lower MachineInstr to MCInst -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZMCInstLower.h"
+#include "SystemZAsmPrinter.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCStreamer.h"
+
+using namespace llvm;
+
+// Return the VK_* enumeration for MachineOperand target flags Flags.
+static MCSymbolRefExpr::VariantKind getVariantKind(unsigned Flags) {
+ switch (Flags & SystemZII::MO_SYMBOL_MODIFIER) {
+ case 0:
+ return MCSymbolRefExpr::VK_None;
+ case SystemZII::MO_GOT:
+ return MCSymbolRefExpr::VK_GOT;
+ }
+ llvm_unreachable("Unrecognised MO_ACCESS_MODEL");
+}
+
+SystemZMCInstLower::SystemZMCInstLower(MCContext &ctx,
+ SystemZAsmPrinter &asmprinter)
+ : Ctx(ctx), AsmPrinter(asmprinter) {}
+
+const MCExpr *
+SystemZMCInstLower::getExpr(const MachineOperand &MO,
+ MCSymbolRefExpr::VariantKind Kind) const {
+ const MCSymbol *Symbol;
+ bool HasOffset = true;
+ switch (MO.getType()) {
+ case MachineOperand::MO_MachineBasicBlock:
+ Symbol = MO.getMBB()->getSymbol();
+ HasOffset = false;
+ break;
+
+ case MachineOperand::MO_GlobalAddress:
+ Symbol = AsmPrinter.getSymbol(MO.getGlobal());
+ break;
+
+ case MachineOperand::MO_ExternalSymbol:
+ Symbol = AsmPrinter.GetExternalSymbolSymbol(MO.getSymbolName());
+ break;
+
+ case MachineOperand::MO_JumpTableIndex:
+ Symbol = AsmPrinter.GetJTISymbol(MO.getIndex());
+ HasOffset = false;
+ break;
+
+ case MachineOperand::MO_ConstantPoolIndex:
+ Symbol = AsmPrinter.GetCPISymbol(MO.getIndex());
+ break;
+
+ case MachineOperand::MO_BlockAddress:
+ Symbol = AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress());
+ break;
+
+ default:
+ llvm_unreachable("unknown operand type");
+ }
+ const MCExpr *Expr = MCSymbolRefExpr::Create(Symbol, Kind, Ctx);
+ if (HasOffset)
+ if (int64_t Offset = MO.getOffset()) {
+ const MCExpr *OffsetExpr = MCConstantExpr::Create(Offset, Ctx);
+ Expr = MCBinaryExpr::CreateAdd(Expr, OffsetExpr, Ctx);
+ }
+ return Expr;
+}
+
+MCOperand SystemZMCInstLower::lowerOperand(const MachineOperand &MO) const {
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register:
+ return MCOperand::CreateReg(MO.getReg());
+
+ case MachineOperand::MO_Immediate:
+ return MCOperand::CreateImm(MO.getImm());
+
+ default: {
+ MCSymbolRefExpr::VariantKind Kind = getVariantKind(MO.getTargetFlags());
+ return MCOperand::CreateExpr(getExpr(MO, Kind));
+ }
+ }
+}
+
+void SystemZMCInstLower::lower(const MachineInstr *MI, MCInst &OutMI) const {
+ OutMI.setOpcode(MI->getOpcode());
+ for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
+ const MachineOperand &MO = MI->getOperand(I);
+ // Ignore all implicit register operands.
+ if (!MO.isReg() || !MO.isImplicit())
+ OutMI.addOperand(lowerOperand(MO));
+ }
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.h b/contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.h
new file mode 100644
index 0000000..90447ff
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.h
@@ -0,0 +1,44 @@
+//===-- SystemZMCInstLower.h - Lower MachineInstr to MCInst ----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SYSTEMZMCINSTLOWER_H
+#define LLVM_SYSTEMZMCINSTLOWER_H
+
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+class MCInst;
+class MCOperand;
+class MachineInstr;
+class MachineOperand;
+class Mangler;
+class SystemZAsmPrinter;
+
+class LLVM_LIBRARY_VISIBILITY SystemZMCInstLower {
+ MCContext &Ctx;
+ SystemZAsmPrinter &AsmPrinter;
+
+public:
+ SystemZMCInstLower(MCContext &ctx, SystemZAsmPrinter &asmPrinter);
+
+ // Lower MachineInstr MI to MCInst OutMI.
+ void lower(const MachineInstr *MI, MCInst &OutMI) const;
+
+ // Return an MCOperand for MO.
+ MCOperand lowerOperand(const MachineOperand& MO) const;
+
+ // Return an MCExpr for symbolic operand MO with variant kind Kind.
+ const MCExpr *getExpr(const MachineOperand &MO,
+ MCSymbolRefExpr::VariantKind Kind) const;
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.cpp
new file mode 100644
index 0000000..00572d0
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.cpp
@@ -0,0 +1,17 @@
+//== SystemZMachineFuctionInfo.cpp - SystemZ machine function info-*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZMachineFunctionInfo.h"
+
+using namespace llvm;
+
+
+// pin vtable to this file
+void SystemZMachineFunctionInfo::anchor() {}
+
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.h b/contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.h
new file mode 100644
index 0000000..50865f13
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.h
@@ -0,0 +1,68 @@
+//==- SystemZMachineFuctionInfo.h - SystemZ machine function info -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZMACHINEFUNCTIONINFO_H
+#define SYSTEMZMACHINEFUNCTIONINFO_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+
+namespace llvm {
+
+class SystemZMachineFunctionInfo : public MachineFunctionInfo {
+ virtual void anchor();
+ unsigned LowSavedGPR;
+ unsigned HighSavedGPR;
+ unsigned VarArgsFirstGPR;
+ unsigned VarArgsFirstFPR;
+ unsigned VarArgsFrameIndex;
+ unsigned RegSaveFrameIndex;
+ bool ManipulatesSP;
+
+public:
+ explicit SystemZMachineFunctionInfo(MachineFunction &MF)
+ : LowSavedGPR(0), HighSavedGPR(0), VarArgsFirstGPR(0), VarArgsFirstFPR(0),
+ VarArgsFrameIndex(0), RegSaveFrameIndex(0), ManipulatesSP(false) {}
+
+ // Get and set the first call-saved GPR that should be saved and restored
+ // by this function. This is 0 if no GPRs need to be saved or restored.
+ unsigned getLowSavedGPR() const { return LowSavedGPR; }
+ void setLowSavedGPR(unsigned Reg) { LowSavedGPR = Reg; }
+
+ // Get and set the last call-saved GPR that should be saved and restored
+ // by this function.
+ unsigned getHighSavedGPR() const { return HighSavedGPR; }
+ void setHighSavedGPR(unsigned Reg) { HighSavedGPR = Reg; }
+
+ // Get and set the number of fixed (as opposed to variable) arguments
+ // that are passed in GPRs to this function.
+ unsigned getVarArgsFirstGPR() const { return VarArgsFirstGPR; }
+ void setVarArgsFirstGPR(unsigned GPR) { VarArgsFirstGPR = GPR; }
+
+ // Likewise FPRs.
+ unsigned getVarArgsFirstFPR() const { return VarArgsFirstFPR; }
+ void setVarArgsFirstFPR(unsigned FPR) { VarArgsFirstFPR = FPR; }
+
+ // Get and set the frame index of the first stack vararg.
+ unsigned getVarArgsFrameIndex() const { return VarArgsFrameIndex; }
+ void setVarArgsFrameIndex(unsigned FI) { VarArgsFrameIndex = FI; }
+
+ // Get and set the frame index of the register save area
+ // (i.e. the incoming stack pointer).
+ unsigned getRegSaveFrameIndex() const { return RegSaveFrameIndex; }
+ void setRegSaveFrameIndex(unsigned FI) { RegSaveFrameIndex = FI; }
+
+ // Get and set whether the function directly manipulates the stack pointer,
+ // e.g. through STACKSAVE or STACKRESTORE.
+ bool getManipulatesSP() const { return ManipulatesSP; }
+ void setManipulatesSP(bool MSP) { ManipulatesSP = MSP; }
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td b/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td
new file mode 100644
index 0000000..7be81dc
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td
@@ -0,0 +1,475 @@
+//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Class definitions
+//===----------------------------------------------------------------------===//
+
+class ImmediateAsmOperand<string name>
+ : AsmOperandClass {
+ let Name = name;
+ let RenderMethod = "addImmOperands";
+}
+
+// Constructs both a DAG pattern and instruction operand for an immediate
+// of type VT. PRED returns true if a node is acceptable and XFORM returns
+// the operand value associated with the node. ASMOP is the name of the
+// associated asm operand, and also forms the basis of the asm print method.
+class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
+ : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
+ let PrintMethod = "print"##asmop##"Operand";
+ let DecoderMethod = "decode"##asmop##"Operand";
+ let ParserMatchClass = !cast<AsmOperandClass>(asmop);
+}
+
+// Constructs an asm operand for a PC-relative address. SIZE says how
+// many bits there are.
+class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
+ let PredicateMethod = "isImm";
+ let ParserMethod = "parsePCRel"##size;
+}
+
+// Constructs an operand for a PC-relative address with address type VT.
+// ASMOP is the associated asm operand.
+class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
+ let PrintMethod = "printPCRelOperand";
+ let ParserMatchClass = asmop;
+}
+
+// Constructs both a DAG pattern and instruction operand for a PC-relative
+// address with address size VT. SELF is the name of the operand and
+// ASMOP is the associated asm operand.
+class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
+ : ComplexPattern<vt, 1, "selectPCRelAddress",
+ [z_pcrel_wrapper, z_pcrel_offset]>,
+ PCRelOperand<vt, asmop> {
+ let MIOperandInfo = (ops !cast<Operand>(self));
+}
+
+// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
+// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
+// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
+// is "".
+class AddressAsmOperand<string format, string bitsize, string dispsize,
+ string length = "">
+ : AsmOperandClass {
+ let Name = format##bitsize##"Disp"##dispsize##length;
+ let ParserMethod = "parse"##format##bitsize;
+ let RenderMethod = "add"##format##"Operands";
+}
+
+// Constructs both a DAG pattern and instruction operand for an addressing mode.
+// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
+// AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands
+// (base register, displacement, etc.). SELTYPE is the type of the memory
+// operand for selection purposes; sometimes we want different selection
+// choices for the same underlying addressing mode. SUFFIX is similarly
+// a suffix appended to the displacement for selection purposes;
+// e.g. we want to reject small 20-bit displacements if a 12-bit form
+// also exists, but we want to accept them otherwise.
+class AddressingMode<string seltype, string bitsize, string dispsize,
+ string suffix, string length, int numops, string format,
+ dag operands>
+ : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
+ "select"##seltype##dispsize##suffix##length,
+ [add, sub, or, frameindex, z_adjdynalloc]>,
+ Operand<!cast<ValueType>("i"##bitsize)> {
+ let PrintMethod = "print"##format##"Operand";
+ let EncoderMethod = "get"##format##dispsize##length##"Encoding";
+ let DecoderMethod =
+ "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
+ let MIOperandInfo = operands;
+ let ParserMatchClass =
+ !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
+}
+
+// An addressing mode with a base and displacement but no index.
+class BDMode<string type, string bitsize, string dispsize, string suffix>
+ : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
+ (ops !cast<RegisterOperand>("ADDR"##bitsize),
+ !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
+
+// An addressing mode with a base, displacement and index.
+class BDXMode<string type, string bitsize, string dispsize, string suffix>
+ : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
+ (ops !cast<RegisterOperand>("ADDR"##bitsize),
+ !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
+ !cast<RegisterOperand>("ADDR"##bitsize))>;
+
+// A BDMode paired with an immediate length operand of LENSIZE bits.
+class BDLMode<string type, string bitsize, string dispsize, string suffix,
+ string lensize>
+ : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
+ "BDLAddr",
+ (ops !cast<RegisterOperand>("ADDR"##bitsize),
+ !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
+ !cast<Immediate>("imm"##bitsize))>;
+
+//===----------------------------------------------------------------------===//
+// Extracting immediate operands from nodes
+// These all create MVT::i64 nodes to ensure the value is not sign-extended
+// when converted from an SDNode to a MachineOperand later on.
+//===----------------------------------------------------------------------===//
+
+// Bits 0-15 (counting from the lsb).
+def LL16 : SDNodeXForm<imm, [{
+ uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// Bits 16-31 (counting from the lsb).
+def LH16 : SDNodeXForm<imm, [{
+ uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// Bits 32-47 (counting from the lsb).
+def HL16 : SDNodeXForm<imm, [{
+ uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// Bits 48-63 (counting from the lsb).
+def HH16 : SDNodeXForm<imm, [{
+ uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// Low 32 bits.
+def LF32 : SDNodeXForm<imm, [{
+ uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// High 32 bits.
+def HF32 : SDNodeXForm<imm, [{
+ uint64_t Value = N->getZExtValue() >> 32;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// Truncate an immediate to a 8-bit signed quantity.
+def SIMM8 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Truncate an immediate to a 8-bit unsigned quantity.
+def UIMM8 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Truncate an immediate to a 16-bit signed quantity.
+def SIMM16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Truncate an immediate to a 16-bit unsigned quantity.
+def UIMM16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Truncate an immediate to a 32-bit signed quantity.
+def SIMM32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Truncate an immediate to a 32-bit unsigned quantity.
+def UIMM32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Negate and then truncate an immediate to a 32-bit unsigned quantity.
+def NEGIMM32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
+}]>;
+
+//===----------------------------------------------------------------------===//
+// Immediate asm operands.
+//===----------------------------------------------------------------------===//
+
+def U4Imm : ImmediateAsmOperand<"U4Imm">;
+def U6Imm : ImmediateAsmOperand<"U6Imm">;
+def S8Imm : ImmediateAsmOperand<"S8Imm">;
+def U8Imm : ImmediateAsmOperand<"U8Imm">;
+def S16Imm : ImmediateAsmOperand<"S16Imm">;
+def U16Imm : ImmediateAsmOperand<"U16Imm">;
+def S32Imm : ImmediateAsmOperand<"S32Imm">;
+def U32Imm : ImmediateAsmOperand<"U32Imm">;
+
+//===----------------------------------------------------------------------===//
+// i32 immediates
+//===----------------------------------------------------------------------===//
+
+// Immediates for the lower and upper 16 bits of an i32, with the other
+// bits of the i32 being zero.
+def imm32ll16 : Immediate<i32, [{
+ return SystemZ::isImmLL(N->getZExtValue());
+}], LL16, "U16Imm">;
+
+def imm32lh16 : Immediate<i32, [{
+ return SystemZ::isImmLH(N->getZExtValue());
+}], LH16, "U16Imm">;
+
+// Immediates for the lower and upper 16 bits of an i32, with the other
+// bits of the i32 being one.
+def imm32ll16c : Immediate<i32, [{
+ return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
+}], LL16, "U16Imm">;
+
+def imm32lh16c : Immediate<i32, [{
+ return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
+}], LH16, "U16Imm">;
+
+// Short immediates
+def imm32zx4 : Immediate<i32, [{
+ return isUInt<4>(N->getZExtValue());
+}], NOOP_SDNodeXForm, "U4Imm">;
+
+def imm32zx6 : Immediate<i32, [{
+ return isUInt<6>(N->getZExtValue());
+}], NOOP_SDNodeXForm, "U6Imm">;
+
+def imm32sx8 : Immediate<i32, [{
+ return isInt<8>(N->getSExtValue());
+}], SIMM8, "S8Imm">;
+
+def imm32zx8 : Immediate<i32, [{
+ return isUInt<8>(N->getZExtValue());
+}], UIMM8, "U8Imm">;
+
+def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
+
+def imm32sx16 : Immediate<i32, [{
+ return isInt<16>(N->getSExtValue());
+}], SIMM16, "S16Imm">;
+
+def imm32zx16 : Immediate<i32, [{
+ return isUInt<16>(N->getZExtValue());
+}], UIMM16, "U16Imm">;
+
+def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
+
+// Full 32-bit immediates. we need both signed and unsigned versions
+// because the assembler is picky. E.g. AFI requires signed operands
+// while NILF requires unsigned ones.
+def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
+def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
+
+def imm32 : ImmLeaf<i32, [{}]>;
+
+//===----------------------------------------------------------------------===//
+// 64-bit immediates
+//===----------------------------------------------------------------------===//
+
+// Immediates for 16-bit chunks of an i64, with the other bits of the
+// i32 being zero.
+def imm64ll16 : Immediate<i64, [{
+ return SystemZ::isImmLL(N->getZExtValue());
+}], LL16, "U16Imm">;
+
+def imm64lh16 : Immediate<i64, [{
+ return SystemZ::isImmLH(N->getZExtValue());
+}], LH16, "U16Imm">;
+
+def imm64hl16 : Immediate<i64, [{
+ return SystemZ::isImmHL(N->getZExtValue());
+}], HL16, "U16Imm">;
+
+def imm64hh16 : Immediate<i64, [{
+ return SystemZ::isImmHH(N->getZExtValue());
+}], HH16, "U16Imm">;
+
+// Immediates for 16-bit chunks of an i64, with the other bits of the
+// i32 being one.
+def imm64ll16c : Immediate<i64, [{
+ return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
+}], LL16, "U16Imm">;
+
+def imm64lh16c : Immediate<i64, [{
+ return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
+}], LH16, "U16Imm">;
+
+def imm64hl16c : Immediate<i64, [{
+ return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
+}], HL16, "U16Imm">;
+
+def imm64hh16c : Immediate<i64, [{
+ return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
+}], HH16, "U16Imm">;
+
+// Immediates for the lower and upper 32 bits of an i64, with the other
+// bits of the i32 being zero.
+def imm64lf32 : Immediate<i64, [{
+ return SystemZ::isImmLF(N->getZExtValue());
+}], LF32, "U32Imm">;
+
+def imm64hf32 : Immediate<i64, [{
+ return SystemZ::isImmHF(N->getZExtValue());
+}], HF32, "U32Imm">;
+
+// Immediates for the lower and upper 32 bits of an i64, with the other
+// bits of the i32 being one.
+def imm64lf32c : Immediate<i64, [{
+ return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
+}], LF32, "U32Imm">;
+
+def imm64hf32c : Immediate<i64, [{
+ return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
+}], HF32, "U32Imm">;
+
+// Short immediates.
+def imm64sx8 : Immediate<i64, [{
+ return isInt<8>(N->getSExtValue());
+}], SIMM8, "S8Imm">;
+
+def imm64zx8 : Immediate<i64, [{
+ return isUInt<8>(N->getSExtValue());
+}], UIMM8, "U8Imm">;
+
+def imm64sx16 : Immediate<i64, [{
+ return isInt<16>(N->getSExtValue());
+}], SIMM16, "S16Imm">;
+
+def imm64zx16 : Immediate<i64, [{
+ return isUInt<16>(N->getZExtValue());
+}], UIMM16, "U16Imm">;
+
+def imm64sx32 : Immediate<i64, [{
+ return isInt<32>(N->getSExtValue());
+}], SIMM32, "S32Imm">;
+
+def imm64zx32 : Immediate<i64, [{
+ return isUInt<32>(N->getZExtValue());
+}], UIMM32, "U32Imm">;
+
+def imm64zx32n : Immediate<i64, [{
+ return isUInt<32>(-N->getSExtValue());
+}], NEGIMM32, "U32Imm">;
+
+def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
+
+//===----------------------------------------------------------------------===//
+// Floating-point immediates
+//===----------------------------------------------------------------------===//
+
+// Floating-point zero.
+def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
+
+// Floating point negative zero.
+def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
+
+//===----------------------------------------------------------------------===//
+// Symbolic address operands
+//===----------------------------------------------------------------------===//
+
+// PC-relative asm operands.
+def PCRel16 : PCRelAsmOperand<"16">;
+def PCRel32 : PCRelAsmOperand<"32">;
+
+// PC-relative offsets of a basic block. The offset is sign-extended
+// and multiplied by 2.
+def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
+ let EncoderMethod = "getPC16DBLEncoding";
+ let DecoderMethod = "decodePC16DBLOperand";
+}
+def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
+ let EncoderMethod = "getPC32DBLEncoding";
+ let DecoderMethod = "decodePC32DBLOperand";
+}
+
+// A PC-relative offset of a global value. The offset is sign-extended
+// and multiplied by 2.
+def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
+ let EncoderMethod = "getPC32DBLEncoding";
+ let DecoderMethod = "decodePC32DBLOperand";
+}
+
+//===----------------------------------------------------------------------===//
+// Addressing modes
+//===----------------------------------------------------------------------===//
+
+// 12-bit displacement operands.
+def disp12imm32 : Operand<i32>;
+def disp12imm64 : Operand<i64>;
+
+// 20-bit displacement operands.
+def disp20imm32 : Operand<i32>;
+def disp20imm64 : Operand<i64>;
+
+def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">;
+def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">;
+def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">;
+def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">;
+def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
+def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;
+def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">;
+
+// DAG patterns and operands for addressing modes. Each mode has
+// the form <type><range><group>[<len>] where:
+//
+// <type> is one of:
+// shift : base + displacement (32-bit)
+// bdaddr : base + displacement
+// mviaddr : like bdaddr, but reject cases with a natural index
+// bdxaddr : base + displacement + index
+// laaddr : like bdxaddr, but used for Load Address operations
+// dynalloc : base + displacement + index + ADJDYNALLOC
+// bdladdr : base + displacement with a length field
+//
+// <range> is one of:
+// 12 : the displacement is an unsigned 12-bit value
+// 20 : the displacement is a signed 20-bit value
+//
+// <group> is one of:
+// pair : used when there is an equivalent instruction with the opposite
+// range value (12 or 20)
+// only : used when there is no equivalent instruction with the opposite
+// range value
+//
+// <len> is one of:
+//
+// <empty> : there is no length field
+// len8 : the length field is 8 bits, with a range of [1, 0x100].
+def shift12only : BDMode <"BDAddr", "32", "12", "Only">;
+def shift20only : BDMode <"BDAddr", "32", "20", "Only">;
+def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">;
+def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">;
+def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">;
+def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">;
+def mviaddr12pair : BDMode <"MVIAddr", "64", "12", "Pair">;
+def mviaddr20pair : BDMode <"MVIAddr", "64", "20", "Pair">;
+def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">;
+def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">;
+def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">;
+def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">;
+def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">;
+def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">;
+def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">;
+def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">;
+def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">;
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous
+//===----------------------------------------------------------------------===//
+
+// Access registers. At present we just use them for accessing the thread
+// pointer, so we don't expose them as register to LLVM.
+def AccessReg : AsmOperandClass {
+ let Name = "AccessReg";
+ let ParserMethod = "parseAccessReg";
+}
+def access_reg : Immediate<i32, [{ return N->getZExtValue() < 16; }],
+ NOOP_SDNodeXForm, "AccessReg"> {
+ let ParserMatchClass = AccessReg;
+}
+
+// A 4-bit condition-code mask.
+def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>,
+ Operand<i32> {
+ let PrintMethod = "printCond4Operand";
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZOperators.td b/contrib/llvm/lib/Target/SystemZ/SystemZOperators.td
new file mode 100644
index 0000000..c70e662
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZOperators.td
@@ -0,0 +1,385 @@
+//===-- SystemZOperators.td - SystemZ-specific operators ------*- tblgen-*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Type profiles
+//===----------------------------------------------------------------------===//
+def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i64>]>;
+def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i64>,
+ SDTCisVT<1, i64>]>;
+def SDT_ZCall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
+def SDT_ZCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
+def SDT_ZICmp : SDTypeProfile<0, 3,
+ [SDTCisSameAs<0, 1>,
+ SDTCisVT<2, i32>]>;
+def SDT_ZBRCCMask : SDTypeProfile<0, 3,
+ [SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>,
+ SDTCisVT<2, OtherVT>]>;
+def SDT_ZSelectCCMask : SDTypeProfile<1, 4,
+ [SDTCisSameAs<0, 1>,
+ SDTCisSameAs<1, 2>,
+ SDTCisVT<3, i32>,
+ SDTCisVT<4, i32>]>;
+def SDT_ZWrapPtr : SDTypeProfile<1, 1,
+ [SDTCisSameAs<0, 1>,
+ SDTCisPtrTy<0>]>;
+def SDT_ZWrapOffset : SDTypeProfile<1, 2,
+ [SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>,
+ SDTCisPtrTy<0>]>;
+def SDT_ZAdjDynAlloc : SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
+def SDT_ZExtractAccess : SDTypeProfile<1, 1,
+ [SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>]>;
+def SDT_ZGR128Binary32 : SDTypeProfile<1, 2,
+ [SDTCisVT<0, untyped>,
+ SDTCisVT<1, untyped>,
+ SDTCisVT<2, i32>]>;
+def SDT_ZGR128Binary64 : SDTypeProfile<1, 2,
+ [SDTCisVT<0, untyped>,
+ SDTCisVT<1, untyped>,
+ SDTCisVT<2, i64>]>;
+def SDT_ZAtomicLoadBinaryW : SDTypeProfile<1, 5,
+ [SDTCisVT<0, i32>,
+ SDTCisPtrTy<1>,
+ SDTCisVT<2, i32>,
+ SDTCisVT<3, i32>,
+ SDTCisVT<4, i32>,
+ SDTCisVT<5, i32>]>;
+def SDT_ZAtomicCmpSwapW : SDTypeProfile<1, 6,
+ [SDTCisVT<0, i32>,
+ SDTCisPtrTy<1>,
+ SDTCisVT<2, i32>,
+ SDTCisVT<3, i32>,
+ SDTCisVT<4, i32>,
+ SDTCisVT<5, i32>,
+ SDTCisVT<6, i32>]>;
+def SDT_ZMemMemLength : SDTypeProfile<0, 3,
+ [SDTCisPtrTy<0>,
+ SDTCisPtrTy<1>,
+ SDTCisVT<2, i64>]>;
+def SDT_ZMemMemLoop : SDTypeProfile<0, 4,
+ [SDTCisPtrTy<0>,
+ SDTCisPtrTy<1>,
+ SDTCisVT<2, i64>,
+ SDTCisVT<3, i64>]>;
+def SDT_ZString : SDTypeProfile<1, 3,
+ [SDTCisPtrTy<0>,
+ SDTCisPtrTy<1>,
+ SDTCisPtrTy<2>,
+ SDTCisVT<3, i32>]>;
+def SDT_ZI32Intrinsic : SDTypeProfile<1, 0, [SDTCisVT<0, i32>]>;
+def SDT_ZPrefetch : SDTypeProfile<0, 2,
+ [SDTCisVT<0, i32>,
+ SDTCisPtrTy<1>]>;
+
+//===----------------------------------------------------------------------===//
+// Node definitions
+//===----------------------------------------------------------------------===//
+
+// These are target-independent nodes, but have target-specific formats.
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart,
+ [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd,
+ [SDNPHasChain, SDNPSideEffect, SDNPOptInGlue,
+ SDNPOutGlue]>;
+
+// Nodes for SystemZISD::*. See SystemZISelLowering.h for more details.
+def z_retflag : SDNode<"SystemZISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+def z_call : SDNode<"SystemZISD::CALL", SDT_ZCall,
+ [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
+ SDNPVariadic]>;
+def z_sibcall : SDNode<"SystemZISD::SIBCALL", SDT_ZCall,
+ [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
+ SDNPVariadic]>;
+def z_pcrel_wrapper : SDNode<"SystemZISD::PCREL_WRAPPER", SDT_ZWrapPtr, []>;
+def z_pcrel_offset : SDNode<"SystemZISD::PCREL_OFFSET",
+ SDT_ZWrapOffset, []>;
+def z_iabs : SDNode<"SystemZISD::IABS", SDTIntUnaryOp, []>;
+def z_icmp : SDNode<"SystemZISD::ICMP", SDT_ZICmp, [SDNPOutGlue]>;
+def z_fcmp : SDNode<"SystemZISD::FCMP", SDT_ZCmp, [SDNPOutGlue]>;
+def z_tm : SDNode<"SystemZISD::TM", SDT_ZICmp, [SDNPOutGlue]>;
+def z_br_ccmask : SDNode<"SystemZISD::BR_CCMASK", SDT_ZBRCCMask,
+ [SDNPHasChain, SDNPInGlue]>;
+def z_select_ccmask : SDNode<"SystemZISD::SELECT_CCMASK", SDT_ZSelectCCMask,
+ [SDNPInGlue]>;
+def z_adjdynalloc : SDNode<"SystemZISD::ADJDYNALLOC", SDT_ZAdjDynAlloc>;
+def z_extract_access : SDNode<"SystemZISD::EXTRACT_ACCESS",
+ SDT_ZExtractAccess>;
+def z_umul_lohi64 : SDNode<"SystemZISD::UMUL_LOHI64", SDT_ZGR128Binary64>;
+def z_sdivrem32 : SDNode<"SystemZISD::SDIVREM32", SDT_ZGR128Binary32>;
+def z_sdivrem64 : SDNode<"SystemZISD::SDIVREM64", SDT_ZGR128Binary64>;
+def z_udivrem32 : SDNode<"SystemZISD::UDIVREM32", SDT_ZGR128Binary32>;
+def z_udivrem64 : SDNode<"SystemZISD::UDIVREM64", SDT_ZGR128Binary64>;
+
+def z_serialize : SDNode<"SystemZISD::SERIALIZE", SDTNone,
+ [SDNPHasChain, SDNPMayStore]>;
+
+class AtomicWOp<string name, SDTypeProfile profile = SDT_ZAtomicLoadBinaryW>
+ : SDNode<"SystemZISD::"##name, profile,
+ [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
+
+def z_atomic_swapw : AtomicWOp<"ATOMIC_SWAPW">;
+def z_atomic_loadw_add : AtomicWOp<"ATOMIC_LOADW_ADD">;
+def z_atomic_loadw_sub : AtomicWOp<"ATOMIC_LOADW_SUB">;
+def z_atomic_loadw_and : AtomicWOp<"ATOMIC_LOADW_AND">;
+def z_atomic_loadw_or : AtomicWOp<"ATOMIC_LOADW_OR">;
+def z_atomic_loadw_xor : AtomicWOp<"ATOMIC_LOADW_XOR">;
+def z_atomic_loadw_nand : AtomicWOp<"ATOMIC_LOADW_NAND">;
+def z_atomic_loadw_min : AtomicWOp<"ATOMIC_LOADW_MIN">;
+def z_atomic_loadw_max : AtomicWOp<"ATOMIC_LOADW_MAX">;
+def z_atomic_loadw_umin : AtomicWOp<"ATOMIC_LOADW_UMIN">;
+def z_atomic_loadw_umax : AtomicWOp<"ATOMIC_LOADW_UMAX">;
+def z_atomic_cmp_swapw : AtomicWOp<"ATOMIC_CMP_SWAPW", SDT_ZAtomicCmpSwapW>;
+
+def z_mvc : SDNode<"SystemZISD::MVC", SDT_ZMemMemLength,
+ [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
+def z_mvc_loop : SDNode<"SystemZISD::MVC_LOOP", SDT_ZMemMemLoop,
+ [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
+def z_nc : SDNode<"SystemZISD::NC", SDT_ZMemMemLength,
+ [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
+def z_nc_loop : SDNode<"SystemZISD::NC_LOOP", SDT_ZMemMemLoop,
+ [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
+def z_oc : SDNode<"SystemZISD::OC", SDT_ZMemMemLength,
+ [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
+def z_oc_loop : SDNode<"SystemZISD::OC_LOOP", SDT_ZMemMemLoop,
+ [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
+def z_xc : SDNode<"SystemZISD::XC", SDT_ZMemMemLength,
+ [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
+def z_xc_loop : SDNode<"SystemZISD::XC_LOOP", SDT_ZMemMemLoop,
+ [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
+def z_clc : SDNode<"SystemZISD::CLC", SDT_ZMemMemLength,
+ [SDNPHasChain, SDNPOutGlue, SDNPMayLoad]>;
+def z_clc_loop : SDNode<"SystemZISD::CLC_LOOP", SDT_ZMemMemLoop,
+ [SDNPHasChain, SDNPOutGlue, SDNPMayLoad]>;
+def z_strcmp : SDNode<"SystemZISD::STRCMP", SDT_ZString,
+ [SDNPHasChain, SDNPOutGlue, SDNPMayLoad]>;
+def z_stpcpy : SDNode<"SystemZISD::STPCPY", SDT_ZString,
+ [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
+def z_search_string : SDNode<"SystemZISD::SEARCH_STRING", SDT_ZString,
+ [SDNPHasChain, SDNPOutGlue, SDNPMayLoad]>;
+def z_ipm : SDNode<"SystemZISD::IPM", SDT_ZI32Intrinsic,
+ [SDNPInGlue]>;
+def z_prefetch : SDNode<"SystemZISD::PREFETCH", SDT_ZPrefetch,
+ [SDNPHasChain, SDNPMayLoad, SDNPMayStore,
+ SDNPMemOperand]>;
+
+//===----------------------------------------------------------------------===//
+// Pattern fragments
+//===----------------------------------------------------------------------===//
+
+// Signed and unsigned comparisons.
+def z_scmp : PatFrag<(ops node:$a, node:$b), (z_icmp node:$a, node:$b, imm), [{
+ unsigned Type = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
+ return Type != SystemZICMP::UnsignedOnly;
+}]>;
+def z_ucmp : PatFrag<(ops node:$a, node:$b), (z_icmp node:$a, node:$b, imm), [{
+ unsigned Type = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
+ return Type != SystemZICMP::SignedOnly;
+}]>;
+
+// Register- and memory-based TEST UNDER MASK.
+def z_tm_reg : PatFrag<(ops node:$a, node:$b), (z_tm node:$a, node:$b, imm)>;
+def z_tm_mem : PatFrag<(ops node:$a, node:$b), (z_tm node:$a, node:$b, 0)>;
+
+// Register sign-extend operations. Sub-32-bit values are represented as i32s.
+def sext8 : PatFrag<(ops node:$src), (sext_inreg node:$src, i8)>;
+def sext16 : PatFrag<(ops node:$src), (sext_inreg node:$src, i16)>;
+def sext32 : PatFrag<(ops node:$src), (sext (i32 node:$src))>;
+
+// Register zero-extend operations. Sub-32-bit values are represented as i32s.
+def zext8 : PatFrag<(ops node:$src), (and node:$src, 0xff)>;
+def zext16 : PatFrag<(ops node:$src), (and node:$src, 0xffff)>;
+def zext32 : PatFrag<(ops node:$src), (zext (i32 node:$src))>;
+
+// Typed floating-point loads.
+def loadf32 : PatFrag<(ops node:$src), (f32 (load node:$src))>;
+def loadf64 : PatFrag<(ops node:$src), (f64 (load node:$src))>;
+
+// Extending loads in which the extension type can be signed.
+def asextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{
+ unsigned Type = cast<LoadSDNode>(N)->getExtensionType();
+ return Type == ISD::EXTLOAD || Type == ISD::SEXTLOAD;
+}]>;
+def asextloadi8 : PatFrag<(ops node:$ptr), (asextload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+def asextloadi16 : PatFrag<(ops node:$ptr), (asextload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+def asextloadi32 : PatFrag<(ops node:$ptr), (asextload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+// Extending loads in which the extension type can be unsigned.
+def azextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{
+ unsigned Type = cast<LoadSDNode>(N)->getExtensionType();
+ return Type == ISD::EXTLOAD || Type == ISD::ZEXTLOAD;
+}]>;
+def azextloadi8 : PatFrag<(ops node:$ptr), (azextload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+def azextloadi16 : PatFrag<(ops node:$ptr), (azextload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+def azextloadi32 : PatFrag<(ops node:$ptr), (azextload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+// Extending loads in which the extension type doesn't matter.
+def anyextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getExtensionType() != ISD::NON_EXTLOAD;
+}]>;
+def anyextloadi8 : PatFrag<(ops node:$ptr), (anyextload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8;
+}]>;
+def anyextloadi16 : PatFrag<(ops node:$ptr), (anyextload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16;
+}]>;
+def anyextloadi32 : PatFrag<(ops node:$ptr), (anyextload node:$ptr), [{
+ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32;
+}]>;
+
+// Aligned loads.
+class AlignedLoad<SDPatternOperator load>
+ : PatFrag<(ops node:$addr), (load node:$addr), [{
+ auto *Load = cast<LoadSDNode>(N);
+ return Load->getAlignment() >= Load->getMemoryVT().getStoreSize();
+}]>;
+def aligned_load : AlignedLoad<load>;
+def aligned_asextloadi16 : AlignedLoad<asextloadi16>;
+def aligned_asextloadi32 : AlignedLoad<asextloadi32>;
+def aligned_azextloadi16 : AlignedLoad<azextloadi16>;
+def aligned_azextloadi32 : AlignedLoad<azextloadi32>;
+
+// Aligned stores.
+class AlignedStore<SDPatternOperator store>
+ : PatFrag<(ops node:$src, node:$addr), (store node:$src, node:$addr), [{
+ auto *Store = cast<StoreSDNode>(N);
+ return Store->getAlignment() >= Store->getMemoryVT().getStoreSize();
+}]>;
+def aligned_store : AlignedStore<store>;
+def aligned_truncstorei16 : AlignedStore<truncstorei16>;
+def aligned_truncstorei32 : AlignedStore<truncstorei32>;
+
+// Non-volatile loads. Used for instructions that might access the storage
+// location multiple times.
+class NonvolatileLoad<SDPatternOperator load>
+ : PatFrag<(ops node:$addr), (load node:$addr), [{
+ auto *Load = cast<LoadSDNode>(N);
+ return !Load->isVolatile();
+}]>;
+def nonvolatile_load : NonvolatileLoad<load>;
+def nonvolatile_anyextloadi8 : NonvolatileLoad<anyextloadi8>;
+def nonvolatile_anyextloadi16 : NonvolatileLoad<anyextloadi16>;
+def nonvolatile_anyextloadi32 : NonvolatileLoad<anyextloadi32>;
+
+// Non-volatile stores.
+class NonvolatileStore<SDPatternOperator store>
+ : PatFrag<(ops node:$src, node:$addr), (store node:$src, node:$addr), [{
+ auto *Store = cast<StoreSDNode>(N);
+ return !Store->isVolatile();
+}]>;
+def nonvolatile_store : NonvolatileStore<store>;
+def nonvolatile_truncstorei8 : NonvolatileStore<truncstorei8>;
+def nonvolatile_truncstorei16 : NonvolatileStore<truncstorei16>;
+def nonvolatile_truncstorei32 : NonvolatileStore<truncstorei32>;
+
+// A store of a load that can be implemented using MVC.
+def mvc_store : PatFrag<(ops node:$value, node:$addr),
+ (unindexedstore node:$value, node:$addr),
+ [{ return storeLoadCanUseMVC(N); }]>;
+
+// Binary read-modify-write operations on memory in which the other
+// operand is also memory and for which block operations like NC can
+// be used. There are two patterns for each operator, depending on
+// which operand contains the "other" load.
+multiclass block_op<SDPatternOperator operator> {
+ def "1" : PatFrag<(ops node:$value, node:$addr),
+ (unindexedstore (operator node:$value,
+ (unindexedload node:$addr)),
+ node:$addr),
+ [{ return storeLoadCanUseBlockBinary(N, 0); }]>;
+ def "2" : PatFrag<(ops node:$value, node:$addr),
+ (unindexedstore (operator (unindexedload node:$addr),
+ node:$value),
+ node:$addr),
+ [{ return storeLoadCanUseBlockBinary(N, 1); }]>;
+}
+defm block_and : block_op<and>;
+defm block_or : block_op<or>;
+defm block_xor : block_op<xor>;
+
+// Insertions.
+def inserti8 : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, -256), node:$src2)>;
+def insertll : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0xffffffffffff0000), node:$src2)>;
+def insertlh : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0xffffffff0000ffff), node:$src2)>;
+def inserthl : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0xffff0000ffffffff), node:$src2)>;
+def inserthh : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0x0000ffffffffffff), node:$src2)>;
+def insertlf : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0xffffffff00000000), node:$src2)>;
+def inserthf : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0x00000000ffffffff), node:$src2)>;
+
+// ORs that can be treated as insertions.
+def or_as_inserti8 : PatFrag<(ops node:$src1, node:$src2),
+ (or node:$src1, node:$src2), [{
+ unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
+ return CurDAG->MaskedValueIsZero(N->getOperand(0),
+ APInt::getLowBitsSet(BitWidth, 8));
+}]>;
+
+// ORs that can be treated as reversed insertions.
+def or_as_revinserti8 : PatFrag<(ops node:$src1, node:$src2),
+ (or node:$src1, node:$src2), [{
+ unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
+ return CurDAG->MaskedValueIsZero(N->getOperand(1),
+ APInt::getLowBitsSet(BitWidth, 8));
+}]>;
+
+// Negative integer absolute.
+def z_inegabs : PatFrag<(ops node:$src), (ineg (z_iabs node:$src))>;
+
+// Integer absolute, matching the canonical form generated by DAGCombiner.
+def z_iabs32 : PatFrag<(ops node:$src),
+ (xor (add node:$src, (sra node:$src, (i32 31))),
+ (sra node:$src, (i32 31)))>;
+def z_iabs64 : PatFrag<(ops node:$src),
+ (xor (add node:$src, (sra node:$src, (i32 63))),
+ (sra node:$src, (i32 63)))>;
+def z_inegabs32 : PatFrag<(ops node:$src), (ineg (z_iabs32 node:$src))>;
+def z_inegabs64 : PatFrag<(ops node:$src), (ineg (z_iabs64 node:$src))>;
+
+// Fused multiply-add and multiply-subtract, but with the order of the
+// operands matching SystemZ's MA and MS instructions.
+def z_fma : PatFrag<(ops node:$src1, node:$src2, node:$src3),
+ (fma node:$src2, node:$src3, node:$src1)>;
+def z_fms : PatFrag<(ops node:$src1, node:$src2, node:$src3),
+ (fma node:$src2, node:$src3, (fneg node:$src1))>;
+
+// Floating-point negative absolute.
+def fnabs : PatFrag<(ops node:$ptr), (fneg (fabs node:$ptr))>;
+
+// Create a unary operator that loads from memory and then performs
+// the given operation on it.
+class loadu<SDPatternOperator operator, SDPatternOperator load = load>
+ : PatFrag<(ops node:$addr), (operator (load node:$addr))>;
+
+// Create a store operator that performs the given unary operation
+// on the value before storing it.
+class storeu<SDPatternOperator operator, SDPatternOperator store = store>
+ : PatFrag<(ops node:$value, node:$addr),
+ (store (operator node:$value), node:$addr)>;
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZPatterns.td b/contrib/llvm/lib/Target/SystemZ/SystemZPatterns.td
new file mode 100644
index 0000000..e307f8a
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZPatterns.td
@@ -0,0 +1,155 @@
+//===-- SystemZPatterns.td - SystemZ-specific pattern rules ---*- tblgen-*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// Record that INSN performs a 64-bit version of unary operator OPERATOR
+// in which the operand is sign-extended from 32 to 64 bits.
+multiclass SXU<SDPatternOperator operator, Instruction insn> {
+ def : Pat<(operator (sext (i32 GR32:$src))),
+ (insn GR32:$src)>;
+ def : Pat<(operator (sext_inreg GR64:$src, i32)),
+ (insn (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
+}
+
+// Record that INSN performs a 64-bit version of binary operator OPERATOR
+// in which the first operand has class CLS and which the second operand
+// is sign-extended from a 32-bit register.
+multiclass SXB<SDPatternOperator operator, RegisterOperand cls,
+ Instruction insn> {
+ def : Pat<(operator cls:$src1, (sext GR32:$src2)),
+ (insn cls:$src1, GR32:$src2)>;
+ def : Pat<(operator cls:$src1, (sext_inreg GR64:$src2, i32)),
+ (insn cls:$src1, (EXTRACT_SUBREG GR64:$src2, subreg_l32))>;
+}
+
+// Like SXB, but for zero extension.
+multiclass ZXB<SDPatternOperator operator, RegisterOperand cls,
+ Instruction insn> {
+ def : Pat<(operator cls:$src1, (zext GR32:$src2)),
+ (insn cls:$src1, GR32:$src2)>;
+ def : Pat<(operator cls:$src1, (and GR64:$src2, 0xffffffff)),
+ (insn cls:$src1, (EXTRACT_SUBREG GR64:$src2, subreg_l32))>;
+}
+
+// Record that INSN performs a binary read-modify-write operation,
+// with LOAD, OPERATOR and STORE being the read, modify and write
+// respectively. MODE is the addressing mode and IMM is the type
+// of the second operand.
+class RMWI<SDPatternOperator load, SDPatternOperator operator,
+ SDPatternOperator store, AddressingMode mode,
+ PatFrag imm, Instruction insn>
+ : Pat<(store (operator (load mode:$addr), imm:$src), mode:$addr),
+ (insn mode:$addr, (UIMM8 imm:$src))>;
+
+// Record that INSN performs binary operation OPERATION on a byte
+// memory location. IMM is the type of the second operand.
+multiclass RMWIByte<SDPatternOperator operator, AddressingMode mode,
+ Instruction insn> {
+ def : RMWI<anyextloadi8, operator, truncstorei8, mode, imm32, insn>;
+ def : RMWI<anyextloadi8, operator, truncstorei8, mode, imm64, insn>;
+}
+
+// Record that INSN performs insertion TYPE into a register of class CLS.
+// The inserted operand is loaded using LOAD from an address of mode MODE.
+multiclass InsertMem<string type, Instruction insn, RegisterOperand cls,
+ SDPatternOperator load, AddressingMode mode> {
+ def : Pat<(!cast<SDPatternOperator>("or_as_"##type)
+ cls:$src1, (load mode:$src2)),
+ (insn cls:$src1, mode:$src2)>;
+ def : Pat<(!cast<SDPatternOperator>("or_as_rev"##type)
+ (load mode:$src2), cls:$src1),
+ (insn cls:$src1, mode:$src2)>;
+}
+
+// INSN stores the low 32 bits of a GPR to a memory with addressing mode MODE.
+// Record that it is equivalent to using OPERATOR to store a GR64.
+class StoreGR64<Instruction insn, SDPatternOperator operator,
+ AddressingMode mode>
+ : Pat<(operator GR64:$R1, mode:$XBD2),
+ (insn (EXTRACT_SUBREG GR64:$R1, subreg_l32), mode:$XBD2)>;
+
+// INSN and INSNY are an RX/RXY pair of instructions that store the low
+// 32 bits of a GPR to memory. Record that they are equivalent to using
+// OPERATOR to store a GR64.
+multiclass StoreGR64Pair<Instruction insn, Instruction insny,
+ SDPatternOperator operator> {
+ def : StoreGR64<insn, operator, bdxaddr12pair>;
+ def : StoreGR64<insny, operator, bdxaddr20pair>;
+}
+
+// INSN stores the low 32 bits of a GPR using PC-relative addressing.
+// Record that it is equivalent to using OPERATOR to store a GR64.
+class StoreGR64PC<Instruction insn, SDPatternOperator operator>
+ : Pat<(operator GR64:$R1, pcrel32:$XBD2),
+ (insn (EXTRACT_SUBREG GR64:$R1, subreg_l32), pcrel32:$XBD2)> {
+ // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
+ // However, BDXs have two extra operands and are therefore 6 units more
+ // complex.
+ let AddedComplexity = 7;
+}
+
+// INSN and INSNINV conditionally store the low 32 bits of a GPR to memory,
+// with INSN storing when the condition is true and INSNINV storing when the
+// condition is false. Record that they are equivalent to a LOAD/select/STORE
+// sequence for GR64s.
+multiclass CondStores64<Instruction insn, Instruction insninv,
+ SDPatternOperator store, SDPatternOperator load,
+ AddressingMode mode> {
+ def : Pat<(store (z_select_ccmask GR64:$new, (load mode:$addr),
+ imm32zx4:$valid, imm32zx4:$cc),
+ mode:$addr),
+ (insn (EXTRACT_SUBREG GR64:$new, subreg_l32), mode:$addr,
+ imm32zx4:$valid, imm32zx4:$cc)>;
+ def : Pat<(store (z_select_ccmask (load mode:$addr), GR64:$new,
+ imm32zx4:$valid, imm32zx4:$cc),
+ mode:$addr),
+ (insninv (EXTRACT_SUBREG GR64:$new, subreg_l32), mode:$addr,
+ imm32zx4:$valid, imm32zx4:$cc)>;
+}
+
+// Try to use MVC instruction INSN for a load of type LOAD followed by a store
+// of the same size. VT is the type of the intermediate (legalized) value and
+// LENGTH is the number of bytes loaded by LOAD.
+multiclass MVCLoadStore<SDPatternOperator load, ValueType vt, Instruction insn,
+ bits<5> length> {
+ def : Pat<(mvc_store (vt (load bdaddr12only:$src)), bdaddr12only:$dest),
+ (insn bdaddr12only:$dest, bdaddr12only:$src, length)>;
+}
+
+// Use NC-like instruction INSN for block_op operation OPERATOR.
+// The other operand is a load of type LOAD, which accesses LENGTH bytes.
+// VT is the intermediate legalized type in which the binary operation
+// is actually done.
+multiclass BinaryLoadStore<SDPatternOperator operator, SDPatternOperator load,
+ ValueType vt, Instruction insn, bits<5> length> {
+ def : Pat<(operator (vt (load bdaddr12only:$src)), bdaddr12only:$dest),
+ (insn bdaddr12only:$dest, bdaddr12only:$src, length)>;
+}
+
+// A convenient way of generating all block peepholes for a particular
+// LOAD/VT/LENGTH combination.
+multiclass BlockLoadStore<SDPatternOperator load, ValueType vt,
+ Instruction mvc, Instruction nc, Instruction oc,
+ Instruction xc, bits<5> length> {
+ defm : MVCLoadStore<load, vt, mvc, length>;
+ defm : BinaryLoadStore<block_and1, load, vt, nc, length>;
+ defm : BinaryLoadStore<block_and2, load, vt, nc, length>;
+ defm : BinaryLoadStore<block_or1, load, vt, oc, length>;
+ defm : BinaryLoadStore<block_or2, load, vt, oc, length>;
+ defm : BinaryLoadStore<block_xor1, load, vt, xc, length>;
+ defm : BinaryLoadStore<block_xor2, load, vt, xc, length>;
+}
+
+// Record that INSN is a LOAD AND TEST that can be used to compare
+// registers in CLS against zero. The instruction has separate R1 and R2
+// operands, but they must be the same when the instruction is used like this.
+multiclass CompareZeroFP<Instruction insn, RegisterOperand cls> {
+ def : Pat<(z_fcmp cls:$reg, (fpimm0)), (insn cls:$reg, cls:$reg)>;
+ // The sign of the zero makes no difference.
+ def : Pat<(z_fcmp cls:$reg, (fpimmneg0)), (insn cls:$reg, cls:$reg)>;
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZProcessors.td b/contrib/llvm/lib/Target/SystemZ/SystemZProcessors.td
new file mode 100644
index 0000000..e6b58f1
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZProcessors.td
@@ -0,0 +1,62 @@
+//===-- SystemZ.td - SystemZ processors and features ---------*- tblgen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Processor and feature definitions.
+//
+//===----------------------------------------------------------------------===//
+
+class SystemZFeature<string extname, string intname, string desc>
+ : Predicate<"Subtarget.has"##intname##"()">,
+ AssemblerPredicate<"Feature"##intname, extname>,
+ SubtargetFeature<extname, "Has"##intname, "true", desc>;
+
+class SystemZMissingFeature<string intname>
+ : Predicate<"!Subtarget.has"##intname##"()">;
+
+def FeatureDistinctOps : SystemZFeature<
+ "distinct-ops", "DistinctOps",
+ "Assume that the distinct-operands facility is installed"
+>;
+
+def FeatureLoadStoreOnCond : SystemZFeature<
+ "load-store-on-cond", "LoadStoreOnCond",
+ "Assume that the load/store-on-condition facility is installed"
+>;
+
+def FeatureHighWord : SystemZFeature<
+ "high-word", "HighWord",
+ "Assume that the high-word facility is installed"
+>;
+
+def FeatureFPExtension : SystemZFeature<
+ "fp-extension", "FPExtension",
+ "Assume that the floating-point extension facility is installed"
+>;
+
+def FeatureFastSerialization : SystemZFeature<
+ "fast-serialization", "FastSerialization",
+ "Assume that the fast-serialization facility is installed"
+>;
+
+def FeatureInterlockedAccess1 : SystemZFeature<
+ "interlocked-access1", "InterlockedAccess1",
+ "Assume that interlocked-access facility 1 is installed"
+>;
+def FeatureNoInterlockedAccess1 : SystemZMissingFeature<"InterlockedAccess1">;
+
+def : Processor<"generic", NoItineraries, []>;
+def : Processor<"z10", NoItineraries, []>;
+def : Processor<"z196", NoItineraries,
+ [FeatureDistinctOps, FeatureLoadStoreOnCond, FeatureHighWord,
+ FeatureFPExtension, FeatureFastSerialization,
+ FeatureInterlockedAccess1]>;
+def : Processor<"zEC12", NoItineraries,
+ [FeatureDistinctOps, FeatureLoadStoreOnCond, FeatureHighWord,
+ FeatureFPExtension, FeatureFastSerialization,
+ FeatureInterlockedAccess1]>;
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.cpp
new file mode 100644
index 0000000..f03bcc4
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.cpp
@@ -0,0 +1,139 @@
+//===-- SystemZRegisterInfo.cpp - SystemZ register information ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZInstrInfo.h"
+#include "SystemZRegisterInfo.h"
+#include "SystemZSubtarget.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetFrameLowering.h"
+
+using namespace llvm;
+
+#define GET_REGINFO_TARGET_DESC
+#include "SystemZGenRegisterInfo.inc"
+
+SystemZRegisterInfo::SystemZRegisterInfo()
+ : SystemZGenRegisterInfo(SystemZ::R14D) {}
+
+const MCPhysReg *
+SystemZRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ return CSR_SystemZ_SaveList;
+}
+
+const uint32_t *
+SystemZRegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
+ return CSR_SystemZ_RegMask;
+}
+
+BitVector
+SystemZRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ BitVector Reserved(getNumRegs());
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ if (TFI->hasFP(MF)) {
+ // R11D is the frame pointer. Reserve all aliases.
+ Reserved.set(SystemZ::R11D);
+ Reserved.set(SystemZ::R11L);
+ Reserved.set(SystemZ::R11H);
+ Reserved.set(SystemZ::R10Q);
+ }
+
+ // R15D is the stack pointer. Reserve all aliases.
+ Reserved.set(SystemZ::R15D);
+ Reserved.set(SystemZ::R15L);
+ Reserved.set(SystemZ::R15H);
+ Reserved.set(SystemZ::R14Q);
+ return Reserved;
+}
+
+void
+SystemZRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ assert(SPAdj == 0 && "Outgoing arguments should be part of the frame");
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ MachineFunction &MF = *MBB.getParent();
+ auto *TII =
+ static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // Decompose the frame index into a base and offset.
+ int FrameIndex = MI->getOperand(FIOperandNum).getIndex();
+ unsigned BasePtr = getFrameRegister(MF);
+ int64_t Offset = (TFI->getFrameIndexOffset(MF, FrameIndex) +
+ MI->getOperand(FIOperandNum + 1).getImm());
+
+ // Special handling of dbg_value instructions.
+ if (MI->isDebugValue()) {
+ MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, /*isDef*/ false);
+ MI->getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
+ return;
+ }
+
+ // See if the offset is in range, or if an equivalent instruction that
+ // accepts the offset exists.
+ unsigned Opcode = MI->getOpcode();
+ unsigned OpcodeForOffset = TII->getOpcodeForOffset(Opcode, Offset);
+ if (OpcodeForOffset)
+ MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
+ else {
+ // Create an anchor point that is in range. Start at 0xffff so that
+ // can use LLILH to load the immediate.
+ int64_t OldOffset = Offset;
+ int64_t Mask = 0xffff;
+ do {
+ Offset = OldOffset & Mask;
+ OpcodeForOffset = TII->getOpcodeForOffset(Opcode, Offset);
+ Mask >>= 1;
+ assert(Mask && "One offset must be OK");
+ } while (!OpcodeForOffset);
+
+ unsigned ScratchReg =
+ MF.getRegInfo().createVirtualRegister(&SystemZ::ADDR64BitRegClass);
+ int64_t HighOffset = OldOffset - Offset;
+
+ if (MI->getDesc().TSFlags & SystemZII::HasIndex
+ && MI->getOperand(FIOperandNum + 2).getReg() == 0) {
+ // Load the offset into the scratch register and use it as an index.
+ // The scratch register then dies here.
+ TII->loadImmediate(MBB, MI, ScratchReg, HighOffset);
+ MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
+ MI->getOperand(FIOperandNum + 2).ChangeToRegister(ScratchReg,
+ false, false, true);
+ } else {
+ // Load the anchor address into a scratch register.
+ unsigned LAOpcode = TII->getOpcodeForOffset(SystemZ::LA, HighOffset);
+ if (LAOpcode)
+ BuildMI(MBB, MI, DL, TII->get(LAOpcode),ScratchReg)
+ .addReg(BasePtr).addImm(HighOffset).addReg(0);
+ else {
+ // Load the high offset into the scratch register and use it as
+ // an index.
+ TII->loadImmediate(MBB, MI, ScratchReg, HighOffset);
+ BuildMI(MBB, MI, DL, TII->get(SystemZ::AGR),ScratchReg)
+ .addReg(ScratchReg, RegState::Kill).addReg(BasePtr);
+ }
+
+ // Use the scratch register as the base. It then dies here.
+ MI->getOperand(FIOperandNum).ChangeToRegister(ScratchReg,
+ false, false, true);
+ }
+ }
+ MI->setDesc(TII->get(OpcodeForOffset));
+ MI->getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
+}
+
+unsigned
+SystemZRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ return TFI->hasFP(MF) ? SystemZ::R11D : SystemZ::R15D;
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.h b/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.h
new file mode 100644
index 0000000..9bffa46
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.h
@@ -0,0 +1,58 @@
+//===-- SystemZRegisterInfo.h - SystemZ register information ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SystemZREGISTERINFO_H
+#define SystemZREGISTERINFO_H
+
+#include "SystemZ.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define GET_REGINFO_HEADER
+#include "SystemZGenRegisterInfo.inc"
+
+namespace llvm {
+
+namespace SystemZ {
+// Return the subreg to use for referring to the even and odd registers
+// in a GR128 pair. Is32Bit says whether we want a GR32 or GR64.
+inline unsigned even128(bool Is32bit) {
+ return Is32bit ? subreg_hl32 : subreg_h64;
+}
+inline unsigned odd128(bool Is32bit) {
+ return Is32bit ? subreg_l32 : subreg_l64;
+}
+} // end namespace SystemZ
+
+struct SystemZRegisterInfo : public SystemZGenRegisterInfo {
+public:
+ SystemZRegisterInfo();
+
+ // Override TargetRegisterInfo.h.
+ bool requiresRegisterScavenging(const MachineFunction &MF) const override {
+ return true;
+ }
+ bool requiresFrameIndexScavenging(const MachineFunction &MF) const override {
+ return true;
+ }
+ bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const override {
+ return true;
+ }
+ const MCPhysReg *getCalleeSavedRegs(const MachineFunction *MF = nullptr) const
+ override;
+ const uint32_t *getCallPreservedMask(CallingConv::ID CC) const override;
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+ void eliminateFrameIndex(MachineBasicBlock::iterator MI,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const override;
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td b/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td
new file mode 100644
index 0000000..47ac20d
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td
@@ -0,0 +1,190 @@
+//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Class definitions.
+//===----------------------------------------------------------------------===//
+
+class SystemZReg<string n> : Register<n> {
+ let Namespace = "SystemZ";
+}
+
+class SystemZRegWithSubregs<string n, list<Register> subregs>
+ : RegisterWithSubRegs<n, subregs> {
+ let Namespace = "SystemZ";
+}
+
+let Namespace = "SystemZ" in {
+def subreg_l32 : SubRegIndex<32, 0>; // Also acts as subreg_ll32.
+def subreg_h32 : SubRegIndex<32, 32>; // Also acts as subreg_lh32.
+def subreg_l64 : SubRegIndex<64, 0>;
+def subreg_h64 : SubRegIndex<64, 64>;
+def subreg_hh32 : ComposedSubRegIndex<subreg_h64, subreg_h32>;
+def subreg_hl32 : ComposedSubRegIndex<subreg_h64, subreg_l32>;
+}
+
+// Define a register class that contains values of type TYPE and an
+// associated operand called NAME. SIZE is the size and alignment
+// of the registers and REGLIST is the list of individual registers.
+multiclass SystemZRegClass<string name, ValueType type, int size, dag regList> {
+ def AsmOperand : AsmOperandClass {
+ let Name = name;
+ let ParserMethod = "parse"##name;
+ let RenderMethod = "addRegOperands";
+ }
+ def Bit : RegisterClass<"SystemZ", [type], size, regList> {
+ let Size = size;
+ }
+ def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> {
+ let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// General-purpose registers
+//===----------------------------------------------------------------------===//
+
+// Lower 32 bits of one of the 16 64-bit general-purpose registers
+class GPR32<bits<16> num, string n> : SystemZReg<n> {
+ let HWEncoding = num;
+}
+
+// One of the 16 64-bit general-purpose registers.
+class GPR64<bits<16> num, string n, GPR32 low, GPR32 high>
+ : SystemZRegWithSubregs<n, [low, high]> {
+ let HWEncoding = num;
+ let SubRegIndices = [subreg_l32, subreg_h32];
+}
+
+// 8 even-odd pairs of GPR64s.
+class GPR128<bits<16> num, string n, GPR64 low, GPR64 high>
+ : SystemZRegWithSubregs<n, [low, high]> {
+ let HWEncoding = num;
+ let SubRegIndices = [subreg_l64, subreg_h64];
+}
+
+// General-purpose registers
+foreach I = 0-15 in {
+ def R#I#L : GPR32<I, "r"#I>;
+ def R#I#H : GPR32<I, "r"#I>;
+ def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>,
+ DwarfRegNum<[I]>;
+}
+
+foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
+ def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"),
+ !cast<GPR64>("R"#I#"D")>;
+}
+
+/// Allocate the callee-saved R6-R13 backwards. That way they can be saved
+/// together with R14 and R15 in one prolog instruction.
+defm GR32 : SystemZRegClass<"GR32", i32, 32, (add (sequence "R%uL", 0, 5),
+ (sequence "R%uL", 15, 6))>;
+defm GRH32 : SystemZRegClass<"GRH32", i32, 32, (add (sequence "R%uH", 0, 5),
+ (sequence "R%uH", 15, 6))>;
+defm GR64 : SystemZRegClass<"GR64", i64, 64, (add (sequence "R%uD", 0, 5),
+ (sequence "R%uD", 15, 6))>;
+
+// Combine the low and high GR32s into a single class. This can only be
+// used for virtual registers if the high-word facility is available.
+defm GRX32 : SystemZRegClass<"GRX32", i32, 32,
+ (add (sequence "R%uL", 0, 5),
+ (sequence "R%uH", 0, 5),
+ R15L, R15H, R14L, R14H, R13L, R13H,
+ R12L, R12H, R11L, R11H, R10L, R10H,
+ R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>;
+
+// The architecture doesn't really have any i128 support, so model the
+// register pairs as untyped instead.
+defm GR128 : SystemZRegClass<"GR128", untyped, 128, (add R0Q, R2Q, R4Q,
+ R12Q, R10Q, R8Q, R6Q,
+ R14Q)>;
+
+// Base and index registers. Everything except R0, which in an address
+// context evaluates as 0.
+defm ADDR32 : SystemZRegClass<"ADDR32", i32, 32, (sub GR32Bit, R0L)>;
+defm ADDR64 : SystemZRegClass<"ADDR64", i64, 64, (sub GR64Bit, R0D)>;
+
+// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
+// of a GR128.
+defm ADDR128 : SystemZRegClass<"ADDR128", untyped, 128, (sub GR128Bit, R0Q)>;
+
+//===----------------------------------------------------------------------===//
+// Floating-point registers
+//===----------------------------------------------------------------------===//
+
+// Maps FPR register numbers to their DWARF encoding.
+class DwarfMapping<int id> { int Id = id; }
+
+def F0Dwarf : DwarfMapping<16>;
+def F2Dwarf : DwarfMapping<17>;
+def F4Dwarf : DwarfMapping<18>;
+def F6Dwarf : DwarfMapping<19>;
+
+def F1Dwarf : DwarfMapping<20>;
+def F3Dwarf : DwarfMapping<21>;
+def F5Dwarf : DwarfMapping<22>;
+def F7Dwarf : DwarfMapping<23>;
+
+def F8Dwarf : DwarfMapping<24>;
+def F10Dwarf : DwarfMapping<25>;
+def F12Dwarf : DwarfMapping<26>;
+def F14Dwarf : DwarfMapping<27>;
+
+def F9Dwarf : DwarfMapping<28>;
+def F11Dwarf : DwarfMapping<29>;
+def F13Dwarf : DwarfMapping<30>;
+def F15Dwarf : DwarfMapping<31>;
+
+// Lower 32 bits of one of the 16 64-bit floating-point registers
+class FPR32<bits<16> num, string n> : SystemZReg<n> {
+ let HWEncoding = num;
+}
+
+// One of the 16 64-bit floating-point registers
+class FPR64<bits<16> num, string n, FPR32 low>
+ : SystemZRegWithSubregs<n, [low]> {
+ let HWEncoding = num;
+ let SubRegIndices = [subreg_h32];
+}
+
+// 8 pairs of FPR64s, with a one-register gap inbetween.
+class FPR128<bits<16> num, string n, FPR64 low, FPR64 high>
+ : SystemZRegWithSubregs<n, [low, high]> {
+ let HWEncoding = num;
+ let SubRegIndices = [subreg_l64, subreg_h64];
+}
+
+// Floating-point registers
+foreach I = 0-15 in {
+ def F#I#S : FPR32<I, "f"#I>;
+ def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
+ DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
+}
+
+foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
+ def F#I#Q : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"),
+ !cast<FPR64>("F"#I#"D")>;
+}
+
+// There's no store-multiple instruction for FPRs, so we're not fussy
+// about the order in which call-saved registers are allocated.
+defm FP32 : SystemZRegClass<"FP32", f32, 32, (sequence "F%uS", 0, 15)>;
+defm FP64 : SystemZRegClass<"FP64", f64, 64, (sequence "F%uD", 0, 15)>;
+defm FP128 : SystemZRegClass<"FP128", f128, 128, (add F0Q, F1Q, F4Q, F5Q,
+ F8Q, F9Q, F12Q, F13Q)>;
+
+//===----------------------------------------------------------------------===//
+// Other registers
+//===----------------------------------------------------------------------===//
+
+// The 2-bit condition code field of the PSW. Every register named in an
+// inline asm needs a class associated with it.
+def CC : SystemZReg<"cc">;
+def CCRegs : RegisterClass<"SystemZ", [i32], 32, (add CC)>;
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.cpp
new file mode 100644
index 0000000..a3cba64
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.cpp
@@ -0,0 +1,292 @@
+//===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SystemZSelectionDAGInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "systemz-selectiondag-info"
+
+SystemZSelectionDAGInfo::SystemZSelectionDAGInfo(const DataLayout &DL)
+ : TargetSelectionDAGInfo(&DL) {}
+
+SystemZSelectionDAGInfo::~SystemZSelectionDAGInfo() {
+}
+
+// Decide whether it is best to use a loop or straight-line code for
+// a block operation of Size bytes with source address Src and destination
+// address Dest. Sequence is the opcode to use for straight-line code
+// (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP).
+// Return the chain for the completed operation.
+static SDValue emitMemMem(SelectionDAG &DAG, SDLoc DL, unsigned Sequence,
+ unsigned Loop, SDValue Chain, SDValue Dst,
+ SDValue Src, uint64_t Size) {
+ EVT PtrVT = Src.getValueType();
+ // The heuristic we use is to prefer loops for anything that would
+ // require 7 or more MVCs. With these kinds of sizes there isn't
+ // much to choose between straight-line code and looping code,
+ // since the time will be dominated by the MVCs themselves.
+ // However, the loop has 4 or 5 instructions (depending on whether
+ // the base addresses can be proved equal), so there doesn't seem
+ // much point using a loop for 5 * 256 bytes or fewer. Anything in
+ // the range (5 * 256, 6 * 256) will need another instruction after
+ // the loop, so it doesn't seem worth using a loop then either.
+ // The next value up, 6 * 256, can be implemented in the same
+ // number of straight-line MVCs as 6 * 256 - 1.
+ if (Size > 6 * 256)
+ return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src,
+ DAG.getConstant(Size, PtrVT),
+ DAG.getConstant(Size / 256, PtrVT));
+ return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src,
+ DAG.getConstant(Size, PtrVT));
+}
+
+SDValue SystemZSelectionDAGInfo::
+EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Dst, SDValue Src, SDValue Size, unsigned Align,
+ bool IsVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) const {
+ if (IsVolatile)
+ return SDValue();
+
+ if (auto *CSize = dyn_cast<ConstantSDNode>(Size))
+ return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
+ Chain, Dst, Src, CSize->getZExtValue());
+ return SDValue();
+}
+
+// Handle a memset of 1, 2, 4 or 8 bytes with the operands given by
+// Chain, Dst, ByteVal and Size. These cases are expected to use
+// MVI, MVHHI, MVHI and MVGHI respectively.
+static SDValue memsetStore(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Dst, uint64_t ByteVal, uint64_t Size,
+ unsigned Align,
+ MachinePointerInfo DstPtrInfo) {
+ uint64_t StoreVal = ByteVal;
+ for (unsigned I = 1; I < Size; ++I)
+ StoreVal |= ByteVal << (I * 8);
+ return DAG.getStore(Chain, DL,
+ DAG.getConstant(StoreVal, MVT::getIntegerVT(Size * 8)),
+ Dst, DstPtrInfo, false, false, Align);
+}
+
+SDValue SystemZSelectionDAGInfo::
+EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Dst, SDValue Byte, SDValue Size,
+ unsigned Align, bool IsVolatile,
+ MachinePointerInfo DstPtrInfo) const {
+ EVT PtrVT = Dst.getValueType();
+
+ if (IsVolatile)
+ return SDValue();
+
+ if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
+ uint64_t Bytes = CSize->getZExtValue();
+ if (Bytes == 0)
+ return SDValue();
+ if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) {
+ // Handle cases that can be done using at most two of
+ // MVI, MVHI, MVHHI and MVGHI. The latter two can only be
+ // used if ByteVal is all zeros or all ones; in other casees,
+ // we can move at most 2 halfwords.
+ uint64_t ByteVal = CByte->getZExtValue();
+ if (ByteVal == 0 || ByteVal == 255 ?
+ Bytes <= 16 && CountPopulation_64(Bytes) <= 2 :
+ Bytes <= 4) {
+ unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes);
+ unsigned Size2 = Bytes - Size1;
+ SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1,
+ Align, DstPtrInfo);
+ if (Size2 == 0)
+ return Chain1;
+ Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
+ DAG.getConstant(Size1, PtrVT));
+ DstPtrInfo = DstPtrInfo.getWithOffset(Size1);
+ SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2,
+ std::min(Align, Size1), DstPtrInfo);
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
+ }
+ } else {
+ // Handle one and two bytes using STC.
+ if (Bytes <= 2) {
+ SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
+ false, false, Align);
+ if (Bytes == 1)
+ return Chain1;
+ SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
+ DAG.getConstant(1, PtrVT));
+ SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2,
+ DstPtrInfo.getWithOffset(1),
+ false, false, 1);
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
+ }
+ }
+ assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already");
+
+ // Handle the special case of a memset of 0, which can use XC.
+ auto *CByte = dyn_cast<ConstantSDNode>(Byte);
+ if (CByte && CByte->getZExtValue() == 0)
+ return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP,
+ Chain, Dst, Dst, Bytes);
+
+ // Copy the byte to the first location and then use MVC to copy
+ // it to the rest.
+ Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
+ false, false, Align);
+ SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
+ DAG.getConstant(1, PtrVT));
+ return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
+ Chain, DstPlus1, Dst, Bytes - 1);
+ }
+ return SDValue();
+}
+
+// Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size),
+// deciding whether to use a loop or straight-line code.
+static SDValue emitCLC(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Src1, SDValue Src2, uint64_t Size) {
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ EVT PtrVT = Src1.getValueType();
+ // A two-CLC sequence is a clear win over a loop, not least because it
+ // needs only one branch. A three-CLC sequence needs the same number
+ // of branches as a loop (i.e. 2), but is shorter. That brings us to
+ // lengths greater than 768 bytes. It seems relatively likely that
+ // a difference will be found within the first 768 bytes, so we just
+ // optimize for the smallest number of branch instructions, in order
+ // to avoid polluting the prediction buffer too much. A loop only ever
+ // needs 2 branches, whereas a straight-line sequence would need 3 or more.
+ if (Size > 3 * 256)
+ return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2,
+ DAG.getConstant(Size, PtrVT),
+ DAG.getConstant(Size / 256, PtrVT));
+ return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2,
+ DAG.getConstant(Size, PtrVT));
+}
+
+// Convert the current CC value into an integer that is 0 if CC == 0,
+// less than zero if CC == 1 and greater than zero if CC >= 2.
+// The sequence starts with IPM, which puts CC into bits 29 and 28
+// of an integer and clears bits 30 and 31.
+static SDValue addIPMSequence(SDLoc DL, SDValue Glue, SelectionDAG &DAG) {
+ SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
+ SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
+ DAG.getConstant(SystemZ::IPM_CC, MVT::i32));
+ SDValue ROTL = DAG.getNode(ISD::ROTL, DL, MVT::i32, SRL,
+ DAG.getConstant(31, MVT::i32));
+ return ROTL;
+}
+
+std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
+EmitTargetCodeForMemcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Src1, SDValue Src2, SDValue Size,
+ MachinePointerInfo Op1PtrInfo,
+ MachinePointerInfo Op2PtrInfo) const {
+ if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
+ uint64_t Bytes = CSize->getZExtValue();
+ assert(Bytes > 0 && "Caller should have handled 0-size case");
+ Chain = emitCLC(DAG, DL, Chain, Src1, Src2, Bytes);
+ SDValue Glue = Chain.getValue(1);
+ return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
+ }
+ return std::make_pair(SDValue(), SDValue());
+}
+
+std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
+EmitTargetCodeForMemchr(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Src, SDValue Char, SDValue Length,
+ MachinePointerInfo SrcPtrInfo) const {
+ // Use SRST to find the character. End is its address on success.
+ EVT PtrVT = Src.getValueType();
+ SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
+ Length = DAG.getZExtOrTrunc(Length, DL, PtrVT);
+ Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32);
+ Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char,
+ DAG.getConstant(255, MVT::i32));
+ SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length);
+ SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
+ Limit, Src, Char);
+ Chain = End.getValue(1);
+ SDValue Glue = End.getValue(2);
+
+ // Now select between End and null, depending on whether the character
+ // was found.
+ SmallVector<SDValue, 5> Ops;
+ Ops.push_back(End);
+ Ops.push_back(DAG.getConstant(0, PtrVT));
+ Ops.push_back(DAG.getConstant(SystemZ::CCMASK_SRST, MVT::i32));
+ Ops.push_back(DAG.getConstant(SystemZ::CCMASK_SRST_FOUND, MVT::i32));
+ Ops.push_back(Glue);
+ VTs = DAG.getVTList(PtrVT, MVT::Glue);
+ End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
+ return std::make_pair(End, Chain);
+}
+
+std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
+EmitTargetCodeForStrcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Dest, SDValue Src,
+ MachinePointerInfo DestPtrInfo,
+ MachinePointerInfo SrcPtrInfo, bool isStpcpy) const {
+ SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other);
+ SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src,
+ DAG.getConstant(0, MVT::i32));
+ return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1));
+}
+
+std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
+EmitTargetCodeForStrcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Src1, SDValue Src2,
+ MachinePointerInfo Op1PtrInfo,
+ MachinePointerInfo Op2PtrInfo) const {
+ SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::Other, MVT::Glue);
+ SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src1, Src2,
+ DAG.getConstant(0, MVT::i32));
+ Chain = Unused.getValue(1);
+ SDValue Glue = Chain.getValue(2);
+ return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
+}
+
+// Search from Src for a null character, stopping once Src reaches Limit.
+// Return a pair of values, the first being the number of nonnull characters
+// and the second being the out chain.
+//
+// This can be used for strlen by setting Limit to 0.
+static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG, SDLoc DL,
+ SDValue Chain, SDValue Src,
+ SDValue Limit) {
+ EVT PtrVT = Src.getValueType();
+ SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
+ SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
+ Limit, Src, DAG.getConstant(0, MVT::i32));
+ Chain = End.getValue(1);
+ SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src);
+ return std::make_pair(Len, Chain);
+}
+
+std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
+EmitTargetCodeForStrlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Src, MachinePointerInfo SrcPtrInfo) const {
+ EVT PtrVT = Src.getValueType();
+ return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, PtrVT));
+}
+
+std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
+EmitTargetCodeForStrnlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Src, SDValue MaxLength,
+ MachinePointerInfo SrcPtrInfo) const {
+ EVT PtrVT = Src.getValueType();
+ MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT);
+ SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength);
+ return getBoundedStrlen(DAG, DL, Chain, Src, Limit);
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.h b/contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.h
new file mode 100644
index 0000000..e9de146
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.h
@@ -0,0 +1,77 @@
+//===-- SystemZSelectionDAGInfo.h - SystemZ SelectionDAG Info ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the SystemZ subclass for TargetSelectionDAGInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZSELECTIONDAGINFO_H
+#define SYSTEMZSELECTIONDAGINFO_H
+
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+class SystemZTargetMachine;
+
+class SystemZSelectionDAGInfo : public TargetSelectionDAGInfo {
+public:
+ explicit SystemZSelectionDAGInfo(const DataLayout &DL);
+ ~SystemZSelectionDAGInfo();
+
+ SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Dst, SDValue Src,
+ SDValue Size, unsigned Align,
+ bool IsVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) const override;
+
+ SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc DL,
+ SDValue Chain, SDValue Dst, SDValue Byte,
+ SDValue Size, unsigned Align, bool IsVolatile,
+ MachinePointerInfo DstPtrInfo) const override;
+
+ std::pair<SDValue, SDValue>
+ EmitTargetCodeForMemcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Src1, SDValue Src2, SDValue Size,
+ MachinePointerInfo Op1PtrInfo,
+ MachinePointerInfo Op2PtrInfo) const override;
+
+ std::pair<SDValue, SDValue>
+ EmitTargetCodeForMemchr(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Src, SDValue Char, SDValue Length,
+ MachinePointerInfo SrcPtrInfo) const override;
+
+ std::pair<SDValue, SDValue>
+ EmitTargetCodeForStrcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Dest, SDValue Src,
+ MachinePointerInfo DestPtrInfo,
+ MachinePointerInfo SrcPtrInfo,
+ bool isStpcpy) const override;
+
+ std::pair<SDValue, SDValue>
+ EmitTargetCodeForStrcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Src1, SDValue Src2,
+ MachinePointerInfo Op1PtrInfo,
+ MachinePointerInfo Op2PtrInfo) const override;
+
+ std::pair<SDValue, SDValue>
+ EmitTargetCodeForStrlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Src,
+ MachinePointerInfo SrcPtrInfo) const override;
+
+ std::pair<SDValue, SDValue>
+ EmitTargetCodeForStrnlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
+ SDValue Src, SDValue MaxLength,
+ MachinePointerInfo SrcPtrInfo) const override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZShortenInst.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZShortenInst.cpp
new file mode 100644
index 0000000..aad899c
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZShortenInst.cpp
@@ -0,0 +1,160 @@
+//===-- SystemZShortenInst.cpp - Instruction-shortening pass --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass tries to replace instructions with shorter forms. For example,
+// IILF can be replaced with LLILL or LLILH if the constant fits and if the
+// other 32 bits of the GR64 destination are not live.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "systemz-shorten-inst"
+
+namespace {
+class SystemZShortenInst : public MachineFunctionPass {
+public:
+ static char ID;
+ SystemZShortenInst(const SystemZTargetMachine &tm);
+
+ const char *getPassName() const override {
+ return "SystemZ Instruction Shortening";
+ }
+
+ bool processBlock(MachineBasicBlock &MBB);
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+private:
+ bool shortenIIF(MachineInstr &MI, unsigned *GPRMap, unsigned LiveOther,
+ unsigned LLIxL, unsigned LLIxH);
+
+ const SystemZInstrInfo *TII;
+
+ // LowGPRs[I] has bit N set if LLVM register I includes the low
+ // word of GPR N. HighGPRs is the same for the high word.
+ unsigned LowGPRs[SystemZ::NUM_TARGET_REGS];
+ unsigned HighGPRs[SystemZ::NUM_TARGET_REGS];
+};
+
+char SystemZShortenInst::ID = 0;
+} // end anonymous namespace
+
+FunctionPass *llvm::createSystemZShortenInstPass(SystemZTargetMachine &TM) {
+ return new SystemZShortenInst(TM);
+}
+
+SystemZShortenInst::SystemZShortenInst(const SystemZTargetMachine &tm)
+ : MachineFunctionPass(ID), TII(nullptr), LowGPRs(), HighGPRs() {
+ // Set up LowGPRs and HighGPRs.
+ for (unsigned I = 0; I < 16; ++I) {
+ LowGPRs[SystemZMC::GR32Regs[I]] |= 1 << I;
+ LowGPRs[SystemZMC::GR64Regs[I]] |= 1 << I;
+ HighGPRs[SystemZMC::GRH32Regs[I]] |= 1 << I;
+ HighGPRs[SystemZMC::GR64Regs[I]] |= 1 << I;
+ if (unsigned GR128 = SystemZMC::GR128Regs[I]) {
+ LowGPRs[GR128] |= 3 << I;
+ HighGPRs[GR128] |= 3 << I;
+ }
+ }
+}
+
+// MI loads one word of a GPR using an IIxF instruction and LLIxL and LLIxH
+// are the halfword immediate loads for the same word. Try to use one of them
+// instead of IIxF. If MI loads the high word, GPRMap[X] is the set of high
+// words referenced by LLVM register X while LiveOther is the mask of low
+// words that are currently live, and vice versa.
+bool SystemZShortenInst::shortenIIF(MachineInstr &MI, unsigned *GPRMap,
+ unsigned LiveOther, unsigned LLIxL,
+ unsigned LLIxH) {
+ unsigned Reg = MI.getOperand(0).getReg();
+ assert(Reg < SystemZ::NUM_TARGET_REGS && "Invalid register number");
+ unsigned GPRs = GPRMap[Reg];
+ assert(GPRs != 0 && "Register must be a GPR");
+ if (GPRs & LiveOther)
+ return false;
+
+ uint64_t Imm = MI.getOperand(1).getImm();
+ if (SystemZ::isImmLL(Imm)) {
+ MI.setDesc(TII->get(LLIxL));
+ MI.getOperand(0).setReg(SystemZMC::getRegAsGR64(Reg));
+ return true;
+ }
+ if (SystemZ::isImmLH(Imm)) {
+ MI.setDesc(TII->get(LLIxH));
+ MI.getOperand(0).setReg(SystemZMC::getRegAsGR64(Reg));
+ MI.getOperand(1).setImm(Imm >> 16);
+ return true;
+ }
+ return false;
+}
+
+// Process all instructions in MBB. Return true if something changed.
+bool SystemZShortenInst::processBlock(MachineBasicBlock &MBB) {
+ bool Changed = false;
+
+ // Work out which words are live on exit from the block.
+ unsigned LiveLow = 0;
+ unsigned LiveHigh = 0;
+ for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI) {
+ for (auto LI = (*SI)->livein_begin(), LE = (*SI)->livein_end();
+ LI != LE; ++LI) {
+ unsigned Reg = *LI;
+ assert(Reg < SystemZ::NUM_TARGET_REGS && "Invalid register number");
+ LiveLow |= LowGPRs[Reg];
+ LiveHigh |= HighGPRs[Reg];
+ }
+ }
+
+ // Iterate backwards through the block looking for instructions to change.
+ for (auto MBBI = MBB.rbegin(), MBBE = MBB.rend(); MBBI != MBBE; ++MBBI) {
+ MachineInstr &MI = *MBBI;
+ unsigned Opcode = MI.getOpcode();
+ if (Opcode == SystemZ::IILF)
+ Changed |= shortenIIF(MI, LowGPRs, LiveHigh, SystemZ::LLILL,
+ SystemZ::LLILH);
+ else if (Opcode == SystemZ::IIHF)
+ Changed |= shortenIIF(MI, HighGPRs, LiveLow, SystemZ::LLIHL,
+ SystemZ::LLIHH);
+ unsigned UsedLow = 0;
+ unsigned UsedHigh = 0;
+ for (auto MOI = MI.operands_begin(), MOE = MI.operands_end();
+ MOI != MOE; ++MOI) {
+ MachineOperand &MO = *MOI;
+ if (MO.isReg()) {
+ if (unsigned Reg = MO.getReg()) {
+ assert(Reg < SystemZ::NUM_TARGET_REGS && "Invalid register number");
+ if (MO.isDef()) {
+ LiveLow &= ~LowGPRs[Reg];
+ LiveHigh &= ~HighGPRs[Reg];
+ } else if (!MO.isUndef()) {
+ UsedLow |= LowGPRs[Reg];
+ UsedHigh |= HighGPRs[Reg];
+ }
+ }
+ }
+ }
+ LiveLow |= UsedLow;
+ LiveHigh |= UsedHigh;
+ }
+
+ return Changed;
+}
+
+bool SystemZShortenInst::runOnMachineFunction(MachineFunction &F) {
+ TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo());
+
+ bool Changed = false;
+ for (auto &MBB : F)
+ Changed |= processBlock(MBB);
+
+ return Changed;
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.cpp
new file mode 100644
index 0000000..e160bc8
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.cpp
@@ -0,0 +1,80 @@
+//===-- SystemZSubtarget.cpp - SystemZ subtarget information --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZSubtarget.h"
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/Support/Host.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "systemz-subtarget"
+
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#include "SystemZGenSubtargetInfo.inc"
+
+// Pin the vtable to this file.
+void SystemZSubtarget::anchor() {}
+
+SystemZSubtarget &
+SystemZSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
+ std::string CPUName = CPU;
+ if (CPUName.empty())
+ CPUName = "generic";
+#if defined(__linux__) && defined(__s390x__)
+ if (CPUName == "generic")
+ CPUName = sys::getHostCPUName();
+#endif
+ // Parse features string.
+ ParseSubtargetFeatures(CPUName, FS);
+ return *this;
+}
+
+SystemZSubtarget::SystemZSubtarget(const std::string &TT,
+ const std::string &CPU,
+ const std::string &FS,
+ const TargetMachine &TM)
+ : SystemZGenSubtargetInfo(TT, CPU, FS), HasDistinctOps(false),
+ HasLoadStoreOnCond(false), HasHighWord(false), HasFPExtension(false),
+ HasFastSerialization(false), HasInterlockedAccess1(false),
+ TargetTriple(TT),
+ // Make sure that global data has at least 16 bits of alignment by
+ // default, so that we can refer to it using LARL. We don't have any
+ // special requirements for stack variables though.
+ DL("E-m:e-i1:8:16-i8:8:16-i64:64-f128:64-a:8:16-n32:64"),
+ InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM),
+ TSInfo(DL), FrameLowering() {}
+
+// Return true if GV binds locally under reloc model RM.
+static bool bindsLocally(const GlobalValue *GV, Reloc::Model RM) {
+ // For non-PIC, all symbols bind locally.
+ if (RM == Reloc::Static)
+ return true;
+
+ return GV->hasLocalLinkage() || !GV->hasDefaultVisibility();
+}
+
+bool SystemZSubtarget::isPC32DBLSymbol(const GlobalValue *GV,
+ Reloc::Model RM,
+ CodeModel::Model CM) const {
+ // PC32DBL accesses require the low bit to be clear. Note that a zero
+ // value selects the default alignment and is therefore OK.
+ if (GV->getAlignment() == 1)
+ return false;
+
+ // For the small model, all locally-binding symbols are in range.
+ if (CM == CodeModel::Small)
+ return bindsLocally(GV, RM);
+
+ // For Medium and above, assume that the symbol is not within the 4GB range.
+ // Taking the address of locally-defined text would be OK, but that
+ // case isn't easy to detect.
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.h b/contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.h
new file mode 100644
index 0000000..4e8c710
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.h
@@ -0,0 +1,100 @@
+//===-- SystemZSubtarget.h - SystemZ subtarget information -----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the SystemZ specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZSUBTARGET_H
+#define SYSTEMZSUBTARGET_H
+
+#include "SystemZFrameLowering.h"
+#include "SystemZISelLowering.h"
+#include "SystemZInstrInfo.h"
+#include "SystemZRegisterInfo.h"
+#include "SystemZSelectionDAGInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "SystemZGenSubtargetInfo.inc"
+
+namespace llvm {
+class GlobalValue;
+class StringRef;
+
+class SystemZSubtarget : public SystemZGenSubtargetInfo {
+ virtual void anchor();
+protected:
+ bool HasDistinctOps;
+ bool HasLoadStoreOnCond;
+ bool HasHighWord;
+ bool HasFPExtension;
+ bool HasFastSerialization;
+ bool HasInterlockedAccess1;
+
+private:
+ Triple TargetTriple;
+ const DataLayout DL;
+ SystemZInstrInfo InstrInfo;
+ SystemZTargetLowering TLInfo;
+ SystemZSelectionDAGInfo TSInfo;
+ SystemZFrameLowering FrameLowering;
+
+ SystemZSubtarget &initializeSubtargetDependencies(StringRef CPU,
+ StringRef FS);
+public:
+ SystemZSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, const TargetMachine &TM);
+
+ const TargetFrameLowering *getFrameLowering() const { return &FrameLowering; }
+ const SystemZInstrInfo *getInstrInfo() const { return &InstrInfo; }
+ const DataLayout *getDataLayout() const { return &DL; }
+ const SystemZRegisterInfo *getRegisterInfo() const {
+ return &InstrInfo.getRegisterInfo();
+ }
+ const SystemZTargetLowering *getTargetLowering() const { return &TLInfo; }
+ const TargetSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+
+ // This is important for reducing register pressure in vector code.
+ bool useAA() const override { return true; }
+
+ // Automatically generated by tblgen.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+
+ // Return true if the target has the distinct-operands facility.
+ bool hasDistinctOps() const { return HasDistinctOps; }
+
+ // Return true if the target has the load/store-on-condition facility.
+ bool hasLoadStoreOnCond() const { return HasLoadStoreOnCond; }
+
+ // Return true if the target has the high-word facility.
+ bool hasHighWord() const { return HasHighWord; }
+
+ // Return true if the target has the floating-point extension facility.
+ bool hasFPExtension() const { return HasFPExtension; }
+
+ // Return true if the target has the fast-serialization facility.
+ bool hasFastSerialization() const { return HasFastSerialization; }
+
+ // Return true if the target has interlocked-access facility 1.
+ bool hasInterlockedAccess1() const { return HasInterlockedAccess1; }
+
+ // Return true if GV can be accessed using LARL for reloc model RM
+ // and code model CM.
+ bool isPC32DBLSymbol(const GlobalValue *GV, Reloc::Model RM,
+ CodeModel::Model CM) const;
+
+ bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp
new file mode 100644
index 0000000..0122e99
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp
@@ -0,0 +1,101 @@
+//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Transforms/Scalar.h"
+
+using namespace llvm;
+
+extern "C" void LLVMInitializeSystemZTarget() {
+ // Register the target.
+ RegisterTargetMachine<SystemZTargetMachine> X(TheSystemZTarget);
+}
+
+SystemZTargetMachine::SystemZTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS, *this) {
+ initAsmInfo();
+}
+
+namespace {
+/// SystemZ Code Generator Pass Configuration Options.
+class SystemZPassConfig : public TargetPassConfig {
+public:
+ SystemZPassConfig(SystemZTargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ SystemZTargetMachine &getSystemZTargetMachine() const {
+ return getTM<SystemZTargetMachine>();
+ }
+
+ void addIRPasses() override;
+ bool addInstSelector() override;
+ bool addPreSched2() override;
+ bool addPreEmitPass() override;
+};
+} // end anonymous namespace
+
+void SystemZPassConfig::addIRPasses() {
+ TargetPassConfig::addIRPasses();
+ addPass(createPartiallyInlineLibCallsPass());
+}
+
+bool SystemZPassConfig::addInstSelector() {
+ addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
+ return false;
+}
+
+bool SystemZPassConfig::addPreSched2() {
+ if (getOptLevel() != CodeGenOpt::None &&
+ getSystemZTargetMachine().getSubtargetImpl()->hasLoadStoreOnCond())
+ addPass(&IfConverterID);
+ return true;
+}
+
+bool SystemZPassConfig::addPreEmitPass() {
+ // We eliminate comparisons here rather than earlier because some
+ // transformations can change the set of available CC values and we
+ // generally want those transformations to have priority. This is
+ // especially true in the commonest case where the result of the comparison
+ // is used by a single in-range branch instruction, since we will then
+ // be able to fuse the compare and the branch instead.
+ //
+ // For example, two-address NILF can sometimes be converted into
+ // three-address RISBLG. NILF produces a CC value that indicates whether
+ // the low word is zero, but RISBLG does not modify CC at all. On the
+ // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
+ // The CC value produced by NILL isn't useful for our purposes, but the
+ // value produced by RISBG can be used for any comparison with zero
+ // (not just equality). So there are some transformations that lose
+ // CC values (while still being worthwhile) and others that happen to make
+ // the CC result more useful than it was originally.
+ //
+ // Another reason is that we only want to use BRANCH ON COUNT in cases
+ // where we know that the count register is not going to be spilled.
+ //
+ // Doing it so late makes it more likely that a register will be reused
+ // between the comparison and the branch, but it isn't clear whether
+ // preventing that would be a win or not.
+ if (getOptLevel() != CodeGenOpt::None)
+ addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
+ if (getOptLevel() != CodeGenOpt::None)
+ addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
+ addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
+ return true;
+}
+
+TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new SystemZPassConfig(this, PM);
+}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.h b/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.h
new file mode 100644
index 0000000..ded07e9
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.h
@@ -0,0 +1,63 @@
+//==- SystemZTargetMachine.h - Define TargetMachine for SystemZ ---*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the SystemZ specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef SYSTEMZTARGETMACHINE_H
+#define SYSTEMZTARGETMACHINE_H
+
+#include "SystemZSubtarget.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+class TargetFrameLowering;
+
+class SystemZTargetMachine : public LLVMTargetMachine {
+ SystemZSubtarget Subtarget;
+
+public:
+ SystemZTargetMachine(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+
+ // Override TargetMachine.
+ const TargetFrameLowering *getFrameLowering() const override {
+ return getSubtargetImpl()->getFrameLowering();
+ }
+ const SystemZInstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const SystemZSubtarget *getSubtargetImpl() const override {
+ return &Subtarget;
+ }
+ const DataLayout *getDataLayout() const override {
+ return getSubtargetImpl()->getDataLayout();
+ }
+ const SystemZRegisterInfo *getRegisterInfo() const override {
+ return getSubtargetImpl()->getRegisterInfo();
+ }
+ const SystemZTargetLowering *getTargetLowering() const override {
+ return getSubtargetImpl()->getTargetLowering();
+ }
+ const TargetSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return getSubtargetImpl()->getSelectionDAGInfo();
+ }
+
+ // Override LLVMTargetMachine
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp b/contrib/llvm/lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp
new file mode 100644
index 0000000..8f9aa28
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp
@@ -0,0 +1,20 @@
+//===-- SystemZTargetInfo.cpp - SystemZ target implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZ.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+Target llvm::TheSystemZTarget;
+
+extern "C" void LLVMInitializeSystemZTargetInfo() {
+ RegisterTarget<Triple::systemz, /*HasJIT=*/true>
+ X(TheSystemZTarget, "systemz", "SystemZ");
+}
diff --git a/contrib/llvm/lib/Target/Target.cpp b/contrib/llvm/lib/Target/Target.cpp
new file mode 100644
index 0000000..d277f82
--- /dev/null
+++ b/contrib/llvm/lib/Target/Target.cpp
@@ -0,0 +1,136 @@
+//===-- Target.cpp --------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the common infrastructure (including C bindings) for
+// libLLVMTarget.a, which implements target information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm-c/Target.h"
+#include "llvm-c/Initialization.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Value.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/PassManager.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include <cstring>
+
+using namespace llvm;
+
+inline TargetLibraryInfo *unwrap(LLVMTargetLibraryInfoRef P) {
+ return reinterpret_cast<TargetLibraryInfo*>(P);
+}
+
+inline LLVMTargetLibraryInfoRef wrap(const TargetLibraryInfo *P) {
+ TargetLibraryInfo *X = const_cast<TargetLibraryInfo*>(P);
+ return reinterpret_cast<LLVMTargetLibraryInfoRef>(X);
+}
+
+void llvm::initializeTarget(PassRegistry &Registry) {
+ initializeDataLayoutPassPass(Registry);
+ initializeTargetLibraryInfoPass(Registry);
+}
+
+void LLVMInitializeTarget(LLVMPassRegistryRef R) {
+ initializeTarget(*unwrap(R));
+}
+
+LLVMTargetDataRef LLVMCreateTargetData(const char *StringRep) {
+ return wrap(new DataLayout(StringRep));
+}
+
+void LLVMAddTargetData(LLVMTargetDataRef TD, LLVMPassManagerRef PM) {
+ // The DataLayoutPass must now be in sync with the module. Unfortunatelly we
+ // cannot enforce that from the C api.
+ unwrap(PM)->add(new DataLayoutPass(*unwrap(TD)));
+}
+
+void LLVMAddTargetLibraryInfo(LLVMTargetLibraryInfoRef TLI,
+ LLVMPassManagerRef PM) {
+ unwrap(PM)->add(new TargetLibraryInfo(*unwrap(TLI)));
+}
+
+char *LLVMCopyStringRepOfTargetData(LLVMTargetDataRef TD) {
+ std::string StringRep = unwrap(TD)->getStringRepresentation();
+ return strdup(StringRep.c_str());
+}
+
+LLVMByteOrdering LLVMByteOrder(LLVMTargetDataRef TD) {
+ return unwrap(TD)->isLittleEndian() ? LLVMLittleEndian : LLVMBigEndian;
+}
+
+unsigned LLVMPointerSize(LLVMTargetDataRef TD) {
+ return unwrap(TD)->getPointerSize(0);
+}
+
+unsigned LLVMPointerSizeForAS(LLVMTargetDataRef TD, unsigned AS) {
+ return unwrap(TD)->getPointerSize(AS);
+}
+
+LLVMTypeRef LLVMIntPtrType(LLVMTargetDataRef TD) {
+ return wrap(unwrap(TD)->getIntPtrType(getGlobalContext()));
+}
+
+LLVMTypeRef LLVMIntPtrTypeForAS(LLVMTargetDataRef TD, unsigned AS) {
+ return wrap(unwrap(TD)->getIntPtrType(getGlobalContext(), AS));
+}
+
+LLVMTypeRef LLVMIntPtrTypeInContext(LLVMContextRef C, LLVMTargetDataRef TD) {
+ return wrap(unwrap(TD)->getIntPtrType(*unwrap(C)));
+}
+
+LLVMTypeRef LLVMIntPtrTypeForASInContext(LLVMContextRef C, LLVMTargetDataRef TD, unsigned AS) {
+ return wrap(unwrap(TD)->getIntPtrType(*unwrap(C), AS));
+}
+
+unsigned long long LLVMSizeOfTypeInBits(LLVMTargetDataRef TD, LLVMTypeRef Ty) {
+ return unwrap(TD)->getTypeSizeInBits(unwrap(Ty));
+}
+
+unsigned long long LLVMStoreSizeOfType(LLVMTargetDataRef TD, LLVMTypeRef Ty) {
+ return unwrap(TD)->getTypeStoreSize(unwrap(Ty));
+}
+
+unsigned long long LLVMABISizeOfType(LLVMTargetDataRef TD, LLVMTypeRef Ty) {
+ return unwrap(TD)->getTypeAllocSize(unwrap(Ty));
+}
+
+unsigned LLVMABIAlignmentOfType(LLVMTargetDataRef TD, LLVMTypeRef Ty) {
+ return unwrap(TD)->getABITypeAlignment(unwrap(Ty));
+}
+
+unsigned LLVMCallFrameAlignmentOfType(LLVMTargetDataRef TD, LLVMTypeRef Ty) {
+ return unwrap(TD)->getABITypeAlignment(unwrap(Ty));
+}
+
+unsigned LLVMPreferredAlignmentOfType(LLVMTargetDataRef TD, LLVMTypeRef Ty) {
+ return unwrap(TD)->getPrefTypeAlignment(unwrap(Ty));
+}
+
+unsigned LLVMPreferredAlignmentOfGlobal(LLVMTargetDataRef TD,
+ LLVMValueRef GlobalVar) {
+ return unwrap(TD)->getPreferredAlignment(unwrap<GlobalVariable>(GlobalVar));
+}
+
+unsigned LLVMElementAtOffset(LLVMTargetDataRef TD, LLVMTypeRef StructTy,
+ unsigned long long Offset) {
+ StructType *STy = unwrap<StructType>(StructTy);
+ return unwrap(TD)->getStructLayout(STy)->getElementContainingOffset(Offset);
+}
+
+unsigned long long LLVMOffsetOfElement(LLVMTargetDataRef TD, LLVMTypeRef StructTy,
+ unsigned Element) {
+ StructType *STy = unwrap<StructType>(StructTy);
+ return unwrap(TD)->getStructLayout(STy)->getElementOffset(Element);
+}
+
+void LLVMDisposeTargetData(LLVMTargetDataRef TD) {
+ delete unwrap(TD);
+}
diff --git a/contrib/llvm/lib/Target/TargetIntrinsicInfo.cpp b/contrib/llvm/lib/Target/TargetIntrinsicInfo.cpp
new file mode 100644
index 0000000..64bd56f
--- /dev/null
+++ b/contrib/llvm/lib/Target/TargetIntrinsicInfo.cpp
@@ -0,0 +1,30 @@
+//===-- TargetIntrinsicInfo.cpp - Target Instruction Information ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TargetIntrinsicInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/IR/Function.h"
+using namespace llvm;
+
+TargetIntrinsicInfo::TargetIntrinsicInfo() {
+}
+
+TargetIntrinsicInfo::~TargetIntrinsicInfo() {
+}
+
+unsigned TargetIntrinsicInfo::getIntrinsicID(Function *F) const {
+ const ValueName *ValName = F->getValueName();
+ if (!ValName)
+ return 0;
+ return lookupName(ValName->getKeyData(), ValName->getKeyLength());
+}
diff --git a/contrib/llvm/lib/Target/TargetJITInfo.cpp b/contrib/llvm/lib/Target/TargetJITInfo.cpp
new file mode 100644
index 0000000..aafedf8
--- /dev/null
+++ b/contrib/llvm/lib/Target/TargetJITInfo.cpp
@@ -0,0 +1,14 @@
+//===- Target/TargetJITInfo.h - Target Information for JIT ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetJITInfo.h"
+
+using namespace llvm;
+
+void TargetJITInfo::anchor() { }
diff --git a/contrib/llvm/lib/Target/TargetLibraryInfo.cpp b/contrib/llvm/lib/Target/TargetLibraryInfo.cpp
new file mode 100644
index 0000000..616ff90
--- /dev/null
+++ b/contrib/llvm/lib/Target/TargetLibraryInfo.cpp
@@ -0,0 +1,743 @@
+//===-- TargetLibraryInfo.cpp - Runtime library information ----------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TargetLibraryInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/ADT/Triple.h"
+using namespace llvm;
+
+// Register the default implementation.
+INITIALIZE_PASS(TargetLibraryInfo, "targetlibinfo",
+ "Target Library Information", false, true)
+char TargetLibraryInfo::ID = 0;
+
+void TargetLibraryInfo::anchor() { }
+
+const char* TargetLibraryInfo::StandardNames[LibFunc::NumLibFuncs] =
+ {
+ "_IO_getc",
+ "_IO_putc",
+ "_ZdaPv",
+ "_ZdaPvRKSt9nothrow_t",
+ "_ZdlPv",
+ "_ZdlPvRKSt9nothrow_t",
+ "_Znaj",
+ "_ZnajRKSt9nothrow_t",
+ "_Znam",
+ "_ZnamRKSt9nothrow_t",
+ "_Znwj",
+ "_ZnwjRKSt9nothrow_t",
+ "_Znwm",
+ "_ZnwmRKSt9nothrow_t",
+ "__cospi",
+ "__cospif",
+ "__cxa_atexit",
+ "__cxa_guard_abort",
+ "__cxa_guard_acquire",
+ "__cxa_guard_release",
+ "__isoc99_scanf",
+ "__isoc99_sscanf",
+ "__memcpy_chk",
+ "__sincospi_stret",
+ "__sincospif_stret",
+ "__sinpi",
+ "__sinpif",
+ "__sqrt_finite",
+ "__sqrtf_finite",
+ "__sqrtl_finite",
+ "__strdup",
+ "__strndup",
+ "__strtok_r",
+ "abs",
+ "access",
+ "acos",
+ "acosf",
+ "acosh",
+ "acoshf",
+ "acoshl",
+ "acosl",
+ "asin",
+ "asinf",
+ "asinh",
+ "asinhf",
+ "asinhl",
+ "asinl",
+ "atan",
+ "atan2",
+ "atan2f",
+ "atan2l",
+ "atanf",
+ "atanh",
+ "atanhf",
+ "atanhl",
+ "atanl",
+ "atof",
+ "atoi",
+ "atol",
+ "atoll",
+ "bcmp",
+ "bcopy",
+ "bzero",
+ "calloc",
+ "cbrt",
+ "cbrtf",
+ "cbrtl",
+ "ceil",
+ "ceilf",
+ "ceill",
+ "chmod",
+ "chown",
+ "clearerr",
+ "closedir",
+ "copysign",
+ "copysignf",
+ "copysignl",
+ "cos",
+ "cosf",
+ "cosh",
+ "coshf",
+ "coshl",
+ "cosl",
+ "ctermid",
+ "exp",
+ "exp10",
+ "exp10f",
+ "exp10l",
+ "exp2",
+ "exp2f",
+ "exp2l",
+ "expf",
+ "expl",
+ "expm1",
+ "expm1f",
+ "expm1l",
+ "fabs",
+ "fabsf",
+ "fabsl",
+ "fclose",
+ "fdopen",
+ "feof",
+ "ferror",
+ "fflush",
+ "ffs",
+ "ffsl",
+ "ffsll",
+ "fgetc",
+ "fgetpos",
+ "fgets",
+ "fileno",
+ "fiprintf",
+ "flockfile",
+ "floor",
+ "floorf",
+ "floorl",
+ "fmax",
+ "fmaxf",
+ "fmaxl",
+ "fmin",
+ "fminf",
+ "fminl",
+ "fmod",
+ "fmodf",
+ "fmodl",
+ "fopen",
+ "fopen64",
+ "fprintf",
+ "fputc",
+ "fputs",
+ "fread",
+ "free",
+ "frexp",
+ "frexpf",
+ "frexpl",
+ "fscanf",
+ "fseek",
+ "fseeko",
+ "fseeko64",
+ "fsetpos",
+ "fstat",
+ "fstat64",
+ "fstatvfs",
+ "fstatvfs64",
+ "ftell",
+ "ftello",
+ "ftello64",
+ "ftrylockfile",
+ "funlockfile",
+ "fwrite",
+ "getc",
+ "getc_unlocked",
+ "getchar",
+ "getenv",
+ "getitimer",
+ "getlogin_r",
+ "getpwnam",
+ "gets",
+ "gettimeofday",
+ "htonl",
+ "htons",
+ "iprintf",
+ "isascii",
+ "isdigit",
+ "labs",
+ "lchown",
+ "ldexp",
+ "ldexpf",
+ "ldexpl",
+ "llabs",
+ "log",
+ "log10",
+ "log10f",
+ "log10l",
+ "log1p",
+ "log1pf",
+ "log1pl",
+ "log2",
+ "log2f",
+ "log2l",
+ "logb",
+ "logbf",
+ "logbl",
+ "logf",
+ "logl",
+ "lstat",
+ "lstat64",
+ "malloc",
+ "memalign",
+ "memccpy",
+ "memchr",
+ "memcmp",
+ "memcpy",
+ "memmove",
+ "memrchr",
+ "memset",
+ "memset_pattern16",
+ "mkdir",
+ "mktime",
+ "modf",
+ "modff",
+ "modfl",
+ "nearbyint",
+ "nearbyintf",
+ "nearbyintl",
+ "ntohl",
+ "ntohs",
+ "open",
+ "open64",
+ "opendir",
+ "pclose",
+ "perror",
+ "popen",
+ "posix_memalign",
+ "pow",
+ "powf",
+ "powl",
+ "pread",
+ "printf",
+ "putc",
+ "putchar",
+ "puts",
+ "pwrite",
+ "qsort",
+ "read",
+ "readlink",
+ "realloc",
+ "reallocf",
+ "realpath",
+ "remove",
+ "rename",
+ "rewind",
+ "rint",
+ "rintf",
+ "rintl",
+ "rmdir",
+ "round",
+ "roundf",
+ "roundl",
+ "scanf",
+ "setbuf",
+ "setitimer",
+ "setvbuf",
+ "sin",
+ "sinf",
+ "sinh",
+ "sinhf",
+ "sinhl",
+ "sinl",
+ "siprintf",
+ "snprintf",
+ "sprintf",
+ "sqrt",
+ "sqrtf",
+ "sqrtl",
+ "sscanf",
+ "stat",
+ "stat64",
+ "statvfs",
+ "statvfs64",
+ "stpcpy",
+ "stpncpy",
+ "strcasecmp",
+ "strcat",
+ "strchr",
+ "strcmp",
+ "strcoll",
+ "strcpy",
+ "strcspn",
+ "strdup",
+ "strlen",
+ "strncasecmp",
+ "strncat",
+ "strncmp",
+ "strncpy",
+ "strndup",
+ "strnlen",
+ "strpbrk",
+ "strrchr",
+ "strspn",
+ "strstr",
+ "strtod",
+ "strtof",
+ "strtok",
+ "strtok_r",
+ "strtol",
+ "strtold",
+ "strtoll",
+ "strtoul",
+ "strtoull",
+ "strxfrm",
+ "system",
+ "tan",
+ "tanf",
+ "tanh",
+ "tanhf",
+ "tanhl",
+ "tanl",
+ "times",
+ "tmpfile",
+ "tmpfile64",
+ "toascii",
+ "trunc",
+ "truncf",
+ "truncl",
+ "uname",
+ "ungetc",
+ "unlink",
+ "unsetenv",
+ "utime",
+ "utimes",
+ "valloc",
+ "vfprintf",
+ "vfscanf",
+ "vprintf",
+ "vscanf",
+ "vsnprintf",
+ "vsprintf",
+ "vsscanf",
+ "write"
+ };
+
+static bool hasSinCosPiStret(const Triple &T) {
+ // Only Darwin variants have _stret versions of combined trig functions.
+ if (!T.isMacOSX() && T.getOS() != Triple::IOS)
+ return false;
+
+ // The ABI is rather complicated on x86, so don't do anything special there.
+ if (T.getArch() == Triple::x86)
+ return false;
+
+ if (T.isMacOSX() && T.isMacOSXVersionLT(10, 9))
+ return false;
+
+ if (T.getOS() == Triple::IOS && T.isOSVersionLT(7, 0))
+ return false;
+
+ return true;
+}
+
+/// initialize - Initialize the set of available library functions based on the
+/// specified target triple. This should be carefully written so that a missing
+/// target triple gets a sane set of defaults.
+static void initialize(TargetLibraryInfo &TLI, const Triple &T,
+ const char **StandardNames) {
+ initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
+
+#ifndef NDEBUG
+ // Verify that the StandardNames array is in alphabetical order.
+ for (unsigned F = 1; F < LibFunc::NumLibFuncs; ++F) {
+ if (strcmp(StandardNames[F-1], StandardNames[F]) >= 0)
+ llvm_unreachable("TargetLibraryInfo function names must be sorted");
+ }
+#endif // !NDEBUG
+
+ // There are no library implementations of mempcy and memset for r600 and
+ // these can be difficult to lower in the backend.
+ if (T.getArch() == Triple::r600) {
+ TLI.setUnavailable(LibFunc::memcpy);
+ TLI.setUnavailable(LibFunc::memset);
+ TLI.setUnavailable(LibFunc::memset_pattern16);
+ return;
+ }
+
+ // memset_pattern16 is only available on iOS 3.0 and Mac OS X 10.5 and later.
+ if (T.isMacOSX()) {
+ if (T.isMacOSXVersionLT(10, 5))
+ TLI.setUnavailable(LibFunc::memset_pattern16);
+ } else if (T.isiOS()) {
+ if (T.isOSVersionLT(3, 0))
+ TLI.setUnavailable(LibFunc::memset_pattern16);
+ } else {
+ TLI.setUnavailable(LibFunc::memset_pattern16);
+ }
+
+ if (!hasSinCosPiStret(T)) {
+ TLI.setUnavailable(LibFunc::sinpi);
+ TLI.setUnavailable(LibFunc::sinpif);
+ TLI.setUnavailable(LibFunc::cospi);
+ TLI.setUnavailable(LibFunc::cospif);
+ TLI.setUnavailable(LibFunc::sincospi_stret);
+ TLI.setUnavailable(LibFunc::sincospif_stret);
+ }
+
+ if (T.isMacOSX() && T.getArch() == Triple::x86 &&
+ !T.isMacOSXVersionLT(10, 7)) {
+ // x86-32 OSX has a scheme where fwrite and fputs (and some other functions
+ // we don't care about) have two versions; on recent OSX, the one we want
+ // has a $UNIX2003 suffix. The two implementations are identical except
+ // for the return value in some edge cases. However, we don't want to
+ // generate code that depends on the old symbols.
+ TLI.setAvailableWithName(LibFunc::fwrite, "fwrite$UNIX2003");
+ TLI.setAvailableWithName(LibFunc::fputs, "fputs$UNIX2003");
+ }
+
+ // iprintf and friends are only available on XCore and TCE.
+ if (T.getArch() != Triple::xcore && T.getArch() != Triple::tce) {
+ TLI.setUnavailable(LibFunc::iprintf);
+ TLI.setUnavailable(LibFunc::siprintf);
+ TLI.setUnavailable(LibFunc::fiprintf);
+ }
+
+ if (T.isOSWindows() && !T.isOSCygMing()) {
+ // Win32 does not support long double
+ TLI.setUnavailable(LibFunc::acosl);
+ TLI.setUnavailable(LibFunc::asinl);
+ TLI.setUnavailable(LibFunc::atanl);
+ TLI.setUnavailable(LibFunc::atan2l);
+ TLI.setUnavailable(LibFunc::ceill);
+ TLI.setUnavailable(LibFunc::copysignl);
+ TLI.setUnavailable(LibFunc::cosl);
+ TLI.setUnavailable(LibFunc::coshl);
+ TLI.setUnavailable(LibFunc::expl);
+ TLI.setUnavailable(LibFunc::fabsf); // Win32 and Win64 both lack fabsf
+ TLI.setUnavailable(LibFunc::fabsl);
+ TLI.setUnavailable(LibFunc::floorl);
+ TLI.setUnavailable(LibFunc::fmaxl);
+ TLI.setUnavailable(LibFunc::fminl);
+ TLI.setUnavailable(LibFunc::fmodl);
+ TLI.setUnavailable(LibFunc::frexpl);
+ TLI.setUnavailable(LibFunc::ldexpf);
+ TLI.setUnavailable(LibFunc::ldexpl);
+ TLI.setUnavailable(LibFunc::logl);
+ TLI.setUnavailable(LibFunc::modfl);
+ TLI.setUnavailable(LibFunc::powl);
+ TLI.setUnavailable(LibFunc::sinl);
+ TLI.setUnavailable(LibFunc::sinhl);
+ TLI.setUnavailable(LibFunc::sqrtl);
+ TLI.setUnavailable(LibFunc::tanl);
+ TLI.setUnavailable(LibFunc::tanhl);
+
+ // Win32 only has C89 math
+ TLI.setUnavailable(LibFunc::acosh);
+ TLI.setUnavailable(LibFunc::acoshf);
+ TLI.setUnavailable(LibFunc::acoshl);
+ TLI.setUnavailable(LibFunc::asinh);
+ TLI.setUnavailable(LibFunc::asinhf);
+ TLI.setUnavailable(LibFunc::asinhl);
+ TLI.setUnavailable(LibFunc::atanh);
+ TLI.setUnavailable(LibFunc::atanhf);
+ TLI.setUnavailable(LibFunc::atanhl);
+ TLI.setUnavailable(LibFunc::cbrt);
+ TLI.setUnavailable(LibFunc::cbrtf);
+ TLI.setUnavailable(LibFunc::cbrtl);
+ TLI.setUnavailable(LibFunc::exp2);
+ TLI.setUnavailable(LibFunc::exp2f);
+ TLI.setUnavailable(LibFunc::exp2l);
+ TLI.setUnavailable(LibFunc::expm1);
+ TLI.setUnavailable(LibFunc::expm1f);
+ TLI.setUnavailable(LibFunc::expm1l);
+ TLI.setUnavailable(LibFunc::log2);
+ TLI.setUnavailable(LibFunc::log2f);
+ TLI.setUnavailable(LibFunc::log2l);
+ TLI.setUnavailable(LibFunc::log1p);
+ TLI.setUnavailable(LibFunc::log1pf);
+ TLI.setUnavailable(LibFunc::log1pl);
+ TLI.setUnavailable(LibFunc::logb);
+ TLI.setUnavailable(LibFunc::logbf);
+ TLI.setUnavailable(LibFunc::logbl);
+ TLI.setUnavailable(LibFunc::nearbyint);
+ TLI.setUnavailable(LibFunc::nearbyintf);
+ TLI.setUnavailable(LibFunc::nearbyintl);
+ TLI.setUnavailable(LibFunc::rint);
+ TLI.setUnavailable(LibFunc::rintf);
+ TLI.setUnavailable(LibFunc::rintl);
+ TLI.setUnavailable(LibFunc::round);
+ TLI.setUnavailable(LibFunc::roundf);
+ TLI.setUnavailable(LibFunc::roundl);
+ TLI.setUnavailable(LibFunc::trunc);
+ TLI.setUnavailable(LibFunc::truncf);
+ TLI.setUnavailable(LibFunc::truncl);
+
+ // Win32 provides some C99 math with mangled names
+ TLI.setAvailableWithName(LibFunc::copysign, "_copysign");
+
+ if (T.getArch() == Triple::x86) {
+ // Win32 on x86 implements single-precision math functions as macros
+ TLI.setUnavailable(LibFunc::acosf);
+ TLI.setUnavailable(LibFunc::asinf);
+ TLI.setUnavailable(LibFunc::atanf);
+ TLI.setUnavailable(LibFunc::atan2f);
+ TLI.setUnavailable(LibFunc::ceilf);
+ TLI.setUnavailable(LibFunc::copysignf);
+ TLI.setUnavailable(LibFunc::cosf);
+ TLI.setUnavailable(LibFunc::coshf);
+ TLI.setUnavailable(LibFunc::expf);
+ TLI.setUnavailable(LibFunc::floorf);
+ TLI.setUnavailable(LibFunc::fminf);
+ TLI.setUnavailable(LibFunc::fmaxf);
+ TLI.setUnavailable(LibFunc::fmodf);
+ TLI.setUnavailable(LibFunc::logf);
+ TLI.setUnavailable(LibFunc::powf);
+ TLI.setUnavailable(LibFunc::sinf);
+ TLI.setUnavailable(LibFunc::sinhf);
+ TLI.setUnavailable(LibFunc::sqrtf);
+ TLI.setUnavailable(LibFunc::tanf);
+ TLI.setUnavailable(LibFunc::tanhf);
+ }
+
+ // Win32 does *not* provide provide these functions, but they are
+ // generally available on POSIX-compliant systems:
+ TLI.setUnavailable(LibFunc::access);
+ TLI.setUnavailable(LibFunc::bcmp);
+ TLI.setUnavailable(LibFunc::bcopy);
+ TLI.setUnavailable(LibFunc::bzero);
+ TLI.setUnavailable(LibFunc::chmod);
+ TLI.setUnavailable(LibFunc::chown);
+ TLI.setUnavailable(LibFunc::closedir);
+ TLI.setUnavailable(LibFunc::ctermid);
+ TLI.setUnavailable(LibFunc::fdopen);
+ TLI.setUnavailable(LibFunc::ffs);
+ TLI.setUnavailable(LibFunc::fileno);
+ TLI.setUnavailable(LibFunc::flockfile);
+ TLI.setUnavailable(LibFunc::fseeko);
+ TLI.setUnavailable(LibFunc::fstat);
+ TLI.setUnavailable(LibFunc::fstatvfs);
+ TLI.setUnavailable(LibFunc::ftello);
+ TLI.setUnavailable(LibFunc::ftrylockfile);
+ TLI.setUnavailable(LibFunc::funlockfile);
+ TLI.setUnavailable(LibFunc::getc_unlocked);
+ TLI.setUnavailable(LibFunc::getitimer);
+ TLI.setUnavailable(LibFunc::getlogin_r);
+ TLI.setUnavailable(LibFunc::getpwnam);
+ TLI.setUnavailable(LibFunc::gettimeofday);
+ TLI.setUnavailable(LibFunc::htonl);
+ TLI.setUnavailable(LibFunc::htons);
+ TLI.setUnavailable(LibFunc::lchown);
+ TLI.setUnavailable(LibFunc::lstat);
+ TLI.setUnavailable(LibFunc::memccpy);
+ TLI.setUnavailable(LibFunc::mkdir);
+ TLI.setUnavailable(LibFunc::ntohl);
+ TLI.setUnavailable(LibFunc::ntohs);
+ TLI.setUnavailable(LibFunc::open);
+ TLI.setUnavailable(LibFunc::opendir);
+ TLI.setUnavailable(LibFunc::pclose);
+ TLI.setUnavailable(LibFunc::popen);
+ TLI.setUnavailable(LibFunc::pread);
+ TLI.setUnavailable(LibFunc::pwrite);
+ TLI.setUnavailable(LibFunc::read);
+ TLI.setUnavailable(LibFunc::readlink);
+ TLI.setUnavailable(LibFunc::realpath);
+ TLI.setUnavailable(LibFunc::rmdir);
+ TLI.setUnavailable(LibFunc::setitimer);
+ TLI.setUnavailable(LibFunc::stat);
+ TLI.setUnavailable(LibFunc::statvfs);
+ TLI.setUnavailable(LibFunc::stpcpy);
+ TLI.setUnavailable(LibFunc::stpncpy);
+ TLI.setUnavailable(LibFunc::strcasecmp);
+ TLI.setUnavailable(LibFunc::strncasecmp);
+ TLI.setUnavailable(LibFunc::times);
+ TLI.setUnavailable(LibFunc::uname);
+ TLI.setUnavailable(LibFunc::unlink);
+ TLI.setUnavailable(LibFunc::unsetenv);
+ TLI.setUnavailable(LibFunc::utime);
+ TLI.setUnavailable(LibFunc::utimes);
+ TLI.setUnavailable(LibFunc::write);
+
+ // Win32 does *not* provide provide these functions, but they are
+ // specified by C99:
+ TLI.setUnavailable(LibFunc::atoll);
+ TLI.setUnavailable(LibFunc::frexpf);
+ TLI.setUnavailable(LibFunc::llabs);
+ }
+
+ switch (T.getOS()) {
+ case Triple::MacOSX:
+ // exp10 and exp10f are not available on OS X until 10.9 and iOS until 7.0
+ // and their names are __exp10 and __exp10f. exp10l is not available on
+ // OS X or iOS.
+ TLI.setUnavailable(LibFunc::exp10l);
+ if (T.isMacOSXVersionLT(10, 9)) {
+ TLI.setUnavailable(LibFunc::exp10);
+ TLI.setUnavailable(LibFunc::exp10f);
+ } else {
+ TLI.setAvailableWithName(LibFunc::exp10, "__exp10");
+ TLI.setAvailableWithName(LibFunc::exp10f, "__exp10f");
+ }
+ break;
+ case Triple::IOS:
+ TLI.setUnavailable(LibFunc::exp10l);
+ if (T.isOSVersionLT(7, 0)) {
+ TLI.setUnavailable(LibFunc::exp10);
+ TLI.setUnavailable(LibFunc::exp10f);
+ } else {
+ TLI.setAvailableWithName(LibFunc::exp10, "__exp10");
+ TLI.setAvailableWithName(LibFunc::exp10f, "__exp10f");
+ }
+ break;
+ case Triple::Linux:
+ // exp10, exp10f, exp10l is available on Linux (GLIBC) but are extremely
+ // buggy prior to glibc version 2.18. Until this version is widely deployed
+ // or we have a reasonable detection strategy, we cannot use exp10 reliably
+ // on Linux.
+ //
+ // Fall through to disable all of them.
+ default:
+ TLI.setUnavailable(LibFunc::exp10);
+ TLI.setUnavailable(LibFunc::exp10f);
+ TLI.setUnavailable(LibFunc::exp10l);
+ }
+
+ // ffsl is available on at least Darwin, Mac OS X, iOS, FreeBSD, and
+ // Linux (GLIBC):
+ // http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man3/ffsl.3.html
+ // http://svn.freebsd.org/base/user/eri/pf45/head/lib/libc/string/ffsl.c
+ // http://www.gnu.org/software/gnulib/manual/html_node/ffsl.html
+ switch (T.getOS()) {
+ case Triple::Darwin:
+ case Triple::MacOSX:
+ case Triple::IOS:
+ case Triple::FreeBSD:
+ case Triple::Linux:
+ break;
+ default:
+ TLI.setUnavailable(LibFunc::ffsl);
+ }
+
+ // ffsll is available on at least FreeBSD and Linux (GLIBC):
+ // http://svn.freebsd.org/base/user/eri/pf45/head/lib/libc/string/ffsll.c
+ // http://www.gnu.org/software/gnulib/manual/html_node/ffsll.html
+ switch (T.getOS()) {
+ case Triple::FreeBSD:
+ case Triple::Linux:
+ break;
+ default:
+ TLI.setUnavailable(LibFunc::ffsll);
+ }
+
+ // The following functions are available on at least Linux:
+ if (!T.isOSLinux()) {
+ TLI.setUnavailable(LibFunc::dunder_strdup);
+ TLI.setUnavailable(LibFunc::dunder_strtok_r);
+ TLI.setUnavailable(LibFunc::dunder_isoc99_scanf);
+ TLI.setUnavailable(LibFunc::dunder_isoc99_sscanf);
+ TLI.setUnavailable(LibFunc::under_IO_getc);
+ TLI.setUnavailable(LibFunc::under_IO_putc);
+ TLI.setUnavailable(LibFunc::memalign);
+ TLI.setUnavailable(LibFunc::fopen64);
+ TLI.setUnavailable(LibFunc::fseeko64);
+ TLI.setUnavailable(LibFunc::fstat64);
+ TLI.setUnavailable(LibFunc::fstatvfs64);
+ TLI.setUnavailable(LibFunc::ftello64);
+ TLI.setUnavailable(LibFunc::lstat64);
+ TLI.setUnavailable(LibFunc::open64);
+ TLI.setUnavailable(LibFunc::stat64);
+ TLI.setUnavailable(LibFunc::statvfs64);
+ TLI.setUnavailable(LibFunc::tmpfile64);
+ }
+}
+
+
+TargetLibraryInfo::TargetLibraryInfo() : ImmutablePass(ID) {
+ // Default to everything being available.
+ memset(AvailableArray, -1, sizeof(AvailableArray));
+
+ initialize(*this, Triple(), StandardNames);
+}
+
+TargetLibraryInfo::TargetLibraryInfo(const Triple &T) : ImmutablePass(ID) {
+ // Default to everything being available.
+ memset(AvailableArray, -1, sizeof(AvailableArray));
+
+ initialize(*this, T, StandardNames);
+}
+
+TargetLibraryInfo::TargetLibraryInfo(const TargetLibraryInfo &TLI)
+ : ImmutablePass(ID) {
+ memcpy(AvailableArray, TLI.AvailableArray, sizeof(AvailableArray));
+ CustomNames = TLI.CustomNames;
+}
+
+namespace {
+struct StringComparator {
+ /// Compare two strings and return true if LHS is lexicographically less than
+ /// RHS. Requires that RHS doesn't contain any zero bytes.
+ bool operator()(const char *LHS, StringRef RHS) const {
+ // Compare prefixes with strncmp. If prefixes match we know that LHS is
+ // greater or equal to RHS as RHS can't contain any '\0'.
+ return std::strncmp(LHS, RHS.data(), RHS.size()) < 0;
+ }
+
+ // Provided for compatibility with MSVC's debug mode.
+ bool operator()(StringRef LHS, const char *RHS) const { return LHS < RHS; }
+ bool operator()(StringRef LHS, StringRef RHS) const { return LHS < RHS; }
+ bool operator()(const char *LHS, const char *RHS) const {
+ return std::strcmp(LHS, RHS) < 0;
+ }
+};
+}
+
+bool TargetLibraryInfo::getLibFunc(StringRef funcName,
+ LibFunc::Func &F) const {
+ const char **Start = &StandardNames[0];
+ const char **End = &StandardNames[LibFunc::NumLibFuncs];
+
+ // Filter out empty names and names containing null bytes, those can't be in
+ // our table.
+ if (funcName.empty() || funcName.find('\0') != StringRef::npos)
+ return false;
+
+ // Check for \01 prefix that is used to mangle __asm declarations and
+ // strip it if present.
+ if (funcName.front() == '\01')
+ funcName = funcName.substr(1);
+ const char **I = std::lower_bound(Start, End, funcName, StringComparator());
+ if (I != End && *I == funcName) {
+ F = (LibFunc::Func)(I - Start);
+ return true;
+ }
+ return false;
+}
+
+/// disableAllFunctions - This disables all builtins, which is used for options
+/// like -fno-builtin.
+void TargetLibraryInfo::disableAllFunctions() {
+ memset(AvailableArray, 0, sizeof(AvailableArray));
+}
diff --git a/contrib/llvm/lib/Target/TargetLoweringObjectFile.cpp b/contrib/llvm/lib/Target/TargetLoweringObjectFile.cpp
new file mode 100644
index 0000000..2569e92
--- /dev/null
+++ b/contrib/llvm/lib/Target/TargetLoweringObjectFile.cpp
@@ -0,0 +1,345 @@
+//===-- llvm/Target/TargetLoweringObjectFile.cpp - Object File Info -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements classes used to handle lowerings specific to common
+// object file formats.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Generic Code
+//===----------------------------------------------------------------------===//
+
+/// Initialize - this method must be called before any actual lowering is
+/// done. This specifies the current context for codegen, and gives the
+/// lowering implementations a chance to set up their default sections.
+void TargetLoweringObjectFile::Initialize(MCContext &ctx,
+ const TargetMachine &TM) {
+ Ctx = &ctx;
+ DL = TM.getDataLayout();
+ InitMCObjectFileInfo(TM.getTargetTriple(),
+ TM.getRelocationModel(), TM.getCodeModel(), *Ctx);
+}
+
+TargetLoweringObjectFile::~TargetLoweringObjectFile() {
+}
+
+static bool isSuitableForBSS(const GlobalVariable *GV, bool NoZerosInBSS) {
+ const Constant *C = GV->getInitializer();
+
+ // Must have zero initializer.
+ if (!C->isNullValue())
+ return false;
+
+ // Leave constant zeros in readonly constant sections, so they can be shared.
+ if (GV->isConstant())
+ return false;
+
+ // If the global has an explicit section specified, don't put it in BSS.
+ if (GV->hasSection())
+ return false;
+
+ // If -nozero-initialized-in-bss is specified, don't ever use BSS.
+ if (NoZerosInBSS)
+ return false;
+
+ // Otherwise, put it in BSS!
+ return true;
+}
+
+/// IsNullTerminatedString - Return true if the specified constant (which is
+/// known to have a type that is an array of 1/2/4 byte elements) ends with a
+/// nul value and contains no other nuls in it. Note that this is more general
+/// than ConstantDataSequential::isString because we allow 2 & 4 byte strings.
+static bool IsNullTerminatedString(const Constant *C) {
+ // First check: is we have constant array terminated with zero
+ if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(C)) {
+ unsigned NumElts = CDS->getNumElements();
+ assert(NumElts != 0 && "Can't have an empty CDS");
+
+ if (CDS->getElementAsInteger(NumElts-1) != 0)
+ return false; // Not null terminated.
+
+ // Verify that the null doesn't occur anywhere else in the string.
+ for (unsigned i = 0; i != NumElts-1; ++i)
+ if (CDS->getElementAsInteger(i) == 0)
+ return false;
+ return true;
+ }
+
+ // Another possibility: [1 x i8] zeroinitializer
+ if (isa<ConstantAggregateZero>(C))
+ return cast<ArrayType>(C->getType())->getNumElements() == 1;
+
+ return false;
+}
+
+MCSymbol *TargetLoweringObjectFile::getSymbolWithGlobalValueBase(
+ const GlobalValue *GV, StringRef Suffix, Mangler &Mang,
+ const TargetMachine &TM) const {
+ assert(!Suffix.empty());
+
+ SmallString<60> NameStr;
+ NameStr += DL->getPrivateGlobalPrefix();
+ TM.getNameWithPrefix(NameStr, GV, Mang);
+ NameStr.append(Suffix.begin(), Suffix.end());
+ return Ctx->GetOrCreateSymbol(NameStr.str());
+}
+
+MCSymbol *TargetLoweringObjectFile::getCFIPersonalitySymbol(
+ const GlobalValue *GV, Mangler &Mang, const TargetMachine &TM,
+ MachineModuleInfo *MMI) const {
+ return TM.getSymbol(GV, Mang);
+}
+
+void TargetLoweringObjectFile::emitPersonalityValue(MCStreamer &Streamer,
+ const TargetMachine &TM,
+ const MCSymbol *Sym) const {
+}
+
+
+/// getKindForGlobal - This is a top-level target-independent classifier for
+/// a global variable. Given an global variable and information from TM, it
+/// classifies the global in a variety of ways that make various target
+/// implementations simpler. The target implementation is free to ignore this
+/// extra info of course.
+SectionKind TargetLoweringObjectFile::getKindForGlobal(const GlobalValue *GV,
+ const TargetMachine &TM){
+ assert(!GV->isDeclaration() && !GV->hasAvailableExternallyLinkage() &&
+ "Can only be used for global definitions");
+
+ Reloc::Model ReloModel = TM.getRelocationModel();
+
+ // Early exit - functions should be always in text sections.
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+ if (!GVar)
+ return SectionKind::getText();
+
+ // Handle thread-local data first.
+ if (GVar->isThreadLocal()) {
+ if (isSuitableForBSS(GVar, TM.Options.NoZerosInBSS))
+ return SectionKind::getThreadBSS();
+ return SectionKind::getThreadData();
+ }
+
+ // Variables with common linkage always get classified as common.
+ if (GVar->hasCommonLinkage())
+ return SectionKind::getCommon();
+
+ // Variable can be easily put to BSS section.
+ if (isSuitableForBSS(GVar, TM.Options.NoZerosInBSS)) {
+ if (GVar->hasLocalLinkage())
+ return SectionKind::getBSSLocal();
+ else if (GVar->hasExternalLinkage())
+ return SectionKind::getBSSExtern();
+ return SectionKind::getBSS();
+ }
+
+ const Constant *C = GVar->getInitializer();
+
+ // If the global is marked constant, we can put it into a mergable section,
+ // a mergable string section, or general .data if it contains relocations.
+ if (GVar->isConstant()) {
+ // If the initializer for the global contains something that requires a
+ // relocation, then we may have to drop this into a writable data section
+ // even though it is marked const.
+ switch (C->getRelocationInfo()) {
+ case Constant::NoRelocation:
+ // If the global is required to have a unique address, it can't be put
+ // into a mergable section: just drop it into the general read-only
+ // section instead.
+ if (!GVar->hasUnnamedAddr())
+ return SectionKind::getReadOnly();
+
+ // If initializer is a null-terminated string, put it in a "cstring"
+ // section of the right width.
+ if (ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
+ if (IntegerType *ITy =
+ dyn_cast<IntegerType>(ATy->getElementType())) {
+ if ((ITy->getBitWidth() == 8 || ITy->getBitWidth() == 16 ||
+ ITy->getBitWidth() == 32) &&
+ IsNullTerminatedString(C)) {
+ if (ITy->getBitWidth() == 8)
+ return SectionKind::getMergeable1ByteCString();
+ if (ITy->getBitWidth() == 16)
+ return SectionKind::getMergeable2ByteCString();
+
+ assert(ITy->getBitWidth() == 32 && "Unknown width");
+ return SectionKind::getMergeable4ByteCString();
+ }
+ }
+ }
+
+ // Otherwise, just drop it into a mergable constant section. If we have
+ // a section for this size, use it, otherwise use the arbitrary sized
+ // mergable section.
+ switch (TM.getDataLayout()->getTypeAllocSize(C->getType())) {
+ case 4: return SectionKind::getMergeableConst4();
+ case 8: return SectionKind::getMergeableConst8();
+ case 16: return SectionKind::getMergeableConst16();
+ default: return SectionKind::getMergeableConst();
+ }
+
+ case Constant::LocalRelocation:
+ // In static relocation model, the linker will resolve all addresses, so
+ // the relocation entries will actually be constants by the time the app
+ // starts up. However, we can't put this into a mergable section, because
+ // the linker doesn't take relocations into consideration when it tries to
+ // merge entries in the section.
+ if (ReloModel == Reloc::Static)
+ return SectionKind::getReadOnly();
+
+ // Otherwise, the dynamic linker needs to fix it up, put it in the
+ // writable data.rel.local section.
+ return SectionKind::getReadOnlyWithRelLocal();
+
+ case Constant::GlobalRelocations:
+ // In static relocation model, the linker will resolve all addresses, so
+ // the relocation entries will actually be constants by the time the app
+ // starts up. However, we can't put this into a mergable section, because
+ // the linker doesn't take relocations into consideration when it tries to
+ // merge entries in the section.
+ if (ReloModel == Reloc::Static)
+ return SectionKind::getReadOnly();
+
+ // Otherwise, the dynamic linker needs to fix it up, put it in the
+ // writable data.rel section.
+ return SectionKind::getReadOnlyWithRel();
+ }
+ }
+
+ // Okay, this isn't a constant. If the initializer for the global is going
+ // to require a runtime relocation by the dynamic linker, put it into a more
+ // specific section to improve startup time of the app. This coalesces these
+ // globals together onto fewer pages, improving the locality of the dynamic
+ // linker.
+ if (ReloModel == Reloc::Static)
+ return SectionKind::getDataNoRel();
+
+ switch (C->getRelocationInfo()) {
+ case Constant::NoRelocation:
+ return SectionKind::getDataNoRel();
+ case Constant::LocalRelocation:
+ return SectionKind::getDataRelLocal();
+ case Constant::GlobalRelocations:
+ return SectionKind::getDataRel();
+ }
+ llvm_unreachable("Invalid relocation");
+}
+
+/// SectionForGlobal - This method computes the appropriate section to emit
+/// the specified global variable or function definition. This should not
+/// be passed external (or available externally) globals.
+const MCSection *TargetLoweringObjectFile::
+SectionForGlobal(const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const {
+ // Select section name.
+ if (GV->hasSection())
+ return getExplicitSectionGlobal(GV, Kind, Mang, TM);
+
+
+ // Use default section depending on the 'type' of global
+ return SelectSectionForGlobal(GV, Kind, Mang, TM);
+}
+
+bool TargetLoweringObjectFile::isSectionAtomizableBySymbols(
+ const MCSection &Section) const {
+ return false;
+}
+
+// Lame default implementation. Calculate the section name for global.
+const MCSection *
+TargetLoweringObjectFile::SelectSectionForGlobal(const GlobalValue *GV,
+ SectionKind Kind,
+ Mangler &Mang,
+ const TargetMachine &TM) const{
+ assert(!Kind.isThreadLocal() && "Doesn't support TLS");
+
+ if (Kind.isText())
+ return getTextSection();
+
+ if (Kind.isBSS() && BSSSection != nullptr)
+ return BSSSection;
+
+ if (Kind.isReadOnly() && ReadOnlySection != nullptr)
+ return ReadOnlySection;
+
+ return getDataSection();
+}
+
+/// getSectionForConstant - Given a mergable constant with the
+/// specified size and relocation information, return a section that it
+/// should be placed in.
+const MCSection *
+TargetLoweringObjectFile::getSectionForConstant(SectionKind Kind,
+ const Constant *C) const {
+ if (Kind.isReadOnly() && ReadOnlySection != nullptr)
+ return ReadOnlySection;
+
+ return DataSection;
+}
+
+/// getTTypeGlobalReference - Return an MCExpr to use for a
+/// reference to the specified global variable from exception
+/// handling information.
+const MCExpr *TargetLoweringObjectFile::getTTypeGlobalReference(
+ const GlobalValue *GV, unsigned Encoding, Mangler &Mang,
+ const TargetMachine &TM, MachineModuleInfo *MMI,
+ MCStreamer &Streamer) const {
+ const MCSymbolRefExpr *Ref =
+ MCSymbolRefExpr::Create(TM.getSymbol(GV, Mang), getContext());
+
+ return getTTypeReference(Ref, Encoding, Streamer);
+}
+
+const MCExpr *TargetLoweringObjectFile::
+getTTypeReference(const MCSymbolRefExpr *Sym, unsigned Encoding,
+ MCStreamer &Streamer) const {
+ switch (Encoding & 0x70) {
+ default:
+ report_fatal_error("We do not support this DWARF encoding yet!");
+ case dwarf::DW_EH_PE_absptr:
+ // Do nothing special
+ return Sym;
+ case dwarf::DW_EH_PE_pcrel: {
+ // Emit a label to the streamer for the current position. This gives us
+ // .-foo addressing.
+ MCSymbol *PCSym = getContext().CreateTempSymbol();
+ Streamer.EmitLabel(PCSym);
+ const MCExpr *PC = MCSymbolRefExpr::Create(PCSym, getContext());
+ return MCBinaryExpr::CreateSub(Sym, PC, getContext());
+ }
+ }
+}
+
+const MCExpr *TargetLoweringObjectFile::getDebugThreadLocalSymbol(const MCSymbol *Sym) const {
+ // FIXME: It's not clear what, if any, default this should have - perhaps a
+ // null return could mean 'no location' & we should just do that here.
+ return MCSymbolRefExpr::Create(Sym, *Ctx);
+}
diff --git a/contrib/llvm/lib/Target/TargetMachine.cpp b/contrib/llvm/lib/Target/TargetMachine.cpp
new file mode 100644
index 0000000..95c8cb6
--- /dev/null
+++ b/contrib/llvm/lib/Target/TargetMachine.cpp
@@ -0,0 +1,198 @@
+//===-- TargetMachine.cpp - General Target Information ---------------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the general parts of a Target machine.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCTargetOptions.h"
+#include "llvm/MC/SectionKind.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+using namespace llvm;
+
+//---------------------------------------------------------------------------
+// TargetMachine Class
+//
+
+TargetMachine::TargetMachine(const Target &T,
+ StringRef TT, StringRef CPU, StringRef FS,
+ const TargetOptions &Options)
+ : TheTarget(T), TargetTriple(TT), TargetCPU(CPU), TargetFS(FS),
+ CodeGenInfo(nullptr), AsmInfo(nullptr),
+ RequireStructuredCFG(false),
+ Options(Options) {
+}
+
+TargetMachine::~TargetMachine() {
+ delete CodeGenInfo;
+ delete AsmInfo;
+}
+
+/// \brief Reset the target options based on the function's attributes.
+void TargetMachine::resetTargetOptions(const MachineFunction *MF) const {
+ const Function *F = MF->getFunction();
+ TargetOptions &TO = MF->getTarget().Options;
+
+#define RESET_OPTION(X, Y) \
+ do { \
+ if (F->hasFnAttribute(Y)) \
+ TO.X = \
+ (F->getAttributes(). \
+ getAttribute(AttributeSet::FunctionIndex, \
+ Y).getValueAsString() == "true"); \
+ } while (0)
+
+ RESET_OPTION(NoFramePointerElim, "no-frame-pointer-elim");
+ RESET_OPTION(LessPreciseFPMADOption, "less-precise-fpmad");
+ RESET_OPTION(UnsafeFPMath, "unsafe-fp-math");
+ RESET_OPTION(NoInfsFPMath, "no-infs-fp-math");
+ RESET_OPTION(NoNaNsFPMath, "no-nans-fp-math");
+ RESET_OPTION(UseSoftFloat, "use-soft-float");
+ RESET_OPTION(DisableTailCalls, "disable-tail-calls");
+
+ TO.MCOptions.SanitizeAddress = F->hasFnAttribute(Attribute::SanitizeAddress);
+}
+
+/// getRelocationModel - Returns the code generation relocation model. The
+/// choices are static, PIC, and dynamic-no-pic, and target default.
+Reloc::Model TargetMachine::getRelocationModel() const {
+ if (!CodeGenInfo)
+ return Reloc::Default;
+ return CodeGenInfo->getRelocationModel();
+}
+
+/// getCodeModel - Returns the code model. The choices are small, kernel,
+/// medium, large, and target default.
+CodeModel::Model TargetMachine::getCodeModel() const {
+ if (!CodeGenInfo)
+ return CodeModel::Default;
+ return CodeGenInfo->getCodeModel();
+}
+
+/// Get the IR-specified TLS model for Var.
+static TLSModel::Model getSelectedTLSModel(const GlobalValue *GV) {
+ switch (GV->getThreadLocalMode()) {
+ case GlobalVariable::NotThreadLocal:
+ llvm_unreachable("getSelectedTLSModel for non-TLS variable");
+ break;
+ case GlobalVariable::GeneralDynamicTLSModel:
+ return TLSModel::GeneralDynamic;
+ case GlobalVariable::LocalDynamicTLSModel:
+ return TLSModel::LocalDynamic;
+ case GlobalVariable::InitialExecTLSModel:
+ return TLSModel::InitialExec;
+ case GlobalVariable::LocalExecTLSModel:
+ return TLSModel::LocalExec;
+ }
+ llvm_unreachable("invalid TLS model");
+}
+
+TLSModel::Model TargetMachine::getTLSModel(const GlobalValue *GV) const {
+ bool isLocal = GV->hasLocalLinkage();
+ bool isDeclaration = GV->isDeclaration();
+ bool isPIC = getRelocationModel() == Reloc::PIC_;
+ bool isPIE = Options.PositionIndependentExecutable;
+ // FIXME: what should we do for protected and internal visibility?
+ // For variables, is internal different from hidden?
+ bool isHidden = GV->hasHiddenVisibility();
+
+ TLSModel::Model Model;
+ if (isPIC && !isPIE) {
+ if (isLocal || isHidden)
+ Model = TLSModel::LocalDynamic;
+ else
+ Model = TLSModel::GeneralDynamic;
+ } else {
+ if (!isDeclaration || isHidden)
+ Model = TLSModel::LocalExec;
+ else
+ Model = TLSModel::InitialExec;
+ }
+
+ // If the user specified a more specific model, use that.
+ TLSModel::Model SelectedModel = getSelectedTLSModel(GV);
+ if (SelectedModel > Model)
+ return SelectedModel;
+
+ return Model;
+}
+
+/// getOptLevel - Returns the optimization level: None, Less,
+/// Default, or Aggressive.
+CodeGenOpt::Level TargetMachine::getOptLevel() const {
+ if (!CodeGenInfo)
+ return CodeGenOpt::Default;
+ return CodeGenInfo->getOptLevel();
+}
+
+void TargetMachine::setOptLevel(CodeGenOpt::Level Level) const {
+ if (CodeGenInfo)
+ CodeGenInfo->setOptLevel(Level);
+}
+
+bool TargetMachine::getAsmVerbosityDefault() const {
+ return Options.MCOptions.AsmVerbose;
+}
+
+void TargetMachine::setAsmVerbosityDefault(bool V) {
+ Options.MCOptions.AsmVerbose = V;
+}
+
+bool TargetMachine::getFunctionSections() const {
+ return Options.FunctionSections;
+}
+
+bool TargetMachine::getDataSections() const {
+ return Options.DataSections;
+}
+
+void TargetMachine::setFunctionSections(bool V) {
+ Options.FunctionSections = V;
+}
+
+void TargetMachine::setDataSections(bool V) {
+ Options.DataSections = V;
+}
+
+void TargetMachine::getNameWithPrefix(SmallVectorImpl<char> &Name,
+ const GlobalValue *GV, Mangler &Mang,
+ bool MayAlwaysUsePrivate) const {
+ if (MayAlwaysUsePrivate || !GV->hasPrivateLinkage()) {
+ // Simple case: If GV is not private, it is not important to find out if
+ // private labels are legal in this case or not.
+ Mang.getNameWithPrefix(Name, GV, false);
+ return;
+ }
+ SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, *this);
+ const TargetLoweringObjectFile &TLOF =
+ getTargetLowering()->getObjFileLowering();
+ const MCSection *TheSection = TLOF.SectionForGlobal(GV, GVKind, Mang, *this);
+ bool CannotUsePrivateLabel = TLOF.isSectionAtomizableBySymbols(*TheSection);
+ Mang.getNameWithPrefix(Name, GV, CannotUsePrivateLabel);
+}
+
+MCSymbol *TargetMachine::getSymbol(const GlobalValue *GV, Mangler &Mang) const {
+ SmallString<60> NameStr;
+ getNameWithPrefix(NameStr, GV, Mang);
+ const TargetLoweringObjectFile &TLOF =
+ getTargetLowering()->getObjFileLowering();
+ return TLOF.getContext().GetOrCreateSymbol(NameStr.str());
+}
diff --git a/contrib/llvm/lib/Target/TargetMachineC.cpp b/contrib/llvm/lib/Target/TargetMachineC.cpp
new file mode 100644
index 0000000..20923c9
--- /dev/null
+++ b/contrib/llvm/lib/Target/TargetMachineC.cpp
@@ -0,0 +1,258 @@
+//===-- TargetMachine.cpp -------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LLVM-C part of TargetMachine.h
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm-c/TargetMachine.h"
+#include "llvm-c/Core.h"
+#include "llvm-c/Target.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cassert>
+#include <cstdlib>
+#include <cstring>
+
+using namespace llvm;
+
+inline TargetMachine *unwrap(LLVMTargetMachineRef P) {
+ return reinterpret_cast<TargetMachine*>(P);
+}
+inline Target *unwrap(LLVMTargetRef P) {
+ return reinterpret_cast<Target*>(P);
+}
+inline LLVMTargetMachineRef wrap(const TargetMachine *P) {
+ return
+ reinterpret_cast<LLVMTargetMachineRef>(const_cast<TargetMachine*>(P));
+}
+inline LLVMTargetRef wrap(const Target * P) {
+ return reinterpret_cast<LLVMTargetRef>(const_cast<Target*>(P));
+}
+
+LLVMTargetRef LLVMGetFirstTarget() {
+ if(TargetRegistry::begin() == TargetRegistry::end()) {
+ return nullptr;
+ }
+
+ const Target* target = &*TargetRegistry::begin();
+ return wrap(target);
+}
+LLVMTargetRef LLVMGetNextTarget(LLVMTargetRef T) {
+ return wrap(unwrap(T)->getNext());
+}
+
+LLVMTargetRef LLVMGetTargetFromName(const char *Name) {
+ StringRef NameRef = Name;
+ for (TargetRegistry::iterator IT = TargetRegistry::begin(),
+ IE = TargetRegistry::end(); IT != IE; ++IT) {
+ if (IT->getName() == NameRef)
+ return wrap(&*IT);
+ }
+
+ return nullptr;
+}
+
+LLVMBool LLVMGetTargetFromTriple(const char* TripleStr, LLVMTargetRef *T,
+ char **ErrorMessage) {
+ std::string Error;
+
+ *T = wrap(TargetRegistry::lookupTarget(TripleStr, Error));
+
+ if (!*T) {
+ if (ErrorMessage)
+ *ErrorMessage = strdup(Error.c_str());
+
+ return 1;
+ }
+
+ return 0;
+}
+
+const char * LLVMGetTargetName(LLVMTargetRef T) {
+ return unwrap(T)->getName();
+}
+
+const char * LLVMGetTargetDescription(LLVMTargetRef T) {
+ return unwrap(T)->getShortDescription();
+}
+
+LLVMBool LLVMTargetHasJIT(LLVMTargetRef T) {
+ return unwrap(T)->hasJIT();
+}
+
+LLVMBool LLVMTargetHasTargetMachine(LLVMTargetRef T) {
+ return unwrap(T)->hasTargetMachine();
+}
+
+LLVMBool LLVMTargetHasAsmBackend(LLVMTargetRef T) {
+ return unwrap(T)->hasMCAsmBackend();
+}
+
+LLVMTargetMachineRef LLVMCreateTargetMachine(LLVMTargetRef T,
+ const char* Triple, const char* CPU, const char* Features,
+ LLVMCodeGenOptLevel Level, LLVMRelocMode Reloc,
+ LLVMCodeModel CodeModel) {
+ Reloc::Model RM;
+ switch (Reloc){
+ case LLVMRelocStatic:
+ RM = Reloc::Static;
+ break;
+ case LLVMRelocPIC:
+ RM = Reloc::PIC_;
+ break;
+ case LLVMRelocDynamicNoPic:
+ RM = Reloc::DynamicNoPIC;
+ break;
+ default:
+ RM = Reloc::Default;
+ break;
+ }
+
+ CodeModel::Model CM = unwrap(CodeModel);
+
+ CodeGenOpt::Level OL;
+ switch (Level) {
+ case LLVMCodeGenLevelNone:
+ OL = CodeGenOpt::None;
+ break;
+ case LLVMCodeGenLevelLess:
+ OL = CodeGenOpt::Less;
+ break;
+ case LLVMCodeGenLevelAggressive:
+ OL = CodeGenOpt::Aggressive;
+ break;
+ default:
+ OL = CodeGenOpt::Default;
+ break;
+ }
+
+ TargetOptions opt;
+ return wrap(unwrap(T)->createTargetMachine(Triple, CPU, Features, opt, RM,
+ CM, OL));
+}
+
+
+void LLVMDisposeTargetMachine(LLVMTargetMachineRef T) {
+ delete unwrap(T);
+}
+
+LLVMTargetRef LLVMGetTargetMachineTarget(LLVMTargetMachineRef T) {
+ const Target* target = &(unwrap(T)->getTarget());
+ return wrap(target);
+}
+
+char* LLVMGetTargetMachineTriple(LLVMTargetMachineRef T) {
+ std::string StringRep = unwrap(T)->getTargetTriple();
+ return strdup(StringRep.c_str());
+}
+
+char* LLVMGetTargetMachineCPU(LLVMTargetMachineRef T) {
+ std::string StringRep = unwrap(T)->getTargetCPU();
+ return strdup(StringRep.c_str());
+}
+
+char* LLVMGetTargetMachineFeatureString(LLVMTargetMachineRef T) {
+ std::string StringRep = unwrap(T)->getTargetFeatureString();
+ return strdup(StringRep.c_str());
+}
+
+LLVMTargetDataRef LLVMGetTargetMachineData(LLVMTargetMachineRef T) {
+ return wrap(unwrap(T)->getDataLayout());
+}
+
+void LLVMSetTargetMachineAsmVerbosity(LLVMTargetMachineRef T,
+ LLVMBool VerboseAsm) {
+ unwrap(T)->setAsmVerbosityDefault(VerboseAsm);
+}
+
+static LLVMBool LLVMTargetMachineEmit(LLVMTargetMachineRef T, LLVMModuleRef M,
+ formatted_raw_ostream &OS, LLVMCodeGenFileType codegen, char **ErrorMessage) {
+ TargetMachine* TM = unwrap(T);
+ Module* Mod = unwrap(M);
+
+ PassManager pass;
+
+ std::string error;
+
+ const DataLayout* td = TM->getDataLayout();
+
+ if (!td) {
+ error = "No DataLayout in TargetMachine";
+ *ErrorMessage = strdup(error.c_str());
+ return true;
+ }
+ Mod->setDataLayout(td);
+ pass.add(new DataLayoutPass(Mod));
+
+ TargetMachine::CodeGenFileType ft;
+ switch (codegen) {
+ case LLVMAssemblyFile:
+ ft = TargetMachine::CGFT_AssemblyFile;
+ break;
+ default:
+ ft = TargetMachine::CGFT_ObjectFile;
+ break;
+ }
+ if (TM->addPassesToEmitFile(pass, OS, ft)) {
+ error = "TargetMachine can't emit a file of this type";
+ *ErrorMessage = strdup(error.c_str());
+ return true;
+ }
+
+ pass.run(*Mod);
+
+ OS.flush();
+ return false;
+}
+
+LLVMBool LLVMTargetMachineEmitToFile(LLVMTargetMachineRef T, LLVMModuleRef M,
+ char* Filename, LLVMCodeGenFileType codegen, char** ErrorMessage) {
+ std::string error;
+ raw_fd_ostream dest(Filename, error, sys::fs::F_None);
+ if (!error.empty()) {
+ *ErrorMessage = strdup(error.c_str());
+ return true;
+ }
+ formatted_raw_ostream destf(dest);
+ bool Result = LLVMTargetMachineEmit(T, M, destf, codegen, ErrorMessage);
+ dest.flush();
+ return Result;
+}
+
+LLVMBool LLVMTargetMachineEmitToMemoryBuffer(LLVMTargetMachineRef T,
+ LLVMModuleRef M, LLVMCodeGenFileType codegen, char** ErrorMessage,
+ LLVMMemoryBufferRef *OutMemBuf) {
+ std::string CodeString;
+ raw_string_ostream OStream(CodeString);
+ formatted_raw_ostream Out(OStream);
+ bool Result = LLVMTargetMachineEmit(T, M, Out, codegen, ErrorMessage);
+ OStream.flush();
+
+ std::string &Data = OStream.str();
+ *OutMemBuf = LLVMCreateMemoryBufferWithMemoryRangeCopy(Data.c_str(),
+ Data.length(), "");
+ return Result;
+}
+
+char *LLVMGetDefaultTargetTriple(void) {
+ return strdup(sys::getDefaultTargetTriple().c_str());
+}
+
+void LLVMAddAnalysisPasses(LLVMTargetMachineRef T, LLVMPassManagerRef PM) {
+ unwrap(T)->addAnalysisPasses(*unwrap(PM));
+}
diff --git a/contrib/llvm/lib/Target/TargetSubtargetInfo.cpp b/contrib/llvm/lib/Target/TargetSubtargetInfo.cpp
new file mode 100644
index 0000000..386a813
--- /dev/null
+++ b/contrib/llvm/lib/Target/TargetSubtargetInfo.cpp
@@ -0,0 +1,61 @@
+//===-- TargetSubtargetInfo.cpp - General Target Information ---------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the general parts of a Subtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/CommandLine.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+using namespace llvm;
+
+//---------------------------------------------------------------------------
+// TargetSubtargetInfo Class
+//
+TargetSubtargetInfo::TargetSubtargetInfo() {}
+
+TargetSubtargetInfo::~TargetSubtargetInfo() {}
+
+// Temporary option to compare overall performance change when moving from the
+// SD scheduler to the MachineScheduler pass pipeline. This is convenient for
+// benchmarking during the transition from SD to MI scheduling. Once armv7 makes
+// the switch, it should go away. The normal way to enable/disable the
+// MachineScheduling pass itself is by using -enable-misched. For targets that
+// already use MI sched (via MySubTarget::enableMachineScheduler())
+// -misched-bench=false negates the subtarget hook.
+static cl::opt<bool> BenchMachineSched("misched-bench", cl::Hidden,
+ cl::desc("Migrate from the target's default SD scheduler to MI scheduler"));
+
+bool TargetSubtargetInfo::useMachineScheduler() const {
+ if (BenchMachineSched.getNumOccurrences())
+ return BenchMachineSched;
+ return enableMachineScheduler();
+}
+
+bool TargetSubtargetInfo::enableAtomicExpandLoadLinked() const {
+ return true;
+}
+
+bool TargetSubtargetInfo::enableMachineScheduler() const {
+ return false;
+}
+
+bool TargetSubtargetInfo::enableRALocalReassignment(
+ CodeGenOpt::Level OptLevel) const {
+ return true;
+}
+
+bool TargetSubtargetInfo::enablePostMachineScheduler() const {
+ return getSchedModel()->PostRAScheduler;
+}
+
+bool TargetSubtargetInfo::useAA() const {
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.cpp b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.cpp
new file mode 100644
index 0000000..a365f62
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.cpp
@@ -0,0 +1,507 @@
+//===-- X86AsmInstrumentation.cpp - Instrument X86 inline assembly C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "X86AsmInstrumentation.h"
+#include "X86Operand.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstBuilder.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/MC/MCTargetOptions.h"
+#include "llvm/Support/CommandLine.h"
+
+namespace llvm {
+namespace {
+
+static cl::opt<bool> ClAsanInstrumentAssembly(
+ "asan-instrument-assembly",
+ cl::desc("instrument assembly with AddressSanitizer checks"), cl::Hidden,
+ cl::init(false));
+
+bool IsStackReg(unsigned Reg) {
+ return Reg == X86::RSP || Reg == X86::ESP || Reg == X86::SP;
+}
+
+std::string FuncName(unsigned AccessSize, bool IsWrite) {
+ return std::string("__asan_report_") + (IsWrite ? "store" : "load") +
+ utostr(AccessSize);
+}
+
+class X86AddressSanitizer : public X86AsmInstrumentation {
+public:
+ X86AddressSanitizer(const MCSubtargetInfo &STI) : STI(STI) {}
+ virtual ~X86AddressSanitizer() {}
+
+ // X86AsmInstrumentation implementation:
+ virtual void InstrumentInstruction(
+ const MCInst &Inst, OperandVector &Operands, MCContext &Ctx,
+ const MCInstrInfo &MII, MCStreamer &Out) override {
+ InstrumentMOV(Inst, Operands, Ctx, MII, Out);
+ }
+
+ // Should be implemented differently in x86_32 and x86_64 subclasses.
+ virtual void InstrumentMemOperandSmallImpl(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out) = 0;
+ virtual void InstrumentMemOperandLargeImpl(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out) = 0;
+
+ void InstrumentMemOperand(MCParsedAsmOperand &Op, unsigned AccessSize,
+ bool IsWrite, MCContext &Ctx, MCStreamer &Out);
+ void InstrumentMOV(const MCInst &Inst, OperandVector &Operands,
+ MCContext &Ctx, const MCInstrInfo &MII, MCStreamer &Out);
+ void EmitInstruction(MCStreamer &Out, const MCInst &Inst) {
+ Out.EmitInstruction(Inst, STI);
+ }
+
+ void EmitLabel(MCStreamer &Out, MCSymbol *Label) { Out.EmitLabel(Label); }
+
+protected:
+ const MCSubtargetInfo &STI;
+};
+
+void X86AddressSanitizer::InstrumentMemOperand(
+ MCParsedAsmOperand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out) {
+ assert(Op.isMem() && "Op should be a memory operand.");
+ assert((AccessSize & (AccessSize - 1)) == 0 && AccessSize <= 16 &&
+ "AccessSize should be a power of two, less or equal than 16.");
+
+ X86Operand &MemOp = static_cast<X86Operand &>(Op);
+ // FIXME: get rid of this limitation.
+ if (IsStackReg(MemOp.getMemBaseReg()) || IsStackReg(MemOp.getMemIndexReg()))
+ return;
+
+ // FIXME: take into account load/store alignment.
+ if (AccessSize < 8)
+ InstrumentMemOperandSmallImpl(MemOp, AccessSize, IsWrite, Ctx, Out);
+ else
+ InstrumentMemOperandLargeImpl(MemOp, AccessSize, IsWrite, Ctx, Out);
+}
+
+void X86AddressSanitizer::InstrumentMOV(
+ const MCInst &Inst, OperandVector &Operands, MCContext &Ctx,
+ const MCInstrInfo &MII, MCStreamer &Out) {
+ // Access size in bytes.
+ unsigned AccessSize = 0;
+
+ switch (Inst.getOpcode()) {
+ case X86::MOV8mi:
+ case X86::MOV8mr:
+ case X86::MOV8rm:
+ AccessSize = 1;
+ break;
+ case X86::MOV16mi:
+ case X86::MOV16mr:
+ case X86::MOV16rm:
+ AccessSize = 2;
+ break;
+ case X86::MOV32mi:
+ case X86::MOV32mr:
+ case X86::MOV32rm:
+ AccessSize = 4;
+ break;
+ case X86::MOV64mi32:
+ case X86::MOV64mr:
+ case X86::MOV64rm:
+ AccessSize = 8;
+ break;
+ case X86::MOVAPDmr:
+ case X86::MOVAPSmr:
+ case X86::MOVAPDrm:
+ case X86::MOVAPSrm:
+ AccessSize = 16;
+ break;
+ default:
+ return;
+ }
+
+ const bool IsWrite = MII.get(Inst.getOpcode()).mayStore();
+ for (unsigned Ix = 0; Ix < Operands.size(); ++Ix) {
+ assert(Operands[Ix]);
+ MCParsedAsmOperand &Op = *Operands[Ix];
+ if (Op.isMem())
+ InstrumentMemOperand(Op, AccessSize, IsWrite, Ctx, Out);
+ }
+}
+
+class X86AddressSanitizer32 : public X86AddressSanitizer {
+public:
+ static const long kShadowOffset = 0x20000000;
+
+ X86AddressSanitizer32(const MCSubtargetInfo &STI)
+ : X86AddressSanitizer(STI) {}
+ virtual ~X86AddressSanitizer32() {}
+
+ virtual void InstrumentMemOperandSmallImpl(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out) override;
+ virtual void InstrumentMemOperandLargeImpl(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out) override;
+
+ private:
+ void EmitCallAsanReport(MCContext &Ctx, MCStreamer &Out, unsigned AccessSize,
+ bool IsWrite, unsigned AddressReg) {
+ EmitInstruction(Out, MCInstBuilder(X86::CLD));
+ EmitInstruction(Out, MCInstBuilder(X86::MMX_EMMS));
+
+ EmitInstruction(Out, MCInstBuilder(X86::AND64ri8).addReg(X86::ESP)
+ .addReg(X86::ESP).addImm(-16));
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(AddressReg));
+
+
+ const std::string& Fn = FuncName(AccessSize, IsWrite);
+ MCSymbol *FnSym = Ctx.GetOrCreateSymbol(StringRef(Fn));
+ const MCSymbolRefExpr *FnExpr =
+ MCSymbolRefExpr::Create(FnSym, MCSymbolRefExpr::VK_PLT, Ctx);
+ EmitInstruction(Out, MCInstBuilder(X86::CALLpcrel32).addExpr(FnExpr));
+ }
+};
+
+void X86AddressSanitizer32::InstrumentMemOperandSmallImpl(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out) {
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(X86::EAX));
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(X86::ECX));
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(X86::EDX));
+ EmitInstruction(Out, MCInstBuilder(X86::PUSHF32));
+
+ {
+ MCInst Inst;
+ Inst.setOpcode(X86::LEA32r);
+ Inst.addOperand(MCOperand::CreateReg(X86::EAX));
+ Op.addMemOperands(Inst, 5);
+ EmitInstruction(Out, Inst);
+ }
+
+ EmitInstruction(
+ Out, MCInstBuilder(X86::MOV32rr).addReg(X86::ECX).addReg(X86::EAX));
+ EmitInstruction(Out, MCInstBuilder(X86::SHR32ri).addReg(X86::ECX)
+ .addReg(X86::ECX).addImm(3));
+
+ {
+ MCInst Inst;
+ Inst.setOpcode(X86::MOV8rm);
+ Inst.addOperand(MCOperand::CreateReg(X86::CL));
+ const MCExpr *Disp = MCConstantExpr::Create(kShadowOffset, Ctx);
+ std::unique_ptr<X86Operand> Op(
+ X86Operand::CreateMem(0, Disp, X86::ECX, 0, 1, SMLoc(), SMLoc()));
+ Op->addMemOperands(Inst, 5);
+ EmitInstruction(Out, Inst);
+ }
+
+ EmitInstruction(Out,
+ MCInstBuilder(X86::TEST8rr).addReg(X86::CL).addReg(X86::CL));
+ MCSymbol *DoneSym = Ctx.CreateTempSymbol();
+ const MCExpr *DoneExpr = MCSymbolRefExpr::Create(DoneSym, Ctx);
+ EmitInstruction(Out, MCInstBuilder(X86::JE_4).addExpr(DoneExpr));
+
+ EmitInstruction(
+ Out, MCInstBuilder(X86::MOV32rr).addReg(X86::EDX).addReg(X86::EAX));
+ EmitInstruction(Out, MCInstBuilder(X86::AND32ri).addReg(X86::EDX)
+ .addReg(X86::EDX).addImm(7));
+
+ switch (AccessSize) {
+ case 1:
+ break;
+ case 2: {
+ MCInst Inst;
+ Inst.setOpcode(X86::LEA32r);
+ Inst.addOperand(MCOperand::CreateReg(X86::EDX));
+
+ const MCExpr *Disp = MCConstantExpr::Create(1, Ctx);
+ std::unique_ptr<X86Operand> Op(
+ X86Operand::CreateMem(0, Disp, X86::EDX, 0, 1, SMLoc(), SMLoc()));
+ Op->addMemOperands(Inst, 5);
+ EmitInstruction(Out, Inst);
+ break;
+ }
+ case 4:
+ EmitInstruction(Out, MCInstBuilder(X86::ADD32ri8).addReg(X86::EDX)
+ .addReg(X86::EDX).addImm(3));
+ break;
+ default:
+ assert(false && "Incorrect access size");
+ break;
+ }
+
+ EmitInstruction(
+ Out, MCInstBuilder(X86::MOVSX32rr8).addReg(X86::ECX).addReg(X86::CL));
+ EmitInstruction(
+ Out, MCInstBuilder(X86::CMP32rr).addReg(X86::EDX).addReg(X86::ECX));
+ EmitInstruction(Out, MCInstBuilder(X86::JL_4).addExpr(DoneExpr));
+
+ EmitCallAsanReport(Ctx, Out, AccessSize, IsWrite, X86::EAX);
+ EmitLabel(Out, DoneSym);
+
+ EmitInstruction(Out, MCInstBuilder(X86::POPF32));
+ EmitInstruction(Out, MCInstBuilder(X86::POP32r).addReg(X86::EDX));
+ EmitInstruction(Out, MCInstBuilder(X86::POP32r).addReg(X86::ECX));
+ EmitInstruction(Out, MCInstBuilder(X86::POP32r).addReg(X86::EAX));
+}
+
+void X86AddressSanitizer32::InstrumentMemOperandLargeImpl(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out) {
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(X86::EAX));
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(X86::ECX));
+ EmitInstruction(Out, MCInstBuilder(X86::PUSHF32));
+
+ {
+ MCInst Inst;
+ Inst.setOpcode(X86::LEA32r);
+ Inst.addOperand(MCOperand::CreateReg(X86::EAX));
+ Op.addMemOperands(Inst, 5);
+ EmitInstruction(Out, Inst);
+ }
+ EmitInstruction(
+ Out, MCInstBuilder(X86::MOV32rr).addReg(X86::ECX).addReg(X86::EAX));
+ EmitInstruction(Out, MCInstBuilder(X86::SHR32ri).addReg(X86::ECX)
+ .addReg(X86::ECX).addImm(3));
+ {
+ MCInst Inst;
+ switch (AccessSize) {
+ case 8:
+ Inst.setOpcode(X86::CMP8mi);
+ break;
+ case 16:
+ Inst.setOpcode(X86::CMP16mi);
+ break;
+ default:
+ assert(false && "Incorrect access size");
+ break;
+ }
+ const MCExpr *Disp = MCConstantExpr::Create(kShadowOffset, Ctx);
+ std::unique_ptr<X86Operand> Op(
+ X86Operand::CreateMem(0, Disp, X86::ECX, 0, 1, SMLoc(), SMLoc()));
+ Op->addMemOperands(Inst, 5);
+ Inst.addOperand(MCOperand::CreateImm(0));
+ EmitInstruction(Out, Inst);
+ }
+ MCSymbol *DoneSym = Ctx.CreateTempSymbol();
+ const MCExpr *DoneExpr = MCSymbolRefExpr::Create(DoneSym, Ctx);
+ EmitInstruction(Out, MCInstBuilder(X86::JE_4).addExpr(DoneExpr));
+
+ EmitCallAsanReport(Ctx, Out, AccessSize, IsWrite, X86::EAX);
+ EmitLabel(Out, DoneSym);
+
+ EmitInstruction(Out, MCInstBuilder(X86::POPF32));
+ EmitInstruction(Out, MCInstBuilder(X86::POP32r).addReg(X86::ECX));
+ EmitInstruction(Out, MCInstBuilder(X86::POP32r).addReg(X86::EAX));
+}
+
+class X86AddressSanitizer64 : public X86AddressSanitizer {
+public:
+ static const long kShadowOffset = 0x7fff8000;
+
+ X86AddressSanitizer64(const MCSubtargetInfo &STI)
+ : X86AddressSanitizer(STI) {}
+ virtual ~X86AddressSanitizer64() {}
+
+ virtual void InstrumentMemOperandSmallImpl(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out) override;
+ virtual void InstrumentMemOperandLargeImpl(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out) override;
+
+private:
+ void EmitAdjustRSP(MCContext &Ctx, MCStreamer &Out, long Offset) {
+ MCInst Inst;
+ Inst.setOpcode(X86::LEA64r);
+ Inst.addOperand(MCOperand::CreateReg(X86::RSP));
+
+ const MCExpr *Disp = MCConstantExpr::Create(Offset, Ctx);
+ std::unique_ptr<X86Operand> Op(
+ X86Operand::CreateMem(0, Disp, X86::RSP, 0, 1, SMLoc(), SMLoc()));
+ Op->addMemOperands(Inst, 5);
+ EmitInstruction(Out, Inst);
+ }
+
+ void EmitCallAsanReport(MCContext &Ctx, MCStreamer &Out, unsigned AccessSize,
+ bool IsWrite) {
+ EmitInstruction(Out, MCInstBuilder(X86::CLD));
+ EmitInstruction(Out, MCInstBuilder(X86::MMX_EMMS));
+
+ EmitInstruction(Out, MCInstBuilder(X86::AND64ri8).addReg(X86::RSP)
+ .addReg(X86::RSP).addImm(-16));
+
+ const std::string& Fn = FuncName(AccessSize, IsWrite);
+ MCSymbol *FnSym = Ctx.GetOrCreateSymbol(StringRef(Fn));
+ const MCSymbolRefExpr *FnExpr =
+ MCSymbolRefExpr::Create(FnSym, MCSymbolRefExpr::VK_PLT, Ctx);
+ EmitInstruction(Out, MCInstBuilder(X86::CALL64pcrel32).addExpr(FnExpr));
+ }
+};
+
+void X86AddressSanitizer64::InstrumentMemOperandSmallImpl(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out) {
+ EmitAdjustRSP(Ctx, Out, -128);
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH64r).addReg(X86::RAX));
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH64r).addReg(X86::RCX));
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH64r).addReg(X86::RDI));
+ EmitInstruction(Out, MCInstBuilder(X86::PUSHF64));
+ {
+ MCInst Inst;
+ Inst.setOpcode(X86::LEA64r);
+ Inst.addOperand(MCOperand::CreateReg(X86::RDI));
+ Op.addMemOperands(Inst, 5);
+ EmitInstruction(Out, Inst);
+ }
+ EmitInstruction(
+ Out, MCInstBuilder(X86::MOV64rr).addReg(X86::RAX).addReg(X86::RDI));
+ EmitInstruction(Out, MCInstBuilder(X86::SHR64ri).addReg(X86::RAX)
+ .addReg(X86::RAX).addImm(3));
+ {
+ MCInst Inst;
+ Inst.setOpcode(X86::MOV8rm);
+ Inst.addOperand(MCOperand::CreateReg(X86::AL));
+ const MCExpr *Disp = MCConstantExpr::Create(kShadowOffset, Ctx);
+ std::unique_ptr<X86Operand> Op(
+ X86Operand::CreateMem(0, Disp, X86::RAX, 0, 1, SMLoc(), SMLoc()));
+ Op->addMemOperands(Inst, 5);
+ EmitInstruction(Out, Inst);
+ }
+
+ EmitInstruction(Out,
+ MCInstBuilder(X86::TEST8rr).addReg(X86::AL).addReg(X86::AL));
+ MCSymbol *DoneSym = Ctx.CreateTempSymbol();
+ const MCExpr *DoneExpr = MCSymbolRefExpr::Create(DoneSym, Ctx);
+ EmitInstruction(Out, MCInstBuilder(X86::JE_4).addExpr(DoneExpr));
+
+ EmitInstruction(
+ Out, MCInstBuilder(X86::MOV32rr).addReg(X86::ECX).addReg(X86::EDI));
+ EmitInstruction(Out, MCInstBuilder(X86::AND32ri).addReg(X86::ECX)
+ .addReg(X86::ECX).addImm(7));
+
+ switch (AccessSize) {
+ case 1:
+ break;
+ case 2: {
+ MCInst Inst;
+ Inst.setOpcode(X86::LEA32r);
+ Inst.addOperand(MCOperand::CreateReg(X86::ECX));
+
+ const MCExpr *Disp = MCConstantExpr::Create(1, Ctx);
+ std::unique_ptr<X86Operand> Op(
+ X86Operand::CreateMem(0, Disp, X86::ECX, 0, 1, SMLoc(), SMLoc()));
+ Op->addMemOperands(Inst, 5);
+ EmitInstruction(Out, Inst);
+ break;
+ }
+ case 4:
+ EmitInstruction(Out, MCInstBuilder(X86::ADD32ri8).addReg(X86::ECX)
+ .addReg(X86::ECX).addImm(3));
+ break;
+ default:
+ assert(false && "Incorrect access size");
+ break;
+ }
+
+ EmitInstruction(
+ Out, MCInstBuilder(X86::MOVSX32rr8).addReg(X86::EAX).addReg(X86::AL));
+ EmitInstruction(
+ Out, MCInstBuilder(X86::CMP32rr).addReg(X86::ECX).addReg(X86::EAX));
+ EmitInstruction(Out, MCInstBuilder(X86::JL_4).addExpr(DoneExpr));
+
+ EmitCallAsanReport(Ctx, Out, AccessSize, IsWrite);
+ EmitLabel(Out, DoneSym);
+
+ EmitInstruction(Out, MCInstBuilder(X86::POPF64));
+ EmitInstruction(Out, MCInstBuilder(X86::POP64r).addReg(X86::RDI));
+ EmitInstruction(Out, MCInstBuilder(X86::POP64r).addReg(X86::RCX));
+ EmitInstruction(Out, MCInstBuilder(X86::POP64r).addReg(X86::RAX));
+ EmitAdjustRSP(Ctx, Out, 128);
+}
+
+void X86AddressSanitizer64::InstrumentMemOperandLargeImpl(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out) {
+ EmitAdjustRSP(Ctx, Out, -128);
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH64r).addReg(X86::RAX));
+ EmitInstruction(Out, MCInstBuilder(X86::PUSHF64));
+
+ {
+ MCInst Inst;
+ Inst.setOpcode(X86::LEA64r);
+ Inst.addOperand(MCOperand::CreateReg(X86::RAX));
+ Op.addMemOperands(Inst, 5);
+ EmitInstruction(Out, Inst);
+ }
+ EmitInstruction(Out, MCInstBuilder(X86::SHR64ri).addReg(X86::RAX)
+ .addReg(X86::RAX).addImm(3));
+ {
+ MCInst Inst;
+ switch (AccessSize) {
+ case 8:
+ Inst.setOpcode(X86::CMP8mi);
+ break;
+ case 16:
+ Inst.setOpcode(X86::CMP16mi);
+ break;
+ default:
+ assert(false && "Incorrect access size");
+ break;
+ }
+ const MCExpr *Disp = MCConstantExpr::Create(kShadowOffset, Ctx);
+ std::unique_ptr<X86Operand> Op(
+ X86Operand::CreateMem(0, Disp, X86::RAX, 0, 1, SMLoc(), SMLoc()));
+ Op->addMemOperands(Inst, 5);
+ Inst.addOperand(MCOperand::CreateImm(0));
+ EmitInstruction(Out, Inst);
+ }
+
+ MCSymbol *DoneSym = Ctx.CreateTempSymbol();
+ const MCExpr *DoneExpr = MCSymbolRefExpr::Create(DoneSym, Ctx);
+ EmitInstruction(Out, MCInstBuilder(X86::JE_4).addExpr(DoneExpr));
+
+ EmitCallAsanReport(Ctx, Out, AccessSize, IsWrite);
+ EmitLabel(Out, DoneSym);
+
+ EmitInstruction(Out, MCInstBuilder(X86::POPF64));
+ EmitInstruction(Out, MCInstBuilder(X86::POP64r).addReg(X86::RAX));
+ EmitAdjustRSP(Ctx, Out, 128);
+}
+
+} // End anonymous namespace
+
+X86AsmInstrumentation::X86AsmInstrumentation() {}
+X86AsmInstrumentation::~X86AsmInstrumentation() {}
+
+void X86AsmInstrumentation::InstrumentInstruction(
+ const MCInst &Inst, OperandVector &Operands, MCContext &Ctx,
+ const MCInstrInfo &MII, MCStreamer &Out) {}
+
+X86AsmInstrumentation *
+CreateX86AsmInstrumentation(const MCTargetOptions &MCOptions,
+ const MCContext &Ctx, const MCSubtargetInfo &STI) {
+ Triple T(STI.getTargetTriple());
+ const bool hasCompilerRTSupport = T.isOSLinux();
+ if (ClAsanInstrumentAssembly && hasCompilerRTSupport &&
+ MCOptions.SanitizeAddress) {
+ if ((STI.getFeatureBits() & X86::Mode32Bit) != 0)
+ return new X86AddressSanitizer32(STI);
+ if ((STI.getFeatureBits() & X86::Mode64Bit) != 0)
+ return new X86AddressSanitizer64(STI);
+ }
+ return new X86AsmInstrumentation();
+}
+
+} // End llvm namespace
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.h b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.h
new file mode 100644
index 0000000..1bc3c09
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.h
@@ -0,0 +1,54 @@
+//===- X86AsmInstrumentation.h - Instrument X86 inline assembly *- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86_ASM_INSTRUMENTATION_H
+#define X86_ASM_INSTRUMENTATION_H
+
+#include "llvm/ADT/SmallVector.h"
+
+#include <memory>
+
+namespace llvm {
+
+class MCContext;
+class MCInst;
+class MCInstrInfo;
+class MCParsedAsmOperand;
+class MCStreamer;
+class MCSubtargetInfo;
+class MCTargetOptions;
+
+class X86AsmInstrumentation;
+
+X86AsmInstrumentation *
+CreateX86AsmInstrumentation(const MCTargetOptions &MCOptions,
+ const MCContext &Ctx, const MCSubtargetInfo &STI);
+
+class X86AsmInstrumentation {
+public:
+ virtual ~X86AsmInstrumentation();
+
+ // Instruments Inst. Should be called just before the original
+ // instruction is sent to Out.
+ virtual void InstrumentInstruction(
+ const MCInst &Inst,
+ SmallVectorImpl<std::unique_ptr<MCParsedAsmOperand>> &Operands,
+ MCContext &Ctx, const MCInstrInfo &MII, MCStreamer &Out);
+
+protected:
+ friend X86AsmInstrumentation *
+ CreateX86AsmInstrumentation(const MCTargetOptions &MCOptions,
+ const MCContext &Ctx, const MCSubtargetInfo &STI);
+
+ X86AsmInstrumentation();
+};
+
+} // End llvm namespace
+
+#endif // X86_ASM_INSTRUMENTATION_H
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp
new file mode 100644
index 0000000..a11a238
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp
@@ -0,0 +1,2617 @@
+//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "X86AsmInstrumentation.h"
+#include "X86AsmParserCommon.h"
+#include "X86Operand.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include <memory>
+
+using namespace llvm;
+
+namespace {
+
+static const char OpPrecedence[] = {
+ 0, // IC_OR
+ 1, // IC_AND
+ 2, // IC_LSHIFT
+ 2, // IC_RSHIFT
+ 3, // IC_PLUS
+ 3, // IC_MINUS
+ 4, // IC_MULTIPLY
+ 4, // IC_DIVIDE
+ 5, // IC_RPAREN
+ 6, // IC_LPAREN
+ 0, // IC_IMM
+ 0 // IC_REGISTER
+};
+
+class X86AsmParser : public MCTargetAsmParser {
+ MCSubtargetInfo &STI;
+ MCAsmParser &Parser;
+ const MCInstrInfo &MII;
+ ParseInstructionInfo *InstInfo;
+ std::unique_ptr<X86AsmInstrumentation> Instrumentation;
+private:
+ SMLoc consumeToken() {
+ SMLoc Result = Parser.getTok().getLoc();
+ Parser.Lex();
+ return Result;
+ }
+
+ enum InfixCalculatorTok {
+ IC_OR = 0,
+ IC_AND,
+ IC_LSHIFT,
+ IC_RSHIFT,
+ IC_PLUS,
+ IC_MINUS,
+ IC_MULTIPLY,
+ IC_DIVIDE,
+ IC_RPAREN,
+ IC_LPAREN,
+ IC_IMM,
+ IC_REGISTER
+ };
+
+ class InfixCalculator {
+ typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
+ SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
+ SmallVector<ICToken, 4> PostfixStack;
+
+ public:
+ int64_t popOperand() {
+ assert (!PostfixStack.empty() && "Poped an empty stack!");
+ ICToken Op = PostfixStack.pop_back_val();
+ assert ((Op.first == IC_IMM || Op.first == IC_REGISTER)
+ && "Expected and immediate or register!");
+ return Op.second;
+ }
+ void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
+ assert ((Op == IC_IMM || Op == IC_REGISTER) &&
+ "Unexpected operand!");
+ PostfixStack.push_back(std::make_pair(Op, Val));
+ }
+
+ void popOperator() { InfixOperatorStack.pop_back(); }
+ void pushOperator(InfixCalculatorTok Op) {
+ // Push the new operator if the stack is empty.
+ if (InfixOperatorStack.empty()) {
+ InfixOperatorStack.push_back(Op);
+ return;
+ }
+
+ // Push the new operator if it has a higher precedence than the operator
+ // on the top of the stack or the operator on the top of the stack is a
+ // left parentheses.
+ unsigned Idx = InfixOperatorStack.size() - 1;
+ InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
+ if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
+ InfixOperatorStack.push_back(Op);
+ return;
+ }
+
+ // The operator on the top of the stack has higher precedence than the
+ // new operator.
+ unsigned ParenCount = 0;
+ while (1) {
+ // Nothing to process.
+ if (InfixOperatorStack.empty())
+ break;
+
+ Idx = InfixOperatorStack.size() - 1;
+ StackOp = InfixOperatorStack[Idx];
+ if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
+ break;
+
+ // If we have an even parentheses count and we see a left parentheses,
+ // then stop processing.
+ if (!ParenCount && StackOp == IC_LPAREN)
+ break;
+
+ if (StackOp == IC_RPAREN) {
+ ++ParenCount;
+ InfixOperatorStack.pop_back();
+ } else if (StackOp == IC_LPAREN) {
+ --ParenCount;
+ InfixOperatorStack.pop_back();
+ } else {
+ InfixOperatorStack.pop_back();
+ PostfixStack.push_back(std::make_pair(StackOp, 0));
+ }
+ }
+ // Push the new operator.
+ InfixOperatorStack.push_back(Op);
+ }
+ int64_t execute() {
+ // Push any remaining operators onto the postfix stack.
+ while (!InfixOperatorStack.empty()) {
+ InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
+ if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
+ PostfixStack.push_back(std::make_pair(StackOp, 0));
+ }
+
+ if (PostfixStack.empty())
+ return 0;
+
+ SmallVector<ICToken, 16> OperandStack;
+ for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
+ ICToken Op = PostfixStack[i];
+ if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
+ OperandStack.push_back(Op);
+ } else {
+ assert (OperandStack.size() > 1 && "Too few operands.");
+ int64_t Val;
+ ICToken Op2 = OperandStack.pop_back_val();
+ ICToken Op1 = OperandStack.pop_back_val();
+ switch (Op.first) {
+ default:
+ report_fatal_error("Unexpected operator!");
+ break;
+ case IC_PLUS:
+ Val = Op1.second + Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_MINUS:
+ Val = Op1.second - Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_MULTIPLY:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Multiply operation with an immediate and a register!");
+ Val = Op1.second * Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_DIVIDE:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Divide operation with an immediate and a register!");
+ assert (Op2.second != 0 && "Division by zero!");
+ Val = Op1.second / Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_OR:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Or operation with an immediate and a register!");
+ Val = Op1.second | Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_AND:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "And operation with an immediate and a register!");
+ Val = Op1.second & Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_LSHIFT:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Left shift operation with an immediate and a register!");
+ Val = Op1.second << Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_RSHIFT:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Right shift operation with an immediate and a register!");
+ Val = Op1.second >> Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ }
+ }
+ }
+ assert (OperandStack.size() == 1 && "Expected a single result.");
+ return OperandStack.pop_back_val().second;
+ }
+ };
+
+ enum IntelExprState {
+ IES_OR,
+ IES_AND,
+ IES_LSHIFT,
+ IES_RSHIFT,
+ IES_PLUS,
+ IES_MINUS,
+ IES_NOT,
+ IES_MULTIPLY,
+ IES_DIVIDE,
+ IES_LBRAC,
+ IES_RBRAC,
+ IES_LPAREN,
+ IES_RPAREN,
+ IES_REGISTER,
+ IES_INTEGER,
+ IES_IDENTIFIER,
+ IES_ERROR
+ };
+
+ class IntelExprStateMachine {
+ IntelExprState State, PrevState;
+ unsigned BaseReg, IndexReg, TmpReg, Scale;
+ int64_t Imm;
+ const MCExpr *Sym;
+ StringRef SymName;
+ bool StopOnLBrac, AddImmPrefix;
+ InfixCalculator IC;
+ InlineAsmIdentifierInfo Info;
+ public:
+ IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) :
+ State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
+ Scale(1), Imm(imm), Sym(nullptr), StopOnLBrac(stoponlbrac),
+ AddImmPrefix(addimmprefix) { Info.clear(); }
+
+ unsigned getBaseReg() { return BaseReg; }
+ unsigned getIndexReg() { return IndexReg; }
+ unsigned getScale() { return Scale; }
+ const MCExpr *getSym() { return Sym; }
+ StringRef getSymName() { return SymName; }
+ int64_t getImm() { return Imm + IC.execute(); }
+ bool isValidEndState() {
+ return State == IES_RBRAC || State == IES_INTEGER;
+ }
+ bool getStopOnLBrac() { return StopOnLBrac; }
+ bool getAddImmPrefix() { return AddImmPrefix; }
+ bool hadError() { return State == IES_ERROR; }
+
+ InlineAsmIdentifierInfo &getIdentifierInfo() {
+ return Info;
+ }
+
+ void onOr() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_OR;
+ IC.pushOperator(IC_OR);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onAnd() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_AND;
+ IC.pushOperator(IC_AND);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onLShift() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_LSHIFT;
+ IC.pushOperator(IC_LSHIFT);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onRShift() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_RSHIFT;
+ IC.pushOperator(IC_RSHIFT);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onPlus() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_PLUS;
+ IC.pushOperator(IC_PLUS);
+ if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
+ // If we already have a BaseReg, then assume this is the IndexReg with
+ // a scale of 1.
+ if (!BaseReg) {
+ BaseReg = TmpReg;
+ } else {
+ assert (!IndexReg && "BaseReg/IndexReg already set!");
+ IndexReg = TmpReg;
+ Scale = 1;
+ }
+ }
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onMinus() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_NOT:
+ case IES_MULTIPLY:
+ case IES_DIVIDE:
+ case IES_LPAREN:
+ case IES_RPAREN:
+ case IES_LBRAC:
+ case IES_RBRAC:
+ case IES_INTEGER:
+ case IES_REGISTER:
+ State = IES_MINUS;
+ // Only push the minus operator if it is not a unary operator.
+ if (!(CurrState == IES_PLUS || CurrState == IES_MINUS ||
+ CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE ||
+ CurrState == IES_LPAREN || CurrState == IES_LBRAC))
+ IC.pushOperator(IC_MINUS);
+ if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
+ // If we already have a BaseReg, then assume this is the IndexReg with
+ // a scale of 1.
+ if (!BaseReg) {
+ BaseReg = TmpReg;
+ } else {
+ assert (!IndexReg && "BaseReg/IndexReg already set!");
+ IndexReg = TmpReg;
+ Scale = 1;
+ }
+ }
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onNot() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_NOT:
+ State = IES_NOT;
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onRegister(unsigned Reg) {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_LPAREN:
+ State = IES_REGISTER;
+ TmpReg = Reg;
+ IC.pushOperand(IC_REGISTER);
+ break;
+ case IES_MULTIPLY:
+ // Index Register - Scale * Register
+ if (PrevState == IES_INTEGER) {
+ assert (!IndexReg && "IndexReg already set!");
+ State = IES_REGISTER;
+ IndexReg = Reg;
+ // Get the scale and replace the 'Scale * Register' with '0'.
+ Scale = IC.popOperand();
+ IC.pushOperand(IC_IMM);
+ IC.popOperator();
+ } else {
+ State = IES_ERROR;
+ }
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_MINUS:
+ case IES_NOT:
+ State = IES_INTEGER;
+ Sym = SymRef;
+ SymName = SymRefName;
+ IC.pushOperand(IC_IMM);
+ break;
+ }
+ }
+ bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_MINUS:
+ case IES_NOT:
+ case IES_OR:
+ case IES_AND:
+ case IES_LSHIFT:
+ case IES_RSHIFT:
+ case IES_DIVIDE:
+ case IES_MULTIPLY:
+ case IES_LPAREN:
+ State = IES_INTEGER;
+ if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
+ // Index Register - Register * Scale
+ assert (!IndexReg && "IndexReg already set!");
+ IndexReg = TmpReg;
+ Scale = TmpInt;
+ if(Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
+ ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
+ return true;
+ }
+ // Get the scale and replace the 'Register * Scale' with '0'.
+ IC.popOperator();
+ } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
+ PrevState == IES_OR || PrevState == IES_AND ||
+ PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
+ PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
+ PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
+ PrevState == IES_NOT) &&
+ CurrState == IES_MINUS) {
+ // Unary minus. No need to pop the minus operand because it was never
+ // pushed.
+ IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm.
+ } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
+ PrevState == IES_OR || PrevState == IES_AND ||
+ PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
+ PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
+ PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
+ PrevState == IES_NOT) &&
+ CurrState == IES_NOT) {
+ // Unary not. No need to pop the not operand because it was never
+ // pushed.
+ IC.pushOperand(IC_IMM, ~TmpInt); // Push ~Imm.
+ } else {
+ IC.pushOperand(IC_IMM, TmpInt);
+ }
+ break;
+ }
+ PrevState = CurrState;
+ return false;
+ }
+ void onStar() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_REGISTER:
+ case IES_RPAREN:
+ State = IES_MULTIPLY;
+ IC.pushOperator(IC_MULTIPLY);
+ break;
+ }
+ }
+ void onDivide() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ State = IES_DIVIDE;
+ IC.pushOperator(IC_DIVIDE);
+ break;
+ }
+ }
+ void onLBrac() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_RBRAC:
+ State = IES_PLUS;
+ IC.pushOperator(IC_PLUS);
+ break;
+ }
+ }
+ void onRBrac() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_REGISTER:
+ case IES_RPAREN:
+ State = IES_RBRAC;
+ if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
+ // If we already have a BaseReg, then assume this is the IndexReg with
+ // a scale of 1.
+ if (!BaseReg) {
+ BaseReg = TmpReg;
+ } else {
+ assert (!IndexReg && "BaseReg/IndexReg already set!");
+ IndexReg = TmpReg;
+ Scale = 1;
+ }
+ }
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onLParen() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_MINUS:
+ case IES_NOT:
+ case IES_OR:
+ case IES_AND:
+ case IES_LSHIFT:
+ case IES_RSHIFT:
+ case IES_MULTIPLY:
+ case IES_DIVIDE:
+ case IES_LPAREN:
+ // FIXME: We don't handle this type of unary minus or not, yet.
+ if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
+ PrevState == IES_OR || PrevState == IES_AND ||
+ PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
+ PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
+ PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
+ PrevState == IES_NOT) &&
+ (CurrState == IES_MINUS || CurrState == IES_NOT)) {
+ State = IES_ERROR;
+ break;
+ }
+ State = IES_LPAREN;
+ IC.pushOperator(IC_LPAREN);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onRParen() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_REGISTER:
+ case IES_RPAREN:
+ State = IES_RPAREN;
+ IC.pushOperator(IC_RPAREN);
+ break;
+ }
+ }
+ };
+
+ MCAsmParser &getParser() const { return Parser; }
+
+ MCAsmLexer &getLexer() const { return Parser.getLexer(); }
+
+ bool Error(SMLoc L, const Twine &Msg,
+ ArrayRef<SMRange> Ranges = None,
+ bool MatchingInlineAsm = false) {
+ if (MatchingInlineAsm) return true;
+ return Parser.Error(L, Msg, Ranges);
+ }
+
+ bool ErrorAndEatStatement(SMLoc L, const Twine &Msg,
+ ArrayRef<SMRange> Ranges = None,
+ bool MatchingInlineAsm = false) {
+ Parser.eatToEndOfStatement();
+ return Error(L, Msg, Ranges, MatchingInlineAsm);
+ }
+
+ std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg) {
+ Error(Loc, Msg);
+ return nullptr;
+ }
+
+ std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
+ std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
+ std::unique_ptr<X86Operand> ParseOperand();
+ std::unique_ptr<X86Operand> ParseATTOperand();
+ std::unique_ptr<X86Operand> ParseIntelOperand();
+ std::unique_ptr<X86Operand> ParseIntelOffsetOfOperator();
+ bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp);
+ std::unique_ptr<X86Operand> ParseIntelOperator(unsigned OpKind);
+ std::unique_ptr<X86Operand>
+ ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, unsigned Size);
+ std::unique_ptr<X86Operand>
+ ParseIntelMemOperand(int64_t ImmDisp, SMLoc StartLoc, unsigned Size);
+ bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
+ std::unique_ptr<X86Operand> ParseIntelBracExpression(unsigned SegReg,
+ SMLoc Start,
+ int64_t ImmDisp,
+ unsigned Size);
+ bool ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier,
+ InlineAsmIdentifierInfo &Info,
+ bool IsUnevaluatedOperand, SMLoc &End);
+
+ std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
+
+ std::unique_ptr<X86Operand>
+ CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
+ unsigned IndexReg, unsigned Scale, SMLoc Start,
+ SMLoc End, unsigned Size, StringRef Identifier,
+ InlineAsmIdentifierInfo &Info);
+
+ bool ParseDirectiveWord(unsigned Size, SMLoc L);
+ bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
+
+ bool processInstruction(MCInst &Inst, const OperandVector &Ops);
+
+ /// Wrapper around MCStreamer::EmitInstruction(). Possibly adds
+ /// instrumentation around Inst.
+ void EmitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
+
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ unsigned &ErrorInfo,
+ bool MatchingInlineAsm) override;
+
+ virtual bool OmitRegisterFromClobberLists(unsigned RegNo) override;
+
+ /// doSrcDstMatch - Returns true if operands are matching in their
+ /// word size (%si and %di, %esi and %edi, etc.). Order depends on
+ /// the parsing mode (Intel vs. AT&T).
+ bool doSrcDstMatch(X86Operand &Op1, X86Operand &Op2);
+
+ /// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
+ /// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
+ /// \return \c true if no parsing errors occurred, \c false otherwise.
+ bool HandleAVX512Operand(OperandVector &Operands,
+ const MCParsedAsmOperand &Op);
+
+ bool is64BitMode() const {
+ // FIXME: Can tablegen auto-generate this?
+ return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
+ }
+ bool is32BitMode() const {
+ // FIXME: Can tablegen auto-generate this?
+ return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
+ }
+ bool is16BitMode() const {
+ // FIXME: Can tablegen auto-generate this?
+ return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
+ }
+ void SwitchMode(uint64_t mode) {
+ uint64_t oldMode = STI.getFeatureBits() &
+ (X86::Mode64Bit | X86::Mode32Bit | X86::Mode16Bit);
+ unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(oldMode | mode));
+ setAvailableFeatures(FB);
+ assert(mode == (STI.getFeatureBits() &
+ (X86::Mode64Bit | X86::Mode32Bit | X86::Mode16Bit)));
+ }
+
+ bool isParsingIntelSyntax() {
+ return getParser().getAssemblerDialect();
+ }
+
+ /// @name Auto-generated Matcher Functions
+ /// {
+
+#define GET_ASSEMBLER_HEADER
+#include "X86GenAsmMatcher.inc"
+
+ /// }
+
+public:
+ X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
+ const MCInstrInfo &mii,
+ const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(sti), Parser(parser), MII(mii),
+ InstInfo(nullptr) {
+
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+ Instrumentation.reset(
+ CreateX86AsmInstrumentation(Options, Parser.getContext(), STI));
+ }
+
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+
+ bool ParseDirective(AsmToken DirectiveID) override;
+};
+} // end anonymous namespace
+
+/// @name Auto-generated Match Functions
+/// {
+
+static unsigned MatchRegisterName(StringRef Name);
+
+/// }
+
+static bool CheckBaseRegAndIndexReg(unsigned BaseReg, unsigned IndexReg,
+ StringRef &ErrMsg) {
+ // If we have both a base register and an index register make sure they are
+ // both 64-bit or 32-bit registers.
+ // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
+ if (BaseReg != 0 && IndexReg != 0) {
+ if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
+ (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
+ IndexReg != X86::RIZ) {
+ ErrMsg = "base register is 64-bit, but index register is not";
+ return true;
+ }
+ if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
+ (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
+ IndexReg != X86::EIZ){
+ ErrMsg = "base register is 32-bit, but index register is not";
+ return true;
+ }
+ if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
+ if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
+ ErrMsg = "base register is 16-bit, but index register is not";
+ return true;
+ }
+ if (((BaseReg == X86::BX || BaseReg == X86::BP) &&
+ IndexReg != X86::SI && IndexReg != X86::DI) ||
+ ((BaseReg == X86::SI || BaseReg == X86::DI) &&
+ IndexReg != X86::BX && IndexReg != X86::BP)) {
+ ErrMsg = "invalid 16-bit base/index register combination";
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+bool X86AsmParser::doSrcDstMatch(X86Operand &Op1, X86Operand &Op2)
+{
+ // Return true and let a normal complaint about bogus operands happen.
+ if (!Op1.isMem() || !Op2.isMem())
+ return true;
+
+ // Actually these might be the other way round if Intel syntax is
+ // being used. It doesn't matter.
+ unsigned diReg = Op1.Mem.BaseReg;
+ unsigned siReg = Op2.Mem.BaseReg;
+
+ if (X86MCRegisterClasses[X86::GR16RegClassID].contains(siReg))
+ return X86MCRegisterClasses[X86::GR16RegClassID].contains(diReg);
+ if (X86MCRegisterClasses[X86::GR32RegClassID].contains(siReg))
+ return X86MCRegisterClasses[X86::GR32RegClassID].contains(diReg);
+ if (X86MCRegisterClasses[X86::GR64RegClassID].contains(siReg))
+ return X86MCRegisterClasses[X86::GR64RegClassID].contains(diReg);
+ // Again, return true and let another error happen.
+ return true;
+}
+
+bool X86AsmParser::ParseRegister(unsigned &RegNo,
+ SMLoc &StartLoc, SMLoc &EndLoc) {
+ RegNo = 0;
+ const AsmToken &PercentTok = Parser.getTok();
+ StartLoc = PercentTok.getLoc();
+
+ // If we encounter a %, ignore it. This code handles registers with and
+ // without the prefix, unprefixed registers can occur in cfi directives.
+ if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
+ Parser.Lex(); // Eat percent token.
+
+ const AsmToken &Tok = Parser.getTok();
+ EndLoc = Tok.getEndLoc();
+
+ if (Tok.isNot(AsmToken::Identifier)) {
+ if (isParsingIntelSyntax()) return true;
+ return Error(StartLoc, "invalid register name",
+ SMRange(StartLoc, EndLoc));
+ }
+
+ RegNo = MatchRegisterName(Tok.getString());
+
+ // If the match failed, try the register name as lowercase.
+ if (RegNo == 0)
+ RegNo = MatchRegisterName(Tok.getString().lower());
+
+ if (!is64BitMode()) {
+ // FIXME: This should be done using Requires<Not64BitMode> and
+ // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
+ // checked.
+ // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
+ // REX prefix.
+ if (RegNo == X86::RIZ ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
+ X86II::isX86_64NonExtLowByteReg(RegNo) ||
+ X86II::isX86_64ExtendedReg(RegNo))
+ return Error(StartLoc, "register %"
+ + Tok.getString() + " is only available in 64-bit mode",
+ SMRange(StartLoc, EndLoc));
+ }
+
+ // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
+ if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
+ RegNo = X86::ST0;
+ Parser.Lex(); // Eat 'st'
+
+ // Check to see if we have '(4)' after %st.
+ if (getLexer().isNot(AsmToken::LParen))
+ return false;
+ // Lex the paren.
+ getParser().Lex();
+
+ const AsmToken &IntTok = Parser.getTok();
+ if (IntTok.isNot(AsmToken::Integer))
+ return Error(IntTok.getLoc(), "expected stack index");
+ switch (IntTok.getIntVal()) {
+ case 0: RegNo = X86::ST0; break;
+ case 1: RegNo = X86::ST1; break;
+ case 2: RegNo = X86::ST2; break;
+ case 3: RegNo = X86::ST3; break;
+ case 4: RegNo = X86::ST4; break;
+ case 5: RegNo = X86::ST5; break;
+ case 6: RegNo = X86::ST6; break;
+ case 7: RegNo = X86::ST7; break;
+ default: return Error(IntTok.getLoc(), "invalid stack index");
+ }
+
+ if (getParser().Lex().isNot(AsmToken::RParen))
+ return Error(Parser.getTok().getLoc(), "expected ')'");
+
+ EndLoc = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat ')'
+ return false;
+ }
+
+ EndLoc = Parser.getTok().getEndLoc();
+
+ // If this is "db[0-7]", match it as an alias
+ // for dr[0-7].
+ if (RegNo == 0 && Tok.getString().size() == 3 &&
+ Tok.getString().startswith("db")) {
+ switch (Tok.getString()[2]) {
+ case '0': RegNo = X86::DR0; break;
+ case '1': RegNo = X86::DR1; break;
+ case '2': RegNo = X86::DR2; break;
+ case '3': RegNo = X86::DR3; break;
+ case '4': RegNo = X86::DR4; break;
+ case '5': RegNo = X86::DR5; break;
+ case '6': RegNo = X86::DR6; break;
+ case '7': RegNo = X86::DR7; break;
+ }
+
+ if (RegNo != 0) {
+ EndLoc = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat it.
+ return false;
+ }
+ }
+
+ if (RegNo == 0) {
+ if (isParsingIntelSyntax()) return true;
+ return Error(StartLoc, "invalid register name",
+ SMRange(StartLoc, EndLoc));
+ }
+
+ Parser.Lex(); // Eat identifier token.
+ return false;
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
+ unsigned basereg =
+ is64BitMode() ? X86::RSI : (is32BitMode() ? X86::ESI : X86::SI);
+ const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
+ return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/basereg,
+ /*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0);
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
+ unsigned basereg =
+ is64BitMode() ? X86::RDI : (is32BitMode() ? X86::EDI : X86::DI);
+ const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
+ return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/basereg,
+ /*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0);
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
+ if (isParsingIntelSyntax())
+ return ParseIntelOperand();
+ return ParseATTOperand();
+}
+
+/// getIntelMemOperandSize - Return intel memory operand size.
+static unsigned getIntelMemOperandSize(StringRef OpStr) {
+ unsigned Size = StringSwitch<unsigned>(OpStr)
+ .Cases("BYTE", "byte", 8)
+ .Cases("WORD", "word", 16)
+ .Cases("DWORD", "dword", 32)
+ .Cases("QWORD", "qword", 64)
+ .Cases("XWORD", "xword", 80)
+ .Cases("XMMWORD", "xmmword", 128)
+ .Cases("YMMWORD", "ymmword", 256)
+ .Cases("ZMMWORD", "zmmword", 512)
+ .Cases("OPAQUE", "opaque", -1U) // needs to be non-zero, but doesn't matter
+ .Default(0);
+ return Size;
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm(
+ unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
+ unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
+ InlineAsmIdentifierInfo &Info) {
+ // If this is not a VarDecl then assume it is a FuncDecl or some other label
+ // reference. We need an 'r' constraint here, so we need to create register
+ // operand to ensure proper matching. Just pick a GPR based on the size of
+ // a pointer.
+ if (isa<MCSymbolRefExpr>(Disp) && !Info.IsVarDecl) {
+ unsigned RegNo =
+ is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX);
+ return X86Operand::CreateReg(RegNo, Start, End, /*AddressOf=*/true,
+ SMLoc(), Identifier, Info.OpDecl);
+ }
+
+ // We either have a direct symbol reference, or an offset from a symbol. The
+ // parser always puts the symbol on the LHS, so look there for size
+ // calculation purposes.
+ const MCBinaryExpr *BinOp = dyn_cast<MCBinaryExpr>(Disp);
+ bool IsSymRef =
+ isa<MCSymbolRefExpr>(BinOp ? BinOp->getLHS() : Disp);
+ if (IsSymRef) {
+ if (!Size) {
+ Size = Info.Type * 8; // Size is in terms of bits in this context.
+ if (Size)
+ InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
+ /*Len=*/0, Size));
+ }
+ }
+
+ // When parsing inline assembly we set the base register to a non-zero value
+ // if we don't know the actual value at this time. This is necessary to
+ // get the matching correct in some cases.
+ BaseReg = BaseReg ? BaseReg : 1;
+ return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
+ End, Size, Identifier, Info.OpDecl);
+}
+
+static void
+RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> *AsmRewrites,
+ StringRef SymName, int64_t ImmDisp,
+ int64_t FinalImmDisp, SMLoc &BracLoc,
+ SMLoc &StartInBrac, SMLoc &End) {
+ // Remove the '[' and ']' from the IR string.
+ AsmRewrites->push_back(AsmRewrite(AOK_Skip, BracLoc, 1));
+ AsmRewrites->push_back(AsmRewrite(AOK_Skip, End, 1));
+
+ // If ImmDisp is non-zero, then we parsed a displacement before the
+ // bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp])
+ // If ImmDisp doesn't match the displacement computed by the state machine
+ // then we have an additional displacement in the bracketed expression.
+ if (ImmDisp != FinalImmDisp) {
+ if (ImmDisp) {
+ // We have an immediate displacement before the bracketed expression.
+ // Adjust this to match the final immediate displacement.
+ bool Found = false;
+ for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
+ E = AsmRewrites->end(); I != E; ++I) {
+ if ((*I).Loc.getPointer() > BracLoc.getPointer())
+ continue;
+ if ((*I).Kind == AOK_ImmPrefix || (*I).Kind == AOK_Imm) {
+ assert (!Found && "ImmDisp already rewritten.");
+ (*I).Kind = AOK_Imm;
+ (*I).Len = BracLoc.getPointer() - (*I).Loc.getPointer();
+ (*I).Val = FinalImmDisp;
+ Found = true;
+ break;
+ }
+ }
+ assert (Found && "Unable to rewrite ImmDisp.");
+ (void)Found;
+ } else {
+ // We have a symbolic and an immediate displacement, but no displacement
+ // before the bracketed expression. Put the immediate displacement
+ // before the bracketed expression.
+ AsmRewrites->push_back(AsmRewrite(AOK_Imm, BracLoc, 0, FinalImmDisp));
+ }
+ }
+ // Remove all the ImmPrefix rewrites within the brackets.
+ for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
+ E = AsmRewrites->end(); I != E; ++I) {
+ if ((*I).Loc.getPointer() < StartInBrac.getPointer())
+ continue;
+ if ((*I).Kind == AOK_ImmPrefix)
+ (*I).Kind = AOK_Delete;
+ }
+ const char *SymLocPtr = SymName.data();
+ // Skip everything before the symbol.
+ if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
+ assert(Len > 0 && "Expected a non-negative length.");
+ AsmRewrites->push_back(AsmRewrite(AOK_Skip, StartInBrac, Len));
+ }
+ // Skip everything after the symbol.
+ if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) {
+ SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size());
+ assert(Len > 0 && "Expected a non-negative length.");
+ AsmRewrites->push_back(AsmRewrite(AOK_Skip, Loc, Len));
+ }
+}
+
+bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
+ const AsmToken &Tok = Parser.getTok();
+
+ bool Done = false;
+ while (!Done) {
+ bool UpdateLocLex = true;
+
+ // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
+ // identifier. Don't try an parse it as a register.
+ if (Tok.getString().startswith("."))
+ break;
+
+ // If we're parsing an immediate expression, we don't expect a '['.
+ if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
+ break;
+
+ AsmToken::TokenKind TK = getLexer().getKind();
+ switch (TK) {
+ default: {
+ if (SM.isValidEndState()) {
+ Done = true;
+ break;
+ }
+ return Error(Tok.getLoc(), "unknown token in expression");
+ }
+ case AsmToken::EndOfStatement: {
+ Done = true;
+ break;
+ }
+ case AsmToken::String:
+ case AsmToken::Identifier: {
+ // This could be a register or a symbolic displacement.
+ unsigned TmpReg;
+ const MCExpr *Val;
+ SMLoc IdentLoc = Tok.getLoc();
+ StringRef Identifier = Tok.getString();
+ if (TK != AsmToken::String && !ParseRegister(TmpReg, IdentLoc, End)) {
+ SM.onRegister(TmpReg);
+ UpdateLocLex = false;
+ break;
+ } else {
+ if (!isParsingInlineAsm()) {
+ if (getParser().parsePrimaryExpr(Val, End))
+ return Error(Tok.getLoc(), "Unexpected identifier!");
+ } else {
+ // This is a dot operator, not an adjacent identifier.
+ if (Identifier.find('.') != StringRef::npos) {
+ return false;
+ } else {
+ InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
+ if (ParseIntelIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/false, End))
+ return true;
+ }
+ }
+ SM.onIdentifierExpr(Val, Identifier);
+ UpdateLocLex = false;
+ break;
+ }
+ return Error(Tok.getLoc(), "Unexpected identifier!");
+ }
+ case AsmToken::Integer: {
+ StringRef ErrMsg;
+ if (isParsingInlineAsm() && SM.getAddImmPrefix())
+ InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix,
+ Tok.getLoc()));
+ // Look for 'b' or 'f' following an Integer as a directional label
+ SMLoc Loc = getTok().getLoc();
+ int64_t IntVal = getTok().getIntVal();
+ End = consumeToken();
+ UpdateLocLex = false;
+ if (getLexer().getKind() == AsmToken::Identifier) {
+ StringRef IDVal = getTok().getString();
+ if (IDVal == "f" || IDVal == "b") {
+ MCSymbol *Sym =
+ getContext().GetDirectionalLocalSymbol(IntVal, IDVal == "b");
+ MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
+ const MCExpr *Val =
+ MCSymbolRefExpr::Create(Sym, Variant, getContext());
+ if (IDVal == "b" && Sym->isUndefined())
+ return Error(Loc, "invalid reference to undefined symbol");
+ StringRef Identifier = Sym->getName();
+ SM.onIdentifierExpr(Val, Identifier);
+ End = consumeToken();
+ } else {
+ if (SM.onInteger(IntVal, ErrMsg))
+ return Error(Loc, ErrMsg);
+ }
+ } else {
+ if (SM.onInteger(IntVal, ErrMsg))
+ return Error(Loc, ErrMsg);
+ }
+ break;
+ }
+ case AsmToken::Plus: SM.onPlus(); break;
+ case AsmToken::Minus: SM.onMinus(); break;
+ case AsmToken::Tilde: SM.onNot(); break;
+ case AsmToken::Star: SM.onStar(); break;
+ case AsmToken::Slash: SM.onDivide(); break;
+ case AsmToken::Pipe: SM.onOr(); break;
+ case AsmToken::Amp: SM.onAnd(); break;
+ case AsmToken::LessLess:
+ SM.onLShift(); break;
+ case AsmToken::GreaterGreater:
+ SM.onRShift(); break;
+ case AsmToken::LBrac: SM.onLBrac(); break;
+ case AsmToken::RBrac: SM.onRBrac(); break;
+ case AsmToken::LParen: SM.onLParen(); break;
+ case AsmToken::RParen: SM.onRParen(); break;
+ }
+ if (SM.hadError())
+ return Error(Tok.getLoc(), "unknown token in expression");
+
+ if (!Done && UpdateLocLex)
+ End = consumeToken();
+ }
+ return false;
+}
+
+std::unique_ptr<X86Operand>
+X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
+ int64_t ImmDisp, unsigned Size) {
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
+ if (getLexer().isNot(AsmToken::LBrac))
+ return ErrorOperand(BracLoc, "Expected '[' token!");
+ Parser.Lex(); // Eat '['
+
+ SMLoc StartInBrac = Tok.getLoc();
+ // Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ]. We
+ // may have already parsed an immediate displacement before the bracketed
+ // expression.
+ IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true);
+ if (ParseIntelExpression(SM, End))
+ return nullptr;
+
+ const MCExpr *Disp = nullptr;
+ if (const MCExpr *Sym = SM.getSym()) {
+ // A symbolic displacement.
+ Disp = Sym;
+ if (isParsingInlineAsm())
+ RewriteIntelBracExpression(InstInfo->AsmRewrites, SM.getSymName(),
+ ImmDisp, SM.getImm(), BracLoc, StartInBrac,
+ End);
+ }
+
+ if (SM.getImm() || !Disp) {
+ const MCExpr *Imm = MCConstantExpr::Create(SM.getImm(), getContext());
+ if (Disp)
+ Disp = MCBinaryExpr::CreateAdd(Disp, Imm, getContext());
+ else
+ Disp = Imm; // An immediate displacement only.
+ }
+
+ // Parse struct field access. Intel requires a dot, but MSVC doesn't. MSVC
+ // will in fact do global lookup the field name inside all global typedefs,
+ // but we don't emulate that.
+ if (Tok.getString().find('.') != StringRef::npos) {
+ const MCExpr *NewDisp;
+ if (ParseIntelDotOperator(Disp, NewDisp))
+ return nullptr;
+
+ End = Tok.getEndLoc();
+ Parser.Lex(); // Eat the field.
+ Disp = NewDisp;
+ }
+
+ int BaseReg = SM.getBaseReg();
+ int IndexReg = SM.getIndexReg();
+ int Scale = SM.getScale();
+ if (!isParsingInlineAsm()) {
+ // handle [-42]
+ if (!BaseReg && !IndexReg) {
+ if (!SegReg)
+ return X86Operand::CreateMem(Disp, Start, End, Size);
+ else
+ return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, Start, End, Size);
+ }
+ StringRef ErrMsg;
+ if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
+ Error(StartInBrac, ErrMsg);
+ return nullptr;
+ }
+ return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
+ End, Size);
+ }
+
+ InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
+ return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
+ End, Size, SM.getSymName(), Info);
+}
+
+// Inline assembly may use variable names with namespace alias qualifiers.
+bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
+ StringRef &Identifier,
+ InlineAsmIdentifierInfo &Info,
+ bool IsUnevaluatedOperand, SMLoc &End) {
+ assert (isParsingInlineAsm() && "Expected to be parsing inline assembly.");
+ Val = nullptr;
+
+ StringRef LineBuf(Identifier.data());
+ SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
+
+ const AsmToken &Tok = Parser.getTok();
+
+ // Advance the token stream until the end of the current token is
+ // after the end of what the frontend claimed.
+ const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
+ while (true) {
+ End = Tok.getEndLoc();
+ getLexer().Lex();
+
+ assert(End.getPointer() <= EndPtr && "frontend claimed part of a token?");
+ if (End.getPointer() == EndPtr) break;
+ }
+
+ // Create the symbol reference.
+ Identifier = LineBuf;
+ MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier);
+ MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
+ Val = MCSymbolRefExpr::Create(Sym, Variant, getParser().getContext());
+ return false;
+}
+
+/// \brief Parse intel style segment override.
+std::unique_ptr<X86Operand>
+X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start,
+ unsigned Size) {
+ assert(SegReg != 0 && "Tried to parse a segment override without a segment!");
+ const AsmToken &Tok = Parser.getTok(); // Eat colon.
+ if (Tok.isNot(AsmToken::Colon))
+ return ErrorOperand(Tok.getLoc(), "Expected ':' token!");
+ Parser.Lex(); // Eat ':'
+
+ int64_t ImmDisp = 0;
+ if (getLexer().is(AsmToken::Integer)) {
+ ImmDisp = Tok.getIntVal();
+ AsmToken ImmDispToken = Parser.Lex(); // Eat the integer.
+
+ if (isParsingInlineAsm())
+ InstInfo->AsmRewrites->push_back(
+ AsmRewrite(AOK_ImmPrefix, ImmDispToken.getLoc()));
+
+ if (getLexer().isNot(AsmToken::LBrac)) {
+ // An immediate following a 'segment register', 'colon' token sequence can
+ // be followed by a bracketed expression. If it isn't we know we have our
+ // final segment override.
+ const MCExpr *Disp = MCConstantExpr::Create(ImmDisp, getContext());
+ return X86Operand::CreateMem(SegReg, Disp, /*BaseReg=*/0, /*IndexReg=*/0,
+ /*Scale=*/1, Start, ImmDispToken.getEndLoc(),
+ Size);
+ }
+ }
+
+ if (getLexer().is(AsmToken::LBrac))
+ return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);
+
+ const MCExpr *Val;
+ SMLoc End;
+ if (!isParsingInlineAsm()) {
+ if (getParser().parsePrimaryExpr(Val, End))
+ return ErrorOperand(Tok.getLoc(), "unknown token in expression");
+
+ return X86Operand::CreateMem(Val, Start, End, Size);
+ }
+
+ InlineAsmIdentifierInfo Info;
+ StringRef Identifier = Tok.getString();
+ if (ParseIntelIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/false, End))
+ return nullptr;
+ return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0,
+ /*Scale=*/1, Start, End, Size, Identifier, Info);
+}
+
+/// ParseIntelMemOperand - Parse intel style memory operand.
+std::unique_ptr<X86Operand> X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp,
+ SMLoc Start,
+ unsigned Size) {
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc End;
+
+ // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
+ if (getLexer().is(AsmToken::LBrac))
+ return ParseIntelBracExpression(/*SegReg=*/0, Start, ImmDisp, Size);
+ assert(ImmDisp == 0);
+
+ const MCExpr *Val;
+ if (!isParsingInlineAsm()) {
+ if (getParser().parsePrimaryExpr(Val, End))
+ return ErrorOperand(Tok.getLoc(), "unknown token in expression");
+
+ return X86Operand::CreateMem(Val, Start, End, Size);
+ }
+
+ InlineAsmIdentifierInfo Info;
+ StringRef Identifier = Tok.getString();
+ if (ParseIntelIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/false, End))
+ return nullptr;
+
+ if (!getLexer().is(AsmToken::LBrac))
+ return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0, /*IndexReg=*/0,
+ /*Scale=*/1, Start, End, Size, Identifier, Info);
+
+ Parser.Lex(); // Eat '['
+
+ // Parse Identifier [ ImmDisp ]
+ IntelExprStateMachine SM(/*ImmDisp=*/0, /*StopOnLBrac=*/true,
+ /*AddImmPrefix=*/false);
+ if (ParseIntelExpression(SM, End))
+ return nullptr;
+
+ if (SM.getSym()) {
+ Error(Start, "cannot use more than one symbol in memory operand");
+ return nullptr;
+ }
+ if (SM.getBaseReg()) {
+ Error(Start, "cannot use base register with variable reference");
+ return nullptr;
+ }
+ if (SM.getIndexReg()) {
+ Error(Start, "cannot use index register with variable reference");
+ return nullptr;
+ }
+
+ const MCExpr *Disp = MCConstantExpr::Create(SM.getImm(), getContext());
+ // BaseReg is non-zero to avoid assertions. In the context of inline asm,
+ // we're pointing to a local variable in memory, so the base register is
+ // really the frame or stack pointer.
+ return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/1, /*IndexReg=*/0,
+ /*Scale=*/1, Start, End, Size, Identifier,
+ Info.OpDecl);
+}
+
+/// Parse the '.' operator.
+bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
+ const MCExpr *&NewDisp) {
+ const AsmToken &Tok = Parser.getTok();
+ int64_t OrigDispVal, DotDispVal;
+
+ // FIXME: Handle non-constant expressions.
+ if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp))
+ OrigDispVal = OrigDisp->getValue();
+ else
+ return Error(Tok.getLoc(), "Non-constant offsets are not supported!");
+
+ // Drop the optional '.'.
+ StringRef DotDispStr = Tok.getString();
+ if (DotDispStr.startswith("."))
+ DotDispStr = DotDispStr.drop_front(1);
+
+ // .Imm gets lexed as a real.
+ if (Tok.is(AsmToken::Real)) {
+ APInt DotDisp;
+ DotDispStr.getAsInteger(10, DotDisp);
+ DotDispVal = DotDisp.getZExtValue();
+ } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
+ unsigned DotDisp;
+ std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
+ if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
+ DotDisp))
+ return Error(Tok.getLoc(), "Unable to lookup field reference!");
+ DotDispVal = DotDisp;
+ } else
+ return Error(Tok.getLoc(), "Unexpected token type!");
+
+ if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
+ SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
+ unsigned Len = DotDispStr.size();
+ unsigned Val = OrigDispVal + DotDispVal;
+ InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_DotOperator, Loc, Len,
+ Val));
+ }
+
+ NewDisp = MCConstantExpr::Create(OrigDispVal + DotDispVal, getContext());
+ return false;
+}
+
+/// Parse the 'offset' operator. This operator is used to specify the
+/// location rather then the content of a variable.
+std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() {
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc OffsetOfLoc = Tok.getLoc();
+ Parser.Lex(); // Eat offset.
+
+ const MCExpr *Val;
+ InlineAsmIdentifierInfo Info;
+ SMLoc Start = Tok.getLoc(), End;
+ StringRef Identifier = Tok.getString();
+ if (ParseIntelIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/false, End))
+ return nullptr;
+
+ // Don't emit the offset operator.
+ InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7));
+
+ // The offset operator will have an 'r' constraint, thus we need to create
+ // register operand to ensure proper matching. Just pick a GPR based on
+ // the size of a pointer.
+ unsigned RegNo =
+ is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX);
+ return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
+ OffsetOfLoc, Identifier, Info.OpDecl);
+}
+
+enum IntelOperatorKind {
+ IOK_LENGTH,
+ IOK_SIZE,
+ IOK_TYPE
+};
+
+/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator
+/// returns the number of elements in an array. It returns the value 1 for
+/// non-array variables. The SIZE operator returns the size of a C or C++
+/// variable. A variable's size is the product of its LENGTH and TYPE. The
+/// TYPE operator returns the size of a C or C++ type or variable. If the
+/// variable is an array, TYPE returns the size of a single element.
+std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperator(unsigned OpKind) {
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc TypeLoc = Tok.getLoc();
+ Parser.Lex(); // Eat operator.
+
+ const MCExpr *Val = nullptr;
+ InlineAsmIdentifierInfo Info;
+ SMLoc Start = Tok.getLoc(), End;
+ StringRef Identifier = Tok.getString();
+ if (ParseIntelIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/true, End))
+ return nullptr;
+
+ if (!Info.OpDecl)
+ return ErrorOperand(Start, "unable to lookup expression");
+
+ unsigned CVal = 0;
+ switch(OpKind) {
+ default: llvm_unreachable("Unexpected operand kind!");
+ case IOK_LENGTH: CVal = Info.Length; break;
+ case IOK_SIZE: CVal = Info.Size; break;
+ case IOK_TYPE: CVal = Info.Type; break;
+ }
+
+ // Rewrite the type operator and the C or C++ type or variable in terms of an
+ // immediate. E.g. TYPE foo -> $$4
+ unsigned Len = End.getPointer() - TypeLoc.getPointer();
+ InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal));
+
+ const MCExpr *Imm = MCConstantExpr::Create(CVal, getContext());
+ return X86Operand::CreateImm(Imm, Start, End);
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc Start, End;
+
+ // Offset, length, type and size operators.
+ if (isParsingInlineAsm()) {
+ StringRef AsmTokStr = Tok.getString();
+ if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
+ return ParseIntelOffsetOfOperator();
+ if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
+ return ParseIntelOperator(IOK_LENGTH);
+ if (AsmTokStr == "size" || AsmTokStr == "SIZE")
+ return ParseIntelOperator(IOK_SIZE);
+ if (AsmTokStr == "type" || AsmTokStr == "TYPE")
+ return ParseIntelOperator(IOK_TYPE);
+ }
+
+ unsigned Size = getIntelMemOperandSize(Tok.getString());
+ if (Size) {
+ Parser.Lex(); // Eat operand size (e.g., byte, word).
+ if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
+ return ErrorOperand(Start, "Expected 'PTR' or 'ptr' token!");
+ Parser.Lex(); // Eat ptr.
+ }
+ Start = Tok.getLoc();
+
+ // Immediate.
+ if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Minus) ||
+ getLexer().is(AsmToken::Tilde) || getLexer().is(AsmToken::LParen)) {
+ AsmToken StartTok = Tok;
+ IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true,
+ /*AddImmPrefix=*/false);
+ if (ParseIntelExpression(SM, End))
+ return nullptr;
+
+ int64_t Imm = SM.getImm();
+ if (isParsingInlineAsm()) {
+ unsigned Len = Tok.getLoc().getPointer() - Start.getPointer();
+ if (StartTok.getString().size() == Len)
+ // Just add a prefix if this wasn't a complex immediate expression.
+ InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix, Start));
+ else
+ // Otherwise, rewrite the complex expression as a single immediate.
+ InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, Start, Len, Imm));
+ }
+
+ if (getLexer().isNot(AsmToken::LBrac)) {
+ // If a directional label (ie. 1f or 2b) was parsed above from
+ // ParseIntelExpression() then SM.getSym() was set to a pointer to
+ // to the MCExpr with the directional local symbol and this is a
+ // memory operand not an immediate operand.
+ if (SM.getSym())
+ return X86Operand::CreateMem(SM.getSym(), Start, End, Size);
+
+ const MCExpr *ImmExpr = MCConstantExpr::Create(Imm, getContext());
+ return X86Operand::CreateImm(ImmExpr, Start, End);
+ }
+
+ // Only positive immediates are valid.
+ if (Imm < 0)
+ return ErrorOperand(Start, "expected a positive immediate displacement "
+ "before bracketed expr.");
+
+ // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
+ return ParseIntelMemOperand(Imm, Start, Size);
+ }
+
+ // Register.
+ unsigned RegNo = 0;
+ if (!ParseRegister(RegNo, Start, End)) {
+ // If this is a segment register followed by a ':', then this is the start
+ // of a segment override, otherwise this is a normal register reference.
+ if (getLexer().isNot(AsmToken::Colon))
+ return X86Operand::CreateReg(RegNo, Start, End);
+
+ return ParseIntelSegmentOverride(/*SegReg=*/RegNo, Start, Size);
+ }
+
+ // Memory operand.
+ return ParseIntelMemOperand(/*Disp=*/0, Start, Size);
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
+ switch (getLexer().getKind()) {
+ default:
+ // Parse a memory operand with no segment register.
+ return ParseMemOperand(0, Parser.getTok().getLoc());
+ case AsmToken::Percent: {
+ // Read the register.
+ unsigned RegNo;
+ SMLoc Start, End;
+ if (ParseRegister(RegNo, Start, End)) return nullptr;
+ if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
+ Error(Start, "%eiz and %riz can only be used as index registers",
+ SMRange(Start, End));
+ return nullptr;
+ }
+
+ // If this is a segment register followed by a ':', then this is the start
+ // of a memory reference, otherwise this is a normal register reference.
+ if (getLexer().isNot(AsmToken::Colon))
+ return X86Operand::CreateReg(RegNo, Start, End);
+
+ getParser().Lex(); // Eat the colon.
+ return ParseMemOperand(RegNo, Start);
+ }
+ case AsmToken::Dollar: {
+ // $42 -> immediate.
+ SMLoc Start = Parser.getTok().getLoc(), End;
+ Parser.Lex();
+ const MCExpr *Val;
+ if (getParser().parseExpression(Val, End))
+ return nullptr;
+ return X86Operand::CreateImm(Val, Start, End);
+ }
+ }
+}
+
+bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
+ const MCParsedAsmOperand &Op) {
+ if(STI.getFeatureBits() & X86::FeatureAVX512) {
+ if (getLexer().is(AsmToken::LCurly)) {
+ // Eat "{" and mark the current place.
+ const SMLoc consumedToken = consumeToken();
+ // Distinguish {1to<NUM>} from {%k<NUM>}.
+ if(getLexer().is(AsmToken::Integer)) {
+ // Parse memory broadcasting ({1to<NUM>}).
+ if (getLexer().getTok().getIntVal() != 1)
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected 1to<NUM> at this point");
+ Parser.Lex(); // Eat "1" of 1to8
+ if (!getLexer().is(AsmToken::Identifier) ||
+ !getLexer().getTok().getIdentifier().startswith("to"))
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected 1to<NUM> at this point");
+ // Recognize only reasonable suffixes.
+ const char *BroadcastPrimitive =
+ StringSwitch<const char*>(getLexer().getTok().getIdentifier())
+ .Case("to2", "{1to2}")
+ .Case("to4", "{1to4}")
+ .Case("to8", "{1to8}")
+ .Case("to16", "{1to16}")
+ .Default(nullptr);
+ if (!BroadcastPrimitive)
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Invalid memory broadcast primitive.");
+ Parser.Lex(); // Eat "toN" of 1toN
+ if (!getLexer().is(AsmToken::RCurly))
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected } at this point");
+ Parser.Lex(); // Eat "}"
+ Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
+ consumedToken));
+ // No AVX512 specific primitives can pass
+ // after memory broadcasting, so return.
+ return true;
+ } else {
+ // Parse mask register {%k1}
+ Operands.push_back(X86Operand::CreateToken("{", consumedToken));
+ if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
+ Operands.push_back(std::move(Op));
+ if (!getLexer().is(AsmToken::RCurly))
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected } at this point");
+ Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
+
+ // Parse "zeroing non-masked" semantic {z}
+ if (getLexer().is(AsmToken::LCurly)) {
+ Operands.push_back(X86Operand::CreateToken("{z}", consumeToken()));
+ if (!getLexer().is(AsmToken::Identifier) ||
+ getLexer().getTok().getIdentifier() != "z")
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected z at this point");
+ Parser.Lex(); // Eat the z
+ if (!getLexer().is(AsmToken::RCurly))
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected } at this point");
+ Parser.Lex(); // Eat the }
+ }
+ }
+ }
+ }
+ }
+ return true;
+}
+
+/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix
+/// has already been parsed if present.
+std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
+ SMLoc MemStart) {
+
+ // We have to disambiguate a parenthesized expression "(4+5)" from the start
+ // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
+ // only way to do this without lookahead is to eat the '(' and see what is
+ // after it.
+ const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
+ if (getLexer().isNot(AsmToken::LParen)) {
+ SMLoc ExprEnd;
+ if (getParser().parseExpression(Disp, ExprEnd)) return nullptr;
+
+ // After parsing the base expression we could either have a parenthesized
+ // memory address or not. If not, return now. If so, eat the (.
+ if (getLexer().isNot(AsmToken::LParen)) {
+ // Unless we have a segment register, treat this as an immediate.
+ if (SegReg == 0)
+ return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
+ return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
+ }
+
+ // Eat the '('.
+ Parser.Lex();
+ } else {
+ // Okay, we have a '('. We don't know if this is an expression or not, but
+ // so we have to eat the ( to see beyond it.
+ SMLoc LParenLoc = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat the '('.
+
+ if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
+ // Nothing to do here, fall into the code below with the '(' part of the
+ // memory operand consumed.
+ } else {
+ SMLoc ExprEnd;
+
+ // It must be an parenthesized expression, parse it now.
+ if (getParser().parseParenExpression(Disp, ExprEnd))
+ return nullptr;
+
+ // After parsing the base expression we could either have a parenthesized
+ // memory address or not. If not, return now. If so, eat the (.
+ if (getLexer().isNot(AsmToken::LParen)) {
+ // Unless we have a segment register, treat this as an immediate.
+ if (SegReg == 0)
+ return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
+ return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
+ }
+
+ // Eat the '('.
+ Parser.Lex();
+ }
+ }
+
+ // If we reached here, then we just ate the ( of the memory operand. Process
+ // the rest of the memory operand.
+ unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
+ SMLoc IndexLoc, BaseLoc;
+
+ if (getLexer().is(AsmToken::Percent)) {
+ SMLoc StartLoc, EndLoc;
+ BaseLoc = Parser.getTok().getLoc();
+ if (ParseRegister(BaseReg, StartLoc, EndLoc)) return nullptr;
+ if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
+ Error(StartLoc, "eiz and riz can only be used as index registers",
+ SMRange(StartLoc, EndLoc));
+ return nullptr;
+ }
+ }
+
+ if (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma.
+ IndexLoc = Parser.getTok().getLoc();
+
+ // Following the comma we should have either an index register, or a scale
+ // value. We don't support the later form, but we want to parse it
+ // correctly.
+ //
+ // Not that even though it would be completely consistent to support syntax
+ // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
+ if (getLexer().is(AsmToken::Percent)) {
+ SMLoc L;
+ if (ParseRegister(IndexReg, L, L)) return nullptr;
+
+ if (getLexer().isNot(AsmToken::RParen)) {
+ // Parse the scale amount:
+ // ::= ',' [scale-expression]
+ if (getLexer().isNot(AsmToken::Comma)) {
+ Error(Parser.getTok().getLoc(),
+ "expected comma in scale expression");
+ return nullptr;
+ }
+ Parser.Lex(); // Eat the comma.
+
+ if (getLexer().isNot(AsmToken::RParen)) {
+ SMLoc Loc = Parser.getTok().getLoc();
+
+ int64_t ScaleVal;
+ if (getParser().parseAbsoluteExpression(ScaleVal)){
+ Error(Loc, "expected scale expression");
+ return nullptr;
+ }
+
+ // Validate the scale amount.
+ if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
+ ScaleVal != 1) {
+ Error(Loc, "scale factor in 16-bit address must be 1");
+ return nullptr;
+ }
+ if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
+ Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
+ return nullptr;
+ }
+ Scale = (unsigned)ScaleVal;
+ }
+ }
+ } else if (getLexer().isNot(AsmToken::RParen)) {
+ // A scale amount without an index is ignored.
+ // index.
+ SMLoc Loc = Parser.getTok().getLoc();
+
+ int64_t Value;
+ if (getParser().parseAbsoluteExpression(Value))
+ return nullptr;
+
+ if (Value != 1)
+ Warning(Loc, "scale factor without index register is ignored");
+ Scale = 1;
+ }
+ }
+
+ // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
+ if (getLexer().isNot(AsmToken::RParen)) {
+ Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
+ return nullptr;
+ }
+ SMLoc MemEnd = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat the ')'.
+
+ // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
+ // and then only in non-64-bit modes. Except for DX, which is a special case
+ // because an unofficial form of in/out instructions uses it.
+ if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
+ (is64BitMode() || (BaseReg != X86::BX && BaseReg != X86::BP &&
+ BaseReg != X86::SI && BaseReg != X86::DI)) &&
+ BaseReg != X86::DX) {
+ Error(BaseLoc, "invalid 16-bit base register");
+ return nullptr;
+ }
+ if (BaseReg == 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
+ Error(IndexLoc, "16-bit memory operand may not include only index register");
+ return nullptr;
+ }
+
+ StringRef ErrMsg;
+ if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
+ Error(BaseLoc, ErrMsg);
+ return nullptr;
+ }
+
+ return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
+ MemStart, MemEnd);
+}
+
+bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) {
+ InstInfo = &Info;
+ StringRef PatchedName = Name;
+
+ // FIXME: Hack to recognize setneb as setne.
+ if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
+ PatchedName != "setb" && PatchedName != "setnb")
+ PatchedName = PatchedName.substr(0, Name.size()-1);
+
+ // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
+ const MCExpr *ExtraImmOp = nullptr;
+ if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
+ (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
+ PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
+ bool IsVCMP = PatchedName[0] == 'v';
+ unsigned SSECCIdx = IsVCMP ? 4 : 3;
+ unsigned SSEComparisonCode = StringSwitch<unsigned>(
+ PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
+ .Case("eq", 0x00)
+ .Case("lt", 0x01)
+ .Case("le", 0x02)
+ .Case("unord", 0x03)
+ .Case("neq", 0x04)
+ .Case("nlt", 0x05)
+ .Case("nle", 0x06)
+ .Case("ord", 0x07)
+ /* AVX only from here */
+ .Case("eq_uq", 0x08)
+ .Case("nge", 0x09)
+ .Case("ngt", 0x0A)
+ .Case("false", 0x0B)
+ .Case("neq_oq", 0x0C)
+ .Case("ge", 0x0D)
+ .Case("gt", 0x0E)
+ .Case("true", 0x0F)
+ .Case("eq_os", 0x10)
+ .Case("lt_oq", 0x11)
+ .Case("le_oq", 0x12)
+ .Case("unord_s", 0x13)
+ .Case("neq_us", 0x14)
+ .Case("nlt_uq", 0x15)
+ .Case("nle_uq", 0x16)
+ .Case("ord_s", 0x17)
+ .Case("eq_us", 0x18)
+ .Case("nge_uq", 0x19)
+ .Case("ngt_uq", 0x1A)
+ .Case("false_os", 0x1B)
+ .Case("neq_os", 0x1C)
+ .Case("ge_oq", 0x1D)
+ .Case("gt_oq", 0x1E)
+ .Case("true_us", 0x1F)
+ .Default(~0U);
+ if (SSEComparisonCode != ~0U && (IsVCMP || SSEComparisonCode < 8)) {
+ ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
+ getParser().getContext());
+ if (PatchedName.endswith("ss")) {
+ PatchedName = IsVCMP ? "vcmpss" : "cmpss";
+ } else if (PatchedName.endswith("sd")) {
+ PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
+ } else if (PatchedName.endswith("ps")) {
+ PatchedName = IsVCMP ? "vcmpps" : "cmpps";
+ } else {
+ assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
+ PatchedName = IsVCMP ? "vcmppd" : "cmppd";
+ }
+ }
+ }
+
+ Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
+
+ if (ExtraImmOp && !isParsingIntelSyntax())
+ Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
+
+ // Determine whether this is an instruction prefix.
+ bool isPrefix =
+ Name == "lock" || Name == "rep" ||
+ Name == "repe" || Name == "repz" ||
+ Name == "repne" || Name == "repnz" ||
+ Name == "rex64" || Name == "data16";
+
+
+ // This does the actual operand parsing. Don't parse any more if we have a
+ // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
+ // just want to parse the "lock" as the first instruction and the "incl" as
+ // the next one.
+ if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
+
+ // Parse '*' modifier.
+ if (getLexer().is(AsmToken::Star))
+ Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
+
+ // Read the operands.
+ while(1) {
+ if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
+ Operands.push_back(std::move(Op));
+ if (!HandleAVX512Operand(Operands, *Operands.back()))
+ return true;
+ } else {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+ // check for comma and eat it
+ if (getLexer().is(AsmToken::Comma))
+ Parser.Lex();
+ else
+ break;
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return ErrorAndEatStatement(getLexer().getLoc(),
+ "unexpected token in argument list");
+ }
+
+ // Consume the EndOfStatement or the prefix separator Slash
+ if (getLexer().is(AsmToken::EndOfStatement) ||
+ (isPrefix && getLexer().is(AsmToken::Slash)))
+ Parser.Lex();
+
+ if (ExtraImmOp && isParsingIntelSyntax())
+ Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
+
+ // This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
+ // "outb %al, %dx". Out doesn't take a memory form, but this is a widely
+ // documented form in various unofficial manuals, so a lot of code uses it.
+ if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
+ Operands.size() == 3) {
+ X86Operand &Op = (X86Operand &)*Operands.back();
+ if (Op.isMem() && Op.Mem.SegReg == 0 &&
+ isa<MCConstantExpr>(Op.Mem.Disp) &&
+ cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
+ Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
+ SMLoc Loc = Op.getEndLoc();
+ Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
+ }
+ }
+ // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
+ if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
+ Operands.size() == 3) {
+ X86Operand &Op = (X86Operand &)*Operands[1];
+ if (Op.isMem() && Op.Mem.SegReg == 0 &&
+ isa<MCConstantExpr>(Op.Mem.Disp) &&
+ cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
+ Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
+ SMLoc Loc = Op.getEndLoc();
+ Operands[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
+ }
+ }
+
+ // Append default arguments to "ins[bwld]"
+ if (Name.startswith("ins") && Operands.size() == 1 &&
+ (Name == "insb" || Name == "insw" || Name == "insl" ||
+ Name == "insd" )) {
+ if (isParsingIntelSyntax()) {
+ Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
+ Operands.push_back(DefaultMemDIOperand(NameLoc));
+ } else {
+ Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
+ Operands.push_back(DefaultMemDIOperand(NameLoc));
+ }
+ }
+
+ // Append default arguments to "outs[bwld]"
+ if (Name.startswith("outs") && Operands.size() == 1 &&
+ (Name == "outsb" || Name == "outsw" || Name == "outsl" ||
+ Name == "outsd" )) {
+ if (isParsingIntelSyntax()) {
+ Operands.push_back(DefaultMemSIOperand(NameLoc));
+ Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
+ } else {
+ Operands.push_back(DefaultMemSIOperand(NameLoc));
+ Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
+ }
+ }
+
+ // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
+ // values of $SIREG according to the mode. It would be nice if this
+ // could be achieved with InstAlias in the tables.
+ if (Name.startswith("lods") && Operands.size() == 1 &&
+ (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
+ Name == "lodsl" || Name == "lodsd" || Name == "lodsq"))
+ Operands.push_back(DefaultMemSIOperand(NameLoc));
+
+ // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
+ // values of $DIREG according to the mode. It would be nice if this
+ // could be achieved with InstAlias in the tables.
+ if (Name.startswith("stos") && Operands.size() == 1 &&
+ (Name == "stos" || Name == "stosb" || Name == "stosw" ||
+ Name == "stosl" || Name == "stosd" || Name == "stosq"))
+ Operands.push_back(DefaultMemDIOperand(NameLoc));
+
+ // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
+ // values of $DIREG according to the mode. It would be nice if this
+ // could be achieved with InstAlias in the tables.
+ if (Name.startswith("scas") && Operands.size() == 1 &&
+ (Name == "scas" || Name == "scasb" || Name == "scasw" ||
+ Name == "scasl" || Name == "scasd" || Name == "scasq"))
+ Operands.push_back(DefaultMemDIOperand(NameLoc));
+
+ // Add default SI and DI operands to "cmps[bwlq]".
+ if (Name.startswith("cmps") &&
+ (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
+ Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
+ if (Operands.size() == 1) {
+ if (isParsingIntelSyntax()) {
+ Operands.push_back(DefaultMemSIOperand(NameLoc));
+ Operands.push_back(DefaultMemDIOperand(NameLoc));
+ } else {
+ Operands.push_back(DefaultMemDIOperand(NameLoc));
+ Operands.push_back(DefaultMemSIOperand(NameLoc));
+ }
+ } else if (Operands.size() == 3) {
+ X86Operand &Op = (X86Operand &)*Operands[1];
+ X86Operand &Op2 = (X86Operand &)*Operands[2];
+ if (!doSrcDstMatch(Op, Op2))
+ return Error(Op.getStartLoc(),
+ "mismatching source and destination index registers");
+ }
+ }
+
+ // Add default SI and DI operands to "movs[bwlq]".
+ if ((Name.startswith("movs") &&
+ (Name == "movs" || Name == "movsb" || Name == "movsw" ||
+ Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
+ (Name.startswith("smov") &&
+ (Name == "smov" || Name == "smovb" || Name == "smovw" ||
+ Name == "smovl" || Name == "smovd" || Name == "smovq"))) {
+ if (Operands.size() == 1) {
+ if (Name == "movsd")
+ Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
+ if (isParsingIntelSyntax()) {
+ Operands.push_back(DefaultMemDIOperand(NameLoc));
+ Operands.push_back(DefaultMemSIOperand(NameLoc));
+ } else {
+ Operands.push_back(DefaultMemSIOperand(NameLoc));
+ Operands.push_back(DefaultMemDIOperand(NameLoc));
+ }
+ } else if (Operands.size() == 3) {
+ X86Operand &Op = (X86Operand &)*Operands[1];
+ X86Operand &Op2 = (X86Operand &)*Operands[2];
+ if (!doSrcDstMatch(Op, Op2))
+ return Error(Op.getStartLoc(),
+ "mismatching source and destination index registers");
+ }
+ }
+
+ // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
+ // "shift <op>".
+ if ((Name.startswith("shr") || Name.startswith("sar") ||
+ Name.startswith("shl") || Name.startswith("sal") ||
+ Name.startswith("rcl") || Name.startswith("rcr") ||
+ Name.startswith("rol") || Name.startswith("ror")) &&
+ Operands.size() == 3) {
+ if (isParsingIntelSyntax()) {
+ // Intel syntax
+ X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
+ if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
+ cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
+ Operands.pop_back();
+ } else {
+ X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
+ if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
+ cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
+ Operands.erase(Operands.begin() + 1);
+ }
+ }
+
+ // Transforms "int $3" into "int3" as a size optimization. We can't write an
+ // instalias with an immediate operand yet.
+ if (Name == "int" && Operands.size() == 2) {
+ X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
+ if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
+ cast<MCConstantExpr>(Op1.getImm())->getValue() == 3) {
+ Operands.erase(Operands.begin() + 1);
+ static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
+ }
+ }
+
+ return false;
+}
+
+static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg,
+ bool isCmp) {
+ MCInst TmpInst;
+ TmpInst.setOpcode(Opcode);
+ if (!isCmp)
+ TmpInst.addOperand(MCOperand::CreateReg(Reg));
+ TmpInst.addOperand(MCOperand::CreateReg(Reg));
+ TmpInst.addOperand(Inst.getOperand(0));
+ Inst = TmpInst;
+ return true;
+}
+
+static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode,
+ bool isCmp = false) {
+ if (!Inst.getOperand(0).isImm() ||
+ !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
+ return false;
+
+ return convertToSExti8(Inst, Opcode, X86::AX, isCmp);
+}
+
+static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode,
+ bool isCmp = false) {
+ if (!Inst.getOperand(0).isImm() ||
+ !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
+ return false;
+
+ return convertToSExti8(Inst, Opcode, X86::EAX, isCmp);
+}
+
+static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode,
+ bool isCmp = false) {
+ if (!Inst.getOperand(0).isImm() ||
+ !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
+ return false;
+
+ return convertToSExti8(Inst, Opcode, X86::RAX, isCmp);
+}
+
+bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
+ switch (Inst.getOpcode()) {
+ default: return false;
+ case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8);
+ case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8);
+ case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8);
+ case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8);
+ case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8);
+ case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8);
+ case X86::OR16i16: return convert16i16to16ri8(Inst, X86::OR16ri8);
+ case X86::OR32i32: return convert32i32to32ri8(Inst, X86::OR32ri8);
+ case X86::OR64i32: return convert64i32to64ri8(Inst, X86::OR64ri8);
+ case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true);
+ case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true);
+ case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true);
+ case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8);
+ case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8);
+ case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8);
+ case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8);
+ case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8);
+ case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8);
+ case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8);
+ case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8);
+ case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8);
+ case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8);
+ case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8);
+ case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8);
+ case X86::VMOVAPDrr:
+ case X86::VMOVAPDYrr:
+ case X86::VMOVAPSrr:
+ case X86::VMOVAPSYrr:
+ case X86::VMOVDQArr:
+ case X86::VMOVDQAYrr:
+ case X86::VMOVDQUrr:
+ case X86::VMOVDQUYrr:
+ case X86::VMOVUPDrr:
+ case X86::VMOVUPDYrr:
+ case X86::VMOVUPSrr:
+ case X86::VMOVUPSYrr: {
+ if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
+ !X86II::isX86_64ExtendedReg(Inst.getOperand(1).getReg()))
+ return false;
+
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
+ case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
+ case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
+ case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
+ case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
+ case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
+ case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
+ case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
+ case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
+ case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
+ case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
+ case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
+ }
+ Inst.setOpcode(NewOpc);
+ return true;
+ }
+ case X86::VMOVSDrr:
+ case X86::VMOVSSrr: {
+ if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
+ !X86II::isX86_64ExtendedReg(Inst.getOperand(2).getReg()))
+ return false;
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
+ case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
+ }
+ Inst.setOpcode(NewOpc);
+ return true;
+ }
+ }
+}
+
+static const char *getSubtargetFeatureName(unsigned Val);
+
+void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands,
+ MCStreamer &Out) {
+ Instrumentation->InstrumentInstruction(Inst, Operands, getContext(), MII,
+ Out);
+ Out.EmitInstruction(Inst, STI);
+}
+
+bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out, unsigned &ErrorInfo,
+ bool MatchingInlineAsm) {
+ assert(!Operands.empty() && "Unexpect empty operand list!");
+ X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
+ assert(Op.isToken() && "Leading operand should always be a mnemonic!");
+ ArrayRef<SMRange> EmptyRanges = None;
+
+ // First, handle aliases that expand to multiple instructions.
+ // FIXME: This should be replaced with a real .td file alias mechanism.
+ // Also, MatchInstructionImpl should actually *do* the EmitInstruction
+ // call.
+ if (Op.getToken() == "fstsw" || Op.getToken() == "fstcw" ||
+ Op.getToken() == "fstsww" || Op.getToken() == "fstcww" ||
+ Op.getToken() == "finit" || Op.getToken() == "fsave" ||
+ Op.getToken() == "fstenv" || Op.getToken() == "fclex") {
+ MCInst Inst;
+ Inst.setOpcode(X86::WAIT);
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+
+ const char *Repl = StringSwitch<const char *>(Op.getToken())
+ .Case("finit", "fninit")
+ .Case("fsave", "fnsave")
+ .Case("fstcw", "fnstcw")
+ .Case("fstcww", "fnstcw")
+ .Case("fstenv", "fnstenv")
+ .Case("fstsw", "fnstsw")
+ .Case("fstsww", "fnstsw")
+ .Case("fclex", "fnclex")
+ .Default(nullptr);
+ assert(Repl && "Unknown wait-prefixed instruction");
+ Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
+ }
+
+ bool WasOriginallyInvalidOperand = false;
+ MCInst Inst;
+
+ // First, try a direct match.
+ switch (MatchInstructionImpl(Operands, Inst,
+ ErrorInfo, MatchingInlineAsm,
+ isParsingIntelSyntax())) {
+ default: break;
+ case Match_Success:
+ // Some instructions need post-processing to, for example, tweak which
+ // encoding is selected. Loop on it while changes happen so the
+ // individual transformations can chain off each other.
+ if (!MatchingInlineAsm)
+ while (processInstruction(Inst, Operands))
+ ;
+
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+ Opcode = Inst.getOpcode();
+ return false;
+ case Match_MissingFeature: {
+ assert(ErrorInfo && "Unknown missing feature!");
+ // Special case the error message for the very common case where only
+ // a single subtarget feature is missing.
+ std::string Msg = "instruction requires:";
+ unsigned Mask = 1;
+ for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
+ if (ErrorInfo & Mask) {
+ Msg += " ";
+ Msg += getSubtargetFeatureName(ErrorInfo & Mask);
+ }
+ Mask <<= 1;
+ }
+ return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
+ }
+ case Match_InvalidOperand:
+ WasOriginallyInvalidOperand = true;
+ break;
+ case Match_MnemonicFail:
+ break;
+ }
+
+ // FIXME: Ideally, we would only attempt suffix matches for things which are
+ // valid prefixes, and we could just infer the right unambiguous
+ // type. However, that requires substantially more matcher support than the
+ // following hack.
+
+ // Change the operand to point to a temporary token.
+ StringRef Base = Op.getToken();
+ SmallString<16> Tmp;
+ Tmp += Base;
+ Tmp += ' ';
+ Op.setTokenValue(Tmp.str());
+
+ // If this instruction starts with an 'f', then it is a floating point stack
+ // instruction. These come in up to three forms for 32-bit, 64-bit, and
+ // 80-bit floating point, which use the suffixes s,l,t respectively.
+ //
+ // Otherwise, we assume that this may be an integer instruction, which comes
+ // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
+ const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
+
+ // Check for the various suffix matches.
+ Tmp[Base.size()] = Suffixes[0];
+ unsigned ErrorInfoIgnore;
+ unsigned ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
+ unsigned Match1, Match2, Match3, Match4;
+
+ Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
+ MatchingInlineAsm, isParsingIntelSyntax());
+ // If this returned as a missing feature failure, remember that.
+ if (Match1 == Match_MissingFeature)
+ ErrorInfoMissingFeature = ErrorInfoIgnore;
+ Tmp[Base.size()] = Suffixes[1];
+ Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
+ MatchingInlineAsm, isParsingIntelSyntax());
+ // If this returned as a missing feature failure, remember that.
+ if (Match2 == Match_MissingFeature)
+ ErrorInfoMissingFeature = ErrorInfoIgnore;
+ Tmp[Base.size()] = Suffixes[2];
+ Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
+ MatchingInlineAsm, isParsingIntelSyntax());
+ // If this returned as a missing feature failure, remember that.
+ if (Match3 == Match_MissingFeature)
+ ErrorInfoMissingFeature = ErrorInfoIgnore;
+ Tmp[Base.size()] = Suffixes[3];
+ Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
+ MatchingInlineAsm, isParsingIntelSyntax());
+ // If this returned as a missing feature failure, remember that.
+ if (Match4 == Match_MissingFeature)
+ ErrorInfoMissingFeature = ErrorInfoIgnore;
+
+ // Restore the old token.
+ Op.setTokenValue(Base);
+
+ // If exactly one matched, then we treat that as a successful match (and the
+ // instruction will already have been filled in correctly, since the failing
+ // matches won't have modified it).
+ unsigned NumSuccessfulMatches =
+ (Match1 == Match_Success) + (Match2 == Match_Success) +
+ (Match3 == Match_Success) + (Match4 == Match_Success);
+ if (NumSuccessfulMatches == 1) {
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+ Opcode = Inst.getOpcode();
+ return false;
+ }
+
+ // Otherwise, the match failed, try to produce a decent error message.
+
+ // If we had multiple suffix matches, then identify this as an ambiguous
+ // match.
+ if (NumSuccessfulMatches > 1) {
+ char MatchChars[4];
+ unsigned NumMatches = 0;
+ if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
+ if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
+ if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
+ if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
+
+ SmallString<126> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "ambiguous instructions require an explicit suffix (could be ";
+ for (unsigned i = 0; i != NumMatches; ++i) {
+ if (i != 0)
+ OS << ", ";
+ if (i + 1 == NumMatches)
+ OS << "or ";
+ OS << "'" << Base << MatchChars[i] << "'";
+ }
+ OS << ")";
+ Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
+ return true;
+ }
+
+ // Okay, we know that none of the variants matched successfully.
+
+ // If all of the instructions reported an invalid mnemonic, then the original
+ // mnemonic was invalid.
+ if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
+ (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
+ if (!WasOriginallyInvalidOperand) {
+ ArrayRef<SMRange> Ranges =
+ MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
+ return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
+ Ranges, MatchingInlineAsm);
+ }
+
+ // Recover location info for the operand if we know which was the problem.
+ if (ErrorInfo != ~0U) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction",
+ EmptyRanges, MatchingInlineAsm);
+
+ X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
+ if (Operand.getStartLoc().isValid()) {
+ SMRange OperandRange = Operand.getLocRange();
+ return Error(Operand.getStartLoc(), "invalid operand for instruction",
+ OperandRange, MatchingInlineAsm);
+ }
+ }
+
+ return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
+ MatchingInlineAsm);
+ }
+
+ // If one instruction matched with a missing feature, report this as a
+ // missing feature.
+ if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
+ (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
+ std::string Msg = "instruction requires:";
+ unsigned Mask = 1;
+ for (unsigned i = 0; i < (sizeof(ErrorInfoMissingFeature)*8-1); ++i) {
+ if (ErrorInfoMissingFeature & Mask) {
+ Msg += " ";
+ Msg += getSubtargetFeatureName(ErrorInfoMissingFeature & Mask);
+ }
+ Mask <<= 1;
+ }
+ return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
+ }
+
+ // If one instruction matched with an invalid operand, report this as an
+ // operand failure.
+ if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
+ (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
+ Error(IDLoc, "invalid operand for instruction", EmptyRanges,
+ MatchingInlineAsm);
+ return true;
+ }
+
+ // If all of these were an outright failure, report it in a useless way.
+ Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
+ EmptyRanges, MatchingInlineAsm);
+ return true;
+}
+
+bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
+ return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
+}
+
+bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
+ StringRef IDVal = DirectiveID.getIdentifier();
+ if (IDVal == ".word")
+ return ParseDirectiveWord(2, DirectiveID.getLoc());
+ else if (IDVal.startswith(".code"))
+ return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
+ else if (IDVal.startswith(".att_syntax")) {
+ getParser().setAssemblerDialect(0);
+ return false;
+ } else if (IDVal.startswith(".intel_syntax")) {
+ getParser().setAssemblerDialect(1);
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ // FIXME: Handle noprefix
+ if (Parser.getTok().getString() == "noprefix")
+ Parser.Lex();
+ }
+ return false;
+ }
+ return true;
+}
+
+/// ParseDirectiveWord
+/// ::= .word [ expression (, expression)* ]
+bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ for (;;) {
+ const MCExpr *Value;
+ if (getParser().parseExpression(Value))
+ return false;
+
+ getParser().getStreamer().EmitValue(Value, Size);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ // FIXME: Improve diagnostic.
+ if (getLexer().isNot(AsmToken::Comma)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+ Parser.Lex();
+ }
+ }
+
+ Parser.Lex();
+ return false;
+}
+
+/// ParseDirectiveCode
+/// ::= .code16 | .code32 | .code64
+bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
+ if (IDVal == ".code16") {
+ Parser.Lex();
+ if (!is16BitMode()) {
+ SwitchMode(X86::Mode16Bit);
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
+ }
+ } else if (IDVal == ".code32") {
+ Parser.Lex();
+ if (!is32BitMode()) {
+ SwitchMode(X86::Mode32Bit);
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
+ }
+ } else if (IDVal == ".code64") {
+ Parser.Lex();
+ if (!is64BitMode()) {
+ SwitchMode(X86::Mode64Bit);
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
+ }
+ } else {
+ Error(L, "unknown directive " + IDVal);
+ return false;
+ }
+
+ return false;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeX86AsmParser() {
+ RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
+ RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_MATCHER_IMPLEMENTATION
+#define GET_SUBTARGET_FEATURE_NAME
+#include "X86GenAsmMatcher.inc"
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParserCommon.h b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParserCommon.h
new file mode 100644
index 0000000..ef1565f
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParserCommon.h
@@ -0,0 +1,43 @@
+//===-- X86AsmParserCommon.h - Common functions for X86AsmParser ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86_ASM_PARSER_COMMON_H
+#define X86_ASM_PARSER_COMMON_H
+
+namespace llvm {
+
+inline bool isImmSExti16i8Value(uint64_t Value) {
+ return (( Value <= 0x000000000000007FULL)||
+ (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
+ (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
+}
+
+inline bool isImmSExti32i8Value(uint64_t Value) {
+ return (( Value <= 0x000000000000007FULL)||
+ (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
+ (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
+}
+
+inline bool isImmZExtu32u8Value(uint64_t Value) {
+ return (Value <= 0x00000000000000FFULL);
+}
+
+inline bool isImmSExti64i8Value(uint64_t Value) {
+ return (( Value <= 0x000000000000007FULL)||
+ (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
+}
+
+inline bool isImmSExti64i32Value(uint64_t Value) {
+ return (( Value <= 0x000000007FFFFFFFULL)||
+ (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
+}
+
+} // End of namespace llvm
+
+#endif // X86_ASM_PARSER_COMMON_H
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86Operand.h b/contrib/llvm/lib/Target/X86/AsmParser/X86Operand.h
new file mode 100644
index 0000000..1bbfc11
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/AsmParser/X86Operand.h
@@ -0,0 +1,488 @@
+//===-- X86Operand.h - Parsed X86 machine instruction --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86_OPERAND_H
+#define X86_OPERAND_H
+
+#include "X86AsmParserCommon.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/ADT/STLExtras.h"
+
+namespace llvm {
+
+/// X86Operand - Instances of this class represent a parsed X86 machine
+/// instruction.
+struct X86Operand : public MCParsedAsmOperand {
+ enum KindTy {
+ Token,
+ Register,
+ Immediate,
+ Memory
+ } Kind;
+
+ SMLoc StartLoc, EndLoc;
+ SMLoc OffsetOfLoc;
+ StringRef SymName;
+ void *OpDecl;
+ bool AddressOf;
+
+ struct TokOp {
+ const char *Data;
+ unsigned Length;
+ };
+
+ struct RegOp {
+ unsigned RegNo;
+ };
+
+ struct ImmOp {
+ const MCExpr *Val;
+ };
+
+ struct MemOp {
+ unsigned SegReg;
+ const MCExpr *Disp;
+ unsigned BaseReg;
+ unsigned IndexReg;
+ unsigned Scale;
+ unsigned Size;
+ };
+
+ union {
+ struct TokOp Tok;
+ struct RegOp Reg;
+ struct ImmOp Imm;
+ struct MemOp Mem;
+ };
+
+ X86Operand(KindTy K, SMLoc Start, SMLoc End)
+ : Kind(K), StartLoc(Start), EndLoc(End) {}
+
+ StringRef getSymName() override { return SymName; }
+ void *getOpDecl() override { return OpDecl; }
+
+ /// getStartLoc - Get the location of the first token of this operand.
+ SMLoc getStartLoc() const override { return StartLoc; }
+ /// getEndLoc - Get the location of the last token of this operand.
+ SMLoc getEndLoc() const override { return EndLoc; }
+ /// getLocRange - Get the range between the first and last token of this
+ /// operand.
+ SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
+ /// getOffsetOfLoc - Get the location of the offset operator.
+ SMLoc getOffsetOfLoc() const override { return OffsetOfLoc; }
+
+ void print(raw_ostream &OS) const override {}
+
+ StringRef getToken() const {
+ assert(Kind == Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+ void setTokenValue(StringRef Value) {
+ assert(Kind == Token && "Invalid access!");
+ Tok.Data = Value.data();
+ Tok.Length = Value.size();
+ }
+
+ unsigned getReg() const override {
+ assert(Kind == Register && "Invalid access!");
+ return Reg.RegNo;
+ }
+
+ const MCExpr *getImm() const {
+ assert(Kind == Immediate && "Invalid access!");
+ return Imm.Val;
+ }
+
+ const MCExpr *getMemDisp() const {
+ assert(Kind == Memory && "Invalid access!");
+ return Mem.Disp;
+ }
+ unsigned getMemSegReg() const {
+ assert(Kind == Memory && "Invalid access!");
+ return Mem.SegReg;
+ }
+ unsigned getMemBaseReg() const {
+ assert(Kind == Memory && "Invalid access!");
+ return Mem.BaseReg;
+ }
+ unsigned getMemIndexReg() const {
+ assert(Kind == Memory && "Invalid access!");
+ return Mem.IndexReg;
+ }
+ unsigned getMemScale() const {
+ assert(Kind == Memory && "Invalid access!");
+ return Mem.Scale;
+ }
+
+ bool isToken() const override {return Kind == Token; }
+
+ bool isImm() const override { return Kind == Immediate; }
+
+ bool isImmSExti16i8() const {
+ if (!isImm())
+ return false;
+
+ // If this isn't a constant expr, just assume it fits and let relaxation
+ // handle it.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE)
+ return true;
+
+ // Otherwise, check the value is in a range that makes sense for this
+ // extension.
+ return isImmSExti16i8Value(CE->getValue());
+ }
+ bool isImmSExti32i8() const {
+ if (!isImm())
+ return false;
+
+ // If this isn't a constant expr, just assume it fits and let relaxation
+ // handle it.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE)
+ return true;
+
+ // Otherwise, check the value is in a range that makes sense for this
+ // extension.
+ return isImmSExti32i8Value(CE->getValue());
+ }
+ bool isImmZExtu32u8() const {
+ if (!isImm())
+ return false;
+
+ // If this isn't a constant expr, just assume it fits and let relaxation
+ // handle it.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE)
+ return true;
+
+ // Otherwise, check the value is in a range that makes sense for this
+ // extension.
+ return isImmZExtu32u8Value(CE->getValue());
+ }
+ bool isImmSExti64i8() const {
+ if (!isImm())
+ return false;
+
+ // If this isn't a constant expr, just assume it fits and let relaxation
+ // handle it.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE)
+ return true;
+
+ // Otherwise, check the value is in a range that makes sense for this
+ // extension.
+ return isImmSExti64i8Value(CE->getValue());
+ }
+ bool isImmSExti64i32() const {
+ if (!isImm())
+ return false;
+
+ // If this isn't a constant expr, just assume it fits and let relaxation
+ // handle it.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE)
+ return true;
+
+ // Otherwise, check the value is in a range that makes sense for this
+ // extension.
+ return isImmSExti64i32Value(CE->getValue());
+ }
+
+ bool isOffsetOf() const override {
+ return OffsetOfLoc.getPointer();
+ }
+
+ bool needAddressOf() const override {
+ return AddressOf;
+ }
+
+ bool isMem() const override { return Kind == Memory; }
+ bool isMem8() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 8);
+ }
+ bool isMem16() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 16);
+ }
+ bool isMem32() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 32);
+ }
+ bool isMem64() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 64);
+ }
+ bool isMem80() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 80);
+ }
+ bool isMem128() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 128);
+ }
+ bool isMem256() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 256);
+ }
+ bool isMem512() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 512);
+ }
+
+ bool isMemVX32() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
+ getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
+ }
+ bool isMemVY32() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
+ getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
+ }
+ bool isMemVX64() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
+ getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
+ }
+ bool isMemVY64() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
+ getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
+ }
+ bool isMemVZ32() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
+ getMemIndexReg() >= X86::ZMM0 && getMemIndexReg() <= X86::ZMM31;
+ }
+ bool isMemVZ64() const {
+ return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
+ getMemIndexReg() >= X86::ZMM0 && getMemIndexReg() <= X86::ZMM31;
+ }
+
+ bool isAbsMem() const {
+ return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
+ !getMemIndexReg() && getMemScale() == 1;
+ }
+
+ bool isSrcIdx() const {
+ return !getMemIndexReg() && getMemScale() == 1 &&
+ (getMemBaseReg() == X86::RSI || getMemBaseReg() == X86::ESI ||
+ getMemBaseReg() == X86::SI) && isa<MCConstantExpr>(getMemDisp()) &&
+ cast<MCConstantExpr>(getMemDisp())->getValue() == 0;
+ }
+ bool isSrcIdx8() const {
+ return isMem8() && isSrcIdx();
+ }
+ bool isSrcIdx16() const {
+ return isMem16() && isSrcIdx();
+ }
+ bool isSrcIdx32() const {
+ return isMem32() && isSrcIdx();
+ }
+ bool isSrcIdx64() const {
+ return isMem64() && isSrcIdx();
+ }
+
+ bool isDstIdx() const {
+ return !getMemIndexReg() && getMemScale() == 1 &&
+ (getMemSegReg() == 0 || getMemSegReg() == X86::ES) &&
+ (getMemBaseReg() == X86::RDI || getMemBaseReg() == X86::EDI ||
+ getMemBaseReg() == X86::DI) && isa<MCConstantExpr>(getMemDisp()) &&
+ cast<MCConstantExpr>(getMemDisp())->getValue() == 0;
+ }
+ bool isDstIdx8() const {
+ return isMem8() && isDstIdx();
+ }
+ bool isDstIdx16() const {
+ return isMem16() && isDstIdx();
+ }
+ bool isDstIdx32() const {
+ return isMem32() && isDstIdx();
+ }
+ bool isDstIdx64() const {
+ return isMem64() && isDstIdx();
+ }
+
+ bool isMemOffs8() const {
+ return Kind == Memory && !getMemBaseReg() &&
+ !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 8);
+ }
+ bool isMemOffs16() const {
+ return Kind == Memory && !getMemBaseReg() &&
+ !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 16);
+ }
+ bool isMemOffs32() const {
+ return Kind == Memory && !getMemBaseReg() &&
+ !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 32);
+ }
+ bool isMemOffs64() const {
+ return Kind == Memory && !getMemBaseReg() &&
+ !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 64);
+ }
+
+ bool isReg() const override { return Kind == Register; }
+
+ bool isGR32orGR64() const {
+ return Kind == Register &&
+ (X86MCRegisterClasses[X86::GR32RegClassID].contains(getReg()) ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(getReg()));
+ }
+
+ void addExpr(MCInst &Inst, const MCExpr *Expr) const {
+ // Add as immediates when possible.
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(Expr));
+ }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+
+ static unsigned getGR32FromGR64(unsigned RegNo) {
+ switch (RegNo) {
+ default: llvm_unreachable("Unexpected register");
+ case X86::RAX: return X86::EAX;
+ case X86::RCX: return X86::ECX;
+ case X86::RDX: return X86::EDX;
+ case X86::RBX: return X86::EBX;
+ case X86::RBP: return X86::EBP;
+ case X86::RSP: return X86::ESP;
+ case X86::RSI: return X86::ESI;
+ case X86::RDI: return X86::EDI;
+ case X86::R8: return X86::R8D;
+ case X86::R9: return X86::R9D;
+ case X86::R10: return X86::R10D;
+ case X86::R11: return X86::R11D;
+ case X86::R12: return X86::R12D;
+ case X86::R13: return X86::R13D;
+ case X86::R14: return X86::R14D;
+ case X86::R15: return X86::R15D;
+ case X86::RIP: return X86::EIP;
+ }
+ }
+
+ void addGR32orGR64Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ unsigned RegNo = getReg();
+ if (X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo))
+ RegNo = getGR32FromGR64(RegNo);
+ Inst.addOperand(MCOperand::CreateReg(RegNo));
+ }
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ addExpr(Inst, getImm());
+ }
+
+ void addMemOperands(MCInst &Inst, unsigned N) const {
+ assert((N == 5) && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
+ Inst.addOperand(MCOperand::CreateImm(getMemScale()));
+ Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
+ addExpr(Inst, getMemDisp());
+ Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
+ }
+
+ void addAbsMemOperands(MCInst &Inst, unsigned N) const {
+ assert((N == 1) && "Invalid number of operands!");
+ // Add as immediates when possible.
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
+ }
+
+ void addSrcIdxOperands(MCInst &Inst, unsigned N) const {
+ assert((N == 2) && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
+ Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
+ }
+ void addDstIdxOperands(MCInst &Inst, unsigned N) const {
+ assert((N == 1) && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
+ }
+
+ void addMemOffsOperands(MCInst &Inst, unsigned N) const {
+ assert((N == 2) && "Invalid number of operands!");
+ // Add as immediates when possible.
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
+ Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
+ }
+
+ static std::unique_ptr<X86Operand> CreateToken(StringRef Str, SMLoc Loc) {
+ SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size());
+ auto Res = llvm::make_unique<X86Operand>(Token, Loc, EndLoc);
+ Res->Tok.Data = Str.data();
+ Res->Tok.Length = Str.size();
+ return Res;
+ }
+
+ static std::unique_ptr<X86Operand>
+ CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc,
+ bool AddressOf = false, SMLoc OffsetOfLoc = SMLoc(),
+ StringRef SymName = StringRef(), void *OpDecl = nullptr) {
+ auto Res = llvm::make_unique<X86Operand>(Register, StartLoc, EndLoc);
+ Res->Reg.RegNo = RegNo;
+ Res->AddressOf = AddressOf;
+ Res->OffsetOfLoc = OffsetOfLoc;
+ Res->SymName = SymName;
+ Res->OpDecl = OpDecl;
+ return Res;
+ }
+
+ static std::unique_ptr<X86Operand> CreateImm(const MCExpr *Val,
+ SMLoc StartLoc, SMLoc EndLoc) {
+ auto Res = llvm::make_unique<X86Operand>(Immediate, StartLoc, EndLoc);
+ Res->Imm.Val = Val;
+ return Res;
+ }
+
+ /// Create an absolute memory operand.
+ static std::unique_ptr<X86Operand>
+ CreateMem(const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc, unsigned Size = 0,
+ StringRef SymName = StringRef(), void *OpDecl = nullptr) {
+ auto Res = llvm::make_unique<X86Operand>(Memory, StartLoc, EndLoc);
+ Res->Mem.SegReg = 0;
+ Res->Mem.Disp = Disp;
+ Res->Mem.BaseReg = 0;
+ Res->Mem.IndexReg = 0;
+ Res->Mem.Scale = 1;
+ Res->Mem.Size = Size;
+ Res->SymName = SymName;
+ Res->OpDecl = OpDecl;
+ Res->AddressOf = false;
+ return Res;
+ }
+
+ /// Create a generalized memory operand.
+ static std::unique_ptr<X86Operand>
+ CreateMem(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
+ unsigned IndexReg, unsigned Scale, SMLoc StartLoc, SMLoc EndLoc,
+ unsigned Size = 0, StringRef SymName = StringRef(),
+ void *OpDecl = nullptr) {
+ // We should never just have a displacement, that should be parsed as an
+ // absolute memory operand.
+ assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
+
+ // The scale should always be one of {1,2,4,8}.
+ assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
+ "Invalid scale!");
+ auto Res = llvm::make_unique<X86Operand>(Memory, StartLoc, EndLoc);
+ Res->Mem.SegReg = SegReg;
+ Res->Mem.Disp = Disp;
+ Res->Mem.BaseReg = BaseReg;
+ Res->Mem.IndexReg = IndexReg;
+ Res->Mem.Scale = Scale;
+ Res->Mem.Size = Size;
+ Res->SymName = SymName;
+ Res->OpDecl = OpDecl;
+ Res->AddressOf = false;
+ return Res;
+ }
+};
+
+} // End of namespace llvm
+
+#endif // X86_OPERAND
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp
new file mode 100644
index 0000000..521bd21
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp
@@ -0,0 +1,816 @@
+//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the X86 Disassembler.
+// It contains code to translate the data produced by the decoder into
+// MCInsts.
+// Documentation for the disassembler can be found in X86Disassembler.h.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86Disassembler.h"
+#include "X86DisassemblerDecoder.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDisassembler.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MemoryObject.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+using namespace llvm::X86Disassembler;
+
+#define DEBUG_TYPE "x86-disassembler"
+
+#define GET_REGINFO_ENUM
+#include "X86GenRegisterInfo.inc"
+#define GET_INSTRINFO_ENUM
+#include "X86GenInstrInfo.inc"
+#define GET_SUBTARGETINFO_ENUM
+#include "X86GenSubtargetInfo.inc"
+
+void llvm::X86Disassembler::Debug(const char *file, unsigned line,
+ const char *s) {
+ dbgs() << file << ":" << line << ": " << s;
+}
+
+const char *llvm::X86Disassembler::GetInstrName(unsigned Opcode,
+ const void *mii) {
+ const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
+ return MII->getName(Opcode);
+}
+
+#define debug(s) DEBUG(Debug(__FILE__, __LINE__, s));
+
+namespace llvm {
+
+// Fill-ins to make the compiler happy. These constants are never actually
+// assigned; they are just filler to make an automatically-generated switch
+// statement work.
+namespace X86 {
+ enum {
+ BX_SI = 500,
+ BX_DI = 501,
+ BP_SI = 502,
+ BP_DI = 503,
+ sib = 504,
+ sib64 = 505
+ };
+}
+
+extern Target TheX86_32Target, TheX86_64Target;
+
+}
+
+static bool translateInstruction(MCInst &target,
+ InternalInstruction &source,
+ const MCDisassembler *Dis);
+
+X86GenericDisassembler::X86GenericDisassembler(
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx,
+ std::unique_ptr<const MCInstrInfo> MII)
+ : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
+ switch (STI.getFeatureBits() &
+ (X86::Mode16Bit | X86::Mode32Bit | X86::Mode64Bit)) {
+ case X86::Mode16Bit:
+ fMode = MODE_16BIT;
+ break;
+ case X86::Mode32Bit:
+ fMode = MODE_32BIT;
+ break;
+ case X86::Mode64Bit:
+ fMode = MODE_64BIT;
+ break;
+ default:
+ llvm_unreachable("Invalid CPU mode");
+ }
+}
+
+/// regionReader - a callback function that wraps the readByte method from
+/// MemoryObject.
+///
+/// @param arg - The generic callback parameter. In this case, this should
+/// be a pointer to a MemoryObject.
+/// @param byte - A pointer to the byte to be read.
+/// @param address - The address to be read.
+static int regionReader(const void* arg, uint8_t* byte, uint64_t address) {
+ const MemoryObject* region = static_cast<const MemoryObject*>(arg);
+ return region->readByte(address, byte);
+}
+
+/// logger - a callback function that wraps the operator<< method from
+/// raw_ostream.
+///
+/// @param arg - The generic callback parameter. This should be a pointe
+/// to a raw_ostream.
+/// @param log - A string to be logged. logger() adds a newline.
+static void logger(void* arg, const char* log) {
+ if (!arg)
+ return;
+
+ raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
+ vStream << log << "\n";
+}
+
+//
+// Public interface for the disassembler
+//
+
+MCDisassembler::DecodeStatus
+X86GenericDisassembler::getInstruction(MCInst &instr,
+ uint64_t &size,
+ const MemoryObject &region,
+ uint64_t address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const {
+ CommentStream = &cStream;
+
+ InternalInstruction internalInstr;
+
+ dlog_t loggerFn = logger;
+ if (&vStream == &nulls())
+ loggerFn = nullptr; // Disable logging completely if it's going to nulls().
+
+ int ret = decodeInstruction(&internalInstr,
+ regionReader,
+ (const void*)&region,
+ loggerFn,
+ (void*)&vStream,
+ (const void*)MII.get(),
+ address,
+ fMode);
+
+ if (ret) {
+ size = internalInstr.readerCursor - address;
+ return Fail;
+ }
+ else {
+ size = internalInstr.length;
+ return (!translateInstruction(instr, internalInstr, this)) ?
+ Success : Fail;
+ }
+}
+
+//
+// Private code that translates from struct InternalInstructions to MCInsts.
+//
+
+/// translateRegister - Translates an internal register to the appropriate LLVM
+/// register, and appends it as an operand to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param reg - The Reg to append.
+static void translateRegister(MCInst &mcInst, Reg reg) {
+#define ENTRY(x) X86::x,
+ uint8_t llvmRegnums[] = {
+ ALL_REGS
+ 0
+ };
+#undef ENTRY
+
+ uint8_t llvmRegnum = llvmRegnums[reg];
+ mcInst.addOperand(MCOperand::CreateReg(llvmRegnum));
+}
+
+/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
+/// immediate Value in the MCInst.
+///
+/// @param Value - The immediate Value, has had any PC adjustment made by
+/// the caller.
+/// @param isBranch - If the instruction is a branch instruction
+/// @param Address - The starting address of the instruction
+/// @param Offset - The byte offset to this immediate in the instruction
+/// @param Width - The byte width of this immediate in the instruction
+///
+/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
+/// called then that function is called to get any symbolic information for the
+/// immediate in the instruction using the Address, Offset and Width. If that
+/// returns non-zero then the symbolic information it returns is used to create
+/// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
+/// returns zero and isBranch is true then a symbol look up for immediate Value
+/// is done and if a symbol is found an MCExpr is created with that, else
+/// an MCExpr with the immediate Value is created. This function returns true
+/// if it adds an operand to the MCInst and false otherwise.
+static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
+ uint64_t Address, uint64_t Offset,
+ uint64_t Width, MCInst &MI,
+ const MCDisassembler *Dis) {
+ return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
+ Offset, Width);
+}
+
+/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
+/// referenced by a load instruction with the base register that is the rip.
+/// These can often be addresses in a literal pool. The Address of the
+/// instruction and its immediate Value are used to determine the address
+/// being referenced in the literal pool entry. The SymbolLookUp call back will
+/// return a pointer to a literal 'C' string if the referenced address is an
+/// address into a section with 'C' string literals.
+static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
+ const void *Decoder) {
+ const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
+ Dis->tryAddingPcLoadReferenceComment(Value, Address);
+}
+
+static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
+ 0, // SEG_OVERRIDE_NONE
+ X86::CS,
+ X86::SS,
+ X86::DS,
+ X86::ES,
+ X86::FS,
+ X86::GS
+};
+
+/// translateSrcIndex - Appends a source index operand to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param insn - The internal instruction.
+static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
+ unsigned baseRegNo;
+
+ if (insn.mode == MODE_64BIT)
+ baseRegNo = insn.prefixPresent[0x67] ? X86::ESI : X86::RSI;
+ else if (insn.mode == MODE_32BIT)
+ baseRegNo = insn.prefixPresent[0x67] ? X86::SI : X86::ESI;
+ else {
+ assert(insn.mode == MODE_16BIT);
+ baseRegNo = insn.prefixPresent[0x67] ? X86::ESI : X86::SI;
+ }
+ MCOperand baseReg = MCOperand::CreateReg(baseRegNo);
+ mcInst.addOperand(baseReg);
+
+ MCOperand segmentReg;
+ segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
+ mcInst.addOperand(segmentReg);
+ return false;
+}
+
+/// translateDstIndex - Appends a destination index operand to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param insn - The internal instruction.
+
+static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
+ unsigned baseRegNo;
+
+ if (insn.mode == MODE_64BIT)
+ baseRegNo = insn.prefixPresent[0x67] ? X86::EDI : X86::RDI;
+ else if (insn.mode == MODE_32BIT)
+ baseRegNo = insn.prefixPresent[0x67] ? X86::DI : X86::EDI;
+ else {
+ assert(insn.mode == MODE_16BIT);
+ baseRegNo = insn.prefixPresent[0x67] ? X86::EDI : X86::DI;
+ }
+ MCOperand baseReg = MCOperand::CreateReg(baseRegNo);
+ mcInst.addOperand(baseReg);
+ return false;
+}
+
+/// translateImmediate - Appends an immediate operand to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param immediate - The immediate value to append.
+/// @param operand - The operand, as stored in the descriptor table.
+/// @param insn - The internal instruction.
+static void translateImmediate(MCInst &mcInst, uint64_t immediate,
+ const OperandSpecifier &operand,
+ InternalInstruction &insn,
+ const MCDisassembler *Dis) {
+ // Sign-extend the immediate if necessary.
+
+ OperandType type = (OperandType)operand.type;
+
+ bool isBranch = false;
+ uint64_t pcrel = 0;
+ if (type == TYPE_RELv) {
+ isBranch = true;
+ pcrel = insn.startLocation +
+ insn.immediateOffset + insn.immediateSize;
+ switch (insn.displacementSize) {
+ default:
+ break;
+ case 1:
+ if(immediate & 0x80)
+ immediate |= ~(0xffull);
+ break;
+ case 2:
+ if(immediate & 0x8000)
+ immediate |= ~(0xffffull);
+ break;
+ case 4:
+ if(immediate & 0x80000000)
+ immediate |= ~(0xffffffffull);
+ break;
+ case 8:
+ break;
+ }
+ }
+ // By default sign-extend all X86 immediates based on their encoding.
+ else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 ||
+ type == TYPE_IMM64 || type == TYPE_IMMv) {
+ uint32_t Opcode = mcInst.getOpcode();
+ switch (operand.encoding) {
+ default:
+ break;
+ case ENCODING_IB:
+ // Special case those X86 instructions that use the imm8 as a set of
+ // bits, bit count, etc. and are not sign-extend.
+ if (Opcode != X86::BLENDPSrri && Opcode != X86::BLENDPDrri &&
+ Opcode != X86::PBLENDWrri && Opcode != X86::MPSADBWrri &&
+ Opcode != X86::DPPSrri && Opcode != X86::DPPDrri &&
+ Opcode != X86::INSERTPSrr && Opcode != X86::VBLENDPSYrri &&
+ Opcode != X86::VBLENDPSYrmi && Opcode != X86::VBLENDPDYrri &&
+ Opcode != X86::VBLENDPDYrmi && Opcode != X86::VPBLENDWrri &&
+ Opcode != X86::VMPSADBWrri && Opcode != X86::VDPPSYrri &&
+ Opcode != X86::VDPPSYrmi && Opcode != X86::VDPPDrri &&
+ Opcode != X86::VINSERTPSrr)
+ if(immediate & 0x80)
+ immediate |= ~(0xffull);
+ break;
+ case ENCODING_IW:
+ if(immediate & 0x8000)
+ immediate |= ~(0xffffull);
+ break;
+ case ENCODING_ID:
+ if(immediate & 0x80000000)
+ immediate |= ~(0xffffffffull);
+ break;
+ case ENCODING_IO:
+ break;
+ }
+ }
+
+ switch (type) {
+ case TYPE_XMM32:
+ case TYPE_XMM64:
+ case TYPE_XMM128:
+ mcInst.addOperand(MCOperand::CreateReg(X86::XMM0 + (immediate >> 4)));
+ return;
+ case TYPE_XMM256:
+ mcInst.addOperand(MCOperand::CreateReg(X86::YMM0 + (immediate >> 4)));
+ return;
+ case TYPE_XMM512:
+ mcInst.addOperand(MCOperand::CreateReg(X86::ZMM0 + (immediate >> 4)));
+ return;
+ case TYPE_REL8:
+ isBranch = true;
+ pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
+ if(immediate & 0x80)
+ immediate |= ~(0xffull);
+ break;
+ case TYPE_REL32:
+ case TYPE_REL64:
+ isBranch = true;
+ pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
+ if(immediate & 0x80000000)
+ immediate |= ~(0xffffffffull);
+ break;
+ default:
+ // operand is 64 bits wide. Do nothing.
+ break;
+ }
+
+ if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
+ insn.immediateOffset, insn.immediateSize,
+ mcInst, Dis))
+ mcInst.addOperand(MCOperand::CreateImm(immediate));
+
+ if (type == TYPE_MOFFS8 || type == TYPE_MOFFS16 ||
+ type == TYPE_MOFFS32 || type == TYPE_MOFFS64) {
+ MCOperand segmentReg;
+ segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
+ mcInst.addOperand(segmentReg);
+ }
+}
+
+/// translateRMRegister - Translates a register stored in the R/M field of the
+/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
+/// @param mcInst - The MCInst to append to.
+/// @param insn - The internal instruction to extract the R/M field
+/// from.
+/// @return - 0 on success; -1 otherwise
+static bool translateRMRegister(MCInst &mcInst,
+ InternalInstruction &insn) {
+ if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
+ debug("A R/M register operand may not have a SIB byte");
+ return true;
+ }
+
+ switch (insn.eaBase) {
+ default:
+ debug("Unexpected EA base register");
+ return true;
+ case EA_BASE_NONE:
+ debug("EA_BASE_NONE for ModR/M base");
+ return true;
+#define ENTRY(x) case EA_BASE_##x:
+ ALL_EA_BASES
+#undef ENTRY
+ debug("A R/M register operand may not have a base; "
+ "the operand must be a register.");
+ return true;
+#define ENTRY(x) \
+ case EA_REG_##x: \
+ mcInst.addOperand(MCOperand::CreateReg(X86::x)); break;
+ ALL_REGS
+#undef ENTRY
+ }
+
+ return false;
+}
+
+/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
+/// fields of an internal instruction (and possibly its SIB byte) to a memory
+/// operand in LLVM's format, and appends it to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param insn - The instruction to extract Mod, R/M, and SIB fields
+/// from.
+/// @return - 0 on success; nonzero otherwise
+static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
+ const MCDisassembler *Dis) {
+ // Addresses in an MCInst are represented as five operands:
+ // 1. basereg (register) The R/M base, or (if there is a SIB) the
+ // SIB base
+ // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
+ // scale amount
+ // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
+ // the index (which is multiplied by the
+ // scale amount)
+ // 4. displacement (immediate) 0, or the displacement if there is one
+ // 5. segmentreg (register) x86_registerNONE for now, but could be set
+ // if we have segment overrides
+
+ MCOperand baseReg;
+ MCOperand scaleAmount;
+ MCOperand indexReg;
+ MCOperand displacement;
+ MCOperand segmentReg;
+ uint64_t pcrel = 0;
+
+ if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
+ if (insn.sibBase != SIB_BASE_NONE) {
+ switch (insn.sibBase) {
+ default:
+ debug("Unexpected sibBase");
+ return true;
+#define ENTRY(x) \
+ case SIB_BASE_##x: \
+ baseReg = MCOperand::CreateReg(X86::x); break;
+ ALL_SIB_BASES
+#undef ENTRY
+ }
+ } else {
+ baseReg = MCOperand::CreateReg(0);
+ }
+
+ // Check whether we are handling VSIB addressing mode for GATHER.
+ // If sibIndex was set to SIB_INDEX_NONE, index offset is 4 and
+ // we should use SIB_INDEX_XMM4|YMM4 for VSIB.
+ // I don't see a way to get the correct IndexReg in readSIB:
+ // We can tell whether it is VSIB or SIB after instruction ID is decoded,
+ // but instruction ID may not be decoded yet when calling readSIB.
+ uint32_t Opcode = mcInst.getOpcode();
+ bool IndexIs128 = (Opcode == X86::VGATHERDPDrm ||
+ Opcode == X86::VGATHERDPDYrm ||
+ Opcode == X86::VGATHERQPDrm ||
+ Opcode == X86::VGATHERDPSrm ||
+ Opcode == X86::VGATHERQPSrm ||
+ Opcode == X86::VPGATHERDQrm ||
+ Opcode == X86::VPGATHERDQYrm ||
+ Opcode == X86::VPGATHERQQrm ||
+ Opcode == X86::VPGATHERDDrm ||
+ Opcode == X86::VPGATHERQDrm);
+ bool IndexIs256 = (Opcode == X86::VGATHERQPDYrm ||
+ Opcode == X86::VGATHERDPSYrm ||
+ Opcode == X86::VGATHERQPSYrm ||
+ Opcode == X86::VGATHERDPDZrm ||
+ Opcode == X86::VPGATHERDQZrm ||
+ Opcode == X86::VPGATHERQQYrm ||
+ Opcode == X86::VPGATHERDDYrm ||
+ Opcode == X86::VPGATHERQDYrm);
+ bool IndexIs512 = (Opcode == X86::VGATHERQPDZrm ||
+ Opcode == X86::VGATHERDPSZrm ||
+ Opcode == X86::VGATHERQPSZrm ||
+ Opcode == X86::VPGATHERQQZrm ||
+ Opcode == X86::VPGATHERDDZrm ||
+ Opcode == X86::VPGATHERQDZrm);
+ if (IndexIs128 || IndexIs256 || IndexIs512) {
+ unsigned IndexOffset = insn.sibIndex -
+ (insn.addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX);
+ SIBIndex IndexBase = IndexIs512 ? SIB_INDEX_ZMM0 :
+ IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0;
+ insn.sibIndex = (SIBIndex)(IndexBase +
+ (insn.sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset));
+ }
+
+ if (insn.sibIndex != SIB_INDEX_NONE) {
+ switch (insn.sibIndex) {
+ default:
+ debug("Unexpected sibIndex");
+ return true;
+#define ENTRY(x) \
+ case SIB_INDEX_##x: \
+ indexReg = MCOperand::CreateReg(X86::x); break;
+ EA_BASES_32BIT
+ EA_BASES_64BIT
+ REGS_XMM
+ REGS_YMM
+ REGS_ZMM
+#undef ENTRY
+ }
+ } else {
+ indexReg = MCOperand::CreateReg(0);
+ }
+
+ scaleAmount = MCOperand::CreateImm(insn.sibScale);
+ } else {
+ switch (insn.eaBase) {
+ case EA_BASE_NONE:
+ if (insn.eaDisplacement == EA_DISP_NONE) {
+ debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
+ return true;
+ }
+ if (insn.mode == MODE_64BIT){
+ pcrel = insn.startLocation +
+ insn.displacementOffset + insn.displacementSize;
+ tryAddingPcLoadReferenceComment(insn.startLocation +
+ insn.displacementOffset,
+ insn.displacement + pcrel, Dis);
+ baseReg = MCOperand::CreateReg(X86::RIP); // Section 2.2.1.6
+ }
+ else
+ baseReg = MCOperand::CreateReg(0);
+
+ indexReg = MCOperand::CreateReg(0);
+ break;
+ case EA_BASE_BX_SI:
+ baseReg = MCOperand::CreateReg(X86::BX);
+ indexReg = MCOperand::CreateReg(X86::SI);
+ break;
+ case EA_BASE_BX_DI:
+ baseReg = MCOperand::CreateReg(X86::BX);
+ indexReg = MCOperand::CreateReg(X86::DI);
+ break;
+ case EA_BASE_BP_SI:
+ baseReg = MCOperand::CreateReg(X86::BP);
+ indexReg = MCOperand::CreateReg(X86::SI);
+ break;
+ case EA_BASE_BP_DI:
+ baseReg = MCOperand::CreateReg(X86::BP);
+ indexReg = MCOperand::CreateReg(X86::DI);
+ break;
+ default:
+ indexReg = MCOperand::CreateReg(0);
+ switch (insn.eaBase) {
+ default:
+ debug("Unexpected eaBase");
+ return true;
+ // Here, we will use the fill-ins defined above. However,
+ // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
+ // sib and sib64 were handled in the top-level if, so they're only
+ // placeholders to keep the compiler happy.
+#define ENTRY(x) \
+ case EA_BASE_##x: \
+ baseReg = MCOperand::CreateReg(X86::x); break;
+ ALL_EA_BASES
+#undef ENTRY
+#define ENTRY(x) case EA_REG_##x:
+ ALL_REGS
+#undef ENTRY
+ debug("A R/M memory operand may not be a register; "
+ "the base field must be a base.");
+ return true;
+ }
+ }
+
+ scaleAmount = MCOperand::CreateImm(1);
+ }
+
+ displacement = MCOperand::CreateImm(insn.displacement);
+
+ segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
+
+ mcInst.addOperand(baseReg);
+ mcInst.addOperand(scaleAmount);
+ mcInst.addOperand(indexReg);
+ if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
+ insn.startLocation, insn.displacementOffset,
+ insn.displacementSize, mcInst, Dis))
+ mcInst.addOperand(displacement);
+ mcInst.addOperand(segmentReg);
+ return false;
+}
+
+/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
+/// byte of an instruction to LLVM form, and appends it to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param operand - The operand, as stored in the descriptor table.
+/// @param insn - The instruction to extract Mod, R/M, and SIB fields
+/// from.
+/// @return - 0 on success; nonzero otherwise
+static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
+ InternalInstruction &insn, const MCDisassembler *Dis) {
+ switch (operand.type) {
+ default:
+ debug("Unexpected type for a R/M operand");
+ return true;
+ case TYPE_R8:
+ case TYPE_R16:
+ case TYPE_R32:
+ case TYPE_R64:
+ case TYPE_Rv:
+ case TYPE_MM:
+ case TYPE_MM32:
+ case TYPE_MM64:
+ case TYPE_XMM:
+ case TYPE_XMM32:
+ case TYPE_XMM64:
+ case TYPE_XMM128:
+ case TYPE_XMM256:
+ case TYPE_XMM512:
+ case TYPE_VK1:
+ case TYPE_VK8:
+ case TYPE_VK16:
+ case TYPE_DEBUGREG:
+ case TYPE_CONTROLREG:
+ return translateRMRegister(mcInst, insn);
+ case TYPE_M:
+ case TYPE_M8:
+ case TYPE_M16:
+ case TYPE_M32:
+ case TYPE_M64:
+ case TYPE_M128:
+ case TYPE_M256:
+ case TYPE_M512:
+ case TYPE_Mv:
+ case TYPE_M32FP:
+ case TYPE_M64FP:
+ case TYPE_M80FP:
+ case TYPE_M16INT:
+ case TYPE_M32INT:
+ case TYPE_M64INT:
+ case TYPE_M1616:
+ case TYPE_M1632:
+ case TYPE_M1664:
+ case TYPE_LEA:
+ return translateRMMemory(mcInst, insn, Dis);
+ }
+}
+
+/// translateFPRegister - Translates a stack position on the FPU stack to its
+/// LLVM form, and appends it to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param stackPos - The stack position to translate.
+static void translateFPRegister(MCInst &mcInst,
+ uint8_t stackPos) {
+ mcInst.addOperand(MCOperand::CreateReg(X86::ST0 + stackPos));
+}
+
+/// translateMaskRegister - Translates a 3-bit mask register number to
+/// LLVM form, and appends it to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param maskRegNum - Number of mask register from 0 to 7.
+/// @return - false on success; true otherwise.
+static bool translateMaskRegister(MCInst &mcInst,
+ uint8_t maskRegNum) {
+ if (maskRegNum >= 8) {
+ debug("Invalid mask register number");
+ return true;
+ }
+
+ mcInst.addOperand(MCOperand::CreateReg(X86::K0 + maskRegNum));
+ return false;
+}
+
+/// translateOperand - Translates an operand stored in an internal instruction
+/// to LLVM's format and appends it to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param operand - The operand, as stored in the descriptor table.
+/// @param insn - The internal instruction.
+/// @return - false on success; true otherwise.
+static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
+ InternalInstruction &insn,
+ const MCDisassembler *Dis) {
+ switch (operand.encoding) {
+ default:
+ debug("Unhandled operand encoding during translation");
+ return true;
+ case ENCODING_REG:
+ translateRegister(mcInst, insn.reg);
+ return false;
+ case ENCODING_WRITEMASK:
+ return translateMaskRegister(mcInst, insn.writemask);
+ CASE_ENCODING_RM:
+ return translateRM(mcInst, operand, insn, Dis);
+ case ENCODING_CB:
+ case ENCODING_CW:
+ case ENCODING_CD:
+ case ENCODING_CP:
+ case ENCODING_CO:
+ case ENCODING_CT:
+ debug("Translation of code offsets isn't supported.");
+ return true;
+ case ENCODING_IB:
+ case ENCODING_IW:
+ case ENCODING_ID:
+ case ENCODING_IO:
+ case ENCODING_Iv:
+ case ENCODING_Ia:
+ translateImmediate(mcInst,
+ insn.immediates[insn.numImmediatesTranslated++],
+ operand,
+ insn,
+ Dis);
+ return false;
+ case ENCODING_SI:
+ return translateSrcIndex(mcInst, insn);
+ case ENCODING_DI:
+ return translateDstIndex(mcInst, insn);
+ case ENCODING_RB:
+ case ENCODING_RW:
+ case ENCODING_RD:
+ case ENCODING_RO:
+ case ENCODING_Rv:
+ translateRegister(mcInst, insn.opcodeRegister);
+ return false;
+ case ENCODING_FP:
+ translateFPRegister(mcInst, insn.modRM & 7);
+ return false;
+ case ENCODING_VVVV:
+ translateRegister(mcInst, insn.vvvv);
+ return false;
+ case ENCODING_DUP:
+ return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
+ insn, Dis);
+ }
+}
+
+/// translateInstruction - Translates an internal instruction and all its
+/// operands to an MCInst.
+///
+/// @param mcInst - The MCInst to populate with the instruction's data.
+/// @param insn - The internal instruction.
+/// @return - false on success; true otherwise.
+static bool translateInstruction(MCInst &mcInst,
+ InternalInstruction &insn,
+ const MCDisassembler *Dis) {
+ if (!insn.spec) {
+ debug("Instruction has no specification");
+ return true;
+ }
+
+ mcInst.setOpcode(insn.instructionID);
+ // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
+ // prefix bytes should be disassembled as xrelease and xacquire then set the
+ // opcode to those instead of the rep and repne opcodes.
+ if (insn.xAcquireRelease) {
+ if(mcInst.getOpcode() == X86::REP_PREFIX)
+ mcInst.setOpcode(X86::XRELEASE_PREFIX);
+ else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
+ mcInst.setOpcode(X86::XACQUIRE_PREFIX);
+ }
+
+ insn.numImmediatesTranslated = 0;
+
+ for (const auto &Op : insn.operands) {
+ if (Op.encoding != ENCODING_NONE) {
+ if (translateOperand(mcInst, Op, insn, Dis)) {
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+static MCDisassembler *createX86Disassembler(const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
+ return new X86Disassembler::X86GenericDisassembler(STI, Ctx, std::move(MII));
+}
+
+extern "C" void LLVMInitializeX86Disassembler() {
+ // Register the disassembler.
+ TargetRegistry::RegisterMCDisassembler(TheX86_32Target,
+ createX86Disassembler);
+ TargetRegistry::RegisterMCDisassembler(TheX86_64Target,
+ createX86Disassembler);
+}
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h
new file mode 100644
index 0000000..4dc7c29
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h
@@ -0,0 +1,116 @@
+//===-- X86Disassembler.h - Disassembler for x86 and x86_64 -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
+// 64-bit X86 instruction sets. The main decode sequence for an assembly
+// instruction in this disassembler is:
+//
+// 1. Read the prefix bytes and determine the attributes of the instruction.
+// These attributes, recorded in enum attributeBits
+// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
+// provides a mapping from bitmasks to contexts, which are represented by
+// enum InstructionContext (ibid.).
+//
+// 2. Read the opcode, and determine what kind of opcode it is. The
+// disassembler distinguishes four kinds of opcodes, which are enumerated in
+// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
+// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
+// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
+//
+// 3. Depending on the opcode type, look in one of four ClassDecision structures
+// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
+// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
+// a ModRMDecision (ibid.).
+//
+// 4. Some instructions, such as escape opcodes or extended opcodes, or even
+// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
+// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
+// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
+// ModR/M byte is required and how to interpret it.
+//
+// 5. After resolving the ModRMDecision, the disassembler has a unique ID
+// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
+// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
+// meanings of its operands.
+//
+// 6. For each operand, its encoding is an entry from OperandEncoding
+// (X86DisassemblerDecoderCommon.h) and its type is an entry from
+// OperandType (ibid.). The encoding indicates how to read it from the
+// instruction; the type indicates how to interpret the value once it has
+// been read. For example, a register operand could be stored in the R/M
+// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
+// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
+// register, for instance). Given this information, the operands can be
+// extracted and interpreted.
+//
+// 7. As the last step, the disassembler translates the instruction information
+// and operands into a format understandable by the client - in this case, an
+// MCInst for use by the MC infrastructure.
+//
+// The disassembler is broken broadly into two parts: the table emitter that
+// emits the instruction decode tables discussed above during compilation, and
+// the disassembler itself. The table emitter is documented in more detail in
+// utils/TableGen/X86DisassemblerEmitter.h.
+//
+// X86Disassembler.h contains the public interface for the disassembler,
+// adhering to the MCDisassembler interface.
+// X86Disassembler.cpp contains the code responsible for step 7, and for
+// invoking the decoder to execute steps 1-6.
+// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
+// table emitter and the disassembler.
+// X86DisassemblerDecoder.h contains the public interface of the decoder,
+// factored out into C for possible use by other projects.
+// X86DisassemblerDecoder.c contains the source code of the decoder, which is
+// responsible for steps 1-6.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86DISASSEMBLER_H
+#define X86DISASSEMBLER_H
+
+#include "X86DisassemblerDecoderCommon.h"
+#include "llvm/MC/MCDisassembler.h"
+
+namespace llvm {
+
+class MCInst;
+class MCInstrInfo;
+class MCSubtargetInfo;
+class MemoryObject;
+class raw_ostream;
+
+namespace X86Disassembler {
+
+/// X86GenericDisassembler - Generic disassembler for all X86 platforms.
+/// All each platform class should have to do is subclass the constructor, and
+/// provide a different disassemblerMode value.
+class X86GenericDisassembler : public MCDisassembler {
+ std::unique_ptr<const MCInstrInfo> MII;
+public:
+ /// Constructor - Initializes the disassembler.
+ ///
+ X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
+ std::unique_ptr<const MCInstrInfo> MII);
+public:
+
+ /// getInstruction - See MCDisassembler.
+ DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
+ const MemoryObject &region, uint64_t address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const override;
+
+private:
+ DisassemblerMode fMode;
+};
+
+} // namespace X86Disassembler
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp
new file mode 100644
index 0000000..ab3d1f7
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp
@@ -0,0 +1,1842 @@
+//===-- X86DisassemblerDecoder.c - Disassembler decoder -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the X86 Disassembler.
+// It contains the implementation of the instruction decoder.
+// Documentation for the disassembler can be found in X86Disassembler.h.
+//
+//===----------------------------------------------------------------------===//
+
+#include <stdarg.h> /* for va_*() */
+#include <stdio.h> /* for vsnprintf() */
+#include <stdlib.h> /* for exit() */
+#include <string.h> /* for memset() */
+
+#include "X86DisassemblerDecoder.h"
+
+using namespace llvm::X86Disassembler;
+
+/// Specifies whether a ModR/M byte is needed and (if so) which
+/// instruction each possible value of the ModR/M byte corresponds to. Once
+/// this information is known, we have narrowed down to a single instruction.
+struct ModRMDecision {
+ uint8_t modrm_type;
+ uint16_t instructionIDs;
+};
+
+/// Specifies which set of ModR/M->instruction tables to look at
+/// given a particular opcode.
+struct OpcodeDecision {
+ ModRMDecision modRMDecisions[256];
+};
+
+/// Specifies which opcode->instruction tables to look at given
+/// a particular context (set of attributes). Since there are many possible
+/// contexts, the decoder first uses CONTEXTS_SYM to determine which context
+/// applies given a specific set of attributes. Hence there are only IC_max
+/// entries in this table, rather than 2^(ATTR_max).
+struct ContextDecision {
+ OpcodeDecision opcodeDecisions[IC_max];
+};
+
+#include "X86GenDisassemblerTables.inc"
+
+#ifndef NDEBUG
+#define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
+#else
+#define debug(s) do { } while (0)
+#endif
+
+
+/*
+ * contextForAttrs - Client for the instruction context table. Takes a set of
+ * attributes and returns the appropriate decode context.
+ *
+ * @param attrMask - Attributes, from the enumeration attributeBits.
+ * @return - The InstructionContext to use when looking up an
+ * an instruction with these attributes.
+ */
+static InstructionContext contextForAttrs(uint16_t attrMask) {
+ return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
+}
+
+/*
+ * modRMRequired - Reads the appropriate instruction table to determine whether
+ * the ModR/M byte is required to decode a particular instruction.
+ *
+ * @param type - The opcode type (i.e., how many bytes it has).
+ * @param insnContext - The context for the instruction, as returned by
+ * contextForAttrs.
+ * @param opcode - The last byte of the instruction's opcode, not counting
+ * ModR/M extensions and escapes.
+ * @return - true if the ModR/M byte is required, false otherwise.
+ */
+static int modRMRequired(OpcodeType type,
+ InstructionContext insnContext,
+ uint16_t opcode) {
+ const struct ContextDecision* decision = nullptr;
+
+ switch (type) {
+ case ONEBYTE:
+ decision = &ONEBYTE_SYM;
+ break;
+ case TWOBYTE:
+ decision = &TWOBYTE_SYM;
+ break;
+ case THREEBYTE_38:
+ decision = &THREEBYTE38_SYM;
+ break;
+ case THREEBYTE_3A:
+ decision = &THREEBYTE3A_SYM;
+ break;
+ case XOP8_MAP:
+ decision = &XOP8_MAP_SYM;
+ break;
+ case XOP9_MAP:
+ decision = &XOP9_MAP_SYM;
+ break;
+ case XOPA_MAP:
+ decision = &XOPA_MAP_SYM;
+ break;
+ }
+
+ return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
+ modrm_type != MODRM_ONEENTRY;
+}
+
+/*
+ * decode - Reads the appropriate instruction table to obtain the unique ID of
+ * an instruction.
+ *
+ * @param type - See modRMRequired().
+ * @param insnContext - See modRMRequired().
+ * @param opcode - See modRMRequired().
+ * @param modRM - The ModR/M byte if required, or any value if not.
+ * @return - The UID of the instruction, or 0 on failure.
+ */
+static InstrUID decode(OpcodeType type,
+ InstructionContext insnContext,
+ uint8_t opcode,
+ uint8_t modRM) {
+ const struct ModRMDecision* dec = nullptr;
+
+ switch (type) {
+ case ONEBYTE:
+ dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case TWOBYTE:
+ dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case THREEBYTE_38:
+ dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case THREEBYTE_3A:
+ dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case XOP8_MAP:
+ dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case XOP9_MAP:
+ dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case XOPA_MAP:
+ dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ }
+
+ switch (dec->modrm_type) {
+ default:
+ debug("Corrupt table! Unknown modrm_type");
+ return 0;
+ case MODRM_ONEENTRY:
+ return modRMTable[dec->instructionIDs];
+ case MODRM_SPLITRM:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs+1];
+ return modRMTable[dec->instructionIDs];
+ case MODRM_SPLITREG:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
+ return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
+ case MODRM_SPLITMISC:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
+ return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
+ case MODRM_FULL:
+ return modRMTable[dec->instructionIDs+modRM];
+ }
+}
+
+/*
+ * specifierForUID - Given a UID, returns the name and operand specification for
+ * that instruction.
+ *
+ * @param uid - The unique ID for the instruction. This should be returned by
+ * decode(); specifierForUID will not check bounds.
+ * @return - A pointer to the specification for that instruction.
+ */
+static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
+ return &INSTRUCTIONS_SYM[uid];
+}
+
+/*
+ * consumeByte - Uses the reader function provided by the user to consume one
+ * byte from the instruction's memory and advance the cursor.
+ *
+ * @param insn - The instruction with the reader function to use. The cursor
+ * for this instruction is advanced.
+ * @param byte - A pointer to a pre-allocated memory buffer to be populated
+ * with the data read.
+ * @return - 0 if the read was successful; nonzero otherwise.
+ */
+static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
+ int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
+
+ if (!ret)
+ ++(insn->readerCursor);
+
+ return ret;
+}
+
+/*
+ * lookAtByte - Like consumeByte, but does not advance the cursor.
+ *
+ * @param insn - See consumeByte().
+ * @param byte - See consumeByte().
+ * @return - See consumeByte().
+ */
+static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
+ return insn->reader(insn->readerArg, byte, insn->readerCursor);
+}
+
+static void unconsumeByte(struct InternalInstruction* insn) {
+ insn->readerCursor--;
+}
+
+#define CONSUME_FUNC(name, type) \
+ static int name(struct InternalInstruction* insn, type* ptr) { \
+ type combined = 0; \
+ unsigned offset; \
+ for (offset = 0; offset < sizeof(type); ++offset) { \
+ uint8_t byte; \
+ int ret = insn->reader(insn->readerArg, \
+ &byte, \
+ insn->readerCursor + offset); \
+ if (ret) \
+ return ret; \
+ combined = combined | ((uint64_t)byte << (offset * 8)); \
+ } \
+ *ptr = combined; \
+ insn->readerCursor += sizeof(type); \
+ return 0; \
+ }
+
+/*
+ * consume* - Use the reader function provided by the user to consume data
+ * values of various sizes from the instruction's memory and advance the
+ * cursor appropriately. These readers perform endian conversion.
+ *
+ * @param insn - See consumeByte().
+ * @param ptr - A pointer to a pre-allocated memory of appropriate size to
+ * be populated with the data read.
+ * @return - See consumeByte().
+ */
+CONSUME_FUNC(consumeInt8, int8_t)
+CONSUME_FUNC(consumeInt16, int16_t)
+CONSUME_FUNC(consumeInt32, int32_t)
+CONSUME_FUNC(consumeUInt16, uint16_t)
+CONSUME_FUNC(consumeUInt32, uint32_t)
+CONSUME_FUNC(consumeUInt64, uint64_t)
+
+/*
+ * dbgprintf - Uses the logging function provided by the user to log a single
+ * message, typically without a carriage-return.
+ *
+ * @param insn - The instruction containing the logging function.
+ * @param format - See printf().
+ * @param ... - See printf().
+ */
+static void dbgprintf(struct InternalInstruction* insn,
+ const char* format,
+ ...) {
+ char buffer[256];
+ va_list ap;
+
+ if (!insn->dlog)
+ return;
+
+ va_start(ap, format);
+ (void)vsnprintf(buffer, sizeof(buffer), format, ap);
+ va_end(ap);
+
+ insn->dlog(insn->dlogArg, buffer);
+
+ return;
+}
+
+/*
+ * setPrefixPresent - Marks that a particular prefix is present at a particular
+ * location.
+ *
+ * @param insn - The instruction to be marked as having the prefix.
+ * @param prefix - The prefix that is present.
+ * @param location - The location where the prefix is located (in the address
+ * space of the instruction's reader).
+ */
+static void setPrefixPresent(struct InternalInstruction* insn,
+ uint8_t prefix,
+ uint64_t location)
+{
+ insn->prefixPresent[prefix] = 1;
+ insn->prefixLocations[prefix] = location;
+}
+
+/*
+ * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
+ * present at a given location.
+ *
+ * @param insn - The instruction to be queried.
+ * @param prefix - The prefix.
+ * @param location - The location to query.
+ * @return - Whether the prefix is at that location.
+ */
+static bool isPrefixAtLocation(struct InternalInstruction* insn,
+ uint8_t prefix,
+ uint64_t location)
+{
+ if (insn->prefixPresent[prefix] == 1 &&
+ insn->prefixLocations[prefix] == location)
+ return true;
+ else
+ return false;
+}
+
+/*
+ * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
+ * instruction as having them. Also sets the instruction's default operand,
+ * address, and other relevant data sizes to report operands correctly.
+ *
+ * @param insn - The instruction whose prefixes are to be read.
+ * @return - 0 if the instruction could be read until the end of the prefix
+ * bytes, and no prefixes conflicted; nonzero otherwise.
+ */
+static int readPrefixes(struct InternalInstruction* insn) {
+ bool isPrefix = true;
+ bool prefixGroups[4] = { false };
+ uint64_t prefixLocation;
+ uint8_t byte = 0;
+ uint8_t nextByte;
+
+ bool hasAdSize = false;
+ bool hasOpSize = false;
+
+ dbgprintf(insn, "readPrefixes()");
+
+ while (isPrefix) {
+ prefixLocation = insn->readerCursor;
+
+ /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
+ if (consumeByte(insn, &byte))
+ break;
+
+ /*
+ * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
+ * break and let it be disassembled as a normal "instruction".
+ */
+ if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
+ break;
+
+ if (insn->readerCursor - 1 == insn->startLocation
+ && (byte == 0xf2 || byte == 0xf3)
+ && !lookAtByte(insn, &nextByte))
+ {
+ /*
+ * If the byte is 0xf2 or 0xf3, and any of the following conditions are
+ * met:
+ * - it is followed by a LOCK (0xf0) prefix
+ * - it is followed by an xchg instruction
+ * then it should be disassembled as a xacquire/xrelease not repne/rep.
+ */
+ if ((byte == 0xf2 || byte == 0xf3) &&
+ ((nextByte == 0xf0) |
+ ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
+ insn->xAcquireRelease = true;
+ /*
+ * Also if the byte is 0xf3, and the following condition is met:
+ * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
+ * "mov mem, imm" (opcode 0xc6/0xc7) instructions.
+ * then it should be disassembled as an xrelease not rep.
+ */
+ if (byte == 0xf3 &&
+ (nextByte == 0x88 || nextByte == 0x89 ||
+ nextByte == 0xc6 || nextByte == 0xc7))
+ insn->xAcquireRelease = true;
+ if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
+ if (consumeByte(insn, &nextByte))
+ return -1;
+ if (lookAtByte(insn, &nextByte))
+ return -1;
+ unconsumeByte(insn);
+ }
+ if (nextByte != 0x0f && nextByte != 0x90)
+ break;
+ }
+
+ switch (byte) {
+ case 0xf0: /* LOCK */
+ case 0xf2: /* REPNE/REPNZ */
+ case 0xf3: /* REP or REPE/REPZ */
+ if (prefixGroups[0])
+ dbgprintf(insn, "Redundant Group 1 prefix");
+ prefixGroups[0] = true;
+ setPrefixPresent(insn, byte, prefixLocation);
+ break;
+ case 0x2e: /* CS segment override -OR- Branch not taken */
+ case 0x36: /* SS segment override -OR- Branch taken */
+ case 0x3e: /* DS segment override */
+ case 0x26: /* ES segment override */
+ case 0x64: /* FS segment override */
+ case 0x65: /* GS segment override */
+ switch (byte) {
+ case 0x2e:
+ insn->segmentOverride = SEG_OVERRIDE_CS;
+ break;
+ case 0x36:
+ insn->segmentOverride = SEG_OVERRIDE_SS;
+ break;
+ case 0x3e:
+ insn->segmentOverride = SEG_OVERRIDE_DS;
+ break;
+ case 0x26:
+ insn->segmentOverride = SEG_OVERRIDE_ES;
+ break;
+ case 0x64:
+ insn->segmentOverride = SEG_OVERRIDE_FS;
+ break;
+ case 0x65:
+ insn->segmentOverride = SEG_OVERRIDE_GS;
+ break;
+ default:
+ debug("Unhandled override");
+ return -1;
+ }
+ if (prefixGroups[1])
+ dbgprintf(insn, "Redundant Group 2 prefix");
+ prefixGroups[1] = true;
+ setPrefixPresent(insn, byte, prefixLocation);
+ break;
+ case 0x66: /* Operand-size override */
+ if (prefixGroups[2])
+ dbgprintf(insn, "Redundant Group 3 prefix");
+ prefixGroups[2] = true;
+ hasOpSize = true;
+ setPrefixPresent(insn, byte, prefixLocation);
+ break;
+ case 0x67: /* Address-size override */
+ if (prefixGroups[3])
+ dbgprintf(insn, "Redundant Group 4 prefix");
+ prefixGroups[3] = true;
+ hasAdSize = true;
+ setPrefixPresent(insn, byte, prefixLocation);
+ break;
+ default: /* Not a prefix byte */
+ isPrefix = false;
+ break;
+ }
+
+ if (isPrefix)
+ dbgprintf(insn, "Found prefix 0x%hhx", byte);
+ }
+
+ insn->vectorExtensionType = TYPE_NO_VEX_XOP;
+
+ if (byte == 0x62) {
+ uint8_t byte1, byte2;
+
+ if (consumeByte(insn, &byte1)) {
+ dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
+ return -1;
+ }
+
+ if (lookAtByte(insn, &byte2)) {
+ dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
+ return -1;
+ }
+
+ if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
+ ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
+ insn->vectorExtensionType = TYPE_EVEX;
+ }
+ else {
+ unconsumeByte(insn); /* unconsume byte1 */
+ unconsumeByte(insn); /* unconsume byte */
+ insn->necessaryPrefixLocation = insn->readerCursor - 2;
+ }
+
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ insn->vectorExtensionPrefix[0] = byte;
+ insn->vectorExtensionPrefix[1] = byte1;
+ if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
+ dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
+ return -1;
+ }
+ if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
+ dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
+ return -1;
+ }
+
+ /* We simulate the REX prefix for simplicity's sake */
+ if (insn->mode == MODE_64BIT) {
+ insn->rexPrefix = 0x40
+ | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
+ | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
+ | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
+ | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
+ }
+
+ dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
+ insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
+ }
+ }
+ else if (byte == 0xc4) {
+ uint8_t byte1;
+
+ if (lookAtByte(insn, &byte1)) {
+ dbgprintf(insn, "Couldn't read second byte of VEX");
+ return -1;
+ }
+
+ if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
+ insn->vectorExtensionType = TYPE_VEX_3B;
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+ else {
+ unconsumeByte(insn);
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+
+ if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consumeByte(insn, &insn->vectorExtensionPrefix[1]);
+ consumeByte(insn, &insn->vectorExtensionPrefix[2]);
+
+ /* We simulate the REX prefix for simplicity's sake */
+
+ if (insn->mode == MODE_64BIT) {
+ insn->rexPrefix = 0x40
+ | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
+ | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
+ | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
+ | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
+ }
+
+ dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
+ insn->vectorExtensionPrefix[2]);
+ }
+ }
+ else if (byte == 0xc5) {
+ uint8_t byte1;
+
+ if (lookAtByte(insn, &byte1)) {
+ dbgprintf(insn, "Couldn't read second byte of VEX");
+ return -1;
+ }
+
+ if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
+ insn->vectorExtensionType = TYPE_VEX_2B;
+ }
+ else {
+ unconsumeByte(insn);
+ }
+
+ if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consumeByte(insn, &insn->vectorExtensionPrefix[1]);
+
+ if (insn->mode == MODE_64BIT) {
+ insn->rexPrefix = 0x40
+ | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
+ }
+
+ switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1]))
+ {
+ default:
+ break;
+ case VEX_PREFIX_66:
+ hasOpSize = true;
+ break;
+ }
+
+ dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0],
+ insn->vectorExtensionPrefix[1]);
+ }
+ }
+ else if (byte == 0x8f) {
+ uint8_t byte1;
+
+ if (lookAtByte(insn, &byte1)) {
+ dbgprintf(insn, "Couldn't read second byte of XOP");
+ return -1;
+ }
+
+ if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
+ insn->vectorExtensionType = TYPE_XOP;
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+ else {
+ unconsumeByte(insn);
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+
+ if (insn->vectorExtensionType == TYPE_XOP) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consumeByte(insn, &insn->vectorExtensionPrefix[1]);
+ consumeByte(insn, &insn->vectorExtensionPrefix[2]);
+
+ /* We simulate the REX prefix for simplicity's sake */
+
+ if (insn->mode == MODE_64BIT) {
+ insn->rexPrefix = 0x40
+ | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
+ | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
+ | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
+ | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
+ }
+
+ switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2]))
+ {
+ default:
+ break;
+ case VEX_PREFIX_66:
+ hasOpSize = true;
+ break;
+ }
+
+ dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
+ insn->vectorExtensionPrefix[2]);
+ }
+ }
+ else {
+ if (insn->mode == MODE_64BIT) {
+ if ((byte & 0xf0) == 0x40) {
+ uint8_t opcodeByte;
+
+ if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
+ dbgprintf(insn, "Redundant REX prefix");
+ return -1;
+ }
+
+ insn->rexPrefix = byte;
+ insn->necessaryPrefixLocation = insn->readerCursor - 2;
+
+ dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
+ } else {
+ unconsumeByte(insn);
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+ } else {
+ unconsumeByte(insn);
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+ }
+
+ if (insn->mode == MODE_16BIT) {
+ insn->registerSize = (hasOpSize ? 4 : 2);
+ insn->addressSize = (hasAdSize ? 4 : 2);
+ insn->displacementSize = (hasAdSize ? 4 : 2);
+ insn->immediateSize = (hasOpSize ? 4 : 2);
+ } else if (insn->mode == MODE_32BIT) {
+ insn->registerSize = (hasOpSize ? 2 : 4);
+ insn->addressSize = (hasAdSize ? 2 : 4);
+ insn->displacementSize = (hasAdSize ? 2 : 4);
+ insn->immediateSize = (hasOpSize ? 2 : 4);
+ } else if (insn->mode == MODE_64BIT) {
+ if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
+ insn->registerSize = 8;
+ insn->addressSize = (hasAdSize ? 4 : 8);
+ insn->displacementSize = 4;
+ insn->immediateSize = 4;
+ } else if (insn->rexPrefix) {
+ insn->registerSize = (hasOpSize ? 2 : 4);
+ insn->addressSize = (hasAdSize ? 4 : 8);
+ insn->displacementSize = (hasOpSize ? 2 : 4);
+ insn->immediateSize = (hasOpSize ? 2 : 4);
+ } else {
+ insn->registerSize = (hasOpSize ? 2 : 4);
+ insn->addressSize = (hasAdSize ? 4 : 8);
+ insn->displacementSize = (hasOpSize ? 2 : 4);
+ insn->immediateSize = (hasOpSize ? 2 : 4);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
+ * extended or escape opcodes).
+ *
+ * @param insn - The instruction whose opcode is to be read.
+ * @return - 0 if the opcode could be read successfully; nonzero otherwise.
+ */
+static int readOpcode(struct InternalInstruction* insn) {
+ /* Determine the length of the primary opcode */
+
+ uint8_t current;
+
+ dbgprintf(insn, "readOpcode()");
+
+ insn->opcodeType = ONEBYTE;
+
+ if (insn->vectorExtensionType == TYPE_EVEX)
+ {
+ switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
+ default:
+ dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
+ mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
+ return -1;
+ case VEX_LOB_0F:
+ insn->opcodeType = TWOBYTE;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F38:
+ insn->opcodeType = THREEBYTE_38;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F3A:
+ insn->opcodeType = THREEBYTE_3A;
+ return consumeByte(insn, &insn->opcode);
+ }
+ }
+ else if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
+ default:
+ dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
+ mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
+ return -1;
+ case VEX_LOB_0F:
+ insn->opcodeType = TWOBYTE;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F38:
+ insn->opcodeType = THREEBYTE_38;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F3A:
+ insn->opcodeType = THREEBYTE_3A;
+ return consumeByte(insn, &insn->opcode);
+ }
+ }
+ else if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ insn->opcodeType = TWOBYTE;
+ return consumeByte(insn, &insn->opcode);
+ }
+ else if (insn->vectorExtensionType == TYPE_XOP) {
+ switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
+ default:
+ dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
+ mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
+ return -1;
+ case XOP_MAP_SELECT_8:
+ insn->opcodeType = XOP8_MAP;
+ return consumeByte(insn, &insn->opcode);
+ case XOP_MAP_SELECT_9:
+ insn->opcodeType = XOP9_MAP;
+ return consumeByte(insn, &insn->opcode);
+ case XOP_MAP_SELECT_A:
+ insn->opcodeType = XOPA_MAP;
+ return consumeByte(insn, &insn->opcode);
+ }
+ }
+
+ if (consumeByte(insn, &current))
+ return -1;
+
+ if (current == 0x0f) {
+ dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
+
+ if (consumeByte(insn, &current))
+ return -1;
+
+ if (current == 0x38) {
+ dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
+
+ if (consumeByte(insn, &current))
+ return -1;
+
+ insn->opcodeType = THREEBYTE_38;
+ } else if (current == 0x3a) {
+ dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
+
+ if (consumeByte(insn, &current))
+ return -1;
+
+ insn->opcodeType = THREEBYTE_3A;
+ } else {
+ dbgprintf(insn, "Didn't find a three-byte escape prefix");
+
+ insn->opcodeType = TWOBYTE;
+ }
+ }
+
+ /*
+ * At this point we have consumed the full opcode.
+ * Anything we consume from here on must be unconsumed.
+ */
+
+ insn->opcode = current;
+
+ return 0;
+}
+
+static int readModRM(struct InternalInstruction* insn);
+
+/*
+ * getIDWithAttrMask - Determines the ID of an instruction, consuming
+ * the ModR/M byte as appropriate for extended and escape opcodes,
+ * and using a supplied attribute mask.
+ *
+ * @param instructionID - A pointer whose target is filled in with the ID of the
+ * instruction.
+ * @param insn - The instruction whose ID is to be determined.
+ * @param attrMask - The attribute mask to search.
+ * @return - 0 if the ModR/M could be read when needed or was not
+ * needed; nonzero otherwise.
+ */
+static int getIDWithAttrMask(uint16_t* instructionID,
+ struct InternalInstruction* insn,
+ uint16_t attrMask) {
+ bool hasModRMExtension;
+
+ InstructionContext instructionClass = contextForAttrs(attrMask);
+
+ hasModRMExtension = modRMRequired(insn->opcodeType,
+ instructionClass,
+ insn->opcode);
+
+ if (hasModRMExtension) {
+ if (readModRM(insn))
+ return -1;
+
+ *instructionID = decode(insn->opcodeType,
+ instructionClass,
+ insn->opcode,
+ insn->modRM);
+ } else {
+ *instructionID = decode(insn->opcodeType,
+ instructionClass,
+ insn->opcode,
+ 0);
+ }
+
+ return 0;
+}
+
+/*
+ * is16BitEquivalent - Determines whether two instruction names refer to
+ * equivalent instructions but one is 16-bit whereas the other is not.
+ *
+ * @param orig - The instruction that is not 16-bit
+ * @param equiv - The instruction that is 16-bit
+ */
+static bool is16BitEquivalent(const char* orig, const char* equiv) {
+ off_t i;
+
+ for (i = 0;; i++) {
+ if (orig[i] == '\0' && equiv[i] == '\0')
+ return true;
+ if (orig[i] == '\0' || equiv[i] == '\0')
+ return false;
+ if (orig[i] != equiv[i]) {
+ if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
+ continue;
+ if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
+ continue;
+ if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
+ continue;
+ return false;
+ }
+ }
+}
+
+/*
+ * getID - Determines the ID of an instruction, consuming the ModR/M byte as
+ * appropriate for extended and escape opcodes. Determines the attributes and
+ * context for the instruction before doing so.
+ *
+ * @param insn - The instruction whose ID is to be determined.
+ * @return - 0 if the ModR/M could be read when needed or was not needed;
+ * nonzero otherwise.
+ */
+static int getID(struct InternalInstruction* insn, const void *miiArg) {
+ uint16_t attrMask;
+ uint16_t instructionID;
+
+ dbgprintf(insn, "getID()");
+
+ attrMask = ATTR_NONE;
+
+ if (insn->mode == MODE_64BIT)
+ attrMask |= ATTR_64BIT;
+
+ if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
+ attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
+
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXKZ;
+ if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXB;
+ if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXK;
+ if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXL;
+ if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXL2;
+ }
+ else if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
+ attrMask |= ATTR_VEXL;
+ }
+ else if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
+ attrMask |= ATTR_VEXL;
+ }
+ else if (insn->vectorExtensionType == TYPE_XOP) {
+ switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
+ attrMask |= ATTR_VEXL;
+ }
+ else {
+ return -1;
+ }
+ }
+ else {
+ if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
+ attrMask |= ATTR_OPSIZE;
+ else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
+ attrMask |= ATTR_ADSIZE;
+ else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
+ attrMask |= ATTR_XS;
+ else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
+ attrMask |= ATTR_XD;
+ }
+
+ if (insn->rexPrefix & 0x08)
+ attrMask |= ATTR_REXW;
+
+ if (getIDWithAttrMask(&instructionID, insn, attrMask))
+ return -1;
+
+ /*
+ * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
+ * of the AdSize prefix is inverted w.r.t. 32-bit mode.
+ */
+ if (insn->mode == MODE_16BIT && insn->opcode == 0xE3) {
+ const struct InstructionSpecifier *spec;
+ spec = specifierForUID(instructionID);
+
+ /*
+ * Check for Ii8PCRel instructions. We could alternatively do a
+ * string-compare on the names, but this is probably cheaper.
+ */
+ if (x86OperandSets[spec->operands][0].type == TYPE_REL8) {
+ attrMask ^= ATTR_ADSIZE;
+ if (getIDWithAttrMask(&instructionID, insn, attrMask))
+ return -1;
+ }
+ }
+
+ /* The following clauses compensate for limitations of the tables. */
+
+ if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
+ !(attrMask & ATTR_OPSIZE)) {
+ /*
+ * The instruction tables make no distinction between instructions that
+ * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
+ * particular spot (i.e., many MMX operations). In general we're
+ * conservative, but in the specific case where OpSize is present but not
+ * in the right place we check if there's a 16-bit operation.
+ */
+
+ const struct InstructionSpecifier *spec;
+ uint16_t instructionIDWithOpsize;
+ const char *specName, *specWithOpSizeName;
+
+ spec = specifierForUID(instructionID);
+
+ if (getIDWithAttrMask(&instructionIDWithOpsize,
+ insn,
+ attrMask | ATTR_OPSIZE)) {
+ /*
+ * ModRM required with OpSize but not present; give up and return version
+ * without OpSize set
+ */
+
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+ return 0;
+ }
+
+ specName = GetInstrName(instructionID, miiArg);
+ specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
+
+ if (is16BitEquivalent(specName, specWithOpSizeName) &&
+ (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) {
+ insn->instructionID = instructionIDWithOpsize;
+ insn->spec = specifierForUID(instructionIDWithOpsize);
+ } else {
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+ }
+ return 0;
+ }
+
+ if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
+ insn->rexPrefix & 0x01) {
+ /*
+ * NOOP shouldn't decode as NOOP if REX.b is set. Instead
+ * it should decode as XCHG %r8, %eax.
+ */
+
+ const struct InstructionSpecifier *spec;
+ uint16_t instructionIDWithNewOpcode;
+ const struct InstructionSpecifier *specWithNewOpcode;
+
+ spec = specifierForUID(instructionID);
+
+ /* Borrow opcode from one of the other XCHGar opcodes */
+ insn->opcode = 0x91;
+
+ if (getIDWithAttrMask(&instructionIDWithNewOpcode,
+ insn,
+ attrMask)) {
+ insn->opcode = 0x90;
+
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+ return 0;
+ }
+
+ specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
+
+ /* Change back */
+ insn->opcode = 0x90;
+
+ insn->instructionID = instructionIDWithNewOpcode;
+ insn->spec = specWithNewOpcode;
+
+ return 0;
+ }
+
+ insn->instructionID = instructionID;
+ insn->spec = specifierForUID(insn->instructionID);
+
+ return 0;
+}
+
+/*
+ * readSIB - Consumes the SIB byte to determine addressing information for an
+ * instruction.
+ *
+ * @param insn - The instruction whose SIB byte is to be read.
+ * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
+ */
+static int readSIB(struct InternalInstruction* insn) {
+ SIBIndex sibIndexBase = SIB_INDEX_NONE;
+ SIBBase sibBaseBase = SIB_BASE_NONE;
+ uint8_t index, base;
+
+ dbgprintf(insn, "readSIB()");
+
+ if (insn->consumedSIB)
+ return 0;
+
+ insn->consumedSIB = true;
+
+ switch (insn->addressSize) {
+ case 2:
+ dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
+ return -1;
+ case 4:
+ sibIndexBase = SIB_INDEX_EAX;
+ sibBaseBase = SIB_BASE_EAX;
+ break;
+ case 8:
+ sibIndexBase = SIB_INDEX_RAX;
+ sibBaseBase = SIB_BASE_RAX;
+ break;
+ }
+
+ if (consumeByte(insn, &insn->sib))
+ return -1;
+
+ index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
+ if (insn->vectorExtensionType == TYPE_EVEX)
+ index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
+
+ switch (index) {
+ case 0x4:
+ insn->sibIndex = SIB_INDEX_NONE;
+ break;
+ default:
+ insn->sibIndex = (SIBIndex)(sibIndexBase + index);
+ if (insn->sibIndex == SIB_INDEX_sib ||
+ insn->sibIndex == SIB_INDEX_sib64)
+ insn->sibIndex = SIB_INDEX_NONE;
+ break;
+ }
+
+ switch (scaleFromSIB(insn->sib)) {
+ case 0:
+ insn->sibScale = 1;
+ break;
+ case 1:
+ insn->sibScale = 2;
+ break;
+ case 2:
+ insn->sibScale = 4;
+ break;
+ case 3:
+ insn->sibScale = 8;
+ break;
+ }
+
+ base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
+
+ switch (base) {
+ case 0x5:
+ case 0xd:
+ switch (modFromModRM(insn->modRM)) {
+ case 0x0:
+ insn->eaDisplacement = EA_DISP_32;
+ insn->sibBase = SIB_BASE_NONE;
+ break;
+ case 0x1:
+ insn->eaDisplacement = EA_DISP_8;
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ case 0x2:
+ insn->eaDisplacement = EA_DISP_32;
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ case 0x3:
+ debug("Cannot have Mod = 0b11 and a SIB byte");
+ return -1;
+ }
+ break;
+ default:
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ * readDisplacement - Consumes the displacement of an instruction.
+ *
+ * @param insn - The instruction whose displacement is to be read.
+ * @return - 0 if the displacement byte was successfully read; nonzero
+ * otherwise.
+ */
+static int readDisplacement(struct InternalInstruction* insn) {
+ int8_t d8;
+ int16_t d16;
+ int32_t d32;
+
+ dbgprintf(insn, "readDisplacement()");
+
+ if (insn->consumedDisplacement)
+ return 0;
+
+ insn->consumedDisplacement = true;
+ insn->displacementOffset = insn->readerCursor - insn->startLocation;
+
+ switch (insn->eaDisplacement) {
+ case EA_DISP_NONE:
+ insn->consumedDisplacement = false;
+ break;
+ case EA_DISP_8:
+ if (consumeInt8(insn, &d8))
+ return -1;
+ insn->displacement = d8;
+ break;
+ case EA_DISP_16:
+ if (consumeInt16(insn, &d16))
+ return -1;
+ insn->displacement = d16;
+ break;
+ case EA_DISP_32:
+ if (consumeInt32(insn, &d32))
+ return -1;
+ insn->displacement = d32;
+ break;
+ }
+
+ insn->consumedDisplacement = true;
+ return 0;
+}
+
+/*
+ * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
+ * displacement) for an instruction and interprets it.
+ *
+ * @param insn - The instruction whose addressing information is to be read.
+ * @return - 0 if the information was successfully read; nonzero otherwise.
+ */
+static int readModRM(struct InternalInstruction* insn) {
+ uint8_t mod, rm, reg;
+
+ dbgprintf(insn, "readModRM()");
+
+ if (insn->consumedModRM)
+ return 0;
+
+ if (consumeByte(insn, &insn->modRM))
+ return -1;
+ insn->consumedModRM = true;
+
+ mod = modFromModRM(insn->modRM);
+ rm = rmFromModRM(insn->modRM);
+ reg = regFromModRM(insn->modRM);
+
+ /*
+ * This goes by insn->registerSize to pick the correct register, which messes
+ * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
+ * fixupReg().
+ */
+ switch (insn->registerSize) {
+ case 2:
+ insn->regBase = MODRM_REG_AX;
+ insn->eaRegBase = EA_REG_AX;
+ break;
+ case 4:
+ insn->regBase = MODRM_REG_EAX;
+ insn->eaRegBase = EA_REG_EAX;
+ break;
+ case 8:
+ insn->regBase = MODRM_REG_RAX;
+ insn->eaRegBase = EA_REG_RAX;
+ break;
+ }
+
+ reg |= rFromREX(insn->rexPrefix) << 3;
+ rm |= bFromREX(insn->rexPrefix) << 3;
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
+ rm |= xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
+ }
+
+ insn->reg = (Reg)(insn->regBase + reg);
+
+ switch (insn->addressSize) {
+ case 2:
+ insn->eaBaseBase = EA_BASE_BX_SI;
+
+ switch (mod) {
+ case 0x0:
+ if (rm == 0x6) {
+ insn->eaBase = EA_BASE_NONE;
+ insn->eaDisplacement = EA_DISP_16;
+ if (readDisplacement(insn))
+ return -1;
+ } else {
+ insn->eaBase = (EABase)(insn->eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_NONE;
+ }
+ break;
+ case 0x1:
+ insn->eaBase = (EABase)(insn->eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_8;
+ insn->displacementSize = 1;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ case 0x2:
+ insn->eaBase = (EABase)(insn->eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_16;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ case 0x3:
+ insn->eaBase = (EABase)(insn->eaRegBase + rm);
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ }
+ break;
+ case 4:
+ case 8:
+ insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
+
+ switch (mod) {
+ case 0x0:
+ insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
+ switch (rm) {
+ case 0x14:
+ case 0x4:
+ case 0xc: /* in case REXW.b is set */
+ insn->eaBase = (insn->addressSize == 4 ?
+ EA_BASE_sib : EA_BASE_sib64);
+ if (readSIB(insn) || readDisplacement(insn))
+ return -1;
+ break;
+ case 0x5:
+ insn->eaBase = EA_BASE_NONE;
+ insn->eaDisplacement = EA_DISP_32;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ default:
+ insn->eaBase = (EABase)(insn->eaBaseBase + rm);
+ break;
+ }
+ break;
+ case 0x1:
+ insn->displacementSize = 1;
+ /* FALLTHROUGH */
+ case 0x2:
+ insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
+ switch (rm) {
+ case 0x14:
+ case 0x4:
+ case 0xc: /* in case REXW.b is set */
+ insn->eaBase = EA_BASE_sib;
+ if (readSIB(insn) || readDisplacement(insn))
+ return -1;
+ break;
+ default:
+ insn->eaBase = (EABase)(insn->eaBaseBase + rm);
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ }
+ break;
+ case 0x3:
+ insn->eaDisplacement = EA_DISP_NONE;
+ insn->eaBase = (EABase)(insn->eaRegBase + rm);
+ break;
+ }
+ break;
+ } /* switch (insn->addressSize) */
+
+ return 0;
+}
+
+#define GENERIC_FIXUP_FUNC(name, base, prefix) \
+ static uint8_t name(struct InternalInstruction *insn, \
+ OperandType type, \
+ uint8_t index, \
+ uint8_t *valid) { \
+ *valid = 1; \
+ switch (type) { \
+ default: \
+ debug("Unhandled register type"); \
+ *valid = 0; \
+ return 0; \
+ case TYPE_Rv: \
+ return base + index; \
+ case TYPE_R8: \
+ if (insn->rexPrefix && \
+ index >= 4 && index <= 7) { \
+ return prefix##_SPL + (index - 4); \
+ } else { \
+ return prefix##_AL + index; \
+ } \
+ case TYPE_R16: \
+ return prefix##_AX + index; \
+ case TYPE_R32: \
+ return prefix##_EAX + index; \
+ case TYPE_R64: \
+ return prefix##_RAX + index; \
+ case TYPE_XMM512: \
+ return prefix##_ZMM0 + index; \
+ case TYPE_XMM256: \
+ return prefix##_YMM0 + index; \
+ case TYPE_XMM128: \
+ case TYPE_XMM64: \
+ case TYPE_XMM32: \
+ case TYPE_XMM: \
+ return prefix##_XMM0 + index; \
+ case TYPE_VK1: \
+ case TYPE_VK8: \
+ case TYPE_VK16: \
+ return prefix##_K0 + index; \
+ case TYPE_MM64: \
+ case TYPE_MM32: \
+ case TYPE_MM: \
+ if (index > 7) \
+ *valid = 0; \
+ return prefix##_MM0 + index; \
+ case TYPE_SEGMENTREG: \
+ if (index > 5) \
+ *valid = 0; \
+ return prefix##_ES + index; \
+ case TYPE_DEBUGREG: \
+ if (index > 7) \
+ *valid = 0; \
+ return prefix##_DR0 + index; \
+ case TYPE_CONTROLREG: \
+ if (index > 8) \
+ *valid = 0; \
+ return prefix##_CR0 + index; \
+ } \
+ }
+
+/*
+ * fixup*Value - Consults an operand type to determine the meaning of the
+ * reg or R/M field. If the operand is an XMM operand, for example, an
+ * operand would be XMM0 instead of AX, which readModRM() would otherwise
+ * misinterpret it as.
+ *
+ * @param insn - The instruction containing the operand.
+ * @param type - The operand type.
+ * @param index - The existing value of the field as reported by readModRM().
+ * @param valid - The address of a uint8_t. The target is set to 1 if the
+ * field is valid for the register class; 0 if not.
+ * @return - The proper value.
+ */
+GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
+GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
+
+/*
+ * fixupReg - Consults an operand specifier to determine which of the
+ * fixup*Value functions to use in correcting readModRM()'ss interpretation.
+ *
+ * @param insn - See fixup*Value().
+ * @param op - The operand specifier.
+ * @return - 0 if fixup was successful; -1 if the register returned was
+ * invalid for its class.
+ */
+static int fixupReg(struct InternalInstruction *insn,
+ const struct OperandSpecifier *op) {
+ uint8_t valid;
+
+ dbgprintf(insn, "fixupReg()");
+
+ switch ((OperandEncoding)op->encoding) {
+ default:
+ debug("Expected a REG or R/M encoding in fixupReg");
+ return -1;
+ case ENCODING_VVVV:
+ insn->vvvv = (Reg)fixupRegValue(insn,
+ (OperandType)op->type,
+ insn->vvvv,
+ &valid);
+ if (!valid)
+ return -1;
+ break;
+ case ENCODING_REG:
+ insn->reg = (Reg)fixupRegValue(insn,
+ (OperandType)op->type,
+ insn->reg - insn->regBase,
+ &valid);
+ if (!valid)
+ return -1;
+ break;
+ CASE_ENCODING_RM:
+ if (insn->eaBase >= insn->eaRegBase) {
+ insn->eaBase = (EABase)fixupRMValue(insn,
+ (OperandType)op->type,
+ insn->eaBase - insn->eaRegBase,
+ &valid);
+ if (!valid)
+ return -1;
+ }
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ * readOpcodeRegister - Reads an operand from the opcode field of an
+ * instruction and interprets it appropriately given the operand width.
+ * Handles AddRegFrm instructions.
+ *
+ * @param insn - the instruction whose opcode field is to be read.
+ * @param size - The width (in bytes) of the register being specified.
+ * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
+ * RAX.
+ * @return - 0 on success; nonzero otherwise.
+ */
+static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
+ dbgprintf(insn, "readOpcodeRegister()");
+
+ if (size == 0)
+ size = insn->registerSize;
+
+ switch (size) {
+ case 1:
+ insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ if (insn->rexPrefix &&
+ insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
+ insn->opcodeRegister < MODRM_REG_AL + 0x8) {
+ insn->opcodeRegister = (Reg)(MODRM_REG_SPL
+ + (insn->opcodeRegister - MODRM_REG_AL - 4));
+ }
+
+ break;
+ case 2:
+ insn->opcodeRegister = (Reg)(MODRM_REG_AX
+ + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ break;
+ case 4:
+ insn->opcodeRegister = (Reg)(MODRM_REG_EAX
+ + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ break;
+ case 8:
+ insn->opcodeRegister = (Reg)(MODRM_REG_RAX
+ + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ * readImmediate - Consumes an immediate operand from an instruction, given the
+ * desired operand size.
+ *
+ * @param insn - The instruction whose operand is to be read.
+ * @param size - The width (in bytes) of the operand.
+ * @return - 0 if the immediate was successfully consumed; nonzero
+ * otherwise.
+ */
+static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
+ uint8_t imm8;
+ uint16_t imm16;
+ uint32_t imm32;
+ uint64_t imm64;
+
+ dbgprintf(insn, "readImmediate()");
+
+ if (insn->numImmediatesConsumed == 2) {
+ debug("Already consumed two immediates");
+ return -1;
+ }
+
+ if (size == 0)
+ size = insn->immediateSize;
+ else
+ insn->immediateSize = size;
+ insn->immediateOffset = insn->readerCursor - insn->startLocation;
+
+ switch (size) {
+ case 1:
+ if (consumeByte(insn, &imm8))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm8;
+ break;
+ case 2:
+ if (consumeUInt16(insn, &imm16))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm16;
+ break;
+ case 4:
+ if (consumeUInt32(insn, &imm32))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm32;
+ break;
+ case 8:
+ if (consumeUInt64(insn, &imm64))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm64;
+ break;
+ }
+
+ insn->numImmediatesConsumed++;
+
+ return 0;
+}
+
+/*
+ * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
+ *
+ * @param insn - The instruction whose operand is to be read.
+ * @return - 0 if the vvvv was successfully consumed; nonzero
+ * otherwise.
+ */
+static int readVVVV(struct InternalInstruction* insn) {
+ dbgprintf(insn, "readVVVV()");
+
+ int vvvv;
+ if (insn->vectorExtensionType == TYPE_EVEX)
+ vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
+ vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
+ else if (insn->vectorExtensionType == TYPE_VEX_3B)
+ vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
+ else if (insn->vectorExtensionType == TYPE_VEX_2B)
+ vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
+ else if (insn->vectorExtensionType == TYPE_XOP)
+ vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
+ else
+ return -1;
+
+ if (insn->mode != MODE_64BIT)
+ vvvv &= 0x7;
+
+ insn->vvvv = static_cast<Reg>(vvvv);
+ return 0;
+}
+
+/*
+ * readMaskRegister - Reads an mask register from the opcode field of an
+ * instruction.
+ *
+ * @param insn - The instruction whose opcode field is to be read.
+ * @return - 0 on success; nonzero otherwise.
+ */
+static int readMaskRegister(struct InternalInstruction* insn) {
+ dbgprintf(insn, "readMaskRegister()");
+
+ if (insn->vectorExtensionType != TYPE_EVEX)
+ return -1;
+
+ insn->writemask =
+ static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
+ return 0;
+}
+
+/*
+ * readOperands - Consults the specifier for an instruction and consumes all
+ * operands for that instruction, interpreting them as it goes.
+ *
+ * @param insn - The instruction whose operands are to be read and interpreted.
+ * @return - 0 if all operands could be read; nonzero otherwise.
+ */
+static int readOperands(struct InternalInstruction* insn) {
+ int hasVVVV, needVVVV;
+ int sawRegImm = 0;
+
+ dbgprintf(insn, "readOperands()");
+
+ /* If non-zero vvvv specified, need to make sure one of the operands
+ uses it. */
+ hasVVVV = !readVVVV(insn);
+ needVVVV = hasVVVV && (insn->vvvv != 0);
+
+ for (const auto &Op : x86OperandSets[insn->spec->operands]) {
+ switch (Op.encoding) {
+ case ENCODING_NONE:
+ case ENCODING_SI:
+ case ENCODING_DI:
+ break;
+ case ENCODING_REG:
+ CASE_ENCODING_RM:
+ if (readModRM(insn))
+ return -1;
+ if (fixupReg(insn, &Op))
+ return -1;
+ // Apply the AVX512 compressed displacement scaling factor.
+ if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
+ insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
+ break;
+ case ENCODING_CB:
+ case ENCODING_CW:
+ case ENCODING_CD:
+ case ENCODING_CP:
+ case ENCODING_CO:
+ case ENCODING_CT:
+ dbgprintf(insn, "We currently don't hande code-offset encodings");
+ return -1;
+ case ENCODING_IB:
+ if (sawRegImm) {
+ /* Saw a register immediate so don't read again and instead split the
+ previous immediate. FIXME: This is a hack. */
+ insn->immediates[insn->numImmediatesConsumed] =
+ insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
+ ++insn->numImmediatesConsumed;
+ break;
+ }
+ if (readImmediate(insn, 1))
+ return -1;
+ if (Op.type == TYPE_IMM3 &&
+ insn->immediates[insn->numImmediatesConsumed - 1] > 7)
+ return -1;
+ if (Op.type == TYPE_IMM5 &&
+ insn->immediates[insn->numImmediatesConsumed - 1] > 31)
+ return -1;
+ if (Op.type == TYPE_XMM128 ||
+ Op.type == TYPE_XMM256)
+ sawRegImm = 1;
+ break;
+ case ENCODING_IW:
+ if (readImmediate(insn, 2))
+ return -1;
+ break;
+ case ENCODING_ID:
+ if (readImmediate(insn, 4))
+ return -1;
+ break;
+ case ENCODING_IO:
+ if (readImmediate(insn, 8))
+ return -1;
+ break;
+ case ENCODING_Iv:
+ if (readImmediate(insn, insn->immediateSize))
+ return -1;
+ break;
+ case ENCODING_Ia:
+ if (readImmediate(insn, insn->addressSize))
+ return -1;
+ break;
+ case ENCODING_RB:
+ if (readOpcodeRegister(insn, 1))
+ return -1;
+ break;
+ case ENCODING_RW:
+ if (readOpcodeRegister(insn, 2))
+ return -1;
+ break;
+ case ENCODING_RD:
+ if (readOpcodeRegister(insn, 4))
+ return -1;
+ break;
+ case ENCODING_RO:
+ if (readOpcodeRegister(insn, 8))
+ return -1;
+ break;
+ case ENCODING_Rv:
+ if (readOpcodeRegister(insn, 0))
+ return -1;
+ break;
+ case ENCODING_FP:
+ break;
+ case ENCODING_VVVV:
+ needVVVV = 0; /* Mark that we have found a VVVV operand. */
+ if (!hasVVVV)
+ return -1;
+ if (fixupReg(insn, &Op))
+ return -1;
+ break;
+ case ENCODING_WRITEMASK:
+ if (readMaskRegister(insn))
+ return -1;
+ break;
+ case ENCODING_DUP:
+ break;
+ default:
+ dbgprintf(insn, "Encountered an operand with an unknown encoding.");
+ return -1;
+ }
+ }
+
+ /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
+ if (needVVVV) return -1;
+
+ return 0;
+}
+
+/*
+ * decodeInstruction - Reads and interprets a full instruction provided by the
+ * user.
+ *
+ * @param insn - A pointer to the instruction to be populated. Must be
+ * pre-allocated.
+ * @param reader - The function to be used to read the instruction's bytes.
+ * @param readerArg - A generic argument to be passed to the reader to store
+ * any internal state.
+ * @param logger - If non-NULL, the function to be used to write log messages
+ * and warnings.
+ * @param loggerArg - A generic argument to be passed to the logger to store
+ * any internal state.
+ * @param startLoc - The address (in the reader's address space) of the first
+ * byte in the instruction.
+ * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
+ * decode the instruction in.
+ * @return - 0 if the instruction's memory could be read; nonzero if
+ * not.
+ */
+int llvm::X86Disassembler::decodeInstruction(
+ struct InternalInstruction *insn, byteReader_t reader,
+ const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
+ uint64_t startLoc, DisassemblerMode mode) {
+ memset(insn, 0, sizeof(struct InternalInstruction));
+
+ insn->reader = reader;
+ insn->readerArg = readerArg;
+ insn->dlog = logger;
+ insn->dlogArg = loggerArg;
+ insn->startLocation = startLoc;
+ insn->readerCursor = startLoc;
+ insn->mode = mode;
+ insn->numImmediatesConsumed = 0;
+
+ if (readPrefixes(insn) ||
+ readOpcode(insn) ||
+ getID(insn, miiArg) ||
+ insn->instructionID == 0 ||
+ readOperands(insn))
+ return -1;
+
+ insn->operands = x86OperandSets[insn->spec->operands];
+
+ insn->length = insn->readerCursor - insn->startLocation;
+
+ dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
+ startLoc, insn->readerCursor, insn->length);
+
+ if (insn->length > 15)
+ dbgprintf(insn, "Instruction exceeds 15-byte limit");
+
+ return 0;
+}
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h
new file mode 100644
index 0000000..8c45402
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h
@@ -0,0 +1,662 @@
+//===-- X86DisassemblerDecoderInternal.h - Disassembler decoder -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the X86 Disassembler.
+// It contains the public interface of the instruction decoder.
+// Documentation for the disassembler can be found in X86Disassembler.h.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86DISASSEMBLERDECODER_H
+#define X86DISASSEMBLERDECODER_H
+
+#include "X86DisassemblerDecoderCommon.h"
+#include "llvm/ADT/ArrayRef.h"
+
+namespace llvm {
+namespace X86Disassembler {
+
+// Accessor functions for various fields of an Intel instruction
+#define modFromModRM(modRM) (((modRM) & 0xc0) >> 6)
+#define regFromModRM(modRM) (((modRM) & 0x38) >> 3)
+#define rmFromModRM(modRM) ((modRM) & 0x7)
+#define scaleFromSIB(sib) (((sib) & 0xc0) >> 6)
+#define indexFromSIB(sib) (((sib) & 0x38) >> 3)
+#define baseFromSIB(sib) ((sib) & 0x7)
+#define wFromREX(rex) (((rex) & 0x8) >> 3)
+#define rFromREX(rex) (((rex) & 0x4) >> 2)
+#define xFromREX(rex) (((rex) & 0x2) >> 1)
+#define bFromREX(rex) ((rex) & 0x1)
+
+#define rFromEVEX2of4(evex) (((~(evex)) & 0x80) >> 7)
+#define xFromEVEX2of4(evex) (((~(evex)) & 0x40) >> 6)
+#define bFromEVEX2of4(evex) (((~(evex)) & 0x20) >> 5)
+#define r2FromEVEX2of4(evex) (((~(evex)) & 0x10) >> 4)
+#define mmFromEVEX2of4(evex) ((evex) & 0x3)
+#define wFromEVEX3of4(evex) (((evex) & 0x80) >> 7)
+#define vvvvFromEVEX3of4(evex) (((~(evex)) & 0x78) >> 3)
+#define ppFromEVEX3of4(evex) ((evex) & 0x3)
+#define zFromEVEX4of4(evex) (((evex) & 0x80) >> 7)
+#define l2FromEVEX4of4(evex) (((evex) & 0x40) >> 6)
+#define lFromEVEX4of4(evex) (((evex) & 0x20) >> 5)
+#define bFromEVEX4of4(evex) (((evex) & 0x10) >> 4)
+#define v2FromEVEX4of4(evex) (((~evex) & 0x8) >> 3)
+#define aaaFromEVEX4of4(evex) ((evex) & 0x7)
+
+#define rFromVEX2of3(vex) (((~(vex)) & 0x80) >> 7)
+#define xFromVEX2of3(vex) (((~(vex)) & 0x40) >> 6)
+#define bFromVEX2of3(vex) (((~(vex)) & 0x20) >> 5)
+#define mmmmmFromVEX2of3(vex) ((vex) & 0x1f)
+#define wFromVEX3of3(vex) (((vex) & 0x80) >> 7)
+#define vvvvFromVEX3of3(vex) (((~(vex)) & 0x78) >> 3)
+#define lFromVEX3of3(vex) (((vex) & 0x4) >> 2)
+#define ppFromVEX3of3(vex) ((vex) & 0x3)
+
+#define rFromVEX2of2(vex) (((~(vex)) & 0x80) >> 7)
+#define vvvvFromVEX2of2(vex) (((~(vex)) & 0x78) >> 3)
+#define lFromVEX2of2(vex) (((vex) & 0x4) >> 2)
+#define ppFromVEX2of2(vex) ((vex) & 0x3)
+
+#define rFromXOP2of3(xop) (((~(xop)) & 0x80) >> 7)
+#define xFromXOP2of3(xop) (((~(xop)) & 0x40) >> 6)
+#define bFromXOP2of3(xop) (((~(xop)) & 0x20) >> 5)
+#define mmmmmFromXOP2of3(xop) ((xop) & 0x1f)
+#define wFromXOP3of3(xop) (((xop) & 0x80) >> 7)
+#define vvvvFromXOP3of3(vex) (((~(vex)) & 0x78) >> 3)
+#define lFromXOP3of3(xop) (((xop) & 0x4) >> 2)
+#define ppFromXOP3of3(xop) ((xop) & 0x3)
+
+// These enums represent Intel registers for use by the decoder.
+#define REGS_8BIT \
+ ENTRY(AL) \
+ ENTRY(CL) \
+ ENTRY(DL) \
+ ENTRY(BL) \
+ ENTRY(AH) \
+ ENTRY(CH) \
+ ENTRY(DH) \
+ ENTRY(BH) \
+ ENTRY(R8B) \
+ ENTRY(R9B) \
+ ENTRY(R10B) \
+ ENTRY(R11B) \
+ ENTRY(R12B) \
+ ENTRY(R13B) \
+ ENTRY(R14B) \
+ ENTRY(R15B) \
+ ENTRY(SPL) \
+ ENTRY(BPL) \
+ ENTRY(SIL) \
+ ENTRY(DIL)
+
+#define EA_BASES_16BIT \
+ ENTRY(BX_SI) \
+ ENTRY(BX_DI) \
+ ENTRY(BP_SI) \
+ ENTRY(BP_DI) \
+ ENTRY(SI) \
+ ENTRY(DI) \
+ ENTRY(BP) \
+ ENTRY(BX) \
+ ENTRY(R8W) \
+ ENTRY(R9W) \
+ ENTRY(R10W) \
+ ENTRY(R11W) \
+ ENTRY(R12W) \
+ ENTRY(R13W) \
+ ENTRY(R14W) \
+ ENTRY(R15W)
+
+#define REGS_16BIT \
+ ENTRY(AX) \
+ ENTRY(CX) \
+ ENTRY(DX) \
+ ENTRY(BX) \
+ ENTRY(SP) \
+ ENTRY(BP) \
+ ENTRY(SI) \
+ ENTRY(DI) \
+ ENTRY(R8W) \
+ ENTRY(R9W) \
+ ENTRY(R10W) \
+ ENTRY(R11W) \
+ ENTRY(R12W) \
+ ENTRY(R13W) \
+ ENTRY(R14W) \
+ ENTRY(R15W)
+
+#define EA_BASES_32BIT \
+ ENTRY(EAX) \
+ ENTRY(ECX) \
+ ENTRY(EDX) \
+ ENTRY(EBX) \
+ ENTRY(sib) \
+ ENTRY(EBP) \
+ ENTRY(ESI) \
+ ENTRY(EDI) \
+ ENTRY(R8D) \
+ ENTRY(R9D) \
+ ENTRY(R10D) \
+ ENTRY(R11D) \
+ ENTRY(R12D) \
+ ENTRY(R13D) \
+ ENTRY(R14D) \
+ ENTRY(R15D)
+
+#define REGS_32BIT \
+ ENTRY(EAX) \
+ ENTRY(ECX) \
+ ENTRY(EDX) \
+ ENTRY(EBX) \
+ ENTRY(ESP) \
+ ENTRY(EBP) \
+ ENTRY(ESI) \
+ ENTRY(EDI) \
+ ENTRY(R8D) \
+ ENTRY(R9D) \
+ ENTRY(R10D) \
+ ENTRY(R11D) \
+ ENTRY(R12D) \
+ ENTRY(R13D) \
+ ENTRY(R14D) \
+ ENTRY(R15D)
+
+#define EA_BASES_64BIT \
+ ENTRY(RAX) \
+ ENTRY(RCX) \
+ ENTRY(RDX) \
+ ENTRY(RBX) \
+ ENTRY(sib64) \
+ ENTRY(RBP) \
+ ENTRY(RSI) \
+ ENTRY(RDI) \
+ ENTRY(R8) \
+ ENTRY(R9) \
+ ENTRY(R10) \
+ ENTRY(R11) \
+ ENTRY(R12) \
+ ENTRY(R13) \
+ ENTRY(R14) \
+ ENTRY(R15)
+
+#define REGS_64BIT \
+ ENTRY(RAX) \
+ ENTRY(RCX) \
+ ENTRY(RDX) \
+ ENTRY(RBX) \
+ ENTRY(RSP) \
+ ENTRY(RBP) \
+ ENTRY(RSI) \
+ ENTRY(RDI) \
+ ENTRY(R8) \
+ ENTRY(R9) \
+ ENTRY(R10) \
+ ENTRY(R11) \
+ ENTRY(R12) \
+ ENTRY(R13) \
+ ENTRY(R14) \
+ ENTRY(R15)
+
+#define REGS_MMX \
+ ENTRY(MM0) \
+ ENTRY(MM1) \
+ ENTRY(MM2) \
+ ENTRY(MM3) \
+ ENTRY(MM4) \
+ ENTRY(MM5) \
+ ENTRY(MM6) \
+ ENTRY(MM7)
+
+#define REGS_XMM \
+ ENTRY(XMM0) \
+ ENTRY(XMM1) \
+ ENTRY(XMM2) \
+ ENTRY(XMM3) \
+ ENTRY(XMM4) \
+ ENTRY(XMM5) \
+ ENTRY(XMM6) \
+ ENTRY(XMM7) \
+ ENTRY(XMM8) \
+ ENTRY(XMM9) \
+ ENTRY(XMM10) \
+ ENTRY(XMM11) \
+ ENTRY(XMM12) \
+ ENTRY(XMM13) \
+ ENTRY(XMM14) \
+ ENTRY(XMM15) \
+ ENTRY(XMM16) \
+ ENTRY(XMM17) \
+ ENTRY(XMM18) \
+ ENTRY(XMM19) \
+ ENTRY(XMM20) \
+ ENTRY(XMM21) \
+ ENTRY(XMM22) \
+ ENTRY(XMM23) \
+ ENTRY(XMM24) \
+ ENTRY(XMM25) \
+ ENTRY(XMM26) \
+ ENTRY(XMM27) \
+ ENTRY(XMM28) \
+ ENTRY(XMM29) \
+ ENTRY(XMM30) \
+ ENTRY(XMM31)
+
+#define REGS_YMM \
+ ENTRY(YMM0) \
+ ENTRY(YMM1) \
+ ENTRY(YMM2) \
+ ENTRY(YMM3) \
+ ENTRY(YMM4) \
+ ENTRY(YMM5) \
+ ENTRY(YMM6) \
+ ENTRY(YMM7) \
+ ENTRY(YMM8) \
+ ENTRY(YMM9) \
+ ENTRY(YMM10) \
+ ENTRY(YMM11) \
+ ENTRY(YMM12) \
+ ENTRY(YMM13) \
+ ENTRY(YMM14) \
+ ENTRY(YMM15) \
+ ENTRY(YMM16) \
+ ENTRY(YMM17) \
+ ENTRY(YMM18) \
+ ENTRY(YMM19) \
+ ENTRY(YMM20) \
+ ENTRY(YMM21) \
+ ENTRY(YMM22) \
+ ENTRY(YMM23) \
+ ENTRY(YMM24) \
+ ENTRY(YMM25) \
+ ENTRY(YMM26) \
+ ENTRY(YMM27) \
+ ENTRY(YMM28) \
+ ENTRY(YMM29) \
+ ENTRY(YMM30) \
+ ENTRY(YMM31)
+
+#define REGS_ZMM \
+ ENTRY(ZMM0) \
+ ENTRY(ZMM1) \
+ ENTRY(ZMM2) \
+ ENTRY(ZMM3) \
+ ENTRY(ZMM4) \
+ ENTRY(ZMM5) \
+ ENTRY(ZMM6) \
+ ENTRY(ZMM7) \
+ ENTRY(ZMM8) \
+ ENTRY(ZMM9) \
+ ENTRY(ZMM10) \
+ ENTRY(ZMM11) \
+ ENTRY(ZMM12) \
+ ENTRY(ZMM13) \
+ ENTRY(ZMM14) \
+ ENTRY(ZMM15) \
+ ENTRY(ZMM16) \
+ ENTRY(ZMM17) \
+ ENTRY(ZMM18) \
+ ENTRY(ZMM19) \
+ ENTRY(ZMM20) \
+ ENTRY(ZMM21) \
+ ENTRY(ZMM22) \
+ ENTRY(ZMM23) \
+ ENTRY(ZMM24) \
+ ENTRY(ZMM25) \
+ ENTRY(ZMM26) \
+ ENTRY(ZMM27) \
+ ENTRY(ZMM28) \
+ ENTRY(ZMM29) \
+ ENTRY(ZMM30) \
+ ENTRY(ZMM31)
+
+#define REGS_MASKS \
+ ENTRY(K0) \
+ ENTRY(K1) \
+ ENTRY(K2) \
+ ENTRY(K3) \
+ ENTRY(K4) \
+ ENTRY(K5) \
+ ENTRY(K6) \
+ ENTRY(K7)
+
+#define REGS_SEGMENT \
+ ENTRY(ES) \
+ ENTRY(CS) \
+ ENTRY(SS) \
+ ENTRY(DS) \
+ ENTRY(FS) \
+ ENTRY(GS)
+
+#define REGS_DEBUG \
+ ENTRY(DR0) \
+ ENTRY(DR1) \
+ ENTRY(DR2) \
+ ENTRY(DR3) \
+ ENTRY(DR4) \
+ ENTRY(DR5) \
+ ENTRY(DR6) \
+ ENTRY(DR7)
+
+#define REGS_CONTROL \
+ ENTRY(CR0) \
+ ENTRY(CR1) \
+ ENTRY(CR2) \
+ ENTRY(CR3) \
+ ENTRY(CR4) \
+ ENTRY(CR5) \
+ ENTRY(CR6) \
+ ENTRY(CR7) \
+ ENTRY(CR8)
+
+#define ALL_EA_BASES \
+ EA_BASES_16BIT \
+ EA_BASES_32BIT \
+ EA_BASES_64BIT
+
+#define ALL_SIB_BASES \
+ REGS_32BIT \
+ REGS_64BIT
+
+#define ALL_REGS \
+ REGS_8BIT \
+ REGS_16BIT \
+ REGS_32BIT \
+ REGS_64BIT \
+ REGS_MMX \
+ REGS_XMM \
+ REGS_YMM \
+ REGS_ZMM \
+ REGS_MASKS \
+ REGS_SEGMENT \
+ REGS_DEBUG \
+ REGS_CONTROL \
+ ENTRY(RIP)
+
+/// \brief All possible values of the base field for effective-address
+/// computations, a.k.a. the Mod and R/M fields of the ModR/M byte.
+/// We distinguish between bases (EA_BASE_*) and registers that just happen
+/// to be referred to when Mod == 0b11 (EA_REG_*).
+enum EABase {
+ EA_BASE_NONE,
+#define ENTRY(x) EA_BASE_##x,
+ ALL_EA_BASES
+#undef ENTRY
+#define ENTRY(x) EA_REG_##x,
+ ALL_REGS
+#undef ENTRY
+ EA_max
+};
+
+/// \brief All possible values of the SIB index field.
+/// borrows entries from ALL_EA_BASES with the special case that
+/// sib is synonymous with NONE.
+/// Vector SIB: index can be XMM or YMM.
+enum SIBIndex {
+ SIB_INDEX_NONE,
+#define ENTRY(x) SIB_INDEX_##x,
+ ALL_EA_BASES
+ REGS_XMM
+ REGS_YMM
+ REGS_ZMM
+#undef ENTRY
+ SIB_INDEX_max
+};
+
+/// \brief All possible values of the SIB base field.
+enum SIBBase {
+ SIB_BASE_NONE,
+#define ENTRY(x) SIB_BASE_##x,
+ ALL_SIB_BASES
+#undef ENTRY
+ SIB_BASE_max
+};
+
+/// \brief Possible displacement types for effective-address computations.
+typedef enum {
+ EA_DISP_NONE,
+ EA_DISP_8,
+ EA_DISP_16,
+ EA_DISP_32
+} EADisplacement;
+
+/// \brief All possible values of the reg field in the ModR/M byte.
+enum Reg {
+#define ENTRY(x) MODRM_REG_##x,
+ ALL_REGS
+#undef ENTRY
+ MODRM_REG_max
+};
+
+/// \brief All possible segment overrides.
+enum SegmentOverride {
+ SEG_OVERRIDE_NONE,
+ SEG_OVERRIDE_CS,
+ SEG_OVERRIDE_SS,
+ SEG_OVERRIDE_DS,
+ SEG_OVERRIDE_ES,
+ SEG_OVERRIDE_FS,
+ SEG_OVERRIDE_GS,
+ SEG_OVERRIDE_max
+};
+
+/// \brief Possible values for the VEX.m-mmmm field
+enum VEXLeadingOpcodeByte {
+ VEX_LOB_0F = 0x1,
+ VEX_LOB_0F38 = 0x2,
+ VEX_LOB_0F3A = 0x3
+};
+
+enum XOPMapSelect {
+ XOP_MAP_SELECT_8 = 0x8,
+ XOP_MAP_SELECT_9 = 0x9,
+ XOP_MAP_SELECT_A = 0xA
+};
+
+/// \brief Possible values for the VEX.pp/EVEX.pp field
+enum VEXPrefixCode {
+ VEX_PREFIX_NONE = 0x0,
+ VEX_PREFIX_66 = 0x1,
+ VEX_PREFIX_F3 = 0x2,
+ VEX_PREFIX_F2 = 0x3
+};
+
+enum VectorExtensionType {
+ TYPE_NO_VEX_XOP = 0x0,
+ TYPE_VEX_2B = 0x1,
+ TYPE_VEX_3B = 0x2,
+ TYPE_EVEX = 0x3,
+ TYPE_XOP = 0x4
+};
+
+/// \brief Type for the byte reader that the consumer must provide to
+/// the decoder. Reads a single byte from the instruction's address space.
+/// \param arg A baton that the consumer can associate with any internal
+/// state that it needs.
+/// \param byte A pointer to a single byte in memory that should be set to
+/// contain the value at address.
+/// \param address The address in the instruction's address space that should
+/// be read from.
+/// \return -1 if the byte cannot be read for any reason; 0 otherwise.
+typedef int (*byteReader_t)(const void *arg, uint8_t *byte, uint64_t address);
+
+/// \brief Type for the logging function that the consumer can provide to
+/// get debugging output from the decoder.
+/// \param arg A baton that the consumer can associate with any internal
+/// state that it needs.
+/// \param log A string that contains the message. Will be reused after
+/// the logger returns.
+typedef void (*dlog_t)(void *arg, const char *log);
+
+/// The specification for how to extract and interpret a full instruction and
+/// its operands.
+struct InstructionSpecifier {
+ uint16_t operands;
+};
+
+/// The x86 internal instruction, which is produced by the decoder.
+struct InternalInstruction {
+ // Reader interface (C)
+ byteReader_t reader;
+ // Opaque value passed to the reader
+ const void* readerArg;
+ // The address of the next byte to read via the reader
+ uint64_t readerCursor;
+
+ // Logger interface (C)
+ dlog_t dlog;
+ // Opaque value passed to the logger
+ void* dlogArg;
+
+ // General instruction information
+
+ // The mode to disassemble for (64-bit, protected, real)
+ DisassemblerMode mode;
+ // The start of the instruction, usable with the reader
+ uint64_t startLocation;
+ // The length of the instruction, in bytes
+ size_t length;
+
+ // Prefix state
+
+ // 1 if the prefix byte corresponding to the entry is present; 0 if not
+ uint8_t prefixPresent[0x100];
+ // contains the location (for use with the reader) of the prefix byte
+ uint64_t prefixLocations[0x100];
+ // The value of the vector extension prefix(EVEX/VEX/XOP), if present
+ uint8_t vectorExtensionPrefix[4];
+ // The type of the vector extension prefix
+ VectorExtensionType vectorExtensionType;
+ // The value of the REX prefix, if present
+ uint8_t rexPrefix;
+ // The location where a mandatory prefix would have to be (i.e., right before
+ // the opcode, or right before the REX prefix if one is present).
+ uint64_t necessaryPrefixLocation;
+ // The segment override type
+ SegmentOverride segmentOverride;
+ // 1 if the prefix byte, 0xf2 or 0xf3 is xacquire or xrelease
+ bool xAcquireRelease;
+
+ // Sizes of various critical pieces of data, in bytes
+ uint8_t registerSize;
+ uint8_t addressSize;
+ uint8_t displacementSize;
+ uint8_t immediateSize;
+
+ // Offsets from the start of the instruction to the pieces of data, which is
+ // needed to find relocation entries for adding symbolic operands.
+ uint8_t displacementOffset;
+ uint8_t immediateOffset;
+
+ // opcode state
+
+ // The last byte of the opcode, not counting any ModR/M extension
+ uint8_t opcode;
+ // The ModR/M byte of the instruction, if it is an opcode extension
+ uint8_t modRMExtension;
+
+ // decode state
+
+ // The type of opcode, used for indexing into the array of decode tables
+ OpcodeType opcodeType;
+ // The instruction ID, extracted from the decode table
+ uint16_t instructionID;
+ // The specifier for the instruction, from the instruction info table
+ const InstructionSpecifier *spec;
+
+ // state for additional bytes, consumed during operand decode. Pattern:
+ // consumed___ indicates that the byte was already consumed and does not
+ // need to be consumed again.
+
+ // The VEX.vvvv field, which contains a third register operand for some AVX
+ // instructions.
+ Reg vvvv;
+
+ // The writemask for AVX-512 instructions which is contained in EVEX.aaa
+ Reg writemask;
+
+ // The ModR/M byte, which contains most register operands and some portion of
+ // all memory operands.
+ bool consumedModRM;
+ uint8_t modRM;
+
+ // The SIB byte, used for more complex 32- or 64-bit memory operands
+ bool consumedSIB;
+ uint8_t sib;
+
+ // The displacement, used for memory operands
+ bool consumedDisplacement;
+ int32_t displacement;
+
+ // Immediates. There can be two in some cases
+ uint8_t numImmediatesConsumed;
+ uint8_t numImmediatesTranslated;
+ uint64_t immediates[2];
+
+ // A register or immediate operand encoded into the opcode
+ Reg opcodeRegister;
+
+ // Portions of the ModR/M byte
+
+ // These fields determine the allowable values for the ModR/M fields, which
+ // depend on operand and address widths.
+ EABase eaBaseBase;
+ EABase eaRegBase;
+ Reg regBase;
+
+ // The Mod and R/M fields can encode a base for an effective address, or a
+ // register. These are separated into two fields here.
+ EABase eaBase;
+ EADisplacement eaDisplacement;
+ // The reg field always encodes a register
+ Reg reg;
+
+ // SIB state
+ SIBIndex sibIndex;
+ uint8_t sibScale;
+ SIBBase sibBase;
+
+ ArrayRef<OperandSpecifier> operands;
+};
+
+/// \brief Decode one instruction and store the decoding results in
+/// a buffer provided by the consumer.
+/// \param insn The buffer to store the instruction in. Allocated by the
+/// consumer.
+/// \param reader The byteReader_t for the bytes to be read.
+/// \param readerArg An argument to pass to the reader for storing context
+/// specific to the consumer. May be NULL.
+/// \param logger The dlog_t to be used in printing status messages from the
+/// disassembler. May be NULL.
+/// \param loggerArg An argument to pass to the logger for storing context
+/// specific to the logger. May be NULL.
+/// \param startLoc The address (in the reader's address space) of the first
+/// byte in the instruction.
+/// \param mode The mode (16-bit, 32-bit, 64-bit) to decode in.
+/// \return Nonzero if there was an error during decode, 0 otherwise.
+int decodeInstruction(InternalInstruction *insn,
+ byteReader_t reader,
+ const void *readerArg,
+ dlog_t logger,
+ void *loggerArg,
+ const void *miiArg,
+ uint64_t startLoc,
+ DisassemblerMode mode);
+
+/// \brief Print a message to debugs()
+/// \param file The name of the file printing the debug message.
+/// \param line The line number that printed the debug message.
+/// \param s The message to print.
+void Debug(const char *file, unsigned line, const char *s);
+
+const char *GetInstrName(unsigned Opcode, const void *mii);
+
+} // namespace X86Disassembler
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h
new file mode 100644
index 0000000..13a7b55
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h
@@ -0,0 +1,517 @@
+//===-- X86DisassemblerDecoderCommon.h - Disassembler decoder ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the X86 Disassembler.
+// It contains common definitions used by both the disassembler and the table
+// generator.
+// Documentation for the disassembler can be found in X86Disassembler.h.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86DISASSEMBLERDECODERCOMMON_H
+#define X86DISASSEMBLERDECODERCOMMON_H
+
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+namespace X86Disassembler {
+
+#define INSTRUCTIONS_SYM x86DisassemblerInstrSpecifiers
+#define CONTEXTS_SYM x86DisassemblerContexts
+#define ONEBYTE_SYM x86DisassemblerOneByteOpcodes
+#define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes
+#define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes
+#define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes
+#define XOP8_MAP_SYM x86DisassemblerXOP8Opcodes
+#define XOP9_MAP_SYM x86DisassemblerXOP9Opcodes
+#define XOPA_MAP_SYM x86DisassemblerXOPAOpcodes
+
+#define INSTRUCTIONS_STR "x86DisassemblerInstrSpecifiers"
+#define CONTEXTS_STR "x86DisassemblerContexts"
+#define ONEBYTE_STR "x86DisassemblerOneByteOpcodes"
+#define TWOBYTE_STR "x86DisassemblerTwoByteOpcodes"
+#define THREEBYTE38_STR "x86DisassemblerThreeByte38Opcodes"
+#define THREEBYTE3A_STR "x86DisassemblerThreeByte3AOpcodes"
+#define XOP8_MAP_STR "x86DisassemblerXOP8Opcodes"
+#define XOP9_MAP_STR "x86DisassemblerXOP9Opcodes"
+#define XOPA_MAP_STR "x86DisassemblerXOPAOpcodes"
+
+// Attributes of an instruction that must be known before the opcode can be
+// processed correctly. Most of these indicate the presence of particular
+// prefixes, but ATTR_64BIT is simply an attribute of the decoding context.
+#define ATTRIBUTE_BITS \
+ ENUM_ENTRY(ATTR_NONE, 0x00) \
+ ENUM_ENTRY(ATTR_64BIT, (0x1 << 0)) \
+ ENUM_ENTRY(ATTR_XS, (0x1 << 1)) \
+ ENUM_ENTRY(ATTR_XD, (0x1 << 2)) \
+ ENUM_ENTRY(ATTR_REXW, (0x1 << 3)) \
+ ENUM_ENTRY(ATTR_OPSIZE, (0x1 << 4)) \
+ ENUM_ENTRY(ATTR_ADSIZE, (0x1 << 5)) \
+ ENUM_ENTRY(ATTR_VEX, (0x1 << 6)) \
+ ENUM_ENTRY(ATTR_VEXL, (0x1 << 7)) \
+ ENUM_ENTRY(ATTR_EVEX, (0x1 << 8)) \
+ ENUM_ENTRY(ATTR_EVEXL, (0x1 << 9)) \
+ ENUM_ENTRY(ATTR_EVEXL2, (0x1 << 10)) \
+ ENUM_ENTRY(ATTR_EVEXK, (0x1 << 11)) \
+ ENUM_ENTRY(ATTR_EVEXKZ, (0x1 << 12)) \
+ ENUM_ENTRY(ATTR_EVEXB, (0x1 << 13))
+
+#define ENUM_ENTRY(n, v) n = v,
+enum attributeBits {
+ ATTRIBUTE_BITS
+ ATTR_max
+};
+#undef ENUM_ENTRY
+
+// Combinations of the above attributes that are relevant to instruction
+// decode. Although other combinations are possible, they can be reduced to
+// these without affecting the ultimately decoded instruction.
+
+// Class name Rank Rationale for rank assignment
+#define INSTRUCTION_CONTEXTS \
+ ENUM_ENTRY(IC, 0, "says nothing about the instruction") \
+ ENUM_ENTRY(IC_64BIT, 1, "says the instruction applies in " \
+ "64-bit mode but no more") \
+ ENUM_ENTRY(IC_OPSIZE, 3, "requires an OPSIZE prefix, so " \
+ "operands change width") \
+ ENUM_ENTRY(IC_ADSIZE, 3, "requires an ADSIZE prefix, so " \
+ "operands change width") \
+ ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \
+ "but not the operands") \
+ ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \
+ "but not the operands") \
+ ENUM_ENTRY(IC_XD_OPSIZE, 3, "requires an OPSIZE prefix, so " \
+ "operands change width") \
+ ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \
+ "operands change width") \
+ ENUM_ENTRY(IC_64BIT_REXW, 4, "requires a REX.W prefix, so operands "\
+ "change width; overrides IC_OPSIZE") \
+ ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \
+ ENUM_ENTRY(IC_64BIT_ADSIZE, 3, "Just as meaningful as IC_ADSIZE") \
+ ENUM_ENTRY(IC_64BIT_XD, 5, "XD instructions are SSE; REX.W is " \
+ "secondary") \
+ ENUM_ENTRY(IC_64BIT_XS, 5, "Just as meaningful as IC_64BIT_XD") \
+ ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \
+ ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \
+ ENUM_ENTRY(IC_64BIT_REXW_XS, 6, "OPSIZE could mean a different " \
+ "opcode") \
+ ENUM_ENTRY(IC_64BIT_REXW_XD, 6, "Just as meaningful as " \
+ "IC_64BIT_REXW_XS") \
+ ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 7, "The Dynamic Duo! Prefer over all " \
+ "else because this changes most " \
+ "operands' meaning") \
+ ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \
+ ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \
+ ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \
+ ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \
+ ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \
+ ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \
+ ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \
+ ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \
+ ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \
+ ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\
+ ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XD prefix")\
+ ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") \
+ ENUM_ENTRY(IC_VEX_L_W, 4, "requires VEX, L and W") \
+ ENUM_ENTRY(IC_VEX_L_W_XS, 5, "requires VEX, L, W and XS prefix") \
+ ENUM_ENTRY(IC_VEX_L_W_XD, 5, "requires VEX, L, W and XD prefix") \
+ ENUM_ENTRY(IC_VEX_L_W_OPSIZE, 5, "requires VEX, L, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX, 1, "requires an EVEX prefix") \
+ ENUM_ENTRY(IC_EVEX_XS, 2, "requires EVEX and the XS prefix") \
+ ENUM_ENTRY(IC_EVEX_XD, 2, "requires EVEX and the XD prefix") \
+ ENUM_ENTRY(IC_EVEX_OPSIZE, 2, "requires EVEX and the OpSize prefix") \
+ ENUM_ENTRY(IC_EVEX_W, 3, "requires EVEX and the W prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XS, 4, "requires EVEX, W, and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XD, 4, "requires EVEX, W, and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_W_OPSIZE, 4, "requires EVEX, W, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L, 3, "requires EVEX and the L prefix") \
+ ENUM_ENTRY(IC_EVEX_L_XS, 4, "requires EVEX and the L and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L_XD, 4, "requires EVEX and the L and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L_OPSIZE, 4, "requires EVEX, L, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L_W, 3, "requires EVEX, L and W") \
+ ENUM_ENTRY(IC_EVEX_L_W_XS, 4, "requires EVEX, L, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_XD, 4, "requires EVEX, L, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_OPSIZE, 4, "requires EVEX, L, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2, 3, "requires EVEX and the L2 prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_XS, 4, "requires EVEX and the L2 and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_XD, 4, "requires EVEX and the L2 and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_OPSIZE, 4, "requires EVEX, L2, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2_W, 3, "requires EVEX, L2 and W") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XS, 4, "requires EVEX, L2, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XD, 4, "requires EVEX, L2, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE, 4, "requires EVEX, L2, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX_K, 1, "requires an EVEX_K prefix") \
+ ENUM_ENTRY(IC_EVEX_XS_K, 2, "requires EVEX_K and the XS prefix") \
+ ENUM_ENTRY(IC_EVEX_XD_K, 2, "requires EVEX_K and the XD prefix") \
+ ENUM_ENTRY(IC_EVEX_OPSIZE_K, 2, "requires EVEX_K and the OpSize prefix") \
+ ENUM_ENTRY(IC_EVEX_W_K, 3, "requires EVEX_K and the W prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XS_K, 4, "requires EVEX_K, W, and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XD_K, 4, "requires EVEX_K, W, and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_W_OPSIZE_K, 4, "requires EVEX_K, W, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L_K, 3, "requires EVEX_K and the L prefix") \
+ ENUM_ENTRY(IC_EVEX_L_XS_K, 4, "requires EVEX_K and the L and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L_XD_K, 4, "requires EVEX_K and the L and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L_OPSIZE_K, 4, "requires EVEX_K, L, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L_W_K, 3, "requires EVEX_K, L and W") \
+ ENUM_ENTRY(IC_EVEX_L_W_XS_K, 4, "requires EVEX_K, L, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_XD_K, 4, "requires EVEX_K, L, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K, 4, "requires EVEX_K, L, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2_K, 3, "requires EVEX_K and the L2 prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_XS_K, 4, "requires EVEX_K and the L2 and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_XD_K, 4, "requires EVEX_K and the L2 and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K, 4, "requires EVEX_K, L2, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2_W_K, 3, "requires EVEX_K, L2 and W") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XS_K, 4, "requires EVEX_K, L2, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XD_K, 4, "requires EVEX_K, L2, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K, 4, "requires EVEX_K, L2, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX_B, 1, "requires an EVEX_B prefix") \
+ ENUM_ENTRY(IC_EVEX_XS_B, 2, "requires EVEX_B and the XS prefix") \
+ ENUM_ENTRY(IC_EVEX_XD_B, 2, "requires EVEX_B and the XD prefix") \
+ ENUM_ENTRY(IC_EVEX_OPSIZE_B, 2, "requires EVEX_B and the OpSize prefix") \
+ ENUM_ENTRY(IC_EVEX_W_B, 3, "requires EVEX_B and the W prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XS_B, 4, "requires EVEX_B, W, and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XD_B, 4, "requires EVEX_B, W, and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_W_OPSIZE_B, 4, "requires EVEX_B, W, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L_B, 3, "requires EVEX_B and the L prefix") \
+ ENUM_ENTRY(IC_EVEX_L_XS_B, 4, "requires EVEX_B and the L and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L_XD_B, 4, "requires EVEX_B and the L and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L_OPSIZE_B, 4, "requires EVEX_B, L, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L_W_B, 3, "requires EVEX_B, L and W") \
+ ENUM_ENTRY(IC_EVEX_L_W_XS_B, 4, "requires EVEX_B, L, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_XD_B, 4, "requires EVEX_B, L, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_B, 4, "requires EVEX_B, L, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2_B, 3, "requires EVEX_B and the L2 prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_XS_B, 4, "requires EVEX_B and the L2 and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_XD_B, 4, "requires EVEX_B and the L2 and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_OPSIZE_B, 4, "requires EVEX_B, L2, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2_W_B, 3, "requires EVEX_B, L2 and W") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XS_B, 4, "requires EVEX_B, L2, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XD_B, 4, "requires EVEX_B, L2, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_B, 4, "requires EVEX_B, L2, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX_K_B, 1, "requires EVEX_B and EVEX_K prefix") \
+ ENUM_ENTRY(IC_EVEX_XS_K_B, 2, "requires EVEX_B, EVEX_K and the XS prefix") \
+ ENUM_ENTRY(IC_EVEX_XD_K_B, 2, "requires EVEX_B, EVEX_K and the XD prefix") \
+ ENUM_ENTRY(IC_EVEX_OPSIZE_K_B, 2, "requires EVEX_B, EVEX_K and the OpSize prefix") \
+ ENUM_ENTRY(IC_EVEX_W_K_B, 3, "requires EVEX_B, EVEX_K and the W prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, W, and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, W, and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, W, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L_K_B, 3, "requires EVEX_B, EVEX_K and the L prefix") \
+ ENUM_ENTRY(IC_EVEX_L_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L_W_K_B, 3, "requires EVEX_B, EVEX_K, L and W") \
+ ENUM_ENTRY(IC_EVEX_L_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2_K_B, 3, "requires EVEX_B, EVEX_K and the L2 prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L2, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2_W_K_B, 3, "requires EVEX_B, EVEX_K, L2 and W") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L2, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX_KZ_B, 1, "requires EVEX_B and EVEX_KZ prefix") \
+ ENUM_ENTRY(IC_EVEX_XS_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XS prefix") \
+ ENUM_ENTRY(IC_EVEX_XD_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XD prefix") \
+ ENUM_ENTRY(IC_EVEX_OPSIZE_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the OpSize prefix") \
+ ENUM_ENTRY(IC_EVEX_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the W prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L prefix") \
+ ENUM_ENTRY(IC_EVEX_L_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L and W") \
+ ENUM_ENTRY(IC_EVEX_L_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L2 prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L2 and W") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX_KZ, 1, "requires an EVEX_KZ prefix") \
+ ENUM_ENTRY(IC_EVEX_XS_KZ, 2, "requires EVEX_KZ and the XS prefix") \
+ ENUM_ENTRY(IC_EVEX_XD_KZ, 2, "requires EVEX_KZ and the XD prefix") \
+ ENUM_ENTRY(IC_EVEX_OPSIZE_KZ, 2, "requires EVEX_KZ and the OpSize prefix") \
+ ENUM_ENTRY(IC_EVEX_W_KZ, 3, "requires EVEX_KZ and the W prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XS_KZ, 4, "requires EVEX_KZ, W, and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_W_XD_KZ, 4, "requires EVEX_KZ, W, and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ, 4, "requires EVEX_KZ, W, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L_KZ, 3, "requires EVEX_KZ and the L prefix") \
+ ENUM_ENTRY(IC_EVEX_L_XS_KZ, 4, "requires EVEX_KZ and the L and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L_XD_KZ, 4, "requires EVEX_KZ and the L and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ, 4, "requires EVEX_KZ, L, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L_W_KZ, 3, "requires EVEX_KZ, L and W") \
+ ENUM_ENTRY(IC_EVEX_L_W_XS_KZ, 4, "requires EVEX_KZ, L, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_XD_KZ, 4, "requires EVEX_KZ, L, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L, W and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2_KZ, 3, "requires EVEX_KZ and the L2 prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_XS_KZ, 4, "requires EVEX_KZ and the L2 and XS prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_XD_KZ, 4, "requires EVEX_KZ and the L2 and XD prefix")\
+ ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, and OpSize") \
+ ENUM_ENTRY(IC_EVEX_L2_W_KZ, 3, "requires EVEX_KZ, L2 and W") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ, 4, "requires EVEX_KZ, L2, W and XS prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ, 4, "requires EVEX_KZ, L2, W and XD prefix") \
+ ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, W and OpSize")
+
+#define ENUM_ENTRY(n, r, d) n,
+enum InstructionContext {
+ INSTRUCTION_CONTEXTS
+ IC_max
+};
+#undef ENUM_ENTRY
+
+// Opcode types, which determine which decode table to use, both in the Intel
+// manual and also for the decoder.
+enum OpcodeType {
+ ONEBYTE = 0,
+ TWOBYTE = 1,
+ THREEBYTE_38 = 2,
+ THREEBYTE_3A = 3,
+ XOP8_MAP = 4,
+ XOP9_MAP = 5,
+ XOPA_MAP = 6
+};
+
+// The following structs are used for the hierarchical decode table. After
+// determining the instruction's class (i.e., which IC_* constant applies to
+// it), the decoder reads the opcode. Some instructions require specific
+// values of the ModR/M byte, so the ModR/M byte indexes into the final table.
+//
+// If a ModR/M byte is not required, "required" is left unset, and the values
+// for each instructionID are identical.
+typedef uint16_t InstrUID;
+
+// ModRMDecisionType - describes the type of ModR/M decision, allowing the
+// consumer to determine the number of entries in it.
+//
+// MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded
+// instruction is the same.
+// MODRM_SPLITRM - If the ModR/M byte is between 0x00 and 0xbf, the opcode
+// corresponds to one instruction; otherwise, it corresponds to
+// a different instruction.
+// MODRM_SPLITMISC- If the ModR/M byte is between 0x00 and 0xbf, ModR/M byte
+// divided by 8 is used to select instruction; otherwise, each
+// value of the ModR/M byte could correspond to a different
+// instruction.
+// MODRM_SPLITREG - ModR/M byte divided by 8 is used to select instruction. This
+// corresponds to instructions that use reg field as opcode
+// MODRM_FULL - Potentially, each value of the ModR/M byte could correspond
+// to a different instruction.
+#define MODRMTYPES \
+ ENUM_ENTRY(MODRM_ONEENTRY) \
+ ENUM_ENTRY(MODRM_SPLITRM) \
+ ENUM_ENTRY(MODRM_SPLITMISC) \
+ ENUM_ENTRY(MODRM_SPLITREG) \
+ ENUM_ENTRY(MODRM_FULL)
+
+#define ENUM_ENTRY(n) n,
+enum ModRMDecisionType {
+ MODRMTYPES
+ MODRM_max
+};
+#undef ENUM_ENTRY
+
+#define CASE_ENCODING_RM \
+ case ENCODING_RM: \
+ case ENCODING_RM_CD2: \
+ case ENCODING_RM_CD4: \
+ case ENCODING_RM_CD8: \
+ case ENCODING_RM_CD16: \
+ case ENCODING_RM_CD32: \
+ case ENCODING_RM_CD64
+
+// Physical encodings of instruction operands.
+#define ENCODINGS \
+ ENUM_ENTRY(ENCODING_NONE, "") \
+ ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \
+ ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \
+ ENUM_ENTRY(ENCODING_RM_CD2, "R/M operand with CDisp scaling of 2") \
+ ENUM_ENTRY(ENCODING_RM_CD4, "R/M operand with CDisp scaling of 4") \
+ ENUM_ENTRY(ENCODING_RM_CD8, "R/M operand with CDisp scaling of 8") \
+ ENUM_ENTRY(ENCODING_RM_CD16,"R/M operand with CDisp scaling of 16") \
+ ENUM_ENTRY(ENCODING_RM_CD32,"R/M operand with CDisp scaling of 32") \
+ ENUM_ENTRY(ENCODING_RM_CD64,"R/M operand with CDisp scaling of 64") \
+ ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \
+ ENUM_ENTRY(ENCODING_WRITEMASK, "Register operand in EVEX.aaa byte.") \
+ ENUM_ENTRY(ENCODING_CB, "1-byte code offset (possible new CS value)") \
+ ENUM_ENTRY(ENCODING_CW, "2-byte") \
+ ENUM_ENTRY(ENCODING_CD, "4-byte") \
+ ENUM_ENTRY(ENCODING_CP, "6-byte") \
+ ENUM_ENTRY(ENCODING_CO, "8-byte") \
+ ENUM_ENTRY(ENCODING_CT, "10-byte") \
+ ENUM_ENTRY(ENCODING_IB, "1-byte immediate") \
+ ENUM_ENTRY(ENCODING_IW, "2-byte") \
+ ENUM_ENTRY(ENCODING_ID, "4-byte") \
+ ENUM_ENTRY(ENCODING_IO, "8-byte") \
+ ENUM_ENTRY(ENCODING_RB, "(AL..DIL, R8L..R15L) Register code added to " \
+ "the opcode byte") \
+ ENUM_ENTRY(ENCODING_RW, "(AX..DI, R8W..R15W)") \
+ ENUM_ENTRY(ENCODING_RD, "(EAX..EDI, R8D..R15D)") \
+ ENUM_ENTRY(ENCODING_RO, "(RAX..RDI, R8..R15)") \
+ ENUM_ENTRY(ENCODING_FP, "Position on floating-point stack in ModR/M " \
+ "byte.") \
+ \
+ ENUM_ENTRY(ENCODING_Iv, "Immediate of operand size") \
+ ENUM_ENTRY(ENCODING_Ia, "Immediate of address size") \
+ ENUM_ENTRY(ENCODING_Rv, "Register code of operand size added to the " \
+ "opcode byte") \
+ ENUM_ENTRY(ENCODING_DUP, "Duplicate of another operand; ID is encoded " \
+ "in type") \
+ ENUM_ENTRY(ENCODING_SI, "Source index; encoded in OpSize/Adsize prefix") \
+ ENUM_ENTRY(ENCODING_DI, "Destination index; encoded in prefixes")
+
+#define ENUM_ENTRY(n, d) n,
+enum OperandEncoding {
+ ENCODINGS
+ ENCODING_max
+};
+#undef ENUM_ENTRY
+
+// Semantic interpretations of instruction operands.
+#define TYPES \
+ ENUM_ENTRY(TYPE_NONE, "") \
+ ENUM_ENTRY(TYPE_REL8, "1-byte immediate address") \
+ ENUM_ENTRY(TYPE_REL16, "2-byte") \
+ ENUM_ENTRY(TYPE_REL32, "4-byte") \
+ ENUM_ENTRY(TYPE_REL64, "8-byte") \
+ ENUM_ENTRY(TYPE_PTR1616, "2+2-byte segment+offset address") \
+ ENUM_ENTRY(TYPE_PTR1632, "2+4-byte") \
+ ENUM_ENTRY(TYPE_PTR1664, "2+8-byte") \
+ ENUM_ENTRY(TYPE_R8, "1-byte register operand") \
+ ENUM_ENTRY(TYPE_R16, "2-byte") \
+ ENUM_ENTRY(TYPE_R32, "4-byte") \
+ ENUM_ENTRY(TYPE_R64, "8-byte") \
+ ENUM_ENTRY(TYPE_IMM8, "1-byte immediate operand") \
+ ENUM_ENTRY(TYPE_IMM16, "2-byte") \
+ ENUM_ENTRY(TYPE_IMM32, "4-byte") \
+ ENUM_ENTRY(TYPE_IMM64, "8-byte") \
+ ENUM_ENTRY(TYPE_IMM3, "1-byte immediate operand between 0 and 7") \
+ ENUM_ENTRY(TYPE_IMM5, "1-byte immediate operand between 0 and 31") \
+ ENUM_ENTRY(TYPE_RM8, "1-byte register or memory operand") \
+ ENUM_ENTRY(TYPE_RM16, "2-byte") \
+ ENUM_ENTRY(TYPE_RM32, "4-byte") \
+ ENUM_ENTRY(TYPE_RM64, "8-byte") \
+ ENUM_ENTRY(TYPE_M, "Memory operand") \
+ ENUM_ENTRY(TYPE_M8, "1-byte") \
+ ENUM_ENTRY(TYPE_M16, "2-byte") \
+ ENUM_ENTRY(TYPE_M32, "4-byte") \
+ ENUM_ENTRY(TYPE_M64, "8-byte") \
+ ENUM_ENTRY(TYPE_LEA, "Effective address") \
+ ENUM_ENTRY(TYPE_M128, "16-byte (SSE/SSE2)") \
+ ENUM_ENTRY(TYPE_M256, "256-byte (AVX)") \
+ ENUM_ENTRY(TYPE_M1616, "2+2-byte segment+offset address") \
+ ENUM_ENTRY(TYPE_M1632, "2+4-byte") \
+ ENUM_ENTRY(TYPE_M1664, "2+8-byte") \
+ ENUM_ENTRY(TYPE_M16_32, "2+4-byte two-part memory operand (LIDT, LGDT)") \
+ ENUM_ENTRY(TYPE_M16_16, "2+2-byte (BOUND)") \
+ ENUM_ENTRY(TYPE_M32_32, "4+4-byte (BOUND)") \
+ ENUM_ENTRY(TYPE_M16_64, "2+8-byte (LIDT, LGDT)") \
+ ENUM_ENTRY(TYPE_SRCIDX8, "1-byte memory at source index") \
+ ENUM_ENTRY(TYPE_SRCIDX16, "2-byte memory at source index") \
+ ENUM_ENTRY(TYPE_SRCIDX32, "4-byte memory at source index") \
+ ENUM_ENTRY(TYPE_SRCIDX64, "8-byte memory at source index") \
+ ENUM_ENTRY(TYPE_DSTIDX8, "1-byte memory at destination index") \
+ ENUM_ENTRY(TYPE_DSTIDX16, "2-byte memory at destination index") \
+ ENUM_ENTRY(TYPE_DSTIDX32, "4-byte memory at destination index") \
+ ENUM_ENTRY(TYPE_DSTIDX64, "8-byte memory at destination index") \
+ ENUM_ENTRY(TYPE_MOFFS8, "1-byte memory offset (relative to segment " \
+ "base)") \
+ ENUM_ENTRY(TYPE_MOFFS16, "2-byte") \
+ ENUM_ENTRY(TYPE_MOFFS32, "4-byte") \
+ ENUM_ENTRY(TYPE_MOFFS64, "8-byte") \
+ ENUM_ENTRY(TYPE_SREG, "Byte with single bit set: 0 = ES, 1 = CS, " \
+ "2 = SS, 3 = DS, 4 = FS, 5 = GS") \
+ ENUM_ENTRY(TYPE_M32FP, "32-bit IEE754 memory floating-point operand") \
+ ENUM_ENTRY(TYPE_M64FP, "64-bit") \
+ ENUM_ENTRY(TYPE_M80FP, "80-bit extended") \
+ ENUM_ENTRY(TYPE_M16INT, "2-byte memory integer operand for use in " \
+ "floating-point instructions") \
+ ENUM_ENTRY(TYPE_M32INT, "4-byte") \
+ ENUM_ENTRY(TYPE_M64INT, "8-byte") \
+ ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \
+ ENUM_ENTRY(TYPE_MM, "MMX register operand") \
+ ENUM_ENTRY(TYPE_MM32, "4-byte MMX register or memory operand") \
+ ENUM_ENTRY(TYPE_MM64, "8-byte") \
+ ENUM_ENTRY(TYPE_XMM, "XMM register operand") \
+ ENUM_ENTRY(TYPE_XMM32, "4-byte XMM register or memory operand") \
+ ENUM_ENTRY(TYPE_XMM64, "8-byte") \
+ ENUM_ENTRY(TYPE_XMM128, "16-byte") \
+ ENUM_ENTRY(TYPE_XMM256, "32-byte") \
+ ENUM_ENTRY(TYPE_XMM512, "64-byte") \
+ ENUM_ENTRY(TYPE_VK1, "1-bit") \
+ ENUM_ENTRY(TYPE_VK2, "2-bit") \
+ ENUM_ENTRY(TYPE_VK4, "4-bit") \
+ ENUM_ENTRY(TYPE_VK8, "8-bit") \
+ ENUM_ENTRY(TYPE_VK16, "16-bit") \
+ ENUM_ENTRY(TYPE_VK32, "32-bit") \
+ ENUM_ENTRY(TYPE_VK64, "64-bit") \
+ ENUM_ENTRY(TYPE_XMM0, "Implicit use of XMM0") \
+ ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \
+ ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \
+ ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand") \
+ \
+ ENUM_ENTRY(TYPE_Mv, "Memory operand of operand size") \
+ ENUM_ENTRY(TYPE_Rv, "Register operand of operand size") \
+ ENUM_ENTRY(TYPE_IMMv, "Immediate operand of operand size") \
+ ENUM_ENTRY(TYPE_RELv, "Immediate address of operand size") \
+ ENUM_ENTRY(TYPE_DUP0, "Duplicate of operand 0") \
+ ENUM_ENTRY(TYPE_DUP1, "operand 1") \
+ ENUM_ENTRY(TYPE_DUP2, "operand 2") \
+ ENUM_ENTRY(TYPE_DUP3, "operand 3") \
+ ENUM_ENTRY(TYPE_DUP4, "operand 4") \
+ ENUM_ENTRY(TYPE_M512, "512-bit FPU/MMX/XMM/MXCSR state")
+
+#define ENUM_ENTRY(n, d) n,
+enum OperandType {
+ TYPES
+ TYPE_max
+};
+#undef ENUM_ENTRY
+
+/// \brief The specification for how to extract and interpret one operand.
+struct OperandSpecifier {
+ uint8_t encoding;
+ uint8_t type;
+};
+
+// Indicates where the opcode modifier (if any) is to be found. Extended
+// opcodes with AddRegFrm have the opcode modifier in the ModR/M byte.
+#define MODIFIER_TYPES \
+ ENUM_ENTRY(MODIFIER_NONE)
+
+#define ENUM_ENTRY(n) n,
+enum ModifierType {
+ MODIFIER_TYPES
+ MODIFIER_max
+};
+#undef ENUM_ENTRY
+
+static const unsigned X86_MAX_OPERANDS = 5;
+
+/// Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode
+/// are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode,
+/// respectively.
+enum DisassemblerMode {
+ MODE_16BIT,
+ MODE_32BIT,
+ MODE_64BIT
+};
+
+} // namespace X86Disassembler
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp b/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp
new file mode 100644
index 0000000..b45b118
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp
@@ -0,0 +1,281 @@
+//===-- X86ATTInstPrinter.cpp - AT&T assembly instruction printing --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file includes code for rendering MCInst instances as AT&T-style
+// assembly.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86ATTInstPrinter.h"
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "X86InstComments.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/FormattedStream.h"
+#include <map>
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+// Include the auto-generated portion of the assembly writer.
+#define PRINT_ALIAS_INSTR
+#include "X86GenAsmWriter.inc"
+
+void X86ATTInstPrinter::printRegName(raw_ostream &OS,
+ unsigned RegNo) const {
+ OS << markup("<reg:")
+ << '%' << getRegisterName(RegNo)
+ << markup(">");
+}
+
+void X86ATTInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
+ StringRef Annot) {
+ const MCInstrDesc &Desc = MII.get(MI->getOpcode());
+ uint64_t TSFlags = Desc.TSFlags;
+
+ if (TSFlags & X86II::LOCK)
+ OS << "\tlock\n";
+
+ // Try to print any aliases first.
+ if (!printAliasInstr(MI, OS))
+ printInstruction(MI, OS);
+
+ // Next always print the annotation.
+ printAnnotation(OS, Annot);
+
+ // If verbose assembly is enabled, we can print some informative comments.
+ if (CommentStream)
+ EmitAnyX86InstComments(MI, *CommentStream, getRegisterName);
+}
+
+void X86ATTInstPrinter::printSSECC(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ int64_t Imm = MI->getOperand(Op).getImm() & 0xf;
+ switch (Imm) {
+ default: llvm_unreachable("Invalid ssecc argument!");
+ case 0: O << "eq"; break;
+ case 1: O << "lt"; break;
+ case 2: O << "le"; break;
+ case 3: O << "unord"; break;
+ case 4: O << "neq"; break;
+ case 5: O << "nlt"; break;
+ case 6: O << "nle"; break;
+ case 7: O << "ord"; break;
+ case 8: O << "eq_uq"; break;
+ case 9: O << "nge"; break;
+ case 0xa: O << "ngt"; break;
+ case 0xb: O << "false"; break;
+ case 0xc: O << "neq_oq"; break;
+ case 0xd: O << "ge"; break;
+ case 0xe: O << "gt"; break;
+ case 0xf: O << "true"; break;
+ }
+}
+
+void X86ATTInstPrinter::printAVXCC(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ int64_t Imm = MI->getOperand(Op).getImm() & 0x1f;
+ switch (Imm) {
+ default: llvm_unreachable("Invalid avxcc argument!");
+ case 0: O << "eq"; break;
+ case 1: O << "lt"; break;
+ case 2: O << "le"; break;
+ case 3: O << "unord"; break;
+ case 4: O << "neq"; break;
+ case 5: O << "nlt"; break;
+ case 6: O << "nle"; break;
+ case 7: O << "ord"; break;
+ case 8: O << "eq_uq"; break;
+ case 9: O << "nge"; break;
+ case 0xa: O << "ngt"; break;
+ case 0xb: O << "false"; break;
+ case 0xc: O << "neq_oq"; break;
+ case 0xd: O << "ge"; break;
+ case 0xe: O << "gt"; break;
+ case 0xf: O << "true"; break;
+ case 0x10: O << "eq_os"; break;
+ case 0x11: O << "lt_oq"; break;
+ case 0x12: O << "le_oq"; break;
+ case 0x13: O << "unord_s"; break;
+ case 0x14: O << "neq_us"; break;
+ case 0x15: O << "nlt_uq"; break;
+ case 0x16: O << "nle_uq"; break;
+ case 0x17: O << "ord_s"; break;
+ case 0x18: O << "eq_us"; break;
+ case 0x19: O << "nge_uq"; break;
+ case 0x1a: O << "ngt_uq"; break;
+ case 0x1b: O << "false_os"; break;
+ case 0x1c: O << "neq_os"; break;
+ case 0x1d: O << "ge_oq"; break;
+ case 0x1e: O << "gt_oq"; break;
+ case 0x1f: O << "true_us"; break;
+ }
+}
+
+void X86ATTInstPrinter::printRoundingControl(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ int64_t Imm = MI->getOperand(Op).getImm() & 0x3;
+ switch (Imm) {
+ case 0: O << "{rn-sae}"; break;
+ case 1: O << "{rd-sae}"; break;
+ case 2: O << "{ru-sae}"; break;
+ case 3: O << "{rz-sae}"; break;
+ }
+}
+/// printPCRelImm - This is used to print an immediate value that ends up
+/// being encoded as a pc-relative value (e.g. for jumps and calls). These
+/// print slightly differently than normal immediates. For example, a $ is not
+/// emitted.
+void X86ATTInstPrinter::printPCRelImm(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isImm())
+ O << formatImm(Op.getImm());
+ else {
+ assert(Op.isExpr() && "unknown pcrel immediate operand");
+ // If a symbolic branch target was added as a constant expression then print
+ // that address in hex.
+ const MCConstantExpr *BranchTarget = dyn_cast<MCConstantExpr>(Op.getExpr());
+ int64_t Address;
+ if (BranchTarget && BranchTarget->EvaluateAsAbsolute(Address)) {
+ O << formatHex((uint64_t)Address);
+ }
+ else {
+ // Otherwise, just print the expression.
+ O << *Op.getExpr();
+ }
+ }
+}
+
+void X86ATTInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ printRegName(O, Op.getReg());
+ } else if (Op.isImm()) {
+ // Print X86 immediates as signed values.
+ O << markup("<imm:")
+ << '$' << formatImm((int64_t)Op.getImm())
+ << markup(">");
+
+ if (CommentStream && (Op.getImm() > 255 || Op.getImm() < -256))
+ *CommentStream << format("imm = 0x%" PRIX64 "\n", (uint64_t)Op.getImm());
+
+ } else {
+ assert(Op.isExpr() && "unknown operand kind in printOperand");
+ O << markup("<imm:")
+ << '$' << *Op.getExpr()
+ << markup(">");
+ }
+}
+
+void X86ATTInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg);
+ const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
+ const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
+ const MCOperand &SegReg = MI->getOperand(Op+X86::AddrSegmentReg);
+
+ O << markup("<mem:");
+
+ // If this has a segment register, print it.
+ if (SegReg.getReg()) {
+ printOperand(MI, Op+X86::AddrSegmentReg, O);
+ O << ':';
+ }
+
+ if (DispSpec.isImm()) {
+ int64_t DispVal = DispSpec.getImm();
+ if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg()))
+ O << formatImm(DispVal);
+ } else {
+ assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
+ O << *DispSpec.getExpr();
+ }
+
+ if (IndexReg.getReg() || BaseReg.getReg()) {
+ O << '(';
+ if (BaseReg.getReg())
+ printOperand(MI, Op+X86::AddrBaseReg, O);
+
+ if (IndexReg.getReg()) {
+ O << ',';
+ printOperand(MI, Op+X86::AddrIndexReg, O);
+ unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
+ if (ScaleVal != 1) {
+ O << ','
+ << markup("<imm:")
+ << ScaleVal // never printed in hex.
+ << markup(">");
+ }
+ }
+ O << ')';
+ }
+
+ O << markup(">");
+}
+
+void X86ATTInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &SegReg = MI->getOperand(Op+1);
+
+ O << markup("<mem:");
+
+ // If this has a segment register, print it.
+ if (SegReg.getReg()) {
+ printOperand(MI, Op+1, O);
+ O << ':';
+ }
+
+ O << "(";
+ printOperand(MI, Op, O);
+ O << ")";
+
+ O << markup(">");
+}
+
+void X86ATTInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ O << markup("<mem:");
+
+ O << "%es:(";
+ printOperand(MI, Op, O);
+ O << ")";
+
+ O << markup(">");
+}
+
+void X86ATTInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &DispSpec = MI->getOperand(Op);
+ const MCOperand &SegReg = MI->getOperand(Op+1);
+
+ O << markup("<mem:");
+
+ // If this has a segment register, print it.
+ if (SegReg.getReg()) {
+ printOperand(MI, Op+1, O);
+ O << ':';
+ }
+
+ if (DispSpec.isImm()) {
+ O << formatImm(DispSpec.getImm());
+ } else {
+ assert(DispSpec.isExpr() && "non-immediate displacement?");
+ O << *DispSpec.getExpr();
+ }
+
+ O << markup(">");
+}
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h b/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h
new file mode 100644
index 0000000..531183b
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h
@@ -0,0 +1,136 @@
+//==- X86ATTInstPrinter.h - Convert X86 MCInst to assembly syntax -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an X86 MCInst to AT&T style .s file syntax.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86_ATT_INST_PRINTER_H
+#define X86_ATT_INST_PRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+
+namespace llvm {
+
+class MCOperand;
+
+class X86ATTInstPrinter final : public MCInstPrinter {
+public:
+ X86ATTInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI)
+ : MCInstPrinter(MAI, MII, MRI) {}
+
+ void printRegName(raw_ostream &OS, unsigned RegNo) const override;
+ void printInst(const MCInst *MI, raw_ostream &OS, StringRef Annot) override;
+
+ // Autogenerated by tblgen, returns true if we successfully printed an
+ // alias.
+ bool printAliasInstr(const MCInst *MI, raw_ostream &OS);
+ void printCustomAliasOperand(const MCInst *MI, unsigned OpIdx,
+ unsigned PrintMethodIdx, raw_ostream &O);
+
+ // Autogenerated by tblgen.
+ void printInstruction(const MCInst *MI, raw_ostream &OS);
+ static const char *getRegisterName(unsigned RegNo);
+
+ void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &OS);
+ void printMemReference(const MCInst *MI, unsigned Op, raw_ostream &OS);
+ void printSSECC(const MCInst *MI, unsigned Op, raw_ostream &OS);
+ void printAVXCC(const MCInst *MI, unsigned Op, raw_ostream &OS);
+ void printPCRelImm(const MCInst *MI, unsigned OpNo, raw_ostream &OS);
+ void printSrcIdx(const MCInst *MI, unsigned OpNo, raw_ostream &OS);
+ void printDstIdx(const MCInst *MI, unsigned OpNo, raw_ostream &OS);
+ void printMemOffset(const MCInst *MI, unsigned OpNo, raw_ostream &OS);
+ void printRoundingControl(const MCInst *MI, unsigned Op, raw_ostream &OS);
+
+ void printopaquemem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+
+ void printi8mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printi16mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printi32mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printi64mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printi128mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printi256mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printi512mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printf32mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printf64mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printf80mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printf128mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printf256mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+ void printf512mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+
+ void printSrcIdx8(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printSrcIdx(MI, OpNo, O);
+ }
+ void printSrcIdx16(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printSrcIdx(MI, OpNo, O);
+ }
+ void printSrcIdx32(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printSrcIdx(MI, OpNo, O);
+ }
+ void printSrcIdx64(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printSrcIdx(MI, OpNo, O);
+ }
+ void printDstIdx8(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printDstIdx(MI, OpNo, O);
+ }
+ void printDstIdx16(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printDstIdx(MI, OpNo, O);
+ }
+ void printDstIdx32(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printDstIdx(MI, OpNo, O);
+ }
+ void printDstIdx64(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printDstIdx(MI, OpNo, O);
+ }
+ void printMemOffs8(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemOffset(MI, OpNo, O);
+ }
+ void printMemOffs16(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemOffset(MI, OpNo, O);
+ }
+ void printMemOffs32(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemOffset(MI, OpNo, O);
+ }
+ void printMemOffs64(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemOffset(MI, OpNo, O);
+ }
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp b/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp
new file mode 100644
index 0000000..baf6507
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp
@@ -0,0 +1,542 @@
+//===-- X86InstComments.cpp - Generate verbose-asm comments for instrs ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines functionality used to emit comments about X86 instructions to
+// an output stream for -fverbose-asm.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86InstComments.h"
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "Utils/X86ShuffleDecode.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/CodeGen/MachineValueType.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Top Level Entrypoint
+//===----------------------------------------------------------------------===//
+
+/// EmitAnyX86InstComments - This function decodes x86 instructions and prints
+/// newline terminated strings to the specified string if desired. This
+/// information is shown in disassembly dumps when verbose assembly is enabled.
+void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
+ const char *(*getRegName)(unsigned)) {
+ // If this is a shuffle operation, the switch should fill in this state.
+ SmallVector<int, 8> ShuffleMask;
+ const char *DestName = nullptr, *Src1Name = nullptr, *Src2Name = nullptr;
+
+ switch (MI->getOpcode()) {
+ case X86::INSERTPSrr:
+ case X86::VINSERTPSrr:
+ DestName = getRegName(MI->getOperand(0).getReg());
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ if(MI->getOperand(3).isImm())
+ DecodeINSERTPSMask(MI->getOperand(3).getImm(), ShuffleMask);
+ break;
+
+ case X86::MOVLHPSrr:
+ case X86::VMOVLHPSrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeMOVLHPSMask(2, ShuffleMask);
+ break;
+
+ case X86::MOVHLPSrr:
+ case X86::VMOVHLPSrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeMOVHLPSMask(2, ShuffleMask);
+ break;
+
+ case X86::PALIGNR128rr:
+ case X86::VPALIGNR128rr:
+ Src1Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::PALIGNR128rm:
+ case X86::VPALIGNR128rm:
+ Src2Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePALIGNRMask(MVT::v16i8,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+ case X86::VPALIGNR256rr:
+ Src1Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPALIGNR256rm:
+ Src2Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePALIGNRMask(MVT::v32i8,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+
+ case X86::PSHUFDri:
+ case X86::VPSHUFDri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::PSHUFDmi:
+ case X86::VPSHUFDmi:
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSHUFMask(MVT::v4i32,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+ case X86::VPSHUFDYri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPSHUFDYmi:
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSHUFMask(MVT::v8i32,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+
+
+ case X86::PSHUFHWri:
+ case X86::VPSHUFHWri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::PSHUFHWmi:
+ case X86::VPSHUFHWmi:
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSHUFHWMask(MVT::v8i16,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+ case X86::VPSHUFHWYri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPSHUFHWYmi:
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSHUFHWMask(MVT::v16i16,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+ case X86::PSHUFLWri:
+ case X86::VPSHUFLWri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::PSHUFLWmi:
+ case X86::VPSHUFLWmi:
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSHUFLWMask(MVT::v8i16,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+ case X86::VPSHUFLWYri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPSHUFLWYmi:
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSHUFLWMask(MVT::v16i16,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+
+ case X86::PUNPCKHBWrr:
+ case X86::VPUNPCKHBWrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::PUNPCKHBWrm:
+ case X86::VPUNPCKHBWrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v16i8, ShuffleMask);
+ break;
+ case X86::VPUNPCKHBWYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHBWYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v32i8, ShuffleMask);
+ break;
+ case X86::PUNPCKHWDrr:
+ case X86::VPUNPCKHWDrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::PUNPCKHWDrm:
+ case X86::VPUNPCKHWDrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v8i16, ShuffleMask);
+ break;
+ case X86::VPUNPCKHWDYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHWDYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v16i16, ShuffleMask);
+ break;
+ case X86::PUNPCKHDQrr:
+ case X86::VPUNPCKHDQrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::PUNPCKHDQrm:
+ case X86::VPUNPCKHDQrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v4i32, ShuffleMask);
+ break;
+ case X86::VPUNPCKHDQYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHDQYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v8i32, ShuffleMask);
+ break;
+ case X86::PUNPCKHQDQrr:
+ case X86::VPUNPCKHQDQrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::PUNPCKHQDQrm:
+ case X86::VPUNPCKHQDQrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v2i64, ShuffleMask);
+ break;
+ case X86::VPUNPCKHQDQYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHQDQYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v4i64, ShuffleMask);
+ break;
+
+ case X86::PUNPCKLBWrr:
+ case X86::VPUNPCKLBWrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::PUNPCKLBWrm:
+ case X86::VPUNPCKLBWrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v16i8, ShuffleMask);
+ break;
+ case X86::VPUNPCKLBWYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLBWYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v32i8, ShuffleMask);
+ break;
+ case X86::PUNPCKLWDrr:
+ case X86::VPUNPCKLWDrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::PUNPCKLWDrm:
+ case X86::VPUNPCKLWDrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v8i16, ShuffleMask);
+ break;
+ case X86::VPUNPCKLWDYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLWDYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v16i16, ShuffleMask);
+ break;
+ case X86::PUNPCKLDQrr:
+ case X86::VPUNPCKLDQrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::PUNPCKLDQrm:
+ case X86::VPUNPCKLDQrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v4i32, ShuffleMask);
+ break;
+ case X86::VPUNPCKLDQYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLDQYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v8i32, ShuffleMask);
+ break;
+ case X86::PUNPCKLQDQrr:
+ case X86::VPUNPCKLQDQrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::PUNPCKLQDQrm:
+ case X86::VPUNPCKLQDQrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v2i64, ShuffleMask);
+ break;
+ case X86::VPUNPCKLQDQYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLQDQYrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v4i64, ShuffleMask);
+ break;
+
+ case X86::SHUFPDrri:
+ case X86::VSHUFPDrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::SHUFPDrmi:
+ case X86::VSHUFPDrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeSHUFPMask(MVT::v2f64,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VSHUFPDYrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VSHUFPDYrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeSHUFPMask(MVT::v4f64,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+
+ case X86::SHUFPSrri:
+ case X86::VSHUFPSrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::SHUFPSrmi:
+ case X86::VSHUFPSrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeSHUFPMask(MVT::v4f32,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VSHUFPSYrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VSHUFPSYrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeSHUFPMask(MVT::v8f32,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+
+ case X86::UNPCKLPDrr:
+ case X86::VUNPCKLPDrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::UNPCKLPDrm:
+ case X86::VUNPCKLPDrm:
+ DecodeUNPCKLMask(MVT::v2f64, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VUNPCKLPDYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VUNPCKLPDYrm:
+ DecodeUNPCKLMask(MVT::v4f64, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::UNPCKLPSrr:
+ case X86::VUNPCKLPSrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::UNPCKLPSrm:
+ case X86::VUNPCKLPSrm:
+ DecodeUNPCKLMask(MVT::v4f32, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VUNPCKLPSYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VUNPCKLPSYrm:
+ DecodeUNPCKLMask(MVT::v8f32, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::UNPCKHPDrr:
+ case X86::VUNPCKHPDrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::UNPCKHPDrm:
+ case X86::VUNPCKHPDrm:
+ DecodeUNPCKHMask(MVT::v2f64, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VUNPCKHPDYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VUNPCKHPDYrm:
+ DecodeUNPCKHMask(MVT::v4f64, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::UNPCKHPSrr:
+ case X86::VUNPCKHPSrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::UNPCKHPSrm:
+ case X86::VUNPCKHPSrm:
+ DecodeUNPCKHMask(MVT::v4f32, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VUNPCKHPSYrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VUNPCKHPSYrm:
+ DecodeUNPCKHMask(MVT::v8f32, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VPERMILPSri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPERMILPSmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSHUFMask(MVT::v4f32,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VPERMILPSYri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPERMILPSYmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSHUFMask(MVT::v8f32,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VPERMILPDri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPERMILPDmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSHUFMask(MVT::v2f64,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VPERMILPDYri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPERMILPDYmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSHUFMask(MVT::v4f64,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VPERM2F128rr:
+ case X86::VPERM2I128rr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPERM2F128rm:
+ case X86::VPERM2I128rm:
+ // For instruction comments purpose, assume the 256-bit vector is v4i64.
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeVPERM2X128Mask(MVT::v4i64,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VPERMQYri:
+ case X86::VPERMPDYri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VPERMQYmi:
+ case X86::VPERMPDYmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeVPERMMask(MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ }
+
+
+ // If this was a shuffle operation, print the shuffle mask.
+ if (!ShuffleMask.empty()) {
+ if (!DestName) DestName = Src1Name;
+ OS << (DestName ? DestName : "mem") << " = ";
+
+ // If the two sources are the same, canonicalize the input elements to be
+ // from the first src so that we get larger element spans.
+ if (Src1Name == Src2Name) {
+ for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
+ if ((int)ShuffleMask[i] >= 0 && // Not sentinel.
+ ShuffleMask[i] >= (int)e) // From second mask.
+ ShuffleMask[i] -= e;
+ }
+ }
+
+ // The shuffle mask specifies which elements of the src1/src2 fill in the
+ // destination, with a few sentinel values. Loop through and print them
+ // out.
+ for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
+ if (i != 0)
+ OS << ',';
+ if (ShuffleMask[i] == SM_SentinelZero) {
+ OS << "zero";
+ continue;
+ }
+
+ // Otherwise, it must come from src1 or src2. Print the span of elements
+ // that comes from this src.
+ bool isSrc1 = ShuffleMask[i] < (int)ShuffleMask.size();
+ const char *SrcName = isSrc1 ? Src1Name : Src2Name;
+ OS << (SrcName ? SrcName : "mem") << '[';
+ bool IsFirst = true;
+ while (i != e &&
+ (int)ShuffleMask[i] >= 0 &&
+ (ShuffleMask[i] < (int)ShuffleMask.size()) == isSrc1) {
+ if (!IsFirst)
+ OS << ',';
+ else
+ IsFirst = false;
+ OS << ShuffleMask[i] % ShuffleMask.size();
+ ++i;
+ }
+ OS << ']';
+ --i; // For loop increments element #.
+ }
+ //MI->print(OS, 0);
+ OS << "\n";
+ }
+
+}
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.h b/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.h
new file mode 100644
index 0000000..13fdf9a
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.h
@@ -0,0 +1,25 @@
+//=- X86InstComments.h - Generate verbose-asm comments for instrs -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines functionality used to emit comments about X86 instructions to
+// an output stream for -fverbose-asm.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86_INST_COMMENTS_H
+#define X86_INST_COMMENTS_H
+
+namespace llvm {
+ class MCInst;
+ class raw_ostream;
+ void EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
+ const char *(*getRegName)(unsigned));
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp b/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp
new file mode 100644
index 0000000..1c8466b
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp
@@ -0,0 +1,259 @@
+//===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file includes code for rendering MCInst instances as Intel-style
+// assembly.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86IntelInstPrinter.h"
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "X86InstComments.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include <cctype>
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+#include "X86GenAsmWriter1.inc"
+
+void X86IntelInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
+ OS << getRegisterName(RegNo);
+}
+
+void X86IntelInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
+ StringRef Annot) {
+ const MCInstrDesc &Desc = MII.get(MI->getOpcode());
+ uint64_t TSFlags = Desc.TSFlags;
+
+ if (TSFlags & X86II::LOCK)
+ OS << "\tlock\n";
+
+ printInstruction(MI, OS);
+
+ // Next always print the annotation.
+ printAnnotation(OS, Annot);
+
+ // If verbose assembly is enabled, we can print some informative comments.
+ if (CommentStream)
+ EmitAnyX86InstComments(MI, *CommentStream, getRegisterName);
+}
+
+void X86IntelInstPrinter::printSSECC(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ int64_t Imm = MI->getOperand(Op).getImm() & 0xf;
+ switch (Imm) {
+ default: llvm_unreachable("Invalid ssecc argument!");
+ case 0: O << "eq"; break;
+ case 1: O << "lt"; break;
+ case 2: O << "le"; break;
+ case 3: O << "unord"; break;
+ case 4: O << "neq"; break;
+ case 5: O << "nlt"; break;
+ case 6: O << "nle"; break;
+ case 7: O << "ord"; break;
+ case 8: O << "eq_uq"; break;
+ case 9: O << "nge"; break;
+ case 0xa: O << "ngt"; break;
+ case 0xb: O << "false"; break;
+ case 0xc: O << "neq_oq"; break;
+ case 0xd: O << "ge"; break;
+ case 0xe: O << "gt"; break;
+ case 0xf: O << "true"; break;
+ }
+}
+
+void X86IntelInstPrinter::printAVXCC(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ int64_t Imm = MI->getOperand(Op).getImm() & 0x1f;
+ switch (Imm) {
+ default: llvm_unreachable("Invalid avxcc argument!");
+ case 0: O << "eq"; break;
+ case 1: O << "lt"; break;
+ case 2: O << "le"; break;
+ case 3: O << "unord"; break;
+ case 4: O << "neq"; break;
+ case 5: O << "nlt"; break;
+ case 6: O << "nle"; break;
+ case 7: O << "ord"; break;
+ case 8: O << "eq_uq"; break;
+ case 9: O << "nge"; break;
+ case 0xa: O << "ngt"; break;
+ case 0xb: O << "false"; break;
+ case 0xc: O << "neq_oq"; break;
+ case 0xd: O << "ge"; break;
+ case 0xe: O << "gt"; break;
+ case 0xf: O << "true"; break;
+ case 0x10: O << "eq_os"; break;
+ case 0x11: O << "lt_oq"; break;
+ case 0x12: O << "le_oq"; break;
+ case 0x13: O << "unord_s"; break;
+ case 0x14: O << "neq_us"; break;
+ case 0x15: O << "nlt_uq"; break;
+ case 0x16: O << "nle_uq"; break;
+ case 0x17: O << "ord_s"; break;
+ case 0x18: O << "eq_us"; break;
+ case 0x19: O << "nge_uq"; break;
+ case 0x1a: O << "ngt_uq"; break;
+ case 0x1b: O << "false_os"; break;
+ case 0x1c: O << "neq_os"; break;
+ case 0x1d: O << "ge_oq"; break;
+ case 0x1e: O << "gt_oq"; break;
+ case 0x1f: O << "true_us"; break;
+ }
+}
+
+void X86IntelInstPrinter::printRoundingControl(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ int64_t Imm = MI->getOperand(Op).getImm() & 0x3;
+ switch (Imm) {
+ case 0: O << "{rn-sae}"; break;
+ case 1: O << "{rd-sae}"; break;
+ case 2: O << "{ru-sae}"; break;
+ case 3: O << "{rz-sae}"; break;
+ }
+}
+
+/// printPCRelImm - This is used to print an immediate value that ends up
+/// being encoded as a pc-relative value.
+void X86IntelInstPrinter::printPCRelImm(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isImm())
+ O << formatImm(Op.getImm());
+ else {
+ assert(Op.isExpr() && "unknown pcrel immediate operand");
+ // If a symbolic branch target was added as a constant expression then print
+ // that address in hex.
+ const MCConstantExpr *BranchTarget = dyn_cast<MCConstantExpr>(Op.getExpr());
+ int64_t Address;
+ if (BranchTarget && BranchTarget->EvaluateAsAbsolute(Address)) {
+ O << formatHex((uint64_t)Address);
+ }
+ else {
+ // Otherwise, just print the expression.
+ O << *Op.getExpr();
+ }
+ }
+}
+
+void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ printRegName(O, Op.getReg());
+ } else if (Op.isImm()) {
+ O << formatImm((int64_t)Op.getImm());
+ } else {
+ assert(Op.isExpr() && "unknown operand kind in printOperand");
+ O << *Op.getExpr();
+ }
+}
+
+void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg);
+ unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
+ const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
+ const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
+ const MCOperand &SegReg = MI->getOperand(Op+X86::AddrSegmentReg);
+
+ // If this has a segment register, print it.
+ if (SegReg.getReg()) {
+ printOperand(MI, Op+X86::AddrSegmentReg, O);
+ O << ':';
+ }
+
+ O << '[';
+
+ bool NeedPlus = false;
+ if (BaseReg.getReg()) {
+ printOperand(MI, Op+X86::AddrBaseReg, O);
+ NeedPlus = true;
+ }
+
+ if (IndexReg.getReg()) {
+ if (NeedPlus) O << " + ";
+ if (ScaleVal != 1)
+ O << ScaleVal << '*';
+ printOperand(MI, Op+X86::AddrIndexReg, O);
+ NeedPlus = true;
+ }
+
+ if (!DispSpec.isImm()) {
+ if (NeedPlus) O << " + ";
+ assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
+ O << *DispSpec.getExpr();
+ } else {
+ int64_t DispVal = DispSpec.getImm();
+ if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
+ if (NeedPlus) {
+ if (DispVal > 0)
+ O << " + ";
+ else {
+ O << " - ";
+ DispVal = -DispVal;
+ }
+ }
+ O << formatImm(DispVal);
+ }
+ }
+
+ O << ']';
+}
+
+void X86IntelInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &SegReg = MI->getOperand(Op+1);
+
+ // If this has a segment register, print it.
+ if (SegReg.getReg()) {
+ printOperand(MI, Op+1, O);
+ O << ':';
+ }
+ O << '[';
+ printOperand(MI, Op, O);
+ O << ']';
+}
+
+void X86IntelInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ // DI accesses are always ES-based.
+ O << "es:[";
+ printOperand(MI, Op, O);
+ O << ']';
+}
+
+void X86IntelInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ const MCOperand &DispSpec = MI->getOperand(Op);
+ const MCOperand &SegReg = MI->getOperand(Op+1);
+
+ // If this has a segment register, print it.
+ if (SegReg.getReg()) {
+ printOperand(MI, Op+1, O);
+ O << ':';
+ }
+
+ O << '[';
+
+ if (DispSpec.isImm()) {
+ O << formatImm(DispSpec.getImm());
+ } else {
+ assert(DispSpec.isExpr() && "non-immediate displacement?");
+ O << *DispSpec.getExpr();
+ }
+
+ O << ']';
+}
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h b/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h
new file mode 100644
index 0000000..4d9b481
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h
@@ -0,0 +1,158 @@
+//= X86IntelInstPrinter.h - Convert X86 MCInst to assembly syntax -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an X86 MCInst to Intel style .s file syntax.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86_INTEL_INST_PRINTER_H
+#define X86_INTEL_INST_PRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+class MCOperand;
+
+class X86IntelInstPrinter final : public MCInstPrinter {
+public:
+ X86IntelInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI)
+ : MCInstPrinter(MAI, MII, MRI) {}
+
+ void printRegName(raw_ostream &OS, unsigned RegNo) const override;
+ void printInst(const MCInst *MI, raw_ostream &OS, StringRef Annot) override;
+
+ // Autogenerated by tblgen.
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ static const char *getRegisterName(unsigned RegNo);
+
+ void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printMemReference(const MCInst *MI, unsigned Op, raw_ostream &O);
+ void printSSECC(const MCInst *MI, unsigned Op, raw_ostream &O);
+ void printAVXCC(const MCInst *MI, unsigned Op, raw_ostream &O);
+ void printPCRelImm(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printMemOffset(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printSrcIdx(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printDstIdx(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printRoundingControl(const MCInst *MI, unsigned Op, raw_ostream &OS);
+
+ void printopaquemem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "opaque ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+
+ void printi8mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "byte ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printi16mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "word ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printi32mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "dword ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printi64mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "qword ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printi128mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "xmmword ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printi256mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "ymmword ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printi512mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "zmmword ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printf32mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "dword ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printf64mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "qword ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printf80mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "xword ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printf128mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "xmmword ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printf256mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "ymmword ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+ void printf512mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "zmmword ptr ";
+ printMemReference(MI, OpNo, O);
+ }
+
+
+ void printSrcIdx8(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "byte ptr ";
+ printSrcIdx(MI, OpNo, O);
+ }
+ void printSrcIdx16(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "word ptr ";
+ printSrcIdx(MI, OpNo, O);
+ }
+ void printSrcIdx32(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "dword ptr ";
+ printSrcIdx(MI, OpNo, O);
+ }
+ void printSrcIdx64(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "qword ptr ";
+ printSrcIdx(MI, OpNo, O);
+ }
+ void printDstIdx8(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "byte ptr ";
+ printDstIdx(MI, OpNo, O);
+ }
+ void printDstIdx16(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "word ptr ";
+ printDstIdx(MI, OpNo, O);
+ }
+ void printDstIdx32(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "dword ptr ";
+ printDstIdx(MI, OpNo, O);
+ }
+ void printDstIdx64(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "qword ptr ";
+ printDstIdx(MI, OpNo, O);
+ }
+ void printMemOffs8(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "byte ptr ";
+ printMemOffset(MI, OpNo, O);
+ }
+ void printMemOffs16(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "word ptr ";
+ printMemOffset(MI, OpNo, O);
+ }
+ void printMemOffs32(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "dword ptr ";
+ printMemOffset(MI, OpNo, O);
+ }
+ void printMemOffs64(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ O << "qword ptr ";
+ printMemOffset(MI, OpNo, O);
+ }
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
new file mode 100644
index 0000000..23bca0d
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
@@ -0,0 +1,842 @@
+//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "MCTargetDesc/X86FixupKinds.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCFixupKindInfo.h"
+#include "llvm/MC/MCMachObjectWriter.h"
+#include "llvm/MC/MCObjectWriter.h"
+#include "llvm/MC/MCSectionCOFF.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachO.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+// Option to allow disabling arithmetic relaxation to workaround PR9807, which
+// is useful when running bitwise comparison experiments on Darwin. We should be
+// able to remove this once PR9807 is resolved.
+static cl::opt<bool>
+MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
+ cl::desc("Disable relaxation of arithmetic instruction for X86"));
+
+static unsigned getFixupKindLog2Size(unsigned Kind) {
+ switch (Kind) {
+ default:
+ llvm_unreachable("invalid fixup kind!");
+ case FK_PCRel_1:
+ case FK_SecRel_1:
+ case FK_Data_1:
+ return 0;
+ case FK_PCRel_2:
+ case FK_SecRel_2:
+ case FK_Data_2:
+ return 1;
+ case FK_PCRel_4:
+ case X86::reloc_riprel_4byte:
+ case X86::reloc_riprel_4byte_movq_load:
+ case X86::reloc_signed_4byte:
+ case X86::reloc_global_offset_table:
+ case FK_SecRel_4:
+ case FK_Data_4:
+ return 2;
+ case FK_PCRel_8:
+ case FK_SecRel_8:
+ case FK_Data_8:
+ case X86::reloc_global_offset_table8:
+ return 3;
+ }
+}
+
+namespace {
+
+class X86ELFObjectWriter : public MCELFObjectTargetWriter {
+public:
+ X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
+ bool HasRelocationAddend, bool foobar)
+ : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
+};
+
+class X86AsmBackend : public MCAsmBackend {
+ const StringRef CPU;
+ bool HasNopl;
+ const uint64_t MaxNopLength;
+public:
+ X86AsmBackend(const Target &T, StringRef _CPU)
+ : MCAsmBackend(), CPU(_CPU), MaxNopLength(_CPU == "slm" ? 7 : 15) {
+ HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
+ CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
+ CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
+ CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
+ CPU != "c3" && CPU != "c3-2";
+ }
+
+ unsigned getNumFixupKinds() const override {
+ return X86::NumTargetFixupKinds;
+ }
+
+ const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
+ const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
+ { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
+ { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
+ { "reloc_signed_4byte", 0, 4 * 8, 0},
+ { "reloc_global_offset_table", 0, 4 * 8, 0}
+ };
+
+ if (Kind < FirstTargetFixupKind)
+ return MCAsmBackend::getFixupKindInfo(Kind);
+
+ assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
+ "Invalid kind!");
+ return Infos[Kind - FirstTargetFixupKind];
+ }
+
+ void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
+ uint64_t Value, bool IsPCRel) const override {
+ unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
+
+ assert(Fixup.getOffset() + Size <= DataSize &&
+ "Invalid fixup offset!");
+
+ // Check that uppper bits are either all zeros or all ones.
+ // Specifically ignore overflow/underflow as long as the leakage is
+ // limited to the lower bits. This is to remain compatible with
+ // other assemblers.
+ assert(isIntN(Size * 8 + 1, Value) &&
+ "Value does not fit in the Fixup field");
+
+ for (unsigned i = 0; i != Size; ++i)
+ Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
+ }
+
+ bool mayNeedRelaxation(const MCInst &Inst) const override;
+
+ bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const override;
+
+ void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
+
+ bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
+};
+} // end anonymous namespace
+
+static unsigned getRelaxedOpcodeBranch(unsigned Op) {
+ switch (Op) {
+ default:
+ return Op;
+
+ case X86::JAE_1: return X86::JAE_4;
+ case X86::JA_1: return X86::JA_4;
+ case X86::JBE_1: return X86::JBE_4;
+ case X86::JB_1: return X86::JB_4;
+ case X86::JE_1: return X86::JE_4;
+ case X86::JGE_1: return X86::JGE_4;
+ case X86::JG_1: return X86::JG_4;
+ case X86::JLE_1: return X86::JLE_4;
+ case X86::JL_1: return X86::JL_4;
+ case X86::JMP_1: return X86::JMP_4;
+ case X86::JNE_1: return X86::JNE_4;
+ case X86::JNO_1: return X86::JNO_4;
+ case X86::JNP_1: return X86::JNP_4;
+ case X86::JNS_1: return X86::JNS_4;
+ case X86::JO_1: return X86::JO_4;
+ case X86::JP_1: return X86::JP_4;
+ case X86::JS_1: return X86::JS_4;
+ }
+}
+
+static unsigned getRelaxedOpcodeArith(unsigned Op) {
+ switch (Op) {
+ default:
+ return Op;
+
+ // IMUL
+ case X86::IMUL16rri8: return X86::IMUL16rri;
+ case X86::IMUL16rmi8: return X86::IMUL16rmi;
+ case X86::IMUL32rri8: return X86::IMUL32rri;
+ case X86::IMUL32rmi8: return X86::IMUL32rmi;
+ case X86::IMUL64rri8: return X86::IMUL64rri32;
+ case X86::IMUL64rmi8: return X86::IMUL64rmi32;
+
+ // AND
+ case X86::AND16ri8: return X86::AND16ri;
+ case X86::AND16mi8: return X86::AND16mi;
+ case X86::AND32ri8: return X86::AND32ri;
+ case X86::AND32mi8: return X86::AND32mi;
+ case X86::AND64ri8: return X86::AND64ri32;
+ case X86::AND64mi8: return X86::AND64mi32;
+
+ // OR
+ case X86::OR16ri8: return X86::OR16ri;
+ case X86::OR16mi8: return X86::OR16mi;
+ case X86::OR32ri8: return X86::OR32ri;
+ case X86::OR32mi8: return X86::OR32mi;
+ case X86::OR64ri8: return X86::OR64ri32;
+ case X86::OR64mi8: return X86::OR64mi32;
+
+ // XOR
+ case X86::XOR16ri8: return X86::XOR16ri;
+ case X86::XOR16mi8: return X86::XOR16mi;
+ case X86::XOR32ri8: return X86::XOR32ri;
+ case X86::XOR32mi8: return X86::XOR32mi;
+ case X86::XOR64ri8: return X86::XOR64ri32;
+ case X86::XOR64mi8: return X86::XOR64mi32;
+
+ // ADD
+ case X86::ADD16ri8: return X86::ADD16ri;
+ case X86::ADD16mi8: return X86::ADD16mi;
+ case X86::ADD32ri8: return X86::ADD32ri;
+ case X86::ADD32mi8: return X86::ADD32mi;
+ case X86::ADD64ri8: return X86::ADD64ri32;
+ case X86::ADD64mi8: return X86::ADD64mi32;
+
+ // SUB
+ case X86::SUB16ri8: return X86::SUB16ri;
+ case X86::SUB16mi8: return X86::SUB16mi;
+ case X86::SUB32ri8: return X86::SUB32ri;
+ case X86::SUB32mi8: return X86::SUB32mi;
+ case X86::SUB64ri8: return X86::SUB64ri32;
+ case X86::SUB64mi8: return X86::SUB64mi32;
+
+ // CMP
+ case X86::CMP16ri8: return X86::CMP16ri;
+ case X86::CMP16mi8: return X86::CMP16mi;
+ case X86::CMP32ri8: return X86::CMP32ri;
+ case X86::CMP32mi8: return X86::CMP32mi;
+ case X86::CMP64ri8: return X86::CMP64ri32;
+ case X86::CMP64mi8: return X86::CMP64mi32;
+
+ // PUSH
+ case X86::PUSH32i8: return X86::PUSHi32;
+ case X86::PUSH16i8: return X86::PUSHi16;
+ case X86::PUSH64i8: return X86::PUSH64i32;
+ case X86::PUSH64i16: return X86::PUSH64i32;
+ }
+}
+
+static unsigned getRelaxedOpcode(unsigned Op) {
+ unsigned R = getRelaxedOpcodeArith(Op);
+ if (R != Op)
+ return R;
+ return getRelaxedOpcodeBranch(Op);
+}
+
+bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
+ // Branches can always be relaxed.
+ if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
+ return true;
+
+ if (MCDisableArithRelaxation)
+ return false;
+
+ // Check if this instruction is ever relaxable.
+ if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
+ return false;
+
+
+ // Check if it has an expression and is not RIP relative.
+ bool hasExp = false;
+ bool hasRIP = false;
+ for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
+ const MCOperand &Op = Inst.getOperand(i);
+ if (Op.isExpr())
+ hasExp = true;
+
+ if (Op.isReg() && Op.getReg() == X86::RIP)
+ hasRIP = true;
+ }
+
+ // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
+ // how we do relaxations?
+ return hasExp && !hasRIP;
+}
+
+bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
+ uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const {
+ // Relax if the value is too big for a (signed) i8.
+ return int64_t(Value) != int64_t(int8_t(Value));
+}
+
+// FIXME: Can tblgen help at all here to verify there aren't other instructions
+// we can relax?
+void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
+ // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
+ unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
+
+ if (RelaxedOp == Inst.getOpcode()) {
+ SmallString<256> Tmp;
+ raw_svector_ostream OS(Tmp);
+ Inst.dump_pretty(OS);
+ OS << "\n";
+ report_fatal_error("unexpected instruction to relax: " + OS.str());
+ }
+
+ Res = Inst;
+ Res.setOpcode(RelaxedOp);
+}
+
+/// \brief Write a sequence of optimal nops to the output, covering \p Count
+/// bytes.
+/// \return - true on success, false on failure
+bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
+ static const uint8_t Nops[10][10] = {
+ // nop
+ {0x90},
+ // xchg %ax,%ax
+ {0x66, 0x90},
+ // nopl (%[re]ax)
+ {0x0f, 0x1f, 0x00},
+ // nopl 0(%[re]ax)
+ {0x0f, 0x1f, 0x40, 0x00},
+ // nopl 0(%[re]ax,%[re]ax,1)
+ {0x0f, 0x1f, 0x44, 0x00, 0x00},
+ // nopw 0(%[re]ax,%[re]ax,1)
+ {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
+ // nopl 0L(%[re]ax)
+ {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
+ // nopl 0L(%[re]ax,%[re]ax,1)
+ {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
+ // nopw 0L(%[re]ax,%[re]ax,1)
+ {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
+ // nopw %cs:0L(%[re]ax,%[re]ax,1)
+ {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
+ };
+
+ // This CPU doesn't support long nops. If needed add more.
+ // FIXME: Can we get this from the subtarget somehow?
+ // FIXME: We could generated something better than plain 0x90.
+ if (!HasNopl) {
+ for (uint64_t i = 0; i < Count; ++i)
+ OW->Write8(0x90);
+ return true;
+ }
+
+ // 15 is the longest single nop instruction. Emit as many 15-byte nops as
+ // needed, then emit a nop of the remaining length.
+ do {
+ const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
+ const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
+ for (uint8_t i = 0; i < Prefixes; i++)
+ OW->Write8(0x66);
+ const uint8_t Rest = ThisNopLength - Prefixes;
+ for (uint8_t i = 0; i < Rest; i++)
+ OW->Write8(Nops[Rest - 1][i]);
+ Count -= ThisNopLength;
+ } while (Count != 0);
+
+ return true;
+}
+
+/* *** */
+
+namespace {
+
+class ELFX86AsmBackend : public X86AsmBackend {
+public:
+ uint8_t OSABI;
+ ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
+ : X86AsmBackend(T, CPU), OSABI(_OSABI) {}
+};
+
+class ELFX86_32AsmBackend : public ELFX86AsmBackend {
+public:
+ ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
+ : ELFX86AsmBackend(T, OSABI, CPU) {}
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
+ }
+};
+
+class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
+public:
+ ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
+ : ELFX86AsmBackend(T, OSABI, CPU) {}
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
+ ELF::EM_X86_64);
+ }
+};
+
+class ELFX86_64AsmBackend : public ELFX86AsmBackend {
+public:
+ ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
+ : ELFX86AsmBackend(T, OSABI, CPU) {}
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
+ }
+};
+
+class WindowsX86AsmBackend : public X86AsmBackend {
+ bool Is64Bit;
+
+public:
+ WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
+ : X86AsmBackend(T, CPU)
+ , Is64Bit(is64Bit) {
+ }
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createX86WinCOFFObjectWriter(OS, Is64Bit);
+ }
+};
+
+namespace CU {
+
+ /// Compact unwind encoding values.
+ enum CompactUnwindEncodings {
+ /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
+ /// the return address, then [RE]SP is moved to [RE]BP.
+ UNWIND_MODE_BP_FRAME = 0x01000000,
+
+ /// A frameless function with a small constant stack size.
+ UNWIND_MODE_STACK_IMMD = 0x02000000,
+
+ /// A frameless function with a large constant stack size.
+ UNWIND_MODE_STACK_IND = 0x03000000,
+
+ /// No compact unwind encoding is available.
+ UNWIND_MODE_DWARF = 0x04000000,
+
+ /// Mask for encoding the frame registers.
+ UNWIND_BP_FRAME_REGISTERS = 0x00007FFF,
+
+ /// Mask for encoding the frameless registers.
+ UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
+ };
+
+} // end CU namespace
+
+class DarwinX86AsmBackend : public X86AsmBackend {
+ const MCRegisterInfo &MRI;
+
+ /// \brief Number of registers that can be saved in a compact unwind encoding.
+ enum { CU_NUM_SAVED_REGS = 6 };
+
+ mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
+ bool Is64Bit;
+
+ unsigned OffsetSize; ///< Offset of a "push" instruction.
+ unsigned PushInstrSize; ///< Size of a "push" instruction.
+ unsigned MoveInstrSize; ///< Size of a "move" instruction.
+ unsigned StackDivide; ///< Amount to adjust stack stize by.
+protected:
+ /// \brief Implementation of algorithm to generate the compact unwind encoding
+ /// for the CFI instructions.
+ uint32_t
+ generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
+ if (Instrs.empty()) return 0;
+
+ // Reset the saved registers.
+ unsigned SavedRegIdx = 0;
+ memset(SavedRegs, 0, sizeof(SavedRegs));
+
+ bool HasFP = false;
+
+ // Encode that we are using EBP/RBP as the frame pointer.
+ uint32_t CompactUnwindEncoding = 0;
+
+ unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
+ unsigned InstrOffset = 0;
+ unsigned StackAdjust = 0;
+ unsigned StackSize = 0;
+ unsigned PrevStackSize = 0;
+ unsigned NumDefCFAOffsets = 0;
+
+ for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
+ const MCCFIInstruction &Inst = Instrs[i];
+
+ switch (Inst.getOperation()) {
+ default:
+ // Any other CFI directives indicate a frame that we aren't prepared
+ // to represent via compact unwind, so just bail out.
+ return 0;
+ case MCCFIInstruction::OpDefCfaRegister: {
+ // Defines a frame pointer. E.g.
+ //
+ // movq %rsp, %rbp
+ // L0:
+ // .cfi_def_cfa_register %rbp
+ //
+ HasFP = true;
+ assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
+ (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
+
+ // Reset the counts.
+ memset(SavedRegs, 0, sizeof(SavedRegs));
+ StackAdjust = 0;
+ SavedRegIdx = 0;
+ InstrOffset += MoveInstrSize;
+ break;
+ }
+ case MCCFIInstruction::OpDefCfaOffset: {
+ // Defines a new offset for the CFA. E.g.
+ //
+ // With frame:
+ //
+ // pushq %rbp
+ // L0:
+ // .cfi_def_cfa_offset 16
+ //
+ // Without frame:
+ //
+ // subq $72, %rsp
+ // L0:
+ // .cfi_def_cfa_offset 80
+ //
+ PrevStackSize = StackSize;
+ StackSize = std::abs(Inst.getOffset()) / StackDivide;
+ ++NumDefCFAOffsets;
+ break;
+ }
+ case MCCFIInstruction::OpOffset: {
+ // Defines a "push" of a callee-saved register. E.g.
+ //
+ // pushq %r15
+ // pushq %r14
+ // pushq %rbx
+ // L0:
+ // subq $120, %rsp
+ // L1:
+ // .cfi_offset %rbx, -40
+ // .cfi_offset %r14, -32
+ // .cfi_offset %r15, -24
+ //
+ if (SavedRegIdx == CU_NUM_SAVED_REGS)
+ // If there are too many saved registers, we cannot use a compact
+ // unwind encoding.
+ return CU::UNWIND_MODE_DWARF;
+
+ unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
+ SavedRegs[SavedRegIdx++] = Reg;
+ StackAdjust += OffsetSize;
+ InstrOffset += PushInstrSize;
+ break;
+ }
+ }
+ }
+
+ StackAdjust /= StackDivide;
+
+ if (HasFP) {
+ if ((StackAdjust & 0xFF) != StackAdjust)
+ // Offset was too big for a compact unwind encoding.
+ return CU::UNWIND_MODE_DWARF;
+
+ // Get the encoding of the saved registers when we have a frame pointer.
+ uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
+ if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
+
+ CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
+ CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
+ CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
+ } else {
+ // If the amount of the stack allocation is the size of a register, then
+ // we "push" the RAX/EAX register onto the stack instead of adjusting the
+ // stack pointer with a SUB instruction. We don't support the push of the
+ // RAX/EAX register with compact unwind. So we check for that situation
+ // here.
+ if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
+ StackSize - PrevStackSize == 1) ||
+ (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
+ return CU::UNWIND_MODE_DWARF;
+
+ SubtractInstrIdx += InstrOffset;
+ ++StackAdjust;
+
+ if ((StackSize & 0xFF) == StackSize) {
+ // Frameless stack with a small stack size.
+ CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
+
+ // Encode the stack size.
+ CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
+ } else {
+ if ((StackAdjust & 0x7) != StackAdjust)
+ // The extra stack adjustments are too big for us to handle.
+ return CU::UNWIND_MODE_DWARF;
+
+ // Frameless stack with an offset too large for us to encode compactly.
+ CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
+
+ // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
+ // instruction.
+ CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
+
+ // Encode any extra stack stack adjustments (done via push
+ // instructions).
+ CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
+ }
+
+ // Encode the number of registers saved. (Reverse the list first.)
+ std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
+ CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
+
+ // Get the encoding of the saved registers when we don't have a frame
+ // pointer.
+ uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
+ if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
+
+ // Encode the register encoding.
+ CompactUnwindEncoding |=
+ RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
+ }
+
+ return CompactUnwindEncoding;
+ }
+
+private:
+ /// \brief Get the compact unwind number for a given register. The number
+ /// corresponds to the enum lists in compact_unwind_encoding.h.
+ int getCompactUnwindRegNum(unsigned Reg) const {
+ static const uint16_t CU32BitRegs[7] = {
+ X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
+ };
+ static const uint16_t CU64BitRegs[] = {
+ X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
+ };
+ const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
+ for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
+ if (*CURegs == Reg)
+ return Idx;
+
+ return -1;
+ }
+
+ /// \brief Return the registers encoded for a compact encoding with a frame
+ /// pointer.
+ uint32_t encodeCompactUnwindRegistersWithFrame() const {
+ // Encode the registers in the order they were saved --- 3-bits per
+ // register. The list of saved registers is assumed to be in reverse
+ // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
+ uint32_t RegEnc = 0;
+ for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
+ unsigned Reg = SavedRegs[i];
+ if (Reg == 0) break;
+
+ int CURegNum = getCompactUnwindRegNum(Reg);
+ if (CURegNum == -1) return ~0U;
+
+ // Encode the 3-bit register number in order, skipping over 3-bits for
+ // each register.
+ RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
+ }
+
+ assert((RegEnc & 0x3FFFF) == RegEnc &&
+ "Invalid compact register encoding!");
+ return RegEnc;
+ }
+
+ /// \brief Create the permutation encoding used with frameless stacks. It is
+ /// passed the number of registers to be saved and an array of the registers
+ /// saved.
+ uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
+ // The saved registers are numbered from 1 to 6. In order to encode the
+ // order in which they were saved, we re-number them according to their
+ // place in the register order. The re-numbering is relative to the last
+ // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
+ // that order:
+ //
+ // Orig Re-Num
+ // ---- ------
+ // 6 6
+ // 2 2
+ // 4 3
+ // 5 3
+ //
+ for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
+ int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
+ if (CUReg == -1) return ~0U;
+ SavedRegs[i] = CUReg;
+ }
+
+ // Reverse the list.
+ std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
+
+ uint32_t RenumRegs[CU_NUM_SAVED_REGS];
+ for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
+ unsigned Countless = 0;
+ for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
+ if (SavedRegs[j] < SavedRegs[i])
+ ++Countless;
+
+ RenumRegs[i] = SavedRegs[i] - Countless - 1;
+ }
+
+ // Take the renumbered values and encode them into a 10-bit number.
+ uint32_t permutationEncoding = 0;
+ switch (RegCount) {
+ case 6:
+ permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
+ + 6 * RenumRegs[2] + 2 * RenumRegs[3]
+ + RenumRegs[4];
+ break;
+ case 5:
+ permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
+ + 6 * RenumRegs[3] + 2 * RenumRegs[4]
+ + RenumRegs[5];
+ break;
+ case 4:
+ permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
+ + 3 * RenumRegs[4] + RenumRegs[5];
+ break;
+ case 3:
+ permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
+ + RenumRegs[5];
+ break;
+ case 2:
+ permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
+ break;
+ case 1:
+ permutationEncoding |= RenumRegs[5];
+ break;
+ }
+
+ assert((permutationEncoding & 0x3FF) == permutationEncoding &&
+ "Invalid compact register encoding!");
+ return permutationEncoding;
+ }
+
+public:
+ DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
+ bool Is64Bit)
+ : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
+ memset(SavedRegs, 0, sizeof(SavedRegs));
+ OffsetSize = Is64Bit ? 8 : 4;
+ MoveInstrSize = Is64Bit ? 3 : 2;
+ StackDivide = Is64Bit ? 8 : 4;
+ PushInstrSize = 1;
+ }
+};
+
+class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
+public:
+ DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef CPU)
+ : DarwinX86AsmBackend(T, MRI, CPU, false) {}
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
+ MachO::CPU_TYPE_I386,
+ MachO::CPU_SUBTYPE_I386_ALL);
+ }
+
+ /// \brief Generate the compact unwind encoding for the CFI instructions.
+ uint32_t generateCompactUnwindEncoding(
+ ArrayRef<MCCFIInstruction> Instrs) const override {
+ return generateCompactUnwindEncodingImpl(Instrs);
+ }
+};
+
+class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
+ const MachO::CPUSubTypeX86 Subtype;
+public:
+ DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef CPU, MachO::CPUSubTypeX86 st)
+ : DarwinX86AsmBackend(T, MRI, CPU, true), Subtype(st) {}
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
+ MachO::CPU_TYPE_X86_64, Subtype);
+ }
+
+ bool doesSectionRequireSymbols(const MCSection &Section) const override {
+ // Temporary labels in the string literals sections require symbols. The
+ // issue is that the x86_64 relocation format does not allow symbol +
+ // offset, and so the linker does not have enough information to resolve the
+ // access to the appropriate atom unless an external relocation is used. For
+ // non-cstring sections, we expect the compiler to use a non-temporary label
+ // for anything that could have an addend pointing outside the symbol.
+ //
+ // See <rdar://problem/4765733>.
+ const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
+ return SMO.getType() == MachO::S_CSTRING_LITERALS;
+ }
+
+ bool isSectionAtomizable(const MCSection &Section) const override {
+ const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
+ // Fixed sized data sections are uniqued, they cannot be diced into atoms.
+ switch (SMO.getType()) {
+ default:
+ return true;
+
+ case MachO::S_4BYTE_LITERALS:
+ case MachO::S_8BYTE_LITERALS:
+ case MachO::S_16BYTE_LITERALS:
+ case MachO::S_LITERAL_POINTERS:
+ case MachO::S_NON_LAZY_SYMBOL_POINTERS:
+ case MachO::S_LAZY_SYMBOL_POINTERS:
+ case MachO::S_MOD_INIT_FUNC_POINTERS:
+ case MachO::S_MOD_TERM_FUNC_POINTERS:
+ case MachO::S_INTERPOSING:
+ return false;
+ }
+ }
+
+ /// \brief Generate the compact unwind encoding for the CFI instructions.
+ uint32_t generateCompactUnwindEncoding(
+ ArrayRef<MCCFIInstruction> Instrs) const override {
+ return generateCompactUnwindEncodingImpl(Instrs);
+ }
+};
+
+} // end anonymous namespace
+
+MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT,
+ StringRef CPU) {
+ Triple TheTriple(TT);
+
+ if (TheTriple.isOSBinFormatMachO())
+ return new DarwinX86_32AsmBackend(T, MRI, CPU);
+
+ if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
+ return new WindowsX86AsmBackend(T, false, CPU);
+
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
+ return new ELFX86_32AsmBackend(T, OSABI, CPU);
+}
+
+MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT,
+ StringRef CPU) {
+ Triple TheTriple(TT);
+
+ if (TheTriple.isOSBinFormatMachO()) {
+ MachO::CPUSubTypeX86 CS =
+ StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
+ .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
+ .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
+ return new DarwinX86_64AsmBackend(T, MRI, CPU, CS);
+ }
+
+ if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
+ return new WindowsX86AsmBackend(T, true, CPU);
+
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
+
+ if (TheTriple.getEnvironment() == Triple::GNUX32)
+ return new ELFX86_X32AsmBackend(T, OSABI, CPU);
+ return new ELFX86_64AsmBackend(T, OSABI, CPU);
+}
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
new file mode 100644
index 0000000..026e4c4
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
@@ -0,0 +1,763 @@
+//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains small standalone helper functions and enum definitions for
+// the X86 target useful for the compiler back-end and the MC libraries.
+// As such, it deliberately does not include references to LLVM core
+// code gen types, passes, etc..
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86BASEINFO_H
+#define X86BASEINFO_H
+
+#include "X86MCTargetDesc.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace llvm {
+
+namespace X86 {
+ // Enums for memory operand decoding. Each memory operand is represented with
+ // a 5 operand sequence in the form:
+ // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
+ // These enums help decode this.
+ enum {
+ AddrBaseReg = 0,
+ AddrScaleAmt = 1,
+ AddrIndexReg = 2,
+ AddrDisp = 3,
+
+ /// AddrSegmentReg - The operand # of the segment in the memory operand.
+ AddrSegmentReg = 4,
+
+ /// AddrNumOperands - Total number of operands in a memory reference.
+ AddrNumOperands = 5
+ };
+} // end namespace X86;
+
+/// X86II - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace X86II {
+ /// Target Operand Flag enum.
+ enum TOF {
+ //===------------------------------------------------------------------===//
+ // X86 Specific MachineOperand flags.
+
+ MO_NO_FLAG,
+
+ /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
+ /// relocation of:
+ /// SYMBOL_LABEL + [. - PICBASELABEL]
+ MO_GOT_ABSOLUTE_ADDRESS,
+
+ /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
+ /// immediate should get the value of the symbol minus the PIC base label:
+ /// SYMBOL_LABEL - PICBASELABEL
+ MO_PIC_BASE_OFFSET,
+
+ /// MO_GOT - On a symbol operand this indicates that the immediate is the
+ /// offset to the GOT entry for the symbol name from the base of the GOT.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOT
+ MO_GOT,
+
+ /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
+ /// the offset to the location of the symbol name from the base of the GOT.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOTOFF
+ MO_GOTOFF,
+
+ /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
+ /// offset to the GOT entry for the symbol name from the current code
+ /// location.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOTPCREL
+ MO_GOTPCREL,
+
+ /// MO_PLT - On a symbol operand this indicates that the immediate is
+ /// offset to the PLT entry of symbol name from the current code location.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @PLT
+ MO_PLT,
+
+ /// MO_TLSGD - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS index structure that contains
+ /// the module number and variable offset for the symbol. Used in the
+ /// general dynamic TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TLSGD
+ MO_TLSGD,
+
+ /// MO_TLSLD - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS index for the module that
+ /// contains the symbol. When this index is passed to a call to
+ /// __tls_get_addr, the function will return the base address of the TLS
+ /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TLSLD
+ MO_TLSLD,
+
+ /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS index for the module that
+ /// contains the symbol. When this index is passed to a call to
+ /// ___tls_get_addr, the function will return the base address of the TLS
+ /// block for the symbol. Used in the IA32 local dynamic TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TLSLDM
+ MO_TLSLDM,
+
+ /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the thread-pointer offset for the
+ /// symbol. Used in the x86-64 initial exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @GOTTPOFF
+ MO_GOTTPOFF,
+
+ /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
+ /// the absolute address of the GOT entry with the negative thread-pointer
+ /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
+ /// model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @INDNTPOFF
+ MO_INDNTPOFF,
+
+ /// MO_TPOFF - On a symbol operand this indicates that the immediate is
+ /// the thread-pointer offset for the symbol. Used in the x86-64 local
+ /// exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TPOFF
+ MO_TPOFF,
+
+ /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS offset of the symbol. Used
+ /// in the local dynamic TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @DTPOFF
+ MO_DTPOFF,
+
+ /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
+ /// the negative thread-pointer offset for the symbol. Used in the IA32
+ /// local exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @NTPOFF
+ MO_NTPOFF,
+
+ /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the negative thread-pointer offset for
+ /// the symbol. Used in the PIC IA32 initial exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @GOTNTPOFF
+ MO_GOTNTPOFF,
+
+ /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "__imp_FOO" symbol. This is used for
+ /// dllimport linkage on windows.
+ MO_DLLIMPORT,
+
+ /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "FOO$stub" symbol. This is used for calls
+ /// and jumps to external functions on Tiger and earlier.
+ MO_DARWIN_STUB,
+
+ /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
+ /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+ MO_DARWIN_NONLAZY,
+
+ /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
+ /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
+ /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+ MO_DARWIN_NONLAZY_PIC_BASE,
+
+ /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
+ /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
+ /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
+ /// stub.
+ MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
+
+ /// MO_TLVP - On a symbol operand this indicates that the immediate is
+ /// some TLS offset.
+ ///
+ /// This is the TLS offset for the Darwin TLS mechanism.
+ MO_TLVP,
+
+ /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
+ /// is some TLS offset from the picbase.
+ ///
+ /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
+ MO_TLVP_PIC_BASE,
+
+ /// MO_SECREL - On a symbol operand this indicates that the immediate is
+ /// the offset from beginning of section.
+ ///
+ /// This is the TLS offset for the COFF/Windows TLS mechanism.
+ MO_SECREL
+ };
+
+ enum {
+ //===------------------------------------------------------------------===//
+ // Instruction encodings. These are the standard/most common forms for X86
+ // instructions.
+ //
+
+ // PseudoFrm - This represents an instruction that is a pseudo instruction
+ // or one that has not been implemented yet. It is illegal to code generate
+ // it, but tolerated for intermediate implementation stages.
+ Pseudo = 0,
+
+ /// Raw - This form is for instructions that don't have any operands, so
+ /// they are just a fixed opcode value, like 'leave'.
+ RawFrm = 1,
+
+ /// AddRegFrm - This form is used for instructions like 'push r32' that have
+ /// their one register operand added to their opcode.
+ AddRegFrm = 2,
+
+ /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
+ /// to specify a destination, which in this case is a register.
+ ///
+ MRMDestReg = 3,
+
+ /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
+ /// to specify a destination, which in this case is memory.
+ ///
+ MRMDestMem = 4,
+
+ /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
+ /// to specify a source, which in this case is a register.
+ ///
+ MRMSrcReg = 5,
+
+ /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
+ /// to specify a source, which in this case is memory.
+ ///
+ MRMSrcMem = 6,
+
+ /// RawFrmMemOffs - This form is for instructions that store an absolute
+ /// memory offset as an immediate with a possible segment override.
+ RawFrmMemOffs = 7,
+
+ /// RawFrmSrc - This form is for instructions that use the source index
+ /// register SI/ESI/RSI with a possible segment override.
+ RawFrmSrc = 8,
+
+ /// RawFrmDst - This form is for instructions that use the destination index
+ /// register DI/EDI/ESI.
+ RawFrmDst = 9,
+
+ /// RawFrmSrc - This form is for instructions that use the the source index
+ /// register SI/ESI/ERI with a possible segment override, and also the
+ /// destination index register DI/ESI/RDI.
+ RawFrmDstSrc = 10,
+
+ /// RawFrmImm8 - This is used for the ENTER instruction, which has two
+ /// immediates, the first of which is a 16-bit immediate (specified by
+ /// the imm encoding) and the second is a 8-bit fixed value.
+ RawFrmImm8 = 11,
+
+ /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
+ /// immediates, the first of which is a 16 or 32-bit immediate (specified by
+ /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
+ /// manual, this operand is described as pntr16:32 and pntr16:16
+ RawFrmImm16 = 12,
+
+ /// MRMX[rm] - The forms are used to represent instructions that use a
+ /// Mod/RM byte, and don't use the middle field for anything.
+ MRMXr = 14, MRMXm = 15,
+
+ /// MRM[0-7][rm] - These forms are used to represent instructions that use
+ /// a Mod/RM byte, and use the middle field to hold extended opcode
+ /// information. In the intel manual these are represented as /0, /1, ...
+ ///
+
+ // First, instructions that operate on a register r/m operand...
+ MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
+ MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
+
+ // Next, instructions that operate on a memory r/m operand...
+ MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
+ MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
+
+ //// MRM_XX - A mod/rm byte of exactly 0xXX.
+ MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
+ MRM_C4 = 36, MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39,
+ MRM_CB = 40, MRM_D0 = 41, MRM_D1 = 42, MRM_D4 = 43,
+ MRM_D5 = 44, MRM_D6 = 45, MRM_D8 = 46, MRM_D9 = 47,
+ MRM_DA = 48, MRM_DB = 49, MRM_DC = 50, MRM_DD = 51,
+ MRM_DE = 52, MRM_DF = 53, MRM_E0 = 54, MRM_E1 = 55,
+ MRM_E2 = 56, MRM_E3 = 57, MRM_E4 = 58, MRM_E5 = 59,
+ MRM_E8 = 60, MRM_E9 = 61, MRM_EA = 62, MRM_EB = 63,
+ MRM_EC = 64, MRM_ED = 65, MRM_EE = 66, MRM_F0 = 67,
+ MRM_F1 = 68, MRM_F2 = 69, MRM_F3 = 70, MRM_F4 = 71,
+ MRM_F5 = 72, MRM_F6 = 73, MRM_F7 = 74, MRM_F8 = 75,
+ MRM_F9 = 76, MRM_FA = 77, MRM_FB = 78, MRM_FC = 79,
+ MRM_FD = 80, MRM_FE = 81, MRM_FF = 82,
+
+ FormMask = 127,
+
+ //===------------------------------------------------------------------===//
+ // Actual flags...
+
+ // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
+ // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
+ // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
+ // prefix in 16-bit mode.
+ OpSizeShift = 7,
+ OpSizeMask = 0x3 << OpSizeShift,
+
+ OpSize16 = 1,
+ OpSize32 = 2,
+
+ // AsSize - Set if this instruction requires an operand size prefix (0x67),
+ // which most often indicates that the instruction address 16 bit address
+ // instead of 32 bit address (or 32 bit address in 64 bit mode).
+ AdSizeShift = OpSizeShift + 2,
+ AdSize = 1 << AdSizeShift,
+
+ //===------------------------------------------------------------------===//
+ // OpPrefix - There are several prefix bytes that are used as opcode
+ // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
+ // no prefix.
+ //
+ OpPrefixShift = AdSizeShift + 1,
+ OpPrefixMask = 0x7 << OpPrefixShift,
+
+ // PS, PD - Prefix code for packed single and double precision vector
+ // floating point operations performed in the SSE registers.
+ PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
+
+ // XS, XD - These prefix codes are for single and double precision scalar
+ // floating point operations performed in the SSE registers.
+ XS = 3 << OpPrefixShift, XD = 4 << OpPrefixShift,
+
+ //===------------------------------------------------------------------===//
+ // OpMap - This field determines which opcode map this instruction
+ // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
+ //
+ OpMapShift = OpPrefixShift + 3,
+ OpMapMask = 0x7 << OpMapShift,
+
+ // OB - OneByte - Set if this instruction has a one byte opcode.
+ OB = 0 << OpMapShift,
+
+ // TB - TwoByte - Set if this instruction has a two byte opcode, which
+ // starts with a 0x0F byte before the real opcode.
+ TB = 1 << OpMapShift,
+
+ // T8, TA - Prefix after the 0x0F prefix.
+ T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
+
+ // XOP8 - Prefix to include use of imm byte.
+ XOP8 = 4 << OpMapShift,
+
+ // XOP9 - Prefix to exclude use of imm byte.
+ XOP9 = 5 << OpMapShift,
+
+ // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
+ XOPA = 6 << OpMapShift,
+
+ //===------------------------------------------------------------------===//
+ // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
+ // They are used to specify GPRs and SSE registers, 64-bit operand size,
+ // etc. We only cares about REX.W and REX.R bits and only the former is
+ // statically determined.
+ //
+ REXShift = OpMapShift + 3,
+ REX_W = 1 << REXShift,
+
+ //===------------------------------------------------------------------===//
+ // This three-bit field describes the size of an immediate operand. Zero is
+ // unused so that we can tell if we forgot to set a value.
+ ImmShift = REXShift + 1,
+ ImmMask = 15 << ImmShift,
+ Imm8 = 1 << ImmShift,
+ Imm8PCRel = 2 << ImmShift,
+ Imm16 = 3 << ImmShift,
+ Imm16PCRel = 4 << ImmShift,
+ Imm32 = 5 << ImmShift,
+ Imm32PCRel = 6 << ImmShift,
+ Imm32S = 7 << ImmShift,
+ Imm64 = 8 << ImmShift,
+
+ //===------------------------------------------------------------------===//
+ // FP Instruction Classification... Zero is non-fp instruction.
+
+ // FPTypeMask - Mask for all of the FP types...
+ FPTypeShift = ImmShift + 4,
+ FPTypeMask = 7 << FPTypeShift,
+
+ // NotFP - The default, set for instructions that do not use FP registers.
+ NotFP = 0 << FPTypeShift,
+
+ // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
+ ZeroArgFP = 1 << FPTypeShift,
+
+ // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
+ OneArgFP = 2 << FPTypeShift,
+
+ // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
+ // result back to ST(0). For example, fcos, fsqrt, etc.
+ //
+ OneArgFPRW = 3 << FPTypeShift,
+
+ // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
+ // explicit argument, storing the result to either ST(0) or the implicit
+ // argument. For example: fadd, fsub, fmul, etc...
+ TwoArgFP = 4 << FPTypeShift,
+
+ // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
+ // explicit argument, but have no destination. Example: fucom, fucomi, ...
+ CompareFP = 5 << FPTypeShift,
+
+ // CondMovFP - "2 operand" floating point conditional move instructions.
+ CondMovFP = 6 << FPTypeShift,
+
+ // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
+ SpecialFP = 7 << FPTypeShift,
+
+ // Lock prefix
+ LOCKShift = FPTypeShift + 3,
+ LOCK = 1 << LOCKShift,
+
+ // REP prefix
+ REPShift = LOCKShift + 1,
+ REP = 1 << REPShift,
+
+ // Execution domain for SSE instructions.
+ // 0 means normal, non-SSE instruction.
+ SSEDomainShift = REPShift + 1,
+
+ // Encoding
+ EncodingShift = SSEDomainShift + 2,
+ EncodingMask = 0x3 << EncodingShift,
+
+ // VEX - encoding using 0xC4/0xC5
+ VEX = 1,
+
+ /// XOP - Opcode prefix used by XOP instructions.
+ XOP = 2,
+
+ // VEX_EVEX - Specifies that this instruction use EVEX form which provides
+ // syntax support up to 32 512-bit register operands and up to 7 16-bit
+ // mask operands as well as source operand data swizzling/memory operand
+ // conversion, eviction hint, and rounding mode.
+ EVEX = 3,
+
+ // Opcode
+ OpcodeShift = EncodingShift + 2,
+
+ //===------------------------------------------------------------------===//
+ /// VEX - The opcode prefix used by AVX instructions
+ VEXShift = OpcodeShift + 8,
+
+ /// VEX_W - Has a opcode specific functionality, but is used in the same
+ /// way as REX_W is for regular SSE instructions.
+ VEX_W = 1U << 0,
+
+ /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
+ /// address instructions in SSE are represented as 3 address ones in AVX
+ /// and the additional register is encoded in VEX_VVVV prefix.
+ VEX_4V = 1U << 1,
+
+ /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
+ /// operand 3 with VEX.vvvv.
+ VEX_4VOp3 = 1U << 2,
+
+ /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
+ /// must be encoded in the i8 immediate field. This usually happens in
+ /// instructions with 4 operands.
+ VEX_I8IMM = 1U << 3,
+
+ /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
+ /// instruction uses 256-bit wide registers. This is usually auto detected
+ /// if a VR256 register is used, but some AVX instructions also have this
+ /// field marked when using a f256 memory references.
+ VEX_L = 1U << 4,
+
+ // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
+ // prefix. Usually used for scalar instructions. Needed by disassembler.
+ VEX_LIG = 1U << 5,
+
+ // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
+ // with following encoding:
+ // - 00 V128
+ // - 01 V256
+ // - 10 V512
+ // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
+ // this will save 1 tsflag bit
+
+ // EVEX_K - Set if this instruction requires masking
+ EVEX_K = 1U << 6,
+
+ // EVEX_Z - Set if this instruction has EVEX.Z field set.
+ EVEX_Z = 1U << 7,
+
+ // EVEX_L2 - Set if this instruction has EVEX.L' field set.
+ EVEX_L2 = 1U << 8,
+
+ // EVEX_B - Set if this instruction has EVEX.B field set.
+ EVEX_B = 1U << 9,
+
+ // The scaling factor for the AVX512's 8-bit compressed displacement.
+ CD8_Scale_Shift = VEXShift + 10,
+ CD8_Scale_Mask = 127,
+
+ /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
+ /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
+ /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
+ /// storing a classifier in the imm8 field. To simplify our implementation,
+ /// we handle this by storeing the classifier in the opcode field and using
+ /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
+ Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
+ Has3DNow0F0FOpcode = 1U << (Has3DNow0F0FOpcodeShift - VEXShift),
+
+ /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
+ /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
+ MemOp4Shift = Has3DNow0F0FOpcodeShift + 1,
+ MemOp4 = 1U << (MemOp4Shift - VEXShift),
+
+ /// Explicitly specified rounding control
+ EVEX_RCShift = MemOp4Shift + 1,
+ EVEX_RC = 1U << (EVEX_RCShift - VEXShift)
+ };
+
+ // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
+ // specified machine instruction.
+ //
+ inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
+ return TSFlags >> X86II::OpcodeShift;
+ }
+
+ inline bool hasImm(uint64_t TSFlags) {
+ return (TSFlags & X86II::ImmMask) != 0;
+ }
+
+ /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
+ /// of the specified instruction.
+ inline unsigned getSizeOfImm(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default: llvm_unreachable("Unknown immediate size");
+ case X86II::Imm8:
+ case X86II::Imm8PCRel: return 1;
+ case X86II::Imm16:
+ case X86II::Imm16PCRel: return 2;
+ case X86II::Imm32:
+ case X86II::Imm32S:
+ case X86II::Imm32PCRel: return 4;
+ case X86II::Imm64: return 8;
+ }
+ }
+
+ /// isImmPCRel - Return true if the immediate of the specified instruction's
+ /// TSFlags indicates that it is pc relative.
+ inline unsigned isImmPCRel(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default: llvm_unreachable("Unknown immediate size");
+ case X86II::Imm8PCRel:
+ case X86II::Imm16PCRel:
+ case X86II::Imm32PCRel:
+ return true;
+ case X86II::Imm8:
+ case X86II::Imm16:
+ case X86II::Imm32:
+ case X86II::Imm32S:
+ case X86II::Imm64:
+ return false;
+ }
+ }
+
+ /// isImmSigned - Return true if the immediate of the specified instruction's
+ /// TSFlags indicates that it is signed.
+ inline unsigned isImmSigned(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default: llvm_unreachable("Unknown immediate signedness");
+ case X86II::Imm32S:
+ return true;
+ case X86II::Imm8:
+ case X86II::Imm8PCRel:
+ case X86II::Imm16:
+ case X86II::Imm16PCRel:
+ case X86II::Imm32:
+ case X86II::Imm32PCRel:
+ case X86II::Imm64:
+ return false;
+ }
+ }
+
+ /// getOperandBias - compute any additional adjustment needed to
+ /// the offset to the start of the memory operand
+ /// in this instruction.
+ /// If this is a two-address instruction,skip one of the register operands.
+ /// FIXME: This should be handled during MCInst lowering.
+ inline int getOperandBias(const MCInstrDesc& Desc)
+ {
+ unsigned NumOps = Desc.getNumOperands();
+ unsigned CurOp = 0;
+ if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
+ ++CurOp;
+ else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
+ Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
+ // Special case for AVX-512 GATHER with 2 TIED_TO operands
+ // Skip the first 2 operands: dst, mask_wb
+ CurOp += 2;
+ else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
+ Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
+ // Special case for GATHER with 2 TIED_TO operands
+ // Skip the first 2 operands: dst, mask_wb
+ CurOp += 2;
+ else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
+ // SCATTER
+ ++CurOp;
+ return CurOp;
+ }
+
+ /// getMemoryOperandNo - The function returns the MCInst operand # for the
+ /// first field of the memory operand. If the instruction doesn't have a
+ /// memory operand, this returns -1.
+ ///
+ /// Note that this ignores tied operands. If there is a tied register which
+ /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
+ /// counted as one operand.
+ ///
+ inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
+ bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+ bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
+ bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
+
+ switch (TSFlags & X86II::FormMask) {
+ default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
+ case X86II::Pseudo:
+ case X86II::RawFrm:
+ case X86II::AddRegFrm:
+ case X86II::MRMDestReg:
+ case X86II::MRMSrcReg:
+ case X86II::RawFrmImm8:
+ case X86II::RawFrmImm16:
+ case X86II::RawFrmMemOffs:
+ case X86II::RawFrmSrc:
+ case X86II::RawFrmDst:
+ case X86II::RawFrmDstSrc:
+ return -1;
+ case X86II::MRMDestMem:
+ return 0;
+ case X86II::MRMSrcMem: {
+ unsigned FirstMemOp = 1;
+ if (HasVEX_4V)
+ ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
+ if (HasMemOp4)
+ ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
+ if (HasEVEX_K)
+ ++FirstMemOp;// Skip the mask register
+ // FIXME: Maybe lea should have its own form? This is a horrible hack.
+ //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
+ // Opcode == X86::LEA16r || Opcode == X86::LEA32r)
+ return FirstMemOp;
+ }
+ case X86II::MRMXr:
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r:
+ return -1;
+ case X86II::MRMXm:
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m: {
+ bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+ unsigned FirstMemOp = 0;
+ if (HasVEX_4V)
+ ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
+ if (HasEVEX_K)
+ ++FirstMemOp;// Skip the mask register
+ return FirstMemOp;
+ }
+ case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
+ case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
+ case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
+ case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
+ case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
+ case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
+ case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
+ case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
+ case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
+ case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
+ case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
+ case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
+ case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
+ case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
+ case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
+ case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
+ case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
+ return -1;
+ }
+ }
+
+ /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
+ /// higher) register? e.g. r8, xmm8, xmm13, etc.
+ inline bool isX86_64ExtendedReg(unsigned RegNo) {
+ if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
+ (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
+ (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
+ (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
+ (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
+ (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
+ return true;
+
+ switch (RegNo) {
+ default: break;
+ case X86::R8: case X86::R9: case X86::R10: case X86::R11:
+ case X86::R12: case X86::R13: case X86::R14: case X86::R15:
+ case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
+ case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
+ case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
+ case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
+ case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
+ case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
+ case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
+ case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
+ return true;
+ }
+ return false;
+ }
+
+ /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
+ /// registers? e.g. zmm21, etc.
+ static inline bool is32ExtendedReg(unsigned RegNo) {
+ return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
+ (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
+ (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
+ }
+
+
+ inline bool isX86_64NonExtLowByteReg(unsigned reg) {
+ return (reg == X86::SPL || reg == X86::BPL ||
+ reg == X86::SIL || reg == X86::DIL);
+ }
+}
+
+} // end namespace llvm;
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp
new file mode 100644
index 0000000..3fdec87
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp
@@ -0,0 +1,272 @@
+//===-- X86ELFObjectWriter.cpp - X86 ELF Writer ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86FixupKinds.h"
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace llvm;
+
+namespace {
+ class X86ELFObjectWriter : public MCELFObjectTargetWriter {
+ public:
+ X86ELFObjectWriter(bool IsELF64, uint8_t OSABI, uint16_t EMachine);
+
+ virtual ~X86ELFObjectWriter();
+ protected:
+ unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsPCRel) const override;
+ };
+}
+
+X86ELFObjectWriter::X86ELFObjectWriter(bool IsELF64, uint8_t OSABI,
+ uint16_t EMachine)
+ : MCELFObjectTargetWriter(IsELF64, OSABI, EMachine,
+ // Only i386 uses Rel instead of RelA.
+ /*HasRelocationAddend*/ EMachine != ELF::EM_386) {}
+
+X86ELFObjectWriter::~X86ELFObjectWriter()
+{}
+
+unsigned X86ELFObjectWriter::GetRelocType(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const {
+ // determine the type of the relocation
+
+ MCSymbolRefExpr::VariantKind Modifier = Target.getAccessVariant();
+ unsigned Type;
+ if (getEMachine() == ELF::EM_X86_64) {
+ if (IsPCRel) {
+ switch ((unsigned)Fixup.getKind()) {
+ default: llvm_unreachable("invalid fixup kind!");
+
+ case FK_Data_8: Type = ELF::R_X86_64_PC64; break;
+ case FK_Data_4: Type = ELF::R_X86_64_PC32; break;
+ case FK_Data_2: Type = ELF::R_X86_64_PC16; break;
+ case FK_Data_1: Type = ELF::R_X86_64_PC8; break;
+
+ case FK_PCRel_8:
+ assert(Modifier == MCSymbolRefExpr::VK_None);
+ Type = ELF::R_X86_64_PC64;
+ break;
+ case X86::reloc_signed_4byte:
+ case X86::reloc_riprel_4byte_movq_load:
+ case X86::reloc_riprel_4byte:
+ case FK_PCRel_4:
+ switch (Modifier) {
+ default:
+ llvm_unreachable("Unimplemented");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_X86_64_PC32;
+ break;
+ case MCSymbolRefExpr::VK_PLT:
+ Type = ELF::R_X86_64_PLT32;
+ break;
+ case MCSymbolRefExpr::VK_GOTPCREL:
+ Type = ELF::R_X86_64_GOTPCREL;
+ break;
+ case MCSymbolRefExpr::VK_GOTTPOFF:
+ Type = ELF::R_X86_64_GOTTPOFF;
+ break;
+ case MCSymbolRefExpr::VK_TLSGD:
+ Type = ELF::R_X86_64_TLSGD;
+ break;
+ case MCSymbolRefExpr::VK_TLSLD:
+ Type = ELF::R_X86_64_TLSLD;
+ break;
+ }
+ break;
+ case FK_PCRel_2:
+ assert(Modifier == MCSymbolRefExpr::VK_None);
+ Type = ELF::R_X86_64_PC16;
+ break;
+ case FK_PCRel_1:
+ assert(Modifier == MCSymbolRefExpr::VK_None);
+ Type = ELF::R_X86_64_PC8;
+ break;
+ }
+ } else {
+ switch ((unsigned)Fixup.getKind()) {
+ default: llvm_unreachable("invalid fixup kind!");
+ case X86::reloc_global_offset_table8:
+ Type = ELF::R_X86_64_GOTPC64;
+ break;
+ case X86::reloc_global_offset_table:
+ Type = ELF::R_X86_64_GOTPC32;
+ break;
+ case FK_Data_8:
+ switch (Modifier) {
+ default:
+ llvm_unreachable("Unimplemented");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_X86_64_64;
+ break;
+ case MCSymbolRefExpr::VK_GOT:
+ Type = ELF::R_X86_64_GOT64;
+ break;
+ case MCSymbolRefExpr::VK_GOTOFF:
+ Type = ELF::R_X86_64_GOTOFF64;
+ break;
+ case MCSymbolRefExpr::VK_TPOFF:
+ Type = ELF::R_X86_64_TPOFF64;
+ break;
+ case MCSymbolRefExpr::VK_DTPOFF:
+ Type = ELF::R_X86_64_DTPOFF64;
+ break;
+ }
+ break;
+ case X86::reloc_signed_4byte:
+ switch (Modifier) {
+ default:
+ llvm_unreachable("Unimplemented");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_X86_64_32S;
+ break;
+ case MCSymbolRefExpr::VK_GOT:
+ Type = ELF::R_X86_64_GOT32;
+ break;
+ case MCSymbolRefExpr::VK_GOTPCREL:
+ Type = ELF::R_X86_64_GOTPCREL;
+ break;
+ case MCSymbolRefExpr::VK_TPOFF:
+ Type = ELF::R_X86_64_TPOFF32;
+ break;
+ case MCSymbolRefExpr::VK_DTPOFF:
+ Type = ELF::R_X86_64_DTPOFF32;
+ break;
+ }
+ break;
+ case FK_Data_4:
+ Type = ELF::R_X86_64_32;
+ break;
+ case FK_Data_2: Type = ELF::R_X86_64_16; break;
+ case FK_PCRel_1:
+ case FK_Data_1: Type = ELF::R_X86_64_8; break;
+ }
+ }
+ } else if (getEMachine() == ELF::EM_386) {
+ if (IsPCRel) {
+ switch ((unsigned)Fixup.getKind()) {
+ default: llvm_unreachable("invalid fixup kind!");
+
+ case X86::reloc_global_offset_table:
+ Type = ELF::R_386_GOTPC;
+ break;
+
+ case FK_PCRel_1:
+ case FK_Data_1:
+ switch (Modifier) {
+ default:
+ llvm_unreachable("Unimplemented");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_386_PC8;
+ break;
+ }
+ break;
+
+ case FK_PCRel_2:
+ case FK_Data_2:
+ switch (Modifier) {
+ default:
+ llvm_unreachable("Unimplemented");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_386_PC16;
+ break;
+ }
+ break;
+
+ case X86::reloc_signed_4byte:
+ case FK_PCRel_4:
+ case FK_Data_4:
+ switch (Modifier) {
+ default:
+ llvm_unreachable("Unimplemented");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_386_PC32;
+ break;
+ case MCSymbolRefExpr::VK_PLT:
+ Type = ELF::R_386_PLT32;
+ break;
+ }
+ break;
+ }
+ } else {
+ switch ((unsigned)Fixup.getKind()) {
+ default: llvm_unreachable("invalid fixup kind!");
+
+ case X86::reloc_global_offset_table:
+ Type = ELF::R_386_GOTPC;
+ break;
+
+ // FIXME: Should we avoid selecting reloc_signed_4byte in 32 bit mode
+ // instead?
+ case X86::reloc_signed_4byte:
+ case FK_PCRel_4:
+ case FK_Data_4:
+ switch (Modifier) {
+ default:
+ llvm_unreachable("Unimplemented");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_386_32;
+ break;
+ case MCSymbolRefExpr::VK_GOT:
+ Type = ELF::R_386_GOT32;
+ break;
+ case MCSymbolRefExpr::VK_GOTOFF:
+ Type = ELF::R_386_GOTOFF;
+ break;
+ case MCSymbolRefExpr::VK_TLSGD:
+ Type = ELF::R_386_TLS_GD;
+ break;
+ case MCSymbolRefExpr::VK_TPOFF:
+ Type = ELF::R_386_TLS_LE_32;
+ break;
+ case MCSymbolRefExpr::VK_INDNTPOFF:
+ Type = ELF::R_386_TLS_IE;
+ break;
+ case MCSymbolRefExpr::VK_NTPOFF:
+ Type = ELF::R_386_TLS_LE;
+ break;
+ case MCSymbolRefExpr::VK_GOTNTPOFF:
+ Type = ELF::R_386_TLS_GOTIE;
+ break;
+ case MCSymbolRefExpr::VK_TLSLDM:
+ Type = ELF::R_386_TLS_LDM;
+ break;
+ case MCSymbolRefExpr::VK_DTPOFF:
+ Type = ELF::R_386_TLS_LDO_32;
+ break;
+ case MCSymbolRefExpr::VK_GOTTPOFF:
+ Type = ELF::R_386_TLS_IE_32;
+ break;
+ }
+ break;
+ case FK_Data_2: Type = ELF::R_386_16; break;
+ case FK_PCRel_1:
+ case FK_Data_1: Type = ELF::R_386_8; break;
+ }
+ }
+ } else
+ llvm_unreachable("Unsupported ELF machine type.");
+
+ return Type;
+}
+
+MCObjectWriter *llvm::createX86ELFObjectWriter(raw_ostream &OS,
+ bool IsELF64,
+ uint8_t OSABI,
+ uint16_t EMachine) {
+ MCELFObjectTargetWriter *MOTW =
+ new X86ELFObjectWriter(IsELF64, OSABI, EMachine);
+ return createELFObjectWriter(MOTW, OS, /*IsLittleEndian=*/true);
+}
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFRelocationInfo.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFRelocationInfo.cpp
new file mode 100644
index 0000000..b679316
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFRelocationInfo.cpp
@@ -0,0 +1,135 @@
+//===-- X86ELFRelocationInfo.cpp ----------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCRelocationInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Object/ELFObjectFile.h"
+#include "llvm/Support/ELF.h"
+
+using namespace llvm;
+using namespace object;
+using namespace ELF;
+
+namespace {
+class X86_64ELFRelocationInfo : public MCRelocationInfo {
+public:
+ X86_64ELFRelocationInfo(MCContext &Ctx) : MCRelocationInfo(Ctx) {}
+
+ const MCExpr *createExprForRelocation(RelocationRef Rel) override {
+ uint64_t RelType; Rel.getType(RelType);
+ symbol_iterator SymI = Rel.getSymbol();
+
+ StringRef SymName; SymI->getName(SymName);
+ uint64_t SymAddr; SymI->getAddress(SymAddr);
+ uint64_t SymSize; SymI->getSize(SymSize);
+ int64_t Addend; getELFRelocationAddend(Rel, Addend);
+
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(SymName);
+ // FIXME: check that the value is actually the same.
+ if (Sym->isVariable() == false)
+ Sym->setVariableValue(MCConstantExpr::Create(SymAddr, Ctx));
+
+ const MCExpr *Expr = nullptr;
+ // If hasAddend is true, then we need to add Addend (r_addend) to Expr.
+ bool hasAddend = false;
+
+ // The AMD64 SysV ABI says:
+ // A: the addend used to compute the value of the relocatable field.
+ // B: the base address at which a shared object has been loaded into memory
+ // during execution. Generally, a shared object is built with a 0 base
+ // virtual address, but the execution address will be different.
+ // G: the offset into the global offset table at which the relocation
+ // entry's symbol will reside during execution.
+ // GOT: the address of the global offset table.
+ // L: the place (section offset or address) of the Procedure Linkage Table
+ // entry for a symbol.
+ // P: the place (section offset or address) of the storage unit being
+ // relocated (computed using r_offset).
+ // S: the value of the symbol whose index resides in the relocation entry.
+ // Z: the size of the symbol whose index resides in the relocation entry.
+
+ switch(RelType) {
+ case R_X86_64_NONE:
+ case R_X86_64_COPY:
+ // none
+ break;
+ case R_X86_64_64:
+ case R_X86_64_16:
+ case R_X86_64_8:
+ // S + A
+ case R_X86_64_32:
+ case R_X86_64_32S:
+ // S + A (We don't care about the result not fitting in 32 bits.)
+ case R_X86_64_PC32:
+ case R_X86_64_PC16:
+ case R_X86_64_PC8:
+ case R_X86_64_PC64:
+ // S + A - P (P/pcrel is implicit)
+ hasAddend = true;
+ Expr = MCSymbolRefExpr::Create(Sym, Ctx);
+ break;
+ case R_X86_64_GOT32:
+ case R_X86_64_GOT64:
+ case R_X86_64_GOTPC32:
+ case R_X86_64_GOTPC64:
+ case R_X86_64_GOTPLT64:
+ // G + A
+ hasAddend = true;
+ Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_GOT, Ctx);
+ break;
+ case R_X86_64_PLT32:
+ // L + A - P -> S@PLT + A
+ hasAddend = true;
+ Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_PLT, Ctx);
+ break;
+ case R_X86_64_GLOB_DAT:
+ case R_X86_64_JUMP_SLOT:
+ // S
+ Expr = MCSymbolRefExpr::Create(Sym, Ctx);
+ break;
+ case R_X86_64_GOTPCREL:
+ case R_X86_64_GOTPCREL64:
+ // G + GOT + A - P -> S@GOTPCREL + A
+ hasAddend = true;
+ Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
+ break;
+ case R_X86_64_GOTOFF64:
+ // S + A - GOT
+ Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_GOTOFF, Ctx);
+ break;
+ case R_X86_64_PLTOFF64:
+ // L + A - GOT
+ break;
+ case R_X86_64_SIZE32:
+ case R_X86_64_SIZE64:
+ // Z + A
+ Expr = MCConstantExpr::Create(SymSize, Ctx);
+ break;
+ default:
+ Expr = MCSymbolRefExpr::Create(Sym, Ctx);
+ break;
+ }
+ if (Expr && hasAddend && Addend != 0)
+ Expr = MCBinaryExpr::CreateAdd(Expr,
+ MCConstantExpr::Create(Addend, Ctx),
+ Ctx);
+ return Expr;
+ }
+};
+} // End unnamed namespace
+
+/// createX86ELFRelocationInfo - Construct an X86 Mach-O RelocationInfo.
+MCRelocationInfo *llvm::createX86_64ELFRelocationInfo(MCContext &Ctx) {
+ // We only handle x86-64 for now.
+ return new X86_64ELFRelocationInfo(Ctx);
+}
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86FixupKinds.h b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86FixupKinds.h
new file mode 100644
index 0000000..09396b7
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86FixupKinds.h
@@ -0,0 +1,34 @@
+//===-- X86FixupKinds.h - X86 Specific Fixup Entries ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_X86_X86FIXUPKINDS_H
+#define LLVM_X86_X86FIXUPKINDS_H
+
+#include "llvm/MC/MCFixup.h"
+
+namespace llvm {
+namespace X86 {
+enum Fixups {
+ reloc_riprel_4byte = FirstTargetFixupKind, // 32-bit rip-relative
+ reloc_riprel_4byte_movq_load, // 32-bit rip-relative in movq
+ reloc_signed_4byte, // 32-bit signed. Unlike FK_Data_4
+ // this will be sign extended at
+ // runtime.
+ reloc_global_offset_table, // 32-bit, relative to the start
+ // of the instruction. Used only
+ // for _GLOBAL_OFFSET_TABLE_.
+ reloc_global_offset_table8, // 64-bit variant.
+ // Marker
+ LastTargetFixupKind,
+ NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind
+};
+}
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
new file mode 100644
index 0000000..b1411bc
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
@@ -0,0 +1,177 @@
+//===-- X86MCAsmInfo.cpp - X86 asm properties -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the X86MCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86MCAsmInfo.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ELF.h"
+using namespace llvm;
+
+enum AsmWriterFlavorTy {
+ // Note: This numbering has to match the GCC assembler dialects for inline
+ // asm alternatives to work right.
+ ATT = 0, Intel = 1
+};
+
+static cl::opt<AsmWriterFlavorTy>
+AsmWriterFlavor("x86-asm-syntax", cl::init(ATT),
+ cl::desc("Choose style of code to emit from X86 backend:"),
+ cl::values(clEnumValN(ATT, "att", "Emit AT&T-style assembly"),
+ clEnumValN(Intel, "intel", "Emit Intel-style assembly"),
+ clEnumValEnd));
+
+static cl::opt<bool>
+MarkedJTDataRegions("mark-data-regions", cl::init(false),
+ cl::desc("Mark code section jump table data regions."),
+ cl::Hidden);
+
+void X86MCAsmInfoDarwin::anchor() { }
+
+X86MCAsmInfoDarwin::X86MCAsmInfoDarwin(const Triple &T) {
+ bool is64Bit = T.getArch() == Triple::x86_64;
+ if (is64Bit)
+ PointerSize = CalleeSaveStackSlotSize = 8;
+
+ AssemblerDialect = AsmWriterFlavor;
+
+ TextAlignFillValue = 0x90;
+
+ if (!is64Bit)
+ Data64bitsDirective = nullptr; // we can't emit a 64-bit unit
+
+ // Use ## as a comment string so that .s files generated by llvm can go
+ // through the GCC preprocessor without causing an error. This is needed
+ // because "clang foo.s" runs the C preprocessor, which is usually reserved
+ // for .S files on other systems. Perhaps this is because the file system
+ // wasn't always case preserving or something.
+ CommentString = "##";
+
+ SupportsDebugInformation = true;
+ UseDataRegionDirectives = MarkedJTDataRegions;
+
+ // Exceptions handling
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+
+ // old assembler lacks some directives
+ // FIXME: this should really be a check on the assembler characteristics
+ // rather than OS version
+ if (T.isMacOSX() && T.isMacOSXVersionLT(10, 6))
+ HasWeakDefCanBeHiddenDirective = false;
+
+ // Assume ld64 is new enough that the abs-ified FDE relocs may be used
+ // (actually, must, since otherwise the non-extern relocations we produce
+ // overwhelm ld64's tiny little mind and it fails).
+ DwarfFDESymbolsUseAbsDiff = true;
+
+ UseIntegratedAssembler = true;
+}
+
+X86_64MCAsmInfoDarwin::X86_64MCAsmInfoDarwin(const Triple &Triple)
+ : X86MCAsmInfoDarwin(Triple) {
+}
+
+void X86ELFMCAsmInfo::anchor() { }
+
+X86ELFMCAsmInfo::X86ELFMCAsmInfo(const Triple &T) {
+ bool is64Bit = T.getArch() == Triple::x86_64;
+ bool isX32 = T.getEnvironment() == Triple::GNUX32;
+
+ // For ELF, x86-64 pointer size depends on the ABI.
+ // For x86-64 without the x32 ABI, pointer size is 8. For x86 and for x86-64
+ // with the x32 ABI, pointer size remains the default 4.
+ PointerSize = (is64Bit && !isX32) ? 8 : 4;
+
+ // OTOH, stack slot size is always 8 for x86-64, even with the x32 ABI.
+ CalleeSaveStackSlotSize = is64Bit ? 8 : 4;
+
+ AssemblerDialect = AsmWriterFlavor;
+
+ TextAlignFillValue = 0x90;
+
+ // Set up DWARF directives
+ HasLEB128 = true; // Target asm supports leb128 directives (little-endian)
+
+ // Debug Information
+ SupportsDebugInformation = true;
+
+ // Exceptions handling
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+
+ // OpenBSD and Bitrig have buggy support for .quad in 32-bit mode, just split
+ // into two .words.
+ if ((T.getOS() == Triple::OpenBSD || T.getOS() == Triple::Bitrig) &&
+ T.getArch() == Triple::x86)
+ Data64bitsDirective = nullptr;
+
+ // Always enable the integrated assembler by default.
+ // Clang also enabled it when the OS is Solaris but that is redundant here.
+ UseIntegratedAssembler = true;
+}
+
+const MCExpr *
+X86_64MCAsmInfoDarwin::getExprForPersonalitySymbol(const MCSymbol *Sym,
+ unsigned Encoding,
+ MCStreamer &Streamer) const {
+ MCContext &Context = Streamer.getContext();
+ const MCExpr *Res =
+ MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_GOTPCREL, Context);
+ const MCExpr *Four = MCConstantExpr::Create(4, Context);
+ return MCBinaryExpr::CreateAdd(Res, Four, Context);
+}
+
+const MCSection *X86ELFMCAsmInfo::
+getNonexecutableStackSection(MCContext &Ctx) const {
+ return Ctx.getELFSection(".note.GNU-stack", ELF::SHT_PROGBITS,
+ 0, SectionKind::getMetadata());
+}
+
+void X86MCAsmInfoMicrosoft::anchor() { }
+
+X86MCAsmInfoMicrosoft::X86MCAsmInfoMicrosoft(const Triple &Triple) {
+ if (Triple.getArch() == Triple::x86_64) {
+ PrivateGlobalPrefix = ".L";
+ PointerSize = 8;
+ ExceptionsType = ExceptionHandling::WinEH;
+ }
+
+ AssemblerDialect = AsmWriterFlavor;
+
+ TextAlignFillValue = 0x90;
+
+ AllowAtInName = true;
+
+ UseIntegratedAssembler = true;
+}
+
+void X86MCAsmInfoGNUCOFF::anchor() { }
+
+X86MCAsmInfoGNUCOFF::X86MCAsmInfoGNUCOFF(const Triple &Triple) {
+ assert(Triple.isOSWindows() && "Windows is the only supported COFF target");
+ if (Triple.getArch() == Triple::x86_64) {
+ PrivateGlobalPrefix = ".L";
+ PointerSize = 8;
+ ExceptionsType = ExceptionHandling::WinEH;
+ } else {
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+ }
+
+ AssemblerDialect = AsmWriterFlavor;
+
+ TextAlignFillValue = 0x90;
+
+ UseIntegratedAssembler = true;
+}
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h
new file mode 100644
index 0000000..a7509b0
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h
@@ -0,0 +1,59 @@
+//===-- X86MCAsmInfo.h - X86 asm properties --------------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the X86MCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86TARGETASMINFO_H
+#define X86TARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCAsmInfoCOFF.h"
+#include "llvm/MC/MCAsmInfoDarwin.h"
+#include "llvm/MC/MCAsmInfoELF.h"
+
+namespace llvm {
+ class Triple;
+
+ class X86MCAsmInfoDarwin : public MCAsmInfoDarwin {
+ void anchor() override;
+ public:
+ explicit X86MCAsmInfoDarwin(const Triple &Triple);
+ };
+
+ struct X86_64MCAsmInfoDarwin : public X86MCAsmInfoDarwin {
+ explicit X86_64MCAsmInfoDarwin(const Triple &Triple);
+ const MCExpr *
+ getExprForPersonalitySymbol(const MCSymbol *Sym, unsigned Encoding,
+ MCStreamer &Streamer) const override;
+ };
+
+ class X86ELFMCAsmInfo : public MCAsmInfoELF {
+ void anchor() override;
+ public:
+ explicit X86ELFMCAsmInfo(const Triple &Triple);
+ const MCSection *
+ getNonexecutableStackSection(MCContext &Ctx) const override;
+ };
+
+ class X86MCAsmInfoMicrosoft : public MCAsmInfoMicrosoft {
+ void anchor() override;
+ public:
+ explicit X86MCAsmInfoMicrosoft(const Triple &Triple);
+ };
+
+ class X86MCAsmInfoGNUCOFF : public MCAsmInfoGNUCOFF {
+ void anchor() override;
+ public:
+ explicit X86MCAsmInfoGNUCOFF(const Triple &Triple);
+ };
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
new file mode 100644
index 0000000..075db11
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
@@ -0,0 +1,1559 @@
+//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the X86MCCodeEmitter class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "MCTargetDesc/X86FixupKinds.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mccodeemitter"
+
+namespace {
+class X86MCCodeEmitter : public MCCodeEmitter {
+ X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
+ const MCInstrInfo &MCII;
+ MCContext &Ctx;
+public:
+ X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
+ : MCII(mcii), Ctx(ctx) {
+ }
+
+ ~X86MCCodeEmitter() {}
+
+ bool is64BitMode(const MCSubtargetInfo &STI) const {
+ return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
+ }
+
+ bool is32BitMode(const MCSubtargetInfo &STI) const {
+ return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
+ }
+
+ bool is16BitMode(const MCSubtargetInfo &STI) const {
+ return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
+ }
+
+ /// Is16BitMemOperand - Return true if the specified instruction has
+ /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
+ bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+ const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
+
+ if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
+ Disp.isImm() && Disp.getImm() < 0x10000)
+ return true;
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+ }
+
+ unsigned GetX86RegNum(const MCOperand &MO) const {
+ return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
+ }
+
+ // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
+ // 0-7 and the difference between the 2 groups is given by the REX prefix.
+ // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
+ // in 1's complement form, example:
+ //
+ // ModRM field => XMM9 => 1
+ // VEX.VVVV => XMM9 => ~9
+ //
+ // See table 4-35 of Intel AVX Programming Reference for details.
+ unsigned char getVEXRegisterEncoding(const MCInst &MI,
+ unsigned OpNum) const {
+ unsigned SrcReg = MI.getOperand(OpNum).getReg();
+ unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
+ if (X86II::isX86_64ExtendedReg(SrcReg))
+ SrcRegNum |= 8;
+
+ // The registers represented through VEX_VVVV should
+ // be encoded in 1's complement form.
+ return (~SrcRegNum) & 0xf;
+ }
+
+ unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
+ unsigned OpNum) const {
+ assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
+ "Invalid mask register as write-mask!");
+ unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
+ return MaskRegNum;
+ }
+
+ void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
+ OS << (char)C;
+ ++CurByte;
+ }
+
+ void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
+ raw_ostream &OS) const {
+ // Output the constant in little endian byte order.
+ for (unsigned i = 0; i != Size; ++i) {
+ EmitByte(Val & 255, CurByte, OS);
+ Val >>= 8;
+ }
+ }
+
+ void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
+ unsigned ImmSize, MCFixupKind FixupKind,
+ unsigned &CurByte, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ int ImmOffset = 0) const;
+
+ inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
+ unsigned RM) {
+ assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
+ return RM | (RegOpcode << 3) | (Mod << 6);
+ }
+
+ void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
+ unsigned &CurByte, raw_ostream &OS) const {
+ EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
+ }
+
+ void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
+ unsigned &CurByte, raw_ostream &OS) const {
+ // SIB byte is in the same format as the ModRMByte.
+ EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
+ }
+
+
+ void EmitMemModRMByte(const MCInst &MI, unsigned Op,
+ unsigned RegOpcodeField,
+ uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+
+ void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
+ const MCInst &MI, const MCInstrDesc &Desc,
+ raw_ostream &OS) const;
+
+ void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
+ const MCInst &MI, raw_ostream &OS) const;
+
+ void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
+ const MCInst &MI, const MCInstrDesc &Desc,
+ const MCSubtargetInfo &STI,
+ raw_ostream &OS) const;
+};
+
+} // end anonymous namespace
+
+
+MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new X86MCCodeEmitter(MCII, Ctx);
+}
+
+/// isDisp8 - Return true if this signed displacement fits in a 8-bit
+/// sign-extended field.
+static bool isDisp8(int Value) {
+ return Value == (signed char)Value;
+}
+
+/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
+/// compressed dispacement field.
+static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
+ assert(((TSFlags & X86II::EncodingMask) >>
+ X86II::EncodingShift == X86II::EVEX) &&
+ "Compressed 8-bit displacement is only valid for EVEX inst.");
+
+ unsigned CD8_Scale =
+ (TSFlags >> X86II::CD8_Scale_Shift) & X86II::CD8_Scale_Mask;
+ if (CD8_Scale == 0) {
+ CValue = Value;
+ return isDisp8(Value);
+ }
+
+ unsigned Mask = CD8_Scale - 1;
+ assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
+ if (Value & Mask) // Unaligned offset
+ return false;
+ Value /= (int)CD8_Scale;
+ bool Ret = (Value == (signed char)Value);
+
+ if (Ret)
+ CValue = Value;
+ return Ret;
+}
+
+/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
+/// in an instruction with the specified TSFlags.
+static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
+ unsigned Size = X86II::getSizeOfImm(TSFlags);
+ bool isPCRel = X86II::isImmPCRel(TSFlags);
+
+ if (X86II::isImmSigned(TSFlags)) {
+ switch (Size) {
+ default: llvm_unreachable("Unsupported signed fixup size!");
+ case 4: return MCFixupKind(X86::reloc_signed_4byte);
+ }
+ }
+ return MCFixup::getKindForSize(Size, isPCRel);
+}
+
+/// Is32BitMemOperand - Return true if the specified instruction has
+/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
+static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
+ const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+}
+
+/// Is64BitMemOperand - Return true if the specified instruction has
+/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
+#ifndef NDEBUG
+static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
+ const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+}
+#endif
+
+/// StartsWithGlobalOffsetTable - Check if this expression starts with
+/// _GLOBAL_OFFSET_TABLE_ and if it is of the form
+/// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
+/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
+/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
+/// of a binary expression.
+enum GlobalOffsetTableExprKind {
+ GOT_None,
+ GOT_Normal,
+ GOT_SymDiff
+};
+static GlobalOffsetTableExprKind
+StartsWithGlobalOffsetTable(const MCExpr *Expr) {
+ const MCExpr *RHS = nullptr;
+ if (Expr->getKind() == MCExpr::Binary) {
+ const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
+ Expr = BE->getLHS();
+ RHS = BE->getRHS();
+ }
+
+ if (Expr->getKind() != MCExpr::SymbolRef)
+ return GOT_None;
+
+ const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
+ const MCSymbol &S = Ref->getSymbol();
+ if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
+ return GOT_None;
+ if (RHS && RHS->getKind() == MCExpr::SymbolRef)
+ return GOT_SymDiff;
+ return GOT_Normal;
+}
+
+static bool HasSecRelSymbolRef(const MCExpr *Expr) {
+ if (Expr->getKind() == MCExpr::SymbolRef) {
+ const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
+ return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
+ }
+ return false;
+}
+
+void X86MCCodeEmitter::
+EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
+ MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
+ const MCExpr *Expr = nullptr;
+ if (DispOp.isImm()) {
+ // If this is a simple integer displacement that doesn't require a
+ // relocation, emit it now.
+ if (FixupKind != FK_PCRel_1 &&
+ FixupKind != FK_PCRel_2 &&
+ FixupKind != FK_PCRel_4) {
+ EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
+ return;
+ }
+ Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
+ } else {
+ Expr = DispOp.getExpr();
+ }
+
+ // If we have an immoffset, add it to the expression.
+ if ((FixupKind == FK_Data_4 ||
+ FixupKind == FK_Data_8 ||
+ FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
+ GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
+ if (Kind != GOT_None) {
+ assert(ImmOffset == 0);
+
+ if (Size == 8) {
+ FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
+ } else {
+ assert(Size == 4);
+ FixupKind = MCFixupKind(X86::reloc_global_offset_table);
+ }
+
+ if (Kind == GOT_Normal)
+ ImmOffset = CurByte;
+ } else if (Expr->getKind() == MCExpr::SymbolRef) {
+ if (HasSecRelSymbolRef(Expr)) {
+ FixupKind = MCFixupKind(FK_SecRel_4);
+ }
+ } else if (Expr->getKind() == MCExpr::Binary) {
+ const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
+ if (HasSecRelSymbolRef(Bin->getLHS())
+ || HasSecRelSymbolRef(Bin->getRHS())) {
+ FixupKind = MCFixupKind(FK_SecRel_4);
+ }
+ }
+ }
+
+ // If the fixup is pc-relative, we need to bias the value to be relative to
+ // the start of the field, not the end of the field.
+ if (FixupKind == FK_PCRel_4 ||
+ FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
+ FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
+ ImmOffset -= 4;
+ if (FixupKind == FK_PCRel_2)
+ ImmOffset -= 2;
+ if (FixupKind == FK_PCRel_1)
+ ImmOffset -= 1;
+
+ if (ImmOffset)
+ Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
+ Ctx);
+
+ // Emit a symbolic constant as a fixup and 4 zeros.
+ Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
+ EmitConstant(0, Size, CurByte, OS);
+}
+
+void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
+ unsigned RegOpcodeField,
+ uint64_t TSFlags, unsigned &CurByte,
+ raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const{
+ const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
+ const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
+ const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
+ const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+ unsigned BaseReg = Base.getReg();
+ unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
+ X86II::EncodingShift;
+ bool HasEVEX = (Encoding == X86II::EVEX);
+
+ // Handle %rip relative addressing.
+ if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
+ assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
+ assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
+ EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
+
+ unsigned FixupKind = X86::reloc_riprel_4byte;
+
+ // movq loads are handled with a special relocation form which allows the
+ // linker to eliminate some loads for GOT references which end up in the
+ // same linkage unit.
+ if (MI.getOpcode() == X86::MOV64rm)
+ FixupKind = X86::reloc_riprel_4byte_movq_load;
+
+ // rip-relative addressing is actually relative to the *next* instruction.
+ // Since an immediate can follow the mod/rm byte for an instruction, this
+ // means that we need to bias the immediate field of the instruction with
+ // the size of the immediate field. If we have this case, add it into the
+ // expression to emit.
+ int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
+
+ EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
+ CurByte, OS, Fixups, -ImmSize);
+ return;
+ }
+
+ unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
+
+ // 16-bit addressing forms of the ModR/M byte have a different encoding for
+ // the R/M field and are far more limited in which registers can be used.
+ if (Is16BitMemOperand(MI, Op, STI)) {
+ if (BaseReg) {
+ // For 32-bit addressing, the row and column values in Table 2-2 are
+ // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
+ // some special cases. And GetX86RegNum reflects that numbering.
+ // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
+ // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
+ // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
+ // while values 0-3 indicate the allowed combinations (base+index) of
+ // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
+ //
+ // R16Table[] is a lookup from the normal RegNo, to the row values from
+ // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
+ static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
+ unsigned RMfield = R16Table[BaseRegNo];
+
+ assert(RMfield && "invalid 16-bit base register");
+
+ if (IndexReg.getReg()) {
+ unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
+
+ assert(IndexReg16 && "invalid 16-bit index register");
+ // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
+ assert(((IndexReg16 ^ RMfield) & 2) &&
+ "invalid 16-bit base/index register combination");
+ assert(Scale.getImm() == 1 &&
+ "invalid scale for 16-bit memory reference");
+
+ // Allow base/index to appear in either order (although GAS doesn't).
+ if (IndexReg16 & 2)
+ RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
+ else
+ RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
+ }
+
+ if (Disp.isImm() && isDisp8(Disp.getImm())) {
+ if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
+ // There is no displacement; just the register.
+ EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
+ return;
+ }
+ // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
+ EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
+ EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
+ return;
+ }
+ // This is the [REG]+disp16 case.
+ EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
+ } else {
+ // There is no BaseReg; this is the plain [disp16] case.
+ EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
+ }
+
+ // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
+ EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
+ return;
+ }
+
+ // Determine whether a SIB byte is needed.
+ // If no BaseReg, issue a RIP relative instruction only if the MCE can
+ // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
+ // 2-7) and absolute references.
+
+ if (// The SIB byte must be used if there is an index register.
+ IndexReg.getReg() == 0 &&
+ // The SIB byte must be used if the base is ESP/RSP/R12, all of which
+ // encode to an R/M value of 4, which indicates that a SIB byte is
+ // present.
+ BaseRegNo != N86::ESP &&
+ // If there is no base register and we're in 64-bit mode, we need a SIB
+ // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
+ (!is64BitMode(STI) || BaseReg != 0)) {
+
+ if (BaseReg == 0) { // [disp32] in X86-32 mode
+ EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
+ EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
+ return;
+ }
+
+ // If the base is not EBP/ESP and there is no displacement, use simple
+ // indirect register encoding, this handles addresses like [EAX]. The
+ // encoding for [EBP] with no displacement means [disp32] so we handle it
+ // by emitting a displacement of 0 below.
+ if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
+ EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
+ return;
+ }
+
+ // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
+ if (Disp.isImm()) {
+ if (!HasEVEX && isDisp8(Disp.getImm())) {
+ EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
+ EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
+ return;
+ }
+ // Try EVEX compressed 8-bit displacement first; if failed, fall back to
+ // 32-bit displacement.
+ int CDisp8 = 0;
+ if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
+ EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
+ EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
+ CDisp8 - Disp.getImm());
+ return;
+ }
+ }
+
+ // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
+ EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
+ EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
+ Fixups);
+ return;
+ }
+
+ // We need a SIB byte, so start by outputting the ModR/M byte first
+ assert(IndexReg.getReg() != X86::ESP &&
+ IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
+
+ bool ForceDisp32 = false;
+ bool ForceDisp8 = false;
+ int CDisp8 = 0;
+ int ImmOffset = 0;
+ if (BaseReg == 0) {
+ // If there is no base register, we emit the special case SIB byte with
+ // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
+ EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
+ ForceDisp32 = true;
+ } else if (!Disp.isImm()) {
+ // Emit the normal disp32 encoding.
+ EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
+ ForceDisp32 = true;
+ } else if (Disp.getImm() == 0 &&
+ // Base reg can't be anything that ends up with '5' as the base
+ // reg, it is the magic [*] nomenclature that indicates no base.
+ BaseRegNo != N86::EBP) {
+ // Emit no displacement ModR/M byte
+ EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
+ } else if (!HasEVEX && isDisp8(Disp.getImm())) {
+ // Emit the disp8 encoding.
+ EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
+ ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
+ } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
+ // Emit the disp8 encoding.
+ EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
+ ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
+ ImmOffset = CDisp8 - Disp.getImm();
+ } else {
+ // Emit the normal disp32 encoding.
+ EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
+ }
+
+ // Calculate what the SS field value should be...
+ static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
+ unsigned SS = SSTable[Scale.getImm()];
+
+ if (BaseReg == 0) {
+ // Handle the SIB byte for the case where there is no base, see Intel
+ // Manual 2A, table 2-7. The displacement has already been output.
+ unsigned IndexRegNo;
+ if (IndexReg.getReg())
+ IndexRegNo = GetX86RegNum(IndexReg);
+ else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
+ IndexRegNo = 4;
+ EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
+ } else {
+ unsigned IndexRegNo;
+ if (IndexReg.getReg())
+ IndexRegNo = GetX86RegNum(IndexReg);
+ else
+ IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
+ EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
+ }
+
+ // Do we need to output a displacement?
+ if (ForceDisp8)
+ EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
+ else if (ForceDisp32 || Disp.getImm() != 0)
+ EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
+ CurByte, OS, Fixups);
+}
+
+/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
+/// called VEX.
+void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
+ int MemOperand, const MCInst &MI,
+ const MCInstrDesc &Desc,
+ raw_ostream &OS) const {
+ unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
+ X86II::EncodingShift;
+ bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
+ bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+ bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
+ bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
+ bool HasEVEX_RC = (TSFlags >> X86II::VEXShift) & X86II::EVEX_RC;
+
+ // VEX_R: opcode externsion equivalent to REX.R in
+ // 1's complement (inverted) form
+ //
+ // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
+ // 0: Same as REX_R=1 (64 bit mode only)
+ //
+ unsigned char VEX_R = 0x1;
+ unsigned char EVEX_R2 = 0x1;
+
+ // VEX_X: equivalent to REX.X, only used when a
+ // register is used for index in SIB Byte.
+ //
+ // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
+ // 0: Same as REX.X=1 (64-bit mode only)
+ unsigned char VEX_X = 0x1;
+
+ // VEX_B:
+ //
+ // 1: Same as REX_B=0 (ignored in 32-bit mode)
+ // 0: Same as REX_B=1 (64 bit mode only)
+ //
+ unsigned char VEX_B = 0x1;
+
+ // VEX_W: opcode specific (use like REX.W, or used for
+ // opcode extension, or ignored, depending on the opcode byte)
+ unsigned char VEX_W = 0;
+
+ // VEX_5M (VEX m-mmmmm field):
+ //
+ // 0b00000: Reserved for future use
+ // 0b00001: implied 0F leading opcode
+ // 0b00010: implied 0F 38 leading opcode bytes
+ // 0b00011: implied 0F 3A leading opcode bytes
+ // 0b00100-0b11111: Reserved for future use
+ // 0b01000: XOP map select - 08h instructions with imm byte
+ // 0b01001: XOP map select - 09h instructions with no imm byte
+ // 0b01010: XOP map select - 0Ah instructions with imm dword
+ unsigned char VEX_5M = 0;
+
+ // VEX_4V (VEX vvvv field): a register specifier
+ // (in 1's complement form) or 1111 if unused.
+ unsigned char VEX_4V = 0xf;
+ unsigned char EVEX_V2 = 0x1;
+
+ // VEX_L (Vector Length):
+ //
+ // 0: scalar or 128-bit vector
+ // 1: 256-bit vector
+ //
+ unsigned char VEX_L = 0;
+ unsigned char EVEX_L2 = 0;
+
+ // VEX_PP: opcode extension providing equivalent
+ // functionality of a SIMD prefix
+ //
+ // 0b00: None
+ // 0b01: 66
+ // 0b10: F3
+ // 0b11: F2
+ //
+ unsigned char VEX_PP = 0;
+
+ // EVEX_U
+ unsigned char EVEX_U = 1; // Always '1' so far
+
+ // EVEX_z
+ unsigned char EVEX_z = 0;
+
+ // EVEX_b
+ unsigned char EVEX_b = 0;
+
+ // EVEX_rc
+ unsigned char EVEX_rc = 0;
+
+ // EVEX_aaa
+ unsigned char EVEX_aaa = 0;
+
+ bool EncodeRC = false;
+
+ if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
+ VEX_W = 1;
+
+ if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
+ VEX_L = 1;
+ if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
+ EVEX_L2 = 1;
+
+ if (HasEVEX_K && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_Z))
+ EVEX_z = 1;
+
+ if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
+ EVEX_b = 1;
+
+ switch (TSFlags & X86II::OpPrefixMask) {
+ default: break; // VEX_PP already correct
+ case X86II::PD: VEX_PP = 0x1; break; // 66
+ case X86II::XS: VEX_PP = 0x2; break; // F3
+ case X86II::XD: VEX_PP = 0x3; break; // F2
+ }
+
+ switch (TSFlags & X86II::OpMapMask) {
+ default: llvm_unreachable("Invalid prefix!");
+ case X86II::TB: VEX_5M = 0x1; break; // 0F
+ case X86II::T8: VEX_5M = 0x2; break; // 0F 38
+ case X86II::TA: VEX_5M = 0x3; break; // 0F 3A
+ case X86II::XOP8: VEX_5M = 0x8; break;
+ case X86II::XOP9: VEX_5M = 0x9; break;
+ case X86II::XOPA: VEX_5M = 0xA; break;
+ }
+
+ // Classify VEX_B, VEX_4V, VEX_R, VEX_X
+ unsigned NumOps = Desc.getNumOperands();
+ unsigned CurOp = X86II::getOperandBias(Desc);
+
+ switch (TSFlags & X86II::FormMask) {
+ default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
+ case X86II::RawFrm:
+ break;
+ case X86II::MRMDestMem: {
+ // MRMDestMem instructions forms:
+ // MemAddr, src1(ModR/M)
+ // MemAddr, src1(VEX_4V), src2(ModR/M)
+ // MemAddr, src1(ModR/M), imm8
+ //
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
+ X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
+ X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
+ X86::AddrIndexReg).getReg()))
+ EVEX_V2 = 0x0;
+
+ CurOp += X86::AddrNumOperands;
+
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+
+ const MCOperand &MO = MI.getOperand(CurOp);
+ if (MO.isReg()) {
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
+ VEX_R = 0x0;
+ if (X86II::is32ExtendedReg(MO.getReg()))
+ EVEX_R2 = 0x0;
+ }
+ break;
+ }
+ case X86II::MRMSrcMem:
+ // MRMSrcMem instructions forms:
+ // src1(ModR/M), MemAddr
+ // src1(ModR/M), src2(VEX_4V), MemAddr
+ // src1(ModR/M), MemAddr, imm8
+ // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
+ //
+ // FMA4:
+ // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+ // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_R2 = 0x0;
+ CurOp++;
+
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
+ X86::AddrIndexReg).getReg()))
+ EVEX_V2 = 0x0;
+
+ if (HasVEX_4VOp3)
+ // Instruction format for 4VOp3:
+ // src1(ModR/M), MemAddr, src3(VEX_4V)
+ // CurOp points to start of the MemoryOperand,
+ // it skips TIED_TO operands if exist, then increments past src1.
+ // CurOp + X86::AddrNumOperands will point to src3.
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
+ break;
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m: {
+ // MRM[0-9]m instructions forms:
+ // MemAddr
+ // src1(VEX_4V), MemAddr
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+ break;
+ }
+ case X86II::MRMSrcReg:
+ // MRMSrcReg instructions forms:
+ // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+ // dst(ModR/M), src1(ModR/M)
+ // dst(ModR/M), src1(ModR/M), imm8
+ //
+ // FMA4:
+ // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+ // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_R2 = 0x0;
+ CurOp++;
+
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+
+ if (HasMemOp4) // Skip second register source (encoded in I8IMM)
+ CurOp++;
+
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_X = 0x0;
+ CurOp++;
+ if (HasVEX_4VOp3)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
+ if (EVEX_b) {
+ if (HasEVEX_RC) {
+ unsigned RcOperand = NumOps-1;
+ assert(RcOperand >= CurOp);
+ EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
+ }
+ EncodeRC = true;
+ }
+ break;
+ case X86II::MRMDestReg:
+ // MRMDestReg instructions forms:
+ // dst(ModR/M), src(ModR/M)
+ // dst(ModR/M), src(ModR/M), imm8
+ // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_X = 0x0;
+ CurOp++;
+
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_R2 = 0x0;
+ if (EVEX_b)
+ EncodeRC = true;
+ break;
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r:
+ // MRM0r-MRM7r instructions forms:
+ // dst(VEX_4V), src(ModR/M), imm8
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_X = 0x0;
+ break;
+ }
+
+ if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
+ // VEX opcode prefix can have 2 or 3 bytes
+ //
+ // 3 bytes:
+ // +-----+ +--------------+ +-------------------+
+ // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
+ // +-----+ +--------------+ +-------------------+
+ // 2 bytes:
+ // +-----+ +-------------------+
+ // | C5h | | R | vvvv | L | pp |
+ // +-----+ +-------------------+
+ //
+ // XOP uses a similar prefix:
+ // +-----+ +--------------+ +-------------------+
+ // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
+ // +-----+ +--------------+ +-------------------+
+ unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
+
+ // Can we use the 2 byte VEX prefix?
+ if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
+ EmitByte(0xC5, CurByte, OS);
+ EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
+ return;
+ }
+
+ // 3 byte VEX prefix
+ EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
+ EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
+ EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
+ } else {
+ assert(Encoding == X86II::EVEX && "unknown encoding!");
+ // EVEX opcode prefix can have 4 bytes
+ //
+ // +-----+ +--------------+ +-------------------+ +------------------------+
+ // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
+ // +-----+ +--------------+ +-------------------+ +------------------------+
+ assert((VEX_5M & 0x3) == VEX_5M
+ && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
+
+ VEX_5M &= 0x3;
+
+ EmitByte(0x62, CurByte, OS);
+ EmitByte((VEX_R << 7) |
+ (VEX_X << 6) |
+ (VEX_B << 5) |
+ (EVEX_R2 << 4) |
+ VEX_5M, CurByte, OS);
+ EmitByte((VEX_W << 7) |
+ (VEX_4V << 3) |
+ (EVEX_U << 2) |
+ VEX_PP, CurByte, OS);
+ if (EncodeRC)
+ EmitByte((EVEX_z << 7) |
+ (EVEX_rc << 5) |
+ (EVEX_b << 4) |
+ (EVEX_V2 << 3) |
+ EVEX_aaa, CurByte, OS);
+ else
+ EmitByte((EVEX_z << 7) |
+ (EVEX_L2 << 6) |
+ (VEX_L << 5) |
+ (EVEX_b << 4) |
+ (EVEX_V2 << 3) |
+ EVEX_aaa, CurByte, OS);
+ }
+}
+
+/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
+/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
+/// size, and 3) use of X86-64 extended registers.
+static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
+ const MCInstrDesc &Desc) {
+ unsigned REX = 0;
+ if (TSFlags & X86II::REX_W)
+ REX |= 1 << 3; // set REX.W
+
+ if (MI.getNumOperands() == 0) return REX;
+
+ unsigned NumOps = MI.getNumOperands();
+ // FIXME: MCInst should explicitize the two-addrness.
+ bool isTwoAddr = NumOps > 1 &&
+ Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
+
+ // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
+ unsigned i = isTwoAddr ? 1 : 0;
+ for (; i != NumOps; ++i) {
+ const MCOperand &MO = MI.getOperand(i);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
+ // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
+ // that returns non-zero.
+ REX |= 0x40; // REX fixed encoding prefix
+ break;
+ }
+
+ switch (TSFlags & X86II::FormMask) {
+ case X86II::MRMSrcReg:
+ if (MI.getOperand(0).isReg() &&
+ X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+ REX |= 1 << 2; // set REX.R
+ i = isTwoAddr ? 2 : 1;
+ for (; i != NumOps; ++i) {
+ const MCOperand &MO = MI.getOperand(i);
+ if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
+ REX |= 1 << 0; // set REX.B
+ }
+ break;
+ case X86II::MRMSrcMem: {
+ if (MI.getOperand(0).isReg() &&
+ X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+ REX |= 1 << 2; // set REX.R
+ unsigned Bit = 0;
+ i = isTwoAddr ? 2 : 1;
+ for (; i != NumOps; ++i) {
+ const MCOperand &MO = MI.getOperand(i);
+ if (MO.isReg()) {
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
+ REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
+ Bit++;
+ }
+ }
+ break;
+ }
+ case X86II::MRMXm:
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m:
+ case X86II::MRMDestMem: {
+ unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
+ i = isTwoAddr ? 1 : 0;
+ if (NumOps > e && MI.getOperand(e).isReg() &&
+ X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
+ REX |= 1 << 2; // set REX.R
+ unsigned Bit = 0;
+ for (; i != e; ++i) {
+ const MCOperand &MO = MI.getOperand(i);
+ if (MO.isReg()) {
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
+ REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
+ Bit++;
+ }
+ }
+ break;
+ }
+ default:
+ if (MI.getOperand(0).isReg() &&
+ X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+ REX |= 1 << 0; // set REX.B
+ i = isTwoAddr ? 2 : 1;
+ for (unsigned e = NumOps; i != e; ++i) {
+ const MCOperand &MO = MI.getOperand(i);
+ if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
+ REX |= 1 << 2; // set REX.R
+ }
+ break;
+ }
+ return REX;
+}
+
+/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
+void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
+ unsigned SegOperand,
+ const MCInst &MI,
+ raw_ostream &OS) const {
+ // Check for explicit segment override on memory operand.
+ switch (MI.getOperand(SegOperand).getReg()) {
+ default: llvm_unreachable("Unknown segment register!");
+ case 0: break;
+ case X86::CS: EmitByte(0x2E, CurByte, OS); break;
+ case X86::SS: EmitByte(0x36, CurByte, OS); break;
+ case X86::DS: EmitByte(0x3E, CurByte, OS); break;
+ case X86::ES: EmitByte(0x26, CurByte, OS); break;
+ case X86::FS: EmitByte(0x64, CurByte, OS); break;
+ case X86::GS: EmitByte(0x65, CurByte, OS); break;
+ }
+}
+
+/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
+///
+/// MemOperand is the operand # of the start of a memory operand if present. If
+/// Not present, it is -1.
+void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
+ int MemOperand, const MCInst &MI,
+ const MCInstrDesc &Desc,
+ const MCSubtargetInfo &STI,
+ raw_ostream &OS) const {
+
+ // Emit the operand size opcode prefix as needed.
+ unsigned char OpSize = (TSFlags & X86II::OpSizeMask) >> X86II::OpSizeShift;
+ if (OpSize == (is16BitMode(STI) ? X86II::OpSize32 : X86II::OpSize16))
+ EmitByte(0x66, CurByte, OS);
+
+ switch (TSFlags & X86II::OpPrefixMask) {
+ case X86II::PD: // 66
+ EmitByte(0x66, CurByte, OS);
+ break;
+ case X86II::XS: // F3
+ EmitByte(0xF3, CurByte, OS);
+ break;
+ case X86II::XD: // F2
+ EmitByte(0xF2, CurByte, OS);
+ break;
+ }
+
+ // Handle REX prefix.
+ // FIXME: Can this come before F2 etc to simplify emission?
+ if (is64BitMode(STI)) {
+ if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
+ EmitByte(0x40 | REX, CurByte, OS);
+ }
+
+ // 0x0F escape code must be emitted just before the opcode.
+ switch (TSFlags & X86II::OpMapMask) {
+ case X86II::TB: // Two-byte opcode map
+ case X86II::T8: // 0F 38
+ case X86II::TA: // 0F 3A
+ EmitByte(0x0F, CurByte, OS);
+ break;
+ }
+
+ switch (TSFlags & X86II::OpMapMask) {
+ case X86II::T8: // 0F 38
+ EmitByte(0x38, CurByte, OS);
+ break;
+ case X86II::TA: // 0F 3A
+ EmitByte(0x3A, CurByte, OS);
+ break;
+ }
+}
+
+void X86MCCodeEmitter::
+EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ unsigned Opcode = MI.getOpcode();
+ const MCInstrDesc &Desc = MCII.get(Opcode);
+ uint64_t TSFlags = Desc.TSFlags;
+
+ // Pseudo instructions don't get encoded.
+ if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
+ return;
+
+ unsigned NumOps = Desc.getNumOperands();
+ unsigned CurOp = X86II::getOperandBias(Desc);
+
+ // Keep track of the current byte being emitted.
+ unsigned CurByte = 0;
+
+ // Encoding type for this instruction.
+ unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
+ X86II::EncodingShift;
+
+ // It uses the VEX.VVVV field?
+ bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+ bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
+ bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
+ const unsigned MemOp4_I8IMMOperand = 2;
+
+ // It uses the EVEX.aaa field?
+ bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
+ bool HasEVEX_RC = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_RC);
+
+ // Determine where the memory operand starts, if present.
+ int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
+ if (MemoryOperand != -1) MemoryOperand += CurOp;
+
+ // Emit the lock opcode prefix as needed.
+ if (TSFlags & X86II::LOCK)
+ EmitByte(0xF0, CurByte, OS);
+
+ // Emit segment override opcode prefix as needed.
+ if (MemoryOperand >= 0)
+ EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
+ MI, OS);
+
+ // Emit the repeat opcode prefix as needed.
+ if (TSFlags & X86II::REP)
+ EmitByte(0xF3, CurByte, OS);
+
+ // Emit the address size opcode prefix as needed.
+ bool need_address_override;
+ // The AdSize prefix is only for 32-bit and 64-bit modes. Hm, perhaps we
+ // should introduce an AdSize16 bit instead of having seven special cases?
+ if ((!is16BitMode(STI) && TSFlags & X86II::AdSize) ||
+ (is16BitMode(STI) && (MI.getOpcode() == X86::JECXZ_32 ||
+ MI.getOpcode() == X86::MOV8o8a ||
+ MI.getOpcode() == X86::MOV16o16a ||
+ MI.getOpcode() == X86::MOV32o32a ||
+ MI.getOpcode() == X86::MOV8ao8 ||
+ MI.getOpcode() == X86::MOV16ao16 ||
+ MI.getOpcode() == X86::MOV32ao32))) {
+ need_address_override = true;
+ } else if (MemoryOperand < 0) {
+ need_address_override = false;
+ } else if (is64BitMode(STI)) {
+ assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
+ need_address_override = Is32BitMemOperand(MI, MemoryOperand);
+ } else if (is32BitMode(STI)) {
+ assert(!Is64BitMemOperand(MI, MemoryOperand));
+ need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
+ } else {
+ assert(is16BitMode(STI));
+ assert(!Is64BitMemOperand(MI, MemoryOperand));
+ need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
+ }
+
+ if (need_address_override)
+ EmitByte(0x67, CurByte, OS);
+
+ if (Encoding == 0)
+ EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
+ else
+ EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
+
+ unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
+
+ if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
+ BaseOpcode = 0x0F; // Weird 3DNow! encoding.
+
+ unsigned SrcRegNum = 0;
+ switch (TSFlags & X86II::FormMask) {
+ default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
+ llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
+ case X86II::Pseudo:
+ llvm_unreachable("Pseudo instruction shouldn't be emitted");
+ case X86II::RawFrmDstSrc: {
+ unsigned siReg = MI.getOperand(1).getReg();
+ assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
+ (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
+ (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
+ "SI and DI register sizes do not match");
+ // Emit segment override opcode prefix as needed (not for %ds).
+ if (MI.getOperand(2).getReg() != X86::DS)
+ EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
+ // Emit AdSize prefix as needed.
+ if ((!is32BitMode(STI) && siReg == X86::ESI) ||
+ (is32BitMode(STI) && siReg == X86::SI))
+ EmitByte(0x67, CurByte, OS);
+ CurOp += 3; // Consume operands.
+ EmitByte(BaseOpcode, CurByte, OS);
+ break;
+ }
+ case X86II::RawFrmSrc: {
+ unsigned siReg = MI.getOperand(0).getReg();
+ // Emit segment override opcode prefix as needed (not for %ds).
+ if (MI.getOperand(1).getReg() != X86::DS)
+ EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
+ // Emit AdSize prefix as needed.
+ if ((!is32BitMode(STI) && siReg == X86::ESI) ||
+ (is32BitMode(STI) && siReg == X86::SI))
+ EmitByte(0x67, CurByte, OS);
+ CurOp += 2; // Consume operands.
+ EmitByte(BaseOpcode, CurByte, OS);
+ break;
+ }
+ case X86II::RawFrmDst: {
+ unsigned siReg = MI.getOperand(0).getReg();
+ // Emit AdSize prefix as needed.
+ if ((!is32BitMode(STI) && siReg == X86::EDI) ||
+ (is32BitMode(STI) && siReg == X86::DI))
+ EmitByte(0x67, CurByte, OS);
+ ++CurOp; // Consume operand.
+ EmitByte(BaseOpcode, CurByte, OS);
+ break;
+ }
+ case X86II::RawFrm:
+ EmitByte(BaseOpcode, CurByte, OS);
+ break;
+ case X86II::RawFrmMemOffs:
+ // Emit segment override opcode prefix as needed.
+ EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
+ EmitByte(BaseOpcode, CurByte, OS);
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+ X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+ CurByte, OS, Fixups);
+ ++CurOp; // skip segment operand
+ break;
+ case X86II::RawFrmImm8:
+ EmitByte(BaseOpcode, CurByte, OS);
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+ X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+ CurByte, OS, Fixups);
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
+ OS, Fixups);
+ break;
+ case X86II::RawFrmImm16:
+ EmitByte(BaseOpcode, CurByte, OS);
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+ X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+ CurByte, OS, Fixups);
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
+ OS, Fixups);
+ break;
+
+ case X86II::AddRegFrm:
+ EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
+ break;
+
+ case X86II::MRMDestReg:
+ EmitByte(BaseOpcode, CurByte, OS);
+ SrcRegNum = CurOp + 1;
+
+ if (HasEVEX_K) // Skip writemask
+ SrcRegNum++;
+
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ ++SrcRegNum;
+
+ EmitRegModRMByte(MI.getOperand(CurOp),
+ GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
+ CurOp = SrcRegNum + 1;
+ break;
+
+ case X86II::MRMDestMem:
+ EmitByte(BaseOpcode, CurByte, OS);
+ SrcRegNum = CurOp + X86::AddrNumOperands;
+
+ if (HasEVEX_K) // Skip writemask
+ SrcRegNum++;
+
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ ++SrcRegNum;
+
+ EmitMemModRMByte(MI, CurOp,
+ GetX86RegNum(MI.getOperand(SrcRegNum)),
+ TSFlags, CurByte, OS, Fixups, STI);
+ CurOp = SrcRegNum + 1;
+ break;
+
+ case X86II::MRMSrcReg:
+ EmitByte(BaseOpcode, CurByte, OS);
+ SrcRegNum = CurOp + 1;
+
+ if (HasEVEX_K) // Skip writemask
+ SrcRegNum++;
+
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ ++SrcRegNum;
+
+ if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
+ ++SrcRegNum;
+
+ EmitRegModRMByte(MI.getOperand(SrcRegNum),
+ GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
+
+ // 2 operands skipped with HasMemOp4, compensate accordingly
+ CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
+ if (HasVEX_4VOp3)
+ ++CurOp;
+ // do not count the rounding control operand
+ if (HasEVEX_RC)
+ NumOps--;
+ break;
+
+ case X86II::MRMSrcMem: {
+ int AddrOperands = X86::AddrNumOperands;
+ unsigned FirstMemOp = CurOp+1;
+
+ if (HasEVEX_K) { // Skip writemask
+ ++AddrOperands;
+ ++FirstMemOp;
+ }
+
+ if (HasVEX_4V) {
+ ++AddrOperands;
+ ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
+ }
+ if (HasMemOp4) // Skip second register source (encoded in I8IMM)
+ ++FirstMemOp;
+
+ EmitByte(BaseOpcode, CurByte, OS);
+
+ EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
+ TSFlags, CurByte, OS, Fixups, STI);
+ CurOp += AddrOperands + 1;
+ if (HasVEX_4VOp3)
+ ++CurOp;
+ break;
+ }
+
+ case X86II::MRMXr:
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r: {
+ if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
+ ++CurOp;
+ if (HasEVEX_K) // Skip writemask
+ ++CurOp;
+ EmitByte(BaseOpcode, CurByte, OS);
+ uint64_t Form = TSFlags & X86II::FormMask;
+ EmitRegModRMByte(MI.getOperand(CurOp++),
+ (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
+ CurByte, OS);
+ break;
+ }
+
+ case X86II::MRMXm:
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m: {
+ if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
+ ++CurOp;
+ if (HasEVEX_K) // Skip writemask
+ ++CurOp;
+ EmitByte(BaseOpcode, CurByte, OS);
+ uint64_t Form = TSFlags & X86II::FormMask;
+ EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
+ TSFlags, CurByte, OS, Fixups, STI);
+ CurOp += X86::AddrNumOperands;
+ break;
+ }
+ case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
+ case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
+ case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
+ case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
+ case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
+ case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
+ case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
+ case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
+ case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
+ case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
+ case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
+ case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
+ case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
+ case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
+ case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
+ case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
+ case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
+ EmitByte(BaseOpcode, CurByte, OS);
+
+ unsigned char MRM;
+ switch (TSFlags & X86II::FormMask) {
+ default: llvm_unreachable("Invalid Form");
+ case X86II::MRM_C0: MRM = 0xC0; break;
+ case X86II::MRM_C1: MRM = 0xC1; break;
+ case X86II::MRM_C2: MRM = 0xC2; break;
+ case X86II::MRM_C3: MRM = 0xC3; break;
+ case X86II::MRM_C4: MRM = 0xC4; break;
+ case X86II::MRM_C8: MRM = 0xC8; break;
+ case X86II::MRM_C9: MRM = 0xC9; break;
+ case X86II::MRM_CA: MRM = 0xCA; break;
+ case X86II::MRM_CB: MRM = 0xCB; break;
+ case X86II::MRM_D0: MRM = 0xD0; break;
+ case X86II::MRM_D1: MRM = 0xD1; break;
+ case X86II::MRM_D4: MRM = 0xD4; break;
+ case X86II::MRM_D5: MRM = 0xD5; break;
+ case X86II::MRM_D6: MRM = 0xD6; break;
+ case X86II::MRM_D8: MRM = 0xD8; break;
+ case X86II::MRM_D9: MRM = 0xD9; break;
+ case X86II::MRM_DA: MRM = 0xDA; break;
+ case X86II::MRM_DB: MRM = 0xDB; break;
+ case X86II::MRM_DC: MRM = 0xDC; break;
+ case X86II::MRM_DD: MRM = 0xDD; break;
+ case X86II::MRM_DE: MRM = 0xDE; break;
+ case X86II::MRM_DF: MRM = 0xDF; break;
+ case X86II::MRM_E0: MRM = 0xE0; break;
+ case X86II::MRM_E1: MRM = 0xE1; break;
+ case X86II::MRM_E2: MRM = 0xE2; break;
+ case X86II::MRM_E3: MRM = 0xE3; break;
+ case X86II::MRM_E4: MRM = 0xE4; break;
+ case X86II::MRM_E5: MRM = 0xE5; break;
+ case X86II::MRM_E8: MRM = 0xE8; break;
+ case X86II::MRM_E9: MRM = 0xE9; break;
+ case X86II::MRM_EA: MRM = 0xEA; break;
+ case X86II::MRM_EB: MRM = 0xEB; break;
+ case X86II::MRM_EC: MRM = 0xEC; break;
+ case X86II::MRM_ED: MRM = 0xED; break;
+ case X86II::MRM_EE: MRM = 0xEE; break;
+ case X86II::MRM_F0: MRM = 0xF0; break;
+ case X86II::MRM_F1: MRM = 0xF1; break;
+ case X86II::MRM_F2: MRM = 0xF2; break;
+ case X86II::MRM_F3: MRM = 0xF3; break;
+ case X86II::MRM_F4: MRM = 0xF4; break;
+ case X86II::MRM_F5: MRM = 0xF5; break;
+ case X86II::MRM_F6: MRM = 0xF6; break;
+ case X86II::MRM_F7: MRM = 0xF7; break;
+ case X86II::MRM_F8: MRM = 0xF8; break;
+ case X86II::MRM_F9: MRM = 0xF9; break;
+ case X86II::MRM_FA: MRM = 0xFA; break;
+ case X86II::MRM_FB: MRM = 0xFB; break;
+ case X86II::MRM_FC: MRM = 0xFC; break;
+ case X86II::MRM_FD: MRM = 0xFD; break;
+ case X86II::MRM_FE: MRM = 0xFE; break;
+ case X86II::MRM_FF: MRM = 0xFF; break;
+ }
+ EmitByte(MRM, CurByte, OS);
+ break;
+ }
+
+ // If there is a remaining operand, it must be a trailing immediate. Emit it
+ // according to the right size for the instruction. Some instructions
+ // (SSE4a extrq and insertq) have two trailing immediates.
+ while (CurOp != NumOps && NumOps - CurOp <= 2) {
+ // The last source register of a 4 operand instruction in AVX is encoded
+ // in bits[7:4] of a immediate byte.
+ if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
+ const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
+ : CurOp);
+ ++CurOp;
+ unsigned RegNum = GetX86RegNum(MO) << 4;
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
+ RegNum |= 1 << 7;
+ // If there is an additional 5th operand it must be an immediate, which
+ // is encoded in bits[3:0]
+ if (CurOp != NumOps) {
+ const MCOperand &MIMM = MI.getOperand(CurOp++);
+ if (MIMM.isImm()) {
+ unsigned Val = MIMM.getImm();
+ assert(Val < 16 && "Immediate operand value out of range");
+ RegNum |= Val;
+ }
+ }
+ EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
+ CurByte, OS, Fixups);
+ } else {
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+ X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+ CurByte, OS, Fixups);
+ }
+ }
+
+ if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
+ EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
+
+#ifndef NDEBUG
+ // FIXME: Verify.
+ if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
+ errs() << "Cannot encode all operands of: ";
+ MI.dump();
+ errs() << '\n';
+ abort();
+ }
+#endif
+}
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp
new file mode 100644
index 0000000..3bfad6c
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp
@@ -0,0 +1,460 @@
+//===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides X86 specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86MCTargetDesc.h"
+#include "InstPrinter/X86ATTInstPrinter.h"
+#include "InstPrinter/X86IntelInstPrinter.h"
+#include "X86MCAsmInfo.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCInstrAnalysis.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/TargetRegistry.h"
+
+#if _MSC_VER
+#include <intrin.h>
+#endif
+
+using namespace llvm;
+
+#define GET_REGINFO_MC_DESC
+#include "X86GenRegisterInfo.inc"
+
+#define GET_INSTRINFO_MC_DESC
+#include "X86GenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "X86GenSubtargetInfo.inc"
+
+std::string X86_MC::ParseX86Triple(StringRef TT) {
+ Triple TheTriple(TT);
+ std::string FS;
+ if (TheTriple.getArch() == Triple::x86_64)
+ FS = "+64bit-mode,-32bit-mode,-16bit-mode";
+ else if (TheTriple.getEnvironment() != Triple::CODE16)
+ FS = "-64bit-mode,+32bit-mode,-16bit-mode";
+ else
+ FS = "-64bit-mode,-32bit-mode,+16bit-mode";
+
+ return FS;
+}
+
+/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
+/// specified arguments. If we can't run cpuid on the host, return true.
+bool X86_MC::GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
+ unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
+#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
+ #if defined(__GNUC__)
+ // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
+ asm ("movq\t%%rbx, %%rsi\n\t"
+ "cpuid\n\t"
+ "xchgq\t%%rbx, %%rsi\n\t"
+ : "=a" (*rEAX),
+ "=S" (*rEBX),
+ "=c" (*rECX),
+ "=d" (*rEDX)
+ : "a" (value));
+ return false;
+ #elif defined(_MSC_VER)
+ int registers[4];
+ __cpuid(registers, value);
+ *rEAX = registers[0];
+ *rEBX = registers[1];
+ *rECX = registers[2];
+ *rEDX = registers[3];
+ return false;
+ #else
+ return true;
+ #endif
+#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
+ #if defined(__GNUC__)
+ asm ("movl\t%%ebx, %%esi\n\t"
+ "cpuid\n\t"
+ "xchgl\t%%ebx, %%esi\n\t"
+ : "=a" (*rEAX),
+ "=S" (*rEBX),
+ "=c" (*rECX),
+ "=d" (*rEDX)
+ : "a" (value));
+ return false;
+ #elif defined(_MSC_VER)
+ __asm {
+ mov eax,value
+ cpuid
+ mov esi,rEAX
+ mov dword ptr [esi],eax
+ mov esi,rEBX
+ mov dword ptr [esi],ebx
+ mov esi,rECX
+ mov dword ptr [esi],ecx
+ mov esi,rEDX
+ mov dword ptr [esi],edx
+ }
+ return false;
+ #else
+ return true;
+ #endif
+#else
+ return true;
+#endif
+}
+
+/// GetCpuIDAndInfoEx - Execute the specified cpuid with subleaf and return the
+/// 4 values in the specified arguments. If we can't run cpuid on the host,
+/// return true.
+bool X86_MC::GetCpuIDAndInfoEx(unsigned value, unsigned subleaf, unsigned *rEAX,
+ unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
+#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
+ #if defined(__GNUC__)
+ // gcc desn't know cpuid would clobber ebx/rbx. Preseve it manually.
+ asm ("movq\t%%rbx, %%rsi\n\t"
+ "cpuid\n\t"
+ "xchgq\t%%rbx, %%rsi\n\t"
+ : "=a" (*rEAX),
+ "=S" (*rEBX),
+ "=c" (*rECX),
+ "=d" (*rEDX)
+ : "a" (value),
+ "c" (subleaf));
+ return false;
+ #elif defined(_MSC_VER)
+ // __cpuidex was added in MSVC++ 9.0 SP1
+ #if (_MSC_VER > 1500) || (_MSC_VER == 1500 && _MSC_FULL_VER >= 150030729)
+ int registers[4];
+ __cpuidex(registers, value, subleaf);
+ *rEAX = registers[0];
+ *rEBX = registers[1];
+ *rECX = registers[2];
+ *rEDX = registers[3];
+ return false;
+ #else
+ return true;
+ #endif
+ #else
+ return true;
+ #endif
+#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
+ #if defined(__GNUC__)
+ asm ("movl\t%%ebx, %%esi\n\t"
+ "cpuid\n\t"
+ "xchgl\t%%ebx, %%esi\n\t"
+ : "=a" (*rEAX),
+ "=S" (*rEBX),
+ "=c" (*rECX),
+ "=d" (*rEDX)
+ : "a" (value),
+ "c" (subleaf));
+ return false;
+ #elif defined(_MSC_VER)
+ __asm {
+ mov eax,value
+ mov ecx,subleaf
+ cpuid
+ mov esi,rEAX
+ mov dword ptr [esi],eax
+ mov esi,rEBX
+ mov dword ptr [esi],ebx
+ mov esi,rECX
+ mov dword ptr [esi],ecx
+ mov esi,rEDX
+ mov dword ptr [esi],edx
+ }
+ return false;
+ #else
+ return true;
+ #endif
+#else
+ return true;
+#endif
+}
+
+void X86_MC::DetectFamilyModel(unsigned EAX, unsigned &Family,
+ unsigned &Model) {
+ Family = (EAX >> 8) & 0xf; // Bits 8 - 11
+ Model = (EAX >> 4) & 0xf; // Bits 4 - 7
+ if (Family == 6 || Family == 0xf) {
+ if (Family == 0xf)
+ // Examine extended family ID if family ID is F.
+ Family += (EAX >> 20) & 0xff; // Bits 20 - 27
+ // Examine extended model ID if family ID is 6 or F.
+ Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
+ }
+}
+
+unsigned X86_MC::getDwarfRegFlavour(Triple TT, bool isEH) {
+ if (TT.getArch() == Triple::x86_64)
+ return DWARFFlavour::X86_64;
+
+ if (TT.isOSDarwin())
+ return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
+ if (TT.isOSCygMing())
+ // Unsupported by now, just quick fallback
+ return DWARFFlavour::X86_32_Generic;
+ return DWARFFlavour::X86_32_Generic;
+}
+
+void X86_MC::InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI) {
+ // FIXME: TableGen these.
+ for (unsigned Reg = X86::NoRegister+1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
+ unsigned SEH = MRI->getEncodingValue(Reg);
+ MRI->mapLLVMRegToSEHReg(Reg, SEH);
+ }
+}
+
+MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(StringRef TT, StringRef CPU,
+ StringRef FS) {
+ std::string ArchFS = X86_MC::ParseX86Triple(TT);
+ if (!FS.empty()) {
+ if (!ArchFS.empty())
+ ArchFS = ArchFS + "," + FS.str();
+ else
+ ArchFS = FS;
+ }
+
+ std::string CPUName = CPU;
+ if (CPUName.empty())
+ CPUName = "generic";
+
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+ InitX86MCSubtargetInfo(X, TT, CPUName, ArchFS);
+ return X;
+}
+
+static MCInstrInfo *createX86MCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitX86MCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createX86MCRegisterInfo(StringRef TT) {
+ Triple TheTriple(TT);
+ unsigned RA = (TheTriple.getArch() == Triple::x86_64)
+ ? X86::RIP // Should have dwarf #16.
+ : X86::EIP; // Should have dwarf #8.
+
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitX86MCRegisterInfo(X, RA,
+ X86_MC::getDwarfRegFlavour(TheTriple, false),
+ X86_MC::getDwarfRegFlavour(TheTriple, true),
+ RA);
+ X86_MC::InitLLVM2SEHRegisterMapping(X);
+ return X;
+}
+
+static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI, StringRef TT) {
+ Triple TheTriple(TT);
+ bool is64Bit = TheTriple.getArch() == Triple::x86_64;
+
+ MCAsmInfo *MAI;
+ if (TheTriple.isOSBinFormatMachO()) {
+ if (is64Bit)
+ MAI = new X86_64MCAsmInfoDarwin(TheTriple);
+ else
+ MAI = new X86MCAsmInfoDarwin(TheTriple);
+ } else if (TheTriple.isOSBinFormatELF()) {
+ // Force the use of an ELF container.
+ MAI = new X86ELFMCAsmInfo(TheTriple);
+ } else if (TheTriple.isWindowsMSVCEnvironment()) {
+ MAI = new X86MCAsmInfoMicrosoft(TheTriple);
+ } else if (TheTriple.isOSCygMing() ||
+ TheTriple.isWindowsItaniumEnvironment()) {
+ MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
+ } else {
+ // The default is ELF.
+ MAI = new X86ELFMCAsmInfo(TheTriple);
+ }
+
+ // Initialize initial frame state.
+ // Calculate amount of bytes used for return address storing
+ int stackGrowth = is64Bit ? -8 : -4;
+
+ // Initial state of the frame pointer is esp+stackGrowth.
+ unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
+ MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(
+ nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
+ MAI->addInitialFrameState(Inst);
+
+ // Add return address to move list
+ unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
+ MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
+ nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
+ MAI->addInitialFrameState(Inst2);
+
+ return MAI;
+}
+
+static MCCodeGenInfo *createX86MCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+
+ Triple T(TT);
+ bool is64Bit = T.getArch() == Triple::x86_64;
+
+ if (RM == Reloc::Default) {
+ // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
+ // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
+ // use static relocation model by default.
+ if (T.isOSDarwin()) {
+ if (is64Bit)
+ RM = Reloc::PIC_;
+ else
+ RM = Reloc::DynamicNoPIC;
+ } else if (T.isOSWindows() && is64Bit)
+ RM = Reloc::PIC_;
+ else
+ RM = Reloc::Static;
+ }
+
+ // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
+ // is defined as a model for code which may be used in static or dynamic
+ // executables but not necessarily a shared library. On X86-32 we just
+ // compile in -static mode, in x86-64 we use PIC.
+ if (RM == Reloc::DynamicNoPIC) {
+ if (is64Bit)
+ RM = Reloc::PIC_;
+ else if (!T.isOSDarwin())
+ RM = Reloc::Static;
+ }
+
+ // If we are on Darwin, disallow static relocation model in X86-64 mode, since
+ // the Mach-O file format doesn't support it.
+ if (RM == Reloc::Static && T.isOSDarwin() && is64Bit)
+ RM = Reloc::PIC_;
+
+ // For static codegen, if we're not already set, use Small codegen.
+ if (CM == CodeModel::Default)
+ CM = CodeModel::Small;
+ else if (CM == CodeModel::JITDefault)
+ // 64-bit JIT places everything in the same buffer except external funcs.
+ CM = is64Bit ? CodeModel::Large : CodeModel::Small;
+
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
+ MCContext &Ctx, MCAsmBackend &MAB,
+ raw_ostream &_OS,
+ MCCodeEmitter *_Emitter,
+ const MCSubtargetInfo &STI,
+ bool RelaxAll,
+ bool NoExecStack) {
+ Triple TheTriple(TT);
+
+ switch (TheTriple.getObjectFormat()) {
+ default: llvm_unreachable("unsupported object format");
+ case Triple::MachO:
+ return createMachOStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll);
+ case Triple::COFF:
+ assert(TheTriple.isOSWindows() && "only Windows COFF is supported");
+ return createX86WinCOFFStreamer(Ctx, MAB, _Emitter, _OS, RelaxAll);
+ case Triple::ELF:
+ return createELFStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll, NoExecStack);
+ }
+}
+
+static MCInstPrinter *createX86MCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ if (SyntaxVariant == 0)
+ return new X86ATTInstPrinter(MAI, MII, MRI);
+ if (SyntaxVariant == 1)
+ return new X86IntelInstPrinter(MAI, MII, MRI);
+ return nullptr;
+}
+
+static MCRelocationInfo *createX86MCRelocationInfo(StringRef TT,
+ MCContext &Ctx) {
+ Triple TheTriple(TT);
+ if (TheTriple.isOSBinFormatMachO() && TheTriple.getArch() == Triple::x86_64)
+ return createX86_64MachORelocationInfo(Ctx);
+ else if (TheTriple.isOSBinFormatELF())
+ return createX86_64ELFRelocationInfo(Ctx);
+ // Default to the stock relocation info.
+ return llvm::createMCRelocationInfo(TT, Ctx);
+}
+
+static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
+ return new MCInstrAnalysis(Info);
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeX86TargetMC() {
+ // Register the MC asm info.
+ RegisterMCAsmInfoFn A(TheX86_32Target, createX86MCAsmInfo);
+ RegisterMCAsmInfoFn B(TheX86_64Target, createX86MCAsmInfo);
+
+ // Register the MC codegen info.
+ RegisterMCCodeGenInfoFn C(TheX86_32Target, createX86MCCodeGenInfo);
+ RegisterMCCodeGenInfoFn D(TheX86_64Target, createX86MCCodeGenInfo);
+
+ // Register the MC instruction info.
+ TargetRegistry::RegisterMCInstrInfo(TheX86_32Target, createX86MCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheX86_64Target, createX86MCInstrInfo);
+
+ // Register the MC register info.
+ TargetRegistry::RegisterMCRegInfo(TheX86_32Target, createX86MCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheX86_64Target, createX86MCRegisterInfo);
+
+ // Register the MC subtarget info.
+ TargetRegistry::RegisterMCSubtargetInfo(TheX86_32Target,
+ X86_MC::createX86MCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheX86_64Target,
+ X86_MC::createX86MCSubtargetInfo);
+
+ // Register the MC instruction analyzer.
+ TargetRegistry::RegisterMCInstrAnalysis(TheX86_32Target,
+ createX86MCInstrAnalysis);
+ TargetRegistry::RegisterMCInstrAnalysis(TheX86_64Target,
+ createX86MCInstrAnalysis);
+
+ // Register the code emitter.
+ TargetRegistry::RegisterMCCodeEmitter(TheX86_32Target,
+ createX86MCCodeEmitter);
+ TargetRegistry::RegisterMCCodeEmitter(TheX86_64Target,
+ createX86MCCodeEmitter);
+
+ // Register the asm backend.
+ TargetRegistry::RegisterMCAsmBackend(TheX86_32Target,
+ createX86_32AsmBackend);
+ TargetRegistry::RegisterMCAsmBackend(TheX86_64Target,
+ createX86_64AsmBackend);
+
+ // Register the object streamer.
+ TargetRegistry::RegisterMCObjectStreamer(TheX86_32Target,
+ createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheX86_64Target,
+ createMCStreamer);
+
+ // Register the MCInstPrinter.
+ TargetRegistry::RegisterMCInstPrinter(TheX86_32Target,
+ createX86MCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheX86_64Target,
+ createX86MCInstPrinter);
+
+ // Register the MC relocation info.
+ TargetRegistry::RegisterMCRelocationInfo(TheX86_32Target,
+ createX86MCRelocationInfo);
+ TargetRegistry::RegisterMCRelocationInfo(TheX86_64Target,
+ createX86MCRelocationInfo);
+}
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h
new file mode 100644
index 0000000..ebe74cf
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h
@@ -0,0 +1,133 @@
+//===-- X86MCTargetDesc.h - X86 Target Descriptions -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides X86 specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86MCTARGETDESC_H
+#define X86MCTARGETDESC_H
+
+#include "llvm/Support/DataTypes.h"
+#include <string>
+
+namespace llvm {
+class MCAsmBackend;
+class MCCodeEmitter;
+class MCContext;
+class MCInstrInfo;
+class MCObjectWriter;
+class MCRegisterInfo;
+class MCSubtargetInfo;
+class MCRelocationInfo;
+class MCStreamer;
+class Target;
+class Triple;
+class StringRef;
+class raw_ostream;
+
+extern Target TheX86_32Target, TheX86_64Target;
+
+/// DWARFFlavour - Flavour of dwarf regnumbers
+///
+namespace DWARFFlavour {
+ enum {
+ X86_64 = 0, X86_32_DarwinEH = 1, X86_32_Generic = 2
+ };
+}
+
+/// N86 namespace - Native X86 register numbers
+///
+namespace N86 {
+ enum {
+ EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
+ };
+}
+
+namespace X86_MC {
+ std::string ParseX86Triple(StringRef TT);
+
+ /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in
+ /// the specified arguments. If we can't run cpuid on the host, return true.
+ bool GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
+ unsigned *rEBX, unsigned *rECX, unsigned *rEDX);
+ /// GetCpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
+ /// the 4 values in the specified arguments. If we can't run cpuid on the
+ /// host, return true.
+ bool GetCpuIDAndInfoEx(unsigned value, unsigned subleaf, unsigned *rEAX,
+ unsigned *rEBX, unsigned *rECX, unsigned *rEDX);
+
+ void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model);
+
+ unsigned getDwarfRegFlavour(Triple TT, bool isEH);
+
+ void InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI);
+
+ /// createX86MCSubtargetInfo - Create a X86 MCSubtargetInfo instance.
+ /// This is exposed so Asm parser, etc. do not need to go through
+ /// TargetRegistry.
+ MCSubtargetInfo *createX86MCSubtargetInfo(StringRef TT, StringRef CPU,
+ StringRef FS);
+}
+
+MCCodeEmitter *createX86MCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+
+MCAsmBackend *createX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU);
+MCAsmBackend *createX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU);
+
+/// createX86WinCOFFStreamer - Construct an X86 Windows COFF machine code
+/// streamer which will generate PE/COFF format object files.
+///
+/// Takes ownership of \p AB and \p CE.
+MCStreamer *createX86WinCOFFStreamer(MCContext &C, MCAsmBackend &AB,
+ MCCodeEmitter *CE, raw_ostream &OS,
+ bool RelaxAll);
+
+/// createX86MachObjectWriter - Construct an X86 Mach-O object writer.
+MCObjectWriter *createX86MachObjectWriter(raw_ostream &OS,
+ bool Is64Bit,
+ uint32_t CPUType,
+ uint32_t CPUSubtype);
+
+/// createX86ELFObjectWriter - Construct an X86 ELF object writer.
+MCObjectWriter *createX86ELFObjectWriter(raw_ostream &OS,
+ bool IsELF64,
+ uint8_t OSABI,
+ uint16_t EMachine);
+/// createX86WinCOFFObjectWriter - Construct an X86 Win COFF object writer.
+MCObjectWriter *createX86WinCOFFObjectWriter(raw_ostream &OS, bool Is64Bit);
+
+/// createX86_64MachORelocationInfo - Construct X86-64 Mach-O relocation info.
+MCRelocationInfo *createX86_64MachORelocationInfo(MCContext &Ctx);
+
+/// createX86_64ELFORelocationInfo - Construct X86-64 ELF relocation info.
+MCRelocationInfo *createX86_64ELFRelocationInfo(MCContext &Ctx);
+} // End llvm namespace
+
+
+// Defines symbolic names for X86 registers. This defines a mapping from
+// register name to register number.
+//
+#define GET_REGINFO_ENUM
+#include "X86GenRegisterInfo.inc"
+
+// Defines symbolic names for the X86 instructions.
+//
+#define GET_INSTRINFO_ENUM
+#include "X86GenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "X86GenSubtargetInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachORelocationInfo.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachORelocationInfo.cpp
new file mode 100644
index 0000000..3b81d53
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachORelocationInfo.cpp
@@ -0,0 +1,116 @@
+//===-- X86MachORelocationInfo.cpp ----------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCRelocationInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Object/MachO.h"
+
+using namespace llvm;
+using namespace object;
+using namespace MachO;
+
+namespace {
+class X86_64MachORelocationInfo : public MCRelocationInfo {
+public:
+ X86_64MachORelocationInfo(MCContext &Ctx) : MCRelocationInfo(Ctx) {}
+
+ const MCExpr *createExprForRelocation(RelocationRef Rel) override {
+ const MachOObjectFile *Obj = cast<MachOObjectFile>(Rel.getObjectFile());
+
+ uint64_t RelType; Rel.getType(RelType);
+ symbol_iterator SymI = Rel.getSymbol();
+
+ StringRef SymName; SymI->getName(SymName);
+ uint64_t SymAddr; SymI->getAddress(SymAddr);
+
+ any_relocation_info RE = Obj->getRelocation(Rel.getRawDataRefImpl());
+ bool isPCRel = Obj->getAnyRelocationPCRel(RE);
+
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(SymName);
+ // FIXME: check that the value is actually the same.
+ if (Sym->isVariable() == false)
+ Sym->setVariableValue(MCConstantExpr::Create(SymAddr, Ctx));
+ const MCExpr *Expr = nullptr;
+
+ switch(RelType) {
+ case X86_64_RELOC_TLV:
+ Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
+ break;
+ case X86_64_RELOC_SIGNED_4:
+ Expr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Sym, Ctx),
+ MCConstantExpr::Create(4, Ctx),
+ Ctx);
+ break;
+ case X86_64_RELOC_SIGNED_2:
+ Expr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Sym, Ctx),
+ MCConstantExpr::Create(2, Ctx),
+ Ctx);
+ break;
+ case X86_64_RELOC_SIGNED_1:
+ Expr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Sym, Ctx),
+ MCConstantExpr::Create(1, Ctx),
+ Ctx);
+ break;
+ case X86_64_RELOC_GOT_LOAD:
+ Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
+ break;
+ case X86_64_RELOC_GOT:
+ Expr = MCSymbolRefExpr::Create(Sym, isPCRel ?
+ MCSymbolRefExpr::VK_GOTPCREL :
+ MCSymbolRefExpr::VK_GOT,
+ Ctx);
+ break;
+ case X86_64_RELOC_SUBTRACTOR:
+ {
+ Rel.moveNext();
+ any_relocation_info RENext =
+ Obj->getRelocation(Rel.getRawDataRefImpl());
+
+ // X86_64_SUBTRACTOR must be followed by a relocation of type
+ // X86_64_RELOC_UNSIGNED.
+ // NOTE: Scattered relocations don't exist on x86_64.
+ unsigned RType = Obj->getAnyRelocationType(RENext);
+ if (RType != X86_64_RELOC_UNSIGNED)
+ report_fatal_error("Expected X86_64_RELOC_UNSIGNED after "
+ "X86_64_RELOC_SUBTRACTOR.");
+
+ const MCExpr *LHS = MCSymbolRefExpr::Create(Sym, Ctx);
+
+ symbol_iterator RSymI = Rel.getSymbol();
+ uint64_t RSymAddr;
+ RSymI->getAddress(RSymAddr);
+ StringRef RSymName;
+ RSymI->getName(RSymName);
+
+ MCSymbol *RSym = Ctx.GetOrCreateSymbol(RSymName);
+ if (RSym->isVariable() == false)
+ RSym->setVariableValue(MCConstantExpr::Create(RSymAddr, Ctx));
+
+ const MCExpr *RHS = MCSymbolRefExpr::Create(RSym, Ctx);
+
+ Expr = MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
+ break;
+ }
+ default:
+ Expr = MCSymbolRefExpr::Create(Sym, Ctx);
+ break;
+ }
+ return Expr;
+ }
+};
+} // End unnamed namespace
+
+/// createX86_64MachORelocationInfo - Construct an X86-64 Mach-O RelocationInfo.
+MCRelocationInfo *llvm::createX86_64MachORelocationInfo(MCContext &Ctx) {
+ return new X86_64MachORelocationInfo(Ctx);
+}
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp
new file mode 100644
index 0000000..ead3338
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp
@@ -0,0 +1,609 @@
+//===-- X86MachObjectWriter.cpp - X86 Mach-O Writer -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "MCTargetDesc/X86FixupKinds.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCAsmLayout.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCMachObjectWriter.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/MachO.h"
+
+using namespace llvm;
+
+namespace {
+class X86MachObjectWriter : public MCMachObjectTargetWriter {
+ bool RecordScatteredRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ unsigned Log2Size,
+ uint64_t &FixedValue);
+ void RecordTLVPRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ uint64_t &FixedValue);
+
+ void RecordX86Relocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ uint64_t &FixedValue);
+ void RecordX86_64Relocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ uint64_t &FixedValue);
+public:
+ X86MachObjectWriter(bool Is64Bit, uint32_t CPUType,
+ uint32_t CPUSubtype)
+ : MCMachObjectTargetWriter(Is64Bit, CPUType, CPUSubtype,
+ /*UseAggressiveSymbolFolding=*/Is64Bit) {}
+
+ void RecordRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFragment *Fragment, const MCFixup &Fixup,
+ MCValue Target, uint64_t &FixedValue) override {
+ if (Writer->is64Bit())
+ RecordX86_64Relocation(Writer, Asm, Layout, Fragment, Fixup, Target,
+ FixedValue);
+ else
+ RecordX86Relocation(Writer, Asm, Layout, Fragment, Fixup, Target,
+ FixedValue);
+ }
+};
+}
+
+static bool isFixupKindRIPRel(unsigned Kind) {
+ return Kind == X86::reloc_riprel_4byte ||
+ Kind == X86::reloc_riprel_4byte_movq_load;
+}
+
+static unsigned getFixupKindLog2Size(unsigned Kind) {
+ switch (Kind) {
+ default:
+ llvm_unreachable("invalid fixup kind!");
+ case FK_PCRel_1:
+ case FK_Data_1: return 0;
+ case FK_PCRel_2:
+ case FK_Data_2: return 1;
+ case FK_PCRel_4:
+ // FIXME: Remove these!!!
+ case X86::reloc_riprel_4byte:
+ case X86::reloc_riprel_4byte_movq_load:
+ case X86::reloc_signed_4byte:
+ case FK_Data_4: return 2;
+ case FK_Data_8: return 3;
+ }
+}
+
+void X86MachObjectWriter::RecordX86_64Relocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ uint64_t &FixedValue) {
+ unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
+ unsigned IsRIPRel = isFixupKindRIPRel(Fixup.getKind());
+ unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
+
+ // See <reloc.h>.
+ uint32_t FixupOffset =
+ Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
+ uint32_t FixupAddress =
+ Writer->getFragmentAddress(Fragment, Layout) + Fixup.getOffset();
+ int64_t Value = 0;
+ unsigned Index = 0;
+ unsigned IsExtern = 0;
+ unsigned Type = 0;
+
+ Value = Target.getConstant();
+
+ if (IsPCRel) {
+ // Compensate for the relocation offset, Darwin x86_64 relocations only have
+ // the addend and appear to have attempted to define it to be the actual
+ // expression addend without the PCrel bias. However, instructions with data
+ // following the relocation are not accommodated for (see comment below
+ // regarding SIGNED{1,2,4}), so it isn't exactly that either.
+ Value += 1LL << Log2Size;
+ }
+
+ if (Target.isAbsolute()) { // constant
+ // SymbolNum of 0 indicates the absolute section.
+ Type = MachO::X86_64_RELOC_UNSIGNED;
+ Index = 0;
+
+ // FIXME: I believe this is broken, I don't think the linker can understand
+ // it. I think it would require a local relocation, but I'm not sure if that
+ // would work either. The official way to get an absolute PCrel relocation
+ // is to use an absolute symbol (which we don't support yet).
+ if (IsPCRel) {
+ IsExtern = 1;
+ Type = MachO::X86_64_RELOC_BRANCH;
+ }
+ } else if (Target.getSymB()) { // A - B + constant
+ const MCSymbol *A = &Target.getSymA()->getSymbol();
+ if (A->isTemporary())
+ A = &A->AliasedSymbol();
+ const MCSymbolData &A_SD = Asm.getSymbolData(*A);
+ const MCSymbolData *A_Base = Asm.getAtom(&A_SD);
+
+ const MCSymbol *B = &Target.getSymB()->getSymbol();
+ if (B->isTemporary())
+ B = &B->AliasedSymbol();
+ const MCSymbolData &B_SD = Asm.getSymbolData(*B);
+ const MCSymbolData *B_Base = Asm.getAtom(&B_SD);
+
+ // Neither symbol can be modified.
+ if (Target.getSymA()->getKind() != MCSymbolRefExpr::VK_None ||
+ Target.getSymB()->getKind() != MCSymbolRefExpr::VK_None)
+ report_fatal_error("unsupported relocation of modified symbol", false);
+
+ // We don't support PCrel relocations of differences. Darwin 'as' doesn't
+ // implement most of these correctly.
+ if (IsPCRel)
+ report_fatal_error("unsupported pc-relative relocation of difference",
+ false);
+
+ // The support for the situation where one or both of the symbols would
+ // require a local relocation is handled just like if the symbols were
+ // external. This is certainly used in the case of debug sections where the
+ // section has only temporary symbols and thus the symbols don't have base
+ // symbols. This is encoded using the section ordinal and non-extern
+ // relocation entries.
+
+ // Darwin 'as' doesn't emit correct relocations for this (it ends up with a
+ // single SIGNED relocation); reject it for now. Except the case where both
+ // symbols don't have a base, equal but both NULL.
+ if (A_Base == B_Base && A_Base)
+ report_fatal_error("unsupported relocation with identical base", false);
+
+ // A subtraction expression where both symbols are undefined is a
+ // non-relocatable expression.
+ if (A->isUndefined() && B->isUndefined())
+ report_fatal_error("unsupported relocation with subtraction expression",
+ false);
+
+ Value += Writer->getSymbolAddress(&A_SD, Layout) -
+ (!A_Base ? 0 : Writer->getSymbolAddress(A_Base, Layout));
+ Value -= Writer->getSymbolAddress(&B_SD, Layout) -
+ (!B_Base ? 0 : Writer->getSymbolAddress(B_Base, Layout));
+
+ if (A_Base) {
+ Index = A_Base->getIndex();
+ IsExtern = 1;
+ }
+ else {
+ Index = A_SD.getFragment()->getParent()->getOrdinal() + 1;
+ IsExtern = 0;
+ }
+ Type = MachO::X86_64_RELOC_UNSIGNED;
+
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = FixupOffset;
+ MRE.r_word1 = ((Index << 0) |
+ (IsPCRel << 24) |
+ (Log2Size << 25) |
+ (IsExtern << 27) |
+ (Type << 28));
+ Writer->addRelocation(Fragment->getParent(), MRE);
+
+ if (B_Base) {
+ Index = B_Base->getIndex();
+ IsExtern = 1;
+ }
+ else {
+ Index = B_SD.getFragment()->getParent()->getOrdinal() + 1;
+ IsExtern = 0;
+ }
+ Type = MachO::X86_64_RELOC_SUBTRACTOR;
+ } else {
+ const MCSymbol *Symbol = &Target.getSymA()->getSymbol();
+ const MCSymbolData &SD = Asm.getSymbolData(*Symbol);
+ const MCSymbolData *Base = Asm.getAtom(&SD);
+
+ // Relocations inside debug sections always use local relocations when
+ // possible. This seems to be done because the debugger doesn't fully
+ // understand x86_64 relocation entries, and expects to find values that
+ // have already been fixed up.
+ if (Symbol->isInSection()) {
+ const MCSectionMachO &Section = static_cast<const MCSectionMachO&>(
+ Fragment->getParent()->getSection());
+ if (Section.hasAttribute(MachO::S_ATTR_DEBUG))
+ Base = nullptr;
+ }
+
+ // x86_64 almost always uses external relocations, except when there is no
+ // symbol to use as a base address (a local symbol with no preceding
+ // non-local symbol).
+ if (Base) {
+ Index = Base->getIndex();
+ IsExtern = 1;
+
+ // Add the local offset, if needed.
+ if (Base != &SD)
+ Value += Layout.getSymbolOffset(&SD) - Layout.getSymbolOffset(Base);
+ } else if (Symbol->isInSection() && !Symbol->isVariable()) {
+ // The index is the section ordinal (1-based).
+ Index = SD.getFragment()->getParent()->getOrdinal() + 1;
+ IsExtern = 0;
+ Value += Writer->getSymbolAddress(&SD, Layout);
+
+ if (IsPCRel)
+ Value -= FixupAddress + (1 << Log2Size);
+ } else if (Symbol->isVariable()) {
+ const MCExpr *Value = Symbol->getVariableValue();
+ int64_t Res;
+ bool isAbs = Value->EvaluateAsAbsolute(Res, Layout,
+ Writer->getSectionAddressMap());
+ if (isAbs) {
+ FixedValue = Res;
+ return;
+ } else {
+ report_fatal_error("unsupported relocation of variable '" +
+ Symbol->getName() + "'", false);
+ }
+ } else {
+ report_fatal_error("unsupported relocation of undefined symbol '" +
+ Symbol->getName() + "'", false);
+ }
+
+ MCSymbolRefExpr::VariantKind Modifier = Target.getSymA()->getKind();
+ if (IsPCRel) {
+ if (IsRIPRel) {
+ if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
+ // x86_64 distinguishes movq foo@GOTPCREL so that the linker can
+ // rewrite the movq to an leaq at link time if the symbol ends up in
+ // the same linkage unit.
+ if (unsigned(Fixup.getKind()) == X86::reloc_riprel_4byte_movq_load)
+ Type = MachO::X86_64_RELOC_GOT_LOAD;
+ else
+ Type = MachO::X86_64_RELOC_GOT;
+ } else if (Modifier == MCSymbolRefExpr::VK_TLVP) {
+ Type = MachO::X86_64_RELOC_TLV;
+ } else if (Modifier != MCSymbolRefExpr::VK_None) {
+ report_fatal_error("unsupported symbol modifier in relocation",
+ false);
+ } else {
+ Type = MachO::X86_64_RELOC_SIGNED;
+
+ // The Darwin x86_64 relocation format has a problem where it cannot
+ // encode an address (L<foo> + <constant>) which is outside the atom
+ // containing L<foo>. Generally, this shouldn't occur but it does
+ // happen when we have a RIPrel instruction with data following the
+ // relocation entry (e.g., movb $012, L0(%rip)). Even with the PCrel
+ // adjustment Darwin x86_64 uses, the offset is still negative and the
+ // linker has no way to recognize this.
+ //
+ // To work around this, Darwin uses several special relocation types
+ // to indicate the offsets. However, the specification or
+ // implementation of these seems to also be incomplete; they should
+ // adjust the addend as well based on the actual encoded instruction
+ // (the additional bias), but instead appear to just look at the final
+ // offset.
+ switch (-(Target.getConstant() + (1LL << Log2Size))) {
+ case 1: Type = MachO::X86_64_RELOC_SIGNED_1; break;
+ case 2: Type = MachO::X86_64_RELOC_SIGNED_2; break;
+ case 4: Type = MachO::X86_64_RELOC_SIGNED_4; break;
+ }
+ }
+ } else {
+ if (Modifier != MCSymbolRefExpr::VK_None)
+ report_fatal_error("unsupported symbol modifier in branch "
+ "relocation", false);
+
+ Type = MachO::X86_64_RELOC_BRANCH;
+ }
+ } else {
+ if (Modifier == MCSymbolRefExpr::VK_GOT) {
+ Type = MachO::X86_64_RELOC_GOT;
+ } else if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
+ // GOTPCREL is allowed as a modifier on non-PCrel instructions, in which
+ // case all we do is set the PCrel bit in the relocation entry; this is
+ // used with exception handling, for example. The source is required to
+ // include any necessary offset directly.
+ Type = MachO::X86_64_RELOC_GOT;
+ IsPCRel = 1;
+ } else if (Modifier == MCSymbolRefExpr::VK_TLVP) {
+ report_fatal_error("TLVP symbol modifier should have been rip-rel",
+ false);
+ } else if (Modifier != MCSymbolRefExpr::VK_None)
+ report_fatal_error("unsupported symbol modifier in relocation", false);
+ else {
+ Type = MachO::X86_64_RELOC_UNSIGNED;
+ unsigned Kind = Fixup.getKind();
+ if (Kind == X86::reloc_signed_4byte)
+ report_fatal_error("32-bit absolute addressing is not supported in "
+ "64-bit mode", false);
+ }
+ }
+ }
+
+ // x86_64 always writes custom values into the fixups.
+ FixedValue = Value;
+
+ // struct relocation_info (8 bytes)
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = FixupOffset;
+ MRE.r_word1 = ((Index << 0) |
+ (IsPCRel << 24) |
+ (Log2Size << 25) |
+ (IsExtern << 27) |
+ (Type << 28));
+ Writer->addRelocation(Fragment->getParent(), MRE);
+}
+
+bool X86MachObjectWriter::RecordScatteredRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ unsigned Log2Size,
+ uint64_t &FixedValue) {
+ uint64_t OriginalFixedValue = FixedValue;
+ uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
+ unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
+ unsigned Type = MachO::GENERIC_RELOC_VANILLA;
+
+ // See <reloc.h>.
+ const MCSymbol *A = &Target.getSymA()->getSymbol();
+ const MCSymbolData *A_SD = &Asm.getSymbolData(*A);
+
+ if (!A_SD->getFragment())
+ report_fatal_error("symbol '" + A->getName() +
+ "' can not be undefined in a subtraction expression",
+ false);
+
+ uint32_t Value = Writer->getSymbolAddress(A_SD, Layout);
+ uint64_t SecAddr = Writer->getSectionAddress(A_SD->getFragment()->getParent());
+ FixedValue += SecAddr;
+ uint32_t Value2 = 0;
+
+ if (const MCSymbolRefExpr *B = Target.getSymB()) {
+ const MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());
+
+ if (!B_SD->getFragment())
+ report_fatal_error("symbol '" + B->getSymbol().getName() +
+ "' can not be undefined in a subtraction expression",
+ false);
+
+ // Select the appropriate difference relocation type.
+ //
+ // Note that there is no longer any semantic difference between these two
+ // relocation types from the linkers point of view, this is done solely for
+ // pedantic compatibility with 'as'.
+ Type = A_SD->isExternal() ? (unsigned)MachO::GENERIC_RELOC_SECTDIFF :
+ (unsigned)MachO::GENERIC_RELOC_LOCAL_SECTDIFF;
+ Value2 = Writer->getSymbolAddress(B_SD, Layout);
+ FixedValue -= Writer->getSectionAddress(B_SD->getFragment()->getParent());
+ }
+
+ // Relocations are written out in reverse order, so the PAIR comes first.
+ if (Type == MachO::GENERIC_RELOC_SECTDIFF ||
+ Type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) {
+ // If the offset is too large to fit in a scattered relocation,
+ // we're hosed. It's an unfortunate limitation of the MachO format.
+ if (FixupOffset > 0xffffff) {
+ char Buffer[32];
+ format("0x%x", FixupOffset).print(Buffer, sizeof(Buffer));
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ Twine("Section too large, can't encode "
+ "r_address (") + Buffer +
+ ") into 24 bits of scattered "
+ "relocation entry.");
+ llvm_unreachable("fatal error returned?!");
+ }
+
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = ((0 << 0) | // r_address
+ (MachO::GENERIC_RELOC_PAIR << 24) | // r_type
+ (Log2Size << 28) |
+ (IsPCRel << 30) |
+ MachO::R_SCATTERED);
+ MRE.r_word1 = Value2;
+ Writer->addRelocation(Fragment->getParent(), MRE);
+ } else {
+ // If the offset is more than 24-bits, it won't fit in a scattered
+ // relocation offset field, so we fall back to using a non-scattered
+ // relocation. This is a bit risky, as if the offset reaches out of
+ // the block and the linker is doing scattered loading on this
+ // symbol, things can go badly.
+ //
+ // Required for 'as' compatibility.
+ if (FixupOffset > 0xffffff) {
+ FixedValue = OriginalFixedValue;
+ return false;
+ }
+ }
+
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = ((FixupOffset << 0) |
+ (Type << 24) |
+ (Log2Size << 28) |
+ (IsPCRel << 30) |
+ MachO::R_SCATTERED);
+ MRE.r_word1 = Value;
+ Writer->addRelocation(Fragment->getParent(), MRE);
+ return true;
+}
+
+void X86MachObjectWriter::RecordTLVPRelocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ uint64_t &FixedValue) {
+ assert(Target.getSymA()->getKind() == MCSymbolRefExpr::VK_TLVP &&
+ !is64Bit() &&
+ "Should only be called with a 32-bit TLVP relocation!");
+
+ unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
+ uint32_t Value = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
+ unsigned IsPCRel = 0;
+
+ // Get the symbol data.
+ const MCSymbolData *SD_A = &Asm.getSymbolData(Target.getSymA()->getSymbol());
+ unsigned Index = SD_A->getIndex();
+
+ // We're only going to have a second symbol in pic mode and it'll be a
+ // subtraction from the picbase. For 32-bit pic the addend is the difference
+ // between the picbase and the next address. For 32-bit static the addend is
+ // zero.
+ if (Target.getSymB()) {
+ // If this is a subtraction then we're pcrel.
+ uint32_t FixupAddress =
+ Writer->getFragmentAddress(Fragment, Layout) + Fixup.getOffset();
+ const MCSymbolData *SD_B =
+ &Asm.getSymbolData(Target.getSymB()->getSymbol());
+ IsPCRel = 1;
+ FixedValue = (FixupAddress - Writer->getSymbolAddress(SD_B, Layout) +
+ Target.getConstant());
+ FixedValue += 1ULL << Log2Size;
+ } else {
+ FixedValue = 0;
+ }
+
+ // struct relocation_info (8 bytes)
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = Value;
+ MRE.r_word1 = ((Index << 0) |
+ (IsPCRel << 24) |
+ (Log2Size << 25) |
+ (1 << 27) | // r_extern
+ (MachO::GENERIC_RELOC_TLV << 28)); // r_type
+ Writer->addRelocation(Fragment->getParent(), MRE);
+}
+
+void X86MachObjectWriter::RecordX86Relocation(MachObjectWriter *Writer,
+ const MCAssembler &Asm,
+ const MCAsmLayout &Layout,
+ const MCFragment *Fragment,
+ const MCFixup &Fixup,
+ MCValue Target,
+ uint64_t &FixedValue) {
+ unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
+ unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
+
+ // If this is a 32-bit TLVP reloc it's handled a bit differently.
+ if (Target.getSymA() &&
+ Target.getSymA()->getKind() == MCSymbolRefExpr::VK_TLVP) {
+ RecordTLVPRelocation(Writer, Asm, Layout, Fragment, Fixup, Target,
+ FixedValue);
+ return;
+ }
+
+ // If this is a difference or a defined symbol plus an offset, then we need a
+ // scattered relocation entry. Differences always require scattered
+ // relocations.
+ if (Target.getSymB()) {
+ RecordScatteredRelocation(Writer, Asm, Layout, Fragment, Fixup,
+ Target, Log2Size, FixedValue);
+ return;
+ }
+
+ // Get the symbol data, if any.
+ const MCSymbolData *SD = nullptr;
+ if (Target.getSymA())
+ SD = &Asm.getSymbolData(Target.getSymA()->getSymbol());
+
+ // If this is an internal relocation with an offset, it also needs a scattered
+ // relocation entry.
+ uint32_t Offset = Target.getConstant();
+ if (IsPCRel)
+ Offset += 1 << Log2Size;
+ // Try to record the scattered relocation if needed. Fall back to non
+ // scattered if necessary (see comments in RecordScatteredRelocation()
+ // for details).
+ if (Offset && SD && !Writer->doesSymbolRequireExternRelocation(SD) &&
+ RecordScatteredRelocation(Writer, Asm, Layout, Fragment, Fixup,
+ Target, Log2Size, FixedValue))
+ return;
+
+ // See <reloc.h>.
+ uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
+ unsigned Index = 0;
+ unsigned IsExtern = 0;
+ unsigned Type = 0;
+
+ if (Target.isAbsolute()) { // constant
+ // SymbolNum of 0 indicates the absolute section.
+ //
+ // FIXME: Currently, these are never generated (see code below). I cannot
+ // find a case where they are actually emitted.
+ Type = MachO::GENERIC_RELOC_VANILLA;
+ } else {
+ // Resolve constant variables.
+ if (SD->getSymbol().isVariable()) {
+ int64_t Res;
+ if (SD->getSymbol().getVariableValue()->EvaluateAsAbsolute(
+ Res, Layout, Writer->getSectionAddressMap())) {
+ FixedValue = Res;
+ return;
+ }
+ }
+
+ // Check whether we need an external or internal relocation.
+ if (Writer->doesSymbolRequireExternRelocation(SD)) {
+ IsExtern = 1;
+ Index = SD->getIndex();
+ // For external relocations, make sure to offset the fixup value to
+ // compensate for the addend of the symbol address, if it was
+ // undefined. This occurs with weak definitions, for example.
+ if (!SD->Symbol->isUndefined())
+ FixedValue -= Layout.getSymbolOffset(SD);
+ } else {
+ // The index is the section ordinal (1-based).
+ const MCSectionData &SymSD = Asm.getSectionData(
+ SD->getSymbol().getSection());
+ Index = SymSD.getOrdinal() + 1;
+ FixedValue += Writer->getSectionAddress(&SymSD);
+ }
+ if (IsPCRel)
+ FixedValue -= Writer->getSectionAddress(Fragment->getParent());
+
+ Type = MachO::GENERIC_RELOC_VANILLA;
+ }
+
+ // struct relocation_info (8 bytes)
+ MachO::any_relocation_info MRE;
+ MRE.r_word0 = FixupOffset;
+ MRE.r_word1 = ((Index << 0) |
+ (IsPCRel << 24) |
+ (Log2Size << 25) |
+ (IsExtern << 27) |
+ (Type << 28));
+ Writer->addRelocation(Fragment->getParent(), MRE);
+}
+
+MCObjectWriter *llvm::createX86MachObjectWriter(raw_ostream &OS,
+ bool Is64Bit,
+ uint32_t CPUType,
+ uint32_t CPUSubtype) {
+ return createMachObjectWriter(new X86MachObjectWriter(Is64Bit,
+ CPUType,
+ CPUSubtype),
+ OS, /*IsLittleEndian=*/true);
+}
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFObjectWriter.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFObjectWriter.cpp
new file mode 100644
index 0000000..40af822
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFObjectWriter.cpp
@@ -0,0 +1,95 @@
+//===-- X86WinCOFFObjectWriter.cpp - X86 Win COFF Writer ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86FixupKinds.h"
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/MC/MCWinCOFFObjectWriter.h"
+#include "llvm/Support/COFF.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace llvm;
+
+namespace llvm {
+ class MCObjectWriter;
+}
+
+namespace {
+ class X86WinCOFFObjectWriter : public MCWinCOFFObjectTargetWriter {
+ public:
+ X86WinCOFFObjectWriter(bool Is64Bit);
+ virtual ~X86WinCOFFObjectWriter();
+
+ unsigned getRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsCrossSection) const override;
+ };
+}
+
+X86WinCOFFObjectWriter::X86WinCOFFObjectWriter(bool Is64Bit)
+ : MCWinCOFFObjectTargetWriter(Is64Bit ? COFF::IMAGE_FILE_MACHINE_AMD64
+ : COFF::IMAGE_FILE_MACHINE_I386) {}
+
+X86WinCOFFObjectWriter::~X86WinCOFFObjectWriter() {}
+
+unsigned X86WinCOFFObjectWriter::getRelocType(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsCrossSection) const {
+ unsigned FixupKind = IsCrossSection ? FK_PCRel_4 : Fixup.getKind();
+
+ MCSymbolRefExpr::VariantKind Modifier = Target.isAbsolute() ?
+ MCSymbolRefExpr::VK_None : Target.getSymA()->getKind();
+
+ if (getMachine() == COFF::IMAGE_FILE_MACHINE_AMD64) {
+ switch (FixupKind) {
+ case FK_PCRel_4:
+ case X86::reloc_riprel_4byte:
+ case X86::reloc_riprel_4byte_movq_load:
+ return COFF::IMAGE_REL_AMD64_REL32;
+ case FK_Data_4:
+ case X86::reloc_signed_4byte:
+ if (Modifier == MCSymbolRefExpr::VK_COFF_IMGREL32)
+ return COFF::IMAGE_REL_AMD64_ADDR32NB;
+ return COFF::IMAGE_REL_AMD64_ADDR32;
+ case FK_Data_8:
+ return COFF::IMAGE_REL_AMD64_ADDR64;
+ case FK_SecRel_2:
+ return COFF::IMAGE_REL_AMD64_SECTION;
+ case FK_SecRel_4:
+ return COFF::IMAGE_REL_AMD64_SECREL;
+ default:
+ llvm_unreachable("unsupported relocation type");
+ }
+ } else if (getMachine() == COFF::IMAGE_FILE_MACHINE_I386) {
+ switch (FixupKind) {
+ case FK_PCRel_4:
+ case X86::reloc_riprel_4byte:
+ case X86::reloc_riprel_4byte_movq_load:
+ return COFF::IMAGE_REL_I386_REL32;
+ case FK_Data_4:
+ case X86::reloc_signed_4byte:
+ if (Modifier == MCSymbolRefExpr::VK_COFF_IMGREL32)
+ return COFF::IMAGE_REL_I386_DIR32NB;
+ return COFF::IMAGE_REL_I386_DIR32;
+ case FK_SecRel_2:
+ return COFF::IMAGE_REL_I386_SECTION;
+ case FK_SecRel_4:
+ return COFF::IMAGE_REL_I386_SECREL;
+ default:
+ llvm_unreachable("unsupported relocation type");
+ }
+ } else
+ llvm_unreachable("Unsupported COFF machine type.");
+}
+
+MCObjectWriter *llvm::createX86WinCOFFObjectWriter(raw_ostream &OS,
+ bool Is64Bit) {
+ MCWinCOFFObjectTargetWriter *MOTW = new X86WinCOFFObjectWriter(Is64Bit);
+ return createWinCOFFObjectWriter(MOTW, OS);
+}
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFStreamer.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFStreamer.cpp
new file mode 100644
index 0000000..6727f5e
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFStreamer.cpp
@@ -0,0 +1,51 @@
+//===-- X86WinCOFFStreamer.cpp - X86 Target WinCOFF Streamer ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86MCTargetDesc.h"
+#include "llvm/MC/MCWinCOFFStreamer.h"
+
+using namespace llvm;
+
+namespace {
+class X86WinCOFFStreamer : public MCWinCOFFStreamer {
+public:
+ X86WinCOFFStreamer(MCContext &C, MCAsmBackend &AB, MCCodeEmitter *CE,
+ raw_ostream &OS)
+ : MCWinCOFFStreamer(C, AB, *CE, OS) { }
+
+ void EmitWinEHHandlerData() override;
+ void FinishImpl() override;
+};
+
+void X86WinCOFFStreamer::EmitWinEHHandlerData() {
+ MCStreamer::EmitWinEHHandlerData();
+
+ // We have to emit the unwind info now, because this directive
+ // actually switches to the .xdata section!
+ MCWin64EHUnwindEmitter::EmitUnwindInfo(*this, getCurrentWinFrameInfo());
+}
+
+void X86WinCOFFStreamer::FinishImpl() {
+ EmitFrames(nullptr);
+ EmitWindowsUnwindTables();
+
+ MCWinCOFFStreamer::FinishImpl();
+}
+}
+
+namespace llvm {
+MCStreamer *createX86WinCOFFStreamer(MCContext &C, MCAsmBackend &AB,
+ MCCodeEmitter *CE, raw_ostream &OS,
+ bool RelaxAll) {
+ X86WinCOFFStreamer *S = new X86WinCOFFStreamer(C, AB, CE, OS);
+ S->getAssembler().setRelaxAll(RelaxAll);
+ return S;
+}
+}
+
diff --git a/contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp b/contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp
new file mode 100644
index 0000000..1ea8798
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp
@@ -0,0 +1,22 @@
+//===-- X86TargetInfo.cpp - X86 Target Implementation ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheX86_32Target, llvm::TheX86_64Target;
+
+extern "C" void LLVMInitializeX86TargetInfo() {
+ RegisterTarget<Triple::x86, /*HasJIT=*/true>
+ X(TheX86_32Target, "x86", "32-bit X86: Pentium-Pro and above");
+
+ RegisterTarget<Triple::x86_64, /*HasJIT=*/true>
+ Y(TheX86_64Target, "x86-64", "64-bit X86: EM64T and AMD64");
+}
diff --git a/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp
new file mode 100644
index 0000000..5f2441c
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp
@@ -0,0 +1,218 @@
+//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Define several functions to decode x86 specific shuffle semantics into a
+// generic vector mask.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86ShuffleDecode.h"
+#include "llvm/CodeGen/MachineValueType.h"
+
+//===----------------------------------------------------------------------===//
+// Vector Mask Decoding
+//===----------------------------------------------------------------------===//
+
+namespace llvm {
+
+void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
+ // Defaults the copying the dest value.
+ ShuffleMask.push_back(0);
+ ShuffleMask.push_back(1);
+ ShuffleMask.push_back(2);
+ ShuffleMask.push_back(3);
+
+ // Decode the immediate.
+ unsigned ZMask = Imm & 15;
+ unsigned CountD = (Imm >> 4) & 3;
+ unsigned CountS = (Imm >> 6) & 3;
+
+ // CountS selects which input element to use.
+ unsigned InVal = 4+CountS;
+ // CountD specifies which element of destination to update.
+ ShuffleMask[CountD] = InVal;
+ // ZMask zaps values, potentially overriding the CountD elt.
+ if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
+ if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
+ if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
+ if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
+}
+
+// <3,1> or <6,7,2,3>
+void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
+ for (unsigned i = NElts/2; i != NElts; ++i)
+ ShuffleMask.push_back(NElts+i);
+
+ for (unsigned i = NElts/2; i != NElts; ++i)
+ ShuffleMask.push_back(i);
+}
+
+// <0,2> or <0,1,4,5>
+void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
+ for (unsigned i = 0; i != NElts/2; ++i)
+ ShuffleMask.push_back(i);
+
+ for (unsigned i = 0; i != NElts/2; ++i)
+ ShuffleMask.push_back(NElts+i);
+}
+
+void DecodePALIGNRMask(MVT VT, unsigned Imm,
+ SmallVectorImpl<int> &ShuffleMask) {
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8);
+
+ unsigned NumLanes = VT.getSizeInBits() / 128;
+ unsigned NumLaneElts = NumElts / NumLanes;
+
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0; i != NumLaneElts; ++i) {
+ unsigned Base = i + Offset;
+ // if i+offset is out of this lane then we actually need the other source
+ if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
+ ShuffleMask.push_back(Base + l);
+ }
+ }
+}
+
+/// DecodePSHUFMask - This decodes the shuffle masks for pshufd, and vpermilp*.
+/// VT indicates the type of the vector allowing it to handle different
+/// datatypes and vector widths.
+void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ unsigned NumLanes = VT.getSizeInBits() / 128;
+ unsigned NumLaneElts = NumElts / NumLanes;
+
+ unsigned NewImm = Imm;
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0; i != NumLaneElts; ++i) {
+ ShuffleMask.push_back(NewImm % NumLaneElts + l);
+ NewImm /= NumLaneElts;
+ }
+ if (NumLaneElts == 4) NewImm = Imm; // reload imm
+ }
+}
+
+void DecodePSHUFHWMask(MVT VT, unsigned Imm,
+ SmallVectorImpl<int> &ShuffleMask) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ for (unsigned l = 0; l != NumElts; l += 8) {
+ unsigned NewImm = Imm;
+ for (unsigned i = 0, e = 4; i != e; ++i) {
+ ShuffleMask.push_back(l + i);
+ }
+ for (unsigned i = 4, e = 8; i != e; ++i) {
+ ShuffleMask.push_back(l + 4 + (NewImm & 3));
+ NewImm >>= 2;
+ }
+ }
+}
+
+void DecodePSHUFLWMask(MVT VT, unsigned Imm,
+ SmallVectorImpl<int> &ShuffleMask) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ for (unsigned l = 0; l != NumElts; l += 8) {
+ unsigned NewImm = Imm;
+ for (unsigned i = 0, e = 4; i != e; ++i) {
+ ShuffleMask.push_back(l + (NewImm & 3));
+ NewImm >>= 2;
+ }
+ for (unsigned i = 4, e = 8; i != e; ++i) {
+ ShuffleMask.push_back(l + i);
+ }
+ }
+}
+
+/// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
+/// the type of the vector allowing it to handle different datatypes and vector
+/// widths.
+void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ unsigned NumLanes = VT.getSizeInBits() / 128;
+ unsigned NumLaneElts = NumElts / NumLanes;
+
+ unsigned NewImm = Imm;
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ // each half of a lane comes from different source
+ for (unsigned s = 0; s != NumElts*2; s += NumElts) {
+ for (unsigned i = 0; i != NumLaneElts/2; ++i) {
+ ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
+ NewImm /= NumLaneElts;
+ }
+ }
+ if (NumLaneElts == 4) NewImm = Imm; // reload imm
+ }
+}
+
+/// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
+/// and punpckh*. VT indicates the type of the vector allowing it to handle
+/// different datatypes and vector widths.
+void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
+ // independently on 128-bit lanes.
+ unsigned NumLanes = VT.getSizeInBits() / 128;
+ if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
+ unsigned NumLaneElts = NumElts / NumLanes;
+
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = l + NumLaneElts/2, e = l + NumLaneElts; i != e; ++i) {
+ ShuffleMask.push_back(i); // Reads from dest/src1
+ ShuffleMask.push_back(i+NumElts); // Reads from src/src2
+ }
+ }
+}
+
+/// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
+/// and punpckl*. VT indicates the type of the vector allowing it to handle
+/// different datatypes and vector widths.
+void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
+ // independently on 128-bit lanes.
+ unsigned NumLanes = VT.getSizeInBits() / 128;
+ if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
+ unsigned NumLaneElts = NumElts / NumLanes;
+
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = l, e = l + NumLaneElts/2; i != e; ++i) {
+ ShuffleMask.push_back(i); // Reads from dest/src1
+ ShuffleMask.push_back(i+NumElts); // Reads from src/src2
+ }
+ }
+}
+
+void DecodeVPERM2X128Mask(MVT VT, unsigned Imm,
+ SmallVectorImpl<int> &ShuffleMask) {
+ if (Imm & 0x88)
+ return; // Not a shuffle
+
+ unsigned HalfSize = VT.getVectorNumElements()/2;
+
+ for (unsigned l = 0; l != 2; ++l) {
+ unsigned HalfBegin = ((Imm >> (l*4)) & 0x3) * HalfSize;
+ for (unsigned i = HalfBegin, e = HalfBegin+HalfSize; i != e; ++i)
+ ShuffleMask.push_back(i);
+ }
+}
+
+/// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
+/// No VT provided since it only works on 256-bit, 4 element vectors.
+void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
+ for (unsigned i = 0; i != 4; ++i) {
+ ShuffleMask.push_back((Imm >> (2*i)) & 3);
+ }
+}
+
+} // llvm namespace
diff --git a/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h
new file mode 100644
index 0000000..9e75b6b
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h
@@ -0,0 +1,72 @@
+//===-- X86ShuffleDecode.h - X86 shuffle decode logic -----------*-C++-*---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Define several functions to decode x86 specific shuffle semantics into a
+// generic vector mask.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86_SHUFFLE_DECODE_H
+#define X86_SHUFFLE_DECODE_H
+
+#include "llvm/ADT/SmallVector.h"
+
+//===----------------------------------------------------------------------===//
+// Vector Mask Decoding
+//===----------------------------------------------------------------------===//
+
+namespace llvm {
+class MVT;
+
+enum {
+ SM_SentinelZero = -1
+};
+
+void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
+
+// <3,1> or <6,7,2,3>
+void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask);
+
+// <0,2> or <0,1,4,5>
+void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask);
+
+void DecodePALIGNRMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
+
+void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
+
+void DecodePSHUFHWMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
+
+void DecodePSHUFLWMask(MVT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
+
+/// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
+/// the type of the vector allowing it to handle different datatypes and vector
+/// widths.
+void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
+
+/// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
+/// and punpckh*. VT indicates the type of the vector allowing it to handle
+/// different datatypes and vector widths.
+void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask);
+
+/// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
+/// and punpckl*. VT indicates the type of the vector allowing it to handle
+/// different datatypes and vector widths.
+void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask);
+
+
+void DecodeVPERM2X128Mask(MVT VT, unsigned Imm,
+ SmallVectorImpl<int> &ShuffleMask);
+
+/// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
+/// No VT provided since it only works on 256-bit, 4 element vectors.
+void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
+
+} // llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86.h b/contrib/llvm/lib/Target/X86/X86.h
new file mode 100644
index 0000000..d5522ed
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86.h
@@ -0,0 +1,82 @@
+//===-- X86.h - Top-level interface for X86 representation ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in the x86
+// target library, as used by the LLVM JIT.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef TARGET_X86_H
+#define TARGET_X86_H
+
+#include "llvm/Support/CodeGen.h"
+
+namespace llvm {
+
+class FunctionPass;
+class ImmutablePass;
+class JITCodeEmitter;
+class X86TargetMachine;
+
+/// createX86AtomicExpandPass - This pass expands atomic operations that cannot
+/// be handled natively in terms of a loop using cmpxchg.
+FunctionPass *createX86AtomicExpandPass(const X86TargetMachine *TM);
+
+/// createX86ISelDag - This pass converts a legalized DAG into a
+/// X86-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *createX86ISelDag(X86TargetMachine &TM,
+ CodeGenOpt::Level OptLevel);
+
+/// createX86GlobalBaseRegPass - This pass initializes a global base
+/// register for PIC on x86-32.
+FunctionPass* createX86GlobalBaseRegPass();
+
+/// createCleanupLocalDynamicTLSPass() - This pass combines multiple accesses
+/// to local-dynamic TLS variables so that the TLS base address for the module
+/// is only fetched once per execution path through the function.
+FunctionPass *createCleanupLocalDynamicTLSPass();
+
+/// createX86FloatingPointStackifierPass - This function returns a pass which
+/// converts floating point register references and pseudo instructions into
+/// floating point stack references and physical instructions.
+///
+FunctionPass *createX86FloatingPointStackifierPass();
+
+/// createX86IssueVZeroUpperPass - This pass inserts AVX vzeroupper instructions
+/// before each call to avoid transition penalty between functions encoded with
+/// AVX and SSE.
+FunctionPass *createX86IssueVZeroUpperPass();
+
+/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
+/// to the specified MCE object.
+FunctionPass *createX86JITCodeEmitterPass(X86TargetMachine &TM,
+ JITCodeEmitter &JCE);
+
+/// createX86EmitCodeToMemory - Returns a pass that converts a register
+/// allocated function into raw machine code in a dynamically
+/// allocated chunk of memory.
+///
+FunctionPass *createEmitX86CodeToMemory();
+
+/// \brief Creates an X86-specific Target Transformation Info pass.
+ImmutablePass *createX86TargetTransformInfoPass(const X86TargetMachine *TM);
+
+/// createX86PadShortFunctions - Return a pass that pads short functions
+/// with NOOPs. This will prevent a stall when returning on the Atom.
+FunctionPass *createX86PadShortFunctions();
+/// createX86FixupLEAs - Return a a pass that selectively replaces
+/// certain instructions (like add, sub, inc, dec, some shifts,
+/// and some multiplies) by equivalent LEA instructions, in order
+/// to eliminate execution delays in some Atom processors.
+FunctionPass *createX86FixupLEAs();
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86.td b/contrib/llvm/lib/Target/X86/X86.td
new file mode 100644
index 0000000..cd32a0f
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86.td
@@ -0,0 +1,460 @@
+//===-- X86.td - Target definition file for the Intel X86 --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a target description file for the Intel i386 architecture, referred
+// to here as the "X86" architecture.
+//
+//===----------------------------------------------------------------------===//
+
+// Get the target-independent interfaces which we are implementing...
+//
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// X86 Subtarget state
+//
+
+def Mode64Bit : SubtargetFeature<"64bit-mode", "In64BitMode", "true",
+ "64-bit mode (x86_64)">;
+def Mode32Bit : SubtargetFeature<"32bit-mode", "In32BitMode", "true",
+ "32-bit mode (80386)">;
+def Mode16Bit : SubtargetFeature<"16bit-mode", "In16BitMode", "true",
+ "16-bit mode (i8086)">;
+
+//===----------------------------------------------------------------------===//
+// X86 Subtarget features
+//===----------------------------------------------------------------------===//
+
+def FeatureCMOV : SubtargetFeature<"cmov","HasCMov", "true",
+ "Enable conditional move instructions">;
+
+def FeaturePOPCNT : SubtargetFeature<"popcnt", "HasPOPCNT", "true",
+ "Support POPCNT instruction">;
+
+
+def FeatureMMX : SubtargetFeature<"mmx","X86SSELevel", "MMX",
+ "Enable MMX instructions">;
+def FeatureSSE1 : SubtargetFeature<"sse", "X86SSELevel", "SSE1",
+ "Enable SSE instructions",
+ // SSE codegen depends on cmovs, and all
+ // SSE1+ processors support them.
+ [FeatureMMX, FeatureCMOV]>;
+def FeatureSSE2 : SubtargetFeature<"sse2", "X86SSELevel", "SSE2",
+ "Enable SSE2 instructions",
+ [FeatureSSE1]>;
+def FeatureSSE3 : SubtargetFeature<"sse3", "X86SSELevel", "SSE3",
+ "Enable SSE3 instructions",
+ [FeatureSSE2]>;
+def FeatureSSSE3 : SubtargetFeature<"ssse3", "X86SSELevel", "SSSE3",
+ "Enable SSSE3 instructions",
+ [FeatureSSE3]>;
+def FeatureSSE41 : SubtargetFeature<"sse4.1", "X86SSELevel", "SSE41",
+ "Enable SSE 4.1 instructions",
+ [FeatureSSSE3]>;
+def FeatureSSE42 : SubtargetFeature<"sse4.2", "X86SSELevel", "SSE42",
+ "Enable SSE 4.2 instructions",
+ [FeatureSSE41]>;
+def Feature3DNow : SubtargetFeature<"3dnow", "X863DNowLevel", "ThreeDNow",
+ "Enable 3DNow! instructions",
+ [FeatureMMX]>;
+def Feature3DNowA : SubtargetFeature<"3dnowa", "X863DNowLevel", "ThreeDNowA",
+ "Enable 3DNow! Athlon instructions",
+ [Feature3DNow]>;
+// All x86-64 hardware has SSE2, but we don't mark SSE2 as an implied
+// feature, because SSE2 can be disabled (e.g. for compiling OS kernels)
+// without disabling 64-bit mode.
+def Feature64Bit : SubtargetFeature<"64bit", "HasX86_64", "true",
+ "Support 64-bit instructions",
+ [FeatureCMOV]>;
+def FeatureCMPXCHG16B : SubtargetFeature<"cx16", "HasCmpxchg16b", "true",
+ "64-bit with cmpxchg16b",
+ [Feature64Bit]>;
+def FeatureSlowBTMem : SubtargetFeature<"slow-bt-mem", "IsBTMemSlow", "true",
+ "Bit testing of memory is slow">;
+def FeatureSlowSHLD : SubtargetFeature<"slow-shld", "IsSHLDSlow", "true",
+ "SHLD instruction is slow">;
+def FeatureFastUAMem : SubtargetFeature<"fast-unaligned-mem",
+ "IsUAMemFast", "true",
+ "Fast unaligned memory access">;
+def FeatureSSE4A : SubtargetFeature<"sse4a", "HasSSE4A", "true",
+ "Support SSE 4a instructions",
+ [FeatureSSE3]>;
+
+def FeatureAVX : SubtargetFeature<"avx", "X86SSELevel", "AVX",
+ "Enable AVX instructions",
+ [FeatureSSE42]>;
+def FeatureAVX2 : SubtargetFeature<"avx2", "X86SSELevel", "AVX2",
+ "Enable AVX2 instructions",
+ [FeatureAVX]>;
+def FeatureAVX512 : SubtargetFeature<"avx512f", "X86SSELevel", "AVX512F",
+ "Enable AVX-512 instructions",
+ [FeatureAVX2]>;
+def FeatureERI : SubtargetFeature<"avx512er", "HasERI", "true",
+ "Enable AVX-512 Exponential and Reciprocal Instructions",
+ [FeatureAVX512]>;
+def FeatureCDI : SubtargetFeature<"avx512cd", "HasCDI", "true",
+ "Enable AVX-512 Conflict Detection Instructions",
+ [FeatureAVX512]>;
+def FeaturePFI : SubtargetFeature<"avx512pf", "HasPFI", "true",
+ "Enable AVX-512 PreFetch Instructions",
+ [FeatureAVX512]>;
+def FeatureDQI : SubtargetFeature<"avx512dq", "HasDQI", "true",
+ "Enable AVX-512 Doubleword and Quadword Instructions",
+ [FeatureAVX512]>;
+def FeatureBWI : SubtargetFeature<"avx512bw", "HasBWI", "true",
+ "Enable AVX-512 Byte and Word Instructions",
+ [FeatureAVX512]>;
+def FeatureVLX : SubtargetFeature<"avx512vl", "HasVLX", "true",
+ "Enable AVX-512 Vector Length eXtensions",
+ [FeatureAVX512]>;
+def FeaturePCLMUL : SubtargetFeature<"pclmul", "HasPCLMUL", "true",
+ "Enable packed carry-less multiplication instructions",
+ [FeatureSSE2]>;
+def FeatureFMA : SubtargetFeature<"fma", "HasFMA", "true",
+ "Enable three-operand fused multiple-add",
+ [FeatureAVX]>;
+def FeatureFMA4 : SubtargetFeature<"fma4", "HasFMA4", "true",
+ "Enable four-operand fused multiple-add",
+ [FeatureAVX, FeatureSSE4A]>;
+def FeatureXOP : SubtargetFeature<"xop", "HasXOP", "true",
+ "Enable XOP instructions",
+ [FeatureFMA4]>;
+def FeatureVectorUAMem : SubtargetFeature<"vector-unaligned-mem",
+ "HasVectorUAMem", "true",
+ "Allow unaligned memory operands on vector/SIMD instructions">;
+def FeatureAES : SubtargetFeature<"aes", "HasAES", "true",
+ "Enable AES instructions",
+ [FeatureSSE2]>;
+def FeatureTBM : SubtargetFeature<"tbm", "HasTBM", "true",
+ "Enable TBM instructions">;
+def FeatureMOVBE : SubtargetFeature<"movbe", "HasMOVBE", "true",
+ "Support MOVBE instruction">;
+def FeatureRDRAND : SubtargetFeature<"rdrnd", "HasRDRAND", "true",
+ "Support RDRAND instruction">;
+def FeatureF16C : SubtargetFeature<"f16c", "HasF16C", "true",
+ "Support 16-bit floating point conversion instructions",
+ [FeatureAVX]>;
+def FeatureFSGSBase : SubtargetFeature<"fsgsbase", "HasFSGSBase", "true",
+ "Support FS/GS Base instructions">;
+def FeatureLZCNT : SubtargetFeature<"lzcnt", "HasLZCNT", "true",
+ "Support LZCNT instruction">;
+def FeatureBMI : SubtargetFeature<"bmi", "HasBMI", "true",
+ "Support BMI instructions">;
+def FeatureBMI2 : SubtargetFeature<"bmi2", "HasBMI2", "true",
+ "Support BMI2 instructions">;
+def FeatureRTM : SubtargetFeature<"rtm", "HasRTM", "true",
+ "Support RTM instructions">;
+def FeatureHLE : SubtargetFeature<"hle", "HasHLE", "true",
+ "Support HLE">;
+def FeatureADX : SubtargetFeature<"adx", "HasADX", "true",
+ "Support ADX instructions">;
+def FeatureSHA : SubtargetFeature<"sha", "HasSHA", "true",
+ "Enable SHA instructions",
+ [FeatureSSE2]>;
+def FeaturePRFCHW : SubtargetFeature<"prfchw", "HasPRFCHW", "true",
+ "Support PRFCHW instructions">;
+def FeatureRDSEED : SubtargetFeature<"rdseed", "HasRDSEED", "true",
+ "Support RDSEED instruction">;
+def FeatureLeaForSP : SubtargetFeature<"lea-sp", "UseLeaForSP", "true",
+ "Use LEA for adjusting the stack pointer">;
+def FeatureSlowDivide : SubtargetFeature<"idiv-to-divb",
+ "HasSlowDivide", "true",
+ "Use small divide for positive values less than 256">;
+def FeaturePadShortFunctions : SubtargetFeature<"pad-short-functions",
+ "PadShortFunctions", "true",
+ "Pad short functions">;
+def FeatureCallRegIndirect : SubtargetFeature<"call-reg-indirect",
+ "CallRegIndirect", "true",
+ "Call register indirect">;
+def FeatureLEAUsesAG : SubtargetFeature<"lea-uses-ag", "LEAUsesAG", "true",
+ "LEA instruction needs inputs at AG stage">;
+def FeatureSlowLEA : SubtargetFeature<"slow-lea", "SlowLEA", "true",
+ "LEA instruction with certain arguments is slow">;
+def FeatureSlowIncDec : SubtargetFeature<"slow-incdec", "SlowIncDec", "true",
+ "INC and DEC instructions are slower than ADD and SUB">;
+
+//===----------------------------------------------------------------------===//
+// X86 processors supported.
+//===----------------------------------------------------------------------===//
+
+include "X86Schedule.td"
+
+def ProcIntelAtom : SubtargetFeature<"atom", "X86ProcFamily", "IntelAtom",
+ "Intel Atom processors">;
+def ProcIntelSLM : SubtargetFeature<"slm", "X86ProcFamily", "IntelSLM",
+ "Intel Silvermont processors">;
+
+class Proc<string Name, list<SubtargetFeature> Features>
+ : ProcessorModel<Name, GenericModel, Features>;
+
+def : Proc<"generic", []>;
+def : Proc<"i386", []>;
+def : Proc<"i486", []>;
+def : Proc<"i586", []>;
+def : Proc<"pentium", []>;
+def : Proc<"pentium-mmx", [FeatureMMX]>;
+def : Proc<"i686", []>;
+def : Proc<"pentiumpro", [FeatureCMOV]>;
+def : Proc<"pentium2", [FeatureMMX, FeatureCMOV]>;
+def : Proc<"pentium3", [FeatureSSE1]>;
+def : Proc<"pentium3m", [FeatureSSE1, FeatureSlowBTMem]>;
+def : Proc<"pentium-m", [FeatureSSE2, FeatureSlowBTMem]>;
+def : Proc<"pentium4", [FeatureSSE2]>;
+def : Proc<"pentium4m", [FeatureSSE2, FeatureSlowBTMem]>;
+
+// Intel Core Duo.
+def : ProcessorModel<"yonah", SandyBridgeModel,
+ [FeatureSSE3, FeatureSlowBTMem]>;
+
+// NetBurst.
+def : Proc<"prescott", [FeatureSSE3, FeatureSlowBTMem]>;
+def : Proc<"nocona", [FeatureSSE3, FeatureCMPXCHG16B, FeatureSlowBTMem]>;
+
+// Intel Core 2 Solo/Duo.
+def : ProcessorModel<"core2", SandyBridgeModel,
+ [FeatureSSSE3, FeatureCMPXCHG16B, FeatureSlowBTMem]>;
+def : ProcessorModel<"penryn", SandyBridgeModel,
+ [FeatureSSE41, FeatureCMPXCHG16B, FeatureSlowBTMem]>;
+
+// Atom.
+def : ProcessorModel<"atom", AtomModel,
+ [ProcIntelAtom, FeatureSSSE3, FeatureCMPXCHG16B,
+ FeatureMOVBE, FeatureSlowBTMem, FeatureLeaForSP,
+ FeatureSlowDivide,
+ FeatureCallRegIndirect,
+ FeatureLEAUsesAG,
+ FeaturePadShortFunctions]>;
+
+// Atom Silvermont.
+def : ProcessorModel<"slm", SLMModel, [ProcIntelSLM,
+ FeatureSSE42, FeatureCMPXCHG16B,
+ FeatureMOVBE, FeaturePOPCNT,
+ FeaturePCLMUL, FeatureAES,
+ FeatureCallRegIndirect,
+ FeaturePRFCHW,
+ FeatureSlowLEA, FeatureSlowIncDec,
+ FeatureSlowBTMem, FeatureFastUAMem]>;
+// "Arrandale" along with corei3 and corei5
+def : ProcessorModel<"corei7", SandyBridgeModel,
+ [FeatureSSE42, FeatureCMPXCHG16B, FeatureSlowBTMem,
+ FeatureFastUAMem, FeaturePOPCNT, FeatureAES]>;
+
+def : ProcessorModel<"nehalem", SandyBridgeModel,
+ [FeatureSSE42, FeatureCMPXCHG16B, FeatureSlowBTMem,
+ FeatureFastUAMem, FeaturePOPCNT]>;
+// Westmere is a similar machine to nehalem with some additional features.
+// Westmere is the corei3/i5/i7 path from nehalem to sandybridge
+def : ProcessorModel<"westmere", SandyBridgeModel,
+ [FeatureSSE42, FeatureCMPXCHG16B, FeatureSlowBTMem,
+ FeatureFastUAMem, FeaturePOPCNT, FeatureAES,
+ FeaturePCLMUL]>;
+// Sandy Bridge
+// SSE is not listed here since llvm treats AVX as a reimplementation of SSE,
+// rather than a superset.
+def : ProcessorModel<"corei7-avx", SandyBridgeModel,
+ [FeatureAVX, FeatureCMPXCHG16B, FeatureFastUAMem,
+ FeaturePOPCNT, FeatureAES, FeaturePCLMUL]>;
+// Ivy Bridge
+def : ProcessorModel<"core-avx-i", SandyBridgeModel,
+ [FeatureAVX, FeatureCMPXCHG16B, FeatureFastUAMem,
+ FeaturePOPCNT, FeatureAES, FeaturePCLMUL, FeatureRDRAND,
+ FeatureF16C, FeatureFSGSBase]>;
+
+// Haswell
+def : ProcessorModel<"core-avx2", HaswellModel,
+ [FeatureAVX2, FeatureCMPXCHG16B, FeatureFastUAMem,
+ FeaturePOPCNT, FeatureAES, FeaturePCLMUL, FeatureRDRAND,
+ FeatureF16C, FeatureFSGSBase, FeatureMOVBE, FeatureLZCNT,
+ FeatureBMI, FeatureBMI2, FeatureFMA, FeatureRTM,
+ FeatureHLE]>;
+
+// KNL
+// FIXME: define KNL model
+def : ProcessorModel<"knl", HaswellModel,
+ [FeatureAVX512, FeatureERI, FeatureCDI, FeaturePFI,
+ FeatureCMPXCHG16B, FeatureFastUAMem, FeaturePOPCNT,
+ FeatureAES, FeaturePCLMUL, FeatureRDRAND, FeatureF16C,
+ FeatureFSGSBase, FeatureMOVBE, FeatureLZCNT, FeatureBMI,
+ FeatureBMI2, FeatureFMA, FeatureRTM, FeatureHLE,
+ FeatureSlowIncDec]>;
+
+// SKX
+// FIXME: define SKX model
+def : ProcessorModel<"skx", HaswellModel,
+ [FeatureAVX512, FeatureCDI,
+ FeatureDQI, FeatureBWI, FeatureVLX,
+ FeatureCMPXCHG16B, FeatureFastUAMem, FeaturePOPCNT,
+ FeatureAES, FeaturePCLMUL, FeatureRDRAND, FeatureF16C,
+ FeatureFSGSBase, FeatureMOVBE, FeatureLZCNT, FeatureBMI,
+ FeatureBMI2, FeatureFMA, FeatureRTM, FeatureHLE,
+ FeatureSlowIncDec]>;
+
+def : Proc<"k6", [FeatureMMX]>;
+def : Proc<"k6-2", [Feature3DNow]>;
+def : Proc<"k6-3", [Feature3DNow]>;
+def : Proc<"athlon", [Feature3DNowA, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
+def : Proc<"athlon-tbird", [Feature3DNowA, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
+def : Proc<"athlon-4", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
+def : Proc<"athlon-xp", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
+def : Proc<"athlon-mp", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
+def : Proc<"k8", [FeatureSSE2, Feature3DNowA, Feature64Bit,
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
+def : Proc<"opteron", [FeatureSSE2, Feature3DNowA, Feature64Bit,
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
+def : Proc<"athlon64", [FeatureSSE2, Feature3DNowA, Feature64Bit,
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
+def : Proc<"athlon-fx", [FeatureSSE2, Feature3DNowA, Feature64Bit,
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
+def : Proc<"k8-sse3", [FeatureSSE3, Feature3DNowA, FeatureCMPXCHG16B,
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
+def : Proc<"opteron-sse3", [FeatureSSE3, Feature3DNowA, FeatureCMPXCHG16B,
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
+def : Proc<"athlon64-sse3", [FeatureSSE3, Feature3DNowA, FeatureCMPXCHG16B,
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
+def : Proc<"amdfam10", [FeatureSSE4A,
+ Feature3DNowA, FeatureCMPXCHG16B, FeatureLZCNT,
+ FeaturePOPCNT, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
+// Bobcat
+def : Proc<"btver1", [FeatureSSSE3, FeatureSSE4A, FeatureCMPXCHG16B,
+ FeaturePRFCHW, FeatureLZCNT, FeaturePOPCNT,
+ FeatureSlowSHLD]>;
+// Jaguar
+def : Proc<"btver2", [FeatureAVX, FeatureSSE4A, FeatureCMPXCHG16B,
+ FeaturePRFCHW, FeatureAES, FeaturePCLMUL,
+ FeatureBMI, FeatureF16C, FeatureMOVBE,
+ FeatureLZCNT, FeaturePOPCNT, FeatureSlowSHLD]>;
+// Bulldozer
+def : Proc<"bdver1", [FeatureXOP, FeatureFMA4, FeatureCMPXCHG16B,
+ FeatureAES, FeaturePRFCHW, FeaturePCLMUL,
+ FeatureLZCNT, FeaturePOPCNT, FeatureSlowSHLD]>;
+// Piledriver
+def : Proc<"bdver2", [FeatureXOP, FeatureFMA4, FeatureCMPXCHG16B,
+ FeatureAES, FeaturePRFCHW, FeaturePCLMUL,
+ FeatureF16C, FeatureLZCNT,
+ FeaturePOPCNT, FeatureBMI, FeatureTBM,
+ FeatureFMA, FeatureSlowSHLD]>;
+
+// Steamroller
+def : Proc<"bdver3", [FeatureXOP, FeatureFMA4, FeatureCMPXCHG16B,
+ FeatureAES, FeaturePRFCHW, FeaturePCLMUL,
+ FeatureF16C, FeatureLZCNT,
+ FeaturePOPCNT, FeatureBMI, FeatureTBM,
+ FeatureFMA, FeatureFSGSBase]>;
+
+// Excavator
+def : Proc<"bdver4", [FeatureAVX2, FeatureXOP, FeatureFMA4,
+ FeatureCMPXCHG16B, FeatureAES, FeaturePRFCHW,
+ FeaturePCLMUL, FeatureF16C, FeatureLZCNT,
+ FeaturePOPCNT, FeatureBMI, FeatureBMI2,
+ FeatureTBM, FeatureFMA, FeatureFSGSBase]>;
+
+def : Proc<"geode", [Feature3DNowA]>;
+
+def : Proc<"winchip-c6", [FeatureMMX]>;
+def : Proc<"winchip2", [Feature3DNow]>;
+def : Proc<"c3", [Feature3DNow]>;
+def : Proc<"c3-2", [FeatureSSE1]>;
+
+// We also provide a generic 64-bit specific x86 processor model which tries to
+// be good for modern chips without enabling instruction set encodings past the
+// basic SSE2 and 64-bit ones. It disables slow things from any mainstream and
+// modern 64-bit x86 chip, and enables features that are generally beneficial.
+//
+// We currently use the Sandy Bridge model as the default scheduling model as
+// we use it across Nehalem, Westmere, Sandy Bridge, and Ivy Bridge which
+// covers a huge swath of x86 processors. If there are specific scheduling
+// knobs which need to be tuned differently for AMD chips, we might consider
+// forming a common base for them.
+def : ProcessorModel<"x86-64", SandyBridgeModel,
+ [FeatureSSE2, Feature64Bit, FeatureSlowBTMem,
+ FeatureFastUAMem]>;
+
+//===----------------------------------------------------------------------===//
+// Register File Description
+//===----------------------------------------------------------------------===//
+
+include "X86RegisterInfo.td"
+
+//===----------------------------------------------------------------------===//
+// Instruction Descriptions
+//===----------------------------------------------------------------------===//
+
+include "X86InstrInfo.td"
+
+def X86InstrInfo : InstrInfo;
+
+//===----------------------------------------------------------------------===//
+// Calling Conventions
+//===----------------------------------------------------------------------===//
+
+include "X86CallingConv.td"
+
+
+//===----------------------------------------------------------------------===//
+// Assembly Parser
+//===----------------------------------------------------------------------===//
+
+def ATTAsmParser : AsmParser {
+ string AsmParserClassName = "AsmParser";
+}
+
+def ATTAsmParserVariant : AsmParserVariant {
+ int Variant = 0;
+
+ // Variant name.
+ string Name = "att";
+
+ // Discard comments in assembly strings.
+ string CommentDelimiter = "#";
+
+ // Recognize hard coded registers.
+ string RegisterPrefix = "%";
+}
+
+def IntelAsmParserVariant : AsmParserVariant {
+ int Variant = 1;
+
+ // Variant name.
+ string Name = "intel";
+
+ // Discard comments in assembly strings.
+ string CommentDelimiter = ";";
+
+ // Recognize hard coded registers.
+ string RegisterPrefix = "";
+}
+
+//===----------------------------------------------------------------------===//
+// Assembly Printers
+//===----------------------------------------------------------------------===//
+
+// The X86 target supports two different syntaxes for emitting machine code.
+// This is controlled by the -x86-asm-syntax={att|intel}
+def ATTAsmWriter : AsmWriter {
+ string AsmWriterClassName = "ATTInstPrinter";
+ int Variant = 0;
+}
+def IntelAsmWriter : AsmWriter {
+ string AsmWriterClassName = "IntelInstPrinter";
+ int Variant = 1;
+}
+
+def X86 : Target {
+ // Information about the instructions...
+ let InstructionSet = X86InstrInfo;
+ let AssemblyParsers = [ATTAsmParser];
+ let AssemblyParserVariants = [ATTAsmParserVariant, IntelAsmParserVariant];
+ let AssemblyWriters = [ATTAsmWriter, IntelAsmWriter];
+}
diff --git a/contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp b/contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp
new file mode 100644
index 0000000..57c7a62
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp
@@ -0,0 +1,748 @@
+//===-- X86AsmPrinter.cpp - Convert X86 LLVM code to AT&T assembly --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to X86 machine code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86AsmPrinter.h"
+#include "InstPrinter/X86ATTInstPrinter.h"
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "X86InstrInfo.h"
+#include "X86MachineFunctionInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/CodeGen/MachineValueType.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSectionCOFF.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/COFF.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Primitive Helper Functions.
+//===----------------------------------------------------------------------===//
+
+/// runOnMachineFunction - Emit the function body.
+///
+bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+ SetupMachineFunction(MF);
+
+ if (Subtarget->isTargetCOFF()) {
+ bool Intrn = MF.getFunction()->hasInternalLinkage();
+ OutStreamer.BeginCOFFSymbolDef(CurrentFnSym);
+ OutStreamer.EmitCOFFSymbolStorageClass(Intrn ? COFF::IMAGE_SYM_CLASS_STATIC
+ : COFF::IMAGE_SYM_CLASS_EXTERNAL);
+ OutStreamer.EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION
+ << COFF::SCT_COMPLEX_TYPE_SHIFT);
+ OutStreamer.EndCOFFSymbolDef();
+ }
+
+ // Have common code print out the function header with linkage info etc.
+ EmitFunctionHeader();
+
+ // Emit the rest of the function body.
+ EmitFunctionBody();
+
+ // We didn't modify anything.
+ return false;
+}
+
+/// printSymbolOperand - Print a raw symbol reference operand. This handles
+/// jump tables, constant pools, global address and external symbols, all of
+/// which print to a label with various suffixes for relocation types etc.
+static void printSymbolOperand(X86AsmPrinter &P, const MachineOperand &MO,
+ raw_ostream &O) {
+ switch (MO.getType()) {
+ default: llvm_unreachable("unknown symbol type!");
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << *P.GetCPISymbol(MO.getIndex());
+ P.printOffset(MO.getOffset(), O);
+ break;
+ case MachineOperand::MO_GlobalAddress: {
+ const GlobalValue *GV = MO.getGlobal();
+
+ MCSymbol *GVSym;
+ if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB)
+ GVSym = P.getSymbolWithGlobalValueBase(GV, "$stub");
+ else if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
+ MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
+ MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
+ GVSym = P.getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
+ else
+ GVSym = P.getSymbol(GV);
+
+ // Handle dllimport linkage.
+ if (MO.getTargetFlags() == X86II::MO_DLLIMPORT)
+ GVSym =
+ P.OutContext.GetOrCreateSymbol(Twine("__imp_") + GVSym->getName());
+
+ if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
+ MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) {
+ MCSymbol *Sym = P.getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ P.MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(Sym);
+ if (!StubSym.getPointer())
+ StubSym = MachineModuleInfoImpl::
+ StubValueTy(P.getSymbol(GV), !GV->hasInternalLinkage());
+ } else if (MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE){
+ MCSymbol *Sym = P.getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ P.MMI->getObjFileInfo<MachineModuleInfoMachO>().getHiddenGVStubEntry(
+ Sym);
+ if (!StubSym.getPointer())
+ StubSym = MachineModuleInfoImpl::
+ StubValueTy(P.getSymbol(GV), !GV->hasInternalLinkage());
+ } else if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) {
+ MCSymbol *Sym = P.getSymbolWithGlobalValueBase(GV, "$stub");
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ P.MMI->getObjFileInfo<MachineModuleInfoMachO>().getFnStubEntry(Sym);
+ if (!StubSym.getPointer())
+ StubSym = MachineModuleInfoImpl::
+ StubValueTy(P.getSymbol(GV), !GV->hasInternalLinkage());
+ }
+
+ // If the name begins with a dollar-sign, enclose it in parens. We do this
+ // to avoid having it look like an integer immediate to the assembler.
+ if (GVSym->getName()[0] != '$')
+ O << *GVSym;
+ else
+ O << '(' << *GVSym << ')';
+ P.printOffset(MO.getOffset(), O);
+ break;
+ }
+ }
+
+ switch (MO.getTargetFlags()) {
+ default:
+ llvm_unreachable("Unknown target flag on GV operand");
+ case X86II::MO_NO_FLAG: // No flag.
+ break;
+ case X86II::MO_DARWIN_NONLAZY:
+ case X86II::MO_DLLIMPORT:
+ case X86II::MO_DARWIN_STUB:
+ // These affect the name of the symbol, not any suffix.
+ break;
+ case X86II::MO_GOT_ABSOLUTE_ADDRESS:
+ O << " + [.-" << *P.MF->getPICBaseSymbol() << ']';
+ break;
+ case X86II::MO_PIC_BASE_OFFSET:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
+ O << '-' << *P.MF->getPICBaseSymbol();
+ break;
+ case X86II::MO_TLSGD: O << "@TLSGD"; break;
+ case X86II::MO_TLSLD: O << "@TLSLD"; break;
+ case X86II::MO_TLSLDM: O << "@TLSLDM"; break;
+ case X86II::MO_GOTTPOFF: O << "@GOTTPOFF"; break;
+ case X86II::MO_INDNTPOFF: O << "@INDNTPOFF"; break;
+ case X86II::MO_TPOFF: O << "@TPOFF"; break;
+ case X86II::MO_DTPOFF: O << "@DTPOFF"; break;
+ case X86II::MO_NTPOFF: O << "@NTPOFF"; break;
+ case X86II::MO_GOTNTPOFF: O << "@GOTNTPOFF"; break;
+ case X86II::MO_GOTPCREL: O << "@GOTPCREL"; break;
+ case X86II::MO_GOT: O << "@GOT"; break;
+ case X86II::MO_GOTOFF: O << "@GOTOFF"; break;
+ case X86II::MO_PLT: O << "@PLT"; break;
+ case X86II::MO_TLVP: O << "@TLVP"; break;
+ case X86II::MO_TLVP_PIC_BASE:
+ O << "@TLVP" << '-' << *P.MF->getPICBaseSymbol();
+ break;
+ case X86II::MO_SECREL: O << "@SECREL32"; break;
+ }
+}
+
+static void printOperand(X86AsmPrinter &P, const MachineInstr *MI,
+ unsigned OpNo, raw_ostream &O,
+ const char *Modifier = nullptr, unsigned AsmVariant = 0);
+
+/// printPCRelImm - This is used to print an immediate value that ends up
+/// being encoded as a pc-relative value. These print slightly differently, for
+/// example, a $ is not emitted.
+static void printPCRelImm(X86AsmPrinter &P, const MachineInstr *MI,
+ unsigned OpNo, raw_ostream &O) {
+ const MachineOperand &MO = MI->getOperand(OpNo);
+ switch (MO.getType()) {
+ default: llvm_unreachable("Unknown pcrel immediate operand");
+ case MachineOperand::MO_Register:
+ // pc-relativeness was handled when computing the value in the reg.
+ printOperand(P, MI, OpNo, O);
+ return;
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ return;
+ case MachineOperand::MO_GlobalAddress:
+ printSymbolOperand(P, MO, O);
+ return;
+ }
+}
+
+static void printOperand(X86AsmPrinter &P, const MachineInstr *MI,
+ unsigned OpNo, raw_ostream &O, const char *Modifier,
+ unsigned AsmVariant) {
+ const MachineOperand &MO = MI->getOperand(OpNo);
+ switch (MO.getType()) {
+ default: llvm_unreachable("unknown operand type!");
+ case MachineOperand::MO_Register: {
+ // FIXME: Enumerating AsmVariant, so we can remove magic number.
+ if (AsmVariant == 0) O << '%';
+ unsigned Reg = MO.getReg();
+ if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) {
+ MVT::SimpleValueType VT = (strcmp(Modifier+6,"64") == 0) ?
+ MVT::i64 : ((strcmp(Modifier+6, "32") == 0) ? MVT::i32 :
+ ((strcmp(Modifier+6,"16") == 0) ? MVT::i16 : MVT::i8));
+ Reg = getX86SubSuperRegister(Reg, VT);
+ }
+ O << X86ATTInstPrinter::getRegisterName(Reg);
+ return;
+ }
+
+ case MachineOperand::MO_Immediate:
+ if (AsmVariant == 0) O << '$';
+ O << MO.getImm();
+ return;
+
+ case MachineOperand::MO_GlobalAddress: {
+ if (AsmVariant == 0) O << '$';
+ printSymbolOperand(P, MO, O);
+ break;
+ }
+ }
+}
+
+static void printLeaMemReference(X86AsmPrinter &P, const MachineInstr *MI,
+ unsigned Op, raw_ostream &O,
+ const char *Modifier = nullptr) {
+ const MachineOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg);
+ const MachineOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
+ const MachineOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
+
+ // If we really don't want to print out (rip), don't.
+ bool HasBaseReg = BaseReg.getReg() != 0;
+ if (HasBaseReg && Modifier && !strcmp(Modifier, "no-rip") &&
+ BaseReg.getReg() == X86::RIP)
+ HasBaseReg = false;
+
+ // HasParenPart - True if we will print out the () part of the mem ref.
+ bool HasParenPart = IndexReg.getReg() || HasBaseReg;
+
+ switch (DispSpec.getType()) {
+ default:
+ llvm_unreachable("unknown operand type!");
+ case MachineOperand::MO_Immediate: {
+ int DispVal = DispSpec.getImm();
+ if (DispVal || !HasParenPart)
+ O << DispVal;
+ break;
+ }
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ConstantPoolIndex:
+ printSymbolOperand(P, DispSpec, O);
+ }
+
+ if (Modifier && strcmp(Modifier, "H") == 0)
+ O << "+8";
+
+ if (HasParenPart) {
+ assert(IndexReg.getReg() != X86::ESP &&
+ "X86 doesn't allow scaling by ESP");
+
+ O << '(';
+ if (HasBaseReg)
+ printOperand(P, MI, Op+X86::AddrBaseReg, O, Modifier);
+
+ if (IndexReg.getReg()) {
+ O << ',';
+ printOperand(P, MI, Op+X86::AddrIndexReg, O, Modifier);
+ unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
+ if (ScaleVal != 1)
+ O << ',' << ScaleVal;
+ }
+ O << ')';
+ }
+}
+
+static void printMemReference(X86AsmPrinter &P, const MachineInstr *MI,
+ unsigned Op, raw_ostream &O,
+ const char *Modifier = nullptr) {
+ assert(isMem(MI, Op) && "Invalid memory reference!");
+ const MachineOperand &Segment = MI->getOperand(Op+X86::AddrSegmentReg);
+ if (Segment.getReg()) {
+ printOperand(P, MI, Op+X86::AddrSegmentReg, O, Modifier);
+ O << ':';
+ }
+ printLeaMemReference(P, MI, Op, O, Modifier);
+}
+
+static void printIntelMemReference(X86AsmPrinter &P, const MachineInstr *MI,
+ unsigned Op, raw_ostream &O,
+ const char *Modifier = nullptr,
+ unsigned AsmVariant = 1) {
+ const MachineOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg);
+ unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
+ const MachineOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
+ const MachineOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
+ const MachineOperand &SegReg = MI->getOperand(Op+X86::AddrSegmentReg);
+
+ // If this has a segment register, print it.
+ if (SegReg.getReg()) {
+ printOperand(P, MI, Op+X86::AddrSegmentReg, O, Modifier, AsmVariant);
+ O << ':';
+ }
+
+ O << '[';
+
+ bool NeedPlus = false;
+ if (BaseReg.getReg()) {
+ printOperand(P, MI, Op+X86::AddrBaseReg, O, Modifier, AsmVariant);
+ NeedPlus = true;
+ }
+
+ if (IndexReg.getReg()) {
+ if (NeedPlus) O << " + ";
+ if (ScaleVal != 1)
+ O << ScaleVal << '*';
+ printOperand(P, MI, Op+X86::AddrIndexReg, O, Modifier, AsmVariant);
+ NeedPlus = true;
+ }
+
+ if (!DispSpec.isImm()) {
+ if (NeedPlus) O << " + ";
+ printOperand(P, MI, Op+X86::AddrDisp, O, Modifier, AsmVariant);
+ } else {
+ int64_t DispVal = DispSpec.getImm();
+ if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
+ if (NeedPlus) {
+ if (DispVal > 0)
+ O << " + ";
+ else {
+ O << " - ";
+ DispVal = -DispVal;
+ }
+ }
+ O << DispVal;
+ }
+ }
+ O << ']';
+}
+
+static bool printAsmMRegister(X86AsmPrinter &P, const MachineOperand &MO,
+ char Mode, raw_ostream &O) {
+ unsigned Reg = MO.getReg();
+ switch (Mode) {
+ default: return true; // Unknown mode.
+ case 'b': // Print QImode register
+ Reg = getX86SubSuperRegister(Reg, MVT::i8);
+ break;
+ case 'h': // Print QImode high register
+ Reg = getX86SubSuperRegister(Reg, MVT::i8, true);
+ break;
+ case 'w': // Print HImode register
+ Reg = getX86SubSuperRegister(Reg, MVT::i16);
+ break;
+ case 'k': // Print SImode register
+ Reg = getX86SubSuperRegister(Reg, MVT::i32);
+ break;
+ case 'q':
+ // Print 64-bit register names if 64-bit integer registers are available.
+ // Otherwise, print 32-bit register names.
+ MVT::SimpleValueType Ty = P.getSubtarget().is64Bit() ? MVT::i64 : MVT::i32;
+ Reg = getX86SubSuperRegister(Reg, Ty);
+ break;
+ }
+
+ O << '%' << X86ATTInstPrinter::getRegisterName(Reg);
+ return false;
+}
+
+/// PrintAsmOperand - Print out an operand for an inline asm expression.
+///
+bool X86AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode, raw_ostream &O) {
+ // Does this asm operand have a single letter operand modifier?
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ const MachineOperand &MO = MI->getOperand(OpNo);
+
+ switch (ExtraCode[0]) {
+ default:
+ // See if this is a generic print operand
+ return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
+ case 'a': // This is an address. Currently only 'i' and 'r' are expected.
+ switch (MO.getType()) {
+ default:
+ return true;
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ return false;
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_JumpTableIndex:
+ case MachineOperand::MO_ExternalSymbol:
+ llvm_unreachable("unexpected operand type!");
+ case MachineOperand::MO_GlobalAddress:
+ printSymbolOperand(*this, MO, O);
+ if (Subtarget->isPICStyleRIPRel())
+ O << "(%rip)";
+ return false;
+ case MachineOperand::MO_Register:
+ O << '(';
+ printOperand(*this, MI, OpNo, O);
+ O << ')';
+ return false;
+ }
+
+ case 'c': // Don't print "$" before a global var name or constant.
+ switch (MO.getType()) {
+ default:
+ printOperand(*this, MI, OpNo, O);
+ break;
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_JumpTableIndex:
+ case MachineOperand::MO_ExternalSymbol:
+ llvm_unreachable("unexpected operand type!");
+ case MachineOperand::MO_GlobalAddress:
+ printSymbolOperand(*this, MO, O);
+ break;
+ }
+ return false;
+
+ case 'A': // Print '*' before a register (it must be a register)
+ if (MO.isReg()) {
+ O << '*';
+ printOperand(*this, MI, OpNo, O);
+ return false;
+ }
+ return true;
+
+ case 'b': // Print QImode register
+ case 'h': // Print QImode high register
+ case 'w': // Print HImode register
+ case 'k': // Print SImode register
+ case 'q': // Print DImode register
+ if (MO.isReg())
+ return printAsmMRegister(*this, MO, ExtraCode[0], O);
+ printOperand(*this, MI, OpNo, O);
+ return false;
+
+ case 'P': // This is the operand of a call, treat specially.
+ printPCRelImm(*this, MI, OpNo, O);
+ return false;
+
+ case 'n': // Negate the immediate or print a '-' before the operand.
+ // Note: this is a temporary solution. It should be handled target
+ // independently as part of the 'MC' work.
+ if (MO.isImm()) {
+ O << -MO.getImm();
+ return false;
+ }
+ O << '-';
+ }
+ }
+
+ printOperand(*this, MI, OpNo, O, /*Modifier*/ nullptr, AsmVariant);
+ return false;
+}
+
+bool X86AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNo, unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &O) {
+ if (AsmVariant) {
+ printIntelMemReference(*this, MI, OpNo, O);
+ return false;
+ }
+
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ default: return true; // Unknown modifier.
+ case 'b': // Print QImode register
+ case 'h': // Print QImode high register
+ case 'w': // Print HImode register
+ case 'k': // Print SImode register
+ case 'q': // Print SImode register
+ // These only apply to registers, ignore on mem.
+ break;
+ case 'H':
+ printMemReference(*this, MI, OpNo, O, "H");
+ return false;
+ case 'P': // Don't print @PLT, but do print as memory.
+ printMemReference(*this, MI, OpNo, O, "no-rip");
+ return false;
+ }
+ }
+ printMemReference(*this, MI, OpNo, O);
+ return false;
+}
+
+void X86AsmPrinter::EmitStartOfAsmFile(Module &M) {
+ if (Subtarget->isTargetMacho())
+ OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
+
+ if (Subtarget->isTargetCOFF()) {
+ // Emit an absolute @feat.00 symbol. This appears to be some kind of
+ // compiler features bitfield read by link.exe.
+ if (!Subtarget->is64Bit()) {
+ MCSymbol *S = MMI->getContext().GetOrCreateSymbol(StringRef("@feat.00"));
+ OutStreamer.BeginCOFFSymbolDef(S);
+ OutStreamer.EmitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC);
+ OutStreamer.EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL);
+ OutStreamer.EndCOFFSymbolDef();
+ // According to the PE-COFF spec, the LSB of this value marks the object
+ // for "registered SEH". This means that all SEH handler entry points
+ // must be registered in .sxdata. Use of any unregistered handlers will
+ // cause the process to terminate immediately. LLVM does not know how to
+ // register any SEH handlers, so its object files should be safe.
+ S->setAbsolute();
+ OutStreamer.EmitSymbolAttribute(S, MCSA_Global);
+ OutStreamer.EmitAssignment(
+ S, MCConstantExpr::Create(int64_t(1), MMI->getContext()));
+ }
+ }
+}
+
+static void
+emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
+ MachineModuleInfoImpl::StubValueTy &MCSym) {
+ // L_foo$stub:
+ OutStreamer.EmitLabel(StubLabel);
+ // .indirect_symbol _foo
+ OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
+
+ if (MCSym.getInt())
+ // External to current translation unit.
+ OutStreamer.EmitIntValue(0, 4/*size*/);
+ else
+ // Internal to current translation unit.
+ //
+ // When we place the LSDA into the TEXT section, the type info
+ // pointers need to be indirect and pc-rel. We accomplish this by
+ // using NLPs; however, sometimes the types are local to the file.
+ // We need to fill in the value for the NLP in those cases.
+ OutStreamer.EmitValue(
+ MCSymbolRefExpr::Create(MCSym.getPointer(), OutStreamer.getContext()),
+ 4 /*size*/);
+}
+
+MCSymbol *X86AsmPrinter::GetCPISymbol(unsigned CPID) const {
+ if (Subtarget->isTargetKnownWindowsMSVC()) {
+ const MachineConstantPoolEntry &CPE =
+ MF->getConstantPool()->getConstants()[CPID];
+ if (!CPE.isMachineConstantPoolEntry()) {
+ SectionKind Kind = CPE.getSectionKind(TM.getDataLayout());
+ const Constant *C = CPE.Val.ConstVal;
+ const MCSectionCOFF *S = cast<MCSectionCOFF>(
+ getObjFileLowering().getSectionForConstant(Kind, C));
+ if (MCSymbol *Sym = S->getCOMDATSymbol()) {
+ if (Sym->isUndefined())
+ OutStreamer.EmitSymbolAttribute(Sym, MCSA_Global);
+ return Sym;
+ }
+ }
+ }
+
+ return AsmPrinter::GetCPISymbol(CPID);
+}
+
+void X86AsmPrinter::GenerateExportDirective(const MCSymbol *Sym, bool IsData) {
+ SmallString<128> Directive;
+ raw_svector_ostream OS(Directive);
+ StringRef Name = Sym->getName();
+
+ if (Subtarget->isTargetKnownWindowsMSVC())
+ OS << " /EXPORT:";
+ else
+ OS << " -export:";
+
+ if ((Subtarget->isTargetWindowsGNU() || Subtarget->isTargetWindowsCygwin()) &&
+ (Name[0] == getDataLayout().getGlobalPrefix()))
+ Name = Name.drop_front();
+
+ OS << Name;
+
+ if (IsData) {
+ if (Subtarget->isTargetKnownWindowsMSVC())
+ OS << ",DATA";
+ else
+ OS << ",data";
+ }
+
+ OS.flush();
+ OutStreamer.EmitBytes(Directive);
+}
+
+void X86AsmPrinter::EmitEndOfAsmFile(Module &M) {
+ if (Subtarget->isTargetMacho()) {
+ // All darwin targets use mach-o.
+ MachineModuleInfoMachO &MMIMacho =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>();
+
+ // Output stubs for dynamically-linked functions.
+ MachineModuleInfoMachO::SymbolListTy Stubs;
+
+ Stubs = MMIMacho.GetFnStubList();
+ if (!Stubs.empty()) {
+ const MCSection *TheSection =
+ OutContext.getMachOSection("__IMPORT", "__jump_table",
+ MachO::S_SYMBOL_STUBS |
+ MachO::S_ATTR_SELF_MODIFYING_CODE |
+ MachO::S_ATTR_PURE_INSTRUCTIONS,
+ 5, SectionKind::getMetadata());
+ OutStreamer.SwitchSection(TheSection);
+
+ for (const auto &Stub : Stubs) {
+ // L_foo$stub:
+ OutStreamer.EmitLabel(Stub.first);
+ // .indirect_symbol _foo
+ OutStreamer.EmitSymbolAttribute(Stub.second.getPointer(),
+ MCSA_IndirectSymbol);
+ // hlt; hlt; hlt; hlt; hlt hlt = 0xf4.
+ const char HltInsts[] = "\xf4\xf4\xf4\xf4\xf4";
+ OutStreamer.EmitBytes(StringRef(HltInsts, 5));
+ }
+
+ Stubs.clear();
+ OutStreamer.AddBlankLine();
+ }
+
+ // Output stubs for external and common global variables.
+ Stubs = MMIMacho.GetGVStubList();
+ if (!Stubs.empty()) {
+ const MCSection *TheSection =
+ OutContext.getMachOSection("__IMPORT", "__pointers",
+ MachO::S_NON_LAZY_SYMBOL_POINTERS,
+ SectionKind::getMetadata());
+ OutStreamer.SwitchSection(TheSection);
+
+ for (auto &Stub : Stubs)
+ emitNonLazySymbolPointer(OutStreamer, Stub.first, Stub.second);
+
+ Stubs.clear();
+ OutStreamer.AddBlankLine();
+ }
+
+ Stubs = MMIMacho.GetHiddenGVStubList();
+ if (!Stubs.empty()) {
+ const MCSection *TheSection =
+ OutContext.getMachOSection("__IMPORT", "__pointers",
+ MachO::S_NON_LAZY_SYMBOL_POINTERS,
+ SectionKind::getMetadata());
+ OutStreamer.SwitchSection(TheSection);
+
+ for (auto &Stub : Stubs)
+ emitNonLazySymbolPointer(OutStreamer, Stub.first, Stub.second);
+
+ Stubs.clear();
+ OutStreamer.AddBlankLine();
+ }
+
+ SM.serializeToStackMapSection();
+
+ // Funny Darwin hack: This flag tells the linker that no global symbols
+ // contain code that falls through to other global symbols (e.g. the obvious
+ // implementation of multiple entry points). If this doesn't occur, the
+ // linker can safely perform dead code stripping. Since LLVM never
+ // generates code that does this, it is always safe to set.
+ OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
+ }
+
+ if (Subtarget->isTargetKnownWindowsMSVC() && MMI->usesVAFloatArgument()) {
+ StringRef SymbolName = Subtarget->is64Bit() ? "_fltused" : "__fltused";
+ MCSymbol *S = MMI->getContext().GetOrCreateSymbol(SymbolName);
+ OutStreamer.EmitSymbolAttribute(S, MCSA_Global);
+ }
+
+ if (Subtarget->isTargetCOFF()) {
+ // Necessary for dllexport support
+ std::vector<const MCSymbol*> DLLExportedFns, DLLExportedGlobals;
+
+ for (const auto &Function : M)
+ if (Function.hasDLLExportStorageClass())
+ DLLExportedFns.push_back(getSymbol(&Function));
+
+ for (const auto &Global : M.globals())
+ if (Global.hasDLLExportStorageClass())
+ DLLExportedGlobals.push_back(getSymbol(&Global));
+
+ for (const auto &Alias : M.aliases()) {
+ if (!Alias.hasDLLExportStorageClass())
+ continue;
+
+ if (Alias.getType()->getElementType()->isFunctionTy())
+ DLLExportedFns.push_back(getSymbol(&Alias));
+ else
+ DLLExportedGlobals.push_back(getSymbol(&Alias));
+ }
+
+ // Output linker support code for dllexported globals on windows.
+ if (!DLLExportedGlobals.empty() || !DLLExportedFns.empty()) {
+ const TargetLoweringObjectFileCOFF &TLOFCOFF =
+ static_cast<const TargetLoweringObjectFileCOFF&>(getObjFileLowering());
+
+ OutStreamer.SwitchSection(TLOFCOFF.getDrectveSection());
+
+ for (auto & Symbol : DLLExportedGlobals)
+ GenerateExportDirective(Symbol, /*IsData=*/true);
+ for (auto & Symbol : DLLExportedFns)
+ GenerateExportDirective(Symbol, /*IsData=*/false);
+ }
+ }
+
+ if (Subtarget->isTargetELF()) {
+ const TargetLoweringObjectFileELF &TLOFELF =
+ static_cast<const TargetLoweringObjectFileELF &>(getObjFileLowering());
+
+ MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
+
+ // Output stubs for external and common global variables.
+ MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
+ if (!Stubs.empty()) {
+ OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
+ const DataLayout *TD = TM.getDataLayout();
+
+ for (const auto &Stub : Stubs) {
+ OutStreamer.EmitLabel(Stub.first);
+ OutStreamer.EmitSymbolValue(Stub.second.getPointer(),
+ TD->getPointerSize());
+ }
+ Stubs.clear();
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Target Registry Stuff
+//===----------------------------------------------------------------------===//
+
+// Force static initialization.
+extern "C" void LLVMInitializeX86AsmPrinter() {
+ RegisterAsmPrinter<X86AsmPrinter> X(TheX86_32Target);
+ RegisterAsmPrinter<X86AsmPrinter> Y(TheX86_64Target);
+}
diff --git a/contrib/llvm/lib/Target/X86/X86AsmPrinter.h b/contrib/llvm/lib/Target/X86/X86AsmPrinter.h
new file mode 100644
index 0000000..b1bbe8e
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86AsmPrinter.h
@@ -0,0 +1,61 @@
+//===-- X86AsmPrinter.h - X86 implementation of AsmPrinter ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86ASMPRINTER_H
+#define X86ASMPRINTER_H
+
+#include "X86Subtarget.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+class MCStreamer;
+class MCSymbol;
+
+class LLVM_LIBRARY_VISIBILITY X86AsmPrinter : public AsmPrinter {
+ const X86Subtarget *Subtarget;
+ StackMaps SM;
+
+ void GenerateExportDirective(const MCSymbol *Sym, bool IsData);
+
+ public:
+ explicit X86AsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer), SM(*this) {
+ Subtarget = &TM.getSubtarget<X86Subtarget>();
+ }
+
+ const char *getPassName() const override {
+ return "X86 Assembly / Object Emitter";
+ }
+
+ const X86Subtarget &getSubtarget() const { return *Subtarget; }
+
+ void EmitStartOfAsmFile(Module &M) override;
+
+ void EmitEndOfAsmFile(Module &M) override;
+
+ void EmitInstruction(const MachineInstr *MI) override;
+
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &OS) override;
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &OS) override;
+
+ /// \brief Return the symbol for the specified constant pool entry.
+ MCSymbol *GetCPISymbol(unsigned CPID) const override;
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86AtomicExpandPass.cpp b/contrib/llvm/lib/Target/X86/X86AtomicExpandPass.cpp
new file mode 100644
index 0000000..3dcadb1
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86AtomicExpandPass.cpp
@@ -0,0 +1,283 @@
+//===-- X86AtomicExpandPass.cpp - Expand illegal atomic instructions --0---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass (at IR level) to replace atomic instructions which
+// cannot be implemented as a single instruction with cmpxchg-based loops.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86TargetMachine.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-atomic-expand"
+
+namespace {
+ class X86AtomicExpandPass : public FunctionPass {
+ const X86TargetMachine *TM;
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ explicit X86AtomicExpandPass(const X86TargetMachine *TM)
+ : FunctionPass(ID), TM(TM) {}
+
+ bool runOnFunction(Function &F) override;
+ bool expandAtomicInsts(Function &F);
+
+ bool needsCmpXchgNb(Type *MemType);
+
+ /// There are four kinds of atomic operations. Two never need expanding:
+ /// cmpxchg is what we expand the others *to*, and loads are easily handled
+ /// by ISelLowering. Atomicrmw and store can need expanding in some
+ /// circumstances.
+ bool shouldExpand(Instruction *Inst);
+
+ /// 128-bit atomic stores (64-bit on i686) need to be implemented in terms
+ /// of trivial cmpxchg16b loops. A simple store isn't necessarily atomic.
+ bool shouldExpandStore(StoreInst *SI);
+
+ /// Only some atomicrmw instructions need expanding -- some operations
+ /// (e.g. max) have absolutely no architectural support; some (e.g. or) have
+ /// limited support but can't return the previous value; some (e.g. add)
+ /// have complete support in the instruction set.
+ ///
+ /// Also, naturally, 128-bit operations always need to be expanded.
+ bool shouldExpandAtomicRMW(AtomicRMWInst *AI);
+
+ bool expandAtomicRMW(AtomicRMWInst *AI);
+ bool expandAtomicStore(StoreInst *SI);
+ };
+}
+
+char X86AtomicExpandPass::ID = 0;
+
+FunctionPass *llvm::createX86AtomicExpandPass(const X86TargetMachine *TM) {
+ return new X86AtomicExpandPass(TM);
+}
+
+bool X86AtomicExpandPass::runOnFunction(Function &F) {
+ SmallVector<Instruction *, 1> AtomicInsts;
+
+ // Changing control-flow while iterating through it is a bad idea, so gather a
+ // list of all atomic instructions before we start.
+ for (BasicBlock &BB : F)
+ for (Instruction &Inst : BB) {
+ if (isa<AtomicRMWInst>(&Inst) ||
+ (isa<StoreInst>(&Inst) && cast<StoreInst>(&Inst)->isAtomic()))
+ AtomicInsts.push_back(&Inst);
+ }
+
+ bool MadeChange = false;
+ for (Instruction *Inst : AtomicInsts) {
+ if (!shouldExpand(Inst))
+ continue;
+
+ if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst))
+ MadeChange |= expandAtomicRMW(AI);
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
+ MadeChange |= expandAtomicStore(SI);
+
+ assert(MadeChange && "Atomic inst not expanded when it should be?");
+ Inst->eraseFromParent();
+ }
+
+ return MadeChange;
+}
+
+/// Returns true if the operand type is 1 step up from the native width, and
+/// the corresponding cmpxchg8b or cmpxchg16b instruction is available
+/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
+bool X86AtomicExpandPass::needsCmpXchgNb(llvm::Type *MemType) {
+ const X86Subtarget &Subtarget = TM->getSubtarget<X86Subtarget>();
+ unsigned OpWidth = MemType->getPrimitiveSizeInBits();
+
+ if (OpWidth == 64)
+ return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
+ if (OpWidth == 128)
+ return Subtarget.hasCmpxchg16b();
+
+ return false;
+}
+
+bool X86AtomicExpandPass::shouldExpandAtomicRMW(AtomicRMWInst *AI) {
+ const X86Subtarget &Subtarget = TM->getSubtarget<X86Subtarget>();
+ unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
+
+ if (needsCmpXchgNb(AI->getType()))
+ return true;
+
+ if (AI->getType()->getPrimitiveSizeInBits() > NativeWidth)
+ return false;
+
+ AtomicRMWInst::BinOp Op = AI->getOperation();
+ switch (Op) {
+ default:
+ llvm_unreachable("Unknown atomic operation");
+ case AtomicRMWInst::Xchg:
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ // It's better to use xadd, xsub or xchg for these in all cases.
+ return false;
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::Xor:
+ // If the atomicrmw's result isn't actually used, we can just add a "lock"
+ // prefix to a normal instruction for these operations.
+ return !AI->use_empty();
+ case AtomicRMWInst::Nand:
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin:
+ // These always require a non-trivial set of data operations on x86. We must
+ // use a cmpxchg loop.
+ return true;
+ }
+}
+
+bool X86AtomicExpandPass::shouldExpandStore(StoreInst *SI) {
+ if (needsCmpXchgNb(SI->getValueOperand()->getType()))
+ return true;
+
+ return false;
+}
+
+bool X86AtomicExpandPass::shouldExpand(Instruction *Inst) {
+ if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst))
+ return shouldExpandAtomicRMW(AI);
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
+ return shouldExpandStore(SI);
+ return false;
+}
+
+/// Emit IR to implement the given atomicrmw operation on values in registers,
+/// returning the new value.
+static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
+ Value *Loaded, Value *Inc) {
+ Value *NewVal;
+ switch (Op) {
+ case AtomicRMWInst::Xchg:
+ return Inc;
+ case AtomicRMWInst::Add:
+ return Builder.CreateAdd(Loaded, Inc, "new");
+ case AtomicRMWInst::Sub:
+ return Builder.CreateSub(Loaded, Inc, "new");
+ case AtomicRMWInst::And:
+ return Builder.CreateAnd(Loaded, Inc, "new");
+ case AtomicRMWInst::Nand:
+ return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
+ case AtomicRMWInst::Or:
+ return Builder.CreateOr(Loaded, Inc, "new");
+ case AtomicRMWInst::Xor:
+ return Builder.CreateXor(Loaded, Inc, "new");
+ case AtomicRMWInst::Max:
+ NewVal = Builder.CreateICmpSGT(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ case AtomicRMWInst::Min:
+ NewVal = Builder.CreateICmpSLE(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ case AtomicRMWInst::UMax:
+ NewVal = Builder.CreateICmpUGT(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ case AtomicRMWInst::UMin:
+ NewVal = Builder.CreateICmpULE(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ default:
+ break;
+ }
+ llvm_unreachable("Unknown atomic op");
+}
+
+bool X86AtomicExpandPass::expandAtomicRMW(AtomicRMWInst *AI) {
+ AtomicOrdering Order =
+ AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering();
+ Value *Addr = AI->getPointerOperand();
+ BasicBlock *BB = AI->getParent();
+ Function *F = BB->getParent();
+ LLVMContext &Ctx = F->getContext();
+
+ // Given: atomicrmw some_op iN* %addr, iN %incr ordering
+ //
+ // The standard expansion we produce is:
+ // [...]
+ // %init_loaded = load atomic iN* %addr
+ // br label %loop
+ // loop:
+ // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
+ // %new = some_op iN %loaded, %incr
+ // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
+ // %new_loaded = extractvalue { iN, i1 } %pair, 0
+ // %success = extractvalue { iN, i1 } %pair, 1
+ // br i1 %success, label %atomicrmw.end, label %loop
+ // atomicrmw.end:
+ // [...]
+ BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
+ BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
+
+ // This grabs the DebugLoc from AI.
+ IRBuilder<> Builder(AI);
+
+ // The split call above "helpfully" added a branch at the end of BB (to the
+ // wrong place), but we want a load. It's easiest to just remove
+ // the branch entirely.
+ std::prev(BB->end())->eraseFromParent();
+ Builder.SetInsertPoint(BB);
+ LoadInst *InitLoaded = Builder.CreateLoad(Addr);
+ InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits());
+ Builder.CreateBr(LoopBB);
+
+ // Start the main loop block now that we've taken care of the preliminaries.
+ Builder.SetInsertPoint(LoopBB);
+ PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded");
+ Loaded->addIncoming(InitLoaded, BB);
+
+ Value *NewVal =
+ performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
+
+ Value *Pair = Builder.CreateAtomicCmpXchg(
+ Addr, Loaded, NewVal, Order,
+ AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
+ Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
+ Loaded->addIncoming(NewLoaded, LoopBB);
+
+ Value *Success = Builder.CreateExtractValue(Pair, 1, "success");
+ Builder.CreateCondBr(Success, ExitBB, LoopBB);
+
+ AI->replaceAllUsesWith(NewLoaded);
+
+ return true;
+}
+
+bool X86AtomicExpandPass::expandAtomicStore(StoreInst *SI) {
+ // An atomic store might need cmpxchg16b (or 8b on x86) to execute. Express
+ // this in terms of the usual expansion to "atomicrmw xchg".
+ IRBuilder<> Builder(SI);
+ AtomicOrdering Order =
+ SI->getOrdering() == Unordered ? Monotonic : SI->getOrdering();
+ AtomicRMWInst *AI =
+ Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
+ SI->getValueOperand(), Order);
+
+ // Now we have an appropriate swap instruction, lower it as usual.
+ if (shouldExpandAtomicRMW(AI)) {
+ expandAtomicRMW(AI);
+ AI->eraseFromParent();
+ return true;
+ }
+
+ return AI;
+}
diff --git a/contrib/llvm/lib/Target/X86/X86CallingConv.h b/contrib/llvm/lib/Target/X86/X86CallingConv.h
new file mode 100644
index 0000000..e76f9fd
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86CallingConv.h
@@ -0,0 +1,35 @@
+//=== X86CallingConv.h - X86 Custom Calling Convention Routines -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the custom routines for the X86 Calling Convention that
+// aren't done by tablegen.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86CALLINGCONV_H
+#define X86CALLINGCONV_H
+
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/IR/CallingConv.h"
+
+namespace llvm {
+
+inline bool CC_X86_AnyReg_Error(unsigned &, MVT &, MVT &,
+ CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
+ CCState &) {
+ llvm_unreachable("The AnyReg calling convention is only supported by the " \
+ "stackmap and patchpoint intrinsics.");
+ // gracefully fallback to X86 C calling convention on Release builds.
+ return false;
+}
+
+} // End llvm namespace
+
+#endif
+
diff --git a/contrib/llvm/lib/Target/X86/X86CallingConv.td b/contrib/llvm/lib/Target/X86/X86CallingConv.td
new file mode 100644
index 0000000..86c01bd
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86CallingConv.td
@@ -0,0 +1,662 @@
+//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This describes the calling conventions for the X86-32 and X86-64
+// architectures.
+//
+//===----------------------------------------------------------------------===//
+
+/// CCIfSubtarget - Match if the current subtarget has a feature F.
+class CCIfSubtarget<string F, CCAction A>
+ : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Conventions
+//===----------------------------------------------------------------------===//
+
+// Return-value conventions common to all X86 CC's.
+def RetCC_X86Common : CallingConv<[
+ // Scalar values are returned in AX first, then DX. For i8, the ABI
+ // requires the values to be in AL and AH, however this code uses AL and DL
+ // instead. This is because using AH for the second register conflicts with
+ // the way LLVM does multiple return values -- a return of {i16,i8} would end
+ // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
+ // for functions that return two i8 values are currently expected to pack the
+ // values into an i16 (which uses AX, and thus AL:AH).
+ //
+ // For code that doesn't care about the ABI, we allow returning more than two
+ // integer values in registers.
+ CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
+ CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
+ CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
+ CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
+
+ // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3
+ // can only be used by ABI non-compliant code. If the target doesn't have XMM
+ // registers, it won't have vector types.
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
+
+ // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
+ // can only be used by ABI non-compliant code. This vector type is only
+ // supported while using the AVX target feature.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
+
+ // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
+ // can only be used by ABI non-compliant code. This vector type is only
+ // supported while using the AVX-512 target feature.
+ CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
+
+ // MMX vector types are always returned in MM0. If the target doesn't have
+ // MM0, it doesn't support these vector types.
+ CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
+
+ // Long double types are always returned in ST0 (even with SSE).
+ CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
+]>;
+
+// X86-32 C return-value convention.
+def RetCC_X86_32_C : CallingConv<[
+ // The X86-32 calling convention returns FP values in ST0, unless marked
+ // with "inreg" (used here to distinguish one kind of reg from another,
+ // weirdly; this is really the sse-regparm calling convention) in which
+ // case they use XMM0, otherwise it is the same as the common X86 calling
+ // conv.
+ CCIfInReg<CCIfSubtarget<"hasSSE2()",
+ CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
+ CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// X86-32 FastCC return-value convention.
+def RetCC_X86_32_Fast : CallingConv<[
+ // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
+ // SSE2.
+ // This can happen when a float, 2 x float, or 3 x float vector is split by
+ // target lowering, and is returned in 1-3 sse regs.
+ CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
+ CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
+
+ // For integers, ECX can be used as an extra return register
+ CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>,
+ CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
+ CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
+
+ // Otherwise, it is the same as the common X86 calling convention.
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// Intel_OCL_BI return-value convention.
+def RetCC_Intel_OCL_BI : CallingConv<[
+ // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
+ CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
+
+ // 256-bit FP vectors
+ // No more than 4 registers
+ CCIfType<[v8f32, v4f64, v8i32, v4i64],
+ CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
+
+ // 512-bit FP vectors
+ CCIfType<[v16f32, v8f64, v16i32, v8i64],
+ CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
+
+ // i32, i64 in the standard way
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// X86-32 HiPE return-value convention.
+def RetCC_X86_32_HiPE : CallingConv<[
+ // Promote all types to i32
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Return: HP, P, VAL1, VAL2
+ CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
+]>;
+
+// X86-64 C return-value convention.
+def RetCC_X86_64_C : CallingConv<[
+ // The X86-64 calling convention always returns FP values in XMM0.
+ CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
+ CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
+
+ // MMX vector types are always returned in XMM0.
+ CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// X86-Win64 C return-value convention.
+def RetCC_X86_Win64_C : CallingConv<[
+ // The X86-Win64 calling convention always returns __m64 values in RAX.
+ CCIfType<[x86mmx], CCBitConvertToType<i64>>,
+
+ // Otherwise, everything is the same as 'normal' X86-64 C CC.
+ CCDelegateTo<RetCC_X86_64_C>
+]>;
+
+// X86-64 HiPE return-value convention.
+def RetCC_X86_64_HiPE : CallingConv<[
+ // Promote all types to i64
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // Return: HP, P, VAL1, VAL2
+ CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
+]>;
+
+// X86-64 WebKit_JS return-value convention.
+def RetCC_X86_64_WebKit_JS : CallingConv<[
+ // Promote all types to i64
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // Return: RAX
+ CCIfType<[i64], CCAssignToReg<[RAX]>>
+]>;
+
+// X86-64 AnyReg return-value convention. No explicit register is specified for
+// the return-value. The register allocator is allowed and expected to choose
+// any free register.
+//
+// This calling convention is currently only supported by the stackmap and
+// patchpoint intrinsics. All other uses will result in an assert on Debug
+// builds. On Release builds we fallback to the X86 C calling convention.
+def RetCC_X86_64_AnyReg : CallingConv<[
+ CCCustom<"CC_X86_AnyReg_Error">
+]>;
+
+// This is the root return-value convention for the X86-32 backend.
+def RetCC_X86_32 : CallingConv<[
+ // If FastCC, use RetCC_X86_32_Fast.
+ CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
+ // If HiPE, use RetCC_X86_32_HiPE.
+ CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
+
+ // Otherwise, use RetCC_X86_32_C.
+ CCDelegateTo<RetCC_X86_32_C>
+]>;
+
+// This is the root return-value convention for the X86-64 backend.
+def RetCC_X86_64 : CallingConv<[
+ // HiPE uses RetCC_X86_64_HiPE
+ CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
+
+ // Handle JavaScript calls.
+ CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
+ CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
+
+ // Handle explicit CC selection
+ CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
+ CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
+
+ // Mingw64 and native Win64 use Win64 CC
+ CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
+
+ // Otherwise, drop to normal X86-64 CC
+ CCDelegateTo<RetCC_X86_64_C>
+]>;
+
+// This is the return-value convention used for the entire X86 backend.
+def RetCC_X86 : CallingConv<[
+
+ // Check if this is the Intel OpenCL built-ins calling convention
+ CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
+
+ CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
+ CCDelegateTo<RetCC_X86_32>
+]>;
+
+//===----------------------------------------------------------------------===//
+// X86-64 Argument Calling Conventions
+//===----------------------------------------------------------------------===//
+
+def CC_X86_64_C : CallingConv<[
+ // Handles byval parameters.
+ CCIfByVal<CCPassByVal<8, 8>>,
+
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in R10.
+ CCIfNest<CCAssignToReg<[R10]>>,
+
+ // The first 6 integer arguments are passed in integer registers.
+ CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
+ CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
+
+ // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
+ CCIfType<[x86mmx],
+ CCIfSubtarget<"isTargetDarwin()",
+ CCIfSubtarget<"hasSSE2()",
+ CCPromoteToType<v2i64>>>>,
+
+ // The first 8 FP/Vector arguments are passed in XMM registers.
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCIfSubtarget<"hasSSE1()",
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
+
+ // The first 8 256-bit vector arguments are passed in YMM registers, unless
+ // this is a vararg function.
+ // FIXME: This isn't precisely correct; the x86-64 ABI document says that
+ // fixed arguments to vararg functions are supposed to be passed in
+ // registers. Actually modeling that would be a lot of work, though.
+ CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCIfSubtarget<"hasFp256()",
+ CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
+ YMM4, YMM5, YMM6, YMM7]>>>>,
+
+ // The first 8 512-bit vector arguments are passed in ZMM registers.
+ CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCIfSubtarget<"hasAVX512()",
+ CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
+
+ // Integer/FP values get stored in stack slots that are 8 bytes in size and
+ // 8-byte aligned if there are no more registers to hold them.
+ CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
+
+ // Long doubles get stack slots whose size and alignment depends on the
+ // subtarget.
+ CCIfType<[f80], CCAssignToStack<0, 0>>,
+
+ // Vectors get 16-byte stack slots that are 16-byte aligned.
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
+
+ // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToStack<32, 32>>,
+
+ // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
+ CCIfType<[v16i32, v8i64, v16f32, v8f64],
+ CCAssignToStack<64, 64>>
+]>;
+
+// Calling convention used on Win64
+def CC_X86_Win64_C : CallingConv<[
+ // FIXME: Handle byval stuff.
+ // FIXME: Handle varargs.
+
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in R10.
+ CCIfNest<CCAssignToReg<[R10]>>,
+
+ // 128 bit vectors are passed by pointer
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
+
+
+ // 256 bit vectors are passed by pointer
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
+
+ // 512 bit vectors are passed by pointer
+ CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
+
+ // The first 4 MMX vector arguments are passed in GPRs.
+ CCIfType<[x86mmx], CCBitConvertToType<i64>>,
+
+ // The first 4 integer arguments are passed in integer registers.
+ CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
+ [XMM0, XMM1, XMM2, XMM3]>>,
+
+ // Do not pass the sret argument in RCX, the Win64 thiscall calling
+ // convention requires "this" to be passed in RCX.
+ CCIfCC<"CallingConv::X86_ThisCall",
+ CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ],
+ [XMM1, XMM2, XMM3]>>>>,
+
+ CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
+ [XMM0, XMM1, XMM2, XMM3]>>,
+
+ // The first 4 FP/Vector arguments are passed in XMM registers.
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
+ [RCX , RDX , R8 , R9 ]>>,
+
+ // Integer/FP values get stored in stack slots that are 8 bytes in size and
+ // 8-byte aligned if there are no more registers to hold them.
+ CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
+
+ // Long doubles get stack slots whose size and alignment depends on the
+ // subtarget.
+ CCIfType<[f80], CCAssignToStack<0, 0>>
+]>;
+
+def CC_X86_64_GHC : CallingConv<[
+ // Promote i8/i16/i32 arguments to i64.
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
+ CCIfType<[i64],
+ CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
+
+ // Pass in STG registers: F1, F2, F3, F4, D1, D2
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCIfSubtarget<"hasSSE1()",
+ CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
+]>;
+
+def CC_X86_64_HiPE : CallingConv<[
+ // Promote i8/i16/i32 arguments to i64.
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
+ CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
+
+ // Integer/FP values get stored in stack slots that are 8 bytes in size and
+ // 8-byte aligned if there are no more registers to hold them.
+ CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
+]>;
+
+def CC_X86_64_WebKit_JS : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Only the first integer argument is passed in register.
+ CCIfType<[i32], CCAssignToReg<[EAX]>>,
+ CCIfType<[i64], CCAssignToReg<[RAX]>>,
+
+ // The remaining integer arguments are passed on the stack. 32bit integer and
+ // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
+ // 64bit integer and floating-point arguments are aligned to 8 byte and stored
+ // in 8 byte stack slots.
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
+ CCIfType<[i64, f64], CCAssignToStack<8, 8>>
+]>;
+
+// No explicit register is specified for the AnyReg calling convention. The
+// register allocator may assign the arguments to any free register.
+//
+// This calling convention is currently only supported by the stackmap and
+// patchpoint intrinsics. All other uses will result in an assert on Debug
+// builds. On Release builds we fallback to the X86 C calling convention.
+def CC_X86_64_AnyReg : CallingConv<[
+ CCCustom<"CC_X86_AnyReg_Error">
+]>;
+
+//===----------------------------------------------------------------------===//
+// X86 C Calling Convention
+//===----------------------------------------------------------------------===//
+
+/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
+/// values are spilled on the stack, and the first 4 vector values go in XMM
+/// regs.
+def CC_X86_32_Common : CallingConv<[
+ // Handles byval parameters.
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ // The first 3 float or double arguments, if marked 'inreg' and if the call
+ // is not a vararg call and if SSE2 is available, are passed in SSE registers.
+ CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
+ CCIfSubtarget<"hasSSE2()",
+ CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
+
+ // The first 3 __m64 vector arguments are passed in mmx registers if the
+ // call is not a vararg call.
+ CCIfNotVarArg<CCIfType<[x86mmx],
+ CCAssignToReg<[MM0, MM1, MM2]>>>,
+
+ // Integer/Float values get stored in stack slots that are 4 bytes in
+ // size and 4-byte aligned.
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
+
+ // Doubles get 8-byte slots that are 4-byte aligned.
+ CCIfType<[f64], CCAssignToStack<8, 4>>,
+
+ // Long doubles get slots whose size depends on the subtarget.
+ CCIfType<[f80], CCAssignToStack<0, 4>>,
+
+ // The first 4 SSE vector arguments are passed in XMM registers.
+ CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
+
+ // The first 4 AVX 256-bit vector arguments are passed in YMM registers.
+ CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCIfSubtarget<"hasFp256()",
+ CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
+
+ // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
+
+ // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToStack<32, 32>>,
+
+ // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
+ // passed in the parameter area.
+ CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>;
+
+def CC_X86_32_C : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in ECX.
+ CCIfNest<CCAssignToReg<[ECX]>>,
+
+ // The first 3 integer arguments, if marked 'inreg' and if the call is not
+ // a vararg call, are passed in integer registers.
+ CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_FastCall : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in EAX.
+ CCIfNest<CCAssignToReg<[EAX]>>,
+
+ // The first 2 integer arguments are passed in ECX/EDX
+ CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_ThisCall_Common : CallingConv<[
+ // The first integer argument is passed in ECX
+ CCIfType<[i32], CCAssignToReg<[ECX]>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_ThisCall_Mingw : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ CCDelegateTo<CC_X86_32_ThisCall_Common>
+]>;
+
+def CC_X86_32_ThisCall_Win : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Pass sret arguments indirectly through stack.
+ CCIfSRet<CCAssignToStack<4, 4>>,
+
+ CCDelegateTo<CC_X86_32_ThisCall_Common>
+]>;
+
+def CC_X86_32_ThisCall : CallingConv<[
+ CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
+ CCDelegateTo<CC_X86_32_ThisCall_Win>
+]>;
+
+def CC_X86_32_FastCC : CallingConv<[
+ // Handles byval parameters. Note that we can't rely on the delegation
+ // to CC_X86_32_Common for this because that happens after code that
+ // puts arguments in registers.
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in EAX.
+ CCIfNest<CCAssignToReg<[EAX]>>,
+
+ // The first 2 integer arguments are passed in ECX/EDX
+ CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
+
+ // The first 3 float or double arguments, if the call is not a vararg
+ // call and if SSE2 is available, are passed in SSE registers.
+ CCIfNotVarArg<CCIfType<[f32,f64],
+ CCIfSubtarget<"hasSSE2()",
+ CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
+
+ // Doubles get 8-byte slots that are 8-byte aligned.
+ CCIfType<[f64], CCAssignToStack<8, 8>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_GHC : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Pass in STG registers: Base, Sp, Hp, R1
+ CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
+]>;
+
+def CC_X86_32_HiPE : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
+ CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
+
+ // Integer/Float values get stored in stack slots that are 4 bytes in
+ // size and 4-byte aligned.
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>
+]>;
+
+// X86-64 Intel OpenCL built-ins calling convention.
+def CC_Intel_OCL_BI : CallingConv<[
+
+ CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
+ CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>,
+
+ CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
+ CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
+
+ CCIfType<[i32], CCAssignToStack<4, 4>>,
+
+ // The SSE vector arguments are passed in XMM registers.
+ CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
+
+ // The 256-bit vector arguments are passed in YMM registers.
+ CCIfType<[v8f32, v4f64, v8i32, v4i64],
+ CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
+
+ // The 512-bit vector arguments are passed in ZMM registers.
+ CCIfType<[v16f32, v8f64, v16i32, v8i64],
+ CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
+
+ CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
+ CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>,
+ CCDelegateTo<CC_X86_32_C>
+]>;
+
+//===----------------------------------------------------------------------===//
+// X86 Root Argument Calling Conventions
+//===----------------------------------------------------------------------===//
+
+// This is the root argument convention for the X86-32 backend.
+def CC_X86_32 : CallingConv<[
+ CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
+ CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
+ CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
+ CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
+ CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
+
+ // Otherwise, drop to normal X86-32 CC
+ CCDelegateTo<CC_X86_32_C>
+]>;
+
+// This is the root argument convention for the X86-64 backend.
+def CC_X86_64 : CallingConv<[
+ CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
+ CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
+ CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
+ CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
+ CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<CC_X86_Win64_C>>,
+ CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
+
+ // Mingw64 and native Win64 use Win64 CC
+ CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
+
+ // Otherwise, drop to normal X86-64 CC
+ CCDelegateTo<CC_X86_64_C>
+]>;
+
+// This is the argument convention used for the entire X86 backend.
+def CC_X86 : CallingConv<[
+ CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
+ CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
+ CCDelegateTo<CC_X86_32>
+]>;
+
+//===----------------------------------------------------------------------===//
+// Callee-saved Registers.
+//===----------------------------------------------------------------------===//
+
+def CSR_NoRegs : CalleeSavedRegs<(add)>;
+
+def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
+def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
+
+def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
+def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
+
+def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15,
+ (sequence "XMM%u", 6, 15))>;
+
+// All GPRs - except r11
+def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
+ R8, R9, R10, RSP)>;
+
+// All registers - except r11
+def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
+ (sequence "XMM%u", 0, 15))>;
+def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
+ (sequence "YMM%u", 0, 15))>;
+
+def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
+ R11, R12, R13, R14, R15, RBP,
+ (sequence "XMM%u", 0, 15))>;
+
+def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX, RSP,
+ (sequence "XMM%u", 16, 31))>;
+def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, RSP,
+ (sequence "YMM%u", 0, 31)),
+ (sequence "XMM%u", 0, 15))>;
+
+// Standard C + YMM6-15
+def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
+ R13, R14, R15,
+ (sequence "YMM%u", 6, 15))>;
+
+def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
+ R12, R13, R14, R15,
+ (sequence "ZMM%u", 6, 21),
+ K4, K5, K6, K7)>;
+//Standard C + XMM 8-15
+def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64,
+ (sequence "XMM%u", 8, 15))>;
+
+//Standard C + YMM 8-15
+def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64,
+ (sequence "YMM%u", 8, 15))>;
+
+def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
+ (sequence "ZMM%u", 16, 31),
+ K4, K5, K6, K7)>;
diff --git a/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp b/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp
new file mode 100644
index 0000000..a3ae7ee
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp
@@ -0,0 +1,1498 @@
+//===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the pass that transforms the X86 machine instructions into
+// relocatable machine code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "X86JITInfo.h"
+#include "X86Relocations.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-emitter"
+
+STATISTIC(NumEmitted, "Number of machine instructions emitted");
+
+namespace {
+ template<class CodeEmitter>
+ class Emitter : public MachineFunctionPass {
+ const X86InstrInfo *II;
+ const DataLayout *TD;
+ X86TargetMachine &TM;
+ CodeEmitter &MCE;
+ MachineModuleInfo *MMI;
+ intptr_t PICBaseOffset;
+ bool Is64BitMode;
+ bool IsPIC;
+ public:
+ static char ID;
+ explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
+ : MachineFunctionPass(ID), II(nullptr), TD(nullptr), TM(tm),
+ MCE(mce), PICBaseOffset(0), Is64BitMode(false),
+ IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "X86 Machine Code Emitter";
+ }
+
+ void emitOpcodePrefix(uint64_t TSFlags, int MemOperand,
+ const MachineInstr &MI,
+ const MCInstrDesc *Desc) const;
+
+ void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand,
+ const MachineInstr &MI,
+ const MCInstrDesc *Desc) const;
+
+ void emitSegmentOverridePrefix(uint64_t TSFlags,
+ int MemOperand,
+ const MachineInstr &MI) const;
+
+ void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ AU.addRequired<MachineModuleInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ private:
+ void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
+ void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
+ intptr_t Disp = 0, intptr_t PCAdj = 0,
+ bool Indirect = false);
+ void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
+ void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
+ intptr_t PCAdj = 0);
+ void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
+ intptr_t PCAdj = 0);
+
+ void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
+ intptr_t Adj = 0, bool IsPCRel = true);
+
+ void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
+ void emitRegModRMByte(unsigned RegOpcodeField);
+ void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
+ void emitConstant(uint64_t Val, unsigned Size);
+
+ void emitMemModRMByte(const MachineInstr &MI,
+ unsigned Op, unsigned RegOpcodeField,
+ intptr_t PCAdj = 0);
+
+ unsigned getX86RegNum(unsigned RegNo) const {
+ const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ return TRI->getEncodingValue(RegNo) & 0x7;
+ }
+
+ unsigned char getVEXRegisterEncoding(const MachineInstr &MI,
+ unsigned OpNum) const;
+ };
+
+template<class CodeEmitter>
+ char Emitter<CodeEmitter>::ID = 0;
+} // end anonymous namespace.
+
+/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
+/// to the specified JITCodeEmitter object.
+FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
+ JITCodeEmitter &JCE) {
+ return new Emitter<JITCodeEmitter>(TM, JCE);
+}
+
+template<class CodeEmitter>
+bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
+ MMI = &getAnalysis<MachineModuleInfo>();
+ MCE.setModuleInfo(MMI);
+
+ II = TM.getInstrInfo();
+ TD = TM.getDataLayout();
+ Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
+ IsPIC = TM.getRelocationModel() == Reloc::PIC_;
+
+ do {
+ DEBUG(dbgs() << "JITTing function '" << MF.getName() << "'\n");
+ MCE.startFunction(MF);
+ for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
+ MBB != E; ++MBB) {
+ MCE.StartMachineBasicBlock(MBB);
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+ I != E; ++I) {
+ const MCInstrDesc &Desc = I->getDesc();
+ emitInstruction(*I, &Desc);
+ // MOVPC32r is basically a call plus a pop instruction.
+ if (Desc.getOpcode() == X86::MOVPC32r)
+ emitInstruction(*I, &II->get(X86::POP32r));
+ ++NumEmitted; // Keep track of the # of mi's emitted
+ }
+ }
+ } while (MCE.finishFunction(MF));
+
+ return false;
+}
+
+/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
+/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
+/// size, and 3) use of X86-64 extended registers.
+static unsigned determineREX(const MachineInstr &MI) {
+ unsigned REX = 0;
+ const MCInstrDesc &Desc = MI.getDesc();
+
+ // Pseudo instructions do not need REX prefix byte.
+ if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
+ return 0;
+ if (Desc.TSFlags & X86II::REX_W)
+ REX |= 1 << 3;
+
+ unsigned NumOps = Desc.getNumOperands();
+ if (NumOps) {
+ bool isTwoAddr = NumOps > 1 &&
+ Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
+
+ // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
+ unsigned i = isTwoAddr ? 1 : 0;
+ for (unsigned e = NumOps; i != e; ++i) {
+ const MachineOperand& MO = MI.getOperand(i);
+ if (MO.isReg()) {
+ unsigned Reg = MO.getReg();
+ if (X86II::isX86_64NonExtLowByteReg(Reg))
+ REX |= 0x40;
+ }
+ }
+
+ switch (Desc.TSFlags & X86II::FormMask) {
+ case X86II::MRMSrcReg: {
+ if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
+ REX |= 1 << 2;
+ i = isTwoAddr ? 2 : 1;
+ for (unsigned e = NumOps; i != e; ++i) {
+ const MachineOperand& MO = MI.getOperand(i);
+ if (X86InstrInfo::isX86_64ExtendedReg(MO))
+ REX |= 1 << 0;
+ }
+ break;
+ }
+ case X86II::MRMSrcMem: {
+ if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
+ REX |= 1 << 2;
+ unsigned Bit = 0;
+ i = isTwoAddr ? 2 : 1;
+ for (; i != NumOps; ++i) {
+ const MachineOperand& MO = MI.getOperand(i);
+ if (MO.isReg()) {
+ if (X86InstrInfo::isX86_64ExtendedReg(MO))
+ REX |= 1 << Bit;
+ Bit++;
+ }
+ }
+ break;
+ }
+ case X86II::MRMXm:
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m:
+ case X86II::MRMDestMem: {
+ unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
+ i = isTwoAddr ? 1 : 0;
+ if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
+ REX |= 1 << 2;
+ unsigned Bit = 0;
+ for (; i != e; ++i) {
+ const MachineOperand& MO = MI.getOperand(i);
+ if (MO.isReg()) {
+ if (X86InstrInfo::isX86_64ExtendedReg(MO))
+ REX |= 1 << Bit;
+ Bit++;
+ }
+ }
+ break;
+ }
+ default: {
+ if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
+ REX |= 1 << 0;
+ i = isTwoAddr ? 2 : 1;
+ for (unsigned e = NumOps; i != e; ++i) {
+ const MachineOperand& MO = MI.getOperand(i);
+ if (X86InstrInfo::isX86_64ExtendedReg(MO))
+ REX |= 1 << 2;
+ }
+ break;
+ }
+ }
+ }
+ return REX;
+}
+
+
+/// emitPCRelativeBlockAddress - This method keeps track of the information
+/// necessary to resolve the address of this block later and emits a dummy
+/// value.
+///
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
+ // Remember where this reference was and where it is to so we can
+ // deal with it later.
+ MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
+ X86::reloc_pcrel_word, MBB));
+ MCE.emitWordLE(0);
+}
+
+/// emitGlobalAddress - Emit the specified address to the code stream assuming
+/// this is part of a "take the address of a global" instruction.
+///
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
+ unsigned Reloc,
+ intptr_t Disp /* = 0 */,
+ intptr_t PCAdj /* = 0 */,
+ bool Indirect /* = false */) {
+ intptr_t RelocCST = Disp;
+ if (Reloc == X86::reloc_picrel_word)
+ RelocCST = PICBaseOffset;
+ else if (Reloc == X86::reloc_pcrel_word)
+ RelocCST = PCAdj;
+ MachineRelocation MR = Indirect
+ ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
+ const_cast<GlobalValue *>(GV),
+ RelocCST, false)
+ : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
+ const_cast<GlobalValue *>(GV), RelocCST, false);
+ MCE.addRelocation(MR);
+ // The relocated value will be added to the displacement
+ if (Reloc == X86::reloc_absolute_dword)
+ MCE.emitDWordLE(Disp);
+ else
+ MCE.emitWordLE((int32_t)Disp);
+}
+
+/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
+/// be emitted to the current location in the function, and allow it to be PC
+/// relative.
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
+ unsigned Reloc) {
+ intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
+
+ // X86 never needs stubs because instruction selection will always pick
+ // an instruction sequence that is large enough to hold any address
+ // to a symbol.
+ // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
+ bool NeedStub = false;
+ MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
+ Reloc, ES, RelocCST,
+ 0, NeedStub));
+ if (Reloc == X86::reloc_absolute_dword)
+ MCE.emitDWordLE(0);
+ else
+ MCE.emitWordLE(0);
+}
+
+/// emitConstPoolAddress - Arrange for the address of an constant pool
+/// to be emitted to the current location in the function, and allow it to be PC
+/// relative.
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
+ intptr_t Disp /* = 0 */,
+ intptr_t PCAdj /* = 0 */) {
+ intptr_t RelocCST = 0;
+ if (Reloc == X86::reloc_picrel_word)
+ RelocCST = PICBaseOffset;
+ else if (Reloc == X86::reloc_pcrel_word)
+ RelocCST = PCAdj;
+ MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
+ Reloc, CPI, RelocCST));
+ // The relocated value will be added to the displacement
+ if (Reloc == X86::reloc_absolute_dword)
+ MCE.emitDWordLE(Disp);
+ else
+ MCE.emitWordLE((int32_t)Disp);
+}
+
+/// emitJumpTableAddress - Arrange for the address of a jump table to
+/// be emitted to the current location in the function, and allow it to be PC
+/// relative.
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
+ intptr_t PCAdj /* = 0 */) {
+ intptr_t RelocCST = 0;
+ if (Reloc == X86::reloc_picrel_word)
+ RelocCST = PICBaseOffset;
+ else if (Reloc == X86::reloc_pcrel_word)
+ RelocCST = PCAdj;
+ MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
+ Reloc, JTI, RelocCST));
+ // The relocated value will be added to the displacement
+ if (Reloc == X86::reloc_absolute_dword)
+ MCE.emitDWordLE(0);
+ else
+ MCE.emitWordLE(0);
+}
+
+inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
+ unsigned RM) {
+ assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
+ return RM | (RegOpcode << 3) | (Mod << 6);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
+ unsigned RegOpcodeFld){
+ MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
+ MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
+ unsigned Index,
+ unsigned Base) {
+ // SIB byte is in the same format as the ModRMByte...
+ MCE.emitByte(ModRMByte(SS, Index, Base));
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
+ // Output the constant in little endian byte order...
+ for (unsigned i = 0; i != Size; ++i) {
+ MCE.emitByte(Val & 255);
+ Val >>= 8;
+ }
+}
+
+/// isDisp8 - Return true if this signed displacement fits in a 8-bit
+/// sign-extended field.
+static bool isDisp8(int Value) {
+ return Value == (signed char)Value;
+}
+
+static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
+ const TargetMachine &TM) {
+ // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
+ // mechanism as 32-bit mode.
+ if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
+ !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
+ return false;
+
+ // Return true if this is a reference to a stub containing the address of the
+ // global, not the global itself.
+ return isGlobalStubReference(GVOp.getTargetFlags());
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
+ int DispVal,
+ intptr_t Adj /* = 0 */,
+ bool IsPCRel /* = true */) {
+ // If this is a simple integer displacement that doesn't require a relocation,
+ // emit it now.
+ if (!RelocOp) {
+ emitConstant(DispVal, 4);
+ return;
+ }
+
+ // Otherwise, this is something that requires a relocation. Emit it as such
+ // now.
+ unsigned RelocType = Is64BitMode ?
+ (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
+ : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
+ if (RelocOp->isGlobal()) {
+ // In 64-bit static small code model, we could potentially emit absolute.
+ // But it's probably not beneficial. If the MCE supports using RIP directly
+ // do it, otherwise fallback to absolute (this is determined by IsPCRel).
+ // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
+ // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
+ bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
+ emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
+ Adj, Indirect);
+ } else if (RelocOp->isSymbol()) {
+ emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
+ } else if (RelocOp->isCPI()) {
+ emitConstPoolAddress(RelocOp->getIndex(), RelocType,
+ RelocOp->getOffset(), Adj);
+ } else {
+ assert(RelocOp->isJTI() && "Unexpected machine operand!");
+ emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
+ }
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
+ unsigned Op,unsigned RegOpcodeField,
+ intptr_t PCAdj) {
+ const MachineOperand &Op3 = MI.getOperand(Op+3);
+ int DispVal = 0;
+ const MachineOperand *DispForReloc = nullptr;
+
+ // Figure out what sort of displacement we have to handle here.
+ if (Op3.isGlobal()) {
+ DispForReloc = &Op3;
+ } else if (Op3.isSymbol()) {
+ DispForReloc = &Op3;
+ } else if (Op3.isCPI()) {
+ if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
+ DispForReloc = &Op3;
+ } else {
+ DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
+ DispVal += Op3.getOffset();
+ }
+ } else if (Op3.isJTI()) {
+ if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
+ DispForReloc = &Op3;
+ } else {
+ DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
+ }
+ } else {
+ DispVal = Op3.getImm();
+ }
+
+ const MachineOperand &Base = MI.getOperand(Op);
+ const MachineOperand &Scale = MI.getOperand(Op+1);
+ const MachineOperand &IndexReg = MI.getOperand(Op+2);
+
+ unsigned BaseReg = Base.getReg();
+
+ // Handle %rip relative addressing.
+ if (BaseReg == X86::RIP ||
+ (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
+ assert(IndexReg.getReg() == 0 && Is64BitMode &&
+ "Invalid rip-relative address");
+ MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
+ emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
+ return;
+ }
+
+ // Indicate that the displacement will use an pcrel or absolute reference
+ // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
+ // while others, unless explicit asked to use RIP, use absolute references.
+ bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
+
+ // Is a SIB byte needed?
+ // If no BaseReg, issue a RIP relative instruction only if the MCE can
+ // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
+ // 2-7) and absolute references.
+ unsigned BaseRegNo = -1U;
+ if (BaseReg != 0 && BaseReg != X86::RIP)
+ BaseRegNo = getX86RegNum(BaseReg);
+
+ if (// The SIB byte must be used if there is an index register.
+ IndexReg.getReg() == 0 &&
+ // The SIB byte must be used if the base is ESP/RSP/R12, all of which
+ // encode to an R/M value of 4, which indicates that a SIB byte is
+ // present.
+ BaseRegNo != N86::ESP &&
+ // If there is no base register and we're in 64-bit mode, we need a SIB
+ // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
+ (!Is64BitMode || BaseReg != 0)) {
+ if (BaseReg == 0 || // [disp32] in X86-32 mode
+ BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
+ MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
+ emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
+ return;
+ }
+
+ // If the base is not EBP/ESP and there is no displacement, use simple
+ // indirect register encoding, this handles addresses like [EAX]. The
+ // encoding for [EBP] with no displacement means [disp32] so we handle it
+ // by emitting a displacement of 0 below.
+ if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
+ MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
+ return;
+ }
+
+ // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
+ if (!DispForReloc && isDisp8(DispVal)) {
+ MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
+ emitConstant(DispVal, 1);
+ return;
+ }
+
+ // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
+ MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
+ emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
+ return;
+ }
+
+ // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
+ assert(IndexReg.getReg() != X86::ESP &&
+ IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
+
+ bool ForceDisp32 = false;
+ bool ForceDisp8 = false;
+ if (BaseReg == 0) {
+ // If there is no base register, we emit the special case SIB byte with
+ // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
+ MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
+ ForceDisp32 = true;
+ } else if (DispForReloc) {
+ // Emit the normal disp32 encoding.
+ MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
+ ForceDisp32 = true;
+ } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
+ // Emit no displacement ModR/M byte
+ MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
+ } else if (isDisp8(DispVal)) {
+ // Emit the disp8 encoding...
+ MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
+ ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
+ } else {
+ // Emit the normal disp32 encoding...
+ MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
+ }
+
+ // Calculate what the SS field value should be...
+ static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
+ unsigned SS = SSTable[Scale.getImm()];
+
+ if (BaseReg == 0) {
+ // Handle the SIB byte for the case where there is no base, see Intel
+ // Manual 2A, table 2-7. The displacement has already been output.
+ unsigned IndexRegNo;
+ if (IndexReg.getReg())
+ IndexRegNo = getX86RegNum(IndexReg.getReg());
+ else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
+ IndexRegNo = 4;
+ emitSIBByte(SS, IndexRegNo, 5);
+ } else {
+ unsigned BaseRegNo = getX86RegNum(BaseReg);
+ unsigned IndexRegNo;
+ if (IndexReg.getReg())
+ IndexRegNo = getX86RegNum(IndexReg.getReg());
+ else
+ IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
+ emitSIBByte(SS, IndexRegNo, BaseRegNo);
+ }
+
+ // Do we need to output a displacement?
+ if (ForceDisp8) {
+ emitConstant(DispVal, 1);
+ } else if (DispVal != 0 || ForceDisp32) {
+ emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
+ }
+}
+
+static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II,
+ unsigned Opcode) {
+ const MCInstrDesc *Desc = &II->get(Opcode);
+ MI.setDesc(*Desc);
+ return Desc;
+}
+
+/// Is16BitMemOperand - Return true if the specified instruction has
+/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
+static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) {
+ const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+}
+
+/// Is32BitMemOperand - Return true if the specified instruction has
+/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
+static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) {
+ const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+}
+
+/// Is64BitMemOperand - Return true if the specified instruction has
+/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
+#ifndef NDEBUG
+static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) {
+ const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+}
+#endif
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitOpcodePrefix(uint64_t TSFlags,
+ int MemOperand,
+ const MachineInstr &MI,
+ const MCInstrDesc *Desc) const {
+ // Emit the operand size opcode prefix as needed.
+ if (((TSFlags & X86II::OpSizeMask) >> X86II::OpSizeShift) == X86II::OpSize16)
+ MCE.emitByte(0x66);
+
+ switch (Desc->TSFlags & X86II::OpPrefixMask) {
+ case X86II::PD: // 66
+ MCE.emitByte(0x66);
+ break;
+ case X86II::XS: // F3
+ MCE.emitByte(0xF3);
+ break;
+ case X86II::XD: // F2
+ MCE.emitByte(0xF2);
+ break;
+ }
+
+ // Handle REX prefix.
+ if (Is64BitMode) {
+ if (unsigned REX = determineREX(MI))
+ MCE.emitByte(0x40 | REX);
+ }
+
+ // 0x0F escape code must be emitted just before the opcode.
+ switch (Desc->TSFlags & X86II::OpMapMask) {
+ case X86II::TB: // Two-byte opcode map
+ case X86II::T8: // 0F 38
+ case X86II::TA: // 0F 3A
+ MCE.emitByte(0x0F);
+ break;
+ }
+
+ switch (Desc->TSFlags & X86II::OpMapMask) {
+ case X86II::T8: // 0F 38
+ MCE.emitByte(0x38);
+ break;
+ case X86II::TA: // 0F 3A
+ MCE.emitByte(0x3A);
+ break;
+ }
+}
+
+// On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
+// 0-7 and the difference between the 2 groups is given by the REX prefix.
+// In the VEX prefix, registers are seen sequencially from 0-15 and encoded
+// in 1's complement form, example:
+//
+// ModRM field => XMM9 => 1
+// VEX.VVVV => XMM9 => ~9
+//
+// See table 4-35 of Intel AVX Programming Reference for details.
+template<class CodeEmitter>
+unsigned char
+Emitter<CodeEmitter>::getVEXRegisterEncoding(const MachineInstr &MI,
+ unsigned OpNum) const {
+ unsigned SrcReg = MI.getOperand(OpNum).getReg();
+ unsigned SrcRegNum = getX86RegNum(MI.getOperand(OpNum).getReg());
+ if (X86II::isX86_64ExtendedReg(SrcReg))
+ SrcRegNum |= 8;
+
+ // The registers represented through VEX_VVVV should
+ // be encoded in 1's complement form.
+ return (~SrcRegNum) & 0xf;
+}
+
+/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitSegmentOverridePrefix(uint64_t TSFlags,
+ int MemOperand,
+ const MachineInstr &MI) const {
+ if (MemOperand < 0)
+ return; // No memory operand
+
+ // Check for explicit segment override on memory operand.
+ switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
+ default: llvm_unreachable("Unknown segment register!");
+ case 0: break;
+ case X86::CS: MCE.emitByte(0x2E); break;
+ case X86::SS: MCE.emitByte(0x36); break;
+ case X86::DS: MCE.emitByte(0x3E); break;
+ case X86::ES: MCE.emitByte(0x26); break;
+ case X86::FS: MCE.emitByte(0x64); break;
+ case X86::GS: MCE.emitByte(0x65); break;
+ }
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
+ int MemOperand,
+ const MachineInstr &MI,
+ const MCInstrDesc *Desc) const {
+ unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
+ X86II::EncodingShift;
+ bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+ bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
+ bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
+
+ // VEX_R: opcode externsion equivalent to REX.R in
+ // 1's complement (inverted) form
+ //
+ // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
+ // 0: Same as REX_R=1 (64 bit mode only)
+ //
+ unsigned char VEX_R = 0x1;
+
+ // VEX_X: equivalent to REX.X, only used when a
+ // register is used for index in SIB Byte.
+ //
+ // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
+ // 0: Same as REX.X=1 (64-bit mode only)
+ unsigned char VEX_X = 0x1;
+
+ // VEX_B:
+ //
+ // 1: Same as REX_B=0 (ignored in 32-bit mode)
+ // 0: Same as REX_B=1 (64 bit mode only)
+ //
+ unsigned char VEX_B = 0x1;
+
+ // VEX_W: opcode specific (use like REX.W, or used for
+ // opcode extension, or ignored, depending on the opcode byte)
+ unsigned char VEX_W = 0;
+
+ // VEX_5M (VEX m-mmmmm field):
+ //
+ // 0b00000: Reserved for future use
+ // 0b00001: implied 0F leading opcode
+ // 0b00010: implied 0F 38 leading opcode bytes
+ // 0b00011: implied 0F 3A leading opcode bytes
+ // 0b00100-0b11111: Reserved for future use
+ // 0b01000: XOP map select - 08h instructions with imm byte
+ // 0b01001: XOP map select - 09h instructions with no imm byte
+ // 0b01010: XOP map select - 0Ah instructions with imm dword
+ unsigned char VEX_5M = 0;
+
+ // VEX_4V (VEX vvvv field): a register specifier
+ // (in 1's complement form) or 1111 if unused.
+ unsigned char VEX_4V = 0xf;
+
+ // VEX_L (Vector Length):
+ //
+ // 0: scalar or 128-bit vector
+ // 1: 256-bit vector
+ //
+ unsigned char VEX_L = 0;
+
+ // VEX_PP: opcode extension providing equivalent
+ // functionality of a SIMD prefix
+ //
+ // 0b00: None
+ // 0b01: 66
+ // 0b10: F3
+ // 0b11: F2
+ //
+ unsigned char VEX_PP = 0;
+
+ if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
+ VEX_W = 1;
+
+ if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
+ VEX_L = 1;
+
+ switch (TSFlags & X86II::OpPrefixMask) {
+ default: break; // VEX_PP already correct
+ case X86II::PD: VEX_PP = 0x1; break; // 66
+ case X86II::XS: VEX_PP = 0x2; break; // F3
+ case X86II::XD: VEX_PP = 0x3; break; // F2
+ }
+
+ switch (TSFlags & X86II::OpMapMask) {
+ default: llvm_unreachable("Invalid prefix!");
+ case X86II::TB: VEX_5M = 0x1; break; // 0F
+ case X86II::T8: VEX_5M = 0x2; break; // 0F 38
+ case X86II::TA: VEX_5M = 0x3; break; // 0F 3A
+ case X86II::XOP8: VEX_5M = 0x8; break;
+ case X86II::XOP9: VEX_5M = 0x9; break;
+ case X86II::XOPA: VEX_5M = 0xA; break;
+ }
+
+ // Classify VEX_B, VEX_4V, VEX_R, VEX_X
+ unsigned NumOps = Desc->getNumOperands();
+ unsigned CurOp = 0;
+ if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
+ ++CurOp;
+ else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
+ assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
+ // Special case for GATHER with 2 TIED_TO operands
+ // Skip the first 2 operands: dst, mask_wb
+ CurOp += 2;
+ }
+
+ switch (TSFlags & X86II::FormMask) {
+ default: llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
+ case X86II::RawFrm:
+ break;
+ case X86II::MRMDestMem: {
+ // MRMDestMem instructions forms:
+ // MemAddr, src1(ModR/M)
+ // MemAddr, src1(VEX_4V), src2(ModR/M)
+ // MemAddr, src1(ModR/M), imm8
+ //
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+
+ CurOp = X86::AddrNumOperands;
+ if (HasVEX_4V)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
+
+ const MachineOperand &MO = MI.getOperand(CurOp);
+ if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
+ VEX_R = 0x0;
+ break;
+ }
+ case X86II::MRMSrcMem:
+ // MRMSrcMem instructions forms:
+ // src1(ModR/M), MemAddr
+ // src1(ModR/M), src2(VEX_4V), MemAddr
+ // src1(ModR/M), MemAddr, imm8
+ // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
+ //
+ // FMA4:
+ // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+ // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+ CurOp++;
+
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ CurOp++;
+ }
+
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+
+ if (HasVEX_4VOp3)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
+ break;
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m: {
+ // MRM[0-9]m instructions forms:
+ // MemAddr
+ // src1(VEX_4V), MemAddr
+ if (HasVEX_4V)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
+
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+ break;
+ }
+ case X86II::MRMSrcReg:
+ // MRMSrcReg instructions forms:
+ // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+ // dst(ModR/M), src1(ModR/M)
+ // dst(ModR/M), src1(ModR/M), imm8
+ //
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+ CurOp++;
+
+ if (HasVEX_4V)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
+
+ if (HasMemOp4) // Skip second register source (encoded in I8IMM)
+ CurOp++;
+
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0x0;
+ CurOp++;
+ if (HasVEX_4VOp3)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ break;
+ case X86II::MRMDestReg:
+ // MRMDestReg instructions forms:
+ // dst(ModR/M), src(ModR/M)
+ // dst(ModR/M), src(ModR/M), imm8
+ // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0x0;
+ CurOp++;
+
+ if (HasVEX_4V)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
+
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+ break;
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r:
+ // MRM0r-MRM7r instructions forms:
+ // dst(VEX_4V), src(ModR/M), imm8
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ CurOp++;
+
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0x0;
+ break;
+ }
+
+ // Emit segment override opcode prefix as needed.
+ emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
+
+ // VEX opcode prefix can have 2 or 3 bytes
+ //
+ // 3 bytes:
+ // +-----+ +--------------+ +-------------------+
+ // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
+ // +-----+ +--------------+ +-------------------+
+ // 2 bytes:
+ // +-----+ +-------------------+
+ // | C5h | | R | vvvv | L | pp |
+ // +-----+ +-------------------+
+ //
+ // XOP uses a similar prefix:
+ // +-----+ +--------------+ +-------------------+
+ // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
+ // +-----+ +--------------+ +-------------------+
+ unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
+
+ // Can this use the 2 byte VEX prefix?
+ if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
+ MCE.emitByte(0xC5);
+ MCE.emitByte(LastByte | (VEX_R << 7));
+ return;
+ }
+
+ // 3 byte VEX prefix
+ MCE.emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4);
+ MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M);
+ MCE.emitByte(LastByte | (VEX_W << 7));
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
+ const MCInstrDesc *Desc) {
+ DEBUG(dbgs() << MI);
+
+ // If this is a pseudo instruction, lower it.
+ switch (Desc->getOpcode()) {
+ case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break;
+ case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break;
+ case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break;
+ case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break;
+ case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break;
+ case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break;
+ case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break;
+ case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break;
+ case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break;
+ case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break;
+ case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
+ case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
+ case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
+ case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break;
+ case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
+ case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
+ case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
+ }
+
+
+ MCE.processDebugLoc(MI.getDebugLoc(), true);
+
+ unsigned Opcode = Desc->Opcode;
+
+ // If this is a two-address instruction, skip one of the register operands.
+ unsigned NumOps = Desc->getNumOperands();
+ unsigned CurOp = 0;
+ if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
+ ++CurOp;
+ else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
+ assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
+ // Special case for GATHER with 2 TIED_TO operands
+ // Skip the first 2 operands: dst, mask_wb
+ CurOp += 2;
+ }
+
+ uint64_t TSFlags = Desc->TSFlags;
+
+ // Encoding type for this instruction.
+ unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
+ X86II::EncodingShift;
+
+ // It uses the VEX.VVVV field?
+ bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+ bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
+ bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
+ const unsigned MemOp4_I8IMMOperand = 2;
+
+ // Determine where the memory operand starts, if present.
+ int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
+ if (MemoryOperand != -1) MemoryOperand += CurOp;
+
+ // Emit the lock opcode prefix as needed.
+ if (Desc->TSFlags & X86II::LOCK)
+ MCE.emitByte(0xF0);
+
+ // Emit segment override opcode prefix as needed.
+ emitSegmentOverridePrefix(TSFlags, MemoryOperand, MI);
+
+ // Emit the repeat opcode prefix as needed.
+ if (Desc->TSFlags & X86II::REP)
+ MCE.emitByte(0xF3);
+
+ // Emit the address size opcode prefix as needed.
+ bool need_address_override;
+ if (TSFlags & X86II::AdSize) {
+ need_address_override = true;
+ } else if (MemoryOperand < 0) {
+ need_address_override = false;
+ } else if (Is64BitMode) {
+ assert(!Is16BitMemOperand(MI, MemoryOperand));
+ need_address_override = Is32BitMemOperand(MI, MemoryOperand);
+ } else {
+ assert(!Is64BitMemOperand(MI, MemoryOperand));
+ need_address_override = Is16BitMemOperand(MI, MemoryOperand);
+ }
+
+ if (need_address_override)
+ MCE.emitByte(0x67);
+
+ if (Encoding == 0)
+ emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
+ else
+ emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
+
+ unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
+ switch (TSFlags & X86II::FormMask) {
+ default:
+ llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
+ case X86II::Pseudo:
+ // Remember the current PC offset, this is the PIC relocation
+ // base address.
+ switch (Opcode) {
+ default:
+ llvm_unreachable("pseudo instructions should be removed before code"
+ " emission");
+ // Do nothing for Int_MemBarrier - it's just a comment. Add a debug
+ // to make it slightly easier to see.
+ case X86::Int_MemBarrier:
+ DEBUG(dbgs() << "#MEMBARRIER\n");
+ break;
+
+ case TargetOpcode::INLINEASM:
+ // We allow inline assembler nodes with empty bodies - they can
+ // implicitly define registers, which is ok for JIT.
+ if (MI.getOperand(0).getSymbolName()[0]) {
+ DebugLoc DL = MI.getDebugLoc();
+ DL.print(MI.getParent()->getParent()->getFunction()->getContext(),
+ llvm::errs());
+ report_fatal_error("JIT does not support inline asm!");
+ }
+ break;
+ case TargetOpcode::DBG_VALUE:
+ case TargetOpcode::CFI_INSTRUCTION:
+ break;
+ case TargetOpcode::GC_LABEL:
+ case TargetOpcode::EH_LABEL:
+ MCE.emitLabel(MI.getOperand(0).getMCSymbol());
+ break;
+
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ break;
+
+ case X86::SEH_PushReg:
+ case X86::SEH_SaveReg:
+ case X86::SEH_SaveXMM:
+ case X86::SEH_StackAlloc:
+ case X86::SEH_SetFrame:
+ case X86::SEH_PushFrame:
+ case X86::SEH_EndPrologue:
+ break;
+
+ case X86::MOVPC32r: {
+ // This emits the "call" portion of this pseudo instruction.
+ MCE.emitByte(BaseOpcode);
+ emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
+ // Remember PIC base.
+ PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
+ X86JITInfo *JTI = TM.getJITInfo();
+ JTI->setPICBase(MCE.getCurrentPCValue());
+ break;
+ }
+ }
+ CurOp = NumOps;
+ break;
+ case X86II::RawFrm: {
+ MCE.emitByte(BaseOpcode);
+
+ if (CurOp == NumOps)
+ break;
+
+ const MachineOperand &MO = MI.getOperand(CurOp++);
+
+ DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
+ DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
+ DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
+ DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
+ DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
+
+ if (MO.isMBB()) {
+ emitPCRelativeBlockAddress(MO.getMBB());
+ break;
+ }
+
+ if (MO.isGlobal()) {
+ emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
+ MO.getOffset(), 0);
+ break;
+ }
+
+ if (MO.isSymbol()) {
+ emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
+ break;
+ }
+
+ // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
+ if (MO.isJTI()) {
+ emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
+ break;
+ }
+
+ assert(MO.isImm() && "Unknown RawFrm operand!");
+ if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
+ // Fix up immediate operand for pc relative calls.
+ intptr_t Imm = (intptr_t)MO.getImm();
+ Imm = Imm - MCE.getCurrentPCValue() - 4;
+ emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
+ } else
+ emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
+ break;
+ }
+
+ case X86II::AddRegFrm: {
+ MCE.emitByte(BaseOpcode +
+ getX86RegNum(MI.getOperand(CurOp++).getReg()));
+
+ if (CurOp == NumOps)
+ break;
+
+ const MachineOperand &MO1 = MI.getOperand(CurOp++);
+ unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
+ if (MO1.isImm()) {
+ emitConstant(MO1.getImm(), Size);
+ break;
+ }
+
+ unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
+ : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
+ if (Opcode == X86::MOV32ri64)
+ rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
+ // This should not occur on Darwin for relocatable objects.
+ if (Opcode == X86::MOV64ri)
+ rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
+ if (MO1.isGlobal()) {
+ bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
+ emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
+ Indirect);
+ } else if (MO1.isSymbol())
+ emitExternalSymbolAddress(MO1.getSymbolName(), rt);
+ else if (MO1.isCPI())
+ emitConstPoolAddress(MO1.getIndex(), rt);
+ else if (MO1.isJTI())
+ emitJumpTableAddress(MO1.getIndex(), rt);
+ break;
+ }
+
+ case X86II::MRMDestReg: {
+ MCE.emitByte(BaseOpcode);
+
+ unsigned SrcRegNum = CurOp+1;
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ SrcRegNum++;
+
+ emitRegModRMByte(MI.getOperand(CurOp).getReg(),
+ getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
+ CurOp = SrcRegNum + 1;
+ break;
+ }
+ case X86II::MRMDestMem: {
+ MCE.emitByte(BaseOpcode);
+
+ unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ SrcRegNum++;
+ emitMemModRMByte(MI, CurOp,
+ getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
+ CurOp = SrcRegNum + 1;
+ break;
+ }
+
+ case X86II::MRMSrcReg: {
+ MCE.emitByte(BaseOpcode);
+
+ unsigned SrcRegNum = CurOp+1;
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ ++SrcRegNum;
+
+ if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
+ ++SrcRegNum;
+
+ emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(),
+ getX86RegNum(MI.getOperand(CurOp).getReg()));
+ // 2 operands skipped with HasMemOp4, compensate accordingly
+ CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
+ if (HasVEX_4VOp3)
+ ++CurOp;
+ break;
+ }
+ case X86II::MRMSrcMem: {
+ int AddrOperands = X86::AddrNumOperands;
+ unsigned FirstMemOp = CurOp+1;
+ if (HasVEX_4V) {
+ ++AddrOperands;
+ ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
+ }
+ if (HasMemOp4) // Skip second register source (encoded in I8IMM)
+ ++FirstMemOp;
+
+ MCE.emitByte(BaseOpcode);
+
+ intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
+ X86II::getSizeOfImm(Desc->TSFlags) : 0;
+ emitMemModRMByte(MI, FirstMemOp,
+ getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj);
+ CurOp += AddrOperands + 1;
+ if (HasVEX_4VOp3)
+ ++CurOp;
+ break;
+ }
+
+ case X86II::MRMXr:
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r: {
+ if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
+ ++CurOp;
+ MCE.emitByte(BaseOpcode);
+ uint64_t Form = (Desc->TSFlags & X86II::FormMask);
+ emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
+ (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r);
+
+ if (CurOp == NumOps)
+ break;
+
+ const MachineOperand &MO1 = MI.getOperand(CurOp++);
+ unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
+ if (MO1.isImm()) {
+ emitConstant(MO1.getImm(), Size);
+ break;
+ }
+
+ unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
+ : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
+ if (Opcode == X86::MOV64ri32)
+ rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
+ if (MO1.isGlobal()) {
+ bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
+ emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
+ Indirect);
+ } else if (MO1.isSymbol())
+ emitExternalSymbolAddress(MO1.getSymbolName(), rt);
+ else if (MO1.isCPI())
+ emitConstPoolAddress(MO1.getIndex(), rt);
+ else if (MO1.isJTI())
+ emitJumpTableAddress(MO1.getIndex(), rt);
+ break;
+ }
+
+ case X86II::MRMXm:
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m: {
+ if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
+ ++CurOp;
+ intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
+ (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
+ X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
+
+ MCE.emitByte(BaseOpcode);
+ uint64_t Form = (Desc->TSFlags & X86II::FormMask);
+ emitMemModRMByte(MI, CurOp, (Form==X86II::MRMXm) ? 0 : Form - X86II::MRM0m,
+ PCAdj);
+ CurOp += X86::AddrNumOperands;
+
+ if (CurOp == NumOps)
+ break;
+
+ const MachineOperand &MO = MI.getOperand(CurOp++);
+ unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
+ if (MO.isImm()) {
+ emitConstant(MO.getImm(), Size);
+ break;
+ }
+
+ unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
+ : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
+ if (Opcode == X86::MOV64mi32)
+ rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
+ if (MO.isGlobal()) {
+ bool Indirect = gvNeedsNonLazyPtr(MO, TM);
+ emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
+ Indirect);
+ } else if (MO.isSymbol())
+ emitExternalSymbolAddress(MO.getSymbolName(), rt);
+ else if (MO.isCPI())
+ emitConstPoolAddress(MO.getIndex(), rt);
+ else if (MO.isJTI())
+ emitJumpTableAddress(MO.getIndex(), rt);
+ break;
+ }
+
+ case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
+ case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
+ case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
+ case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
+ case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
+ case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
+ case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
+ case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
+ case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
+ case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
+ case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
+ case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
+ case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
+ case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
+ case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
+ case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
+ case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
+ MCE.emitByte(BaseOpcode);
+
+ unsigned char MRM;
+ switch (TSFlags & X86II::FormMask) {
+ default: llvm_unreachable("Invalid Form");
+ case X86II::MRM_C0: MRM = 0xC0; break;
+ case X86II::MRM_C1: MRM = 0xC1; break;
+ case X86II::MRM_C2: MRM = 0xC2; break;
+ case X86II::MRM_C3: MRM = 0xC3; break;
+ case X86II::MRM_C4: MRM = 0xC4; break;
+ case X86II::MRM_C8: MRM = 0xC8; break;
+ case X86II::MRM_C9: MRM = 0xC9; break;
+ case X86II::MRM_CA: MRM = 0xCA; break;
+ case X86II::MRM_CB: MRM = 0xCB; break;
+ case X86II::MRM_D0: MRM = 0xD0; break;
+ case X86II::MRM_D1: MRM = 0xD1; break;
+ case X86II::MRM_D4: MRM = 0xD4; break;
+ case X86II::MRM_D5: MRM = 0xD5; break;
+ case X86II::MRM_D6: MRM = 0xD6; break;
+ case X86II::MRM_D8: MRM = 0xD8; break;
+ case X86II::MRM_D9: MRM = 0xD9; break;
+ case X86II::MRM_DA: MRM = 0xDA; break;
+ case X86II::MRM_DB: MRM = 0xDB; break;
+ case X86II::MRM_DC: MRM = 0xDC; break;
+ case X86II::MRM_DD: MRM = 0xDD; break;
+ case X86II::MRM_DE: MRM = 0xDE; break;
+ case X86II::MRM_DF: MRM = 0xDF; break;
+ case X86II::MRM_E0: MRM = 0xE0; break;
+ case X86II::MRM_E1: MRM = 0xE1; break;
+ case X86II::MRM_E2: MRM = 0xE2; break;
+ case X86II::MRM_E3: MRM = 0xE3; break;
+ case X86II::MRM_E4: MRM = 0xE4; break;
+ case X86II::MRM_E5: MRM = 0xE5; break;
+ case X86II::MRM_E8: MRM = 0xE8; break;
+ case X86II::MRM_E9: MRM = 0xE9; break;
+ case X86II::MRM_EA: MRM = 0xEA; break;
+ case X86II::MRM_EB: MRM = 0xEB; break;
+ case X86II::MRM_EC: MRM = 0xEC; break;
+ case X86II::MRM_ED: MRM = 0xED; break;
+ case X86II::MRM_EE: MRM = 0xEE; break;
+ case X86II::MRM_F0: MRM = 0xF0; break;
+ case X86II::MRM_F1: MRM = 0xF1; break;
+ case X86II::MRM_F2: MRM = 0xF2; break;
+ case X86II::MRM_F3: MRM = 0xF3; break;
+ case X86II::MRM_F4: MRM = 0xF4; break;
+ case X86II::MRM_F5: MRM = 0xF5; break;
+ case X86II::MRM_F6: MRM = 0xF6; break;
+ case X86II::MRM_F7: MRM = 0xF7; break;
+ case X86II::MRM_F8: MRM = 0xF8; break;
+ case X86II::MRM_F9: MRM = 0xF9; break;
+ case X86II::MRM_FA: MRM = 0xFA; break;
+ case X86II::MRM_FB: MRM = 0xFB; break;
+ case X86II::MRM_FC: MRM = 0xFC; break;
+ case X86II::MRM_FD: MRM = 0xFD; break;
+ case X86II::MRM_FE: MRM = 0xFE; break;
+ case X86II::MRM_FF: MRM = 0xFF; break;
+ }
+ MCE.emitByte(MRM);
+ break;
+ }
+
+ while (CurOp != NumOps && NumOps - CurOp <= 2) {
+ // The last source register of a 4 operand instruction in AVX is encoded
+ // in bits[7:4] of a immediate byte.
+ if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
+ const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
+ : CurOp);
+ ++CurOp;
+ unsigned RegNum = getX86RegNum(MO.getReg()) << 4;
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
+ RegNum |= 1 << 7;
+ // If there is an additional 5th operand it must be an immediate, which
+ // is encoded in bits[3:0]
+ if (CurOp != NumOps) {
+ const MachineOperand &MIMM = MI.getOperand(CurOp++);
+ if (MIMM.isImm()) {
+ unsigned Val = MIMM.getImm();
+ assert(Val < 16 && "Immediate operand value out of range");
+ RegNum |= Val;
+ }
+ }
+ emitConstant(RegNum, 1);
+ } else {
+ emitConstant(MI.getOperand(CurOp++).getImm(),
+ X86II::getSizeOfImm(Desc->TSFlags));
+ }
+ }
+
+ if (!MI.isVariadic() && CurOp != NumOps) {
+#ifndef NDEBUG
+ dbgs() << "Cannot encode all operands of: " << MI << "\n";
+#endif
+ llvm_unreachable(nullptr);
+ }
+
+ MCE.processDebugLoc(MI.getDebugLoc(), false);
+}
diff --git a/contrib/llvm/lib/Target/X86/X86FastISel.cpp b/contrib/llvm/lib/Target/X86/X86FastISel.cpp
new file mode 100644
index 0000000..2d494b4
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86FastISel.cpp
@@ -0,0 +1,3304 @@
+//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the X86-specific support for the FastISel class. Much
+// of the target-specific code is generated by tablegen in the file
+// X86GenFastISel.inc, which is #included here.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86CallingConv.h"
+#include "X86InstrBuilder.h"
+#include "X86InstrInfo.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86RegisterInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+namespace {
+
+class X86FastISel final : public FastISel {
+ /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const X86Subtarget *Subtarget;
+
+ /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
+ /// floating point ops.
+ /// When SSE is available, use it for f32 operations.
+ /// When SSE2 is available, use it for f64 operations.
+ bool X86ScalarSSEf64;
+ bool X86ScalarSSEf32;
+
+public:
+ explicit X86FastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo)
+ : FastISel(funcInfo, libInfo) {
+ Subtarget = &TM.getSubtarget<X86Subtarget>();
+ X86ScalarSSEf64 = Subtarget->hasSSE2();
+ X86ScalarSSEf32 = Subtarget->hasSSE1();
+ }
+
+ bool TargetSelectInstruction(const Instruction *I) override;
+
+ /// \brief The specified machine instr operand is a vreg, and that
+ /// vreg is being provided by the specified load instruction. If possible,
+ /// try to fold the load as an operand to the instruction, returning true if
+ /// possible.
+ bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI) override;
+
+ bool FastLowerArguments() override;
+ bool FastLowerCall(CallLoweringInfo &CLI) override;
+ bool FastLowerIntrinsicCall(const IntrinsicInst *II) override;
+
+#include "X86GenFastISel.inc"
+
+private:
+ bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
+
+ bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, MachineMemOperand *MMO,
+ unsigned &ResultReg);
+
+ bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM,
+ MachineMemOperand *MMO = nullptr, bool Aligned = false);
+ bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
+ const X86AddressMode &AM,
+ MachineMemOperand *MMO = nullptr, bool Aligned = false);
+
+ bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
+ unsigned &ResultReg);
+
+ bool X86SelectAddress(const Value *V, X86AddressMode &AM);
+ bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
+
+ bool X86SelectLoad(const Instruction *I);
+
+ bool X86SelectStore(const Instruction *I);
+
+ bool X86SelectRet(const Instruction *I);
+
+ bool X86SelectCmp(const Instruction *I);
+
+ bool X86SelectZExt(const Instruction *I);
+
+ bool X86SelectBranch(const Instruction *I);
+
+ bool X86SelectShift(const Instruction *I);
+
+ bool X86SelectDivRem(const Instruction *I);
+
+ bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
+
+ bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
+
+ bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
+
+ bool X86SelectSelect(const Instruction *I);
+
+ bool X86SelectTrunc(const Instruction *I);
+
+ bool X86SelectFPExt(const Instruction *I);
+ bool X86SelectFPTrunc(const Instruction *I);
+
+ const X86InstrInfo *getInstrInfo() const {
+ return getTargetMachine()->getInstrInfo();
+ }
+ const X86TargetMachine *getTargetMachine() const {
+ return static_cast<const X86TargetMachine *>(&TM);
+ }
+
+ bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
+
+ unsigned TargetMaterializeConstant(const Constant *C) override;
+
+ unsigned TargetMaterializeAlloca(const AllocaInst *C) override;
+
+ unsigned TargetMaterializeFloatZero(const ConstantFP *CF) override;
+
+ /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
+ /// computed in an SSE register, not on the X87 floating point stack.
+ bool isScalarFPTypeInSSEReg(EVT VT) const {
+ return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
+ (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
+ }
+
+ bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
+
+ bool IsMemcpySmall(uint64_t Len);
+
+ bool TryEmitSmallMemcpy(X86AddressMode DestAM,
+ X86AddressMode SrcAM, uint64_t Len);
+
+ bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
+ const Value *Cond);
+};
+
+} // end anonymous namespace.
+
+static CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) {
+ // If both operands are the same, then try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = CI->getPredicate();
+ if (CI->getOperand(0) != CI->getOperand(1))
+ return Predicate;
+
+ switch (Predicate) {
+ default: llvm_unreachable("Invalid predicate!");
+ case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break;
+
+ case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break;
+ }
+
+ return Predicate;
+}
+
+static std::pair<X86::CondCode, bool>
+getX86ConditionCode(CmpInst::Predicate Predicate) {
+ X86::CondCode CC = X86::COND_INVALID;
+ bool NeedSwap = false;
+ switch (Predicate) {
+ default: break;
+ // Floating-point Predicates
+ case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
+ case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
+ case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
+ case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
+ case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
+ case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
+ case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
+ case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
+ case CmpInst::FCMP_OEQ: // fall-through
+ case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
+
+ // Integer Predicates
+ case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
+ case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
+ case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
+ case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
+ case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
+ case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
+ case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
+ case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
+ case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
+ case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
+ }
+
+ return std::make_pair(CC, NeedSwap);
+}
+
+static std::pair<unsigned, bool>
+getX86SSEConditionCode(CmpInst::Predicate Predicate) {
+ unsigned CC;
+ bool NeedSwap = false;
+
+ // SSE Condition code mapping:
+ // 0 - EQ
+ // 1 - LT
+ // 2 - LE
+ // 3 - UNORD
+ // 4 - NEQ
+ // 5 - NLT
+ // 6 - NLE
+ // 7 - ORD
+ switch (Predicate) {
+ default: llvm_unreachable("Unexpected predicate");
+ case CmpInst::FCMP_OEQ: CC = 0; break;
+ case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_OLT: CC = 1; break;
+ case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_OLE: CC = 2; break;
+ case CmpInst::FCMP_UNO: CC = 3; break;
+ case CmpInst::FCMP_UNE: CC = 4; break;
+ case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_UGE: CC = 5; break;
+ case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
+ case CmpInst::FCMP_UGT: CC = 6; break;
+ case CmpInst::FCMP_ORD: CC = 7; break;
+ case CmpInst::FCMP_UEQ:
+ case CmpInst::FCMP_ONE: CC = 8; break;
+ }
+
+ return std::make_pair(CC, NeedSwap);
+}
+
+/// \brief Check if it is possible to fold the condition from the XALU intrinsic
+/// into the user. The condition code will only be updated on success.
+bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
+ const Value *Cond) {
+ if (!isa<ExtractValueInst>(Cond))
+ return false;
+
+ const auto *EV = cast<ExtractValueInst>(Cond);
+ if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
+ return false;
+
+ const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
+ MVT RetVT;
+ const Function *Callee = II->getCalledFunction();
+ Type *RetTy =
+ cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
+ if (!isTypeLegal(RetTy, RetVT))
+ return false;
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return false;
+
+ X86::CondCode TmpCC;
+ switch (II->getIntrinsicID()) {
+ default: return false;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
+ }
+
+ // Check if both instructions are in the same basic block.
+ if (II->getParent() != I->getParent())
+ return false;
+
+ // Make sure nothing is in the way
+ BasicBlock::const_iterator Start = I;
+ BasicBlock::const_iterator End = II;
+ for (auto Itr = std::prev(Start); Itr != End; --Itr) {
+ // We only expect extractvalue instructions between the intrinsic and the
+ // instruction to be selected.
+ if (!isa<ExtractValueInst>(Itr))
+ return false;
+
+ // Check that the extractvalue operand comes from the intrinsic.
+ const auto *EVI = cast<ExtractValueInst>(Itr);
+ if (EVI->getAggregateOperand() != II)
+ return false;
+ }
+
+ CC = TmpCC;
+ return true;
+}
+
+bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
+ EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
+ if (evt == MVT::Other || !evt.isSimple())
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ VT = evt.getSimpleVT();
+ // For now, require SSE/SSE2 for performing floating-point operations,
+ // since x87 requires additional work.
+ if (VT == MVT::f64 && !X86ScalarSSEf64)
+ return false;
+ if (VT == MVT::f32 && !X86ScalarSSEf32)
+ return false;
+ // Similarly, no f80 support yet.
+ if (VT == MVT::f80)
+ return false;
+ // We only handle legal types. For example, on x86-32 the instruction
+ // selector contains all of the 64-bit instructions from x86-64,
+ // under the assumption that i64 won't be used if the target doesn't
+ // support it.
+ return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
+}
+
+#include "X86GenCallingConv.inc"
+
+/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
+/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
+/// Return true and the result register by reference if it is possible.
+bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
+ MachineMemOperand *MMO, unsigned &ResultReg) {
+ // Get opcode and regclass of the output for the given load instruction.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = nullptr;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ Opc = X86::MOV8rm;
+ RC = &X86::GR8RegClass;
+ break;
+ case MVT::i16:
+ Opc = X86::MOV16rm;
+ RC = &X86::GR16RegClass;
+ break;
+ case MVT::i32:
+ Opc = X86::MOV32rm;
+ RC = &X86::GR32RegClass;
+ break;
+ case MVT::i64:
+ // Must be in x86-64 mode.
+ Opc = X86::MOV64rm;
+ RC = &X86::GR64RegClass;
+ break;
+ case MVT::f32:
+ if (X86ScalarSSEf32) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
+ RC = &X86::FR32RegClass;
+ } else {
+ Opc = X86::LD_Fp32m;
+ RC = &X86::RFP32RegClass;
+ }
+ break;
+ case MVT::f64:
+ if (X86ScalarSSEf64) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
+ RC = &X86::FR64RegClass;
+ } else {
+ Opc = X86::LD_Fp64m;
+ RC = &X86::RFP64RegClass;
+ }
+ break;
+ case MVT::f80:
+ // No f80 support yet.
+ return false;
+ }
+
+ ResultReg = createResultReg(RC);
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
+ addFullAddress(MIB, AM);
+ if (MMO)
+ MIB->addMemOperand(*FuncInfo.MF, MMO);
+ return true;
+}
+
+/// X86FastEmitStore - Emit a machine instruction to store a value Val of
+/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
+/// and a displacement offset, or a GlobalAddress,
+/// i.e. V. Return true if it is possible.
+bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
+ const X86AddressMode &AM,
+ MachineMemOperand *MMO, bool Aligned) {
+ // Get opcode and regclass of the output for the given store instruction.
+ unsigned Opc = 0;
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f80: // No f80 support yet.
+ default: return false;
+ case MVT::i1: {
+ // Mask out all but lowest bit.
+ unsigned AndResult = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(X86::AND8ri), AndResult)
+ .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
+ ValReg = AndResult;
+ }
+ // FALLTHROUGH, handling i1 as i8.
+ case MVT::i8: Opc = X86::MOV8mr; break;
+ case MVT::i16: Opc = X86::MOV16mr; break;
+ case MVT::i32: Opc = X86::MOV32mr; break;
+ case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
+ case MVT::f32:
+ Opc = X86ScalarSSEf32 ?
+ (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
+ break;
+ case MVT::f64:
+ Opc = X86ScalarSSEf64 ?
+ (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
+ break;
+ case MVT::v4f32:
+ if (Aligned)
+ Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
+ else
+ Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;
+ break;
+ case MVT::v2f64:
+ if (Aligned)
+ Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr;
+ else
+ Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr;
+ break;
+ case MVT::v4i32:
+ case MVT::v2i64:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ if (Aligned)
+ Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr;
+ else
+ Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
+ break;
+ }
+
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
+ addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
+ if (MMO)
+ MIB->addMemOperand(*FuncInfo.MF, MMO);
+
+ return true;
+}
+
+bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
+ const X86AddressMode &AM,
+ MachineMemOperand *MMO, bool Aligned) {
+ // Handle 'null' like i32/i64 0.
+ if (isa<ConstantPointerNull>(Val))
+ Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
+
+ // If this is a store of a simple constant, fold the constant into the store.
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+ unsigned Opc = 0;
+ bool Signed = true;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
+ case MVT::i8: Opc = X86::MOV8mi; break;
+ case MVT::i16: Opc = X86::MOV16mi; break;
+ case MVT::i32: Opc = X86::MOV32mi; break;
+ case MVT::i64:
+ // Must be a 32-bit sign extended value.
+ if (isInt<32>(CI->getSExtValue()))
+ Opc = X86::MOV64mi32;
+ break;
+ }
+
+ if (Opc) {
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
+ addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
+ : CI->getZExtValue());
+ if (MMO)
+ MIB->addMemOperand(*FuncInfo.MF, MMO);
+ return true;
+ }
+ }
+
+ unsigned ValReg = getRegForValue(Val);
+ if (ValReg == 0)
+ return false;
+
+ bool ValKill = hasTrivialKill(Val);
+ return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
+}
+
+/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
+/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
+/// ISD::SIGN_EXTEND).
+bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
+ unsigned Src, EVT SrcVT,
+ unsigned &ResultReg) {
+ unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
+ Src, /*TODO: Kill=*/false);
+ if (RR == 0)
+ return false;
+
+ ResultReg = RR;
+ return true;
+}
+
+bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
+ // Handle constant address.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return false;
+
+ // Can't handle TLS yet.
+ if (GV->isThreadLocal())
+ return false;
+
+ // RIP-relative addresses can't have additional register operands, so if
+ // we've already folded stuff into the addressing mode, just force the
+ // global value into its own register, which we can use as the basereg.
+ if (!Subtarget->isPICStyleRIPRel() ||
+ (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
+ // Okay, we've committed to selecting this global. Set up the address.
+ AM.GV = GV;
+
+ // Allow the subtarget to classify the global.
+ unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
+
+ // If this reference is relative to the pic base, set it now.
+ if (isGlobalRelativeToPICBase(GVFlags)) {
+ // FIXME: How do we know Base.Reg is free??
+ AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ }
+
+ // Unless the ABI requires an extra load, return a direct reference to
+ // the global.
+ if (!isGlobalStubReference(GVFlags)) {
+ if (Subtarget->isPICStyleRIPRel()) {
+ // Use rip-relative addressing if we can. Above we verified that the
+ // base and index registers are unused.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+ AM.Base.Reg = X86::RIP;
+ }
+ AM.GVOpFlags = GVFlags;
+ return true;
+ }
+
+ // Ok, we need to do a load from a stub. If we've already loaded from
+ // this stub, reuse the loaded pointer, otherwise emit the load now.
+ DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
+ unsigned LoadReg;
+ if (I != LocalValueMap.end() && I->second != 0) {
+ LoadReg = I->second;
+ } else {
+ // Issue load from stub.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = nullptr;
+ X86AddressMode StubAM;
+ StubAM.Base.Reg = AM.Base.Reg;
+ StubAM.GV = GV;
+ StubAM.GVOpFlags = GVFlags;
+
+ // Prepare for inserting code in the local-value area.
+ SavePoint SaveInsertPt = enterLocalValueArea();
+
+ if (TLI.getPointerTy() == MVT::i64) {
+ Opc = X86::MOV64rm;
+ RC = &X86::GR64RegClass;
+
+ if (Subtarget->isPICStyleRIPRel())
+ StubAM.Base.Reg = X86::RIP;
+ } else {
+ Opc = X86::MOV32rm;
+ RC = &X86::GR32RegClass;
+ }
+
+ LoadReg = createResultReg(RC);
+ MachineInstrBuilder LoadMI =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
+ addFullAddress(LoadMI, StubAM);
+
+ // Ok, back to normal mode.
+ leaveLocalValueArea(SaveInsertPt);
+
+ // Prevent loading GV stub multiple times in same MBB.
+ LocalValueMap[V] = LoadReg;
+ }
+
+ // Now construct the final address. Note that the Disp, Scale,
+ // and Index values may already be set here.
+ AM.Base.Reg = LoadReg;
+ AM.GV = nullptr;
+ return true;
+ }
+ }
+
+ // If all else fails, try to materialize the value in a register.
+ if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
+ if (AM.Base.Reg == 0) {
+ AM.Base.Reg = getRegForValue(V);
+ return AM.Base.Reg != 0;
+ }
+ if (AM.IndexReg == 0) {
+ assert(AM.Scale == 1 && "Scale with no index!");
+ AM.IndexReg = getRegForValue(V);
+ return AM.IndexReg != 0;
+ }
+ }
+
+ return false;
+}
+
+/// X86SelectAddress - Attempt to fill in an address from the given value.
+///
+bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
+ SmallVector<const Value *, 32> GEPs;
+redo_gep:
+ const User *U = nullptr;
+ unsigned Opcode = Instruction::UserOp1;
+ if (const Instruction *I = dyn_cast<Instruction>(V)) {
+ // Don't walk into other basic blocks; it's possible we haven't
+ // visited them yet, so the instructions may not yet be assigned
+ // virtual registers.
+ if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
+ FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
+ Opcode = I->getOpcode();
+ U = I;
+ }
+ } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
+ if (Ty->getAddressSpace() > 255)
+ // Fast instruction selection doesn't support the special
+ // address spaces.
+ return false;
+
+ switch (Opcode) {
+ default: break;
+ case Instruction::BitCast:
+ // Look past bitcasts.
+ return X86SelectAddress(U->getOperand(0), AM);
+
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs.
+ if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return X86SelectAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints.
+ if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return X86SelectAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::Alloca: {
+ // Do static allocas.
+ const AllocaInst *A = cast<AllocaInst>(V);
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(A);
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ AM.BaseType = X86AddressMode::FrameIndexBase;
+ AM.Base.FrameIndex = SI->second;
+ return true;
+ }
+ break;
+ }
+
+ case Instruction::Add: {
+ // Adds of constants are common and easy enough.
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
+ uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
+ // They have to fit in the 32-bit signed displacement field though.
+ if (isInt<32>(Disp)) {
+ AM.Disp = (uint32_t)Disp;
+ return X86SelectAddress(U->getOperand(0), AM);
+ }
+ }
+ break;
+ }
+
+ case Instruction::GetElementPtr: {
+ X86AddressMode SavedAM = AM;
+
+ // Pattern-match simple GEPs.
+ uint64_t Disp = (int32_t)AM.Disp;
+ unsigned IndexReg = AM.IndexReg;
+ unsigned Scale = AM.Scale;
+ gep_type_iterator GTI = gep_type_begin(U);
+ // Iterate through the indices, folding what we can. Constants can be
+ // folded, and one dynamic index can be handled, if the scale is supported.
+ for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
+ i != e; ++i, ++GTI) {
+ const Value *Op = *i;
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
+ continue;
+ }
+
+ // A array/variable index is always of the form i*S where S is the
+ // constant scale size. See if we can push the scale into immediates.
+ uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
+ for (;;) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // Constant-offset addressing.
+ Disp += CI->getSExtValue() * S;
+ break;
+ }
+ if (canFoldAddIntoGEP(U, Op)) {
+ // A compatible add with a constant operand. Fold the constant.
+ ConstantInt *CI =
+ cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
+ Disp += CI->getSExtValue() * S;
+ // Iterate on the other operand.
+ Op = cast<AddOperator>(Op)->getOperand(0);
+ continue;
+ }
+ if (IndexReg == 0 &&
+ (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
+ (S == 1 || S == 2 || S == 4 || S == 8)) {
+ // Scaled-index addressing.
+ Scale = S;
+ IndexReg = getRegForGEPIndex(Op).first;
+ if (IndexReg == 0)
+ return false;
+ break;
+ }
+ // Unsupported.
+ goto unsupported_gep;
+ }
+ }
+
+ // Check for displacement overflow.
+ if (!isInt<32>(Disp))
+ break;
+
+ AM.IndexReg = IndexReg;
+ AM.Scale = Scale;
+ AM.Disp = (uint32_t)Disp;
+ GEPs.push_back(V);
+
+ if (const GetElementPtrInst *GEP =
+ dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
+ // Ok, the GEP indices were covered by constant-offset and scaled-index
+ // addressing. Update the address state and move on to examining the base.
+ V = GEP;
+ goto redo_gep;
+ } else if (X86SelectAddress(U->getOperand(0), AM)) {
+ return true;
+ }
+
+ // If we couldn't merge the gep value into this addr mode, revert back to
+ // our address and just match the value instead of completely failing.
+ AM = SavedAM;
+
+ for (SmallVectorImpl<const Value *>::reverse_iterator
+ I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
+ if (handleConstantAddresses(*I, AM))
+ return true;
+
+ return false;
+ unsupported_gep:
+ // Ok, the GEP indices weren't all covered.
+ break;
+ }
+ }
+
+ return handleConstantAddresses(V, AM);
+}
+
+/// X86SelectCallAddress - Attempt to fill in an address from the given value.
+///
+bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
+ const User *U = nullptr;
+ unsigned Opcode = Instruction::UserOp1;
+ const Instruction *I = dyn_cast<Instruction>(V);
+ // Record if the value is defined in the same basic block.
+ //
+ // This information is crucial to know whether or not folding an
+ // operand is valid.
+ // Indeed, FastISel generates or reuses a virtual register for all
+ // operands of all instructions it selects. Obviously, the definition and
+ // its uses must use the same virtual register otherwise the produced
+ // code is incorrect.
+ // Before instruction selection, FunctionLoweringInfo::set sets the virtual
+ // registers for values that are alive across basic blocks. This ensures
+ // that the values are consistently set between across basic block, even
+ // if different instruction selection mechanisms are used (e.g., a mix of
+ // SDISel and FastISel).
+ // For values local to a basic block, the instruction selection process
+ // generates these virtual registers with whatever method is appropriate
+ // for its needs. In particular, FastISel and SDISel do not share the way
+ // local virtual registers are set.
+ // Therefore, this is impossible (or at least unsafe) to share values
+ // between basic blocks unless they use the same instruction selection
+ // method, which is not guarantee for X86.
+ // Moreover, things like hasOneUse could not be used accurately, if we
+ // allow to reference values across basic blocks whereas they are not
+ // alive across basic blocks initially.
+ bool InMBB = true;
+ if (I) {
+ Opcode = I->getOpcode();
+ U = I;
+ InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
+ } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ switch (Opcode) {
+ default: break;
+ case Instruction::BitCast:
+ // Look past bitcasts if its operand is in the same BB.
+ if (InMBB)
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs if its operand is in the same BB.
+ if (InMBB &&
+ TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints if its operand is in the same BB.
+ if (InMBB &&
+ TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+ }
+
+ // Handle constant address.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return false;
+
+ // RIP-relative addresses can't have additional register operands.
+ if (Subtarget->isPICStyleRIPRel() &&
+ (AM.Base.Reg != 0 || AM.IndexReg != 0))
+ return false;
+
+ // Can't handle DLL Import.
+ if (GV->hasDLLImportStorageClass())
+ return false;
+
+ // Can't handle TLS.
+ if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
+ if (GVar->isThreadLocal())
+ return false;
+
+ // Okay, we've committed to selecting this global. Set up the basic address.
+ AM.GV = GV;
+
+ // No ABI requires an extra load for anything other than DLLImport, which
+ // we rejected above. Return a direct reference to the global.
+ if (Subtarget->isPICStyleRIPRel()) {
+ // Use rip-relative addressing if we can. Above we verified that the
+ // base and index registers are unused.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+ AM.Base.Reg = X86::RIP;
+ } else if (Subtarget->isPICStyleStubPIC()) {
+ AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
+ } else if (Subtarget->isPICStyleGOT()) {
+ AM.GVOpFlags = X86II::MO_GOTOFF;
+ }
+
+ return true;
+ }
+
+ // If all else fails, try to materialize the value in a register.
+ if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
+ if (AM.Base.Reg == 0) {
+ AM.Base.Reg = getRegForValue(V);
+ return AM.Base.Reg != 0;
+ }
+ if (AM.IndexReg == 0) {
+ assert(AM.Scale == 1 && "Scale with no index!");
+ AM.IndexReg = getRegForValue(V);
+ return AM.IndexReg != 0;
+ }
+ }
+
+ return false;
+}
+
+
+/// X86SelectStore - Select and emit code to implement store instructions.
+bool X86FastISel::X86SelectStore(const Instruction *I) {
+ // Atomic stores need special handling.
+ const StoreInst *S = cast<StoreInst>(I);
+
+ if (S->isAtomic())
+ return false;
+
+ const Value *Val = S->getValueOperand();
+ const Value *Ptr = S->getPointerOperand();
+
+ MVT VT;
+ if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
+ return false;
+
+ unsigned Alignment = S->getAlignment();
+ unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = ABIAlignment;
+ bool Aligned = Alignment >= ABIAlignment;
+
+ X86AddressMode AM;
+ if (!X86SelectAddress(Ptr, AM))
+ return false;
+
+ return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
+}
+
+/// X86SelectRet - Select and emit code to implement ret instructions.
+bool X86FastISel::X86SelectRet(const Instruction *I) {
+ const ReturnInst *Ret = cast<ReturnInst>(I);
+ const Function &F = *I->getParent()->getParent();
+ const X86MachineFunctionInfo *X86MFInfo =
+ FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
+
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ CallingConv::ID CC = F.getCallingConv();
+ if (CC != CallingConv::C &&
+ CC != CallingConv::Fast &&
+ CC != CallingConv::X86_FastCall &&
+ CC != CallingConv::X86_64_SysV)
+ return false;
+
+ if (Subtarget->isCallingConvWin64(CC))
+ return false;
+
+ // Don't handle popping bytes on return for now.
+ if (X86MFInfo->getBytesToPopOnReturn() != 0)
+ return false;
+
+ // fastcc with -tailcallopt is intended to provide a guaranteed
+ // tail call optimization. Fastisel doesn't know how to do that.
+ if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
+ return false;
+
+ // Let SDISel handle vararg functions.
+ if (F.isVarArg())
+ return false;
+
+ // Build a list of return value registers.
+ SmallVector<unsigned, 4> RetRegs;
+
+ if (Ret->getNumOperands() > 0) {
+ SmallVector<ISD::OutputArg, 4> Outs;
+ GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ValLocs;
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
+ I->getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_X86);
+
+ const Value *RV = Ret->getOperand(0);
+ unsigned Reg = getRegForValue(RV);
+ if (Reg == 0)
+ return false;
+
+ // Only handle a single return value for now.
+ if (ValLocs.size() != 1)
+ return false;
+
+ CCValAssign &VA = ValLocs[0];
+
+ // Don't bother handling odd stuff for now.
+ if (VA.getLocInfo() != CCValAssign::Full)
+ return false;
+ // Only handle register returns for now.
+ if (!VA.isRegLoc())
+ return false;
+
+ // The calling-convention tables for x87 returns don't tell
+ // the whole story.
+ if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
+ return false;
+
+ unsigned SrcReg = Reg + VA.getValNo();
+ EVT SrcVT = TLI.getValueType(RV->getType());
+ EVT DstVT = VA.getValVT();
+ // Special handling for extended integers.
+ if (SrcVT != DstVT) {
+ if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
+ return false;
+
+ if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
+ return false;
+
+ assert(DstVT == MVT::i32 && "X86 should always ext to i32");
+
+ if (SrcVT == MVT::i1) {
+ if (Outs[0].Flags.isSExt())
+ return false;
+ SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
+ SrcVT = MVT::i8;
+ }
+ unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
+ ISD::SIGN_EXTEND;
+ SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
+ SrcReg, /*TODO: Kill=*/false);
+ }
+
+ // Make the copy.
+ unsigned DstReg = VA.getLocReg();
+ const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
+ // Avoid a cross-class copy. This is very unlikely.
+ if (!SrcRC->contains(DstReg))
+ return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
+ DstReg).addReg(SrcReg);
+
+ // Add register to return instruction.
+ RetRegs.push_back(VA.getLocReg());
+ }
+
+ // The x86-64 ABI for returning structs by value requires that we copy
+ // the sret argument into %rax for the return. We saved the argument into
+ // a virtual register in the entry block, so now we copy the value out
+ // and into %rax. We also do the same with %eax for Win32.
+ if (F.hasStructRetAttr() &&
+ (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
+ unsigned Reg = X86MFInfo->getSRetReturnReg();
+ assert(Reg &&
+ "SRetReturnReg should have been set in LowerFormalArguments()!");
+ unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
+ RetReg).addReg(Reg);
+ RetRegs.push_back(RetReg);
+ }
+
+ // Now emit the RET.
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
+ for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
+ MIB.addReg(RetRegs[i], RegState::Implicit);
+ return true;
+}
+
+/// X86SelectLoad - Select and emit code to implement load instructions.
+///
+bool X86FastISel::X86SelectLoad(const Instruction *I) {
+ const LoadInst *LI = cast<LoadInst>(I);
+
+ // Atomic loads need special handling.
+ if (LI->isAtomic())
+ return false;
+
+ MVT VT;
+ if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
+ return false;
+
+ const Value *Ptr = LI->getPointerOperand();
+
+ X86AddressMode AM;
+ if (!X86SelectAddress(Ptr, AM))
+ return false;
+
+ unsigned ResultReg = 0;
+ if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg))
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
+ bool HasAVX = Subtarget->hasAVX();
+ bool X86ScalarSSEf32 = Subtarget->hasSSE1();
+ bool X86ScalarSSEf64 = Subtarget->hasSSE2();
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return 0;
+ case MVT::i8: return X86::CMP8rr;
+ case MVT::i16: return X86::CMP16rr;
+ case MVT::i32: return X86::CMP32rr;
+ case MVT::i64: return X86::CMP64rr;
+ case MVT::f32:
+ return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
+ case MVT::f64:
+ return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
+ }
+}
+
+/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
+/// of the comparison, return an opcode that works for the compare (e.g.
+/// CMP32ri) otherwise return 0.
+static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ // Otherwise, we can't fold the immediate into this comparison.
+ default: return 0;
+ case MVT::i8: return X86::CMP8ri;
+ case MVT::i16: return X86::CMP16ri;
+ case MVT::i32: return X86::CMP32ri;
+ case MVT::i64:
+ // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
+ // field.
+ if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
+ return X86::CMP64ri32;
+ return 0;
+ }
+}
+
+bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
+ EVT VT) {
+ unsigned Op0Reg = getRegForValue(Op0);
+ if (Op0Reg == 0) return false;
+
+ // Handle 'null' like i32/i64 0.
+ if (isa<ConstantPointerNull>(Op1))
+ Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
+
+ // We have two options: compare with register or immediate. If the RHS of
+ // the compare is an immediate that we can fold into this compare, use
+ // CMPri, otherwise use CMPrr.
+ if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+ if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CompareImmOpc))
+ .addReg(Op0Reg)
+ .addImm(Op1C->getSExtValue());
+ return true;
+ }
+ }
+
+ unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
+ if (CompareOpc == 0) return false;
+
+ unsigned Op1Reg = getRegForValue(Op1);
+ if (Op1Reg == 0) return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CompareOpc))
+ .addReg(Op0Reg)
+ .addReg(Op1Reg);
+
+ return true;
+}
+
+bool X86FastISel::X86SelectCmp(const Instruction *I) {
+ const CmpInst *CI = cast<CmpInst>(I);
+
+ MVT VT;
+ if (!isTypeLegal(I->getOperand(0)->getType(), VT))
+ return false;
+
+ // Try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+ unsigned ResultReg = 0;
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_FALSE: {
+ ResultReg = createResultReg(&X86::GR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
+ ResultReg);
+ ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
+ X86::sub_8bit);
+ if (!ResultReg)
+ return false;
+ break;
+ }
+ case CmpInst::FCMP_TRUE: {
+ ResultReg = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
+ ResultReg).addImm(1);
+ break;
+ }
+ }
+
+ if (ResultReg) {
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+
+ const Value *LHS = CI->getOperand(0);
+ const Value *RHS = CI->getOperand(1);
+
+ // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
+ // We don't have to materialize a zero constant for this case and can just use
+ // %x again on the RHS.
+ if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
+ const auto *RHSC = dyn_cast<ConstantFP>(RHS);
+ if (RHSC && RHSC->isNullValue())
+ RHS = LHS;
+ }
+
+ // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
+ static unsigned SETFOpcTable[2][3] = {
+ { X86::SETEr, X86::SETNPr, X86::AND8rr },
+ { X86::SETNEr, X86::SETPr, X86::OR8rr }
+ };
+ unsigned *SETFOpc = nullptr;
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
+ case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
+ }
+
+ ResultReg = createResultReg(&X86::GR8RegClass);
+ if (SETFOpc) {
+ if (!X86FastEmitCompare(LHS, RHS, VT))
+ return false;
+
+ unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
+ unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
+ FlagReg1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
+ FlagReg2);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
+ ResultReg).addReg(FlagReg1).addReg(FlagReg2);
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+
+ X86::CondCode CC;
+ bool SwapArgs;
+ std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
+ assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
+ unsigned Opc = X86::getSETFromCond(CC);
+
+ if (SwapArgs)
+ std::swap(LHS, RHS);
+
+ // Emit a compare of LHS/RHS.
+ if (!X86FastEmitCompare(LHS, RHS, VT))
+ return false;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86SelectZExt(const Instruction *I) {
+ EVT DstVT = TLI.getValueType(I->getType());
+ if (!TLI.isTypeLegal(DstVT))
+ return false;
+
+ unsigned ResultReg = getRegForValue(I->getOperand(0));
+ if (ResultReg == 0)
+ return false;
+
+ // Handle zero-extension from i1 to i8, which is common.
+ MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType());
+ if (SrcVT.SimpleTy == MVT::i1) {
+ // Set the high bits to zero.
+ ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
+ SrcVT = MVT::i8;
+
+ if (ResultReg == 0)
+ return false;
+ }
+
+ if (DstVT == MVT::i64) {
+ // Handle extension to 64-bits via sub-register shenanigans.
+ unsigned MovInst;
+
+ switch (SrcVT.SimpleTy) {
+ case MVT::i8: MovInst = X86::MOVZX32rr8; break;
+ case MVT::i16: MovInst = X86::MOVZX32rr16; break;
+ case MVT::i32: MovInst = X86::MOV32rr; break;
+ default: llvm_unreachable("Unexpected zext to i64 source type");
+ }
+
+ unsigned Result32 = createResultReg(&X86::GR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
+ .addReg(ResultReg);
+
+ ResultReg = createResultReg(&X86::GR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
+ ResultReg)
+ .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
+ } else if (DstVT != MVT::i8) {
+ ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
+ ResultReg, /*Kill=*/true);
+ if (ResultReg == 0)
+ return false;
+ }
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+
+bool X86FastISel::X86SelectBranch(const Instruction *I) {
+ // Unconditional branches are selected by tablegen-generated code.
+ // Handle a conditional branch.
+ const BranchInst *BI = cast<BranchInst>(I);
+ MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+ // Fold the common case of a conditional branch with a comparison
+ // in the same block (values defined on other blocks may not have
+ // initialized registers).
+ X86::CondCode CC;
+ if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
+ if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
+ EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
+
+ // Try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_FALSE: FastEmitBranch(FalseMBB, DbgLoc); return true;
+ case CmpInst::FCMP_TRUE: FastEmitBranch(TrueMBB, DbgLoc); return true;
+ }
+
+ const Value *CmpLHS = CI->getOperand(0);
+ const Value *CmpRHS = CI->getOperand(1);
+
+ // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
+ // 0.0.
+ // We don't have to materialize a zero constant for this case and can just
+ // use %x again on the RHS.
+ if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
+ const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
+ if (CmpRHSC && CmpRHSC->isNullValue())
+ CmpRHS = CmpLHS;
+ }
+
+ // Try to take advantage of fallthrough opportunities.
+ if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
+ std::swap(TrueMBB, FalseMBB);
+ Predicate = CmpInst::getInversePredicate(Predicate);
+ }
+
+ // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
+ // code check. Instead two branch instructions are required to check all
+ // the flags. First we change the predicate to a supported condition code,
+ // which will be the first branch. Later one we will emit the second
+ // branch.
+ bool NeedExtraBranch = false;
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_OEQ:
+ std::swap(TrueMBB, FalseMBB); // fall-through
+ case CmpInst::FCMP_UNE:
+ NeedExtraBranch = true;
+ Predicate = CmpInst::FCMP_ONE;
+ break;
+ }
+
+ bool SwapArgs;
+ unsigned BranchOpc;
+ std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
+ assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
+
+ BranchOpc = X86::GetCondBranchFromCond(CC);
+ if (SwapArgs)
+ std::swap(CmpLHS, CmpRHS);
+
+ // Emit a compare of the LHS and RHS, setting the flags.
+ if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT))
+ return false;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
+ .addMBB(TrueMBB);
+
+ // X86 requires a second branch to handle UNE (and OEQ, which is mapped
+ // to UNE above).
+ if (NeedExtraBranch) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_4))
+ .addMBB(TrueMBB);
+ }
+
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TrueMBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
+
+ // Emits an unconditional branch to the FalseBB, obtains the branch
+ // weight, and adds it to the successor list.
+ FastEmitBranch(FalseMBB, DbgLoc);
+
+ return true;
+ }
+ } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
+ // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
+ // typically happen for _Bool and C++ bools.
+ MVT SourceVT;
+ if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
+ isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
+ unsigned TestOpc = 0;
+ switch (SourceVT.SimpleTy) {
+ default: break;
+ case MVT::i8: TestOpc = X86::TEST8ri; break;
+ case MVT::i16: TestOpc = X86::TEST16ri; break;
+ case MVT::i32: TestOpc = X86::TEST32ri; break;
+ case MVT::i64: TestOpc = X86::TEST64ri32; break;
+ }
+ if (TestOpc) {
+ unsigned OpReg = getRegForValue(TI->getOperand(0));
+ if (OpReg == 0) return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
+ .addReg(OpReg).addImm(1);
+
+ unsigned JmpOpc = X86::JNE_4;
+ if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
+ std::swap(TrueMBB, FalseMBB);
+ JmpOpc = X86::JE_4;
+ }
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
+ .addMBB(TrueMBB);
+ FastEmitBranch(FalseMBB, DbgLoc);
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TrueMBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
+ return true;
+ }
+ }
+ } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
+ // Fake request the condition, otherwise the intrinsic might be completely
+ // optimized away.
+ unsigned TmpReg = getRegForValue(BI->getCondition());
+ if (TmpReg == 0)
+ return false;
+
+ unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
+ .addMBB(TrueMBB);
+ FastEmitBranch(FalseMBB, DbgLoc);
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TrueMBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
+ return true;
+ }
+
+ // Otherwise do a clumsy setcc and re-test it.
+ // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
+ // in an explicit cast, so make sure to handle that correctly.
+ unsigned OpReg = getRegForValue(BI->getCondition());
+ if (OpReg == 0) return false;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
+ .addReg(OpReg).addImm(1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_4))
+ .addMBB(TrueMBB);
+ FastEmitBranch(FalseMBB, DbgLoc);
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TrueMBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
+ return true;
+}
+
+bool X86FastISel::X86SelectShift(const Instruction *I) {
+ unsigned CReg = 0, OpReg = 0;
+ const TargetRegisterClass *RC = nullptr;
+ if (I->getType()->isIntegerTy(8)) {
+ CReg = X86::CL;
+ RC = &X86::GR8RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR8rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR8rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL8rCL; break;
+ default: return false;
+ }
+ } else if (I->getType()->isIntegerTy(16)) {
+ CReg = X86::CX;
+ RC = &X86::GR16RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR16rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR16rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL16rCL; break;
+ default: return false;
+ }
+ } else if (I->getType()->isIntegerTy(32)) {
+ CReg = X86::ECX;
+ RC = &X86::GR32RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR32rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR32rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL32rCL; break;
+ default: return false;
+ }
+ } else if (I->getType()->isIntegerTy(64)) {
+ CReg = X86::RCX;
+ RC = &X86::GR64RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR64rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR64rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL64rCL; break;
+ default: return false;
+ }
+ } else {
+ return false;
+ }
+
+ MVT VT;
+ if (!isTypeLegal(I->getType(), VT))
+ return false;
+
+ unsigned Op0Reg = getRegForValue(I->getOperand(0));
+ if (Op0Reg == 0) return false;
+
+ unsigned Op1Reg = getRegForValue(I->getOperand(1));
+ if (Op1Reg == 0) return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
+ CReg).addReg(Op1Reg);
+
+ // The shift instruction uses X86::CL. If we defined a super-register
+ // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
+ if (CReg != X86::CL)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::KILL), X86::CL)
+ .addReg(CReg, RegState::Kill);
+
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
+ .addReg(Op0Reg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86SelectDivRem(const Instruction *I) {
+ const static unsigned NumTypes = 4; // i8, i16, i32, i64
+ const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
+ const static bool S = true; // IsSigned
+ const static bool U = false; // !IsSigned
+ const static unsigned Copy = TargetOpcode::COPY;
+ // For the X86 DIV/IDIV instruction, in most cases the dividend
+ // (numerator) must be in a specific register pair highreg:lowreg,
+ // producing the quotient in lowreg and the remainder in highreg.
+ // For most data types, to set up the instruction, the dividend is
+ // copied into lowreg, and lowreg is sign-extended or zero-extended
+ // into highreg. The exception is i8, where the dividend is defined
+ // as a single register rather than a register pair, and we
+ // therefore directly sign-extend or zero-extend the dividend into
+ // lowreg, instead of copying, and ignore the highreg.
+ const static struct DivRemEntry {
+ // The following portion depends only on the data type.
+ const TargetRegisterClass *RC;
+ unsigned LowInReg; // low part of the register pair
+ unsigned HighInReg; // high part of the register pair
+ // The following portion depends on both the data type and the operation.
+ struct DivRemResult {
+ unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
+ unsigned OpSignExtend; // Opcode for sign-extending lowreg into
+ // highreg, or copying a zero into highreg.
+ unsigned OpCopy; // Opcode for copying dividend into lowreg, or
+ // zero/sign-extending into lowreg for i8.
+ unsigned DivRemResultReg; // Register containing the desired result.
+ bool IsOpSigned; // Whether to use signed or unsigned form.
+ } ResultTable[NumOps];
+ } OpTable[NumTypes] = {
+ { &X86::GR8RegClass, X86::AX, 0, {
+ { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
+ { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
+ { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
+ { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
+ }
+ }, // i8
+ { &X86::GR16RegClass, X86::AX, X86::DX, {
+ { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
+ { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
+ { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
+ { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
+ }
+ }, // i16
+ { &X86::GR32RegClass, X86::EAX, X86::EDX, {
+ { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
+ { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
+ { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
+ { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
+ }
+ }, // i32
+ { &X86::GR64RegClass, X86::RAX, X86::RDX, {
+ { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
+ { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
+ { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
+ { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
+ }
+ }, // i64
+ };
+
+ MVT VT;
+ if (!isTypeLegal(I->getType(), VT))
+ return false;
+
+ unsigned TypeIndex, OpIndex;
+ switch (VT.SimpleTy) {
+ default: return false;
+ case MVT::i8: TypeIndex = 0; break;
+ case MVT::i16: TypeIndex = 1; break;
+ case MVT::i32: TypeIndex = 2; break;
+ case MVT::i64: TypeIndex = 3;
+ if (!Subtarget->is64Bit())
+ return false;
+ break;
+ }
+
+ switch (I->getOpcode()) {
+ default: llvm_unreachable("Unexpected div/rem opcode");
+ case Instruction::SDiv: OpIndex = 0; break;
+ case Instruction::SRem: OpIndex = 1; break;
+ case Instruction::UDiv: OpIndex = 2; break;
+ case Instruction::URem: OpIndex = 3; break;
+ }
+
+ const DivRemEntry &TypeEntry = OpTable[TypeIndex];
+ const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
+ unsigned Op0Reg = getRegForValue(I->getOperand(0));
+ if (Op0Reg == 0)
+ return false;
+ unsigned Op1Reg = getRegForValue(I->getOperand(1));
+ if (Op1Reg == 0)
+ return false;
+
+ // Move op0 into low-order input register.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
+ // Zero-extend or sign-extend into high-order input register.
+ if (OpEntry.OpSignExtend) {
+ if (OpEntry.IsOpSigned)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(OpEntry.OpSignExtend));
+ else {
+ unsigned Zero32 = createResultReg(&X86::GR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(X86::MOV32r0), Zero32);
+
+ // Copy the zero into the appropriate sub/super/identical physical
+ // register. Unfortunately the operations needed are not uniform enough to
+ // fit neatly into the table above.
+ if (VT.SimpleTy == MVT::i16) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Copy), TypeEntry.HighInReg)
+ .addReg(Zero32, 0, X86::sub_16bit);
+ } else if (VT.SimpleTy == MVT::i32) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Copy), TypeEntry.HighInReg)
+ .addReg(Zero32);
+ } else if (VT.SimpleTy == MVT::i64) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
+ .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
+ }
+ }
+ }
+ // Generate the DIV/IDIV instruction.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
+ // For i8 remainder, we can't reference AH directly, as we'll end
+ // up with bogus copies like %R9B = COPY %AH. Reference AX
+ // instead to prevent AH references in a REX instruction.
+ //
+ // The current assumption of the fast register allocator is that isel
+ // won't generate explicit references to the GPR8_NOREX registers. If
+ // the allocator and/or the backend get enhanced to be more robust in
+ // that regard, this can be, and should be, removed.
+ unsigned ResultReg = 0;
+ if ((I->getOpcode() == Instruction::SRem ||
+ I->getOpcode() == Instruction::URem) &&
+ OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
+ unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
+ unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Copy), SourceSuperReg).addReg(X86::AX);
+
+ // Shift AX right by 8 bits instead of using AH.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
+ ResultSuperReg).addReg(SourceSuperReg).addImm(8);
+
+ // Now reference the 8-bit subreg of the result.
+ ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
+ /*Kill=*/true, X86::sub_8bit);
+ }
+ // Copy the result out of the physreg if we haven't already.
+ if (!ResultReg) {
+ ResultReg = createResultReg(TypeEntry.RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
+ .addReg(OpEntry.DivRemResultReg);
+ }
+ UpdateValueMap(I, ResultReg);
+
+ return true;
+}
+
+/// \brief Emit a conditional move instruction (if the are supported) to lower
+/// the select.
+bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
+ // Check if the subtarget supports these instructions.
+ if (!Subtarget->hasCMov())
+ return false;
+
+ // FIXME: Add support for i8.
+ if (RetVT < MVT::i16 || RetVT > MVT::i64)
+ return false;
+
+ const Value *Cond = I->getOperand(0);
+ const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+ bool NeedTest = true;
+ X86::CondCode CC = X86::COND_NE;
+
+ // Optimize conditions coming from a compare if both instructions are in the
+ // same basic block (values defined in other basic blocks may not have
+ // initialized registers).
+ const auto *CI = dyn_cast<CmpInst>(Cond);
+ if (CI && (CI->getParent() == I->getParent())) {
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+
+ // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
+ static unsigned SETFOpcTable[2][3] = {
+ { X86::SETNPr, X86::SETEr , X86::TEST8rr },
+ { X86::SETPr, X86::SETNEr, X86::OR8rr }
+ };
+ unsigned *SETFOpc = nullptr;
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_OEQ:
+ SETFOpc = &SETFOpcTable[0][0];
+ Predicate = CmpInst::ICMP_NE;
+ break;
+ case CmpInst::FCMP_UNE:
+ SETFOpc = &SETFOpcTable[1][0];
+ Predicate = CmpInst::ICMP_NE;
+ break;
+ }
+
+ bool NeedSwap;
+ std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
+ assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
+
+ const Value *CmpLHS = CI->getOperand(0);
+ const Value *CmpRHS = CI->getOperand(1);
+ if (NeedSwap)
+ std::swap(CmpLHS, CmpRHS);
+
+ EVT CmpVT = TLI.getValueType(CmpLHS->getType());
+ // Emit a compare of the LHS and RHS, setting the flags.
+ if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT))
+ return false;
+
+ if (SETFOpc) {
+ unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
+ unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
+ FlagReg1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
+ FlagReg2);
+ auto const &II = TII.get(SETFOpc[2]);
+ if (II.getNumDefs()) {
+ unsigned TmpReg = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
+ .addReg(FlagReg2).addReg(FlagReg1);
+ } else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(FlagReg2).addReg(FlagReg1);
+ }
+ }
+ NeedTest = false;
+ } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
+ // Fake request the condition, otherwise the intrinsic might be completely
+ // optimized away.
+ unsigned TmpReg = getRegForValue(Cond);
+ if (TmpReg == 0)
+ return false;
+
+ NeedTest = false;
+ }
+
+ if (NeedTest) {
+ // Selects operate on i1, however, CondReg is 8 bits width and may contain
+ // garbage. Indeed, only the less significant bit is supposed to be
+ // accurate. If we read more than the lsb, we may see non-zero values
+ // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
+ // the select. This is achieved by performing TEST against 1.
+ unsigned CondReg = getRegForValue(Cond);
+ if (CondReg == 0)
+ return false;
+ bool CondIsKill = hasTrivialKill(Cond);
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
+ .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
+ }
+
+ const Value *LHS = I->getOperand(1);
+ const Value *RHS = I->getOperand(2);
+
+ unsigned RHSReg = getRegForValue(RHS);
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ unsigned LHSReg = getRegForValue(LHS);
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ if (!LHSReg || !RHSReg)
+ return false;
+
+ unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
+ unsigned ResultReg = FastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
+ LHSReg, LHSIsKill);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+/// \brief Emit SSE instructions to lower the select.
+///
+/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
+/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
+/// SSE instructions are available.
+bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
+ // Optimize conditions coming from a compare if both instructions are in the
+ // same basic block (values defined in other basic blocks may not have
+ // initialized registers).
+ const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
+ if (!CI || (CI->getParent() != I->getParent()))
+ return false;
+
+ if (I->getType() != CI->getOperand(0)->getType() ||
+ !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
+ (Subtarget->hasSSE2() && RetVT == MVT::f64) ))
+ return false;
+
+ const Value *CmpLHS = CI->getOperand(0);
+ const Value *CmpRHS = CI->getOperand(1);
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+
+ // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
+ // We don't have to materialize a zero constant for this case and can just use
+ // %x again on the RHS.
+ if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
+ const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
+ if (CmpRHSC && CmpRHSC->isNullValue())
+ CmpRHS = CmpLHS;
+ }
+
+ unsigned CC;
+ bool NeedSwap;
+ std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
+ if (CC > 7)
+ return false;
+
+ if (NeedSwap)
+ std::swap(CmpLHS, CmpRHS);
+
+ static unsigned OpcTable[2][2][4] = {
+ { { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr },
+ { X86::VCMPSSrr, X86::VFsANDPSrr, X86::VFsANDNPSrr, X86::VFsORPSrr } },
+ { { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr },
+ { X86::VCMPSDrr, X86::VFsANDPDrr, X86::VFsANDNPDrr, X86::VFsORPDrr } }
+ };
+
+ bool HasAVX = Subtarget->hasAVX();
+ unsigned *Opc = nullptr;
+ switch (RetVT.SimpleTy) {
+ default: return false;
+ case MVT::f32: Opc = &OpcTable[0][HasAVX][0]; break;
+ case MVT::f64: Opc = &OpcTable[1][HasAVX][0]; break;
+ }
+
+ const Value *LHS = I->getOperand(1);
+ const Value *RHS = I->getOperand(2);
+
+ unsigned LHSReg = getRegForValue(LHS);
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned RHSReg = getRegForValue(RHS);
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ unsigned CmpLHSReg = getRegForValue(CmpLHS);
+ bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
+
+ unsigned CmpRHSReg = getRegForValue(CmpRHS);
+ bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
+
+ if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
+ return false;
+
+ const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+ unsigned CmpReg = FastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
+ CmpRHSReg, CmpRHSIsKill, CC);
+ unsigned AndReg = FastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
+ LHSReg, LHSIsKill);
+ unsigned AndNReg = FastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
+ RHSReg, RHSIsKill);
+ unsigned ResultReg = FastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
+ AndReg, /*IsKill=*/true);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
+ // These are pseudo CMOV instructions and will be later expanded into control-
+ // flow.
+ unsigned Opc;
+ switch (RetVT.SimpleTy) {
+ default: return false;
+ case MVT::i8: Opc = X86::CMOV_GR8; break;
+ case MVT::i16: Opc = X86::CMOV_GR16; break;
+ case MVT::i32: Opc = X86::CMOV_GR32; break;
+ case MVT::f32: Opc = X86::CMOV_FR32; break;
+ case MVT::f64: Opc = X86::CMOV_FR64; break;
+ }
+
+ const Value *Cond = I->getOperand(0);
+ X86::CondCode CC = X86::COND_NE;
+
+ // Optimize conditions coming from a compare if both instructions are in the
+ // same basic block (values defined in other basic blocks may not have
+ // initialized registers).
+ const auto *CI = dyn_cast<CmpInst>(Cond);
+ if (CI && (CI->getParent() == I->getParent())) {
+ bool NeedSwap;
+ std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
+ if (CC > X86::LAST_VALID_COND)
+ return false;
+
+ const Value *CmpLHS = CI->getOperand(0);
+ const Value *CmpRHS = CI->getOperand(1);
+
+ if (NeedSwap)
+ std::swap(CmpLHS, CmpRHS);
+
+ EVT CmpVT = TLI.getValueType(CmpLHS->getType());
+ if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT))
+ return false;
+ } else {
+ unsigned CondReg = getRegForValue(Cond);
+ if (CondReg == 0)
+ return false;
+ bool CondIsKill = hasTrivialKill(Cond);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
+ .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
+ }
+
+ const Value *LHS = I->getOperand(1);
+ const Value *RHS = I->getOperand(2);
+
+ unsigned LHSReg = getRegForValue(LHS);
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned RHSReg = getRegForValue(RHS);
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ if (!LHSReg || !RHSReg)
+ return false;
+
+ const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+
+ unsigned ResultReg =
+ FastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86SelectSelect(const Instruction *I) {
+ MVT RetVT;
+ if (!isTypeLegal(I->getType(), RetVT))
+ return false;
+
+ // Check if we can fold the select.
+ if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+ const Value *Opnd = nullptr;
+ switch (Predicate) {
+ default: break;
+ case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
+ case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
+ }
+ // No need for a select anymore - this is an unconditional move.
+ if (Opnd) {
+ unsigned OpReg = getRegForValue(Opnd);
+ if (OpReg == 0)
+ return false;
+ bool OpIsKill = hasTrivialKill(Opnd);
+ const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(OpReg, getKillRegState(OpIsKill));
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+
+ // First try to use real conditional move instructions.
+ if (X86FastEmitCMoveSelect(RetVT, I))
+ return true;
+
+ // Try to use a sequence of SSE instructions to simulate a conditional move.
+ if (X86FastEmitSSESelect(RetVT, I))
+ return true;
+
+ // Fall-back to pseudo conditional move instructions, which will be later
+ // converted to control-flow.
+ if (X86FastEmitPseudoSelect(RetVT, I))
+ return true;
+
+ return false;
+}
+
+bool X86FastISel::X86SelectFPExt(const Instruction *I) {
+ // fpext from float to double.
+ if (X86ScalarSSEf64 &&
+ I->getType()->isDoubleTy()) {
+ const Value *V = I->getOperand(0);
+ if (V->getType()->isFloatTy()) {
+ unsigned OpReg = getRegForValue(V);
+ if (OpReg == 0) return false;
+ unsigned ResultReg = createResultReg(&X86::FR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(X86::CVTSS2SDrr), ResultReg)
+ .addReg(OpReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
+ if (X86ScalarSSEf64) {
+ if (I->getType()->isFloatTy()) {
+ const Value *V = I->getOperand(0);
+ if (V->getType()->isDoubleTy()) {
+ unsigned OpReg = getRegForValue(V);
+ if (OpReg == 0) return false;
+ unsigned ResultReg = createResultReg(&X86::FR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(X86::CVTSD2SSrr), ResultReg)
+ .addReg(OpReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool X86FastISel::X86SelectTrunc(const Instruction *I) {
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
+
+ // This code only handles truncation to byte.
+ if (DstVT != MVT::i8 && DstVT != MVT::i1)
+ return false;
+ if (!TLI.isTypeLegal(SrcVT))
+ return false;
+
+ unsigned InputReg = getRegForValue(I->getOperand(0));
+ if (!InputReg)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ if (SrcVT == MVT::i8) {
+ // Truncate from i8 to i1; no code needed.
+ UpdateValueMap(I, InputReg);
+ return true;
+ }
+
+ if (!Subtarget->is64Bit()) {
+ // If we're on x86-32; we can't extract an i8 from a general register.
+ // First issue a copy to GR16_ABCD or GR32_ABCD.
+ const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) ?
+ (const TargetRegisterClass*)&X86::GR16_ABCDRegClass :
+ (const TargetRegisterClass*)&X86::GR32_ABCDRegClass;
+ unsigned CopyReg = createResultReg(CopyRC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
+ CopyReg).addReg(InputReg);
+ InputReg = CopyReg;
+ }
+
+ // Issue an extract_subreg.
+ unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
+ InputReg, /*Kill=*/true,
+ X86::sub_8bit);
+ if (!ResultReg)
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::IsMemcpySmall(uint64_t Len) {
+ return Len <= (Subtarget->is64Bit() ? 32 : 16);
+}
+
+bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
+ X86AddressMode SrcAM, uint64_t Len) {
+
+ // Make sure we don't bloat code by inlining very large memcpy's.
+ if (!IsMemcpySmall(Len))
+ return false;
+
+ bool i64Legal = Subtarget->is64Bit();
+
+ // We don't care about alignment here since we just emit integer accesses.
+ while (Len) {
+ MVT VT;
+ if (Len >= 8 && i64Legal)
+ VT = MVT::i64;
+ else if (Len >= 4)
+ VT = MVT::i32;
+ else if (Len >= 2)
+ VT = MVT::i16;
+ else {
+ VT = MVT::i8;
+ }
+
+ unsigned Reg;
+ bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
+ RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
+ assert(RV && "Failed to emit load or store??");
+
+ unsigned Size = VT.getSizeInBits()/8;
+ Len -= Size;
+ DestAM.Disp += Size;
+ SrcAM.Disp += Size;
+ }
+
+ return true;
+}
+
+static bool isCommutativeIntrinsic(IntrinsicInst const *II) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
+ // FIXME: Handle more intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: return false;
+ case Intrinsic::frameaddress: {
+ Type *RetTy = II->getCalledFunction()->getReturnType();
+
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ unsigned Opc;
+ const TargetRegisterClass *RC = nullptr;
+
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Invalid result type for frameaddress.");
+ case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
+ case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
+ }
+
+ // This needs to be set before we call getFrameRegister, otherwise we get
+ // the wrong frame register.
+ MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
+ unsigned FrameReg = RegInfo->getFrameRegister(*(FuncInfo.MF));
+ assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
+ (FrameReg == X86::EBP && VT == MVT::i32)) &&
+ "Invalid Frame Register!");
+
+ // Always make a copy of the frame register to to a vreg first, so that we
+ // never directly reference the frame register (the TwoAddressInstruction-
+ // Pass doesn't like that).
+ unsigned SrcReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
+
+ // Now recursively load from the frame address.
+ // movq (%rbp), %rax
+ // movq (%rax), %rax
+ // movq (%rax), %rax
+ // ...
+ unsigned DestReg;
+ unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
+ while (Depth--) {
+ DestReg = createResultReg(RC);
+ addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), DestReg), SrcReg);
+ SrcReg = DestReg;
+ }
+
+ UpdateValueMap(II, SrcReg);
+ return true;
+ }
+ case Intrinsic::memcpy: {
+ const MemCpyInst *MCI = cast<MemCpyInst>(II);
+ // Don't handle volatile or variable length memcpys.
+ if (MCI->isVolatile())
+ return false;
+
+ if (isa<ConstantInt>(MCI->getLength())) {
+ // Small memcpy's are common enough that we want to do them
+ // without a call if possible.
+ uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
+ if (IsMemcpySmall(Len)) {
+ X86AddressMode DestAM, SrcAM;
+ if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
+ !X86SelectAddress(MCI->getRawSource(), SrcAM))
+ return false;
+ TryEmitSmallMemcpy(DestAM, SrcAM, Len);
+ return true;
+ }
+ }
+
+ unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
+ if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
+ return false;
+
+ if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
+ return false;
+
+ return LowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
+ }
+ case Intrinsic::memset: {
+ const MemSetInst *MSI = cast<MemSetInst>(II);
+
+ if (MSI->isVolatile())
+ return false;
+
+ unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
+ if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
+ return false;
+
+ if (MSI->getDestAddressSpace() > 255)
+ return false;
+
+ return LowerCallTo(II, "memset", II->getNumArgOperands() - 2);
+ }
+ case Intrinsic::stackprotector: {
+ // Emit code to store the stack guard onto the stack.
+ EVT PtrTy = TLI.getPointerTy();
+
+ const Value *Op1 = II->getArgOperand(0); // The guard's value.
+ const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
+
+ MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
+
+ // Grab the frame index.
+ X86AddressMode AM;
+ if (!X86SelectAddress(Slot, AM)) return false;
+ if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
+ return true;
+ }
+ case Intrinsic::dbg_declare: {
+ const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
+ X86AddressMode AM;
+ assert(DI->getAddress() && "Null address should be checked earlier!");
+ if (!X86SelectAddress(DI->getAddress(), AM))
+ return false;
+ const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
+ // FIXME may need to add RegState::Debug to any registers produced,
+ // although ESP/EBP should be the only ones at the moment.
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM).
+ addImm(0).addMetadata(DI->getVariable());
+ return true;
+ }
+ case Intrinsic::trap: {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
+ return true;
+ }
+ case Intrinsic::sqrt: {
+ if (!Subtarget->hasSSE1())
+ return false;
+
+ Type *RetTy = II->getCalledFunction()->getReturnType();
+
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ // Unfortunately we can't use FastEmit_r, because the AVX version of FSQRT
+ // is not generated by FastISel yet.
+ // FIXME: Update this code once tablegen can handle it.
+ static const unsigned SqrtOpc[2][2] = {
+ {X86::SQRTSSr, X86::VSQRTSSr},
+ {X86::SQRTSDr, X86::VSQRTSDr}
+ };
+ bool HasAVX = Subtarget->hasAVX();
+ unsigned Opc;
+ const TargetRegisterClass *RC;
+ switch (VT.SimpleTy) {
+ default: return false;
+ case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
+ case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
+ }
+
+ const Value *SrcVal = II->getArgOperand(0);
+ unsigned SrcReg = getRegForValue(SrcVal);
+
+ if (SrcReg == 0)
+ return false;
+
+ unsigned ImplicitDefReg = 0;
+ if (HasAVX) {
+ ImplicitDefReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
+ }
+
+ unsigned ResultReg = createResultReg(RC);
+ MachineInstrBuilder MIB;
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
+ ResultReg);
+
+ if (ImplicitDefReg)
+ MIB.addReg(ImplicitDefReg);
+
+ MIB.addReg(SrcReg);
+
+ UpdateValueMap(II, ResultReg);
+ return true;
+ }
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow: {
+ // This implements the basic lowering of the xalu with overflow intrinsics
+ // into add/sub/mul followed by either seto or setb.
+ const Function *Callee = II->getCalledFunction();
+ auto *Ty = cast<StructType>(Callee->getReturnType());
+ Type *RetTy = Ty->getTypeAtIndex(0U);
+ Type *CondTy = Ty->getTypeAtIndex(1);
+
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ if (VT < MVT::i8 || VT > MVT::i64)
+ return false;
+
+ const Value *LHS = II->getArgOperand(0);
+ const Value *RHS = II->getArgOperand(1);
+
+ // Canonicalize immediate to the RHS.
+ if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
+ isCommutativeIntrinsic(II))
+ std::swap(LHS, RHS);
+
+ unsigned BaseOpc, CondOpc;
+ switch (II->getIntrinsicID()) {
+ default: llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::sadd_with_overflow:
+ BaseOpc = ISD::ADD; CondOpc = X86::SETOr; break;
+ case Intrinsic::uadd_with_overflow:
+ BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
+ case Intrinsic::ssub_with_overflow:
+ BaseOpc = ISD::SUB; CondOpc = X86::SETOr; break;
+ case Intrinsic::usub_with_overflow:
+ BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
+ case Intrinsic::smul_with_overflow:
+ BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
+ case Intrinsic::umul_with_overflow:
+ BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
+ }
+
+ unsigned LHSReg = getRegForValue(LHS);
+ if (LHSReg == 0)
+ return false;
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned ResultReg = 0;
+ // Check if we have an immediate version.
+ if (auto const *C = dyn_cast<ConstantInt>(RHS)) {
+ ResultReg = FastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
+ C->getZExtValue());
+ }
+
+ unsigned RHSReg;
+ bool RHSIsKill;
+ if (!ResultReg) {
+ RHSReg = getRegForValue(RHS);
+ if (RHSReg == 0)
+ return false;
+ RHSIsKill = hasTrivialKill(RHS);
+ ResultReg = FastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill);
+ }
+
+ // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
+ // it manually.
+ if (BaseOpc == X86ISD::UMUL && !ResultReg) {
+ static const unsigned MULOpc[] =
+ { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
+ static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
+ // First copy the first operand into RAX, which is an implicit input to
+ // the X86::MUL*r instruction.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
+ .addReg(LHSReg, getKillRegState(LHSIsKill));
+ ResultReg = FastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
+ TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
+ } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
+ static const unsigned MULOpc[] =
+ { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
+ if (VT == MVT::i8) {
+ // Copy the first operand into AL, which is an implicit input to the
+ // X86::IMUL8r instruction.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), X86::AL)
+ .addReg(LHSReg, getKillRegState(LHSIsKill));
+ ResultReg = FastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
+ RHSIsKill);
+ } else
+ ResultReg = FastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
+ TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
+ RHSReg, RHSIsKill);
+ }
+
+ if (!ResultReg)
+ return false;
+
+ unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
+ assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
+ ResultReg2);
+
+ UpdateValueMap(II, ResultReg, 2);
+ return true;
+ }
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64: {
+ bool IsInputDouble;
+ switch (II->getIntrinsicID()) {
+ default: llvm_unreachable("Unexpected intrinsic.");
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ if (!Subtarget->hasSSE1())
+ return false;
+ IsInputDouble = false;
+ break;
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64:
+ if (!Subtarget->hasSSE2())
+ return false;
+ IsInputDouble = true;
+ break;
+ }
+
+ Type *RetTy = II->getCalledFunction()->getReturnType();
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ static const unsigned CvtOpc[2][2][2] = {
+ { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr },
+ { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } },
+ { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr },
+ { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } }
+ };
+ bool HasAVX = Subtarget->hasAVX();
+ unsigned Opc;
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected result type.");
+ case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
+ case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
+ }
+
+ // Check if we can fold insertelement instructions into the convert.
+ const Value *Op = II->getArgOperand(0);
+ while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
+ const Value *Index = IE->getOperand(2);
+ if (!isa<ConstantInt>(Index))
+ break;
+ unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
+
+ if (Idx == 0) {
+ Op = IE->getOperand(1);
+ break;
+ }
+ Op = IE->getOperand(0);
+ }
+
+ unsigned Reg = getRegForValue(Op);
+ if (Reg == 0)
+ return false;
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(Reg);
+
+ UpdateValueMap(II, ResultReg);
+ return true;
+ }
+ }
+}
+
+bool X86FastISel::FastLowerArguments() {
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ const Function *F = FuncInfo.Fn;
+ if (F->isVarArg())
+ return false;
+
+ CallingConv::ID CC = F->getCallingConv();
+ if (CC != CallingConv::C)
+ return false;
+
+ if (Subtarget->isCallingConvWin64(CC))
+ return false;
+
+ if (!Subtarget->is64Bit())
+ return false;
+
+ // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
+ unsigned GPRCnt = 0;
+ unsigned FPRCnt = 0;
+ unsigned Idx = 0;
+ for (auto const &Arg : F->args()) {
+ // The first argument is at index 1.
+ ++Idx;
+ if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::Nest))
+ return false;
+
+ Type *ArgTy = Arg.getType();
+ if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
+ return false;
+
+ EVT ArgVT = TLI.getValueType(ArgTy);
+ if (!ArgVT.isSimple()) return false;
+ switch (ArgVT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i32:
+ case MVT::i64:
+ ++GPRCnt;
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ if (!Subtarget->hasSSE1())
+ return false;
+ ++FPRCnt;
+ break;
+ }
+
+ if (GPRCnt > 6)
+ return false;
+
+ if (FPRCnt > 8)
+ return false;
+ }
+
+ static const MCPhysReg GPR32ArgRegs[] = {
+ X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
+ };
+ static const MCPhysReg GPR64ArgRegs[] = {
+ X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
+ };
+ static const MCPhysReg XMMArgRegs[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+
+ unsigned GPRIdx = 0;
+ unsigned FPRIdx = 0;
+ for (auto const &Arg : F->args()) {
+ MVT VT = TLI.getSimpleValueType(Arg.getType());
+ const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
+ unsigned SrcReg;
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type.");
+ case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
+ case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
+ case MVT::f32: // fall-through
+ case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
+ }
+ unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
+ // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
+ // Without this, EmitLiveInCopies may eliminate the livein if its only
+ // use is a bitcast (which isn't turned into an instruction).
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(DstReg, getKillRegState(true));
+ UpdateValueMap(&Arg, ResultReg);
+ }
+ return true;
+}
+
+static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
+ CallingConv::ID CC,
+ ImmutableCallSite *CS) {
+ if (Subtarget->is64Bit())
+ return 0;
+ if (Subtarget->getTargetTriple().isOSMSVCRT())
+ return 0;
+ if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
+ CC == CallingConv::HiPE)
+ return 0;
+ if (CS && !CS->paramHasAttr(1, Attribute::StructRet))
+ return 0;
+ if (CS && CS->paramHasAttr(1, Attribute::InReg))
+ return 0;
+ return 4;
+}
+
+bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
+ auto &OutVals = CLI.OutVals;
+ auto &OutFlags = CLI.OutFlags;
+ auto &OutRegs = CLI.OutRegs;
+ auto &Ins = CLI.Ins;
+ auto &InRegs = CLI.InRegs;
+ CallingConv::ID CC = CLI.CallConv;
+ bool &IsTailCall = CLI.IsTailCall;
+ bool IsVarArg = CLI.IsVarArg;
+ const Value *Callee = CLI.Callee;
+ const char *SymName = CLI.SymName;
+
+ bool Is64Bit = Subtarget->is64Bit();
+ bool IsWin64 = Subtarget->isCallingConvWin64(CC);
+
+ // Handle only C, fastcc, and webkit_js calling conventions for now.
+ switch (CC) {
+ default: return false;
+ case CallingConv::C:
+ case CallingConv::Fast:
+ case CallingConv::WebKit_JS:
+ case CallingConv::X86_FastCall:
+ case CallingConv::X86_64_Win64:
+ case CallingConv::X86_64_SysV:
+ break;
+ }
+
+ // Allow SelectionDAG isel to handle tail calls.
+ if (IsTailCall)
+ return false;
+
+ // fastcc with -tailcallopt is intended to provide a guaranteed
+ // tail call optimization. Fastisel doesn't know how to do that.
+ if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
+ return false;
+
+ // Don't know how to handle Win64 varargs yet. Nothing special needed for
+ // x86-32. Special handling for x86-64 is implemented.
+ if (IsVarArg && IsWin64)
+ return false;
+
+ // Don't know about inalloca yet.
+ if (CLI.CS && CLI.CS->hasInAllocaArgument())
+ return false;
+
+ // Fast-isel doesn't know about callee-pop yet.
+ if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
+ TM.Options.GuaranteedTailCallOpt))
+ return false;
+
+ // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
+ // instruction. This is safe because it is common to all FastISel supported
+ // calling conventions on x86.
+ for (int i = 0, e = OutVals.size(); i != e; ++i) {
+ Value *&Val = OutVals[i];
+ ISD::ArgFlagsTy Flags = OutFlags[i];
+ if (auto *CI = dyn_cast<ConstantInt>(Val)) {
+ if (CI->getBitWidth() < 32) {
+ if (Flags.isSExt())
+ Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
+ else
+ Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
+ }
+ }
+
+ // Passing bools around ends up doing a trunc to i1 and passing it.
+ // Codegen this as an argument + "and 1".
+ if (auto *TI = dyn_cast<TruncInst>(Val)) {
+ if (TI->getType()->isIntegerTy(1) && CLI.CS &&
+ (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
+ TI->hasOneUse()) {
+ Val = cast<TruncInst>(Val)->getOperand(0);
+ unsigned ResultReg = getRegForValue(Val);
+
+ if (!ResultReg)
+ return false;
+
+ MVT ArgVT;
+ if (!isTypeLegal(Val->getType(), ArgVT))
+ return false;
+
+ ResultReg =
+ FastEmit_ri(ArgVT, ArgVT, ISD::AND, ResultReg, Val->hasOneUse(), 1);
+
+ if (!ResultReg)
+ return false;
+ UpdateValueMap(Val, ResultReg);
+ }
+ }
+ }
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs,
+ CLI.RetTy->getContext());
+
+ // Allocate shadow area for Win64
+ if (IsWin64)
+ CCInfo.AllocateStack(32, 8);
+
+ SmallVector<MVT, 16> OutVTs;
+ for (auto *Val : OutVals) {
+ MVT VT;
+ if (!isTypeLegal(Val->getType(), VT))
+ return false;
+ OutVTs.push_back(VT);
+ }
+ CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ // Issue CALLSEQ_START
+ unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
+ .addImm(NumBytes);
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo *>(TM.getRegisterInfo());
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign const &VA = ArgLocs[i];
+ const Value *ArgVal = OutVals[VA.getValNo()];
+ MVT ArgVT = OutVTs[VA.getValNo()];
+
+ if (ArgVT == MVT::x86mmx)
+ return false;
+
+ unsigned ArgReg = getRegForValue(ArgVal);
+ if (!ArgReg)
+ return false;
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt: {
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
+ bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
+ ArgVT, ArgReg);
+ assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ case CCValAssign::ZExt: {
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
+ bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
+ ArgVT, ArgReg);
+ assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ case CCValAssign::AExt: {
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
+ bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
+ ArgVT, ArgReg);
+ if (!Emitted)
+ Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
+ ArgVT, ArgReg);
+ if (!Emitted)
+ Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
+ ArgVT, ArgReg);
+
+ assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ case CCValAssign::BCvt: {
+ ArgReg = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
+ /*TODO: Kill=*/false);
+ assert(ArgReg && "Failed to emit a bitcast!");
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ case CCValAssign::VExt:
+ // VExt has not been implemented, so this should be impossible to reach
+ // for now. However, fallback to Selection DAG isel once implemented.
+ return false;
+ case CCValAssign::FPExt:
+ llvm_unreachable("Unexpected loc info!");
+ case CCValAssign::Indirect:
+ // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
+ // support this.
+ return false;
+ }
+
+ if (VA.isRegLoc()) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
+ OutRegs.push_back(VA.getLocReg());
+ } else {
+ assert(VA.isMemLoc());
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ X86AddressMode AM;
+ AM.Base.Reg = RegInfo->getStackRegister();
+ AM.Disp = LocMemOffset;
+ ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
+ unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
+ MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getStack(LocMemOffset), MachineMemOperand::MOStore,
+ ArgVT.getStoreSize(), Alignment);
+ if (Flags.isByVal()) {
+ X86AddressMode SrcAM;
+ SrcAM.Base.Reg = ArgReg;
+ if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
+ return false;
+ } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
+ // If this is a really simple value, emit this with the Value* version
+ // of X86FastEmitStore. If it isn't simple, we don't want to do this,
+ // as it can cause us to reevaluate the argument.
+ if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
+ return false;
+ } else {
+ bool ValIsKill = hasTrivialKill(ArgVal);
+ if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
+ return false;
+ }
+ }
+ }
+
+ // ELF / PIC requires GOT in the EBX register before function calls via PLT
+ // GOT pointer.
+ if (Subtarget->isPICStyleGOT()) {
+ unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
+ }
+
+ if (Is64Bit && IsVarArg && !IsWin64) {
+ // From AMD64 ABI document:
+ // For calls that may call functions that use varargs or stdargs
+ // (prototype-less calls or calls to functions containing ellipsis (...) in
+ // the declaration) %al is used as hidden argument to specify the number
+ // of SSE registers used. The contents of %al do not need to match exactly
+ // the number of registers, but must be an ubound on the number of SSE
+ // registers used and is in the range 0 - 8 inclusive.
+
+ // Count the number of XMM registers allocated.
+ static const MCPhysReg XMMArgRegs[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
+ assert((Subtarget->hasSSE1() || !NumXMMRegs)
+ && "SSE registers cannot be used when SSE is disabled");
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
+ X86::AL).addImm(NumXMMRegs);
+ }
+
+ // Materialize callee address in a register. FIXME: GV address can be
+ // handled with a CALLpcrel32 instead.
+ X86AddressMode CalleeAM;
+ if (!X86SelectCallAddress(Callee, CalleeAM))
+ return false;
+
+ unsigned CalleeOp = 0;
+ const GlobalValue *GV = nullptr;
+ if (CalleeAM.GV != nullptr) {
+ GV = CalleeAM.GV;
+ } else if (CalleeAM.Base.Reg != 0) {
+ CalleeOp = CalleeAM.Base.Reg;
+ } else
+ return false;
+
+ // Issue the call.
+ MachineInstrBuilder MIB;
+ if (CalleeOp) {
+ // Register-indirect call.
+ unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
+ .addReg(CalleeOp);
+ } else {
+ // Direct call.
+ assert(GV && "Not a direct call");
+ unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
+
+ // See if we need any target-specific flags on the GV operand.
+ unsigned char OpFlags = 0;
+
+ // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
+ // external symbols most go through the PLT in PIC mode. If the symbol
+ // has hidden or protected visibility, or if it is static or local, then
+ // we don't need to use the PLT - we can directly call it.
+ if (Subtarget->isTargetELF() &&
+ TM.getRelocationModel() == Reloc::PIC_ &&
+ GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ (GV->isDeclaration() || GV->isWeakForLinker()) &&
+ (!Subtarget->getTargetTriple().isMacOSX() ||
+ Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ }
+
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
+ if (SymName)
+ MIB.addExternalSymbol(SymName, OpFlags);
+ else
+ MIB.addGlobalAddress(GV, 0, OpFlags);
+ }
+
+ // Add a register mask operand representing the call-preserved registers.
+ // Proper defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(CC));
+
+ // Add an implicit use GOT pointer in EBX.
+ if (Subtarget->isPICStyleGOT())
+ MIB.addReg(X86::EBX, RegState::Implicit);
+
+ if (Is64Bit && IsVarArg && !IsWin64)
+ MIB.addReg(X86::AL, RegState::Implicit);
+
+ // Add implicit physical register uses to the call.
+ for (auto Reg : OutRegs)
+ MIB.addReg(Reg, RegState::Implicit);
+
+ // Issue CALLSEQ_END
+ unsigned NumBytesForCalleeToPop =
+ computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
+ unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
+ .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
+
+ // Now handle call return values.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs,
+ CLI.RetTy->getContext());
+ CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
+
+ // Copy all of the result registers out of their specified physreg.
+ unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ EVT CopyVT = VA.getValVT();
+ unsigned CopyReg = ResultReg + i;
+
+ // If this is x86-64, and we disabled SSE, we can't return FP values
+ if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
+ ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
+ report_fatal_error("SSE register return with SSE disabled");
+ }
+
+ // If this is a call to a function that returns an fp value on the floating
+ // point stack, we must guarantee the value is popped from the stack, so
+ // a COPY is not good enough - the copy instruction may be eliminated if the
+ // return value is not used. We use the FpPOP_RETVAL instruction instead.
+ if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
+ // If we prefer to use the value in xmm registers, copy it out as f80 and
+ // use a truncate to move it from fp stack reg to xmm reg.
+ if (isScalarFPTypeInSSEReg(VA.getValVT())) {
+ CopyVT = MVT::f80;
+ CopyReg = createResultReg(&X86::RFP80RegClass);
+ }
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(X86::FpPOP_RETVAL), CopyReg);
+
+ // Round the f80 to the right size, which also moves it to the appropriate
+ // xmm register. This is accomplished by storing the f80 value in memory
+ // and then loading it back.
+ if (CopyVT != VA.getValVT()) {
+ EVT ResVT = VA.getValVT();
+ unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
+ unsigned MemSize = ResVT.getSizeInBits()/8;
+ int FI = MFI.CreateStackObject(MemSize, MemSize, false);
+ addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc)), FI)
+ .addReg(CopyReg);
+ Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
+ addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg + i), FI);
+ }
+ } else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
+ InRegs.push_back(VA.getLocReg());
+ }
+ }
+
+ CLI.ResultReg = ResultReg;
+ CLI.NumResultRegs = RVLocs.size();
+ CLI.Call = MIB;
+
+ return true;
+}
+
+bool
+X86FastISel::TargetSelectInstruction(const Instruction *I) {
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::Load:
+ return X86SelectLoad(I);
+ case Instruction::Store:
+ return X86SelectStore(I);
+ case Instruction::Ret:
+ return X86SelectRet(I);
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ return X86SelectCmp(I);
+ case Instruction::ZExt:
+ return X86SelectZExt(I);
+ case Instruction::Br:
+ return X86SelectBranch(I);
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::Shl:
+ return X86SelectShift(I);
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::SRem:
+ case Instruction::URem:
+ return X86SelectDivRem(I);
+ case Instruction::Select:
+ return X86SelectSelect(I);
+ case Instruction::Trunc:
+ return X86SelectTrunc(I);
+ case Instruction::FPExt:
+ return X86SelectFPExt(I);
+ case Instruction::FPTrunc:
+ return X86SelectFPTrunc(I);
+ case Instruction::IntToPtr: // Deliberate fall-through.
+ case Instruction::PtrToInt: {
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
+ if (DstVT.bitsGT(SrcVT))
+ return X86SelectZExt(I);
+ if (DstVT.bitsLT(SrcVT))
+ return X86SelectTrunc(I);
+ unsigned Reg = getRegForValue(I->getOperand(0));
+ if (Reg == 0) return false;
+ UpdateValueMap(I, Reg);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
+ MVT VT;
+ if (!isTypeLegal(C->getType(), VT))
+ return 0;
+
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return 0;
+
+ // Get opcode and regclass of the output for the given load instruction.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = nullptr;
+ switch (VT.SimpleTy) {
+ default: return 0;
+ case MVT::i8:
+ Opc = X86::MOV8rm;
+ RC = &X86::GR8RegClass;
+ break;
+ case MVT::i16:
+ Opc = X86::MOV16rm;
+ RC = &X86::GR16RegClass;
+ break;
+ case MVT::i32:
+ Opc = X86::MOV32rm;
+ RC = &X86::GR32RegClass;
+ break;
+ case MVT::i64:
+ // Must be in x86-64 mode.
+ Opc = X86::MOV64rm;
+ RC = &X86::GR64RegClass;
+ break;
+ case MVT::f32:
+ if (X86ScalarSSEf32) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
+ RC = &X86::FR32RegClass;
+ } else {
+ Opc = X86::LD_Fp32m;
+ RC = &X86::RFP32RegClass;
+ }
+ break;
+ case MVT::f64:
+ if (X86ScalarSSEf64) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
+ RC = &X86::FR64RegClass;
+ } else {
+ Opc = X86::LD_Fp64m;
+ RC = &X86::RFP64RegClass;
+ }
+ break;
+ case MVT::f80:
+ // No f80 support yet.
+ return 0;
+ }
+
+ // Materialize addresses with LEA/MOV instructions.
+ if (isa<GlobalValue>(C)) {
+ X86AddressMode AM;
+ if (X86SelectAddress(C, AM)) {
+ // If the expression is just a basereg, then we're done, otherwise we need
+ // to emit an LEA.
+ if (AM.BaseType == X86AddressMode::RegBase &&
+ AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
+ return AM.Base.Reg;
+
+ unsigned ResultReg = createResultReg(RC);
+ if (TM.getRelocationModel() == Reloc::Static &&
+ TLI.getPointerTy() == MVT::i64) {
+ // The displacement code be more than 32 bits away so we need to use
+ // an instruction with a 64 bit immediate
+ Opc = X86::MOV64ri;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg).addGlobalAddress(cast<GlobalValue>(C));
+ } else {
+ Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg), AM);
+ }
+ return ResultReg;
+ }
+ return 0;
+ }
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = DL.getPrefTypeAlignment(C->getType());
+ if (Align == 0) {
+ // Alignment of vector types. FIXME!
+ Align = DL.getTypeAllocSize(C->getType());
+ }
+
+ // x86-32 PIC requires a PIC base register for constant pools.
+ unsigned PICBase = 0;
+ unsigned char OpFlag = 0;
+ if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+ PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ } else if (Subtarget->isPICStyleGOT()) {
+ OpFlag = X86II::MO_GOTOFF;
+ PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ } else if (Subtarget->isPICStyleRIPRel() &&
+ TM.getCodeModel() == CodeModel::Small) {
+ PICBase = X86::RIP;
+ }
+
+ // Create the load from the constant pool.
+ unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
+ unsigned ResultReg = createResultReg(RC);
+ addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg),
+ MCPOffset, PICBase, OpFlag);
+
+ return ResultReg;
+}
+
+unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
+ // Fail on dynamic allocas. At this point, getRegForValue has already
+ // checked its CSE maps, so if we're here trying to handle a dynamic
+ // alloca, we're not going to succeed. X86SelectAddress has a
+ // check for dynamic allocas, because it's called directly from
+ // various places, but TargetMaterializeAlloca also needs a check
+ // in order to avoid recursion between getRegForValue,
+ // X86SelectAddrss, and TargetMaterializeAlloca.
+ if (!FuncInfo.StaticAllocaMap.count(C))
+ return 0;
+ assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
+
+ X86AddressMode AM;
+ if (!X86SelectAddress(C, AM))
+ return 0;
+ unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
+ const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
+ unsigned ResultReg = createResultReg(RC);
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg), AM);
+ return ResultReg;
+}
+
+unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
+ MVT VT;
+ if (!isTypeLegal(CF->getType(), VT))
+ return 0;
+
+ // Get opcode and regclass for the given zero.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = nullptr;
+ switch (VT.SimpleTy) {
+ default: return 0;
+ case MVT::f32:
+ if (X86ScalarSSEf32) {
+ Opc = X86::FsFLD0SS;
+ RC = &X86::FR32RegClass;
+ } else {
+ Opc = X86::LD_Fp032;
+ RC = &X86::RFP32RegClass;
+ }
+ break;
+ case MVT::f64:
+ if (X86ScalarSSEf64) {
+ Opc = X86::FsFLD0SD;
+ RC = &X86::FR64RegClass;
+ } else {
+ Opc = X86::LD_Fp064;
+ RC = &X86::RFP64RegClass;
+ }
+ break;
+ case MVT::f80:
+ // No f80 support yet.
+ return 0;
+ }
+
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
+ return ResultReg;
+}
+
+
+bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI) {
+ const Value *Ptr = LI->getPointerOperand();
+ X86AddressMode AM;
+ if (!X86SelectAddress(Ptr, AM))
+ return false;
+
+ const X86InstrInfo &XII = (const X86InstrInfo&)TII;
+
+ unsigned Size = DL.getTypeAllocSize(LI->getType());
+ unsigned Alignment = LI->getAlignment();
+
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = DL.getABITypeAlignment(LI->getType());
+
+ SmallVector<MachineOperand, 8> AddrOps;
+ AM.getFullAddress(AddrOps);
+
+ MachineInstr *Result =
+ XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
+ if (!Result)
+ return false;
+
+ Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
+ FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
+ MI->eraseFromParent();
+ return true;
+}
+
+
+namespace llvm {
+ FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) {
+ return new X86FastISel(funcInfo, libInfo);
+ }
+}
diff --git a/contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp b/contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp
new file mode 100644
index 0000000..eb9f743
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp
@@ -0,0 +1,341 @@
+//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the pass that finds instructions that can be
+// re-written as LEA instructions in order to reduce pipeline delays.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "X86Subtarget.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-fixup-LEAs"
+
+STATISTIC(NumLEAs, "Number of LEA instructions created");
+
+namespace {
+class FixupLEAPass : public MachineFunctionPass {
+ enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
+ static char ID;
+ /// \brief Loop over all of the instructions in the basic block
+ /// replacing applicable instructions with LEA instructions,
+ /// where appropriate.
+ bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
+
+ const char *getPassName() const override { return "X86 LEA Fixup"; }
+
+ /// \brief Given a machine register, look for the instruction
+ /// which writes it in the current basic block. If found,
+ /// try to replace it with an equivalent LEA instruction.
+ /// If replacement succeeds, then also process the the newly created
+ /// instruction.
+ void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
+ MachineFunction::iterator MFI);
+
+ /// \brief Given a memory access or LEA instruction
+ /// whose address mode uses a base and/or index register, look for
+ /// an opportunity to replace the instruction which sets the base or index
+ /// register with an equivalent LEA instruction.
+ void processInstruction(MachineBasicBlock::iterator &I,
+ MachineFunction::iterator MFI);
+
+ /// \brief Given a LEA instruction which is unprofitable
+ /// on Silvermont try to replace it with an equivalent ADD instruction
+ void processInstructionForSLM(MachineBasicBlock::iterator &I,
+ MachineFunction::iterator MFI);
+
+ /// \brief Determine if an instruction references a machine register
+ /// and, if so, whether it reads or writes the register.
+ RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
+
+ /// \brief Step backwards through a basic block, looking
+ /// for an instruction which writes a register within
+ /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
+ MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
+ MachineBasicBlock::iterator &I,
+ MachineFunction::iterator MFI);
+
+ /// \brief if an instruction can be converted to an
+ /// equivalent LEA, insert the new instruction into the basic block
+ /// and return a pointer to it. Otherwise, return zero.
+ MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI) const;
+
+public:
+ FixupLEAPass() : MachineFunctionPass(ID) {}
+
+ /// \brief Loop over all of the basic blocks,
+ /// replacing instructions by equivalent LEA instructions
+ /// if needed and when possible.
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+private:
+ MachineFunction *MF;
+ const TargetMachine *TM;
+ const X86InstrInfo *TII; // Machine instruction info.
+};
+char FixupLEAPass::ID = 0;
+}
+
+MachineInstr *
+FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI) const {
+ MachineInstr *MI = MBBI;
+ MachineInstr *NewMI;
+ switch (MI->getOpcode()) {
+ case X86::MOV32rr:
+ case X86::MOV64rr: {
+ const MachineOperand &Src = MI->getOperand(1);
+ const MachineOperand &Dest = MI->getOperand(0);
+ NewMI = BuildMI(*MF, MI->getDebugLoc(),
+ TII->get(MI->getOpcode() == X86::MOV32rr ? X86::LEA32r
+ : X86::LEA64r))
+ .addOperand(Dest)
+ .addOperand(Src)
+ .addImm(1)
+ .addReg(0)
+ .addImm(0)
+ .addReg(0);
+ MFI->insert(MBBI, NewMI); // Insert the new inst
+ return NewMI;
+ }
+ case X86::ADD64ri32:
+ case X86::ADD64ri8:
+ case X86::ADD64ri32_DB:
+ case X86::ADD64ri8_DB:
+ case X86::ADD32ri:
+ case X86::ADD32ri8:
+ case X86::ADD32ri_DB:
+ case X86::ADD32ri8_DB:
+ case X86::ADD16ri:
+ case X86::ADD16ri8:
+ case X86::ADD16ri_DB:
+ case X86::ADD16ri8_DB:
+ if (!MI->getOperand(2).isImm()) {
+ // convertToThreeAddress will call getImm()
+ // which requires isImm() to be true
+ return nullptr;
+ }
+ break;
+ case X86::ADD16rr:
+ case X86::ADD16rr_DB:
+ if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
+ // if src1 != src2, then convertToThreeAddress will
+ // need to create a Virtual register, which we cannot do
+ // after register allocation.
+ return nullptr;
+ }
+ }
+ return TII->convertToThreeAddress(MFI, MBBI, nullptr);
+}
+
+FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
+
+bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
+ MF = &Func;
+ TM = &Func.getTarget();
+ const X86Subtarget &ST = TM->getSubtarget<X86Subtarget>();
+ if (!ST.LEAusesAG() && !ST.slowLEA())
+ return false;
+
+ TII = static_cast<const X86InstrInfo *>(TM->getInstrInfo());
+
+ DEBUG(dbgs() << "Start X86FixupLEAs\n";);
+ // Process all basic blocks.
+ for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
+ processBasicBlock(Func, I);
+ DEBUG(dbgs() << "End X86FixupLEAs\n";);
+
+ return true;
+}
+
+FixupLEAPass::RegUsageState
+FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
+ RegUsageState RegUsage = RU_NotUsed;
+ MachineInstr *MI = I;
+
+ for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
+ MachineOperand &opnd = MI->getOperand(i);
+ if (opnd.isReg() && opnd.getReg() == p.getReg()) {
+ if (opnd.isDef())
+ return RU_Write;
+ RegUsage = RU_Read;
+ }
+ }
+ return RegUsage;
+}
+
+/// getPreviousInstr - Given a reference to an instruction in a basic
+/// block, return a reference to the previous instruction in the block,
+/// wrapping around to the last instruction of the block if the block
+/// branches to itself.
+static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
+ MachineFunction::iterator MFI) {
+ if (I == MFI->begin()) {
+ if (MFI->isPredecessor(MFI)) {
+ I = --MFI->end();
+ return true;
+ } else
+ return false;
+ }
+ --I;
+ return true;
+}
+
+MachineBasicBlock::iterator
+FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
+ MachineFunction::iterator MFI) {
+ int InstrDistance = 1;
+ MachineBasicBlock::iterator CurInst;
+ static const int INSTR_DISTANCE_THRESHOLD = 5;
+
+ CurInst = I;
+ bool Found;
+ Found = getPreviousInstr(CurInst, MFI);
+ while (Found && I != CurInst) {
+ if (CurInst->isCall() || CurInst->isInlineAsm())
+ break;
+ if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
+ break; // too far back to make a difference
+ if (usesRegister(p, CurInst) == RU_Write) {
+ return CurInst;
+ }
+ InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
+ Found = getPreviousInstr(CurInst, MFI);
+ }
+ return nullptr;
+}
+
+void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
+ MachineFunction::iterator MFI) {
+ // Process a load, store, or LEA instruction.
+ MachineInstr *MI = I;
+ int opcode = MI->getOpcode();
+ const MCInstrDesc &Desc = MI->getDesc();
+ int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
+ if (AddrOffset >= 0) {
+ AddrOffset += X86II::getOperandBias(Desc);
+ MachineOperand &p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
+ if (p.isReg() && p.getReg() != X86::ESP) {
+ seekLEAFixup(p, I, MFI);
+ }
+ MachineOperand &q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
+ if (q.isReg() && q.getReg() != X86::ESP) {
+ seekLEAFixup(q, I, MFI);
+ }
+ }
+}
+
+void FixupLEAPass::seekLEAFixup(MachineOperand &p,
+ MachineBasicBlock::iterator &I,
+ MachineFunction::iterator MFI) {
+ MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
+ if (MBI) {
+ MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
+ if (NewMI) {
+ ++NumLEAs;
+ DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
+ // now to replace with an equivalent LEA...
+ DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
+ MFI->erase(MBI);
+ MachineBasicBlock::iterator J =
+ static_cast<MachineBasicBlock::iterator>(NewMI);
+ processInstruction(J, MFI);
+ }
+ }
+}
+
+void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
+ MachineFunction::iterator MFI) {
+ MachineInstr *MI = I;
+ const int opcode = MI->getOpcode();
+ if (opcode != X86::LEA16r && opcode != X86::LEA32r && opcode != X86::LEA64r &&
+ opcode != X86::LEA64_32r)
+ return;
+ if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() ||
+ !TII->isSafeToClobberEFLAGS(*MFI, I))
+ return;
+ const unsigned DstR = MI->getOperand(0).getReg();
+ const unsigned SrcR1 = MI->getOperand(1).getReg();
+ const unsigned SrcR2 = MI->getOperand(3).getReg();
+ if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
+ return;
+ if (MI->getOperand(2).getImm() > 1)
+ return;
+ int addrr_opcode, addri_opcode;
+ switch (opcode) {
+ case X86::LEA16r:
+ addrr_opcode = X86::ADD16rr;
+ addri_opcode = X86::ADD16ri;
+ break;
+ case X86::LEA32r:
+ addrr_opcode = X86::ADD32rr;
+ addri_opcode = X86::ADD32ri;
+ break;
+ case X86::LEA64_32r:
+ case X86::LEA64r:
+ addrr_opcode = X86::ADD64rr;
+ addri_opcode = X86::ADD64ri32;
+ break;
+ default:
+ assert(false && "Unexpected LEA instruction");
+ }
+ DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
+ DEBUG(dbgs() << "FixLEA: Replaced by: ";);
+ MachineInstr *NewMI = nullptr;
+ const MachineOperand &Dst = MI->getOperand(0);
+ // Make ADD instruction for two registers writing to LEA's destination
+ if (SrcR1 != 0 && SrcR2 != 0) {
+ const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3);
+ const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1);
+ NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode))
+ .addOperand(Dst)
+ .addOperand(Src1)
+ .addOperand(Src2);
+ MFI->insert(I, NewMI);
+ DEBUG(NewMI->dump(););
+ }
+ // Make ADD instruction for immediate
+ if (MI->getOperand(4).getImm() != 0) {
+ const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3);
+ NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode))
+ .addOperand(Dst)
+ .addOperand(SrcR)
+ .addImm(MI->getOperand(4).getImm());
+ MFI->insert(I, NewMI);
+ DEBUG(NewMI->dump(););
+ }
+ if (NewMI) {
+ MFI->erase(I);
+ I = static_cast<MachineBasicBlock::iterator>(NewMI);
+ }
+}
+
+bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
+ MachineFunction::iterator MFI) {
+
+ for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
+ if (TM->getSubtarget<X86Subtarget>().isSLM())
+ processInstructionForSLM(I, MFI);
+ else
+ processInstruction(I, MFI);
+ }
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp b/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp
new file mode 100644
index 0000000..c8a3ab3
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp
@@ -0,0 +1,1773 @@
+//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the pass which converts floating point instructions from
+// pseudo registers into register stack instructions. This pass uses live
+// variable information to indicate where the FPn registers are used and their
+// lifetimes.
+//
+// The x87 hardware tracks liveness of the stack registers, so it is necessary
+// to implement exact liveness tracking between basic blocks. The CFG edges are
+// partitioned into bundles where the same FP registers must be live in
+// identical stack positions. Instructions are inserted at the end of each basic
+// block to rearrange the live registers to match the outgoing bundle.
+//
+// This approach avoids splitting critical edges at the potential cost of more
+// live register shuffling instructions when critical edges are present.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/EdgeBundles.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-codegen"
+
+STATISTIC(NumFXCH, "Number of fxch instructions inserted");
+STATISTIC(NumFP , "Number of floating point instructions");
+
+namespace {
+ struct FPS : public MachineFunctionPass {
+ static char ID;
+ FPS() : MachineFunctionPass(ID) {
+ initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
+ // This is really only to keep valgrind quiet.
+ // The logic in isLive() is too much for it.
+ memset(Stack, 0, sizeof(Stack));
+ memset(RegMap, 0, sizeof(RegMap));
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<EdgeBundles>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addPreservedID(MachineDominatorsID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override { return "X86 FP Stackifier"; }
+
+ private:
+ const TargetInstrInfo *TII; // Machine instruction info.
+
+ // Two CFG edges are related if they leave the same block, or enter the same
+ // block. The transitive closure of an edge under this relation is a
+ // LiveBundle. It represents a set of CFG edges where the live FP stack
+ // registers must be allocated identically in the x87 stack.
+ //
+ // A LiveBundle is usually all the edges leaving a block, or all the edges
+ // entering a block, but it can contain more edges if critical edges are
+ // present.
+ //
+ // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
+ // but the exact mapping of FP registers to stack slots is fixed later.
+ struct LiveBundle {
+ // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
+ unsigned Mask;
+
+ // Number of pre-assigned live registers in FixStack. This is 0 when the
+ // stack order has not yet been fixed.
+ unsigned FixCount;
+
+ // Assigned stack order for live-in registers.
+ // FixStack[i] == getStackEntry(i) for all i < FixCount.
+ unsigned char FixStack[8];
+
+ LiveBundle() : Mask(0), FixCount(0) {}
+
+ // Have the live registers been assigned a stack order yet?
+ bool isFixed() const { return !Mask || FixCount; }
+ };
+
+ // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
+ // with no live FP registers.
+ SmallVector<LiveBundle, 8> LiveBundles;
+
+ // The edge bundle analysis provides indices into the LiveBundles vector.
+ EdgeBundles *Bundles;
+
+ // Return a bitmask of FP registers in block's live-in list.
+ static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
+ unsigned Mask = 0;
+ for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
+ E = MBB->livein_end(); I != E; ++I) {
+ unsigned Reg = *I;
+ if (Reg < X86::FP0 || Reg > X86::FP6)
+ continue;
+ Mask |= 1 << (Reg - X86::FP0);
+ }
+ return Mask;
+ }
+
+ // Partition all the CFG edges into LiveBundles.
+ void bundleCFG(MachineFunction &MF);
+
+ MachineBasicBlock *MBB; // Current basic block
+
+ // The hardware keeps track of how many FP registers are live, so we have
+ // to model that exactly. Usually, each live register corresponds to an
+ // FP<n> register, but when dealing with calls, returns, and inline
+ // assembly, it is sometimes necessary to have live scratch registers.
+ unsigned Stack[8]; // FP<n> Registers in each stack slot...
+ unsigned StackTop; // The current top of the FP stack.
+
+ enum {
+ NumFPRegs = 16 // Including scratch pseudo-registers.
+ };
+
+ // For each live FP<n> register, point to its Stack[] entry.
+ // The first entries correspond to FP0-FP6, the rest are scratch registers
+ // used when we need slightly different live registers than what the
+ // register allocator thinks.
+ unsigned RegMap[NumFPRegs];
+
+ // Pending fixed registers - Inline assembly needs FP registers to appear
+ // in fixed stack slot positions. This is handled by copying FP registers
+ // to ST registers before the instruction, and copying back after the
+ // instruction.
+ //
+ // This is modeled with pending ST registers. NumPendingSTs is the number
+ // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
+ // register that holds the ST value. The ST registers are not moved into
+ // place until immediately before the instruction that needs them.
+ //
+ // It can happen that we need an ST register to be live when no FP register
+ // holds the value:
+ //
+ // %ST0 = COPY %FP4<kill>
+ //
+ // When that happens, we allocate a scratch FP register to hold the ST
+ // value. That means every register in PendingST must be live.
+
+ unsigned NumPendingSTs;
+ unsigned char PendingST[8];
+
+ // Set up our stack model to match the incoming registers to MBB.
+ void setupBlockStack();
+
+ // Shuffle live registers to match the expectations of successor blocks.
+ void finishBlockStack();
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ void dumpStack() const {
+ dbgs() << "Stack contents:";
+ for (unsigned i = 0; i != StackTop; ++i) {
+ dbgs() << " FP" << Stack[i];
+ assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
+ }
+ for (unsigned i = 0; i != NumPendingSTs; ++i)
+ dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
+ dbgs() << "\n";
+ }
+#endif
+
+ /// getSlot - Return the stack slot number a particular register number is
+ /// in.
+ unsigned getSlot(unsigned RegNo) const {
+ assert(RegNo < NumFPRegs && "Regno out of range!");
+ return RegMap[RegNo];
+ }
+
+ /// isLive - Is RegNo currently live in the stack?
+ bool isLive(unsigned RegNo) const {
+ unsigned Slot = getSlot(RegNo);
+ return Slot < StackTop && Stack[Slot] == RegNo;
+ }
+
+ /// getScratchReg - Return an FP register that is not currently in use.
+ unsigned getScratchReg() const {
+ for (int i = NumFPRegs - 1; i >= 8; --i)
+ if (!isLive(i))
+ return i;
+ llvm_unreachable("Ran out of scratch FP registers");
+ }
+
+ /// isScratchReg - Returns trus if RegNo is a scratch FP register.
+ static bool isScratchReg(unsigned RegNo) {
+ return RegNo > 8 && RegNo < NumFPRegs;
+ }
+
+ /// getStackEntry - Return the X86::FP<n> register in register ST(i).
+ unsigned getStackEntry(unsigned STi) const {
+ if (STi >= StackTop)
+ report_fatal_error("Access past stack top!");
+ return Stack[StackTop-1-STi];
+ }
+
+ /// getSTReg - Return the X86::ST(i) register which contains the specified
+ /// FP<RegNo> register.
+ unsigned getSTReg(unsigned RegNo) const {
+ return StackTop - 1 - getSlot(RegNo) + X86::ST0;
+ }
+
+ // pushReg - Push the specified FP<n> register onto the stack.
+ void pushReg(unsigned Reg) {
+ assert(Reg < NumFPRegs && "Register number out of range!");
+ if (StackTop >= 8)
+ report_fatal_error("Stack overflow!");
+ Stack[StackTop] = Reg;
+ RegMap[Reg] = StackTop++;
+ }
+
+ bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
+ void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
+ DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
+ if (isAtTop(RegNo)) return;
+
+ unsigned STReg = getSTReg(RegNo);
+ unsigned RegOnTop = getStackEntry(0);
+
+ // Swap the slots the regs are in.
+ std::swap(RegMap[RegNo], RegMap[RegOnTop]);
+
+ // Swap stack slot contents.
+ if (RegMap[RegOnTop] >= StackTop)
+ report_fatal_error("Access past stack top!");
+ std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
+
+ // Emit an fxch to update the runtime processors version of the state.
+ BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
+ ++NumFXCH;
+ }
+
+ void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
+ DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
+ unsigned STReg = getSTReg(RegNo);
+ pushReg(AsReg); // New register on top of stack
+
+ BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
+ }
+
+ /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
+ /// RegNo. If any PendingST registers still need the RegNo value, duplicate
+ /// them to new scratch registers.
+ void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
+ for (unsigned i = 0; i != NumPendingSTs; ++i) {
+ if (PendingST[i] != RegNo)
+ continue;
+ unsigned SR = getScratchReg();
+ DEBUG(dbgs() << "Duplicating pending ST" << i
+ << " in FP" << RegNo << " to FP" << SR << '\n');
+ duplicateToTop(RegNo, SR, I);
+ PendingST[i] = SR;
+ }
+ }
+
+ /// popStackAfter - Pop the current value off of the top of the FP stack
+ /// after the specified instruction.
+ void popStackAfter(MachineBasicBlock::iterator &I);
+
+ /// freeStackSlotAfter - Free the specified register from the register
+ /// stack, so that it is no longer in a register. If the register is
+ /// currently at the top of the stack, we just pop the current instruction,
+ /// otherwise we store the current top-of-stack into the specified slot,
+ /// then pop the top of stack.
+ void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
+
+ /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
+ /// instruction.
+ MachineBasicBlock::iterator
+ freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
+
+ /// Adjust the live registers to be the set in Mask.
+ void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
+
+ /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
+ /// st(0), FP reg FixStack[1] is st(1) etc.
+ void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
+ MachineBasicBlock::iterator I);
+
+ bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
+
+ void handleZeroArgFP(MachineBasicBlock::iterator &I);
+ void handleOneArgFP(MachineBasicBlock::iterator &I);
+ void handleOneArgFPRW(MachineBasicBlock::iterator &I);
+ void handleTwoArgFP(MachineBasicBlock::iterator &I);
+ void handleCompareFP(MachineBasicBlock::iterator &I);
+ void handleCondMovFP(MachineBasicBlock::iterator &I);
+ void handleSpecialFP(MachineBasicBlock::iterator &I);
+
+ // Check if a COPY instruction is using FP registers.
+ static bool isFPCopy(MachineInstr *MI) {
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+
+ return X86::RFP80RegClass.contains(DstReg) ||
+ X86::RFP80RegClass.contains(SrcReg);
+ }
+ };
+ char FPS::ID = 0;
+}
+
+FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
+
+/// getFPReg - Return the X86::FPx register number for the specified operand.
+/// For example, this returns 3 for X86::FP3.
+static unsigned getFPReg(const MachineOperand &MO) {
+ assert(MO.isReg() && "Expected an FP register!");
+ unsigned Reg = MO.getReg();
+ assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
+ return Reg - X86::FP0;
+}
+
+/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
+/// register references into FP stack references.
+///
+bool FPS::runOnMachineFunction(MachineFunction &MF) {
+ // We only need to run this pass if there are any FP registers used in this
+ // function. If it is all integer, there is nothing for us to do!
+ bool FPIsUsed = false;
+
+ assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
+ for (unsigned i = 0; i <= 6; ++i)
+ if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
+ FPIsUsed = true;
+ break;
+ }
+
+ // Early exit.
+ if (!FPIsUsed) return false;
+
+ Bundles = &getAnalysis<EdgeBundles>();
+ TII = MF.getTarget().getInstrInfo();
+
+ // Prepare cross-MBB liveness.
+ bundleCFG(MF);
+
+ StackTop = 0;
+
+ // Process the function in depth first order so that we process at least one
+ // of the predecessors for every reachable block in the function.
+ SmallPtrSet<MachineBasicBlock*, 8> Processed;
+ MachineBasicBlock *Entry = MF.begin();
+
+ bool Changed = false;
+ for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
+ I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
+ I != E; ++I)
+ Changed |= processBasicBlock(MF, **I);
+
+ // Process any unreachable blocks in arbitrary order now.
+ if (MF.size() != Processed.size())
+ for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
+ if (Processed.insert(BB))
+ Changed |= processBasicBlock(MF, *BB);
+
+ LiveBundles.clear();
+
+ return Changed;
+}
+
+/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
+/// live-out sets for the FP registers. Consistent means that the set of
+/// registers live-out from a block is identical to the live-in set of all
+/// successors. This is not enforced by the normal live-in lists since
+/// registers may be implicitly defined, or not used by all successors.
+void FPS::bundleCFG(MachineFunction &MF) {
+ assert(LiveBundles.empty() && "Stale data in LiveBundles");
+ LiveBundles.resize(Bundles->getNumBundles());
+
+ // Gather the actual live-in masks for all MBBs.
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
+ MachineBasicBlock *MBB = I;
+ const unsigned Mask = calcLiveInMask(MBB);
+ if (!Mask)
+ continue;
+ // Update MBB ingoing bundle mask.
+ LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
+ }
+}
+
+/// processBasicBlock - Loop over all of the instructions in the basic block,
+/// transforming FP instructions into their stack form.
+///
+bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
+ bool Changed = false;
+ MBB = &BB;
+ NumPendingSTs = 0;
+
+ setupBlockStack();
+
+ for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
+ MachineInstr *MI = I;
+ uint64_t Flags = MI->getDesc().TSFlags;
+
+ unsigned FPInstClass = Flags & X86II::FPTypeMask;
+ if (MI->isInlineAsm())
+ FPInstClass = X86II::SpecialFP;
+
+ if (MI->isCopy() && isFPCopy(MI))
+ FPInstClass = X86II::SpecialFP;
+
+ if (MI->isImplicitDef() &&
+ X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
+ FPInstClass = X86II::SpecialFP;
+
+ if (FPInstClass == X86II::NotFP)
+ continue; // Efficiently ignore non-fp insts!
+
+ MachineInstr *PrevMI = nullptr;
+ if (I != BB.begin())
+ PrevMI = std::prev(I);
+
+ ++NumFP; // Keep track of # of pseudo instrs
+ DEBUG(dbgs() << "\nFPInst:\t" << *MI);
+
+ // Get dead variables list now because the MI pointer may be deleted as part
+ // of processing!
+ SmallVector<unsigned, 8> DeadRegs;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDead())
+ DeadRegs.push_back(MO.getReg());
+ }
+
+ switch (FPInstClass) {
+ case X86II::ZeroArgFP: handleZeroArgFP(I); break;
+ case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
+ case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
+ case X86II::TwoArgFP: handleTwoArgFP(I); break;
+ case X86II::CompareFP: handleCompareFP(I); break;
+ case X86II::CondMovFP: handleCondMovFP(I); break;
+ case X86II::SpecialFP: handleSpecialFP(I); break;
+ default: llvm_unreachable("Unknown FP Type!");
+ }
+
+ // Check to see if any of the values defined by this instruction are dead
+ // after definition. If so, pop them.
+ for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
+ unsigned Reg = DeadRegs[i];
+ if (Reg >= X86::FP0 && Reg <= X86::FP6) {
+ DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
+ freeStackSlotAfter(I, Reg-X86::FP0);
+ }
+ }
+
+ // Print out all of the instructions expanded to if -debug
+ DEBUG(
+ MachineBasicBlock::iterator PrevI(PrevMI);
+ if (I == PrevI) {
+ dbgs() << "Just deleted pseudo instruction\n";
+ } else {
+ MachineBasicBlock::iterator Start = I;
+ // Rewind to first instruction newly inserted.
+ while (Start != BB.begin() && std::prev(Start) != PrevI) --Start;
+ dbgs() << "Inserted instructions:\n\t";
+ Start->print(dbgs(), &MF.getTarget());
+ while (++Start != std::next(I)) {}
+ }
+ dumpStack();
+ );
+ (void)PrevMI;
+
+ Changed = true;
+ }
+
+ finishBlockStack();
+
+ return Changed;
+}
+
+/// setupBlockStack - Use the live bundles to set up our model of the stack
+/// to match predecessors' live out stack.
+void FPS::setupBlockStack() {
+ DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
+ << " derived from " << MBB->getName() << ".\n");
+ StackTop = 0;
+ // Get the live-in bundle for MBB.
+ const LiveBundle &Bundle =
+ LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
+
+ if (!Bundle.Mask) {
+ DEBUG(dbgs() << "Block has no FP live-ins.\n");
+ return;
+ }
+
+ // Depth-first iteration should ensure that we always have an assigned stack.
+ assert(Bundle.isFixed() && "Reached block before any predecessors");
+
+ // Push the fixed live-in registers.
+ for (unsigned i = Bundle.FixCount; i > 0; --i) {
+ MBB->addLiveIn(X86::ST0+i-1);
+ DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
+ << unsigned(Bundle.FixStack[i-1]) << '\n');
+ pushReg(Bundle.FixStack[i-1]);
+ }
+
+ // Kill off unwanted live-ins. This can happen with a critical edge.
+ // FIXME: We could keep these live registers around as zombies. They may need
+ // to be revived at the end of a short block. It might save a few instrs.
+ adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
+ DEBUG(MBB->dump());
+}
+
+/// finishBlockStack - Revive live-outs that are implicitly defined out of
+/// MBB. Shuffle live registers to match the expected fixed stack of any
+/// predecessors, and ensure that all predecessors are expecting the same
+/// stack.
+void FPS::finishBlockStack() {
+ // The RET handling below takes care of return blocks for us.
+ if (MBB->succ_empty())
+ return;
+
+ DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
+ << " derived from " << MBB->getName() << ".\n");
+
+ // Get MBB's live-out bundle.
+ unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
+ LiveBundle &Bundle = LiveBundles[BundleIdx];
+
+ // We may need to kill and define some registers to match successors.
+ // FIXME: This can probably be combined with the shuffle below.
+ MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
+ adjustLiveRegs(Bundle.Mask, Term);
+
+ if (!Bundle.Mask) {
+ DEBUG(dbgs() << "No live-outs.\n");
+ return;
+ }
+
+ // Has the stack order been fixed yet?
+ DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
+ if (Bundle.isFixed()) {
+ DEBUG(dbgs() << "Shuffling stack to match.\n");
+ shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
+ } else {
+ // Not fixed yet, we get to choose.
+ DEBUG(dbgs() << "Fixing stack order now.\n");
+ Bundle.FixCount = StackTop;
+ for (unsigned i = 0; i < StackTop; ++i)
+ Bundle.FixStack[i] = getStackEntry(i);
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Efficient Lookup Table Support
+//===----------------------------------------------------------------------===//
+
+namespace {
+ struct TableEntry {
+ uint16_t from;
+ uint16_t to;
+ bool operator<(const TableEntry &TE) const { return from < TE.from; }
+ friend bool operator<(const TableEntry &TE, unsigned V) {
+ return TE.from < V;
+ }
+ friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
+ const TableEntry &TE) {
+ return V < TE.from;
+ }
+ };
+}
+
+#ifndef NDEBUG
+static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
+ for (unsigned i = 0; i != NumEntries-1; ++i)
+ if (!(Table[i] < Table[i+1])) return false;
+ return true;
+}
+#endif
+
+static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
+ const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
+ if (I != Table+N && I->from == Opcode)
+ return I->to;
+ return -1;
+}
+
+#ifdef NDEBUG
+#define ASSERT_SORTED(TABLE)
+#else
+#define ASSERT_SORTED(TABLE) \
+ { static bool TABLE##Checked = false; \
+ if (!TABLE##Checked) { \
+ assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
+ "All lookup tables must be sorted for efficient access!"); \
+ TABLE##Checked = true; \
+ } \
+ }
+#endif
+
+//===----------------------------------------------------------------------===//
+// Register File -> Register Stack Mapping Methods
+//===----------------------------------------------------------------------===//
+
+// OpcodeTable - Sorted map of register instructions to their stack version.
+// The first element is an register file pseudo instruction, the second is the
+// concrete X86 instruction which uses the register stack.
+//
+static const TableEntry OpcodeTable[] = {
+ { X86::ABS_Fp32 , X86::ABS_F },
+ { X86::ABS_Fp64 , X86::ABS_F },
+ { X86::ABS_Fp80 , X86::ABS_F },
+ { X86::ADD_Fp32m , X86::ADD_F32m },
+ { X86::ADD_Fp64m , X86::ADD_F64m },
+ { X86::ADD_Fp64m32 , X86::ADD_F32m },
+ { X86::ADD_Fp80m32 , X86::ADD_F32m },
+ { X86::ADD_Fp80m64 , X86::ADD_F64m },
+ { X86::ADD_FpI16m32 , X86::ADD_FI16m },
+ { X86::ADD_FpI16m64 , X86::ADD_FI16m },
+ { X86::ADD_FpI16m80 , X86::ADD_FI16m },
+ { X86::ADD_FpI32m32 , X86::ADD_FI32m },
+ { X86::ADD_FpI32m64 , X86::ADD_FI32m },
+ { X86::ADD_FpI32m80 , X86::ADD_FI32m },
+ { X86::CHS_Fp32 , X86::CHS_F },
+ { X86::CHS_Fp64 , X86::CHS_F },
+ { X86::CHS_Fp80 , X86::CHS_F },
+ { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
+ { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
+ { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
+ { X86::CMOVB_Fp32 , X86::CMOVB_F },
+ { X86::CMOVB_Fp64 , X86::CMOVB_F },
+ { X86::CMOVB_Fp80 , X86::CMOVB_F },
+ { X86::CMOVE_Fp32 , X86::CMOVE_F },
+ { X86::CMOVE_Fp64 , X86::CMOVE_F },
+ { X86::CMOVE_Fp80 , X86::CMOVE_F },
+ { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
+ { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
+ { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
+ { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
+ { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
+ { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
+ { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
+ { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
+ { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
+ { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
+ { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
+ { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
+ { X86::CMOVP_Fp32 , X86::CMOVP_F },
+ { X86::CMOVP_Fp64 , X86::CMOVP_F },
+ { X86::CMOVP_Fp80 , X86::CMOVP_F },
+ { X86::COS_Fp32 , X86::COS_F },
+ { X86::COS_Fp64 , X86::COS_F },
+ { X86::COS_Fp80 , X86::COS_F },
+ { X86::DIVR_Fp32m , X86::DIVR_F32m },
+ { X86::DIVR_Fp64m , X86::DIVR_F64m },
+ { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
+ { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
+ { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
+ { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
+ { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
+ { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
+ { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
+ { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
+ { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
+ { X86::DIV_Fp32m , X86::DIV_F32m },
+ { X86::DIV_Fp64m , X86::DIV_F64m },
+ { X86::DIV_Fp64m32 , X86::DIV_F32m },
+ { X86::DIV_Fp80m32 , X86::DIV_F32m },
+ { X86::DIV_Fp80m64 , X86::DIV_F64m },
+ { X86::DIV_FpI16m32 , X86::DIV_FI16m },
+ { X86::DIV_FpI16m64 , X86::DIV_FI16m },
+ { X86::DIV_FpI16m80 , X86::DIV_FI16m },
+ { X86::DIV_FpI32m32 , X86::DIV_FI32m },
+ { X86::DIV_FpI32m64 , X86::DIV_FI32m },
+ { X86::DIV_FpI32m80 , X86::DIV_FI32m },
+ { X86::ILD_Fp16m32 , X86::ILD_F16m },
+ { X86::ILD_Fp16m64 , X86::ILD_F16m },
+ { X86::ILD_Fp16m80 , X86::ILD_F16m },
+ { X86::ILD_Fp32m32 , X86::ILD_F32m },
+ { X86::ILD_Fp32m64 , X86::ILD_F32m },
+ { X86::ILD_Fp32m80 , X86::ILD_F32m },
+ { X86::ILD_Fp64m32 , X86::ILD_F64m },
+ { X86::ILD_Fp64m64 , X86::ILD_F64m },
+ { X86::ILD_Fp64m80 , X86::ILD_F64m },
+ { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
+ { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
+ { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
+ { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
+ { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
+ { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
+ { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
+ { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
+ { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
+ { X86::IST_Fp16m32 , X86::IST_F16m },
+ { X86::IST_Fp16m64 , X86::IST_F16m },
+ { X86::IST_Fp16m80 , X86::IST_F16m },
+ { X86::IST_Fp32m32 , X86::IST_F32m },
+ { X86::IST_Fp32m64 , X86::IST_F32m },
+ { X86::IST_Fp32m80 , X86::IST_F32m },
+ { X86::IST_Fp64m32 , X86::IST_FP64m },
+ { X86::IST_Fp64m64 , X86::IST_FP64m },
+ { X86::IST_Fp64m80 , X86::IST_FP64m },
+ { X86::LD_Fp032 , X86::LD_F0 },
+ { X86::LD_Fp064 , X86::LD_F0 },
+ { X86::LD_Fp080 , X86::LD_F0 },
+ { X86::LD_Fp132 , X86::LD_F1 },
+ { X86::LD_Fp164 , X86::LD_F1 },
+ { X86::LD_Fp180 , X86::LD_F1 },
+ { X86::LD_Fp32m , X86::LD_F32m },
+ { X86::LD_Fp32m64 , X86::LD_F32m },
+ { X86::LD_Fp32m80 , X86::LD_F32m },
+ { X86::LD_Fp64m , X86::LD_F64m },
+ { X86::LD_Fp64m80 , X86::LD_F64m },
+ { X86::LD_Fp80m , X86::LD_F80m },
+ { X86::MUL_Fp32m , X86::MUL_F32m },
+ { X86::MUL_Fp64m , X86::MUL_F64m },
+ { X86::MUL_Fp64m32 , X86::MUL_F32m },
+ { X86::MUL_Fp80m32 , X86::MUL_F32m },
+ { X86::MUL_Fp80m64 , X86::MUL_F64m },
+ { X86::MUL_FpI16m32 , X86::MUL_FI16m },
+ { X86::MUL_FpI16m64 , X86::MUL_FI16m },
+ { X86::MUL_FpI16m80 , X86::MUL_FI16m },
+ { X86::MUL_FpI32m32 , X86::MUL_FI32m },
+ { X86::MUL_FpI32m64 , X86::MUL_FI32m },
+ { X86::MUL_FpI32m80 , X86::MUL_FI32m },
+ { X86::SIN_Fp32 , X86::SIN_F },
+ { X86::SIN_Fp64 , X86::SIN_F },
+ { X86::SIN_Fp80 , X86::SIN_F },
+ { X86::SQRT_Fp32 , X86::SQRT_F },
+ { X86::SQRT_Fp64 , X86::SQRT_F },
+ { X86::SQRT_Fp80 , X86::SQRT_F },
+ { X86::ST_Fp32m , X86::ST_F32m },
+ { X86::ST_Fp64m , X86::ST_F64m },
+ { X86::ST_Fp64m32 , X86::ST_F32m },
+ { X86::ST_Fp80m32 , X86::ST_F32m },
+ { X86::ST_Fp80m64 , X86::ST_F64m },
+ { X86::ST_FpP80m , X86::ST_FP80m },
+ { X86::SUBR_Fp32m , X86::SUBR_F32m },
+ { X86::SUBR_Fp64m , X86::SUBR_F64m },
+ { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
+ { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
+ { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
+ { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
+ { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
+ { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
+ { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
+ { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
+ { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
+ { X86::SUB_Fp32m , X86::SUB_F32m },
+ { X86::SUB_Fp64m , X86::SUB_F64m },
+ { X86::SUB_Fp64m32 , X86::SUB_F32m },
+ { X86::SUB_Fp80m32 , X86::SUB_F32m },
+ { X86::SUB_Fp80m64 , X86::SUB_F64m },
+ { X86::SUB_FpI16m32 , X86::SUB_FI16m },
+ { X86::SUB_FpI16m64 , X86::SUB_FI16m },
+ { X86::SUB_FpI16m80 , X86::SUB_FI16m },
+ { X86::SUB_FpI32m32 , X86::SUB_FI32m },
+ { X86::SUB_FpI32m64 , X86::SUB_FI32m },
+ { X86::SUB_FpI32m80 , X86::SUB_FI32m },
+ { X86::TST_Fp32 , X86::TST_F },
+ { X86::TST_Fp64 , X86::TST_F },
+ { X86::TST_Fp80 , X86::TST_F },
+ { X86::UCOM_FpIr32 , X86::UCOM_FIr },
+ { X86::UCOM_FpIr64 , X86::UCOM_FIr },
+ { X86::UCOM_FpIr80 , X86::UCOM_FIr },
+ { X86::UCOM_Fpr32 , X86::UCOM_Fr },
+ { X86::UCOM_Fpr64 , X86::UCOM_Fr },
+ { X86::UCOM_Fpr80 , X86::UCOM_Fr },
+};
+
+static unsigned getConcreteOpcode(unsigned Opcode) {
+ ASSERT_SORTED(OpcodeTable);
+ int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
+ assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
+ return Opc;
+}
+
+//===----------------------------------------------------------------------===//
+// Helper Methods
+//===----------------------------------------------------------------------===//
+
+// PopTable - Sorted map of instructions to their popping version. The first
+// element is an instruction, the second is the version which pops.
+//
+static const TableEntry PopTable[] = {
+ { X86::ADD_FrST0 , X86::ADD_FPrST0 },
+
+ { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
+ { X86::DIV_FrST0 , X86::DIV_FPrST0 },
+
+ { X86::IST_F16m , X86::IST_FP16m },
+ { X86::IST_F32m , X86::IST_FP32m },
+
+ { X86::MUL_FrST0 , X86::MUL_FPrST0 },
+
+ { X86::ST_F32m , X86::ST_FP32m },
+ { X86::ST_F64m , X86::ST_FP64m },
+ { X86::ST_Frr , X86::ST_FPrr },
+
+ { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
+ { X86::SUB_FrST0 , X86::SUB_FPrST0 },
+
+ { X86::UCOM_FIr , X86::UCOM_FIPr },
+
+ { X86::UCOM_FPr , X86::UCOM_FPPr },
+ { X86::UCOM_Fr , X86::UCOM_FPr },
+};
+
+/// popStackAfter - Pop the current value off of the top of the FP stack after
+/// the specified instruction. This attempts to be sneaky and combine the pop
+/// into the instruction itself if possible. The iterator is left pointing to
+/// the last instruction, be it a new pop instruction inserted, or the old
+/// instruction if it was modified in place.
+///
+void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
+ MachineInstr* MI = I;
+ DebugLoc dl = MI->getDebugLoc();
+ ASSERT_SORTED(PopTable);
+ if (StackTop == 0)
+ report_fatal_error("Cannot pop empty stack!");
+ RegMap[Stack[--StackTop]] = ~0; // Update state
+
+ // Check to see if there is a popping version of this instruction...
+ int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
+ if (Opcode != -1) {
+ I->setDesc(TII->get(Opcode));
+ if (Opcode == X86::UCOM_FPPr)
+ I->RemoveOperand(0);
+ } else { // Insert an explicit pop
+ I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
+ }
+}
+
+/// freeStackSlotAfter - Free the specified register from the register stack, so
+/// that it is no longer in a register. If the register is currently at the top
+/// of the stack, we just pop the current instruction, otherwise we store the
+/// current top-of-stack into the specified slot, then pop the top of stack.
+void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
+ if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
+ popStackAfter(I);
+ return;
+ }
+
+ // Otherwise, store the top of stack into the dead slot, killing the operand
+ // without having to add in an explicit xchg then pop.
+ //
+ I = freeStackSlotBefore(++I, FPRegNo);
+}
+
+/// freeStackSlotBefore - Free the specified register without trying any
+/// folding.
+MachineBasicBlock::iterator
+FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
+ unsigned STReg = getSTReg(FPRegNo);
+ unsigned OldSlot = getSlot(FPRegNo);
+ unsigned TopReg = Stack[StackTop-1];
+ Stack[OldSlot] = TopReg;
+ RegMap[TopReg] = OldSlot;
+ RegMap[FPRegNo] = ~0;
+ Stack[--StackTop] = ~0;
+ return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
+}
+
+/// adjustLiveRegs - Kill and revive registers such that exactly the FP
+/// registers with a bit in Mask are live.
+void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
+ unsigned Defs = Mask;
+ unsigned Kills = 0;
+ for (unsigned i = 0; i < StackTop; ++i) {
+ unsigned RegNo = Stack[i];
+ if (!(Defs & (1 << RegNo)))
+ // This register is live, but we don't want it.
+ Kills |= (1 << RegNo);
+ else
+ // We don't need to imp-def this live register.
+ Defs &= ~(1 << RegNo);
+ }
+ assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
+
+ // Produce implicit-defs for free by using killed registers.
+ while (Kills && Defs) {
+ unsigned KReg = countTrailingZeros(Kills);
+ unsigned DReg = countTrailingZeros(Defs);
+ DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
+ std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
+ std::swap(RegMap[KReg], RegMap[DReg]);
+ Kills &= ~(1 << KReg);
+ Defs &= ~(1 << DReg);
+ }
+
+ // Kill registers by popping.
+ if (Kills && I != MBB->begin()) {
+ MachineBasicBlock::iterator I2 = std::prev(I);
+ while (StackTop) {
+ unsigned KReg = getStackEntry(0);
+ if (!(Kills & (1 << KReg)))
+ break;
+ DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
+ popStackAfter(I2);
+ Kills &= ~(1 << KReg);
+ }
+ }
+
+ // Manually kill the rest.
+ while (Kills) {
+ unsigned KReg = countTrailingZeros(Kills);
+ DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
+ freeStackSlotBefore(I, KReg);
+ Kills &= ~(1 << KReg);
+ }
+
+ // Load zeros for all the imp-defs.
+ while(Defs) {
+ unsigned DReg = countTrailingZeros(Defs);
+ DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
+ BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
+ pushReg(DReg);
+ Defs &= ~(1 << DReg);
+ }
+
+ // Now we should have the correct registers live.
+ DEBUG(dumpStack());
+ assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
+}
+
+/// shuffleStackTop - emit fxch instructions before I to shuffle the top
+/// FixCount entries into the order given by FixStack.
+/// FIXME: Is there a better algorithm than insertion sort?
+void FPS::shuffleStackTop(const unsigned char *FixStack,
+ unsigned FixCount,
+ MachineBasicBlock::iterator I) {
+ // Move items into place, starting from the desired stack bottom.
+ while (FixCount--) {
+ // Old register at position FixCount.
+ unsigned OldReg = getStackEntry(FixCount);
+ // Desired register at position FixCount.
+ unsigned Reg = FixStack[FixCount];
+ if (Reg == OldReg)
+ continue;
+ // (Reg st0) (OldReg st0) = (Reg OldReg st0)
+ moveToTop(Reg, I);
+ if (FixCount > 0)
+ moveToTop(OldReg, I);
+ }
+ DEBUG(dumpStack());
+}
+
+
+//===----------------------------------------------------------------------===//
+// Instruction transformation implementation
+//===----------------------------------------------------------------------===//
+
+/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
+///
+void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = I;
+ unsigned DestReg = getFPReg(MI->getOperand(0));
+
+ // Change from the pseudo instruction to the concrete instruction.
+ MI->RemoveOperand(0); // Remove the explicit ST(0) operand
+ MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
+
+ // Result gets pushed on the stack.
+ pushReg(DestReg);
+}
+
+/// handleOneArgFP - fst <mem>, ST(0)
+///
+void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = I;
+ unsigned NumOps = MI->getDesc().getNumOperands();
+ assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
+ "Can only handle fst* & ftst instructions!");
+
+ // Is this the last use of the source register?
+ unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
+ bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
+
+ if (KillsSrc)
+ duplicatePendingSTBeforeKill(Reg, I);
+
+ // FISTP64m is strange because there isn't a non-popping versions.
+ // If we have one _and_ we don't want to pop the operand, duplicate the value
+ // on the stack instead of moving it. This ensure that popping the value is
+ // always ok.
+ // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
+ //
+ if (!KillsSrc &&
+ (MI->getOpcode() == X86::IST_Fp64m32 ||
+ MI->getOpcode() == X86::ISTT_Fp16m32 ||
+ MI->getOpcode() == X86::ISTT_Fp32m32 ||
+ MI->getOpcode() == X86::ISTT_Fp64m32 ||
+ MI->getOpcode() == X86::IST_Fp64m64 ||
+ MI->getOpcode() == X86::ISTT_Fp16m64 ||
+ MI->getOpcode() == X86::ISTT_Fp32m64 ||
+ MI->getOpcode() == X86::ISTT_Fp64m64 ||
+ MI->getOpcode() == X86::IST_Fp64m80 ||
+ MI->getOpcode() == X86::ISTT_Fp16m80 ||
+ MI->getOpcode() == X86::ISTT_Fp32m80 ||
+ MI->getOpcode() == X86::ISTT_Fp64m80 ||
+ MI->getOpcode() == X86::ST_FpP80m)) {
+ duplicateToTop(Reg, getScratchReg(), I);
+ } else {
+ moveToTop(Reg, I); // Move to the top of the stack...
+ }
+
+ // Convert from the pseudo instruction to the concrete instruction.
+ MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
+ MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
+
+ if (MI->getOpcode() == X86::IST_FP64m ||
+ MI->getOpcode() == X86::ISTT_FP16m ||
+ MI->getOpcode() == X86::ISTT_FP32m ||
+ MI->getOpcode() == X86::ISTT_FP64m ||
+ MI->getOpcode() == X86::ST_FP80m) {
+ if (StackTop == 0)
+ report_fatal_error("Stack empty??");
+ --StackTop;
+ } else if (KillsSrc) { // Last use of operand?
+ popStackAfter(I);
+ }
+}
+
+
+/// handleOneArgFPRW: Handle instructions that read from the top of stack and
+/// replace the value with a newly computed value. These instructions may have
+/// non-fp operands after their FP operands.
+///
+/// Examples:
+/// R1 = fchs R2
+/// R1 = fadd R2, [mem]
+///
+void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = I;
+#ifndef NDEBUG
+ unsigned NumOps = MI->getDesc().getNumOperands();
+ assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
+#endif
+
+ // Is this the last use of the source register?
+ unsigned Reg = getFPReg(MI->getOperand(1));
+ bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
+
+ if (KillsSrc) {
+ duplicatePendingSTBeforeKill(Reg, I);
+ // If this is the last use of the source register, just make sure it's on
+ // the top of the stack.
+ moveToTop(Reg, I);
+ if (StackTop == 0)
+ report_fatal_error("Stack cannot be empty!");
+ --StackTop;
+ pushReg(getFPReg(MI->getOperand(0)));
+ } else {
+ // If this is not the last use of the source register, _copy_ it to the top
+ // of the stack.
+ duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
+ }
+
+ // Change from the pseudo instruction to the concrete instruction.
+ MI->RemoveOperand(1); // Drop the source operand.
+ MI->RemoveOperand(0); // Drop the destination operand.
+ MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define tables of various ways to map pseudo instructions
+//
+
+// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
+static const TableEntry ForwardST0Table[] = {
+ { X86::ADD_Fp32 , X86::ADD_FST0r },
+ { X86::ADD_Fp64 , X86::ADD_FST0r },
+ { X86::ADD_Fp80 , X86::ADD_FST0r },
+ { X86::DIV_Fp32 , X86::DIV_FST0r },
+ { X86::DIV_Fp64 , X86::DIV_FST0r },
+ { X86::DIV_Fp80 , X86::DIV_FST0r },
+ { X86::MUL_Fp32 , X86::MUL_FST0r },
+ { X86::MUL_Fp64 , X86::MUL_FST0r },
+ { X86::MUL_Fp80 , X86::MUL_FST0r },
+ { X86::SUB_Fp32 , X86::SUB_FST0r },
+ { X86::SUB_Fp64 , X86::SUB_FST0r },
+ { X86::SUB_Fp80 , X86::SUB_FST0r },
+};
+
+// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
+static const TableEntry ReverseST0Table[] = {
+ { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
+ { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
+ { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
+ { X86::DIV_Fp32 , X86::DIVR_FST0r },
+ { X86::DIV_Fp64 , X86::DIVR_FST0r },
+ { X86::DIV_Fp80 , X86::DIVR_FST0r },
+ { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
+ { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
+ { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
+ { X86::SUB_Fp32 , X86::SUBR_FST0r },
+ { X86::SUB_Fp64 , X86::SUBR_FST0r },
+ { X86::SUB_Fp80 , X86::SUBR_FST0r },
+};
+
+// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
+static const TableEntry ForwardSTiTable[] = {
+ { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
+ { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
+ { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
+ { X86::DIV_Fp32 , X86::DIVR_FrST0 },
+ { X86::DIV_Fp64 , X86::DIVR_FrST0 },
+ { X86::DIV_Fp80 , X86::DIVR_FrST0 },
+ { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
+ { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
+ { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
+ { X86::SUB_Fp32 , X86::SUBR_FrST0 },
+ { X86::SUB_Fp64 , X86::SUBR_FrST0 },
+ { X86::SUB_Fp80 , X86::SUBR_FrST0 },
+};
+
+// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
+static const TableEntry ReverseSTiTable[] = {
+ { X86::ADD_Fp32 , X86::ADD_FrST0 },
+ { X86::ADD_Fp64 , X86::ADD_FrST0 },
+ { X86::ADD_Fp80 , X86::ADD_FrST0 },
+ { X86::DIV_Fp32 , X86::DIV_FrST0 },
+ { X86::DIV_Fp64 , X86::DIV_FrST0 },
+ { X86::DIV_Fp80 , X86::DIV_FrST0 },
+ { X86::MUL_Fp32 , X86::MUL_FrST0 },
+ { X86::MUL_Fp64 , X86::MUL_FrST0 },
+ { X86::MUL_Fp80 , X86::MUL_FrST0 },
+ { X86::SUB_Fp32 , X86::SUB_FrST0 },
+ { X86::SUB_Fp64 , X86::SUB_FrST0 },
+ { X86::SUB_Fp80 , X86::SUB_FrST0 },
+};
+
+
+/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
+/// instructions which need to be simplified and possibly transformed.
+///
+/// Result: ST(0) = fsub ST(0), ST(i)
+/// ST(i) = fsub ST(0), ST(i)
+/// ST(0) = fsubr ST(0), ST(i)
+/// ST(i) = fsubr ST(0), ST(i)
+///
+void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
+ ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
+ ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
+ MachineInstr *MI = I;
+
+ unsigned NumOperands = MI->getDesc().getNumOperands();
+ assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
+ unsigned Dest = getFPReg(MI->getOperand(0));
+ unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
+ unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
+ bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
+ bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
+ DebugLoc dl = MI->getDebugLoc();
+
+ unsigned TOS = getStackEntry(0);
+
+ // One of our operands must be on the top of the stack. If neither is yet, we
+ // need to move one.
+ if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
+ // We can choose to move either operand to the top of the stack. If one of
+ // the operands is killed by this instruction, we want that one so that we
+ // can update right on top of the old version.
+ if (KillsOp0) {
+ moveToTop(Op0, I); // Move dead operand to TOS.
+ TOS = Op0;
+ } else if (KillsOp1) {
+ moveToTop(Op1, I);
+ TOS = Op1;
+ } else {
+ // All of the operands are live after this instruction executes, so we
+ // cannot update on top of any operand. Because of this, we must
+ // duplicate one of the stack elements to the top. It doesn't matter
+ // which one we pick.
+ //
+ duplicateToTop(Op0, Dest, I);
+ Op0 = TOS = Dest;
+ KillsOp0 = true;
+ }
+ } else if (!KillsOp0 && !KillsOp1) {
+ // If we DO have one of our operands at the top of the stack, but we don't
+ // have a dead operand, we must duplicate one of the operands to a new slot
+ // on the stack.
+ duplicateToTop(Op0, Dest, I);
+ Op0 = TOS = Dest;
+ KillsOp0 = true;
+ }
+
+ // Now we know that one of our operands is on the top of the stack, and at
+ // least one of our operands is killed by this instruction.
+ assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
+ "Stack conditions not set up right!");
+
+ // We decide which form to use based on what is on the top of the stack, and
+ // which operand is killed by this instruction.
+ const TableEntry *InstTable;
+ bool isForward = TOS == Op0;
+ bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
+ if (updateST0) {
+ if (isForward)
+ InstTable = ForwardST0Table;
+ else
+ InstTable = ReverseST0Table;
+ } else {
+ if (isForward)
+ InstTable = ForwardSTiTable;
+ else
+ InstTable = ReverseSTiTable;
+ }
+
+ int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
+ MI->getOpcode());
+ assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
+
+ // NotTOS - The register which is not on the top of stack...
+ unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
+
+ // Replace the old instruction with a new instruction
+ MBB->remove(I++);
+ I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
+
+ // If both operands are killed, pop one off of the stack in addition to
+ // overwriting the other one.
+ if (KillsOp0 && KillsOp1 && Op0 != Op1) {
+ assert(!updateST0 && "Should have updated other operand!");
+ popStackAfter(I); // Pop the top of stack
+ }
+
+ // Update stack information so that we know the destination register is now on
+ // the stack.
+ unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
+ assert(UpdatedSlot < StackTop && Dest < 7);
+ Stack[UpdatedSlot] = Dest;
+ RegMap[Dest] = UpdatedSlot;
+ MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
+}
+
+/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
+/// register arguments and no explicit destinations.
+///
+void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
+ ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
+ ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
+ MachineInstr *MI = I;
+
+ unsigned NumOperands = MI->getDesc().getNumOperands();
+ assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
+ unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
+ unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
+ bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
+ bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
+
+ // Make sure the first operand is on the top of stack, the other one can be
+ // anywhere.
+ moveToTop(Op0, I);
+
+ // Change from the pseudo instruction to the concrete instruction.
+ MI->getOperand(0).setReg(getSTReg(Op1));
+ MI->RemoveOperand(1);
+ MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
+
+ // If any of the operands are killed by this instruction, free them.
+ if (KillsOp0) freeStackSlotAfter(I, Op0);
+ if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
+}
+
+/// handleCondMovFP - Handle two address conditional move instructions. These
+/// instructions move a st(i) register to st(0) iff a condition is true. These
+/// instructions require that the first operand is at the top of the stack, but
+/// otherwise don't modify the stack at all.
+void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = I;
+
+ unsigned Op0 = getFPReg(MI->getOperand(0));
+ unsigned Op1 = getFPReg(MI->getOperand(2));
+ bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
+
+ // The first operand *must* be on the top of the stack.
+ moveToTop(Op0, I);
+
+ // Change the second operand to the stack register that the operand is in.
+ // Change from the pseudo instruction to the concrete instruction.
+ MI->RemoveOperand(0);
+ MI->RemoveOperand(1);
+ MI->getOperand(0).setReg(getSTReg(Op1));
+ MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
+
+ // If we kill the second operand, make sure to pop it from the stack.
+ if (Op0 != Op1 && KillsOp1) {
+ // Get this value off of the register stack.
+ freeStackSlotAfter(I, Op1);
+ }
+}
+
+
+/// handleSpecialFP - Handle special instructions which behave unlike other
+/// floating point instructions. This is primarily intended for use by pseudo
+/// instructions.
+///
+void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = I;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unknown SpecialFP instruction!");
+ case TargetOpcode::COPY: {
+ // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
+ const MachineOperand &MO1 = MI->getOperand(1);
+ const MachineOperand &MO0 = MI->getOperand(0);
+ unsigned DstST = MO0.getReg() - X86::ST0;
+ unsigned SrcST = MO1.getReg() - X86::ST0;
+ bool KillsSrc = MI->killsRegister(MO1.getReg());
+
+ // ST = COPY FP. Set up a pending ST register.
+ if (DstST < 8) {
+ unsigned SrcFP = getFPReg(MO1);
+ assert(isLive(SrcFP) && "Cannot copy dead register");
+ assert(!MO0.isDead() && "Cannot copy to dead ST register");
+
+ // Unallocated STs are marked as the nonexistent FP255.
+ while (NumPendingSTs <= DstST)
+ PendingST[NumPendingSTs++] = NumFPRegs;
+
+ // STi could still be live from a previous inline asm.
+ if (isScratchReg(PendingST[DstST])) {
+ DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
+ << '\n');
+ freeStackSlotBefore(MI, PendingST[DstST]);
+ }
+
+ // When the source is killed, allocate a scratch FP register.
+ if (KillsSrc) {
+ duplicatePendingSTBeforeKill(SrcFP, I);
+ unsigned Slot = getSlot(SrcFP);
+ unsigned SR = getScratchReg();
+ PendingST[DstST] = SR;
+ Stack[Slot] = SR;
+ RegMap[SR] = Slot;
+ } else
+ PendingST[DstST] = SrcFP;
+ break;
+ }
+
+ // FP = COPY ST. Extract fixed stack value.
+ // Any instruction defining ST registers must have assigned them to a
+ // scratch register.
+ if (SrcST < 8) {
+ unsigned DstFP = getFPReg(MO0);
+ assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
+ assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
+ unsigned SrcFP = PendingST[SrcST];
+ assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
+ assert(isLive(SrcFP) && "Scratch holding ST is dead");
+
+ // DstFP steals the stack slot from SrcFP.
+ unsigned Slot = getSlot(SrcFP);
+ Stack[Slot] = DstFP;
+ RegMap[DstFP] = Slot;
+
+ // Always treat the ST as killed.
+ PendingST[SrcST] = NumFPRegs;
+ while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
+ --NumPendingSTs;
+ break;
+ }
+
+ // FP <- FP copy.
+ unsigned DstFP = getFPReg(MO0);
+ unsigned SrcFP = getFPReg(MO1);
+ assert(isLive(SrcFP) && "Cannot copy dead register");
+ if (KillsSrc) {
+ // If the input operand is killed, we can just change the owner of the
+ // incoming stack slot into the result.
+ unsigned Slot = getSlot(SrcFP);
+ Stack[Slot] = DstFP;
+ RegMap[DstFP] = Slot;
+ } else {
+ // For COPY we just duplicate the specified value to a new stack slot.
+ // This could be made better, but would require substantial changes.
+ duplicateToTop(SrcFP, DstFP, I);
+ }
+ break;
+ }
+
+ case TargetOpcode::IMPLICIT_DEF: {
+ // All FP registers must be explicitly defined, so load a 0 instead.
+ unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
+ DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
+ BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
+ pushReg(Reg);
+ break;
+ }
+
+ case X86::FpPOP_RETVAL: {
+ // The FpPOP_RETVAL instruction is used after calls that return a value on
+ // the floating point stack. We cannot model this with ST defs since CALL
+ // instructions have fixed clobber lists. This instruction is interpreted
+ // to mean that there is one more live register on the stack than we
+ // thought.
+ //
+ // This means that StackTop does not match the hardware stack between a
+ // call and the FpPOP_RETVAL instructions. We do tolerate FP instructions
+ // between CALL and FpPOP_RETVAL as long as they don't overflow the
+ // hardware stack.
+ unsigned DstFP = getFPReg(MI->getOperand(0));
+
+ // Move existing stack elements up to reflect reality.
+ assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
+ if (StackTop) {
+ std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
+ for (unsigned i = 0; i != NumFPRegs; ++i)
+ ++RegMap[i];
+ }
+ ++StackTop;
+
+ // DstFP is the new bottom of the stack.
+ Stack[0] = DstFP;
+ RegMap[DstFP] = 0;
+
+ // DstFP will be killed by processBasicBlock if this was a dead def.
+ break;
+ }
+
+ case TargetOpcode::INLINEASM: {
+ // The inline asm MachineInstr currently only *uses* FP registers for the
+ // 'f' constraint. These should be turned into the current ST(x) register
+ // in the machine instr.
+ //
+ // There are special rules for x87 inline assembly. The compiler must know
+ // exactly how many registers are popped and pushed implicitly by the asm.
+ // Otherwise it is not possible to restore the stack state after the inline
+ // asm.
+ //
+ // There are 3 kinds of input operands:
+ //
+ // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
+ // popped input operand must be in a fixed stack slot, and it is either
+ // tied to an output operand, or in the clobber list. The MI has ST use
+ // and def operands for these inputs.
+ //
+ // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
+ // preserved by the inline asm. The fixed stack slots must be STn-STm
+ // following the popped inputs. A fixed input operand cannot be tied to
+ // an output or appear in the clobber list. The MI has ST use operands
+ // and no defs for these inputs.
+ //
+ // 3. Preserved inputs. These inputs use the "f" constraint which is
+ // represented as an FP register. The inline asm won't change these
+ // stack slots.
+ //
+ // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
+ // registers do not count as output operands. The inline asm changes the
+ // stack as if it popped all the popped inputs and then pushed all the
+ // output operands.
+
+ // Scan the assembly for ST registers used, defined and clobbered. We can
+ // only tell clobbers from defs by looking at the asm descriptor.
+ unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
+ unsigned NumOps = 0;
+ for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
+ i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
+ unsigned Flags = MI->getOperand(i).getImm();
+ NumOps = InlineAsm::getNumOperandRegisters(Flags);
+ if (NumOps != 1)
+ continue;
+ const MachineOperand &MO = MI->getOperand(i + 1);
+ if (!MO.isReg())
+ continue;
+ unsigned STReg = MO.getReg() - X86::ST0;
+ if (STReg >= 8)
+ continue;
+
+ switch (InlineAsm::getKind(Flags)) {
+ case InlineAsm::Kind_RegUse:
+ STUses |= (1u << STReg);
+ break;
+ case InlineAsm::Kind_RegDef:
+ case InlineAsm::Kind_RegDefEarlyClobber:
+ STDefs |= (1u << STReg);
+ if (MO.isDead())
+ STDeadDefs |= (1u << STReg);
+ break;
+ case InlineAsm::Kind_Clobber:
+ STClobbers |= (1u << STReg);
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (STUses && !isMask_32(STUses))
+ MI->emitError("fixed input regs must be last on the x87 stack");
+ unsigned NumSTUses = CountTrailingOnes_32(STUses);
+
+ // Defs must be contiguous from the stack top. ST0-STn.
+ if (STDefs && !isMask_32(STDefs)) {
+ MI->emitError("output regs must be last on the x87 stack");
+ STDefs = NextPowerOf2(STDefs) - 1;
+ }
+ unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
+
+ // So must the clobbered stack slots. ST0-STm, m >= n.
+ if (STClobbers && !isMask_32(STDefs | STClobbers))
+ MI->emitError("clobbers must be last on the x87 stack");
+
+ // Popped inputs are the ones that are also clobbered or defined.
+ unsigned STPopped = STUses & (STDefs | STClobbers);
+ if (STPopped && !isMask_32(STPopped))
+ MI->emitError("implicitly popped regs must be last on the x87 stack");
+ unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
+
+ DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
+ << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
+
+ // Scan the instruction for FP uses corresponding to "f" constraints.
+ // Collect FP registers to kill afer the instruction.
+ // Always kill all the scratch regs.
+ unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
+ unsigned FPUsed = 0;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
+ continue;
+ if (!Op.isUse())
+ MI->emitError("illegal \"f\" output constraint");
+ unsigned FPReg = getFPReg(Op);
+ FPUsed |= 1U << FPReg;
+
+ // If we kill this operand, make sure to pop it from the stack after the
+ // asm. We just remember it for now, and pop them all off at the end in
+ // a batch.
+ if (Op.isKill())
+ FPKills |= 1U << FPReg;
+ }
+
+ // The popped inputs will be killed by the instruction, so duplicate them
+ // if the FP register needs to be live after the instruction, or if it is
+ // used in the instruction itself. We effectively treat the popped inputs
+ // as early clobbers.
+ for (unsigned i = 0; i < NumSTPopped; ++i) {
+ if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
+ continue;
+ unsigned SR = getScratchReg();
+ duplicateToTop(PendingST[i], SR, I);
+ DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
+ << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
+ PendingST[i] = SR;
+ }
+
+ // Make sure we have a unique live register for every fixed use. Some of
+ // them could be undef uses, and we need to emit LD_F0 instructions.
+ for (unsigned i = 0; i < NumSTUses; ++i) {
+ if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
+ // Check for shared assignments.
+ for (unsigned j = 0; j < i; ++j) {
+ if (PendingST[j] != PendingST[i])
+ continue;
+ // STi and STj are inn the same register, create a copy.
+ unsigned SR = getScratchReg();
+ duplicateToTop(PendingST[i], SR, I);
+ DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
+ << unsigned(PendingST[i])
+ << " to avoid collision with ST" << j << '\n');
+ PendingST[i] = SR;
+ }
+ continue;
+ }
+ unsigned SR = getScratchReg();
+ DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
+ BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
+ pushReg(SR);
+ PendingST[i] = SR;
+ if (NumPendingSTs == i)
+ ++NumPendingSTs;
+ }
+ assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
+
+ // Now we can rearrange the live registers to match what was requested.
+ shuffleStackTop(PendingST, NumPendingSTs, I);
+ DEBUG({dbgs() << "Before asm: "; dumpStack();});
+
+ // With the stack layout fixed, rewrite the FP registers.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
+ continue;
+ unsigned FPReg = getFPReg(Op);
+ Op.setReg(getSTReg(FPReg));
+ }
+
+ // Simulate the inline asm popping its inputs and pushing its outputs.
+ StackTop -= NumSTPopped;
+
+ // Hold the fixed output registers in scratch FP registers. They will be
+ // transferred to real FP registers by copies.
+ NumPendingSTs = 0;
+ for (unsigned i = 0; i < NumSTDefs; ++i) {
+ unsigned SR = getScratchReg();
+ pushReg(SR);
+ FPKills &= ~(1u << SR);
+ }
+ for (unsigned i = 0; i < NumSTDefs; ++i)
+ PendingST[NumPendingSTs++] = getStackEntry(i);
+ DEBUG({dbgs() << "After asm: "; dumpStack();});
+
+ // If any of the ST defs were dead, pop them immediately. Our caller only
+ // handles dead FP defs.
+ MachineBasicBlock::iterator InsertPt = MI;
+ for (unsigned i = 0; STDefs & (1u << i); ++i) {
+ if (!(STDeadDefs & (1u << i)))
+ continue;
+ freeStackSlotAfter(InsertPt, PendingST[i]);
+ PendingST[i] = NumFPRegs;
+ }
+ while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
+ --NumPendingSTs;
+
+ // If this asm kills any FP registers (is the last use of them) we must
+ // explicitly emit pop instructions for them. Do this now after the asm has
+ // executed so that the ST(x) numbers are not off (which would happen if we
+ // did this inline with operand rewriting).
+ //
+ // Note: this might be a non-optimal pop sequence. We might be able to do
+ // better by trying to pop in stack order or something.
+ while (FPKills) {
+ unsigned FPReg = countTrailingZeros(FPKills);
+ if (isLive(FPReg))
+ freeStackSlotAfter(InsertPt, FPReg);
+ FPKills &= ~(1U << FPReg);
+ }
+ // Don't delete the inline asm!
+ return;
+ }
+
+ case X86::WIN_FTOL_32:
+ case X86::WIN_FTOL_64: {
+ // Push the operand into ST0.
+ MachineOperand &Op = MI->getOperand(0);
+ assert(Op.isUse() && Op.isReg() &&
+ Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
+ unsigned FPReg = getFPReg(Op);
+ if (Op.isKill())
+ moveToTop(FPReg, I);
+ else
+ duplicateToTop(FPReg, FPReg, I);
+
+ // Emit the call. This will pop the operand.
+ BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
+ .addExternalSymbol("_ftol2")
+ .addReg(X86::ST0, RegState::ImplicitKill)
+ .addReg(X86::ECX, RegState::ImplicitDefine)
+ .addReg(X86::EAX, RegState::Define | RegState::Implicit)
+ .addReg(X86::EDX, RegState::Define | RegState::Implicit)
+ .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
+ --StackTop;
+
+ break;
+ }
+
+ case X86::RETQ:
+ case X86::RETL:
+ case X86::RETIL:
+ case X86::RETIQ:
+ // If RET has an FP register use operand, pass the first one in ST(0) and
+ // the second one in ST(1).
+
+ // Find the register operands.
+ unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
+ unsigned LiveMask = 0;
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
+ continue;
+ // FP Register uses must be kills unless there are two uses of the same
+ // register, in which case only one will be a kill.
+ assert(Op.isUse() &&
+ (Op.isKill() || // Marked kill.
+ getFPReg(Op) == FirstFPRegOp || // Second instance.
+ MI->killsRegister(Op.getReg())) && // Later use is marked kill.
+ "Ret only defs operands, and values aren't live beyond it");
+
+ if (FirstFPRegOp == ~0U)
+ FirstFPRegOp = getFPReg(Op);
+ else {
+ assert(SecondFPRegOp == ~0U && "More than two fp operands!");
+ SecondFPRegOp = getFPReg(Op);
+ }
+ LiveMask |= (1 << getFPReg(Op));
+
+ // Remove the operand so that later passes don't see it.
+ MI->RemoveOperand(i);
+ --i, --e;
+ }
+
+ // We may have been carrying spurious live-ins, so make sure only the returned
+ // registers are left live.
+ adjustLiveRegs(LiveMask, MI);
+ if (!LiveMask) return; // Quick check to see if any are possible.
+
+ // There are only four possibilities here:
+ // 1) we are returning a single FP value. In this case, it has to be in
+ // ST(0) already, so just declare success by removing the value from the
+ // FP Stack.
+ if (SecondFPRegOp == ~0U) {
+ // Assert that the top of stack contains the right FP register.
+ assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
+ "Top of stack not the right register for RET!");
+
+ // Ok, everything is good, mark the value as not being on the stack
+ // anymore so that our assertion about the stack being empty at end of
+ // block doesn't fire.
+ StackTop = 0;
+ return;
+ }
+
+ // Otherwise, we are returning two values:
+ // 2) If returning the same value for both, we only have one thing in the FP
+ // stack. Consider: RET FP1, FP1
+ if (StackTop == 1) {
+ assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
+ "Stack misconfiguration for RET!");
+
+ // Duplicate the TOS so that we return it twice. Just pick some other FPx
+ // register to hold it.
+ unsigned NewReg = getScratchReg();
+ duplicateToTop(FirstFPRegOp, NewReg, MI);
+ FirstFPRegOp = NewReg;
+ }
+
+ /// Okay we know we have two different FPx operands now:
+ assert(StackTop == 2 && "Must have two values live!");
+
+ /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
+ /// in ST(1). In this case, emit an fxch.
+ if (getStackEntry(0) == SecondFPRegOp) {
+ assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
+ moveToTop(FirstFPRegOp, MI);
+ }
+
+ /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
+ /// ST(1). Just remove both from our understanding of the stack and return.
+ assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
+ assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
+ StackTop = 0;
+ return;
+ }
+
+ I = MBB->erase(I); // Remove the pseudo instruction
+
+ // We want to leave I pointing to the previous instruction, but what if we
+ // just erased the first instruction?
+ if (I == MBB->begin()) {
+ DEBUG(dbgs() << "Inserting dummy KILL\n");
+ I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
+ } else
+ --I;
+}
diff --git a/contrib/llvm/lib/Target/X86/X86FrameLowering.cpp b/contrib/llvm/lib/Target/X86/X86FrameLowering.cpp
new file mode 100644
index 0000000..8c029a8
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86FrameLowering.cpp
@@ -0,0 +1,1739 @@
+//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86FrameLowering.h"
+#include "X86InstrBuilder.h"
+#include "X86InstrInfo.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+// FIXME: completely move here.
+extern cl::opt<bool> ForceStackAlign;
+
+bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ return !MF.getFrameInfo()->hasVarSizedObjects();
+}
+
+/// hasFP - Return true if the specified function should have a dedicated frame
+/// pointer register. This is true if the function has variable sized allocas
+/// or if frame pointer elimination is disabled.
+bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineModuleInfo &MMI = MF.getMMI();
+ const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
+
+ return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
+ RegInfo->needsStackRealignment(MF) ||
+ MFI->hasVarSizedObjects() ||
+ MFI->isFrameAddressTaken() || MFI->hasInlineAsmWithSPAdjust() ||
+ MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
+ MMI.callsUnwindInit() || MMI.callsEHReturn());
+}
+
+static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
+ if (IsLP64) {
+ if (isInt<8>(Imm))
+ return X86::SUB64ri8;
+ return X86::SUB64ri32;
+ } else {
+ if (isInt<8>(Imm))
+ return X86::SUB32ri8;
+ return X86::SUB32ri;
+ }
+}
+
+static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
+ if (IsLP64) {
+ if (isInt<8>(Imm))
+ return X86::ADD64ri8;
+ return X86::ADD64ri32;
+ } else {
+ if (isInt<8>(Imm))
+ return X86::ADD32ri8;
+ return X86::ADD32ri;
+ }
+}
+
+static unsigned getLEArOpcode(unsigned IsLP64) {
+ return IsLP64 ? X86::LEA64r : X86::LEA32r;
+}
+
+/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
+/// when it reaches the "return" instruction. We can then pop a stack object
+/// to this register without worry about clobbering it.
+static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const TargetRegisterInfo &TRI,
+ bool Is64Bit) {
+ const MachineFunction *MF = MBB.getParent();
+ const Function *F = MF->getFunction();
+ if (!F || MF->getMMI().callsEHReturn())
+ return 0;
+
+ static const uint16_t CallerSavedRegs32Bit[] = {
+ X86::EAX, X86::EDX, X86::ECX, 0
+ };
+
+ static const uint16_t CallerSavedRegs64Bit[] = {
+ X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
+ X86::R8, X86::R9, X86::R10, X86::R11, 0
+ };
+
+ unsigned Opc = MBBI->getOpcode();
+ switch (Opc) {
+ default: return 0;
+ case X86::RETL:
+ case X86::RETQ:
+ case X86::RETIL:
+ case X86::RETIQ:
+ case X86::TCRETURNdi:
+ case X86::TCRETURNri:
+ case X86::TCRETURNmi:
+ case X86::TCRETURNdi64:
+ case X86::TCRETURNri64:
+ case X86::TCRETURNmi64:
+ case X86::EH_RETURN:
+ case X86::EH_RETURN64: {
+ SmallSet<uint16_t, 8> Uses;
+ for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MBBI->getOperand(i);
+ if (!MO.isReg() || MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
+ Uses.insert(*AI);
+ }
+
+ const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
+ for (; *CS; ++CS)
+ if (!Uses.count(*CS))
+ return *CS;
+ }
+ }
+
+ return 0;
+}
+
+
+/// emitSPUpdate - Emit a series of instructions to increment / decrement the
+/// stack pointer by a constant value.
+static
+void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
+ unsigned StackPtr, int64_t NumBytes,
+ bool Is64Bit, bool IsLP64, bool UseLEA,
+ const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) {
+ bool isSub = NumBytes < 0;
+ uint64_t Offset = isSub ? -NumBytes : NumBytes;
+ unsigned Opc;
+ if (UseLEA)
+ Opc = getLEArOpcode(IsLP64);
+ else
+ Opc = isSub
+ ? getSUBriOpcode(IsLP64, Offset)
+ : getADDriOpcode(IsLP64, Offset);
+
+ uint64_t Chunk = (1LL << 31) - 1;
+ DebugLoc DL = MBB.findDebugLoc(MBBI);
+
+ while (Offset) {
+ uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
+ if (ThisVal == (Is64Bit ? 8 : 4)) {
+ // Use push / pop instead.
+ unsigned Reg = isSub
+ ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
+ : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
+ if (Reg) {
+ Opc = isSub
+ ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
+ : (Is64Bit ? X86::POP64r : X86::POP32r);
+ MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
+ .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
+ if (isSub)
+ MI->setFlag(MachineInstr::FrameSetup);
+ Offset -= ThisVal;
+ continue;
+ }
+ }
+
+ MachineInstr *MI = nullptr;
+
+ if (UseLEA) {
+ MI = addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
+ StackPtr, false, isSub ? -ThisVal : ThisVal);
+ } else {
+ MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
+ .addReg(StackPtr)
+ .addImm(ThisVal);
+ MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
+ }
+
+ if (isSub)
+ MI->setFlag(MachineInstr::FrameSetup);
+
+ Offset -= ThisVal;
+ }
+}
+
+/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
+static
+void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
+ unsigned StackPtr, uint64_t *NumBytes = nullptr) {
+ if (MBBI == MBB.begin()) return;
+
+ MachineBasicBlock::iterator PI = std::prev(MBBI);
+ unsigned Opc = PI->getOpcode();
+ if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
+ Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
+ Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
+ PI->getOperand(0).getReg() == StackPtr) {
+ if (NumBytes)
+ *NumBytes += PI->getOperand(2).getImm();
+ MBB.erase(PI);
+ } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
+ Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
+ PI->getOperand(0).getReg() == StackPtr) {
+ if (NumBytes)
+ *NumBytes -= PI->getOperand(2).getImm();
+ MBB.erase(PI);
+ }
+}
+
+/// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower
+/// iterator.
+static
+void mergeSPUpdatesDown(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ unsigned StackPtr, uint64_t *NumBytes = nullptr) {
+ // FIXME: THIS ISN'T RUN!!!
+ return;
+
+ if (MBBI == MBB.end()) return;
+
+ MachineBasicBlock::iterator NI = std::next(MBBI);
+ if (NI == MBB.end()) return;
+
+ unsigned Opc = NI->getOpcode();
+ if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
+ Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
+ NI->getOperand(0).getReg() == StackPtr) {
+ if (NumBytes)
+ *NumBytes -= NI->getOperand(2).getImm();
+ MBB.erase(NI);
+ MBBI = NI;
+ } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
+ Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
+ NI->getOperand(0).getReg() == StackPtr) {
+ if (NumBytes)
+ *NumBytes += NI->getOperand(2).getImm();
+ MBB.erase(NI);
+ MBBI = NI;
+ }
+}
+
+/// mergeSPUpdates - Checks the instruction before/after the passed
+/// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and
+/// the stack adjustment is returned as a positive value for ADD/LEA and a
+/// negative for SUB.
+static int mergeSPUpdates(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, unsigned StackPtr,
+ bool doMergeWithPrevious) {
+ if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
+ (!doMergeWithPrevious && MBBI == MBB.end()))
+ return 0;
+
+ MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
+ MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
+ : std::next(MBBI);
+ unsigned Opc = PI->getOpcode();
+ int Offset = 0;
+
+ if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
+ Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
+ Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
+ PI->getOperand(0).getReg() == StackPtr){
+ Offset += PI->getOperand(2).getImm();
+ MBB.erase(PI);
+ if (!doMergeWithPrevious) MBBI = NI;
+ } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
+ Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
+ PI->getOperand(0).getReg() == StackPtr) {
+ Offset -= PI->getOperand(2).getImm();
+ MBB.erase(PI);
+ if (!doMergeWithPrevious) MBBI = NI;
+ }
+
+ return Offset;
+}
+
+static bool isEAXLiveIn(MachineFunction &MF) {
+ for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
+ EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
+ unsigned Reg = II->first;
+
+ if (Reg == X86::EAX || Reg == X86::AX ||
+ Reg == X86::AH || Reg == X86::AL)
+ return true;
+ }
+
+ return false;
+}
+
+void
+X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ DebugLoc DL) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineModuleInfo &MMI = MF.getMMI();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+
+ // Add callee saved registers to move list.
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ if (CSI.empty()) return;
+
+ // Calculate offsets.
+ for (std::vector<CalleeSavedInfo>::const_iterator
+ I = CSI.begin(), E = CSI.end(); I != E; ++I) {
+ int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
+ unsigned Reg = I->getReg();
+
+ unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
+ unsigned CFIIndex =
+ MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg,
+ Offset));
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+}
+
+/// usesTheStack - This function checks if any of the users of EFLAGS
+/// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has
+/// to use the stack, and if we don't adjust the stack we clobber the first
+/// frame index.
+/// See X86InstrInfo::copyPhysReg.
+static bool usesTheStack(const MachineFunction &MF) {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ for (MachineRegisterInfo::reg_instr_iterator
+ ri = MRI.reg_instr_begin(X86::EFLAGS), re = MRI.reg_instr_end();
+ ri != re; ++ri)
+ if (ri->isCopy())
+ return true;
+
+ return false;
+}
+
+/// emitPrologue - Push callee-saved registers onto the stack, which
+/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
+/// space for local variables. Also emit labels used by the exception handler to
+/// generate the exception handling frames.
+
+/*
+ Here's a gist of what gets emitted:
+
+ ; Establish frame pointer, if needed
+ [if needs FP]
+ push %rbp
+ .cfi_def_cfa_offset 16
+ .cfi_offset %rbp, -16
+ .seh_pushreg %rpb
+ mov %rsp, %rbp
+ .cfi_def_cfa_register %rbp
+
+ ; Spill general-purpose registers
+ [for all callee-saved GPRs]
+ pushq %<reg>
+ [if not needs FP]
+ .cfi_def_cfa_offset (offset from RETADDR)
+ .seh_pushreg %<reg>
+
+ ; If the required stack alignment > default stack alignment
+ ; rsp needs to be re-aligned. This creates a "re-alignment gap"
+ ; of unknown size in the stack frame.
+ [if stack needs re-alignment]
+ and $MASK, %rsp
+
+ ; Allocate space for locals
+ [if target is Windows and allocated space > 4096 bytes]
+ ; Windows needs special care for allocations larger
+ ; than one page.
+ mov $NNN, %rax
+ call ___chkstk_ms/___chkstk
+ sub %rax, %rsp
+ [else]
+ sub $NNN, %rsp
+
+ [if needs FP]
+ .seh_stackalloc (size of XMM spill slots)
+ .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
+ [else]
+ .seh_stackalloc NNN
+
+ ; Spill XMMs
+ ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
+ ; they may get spilled on any platform, if the current function
+ ; calls @llvm.eh.unwind.init
+ [if needs FP]
+ [for all callee-saved XMM registers]
+ movaps %<xmm reg>, -MMM(%rbp)
+ [for all callee-saved XMM registers]
+ .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
+ ; i.e. the offset relative to (%rbp - SEHFrameOffset)
+ [else]
+ [for all callee-saved XMM registers]
+ movaps %<xmm reg>, KKK(%rsp)
+ [for all callee-saved XMM registers]
+ .seh_savexmm %<xmm reg>, KKK
+
+ .seh_endprologue
+
+ [if needs base pointer]
+ mov %rsp, %rbx
+
+ ; Emit CFI info
+ [if needs FP]
+ [for all callee-saved registers]
+ .cfi_offset %<reg>, (offset from %rbp)
+ [else]
+ .cfi_def_cfa_offset (offset from RETADDR)
+ [for all callee-saved registers]
+ .cfi_offset %<reg>, (offset from %rsp)
+
+ Notes:
+ - .seh directives are emitted only for Windows 64 ABI
+ - .cfi directives are emitted for all other ABIs
+ - for 32-bit code, substitute %e?? registers for %r??
+*/
+
+void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const Function *Fn = MF.getFunction();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo());
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ MachineModuleInfo &MMI = MF.getMMI();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
+ uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate.
+ bool HasFP = hasFP(MF);
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ bool Is64Bit = STI.is64Bit();
+ bool IsLP64 = STI.isTarget64BitLP64();
+ bool IsWin64 = STI.isTargetWin64();
+ bool IsWinEH =
+ MF.getTarget().getMCAsmInfo()->getExceptionHandlingType() ==
+ ExceptionHandling::WinEH; // Not necessarily synonymous with IsWin64.
+ bool NeedsWinEH = IsWinEH && Fn->needsUnwindTableEntry();
+ bool NeedsDwarfCFI =
+ !IsWinEH && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
+ bool UseLEA = STI.useLeaForSP();
+ unsigned StackAlign = getStackAlignment();
+ unsigned SlotSize = RegInfo->getSlotSize();
+ unsigned FramePtr = RegInfo->getFrameRegister(MF);
+ unsigned StackPtr = RegInfo->getStackRegister();
+ unsigned BasePtr = RegInfo->getBaseRegister();
+ DebugLoc DL;
+
+ // If we're forcing a stack realignment we can't rely on just the frame
+ // info, we need to know the ABI stack alignment as well in case we
+ // have a call out. Otherwise just make sure we have some alignment - we'll
+ // go with the minimum SlotSize.
+ if (ForceStackAlign) {
+ if (MFI->hasCalls())
+ MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
+ else if (MaxAlign < SlotSize)
+ MaxAlign = SlotSize;
+ }
+
+ // Add RETADDR move area to callee saved frame size.
+ int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
+ if (TailCallReturnAddrDelta < 0)
+ X86FI->setCalleeSavedFrameSize(
+ X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
+
+ // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
+ // function, and use up to 128 bytes of stack space, don't have a frame
+ // pointer, calls, or dynamic alloca then we do not need to adjust the
+ // stack pointer (we fit in the Red Zone). We also check that we don't
+ // push and pop from the stack.
+ if (Is64Bit && !Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NoRedZone) &&
+ !RegInfo->needsStackRealignment(MF) &&
+ !MFI->hasVarSizedObjects() && // No dynamic alloca.
+ !MFI->adjustsStack() && // No calls.
+ !IsWin64 && // Win64 has no Red Zone
+ !usesTheStack(MF) && // Don't push and pop.
+ !MF.shouldSplitStack()) { // Regular stack
+ uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
+ if (HasFP) MinSize += SlotSize;
+ StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
+ MFI->setStackSize(StackSize);
+ }
+
+ // Insert stack pointer adjustment for later moving of return addr. Only
+ // applies to tail call optimized functions where the callee argument stack
+ // size is bigger than the callers.
+ if (TailCallReturnAddrDelta < 0) {
+ MachineInstr *MI =
+ BuildMI(MBB, MBBI, DL,
+ TII.get(getSUBriOpcode(IsLP64, -TailCallReturnAddrDelta)),
+ StackPtr)
+ .addReg(StackPtr)
+ .addImm(-TailCallReturnAddrDelta)
+ .setMIFlag(MachineInstr::FrameSetup);
+ MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
+ }
+
+ // Mapping for machine moves:
+ //
+ // DST: VirtualFP AND
+ // SRC: VirtualFP => DW_CFA_def_cfa_offset
+ // ELSE => DW_CFA_def_cfa
+ //
+ // SRC: VirtualFP AND
+ // DST: Register => DW_CFA_def_cfa_register
+ //
+ // ELSE
+ // OFFSET < 0 => DW_CFA_offset_extended_sf
+ // REG < 64 => DW_CFA_offset + Reg
+ // ELSE => DW_CFA_offset_extended
+
+ uint64_t NumBytes = 0;
+ int stackGrowth = -SlotSize;
+
+ if (HasFP) {
+ // Calculate required stack adjustment.
+ uint64_t FrameSize = StackSize - SlotSize;
+ if (RegInfo->needsStackRealignment(MF)) {
+ // Callee-saved registers are pushed on stack before the stack
+ // is realigned.
+ FrameSize -= X86FI->getCalleeSavedFrameSize();
+ NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
+ } else {
+ NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
+ }
+
+ // Get the offset of the stack slot for the EBP register, which is
+ // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
+ // Update the frame offset adjustment.
+ MFI->setOffsetAdjustment(-NumBytes);
+
+ // Save EBP/RBP into the appropriate stack slot.
+ BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
+ .addReg(FramePtr, RegState::Kill)
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ if (NeedsDwarfCFI) {
+ // Mark the place where EBP/RBP was saved.
+ // Define the current CFA rule to use the provided offset.
+ assert(StackSize);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // Change the rule for the FramePtr to be an "offset" rule.
+ unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
+ CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr,
+ DwarfFramePtr, 2 * stackGrowth));
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ if (NeedsWinEH) {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
+ .addImm(FramePtr)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ // Update EBP with the new base value.
+ BuildMI(MBB, MBBI, DL,
+ TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
+ .addReg(StackPtr)
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ if (NeedsDwarfCFI) {
+ // Mark effective beginning of when frame pointer becomes valid.
+ // Define the current CFA to use the EBP/RBP register.
+ unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr));
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ // Mark the FramePtr as live-in in every block.
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ I->addLiveIn(FramePtr);
+ } else {
+ NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
+ }
+
+ // Skip the callee-saved push instructions.
+ bool PushedRegs = false;
+ int StackOffset = 2 * stackGrowth;
+
+ while (MBBI != MBB.end() &&
+ (MBBI->getOpcode() == X86::PUSH32r ||
+ MBBI->getOpcode() == X86::PUSH64r)) {
+ PushedRegs = true;
+ unsigned Reg = MBBI->getOperand(0).getReg();
+ ++MBBI;
+
+ if (!HasFP && NeedsDwarfCFI) {
+ // Mark callee-saved push instruction.
+ // Define the current CFA rule to use the provided offset.
+ assert(StackSize);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ StackOffset += stackGrowth;
+ }
+
+ if (NeedsWinEH) {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
+ MachineInstr::FrameSetup);
+ }
+ }
+
+ // Realign stack after we pushed callee-saved registers (so that we'll be
+ // able to calculate their offsets from the frame pointer).
+ if (RegInfo->needsStackRealignment(MF)) {
+ assert(HasFP && "There should be a frame pointer if stack is realigned.");
+ MachineInstr *MI =
+ BuildMI(MBB, MBBI, DL,
+ TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
+ .addReg(StackPtr)
+ .addImm(-MaxAlign)
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ // The EFLAGS implicit def is dead.
+ MI->getOperand(3).setIsDead();
+ }
+
+ // If there is an SUB32ri of ESP immediately before this instruction, merge
+ // the two. This can be the case when tail call elimination is enabled and
+ // the callee has more arguments then the caller.
+ NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
+
+ // If there is an ADD32ri or SUB32ri of ESP immediately after this
+ // instruction, merge the two instructions.
+ mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
+
+ // Adjust stack pointer: ESP -= numbytes.
+
+ // Windows and cygwin/mingw require a prologue helper routine when allocating
+ // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
+ // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
+ // stack and adjust the stack pointer in one go. The 64-bit version of
+ // __chkstk is only responsible for probing the stack. The 64-bit prologue is
+ // responsible for adjusting the stack pointer. Touching the stack at 4K
+ // increments is necessary to ensure that the guard pages used by the OS
+ // virtual memory manager are allocated in correct sequence.
+ if (NumBytes >= 4096 && STI.isOSWindows() && !STI.isTargetMacho()) {
+ const char *StackProbeSymbol;
+
+ if (Is64Bit) {
+ if (STI.isTargetCygMing()) {
+ StackProbeSymbol = "___chkstk_ms";
+ } else {
+ StackProbeSymbol = "__chkstk";
+ }
+ } else if (STI.isTargetCygMing())
+ StackProbeSymbol = "_alloca";
+ else
+ StackProbeSymbol = "_chkstk";
+
+ // Check whether EAX is livein for this function.
+ bool isEAXAlive = isEAXLiveIn(MF);
+
+ if (isEAXAlive) {
+ // Sanity check that EAX is not livein for this function.
+ // It should not be, so throw an assert.
+ assert(!Is64Bit && "EAX is livein in x64 case!");
+
+ // Save EAX
+ BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
+ .addReg(X86::EAX, RegState::Kill)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ if (Is64Bit) {
+ // Handle the 64-bit Windows ABI case where we need to call __chkstk.
+ // Function prologue is responsible for adjusting the stack pointer.
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
+ .addImm(NumBytes)
+ .setMIFlag(MachineInstr::FrameSetup);
+ } else {
+ // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
+ // We'll also use 4 already allocated bytes for EAX.
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
+ .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ BuildMI(MBB, MBBI, DL,
+ TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32))
+ .addExternalSymbol(StackProbeSymbol)
+ .addReg(StackPtr, RegState::Define | RegState::Implicit)
+ .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ if (Is64Bit) {
+ // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
+ // themself. It also does not clobber %rax so we can reuse it when
+ // adjusting %rsp.
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), StackPtr)
+ .addReg(StackPtr)
+ .addReg(X86::RAX)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ if (isEAXAlive) {
+ // Restore EAX
+ MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
+ X86::EAX),
+ StackPtr, false, NumBytes - 4);
+ MI->setFlag(MachineInstr::FrameSetup);
+ MBB.insert(MBBI, MI);
+ }
+ } else if (NumBytes) {
+ emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, IsLP64,
+ UseLEA, TII, *RegInfo);
+ }
+
+ int SEHFrameOffset = 0;
+ if (NeedsWinEH) {
+ if (HasFP) {
+ // We need to set frame base offset low enough such that all saved
+ // register offsets would be positive relative to it, but we can't
+ // just use NumBytes, because .seh_setframe offset must be <=240.
+ // So we pretend to have only allocated enough space to spill the
+ // non-volatile registers.
+ // We don't care about the rest of stack allocation, because unwinder
+ // will restore SP to (BP - SEHFrameOffset)
+ for (const CalleeSavedInfo &Info : MFI->getCalleeSavedInfo()) {
+ int offset = MFI->getObjectOffset(Info.getFrameIdx());
+ SEHFrameOffset = std::max(SEHFrameOffset, abs(offset));
+ }
+ SEHFrameOffset += SEHFrameOffset % 16; // ensure alignmant
+
+ // This only needs to account for XMM spill slots, GPR slots
+ // are covered by the .seh_pushreg's emitted above.
+ unsigned Size = SEHFrameOffset - X86FI->getCalleeSavedFrameSize();
+ if (Size) {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
+ .addImm(Size)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
+ .addImm(FramePtr)
+ .addImm(SEHFrameOffset)
+ .setMIFlag(MachineInstr::FrameSetup);
+ } else {
+ // SP will be the base register for restoring XMMs
+ if (NumBytes) {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
+ .addImm(NumBytes)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ }
+ }
+
+ // Skip the rest of register spilling code
+ while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
+ ++MBBI;
+
+ // Emit SEH info for non-GPRs
+ if (NeedsWinEH) {
+ for (const CalleeSavedInfo &Info : MFI->getCalleeSavedInfo()) {
+ unsigned Reg = Info.getReg();
+ if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
+ continue;
+ assert(X86::FR64RegClass.contains(Reg) && "Unexpected register class");
+
+ int Offset = getFrameIndexOffset(MF, Info.getFrameIdx());
+ Offset += SEHFrameOffset;
+
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
+ .addImm(Reg)
+ .addImm(Offset)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ // If we need a base pointer, set it up here. It's whatever the value
+ // of the stack pointer is at this point. Any variable size objects
+ // will be allocated after this, so we can still use the base pointer
+ // to reference locals.
+ if (RegInfo->hasBasePointer(MF)) {
+ // Update the base pointer with the current stack pointer.
+ unsigned Opc = Is64Bit ? X86::MOV64rr : X86::MOV32rr;
+ BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
+ .addReg(StackPtr)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
+ // Mark end of stack pointer adjustment.
+ if (!HasFP && NumBytes) {
+ // Define the current CFA rule to use the provided offset.
+ assert(StackSize);
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr,
+ -StackSize + stackGrowth));
+
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ // Emit DWARF info specifying the offsets of the callee-saved registers.
+ if (PushedRegs)
+ emitCalleeSavedFrameMoves(MBB, MBBI, DL);
+ }
+}
+
+void X86FrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo());
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ assert(MBBI != MBB.end() && "Returning block has no instructions");
+ unsigned RetOpcode = MBBI->getOpcode();
+ DebugLoc DL = MBBI->getDebugLoc();
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ bool Is64Bit = STI.is64Bit();
+ bool IsLP64 = STI.isTarget64BitLP64();
+ bool UseLEA = STI.useLeaForSP();
+ unsigned StackAlign = getStackAlignment();
+ unsigned SlotSize = RegInfo->getSlotSize();
+ unsigned FramePtr = RegInfo->getFrameRegister(MF);
+ unsigned StackPtr = RegInfo->getStackRegister();
+
+ switch (RetOpcode) {
+ default:
+ llvm_unreachable("Can only insert epilog into returning blocks");
+ case X86::RETQ:
+ case X86::RETL:
+ case X86::RETIL:
+ case X86::RETIQ:
+ case X86::TCRETURNdi:
+ case X86::TCRETURNri:
+ case X86::TCRETURNmi:
+ case X86::TCRETURNdi64:
+ case X86::TCRETURNri64:
+ case X86::TCRETURNmi64:
+ case X86::EH_RETURN:
+ case X86::EH_RETURN64:
+ break; // These are ok
+ }
+
+ // Get the number of bytes to allocate from the FrameInfo.
+ uint64_t StackSize = MFI->getStackSize();
+ uint64_t MaxAlign = MFI->getMaxAlignment();
+ unsigned CSSize = X86FI->getCalleeSavedFrameSize();
+ uint64_t NumBytes = 0;
+
+ // If we're forcing a stack realignment we can't rely on just the frame
+ // info, we need to know the ABI stack alignment as well in case we
+ // have a call out. Otherwise just make sure we have some alignment - we'll
+ // go with the minimum.
+ if (ForceStackAlign) {
+ if (MFI->hasCalls())
+ MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
+ else
+ MaxAlign = MaxAlign ? MaxAlign : 4;
+ }
+
+ if (hasFP(MF)) {
+ // Calculate required stack adjustment.
+ uint64_t FrameSize = StackSize - SlotSize;
+ if (RegInfo->needsStackRealignment(MF)) {
+ // Callee-saved registers were pushed on stack before the stack
+ // was realigned.
+ FrameSize -= CSSize;
+ NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
+ } else {
+ NumBytes = FrameSize - CSSize;
+ }
+
+ // Pop EBP.
+ BuildMI(MBB, MBBI, DL,
+ TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
+ } else {
+ NumBytes = StackSize - CSSize;
+ }
+
+ // Skip the callee-saved pop instructions.
+ while (MBBI != MBB.begin()) {
+ MachineBasicBlock::iterator PI = std::prev(MBBI);
+ unsigned Opc = PI->getOpcode();
+
+ if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
+ !PI->isTerminator())
+ break;
+
+ --MBBI;
+ }
+ MachineBasicBlock::iterator FirstCSPop = MBBI;
+
+ DL = MBBI->getDebugLoc();
+
+ // If there is an ADD32ri or SUB32ri of ESP immediately before this
+ // instruction, merge the two instructions.
+ if (NumBytes || MFI->hasVarSizedObjects())
+ mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
+
+ // If dynamic alloca is used, then reset esp to point to the last callee-saved
+ // slot before popping them off! Same applies for the case, when stack was
+ // realigned.
+ if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) {
+ if (RegInfo->needsStackRealignment(MF))
+ MBBI = FirstCSPop;
+ if (CSSize != 0) {
+ unsigned Opc = getLEArOpcode(IsLP64);
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
+ FramePtr, false, -CSSize);
+ } else {
+ unsigned Opc = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
+ BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
+ .addReg(FramePtr);
+ }
+ } else if (NumBytes) {
+ // Adjust stack pointer back: ESP += numbytes.
+ emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, IsLP64, UseLEA,
+ TII, *RegInfo);
+ }
+
+ // We're returning from function via eh_return.
+ if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &DestAddr = MBBI->getOperand(0);
+ assert(DestAddr.isReg() && "Offset should be in register!");
+ BuildMI(MBB, MBBI, DL,
+ TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
+ StackPtr).addReg(DestAddr.getReg());
+ } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
+ RetOpcode == X86::TCRETURNmi ||
+ RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
+ RetOpcode == X86::TCRETURNmi64) {
+ bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
+ // Tail call return: adjust the stack pointer and jump to callee.
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &JumpTarget = MBBI->getOperand(0);
+ MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
+ assert(StackAdjust.isImm() && "Expecting immediate value.");
+
+ // Adjust stack pointer.
+ int StackAdj = StackAdjust.getImm();
+ int MaxTCDelta = X86FI->getTCReturnAddrDelta();
+ int Offset = 0;
+ assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
+
+ // Incoporate the retaddr area.
+ Offset = StackAdj-MaxTCDelta;
+ assert(Offset >= 0 && "Offset should never be negative");
+
+ if (Offset) {
+ // Check for possible merge with preceding ADD instruction.
+ Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
+ emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, IsLP64,
+ UseLEA, TII, *RegInfo);
+ }
+
+ // Jump to label or value in register.
+ if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
+ ? X86::TAILJMPd : X86::TAILJMPd64));
+ if (JumpTarget.isGlobal())
+ MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
+ JumpTarget.getTargetFlags());
+ else {
+ assert(JumpTarget.isSymbol());
+ MIB.addExternalSymbol(JumpTarget.getSymbolName(),
+ JumpTarget.getTargetFlags());
+ }
+ } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
+ ? X86::TAILJMPm : X86::TAILJMPm64));
+ for (unsigned i = 0; i != 5; ++i)
+ MIB.addOperand(MBBI->getOperand(i));
+ } else if (RetOpcode == X86::TCRETURNri64) {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
+ addReg(JumpTarget.getReg(), RegState::Kill);
+ } else {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
+ addReg(JumpTarget.getReg(), RegState::Kill);
+ }
+
+ MachineInstr *NewMI = std::prev(MBBI);
+ NewMI->copyImplicitOps(MF, MBBI);
+
+ // Delete the pseudo instruction TCRETURN.
+ MBB.erase(MBBI);
+ } else if ((RetOpcode == X86::RETQ || RetOpcode == X86::RETL ||
+ RetOpcode == X86::RETIQ || RetOpcode == X86::RETIL) &&
+ (X86FI->getTCReturnAddrDelta() < 0)) {
+ // Add the return addr area delta back since we are not tail calling.
+ int delta = -1*X86FI->getTCReturnAddrDelta();
+ MBBI = MBB.getLastNonDebugInstr();
+
+ // Check for possible merge with preceding ADD instruction.
+ delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
+ emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, IsLP64, UseLEA, TII,
+ *RegInfo);
+ }
+}
+
+int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF,
+ int FI) const {
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
+ uint64_t StackSize = MFI->getStackSize();
+
+ if (RegInfo->hasBasePointer(MF)) {
+ assert (hasFP(MF) && "VLAs and dynamic stack realign, but no FP?!");
+ if (FI < 0) {
+ // Skip the saved EBP.
+ return Offset + RegInfo->getSlotSize();
+ } else {
+ assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
+ return Offset + StackSize;
+ }
+ } else if (RegInfo->needsStackRealignment(MF)) {
+ if (FI < 0) {
+ // Skip the saved EBP.
+ return Offset + RegInfo->getSlotSize();
+ } else {
+ assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
+ return Offset + StackSize;
+ }
+ // FIXME: Support tail calls
+ } else {
+ if (!hasFP(MF))
+ return Offset + StackSize;
+
+ // Skip the saved EBP.
+ Offset += RegInfo->getSlotSize();
+
+ // Skip the RETADDR move area
+ const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
+ if (TailCallReturnAddrDelta < 0)
+ Offset -= TailCallReturnAddrDelta;
+ }
+
+ return Offset;
+}
+
+int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const {
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
+ // We can't calculate offset from frame pointer if the stack is realigned,
+ // so enforce usage of stack/base pointer. The base pointer is used when we
+ // have dynamic allocas in addition to dynamic realignment.
+ if (RegInfo->hasBasePointer(MF))
+ FrameReg = RegInfo->getBaseRegister();
+ else if (RegInfo->needsStackRealignment(MF))
+ FrameReg = RegInfo->getStackRegister();
+ else
+ FrameReg = RegInfo->getFrameRegister(MF);
+ return getFrameIndexOffset(MF, FI);
+}
+
+bool X86FrameLowering::assignCalleeSavedSpillSlots(
+ MachineFunction &MF, const TargetRegisterInfo *TRI,
+ std::vector<CalleeSavedInfo> &CSI) const {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo());
+ unsigned SlotSize = RegInfo->getSlotSize();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+
+ unsigned CalleeSavedFrameSize = 0;
+ int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
+
+ if (hasFP(MF)) {
+ // emitPrologue always spills frame register the first thing.
+ SpillSlotOffset -= SlotSize;
+ MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
+
+ // Since emitPrologue and emitEpilogue will handle spilling and restoring of
+ // the frame register, we can delete it from CSI list and not have to worry
+ // about avoiding it later.
+ unsigned FPReg = RegInfo->getFrameRegister(MF);
+ for (unsigned i = 0; i < CSI.size(); ++i) {
+ if (CSI[i].getReg() == FPReg) {
+ CSI.erase(CSI.begin() + i);
+ break;
+ }
+ }
+ }
+
+ // Assign slots for GPRs. It increases frame size.
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i - 1].getReg();
+
+ if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
+ continue;
+
+ SpillSlotOffset -= SlotSize;
+ CalleeSavedFrameSize += SlotSize;
+
+ int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
+ CSI[i - 1].setFrameIdx(SlotIndex);
+ }
+
+ X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
+
+ // Assign slots for XMMs.
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i - 1].getReg();
+ if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
+ continue;
+
+ const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
+ // ensure alignment
+ SpillSlotOffset -= abs(SpillSlotOffset) % RC->getAlignment();
+ // spill into slot
+ SpillSlotOffset -= RC->getSize();
+ int SlotIndex =
+ MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
+ CSI[i - 1].setFrameIdx(SlotIndex);
+ MFI->ensureMaxAlignment(RC->getAlignment());
+ }
+
+ return true;
+}
+
+bool X86FrameLowering::spillCalleeSavedRegisters(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBB.findDebugLoc(MI);
+
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+
+ // Push GPRs. It increases frame size.
+ unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i - 1].getReg();
+
+ if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
+ continue;
+ // Add the callee-saved register as live-in. It's killed at the spill.
+ MBB.addLiveIn(Reg);
+
+ BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
+ // It can be done by spilling XMMs to stack frame.
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i-1].getReg();
+ if (X86::GR64RegClass.contains(Reg) ||
+ X86::GR32RegClass.contains(Reg))
+ continue;
+ // Add the callee-saved register as live-in. It's killed at the spill.
+ MBB.addLiveIn(Reg);
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+
+ TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
+ TRI);
+ --MI;
+ MI->setFlag(MachineInstr::FrameSetup);
+ ++MI;
+ }
+
+ return true;
+}
+
+bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ DebugLoc DL = MBB.findDebugLoc(MI);
+
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+
+ // Reload XMMs from stack frame.
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ if (X86::GR64RegClass.contains(Reg) ||
+ X86::GR32RegClass.contains(Reg))
+ continue;
+
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
+ }
+
+ // POP GPRs.
+ unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ if (!X86::GR64RegClass.contains(Reg) &&
+ !X86::GR32RegClass.contains(Reg))
+ continue;
+
+ BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
+ }
+ return true;
+}
+
+void
+X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo());
+ unsigned SlotSize = RegInfo->getSlotSize();
+
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
+
+ if (TailCallReturnAddrDelta < 0) {
+ // create RETURNADDR area
+ // arg
+ // arg
+ // RETADDR
+ // { ...
+ // RETADDR area
+ // ...
+ // }
+ // [EBP]
+ MFI->CreateFixedObject(-TailCallReturnAddrDelta,
+ TailCallReturnAddrDelta - SlotSize, true);
+ }
+
+ // Spill the BasePtr if it's used.
+ if (RegInfo->hasBasePointer(MF))
+ MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister());
+}
+
+static bool
+HasNestArgument(const MachineFunction *MF) {
+ const Function *F = MF->getFunction();
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; I++) {
+ if (I->hasNestAttr())
+ return true;
+ }
+ return false;
+}
+
+/// GetScratchRegister - Get a temp register for performing work in the
+/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
+/// and the properties of the function either one or two registers will be
+/// needed. Set primary to true for the first register, false for the second.
+static unsigned
+GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) {
+ CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
+
+ // Erlang stuff.
+ if (CallingConvention == CallingConv::HiPE) {
+ if (Is64Bit)
+ return Primary ? X86::R14 : X86::R13;
+ else
+ return Primary ? X86::EBX : X86::EDI;
+ }
+
+ if (Is64Bit)
+ return Primary ? X86::R11 : X86::R12;
+
+ bool IsNested = HasNestArgument(&MF);
+
+ if (CallingConvention == CallingConv::X86_FastCall ||
+ CallingConvention == CallingConv::Fast) {
+ if (IsNested)
+ report_fatal_error("Segmented stacks does not support fastcall with "
+ "nested function.");
+ return Primary ? X86::EAX : X86::ECX;
+ }
+ if (IsNested)
+ return Primary ? X86::EDX : X86::EAX;
+ return Primary ? X86::ECX : X86::EAX;
+}
+
+// The stack limit in the TCB is set to this many bytes above the actual stack
+// limit.
+static const uint64_t kSplitStackAvailable = 256;
+
+void
+X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
+ MachineBasicBlock &prologueMBB = MF.front();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ uint64_t StackSize;
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ bool Is64Bit = STI.is64Bit();
+ unsigned TlsReg, TlsOffset;
+ DebugLoc DL;
+
+ unsigned ScratchReg = GetScratchRegister(Is64Bit, MF, true);
+ assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
+ "Scratch register is live-in");
+
+ if (MF.getFunction()->isVarArg())
+ report_fatal_error("Segmented stacks do not support vararg functions.");
+ if (!STI.isTargetLinux() && !STI.isTargetDarwin() &&
+ !STI.isTargetWin32() && !STI.isTargetWin64() && !STI.isTargetFreeBSD())
+ report_fatal_error("Segmented stacks not supported on this platform.");
+
+ // Eventually StackSize will be calculated by a link-time pass; which will
+ // also decide whether checking code needs to be injected into this particular
+ // prologue.
+ StackSize = MFI->getStackSize();
+
+ // Do not generate a prologue for functions with a stack of size zero
+ if (StackSize == 0)
+ return;
+
+ MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ bool IsNested = false;
+
+ // We need to know if the function has a nest argument only in 64 bit mode.
+ if (Is64Bit)
+ IsNested = HasNestArgument(&MF);
+
+ // The MOV R10, RAX needs to be in a different block, since the RET we emit in
+ // allocMBB needs to be last (terminating) instruction.
+
+ for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
+ e = prologueMBB.livein_end(); i != e; i++) {
+ allocMBB->addLiveIn(*i);
+ checkMBB->addLiveIn(*i);
+ }
+
+ if (IsNested)
+ allocMBB->addLiveIn(X86::R10);
+
+ MF.push_front(allocMBB);
+ MF.push_front(checkMBB);
+
+ // When the frame size is less than 256 we just compare the stack
+ // boundary directly to the value of the stack pointer, per gcc.
+ bool CompareStackPointer = StackSize < kSplitStackAvailable;
+
+ // Read the limit off the current stacklet off the stack_guard location.
+ if (Is64Bit) {
+ if (STI.isTargetLinux()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x70;
+ } else if (STI.isTargetDarwin()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
+ } else if (STI.isTargetWin64()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x28; // pvArbitrary, reserved for application use
+ } else if (STI.isTargetFreeBSD()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x18;
+ } else {
+ report_fatal_error("Segmented stacks not supported on this platform.");
+ }
+
+ if (CompareStackPointer)
+ ScratchReg = X86::RSP;
+ else
+ BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
+ .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
+
+ BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
+ .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
+ } else {
+ if (STI.isTargetLinux()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x30;
+ } else if (STI.isTargetDarwin()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x48 + 90*4;
+ } else if (STI.isTargetWin32()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x14; // pvArbitrary, reserved for application use
+ } else if (STI.isTargetFreeBSD()) {
+ report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
+ } else {
+ report_fatal_error("Segmented stacks not supported on this platform.");
+ }
+
+ if (CompareStackPointer)
+ ScratchReg = X86::ESP;
+ else
+ BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
+ .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
+
+ if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64()) {
+ BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
+ .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
+ } else if (STI.isTargetDarwin()) {
+
+ // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
+ unsigned ScratchReg2;
+ bool SaveScratch2;
+ if (CompareStackPointer) {
+ // The primary scratch register is available for holding the TLS offset.
+ ScratchReg2 = GetScratchRegister(Is64Bit, MF, true);
+ SaveScratch2 = false;
+ } else {
+ // Need to use a second register to hold the TLS offset
+ ScratchReg2 = GetScratchRegister(Is64Bit, MF, false);
+
+ // Unfortunately, with fastcc the second scratch register may hold an
+ // argument.
+ SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
+ }
+
+ // If Scratch2 is live-in then it needs to be saved.
+ assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
+ "Scratch register is live-in and not saved");
+
+ if (SaveScratch2)
+ BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
+ .addReg(ScratchReg2, RegState::Kill);
+
+ BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
+ .addImm(TlsOffset);
+ BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
+ .addReg(ScratchReg)
+ .addReg(ScratchReg2).addImm(1).addReg(0)
+ .addImm(0)
+ .addReg(TlsReg);
+
+ if (SaveScratch2)
+ BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
+ }
+ }
+
+ // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
+ // It jumps to normal execution of the function body.
+ BuildMI(checkMBB, DL, TII.get(X86::JA_4)).addMBB(&prologueMBB);
+
+ // On 32 bit we first push the arguments size and then the frame size. On 64
+ // bit, we pass the stack frame size in r10 and the argument size in r11.
+ if (Is64Bit) {
+ // Functions with nested arguments use R10, so it needs to be saved across
+ // the call to _morestack
+
+ if (IsNested)
+ BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
+
+ BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
+ .addImm(StackSize);
+ BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
+ .addImm(X86FI->getArgumentStackSize());
+ MF.getRegInfo().setPhysRegUsed(X86::R10);
+ MF.getRegInfo().setPhysRegUsed(X86::R11);
+ } else {
+ BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
+ .addImm(X86FI->getArgumentStackSize());
+ BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
+ .addImm(StackSize);
+ }
+
+ // __morestack is in libgcc
+ if (Is64Bit)
+ BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
+ .addExternalSymbol("__morestack");
+ else
+ BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
+ .addExternalSymbol("__morestack");
+
+ if (IsNested)
+ BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
+ else
+ BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
+
+ allocMBB->addSuccessor(&prologueMBB);
+
+ checkMBB->addSuccessor(allocMBB);
+ checkMBB->addSuccessor(&prologueMBB);
+
+#ifdef XDEBUG
+ MF.verify();
+#endif
+}
+
+/// Erlang programs may need a special prologue to handle the stack size they
+/// might need at runtime. That is because Erlang/OTP does not implement a C
+/// stack but uses a custom implementation of hybrid stack/heap architecture.
+/// (for more information see Eric Stenman's Ph.D. thesis:
+/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
+///
+/// CheckStack:
+/// temp0 = sp - MaxStack
+/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
+/// OldStart:
+/// ...
+/// IncStack:
+/// call inc_stack # doubles the stack space
+/// temp0 = sp - MaxStack
+/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
+void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const unsigned SlotSize =
+ static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo())
+ ->getSlotSize();
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ const bool Is64Bit = STI.is64Bit();
+ DebugLoc DL;
+ // HiPE-specific values
+ const unsigned HipeLeafWords = 24;
+ const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
+ const unsigned Guaranteed = HipeLeafWords * SlotSize;
+ unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
+ MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
+ unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
+
+ assert(STI.isTargetLinux() &&
+ "HiPE prologue is only supported on Linux operating systems.");
+
+ // Compute the largest caller's frame that is needed to fit the callees'
+ // frames. This 'MaxStack' is computed from:
+ //
+ // a) the fixed frame size, which is the space needed for all spilled temps,
+ // b) outgoing on-stack parameter areas, and
+ // c) the minimum stack space this function needs to make available for the
+ // functions it calls (a tunable ABI property).
+ if (MFI->hasCalls()) {
+ unsigned MoreStackForCalls = 0;
+
+ for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
+ MBBI != MBBE; ++MBBI)
+ for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
+ MI != ME; ++MI) {
+ if (!MI->isCall())
+ continue;
+
+ // Get callee operand.
+ const MachineOperand &MO = MI->getOperand(0);
+
+ // Only take account of global function calls (no closures etc.).
+ if (!MO.isGlobal())
+ continue;
+
+ const Function *F = dyn_cast<Function>(MO.getGlobal());
+ if (!F)
+ continue;
+
+ // Do not update 'MaxStack' for primitive and built-in functions
+ // (encoded with names either starting with "erlang."/"bif_" or not
+ // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
+ // "_", such as the BIF "suspend_0") as they are executed on another
+ // stack.
+ if (F->getName().find("erlang.") != StringRef::npos ||
+ F->getName().find("bif_") != StringRef::npos ||
+ F->getName().find_first_of("._") == StringRef::npos)
+ continue;
+
+ unsigned CalleeStkArity =
+ F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
+ if (HipeLeafWords - 1 > CalleeStkArity)
+ MoreStackForCalls = std::max(MoreStackForCalls,
+ (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
+ }
+ MaxStack += MoreStackForCalls;
+ }
+
+ // If the stack frame needed is larger than the guaranteed then runtime checks
+ // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
+ if (MaxStack > Guaranteed) {
+ MachineBasicBlock &prologueMBB = MF.front();
+ MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
+
+ for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(),
+ E = prologueMBB.livein_end(); I != E; I++) {
+ stackCheckMBB->addLiveIn(*I);
+ incStackMBB->addLiveIn(*I);
+ }
+
+ MF.push_front(incStackMBB);
+ MF.push_front(stackCheckMBB);
+
+ unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
+ unsigned LEAop, CMPop, CALLop;
+ if (Is64Bit) {
+ SPReg = X86::RSP;
+ PReg = X86::RBP;
+ LEAop = X86::LEA64r;
+ CMPop = X86::CMP64rm;
+ CALLop = X86::CALL64pcrel32;
+ SPLimitOffset = 0x90;
+ } else {
+ SPReg = X86::ESP;
+ PReg = X86::EBP;
+ LEAop = X86::LEA32r;
+ CMPop = X86::CMP32rm;
+ CALLop = X86::CALLpcrel32;
+ SPLimitOffset = 0x4c;
+ }
+
+ ScratchReg = GetScratchRegister(Is64Bit, MF, true);
+ assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
+ "HiPE prologue scratch register is live-in");
+
+ // Create new MBB for StackCheck:
+ addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
+ SPReg, false, -MaxStack);
+ // SPLimitOffset is in a fixed heap location (pointed by BP).
+ addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
+ .addReg(ScratchReg), PReg, false, SPLimitOffset);
+ BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_4)).addMBB(&prologueMBB);
+
+ // Create new MBB for IncStack:
+ BuildMI(incStackMBB, DL, TII.get(CALLop)).
+ addExternalSymbol("inc_stack_0");
+ addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
+ SPReg, false, -MaxStack);
+ addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
+ .addReg(ScratchReg), PReg, false, SPLimitOffset);
+ BuildMI(incStackMBB, DL, TII.get(X86::JLE_4)).addMBB(incStackMBB);
+
+ stackCheckMBB->addSuccessor(&prologueMBB, 99);
+ stackCheckMBB->addSuccessor(incStackMBB, 1);
+ incStackMBB->addSuccessor(&prologueMBB, 99);
+ incStackMBB->addSuccessor(incStackMBB, 1);
+ }
+#ifdef XDEBUG
+ MF.verify();
+#endif
+}
+
+void X86FrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const X86RegisterInfo &RegInfo =
+ *static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo());
+ unsigned StackPtr = RegInfo.getStackRegister();
+ bool reseveCallFrame = hasReservedCallFrame(MF);
+ int Opcode = I->getOpcode();
+ bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ bool IsLP64 = STI.isTarget64BitLP64();
+ DebugLoc DL = I->getDebugLoc();
+ uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
+ uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
+ I = MBB.erase(I);
+
+ if (!reseveCallFrame) {
+ // If the stack pointer can be changed after prologue, turn the
+ // adjcallstackup instruction into a 'sub ESP, <amt>' and the
+ // adjcallstackdown instruction into 'add ESP, <amt>'
+ // TODO: consider using push / pop instead of sub + store / add
+ if (Amount == 0)
+ return;
+
+ // We need to keep the stack aligned properly. To do this, we round the
+ // amount of space needed for the outgoing arguments up to the next
+ // alignment boundary.
+ unsigned StackAlign =
+ MF.getTarget().getFrameLowering()->getStackAlignment();
+ Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
+
+ MachineInstr *New = nullptr;
+ if (Opcode == TII.getCallFrameSetupOpcode()) {
+ New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)),
+ StackPtr)
+ .addReg(StackPtr)
+ .addImm(Amount);
+ } else {
+ assert(Opcode == TII.getCallFrameDestroyOpcode());
+
+ // Factor out the amount the callee already popped.
+ Amount -= CalleeAmt;
+
+ if (Amount) {
+ unsigned Opc = getADDriOpcode(IsLP64, Amount);
+ New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
+ .addReg(StackPtr).addImm(Amount);
+ }
+ }
+
+ if (New) {
+ // The EFLAGS implicit def is dead.
+ New->getOperand(3).setIsDead();
+
+ // Replace the pseudo instruction with a new instruction.
+ MBB.insert(I, New);
+ }
+
+ return;
+ }
+
+ if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) {
+ // If we are performing frame pointer elimination and if the callee pops
+ // something off the stack pointer, add it back. We do this until we have
+ // more advanced stack pointer tracking ability.
+ unsigned Opc = getSUBriOpcode(IsLP64, CalleeAmt);
+ MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
+ .addReg(StackPtr).addImm(CalleeAmt);
+
+ // The EFLAGS implicit def is dead.
+ New->getOperand(3).setIsDead();
+
+ // We are not tracking the stack pointer adjustment by the callee, so make
+ // sure we restore the stack pointer immediately after the call, there may
+ // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
+ MachineBasicBlock::iterator B = MBB.begin();
+ while (I != B && !std::prev(I)->isCall())
+ --I;
+ MBB.insert(I, New);
+ }
+}
+
diff --git a/contrib/llvm/lib/Target/X86/X86FrameLowering.h b/contrib/llvm/lib/Target/X86/X86FrameLowering.h
new file mode 100644
index 0000000..5ad3d4d
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86FrameLowering.h
@@ -0,0 +1,74 @@
+//===-- X86TargetFrameLowering.h - Define frame lowering for X86 -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class implements X86-specific bits of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86_FRAMELOWERING_H
+#define X86_FRAMELOWERING_H
+
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+
+class MCSymbol;
+class X86TargetMachine;
+
+class X86FrameLowering : public TargetFrameLowering {
+public:
+ explicit X86FrameLowering(StackDirection D, unsigned StackAl, int LAO)
+ : TargetFrameLowering(StackGrowsDown, StackAl, LAO) {}
+
+ void emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ DebugLoc DL) const;
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override;
+
+ void adjustForSegmentedStacks(MachineFunction &MF) const override;
+
+ void adjustForHiPEPrologue(MachineFunction &MF) const override;
+
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS = nullptr) const override;
+
+ bool
+ assignCalleeSavedSpillSlots(MachineFunction &MF,
+ const TargetRegisterInfo *TRI,
+ std::vector<CalleeSavedInfo> &CSI) const override;
+
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool hasFP(const MachineFunction &MF) const override;
+ bool hasReservedCallFrame(const MachineFunction &MF) const override;
+
+ int getFrameIndexOffset(const MachineFunction &MF, int FI) const override;
+ int getFrameIndexReference(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const override;
+
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const override;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp b/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
new file mode 100644
index 0000000..ba2f5f6
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
@@ -0,0 +1,2788 @@
+//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a DAG pattern matching instruction selector for X86,
+// converting from a legalized dag to a X86 dag.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86InstrBuilder.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86RegisterInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-isel"
+
+STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
+
+//===----------------------------------------------------------------------===//
+// Pattern Matcher Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
+ /// SDValue's instead of register numbers for the leaves of the matched
+ /// tree.
+ struct X86ISelAddressMode {
+ enum {
+ RegBase,
+ FrameIndexBase
+ } BaseType;
+
+ // This is really a union, discriminated by BaseType!
+ SDValue Base_Reg;
+ int Base_FrameIndex;
+
+ unsigned Scale;
+ SDValue IndexReg;
+ int32_t Disp;
+ SDValue Segment;
+ const GlobalValue *GV;
+ const Constant *CP;
+ const BlockAddress *BlockAddr;
+ const char *ES;
+ int JT;
+ unsigned Align; // CP alignment.
+ unsigned char SymbolFlags; // X86II::MO_*
+
+ X86ISelAddressMode()
+ : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
+ Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
+ JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {
+ }
+
+ bool hasSymbolicDisplacement() const {
+ return GV != nullptr || CP != nullptr || ES != nullptr ||
+ JT != -1 || BlockAddr != nullptr;
+ }
+
+ bool hasBaseOrIndexReg() const {
+ return BaseType == FrameIndexBase ||
+ IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
+ }
+
+ /// isRIPRelative - Return true if this addressing mode is already RIP
+ /// relative.
+ bool isRIPRelative() const {
+ if (BaseType != RegBase) return false;
+ if (RegisterSDNode *RegNode =
+ dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
+ return RegNode->getReg() == X86::RIP;
+ return false;
+ }
+
+ void setBaseReg(SDValue Reg) {
+ BaseType = RegBase;
+ Base_Reg = Reg;
+ }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ void dump() {
+ dbgs() << "X86ISelAddressMode " << this << '\n';
+ dbgs() << "Base_Reg ";
+ if (Base_Reg.getNode())
+ Base_Reg.getNode()->dump();
+ else
+ dbgs() << "nul";
+ dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
+ << " Scale" << Scale << '\n'
+ << "IndexReg ";
+ if (IndexReg.getNode())
+ IndexReg.getNode()->dump();
+ else
+ dbgs() << "nul";
+ dbgs() << " Disp " << Disp << '\n'
+ << "GV ";
+ if (GV)
+ GV->dump();
+ else
+ dbgs() << "nul";
+ dbgs() << " CP ";
+ if (CP)
+ CP->dump();
+ else
+ dbgs() << "nul";
+ dbgs() << '\n'
+ << "ES ";
+ if (ES)
+ dbgs() << ES;
+ else
+ dbgs() << "nul";
+ dbgs() << " JT" << JT << " Align" << Align << '\n';
+ }
+#endif
+ };
+}
+
+namespace {
+ //===--------------------------------------------------------------------===//
+ /// ISel - X86 specific code to select X86 machine instructions for
+ /// SelectionDAG operations.
+ ///
+ class X86DAGToDAGISel final : public SelectionDAGISel {
+ /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const X86Subtarget *Subtarget;
+
+ /// OptForSize - If true, selector should try to optimize for code size
+ /// instead of performance.
+ bool OptForSize;
+
+ public:
+ explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(tm, OptLevel),
+ Subtarget(&tm.getSubtarget<X86Subtarget>()),
+ OptForSize(false) {}
+
+ const char *getPassName() const override {
+ return "X86 DAG->DAG Instruction Selection";
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ // Reset the subtarget each time through.
+ Subtarget = &TM.getSubtarget<X86Subtarget>();
+ SelectionDAGISel::runOnMachineFunction(MF);
+ return true;
+ }
+
+ void EmitFunctionEntryCode() override;
+
+ bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
+
+ void PreprocessISelDAG() override;
+
+ inline bool immSext8(SDNode *N) const {
+ return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
+ }
+
+ // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
+ // sign extended field.
+ inline bool i64immSExt32(SDNode *N) const {
+ uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
+ return (int64_t)v == (int32_t)v;
+ }
+
+// Include the pieces autogenerated from the target description.
+#include "X86GenDAGISel.inc"
+
+ private:
+ SDNode *Select(SDNode *N) override;
+ SDNode *SelectGather(SDNode *N, unsigned Opc);
+ SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
+ SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
+
+ bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
+ bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
+ bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
+ bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
+ bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
+ unsigned Depth);
+ bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
+ bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
+ SDValue &Scale, SDValue &Index, SDValue &Disp,
+ SDValue &Segment);
+ bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
+ bool SelectLEAAddr(SDValue N, SDValue &Base,
+ SDValue &Scale, SDValue &Index, SDValue &Disp,
+ SDValue &Segment);
+ bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
+ SDValue &Scale, SDValue &Index, SDValue &Disp,
+ SDValue &Segment);
+ bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
+ SDValue &Scale, SDValue &Index, SDValue &Disp,
+ SDValue &Segment);
+ bool SelectScalarSSELoad(SDNode *Root, SDValue N,
+ SDValue &Base, SDValue &Scale,
+ SDValue &Index, SDValue &Disp,
+ SDValue &Segment,
+ SDValue &NodeWithChain);
+
+ bool TryFoldLoad(SDNode *P, SDValue N,
+ SDValue &Base, SDValue &Scale,
+ SDValue &Index, SDValue &Disp,
+ SDValue &Segment);
+
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions.
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps) override;
+
+ void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
+
+ inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
+ SDValue &Scale, SDValue &Index,
+ SDValue &Disp, SDValue &Segment) {
+ Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
+ CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
+ getTargetLowering()->getPointerTy()) :
+ AM.Base_Reg;
+ Scale = getI8Imm(AM.Scale);
+ Index = AM.IndexReg;
+ // These are 32-bit even in 64-bit mode since RIP relative offset
+ // is 32-bit.
+ if (AM.GV)
+ Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
+ MVT::i32, AM.Disp,
+ AM.SymbolFlags);
+ else if (AM.CP)
+ Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
+ AM.Align, AM.Disp, AM.SymbolFlags);
+ else if (AM.ES) {
+ assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
+ Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
+ } else if (AM.JT != -1) {
+ assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
+ Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
+ } else if (AM.BlockAddr)
+ Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
+ AM.SymbolFlags);
+ else
+ Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
+
+ if (AM.Segment.getNode())
+ Segment = AM.Segment;
+ else
+ Segment = CurDAG->getRegister(0, MVT::i32);
+ }
+
+ /// getI8Imm - Return a target constant with the specified value, of type
+ /// i8.
+ inline SDValue getI8Imm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i8);
+ }
+
+ /// getI32Imm - Return a target constant with the specified value, of type
+ /// i32.
+ inline SDValue getI32Imm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ }
+
+ /// getGlobalBaseReg - Return an SDNode that returns the value of
+ /// the global base register. Output instructions required to
+ /// initialize the global base register, if necessary.
+ ///
+ SDNode *getGlobalBaseReg();
+
+ /// getTargetMachine - Return a reference to the TargetMachine, casted
+ /// to the target-specific type.
+ const X86TargetMachine &getTargetMachine() const {
+ return static_cast<const X86TargetMachine &>(TM);
+ }
+
+ /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
+ /// to the target-specific type.
+ const X86InstrInfo *getInstrInfo() const {
+ return getTargetMachine().getInstrInfo();
+ }
+ };
+}
+
+
+bool
+X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
+ if (OptLevel == CodeGenOpt::None) return false;
+
+ if (!N.hasOneUse())
+ return false;
+
+ if (N.getOpcode() != ISD::LOAD)
+ return true;
+
+ // If N is a load, do additional profitability checks.
+ if (U == Root) {
+ switch (U->getOpcode()) {
+ default: break;
+ case X86ISD::ADD:
+ case X86ISD::SUB:
+ case X86ISD::AND:
+ case X86ISD::XOR:
+ case X86ISD::OR:
+ case ISD::ADD:
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR: {
+ SDValue Op1 = U->getOperand(1);
+
+ // If the other operand is a 8-bit immediate we should fold the immediate
+ // instead. This reduces code size.
+ // e.g.
+ // movl 4(%esp), %eax
+ // addl $4, %eax
+ // vs.
+ // movl $4, %eax
+ // addl 4(%esp), %eax
+ // The former is 2 bytes shorter. In case where the increment is 1, then
+ // the saving can be 4 bytes (by using incl %eax).
+ if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
+ if (Imm->getAPIntValue().isSignedIntN(8))
+ return false;
+
+ // If the other operand is a TLS address, we should fold it instead.
+ // This produces
+ // movl %gs:0, %eax
+ // leal i@NTPOFF(%eax), %eax
+ // instead of
+ // movl $i@NTPOFF, %eax
+ // addl %gs:0, %eax
+ // if the block also has an access to a second TLS address this will save
+ // a load.
+ // FIXME: This is probably also true for non-TLS addresses.
+ if (Op1.getOpcode() == X86ISD::Wrapper) {
+ SDValue Val = Op1.getOperand(0);
+ if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
+/// load's chain operand and move load below the call's chain operand.
+static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
+ SDValue Call, SDValue OrigChain) {
+ SmallVector<SDValue, 8> Ops;
+ SDValue Chain = OrigChain.getOperand(0);
+ if (Chain.getNode() == Load.getNode())
+ Ops.push_back(Load.getOperand(0));
+ else {
+ assert(Chain.getOpcode() == ISD::TokenFactor &&
+ "Unexpected chain operand");
+ for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
+ if (Chain.getOperand(i).getNode() == Load.getNode())
+ Ops.push_back(Load.getOperand(0));
+ else
+ Ops.push_back(Chain.getOperand(i));
+ SDValue NewChain =
+ CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
+ Ops.clear();
+ Ops.push_back(NewChain);
+ }
+ for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
+ Ops.push_back(OrigChain.getOperand(i));
+ CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
+ CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
+ Load.getOperand(1), Load.getOperand(2));
+
+ unsigned NumOps = Call.getNode()->getNumOperands();
+ Ops.clear();
+ Ops.push_back(SDValue(Load.getNode(), 1));
+ for (unsigned i = 1, e = NumOps; i != e; ++i)
+ Ops.push_back(Call.getOperand(i));
+ CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
+}
+
+/// isCalleeLoad - Return true if call address is a load and it can be
+/// moved below CALLSEQ_START and the chains leading up to the call.
+/// Return the CALLSEQ_START by reference as a second output.
+/// In the case of a tail call, there isn't a callseq node between the call
+/// chain and the load.
+static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
+ // The transformation is somewhat dangerous if the call's chain was glued to
+ // the call. After MoveBelowOrigChain the load is moved between the call and
+ // the chain, this can create a cycle if the load is not folded. So it is
+ // *really* important that we are sure the load will be folded.
+ if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
+ return false;
+ LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
+ if (!LD ||
+ LD->isVolatile() ||
+ LD->getAddressingMode() != ISD::UNINDEXED ||
+ LD->getExtensionType() != ISD::NON_EXTLOAD)
+ return false;
+
+ // Now let's find the callseq_start.
+ while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
+ if (!Chain.hasOneUse())
+ return false;
+ Chain = Chain.getOperand(0);
+ }
+
+ if (!Chain.getNumOperands())
+ return false;
+ // Since we are not checking for AA here, conservatively abort if the chain
+ // writes to memory. It's not safe to move the callee (a load) across a store.
+ if (isa<MemSDNode>(Chain.getNode()) &&
+ cast<MemSDNode>(Chain.getNode())->writeMem())
+ return false;
+ if (Chain.getOperand(0).getNode() == Callee.getNode())
+ return true;
+ if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
+ Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
+ Callee.getValue(1).hasOneUse())
+ return true;
+ return false;
+}
+
+void X86DAGToDAGISel::PreprocessISelDAG() {
+ // OptForSize is used in pattern predicates that isel is matching.
+ OptForSize = MF->getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
+
+ for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
+ E = CurDAG->allnodes_end(); I != E; ) {
+ SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
+
+ if (OptLevel != CodeGenOpt::None &&
+ // Only does this when target favors doesn't favor register indirect
+ // call.
+ ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
+ (N->getOpcode() == X86ISD::TC_RETURN &&
+ // Only does this if load can be folded into TC_RETURN.
+ (Subtarget->is64Bit() ||
+ getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
+ /// Also try moving call address load from outside callseq_start to just
+ /// before the call to allow it to be folded.
+ ///
+ /// [Load chain]
+ /// ^
+ /// |
+ /// [Load]
+ /// ^ ^
+ /// | |
+ /// / \--
+ /// / |
+ ///[CALLSEQ_START] |
+ /// ^ |
+ /// | |
+ /// [LOAD/C2Reg] |
+ /// | |
+ /// \ /
+ /// \ /
+ /// [CALL]
+ bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
+ SDValue Chain = N->getOperand(0);
+ SDValue Load = N->getOperand(1);
+ if (!isCalleeLoad(Load, Chain, HasCallSeq))
+ continue;
+ MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
+ ++NumLoadMoved;
+ continue;
+ }
+
+ // Lower fpround and fpextend nodes that target the FP stack to be store and
+ // load to the stack. This is a gross hack. We would like to simply mark
+ // these as being illegal, but when we do that, legalize produces these when
+ // it expands calls, then expands these in the same legalize pass. We would
+ // like dag combine to be able to hack on these between the call expansion
+ // and the node legalization. As such this pass basically does "really
+ // late" legalization of these inline with the X86 isel pass.
+ // FIXME: This should only happen when not compiled with -O0.
+ if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
+ continue;
+
+ MVT SrcVT = N->getOperand(0).getSimpleValueType();
+ MVT DstVT = N->getSimpleValueType(0);
+
+ // If any of the sources are vectors, no fp stack involved.
+ if (SrcVT.isVector() || DstVT.isVector())
+ continue;
+
+ // If the source and destination are SSE registers, then this is a legal
+ // conversion that should not be lowered.
+ const X86TargetLowering *X86Lowering =
+ static_cast<const X86TargetLowering *>(getTargetLowering());
+ bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
+ bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
+ if (SrcIsSSE && DstIsSSE)
+ continue;
+
+ if (!SrcIsSSE && !DstIsSSE) {
+ // If this is an FPStack extension, it is a noop.
+ if (N->getOpcode() == ISD::FP_EXTEND)
+ continue;
+ // If this is a value-preserving FPStack truncation, it is a noop.
+ if (N->getConstantOperandVal(1))
+ continue;
+ }
+
+ // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
+ // FPStack has extload and truncstore. SSE can fold direct loads into other
+ // operations. Based on this, decide what we want to do.
+ MVT MemVT;
+ if (N->getOpcode() == ISD::FP_ROUND)
+ MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
+ else
+ MemVT = SrcIsSSE ? SrcVT : DstVT;
+
+ SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
+ SDLoc dl(N);
+
+ // FIXME: optimize the case where the src/dest is a load or store?
+ SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
+ N->getOperand(0),
+ MemTmp, MachinePointerInfo(), MemVT,
+ false, false, 0);
+ SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
+ MachinePointerInfo(),
+ MemVT, false, false, 0);
+
+ // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
+ // extload we created. This will cause general havok on the dag because
+ // anything below the conversion could be folded into other existing nodes.
+ // To avoid invalidating 'I', back it up to the convert node.
+ --I;
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
+
+ // Now that we did that, the node is dead. Increment the iterator to the
+ // next node to process, then delete N.
+ ++I;
+ CurDAG->DeleteNode(N);
+ }
+}
+
+
+/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
+/// the main function.
+void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
+ MachineFrameInfo *MFI) {
+ const TargetInstrInfo *TII = TM.getInstrInfo();
+ if (Subtarget->isTargetCygMing()) {
+ unsigned CallOp =
+ Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
+ BuildMI(BB, DebugLoc(),
+ TII->get(CallOp)).addExternalSymbol("__main");
+ }
+}
+
+void X86DAGToDAGISel::EmitFunctionEntryCode() {
+ // If this is main, emit special code for main.
+ if (const Function *Fn = MF->getFunction())
+ if (Fn->hasExternalLinkage() && Fn->getName() == "main")
+ EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
+}
+
+static bool isDispSafeForFrameIndex(int64_t Val) {
+ // On 64-bit platforms, we can run into an issue where a frame index
+ // includes a displacement that, when added to the explicit displacement,
+ // will overflow the displacement field. Assuming that the frame index
+ // displacement fits into a 31-bit integer (which is only slightly more
+ // aggressive than the current fundamental assumption that it fits into
+ // a 32-bit integer), a 31-bit disp should always be safe.
+ return isInt<31>(Val);
+}
+
+bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
+ X86ISelAddressMode &AM) {
+ int64_t Val = AM.Disp + Offset;
+ CodeModel::Model M = TM.getCodeModel();
+ if (Subtarget->is64Bit()) {
+ if (!X86::isOffsetSuitableForCodeModel(Val, M,
+ AM.hasSymbolicDisplacement()))
+ return true;
+ // In addition to the checks required for a register base, check that
+ // we do not try to use an unsafe Disp with a frame index.
+ if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
+ !isDispSafeForFrameIndex(Val))
+ return true;
+ }
+ AM.Disp = Val;
+ return false;
+
+}
+
+bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
+ SDValue Address = N->getOperand(1);
+
+ // load gs:0 -> GS segment register.
+ // load fs:0 -> FS segment register.
+ //
+ // This optimization is valid because the GNU TLS model defines that
+ // gs:0 (or fs:0 on X86-64) contains its own address.
+ // For more information see http://people.redhat.com/drepper/tls.pdf
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
+ if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
+ Subtarget->isTargetLinux())
+ switch (N->getPointerInfo().getAddrSpace()) {
+ case 256:
+ AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
+ return false;
+ case 257:
+ AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
+ return false;
+ }
+
+ return true;
+}
+
+/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
+/// into an addressing mode. These wrap things that will resolve down into a
+/// symbol reference. If no match is possible, this returns true, otherwise it
+/// returns false.
+bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
+ // If the addressing mode already has a symbol as the displacement, we can
+ // never match another symbol.
+ if (AM.hasSymbolicDisplacement())
+ return true;
+
+ SDValue N0 = N.getOperand(0);
+ CodeModel::Model M = TM.getCodeModel();
+
+ // Handle X86-64 rip-relative addresses. We check this before checking direct
+ // folding because RIP is preferable to non-RIP accesses.
+ if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
+ // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
+ // they cannot be folded into immediate fields.
+ // FIXME: This can be improved for kernel and other models?
+ (M == CodeModel::Small || M == CodeModel::Kernel)) {
+ // Base and index reg must be 0 in order to use %rip as base.
+ if (AM.hasBaseOrIndexReg())
+ return true;
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
+ X86ISelAddressMode Backup = AM;
+ AM.GV = G->getGlobal();
+ AM.SymbolFlags = G->getTargetFlags();
+ if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
+ AM = Backup;
+ return true;
+ }
+ } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
+ X86ISelAddressMode Backup = AM;
+ AM.CP = CP->getConstVal();
+ AM.Align = CP->getAlignment();
+ AM.SymbolFlags = CP->getTargetFlags();
+ if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
+ AM = Backup;
+ return true;
+ }
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
+ AM.ES = S->getSymbol();
+ AM.SymbolFlags = S->getTargetFlags();
+ } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
+ AM.JT = J->getIndex();
+ AM.SymbolFlags = J->getTargetFlags();
+ } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
+ X86ISelAddressMode Backup = AM;
+ AM.BlockAddr = BA->getBlockAddress();
+ AM.SymbolFlags = BA->getTargetFlags();
+ if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
+ AM = Backup;
+ return true;
+ }
+ } else
+ llvm_unreachable("Unhandled symbol reference node.");
+
+ if (N.getOpcode() == X86ISD::WrapperRIP)
+ AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
+ return false;
+ }
+
+ // Handle the case when globals fit in our immediate field: This is true for
+ // X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit
+ // mode, this only applies to a non-RIP-relative computation.
+ if (!Subtarget->is64Bit() ||
+ M == CodeModel::Small || M == CodeModel::Kernel) {
+ assert(N.getOpcode() != X86ISD::WrapperRIP &&
+ "RIP-relative addressing already handled");
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
+ AM.GV = G->getGlobal();
+ AM.Disp += G->getOffset();
+ AM.SymbolFlags = G->getTargetFlags();
+ } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
+ AM.CP = CP->getConstVal();
+ AM.Align = CP->getAlignment();
+ AM.Disp += CP->getOffset();
+ AM.SymbolFlags = CP->getTargetFlags();
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
+ AM.ES = S->getSymbol();
+ AM.SymbolFlags = S->getTargetFlags();
+ } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
+ AM.JT = J->getIndex();
+ AM.SymbolFlags = J->getTargetFlags();
+ } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
+ AM.BlockAddr = BA->getBlockAddress();
+ AM.Disp += BA->getOffset();
+ AM.SymbolFlags = BA->getTargetFlags();
+ } else
+ llvm_unreachable("Unhandled symbol reference node.");
+ return false;
+ }
+
+ return true;
+}
+
+/// MatchAddress - Add the specified node to the specified addressing mode,
+/// returning true if it cannot be done. This just pattern matches for the
+/// addressing mode.
+bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
+ if (MatchAddressRecursively(N, AM, 0))
+ return true;
+
+ // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
+ // a smaller encoding and avoids a scaled-index.
+ if (AM.Scale == 2 &&
+ AM.BaseType == X86ISelAddressMode::RegBase &&
+ AM.Base_Reg.getNode() == nullptr) {
+ AM.Base_Reg = AM.IndexReg;
+ AM.Scale = 1;
+ }
+
+ // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
+ // because it has a smaller encoding.
+ // TODO: Which other code models can use this?
+ if (TM.getCodeModel() == CodeModel::Small &&
+ Subtarget->is64Bit() &&
+ AM.Scale == 1 &&
+ AM.BaseType == X86ISelAddressMode::RegBase &&
+ AM.Base_Reg.getNode() == nullptr &&
+ AM.IndexReg.getNode() == nullptr &&
+ AM.SymbolFlags == X86II::MO_NO_FLAG &&
+ AM.hasSymbolicDisplacement())
+ AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
+
+ return false;
+}
+
+// Insert a node into the DAG at least before the Pos node's position. This
+// will reposition the node as needed, and will assign it a node ID that is <=
+// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
+// IDs! The selection DAG must no longer depend on their uniqueness when this
+// is used.
+static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
+ if (N.getNode()->getNodeId() == -1 ||
+ N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
+ DAG.RepositionNode(Pos.getNode(), N.getNode());
+ N.getNode()->setNodeId(Pos.getNode()->getNodeId());
+ }
+}
+
+// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
+// allows us to convert the shift and and into an h-register extract and
+// a scaled index. Returns false if the simplification is performed.
+static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
+ uint64_t Mask,
+ SDValue Shift, SDValue X,
+ X86ISelAddressMode &AM) {
+ if (Shift.getOpcode() != ISD::SRL ||
+ !isa<ConstantSDNode>(Shift.getOperand(1)) ||
+ !Shift.hasOneUse())
+ return true;
+
+ int ScaleLog = 8 - Shift.getConstantOperandVal(1);
+ if (ScaleLog <= 0 || ScaleLog >= 4 ||
+ Mask != (0xffu << ScaleLog))
+ return true;
+
+ MVT VT = N.getSimpleValueType();
+ SDLoc DL(N);
+ SDValue Eight = DAG.getConstant(8, MVT::i8);
+ SDValue NewMask = DAG.getConstant(0xff, VT);
+ SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
+ SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
+ SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
+ SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
+
+ // Insert the new nodes into the topological ordering. We must do this in
+ // a valid topological ordering as nothing is going to go back and re-sort
+ // these nodes. We continually insert before 'N' in sequence as this is
+ // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
+ // hierarchy left to express.
+ InsertDAGNode(DAG, N, Eight);
+ InsertDAGNode(DAG, N, Srl);
+ InsertDAGNode(DAG, N, NewMask);
+ InsertDAGNode(DAG, N, And);
+ InsertDAGNode(DAG, N, ShlCount);
+ InsertDAGNode(DAG, N, Shl);
+ DAG.ReplaceAllUsesWith(N, Shl);
+ AM.IndexReg = And;
+ AM.Scale = (1 << ScaleLog);
+ return false;
+}
+
+// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
+// allows us to fold the shift into this addressing mode. Returns false if the
+// transform succeeded.
+static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
+ uint64_t Mask,
+ SDValue Shift, SDValue X,
+ X86ISelAddressMode &AM) {
+ if (Shift.getOpcode() != ISD::SHL ||
+ !isa<ConstantSDNode>(Shift.getOperand(1)))
+ return true;
+
+ // Not likely to be profitable if either the AND or SHIFT node has more
+ // than one use (unless all uses are for address computation). Besides,
+ // isel mechanism requires their node ids to be reused.
+ if (!N.hasOneUse() || !Shift.hasOneUse())
+ return true;
+
+ // Verify that the shift amount is something we can fold.
+ unsigned ShiftAmt = Shift.getConstantOperandVal(1);
+ if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
+ return true;
+
+ MVT VT = N.getSimpleValueType();
+ SDLoc DL(N);
+ SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
+ SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
+ SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
+
+ // Insert the new nodes into the topological ordering. We must do this in
+ // a valid topological ordering as nothing is going to go back and re-sort
+ // these nodes. We continually insert before 'N' in sequence as this is
+ // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
+ // hierarchy left to express.
+ InsertDAGNode(DAG, N, NewMask);
+ InsertDAGNode(DAG, N, NewAnd);
+ InsertDAGNode(DAG, N, NewShift);
+ DAG.ReplaceAllUsesWith(N, NewShift);
+
+ AM.Scale = 1 << ShiftAmt;
+ AM.IndexReg = NewAnd;
+ return false;
+}
+
+// Implement some heroics to detect shifts of masked values where the mask can
+// be replaced by extending the shift and undoing that in the addressing mode
+// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
+// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
+// the addressing mode. This results in code such as:
+//
+// int f(short *y, int *lookup_table) {
+// ...
+// return *y + lookup_table[*y >> 11];
+// }
+//
+// Turning into:
+// movzwl (%rdi), %eax
+// movl %eax, %ecx
+// shrl $11, %ecx
+// addl (%rsi,%rcx,4), %eax
+//
+// Instead of:
+// movzwl (%rdi), %eax
+// movl %eax, %ecx
+// shrl $9, %ecx
+// andl $124, %rcx
+// addl (%rsi,%rcx), %eax
+//
+// Note that this function assumes the mask is provided as a mask *after* the
+// value is shifted. The input chain may or may not match that, but computing
+// such a mask is trivial.
+static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
+ uint64_t Mask,
+ SDValue Shift, SDValue X,
+ X86ISelAddressMode &AM) {
+ if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
+ !isa<ConstantSDNode>(Shift.getOperand(1)))
+ return true;
+
+ unsigned ShiftAmt = Shift.getConstantOperandVal(1);
+ unsigned MaskLZ = countLeadingZeros(Mask);
+ unsigned MaskTZ = countTrailingZeros(Mask);
+
+ // The amount of shift we're trying to fit into the addressing mode is taken
+ // from the trailing zeros of the mask.
+ unsigned AMShiftAmt = MaskTZ;
+
+ // There is nothing we can do here unless the mask is removing some bits.
+ // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
+ if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
+
+ // We also need to ensure that mask is a continuous run of bits.
+ if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
+
+ // Scale the leading zero count down based on the actual size of the value.
+ // Also scale it down based on the size of the shift.
+ MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
+
+ // The final check is to ensure that any masked out high bits of X are
+ // already known to be zero. Otherwise, the mask has a semantic impact
+ // other than masking out a couple of low bits. Unfortunately, because of
+ // the mask, zero extensions will be removed from operands in some cases.
+ // This code works extra hard to look through extensions because we can
+ // replace them with zero extensions cheaply if necessary.
+ bool ReplacingAnyExtend = false;
+ if (X.getOpcode() == ISD::ANY_EXTEND) {
+ unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
+ X.getOperand(0).getSimpleValueType().getSizeInBits();
+ // Assume that we'll replace the any-extend with a zero-extend, and
+ // narrow the search to the extended value.
+ X = X.getOperand(0);
+ MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
+ ReplacingAnyExtend = true;
+ }
+ APInt MaskedHighBits =
+ APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
+ APInt KnownZero, KnownOne;
+ DAG.computeKnownBits(X, KnownZero, KnownOne);
+ if (MaskedHighBits != KnownZero) return true;
+
+ // We've identified a pattern that can be transformed into a single shift
+ // and an addressing mode. Make it so.
+ MVT VT = N.getSimpleValueType();
+ if (ReplacingAnyExtend) {
+ assert(X.getValueType() != VT);
+ // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
+ SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
+ InsertDAGNode(DAG, N, NewX);
+ X = NewX;
+ }
+ SDLoc DL(N);
+ SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
+ SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
+ SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
+ SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
+
+ // Insert the new nodes into the topological ordering. We must do this in
+ // a valid topological ordering as nothing is going to go back and re-sort
+ // these nodes. We continually insert before 'N' in sequence as this is
+ // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
+ // hierarchy left to express.
+ InsertDAGNode(DAG, N, NewSRLAmt);
+ InsertDAGNode(DAG, N, NewSRL);
+ InsertDAGNode(DAG, N, NewSHLAmt);
+ InsertDAGNode(DAG, N, NewSHL);
+ DAG.ReplaceAllUsesWith(N, NewSHL);
+
+ AM.Scale = 1 << AMShiftAmt;
+ AM.IndexReg = NewSRL;
+ return false;
+}
+
+bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
+ unsigned Depth) {
+ SDLoc dl(N);
+ DEBUG({
+ dbgs() << "MatchAddress: ";
+ AM.dump();
+ });
+ // Limit recursion.
+ if (Depth > 5)
+ return MatchAddressBase(N, AM);
+
+ // If this is already a %rip relative address, we can only merge immediates
+ // into it. Instead of handling this in every case, we handle it here.
+ // RIP relative addressing: %rip + 32-bit displacement!
+ if (AM.isRIPRelative()) {
+ // FIXME: JumpTable and ExternalSymbol address currently don't like
+ // displacements. It isn't very important, but this should be fixed for
+ // consistency.
+ if (!AM.ES && AM.JT != -1) return true;
+
+ if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
+ if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
+ return false;
+ return true;
+ }
+
+ switch (N.getOpcode()) {
+ default: break;
+ case ISD::Constant: {
+ uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
+ if (!FoldOffsetIntoAddress(Val, AM))
+ return false;
+ break;
+ }
+
+ case X86ISD::Wrapper:
+ case X86ISD::WrapperRIP:
+ if (!MatchWrapper(N, AM))
+ return false;
+ break;
+
+ case ISD::LOAD:
+ if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
+ return false;
+ break;
+
+ case ISD::FrameIndex:
+ if (AM.BaseType == X86ISelAddressMode::RegBase &&
+ AM.Base_Reg.getNode() == nullptr &&
+ (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
+ AM.BaseType = X86ISelAddressMode::FrameIndexBase;
+ AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
+ return false;
+ }
+ break;
+
+ case ISD::SHL:
+ if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
+ break;
+
+ if (ConstantSDNode
+ *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
+ unsigned Val = CN->getZExtValue();
+ // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
+ // that the base operand remains free for further matching. If
+ // the base doesn't end up getting used, a post-processing step
+ // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
+ if (Val == 1 || Val == 2 || Val == 3) {
+ AM.Scale = 1 << Val;
+ SDValue ShVal = N.getNode()->getOperand(0);
+
+ // Okay, we know that we have a scale by now. However, if the scaled
+ // value is an add of something and a constant, we can fold the
+ // constant into the disp field here.
+ if (CurDAG->isBaseWithConstantOffset(ShVal)) {
+ AM.IndexReg = ShVal.getNode()->getOperand(0);
+ ConstantSDNode *AddVal =
+ cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
+ uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
+ if (!FoldOffsetIntoAddress(Disp, AM))
+ return false;
+ }
+
+ AM.IndexReg = ShVal;
+ return false;
+ }
+ }
+ break;
+
+ case ISD::SRL: {
+ // Scale must not be used already.
+ if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
+
+ SDValue And = N.getOperand(0);
+ if (And.getOpcode() != ISD::AND) break;
+ SDValue X = And.getOperand(0);
+
+ // We only handle up to 64-bit values here as those are what matter for
+ // addressing mode optimizations.
+ if (X.getSimpleValueType().getSizeInBits() > 64) break;
+
+ // The mask used for the transform is expected to be post-shift, but we
+ // found the shift first so just apply the shift to the mask before passing
+ // it down.
+ if (!isa<ConstantSDNode>(N.getOperand(1)) ||
+ !isa<ConstantSDNode>(And.getOperand(1)))
+ break;
+ uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
+
+ // Try to fold the mask and shift into the scale, and return false if we
+ // succeed.
+ if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
+ return false;
+ break;
+ }
+
+ case ISD::SMUL_LOHI:
+ case ISD::UMUL_LOHI:
+ // A mul_lohi where we need the low part can be folded as a plain multiply.
+ if (N.getResNo() != 0) break;
+ // FALL THROUGH
+ case ISD::MUL:
+ case X86ISD::MUL_IMM:
+ // X*[3,5,9] -> X+X*[2,4,8]
+ if (AM.BaseType == X86ISelAddressMode::RegBase &&
+ AM.Base_Reg.getNode() == nullptr &&
+ AM.IndexReg.getNode() == nullptr) {
+ if (ConstantSDNode
+ *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
+ if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
+ CN->getZExtValue() == 9) {
+ AM.Scale = unsigned(CN->getZExtValue())-1;
+
+ SDValue MulVal = N.getNode()->getOperand(0);
+ SDValue Reg;
+
+ // Okay, we know that we have a scale by now. However, if the scaled
+ // value is an add of something and a constant, we can fold the
+ // constant into the disp field here.
+ if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
+ isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
+ Reg = MulVal.getNode()->getOperand(0);
+ ConstantSDNode *AddVal =
+ cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
+ uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
+ if (FoldOffsetIntoAddress(Disp, AM))
+ Reg = N.getNode()->getOperand(0);
+ } else {
+ Reg = N.getNode()->getOperand(0);
+ }
+
+ AM.IndexReg = AM.Base_Reg = Reg;
+ return false;
+ }
+ }
+ break;
+
+ case ISD::SUB: {
+ // Given A-B, if A can be completely folded into the address and
+ // the index field with the index field unused, use -B as the index.
+ // This is a win if a has multiple parts that can be folded into
+ // the address. Also, this saves a mov if the base register has
+ // other uses, since it avoids a two-address sub instruction, however
+ // it costs an additional mov if the index register has other uses.
+
+ // Add an artificial use to this node so that we can keep track of
+ // it if it gets CSE'd with a different node.
+ HandleSDNode Handle(N);
+
+ // Test if the LHS of the sub can be folded.
+ X86ISelAddressMode Backup = AM;
+ if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
+ AM = Backup;
+ break;
+ }
+ // Test if the index field is free for use.
+ if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
+ AM = Backup;
+ break;
+ }
+
+ int Cost = 0;
+ SDValue RHS = Handle.getValue().getNode()->getOperand(1);
+ // If the RHS involves a register with multiple uses, this
+ // transformation incurs an extra mov, due to the neg instruction
+ // clobbering its operand.
+ if (!RHS.getNode()->hasOneUse() ||
+ RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
+ RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
+ RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
+ (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
+ RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
+ ++Cost;
+ // If the base is a register with multiple uses, this
+ // transformation may save a mov.
+ if ((AM.BaseType == X86ISelAddressMode::RegBase &&
+ AM.Base_Reg.getNode() &&
+ !AM.Base_Reg.getNode()->hasOneUse()) ||
+ AM.BaseType == X86ISelAddressMode::FrameIndexBase)
+ --Cost;
+ // If the folded LHS was interesting, this transformation saves
+ // address arithmetic.
+ if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
+ ((AM.Disp != 0) && (Backup.Disp == 0)) +
+ (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
+ --Cost;
+ // If it doesn't look like it may be an overall win, don't do it.
+ if (Cost >= 0) {
+ AM = Backup;
+ break;
+ }
+
+ // Ok, the transformation is legal and appears profitable. Go for it.
+ SDValue Zero = CurDAG->getConstant(0, N.getValueType());
+ SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
+ AM.IndexReg = Neg;
+ AM.Scale = 1;
+
+ // Insert the new nodes into the topological ordering.
+ InsertDAGNode(*CurDAG, N, Zero);
+ InsertDAGNode(*CurDAG, N, Neg);
+ return false;
+ }
+
+ case ISD::ADD: {
+ // Add an artificial use to this node so that we can keep track of
+ // it if it gets CSE'd with a different node.
+ HandleSDNode Handle(N);
+
+ X86ISelAddressMode Backup = AM;
+ if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
+ !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
+ return false;
+ AM = Backup;
+
+ // Try again after commuting the operands.
+ if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
+ !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
+ return false;
+ AM = Backup;
+
+ // If we couldn't fold both operands into the address at the same time,
+ // see if we can just put each operand into a register and fold at least
+ // the add.
+ if (AM.BaseType == X86ISelAddressMode::RegBase &&
+ !AM.Base_Reg.getNode() &&
+ !AM.IndexReg.getNode()) {
+ N = Handle.getValue();
+ AM.Base_Reg = N.getOperand(0);
+ AM.IndexReg = N.getOperand(1);
+ AM.Scale = 1;
+ return false;
+ }
+ N = Handle.getValue();
+ break;
+ }
+
+ case ISD::OR:
+ // Handle "X | C" as "X + C" iff X is known to have C bits clear.
+ if (CurDAG->isBaseWithConstantOffset(N)) {
+ X86ISelAddressMode Backup = AM;
+ ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
+
+ // Start with the LHS as an addr mode.
+ if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
+ !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
+ return false;
+ AM = Backup;
+ }
+ break;
+
+ case ISD::AND: {
+ // Perform some heroic transforms on an and of a constant-count shift
+ // with a constant to enable use of the scaled offset field.
+
+ // Scale must not be used already.
+ if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
+
+ SDValue Shift = N.getOperand(0);
+ if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
+ SDValue X = Shift.getOperand(0);
+
+ // We only handle up to 64-bit values here as those are what matter for
+ // addressing mode optimizations.
+ if (X.getSimpleValueType().getSizeInBits() > 64) break;
+
+ if (!isa<ConstantSDNode>(N.getOperand(1)))
+ break;
+ uint64_t Mask = N.getConstantOperandVal(1);
+
+ // Try to fold the mask and shift into an extract and scale.
+ if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
+ return false;
+
+ // Try to fold the mask and shift directly into the scale.
+ if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
+ return false;
+
+ // Try to swap the mask and shift to place shifts which can be done as
+ // a scale on the outside of the mask.
+ if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
+ return false;
+ break;
+ }
+ }
+
+ return MatchAddressBase(N, AM);
+}
+
+/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
+/// specified addressing mode without any further recursion.
+bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
+ // Is the base register already occupied?
+ if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
+ // If so, check to see if the scale index register is set.
+ if (!AM.IndexReg.getNode()) {
+ AM.IndexReg = N;
+ AM.Scale = 1;
+ return false;
+ }
+
+ // Otherwise, we cannot select it.
+ return true;
+ }
+
+ // Default, generate it as a register.
+ AM.BaseType = X86ISelAddressMode::RegBase;
+ AM.Base_Reg = N;
+ return false;
+}
+
+/// SelectAddr - returns true if it is able pattern match an addressing mode.
+/// It returns the operands which make up the maximal addressing mode it can
+/// match by reference.
+///
+/// Parent is the parent node of the addr operand that is being matched. It
+/// is always a load, store, atomic node, or null. It is only null when
+/// checking memory operands for inline asm nodes.
+bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
+ SDValue &Scale, SDValue &Index,
+ SDValue &Disp, SDValue &Segment) {
+ X86ISelAddressMode AM;
+
+ if (Parent &&
+ // This list of opcodes are all the nodes that have an "addr:$ptr" operand
+ // that are not a MemSDNode, and thus don't have proper addrspace info.
+ Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
+ Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
+ Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
+ Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
+ Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
+ unsigned AddrSpace =
+ cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
+ // AddrSpace 256 -> GS, 257 -> FS.
+ if (AddrSpace == 256)
+ AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
+ if (AddrSpace == 257)
+ AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
+ }
+
+ if (MatchAddress(N, AM))
+ return false;
+
+ MVT VT = N.getSimpleValueType();
+ if (AM.BaseType == X86ISelAddressMode::RegBase) {
+ if (!AM.Base_Reg.getNode())
+ AM.Base_Reg = CurDAG->getRegister(0, VT);
+ }
+
+ if (!AM.IndexReg.getNode())
+ AM.IndexReg = CurDAG->getRegister(0, VT);
+
+ getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
+ return true;
+}
+
+/// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
+/// match a load whose top elements are either undef or zeros. The load flavor
+/// is derived from the type of N, which is either v4f32 or v2f64.
+///
+/// We also return:
+/// PatternChainNode: this is the matched node that has a chain input and
+/// output.
+bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
+ SDValue N, SDValue &Base,
+ SDValue &Scale, SDValue &Index,
+ SDValue &Disp, SDValue &Segment,
+ SDValue &PatternNodeWithChain) {
+ if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+ PatternNodeWithChain = N.getOperand(0);
+ if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
+ PatternNodeWithChain.hasOneUse() &&
+ IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
+ IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
+ LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
+ if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
+ return false;
+ return true;
+ }
+ }
+
+ // Also handle the case where we explicitly require zeros in the top
+ // elements. This is a vector shuffle from the zero vector.
+ if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
+ // Check to see if the top elements are all zeros (or bitcast of zeros).
+ N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
+ N.getOperand(0).getNode()->hasOneUse() &&
+ ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
+ N.getOperand(0).getOperand(0).hasOneUse() &&
+ IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
+ IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
+ // Okay, this is a zero extending load. Fold it.
+ LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
+ if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
+ return false;
+ PatternNodeWithChain = SDValue(LD, 0);
+ return true;
+ }
+ return false;
+}
+
+
+bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
+ if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
+ uint64_t ImmVal = CN->getZExtValue();
+ if ((uint32_t)ImmVal != (uint64_t)ImmVal)
+ return false;
+
+ Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
+ return true;
+ }
+
+ // In static codegen with small code model, we can get the address of a label
+ // into a register with 'movl'. TableGen has already made sure we're looking
+ // at a label of some kind.
+ assert(N->getOpcode() == X86ISD::Wrapper &&
+ "Unexpected node type for MOV32ri64");
+ N = N.getOperand(0);
+
+ if (N->getOpcode() != ISD::TargetConstantPool &&
+ N->getOpcode() != ISD::TargetJumpTable &&
+ N->getOpcode() != ISD::TargetGlobalAddress &&
+ N->getOpcode() != ISD::TargetExternalSymbol &&
+ N->getOpcode() != ISD::TargetBlockAddress)
+ return false;
+
+ Imm = N;
+ return TM.getCodeModel() == CodeModel::Small;
+}
+
+bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
+ SDValue &Scale, SDValue &Index,
+ SDValue &Disp, SDValue &Segment) {
+ if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
+ return false;
+
+ SDLoc DL(N);
+ RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
+ if (RN && RN->getReg() == 0)
+ Base = CurDAG->getRegister(0, MVT::i64);
+ else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) {
+ // Base could already be %rip, particularly in the x32 ABI.
+ Base = SDValue(CurDAG->getMachineNode(
+ TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
+ CurDAG->getTargetConstant(0, MVT::i64),
+ Base,
+ CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
+ 0);
+ }
+
+ RN = dyn_cast<RegisterSDNode>(Index);
+ if (RN && RN->getReg() == 0)
+ Index = CurDAG->getRegister(0, MVT::i64);
+ else {
+ assert(Index.getValueType() == MVT::i32 &&
+ "Expect to be extending 32-bit registers for use in LEA");
+ Index = SDValue(CurDAG->getMachineNode(
+ TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
+ CurDAG->getTargetConstant(0, MVT::i64),
+ Index,
+ CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
+ 0);
+ }
+
+ return true;
+}
+
+/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
+/// mode it matches can be cost effectively emitted as an LEA instruction.
+bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
+ SDValue &Base, SDValue &Scale,
+ SDValue &Index, SDValue &Disp,
+ SDValue &Segment) {
+ X86ISelAddressMode AM;
+
+ // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
+ // segments.
+ SDValue Copy = AM.Segment;
+ SDValue T = CurDAG->getRegister(0, MVT::i32);
+ AM.Segment = T;
+ if (MatchAddress(N, AM))
+ return false;
+ assert (T == AM.Segment);
+ AM.Segment = Copy;
+
+ MVT VT = N.getSimpleValueType();
+ unsigned Complexity = 0;
+ if (AM.BaseType == X86ISelAddressMode::RegBase)
+ if (AM.Base_Reg.getNode())
+ Complexity = 1;
+ else
+ AM.Base_Reg = CurDAG->getRegister(0, VT);
+ else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
+ Complexity = 4;
+
+ if (AM.IndexReg.getNode())
+ Complexity++;
+ else
+ AM.IndexReg = CurDAG->getRegister(0, VT);
+
+ // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
+ // a simple shift.
+ if (AM.Scale > 1)
+ Complexity++;
+
+ // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
+ // to a LEA. This is determined with some expermentation but is by no means
+ // optimal (especially for code size consideration). LEA is nice because of
+ // its three-address nature. Tweak the cost function again when we can run
+ // convertToThreeAddress() at register allocation time.
+ if (AM.hasSymbolicDisplacement()) {
+ // For X86-64, we should always use lea to materialize RIP relative
+ // addresses.
+ if (Subtarget->is64Bit())
+ Complexity = 4;
+ else
+ Complexity += 2;
+ }
+
+ if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
+ Complexity++;
+
+ // If it isn't worth using an LEA, reject it.
+ if (Complexity <= 2)
+ return false;
+
+ getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
+ return true;
+}
+
+/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
+bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
+ SDValue &Scale, SDValue &Index,
+ SDValue &Disp, SDValue &Segment) {
+ assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
+ const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
+
+ X86ISelAddressMode AM;
+ AM.GV = GA->getGlobal();
+ AM.Disp += GA->getOffset();
+ AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
+ AM.SymbolFlags = GA->getTargetFlags();
+
+ if (N.getValueType() == MVT::i32) {
+ AM.Scale = 1;
+ AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
+ } else {
+ AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
+ }
+
+ getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
+ return true;
+}
+
+
+bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
+ SDValue &Base, SDValue &Scale,
+ SDValue &Index, SDValue &Disp,
+ SDValue &Segment) {
+ if (!ISD::isNON_EXTLoad(N.getNode()) ||
+ !IsProfitableToFold(N, P, P) ||
+ !IsLegalToFold(N, P, P, OptLevel))
+ return false;
+
+ return SelectAddr(N.getNode(),
+ N.getOperand(1), Base, Scale, Index, Disp, Segment);
+}
+
+/// getGlobalBaseReg - Return an SDNode that returns the value of
+/// the global base register. Output instructions required to
+/// initialize the global base register, if necessary.
+///
+SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
+ unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
+ return CurDAG->getRegister(GlobalBaseReg,
+ getTargetLowering()->getPointerTy()).getNode();
+}
+
+SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
+ SDValue Chain = Node->getOperand(0);
+ SDValue In1 = Node->getOperand(1);
+ SDValue In2L = Node->getOperand(2);
+ SDValue In2H = Node->getOperand(3);
+
+ SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
+ if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
+ return nullptr;
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
+ const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
+ SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node),
+ MVT::i32, MVT::i32, MVT::Other, Ops);
+ cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
+ return ResNode;
+}
+
+/// Atomic opcode table
+///
+enum AtomicOpc {
+ ADD,
+ SUB,
+ INC,
+ DEC,
+ OR,
+ AND,
+ XOR,
+ AtomicOpcEnd
+};
+
+enum AtomicSz {
+ ConstantI8,
+ I8,
+ SextConstantI16,
+ ConstantI16,
+ I16,
+ SextConstantI32,
+ ConstantI32,
+ I32,
+ SextConstantI64,
+ ConstantI64,
+ I64,
+ AtomicSzEnd
+};
+
+static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
+ {
+ X86::LOCK_ADD8mi,
+ X86::LOCK_ADD8mr,
+ X86::LOCK_ADD16mi8,
+ X86::LOCK_ADD16mi,
+ X86::LOCK_ADD16mr,
+ X86::LOCK_ADD32mi8,
+ X86::LOCK_ADD32mi,
+ X86::LOCK_ADD32mr,
+ X86::LOCK_ADD64mi8,
+ X86::LOCK_ADD64mi32,
+ X86::LOCK_ADD64mr,
+ },
+ {
+ X86::LOCK_SUB8mi,
+ X86::LOCK_SUB8mr,
+ X86::LOCK_SUB16mi8,
+ X86::LOCK_SUB16mi,
+ X86::LOCK_SUB16mr,
+ X86::LOCK_SUB32mi8,
+ X86::LOCK_SUB32mi,
+ X86::LOCK_SUB32mr,
+ X86::LOCK_SUB64mi8,
+ X86::LOCK_SUB64mi32,
+ X86::LOCK_SUB64mr,
+ },
+ {
+ 0,
+ X86::LOCK_INC8m,
+ 0,
+ 0,
+ X86::LOCK_INC16m,
+ 0,
+ 0,
+ X86::LOCK_INC32m,
+ 0,
+ 0,
+ X86::LOCK_INC64m,
+ },
+ {
+ 0,
+ X86::LOCK_DEC8m,
+ 0,
+ 0,
+ X86::LOCK_DEC16m,
+ 0,
+ 0,
+ X86::LOCK_DEC32m,
+ 0,
+ 0,
+ X86::LOCK_DEC64m,
+ },
+ {
+ X86::LOCK_OR8mi,
+ X86::LOCK_OR8mr,
+ X86::LOCK_OR16mi8,
+ X86::LOCK_OR16mi,
+ X86::LOCK_OR16mr,
+ X86::LOCK_OR32mi8,
+ X86::LOCK_OR32mi,
+ X86::LOCK_OR32mr,
+ X86::LOCK_OR64mi8,
+ X86::LOCK_OR64mi32,
+ X86::LOCK_OR64mr,
+ },
+ {
+ X86::LOCK_AND8mi,
+ X86::LOCK_AND8mr,
+ X86::LOCK_AND16mi8,
+ X86::LOCK_AND16mi,
+ X86::LOCK_AND16mr,
+ X86::LOCK_AND32mi8,
+ X86::LOCK_AND32mi,
+ X86::LOCK_AND32mr,
+ X86::LOCK_AND64mi8,
+ X86::LOCK_AND64mi32,
+ X86::LOCK_AND64mr,
+ },
+ {
+ X86::LOCK_XOR8mi,
+ X86::LOCK_XOR8mr,
+ X86::LOCK_XOR16mi8,
+ X86::LOCK_XOR16mi,
+ X86::LOCK_XOR16mr,
+ X86::LOCK_XOR32mi8,
+ X86::LOCK_XOR32mi,
+ X86::LOCK_XOR32mr,
+ X86::LOCK_XOR64mi8,
+ X86::LOCK_XOR64mi32,
+ X86::LOCK_XOR64mr,
+ }
+};
+
+// Return the target constant operand for atomic-load-op and do simple
+// translations, such as from atomic-load-add to lock-sub. The return value is
+// one of the following 3 cases:
+// + target-constant, the operand could be supported as a target constant.
+// + empty, the operand is not needed any more with the new op selected.
+// + non-empty, otherwise.
+static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
+ SDLoc dl,
+ enum AtomicOpc &Op, MVT NVT,
+ SDValue Val) {
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
+ int64_t CNVal = CN->getSExtValue();
+ // Quit if not 32-bit imm.
+ if ((int32_t)CNVal != CNVal)
+ return Val;
+ // For atomic-load-add, we could do some optimizations.
+ if (Op == ADD) {
+ // Translate to INC/DEC if ADD by 1 or -1.
+ if ((CNVal == 1) || (CNVal == -1)) {
+ Op = (CNVal == 1) ? INC : DEC;
+ // No more constant operand after being translated into INC/DEC.
+ return SDValue();
+ }
+ // Translate to SUB if ADD by negative value.
+ if (CNVal < 0) {
+ Op = SUB;
+ CNVal = -CNVal;
+ }
+ }
+ return CurDAG->getTargetConstant(CNVal, NVT);
+ }
+
+ // If the value operand is single-used, try to optimize it.
+ if (Op == ADD && Val.hasOneUse()) {
+ // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
+ if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
+ Op = SUB;
+ return Val.getOperand(1);
+ }
+ // A special case for i16, which needs truncating as, in most cases, it's
+ // promoted to i32. We will translate
+ // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
+ if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
+ Val.getOperand(0).getOpcode() == ISD::SUB &&
+ X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
+ Op = SUB;
+ Val = Val.getOperand(0);
+ return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
+ Val.getOperand(1));
+ }
+ }
+
+ return Val;
+}
+
+SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
+ if (Node->hasAnyUseOfValue(0))
+ return nullptr;
+
+ SDLoc dl(Node);
+
+ // Optimize common patterns for __sync_or_and_fetch and similar arith
+ // operations where the result is not used. This allows us to use the "lock"
+ // version of the arithmetic instruction.
+ SDValue Chain = Node->getOperand(0);
+ SDValue Ptr = Node->getOperand(1);
+ SDValue Val = Node->getOperand(2);
+ SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
+ if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
+ return nullptr;
+
+ // Which index into the table.
+ enum AtomicOpc Op;
+ switch (Node->getOpcode()) {
+ default:
+ return nullptr;
+ case ISD::ATOMIC_LOAD_OR:
+ Op = OR;
+ break;
+ case ISD::ATOMIC_LOAD_AND:
+ Op = AND;
+ break;
+ case ISD::ATOMIC_LOAD_XOR:
+ Op = XOR;
+ break;
+ case ISD::ATOMIC_LOAD_ADD:
+ Op = ADD;
+ break;
+ }
+
+ Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
+ bool isUnOp = !Val.getNode();
+ bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
+
+ unsigned Opc = 0;
+ switch (NVT.SimpleTy) {
+ default: return nullptr;
+ case MVT::i8:
+ if (isCN)
+ Opc = AtomicOpcTbl[Op][ConstantI8];
+ else
+ Opc = AtomicOpcTbl[Op][I8];
+ break;
+ case MVT::i16:
+ if (isCN) {
+ if (immSext8(Val.getNode()))
+ Opc = AtomicOpcTbl[Op][SextConstantI16];
+ else
+ Opc = AtomicOpcTbl[Op][ConstantI16];
+ } else
+ Opc = AtomicOpcTbl[Op][I16];
+ break;
+ case MVT::i32:
+ if (isCN) {
+ if (immSext8(Val.getNode()))
+ Opc = AtomicOpcTbl[Op][SextConstantI32];
+ else
+ Opc = AtomicOpcTbl[Op][ConstantI32];
+ } else
+ Opc = AtomicOpcTbl[Op][I32];
+ break;
+ case MVT::i64:
+ Opc = AtomicOpcTbl[Op][I64];
+ if (isCN) {
+ if (immSext8(Val.getNode()))
+ Opc = AtomicOpcTbl[Op][SextConstantI64];
+ else if (i64immSExt32(Val.getNode()))
+ Opc = AtomicOpcTbl[Op][ConstantI64];
+ }
+ break;
+ }
+
+ assert(Opc != 0 && "Invalid arith lock transform!");
+
+ SDValue Ret;
+ SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, NVT), 0);
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
+ if (isUnOp) {
+ SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
+ Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
+ } else {
+ SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
+ Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
+ }
+ cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
+ SDValue RetVals[] = { Undef, Ret };
+ return CurDAG->getMergeValues(RetVals, dl).getNode();
+}
+
+/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
+/// any uses which require the SF or OF bits to be accurate.
+static bool HasNoSignedComparisonUses(SDNode *N) {
+ // Examine each user of the node.
+ for (SDNode::use_iterator UI = N->use_begin(),
+ UE = N->use_end(); UI != UE; ++UI) {
+ // Only examine CopyToReg uses.
+ if (UI->getOpcode() != ISD::CopyToReg)
+ return false;
+ // Only examine CopyToReg uses that copy to EFLAGS.
+ if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
+ X86::EFLAGS)
+ return false;
+ // Examine each user of the CopyToReg use.
+ for (SDNode::use_iterator FlagUI = UI->use_begin(),
+ FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
+ // Only examine the Flag result.
+ if (FlagUI.getUse().getResNo() != 1) continue;
+ // Anything unusual: assume conservatively.
+ if (!FlagUI->isMachineOpcode()) return false;
+ // Examine the opcode of the user.
+ switch (FlagUI->getMachineOpcode()) {
+ // These comparisons don't treat the most significant bit specially.
+ case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
+ case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
+ case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
+ case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
+ case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
+ case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
+ case X86::CMOVA16rr: case X86::CMOVA16rm:
+ case X86::CMOVA32rr: case X86::CMOVA32rm:
+ case X86::CMOVA64rr: case X86::CMOVA64rm:
+ case X86::CMOVAE16rr: case X86::CMOVAE16rm:
+ case X86::CMOVAE32rr: case X86::CMOVAE32rm:
+ case X86::CMOVAE64rr: case X86::CMOVAE64rm:
+ case X86::CMOVB16rr: case X86::CMOVB16rm:
+ case X86::CMOVB32rr: case X86::CMOVB32rm:
+ case X86::CMOVB64rr: case X86::CMOVB64rm:
+ case X86::CMOVBE16rr: case X86::CMOVBE16rm:
+ case X86::CMOVBE32rr: case X86::CMOVBE32rm:
+ case X86::CMOVBE64rr: case X86::CMOVBE64rm:
+ case X86::CMOVE16rr: case X86::CMOVE16rm:
+ case X86::CMOVE32rr: case X86::CMOVE32rm:
+ case X86::CMOVE64rr: case X86::CMOVE64rm:
+ case X86::CMOVNE16rr: case X86::CMOVNE16rm:
+ case X86::CMOVNE32rr: case X86::CMOVNE32rm:
+ case X86::CMOVNE64rr: case X86::CMOVNE64rm:
+ case X86::CMOVNP16rr: case X86::CMOVNP16rm:
+ case X86::CMOVNP32rr: case X86::CMOVNP32rm:
+ case X86::CMOVNP64rr: case X86::CMOVNP64rm:
+ case X86::CMOVP16rr: case X86::CMOVP16rm:
+ case X86::CMOVP32rr: case X86::CMOVP32rm:
+ case X86::CMOVP64rr: case X86::CMOVP64rm:
+ continue;
+ // Anything else: assume conservatively.
+ default: return false;
+ }
+ }
+ }
+ return true;
+}
+
+/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
+/// is suitable for doing the {load; increment or decrement; store} to modify
+/// transformation.
+static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
+ SDValue StoredVal, SelectionDAG *CurDAG,
+ LoadSDNode* &LoadNode, SDValue &InputChain) {
+
+ // is the value stored the result of a DEC or INC?
+ if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
+
+ // is the stored value result 0 of the load?
+ if (StoredVal.getResNo() != 0) return false;
+
+ // are there other uses of the loaded value than the inc or dec?
+ if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
+
+ // is the store non-extending and non-indexed?
+ if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
+ return false;
+
+ SDValue Load = StoredVal->getOperand(0);
+ // Is the stored value a non-extending and non-indexed load?
+ if (!ISD::isNormalLoad(Load.getNode())) return false;
+
+ // Return LoadNode by reference.
+ LoadNode = cast<LoadSDNode>(Load);
+ // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
+ EVT LdVT = LoadNode->getMemoryVT();
+ if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
+ LdVT != MVT::i8)
+ return false;
+
+ // Is store the only read of the loaded value?
+ if (!Load.hasOneUse())
+ return false;
+
+ // Is the address of the store the same as the load?
+ if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
+ LoadNode->getOffset() != StoreNode->getOffset())
+ return false;
+
+ // Check if the chain is produced by the load or is a TokenFactor with
+ // the load output chain as an operand. Return InputChain by reference.
+ SDValue Chain = StoreNode->getChain();
+
+ bool ChainCheck = false;
+ if (Chain == Load.getValue(1)) {
+ ChainCheck = true;
+ InputChain = LoadNode->getChain();
+ } else if (Chain.getOpcode() == ISD::TokenFactor) {
+ SmallVector<SDValue, 4> ChainOps;
+ for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
+ SDValue Op = Chain.getOperand(i);
+ if (Op == Load.getValue(1)) {
+ ChainCheck = true;
+ continue;
+ }
+
+ // Make sure using Op as part of the chain would not cause a cycle here.
+ // In theory, we could check whether the chain node is a predecessor of
+ // the load. But that can be very expensive. Instead visit the uses and
+ // make sure they all have smaller node id than the load.
+ int LoadId = LoadNode->getNodeId();
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = UI->use_end(); UI != UE; ++UI) {
+ if (UI.getUse().getResNo() != 0)
+ continue;
+ if (UI->getNodeId() > LoadId)
+ return false;
+ }
+
+ ChainOps.push_back(Op);
+ }
+
+ if (ChainCheck)
+ // Make a new TokenFactor with all the other input chains except
+ // for the load.
+ InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
+ MVT::Other, ChainOps);
+ }
+ if (!ChainCheck)
+ return false;
+
+ return true;
+}
+
+/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
+/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
+static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
+ if (Opc == X86ISD::DEC) {
+ if (LdVT == MVT::i64) return X86::DEC64m;
+ if (LdVT == MVT::i32) return X86::DEC32m;
+ if (LdVT == MVT::i16) return X86::DEC16m;
+ if (LdVT == MVT::i8) return X86::DEC8m;
+ } else {
+ assert(Opc == X86ISD::INC && "unrecognized opcode");
+ if (LdVT == MVT::i64) return X86::INC64m;
+ if (LdVT == MVT::i32) return X86::INC32m;
+ if (LdVT == MVT::i16) return X86::INC16m;
+ if (LdVT == MVT::i8) return X86::INC8m;
+ }
+ llvm_unreachable("unrecognized size for LdVT");
+}
+
+/// SelectGather - Customized ISel for GATHER operations.
+///
+SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
+ // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
+ SDValue Chain = Node->getOperand(0);
+ SDValue VSrc = Node->getOperand(2);
+ SDValue Base = Node->getOperand(3);
+ SDValue VIdx = Node->getOperand(4);
+ SDValue VMask = Node->getOperand(5);
+ ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
+ if (!Scale)
+ return nullptr;
+
+ SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
+ MVT::Other);
+
+ // Memory Operands: Base, Scale, Index, Disp, Segment
+ SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
+ SDValue Segment = CurDAG->getRegister(0, MVT::i32);
+ const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
+ Disp, Segment, VMask, Chain};
+ SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
+ // Node has 2 outputs: VDst and MVT::Other.
+ // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
+ // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
+ // of ResNode.
+ ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
+ ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
+ return ResNode;
+}
+
+SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
+ MVT NVT = Node->getSimpleValueType(0);
+ unsigned Opc, MOpc;
+ unsigned Opcode = Node->getOpcode();
+ SDLoc dl(Node);
+
+ DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
+
+ if (Node->isMachineOpcode()) {
+ DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
+ Node->setNodeId(-1);
+ return nullptr; // Already selected.
+ }
+
+ switch (Opcode) {
+ default: break;
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default: break;
+ case Intrinsic::x86_avx2_gather_d_pd:
+ case Intrinsic::x86_avx2_gather_d_pd_256:
+ case Intrinsic::x86_avx2_gather_q_pd:
+ case Intrinsic::x86_avx2_gather_q_pd_256:
+ case Intrinsic::x86_avx2_gather_d_ps:
+ case Intrinsic::x86_avx2_gather_d_ps_256:
+ case Intrinsic::x86_avx2_gather_q_ps:
+ case Intrinsic::x86_avx2_gather_q_ps_256:
+ case Intrinsic::x86_avx2_gather_d_q:
+ case Intrinsic::x86_avx2_gather_d_q_256:
+ case Intrinsic::x86_avx2_gather_q_q:
+ case Intrinsic::x86_avx2_gather_q_q_256:
+ case Intrinsic::x86_avx2_gather_d_d:
+ case Intrinsic::x86_avx2_gather_d_d_256:
+ case Intrinsic::x86_avx2_gather_q_d:
+ case Intrinsic::x86_avx2_gather_q_d_256: {
+ if (!Subtarget->hasAVX2())
+ break;
+ unsigned Opc;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic");
+ case Intrinsic::x86_avx2_gather_d_pd: Opc = X86::VGATHERDPDrm; break;
+ case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
+ case Intrinsic::x86_avx2_gather_q_pd: Opc = X86::VGATHERQPDrm; break;
+ case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
+ case Intrinsic::x86_avx2_gather_d_ps: Opc = X86::VGATHERDPSrm; break;
+ case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
+ case Intrinsic::x86_avx2_gather_q_ps: Opc = X86::VGATHERQPSrm; break;
+ case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
+ case Intrinsic::x86_avx2_gather_d_q: Opc = X86::VPGATHERDQrm; break;
+ case Intrinsic::x86_avx2_gather_d_q_256: Opc = X86::VPGATHERDQYrm; break;
+ case Intrinsic::x86_avx2_gather_q_q: Opc = X86::VPGATHERQQrm; break;
+ case Intrinsic::x86_avx2_gather_q_q_256: Opc = X86::VPGATHERQQYrm; break;
+ case Intrinsic::x86_avx2_gather_d_d: Opc = X86::VPGATHERDDrm; break;
+ case Intrinsic::x86_avx2_gather_d_d_256: Opc = X86::VPGATHERDDYrm; break;
+ case Intrinsic::x86_avx2_gather_q_d: Opc = X86::VPGATHERQDrm; break;
+ case Intrinsic::x86_avx2_gather_q_d_256: Opc = X86::VPGATHERQDYrm; break;
+ }
+ SDNode *RetVal = SelectGather(Node, Opc);
+ if (RetVal)
+ // We already called ReplaceUses inside SelectGather.
+ return nullptr;
+ break;
+ }
+ }
+ break;
+ }
+ case X86ISD::GlobalBaseReg:
+ return getGlobalBaseReg();
+
+
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_AND:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_ADD: {
+ SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
+ if (RetVal)
+ return RetVal;
+ break;
+ }
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR: {
+ // For operations of the form (x << C1) op C2, check if we can use a smaller
+ // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+
+ if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
+ break;
+
+ // i8 is unshrinkable, i16 should be promoted to i32.
+ if (NVT != MVT::i32 && NVT != MVT::i64)
+ break;
+
+ ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
+ ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
+ if (!Cst || !ShlCst)
+ break;
+
+ int64_t Val = Cst->getSExtValue();
+ uint64_t ShlVal = ShlCst->getZExtValue();
+
+ // Make sure that we don't change the operation by removing bits.
+ // This only matters for OR and XOR, AND is unaffected.
+ uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
+ if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
+ break;
+
+ unsigned ShlOp, Op;
+ MVT CstVT = NVT;
+
+ // Check the minimum bitwidth for the new constant.
+ // TODO: AND32ri is the same as AND64ri32 with zext imm.
+ // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
+ // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
+ if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
+ CstVT = MVT::i8;
+ else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
+ CstVT = MVT::i32;
+
+ // Bail if there is no smaller encoding.
+ if (NVT == CstVT)
+ break;
+
+ switch (NVT.SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i32:
+ assert(CstVT == MVT::i8);
+ ShlOp = X86::SHL32ri;
+
+ switch (Opcode) {
+ default: llvm_unreachable("Impossible opcode");
+ case ISD::AND: Op = X86::AND32ri8; break;
+ case ISD::OR: Op = X86::OR32ri8; break;
+ case ISD::XOR: Op = X86::XOR32ri8; break;
+ }
+ break;
+ case MVT::i64:
+ assert(CstVT == MVT::i8 || CstVT == MVT::i32);
+ ShlOp = X86::SHL64ri;
+
+ switch (Opcode) {
+ default: llvm_unreachable("Impossible opcode");
+ case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
+ case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break;
+ case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
+ }
+ break;
+ }
+
+ // Emit the smaller op and the shift.
+ SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
+ SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
+ return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
+ getI8Imm(ShlVal));
+ }
+ case X86ISD::UMUL: {
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+
+ unsigned LoReg;
+ switch (NVT.SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break;
+ case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break;
+ case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
+ case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
+ }
+
+ SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
+ N0, SDValue()).getValue(1);
+
+ SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
+ SDValue Ops[] = {N1, InFlag};
+ SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
+
+ ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
+ ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
+ ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
+ return nullptr;
+ }
+
+ case ISD::SMUL_LOHI:
+ case ISD::UMUL_LOHI: {
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+
+ bool isSigned = Opcode == ISD::SMUL_LOHI;
+ bool hasBMI2 = Subtarget->hasBMI2();
+ if (!isSigned) {
+ switch (NVT.SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
+ case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
+ case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
+ MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
+ case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
+ MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
+ }
+ } else {
+ switch (NVT.SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
+ case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
+ case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
+ case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
+ }
+ }
+
+ unsigned SrcReg, LoReg, HiReg;
+ switch (Opc) {
+ default: llvm_unreachable("Unknown MUL opcode!");
+ case X86::IMUL8r:
+ case X86::MUL8r:
+ SrcReg = LoReg = X86::AL; HiReg = X86::AH;
+ break;
+ case X86::IMUL16r:
+ case X86::MUL16r:
+ SrcReg = LoReg = X86::AX; HiReg = X86::DX;
+ break;
+ case X86::IMUL32r:
+ case X86::MUL32r:
+ SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
+ break;
+ case X86::IMUL64r:
+ case X86::MUL64r:
+ SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
+ break;
+ case X86::MULX32rr:
+ SrcReg = X86::EDX; LoReg = HiReg = 0;
+ break;
+ case X86::MULX64rr:
+ SrcReg = X86::RDX; LoReg = HiReg = 0;
+ break;
+ }
+
+ SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
+ bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
+ // Multiply is commmutative.
+ if (!foldedLoad) {
+ foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
+ if (foldedLoad)
+ std::swap(N0, N1);
+ }
+
+ SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
+ N0, SDValue()).getValue(1);
+ SDValue ResHi, ResLo;
+
+ if (foldedLoad) {
+ SDValue Chain;
+ SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
+ InFlag };
+ if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
+ SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
+ SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
+ ResHi = SDValue(CNode, 0);
+ ResLo = SDValue(CNode, 1);
+ Chain = SDValue(CNode, 2);
+ InFlag = SDValue(CNode, 3);
+ } else {
+ SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
+ SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
+ Chain = SDValue(CNode, 0);
+ InFlag = SDValue(CNode, 1);
+ }
+
+ // Update the chain.
+ ReplaceUses(N1.getValue(1), Chain);
+ } else {
+ SDValue Ops[] = { N1, InFlag };
+ if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
+ SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
+ SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
+ ResHi = SDValue(CNode, 0);
+ ResLo = SDValue(CNode, 1);
+ InFlag = SDValue(CNode, 2);
+ } else {
+ SDVTList VTs = CurDAG->getVTList(MVT::Glue);
+ SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
+ InFlag = SDValue(CNode, 0);
+ }
+ }
+
+ // Prevent use of AH in a REX instruction by referencing AX instead.
+ if (HiReg == X86::AH && Subtarget->is64Bit() &&
+ !SDValue(Node, 1).use_empty()) {
+ SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
+ X86::AX, MVT::i16, InFlag);
+ InFlag = Result.getValue(2);
+ // Get the low part if needed. Don't use getCopyFromReg for aliasing
+ // registers.
+ if (!SDValue(Node, 0).use_empty())
+ ReplaceUses(SDValue(Node, 1),
+ CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
+
+ // Shift AX down 8 bits.
+ Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
+ Result,
+ CurDAG->getTargetConstant(8, MVT::i8)), 0);
+ // Then truncate it down to i8.
+ ReplaceUses(SDValue(Node, 1),
+ CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
+ }
+ // Copy the low half of the result, if it is needed.
+ if (!SDValue(Node, 0).use_empty()) {
+ if (!ResLo.getNode()) {
+ assert(LoReg && "Register for low half is not defined!");
+ ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
+ InFlag);
+ InFlag = ResLo.getValue(2);
+ }
+ ReplaceUses(SDValue(Node, 0), ResLo);
+ DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
+ }
+ // Copy the high half of the result, if it is needed.
+ if (!SDValue(Node, 1).use_empty()) {
+ if (!ResHi.getNode()) {
+ assert(HiReg && "Register for high half is not defined!");
+ ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
+ InFlag);
+ InFlag = ResHi.getValue(2);
+ }
+ ReplaceUses(SDValue(Node, 1), ResHi);
+ DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
+ }
+
+ return nullptr;
+ }
+
+ case ISD::SDIVREM:
+ case ISD::UDIVREM: {
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+
+ bool isSigned = Opcode == ISD::SDIVREM;
+ if (!isSigned) {
+ switch (NVT.SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
+ case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
+ case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
+ case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
+ }
+ } else {
+ switch (NVT.SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
+ case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
+ case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
+ case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
+ }
+ }
+
+ unsigned LoReg, HiReg, ClrReg;
+ unsigned SExtOpcode;
+ switch (NVT.SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8:
+ LoReg = X86::AL; ClrReg = HiReg = X86::AH;
+ SExtOpcode = X86::CBW;
+ break;
+ case MVT::i16:
+ LoReg = X86::AX; HiReg = X86::DX;
+ ClrReg = X86::DX;
+ SExtOpcode = X86::CWD;
+ break;
+ case MVT::i32:
+ LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
+ SExtOpcode = X86::CDQ;
+ break;
+ case MVT::i64:
+ LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
+ SExtOpcode = X86::CQO;
+ break;
+ }
+
+ SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
+ bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
+ bool signBitIsZero = CurDAG->SignBitIsZero(N0);
+
+ SDValue InFlag;
+ if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
+ // Special case for div8, just use a move with zero extension to AX to
+ // clear the upper 8 bits (AH).
+ SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
+ if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
+ SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
+ Move =
+ SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
+ MVT::Other, Ops), 0);
+ Chain = Move.getValue(1);
+ ReplaceUses(N0.getValue(1), Chain);
+ } else {
+ Move =
+ SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
+ Chain = CurDAG->getEntryNode();
+ }
+ Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
+ InFlag = Chain.getValue(1);
+ } else {
+ InFlag =
+ CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
+ LoReg, N0, SDValue()).getValue(1);
+ if (isSigned && !signBitIsZero) {
+ // Sign extend the low part into the high part.
+ InFlag =
+ SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
+ } else {
+ // Zero out the high part, effectively zero extending the input.
+ SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
+ switch (NVT.SimpleTy) {
+ case MVT::i16:
+ ClrNode =
+ SDValue(CurDAG->getMachineNode(
+ TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
+ CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
+ 0);
+ break;
+ case MVT::i32:
+ break;
+ case MVT::i64:
+ ClrNode =
+ SDValue(CurDAG->getMachineNode(
+ TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
+ CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
+ CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
+ 0);
+ break;
+ default:
+ llvm_unreachable("Unexpected division source");
+ }
+
+ InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
+ ClrNode, InFlag).getValue(1);
+ }
+ }
+
+ if (foldedLoad) {
+ SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
+ InFlag };
+ SDNode *CNode =
+ CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
+ InFlag = SDValue(CNode, 1);
+ // Update the chain.
+ ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
+ } else {
+ InFlag =
+ SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
+ }
+
+ // Prevent use of AH in a REX instruction by referencing AX instead.
+ // Shift it down 8 bits.
+ //
+ // The current assumption of the register allocator is that isel
+ // won't generate explicit references to the GPR8_NOREX registers. If
+ // the allocator and/or the backend get enhanced to be more robust in
+ // that regard, this can be, and should be, removed.
+ if (HiReg == X86::AH && Subtarget->is64Bit() &&
+ !SDValue(Node, 1).use_empty()) {
+ SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
+ X86::AX, MVT::i16, InFlag);
+ InFlag = Result.getValue(2);
+
+ // If we also need AL (the quotient), get it by extracting a subreg from
+ // Result. The fast register allocator does not like multiple CopyFromReg
+ // nodes using aliasing registers.
+ if (!SDValue(Node, 0).use_empty())
+ ReplaceUses(SDValue(Node, 0),
+ CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
+
+ // Shift AX right by 8 bits instead of using AH.
+ Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
+ Result,
+ CurDAG->getTargetConstant(8, MVT::i8)),
+ 0);
+ ReplaceUses(SDValue(Node, 1),
+ CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
+ }
+ // Copy the division (low) result, if it is needed.
+ if (!SDValue(Node, 0).use_empty()) {
+ SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
+ LoReg, NVT, InFlag);
+ InFlag = Result.getValue(2);
+ ReplaceUses(SDValue(Node, 0), Result);
+ DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
+ }
+ // Copy the remainder (high) result, if it is needed.
+ if (!SDValue(Node, 1).use_empty()) {
+ SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
+ HiReg, NVT, InFlag);
+ InFlag = Result.getValue(2);
+ ReplaceUses(SDValue(Node, 1), Result);
+ DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
+ }
+ return nullptr;
+ }
+
+ case X86ISD::CMP:
+ case X86ISD::SUB: {
+ // Sometimes a SUB is used to perform comparison.
+ if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
+ // This node is not a CMP.
+ break;
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+
+ // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
+ // use a smaller encoding.
+ if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
+ HasNoSignedComparisonUses(Node))
+ // Look past the truncate if CMP is the only use of it.
+ N0 = N0.getOperand(0);
+ if ((N0.getNode()->getOpcode() == ISD::AND ||
+ (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
+ N0.getNode()->hasOneUse() &&
+ N0.getValueType() != MVT::i8 &&
+ X86::isZeroNode(N1)) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
+ if (!C) break;
+
+ // For example, convert "testl %eax, $8" to "testb %al, $8"
+ if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
+ (!(C->getZExtValue() & 0x80) ||
+ HasNoSignedComparisonUses(Node))) {
+ SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
+ SDValue Reg = N0.getNode()->getOperand(0);
+
+ // On x86-32, only the ABCD registers have 8-bit subregisters.
+ if (!Subtarget->is64Bit()) {
+ const TargetRegisterClass *TRC;
+ switch (N0.getSimpleValueType().SimpleTy) {
+ case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
+ case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
+ default: llvm_unreachable("Unsupported TEST operand type!");
+ }
+ SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
+ Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
+ Reg.getValueType(), Reg, RC), 0);
+ }
+
+ // Extract the l-register.
+ SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
+ MVT::i8, Reg);
+
+ // Emit a testb.
+ SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
+ Subreg, Imm);
+ // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
+ // one, do not call ReplaceAllUsesWith.
+ ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
+ SDValue(NewNode, 0));
+ return nullptr;
+ }
+
+ // For example, "testl %eax, $2048" to "testb %ah, $8".
+ if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
+ (!(C->getZExtValue() & 0x8000) ||
+ HasNoSignedComparisonUses(Node))) {
+ // Shift the immediate right by 8 bits.
+ SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
+ MVT::i8);
+ SDValue Reg = N0.getNode()->getOperand(0);
+
+ // Put the value in an ABCD register.
+ const TargetRegisterClass *TRC;
+ switch (N0.getSimpleValueType().SimpleTy) {
+ case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
+ case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
+ case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
+ default: llvm_unreachable("Unsupported TEST operand type!");
+ }
+ SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
+ Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
+ Reg.getValueType(), Reg, RC), 0);
+
+ // Extract the h-register.
+ SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
+ MVT::i8, Reg);
+
+ // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only
+ // target GR8_NOREX registers, so make sure the register class is
+ // forced.
+ SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
+ MVT::i32, Subreg, ShiftedImm);
+ // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
+ // one, do not call ReplaceAllUsesWith.
+ ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
+ SDValue(NewNode, 0));
+ return nullptr;
+ }
+
+ // For example, "testl %eax, $32776" to "testw %ax, $32776".
+ if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
+ N0.getValueType() != MVT::i16 &&
+ (!(C->getZExtValue() & 0x8000) ||
+ HasNoSignedComparisonUses(Node))) {
+ SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
+ SDValue Reg = N0.getNode()->getOperand(0);
+
+ // Extract the 16-bit subregister.
+ SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
+ MVT::i16, Reg);
+
+ // Emit a testw.
+ SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
+ Subreg, Imm);
+ // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
+ // one, do not call ReplaceAllUsesWith.
+ ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
+ SDValue(NewNode, 0));
+ return nullptr;
+ }
+
+ // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
+ if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
+ N0.getValueType() == MVT::i64 &&
+ (!(C->getZExtValue() & 0x80000000) ||
+ HasNoSignedComparisonUses(Node))) {
+ SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
+ SDValue Reg = N0.getNode()->getOperand(0);
+
+ // Extract the 32-bit subregister.
+ SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
+ MVT::i32, Reg);
+
+ // Emit a testl.
+ SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
+ Subreg, Imm);
+ // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
+ // one, do not call ReplaceAllUsesWith.
+ ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
+ SDValue(NewNode, 0));
+ return nullptr;
+ }
+ }
+ break;
+ }
+ case ISD::STORE: {
+ // Change a chain of {load; incr or dec; store} of the same value into
+ // a simple increment or decrement through memory of that value, if the
+ // uses of the modified value and its address are suitable.
+ // The DEC64m tablegen pattern is currently not able to match the case where
+ // the EFLAGS on the original DEC are used. (This also applies to
+ // {INC,DEC}X{64,32,16,8}.)
+ // We'll need to improve tablegen to allow flags to be transferred from a
+ // node in the pattern to the result node. probably with a new keyword
+ // for example, we have this
+ // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
+ // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
+ // (implicit EFLAGS)]>;
+ // but maybe need something like this
+ // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
+ // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
+ // (transferrable EFLAGS)]>;
+
+ StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
+ SDValue StoredVal = StoreNode->getOperand(1);
+ unsigned Opc = StoredVal->getOpcode();
+
+ LoadSDNode *LoadNode = nullptr;
+ SDValue InputChain;
+ if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
+ LoadNode, InputChain))
+ break;
+
+ SDValue Base, Scale, Index, Disp, Segment;
+ if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
+ Base, Scale, Index, Disp, Segment))
+ break;
+
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
+ MemOp[0] = StoreNode->getMemOperand();
+ MemOp[1] = LoadNode->getMemOperand();
+ const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
+ EVT LdVT = LoadNode->getMemoryVT();
+ unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
+ MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
+ SDLoc(Node),
+ MVT::i32, MVT::Other, Ops);
+ Result->setMemRefs(MemOp, MemOp + 2);
+
+ ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
+ ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
+
+ return Result;
+ }
+ }
+
+ SDNode *ResNode = SelectCode(Node);
+
+ DEBUG(dbgs() << "=> ";
+ if (ResNode == nullptr || ResNode == Node)
+ Node->dump(CurDAG);
+ else
+ ResNode->dump(CurDAG);
+ dbgs() << '\n');
+
+ return ResNode;
+}
+
+bool X86DAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ SDValue Op0, Op1, Op2, Op3, Op4;
+ switch (ConstraintCode) {
+ case 'o': // offsetable ??
+ case 'v': // not offsetable ??
+ default: return true;
+ case 'm': // memory
+ if (!SelectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
+ return true;
+ break;
+ }
+
+ OutOps.push_back(Op0);
+ OutOps.push_back(Op1);
+ OutOps.push_back(Op2);
+ OutOps.push_back(Op3);
+ OutOps.push_back(Op4);
+ return false;
+}
+
+/// createX86ISelDag - This pass converts a legalized DAG into a
+/// X86-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new X86DAGToDAGISel(TM, OptLevel);
+}
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
new file mode 100644
index 0000000..6fc4c84
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
@@ -0,0 +1,22910 @@
+//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that X86 uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86ISelLowering.h"
+#include "Utils/X86ShuffleDecode.h"
+#include "X86CallingConv.h"
+#include "X86InstrBuilder.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86TargetMachine.h"
+#include "X86TargetObjectFile.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/VariadicFunction.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetOptions.h"
+#include <bitset>
+#include <numeric>
+#include <cctype>
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-isel"
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+
+static cl::opt<bool> ExperimentalVectorWideningLegalization(
+ "x86-experimental-vector-widening-legalization", cl::init(false),
+ cl::desc("Enable an experimental vector type legalization through widening "
+ "rather than promotion."),
+ cl::Hidden);
+
+static cl::opt<bool> ExperimentalVectorShuffleLowering(
+ "x86-experimental-vector-shuffle-lowering", cl::init(false),
+ cl::desc("Enable an experimental vector shuffle lowering code path."),
+ cl::Hidden);
+
+// Forward declarations.
+static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
+ SDValue V2);
+
+static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl,
+ unsigned vectorWidth) {
+ assert((vectorWidth == 128 || vectorWidth == 256) &&
+ "Unsupported vector width");
+ EVT VT = Vec.getValueType();
+ EVT ElVT = VT.getVectorElementType();
+ unsigned Factor = VT.getSizeInBits()/vectorWidth;
+ EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
+ VT.getVectorNumElements()/Factor);
+
+ // Extract from UNDEF is UNDEF.
+ if (Vec.getOpcode() == ISD::UNDEF)
+ return DAG.getUNDEF(ResultVT);
+
+ // Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR
+ unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
+
+ // This is the index of the first element of the vectorWidth-bit chunk
+ // we want.
+ unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
+ * ElemsPerChunk);
+
+ // If the input is a buildvector just emit a smaller one.
+ if (Vec.getOpcode() == ISD::BUILD_VECTOR)
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
+ makeArrayRef(Vec->op_begin()+NormalizedIdxVal,
+ ElemsPerChunk));
+
+ SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
+ SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
+ VecIdx);
+
+ return Result;
+
+}
+/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
+/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
+/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
+/// instructions or a simple subregister reference. Idx is an index in the
+/// 128 bits we want. It need not be aligned to a 128-bit bounday. That makes
+/// lowering EXTRACT_VECTOR_ELT operations easier.
+static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert((Vec.getValueType().is256BitVector() ||
+ Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
+ return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
+}
+
+/// Generate a DAG to grab 256-bits from a 512-bit vector.
+static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
+ return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
+}
+
+static SDValue InsertSubVector(SDValue Result, SDValue Vec,
+ unsigned IdxVal, SelectionDAG &DAG,
+ SDLoc dl, unsigned vectorWidth) {
+ assert((vectorWidth == 128 || vectorWidth == 256) &&
+ "Unsupported vector width");
+ // Inserting UNDEF is Result
+ if (Vec.getOpcode() == ISD::UNDEF)
+ return Result;
+ EVT VT = Vec.getValueType();
+ EVT ElVT = VT.getVectorElementType();
+ EVT ResultVT = Result.getValueType();
+
+ // Insert the relevant vectorWidth bits.
+ unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
+
+ // This is the index of the first element of the vectorWidth-bit chunk
+ // we want.
+ unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
+ * ElemsPerChunk);
+
+ SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
+ VecIdx);
+}
+/// Generate a DAG to put 128-bits into a vector > 128 bits. This
+/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
+/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
+/// simple superregister reference. Idx is an index in the 128 bits
+/// we want. It need not be aligned to a 128-bit bounday. That makes
+/// lowering INSERT_VECTOR_ELT operations easier.
+static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
+ unsigned IdxVal, SelectionDAG &DAG,
+ SDLoc dl) {
+ assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
+ return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
+}
+
+static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
+ unsigned IdxVal, SelectionDAG &DAG,
+ SDLoc dl) {
+ assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
+ return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
+}
+
+/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
+/// instructions. This is used because creating CONCAT_VECTOR nodes of
+/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
+/// large BUILD_VECTORS.
+static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
+ unsigned NumElems, SelectionDAG &DAG,
+ SDLoc dl) {
+ SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
+ return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
+}
+
+static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
+ unsigned NumElems, SelectionDAG &DAG,
+ SDLoc dl) {
+ SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
+ return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
+}
+
+static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
+ if (TT.isOSBinFormatMachO()) {
+ if (TT.getArch() == Triple::x86_64)
+ return new X86_64MachoTargetObjectFile();
+ return new TargetLoweringObjectFileMachO();
+ }
+
+ if (TT.isOSLinux())
+ return new X86LinuxTargetObjectFile();
+ if (TT.isOSBinFormatELF())
+ return new TargetLoweringObjectFileELF();
+ if (TT.isKnownWindowsMSVCEnvironment())
+ return new X86WindowsTargetObjectFile();
+ if (TT.isOSBinFormatCOFF())
+ return new TargetLoweringObjectFileCOFF();
+ llvm_unreachable("unknown subtarget type");
+}
+
+// FIXME: This should stop caching the target machine as soon as
+// we can remove resetOperationActions et al.
+X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
+ : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
+ Subtarget = &TM.getSubtarget<X86Subtarget>();
+ X86ScalarSSEf64 = Subtarget->hasSSE2();
+ X86ScalarSSEf32 = Subtarget->hasSSE1();
+ TD = getDataLayout();
+
+ resetOperationActions();
+}
+
+void X86TargetLowering::resetOperationActions() {
+ const TargetMachine &TM = getTargetMachine();
+ static bool FirstTimeThrough = true;
+
+ // If none of the target options have changed, then we don't need to reset the
+ // operation actions.
+ if (!FirstTimeThrough && TO == TM.Options) return;
+
+ if (!FirstTimeThrough) {
+ // Reinitialize the actions.
+ initActions();
+ FirstTimeThrough = false;
+ }
+
+ TO = TM.Options;
+
+ // Set up the TargetLowering object.
+ static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
+
+ // X86 is weird, it always uses i8 for shift amounts and setcc results.
+ setBooleanContents(ZeroOrOneBooleanContent);
+ // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ // For 64-bit since we have so many registers use the ILP scheduler, for
+ // 32-bit code use the register pressure specific scheduling.
+ // For Atom, always use ILP scheduling.
+ if (Subtarget->isAtom())
+ setSchedulingPreference(Sched::ILP);
+ else if (Subtarget->is64Bit())
+ setSchedulingPreference(Sched::ILP);
+ else
+ setSchedulingPreference(Sched::RegPressure);
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
+ setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
+
+ // Bypass expensive divides on Atom when compiling with O2
+ if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
+ addBypassSlowDiv(32, 8);
+ if (Subtarget->is64Bit())
+ addBypassSlowDiv(64, 16);
+ }
+
+ if (Subtarget->isTargetKnownWindowsMSVC()) {
+ // Setup Windows compiler runtime calls.
+ setLibcallName(RTLIB::SDIV_I64, "_alldiv");
+ setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
+ setLibcallName(RTLIB::SREM_I64, "_allrem");
+ setLibcallName(RTLIB::UREM_I64, "_aullrem");
+ setLibcallName(RTLIB::MUL_I64, "_allmul");
+ setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
+
+ // The _ftol2 runtime function has an unusual calling conv, which
+ // is modeled by a special pseudo-instruction.
+ setLibcallName(RTLIB::FPTOUINT_F64_I64, nullptr);
+ setLibcallName(RTLIB::FPTOUINT_F32_I64, nullptr);
+ setLibcallName(RTLIB::FPTOUINT_F64_I32, nullptr);
+ setLibcallName(RTLIB::FPTOUINT_F32_I32, nullptr);
+ }
+
+ if (Subtarget->isTargetDarwin()) {
+ // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
+ setUseUnderscoreSetJmp(false);
+ setUseUnderscoreLongJmp(false);
+ } else if (Subtarget->isTargetWindowsGNU()) {
+ // MS runtime is weird: it exports _setjmp, but longjmp!
+ setUseUnderscoreSetJmp(true);
+ setUseUnderscoreLongJmp(false);
+ } else {
+ setUseUnderscoreSetJmp(true);
+ setUseUnderscoreLongJmp(true);
+ }
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i8, &X86::GR8RegClass);
+ addRegisterClass(MVT::i16, &X86::GR16RegClass);
+ addRegisterClass(MVT::i32, &X86::GR32RegClass);
+ if (Subtarget->is64Bit())
+ addRegisterClass(MVT::i64, &X86::GR64RegClass);
+
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+
+ // We don't accept any truncstore of integer registers.
+ setTruncStoreAction(MVT::i64, MVT::i32, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
+ setTruncStoreAction(MVT::i32, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
+ setTruncStoreAction(MVT::i16, MVT::i8, Expand);
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ // SETOEQ and SETUNE require checking two conditions.
+ setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
+
+ // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
+ // operation.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
+ } else if (!TM.Options.UseSoftFloat) {
+ // We have an algorithm for SSE2->double, and we turn this into a
+ // 64-bit FILD followed by conditional FADD for other targets.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
+ // We have an algorithm for SSE2, and we turn this into a 64-bit
+ // FILD for other targets.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
+ }
+
+ // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
+ // this operation.
+ setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
+
+ if (!TM.Options.UseSoftFloat) {
+ // SSE has no i16 to fp conversion, only i32
+ if (X86ScalarSSEf32) {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
+ // f32 and f64 cases are Legal, f80 case is not
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
+ } else {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
+ }
+ } else {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
+ }
+
+ // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
+ // are Legal, f80 is custom lowered.
+ setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
+
+ // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
+ // this operation.
+ setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
+
+ if (X86ScalarSSEf32) {
+ setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
+ // f32 and f64 cases are Legal, f80 case is not
+ setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
+ } else {
+ setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
+ }
+
+ // Handle FP_TO_UINT by promoting the destination to a larger signed
+ // conversion.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
+ } else if (!TM.Options.UseSoftFloat) {
+ // Since AVX is a superset of SSE3, only check for SSE here.
+ if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
+ // Expand FP_TO_UINT into a select.
+ // FIXME: We would like to use a Custom expander here eventually to do
+ // the optimal thing for SSE vs. the default expansion in the legalizer.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
+ else
+ // With SSE3 we can use fisttpll to convert to a signed i64; without
+ // SSE, we're stuck with a fistpll.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
+ }
+
+ if (isTargetFTOL()) {
+ // Use the _ftol2 runtime function, which has a pseudo-instruction
+ // to handle its weird calling convention.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
+ }
+
+ // TODO: when we have SSE, these could be more efficient, by using movd/movq.
+ if (!X86ScalarSSEf64) {
+ setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
+ setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
+ // Without SSE, i64->f64 goes through memory.
+ setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
+ }
+ }
+
+ // Scalar integer divide and remainder are lowered to use operations that
+ // produce two results, to match the available instructions. This exposes
+ // the two-result form to trivial CSE, which is able to combine x/y and x%y
+ // into a single instruction.
+ //
+ // Scalar integer multiply-high is also lowered to use two-result
+ // operations, to match the available instructions. However, plain multiply
+ // (low) operations are left as Legal, as there are single-result
+ // instructions for this in x86. Using the two-result multiply instructions
+ // when both high and low results are needed must be arranged by dagcombine.
+ for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
+ MVT VT = IntVTs[i];
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+
+ // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
+ setOperationAction(ISD::ADDC, VT, Custom);
+ setOperationAction(ISD::ADDE, VT, Custom);
+ setOperationAction(ISD::SUBC, VT, Custom);
+ setOperationAction(ISD::SUBE, VT, Custom);
+ }
+
+ setOperationAction(ISD::BR_JT , MVT::Other, Expand);
+ setOperationAction(ISD::BRCOND , MVT::Other, Custom);
+ setOperationAction(ISD::BR_CC , MVT::f32, Expand);
+ setOperationAction(ISD::BR_CC , MVT::f64, Expand);
+ setOperationAction(ISD::BR_CC , MVT::f80, Expand);
+ setOperationAction(ISD::BR_CC , MVT::i8, Expand);
+ setOperationAction(ISD::BR_CC , MVT::i16, Expand);
+ setOperationAction(ISD::BR_CC , MVT::i32, Expand);
+ setOperationAction(ISD::BR_CC , MVT::i64, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::f32, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::f64, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::f80, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::i8, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::i16, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::i64, Expand);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
+ setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
+ setOperationAction(ISD::FREM , MVT::f32 , Expand);
+ setOperationAction(ISD::FREM , MVT::f64 , Expand);
+ setOperationAction(ISD::FREM , MVT::f80 , Expand);
+ setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
+
+ // Promote the i8 variants and force them on up to i32 which has a shorter
+ // encoding.
+ setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
+ AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote);
+ AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32);
+ if (Subtarget->hasBMI()) {
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
+ } else {
+ setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
+ setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
+ }
+
+ if (Subtarget->hasLZCNT()) {
+ // When promoting the i8 variants, force them to i32 for a shorter
+ // encoding.
+ setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
+ AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote);
+ AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
+ } else {
+ setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
+ setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
+ setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
+ }
+ }
+
+ // Special handling for half-precision floating point conversions.
+ // If we don't have F16C support, then lower half float conversions
+ // into library calls.
+ if (TM.Options.UseSoftFloat || !Subtarget->hasF16C()) {
+ setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
+ }
+
+ // There's never any support for operations beyond MVT::f32.
+ setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
+ setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f80, MVT::f16, Expand);
+
+ if (Subtarget->hasPOPCNT()) {
+ setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
+ } else {
+ setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
+ setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
+ setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
+ }
+
+ setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
+
+ if (!Subtarget->hasMOVBE())
+ setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
+
+ // These should be promoted to a larger select which is supported.
+ setOperationAction(ISD::SELECT , MVT::i1 , Promote);
+ // X86 wants to expand cmov itself.
+ setOperationAction(ISD::SELECT , MVT::i8 , Custom);
+ setOperationAction(ISD::SELECT , MVT::i16 , Custom);
+ setOperationAction(ISD::SELECT , MVT::i32 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f32 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f64 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f80 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i8 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i16 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i32 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f32 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f64 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f80 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::SELECT , MVT::i64 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i64 , Custom);
+ }
+ setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
+ // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
+ // SjLj exception handling but a light-weight setjmp/longjmp replacement to
+ // support continuation, user-level threading, and etc.. As a result, no
+ // other SjLj exception interfaces are implemented and please don't build
+ // your own exception handling based on them.
+ // LLVM/Clang supports zero-cost DWARF exception handling.
+ setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
+ setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
+
+ // Darwin ABI issue.
+ setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
+ setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
+ setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
+ setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
+ setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
+ setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
+ setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
+ setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
+ setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
+ }
+ // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
+ setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
+ setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
+ setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
+ setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
+ setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
+ }
+
+ if (Subtarget->hasSSE1())
+ setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
+
+ setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
+
+ // Expand certain atomics
+ for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
+ MVT VT = IntVTs[i];
+ setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
+ }
+
+ if (Subtarget->hasCmpxchg16b()) {
+ setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
+ }
+
+ // FIXME - use subtarget debug flags
+ if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() &&
+ !Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) {
+ setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
+ }
+
+ if (Subtarget->is64Bit()) {
+ setExceptionPointerRegister(X86::RAX);
+ setExceptionSelectorRegister(X86::RDX);
+ } else {
+ setExceptionPointerRegister(X86::EAX);
+ setExceptionSelectorRegister(X86::EDX);
+ }
+ setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
+ setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
+
+ setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
+ setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+ setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
+
+ // VASTART needs to be custom lowered to use the VarArgsFrameIndex
+ setOperationAction(ISD::VASTART , MVT::Other, Custom);
+ setOperationAction(ISD::VAEND , MVT::Other, Expand);
+ if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
+ // TargetInfo::X86_64ABIBuiltinVaList
+ setOperationAction(ISD::VAARG , MVT::Other, Custom);
+ setOperationAction(ISD::VACOPY , MVT::Other, Custom);
+ } else {
+ // TargetInfo::CharPtrBuiltinVaList
+ setOperationAction(ISD::VAARG , MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY , MVT::Other, Expand);
+ }
+
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
+ MVT::i64 : MVT::i32, Custom);
+
+ if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
+ // f32 and f64 use SSE.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f32, &X86::FR32RegClass);
+ addRegisterClass(MVT::f64, &X86::FR64RegClass);
+
+ // Use ANDPD to simulate FABS.
+ setOperationAction(ISD::FABS , MVT::f64, Custom);
+ setOperationAction(ISD::FABS , MVT::f32, Custom);
+
+ // Use XORP to simulate FNEG.
+ setOperationAction(ISD::FNEG , MVT::f64, Custom);
+ setOperationAction(ISD::FNEG , MVT::f32, Custom);
+
+ // Use ANDPD and ORPD to simulate FCOPYSIGN.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+
+ // Lower this to FGETSIGNx86 plus an AND.
+ setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
+ setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
+
+ // We don't support sin/cos/fmod
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+
+ // Expand FP immediates into loads from the stack, except for the special
+ // cases we handle.
+ addLegalFPImmediate(APFloat(+0.0)); // xorpd
+ addLegalFPImmediate(APFloat(+0.0f)); // xorps
+ } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
+ // Use SSE for f32, x87 for f64.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f32, &X86::FR32RegClass);
+ addRegisterClass(MVT::f64, &X86::RFP64RegClass);
+
+ // Use ANDPS to simulate FABS.
+ setOperationAction(ISD::FABS , MVT::f32, Custom);
+
+ // Use XORP to simulate FNEG.
+ setOperationAction(ISD::FNEG , MVT::f32, Custom);
+
+ setOperationAction(ISD::UNDEF, MVT::f64, Expand);
+
+ // Use ANDPS and ORPS to simulate FCOPYSIGN.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+
+ // We don't support sin/cos/fmod
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+
+ // Special cases we handle for FP constants.
+ addLegalFPImmediate(APFloat(+0.0f)); // xorps
+ addLegalFPImmediate(APFloat(+0.0)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
+
+ if (!TM.Options.UnsafeFPMath) {
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ }
+ } else if (!TM.Options.UseSoftFloat) {
+ // f32 and f64 in x87.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f64, &X86::RFP64RegClass);
+ addRegisterClass(MVT::f32, &X86::RFP32RegClass);
+
+ setOperationAction(ISD::UNDEF, MVT::f64, Expand);
+ setOperationAction(ISD::UNDEF, MVT::f32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+
+ if (!TM.Options.UnsafeFPMath) {
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ }
+ addLegalFPImmediate(APFloat(+0.0)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
+ addLegalFPImmediate(APFloat(+0.0f)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0f)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
+ }
+
+ // We don't support FMA.
+ setOperationAction(ISD::FMA, MVT::f64, Expand);
+ setOperationAction(ISD::FMA, MVT::f32, Expand);
+
+ // Long double always uses X87.
+ if (!TM.Options.UseSoftFloat) {
+ addRegisterClass(MVT::f80, &X86::RFP80RegClass);
+ setOperationAction(ISD::UNDEF, MVT::f80, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
+ {
+ APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
+ addLegalFPImmediate(TmpFlt); // FLD0
+ TmpFlt.changeSign();
+ addLegalFPImmediate(TmpFlt); // FLD0/FCHS
+
+ bool ignored;
+ APFloat TmpFlt2(+1.0);
+ TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
+ &ignored);
+ addLegalFPImmediate(TmpFlt2); // FLD1
+ TmpFlt2.changeSign();
+ addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
+ }
+
+ if (!TM.Options.UnsafeFPMath) {
+ setOperationAction(ISD::FSIN , MVT::f80, Expand);
+ setOperationAction(ISD::FCOS , MVT::f80, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
+ }
+
+ setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
+ setOperationAction(ISD::FCEIL, MVT::f80, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
+ setOperationAction(ISD::FRINT, MVT::f80, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
+ setOperationAction(ISD::FMA, MVT::f80, Expand);
+ }
+
+ // Always use a library call for pow.
+ setOperationAction(ISD::FPOW , MVT::f32 , Expand);
+ setOperationAction(ISD::FPOW , MVT::f64 , Expand);
+ setOperationAction(ISD::FPOW , MVT::f80 , Expand);
+
+ setOperationAction(ISD::FLOG, MVT::f80, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f80, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f80, Expand);
+ setOperationAction(ISD::FEXP, MVT::f80, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f80, Expand);
+
+ // First set operation action for all vector types to either promote
+ // (for widening) or expand (for scalarization). Then we will selectively
+ // turn on ones that can be effectively codegen'd.
+ for (int i = MVT::FIRST_VECTOR_VALUETYPE;
+ i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
+ MVT VT = (MVT::SimpleValueType)i;
+ setOperationAction(ISD::ADD , VT, Expand);
+ setOperationAction(ISD::SUB , VT, Expand);
+ setOperationAction(ISD::FADD, VT, Expand);
+ setOperationAction(ISD::FNEG, VT, Expand);
+ setOperationAction(ISD::FSUB, VT, Expand);
+ setOperationAction(ISD::MUL , VT, Expand);
+ setOperationAction(ISD::FMUL, VT, Expand);
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::FDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::LOAD, VT, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
+ setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
+ setOperationAction(ISD::FABS, VT, Expand);
+ setOperationAction(ISD::FSIN, VT, Expand);
+ setOperationAction(ISD::FSINCOS, VT, Expand);
+ setOperationAction(ISD::FCOS, VT, Expand);
+ setOperationAction(ISD::FSINCOS, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+ setOperationAction(ISD::FMA, VT, Expand);
+ setOperationAction(ISD::FPOWI, VT, Expand);
+ setOperationAction(ISD::FSQRT, VT, Expand);
+ setOperationAction(ISD::FCOPYSIGN, VT, Expand);
+ setOperationAction(ISD::FFLOOR, VT, Expand);
+ setOperationAction(ISD::FCEIL, VT, Expand);
+ setOperationAction(ISD::FTRUNC, VT, Expand);
+ setOperationAction(ISD::FRINT, VT, Expand);
+ setOperationAction(ISD::FNEARBYINT, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::SDIVREM, VT, Expand);
+ setOperationAction(ISD::UDIVREM, VT, Expand);
+ setOperationAction(ISD::FPOW, VT, Expand);
+ setOperationAction(ISD::CTPOP, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::SHL, VT, Expand);
+ setOperationAction(ISD::SRA, VT, Expand);
+ setOperationAction(ISD::SRL, VT, Expand);
+ setOperationAction(ISD::ROTL, VT, Expand);
+ setOperationAction(ISD::ROTR, VT, Expand);
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ setOperationAction(ISD::SETCC, VT, Expand);
+ setOperationAction(ISD::FLOG, VT, Expand);
+ setOperationAction(ISD::FLOG2, VT, Expand);
+ setOperationAction(ISD::FLOG10, VT, Expand);
+ setOperationAction(ISD::FEXP, VT, Expand);
+ setOperationAction(ISD::FEXP2, VT, Expand);
+ setOperationAction(ISD::FP_TO_UINT, VT, Expand);
+ setOperationAction(ISD::FP_TO_SINT, VT, Expand);
+ setOperationAction(ISD::UINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::SINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
+ setOperationAction(ISD::TRUNCATE, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
+ setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
+ setOperationAction(ISD::ANY_EXTEND, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
+ InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
+ setTruncStoreAction(VT,
+ (MVT::SimpleValueType)InnerVT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
+
+ // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like types,
+ // we have to deal with them whether we ask for Expansion or not. Setting
+ // Expand causes its own optimisation problems though, so leave them legal.
+ if (VT.getVectorElementType() == MVT::i1)
+ setLoadExtAction(ISD::EXTLOAD, VT, Expand);
+ }
+
+ // FIXME: In order to prevent SSE instructions being expanded to MMX ones
+ // with -msoft-float, disable use of MMX as well.
+ if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
+ addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
+ // No operations on x86mmx supported, everything uses intrinsics.
+ }
+
+ // MMX-sized vectors (other than x86mmx) are expected to be expanded
+ // into smaller operations.
+ setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
+ setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
+ setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
+ setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
+ setOperationAction(ISD::AND, MVT::v8i8, Expand);
+ setOperationAction(ISD::AND, MVT::v4i16, Expand);
+ setOperationAction(ISD::AND, MVT::v2i32, Expand);
+ setOperationAction(ISD::AND, MVT::v1i64, Expand);
+ setOperationAction(ISD::OR, MVT::v8i8, Expand);
+ setOperationAction(ISD::OR, MVT::v4i16, Expand);
+ setOperationAction(ISD::OR, MVT::v2i32, Expand);
+ setOperationAction(ISD::OR, MVT::v1i64, Expand);
+ setOperationAction(ISD::XOR, MVT::v8i8, Expand);
+ setOperationAction(ISD::XOR, MVT::v4i16, Expand);
+ setOperationAction(ISD::XOR, MVT::v2i32, Expand);
+ setOperationAction(ISD::XOR, MVT::v1i64, Expand);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
+ setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
+ setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
+ setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
+ setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
+ setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
+ setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
+ setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
+ setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
+
+ if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
+ addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
+
+ setOperationAction(ISD::FADD, MVT::v4f32, Legal);
+ setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
+ setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
+ setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
+ setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
+ setOperationAction(ISD::FABS, MVT::v4f32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
+ }
+
+ if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
+ addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
+
+ // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
+ // registers cannot be used even for integer operations.
+ addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
+ addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
+ addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
+ addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
+
+ setOperationAction(ISD::ADD, MVT::v16i8, Legal);
+ setOperationAction(ISD::ADD, MVT::v8i16, Legal);
+ setOperationAction(ISD::ADD, MVT::v4i32, Legal);
+ setOperationAction(ISD::ADD, MVT::v2i64, Legal);
+ setOperationAction(ISD::MUL, MVT::v4i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v2i64, Custom);
+ setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom);
+ setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom);
+ setOperationAction(ISD::MULHU, MVT::v8i16, Legal);
+ setOperationAction(ISD::MULHS, MVT::v8i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v16i8, Legal);
+ setOperationAction(ISD::SUB, MVT::v8i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v4i32, Legal);
+ setOperationAction(ISD::SUB, MVT::v2i64, Legal);
+ setOperationAction(ISD::MUL, MVT::v8i16, Legal);
+ setOperationAction(ISD::FADD, MVT::v2f64, Legal);
+ setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
+ setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
+ setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
+ setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
+ setOperationAction(ISD::FABS, MVT::v2f64, Custom);
+
+ setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
+ setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
+ setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
+ for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
+ MVT VT = (MVT::SimpleValueType)i;
+ // Do not attempt to custom lower non-power-of-2 vectors
+ if (!isPowerOf2_32(VT.getVectorNumElements()))
+ continue;
+ // Do not attempt to custom lower non-128-bit vectors
+ if (!VT.is128BitVector())
+ continue;
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ }
+
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
+ }
+
+ // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
+ for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
+ MVT VT = (MVT::SimpleValueType)i;
+
+ // Do not attempt to promote non-128-bit vectors
+ if (!VT.is128BitVector())
+ continue;
+
+ setOperationAction(ISD::AND, VT, Promote);
+ AddPromotedToType (ISD::AND, VT, MVT::v2i64);
+ setOperationAction(ISD::OR, VT, Promote);
+ AddPromotedToType (ISD::OR, VT, MVT::v2i64);
+ setOperationAction(ISD::XOR, VT, Promote);
+ AddPromotedToType (ISD::XOR, VT, MVT::v2i64);
+ setOperationAction(ISD::LOAD, VT, Promote);
+ AddPromotedToType (ISD::LOAD, VT, MVT::v2i64);
+ setOperationAction(ISD::SELECT, VT, Promote);
+ AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
+ }
+
+ // Custom lower v2i64 and v2f64 selects.
+ setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
+ setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
+
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
+ // As there is no 64-bit GPR available, we need build a special custom
+ // sequence to convert from v2i32 to v2f32.
+ if (!Subtarget->is64Bit())
+ setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom);
+
+ setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, Legal);
+
+ setOperationAction(ISD::BITCAST, MVT::v2i32, Custom);
+ setOperationAction(ISD::BITCAST, MVT::v4i16, Custom);
+ setOperationAction(ISD::BITCAST, MVT::v8i8, Custom);
+ }
+
+ if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
+ setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f64, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
+ setOperationAction(ISD::FRINT, MVT::f64, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
+
+ setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
+ setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
+
+ // FIXME: Do we need to handle scalar-to-vector here?
+ setOperationAction(ISD::MUL, MVT::v4i32, Legal);
+
+ setOperationAction(ISD::VSELECT, MVT::v2f64, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v2i64, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v4i32, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v4f32, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v8i16, Custom);
+ // There is no BLENDI for byte vectors. We don't need to custom lower
+ // some vselects for now.
+ setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
+
+ // i8 and i16 vectors are custom , because the source register and source
+ // source memory operand types are not the same width. f32 vectors are
+ // custom since the immediate controlling the insert encodes additional
+ // information.
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ // FIXME: these should be Legal but thats only for the case where
+ // the index is constant. For now custom expand to deal with that.
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
+ }
+ }
+
+ if (Subtarget->hasSSE2()) {
+ setOperationAction(ISD::SRL, MVT::v8i16, Custom);
+ setOperationAction(ISD::SRL, MVT::v16i8, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v8i16, Custom);
+ setOperationAction(ISD::SHL, MVT::v16i8, Custom);
+
+ setOperationAction(ISD::SRA, MVT::v8i16, Custom);
+ setOperationAction(ISD::SRA, MVT::v16i8, Custom);
+
+ // In the customized shift lowering, the legal cases in AVX2 will be
+ // recognized.
+ setOperationAction(ISD::SRL, MVT::v2i64, Custom);
+ setOperationAction(ISD::SRL, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v2i64, Custom);
+ setOperationAction(ISD::SHL, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::SRA, MVT::v4i32, Custom);
+ }
+
+ if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
+ addRegisterClass(MVT::v32i8, &X86::VR256RegClass);
+ addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
+ addRegisterClass(MVT::v8i32, &X86::VR256RegClass);
+ addRegisterClass(MVT::v8f32, &X86::VR256RegClass);
+ addRegisterClass(MVT::v4i64, &X86::VR256RegClass);
+ addRegisterClass(MVT::v4f64, &X86::VR256RegClass);
+
+ setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
+
+ setOperationAction(ISD::FADD, MVT::v8f32, Legal);
+ setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
+ setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
+ setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::v8f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v8f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v8f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::v8f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v8f32, Legal);
+ setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
+ setOperationAction(ISD::FABS, MVT::v8f32, Custom);
+
+ setOperationAction(ISD::FADD, MVT::v4f64, Legal);
+ setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
+ setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
+ setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v4f64, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
+ setOperationAction(ISD::FRINT, MVT::v4f64, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Legal);
+ setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
+ setOperationAction(ISD::FABS, MVT::v4f64, Custom);
+
+ // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
+ // even though v8i16 is a legal type.
+ setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Promote);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
+
+ setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
+ setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
+
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, Legal);
+
+ setOperationAction(ISD::SRL, MVT::v16i16, Custom);
+ setOperationAction(ISD::SRL, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v16i16, Custom);
+ setOperationAction(ISD::SHL, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::SRA, MVT::v16i16, Custom);
+ setOperationAction(ISD::SRA, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
+ setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
+ setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
+
+ setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
+
+ setOperationAction(ISD::VSELECT, MVT::v4f64, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v4i64, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v8i32, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v8f32, Custom);
+
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v16i16, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom);
+
+ if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
+ setOperationAction(ISD::FMA, MVT::v8f32, Legal);
+ setOperationAction(ISD::FMA, MVT::v4f64, Legal);
+ setOperationAction(ISD::FMA, MVT::v4f32, Legal);
+ setOperationAction(ISD::FMA, MVT::v2f64, Legal);
+ setOperationAction(ISD::FMA, MVT::f32, Legal);
+ setOperationAction(ISD::FMA, MVT::f64, Legal);
+ }
+
+ if (Subtarget->hasInt256()) {
+ setOperationAction(ISD::ADD, MVT::v4i64, Legal);
+ setOperationAction(ISD::ADD, MVT::v8i32, Legal);
+ setOperationAction(ISD::ADD, MVT::v16i16, Legal);
+ setOperationAction(ISD::ADD, MVT::v32i8, Legal);
+
+ setOperationAction(ISD::SUB, MVT::v4i64, Legal);
+ setOperationAction(ISD::SUB, MVT::v8i32, Legal);
+ setOperationAction(ISD::SUB, MVT::v16i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v32i8, Legal);
+
+ setOperationAction(ISD::MUL, MVT::v4i64, Custom);
+ setOperationAction(ISD::MUL, MVT::v8i32, Legal);
+ setOperationAction(ISD::MUL, MVT::v16i16, Legal);
+ // Don't lower v32i8 because there is no 128-bit byte mul
+
+ setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom);
+ setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom);
+ setOperationAction(ISD::MULHU, MVT::v16i16, Legal);
+ setOperationAction(ISD::MULHS, MVT::v16i16, Legal);
+
+ setOperationAction(ISD::VSELECT, MVT::v16i16, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
+ } else {
+ setOperationAction(ISD::ADD, MVT::v4i64, Custom);
+ setOperationAction(ISD::ADD, MVT::v8i32, Custom);
+ setOperationAction(ISD::ADD, MVT::v16i16, Custom);
+ setOperationAction(ISD::ADD, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::SUB, MVT::v4i64, Custom);
+ setOperationAction(ISD::SUB, MVT::v8i32, Custom);
+ setOperationAction(ISD::SUB, MVT::v16i16, Custom);
+ setOperationAction(ISD::SUB, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::MUL, MVT::v4i64, Custom);
+ setOperationAction(ISD::MUL, MVT::v8i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v16i16, Custom);
+ // Don't lower v32i8 because there is no 128-bit byte mul
+ }
+
+ // In the customized shift lowering, the legal cases in AVX2 will be
+ // recognized.
+ setOperationAction(ISD::SRL, MVT::v4i64, Custom);
+ setOperationAction(ISD::SRL, MVT::v8i32, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v4i64, Custom);
+ setOperationAction(ISD::SHL, MVT::v8i32, Custom);
+
+ setOperationAction(ISD::SRA, MVT::v8i32, Custom);
+
+ // Custom lower several nodes for 256-bit types.
+ for (int i = MVT::FIRST_VECTOR_VALUETYPE;
+ i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
+ MVT VT = (MVT::SimpleValueType)i;
+
+ // Extract subvector is special because the value type
+ // (result) is 128-bit but the source is 256-bit wide.
+ if (VT.is128BitVector())
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
+
+ // Do not attempt to custom lower other non-256-bit vectors
+ if (!VT.is256BitVector())
+ continue;
+
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
+ }
+
+ // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
+ for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
+ MVT VT = (MVT::SimpleValueType)i;
+
+ // Do not attempt to promote non-256-bit vectors
+ if (!VT.is256BitVector())
+ continue;
+
+ setOperationAction(ISD::AND, VT, Promote);
+ AddPromotedToType (ISD::AND, VT, MVT::v4i64);
+ setOperationAction(ISD::OR, VT, Promote);
+ AddPromotedToType (ISD::OR, VT, MVT::v4i64);
+ setOperationAction(ISD::XOR, VT, Promote);
+ AddPromotedToType (ISD::XOR, VT, MVT::v4i64);
+ setOperationAction(ISD::LOAD, VT, Promote);
+ AddPromotedToType (ISD::LOAD, VT, MVT::v4i64);
+ setOperationAction(ISD::SELECT, VT, Promote);
+ AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
+ }
+ }
+
+ if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
+ addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
+ addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
+ addRegisterClass(MVT::v8i64, &X86::VR512RegClass);
+ addRegisterClass(MVT::v8f64, &X86::VR512RegClass);
+
+ addRegisterClass(MVT::i1, &X86::VK1RegClass);
+ addRegisterClass(MVT::v8i1, &X86::VK8RegClass);
+ addRegisterClass(MVT::v16i1, &X86::VK16RegClass);
+
+ setOperationAction(ISD::BR_CC, MVT::i1, Expand);
+ setOperationAction(ISD::SETCC, MVT::i1, Custom);
+ setOperationAction(ISD::XOR, MVT::i1, Legal);
+ setOperationAction(ISD::OR, MVT::i1, Legal);
+ setOperationAction(ISD::AND, MVT::i1, Legal);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v16f32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v8f64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v8i64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v16i32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v16i1, Legal);
+
+ setOperationAction(ISD::FADD, MVT::v16f32, Legal);
+ setOperationAction(ISD::FSUB, MVT::v16f32, Legal);
+ setOperationAction(ISD::FMUL, MVT::v16f32, Legal);
+ setOperationAction(ISD::FDIV, MVT::v16f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v16f32, Legal);
+ setOperationAction(ISD::FNEG, MVT::v16f32, Custom);
+
+ setOperationAction(ISD::FADD, MVT::v8f64, Legal);
+ setOperationAction(ISD::FSUB, MVT::v8f64, Legal);
+ setOperationAction(ISD::FMUL, MVT::v8f64, Legal);
+ setOperationAction(ISD::FDIV, MVT::v8f64, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v8f64, Legal);
+ setOperationAction(ISD::FNEG, MVT::v8f64, Custom);
+ setOperationAction(ISD::FMA, MVT::v8f64, Legal);
+ setOperationAction(ISD::FMA, MVT::v16f32, Legal);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal);
+ }
+ setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
+ setOperationAction(ISD::FP_ROUND, MVT::v8f32, Legal);
+ setOperationAction(ISD::FP_EXTEND, MVT::v8f32, Legal);
+
+ setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v8i1, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i1, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i8, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i16, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
+
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Legal);
+
+ setOperationAction(ISD::SETCC, MVT::v16i1, Custom);
+ setOperationAction(ISD::SETCC, MVT::v8i1, Custom);
+
+ setOperationAction(ISD::MUL, MVT::v8i64, Custom);
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i1, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i1, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v8i1, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v16i1, Custom);
+ setOperationAction(ISD::SELECT, MVT::v8f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v8i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v16f32, Custom);
+
+ setOperationAction(ISD::ADD, MVT::v8i64, Legal);
+ setOperationAction(ISD::ADD, MVT::v16i32, Legal);
+
+ setOperationAction(ISD::SUB, MVT::v8i64, Legal);
+ setOperationAction(ISD::SUB, MVT::v16i32, Legal);
+
+ setOperationAction(ISD::MUL, MVT::v16i32, Legal);
+
+ setOperationAction(ISD::SRL, MVT::v8i64, Custom);
+ setOperationAction(ISD::SRL, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v8i64, Custom);
+ setOperationAction(ISD::SHL, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::SRA, MVT::v8i64, Custom);
+ setOperationAction(ISD::SRA, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::AND, MVT::v8i64, Legal);
+ setOperationAction(ISD::OR, MVT::v8i64, Legal);
+ setOperationAction(ISD::XOR, MVT::v8i64, Legal);
+ setOperationAction(ISD::AND, MVT::v16i32, Legal);
+ setOperationAction(ISD::OR, MVT::v16i32, Legal);
+ setOperationAction(ISD::XOR, MVT::v16i32, Legal);
+
+ if (Subtarget->hasCDI()) {
+ setOperationAction(ISD::CTLZ, MVT::v8i64, Legal);
+ setOperationAction(ISD::CTLZ, MVT::v16i32, Legal);
+ }
+
+ // Custom lower several nodes.
+ for (int i = MVT::FIRST_VECTOR_VALUETYPE;
+ i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
+ MVT VT = (MVT::SimpleValueType)i;
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ // Extract subvector is special because the value type
+ // (result) is 256/128-bit but the source is 512-bit wide.
+ if (VT.is128BitVector() || VT.is256BitVector())
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
+
+ if (VT.getVectorElementType() == MVT::i1)
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
+
+ // Do not attempt to custom lower other non-512-bit vectors
+ if (!VT.is512BitVector())
+ continue;
+
+ if ( EltSize >= 32) {
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Legal);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
+ }
+ }
+ for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
+ MVT VT = (MVT::SimpleValueType)i;
+
+ // Do not attempt to promote non-256-bit vectors
+ if (!VT.is512BitVector())
+ continue;
+
+ setOperationAction(ISD::SELECT, VT, Promote);
+ AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
+ }
+ }// has AVX-512
+
+ // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
+ // of this type with custom code.
+ for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
+ VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
+ Custom);
+ }
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
+ if (!Subtarget->is64Bit())
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
+
+ // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
+ // handle type legalization for these operations here.
+ //
+ // FIXME: We really should do custom legalization for addition and
+ // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
+ // than generic legalization for 64-bit multiplication-with-overflow, though.
+ for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
+ // Add/Sub/Mul with overflow operations are custom lowered.
+ MVT VT = IntVTs[i];
+ setOperationAction(ISD::SADDO, VT, Custom);
+ setOperationAction(ISD::UADDO, VT, Custom);
+ setOperationAction(ISD::SSUBO, VT, Custom);
+ setOperationAction(ISD::USUBO, VT, Custom);
+ setOperationAction(ISD::SMULO, VT, Custom);
+ setOperationAction(ISD::UMULO, VT, Custom);
+ }
+
+ // There are no 8-bit 3-address imul/mul instructions
+ setOperationAction(ISD::SMULO, MVT::i8, Expand);
+ setOperationAction(ISD::UMULO, MVT::i8, Expand);
+
+ if (!Subtarget->is64Bit()) {
+ // These libcalls are not available in 32-bit.
+ setLibcallName(RTLIB::SHL_I128, nullptr);
+ setLibcallName(RTLIB::SRL_I128, nullptr);
+ setLibcallName(RTLIB::SRA_I128, nullptr);
+ }
+
+ // Combine sin / cos into one node or libcall if possible.
+ if (Subtarget->hasSinCos()) {
+ setLibcallName(RTLIB::SINCOS_F32, "sincosf");
+ setLibcallName(RTLIB::SINCOS_F64, "sincos");
+ if (Subtarget->isTargetDarwin()) {
+ // For MacOSX, we don't want to the normal expansion of a libcall to
+ // sincos. We want to issue a libcall to __sincos_stret to avoid memory
+ // traffic.
+ setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
+ }
+ }
+
+ if (Subtarget->isTargetWin64()) {
+ setOperationAction(ISD::SDIV, MVT::i128, Custom);
+ setOperationAction(ISD::UDIV, MVT::i128, Custom);
+ setOperationAction(ISD::SREM, MVT::i128, Custom);
+ setOperationAction(ISD::UREM, MVT::i128, Custom);
+ setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
+ setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
+ }
+
+ // We have target-specific dag combine patterns for the following nodes:
+ setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
+ setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
+ setTargetDAGCombine(ISD::VSELECT);
+ setTargetDAGCombine(ISD::SELECT);
+ setTargetDAGCombine(ISD::SHL);
+ setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::FADD);
+ setTargetDAGCombine(ISD::FSUB);
+ setTargetDAGCombine(ISD::FMA);
+ setTargetDAGCombine(ISD::SUB);
+ setTargetDAGCombine(ISD::LOAD);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ setTargetDAGCombine(ISD::ANY_EXTEND);
+ setTargetDAGCombine(ISD::SIGN_EXTEND);
+ setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
+ setTargetDAGCombine(ISD::TRUNCATE);
+ setTargetDAGCombine(ISD::SINT_TO_FP);
+ setTargetDAGCombine(ISD::SETCC);
+ setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
+ setTargetDAGCombine(ISD::BUILD_VECTOR);
+ if (Subtarget->is64Bit())
+ setTargetDAGCombine(ISD::MUL);
+ setTargetDAGCombine(ISD::XOR);
+
+ computeRegisterProperties();
+
+ // On Darwin, -Os means optimize for size without hurting performance,
+ // do not reduce the limit.
+ MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
+ MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
+ MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
+ MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
+ MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
+ MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
+ setPrefLoopAlignment(4); // 2^4 bytes.
+
+ // Predictable cmov don't hurt on atom because it's in-order.
+ PredictableSelectIsExpensive = !Subtarget->isAtom();
+
+ setPrefFunctionAlignment(4); // 2^4 bytes.
+}
+
+TargetLoweringBase::LegalizeTypeAction
+X86TargetLowering::getPreferredVectorAction(EVT VT) const {
+ if (ExperimentalVectorWideningLegalization &&
+ VT.getVectorNumElements() != 1 &&
+ VT.getVectorElementType().getSimpleVT() != MVT::i1)
+ return TypeWidenVector;
+
+ return TargetLoweringBase::getPreferredVectorAction(VT);
+}
+
+EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector())
+ return Subtarget->hasAVX512() ? MVT::i1: MVT::i8;
+
+ if (Subtarget->hasAVX512())
+ switch(VT.getVectorNumElements()) {
+ case 8: return MVT::v8i1;
+ case 16: return MVT::v16i1;
+ }
+
+ return VT.changeVectorElementTypeToInteger();
+}
+
+/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
+/// the desired ByVal argument alignment.
+static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
+ if (MaxAlign == 16)
+ return;
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+ if (VTy->getBitWidth() == 128)
+ MaxAlign = 16;
+ } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(ATy->getElementType(), EltAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(STy->getElementType(i), EltAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ if (MaxAlign == 16)
+ break;
+ }
+ }
+}
+
+/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+/// function arguments in the caller parameter area. For X86, aggregates
+/// that contain SSE vectors are placed at 16-byte boundaries while the rest
+/// are at 4-byte boundaries.
+unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
+ if (Subtarget->is64Bit()) {
+ // Max of 8 and alignment of type.
+ unsigned TyAlign = TD->getABITypeAlignment(Ty);
+ if (TyAlign > 8)
+ return TyAlign;
+ return 8;
+ }
+
+ unsigned Align = 4;
+ if (Subtarget->hasSSE1())
+ getMaxByValAlign(Ty, Align);
+ return Align;
+}
+
+/// getOptimalMemOpType - Returns the target specific optimal type for load
+/// and store operations as a result of memset, memcpy, and memmove
+/// lowering. If DstAlign is zero that means it's safe to destination
+/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
+/// means there isn't a need to check it against alignment requirement,
+/// probably because the source does not need to be loaded. If 'IsMemset' is
+/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
+/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
+/// source is constant so it does not need to be loaded.
+/// It returns EVT::Other if the type should be determined using generic
+/// target-independent logic.
+EVT
+X86TargetLowering::getOptimalMemOpType(uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ const Function *F = MF.getFunction();
+ if ((!IsMemset || ZeroMemset) &&
+ !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NoImplicitFloat)) {
+ if (Size >= 16 &&
+ (Subtarget->isUnalignedMemAccessFast() ||
+ ((DstAlign == 0 || DstAlign >= 16) &&
+ (SrcAlign == 0 || SrcAlign >= 16)))) {
+ if (Size >= 32) {
+ if (Subtarget->hasInt256())
+ return MVT::v8i32;
+ if (Subtarget->hasFp256())
+ return MVT::v8f32;
+ }
+ if (Subtarget->hasSSE2())
+ return MVT::v4i32;
+ if (Subtarget->hasSSE1())
+ return MVT::v4f32;
+ } else if (!MemcpyStrSrc && Size >= 8 &&
+ !Subtarget->is64Bit() &&
+ Subtarget->hasSSE2()) {
+ // Do not use f64 to lower memcpy if source is string constant. It's
+ // better to use i32 to avoid the loads.
+ return MVT::f64;
+ }
+ }
+ if (Subtarget->is64Bit() && Size >= 8)
+ return MVT::i64;
+ return MVT::i32;
+}
+
+bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
+ if (VT == MVT::f32)
+ return X86ScalarSSEf32;
+ else if (VT == MVT::f64)
+ return X86ScalarSSEf64;
+ return true;
+}
+
+bool
+X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
+ unsigned,
+ bool *Fast) const {
+ if (Fast)
+ *Fast = Subtarget->isUnalignedMemAccessFast();
+ return true;
+}
+
+/// getJumpTableEncoding - Return the entry encoding for a jump table in the
+/// current function. The returned value is a member of the
+/// MachineJumpTableInfo::JTEntryKind enum.
+unsigned X86TargetLowering::getJumpTableEncoding() const {
+ // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
+ // symbol.
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+ Subtarget->isPICStyleGOT())
+ return MachineJumpTableInfo::EK_Custom32;
+
+ // Otherwise, use the normal jump table encoding heuristics.
+ return TargetLowering::getJumpTableEncoding();
+}
+
+const MCExpr *
+X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
+ const MachineBasicBlock *MBB,
+ unsigned uid,MCContext &Ctx) const{
+ assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ &&
+ Subtarget->isPICStyleGOT());
+ // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
+ // entries.
+ return MCSymbolRefExpr::Create(MBB->getSymbol(),
+ MCSymbolRefExpr::VK_GOTOFF, Ctx);
+}
+
+/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
+/// jumptable.
+SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const {
+ if (!Subtarget->is64Bit())
+ // This doesn't have SDLoc associated with it, but is not really the
+ // same as a Register.
+ return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
+ return Table;
+}
+
+/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
+/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
+/// MCExpr.
+const MCExpr *X86TargetLowering::
+getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
+ MCContext &Ctx) const {
+ // X86-64 uses RIP relative addressing based on the jump table label.
+ if (Subtarget->isPICStyleRIPRel())
+ return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
+
+ // Otherwise, the reference is relative to the PIC base.
+ return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
+}
+
+// FIXME: Why this routine is here? Move to RegInfo!
+std::pair<const TargetRegisterClass*, uint8_t>
+X86TargetLowering::findRepresentativeClass(MVT VT) const{
+ const TargetRegisterClass *RRC = nullptr;
+ uint8_t Cost = 1;
+ switch (VT.SimpleTy) {
+ default:
+ return TargetLowering::findRepresentativeClass(VT);
+ case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
+ RRC = Subtarget->is64Bit() ?
+ (const TargetRegisterClass*)&X86::GR64RegClass :
+ (const TargetRegisterClass*)&X86::GR32RegClass;
+ break;
+ case MVT::x86mmx:
+ RRC = &X86::VR64RegClass;
+ break;
+ case MVT::f32: case MVT::f64:
+ case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
+ case MVT::v4f32: case MVT::v2f64:
+ case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
+ case MVT::v4f64:
+ RRC = &X86::VR128RegClass;
+ break;
+ }
+ return std::make_pair(RRC, Cost);
+}
+
+bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
+ unsigned &Offset) const {
+ if (!Subtarget->isTargetLinux())
+ return false;
+
+ if (Subtarget->is64Bit()) {
+ // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
+ Offset = 0x28;
+ if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
+ AddressSpace = 256;
+ else
+ AddressSpace = 257;
+ } else {
+ // %gs:0x14 on i386
+ Offset = 0x14;
+ AddressSpace = 256;
+ }
+ return true;
+}
+
+bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
+ unsigned DestAS) const {
+ assert(SrcAS != DestAS && "Expected different address spaces!");
+
+ return SrcAS < 256 && DestAS < 256;
+}
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "X86GenCallingConv.inc"
+
+bool
+X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
+ MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, MF.getTarget(),
+ RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, RetCC_X86);
+}
+
+const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
+ static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
+ return ScratchRegs;
+}
+
+SDValue
+X86TargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, DAG.getTarget(),
+ RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_X86);
+
+ SDValue Flag;
+ SmallVector<SDValue, 6> RetOps;
+ RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
+ // Operand #1 = Bytes To Pop
+ RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
+ MVT::i16));
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ SDValue ValToCopy = OutVals[i];
+ EVT ValVT = ValToCopy.getValueType();
+
+ // Promote values to the appropriate types
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
+ else if (VA.getLocInfo() == CCValAssign::AExt)
+ ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
+ else if (VA.getLocInfo() == CCValAssign::BCvt)
+ ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
+
+ assert(VA.getLocInfo() != CCValAssign::FPExt &&
+ "Unexpected FP-extend for return value.");
+
+ // If this is x86-64, and we disabled SSE, we can't return FP values,
+ // or SSE or MMX vectors.
+ if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
+ VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
+ (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
+ report_fatal_error("SSE register return with SSE disabled");
+ }
+ // Likewise we can't return F64 values with SSE1 only. gcc does so, but
+ // llvm-gcc has never done it right and no one has noticed, so this
+ // should be OK for now.
+ if (ValVT == MVT::f64 &&
+ (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
+ report_fatal_error("SSE2 register return with SSE2 disabled");
+
+ // Returns in ST0/ST1 are handled specially: these are pushed as operands to
+ // the RET instruction and handled by the FP Stackifier.
+ if (VA.getLocReg() == X86::ST0 ||
+ VA.getLocReg() == X86::ST1) {
+ // If this is a copy from an xmm register to ST(0), use an FPExtend to
+ // change the value to the FP stack register class.
+ if (isScalarFPTypeInSSEReg(VA.getValVT()))
+ ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
+ RetOps.push_back(ValToCopy);
+ // Don't emit a copytoreg.
+ continue;
+ }
+
+ // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
+ // which is returned in RAX / RDX.
+ if (Subtarget->is64Bit()) {
+ if (ValVT == MVT::x86mmx) {
+ if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
+ ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
+ ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
+ ValToCopy);
+ // If we don't have SSE2 available, convert to v4f32 so the generated
+ // register is legal.
+ if (!Subtarget->hasSSE2())
+ ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
+ }
+ }
+ }
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ // The x86-64 ABIs require that for returning structs by value we copy
+ // the sret argument into %rax/%eax (depending on ABI) for the return.
+ // Win32 requires us to put the sret argument to %eax as well.
+ // We saved the argument into a virtual register in the entry block,
+ // so now we copy the value out and into %rax/%eax.
+ if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
+ (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ unsigned Reg = FuncInfo->getSRetReturnReg();
+ assert(Reg &&
+ "SRetReturnReg should have been set in LowerFormalArguments().");
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
+
+ unsigned RetValReg
+ = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
+ X86::RAX : X86::EAX;
+ Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
+ Flag = Chain.getValue(1);
+
+ // RAX/EAX now acts like a return value.
+ RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(X86ISD::RET_FLAG, dl, MVT::Other, RetOps);
+}
+
+bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
+ if (N->getNumValues() != 1)
+ return false;
+ if (!N->hasNUsesOfValue(1, 0))
+ return false;
+
+ SDValue TCChain = Chain;
+ SDNode *Copy = *N->use_begin();
+ if (Copy->getOpcode() == ISD::CopyToReg) {
+ // If the copy has a glue operand, we conservatively assume it isn't safe to
+ // perform a tail call.
+ if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
+ return false;
+ TCChain = Copy->getOperand(0);
+ } else if (Copy->getOpcode() != ISD::FP_EXTEND)
+ return false;
+
+ bool HasRet = false;
+ for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
+ UI != UE; ++UI) {
+ if (UI->getOpcode() != X86ISD::RET_FLAG)
+ return false;
+ HasRet = true;
+ }
+
+ if (!HasRet)
+ return false;
+
+ Chain = TCChain;
+ return true;
+}
+
+MVT
+X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
+ ISD::NodeType ExtendKind) const {
+ MVT ReturnMVT;
+ // TODO: Is this also valid on 32-bit?
+ if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
+ ReturnMVT = MVT::i8;
+ else
+ ReturnMVT = MVT::i32;
+
+ MVT MinVT = getRegisterType(ReturnMVT);
+ return VT.bitsLT(MinVT) ? MinVT : VT;
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+///
+SDValue
+X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ bool Is64Bit = Subtarget->is64Bit();
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ DAG.getTarget(), RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ EVT CopyVT = VA.getValVT();
+
+ // If this is x86-64, and we disabled SSE, we can't return FP values
+ if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
+ ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
+ report_fatal_error("SSE register return with SSE disabled");
+ }
+
+ SDValue Val;
+
+ // If this is a call to a function that returns an fp value on the floating
+ // point stack, we must guarantee the value is popped from the stack, so
+ // a CopyFromReg is not good enough - the copy instruction may be eliminated
+ // if the return value is not used. We use the FpPOP_RETVAL instruction
+ // instead.
+ if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
+ // If we prefer to use the value in xmm registers, copy it out as f80 and
+ // use a truncate to move it from fp stack reg to xmm reg.
+ if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
+ SDValue Ops[] = { Chain, InFlag };
+ Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
+ MVT::Other, MVT::Glue, Ops), 1);
+ Val = Chain.getValue(0);
+
+ // Round the f80 to the right size, which also moves it to the appropriate
+ // xmm register.
+ if (CopyVT != VA.getValVT())
+ Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
+ // This truncation won't change the value.
+ DAG.getIntPtrConstant(1));
+ } else {
+ Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
+ CopyVT, InFlag).getValue(1);
+ Val = Chain.getValue(0);
+ }
+ InFlag = Chain.getValue(2);
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// C & StdCall & Fast Calling Convention implementation
+//===----------------------------------------------------------------------===//
+// StdCall calling convention seems to be standard for many Windows' API
+// routines and around. It differs from C calling convention just a little:
+// callee should clean up the stack, not caller. Symbols should be also
+// decorated in some fancy way :) It doesn't support any vector arguments.
+// For info on fast calling convention see Fast Calling Convention (tail call)
+// implementation LowerX86_32FastCCCallTo.
+
+/// CallIsStructReturn - Determines whether a call uses struct return
+/// semantics.
+enum StructReturnType {
+ NotStructReturn,
+ RegStructReturn,
+ StackStructReturn
+};
+static StructReturnType
+callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
+ if (Outs.empty())
+ return NotStructReturn;
+
+ const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
+ if (!Flags.isSRet())
+ return NotStructReturn;
+ if (Flags.isInReg())
+ return RegStructReturn;
+ return StackStructReturn;
+}
+
+/// ArgsAreStructReturn - Determines whether a function uses struct
+/// return semantics.
+static StructReturnType
+argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
+ if (Ins.empty())
+ return NotStructReturn;
+
+ const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
+ if (!Flags.isSRet())
+ return NotStructReturn;
+ if (Flags.isInReg())
+ return RegStructReturn;
+ return StackStructReturn;
+}
+
+/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
+/// by "Src" to address "Dst" with size and alignment information specified by
+/// the specific parameter attribute. The copy will be passed as a byval
+/// function parameter.
+static SDValue
+CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
+ ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
+ SDLoc dl) {
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
+
+ return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
+ /*isVolatile*/false, /*AlwaysInline=*/true,
+ MachinePointerInfo(), MachinePointerInfo());
+}
+
+/// IsTailCallConvention - Return true if the calling convention is one that
+/// supports tail call optimization.
+static bool IsTailCallConvention(CallingConv::ID CC) {
+ return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
+ CC == CallingConv::HiPE);
+}
+
+/// \brief Return true if the calling convention is a C calling convention.
+static bool IsCCallConvention(CallingConv::ID CC) {
+ return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
+ CC == CallingConv::X86_64_SysV);
+}
+
+bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
+ if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
+ return false;
+
+ CallSite CS(CI);
+ CallingConv::ID CalleeCC = CS.getCallingConv();
+ if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
+ return false;
+
+ return true;
+}
+
+/// FuncIsMadeTailCallSafe - Return true if the function is being made into
+/// a tailcall target by changing its ABI.
+static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
+ bool GuaranteedTailCallOpt) {
+ return GuaranteedTailCallOpt && IsTailCallConvention(CC);
+}
+
+SDValue
+X86TargetLowering::LowerMemArgument(SDValue Chain,
+ CallingConv::ID CallConv,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ MachineFrameInfo *MFI,
+ unsigned i) const {
+ // Create the nodes corresponding to a load from this parameter slot.
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ bool AlwaysUseMutable = FuncIsMadeTailCallSafe(
+ CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
+ bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
+ EVT ValVT;
+
+ // If value is passed by pointer we have address passed instead of the value
+ // itself.
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ ValVT = VA.getLocVT();
+ else
+ ValVT = VA.getValVT();
+
+ // FIXME: For now, all byval parameter objects are marked mutable. This can be
+ // changed with more analysis.
+ // In case of tail call optimization mark all arguments mutable. Since they
+ // could be overwritten by lowering of arguments in case of a tail call.
+ if (Flags.isByVal()) {
+ unsigned Bytes = Flags.getByValSize();
+ if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
+ int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
+ return DAG.getFrameIndex(FI, getPointerTy());
+ } else {
+ int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
+ VA.getLocMemOffset(), isImmutable);
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ return DAG.getLoad(ValVT, dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0);
+ }
+}
+
+SDValue
+X86TargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+
+ const Function* Fn = MF.getFunction();
+ if (Fn->hasExternalLinkage() &&
+ Subtarget->isTargetCygMing() &&
+ Fn->getName() == "main")
+ FuncInfo->setForceFramePointer(true);
+
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ bool Is64Bit = Subtarget->is64Bit();
+ bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
+
+ assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
+ "Var args not supported with calling convention fastcc, ghc or hipe");
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, DAG.getTarget(),
+ ArgLocs, *DAG.getContext());
+
+ // Allocate shadow area for Win64
+ if (IsWin64)
+ CCInfo.AllocateStack(32, 8);
+
+ CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
+
+ unsigned LastVal = ~0U;
+ SDValue ArgValue;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
+ // places.
+ assert(VA.getValNo() != LastVal &&
+ "Don't support value assigned to multiple locs yet");
+ (void)LastVal;
+ LastVal = VA.getValNo();
+
+ if (VA.isRegLoc()) {
+ EVT RegVT = VA.getLocVT();
+ const TargetRegisterClass *RC;
+ if (RegVT == MVT::i32)
+ RC = &X86::GR32RegClass;
+ else if (Is64Bit && RegVT == MVT::i64)
+ RC = &X86::GR64RegClass;
+ else if (RegVT == MVT::f32)
+ RC = &X86::FR32RegClass;
+ else if (RegVT == MVT::f64)
+ RC = &X86::FR64RegClass;
+ else if (RegVT.is512BitVector())
+ RC = &X86::VR512RegClass;
+ else if (RegVT.is256BitVector())
+ RC = &X86::VR256RegClass;
+ else if (RegVT.is128BitVector())
+ RC = &X86::VR128RegClass;
+ else if (RegVT == MVT::x86mmx)
+ RC = &X86::VR64RegClass;
+ else if (RegVT == MVT::i1)
+ RC = &X86::VK1RegClass;
+ else if (RegVT == MVT::v8i1)
+ RC = &X86::VK8RegClass;
+ else if (RegVT == MVT::v16i1)
+ RC = &X86::VK16RegClass;
+ else
+ llvm_unreachable("Unknown argument type!");
+
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+
+ // If this is an 8 or 16-bit value, it is really passed promoted to 32
+ // bits. Insert an assert[sz]ext to capture this, then truncate to the
+ // right size.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::BCvt)
+ ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
+
+ if (VA.isExtInLoc()) {
+ // Handle MMX values passed in XMM regs.
+ if (RegVT.isVector())
+ ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
+ else
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ }
+ } else {
+ assert(VA.isMemLoc());
+ ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
+ }
+
+ // If value is passed via pointer - do a load.
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
+ MachinePointerInfo(), false, false, false, 0);
+
+ InVals.push_back(ArgValue);
+ }
+
+ if (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) {
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ // The x86-64 ABIs require that for returning structs by value we copy
+ // the sret argument into %rax/%eax (depending on ABI) for the return.
+ // Win32 requires us to put the sret argument to %eax as well.
+ // Save the argument into a virtual register so that we can access it
+ // from the return points.
+ if (Ins[i].Flags.isSRet()) {
+ unsigned Reg = FuncInfo->getSRetReturnReg();
+ if (!Reg) {
+ MVT PtrTy = getPointerTy();
+ Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
+ FuncInfo->setSRetReturnReg(Reg);
+ }
+ SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
+ break;
+ }
+ }
+ }
+
+ unsigned StackSize = CCInfo.getNextStackOffset();
+ // Align stack specially for tail calls.
+ if (FuncIsMadeTailCallSafe(CallConv,
+ MF.getTarget().Options.GuaranteedTailCallOpt))
+ StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ if (isVarArg) {
+ if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
+ CallConv != CallingConv::X86_ThisCall)) {
+ FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
+ }
+ if (Is64Bit) {
+ unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
+
+ // FIXME: We should really autogenerate these arrays
+ static const MCPhysReg GPR64ArgRegsWin64[] = {
+ X86::RCX, X86::RDX, X86::R8, X86::R9
+ };
+ static const MCPhysReg GPR64ArgRegs64Bit[] = {
+ X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
+ };
+ static const MCPhysReg XMMArgRegs64Bit[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ const MCPhysReg *GPR64ArgRegs;
+ unsigned NumXMMRegs = 0;
+
+ if (IsWin64) {
+ // The XMM registers which might contain var arg parameters are shadowed
+ // in their paired GPR. So we only need to save the GPR to their home
+ // slots.
+ TotalNumIntRegs = 4;
+ GPR64ArgRegs = GPR64ArgRegsWin64;
+ } else {
+ TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
+ GPR64ArgRegs = GPR64ArgRegs64Bit;
+
+ NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
+ TotalNumXMMRegs);
+ }
+ unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
+ TotalNumIntRegs);
+
+ bool NoImplicitFloatOps = Fn->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
+ assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
+ "SSE register cannot be used when SSE is disabled!");
+ assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
+ NoImplicitFloatOps) &&
+ "SSE register cannot be used when SSE is disabled!");
+ if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
+ !Subtarget->hasSSE1())
+ // Kernel mode asks for SSE to be disabled, so don't push them
+ // on the stack.
+ TotalNumXMMRegs = 0;
+
+ if (IsWin64) {
+ const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
+ // Get to the caller-allocated home save location. Add 8 to account
+ // for the return address.
+ int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
+ FuncInfo->setRegSaveFrameIndex(
+ MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
+ // Fixup to set vararg frame on shadow area (4 x i64).
+ if (NumIntRegs < 4)
+ FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
+ } else {
+ // For X86-64, if there are vararg parameters that are passed via
+ // registers, then we must store them to their spots on the stack so
+ // they may be loaded by deferencing the result of va_next.
+ FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
+ FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
+ FuncInfo->setRegSaveFrameIndex(
+ MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
+ false));
+ }
+
+ // Store the integer parameter registers.
+ SmallVector<SDValue, 8> MemOps;
+ SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
+ getPointerTy());
+ unsigned Offset = FuncInfo->getVarArgsGPOffset();
+ for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
+ SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
+ DAG.getIntPtrConstant(Offset));
+ unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
+ &X86::GR64RegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo::getFixedStack(
+ FuncInfo->getRegSaveFrameIndex(), Offset),
+ false, false, 0);
+ MemOps.push_back(Store);
+ Offset += 8;
+ }
+
+ if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
+ // Now store the XMM (fp + vector) parameter registers.
+ SmallVector<SDValue, 11> SaveXMMOps;
+ SaveXMMOps.push_back(Chain);
+
+ unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
+ SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
+ SaveXMMOps.push_back(ALVal);
+
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(
+ FuncInfo->getRegSaveFrameIndex()));
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(
+ FuncInfo->getVarArgsFPOffset()));
+
+ for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
+ unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
+ &X86::VR128RegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
+ SaveXMMOps.push_back(Val);
+ }
+ MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
+ MVT::Other, SaveXMMOps));
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+ }
+ }
+
+ // Some CCs need callee pop.
+ if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
+ MF.getTarget().Options.GuaranteedTailCallOpt)) {
+ FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
+ } else {
+ FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
+ // If this is an sret function, the return should pop the hidden pointer.
+ if (!Is64Bit && !IsTailCallConvention(CallConv) &&
+ !Subtarget->getTargetTriple().isOSMSVCRT() &&
+ argsAreStructReturn(Ins) == StackStructReturn)
+ FuncInfo->setBytesToPopOnReturn(4);
+ }
+
+ if (!Is64Bit) {
+ // RegSaveFrameIndex is X86-64 only.
+ FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
+ if (CallConv == CallingConv::X86_FastCall ||
+ CallConv == CallingConv::X86_ThisCall)
+ // fastcc functions can't have varargs.
+ FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
+ }
+
+ FuncInfo->setArgumentStackSize(StackSize);
+
+ return Chain;
+}
+
+SDValue
+X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
+ SDValue StackPtr, SDValue Arg,
+ SDLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) const {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+ if (Flags.isByVal())
+ return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
+
+ return DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo::getStack(LocMemOffset),
+ false, false, 0);
+}
+
+/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
+/// optimization is performed and it is required.
+SDValue
+X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
+ SDValue &OutRetAddr, SDValue Chain,
+ bool IsTailCall, bool Is64Bit,
+ int FPDiff, SDLoc dl) const {
+ // Adjust the Return address stack slot.
+ EVT VT = getPointerTy();
+ OutRetAddr = getReturnAddressFrameIndex(DAG);
+
+ // Load the "old" Return address.
+ OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
+ false, false, false, 0);
+ return SDValue(OutRetAddr.getNode(), 1);
+}
+
+/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
+/// optimization is performed and it is required (FPDiff!=0).
+static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
+ SDValue Chain, SDValue RetAddrFrIdx,
+ EVT PtrVT, unsigned SlotSize,
+ int FPDiff, SDLoc dl) {
+ // Store the return address to the appropriate stack slot.
+ if (!FPDiff) return Chain;
+ // Calculate the new stack slot for the return address.
+ int NewReturnAddrFI =
+ MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
+ false);
+ SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
+ Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
+ MachinePointerInfo::getFixedStack(NewReturnAddrFI),
+ false, false, 0);
+ return Chain;
+}
+
+SDValue
+X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool &isTailCall = CLI.IsTailCall;
+ bool isVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool Is64Bit = Subtarget->is64Bit();
+ bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
+ StructReturnType SR = callIsStructReturn(Outs);
+ bool IsSibcall = false;
+
+ if (MF.getTarget().Options.DisableTailCalls)
+ isTailCall = false;
+
+ bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
+ if (IsMustTail) {
+ // Force this to be a tail call. The verifier rules are enough to ensure
+ // that we can lower this successfully without moving the return address
+ // around.
+ isTailCall = true;
+ } else if (isTailCall) {
+ // Check if it's really possible to do a tail call.
+ isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
+ isVarArg, SR != NotStructReturn,
+ MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
+ Outs, OutVals, Ins, DAG);
+
+ // Sibcalls are automatically detected tailcalls which do not require
+ // ABI changes.
+ if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
+ IsSibcall = true;
+
+ if (isTailCall)
+ ++NumTailCalls;
+ }
+
+ assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
+ "Var args not supported with calling convention fastcc, ghc or hipe");
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, MF.getTarget(),
+ ArgLocs, *DAG.getContext());
+
+ // Allocate shadow area for Win64
+ if (IsWin64)
+ CCInfo.AllocateStack(32, 8);
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_X86);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+ if (IsSibcall)
+ // This is a sibcall. The memory operands are available in caller's
+ // own caller's stack.
+ NumBytes = 0;
+ else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ IsTailCallConvention(CallConv))
+ NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
+
+ int FPDiff = 0;
+ if (isTailCall && !IsSibcall && !IsMustTail) {
+ // Lower arguments at fp - stackoffset + fpdiff.
+ X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
+ unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
+
+ FPDiff = NumBytesCallerPushed - NumBytes;
+
+ // Set the delta of movement of the returnaddr stackslot.
+ // But only set if delta is greater than previous delta.
+ if (FPDiff < X86Info->getTCReturnAddrDelta())
+ X86Info->setTCReturnAddrDelta(FPDiff);
+ }
+
+ unsigned NumBytesToPush = NumBytes;
+ unsigned NumBytesToPop = NumBytes;
+
+ // If we have an inalloca argument, all stack space has already been allocated
+ // for us and be right at the top of the stack. We don't support multiple
+ // arguments passed in memory when using inalloca.
+ if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
+ NumBytesToPush = 0;
+ assert(ArgLocs.back().getLocMemOffset() == 0 &&
+ "an inalloca argument must be the only memory argument");
+ }
+
+ if (!IsSibcall)
+ Chain = DAG.getCALLSEQ_START(
+ Chain, DAG.getIntPtrConstant(NumBytesToPush, true), dl);
+
+ SDValue RetAddrFrIdx;
+ // Load return address for tail calls.
+ if (isTailCall && FPDiff)
+ Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
+ Is64Bit, FPDiff, dl);
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+ SDValue StackPtr;
+
+ // Walk the register/memloc assignments, inserting copies/loads. In the case
+ // of tail call optimization arguments are handle later.
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ // Skip inalloca arguments, they have already been written.
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ if (Flags.isInAlloca())
+ continue;
+
+ CCValAssign &VA = ArgLocs[i];
+ EVT RegVT = VA.getLocVT();
+ SDValue Arg = OutVals[i];
+ bool isByVal = Flags.isByVal();
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::AExt:
+ if (RegVT.is128BitVector()) {
+ // Special case: passing MMX values in XMM registers.
+ Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
+ Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
+ Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
+ } else
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
+ break;
+ case CCValAssign::Indirect: {
+ // Store the argument.
+ SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
+ int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+ Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, 0);
+ Arg = SpillSlot;
+ break;
+ }
+ }
+
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ if (isVarArg && IsWin64) {
+ // Win64 ABI requires argument XMM reg to be copied to the corresponding
+ // shadow reg if callee is a varargs function.
+ unsigned ShadowReg = 0;
+ switch (VA.getLocReg()) {
+ case X86::XMM0: ShadowReg = X86::RCX; break;
+ case X86::XMM1: ShadowReg = X86::RDX; break;
+ case X86::XMM2: ShadowReg = X86::R8; break;
+ case X86::XMM3: ShadowReg = X86::R9; break;
+ }
+ if (ShadowReg)
+ RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
+ }
+ } else if (!IsSibcall && (!isTailCall || isByVal)) {
+ assert(VA.isMemLoc());
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
+ getPointerTy());
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
+ dl, DAG, VA, Flags));
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ if (Subtarget->isPICStyleGOT()) {
+ // ELF / PIC requires GOT in the EBX register before function calls via PLT
+ // GOT pointer.
+ if (!isTailCall) {
+ RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
+ } else {
+ // If we are tail calling and generating PIC/GOT style code load the
+ // address of the callee into ECX. The value in ecx is used as target of
+ // the tail jump. This is done to circumvent the ebx/callee-saved problem
+ // for tail calls on PIC/GOT architectures. Normally we would just put the
+ // address of GOT into ebx and then call target@PLT. But for tail calls
+ // ebx would be restored (since ebx is callee saved) before jumping to the
+ // target@PLT.
+
+ // Note: The actual moving to ECX is done further down.
+ GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
+ if (G && !G->getGlobal()->hasHiddenVisibility() &&
+ !G->getGlobal()->hasProtectedVisibility())
+ Callee = LowerGlobalAddress(Callee, DAG);
+ else if (isa<ExternalSymbolSDNode>(Callee))
+ Callee = LowerExternalSymbol(Callee, DAG);
+ }
+ }
+
+ if (Is64Bit && isVarArg && !IsWin64) {
+ // From AMD64 ABI document:
+ // For calls that may call functions that use varargs or stdargs
+ // (prototype-less calls or calls to functions containing ellipsis (...) in
+ // the declaration) %al is used as hidden argument to specify the number
+ // of SSE registers used. The contents of %al do not need to match exactly
+ // the number of registers, but must be an ubound on the number of SSE
+ // registers used and is in the range 0 - 8 inclusive.
+
+ // Count the number of XMM registers allocated.
+ static const MCPhysReg XMMArgRegs[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
+ assert((Subtarget->hasSSE1() || !NumXMMRegs)
+ && "SSE registers cannot be used when SSE is disabled");
+
+ RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
+ DAG.getConstant(NumXMMRegs, MVT::i8)));
+ }
+
+ // For tail calls lower the arguments to the 'real' stack slots. Sibcalls
+ // don't need this because the eligibility check rejects calls that require
+ // shuffling arguments passed in memory.
+ if (!IsSibcall && isTailCall) {
+ // Force all the incoming stack arguments to be loaded from the stack
+ // before any new outgoing arguments are stored to the stack, because the
+ // outgoing stack slots may alias the incoming argument stack slots, and
+ // the alias isn't otherwise explicit. This is slightly more conservative
+ // than necessary, because it means that each store effectively depends
+ // on every argument instead of just those arguments it would clobber.
+ SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
+
+ SmallVector<SDValue, 8> MemOpChains2;
+ SDValue FIN;
+ int FI = 0;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (VA.isRegLoc())
+ continue;
+ assert(VA.isMemLoc());
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ // Skip inalloca arguments. They don't require any work.
+ if (Flags.isInAlloca())
+ continue;
+ // Create frame index.
+ int32_t Offset = VA.getLocMemOffset()+FPDiff;
+ uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
+ FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
+ FIN = DAG.getFrameIndex(FI, getPointerTy());
+
+ if (Flags.isByVal()) {
+ // Copy relative to framepointer.
+ SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, dl,
+ RegInfo->getStackRegister(),
+ getPointerTy());
+ Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
+
+ MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
+ ArgChain,
+ Flags, DAG, dl));
+ } else {
+ // Store relative to framepointer.
+ MemOpChains2.push_back(
+ DAG.getStore(ArgChain, dl, Arg, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, 0));
+ }
+ }
+
+ if (!MemOpChains2.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
+
+ // Store the return address to the appropriate stack slot.
+ Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
+ getPointerTy(), RegInfo->getSlotSize(),
+ FPDiff, dl);
+ }
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into registers.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
+ assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
+ // In the 64-bit large code model, we have to make all calls
+ // through a register, since the call instruction's 32-bit
+ // pc-relative offset may not be large enough to hold the whole
+ // address.
+ } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ // If the callee is a GlobalAddress node (quite common, every direct call
+ // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
+ // it.
+
+ // We should use extra load for direct calls to dllimported functions in
+ // non-JIT mode.
+ const GlobalValue *GV = G->getGlobal();
+ if (!GV->hasDLLImportStorageClass()) {
+ unsigned char OpFlags = 0;
+ bool ExtraLoad = false;
+ unsigned WrapperKind = ISD::DELETED_NODE;
+
+ // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
+ // external symbols most go through the PLT in PIC mode. If the symbol
+ // has hidden or protected visibility, or if it is static or local, then
+ // we don't need to use the PLT - we can directly call it.
+ if (Subtarget->isTargetELF() &&
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
+ GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ (GV->isDeclaration() || GV->isWeakForLinker()) &&
+ (!Subtarget->getTargetTriple().isMacOSX() ||
+ Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ } else if (Subtarget->isPICStyleRIPRel() &&
+ isa<Function>(GV) &&
+ cast<Function>(GV)->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NonLazyBind)) {
+ // If the function is marked as non-lazy, generate an indirect call
+ // which loads from the GOT directly. This avoids runtime overhead
+ // at the cost of eager binding (and one extra byte of encoding).
+ OpFlags = X86II::MO_GOTPCREL;
+ WrapperKind = X86ISD::WrapperRIP;
+ ExtraLoad = true;
+ }
+
+ Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
+ G->getOffset(), OpFlags);
+
+ // Add a wrapper if needed.
+ if (WrapperKind != ISD::DELETED_NODE)
+ Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
+ // Add extra indirection if needed.
+ if (ExtraLoad)
+ Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
+ MachinePointerInfo::getGOT(),
+ false, false, false, 0);
+ }
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ unsigned char OpFlags = 0;
+
+ // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
+ // external symbols should go through the PLT.
+ if (Subtarget->isTargetELF() &&
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ (!Subtarget->getTargetTriple().isMacOSX() ||
+ Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ }
+
+ Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
+ OpFlags);
+ }
+
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 8> Ops;
+
+ if (!IsSibcall && isTailCall) {
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getIntPtrConstant(NumBytesToPop, true),
+ DAG.getIntPtrConstant(0, true), InFlag, dl);
+ InFlag = Chain.getValue(1);
+ }
+
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ if (isTailCall)
+ Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
+ const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ if (isTailCall) {
+ // We used to do:
+ //// If this is the first return lowered for this function, add the regs
+ //// to the liveout set for the function.
+ // This isn't right, although it's probably harmless on x86; liveouts
+ // should be computed from returns not tail calls. Consider a void
+ // function making a tail call to a function returning int.
+ return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
+ }
+
+ Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ unsigned NumBytesForCalleeToPop;
+ if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
+ DAG.getTarget().Options.GuaranteedTailCallOpt))
+ NumBytesForCalleeToPop = NumBytes; // Callee pops everything
+ else if (!Is64Bit && !IsTailCallConvention(CallConv) &&
+ !Subtarget->getTargetTriple().isOSMSVCRT() &&
+ SR == StackStructReturn)
+ // If this is a call to a struct-return function, the callee
+ // pops the hidden struct pointer, so we have to push it back.
+ // This is common for Darwin/X86, Linux & Mingw32 targets.
+ // For MSVC Win32 targets, the caller pops the hidden struct pointer.
+ NumBytesForCalleeToPop = 4;
+ else
+ NumBytesForCalleeToPop = 0; // Callee pops nothing.
+
+ // Returns a flag for retval copy to use.
+ if (!IsSibcall) {
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getIntPtrConstant(NumBytesToPop, true),
+ DAG.getIntPtrConstant(NumBytesForCalleeToPop,
+ true),
+ InFlag, dl);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
+}
+
+//===----------------------------------------------------------------------===//
+// Fast Calling Convention (tail call) implementation
+//===----------------------------------------------------------------------===//
+
+// Like std call, callee cleans arguments, convention except that ECX is
+// reserved for storing the tail called function address. Only 2 registers are
+// free for argument passing (inreg). Tail call optimization is performed
+// provided:
+// * tailcallopt is enabled
+// * caller/callee are fastcc
+// On X86_64 architecture with GOT-style position independent code only local
+// (within module) calls are supported at the moment.
+// To keep the stack aligned according to platform abi the function
+// GetAlignedArgumentStackSize ensures that argument delta is always multiples
+// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
+// If a tail called function callee has more arguments than the caller the
+// caller needs to make sure that there is room to move the RETADDR to. This is
+// achieved by reserving an area the size of the argument delta right after the
+// original RETADDR, but before the saved framepointer or the spilled registers
+// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
+// stack layout:
+// arg1
+// arg2
+// RETADDR
+// [ new RETADDR
+// move area ]
+// (possible EBP)
+// ESI
+// EDI
+// local1 ..
+
+/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
+/// for a 16 byte align requirement.
+unsigned
+X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
+ SelectionDAG& DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetMachine &TM = MF.getTarget();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
+ const TargetFrameLowering &TFI = *TM.getFrameLowering();
+ unsigned StackAlignment = TFI.getStackAlignment();
+ uint64_t AlignMask = StackAlignment - 1;
+ int64_t Offset = StackSize;
+ unsigned SlotSize = RegInfo->getSlotSize();
+ if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
+ // Number smaller than 12 so just add the difference.
+ Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
+ } else {
+ // Mask out lower bits, add stackalignment once plus the 12 bytes.
+ Offset = ((~AlignMask) & Offset) + StackAlignment +
+ (StackAlignment-SlotSize);
+ }
+ return Offset;
+}
+
+/// MatchingStackOffset - Return true if the given stack call argument is
+/// already available in the same position (relatively) of the caller's
+/// incoming argument stack.
+static
+bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
+ MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
+ const X86InstrInfo *TII) {
+ unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
+ int FI = INT_MAX;
+ if (Arg.getOpcode() == ISD::CopyFromReg) {
+ unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(VR))
+ return false;
+ MachineInstr *Def = MRI->getVRegDef(VR);
+ if (!Def)
+ return false;
+ if (!Flags.isByVal()) {
+ if (!TII->isLoadFromStackSlot(Def, FI))
+ return false;
+ } else {
+ unsigned Opcode = Def->getOpcode();
+ if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
+ Def->getOperand(1).isFI()) {
+ FI = Def->getOperand(1).getIndex();
+ Bytes = Flags.getByValSize();
+ } else
+ return false;
+ }
+ } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
+ if (Flags.isByVal())
+ // ByVal argument is passed in as a pointer but it's now being
+ // dereferenced. e.g.
+ // define @foo(%struct.X* %A) {
+ // tail call @bar(%struct.X* byval %A)
+ // }
+ return false;
+ SDValue Ptr = Ld->getBasePtr();
+ FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
+ if (!FINode)
+ return false;
+ FI = FINode->getIndex();
+ } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
+ FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
+ FI = FINode->getIndex();
+ Bytes = Flags.getByValSize();
+ } else
+ return false;
+
+ assert(FI != INT_MAX);
+ if (!MFI->isFixedObjectIndex(FI))
+ return false;
+ return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
+}
+
+/// IsEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization. Targets which want to do tail call
+/// optimization should implement this function.
+bool
+X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ bool isCalleeStructRet,
+ bool isCallerStructRet,
+ Type *RetTy,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG &DAG) const {
+ if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
+ return false;
+
+ // If -tailcallopt is specified, make fastcc functions tail-callable.
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const Function *CallerF = MF.getFunction();
+
+ // If the function return type is x86_fp80 and the callee return type is not,
+ // then the FP_EXTEND of the call result is not a nop. It's not safe to
+ // perform a tailcall optimization here.
+ if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
+ return false;
+
+ CallingConv::ID CallerCC = CallerF->getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+ bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
+ bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
+
+ if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
+ if (IsTailCallConvention(CalleeCC) && CCMatch)
+ return true;
+ return false;
+ }
+
+ // Look for obvious safe cases to perform tail call optimization that do not
+ // require ABI changes. This is what gcc calls sibcall.
+
+ // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
+ // emit a special epilogue.
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ if (RegInfo->needsStackRealignment(MF))
+ return false;
+
+ // Also avoid sibcall optimization if either caller or callee uses struct
+ // return semantics.
+ if (isCalleeStructRet || isCallerStructRet)
+ return false;
+
+ // An stdcall/thiscall caller is expected to clean up its arguments; the
+ // callee isn't going to do that.
+ // FIXME: this is more restrictive than needed. We could produce a tailcall
+ // when the stack adjustment matches. For example, with a thiscall that takes
+ // only one argument.
+ if (!CCMatch && (CallerCC == CallingConv::X86_StdCall ||
+ CallerCC == CallingConv::X86_ThisCall))
+ return false;
+
+ // Do not sibcall optimize vararg calls unless all arguments are passed via
+ // registers.
+ if (isVarArg && !Outs.empty()) {
+
+ // Optimizing for varargs on Win64 is unlikely to be safe without
+ // additional testing.
+ if (IsCalleeWin64 || IsCallerWin64)
+ return false;
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
+ DAG.getTarget(), ArgLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_X86);
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
+ if (!ArgLocs[i].isRegLoc())
+ return false;
+ }
+
+ // If the call result is in ST0 / ST1, it needs to be popped off the x87
+ // stack. Therefore, if it's not used by the call it is not safe to optimize
+ // this into a sibcall.
+ bool Unused = false;
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ if (!Ins[i].Used) {
+ Unused = true;
+ break;
+ }
+ }
+ if (Unused) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
+ DAG.getTarget(), RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
+ return false;
+ }
+ }
+
+ // If the calling conventions do not match, then we'd better make sure the
+ // results are returned in the same way as what the caller expects.
+ if (!CCMatch) {
+ SmallVector<CCValAssign, 16> RVLocs1;
+ CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
+ DAG.getTarget(), RVLocs1, *DAG.getContext());
+ CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
+
+ SmallVector<CCValAssign, 16> RVLocs2;
+ CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
+ DAG.getTarget(), RVLocs2, *DAG.getContext());
+ CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
+
+ if (RVLocs1.size() != RVLocs2.size())
+ return false;
+ for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
+ if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
+ return false;
+ if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
+ return false;
+ if (RVLocs1[i].isRegLoc()) {
+ if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
+ return false;
+ } else {
+ if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
+ return false;
+ }
+ }
+ }
+
+ // If the callee takes no arguments then go on to check the results of the
+ // call.
+ if (!Outs.empty()) {
+ // Check if stack adjustment is needed. For now, do not do this if any
+ // argument is passed on the stack.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
+ DAG.getTarget(), ArgLocs, *DAG.getContext());
+
+ // Allocate shadow area for Win64
+ if (IsCalleeWin64)
+ CCInfo.AllocateStack(32, 8);
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_X86);
+ if (CCInfo.getNextStackOffset()) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
+ return false;
+
+ // Check if the arguments are already laid out in the right way as
+ // the caller's fixed stack objects.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineRegisterInfo *MRI = &MF.getRegInfo();
+ const X86InstrInfo *TII =
+ static_cast<const X86InstrInfo *>(DAG.getTarget().getInstrInfo());
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ return false;
+ if (!VA.isRegLoc()) {
+ if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
+ MFI, MRI, TII))
+ return false;
+ }
+ }
+ }
+
+ // If the tailcall address may be in a register, then make sure it's
+ // possible to register allocate for it. In 32-bit, the call address can
+ // only target EAX, EDX, or ECX since the tail call must be scheduled after
+ // callee-saved registers are restored. These happen to be the same
+ // registers used to pass 'inreg' arguments so watch out for those.
+ if (!Subtarget->is64Bit() &&
+ ((!isa<GlobalAddressSDNode>(Callee) &&
+ !isa<ExternalSymbolSDNode>(Callee)) ||
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
+ unsigned NumInRegs = 0;
+ // In PIC we need an extra register to formulate the address computation
+ // for the callee.
+ unsigned MaxInRegs =
+ (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (!VA.isRegLoc())
+ continue;
+ unsigned Reg = VA.getLocReg();
+ switch (Reg) {
+ default: break;
+ case X86::EAX: case X86::EDX: case X86::ECX:
+ if (++NumInRegs == MaxInRegs)
+ return false;
+ break;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+FastISel *
+X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const {
+ return X86::createFastISel(funcInfo, libInfo);
+}
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Hooks
+//===----------------------------------------------------------------------===//
+
+static bool MayFoldLoad(SDValue Op) {
+ return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
+}
+
+static bool MayFoldIntoStore(SDValue Op) {
+ return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
+}
+
+static bool isTargetShuffle(unsigned Opcode) {
+ switch(Opcode) {
+ default: return false;
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFHW:
+ case X86ISD::PSHUFLW:
+ case X86ISD::SHUFP:
+ case X86ISD::PALIGNR:
+ case X86ISD::MOVLHPS:
+ case X86ISD::MOVLHPD:
+ case X86ISD::MOVHLPS:
+ case X86ISD::MOVLPS:
+ case X86ISD::MOVLPD:
+ case X86ISD::MOVSHDUP:
+ case X86ISD::MOVSLDUP:
+ case X86ISD::MOVDDUP:
+ case X86ISD::MOVSS:
+ case X86ISD::MOVSD:
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ case X86ISD::VPERMILP:
+ case X86ISD::VPERM2X128:
+ case X86ISD::VPERMI:
+ return true;
+ }
+}
+
+static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
+ SDValue V1, SelectionDAG &DAG) {
+ switch(Opc) {
+ default: llvm_unreachable("Unknown x86 shuffle node");
+ case X86ISD::MOVSHDUP:
+ case X86ISD::MOVSLDUP:
+ case X86ISD::MOVDDUP:
+ return DAG.getNode(Opc, dl, VT, V1);
+ }
+}
+
+static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
+ SDValue V1, unsigned TargetMask,
+ SelectionDAG &DAG) {
+ switch(Opc) {
+ default: llvm_unreachable("Unknown x86 shuffle node");
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFHW:
+ case X86ISD::PSHUFLW:
+ case X86ISD::VPERMILP:
+ case X86ISD::VPERMI:
+ return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
+ }
+}
+
+static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
+ SDValue V1, SDValue V2, unsigned TargetMask,
+ SelectionDAG &DAG) {
+ switch(Opc) {
+ default: llvm_unreachable("Unknown x86 shuffle node");
+ case X86ISD::PALIGNR:
+ case X86ISD::SHUFP:
+ case X86ISD::VPERM2X128:
+ return DAG.getNode(Opc, dl, VT, V1, V2,
+ DAG.getConstant(TargetMask, MVT::i8));
+ }
+}
+
+static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
+ SDValue V1, SDValue V2, SelectionDAG &DAG) {
+ switch(Opc) {
+ default: llvm_unreachable("Unknown x86 shuffle node");
+ case X86ISD::MOVLHPS:
+ case X86ISD::MOVLHPD:
+ case X86ISD::MOVHLPS:
+ case X86ISD::MOVLPS:
+ case X86ISD::MOVLPD:
+ case X86ISD::MOVSS:
+ case X86ISD::MOVSD:
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ return DAG.getNode(Opc, dl, VT, V1, V2);
+ }
+}
+
+SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ int ReturnAddrIndex = FuncInfo->getRAIndex();
+
+ if (ReturnAddrIndex == 0) {
+ // Set up a frame object for the return address.
+ unsigned SlotSize = RegInfo->getSlotSize();
+ ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
+ -(int64_t)SlotSize,
+ false);
+ FuncInfo->setRAIndex(ReturnAddrIndex);
+ }
+
+ return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
+}
+
+bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
+ bool hasSymbolicDisplacement) {
+ // Offset should fit into 32 bit immediate field.
+ if (!isInt<32>(Offset))
+ return false;
+
+ // If we don't have a symbolic displacement - we don't have any extra
+ // restrictions.
+ if (!hasSymbolicDisplacement)
+ return true;
+
+ // FIXME: Some tweaks might be needed for medium code model.
+ if (M != CodeModel::Small && M != CodeModel::Kernel)
+ return false;
+
+ // For small code model we assume that latest object is 16MB before end of 31
+ // bits boundary. We may also accept pretty large negative constants knowing
+ // that all objects are in the positive half of address space.
+ if (M == CodeModel::Small && Offset < 16*1024*1024)
+ return true;
+
+ // For kernel code model we know that all object resist in the negative half
+ // of 32bits address space. We may not accept negative offsets, since they may
+ // be just off and we may accept pretty large positive ones.
+ if (M == CodeModel::Kernel && Offset > 0)
+ return true;
+
+ return false;
+}
+
+/// isCalleePop - Determines whether the callee is required to pop its
+/// own arguments. Callee pop is necessary to support tail calls.
+bool X86::isCalleePop(CallingConv::ID CallingConv,
+ bool is64Bit, bool IsVarArg, bool TailCallOpt) {
+ if (IsVarArg)
+ return false;
+
+ switch (CallingConv) {
+ default:
+ return false;
+ case CallingConv::X86_StdCall:
+ return !is64Bit;
+ case CallingConv::X86_FastCall:
+ return !is64Bit;
+ case CallingConv::X86_ThisCall:
+ return !is64Bit;
+ case CallingConv::Fast:
+ return TailCallOpt;
+ case CallingConv::GHC:
+ return TailCallOpt;
+ case CallingConv::HiPE:
+ return TailCallOpt;
+ }
+}
+
+/// \brief Return true if the condition is an unsigned comparison operation.
+static bool isX86CCUnsigned(unsigned X86CC) {
+ switch (X86CC) {
+ default: llvm_unreachable("Invalid integer condition!");
+ case X86::COND_E: return true;
+ case X86::COND_G: return false;
+ case X86::COND_GE: return false;
+ case X86::COND_L: return false;
+ case X86::COND_LE: return false;
+ case X86::COND_NE: return true;
+ case X86::COND_B: return true;
+ case X86::COND_A: return true;
+ case X86::COND_BE: return true;
+ case X86::COND_AE: return true;
+ }
+ llvm_unreachable("covered switch fell through?!");
+}
+
+/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
+/// specific condition code, returning the condition code and the LHS/RHS of the
+/// comparison to make.
+static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
+ SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
+ if (!isFP) {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
+ if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
+ // X > -1 -> X == 0, jump !sign.
+ RHS = DAG.getConstant(0, RHS.getValueType());
+ return X86::COND_NS;
+ }
+ if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
+ // X < 0 -> X == 0, jump on sign.
+ return X86::COND_S;
+ }
+ if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
+ // X < 1 -> X <= 0
+ RHS = DAG.getConstant(0, RHS.getValueType());
+ return X86::COND_LE;
+ }
+ }
+
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Invalid integer condition!");
+ case ISD::SETEQ: return X86::COND_E;
+ case ISD::SETGT: return X86::COND_G;
+ case ISD::SETGE: return X86::COND_GE;
+ case ISD::SETLT: return X86::COND_L;
+ case ISD::SETLE: return X86::COND_LE;
+ case ISD::SETNE: return X86::COND_NE;
+ case ISD::SETULT: return X86::COND_B;
+ case ISD::SETUGT: return X86::COND_A;
+ case ISD::SETULE: return X86::COND_BE;
+ case ISD::SETUGE: return X86::COND_AE;
+ }
+ }
+
+ // First determine if it is required or is profitable to flip the operands.
+
+ // If LHS is a foldable load, but RHS is not, flip the condition.
+ if (ISD::isNON_EXTLoad(LHS.getNode()) &&
+ !ISD::isNON_EXTLoad(RHS.getNode())) {
+ SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
+ std::swap(LHS, RHS);
+ }
+
+ switch (SetCCOpcode) {
+ default: break;
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ std::swap(LHS, RHS);
+ break;
+ }
+
+ // On a floating point condition, the flags are set as follows:
+ // ZF PF CF op
+ // 0 | 0 | 0 | X > Y
+ // 0 | 0 | 1 | X < Y
+ // 1 | 0 | 0 | X == Y
+ // 1 | 1 | 1 | unordered
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Condcode should be pre-legalized away");
+ case ISD::SETUEQ:
+ case ISD::SETEQ: return X86::COND_E;
+ case ISD::SETOLT: // flipped
+ case ISD::SETOGT:
+ case ISD::SETGT: return X86::COND_A;
+ case ISD::SETOLE: // flipped
+ case ISD::SETOGE:
+ case ISD::SETGE: return X86::COND_AE;
+ case ISD::SETUGT: // flipped
+ case ISD::SETULT:
+ case ISD::SETLT: return X86::COND_B;
+ case ISD::SETUGE: // flipped
+ case ISD::SETULE:
+ case ISD::SETLE: return X86::COND_BE;
+ case ISD::SETONE:
+ case ISD::SETNE: return X86::COND_NE;
+ case ISD::SETUO: return X86::COND_P;
+ case ISD::SETO: return X86::COND_NP;
+ case ISD::SETOEQ:
+ case ISD::SETUNE: return X86::COND_INVALID;
+ }
+}
+
+/// hasFPCMov - is there a floating point cmov for the specific X86 condition
+/// code. Current x86 isa includes the following FP cmov instructions:
+/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
+static bool hasFPCMov(unsigned X86CC) {
+ switch (X86CC) {
+ default:
+ return false;
+ case X86::COND_B:
+ case X86::COND_BE:
+ case X86::COND_E:
+ case X86::COND_P:
+ case X86::COND_A:
+ case X86::COND_AE:
+ case X86::COND_NE:
+ case X86::COND_NP:
+ return true;
+ }
+}
+
+/// isFPImmLegal - Returns true if the target can instruction select the
+/// specified FP immediate natively. If false, the legalizer will
+/// materialize the FP immediate as a load from a constant pool.
+bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
+ if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
+ return true;
+ }
+ return false;
+}
+
+/// \brief Returns true if it is beneficial to convert a load of a constant
+/// to just the constant itself.
+bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0 || BitSize > 64)
+ return false;
+ return true;
+}
+
+/// isUndefOrInRange - Return true if Val is undef or if its value falls within
+/// the specified range (L, H].
+static bool isUndefOrInRange(int Val, int Low, int Hi) {
+ return (Val < 0) || (Val >= Low && Val < Hi);
+}
+
+/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
+/// specified value.
+static bool isUndefOrEqual(int Val, int CmpVal) {
+ return (Val < 0 || Val == CmpVal);
+}
+
+/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
+/// from position Pos and ending in Pos+Size, falls within the specified
+/// sequential range (L, L+Pos]. or is undef.
+static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
+ unsigned Pos, unsigned Size, int Low) {
+ for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
+ if (!isUndefOrEqual(Mask[i], Low))
+ return false;
+ return true;
+}
+
+/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
+/// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
+/// the second operand.
+static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) {
+ if (VT == MVT::v4f32 || VT == MVT::v4i32 )
+ return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
+ if (VT == MVT::v2f64 || VT == MVT::v2i64)
+ return (Mask[0] < 2 && Mask[1] < 2);
+ return false;
+}
+
+/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
+/// is suitable for input to PSHUFHW.
+static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
+ if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
+ return false;
+
+ // Lower quadword copied in order or undef.
+ if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
+ return false;
+
+ // Upper quadword shuffled.
+ for (unsigned i = 4; i != 8; ++i)
+ if (!isUndefOrInRange(Mask[i], 4, 8))
+ return false;
+
+ if (VT == MVT::v16i16) {
+ // Lower quadword copied in order or undef.
+ if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
+ return false;
+
+ // Upper quadword shuffled.
+ for (unsigned i = 12; i != 16; ++i)
+ if (!isUndefOrInRange(Mask[i], 12, 16))
+ return false;
+ }
+
+ return true;
+}
+
+/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
+/// is suitable for input to PSHUFLW.
+static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
+ if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
+ return false;
+
+ // Upper quadword copied in order.
+ if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
+ return false;
+
+ // Lower quadword shuffled.
+ for (unsigned i = 0; i != 4; ++i)
+ if (!isUndefOrInRange(Mask[i], 0, 4))
+ return false;
+
+ if (VT == MVT::v16i16) {
+ // Upper quadword copied in order.
+ if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
+ return false;
+
+ // Lower quadword shuffled.
+ for (unsigned i = 8; i != 12; ++i)
+ if (!isUndefOrInRange(Mask[i], 8, 12))
+ return false;
+ }
+
+ return true;
+}
+
+/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
+/// is suitable for input to PALIGNR.
+static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
+ const X86Subtarget *Subtarget) {
+ if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
+ (VT.is256BitVector() && !Subtarget->hasInt256()))
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumLanes = VT.is512BitVector() ? 1: VT.getSizeInBits()/128;
+ unsigned NumLaneElts = NumElts/NumLanes;
+
+ // Do not handle 64-bit element shuffles with palignr.
+ if (NumLaneElts == 2)
+ return false;
+
+ for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
+ unsigned i;
+ for (i = 0; i != NumLaneElts; ++i) {
+ if (Mask[i+l] >= 0)
+ break;
+ }
+
+ // Lane is all undef, go to next lane
+ if (i == NumLaneElts)
+ continue;
+
+ int Start = Mask[i+l];
+
+ // Make sure its in this lane in one of the sources
+ if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
+ !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
+ return false;
+
+ // If not lane 0, then we must match lane 0
+ if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
+ return false;
+
+ // Correct second source to be contiguous with first source
+ if (Start >= (int)NumElts)
+ Start -= NumElts - NumLaneElts;
+
+ // Make sure we're shifting in the right direction.
+ if (Start <= (int)(i+l))
+ return false;
+
+ Start -= i;
+
+ // Check the rest of the elements to see if they are consecutive.
+ for (++i; i != NumLaneElts; ++i) {
+ int Idx = Mask[i+l];
+
+ // Make sure its in this lane
+ if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
+ !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
+ return false;
+
+ // If not lane 0, then we must match lane 0
+ if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
+ return false;
+
+ if (Idx >= (int)NumElts)
+ Idx -= NumElts - NumLaneElts;
+
+ if (!isUndefOrEqual(Idx, Start+i))
+ return false;
+
+ }
+ }
+
+ return true;
+}
+
+/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
+/// the two vector operands have swapped position.
+static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
+ unsigned NumElems) {
+ for (unsigned i = 0; i != NumElems; ++i) {
+ int idx = Mask[i];
+ if (idx < 0)
+ continue;
+ else if (idx < (int)NumElems)
+ Mask[i] = idx + NumElems;
+ else
+ Mask[i] = idx - NumElems;
+ }
+}
+
+/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to 128/256-bit
+/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
+/// reverse of what x86 shuffles want.
+static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) {
+
+ unsigned NumElems = VT.getVectorNumElements();
+ unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLaneElems = NumElems/NumLanes;
+
+ if (NumLaneElems != 2 && NumLaneElems != 4)
+ return false;
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ bool symetricMaskRequired =
+ (VT.getSizeInBits() >= 256) && (EltSize == 32);
+
+ // VSHUFPSY divides the resulting vector into 4 chunks.
+ // The sources are also splitted into 4 chunks, and each destination
+ // chunk must come from a different source chunk.
+ //
+ // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0
+ // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9
+ //
+ // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4,
+ // Y3..Y0, Y3..Y0, X3..X0, X3..X0
+ //
+ // VSHUFPDY divides the resulting vector into 4 chunks.
+ // The sources are also splitted into 4 chunks, and each destination
+ // chunk must come from a different source chunk.
+ //
+ // SRC1 => X3 X2 X1 X0
+ // SRC2 => Y3 Y2 Y1 Y0
+ //
+ // DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0
+ //
+ SmallVector<int, 4> MaskVal(NumLaneElems, -1);
+ unsigned HalfLaneElems = NumLaneElems/2;
+ for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
+ for (unsigned i = 0; i != NumLaneElems; ++i) {
+ int Idx = Mask[i+l];
+ unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
+ if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
+ return false;
+ // For VSHUFPSY, the mask of the second half must be the same as the
+ // first but with the appropriate offsets. This works in the same way as
+ // VPERMILPS works with masks.
+ if (!symetricMaskRequired || Idx < 0)
+ continue;
+ if (MaskVal[i] < 0) {
+ MaskVal[i] = Idx - l;
+ continue;
+ }
+ if ((signed)(Idx - l) != MaskVal[i])
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
+static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) {
+ if (!VT.is128BitVector())
+ return false;
+
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if (NumElems != 4)
+ return false;
+
+ // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
+ return isUndefOrEqual(Mask[0], 6) &&
+ isUndefOrEqual(Mask[1], 7) &&
+ isUndefOrEqual(Mask[2], 2) &&
+ isUndefOrEqual(Mask[3], 3);
+}
+
+/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
+/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
+/// <2, 3, 2, 3>
+static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) {
+ if (!VT.is128BitVector())
+ return false;
+
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if (NumElems != 4)
+ return false;
+
+ return isUndefOrEqual(Mask[0], 2) &&
+ isUndefOrEqual(Mask[1], 3) &&
+ isUndefOrEqual(Mask[2], 2) &&
+ isUndefOrEqual(Mask[3], 3);
+}
+
+/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
+static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) {
+ if (!VT.is128BitVector())
+ return false;
+
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if (NumElems != 2 && NumElems != 4)
+ return false;
+
+ for (unsigned i = 0, e = NumElems/2; i != e; ++i)
+ if (!isUndefOrEqual(Mask[i], i + NumElems))
+ return false;
+
+ for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
+ if (!isUndefOrEqual(Mask[i], i))
+ return false;
+
+ return true;
+}
+
+/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
+static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) {
+ if (!VT.is128BitVector())
+ return false;
+
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if (NumElems != 2 && NumElems != 4)
+ return false;
+
+ for (unsigned i = 0, e = NumElems/2; i != e; ++i)
+ if (!isUndefOrEqual(Mask[i], i))
+ return false;
+
+ for (unsigned i = 0, e = NumElems/2; i != e; ++i)
+ if (!isUndefOrEqual(Mask[i + e], i + NumElems))
+ return false;
+
+ return true;
+}
+
+/// isINSERTPSMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to INSERTPS.
+/// i. e: If all but one element come from the same vector.
+static bool isINSERTPSMask(ArrayRef<int> Mask, MVT VT) {
+ // TODO: Deal with AVX's VINSERTPS
+ if (!VT.is128BitVector() || (VT != MVT::v4f32 && VT != MVT::v4i32))
+ return false;
+
+ unsigned CorrectPosV1 = 0;
+ unsigned CorrectPosV2 = 0;
+ for (int i = 0, e = (int)VT.getVectorNumElements(); i != e; ++i) {
+ if (Mask[i] == -1) {
+ ++CorrectPosV1;
+ ++CorrectPosV2;
+ continue;
+ }
+
+ if (Mask[i] == i)
+ ++CorrectPosV1;
+ else if (Mask[i] == i + 4)
+ ++CorrectPosV2;
+ }
+
+ if (CorrectPosV1 == 3 || CorrectPosV2 == 3)
+ // We have 3 elements (undefs count as elements from any vector) from one
+ // vector, and one from another.
+ return true;
+
+ return false;
+}
+
+//
+// Some special combinations that can be optimized.
+//
+static
+SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
+ SelectionDAG &DAG) {
+ MVT VT = SVOp->getSimpleValueType(0);
+ SDLoc dl(SVOp);
+
+ if (VT != MVT::v8i32 && VT != MVT::v8f32)
+ return SDValue();
+
+ ArrayRef<int> Mask = SVOp->getMask();
+
+ // These are the special masks that may be optimized.
+ static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
+ static const int MaskToOptimizeOdd[] = {1, 9, 3, 11, 5, 13, 7, 15};
+ bool MatchEvenMask = true;
+ bool MatchOddMask = true;
+ for (int i=0; i<8; ++i) {
+ if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
+ MatchEvenMask = false;
+ if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
+ MatchOddMask = false;
+ }
+
+ if (!MatchEvenMask && !MatchOddMask)
+ return SDValue();
+
+ SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
+
+ SDValue Op0 = SVOp->getOperand(0);
+ SDValue Op1 = SVOp->getOperand(1);
+
+ if (MatchEvenMask) {
+ // Shift the second operand right to 32 bits.
+ static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
+ Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
+ } else {
+ // Shift the first operand left to 32 bits.
+ static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
+ Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
+ }
+ static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
+ return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
+}
+
+/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to UNPCKL.
+static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
+ bool HasInt256, bool V2IsSplat = false) {
+
+ assert(VT.getSizeInBits() >= 128 &&
+ "Unsupported vector type for unpckl");
+
+ // AVX defines UNPCK* to operate independently on 128-bit lanes.
+ unsigned NumLanes;
+ unsigned NumOf256BitLanes;
+ unsigned NumElts = VT.getVectorNumElements();
+ if (VT.is256BitVector()) {
+ if (NumElts != 4 && NumElts != 8 &&
+ (!HasInt256 || (NumElts != 16 && NumElts != 32)))
+ return false;
+ NumLanes = 2;
+ NumOf256BitLanes = 1;
+ } else if (VT.is512BitVector()) {
+ assert(VT.getScalarType().getSizeInBits() >= 32 &&
+ "Unsupported vector type for unpckh");
+ NumLanes = 2;
+ NumOf256BitLanes = 2;
+ } else {
+ NumLanes = 1;
+ NumOf256BitLanes = 1;
+ }
+
+ unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
+ unsigned NumLaneElts = NumEltsInStride/NumLanes;
+
+ for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
+ for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
+ for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
+ int BitI = Mask[l256*NumEltsInStride+l+i];
+ int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
+ if (!isUndefOrEqual(BitI, j+l256*NumElts))
+ return false;
+ if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
+ return false;
+ if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to UNPCKH.
+static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
+ bool HasInt256, bool V2IsSplat = false) {
+ assert(VT.getSizeInBits() >= 128 &&
+ "Unsupported vector type for unpckh");
+
+ // AVX defines UNPCK* to operate independently on 128-bit lanes.
+ unsigned NumLanes;
+ unsigned NumOf256BitLanes;
+ unsigned NumElts = VT.getVectorNumElements();
+ if (VT.is256BitVector()) {
+ if (NumElts != 4 && NumElts != 8 &&
+ (!HasInt256 || (NumElts != 16 && NumElts != 32)))
+ return false;
+ NumLanes = 2;
+ NumOf256BitLanes = 1;
+ } else if (VT.is512BitVector()) {
+ assert(VT.getScalarType().getSizeInBits() >= 32 &&
+ "Unsupported vector type for unpckh");
+ NumLanes = 2;
+ NumOf256BitLanes = 2;
+ } else {
+ NumLanes = 1;
+ NumOf256BitLanes = 1;
+ }
+
+ unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
+ unsigned NumLaneElts = NumEltsInStride/NumLanes;
+
+ for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
+ for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
+ for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
+ int BitI = Mask[l256*NumEltsInStride+l+i];
+ int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
+ if (!isUndefOrEqual(BitI, j+l256*NumElts))
+ return false;
+ if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
+ return false;
+ if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
+/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
+/// <0, 0, 1, 1>
+static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
+ unsigned NumElts = VT.getVectorNumElements();
+ bool Is256BitVec = VT.is256BitVector();
+
+ if (VT.is512BitVector())
+ return false;
+ assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ "Unsupported vector type for unpckh");
+
+ if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
+ (!HasInt256 || (NumElts != 16 && NumElts != 32)))
+ return false;
+
+ // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
+ // FIXME: Need a better way to get rid of this, there's no latency difference
+ // between UNPCKLPD and MOVDDUP, the later should always be checked first and
+ // the former later. We should also remove the "_undef" special mask.
+ if (NumElts == 4 && Is256BitVec)
+ return false;
+
+ // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
+ // independently on 128-bit lanes.
+ unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLaneElts = NumElts/NumLanes;
+
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
+ int BitI = Mask[l+i];
+ int BitI1 = Mask[l+i+1];
+
+ if (!isUndefOrEqual(BitI, j))
+ return false;
+ if (!isUndefOrEqual(BitI1, j))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
+/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
+/// <2, 2, 3, 3>
+static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ if (VT.is512BitVector())
+ return false;
+
+ assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ "Unsupported vector type for unpckh");
+
+ if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
+ (!HasInt256 || (NumElts != 16 && NumElts != 32)))
+ return false;
+
+ // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
+ // independently on 128-bit lanes.
+ unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLaneElts = NumElts/NumLanes;
+
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
+ int BitI = Mask[l+i];
+ int BitI1 = Mask[l+i+1];
+ if (!isUndefOrEqual(BitI, j))
+ return false;
+ if (!isUndefOrEqual(BitI1, j))
+ return false;
+ }
+ }
+ return true;
+}
+
+// Match for INSERTI64x4 INSERTF64x4 instructions (src0[0], src1[0]) or
+// (src1[0], src0[1]), manipulation with 256-bit sub-vectors
+static bool isINSERT64x4Mask(ArrayRef<int> Mask, MVT VT, unsigned int *Imm) {
+ if (!VT.is512BitVector())
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned HalfSize = NumElts/2;
+ if (isSequentialOrUndefInRange(Mask, 0, HalfSize, 0)) {
+ if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, NumElts)) {
+ *Imm = 1;
+ return true;
+ }
+ }
+ if (isSequentialOrUndefInRange(Mask, 0, HalfSize, NumElts)) {
+ if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, HalfSize)) {
+ *Imm = 0;
+ return true;
+ }
+ }
+ return false;
+}
+
+/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVSS,
+/// MOVSD, and MOVD, i.e. setting the lowest element.
+static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
+ if (VT.getVectorElementType().getSizeInBits() < 32)
+ return false;
+ if (!VT.is128BitVector())
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+
+ if (!isUndefOrEqual(Mask[0], NumElts))
+ return false;
+
+ for (unsigned i = 1; i != NumElts; ++i)
+ if (!isUndefOrEqual(Mask[i], i))
+ return false;
+
+ return true;
+}
+
+/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
+/// as permutations between 128-bit chunks or halves. As an example: this
+/// shuffle bellow:
+/// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
+/// The first half comes from the second half of V1 and the second half from the
+/// the second half of V2.
+static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
+ if (!HasFp256 || !VT.is256BitVector())
+ return false;
+
+ // The shuffle result is divided into half A and half B. In total the two
+ // sources have 4 halves, namely: C, D, E, F. The final values of A and
+ // B must come from C, D, E or F.
+ unsigned HalfSize = VT.getVectorNumElements()/2;
+ bool MatchA = false, MatchB = false;
+
+ // Check if A comes from one of C, D, E, F.
+ for (unsigned Half = 0; Half != 4; ++Half) {
+ if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
+ MatchA = true;
+ break;
+ }
+ }
+
+ // Check if B comes from one of C, D, E, F.
+ for (unsigned Half = 0; Half != 4; ++Half) {
+ if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
+ MatchB = true;
+ break;
+ }
+ }
+
+ return MatchA && MatchB;
+}
+
+/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
+static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
+ MVT VT = SVOp->getSimpleValueType(0);
+
+ unsigned HalfSize = VT.getVectorNumElements()/2;
+
+ unsigned FstHalf = 0, SndHalf = 0;
+ for (unsigned i = 0; i < HalfSize; ++i) {
+ if (SVOp->getMaskElt(i) > 0) {
+ FstHalf = SVOp->getMaskElt(i)/HalfSize;
+ break;
+ }
+ }
+ for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
+ if (SVOp->getMaskElt(i) > 0) {
+ SndHalf = SVOp->getMaskElt(i)/HalfSize;
+ break;
+ }
+ }
+
+ return (FstHalf | (SndHalf << 4));
+}
+
+// Symetric in-lane mask. Each lane has 4 elements (for imm8)
+static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) {
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (EltSize < 32)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ Imm8 = 0;
+ if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) {
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (Mask[i] < 0)
+ continue;
+ Imm8 |= Mask[i] << (i*2);
+ }
+ return true;
+ }
+
+ unsigned LaneSize = 4;
+ SmallVector<int, 4> MaskVal(LaneSize, -1);
+
+ for (unsigned l = 0; l != NumElts; l += LaneSize) {
+ for (unsigned i = 0; i != LaneSize; ++i) {
+ if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
+ return false;
+ if (Mask[i+l] < 0)
+ continue;
+ if (MaskVal[i] < 0) {
+ MaskVal[i] = Mask[i+l] - l;
+ Imm8 |= MaskVal[i] << (i*2);
+ continue;
+ }
+ if (Mask[i+l] != (signed)(MaskVal[i]+l))
+ return false;
+ }
+ }
+ return true;
+}
+
+/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
+/// Note that VPERMIL mask matching is different depending whether theunderlying
+/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
+/// to the same elements of the low, but to the higher half of the source.
+/// In VPERMILPD the two lanes could be shuffled independently of each other
+/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
+static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) {
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (VT.getSizeInBits() < 256 || EltSize < 32)
+ return false;
+ bool symetricMaskRequired = (EltSize == 32);
+ unsigned NumElts = VT.getVectorNumElements();
+
+ unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned LaneSize = NumElts/NumLanes;
+ // 2 or 4 elements in one lane
+
+ SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1);
+ for (unsigned l = 0; l != NumElts; l += LaneSize) {
+ for (unsigned i = 0; i != LaneSize; ++i) {
+ if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
+ return false;
+ if (symetricMaskRequired) {
+ if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) {
+ ExpectedMaskVal[i] = Mask[i+l] - l;
+ continue;
+ }
+ if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
+/// of what x86 movss want. X86 movs requires the lowest element to be lowest
+/// element of vector 2 and the other elements to come from vector 1 in order.
+static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT,
+ bool V2IsSplat = false, bool V2IsUndef = false) {
+ if (!VT.is128BitVector())
+ return false;
+
+ unsigned NumOps = VT.getVectorNumElements();
+ if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
+ return false;
+
+ if (!isUndefOrEqual(Mask[0], 0))
+ return false;
+
+ for (unsigned i = 1; i != NumOps; ++i)
+ if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
+ (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
+ (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
+ return false;
+
+ return true;
+}
+
+/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
+/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
+static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT,
+ const X86Subtarget *Subtarget) {
+ if (!Subtarget->hasSSE3())
+ return false;
+
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if ((VT.is128BitVector() && NumElems != 4) ||
+ (VT.is256BitVector() && NumElems != 8) ||
+ (VT.is512BitVector() && NumElems != 16))
+ return false;
+
+ // "i+1" is the value the indexed mask element must have
+ for (unsigned i = 0; i != NumElems; i += 2)
+ if (!isUndefOrEqual(Mask[i], i+1) ||
+ !isUndefOrEqual(Mask[i+1], i+1))
+ return false;
+
+ return true;
+}
+
+/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
+/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
+static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT,
+ const X86Subtarget *Subtarget) {
+ if (!Subtarget->hasSSE3())
+ return false;
+
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if ((VT.is128BitVector() && NumElems != 4) ||
+ (VT.is256BitVector() && NumElems != 8) ||
+ (VT.is512BitVector() && NumElems != 16))
+ return false;
+
+ // "i" is the value the indexed mask element must have
+ for (unsigned i = 0; i != NumElems; i += 2)
+ if (!isUndefOrEqual(Mask[i], i) ||
+ !isUndefOrEqual(Mask[i+1], i))
+ return false;
+
+ return true;
+}
+
+/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to 256-bit
+/// version of MOVDDUP.
+static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
+ if (!HasFp256 || !VT.is256BitVector())
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ if (NumElts != 4)
+ return false;
+
+ for (unsigned i = 0; i != NumElts/2; ++i)
+ if (!isUndefOrEqual(Mask[i], 0))
+ return false;
+ for (unsigned i = NumElts/2; i != NumElts; ++i)
+ if (!isUndefOrEqual(Mask[i], NumElts/2))
+ return false;
+ return true;
+}
+
+/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to 128-bit
+/// version of MOVDDUP.
+static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) {
+ if (!VT.is128BitVector())
+ return false;
+
+ unsigned e = VT.getVectorNumElements() / 2;
+ for (unsigned i = 0; i != e; ++i)
+ if (!isUndefOrEqual(Mask[i], i))
+ return false;
+ for (unsigned i = 0; i != e; ++i)
+ if (!isUndefOrEqual(Mask[e+i], i))
+ return false;
+ return true;
+}
+
+/// isVEXTRACTIndex - Return true if the specified
+/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
+/// suitable for instruction that extract 128 or 256 bit vectors
+static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
+ if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
+ return false;
+
+ // The index should be aligned on a vecWidth-bit boundary.
+ uint64_t Index =
+ cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
+
+ MVT VT = N->getSimpleValueType(0);
+ unsigned ElSize = VT.getVectorElementType().getSizeInBits();
+ bool Result = (Index * ElSize) % vecWidth == 0;
+
+ return Result;
+}
+
+/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
+/// operand specifies a subvector insert that is suitable for input to
+/// insertion of 128 or 256-bit subvectors
+static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
+ if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
+ return false;
+ // The index should be aligned on a vecWidth-bit boundary.
+ uint64_t Index =
+ cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
+
+ MVT VT = N->getSimpleValueType(0);
+ unsigned ElSize = VT.getVectorElementType().getSizeInBits();
+ bool Result = (Index * ElSize) % vecWidth == 0;
+
+ return Result;
+}
+
+bool X86::isVINSERT128Index(SDNode *N) {
+ return isVINSERTIndex(N, 128);
+}
+
+bool X86::isVINSERT256Index(SDNode *N) {
+ return isVINSERTIndex(N, 256);
+}
+
+bool X86::isVEXTRACT128Index(SDNode *N) {
+ return isVEXTRACTIndex(N, 128);
+}
+
+bool X86::isVEXTRACT256Index(SDNode *N) {
+ return isVEXTRACTIndex(N, 256);
+}
+
+/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
+/// Handles 128-bit and 256-bit.
+static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
+ MVT VT = N->getSimpleValueType(0);
+
+ assert((VT.getSizeInBits() >= 128) &&
+ "Unsupported vector type for PSHUF/SHUFP");
+
+ // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
+ // independently on 128-bit lanes.
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLaneElts = NumElts/NumLanes;
+
+ assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) &&
+ "Only supports 2, 4 or 8 elements per lane");
+
+ unsigned Shift = (NumLaneElts >= 4) ? 1 : 0;
+ unsigned Mask = 0;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int Elt = N->getMaskElt(i);
+ if (Elt < 0) continue;
+ Elt &= NumLaneElts - 1;
+ unsigned ShAmt = (i << Shift) % 8;
+ Mask |= Elt << ShAmt;
+ }
+
+ return Mask;
+}
+
+/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
+static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
+ MVT VT = N->getSimpleValueType(0);
+
+ assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
+ "Unsupported vector type for PSHUFHW");
+
+ unsigned NumElts = VT.getVectorNumElements();
+
+ unsigned Mask = 0;
+ for (unsigned l = 0; l != NumElts; l += 8) {
+ // 8 nodes per lane, but we only care about the last 4.
+ for (unsigned i = 0; i < 4; ++i) {
+ int Elt = N->getMaskElt(l+i+4);
+ if (Elt < 0) continue;
+ Elt &= 0x3; // only 2-bits.
+ Mask |= Elt << (i * 2);
+ }
+ }
+
+ return Mask;
+}
+
+/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
+static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
+ MVT VT = N->getSimpleValueType(0);
+
+ assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
+ "Unsupported vector type for PSHUFHW");
+
+ unsigned NumElts = VT.getVectorNumElements();
+
+ unsigned Mask = 0;
+ for (unsigned l = 0; l != NumElts; l += 8) {
+ // 8 nodes per lane, but we only care about the first 4.
+ for (unsigned i = 0; i < 4; ++i) {
+ int Elt = N->getMaskElt(l+i);
+ if (Elt < 0) continue;
+ Elt &= 0x3; // only 2-bits
+ Mask |= Elt << (i * 2);
+ }
+ }
+
+ return Mask;
+}
+
+/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
+static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
+ MVT VT = SVOp->getSimpleValueType(0);
+ unsigned EltSize = VT.is512BitVector() ? 1 :
+ VT.getVectorElementType().getSizeInBits() >> 3;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128;
+ unsigned NumLaneElts = NumElts/NumLanes;
+
+ int Val = 0;
+ unsigned i;
+ for (i = 0; i != NumElts; ++i) {
+ Val = SVOp->getMaskElt(i);
+ if (Val >= 0)
+ break;
+ }
+ if (Val >= (int)NumElts)
+ Val -= NumElts - NumLaneElts;
+
+ assert(Val - i > 0 && "PALIGNR imm should be positive");
+ return (Val - i) * EltSize;
+}
+
+static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
+ if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
+ llvm_unreachable("Illegal extract subvector for VEXTRACT");
+
+ uint64_t Index =
+ cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
+
+ MVT VecVT = N->getOperand(0).getSimpleValueType();
+ MVT ElVT = VecVT.getVectorElementType();
+
+ unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
+ return Index / NumElemsPerChunk;
+}
+
+static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
+ if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
+ llvm_unreachable("Illegal insert subvector for VINSERT");
+
+ uint64_t Index =
+ cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
+
+ MVT VecVT = N->getSimpleValueType(0);
+ MVT ElVT = VecVT.getVectorElementType();
+
+ unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
+ return Index / NumElemsPerChunk;
+}
+
+/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
+/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
+/// and VINSERTI128 instructions.
+unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
+ return getExtractVEXTRACTImmediate(N, 128);
+}
+
+/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
+/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
+/// and VINSERTI64x4 instructions.
+unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
+ return getExtractVEXTRACTImmediate(N, 256);
+}
+
+/// getInsertVINSERT128Immediate - Return the appropriate immediate
+/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
+/// and VINSERTI128 instructions.
+unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
+ return getInsertVINSERTImmediate(N, 128);
+}
+
+/// getInsertVINSERT256Immediate - Return the appropriate immediate
+/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
+/// and VINSERTI64x4 instructions.
+unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
+ return getInsertVINSERTImmediate(N, 256);
+}
+
+/// isZero - Returns true if Elt is a constant integer zero
+static bool isZero(SDValue V) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
+ return C && C->isNullValue();
+}
+
+/// isZeroNode - Returns true if Elt is a constant zero or a floating point
+/// constant +0.0.
+bool X86::isZeroNode(SDValue Elt) {
+ if (isZero(Elt))
+ return true;
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
+ return CFP->getValueAPF().isPosZero();
+ return false;
+}
+
+/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
+/// match movhlps. The lower half elements should come from upper half of
+/// V1 (and in order), and the upper half elements should come from the upper
+/// half of V2 (and in order).
+static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) {
+ if (!VT.is128BitVector())
+ return false;
+ if (VT.getVectorNumElements() != 4)
+ return false;
+ for (unsigned i = 0, e = 2; i != e; ++i)
+ if (!isUndefOrEqual(Mask[i], i+2))
+ return false;
+ for (unsigned i = 2; i != 4; ++i)
+ if (!isUndefOrEqual(Mask[i], i+4))
+ return false;
+ return true;
+}
+
+/// isScalarLoadToVector - Returns true if the node is a scalar load that
+/// is promoted to a vector. It also returns the LoadSDNode by reference if
+/// required.
+static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = nullptr) {
+ if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
+ return false;
+ N = N->getOperand(0).getNode();
+ if (!ISD::isNON_EXTLoad(N))
+ return false;
+ if (LD)
+ *LD = cast<LoadSDNode>(N);
+ return true;
+}
+
+// Test whether the given value is a vector value which will be legalized
+// into a load.
+static bool WillBeConstantPoolLoad(SDNode *N) {
+ if (N->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+
+ // Check for any non-constant elements.
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ switch (N->getOperand(i).getNode()->getOpcode()) {
+ case ISD::UNDEF:
+ case ISD::ConstantFP:
+ case ISD::Constant:
+ break;
+ default:
+ return false;
+ }
+
+ // Vectors of all-zeros and all-ones are materialized with special
+ // instructions rather than being loaded.
+ return !ISD::isBuildVectorAllZeros(N) &&
+ !ISD::isBuildVectorAllOnes(N);
+}
+
+/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
+/// match movlp{s|d}. The lower half elements should come from lower half of
+/// V1 (and in order), and the upper half elements should come from the upper
+/// half of V2 (and in order). And since V1 will become the source of the
+/// MOVLP, it must be either a vector load or a scalar load to vector.
+static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
+ ArrayRef<int> Mask, MVT VT) {
+ if (!VT.is128BitVector())
+ return false;
+
+ if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
+ return false;
+ // Is V2 is a vector load, don't do this transformation. We will try to use
+ // load folding shufps op.
+ if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
+ return false;
+
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if (NumElems != 2 && NumElems != 4)
+ return false;
+ for (unsigned i = 0, e = NumElems/2; i != e; ++i)
+ if (!isUndefOrEqual(Mask[i], i))
+ return false;
+ for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
+ if (!isUndefOrEqual(Mask[i], i+NumElems))
+ return false;
+ return true;
+}
+
+/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
+/// to an zero vector.
+/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
+static bool isZeroShuffle(ShuffleVectorSDNode *N) {
+ SDValue V1 = N->getOperand(0);
+ SDValue V2 = N->getOperand(1);
+ unsigned NumElems = N->getValueType(0).getVectorNumElements();
+ for (unsigned i = 0; i != NumElems; ++i) {
+ int Idx = N->getMaskElt(i);
+ if (Idx >= (int)NumElems) {
+ unsigned Opc = V2.getOpcode();
+ if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
+ continue;
+ if (Opc != ISD::BUILD_VECTOR ||
+ !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
+ return false;
+ } else if (Idx >= 0) {
+ unsigned Opc = V1.getOpcode();
+ if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
+ continue;
+ if (Opc != ISD::BUILD_VECTOR ||
+ !X86::isZeroNode(V1.getOperand(Idx)))
+ return false;
+ }
+ }
+ return true;
+}
+
+/// getZeroVector - Returns a vector of specified type with all zero elements.
+///
+static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert(VT.isVector() && "Expected a vector type");
+
+ // Always build SSE zero vectors as <4 x i32> bitcasted
+ // to their dest type. This ensures they get CSE'd.
+ SDValue Vec;
+ if (VT.is128BitVector()) { // SSE
+ if (Subtarget->hasSSE2()) { // SSE2
+ SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+ } else { // SSE1
+ SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
+ }
+ } else if (VT.is256BitVector()) { // AVX
+ if (Subtarget->hasInt256()) { // AVX2
+ SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
+ } else {
+ // 256-bit logic and arithmetic instructions in AVX are all
+ // floating-point, no support for integer ops. Emit fp zeroed vectors.
+ SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops);
+ }
+ } else if (VT.is512BitVector()) { // AVX-512
+ SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
+ Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
+ } else if (VT.getScalarType() == MVT::i1) {
+ assert(VT.getVectorNumElements() <= 16 && "Unexpected vector type");
+ SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
+ SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+ } else
+ llvm_unreachable("Unexpected vector type");
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
+}
+
+/// getOnesVector - Returns a vector of specified type with all bits set.
+/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
+/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
+/// Then bitcast to their original type, ensuring they get CSE'd.
+static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
+ SDLoc dl) {
+ assert(VT.isVector() && "Expected a vector type");
+
+ SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
+ SDValue Vec;
+ if (VT.is256BitVector()) {
+ if (HasInt256) { // AVX2
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
+ } else { // AVX
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+ Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
+ }
+ } else if (VT.is128BitVector()) {
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+ } else
+ llvm_unreachable("Unexpected vector type");
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
+}
+
+/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
+/// that point to V2 points to its first element.
+static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
+ for (unsigned i = 0; i != NumElems; ++i) {
+ if (Mask[i] > (int)NumElems) {
+ Mask[i] = NumElems;
+ }
+ }
+}
+
+/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
+/// operation of specified width.
+static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
+ SDValue V2) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 8> Mask;
+ Mask.push_back(NumElems);
+ for (unsigned i = 1; i != NumElems; ++i)
+ Mask.push_back(i);
+ return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
+/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
+static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
+ SDValue V2) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 8> Mask;
+ for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
+ Mask.push_back(i);
+ Mask.push_back(i + NumElems);
+ }
+ return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
+/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
+static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
+ SDValue V2) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 8> Mask;
+ for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
+ Mask.push_back(i + Half);
+ Mask.push_back(i + NumElems + Half);
+ }
+ return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
+// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
+// a generic shuffle instruction because the target has no such instructions.
+// Generate shuffles which repeat i16 and i8 several times until they can be
+// represented by v4f32 and then be manipulated by target suported shuffles.
+static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
+ MVT VT = V.getSimpleValueType();
+ int NumElems = VT.getVectorNumElements();
+ SDLoc dl(V);
+
+ while (NumElems > 4) {
+ if (EltNo < NumElems/2) {
+ V = getUnpackl(DAG, dl, VT, V, V);
+ } else {
+ V = getUnpackh(DAG, dl, VT, V, V);
+ EltNo -= NumElems/2;
+ }
+ NumElems >>= 1;
+ }
+ return V;
+}
+
+/// getLegalSplat - Generate a legal splat with supported x86 shuffles
+static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
+ MVT VT = V.getSimpleValueType();
+ SDLoc dl(V);
+
+ if (VT.is128BitVector()) {
+ V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
+ int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
+ V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
+ &SplatMask[0]);
+ } else if (VT.is256BitVector()) {
+ // To use VPERMILPS to splat scalars, the second half of indicies must
+ // refer to the higher part, which is a duplication of the lower one,
+ // because VPERMILPS can only handle in-lane permutations.
+ int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
+ EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
+
+ V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
+ V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
+ &SplatMask[0]);
+ } else
+ llvm_unreachable("Vector size not supported");
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, V);
+}
+
+/// PromoteSplat - Splat is promoted to target supported vector shuffles.
+static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
+ MVT SrcVT = SV->getSimpleValueType(0);
+ SDValue V1 = SV->getOperand(0);
+ SDLoc dl(SV);
+
+ int EltNo = SV->getSplatIndex();
+ int NumElems = SrcVT.getVectorNumElements();
+ bool Is256BitVec = SrcVT.is256BitVector();
+
+ assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
+ "Unknown how to promote splat for type");
+
+ // Extract the 128-bit part containing the splat element and update
+ // the splat element index when it refers to the higher register.
+ if (Is256BitVec) {
+ V1 = Extract128BitVector(V1, EltNo, DAG, dl);
+ if (EltNo >= NumElems/2)
+ EltNo -= NumElems/2;
+ }
+
+ // All i16 and i8 vector types can't be used directly by a generic shuffle
+ // instruction because the target has no such instruction. Generate shuffles
+ // which repeat i16 and i8 several times until they fit in i32, and then can
+ // be manipulated by target suported shuffles.
+ MVT EltVT = SrcVT.getVectorElementType();
+ if (EltVT == MVT::i8 || EltVT == MVT::i16)
+ V1 = PromoteSplati8i16(V1, DAG, EltNo);
+
+ // Recreate the 256-bit vector and place the same 128-bit vector
+ // into the low and high part. This is necessary because we want
+ // to use VPERM* to shuffle the vectors
+ if (Is256BitVec) {
+ V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
+ }
+
+ return getLegalSplat(DAG, V1, EltNo);
+}
+
+/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
+/// vector of zero or undef vector. This produces a shuffle where the low
+/// element of V2 is swizzled into the zero/undef vector, landing at element
+/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
+static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
+ bool IsZero,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = V2.getSimpleValueType();
+ SDValue V1 = IsZero
+ ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 16> MaskVec;
+ for (unsigned i = 0; i != NumElems; ++i)
+ // If this is the insertion idx, put the low elt of V2 here.
+ MaskVec.push_back(i == Idx ? NumElems : i);
+ return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
+}
+
+/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
+/// target specific opcode. Returns true if the Mask could be calculated.
+/// Sets IsUnary to true if only uses one source.
+static bool getTargetShuffleMask(SDNode *N, MVT VT,
+ SmallVectorImpl<int> &Mask, bool &IsUnary) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SDValue ImmN;
+
+ IsUnary = false;
+ switch(N->getOpcode()) {
+ case X86ISD::SHUFP:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ break;
+ case X86ISD::UNPCKH:
+ DecodeUNPCKHMask(VT, Mask);
+ break;
+ case X86ISD::UNPCKL:
+ DecodeUNPCKLMask(VT, Mask);
+ break;
+ case X86ISD::MOVHLPS:
+ DecodeMOVHLPSMask(NumElems, Mask);
+ break;
+ case X86ISD::MOVLHPS:
+ DecodeMOVLHPSMask(NumElems, Mask);
+ break;
+ case X86ISD::PALIGNR:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ break;
+ case X86ISD::PSHUFD:
+ case X86ISD::VPERMILP:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::PSHUFHW:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::PSHUFLW:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::VPERMI:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::MOVSS:
+ case X86ISD::MOVSD: {
+ // The index 0 always comes from the first element of the second source,
+ // this is why MOVSS and MOVSD are used in the first place. The other
+ // elements come from the other positions of the first source vector
+ Mask.push_back(NumElems);
+ for (unsigned i = 1; i != NumElems; ++i) {
+ Mask.push_back(i);
+ }
+ break;
+ }
+ case X86ISD::VPERM2X128:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ if (Mask.empty()) return false;
+ break;
+ case X86ISD::MOVDDUP:
+ case X86ISD::MOVLHPD:
+ case X86ISD::MOVLPD:
+ case X86ISD::MOVLPS:
+ case X86ISD::MOVSHDUP:
+ case X86ISD::MOVSLDUP:
+ // Not yet implemented
+ return false;
+ default: llvm_unreachable("unknown target shuffle node");
+ }
+
+ return true;
+}
+
+/// getShuffleScalarElt - Returns the scalar element that will make up the ith
+/// element of the result of the vector shuffle.
+static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
+ unsigned Depth) {
+ if (Depth == 6)
+ return SDValue(); // Limit search depth.
+
+ SDValue V = SDValue(N, 0);
+ EVT VT = V.getValueType();
+ unsigned Opcode = V.getOpcode();
+
+ // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
+ if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
+ int Elt = SV->getMaskElt(Index);
+
+ if (Elt < 0)
+ return DAG.getUNDEF(VT.getVectorElementType());
+
+ unsigned NumElems = VT.getVectorNumElements();
+ SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
+ : SV->getOperand(1);
+ return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
+ }
+
+ // Recurse into target specific vector shuffles to find scalars.
+ if (isTargetShuffle(Opcode)) {
+ MVT ShufVT = V.getSimpleValueType();
+ unsigned NumElems = ShufVT.getVectorNumElements();
+ SmallVector<int, 16> ShuffleMask;
+ bool IsUnary;
+
+ if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
+ return SDValue();
+
+ int Elt = ShuffleMask[Index];
+ if (Elt < 0)
+ return DAG.getUNDEF(ShufVT.getVectorElementType());
+
+ SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
+ : N->getOperand(1);
+ return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
+ Depth+1);
+ }
+
+ // Actual nodes that may contain scalar elements
+ if (Opcode == ISD::BITCAST) {
+ V = V.getOperand(0);
+ EVT SrcVT = V.getValueType();
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
+ return SDValue();
+ }
+
+ if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
+ return (Index == 0) ? V.getOperand(0)
+ : DAG.getUNDEF(VT.getVectorElementType());
+
+ if (V.getOpcode() == ISD::BUILD_VECTOR)
+ return V.getOperand(Index);
+
+ return SDValue();
+}
+
+/// getNumOfConsecutiveZeros - Return the number of elements of a vector
+/// shuffle operation which come from a consecutively from a zero. The
+/// search can start in two different directions, from left or right.
+/// We count undefs as zeros until PreferredNum is reached.
+static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
+ unsigned NumElems, bool ZerosFromLeft,
+ SelectionDAG &DAG,
+ unsigned PreferredNum = -1U) {
+ unsigned NumZeros = 0;
+ for (unsigned i = 0; i != NumElems; ++i) {
+ unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
+ SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
+ if (!Elt.getNode())
+ break;
+
+ if (X86::isZeroNode(Elt))
+ ++NumZeros;
+ else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
+ NumZeros = std::min(NumZeros + 1, PreferredNum);
+ else
+ break;
+ }
+
+ return NumZeros;
+}
+
+/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
+/// correspond consecutively to elements from one of the vector operands,
+/// starting from its index OpIdx. Also tell OpNum which source vector operand.
+static
+bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
+ unsigned MaskI, unsigned MaskE, unsigned OpIdx,
+ unsigned NumElems, unsigned &OpNum) {
+ bool SeenV1 = false;
+ bool SeenV2 = false;
+
+ for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
+ int Idx = SVOp->getMaskElt(i);
+ // Ignore undef indicies
+ if (Idx < 0)
+ continue;
+
+ if (Idx < (int)NumElems)
+ SeenV1 = true;
+ else
+ SeenV2 = true;
+
+ // Only accept consecutive elements from the same vector
+ if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
+ return false;
+ }
+
+ OpNum = SeenV1 ? 0 : 1;
+ return true;
+}
+
+/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
+/// logical left shift of a vector.
+static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
+ bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
+ unsigned NumElems =
+ SVOp->getSimpleValueType(0).getVectorNumElements();
+ unsigned NumZeros = getNumOfConsecutiveZeros(
+ SVOp, NumElems, false /* check zeros from right */, DAG,
+ SVOp->getMaskElt(0));
+ unsigned OpSrc;
+
+ if (!NumZeros)
+ return false;
+
+ // Considering the elements in the mask that are not consecutive zeros,
+ // check if they consecutively come from only one of the source vectors.
+ //
+ // V1 = {X, A, B, C} 0
+ // \ \ \ /
+ // vector_shuffle V1, V2 <1, 2, 3, X>
+ //
+ if (!isShuffleMaskConsecutive(SVOp,
+ 0, // Mask Start Index
+ NumElems-NumZeros, // Mask End Index(exclusive)
+ NumZeros, // Where to start looking in the src vector
+ NumElems, // Number of elements in vector
+ OpSrc)) // Which source operand ?
+ return false;
+
+ isLeft = false;
+ ShAmt = NumZeros;
+ ShVal = SVOp->getOperand(OpSrc);
+ return true;
+}
+
+/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
+/// logical left shift of a vector.
+static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
+ bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
+ unsigned NumElems =
+ SVOp->getSimpleValueType(0).getVectorNumElements();
+ unsigned NumZeros = getNumOfConsecutiveZeros(
+ SVOp, NumElems, true /* check zeros from left */, DAG,
+ NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
+ unsigned OpSrc;
+
+ if (!NumZeros)
+ return false;
+
+ // Considering the elements in the mask that are not consecutive zeros,
+ // check if they consecutively come from only one of the source vectors.
+ //
+ // 0 { A, B, X, X } = V2
+ // / \ / /
+ // vector_shuffle V1, V2 <X, X, 4, 5>
+ //
+ if (!isShuffleMaskConsecutive(SVOp,
+ NumZeros, // Mask Start Index
+ NumElems, // Mask End Index(exclusive)
+ 0, // Where to start looking in the src vector
+ NumElems, // Number of elements in vector
+ OpSrc)) // Which source operand ?
+ return false;
+
+ isLeft = true;
+ ShAmt = NumZeros;
+ ShVal = SVOp->getOperand(OpSrc);
+ return true;
+}
+
+/// isVectorShift - Returns true if the shuffle can be implemented as a
+/// logical left or right shift of a vector.
+static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
+ bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
+ // Although the logic below support any bitwidth size, there are no
+ // shift instructions which handle more than 128-bit vectors.
+ if (!SVOp->getSimpleValueType(0).is128BitVector())
+ return false;
+
+ if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
+ isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
+ return true;
+
+ return false;
+}
+
+/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
+///
+static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
+ unsigned NumNonZero, unsigned NumZero,
+ SelectionDAG &DAG,
+ const X86Subtarget* Subtarget,
+ const TargetLowering &TLI) {
+ if (NumNonZero > 8)
+ return SDValue();
+
+ SDLoc dl(Op);
+ SDValue V;
+ bool First = true;
+ for (unsigned i = 0; i < 16; ++i) {
+ bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
+ if (ThisIsNonZero && First) {
+ if (NumZero)
+ V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
+ else
+ V = DAG.getUNDEF(MVT::v8i16);
+ First = false;
+ }
+
+ if ((i & 1) != 0) {
+ SDValue ThisElt, LastElt;
+ bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
+ if (LastIsNonZero) {
+ LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
+ MVT::i16, Op.getOperand(i-1));
+ }
+ if (ThisIsNonZero) {
+ ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
+ ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
+ ThisElt, DAG.getConstant(8, MVT::i8));
+ if (LastIsNonZero)
+ ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
+ } else
+ ThisElt = LastElt;
+
+ if (ThisElt.getNode())
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
+ DAG.getIntPtrConstant(i/2));
+ }
+ }
+
+ return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
+}
+
+/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
+///
+static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
+ unsigned NumNonZero, unsigned NumZero,
+ SelectionDAG &DAG,
+ const X86Subtarget* Subtarget,
+ const TargetLowering &TLI) {
+ if (NumNonZero > 4)
+ return SDValue();
+
+ SDLoc dl(Op);
+ SDValue V;
+ bool First = true;
+ for (unsigned i = 0; i < 8; ++i) {
+ bool isNonZero = (NonZeros & (1 << i)) != 0;
+ if (isNonZero) {
+ if (First) {
+ if (NumZero)
+ V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
+ else
+ V = DAG.getUNDEF(MVT::v8i16);
+ First = false;
+ }
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
+ MVT::v8i16, V, Op.getOperand(i),
+ DAG.getIntPtrConstant(i));
+ }
+ }
+
+ return V;
+}
+
+/// LowerBuildVectorv4x32 - Custom lower build_vector of v4i32 or v4f32.
+static SDValue LowerBuildVectorv4x32(SDValue Op, unsigned NumElems,
+ unsigned NonZeros, unsigned NumNonZero,
+ unsigned NumZero, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget,
+ const TargetLowering &TLI) {
+ // We know there's at least one non-zero element
+ unsigned FirstNonZeroIdx = 0;
+ SDValue FirstNonZero = Op->getOperand(FirstNonZeroIdx);
+ while (FirstNonZero.getOpcode() == ISD::UNDEF ||
+ X86::isZeroNode(FirstNonZero)) {
+ ++FirstNonZeroIdx;
+ FirstNonZero = Op->getOperand(FirstNonZeroIdx);
+ }
+
+ if (FirstNonZero.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !isa<ConstantSDNode>(FirstNonZero.getOperand(1)))
+ return SDValue();
+
+ SDValue V = FirstNonZero.getOperand(0);
+ MVT VVT = V.getSimpleValueType();
+ if (!Subtarget->hasSSE41() || (VVT != MVT::v4f32 && VVT != MVT::v4i32))
+ return SDValue();
+
+ unsigned FirstNonZeroDst =
+ cast<ConstantSDNode>(FirstNonZero.getOperand(1))->getZExtValue();
+ unsigned CorrectIdx = FirstNonZeroDst == FirstNonZeroIdx;
+ unsigned IncorrectIdx = CorrectIdx ? -1U : FirstNonZeroIdx;
+ unsigned IncorrectDst = CorrectIdx ? -1U : FirstNonZeroDst;
+
+ for (unsigned Idx = FirstNonZeroIdx + 1; Idx < NumElems; ++Idx) {
+ SDValue Elem = Op.getOperand(Idx);
+ if (Elem.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elem))
+ continue;
+
+ // TODO: What else can be here? Deal with it.
+ if (Elem.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ // TODO: Some optimizations are still possible here
+ // ex: Getting one element from a vector, and the rest from another.
+ if (Elem.getOperand(0) != V)
+ return SDValue();
+
+ unsigned Dst = cast<ConstantSDNode>(Elem.getOperand(1))->getZExtValue();
+ if (Dst == Idx)
+ ++CorrectIdx;
+ else if (IncorrectIdx == -1U) {
+ IncorrectIdx = Idx;
+ IncorrectDst = Dst;
+ } else
+ // There was already one element with an incorrect index.
+ // We can't optimize this case to an insertps.
+ return SDValue();
+ }
+
+ if (NumNonZero == CorrectIdx || NumNonZero == CorrectIdx + 1) {
+ SDLoc dl(Op);
+ EVT VT = Op.getSimpleValueType();
+ unsigned ElementMoveMask = 0;
+ if (IncorrectIdx == -1U)
+ ElementMoveMask = FirstNonZeroIdx << 6 | FirstNonZeroIdx << 4;
+ else
+ ElementMoveMask = IncorrectDst << 6 | IncorrectIdx << 4;
+
+ SDValue InsertpsMask =
+ DAG.getIntPtrConstant(ElementMoveMask | (~NonZeros & 0xf));
+ return DAG.getNode(X86ISD::INSERTPS, dl, VT, V, V, InsertpsMask);
+ }
+
+ return SDValue();
+}
+
+/// getVShift - Return a vector logical shift node.
+///
+static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
+ unsigned NumBits, SelectionDAG &DAG,
+ const TargetLowering &TLI, SDLoc dl) {
+ assert(VT.is128BitVector() && "Unknown type for VShift");
+ EVT ShVT = MVT::v2i64;
+ unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
+ SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
+ return DAG.getNode(ISD::BITCAST, dl, VT,
+ DAG.getNode(Opc, dl, ShVT, SrcOp,
+ DAG.getConstant(NumBits,
+ TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
+}
+
+static SDValue
+LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
+
+ // Check if the scalar load can be widened into a vector load. And if
+ // the address is "base + cst" see if the cst can be "absorbed" into
+ // the shuffle mask.
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
+ SDValue Ptr = LD->getBasePtr();
+ if (!ISD::isNormalLoad(LD) || LD->isVolatile())
+ return SDValue();
+ EVT PVT = LD->getValueType(0);
+ if (PVT != MVT::i32 && PVT != MVT::f32)
+ return SDValue();
+
+ int FI = -1;
+ int64_t Offset = 0;
+ if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
+ FI = FINode->getIndex();
+ Offset = 0;
+ } else if (DAG.isBaseWithConstantOffset(Ptr) &&
+ isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
+ FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
+ Offset = Ptr.getConstantOperandVal(1);
+ Ptr = Ptr.getOperand(0);
+ } else {
+ return SDValue();
+ }
+
+ // FIXME: 256-bit vector instructions don't require a strict alignment,
+ // improve this code to support it better.
+ unsigned RequiredAlign = VT.getSizeInBits()/8;
+ SDValue Chain = LD->getChain();
+ // Make sure the stack object alignment is at least 16 or 32.
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
+ if (MFI->isFixedObjectIndex(FI)) {
+ // Can't change the alignment. FIXME: It's possible to compute
+ // the exact stack offset and reference FI + adjust offset instead.
+ // If someone *really* cares about this. That's the way to implement it.
+ return SDValue();
+ } else {
+ MFI->setObjectAlignment(FI, RequiredAlign);
+ }
+ }
+
+ // (Offset % 16 or 32) must be multiple of 4. Then address is then
+ // Ptr + (Offset & ~15).
+ if (Offset < 0)
+ return SDValue();
+ if ((Offset % RequiredAlign) & 3)
+ return SDValue();
+ int64_t StartOffset = Offset & ~(RequiredAlign-1);
+ if (StartOffset)
+ Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
+ Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
+
+ int EltNo = (Offset - StartOffset) >> 2;
+ unsigned NumElems = VT.getVectorNumElements();
+
+ EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
+ SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
+ LD->getPointerInfo().getWithOffset(StartOffset),
+ false, false, false, 0);
+
+ SmallVector<int, 8> Mask;
+ for (unsigned i = 0; i != NumElems; ++i)
+ Mask.push_back(EltNo);
+
+ return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
+ }
+
+ return SDValue();
+}
+
+/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
+/// vector of type 'VT', see if the elements can be replaced by a single large
+/// load which has the same value as a build_vector whose operands are 'elts'.
+///
+/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
+///
+/// FIXME: we'd also like to handle the case where the last elements are zero
+/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
+/// There's even a handy isZeroNode for that purpose.
+static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
+ SDLoc &DL, SelectionDAG &DAG,
+ bool isAfterLegalize) {
+ EVT EltVT = VT.getVectorElementType();
+ unsigned NumElems = Elts.size();
+
+ LoadSDNode *LDBase = nullptr;
+ unsigned LastLoadedElt = -1U;
+
+ // For each element in the initializer, see if we've found a load or an undef.
+ // If we don't find an initial load element, or later load elements are
+ // non-consecutive, bail out.
+ for (unsigned i = 0; i < NumElems; ++i) {
+ SDValue Elt = Elts[i];
+
+ if (!Elt.getNode() ||
+ (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
+ return SDValue();
+ if (!LDBase) {
+ if (Elt.getNode()->getOpcode() == ISD::UNDEF)
+ return SDValue();
+ LDBase = cast<LoadSDNode>(Elt.getNode());
+ LastLoadedElt = i;
+ continue;
+ }
+ if (Elt.getOpcode() == ISD::UNDEF)
+ continue;
+
+ LoadSDNode *LD = cast<LoadSDNode>(Elt);
+ if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
+ return SDValue();
+ LastLoadedElt = i;
+ }
+
+ // If we have found an entire vector of loads and undefs, then return a large
+ // load of the entire vector width starting at the base pointer. If we found
+ // consecutive loads for the low half, generate a vzext_load node.
+ if (LastLoadedElt == NumElems - 1) {
+
+ if (isAfterLegalize &&
+ !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT))
+ return SDValue();
+
+ SDValue NewLd = SDValue();
+
+ if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
+ NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
+ LDBase->getPointerInfo(),
+ LDBase->isVolatile(), LDBase->isNonTemporal(),
+ LDBase->isInvariant(), 0);
+ NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
+ LDBase->getPointerInfo(),
+ LDBase->isVolatile(), LDBase->isNonTemporal(),
+ LDBase->isInvariant(), LDBase->getAlignment());
+
+ if (LDBase->hasAnyUseOfValue(1)) {
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
+ SDValue(LDBase, 1),
+ SDValue(NewLd.getNode(), 1));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
+ DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
+ SDValue(NewLd.getNode(), 1));
+ }
+
+ return NewLd;
+ }
+ if (NumElems == 4 && LastLoadedElt == 1 &&
+ DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
+ SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
+ SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
+ SDValue ResNode =
+ DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64,
+ LDBase->getPointerInfo(),
+ LDBase->getAlignment(),
+ false/*isVolatile*/, true/*ReadMem*/,
+ false/*WriteMem*/);
+
+ // Make sure the newly-created LOAD is in the same position as LDBase in
+ // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
+ // update uses of LDBase's output chain to use the TokenFactor.
+ if (LDBase->hasAnyUseOfValue(1)) {
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
+ SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
+ DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
+ SDValue(ResNode.getNode(), 1));
+ }
+
+ return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
+ }
+ return SDValue();
+}
+
+/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
+/// to generate a splat value for the following cases:
+/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
+/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
+/// a scalar load, or a constant.
+/// The VBROADCAST node is returned when a pattern is found,
+/// or SDValue() otherwise.
+static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
+ SelectionDAG &DAG) {
+ if (!Subtarget->hasFp256())
+ return SDValue();
+
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
+ "Unsupported vector type for broadcast.");
+
+ SDValue Ld;
+ bool ConstSplatVal;
+
+ switch (Op.getOpcode()) {
+ default:
+ // Unknown pattern found.
+ return SDValue();
+
+ case ISD::BUILD_VECTOR: {
+ auto *BVOp = cast<BuildVectorSDNode>(Op.getNode());
+ BitVector UndefElements;
+ SDValue Splat = BVOp->getSplatValue(&UndefElements);
+
+ // We need a splat of a single value to use broadcast, and it doesn't
+ // make any sense if the value is only in one element of the vector.
+ if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1)
+ return SDValue();
+
+ Ld = Splat;
+ ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
+ Ld.getOpcode() == ISD::ConstantFP);
+
+ // Make sure that all of the users of a non-constant load are from the
+ // BUILD_VECTOR node.
+ if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
+ return SDValue();
+ break;
+ }
+
+ case ISD::VECTOR_SHUFFLE: {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+
+ // Shuffles must have a splat mask where the first element is
+ // broadcasted.
+ if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
+ return SDValue();
+
+ SDValue Sc = Op.getOperand(0);
+ if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
+ Sc.getOpcode() != ISD::BUILD_VECTOR) {
+
+ if (!Subtarget->hasInt256())
+ return SDValue();
+
+ // Use the register form of the broadcast instruction available on AVX2.
+ if (VT.getSizeInBits() >= 256)
+ Sc = Extract128BitVector(Sc, 0, DAG, dl);
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
+ }
+
+ Ld = Sc.getOperand(0);
+ ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
+ Ld.getOpcode() == ISD::ConstantFP);
+
+ // The scalar_to_vector node and the suspected
+ // load node must have exactly one user.
+ // Constants may have multiple users.
+
+ // AVX-512 has register version of the broadcast
+ bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
+ Ld.getValueType().getSizeInBits() >= 32;
+ if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
+ !hasRegVer))
+ return SDValue();
+ break;
+ }
+ }
+
+ bool IsGE256 = (VT.getSizeInBits() >= 256);
+
+ // Handle the broadcasting a single constant scalar from the constant pool
+ // into a vector. On Sandybridge it is still better to load a constant vector
+ // from the constant pool and not to broadcast it from a scalar.
+ if (ConstSplatVal && Subtarget->hasInt256()) {
+ EVT CVT = Ld.getValueType();
+ assert(!CVT.isVector() && "Must not broadcast a vector type");
+ unsigned ScalarSize = CVT.getSizeInBits();
+
+ if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) {
+ const Constant *C = nullptr;
+ if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
+ C = CI->getConstantIntValue();
+ else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
+ C = CF->getConstantFPValue();
+
+ assert(C && "Invalid constant type");
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
+ Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, Alignment);
+
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+ }
+ }
+
+ bool IsLoad = ISD::isNormalLoad(Ld.getNode());
+ unsigned ScalarSize = Ld.getValueType().getSizeInBits();
+
+ // Handle AVX2 in-register broadcasts.
+ if (!IsLoad && Subtarget->hasInt256() &&
+ (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+
+ // The scalar source must be a normal load.
+ if (!IsLoad)
+ return SDValue();
+
+ if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+
+ // The integer check is needed for the 64-bit into 128-bit so it doesn't match
+ // double since there is no vbroadcastsd xmm
+ if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
+ if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+ }
+
+ // Unsupported broadcast.
+ return SDValue();
+}
+
+/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
+/// underlying vector and index.
+///
+/// Modifies \p ExtractedFromVec to the real vector and returns the real
+/// index.
+static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
+ SDValue ExtIdx) {
+ int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
+ if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
+ return Idx;
+
+ // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
+ // lowered this:
+ // (extract_vector_elt (v8f32 %vreg1), Constant<6>)
+ // to:
+ // (extract_vector_elt (vector_shuffle<2,u,u,u>
+ // (extract_subvector (v8f32 %vreg0), Constant<4>),
+ // undef)
+ // Constant<0>)
+ // In this case the vector is the extract_subvector expression and the index
+ // is 2, as specified by the shuffle.
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
+ SDValue ShuffleVec = SVOp->getOperand(0);
+ MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
+ assert(ShuffleVecVT.getVectorElementType() ==
+ ExtractedFromVec.getSimpleValueType().getVectorElementType());
+
+ int ShuffleIdx = SVOp->getMaskElt(Idx);
+ if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
+ ExtractedFromVec = ShuffleVec;
+ return ShuffleIdx;
+ }
+ return Idx;
+}
+
+static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ // Skip if insert_vec_elt is not supported.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
+ return SDValue();
+
+ SDLoc DL(Op);
+ unsigned NumElems = Op.getNumOperands();
+
+ SDValue VecIn1;
+ SDValue VecIn2;
+ SmallVector<unsigned, 4> InsertIndices;
+ SmallVector<int, 8> Mask(NumElems, -1);
+
+ for (unsigned i = 0; i != NumElems; ++i) {
+ unsigned Opc = Op.getOperand(i).getOpcode();
+
+ if (Opc == ISD::UNDEF)
+ continue;
+
+ if (Opc != ISD::EXTRACT_VECTOR_ELT) {
+ // Quit if more than 1 elements need inserting.
+ if (InsertIndices.size() > 1)
+ return SDValue();
+
+ InsertIndices.push_back(i);
+ continue;
+ }
+
+ SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
+ SDValue ExtIdx = Op.getOperand(i).getOperand(1);
+ // Quit if non-constant index.
+ if (!isa<ConstantSDNode>(ExtIdx))
+ return SDValue();
+ int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
+
+ // Quit if extracted from vector of different type.
+ if (ExtractedFromVec.getValueType() != VT)
+ return SDValue();
+
+ if (!VecIn1.getNode())
+ VecIn1 = ExtractedFromVec;
+ else if (VecIn1 != ExtractedFromVec) {
+ if (!VecIn2.getNode())
+ VecIn2 = ExtractedFromVec;
+ else if (VecIn2 != ExtractedFromVec)
+ // Quit if more than 2 vectors to shuffle
+ return SDValue();
+ }
+
+ if (ExtractedFromVec == VecIn1)
+ Mask[i] = Idx;
+ else if (ExtractedFromVec == VecIn2)
+ Mask[i] = Idx + NumElems;
+ }
+
+ if (!VecIn1.getNode())
+ return SDValue();
+
+ VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
+ SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
+ for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
+ unsigned Idx = InsertIndices[i];
+ NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
+ DAG.getIntPtrConstant(Idx));
+ }
+
+ return NV;
+}
+
+// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
+SDValue
+X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
+
+ MVT VT = Op.getSimpleValueType();
+ assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
+ "Unexpected type in LowerBUILD_VECTORvXi1!");
+
+ SDLoc dl(Op);
+ if (ISD::isBuildVectorAllZeros(Op.getNode())) {
+ SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
+ SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+ }
+
+ if (ISD::isBuildVectorAllOnes(Op.getNode())) {
+ SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
+ SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+ }
+
+ bool AllContants = true;
+ uint64_t Immediate = 0;
+ int NonConstIdx = -1;
+ bool IsSplat = true;
+ unsigned NumNonConsts = 0;
+ unsigned NumConsts = 0;
+ for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
+ SDValue In = Op.getOperand(idx);
+ if (In.getOpcode() == ISD::UNDEF)
+ continue;
+ if (!isa<ConstantSDNode>(In)) {
+ AllContants = false;
+ NonConstIdx = idx;
+ NumNonConsts++;
+ }
+ else {
+ NumConsts++;
+ if (cast<ConstantSDNode>(In)->getZExtValue())
+ Immediate |= (1ULL << idx);
+ }
+ if (In != Op.getOperand(0))
+ IsSplat = false;
+ }
+
+ if (AllContants) {
+ SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
+ DAG.getConstant(Immediate, MVT::i16));
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
+ DAG.getIntPtrConstant(0));
+ }
+
+ if (NumNonConsts == 1 && NonConstIdx != 0) {
+ SDValue DstVec;
+ if (NumConsts) {
+ SDValue VecAsImm = DAG.getConstant(Immediate,
+ MVT::getIntegerVT(VT.getSizeInBits()));
+ DstVec = DAG.getNode(ISD::BITCAST, dl, VT, VecAsImm);
+ }
+ else
+ DstVec = DAG.getUNDEF(VT);
+ return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
+ Op.getOperand(NonConstIdx),
+ DAG.getIntPtrConstant(NonConstIdx));
+ }
+ if (!IsSplat && (NonConstIdx != 0))
+ llvm_unreachable("Unsupported BUILD_VECTOR operation");
+ MVT SelectVT = (VT == MVT::v16i1)? MVT::i16 : MVT::i8;
+ SDValue Select;
+ if (IsSplat)
+ Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
+ DAG.getConstant(-1, SelectVT),
+ DAG.getConstant(0, SelectVT));
+ else
+ Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
+ DAG.getConstant((Immediate | 1), SelectVT),
+ DAG.getConstant(Immediate, SelectVT));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Select);
+}
+
+/// \brief Return true if \p N implements a horizontal binop and return the
+/// operands for the horizontal binop into V0 and V1.
+///
+/// This is a helper function of PerformBUILD_VECTORCombine.
+/// This function checks that the build_vector \p N in input implements a
+/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
+/// operation to match.
+/// For example, if \p Opcode is equal to ISD::ADD, then this function
+/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
+/// is equal to ISD::SUB, then this function checks if this is a horizontal
+/// arithmetic sub.
+///
+/// This function only analyzes elements of \p N whose indices are
+/// in range [BaseIdx, LastIdx).
+static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
+ SelectionDAG &DAG,
+ unsigned BaseIdx, unsigned LastIdx,
+ SDValue &V0, SDValue &V1) {
+ EVT VT = N->getValueType(0);
+
+ assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
+ assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
+ "Invalid Vector in input!");
+
+ bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
+ bool CanFold = true;
+ unsigned ExpectedVExtractIdx = BaseIdx;
+ unsigned NumElts = LastIdx - BaseIdx;
+ V0 = DAG.getUNDEF(VT);
+ V1 = DAG.getUNDEF(VT);
+
+ // Check if N implements a horizontal binop.
+ for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
+ SDValue Op = N->getOperand(i + BaseIdx);
+
+ // Skip UNDEFs.
+ if (Op->getOpcode() == ISD::UNDEF) {
+ // Update the expected vector extract index.
+ if (i * 2 == NumElts)
+ ExpectedVExtractIdx = BaseIdx;
+ ExpectedVExtractIdx += 2;
+ continue;
+ }
+
+ CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
+
+ if (!CanFold)
+ break;
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ // Try to match the following pattern:
+ // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
+ CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ Op0.getOperand(0) == Op1.getOperand(0) &&
+ isa<ConstantSDNode>(Op0.getOperand(1)) &&
+ isa<ConstantSDNode>(Op1.getOperand(1)));
+ if (!CanFold)
+ break;
+
+ unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
+ unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
+
+ if (i * 2 < NumElts) {
+ if (V0.getOpcode() == ISD::UNDEF)
+ V0 = Op0.getOperand(0);
+ } else {
+ if (V1.getOpcode() == ISD::UNDEF)
+ V1 = Op0.getOperand(0);
+ if (i * 2 == NumElts)
+ ExpectedVExtractIdx = BaseIdx;
+ }
+
+ SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
+ if (I0 == ExpectedVExtractIdx)
+ CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
+ else if (IsCommutable && I1 == ExpectedVExtractIdx) {
+ // Try to match the following dag sequence:
+ // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
+ CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
+ } else
+ CanFold = false;
+
+ ExpectedVExtractIdx += 2;
+ }
+
+ return CanFold;
+}
+
+/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
+/// a concat_vector.
+///
+/// This is a helper function of PerformBUILD_VECTORCombine.
+/// This function expects two 256-bit vectors called V0 and V1.
+/// At first, each vector is split into two separate 128-bit vectors.
+/// Then, the resulting 128-bit vectors are used to implement two
+/// horizontal binary operations.
+///
+/// The kind of horizontal binary operation is defined by \p X86Opcode.
+///
+/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
+/// the two new horizontal binop.
+/// When Mode is set, the first horizontal binop dag node would take as input
+/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
+/// horizontal binop dag node would take as input the lower 128-bit of V1
+/// and the upper 128-bit of V1.
+/// Example:
+/// HADD V0_LO, V0_HI
+/// HADD V1_LO, V1_HI
+///
+/// Otherwise, the first horizontal binop dag node takes as input the lower
+/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
+/// dag node takes the the upper 128-bit of V0 and the upper 128-bit of V1.
+/// Example:
+/// HADD V0_LO, V1_LO
+/// HADD V0_HI, V1_HI
+///
+/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
+/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
+/// the upper 128-bits of the result.
+static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
+ SDLoc DL, SelectionDAG &DAG,
+ unsigned X86Opcode, bool Mode,
+ bool isUndefLO, bool isUndefHI) {
+ EVT VT = V0.getValueType();
+ assert(VT.is256BitVector() && VT == V1.getValueType() &&
+ "Invalid nodes in input!");
+
+ unsigned NumElts = VT.getVectorNumElements();
+ SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL);
+ SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL);
+ SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL);
+ SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL);
+ EVT NewVT = V0_LO.getValueType();
+
+ SDValue LO = DAG.getUNDEF(NewVT);
+ SDValue HI = DAG.getUNDEF(NewVT);
+
+ if (Mode) {
+ // Don't emit a horizontal binop if the result is expected to be UNDEF.
+ if (!isUndefLO && V0->getOpcode() != ISD::UNDEF)
+ LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
+ if (!isUndefHI && V1->getOpcode() != ISD::UNDEF)
+ HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
+ } else {
+ // Don't emit a horizontal binop if the result is expected to be UNDEF.
+ if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF ||
+ V1_LO->getOpcode() != ISD::UNDEF))
+ LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
+
+ if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF ||
+ V1_HI->getOpcode() != ISD::UNDEF))
+ HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
+ }
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
+}
+
+/// \brief Try to fold a build_vector that performs an 'addsub' into the
+/// sequence of 'vadd + vsub + blendi'.
+static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(BV);
+ EVT VT = BV->getValueType(0);
+ unsigned NumElts = VT.getVectorNumElements();
+ SDValue InVec0 = DAG.getUNDEF(VT);
+ SDValue InVec1 = DAG.getUNDEF(VT);
+
+ assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
+ VT == MVT::v2f64) && "build_vector with an invalid type found!");
+
+ // Don't try to emit a VSELECT that cannot be lowered into a blend.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
+ return SDValue();
+
+ // Odd-numbered elements in the input build vector are obtained from
+ // adding two integer/float elements.
+ // Even-numbered elements in the input build vector are obtained from
+ // subtracting two integer/float elements.
+ unsigned ExpectedOpcode = ISD::FSUB;
+ unsigned NextExpectedOpcode = ISD::FADD;
+ bool AddFound = false;
+ bool SubFound = false;
+
+ for (unsigned i = 0, e = NumElts; i != e; i++) {
+ SDValue Op = BV->getOperand(i);
+
+ // Skip 'undef' values.
+ unsigned Opcode = Op.getOpcode();
+ if (Opcode == ISD::UNDEF) {
+ std::swap(ExpectedOpcode, NextExpectedOpcode);
+ continue;
+ }
+
+ // Early exit if we found an unexpected opcode.
+ if (Opcode != ExpectedOpcode)
+ return SDValue();
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ // Try to match the following pattern:
+ // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
+ // Early exit if we cannot match that sequence.
+ if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !isa<ConstantSDNode>(Op0.getOperand(1)) ||
+ !isa<ConstantSDNode>(Op1.getOperand(1)) ||
+ Op0.getOperand(1) != Op1.getOperand(1))
+ return SDValue();
+
+ unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
+ if (I0 != i)
+ return SDValue();
+
+ // We found a valid add/sub node. Update the information accordingly.
+ if (i & 1)
+ AddFound = true;
+ else
+ SubFound = true;
+
+ // Update InVec0 and InVec1.
+ if (InVec0.getOpcode() == ISD::UNDEF)
+ InVec0 = Op0.getOperand(0);
+ if (InVec1.getOpcode() == ISD::UNDEF)
+ InVec1 = Op1.getOperand(0);
+
+ // Make sure that operands in input to each add/sub node always
+ // come from a same pair of vectors.
+ if (InVec0 != Op0.getOperand(0)) {
+ if (ExpectedOpcode == ISD::FSUB)
+ return SDValue();
+
+ // FADD is commutable. Try to commute the operands
+ // and then test again.
+ std::swap(Op0, Op1);
+ if (InVec0 != Op0.getOperand(0))
+ return SDValue();
+ }
+
+ if (InVec1 != Op1.getOperand(0))
+ return SDValue();
+
+ // Update the pair of expected opcodes.
+ std::swap(ExpectedOpcode, NextExpectedOpcode);
+ }
+
+ // Don't try to fold this build_vector into a VSELECT if it has
+ // too many UNDEF operands.
+ if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF &&
+ InVec1.getOpcode() != ISD::UNDEF) {
+ // Emit a sequence of vector add and sub followed by a VSELECT.
+ // The new VSELECT will be lowered into a BLENDI.
+ // At ISel stage, we pattern-match the sequence 'add + sub + BLENDI'
+ // and emit a single ADDSUB instruction.
+ SDValue Sub = DAG.getNode(ExpectedOpcode, DL, VT, InVec0, InVec1);
+ SDValue Add = DAG.getNode(NextExpectedOpcode, DL, VT, InVec0, InVec1);
+
+ // Construct the VSELECT mask.
+ EVT MaskVT = VT.changeVectorElementTypeToInteger();
+ EVT SVT = MaskVT.getVectorElementType();
+ unsigned SVTBits = SVT.getSizeInBits();
+ SmallVector<SDValue, 8> Ops;
+
+ for (unsigned i = 0, e = NumElts; i != e; ++i) {
+ APInt Value = i & 1 ? APInt::getNullValue(SVTBits) :
+ APInt::getAllOnesValue(SVTBits);
+ SDValue Constant = DAG.getConstant(Value, SVT);
+ Ops.push_back(Constant);
+ }
+
+ SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVT, Ops);
+ return DAG.getSelect(DL, VT, Mask, Sub, Add);
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ unsigned NumElts = VT.getVectorNumElements();
+ BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
+ SDValue InVec0, InVec1;
+
+ // Try to match an ADDSUB.
+ if ((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
+ (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) {
+ SDValue Value = matchAddSub(BV, DAG, Subtarget);
+ if (Value.getNode())
+ return Value;
+ }
+
+ // Try to match horizontal ADD/SUB.
+ unsigned NumUndefsLO = 0;
+ unsigned NumUndefsHI = 0;
+ unsigned Half = NumElts/2;
+
+ // Count the number of UNDEF operands in the build_vector in input.
+ for (unsigned i = 0, e = Half; i != e; ++i)
+ if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
+ NumUndefsLO++;
+
+ for (unsigned i = Half, e = NumElts; i != e; ++i)
+ if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
+ NumUndefsHI++;
+
+ // Early exit if this is either a build_vector of all UNDEFs or all the
+ // operands but one are UNDEF.
+ if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
+ return SDValue();
+
+ if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) {
+ // Try to match an SSE3 float HADD/HSUB.
+ if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
+
+ if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
+ } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) {
+ // Try to match an SSSE3 integer HADD/HSUB.
+ if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
+
+ if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
+ }
+
+ if (!Subtarget->hasAVX())
+ return SDValue();
+
+ if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
+ // Try to match an AVX horizontal add/sub of packed single/double
+ // precision floating point values from 256-bit vectors.
+ SDValue InVec2, InVec3;
+ if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.getOpcode() == ISD::UNDEF ||
+ InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
+ ((InVec1.getOpcode() == ISD::UNDEF ||
+ InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
+ return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
+
+ if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.getOpcode() == ISD::UNDEF ||
+ InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
+ ((InVec1.getOpcode() == ISD::UNDEF ||
+ InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
+ return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
+ } else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
+ // Try to match an AVX2 horizontal add/sub of signed integers.
+ SDValue InVec2, InVec3;
+ unsigned X86Opcode;
+ bool CanFold = true;
+
+ if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.getOpcode() == ISD::UNDEF ||
+ InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
+ ((InVec1.getOpcode() == ISD::UNDEF ||
+ InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
+ X86Opcode = X86ISD::HADD;
+ else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.getOpcode() == ISD::UNDEF ||
+ InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
+ ((InVec1.getOpcode() == ISD::UNDEF ||
+ InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
+ X86Opcode = X86ISD::HSUB;
+ else
+ CanFold = false;
+
+ if (CanFold) {
+ // Fold this build_vector into a single horizontal add/sub.
+ // Do this only if the target has AVX2.
+ if (Subtarget->hasAVX2())
+ return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
+
+ // Do not try to expand this build_vector into a pair of horizontal
+ // add/sub if we can emit a pair of scalar add/sub.
+ if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
+ return SDValue();
+
+ // Convert this build_vector into a pair of horizontal binop followed by
+ // a concat vector.
+ bool isUndefLO = NumUndefsLO == Half;
+ bool isUndefHI = NumUndefsHI == Half;
+ return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
+ isUndefLO, isUndefHI);
+ }
+ }
+
+ if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
+ VT == MVT::v16i16) && Subtarget->hasAVX()) {
+ unsigned X86Opcode;
+ if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::HADD;
+ else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::HSUB;
+ else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::FHADD;
+ else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::FHSUB;
+ else
+ return SDValue();
+
+ // Don't try to expand this build_vector into a pair of horizontal add/sub
+ // if we can simply emit a pair of scalar add/sub.
+ if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
+ return SDValue();
+
+ // Convert this build_vector into two horizontal add/sub followed by
+ // a concat vector.
+ bool isUndefLO = NumUndefsLO == Half;
+ bool isUndefHI = NumUndefsHI == Half;
+ return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
+ isUndefLO, isUndefHI);
+ }
+
+ return SDValue();
+}
+
+SDValue
+X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+
+ MVT VT = Op.getSimpleValueType();
+ MVT ExtVT = VT.getVectorElementType();
+ unsigned NumElems = Op.getNumOperands();
+
+ // Generate vectors for predicate vectors.
+ if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
+ return LowerBUILD_VECTORvXi1(Op, DAG);
+
+ // Vectors containing all zeros can be matched by pxor and xorps later
+ if (ISD::isBuildVectorAllZeros(Op.getNode())) {
+ // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
+ // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
+ if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
+ return Op;
+
+ return getZeroVector(VT, Subtarget, DAG, dl);
+ }
+
+ // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
+ // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
+ // vpcmpeqd on 256-bit vectors.
+ if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
+ if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
+ return Op;
+
+ if (!VT.is512BitVector())
+ return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
+ }
+
+ SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
+ if (Broadcast.getNode())
+ return Broadcast;
+
+ unsigned EVTBits = ExtVT.getSizeInBits();
+
+ unsigned NumZero = 0;
+ unsigned NumNonZero = 0;
+ unsigned NonZeros = 0;
+ bool IsAllConstants = true;
+ SmallSet<SDValue, 8> Values;
+ for (unsigned i = 0; i < NumElems; ++i) {
+ SDValue Elt = Op.getOperand(i);
+ if (Elt.getOpcode() == ISD::UNDEF)
+ continue;
+ Values.insert(Elt);
+ if (Elt.getOpcode() != ISD::Constant &&
+ Elt.getOpcode() != ISD::ConstantFP)
+ IsAllConstants = false;
+ if (X86::isZeroNode(Elt))
+ NumZero++;
+ else {
+ NonZeros |= (1 << i);
+ NumNonZero++;
+ }
+ }
+
+ // All undef vector. Return an UNDEF. All zero vectors were handled above.
+ if (NumNonZero == 0)
+ return DAG.getUNDEF(VT);
+
+ // Special case for single non-zero, non-undef, element.
+ if (NumNonZero == 1) {
+ unsigned Idx = countTrailingZeros(NonZeros);
+ SDValue Item = Op.getOperand(Idx);
+
+ // If this is an insertion of an i64 value on x86-32, and if the top bits of
+ // the value are obviously zero, truncate the value to i32 and do the
+ // insertion that way. Only do this if the value is non-constant or if the
+ // value is a constant being inserted into element 0. It is cheaper to do
+ // a constant pool load than it is to do a movd + shuffle.
+ if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
+ (!IsAllConstants || Idx == 0)) {
+ if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
+ // Handle SSE only.
+ assert(VT == MVT::v2i64 && "Expected an SSE value type!");
+ EVT VecVT = MVT::v4i32;
+ unsigned VecElts = 4;
+
+ // Truncate the value (which may itself be a constant) to i32, and
+ // convert it to a vector with movd (S2V+shuffle to zero extend).
+ Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
+ Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
+
+ // Now we have our 32-bit value zero extended in the low element of
+ // a vector. If Idx != 0, swizzle it into place.
+ if (Idx != 0) {
+ SmallVector<int, 4> Mask;
+ Mask.push_back(Idx);
+ for (unsigned i = 1; i != VecElts; ++i)
+ Mask.push_back(i);
+ Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
+ &Mask[0]);
+ }
+ return DAG.getNode(ISD::BITCAST, dl, VT, Item);
+ }
+ }
+
+ // If we have a constant or non-constant insertion into the low element of
+ // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
+ // the rest of the elements. This will be matched as movd/movq/movss/movsd
+ // depending on what the source datatype is.
+ if (Idx == 0) {
+ if (NumZero == 0)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+
+ if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
+ (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
+ if (VT.is256BitVector() || VT.is512BitVector()) {
+ SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
+ return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
+ Item, DAG.getIntPtrConstant(0));
+ }
+ assert(VT.is128BitVector() && "Expected an SSE value type!");
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+ // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
+ return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
+ }
+
+ if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
+ Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
+ if (VT.is256BitVector()) {
+ SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
+ Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
+ } else {
+ assert(VT.is128BitVector() && "Expected an SSE value type!");
+ Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
+ }
+ return DAG.getNode(ISD::BITCAST, dl, VT, Item);
+ }
+ }
+
+ // Is it a vector logical left shift?
+ if (NumElems == 2 && Idx == 1 &&
+ X86::isZeroNode(Op.getOperand(0)) &&
+ !X86::isZeroNode(Op.getOperand(1))) {
+ unsigned NumBits = VT.getSizeInBits();
+ return getVShift(true, VT,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ VT, Op.getOperand(1)),
+ NumBits/2, DAG, *this, dl);
+ }
+
+ if (IsAllConstants) // Otherwise, it's better to do a constpool load.
+ return SDValue();
+
+ // Otherwise, if this is a vector with i32 or f32 elements, and the element
+ // is a non-constant being inserted into an element other than the low one,
+ // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
+ // movd/movss) to move this into the low element, then shuffle it into
+ // place.
+ if (EVTBits == 32) {
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+
+ // Turn it into a shuffle of zero and zero-extended scalar to vector.
+ Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
+ SmallVector<int, 8> MaskVec;
+ for (unsigned i = 0; i != NumElems; ++i)
+ MaskVec.push_back(i == Idx ? 0 : 1);
+ return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
+ }
+ }
+
+ // Splat is obviously ok. Let legalizer expand it to a shuffle.
+ if (Values.size() == 1) {
+ if (EVTBits == 32) {
+ // Instead of a shuffle like this:
+ // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
+ // Check if it's possible to issue this instead.
+ // shuffle (vload ptr)), undef, <1, 1, 1, 1>
+ unsigned Idx = countTrailingZeros(NonZeros);
+ SDValue Item = Op.getOperand(Idx);
+ if (Op.getNode()->isOnlyUserOf(Item.getNode()))
+ return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
+ }
+ return SDValue();
+ }
+
+ // A vector full of immediates; various special cases are already
+ // handled, so this is best done with a single constant-pool load.
+ if (IsAllConstants)
+ return SDValue();
+
+ // For AVX-length vectors, build the individual 128-bit pieces and use
+ // shuffles to put them in place.
+ if (VT.is256BitVector() || VT.is512BitVector()) {
+ SmallVector<SDValue, 64> V;
+ for (unsigned i = 0; i != NumElems; ++i)
+ V.push_back(Op.getOperand(i));
+
+ EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
+
+ // Build both the lower and upper subvector.
+ SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
+ makeArrayRef(&V[0], NumElems/2));
+ SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
+ makeArrayRef(&V[NumElems / 2], NumElems/2));
+
+ // Recreate the wider vector with the lower and upper part.
+ if (VT.is256BitVector())
+ return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
+ return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
+ }
+
+ // Let legalizer expand 2-wide build_vectors.
+ if (EVTBits == 64) {
+ if (NumNonZero == 1) {
+ // One half is zero or undef.
+ unsigned Idx = countTrailingZeros(NonZeros);
+ SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
+ Op.getOperand(Idx));
+ return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
+ }
+ return SDValue();
+ }
+
+ // If element VT is < 32 bits, convert it to inserts into a zero vector.
+ if (EVTBits == 8 && NumElems == 16) {
+ SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
+ Subtarget, *this);
+ if (V.getNode()) return V;
+ }
+
+ if (EVTBits == 16 && NumElems == 8) {
+ SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
+ Subtarget, *this);
+ if (V.getNode()) return V;
+ }
+
+ // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
+ if (EVTBits == 32 && NumElems == 4) {
+ SDValue V = LowerBuildVectorv4x32(Op, NumElems, NonZeros, NumNonZero,
+ NumZero, DAG, Subtarget, *this);
+ if (V.getNode())
+ return V;
+ }
+
+ // If element VT is == 32 bits, turn it into a number of shuffles.
+ SmallVector<SDValue, 8> V(NumElems);
+ if (NumElems == 4 && NumZero > 0) {
+ for (unsigned i = 0; i < 4; ++i) {
+ bool isZero = !(NonZeros & (1 << i));
+ if (isZero)
+ V[i] = getZeroVector(VT, Subtarget, DAG, dl);
+ else
+ V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
+ }
+
+ for (unsigned i = 0; i < 2; ++i) {
+ switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
+ default: break;
+ case 0:
+ V[i] = V[i*2]; // Must be a zero vector.
+ break;
+ case 1:
+ V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
+ break;
+ case 2:
+ V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
+ break;
+ case 3:
+ V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
+ break;
+ }
+ }
+
+ bool Reverse1 = (NonZeros & 0x3) == 2;
+ bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
+ int MaskVec[] = {
+ Reverse1 ? 1 : 0,
+ Reverse1 ? 0 : 1,
+ static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
+ static_cast<int>(Reverse2 ? NumElems : NumElems+1)
+ };
+ return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
+ }
+
+ if (Values.size() > 1 && VT.is128BitVector()) {
+ // Check for a build vector of consecutive loads.
+ for (unsigned i = 0; i < NumElems; ++i)
+ V[i] = Op.getOperand(i);
+
+ // Check for elements which are consecutive loads.
+ SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false);
+ if (LD.getNode())
+ return LD;
+
+ // Check for a build vector from mostly shuffle plus few inserting.
+ SDValue Sh = buildFromShuffleMostly(Op, DAG);
+ if (Sh.getNode())
+ return Sh;
+
+ // For SSE 4.1, use insertps to put the high elements into the low element.
+ if (getSubtarget()->hasSSE41()) {
+ SDValue Result;
+ if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
+ Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
+ else
+ Result = DAG.getUNDEF(VT);
+
+ for (unsigned i = 1; i < NumElems; ++i) {
+ if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
+ Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
+ Op.getOperand(i), DAG.getIntPtrConstant(i));
+ }
+ return Result;
+ }
+
+ // Otherwise, expand into a number of unpckl*, start by extending each of
+ // our (non-undef) elements to the full vector width with the element in the
+ // bottom slot of the vector (which generates no code for SSE).
+ for (unsigned i = 0; i < NumElems; ++i) {
+ if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
+ V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
+ else
+ V[i] = DAG.getUNDEF(VT);
+ }
+
+ // Next, we iteratively mix elements, e.g. for v4f32:
+ // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
+ // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
+ // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
+ unsigned EltStride = NumElems >> 1;
+ while (EltStride != 0) {
+ for (unsigned i = 0; i < EltStride; ++i) {
+ // If V[i+EltStride] is undef and this is the first round of mixing,
+ // then it is safe to just drop this shuffle: V[i] is already in the
+ // right place, the one element (since it's the first round) being
+ // inserted as undef can be dropped. This isn't safe for successive
+ // rounds because they will permute elements within both vectors.
+ if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
+ EltStride == NumElems/2)
+ continue;
+
+ V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
+ }
+ EltStride >>= 1;
+ }
+ return V[0];
+ }
+ return SDValue();
+}
+
+// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
+// to create 256-bit vectors from two other 128-bit ones.
+static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ MVT ResVT = Op.getSimpleValueType();
+
+ assert((ResVT.is256BitVector() ||
+ ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
+
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ unsigned NumElems = ResVT.getVectorNumElements();
+ if(ResVT.is256BitVector())
+ return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
+
+ if (Op.getNumOperands() == 4) {
+ MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(),
+ ResVT.getVectorNumElements()/2);
+ SDValue V3 = Op.getOperand(2);
+ SDValue V4 = Op.getOperand(3);
+ return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl),
+ Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl);
+ }
+ return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
+}
+
+static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
+ MVT LLVM_ATTRIBUTE_UNUSED VT = Op.getSimpleValueType();
+ assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
+ (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
+ Op.getNumOperands() == 4)));
+
+ // AVX can use the vinsertf128 instruction to create 256-bit vectors
+ // from two other 128-bit ones.
+
+ // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
+ return LowerAVXCONCAT_VECTORS(Op, DAG);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Vector shuffle lowering
+//
+// This is an experimental code path for lowering vector shuffles on x86. It is
+// designed to handle arbitrary vector shuffles and blends, gracefully
+// degrading performance as necessary. It works hard to recognize idiomatic
+// shuffles and lower them to optimal instruction patterns without leaving
+// a framework that allows reasonably efficient handling of all vector shuffle
+// patterns.
+//===----------------------------------------------------------------------===//
+
+/// \brief Tiny helper function to identify a no-op mask.
+///
+/// This is a somewhat boring predicate function. It checks whether the mask
+/// array input, which is assumed to be a single-input shuffle mask of the kind
+/// used by the X86 shuffle instructions (not a fully general
+/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
+/// in-place shuffle are 'no-op's.
+static bool isNoopShuffleMask(ArrayRef<int> Mask) {
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (Mask[i] != -1 && Mask[i] != i)
+ return false;
+ return true;
+}
+
+/// \brief Helper function to classify a mask as a single-input mask.
+///
+/// This isn't a generic single-input test because in the vector shuffle
+/// lowering we canonicalize single inputs to be the first input operand. This
+/// means we can more quickly test for a single input by only checking whether
+/// an input from the second operand exists. We also assume that the size of
+/// mask corresponds to the size of the input vectors which isn't true in the
+/// fully general case.
+static bool isSingleInputShuffleMask(ArrayRef<int> Mask) {
+ for (int M : Mask)
+ if (M >= (int)Mask.size())
+ return false;
+ return true;
+}
+
+/// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
+///
+/// This helper function produces an 8-bit shuffle immediate corresponding to
+/// the ubiquitous shuffle encoding scheme used in x86 instructions for
+/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
+/// example.
+///
+/// NB: We rely heavily on "undef" masks preserving the input lane.
+static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
+ assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
+ assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
+ assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
+ assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
+
+ unsigned Imm = 0;
+ Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0;
+ Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2;
+ Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4;
+ Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6;
+ return DAG.getConstant(Imm, MVT::i8);
+}
+
+/// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
+///
+/// This is the basis function for the 2-lane 64-bit shuffles as we have full
+/// support for floating point shuffles but not integer shuffles. These
+/// instructions will incur a domain crossing penalty on some chips though so
+/// it is better to avoid lowering through this for integer vectors where
+/// possible.
+static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
+
+ if (isSingleInputShuffleMask(Mask)) {
+ // Straight shuffle of a single input vector. Simulate this by using the
+ // single input as both of the "inputs" to this instruction..
+ unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
+ return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V1,
+ DAG.getConstant(SHUFPDMask, MVT::i8));
+ }
+ assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
+ assert(Mask[1] >= 2 && "Non-canonicalized blend!");
+
+ unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
+ return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V2,
+ DAG.getConstant(SHUFPDMask, MVT::i8));
+}
+
+/// \brief Handle lowering of 2-lane 64-bit integer shuffles.
+///
+/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
+/// the integer unit to minimize domain crossing penalties. However, for blends
+/// it falls back to the floating point shuffle operation with appropriate bit
+/// casting.
+static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
+
+ if (isSingleInputShuffleMask(Mask)) {
+ // Straight shuffle of a single input vector. For everything from SSE2
+ // onward this has a single fast instruction with no scary immediates.
+ // We have to map the mask as it is actually a v4i32 shuffle instruction.
+ V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V1);
+ int WidenedMask[4] = {
+ std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
+ std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
+ return DAG.getNode(
+ ISD::BITCAST, DL, MVT::v2i64,
+ DAG.getNode(X86ISD::PSHUFD, SDLoc(Op), MVT::v4i32, V1,
+ getV4X86ShuffleImm8ForMask(WidenedMask, DAG)));
+ }
+
+ // We implement this with SHUFPD which is pretty lame because it will likely
+ // incur 2 cycles of stall for integer vectors on Nehalem and older chips.
+ // However, all the alternatives are still more cycles and newer chips don't
+ // have this problem. It would be really nice if x86 had better shuffles here.
+ V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V1);
+ V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V2);
+ return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
+ DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
+}
+
+/// \brief Lower 4-lane 32-bit floating point shuffles.
+///
+/// Uses instructions exclusively from the floating point unit to minimize
+/// domain crossing penalties, as these are sufficient to implement all v4f32
+/// shuffles.
+static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ SDValue LowV = V1, HighV = V2;
+ int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
+
+ int NumV2Elements =
+ std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
+
+ if (NumV2Elements == 0)
+ // Straight shuffle of a single input vector. We pass the input vector to
+ // both operands to simulate this with a SHUFPS.
+ return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DAG));
+
+ if (NumV2Elements == 1) {
+ int V2Index =
+ std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
+ Mask.begin();
+ // Compute the index adjacent to V2Index and in the same half by toggling
+ // the low bit.
+ int V2AdjIndex = V2Index ^ 1;
+
+ if (Mask[V2AdjIndex] == -1) {
+ // Handles all the cases where we have a single V2 element and an undef.
+ // This will only ever happen in the high lanes because we commute the
+ // vector otherwise.
+ if (V2Index < 2)
+ std::swap(LowV, HighV);
+ NewMask[V2Index] -= 4;
+ } else {
+ // Handle the case where the V2 element ends up adjacent to a V1 element.
+ // To make this work, blend them together as the first step.
+ int V1Index = V2AdjIndex;
+ int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
+ V2 = DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V2, V1,
+ getV4X86ShuffleImm8ForMask(BlendMask, DAG));
+
+ // Now proceed to reconstruct the final blend as we have the necessary
+ // high or low half formed.
+ if (V2Index < 2) {
+ LowV = V2;
+ HighV = V1;
+ } else {
+ HighV = V2;
+ }
+ NewMask[V1Index] = 2; // We put the V1 element in V2[2].
+ NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
+ }
+ } else if (NumV2Elements == 2) {
+ if (Mask[0] < 4 && Mask[1] < 4) {
+ // Handle the easy case where we have V1 in the low lanes and V2 in the
+ // high lanes. We never see this reversed because we sort the shuffle.
+ NewMask[2] -= 4;
+ NewMask[3] -= 4;
+ } else {
+ // We have a mixture of V1 and V2 in both low and high lanes. Rather than
+ // trying to place elements directly, just blend them and set up the final
+ // shuffle to place them.
+
+ // The first two blend mask elements are for V1, the second two are for
+ // V2.
+ int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
+ Mask[2] < 4 ? Mask[2] : Mask[3],
+ (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
+ (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
+ V1 = DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V2,
+ getV4X86ShuffleImm8ForMask(BlendMask, DAG));
+
+ // Now we do a normal shuffle of V1 by giving V1 as both operands to
+ // a blend.
+ LowV = HighV = V1;
+ NewMask[0] = Mask[0] < 4 ? 0 : 2;
+ NewMask[1] = Mask[0] < 4 ? 2 : 0;
+ NewMask[2] = Mask[2] < 4 ? 1 : 3;
+ NewMask[3] = Mask[2] < 4 ? 3 : 1;
+ }
+ }
+ return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, LowV, HighV,
+ getV4X86ShuffleImm8ForMask(NewMask, DAG));
+}
+
+/// \brief Lower 4-lane i32 vector shuffles.
+///
+/// We try to handle these with integer-domain shuffles where we can, but for
+/// blends we use the floating point domain blend instructions.
+static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ if (isSingleInputShuffleMask(Mask))
+ // Straight shuffle of a single input vector. For everything from SSE2
+ // onward this has a single fast instruction with no scary immediates.
+ return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DAG));
+
+ // We implement this with SHUFPS because it can blend from two vectors.
+ // Because we're going to eventually use SHUFPS, we use SHUFPS even to build
+ // up the inputs, bypassing domain shift penalties that we would encur if we
+ // directly used PSHUFD on Nehalem and older. For newer chips, this isn't
+ // relevant.
+ return DAG.getNode(ISD::BITCAST, DL, MVT::v4i32,
+ DAG.getVectorShuffle(
+ MVT::v4f32, DL,
+ DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V1),
+ DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V2), Mask));
+}
+
+/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
+/// shuffle lowering, and the most complex part.
+///
+/// The lowering strategy is to try to form pairs of input lanes which are
+/// targeted at the same half of the final vector, and then use a dword shuffle
+/// to place them onto the right half, and finally unpack the paired lanes into
+/// their final position.
+///
+/// The exact breakdown of how to form these dword pairs and align them on the
+/// correct sides is really tricky. See the comments within the function for
+/// more of the details.
+static SDValue lowerV8I16SingleInputVectorShuffle(
+ SDLoc DL, SDValue V, MutableArrayRef<int> Mask,
+ const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ assert(V.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
+ MutableArrayRef<int> LoMask = Mask.slice(0, 4);
+ MutableArrayRef<int> HiMask = Mask.slice(4, 4);
+
+ SmallVector<int, 4> LoInputs;
+ std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs),
+ [](int M) { return M >= 0; });
+ std::sort(LoInputs.begin(), LoInputs.end());
+ LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
+ SmallVector<int, 4> HiInputs;
+ std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs),
+ [](int M) { return M >= 0; });
+ std::sort(HiInputs.begin(), HiInputs.end());
+ HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
+ int NumLToL =
+ std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
+ int NumHToL = LoInputs.size() - NumLToL;
+ int NumLToH =
+ std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
+ int NumHToH = HiInputs.size() - NumLToH;
+ MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
+ MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
+ MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
+ MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
+
+ // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
+ // such inputs we can swap two of the dwords across the half mark and end up
+ // with <=2 inputs to each half in each half. Once there, we can fall through
+ // to the generic code below. For example:
+ //
+ // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
+ // Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
+ //
+ // Before we had 3-1 in the low half and 3-1 in the high half. Afterward, 2-2
+ // and 2-2.
+ auto balanceSides = [&](ArrayRef<int> ThreeInputs, int OneInput,
+ int ThreeInputHalfSum, int OneInputHalfOffset) {
+ // Compute the index of dword with only one word among the three inputs in
+ // a half by taking the sum of the half with three inputs and subtracting
+ // the sum of the actual three inputs. The difference is the remaining
+ // slot.
+ int DWordA = (ThreeInputHalfSum -
+ std::accumulate(ThreeInputs.begin(), ThreeInputs.end(), 0)) /
+ 2;
+ int DWordB = OneInputHalfOffset / 2 + (OneInput / 2 + 1) % 2;
+
+ int PSHUFDMask[] = {0, 1, 2, 3};
+ PSHUFDMask[DWordA] = DWordB;
+ PSHUFDMask[DWordB] = DWordA;
+ V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
+ DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
+ DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
+
+ // Adjust the mask to match the new locations of A and B.
+ for (int &M : Mask)
+ if (M != -1 && M/2 == DWordA)
+ M = 2 * DWordB + M % 2;
+ else if (M != -1 && M/2 == DWordB)
+ M = 2 * DWordA + M % 2;
+
+ // Recurse back into this routine to re-compute state now that this isn't
+ // a 3 and 1 problem.
+ return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16),
+ Mask);
+ };
+ if (NumLToL == 3 && NumHToL == 1)
+ return balanceSides(LToLInputs, HToLInputs[0], 0 + 1 + 2 + 3, 4);
+ else if (NumLToL == 1 && NumHToL == 3)
+ return balanceSides(HToLInputs, LToLInputs[0], 4 + 5 + 6 + 7, 0);
+ else if (NumLToH == 1 && NumHToH == 3)
+ return balanceSides(HToHInputs, LToHInputs[0], 4 + 5 + 6 + 7, 0);
+ else if (NumLToH == 3 && NumHToH == 1)
+ return balanceSides(LToHInputs, HToHInputs[0], 0 + 1 + 2 + 3, 4);
+
+ // At this point there are at most two inputs to the low and high halves from
+ // each half. That means the inputs can always be grouped into dwords and
+ // those dwords can then be moved to the correct half with a dword shuffle.
+ // We use at most one low and one high word shuffle to collect these paired
+ // inputs into dwords, and finally a dword shuffle to place them.
+ int PSHUFLMask[4] = {-1, -1, -1, -1};
+ int PSHUFHMask[4] = {-1, -1, -1, -1};
+ int PSHUFDMask[4] = {-1, -1, -1, -1};
+
+ // First fix the masks for all the inputs that are staying in their
+ // original halves. This will then dictate the targets of the cross-half
+ // shuffles.
+ auto fixInPlaceInputs = [&PSHUFDMask](
+ ArrayRef<int> InPlaceInputs, MutableArrayRef<int> SourceHalfMask,
+ MutableArrayRef<int> HalfMask, int HalfOffset) {
+ if (InPlaceInputs.empty())
+ return;
+ if (InPlaceInputs.size() == 1) {
+ SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
+ InPlaceInputs[0] - HalfOffset;
+ PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
+ return;
+ }
+
+ assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
+ SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
+ InPlaceInputs[0] - HalfOffset;
+ // Put the second input next to the first so that they are packed into
+ // a dword. We find the adjacent index by toggling the low bit.
+ int AdjIndex = InPlaceInputs[0] ^ 1;
+ SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
+ std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
+ PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
+ };
+ if (!HToLInputs.empty())
+ fixInPlaceInputs(LToLInputs, PSHUFLMask, LoMask, 0);
+ if (!LToHInputs.empty())
+ fixInPlaceInputs(HToHInputs, PSHUFHMask, HiMask, 4);
+
+ // Now gather the cross-half inputs and place them into a free dword of
+ // their target half.
+ // FIXME: This operation could almost certainly be simplified dramatically to
+ // look more like the 3-1 fixing operation.
+ auto moveInputsToRightHalf = [&PSHUFDMask](
+ MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
+ MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
+ int SourceOffset, int DestOffset) {
+ auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
+ return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word;
+ };
+ auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
+ int Word) {
+ int LowWord = Word & ~1;
+ int HighWord = Word | 1;
+ return isWordClobbered(SourceHalfMask, LowWord) ||
+ isWordClobbered(SourceHalfMask, HighWord);
+ };
+
+ if (IncomingInputs.empty())
+ return;
+
+ if (ExistingInputs.empty()) {
+ // Map any dwords with inputs from them into the right half.
+ for (int Input : IncomingInputs) {
+ // If the source half mask maps over the inputs, turn those into
+ // swaps and use the swapped lane.
+ if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
+ if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) {
+ SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
+ Input - SourceOffset;
+ // We have to swap the uses in our half mask in one sweep.
+ for (int &M : HalfMask)
+ if (M == SourceHalfMask[Input - SourceOffset])
+ M = Input;
+ else if (M == Input)
+ M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
+ } else {
+ assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
+ Input - SourceOffset &&
+ "Previous placement doesn't match!");
+ }
+ // Note that this correctly re-maps both when we do a swap and when
+ // we observe the other side of the swap above. We rely on that to
+ // avoid swapping the members of the input list directly.
+ Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
+ }
+
+ // Map the input's dword into the correct half.
+ if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1)
+ PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
+ else
+ assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
+ Input / 2 &&
+ "Previous placement doesn't match!");
+ }
+
+ // And just directly shift any other-half mask elements to be same-half
+ // as we will have mirrored the dword containing the element into the
+ // same position within that half.
+ for (int &M : HalfMask)
+ if (M >= SourceOffset && M < SourceOffset + 4) {
+ M = M - SourceOffset + DestOffset;
+ assert(M >= 0 && "This should never wrap below zero!");
+ }
+ return;
+ }
+
+ // Ensure we have the input in a viable dword of its current half. This
+ // is particularly tricky because the original position may be clobbered
+ // by inputs being moved and *staying* in that half.
+ if (IncomingInputs.size() == 1) {
+ if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
+ int InputFixed = std::find(std::begin(SourceHalfMask),
+ std::end(SourceHalfMask), -1) -
+ std::begin(SourceHalfMask) + SourceOffset;
+ SourceHalfMask[InputFixed - SourceOffset] =
+ IncomingInputs[0] - SourceOffset;
+ std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
+ InputFixed);
+ IncomingInputs[0] = InputFixed;
+ }
+ } else if (IncomingInputs.size() == 2) {
+ if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
+ isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
+ int SourceDWordBase = !isDWordClobbered(SourceHalfMask, 0) ? 0 : 2;
+ assert(!isDWordClobbered(SourceHalfMask, SourceDWordBase) &&
+ "Not all dwords can be clobbered!");
+ SourceHalfMask[SourceDWordBase] = IncomingInputs[0] - SourceOffset;
+ SourceHalfMask[SourceDWordBase + 1] = IncomingInputs[1] - SourceOffset;
+ for (int &M : HalfMask)
+ if (M == IncomingInputs[0])
+ M = SourceDWordBase + SourceOffset;
+ else if (M == IncomingInputs[1])
+ M = SourceDWordBase + 1 + SourceOffset;
+ IncomingInputs[0] = SourceDWordBase + SourceOffset;
+ IncomingInputs[1] = SourceDWordBase + 1 + SourceOffset;
+ }
+ } else {
+ llvm_unreachable("Unhandled input size!");
+ }
+
+ // Now hoist the DWord down to the right half.
+ int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2;
+ assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free");
+ PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
+ for (int Input : IncomingInputs)
+ std::replace(HalfMask.begin(), HalfMask.end(), Input,
+ FreeDWord * 2 + Input % 2);
+ };
+ moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask,
+ /*SourceOffset*/ 4, /*DestOffset*/ 0);
+ moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask,
+ /*SourceOffset*/ 0, /*DestOffset*/ 4);
+
+ // Now enact all the shuffles we've computed to move the inputs into their
+ // target half.
+ if (!isNoopShuffleMask(PSHUFLMask))
+ V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V,
+ getV4X86ShuffleImm8ForMask(PSHUFLMask, DAG));
+ if (!isNoopShuffleMask(PSHUFHMask))
+ V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V,
+ getV4X86ShuffleImm8ForMask(PSHUFHMask, DAG));
+ if (!isNoopShuffleMask(PSHUFDMask))
+ V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
+ DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
+ DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
+
+ // At this point, each half should contain all its inputs, and we can then
+ // just shuffle them into their final position.
+ assert(std::count_if(LoMask.begin(), LoMask.end(),
+ [](int M) { return M >= 4; }) == 0 &&
+ "Failed to lift all the high half inputs to the low mask!");
+ assert(std::count_if(HiMask.begin(), HiMask.end(),
+ [](int M) { return M >= 0 && M < 4; }) == 0 &&
+ "Failed to lift all the low half inputs to the high mask!");
+
+ // Do a half shuffle for the low mask.
+ if (!isNoopShuffleMask(LoMask))
+ V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V,
+ getV4X86ShuffleImm8ForMask(LoMask, DAG));
+
+ // Do a half shuffle with the high mask after shifting its values down.
+ for (int &M : HiMask)
+ if (M >= 0)
+ M -= 4;
+ if (!isNoopShuffleMask(HiMask))
+ V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V,
+ getV4X86ShuffleImm8ForMask(HiMask, DAG));
+
+ return V;
+}
+
+/// \brief Detect whether the mask pattern should be lowered through
+/// interleaving.
+///
+/// This essentially tests whether viewing the mask as an interleaving of two
+/// sub-sequences reduces the cross-input traffic of a blend operation. If so,
+/// lowering it through interleaving is a significantly better strategy.
+static bool shouldLowerAsInterleaving(ArrayRef<int> Mask) {
+ int NumEvenInputs[2] = {0, 0};
+ int NumOddInputs[2] = {0, 0};
+ int NumLoInputs[2] = {0, 0};
+ int NumHiInputs[2] = {0, 0};
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+
+ int InputIdx = Mask[i] >= Size;
+
+ if (i < Size / 2)
+ ++NumLoInputs[InputIdx];
+ else
+ ++NumHiInputs[InputIdx];
+
+ if ((i % 2) == 0)
+ ++NumEvenInputs[InputIdx];
+ else
+ ++NumOddInputs[InputIdx];
+ }
+
+ // The minimum number of cross-input results for both the interleaved and
+ // split cases. If interleaving results in fewer cross-input results, return
+ // true.
+ int InterleavedCrosses = std::min(NumEvenInputs[1] + NumOddInputs[0],
+ NumEvenInputs[0] + NumOddInputs[1]);
+ int SplitCrosses = std::min(NumLoInputs[1] + NumHiInputs[0],
+ NumLoInputs[0] + NumHiInputs[1]);
+ return InterleavedCrosses < SplitCrosses;
+}
+
+/// \brief Blend two v8i16 vectors using a naive unpack strategy.
+///
+/// This strategy only works when the inputs from each vector fit into a single
+/// half of that vector, and generally there are not so many inputs as to leave
+/// the in-place shuffles required highly constrained (and thus expensive). It
+/// shifts all the inputs into a single side of both input vectors and then
+/// uses an unpack to interleave these inputs in a single vector. At that
+/// point, we will fall back on the generic single input shuffle lowering.
+static SDValue lowerV8I16BasicBlendVectorShuffle(SDLoc DL, SDValue V1,
+ SDValue V2,
+ MutableArrayRef<int> Mask,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
+ assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
+ SmallVector<int, 3> LoV1Inputs, HiV1Inputs, LoV2Inputs, HiV2Inputs;
+ for (int i = 0; i < 8; ++i)
+ if (Mask[i] >= 0 && Mask[i] < 4)
+ LoV1Inputs.push_back(i);
+ else if (Mask[i] >= 4 && Mask[i] < 8)
+ HiV1Inputs.push_back(i);
+ else if (Mask[i] >= 8 && Mask[i] < 12)
+ LoV2Inputs.push_back(i);
+ else if (Mask[i] >= 12)
+ HiV2Inputs.push_back(i);
+
+ int NumV1Inputs = LoV1Inputs.size() + HiV1Inputs.size();
+ int NumV2Inputs = LoV2Inputs.size() + HiV2Inputs.size();
+ (void)NumV1Inputs;
+ (void)NumV2Inputs;
+ assert(NumV1Inputs > 0 && NumV1Inputs <= 3 && "At most 3 inputs supported");
+ assert(NumV2Inputs > 0 && NumV2Inputs <= 3 && "At most 3 inputs supported");
+ assert(NumV1Inputs + NumV2Inputs <= 4 && "At most 4 combined inputs");
+
+ bool MergeFromLo = LoV1Inputs.size() + LoV2Inputs.size() >=
+ HiV1Inputs.size() + HiV2Inputs.size();
+
+ auto moveInputsToHalf = [&](SDValue V, ArrayRef<int> LoInputs,
+ ArrayRef<int> HiInputs, bool MoveToLo,
+ int MaskOffset) {
+ ArrayRef<int> GoodInputs = MoveToLo ? LoInputs : HiInputs;
+ ArrayRef<int> BadInputs = MoveToLo ? HiInputs : LoInputs;
+ if (BadInputs.empty())
+ return V;
+
+ int MoveMask[] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ int MoveOffset = MoveToLo ? 0 : 4;
+
+ if (GoodInputs.empty()) {
+ for (int BadInput : BadInputs) {
+ MoveMask[Mask[BadInput] % 4 + MoveOffset] = Mask[BadInput] - MaskOffset;
+ Mask[BadInput] = Mask[BadInput] % 4 + MoveOffset + MaskOffset;
+ }
+ } else {
+ if (GoodInputs.size() == 2) {
+ // If the low inputs are spread across two dwords, pack them into
+ // a single dword.
+ MoveMask[Mask[GoodInputs[0]] % 2 + MoveOffset] =
+ Mask[GoodInputs[0]] - MaskOffset;
+ MoveMask[Mask[GoodInputs[1]] % 2 + MoveOffset] =
+ Mask[GoodInputs[1]] - MaskOffset;
+ Mask[GoodInputs[0]] = Mask[GoodInputs[0]] % 2 + MoveOffset + MaskOffset;
+ Mask[GoodInputs[1]] = Mask[GoodInputs[0]] % 2 + MoveOffset + MaskOffset;
+ } else {
+ // Otherwise pin the low inputs.
+ for (int GoodInput : GoodInputs)
+ MoveMask[Mask[GoodInput] - MaskOffset] = Mask[GoodInput] - MaskOffset;
+ }
+
+ int MoveMaskIdx =
+ std::find(std::begin(MoveMask) + MoveOffset, std::end(MoveMask), -1) -
+ std::begin(MoveMask);
+ assert(MoveMaskIdx >= MoveOffset && "Established above");
+
+ if (BadInputs.size() == 2) {
+ assert(MoveMask[MoveMaskIdx] == -1 && "Expected empty slot");
+ assert(MoveMask[MoveMaskIdx + 1] == -1 && "Expected empty slot");
+ MoveMask[MoveMaskIdx + Mask[BadInputs[0]] % 2] =
+ Mask[BadInputs[0]] - MaskOffset;
+ MoveMask[MoveMaskIdx + Mask[BadInputs[1]] % 2] =
+ Mask[BadInputs[1]] - MaskOffset;
+ Mask[BadInputs[0]] = MoveMaskIdx + Mask[BadInputs[0]] % 2 + MaskOffset;
+ Mask[BadInputs[1]] = MoveMaskIdx + Mask[BadInputs[1]] % 2 + MaskOffset;
+ } else {
+ assert(BadInputs.size() == 1 && "All sizes handled");
+ MoveMask[MoveMaskIdx] = Mask[BadInputs[0]] - MaskOffset;
+ Mask[BadInputs[0]] = MoveMaskIdx + MaskOffset;
+ }
+ }
+
+ return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16),
+ MoveMask);
+ };
+ V1 = moveInputsToHalf(V1, LoV1Inputs, HiV1Inputs, MergeFromLo,
+ /*MaskOffset*/ 0);
+ V2 = moveInputsToHalf(V2, LoV2Inputs, HiV2Inputs, MergeFromLo,
+ /*MaskOffset*/ 8);
+
+ // FIXME: Select an interleaving of the merge of V1 and V2 that minimizes
+ // cross-half traffic in the final shuffle.
+
+ // Munge the mask to be a single-input mask after the unpack merges the
+ // results.
+ for (int &M : Mask)
+ if (M != -1)
+ M = 2 * (M % 4) + (M / 8);
+
+ return DAG.getVectorShuffle(
+ MVT::v8i16, DL, DAG.getNode(MergeFromLo ? X86ISD::UNPCKL : X86ISD::UNPCKH,
+ DL, MVT::v8i16, V1, V2),
+ DAG.getUNDEF(MVT::v8i16), Mask);
+}
+
+/// \brief Generic lowering of 8-lane i16 shuffles.
+///
+/// This handles both single-input shuffles and combined shuffle/blends with
+/// two inputs. The single input shuffles are immediately delegated to
+/// a dedicated lowering routine.
+///
+/// The blends are lowered in one of three fundamental ways. If there are few
+/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
+/// of the input is significantly cheaper when lowered as an interleaving of
+/// the two inputs, try to interleave them. Otherwise, blend the low and high
+/// halves of the inputs separately (making them have relatively few inputs)
+/// and then concatenate them.
+static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> OrigMask = SVOp->getMask();
+ int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
+ OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]};
+ MutableArrayRef<int> Mask(MaskStorage);
+
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ auto isV1 = [](int M) { return M >= 0 && M < 8; };
+ auto isV2 = [](int M) { return M >= 8; };
+
+ int NumV1Inputs = std::count_if(Mask.begin(), Mask.end(), isV1);
+ int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2);
+
+ if (NumV2Inputs == 0)
+ return lowerV8I16SingleInputVectorShuffle(DL, V1, Mask, Subtarget, DAG);
+
+ assert(NumV1Inputs > 0 && "All single-input shuffles should be canonicalized "
+ "to be V1-input shuffles.");
+
+ if (NumV1Inputs + NumV2Inputs <= 4)
+ return lowerV8I16BasicBlendVectorShuffle(DL, V1, V2, Mask, Subtarget, DAG);
+
+ // Check whether an interleaving lowering is likely to be more efficient.
+ // This isn't perfect but it is a strong heuristic that tends to work well on
+ // the kinds of shuffles that show up in practice.
+ //
+ // FIXME: Handle 1x, 2x, and 4x interleaving.
+ if (shouldLowerAsInterleaving(Mask)) {
+ // FIXME: Figure out whether we should pack these into the low or high
+ // halves.
+
+ int EMask[8], OMask[8];
+ for (int i = 0; i < 4; ++i) {
+ EMask[i] = Mask[2*i];
+ OMask[i] = Mask[2*i + 1];
+ EMask[i + 4] = -1;
+ OMask[i + 4] = -1;
+ }
+
+ SDValue Evens = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, EMask);
+ SDValue Odds = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, OMask);
+
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, Evens, Odds);
+ }
+
+ int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+
+ for (int i = 0; i < 4; ++i) {
+ LoBlendMask[i] = Mask[i];
+ HiBlendMask[i] = Mask[i + 4];
+ }
+
+ SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, LoBlendMask);
+ SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, HiBlendMask);
+ LoV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, LoV);
+ HiV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, HiV);
+
+ return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
+ DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, LoV, HiV));
+}
+
+/// \brief Generic lowering of v16i8 shuffles.
+///
+/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
+/// detect any complexity reducing interleaving. If that doesn't help, it uses
+/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
+/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
+/// back together.
+static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> OrigMask = SVOp->getMask();
+ assert(OrigMask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+ int MaskStorage[16] = {
+ OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
+ OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7],
+ OrigMask[8], OrigMask[9], OrigMask[10], OrigMask[11],
+ OrigMask[12], OrigMask[13], OrigMask[14], OrigMask[15]};
+ MutableArrayRef<int> Mask(MaskStorage);
+ MutableArrayRef<int> LoMask = Mask.slice(0, 8);
+ MutableArrayRef<int> HiMask = Mask.slice(8, 8);
+
+ // For single-input shuffles, there are some nicer lowering tricks we can use.
+ if (isSingleInputShuffleMask(Mask)) {
+ // Check whether we can widen this to an i16 shuffle by duplicating bytes.
+ // Notably, this handles splat and partial-splat shuffles more efficiently.
+ // However, it only makes sense if the pre-duplication shuffle simplifies
+ // things significantly. Currently, this means we need to be able to
+ // express the pre-duplication shuffle as an i16 shuffle.
+ //
+ // FIXME: We should check for other patterns which can be widened into an
+ // i16 shuffle as well.
+ auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
+ for (int i = 0; i < 16; i += 2) {
+ if (Mask[i] != Mask[i + 1])
+ return false;
+ }
+ return true;
+ };
+ auto tryToWidenViaDuplication = [&]() -> SDValue {
+ if (!canWidenViaDuplication(Mask))
+ return SDValue();
+ SmallVector<int, 4> LoInputs;
+ std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs),
+ [](int M) { return M >= 0 && M < 8; });
+ std::sort(LoInputs.begin(), LoInputs.end());
+ LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
+ LoInputs.end());
+ SmallVector<int, 4> HiInputs;
+ std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs),
+ [](int M) { return M >= 8; });
+ std::sort(HiInputs.begin(), HiInputs.end());
+ HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
+ HiInputs.end());
+
+ bool TargetLo = LoInputs.size() >= HiInputs.size();
+ ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
+ ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
+
+ int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ SmallDenseMap<int, int, 8> LaneMap;
+ for (int I : InPlaceInputs) {
+ PreDupI16Shuffle[I/2] = I/2;
+ LaneMap[I] = I;
+ }
+ int j = TargetLo ? 0 : 4, je = j + 4;
+ for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
+ // Check if j is already a shuffle of this input. This happens when
+ // there are two adjacent bytes after we move the low one.
+ if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
+ // If we haven't yet mapped the input, search for a slot into which
+ // we can map it.
+ while (j < je && PreDupI16Shuffle[j] != -1)
+ ++j;
+
+ if (j == je)
+ // We can't place the inputs into a single half with a simple i16 shuffle, so bail.
+ return SDValue();
+
+ // Map this input with the i16 shuffle.
+ PreDupI16Shuffle[j] = MovingInputs[i] / 2;
+ }
+
+ // Update the lane map based on the mapping we ended up with.
+ LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
+ }
+ V1 = DAG.getNode(
+ ISD::BITCAST, DL, MVT::v16i8,
+ DAG.getVectorShuffle(MVT::v8i16, DL,
+ DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
+ DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
+
+ // Unpack the bytes to form the i16s that will be shuffled into place.
+ V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
+ MVT::v16i8, V1, V1);
+
+ int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ for (int i = 0; i < 16; i += 2) {
+ if (Mask[i] != -1)
+ PostDupI16Shuffle[i / 2] = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
+ assert(PostDupI16Shuffle[i / 2] < 8 && "Invalid v8 shuffle mask!");
+ }
+ return DAG.getNode(
+ ISD::BITCAST, DL, MVT::v16i8,
+ DAG.getVectorShuffle(MVT::v8i16, DL,
+ DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
+ DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
+ };
+ if (SDValue V = tryToWidenViaDuplication())
+ return V;
+ }
+
+ // Check whether an interleaving lowering is likely to be more efficient.
+ // This isn't perfect but it is a strong heuristic that tends to work well on
+ // the kinds of shuffles that show up in practice.
+ //
+ // FIXME: We need to handle other interleaving widths (i16, i32, ...).
+ if (shouldLowerAsInterleaving(Mask)) {
+ // FIXME: Figure out whether we should pack these into the low or high
+ // halves.
+
+ int EMask[16], OMask[16];
+ for (int i = 0; i < 8; ++i) {
+ EMask[i] = Mask[2*i];
+ OMask[i] = Mask[2*i + 1];
+ EMask[i + 8] = -1;
+ OMask[i + 8] = -1;
+ }
+
+ SDValue Evens = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, EMask);
+ SDValue Odds = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, OMask);
+
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, Evens, Odds);
+ }
+
+ int V1LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ int V1HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ int V2LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ int V2HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+
+ auto buildBlendMasks = [](MutableArrayRef<int> HalfMask,
+ MutableArrayRef<int> V1HalfBlendMask,
+ MutableArrayRef<int> V2HalfBlendMask) {
+ for (int i = 0; i < 8; ++i)
+ if (HalfMask[i] >= 0 && HalfMask[i] < 16) {
+ V1HalfBlendMask[i] = HalfMask[i];
+ HalfMask[i] = i;
+ } else if (HalfMask[i] >= 16) {
+ V2HalfBlendMask[i] = HalfMask[i] - 16;
+ HalfMask[i] = i + 8;
+ }
+ };
+ buildBlendMasks(LoMask, V1LoBlendMask, V2LoBlendMask);
+ buildBlendMasks(HiMask, V1HiBlendMask, V2HiBlendMask);
+
+ SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL);
+
+ auto buildLoAndHiV8s = [&](SDValue V, MutableArrayRef<int> LoBlendMask,
+ MutableArrayRef<int> HiBlendMask) {
+ SDValue V1, V2;
+ // Check if any of the odd lanes in the v16i8 are used. If not, we can mask
+ // them out and avoid using UNPCK{L,H} to extract the elements of V as
+ // i16s.
+ if (std::none_of(LoBlendMask.begin(), LoBlendMask.end(),
+ [](int M) { return M >= 0 && M % 2 == 1; }) &&
+ std::none_of(HiBlendMask.begin(), HiBlendMask.end(),
+ [](int M) { return M >= 0 && M % 2 == 1; })) {
+ // Use a mask to drop the high bytes.
+ V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
+ V1 = DAG.getNode(ISD::AND, DL, MVT::v8i16, V1,
+ DAG.getConstant(0x00FF, MVT::v8i16));
+
+ // This will be a single vector shuffle instead of a blend so nuke V2.
+ V2 = DAG.getUNDEF(MVT::v8i16);
+
+ // Squash the masks to point directly into V1.
+ for (int &M : LoBlendMask)
+ if (M >= 0)
+ M /= 2;
+ for (int &M : HiBlendMask)
+ if (M >= 0)
+ M /= 2;
+ } else {
+ // Otherwise just unpack the low half of V into V1 and the high half into
+ // V2 so that we can blend them as i16s.
+ V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
+ DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
+ V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
+ DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
+ }
+
+ SDValue BlendedLo = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, LoBlendMask);
+ SDValue BlendedHi = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, HiBlendMask);
+ return std::make_pair(BlendedLo, BlendedHi);
+ };
+ SDValue V1Lo, V1Hi, V2Lo, V2Hi;
+ std::tie(V1Lo, V1Hi) = buildLoAndHiV8s(V1, V1LoBlendMask, V1HiBlendMask);
+ std::tie(V2Lo, V2Hi) = buildLoAndHiV8s(V2, V2LoBlendMask, V2HiBlendMask);
+
+ SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, V1Lo, V2Lo, LoMask);
+ SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, V1Hi, V2Hi, HiMask);
+
+ return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
+}
+
+/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles.
+///
+/// This routine breaks down the specific type of 128-bit shuffle and
+/// dispatches to the lowering routines accordingly.
+static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ MVT VT, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ switch (VT.SimpleTy) {
+ case MVT::v2i64:
+ return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v2f64:
+ return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v4i32:
+ return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v4f32:
+ return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v8i16:
+ return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v16i8:
+ return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
+
+ default:
+ llvm_unreachable("Unimplemented!");
+ }
+}
+
+/// \brief Tiny helper function to test whether adjacent masks are sequential.
+static bool areAdjacentMasksSequential(ArrayRef<int> Mask) {
+ for (int i = 0, Size = Mask.size(); i < Size; i += 2)
+ if (Mask[i] + 1 != Mask[i+1])
+ return false;
+
+ return true;
+}
+
+/// \brief Top-level lowering for x86 vector shuffles.
+///
+/// This handles decomposition, canonicalization, and lowering of all x86
+/// vector shuffles. Most of the specific lowering strategies are encapsulated
+/// above in helper routines. The canonicalization attempts to widen shuffles
+/// to involve fewer lanes of wider elements, consolidate symmetric patterns
+/// s.t. only one of the two inputs needs to be tested, etc.
+static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ MVT VT = Op.getSimpleValueType();
+ int NumElements = VT.getVectorNumElements();
+ SDLoc dl(Op);
+
+ assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
+
+ bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
+ bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
+ if (V1IsUndef && V2IsUndef)
+ return DAG.getUNDEF(VT);
+
+ // When we create a shuffle node we put the UNDEF node to second operand,
+ // but in some cases the first operand may be transformed to UNDEF.
+ // In this case we should just commute the node.
+ if (V1IsUndef)
+ return DAG.getCommutedVectorShuffle(*SVOp);
+
+ // Check for non-undef masks pointing at an undef vector and make the masks
+ // undef as well. This makes it easier to match the shuffle based solely on
+ // the mask.
+ if (V2IsUndef)
+ for (int M : Mask)
+ if (M >= NumElements) {
+ SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
+ for (int &M : NewMask)
+ if (M >= NumElements)
+ M = -1;
+ return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask);
+ }
+
+ // For integer vector shuffles, try to collapse them into a shuffle of fewer
+ // lanes but wider integers. We cap this to not form integers larger than i64
+ // but it might be interesting to form i128 integers to handle flipping the
+ // low and high halves of AVX 256-bit vectors.
+ if (VT.isInteger() && VT.getScalarSizeInBits() < 64 &&
+ areAdjacentMasksSequential(Mask)) {
+ SmallVector<int, 8> NewMask;
+ for (int i = 0, Size = Mask.size(); i < Size; i += 2)
+ NewMask.push_back(Mask[i] / 2);
+ MVT NewVT =
+ MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() * 2),
+ VT.getVectorNumElements() / 2);
+ V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
+ V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
+ return DAG.getNode(ISD::BITCAST, dl, VT,
+ DAG.getVectorShuffle(NewVT, dl, V1, V2, NewMask));
+ }
+
+ int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0;
+ for (int M : SVOp->getMask())
+ if (M < 0)
+ ++NumUndefElements;
+ else if (M < NumElements)
+ ++NumV1Elements;
+ else
+ ++NumV2Elements;
+
+ // Commute the shuffle as needed such that more elements come from V1 than
+ // V2. This allows us to match the shuffle pattern strictly on how many
+ // elements come from V1 without handling the symmetric cases.
+ if (NumV2Elements > NumV1Elements)
+ return DAG.getCommutedVectorShuffle(*SVOp);
+
+ // When the number of V1 and V2 elements are the same, try to minimize the
+ // number of uses of V2 in the low half of the vector.
+ if (NumV1Elements == NumV2Elements) {
+ int LowV1Elements = 0, LowV2Elements = 0;
+ for (int M : SVOp->getMask().slice(0, NumElements / 2))
+ if (M >= NumElements)
+ ++LowV2Elements;
+ else if (M >= 0)
+ ++LowV1Elements;
+ if (LowV2Elements > LowV1Elements)
+ return DAG.getCommutedVectorShuffle(*SVOp);
+ }
+
+ // For each vector width, delegate to a specialized lowering routine.
+ if (VT.getSizeInBits() == 128)
+ return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
+
+ llvm_unreachable("Unimplemented!");
+}
+
+
+//===----------------------------------------------------------------------===//
+// Legacy vector shuffle lowering
+//
+// This code is the legacy code handling vector shuffles until the above
+// replaces its functionality and performance.
+//===----------------------------------------------------------------------===//
+
+static bool isBlendMask(ArrayRef<int> MaskVals, MVT VT, bool hasSSE41,
+ bool hasInt256, unsigned *MaskOut = nullptr) {
+ MVT EltVT = VT.getVectorElementType();
+
+ // There is no blend with immediate in AVX-512.
+ if (VT.is512BitVector())
+ return false;
+
+ if (!hasSSE41 || EltVT == MVT::i8)
+ return false;
+ if (!hasInt256 && VT == MVT::v16i16)
+ return false;
+
+ unsigned MaskValue = 0;
+ unsigned NumElems = VT.getVectorNumElements();
+ // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
+ unsigned NumLanes = (NumElems - 1) / 8 + 1;
+ unsigned NumElemsInLane = NumElems / NumLanes;
+
+ // Blend for v16i16 should be symetric for the both lanes.
+ for (unsigned i = 0; i < NumElemsInLane; ++i) {
+
+ int SndLaneEltIdx = (NumLanes == 2) ? MaskVals[i + NumElemsInLane] : -1;
+ int EltIdx = MaskVals[i];
+
+ if ((EltIdx < 0 || EltIdx == (int)i) &&
+ (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
+ continue;
+
+ if (((unsigned)EltIdx == (i + NumElems)) &&
+ (SndLaneEltIdx < 0 ||
+ (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
+ MaskValue |= (1 << i);
+ else
+ return false;
+ }
+
+ if (MaskOut)
+ *MaskOut = MaskValue;
+ return true;
+}
+
+// Try to lower a shuffle node into a simple blend instruction.
+// This function assumes isBlendMask returns true for this
+// SuffleVectorSDNode
+static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
+ unsigned MaskValue,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = SVOp->getSimpleValueType(0);
+ MVT EltVT = VT.getVectorElementType();
+ assert(isBlendMask(SVOp->getMask(), VT, Subtarget->hasSSE41(),
+ Subtarget->hasInt256() && "Trying to lower a "
+ "VECTOR_SHUFFLE to a Blend but "
+ "with the wrong mask"));
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ SDLoc dl(SVOp);
+ unsigned NumElems = VT.getVectorNumElements();
+
+ // Convert i32 vectors to floating point if it is not AVX2.
+ // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
+ MVT BlendVT = VT;
+ if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
+ BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
+ NumElems);
+ V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
+ V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
+ }
+
+ SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
+ DAG.getConstant(MaskValue, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
+}
+
+/// In vector type \p VT, return true if the element at index \p InputIdx
+/// falls on a different 128-bit lane than \p OutputIdx.
+static bool ShuffleCrosses128bitLane(MVT VT, unsigned InputIdx,
+ unsigned OutputIdx) {
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ return InputIdx * EltSize / 128 != OutputIdx * EltSize / 128;
+}
+
+/// Generate a PSHUFB if possible. Selects elements from \p V1 according to
+/// \p MaskVals. MaskVals[OutputIdx] = InputIdx specifies that we want to
+/// shuffle the element at InputIdx in V1 to OutputIdx in the result. If \p
+/// MaskVals refers to elements outside of \p V1 or is undef (-1), insert a
+/// zero.
+static SDValue getPSHUFB(ArrayRef<int> MaskVals, SDValue V1, SDLoc &dl,
+ SelectionDAG &DAG) {
+ MVT VT = V1.getSimpleValueType();
+ assert(VT.is128BitVector() || VT.is256BitVector());
+
+ MVT EltVT = VT.getVectorElementType();
+ unsigned EltSizeInBytes = EltVT.getSizeInBits() / 8;
+ unsigned NumElts = VT.getVectorNumElements();
+
+ SmallVector<SDValue, 32> PshufbMask;
+ for (unsigned OutputIdx = 0; OutputIdx < NumElts; ++OutputIdx) {
+ int InputIdx = MaskVals[OutputIdx];
+ unsigned InputByteIdx;
+
+ if (InputIdx < 0 || NumElts <= (unsigned)InputIdx)
+ InputByteIdx = 0x80;
+ else {
+ // Cross lane is not allowed.
+ if (ShuffleCrosses128bitLane(VT, InputIdx, OutputIdx))
+ return SDValue();
+ InputByteIdx = InputIdx * EltSizeInBytes;
+ // Index is an byte offset within the 128-bit lane.
+ InputByteIdx &= 0xf;
+ }
+
+ for (unsigned j = 0; j < EltSizeInBytes; ++j) {
+ PshufbMask.push_back(DAG.getConstant(InputByteIdx, MVT::i8));
+ if (InputByteIdx != 0x80)
+ ++InputByteIdx;
+ }
+ }
+
+ MVT ShufVT = MVT::getVectorVT(MVT::i8, PshufbMask.size());
+ if (ShufVT != VT)
+ V1 = DAG.getNode(ISD::BITCAST, dl, ShufVT, V1);
+ return DAG.getNode(X86ISD::PSHUFB, dl, ShufVT, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, dl, ShufVT, PshufbMask));
+}
+
+// v8i16 shuffles - Prefer shuffles in the following order:
+// 1. [all] pshuflw, pshufhw, optional move
+// 2. [ssse3] 1 x pshufb
+// 3. [ssse3] 2 x pshufb + 1 x por
+// 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
+static SDValue
+LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ SDLoc dl(SVOp);
+ SmallVector<int, 8> MaskVals;
+
+ // Determine if more than 1 of the words in each of the low and high quadwords
+ // of the result come from the same quadword of one of the two inputs. Undef
+ // mask values count as coming from any quadword, for better codegen.
+ //
+ // Lo/HiQuad[i] = j indicates how many words from the ith quad of the input
+ // feeds this quad. For i, 0 and 1 refer to V1, 2 and 3 refer to V2.
+ unsigned LoQuad[] = { 0, 0, 0, 0 };
+ unsigned HiQuad[] = { 0, 0, 0, 0 };
+ // Indices of quads used.
+ std::bitset<4> InputQuads;
+ for (unsigned i = 0; i < 8; ++i) {
+ unsigned *Quad = i < 4 ? LoQuad : HiQuad;
+ int EltIdx = SVOp->getMaskElt(i);
+ MaskVals.push_back(EltIdx);
+ if (EltIdx < 0) {
+ ++Quad[0];
+ ++Quad[1];
+ ++Quad[2];
+ ++Quad[3];
+ continue;
+ }
+ ++Quad[EltIdx / 4];
+ InputQuads.set(EltIdx / 4);
+ }
+
+ int BestLoQuad = -1;
+ unsigned MaxQuad = 1;
+ for (unsigned i = 0; i < 4; ++i) {
+ if (LoQuad[i] > MaxQuad) {
+ BestLoQuad = i;
+ MaxQuad = LoQuad[i];
+ }
+ }
+
+ int BestHiQuad = -1;
+ MaxQuad = 1;
+ for (unsigned i = 0; i < 4; ++i) {
+ if (HiQuad[i] > MaxQuad) {
+ BestHiQuad = i;
+ MaxQuad = HiQuad[i];
+ }
+ }
+
+ // For SSSE3, If all 8 words of the result come from only 1 quadword of each
+ // of the two input vectors, shuffle them into one input vector so only a
+ // single pshufb instruction is necessary. If there are more than 2 input
+ // quads, disable the next transformation since it does not help SSSE3.
+ bool V1Used = InputQuads[0] || InputQuads[1];
+ bool V2Used = InputQuads[2] || InputQuads[3];
+ if (Subtarget->hasSSSE3()) {
+ if (InputQuads.count() == 2 && V1Used && V2Used) {
+ BestLoQuad = InputQuads[0] ? 0 : 1;
+ BestHiQuad = InputQuads[2] ? 2 : 3;
+ }
+ if (InputQuads.count() > 2) {
+ BestLoQuad = -1;
+ BestHiQuad = -1;
+ }
+ }
+
+ // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
+ // the shuffle mask. If a quad is scored as -1, that means that it contains
+ // words from all 4 input quadwords.
+ SDValue NewV;
+ if (BestLoQuad >= 0 || BestHiQuad >= 0) {
+ int MaskV[] = {
+ BestLoQuad < 0 ? 0 : BestLoQuad,
+ BestHiQuad < 0 ? 1 : BestHiQuad
+ };
+ NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
+ NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
+
+ // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
+ // source words for the shuffle, to aid later transformations.
+ bool AllWordsInNewV = true;
+ bool InOrder[2] = { true, true };
+ for (unsigned i = 0; i != 8; ++i) {
+ int idx = MaskVals[i];
+ if (idx != (int)i)
+ InOrder[i/4] = false;
+ if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
+ continue;
+ AllWordsInNewV = false;
+ break;
+ }
+
+ bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
+ if (AllWordsInNewV) {
+ for (int i = 0; i != 8; ++i) {
+ int idx = MaskVals[i];
+ if (idx < 0)
+ continue;
+ idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
+ if ((idx != i) && idx < 4)
+ pshufhw = false;
+ if ((idx != i) && idx > 3)
+ pshuflw = false;
+ }
+ V1 = NewV;
+ V2Used = false;
+ BestLoQuad = 0;
+ BestHiQuad = 1;
+ }
+
+ // If we've eliminated the use of V2, and the new mask is a pshuflw or
+ // pshufhw, that's as cheap as it gets. Return the new shuffle.
+ if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
+ unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
+ unsigned TargetMask = 0;
+ NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
+ DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
+ TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
+ getShufflePSHUFLWImmediate(SVOp);
+ V1 = NewV.getOperand(0);
+ return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
+ }
+ }
+
+ // Promote splats to a larger type which usually leads to more efficient code.
+ // FIXME: Is this true if pshufb is available?
+ if (SVOp->isSplat())
+ return PromoteSplat(SVOp, DAG);
+
+ // If we have SSSE3, and all words of the result are from 1 input vector,
+ // case 2 is generated, otherwise case 3 is generated. If no SSSE3
+ // is present, fall back to case 4.
+ if (Subtarget->hasSSSE3()) {
+ SmallVector<SDValue,16> pshufbMask;
+
+ // If we have elements from both input vectors, set the high bit of the
+ // shuffle mask element to zero out elements that come from V2 in the V1
+ // mask, and elements that come from V1 in the V2 mask, so that the two
+ // results can be OR'd together.
+ bool TwoInputs = V1Used && V2Used;
+ V1 = getPSHUFB(MaskVals, V1, dl, DAG);
+ if (!TwoInputs)
+ return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
+
+ // Calculate the shuffle mask for the second input, shuffle it, and
+ // OR it with the first shuffled input.
+ CommuteVectorShuffleMask(MaskVals, 8);
+ V2 = getPSHUFB(MaskVals, V2, dl, DAG);
+ V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
+ }
+
+ // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
+ // and update MaskVals with new element order.
+ std::bitset<8> InOrder;
+ if (BestLoQuad >= 0) {
+ int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
+ for (int i = 0; i != 4; ++i) {
+ int idx = MaskVals[i];
+ if (idx < 0) {
+ InOrder.set(i);
+ } else if ((idx / 4) == BestLoQuad) {
+ MaskV[i] = idx & 3;
+ InOrder.set(i);
+ }
+ }
+ NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
+ &MaskV[0]);
+
+ if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
+ NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
+ NewV.getOperand(0),
+ getShufflePSHUFLWImmediate(SVOp), DAG);
+ }
+ }
+
+ // If BestHi >= 0, generate a pshufhw to put the high elements in order,
+ // and update MaskVals with the new element order.
+ if (BestHiQuad >= 0) {
+ int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
+ for (unsigned i = 4; i != 8; ++i) {
+ int idx = MaskVals[i];
+ if (idx < 0) {
+ InOrder.set(i);
+ } else if ((idx / 4) == BestHiQuad) {
+ MaskV[i] = (idx & 3) + 4;
+ InOrder.set(i);
+ }
+ }
+ NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
+ &MaskV[0]);
+
+ if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
+ NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
+ NewV.getOperand(0),
+ getShufflePSHUFHWImmediate(SVOp), DAG);
+ }
+ }
+
+ // In case BestHi & BestLo were both -1, which means each quadword has a word
+ // from each of the four input quadwords, calculate the InOrder bitvector now
+ // before falling through to the insert/extract cleanup.
+ if (BestLoQuad == -1 && BestHiQuad == -1) {
+ NewV = V1;
+ for (int i = 0; i != 8; ++i)
+ if (MaskVals[i] < 0 || MaskVals[i] == i)
+ InOrder.set(i);
+ }
+
+ // The other elements are put in the right place using pextrw and pinsrw.
+ for (unsigned i = 0; i != 8; ++i) {
+ if (InOrder[i])
+ continue;
+ int EltIdx = MaskVals[i];
+ if (EltIdx < 0)
+ continue;
+ SDValue ExtOp = (EltIdx < 8) ?
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
+ DAG.getIntPtrConstant(EltIdx)) :
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
+ DAG.getIntPtrConstant(EltIdx - 8));
+ NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
+ DAG.getIntPtrConstant(i));
+ }
+ return NewV;
+}
+
+/// \brief v16i16 shuffles
+///
+/// FIXME: We only support generation of a single pshufb currently. We can
+/// generalize the other applicable cases from LowerVECTOR_SHUFFLEv8i16 as
+/// well (e.g 2 x pshufb + 1 x por).
+static SDValue
+LowerVECTOR_SHUFFLEv16i16(SDValue Op, SelectionDAG &DAG) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ SDLoc dl(SVOp);
+
+ if (V2.getOpcode() != ISD::UNDEF)
+ return SDValue();
+
+ SmallVector<int, 16> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
+ return getPSHUFB(MaskVals, V1, dl, DAG);
+}
+
+// v16i8 shuffles - Prefer shuffles in the following order:
+// 1. [ssse3] 1 x pshufb
+// 2. [ssse3] 2 x pshufb + 1 x por
+// 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
+static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
+ const X86Subtarget* Subtarget,
+ SelectionDAG &DAG) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ SDLoc dl(SVOp);
+ ArrayRef<int> MaskVals = SVOp->getMask();
+
+ // Promote splats to a larger type which usually leads to more efficient code.
+ // FIXME: Is this true if pshufb is available?
+ if (SVOp->isSplat())
+ return PromoteSplat(SVOp, DAG);
+
+ // If we have SSSE3, case 1 is generated when all result bytes come from
+ // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
+ // present, fall back to case 3.
+
+ // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
+ if (Subtarget->hasSSSE3()) {
+ SmallVector<SDValue,16> pshufbMask;
+
+ // If all result elements are from one input vector, then only translate
+ // undef mask values to 0x80 (zero out result) in the pshufb mask.
+ //
+ // Otherwise, we have elements from both input vectors, and must zero out
+ // elements that come from V2 in the first mask, and V1 in the second mask
+ // so that we can OR them together.
+ for (unsigned i = 0; i != 16; ++i) {
+ int EltIdx = MaskVals[i];
+ if (EltIdx < 0 || EltIdx >= 16)
+ EltIdx = 0x80;
+ pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
+ }
+ V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, dl,
+ MVT::v16i8, pshufbMask));
+
+ // As PSHUFB will zero elements with negative indices, it's safe to ignore
+ // the 2nd operand if it's undefined or zero.
+ if (V2.getOpcode() == ISD::UNDEF ||
+ ISD::isBuildVectorAllZeros(V2.getNode()))
+ return V1;
+
+ // Calculate the shuffle mask for the second input, shuffle it, and
+ // OR it with the first shuffled input.
+ pshufbMask.clear();
+ for (unsigned i = 0; i != 16; ++i) {
+ int EltIdx = MaskVals[i];
+ EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
+ pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
+ }
+ V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
+ DAG.getNode(ISD::BUILD_VECTOR, dl,
+ MVT::v16i8, pshufbMask));
+ return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
+ }
+
+ // No SSSE3 - Calculate in place words and then fix all out of place words
+ // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
+ // the 16 different words that comprise the two doublequadword input vectors.
+ V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
+ V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
+ SDValue NewV = V1;
+ for (int i = 0; i != 8; ++i) {
+ int Elt0 = MaskVals[i*2];
+ int Elt1 = MaskVals[i*2+1];
+
+ // This word of the result is all undef, skip it.
+ if (Elt0 < 0 && Elt1 < 0)
+ continue;
+
+ // This word of the result is already in the correct place, skip it.
+ if ((Elt0 == i*2) && (Elt1 == i*2+1))
+ continue;
+
+ SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
+ SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
+ SDValue InsElt;
+
+ // If Elt0 and Elt1 are defined, are consecutive, and can be load
+ // using a single extract together, load it and store it.
+ if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
+ InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
+ DAG.getIntPtrConstant(Elt1 / 2));
+ NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
+ DAG.getIntPtrConstant(i));
+ continue;
+ }
+
+ // If Elt1 is defined, extract it from the appropriate source. If the
+ // source byte is not also odd, shift the extracted word left 8 bits
+ // otherwise clear the bottom 8 bits if we need to do an or.
+ if (Elt1 >= 0) {
+ InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
+ DAG.getIntPtrConstant(Elt1 / 2));
+ if ((Elt1 & 1) == 0)
+ InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
+ DAG.getConstant(8,
+ TLI.getShiftAmountTy(InsElt.getValueType())));
+ else if (Elt0 >= 0)
+ InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
+ DAG.getConstant(0xFF00, MVT::i16));
+ }
+ // If Elt0 is defined, extract it from the appropriate source. If the
+ // source byte is not also even, shift the extracted word right 8 bits. If
+ // Elt1 was also defined, OR the extracted values together before
+ // inserting them in the result.
+ if (Elt0 >= 0) {
+ SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
+ Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
+ if ((Elt0 & 1) != 0)
+ InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
+ DAG.getConstant(8,
+ TLI.getShiftAmountTy(InsElt0.getValueType())));
+ else if (Elt1 >= 0)
+ InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
+ DAG.getConstant(0x00FF, MVT::i16));
+ InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
+ : InsElt0;
+ }
+ NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
+ DAG.getIntPtrConstant(i));
+ }
+ return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
+}
+
+// v32i8 shuffles - Translate to VPSHUFB if possible.
+static
+SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = SVOp->getSimpleValueType(0);
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ SDLoc dl(SVOp);
+ SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
+
+ bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
+ bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
+ bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
+
+ // VPSHUFB may be generated if
+ // (1) one of input vector is undefined or zeroinitializer.
+ // The mask value 0x80 puts 0 in the corresponding slot of the vector.
+ // And (2) the mask indexes don't cross the 128-bit lane.
+ if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
+ (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
+ return SDValue();
+
+ if (V1IsAllZero && !V2IsAllZero) {
+ CommuteVectorShuffleMask(MaskVals, 32);
+ V1 = V2;
+ }
+ return getPSHUFB(MaskVals, V1, dl, DAG);
+}
+
+/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
+/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
+/// done when every pair / quad of shuffle mask elements point to elements in
+/// the right sequence. e.g.
+/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
+static
+SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
+ SelectionDAG &DAG) {
+ MVT VT = SVOp->getSimpleValueType(0);
+ SDLoc dl(SVOp);
+ unsigned NumElems = VT.getVectorNumElements();
+ MVT NewVT;
+ unsigned Scale;
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected!");
+ case MVT::v2i64:
+ case MVT::v2f64:
+ return SDValue(SVOp, 0);
+ case MVT::v4f32: NewVT = MVT::v2f64; Scale = 2; break;
+ case MVT::v4i32: NewVT = MVT::v2i64; Scale = 2; break;
+ case MVT::v8i16: NewVT = MVT::v4i32; Scale = 2; break;
+ case MVT::v16i8: NewVT = MVT::v4i32; Scale = 4; break;
+ case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
+ case MVT::v32i8: NewVT = MVT::v8i32; Scale = 4; break;
+ }
+
+ SmallVector<int, 8> MaskVec;
+ for (unsigned i = 0; i != NumElems; i += Scale) {
+ int StartIdx = -1;
+ for (unsigned j = 0; j != Scale; ++j) {
+ int EltIdx = SVOp->getMaskElt(i+j);
+ if (EltIdx < 0)
+ continue;
+ if (StartIdx < 0)
+ StartIdx = (EltIdx / Scale);
+ if (EltIdx != (int)(StartIdx*Scale + j))
+ return SDValue();
+ }
+ MaskVec.push_back(StartIdx);
+ }
+
+ SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
+ SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
+ return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
+}
+
+/// getVZextMovL - Return a zero-extending vector move low node.
+///
+static SDValue getVZextMovL(MVT VT, MVT OpVT,
+ SDValue SrcOp, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget, SDLoc dl) {
+ if (VT == MVT::v2f64 || VT == MVT::v4f32) {
+ LoadSDNode *LD = nullptr;
+ if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
+ LD = dyn_cast<LoadSDNode>(SrcOp);
+ if (!LD) {
+ // movssrr and movsdrr do not clear top bits. Try to use movd, movq
+ // instead.
+ MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
+ if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
+ SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
+ SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
+ SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
+ // PR2108
+ OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
+ return DAG.getNode(ISD::BITCAST, dl, VT,
+ DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ OpVT,
+ SrcOp.getOperand(0)
+ .getOperand(0))));
+ }
+ }
+ }
+
+ return DAG.getNode(ISD::BITCAST, dl, VT,
+ DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
+ DAG.getNode(ISD::BITCAST, dl,
+ OpVT, SrcOp)));
+}
+
+/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
+/// which could not be matched by any known target speficic shuffle
+static SDValue
+LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
+
+ SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
+ if (NewOp.getNode())
+ return NewOp;
+
+ MVT VT = SVOp->getSimpleValueType(0);
+
+ unsigned NumElems = VT.getVectorNumElements();
+ unsigned NumLaneElems = NumElems / 2;
+
+ SDLoc dl(SVOp);
+ MVT EltVT = VT.getVectorElementType();
+ MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
+ SDValue Output[2];
+
+ SmallVector<int, 16> Mask;
+ for (unsigned l = 0; l < 2; ++l) {
+ // Build a shuffle mask for the output, discovering on the fly which
+ // input vectors to use as shuffle operands (recorded in InputUsed).
+ // If building a suitable shuffle vector proves too hard, then bail
+ // out with UseBuildVector set.
+ bool UseBuildVector = false;
+ int InputUsed[2] = { -1, -1 }; // Not yet discovered.
+ unsigned LaneStart = l * NumLaneElems;
+ for (unsigned i = 0; i != NumLaneElems; ++i) {
+ // The mask element. This indexes into the input.
+ int Idx = SVOp->getMaskElt(i+LaneStart);
+ if (Idx < 0) {
+ // the mask element does not index into any input vector.
+ Mask.push_back(-1);
+ continue;
+ }
+
+ // The input vector this mask element indexes into.
+ int Input = Idx / NumLaneElems;
+
+ // Turn the index into an offset from the start of the input vector.
+ Idx -= Input * NumLaneElems;
+
+ // Find or create a shuffle vector operand to hold this input.
+ unsigned OpNo;
+ for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
+ if (InputUsed[OpNo] == Input)
+ // This input vector is already an operand.
+ break;
+ if (InputUsed[OpNo] < 0) {
+ // Create a new operand for this input vector.
+ InputUsed[OpNo] = Input;
+ break;
+ }
+ }
+
+ if (OpNo >= array_lengthof(InputUsed)) {
+ // More than two input vectors used! Give up on trying to create a
+ // shuffle vector. Insert all elements into a BUILD_VECTOR instead.
+ UseBuildVector = true;
+ break;
+ }
+
+ // Add the mask index for the new shuffle vector.
+ Mask.push_back(Idx + OpNo * NumLaneElems);
+ }
+
+ if (UseBuildVector) {
+ SmallVector<SDValue, 16> SVOps;
+ for (unsigned i = 0; i != NumLaneElems; ++i) {
+ // The mask element. This indexes into the input.
+ int Idx = SVOp->getMaskElt(i+LaneStart);
+ if (Idx < 0) {
+ SVOps.push_back(DAG.getUNDEF(EltVT));
+ continue;
+ }
+
+ // The input vector this mask element indexes into.
+ int Input = Idx / NumElems;
+
+ // Turn the index into an offset from the start of the input vector.
+ Idx -= Input * NumElems;
+
+ // Extract the vector element by hand.
+ SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
+ SVOp->getOperand(Input),
+ DAG.getIntPtrConstant(Idx)));
+ }
+
+ // Construct the output using a BUILD_VECTOR.
+ Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, SVOps);
+ } else if (InputUsed[0] < 0) {
+ // No input vectors were used! The result is undefined.
+ Output[l] = DAG.getUNDEF(NVT);
+ } else {
+ SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
+ (InputUsed[0] % 2) * NumLaneElems,
+ DAG, dl);
+ // If only one input was used, use an undefined vector for the other.
+ SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
+ Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
+ (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
+ // At least one input vector was used. Create a new shuffle vector.
+ Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
+ }
+
+ Mask.clear();
+ }
+
+ // Concatenate the result back
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
+}
+
+/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
+/// 4 elements, and match them with several different shuffle types.
+static SDValue
+LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ SDLoc dl(SVOp);
+ MVT VT = SVOp->getSimpleValueType(0);
+
+ assert(VT.is128BitVector() && "Unsupported vector size");
+
+ std::pair<int, int> Locs[4];
+ int Mask1[] = { -1, -1, -1, -1 };
+ SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
+
+ unsigned NumHi = 0;
+ unsigned NumLo = 0;
+ for (unsigned i = 0; i != 4; ++i) {
+ int Idx = PermMask[i];
+ if (Idx < 0) {
+ Locs[i] = std::make_pair(-1, -1);
+ } else {
+ assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
+ if (Idx < 4) {
+ Locs[i] = std::make_pair(0, NumLo);
+ Mask1[NumLo] = Idx;
+ NumLo++;
+ } else {
+ Locs[i] = std::make_pair(1, NumHi);
+ if (2+NumHi < 4)
+ Mask1[2+NumHi] = Idx;
+ NumHi++;
+ }
+ }
+ }
+
+ if (NumLo <= 2 && NumHi <= 2) {
+ // If no more than two elements come from either vector. This can be
+ // implemented with two shuffles. First shuffle gather the elements.
+ // The second shuffle, which takes the first shuffle as both of its
+ // vector operands, put the elements into the right order.
+ V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
+
+ int Mask2[] = { -1, -1, -1, -1 };
+
+ for (unsigned i = 0; i != 4; ++i)
+ if (Locs[i].first != -1) {
+ unsigned Idx = (i < 2) ? 0 : 4;
+ Idx += Locs[i].first * 2 + Locs[i].second;
+ Mask2[i] = Idx;
+ }
+
+ return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
+ }
+
+ if (NumLo == 3 || NumHi == 3) {
+ // Otherwise, we must have three elements from one vector, call it X, and
+ // one element from the other, call it Y. First, use a shufps to build an
+ // intermediate vector with the one element from Y and the element from X
+ // that will be in the same half in the final destination (the indexes don't
+ // matter). Then, use a shufps to build the final vector, taking the half
+ // containing the element from Y from the intermediate, and the other half
+ // from X.
+ if (NumHi == 3) {
+ // Normalize it so the 3 elements come from V1.
+ CommuteVectorShuffleMask(PermMask, 4);
+ std::swap(V1, V2);
+ }
+
+ // Find the element from V2.
+ unsigned HiIndex;
+ for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
+ int Val = PermMask[HiIndex];
+ if (Val < 0)
+ continue;
+ if (Val >= 4)
+ break;
+ }
+
+ Mask1[0] = PermMask[HiIndex];
+ Mask1[1] = -1;
+ Mask1[2] = PermMask[HiIndex^1];
+ Mask1[3] = -1;
+ V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
+
+ if (HiIndex >= 2) {
+ Mask1[0] = PermMask[0];
+ Mask1[1] = PermMask[1];
+ Mask1[2] = HiIndex & 1 ? 6 : 4;
+ Mask1[3] = HiIndex & 1 ? 4 : 6;
+ return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
+ }
+
+ Mask1[0] = HiIndex & 1 ? 2 : 0;
+ Mask1[1] = HiIndex & 1 ? 0 : 2;
+ Mask1[2] = PermMask[2];
+ Mask1[3] = PermMask[3];
+ if (Mask1[2] >= 0)
+ Mask1[2] += 4;
+ if (Mask1[3] >= 0)
+ Mask1[3] += 4;
+ return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
+ }
+
+ // Break it into (shuffle shuffle_hi, shuffle_lo).
+ int LoMask[] = { -1, -1, -1, -1 };
+ int HiMask[] = { -1, -1, -1, -1 };
+
+ int *MaskPtr = LoMask;
+ unsigned MaskIdx = 0;
+ unsigned LoIdx = 0;
+ unsigned HiIdx = 2;
+ for (unsigned i = 0; i != 4; ++i) {
+ if (i == 2) {
+ MaskPtr = HiMask;
+ MaskIdx = 1;
+ LoIdx = 0;
+ HiIdx = 2;
+ }
+ int Idx = PermMask[i];
+ if (Idx < 0) {
+ Locs[i] = std::make_pair(-1, -1);
+ } else if (Idx < 4) {
+ Locs[i] = std::make_pair(MaskIdx, LoIdx);
+ MaskPtr[LoIdx] = Idx;
+ LoIdx++;
+ } else {
+ Locs[i] = std::make_pair(MaskIdx, HiIdx);
+ MaskPtr[HiIdx] = Idx;
+ HiIdx++;
+ }
+ }
+
+ SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
+ SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
+ int MaskOps[] = { -1, -1, -1, -1 };
+ for (unsigned i = 0; i != 4; ++i)
+ if (Locs[i].first != -1)
+ MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
+ return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
+}
+
+static bool MayFoldVectorLoad(SDValue V) {
+ while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
+ V = V.getOperand(0);
+
+ if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
+ V = V.getOperand(0);
+ if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
+ V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
+ // BUILD_VECTOR (load), undef
+ V = V.getOperand(0);
+
+ return MayFoldLoad(V);
+}
+
+static
+SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ // Canonizalize to v2f64.
+ V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
+ return DAG.getNode(ISD::BITCAST, dl, VT,
+ getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
+ V1, DAG));
+}
+
+static
+SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
+ bool HasSSE2) {
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ MVT VT = Op.getSimpleValueType();
+
+ assert(VT != MVT::v2i64 && "unsupported shuffle type");
+
+ if (HasSSE2 && VT == MVT::v2f64)
+ return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
+
+ // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
+ return DAG.getNode(ISD::BITCAST, dl, VT,
+ getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
+ DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
+}
+
+static
+SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ MVT VT = Op.getSimpleValueType();
+
+ assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
+ "unsupported shuffle type");
+
+ if (V2.getOpcode() == ISD::UNDEF)
+ V2 = V1;
+
+ // v4i32 or v4f32
+ return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
+}
+
+static
+SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ MVT VT = Op.getSimpleValueType();
+ unsigned NumElems = VT.getVectorNumElements();
+
+ // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
+ // operand of these instructions is only memory, so check if there's a
+ // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
+ // same masks.
+ bool CanFoldLoad = false;
+
+ // Trivial case, when V2 comes from a load.
+ if (MayFoldVectorLoad(V2))
+ CanFoldLoad = true;
+
+ // When V1 is a load, it can be folded later into a store in isel, example:
+ // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
+ // turns into:
+ // (MOVLPSmr addr:$src1, VR128:$src2)
+ // So, recognize this potential and also use MOVLPS or MOVLPD
+ else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
+ CanFoldLoad = true;
+
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ if (CanFoldLoad) {
+ if (HasSSE2 && NumElems == 2)
+ return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
+
+ if (NumElems == 4)
+ // If we don't care about the second element, proceed to use movss.
+ if (SVOp->getMaskElt(1) != -1)
+ return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
+ }
+
+ // movl and movlp will both match v2i64, but v2i64 is never matched by
+ // movl earlier because we make it strict to avoid messing with the movlp load
+ // folding logic (see the code above getMOVLP call). Match it here then,
+ // this is horrible, but will stay like this until we move all shuffle
+ // matching to x86 specific nodes. Note that for the 1st condition all
+ // types are matched with movsd.
+ if (HasSSE2) {
+ // FIXME: isMOVLMask should be checked and matched before getMOVLP,
+ // as to remove this logic from here, as much as possible
+ if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
+ return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
+ return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
+ }
+
+ assert(VT != MVT::v4i32 && "unsupported shuffle type");
+
+ // Invert the operand order and use SHUFPS to match it.
+ return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
+ getShuffleSHUFImmediate(SVOp), DAG);
+}
+
+static SDValue NarrowVectorLoadToElement(LoadSDNode *Load, unsigned Index,
+ SelectionDAG &DAG) {
+ SDLoc dl(Load);
+ MVT VT = Load->getSimpleValueType(0);
+ MVT EVT = VT.getVectorElementType();
+ SDValue Addr = Load->getOperand(1);
+ SDValue NewAddr = DAG.getNode(
+ ISD::ADD, dl, Addr.getSimpleValueType(), Addr,
+ DAG.getConstant(Index * EVT.getStoreSize(), Addr.getSimpleValueType()));
+
+ SDValue NewLoad =
+ DAG.getLoad(EVT, dl, Load->getChain(), NewAddr,
+ DAG.getMachineFunction().getMachineMemOperand(
+ Load->getMemOperand(), 0, EVT.getStoreSize()));
+ return NewLoad;
+}
+
+// It is only safe to call this function if isINSERTPSMask is true for
+// this shufflevector mask.
+static SDValue getINSERTPS(ShuffleVectorSDNode *SVOp, SDLoc &dl,
+ SelectionDAG &DAG) {
+ // Generate an insertps instruction when inserting an f32 from memory onto a
+ // v4f32 or when copying a member from one v4f32 to another.
+ // We also use it for transferring i32 from one register to another,
+ // since it simply copies the same bits.
+ // If we're transferring an i32 from memory to a specific element in a
+ // register, we output a generic DAG that will match the PINSRD
+ // instruction.
+ MVT VT = SVOp->getSimpleValueType(0);
+ MVT EVT = VT.getVectorElementType();
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ auto Mask = SVOp->getMask();
+ assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
+ "unsupported vector type for insertps/pinsrd");
+
+ auto FromV1Predicate = [](const int &i) { return i < 4 && i > -1; };
+ auto FromV2Predicate = [](const int &i) { return i >= 4; };
+ int FromV1 = std::count_if(Mask.begin(), Mask.end(), FromV1Predicate);
+
+ SDValue From;
+ SDValue To;
+ unsigned DestIndex;
+ if (FromV1 == 1) {
+ From = V1;
+ To = V2;
+ DestIndex = std::find_if(Mask.begin(), Mask.end(), FromV1Predicate) -
+ Mask.begin();
+
+ // If we have 1 element from each vector, we have to check if we're
+ // changing V1's element's place. If so, we're done. Otherwise, we
+ // should assume we're changing V2's element's place and behave
+ // accordingly.
+ int FromV2 = std::count_if(Mask.begin(), Mask.end(), FromV2Predicate);
+ if (FromV1 == FromV2 && DestIndex == Mask[DestIndex] % 4) {
+ From = V2;
+ To = V1;
+ DestIndex =
+ std::find_if(Mask.begin(), Mask.end(), FromV2Predicate) - Mask.begin();
+ }
+ } else {
+ assert(std::count_if(Mask.begin(), Mask.end(), FromV2Predicate) == 1 &&
+ "More than one element from V1 and from V2, or no elements from one "
+ "of the vectors. This case should not have returned true from "
+ "isINSERTPSMask");
+ From = V2;
+ To = V1;
+ DestIndex =
+ std::find_if(Mask.begin(), Mask.end(), FromV2Predicate) - Mask.begin();
+ }
+
+ // Get an index into the source vector in the range [0,4) (the mask is
+ // in the range [0,8) because it can address V1 and V2)
+ unsigned SrcIndex = Mask[DestIndex] % 4;
+ if (MayFoldLoad(From)) {
+ // Trivial case, when From comes from a load and is only used by the
+ // shuffle. Make it use insertps from the vector that we need from that
+ // load.
+ SDValue NewLoad =
+ NarrowVectorLoadToElement(cast<LoadSDNode>(From), SrcIndex, DAG);
+ if (!NewLoad.getNode())
+ return SDValue();
+
+ if (EVT == MVT::f32) {
+ // Create this as a scalar to vector to match the instruction pattern.
+ SDValue LoadScalarToVector =
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, NewLoad);
+ SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4);
+ return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, LoadScalarToVector,
+ InsertpsMask);
+ } else { // EVT == MVT::i32
+ // If we're getting an i32 from memory, use an INSERT_VECTOR_ELT
+ // instruction, to match the PINSRD instruction, which loads an i32 to a
+ // certain vector element.
+ return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, To, NewLoad,
+ DAG.getConstant(DestIndex, MVT::i32));
+ }
+ }
+
+ // Vector-element-to-vector
+ SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4 | SrcIndex << 6);
+ return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, From, InsertpsMask);
+}
+
+// Reduce a vector shuffle to zext.
+static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ // PMOVZX is only available from SSE41.
+ if (!Subtarget->hasSSE41())
+ return SDValue();
+
+ MVT VT = Op.getSimpleValueType();
+
+ // Only AVX2 support 256-bit vector integer extending.
+ if (!Subtarget->hasInt256() && VT.is256BitVector())
+ return SDValue();
+
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ SDLoc DL(Op);
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ unsigned NumElems = VT.getVectorNumElements();
+
+ // Extending is an unary operation and the element type of the source vector
+ // won't be equal to or larger than i64.
+ if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
+ VT.getVectorElementType() == MVT::i64)
+ return SDValue();
+
+ // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
+ unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
+ while ((1U << Shift) < NumElems) {
+ if (SVOp->getMaskElt(1U << Shift) == 1)
+ break;
+ Shift += 1;
+ // The maximal ratio is 8, i.e. from i8 to i64.
+ if (Shift > 3)
+ return SDValue();
+ }
+
+ // Check the shuffle mask.
+ unsigned Mask = (1U << Shift) - 1;
+ for (unsigned i = 0; i != NumElems; ++i) {
+ int EltIdx = SVOp->getMaskElt(i);
+ if ((i & Mask) != 0 && EltIdx != -1)
+ return SDValue();
+ if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
+ return SDValue();
+ }
+
+ unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
+ MVT NeVT = MVT::getIntegerVT(NBits);
+ MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift);
+
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
+ return SDValue();
+
+ // Simplify the operand as it's prepared to be fed into shuffle.
+ unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
+ if (V1.getOpcode() == ISD::BITCAST &&
+ V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
+ V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ V1.getOperand(0).getOperand(0)
+ .getSimpleValueType().getSizeInBits() == SignificantBits) {
+ // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
+ SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
+ ConstantSDNode *CIdx =
+ dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
+ // If it's foldable, i.e. normal load with single use, we will let code
+ // selection to fold it. Otherwise, we will short the conversion sequence.
+ if (CIdx && CIdx->getZExtValue() == 0 &&
+ (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
+ MVT FullVT = V.getSimpleValueType();
+ MVT V1VT = V1.getSimpleValueType();
+ if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) {
+ // The "ext_vec_elt" node is wider than the result node.
+ // In this case we should extract subvector from V.
+ // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
+ unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits();
+ MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(),
+ FullVT.getVectorNumElements()/Ratio);
+ V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
+ DAG.getIntPtrConstant(0));
+ }
+ V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V);
+ }
+ }
+
+ return DAG.getNode(ISD::BITCAST, DL, VT,
+ DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
+}
+
+static SDValue NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+
+ if (isZeroShuffle(SVOp))
+ return getZeroVector(VT, Subtarget, DAG, dl);
+
+ // Handle splat operations
+ if (SVOp->isSplat()) {
+ // Use vbroadcast whenever the splat comes from a foldable load
+ SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
+ if (Broadcast.getNode())
+ return Broadcast;
+ }
+
+ // Check integer expanding shuffles.
+ SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG);
+ if (NewOp.getNode())
+ return NewOp;
+
+ // If the shuffle can be profitably rewritten as a narrower shuffle, then
+ // do it!
+ if (VT == MVT::v8i16 || VT == MVT::v16i8 || VT == MVT::v16i16 ||
+ VT == MVT::v32i8) {
+ SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
+ if (NewOp.getNode())
+ return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
+ } else if (VT.is128BitVector() && Subtarget->hasSSE2()) {
+ // FIXME: Figure out a cleaner way to do this.
+ if (ISD::isBuildVectorAllZeros(V2.getNode())) {
+ SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
+ if (NewOp.getNode()) {
+ MVT NewVT = NewOp.getSimpleValueType();
+ if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
+ NewVT, true, false))
+ return getVZextMovL(VT, NewVT, NewOp.getOperand(0), DAG, Subtarget,
+ dl);
+ }
+ } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
+ SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
+ if (NewOp.getNode()) {
+ MVT NewVT = NewOp.getSimpleValueType();
+ if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
+ return getVZextMovL(VT, NewVT, NewOp.getOperand(1), DAG, Subtarget,
+ dl);
+ }
+ }
+ }
+ return SDValue();
+}
+
+SDValue
+X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ unsigned NumElems = VT.getVectorNumElements();
+ bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
+ bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
+ bool V1IsSplat = false;
+ bool V2IsSplat = false;
+ bool HasSSE2 = Subtarget->hasSSE2();
+ bool HasFp256 = Subtarget->hasFp256();
+ bool HasInt256 = Subtarget->hasInt256();
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool OptForSize = MF.getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
+
+ // Check if we should use the experimental vector shuffle lowering. If so,
+ // delegate completely to that code path.
+ if (ExperimentalVectorShuffleLowering)
+ return lowerVectorShuffle(Op, Subtarget, DAG);
+
+ assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
+
+ if (V1IsUndef && V2IsUndef)
+ return DAG.getUNDEF(VT);
+
+ // When we create a shuffle node we put the UNDEF node to second operand,
+ // but in some cases the first operand may be transformed to UNDEF.
+ // In this case we should just commute the node.
+ if (V1IsUndef)
+ return DAG.getCommutedVectorShuffle(*SVOp);
+
+ // Vector shuffle lowering takes 3 steps:
+ //
+ // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
+ // narrowing and commutation of operands should be handled.
+ // 2) Matching of shuffles with known shuffle masks to x86 target specific
+ // shuffle nodes.
+ // 3) Rewriting of unmatched masks into new generic shuffle operations,
+ // so the shuffle can be broken into other shuffles and the legalizer can
+ // try the lowering again.
+ //
+ // The general idea is that no vector_shuffle operation should be left to
+ // be matched during isel, all of them must be converted to a target specific
+ // node here.
+
+ // Normalize the input vectors. Here splats, zeroed vectors, profitable
+ // narrowing and commutation of operands should be handled. The actual code
+ // doesn't include all of those, work in progress...
+ SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG);
+ if (NewOp.getNode())
+ return NewOp;
+
+ SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
+
+ // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
+ // unpckh_undef). Only use pshufd if speed is more important than size.
+ if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
+ return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
+ if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
+ return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
+
+ if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
+ V2IsUndef && MayFoldVectorLoad(V1))
+ return getMOVDDup(Op, dl, V1, DAG);
+
+ if (isMOVHLPS_v_undef_Mask(M, VT))
+ return getMOVHighToLow(Op, dl, DAG);
+
+ // Use to match splats
+ if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
+ (VT == MVT::v2f64 || VT == MVT::v2i64))
+ return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
+
+ if (isPSHUFDMask(M, VT)) {
+ // The actual implementation will match the mask in the if above and then
+ // during isel it can match several different instructions, not only pshufd
+ // as its name says, sad but true, emulate the behavior for now...
+ if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
+ return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
+
+ unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
+
+ if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
+ return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
+
+ if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
+ return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
+ DAG);
+
+ return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
+ TargetMask, DAG);
+ }
+
+ if (isPALIGNRMask(M, VT, Subtarget))
+ return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
+ getShufflePALIGNRImmediate(SVOp),
+ DAG);
+
+ // Check if this can be converted into a logical shift.
+ bool isLeft = false;
+ unsigned ShAmt = 0;
+ SDValue ShVal;
+ bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
+ if (isShift && ShVal.hasOneUse()) {
+ // If the shifted value has multiple uses, it may be cheaper to use
+ // v_set0 + movlhps or movhlps, etc.
+ MVT EltVT = VT.getVectorElementType();
+ ShAmt *= EltVT.getSizeInBits();
+ return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
+ }
+
+ if (isMOVLMask(M, VT)) {
+ if (ISD::isBuildVectorAllZeros(V1.getNode()))
+ return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
+ if (!isMOVLPMask(M, VT)) {
+ if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
+ return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
+
+ if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
+ }
+ }
+
+ // FIXME: fold these into legal mask.
+ if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
+ return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
+
+ if (isMOVHLPSMask(M, VT))
+ return getMOVHighToLow(Op, dl, DAG);
+
+ if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
+ return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
+
+ if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
+ return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
+
+ if (isMOVLPMask(M, VT))
+ return getMOVLP(Op, dl, DAG, HasSSE2);
+
+ if (ShouldXformToMOVHLPS(M, VT) ||
+ ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
+ return DAG.getCommutedVectorShuffle(*SVOp);
+
+ if (isShift) {
+ // No better options. Use a vshldq / vsrldq.
+ MVT EltVT = VT.getVectorElementType();
+ ShAmt *= EltVT.getSizeInBits();
+ return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
+ }
+
+ bool Commuted = false;
+ // FIXME: This should also accept a bitcast of a splat? Be careful, not
+ // 1,1,1,1 -> v8i16 though.
+ BitVector UndefElements;
+ if (auto *BVOp = dyn_cast<BuildVectorSDNode>(V1.getNode()))
+ if (BVOp->getConstantSplatNode(&UndefElements) && UndefElements.none())
+ V1IsSplat = true;
+ if (auto *BVOp = dyn_cast<BuildVectorSDNode>(V2.getNode()))
+ if (BVOp->getConstantSplatNode(&UndefElements) && UndefElements.none())
+ V2IsSplat = true;
+
+ // Canonicalize the splat or undef, if present, to be on the RHS.
+ if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
+ CommuteVectorShuffleMask(M, NumElems);
+ std::swap(V1, V2);
+ std::swap(V1IsSplat, V2IsSplat);
+ Commuted = true;
+ }
+
+ if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
+ // Shuffling low element of v1 into undef, just return v1.
+ if (V2IsUndef)
+ return V1;
+ // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
+ // the instruction selector will not match, so get a canonical MOVL with
+ // swapped operands to undo the commute.
+ return getMOVL(DAG, dl, VT, V2, V1);
+ }
+
+ if (isUNPCKLMask(M, VT, HasInt256))
+ return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
+
+ if (isUNPCKHMask(M, VT, HasInt256))
+ return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
+
+ if (V2IsSplat) {
+ // Normalize mask so all entries that point to V2 points to its first
+ // element then try to match unpck{h|l} again. If match, return a
+ // new vector_shuffle with the corrected mask.p
+ SmallVector<int, 8> NewMask(M.begin(), M.end());
+ NormalizeMask(NewMask, NumElems);
+ if (isUNPCKLMask(NewMask, VT, HasInt256, true))
+ return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
+ if (isUNPCKHMask(NewMask, VT, HasInt256, true))
+ return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
+ }
+
+ if (Commuted) {
+ // Commute is back and try unpck* again.
+ // FIXME: this seems wrong.
+ CommuteVectorShuffleMask(M, NumElems);
+ std::swap(V1, V2);
+ std::swap(V1IsSplat, V2IsSplat);
+
+ if (isUNPCKLMask(M, VT, HasInt256))
+ return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
+
+ if (isUNPCKHMask(M, VT, HasInt256))
+ return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
+ }
+
+ // Normalize the node to match x86 shuffle ops if needed
+ if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true)))
+ return DAG.getCommutedVectorShuffle(*SVOp);
+
+ // The checks below are all present in isShuffleMaskLegal, but they are
+ // inlined here right now to enable us to directly emit target specific
+ // nodes, and remove one by one until they don't return Op anymore.
+
+ if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
+ SVOp->getSplatIndex() == 0 && V2IsUndef) {
+ if (VT == MVT::v2f64 || VT == MVT::v2i64)
+ return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
+ }
+
+ if (isPSHUFHWMask(M, VT, HasInt256))
+ return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
+ getShufflePSHUFHWImmediate(SVOp),
+ DAG);
+
+ if (isPSHUFLWMask(M, VT, HasInt256))
+ return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
+ getShufflePSHUFLWImmediate(SVOp),
+ DAG);
+
+ unsigned MaskValue;
+ if (isBlendMask(M, VT, Subtarget->hasSSE41(), Subtarget->hasInt256(),
+ &MaskValue))
+ return LowerVECTOR_SHUFFLEtoBlend(SVOp, MaskValue, Subtarget, DAG);
+
+ if (isSHUFPMask(M, VT))
+ return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
+ getShuffleSHUFImmediate(SVOp), DAG);
+
+ if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
+ return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
+ if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
+ return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
+
+ //===--------------------------------------------------------------------===//
+ // Generate target specific nodes for 128 or 256-bit shuffles only
+ // supported in the AVX instruction set.
+ //
+
+ // Handle VMOVDDUPY permutations
+ if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
+ return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
+
+ // Handle VPERMILPS/D* permutations
+ if (isVPERMILPMask(M, VT)) {
+ if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
+ return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
+ getShuffleSHUFImmediate(SVOp), DAG);
+ return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
+ getShuffleSHUFImmediate(SVOp), DAG);
+ }
+
+ unsigned Idx;
+ if (VT.is512BitVector() && isINSERT64x4Mask(M, VT, &Idx))
+ return Insert256BitVector(V1, Extract256BitVector(V2, 0, DAG, dl),
+ Idx*(NumElems/2), DAG, dl);
+
+ // Handle VPERM2F128/VPERM2I128 permutations
+ if (isVPERM2X128Mask(M, VT, HasFp256))
+ return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
+ V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
+
+ if (Subtarget->hasSSE41() && isINSERTPSMask(M, VT))
+ return getINSERTPS(SVOp, dl, DAG);
+
+ unsigned Imm8;
+ if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8))
+ return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG);
+
+ if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) ||
+ VT.is512BitVector()) {
+ MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
+ MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems);
+ SmallVector<SDValue, 16> permclMask;
+ for (unsigned i = 0; i != NumElems; ++i) {
+ permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT));
+ }
+
+ SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT, permclMask);
+ if (V2IsUndef)
+ // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
+ return DAG.getNode(X86ISD::VPERMV, dl, VT,
+ DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
+ return DAG.getNode(X86ISD::VPERMV3, dl, VT, V1,
+ DAG.getNode(ISD::BITCAST, dl, VT, Mask), V2);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Since no target specific shuffle was selected for this generic one,
+ // lower it into other known shuffles. FIXME: this isn't true yet, but
+ // this is the plan.
+ //
+
+ // Handle v8i16 specifically since SSE can do byte extraction and insertion.
+ if (VT == MVT::v8i16) {
+ SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
+ if (NewOp.getNode())
+ return NewOp;
+ }
+
+ if (VT == MVT::v16i16 && Subtarget->hasInt256()) {
+ SDValue NewOp = LowerVECTOR_SHUFFLEv16i16(Op, DAG);
+ if (NewOp.getNode())
+ return NewOp;
+ }
+
+ if (VT == MVT::v16i8) {
+ SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG);
+ if (NewOp.getNode())
+ return NewOp;
+ }
+
+ if (VT == MVT::v32i8) {
+ SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
+ if (NewOp.getNode())
+ return NewOp;
+ }
+
+ // Handle all 128-bit wide vectors with 4 elements, and match them with
+ // several different shuffle types.
+ if (NumElems == 4 && VT.is128BitVector())
+ return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
+
+ // Handle general 256-bit shuffles
+ if (VT.is256BitVector())
+ return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
+
+ return SDValue();
+}
+
+// This function assumes its argument is a BUILD_VECTOR of constants or
+// undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is
+// true.
+static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector,
+ unsigned &MaskValue) {
+ MaskValue = 0;
+ unsigned NumElems = BuildVector->getNumOperands();
+ // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
+ unsigned NumLanes = (NumElems - 1) / 8 + 1;
+ unsigned NumElemsInLane = NumElems / NumLanes;
+
+ // Blend for v16i16 should be symetric for the both lanes.
+ for (unsigned i = 0; i < NumElemsInLane; ++i) {
+ SDValue EltCond = BuildVector->getOperand(i);
+ SDValue SndLaneEltCond =
+ (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond;
+
+ int Lane1Cond = -1, Lane2Cond = -1;
+ if (isa<ConstantSDNode>(EltCond))
+ Lane1Cond = !isZero(EltCond);
+ if (isa<ConstantSDNode>(SndLaneEltCond))
+ Lane2Cond = !isZero(SndLaneEltCond);
+
+ if (Lane1Cond == Lane2Cond || Lane2Cond < 0)
+ // Lane1Cond != 0, means we want the first argument.
+ // Lane1Cond == 0, means we want the second argument.
+ // The encoding of this argument is 0 for the first argument, 1
+ // for the second. Therefore, invert the condition.
+ MaskValue |= !Lane1Cond << i;
+ else if (Lane1Cond < 0)
+ MaskValue |= !Lane2Cond << i;
+ else
+ return false;
+ }
+ return true;
+}
+
+// Try to lower a vselect node into a simple blend instruction.
+static SDValue LowerVSELECTtoBlend(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Cond = Op.getOperand(0);
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ unsigned NumElems = VT.getVectorNumElements();
+
+ // There is no blend with immediate in AVX-512.
+ if (VT.is512BitVector())
+ return SDValue();
+
+ if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
+ return SDValue();
+ if (!Subtarget->hasInt256() && VT == MVT::v16i16)
+ return SDValue();
+
+ if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
+ return SDValue();
+
+ // Check the mask for BLEND and build the value.
+ unsigned MaskValue = 0;
+ if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
+ return SDValue();
+
+ // Convert i32 vectors to floating point if it is not AVX2.
+ // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
+ MVT BlendVT = VT;
+ if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
+ BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
+ NumElems);
+ LHS = DAG.getNode(ISD::BITCAST, dl, VT, LHS);
+ RHS = DAG.getNode(ISD::BITCAST, dl, VT, RHS);
+ }
+
+ SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, LHS, RHS,
+ DAG.getConstant(MaskValue, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
+}
+
+SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue BlendOp = LowerVSELECTtoBlend(Op, Subtarget, DAG);
+ if (BlendOp.getNode())
+ return BlendOp;
+
+ // Some types for vselect were previously set to Expand, not Legal or
+ // Custom. Return an empty SDValue so we fall-through to Expand, after
+ // the Custom lowering phase.
+ MVT VT = Op.getSimpleValueType();
+ switch (VT.SimpleTy) {
+ default:
+ break;
+ case MVT::v8i16:
+ case MVT::v16i16:
+ return SDValue();
+ }
+
+ // We couldn't create a "Blend with immediate" node.
+ // This node should still be legal, but we'll have to emit a blendv*
+ // instruction.
+ return Op;
+}
+
+static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
+ return SDValue();
+
+ if (VT.getSizeInBits() == 8) {
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
+ Op.getOperand(0), Op.getOperand(1));
+ SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
+ DAG.getValueType(VT));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
+ }
+
+ if (VT.getSizeInBits() == 16) {
+ unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ // If Idx is 0, it's cheaper to do a move instead of a pextrw.
+ if (Idx == 0)
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getNode(ISD::BITCAST, dl,
+ MVT::v4i32,
+ Op.getOperand(0)),
+ Op.getOperand(1)));
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
+ Op.getOperand(0), Op.getOperand(1));
+ SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
+ DAG.getValueType(VT));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
+ }
+
+ if (VT == MVT::f32) {
+ // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
+ // the result back to FR32 register. It's only worth matching if the
+ // result has a single use which is a store or a bitcast to i32. And in
+ // the case of a store, it's not worth it if the index is a constant 0,
+ // because a MOVSSmr can be used instead, which is smaller and faster.
+ if (!Op.hasOneUse())
+ return SDValue();
+ SDNode *User = *Op.getNode()->use_begin();
+ if ((User->getOpcode() != ISD::STORE ||
+ (isa<ConstantSDNode>(Op.getOperand(1)) &&
+ cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
+ (User->getOpcode() != ISD::BITCAST ||
+ User->getValueType(0) != MVT::i32))
+ return SDValue();
+ SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
+ Op.getOperand(0)),
+ Op.getOperand(1));
+ return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
+ }
+
+ if (VT == MVT::i32 || VT == MVT::i64) {
+ // ExtractPS/pextrq works with constant index.
+ if (isa<ConstantSDNode>(Op.getOperand(1)))
+ return Op;
+ }
+ return SDValue();
+}
+
+/// Extract one bit from mask vector, like v16i1 or v8i1.
+/// AVX-512 feature.
+SDValue
+X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Vec = Op.getOperand(0);
+ SDLoc dl(Vec);
+ MVT VecVT = Vec.getSimpleValueType();
+ SDValue Idx = Op.getOperand(1);
+ MVT EltVT = Op.getSimpleValueType();
+
+ assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector");
+
+ // variable index can't be handled in mask registers,
+ // extend vector to VR512
+ if (!isa<ConstantSDNode>(Idx)) {
+ MVT ExtVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
+ SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ ExtVT.getVectorElementType(), Ext, Idx);
+ return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
+ }
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ const TargetRegisterClass* rc = getRegClassFor(VecVT);
+ unsigned MaxSift = rc->getSize()*8 - 1;
+ Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
+ DAG.getConstant(MaxSift - IdxVal, MVT::i8));
+ Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
+ DAG.getConstant(MaxSift, MVT::i8));
+ return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
+ DAG.getIntPtrConstant(0));
+}
+
+SDValue
+X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ SDValue Vec = Op.getOperand(0);
+ MVT VecVT = Vec.getSimpleValueType();
+ SDValue Idx = Op.getOperand(1);
+
+ if (Op.getSimpleValueType() == MVT::i1)
+ return ExtractBitFromMaskVector(Op, DAG);
+
+ if (!isa<ConstantSDNode>(Idx)) {
+ if (VecVT.is512BitVector() ||
+ (VecVT.is256BitVector() && Subtarget->hasInt256() &&
+ VecVT.getVectorElementType().getSizeInBits() == 32)) {
+
+ MVT MaskEltVT =
+ MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
+ MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
+ MaskEltVT.getSizeInBits());
+
+ Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
+ SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
+ getZeroVector(MaskVT, Subtarget, DAG, dl),
+ Idx, DAG.getConstant(0, getPointerTy()));
+ SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
+ Perm, DAG.getConstant(0, getPointerTy()));
+ }
+ return SDValue();
+ }
+
+ // If this is a 256-bit vector result, first extract the 128-bit vector and
+ // then extract the element from the 128-bit vector.
+ if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ // Get the 128-bit vector.
+ Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
+ MVT EltVT = VecVT.getVectorElementType();
+
+ unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
+
+ //if (IdxVal >= NumElems/2)
+ // IdxVal -= NumElems/2;
+ IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
+ DAG.getConstant(IdxVal, MVT::i32));
+ }
+
+ assert(VecVT.is128BitVector() && "Unexpected vector length");
+
+ if (Subtarget->hasSSE41()) {
+ SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
+ if (Res.getNode())
+ return Res;
+ }
+
+ MVT VT = Op.getSimpleValueType();
+ // TODO: handle v16i8.
+ if (VT.getSizeInBits() == 16) {
+ SDValue Vec = Op.getOperand(0);
+ unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ if (Idx == 0)
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getNode(ISD::BITCAST, dl,
+ MVT::v4i32, Vec),
+ Op.getOperand(1)));
+ // Transform it so it match pextrw which produces a 32-bit result.
+ MVT EltVT = MVT::i32;
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
+ Op.getOperand(0), Op.getOperand(1));
+ SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
+ DAG.getValueType(VT));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
+ }
+
+ if (VT.getSizeInBits() == 32) {
+ unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ if (Idx == 0)
+ return Op;
+
+ // SHUFPS the element to the lowest double word, then movss.
+ int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
+ MVT VVT = Op.getOperand(0).getSimpleValueType();
+ SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
+ DAG.getUNDEF(VVT), Mask);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
+ DAG.getIntPtrConstant(0));
+ }
+
+ if (VT.getSizeInBits() == 64) {
+ // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
+ // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
+ // to match extract_elt for f64.
+ unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ if (Idx == 0)
+ return Op;
+
+ // UNPCKHPD the element to the lowest double word, then movsd.
+ // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
+ // to a f64mem, the whole operation is folded into a single MOVHPDmr.
+ int Mask[2] = { 1, -1 };
+ MVT VVT = Op.getOperand(0).getSimpleValueType();
+ SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
+ DAG.getUNDEF(VVT), Mask);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
+ DAG.getIntPtrConstant(0));
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ SDLoc dl(Op);
+
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2 = Op.getOperand(2);
+
+ if (!VT.is128BitVector())
+ return SDValue();
+
+ if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
+ isa<ConstantSDNode>(N2)) {
+ unsigned Opc;
+ if (VT == MVT::v8i16)
+ Opc = X86ISD::PINSRW;
+ else if (VT == MVT::v16i8)
+ Opc = X86ISD::PINSRB;
+ else
+ Opc = X86ISD::PINSRB;
+
+ // Transform it so it match pinsr{b,w} which expects a GR32 as its second
+ // argument.
+ if (N1.getValueType() != MVT::i32)
+ N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
+ if (N2.getValueType() != MVT::i32)
+ N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
+ return DAG.getNode(Opc, dl, VT, N0, N1, N2);
+ }
+
+ if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
+ // Bits [7:6] of the constant are the source select. This will always be
+ // zero here. The DAG Combiner may combine an extract_elt index into these
+ // bits. For example (insert (extract, 3), 2) could be matched by putting
+ // the '3' into bits [7:6] of X86ISD::INSERTPS.
+ // Bits [5:4] of the constant are the destination select. This is the
+ // value of the incoming immediate.
+ // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
+ // combine either bitwise AND or insert of float 0.0 to set these bits.
+ N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
+ // Create this as a scalar to vector..
+ N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
+ return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
+ }
+
+ if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
+ // PINSR* works with constant index.
+ return Op;
+ }
+ return SDValue();
+}
+
+/// Insert one bit to mask vector, like v16i1 or v8i1.
+/// AVX-512 feature.
+SDValue
+X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ SDValue Vec = Op.getOperand(0);
+ SDValue Elt = Op.getOperand(1);
+ SDValue Idx = Op.getOperand(2);
+ MVT VecVT = Vec.getSimpleValueType();
+
+ if (!isa<ConstantSDNode>(Idx)) {
+ // Non constant index. Extend source and destination,
+ // insert element and then truncate the result.
+ MVT ExtVecVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
+ MVT ExtEltVT = (VecVT == MVT::v8i1 ? MVT::i64 : MVT::i32);
+ SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
+ DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
+ DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
+ return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
+ }
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
+ if (Vec.getOpcode() == ISD::UNDEF)
+ return DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
+ DAG.getConstant(IdxVal, MVT::i8));
+ const TargetRegisterClass* rc = getRegClassFor(VecVT);
+ unsigned MaxSift = rc->getSize()*8 - 1;
+ EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
+ DAG.getConstant(MaxSift, MVT::i8));
+ EltInVec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, EltInVec,
+ DAG.getConstant(MaxSift - IdxVal, MVT::i8));
+ return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
+}
+SDValue
+X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+
+ if (EltVT == MVT::i1)
+ return InsertBitToMaskVector(Op, DAG);
+
+ SDLoc dl(Op);
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2 = Op.getOperand(2);
+
+ // If this is a 256-bit vector result, first extract the 128-bit vector,
+ // insert the element into the extracted half and then place it back.
+ if (VT.is256BitVector() || VT.is512BitVector()) {
+ if (!isa<ConstantSDNode>(N2))
+ return SDValue();
+
+ // Get the desired 128-bit vector half.
+ unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
+ SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
+
+ // Insert the element into the desired half.
+ unsigned NumEltsIn128 = 128/EltVT.getSizeInBits();
+ unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128;
+
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
+ DAG.getConstant(IdxIn128, MVT::i32));
+
+ // Insert the changed part back to the 256-bit vector
+ return Insert128BitVector(N0, V, IdxVal, DAG, dl);
+ }
+
+ if (Subtarget->hasSSE41())
+ return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
+
+ if (EltVT == MVT::i8)
+ return SDValue();
+
+ if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
+ // Transform it so it match pinsrw which expects a 16-bit value in a GR32
+ // as its second argument.
+ if (N1.getValueType() != MVT::i32)
+ N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
+ if (N2.getValueType() != MVT::i32)
+ N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
+ return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
+ }
+ return SDValue();
+}
+
+static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ MVT OpVT = Op.getSimpleValueType();
+
+ // If this is a 256-bit vector result, first insert into a 128-bit
+ // vector and then insert into the 256-bit vector.
+ if (!OpVT.is128BitVector()) {
+ // Insert into a 128-bit vector.
+ unsigned SizeFactor = OpVT.getSizeInBits()/128;
+ MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
+ OpVT.getVectorNumElements() / SizeFactor);
+
+ Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
+
+ // Insert the 128-bit vector.
+ return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
+ }
+
+ if (OpVT == MVT::v1i64 &&
+ Op.getOperand(0).getValueType() == MVT::i64)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
+
+ SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
+ assert(OpVT.is128BitVector() && "Expected an SSE type!");
+ return DAG.getNode(ISD::BITCAST, dl, OpVT,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
+}
+
+// Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
+// a simple subregister reference or explicit instructions to grab
+// upper bits of a vector.
+static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ SDValue In = Op.getOperand(0);
+ SDValue Idx = Op.getOperand(1);
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ MVT ResVT = Op.getSimpleValueType();
+ MVT InVT = In.getSimpleValueType();
+
+ if (Subtarget->hasFp256()) {
+ if (ResVT.is128BitVector() &&
+ (InVT.is256BitVector() || InVT.is512BitVector()) &&
+ isa<ConstantSDNode>(Idx)) {
+ return Extract128BitVector(In, IdxVal, DAG, dl);
+ }
+ if (ResVT.is256BitVector() && InVT.is512BitVector() &&
+ isa<ConstantSDNode>(Idx)) {
+ return Extract256BitVector(In, IdxVal, DAG, dl);
+ }
+ }
+ return SDValue();
+}
+
+// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
+// simple superregister reference or explicit instructions to insert
+// the upper bits of a vector.
+static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ if (Subtarget->hasFp256()) {
+ SDLoc dl(Op.getNode());
+ SDValue Vec = Op.getNode()->getOperand(0);
+ SDValue SubVec = Op.getNode()->getOperand(1);
+ SDValue Idx = Op.getNode()->getOperand(2);
+
+ if ((Op.getNode()->getSimpleValueType(0).is256BitVector() ||
+ Op.getNode()->getSimpleValueType(0).is512BitVector()) &&
+ SubVec.getNode()->getSimpleValueType(0).is128BitVector() &&
+ isa<ConstantSDNode>(Idx)) {
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
+ }
+
+ if (Op.getNode()->getSimpleValueType(0).is512BitVector() &&
+ SubVec.getNode()->getSimpleValueType(0).is256BitVector() &&
+ isa<ConstantSDNode>(Idx)) {
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
+ }
+ }
+ return SDValue();
+}
+
+// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
+// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
+// one of the above mentioned nodes. It has to be wrapped because otherwise
+// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
+// be used to form addressing mode. These wrapped nodes will be selected
+// into MOV32ri.
+SDValue
+X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ CodeModel::Model M = DAG.getTarget().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ WrapperKind = X86ISD::WrapperRIP;
+ else if (Subtarget->isPICStyleGOT())
+ OpFlag = X86II::MO_GOTOFF;
+ else if (Subtarget->isPICStyleStubPIC())
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+
+ SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
+ CP->getAlignment(),
+ CP->getOffset(), OpFlag);
+ SDLoc DL(CP);
+ Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
+ // With PIC, the address is actually $g + Offset.
+ if (OpFlag) {
+ Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ SDLoc(), getPointerTy()),
+ Result);
+ }
+
+ return Result;
+}
+
+SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ CodeModel::Model M = DAG.getTarget().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ WrapperKind = X86ISD::WrapperRIP;
+ else if (Subtarget->isPICStyleGOT())
+ OpFlag = X86II::MO_GOTOFF;
+ else if (Subtarget->isPICStyleStubPIC())
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+
+ SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
+ OpFlag);
+ SDLoc DL(JT);
+ Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (OpFlag)
+ Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ SDLoc(), getPointerTy()),
+ Result);
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
+ const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ CodeModel::Model M = DAG.getTarget().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel)) {
+ if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
+ OpFlag = X86II::MO_GOTPCREL;
+ WrapperKind = X86ISD::WrapperRIP;
+ } else if (Subtarget->isPICStyleGOT()) {
+ OpFlag = X86II::MO_GOT;
+ } else if (Subtarget->isPICStyleStubPIC()) {
+ OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
+ } else if (Subtarget->isPICStyleStubNoDynamic()) {
+ OpFlag = X86II::MO_DARWIN_NONLAZY;
+ }
+
+ SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
+
+ SDLoc DL(Op);
+ Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
+ !Subtarget->is64Bit()) {
+ Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ SDLoc(), getPointerTy()),
+ Result);
+ }
+
+ // For symbols that require a load from a stub to get the address, emit the
+ // load.
+ if (isGlobalStubReference(OpFlag))
+ Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(), false, false, false, 0);
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
+ // Create the TargetBlockAddressAddress node.
+ unsigned char OpFlags =
+ Subtarget->ClassifyBlockAddressReference();
+ CodeModel::Model M = DAG.getTarget().getCodeModel();
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
+ SDLoc dl(Op);
+ SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
+ OpFlags);
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
+ else
+ Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (isGlobalRelativeToPICBase(OpFlags)) {
+ Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
+ Result);
+ }
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
+ int64_t Offset, SelectionDAG &DAG) const {
+ // Create the TargetGlobalAddress node, folding in the constant
+ // offset if it is legal.
+ unsigned char OpFlags =
+ Subtarget->ClassifyGlobalReference(GV, DAG.getTarget());
+ CodeModel::Model M = DAG.getTarget().getCodeModel();
+ SDValue Result;
+ if (OpFlags == X86II::MO_NO_FLAG &&
+ X86::isOffsetSuitableForCodeModel(Offset, M)) {
+ // A direct static reference to a global.
+ Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
+ Offset = 0;
+ } else {
+ Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
+ }
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
+ else
+ Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (isGlobalRelativeToPICBase(OpFlags)) {
+ Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
+ Result);
+ }
+
+ // For globals that require a load from a stub to get the address, emit the
+ // load.
+ if (isGlobalStubReference(OpFlags))
+ Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(), false, false, false, 0);
+
+ // If there was a non-zero offset that we didn't fold, create an explicit
+ // addition for it.
+ if (Offset != 0)
+ Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
+ DAG.getConstant(Offset, getPointerTy()));
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
+ return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
+}
+
+static SDValue
+GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
+ SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
+ unsigned char OperandFlags, bool LocalDynamic = false) {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDLoc dl(GA);
+ SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
+ GA->getValueType(0),
+ GA->getOffset(),
+ OperandFlags);
+
+ X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
+ : X86ISD::TLSADDR;
+
+ if (InFlag) {
+ SDValue Ops[] = { Chain, TGA, *InFlag };
+ Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
+ } else {
+ SDValue Ops[] = { Chain, TGA };
+ Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
+ }
+
+ // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
+ MFI->setAdjustsStack(true);
+
+ SDValue Flag = Chain.getValue(1);
+ return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
+static SDValue
+LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT) {
+ SDValue InFlag;
+ SDLoc dl(GA); // ? function entry point might be better
+ SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ SDLoc(), PtrVT), InFlag);
+ InFlag = Chain.getValue(1);
+
+ return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
+static SDValue
+LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT) {
+ return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
+ X86::RAX, X86II::MO_TLSGD);
+}
+
+static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG,
+ const EVT PtrVT,
+ bool is64Bit) {
+ SDLoc dl(GA);
+
+ // Get the start address of the TLS block for this module.
+ X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
+ .getInfo<X86MachineFunctionInfo>();
+ MFI->incNumLocalDynamicTLSAccesses();
+
+ SDValue Base;
+ if (is64Bit) {
+ Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
+ X86II::MO_TLSLD, /*LocalDynamic=*/true);
+ } else {
+ SDValue InFlag;
+ SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
+ InFlag = Chain.getValue(1);
+ Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
+ X86II::MO_TLSLDM, /*LocalDynamic=*/true);
+ }
+
+ // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
+ // of Base.
+
+ // Build x@dtpoff.
+ unsigned char OperandFlags = X86II::MO_DTPOFF;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
+ GA->getValueType(0),
+ GA->getOffset(), OperandFlags);
+ SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
+
+ // Add x@dtpoff with the base.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
+}
+
+// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
+static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT, TLSModel::Model model,
+ bool is64Bit, bool isPIC) {
+ SDLoc dl(GA);
+
+ // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
+ Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
+ is64Bit ? 257 : 256));
+
+ SDValue ThreadPointer =
+ DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
+ MachinePointerInfo(Ptr), false, false, false, 0);
+
+ unsigned char OperandFlags = 0;
+ // Most TLS accesses are not RIP relative, even on x86-64. One exception is
+ // initialexec.
+ unsigned WrapperKind = X86ISD::Wrapper;
+ if (model == TLSModel::LocalExec) {
+ OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
+ } else if (model == TLSModel::InitialExec) {
+ if (is64Bit) {
+ OperandFlags = X86II::MO_GOTTPOFF;
+ WrapperKind = X86ISD::WrapperRIP;
+ } else {
+ OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
+ }
+ } else {
+ llvm_unreachable("Unexpected model");
+ }
+
+ // emit "addl x@ntpoff,%eax" (local exec)
+ // or "addl x@indntpoff,%eax" (initial exec)
+ // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
+ SDValue TGA =
+ DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
+ GA->getOffset(), OperandFlags);
+ SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
+
+ if (model == TLSModel::InitialExec) {
+ if (isPIC && !is64Bit) {
+ Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
+ Offset);
+ }
+
+ Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
+ MachinePointerInfo::getGOT(), false, false, false, 0);
+ }
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
+}
+
+SDValue
+X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
+
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = GA->getGlobal();
+
+ if (Subtarget->isTargetELF()) {
+ TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
+
+ switch (model) {
+ case TLSModel::GeneralDynamic:
+ if (Subtarget->is64Bit())
+ return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
+ return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
+ case TLSModel::LocalDynamic:
+ return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
+ Subtarget->is64Bit());
+ case TLSModel::InitialExec:
+ case TLSModel::LocalExec:
+ return LowerToTLSExecModel(
+ GA, DAG, getPointerTy(), model, Subtarget->is64Bit(),
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_);
+ }
+ llvm_unreachable("Unknown TLS model.");
+ }
+
+ if (Subtarget->isTargetDarwin()) {
+ // Darwin only has one model of TLS. Lower to that.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
+ X86ISD::WrapperRIP : X86ISD::Wrapper;
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) &&
+ !Subtarget->is64Bit();
+ if (PIC32)
+ OpFlag = X86II::MO_TLVP_PIC_BASE;
+ else
+ OpFlag = X86II::MO_TLVP;
+ SDLoc DL(Op);
+ SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
+ GA->getValueType(0),
+ GA->getOffset(), OpFlag);
+ SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
+
+ // With PIC32, the address is actually $g + Offset.
+ if (PIC32)
+ Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ SDLoc(), getPointerTy()),
+ Offset);
+
+ // Lowering the machine isd will make sure everything is in the right
+ // location.
+ SDValue Chain = DAG.getEntryNode();
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Args[] = { Chain, Offset };
+ Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
+
+ // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setAdjustsStack(true);
+
+ // And our return value (tls address) is in the standard call return value
+ // location.
+ unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
+ return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
+ Chain.getValue(1));
+ }
+
+ if (Subtarget->isTargetKnownWindowsMSVC() ||
+ Subtarget->isTargetWindowsGNU()) {
+ // Just use the implicit TLS architecture
+ // Need to generate someting similar to:
+ // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
+ // ; from TEB
+ // mov ecx, dword [rel _tls_index]: Load index (from C runtime)
+ // mov rcx, qword [rdx+rcx*8]
+ // mov eax, .tls$:tlsvar
+ // [rax+rcx] contains the address
+ // Windows 64bit: gs:0x58
+ // Windows 32bit: fs:__tls_array
+
+ SDLoc dl(GA);
+ SDValue Chain = DAG.getEntryNode();
+
+ // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
+ // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
+ // use its literal value of 0x2C.
+ Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
+ ? Type::getInt8PtrTy(*DAG.getContext(),
+ 256)
+ : Type::getInt32PtrTy(*DAG.getContext(),
+ 257));
+
+ SDValue TlsArray =
+ Subtarget->is64Bit()
+ ? DAG.getIntPtrConstant(0x58)
+ : (Subtarget->isTargetWindowsGNU()
+ ? DAG.getIntPtrConstant(0x2C)
+ : DAG.getExternalSymbol("_tls_array", getPointerTy()));
+
+ SDValue ThreadPointer =
+ DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
+ MachinePointerInfo(Ptr), false, false, false, 0);
+
+ // Load the _tls_index variable
+ SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
+ if (Subtarget->is64Bit())
+ IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
+ IDX, MachinePointerInfo(), MVT::i32,
+ false, false, 0);
+ else
+ IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
+ false, false, false, 0);
+
+ SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
+ getPointerTy());
+ IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
+
+ SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
+ res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
+ false, false, false, 0);
+
+ // Get the offset of start of .tls section
+ SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
+ GA->getValueType(0),
+ GA->getOffset(), X86II::MO_SECREL);
+ SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
+ }
+
+ llvm_unreachable("TLS not implemented for this target.");
+}
+
+/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
+/// and take a 2 x i32 value to shift plus a shift amount.
+static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ MVT VT = Op.getSimpleValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
+ // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
+ // during isel.
+ SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
+ DAG.getConstant(VTBits - 1, MVT::i8));
+ SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
+ DAG.getConstant(VTBits - 1, MVT::i8))
+ : DAG.getConstant(0, VT);
+
+ SDValue Tmp2, Tmp3;
+ if (Op.getOpcode() == ISD::SHL_PARTS) {
+ Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
+ } else {
+ Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
+ Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
+ }
+
+ // If the shift amount is larger or equal than the width of a part we can't
+ // rely on the results of shld/shrd. Insert a test and select the appropriate
+ // values for large shift amounts.
+ SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
+ DAG.getConstant(VTBits, MVT::i8));
+ SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
+ AndNode, DAG.getConstant(0, MVT::i8));
+
+ SDValue Hi, Lo;
+ SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+ SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
+ SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
+
+ if (Op.getOpcode() == ISD::SHL_PARTS) {
+ Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
+ Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
+ } else {
+ Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
+ Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
+ }
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ MVT SrcVT = Op.getOperand(0).getSimpleValueType();
+
+ if (SrcVT.isVector())
+ return SDValue();
+
+ assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
+ "Unknown SINT_TO_FP to lower!");
+
+ // These are really Legal; return the operand so the caller accepts it as
+ // Legal.
+ if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
+ return Op;
+ if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
+ Subtarget->is64Bit()) {
+ return Op;
+ }
+
+ SDLoc dl(Op);
+ unsigned Size = SrcVT.getSizeInBits()/8;
+ MachineFunction &MF = DAG.getMachineFunction();
+ int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+ SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
+ StackSlot,
+ MachinePointerInfo::getFixedStack(SSFI),
+ false, false, 0);
+ return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
+}
+
+SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
+ SDValue StackSlot,
+ SelectionDAG &DAG) const {
+ // Build the FILD
+ SDLoc DL(Op);
+ SDVTList Tys;
+ bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
+ if (useSSE)
+ Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
+ else
+ Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
+
+ unsigned ByteSize = SrcVT.getSizeInBits()/8;
+
+ FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
+ MachineMemOperand *MMO;
+ if (FI) {
+ int SSFI = FI->getIndex();
+ MMO =
+ DAG.getMachineFunction()
+ .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
+ MachineMemOperand::MOLoad, ByteSize, ByteSize);
+ } else {
+ MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
+ StackSlot = StackSlot.getOperand(1);
+ }
+ SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
+ SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
+ X86ISD::FILD, DL,
+ Tys, Ops, SrcVT, MMO);
+
+ if (useSSE) {
+ Chain = Result.getValue(1);
+ SDValue InFlag = Result.getValue(2);
+
+ // FIXME: Currently the FST is flagged to the FILD_FLAG. This
+ // shouldn't be necessary except that RFP cannot be live across
+ // multiple blocks. When stackifier is fixed, they can be uncoupled.
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
+ int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+ Tys = DAG.getVTList(MVT::Other);
+ SDValue Ops[] = {
+ Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
+ };
+ MachineMemOperand *MMO =
+ DAG.getMachineFunction()
+ .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
+ MachineMemOperand::MOStore, SSFISize, SSFISize);
+
+ Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
+ Ops, Op.getValueType(), MMO);
+ Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
+ MachinePointerInfo::getFixedStack(SSFI),
+ false, false, false, 0);
+ }
+
+ return Result;
+}
+
+// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
+SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
+ SelectionDAG &DAG) const {
+ // This algorithm is not obvious. Here it is what we're trying to output:
+ /*
+ movq %rax, %xmm0
+ punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
+ subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
+ #ifdef __SSE3__
+ haddpd %xmm0, %xmm0
+ #else
+ pshufd $0x4e, %xmm0, %xmm1
+ addpd %xmm1, %xmm0
+ #endif
+ */
+
+ SDLoc dl(Op);
+ LLVMContext *Context = DAG.getContext();
+
+ // Build some magic constants.
+ static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
+ Constant *C0 = ConstantDataVector::get(*Context, CV0);
+ SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
+
+ SmallVector<Constant*,2> CV1;
+ CV1.push_back(
+ ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ APInt(64, 0x4330000000000000ULL))));
+ CV1.push_back(
+ ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ APInt(64, 0x4530000000000000ULL))));
+ Constant *C1 = ConstantVector::get(CV1);
+ SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
+
+ // Load the 64-bit value into an XMM register.
+ SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
+ Op.getOperand(0));
+ SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 16);
+ SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
+ CLod0);
+
+ SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 16);
+ SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
+ SDValue Result;
+
+ if (Subtarget->hasSSE3()) {
+ // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
+ Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
+ } else {
+ SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
+ SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
+ S2F, 0x4E, DAG);
+ Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
+ Sub);
+ }
+
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
+ DAG.getIntPtrConstant(0));
+}
+
+// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
+SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ // FP constant to bias correct the final result.
+ SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
+ MVT::f64);
+
+ // Load the 32-bit value into an XMM register.
+ SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
+ Op.getOperand(0));
+
+ // Zero out the upper parts of the register.
+ Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
+
+ Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
+ DAG.getIntPtrConstant(0));
+
+ // Or the load with the bias.
+ SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ MVT::v2f64, Load)),
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ MVT::v2f64, Bias)));
+ Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
+ DAG.getIntPtrConstant(0));
+
+ // Subtract the bias.
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
+
+ // Handle final rounding.
+ EVT DestVT = Op.getValueType();
+
+ if (DestVT.bitsLT(MVT::f64))
+ return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
+ DAG.getIntPtrConstant(0));
+ if (DestVT.bitsGT(MVT::f64))
+ return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
+
+ // Handle final rounding.
+ return Sub;
+}
+
+SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue N0 = Op.getOperand(0);
+ MVT SVT = N0.getSimpleValueType();
+ SDLoc dl(Op);
+
+ assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
+ SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
+ "Custom UINT_TO_FP is not supported!");
+
+ MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
+ return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
+ DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
+}
+
+SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue N0 = Op.getOperand(0);
+ SDLoc dl(Op);
+
+ if (Op.getValueType().isVector())
+ return lowerUINT_TO_FP_vec(Op, DAG);
+
+ // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
+ // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
+ // the optimization here.
+ if (DAG.SignBitIsZero(N0))
+ return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
+
+ MVT SrcVT = N0.getSimpleValueType();
+ MVT DstVT = Op.getSimpleValueType();
+ if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
+ return LowerUINT_TO_FP_i64(Op, DAG);
+ if (SrcVT == MVT::i32 && X86ScalarSSEf64)
+ return LowerUINT_TO_FP_i32(Op, DAG);
+ if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
+ return SDValue();
+
+ // Make a 64-bit buffer, and use it to build an FILD.
+ SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
+ if (SrcVT == MVT::i32) {
+ SDValue WordOff = DAG.getConstant(4, getPointerTy());
+ SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
+ getPointerTy(), StackSlot, WordOff);
+ SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
+ StackSlot, MachinePointerInfo(),
+ false, false, 0);
+ SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
+ OffsetSlot, MachinePointerInfo(),
+ false, false, 0);
+ SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
+ return Fild;
+ }
+
+ assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
+ StackSlot, MachinePointerInfo(),
+ false, false, 0);
+ // For i64 source, we need to add the appropriate power of 2 if the input
+ // was negative. This is the same as the optimization in
+ // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
+ // we must be careful to do the computation in x87 extended precision, not
+ // in SSE. (The generic code can't know it's OK to do this, or how to.)
+ int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
+ MachineMemOperand *MMO =
+ DAG.getMachineFunction()
+ .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
+ MachineMemOperand::MOLoad, 8, 8);
+
+ SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
+ SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
+ SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
+ MVT::i64, MMO);
+
+ APInt FF(32, 0x5F800000ULL);
+
+ // Check whether the sign bit is set.
+ SDValue SignSet = DAG.getSetCC(dl,
+ getSetCCResultType(*DAG.getContext(), MVT::i64),
+ Op.getOperand(0), DAG.getConstant(0, MVT::i64),
+ ISD::SETLT);
+
+ // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
+ SDValue FudgePtr = DAG.getConstantPool(
+ ConstantInt::get(*DAG.getContext(), FF.zext(64)),
+ getPointerTy());
+
+ // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
+ SDValue Zero = DAG.getIntPtrConstant(0);
+ SDValue Four = DAG.getIntPtrConstant(4);
+ SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
+ Zero, Four);
+ FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
+
+ // Load the value out, extending it from f32 to f80.
+ // FIXME: Avoid the extend by constructing the right constant pool?
+ SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
+ FudgePtr, MachinePointerInfo::getConstantPool(),
+ MVT::f32, false, false, 4);
+ // Extend everything to 80 bits to force it to be done on x87.
+ SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
+ return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
+}
+
+std::pair<SDValue,SDValue>
+X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
+ bool IsSigned, bool IsReplace) const {
+ SDLoc DL(Op);
+
+ EVT DstTy = Op.getValueType();
+
+ if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
+ assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
+ DstTy = MVT::i64;
+ }
+
+ assert(DstTy.getSimpleVT() <= MVT::i64 &&
+ DstTy.getSimpleVT() >= MVT::i16 &&
+ "Unknown FP_TO_INT to lower!");
+
+ // These are really Legal.
+ if (DstTy == MVT::i32 &&
+ isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
+ return std::make_pair(SDValue(), SDValue());
+ if (Subtarget->is64Bit() &&
+ DstTy == MVT::i64 &&
+ isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
+ return std::make_pair(SDValue(), SDValue());
+
+ // We lower FP->int64 either into FISTP64 followed by a load from a temporary
+ // stack slot, or into the FTOL runtime function.
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned MemSize = DstTy.getSizeInBits()/8;
+ int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+
+ unsigned Opc;
+ if (!IsSigned && isIntegerTypeFTOL(DstTy))
+ Opc = X86ISD::WIN_FTOL;
+ else
+ switch (DstTy.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
+ case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
+ case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
+ case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
+ }
+
+ SDValue Chain = DAG.getEntryNode();
+ SDValue Value = Op.getOperand(0);
+ EVT TheVT = Op.getOperand(0).getValueType();
+ // FIXME This causes a redundant load/store if the SSE-class value is already
+ // in memory, such as if it is on the callstack.
+ if (isScalarFPTypeInSSEReg(TheVT)) {
+ assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
+ Chain = DAG.getStore(Chain, DL, Value, StackSlot,
+ MachinePointerInfo::getFixedStack(SSFI),
+ false, false, 0);
+ SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
+ SDValue Ops[] = {
+ Chain, StackSlot, DAG.getValueType(TheVT)
+ };
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
+ MachineMemOperand::MOLoad, MemSize, MemSize);
+ Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
+ Chain = Value.getValue(1);
+ SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
+ StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+ }
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
+ MachineMemOperand::MOStore, MemSize, MemSize);
+
+ if (Opc != X86ISD::WIN_FTOL) {
+ // Build the FP_TO_INT*_IN_MEM
+ SDValue Ops[] = { Chain, Value, StackSlot };
+ SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
+ Ops, DstTy, MMO);
+ return std::make_pair(FIST, StackSlot);
+ } else {
+ SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
+ DAG.getVTList(MVT::Other, MVT::Glue),
+ Chain, Value);
+ SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
+ MVT::i32, ftol.getValue(1));
+ SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
+ MVT::i32, eax.getValue(2));
+ SDValue Ops[] = { eax, edx };
+ SDValue pair = IsReplace
+ ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops)
+ : DAG.getMergeValues(Ops, DL);
+ return std::make_pair(pair, SDValue());
+ }
+}
+
+static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ SDLoc dl(Op);
+
+ // Optimize vectors in AVX mode:
+ //
+ // v8i16 -> v8i32
+ // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32.
+ // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32.
+ // Concat upper and lower parts.
+ //
+ // v4i32 -> v4i64
+ // Use vpunpckldq for 4 lower elements v4i32 -> v2i64.
+ // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64.
+ // Concat upper and lower parts.
+ //
+
+ if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
+ ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
+ ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
+ return SDValue();
+
+ if (Subtarget->hasInt256())
+ return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
+
+ SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
+ SDValue Undef = DAG.getUNDEF(InVT);
+ bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
+ SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
+ SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
+
+ MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
+ VT.getVectorNumElements()/2);
+
+ OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
+ OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
+}
+
+static SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
+ SelectionDAG &DAG) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ SDLoc DL(Op);
+ unsigned int NumElts = VT.getVectorNumElements();
+ if (NumElts != 8 && NumElts != 16)
+ return SDValue();
+
+ if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
+
+ EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ // Now we have only mask extension
+ assert(InVT.getVectorElementType() == MVT::i1);
+ SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
+ const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
+ SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
+ SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, Alignment);
+
+ SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
+ if (VT.is512BitVector())
+ return Brcst;
+ return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
+}
+
+static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ if (Subtarget->hasFp256()) {
+ SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
+ if (Res.getNode())
+ return Res;
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue In = Op.getOperand(0);
+ MVT SVT = In.getSimpleValueType();
+
+ if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
+ return LowerZERO_EXTEND_AVX512(Op, DAG);
+
+ if (Subtarget->hasFp256()) {
+ SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
+ if (Res.getNode())
+ return Res;
+ }
+
+ assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
+ VT.getVectorNumElements() != SVT.getVectorNumElements());
+ return SDValue();
+}
+
+SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue In = Op.getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+
+ if (VT == MVT::i1) {
+ assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
+ "Invalid scalar TRUNCATE operation");
+ if (InVT == MVT::i32)
+ return SDValue();
+ if (InVT.getSizeInBits() == 64)
+ In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::i32, In);
+ else if (InVT.getSizeInBits() < 32)
+ In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
+ return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
+ }
+ assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
+ "Invalid TRUNCATE operation");
+
+ if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
+ if (VT.getVectorElementType().getSizeInBits() >=8)
+ return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
+
+ assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
+ unsigned NumElts = InVT.getVectorNumElements();
+ assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
+ if (InVT.getSizeInBits() < 512) {
+ MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
+ In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
+ InVT = ExtVT;
+ }
+
+ SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
+ const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
+ SDValue CP = DAG.getConstantPool(C, getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
+ SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, Alignment);
+ SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
+ SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
+ return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
+ }
+
+ if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
+ // On AVX2, v4i64 -> v4i32 becomes VPERMD.
+ if (Subtarget->hasInt256()) {
+ static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
+ In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
+ In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
+ ShufMask);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
+ DAG.getIntPtrConstant(0));
+ }
+
+ SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
+ DAG.getIntPtrConstant(0));
+ SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
+ DAG.getIntPtrConstant(2));
+ OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
+ OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
+ static const int ShufMask[] = {0, 2, 4, 6};
+ return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
+ }
+
+ if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
+ // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
+ if (Subtarget->hasInt256()) {
+ In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
+
+ SmallVector<SDValue,32> pshufbMask;
+ for (unsigned i = 0; i < 2; ++i) {
+ pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
+ for (unsigned j = 0; j < 8; ++j)
+ pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
+ }
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask);
+ In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
+ In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
+
+ static const int ShufMask[] = {0, 2, -1, -1};
+ In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64),
+ &ShufMask[0]);
+ In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
+ DAG.getIntPtrConstant(0));
+ return DAG.getNode(ISD::BITCAST, DL, VT, In);
+ }
+
+ SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
+ DAG.getIntPtrConstant(0));
+
+ SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
+ DAG.getIntPtrConstant(4));
+
+ OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
+ OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
+
+ // The PSHUFB mask:
+ static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13,
+ -1, -1, -1, -1, -1, -1, -1, -1};
+
+ SDValue Undef = DAG.getUNDEF(MVT::v16i8);
+ OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
+ OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
+
+ OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
+ OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
+
+ // The MOVLHPS Mask:
+ static const int ShufMask2[] = {0, 1, 4, 5};
+ SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
+ return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
+ }
+
+ // Handle truncation of V256 to V128 using shuffles.
+ if (!VT.is128BitVector() || !InVT.is256BitVector())
+ return SDValue();
+
+ assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
+
+ unsigned NumElems = VT.getVectorNumElements();
+ MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
+
+ SmallVector<int, 16> MaskVec(NumElems * 2, -1);
+ // Prepare truncation shuffle mask
+ for (unsigned i = 0; i != NumElems; ++i)
+ MaskVec[i] = i * 2;
+ SDValue V = DAG.getVectorShuffle(NVT, DL,
+ DAG.getNode(ISD::BITCAST, DL, NVT, In),
+ DAG.getUNDEF(NVT), &MaskVec[0]);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
+ DAG.getIntPtrConstant(0));
+}
+
+SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(!Op.getSimpleValueType().isVector());
+
+ std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
+ /*IsSigned=*/ true, /*IsReplace=*/ false);
+ SDValue FIST = Vals.first, StackSlot = Vals.second;
+ // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
+ if (!FIST.getNode()) return Op;
+
+ if (StackSlot.getNode())
+ // Load the result.
+ return DAG.getLoad(Op.getValueType(), SDLoc(Op),
+ FIST, StackSlot, MachinePointerInfo(),
+ false, false, false, 0);
+
+ // The node is the result.
+ return FIST;
+}
+
+SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
+ /*IsSigned=*/ false, /*IsReplace=*/ false);
+ SDValue FIST = Vals.first, StackSlot = Vals.second;
+ assert(FIST.getNode() && "Unexpected failure");
+
+ if (StackSlot.getNode())
+ // Load the result.
+ return DAG.getLoad(Op.getValueType(), SDLoc(Op),
+ FIST, StackSlot, MachinePointerInfo(),
+ false, false, false, 0);
+
+ // The node is the result.
+ return FIST;
+}
+
+static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue In = Op.getOperand(0);
+ MVT SVT = In.getSimpleValueType();
+
+ assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
+
+ return DAG.getNode(X86ISD::VFPEXT, DL, VT,
+ DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
+ In, DAG.getUNDEF(SVT)));
+}
+
+static SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) {
+ LLVMContext *Context = DAG.getContext();
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT;
+ unsigned NumElts = VT == MVT::f64 ? 2 : 4;
+ if (VT.isVector()) {
+ EltVT = VT.getVectorElementType();
+ NumElts = VT.getVectorNumElements();
+ }
+ Constant *C;
+ if (EltVT == MVT::f64)
+ C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ APInt(64, ~(1ULL << 63))));
+ else
+ C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
+ APInt(32, ~(1U << 31))));
+ C = ConstantVector::getSplat(NumElts, C);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
+ SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, Alignment);
+ if (VT.isVector()) {
+ MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
+ return DAG.getNode(ISD::BITCAST, dl, VT,
+ DAG.getNode(ISD::AND, dl, ANDVT,
+ DAG.getNode(ISD::BITCAST, dl, ANDVT,
+ Op.getOperand(0)),
+ DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
+ }
+ return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
+}
+
+static SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) {
+ LLVMContext *Context = DAG.getContext();
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT;
+ unsigned NumElts = VT == MVT::f64 ? 2 : 4;
+ if (VT.isVector()) {
+ EltVT = VT.getVectorElementType();
+ NumElts = VT.getVectorNumElements();
+ }
+ Constant *C;
+ if (EltVT == MVT::f64)
+ C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ APInt(64, 1ULL << 63)));
+ else
+ C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
+ APInt(32, 1U << 31)));
+ C = ConstantVector::getSplat(NumElts, C);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
+ SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, Alignment);
+ if (VT.isVector()) {
+ MVT XORVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits()/64);
+ return DAG.getNode(ISD::BITCAST, dl, VT,
+ DAG.getNode(ISD::XOR, dl, XORVT,
+ DAG.getNode(ISD::BITCAST, dl, XORVT,
+ Op.getOperand(0)),
+ DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
+ }
+
+ return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
+}
+
+static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ LLVMContext *Context = DAG.getContext();
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+ MVT SrcVT = Op1.getSimpleValueType();
+
+ // If second operand is smaller, extend it first.
+ if (SrcVT.bitsLT(VT)) {
+ Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
+ SrcVT = VT;
+ }
+ // And if it is bigger, shrink it first.
+ if (SrcVT.bitsGT(VT)) {
+ Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
+ SrcVT = VT;
+ }
+
+ // At this point the operands and the result should have the same
+ // type, and that won't be f80 since that is not custom lowered.
+
+ // First get the sign bit of second operand.
+ SmallVector<Constant*,4> CV;
+ if (SrcVT == MVT::f64) {
+ const fltSemantics &Sem = APFloat::IEEEdouble;
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
+ } else {
+ const fltSemantics &Sem = APFloat::IEEEsingle;
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
+ }
+ Constant *C = ConstantVector::get(CV);
+ SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
+ SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 16);
+ SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
+
+ // Shift sign bit right or left if the two operands have different types.
+ if (SrcVT.bitsGT(VT)) {
+ // Op0 is MVT::f32, Op1 is MVT::f64.
+ SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
+ SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
+ DAG.getConstant(32, MVT::i32));
+ SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
+ SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
+ DAG.getIntPtrConstant(0));
+ }
+
+ // Clear first operand sign bit.
+ CV.clear();
+ if (VT == MVT::f64) {
+ const fltSemantics &Sem = APFloat::IEEEdouble;
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
+ APInt(64, ~(1ULL << 63)))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
+ } else {
+ const fltSemantics &Sem = APFloat::IEEEsingle;
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
+ APInt(32, ~(1U << 31)))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
+ }
+ C = ConstantVector::get(CV);
+ CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
+ SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 16);
+ SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
+
+ // Or the value with the sign bit.
+ return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
+}
+
+static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
+ SDValue N0 = Op.getOperand(0);
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
+ SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
+ DAG.getConstant(1, VT));
+ return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
+}
+
+// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
+//
+static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
+
+ if (!Subtarget->hasSSE41())
+ return SDValue();
+
+ if (!Op->hasOneUse())
+ return SDValue();
+
+ SDNode *N = Op.getNode();
+ SDLoc DL(N);
+
+ SmallVector<SDValue, 8> Opnds;
+ DenseMap<SDValue, unsigned> VecInMap;
+ SmallVector<SDValue, 8> VecIns;
+ EVT VT = MVT::Other;
+
+ // Recognize a special case where a vector is casted into wide integer to
+ // test all 0s.
+ Opnds.push_back(N->getOperand(0));
+ Opnds.push_back(N->getOperand(1));
+
+ for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
+ SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
+ // BFS traverse all OR'd operands.
+ if (I->getOpcode() == ISD::OR) {
+ Opnds.push_back(I->getOperand(0));
+ Opnds.push_back(I->getOperand(1));
+ // Re-evaluate the number of nodes to be traversed.
+ e += 2; // 2 more nodes (LHS and RHS) are pushed.
+ continue;
+ }
+
+ // Quit if a non-EXTRACT_VECTOR_ELT
+ if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ // Quit if without a constant index.
+ SDValue Idx = I->getOperand(1);
+ if (!isa<ConstantSDNode>(Idx))
+ return SDValue();
+
+ SDValue ExtractedFromVec = I->getOperand(0);
+ DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
+ if (M == VecInMap.end()) {
+ VT = ExtractedFromVec.getValueType();
+ // Quit if not 128/256-bit vector.
+ if (!VT.is128BitVector() && !VT.is256BitVector())
+ return SDValue();
+ // Quit if not the same type.
+ if (VecInMap.begin() != VecInMap.end() &&
+ VT != VecInMap.begin()->first.getValueType())
+ return SDValue();
+ M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
+ VecIns.push_back(ExtractedFromVec);
+ }
+ M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
+ }
+
+ assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ "Not extracted from 128-/256-bit vector.");
+
+ unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
+
+ for (DenseMap<SDValue, unsigned>::const_iterator
+ I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
+ // Quit if not all elements are used.
+ if (I->second != FullMask)
+ return SDValue();
+ }
+
+ EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
+
+ // Cast all vectors into TestVT for PTEST.
+ for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
+ VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
+
+ // If more than one full vectors are evaluated, OR them first before PTEST.
+ for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
+ // Each iteration will OR 2 nodes and append the result until there is only
+ // 1 node left, i.e. the final OR'd value of all vectors.
+ SDValue LHS = VecIns[Slot];
+ SDValue RHS = VecIns[Slot + 1];
+ VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
+ }
+
+ return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
+ VecIns.back(), VecIns.back());
+}
+
+/// \brief return true if \c Op has a use that doesn't just read flags.
+static bool hasNonFlagsUse(SDValue Op) {
+ for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
+ ++UI) {
+ SDNode *User = *UI;
+ unsigned UOpNo = UI.getOperandNo();
+ if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
+ // Look pass truncate.
+ UOpNo = User->use_begin().getOperandNo();
+ User = *User->use_begin();
+ }
+
+ if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
+ !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
+ return true;
+ }
+ return false;
+}
+
+/// Emit nodes that will be selected as "test Op0,Op0", or something
+/// equivalent.
+SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
+ SelectionDAG &DAG) const {
+ if (Op.getValueType() == MVT::i1)
+ // KORTEST instruction should be selected
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
+ DAG.getConstant(0, Op.getValueType()));
+
+ // CF and OF aren't always set the way we want. Determine which
+ // of these we need.
+ bool NeedCF = false;
+ bool NeedOF = false;
+ switch (X86CC) {
+ default: break;
+ case X86::COND_A: case X86::COND_AE:
+ case X86::COND_B: case X86::COND_BE:
+ NeedCF = true;
+ break;
+ case X86::COND_G: case X86::COND_GE:
+ case X86::COND_L: case X86::COND_LE:
+ case X86::COND_O: case X86::COND_NO: {
+ // Check if we really need to set the
+ // Overflow flag. If NoSignedWrap is present
+ // that is not actually needed.
+ switch (Op->getOpcode()) {
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::MUL:
+ case ISD::SHL: {
+ const BinaryWithFlagsSDNode *BinNode =
+ cast<BinaryWithFlagsSDNode>(Op.getNode());
+ if (BinNode->hasNoSignedWrap())
+ break;
+ }
+ default:
+ NeedOF = true;
+ break;
+ }
+ break;
+ }
+ }
+ // See if we can use the EFLAGS value from the operand instead of
+ // doing a separate TEST. TEST always sets OF and CF to 0, so unless
+ // we prove that the arithmetic won't overflow, we can't use OF or CF.
+ if (Op.getResNo() != 0 || NeedOF || NeedCF) {
+ // Emit a CMP with 0, which is the TEST pattern.
+ //if (Op.getValueType() == MVT::i1)
+ // return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op,
+ // DAG.getConstant(0, MVT::i1));
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
+ DAG.getConstant(0, Op.getValueType()));
+ }
+ unsigned Opcode = 0;
+ unsigned NumOperands = 0;
+
+ // Truncate operations may prevent the merge of the SETCC instruction
+ // and the arithmetic instruction before it. Attempt to truncate the operands
+ // of the arithmetic instruction and use a reduced bit-width instruction.
+ bool NeedTruncation = false;
+ SDValue ArithOp = Op;
+ if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
+ SDValue Arith = Op->getOperand(0);
+ // Both the trunc and the arithmetic op need to have one user each.
+ if (Arith->hasOneUse())
+ switch (Arith.getOpcode()) {
+ default: break;
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR: {
+ NeedTruncation = true;
+ ArithOp = Arith;
+ }
+ }
+ }
+
+ // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
+ // which may be the result of a CAST. We use the variable 'Op', which is the
+ // non-casted variable when we check for possible users.
+ switch (ArithOp.getOpcode()) {
+ case ISD::ADD:
+ // Due to an isel shortcoming, be conservative if this add is likely to be
+ // selected as part of a load-modify-store instruction. When the root node
+ // in a match is a store, isel doesn't know how to remap non-chain non-flag
+ // uses of other nodes in the match, such as the ADD in this case. This
+ // leads to the ADD being left around and reselected, with the result being
+ // two adds in the output. Alas, even if none our users are stores, that
+ // doesn't prove we're O.K. Ergo, if we have any parents that aren't
+ // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
+ // climbing the DAG back to the root, and it doesn't seem to be worth the
+ // effort.
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI)
+ if (UI->getOpcode() != ISD::CopyToReg &&
+ UI->getOpcode() != ISD::SETCC &&
+ UI->getOpcode() != ISD::STORE)
+ goto default_case;
+
+ if (ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
+ // An add of one will be selected as an INC.
+ if (C->getAPIntValue() == 1 && !Subtarget->slowIncDec()) {
+ Opcode = X86ISD::INC;
+ NumOperands = 1;
+ break;
+ }
+
+ // An add of negative one (subtract of one) will be selected as a DEC.
+ if (C->getAPIntValue().isAllOnesValue() && !Subtarget->slowIncDec()) {
+ Opcode = X86ISD::DEC;
+ NumOperands = 1;
+ break;
+ }
+ }
+
+ // Otherwise use a regular EFLAGS-setting add.
+ Opcode = X86ISD::ADD;
+ NumOperands = 2;
+ break;
+ case ISD::SHL:
+ case ISD::SRL:
+ // If we have a constant logical shift that's only used in a comparison
+ // against zero turn it into an equivalent AND. This allows turning it into
+ // a TEST instruction later.
+ if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() &&
+ isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
+ EVT VT = Op.getValueType();
+ unsigned BitWidth = VT.getSizeInBits();
+ unsigned ShAmt = Op->getConstantOperandVal(1);
+ if (ShAmt >= BitWidth) // Avoid undefined shifts.
+ break;
+ APInt Mask = ArithOp.getOpcode() == ISD::SRL
+ ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
+ : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
+ if (!Mask.isSignedIntN(32)) // Avoid large immediates.
+ break;
+ SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
+ DAG.getConstant(Mask, VT));
+ DAG.ReplaceAllUsesWith(Op, New);
+ Op = New;
+ }
+ break;
+
+ case ISD::AND:
+ // If the primary and result isn't used, don't bother using X86ISD::AND,
+ // because a TEST instruction will be better.
+ if (!hasNonFlagsUse(Op))
+ break;
+ // FALL THROUGH
+ case ISD::SUB:
+ case ISD::OR:
+ case ISD::XOR:
+ // Due to the ISEL shortcoming noted above, be conservative if this op is
+ // likely to be selected as part of a load-modify-store instruction.
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI)
+ if (UI->getOpcode() == ISD::STORE)
+ goto default_case;
+
+ // Otherwise use a regular EFLAGS-setting instruction.
+ switch (ArithOp.getOpcode()) {
+ default: llvm_unreachable("unexpected operator!");
+ case ISD::SUB: Opcode = X86ISD::SUB; break;
+ case ISD::XOR: Opcode = X86ISD::XOR; break;
+ case ISD::AND: Opcode = X86ISD::AND; break;
+ case ISD::OR: {
+ if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
+ SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
+ if (EFLAGS.getNode())
+ return EFLAGS;
+ }
+ Opcode = X86ISD::OR;
+ break;
+ }
+ }
+
+ NumOperands = 2;
+ break;
+ case X86ISD::ADD:
+ case X86ISD::SUB:
+ case X86ISD::INC:
+ case X86ISD::DEC:
+ case X86ISD::OR:
+ case X86ISD::XOR:
+ case X86ISD::AND:
+ return SDValue(Op.getNode(), 1);
+ default:
+ default_case:
+ break;
+ }
+
+ // If we found that truncation is beneficial, perform the truncation and
+ // update 'Op'.
+ if (NeedTruncation) {
+ EVT VT = Op.getValueType();
+ SDValue WideVal = Op->getOperand(0);
+ EVT WideVT = WideVal.getValueType();
+ unsigned ConvertedOp = 0;
+ // Use a target machine opcode to prevent further DAGCombine
+ // optimizations that may separate the arithmetic operations
+ // from the setcc node.
+ switch (WideVal.getOpcode()) {
+ default: break;
+ case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
+ case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
+ case ISD::AND: ConvertedOp = X86ISD::AND; break;
+ case ISD::OR: ConvertedOp = X86ISD::OR; break;
+ case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
+ }
+
+ if (ConvertedOp) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
+ SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
+ SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
+ Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
+ }
+ }
+ }
+
+ if (Opcode == 0)
+ // Emit a CMP with 0, which is the TEST pattern.
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
+ DAG.getConstant(0, Op.getValueType()));
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ SmallVector<SDValue, 4> Ops;
+ for (unsigned i = 0; i != NumOperands; ++i)
+ Ops.push_back(Op.getOperand(i));
+
+ SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
+ DAG.ReplaceAllUsesWith(Op, New);
+ return SDValue(New.getNode(), 1);
+}
+
+/// Emit nodes that will be selected as "cmp Op0,Op1", or something
+/// equivalent.
+SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
+ SDLoc dl, SelectionDAG &DAG) const {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) {
+ if (C->getAPIntValue() == 0)
+ return EmitTest(Op0, X86CC, dl, DAG);
+
+ if (Op0.getValueType() == MVT::i1)
+ llvm_unreachable("Unexpected comparison operation for MVT::i1 operands");
+ }
+
+ if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
+ Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
+ // Do the comparison at i32 if it's smaller, besides the Atom case.
+ // This avoids subregister aliasing issues. Keep the smaller reference
+ // if we're optimizing for size, however, as that'll allow better folding
+ // of memory operations.
+ if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
+ !DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::MinSize) &&
+ !Subtarget->isAtom()) {
+ unsigned ExtendOp =
+ isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
+ Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
+ Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
+ }
+ // Use SUB instead of CMP to enable CSE between SUB and CMP.
+ SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
+ SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
+ Op0, Op1);
+ return SDValue(Sub.getNode(), 1);
+ }
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
+}
+
+/// Convert a comparison if required by the subtarget.
+SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
+ SelectionDAG &DAG) const {
+ // If the subtarget does not support the FUCOMI instruction, floating-point
+ // comparisons have to be converted.
+ if (Subtarget->hasCMov() ||
+ Cmp.getOpcode() != X86ISD::CMP ||
+ !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
+ !Cmp.getOperand(1).getValueType().isFloatingPoint())
+ return Cmp;
+
+ // The instruction selector will select an FUCOM instruction instead of
+ // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
+ // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
+ // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
+ SDLoc dl(Cmp);
+ SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
+ SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
+ SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
+ DAG.getConstant(8, MVT::i8));
+ SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
+ return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
+}
+
+static bool isAllOnes(SDValue V) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
+ return C && C->isAllOnesValue();
+}
+
+/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
+/// if it's possible.
+SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
+ SDLoc dl, SelectionDAG &DAG) const {
+ SDValue Op0 = And.getOperand(0);
+ SDValue Op1 = And.getOperand(1);
+ if (Op0.getOpcode() == ISD::TRUNCATE)
+ Op0 = Op0.getOperand(0);
+ if (Op1.getOpcode() == ISD::TRUNCATE)
+ Op1 = Op1.getOperand(0);
+
+ SDValue LHS, RHS;
+ if (Op1.getOpcode() == ISD::SHL)
+ std::swap(Op0, Op1);
+ if (Op0.getOpcode() == ISD::SHL) {
+ if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
+ if (And00C->getZExtValue() == 1) {
+ // If we looked past a truncate, check that it's only truncating away
+ // known zeros.
+ unsigned BitWidth = Op0.getValueSizeInBits();
+ unsigned AndBitWidth = And.getValueSizeInBits();
+ if (BitWidth > AndBitWidth) {
+ APInt Zeros, Ones;
+ DAG.computeKnownBits(Op0, Zeros, Ones);
+ if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
+ return SDValue();
+ }
+ LHS = Op1;
+ RHS = Op0.getOperand(1);
+ }
+ } else if (Op1.getOpcode() == ISD::Constant) {
+ ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
+ uint64_t AndRHSVal = AndRHS->getZExtValue();
+ SDValue AndLHS = Op0;
+
+ if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
+ LHS = AndLHS.getOperand(0);
+ RHS = AndLHS.getOperand(1);
+ }
+
+ // Use BT if the immediate can't be encoded in a TEST instruction.
+ if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
+ LHS = AndLHS;
+ RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
+ }
+ }
+
+ if (LHS.getNode()) {
+ // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
+ // instruction. Since the shift amount is in-range-or-undefined, we know
+ // that doing a bittest on the i32 value is ok. We extend to i32 because
+ // the encoding for the i16 version is larger than the i32 version.
+ // Also promote i16 to i32 for performance / code size reason.
+ if (LHS.getValueType() == MVT::i8 ||
+ LHS.getValueType() == MVT::i16)
+ LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
+
+ // If the operand types disagree, extend the shift amount to match. Since
+ // BT ignores high bits (like shifts) we can use anyextend.
+ if (LHS.getValueType() != RHS.getValueType())
+ RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
+
+ SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
+ X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
+ return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(Cond, MVT::i8), BT);
+ }
+
+ return SDValue();
+}
+
+/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
+/// mask CMPs.
+static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
+ SDValue &Op1) {
+ unsigned SSECC;
+ bool Swap = false;
+
+ // SSE Condition code mapping:
+ // 0 - EQ
+ // 1 - LT
+ // 2 - LE
+ // 3 - UNORD
+ // 4 - NEQ
+ // 5 - NLT
+ // 6 - NLE
+ // 7 - ORD
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETOEQ:
+ case ISD::SETEQ: SSECC = 0; break;
+ case ISD::SETOGT:
+ case ISD::SETGT: Swap = true; // Fallthrough
+ case ISD::SETLT:
+ case ISD::SETOLT: SSECC = 1; break;
+ case ISD::SETOGE:
+ case ISD::SETGE: Swap = true; // Fallthrough
+ case ISD::SETLE:
+ case ISD::SETOLE: SSECC = 2; break;
+ case ISD::SETUO: SSECC = 3; break;
+ case ISD::SETUNE:
+ case ISD::SETNE: SSECC = 4; break;
+ case ISD::SETULE: Swap = true; // Fallthrough
+ case ISD::SETUGE: SSECC = 5; break;
+ case ISD::SETULT: Swap = true; // Fallthrough
+ case ISD::SETUGT: SSECC = 6; break;
+ case ISD::SETO: SSECC = 7; break;
+ case ISD::SETUEQ:
+ case ISD::SETONE: SSECC = 8; break;
+ }
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ return SSECC;
+}
+
+// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
+// ones, and then concatenate the result back.
+static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
+ "Unsupported value type for operation");
+
+ unsigned NumElems = VT.getVectorNumElements();
+ SDLoc dl(Op);
+ SDValue CC = Op.getOperand(2);
+
+ // Extract the LHS vectors
+ SDValue LHS = Op.getOperand(0);
+ SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
+ SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
+
+ // Extract the RHS vectors
+ SDValue RHS = Op.getOperand(1);
+ SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
+ SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
+
+ // Issue the operation on the smaller types and concatenate the result back
+ MVT EltVT = VT.getVectorElementType();
+ MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
+}
+
+static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 32 &&
+ Op.getValueType().getScalarType() == MVT::i1 &&
+ "Cannot set masked compare for this operation");
+
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ unsigned Opc = 0;
+ bool Unsigned = false;
+ bool Swap = false;
+ unsigned SSECC;
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETNE: SSECC = 4; break;
+ case ISD::SETEQ: Opc = X86ISD::PCMPEQM; break;
+ case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
+ case ISD::SETLT: Swap = true; //fall-through
+ case ISD::SETGT: Opc = X86ISD::PCMPGTM; break;
+ case ISD::SETULT: SSECC = 1; Unsigned = true; break;
+ case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
+ case ISD::SETGE: Swap = true; SSECC = 2; break; // LE + swap
+ case ISD::SETULE: Unsigned = true; //fall-through
+ case ISD::SETLE: SSECC = 2; break;
+ }
+
+ if (Swap)
+ std::swap(Op0, Op1);
+ if (Opc)
+ return DAG.getNode(Opc, dl, VT, Op0, Op1);
+ Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
+ return DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(SSECC, MVT::i8));
+}
+
+/// \brief Try to turn a VSETULT into a VSETULE by modifying its second
+/// operand \p Op1. If non-trivial (for example because it's not constant)
+/// return an empty value.
+static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG)
+{
+ BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
+ if (!BV)
+ return SDValue();
+
+ MVT VT = Op1.getSimpleValueType();
+ MVT EVT = VT.getVectorElementType();
+ unsigned n = VT.getVectorNumElements();
+ SmallVector<SDValue, 8> ULTOp1;
+
+ for (unsigned i = 0; i < n; ++i) {
+ ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
+ if (!Elt || Elt->isOpaque() || Elt->getValueType(0) != EVT)
+ return SDValue();
+
+ // Avoid underflow.
+ APInt Val = Elt->getAPIntValue();
+ if (Val == 0)
+ return SDValue();
+
+ ULTOp1.push_back(DAG.getConstant(Val - 1, EVT));
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1);
+}
+
+static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ MVT VT = Op.getSimpleValueType();
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
+ SDLoc dl(Op);
+
+ if (isFP) {
+#ifndef NDEBUG
+ MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
+ assert(EltVT == MVT::f32 || EltVT == MVT::f64);
+#endif
+
+ unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
+ unsigned Opc = X86ISD::CMPP;
+ if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
+ assert(VT.getVectorNumElements() <= 16);
+ Opc = X86ISD::CMPM;
+ }
+ // In the two special cases we can't handle, emit two comparisons.
+ if (SSECC == 8) {
+ unsigned CC0, CC1;
+ unsigned CombineOpc;
+ if (SetCCOpcode == ISD::SETUEQ) {
+ CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
+ } else {
+ assert(SetCCOpcode == ISD::SETONE);
+ CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
+ }
+
+ SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(CC0, MVT::i8));
+ SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(CC1, MVT::i8));
+ return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
+ }
+ // Handle all other FP comparisons here.
+ return DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(SSECC, MVT::i8));
+ }
+
+ // Break 256-bit integer vector compare into smaller ones.
+ if (VT.is256BitVector() && !Subtarget->hasInt256())
+ return Lower256IntVSETCC(Op, DAG);
+
+ bool MaskResult = (VT.getVectorElementType() == MVT::i1);
+ EVT OpVT = Op1.getValueType();
+ if (Subtarget->hasAVX512()) {
+ if (Op1.getValueType().is512BitVector() ||
+ (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
+ return LowerIntVSETCC_AVX512(Op, DAG, Subtarget);
+
+ // In AVX-512 architecture setcc returns mask with i1 elements,
+ // But there is no compare instruction for i8 and i16 elements.
+ // We are not talking about 512-bit operands in this case, these
+ // types are illegal.
+ if (MaskResult &&
+ (OpVT.getVectorElementType().getSizeInBits() < 32 &&
+ OpVT.getVectorElementType().getSizeInBits() >= 8))
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
+ }
+
+ // We are handling one of the integer comparisons here. Since SSE only has
+ // GT and EQ comparisons for integer, swapping operands and multiple
+ // operations may be required for some comparisons.
+ unsigned Opc;
+ bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
+ bool Subus = false;
+
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETNE: Invert = true;
+ case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break;
+ case ISD::SETLT: Swap = true;
+ case ISD::SETGT: Opc = X86ISD::PCMPGT; break;
+ case ISD::SETGE: Swap = true;
+ case ISD::SETLE: Opc = X86ISD::PCMPGT;
+ Invert = true; break;
+ case ISD::SETULT: Swap = true;
+ case ISD::SETUGT: Opc = X86ISD::PCMPGT;
+ FlipSigns = true; break;
+ case ISD::SETUGE: Swap = true;
+ case ISD::SETULE: Opc = X86ISD::PCMPGT;
+ FlipSigns = true; Invert = true; break;
+ }
+
+ // Special case: Use min/max operations for SETULE/SETUGE
+ MVT VET = VT.getVectorElementType();
+ bool hasMinMax =
+ (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
+ || (Subtarget->hasSSE2() && (VET == MVT::i8));
+
+ if (hasMinMax) {
+ switch (SetCCOpcode) {
+ default: break;
+ case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
+ case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
+ }
+
+ if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
+ }
+
+ bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
+ if (!MinMax && hasSubus) {
+ // As another special case, use PSUBUS[BW] when it's profitable. E.g. for
+ // Op0 u<= Op1:
+ // t = psubus Op0, Op1
+ // pcmpeq t, <0..0>
+ switch (SetCCOpcode) {
+ default: break;
+ case ISD::SETULT: {
+ // If the comparison is against a constant we can turn this into a
+ // setule. With psubus, setule does not require a swap. This is
+ // beneficial because the constant in the register is no longer
+ // destructed as the destination so it can be hoisted out of a loop.
+ // Only do this pre-AVX since vpcmp* is no longer destructive.
+ if (Subtarget->hasAVX())
+ break;
+ SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG);
+ if (ULEOp1.getNode()) {
+ Op1 = ULEOp1;
+ Subus = true; Invert = false; Swap = false;
+ }
+ break;
+ }
+ // Psubus is better than flip-sign because it requires no inversion.
+ case ISD::SETUGE: Subus = true; Invert = false; Swap = true; break;
+ case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
+ }
+
+ if (Subus) {
+ Opc = X86ISD::SUBUS;
+ FlipSigns = false;
+ }
+ }
+
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ // Check that the operation in question is available (most are plain SSE2,
+ // but PCMPGTQ and PCMPEQQ have different requirements).
+ if (VT == MVT::v2i64) {
+ if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
+ assert(Subtarget->hasSSE2() && "Don't know how to lower!");
+
+ // First cast everything to the right type.
+ Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
+ Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
+
+ // Since SSE has no unsigned integer comparisons, we need to flip the sign
+ // bits of the inputs before performing those operations. The lower
+ // compare is always unsigned.
+ SDValue SB;
+ if (FlipSigns) {
+ SB = DAG.getConstant(0x80000000U, MVT::v4i32);
+ } else {
+ SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
+ SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
+ SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
+ Sign, Zero, Sign, Zero);
+ }
+ Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
+ Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
+
+ // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
+ SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
+ SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
+
+ // Create masks for only the low parts/high parts of the 64 bit integers.
+ static const int MaskHi[] = { 1, 1, 3, 3 };
+ static const int MaskLo[] = { 0, 0, 2, 2 };
+ SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
+ SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
+ SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
+
+ SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
+ Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
+
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, MVT::v4i32);
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+ }
+
+ if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
+ // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
+ // pcmpeqd + pshufd + pand.
+ assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
+
+ // First cast everything to the right type.
+ Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
+ Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
+
+ // Do the compare.
+ SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
+
+ // Make sure the lower and upper halves are both all-ones.
+ static const int Mask[] = { 1, 0, 3, 2 };
+ SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
+ Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
+
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, MVT::v4i32);
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+ }
+ }
+
+ // Since SSE has no unsigned integer comparisons, we need to flip the sign
+ // bits of the inputs before performing those operations.
+ if (FlipSigns) {
+ EVT EltVT = VT.getVectorElementType();
+ SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
+ Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
+ Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
+ }
+
+ SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+
+ // If the logical-not of the result is required, perform that now.
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, VT);
+
+ if (MinMax)
+ Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
+
+ if (Subus)
+ Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
+ getZeroVector(VT, Subtarget, DAG, dl));
+
+ return Result;
+}
+
+SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+
+ MVT VT = Op.getSimpleValueType();
+
+ if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
+
+ assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1))
+ && "SetCC type must be 8-bit or 1-bit integer");
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDLoc dl(Op);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+
+ // Optimize to BT if possible.
+ // Lower (X & (1 << N)) == 0 to BT(X, N).
+ // Lower ((X >>u N) & 1) != 0 to BT(X, N).
+ // Lower ((X >>s N) & 1) != 0 to BT(X, N).
+ if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
+ Op1.getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(Op1)->isNullValue() &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+ SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
+ if (NewSetCC.getNode())
+ return NewSetCC;
+ }
+
+ // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
+ // these.
+ if (Op1.getOpcode() == ISD::Constant &&
+ (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
+ cast<ConstantSDNode>(Op1)->isNullValue()) &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+
+ // If the input is a setcc, then reuse the input setcc or use a new one with
+ // the inverted condition.
+ if (Op0.getOpcode() == X86ISD::SETCC) {
+ X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
+ bool Invert = (CC == ISD::SETNE) ^
+ cast<ConstantSDNode>(Op1)->isNullValue();
+ if (!Invert)
+ return Op0;
+
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(CCode, MVT::i8),
+ Op0.getOperand(1));
+ if (VT == MVT::i1)
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
+ return SetCC;
+ }
+ }
+ if ((Op0.getValueType() == MVT::i1) && (Op1.getOpcode() == ISD::Constant) &&
+ (cast<ConstantSDNode>(Op1)->getZExtValue() == 1) &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+
+ ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
+ return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, MVT::i1), NewCC);
+ }
+
+ bool isFP = Op1.getSimpleValueType().isFloatingPoint();
+ unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
+ if (X86CC == X86::COND_INVALID)
+ return SDValue();
+
+ SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
+ EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86CC, MVT::i8), EFLAGS);
+ if (VT == MVT::i1)
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
+ return SetCC;
+}
+
+// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
+static bool isX86LogicalCmp(SDValue Op) {
+ unsigned Opc = Op.getNode()->getOpcode();
+ if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
+ Opc == X86ISD::SAHF)
+ return true;
+ if (Op.getResNo() == 1 &&
+ (Opc == X86ISD::ADD ||
+ Opc == X86ISD::SUB ||
+ Opc == X86ISD::ADC ||
+ Opc == X86ISD::SBB ||
+ Opc == X86ISD::SMUL ||
+ Opc == X86ISD::UMUL ||
+ Opc == X86ISD::INC ||
+ Opc == X86ISD::DEC ||
+ Opc == X86ISD::OR ||
+ Opc == X86ISD::XOR ||
+ Opc == X86ISD::AND))
+ return true;
+
+ if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
+ return true;
+
+ return false;
+}
+
+static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
+ if (V.getOpcode() != ISD::TRUNCATE)
+ return false;
+
+ SDValue VOp0 = V.getOperand(0);
+ unsigned InBits = VOp0.getValueSizeInBits();
+ unsigned Bits = V.getValueSizeInBits();
+ return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
+}
+
+SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ bool addTest = true;
+ SDValue Cond = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue Op2 = Op.getOperand(2);
+ SDLoc DL(Op);
+ EVT VT = Op1.getValueType();
+ SDValue CC;
+
+ // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
+ // are available. Otherwise fp cmovs get lowered into a less efficient branch
+ // sequence later on.
+ if (Cond.getOpcode() == ISD::SETCC &&
+ ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
+ (Subtarget->hasSSE1() && VT == MVT::f32)) &&
+ VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
+ SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
+ int SSECC = translateX86FSETCC(
+ cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
+
+ if (SSECC != 8) {
+ if (Subtarget->hasAVX512()) {
+ SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1,
+ DAG.getConstant(SSECC, MVT::i8));
+ return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2);
+ }
+ SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
+ DAG.getConstant(SSECC, MVT::i8));
+ SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
+ SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
+ return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
+ }
+ }
+
+ if (Cond.getOpcode() == ISD::SETCC) {
+ SDValue NewCond = LowerSETCC(Cond, DAG);
+ if (NewCond.getNode())
+ Cond = NewCond;
+ }
+
+ // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
+ // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
+ // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
+ // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
+ if (Cond.getOpcode() == X86ISD::SETCC &&
+ Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
+ isZero(Cond.getOperand(1).getOperand(1))) {
+ SDValue Cmp = Cond.getOperand(1);
+
+ unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
+
+ if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
+ (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
+ SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
+
+ SDValue CmpOp0 = Cmp.getOperand(0);
+ // Apply further optimizations for special cases
+ // (select (x != 0), -1, 0) -> neg & sbb
+ // (select (x == 0), 0, -1) -> neg & sbb
+ if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
+ if (YC->isNullValue() &&
+ (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
+ SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
+ SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
+ DAG.getConstant(0, CmpOp0.getValueType()),
+ CmpOp0);
+ SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
+ DAG.getConstant(X86::COND_B, MVT::i8),
+ SDValue(Neg.getNode(), 1));
+ return Res;
+ }
+
+ Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
+ CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
+ Cmp = ConvertCmpIfNecessary(Cmp, DAG);
+
+ SDValue Res = // Res = 0 or -1.
+ DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
+ DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
+
+ if (isAllOnes(Op1) != (CondCode == X86::COND_E))
+ Res = DAG.getNOT(DL, Res, Res.getValueType());
+
+ ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
+ if (!N2C || !N2C->isNullValue())
+ Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
+ return Res;
+ }
+ }
+
+ // Look past (and (setcc_carry (cmp ...)), 1).
+ if (Cond.getOpcode() == ISD::AND &&
+ Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
+ if (C && C->getAPIntValue() == 1)
+ Cond = Cond.getOperand(0);
+ }
+
+ // If condition flag is set by a X86ISD::CMP, then use it as the condition
+ // setting operand in place of the X86ISD::SETCC.
+ unsigned CondOpcode = Cond.getOpcode();
+ if (CondOpcode == X86ISD::SETCC ||
+ CondOpcode == X86ISD::SETCC_CARRY) {
+ CC = Cond.getOperand(0);
+
+ SDValue Cmp = Cond.getOperand(1);
+ unsigned Opc = Cmp.getOpcode();
+ MVT VT = Op.getSimpleValueType();
+
+ bool IllegalFPCMov = false;
+ if (VT.isFloatingPoint() && !VT.isVector() &&
+ !isScalarFPTypeInSSEReg(VT)) // FPStack?
+ IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
+
+ if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
+ Opc == X86ISD::BT) { // FIXME
+ Cond = Cmp;
+ addTest = false;
+ }
+ } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
+ CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
+ ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
+ Cond.getOperand(0).getValueType() != MVT::i8)) {
+ SDValue LHS = Cond.getOperand(0);
+ SDValue RHS = Cond.getOperand(1);
+ unsigned X86Opcode;
+ unsigned X86Cond;
+ SDVTList VTs;
+ switch (CondOpcode) {
+ case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
+ case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
+ case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
+ case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
+ case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
+ case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
+ default: llvm_unreachable("unexpected overflowing operator");
+ }
+ if (CondOpcode == ISD::UMULO)
+ VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
+ MVT::i32);
+ else
+ VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
+
+ SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
+
+ if (CondOpcode == ISD::UMULO)
+ Cond = X86Op.getValue(2);
+ else
+ Cond = X86Op.getValue(1);
+
+ CC = DAG.getConstant(X86Cond, MVT::i8);
+ addTest = false;
+ }
+
+ if (addTest) {
+ // Look pass the truncate if the high bits are known zero.
+ if (isTruncWithZeroHighBitsInput(Cond, DAG))
+ Cond = Cond.getOperand(0);
+
+ // We know the result of AND is compared against zero. Try to match
+ // it to BT.
+ if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
+ SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
+ if (NewSetCC.getNode()) {
+ CC = NewSetCC.getOperand(0);
+ Cond = NewSetCC.getOperand(1);
+ addTest = false;
+ }
+ }
+ }
+
+ if (addTest) {
+ CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+ Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
+ }
+
+ // a < b ? -1 : 0 -> RES = ~setcc_carry
+ // a < b ? 0 : -1 -> RES = setcc_carry
+ // a >= b ? -1 : 0 -> RES = setcc_carry
+ // a >= b ? 0 : -1 -> RES = ~setcc_carry
+ if (Cond.getOpcode() == X86ISD::SUB) {
+ Cond = ConvertCmpIfNecessary(Cond, DAG);
+ unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
+
+ if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
+ (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
+ SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
+ DAG.getConstant(X86::COND_B, MVT::i8), Cond);
+ if (isAllOnes(Op1) != (CondCode == X86::COND_B))
+ return DAG.getNOT(DL, Res, Res.getValueType());
+ return Res;
+ }
+ }
+
+ // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
+ // widen the cmov and push the truncate through. This avoids introducing a new
+ // branch during isel and doesn't add any extensions.
+ if (Op.getValueType() == MVT::i8 &&
+ Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
+ SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
+ if (T1.getValueType() == T2.getValueType() &&
+ // Blacklist CopyFromReg to avoid partial register stalls.
+ T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
+ SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
+ SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
+ return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
+ }
+ }
+
+ // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
+ // condition is true.
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
+ SDValue Ops[] = { Op2, Op1, CC, Cond };
+ return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
+}
+
+static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ SDLoc dl(Op);
+
+ unsigned int NumElts = VT.getVectorNumElements();
+ if (NumElts != 8 && NumElts != 16)
+ return SDValue();
+
+ if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
+ return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
+
+ MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
+ Constant *C = ConstantInt::get(*DAG.getContext(),
+ APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
+
+ SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
+ SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, Alignment);
+ SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
+ if (VT.is512BitVector())
+ return Brcst;
+ return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
+}
+
+static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
+ return LowerSIGN_EXTEND_AVX512(Op, DAG);
+
+ if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
+ (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
+ (VT != MVT::v16i16 || InVT != MVT::v16i8))
+ return SDValue();
+
+ if (Subtarget->hasInt256())
+ return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
+
+ // Optimize vectors in AVX mode
+ // Sign extend v8i16 to v8i32 and
+ // v4i32 to v4i64
+ //
+ // Divide input vector into two parts
+ // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
+ // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
+ // concat the vectors to original VT
+
+ unsigned NumElems = InVT.getVectorNumElements();
+ SDValue Undef = DAG.getUNDEF(InVT);
+
+ SmallVector<int,8> ShufMask1(NumElems, -1);
+ for (unsigned i = 0; i != NumElems/2; ++i)
+ ShufMask1[i] = i;
+
+ SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
+
+ SmallVector<int,8> ShufMask2(NumElems, -1);
+ for (unsigned i = 0; i != NumElems/2; ++i)
+ ShufMask2[i] = i + NumElems/2;
+
+ SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
+
+ MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
+ VT.getVectorNumElements()/2);
+
+ OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo);
+ OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
+}
+
+// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
+// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
+// from the AND / OR.
+static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
+ Opc = Op.getOpcode();
+ if (Opc != ISD::OR && Opc != ISD::AND)
+ return false;
+ return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(0).hasOneUse() &&
+ Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(1).hasOneUse());
+}
+
+// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
+// 1 and that the SETCC node has a single use.
+static bool isXor1OfSetCC(SDValue Op) {
+ if (Op.getOpcode() != ISD::XOR)
+ return false;
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (N1C && N1C->getAPIntValue() == 1) {
+ return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(0).hasOneUse();
+ }
+ return false;
+}
+
+SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
+ bool addTest = true;
+ SDValue Chain = Op.getOperand(0);
+ SDValue Cond = Op.getOperand(1);
+ SDValue Dest = Op.getOperand(2);
+ SDLoc dl(Op);
+ SDValue CC;
+ bool Inverted = false;
+
+ if (Cond.getOpcode() == ISD::SETCC) {
+ // Check for setcc([su]{add,sub,mul}o == 0).
+ if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
+ isa<ConstantSDNode>(Cond.getOperand(1)) &&
+ cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
+ Cond.getOperand(0).getResNo() == 1 &&
+ (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
+ Cond.getOperand(0).getOpcode() == ISD::UADDO ||
+ Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
+ Cond.getOperand(0).getOpcode() == ISD::USUBO ||
+ Cond.getOperand(0).getOpcode() == ISD::SMULO ||
+ Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
+ Inverted = true;
+ Cond = Cond.getOperand(0);
+ } else {
+ SDValue NewCond = LowerSETCC(Cond, DAG);
+ if (NewCond.getNode())
+ Cond = NewCond;
+ }
+ }
+#if 0
+ // FIXME: LowerXALUO doesn't handle these!!
+ else if (Cond.getOpcode() == X86ISD::ADD ||
+ Cond.getOpcode() == X86ISD::SUB ||
+ Cond.getOpcode() == X86ISD::SMUL ||
+ Cond.getOpcode() == X86ISD::UMUL)
+ Cond = LowerXALUO(Cond, DAG);
+#endif
+
+ // Look pass (and (setcc_carry (cmp ...)), 1).
+ if (Cond.getOpcode() == ISD::AND &&
+ Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
+ if (C && C->getAPIntValue() == 1)
+ Cond = Cond.getOperand(0);
+ }
+
+ // If condition flag is set by a X86ISD::CMP, then use it as the condition
+ // setting operand in place of the X86ISD::SETCC.
+ unsigned CondOpcode = Cond.getOpcode();
+ if (CondOpcode == X86ISD::SETCC ||
+ CondOpcode == X86ISD::SETCC_CARRY) {
+ CC = Cond.getOperand(0);
+
+ SDValue Cmp = Cond.getOperand(1);
+ unsigned Opc = Cmp.getOpcode();
+ // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
+ if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
+ Cond = Cmp;
+ addTest = false;
+ } else {
+ switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
+ default: break;
+ case X86::COND_O:
+ case X86::COND_B:
+ // These can only come from an arithmetic instruction with overflow,
+ // e.g. SADDO, UADDO.
+ Cond = Cond.getNode()->getOperand(1);
+ addTest = false;
+ break;
+ }
+ }
+ }
+ CondOpcode = Cond.getOpcode();
+ if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
+ CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
+ ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
+ Cond.getOperand(0).getValueType() != MVT::i8)) {
+ SDValue LHS = Cond.getOperand(0);
+ SDValue RHS = Cond.getOperand(1);
+ unsigned X86Opcode;
+ unsigned X86Cond;
+ SDVTList VTs;
+ // Keep this in sync with LowerXALUO, otherwise we might create redundant
+ // instructions that can't be removed afterwards (i.e. X86ISD::ADD and
+ // X86ISD::INC).
+ switch (CondOpcode) {
+ case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
+ case ISD::SADDO:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
+ if (C->isOne()) {
+ X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
+ break;
+ }
+ X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
+ case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
+ case ISD::SSUBO:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
+ if (C->isOne()) {
+ X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
+ break;
+ }
+ X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
+ case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
+ case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
+ default: llvm_unreachable("unexpected overflowing operator");
+ }
+ if (Inverted)
+ X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
+ if (CondOpcode == ISD::UMULO)
+ VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
+ MVT::i32);
+ else
+ VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
+
+ SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
+
+ if (CondOpcode == ISD::UMULO)
+ Cond = X86Op.getValue(2);
+ else
+ Cond = X86Op.getValue(1);
+
+ CC = DAG.getConstant(X86Cond, MVT::i8);
+ addTest = false;
+ } else {
+ unsigned CondOpc;
+ if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
+ SDValue Cmp = Cond.getOperand(0).getOperand(1);
+ if (CondOpc == ISD::OR) {
+ // Also, recognize the pattern generated by an FCMP_UNE. We can emit
+ // two branches instead of an explicit OR instruction with a
+ // separate test.
+ if (Cmp == Cond.getOperand(1).getOperand(1) &&
+ isX86LogicalCmp(Cmp)) {
+ CC = Cond.getOperand(0).getOperand(0);
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ CC = Cond.getOperand(1).getOperand(0);
+ Cond = Cmp;
+ addTest = false;
+ }
+ } else { // ISD::AND
+ // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
+ // two branches instead of an explicit AND instruction with a
+ // separate test. However, we only do this if this block doesn't
+ // have a fall-through edge, because this requires an explicit
+ // jmp when the condition is false.
+ if (Cmp == Cond.getOperand(1).getOperand(1) &&
+ isX86LogicalCmp(Cmp) &&
+ Op.getNode()->hasOneUse()) {
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, MVT::i8);
+ SDNode *User = *Op.getNode()->use_begin();
+ // Look for an unconditional branch following this conditional branch.
+ // We need this because we need to reverse the successors in order
+ // to implement FCMP_OEQ.
+ if (User->getOpcode() == ISD::BR) {
+ SDValue FalseBB = User->getOperand(1);
+ SDNode *NewBR =
+ DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
+ assert(NewBR == User);
+ (void)NewBR;
+ Dest = FalseBB;
+
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, MVT::i8);
+ Cond = Cmp;
+ addTest = false;
+ }
+ }
+ }
+ } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
+ // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
+ // It should be transformed during dag combiner except when the condition
+ // is set by a arithmetics with overflow node.
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, MVT::i8);
+ Cond = Cond.getOperand(0).getOperand(1);
+ addTest = false;
+ } else if (Cond.getOpcode() == ISD::SETCC &&
+ cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
+ // For FCMP_OEQ, we can emit
+ // two branches instead of an explicit AND instruction with a
+ // separate test. However, we only do this if this block doesn't
+ // have a fall-through edge, because this requires an explicit
+ // jmp when the condition is false.
+ if (Op.getNode()->hasOneUse()) {
+ SDNode *User = *Op.getNode()->use_begin();
+ // Look for an unconditional branch following this conditional branch.
+ // We need this because we need to reverse the successors in order
+ // to implement FCMP_OEQ.
+ if (User->getOpcode() == ISD::BR) {
+ SDValue FalseBB = User->getOperand(1);
+ SDNode *NewBR =
+ DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
+ assert(NewBR == User);
+ (void)NewBR;
+ Dest = FalseBB;
+
+ SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
+ Cond.getOperand(0), Cond.getOperand(1));
+ Cmp = ConvertCmpIfNecessary(Cmp, DAG);
+ CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ CC = DAG.getConstant(X86::COND_P, MVT::i8);
+ Cond = Cmp;
+ addTest = false;
+ }
+ }
+ } else if (Cond.getOpcode() == ISD::SETCC &&
+ cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
+ // For FCMP_UNE, we can emit
+ // two branches instead of an explicit AND instruction with a
+ // separate test. However, we only do this if this block doesn't
+ // have a fall-through edge, because this requires an explicit
+ // jmp when the condition is false.
+ if (Op.getNode()->hasOneUse()) {
+ SDNode *User = *Op.getNode()->use_begin();
+ // Look for an unconditional branch following this conditional branch.
+ // We need this because we need to reverse the successors in order
+ // to implement FCMP_UNE.
+ if (User->getOpcode() == ISD::BR) {
+ SDValue FalseBB = User->getOperand(1);
+ SDNode *NewBR =
+ DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
+ assert(NewBR == User);
+ (void)NewBR;
+
+ SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
+ Cond.getOperand(0), Cond.getOperand(1));
+ Cmp = ConvertCmpIfNecessary(Cmp, DAG);
+ CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ CC = DAG.getConstant(X86::COND_NP, MVT::i8);
+ Cond = Cmp;
+ addTest = false;
+ Dest = FalseBB;
+ }
+ }
+ }
+ }
+
+ if (addTest) {
+ // Look pass the truncate if the high bits are known zero.
+ if (isTruncWithZeroHighBitsInput(Cond, DAG))
+ Cond = Cond.getOperand(0);
+
+ // We know the result of AND is compared against zero. Try to match
+ // it to BT.
+ if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
+ SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
+ if (NewSetCC.getNode()) {
+ CC = NewSetCC.getOperand(0);
+ Cond = NewSetCC.getOperand(1);
+ addTest = false;
+ }
+ }
+ }
+
+ if (addTest) {
+ X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
+ CC = DAG.getConstant(X86Cond, MVT::i8);
+ Cond = EmitTest(Cond, X86Cond, dl, DAG);
+ }
+ Cond = ConvertCmpIfNecessary(Cond, DAG);
+ return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cond);
+}
+
+// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
+// Calls to _alloca is needed to probe the stack when allocating more than 4k
+// bytes in one go. Touching the stack at 4K increments is necessary to ensure
+// that the guard pages used by the OS virtual memory manager are allocated in
+// correct sequence.
+SDValue
+X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool SplitStack = MF.shouldSplitStack();
+ bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMacho()) ||
+ SplitStack;
+ SDLoc dl(Op);
+
+ if (!Lower) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDNode* Node = Op.getNode();
+
+ unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
+ assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
+ " not tell us which reg is the stack pointer!");
+ EVT VT = Node->getValueType(0);
+ SDValue Tmp1 = SDValue(Node, 0);
+ SDValue Tmp2 = SDValue(Node, 1);
+ SDValue Tmp3 = Node->getOperand(2);
+ SDValue Chain = Tmp1.getOperand(0);
+
+ // Chain the dynamic stack allocation so that it doesn't modify the stack
+ // pointer when other instructions are using the stack.
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
+ SDLoc(Node));
+
+ SDValue Size = Tmp2.getOperand(1);
+ SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
+ Chain = SP.getValue(1);
+ unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
+ const TargetFrameLowering &TFI = *DAG.getTarget().getFrameLowering();
+ unsigned StackAlign = TFI.getStackAlignment();
+ Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
+ if (Align > StackAlign)
+ Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
+ DAG.getConstant(-(uint64_t)Align, VT));
+ Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
+
+ Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
+ DAG.getIntPtrConstant(0, true), SDValue(),
+ SDLoc(Node));
+
+ SDValue Ops[2] = { Tmp1, Tmp2 };
+ return DAG.getMergeValues(Ops, dl);
+ }
+
+ // Get the inputs.
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
+ EVT VT = Op.getNode()->getValueType(0);
+
+ bool Is64Bit = Subtarget->is64Bit();
+ EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
+
+ if (SplitStack) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ if (Is64Bit) {
+ // The 64 bit implementation of segmented stacks needs to clobber both r10
+ // r11. This makes it impossible to use it along with nested parameters.
+ const Function *F = MF.getFunction();
+
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I)
+ if (I->hasNestAttr())
+ report_fatal_error("Cannot use segmented stacks with functions that "
+ "have nested arguments.");
+ }
+
+ const TargetRegisterClass *AddrRegClass =
+ getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
+ unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
+ Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
+ SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
+ DAG.getRegister(Vreg, SPTy));
+ SDValue Ops1[2] = { Value, Chain };
+ return DAG.getMergeValues(Ops1, dl);
+ } else {
+ SDValue Flag;
+ unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
+
+ Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
+ Flag = Chain.getValue(1);
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
+
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ unsigned SPReg = RegInfo->getStackRegister();
+ SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
+ Chain = SP.getValue(1);
+
+ if (Align) {
+ SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
+ DAG.getConstant(-(uint64_t)Align, VT));
+ Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
+ }
+
+ SDValue Ops1[2] = { SP, Chain };
+ return DAG.getMergeValues(Ops1, dl);
+ }
+}
+
+SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ SDLoc DL(Op);
+
+ if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
+ getPointerTy());
+ return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
+ MachinePointerInfo(SV), false, false, 0);
+ }
+
+ // __va_list_tag:
+ // gp_offset (0 - 6 * 8)
+ // fp_offset (48 - 48 + 8 * 16)
+ // overflow_arg_area (point to parameters coming in memory).
+ // reg_save_area
+ SmallVector<SDValue, 8> MemOps;
+ SDValue FIN = Op.getOperand(1);
+ // Store gp_offset
+ SDValue Store = DAG.getStore(Op.getOperand(0), DL,
+ DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
+ MVT::i32),
+ FIN, MachinePointerInfo(SV), false, false, 0);
+ MemOps.push_back(Store);
+
+ // Store fp_offset
+ FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
+ FIN, DAG.getIntPtrConstant(4));
+ Store = DAG.getStore(Op.getOperand(0), DL,
+ DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
+ MVT::i32),
+ FIN, MachinePointerInfo(SV, 4), false, false, 0);
+ MemOps.push_back(Store);
+
+ // Store ptr to overflow_arg_area
+ FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
+ FIN, DAG.getIntPtrConstant(4));
+ SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
+ getPointerTy());
+ Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
+ MachinePointerInfo(SV, 8),
+ false, false, 0);
+ MemOps.push_back(Store);
+
+ // Store ptr to reg_save_area.
+ FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
+ FIN, DAG.getIntPtrConstant(8));
+ SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
+ getPointerTy());
+ Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
+ MachinePointerInfo(SV, 16), false, false, 0);
+ MemOps.push_back(Store);
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
+}
+
+SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget->is64Bit() &&
+ "LowerVAARG only handles 64-bit va_arg!");
+ assert((Subtarget->isTargetLinux() ||
+ Subtarget->isTargetDarwin()) &&
+ "Unhandled target in LowerVAARG");
+ assert(Op.getNode()->getNumOperands() == 4);
+ SDValue Chain = Op.getOperand(0);
+ SDValue SrcPtr = Op.getOperand(1);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ unsigned Align = Op.getConstantOperandVal(3);
+ SDLoc dl(Op);
+
+ EVT ArgVT = Op.getNode()->getValueType(0);
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+ uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
+ uint8_t ArgMode;
+
+ // Decide which area this value should be read from.
+ // TODO: Implement the AMD64 ABI in its entirety. This simple
+ // selection mechanism works only for the basic types.
+ if (ArgVT == MVT::f80) {
+ llvm_unreachable("va_arg for f80 not yet implemented");
+ } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
+ ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
+ } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
+ ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
+ } else {
+ llvm_unreachable("Unhandled argument type in LowerVAARG");
+ }
+
+ if (ArgMode == 2) {
+ // Sanity Check: Make sure using fp_offset makes sense.
+ assert(!DAG.getTarget().Options.UseSoftFloat &&
+ !(DAG.getMachineFunction()
+ .getFunction()->getAttributes()
+ .hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NoImplicitFloat)) &&
+ Subtarget->hasSSE1());
+ }
+
+ // Insert VAARG_64 node into the DAG
+ // VAARG_64 returns two values: Variable Argument Address, Chain
+ SmallVector<SDValue, 11> InstOps;
+ InstOps.push_back(Chain);
+ InstOps.push_back(SrcPtr);
+ InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
+ InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
+ InstOps.push_back(DAG.getConstant(Align, MVT::i32));
+ SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
+ SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
+ VTs, InstOps, MVT::i64,
+ MachinePointerInfo(SV),
+ /*Align=*/0,
+ /*Volatile=*/false,
+ /*ReadMem=*/true,
+ /*WriteMem=*/true);
+ Chain = VAARG.getValue(1);
+
+ // Load the next argument and return it
+ return DAG.getLoad(ArgVT, dl,
+ Chain,
+ VAARG,
+ MachinePointerInfo(),
+ false, false, false, 0);
+}
+
+static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
+ assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
+ SDValue Chain = Op.getOperand(0);
+ SDValue DstPtr = Op.getOperand(1);
+ SDValue SrcPtr = Op.getOperand(2);
+ const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
+ const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+ SDLoc DL(Op);
+
+ return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
+ DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
+ false,
+ MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
+}
+
+// getTargetVShiftByConstNode - Handle vector element shifts where the shift
+// amount is a constant. Takes immediate version of shift as input.
+static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
+ SDValue SrcOp, uint64_t ShiftAmt,
+ SelectionDAG &DAG) {
+ MVT ElementType = VT.getVectorElementType();
+
+ // Fold this packed shift into its first operand if ShiftAmt is 0.
+ if (ShiftAmt == 0)
+ return SrcOp;
+
+ // Check for ShiftAmt >= element width
+ if (ShiftAmt >= ElementType.getSizeInBits()) {
+ if (Opc == X86ISD::VSRAI)
+ ShiftAmt = ElementType.getSizeInBits() - 1;
+ else
+ return DAG.getConstant(0, VT);
+ }
+
+ assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
+ && "Unknown target vector shift-by-constant node");
+
+ // Fold this packed vector shift into a build vector if SrcOp is a
+ // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT.
+ if (VT == SrcOp.getSimpleValueType() &&
+ ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
+ SmallVector<SDValue, 8> Elts;
+ unsigned NumElts = SrcOp->getNumOperands();
+ ConstantSDNode *ND;
+
+ switch(Opc) {
+ default: llvm_unreachable(nullptr);
+ case X86ISD::VSHLI:
+ for (unsigned i=0; i!=NumElts; ++i) {
+ SDValue CurrentOp = SrcOp->getOperand(i);
+ if (CurrentOp->getOpcode() == ISD::UNDEF) {
+ Elts.push_back(CurrentOp);
+ continue;
+ }
+ ND = cast<ConstantSDNode>(CurrentOp);
+ const APInt &C = ND->getAPIntValue();
+ Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), ElementType));
+ }
+ break;
+ case X86ISD::VSRLI:
+ for (unsigned i=0; i!=NumElts; ++i) {
+ SDValue CurrentOp = SrcOp->getOperand(i);
+ if (CurrentOp->getOpcode() == ISD::UNDEF) {
+ Elts.push_back(CurrentOp);
+ continue;
+ }
+ ND = cast<ConstantSDNode>(CurrentOp);
+ const APInt &C = ND->getAPIntValue();
+ Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), ElementType));
+ }
+ break;
+ case X86ISD::VSRAI:
+ for (unsigned i=0; i!=NumElts; ++i) {
+ SDValue CurrentOp = SrcOp->getOperand(i);
+ if (CurrentOp->getOpcode() == ISD::UNDEF) {
+ Elts.push_back(CurrentOp);
+ continue;
+ }
+ ND = cast<ConstantSDNode>(CurrentOp);
+ const APInt &C = ND->getAPIntValue();
+ Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), ElementType));
+ }
+ break;
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
+ }
+
+ return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
+}
+
+// getTargetVShiftNode - Handle vector element shifts where the shift amount
+// may or may not be a constant. Takes immediate version of shift as input.
+static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
+ SDValue SrcOp, SDValue ShAmt,
+ SelectionDAG &DAG) {
+ assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
+
+ // Catch shift-by-constant.
+ if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
+ return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
+ CShAmt->getZExtValue(), DAG);
+
+ // Change opcode to non-immediate version
+ switch (Opc) {
+ default: llvm_unreachable("Unknown target vector shift node");
+ case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
+ case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
+ case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
+ }
+
+ // Need to build a vector containing shift amount
+ // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
+ SDValue ShOps[4];
+ ShOps[0] = ShAmt;
+ ShOps[1] = DAG.getConstant(0, MVT::i32);
+ ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
+ ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, ShOps);
+
+ // The return type has to be a 128-bit type with the same element
+ // type as the input type.
+ MVT EltVT = VT.getVectorElementType();
+ EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
+
+ ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
+ return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
+}
+
+static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default: return SDValue(); // Don't custom lower most intrinsics.
+ // Comparison intrinsics.
+ case Intrinsic::x86_sse_comieq_ss:
+ case Intrinsic::x86_sse_comilt_ss:
+ case Intrinsic::x86_sse_comile_ss:
+ case Intrinsic::x86_sse_comigt_ss:
+ case Intrinsic::x86_sse_comige_ss:
+ case Intrinsic::x86_sse_comineq_ss:
+ case Intrinsic::x86_sse_ucomieq_ss:
+ case Intrinsic::x86_sse_ucomilt_ss:
+ case Intrinsic::x86_sse_ucomile_ss:
+ case Intrinsic::x86_sse_ucomigt_ss:
+ case Intrinsic::x86_sse_ucomige_ss:
+ case Intrinsic::x86_sse_ucomineq_ss:
+ case Intrinsic::x86_sse2_comieq_sd:
+ case Intrinsic::x86_sse2_comilt_sd:
+ case Intrinsic::x86_sse2_comile_sd:
+ case Intrinsic::x86_sse2_comigt_sd:
+ case Intrinsic::x86_sse2_comige_sd:
+ case Intrinsic::x86_sse2_comineq_sd:
+ case Intrinsic::x86_sse2_ucomieq_sd:
+ case Intrinsic::x86_sse2_ucomilt_sd:
+ case Intrinsic::x86_sse2_ucomile_sd:
+ case Intrinsic::x86_sse2_ucomigt_sd:
+ case Intrinsic::x86_sse2_ucomige_sd:
+ case Intrinsic::x86_sse2_ucomineq_sd: {
+ unsigned Opc;
+ ISD::CondCode CC;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_sse_comieq_ss:
+ case Intrinsic::x86_sse2_comieq_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETEQ;
+ break;
+ case Intrinsic::x86_sse_comilt_ss:
+ case Intrinsic::x86_sse2_comilt_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETLT;
+ break;
+ case Intrinsic::x86_sse_comile_ss:
+ case Intrinsic::x86_sse2_comile_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETLE;
+ break;
+ case Intrinsic::x86_sse_comigt_ss:
+ case Intrinsic::x86_sse2_comigt_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETGT;
+ break;
+ case Intrinsic::x86_sse_comige_ss:
+ case Intrinsic::x86_sse2_comige_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETGE;
+ break;
+ case Intrinsic::x86_sse_comineq_ss:
+ case Intrinsic::x86_sse2_comineq_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETNE;
+ break;
+ case Intrinsic::x86_sse_ucomieq_ss:
+ case Intrinsic::x86_sse2_ucomieq_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETEQ;
+ break;
+ case Intrinsic::x86_sse_ucomilt_ss:
+ case Intrinsic::x86_sse2_ucomilt_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETLT;
+ break;
+ case Intrinsic::x86_sse_ucomile_ss:
+ case Intrinsic::x86_sse2_ucomile_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETLE;
+ break;
+ case Intrinsic::x86_sse_ucomigt_ss:
+ case Intrinsic::x86_sse2_ucomigt_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETGT;
+ break;
+ case Intrinsic::x86_sse_ucomige_ss:
+ case Intrinsic::x86_sse2_ucomige_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETGE;
+ break;
+ case Intrinsic::x86_sse_ucomineq_ss:
+ case Intrinsic::x86_sse2_ucomineq_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETNE;
+ break;
+ }
+
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
+ assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
+ SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86CC, MVT::i8), Cond);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+
+ // Arithmetic intrinsics.
+ case Intrinsic::x86_sse2_pmulu_dq:
+ case Intrinsic::x86_avx2_pmulu_dq:
+ return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::x86_sse41_pmuldq:
+ case Intrinsic::x86_avx2_pmul_dq:
+ return DAG.getNode(X86ISD::PMULDQ, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::x86_sse2_pmulhu_w:
+ case Intrinsic::x86_avx2_pmulhu_w:
+ return DAG.getNode(ISD::MULHU, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::x86_sse2_pmulh_w:
+ case Intrinsic::x86_avx2_pmulh_w:
+ return DAG.getNode(ISD::MULHS, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ // SSE2/AVX2 sub with unsigned saturation intrinsics
+ case Intrinsic::x86_sse2_psubus_b:
+ case Intrinsic::x86_sse2_psubus_w:
+ case Intrinsic::x86_avx2_psubus_b:
+ case Intrinsic::x86_avx2_psubus_w:
+ return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ // SSE3/AVX horizontal add/sub intrinsics
+ case Intrinsic::x86_sse3_hadd_ps:
+ case Intrinsic::x86_sse3_hadd_pd:
+ case Intrinsic::x86_avx_hadd_ps_256:
+ case Intrinsic::x86_avx_hadd_pd_256:
+ case Intrinsic::x86_sse3_hsub_ps:
+ case Intrinsic::x86_sse3_hsub_pd:
+ case Intrinsic::x86_avx_hsub_ps_256:
+ case Intrinsic::x86_avx_hsub_pd_256:
+ case Intrinsic::x86_ssse3_phadd_w_128:
+ case Intrinsic::x86_ssse3_phadd_d_128:
+ case Intrinsic::x86_avx2_phadd_w:
+ case Intrinsic::x86_avx2_phadd_d:
+ case Intrinsic::x86_ssse3_phsub_w_128:
+ case Intrinsic::x86_ssse3_phsub_d_128:
+ case Intrinsic::x86_avx2_phsub_w:
+ case Intrinsic::x86_avx2_phsub_d: {
+ unsigned Opcode;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_sse3_hadd_ps:
+ case Intrinsic::x86_sse3_hadd_pd:
+ case Intrinsic::x86_avx_hadd_ps_256:
+ case Intrinsic::x86_avx_hadd_pd_256:
+ Opcode = X86ISD::FHADD;
+ break;
+ case Intrinsic::x86_sse3_hsub_ps:
+ case Intrinsic::x86_sse3_hsub_pd:
+ case Intrinsic::x86_avx_hsub_ps_256:
+ case Intrinsic::x86_avx_hsub_pd_256:
+ Opcode = X86ISD::FHSUB;
+ break;
+ case Intrinsic::x86_ssse3_phadd_w_128:
+ case Intrinsic::x86_ssse3_phadd_d_128:
+ case Intrinsic::x86_avx2_phadd_w:
+ case Intrinsic::x86_avx2_phadd_d:
+ Opcode = X86ISD::HADD;
+ break;
+ case Intrinsic::x86_ssse3_phsub_w_128:
+ case Intrinsic::x86_ssse3_phsub_d_128:
+ case Intrinsic::x86_avx2_phsub_w:
+ case Intrinsic::x86_avx2_phsub_d:
+ Opcode = X86ISD::HSUB;
+ break;
+ }
+ return DAG.getNode(Opcode, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+
+ // SSE2/SSE41/AVX2 integer max/min intrinsics.
+ case Intrinsic::x86_sse2_pmaxu_b:
+ case Intrinsic::x86_sse41_pmaxuw:
+ case Intrinsic::x86_sse41_pmaxud:
+ case Intrinsic::x86_avx2_pmaxu_b:
+ case Intrinsic::x86_avx2_pmaxu_w:
+ case Intrinsic::x86_avx2_pmaxu_d:
+ case Intrinsic::x86_sse2_pminu_b:
+ case Intrinsic::x86_sse41_pminuw:
+ case Intrinsic::x86_sse41_pminud:
+ case Intrinsic::x86_avx2_pminu_b:
+ case Intrinsic::x86_avx2_pminu_w:
+ case Intrinsic::x86_avx2_pminu_d:
+ case Intrinsic::x86_sse41_pmaxsb:
+ case Intrinsic::x86_sse2_pmaxs_w:
+ case Intrinsic::x86_sse41_pmaxsd:
+ case Intrinsic::x86_avx2_pmaxs_b:
+ case Intrinsic::x86_avx2_pmaxs_w:
+ case Intrinsic::x86_avx2_pmaxs_d:
+ case Intrinsic::x86_sse41_pminsb:
+ case Intrinsic::x86_sse2_pmins_w:
+ case Intrinsic::x86_sse41_pminsd:
+ case Intrinsic::x86_avx2_pmins_b:
+ case Intrinsic::x86_avx2_pmins_w:
+ case Intrinsic::x86_avx2_pmins_d: {
+ unsigned Opcode;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_sse2_pmaxu_b:
+ case Intrinsic::x86_sse41_pmaxuw:
+ case Intrinsic::x86_sse41_pmaxud:
+ case Intrinsic::x86_avx2_pmaxu_b:
+ case Intrinsic::x86_avx2_pmaxu_w:
+ case Intrinsic::x86_avx2_pmaxu_d:
+ Opcode = X86ISD::UMAX;
+ break;
+ case Intrinsic::x86_sse2_pminu_b:
+ case Intrinsic::x86_sse41_pminuw:
+ case Intrinsic::x86_sse41_pminud:
+ case Intrinsic::x86_avx2_pminu_b:
+ case Intrinsic::x86_avx2_pminu_w:
+ case Intrinsic::x86_avx2_pminu_d:
+ Opcode = X86ISD::UMIN;
+ break;
+ case Intrinsic::x86_sse41_pmaxsb:
+ case Intrinsic::x86_sse2_pmaxs_w:
+ case Intrinsic::x86_sse41_pmaxsd:
+ case Intrinsic::x86_avx2_pmaxs_b:
+ case Intrinsic::x86_avx2_pmaxs_w:
+ case Intrinsic::x86_avx2_pmaxs_d:
+ Opcode = X86ISD::SMAX;
+ break;
+ case Intrinsic::x86_sse41_pminsb:
+ case Intrinsic::x86_sse2_pmins_w:
+ case Intrinsic::x86_sse41_pminsd:
+ case Intrinsic::x86_avx2_pmins_b:
+ case Intrinsic::x86_avx2_pmins_w:
+ case Intrinsic::x86_avx2_pmins_d:
+ Opcode = X86ISD::SMIN;
+ break;
+ }
+ return DAG.getNode(Opcode, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+
+ // SSE/SSE2/AVX floating point max/min intrinsics.
+ case Intrinsic::x86_sse_max_ps:
+ case Intrinsic::x86_sse2_max_pd:
+ case Intrinsic::x86_avx_max_ps_256:
+ case Intrinsic::x86_avx_max_pd_256:
+ case Intrinsic::x86_sse_min_ps:
+ case Intrinsic::x86_sse2_min_pd:
+ case Intrinsic::x86_avx_min_ps_256:
+ case Intrinsic::x86_avx_min_pd_256: {
+ unsigned Opcode;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_sse_max_ps:
+ case Intrinsic::x86_sse2_max_pd:
+ case Intrinsic::x86_avx_max_ps_256:
+ case Intrinsic::x86_avx_max_pd_256:
+ Opcode = X86ISD::FMAX;
+ break;
+ case Intrinsic::x86_sse_min_ps:
+ case Intrinsic::x86_sse2_min_pd:
+ case Intrinsic::x86_avx_min_ps_256:
+ case Intrinsic::x86_avx_min_pd_256:
+ Opcode = X86ISD::FMIN;
+ break;
+ }
+ return DAG.getNode(Opcode, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+
+ // AVX2 variable shift intrinsics
+ case Intrinsic::x86_avx2_psllv_d:
+ case Intrinsic::x86_avx2_psllv_q:
+ case Intrinsic::x86_avx2_psllv_d_256:
+ case Intrinsic::x86_avx2_psllv_q_256:
+ case Intrinsic::x86_avx2_psrlv_d:
+ case Intrinsic::x86_avx2_psrlv_q:
+ case Intrinsic::x86_avx2_psrlv_d_256:
+ case Intrinsic::x86_avx2_psrlv_q_256:
+ case Intrinsic::x86_avx2_psrav_d:
+ case Intrinsic::x86_avx2_psrav_d_256: {
+ unsigned Opcode;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_avx2_psllv_d:
+ case Intrinsic::x86_avx2_psllv_q:
+ case Intrinsic::x86_avx2_psllv_d_256:
+ case Intrinsic::x86_avx2_psllv_q_256:
+ Opcode = ISD::SHL;
+ break;
+ case Intrinsic::x86_avx2_psrlv_d:
+ case Intrinsic::x86_avx2_psrlv_q:
+ case Intrinsic::x86_avx2_psrlv_d_256:
+ case Intrinsic::x86_avx2_psrlv_q_256:
+ Opcode = ISD::SRL;
+ break;
+ case Intrinsic::x86_avx2_psrav_d:
+ case Intrinsic::x86_avx2_psrav_d_256:
+ Opcode = ISD::SRA;
+ break;
+ }
+ return DAG.getNode(Opcode, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+
+ case Intrinsic::x86_sse2_packssdw_128:
+ case Intrinsic::x86_sse2_packsswb_128:
+ case Intrinsic::x86_avx2_packssdw:
+ case Intrinsic::x86_avx2_packsswb:
+ return DAG.getNode(X86ISD::PACKSS, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::x86_sse2_packuswb_128:
+ case Intrinsic::x86_sse41_packusdw:
+ case Intrinsic::x86_avx2_packuswb:
+ case Intrinsic::x86_avx2_packusdw:
+ return DAG.getNode(X86ISD::PACKUS, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::x86_ssse3_pshuf_b_128:
+ case Intrinsic::x86_avx2_pshuf_b:
+ return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::x86_sse2_pshuf_d:
+ return DAG.getNode(X86ISD::PSHUFD, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::x86_sse2_pshufl_w:
+ return DAG.getNode(X86ISD::PSHUFLW, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::x86_sse2_pshufh_w:
+ return DAG.getNode(X86ISD::PSHUFHW, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::x86_ssse3_psign_b_128:
+ case Intrinsic::x86_ssse3_psign_w_128:
+ case Intrinsic::x86_ssse3_psign_d_128:
+ case Intrinsic::x86_avx2_psign_b:
+ case Intrinsic::x86_avx2_psign_w:
+ case Intrinsic::x86_avx2_psign_d:
+ return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::x86_sse41_insertps:
+ return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case Intrinsic::x86_avx_vperm2f128_ps_256:
+ case Intrinsic::x86_avx_vperm2f128_pd_256:
+ case Intrinsic::x86_avx_vperm2f128_si_256:
+ case Intrinsic::x86_avx2_vperm2i128:
+ return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case Intrinsic::x86_avx2_permd:
+ case Intrinsic::x86_avx2_permps:
+ // Operands intentionally swapped. Mask is last operand to intrinsic,
+ // but second operand for node/instruction.
+ return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
+ Op.getOperand(2), Op.getOperand(1));
+
+ case Intrinsic::x86_sse_sqrt_ps:
+ case Intrinsic::x86_sse2_sqrt_pd:
+ case Intrinsic::x86_avx_sqrt_ps_256:
+ case Intrinsic::x86_avx_sqrt_pd_256:
+ return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
+
+ // ptest and testp intrinsics. The intrinsic these come from are designed to
+ // return an integer value, not just an instruction so lower it to the ptest
+ // or testp pattern and a setcc for the result.
+ case Intrinsic::x86_sse41_ptestz:
+ case Intrinsic::x86_sse41_ptestc:
+ case Intrinsic::x86_sse41_ptestnzc:
+ case Intrinsic::x86_avx_ptestz_256:
+ case Intrinsic::x86_avx_ptestc_256:
+ case Intrinsic::x86_avx_ptestnzc_256:
+ case Intrinsic::x86_avx_vtestz_ps:
+ case Intrinsic::x86_avx_vtestc_ps:
+ case Intrinsic::x86_avx_vtestnzc_ps:
+ case Intrinsic::x86_avx_vtestz_pd:
+ case Intrinsic::x86_avx_vtestc_pd:
+ case Intrinsic::x86_avx_vtestnzc_pd:
+ case Intrinsic::x86_avx_vtestz_ps_256:
+ case Intrinsic::x86_avx_vtestc_ps_256:
+ case Intrinsic::x86_avx_vtestnzc_ps_256:
+ case Intrinsic::x86_avx_vtestz_pd_256:
+ case Intrinsic::x86_avx_vtestc_pd_256:
+ case Intrinsic::x86_avx_vtestnzc_pd_256: {
+ bool IsTestPacked = false;
+ unsigned X86CC;
+ switch (IntNo) {
+ default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
+ case Intrinsic::x86_avx_vtestz_ps:
+ case Intrinsic::x86_avx_vtestz_pd:
+ case Intrinsic::x86_avx_vtestz_ps_256:
+ case Intrinsic::x86_avx_vtestz_pd_256:
+ IsTestPacked = true; // Fallthrough
+ case Intrinsic::x86_sse41_ptestz:
+ case Intrinsic::x86_avx_ptestz_256:
+ // ZF = 1
+ X86CC = X86::COND_E;
+ break;
+ case Intrinsic::x86_avx_vtestc_ps:
+ case Intrinsic::x86_avx_vtestc_pd:
+ case Intrinsic::x86_avx_vtestc_ps_256:
+ case Intrinsic::x86_avx_vtestc_pd_256:
+ IsTestPacked = true; // Fallthrough
+ case Intrinsic::x86_sse41_ptestc:
+ case Intrinsic::x86_avx_ptestc_256:
+ // CF = 1
+ X86CC = X86::COND_B;
+ break;
+ case Intrinsic::x86_avx_vtestnzc_ps:
+ case Intrinsic::x86_avx_vtestnzc_pd:
+ case Intrinsic::x86_avx_vtestnzc_ps_256:
+ case Intrinsic::x86_avx_vtestnzc_pd_256:
+ IsTestPacked = true; // Fallthrough
+ case Intrinsic::x86_sse41_ptestnzc:
+ case Intrinsic::x86_avx_ptestnzc_256:
+ // ZF and CF = 0
+ X86CC = X86::COND_A;
+ break;
+ }
+
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
+ SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
+ SDValue CC = DAG.getConstant(X86CC, MVT::i8);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+ case Intrinsic::x86_avx512_kortestz_w:
+ case Intrinsic::x86_avx512_kortestc_w: {
+ unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
+ SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
+ SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
+ SDValue CC = DAG.getConstant(X86CC, MVT::i8);
+ SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+
+ // SSE/AVX shift intrinsics
+ case Intrinsic::x86_sse2_psll_w:
+ case Intrinsic::x86_sse2_psll_d:
+ case Intrinsic::x86_sse2_psll_q:
+ case Intrinsic::x86_avx2_psll_w:
+ case Intrinsic::x86_avx2_psll_d:
+ case Intrinsic::x86_avx2_psll_q:
+ case Intrinsic::x86_sse2_psrl_w:
+ case Intrinsic::x86_sse2_psrl_d:
+ case Intrinsic::x86_sse2_psrl_q:
+ case Intrinsic::x86_avx2_psrl_w:
+ case Intrinsic::x86_avx2_psrl_d:
+ case Intrinsic::x86_avx2_psrl_q:
+ case Intrinsic::x86_sse2_psra_w:
+ case Intrinsic::x86_sse2_psra_d:
+ case Intrinsic::x86_avx2_psra_w:
+ case Intrinsic::x86_avx2_psra_d: {
+ unsigned Opcode;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_sse2_psll_w:
+ case Intrinsic::x86_sse2_psll_d:
+ case Intrinsic::x86_sse2_psll_q:
+ case Intrinsic::x86_avx2_psll_w:
+ case Intrinsic::x86_avx2_psll_d:
+ case Intrinsic::x86_avx2_psll_q:
+ Opcode = X86ISD::VSHL;
+ break;
+ case Intrinsic::x86_sse2_psrl_w:
+ case Intrinsic::x86_sse2_psrl_d:
+ case Intrinsic::x86_sse2_psrl_q:
+ case Intrinsic::x86_avx2_psrl_w:
+ case Intrinsic::x86_avx2_psrl_d:
+ case Intrinsic::x86_avx2_psrl_q:
+ Opcode = X86ISD::VSRL;
+ break;
+ case Intrinsic::x86_sse2_psra_w:
+ case Intrinsic::x86_sse2_psra_d:
+ case Intrinsic::x86_avx2_psra_w:
+ case Intrinsic::x86_avx2_psra_d:
+ Opcode = X86ISD::VSRA;
+ break;
+ }
+ return DAG.getNode(Opcode, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+
+ // SSE/AVX immediate shift intrinsics
+ case Intrinsic::x86_sse2_pslli_w:
+ case Intrinsic::x86_sse2_pslli_d:
+ case Intrinsic::x86_sse2_pslli_q:
+ case Intrinsic::x86_avx2_pslli_w:
+ case Intrinsic::x86_avx2_pslli_d:
+ case Intrinsic::x86_avx2_pslli_q:
+ case Intrinsic::x86_sse2_psrli_w:
+ case Intrinsic::x86_sse2_psrli_d:
+ case Intrinsic::x86_sse2_psrli_q:
+ case Intrinsic::x86_avx2_psrli_w:
+ case Intrinsic::x86_avx2_psrli_d:
+ case Intrinsic::x86_avx2_psrli_q:
+ case Intrinsic::x86_sse2_psrai_w:
+ case Intrinsic::x86_sse2_psrai_d:
+ case Intrinsic::x86_avx2_psrai_w:
+ case Intrinsic::x86_avx2_psrai_d: {
+ unsigned Opcode;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_sse2_pslli_w:
+ case Intrinsic::x86_sse2_pslli_d:
+ case Intrinsic::x86_sse2_pslli_q:
+ case Intrinsic::x86_avx2_pslli_w:
+ case Intrinsic::x86_avx2_pslli_d:
+ case Intrinsic::x86_avx2_pslli_q:
+ Opcode = X86ISD::VSHLI;
+ break;
+ case Intrinsic::x86_sse2_psrli_w:
+ case Intrinsic::x86_sse2_psrli_d:
+ case Intrinsic::x86_sse2_psrli_q:
+ case Intrinsic::x86_avx2_psrli_w:
+ case Intrinsic::x86_avx2_psrli_d:
+ case Intrinsic::x86_avx2_psrli_q:
+ Opcode = X86ISD::VSRLI;
+ break;
+ case Intrinsic::x86_sse2_psrai_w:
+ case Intrinsic::x86_sse2_psrai_d:
+ case Intrinsic::x86_avx2_psrai_w:
+ case Intrinsic::x86_avx2_psrai_d:
+ Opcode = X86ISD::VSRAI;
+ break;
+ }
+ return getTargetVShiftNode(Opcode, dl, Op.getSimpleValueType(),
+ Op.getOperand(1), Op.getOperand(2), DAG);
+ }
+
+ case Intrinsic::x86_sse42_pcmpistria128:
+ case Intrinsic::x86_sse42_pcmpestria128:
+ case Intrinsic::x86_sse42_pcmpistric128:
+ case Intrinsic::x86_sse42_pcmpestric128:
+ case Intrinsic::x86_sse42_pcmpistrio128:
+ case Intrinsic::x86_sse42_pcmpestrio128:
+ case Intrinsic::x86_sse42_pcmpistris128:
+ case Intrinsic::x86_sse42_pcmpestris128:
+ case Intrinsic::x86_sse42_pcmpistriz128:
+ case Intrinsic::x86_sse42_pcmpestriz128: {
+ unsigned Opcode;
+ unsigned X86CC;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_sse42_pcmpistria128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_A;
+ break;
+ case Intrinsic::x86_sse42_pcmpestria128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_A;
+ break;
+ case Intrinsic::x86_sse42_pcmpistric128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_B;
+ break;
+ case Intrinsic::x86_sse42_pcmpestric128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_B;
+ break;
+ case Intrinsic::x86_sse42_pcmpistrio128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_O;
+ break;
+ case Intrinsic::x86_sse42_pcmpestrio128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_O;
+ break;
+ case Intrinsic::x86_sse42_pcmpistris128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_S;
+ break;
+ case Intrinsic::x86_sse42_pcmpestris128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_S;
+ break;
+ case Intrinsic::x86_sse42_pcmpistriz128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_E;
+ break;
+ case Intrinsic::x86_sse42_pcmpestriz128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_E;
+ break;
+ }
+ SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86CC, MVT::i8),
+ SDValue(PCMP.getNode(), 1));
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+
+ case Intrinsic::x86_sse42_pcmpistri128:
+ case Intrinsic::x86_sse42_pcmpestri128: {
+ unsigned Opcode;
+ if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
+ Opcode = X86ISD::PCMPISTRI;
+ else
+ Opcode = X86ISD::PCMPESTRI;
+
+ SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ return DAG.getNode(Opcode, dl, VTs, NewOps);
+ }
+ case Intrinsic::x86_fma_vfmadd_ps:
+ case Intrinsic::x86_fma_vfmadd_pd:
+ case Intrinsic::x86_fma_vfmsub_ps:
+ case Intrinsic::x86_fma_vfmsub_pd:
+ case Intrinsic::x86_fma_vfnmadd_ps:
+ case Intrinsic::x86_fma_vfnmadd_pd:
+ case Intrinsic::x86_fma_vfnmsub_ps:
+ case Intrinsic::x86_fma_vfnmsub_pd:
+ case Intrinsic::x86_fma_vfmaddsub_ps:
+ case Intrinsic::x86_fma_vfmaddsub_pd:
+ case Intrinsic::x86_fma_vfmsubadd_ps:
+ case Intrinsic::x86_fma_vfmsubadd_pd:
+ case Intrinsic::x86_fma_vfmadd_ps_256:
+ case Intrinsic::x86_fma_vfmadd_pd_256:
+ case Intrinsic::x86_fma_vfmsub_ps_256:
+ case Intrinsic::x86_fma_vfmsub_pd_256:
+ case Intrinsic::x86_fma_vfnmadd_ps_256:
+ case Intrinsic::x86_fma_vfnmadd_pd_256:
+ case Intrinsic::x86_fma_vfnmsub_ps_256:
+ case Intrinsic::x86_fma_vfnmsub_pd_256:
+ case Intrinsic::x86_fma_vfmaddsub_ps_256:
+ case Intrinsic::x86_fma_vfmaddsub_pd_256:
+ case Intrinsic::x86_fma_vfmsubadd_ps_256:
+ case Intrinsic::x86_fma_vfmsubadd_pd_256:
+ case Intrinsic::x86_fma_vfmadd_ps_512:
+ case Intrinsic::x86_fma_vfmadd_pd_512:
+ case Intrinsic::x86_fma_vfmsub_ps_512:
+ case Intrinsic::x86_fma_vfmsub_pd_512:
+ case Intrinsic::x86_fma_vfnmadd_ps_512:
+ case Intrinsic::x86_fma_vfnmadd_pd_512:
+ case Intrinsic::x86_fma_vfnmsub_ps_512:
+ case Intrinsic::x86_fma_vfnmsub_pd_512:
+ case Intrinsic::x86_fma_vfmaddsub_ps_512:
+ case Intrinsic::x86_fma_vfmaddsub_pd_512:
+ case Intrinsic::x86_fma_vfmsubadd_ps_512:
+ case Intrinsic::x86_fma_vfmsubadd_pd_512: {
+ unsigned Opc;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_fma_vfmadd_ps:
+ case Intrinsic::x86_fma_vfmadd_pd:
+ case Intrinsic::x86_fma_vfmadd_ps_256:
+ case Intrinsic::x86_fma_vfmadd_pd_256:
+ case Intrinsic::x86_fma_vfmadd_ps_512:
+ case Intrinsic::x86_fma_vfmadd_pd_512:
+ Opc = X86ISD::FMADD;
+ break;
+ case Intrinsic::x86_fma_vfmsub_ps:
+ case Intrinsic::x86_fma_vfmsub_pd:
+ case Intrinsic::x86_fma_vfmsub_ps_256:
+ case Intrinsic::x86_fma_vfmsub_pd_256:
+ case Intrinsic::x86_fma_vfmsub_ps_512:
+ case Intrinsic::x86_fma_vfmsub_pd_512:
+ Opc = X86ISD::FMSUB;
+ break;
+ case Intrinsic::x86_fma_vfnmadd_ps:
+ case Intrinsic::x86_fma_vfnmadd_pd:
+ case Intrinsic::x86_fma_vfnmadd_ps_256:
+ case Intrinsic::x86_fma_vfnmadd_pd_256:
+ case Intrinsic::x86_fma_vfnmadd_ps_512:
+ case Intrinsic::x86_fma_vfnmadd_pd_512:
+ Opc = X86ISD::FNMADD;
+ break;
+ case Intrinsic::x86_fma_vfnmsub_ps:
+ case Intrinsic::x86_fma_vfnmsub_pd:
+ case Intrinsic::x86_fma_vfnmsub_ps_256:
+ case Intrinsic::x86_fma_vfnmsub_pd_256:
+ case Intrinsic::x86_fma_vfnmsub_ps_512:
+ case Intrinsic::x86_fma_vfnmsub_pd_512:
+ Opc = X86ISD::FNMSUB;
+ break;
+ case Intrinsic::x86_fma_vfmaddsub_ps:
+ case Intrinsic::x86_fma_vfmaddsub_pd:
+ case Intrinsic::x86_fma_vfmaddsub_ps_256:
+ case Intrinsic::x86_fma_vfmaddsub_pd_256:
+ case Intrinsic::x86_fma_vfmaddsub_ps_512:
+ case Intrinsic::x86_fma_vfmaddsub_pd_512:
+ Opc = X86ISD::FMADDSUB;
+ break;
+ case Intrinsic::x86_fma_vfmsubadd_ps:
+ case Intrinsic::x86_fma_vfmsubadd_pd:
+ case Intrinsic::x86_fma_vfmsubadd_ps_256:
+ case Intrinsic::x86_fma_vfmsubadd_pd_256:
+ case Intrinsic::x86_fma_vfmsubadd_ps_512:
+ case Intrinsic::x86_fma_vfmsubadd_pd_512:
+ Opc = X86ISD::FMSUBADD;
+ break;
+ }
+
+ return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3));
+ }
+ }
+}
+
+static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Src, SDValue Mask, SDValue Base,
+ SDValue Index, SDValue ScaleOp, SDValue Chain,
+ const X86Subtarget * Subtarget) {
+ SDLoc dl(Op);
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
+ assert(C && "Invalid scale type");
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
+ EVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Index.getSimpleValueType().getVectorNumElements());
+ SDValue MaskInReg;
+ ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
+ if (MaskC)
+ MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
+ else
+ MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
+ SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ if (Src.getOpcode() == ISD::UNDEF)
+ Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
+ SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
+ SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
+ return DAG.getMergeValues(RetOps, dl);
+}
+
+static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Src, SDValue Mask, SDValue Base,
+ SDValue Index, SDValue ScaleOp, SDValue Chain) {
+ SDLoc dl(Op);
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
+ assert(C && "Invalid scale type");
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
+ SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ EVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Index.getSimpleValueType().getVectorNumElements());
+ SDValue MaskInReg;
+ ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
+ if (MaskC)
+ MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
+ else
+ MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
+ SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
+ SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
+ return SDValue(Res, 1);
+}
+
+static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Mask, SDValue Base, SDValue Index,
+ SDValue ScaleOp, SDValue Chain) {
+ SDLoc dl(Op);
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
+ assert(C && "Invalid scale type");
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
+ SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ EVT MaskVT =
+ MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
+ SDValue MaskInReg;
+ ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
+ if (MaskC)
+ MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
+ else
+ MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
+ //SDVTList VTs = DAG.getVTList(MVT::Other);
+ SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
+ return SDValue(Res, 0);
+}
+
+// getReadPerformanceCounter - Handles the lowering of builtin intrinsics that
+// read performance monitor counters (x86_rdpmc).
+static void getReadPerformanceCounter(SDNode *N, SDLoc DL,
+ SelectionDAG &DAG, const X86Subtarget *Subtarget,
+ SmallVectorImpl<SDValue> &Results) {
+ assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue LO, HI;
+
+ // The ECX register is used to select the index of the performance counter
+ // to read.
+ SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
+ N->getOperand(2));
+ SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
+
+ // Reads the content of a 64-bit performance counter and returns it in the
+ // registers EDX:EAX.
+ if (Subtarget->is64Bit()) {
+ LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
+ LO.getValue(2));
+ } else {
+ LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
+ LO.getValue(2));
+ }
+ Chain = HI.getValue(1);
+
+ if (Subtarget->is64Bit()) {
+ // The EAX register is loaded with the low-order 32 bits. The EDX register
+ // is loaded with the supported high-order bits of the counter.
+ SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
+ DAG.getConstant(32, MVT::i8));
+ Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
+ Results.push_back(Chain);
+ return;
+ }
+
+ // Use a buildpair to merge the two 32-bit values into a 64-bit one.
+ SDValue Ops[] = { LO, HI };
+ SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
+ Results.push_back(Pair);
+ Results.push_back(Chain);
+}
+
+// getReadTimeStampCounter - Handles the lowering of builtin intrinsics that
+// read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is
+// also used to custom lower READCYCLECOUNTER nodes.
+static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode,
+ SelectionDAG &DAG, const X86Subtarget *Subtarget,
+ SmallVectorImpl<SDValue> &Results) {
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
+ SDValue LO, HI;
+
+ // The processor's time-stamp counter (a 64-bit MSR) is stored into the
+ // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
+ // and the EAX register is loaded with the low-order 32 bits.
+ if (Subtarget->is64Bit()) {
+ LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
+ LO.getValue(2));
+ } else {
+ LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
+ LO.getValue(2));
+ }
+ SDValue Chain = HI.getValue(1);
+
+ if (Opcode == X86ISD::RDTSCP_DAG) {
+ assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
+
+ // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
+ // the ECX register. Add 'ecx' explicitly to the chain.
+ SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
+ HI.getValue(2));
+ // Explicitly store the content of ECX at the location passed in input
+ // to the 'rdtscp' intrinsic.
+ Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
+ MachinePointerInfo(), false, false, 0);
+ }
+
+ if (Subtarget->is64Bit()) {
+ // The EDX register is loaded with the high-order 32 bits of the MSR, and
+ // the EAX register is loaded with the low-order 32 bits.
+ SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
+ DAG.getConstant(32, MVT::i8));
+ Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
+ Results.push_back(Chain);
+ return;
+ }
+
+ // Use a buildpair to merge the two 32-bit values into a 64-bit one.
+ SDValue Ops[] = { LO, HI };
+ SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
+ Results.push_back(Pair);
+ Results.push_back(Chain);
+}
+
+static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SmallVector<SDValue, 2> Results;
+ SDLoc DL(Op);
+ getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
+ Results);
+ return DAG.getMergeValues(Results, DL);
+}
+
+enum IntrinsicType {
+ GATHER, SCATTER, PREFETCH, RDSEED, RDRAND, RDPMC, RDTSC, XTEST
+};
+
+struct IntrinsicData {
+ IntrinsicData(IntrinsicType IType, unsigned IOpc0, unsigned IOpc1)
+ :Type(IType), Opc0(IOpc0), Opc1(IOpc1) {}
+ IntrinsicType Type;
+ unsigned Opc0;
+ unsigned Opc1;
+};
+
+std::map < unsigned, IntrinsicData> IntrMap;
+static void InitIntinsicsMap() {
+ static bool Initialized = false;
+ if (Initialized)
+ return;
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qps_512,
+ IntrinsicData(GATHER, X86::VGATHERQPSZrm, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qps_512,
+ IntrinsicData(GATHER, X86::VGATHERQPSZrm, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpd_512,
+ IntrinsicData(GATHER, X86::VGATHERQPDZrm, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpd_512,
+ IntrinsicData(GATHER, X86::VGATHERDPDZrm, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dps_512,
+ IntrinsicData(GATHER, X86::VGATHERDPSZrm, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpi_512,
+ IntrinsicData(GATHER, X86::VPGATHERQDZrm, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpq_512,
+ IntrinsicData(GATHER, X86::VPGATHERQQZrm, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpi_512,
+ IntrinsicData(GATHER, X86::VPGATHERDDZrm, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpq_512,
+ IntrinsicData(GATHER, X86::VPGATHERDQZrm, 0)));
+
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qps_512,
+ IntrinsicData(SCATTER, X86::VSCATTERQPSZmr, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpd_512,
+ IntrinsicData(SCATTER, X86::VSCATTERQPDZmr, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpd_512,
+ IntrinsicData(SCATTER, X86::VSCATTERDPDZmr, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dps_512,
+ IntrinsicData(SCATTER, X86::VSCATTERDPSZmr, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpi_512,
+ IntrinsicData(SCATTER, X86::VPSCATTERQDZmr, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpq_512,
+ IntrinsicData(SCATTER, X86::VPSCATTERQQZmr, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpi_512,
+ IntrinsicData(SCATTER, X86::VPSCATTERDDZmr, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpq_512,
+ IntrinsicData(SCATTER, X86::VPSCATTERDQZmr, 0)));
+
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_qps_512,
+ IntrinsicData(PREFETCH, X86::VGATHERPF0QPSm,
+ X86::VGATHERPF1QPSm)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_qpd_512,
+ IntrinsicData(PREFETCH, X86::VGATHERPF0QPDm,
+ X86::VGATHERPF1QPDm)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_dpd_512,
+ IntrinsicData(PREFETCH, X86::VGATHERPF0DPDm,
+ X86::VGATHERPF1DPDm)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_dps_512,
+ IntrinsicData(PREFETCH, X86::VGATHERPF0DPSm,
+ X86::VGATHERPF1DPSm)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_qps_512,
+ IntrinsicData(PREFETCH, X86::VSCATTERPF0QPSm,
+ X86::VSCATTERPF1QPSm)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_qpd_512,
+ IntrinsicData(PREFETCH, X86::VSCATTERPF0QPDm,
+ X86::VSCATTERPF1QPDm)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_dpd_512,
+ IntrinsicData(PREFETCH, X86::VSCATTERPF0DPDm,
+ X86::VSCATTERPF1DPDm)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_dps_512,
+ IntrinsicData(PREFETCH, X86::VSCATTERPF0DPSm,
+ X86::VSCATTERPF1DPSm)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_16,
+ IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_32,
+ IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_64,
+ IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_16,
+ IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_32,
+ IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_64,
+ IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_xtest,
+ IntrinsicData(XTEST, X86ISD::XTEST, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_rdtsc,
+ IntrinsicData(RDTSC, X86ISD::RDTSC_DAG, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_rdtscp,
+ IntrinsicData(RDTSC, X86ISD::RDTSCP_DAG, 0)));
+ IntrMap.insert(std::make_pair(Intrinsic::x86_rdpmc,
+ IntrinsicData(RDPMC, X86ISD::RDPMC_DAG, 0)));
+ Initialized = true;
+}
+
+static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ InitIntinsicsMap();
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ std::map < unsigned, IntrinsicData>::const_iterator itr = IntrMap.find(IntNo);
+ if (itr == IntrMap.end())
+ return SDValue();
+
+ SDLoc dl(Op);
+ IntrinsicData Intr = itr->second;
+ switch(Intr.Type) {
+ case RDSEED:
+ case RDRAND: {
+ // Emit the node with the right value type.
+ SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
+ SDValue Result = DAG.getNode(Intr.Opc0, dl, VTs, Op.getOperand(0));
+
+ // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
+ // Otherwise return the value from Rand, which is always 0, casted to i32.
+ SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
+ DAG.getConstant(1, Op->getValueType(1)),
+ DAG.getConstant(X86::COND_B, MVT::i32),
+ SDValue(Result.getNode(), 1) };
+ SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
+ DAG.getVTList(Op->getValueType(1), MVT::Glue),
+ Ops);
+
+ // Return { result, isValid, chain }.
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
+ SDValue(Result.getNode(), 2));
+ }
+ case GATHER: {
+ //gather(v1, mask, index, base, scale);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Src = Op.getOperand(2);
+ SDValue Base = Op.getOperand(3);
+ SDValue Index = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+ SDValue Scale = Op.getOperand(6);
+ return getGatherNode(Intr.Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
+ Subtarget);
+ }
+ case SCATTER: {
+ //scatter(base, mask, index, v1, scale);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Base = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ SDValue Index = Op.getOperand(4);
+ SDValue Src = Op.getOperand(5);
+ SDValue Scale = Op.getOperand(6);
+ return getScatterNode(Intr.Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
+ }
+ case PREFETCH: {
+ SDValue Hint = Op.getOperand(6);
+ unsigned HintVal;
+ if (dyn_cast<ConstantSDNode> (Hint) == nullptr ||
+ (HintVal = dyn_cast<ConstantSDNode> (Hint)->getZExtValue()) > 1)
+ llvm_unreachable("Wrong prefetch hint in intrinsic: should be 0 or 1");
+ unsigned Opcode = (HintVal ? Intr.Opc1 : Intr.Opc0);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Mask = Op.getOperand(2);
+ SDValue Index = Op.getOperand(3);
+ SDValue Base = Op.getOperand(4);
+ SDValue Scale = Op.getOperand(5);
+ return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain);
+ }
+ // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
+ case RDTSC: {
+ SmallVector<SDValue, 2> Results;
+ getReadTimeStampCounter(Op.getNode(), dl, Intr.Opc0, DAG, Subtarget, Results);
+ return DAG.getMergeValues(Results, dl);
+ }
+ // Read Performance Monitoring Counters.
+ case RDPMC: {
+ SmallVector<SDValue, 2> Results;
+ getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
+ return DAG.getMergeValues(Results, dl);
+ }
+ // XTEST intrinsics.
+ case XTEST: {
+ SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
+ SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86::COND_NE, MVT::i8),
+ InTrans);
+ SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
+ Ret, SDValue(InTrans.getNode(), 1));
+ }
+ }
+ llvm_unreachable("Unknown Intrinsic Type");
+}
+
+SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDLoc dl(Op);
+ EVT PtrVT = getPointerTy();
+
+ if (Depth > 0) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
+ return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, PtrVT,
+ FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Just load the return address.
+ SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
+ return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
+ RetAddrFI, MachinePointerInfo(), false, false, false, 0);
+}
+
+SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op); // FIXME probably not meaningful
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
+ assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
+ (FrameReg == X86::EBP && VT == MVT::i32)) &&
+ "Invalid Frame Register!");
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ return FrameAddr;
+}
+
+// FIXME? Maybe this could be a TableGen attribute on some registers and
+// this table could be generated automatically from RegInfo.
+unsigned X86TargetLowering::getRegisterByName(const char* RegName,
+ EVT VT) const {
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("esp", X86::ESP)
+ .Case("rsp", X86::RSP)
+ .Default(0);
+ if (Reg)
+ return Reg;
+ report_fatal_error("Invalid register name global variable");
+}
+
+SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
+ SelectionDAG &DAG) const {
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
+}
+
+SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Offset = Op.getOperand(1);
+ SDValue Handler = Op.getOperand(2);
+ SDLoc dl (Op);
+
+ EVT PtrVT = getPointerTy();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
+ assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
+ (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
+ "Invalid Frame Register!");
+ SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
+ unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
+
+ SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
+ DAG.getIntPtrConstant(RegInfo->getSlotSize()));
+ StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
+ Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
+ false, false, 0);
+ Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
+
+ return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
+ DAG.getRegister(StoreAddrReg, PtrVT));
+}
+
+SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
+ DAG.getVTList(MVT::i32, MVT::Other),
+ Op.getOperand(0), Op.getOperand(1));
+}
+
+SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
+ Op.getOperand(0), Op.getOperand(1));
+}
+
+static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
+ return Op.getOperand(0);
+}
+
+SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Root = Op.getOperand(0);
+ SDValue Trmp = Op.getOperand(1); // trampoline
+ SDValue FPtr = Op.getOperand(2); // nested function
+ SDValue Nest = Op.getOperand(3); // 'nest' parameter value
+ SDLoc dl (Op);
+
+ const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+ const TargetRegisterInfo* TRI = DAG.getTarget().getRegisterInfo();
+
+ if (Subtarget->is64Bit()) {
+ SDValue OutChains[6];
+
+ // Large code-model.
+ const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
+ const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
+
+ const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
+ const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
+
+ const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
+
+ // Load the pointer to the nested function into R11.
+ unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
+ SDValue Addr = Trmp;
+ OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
+ Addr, MachinePointerInfo(TrmpAddr),
+ false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(2, MVT::i64));
+ OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
+ MachinePointerInfo(TrmpAddr, 2),
+ false, false, 2);
+
+ // Load the 'nest' parameter value into R10.
+ // R10 is specified in X86CallingConv.td
+ OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(10, MVT::i64));
+ OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
+ Addr, MachinePointerInfo(TrmpAddr, 10),
+ false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(12, MVT::i64));
+ OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
+ MachinePointerInfo(TrmpAddr, 12),
+ false, false, 2);
+
+ // Jump to the nested function.
+ OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(20, MVT::i64));
+ OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
+ Addr, MachinePointerInfo(TrmpAddr, 20),
+ false, false, 0);
+
+ unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(22, MVT::i64));
+ OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
+ MachinePointerInfo(TrmpAddr, 22),
+ false, false, 0);
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+ } else {
+ const Function *Func =
+ cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
+ CallingConv::ID CC = Func->getCallingConv();
+ unsigned NestReg;
+
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::C:
+ case CallingConv::X86_StdCall: {
+ // Pass 'nest' parameter in ECX.
+ // Must be kept in sync with X86CallingConv.td
+ NestReg = X86::ECX;
+
+ // Check that ECX wasn't needed by an 'inreg' parameter.
+ FunctionType *FTy = Func->getFunctionType();
+ const AttributeSet &Attrs = Func->getAttributes();
+
+ if (!Attrs.isEmpty() && !Func->isVarArg()) {
+ unsigned InRegCount = 0;
+ unsigned Idx = 1;
+
+ for (FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end(); I != E; ++I, ++Idx)
+ if (Attrs.hasAttribute(Idx, Attribute::InReg))
+ // FIXME: should only count parameters that are lowered to integers.
+ InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
+
+ if (InRegCount > 2) {
+ report_fatal_error("Nest register in use - reduce number of inreg"
+ " parameters!");
+ }
+ }
+ break;
+ }
+ case CallingConv::X86_FastCall:
+ case CallingConv::X86_ThisCall:
+ case CallingConv::Fast:
+ // Pass 'nest' parameter in EAX.
+ // Must be kept in sync with X86CallingConv.td
+ NestReg = X86::EAX;
+ break;
+ }
+
+ SDValue OutChains[4];
+ SDValue Addr, Disp;
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(10, MVT::i32));
+ Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
+
+ // This is storing the opcode for MOV32ri.
+ const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
+ const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
+ OutChains[0] = DAG.getStore(Root, dl,
+ DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
+ Trmp, MachinePointerInfo(TrmpAddr),
+ false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(1, MVT::i32));
+ OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
+ MachinePointerInfo(TrmpAddr, 1),
+ false, false, 1);
+
+ const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(5, MVT::i32));
+ OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
+ MachinePointerInfo(TrmpAddr, 5),
+ false, false, 1);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(6, MVT::i32));
+ OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
+ MachinePointerInfo(TrmpAddr, 6),
+ false, false, 1);
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+ }
+}
+
+SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
+ SelectionDAG &DAG) const {
+ /*
+ The rounding mode is in bits 11:10 of FPSR, and has the following
+ settings:
+ 00 Round to nearest
+ 01 Round to -inf
+ 10 Round to +inf
+ 11 Round to 0
+
+ FLT_ROUNDS, on the other hand, expects the following:
+ -1 Undefined
+ 0 Round to 0
+ 1 Round to nearest
+ 2 Round to +inf
+ 3 Round to -inf
+
+ To perform the conversion, we do:
+ (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
+ */
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetMachine &TM = MF.getTarget();
+ const TargetFrameLowering &TFI = *TM.getFrameLowering();
+ unsigned StackAlignment = TFI.getStackAlignment();
+ MVT VT = Op.getSimpleValueType();
+ SDLoc DL(Op);
+
+ // Save FP Control Word to stack slot
+ int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
+ MachineMemOperand::MOStore, 2, 2);
+
+ SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
+ SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
+ DAG.getVTList(MVT::Other),
+ Ops, MVT::i16, MMO);
+
+ // Load FP Control Word from stack slot
+ SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
+ MachinePointerInfo(), false, false, false, 0);
+
+ // Transform as necessary
+ SDValue CWD1 =
+ DAG.getNode(ISD::SRL, DL, MVT::i16,
+ DAG.getNode(ISD::AND, DL, MVT::i16,
+ CWD, DAG.getConstant(0x800, MVT::i16)),
+ DAG.getConstant(11, MVT::i8));
+ SDValue CWD2 =
+ DAG.getNode(ISD::SRL, DL, MVT::i16,
+ DAG.getNode(ISD::AND, DL, MVT::i16,
+ CWD, DAG.getConstant(0x400, MVT::i16)),
+ DAG.getConstant(9, MVT::i8));
+
+ SDValue RetVal =
+ DAG.getNode(ISD::AND, DL, MVT::i16,
+ DAG.getNode(ISD::ADD, DL, MVT::i16,
+ DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
+ DAG.getConstant(1, MVT::i16)),
+ DAG.getConstant(3, MVT::i16));
+
+ return DAG.getNode((VT.getSizeInBits() < 16 ?
+ ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
+}
+
+static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ EVT OpVT = VT;
+ unsigned NumBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+
+ Op = Op.getOperand(0);
+ if (VT == MVT::i8) {
+ // Zero extend to i32 since there is not an i8 bsr.
+ OpVT = MVT::i32;
+ Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
+ }
+
+ // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
+ Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
+
+ // If src is zero (i.e. bsr sets ZF), returns NumBits.
+ SDValue Ops[] = {
+ Op,
+ DAG.getConstant(NumBits+NumBits-1, OpVT),
+ DAG.getConstant(X86::COND_E, MVT::i8),
+ Op.getValue(1)
+ };
+ Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
+
+ // Finally xor with NumBits-1.
+ Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
+
+ if (VT == MVT::i8)
+ Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
+ return Op;
+}
+
+static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ EVT OpVT = VT;
+ unsigned NumBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+
+ Op = Op.getOperand(0);
+ if (VT == MVT::i8) {
+ // Zero extend to i32 since there is not an i8 bsr.
+ OpVT = MVT::i32;
+ Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
+ }
+
+ // Issue a bsr (scan bits in reverse).
+ SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
+ Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
+
+ // And xor with NumBits-1.
+ Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
+
+ if (VT == MVT::i8)
+ Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
+ return Op;
+}
+
+static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ unsigned NumBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ Op = Op.getOperand(0);
+
+ // Issue a bsf (scan bits forward) which also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+ Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
+
+ // If src is zero (i.e. bsf sets ZF), returns NumBits.
+ SDValue Ops[] = {
+ Op,
+ DAG.getConstant(NumBits, VT),
+ DAG.getConstant(X86::COND_E, MVT::i8),
+ Op.getValue(1)
+ };
+ return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
+}
+
+// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
+// ones, and then concatenate the result back.
+static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ assert(VT.is256BitVector() && VT.isInteger() &&
+ "Unsupported value type for operation");
+
+ unsigned NumElems = VT.getVectorNumElements();
+ SDLoc dl(Op);
+
+ // Extract the LHS vectors
+ SDValue LHS = Op.getOperand(0);
+ SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
+ SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
+
+ // Extract the RHS vectors
+ SDValue RHS = Op.getOperand(1);
+ SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
+ SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
+
+ MVT EltVT = VT.getVectorElementType();
+ MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
+}
+
+static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
+ assert(Op.getSimpleValueType().is256BitVector() &&
+ Op.getSimpleValueType().isInteger() &&
+ "Only handle AVX 256-bit vector integer operation");
+ return Lower256IntArith(Op, DAG);
+}
+
+static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
+ assert(Op.getSimpleValueType().is256BitVector() &&
+ Op.getSimpleValueType().isInteger() &&
+ "Only handle AVX 256-bit vector integer operation");
+ return Lower256IntArith(Op, DAG);
+}
+
+static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ // Decompose 256-bit ops into smaller 128-bit ops.
+ if (VT.is256BitVector() && !Subtarget->hasInt256())
+ return Lower256IntArith(Op, DAG);
+
+ SDValue A = Op.getOperand(0);
+ SDValue B = Op.getOperand(1);
+
+ // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
+ if (VT == MVT::v4i32) {
+ assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
+ "Should not custom lower when pmuldq is available!");
+
+ // Extract the odd parts.
+ static const int UnpackMask[] = { 1, -1, 3, -1 };
+ SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
+ SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
+
+ // Multiply the even parts.
+ SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
+ // Now multiply odd parts.
+ SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
+
+ Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
+ Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
+
+ // Merge the two vectors back together with a shuffle. This expands into 2
+ // shuffles.
+ static const int ShufMask[] = { 0, 4, 2, 6 };
+ return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
+ }
+
+ assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
+ "Only know how to lower V2I64/V4I64/V8I64 multiply");
+
+ // Ahi = psrlqi(a, 32);
+ // Bhi = psrlqi(b, 32);
+ //
+ // AloBlo = pmuludq(a, b);
+ // AloBhi = pmuludq(a, Bhi);
+ // AhiBlo = pmuludq(Ahi, b);
+
+ // AloBhi = psllqi(AloBhi, 32);
+ // AhiBlo = psllqi(AhiBlo, 32);
+ // return AloBlo + AloBhi + AhiBlo;
+
+ SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
+ SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
+
+ // Bit cast to 32-bit vectors for MULUDQ
+ EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
+ (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
+ A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
+ B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
+ Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
+ Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
+
+ SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
+ SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
+ SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
+
+ AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
+ AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
+
+ SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
+ return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
+}
+
+SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetWin64() && "Unexpected target");
+ EVT VT = Op.getValueType();
+ assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
+ "Unexpected return type for lowering");
+
+ RTLIB::Libcall LC;
+ bool isSigned;
+ switch (Op->getOpcode()) {
+ default: llvm_unreachable("Unexpected request for libcall!");
+ case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break;
+ case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break;
+ case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break;
+ case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break;
+ case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break;
+ case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break;
+ }
+
+ SDLoc dl(Op);
+ SDValue InChain = DAG.getEntryNode();
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
+ EVT ArgVT = Op->getOperand(i).getValueType();
+ assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
+ "Unexpected argument type for lowering");
+ SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
+ Entry.Node = StackPtr;
+ InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(),
+ false, false, 16);
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+ Entry.Ty = PointerType::get(ArgTy,0);
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Args.push_back(Entry);
+ }
+
+ SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
+ getPointerTy());
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(InChain)
+ .setCallee(getLibcallCallingConv(LC),
+ static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()),
+ Callee, std::move(Args), 0)
+ .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
+
+ std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
+ return DAG.getNode(ISD::BITCAST, dl, VT, CallInfo.first);
+}
+
+static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
+ EVT VT = Op0.getValueType();
+ SDLoc dl(Op);
+
+ assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) ||
+ (VT == MVT::v8i32 && Subtarget->hasInt256()));
+
+ // PMULxD operations multiply each even value (starting at 0) of LHS with
+ // the related value of RHS and produce a widen result.
+ // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
+ // => <2 x i64> <ae|cg>
+ //
+ // In other word, to have all the results, we need to perform two PMULxD:
+ // 1. one with the even values.
+ // 2. one with the odd values.
+ // To achieve #2, with need to place the odd values at an even position.
+ //
+ // Place the odd value at an even position (basically, shift all values 1
+ // step to the left):
+ const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1};
+ // <a|b|c|d> => <b|undef|d|undef>
+ SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask);
+ // <e|f|g|h> => <f|undef|h|undef>
+ SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask);
+
+ // Emit two multiplies, one for the lower 2 ints and one for the higher 2
+ // ints.
+ MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64;
+ bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
+ unsigned Opcode =
+ (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
+ // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
+ // => <2 x i64> <ae|cg>
+ SDValue Mul1 = DAG.getNode(ISD::BITCAST, dl, VT,
+ DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
+ // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
+ // => <2 x i64> <bf|dh>
+ SDValue Mul2 = DAG.getNode(ISD::BITCAST, dl, VT,
+ DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
+
+ // Shuffle it back into the right order.
+ // The internal representation is big endian.
+ // In other words, a i64 bitcasted to 2 x i32 has its high part at index 0
+ // and its low part at index 1.
+ // Moreover, we have: Mul1 = <ae|cg> ; Mul2 = <bf|dh>
+ // Vector index 0 1 ; 2 3
+ // We want <ae|bf|cg|dh>
+ // Vector index 0 2 1 3
+ // Since each element is seen as 2 x i32, we get:
+ // high_mask[i] = 2 x vector_index[i]
+ // low_mask[i] = 2 x vector_index[i] + 1
+ // where vector_index = {0, Size/2, 1, Size/2 + 1, ...,
+ // Size/2 - 1, Size/2 + Size/2 - 1}
+ // where Size is the number of element of the final vector.
+ SDValue Highs, Lows;
+ if (VT == MVT::v8i32) {
+ const int HighMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
+ Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
+ const int LowMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
+ Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
+ } else {
+ const int HighMask[] = {0, 4, 2, 6};
+ Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
+ const int LowMask[] = {1, 5, 3, 7};
+ Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
+ }
+
+ // If we have a signed multiply but no PMULDQ fix up the high parts of a
+ // unsigned multiply.
+ if (IsSigned && !Subtarget->hasSSE41()) {
+ SDValue ShAmt =
+ DAG.getConstant(31, DAG.getTargetLoweringInfo().getShiftAmountTy(VT));
+ SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
+ SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
+
+ SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
+ Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
+ }
+
+ // The low part of a MUL_LOHI is supposed to be the first value and the
+ // high part the second value.
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getValueType(), Lows, Highs);
+}
+
+static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ SDValue R = Op.getOperand(0);
+ SDValue Amt = Op.getOperand(1);
+
+ // Optimize shl/srl/sra with constant shift amount.
+ if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
+ if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
+ uint64_t ShiftAmt = ShiftConst->getZExtValue();
+
+ if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
+ (Subtarget->hasInt256() &&
+ (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
+ (Subtarget->hasAVX512() &&
+ (VT == MVT::v8i64 || VT == MVT::v16i32))) {
+ if (Op.getOpcode() == ISD::SHL)
+ return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
+ DAG);
+ if (Op.getOpcode() == ISD::SRL)
+ return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
+ DAG);
+ if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
+ return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
+ DAG);
+ }
+
+ if (VT == MVT::v16i8) {
+ if (Op.getOpcode() == ISD::SHL) {
+ // Make a large shift.
+ SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
+ MVT::v8i16, R, ShiftAmt,
+ DAG);
+ SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
+ // Zero out the rightmost bits.
+ SmallVector<SDValue, 16> V(16,
+ DAG.getConstant(uint8_t(-1U << ShiftAmt),
+ MVT::i8));
+ return DAG.getNode(ISD::AND, dl, VT, SHL,
+ DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
+ }
+ if (Op.getOpcode() == ISD::SRL) {
+ // Make a large shift.
+ SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
+ MVT::v8i16, R, ShiftAmt,
+ DAG);
+ SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
+ // Zero out the leftmost bits.
+ SmallVector<SDValue, 16> V(16,
+ DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
+ MVT::i8));
+ return DAG.getNode(ISD::AND, dl, VT, SRL,
+ DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
+ }
+ if (Op.getOpcode() == ISD::SRA) {
+ if (ShiftAmt == 7) {
+ // R s>> 7 === R s< 0
+ SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
+ return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
+ }
+
+ // R s>> a === ((R u>> a) ^ m) - m
+ SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
+ SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
+ MVT::i8));
+ SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
+ Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
+ Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
+ return Res;
+ }
+ llvm_unreachable("Unknown shift opcode.");
+ }
+
+ if (Subtarget->hasInt256() && VT == MVT::v32i8) {
+ if (Op.getOpcode() == ISD::SHL) {
+ // Make a large shift.
+ SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
+ MVT::v16i16, R, ShiftAmt,
+ DAG);
+ SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
+ // Zero out the rightmost bits.
+ SmallVector<SDValue, 32> V(32,
+ DAG.getConstant(uint8_t(-1U << ShiftAmt),
+ MVT::i8));
+ return DAG.getNode(ISD::AND, dl, VT, SHL,
+ DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
+ }
+ if (Op.getOpcode() == ISD::SRL) {
+ // Make a large shift.
+ SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
+ MVT::v16i16, R, ShiftAmt,
+ DAG);
+ SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
+ // Zero out the leftmost bits.
+ SmallVector<SDValue, 32> V(32,
+ DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
+ MVT::i8));
+ return DAG.getNode(ISD::AND, dl, VT, SRL,
+ DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
+ }
+ if (Op.getOpcode() == ISD::SRA) {
+ if (ShiftAmt == 7) {
+ // R s>> 7 === R s< 0
+ SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
+ return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
+ }
+
+ // R s>> a === ((R u>> a) ^ m) - m
+ SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
+ SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
+ MVT::i8));
+ SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
+ Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
+ Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
+ return Res;
+ }
+ llvm_unreachable("Unknown shift opcode.");
+ }
+ }
+ }
+
+ // Special case in 32-bit mode, where i64 is expanded into high and low parts.
+ if (!Subtarget->is64Bit() &&
+ (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
+ Amt.getOpcode() == ISD::BITCAST &&
+ Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
+ Amt = Amt.getOperand(0);
+ unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
+ VT.getVectorNumElements();
+ unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
+ uint64_t ShiftAmt = 0;
+ for (unsigned i = 0; i != Ratio; ++i) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
+ if (!C)
+ return SDValue();
+ // 6 == Log2(64)
+ ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
+ }
+ // Check remaining shift amounts.
+ for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
+ uint64_t ShAmt = 0;
+ for (unsigned j = 0; j != Ratio; ++j) {
+ ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
+ if (!C)
+ return SDValue();
+ // 6 == Log2(64)
+ ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
+ }
+ if (ShAmt != ShiftAmt)
+ return SDValue();
+ }
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Unknown shift opcode!");
+ case ISD::SHL:
+ return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
+ DAG);
+ case ISD::SRL:
+ return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
+ DAG);
+ case ISD::SRA:
+ return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
+ DAG);
+ }
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget* Subtarget) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ SDValue R = Op.getOperand(0);
+ SDValue Amt = Op.getOperand(1);
+
+ if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
+ VT == MVT::v4i32 || VT == MVT::v8i16 ||
+ (Subtarget->hasInt256() &&
+ ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
+ VT == MVT::v8i32 || VT == MVT::v16i16)) ||
+ (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
+ SDValue BaseShAmt;
+ EVT EltVT = VT.getVectorElementType();
+
+ if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned i, j;
+ for (i = 0; i != NumElts; ++i) {
+ if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
+ continue;
+ break;
+ }
+ for (j = i; j != NumElts; ++j) {
+ SDValue Arg = Amt.getOperand(j);
+ if (Arg.getOpcode() == ISD::UNDEF) continue;
+ if (Arg != Amt.getOperand(i))
+ break;
+ }
+ if (i != NumElts && j == NumElts)
+ BaseShAmt = Amt.getOperand(i);
+ } else {
+ if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
+ Amt = Amt.getOperand(0);
+ if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
+ cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
+ SDValue InVec = Amt.getOperand(0);
+ if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
+ unsigned NumElts = InVec.getValueType().getVectorNumElements();
+ unsigned i = 0;
+ for (; i != NumElts; ++i) {
+ SDValue Arg = InVec.getOperand(i);
+ if (Arg.getOpcode() == ISD::UNDEF) continue;
+ BaseShAmt = Arg;
+ break;
+ }
+ } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
+ if (ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
+ unsigned SplatIdx =
+ cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
+ if (C->getZExtValue() == SplatIdx)
+ BaseShAmt = InVec.getOperand(1);
+ }
+ }
+ if (!BaseShAmt.getNode())
+ BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
+ DAG.getIntPtrConstant(0));
+ }
+ }
+
+ if (BaseShAmt.getNode()) {
+ if (EltVT.bitsGT(MVT::i32))
+ BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
+ else if (EltVT.bitsLT(MVT::i32))
+ BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
+
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Unknown shift opcode!");
+ case ISD::SHL:
+ switch (VT.SimpleTy) {
+ default: return SDValue();
+ case MVT::v2i64:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v4i64:
+ case MVT::v8i32:
+ case MVT::v16i16:
+ case MVT::v16i32:
+ case MVT::v8i64:
+ return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
+ }
+ case ISD::SRA:
+ switch (VT.SimpleTy) {
+ default: return SDValue();
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v8i32:
+ case MVT::v16i16:
+ case MVT::v16i32:
+ case MVT::v8i64:
+ return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
+ }
+ case ISD::SRL:
+ switch (VT.SimpleTy) {
+ default: return SDValue();
+ case MVT::v2i64:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v4i64:
+ case MVT::v8i32:
+ case MVT::v16i16:
+ case MVT::v16i32:
+ case MVT::v8i64:
+ return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
+ }
+ }
+ }
+ }
+
+ // Special case in 32-bit mode, where i64 is expanded into high and low parts.
+ if (!Subtarget->is64Bit() &&
+ (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
+ (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
+ Amt.getOpcode() == ISD::BITCAST &&
+ Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
+ Amt = Amt.getOperand(0);
+ unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
+ VT.getVectorNumElements();
+ std::vector<SDValue> Vals(Ratio);
+ for (unsigned i = 0; i != Ratio; ++i)
+ Vals[i] = Amt.getOperand(i);
+ for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
+ for (unsigned j = 0; j != Ratio; ++j)
+ if (Vals[j] != Amt.getOperand(i + j))
+ return SDValue();
+ }
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Unknown shift opcode!");
+ case ISD::SHL:
+ return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
+ case ISD::SRL:
+ return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
+ case ISD::SRA:
+ return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
+ }
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ SDValue R = Op.getOperand(0);
+ SDValue Amt = Op.getOperand(1);
+ SDValue V;
+
+ assert(VT.isVector() && "Custom lowering only for vector shifts!");
+ assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!");
+
+ V = LowerScalarImmediateShift(Op, DAG, Subtarget);
+ if (V.getNode())
+ return V;
+
+ V = LowerScalarVariableShift(Op, DAG, Subtarget);
+ if (V.getNode())
+ return V;
+
+ if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
+ return Op;
+ // AVX2 has VPSLLV/VPSRAV/VPSRLV.
+ if (Subtarget->hasInt256()) {
+ if (Op.getOpcode() == ISD::SRL &&
+ (VT == MVT::v2i64 || VT == MVT::v4i32 ||
+ VT == MVT::v4i64 || VT == MVT::v8i32))
+ return Op;
+ if (Op.getOpcode() == ISD::SHL &&
+ (VT == MVT::v2i64 || VT == MVT::v4i32 ||
+ VT == MVT::v4i64 || VT == MVT::v8i32))
+ return Op;
+ if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
+ return Op;
+ }
+
+ // If possible, lower this packed shift into a vector multiply instead of
+ // expanding it into a sequence of scalar shifts.
+ // Do this only if the vector shift count is a constant build_vector.
+ if (Op.getOpcode() == ISD::SHL &&
+ (VT == MVT::v8i16 || VT == MVT::v4i32 ||
+ (Subtarget->hasInt256() && VT == MVT::v16i16)) &&
+ ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
+ SmallVector<SDValue, 8> Elts;
+ EVT SVT = VT.getScalarType();
+ unsigned SVTBits = SVT.getSizeInBits();
+ const APInt &One = APInt(SVTBits, 1);
+ unsigned NumElems = VT.getVectorNumElements();
+
+ for (unsigned i=0; i !=NumElems; ++i) {
+ SDValue Op = Amt->getOperand(i);
+ if (Op->getOpcode() == ISD::UNDEF) {
+ Elts.push_back(Op);
+ continue;
+ }
+
+ ConstantSDNode *ND = cast<ConstantSDNode>(Op);
+ const APInt &C = APInt(SVTBits, ND->getAPIntValue().getZExtValue());
+ uint64_t ShAmt = C.getZExtValue();
+ if (ShAmt >= SVTBits) {
+ Elts.push_back(DAG.getUNDEF(SVT));
+ continue;
+ }
+ Elts.push_back(DAG.getConstant(One.shl(ShAmt), SVT));
+ }
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
+ return DAG.getNode(ISD::MUL, dl, VT, R, BV);
+ }
+
+ // Lower SHL with variable shift amount.
+ if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
+ Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
+
+ Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
+ Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
+ Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
+ return DAG.getNode(ISD::MUL, dl, VT, Op, R);
+ }
+
+ // If possible, lower this shift as a sequence of two shifts by
+ // constant plus a MOVSS/MOVSD instead of scalarizing it.
+ // Example:
+ // (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
+ //
+ // Could be rewritten as:
+ // (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
+ //
+ // The advantage is that the two shifts from the example would be
+ // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
+ // the vector shift into four scalar shifts plus four pairs of vector
+ // insert/extract.
+ if ((VT == MVT::v8i16 || VT == MVT::v4i32) &&
+ ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
+ unsigned TargetOpcode = X86ISD::MOVSS;
+ bool CanBeSimplified;
+ // The splat value for the first packed shift (the 'X' from the example).
+ SDValue Amt1 = Amt->getOperand(0);
+ // The splat value for the second packed shift (the 'Y' from the example).
+ SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) :
+ Amt->getOperand(2);
+
+ // See if it is possible to replace this node with a sequence of
+ // two shifts followed by a MOVSS/MOVSD
+ if (VT == MVT::v4i32) {
+ // Check if it is legal to use a MOVSS.
+ CanBeSimplified = Amt2 == Amt->getOperand(2) &&
+ Amt2 == Amt->getOperand(3);
+ if (!CanBeSimplified) {
+ // Otherwise, check if we can still simplify this node using a MOVSD.
+ CanBeSimplified = Amt1 == Amt->getOperand(1) &&
+ Amt->getOperand(2) == Amt->getOperand(3);
+ TargetOpcode = X86ISD::MOVSD;
+ Amt2 = Amt->getOperand(2);
+ }
+ } else {
+ // Do similar checks for the case where the machine value type
+ // is MVT::v8i16.
+ CanBeSimplified = Amt1 == Amt->getOperand(1);
+ for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
+ CanBeSimplified = Amt2 == Amt->getOperand(i);
+
+ if (!CanBeSimplified) {
+ TargetOpcode = X86ISD::MOVSD;
+ CanBeSimplified = true;
+ Amt2 = Amt->getOperand(4);
+ for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
+ CanBeSimplified = Amt1 == Amt->getOperand(i);
+ for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
+ CanBeSimplified = Amt2 == Amt->getOperand(j);
+ }
+ }
+
+ if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
+ isa<ConstantSDNode>(Amt2)) {
+ // Replace this node with two shifts followed by a MOVSS/MOVSD.
+ EVT CastVT = MVT::v4i32;
+ SDValue Splat1 =
+ DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), VT);
+ SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
+ SDValue Splat2 =
+ DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), VT);
+ SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
+ if (TargetOpcode == X86ISD::MOVSD)
+ CastVT = MVT::v2i64;
+ SDValue BitCast1 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift1);
+ SDValue BitCast2 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift2);
+ SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
+ BitCast1, DAG);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+ }
+ }
+
+ if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
+ assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
+
+ // a = a << 5;
+ Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
+ Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
+
+ // Turn 'a' into a mask suitable for VSELECT
+ SDValue VSelM = DAG.getConstant(0x80, VT);
+ SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
+ OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
+
+ SDValue CM1 = DAG.getConstant(0x0f, VT);
+ SDValue CM2 = DAG.getConstant(0x3f, VT);
+
+ // r = VSELECT(r, psllw(r & (char16)15, 4), a);
+ SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
+ M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
+ M = DAG.getNode(ISD::BITCAST, dl, VT, M);
+ R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
+
+ // a += a
+ Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
+ OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
+ OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
+
+ // r = VSELECT(r, psllw(r & (char16)63, 2), a);
+ M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
+ M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
+ M = DAG.getNode(ISD::BITCAST, dl, VT, M);
+ R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
+
+ // a += a
+ Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
+ OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
+ OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
+
+ // return VSELECT(r, r+r, a);
+ R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
+ DAG.getNode(ISD::ADD, dl, VT, R, R), R);
+ return R;
+ }
+
+ // It's worth extending once and using the v8i32 shifts for 16-bit types, but
+ // the extra overheads to get from v16i8 to v8i32 make the existing SSE
+ // solution better.
+ if (Subtarget->hasInt256() && VT == MVT::v8i16) {
+ MVT NewVT = VT == MVT::v8i16 ? MVT::v8i32 : MVT::v16i16;
+ unsigned ExtOpc =
+ Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ R = DAG.getNode(ExtOpc, dl, NewVT, R);
+ Amt = DAG.getNode(ISD::ANY_EXTEND, dl, NewVT, Amt);
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(Op.getOpcode(), dl, NewVT, R, Amt));
+ }
+
+ // Decompose 256-bit shifts into smaller 128-bit shifts.
+ if (VT.is256BitVector()) {
+ unsigned NumElems = VT.getVectorNumElements();
+ MVT EltVT = VT.getVectorElementType();
+ EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
+
+ // Extract the two vectors
+ SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
+ SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
+
+ // Recreate the shift amount vectors
+ SDValue Amt1, Amt2;
+ if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
+ // Constant shift amount
+ SmallVector<SDValue, 4> Amt1Csts;
+ SmallVector<SDValue, 4> Amt2Csts;
+ for (unsigned i = 0; i != NumElems/2; ++i)
+ Amt1Csts.push_back(Amt->getOperand(i));
+ for (unsigned i = NumElems/2; i != NumElems; ++i)
+ Amt2Csts.push_back(Amt->getOperand(i));
+
+ Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts);
+ Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts);
+ } else {
+ // Variable shift amount
+ Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
+ Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
+ }
+
+ // Issue new vector shifts for the smaller types
+ V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
+ V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
+
+ // Concatenate the result back
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
+ // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
+ // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
+ // looks for this combo and may remove the "setcc" instruction if the "setcc"
+ // has only one use.
+ SDNode *N = Op.getNode();
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ unsigned BaseOp = 0;
+ unsigned Cond = 0;
+ SDLoc DL(Op);
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Unknown ovf instruction!");
+ case ISD::SADDO:
+ // A subtract of one will be selected as a INC. Note that INC doesn't
+ // set CF, so we can't do this for UADDO.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
+ if (C->isOne()) {
+ BaseOp = X86ISD::INC;
+ Cond = X86::COND_O;
+ break;
+ }
+ BaseOp = X86ISD::ADD;
+ Cond = X86::COND_O;
+ break;
+ case ISD::UADDO:
+ BaseOp = X86ISD::ADD;
+ Cond = X86::COND_B;
+ break;
+ case ISD::SSUBO:
+ // A subtract of one will be selected as a DEC. Note that DEC doesn't
+ // set CF, so we can't do this for USUBO.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
+ if (C->isOne()) {
+ BaseOp = X86ISD::DEC;
+ Cond = X86::COND_O;
+ break;
+ }
+ BaseOp = X86ISD::SUB;
+ Cond = X86::COND_O;
+ break;
+ case ISD::USUBO:
+ BaseOp = X86ISD::SUB;
+ Cond = X86::COND_B;
+ break;
+ case ISD::SMULO:
+ BaseOp = X86ISD::SMUL;
+ Cond = X86::COND_O;
+ break;
+ case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
+ SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
+ MVT::i32);
+ SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
+
+ SDValue SetCC =
+ DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
+ DAG.getConstant(X86::COND_O, MVT::i32),
+ SDValue(Sum.getNode(), 2));
+
+ return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
+ }
+ }
+
+ // Also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
+ SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
+
+ SDValue SetCC =
+ DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
+ DAG.getConstant(Cond, MVT::i32),
+ SDValue(Sum.getNode(), 1));
+
+ return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
+}
+
+SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ MVT VT = Op.getSimpleValueType();
+
+ if (!Subtarget->hasSSE2() || !VT.isVector())
+ return SDValue();
+
+ unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
+ ExtraVT.getScalarType().getSizeInBits();
+
+ switch (VT.SimpleTy) {
+ default: return SDValue();
+ case MVT::v8i32:
+ case MVT::v16i16:
+ if (!Subtarget->hasFp256())
+ return SDValue();
+ if (!Subtarget->hasInt256()) {
+ // needs to be split
+ unsigned NumElems = VT.getVectorNumElements();
+
+ // Extract the LHS vectors
+ SDValue LHS = Op.getOperand(0);
+ SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
+ SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
+
+ MVT EltVT = VT.getVectorElementType();
+ EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
+
+ EVT ExtraEltVT = ExtraVT.getVectorElementType();
+ unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
+ ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
+ ExtraNumElems/2);
+ SDValue Extra = DAG.getValueType(ExtraVT);
+
+ LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
+ LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
+ }
+ // fall through
+ case MVT::v4i32:
+ case MVT::v8i16: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op00 = Op0.getOperand(0);
+ SDValue Tmp1;
+ // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
+ if (Op0.getOpcode() == ISD::BITCAST &&
+ Op00.getOpcode() == ISD::VECTOR_SHUFFLE) {
+ // (sext (vzext x)) -> (vsext x)
+ Tmp1 = LowerVectorIntExtend(Op00, Subtarget, DAG);
+ if (Tmp1.getNode()) {
+ EVT ExtraEltVT = ExtraVT.getVectorElementType();
+ // This folding is only valid when the in-reg type is a vector of i8,
+ // i16, or i32.
+ if (ExtraEltVT == MVT::i8 || ExtraEltVT == MVT::i16 ||
+ ExtraEltVT == MVT::i32) {
+ SDValue Tmp1Op0 = Tmp1.getOperand(0);
+ assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
+ "This optimization is invalid without a VZEXT.");
+ return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
+ }
+ Op0 = Tmp1;
+ }
+ }
+
+ // If the above didn't work, then just use Shift-Left + Shift-Right.
+ Tmp1 = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0, BitsDiff,
+ DAG);
+ return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Tmp1, BitsDiff,
+ DAG);
+ }
+ }
+}
+
+static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
+ cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
+ SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
+ cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
+
+ // The only fence that needs an instruction is a sequentially-consistent
+ // cross-thread fence.
+ if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
+ // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
+ // no-sse2). There isn't any reason to disable it if the target processor
+ // supports it.
+ if (Subtarget->hasSSE2() || Subtarget->is64Bit())
+ return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue Zero = DAG.getConstant(0, MVT::i32);
+ SDValue Ops[] = {
+ DAG.getRegister(X86::ESP, MVT::i32), // Base
+ DAG.getTargetConstant(1, MVT::i8), // Scale
+ DAG.getRegister(0, MVT::i32), // Index
+ DAG.getTargetConstant(0, MVT::i32), // Disp
+ DAG.getRegister(0, MVT::i32), // Segment.
+ Zero,
+ Chain
+ };
+ SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
+ return SDValue(Res, 0);
+ }
+
+ // MEMBARRIER is a compiler barrier; it codegens to a no-op.
+ return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
+}
+
+static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT T = Op.getSimpleValueType();
+ SDLoc DL(Op);
+ unsigned Reg = 0;
+ unsigned size = 0;
+ switch(T.SimpleTy) {
+ default: llvm_unreachable("Invalid value type!");
+ case MVT::i8: Reg = X86::AL; size = 1; break;
+ case MVT::i16: Reg = X86::AX; size = 2; break;
+ case MVT::i32: Reg = X86::EAX; size = 4; break;
+ case MVT::i64:
+ assert(Subtarget->is64Bit() && "Node not type legal!");
+ Reg = X86::RAX; size = 8;
+ break;
+ }
+ SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
+ Op.getOperand(2), SDValue());
+ SDValue Ops[] = { cpIn.getValue(0),
+ Op.getOperand(1),
+ Op.getOperand(3),
+ DAG.getTargetConstant(size, MVT::i8),
+ cpIn.getValue(1) };
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
+ SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
+ Ops, T, MMO);
+
+ SDValue cpOut =
+ DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
+ SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
+ MVT::i32, cpOut.getValue(2));
+ SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1),
+ DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
+
+ DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
+ DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
+ DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
+ return SDValue();
+}
+
+static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT SrcVT = Op.getOperand(0).getSimpleValueType();
+ MVT DstVT = Op.getSimpleValueType();
+
+ if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) {
+ assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
+ if (DstVT != MVT::f64)
+ // This conversion needs to be expanded.
+ return SDValue();
+
+ SDValue InVec = Op->getOperand(0);
+ SDLoc dl(Op);
+ unsigned NumElts = SrcVT.getVectorNumElements();
+ EVT SVT = SrcVT.getVectorElementType();
+
+ // Widen the vector in input in the case of MVT::v2i32.
+ // Example: from MVT::v2i32 to MVT::v4i32.
+ SmallVector<SDValue, 16> Elts;
+ for (unsigned i = 0, e = NumElts; i != e; ++i)
+ Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec,
+ DAG.getIntPtrConstant(i)));
+
+ // Explicitly mark the extra elements as Undef.
+ SDValue Undef = DAG.getUNDEF(SVT);
+ for (unsigned i = NumElts, e = NumElts * 2; i != e; ++i)
+ Elts.push_back(Undef);
+
+ EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts);
+ SDValue ToV2F64 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, BV);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
+ DAG.getIntPtrConstant(0));
+ }
+
+ assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
+ Subtarget->hasMMX() && "Unexpected custom BITCAST");
+ assert((DstVT == MVT::i64 ||
+ (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
+ "Unexpected custom BITCAST");
+ // i64 <=> MMX conversions are Legal.
+ if (SrcVT==MVT::i64 && DstVT.isVector())
+ return Op;
+ if (DstVT==MVT::i64 && SrcVT.isVector())
+ return Op;
+ // MMX <=> MMX conversions are Legal.
+ if (SrcVT.isVector() && DstVT.isVector())
+ return Op;
+ // All other conversions need to be expanded.
+ return SDValue();
+}
+
+static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
+ SDNode *Node = Op.getNode();
+ SDLoc dl(Node);
+ EVT T = Node->getValueType(0);
+ SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
+ DAG.getConstant(0, T), Node->getOperand(2));
+ return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
+ cast<AtomicSDNode>(Node)->getMemoryVT(),
+ Node->getOperand(0),
+ Node->getOperand(1), negOp,
+ cast<AtomicSDNode>(Node)->getMemOperand(),
+ cast<AtomicSDNode>(Node)->getOrdering(),
+ cast<AtomicSDNode>(Node)->getSynchScope());
+}
+
+static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
+ SDNode *Node = Op.getNode();
+ SDLoc dl(Node);
+ EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
+
+ // Convert seq_cst store -> xchg
+ // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
+ // FIXME: On 32-bit, store -> fist or movq would be more efficient
+ // (The only way to get a 16-byte store is cmpxchg16b)
+ // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
+ if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
+ !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
+ SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
+ cast<AtomicSDNode>(Node)->getMemoryVT(),
+ Node->getOperand(0),
+ Node->getOperand(1), Node->getOperand(2),
+ cast<AtomicSDNode>(Node)->getMemOperand(),
+ cast<AtomicSDNode>(Node)->getOrdering(),
+ cast<AtomicSDNode>(Node)->getSynchScope());
+ return Swap.getValue(1);
+ }
+ // Other atomic stores have a simple pattern.
+ return Op;
+}
+
+static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getNode()->getSimpleValueType(0);
+
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+
+ unsigned Opc;
+ bool ExtraOp = false;
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid code");
+ case ISD::ADDC: Opc = X86ISD::ADD; break;
+ case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
+ case ISD::SUBC: Opc = X86ISD::SUB; break;
+ case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
+ }
+
+ if (!ExtraOp)
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
+ Op.getOperand(1));
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
+ Op.getOperand(1), Op.getOperand(2));
+}
+
+static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
+
+ // For MacOSX, we want to call an alternative entry point: __sincos_stret,
+ // which returns the values as { float, float } (in XMM0) or
+ // { double, double } (which is returned in XMM0, XMM1).
+ SDLoc dl(Op);
+ SDValue Arg = Op.getOperand(0);
+ EVT ArgVT = Arg.getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ Entry.Node = Arg;
+ Entry.Ty = ArgTy;
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Args.push_back(Entry);
+
+ bool isF64 = ArgVT == MVT::f64;
+ // Only optimize x86_64 for now. i386 is a bit messy. For f32,
+ // the small struct {f32, f32} is returned in (eax, edx). For f64,
+ // the results are returned via SRet in memory.
+ const char *LibcallName = isF64 ? "__sincos_stret" : "__sincosf_stret";
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
+
+ Type *RetTy = isF64
+ ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
+ : (Type*)VectorType::get(ArgTy, 4);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
+ .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0);
+
+ std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
+
+ if (isF64)
+ // Returned in xmm0 and xmm1.
+ return CallResult.first;
+
+ // Returned in bits 0:31 and 32:64 xmm0.
+ SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
+ CallResult.first, DAG.getIntPtrConstant(0));
+ SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
+ CallResult.first, DAG.getIntPtrConstant(1));
+ SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
+}
+
+/// LowerOperation - Provide custom lowering hooks for some operations.
+///
+SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Should not custom lower this!");
+ case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG);
+ case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG);
+ case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
+ return LowerCMP_SWAP(Op, Subtarget, DAG);
+ case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
+ case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
+ case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::VSELECT: return LowerVSELECT(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
+ case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
+ case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::SHL_PARTS:
+ case ISD::SRA_PARTS:
+ case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
+ case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
+ case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
+ case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
+ case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG);
+ case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG);
+ case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG);
+ case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
+ case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
+ case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
+ case ISD::FABS: return LowerFABS(Op, DAG);
+ case ISD::FNEG: return LowerFNEG(Op, DAG);
+ case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
+ case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
+ case ISD::SETCC: return LowerSETCC(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::BRCOND: return LowerBRCOND(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::VAARG: return LowerVAARG(Op, DAG);
+ case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::FRAME_TO_ARGS_OFFSET:
+ return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
+ case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
+ case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
+ case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
+ case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
+ case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
+ case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
+ case ISD::CTLZ: return LowerCTLZ(Op, DAG);
+ case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG);
+ case ISD::CTTZ: return LowerCTTZ(Op, DAG);
+ case ISD::MUL: return LowerMUL(Op, Subtarget, DAG);
+ case ISD::UMUL_LOHI:
+ case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG);
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::SHL: return LowerShift(Op, Subtarget, DAG);
+ case ISD::SADDO:
+ case ISD::UADDO:
+ case ISD::SSUBO:
+ case ISD::USUBO:
+ case ISD::SMULO:
+ case ISD::UMULO: return LowerXALUO(Op, DAG);
+ case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
+ case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG);
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUBC:
+ case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
+ case ISD::ADD: return LowerADD(Op, DAG);
+ case ISD::SUB: return LowerSUB(Op, DAG);
+ case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG);
+ }
+}
+
+static void ReplaceATOMIC_LOAD(SDNode *Node,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) {
+ SDLoc dl(Node);
+ EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
+
+ // Convert wide load -> cmpxchg8b/cmpxchg16b
+ // FIXME: On 32-bit, load -> fild or movq would be more efficient
+ // (The only way to get a 16-byte load is cmpxchg16b)
+ // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
+ SDValue Zero = DAG.getConstant(0, VT);
+ SDVTList VTs = DAG.getVTList(VT, MVT::i1, MVT::Other);
+ SDValue Swap =
+ DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, VT, VTs,
+ Node->getOperand(0), Node->getOperand(1), Zero, Zero,
+ cast<AtomicSDNode>(Node)->getMemOperand(),
+ cast<AtomicSDNode>(Node)->getOrdering(),
+ cast<AtomicSDNode>(Node)->getOrdering(),
+ cast<AtomicSDNode>(Node)->getSynchScope());
+ Results.push_back(Swap.getValue(0));
+ Results.push_back(Swap.getValue(2));
+}
+
+/// ReplaceNodeResults - Replace a node with an illegal result type
+/// with a new node built out of custom code.
+void X86TargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const {
+ SDLoc dl(N);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Do not know how to custom type legalize this operation!");
+ case ISD::SIGN_EXTEND_INREG:
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUBC:
+ case ISD::SUBE:
+ // We don't want to expand or promote these.
+ return;
+ case ISD::SDIV:
+ case ISD::UDIV:
+ case ISD::SREM:
+ case ISD::UREM:
+ case ISD::SDIVREM:
+ case ISD::UDIVREM: {
+ SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
+ Results.push_back(V);
+ return;
+ }
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: {
+ bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
+
+ if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
+ return;
+
+ std::pair<SDValue,SDValue> Vals =
+ FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
+ SDValue FIST = Vals.first, StackSlot = Vals.second;
+ if (FIST.getNode()) {
+ EVT VT = N->getValueType(0);
+ // Return a load from the stack slot.
+ if (StackSlot.getNode())
+ Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
+ MachinePointerInfo(),
+ false, false, false, 0));
+ else
+ Results.push_back(FIST);
+ }
+ return;
+ }
+ case ISD::UINT_TO_FP: {
+ assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
+ if (N->getOperand(0).getValueType() != MVT::v2i32 ||
+ N->getValueType(0) != MVT::v2f32)
+ return;
+ SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
+ N->getOperand(0));
+ SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
+ MVT::f64);
+ SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
+ SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
+ Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
+ Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
+ return;
+ }
+ case ISD::FP_ROUND: {
+ if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
+ return;
+ SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
+ Results.push_back(V);
+ return;
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default : llvm_unreachable("Do not know how to custom type "
+ "legalize this intrinsic operation!");
+ case Intrinsic::x86_rdtsc:
+ return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
+ Results);
+ case Intrinsic::x86_rdtscp:
+ return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
+ Results);
+ case Intrinsic::x86_rdpmc:
+ return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
+ }
+ }
+ case ISD::READCYCLECOUNTER: {
+ return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
+ Results);
+ }
+ case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
+ EVT T = N->getValueType(0);
+ assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
+ bool Regs64bit = T == MVT::i128;
+ EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
+ SDValue cpInL, cpInH;
+ cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
+ DAG.getConstant(0, HalfT));
+ cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
+ DAG.getConstant(1, HalfT));
+ cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
+ Regs64bit ? X86::RAX : X86::EAX,
+ cpInL, SDValue());
+ cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
+ Regs64bit ? X86::RDX : X86::EDX,
+ cpInH, cpInL.getValue(1));
+ SDValue swapInL, swapInH;
+ swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
+ DAG.getConstant(0, HalfT));
+ swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
+ DAG.getConstant(1, HalfT));
+ swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
+ Regs64bit ? X86::RBX : X86::EBX,
+ swapInL, cpInH.getValue(1));
+ swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
+ Regs64bit ? X86::RCX : X86::ECX,
+ swapInH, swapInL.getValue(1));
+ SDValue Ops[] = { swapInH.getValue(0),
+ N->getOperand(1),
+ swapInH.getValue(1) };
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
+ unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
+ X86ISD::LCMPXCHG8_DAG;
+ SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
+ SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
+ Regs64bit ? X86::RAX : X86::EAX,
+ HalfT, Result.getValue(1));
+ SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
+ Regs64bit ? X86::RDX : X86::EDX,
+ HalfT, cpOutL.getValue(2));
+ SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
+
+ SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
+ MVT::i32, cpOutH.getValue(2));
+ SDValue Success =
+ DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
+ Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
+
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
+ Results.push_back(Success);
+ Results.push_back(EFLAGS.getValue(1));
+ return;
+ }
+ case ISD::ATOMIC_SWAP:
+ case ISD::ATOMIC_LOAD_ADD:
+ case ISD::ATOMIC_LOAD_SUB:
+ case ISD::ATOMIC_LOAD_AND:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_NAND:
+ case ISD::ATOMIC_LOAD_MIN:
+ case ISD::ATOMIC_LOAD_MAX:
+ case ISD::ATOMIC_LOAD_UMIN:
+ case ISD::ATOMIC_LOAD_UMAX:
+ // Delegate to generic TypeLegalization. Situations we can really handle
+ // should have already been dealt with by X86AtomicExpand.cpp.
+ break;
+ case ISD::ATOMIC_LOAD: {
+ ReplaceATOMIC_LOAD(N, Results, DAG);
+ return;
+ }
+ case ISD::BITCAST: {
+ assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
+ EVT DstVT = N->getValueType(0);
+ EVT SrcVT = N->getOperand(0)->getValueType(0);
+
+ if (SrcVT != MVT::f64 ||
+ (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
+ return;
+
+ unsigned NumElts = DstVT.getVectorNumElements();
+ EVT SVT = DstVT.getVectorElementType();
+ EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
+ SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ MVT::v2f64, N->getOperand(0));
+ SDValue ToVecInt = DAG.getNode(ISD::BITCAST, dl, WiderVT, Expanded);
+
+ if (ExperimentalVectorWideningLegalization) {
+ // If we are legalizing vectors by widening, we already have the desired
+ // legal vector type, just return it.
+ Results.push_back(ToVecInt);
+ return;
+ }
+
+ SmallVector<SDValue, 8> Elts;
+ for (unsigned i = 0, e = NumElts; i != e; ++i)
+ Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
+ ToVecInt, DAG.getIntPtrConstant(i)));
+
+ Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts));
+ }
+ }
+}
+
+const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return nullptr;
+ case X86ISD::BSF: return "X86ISD::BSF";
+ case X86ISD::BSR: return "X86ISD::BSR";
+ case X86ISD::SHLD: return "X86ISD::SHLD";
+ case X86ISD::SHRD: return "X86ISD::SHRD";
+ case X86ISD::FAND: return "X86ISD::FAND";
+ case X86ISD::FANDN: return "X86ISD::FANDN";
+ case X86ISD::FOR: return "X86ISD::FOR";
+ case X86ISD::FXOR: return "X86ISD::FXOR";
+ case X86ISD::FSRL: return "X86ISD::FSRL";
+ case X86ISD::FILD: return "X86ISD::FILD";
+ case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
+ case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
+ case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
+ case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
+ case X86ISD::FLD: return "X86ISD::FLD";
+ case X86ISD::FST: return "X86ISD::FST";
+ case X86ISD::CALL: return "X86ISD::CALL";
+ case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
+ case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG";
+ case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG";
+ case X86ISD::BT: return "X86ISD::BT";
+ case X86ISD::CMP: return "X86ISD::CMP";
+ case X86ISD::COMI: return "X86ISD::COMI";
+ case X86ISD::UCOMI: return "X86ISD::UCOMI";
+ case X86ISD::CMPM: return "X86ISD::CMPM";
+ case X86ISD::CMPMU: return "X86ISD::CMPMU";
+ case X86ISD::SETCC: return "X86ISD::SETCC";
+ case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
+ case X86ISD::FSETCC: return "X86ISD::FSETCC";
+ case X86ISD::CMOV: return "X86ISD::CMOV";
+ case X86ISD::BRCOND: return "X86ISD::BRCOND";
+ case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
+ case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
+ case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
+ case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
+ case X86ISD::Wrapper: return "X86ISD::Wrapper";
+ case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
+ case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
+ case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
+ case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
+ case X86ISD::PINSRB: return "X86ISD::PINSRB";
+ case X86ISD::PINSRW: return "X86ISD::PINSRW";
+ case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
+ case X86ISD::ANDNP: return "X86ISD::ANDNP";
+ case X86ISD::PSIGN: return "X86ISD::PSIGN";
+ case X86ISD::BLENDV: return "X86ISD::BLENDV";
+ case X86ISD::BLENDI: return "X86ISD::BLENDI";
+ case X86ISD::SUBUS: return "X86ISD::SUBUS";
+ case X86ISD::HADD: return "X86ISD::HADD";
+ case X86ISD::HSUB: return "X86ISD::HSUB";
+ case X86ISD::FHADD: return "X86ISD::FHADD";
+ case X86ISD::FHSUB: return "X86ISD::FHSUB";
+ case X86ISD::UMAX: return "X86ISD::UMAX";
+ case X86ISD::UMIN: return "X86ISD::UMIN";
+ case X86ISD::SMAX: return "X86ISD::SMAX";
+ case X86ISD::SMIN: return "X86ISD::SMIN";
+ case X86ISD::FMAX: return "X86ISD::FMAX";
+ case X86ISD::FMIN: return "X86ISD::FMIN";
+ case X86ISD::FMAXC: return "X86ISD::FMAXC";
+ case X86ISD::FMINC: return "X86ISD::FMINC";
+ case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
+ case X86ISD::FRCP: return "X86ISD::FRCP";
+ case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
+ case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR";
+ case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
+ case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP";
+ case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP";
+ case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
+ case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
+ case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
+ case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r";
+ case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
+ case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
+ case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG";
+ case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
+ case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
+ case X86ISD::VZEXT: return "X86ISD::VZEXT";
+ case X86ISD::VSEXT: return "X86ISD::VSEXT";
+ case X86ISD::VTRUNC: return "X86ISD::VTRUNC";
+ case X86ISD::VTRUNCM: return "X86ISD::VTRUNCM";
+ case X86ISD::VINSERT: return "X86ISD::VINSERT";
+ case X86ISD::VFPEXT: return "X86ISD::VFPEXT";
+ case X86ISD::VFPROUND: return "X86ISD::VFPROUND";
+ case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ";
+ case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ";
+ case X86ISD::VSHL: return "X86ISD::VSHL";
+ case X86ISD::VSRL: return "X86ISD::VSRL";
+ case X86ISD::VSRA: return "X86ISD::VSRA";
+ case X86ISD::VSHLI: return "X86ISD::VSHLI";
+ case X86ISD::VSRLI: return "X86ISD::VSRLI";
+ case X86ISD::VSRAI: return "X86ISD::VSRAI";
+ case X86ISD::CMPP: return "X86ISD::CMPP";
+ case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ";
+ case X86ISD::PCMPGT: return "X86ISD::PCMPGT";
+ case X86ISD::PCMPEQM: return "X86ISD::PCMPEQM";
+ case X86ISD::PCMPGTM: return "X86ISD::PCMPGTM";
+ case X86ISD::ADD: return "X86ISD::ADD";
+ case X86ISD::SUB: return "X86ISD::SUB";
+ case X86ISD::ADC: return "X86ISD::ADC";
+ case X86ISD::SBB: return "X86ISD::SBB";
+ case X86ISD::SMUL: return "X86ISD::SMUL";
+ case X86ISD::UMUL: return "X86ISD::UMUL";
+ case X86ISD::INC: return "X86ISD::INC";
+ case X86ISD::DEC: return "X86ISD::DEC";
+ case X86ISD::OR: return "X86ISD::OR";
+ case X86ISD::XOR: return "X86ISD::XOR";
+ case X86ISD::AND: return "X86ISD::AND";
+ case X86ISD::BEXTR: return "X86ISD::BEXTR";
+ case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
+ case X86ISD::PTEST: return "X86ISD::PTEST";
+ case X86ISD::TESTP: return "X86ISD::TESTP";
+ case X86ISD::TESTM: return "X86ISD::TESTM";
+ case X86ISD::TESTNM: return "X86ISD::TESTNM";
+ case X86ISD::KORTEST: return "X86ISD::KORTEST";
+ case X86ISD::PACKSS: return "X86ISD::PACKSS";
+ case X86ISD::PACKUS: return "X86ISD::PACKUS";
+ case X86ISD::PALIGNR: return "X86ISD::PALIGNR";
+ case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
+ case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
+ case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
+ case X86ISD::SHUFP: return "X86ISD::SHUFP";
+ case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
+ case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
+ case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
+ case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
+ case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
+ case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
+ case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
+ case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
+ case X86ISD::MOVSD: return "X86ISD::MOVSD";
+ case X86ISD::MOVSS: return "X86ISD::MOVSS";
+ case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
+ case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
+ case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
+ case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM";
+ case X86ISD::VEXTRACT: return "X86ISD::VEXTRACT";
+ case X86ISD::VPERMILP: return "X86ISD::VPERMILP";
+ case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
+ case X86ISD::VPERMV: return "X86ISD::VPERMV";
+ case X86ISD::VPERMV3: return "X86ISD::VPERMV3";
+ case X86ISD::VPERMIV3: return "X86ISD::VPERMIV3";
+ case X86ISD::VPERMI: return "X86ISD::VPERMI";
+ case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
+ case X86ISD::PMULDQ: return "X86ISD::PMULDQ";
+ case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
+ case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
+ case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
+ case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
+ case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
+ case X86ISD::WIN_FTOL: return "X86ISD::WIN_FTOL";
+ case X86ISD::SAHF: return "X86ISD::SAHF";
+ case X86ISD::RDRAND: return "X86ISD::RDRAND";
+ case X86ISD::RDSEED: return "X86ISD::RDSEED";
+ case X86ISD::FMADD: return "X86ISD::FMADD";
+ case X86ISD::FMSUB: return "X86ISD::FMSUB";
+ case X86ISD::FNMADD: return "X86ISD::FNMADD";
+ case X86ISD::FNMSUB: return "X86ISD::FNMSUB";
+ case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB";
+ case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD";
+ case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI";
+ case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI";
+ case X86ISD::XTEST: return "X86ISD::XTEST";
+ }
+}
+
+// isLegalAddressingMode - Return true if the addressing mode represented
+// by AM is legal for this target, for a load/store of the specified type.
+bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ // X86 supports extremely general addressing modes.
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+ Reloc::Model R = getTargetMachine().getRelocationModel();
+
+ // X86 allows a sign-extended 32-bit immediate field as a displacement.
+ if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
+ return false;
+
+ if (AM.BaseGV) {
+ unsigned GVFlags =
+ Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
+
+ // If a reference to this global requires an extra load, we can't fold it.
+ if (isGlobalStubReference(GVFlags))
+ return false;
+
+ // If BaseGV requires a register for the PIC base, we cannot also have a
+ // BaseReg specified.
+ if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
+ return false;
+
+ // If lower 4G is not available, then we must use rip-relative addressing.
+ if ((M != CodeModel::Small || R != Reloc::Static) &&
+ Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
+ return false;
+ }
+
+ switch (AM.Scale) {
+ case 0:
+ case 1:
+ case 2:
+ case 4:
+ case 8:
+ // These scales always work.
+ break;
+ case 3:
+ case 5:
+ case 9:
+ // These scales are formed with basereg+scalereg. Only accept if there is
+ // no basereg yet.
+ if (AM.HasBaseReg)
+ return false;
+ break;
+ default: // Other stuff never works.
+ return false;
+ }
+
+ return true;
+}
+
+bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
+ unsigned Bits = Ty->getScalarSizeInBits();
+
+ // 8-bit shifts are always expensive, but versions with a scalar amount aren't
+ // particularly cheaper than those without.
+ if (Bits == 8)
+ return false;
+
+ // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make
+ // variable shifts just as cheap as scalar ones.
+ if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64))
+ return false;
+
+ // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
+ // fully general vector.
+ return true;
+}
+
+bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+ unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
+ unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
+ return NumBits1 > NumBits2;
+}
+
+bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+
+ if (!isTypeLegal(EVT::getEVT(Ty1)))
+ return false;
+
+ assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
+
+ // Assuming the caller doesn't have a zeroext or signext return parameter,
+ // truncation all the way down to i1 is valid.
+ return true;
+}
+
+bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
+ return isInt<32>(Imm);
+}
+
+bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
+ // Can also use sub to handle negated immediates.
+ return isInt<32>(Imm);
+}
+
+bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
+ if (!VT1.isInteger() || !VT2.isInteger())
+ return false;
+ unsigned NumBits1 = VT1.getSizeInBits();
+ unsigned NumBits2 = VT2.getSizeInBits();
+ return NumBits1 > NumBits2;
+}
+
+bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
+ // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
+ return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
+}
+
+bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
+ // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
+ return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
+}
+
+bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ EVT VT1 = Val.getValueType();
+ if (isZExtFree(VT1, VT2))
+ return true;
+
+ if (Val.getOpcode() != ISD::LOAD)
+ return false;
+
+ if (!VT1.isSimple() || !VT1.isInteger() ||
+ !VT2.isSimple() || !VT2.isInteger())
+ return false;
+
+ switch (VT1.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ // X86 has 8, 16, and 32-bit zero-extending loads.
+ return true;
+ }
+
+ return false;
+}
+
+bool
+X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
+ return false;
+
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ case MVT::f64:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
+ // i16 instructions are longer (0x66 prefix) and potentially slower.
+ return !(VT1 == MVT::i32 && VT2 == MVT::i16);
+}
+
+/// isShuffleMaskLegal - Targets can use this to indicate that they only
+/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
+/// are assumed to be legal.
+bool
+X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
+ EVT VT) const {
+ if (!VT.isSimple())
+ return false;
+
+ MVT SVT = VT.getSimpleVT();
+
+ // Very little shuffling can be done for 64-bit vectors right now.
+ if (VT.getSizeInBits() == 64)
+ return false;
+
+ // If this is a single-input shuffle with no 128 bit lane crossings we can
+ // lower it into pshufb.
+ if ((SVT.is128BitVector() && Subtarget->hasSSSE3()) ||
+ (SVT.is256BitVector() && Subtarget->hasInt256())) {
+ bool isLegal = true;
+ for (unsigned I = 0, E = M.size(); I != E; ++I) {
+ if (M[I] >= (int)SVT.getVectorNumElements() ||
+ ShuffleCrosses128bitLane(SVT, I, M[I])) {
+ isLegal = false;
+ break;
+ }
+ }
+ if (isLegal)
+ return true;
+ }
+
+ // FIXME: blends, shifts.
+ return (SVT.getVectorNumElements() == 2 ||
+ ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
+ isMOVLMask(M, SVT) ||
+ isMOVHLPSMask(M, SVT) ||
+ isSHUFPMask(M, SVT) ||
+ isPSHUFDMask(M, SVT) ||
+ isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
+ isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
+ isPALIGNRMask(M, SVT, Subtarget) ||
+ isUNPCKLMask(M, SVT, Subtarget->hasInt256()) ||
+ isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
+ isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
+ isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
+ isBlendMask(M, SVT, Subtarget->hasSSE41(), Subtarget->hasInt256()));
+}
+
+bool
+X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
+ EVT VT) const {
+ if (!VT.isSimple())
+ return false;
+
+ MVT SVT = VT.getSimpleVT();
+ unsigned NumElts = SVT.getVectorNumElements();
+ // FIXME: This collection of masks seems suspect.
+ if (NumElts == 2)
+ return true;
+ if (NumElts == 4 && SVT.is128BitVector()) {
+ return (isMOVLMask(Mask, SVT) ||
+ isCommutedMOVLMask(Mask, SVT, true) ||
+ isSHUFPMask(Mask, SVT) ||
+ isSHUFPMask(Mask, SVT, /* Commuted */ true));
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Scheduler Hooks
+//===----------------------------------------------------------------------===//
+
+/// Utility function to emit xbegin specifying the start of an RTM region.
+static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
+ const TargetInstrInfo *TII) {
+ DebugLoc DL = MI->getDebugLoc();
+
+ const BasicBlock *BB = MBB->getBasicBlock();
+ MachineFunction::iterator I = MBB;
+ ++I;
+
+ // For the v = xbegin(), we generate
+ //
+ // thisMBB:
+ // xbegin sinkMBB
+ //
+ // mainMBB:
+ // eax = -1
+ //
+ // sinkMBB:
+ // v = eax
+
+ MachineBasicBlock *thisMBB = MBB;
+ MachineFunction *MF = MBB->getParent();
+ MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
+ MF->insert(I, mainMBB);
+ MF->insert(I, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // thisMBB:
+ // xbegin sinkMBB
+ // # fallthrough to mainMBB
+ // # abortion to sinkMBB
+ BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
+ thisMBB->addSuccessor(mainMBB);
+ thisMBB->addSuccessor(sinkMBB);
+
+ // mainMBB:
+ // EAX = -1
+ BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
+ mainMBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // EAX is live into the sinkMBB
+ sinkMBB->addLiveIn(X86::EAX);
+ BuildMI(*sinkMBB, sinkMBB->begin(), DL,
+ TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
+ .addReg(X86::EAX);
+
+ MI->eraseFromParent();
+ return sinkMBB;
+}
+
+// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
+// or XMM0_V32I8 in AVX all of this code can be replaced with that
+// in the .td file.
+static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
+ const TargetInstrInfo *TII) {
+ unsigned Opc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("illegal opcode!");
+ case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break;
+ case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
+ case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break;
+ case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
+ case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break;
+ case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
+ case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break;
+ case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
+ }
+
+ DebugLoc dl = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
+
+ unsigned NumArgs = MI->getNumOperands();
+ for (unsigned i = 1; i < NumArgs; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!(Op.isReg() && Op.isImplicit()))
+ MIB.addOperand(Op);
+ }
+ if (MI->hasOneMemOperand())
+ MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+
+ BuildMI(*BB, MI, dl,
+ TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
+ .addReg(X86::XMM0);
+
+ MI->eraseFromParent();
+ return BB;
+}
+
+// FIXME: Custom handling because TableGen doesn't support multiple implicit
+// defs in an instruction pattern
+static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
+ const TargetInstrInfo *TII) {
+ unsigned Opc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("illegal opcode!");
+ case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break;
+ case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
+ case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break;
+ case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
+ case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break;
+ case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
+ case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break;
+ case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
+ }
+
+ DebugLoc dl = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
+
+ unsigned NumArgs = MI->getNumOperands(); // remove the results
+ for (unsigned i = 1; i < NumArgs; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!(Op.isReg() && Op.isImplicit()))
+ MIB.addOperand(Op);
+ }
+ if (MI->hasOneMemOperand())
+ MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+
+ BuildMI(*BB, MI, dl,
+ TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
+ .addReg(X86::ECX);
+
+ MI->eraseFromParent();
+ return BB;
+}
+
+static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
+ const TargetInstrInfo *TII,
+ const X86Subtarget* Subtarget) {
+ DebugLoc dl = MI->getDebugLoc();
+
+ // Address into RAX/EAX, other two args into ECX, EDX.
+ unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
+ unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
+ for (int i = 0; i < X86::AddrNumOperands; ++i)
+ MIB.addOperand(MI->getOperand(i));
+
+ unsigned ValOps = X86::AddrNumOperands;
+ BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
+ .addReg(MI->getOperand(ValOps).getReg());
+ BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
+ .addReg(MI->getOperand(ValOps+1).getReg());
+
+ // The instruction doesn't actually take any operands though.
+ BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
+
+ MI->eraseFromParent(); // The pseudo is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitVAARG64WithCustomInserter(
+ MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ // Emit va_arg instruction on X86-64.
+
+ // Operands to this pseudo-instruction:
+ // 0 ) Output : destination address (reg)
+ // 1-5) Input : va_list address (addr, i64mem)
+ // 6 ) ArgSize : Size (in bytes) of vararg type
+ // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
+ // 8 ) Align : Alignment of type
+ // 9 ) EFLAGS (implicit-def)
+
+ assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
+ assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
+
+ unsigned DestReg = MI->getOperand(0).getReg();
+ MachineOperand &Base = MI->getOperand(1);
+ MachineOperand &Scale = MI->getOperand(2);
+ MachineOperand &Index = MI->getOperand(3);
+ MachineOperand &Disp = MI->getOperand(4);
+ MachineOperand &Segment = MI->getOperand(5);
+ unsigned ArgSize = MI->getOperand(6).getImm();
+ unsigned ArgMode = MI->getOperand(7).getImm();
+ unsigned Align = MI->getOperand(8).getImm();
+
+ // Memory Reference
+ assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
+ MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
+
+ // Machine Information
+ const TargetInstrInfo *TII = MBB->getParent()->getTarget().getInstrInfo();
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
+ const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
+ DebugLoc DL = MI->getDebugLoc();
+
+ // struct va_list {
+ // i32 gp_offset
+ // i32 fp_offset
+ // i64 overflow_area (address)
+ // i64 reg_save_area (address)
+ // }
+ // sizeof(va_list) = 24
+ // alignment(va_list) = 8
+
+ unsigned TotalNumIntRegs = 6;
+ unsigned TotalNumXMMRegs = 8;
+ bool UseGPOffset = (ArgMode == 1);
+ bool UseFPOffset = (ArgMode == 2);
+ unsigned MaxOffset = TotalNumIntRegs * 8 +
+ (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
+
+ /* Align ArgSize to a multiple of 8 */
+ unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
+ bool NeedsAlign = (Align > 8);
+
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *overflowMBB;
+ MachineBasicBlock *offsetMBB;
+ MachineBasicBlock *endMBB;
+
+ unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
+ unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
+ unsigned OffsetReg = 0;
+
+ if (!UseGPOffset && !UseFPOffset) {
+ // If we only pull from the overflow region, we don't create a branch.
+ // We don't need to alter control flow.
+ OffsetDestReg = 0; // unused
+ OverflowDestReg = DestReg;
+
+ offsetMBB = nullptr;
+ overflowMBB = thisMBB;
+ endMBB = thisMBB;
+ } else {
+ // First emit code to check if gp_offset (or fp_offset) is below the bound.
+ // If so, pull the argument from reg_save_area. (branch to offsetMBB)
+ // If not, pull from overflow_area. (branch to overflowMBB)
+ //
+ // thisMBB
+ // | .
+ // | .
+ // offsetMBB overflowMBB
+ // | .
+ // | .
+ // endMBB
+
+ // Registers for the PHI in endMBB
+ OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
+ OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
+
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction *MF = MBB->getParent();
+ overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+
+ MachineFunction::iterator MBBIter = MBB;
+ ++MBBIter;
+
+ // Insert the new basic blocks
+ MF->insert(MBBIter, offsetMBB);
+ MF->insert(MBBIter, overflowMBB);
+ MF->insert(MBBIter, endMBB);
+
+ // Transfer the remainder of MBB and its successor edges to endMBB.
+ endMBB->splice(endMBB->begin(), thisMBB,
+ std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
+ endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
+
+ // Make offsetMBB and overflowMBB successors of thisMBB
+ thisMBB->addSuccessor(offsetMBB);
+ thisMBB->addSuccessor(overflowMBB);
+
+ // endMBB is a successor of both offsetMBB and overflowMBB
+ offsetMBB->addSuccessor(endMBB);
+ overflowMBB->addSuccessor(endMBB);
+
+ // Load the offset value into a register
+ OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
+ BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
+ .addOperand(Base)
+ .addOperand(Scale)
+ .addOperand(Index)
+ .addDisp(Disp, UseFPOffset ? 4 : 0)
+ .addOperand(Segment)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // Check if there is enough room left to pull this argument.
+ BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
+ .addReg(OffsetReg)
+ .addImm(MaxOffset + 8 - ArgSizeA8);
+
+ // Branch to "overflowMBB" if offset >= max
+ // Fall through to "offsetMBB" otherwise
+ BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
+ .addMBB(overflowMBB);
+ }
+
+ // In offsetMBB, emit code to use the reg_save_area.
+ if (offsetMBB) {
+ assert(OffsetReg != 0);
+
+ // Read the reg_save_area address.
+ unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
+ .addOperand(Base)
+ .addOperand(Scale)
+ .addOperand(Index)
+ .addDisp(Disp, 16)
+ .addOperand(Segment)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // Zero-extend the offset
+ unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
+ .addImm(0)
+ .addReg(OffsetReg)
+ .addImm(X86::sub_32bit);
+
+ // Add the offset to the reg_save_area to get the final address.
+ BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
+ .addReg(OffsetReg64)
+ .addReg(RegSaveReg);
+
+ // Compute the offset for the next argument
+ unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
+ BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
+ .addReg(OffsetReg)
+ .addImm(UseFPOffset ? 16 : 8);
+
+ // Store it back into the va_list.
+ BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
+ .addOperand(Base)
+ .addOperand(Scale)
+ .addOperand(Index)
+ .addDisp(Disp, UseFPOffset ? 4 : 0)
+ .addOperand(Segment)
+ .addReg(NextOffsetReg)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // Jump to endMBB
+ BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
+ .addMBB(endMBB);
+ }
+
+ //
+ // Emit code to use overflow area
+ //
+
+ // Load the overflow_area address into a register.
+ unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
+ .addOperand(Base)
+ .addOperand(Scale)
+ .addOperand(Index)
+ .addDisp(Disp, 8)
+ .addOperand(Segment)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // If we need to align it, do so. Otherwise, just copy the address
+ // to OverflowDestReg.
+ if (NeedsAlign) {
+ // Align the overflow address
+ assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
+ unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
+
+ // aligned_addr = (addr + (align-1)) & ~(align-1)
+ BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
+ .addReg(OverflowAddrReg)
+ .addImm(Align-1);
+
+ BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
+ .addReg(TmpReg)
+ .addImm(~(uint64_t)(Align-1));
+ } else {
+ BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
+ .addReg(OverflowAddrReg);
+ }
+
+ // Compute the next overflow address after this argument.
+ // (the overflow address should be kept 8-byte aligned)
+ unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
+ .addReg(OverflowDestReg)
+ .addImm(ArgSizeA8);
+
+ // Store the new overflow address.
+ BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
+ .addOperand(Base)
+ .addOperand(Scale)
+ .addOperand(Index)
+ .addDisp(Disp, 8)
+ .addOperand(Segment)
+ .addReg(NextAddrReg)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // If we branched, emit the PHI to the front of endMBB.
+ if (offsetMBB) {
+ BuildMI(*endMBB, endMBB->begin(), DL,
+ TII->get(X86::PHI), DestReg)
+ .addReg(OffsetDestReg).addMBB(offsetMBB)
+ .addReg(OverflowDestReg).addMBB(overflowMBB);
+ }
+
+ // Erase the pseudo instruction
+ MI->eraseFromParent();
+
+ return endMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
+ MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ // Emit code to save XMM registers to the stack. The ABI says that the
+ // number of registers to save is given in %al, so it's theoretically
+ // possible to do an indirect jump trick to avoid saving all of them,
+ // however this code takes a simpler approach and just executes all
+ // of the stores if %al is non-zero. It's less code, and it's probably
+ // easier on the hardware branch predictor, and stores aren't all that
+ // expensive anyway.
+
+ // Create the new basic blocks. One block contains all the XMM stores,
+ // and one block is the final destination regardless of whether any
+ // stores were performed.
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction *F = MBB->getParent();
+ MachineFunction::iterator MBBIter = MBB;
+ ++MBBIter;
+ MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(MBBIter, XMMSaveMBB);
+ F->insert(MBBIter, EndMBB);
+
+ // Transfer the remainder of MBB and its successor edges to EndMBB.
+ EndMBB->splice(EndMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // The original block will now fall through to the XMM save block.
+ MBB->addSuccessor(XMMSaveMBB);
+ // The XMMSaveMBB will fall through to the end block.
+ XMMSaveMBB->addSuccessor(EndMBB);
+
+ // Now add the instructions.
+ const TargetInstrInfo *TII = MBB->getParent()->getTarget().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ unsigned CountReg = MI->getOperand(0).getReg();
+ int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
+ int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
+
+ if (!Subtarget->isTargetWin64()) {
+ // If %al is 0, branch around the XMM save block.
+ BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
+ BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
+ MBB->addSuccessor(EndMBB);
+ }
+
+ // Make sure the last operand is EFLAGS, which gets clobbered by the branch
+ // that was just emitted, but clearly shouldn't be "saved".
+ assert((MI->getNumOperands() <= 3 ||
+ !MI->getOperand(MI->getNumOperands() - 1).isReg() ||
+ MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS)
+ && "Expected last argument to be EFLAGS");
+ unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
+ // In the XMM save block, save all the XMM argument registers.
+ for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) {
+ int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
+ MachineMemOperand *MMO =
+ F->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
+ MachineMemOperand::MOStore,
+ /*Size=*/16, /*Align=*/16);
+ BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
+ .addFrameIndex(RegSaveFrameIndex)
+ .addImm(/*Scale=*/1)
+ .addReg(/*IndexReg=*/0)
+ .addImm(/*Disp=*/Offset)
+ .addReg(/*Segment=*/0)
+ .addReg(MI->getOperand(i).getReg())
+ .addMemOperand(MMO);
+ }
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+
+ return EndMBB;
+}
+
+// The EFLAGS operand of SelectItr might be missing a kill marker
+// because there were multiple uses of EFLAGS, and ISel didn't know
+// which to mark. Figure out whether SelectItr should have had a
+// kill marker, and set it if it should. Returns the correct kill
+// marker value.
+static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
+ MachineBasicBlock* BB,
+ const TargetRegisterInfo* TRI) {
+ // Scan forward through BB for a use/def of EFLAGS.
+ MachineBasicBlock::iterator miI(std::next(SelectItr));
+ for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
+ const MachineInstr& mi = *miI;
+ if (mi.readsRegister(X86::EFLAGS))
+ return false;
+ if (mi.definesRegister(X86::EFLAGS))
+ break; // Should have kill-flag - update below.
+ }
+
+ // If we hit the end of the block, check whether EFLAGS is live into a
+ // successor.
+ if (miI == BB->end()) {
+ for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
+ sEnd = BB->succ_end();
+ sItr != sEnd; ++sItr) {
+ MachineBasicBlock* succ = *sItr;
+ if (succ->isLiveIn(X86::EFLAGS))
+ return false;
+ }
+ }
+
+ // We found a def, or hit the end of the basic block and EFLAGS wasn't live
+ // out. SelectMI should have a kill flag on EFLAGS.
+ SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
+ return true;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = BB->getParent()->getTarget().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // If the EFLAGS register isn't dead in the terminator, then claim that it's
+ // live into the sink and copy blocks.
+ const TargetRegisterInfo* TRI = BB->getParent()->getTarget().getRegisterInfo();
+ if (!MI->killsRegister(X86::EFLAGS) &&
+ !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
+ copy0MBB->addLiveIn(X86::EFLAGS);
+ sinkMBB->addLiveIn(X86::EFLAGS);
+ }
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // Create the conditional branch instruction.
+ unsigned Opc =
+ X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
+ BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ copy0MBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BuildMI(*sinkMBB, sinkMBB->begin(), DL,
+ TII->get(X86::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return sinkMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
+ bool Is64Bit) const {
+ MachineFunction *MF = BB->getParent();
+ const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+
+ assert(MF->shouldSplitStack());
+
+ unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
+ unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
+
+ // BB:
+ // ... [Till the alloca]
+ // If stacklet is not large enough, jump to mallocMBB
+ //
+ // bumpMBB:
+ // Allocate by subtracting from RSP
+ // Jump to continueMBB
+ //
+ // mallocMBB:
+ // Allocate by call to runtime
+ //
+ // continueMBB:
+ // ...
+ // [rest of original BB]
+ //
+
+ MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ const TargetRegisterClass *AddrRegClass =
+ getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
+
+ unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
+ bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
+ tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
+ SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
+ sizeVReg = MI->getOperand(1).getReg(),
+ physSPReg = Is64Bit ? X86::RSP : X86::ESP;
+
+ MachineFunction::iterator MBBIter = BB;
+ ++MBBIter;
+
+ MF->insert(MBBIter, bumpMBB);
+ MF->insert(MBBIter, mallocMBB);
+ MF->insert(MBBIter, continueMBB);
+
+ continueMBB->splice(continueMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ continueMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Add code to the main basic block to check if the stack limit has been hit,
+ // and if so, jump to mallocMBB otherwise to bumpMBB.
+ BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
+ BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
+ .addReg(tmpSPVReg).addReg(sizeVReg);
+ BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
+ .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
+ .addReg(SPLimitVReg);
+ BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
+
+ // bumpMBB simply decreases the stack pointer, since we know the current
+ // stacklet has enough space.
+ BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
+ .addReg(SPLimitVReg);
+ BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
+ .addReg(SPLimitVReg);
+ BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
+
+ // Calls into a routine in libgcc to allocate more space from the heap.
+ const uint32_t *RegMask =
+ MF->getTarget().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
+ if (Is64Bit) {
+ BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
+ .addReg(sizeVReg);
+ BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
+ .addExternalSymbol("__morestack_allocate_stack_space")
+ .addRegMask(RegMask)
+ .addReg(X86::RDI, RegState::Implicit)
+ .addReg(X86::RAX, RegState::ImplicitDefine);
+ } else {
+ BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
+ .addImm(12);
+ BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
+ BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
+ .addExternalSymbol("__morestack_allocate_stack_space")
+ .addRegMask(RegMask)
+ .addReg(X86::EAX, RegState::ImplicitDefine);
+ }
+
+ if (!Is64Bit)
+ BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
+ .addImm(16);
+
+ BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
+ .addReg(Is64Bit ? X86::RAX : X86::EAX);
+ BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
+
+ // Set up the CFG correctly.
+ BB->addSuccessor(bumpMBB);
+ BB->addSuccessor(mallocMBB);
+ mallocMBB->addSuccessor(continueMBB);
+ bumpMBB->addSuccessor(continueMBB);
+
+ // Take care of the PHI nodes.
+ BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
+ MI->getOperand(0).getReg())
+ .addReg(mallocPtrVReg).addMBB(mallocMBB)
+ .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
+
+ // Delete the original pseudo instruction.
+ MI->eraseFromParent();
+
+ // And we're done.
+ return continueMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = BB->getParent()->getTarget().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ assert(!Subtarget->isTargetMacho());
+
+ // The lowering is pretty easy: we're just emitting the call to _alloca. The
+ // non-trivial part is impdef of ESP.
+
+ if (Subtarget->isTargetWin64()) {
+ if (Subtarget->isTargetCygMing()) {
+ // ___chkstk(Mingw64):
+ // Clobbers R10, R11, RAX and EFLAGS.
+ // Updates RSP.
+ BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
+ .addExternalSymbol("___chkstk")
+ .addReg(X86::RAX, RegState::Implicit)
+ .addReg(X86::RSP, RegState::Implicit)
+ .addReg(X86::RAX, RegState::Define | RegState::Implicit)
+ .addReg(X86::RSP, RegState::Define | RegState::Implicit)
+ .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
+ } else {
+ // __chkstk(MSVCRT): does not update stack pointer.
+ // Clobbers R10, R11 and EFLAGS.
+ BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
+ .addExternalSymbol("__chkstk")
+ .addReg(X86::RAX, RegState::Implicit)
+ .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
+ // RAX has the offset to be subtracted from RSP.
+ BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
+ .addReg(X86::RSP)
+ .addReg(X86::RAX);
+ }
+ } else {
+ const char *StackProbeSymbol =
+ Subtarget->isTargetKnownWindowsMSVC() ? "_chkstk" : "_alloca";
+
+ BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
+ .addExternalSymbol(StackProbeSymbol)
+ .addReg(X86::EAX, RegState::Implicit)
+ .addReg(X86::ESP, RegState::Implicit)
+ .addReg(X86::EAX, RegState::Define | RegState::Implicit)
+ .addReg(X86::ESP, RegState::Define | RegState::Implicit)
+ .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
+ }
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ // This is pretty easy. We're taking the value that we received from
+ // our load from the relocation, sticking it in either RDI (x86-64)
+ // or EAX and doing an indirect call. The return value will then
+ // be in the normal return register.
+ MachineFunction *F = BB->getParent();
+ const X86InstrInfo *TII
+ = static_cast<const X86InstrInfo*>(F->getTarget().getInstrInfo());
+ DebugLoc DL = MI->getDebugLoc();
+
+ assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
+ assert(MI->getOperand(3).isGlobal() && "This should be a global");
+
+ // Get a register mask for the lowered call.
+ // FIXME: The 32-bit calls have non-standard calling conventions. Use a
+ // proper register mask.
+ const uint32_t *RegMask =
+ F->getTarget().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
+ if (Subtarget->is64Bit()) {
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
+ TII->get(X86::MOV64rm), X86::RDI)
+ .addReg(X86::RIP)
+ .addImm(0).addReg(0)
+ .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
+ MI->getOperand(3).getTargetFlags())
+ .addReg(0);
+ MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
+ addDirectMem(MIB, X86::RDI);
+ MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
+ } else if (F->getTarget().getRelocationModel() != Reloc::PIC_) {
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
+ TII->get(X86::MOV32rm), X86::EAX)
+ .addReg(0)
+ .addImm(0).addReg(0)
+ .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
+ MI->getOperand(3).getTargetFlags())
+ .addReg(0);
+ MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
+ addDirectMem(MIB, X86::EAX);
+ MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
+ } else {
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
+ TII->get(X86::MOV32rm), X86::EAX)
+ .addReg(TII->getGlobalBaseReg(F))
+ .addImm(0).addReg(0)
+ .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
+ MI->getOperand(3).getTargetFlags())
+ .addReg(0);
+ MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
+ addDirectMem(MIB, X86::EAX);
+ MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
+ }
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI->getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ const BasicBlock *BB = MBB->getBasicBlock();
+ MachineFunction::iterator I = MBB;
+ ++I;
+
+ // Memory Reference
+ MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
+
+ unsigned DstReg;
+ unsigned MemOpndSlot = 0;
+
+ unsigned CurOp = 0;
+
+ DstReg = MI->getOperand(CurOp++).getReg();
+ const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
+ assert(RC->hasType(MVT::i32) && "Invalid destination!");
+ unsigned mainDstReg = MRI.createVirtualRegister(RC);
+ unsigned restoreDstReg = MRI.createVirtualRegister(RC);
+
+ MemOpndSlot = CurOp;
+
+ MVT PVT = getPointerTy();
+ assert((PVT == MVT::i64 || PVT == MVT::i32) &&
+ "Invalid Pointer Size!");
+
+ // For v = setjmp(buf), we generate
+ //
+ // thisMBB:
+ // buf[LabelOffset] = restoreMBB
+ // SjLjSetup restoreMBB
+ //
+ // mainMBB:
+ // v_main = 0
+ //
+ // sinkMBB:
+ // v = phi(main, restore)
+ //
+ // restoreMBB:
+ // v_restore = 1
+
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
+ MF->insert(I, mainMBB);
+ MF->insert(I, sinkMBB);
+ MF->push_back(restoreMBB);
+
+ MachineInstrBuilder MIB;
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // thisMBB:
+ unsigned PtrStoreOpc = 0;
+ unsigned LabelReg = 0;
+ const int64_t LabelOffset = 1 * PVT.getStoreSize();
+ Reloc::Model RM = MF->getTarget().getRelocationModel();
+ bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
+ (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
+
+ // Prepare IP either in reg or imm.
+ if (!UseImmLabel) {
+ PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
+ const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
+ LabelReg = MRI.createVirtualRegister(PtrRC);
+ if (Subtarget->is64Bit()) {
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
+ .addReg(X86::RIP)
+ .addImm(0)
+ .addReg(0)
+ .addMBB(restoreMBB)
+ .addReg(0);
+ } else {
+ const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
+ .addReg(XII->getGlobalBaseReg(MF))
+ .addImm(0)
+ .addReg(0)
+ .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
+ .addReg(0);
+ }
+ } else
+ PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
+ // Store IP
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
+ if (i == X86::AddrDisp)
+ MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
+ else
+ MIB.addOperand(MI->getOperand(MemOpndSlot + i));
+ }
+ if (!UseImmLabel)
+ MIB.addReg(LabelReg);
+ else
+ MIB.addMBB(restoreMBB);
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Setup
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
+ .addMBB(restoreMBB);
+
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(MF->getTarget().getRegisterInfo());
+ MIB.addRegMask(RegInfo->getNoPreservedMask());
+ thisMBB->addSuccessor(mainMBB);
+ thisMBB->addSuccessor(restoreMBB);
+
+ // mainMBB:
+ // EAX = 0
+ BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
+ mainMBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ BuildMI(*sinkMBB, sinkMBB->begin(), DL,
+ TII->get(X86::PHI), DstReg)
+ .addReg(mainDstReg).addMBB(mainMBB)
+ .addReg(restoreDstReg).addMBB(restoreMBB);
+
+ // restoreMBB:
+ BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
+ BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
+ restoreMBB->addSuccessor(sinkMBB);
+
+ MI->eraseFromParent();
+ return sinkMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI->getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ // Memory Reference
+ MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
+
+ MVT PVT = getPointerTy();
+ assert((PVT == MVT::i64 || PVT == MVT::i32) &&
+ "Invalid Pointer Size!");
+
+ const TargetRegisterClass *RC =
+ (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
+ unsigned Tmp = MRI.createVirtualRegister(RC);
+ // Since FP is only updated here but NOT referenced, it's treated as GPR.
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(MF->getTarget().getRegisterInfo());
+ unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
+ unsigned SP = RegInfo->getStackRegister();
+
+ MachineInstrBuilder MIB;
+
+ const int64_t LabelOffset = 1 * PVT.getStoreSize();
+ const int64_t SPOffset = 2 * PVT.getStoreSize();
+
+ unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
+ unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
+
+ // Reload FP
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
+ MIB.addOperand(MI->getOperand(i));
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Reload IP
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
+ if (i == X86::AddrDisp)
+ MIB.addDisp(MI->getOperand(i), LabelOffset);
+ else
+ MIB.addOperand(MI->getOperand(i));
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Reload SP
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
+ if (i == X86::AddrDisp)
+ MIB.addDisp(MI->getOperand(i), SPOffset);
+ else
+ MIB.addOperand(MI->getOperand(i));
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Jump
+ BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
+
+ MI->eraseFromParent();
+ return MBB;
+}
+
+// Replace 213-type (isel default) FMA3 instructions with 231-type for
+// accumulator loops. Writing back to the accumulator allows the coalescer
+// to remove extra copies in the loop.
+MachineBasicBlock *
+X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ MachineOperand &AddendOp = MI->getOperand(3);
+
+ // Bail out early if the addend isn't a register - we can't switch these.
+ if (!AddendOp.isReg())
+ return MBB;
+
+ MachineFunction &MF = *MBB->getParent();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // Check whether the addend is defined by a PHI:
+ assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?");
+ MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg());
+ if (!AddendDef.isPHI())
+ return MBB;
+
+ // Look for the following pattern:
+ // loop:
+ // %addend = phi [%entry, 0], [%loop, %result]
+ // ...
+ // %result<tied1> = FMA213 %m2<tied0>, %m1, %addend
+
+ // Replace with:
+ // loop:
+ // %addend = phi [%entry, 0], [%loop, %result]
+ // ...
+ // %result<tied1> = FMA231 %addend<tied0>, %m1, %m2
+
+ for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) {
+ assert(AddendDef.getOperand(i).isReg());
+ MachineOperand PHISrcOp = AddendDef.getOperand(i);
+ MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg());
+ if (&PHISrcInst == MI) {
+ // Found a matching instruction.
+ unsigned NewFMAOpc = 0;
+ switch (MI->getOpcode()) {
+ case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break;
+ case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break;
+ case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break;
+ case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break;
+ case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break;
+ case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break;
+ case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break;
+ case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break;
+ case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break;
+ case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break;
+ case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break;
+ case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break;
+ case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break;
+ case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break;
+ case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break;
+ case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break;
+ case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break;
+ case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break;
+ case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break;
+ case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break;
+ case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break;
+ case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break;
+ case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break;
+ case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break;
+ default: llvm_unreachable("Unrecognized FMA variant.");
+ }
+
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ MachineInstrBuilder MIB =
+ BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc))
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(3))
+ .addOperand(MI->getOperand(2))
+ .addOperand(MI->getOperand(1));
+ MBB->insert(MachineBasicBlock::iterator(MI), MIB);
+ MI->eraseFromParent();
+ }
+ }
+
+ return MBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unexpected instr type to insert");
+ case X86::TAILJMPd64:
+ case X86::TAILJMPr64:
+ case X86::TAILJMPm64:
+ llvm_unreachable("TAILJMP64 would not be touched here.");
+ case X86::TCRETURNdi64:
+ case X86::TCRETURNri64:
+ case X86::TCRETURNmi64:
+ return BB;
+ case X86::WIN_ALLOCA:
+ return EmitLoweredWinAlloca(MI, BB);
+ case X86::SEG_ALLOCA_32:
+ return EmitLoweredSegAlloca(MI, BB, false);
+ case X86::SEG_ALLOCA_64:
+ return EmitLoweredSegAlloca(MI, BB, true);
+ case X86::TLSCall_32:
+ case X86::TLSCall_64:
+ return EmitLoweredTLSCall(MI, BB);
+ case X86::CMOV_GR8:
+ case X86::CMOV_FR32:
+ case X86::CMOV_FR64:
+ case X86::CMOV_V4F32:
+ case X86::CMOV_V2F64:
+ case X86::CMOV_V2I64:
+ case X86::CMOV_V8F32:
+ case X86::CMOV_V4F64:
+ case X86::CMOV_V4I64:
+ case X86::CMOV_V16F32:
+ case X86::CMOV_V8F64:
+ case X86::CMOV_V8I64:
+ case X86::CMOV_GR16:
+ case X86::CMOV_GR32:
+ case X86::CMOV_RFP32:
+ case X86::CMOV_RFP64:
+ case X86::CMOV_RFP80:
+ return EmitLoweredSelect(MI, BB);
+
+ case X86::FP32_TO_INT16_IN_MEM:
+ case X86::FP32_TO_INT32_IN_MEM:
+ case X86::FP32_TO_INT64_IN_MEM:
+ case X86::FP64_TO_INT16_IN_MEM:
+ case X86::FP64_TO_INT32_IN_MEM:
+ case X86::FP64_TO_INT64_IN_MEM:
+ case X86::FP80_TO_INT16_IN_MEM:
+ case X86::FP80_TO_INT32_IN_MEM:
+ case X86::FP80_TO_INT64_IN_MEM: {
+ MachineFunction *F = BB->getParent();
+ const TargetInstrInfo *TII = F->getTarget().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // Change the floating point control register to use "round towards zero"
+ // mode when truncating to an integer value.
+ int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
+ addFrameReference(BuildMI(*BB, MI, DL,
+ TII->get(X86::FNSTCW16m)), CWFrameIdx);
+
+ // Load the old value of the high byte of the control word...
+ unsigned OldCW =
+ F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
+ addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
+ CWFrameIdx);
+
+ // Set the high part to be round to zero...
+ addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
+ .addImm(0xC7F);
+
+ // Reload the modified control word now...
+ addFrameReference(BuildMI(*BB, MI, DL,
+ TII->get(X86::FLDCW16m)), CWFrameIdx);
+
+ // Restore the memory image of control word to original value
+ addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
+ .addReg(OldCW);
+
+ // Get the X86 opcode to use.
+ unsigned Opc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("illegal opcode!");
+ case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
+ case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
+ case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
+ case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
+ case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
+ case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
+ case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
+ case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
+ case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
+ }
+
+ X86AddressMode AM;
+ MachineOperand &Op = MI->getOperand(0);
+ if (Op.isReg()) {
+ AM.BaseType = X86AddressMode::RegBase;
+ AM.Base.Reg = Op.getReg();
+ } else {
+ AM.BaseType = X86AddressMode::FrameIndexBase;
+ AM.Base.FrameIndex = Op.getIndex();
+ }
+ Op = MI->getOperand(1);
+ if (Op.isImm())
+ AM.Scale = Op.getImm();
+ Op = MI->getOperand(2);
+ if (Op.isImm())
+ AM.IndexReg = Op.getImm();
+ Op = MI->getOperand(3);
+ if (Op.isGlobal()) {
+ AM.GV = Op.getGlobal();
+ } else {
+ AM.Disp = Op.getImm();
+ }
+ addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
+ .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
+
+ // Reload the original control word now.
+ addFrameReference(BuildMI(*BB, MI, DL,
+ TII->get(X86::FLDCW16m)), CWFrameIdx);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+ }
+ // String/text processing lowering.
+ case X86::PCMPISTRM128REG:
+ case X86::VPCMPISTRM128REG:
+ case X86::PCMPISTRM128MEM:
+ case X86::VPCMPISTRM128MEM:
+ case X86::PCMPESTRM128REG:
+ case X86::VPCMPESTRM128REG:
+ case X86::PCMPESTRM128MEM:
+ case X86::VPCMPESTRM128MEM:
+ assert(Subtarget->hasSSE42() &&
+ "Target must have SSE4.2 or AVX features enabled");
+ return EmitPCMPSTRM(MI, BB, BB->getParent()->getTarget().getInstrInfo());
+
+ // String/text processing lowering.
+ case X86::PCMPISTRIREG:
+ case X86::VPCMPISTRIREG:
+ case X86::PCMPISTRIMEM:
+ case X86::VPCMPISTRIMEM:
+ case X86::PCMPESTRIREG:
+ case X86::VPCMPESTRIREG:
+ case X86::PCMPESTRIMEM:
+ case X86::VPCMPESTRIMEM:
+ assert(Subtarget->hasSSE42() &&
+ "Target must have SSE4.2 or AVX features enabled");
+ return EmitPCMPSTRI(MI, BB, BB->getParent()->getTarget().getInstrInfo());
+
+ // Thread synchronization.
+ case X86::MONITOR:
+ return EmitMonitor(MI, BB, BB->getParent()->getTarget().getInstrInfo(), Subtarget);
+
+ // xbegin
+ case X86::XBEGIN:
+ return EmitXBegin(MI, BB, BB->getParent()->getTarget().getInstrInfo());
+
+ case X86::VASTART_SAVE_XMM_REGS:
+ return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
+
+ case X86::VAARG_64:
+ return EmitVAARG64WithCustomInserter(MI, BB);
+
+ case X86::EH_SjLj_SetJmp32:
+ case X86::EH_SjLj_SetJmp64:
+ return emitEHSjLjSetJmp(MI, BB);
+
+ case X86::EH_SjLj_LongJmp32:
+ case X86::EH_SjLj_LongJmp64:
+ return emitEHSjLjLongJmp(MI, BB);
+
+ case TargetOpcode::STACKMAP:
+ case TargetOpcode::PATCHPOINT:
+ return emitPatchPoint(MI, BB);
+
+ case X86::VFMADDPDr213r:
+ case X86::VFMADDPSr213r:
+ case X86::VFMADDSDr213r:
+ case X86::VFMADDSSr213r:
+ case X86::VFMSUBPDr213r:
+ case X86::VFMSUBPSr213r:
+ case X86::VFMSUBSDr213r:
+ case X86::VFMSUBSSr213r:
+ case X86::VFNMADDPDr213r:
+ case X86::VFNMADDPSr213r:
+ case X86::VFNMADDSDr213r:
+ case X86::VFNMADDSSr213r:
+ case X86::VFNMSUBPDr213r:
+ case X86::VFNMSUBPSr213r:
+ case X86::VFNMSUBSDr213r:
+ case X86::VFNMSUBSSr213r:
+ case X86::VFMADDPDr213rY:
+ case X86::VFMADDPSr213rY:
+ case X86::VFMSUBPDr213rY:
+ case X86::VFMSUBPSr213rY:
+ case X86::VFNMADDPDr213rY:
+ case X86::VFNMADDPSr213rY:
+ case X86::VFNMSUBPDr213rY:
+ case X86::VFNMSUBPSr213rY:
+ return emitFMA3Instr(MI, BB);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ unsigned BitWidth = KnownZero.getBitWidth();
+ unsigned Opc = Op.getOpcode();
+ assert((Opc >= ISD::BUILTIN_OP_END ||
+ Opc == ISD::INTRINSIC_WO_CHAIN ||
+ Opc == ISD::INTRINSIC_W_CHAIN ||
+ Opc == ISD::INTRINSIC_VOID) &&
+ "Should use MaskedValueIsZero if you don't know whether Op"
+ " is a target node!");
+
+ KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
+ switch (Opc) {
+ default: break;
+ case X86ISD::ADD:
+ case X86ISD::SUB:
+ case X86ISD::ADC:
+ case X86ISD::SBB:
+ case X86ISD::SMUL:
+ case X86ISD::UMUL:
+ case X86ISD::INC:
+ case X86ISD::DEC:
+ case X86ISD::OR:
+ case X86ISD::XOR:
+ case X86ISD::AND:
+ // These nodes' second result is a boolean.
+ if (Op.getResNo() == 0)
+ break;
+ // Fallthrough
+ case X86ISD::SETCC:
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
+ break;
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ unsigned NumLoBits = 0;
+ switch (IntId) {
+ default: break;
+ case Intrinsic::x86_sse_movmsk_ps:
+ case Intrinsic::x86_avx_movmsk_ps_256:
+ case Intrinsic::x86_sse2_movmsk_pd:
+ case Intrinsic::x86_avx_movmsk_pd_256:
+ case Intrinsic::x86_mmx_pmovmskb:
+ case Intrinsic::x86_sse2_pmovmskb_128:
+ case Intrinsic::x86_avx2_pmovmskb: {
+ // High bits of movmskp{s|d}, pmovmskb are known zero.
+ switch (IntId) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break;
+ case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break;
+ case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break;
+ case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break;
+ case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break;
+ case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break;
+ case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break;
+ }
+ KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
+ break;
+ }
+ }
+ break;
+ }
+ }
+}
+
+unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
+ SDValue Op,
+ const SelectionDAG &,
+ unsigned Depth) const {
+ // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
+ if (Op.getOpcode() == X86ISD::SETCC_CARRY)
+ return Op.getValueType().getScalarType().getSizeInBits();
+
+ // Fallback case.
+ return 1;
+}
+
+/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
+/// node is a GlobalAddress + offset.
+bool X86TargetLowering::isGAPlusOffset(SDNode *N,
+ const GlobalValue* &GA,
+ int64_t &Offset) const {
+ if (N->getOpcode() == X86ISD::Wrapper) {
+ if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
+ GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
+ Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
+ return true;
+ }
+ }
+ return TargetLowering::isGAPlusOffset(N, GA, Offset);
+}
+
+/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
+/// same as extracting the high 128-bit part of 256-bit vector and then
+/// inserting the result into the low part of a new 256-bit vector
+static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
+ EVT VT = SVOp->getValueType(0);
+ unsigned NumElems = VT.getVectorNumElements();
+
+ // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
+ for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
+ if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
+ SVOp->getMaskElt(j) >= 0)
+ return false;
+
+ return true;
+}
+
+/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
+/// same as extracting the low 128-bit part of 256-bit vector and then
+/// inserting the result into the high part of a new 256-bit vector
+static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
+ EVT VT = SVOp->getValueType(0);
+ unsigned NumElems = VT.getVectorNumElements();
+
+ // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
+ for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
+ if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
+ SVOp->getMaskElt(j) >= 0)
+ return false;
+
+ return true;
+}
+
+/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
+static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget* Subtarget) {
+ SDLoc dl(N);
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ EVT VT = SVOp->getValueType(0);
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
+ V2.getOpcode() == ISD::CONCAT_VECTORS) {
+ //
+ // 0,0,0,...
+ // |
+ // V UNDEF BUILD_VECTOR UNDEF
+ // \ / \ /
+ // CONCAT_VECTOR CONCAT_VECTOR
+ // \ /
+ // \ /
+ // RESULT: V + zero extended
+ //
+ if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
+ V2.getOperand(1).getOpcode() != ISD::UNDEF ||
+ V1.getOperand(1).getOpcode() != ISD::UNDEF)
+ return SDValue();
+
+ if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
+ return SDValue();
+
+ // To match the shuffle mask, the first half of the mask should
+ // be exactly the first vector, and all the rest a splat with the
+ // first element of the second one.
+ for (unsigned i = 0; i != NumElems/2; ++i)
+ if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
+ !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
+ return SDValue();
+
+ // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
+ if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
+ if (Ld->hasNUsesOfValue(1, 0)) {
+ SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
+ SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
+ SDValue ResNode =
+ DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
+ Ld->getMemoryVT(),
+ Ld->getPointerInfo(),
+ Ld->getAlignment(),
+ false/*isVolatile*/, true/*ReadMem*/,
+ false/*WriteMem*/);
+
+ // Make sure the newly-created LOAD is in the same position as Ld in
+ // terms of dependency. We create a TokenFactor for Ld and ResNode,
+ // and update uses of Ld's output chain to use the TokenFactor.
+ if (Ld->hasAnyUseOfValue(1)) {
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
+ DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
+ SDValue(ResNode.getNode(), 1));
+ }
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
+ }
+ }
+
+ // Emit a zeroed vector and insert the desired subvector on its
+ // first half.
+ SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
+ SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
+ return DCI.CombineTo(N, InsV);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Combine some shuffles into subvector extracts and inserts:
+ //
+
+ // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
+ if (isShuffleHigh128VectorInsertLow(SVOp)) {
+ SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
+ SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
+ return DCI.CombineTo(N, InsV);
+ }
+
+ // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
+ if (isShuffleLow128VectorInsertHigh(SVOp)) {
+ SDValue V = Extract128BitVector(V1, 0, DAG, dl);
+ SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
+ return DCI.CombineTo(N, InsV);
+ }
+
+ return SDValue();
+}
+
+/// \brief Get the PSHUF-style mask from PSHUF node.
+///
+/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
+/// PSHUF-style masks that can be reused with such instructions.
+static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
+ SmallVector<int, 4> Mask;
+ bool IsUnary;
+ bool HaveMask = getTargetShuffleMask(N.getNode(), N.getSimpleValueType(), Mask, IsUnary);
+ (void)HaveMask;
+ assert(HaveMask);
+
+ switch (N.getOpcode()) {
+ case X86ISD::PSHUFD:
+ return Mask;
+ case X86ISD::PSHUFLW:
+ Mask.resize(4);
+ return Mask;
+ case X86ISD::PSHUFHW:
+ Mask.erase(Mask.begin(), Mask.begin() + 4);
+ for (int &M : Mask)
+ M -= 4;
+ return Mask;
+ default:
+ llvm_unreachable("No valid shuffle instruction found!");
+ }
+}
+
+/// \brief Search for a combinable shuffle across a chain ending in pshufd.
+///
+/// We walk up the chain and look for a combinable shuffle, skipping over
+/// shuffles that we could hoist this shuffle's transformation past without
+/// altering anything.
+static bool combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ assert(N.getOpcode() == X86ISD::PSHUFD &&
+ "Called with something other than an x86 128-bit half shuffle!");
+ SDLoc DL(N);
+
+ // Walk up a single-use chain looking for a combinable shuffle.
+ SDValue V = N.getOperand(0);
+ for (; V.hasOneUse(); V = V.getOperand(0)) {
+ switch (V.getOpcode()) {
+ default:
+ return false; // Nothing combined!
+
+ case ISD::BITCAST:
+ // Skip bitcasts as we always know the type for the target specific
+ // instructions.
+ continue;
+
+ case X86ISD::PSHUFD:
+ // Found another dword shuffle.
+ break;
+
+ case X86ISD::PSHUFLW:
+ // Check that the low words (being shuffled) are the identity in the
+ // dword shuffle, and the high words are self-contained.
+ if (Mask[0] != 0 || Mask[1] != 1 ||
+ !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
+ return false;
+
+ continue;
+
+ case X86ISD::PSHUFHW:
+ // Check that the high words (being shuffled) are the identity in the
+ // dword shuffle, and the low words are self-contained.
+ if (Mask[2] != 2 || Mask[3] != 3 ||
+ !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
+ return false;
+
+ continue;
+
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
+ // shuffle into a preceding word shuffle.
+ if (V.getValueType() != MVT::v16i8 && V.getValueType() != MVT::v8i16)
+ return false;
+
+ // Search for a half-shuffle which we can combine with.
+ unsigned CombineOp =
+ V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
+ if (V.getOperand(0) != V.getOperand(1) ||
+ !V->isOnlyUserOf(V.getOperand(0).getNode()))
+ return false;
+ V = V.getOperand(0);
+ do {
+ switch (V.getOpcode()) {
+ default:
+ return false; // Nothing to combine.
+
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ if (V.getOpcode() == CombineOp)
+ break;
+
+ // Fallthrough!
+ case ISD::BITCAST:
+ V = V.getOperand(0);
+ continue;
+ }
+ break;
+ } while (V.hasOneUse());
+ break;
+ }
+ // Break out of the loop if we break out of the switch.
+ break;
+ }
+
+ if (!V.hasOneUse())
+ // We fell out of the loop without finding a viable combining instruction.
+ return false;
+
+ // Record the old value to use in RAUW-ing.
+ SDValue Old = V;
+
+ // Merge this node's mask and our incoming mask.
+ SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
+ for (int &M : Mask)
+ M = VMask[M];
+ V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
+ getV4X86ShuffleImm8ForMask(Mask, DAG));
+
+ // It is possible that one of the combinable shuffles was completely absorbed
+ // by the other, just replace it and revisit all users in that case.
+ if (Old.getNode() == V.getNode()) {
+ DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo=*/true);
+ return true;
+ }
+
+ // Replace N with its operand as we're going to combine that shuffle away.
+ DAG.ReplaceAllUsesWith(N, N.getOperand(0));
+
+ // Replace the combinable shuffle with the combined one, updating all users
+ // so that we re-evaluate the chain here.
+ DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
+ return true;
+}
+
+/// \brief Search for a combinable shuffle across a chain ending in pshuflw or pshufhw.
+///
+/// We walk up the chain, skipping shuffles of the other half and looking
+/// through shuffles which switch halves trying to find a shuffle of the same
+/// pair of dwords.
+static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ assert(
+ (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
+ "Called with something other than an x86 128-bit half shuffle!");
+ SDLoc DL(N);
+ unsigned CombineOpcode = N.getOpcode();
+
+ // Walk up a single-use chain looking for a combinable shuffle.
+ SDValue V = N.getOperand(0);
+ for (; V.hasOneUse(); V = V.getOperand(0)) {
+ switch (V.getOpcode()) {
+ default:
+ return false; // Nothing combined!
+
+ case ISD::BITCAST:
+ // Skip bitcasts as we always know the type for the target specific
+ // instructions.
+ continue;
+
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ if (V.getOpcode() == CombineOpcode)
+ break;
+
+ // Other-half shuffles are no-ops.
+ continue;
+
+ case X86ISD::PSHUFD: {
+ // We can only handle pshufd if the half we are combining either stays in
+ // its half, or switches to the other half. Bail if one of these isn't
+ // true.
+ SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
+ int DOffset = CombineOpcode == X86ISD::PSHUFLW ? 0 : 2;
+ if (!((VMask[DOffset + 0] < 2 && VMask[DOffset + 1] < 2) ||
+ (VMask[DOffset + 0] >= 2 && VMask[DOffset + 1] >= 2)))
+ return false;
+
+ // Map the mask through the pshufd and keep walking up the chain.
+ for (int i = 0; i < 4; ++i)
+ Mask[i] = 2 * (VMask[DOffset + Mask[i] / 2] % 2) + Mask[i] % 2;
+
+ // Switch halves if the pshufd does.
+ CombineOpcode =
+ VMask[DOffset + Mask[0] / 2] < 2 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
+ continue;
+ }
+ }
+ // Break out of the loop if we break out of the switch.
+ break;
+ }
+
+ if (!V.hasOneUse())
+ // We fell out of the loop without finding a viable combining instruction.
+ return false;
+
+ // Record the old value to use in RAUW-ing.
+ SDValue Old = V;
+
+ // Merge this node's mask and our incoming mask (adjusted to account for all
+ // the pshufd instructions encountered).
+ SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
+ for (int &M : Mask)
+ M = VMask[M];
+ V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
+ getV4X86ShuffleImm8ForMask(Mask, DAG));
+
+ // Replace N with its operand as we're going to combine that shuffle away.
+ DAG.ReplaceAllUsesWith(N, N.getOperand(0));
+
+ // Replace the combinable shuffle with the combined one, updating all users
+ // so that we re-evaluate the chain here.
+ DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
+ return true;
+}
+
+/// \brief Try to combine x86 target specific shuffles.
+static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+ MVT VT = N.getSimpleValueType();
+ SmallVector<int, 4> Mask;
+
+ switch (N.getOpcode()) {
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ Mask = getPSHUFShuffleMask(N);
+ assert(Mask.size() == 4);
+ break;
+ default:
+ return SDValue();
+ }
+
+ // Nuke no-op shuffles that show up after combining.
+ if (isNoopShuffleMask(Mask))
+ return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
+
+ // Look for simplifications involving one or two shuffle instructions.
+ SDValue V = N.getOperand(0);
+ switch (N.getOpcode()) {
+ default:
+ break;
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ assert(VT == MVT::v8i16);
+ (void)VT;
+
+ if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
+ return SDValue(); // We combined away this shuffle, so we're done.
+
+ // See if this reduces to a PSHUFD which is no more expensive and can
+ // combine with more operations.
+ if (Mask[0] % 2 == 0 && Mask[2] % 2 == 0 &&
+ areAdjacentMasksSequential(Mask)) {
+ int DMask[] = {-1, -1, -1, -1};
+ int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
+ DMask[DOffset + 0] = DOffset + Mask[0] / 2;
+ DMask[DOffset + 1] = DOffset + Mask[2] / 2;
+ V = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V);
+ DCI.AddToWorklist(V.getNode());
+ V = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V,
+ getV4X86ShuffleImm8ForMask(DMask, DAG));
+ DCI.AddToWorklist(V.getNode());
+ return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
+ }
+
+ // Look for shuffle patterns which can be implemented as a single unpack.
+ // FIXME: This doesn't handle the location of the PSHUFD generically, and
+ // only works when we have a PSHUFD followed by two half-shuffles.
+ if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
+ (V.getOpcode() == X86ISD::PSHUFLW ||
+ V.getOpcode() == X86ISD::PSHUFHW) &&
+ V.getOpcode() != N.getOpcode() &&
+ V.hasOneUse()) {
+ SDValue D = V.getOperand(0);
+ while (D.getOpcode() == ISD::BITCAST && D.hasOneUse())
+ D = D.getOperand(0);
+ if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
+ SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
+ SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
+ int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
+ int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
+ int WordMask[8];
+ for (int i = 0; i < 4; ++i) {
+ WordMask[i + NOffset] = Mask[i] + NOffset;
+ WordMask[i + VOffset] = VMask[i] + VOffset;
+ }
+ // Map the word mask through the DWord mask.
+ int MappedMask[8];
+ for (int i = 0; i < 8; ++i)
+ MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
+ const int UnpackLoMask[] = {0, 0, 1, 1, 2, 2, 3, 3};
+ const int UnpackHiMask[] = {4, 4, 5, 5, 6, 6, 7, 7};
+ if (std::equal(std::begin(MappedMask), std::end(MappedMask),
+ std::begin(UnpackLoMask)) ||
+ std::equal(std::begin(MappedMask), std::end(MappedMask),
+ std::begin(UnpackHiMask))) {
+ // We can replace all three shuffles with an unpack.
+ V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, D.getOperand(0));
+ DCI.AddToWorklist(V.getNode());
+ return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
+ : X86ISD::UNPCKH,
+ DL, MVT::v8i16, V, V);
+ }
+ }
+ }
+
+ break;
+
+ case X86ISD::PSHUFD:
+ if (combineRedundantDWordShuffle(N, Mask, DAG, DCI))
+ return SDValue(); // We combined away this shuffle.
+
+ break;
+ }
+
+ return SDValue();
+}
+
+/// PerformShuffleCombine - Performs several different shuffle combines.
+static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc dl(N);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ // Canonicalize shuffles that perform 'addsub' on packed float vectors
+ // according to the rule:
+ // (shuffle (FADD A, B), (FSUB A, B), Mask) ->
+ // (shuffle (FSUB A, -B), (FADD A, -B), Mask)
+ //
+ // Where 'Mask' is:
+ // <0,5,2,7> -- for v4f32 and v4f64 shuffles;
+ // <0,3> -- for v2f64 shuffles;
+ // <0,9,2,11,4,13,6,15> -- for v8f32 shuffles.
+ //
+ // This helps pattern-matching more SSE3/AVX ADDSUB instructions
+ // during ISel stage.
+ if (N->getOpcode() == ISD::VECTOR_SHUFFLE &&
+ ((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
+ (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
+ N0->getOpcode() == ISD::FADD && N1->getOpcode() == ISD::FSUB &&
+ // Operands to the FADD and FSUB must be the same.
+ ((N0->getOperand(0) == N1->getOperand(0) &&
+ N0->getOperand(1) == N1->getOperand(1)) ||
+ // FADD is commutable. See if by commuting the operands of the FADD
+ // we would still be able to match the operands of the FSUB dag node.
+ (N0->getOperand(1) == N1->getOperand(0) &&
+ N0->getOperand(0) == N1->getOperand(1))) &&
+ N0->getOperand(0)->getOpcode() != ISD::UNDEF &&
+ N0->getOperand(1)->getOpcode() != ISD::UNDEF) {
+
+ ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
+ unsigned NumElts = VT.getVectorNumElements();
+ ArrayRef<int> Mask = SV->getMask();
+ bool CanFold = true;
+
+ for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i)
+ CanFold = Mask[i] == (int)((i & 1) ? i + NumElts : i);
+
+ if (CanFold) {
+ SDValue Op0 = N1->getOperand(0);
+ SDValue Op1 = DAG.getNode(ISD::FNEG, dl, VT, N1->getOperand(1));
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, VT, Op0, Op1);
+ SDValue Add = DAG.getNode(ISD::FADD, dl, VT, Op0, Op1);
+ return DAG.getVectorShuffle(VT, dl, Sub, Add, Mask);
+ }
+ }
+
+ // Don't create instructions with illegal types after legalize types has run.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
+ return SDValue();
+
+ // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
+ if (Subtarget->hasFp256() && VT.is256BitVector() &&
+ N->getOpcode() == ISD::VECTOR_SHUFFLE)
+ return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
+
+ // During Type Legalization, when promoting illegal vector types,
+ // the backend might introduce new shuffle dag nodes and bitcasts.
+ //
+ // This code performs the following transformation:
+ // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
+ // (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
+ //
+ // We do this only if both the bitcast and the BINOP dag nodes have
+ // one use. Also, perform this transformation only if the new binary
+ // operation is legal. This is to avoid introducing dag nodes that
+ // potentially need to be further expanded (or custom lowered) into a
+ // less optimal sequence of dag nodes.
+ if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
+ N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() &&
+ N0.getOpcode() == ISD::BITCAST) {
+ SDValue BC0 = N0.getOperand(0);
+ EVT SVT = BC0.getValueType();
+ unsigned Opcode = BC0.getOpcode();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ if (BC0.hasOneUse() && SVT.isVector() &&
+ SVT.getVectorNumElements() * 2 == NumElts &&
+ TLI.isOperationLegal(Opcode, VT)) {
+ bool CanFold = false;
+ switch (Opcode) {
+ default : break;
+ case ISD::ADD :
+ case ISD::FADD :
+ case ISD::SUB :
+ case ISD::FSUB :
+ case ISD::MUL :
+ case ISD::FMUL :
+ CanFold = true;
+ }
+
+ unsigned SVTNumElts = SVT.getVectorNumElements();
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
+ CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
+ for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
+ CanFold = SVOp->getMaskElt(i) < 0;
+
+ if (CanFold) {
+ SDValue BC00 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(0));
+ SDValue BC01 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(1));
+ SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
+ return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
+ }
+ }
+ }
+
+ // Only handle 128 wide vector from here on.
+ if (!VT.is128BitVector())
+ return SDValue();
+
+ // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
+ // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
+ // consecutive, non-overlapping, and in the right order.
+ SmallVector<SDValue, 16> Elts;
+ for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
+ Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
+
+ SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true);
+ if (LD.getNode())
+ return LD;
+
+ if (isTargetShuffle(N->getOpcode())) {
+ SDValue Shuffle =
+ PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget);
+ if (Shuffle.getNode())
+ return Shuffle;
+ }
+
+ return SDValue();
+}
+
+/// PerformTruncateCombine - Converts truncate operation to
+/// a sequence of vector shuffle operations.
+/// It is possible when we truncate 256-bit vector to 128-bit vector
+static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ return SDValue();
+}
+
+/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
+/// specific shuffle of a load can be folded into a single element load.
+/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
+/// shuffles have been customed lowered so we need to handle those here.
+static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue InVec = N->getOperand(0);
+ SDValue EltNo = N->getOperand(1);
+
+ if (!isa<ConstantSDNode>(EltNo))
+ return SDValue();
+
+ EVT VT = InVec.getValueType();
+
+ bool HasShuffleIntoBitcast = false;
+ if (InVec.getOpcode() == ISD::BITCAST) {
+ // Don't duplicate a load with other uses.
+ if (!InVec.hasOneUse())
+ return SDValue();
+ EVT BCVT = InVec.getOperand(0).getValueType();
+ if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
+ return SDValue();
+ InVec = InVec.getOperand(0);
+ HasShuffleIntoBitcast = true;
+ }
+
+ if (!isTargetShuffle(InVec.getOpcode()))
+ return SDValue();
+
+ // Don't duplicate a load with other uses.
+ if (!InVec.hasOneUse())
+ return SDValue();
+
+ SmallVector<int, 16> ShuffleMask;
+ bool UnaryShuffle;
+ if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
+ UnaryShuffle))
+ return SDValue();
+
+ // Select the input vector, guarding against out of range extract vector.
+ unsigned NumElems = VT.getVectorNumElements();
+ int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
+ int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
+ SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
+ : InVec.getOperand(1);
+
+ // If inputs to shuffle are the same for both ops, then allow 2 uses
+ unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
+
+ if (LdNode.getOpcode() == ISD::BITCAST) {
+ // Don't duplicate a load with other uses.
+ if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
+ return SDValue();
+
+ AllowedUses = 1; // only allow 1 load use if we have a bitcast
+ LdNode = LdNode.getOperand(0);
+ }
+
+ if (!ISD::isNormalLoad(LdNode.getNode()))
+ return SDValue();
+
+ LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
+
+ if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
+ return SDValue();
+
+ if (HasShuffleIntoBitcast) {
+ // If there's a bitcast before the shuffle, check if the load type and
+ // alignment is valid.
+ unsigned Align = LN0->getAlignment();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned NewAlign = TLI.getDataLayout()->
+ getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
+
+ if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
+ return SDValue();
+ }
+
+ // All checks match so transform back to vector_shuffle so that DAG combiner
+ // can finish the job
+ SDLoc dl(N);
+
+ // Create shuffle node taking into account the case that its a unary shuffle
+ SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
+ Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
+ InVec.getOperand(0), Shuffle,
+ &ShuffleMask[0]);
+ Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
+ EltNo);
+}
+
+/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
+/// generation and convert it from being a bunch of shuffles and extracts
+/// to a simple store and scalar loads to extract the elements.
+static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
+ if (NewOp.getNode())
+ return NewOp;
+
+ SDValue InputVector = N->getOperand(0);
+
+ // Detect whether we are trying to convert from mmx to i32 and the bitcast
+ // from mmx to v2i32 has a single usage.
+ if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
+ InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
+ InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
+ return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
+ N->getValueType(0),
+ InputVector.getNode()->getOperand(0));
+
+ // Only operate on vectors of 4 elements, where the alternative shuffling
+ // gets to be more expensive.
+ if (InputVector.getValueType() != MVT::v4i32)
+ return SDValue();
+
+ // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
+ // single use which is a sign-extend or zero-extend, and all elements are
+ // used.
+ SmallVector<SDNode *, 4> Uses;
+ unsigned ExtractedElements = 0;
+ for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
+ UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI.getUse().getResNo() != InputVector.getResNo())
+ return SDValue();
+
+ SDNode *Extract = *UI;
+ if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ if (Extract->getValueType(0) != MVT::i32)
+ return SDValue();
+ if (!Extract->hasOneUse())
+ return SDValue();
+ if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
+ Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
+ return SDValue();
+ if (!isa<ConstantSDNode>(Extract->getOperand(1)))
+ return SDValue();
+
+ // Record which element was extracted.
+ ExtractedElements |=
+ 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
+
+ Uses.push_back(Extract);
+ }
+
+ // If not all the elements were used, this may not be worthwhile.
+ if (ExtractedElements != 15)
+ return SDValue();
+
+ // Ok, we've now decided to do the transformation.
+ SDLoc dl(InputVector);
+
+ // Store the value to a temporary stack slot.
+ SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
+ SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
+ MachinePointerInfo(), false, false, 0);
+
+ // Replace each use (extract) with a load of the appropriate element.
+ for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
+ UE = Uses.end(); UI != UE; ++UI) {
+ SDNode *Extract = *UI;
+
+ // cOMpute the element's address.
+ SDValue Idx = Extract->getOperand(1);
+ unsigned EltSize =
+ InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
+ uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
+
+ SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
+ StackPtr, OffsetVal);
+
+ // Load the scalar.
+ SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
+ ScalarAddr, MachinePointerInfo(),
+ false, false, false, 0);
+
+ // Replace the exact with the load.
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
+ }
+
+ // The replacement was made in place; don't return anything.
+ return SDValue();
+}
+
+/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
+static std::pair<unsigned, bool>
+matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
+ SelectionDAG &DAG, const X86Subtarget *Subtarget) {
+ if (!VT.isVector())
+ return std::make_pair(0, false);
+
+ bool NeedSplit = false;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return std::make_pair(0, false);
+ case MVT::v32i8:
+ case MVT::v16i16:
+ case MVT::v8i32:
+ if (!Subtarget->hasAVX2())
+ NeedSplit = true;
+ if (!Subtarget->hasAVX())
+ return std::make_pair(0, false);
+ break;
+ case MVT::v16i8:
+ case MVT::v8i16:
+ case MVT::v4i32:
+ if (!Subtarget->hasSSE2())
+ return std::make_pair(0, false);
+ }
+
+ // SSE2 has only a small subset of the operations.
+ bool hasUnsigned = Subtarget->hasSSE41() ||
+ (Subtarget->hasSSE2() && VT == MVT::v16i8);
+ bool hasSigned = Subtarget->hasSSE41() ||
+ (Subtarget->hasSSE2() && VT == MVT::v8i16);
+
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+
+ unsigned Opc = 0;
+ // Check for x CC y ? x : y.
+ if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(1))) {
+ switch (CC) {
+ default: break;
+ case ISD::SETULT:
+ case ISD::SETULE:
+ Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
+ case ISD::SETLT:
+ case ISD::SETLE:
+ Opc = hasSigned ? X86ISD::SMIN : 0; break;
+ case ISD::SETGT:
+ case ISD::SETGE:
+ Opc = hasSigned ? X86ISD::SMAX : 0; break;
+ }
+ // Check for x CC y ? y : x -- a min/max with reversed arms.
+ } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(0))) {
+ switch (CC) {
+ default: break;
+ case ISD::SETULT:
+ case ISD::SETULE:
+ Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
+ case ISD::SETLT:
+ case ISD::SETLE:
+ Opc = hasSigned ? X86ISD::SMAX : 0; break;
+ case ISD::SETGT:
+ case ISD::SETGE:
+ Opc = hasSigned ? X86ISD::SMIN : 0; break;
+ }
+ }
+
+ return std::make_pair(Opc, NeedSplit);
+}
+
+static SDValue
+TransformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ SDLoc dl(N);
+ SDValue Cond = N->getOperand(0);
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+
+ if (Cond.getOpcode() == ISD::SIGN_EXTEND) {
+ SDValue CondSrc = Cond->getOperand(0);
+ if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG)
+ Cond = CondSrc->getOperand(0);
+ }
+
+ MVT VT = N->getSimpleValueType(0);
+ MVT EltVT = VT.getVectorElementType();
+ unsigned NumElems = VT.getVectorNumElements();
+ // There is no blend with immediate in AVX-512.
+ if (VT.is512BitVector())
+ return SDValue();
+
+ if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
+ return SDValue();
+ if (!Subtarget->hasInt256() && VT == MVT::v16i16)
+ return SDValue();
+
+ if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
+ return SDValue();
+
+ unsigned MaskValue = 0;
+ if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
+ return SDValue();
+
+ SmallVector<int, 8> ShuffleMask(NumElems, -1);
+ for (unsigned i = 0; i < NumElems; ++i) {
+ // Be sure we emit undef where we can.
+ if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF)
+ ShuffleMask[i] = -1;
+ else
+ ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1);
+ }
+
+ return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]);
+}
+
+/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
+/// nodes.
+static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+ SDValue Cond = N->getOperand(0);
+ // Get the LHS/RHS of the select.
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+ EVT VT = LHS.getValueType();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // If we have SSE[12] support, try to form min/max nodes. SSE min/max
+ // instructions match the semantics of the common C idiom x<y?x:y but not
+ // x<=y?x:y, because of how they handle negative zero (which can be
+ // ignored in unsafe-math mode).
+ if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
+ VT != MVT::f80 && TLI.isTypeLegal(VT) &&
+ (Subtarget->hasSSE2() ||
+ (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+
+ unsigned Opcode = 0;
+ // Check for x CC y ? x : y.
+ if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(1))) {
+ switch (CC) {
+ default: break;
+ case ISD::SETULT:
+ // Converting this to a min would handle NaNs incorrectly, and swapping
+ // the operands would cause it to handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETOLE:
+ // Converting this to a min would handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
+ break;
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETULE:
+ // Converting this to a min would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOLT:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ Opcode = X86ISD::FMIN;
+ break;
+
+ case ISD::SETOGE:
+ // Converting this to a max would handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
+ break;
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETUGT:
+ // Converting this to a max would handle NaNs incorrectly, and swapping
+ // the operands would cause it to handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETUGE:
+ // Converting this to a max would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOGT:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ Opcode = X86ISD::FMAX;
+ break;
+ }
+ // Check for x CC y ? y : x -- a min/max with reversed arms.
+ } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(0))) {
+ switch (CC) {
+ default: break;
+ case ISD::SETOGE:
+ // Converting this to a min would handle comparisons between positive
+ // and negative zero incorrectly, and swapping the operands would
+ // cause it to handle NaNs incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETUGT:
+ // Converting this to a min would handle NaNs incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
+ break;
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETUGE:
+ // Converting this to a min would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOGT:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ Opcode = X86ISD::FMIN;
+ break;
+
+ case ISD::SETULT:
+ // Converting this to a max would handle NaNs incorrectly.
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
+ break;
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETOLE:
+ // Converting this to a max would handle comparisons between positive
+ // and negative zero incorrectly, and swapping the operands would
+ // cause it to handle NaNs incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETULE:
+ // Converting this to a max would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOLT:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ Opcode = X86ISD::FMAX;
+ break;
+ }
+ }
+
+ if (Opcode)
+ return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
+ }
+
+ EVT CondVT = Cond.getValueType();
+ if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
+ CondVT.getVectorElementType() == MVT::i1) {
+ // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
+ // lowering on AVX-512. In this case we convert it to
+ // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
+ // The same situation for all 128 and 256-bit vectors of i8 and i16
+ EVT OpVT = LHS.getValueType();
+ if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
+ (OpVT.getVectorElementType() == MVT::i8 ||
+ OpVT.getVectorElementType() == MVT::i16)) {
+ Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
+ DCI.AddToWorklist(Cond.getNode());
+ return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
+ }
+ }
+ // If this is a select between two integer constants, try to do some
+ // optimizations.
+ if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
+ if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
+ // Don't do this for crazy integer types.
+ if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
+ // If this is efficiently invertible, canonicalize the LHSC/RHSC values
+ // so that TrueC (the true value) is larger than FalseC.
+ bool NeedsCondInvert = false;
+
+ if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
+ // Efficiently invertible.
+ (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
+ (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
+ isa<ConstantSDNode>(Cond.getOperand(1))))) {
+ NeedsCondInvert = true;
+ std::swap(TrueC, FalseC);
+ }
+
+ // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
+ if (FalseC->getAPIntValue() == 0 &&
+ TrueC->getAPIntValue().isPowerOf2()) {
+ if (NeedsCondInvert) // Invert the condition if needed.
+ Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(1, Cond.getValueType()));
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
+
+ unsigned ShAmt = TrueC->getAPIntValue().logBase2();
+ return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
+ DAG.getConstant(ShAmt, MVT::i8));
+ }
+
+ // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
+ if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
+ if (NeedsCondInvert) // Invert the condition if needed.
+ Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(1, Cond.getValueType()));
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
+ FalseC->getValueType(0), Cond);
+ return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+ }
+
+ // Optimize cases that will turn into an LEA instruction. This requires
+ // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
+ if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
+ uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
+ if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
+
+ bool isFastMultiplier = false;
+ if (Diff < 10) {
+ switch ((unsigned char)Diff) {
+ default: break;
+ case 1: // result = add base, cond
+ case 2: // result = lea base( , cond*2)
+ case 3: // result = lea base(cond, cond*2)
+ case 4: // result = lea base( , cond*4)
+ case 5: // result = lea base(cond, cond*4)
+ case 8: // result = lea base( , cond*8)
+ case 9: // result = lea base(cond, cond*8)
+ isFastMultiplier = true;
+ break;
+ }
+ }
+
+ if (isFastMultiplier) {
+ APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
+ if (NeedsCondInvert) // Invert the condition if needed.
+ Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(1, Cond.getValueType()));
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
+ Cond);
+ // Scale the condition by the difference.
+ if (Diff != 1)
+ Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(Diff, Cond.getValueType()));
+
+ // Add the base if non-zero.
+ if (FalseC->getAPIntValue() != 0)
+ Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+ return Cond;
+ }
+ }
+ }
+ }
+
+ // Canonicalize max and min:
+ // (x > y) ? x : y -> (x >= y) ? x : y
+ // (x < y) ? x : y -> (x <= y) ? x : y
+ // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
+ // the need for an extra compare
+ // against zero. e.g.
+ // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
+ // subl %esi, %edi
+ // testl %edi, %edi
+ // movl $0, %eax
+ // cmovgl %edi, %eax
+ // =>
+ // xorl %eax, %eax
+ // subl %esi, $edi
+ // cmovsl %eax, %edi
+ if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
+ DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(1))) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+ switch (CC) {
+ default: break;
+ case ISD::SETLT:
+ case ISD::SETGT: {
+ ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
+ Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
+ Cond.getOperand(0), Cond.getOperand(1), NewCC);
+ return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
+ }
+ }
+ }
+
+ // Early exit check
+ if (!TLI.isTypeLegal(VT))
+ return SDValue();
+
+ // Match VSELECTs into subs with unsigned saturation.
+ if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
+ // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
+ ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
+ (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+
+ // Check if one of the arms of the VSELECT is a zero vector. If it's on the
+ // left side invert the predicate to simplify logic below.
+ SDValue Other;
+ if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
+ Other = RHS;
+ CC = ISD::getSetCCInverse(CC, true);
+ } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
+ Other = LHS;
+ }
+
+ if (Other.getNode() && Other->getNumOperands() == 2 &&
+ DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
+ SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
+ SDValue CondRHS = Cond->getOperand(1);
+
+ // Look for a general sub with unsigned saturation first.
+ // x >= y ? x-y : 0 --> subus x, y
+ // x > y ? x-y : 0 --> subus x, y
+ if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
+ Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
+ return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
+
+ if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
+ if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
+ if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS))
+ if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode())
+ // If the RHS is a constant we have to reverse the const
+ // canonicalization.
+ // x > C-1 ? x+-C : 0 --> subus x, C
+ if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
+ CondRHSConst->getAPIntValue() ==
+ (-OpRHSConst->getAPIntValue() - 1))
+ return DAG.getNode(
+ X86ISD::SUBUS, DL, VT, OpLHS,
+ DAG.getConstant(-OpRHSConst->getAPIntValue(), VT));
+
+ // Another special case: If C was a sign bit, the sub has been
+ // canonicalized into a xor.
+ // FIXME: Would it be better to use computeKnownBits to determine
+ // whether it's safe to decanonicalize the xor?
+ // x s< 0 ? x^C : 0 --> subus x, C
+ if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
+ ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
+ OpRHSConst->getAPIntValue().isSignBit())
+ // Note that we have to rebuild the RHS constant here to ensure we
+ // don't rely on particular values of undef lanes.
+ return DAG.getNode(
+ X86ISD::SUBUS, DL, VT, OpLHS,
+ DAG.getConstant(OpRHSConst->getAPIntValue(), VT));
+ }
+ }
+ }
+
+ // Try to match a min/max vector operation.
+ if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
+ std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
+ unsigned Opc = ret.first;
+ bool NeedSplit = ret.second;
+
+ if (Opc && NeedSplit) {
+ unsigned NumElems = VT.getVectorNumElements();
+ // Extract the LHS vectors
+ SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
+ SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
+
+ // Extract the RHS vectors
+ SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
+ SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
+
+ // Create min/max for each subvector
+ LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
+ RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
+
+ // Merge the result
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
+ } else if (Opc)
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
+
+ // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
+ if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
+ // Check if SETCC has already been promoted
+ TLI.getSetCCResultType(*DAG.getContext(), VT) == CondVT &&
+ // Check that condition value type matches vselect operand type
+ CondVT == VT) {
+
+ assert(Cond.getValueType().isVector() &&
+ "vector select expects a vector selector!");
+
+ bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
+ bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
+
+ if (!TValIsAllOnes && !FValIsAllZeros) {
+ // Try invert the condition if true value is not all 1s and false value
+ // is not all 0s.
+ bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
+ bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
+
+ if (TValIsAllZeros || FValIsAllOnes) {
+ SDValue CC = Cond.getOperand(2);
+ ISD::CondCode NewCC =
+ ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
+ Cond.getOperand(0).getValueType().isInteger());
+ Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
+ std::swap(LHS, RHS);
+ TValIsAllOnes = FValIsAllOnes;
+ FValIsAllZeros = TValIsAllZeros;
+ }
+ }
+
+ if (TValIsAllOnes || FValIsAllZeros) {
+ SDValue Ret;
+
+ if (TValIsAllOnes && FValIsAllZeros)
+ Ret = Cond;
+ else if (TValIsAllOnes)
+ Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond,
+ DAG.getNode(ISD::BITCAST, DL, CondVT, RHS));
+ else if (FValIsAllZeros)
+ Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
+ DAG.getNode(ISD::BITCAST, DL, CondVT, LHS));
+
+ return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
+ }
+ }
+
+ // Try to fold this VSELECT into a MOVSS/MOVSD
+ if (N->getOpcode() == ISD::VSELECT &&
+ Cond.getOpcode() == ISD::BUILD_VECTOR && !DCI.isBeforeLegalize()) {
+ if (VT == MVT::v4i32 || VT == MVT::v4f32 ||
+ (Subtarget->hasSSE2() && (VT == MVT::v2i64 || VT == MVT::v2f64))) {
+ bool CanFold = false;
+ unsigned NumElems = Cond.getNumOperands();
+ SDValue A = LHS;
+ SDValue B = RHS;
+
+ if (isZero(Cond.getOperand(0))) {
+ CanFold = true;
+
+ // fold (vselect <0,-1,-1,-1>, A, B) -> (movss A, B)
+ // fold (vselect <0,-1> -> (movsd A, B)
+ for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i)
+ CanFold = isAllOnes(Cond.getOperand(i));
+ } else if (isAllOnes(Cond.getOperand(0))) {
+ CanFold = true;
+ std::swap(A, B);
+
+ // fold (vselect <-1,0,0,0>, A, B) -> (movss B, A)
+ // fold (vselect <-1,0> -> (movsd B, A)
+ for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i)
+ CanFold = isZero(Cond.getOperand(i));
+ }
+
+ if (CanFold) {
+ if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return getTargetShuffleNode(X86ISD::MOVSS, DL, VT, A, B, DAG);
+ return getTargetShuffleNode(X86ISD::MOVSD, DL, VT, A, B, DAG);
+ }
+
+ if (Subtarget->hasSSE2() && (VT == MVT::v4i32 || VT == MVT::v4f32)) {
+ // fold (v4i32: vselect <0,0,-1,-1>, A, B) ->
+ // (v4i32 (bitcast (movsd (v2i64 (bitcast A)),
+ // (v2i64 (bitcast B)))))
+ //
+ // fold (v4f32: vselect <0,0,-1,-1>, A, B) ->
+ // (v4f32 (bitcast (movsd (v2f64 (bitcast A)),
+ // (v2f64 (bitcast B)))))
+ //
+ // fold (v4i32: vselect <-1,-1,0,0>, A, B) ->
+ // (v4i32 (bitcast (movsd (v2i64 (bitcast B)),
+ // (v2i64 (bitcast A)))))
+ //
+ // fold (v4f32: vselect <-1,-1,0,0>, A, B) ->
+ // (v4f32 (bitcast (movsd (v2f64 (bitcast B)),
+ // (v2f64 (bitcast A)))))
+
+ CanFold = (isZero(Cond.getOperand(0)) &&
+ isZero(Cond.getOperand(1)) &&
+ isAllOnes(Cond.getOperand(2)) &&
+ isAllOnes(Cond.getOperand(3)));
+
+ if (!CanFold && isAllOnes(Cond.getOperand(0)) &&
+ isAllOnes(Cond.getOperand(1)) &&
+ isZero(Cond.getOperand(2)) &&
+ isZero(Cond.getOperand(3))) {
+ CanFold = true;
+ std::swap(LHS, RHS);
+ }
+
+ if (CanFold) {
+ EVT NVT = (VT == MVT::v4i32) ? MVT::v2i64 : MVT::v2f64;
+ SDValue NewA = DAG.getNode(ISD::BITCAST, DL, NVT, LHS);
+ SDValue NewB = DAG.getNode(ISD::BITCAST, DL, NVT, RHS);
+ SDValue Select = getTargetShuffleNode(X86ISD::MOVSD, DL, NVT, NewA,
+ NewB, DAG);
+ return DAG.getNode(ISD::BITCAST, DL, VT, Select);
+ }
+ }
+ }
+ }
+
+ // If we know that this node is legal then we know that it is going to be
+ // matched by one of the SSE/AVX BLEND instructions. These instructions only
+ // depend on the highest bit in each word. Try to use SimplifyDemandedBits
+ // to simplify previous instructions.
+ if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
+ !DCI.isBeforeLegalize() &&
+ // We explicitly check against v8i16 and v16i16 because, although
+ // they're marked as Custom, they might only be legal when Cond is a
+ // build_vector of constants. This will be taken care in a later
+ // condition.
+ (TLI.isOperationLegalOrCustom(ISD::VSELECT, VT) && VT != MVT::v16i16 &&
+ VT != MVT::v8i16)) {
+ unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
+
+ // Don't optimize vector selects that map to mask-registers.
+ if (BitWidth == 1)
+ return SDValue();
+
+ // Check all uses of that condition operand to check whether it will be
+ // consumed by non-BLEND instructions, which may depend on all bits are set
+ // properly.
+ for (SDNode::use_iterator I = Cond->use_begin(),
+ E = Cond->use_end(); I != E; ++I)
+ if (I->getOpcode() != ISD::VSELECT)
+ // TODO: Add other opcodes eventually lowered into BLEND.
+ return SDValue();
+
+ assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
+ APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
+
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
+ DCI.isBeforeLegalizeOps());
+ if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
+ TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+
+ // We should generate an X86ISD::BLENDI from a vselect if its argument
+ // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of
+ // constants. This specific pattern gets generated when we split a
+ // selector for a 512 bit vector in a machine without AVX512 (but with
+ // 256-bit vectors), during legalization:
+ //
+ // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS)
+ //
+ // Iff we find this pattern and the build_vectors are built from
+ // constants, we translate the vselect into a shuffle_vector that we
+ // know will be matched by LowerVECTOR_SHUFFLEtoBlend.
+ if (N->getOpcode() == ISD::VSELECT && !DCI.isBeforeLegalize()) {
+ SDValue Shuffle = TransformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
+ if (Shuffle.getNode())
+ return Shuffle;
+ }
+
+ return SDValue();
+}
+
+// Check whether a boolean test is testing a boolean value generated by
+// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
+// code.
+//
+// Simplify the following patterns:
+// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
+// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
+// to (Op EFLAGS Cond)
+//
+// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
+// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
+// to (Op EFLAGS !Cond)
+//
+// where Op could be BRCOND or CMOV.
+//
+static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
+ // Quit if not CMP and SUB with its value result used.
+ if (Cmp.getOpcode() != X86ISD::CMP &&
+ (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
+ return SDValue();
+
+ // Quit if not used as a boolean value.
+ if (CC != X86::COND_E && CC != X86::COND_NE)
+ return SDValue();
+
+ // Check CMP operands. One of them should be 0 or 1 and the other should be
+ // an SetCC or extended from it.
+ SDValue Op1 = Cmp.getOperand(0);
+ SDValue Op2 = Cmp.getOperand(1);
+
+ SDValue SetCC;
+ const ConstantSDNode* C = nullptr;
+ bool needOppositeCond = (CC == X86::COND_E);
+ bool checkAgainstTrue = false; // Is it a comparison against 1?
+
+ if ((C = dyn_cast<ConstantSDNode>(Op1)))
+ SetCC = Op2;
+ else if ((C = dyn_cast<ConstantSDNode>(Op2)))
+ SetCC = Op1;
+ else // Quit if all operands are not constants.
+ return SDValue();
+
+ if (C->getZExtValue() == 1) {
+ needOppositeCond = !needOppositeCond;
+ checkAgainstTrue = true;
+ } else if (C->getZExtValue() != 0)
+ // Quit if the constant is neither 0 or 1.
+ return SDValue();
+
+ bool truncatedToBoolWithAnd = false;
+ // Skip (zext $x), (trunc $x), or (and $x, 1) node.
+ while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
+ SetCC.getOpcode() == ISD::TRUNCATE ||
+ SetCC.getOpcode() == ISD::AND) {
+ if (SetCC.getOpcode() == ISD::AND) {
+ int OpIdx = -1;
+ ConstantSDNode *CS;
+ if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
+ CS->getZExtValue() == 1)
+ OpIdx = 1;
+ if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
+ CS->getZExtValue() == 1)
+ OpIdx = 0;
+ if (OpIdx == -1)
+ break;
+ SetCC = SetCC.getOperand(OpIdx);
+ truncatedToBoolWithAnd = true;
+ } else
+ SetCC = SetCC.getOperand(0);
+ }
+
+ switch (SetCC.getOpcode()) {
+ case X86ISD::SETCC_CARRY:
+ // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
+ // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
+ // i.e. it's a comparison against true but the result of SETCC_CARRY is not
+ // truncated to i1 using 'and'.
+ if (checkAgainstTrue && !truncatedToBoolWithAnd)
+ break;
+ assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
+ "Invalid use of SETCC_CARRY!");
+ // FALL THROUGH
+ case X86ISD::SETCC:
+ // Set the condition code or opposite one if necessary.
+ CC = X86::CondCode(SetCC.getConstantOperandVal(0));
+ if (needOppositeCond)
+ CC = X86::GetOppositeBranchCondition(CC);
+ return SetCC.getOperand(1);
+ case X86ISD::CMOV: {
+ // Check whether false/true value has canonical one, i.e. 0 or 1.
+ ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
+ ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
+ // Quit if true value is not a constant.
+ if (!TVal)
+ return SDValue();
+ // Quit if false value is not a constant.
+ if (!FVal) {
+ SDValue Op = SetCC.getOperand(0);
+ // Skip 'zext' or 'trunc' node.
+ if (Op.getOpcode() == ISD::ZERO_EXTEND ||
+ Op.getOpcode() == ISD::TRUNCATE)
+ Op = Op.getOperand(0);
+ // A special case for rdrand/rdseed, where 0 is set if false cond is
+ // found.
+ if ((Op.getOpcode() != X86ISD::RDRAND &&
+ Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
+ return SDValue();
+ }
+ // Quit if false value is not the constant 0 or 1.
+ bool FValIsFalse = true;
+ if (FVal && FVal->getZExtValue() != 0) {
+ if (FVal->getZExtValue() != 1)
+ return SDValue();
+ // If FVal is 1, opposite cond is needed.
+ needOppositeCond = !needOppositeCond;
+ FValIsFalse = false;
+ }
+ // Quit if TVal is not the constant opposite of FVal.
+ if (FValIsFalse && TVal->getZExtValue() != 1)
+ return SDValue();
+ if (!FValIsFalse && TVal->getZExtValue() != 0)
+ return SDValue();
+ CC = X86::CondCode(SetCC.getConstantOperandVal(2));
+ if (needOppositeCond)
+ CC = X86::GetOppositeBranchCondition(CC);
+ return SetCC.getOperand(3);
+ }
+ }
+
+ return SDValue();
+}
+
+/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
+static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+
+ // If the flag operand isn't dead, don't touch this CMOV.
+ if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
+ return SDValue();
+
+ SDValue FalseOp = N->getOperand(0);
+ SDValue TrueOp = N->getOperand(1);
+ X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
+ SDValue Cond = N->getOperand(3);
+
+ if (CC == X86::COND_E || CC == X86::COND_NE) {
+ switch (Cond.getOpcode()) {
+ default: break;
+ case X86ISD::BSR:
+ case X86ISD::BSF:
+ // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
+ if (DAG.isKnownNeverZero(Cond.getOperand(0)))
+ return (CC == X86::COND_E) ? FalseOp : TrueOp;
+ }
+ }
+
+ SDValue Flags;
+
+ Flags = checkBoolTestSetCCCombine(Cond, CC);
+ if (Flags.getNode() &&
+ // Extra check as FCMOV only supports a subset of X86 cond.
+ (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
+ SDValue Ops[] = { FalseOp, TrueOp,
+ DAG.getConstant(CC, MVT::i8), Flags };
+ return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
+ }
+
+ // If this is a select between two integer constants, try to do some
+ // optimizations. Note that the operands are ordered the opposite of SELECT
+ // operands.
+ if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
+ if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
+ // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
+ // larger than FalseC (the false value).
+ if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
+ CC = X86::GetOppositeBranchCondition(CC);
+ std::swap(TrueC, FalseC);
+ std::swap(TrueOp, FalseOp);
+ }
+
+ // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
+ // This is efficient for any integer data type (including i8/i16) and
+ // shift amount.
+ if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
+ Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
+ DAG.getConstant(CC, MVT::i8), Cond);
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
+
+ unsigned ShAmt = TrueC->getAPIntValue().logBase2();
+ Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(ShAmt, MVT::i8));
+ if (N->getNumValues() == 2) // Dead flag value?
+ return DCI.CombineTo(N, Cond, SDValue());
+ return Cond;
+ }
+
+ // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
+ // for any integer data type, including i8/i16.
+ if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
+ Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
+ DAG.getConstant(CC, MVT::i8), Cond);
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
+ FalseC->getValueType(0), Cond);
+ Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+
+ if (N->getNumValues() == 2) // Dead flag value?
+ return DCI.CombineTo(N, Cond, SDValue());
+ return Cond;
+ }
+
+ // Optimize cases that will turn into an LEA instruction. This requires
+ // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
+ if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
+ uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
+ if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
+
+ bool isFastMultiplier = false;
+ if (Diff < 10) {
+ switch ((unsigned char)Diff) {
+ default: break;
+ case 1: // result = add base, cond
+ case 2: // result = lea base( , cond*2)
+ case 3: // result = lea base(cond, cond*2)
+ case 4: // result = lea base( , cond*4)
+ case 5: // result = lea base(cond, cond*4)
+ case 8: // result = lea base( , cond*8)
+ case 9: // result = lea base(cond, cond*8)
+ isFastMultiplier = true;
+ break;
+ }
+ }
+
+ if (isFastMultiplier) {
+ APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
+ Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
+ DAG.getConstant(CC, MVT::i8), Cond);
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
+ Cond);
+ // Scale the condition by the difference.
+ if (Diff != 1)
+ Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(Diff, Cond.getValueType()));
+
+ // Add the base if non-zero.
+ if (FalseC->getAPIntValue() != 0)
+ Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+ if (N->getNumValues() == 2) // Dead flag value?
+ return DCI.CombineTo(N, Cond, SDValue());
+ return Cond;
+ }
+ }
+ }
+ }
+
+ // Handle these cases:
+ // (select (x != c), e, c) -> select (x != c), e, x),
+ // (select (x == c), c, e) -> select (x == c), x, e)
+ // where the c is an integer constant, and the "select" is the combination
+ // of CMOV and CMP.
+ //
+ // The rationale for this change is that the conditional-move from a constant
+ // needs two instructions, however, conditional-move from a register needs
+ // only one instruction.
+ //
+ // CAVEAT: By replacing a constant with a symbolic value, it may obscure
+ // some instruction-combining opportunities. This opt needs to be
+ // postponed as late as possible.
+ //
+ if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
+ // the DCI.xxxx conditions are provided to postpone the optimization as
+ // late as possible.
+
+ ConstantSDNode *CmpAgainst = nullptr;
+ if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
+ (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
+ !isa<ConstantSDNode>(Cond.getOperand(0))) {
+
+ if (CC == X86::COND_NE &&
+ CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
+ CC = X86::GetOppositeBranchCondition(CC);
+ std::swap(TrueOp, FalseOp);
+ }
+
+ if (CC == X86::COND_E &&
+ CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
+ SDValue Ops[] = { FalseOp, Cond.getOperand(0),
+ DAG.getConstant(CC, MVT::i8), Cond };
+ return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default: return SDValue();
+ // SSE/AVX/AVX2 blend intrinsics.
+ case Intrinsic::x86_avx2_pblendvb:
+ case Intrinsic::x86_avx2_pblendw:
+ case Intrinsic::x86_avx2_pblendd_128:
+ case Intrinsic::x86_avx2_pblendd_256:
+ // Don't try to simplify this intrinsic if we don't have AVX2.
+ if (!Subtarget->hasAVX2())
+ return SDValue();
+ // FALL-THROUGH
+ case Intrinsic::x86_avx_blend_pd_256:
+ case Intrinsic::x86_avx_blend_ps_256:
+ case Intrinsic::x86_avx_blendv_pd_256:
+ case Intrinsic::x86_avx_blendv_ps_256:
+ // Don't try to simplify this intrinsic if we don't have AVX.
+ if (!Subtarget->hasAVX())
+ return SDValue();
+ // FALL-THROUGH
+ case Intrinsic::x86_sse41_pblendw:
+ case Intrinsic::x86_sse41_blendpd:
+ case Intrinsic::x86_sse41_blendps:
+ case Intrinsic::x86_sse41_blendvps:
+ case Intrinsic::x86_sse41_blendvpd:
+ case Intrinsic::x86_sse41_pblendvb: {
+ SDValue Op0 = N->getOperand(1);
+ SDValue Op1 = N->getOperand(2);
+ SDValue Mask = N->getOperand(3);
+
+ // Don't try to simplify this intrinsic if we don't have SSE4.1.
+ if (!Subtarget->hasSSE41())
+ return SDValue();
+
+ // fold (blend A, A, Mask) -> A
+ if (Op0 == Op1)
+ return Op0;
+ // fold (blend A, B, allZeros) -> A
+ if (ISD::isBuildVectorAllZeros(Mask.getNode()))
+ return Op0;
+ // fold (blend A, B, allOnes) -> B
+ if (ISD::isBuildVectorAllOnes(Mask.getNode()))
+ return Op1;
+
+ // Simplify the case where the mask is a constant i32 value.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mask)) {
+ if (C->isNullValue())
+ return Op0;
+ if (C->isAllOnesValue())
+ return Op1;
+ }
+
+ return SDValue();
+ }
+
+ // Packed SSE2/AVX2 arithmetic shift immediate intrinsics.
+ case Intrinsic::x86_sse2_psrai_w:
+ case Intrinsic::x86_sse2_psrai_d:
+ case Intrinsic::x86_avx2_psrai_w:
+ case Intrinsic::x86_avx2_psrai_d:
+ case Intrinsic::x86_sse2_psra_w:
+ case Intrinsic::x86_sse2_psra_d:
+ case Intrinsic::x86_avx2_psra_w:
+ case Intrinsic::x86_avx2_psra_d: {
+ SDValue Op0 = N->getOperand(1);
+ SDValue Op1 = N->getOperand(2);
+ EVT VT = Op0.getValueType();
+ assert(VT.isVector() && "Expected a vector type!");
+
+ if (isa<BuildVectorSDNode>(Op1))
+ Op1 = Op1.getOperand(0);
+
+ if (!isa<ConstantSDNode>(Op1))
+ return SDValue();
+
+ EVT SVT = VT.getVectorElementType();
+ unsigned SVTBits = SVT.getSizeInBits();
+
+ ConstantSDNode *CND = cast<ConstantSDNode>(Op1);
+ const APInt &C = APInt(SVTBits, CND->getAPIntValue().getZExtValue());
+ uint64_t ShAmt = C.getZExtValue();
+
+ // Don't try to convert this shift into a ISD::SRA if the shift
+ // count is bigger than or equal to the element size.
+ if (ShAmt >= SVTBits)
+ return SDValue();
+
+ // Trivial case: if the shift count is zero, then fold this
+ // into the first operand.
+ if (ShAmt == 0)
+ return Op0;
+
+ // Replace this packed shift intrinsic with a target independent
+ // shift dag node.
+ SDValue Splat = DAG.getConstant(C, VT);
+ return DAG.getNode(ISD::SRA, SDLoc(N), VT, Op0, Splat);
+ }
+ }
+}
+
+/// PerformMulCombine - Optimize a single multiply with constant into two
+/// in order to implement it with two cheaper instructions, e.g.
+/// LEA + SHL, LEA + LEA.
+static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i64)
+ return SDValue();
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!C)
+ return SDValue();
+ uint64_t MulAmt = C->getZExtValue();
+ if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
+ return SDValue();
+
+ uint64_t MulAmt1 = 0;
+ uint64_t MulAmt2 = 0;
+ if ((MulAmt % 9) == 0) {
+ MulAmt1 = 9;
+ MulAmt2 = MulAmt / 9;
+ } else if ((MulAmt % 5) == 0) {
+ MulAmt1 = 5;
+ MulAmt2 = MulAmt / 5;
+ } else if ((MulAmt % 3) == 0) {
+ MulAmt1 = 3;
+ MulAmt2 = MulAmt / 3;
+ }
+ if (MulAmt2 &&
+ (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
+ SDLoc DL(N);
+
+ if (isPowerOf2_64(MulAmt2) &&
+ !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
+ // If second multiplifer is pow2, issue it first. We want the multiply by
+ // 3, 5, or 9 to be folded into the addressing mode unless the lone use
+ // is an add.
+ std::swap(MulAmt1, MulAmt2);
+
+ SDValue NewMul;
+ if (isPowerOf2_64(MulAmt1))
+ NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
+ DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
+ else
+ NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
+ DAG.getConstant(MulAmt1, VT));
+
+ if (isPowerOf2_64(MulAmt2))
+ NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
+ DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
+ else
+ NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
+ DAG.getConstant(MulAmt2, VT));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, NewMul, false);
+ }
+ return SDValue();
+}
+
+static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ EVT VT = N0.getValueType();
+
+ // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
+ // since the result of setcc_c is all zero's or all ones.
+ if (VT.isInteger() && !VT.isVector() &&
+ N1C && N0.getOpcode() == ISD::AND &&
+ N0.getOperand(1).getOpcode() == ISD::Constant) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
+ ((N00.getOpcode() == ISD::ANY_EXTEND ||
+ N00.getOpcode() == ISD::ZERO_EXTEND) &&
+ N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
+ APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ APInt ShAmt = N1C->getAPIntValue();
+ Mask = Mask.shl(ShAmt);
+ if (Mask != 0)
+ return DAG.getNode(ISD::AND, SDLoc(N), VT,
+ N00, DAG.getConstant(Mask, VT));
+ }
+ }
+
+ // Hardware support for vector shifts is sparse which makes us scalarize the
+ // vector operations in many cases. Also, on sandybridge ADD is faster than
+ // shl.
+ // (shl V, 1) -> add V,V
+ if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
+ if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
+ assert(N0.getValueType().isVector() && "Invalid vector shift type");
+ // We shift all of the values by one. In many cases we do not have
+ // hardware support for this operation. This is better expressed as an ADD
+ // of two values.
+ if (N1SplatC->getZExtValue() == 1)
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
+ }
+
+ return SDValue();
+}
+
+/// \brief Returns a vector of 0s if the node in input is a vector logical
+/// shift by a constant amount which is known to be bigger than or equal
+/// to the vector element size in bits.
+static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+
+ if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
+ (!Subtarget->hasInt256() ||
+ (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
+ return SDValue();
+
+ SDValue Amt = N->getOperand(1);
+ SDLoc DL(N);
+ if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt))
+ if (auto *AmtSplat = AmtBV->getConstantSplatNode()) {
+ APInt ShiftAmt = AmtSplat->getAPIntValue();
+ unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
+
+ // SSE2/AVX2 logical shifts always return a vector of 0s
+ // if the shift amount is bigger than or equal to
+ // the element size. The constant shift amount will be
+ // encoded as a 8-bit immediate.
+ if (ShiftAmt.trunc(8).uge(MaxAmount))
+ return getZeroVector(VT, Subtarget, DAG, DL);
+ }
+
+ return SDValue();
+}
+
+/// PerformShiftCombine - Combine shifts.
+static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ if (N->getOpcode() == ISD::SHL) {
+ SDValue V = PerformSHLCombine(N, DAG);
+ if (V.getNode()) return V;
+ }
+
+ if (N->getOpcode() != ISD::SRA) {
+ // Try to fold this logical shift into a zero vector.
+ SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
+ if (V.getNode()) return V;
+ }
+
+ return SDValue();
+}
+
+// CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
+// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
+// and friends. Likewise for OR -> CMPNEQSS.
+static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ unsigned opcode;
+
+ // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
+ // we're requiring SSE2 for both.
+ if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue CMP0 = N0->getOperand(1);
+ SDValue CMP1 = N1->getOperand(1);
+ SDLoc DL(N);
+
+ // The SETCCs should both refer to the same CMP.
+ if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
+ return SDValue();
+
+ SDValue CMP00 = CMP0->getOperand(0);
+ SDValue CMP01 = CMP0->getOperand(1);
+ EVT VT = CMP00.getValueType();
+
+ if (VT == MVT::f32 || VT == MVT::f64) {
+ bool ExpectingFlags = false;
+ // Check for any users that want flags:
+ for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+ !ExpectingFlags && UI != UE; ++UI)
+ switch (UI->getOpcode()) {
+ default:
+ case ISD::BR_CC:
+ case ISD::BRCOND:
+ case ISD::SELECT:
+ ExpectingFlags = true;
+ break;
+ case ISD::CopyToReg:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ break;
+ }
+
+ if (!ExpectingFlags) {
+ enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
+ enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
+
+ if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
+ X86::CondCode tmp = cc0;
+ cc0 = cc1;
+ cc1 = tmp;
+ }
+
+ if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
+ (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
+ // FIXME: need symbolic constants for these magic numbers.
+ // See X86ATTInstPrinter.cpp:printSSECC().
+ unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
+ if (Subtarget->hasAVX512()) {
+ SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00,
+ CMP01, DAG.getConstant(x86cc, MVT::i8));
+ if (N->getValueType(0) != MVT::i1)
+ return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
+ FSetCC);
+ return FSetCC;
+ }
+ SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
+ CMP00.getValueType(), CMP00, CMP01,
+ DAG.getConstant(x86cc, MVT::i8));
+
+ bool is64BitFP = (CMP00.getValueType() == MVT::f64);
+ MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
+
+ if (is64BitFP && !Subtarget->is64Bit()) {
+ // On a 32-bit target, we cannot bitcast the 64-bit float to a
+ // 64-bit integer, since that's not a legal type. Since
+ // OnesOrZeroesF is all ones of all zeroes, we don't need all the
+ // bits, but can do this little dance to extract the lowest 32 bits
+ // and work with those going forward.
+ SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
+ OnesOrZeroesF);
+ SDValue Vector32 = DAG.getNode(ISD::BITCAST, DL, MVT::v4f32,
+ Vector64);
+ OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
+ Vector32, DAG.getIntPtrConstant(0));
+ IntVT = MVT::i32;
+ }
+
+ SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, IntVT, OnesOrZeroesF);
+ SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
+ DAG.getConstant(1, IntVT));
+ SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
+ return OneBitOfTruth;
+ }
+ }
+ }
+ }
+ return SDValue();
+}
+
+/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
+/// so it can be folded inside ANDNP.
+static bool CanFoldXORWithAllOnes(const SDNode *N) {
+ EVT VT = N->getValueType(0);
+
+ // Match direct AllOnes for 128 and 256-bit vectors
+ if (ISD::isBuildVectorAllOnes(N))
+ return true;
+
+ // Look through a bit convert.
+ if (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0).getNode();
+
+ // Sometimes the operand may come from a insert_subvector building a 256-bit
+ // allones vector
+ if (VT.is256BitVector() &&
+ N->getOpcode() == ISD::INSERT_SUBVECTOR) {
+ SDValue V1 = N->getOperand(0);
+ SDValue V2 = N->getOperand(1);
+
+ if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
+ V1.getOperand(0).getOpcode() == ISD::UNDEF &&
+ ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
+ ISD::isBuildVectorAllOnes(V2.getNode()))
+ return true;
+ }
+
+ return false;
+}
+
+// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
+// register. In most cases we actually compare or select YMM-sized registers
+// and mixing the two types creates horrible code. This method optimizes
+// some of the transition sequences.
+static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ if (!VT.is256BitVector())
+ return SDValue();
+
+ assert((N->getOpcode() == ISD::ANY_EXTEND ||
+ N->getOpcode() == ISD::ZERO_EXTEND ||
+ N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
+
+ SDValue Narrow = N->getOperand(0);
+ EVT NarrowVT = Narrow->getValueType(0);
+ if (!NarrowVT.is128BitVector())
+ return SDValue();
+
+ if (Narrow->getOpcode() != ISD::XOR &&
+ Narrow->getOpcode() != ISD::AND &&
+ Narrow->getOpcode() != ISD::OR)
+ return SDValue();
+
+ SDValue N0 = Narrow->getOperand(0);
+ SDValue N1 = Narrow->getOperand(1);
+ SDLoc DL(Narrow);
+
+ // The Left side has to be a trunc.
+ if (N0.getOpcode() != ISD::TRUNCATE)
+ return SDValue();
+
+ // The type of the truncated inputs.
+ EVT WideVT = N0->getOperand(0)->getValueType(0);
+ if (WideVT != VT)
+ return SDValue();
+
+ // The right side has to be a 'trunc' or a constant vector.
+ bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
+ ConstantSDNode *RHSConstSplat = nullptr;
+ if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1))
+ RHSConstSplat = RHSBV->getConstantSplatNode();
+ if (!RHSTrunc && !RHSConstSplat)
+ return SDValue();
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
+ return SDValue();
+
+ // Set N0 and N1 to hold the inputs to the new wide operation.
+ N0 = N0->getOperand(0);
+ if (RHSConstSplat) {
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
+ SDValue(RHSConstSplat, 0));
+ SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
+ N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C);
+ } else if (RHSTrunc) {
+ N1 = N1->getOperand(0);
+ }
+
+ // Generate the wide operation.
+ SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
+ unsigned Opcode = N->getOpcode();
+ switch (Opcode) {
+ case ISD::ANY_EXTEND:
+ return Op;
+ case ISD::ZERO_EXTEND: {
+ unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
+ APInt Mask = APInt::getAllOnesValue(InBits);
+ Mask = Mask.zext(VT.getScalarType().getSizeInBits());
+ return DAG.getNode(ISD::AND, DL, VT,
+ Op, DAG.getConstant(Mask, VT));
+ }
+ case ISD::SIGN_EXTEND:
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
+ Op, DAG.getValueType(NarrowVT));
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+}
+
+static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
+ if (R.getNode())
+ return R;
+
+ // Create BEXTR instructions
+ // BEXTR is ((X >> imm) & (2**size-1))
+ if (VT == MVT::i32 || VT == MVT::i64) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDLoc DL(N);
+
+ // Check for BEXTR.
+ if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
+ (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
+ ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
+ ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (MaskNode && ShiftNode) {
+ uint64_t Mask = MaskNode->getZExtValue();
+ uint64_t Shift = ShiftNode->getZExtValue();
+ if (isMask_64(Mask)) {
+ uint64_t MaskSize = CountPopulation_64(Mask);
+ if (Shift + MaskSize <= VT.getSizeInBits())
+ return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
+ DAG.getConstant(Shift | (MaskSize << 8), VT));
+ }
+ }
+ } // BEXTR
+
+ return SDValue();
+ }
+
+ // Want to form ANDNP nodes:
+ // 1) In the hopes of then easily combining them with OR and AND nodes
+ // to form PBLEND/PSIGN.
+ // 2) To match ANDN packed intrinsics
+ if (VT != MVT::v2i64 && VT != MVT::v4i64)
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDLoc DL(N);
+
+ // Check LHS for vnot
+ if (N0.getOpcode() == ISD::XOR &&
+ //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
+ CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
+ return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
+
+ // Check RHS for vnot
+ if (N1.getOpcode() == ISD::XOR &&
+ //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
+ CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
+ return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
+
+ return SDValue();
+}
+
+static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
+ if (R.getNode())
+ return R;
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ // look for psign/blend
+ if (VT == MVT::v2i64 || VT == MVT::v4i64) {
+ if (!Subtarget->hasSSSE3() ||
+ (VT == MVT::v4i64 && !Subtarget->hasInt256()))
+ return SDValue();
+
+ // Canonicalize pandn to RHS
+ if (N0.getOpcode() == X86ISD::ANDNP)
+ std::swap(N0, N1);
+ // or (and (m, y), (pandn m, x))
+ if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
+ SDValue Mask = N1.getOperand(0);
+ SDValue X = N1.getOperand(1);
+ SDValue Y;
+ if (N0.getOperand(0) == Mask)
+ Y = N0.getOperand(1);
+ if (N0.getOperand(1) == Mask)
+ Y = N0.getOperand(0);
+
+ // Check to see if the mask appeared in both the AND and ANDNP and
+ if (!Y.getNode())
+ return SDValue();
+
+ // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
+ // Look through mask bitcast.
+ if (Mask.getOpcode() == ISD::BITCAST)
+ Mask = Mask.getOperand(0);
+ if (X.getOpcode() == ISD::BITCAST)
+ X = X.getOperand(0);
+ if (Y.getOpcode() == ISD::BITCAST)
+ Y = Y.getOperand(0);
+
+ EVT MaskVT = Mask.getValueType();
+
+ // Validate that the Mask operand is a vector sra node.
+ // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
+ // there is no psrai.b
+ unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
+ unsigned SraAmt = ~0;
+ if (Mask.getOpcode() == ISD::SRA) {
+ if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1)))
+ if (auto *AmtConst = AmtBV->getConstantSplatNode())
+ SraAmt = AmtConst->getZExtValue();
+ } else if (Mask.getOpcode() == X86ISD::VSRAI) {
+ SDValue SraC = Mask.getOperand(1);
+ SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
+ }
+ if ((SraAmt + 1) != EltBits)
+ return SDValue();
+
+ SDLoc DL(N);
+
+ // Now we know we at least have a plendvb with the mask val. See if
+ // we can form a psignb/w/d.
+ // psign = x.type == y.type == mask.type && y = sub(0, x);
+ if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
+ ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
+ X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
+ assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
+ "Unsupported VT for PSIGN");
+ Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
+ return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
+ }
+ // PBLENDVB only available on SSE 4.1
+ if (!Subtarget->hasSSE41())
+ return SDValue();
+
+ EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
+
+ X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
+ Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
+ Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
+ Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
+ return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
+ }
+ }
+
+ if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
+ return SDValue();
+
+ // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool OptForSize = MF.getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
+
+ // SHLD/SHRD instructions have lower register pressure, but on some
+ // platforms they have higher latency than the equivalent
+ // series of shifts/or that would otherwise be generated.
+ // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
+ // have higher latencies and we are not optimizing for size.
+ if (!OptForSize && Subtarget->isSHLDSlow())
+ return SDValue();
+
+ if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
+ std::swap(N0, N1);
+ if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
+ return SDValue();
+ if (!N0.hasOneUse() || !N1.hasOneUse())
+ return SDValue();
+
+ SDValue ShAmt0 = N0.getOperand(1);
+ if (ShAmt0.getValueType() != MVT::i8)
+ return SDValue();
+ SDValue ShAmt1 = N1.getOperand(1);
+ if (ShAmt1.getValueType() != MVT::i8)
+ return SDValue();
+ if (ShAmt0.getOpcode() == ISD::TRUNCATE)
+ ShAmt0 = ShAmt0.getOperand(0);
+ if (ShAmt1.getOpcode() == ISD::TRUNCATE)
+ ShAmt1 = ShAmt1.getOperand(0);
+
+ SDLoc DL(N);
+ unsigned Opc = X86ISD::SHLD;
+ SDValue Op0 = N0.getOperand(0);
+ SDValue Op1 = N1.getOperand(0);
+ if (ShAmt0.getOpcode() == ISD::SUB) {
+ Opc = X86ISD::SHRD;
+ std::swap(Op0, Op1);
+ std::swap(ShAmt0, ShAmt1);
+ }
+
+ unsigned Bits = VT.getSizeInBits();
+ if (ShAmt1.getOpcode() == ISD::SUB) {
+ SDValue Sum = ShAmt1.getOperand(0);
+ if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
+ SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
+ if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
+ ShAmt1Op1 = ShAmt1Op1.getOperand(0);
+ if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
+ return DAG.getNode(Opc, DL, VT,
+ Op0, Op1,
+ DAG.getNode(ISD::TRUNCATE, DL,
+ MVT::i8, ShAmt0));
+ }
+ } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
+ ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
+ if (ShAmt0C &&
+ ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
+ return DAG.getNode(Opc, DL, VT,
+ N0.getOperand(0), N1.getOperand(0),
+ DAG.getNode(ISD::TRUNCATE, DL,
+ MVT::i8, ShAmt0));
+ }
+
+ return SDValue();
+}
+
+// Generate NEG and CMOV for integer abs.
+static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+
+ // Since X86 does not have CMOV for 8-bit integer, we don't convert
+ // 8-bit integer abs to NEG and CMOV.
+ if (VT.isInteger() && VT.getSizeInBits() == 8)
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDLoc DL(N);
+
+ // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
+ // and change it to SUB and CMOV.
+ if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
+ N0.getOpcode() == ISD::ADD &&
+ N0.getOperand(1) == N1 &&
+ N1.getOpcode() == ISD::SRA &&
+ N1.getOperand(0) == N0.getOperand(0))
+ if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
+ if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
+ // Generate SUB & CMOV.
+ SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
+ DAG.getConstant(0, VT), N0.getOperand(0));
+
+ SDValue Ops[] = { N0.getOperand(0), Neg,
+ DAG.getConstant(X86::COND_GE, MVT::i8),
+ SDValue(Neg.getNode(), 1) };
+ return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
+ }
+ return SDValue();
+}
+
+// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
+static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ if (Subtarget->hasCMov()) {
+ SDValue RV = performIntegerAbsCombine(N, DAG);
+ if (RV.getNode())
+ return RV;
+ }
+
+ return SDValue();
+}
+
+/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
+static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ LoadSDNode *Ld = cast<LoadSDNode>(N);
+ EVT RegVT = Ld->getValueType(0);
+ EVT MemVT = Ld->getMemoryVT();
+ SDLoc dl(Ld);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned RegSz = RegVT.getSizeInBits();
+
+ // On Sandybridge unaligned 256bit loads are inefficient.
+ ISD::LoadExtType Ext = Ld->getExtensionType();
+ unsigned Alignment = Ld->getAlignment();
+ bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
+ if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
+ !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
+ unsigned NumElems = RegVT.getVectorNumElements();
+ if (NumElems < 2)
+ return SDValue();
+
+ SDValue Ptr = Ld->getBasePtr();
+ SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
+
+ EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
+ NumElems/2);
+ SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
+ Ld->getPointerInfo(), Ld->isVolatile(),
+ Ld->isNonTemporal(), Ld->isInvariant(),
+ Alignment);
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+ SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
+ Ld->getPointerInfo(), Ld->isVolatile(),
+ Ld->isNonTemporal(), Ld->isInvariant(),
+ std::min(16U, Alignment));
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ Load1.getValue(1),
+ Load2.getValue(1));
+
+ SDValue NewVec = DAG.getUNDEF(RegVT);
+ NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
+ NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
+ return DCI.CombineTo(N, NewVec, TF, true);
+ }
+
+ // If this is a vector EXT Load then attempt to optimize it using a
+ // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
+ // expansion is still better than scalar code.
+ // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
+ // emit a shuffle and a arithmetic shift.
+ // TODO: It is possible to support ZExt by zeroing the undef values
+ // during the shuffle phase or after the shuffle.
+ if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
+ (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
+ assert(MemVT != RegVT && "Cannot extend to the same type");
+ assert(MemVT.isVector() && "Must load a vector from memory");
+
+ unsigned NumElems = RegVT.getVectorNumElements();
+ unsigned MemSz = MemVT.getSizeInBits();
+ assert(RegSz > MemSz && "Register size must be greater than the mem size");
+
+ if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
+ return SDValue();
+
+ // All sizes must be a power of two.
+ if (!isPowerOf2_32(RegSz * MemSz * NumElems))
+ return SDValue();
+
+ // Attempt to load the original value using scalar loads.
+ // Find the largest scalar type that divides the total loaded size.
+ MVT SclrLoadTy = MVT::i8;
+ for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
+ tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
+ MVT Tp = (MVT::SimpleValueType)tp;
+ if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
+ SclrLoadTy = Tp;
+ }
+ }
+
+ // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
+ if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
+ (64 <= MemSz))
+ SclrLoadTy = MVT::f64;
+
+ // Calculate the number of scalar loads that we need to perform
+ // in order to load our vector from memory.
+ unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
+ if (Ext == ISD::SEXTLOAD && NumLoads > 1)
+ return SDValue();
+
+ unsigned loadRegZize = RegSz;
+ if (Ext == ISD::SEXTLOAD && RegSz == 256)
+ loadRegZize /= 2;
+
+ // Represent our vector as a sequence of elements which are the
+ // largest scalar that we can load.
+ EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
+ loadRegZize/SclrLoadTy.getSizeInBits());
+
+ // Represent the data using the same element type that is stored in
+ // memory. In practice, we ''widen'' MemVT.
+ EVT WideVecVT =
+ EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
+ loadRegZize/MemVT.getScalarType().getSizeInBits());
+
+ assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
+ "Invalid vector type");
+
+ // We can't shuffle using an illegal type.
+ if (!TLI.isTypeLegal(WideVecVT))
+ return SDValue();
+
+ SmallVector<SDValue, 8> Chains;
+ SDValue Ptr = Ld->getBasePtr();
+ SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
+ TLI.getPointerTy());
+ SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
+
+ for (unsigned i = 0; i < NumLoads; ++i) {
+ // Perform a single load.
+ SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
+ Ptr, Ld->getPointerInfo(),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), Ld->getAlignment());
+ Chains.push_back(ScalarLoad.getValue(1));
+ // Create the first element type using SCALAR_TO_VECTOR in order to avoid
+ // another round of DAGCombining.
+ if (i == 0)
+ Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
+ else
+ Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
+ ScalarLoad, DAG.getIntPtrConstant(i));
+
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+ }
+
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
+
+ // Bitcast the loaded value to a vector of the original element type, in
+ // the size of the target vector type.
+ SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
+ unsigned SizeRatio = RegSz/MemSz;
+
+ if (Ext == ISD::SEXTLOAD) {
+ // If we have SSE4.1 we can directly emit a VSEXT node.
+ if (Subtarget->hasSSE41()) {
+ SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
+ return DCI.CombineTo(N, Sext, TF, true);
+ }
+
+ // Otherwise we'll shuffle the small elements in the high bits of the
+ // larger type and perform an arithmetic shift. If the shift is not legal
+ // it's better to scalarize.
+ if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
+ return SDValue();
+
+ // Redistribute the loaded elements into the different locations.
+ SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
+ DAG.getUNDEF(WideVecVT),
+ &ShuffleVec[0]);
+
+ Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
+
+ // Build the arithmetic shift.
+ unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
+ MemVT.getVectorElementType().getSizeInBits();
+ Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
+ DAG.getConstant(Amt, RegVT));
+
+ return DCI.CombineTo(N, Shuff, TF, true);
+ }
+
+ // Redistribute the loaded elements into the different locations.
+ SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i*SizeRatio] = i;
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
+ DAG.getUNDEF(WideVecVT),
+ &ShuffleVec[0]);
+
+ // Bitcast to the requested type.
+ Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
+ // Replace the original load with the new sequence
+ // and return the new chain.
+ return DCI.CombineTo(N, Shuff, TF, true);
+ }
+
+ return SDValue();
+}
+
+/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
+static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ StoreSDNode *St = cast<StoreSDNode>(N);
+ EVT VT = St->getValue().getValueType();
+ EVT StVT = St->getMemoryVT();
+ SDLoc dl(St);
+ SDValue StoredVal = St->getOperand(1);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // If we are saving a concatenation of two XMM registers, perform two stores.
+ // On Sandy Bridge, 256-bit memory operations are executed by two
+ // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
+ // memory operation.
+ unsigned Alignment = St->getAlignment();
+ bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
+ if (VT.is256BitVector() && !Subtarget->hasInt256() &&
+ StVT == VT && !IsAligned) {
+ unsigned NumElems = VT.getVectorNumElements();
+ if (NumElems < 2)
+ return SDValue();
+
+ SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
+ SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
+
+ SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
+ SDValue Ptr0 = St->getBasePtr();
+ SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
+
+ SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), Alignment);
+ SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(),
+ std::min(16U, Alignment));
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
+ }
+
+ // Optimize trunc store (of multiple scalars) to shuffle and store.
+ // First, pack all of the elements in one place. Next, store to memory
+ // in fewer chunks.
+ if (St->isTruncatingStore() && VT.isVector()) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned NumElems = VT.getVectorNumElements();
+ assert(StVT != VT && "Cannot truncate to the same type");
+ unsigned FromSz = VT.getVectorElementType().getSizeInBits();
+ unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
+
+ // From, To sizes and ElemCount must be pow of two
+ if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
+ // We are going to use the original vector elt for storing.
+ // Accumulated smaller vector elements must be a multiple of the store size.
+ if (0 != (NumElems * FromSz) % ToSz) return SDValue();
+
+ unsigned SizeRatio = FromSz / ToSz;
+
+ assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
+
+ // Create a type on which we perform the shuffle
+ EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StVT.getScalarType(), NumElems*SizeRatio);
+
+ assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
+ SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i] = i * SizeRatio;
+
+ // Can't shuffle using an illegal type.
+ if (!TLI.isTypeLegal(WideVecVT))
+ return SDValue();
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
+ DAG.getUNDEF(WideVecVT),
+ &ShuffleVec[0]);
+ // At this point all of the data is stored at the bottom of the
+ // register. We now need to save it to mem.
+
+ // Find the largest store unit
+ MVT StoreType = MVT::i8;
+ for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
+ tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
+ MVT Tp = (MVT::SimpleValueType)tp;
+ if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
+ StoreType = Tp;
+ }
+
+ // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
+ if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
+ (64 <= NumElems * ToSz))
+ StoreType = MVT::f64;
+
+ // Bitcast the original vector into a vector of store-size units
+ EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
+ assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
+ SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
+ SmallVector<SDValue, 8> Chains;
+ SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
+ TLI.getPointerTy());
+ SDValue Ptr = St->getBasePtr();
+
+ // Perform one or more big stores into memory.
+ for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
+ SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ StoreType, ShuffWide,
+ DAG.getIntPtrConstant(i));
+ SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+ Chains.push_back(Ch);
+ }
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
+ }
+
+ // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
+ // the FP state in cases where an emms may be missing.
+ // A preferable solution to the general problem is to figure out the right
+ // places to insert EMMS. This qualifies as a quick hack.
+
+ // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
+ if (VT.getSizeInBits() != 64)
+ return SDValue();
+
+ const Function *F = DAG.getMachineFunction().getFunction();
+ bool NoImplicitFloatOps = F->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
+ bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
+ && Subtarget->hasSSE2();
+ if ((VT.isVector() ||
+ (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
+ isa<LoadSDNode>(St->getValue()) &&
+ !cast<LoadSDNode>(St->getValue())->isVolatile() &&
+ St->getChain().hasOneUse() && !St->isVolatile()) {
+ SDNode* LdVal = St->getValue().getNode();
+ LoadSDNode *Ld = nullptr;
+ int TokenFactorIndex = -1;
+ SmallVector<SDValue, 8> Ops;
+ SDNode* ChainVal = St->getChain().getNode();
+ // Must be a store of a load. We currently handle two cases: the load
+ // is a direct child, and it's under an intervening TokenFactor. It is
+ // possible to dig deeper under nested TokenFactors.
+ if (ChainVal == LdVal)
+ Ld = cast<LoadSDNode>(St->getChain());
+ else if (St->getValue().hasOneUse() &&
+ ChainVal->getOpcode() == ISD::TokenFactor) {
+ for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
+ if (ChainVal->getOperand(i).getNode() == LdVal) {
+ TokenFactorIndex = i;
+ Ld = cast<LoadSDNode>(St->getValue());
+ } else
+ Ops.push_back(ChainVal->getOperand(i));
+ }
+ }
+
+ if (!Ld || !ISD::isNormalLoad(Ld))
+ return SDValue();
+
+ // If this is not the MMX case, i.e. we are just turning i64 load/store
+ // into f64 load/store, avoid the transformation if there are multiple
+ // uses of the loaded value.
+ if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
+ return SDValue();
+
+ SDLoc LdDL(Ld);
+ SDLoc StDL(N);
+ // If we are a 64-bit capable x86, lower to a single movq load/store pair.
+ // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
+ // pair instead.
+ if (Subtarget->is64Bit() || F64IsLegal) {
+ EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
+ SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
+ Ld->getPointerInfo(), Ld->isVolatile(),
+ Ld->isNonTemporal(), Ld->isInvariant(),
+ Ld->getAlignment());
+ SDValue NewChain = NewLd.getValue(1);
+ if (TokenFactorIndex != -1) {
+ Ops.push_back(NewChain);
+ NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
+ }
+ return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
+ St->getPointerInfo(),
+ St->isVolatile(), St->isNonTemporal(),
+ St->getAlignment());
+ }
+
+ // Otherwise, lower to two pairs of 32-bit loads / stores.
+ SDValue LoAddr = Ld->getBasePtr();
+ SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
+ DAG.getConstant(4, MVT::i32));
+
+ SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
+ Ld->getPointerInfo(),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), Ld->getAlignment());
+ SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
+ Ld->getPointerInfo().getWithOffset(4),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(),
+ MinAlign(Ld->getAlignment(), 4));
+
+ SDValue NewChain = LoLd.getValue(1);
+ if (TokenFactorIndex != -1) {
+ Ops.push_back(LoLd);
+ Ops.push_back(HiLd);
+ NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
+ }
+
+ LoAddr = St->getBasePtr();
+ HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
+ DAG.getConstant(4, MVT::i32));
+
+ SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
+ St->getPointerInfo(),
+ St->isVolatile(), St->isNonTemporal(),
+ St->getAlignment());
+ SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
+ St->getPointerInfo().getWithOffset(4),
+ St->isVolatile(),
+ St->isNonTemporal(),
+ MinAlign(St->getAlignment(), 4));
+ return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
+ }
+ return SDValue();
+}
+
+/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
+/// and return the operands for the horizontal operation in LHS and RHS. A
+/// horizontal operation performs the binary operation on successive elements
+/// of its first operand, then on successive elements of its second operand,
+/// returning the resulting values in a vector. For example, if
+/// A = < float a0, float a1, float a2, float a3 >
+/// and
+/// B = < float b0, float b1, float b2, float b3 >
+/// then the result of doing a horizontal operation on A and B is
+/// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
+/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
+/// A horizontal-op B, for some already available A and B, and if so then LHS is
+/// set to A, RHS to B, and the routine returns 'true'.
+/// Note that the binary operation should have the property that if one of the
+/// operands is UNDEF then the result is UNDEF.
+static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
+ // Look for the following pattern: if
+ // A = < float a0, float a1, float a2, float a3 >
+ // B = < float b0, float b1, float b2, float b3 >
+ // and
+ // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
+ // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
+ // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
+ // which is A horizontal-op B.
+
+ // At least one of the operands should be a vector shuffle.
+ if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
+ RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
+ return false;
+
+ MVT VT = LHS.getSimpleValueType();
+
+ assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ "Unsupported vector type for horizontal add/sub");
+
+ // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
+ // operate independently on 128-bit lanes.
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLaneElts = NumElts / NumLanes;
+ assert((NumLaneElts % 2 == 0) &&
+ "Vector type should have an even number of elements in each lane");
+ unsigned HalfLaneElts = NumLaneElts/2;
+
+ // View LHS in the form
+ // LHS = VECTOR_SHUFFLE A, B, LMask
+ // If LHS is not a shuffle then pretend it is the shuffle
+ // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
+ // NOTE: in what follows a default initialized SDValue represents an UNDEF of
+ // type VT.
+ SDValue A, B;
+ SmallVector<int, 16> LMask(NumElts);
+ if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
+ if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
+ A = LHS.getOperand(0);
+ if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
+ B = LHS.getOperand(1);
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
+ std::copy(Mask.begin(), Mask.end(), LMask.begin());
+ } else {
+ if (LHS.getOpcode() != ISD::UNDEF)
+ A = LHS;
+ for (unsigned i = 0; i != NumElts; ++i)
+ LMask[i] = i;
+ }
+
+ // Likewise, view RHS in the form
+ // RHS = VECTOR_SHUFFLE C, D, RMask
+ SDValue C, D;
+ SmallVector<int, 16> RMask(NumElts);
+ if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
+ if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
+ C = RHS.getOperand(0);
+ if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
+ D = RHS.getOperand(1);
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
+ std::copy(Mask.begin(), Mask.end(), RMask.begin());
+ } else {
+ if (RHS.getOpcode() != ISD::UNDEF)
+ C = RHS;
+ for (unsigned i = 0; i != NumElts; ++i)
+ RMask[i] = i;
+ }
+
+ // Check that the shuffles are both shuffling the same vectors.
+ if (!(A == C && B == D) && !(A == D && B == C))
+ return false;
+
+ // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
+ if (!A.getNode() && !B.getNode())
+ return false;
+
+ // If A and B occur in reverse order in RHS, then "swap" them (which means
+ // rewriting the mask).
+ if (A != C)
+ CommuteVectorShuffleMask(RMask, NumElts);
+
+ // At this point LHS and RHS are equivalent to
+ // LHS = VECTOR_SHUFFLE A, B, LMask
+ // RHS = VECTOR_SHUFFLE A, B, RMask
+ // Check that the masks correspond to performing a horizontal operation.
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0; i != NumLaneElts; ++i) {
+ int LIdx = LMask[i+l], RIdx = RMask[i+l];
+
+ // Ignore any UNDEF components.
+ if (LIdx < 0 || RIdx < 0 ||
+ (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
+ (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
+ continue;
+
+ // Check that successive elements are being operated on. If not, this is
+ // not a horizontal operation.
+ unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
+ int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
+ if (!(LIdx == Index && RIdx == Index + 1) &&
+ !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
+ return false;
+ }
+ }
+
+ LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
+ RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
+ return true;
+}
+
+/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
+static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ // Try to synthesize horizontal adds from adds of shuffles.
+ if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
+ (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
+ isHorizontalBinOp(LHS, RHS, true))
+ return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
+ return SDValue();
+}
+
+/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
+static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ // Try to synthesize horizontal subs from subs of shuffles.
+ if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
+ (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
+ isHorizontalBinOp(LHS, RHS, false))
+ return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
+ return SDValue();
+}
+
+/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
+/// X86ISD::FXOR nodes.
+static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
+ assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
+ // F[X]OR(0.0, x) -> x
+ // F[X]OR(x, 0.0) -> x
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(0);
+ return SDValue();
+}
+
+/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
+/// X86ISD::FMAX nodes.
+static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
+ assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
+
+ // Only perform optimizations if UnsafeMath is used.
+ if (!DAG.getTarget().Options.UnsafeFPMath)
+ return SDValue();
+
+ // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
+ // into FMINC and FMAXC, which are Commutative operations.
+ unsigned NewOp = 0;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unknown opcode");
+ case X86ISD::FMIN: NewOp = X86ISD::FMINC; break;
+ case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break;
+ }
+
+ return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
+ N->getOperand(0), N->getOperand(1));
+}
+
+/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
+static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
+ // FAND(0.0, x) -> 0.0
+ // FAND(x, 0.0) -> 0.0
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(0);
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+ return SDValue();
+}
+
+/// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
+static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
+ // FANDN(x, 0.0) -> 0.0
+ // FANDN(0.0, x) -> x
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+ return SDValue();
+}
+
+static SDValue PerformBTCombine(SDNode *N,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // BT ignores high bits in the bit index operand.
+ SDValue Op1 = N->getOperand(1);
+ if (Op1.hasOneUse()) {
+ unsigned BitWidth = Op1.getValueSizeInBits();
+ APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
+ TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ return SDValue();
+}
+
+static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue Op = N->getOperand(0);
+ if (Op.getOpcode() == ISD::BITCAST)
+ Op = Op.getOperand(0);
+ EVT VT = N->getValueType(0), OpVT = Op.getValueType();
+ if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
+ VT.getVectorElementType().getSizeInBits() ==
+ OpVT.getVectorElementType().getSizeInBits()) {
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
+ }
+ return SDValue();
+}
+
+static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ if (!VT.isVector())
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
+ SDLoc dl(N);
+
+ // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
+ // both SSE and AVX2 since there is no sign-extended shift right
+ // operation on a vector with 64-bit elements.
+ //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
+ // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
+ if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
+ N0.getOpcode() == ISD::SIGN_EXTEND)) {
+ SDValue N00 = N0.getOperand(0);
+
+ // EXTLOAD has a better solution on AVX2,
+ // it may be replaced with X86ISD::VSEXT node.
+ if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
+ if (!ISD::isNormalLoad(N00.getNode()))
+ return SDValue();
+
+ if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
+ SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
+ N00, N1);
+ return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
+ }
+ }
+ return SDValue();
+}
+
+static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ if (!DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ if (!Subtarget->hasFp256())
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT.isVector() && VT.getSizeInBits() == 256) {
+ SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
+ if (R.getNode())
+ return R;
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget* Subtarget) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ EVT ScalarVT = VT.getScalarType();
+ if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
+ (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
+ return SDValue();
+
+ SDValue A = N->getOperand(0);
+ SDValue B = N->getOperand(1);
+ SDValue C = N->getOperand(2);
+
+ bool NegA = (A.getOpcode() == ISD::FNEG);
+ bool NegB = (B.getOpcode() == ISD::FNEG);
+ bool NegC = (C.getOpcode() == ISD::FNEG);
+
+ // Negative multiplication when NegA xor NegB
+ bool NegMul = (NegA != NegB);
+ if (NegA)
+ A = A.getOperand(0);
+ if (NegB)
+ B = B.getOperand(0);
+ if (NegC)
+ C = C.getOperand(0);
+
+ unsigned Opcode;
+ if (!NegMul)
+ Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
+ else
+ Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
+
+ return DAG.getNode(Opcode, dl, VT, A, B, C);
+}
+
+static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
+ // (and (i32 x86isd::setcc_carry), 1)
+ // This eliminates the zext. This transformation is necessary because
+ // ISD::SETCC is always legalized to i8.
+ SDLoc dl(N);
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ if (N0.getOpcode() == ISD::AND &&
+ N0.hasOneUse() &&
+ N0.getOperand(0).hasOneUse()) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (!C || C->getZExtValue() != 1)
+ return SDValue();
+ return DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
+ N00.getOperand(0), N00.getOperand(1)),
+ DAG.getConstant(1, VT));
+ }
+ }
+
+ if (N0.getOpcode() == ISD::TRUNCATE &&
+ N0.hasOneUse() &&
+ N0.getOperand(0).hasOneUse()) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
+ return DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
+ N00.getOperand(0), N00.getOperand(1)),
+ DAG.getConstant(1, VT));
+ }
+ }
+ if (VT.is256BitVector()) {
+ SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
+ if (R.getNode())
+ return R;
+ }
+
+ return SDValue();
+}
+
+// Optimize x == -y --> x+y == 0
+// x != -y --> x+y != 0
+static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget* Subtarget) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
+ if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
+ SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
+ LHS.getValueType(), RHS, LHS.getOperand(1));
+ return DAG.getSetCC(SDLoc(N), N->getValueType(0),
+ addV, DAG.getConstant(0, addV.getValueType()), CC);
+ }
+ if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
+ if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
+ SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
+ RHS.getValueType(), LHS, RHS.getOperand(1));
+ return DAG.getSetCC(SDLoc(N), N->getValueType(0),
+ addV, DAG.getConstant(0, addV.getValueType()), CC);
+ }
+
+ if (VT.getScalarType() == MVT::i1) {
+ bool IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
+ (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
+ bool IsVZero0 = ISD::isBuildVectorAllZeros(LHS.getNode());
+ if (!IsSEXT0 && !IsVZero0)
+ return SDValue();
+ bool IsSEXT1 = (RHS.getOpcode() == ISD::SIGN_EXTEND) &&
+ (RHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
+ bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
+
+ if (!IsSEXT1 && !IsVZero1)
+ return SDValue();
+
+ if (IsSEXT0 && IsVZero1) {
+ assert(VT == LHS.getOperand(0).getValueType() && "Uexpected operand type");
+ if (CC == ISD::SETEQ)
+ return DAG.getNOT(DL, LHS.getOperand(0), VT);
+ return LHS.getOperand(0);
+ }
+ if (IsSEXT1 && IsVZero0) {
+ assert(VT == RHS.getOperand(0).getValueType() && "Uexpected operand type");
+ if (CC == ISD::SETEQ)
+ return DAG.getNOT(DL, RHS.getOperand(0), VT);
+ return RHS.getOperand(0);
+ }
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformINSERTPSCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ SDLoc dl(N);
+ MVT VT = N->getOperand(1)->getSimpleValueType(0);
+ assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
+ "X86insertps is only defined for v4x32");
+
+ SDValue Ld = N->getOperand(1);
+ if (MayFoldLoad(Ld)) {
+ // Extract the countS bits from the immediate so we can get the proper
+ // address when narrowing the vector load to a specific element.
+ // When the second source op is a memory address, interps doesn't use
+ // countS and just gets an f32 from that address.
+ unsigned DestIndex =
+ cast<ConstantSDNode>(N->getOperand(2))->getZExtValue() >> 6;
+ Ld = NarrowVectorLoadToElement(cast<LoadSDNode>(Ld), DestIndex, DAG);
+ } else
+ return SDValue();
+
+ // Create this as a scalar to vector to match the instruction pattern.
+ SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Ld);
+ // countS bits are ignored when loading from memory on insertps, which
+ // means we don't need to explicitly set them to 0.
+ return DAG.getNode(X86ISD::INSERTPS, dl, VT, N->getOperand(0),
+ LoadScalarToVector, N->getOperand(2));
+}
+
+// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
+// as "sbb reg,reg", since it can be extended without zext and produces
+// an all-ones bit which is more useful than 0/1 in some cases.
+static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG,
+ MVT VT) {
+ if (VT == MVT::i8)
+ return DAG.getNode(ISD::AND, DL, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
+ DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
+ DAG.getConstant(1, VT));
+ assert (VT == MVT::i1 && "Unexpected type for SECCC node");
+ return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
+ DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
+ DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS));
+}
+
+// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
+static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+ X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
+ SDValue EFLAGS = N->getOperand(1);
+
+ if (CC == X86::COND_A) {
+ // Try to convert COND_A into COND_B in an attempt to facilitate
+ // materializing "setb reg".
+ //
+ // Do not flip "e > c", where "c" is a constant, because Cmp instruction
+ // cannot take an immediate as its first operand.
+ //
+ if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
+ EFLAGS.getValueType().isInteger() &&
+ !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
+ SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
+ EFLAGS.getNode()->getVTList(),
+ EFLAGS.getOperand(1), EFLAGS.getOperand(0));
+ SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
+ return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0));
+ }
+ }
+
+ // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
+ // a zext and produces an all-ones bit which is more useful than 0/1 in some
+ // cases.
+ if (CC == X86::COND_B)
+ return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
+
+ SDValue Flags;
+
+ Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
+ if (Flags.getNode()) {
+ SDValue Cond = DAG.getConstant(CC, MVT::i8);
+ return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
+ }
+
+ return SDValue();
+}
+
+// Optimize branch condition evaluation.
+//
+static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+ SDValue Chain = N->getOperand(0);
+ SDValue Dest = N->getOperand(1);
+ SDValue EFLAGS = N->getOperand(3);
+ X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
+
+ SDValue Flags;
+
+ Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
+ if (Flags.getNode()) {
+ SDValue Cond = DAG.getConstant(CC, MVT::i8);
+ return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
+ Flags);
+ }
+
+ return SDValue();
+}
+
+static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
+ SelectionDAG &DAG) {
+ // Take advantage of vector comparisons producing 0 or -1 in each lane to
+ // optimize away operation when it's from a constant.
+ //
+ // The general transformation is:
+ // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
+ // AND(VECTOR_CMP(x,y), constant2)
+ // constant2 = UNARYOP(constant)
+
+ // Early exit if this isn't a vector operation, the operand of the
+ // unary operation isn't a bitwise AND, or if the sizes of the operations
+ // aren't the same.
+ EVT VT = N->getValueType(0);
+ if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
+ N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
+ VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
+ return SDValue();
+
+ // Now check that the other operand of the AND is a constant splat. We could
+ // make the transformation for non-constant splats as well, but it's unclear
+ // that would be a benefit as it would not eliminate any operations, just
+ // perform one more step in scalar code before moving to the vector unit.
+ if (BuildVectorSDNode *BV =
+ dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
+ // Bail out if the vector isn't a constant splat.
+ if (!BV->getConstantSplatNode())
+ return SDValue();
+
+ // Everything checks out. Build up the new and improved node.
+ SDLoc DL(N);
+ EVT IntVT = BV->getValueType(0);
+ // Create a new constant of the appropriate type for the transformed
+ // DAG.
+ SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
+ // The AND node needs bitcasts to/from an integer vector type around it.
+ SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
+ SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
+ N->getOperand(0)->getOperand(0), MaskConst);
+ SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
+ return Res;
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
+ const X86TargetLowering *XTLI) {
+ // First try to optimize away the conversion entirely when it's
+ // conditionally from a constant. Vectors only.
+ SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
+ if (Res != SDValue())
+ return Res;
+
+ // Now move on to more general possibilities.
+ SDValue Op0 = N->getOperand(0);
+ EVT InVT = Op0->getValueType(0);
+
+ // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
+ if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
+ SDLoc dl(N);
+ MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
+ SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
+ return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
+ }
+
+ // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
+ // a 32-bit target where SSE doesn't support i64->FP operations.
+ if (Op0.getOpcode() == ISD::LOAD) {
+ LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
+ EVT VT = Ld->getValueType(0);
+ if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
+ ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
+ !XTLI->getSubtarget()->is64Bit() &&
+ VT == MVT::i64) {
+ SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
+ Ld->getChain(), Op0, DAG);
+ DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
+ return FILDChain;
+ }
+ }
+ return SDValue();
+}
+
+// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
+static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
+ X86TargetLowering::DAGCombinerInfo &DCI) {
+ // If the LHS and RHS of the ADC node are zero, then it can't overflow and
+ // the result is either zero or one (depending on the input carry bit).
+ // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
+ if (X86::isZeroNode(N->getOperand(0)) &&
+ X86::isZeroNode(N->getOperand(1)) &&
+ // We don't have a good way to replace an EFLAGS use, so only do this when
+ // dead right now.
+ SDValue(N, 1).use_empty()) {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
+ SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
+ DAG.getConstant(X86::COND_B,MVT::i8),
+ N->getOperand(2)),
+ DAG.getConstant(1, VT));
+ return DCI.CombineTo(N, Res1, CarryOut);
+ }
+
+ return SDValue();
+}
+
+// fold (add Y, (sete X, 0)) -> adc 0, Y
+// (add Y, (setne X, 0)) -> sbb -1, Y
+// (sub (sete X, 0), Y) -> sbb 0, Y
+// (sub (setne X, 0), Y) -> adc -1, Y
+static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
+ SDLoc DL(N);
+
+ // Look through ZExts.
+ SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
+ if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
+ return SDValue();
+
+ SDValue SetCC = Ext.getOperand(0);
+ if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
+ return SDValue();
+
+ X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
+ if (CC != X86::COND_E && CC != X86::COND_NE)
+ return SDValue();
+
+ SDValue Cmp = SetCC.getOperand(1);
+ if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
+ !X86::isZeroNode(Cmp.getOperand(1)) ||
+ !Cmp.getOperand(0).getValueType().isInteger())
+ return SDValue();
+
+ SDValue CmpOp0 = Cmp.getOperand(0);
+ SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
+ DAG.getConstant(1, CmpOp0.getValueType()));
+
+ SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
+ if (CC == X86::COND_NE)
+ return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
+ DL, OtherVal.getValueType(), OtherVal,
+ DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
+ return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
+ DL, OtherVal.getValueType(), OtherVal,
+ DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
+}
+
+/// PerformADDCombine - Do target-specific dag combines on integer adds.
+static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ // Try to synthesize horizontal adds from adds of shuffles.
+ if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
+ (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
+ isHorizontalBinOp(Op0, Op1, true))
+ return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
+
+ return OptimizeConditionalInDecrement(N, DAG);
+}
+
+static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ // X86 can't encode an immediate LHS of a sub. See if we can push the
+ // negation into a preceding instruction.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
+ // If the RHS of the sub is a XOR with one use and a constant, invert the
+ // immediate. Then add one to the LHS of the sub so we can turn
+ // X-Y -> X+~Y+1, saving one register.
+ if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
+ isa<ConstantSDNode>(Op1.getOperand(1))) {
+ APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
+ EVT VT = Op0.getValueType();
+ SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
+ Op1.getOperand(0),
+ DAG.getConstant(~XorC, VT));
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
+ DAG.getConstant(C->getAPIntValue()+1, VT));
+ }
+ }
+
+ // Try to synthesize horizontal adds from adds of shuffles.
+ EVT VT = N->getValueType(0);
+ if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
+ (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
+ isHorizontalBinOp(Op0, Op1, true))
+ return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
+
+ return OptimizeConditionalInDecrement(N, DAG);
+}
+
+/// performVZEXTCombine - Performs build vector combines
+static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ // (vzext (bitcast (vzext (x)) -> (vzext x)
+ SDValue In = N->getOperand(0);
+ while (In.getOpcode() == ISD::BITCAST)
+ In = In.getOperand(0);
+
+ if (In.getOpcode() != X86ISD::VZEXT)
+ return SDValue();
+
+ return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
+ In.getOperand(0));
+}
+
+SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::EXTRACT_VECTOR_ELT:
+ return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
+ case ISD::VSELECT:
+ case ISD::SELECT: return PerformSELECTCombine(N, DAG, DCI, Subtarget);
+ case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI, Subtarget);
+ case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget);
+ case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget);
+ case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
+ case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget);
+ case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
+ case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
+ case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget);
+ case ISD::LOAD: return PerformLOADCombine(N, DAG, DCI, Subtarget);
+ case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
+ case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this);
+ case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget);
+ case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget);
+ case X86ISD::FXOR:
+ case X86ISD::FOR: return PerformFORCombine(N, DAG);
+ case X86ISD::FMIN:
+ case X86ISD::FMAX: return PerformFMinFMaxCombine(N, DAG);
+ case X86ISD::FAND: return PerformFANDCombine(N, DAG);
+ case X86ISD::FANDN: return PerformFANDNCombine(N, DAG);
+ case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
+ case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
+ case ISD::ANY_EXTEND:
+ case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, DCI, Subtarget);
+ case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget);
+ case ISD::SIGN_EXTEND_INREG:
+ return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
+ case ISD::TRUNCATE: return PerformTruncateCombine(N, DAG,DCI,Subtarget);
+ case ISD::SETCC: return PerformISDSETCCCombine(N, DAG, Subtarget);
+ case X86ISD::SETCC: return PerformSETCCCombine(N, DAG, DCI, Subtarget);
+ case X86ISD::BRCOND: return PerformBrCondCombine(N, DAG, DCI, Subtarget);
+ case X86ISD::VZEXT: return performVZEXTCombine(N, DAG, DCI, Subtarget);
+ case X86ISD::SHUFP: // Handle all target specific shuffles
+ case X86ISD::PALIGNR:
+ case X86ISD::UNPCKH:
+ case X86ISD::UNPCKL:
+ case X86ISD::MOVHLPS:
+ case X86ISD::MOVLHPS:
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFHW:
+ case X86ISD::PSHUFLW:
+ case X86ISD::MOVSS:
+ case X86ISD::MOVSD:
+ case X86ISD::VPERMILP:
+ case X86ISD::VPERM2X128:
+ case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
+ case ISD::FMA: return PerformFMACombine(N, DAG, Subtarget);
+ case ISD::INTRINSIC_WO_CHAIN:
+ return PerformINTRINSIC_WO_CHAINCombine(N, DAG, Subtarget);
+ case X86ISD::INSERTPS:
+ return PerformINSERTPSCombine(N, DAG, Subtarget);
+ case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DAG, Subtarget);
+ }
+
+ return SDValue();
+}
+
+/// isTypeDesirableForOp - Return true if the target has native support for
+/// the specified value type and it is 'desirable' to use the type for the
+/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
+/// instruction encodings are longer and some i16 instructions are slow.
+bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
+ if (!isTypeLegal(VT))
+ return false;
+ if (VT != MVT::i16)
+ return true;
+
+ switch (Opc) {
+ default:
+ return true;
+ case ISD::LOAD:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SUB:
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ return false;
+ }
+}
+
+/// IsDesirableToPromoteOp - This method query the target whether it is
+/// beneficial for dag combiner to promote the specified node. If true, it
+/// should return the desired promotion type by reference.
+bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
+ EVT VT = Op.getValueType();
+ if (VT != MVT::i16)
+ return false;
+
+ bool Promote = false;
+ bool Commute = false;
+ switch (Op.getOpcode()) {
+ default: break;
+ case ISD::LOAD: {
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ // If the non-extending load has a single use and it's not live out, then it
+ // might be folded.
+ if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
+ Op.hasOneUse()*/) {
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI) {
+ // The only case where we'd want to promote LOAD (rather then it being
+ // promoted as an operand is when it's only use is liveout.
+ if (UI->getOpcode() != ISD::CopyToReg)
+ return false;
+ }
+ }
+ Promote = true;
+ break;
+ }
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ Promote = true;
+ break;
+ case ISD::SHL:
+ case ISD::SRL: {
+ SDValue N0 = Op.getOperand(0);
+ // Look out for (store (shl (load), x)).
+ if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
+ return false;
+ Promote = true;
+ break;
+ }
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ Commute = true;
+ // fallthrough
+ case ISD::SUB: {
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ if (!Commute && MayFoldLoad(N1))
+ return false;
+ // Avoid disabling potential load folding opportunities.
+ if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
+ return false;
+ if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
+ return false;
+ Promote = true;
+ }
+ }
+
+ PVT = MVT::i32;
+ return Promote;
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+namespace {
+ // Helper to match a string separated by whitespace.
+ bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
+ s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
+
+ for (unsigned i = 0, e = args.size(); i != e; ++i) {
+ StringRef piece(*args[i]);
+ if (!s.startswith(piece)) // Check if the piece matches.
+ return false;
+
+ s = s.substr(piece.size());
+ StringRef::size_type pos = s.find_first_not_of(" \t");
+ if (pos == 0) // We matched a prefix.
+ return false;
+
+ s = s.substr(pos);
+ }
+
+ return s.empty();
+ }
+ const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
+}
+
+static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
+
+ if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
+ if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
+ std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
+ std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
+
+ if (AsmPieces.size() == 3)
+ return true;
+ else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
+ return true;
+ }
+ }
+ return false;
+}
+
+bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
+ InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
+
+ std::string AsmStr = IA->getAsmString();
+
+ IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
+ if (!Ty || Ty->getBitWidth() % 16 != 0)
+ return false;
+
+ // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
+ SmallVector<StringRef, 4> AsmPieces;
+ SplitString(AsmStr, AsmPieces, ";\n");
+
+ switch (AsmPieces.size()) {
+ default: return false;
+ case 1:
+ // FIXME: this should verify that we are targeting a 486 or better. If not,
+ // we will turn this bswap into something that will be lowered to logical
+ // ops instead of emitting the bswap asm. For now, we don't support 486 or
+ // lower so don't worry about this.
+ // bswap $0
+ if (matchAsm(AsmPieces[0], "bswap", "$0") ||
+ matchAsm(AsmPieces[0], "bswapl", "$0") ||
+ matchAsm(AsmPieces[0], "bswapq", "$0") ||
+ matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
+ matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
+ matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
+ // No need to check constraints, nothing other than the equivalent of
+ // "=r,0" would be valid here.
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+
+ // rorw $$8, ${0:w} --> llvm.bswap.i16
+ if (CI->getType()->isIntegerTy(16) &&
+ IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
+ (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
+ matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
+ AsmPieces.clear();
+ const std::string &ConstraintsStr = IA->getConstraintString();
+ SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
+ array_pod_sort(AsmPieces.begin(), AsmPieces.end());
+ if (clobbersFlagRegisters(AsmPieces))
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+ break;
+ case 3:
+ if (CI->getType()->isIntegerTy(32) &&
+ IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
+ matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
+ matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
+ matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
+ AsmPieces.clear();
+ const std::string &ConstraintsStr = IA->getConstraintString();
+ SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
+ array_pod_sort(AsmPieces.begin(), AsmPieces.end());
+ if (clobbersFlagRegisters(AsmPieces))
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+
+ if (CI->getType()->isIntegerTy(64)) {
+ InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
+ if (Constraints.size() >= 2 &&
+ Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
+ Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
+ // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
+ if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
+ matchAsm(AsmPieces[1], "bswap", "%edx") &&
+ matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+ }
+ break;
+ }
+ return false;
+}
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+X86TargetLowering::ConstraintType
+X86TargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'R':
+ case 'q':
+ case 'Q':
+ case 'f':
+ case 't':
+ case 'u':
+ case 'y':
+ case 'x':
+ case 'Y':
+ case 'l':
+ return C_RegisterClass;
+ case 'a':
+ case 'b':
+ case 'c':
+ case 'd':
+ case 'S':
+ case 'D':
+ case 'A':
+ return C_Register;
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'G':
+ case 'C':
+ case 'e':
+ case 'Z':
+ return C_Other;
+ default:
+ break;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ X86TargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ case 'R':
+ case 'q':
+ case 'Q':
+ case 'a':
+ case 'b':
+ case 'c':
+ case 'd':
+ case 'S':
+ case 'D':
+ case 'A':
+ if (CallOperandVal->getType()->isIntegerTy())
+ weight = CW_SpecificReg;
+ break;
+ case 'f':
+ case 't':
+ case 'u':
+ if (type->isFloatingPointTy())
+ weight = CW_SpecificReg;
+ break;
+ case 'y':
+ if (type->isX86_MMXTy() && Subtarget->hasMMX())
+ weight = CW_SpecificReg;
+ break;
+ case 'x':
+ case 'Y':
+ if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
+ ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
+ weight = CW_Register;
+ break;
+ case 'I':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
+ if (C->getZExtValue() <= 31)
+ weight = CW_Constant;
+ }
+ break;
+ case 'J':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 63)
+ weight = CW_Constant;
+ }
+ break;
+ case 'K':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
+ weight = CW_Constant;
+ }
+ break;
+ case 'L':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
+ weight = CW_Constant;
+ }
+ break;
+ case 'M':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 3)
+ weight = CW_Constant;
+ }
+ break;
+ case 'N':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 0xff)
+ weight = CW_Constant;
+ }
+ break;
+ case 'G':
+ case 'C':
+ if (dyn_cast<ConstantFP>(CallOperandVal)) {
+ weight = CW_Constant;
+ }
+ break;
+ case 'e':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getSExtValue() >= -0x80000000LL) &&
+ (C->getSExtValue() <= 0x7fffffffLL))
+ weight = CW_Constant;
+ }
+ break;
+ case 'Z':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 0xffffffff)
+ weight = CW_Constant;
+ }
+ break;
+ }
+ return weight;
+}
+
+/// LowerXConstraint - try to replace an X constraint, which matches anything,
+/// with another that has more specific requirements based on the type of the
+/// corresponding operand.
+const char *X86TargetLowering::
+LowerXConstraint(EVT ConstraintVT) const {
+ // FP X constraints get lowered to SSE1/2 registers if available, otherwise
+ // 'f' like normal targets.
+ if (ConstraintVT.isFloatingPoint()) {
+ if (Subtarget->hasSSE2())
+ return "Y";
+ if (Subtarget->hasSSE1())
+ return "x";
+ }
+
+ return TargetLowering::LowerXConstraint(ConstraintVT);
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result;
+
+ // Only support length 1 constraints for now.
+ if (Constraint.length() > 1) return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break;
+ case 'I':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 31) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'J':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 63) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'K':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (isInt<8>(C->getSExtValue())) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'N':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 255) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'e': {
+ // 32-bit signed value
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
+ C->getSExtValue())) {
+ // Widen to 64 bits here to get it sign extended.
+ Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
+ break;
+ }
+ // FIXME gcc accepts some relocatable values here too, but only in certain
+ // memory models; it's complicated.
+ }
+ return;
+ }
+ case 'Z': {
+ // 32-bit unsigned value
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
+ C->getZExtValue())) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ // FIXME gcc accepts some relocatable values here too, but only in certain
+ // memory models; it's complicated.
+ return;
+ }
+ case 'i': {
+ // Literal immediates are always ok.
+ if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
+ // Widen to 64 bits here to get it sign extended.
+ Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
+ break;
+ }
+
+ // In any sort of PIC mode addresses need to be computed at runtime by
+ // adding in a register or some sort of table lookup. These can't
+ // be used as immediates.
+ if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
+ return;
+
+ // If we are in non-pic codegen mode, we allow the address of a global (with
+ // an optional displacement) to be used with 'i'.
+ GlobalAddressSDNode *GA = nullptr;
+ int64_t Offset = 0;
+
+ // Match either (GA), (GA+C), (GA+C1+C2), etc.
+ while (1) {
+ if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
+ Offset += GA->getOffset();
+ break;
+ } else if (Op.getOpcode() == ISD::ADD) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ Offset += C->getZExtValue();
+ Op = Op.getOperand(0);
+ continue;
+ }
+ } else if (Op.getOpcode() == ISD::SUB) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ Offset += -C->getZExtValue();
+ Op = Op.getOperand(0);
+ continue;
+ }
+ }
+
+ // Otherwise, this isn't something we can handle, reject it.
+ return;
+ }
+
+ const GlobalValue *GV = GA->getGlobal();
+ // If we require an extra load to get this address, as in PIC mode, we
+ // can't accept it.
+ if (isGlobalStubReference(
+ Subtarget->ClassifyGlobalReference(GV, DAG.getTarget())))
+ return;
+
+ Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
+ GA->getValueType(0), Offset);
+ break;
+ }
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+ return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const {
+ // First, see if this is a constraint that directly corresponds to an LLVM
+ // register class.
+ if (Constraint.size() == 1) {
+ // GCC Constraint Letters
+ switch (Constraint[0]) {
+ default: break;
+ // TODO: Slight differences here in allocation order and leaving
+ // RIP in the class. Do they matter any more here than they do
+ // in the normal allocation?
+ case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
+ if (Subtarget->is64Bit()) {
+ if (VT == MVT::i32 || VT == MVT::f32)
+ return std::make_pair(0U, &X86::GR32RegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16RegClass);
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8RegClass);
+ if (VT == MVT::i64 || VT == MVT::f64)
+ return std::make_pair(0U, &X86::GR64RegClass);
+ break;
+ }
+ // 32-bit fallthrough
+ case 'Q': // Q_REGS
+ if (VT == MVT::i32 || VT == MVT::f32)
+ return std::make_pair(0U, &X86::GR32_ABCDRegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16_ABCDRegClass);
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
+ if (VT == MVT::i64)
+ return std::make_pair(0U, &X86::GR64_ABCDRegClass);
+ break;
+ case 'r': // GENERAL_REGS
+ case 'l': // INDEX_REGS
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8RegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16RegClass);
+ if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
+ return std::make_pair(0U, &X86::GR32RegClass);
+ return std::make_pair(0U, &X86::GR64RegClass);
+ case 'R': // LEGACY_REGS
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8_NOREXRegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16_NOREXRegClass);
+ if (VT == MVT::i32 || !Subtarget->is64Bit())
+ return std::make_pair(0U, &X86::GR32_NOREXRegClass);
+ return std::make_pair(0U, &X86::GR64_NOREXRegClass);
+ case 'f': // FP Stack registers.
+ // If SSE is enabled for this VT, use f80 to ensure the isel moves the
+ // value to the correct fpstack register class.
+ if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
+ return std::make_pair(0U, &X86::RFP32RegClass);
+ if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
+ return std::make_pair(0U, &X86::RFP64RegClass);
+ return std::make_pair(0U, &X86::RFP80RegClass);
+ case 'y': // MMX_REGS if MMX allowed.
+ if (!Subtarget->hasMMX()) break;
+ return std::make_pair(0U, &X86::VR64RegClass);
+ case 'Y': // SSE_REGS if SSE2 allowed
+ if (!Subtarget->hasSSE2()) break;
+ // FALL THROUGH.
+ case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
+ if (!Subtarget->hasSSE1()) break;
+
+ switch (VT.SimpleTy) {
+ default: break;
+ // Scalar SSE types.
+ case MVT::f32:
+ case MVT::i32:
+ return std::make_pair(0U, &X86::FR32RegClass);
+ case MVT::f64:
+ case MVT::i64:
+ return std::make_pair(0U, &X86::FR64RegClass);
+ // Vector types.
+ case MVT::v16i8:
+ case MVT::v8i16:
+ case MVT::v4i32:
+ case MVT::v2i64:
+ case MVT::v4f32:
+ case MVT::v2f64:
+ return std::make_pair(0U, &X86::VR128RegClass);
+ // AVX types.
+ case MVT::v32i8:
+ case MVT::v16i16:
+ case MVT::v8i32:
+ case MVT::v4i64:
+ case MVT::v8f32:
+ case MVT::v4f64:
+ return std::make_pair(0U, &X86::VR256RegClass);
+ case MVT::v8f64:
+ case MVT::v16f32:
+ case MVT::v16i32:
+ case MVT::v8i64:
+ return std::make_pair(0U, &X86::VR512RegClass);
+ }
+ break;
+ }
+ }
+
+ // Use the default implementation in TargetLowering to convert the register
+ // constraint into a member of a register class.
+ std::pair<unsigned, const TargetRegisterClass*> Res;
+ Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+
+ // Not found as a standard register?
+ if (!Res.second) {
+ // Map st(0) -> st(7) -> ST0
+ if (Constraint.size() == 7 && Constraint[0] == '{' &&
+ tolower(Constraint[1]) == 's' &&
+ tolower(Constraint[2]) == 't' &&
+ Constraint[3] == '(' &&
+ (Constraint[4] >= '0' && Constraint[4] <= '7') &&
+ Constraint[5] == ')' &&
+ Constraint[6] == '}') {
+
+ Res.first = X86::ST0+Constraint[4]-'0';
+ Res.second = &X86::RFP80RegClass;
+ return Res;
+ }
+
+ // GCC allows "st(0)" to be called just plain "st".
+ if (StringRef("{st}").equals_lower(Constraint)) {
+ Res.first = X86::ST0;
+ Res.second = &X86::RFP80RegClass;
+ return Res;
+ }
+
+ // flags -> EFLAGS
+ if (StringRef("{flags}").equals_lower(Constraint)) {
+ Res.first = X86::EFLAGS;
+ Res.second = &X86::CCRRegClass;
+ return Res;
+ }
+
+ // 'A' means EAX + EDX.
+ if (Constraint == "A") {
+ Res.first = X86::EAX;
+ Res.second = &X86::GR32_ADRegClass;
+ return Res;
+ }
+ return Res;
+ }
+
+ // Otherwise, check to see if this is a register class of the wrong value
+ // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
+ // turn into {ax},{dx}.
+ if (Res.second->hasType(VT))
+ return Res; // Correct type already, nothing to do.
+
+ // All of the single-register GCC register classes map their values onto
+ // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
+ // really want an 8-bit or 32-bit register, map to the appropriate register
+ // class and return the appropriate register.
+ if (Res.second == &X86::GR16RegClass) {
+ if (VT == MVT::i8 || VT == MVT::i1) {
+ unsigned DestReg = 0;
+ switch (Res.first) {
+ default: break;
+ case X86::AX: DestReg = X86::AL; break;
+ case X86::DX: DestReg = X86::DL; break;
+ case X86::CX: DestReg = X86::CL; break;
+ case X86::BX: DestReg = X86::BL; break;
+ }
+ if (DestReg) {
+ Res.first = DestReg;
+ Res.second = &X86::GR8RegClass;
+ }
+ } else if (VT == MVT::i32 || VT == MVT::f32) {
+ unsigned DestReg = 0;
+ switch (Res.first) {
+ default: break;
+ case X86::AX: DestReg = X86::EAX; break;
+ case X86::DX: DestReg = X86::EDX; break;
+ case X86::CX: DestReg = X86::ECX; break;
+ case X86::BX: DestReg = X86::EBX; break;
+ case X86::SI: DestReg = X86::ESI; break;
+ case X86::DI: DestReg = X86::EDI; break;
+ case X86::BP: DestReg = X86::EBP; break;
+ case X86::SP: DestReg = X86::ESP; break;
+ }
+ if (DestReg) {
+ Res.first = DestReg;
+ Res.second = &X86::GR32RegClass;
+ }
+ } else if (VT == MVT::i64 || VT == MVT::f64) {
+ unsigned DestReg = 0;
+ switch (Res.first) {
+ default: break;
+ case X86::AX: DestReg = X86::RAX; break;
+ case X86::DX: DestReg = X86::RDX; break;
+ case X86::CX: DestReg = X86::RCX; break;
+ case X86::BX: DestReg = X86::RBX; break;
+ case X86::SI: DestReg = X86::RSI; break;
+ case X86::DI: DestReg = X86::RDI; break;
+ case X86::BP: DestReg = X86::RBP; break;
+ case X86::SP: DestReg = X86::RSP; break;
+ }
+ if (DestReg) {
+ Res.first = DestReg;
+ Res.second = &X86::GR64RegClass;
+ }
+ }
+ } else if (Res.second == &X86::FR32RegClass ||
+ Res.second == &X86::FR64RegClass ||
+ Res.second == &X86::VR128RegClass ||
+ Res.second == &X86::VR256RegClass ||
+ Res.second == &X86::FR32XRegClass ||
+ Res.second == &X86::FR64XRegClass ||
+ Res.second == &X86::VR128XRegClass ||
+ Res.second == &X86::VR256XRegClass ||
+ Res.second == &X86::VR512RegClass) {
+ // Handle references to XMM physical registers that got mapped into the
+ // wrong class. This can happen with constraints like {xmm0} where the
+ // target independent register mapper will just pick the first match it can
+ // find, ignoring the required type.
+
+ if (VT == MVT::f32 || VT == MVT::i32)
+ Res.second = &X86::FR32RegClass;
+ else if (VT == MVT::f64 || VT == MVT::i64)
+ Res.second = &X86::FR64RegClass;
+ else if (X86::VR128RegClass.hasType(VT))
+ Res.second = &X86::VR128RegClass;
+ else if (X86::VR256RegClass.hasType(VT))
+ Res.second = &X86::VR256RegClass;
+ else if (X86::VR512RegClass.hasType(VT))
+ Res.second = &X86::VR512RegClass;
+ }
+
+ return Res;
+}
+
+int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
+ Type *Ty) const {
+ // Scaling factors are not free at all.
+ // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
+ // will take 2 allocations in the out of order engine instead of 1
+ // for plain addressing mode, i.e. inst (reg1).
+ // E.g.,
+ // vaddps (%rsi,%drx), %ymm0, %ymm1
+ // Requires two allocations (one for the load, one for the computation)
+ // whereas:
+ // vaddps (%rsi), %ymm0, %ymm1
+ // Requires just 1 allocation, i.e., freeing allocations for other operations
+ // and having less micro operations to execute.
+ //
+ // For some X86 architectures, this is even worse because for instance for
+ // stores, the complex addressing mode forces the instruction to use the
+ // "load" ports instead of the dedicated "store" port.
+ // E.g., on Haswell:
+ // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
+ // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
+ if (isLegalAddressingMode(AM, Ty))
+ // Scale represents reg2 * scale, thus account for 1
+ // as soon as we use a second register.
+ return AM.Scale != 0;
+ return -1;
+}
+
+bool X86TargetLowering::isTargetFTOL() const {
+ return Subtarget->isTargetKnownWindowsMSVC() && !Subtarget->is64Bit();
+}
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.h b/contrib/llvm/lib/Target/X86/X86ISelLowering.h
new file mode 100644
index 0000000..c8cdce7
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.h
@@ -0,0 +1,1016 @@
+//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that X86 uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86ISELLOWERING_H
+#define X86ISELLOWERING_H
+
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+
+namespace llvm {
+ class X86Subtarget;
+ class X86TargetMachine;
+
+ namespace X86ISD {
+ // X86 Specific DAG Nodes
+ enum NodeType {
+ // Start the numbering where the builtin ops leave off.
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ /// BSF - Bit scan forward.
+ /// BSR - Bit scan reverse.
+ BSF,
+ BSR,
+
+ /// SHLD, SHRD - Double shift instructions. These correspond to
+ /// X86::SHLDxx and X86::SHRDxx instructions.
+ SHLD,
+ SHRD,
+
+ /// FAND - Bitwise logical AND of floating point values. This corresponds
+ /// to X86::ANDPS or X86::ANDPD.
+ FAND,
+
+ /// FOR - Bitwise logical OR of floating point values. This corresponds
+ /// to X86::ORPS or X86::ORPD.
+ FOR,
+
+ /// FXOR - Bitwise logical XOR of floating point values. This corresponds
+ /// to X86::XORPS or X86::XORPD.
+ FXOR,
+
+ /// FANDN - Bitwise logical ANDNOT of floating point values. This
+ /// corresponds to X86::ANDNPS or X86::ANDNPD.
+ FANDN,
+
+ /// FSRL - Bitwise logical right shift of floating point values. These
+ /// corresponds to X86::PSRLDQ.
+ FSRL,
+
+ /// CALL - These operations represent an abstract X86 call
+ /// instruction, which includes a bunch of information. In particular the
+ /// operands of these node are:
+ ///
+ /// #0 - The incoming token chain
+ /// #1 - The callee
+ /// #2 - The number of arg bytes the caller pushes on the stack.
+ /// #3 - The number of arg bytes the callee pops off the stack.
+ /// #4 - The value to pass in AL/AX/EAX (optional)
+ /// #5 - The value to pass in DL/DX/EDX (optional)
+ ///
+ /// The result values of these nodes are:
+ ///
+ /// #0 - The outgoing token chain
+ /// #1 - The first register result value (optional)
+ /// #2 - The second register result value (optional)
+ ///
+ CALL,
+
+ /// RDTSC_DAG - This operation implements the lowering for
+ /// readcyclecounter
+ RDTSC_DAG,
+
+ /// X86 Read Time-Stamp Counter and Processor ID.
+ RDTSCP_DAG,
+
+ /// X86 Read Performance Monitoring Counters.
+ RDPMC_DAG,
+
+ /// X86 compare and logical compare instructions.
+ CMP, COMI, UCOMI,
+
+ /// X86 bit-test instructions.
+ BT,
+
+ /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
+ /// operand, usually produced by a CMP instruction.
+ SETCC,
+
+ /// X86 Select
+ SELECT,
+
+ // Same as SETCC except it's materialized with a sbb and the value is all
+ // one's or all zero's.
+ SETCC_CARRY, // R = carry_bit ? ~0 : 0
+
+ /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
+ /// Operands are two FP values to compare; result is a mask of
+ /// 0s or 1s. Generally DTRT for C/C++ with NaNs.
+ FSETCC,
+
+ /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
+ /// result in an integer GPR. Needs masking for scalar result.
+ FGETSIGNx86,
+
+ /// X86 conditional moves. Operand 0 and operand 1 are the two values
+ /// to select from. Operand 2 is the condition code, and operand 3 is the
+ /// flag operand produced by a CMP or TEST instruction. It also writes a
+ /// flag result.
+ CMOV,
+
+ /// X86 conditional branches. Operand 0 is the chain operand, operand 1
+ /// is the block to branch if condition is true, operand 2 is the
+ /// condition code, and operand 3 is the flag operand produced by a CMP
+ /// or TEST instruction.
+ BRCOND,
+
+ /// Return with a flag operand. Operand 0 is the chain operand, operand
+ /// 1 is the number of bytes of stack to pop.
+ RET_FLAG,
+
+ /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
+ REP_STOS,
+
+ /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
+ REP_MOVS,
+
+ /// GlobalBaseReg - On Darwin, this node represents the result of the popl
+ /// at function entry, used for PIC code.
+ GlobalBaseReg,
+
+ /// Wrapper - A wrapper node for TargetConstantPool,
+ /// TargetExternalSymbol, and TargetGlobalAddress.
+ Wrapper,
+
+ /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
+ /// relative displacements.
+ WrapperRIP,
+
+ /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
+ /// to an MMX vector. If you think this is too close to the previous
+ /// mnemonic, so do I; blame Intel.
+ MOVDQ2Q,
+
+ /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX
+ /// vector to a GPR.
+ MMX_MOVD2W,
+
+ /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
+ /// i32, corresponds to X86::PEXTRB.
+ PEXTRB,
+
+ /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
+ /// i32, corresponds to X86::PEXTRW.
+ PEXTRW,
+
+ /// INSERTPS - Insert any element of a 4 x float vector into any element
+ /// of a destination 4 x floatvector.
+ INSERTPS,
+
+ /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
+ /// corresponds to X86::PINSRB.
+ PINSRB,
+
+ /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
+ /// corresponds to X86::PINSRW.
+ PINSRW, MMX_PINSRW,
+
+ /// PSHUFB - Shuffle 16 8-bit values within a vector.
+ PSHUFB,
+
+ /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
+ ANDNP,
+
+ /// PSIGN - Copy integer sign.
+ PSIGN,
+
+ /// BLENDV - Blend where the selector is a register.
+ BLENDV,
+
+ /// BLENDI - Blend where the selector is an immediate.
+ BLENDI,
+
+ // SUBUS - Integer sub with unsigned saturation.
+ SUBUS,
+
+ /// HADD - Integer horizontal add.
+ HADD,
+
+ /// HSUB - Integer horizontal sub.
+ HSUB,
+
+ /// FHADD - Floating point horizontal add.
+ FHADD,
+
+ /// FHSUB - Floating point horizontal sub.
+ FHSUB,
+
+ /// UMAX, UMIN - Unsigned integer max and min.
+ UMAX, UMIN,
+
+ /// SMAX, SMIN - Signed integer max and min.
+ SMAX, SMIN,
+
+ /// FMAX, FMIN - Floating point max and min.
+ ///
+ FMAX, FMIN,
+
+ /// FMAXC, FMINC - Commutative FMIN and FMAX.
+ FMAXC, FMINC,
+
+ /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
+ /// approximation. Note that these typically require refinement
+ /// in order to obtain suitable precision.
+ FRSQRT, FRCP,
+
+ // TLSADDR - Thread Local Storage.
+ TLSADDR,
+
+ // TLSBASEADDR - Thread Local Storage. A call to get the start address
+ // of the TLS block for the current module.
+ TLSBASEADDR,
+
+ // TLSCALL - Thread Local Storage. When calling to an OS provided
+ // thunk at the address from an earlier relocation.
+ TLSCALL,
+
+ // EH_RETURN - Exception Handling helpers.
+ EH_RETURN,
+
+ // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
+ EH_SJLJ_SETJMP,
+
+ // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
+ EH_SJLJ_LONGJMP,
+
+ /// TC_RETURN - Tail call return. See X86TargetLowering::LowerCall for
+ /// the list of operands.
+ TC_RETURN,
+
+ // VZEXT_MOVL - Vector move to low scalar and zero higher vector elements.
+ VZEXT_MOVL,
+
+ // VZEXT - Vector integer zero-extend.
+ VZEXT,
+
+ // VSEXT - Vector integer signed-extend.
+ VSEXT,
+
+ // VTRUNC - Vector integer truncate.
+ VTRUNC,
+
+ // VTRUNC - Vector integer truncate with mask.
+ VTRUNCM,
+
+ // VFPEXT - Vector FP extend.
+ VFPEXT,
+
+ // VFPROUND - Vector FP round.
+ VFPROUND,
+
+ // VSHL, VSRL - 128-bit vector logical left / right shift
+ VSHLDQ, VSRLDQ,
+
+ // VSHL, VSRL, VSRA - Vector shift elements
+ VSHL, VSRL, VSRA,
+
+ // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
+ VSHLI, VSRLI, VSRAI,
+
+ // CMPP - Vector packed double/float comparison.
+ CMPP,
+
+ // PCMP* - Vector integer comparisons.
+ PCMPEQ, PCMPGT,
+ // PCMP*M - Vector integer comparisons, the result is in a mask vector.
+ PCMPEQM, PCMPGTM,
+
+ /// CMPM, CMPMU - Vector comparison generating mask bits for fp and
+ /// integer signed and unsigned data types.
+ CMPM,
+ CMPMU,
+
+ // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
+ ADD, SUB, ADC, SBB, SMUL,
+ INC, DEC, OR, XOR, AND,
+
+ BEXTR, // BEXTR - Bit field extract
+
+ UMUL, // LOW, HI, FLAGS = umul LHS, RHS
+
+ // MUL_IMM - X86 specific multiply by immediate.
+ MUL_IMM,
+
+ // PTEST - Vector bitwise comparisons.
+ PTEST,
+
+ // TESTP - Vector packed fp sign bitwise comparisons.
+ TESTP,
+
+ // TESTM, TESTNM - Vector "test" in AVX-512, the result is in a mask vector.
+ TESTM,
+ TESTNM,
+
+ // OR/AND test for masks
+ KORTEST,
+
+ // Several flavors of instructions with vector shuffle behaviors.
+ PACKSS,
+ PACKUS,
+ PALIGNR,
+ PSHUFD,
+ PSHUFHW,
+ PSHUFLW,
+ SHUFP,
+ MOVDDUP,
+ MOVSHDUP,
+ MOVSLDUP,
+ MOVLHPS,
+ MOVLHPD,
+ MOVHLPS,
+ MOVLPS,
+ MOVLPD,
+ MOVSD,
+ MOVSS,
+ UNPCKL,
+ UNPCKH,
+ VPERMILP,
+ VPERMV,
+ VPERMV3,
+ VPERMIV3,
+ VPERMI,
+ VPERM2X128,
+ VBROADCAST,
+ // masked broadcast
+ VBROADCASTM,
+ // Insert/Extract vector element
+ VINSERT,
+ VEXTRACT,
+
+ // PMULUDQ - Vector multiply packed unsigned doubleword integers
+ PMULUDQ,
+ // PMULUDQ - Vector multiply packed signed doubleword integers
+ PMULDQ,
+
+ // FMA nodes
+ FMADD,
+ FNMADD,
+ FMSUB,
+ FNMSUB,
+ FMADDSUB,
+ FMSUBADD,
+
+ // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
+ // according to %al. An operator is needed so that this can be expanded
+ // with control flow.
+ VASTART_SAVE_XMM_REGS,
+
+ // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
+ WIN_ALLOCA,
+
+ // SEG_ALLOCA - For allocating variable amounts of stack space when using
+ // segmented stacks. Check if the current stacklet has enough space, and
+ // falls back to heap allocation if not.
+ SEG_ALLOCA,
+
+ // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
+ WIN_FTOL,
+
+ // Memory barrier
+ MEMBARRIER,
+ MFENCE,
+ SFENCE,
+ LFENCE,
+
+ // FNSTSW16r - Store FP status word into i16 register.
+ FNSTSW16r,
+
+ // SAHF - Store contents of %ah into %eflags.
+ SAHF,
+
+ // RDRAND - Get a random integer and indicate whether it is valid in CF.
+ RDRAND,
+
+ // RDSEED - Get a NIST SP800-90B & C compliant random integer and
+ // indicate whether it is valid in CF.
+ RDSEED,
+
+ // PCMP*STRI
+ PCMPISTRI,
+ PCMPESTRI,
+
+ // XTEST - Test if in transactional execution.
+ XTEST,
+
+ // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
+ LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
+ LCMPXCHG8_DAG,
+ LCMPXCHG16_DAG,
+
+ // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
+ VZEXT_LOAD,
+
+ // FNSTCW16m - Store FP control world into i16 memory.
+ FNSTCW16m,
+
+ /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
+ /// integer destination in memory and a FP reg source. This corresponds
+ /// to the X86::FIST*m instructions and the rounding mode change stuff. It
+ /// has two inputs (token chain and address) and two outputs (int value
+ /// and token chain).
+ FP_TO_INT16_IN_MEM,
+ FP_TO_INT32_IN_MEM,
+ FP_TO_INT64_IN_MEM,
+
+ /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
+ /// integer source in memory and FP reg result. This corresponds to the
+ /// X86::FILD*m instructions. It has three inputs (token chain, address,
+ /// and source type) and two outputs (FP value and token chain). FILD_FLAG
+ /// also produces a flag).
+ FILD,
+ FILD_FLAG,
+
+ /// FLD - This instruction implements an extending load to FP stack slots.
+ /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
+ /// operand, ptr to load from, and a ValueType node indicating the type
+ /// to load to.
+ FLD,
+
+ /// FST - This instruction implements a truncating store to FP stack
+ /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
+ /// chain operand, value to store, address, and a ValueType to store it
+ /// as.
+ FST,
+
+ /// VAARG_64 - This instruction grabs the address of the next argument
+ /// from a va_list. (reads and modifies the va_list in memory)
+ VAARG_64
+
+ // WARNING: Do not add anything in the end unless you want the node to
+ // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
+ // thought as target memory ops!
+ };
+ }
+
+ /// Define some predicates that are used for node matching.
+ namespace X86 {
+ /// isVEXTRACT128Index - Return true if the specified
+ /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
+ /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
+ bool isVEXTRACT128Index(SDNode *N);
+
+ /// isVINSERT128Index - Return true if the specified
+ /// INSERT_SUBVECTOR operand specifies a subvector insert that is
+ /// suitable for input to VINSERTF128, VINSERTI128 instructions.
+ bool isVINSERT128Index(SDNode *N);
+
+ /// isVEXTRACT256Index - Return true if the specified
+ /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
+ /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
+ bool isVEXTRACT256Index(SDNode *N);
+
+ /// isVINSERT256Index - Return true if the specified
+ /// INSERT_SUBVECTOR operand specifies a subvector insert that is
+ /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
+ bool isVINSERT256Index(SDNode *N);
+
+ /// getExtractVEXTRACT128Immediate - Return the appropriate
+ /// immediate to extract the specified EXTRACT_SUBVECTOR index
+ /// with VEXTRACTF128, VEXTRACTI128 instructions.
+ unsigned getExtractVEXTRACT128Immediate(SDNode *N);
+
+ /// getInsertVINSERT128Immediate - Return the appropriate
+ /// immediate to insert at the specified INSERT_SUBVECTOR index
+ /// with VINSERTF128, VINSERT128 instructions.
+ unsigned getInsertVINSERT128Immediate(SDNode *N);
+
+ /// getExtractVEXTRACT256Immediate - Return the appropriate
+ /// immediate to extract the specified EXTRACT_SUBVECTOR index
+ /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
+ unsigned getExtractVEXTRACT256Immediate(SDNode *N);
+
+ /// getInsertVINSERT256Immediate - Return the appropriate
+ /// immediate to insert at the specified INSERT_SUBVECTOR index
+ /// with VINSERTF64x4, VINSERTI64x4 instructions.
+ unsigned getInsertVINSERT256Immediate(SDNode *N);
+
+ /// isZeroNode - Returns true if Elt is a constant zero or a floating point
+ /// constant +0.0.
+ bool isZeroNode(SDValue Elt);
+
+ /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
+ /// fit into displacement field of the instruction.
+ bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
+ bool hasSymbolicDisplacement = true);
+
+
+ /// isCalleePop - Determines whether the callee is required to pop its
+ /// own arguments. Callee pop is necessary to support tail calls.
+ bool isCalleePop(CallingConv::ID CallingConv,
+ bool is64Bit, bool IsVarArg, bool TailCallOpt);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // X86TargetLowering - X86 Implementation of the TargetLowering interface
+ class X86TargetLowering final : public TargetLowering {
+ public:
+ explicit X86TargetLowering(X86TargetMachine &TM);
+
+ unsigned getJumpTableEncoding() const override;
+
+ MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i8; }
+
+ const MCExpr *
+ LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
+ const MachineBasicBlock *MBB, unsigned uid,
+ MCContext &Ctx) const override;
+
+ /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
+ /// jumptable.
+ SDValue getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const override;
+ const MCExpr *
+ getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
+ unsigned JTI, MCContext &Ctx) const override;
+
+ /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+ /// function arguments in the caller parameter area. For X86, aggregates
+ /// that contains are placed at 16-byte boundaries while the rest are at
+ /// 4-byte boundaries.
+ unsigned getByValTypeAlignment(Type *Ty) const override;
+
+ /// getOptimalMemOpType - Returns the target specific optimal type for load
+ /// and store operations as a result of memset, memcpy, and memmove
+ /// lowering. If DstAlign is zero that means it's safe to destination
+ /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
+ /// means there isn't a need to check it against alignment requirement,
+ /// probably because the source does not need to be loaded. If 'IsMemset' is
+ /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
+ /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
+ /// source is constant so it does not need to be loaded.
+ /// It returns EVT::Other if the type should be determined using generic
+ /// target-independent logic.
+ EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
+ MachineFunction &MF) const override;
+
+ /// isSafeMemOpType - Returns true if it's safe to use load / store of the
+ /// specified type to expand memcpy / memset inline. This is mostly true
+ /// for all types except for some special cases. For example, on X86
+ /// targets without SSE2 f64 load / store are done with fldl / fstpl which
+ /// also does type conversion. Note the specified type doesn't have to be
+ /// legal as the hook is used before type legalization.
+ bool isSafeMemOpType(MVT VT) const override;
+
+ /// allowsUnalignedMemoryAccesses - Returns true if the target allows
+ /// unaligned memory accesses. of the specified type. Returns whether it
+ /// is "fast" by reference in the second argument.
+ bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AS,
+ bool *Fast) const override;
+
+ /// LowerOperation - Provide custom lowering hooks for some operations.
+ ///
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+
+ /// ReplaceNodeResults - Replace the results of node with an illegal result
+ /// type with new values built out of custom code.
+ ///
+ void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const override;
+
+
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+
+ /// isTypeDesirableForOp - Return true if the target has native support for
+ /// the specified value type and it is 'desirable' to use the type for the
+ /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
+ /// instruction encodings are longer and some i16 instructions are slow.
+ bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
+
+ /// isTypeDesirable - Return true if the target has native support for the
+ /// specified value type and it is 'desirable' to use the type. e.g. On x86
+ /// i16 is legal, but undesirable since i16 instruction encodings are longer
+ /// and some i16 instructions are slow.
+ bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
+
+ MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const override;
+
+
+ /// getTargetNodeName - This method returns the name of a target specific
+ /// DAG node.
+ const char *getTargetNodeName(unsigned Opcode) const override;
+
+ /// getSetCCResultType - Return the value type to use for ISD::SETCC.
+ EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
+
+ /// computeKnownBitsForTargetNode - Determine which of the bits specified
+ /// in Mask are known to be either zero or one and return them in the
+ /// KnownZero/KnownOne bitsets.
+ void computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth = 0) const override;
+
+ // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
+ // operation that are sign bits.
+ unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
+ const SelectionDAG &DAG,
+ unsigned Depth) const override;
+
+ bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
+ int64_t &Offset) const override;
+
+ SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
+
+ bool ExpandInlineAsm(CallInst *CI) const override;
+
+ ConstraintType
+ getConstraintType(const std::string &Constraint) const override;
+
+ /// Examine constraint string and operand type and determine a weight value.
+ /// The operand object must already have been set up with the operand type.
+ ConstraintWeight
+ getSingleConstraintMatchWeight(AsmOperandInfo &info,
+ const char *constraint) const override;
+
+ const char *LowerXConstraint(EVT ConstraintVT) const override;
+
+ /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+ /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
+ /// true it means one of the asm constraint of the inline asm instruction
+ /// being processed is 'm'.
+ void LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const override;
+
+ /// getRegForInlineAsmConstraint - Given a physical register constraint
+ /// (e.g. {edx}), return the register number and the register class for the
+ /// register. This should only be used for C_Register constraints. On
+ /// error, this returns a register number of 0.
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const override;
+
+ /// isLegalAddressingMode - Return true if the addressing mode represented
+ /// by AM is legal for this target, for a load/store of the specified type.
+ bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
+
+ /// isLegalICmpImmediate - Return true if the specified immediate is legal
+ /// icmp immediate, that is the target has icmp instructions which can
+ /// compare a register against the immediate without having to materialize
+ /// the immediate into a register.
+ bool isLegalICmpImmediate(int64_t Imm) const override;
+
+ /// isLegalAddImmediate - Return true if the specified immediate is legal
+ /// add immediate, that is the target has add instructions which can
+ /// add a register and the immediate without having to materialize
+ /// the immediate into a register.
+ bool isLegalAddImmediate(int64_t Imm) const override;
+
+ /// \brief Return the cost of the scaling factor used in the addressing
+ /// mode represented by AM for this target, for a load/store
+ /// of the specified type.
+ /// If the AM is supported, the return value must be >= 0.
+ /// If the AM is not supported, it returns a negative value.
+ int getScalingFactorCost(const AddrMode &AM, Type *Ty) const override;
+
+ bool isVectorShiftByScalarCheap(Type *Ty) const override;
+
+ /// isTruncateFree - Return true if it's free to truncate a value of
+ /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
+ /// register EAX to i16 by referencing its sub-register AX.
+ bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
+ bool isTruncateFree(EVT VT1, EVT VT2) const override;
+
+ bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
+
+ /// isZExtFree - Return true if any actual instruction that defines a
+ /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
+ /// register. This does not necessarily include registers defined in
+ /// unknown ways, such as incoming arguments, or copies from unknown
+ /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
+ /// does not necessarily apply to truncate instructions. e.g. on x86-64,
+ /// all instructions that define 32-bit values implicit zero-extend the
+ /// result out to 64 bits.
+ bool isZExtFree(Type *Ty1, Type *Ty2) const override;
+ bool isZExtFree(EVT VT1, EVT VT2) const override;
+ bool isZExtFree(SDValue Val, EVT VT2) const override;
+
+ /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
+ /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
+ /// expanded to FMAs when this method returns true, otherwise fmuladd is
+ /// expanded to fmul + fadd.
+ bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
+
+ /// isNarrowingProfitable - Return true if it's profitable to narrow
+ /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
+ /// from i32 to i8 but not from i32 to i16.
+ bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
+
+ /// isFPImmLegal - Returns true if the target can instruction select the
+ /// specified FP immediate natively. If false, the legalizer will
+ /// materialize the FP immediate as a load from a constant pool.
+ bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
+
+ /// isShuffleMaskLegal - Targets can use this to indicate that they only
+ /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+ /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
+ /// values are assumed to be legal.
+ bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
+ EVT VT) const override;
+
+ /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
+ /// used by Targets can use this to indicate if there is a suitable
+ /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
+ /// pool entry.
+ bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
+ EVT VT) const override;
+
+ /// ShouldShrinkFPConstant - If true, then instruction selection should
+ /// seek to shrink the FP constant of the specified type to a smaller type
+ /// in order to save space and / or reduce runtime.
+ bool ShouldShrinkFPConstant(EVT VT) const override {
+ // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
+ // expensive than a straight movsd. On the other hand, it's important to
+ // shrink long double fp constant since fldt is very slow.
+ return !X86ScalarSSEf64 || VT == MVT::f80;
+ }
+
+ const X86Subtarget* getSubtarget() const {
+ return Subtarget;
+ }
+
+ /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
+ /// computed in an SSE register, not on the X87 floating point stack.
+ bool isScalarFPTypeInSSEReg(EVT VT) const {
+ return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
+ (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
+ }
+
+ /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
+ /// for fptoui.
+ bool isTargetFTOL() const;
+
+ /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
+ /// used for fptoui to the given type.
+ bool isIntegerTypeFTOL(EVT VT) const {
+ return isTargetFTOL() && VT == MVT::i64;
+ }
+
+ /// \brief Returns true if it is beneficial to convert a load of a constant
+ /// to just the constant itself.
+ bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const override;
+
+ /// Intel processors have a unified instruction and data cache
+ const char * getClearCacheBuiltinName() const override {
+ return nullptr; // nothing to do, move along.
+ }
+
+ unsigned getRegisterByName(const char* RegName, EVT VT) const override;
+
+ /// createFastISel - This method returns a target specific FastISel object,
+ /// or null if the target does not support "fast" ISel.
+ FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const override;
+
+ /// getStackCookieLocation - Return true if the target stores stack
+ /// protector cookies at a fixed offset in some non-standard address
+ /// space, and populates the address space and offset as
+ /// appropriate.
+ bool getStackCookieLocation(unsigned &AddressSpace,
+ unsigned &Offset) const override;
+
+ SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
+ SelectionDAG &DAG) const;
+
+ bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
+
+ /// \brief Reset the operation actions based on target options.
+ void resetOperationActions() override;
+
+ /// \brief Customize the preferred legalization strategy for certain types.
+ LegalizeTypeAction getPreferredVectorAction(EVT VT) const override;
+
+ protected:
+ std::pair<const TargetRegisterClass*, uint8_t>
+ findRepresentativeClass(MVT VT) const override;
+
+ private:
+ /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const X86Subtarget *Subtarget;
+ const DataLayout *TD;
+
+ /// Used to store the TargetOptions so that we don't waste time resetting
+ /// the operation actions unless we have to.
+ TargetOptions TO;
+
+ /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
+ /// floating point ops.
+ /// When SSE is available, use it for f32 operations.
+ /// When SSE2 is available, use it for f64 operations.
+ bool X86ScalarSSEf32;
+ bool X86ScalarSSEf64;
+
+ /// LegalFPImmediates - A list of legal fp immediates.
+ std::vector<APFloat> LegalFPImmediates;
+
+ /// addLegalFPImmediate - Indicate that this x86 target can instruction
+ /// select the specified FP immediate natively.
+ void addLegalFPImmediate(const APFloat& Imm) {
+ LegalFPImmediates.push_back(Imm);
+ }
+
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+ SDValue LowerMemArgument(SDValue Chain,
+ CallingConv::ID CallConv,
+ const SmallVectorImpl<ISD::InputArg> &ArgInfo,
+ SDLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA, MachineFrameInfo *MFI,
+ unsigned i) const;
+ SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
+ SDLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) const;
+
+ // Call lowering helpers.
+
+ /// IsEligibleForTailCallOptimization - Check whether the call is eligible
+ /// for tail call optimization. Targets which want to do tail call
+ /// optimization should implement this function.
+ bool IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ bool isCalleeStructRet,
+ bool isCallerStructRet,
+ Type *RetTy,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const;
+ bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
+ SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
+ SDValue Chain, bool IsTailCall, bool Is64Bit,
+ int FPDiff, SDLoc dl) const;
+
+ unsigned GetAlignedArgumentStackSize(unsigned StackSize,
+ SelectionDAG &DAG) const;
+
+ std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
+ bool isSigned,
+ bool isReplace) const;
+
+ SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const;
+ SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
+ int64_t Offset, SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerToBT(SDValue And, ISD::CondCode CC,
+ SDLoc dl, SelectionDAG &DAG) const;
+ SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+ SDValue LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const override;
+
+ bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
+
+ bool mayBeEmittedAsTailCall(CallInst *CI) const override;
+
+ MVT getTypeForExtArgOrReturn(MVT VT,
+ ISD::NodeType ExtendKind) const override;
+
+ bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const override;
+
+ const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
+
+ /// Utility function to emit atomic-load-arith operations (and, or, xor,
+ /// nand, max, min, umax, umin). It takes the corresponding instruction to
+ /// expand, the associated machine basic block, and the associated X86
+ /// opcodes for reg/reg.
+ MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+ /// Utility function to emit atomic-load-arith operations (and, or, xor,
+ /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
+ MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+ // Utility function to emit the low-level va_arg code for X86-64.
+ MachineBasicBlock *EmitVAARG64WithCustomInserter(
+ MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+ /// Utility function to emit the xmm reg save portion of va_start.
+ MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
+ MachineInstr *BInstr,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ bool Is64Bit) const;
+
+ MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+ MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+ MachineBasicBlock *emitFMA3Instr(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+ /// Emit nodes that will be selected as "test Op0,Op0", or something
+ /// equivalent, for use with the given x86 condition code.
+ SDValue EmitTest(SDValue Op0, unsigned X86CC, SDLoc dl,
+ SelectionDAG &DAG) const;
+
+ /// Emit nodes that will be selected as "cmp Op0,Op1", or something
+ /// equivalent, for use with the given x86 condition code.
+ SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SDLoc dl,
+ SelectionDAG &DAG) const;
+
+ /// Convert a comparison if required by the subtarget.
+ SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
+ };
+
+ namespace X86 {
+ FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo);
+ }
+}
+
+#endif // X86ISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/X86/X86Instr3DNow.td b/contrib/llvm/lib/Target/X86/X86Instr3DNow.td
new file mode 100644
index 0000000..ba1aede
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86Instr3DNow.td
@@ -0,0 +1,103 @@
+//===-- X86Instr3DNow.td - The 3DNow! Instruction Set ------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the 3DNow! instruction set, which extends MMX to support
+// floating point and also adds a few more random instructions for good measure.
+//
+//===----------------------------------------------------------------------===//
+
+class I3DNow<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pat>
+ : I<o, F, outs, ins, asm, pat>, TB, Requires<[Has3DNow]> {
+}
+
+class I3DNow_binop<bits<8> o, Format F, dag ins, string Mnemonic, list<dag> pat>
+ : I3DNow<o, F, (outs VR64:$dst), ins,
+ !strconcat(Mnemonic, "\t{$src2, $dst|$dst, $src2}"), pat>,
+ Has3DNow0F0FOpcode {
+ // FIXME: The disassembler doesn't support Has3DNow0F0FOpcode yet.
+ let isAsmParserOnly = 1;
+ let Constraints = "$src1 = $dst";
+}
+
+class I3DNow_conv<bits<8> o, Format F, dag ins, string Mnemonic, list<dag> pat>
+ : I3DNow<o, F, (outs VR64:$dst), ins,
+ !strconcat(Mnemonic, "\t{$src, $dst|$dst, $src}"), pat>,
+ Has3DNow0F0FOpcode {
+ // FIXME: The disassembler doesn't support Has3DNow0F0FOpcode yet.
+ let isAsmParserOnly = 1;
+}
+
+multiclass I3DNow_binop_rm<bits<8> opc, string Mn> {
+ def rr : I3DNow_binop<opc, MRMSrcReg, (ins VR64:$src1, VR64:$src2), Mn, []>;
+ def rm : I3DNow_binop<opc, MRMSrcMem, (ins VR64:$src1, i64mem:$src2), Mn, []>;
+}
+
+multiclass I3DNow_binop_rm_int<bits<8> opc, string Mn, string Ver = ""> {
+ def rr : I3DNow_binop<opc, MRMSrcReg, (ins VR64:$src1, VR64:$src2), Mn,
+ [(set VR64:$dst, (!cast<Intrinsic>(
+ !strconcat("int_x86_3dnow", Ver, "_", Mn)) VR64:$src1, VR64:$src2))]>;
+ def rm : I3DNow_binop<opc, MRMSrcMem, (ins VR64:$src1, i64mem:$src2), Mn,
+ [(set VR64:$dst, (!cast<Intrinsic>(
+ !strconcat("int_x86_3dnow", Ver, "_", Mn)) VR64:$src1,
+ (bitconvert (load_mmx addr:$src2))))]>;
+}
+
+multiclass I3DNow_conv_rm<bits<8> opc, string Mn> {
+ def rr : I3DNow_conv<opc, MRMSrcReg, (ins VR64:$src1), Mn, []>;
+ def rm : I3DNow_conv<opc, MRMSrcMem, (ins i64mem:$src1), Mn, []>;
+}
+
+multiclass I3DNow_conv_rm_int<bits<8> opc, string Mn, string Ver = ""> {
+ def rr : I3DNow_conv<opc, MRMSrcReg, (ins VR64:$src), Mn,
+ [(set VR64:$dst, (!cast<Intrinsic>(
+ !strconcat("int_x86_3dnow", Ver, "_", Mn)) VR64:$src))]>;
+ def rm : I3DNow_conv<opc, MRMSrcMem, (ins i64mem:$src), Mn,
+ [(set VR64:$dst, (!cast<Intrinsic>(
+ !strconcat("int_x86_3dnow", Ver, "_", Mn))
+ (bitconvert (load_mmx addr:$src))))]>;
+}
+
+defm PAVGUSB : I3DNow_binop_rm_int<0xBF, "pavgusb">;
+defm PF2ID : I3DNow_conv_rm_int<0x1D, "pf2id">;
+defm PFACC : I3DNow_binop_rm_int<0xAE, "pfacc">;
+defm PFADD : I3DNow_binop_rm_int<0x9E, "pfadd">;
+defm PFCMPEQ : I3DNow_binop_rm_int<0xB0, "pfcmpeq">;
+defm PFCMPGE : I3DNow_binop_rm_int<0x90, "pfcmpge">;
+defm PFCMPGT : I3DNow_binop_rm_int<0xA0, "pfcmpgt">;
+defm PFMAX : I3DNow_binop_rm_int<0xA4, "pfmax">;
+defm PFMIN : I3DNow_binop_rm_int<0x94, "pfmin">;
+defm PFMUL : I3DNow_binop_rm_int<0xB4, "pfmul">;
+defm PFRCP : I3DNow_conv_rm_int<0x96, "pfrcp">;
+defm PFRCPIT1 : I3DNow_binop_rm_int<0xA6, "pfrcpit1">;
+defm PFRCPIT2 : I3DNow_binop_rm_int<0xB6, "pfrcpit2">;
+defm PFRSQIT1 : I3DNow_binop_rm_int<0xA7, "pfrsqit1">;
+defm PFRSQRT : I3DNow_conv_rm_int<0x97, "pfrsqrt">;
+defm PFSUB : I3DNow_binop_rm_int<0x9A, "pfsub">;
+defm PFSUBR : I3DNow_binop_rm_int<0xAA, "pfsubr">;
+defm PI2FD : I3DNow_conv_rm_int<0x0D, "pi2fd">;
+defm PMULHRW : I3DNow_binop_rm_int<0xB7, "pmulhrw">;
+
+
+def FEMMS : I3DNow<0x0E, RawFrm, (outs), (ins), "femms",
+ [(int_x86_mmx_femms)]>;
+
+def PREFETCH : I3DNow<0x0D, MRM0m, (outs), (ins i8mem:$addr),
+ "prefetch\t$addr",
+ [(prefetch addr:$addr, (i32 0), imm, (i32 1))]>;
+
+def PREFETCHW : I<0x0D, MRM1m, (outs), (ins i8mem:$addr), "prefetchw\t$addr",
+ [(prefetch addr:$addr, (i32 1), (i32 3), (i32 1))]>, TB,
+ Requires<[HasPrefetchW]>;
+
+// "3DNowA" instructions
+defm PF2IW : I3DNow_conv_rm_int<0x1C, "pf2iw", "a">;
+defm PI2FW : I3DNow_conv_rm_int<0x0C, "pi2fw", "a">;
+defm PFNACC : I3DNow_binop_rm_int<0x8A, "pfnacc", "a">;
+defm PFPNACC : I3DNow_binop_rm_int<0x8E, "pfpnacc", "a">;
+defm PSWAPD : I3DNow_conv_rm_int<0xBB, "pswapd", "a">;
diff --git a/contrib/llvm/lib/Target/X86/X86InstrAVX512.td b/contrib/llvm/lib/Target/X86/X86InstrAVX512.td
new file mode 100644
index 0000000..d289408
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrAVX512.td
@@ -0,0 +1,4543 @@
+// Bitcasts between 512-bit vector types. Return the original type since
+// no instruction is needed for the conversion
+let Predicates = [HasAVX512] in {
+ def : Pat<(v8f64 (bitconvert (v8i64 VR512:$src))), (v8f64 VR512:$src)>;
+ def : Pat<(v8f64 (bitconvert (v16i32 VR512:$src))), (v8f64 VR512:$src)>;
+ def : Pat<(v8f64 (bitconvert (v32i16 VR512:$src))), (v8f64 VR512:$src)>;
+ def : Pat<(v8f64 (bitconvert (v64i8 VR512:$src))), (v8f64 VR512:$src)>;
+ def : Pat<(v8f64 (bitconvert (v16f32 VR512:$src))), (v8f64 VR512:$src)>;
+ def : Pat<(v16f32 (bitconvert (v8i64 VR512:$src))), (v16f32 VR512:$src)>;
+ def : Pat<(v16f32 (bitconvert (v16i32 VR512:$src))), (v16f32 VR512:$src)>;
+ def : Pat<(v16f32 (bitconvert (v32i16 VR512:$src))), (v16f32 VR512:$src)>;
+ def : Pat<(v16f32 (bitconvert (v64i8 VR512:$src))), (v16f32 VR512:$src)>;
+ def : Pat<(v16f32 (bitconvert (v8f64 VR512:$src))), (v16f32 VR512:$src)>;
+ def : Pat<(v8i64 (bitconvert (v16i32 VR512:$src))), (v8i64 VR512:$src)>;
+ def : Pat<(v8i64 (bitconvert (v32i16 VR512:$src))), (v8i64 VR512:$src)>;
+ def : Pat<(v8i64 (bitconvert (v64i8 VR512:$src))), (v8i64 VR512:$src)>;
+ def : Pat<(v8i64 (bitconvert (v8f64 VR512:$src))), (v8i64 VR512:$src)>;
+ def : Pat<(v8i64 (bitconvert (v16f32 VR512:$src))), (v8i64 VR512:$src)>;
+ def : Pat<(v16i32 (bitconvert (v8i64 VR512:$src))), (v16i32 VR512:$src)>;
+ def : Pat<(v16i32 (bitconvert (v32i16 VR512:$src))), (v16i32 VR512:$src)>;
+ def : Pat<(v16i32 (bitconvert (v64i8 VR512:$src))), (v16i32 VR512:$src)>;
+ def : Pat<(v16i32 (bitconvert (v8f64 VR512:$src))), (v16i32 VR512:$src)>;
+ def : Pat<(v32i16 (bitconvert (v8i64 VR512:$src))), (v32i16 VR512:$src)>;
+ def : Pat<(v32i16 (bitconvert (v16i32 VR512:$src))), (v32i16 VR512:$src)>;
+ def : Pat<(v32i16 (bitconvert (v64i8 VR512:$src))), (v32i16 VR512:$src)>;
+ def : Pat<(v32i16 (bitconvert (v8f64 VR512:$src))), (v32i16 VR512:$src)>;
+ def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>;
+ def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>;
+ def : Pat<(v64i8 (bitconvert (v8i64 VR512:$src))), (v64i8 VR512:$src)>;
+ def : Pat<(v64i8 (bitconvert (v16i32 VR512:$src))), (v64i8 VR512:$src)>;
+ def : Pat<(v64i8 (bitconvert (v32i16 VR512:$src))), (v64i8 VR512:$src)>;
+ def : Pat<(v64i8 (bitconvert (v8f64 VR512:$src))), (v64i8 VR512:$src)>;
+ def : Pat<(v64i8 (bitconvert (v16f32 VR512:$src))), (v64i8 VR512:$src)>;
+
+ def : Pat<(v2i64 (bitconvert (v4i32 VR128X:$src))), (v2i64 VR128X:$src)>;
+ def : Pat<(v2i64 (bitconvert (v8i16 VR128X:$src))), (v2i64 VR128X:$src)>;
+ def : Pat<(v2i64 (bitconvert (v16i8 VR128X:$src))), (v2i64 VR128X:$src)>;
+ def : Pat<(v2i64 (bitconvert (v2f64 VR128X:$src))), (v2i64 VR128X:$src)>;
+ def : Pat<(v2i64 (bitconvert (v4f32 VR128X:$src))), (v2i64 VR128X:$src)>;
+ def : Pat<(v4i32 (bitconvert (v2i64 VR128X:$src))), (v4i32 VR128X:$src)>;
+ def : Pat<(v4i32 (bitconvert (v8i16 VR128X:$src))), (v4i32 VR128X:$src)>;
+ def : Pat<(v4i32 (bitconvert (v16i8 VR128X:$src))), (v4i32 VR128X:$src)>;
+ def : Pat<(v4i32 (bitconvert (v2f64 VR128X:$src))), (v4i32 VR128X:$src)>;
+ def : Pat<(v4i32 (bitconvert (v4f32 VR128X:$src))), (v4i32 VR128X:$src)>;
+ def : Pat<(v8i16 (bitconvert (v2i64 VR128X:$src))), (v8i16 VR128X:$src)>;
+ def : Pat<(v8i16 (bitconvert (v4i32 VR128X:$src))), (v8i16 VR128X:$src)>;
+ def : Pat<(v8i16 (bitconvert (v16i8 VR128X:$src))), (v8i16 VR128X:$src)>;
+ def : Pat<(v8i16 (bitconvert (v2f64 VR128X:$src))), (v8i16 VR128X:$src)>;
+ def : Pat<(v8i16 (bitconvert (v4f32 VR128X:$src))), (v8i16 VR128X:$src)>;
+ def : Pat<(v16i8 (bitconvert (v2i64 VR128X:$src))), (v16i8 VR128X:$src)>;
+ def : Pat<(v16i8 (bitconvert (v4i32 VR128X:$src))), (v16i8 VR128X:$src)>;
+ def : Pat<(v16i8 (bitconvert (v8i16 VR128X:$src))), (v16i8 VR128X:$src)>;
+ def : Pat<(v16i8 (bitconvert (v2f64 VR128X:$src))), (v16i8 VR128X:$src)>;
+ def : Pat<(v16i8 (bitconvert (v4f32 VR128X:$src))), (v16i8 VR128X:$src)>;
+ def : Pat<(v4f32 (bitconvert (v2i64 VR128X:$src))), (v4f32 VR128X:$src)>;
+ def : Pat<(v4f32 (bitconvert (v4i32 VR128X:$src))), (v4f32 VR128X:$src)>;
+ def : Pat<(v4f32 (bitconvert (v8i16 VR128X:$src))), (v4f32 VR128X:$src)>;
+ def : Pat<(v4f32 (bitconvert (v16i8 VR128X:$src))), (v4f32 VR128X:$src)>;
+ def : Pat<(v4f32 (bitconvert (v2f64 VR128X:$src))), (v4f32 VR128X:$src)>;
+ def : Pat<(v2f64 (bitconvert (v2i64 VR128X:$src))), (v2f64 VR128X:$src)>;
+ def : Pat<(v2f64 (bitconvert (v4i32 VR128X:$src))), (v2f64 VR128X:$src)>;
+ def : Pat<(v2f64 (bitconvert (v8i16 VR128X:$src))), (v2f64 VR128X:$src)>;
+ def : Pat<(v2f64 (bitconvert (v16i8 VR128X:$src))), (v2f64 VR128X:$src)>;
+ def : Pat<(v2f64 (bitconvert (v4f32 VR128X:$src))), (v2f64 VR128X:$src)>;
+
+// Bitcasts between 256-bit vector types. Return the original type since
+// no instruction is needed for the conversion
+ def : Pat<(v4f64 (bitconvert (v8f32 VR256X:$src))), (v4f64 VR256X:$src)>;
+ def : Pat<(v4f64 (bitconvert (v8i32 VR256X:$src))), (v4f64 VR256X:$src)>;
+ def : Pat<(v4f64 (bitconvert (v4i64 VR256X:$src))), (v4f64 VR256X:$src)>;
+ def : Pat<(v4f64 (bitconvert (v16i16 VR256X:$src))), (v4f64 VR256X:$src)>;
+ def : Pat<(v4f64 (bitconvert (v32i8 VR256X:$src))), (v4f64 VR256X:$src)>;
+ def : Pat<(v8f32 (bitconvert (v8i32 VR256X:$src))), (v8f32 VR256X:$src)>;
+ def : Pat<(v8f32 (bitconvert (v4i64 VR256X:$src))), (v8f32 VR256X:$src)>;
+ def : Pat<(v8f32 (bitconvert (v4f64 VR256X:$src))), (v8f32 VR256X:$src)>;
+ def : Pat<(v8f32 (bitconvert (v32i8 VR256X:$src))), (v8f32 VR256X:$src)>;
+ def : Pat<(v8f32 (bitconvert (v16i16 VR256X:$src))), (v8f32 VR256X:$src)>;
+ def : Pat<(v4i64 (bitconvert (v8f32 VR256X:$src))), (v4i64 VR256X:$src)>;
+ def : Pat<(v4i64 (bitconvert (v8i32 VR256X:$src))), (v4i64 VR256X:$src)>;
+ def : Pat<(v4i64 (bitconvert (v4f64 VR256X:$src))), (v4i64 VR256X:$src)>;
+ def : Pat<(v4i64 (bitconvert (v32i8 VR256X:$src))), (v4i64 VR256X:$src)>;
+ def : Pat<(v4i64 (bitconvert (v16i16 VR256X:$src))), (v4i64 VR256X:$src)>;
+ def : Pat<(v32i8 (bitconvert (v4f64 VR256X:$src))), (v32i8 VR256X:$src)>;
+ def : Pat<(v32i8 (bitconvert (v4i64 VR256X:$src))), (v32i8 VR256X:$src)>;
+ def : Pat<(v32i8 (bitconvert (v8f32 VR256X:$src))), (v32i8 VR256X:$src)>;
+ def : Pat<(v32i8 (bitconvert (v8i32 VR256X:$src))), (v32i8 VR256X:$src)>;
+ def : Pat<(v32i8 (bitconvert (v16i16 VR256X:$src))), (v32i8 VR256X:$src)>;
+ def : Pat<(v8i32 (bitconvert (v32i8 VR256X:$src))), (v8i32 VR256X:$src)>;
+ def : Pat<(v8i32 (bitconvert (v16i16 VR256X:$src))), (v8i32 VR256X:$src)>;
+ def : Pat<(v8i32 (bitconvert (v8f32 VR256X:$src))), (v8i32 VR256X:$src)>;
+ def : Pat<(v8i32 (bitconvert (v4i64 VR256X:$src))), (v8i32 VR256X:$src)>;
+ def : Pat<(v8i32 (bitconvert (v4f64 VR256X:$src))), (v8i32 VR256X:$src)>;
+ def : Pat<(v16i16 (bitconvert (v8f32 VR256X:$src))), (v16i16 VR256X:$src)>;
+ def : Pat<(v16i16 (bitconvert (v8i32 VR256X:$src))), (v16i16 VR256X:$src)>;
+ def : Pat<(v16i16 (bitconvert (v4i64 VR256X:$src))), (v16i16 VR256X:$src)>;
+ def : Pat<(v16i16 (bitconvert (v4f64 VR256X:$src))), (v16i16 VR256X:$src)>;
+ def : Pat<(v16i16 (bitconvert (v32i8 VR256X:$src))), (v16i16 VR256X:$src)>;
+}
+
+//
+// AVX-512: VPXOR instruction writes zero to its upper part, it's safe build zeros.
+//
+
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isPseudo = 1, Predicates = [HasAVX512] in {
+def AVX512_512_SET0 : I<0, Pseudo, (outs VR512:$dst), (ins), "",
+ [(set VR512:$dst, (v16f32 immAllZerosV))]>;
+}
+
+let Predicates = [HasAVX512] in {
+def : Pat<(v8i64 immAllZerosV), (AVX512_512_SET0)>;
+def : Pat<(v16i32 immAllZerosV), (AVX512_512_SET0)>;
+def : Pat<(v8f64 immAllZerosV), (AVX512_512_SET0)>;
+}
+
+//===----------------------------------------------------------------------===//
+// AVX-512 - VECTOR INSERT
+//
+// -- 32x8 form --
+let hasSideEffects = 0, ExeDomain = SSEPackedSingle in {
+def VINSERTF32x4rr : AVX512AIi8<0x18, MRMSrcReg, (outs VR512:$dst),
+ (ins VR512:$src1, VR128X:$src2, i8imm:$src3),
+ "vinsertf32x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, EVEX_4V, EVEX_V512;
+let mayLoad = 1 in
+def VINSERTF32x4rm : AVX512AIi8<0x18, MRMSrcMem, (outs VR512:$dst),
+ (ins VR512:$src1, f128mem:$src2, i8imm:$src3),
+ "vinsertf32x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, EVEX_4V, EVEX_V512, EVEX_CD8<32, CD8VT4>;
+}
+
+// -- 64x4 fp form --
+let hasSideEffects = 0, ExeDomain = SSEPackedDouble in {
+def VINSERTF64x4rr : AVX512AIi8<0x1a, MRMSrcReg, (outs VR512:$dst),
+ (ins VR512:$src1, VR256X:$src2, i8imm:$src3),
+ "vinsertf64x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, EVEX_4V, EVEX_V512, VEX_W;
+let mayLoad = 1 in
+def VINSERTF64x4rm : AVX512AIi8<0x1a, MRMSrcMem, (outs VR512:$dst),
+ (ins VR512:$src1, i256mem:$src2, i8imm:$src3),
+ "vinsertf64x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, EVEX_4V, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT4>;
+}
+// -- 32x4 integer form --
+let hasSideEffects = 0 in {
+def VINSERTI32x4rr : AVX512AIi8<0x38, MRMSrcReg, (outs VR512:$dst),
+ (ins VR512:$src1, VR128X:$src2, i8imm:$src3),
+ "vinserti32x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, EVEX_4V, EVEX_V512;
+let mayLoad = 1 in
+def VINSERTI32x4rm : AVX512AIi8<0x38, MRMSrcMem, (outs VR512:$dst),
+ (ins VR512:$src1, i128mem:$src2, i8imm:$src3),
+ "vinserti32x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, EVEX_4V, EVEX_V512, EVEX_CD8<32, CD8VT4>;
+}
+
+let hasSideEffects = 0 in {
+// -- 64x4 form --
+def VINSERTI64x4rr : AVX512AIi8<0x3a, MRMSrcReg, (outs VR512:$dst),
+ (ins VR512:$src1, VR256X:$src2, i8imm:$src3),
+ "vinserti64x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, EVEX_4V, EVEX_V512, VEX_W;
+let mayLoad = 1 in
+def VINSERTI64x4rm : AVX512AIi8<0x3a, MRMSrcMem, (outs VR512:$dst),
+ (ins VR512:$src1, i256mem:$src2, i8imm:$src3),
+ "vinserti64x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, EVEX_4V, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT4>;
+}
+
+def : Pat<(vinsert128_insert:$ins (v16f32 VR512:$src1), (v4f32 VR128X:$src2),
+ (iPTR imm)), (VINSERTF32x4rr VR512:$src1, VR128X:$src2,
+ (INSERT_get_vinsert128_imm VR512:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v8f64 VR512:$src1), (v2f64 VR128X:$src2),
+ (iPTR imm)), (VINSERTF32x4rr VR512:$src1, VR128X:$src2,
+ (INSERT_get_vinsert128_imm VR512:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v8i64 VR512:$src1), (v2i64 VR128X:$src2),
+ (iPTR imm)), (VINSERTI32x4rr VR512:$src1, VR128X:$src2,
+ (INSERT_get_vinsert128_imm VR512:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v16i32 VR512:$src1), (v4i32 VR128X:$src2),
+ (iPTR imm)), (VINSERTI32x4rr VR512:$src1, VR128X:$src2,
+ (INSERT_get_vinsert128_imm VR512:$ins))>;
+
+def : Pat<(vinsert128_insert:$ins (v16f32 VR512:$src1), (loadv4f32 addr:$src2),
+ (iPTR imm)), (VINSERTF32x4rm VR512:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR512:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v16i32 VR512:$src1),
+ (bc_v4i32 (loadv2i64 addr:$src2)),
+ (iPTR imm)), (VINSERTI32x4rm VR512:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR512:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v8f64 VR512:$src1), (loadv2f64 addr:$src2),
+ (iPTR imm)), (VINSERTF32x4rm VR512:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR512:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v8i64 VR512:$src1), (loadv2i64 addr:$src2),
+ (iPTR imm)), (VINSERTI32x4rm VR512:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR512:$ins))>;
+
+def : Pat<(vinsert256_insert:$ins (v16f32 VR512:$src1), (v8f32 VR256X:$src2),
+ (iPTR imm)), (VINSERTF64x4rr VR512:$src1, VR256X:$src2,
+ (INSERT_get_vinsert256_imm VR512:$ins))>;
+def : Pat<(vinsert256_insert:$ins (v8f64 VR512:$src1), (v4f64 VR256X:$src2),
+ (iPTR imm)), (VINSERTF64x4rr VR512:$src1, VR256X:$src2,
+ (INSERT_get_vinsert256_imm VR512:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v8i64 VR512:$src1), (v4i64 VR256X:$src2),
+ (iPTR imm)), (VINSERTI64x4rr VR512:$src1, VR256X:$src2,
+ (INSERT_get_vinsert256_imm VR512:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v16i32 VR512:$src1), (v8i32 VR256X:$src2),
+ (iPTR imm)), (VINSERTI64x4rr VR512:$src1, VR256X:$src2,
+ (INSERT_get_vinsert256_imm VR512:$ins))>;
+
+def : Pat<(vinsert256_insert:$ins (v16f32 VR512:$src1), (loadv8f32 addr:$src2),
+ (iPTR imm)), (VINSERTF64x4rm VR512:$src1, addr:$src2,
+ (INSERT_get_vinsert256_imm VR512:$ins))>;
+def : Pat<(vinsert256_insert:$ins (v8f64 VR512:$src1), (loadv4f64 addr:$src2),
+ (iPTR imm)), (VINSERTF64x4rm VR512:$src1, addr:$src2,
+ (INSERT_get_vinsert256_imm VR512:$ins))>;
+def : Pat<(vinsert256_insert:$ins (v8i64 VR512:$src1), (loadv4i64 addr:$src2),
+ (iPTR imm)), (VINSERTI64x4rm VR512:$src1, addr:$src2,
+ (INSERT_get_vinsert256_imm VR512:$ins))>;
+def : Pat<(vinsert256_insert:$ins (v16i32 VR512:$src1),
+ (bc_v8i32 (loadv4i64 addr:$src2)),
+ (iPTR imm)), (VINSERTI64x4rm VR512:$src1, addr:$src2,
+ (INSERT_get_vinsert256_imm VR512:$ins))>;
+
+// vinsertps - insert f32 to XMM
+def VINSERTPSzrr : AVX512AIi8<0x21, MRMSrcReg, (outs VR128X:$dst),
+ (ins VR128X:$src1, VR128X:$src2, u32u8imm:$src3),
+ "vinsertps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR128X:$dst, (X86insertps VR128X:$src1, VR128X:$src2, imm:$src3))]>,
+ EVEX_4V;
+def VINSERTPSzrm: AVX512AIi8<0x21, MRMSrcMem, (outs VR128X:$dst),
+ (ins VR128X:$src1, f32mem:$src2, u32u8imm:$src3),
+ "vinsertps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR128X:$dst, (X86insertps VR128X:$src1,
+ (v4f32 (scalar_to_vector (loadf32 addr:$src2))),
+ imm:$src3))]>, EVEX_4V, EVEX_CD8<32, CD8VT1>;
+
+//===----------------------------------------------------------------------===//
+// AVX-512 VECTOR EXTRACT
+//---
+let hasSideEffects = 0, ExeDomain = SSEPackedSingle in {
+// -- 32x4 form --
+def VEXTRACTF32x4rr : AVX512AIi8<0x19, MRMDestReg, (outs VR128X:$dst),
+ (ins VR512:$src1, i8imm:$src2),
+ "vextractf32x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX, EVEX_V512;
+def VEXTRACTF32x4mr : AVX512AIi8<0x19, MRMDestMem, (outs),
+ (ins f128mem:$dst, VR512:$src1, i8imm:$src2),
+ "vextractf32x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX, EVEX_V512, EVEX_CD8<32, CD8VT4>;
+
+// -- 64x4 form --
+def VEXTRACTF64x4rr : AVX512AIi8<0x1b, MRMDestReg, (outs VR256X:$dst),
+ (ins VR512:$src1, i8imm:$src2),
+ "vextractf64x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX, EVEX_V512, VEX_W;
+let mayStore = 1 in
+def VEXTRACTF64x4mr : AVX512AIi8<0x1b, MRMDestMem, (outs),
+ (ins f256mem:$dst, VR512:$src1, i8imm:$src2),
+ "vextractf64x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT4>;
+}
+
+let hasSideEffects = 0 in {
+// -- 32x4 form --
+def VEXTRACTI32x4rr : AVX512AIi8<0x39, MRMDestReg, (outs VR128X:$dst),
+ (ins VR512:$src1, i8imm:$src2),
+ "vextracti32x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX, EVEX_V512;
+def VEXTRACTI32x4mr : AVX512AIi8<0x39, MRMDestMem, (outs),
+ (ins i128mem:$dst, VR512:$src1, i8imm:$src2),
+ "vextracti32x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX, EVEX_V512, EVEX_CD8<32, CD8VT4>;
+
+// -- 64x4 form --
+def VEXTRACTI64x4rr : AVX512AIi8<0x3b, MRMDestReg, (outs VR256X:$dst),
+ (ins VR512:$src1, i8imm:$src2),
+ "vextracti64x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX, EVEX_V512, VEX_W;
+let mayStore = 1 in
+def VEXTRACTI64x4mr : AVX512AIi8<0x3b, MRMDestMem, (outs),
+ (ins i256mem:$dst, VR512:$src1, i8imm:$src2),
+ "vextracti64x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT4>;
+}
+
+def : Pat<(vextract128_extract:$ext (v16f32 VR512:$src1), (iPTR imm)),
+ (v4f32 (VEXTRACTF32x4rr VR512:$src1,
+ (EXTRACT_get_vextract128_imm VR128X:$ext)))>;
+
+def : Pat<(vextract128_extract:$ext VR512:$src1, (iPTR imm)),
+ (v4i32 (VEXTRACTF32x4rr VR512:$src1,
+ (EXTRACT_get_vextract128_imm VR128X:$ext)))>;
+
+def : Pat<(vextract128_extract:$ext (v8f64 VR512:$src1), (iPTR imm)),
+ (v2f64 (VEXTRACTF32x4rr VR512:$src1,
+ (EXTRACT_get_vextract128_imm VR128X:$ext)))>;
+
+def : Pat<(vextract128_extract:$ext (v8i64 VR512:$src1), (iPTR imm)),
+ (v2i64 (VEXTRACTI32x4rr VR512:$src1,
+ (EXTRACT_get_vextract128_imm VR128X:$ext)))>;
+
+
+def : Pat<(vextract256_extract:$ext (v16f32 VR512:$src1), (iPTR imm)),
+ (v8f32 (VEXTRACTF64x4rr VR512:$src1,
+ (EXTRACT_get_vextract256_imm VR256X:$ext)))>;
+
+def : Pat<(vextract256_extract:$ext (v16i32 VR512:$src1), (iPTR imm)),
+ (v8i32 (VEXTRACTI64x4rr VR512:$src1,
+ (EXTRACT_get_vextract256_imm VR256X:$ext)))>;
+
+def : Pat<(vextract256_extract:$ext (v8f64 VR512:$src1), (iPTR imm)),
+ (v4f64 (VEXTRACTF64x4rr VR512:$src1,
+ (EXTRACT_get_vextract256_imm VR256X:$ext)))>;
+
+def : Pat<(vextract256_extract:$ext (v8i64 VR512:$src1), (iPTR imm)),
+ (v4i64 (VEXTRACTI64x4rr VR512:$src1,
+ (EXTRACT_get_vextract256_imm VR256X:$ext)))>;
+
+// A 256-bit subvector extract from the first 512-bit vector position
+// is a subregister copy that needs no instruction.
+def : Pat<(v8i32 (extract_subvector (v16i32 VR512:$src), (iPTR 0))),
+ (v8i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_ymm))>;
+def : Pat<(v8f32 (extract_subvector (v16f32 VR512:$src), (iPTR 0))),
+ (v8f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_ymm))>;
+def : Pat<(v4i64 (extract_subvector (v8i64 VR512:$src), (iPTR 0))),
+ (v4i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_ymm))>;
+def : Pat<(v4f64 (extract_subvector (v8f64 VR512:$src), (iPTR 0))),
+ (v4f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_ymm))>;
+
+// zmm -> xmm
+def : Pat<(v4i32 (extract_subvector (v16i32 VR512:$src), (iPTR 0))),
+ (v4i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_xmm))>;
+def : Pat<(v2i64 (extract_subvector (v8i64 VR512:$src), (iPTR 0))),
+ (v2i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_xmm))>;
+def : Pat<(v2f64 (extract_subvector (v8f64 VR512:$src), (iPTR 0))),
+ (v2f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_xmm))>;
+def : Pat<(v4f32 (extract_subvector (v16f32 VR512:$src), (iPTR 0))),
+ (v4f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_xmm))>;
+
+
+// A 128-bit subvector insert to the first 512-bit vector position
+// is a subregister copy that needs no instruction.
+def : Pat<(insert_subvector undef, (v2i64 VR128X:$src), (iPTR 0)),
+ (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)),
+ (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
+ sub_ymm)>;
+def : Pat<(insert_subvector undef, (v2f64 VR128X:$src), (iPTR 0)),
+ (INSERT_SUBREG (v8f64 (IMPLICIT_DEF)),
+ (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
+ sub_ymm)>;
+def : Pat<(insert_subvector undef, (v4i32 VR128X:$src), (iPTR 0)),
+ (INSERT_SUBREG (v16i32 (IMPLICIT_DEF)),
+ (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
+ sub_ymm)>;
+def : Pat<(insert_subvector undef, (v4f32 VR128X:$src), (iPTR 0)),
+ (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)),
+ (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
+ sub_ymm)>;
+
+def : Pat<(insert_subvector undef, (v4i64 VR256X:$src), (iPTR 0)),
+ (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm)>;
+def : Pat<(insert_subvector undef, (v4f64 VR256X:$src), (iPTR 0)),
+ (INSERT_SUBREG (v8f64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm)>;
+def : Pat<(insert_subvector undef, (v8i32 VR256X:$src), (iPTR 0)),
+ (INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR256X:$src, sub_ymm)>;
+def : Pat<(insert_subvector undef, (v8f32 VR256X:$src), (iPTR 0)),
+ (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR256X:$src, sub_ymm)>;
+
+// vextractps - extract 32 bits from XMM
+def VEXTRACTPSzrr : AVX512AIi8<0x17, MRMDestReg, (outs GR32:$dst),
+ (ins VR128X:$src1, u32u8imm:$src2),
+ "vextractps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32:$dst, (extractelt (bc_v4i32 (v4f32 VR128X:$src1)), imm:$src2))]>,
+ EVEX;
+
+def VEXTRACTPSzmr : AVX512AIi8<0x17, MRMDestMem, (outs),
+ (ins f32mem:$dst, VR128X:$src1, u32u8imm:$src2),
+ "vextractps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(store (extractelt (bc_v4i32 (v4f32 VR128X:$src1)), imm:$src2),
+ addr:$dst)]>, EVEX, EVEX_CD8<32, CD8VT1>;
+
+//===---------------------------------------------------------------------===//
+// AVX-512 BROADCAST
+//---
+multiclass avx512_fp_broadcast<bits<8> opc, string OpcodeStr,
+ RegisterClass DestRC,
+ RegisterClass SrcRC, X86MemOperand x86memop> {
+ def rr : AVX5128I<opc, MRMSrcReg, (outs DestRC:$dst), (ins SrcRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ []>, EVEX;
+ def rm : AVX5128I<opc, MRMSrcMem, (outs DestRC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),[]>, EVEX;
+}
+let ExeDomain = SSEPackedSingle in {
+ defm VBROADCASTSSZ : avx512_fp_broadcast<0x18, "vbroadcastss", VR512,
+ VR128X, f32mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VT1>;
+}
+
+let ExeDomain = SSEPackedDouble in {
+ defm VBROADCASTSDZ : avx512_fp_broadcast<0x19, "vbroadcastsd", VR512,
+ VR128X, f64mem>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+}
+
+def : Pat<(v16f32 (X86VBroadcast (loadf32 addr:$src))),
+ (VBROADCASTSSZrm addr:$src)>;
+def : Pat<(v8f64 (X86VBroadcast (loadf64 addr:$src))),
+ (VBROADCASTSDZrm addr:$src)>;
+
+def : Pat<(int_x86_avx512_vbroadcast_ss_512 addr:$src),
+ (VBROADCASTSSZrm addr:$src)>;
+def : Pat<(int_x86_avx512_vbroadcast_sd_512 addr:$src),
+ (VBROADCASTSDZrm addr:$src)>;
+
+multiclass avx512_int_broadcast_reg<bits<8> opc, string OpcodeStr,
+ RegisterClass SrcRC, RegisterClass KRC> {
+ def Zrr : AVX5128I<opc, MRMSrcReg, (outs VR512:$dst), (ins SrcRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ []>, EVEX, EVEX_V512;
+ def Zkrr : AVX5128I<opc, MRMSrcReg, (outs VR512:$dst),
+ (ins KRC:$mask, SrcRC:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
+ []>, EVEX, EVEX_V512, EVEX_KZ;
+}
+
+defm VPBROADCASTDr : avx512_int_broadcast_reg<0x7C, "vpbroadcastd", GR32, VK16WM>;
+defm VPBROADCASTQr : avx512_int_broadcast_reg<0x7C, "vpbroadcastq", GR64, VK8WM>,
+ VEX_W;
+
+def : Pat <(v16i32 (X86vzext VK16WM:$mask)),
+ (VPBROADCASTDrZkrr VK16WM:$mask, (i32 (MOV32ri 0x1)))>;
+
+def : Pat <(v8i64 (X86vzext VK8WM:$mask)),
+ (VPBROADCASTQrZkrr VK8WM:$mask, (i64 (MOV64ri 0x1)))>;
+
+def : Pat<(v16i32 (X86VBroadcast (i32 GR32:$src))),
+ (VPBROADCASTDrZrr GR32:$src)>;
+def : Pat<(v16i32 (X86VBroadcastm VK16WM:$mask, (i32 GR32:$src))),
+ (VPBROADCASTDrZkrr VK16WM:$mask, GR32:$src)>;
+def : Pat<(v8i64 (X86VBroadcast (i64 GR64:$src))),
+ (VPBROADCASTQrZrr GR64:$src)>;
+def : Pat<(v8i64 (X86VBroadcastm VK8WM:$mask, (i64 GR64:$src))),
+ (VPBROADCASTQrZkrr VK8WM:$mask, GR64:$src)>;
+
+def : Pat<(v16i32 (int_x86_avx512_pbroadcastd_i32_512 (i32 GR32:$src))),
+ (VPBROADCASTDrZrr GR32:$src)>;
+def : Pat<(v8i64 (int_x86_avx512_pbroadcastq_i64_512 (i64 GR64:$src))),
+ (VPBROADCASTQrZrr GR64:$src)>;
+
+def : Pat<(v16i32 (int_x86_avx512_mask_pbroadcast_d_gpr_512 (i32 GR32:$src),
+ (v16i32 immAllZerosV), (i16 GR16:$mask))),
+ (VPBROADCASTDrZkrr (COPY_TO_REGCLASS GR16:$mask, VK16WM), GR32:$src)>;
+def : Pat<(v8i64 (int_x86_avx512_mask_pbroadcast_q_gpr_512 (i64 GR64:$src),
+ (bc_v8i64 (v16i32 immAllZerosV)), (i8 GR8:$mask))),
+ (VPBROADCASTQrZkrr (COPY_TO_REGCLASS GR8:$mask, VK8WM), GR64:$src)>;
+
+multiclass avx512_int_broadcast_rm<bits<8> opc, string OpcodeStr,
+ X86MemOperand x86memop, PatFrag ld_frag,
+ RegisterClass DstRC, ValueType OpVT, ValueType SrcVT,
+ RegisterClass KRC> {
+ def rr : AVX5128I<opc, MRMSrcReg, (outs DstRC:$dst), (ins VR128X:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst,
+ (OpVT (X86VBroadcast (SrcVT VR128X:$src))))]>, EVEX;
+ def krr : AVX5128I<opc, MRMSrcReg, (outs DstRC:$dst), (ins KRC:$mask,
+ VR128X:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ [(set DstRC:$dst,
+ (OpVT (X86VBroadcastm KRC:$mask, (SrcVT VR128X:$src))))]>,
+ EVEX, EVEX_KZ;
+ let mayLoad = 1 in {
+ def rm : AVX5128I<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst,
+ (OpVT (X86VBroadcast (ld_frag addr:$src))))]>, EVEX;
+ def krm : AVX5128I<opc, MRMSrcMem, (outs DstRC:$dst), (ins KRC:$mask,
+ x86memop:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ [(set DstRC:$dst, (OpVT (X86VBroadcastm KRC:$mask,
+ (ld_frag addr:$src))))]>, EVEX, EVEX_KZ;
+ }
+}
+
+defm VPBROADCASTDZ : avx512_int_broadcast_rm<0x58, "vpbroadcastd", i32mem,
+ loadi32, VR512, v16i32, v4i32, VK16WM>,
+ EVEX_V512, EVEX_CD8<32, CD8VT1>;
+defm VPBROADCASTQZ : avx512_int_broadcast_rm<0x59, "vpbroadcastq", i64mem,
+ loadi64, VR512, v8i64, v2i64, VK8WM>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VT1>;
+
+multiclass avx512_int_subvec_broadcast_rm<bits<8> opc, string OpcodeStr,
+ X86MemOperand x86memop, PatFrag ld_frag,
+ RegisterClass KRC> {
+ let mayLoad = 1 in {
+ def rm : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ []>, EVEX;
+ def krm : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst), (ins KRC:$mask,
+ x86memop:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ []>, EVEX, EVEX_KZ;
+ }
+}
+
+defm VBROADCASTI32X4 : avx512_int_subvec_broadcast_rm<0x5a, "vbroadcasti32x4",
+ i128mem, loadv2i64, VK16WM>,
+ EVEX_V512, EVEX_CD8<32, CD8VT4>;
+defm VBROADCASTI64X4 : avx512_int_subvec_broadcast_rm<0x5b, "vbroadcasti64x4",
+ i256mem, loadv4i64, VK16WM>, VEX_W,
+ EVEX_V512, EVEX_CD8<64, CD8VT4>;
+
+def : Pat<(v16i32 (int_x86_avx512_pbroadcastd_512 (v4i32 VR128X:$src))),
+ (VPBROADCASTDZrr VR128X:$src)>;
+def : Pat<(v8i64 (int_x86_avx512_pbroadcastq_512 (v2i64 VR128X:$src))),
+ (VPBROADCASTQZrr VR128X:$src)>;
+
+def : Pat<(v16f32 (X86VBroadcast (v4f32 VR128X:$src))),
+ (VBROADCASTSSZrr VR128X:$src)>;
+def : Pat<(v8f64 (X86VBroadcast (v2f64 VR128X:$src))),
+ (VBROADCASTSDZrr VR128X:$src)>;
+
+def : Pat<(v16f32 (int_x86_avx512_vbroadcast_ss_ps_512 (v4f32 VR128X:$src))),
+ (VBROADCASTSSZrr VR128X:$src)>;
+def : Pat<(v8f64 (int_x86_avx512_vbroadcast_sd_pd_512 (v2f64 VR128X:$src))),
+ (VBROADCASTSDZrr VR128X:$src)>;
+
+// Provide fallback in case the load node that is used in the patterns above
+// is used by additional users, which prevents the pattern selection.
+def : Pat<(v16f32 (X86VBroadcast FR32X:$src)),
+ (VBROADCASTSSZrr (COPY_TO_REGCLASS FR32X:$src, VR128X))>;
+def : Pat<(v8f64 (X86VBroadcast FR64X:$src)),
+ (VBROADCASTSDZrr (COPY_TO_REGCLASS FR64X:$src, VR128X))>;
+
+
+let Predicates = [HasAVX512] in {
+def : Pat<(v8i32 (X86VBroadcastm (v8i1 VK8WM:$mask), (loadi32 addr:$src))),
+ (EXTRACT_SUBREG
+ (v16i32 (VPBROADCASTDZkrm (COPY_TO_REGCLASS VK8WM:$mask, VK16WM),
+ addr:$src)), sub_ymm)>;
+}
+//===----------------------------------------------------------------------===//
+// AVX-512 BROADCAST MASK TO VECTOR REGISTER
+//---
+
+multiclass avx512_mask_broadcast<bits<8> opc, string OpcodeStr,
+ RegisterClass DstRC, RegisterClass KRC,
+ ValueType OpVT, ValueType SrcVT> {
+def rr : AVX512XS8I<opc, MRMDestReg, (outs DstRC:$dst), (ins KRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ []>, EVEX;
+}
+
+let Predicates = [HasCDI] in {
+defm VPBROADCASTMW2D : avx512_mask_broadcast<0x3A, "vpbroadcastmw2d", VR512,
+ VK16, v16i32, v16i1>, EVEX_V512;
+defm VPBROADCASTMB2Q : avx512_mask_broadcast<0x2A, "vpbroadcastmb2q", VR512,
+ VK8, v8i64, v8i1>, EVEX_V512, VEX_W;
+}
+
+//===----------------------------------------------------------------------===//
+// AVX-512 - VPERM
+//
+// -- immediate form --
+multiclass avx512_perm_imm<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ SDNode OpNode, PatFrag mem_frag,
+ X86MemOperand x86memop, ValueType OpVT> {
+ def ri : AVX512AIi8<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1, (i8 imm:$src2))))]>,
+ EVEX;
+ def mi : AVX512AIi8<opc, MRMSrcMem, (outs RC:$dst),
+ (ins x86memop:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (OpVT (OpNode (mem_frag addr:$src1),
+ (i8 imm:$src2))))]>, EVEX;
+}
+
+defm VPERMQZ : avx512_perm_imm<0x00, "vpermq", VR512, X86VPermi, memopv8i64,
+ i512mem, v8i64>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+let ExeDomain = SSEPackedDouble in
+defm VPERMPDZ : avx512_perm_imm<0x01, "vpermpd", VR512, X86VPermi, memopv8f64,
+ f512mem, v8f64>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+// -- VPERM - register form --
+multiclass avx512_perm<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ PatFrag mem_frag, X86MemOperand x86memop, ValueType OpVT> {
+
+ def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (OpVT (X86VPermv RC:$src1, RC:$src2)))]>, EVEX_4V;
+
+ def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (OpVT (X86VPermv RC:$src1, (mem_frag addr:$src2))))]>,
+ EVEX_4V;
+}
+
+defm VPERMDZ : avx512_perm<0x36, "vpermd", VR512, memopv16i32, i512mem,
+ v16i32>, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPERMQZ : avx512_perm<0x36, "vpermq", VR512, memopv8i64, i512mem,
+ v8i64>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+let ExeDomain = SSEPackedSingle in
+defm VPERMPSZ : avx512_perm<0x16, "vpermps", VR512, memopv16f32, f512mem,
+ v16f32>, EVEX_V512, EVEX_CD8<32, CD8VF>;
+let ExeDomain = SSEPackedDouble in
+defm VPERMPDZ : avx512_perm<0x16, "vpermpd", VR512, memopv8f64, f512mem,
+ v8f64>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+// -- VPERM2I - 3 source operands form --
+multiclass avx512_perm_3src<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ PatFrag mem_frag, X86MemOperand x86memop,
+ SDNode OpNode, ValueType OpVT, RegisterClass KRC> {
+let Constraints = "$src1 = $dst" in {
+ def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>,
+ EVEX_4V;
+
+ def rrk : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, KRC:$mask, RC:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $dst {${mask}}|"
+ "$dst {${mask}}, $src2, $src3}"),
+ [(set RC:$dst, (OpVT (vselect KRC:$mask,
+ (OpNode RC:$src1, RC:$src2,
+ RC:$src3),
+ RC:$src1)))]>,
+ EVEX_4V, EVEX_K;
+
+ let AddedComplexity = 30 in // Prefer over VMOV*rrkz Pat<>
+ def rrkz : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, KRC:$mask, RC:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $dst {${mask}} {z} |",
+ "$dst {${mask}} {z}, $src2, $src3}"),
+ [(set RC:$dst, (OpVT (vselect KRC:$mask,
+ (OpNode RC:$src1, RC:$src2,
+ RC:$src3),
+ (OpVT (bitconvert
+ (v16i32 immAllZerosV))))))]>,
+ EVEX_4V, EVEX_KZ;
+
+ def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, x86memop:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1, RC:$src2,
+ (mem_frag addr:$src3))))]>, EVEX_4V;
+
+ def rmk : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, KRC:$mask, RC:$src2, x86memop:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $dst {${mask}}|"
+ "$dst {${mask}}, $src2, $src3}"),
+ [(set RC:$dst,
+ (OpVT (vselect KRC:$mask,
+ (OpNode RC:$src1, RC:$src2,
+ (mem_frag addr:$src3)),
+ RC:$src1)))]>,
+ EVEX_4V, EVEX_K;
+
+ let AddedComplexity = 10 in // Prefer over the rrkz variant
+ def rmkz : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, KRC:$mask, RC:$src2, x86memop:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $dst {${mask}} {z}|"
+ "$dst {${mask}} {z}, $src2, $src3}"),
+ [(set RC:$dst,
+ (OpVT (vselect KRC:$mask,
+ (OpNode RC:$src1, RC:$src2,
+ (mem_frag addr:$src3)),
+ (OpVT (bitconvert
+ (v16i32 immAllZerosV))))))]>,
+ EVEX_4V, EVEX_KZ;
+ }
+}
+defm VPERMI2D : avx512_perm_3src<0x76, "vpermi2d", VR512, memopv16i32,
+ i512mem, X86VPermiv3, v16i32, VK16WM>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPERMI2Q : avx512_perm_3src<0x76, "vpermi2q", VR512, memopv8i64,
+ i512mem, X86VPermiv3, v8i64, VK8WM>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VPERMI2PS : avx512_perm_3src<0x77, "vpermi2ps", VR512, memopv16f32,
+ i512mem, X86VPermiv3, v16f32, VK16WM>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPERMI2PD : avx512_perm_3src<0x77, "vpermi2pd", VR512, memopv8f64,
+ i512mem, X86VPermiv3, v8f64, VK8WM>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+multiclass avx512_perm_table_3src<bits<8> opc, string Suffix, RegisterClass RC,
+ PatFrag mem_frag, X86MemOperand x86memop,
+ SDNode OpNode, ValueType OpVT, RegisterClass KRC,
+ ValueType MaskVT, RegisterClass MRC> :
+ avx512_perm_3src<opc, "vpermt2"##Suffix, RC, mem_frag, x86memop, OpNode,
+ OpVT, KRC> {
+ def : Pat<(OpVT (!cast<Intrinsic>("int_x86_avx512_mask_vpermt_"##Suffix##"_512")
+ VR512:$idx, VR512:$src1, VR512:$src2, -1)),
+ (!cast<Instruction>(NAME#rr) VR512:$src1, VR512:$idx, VR512:$src2)>;
+
+ def : Pat<(OpVT (!cast<Intrinsic>("int_x86_avx512_mask_vpermt_"##Suffix##"_512")
+ VR512:$idx, VR512:$src1, VR512:$src2, MRC:$mask)),
+ (!cast<Instruction>(NAME#rrk) VR512:$src1,
+ (MaskVT (COPY_TO_REGCLASS MRC:$mask, KRC)), VR512:$idx, VR512:$src2)>;
+}
+
+defm VPERMT2D : avx512_perm_table_3src<0x7E, "d", VR512, memopv16i32, i512mem,
+ X86VPermv3, v16i32, VK16WM, v16i1, GR16>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPERMT2Q : avx512_perm_table_3src<0x7E, "q", VR512, memopv8i64, i512mem,
+ X86VPermv3, v8i64, VK8WM, v8i1, GR8>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VPERMT2PS : avx512_perm_table_3src<0x7F, "ps", VR512, memopv16f32, i512mem,
+ X86VPermv3, v16f32, VK16WM, v16i1, GR16>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPERMT2PD : avx512_perm_table_3src<0x7F, "pd", VR512, memopv8f64, i512mem,
+ X86VPermv3, v8f64, VK8WM, v8i1, GR8>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+//===----------------------------------------------------------------------===//
+// AVX-512 - BLEND using mask
+//
+multiclass avx512_blendmask<bits<8> opc, string OpcodeStr,
+ RegisterClass KRC, RegisterClass RC,
+ X86MemOperand x86memop, PatFrag mem_frag,
+ SDNode OpNode, ValueType vt> {
+ def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, ${dst} {${mask}}|${dst} {${mask}}, $src1, $src2}"),
+ [(set RC:$dst, (OpNode KRC:$mask, (vt RC:$src2),
+ (vt RC:$src1)))]>, EVEX_4V, EVEX_K;
+ let mayLoad = 1 in
+ def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, ${dst} {${mask}}|${dst} {${mask}}, $src1, $src2}"),
+ []>, EVEX_4V, EVEX_K;
+}
+
+let ExeDomain = SSEPackedSingle in
+defm VBLENDMPSZ : avx512_blendmask<0x65, "vblendmps",
+ VK16WM, VR512, f512mem,
+ memopv16f32, vselect, v16f32>,
+ EVEX_CD8<32, CD8VF>, EVEX_V512;
+let ExeDomain = SSEPackedDouble in
+defm VBLENDMPDZ : avx512_blendmask<0x65, "vblendmpd",
+ VK8WM, VR512, f512mem,
+ memopv8f64, vselect, v8f64>,
+ VEX_W, EVEX_CD8<64, CD8VF>, EVEX_V512;
+
+def : Pat<(v16f32 (int_x86_avx512_mask_blend_ps_512 (v16f32 VR512:$src1),
+ (v16f32 VR512:$src2), (i16 GR16:$mask))),
+ (VBLENDMPSZrr (COPY_TO_REGCLASS GR16:$mask, VK16WM),
+ VR512:$src1, VR512:$src2)>;
+
+def : Pat<(v8f64 (int_x86_avx512_mask_blend_pd_512 (v8f64 VR512:$src1),
+ (v8f64 VR512:$src2), (i8 GR8:$mask))),
+ (VBLENDMPDZrr (COPY_TO_REGCLASS GR8:$mask, VK8WM),
+ VR512:$src1, VR512:$src2)>;
+
+defm VPBLENDMDZ : avx512_blendmask<0x64, "vpblendmd",
+ VK16WM, VR512, f512mem,
+ memopv16i32, vselect, v16i32>,
+ EVEX_CD8<32, CD8VF>, EVEX_V512;
+
+defm VPBLENDMQZ : avx512_blendmask<0x64, "vpblendmq",
+ VK8WM, VR512, f512mem,
+ memopv8i64, vselect, v8i64>,
+ VEX_W, EVEX_CD8<64, CD8VF>, EVEX_V512;
+
+def : Pat<(v16i32 (int_x86_avx512_mask_blend_d_512 (v16i32 VR512:$src1),
+ (v16i32 VR512:$src2), (i16 GR16:$mask))),
+ (VPBLENDMDZrr (COPY_TO_REGCLASS GR16:$mask, VK16),
+ VR512:$src1, VR512:$src2)>;
+
+def : Pat<(v8i64 (int_x86_avx512_mask_blend_q_512 (v8i64 VR512:$src1),
+ (v8i64 VR512:$src2), (i8 GR8:$mask))),
+ (VPBLENDMQZrr (COPY_TO_REGCLASS GR8:$mask, VK8),
+ VR512:$src1, VR512:$src2)>;
+
+let Predicates = [HasAVX512] in {
+def : Pat<(v8f32 (vselect (v8i1 VK8WM:$mask), (v8f32 VR256X:$src1),
+ (v8f32 VR256X:$src2))),
+ (EXTRACT_SUBREG
+ (v16f32 (VBLENDMPSZrr (COPY_TO_REGCLASS VK8WM:$mask, VK16WM),
+ (v16f32 (SUBREG_TO_REG (i32 0), VR256X:$src2, sub_ymm)),
+ (v16f32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)))), sub_ymm)>;
+
+def : Pat<(v8i32 (vselect (v8i1 VK8WM:$mask), (v8i32 VR256X:$src1),
+ (v8i32 VR256X:$src2))),
+ (EXTRACT_SUBREG
+ (v16i32 (VPBLENDMDZrr (COPY_TO_REGCLASS VK8WM:$mask, VK16WM),
+ (v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src2, sub_ymm)),
+ (v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)))), sub_ymm)>;
+}
+//===----------------------------------------------------------------------===//
+// Compare Instructions
+//===----------------------------------------------------------------------===//
+
+// avx512_cmp_scalar - AVX512 CMPSS and CMPSD
+multiclass avx512_cmp_scalar<RegisterClass RC, X86MemOperand x86memop,
+ Operand CC, SDNode OpNode, ValueType VT,
+ PatFrag ld_frag, string asm, string asm_alt> {
+ def rr : AVX512Ii8<0xC2, MRMSrcReg,
+ (outs VK1:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
+ [(set VK1:$dst, (OpNode (VT RC:$src1), RC:$src2, imm:$cc))],
+ IIC_SSE_ALU_F32S_RR>, EVEX_4V;
+ def rm : AVX512Ii8<0xC2, MRMSrcMem,
+ (outs VK1:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
+ [(set VK1:$dst, (OpNode (VT RC:$src1),
+ (ld_frag addr:$src2), imm:$cc))], IIC_SSE_ALU_F32P_RM>, EVEX_4V;
+ let isAsmParserOnly = 1, hasSideEffects = 0 in {
+ def rri_alt : AVX512Ii8<0xC2, MRMSrcReg,
+ (outs VK1:$dst), (ins RC:$src1, RC:$src2, i8imm:$cc),
+ asm_alt, [], IIC_SSE_ALU_F32S_RR>, EVEX_4V;
+ def rmi_alt : AVX512Ii8<0xC2, MRMSrcMem,
+ (outs VK1:$dst), (ins RC:$src1, x86memop:$src2, i8imm:$cc),
+ asm_alt, [], IIC_SSE_ALU_F32P_RM>, EVEX_4V;
+ }
+}
+
+let Predicates = [HasAVX512] in {
+defm VCMPSSZ : avx512_cmp_scalar<FR32X, f32mem, AVXCC, X86cmpms, f32, loadf32,
+ "vcmp${cc}ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "vcmpss\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}">,
+ XS;
+defm VCMPSDZ : avx512_cmp_scalar<FR64X, f64mem, AVXCC, X86cmpms, f64, loadf64,
+ "vcmp${cc}sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "vcmpsd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}">,
+ XD, VEX_W;
+}
+
+multiclass avx512_icmp_packed<bits<8> opc, string OpcodeStr, RegisterClass KRC,
+ RegisterClass RC, X86MemOperand x86memop, PatFrag memop_frag,
+ SDNode OpNode, ValueType vt> {
+ def rr : AVX512BI<opc, MRMSrcReg,
+ (outs KRC:$dst), (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set KRC:$dst, (OpNode (vt RC:$src1), (vt RC:$src2)))],
+ IIC_SSE_ALU_F32P_RR>, EVEX_4V;
+ def rm : AVX512BI<opc, MRMSrcMem,
+ (outs KRC:$dst), (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set KRC:$dst, (OpNode (vt RC:$src1), (memop_frag addr:$src2)))],
+ IIC_SSE_ALU_F32P_RM>, EVEX_4V;
+}
+
+defm VPCMPEQDZ : avx512_icmp_packed<0x76, "vpcmpeqd", VK16, VR512, i512mem,
+ memopv16i32, X86pcmpeqm, v16i32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VPCMPEQQZ : avx512_icmp_packed<0x29, "vpcmpeqq", VK8, VR512, i512mem,
+ memopv8i64, X86pcmpeqm, v8i64>, T8PD, EVEX_V512,
+ VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VPCMPGTDZ : avx512_icmp_packed<0x66, "vpcmpgtd", VK16, VR512, i512mem,
+ memopv16i32, X86pcmpgtm, v16i32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VPCMPGTQZ : avx512_icmp_packed<0x37, "vpcmpgtq", VK8, VR512, i512mem,
+ memopv8i64, X86pcmpgtm, v8i64>, T8PD, EVEX_V512,
+ VEX_W, EVEX_CD8<64, CD8VF>;
+
+def : Pat<(v8i1 (X86pcmpgtm (v8i32 VR256X:$src1), (v8i32 VR256X:$src2))),
+ (COPY_TO_REGCLASS (VPCMPGTDZrr
+ (v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)),
+ (v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src2, sub_ymm))), VK8)>;
+
+def : Pat<(v8i1 (X86pcmpeqm (v8i32 VR256X:$src1), (v8i32 VR256X:$src2))),
+ (COPY_TO_REGCLASS (VPCMPEQDZrr
+ (v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)),
+ (v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src2, sub_ymm))), VK8)>;
+
+multiclass avx512_icmp_cc<bits<8> opc, RegisterClass WMRC, RegisterClass KRC,
+ RegisterClass RC, X86MemOperand x86memop, PatFrag memop_frag,
+ SDNode OpNode, ValueType vt, Operand CC, string Suffix> {
+ def rri : AVX512AIi8<opc, MRMSrcReg,
+ (outs KRC:$dst), (ins RC:$src1, RC:$src2, CC:$cc),
+ !strconcat("vpcmp${cc}", Suffix,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set KRC:$dst, (OpNode (vt RC:$src1), (vt RC:$src2), imm:$cc))],
+ IIC_SSE_ALU_F32P_RR>, EVEX_4V;
+ def rmi : AVX512AIi8<opc, MRMSrcMem,
+ (outs KRC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc),
+ !strconcat("vpcmp${cc}", Suffix,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set KRC:$dst, (OpNode (vt RC:$src1), (memop_frag addr:$src2),
+ imm:$cc))], IIC_SSE_ALU_F32P_RM>, EVEX_4V;
+ // Accept explicit immediate argument form instead of comparison code.
+ let isAsmParserOnly = 1, hasSideEffects = 0 in {
+ def rri_alt : AVX512AIi8<opc, MRMSrcReg,
+ (outs KRC:$dst), (ins RC:$src1, RC:$src2, i8imm:$cc),
+ !strconcat("vpcmp", Suffix,
+ "\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}"),
+ [], IIC_SSE_ALU_F32P_RR>, EVEX_4V;
+ def rrik_alt : AVX512AIi8<opc, MRMSrcReg,
+ (outs KRC:$dst), (ins WMRC:$mask, RC:$src1, RC:$src2, i8imm:$cc),
+ !strconcat("vpcmp", Suffix,
+ "\t{$cc, $src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2, $cc}"),
+ [], IIC_SSE_ALU_F32P_RR>, EVEX_4V, EVEX_K;
+ def rmi_alt : AVX512AIi8<opc, MRMSrcMem,
+ (outs KRC:$dst), (ins RC:$src1, x86memop:$src2, i8imm:$cc),
+ !strconcat("vpcmp", Suffix,
+ "\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}"),
+ [], IIC_SSE_ALU_F32P_RM>, EVEX_4V;
+ def rmik_alt : AVX512AIi8<opc, MRMSrcMem,
+ (outs KRC:$dst), (ins WMRC:$mask, RC:$src1, x86memop:$src2, i8imm:$cc),
+ !strconcat("vpcmp", Suffix,
+ "\t{$cc, $src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2, $cc}"),
+ [], IIC_SSE_ALU_F32P_RM>, EVEX_4V, EVEX_K;
+ }
+}
+
+defm VPCMPDZ : avx512_icmp_cc<0x1F, VK16WM, VK16, VR512, i512mem, memopv16i32,
+ X86cmpm, v16i32, AVXCC, "d">,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPCMPUDZ : avx512_icmp_cc<0x1E, VK16WM, VK16, VR512, i512mem, memopv16i32,
+ X86cmpmu, v16i32, AVXCC, "ud">,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+
+defm VPCMPQZ : avx512_icmp_cc<0x1F, VK8WM, VK8, VR512, i512mem, memopv8i64,
+ X86cmpm, v8i64, AVXCC, "q">,
+ VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+defm VPCMPUQZ : avx512_icmp_cc<0x1E, VK8WM, VK8, VR512, i512mem, memopv8i64,
+ X86cmpmu, v8i64, AVXCC, "uq">,
+ VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+
+// avx512_cmp_packed - compare packed instructions
+multiclass avx512_cmp_packed<RegisterClass KRC, RegisterClass RC,
+ X86MemOperand x86memop, ValueType vt,
+ string suffix, Domain d> {
+ def rri : AVX512PIi8<0xC2, MRMSrcReg,
+ (outs KRC:$dst), (ins RC:$src1, RC:$src2, AVXCC:$cc),
+ !strconcat("vcmp${cc}", suffix,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set KRC:$dst, (X86cmpm (vt RC:$src1), (vt RC:$src2), imm:$cc))], d>;
+ def rrib: AVX512PIi8<0xC2, MRMSrcReg,
+ (outs KRC:$dst), (ins RC:$src1, RC:$src2, AVXCC:$cc),
+ !strconcat("vcmp${cc}", suffix,
+ " \t{{sae}, $src2, $src1, $dst|$dst, $src1, $src2, {sae}}"),
+ [], d>, EVEX_B;
+ def rmi : AVX512PIi8<0xC2, MRMSrcMem,
+ (outs KRC:$dst), (ins RC:$src1, x86memop:$src2, AVXCC:$cc),
+ !strconcat("vcmp${cc}", suffix,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2, $cc}"),
+ [(set KRC:$dst,
+ (X86cmpm (vt RC:$src1), (memop addr:$src2), imm:$cc))], d>;
+
+ // Accept explicit immediate argument form instead of comparison code.
+ let isAsmParserOnly = 1, hasSideEffects = 0 in {
+ def rri_alt : AVX512PIi8<0xC2, MRMSrcReg,
+ (outs KRC:$dst), (ins RC:$src1, RC:$src2, i8imm:$cc),
+ !strconcat("vcmp", suffix,
+ " \t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}"), [], d>;
+ def rmi_alt : AVX512PIi8<0xC2, MRMSrcMem,
+ (outs KRC:$dst), (ins RC:$src1, x86memop:$src2, i8imm:$cc),
+ !strconcat("vcmp", suffix,
+ " \t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}"), [], d>;
+ }
+}
+
+defm VCMPPSZ : avx512_cmp_packed<VK16, VR512, f512mem, v16f32,
+ "ps", SSEPackedSingle>, PS, EVEX_4V, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VCMPPDZ : avx512_cmp_packed<VK8, VR512, f512mem, v8f64,
+ "pd", SSEPackedDouble>, PD, EVEX_4V, VEX_W, EVEX_V512,
+ EVEX_CD8<64, CD8VF>;
+
+def : Pat<(v8i1 (X86cmpm (v8f32 VR256X:$src1), (v8f32 VR256X:$src2), imm:$cc)),
+ (COPY_TO_REGCLASS (VCMPPSZrri
+ (v16f32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)),
+ (v16f32 (SUBREG_TO_REG (i32 0), VR256X:$src2, sub_ymm)),
+ imm:$cc), VK8)>;
+def : Pat<(v8i1 (X86cmpm (v8i32 VR256X:$src1), (v8i32 VR256X:$src2), imm:$cc)),
+ (COPY_TO_REGCLASS (VPCMPDZrri
+ (v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)),
+ (v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src2, sub_ymm)),
+ imm:$cc), VK8)>;
+def : Pat<(v8i1 (X86cmpmu (v8i32 VR256X:$src1), (v8i32 VR256X:$src2), imm:$cc)),
+ (COPY_TO_REGCLASS (VPCMPUDZrri
+ (v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)),
+ (v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src2, sub_ymm)),
+ imm:$cc), VK8)>;
+
+def : Pat<(i16 (int_x86_avx512_mask_cmp_ps_512 (v16f32 VR512:$src1),
+ (v16f32 VR512:$src2), imm:$cc, (i16 -1),
+ FROUND_NO_EXC)),
+ (COPY_TO_REGCLASS (VCMPPSZrrib VR512:$src1, VR512:$src2,
+ (I8Imm imm:$cc)), GR16)>;
+
+def : Pat<(i8 (int_x86_avx512_mask_cmp_pd_512 (v8f64 VR512:$src1),
+ (v8f64 VR512:$src2), imm:$cc, (i8 -1),
+ FROUND_NO_EXC)),
+ (COPY_TO_REGCLASS (VCMPPDZrrib VR512:$src1, VR512:$src2,
+ (I8Imm imm:$cc)), GR8)>;
+
+def : Pat<(i16 (int_x86_avx512_mask_cmp_ps_512 (v16f32 VR512:$src1),
+ (v16f32 VR512:$src2), imm:$cc, (i16 -1),
+ FROUND_CURRENT)),
+ (COPY_TO_REGCLASS (VCMPPSZrri VR512:$src1, VR512:$src2,
+ (I8Imm imm:$cc)), GR16)>;
+
+def : Pat<(i8 (int_x86_avx512_mask_cmp_pd_512 (v8f64 VR512:$src1),
+ (v8f64 VR512:$src2), imm:$cc, (i8 -1),
+ FROUND_CURRENT)),
+ (COPY_TO_REGCLASS (VCMPPDZrri VR512:$src1, VR512:$src2,
+ (I8Imm imm:$cc)), GR8)>;
+
+// Mask register copy, including
+// - copy between mask registers
+// - load/store mask registers
+// - copy from GPR to mask register and vice versa
+//
+multiclass avx512_mask_mov<bits<8> opc_kk, bits<8> opc_km, bits<8> opc_mk,
+ string OpcodeStr, RegisterClass KRC,
+ ValueType vt, X86MemOperand x86memop> {
+ let hasSideEffects = 0 in {
+ def kk : I<opc_kk, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"), []>;
+ let mayLoad = 1 in
+ def km : I<opc_km, MRMSrcMem, (outs KRC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ [(set KRC:$dst, (vt (load addr:$src)))]>;
+ let mayStore = 1 in
+ def mk : I<opc_mk, MRMDestMem, (outs), (ins x86memop:$dst, KRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"), []>;
+ }
+}
+
+multiclass avx512_mask_mov_gpr<bits<8> opc_kr, bits<8> opc_rk,
+ string OpcodeStr,
+ RegisterClass KRC, RegisterClass GRC> {
+ let hasSideEffects = 0 in {
+ def kr : I<opc_kr, MRMSrcReg, (outs KRC:$dst), (ins GRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"), []>;
+ def rk : I<opc_rk, MRMSrcReg, (outs GRC:$dst), (ins KRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"), []>;
+ }
+}
+
+let Predicates = [HasAVX512] in {
+ defm KMOVW : avx512_mask_mov<0x90, 0x90, 0x91, "kmovw", VK16, v16i1, i16mem>,
+ VEX, PS;
+ defm KMOVW : avx512_mask_mov_gpr<0x92, 0x93, "kmovw", VK16, GR32>,
+ VEX, PS;
+}
+
+let Predicates = [HasAVX512] in {
+ // GR16 from/to 16-bit mask
+ def : Pat<(v16i1 (bitconvert (i16 GR16:$src))),
+ (KMOVWkr (SUBREG_TO_REG (i32 0), GR16:$src, sub_16bit))>;
+ def : Pat<(i16 (bitconvert (v16i1 VK16:$src))),
+ (EXTRACT_SUBREG (KMOVWrk VK16:$src), sub_16bit)>;
+
+ // Store kreg in memory
+ def : Pat<(store (v16i1 VK16:$src), addr:$dst),
+ (KMOVWmk addr:$dst, VK16:$src)>;
+
+ def : Pat<(store VK8:$src, addr:$dst),
+ (KMOVWmk addr:$dst, (COPY_TO_REGCLASS VK8:$src, VK16))>;
+
+ def : Pat<(i1 (load addr:$src)),
+ (COPY_TO_REGCLASS (KMOVWkm addr:$src), VK1)>;
+
+ def : Pat<(v8i1 (load addr:$src)),
+ (COPY_TO_REGCLASS (KMOVWkm addr:$src), VK8)>;
+
+ def : Pat<(i1 (trunc (i32 GR32:$src))),
+ (COPY_TO_REGCLASS (KMOVWkr (AND32ri $src, (i32 1))), VK1)>;
+
+ def : Pat<(i1 (trunc (i8 GR8:$src))),
+ (COPY_TO_REGCLASS
+ (KMOVWkr (AND32ri (SUBREG_TO_REG (i32 0), GR8:$src, sub_8bit), (i32 1))),
+ VK1)>;
+ def : Pat<(i1 (trunc (i16 GR16:$src))),
+ (COPY_TO_REGCLASS
+ (KMOVWkr (AND32ri (SUBREG_TO_REG (i32 0), $src, sub_16bit), (i32 1))),
+ VK1)>;
+
+ def : Pat<(i32 (zext VK1:$src)),
+ (AND32ri (KMOVWrk (COPY_TO_REGCLASS VK1:$src, VK16)), (i32 1))>;
+ def : Pat<(i8 (zext VK1:$src)),
+ (EXTRACT_SUBREG
+ (AND32ri (KMOVWrk
+ (COPY_TO_REGCLASS VK1:$src, VK16)), (i32 1)), sub_8bit)>;
+ def : Pat<(i64 (zext VK1:$src)),
+ (AND64ri8 (SUBREG_TO_REG (i64 0),
+ (KMOVWrk (COPY_TO_REGCLASS VK1:$src, VK16)), sub_32bit), (i64 1))>;
+ def : Pat<(i16 (zext VK1:$src)),
+ (EXTRACT_SUBREG
+ (AND32ri (KMOVWrk (COPY_TO_REGCLASS VK1:$src, VK16)), (i32 1)),
+ sub_16bit)>;
+ def : Pat<(v16i1 (scalar_to_vector VK1:$src)),
+ (COPY_TO_REGCLASS VK1:$src, VK16)>;
+ def : Pat<(v8i1 (scalar_to_vector VK1:$src)),
+ (COPY_TO_REGCLASS VK1:$src, VK8)>;
+}
+// With AVX-512 only, 8-bit mask is promoted to 16-bit mask.
+let Predicates = [HasAVX512] in {
+ // GR from/to 8-bit mask without native support
+ def : Pat<(v8i1 (bitconvert (i8 GR8:$src))),
+ (COPY_TO_REGCLASS
+ (KMOVWkr (SUBREG_TO_REG (i32 0), GR8:$src, sub_8bit)),
+ VK8)>;
+ def : Pat<(i8 (bitconvert (v8i1 VK8:$src))),
+ (EXTRACT_SUBREG
+ (KMOVWrk (COPY_TO_REGCLASS VK8:$src, VK16)),
+ sub_8bit)>;
+
+ def : Pat<(i1 (X86Vextract VK16:$src, (iPTR 0))),
+ (COPY_TO_REGCLASS VK16:$src, VK1)>;
+ def : Pat<(i1 (X86Vextract VK8:$src, (iPTR 0))),
+ (COPY_TO_REGCLASS VK8:$src, VK1)>;
+
+}
+
+// Mask unary operation
+// - KNOT
+multiclass avx512_mask_unop<bits<8> opc, string OpcodeStr,
+ RegisterClass KRC, SDPatternOperator OpNode> {
+ let Predicates = [HasAVX512] in
+ def rr : I<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ [(set KRC:$dst, (OpNode KRC:$src))]>;
+}
+
+multiclass avx512_mask_unop_w<bits<8> opc, string OpcodeStr,
+ SDPatternOperator OpNode> {
+ defm W : avx512_mask_unop<opc, !strconcat(OpcodeStr, "w"), VK16, OpNode>,
+ VEX, PS;
+}
+
+defm KNOT : avx512_mask_unop_w<0x44, "knot", not>;
+
+multiclass avx512_mask_unop_int<string IntName, string InstName> {
+ let Predicates = [HasAVX512] in
+ def : Pat<(!cast<Intrinsic>("int_x86_avx512_"##IntName##"_w")
+ (i16 GR16:$src)),
+ (COPY_TO_REGCLASS (!cast<Instruction>(InstName##"Wrr")
+ (v16i1 (COPY_TO_REGCLASS GR16:$src, VK16))), GR16)>;
+}
+defm : avx512_mask_unop_int<"knot", "KNOT">;
+
+def : Pat<(xor VK16:$src1, (v16i1 immAllOnesV)), (KNOTWrr VK16:$src1)>;
+def : Pat<(xor VK8:$src1, (v8i1 immAllOnesV)),
+ (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK8:$src1, VK16)), VK8)>;
+
+// With AVX-512, 8-bit mask is promoted to 16-bit mask.
+def : Pat<(not VK8:$src),
+ (COPY_TO_REGCLASS
+ (KNOTWrr (COPY_TO_REGCLASS VK8:$src, VK16)), VK8)>;
+
+// Mask binary operation
+// - KAND, KANDN, KOR, KXNOR, KXOR
+multiclass avx512_mask_binop<bits<8> opc, string OpcodeStr,
+ RegisterClass KRC, SDPatternOperator OpNode> {
+ let Predicates = [HasAVX512] in
+ def rr : I<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src1, KRC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set KRC:$dst, (OpNode KRC:$src1, KRC:$src2))]>;
+}
+
+multiclass avx512_mask_binop_w<bits<8> opc, string OpcodeStr,
+ SDPatternOperator OpNode> {
+ defm W : avx512_mask_binop<opc, !strconcat(OpcodeStr, "w"), VK16, OpNode>,
+ VEX_4V, VEX_L, PS;
+}
+
+def andn : PatFrag<(ops node:$i0, node:$i1), (and (not node:$i0), node:$i1)>;
+def xnor : PatFrag<(ops node:$i0, node:$i1), (not (xor node:$i0, node:$i1))>;
+
+let isCommutable = 1 in {
+ defm KAND : avx512_mask_binop_w<0x41, "kand", and>;
+ let isCommutable = 0 in
+ defm KANDN : avx512_mask_binop_w<0x42, "kandn", andn>;
+ defm KOR : avx512_mask_binop_w<0x45, "kor", or>;
+ defm KXNOR : avx512_mask_binop_w<0x46, "kxnor", xnor>;
+ defm KXOR : avx512_mask_binop_w<0x47, "kxor", xor>;
+}
+
+def : Pat<(xor VK1:$src1, VK1:$src2),
+ (COPY_TO_REGCLASS (KXORWrr (COPY_TO_REGCLASS VK1:$src1, VK16),
+ (COPY_TO_REGCLASS VK1:$src2, VK16)), VK1)>;
+
+def : Pat<(or VK1:$src1, VK1:$src2),
+ (COPY_TO_REGCLASS (KORWrr (COPY_TO_REGCLASS VK1:$src1, VK16),
+ (COPY_TO_REGCLASS VK1:$src2, VK16)), VK1)>;
+
+def : Pat<(and VK1:$src1, VK1:$src2),
+ (COPY_TO_REGCLASS (KANDWrr (COPY_TO_REGCLASS VK1:$src1, VK16),
+ (COPY_TO_REGCLASS VK1:$src2, VK16)), VK1)>;
+
+multiclass avx512_mask_binop_int<string IntName, string InstName> {
+ let Predicates = [HasAVX512] in
+ def : Pat<(!cast<Intrinsic>("int_x86_avx512_"##IntName##"_w")
+ (i16 GR16:$src1), (i16 GR16:$src2)),
+ (COPY_TO_REGCLASS (!cast<Instruction>(InstName##"Wrr")
+ (v16i1 (COPY_TO_REGCLASS GR16:$src1, VK16)),
+ (v16i1 (COPY_TO_REGCLASS GR16:$src2, VK16))), GR16)>;
+}
+
+defm : avx512_mask_binop_int<"kand", "KAND">;
+defm : avx512_mask_binop_int<"kandn", "KANDN">;
+defm : avx512_mask_binop_int<"kor", "KOR">;
+defm : avx512_mask_binop_int<"kxnor", "KXNOR">;
+defm : avx512_mask_binop_int<"kxor", "KXOR">;
+
+// With AVX-512, 8-bit mask is promoted to 16-bit mask.
+multiclass avx512_binop_pat<SDPatternOperator OpNode, Instruction Inst> {
+ let Predicates = [HasAVX512] in
+ def : Pat<(OpNode VK8:$src1, VK8:$src2),
+ (COPY_TO_REGCLASS
+ (Inst (COPY_TO_REGCLASS VK8:$src1, VK16),
+ (COPY_TO_REGCLASS VK8:$src2, VK16)), VK8)>;
+}
+
+defm : avx512_binop_pat<and, KANDWrr>;
+defm : avx512_binop_pat<andn, KANDNWrr>;
+defm : avx512_binop_pat<or, KORWrr>;
+defm : avx512_binop_pat<xnor, KXNORWrr>;
+defm : avx512_binop_pat<xor, KXORWrr>;
+
+// Mask unpacking
+multiclass avx512_mask_unpck<bits<8> opc, string OpcodeStr,
+ RegisterClass KRC> {
+ let Predicates = [HasAVX512] in
+ def rr : I<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src1, KRC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
+}
+
+multiclass avx512_mask_unpck_bw<bits<8> opc, string OpcodeStr> {
+ defm BW : avx512_mask_unpck<opc, !strconcat(OpcodeStr, "bw"), VK16>,
+ VEX_4V, VEX_L, PD;
+}
+
+defm KUNPCK : avx512_mask_unpck_bw<0x4b, "kunpck">;
+def : Pat<(v16i1 (concat_vectors (v8i1 VK8:$src1), (v8i1 VK8:$src2))),
+ (KUNPCKBWrr (COPY_TO_REGCLASS VK8:$src2, VK16),
+ (COPY_TO_REGCLASS VK8:$src1, VK16))>;
+
+
+multiclass avx512_mask_unpck_int<string IntName, string InstName> {
+ let Predicates = [HasAVX512] in
+ def : Pat<(!cast<Intrinsic>("int_x86_avx512_"##IntName##"_bw")
+ (i16 GR16:$src1), (i16 GR16:$src2)),
+ (COPY_TO_REGCLASS (!cast<Instruction>(InstName##"BWrr")
+ (v16i1 (COPY_TO_REGCLASS GR16:$src1, VK16)),
+ (v16i1 (COPY_TO_REGCLASS GR16:$src2, VK16))), GR16)>;
+}
+defm : avx512_mask_unpck_int<"kunpck", "KUNPCK">;
+
+// Mask bit testing
+multiclass avx512_mask_testop<bits<8> opc, string OpcodeStr, RegisterClass KRC,
+ SDNode OpNode> {
+ let Predicates = [HasAVX512], Defs = [EFLAGS] in
+ def rr : I<opc, MRMSrcReg, (outs), (ins KRC:$src1, KRC:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1|$src1, $src2}"),
+ [(set EFLAGS, (OpNode KRC:$src1, KRC:$src2))]>;
+}
+
+multiclass avx512_mask_testop_w<bits<8> opc, string OpcodeStr, SDNode OpNode> {
+ defm W : avx512_mask_testop<opc, !strconcat(OpcodeStr, "w"), VK16, OpNode>,
+ VEX, PS;
+}
+
+defm KORTEST : avx512_mask_testop_w<0x98, "kortest", X86kortest>;
+
+def : Pat<(X86cmp VK1:$src1, (i1 0)),
+ (KORTESTWrr (COPY_TO_REGCLASS VK1:$src1, VK16),
+ (COPY_TO_REGCLASS VK1:$src1, VK16))>;
+
+// Mask shift
+multiclass avx512_mask_shiftop<bits<8> opc, string OpcodeStr, RegisterClass KRC,
+ SDNode OpNode> {
+ let Predicates = [HasAVX512] in
+ def ri : Ii8<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src, i8imm:$imm),
+ !strconcat(OpcodeStr,
+ " \t{$imm, $src, $dst|$dst, $src, $imm}"),
+ [(set KRC:$dst, (OpNode KRC:$src, (i8 imm:$imm)))]>;
+}
+
+multiclass avx512_mask_shiftop_w<bits<8> opc1, bits<8> opc2, string OpcodeStr,
+ SDNode OpNode> {
+ defm W : avx512_mask_shiftop<opc1, !strconcat(OpcodeStr, "w"), VK16, OpNode>,
+ VEX, TAPD, VEX_W;
+}
+
+defm KSHIFTL : avx512_mask_shiftop_w<0x32, 0x33, "kshiftl", X86vshli>;
+defm KSHIFTR : avx512_mask_shiftop_w<0x30, 0x31, "kshiftr", X86vsrli>;
+
+// Mask setting all 0s or 1s
+multiclass avx512_mask_setop<RegisterClass KRC, ValueType VT, PatFrag Val> {
+ let Predicates = [HasAVX512] in
+ let isReMaterializable = 1, isAsCheapAsAMove = 1, isPseudo = 1 in
+ def #NAME# : I<0, Pseudo, (outs KRC:$dst), (ins), "",
+ [(set KRC:$dst, (VT Val))]>;
+}
+
+multiclass avx512_mask_setop_w<PatFrag Val> {
+ defm B : avx512_mask_setop<VK8, v8i1, Val>;
+ defm W : avx512_mask_setop<VK16, v16i1, Val>;
+}
+
+defm KSET0 : avx512_mask_setop_w<immAllZerosV>;
+defm KSET1 : avx512_mask_setop_w<immAllOnesV>;
+
+// With AVX-512 only, 8-bit mask is promoted to 16-bit mask.
+let Predicates = [HasAVX512] in {
+ def : Pat<(v8i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK8)>;
+ def : Pat<(v8i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK8)>;
+ def : Pat<(i1 0), (COPY_TO_REGCLASS (KSET0W), VK1)>;
+ def : Pat<(i1 1), (COPY_TO_REGCLASS (KSET1W), VK1)>;
+ def : Pat<(i1 -1), (COPY_TO_REGCLASS (KSET1W), VK1)>;
+}
+def : Pat<(v8i1 (extract_subvector (v16i1 VK16:$src), (iPTR 0))),
+ (v8i1 (COPY_TO_REGCLASS VK16:$src, VK8))>;
+
+def : Pat<(v16i1 (insert_subvector undef, (v8i1 VK8:$src), (iPTR 0))),
+ (v16i1 (COPY_TO_REGCLASS VK8:$src, VK16))>;
+
+def : Pat<(v8i1 (extract_subvector (v16i1 VK16:$src), (iPTR 8))),
+ (v8i1 (COPY_TO_REGCLASS (KSHIFTRWri VK16:$src, (i8 8)), VK8))>;
+
+def : Pat<(v8i1 (X86vshli VK8:$src, (i8 imm:$imm))),
+ (v8i1 (COPY_TO_REGCLASS (KSHIFTLWri (COPY_TO_REGCLASS VK8:$src, VK16), (I8Imm $imm)), VK8))>;
+
+def : Pat<(v8i1 (X86vsrli VK8:$src, (i8 imm:$imm))),
+ (v8i1 (COPY_TO_REGCLASS (KSHIFTRWri (COPY_TO_REGCLASS VK8:$src, VK16), (I8Imm $imm)), VK8))>;
+//===----------------------------------------------------------------------===//
+// AVX-512 - Aligned and unaligned load and store
+//
+
+multiclass avx512_load<bits<8> opc, RegisterClass RC, RegisterClass KRC,
+ X86MemOperand x86memop, PatFrag ld_frag,
+ string asm, Domain d,
+ ValueType vt, bit IsReMaterializable = 1> {
+let hasSideEffects = 0 in {
+ def rr : AVX512PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(asm, " \t{$src, $dst|$dst, $src}"), [], d>,
+ EVEX;
+ def rrkz : AVX512PI<opc, MRMSrcReg, (outs RC:$dst), (ins KRC:$mask, RC:$src),
+ !strconcat(asm,
+ " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ [], d>, EVEX, EVEX_KZ;
+ }
+ let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in
+ def rm : AVX512PI<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(asm, " \t{$src, $dst|$dst, $src}"),
+ [(set (vt RC:$dst), (ld_frag addr:$src))], d>, EVEX;
+ let Constraints = "$src1 = $dst", hasSideEffects = 0 in {
+ def rrk : AVX512PI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, KRC:$mask, RC:$src2),
+ !strconcat(asm,
+ " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"), [], d>,
+ EVEX, EVEX_K;
+ let mayLoad = 1 in
+ def rmk : AVX512PI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, KRC:$mask, x86memop:$src2),
+ !strconcat(asm,
+ " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
+ [], d>, EVEX, EVEX_K;
+ }
+ let mayLoad = 1 in
+ def rmkz : AVX512PI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, x86memop:$src2),
+ !strconcat(asm,
+ " \t{$src2, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src2}"),
+ [], d>, EVEX, EVEX_KZ;
+}
+
+multiclass avx512_store<bits<8> opc, RegisterClass RC, RegisterClass KRC,
+ X86MemOperand x86memop, PatFrag store_frag,
+ string asm, Domain d, ValueType vt> {
+ let isAsmParserOnly = 1, hasSideEffects = 0 in {
+ def rr_alt : AVX512PI<opc, MRMDestReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(asm, " \t{$src, $dst|$dst, $src}"), [], d>,
+ EVEX;
+ let Constraints = "$src1 = $dst" in
+ def alt_rrk : AVX512PI<opc, MRMDestReg, (outs RC:$dst),
+ (ins RC:$src1, KRC:$mask, RC:$src2),
+ !strconcat(asm,
+ " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"), [], d>,
+ EVEX, EVEX_K;
+ def alt_rrkz : AVX512PI<opc, MRMDestReg, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src),
+ !strconcat(asm,
+ " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ [], d>, EVEX, EVEX_KZ;
+ }
+ let mayStore = 1 in {
+ def mr : AVX512PI<opc, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
+ !strconcat(asm, " \t{$src, $dst|$dst, $src}"),
+ [(store_frag (vt RC:$src), addr:$dst)], d>, EVEX;
+ def mrk : AVX512PI<opc, MRMDestMem, (outs),
+ (ins x86memop:$dst, KRC:$mask, RC:$src),
+ !strconcat(asm,
+ " \t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}"),
+ [], d>, EVEX, EVEX_K;
+ def mrkz : AVX512PI<opc, MRMDestMem, (outs),
+ (ins x86memop:$dst, KRC:$mask, RC:$src),
+ !strconcat(asm,
+ " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ [], d>, EVEX, EVEX_KZ;
+ }
+}
+
+defm VMOVAPSZ : avx512_load<0x28, VR512, VK16WM, f512mem, alignedloadv16f32,
+ "vmovaps", SSEPackedSingle, v16f32>,
+ avx512_store<0x29, VR512, VK16WM, f512mem, alignedstore512,
+ "vmovaps", SSEPackedSingle, v16f32>,
+ PS, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VMOVAPDZ : avx512_load<0x28, VR512, VK8WM, f512mem, alignedloadv8f64,
+ "vmovapd", SSEPackedDouble, v8f64>,
+ avx512_store<0x29, VR512, VK8WM, f512mem, alignedstore512,
+ "vmovapd", SSEPackedDouble, v8f64>,
+ PD, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+defm VMOVUPSZ : avx512_load<0x10, VR512, VK16WM, f512mem, loadv16f32,
+ "vmovups", SSEPackedSingle, v16f32>,
+ avx512_store<0x11, VR512, VK16WM, f512mem, store,
+ "vmovups", SSEPackedSingle, v16f32>,
+ PS, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VMOVUPDZ : avx512_load<0x10, VR512, VK8WM, f512mem, loadv8f64,
+ "vmovupd", SSEPackedDouble, v8f64, 0>,
+ avx512_store<0x11, VR512, VK8WM, f512mem, store,
+ "vmovupd", SSEPackedDouble, v8f64>,
+ PD, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+def: Pat<(v8f64 (int_x86_avx512_mask_loadu_pd_512 addr:$ptr,
+ (bc_v8f64 (v16i32 immAllZerosV)), GR8:$mask)),
+ (VMOVUPDZrmkz (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)), addr:$ptr)>;
+
+def: Pat<(v16f32 (int_x86_avx512_mask_loadu_ps_512 addr:$ptr,
+ (bc_v16f32 (v16i32 immAllZerosV)), GR16:$mask)),
+ (VMOVUPSZrmkz (v16i1 (COPY_TO_REGCLASS GR16:$mask, VK16WM)), addr:$ptr)>;
+
+def: Pat<(int_x86_avx512_mask_storeu_ps_512 addr:$ptr, (v16f32 VR512:$src),
+ GR16:$mask),
+ (VMOVUPSZmrk addr:$ptr, (v16i1 (COPY_TO_REGCLASS GR16:$mask, VK16WM)),
+ VR512:$src)>;
+def: Pat<(int_x86_avx512_mask_storeu_pd_512 addr:$ptr, (v8f64 VR512:$src),
+ GR8:$mask),
+ (VMOVUPDZmrk addr:$ptr, (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)),
+ VR512:$src)>;
+
+defm VMOVDQA32: avx512_load<0x6F, VR512, VK16WM, i512mem, alignedloadv16i32,
+ "vmovdqa32", SSEPackedInt, v16i32>,
+ avx512_store<0x7F, VR512, VK16WM, i512mem, alignedstore512,
+ "vmovdqa32", SSEPackedInt, v16i32>,
+ PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VMOVDQA64: avx512_load<0x6F, VR512, VK8WM, i512mem, alignedloadv8i64,
+ "vmovdqa64", SSEPackedInt, v8i64>,
+ avx512_store<0x7F, VR512, VK8WM, i512mem, alignedstore512,
+ "vmovdqa64", SSEPackedInt, v8i64>,
+ PD, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+defm VMOVDQU32: avx512_load<0x6F, VR512, VK16WM, i512mem, load,
+ "vmovdqu32", SSEPackedInt, v16i32>,
+ avx512_store<0x7F, VR512, VK16WM, i512mem, store,
+ "vmovdqu32", SSEPackedInt, v16i32>,
+ XS, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VMOVDQU64: avx512_load<0x6F, VR512, VK8WM, i512mem, load,
+ "vmovdqu64", SSEPackedInt, v8i64>,
+ avx512_store<0x7F, VR512, VK8WM, i512mem, store,
+ "vmovdqu64", SSEPackedInt, v8i64>,
+ XS, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+
+def: Pat<(v16i32 (int_x86_avx512_mask_loadu_d_512 addr:$ptr,
+ (v16i32 immAllZerosV), GR16:$mask)),
+ (VMOVDQU32rmkz (v16i1 (COPY_TO_REGCLASS GR16:$mask, VK16WM)), addr:$ptr)>;
+
+def: Pat<(v8i64 (int_x86_avx512_mask_loadu_q_512 addr:$ptr,
+ (bc_v8i64 (v16i32 immAllZerosV)), GR8:$mask)),
+ (VMOVDQU64rmkz (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)), addr:$ptr)>;
+
+def: Pat<(int_x86_avx512_mask_storeu_d_512 addr:$ptr, (v16i32 VR512:$src),
+ GR16:$mask),
+ (VMOVDQU32mrk addr:$ptr, (v16i1 (COPY_TO_REGCLASS GR16:$mask, VK16WM)),
+ VR512:$src)>;
+def: Pat<(int_x86_avx512_mask_storeu_q_512 addr:$ptr, (v8i64 VR512:$src),
+ GR8:$mask),
+ (VMOVDQU64mrk addr:$ptr, (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)),
+ VR512:$src)>;
+
+let AddedComplexity = 20 in {
+def : Pat<(v8i64 (vselect VK8WM:$mask, (v8i64 VR512:$src),
+ (bc_v8i64 (v16i32 immAllZerosV)))),
+ (VMOVDQU64rrkz VK8WM:$mask, VR512:$src)>;
+
+def : Pat<(v8i64 (vselect VK8WM:$mask, (bc_v8i64 (v16i32 immAllZerosV)),
+ (v8i64 VR512:$src))),
+ (VMOVDQU64rrkz (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK8:$mask, VK16)),
+ VK8), VR512:$src)>;
+
+def : Pat<(v16i32 (vselect VK16WM:$mask, (v16i32 VR512:$src),
+ (v16i32 immAllZerosV))),
+ (VMOVDQU32rrkz VK16WM:$mask, VR512:$src)>;
+
+def : Pat<(v16i32 (vselect VK16WM:$mask, (v16i32 immAllZerosV),
+ (v16i32 VR512:$src))),
+ (VMOVDQU32rrkz (KNOTWrr VK16WM:$mask), VR512:$src)>;
+
+def : Pat<(v16f32 (vselect VK16WM:$mask, (v16f32 VR512:$src1),
+ (v16f32 VR512:$src2))),
+ (VMOVUPSZrrk VR512:$src2, VK16WM:$mask, VR512:$src1)>;
+def : Pat<(v8f64 (vselect VK8WM:$mask, (v8f64 VR512:$src1),
+ (v8f64 VR512:$src2))),
+ (VMOVUPDZrrk VR512:$src2, VK8WM:$mask, VR512:$src1)>;
+def : Pat<(v16i32 (vselect VK16WM:$mask, (v16i32 VR512:$src1),
+ (v16i32 VR512:$src2))),
+ (VMOVDQU32rrk VR512:$src2, VK16WM:$mask, VR512:$src1)>;
+def : Pat<(v8i64 (vselect VK8WM:$mask, (v8i64 VR512:$src1),
+ (v8i64 VR512:$src2))),
+ (VMOVDQU64rrk VR512:$src2, VK8WM:$mask, VR512:$src1)>;
+}
+// Move Int Doubleword to Packed Double Int
+//
+def VMOVDI2PDIZrr : AVX512BI<0x6E, MRMSrcReg, (outs VR128X:$dst), (ins GR32:$src),
+ "vmovd\t{$src, $dst|$dst, $src}",
+ [(set VR128X:$dst,
+ (v4i32 (scalar_to_vector GR32:$src)))], IIC_SSE_MOVDQ>,
+ EVEX, VEX_LIG;
+def VMOVDI2PDIZrm : AVX512BI<0x6E, MRMSrcMem, (outs VR128X:$dst), (ins i32mem:$src),
+ "vmovd\t{$src, $dst|$dst, $src}",
+ [(set VR128X:$dst,
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))))],
+ IIC_SSE_MOVDQ>, EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>;
+def VMOV64toPQIZrr : AVX512BI<0x6E, MRMSrcReg, (outs VR128X:$dst), (ins GR64:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set VR128X:$dst,
+ (v2i64 (scalar_to_vector GR64:$src)))],
+ IIC_SSE_MOVDQ>, EVEX, VEX_W, VEX_LIG;
+let isCodeGenOnly = 1 in {
+def VMOV64toSDZrr : AVX512BI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (bitconvert GR64:$src))],
+ IIC_SSE_MOVDQ>, EVEX, VEX_W, Sched<[WriteMove]>;
+def VMOVSDto64Zrr : AVX512BI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (bitconvert FR64:$src))],
+ IIC_SSE_MOVDQ>, EVEX, VEX_W, Sched<[WriteMove]>;
+}
+def VMOVSDto64Zmr : AVX512BI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(store (i64 (bitconvert FR64:$src)), addr:$dst)],
+ IIC_SSE_MOVDQ>, EVEX, VEX_W, Sched<[WriteStore]>,
+ EVEX_CD8<64, CD8VT1>;
+
+// Move Int Doubleword to Single Scalar
+//
+let isCodeGenOnly = 1 in {
+def VMOVDI2SSZrr : AVX512BI<0x6E, MRMSrcReg, (outs FR32X:$dst), (ins GR32:$src),
+ "vmovd\t{$src, $dst|$dst, $src}",
+ [(set FR32X:$dst, (bitconvert GR32:$src))],
+ IIC_SSE_MOVDQ>, EVEX, VEX_LIG;
+
+def VMOVDI2SSZrm : AVX512BI<0x6E, MRMSrcMem, (outs FR32X:$dst), (ins i32mem:$src),
+ "vmovd\t{$src, $dst|$dst, $src}",
+ [(set FR32X:$dst, (bitconvert (loadi32 addr:$src)))],
+ IIC_SSE_MOVDQ>, EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>;
+}
+
+// Move doubleword from xmm register to r/m32
+//
+def VMOVPDI2DIZrr : AVX512BI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128X:$src),
+ "vmovd\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (vector_extract (v4i32 VR128X:$src),
+ (iPTR 0)))], IIC_SSE_MOVD_ToGP>,
+ EVEX, VEX_LIG;
+def VMOVPDI2DIZmr : AVX512BI<0x7E, MRMDestMem, (outs),
+ (ins i32mem:$dst, VR128X:$src),
+ "vmovd\t{$src, $dst|$dst, $src}",
+ [(store (i32 (vector_extract (v4i32 VR128X:$src),
+ (iPTR 0))), addr:$dst)], IIC_SSE_MOVDQ>,
+ EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>;
+
+// Move quadword from xmm1 register to r/m64
+//
+def VMOVPQIto64Zrr : I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128X:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (extractelt (v2i64 VR128X:$src),
+ (iPTR 0)))],
+ IIC_SSE_MOVD_ToGP>, PD, EVEX, VEX_LIG, VEX_W,
+ Requires<[HasAVX512, In64BitMode]>;
+
+def VMOVPQIto64Zmr : I<0xD6, MRMDestMem, (outs),
+ (ins i64mem:$dst, VR128X:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(store (extractelt (v2i64 VR128X:$src), (iPTR 0)),
+ addr:$dst)], IIC_SSE_MOVDQ>,
+ EVEX, PD, VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>,
+ Sched<[WriteStore]>, Requires<[HasAVX512, In64BitMode]>;
+
+// Move Scalar Single to Double Int
+//
+let isCodeGenOnly = 1 in {
+def VMOVSS2DIZrr : AVX512BI<0x7E, MRMDestReg, (outs GR32:$dst),
+ (ins FR32X:$src),
+ "vmovd\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (bitconvert FR32X:$src))],
+ IIC_SSE_MOVD_ToGP>, EVEX, VEX_LIG;
+def VMOVSS2DIZmr : AVX512BI<0x7E, MRMDestMem, (outs),
+ (ins i32mem:$dst, FR32X:$src),
+ "vmovd\t{$src, $dst|$dst, $src}",
+ [(store (i32 (bitconvert FR32X:$src)), addr:$dst)],
+ IIC_SSE_MOVDQ>, EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>;
+}
+
+// Move Quadword Int to Packed Quadword Int
+//
+def VMOVQI2PQIZrm : AVX512BI<0x6E, MRMSrcMem, (outs VR128X:$dst),
+ (ins i64mem:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set VR128X:$dst,
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>,
+ EVEX, VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>;
+
+//===----------------------------------------------------------------------===//
+// AVX-512 MOVSS, MOVSD
+//===----------------------------------------------------------------------===//
+
+multiclass avx512_move_scalar <string asm, RegisterClass RC,
+ SDNode OpNode, ValueType vt,
+ X86MemOperand x86memop, PatFrag mem_pat> {
+ let hasSideEffects = 0 in {
+ def rr : SI<0x10, MRMSrcReg, (outs VR128X:$dst), (ins VR128X:$src1, RC:$src2),
+ !strconcat(asm, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128X:$dst, (vt (OpNode VR128X:$src1,
+ (scalar_to_vector RC:$src2))))],
+ IIC_SSE_MOV_S_RR>, EVEX_4V, VEX_LIG;
+ let Constraints = "$src1 = $dst" in
+ def rrk : SI<0x10, MRMSrcReg, (outs VR128X:$dst),
+ (ins VR128X:$src1, VK1WM:$mask, RC:$src2, RC:$src3),
+ !strconcat(asm,
+ " \t{$src3, $src2, $dst {${mask}}|$dst {${mask}}, $src2, $src3}"),
+ [], IIC_SSE_MOV_S_RR>, EVEX_4V, VEX_LIG, EVEX_K;
+ def rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(asm, " \t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (mem_pat addr:$src))], IIC_SSE_MOV_S_RM>,
+ EVEX, VEX_LIG;
+ def mr: SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
+ !strconcat(asm, " \t{$src, $dst|$dst, $src}"),
+ [(store RC:$src, addr:$dst)], IIC_SSE_MOV_S_MR>,
+ EVEX, VEX_LIG;
+ } //hasSideEffects = 0
+}
+
+let ExeDomain = SSEPackedSingle in
+defm VMOVSSZ : avx512_move_scalar<"movss", FR32X, X86Movss, v4f32, f32mem,
+ loadf32>, XS, EVEX_CD8<32, CD8VT1>;
+
+let ExeDomain = SSEPackedDouble in
+defm VMOVSDZ : avx512_move_scalar<"movsd", FR64X, X86Movsd, v2f64, f64mem,
+ loadf64>, XD, VEX_W, EVEX_CD8<64, CD8VT1>;
+
+def : Pat<(f32 (X86select VK1WM:$mask, (f32 FR32X:$src1), (f32 FR32X:$src2))),
+ (COPY_TO_REGCLASS (VMOVSSZrrk (COPY_TO_REGCLASS FR32X:$src2, VR128X),
+ VK1WM:$mask, (f32 (IMPLICIT_DEF)), FR32X:$src1), FR32X)>;
+
+def : Pat<(f64 (X86select VK1WM:$mask, (f64 FR64X:$src1), (f64 FR64X:$src2))),
+ (COPY_TO_REGCLASS (VMOVSDZrrk (COPY_TO_REGCLASS FR64X:$src2, VR128X),
+ VK1WM:$mask, (f64 (IMPLICIT_DEF)), FR64X:$src1), FR64X)>;
+
+// For the disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
+ def VMOVSSZrr_REV : SI<0x11, MRMDestReg, (outs VR128X:$dst),
+ (ins VR128X:$src1, FR32X:$src2),
+ "movss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [],
+ IIC_SSE_MOV_S_RR>,
+ XS, EVEX_4V, VEX_LIG;
+ def VMOVSDZrr_REV : SI<0x11, MRMDestReg, (outs VR128X:$dst),
+ (ins VR128X:$src1, FR64X:$src2),
+ "movsd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [],
+ IIC_SSE_MOV_S_RR>,
+ XD, EVEX_4V, VEX_LIG, VEX_W;
+}
+
+let Predicates = [HasAVX512] in {
+ let AddedComplexity = 15 in {
+ // Move scalar to XMM zero-extended, zeroing a VR128X then do a
+ // MOVS{S,D} to the lower bits.
+ def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32X:$src)))),
+ (VMOVSSZrr (v4f32 (V_SET0)), FR32X:$src)>;
+ def : Pat<(v4f32 (X86vzmovl (v4f32 VR128X:$src))),
+ (VMOVSSZrr (v4f32 (V_SET0)), (COPY_TO_REGCLASS VR128X:$src, FR32X))>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 VR128X:$src))),
+ (VMOVSSZrr (v4i32 (V_SET0)), (COPY_TO_REGCLASS VR128X:$src, FR32X))>;
+ def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64X:$src)))),
+ (VMOVSDZrr (v2f64 (V_SET0)), FR64X:$src)>;
+
+ // Move low f32 and clear high bits.
+ def : Pat<(v8f32 (X86vzmovl (v8f32 VR256X:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSZrr (v4f32 (V_SET0)),
+ (EXTRACT_SUBREG (v8f32 VR256X:$src), sub_xmm)), sub_xmm)>;
+ def : Pat<(v8i32 (X86vzmovl (v8i32 VR256X:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSZrr (v4i32 (V_SET0)),
+ (EXTRACT_SUBREG (v8i32 VR256X:$src), sub_xmm)), sub_xmm)>;
+ }
+
+ let AddedComplexity = 20 in {
+ // MOVSSrm zeros the high parts of the register; represent this
+ // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
+ def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
+ (COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>;
+ def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))),
+ (COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>;
+ def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
+ (COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>;
+
+ // MOVSDrm zeros the high parts of the register; represent this
+ // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
+ def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
+ (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>;
+ def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))),
+ (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>;
+ def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
+ (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>;
+ def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
+ (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>;
+ def : Pat<(v2f64 (X86vzload addr:$src)),
+ (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>;
+
+ // Represent the same patterns above but in the form they appear for
+ // 256-bit types
+ def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVDI2PDIZrm addr:$src), sub_xmm)>;
+ def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
+ (v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>;
+ def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
+ (v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>;
+ }
+ def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
+ (v4f32 (scalar_to_vector FR32X:$src)), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (v4f32 (VMOVSSZrr (v4f32 (V_SET0)),
+ FR32X:$src)), sub_xmm)>;
+ def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
+ (v2f64 (scalar_to_vector FR64X:$src)), (iPTR 0)))),
+ (SUBREG_TO_REG (i64 0), (v2f64 (VMOVSDZrr (v2f64 (V_SET0)),
+ FR64X:$src)), sub_xmm)>;
+ def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i64 0), (VMOVQI2PQIZrm addr:$src), sub_xmm)>;
+
+ // Move low f64 and clear high bits.
+ def : Pat<(v4f64 (X86vzmovl (v4f64 VR256X:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSDZrr (v2f64 (V_SET0)),
+ (EXTRACT_SUBREG (v4f64 VR256X:$src), sub_xmm)), sub_xmm)>;
+
+ def : Pat<(v4i64 (X86vzmovl (v4i64 VR256X:$src))),
+ (SUBREG_TO_REG (i32 0), (VMOVSDZrr (v2i64 (V_SET0)),
+ (EXTRACT_SUBREG (v4i64 VR256X:$src), sub_xmm)), sub_xmm)>;
+
+ // Extract and store.
+ def : Pat<(store (f32 (vector_extract (v4f32 VR128X:$src), (iPTR 0))),
+ addr:$dst),
+ (VMOVSSZmr addr:$dst, (COPY_TO_REGCLASS (v4f32 VR128X:$src), FR32X))>;
+ def : Pat<(store (f64 (vector_extract (v2f64 VR128X:$src), (iPTR 0))),
+ addr:$dst),
+ (VMOVSDZmr addr:$dst, (COPY_TO_REGCLASS (v2f64 VR128X:$src), FR64X))>;
+
+ // Shuffle with VMOVSS
+ def : Pat<(v4i32 (X86Movss VR128X:$src1, VR128X:$src2)),
+ (VMOVSSZrr (v4i32 VR128X:$src1),
+ (COPY_TO_REGCLASS (v4i32 VR128X:$src2), FR32X))>;
+ def : Pat<(v4f32 (X86Movss VR128X:$src1, VR128X:$src2)),
+ (VMOVSSZrr (v4f32 VR128X:$src1),
+ (COPY_TO_REGCLASS (v4f32 VR128X:$src2), FR32X))>;
+
+ // 256-bit variants
+ def : Pat<(v8i32 (X86Movss VR256X:$src1, VR256X:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSZrr (EXTRACT_SUBREG (v8i32 VR256X:$src1), sub_xmm),
+ (EXTRACT_SUBREG (v8i32 VR256X:$src2), sub_xmm)),
+ sub_xmm)>;
+ def : Pat<(v8f32 (X86Movss VR256X:$src1, VR256X:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSZrr (EXTRACT_SUBREG (v8f32 VR256X:$src1), sub_xmm),
+ (EXTRACT_SUBREG (v8f32 VR256X:$src2), sub_xmm)),
+ sub_xmm)>;
+
+ // Shuffle with VMOVSD
+ def : Pat<(v2i64 (X86Movsd VR128X:$src1, VR128X:$src2)),
+ (VMOVSDZrr VR128X:$src1, (COPY_TO_REGCLASS VR128X:$src2, FR64X))>;
+ def : Pat<(v2f64 (X86Movsd VR128X:$src1, VR128X:$src2)),
+ (VMOVSDZrr VR128X:$src1, (COPY_TO_REGCLASS VR128X:$src2, FR64X))>;
+ def : Pat<(v4f32 (X86Movsd VR128X:$src1, VR128X:$src2)),
+ (VMOVSDZrr VR128X:$src1, (COPY_TO_REGCLASS VR128X:$src2, FR64X))>;
+ def : Pat<(v4i32 (X86Movsd VR128X:$src1, VR128X:$src2)),
+ (VMOVSDZrr VR128X:$src1, (COPY_TO_REGCLASS VR128X:$src2, FR64X))>;
+
+ // 256-bit variants
+ def : Pat<(v4i64 (X86Movsd VR256X:$src1, VR256X:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSDZrr (EXTRACT_SUBREG (v4i64 VR256X:$src1), sub_xmm),
+ (EXTRACT_SUBREG (v4i64 VR256X:$src2), sub_xmm)),
+ sub_xmm)>;
+ def : Pat<(v4f64 (X86Movsd VR256X:$src1, VR256X:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSDZrr (EXTRACT_SUBREG (v4f64 VR256X:$src1), sub_xmm),
+ (EXTRACT_SUBREG (v4f64 VR256X:$src2), sub_xmm)),
+ sub_xmm)>;
+
+ def : Pat<(v2f64 (X86Movlpd VR128X:$src1, VR128X:$src2)),
+ (VMOVSDZrr VR128X:$src1, (COPY_TO_REGCLASS VR128X:$src2, FR64X))>;
+ def : Pat<(v2i64 (X86Movlpd VR128X:$src1, VR128X:$src2)),
+ (VMOVSDZrr VR128X:$src1, (COPY_TO_REGCLASS VR128X:$src2, FR64X))>;
+ def : Pat<(v4f32 (X86Movlps VR128X:$src1, VR128X:$src2)),
+ (VMOVSDZrr VR128X:$src1, (COPY_TO_REGCLASS VR128X:$src2, FR64X))>;
+ def : Pat<(v4i32 (X86Movlps VR128X:$src1, VR128X:$src2)),
+ (VMOVSDZrr VR128X:$src1, (COPY_TO_REGCLASS VR128X:$src2, FR64X))>;
+}
+
+let AddedComplexity = 15 in
+def VMOVZPQILo2PQIZrr : AVX512XSI<0x7E, MRMSrcReg, (outs VR128X:$dst),
+ (ins VR128X:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set VR128X:$dst, (v2i64 (X86vzmovl
+ (v2i64 VR128X:$src))))],
+ IIC_SSE_MOVQ_RR>, EVEX, VEX_W;
+
+let AddedComplexity = 20 in
+def VMOVZPQILo2PQIZrm : AVX512XSI<0x7E, MRMSrcMem, (outs VR128X:$dst),
+ (ins i128mem:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set VR128X:$dst, (v2i64 (X86vzmovl
+ (loadv2i64 addr:$src))))],
+ IIC_SSE_MOVDQ>, EVEX, VEX_W,
+ EVEX_CD8<8, CD8VT8>;
+
+let Predicates = [HasAVX512] in {
+ // AVX 128-bit movd/movq instruction write zeros in the high 128-bit part.
+ let AddedComplexity = 20 in {
+ def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
+ (VMOVDI2PDIZrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))),
+ (VMOV64toPQIZrr GR64:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))),
+ (VMOVDI2PDIZrr GR32:$src)>;
+
+ def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))),
+ (VMOVDI2PDIZrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
+ (VMOVDI2PDIZrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))),
+ (VMOVZPQILo2PQIZrm addr:$src)>;
+ def : Pat<(v2f64 (X86vzmovl (v2f64 VR128X:$src))),
+ (VMOVZPQILo2PQIZrr VR128X:$src)>;
+ def : Pat<(v2i64 (X86vzload addr:$src)),
+ (VMOVZPQILo2PQIZrm addr:$src)>;
+ }
+
+ // Use regular 128-bit instructions to match 256-bit scalar_to_vec+zext.
+ def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
+ (v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVDI2PDIZrr GR32:$src), sub_xmm)>;
+ def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
+ (v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))),
+ (SUBREG_TO_REG (i64 0), (VMOV64toPQIZrr GR64:$src), sub_xmm)>;
+}
+
+def : Pat<(v16i32 (X86Vinsert (v16i32 immAllZerosV), GR32:$src2, (iPTR 0))),
+ (SUBREG_TO_REG (i32 0), (VMOVDI2PDIZrr GR32:$src2), sub_xmm)>;
+
+def : Pat<(v8i64 (X86Vinsert (bc_v8i64 (v16i32 immAllZerosV)), GR64:$src2, (iPTR 0))),
+ (SUBREG_TO_REG (i32 0), (VMOV64toPQIZrr GR64:$src2), sub_xmm)>;
+
+def : Pat<(v16i32 (X86Vinsert undef, GR32:$src2, (iPTR 0))),
+ (SUBREG_TO_REG (i32 0), (VMOVDI2PDIZrr GR32:$src2), sub_xmm)>;
+
+def : Pat<(v8i64 (X86Vinsert undef, GR64:$src2, (iPTR 0))),
+ (SUBREG_TO_REG (i32 0), (VMOV64toPQIZrr GR64:$src2), sub_xmm)>;
+
+//===----------------------------------------------------------------------===//
+// AVX-512 - Non-temporals
+//===----------------------------------------------------------------------===//
+
+def VMOVNTDQAZrm : AVX5128I<0x2A, MRMSrcMem, (outs VR512:$dst),
+ (ins i512mem:$src),
+ "vmovntdqa\t{$src, $dst|$dst, $src}",
+ [(set VR512:$dst,
+ (int_x86_avx512_movntdqa addr:$src))]>,
+ EVEX, EVEX_V512, EVEX_CD8<64, CD8VF>;
+
+// Prefer non-temporal over temporal versions
+let AddedComplexity = 400, SchedRW = [WriteStore] in {
+
+def VMOVNTPSZmr : AVX512PSI<0x2B, MRMDestMem, (outs),
+ (ins f512mem:$dst, VR512:$src),
+ "vmovntps\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v16f32 VR512:$src),
+ addr:$dst)],
+ IIC_SSE_MOVNT>,
+ EVEX, EVEX_V512, EVEX_CD8<32, CD8VF>;
+
+def VMOVNTPDZmr : AVX512PDI<0x2B, MRMDestMem, (outs),
+ (ins f512mem:$dst, VR512:$src),
+ "vmovntpd\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v8f64 VR512:$src),
+ addr:$dst)],
+ IIC_SSE_MOVNT>,
+ EVEX, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+
+def VMOVNTDQZmr : AVX512BI<0xE7, MRMDestMem, (outs),
+ (ins i512mem:$dst, VR512:$src),
+ "vmovntdq\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v8i64 VR512:$src),
+ addr:$dst)],
+ IIC_SSE_MOVNT>,
+ EVEX, EVEX_V512, EVEX_CD8<64, CD8VF>;
+}
+
+//===----------------------------------------------------------------------===//
+// AVX-512 - Integer arithmetic
+//
+multiclass avx512_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, RegisterClass KRC,
+ RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, PatFrag scalar_mfrag,
+ X86MemOperand x86scalar_mop, string BrdcstStr,
+ OpndItins itins, bit IsCommutable = 0> {
+ let isCommutable = IsCommutable in
+ def rr : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (OpVT (OpNode (OpVT RC:$src1), (OpVT RC:$src2))))],
+ itins.rr>, EVEX_4V;
+ let AddedComplexity = 30 in {
+ let Constraints = "$src0 = $dst" in
+ def rrk : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src0, KRC:$mask, RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
+ [(set RC:$dst, (OpVT (vselect KRC:$mask,
+ (OpNode (OpVT RC:$src1), (OpVT RC:$src2)),
+ RC:$src0)))],
+ itins.rr>, EVEX_4V, EVEX_K;
+ def rrkz : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst {${mask}} {z}" ,
+ "|$dst {${mask}} {z}, $src1, $src2}"),
+ [(set RC:$dst, (OpVT (vselect KRC:$mask,
+ (OpNode (OpVT RC:$src1), (OpVT RC:$src2)),
+ (OpVT immAllZerosV))))],
+ itins.rr>, EVEX_4V, EVEX_KZ;
+ }
+
+ let mayLoad = 1 in {
+ def rm : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (OpVT (OpNode (OpVT RC:$src1), (memop_frag addr:$src2))))],
+ itins.rm>, EVEX_4V;
+ let AddedComplexity = 30 in {
+ let Constraints = "$src0 = $dst" in
+ def rmk : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src0, KRC:$mask, RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
+ [(set RC:$dst, (OpVT (vselect KRC:$mask,
+ (OpNode (OpVT RC:$src1), (memop_frag addr:$src2)),
+ RC:$src0)))],
+ itins.rm>, EVEX_4V, EVEX_K;
+ def rmkz : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, $src2}"),
+ [(set RC:$dst, (OpVT (vselect KRC:$mask,
+ (OpNode (OpVT RC:$src1), (memop_frag addr:$src2)),
+ (OpVT immAllZerosV))))],
+ itins.rm>, EVEX_4V, EVEX_KZ;
+ }
+ def rmb : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86scalar_mop:$src2),
+ !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ ", $src1, $dst|$dst, $src1, ${src2}", BrdcstStr, "}"),
+ [(set RC:$dst, (OpNode RC:$src1,
+ (OpVT (X86VBroadcast (scalar_mfrag addr:$src2)))))],
+ itins.rm>, EVEX_4V, EVEX_B;
+ let AddedComplexity = 30 in {
+ let Constraints = "$src0 = $dst" in
+ def rmbk : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src0, KRC:$mask, RC:$src1, x86scalar_mop:$src2),
+ !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ ", $src1, $dst {${mask}}|$dst {${mask}}, $src1, ${src2}",
+ BrdcstStr, "}"),
+ [(set RC:$dst, (OpVT (vselect KRC:$mask,
+ (OpNode (OpVT RC:$src1),
+ (OpVT (X86VBroadcast (scalar_mfrag addr:$src2)))),
+ RC:$src0)))],
+ itins.rm>, EVEX_4V, EVEX_B, EVEX_K;
+ def rmbkz : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, x86scalar_mop:$src2),
+ !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ ", $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, ${src2}",
+ BrdcstStr, "}"),
+ [(set RC:$dst, (OpVT (vselect KRC:$mask,
+ (OpNode (OpVT RC:$src1),
+ (OpVT (X86VBroadcast (scalar_mfrag addr:$src2)))),
+ (OpVT immAllZerosV))))],
+ itins.rm>, EVEX_4V, EVEX_B, EVEX_KZ;
+ }
+ }
+}
+
+multiclass avx512_binop_rm2<bits<8> opc, string OpcodeStr, ValueType DstVT,
+ ValueType SrcVT, RegisterClass KRC, RegisterClass RC,
+ PatFrag memop_frag, X86MemOperand x86memop,
+ PatFrag scalar_mfrag, X86MemOperand x86scalar_mop,
+ string BrdcstStr, OpndItins itins, bit IsCommutable = 0> {
+ let isCommutable = IsCommutable in
+ {
+ def rr : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, EVEX_4V;
+ def rrk : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
+ [], itins.rr>, EVEX_4V, EVEX_K;
+ def rrkz : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst {${mask}} {z}" ,
+ "|$dst {${mask}} {z}, $src1, $src2}"),
+ [], itins.rr>, EVEX_4V, EVEX_KZ;
+ }
+ let mayLoad = 1 in {
+ def rm : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, EVEX_4V;
+ def rmk : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
+ [], itins.rm>, EVEX_4V, EVEX_K;
+ def rmkz : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, $src2}"),
+ [], itins.rm>, EVEX_4V, EVEX_KZ;
+ def rmb : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86scalar_mop:$src2),
+ !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ ", $src1, $dst|$dst, $src1, ${src2}", BrdcstStr, "}"),
+ [], itins.rm>, EVEX_4V, EVEX_B;
+ def rmbk : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, x86scalar_mop:$src2),
+ !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ ", $src1, $dst {${mask}}|$dst {${mask}}, $src1, ${src2}",
+ BrdcstStr, "}"),
+ [], itins.rm>, EVEX_4V, EVEX_B, EVEX_K;
+ def rmbkz : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, x86scalar_mop:$src2),
+ !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ ", $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, ${src2}",
+ BrdcstStr, "}"),
+ [], itins.rm>, EVEX_4V, EVEX_B, EVEX_KZ;
+ }
+}
+
+defm VPADDDZ : avx512_binop_rm<0xFE, "vpaddd", add, v16i32, VK16WM, VR512,
+ memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
+ SSE_INTALU_ITINS_P, 1>, EVEX_V512, EVEX_CD8<32, CD8VF>;
+
+defm VPSUBDZ : avx512_binop_rm<0xFA, "vpsubd", sub, v16i32, VK16WM, VR512,
+ memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
+ SSE_INTALU_ITINS_P, 0>, EVEX_V512, EVEX_CD8<32, CD8VF>;
+
+defm VPMULLDZ : avx512_binop_rm<0x40, "vpmulld", mul, v16i32, VK16WM, VR512,
+ memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
+ SSE_INTALU_ITINS_P, 1>, T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
+
+defm VPADDQZ : avx512_binop_rm<0xD4, "vpaddq", add, v8i64, VK8WM, VR512,
+ memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
+ SSE_INTALU_ITINS_P, 1>, EVEX_CD8<64, CD8VF>, EVEX_V512, VEX_W;
+
+defm VPSUBQZ : avx512_binop_rm<0xFB, "vpsubq", sub, v8i64, VK8WM, VR512,
+ memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
+ SSE_INTALU_ITINS_P, 0>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VPMULDQZ : avx512_binop_rm2<0x28, "vpmuldq", v8i64, v16i32, VK8WM, VR512,
+ memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
+ SSE_INTALU_ITINS_P, 1>, T8PD, EVEX_V512,
+ EVEX_CD8<64, CD8VF>, VEX_W;
+
+defm VPMULUDQZ : avx512_binop_rm2<0xF4, "vpmuludq", v8i64, v16i32, VK8WM, VR512,
+ memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
+ SSE_INTMUL_ITINS_P, 1>, EVEX_V512, EVEX_CD8<64, CD8VF>, VEX_W;
+
+def : Pat<(v8i64 (X86pmuludq (v16i32 VR512:$src1), (v16i32 VR512:$src2))),
+ (VPMULUDQZrr VR512:$src1, VR512:$src2)>;
+
+def : Pat<(v8i64 (int_x86_avx512_mask_pmulu_dq_512 (v16i32 VR512:$src1),
+ (v16i32 VR512:$src2), (bc_v8i64 (v16i32 immAllZerosV)), (i8 -1))),
+ (VPMULUDQZrr VR512:$src1, VR512:$src2)>;
+def : Pat<(v8i64 (int_x86_avx512_mask_pmul_dq_512 (v16i32 VR512:$src1),
+ (v16i32 VR512:$src2), (bc_v8i64 (v16i32 immAllZerosV)), (i8 -1))),
+ (VPMULDQZrr VR512:$src1, VR512:$src2)>;
+
+defm VPMAXUDZ : avx512_binop_rm<0x3F, "vpmaxud", X86umax, v16i32, VK16WM, VR512,
+ memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
+ SSE_INTALU_ITINS_P, 1>,
+ T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPMAXUQZ : avx512_binop_rm<0x3F, "vpmaxuq", X86umax, v8i64, VK8WM, VR512,
+ memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
+ SSE_INTALU_ITINS_P, 0>,
+ T8PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VPMAXSDZ : avx512_binop_rm<0x3D, "vpmaxsd", X86smax, v16i32, VK16WM, VR512,
+ memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
+ SSE_INTALU_ITINS_P, 1>,
+ T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPMAXSQZ : avx512_binop_rm<0x3D, "vpmaxsq", X86smax, v8i64, VK8WM, VR512,
+ memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
+ SSE_INTALU_ITINS_P, 0>,
+ T8PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VPMINUDZ : avx512_binop_rm<0x3B, "vpminud", X86umin, v16i32, VK16WM, VR512,
+ memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
+ SSE_INTALU_ITINS_P, 1>,
+ T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPMINUQZ : avx512_binop_rm<0x3B, "vpminuq", X86umin, v8i64, VK8WM, VR512,
+ memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
+ SSE_INTALU_ITINS_P, 0>,
+ T8PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VPMINSDZ : avx512_binop_rm<0x39, "vpminsd", X86smin, v16i32, VK16WM, VR512,
+ memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
+ SSE_INTALU_ITINS_P, 1>,
+ T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPMINSQZ : avx512_binop_rm<0x39, "vpminsq", X86smin, v8i64, VK8WM, VR512,
+ memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
+ SSE_INTALU_ITINS_P, 0>,
+ T8PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+def : Pat <(v16i32 (int_x86_avx512_mask_pmaxs_d_512 (v16i32 VR512:$src1),
+ (v16i32 VR512:$src2), (v16i32 immAllZerosV), (i16 -1))),
+ (VPMAXSDZrr VR512:$src1, VR512:$src2)>;
+def : Pat <(v16i32 (int_x86_avx512_mask_pmaxu_d_512 (v16i32 VR512:$src1),
+ (v16i32 VR512:$src2), (v16i32 immAllZerosV), (i16 -1))),
+ (VPMAXUDZrr VR512:$src1, VR512:$src2)>;
+def : Pat <(v8i64 (int_x86_avx512_mask_pmaxs_q_512 (v8i64 VR512:$src1),
+ (v8i64 VR512:$src2), (bc_v8i64 (v16i32 immAllZerosV)), (i8 -1))),
+ (VPMAXSQZrr VR512:$src1, VR512:$src2)>;
+def : Pat <(v8i64 (int_x86_avx512_mask_pmaxu_q_512 (v8i64 VR512:$src1),
+ (v8i64 VR512:$src2), (bc_v8i64 (v16i32 immAllZerosV)), (i8 -1))),
+ (VPMAXUQZrr VR512:$src1, VR512:$src2)>;
+def : Pat <(v16i32 (int_x86_avx512_mask_pmins_d_512 (v16i32 VR512:$src1),
+ (v16i32 VR512:$src2), (v16i32 immAllZerosV), (i16 -1))),
+ (VPMINSDZrr VR512:$src1, VR512:$src2)>;
+def : Pat <(v16i32 (int_x86_avx512_mask_pminu_d_512 (v16i32 VR512:$src1),
+ (v16i32 VR512:$src2), (v16i32 immAllZerosV), (i16 -1))),
+ (VPMINUDZrr VR512:$src1, VR512:$src2)>;
+def : Pat <(v8i64 (int_x86_avx512_mask_pmins_q_512 (v8i64 VR512:$src1),
+ (v8i64 VR512:$src2), (bc_v8i64 (v16i32 immAllZerosV)), (i8 -1))),
+ (VPMINSQZrr VR512:$src1, VR512:$src2)>;
+def : Pat <(v8i64 (int_x86_avx512_mask_pminu_q_512 (v8i64 VR512:$src1),
+ (v8i64 VR512:$src2), (bc_v8i64 (v16i32 immAllZerosV)), (i8 -1))),
+ (VPMINUQZrr VR512:$src1, VR512:$src2)>;
+//===----------------------------------------------------------------------===//
+// AVX-512 - Unpack Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass avx512_unpack_fp<bits<8> opc, SDNode OpNode, ValueType vt,
+ PatFrag mem_frag, RegisterClass RC,
+ X86MemOperand x86memop, string asm,
+ Domain d> {
+ def rr : AVX512PI<opc, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ asm, [(set RC:$dst,
+ (vt (OpNode RC:$src1, RC:$src2)))],
+ d>, EVEX_4V;
+ def rm : AVX512PI<opc, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ asm, [(set RC:$dst,
+ (vt (OpNode RC:$src1,
+ (bitconvert (mem_frag addr:$src2)))))],
+ d>, EVEX_4V;
+}
+
+defm VUNPCKHPSZ: avx512_unpack_fp<0x15, X86Unpckh, v16f32, memopv8f64,
+ VR512, f512mem, "vunpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedSingle>, PS, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VUNPCKHPDZ: avx512_unpack_fp<0x15, X86Unpckh, v8f64, memopv8f64,
+ VR512, f512mem, "vunpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedDouble>, PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VUNPCKLPSZ: avx512_unpack_fp<0x14, X86Unpckl, v16f32, memopv8f64,
+ VR512, f512mem, "vunpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedSingle>, PS, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VUNPCKLPDZ: avx512_unpack_fp<0x14, X86Unpckl, v8f64, memopv8f64,
+ VR512, f512mem, "vunpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedDouble>, PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+multiclass avx512_unpack_int<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop> {
+ def rr : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (OpVT (OpNode (OpVT RC:$src1), (OpVT RC:$src2))))],
+ IIC_SSE_UNPCK>, EVEX_4V;
+ def rm : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (OpVT (OpNode (OpVT RC:$src1),
+ (bitconvert (memop_frag addr:$src2)))))],
+ IIC_SSE_UNPCK>, EVEX_4V;
+}
+defm VPUNPCKLDQZ : avx512_unpack_int<0x62, "vpunpckldq", X86Unpckl, v16i32,
+ VR512, memopv16i32, i512mem>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VPUNPCKLQDQZ : avx512_unpack_int<0x6C, "vpunpcklqdq", X86Unpckl, v8i64,
+ VR512, memopv8i64, i512mem>, EVEX_V512,
+ VEX_W, EVEX_CD8<64, CD8VF>;
+defm VPUNPCKHDQZ : avx512_unpack_int<0x6A, "vpunpckhdq", X86Unpckh, v16i32,
+ VR512, memopv16i32, i512mem>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VPUNPCKHQDQZ : avx512_unpack_int<0x6D, "vpunpckhqdq", X86Unpckh, v8i64,
+ VR512, memopv8i64, i512mem>, EVEX_V512,
+ VEX_W, EVEX_CD8<64, CD8VF>;
+//===----------------------------------------------------------------------===//
+// AVX-512 - PSHUFD
+//
+
+multiclass avx512_pshuf_imm<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ SDNode OpNode, PatFrag mem_frag,
+ X86MemOperand x86memop, ValueType OpVT> {
+ def ri : AVX512Ii8<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1, (i8 imm:$src2))))]>,
+ EVEX;
+ def mi : AVX512Ii8<opc, MRMSrcMem, (outs RC:$dst),
+ (ins x86memop:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (OpVT (OpNode (mem_frag addr:$src1),
+ (i8 imm:$src2))))]>, EVEX;
+}
+
+defm VPSHUFDZ : avx512_pshuf_imm<0x70, "vpshufd", VR512, X86PShufd, memopv16i32,
+ i512mem, v16i32>, PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
+
+let ExeDomain = SSEPackedSingle in
+defm VPERMILPSZ : avx512_pshuf_imm<0x04, "vpermilps", VR512, X86VPermilp,
+ memopv16f32, i512mem, v16f32>, TAPD, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+let ExeDomain = SSEPackedDouble in
+defm VPERMILPDZ : avx512_pshuf_imm<0x05, "vpermilpd", VR512, X86VPermilp,
+ memopv8f64, i512mem, v8f64>, TAPD, EVEX_V512,
+ VEX_W, EVEX_CD8<32, CD8VF>;
+
+def : Pat<(v16i32 (X86VPermilp VR512:$src1, (i8 imm:$imm))),
+ (VPERMILPSZri VR512:$src1, imm:$imm)>;
+def : Pat<(v8i64 (X86VPermilp VR512:$src1, (i8 imm:$imm))),
+ (VPERMILPDZri VR512:$src1, imm:$imm)>;
+
+//===----------------------------------------------------------------------===//
+// AVX-512 Logical Instructions
+//===----------------------------------------------------------------------===//
+
+defm VPANDDZ : avx512_binop_rm<0xDB, "vpandd", and, v16i32, VK16WM, VR512, memopv16i32,
+ i512mem, loadi32, i32mem, "{1to16}", SSE_BIT_ITINS_P, 1>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPANDQZ : avx512_binop_rm<0xDB, "vpandq", and, v8i64, VK8WM, VR512, memopv8i64,
+ i512mem, loadi64, i64mem, "{1to8}", SSE_BIT_ITINS_P, 1>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VPORDZ : avx512_binop_rm<0xEB, "vpord", or, v16i32, VK16WM, VR512, memopv16i32,
+ i512mem, loadi32, i32mem, "{1to16}", SSE_BIT_ITINS_P, 1>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPORQZ : avx512_binop_rm<0xEB, "vporq", or, v8i64, VK8WM, VR512, memopv8i64,
+ i512mem, loadi64, i64mem, "{1to8}", SSE_BIT_ITINS_P, 1>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VPXORDZ : avx512_binop_rm<0xEF, "vpxord", xor, v16i32, VK16WM, VR512, memopv16i32,
+ i512mem, loadi32, i32mem, "{1to16}", SSE_BIT_ITINS_P, 1>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPXORQZ : avx512_binop_rm<0xEF, "vpxorq", xor, v8i64, VK8WM, VR512, memopv8i64,
+ i512mem, loadi64, i64mem, "{1to8}", SSE_BIT_ITINS_P, 1>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VPANDNDZ : avx512_binop_rm<0xDF, "vpandnd", X86andnp, v16i32, VK16WM, VR512,
+ memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
+ SSE_BIT_ITINS_P, 0>, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPANDNQZ : avx512_binop_rm<0xDF, "vpandnq", X86andnp, v8i64, VK8WM, VR512,
+ memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
+ SSE_BIT_ITINS_P, 0>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+//===----------------------------------------------------------------------===//
+// AVX-512 FP arithmetic
+//===----------------------------------------------------------------------===//
+
+multiclass avx512_binop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ SizeItins itins> {
+ defm SSZ : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"), OpNode, FR32X,
+ f32mem, itins.s, 0>, XS, EVEX_4V, VEX_LIG,
+ EVEX_CD8<32, CD8VT1>;
+ defm SDZ : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"), OpNode, FR64X,
+ f64mem, itins.d, 0>, XD, VEX_W, EVEX_4V, VEX_LIG,
+ EVEX_CD8<64, CD8VT1>;
+}
+
+let isCommutable = 1 in {
+defm VADD : avx512_binop_s<0x58, "add", fadd, SSE_ALU_ITINS_S>;
+defm VMUL : avx512_binop_s<0x59, "mul", fmul, SSE_ALU_ITINS_S>;
+defm VMIN : avx512_binop_s<0x5D, "min", X86fmin, SSE_ALU_ITINS_S>;
+defm VMAX : avx512_binop_s<0x5F, "max", X86fmax, SSE_ALU_ITINS_S>;
+}
+let isCommutable = 0 in {
+defm VSUB : avx512_binop_s<0x5C, "sub", fsub, SSE_ALU_ITINS_S>;
+defm VDIV : avx512_binop_s<0x5E, "div", fdiv, SSE_ALU_ITINS_S>;
+}
+
+multiclass avx512_fp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ RegisterClass KRC,
+ RegisterClass RC, ValueType vt,
+ X86MemOperand x86memop, PatFrag mem_frag,
+ X86MemOperand x86scalar_mop, PatFrag scalar_mfrag,
+ string BrdcstStr,
+ Domain d, OpndItins itins, bit commutable> {
+ let isCommutable = commutable in {
+ def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], itins.rr, d>,
+ EVEX_4V;
+
+ def rrk: PI<opc, MRMSrcReg, (outs RC:$dst), (ins KRC:$mask, RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}} |$dst {${mask}}, $src1, $src2}"),
+ [], itins.rr, d>, EVEX_4V, EVEX_K;
+
+ def rrkz: PI<opc, MRMSrcReg, (outs RC:$dst), (ins KRC:$mask, RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, $src2}"),
+ [], itins.rr, d>, EVEX_4V, EVEX_KZ;
+ }
+
+ let mayLoad = 1 in {
+ def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2)))],
+ itins.rm, d>, EVEX_4V;
+
+ def rmb : PI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86scalar_mop:$src2),
+ !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ ", $src1, $dst|$dst, $src1, ${src2}", BrdcstStr, "}"),
+ [(set RC:$dst, (OpNode RC:$src1,
+ (vt (X86VBroadcast (scalar_mfrag addr:$src2)))))],
+ itins.rm, d>, EVEX_4V, EVEX_B;
+
+ def rmk : PI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, x86memop:$src2), !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
+ [], itins.rm, d>, EVEX_4V, EVEX_K;
+
+ def rmkz : PI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, x86memop:$src2), !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, $src2}"),
+ [], itins.rm, d>, EVEX_4V, EVEX_KZ;
+
+ def rmbk : PI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, x86scalar_mop:$src2), !strconcat(OpcodeStr,
+ " \t{${src2}", BrdcstStr,
+ ", $src1, $dst {${mask}}|$dst {${mask}}, $src1, ${src2}", BrdcstStr, "}"),
+ [], itins.rm, d>, EVEX_4V, EVEX_B, EVEX_K;
+
+ def rmbkz : PI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, x86scalar_mop:$src2), !strconcat(OpcodeStr,
+ " \t{${src2}", BrdcstStr,
+ ", $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, ${src2}",
+ BrdcstStr, "}"),
+ [], itins.rm, d>, EVEX_4V, EVEX_B, EVEX_KZ;
+ }
+}
+
+defm VADDPSZ : avx512_fp_packed<0x58, "addps", fadd, VK16WM, VR512, v16f32, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
+ SSE_ALU_ITINS_P.s, 1>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
+
+defm VADDPDZ : avx512_fp_packed<0x58, "addpd", fadd, VK8WM, VR512, v8f64, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
+ SSE_ALU_ITINS_P.d, 1>,
+ EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VMULPSZ : avx512_fp_packed<0x59, "mulps", fmul, VK16WM, VR512, v16f32, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
+ SSE_ALU_ITINS_P.s, 1>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
+defm VMULPDZ : avx512_fp_packed<0x59, "mulpd", fmul, VK8WM, VR512, v8f64, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
+ SSE_ALU_ITINS_P.d, 1>,
+ EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VMINPSZ : avx512_fp_packed<0x5D, "minps", X86fmin, VK16WM, VR512, v16f32, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
+ SSE_ALU_ITINS_P.s, 1>,
+ EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
+defm VMAXPSZ : avx512_fp_packed<0x5F, "maxps", X86fmax, VK16WM, VR512, v16f32, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
+ SSE_ALU_ITINS_P.s, 1>,
+ EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
+
+defm VMINPDZ : avx512_fp_packed<0x5D, "minpd", X86fmin, VK8WM, VR512, v8f64, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
+ SSE_ALU_ITINS_P.d, 1>,
+ EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VMAXPDZ : avx512_fp_packed<0x5F, "maxpd", X86fmax, VK8WM, VR512, v8f64, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
+ SSE_ALU_ITINS_P.d, 1>,
+ EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VSUBPSZ : avx512_fp_packed<0x5C, "subps", fsub, VK16WM, VR512, v16f32, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
+ SSE_ALU_ITINS_P.s, 0>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
+defm VDIVPSZ : avx512_fp_packed<0x5E, "divps", fdiv, VK16WM, VR512, v16f32, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
+ SSE_ALU_ITINS_P.s, 0>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
+
+defm VSUBPDZ : avx512_fp_packed<0x5C, "subpd", fsub, VK8WM, VR512, v8f64, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
+ SSE_ALU_ITINS_P.d, 0>,
+ EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VDIVPDZ : avx512_fp_packed<0x5E, "divpd", fdiv, VK8WM, VR512, v8f64, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
+ SSE_ALU_ITINS_P.d, 0>,
+ EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
+
+def : Pat<(v16f32 (int_x86_avx512_mask_max_ps_512 (v16f32 VR512:$src1),
+ (v16f32 VR512:$src2), (bc_v16f32 (v16i32 immAllZerosV)),
+ (i16 -1), FROUND_CURRENT)),
+ (VMAXPSZrr VR512:$src1, VR512:$src2)>;
+
+def : Pat<(v8f64 (int_x86_avx512_mask_max_pd_512 (v8f64 VR512:$src1),
+ (v8f64 VR512:$src2), (bc_v8f64 (v16i32 immAllZerosV)),
+ (i8 -1), FROUND_CURRENT)),
+ (VMAXPDZrr VR512:$src1, VR512:$src2)>;
+
+def : Pat<(v16f32 (int_x86_avx512_mask_min_ps_512 (v16f32 VR512:$src1),
+ (v16f32 VR512:$src2), (bc_v16f32 (v16i32 immAllZerosV)),
+ (i16 -1), FROUND_CURRENT)),
+ (VMINPSZrr VR512:$src1, VR512:$src2)>;
+
+def : Pat<(v8f64 (int_x86_avx512_mask_min_pd_512 (v8f64 VR512:$src1),
+ (v8f64 VR512:$src2), (bc_v8f64 (v16i32 immAllZerosV)),
+ (i8 -1), FROUND_CURRENT)),
+ (VMINPDZrr VR512:$src1, VR512:$src2)>;
+//===----------------------------------------------------------------------===//
+// AVX-512 VPTESTM instructions
+//===----------------------------------------------------------------------===//
+
+multiclass avx512_vptest<bits<8> opc, string OpcodeStr, RegisterClass KRC,
+ RegisterClass RC, X86MemOperand x86memop, PatFrag memop_frag,
+ SDNode OpNode, ValueType vt> {
+ def rr : AVX512PI<opc, MRMSrcReg,
+ (outs KRC:$dst), (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set KRC:$dst, (OpNode (vt RC:$src1), (vt RC:$src2)))],
+ SSEPackedInt>, EVEX_4V;
+ def rm : AVX512PI<opc, MRMSrcMem,
+ (outs KRC:$dst), (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set KRC:$dst, (OpNode (vt RC:$src1),
+ (bitconvert (memop_frag addr:$src2))))], SSEPackedInt>, EVEX_4V;
+}
+
+defm VPTESTMDZ : avx512_vptest<0x27, "vptestmd", VK16, VR512, f512mem,
+ memopv16i32, X86testm, v16i32>, T8PD, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VPTESTMQZ : avx512_vptest<0x27, "vptestmq", VK8, VR512, f512mem,
+ memopv8i64, X86testm, v8i64>, T8PD, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+
+let Predicates = [HasCDI] in {
+defm VPTESTNMDZ : avx512_vptest<0x27, "vptestnmd", VK16, VR512, f512mem,
+ memopv16i32, X86testnm, v16i32>, T8XS, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VPTESTNMQZ : avx512_vptest<0x27, "vptestnmq", VK8, VR512, f512mem,
+ memopv8i64, X86testnm, v8i64>, T8XS, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+}
+
+def : Pat <(i16 (int_x86_avx512_mask_ptestm_d_512 (v16i32 VR512:$src1),
+ (v16i32 VR512:$src2), (i16 -1))),
+ (COPY_TO_REGCLASS (VPTESTMDZrr VR512:$src1, VR512:$src2), GR16)>;
+
+def : Pat <(i8 (int_x86_avx512_mask_ptestm_q_512 (v8i64 VR512:$src1),
+ (v8i64 VR512:$src2), (i8 -1))),
+ (COPY_TO_REGCLASS (VPTESTMQZrr VR512:$src1, VR512:$src2), GR8)>;
+//===----------------------------------------------------------------------===//
+// AVX-512 Shift instructions
+//===----------------------------------------------------------------------===//
+multiclass avx512_shift_rmi<bits<8> opc, Format ImmFormR, Format ImmFormM,
+ string OpcodeStr, SDNode OpNode, RegisterClass RC,
+ ValueType vt, X86MemOperand x86memop, PatFrag mem_frag,
+ RegisterClass KRC> {
+ def ri : AVX512BIi8<opc, ImmFormR, (outs RC:$dst),
+ (ins RC:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (vt (OpNode RC:$src1, (i8 imm:$src2))))],
+ SSE_INTSHIFT_ITINS_P.rr>, EVEX_4V;
+ def rik : AVX512BIi8<opc, ImmFormR, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
+ [], SSE_INTSHIFT_ITINS_P.rr>, EVEX_4V, EVEX_K;
+ def mi: AVX512BIi8<opc, ImmFormM, (outs RC:$dst),
+ (ins x86memop:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (OpNode (mem_frag addr:$src1),
+ (i8 imm:$src2)))], SSE_INTSHIFT_ITINS_P.rm>, EVEX_4V;
+ def mik: AVX512BIi8<opc, ImmFormM, (outs RC:$dst),
+ (ins KRC:$mask, x86memop:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
+ [], SSE_INTSHIFT_ITINS_P.rm>, EVEX_4V, EVEX_K;
+}
+
+multiclass avx512_shift_rrm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ RegisterClass RC, ValueType vt, ValueType SrcVT,
+ PatFrag bc_frag, RegisterClass KRC> {
+ // src2 is always 128-bit
+ def rr : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, VR128X:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (vt (OpNode RC:$src1, (SrcVT VR128X:$src2))))],
+ SSE_INTSHIFT_ITINS_P.rr>, EVEX_4V;
+ def rrk : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, VR128X:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
+ [], SSE_INTSHIFT_ITINS_P.rr>, EVEX_4V, EVEX_K;
+ def rm : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, i128mem:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (vt (OpNode RC:$src1,
+ (bc_frag (memopv2i64 addr:$src2)))))],
+ SSE_INTSHIFT_ITINS_P.rm>, EVEX_4V;
+ def rmk : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src1, i128mem:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
+ [], SSE_INTSHIFT_ITINS_P.rm>, EVEX_4V, EVEX_K;
+}
+
+defm VPSRLDZ : avx512_shift_rmi<0x72, MRM2r, MRM2m, "vpsrld", X86vsrli,
+ VR512, v16i32, i512mem, memopv16i32, VK16WM>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPSRLDZ : avx512_shift_rrm<0xD2, "vpsrld", X86vsrl,
+ VR512, v16i32, v4i32, bc_v4i32, VK16WM>, EVEX_V512,
+ EVEX_CD8<32, CD8VQ>;
+
+defm VPSRLQZ : avx512_shift_rmi<0x73, MRM2r, MRM2m, "vpsrlq", X86vsrli,
+ VR512, v8i64, i512mem, memopv8i64, VK8WM>, EVEX_V512,
+ EVEX_CD8<64, CD8VF>, VEX_W;
+defm VPSRLQZ : avx512_shift_rrm<0xD3, "vpsrlq", X86vsrl,
+ VR512, v8i64, v2i64, bc_v2i64, VK8WM>, EVEX_V512,
+ EVEX_CD8<64, CD8VQ>, VEX_W;
+
+defm VPSLLDZ : avx512_shift_rmi<0x72, MRM6r, MRM6m, "vpslld", X86vshli,
+ VR512, v16i32, i512mem, memopv16i32, VK16WM>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VPSLLDZ : avx512_shift_rrm<0xF2, "vpslld", X86vshl,
+ VR512, v16i32, v4i32, bc_v4i32, VK16WM>, EVEX_V512,
+ EVEX_CD8<32, CD8VQ>;
+
+defm VPSLLQZ : avx512_shift_rmi<0x73, MRM6r, MRM6m, "vpsllq", X86vshli,
+ VR512, v8i64, i512mem, memopv8i64, VK8WM>, EVEX_V512,
+ EVEX_CD8<64, CD8VF>, VEX_W;
+defm VPSLLQZ : avx512_shift_rrm<0xF3, "vpsllq", X86vshl,
+ VR512, v8i64, v2i64, bc_v2i64, VK8WM>, EVEX_V512,
+ EVEX_CD8<64, CD8VQ>, VEX_W;
+
+defm VPSRADZ : avx512_shift_rmi<0x72, MRM4r, MRM4m, "vpsrad", X86vsrai,
+ VR512, v16i32, i512mem, memopv16i32, VK16WM>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VPSRADZ : avx512_shift_rrm<0xE2, "vpsrad", X86vsra,
+ VR512, v16i32, v4i32, bc_v4i32, VK16WM>, EVEX_V512,
+ EVEX_CD8<32, CD8VQ>;
+
+defm VPSRAQZ : avx512_shift_rmi<0x72, MRM4r, MRM4m, "vpsraq", X86vsrai,
+ VR512, v8i64, i512mem, memopv8i64, VK8WM>, EVEX_V512,
+ EVEX_CD8<64, CD8VF>, VEX_W;
+defm VPSRAQZ : avx512_shift_rrm<0xE2, "vpsraq", X86vsra,
+ VR512, v8i64, v2i64, bc_v2i64, VK8WM>, EVEX_V512,
+ EVEX_CD8<64, CD8VQ>, VEX_W;
+
+//===-------------------------------------------------------------------===//
+// Variable Bit Shifts
+//===-------------------------------------------------------------------===//
+multiclass avx512_var_shift<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ RegisterClass RC, ValueType vt,
+ X86MemOperand x86memop, PatFrag mem_frag> {
+ def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (vt (OpNode RC:$src1, (vt RC:$src2))))]>,
+ EVEX_4V;
+ def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (vt (OpNode RC:$src1, (mem_frag addr:$src2))))]>,
+ EVEX_4V;
+}
+
+defm VPSLLVDZ : avx512_var_shift<0x47, "vpsllvd", shl, VR512, v16i32,
+ i512mem, memopv16i32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VPSLLVQZ : avx512_var_shift<0x47, "vpsllvq", shl, VR512, v8i64,
+ i512mem, memopv8i64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+defm VPSRLVDZ : avx512_var_shift<0x45, "vpsrlvd", srl, VR512, v16i32,
+ i512mem, memopv16i32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VPSRLVQZ : avx512_var_shift<0x45, "vpsrlvq", srl, VR512, v8i64,
+ i512mem, memopv8i64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+defm VPSRAVDZ : avx512_var_shift<0x46, "vpsravd", sra, VR512, v16i32,
+ i512mem, memopv16i32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VPSRAVQZ : avx512_var_shift<0x46, "vpsravq", sra, VR512, v8i64,
+ i512mem, memopv8i64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+
+//===----------------------------------------------------------------------===//
+// AVX-512 - MOVDDUP
+//===----------------------------------------------------------------------===//
+
+multiclass avx512_movddup<string OpcodeStr, RegisterClass RC, ValueType VT,
+ X86MemOperand x86memop, PatFrag memop_frag> {
+def rr : AVX512PDI<0x12, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (VT (X86Movddup RC:$src)))]>, EVEX;
+def rm : AVX512PDI<0x12, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst,
+ (VT (X86Movddup (memop_frag addr:$src))))]>, EVEX;
+}
+
+defm VMOVDDUPZ : avx512_movddup<"vmovddup", VR512, v8f64, f512mem, memopv8f64>,
+ VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+def : Pat<(X86Movddup (v8f64 (scalar_to_vector (loadf64 addr:$src)))),
+ (VMOVDDUPZrm addr:$src)>;
+
+//===---------------------------------------------------------------------===//
+// Replicate Single FP - MOVSHDUP and MOVSLDUP
+//===---------------------------------------------------------------------===//
+multiclass avx512_replicate_sfp<bits<8> op, SDNode OpNode, string OpcodeStr,
+ ValueType vt, RegisterClass RC, PatFrag mem_frag,
+ X86MemOperand x86memop> {
+ def rr : AVX512XSI<op, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (vt (OpNode RC:$src)))]>, EVEX;
+ let mayLoad = 1 in
+ def rm : AVX512XSI<op, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (OpNode (mem_frag addr:$src)))]>, EVEX;
+}
+
+defm VMOVSHDUPZ : avx512_replicate_sfp<0x16, X86Movshdup, "vmovshdup",
+ v16f32, VR512, memopv16f32, f512mem>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VMOVSLDUPZ : avx512_replicate_sfp<0x12, X86Movsldup, "vmovsldup",
+ v16f32, VR512, memopv16f32, f512mem>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+
+def : Pat<(v16i32 (X86Movshdup VR512:$src)), (VMOVSHDUPZrr VR512:$src)>;
+def : Pat<(v16i32 (X86Movshdup (memopv16i32 addr:$src))),
+ (VMOVSHDUPZrm addr:$src)>;
+def : Pat<(v16i32 (X86Movsldup VR512:$src)), (VMOVSLDUPZrr VR512:$src)>;
+def : Pat<(v16i32 (X86Movsldup (memopv16i32 addr:$src))),
+ (VMOVSLDUPZrm addr:$src)>;
+
+//===----------------------------------------------------------------------===//
+// Move Low to High and High to Low packed FP Instructions
+//===----------------------------------------------------------------------===//
+def VMOVLHPSZrr : AVX512PSI<0x16, MRMSrcReg, (outs VR128X:$dst),
+ (ins VR128X:$src1, VR128X:$src2),
+ "vmovlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128X:$dst, (v4f32 (X86Movlhps VR128X:$src1, VR128X:$src2)))],
+ IIC_SSE_MOV_LH>, EVEX_4V;
+def VMOVHLPSZrr : AVX512PSI<0x12, MRMSrcReg, (outs VR128X:$dst),
+ (ins VR128X:$src1, VR128X:$src2),
+ "vmovhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128X:$dst, (v4f32 (X86Movhlps VR128X:$src1, VR128X:$src2)))],
+ IIC_SSE_MOV_LH>, EVEX_4V;
+
+let Predicates = [HasAVX512] in {
+ // MOVLHPS patterns
+ def : Pat<(v4i32 (X86Movlhps VR128X:$src1, VR128X:$src2)),
+ (VMOVLHPSZrr VR128X:$src1, VR128X:$src2)>;
+ def : Pat<(v2i64 (X86Movlhps VR128X:$src1, VR128X:$src2)),
+ (VMOVLHPSZrr (v2i64 VR128X:$src1), VR128X:$src2)>;
+
+ // MOVHLPS patterns
+ def : Pat<(v4i32 (X86Movhlps VR128X:$src1, VR128X:$src2)),
+ (VMOVHLPSZrr VR128X:$src1, VR128X:$src2)>;
+}
+
+//===----------------------------------------------------------------------===//
+// FMA - Fused Multiply Operations
+//
+let Constraints = "$src1 = $dst" in {
+multiclass avx512_fma3p_rm<bits<8> opc, string OpcodeStr,
+ RegisterClass RC, X86MemOperand x86memop,
+ PatFrag mem_frag, X86MemOperand x86scalar_mop, PatFrag scalar_mfrag,
+ string BrdcstStr, SDNode OpNode, ValueType OpVT> {
+ def r: AVX512FMA3<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, RC:$src3),
+ !strconcat(OpcodeStr," \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set RC:$dst, (OpVT(OpNode RC:$src1, RC:$src2, RC:$src3)))]>;
+
+ let mayLoad = 1 in
+ def m: AVX512FMA3<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, x86memop:$src3),
+ !strconcat(OpcodeStr, " \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2,
+ (mem_frag addr:$src3))))]>;
+ def mb: AVX512FMA3<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, x86scalar_mop:$src3),
+ !strconcat(OpcodeStr, " \t{${src3}", BrdcstStr,
+ ", $src2, $dst|$dst, $src2, ${src3}", BrdcstStr, "}"),
+ [(set RC:$dst, (OpNode RC:$src1, RC:$src2,
+ (OpVT (X86VBroadcast (scalar_mfrag addr:$src3)))))]>, EVEX_B;
+}
+} // Constraints = "$src1 = $dst"
+
+let ExeDomain = SSEPackedSingle in {
+ defm VFMADD213PSZ : avx512_fma3p_rm<0xA8, "vfmadd213ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fmadd, v16f32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+ defm VFMSUB213PSZ : avx512_fma3p_rm<0xAA, "vfmsub213ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fmsub, v16f32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+ defm VFMADDSUB213PSZ : avx512_fma3p_rm<0xA6, "vfmaddsub213ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fmaddsub, v16f32>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+ defm VFMSUBADD213PSZ : avx512_fma3p_rm<0xA7, "vfmsubadd213ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fmsubadd, v16f32>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+ defm VFNMADD213PSZ : avx512_fma3p_rm<0xAC, "vfnmadd213ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fnmadd, v16f32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+ defm VFNMSUB213PSZ : avx512_fma3p_rm<0xAE, "vfnmsub213ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fnmsub, v16f32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+}
+let ExeDomain = SSEPackedDouble in {
+ defm VFMADD213PDZ : avx512_fma3p_rm<0xA8, "vfmadd213pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fmadd, v8f64>, EVEX_V512,
+ VEX_W, EVEX_CD8<64, CD8VF>;
+ defm VFMSUB213PDZ : avx512_fma3p_rm<0xAA, "vfmsub213pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fmsub, v8f64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+ defm VFMADDSUB213PDZ : avx512_fma3p_rm<0xA6, "vfmaddsub213pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fmaddsub, v8f64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+ defm VFMSUBADD213PDZ : avx512_fma3p_rm<0xA7, "vfmsubadd213pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fmsubadd, v8f64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+ defm VFNMADD213PDZ : avx512_fma3p_rm<0xAC, "vfnmadd213pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fnmadd, v8f64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+ defm VFNMSUB213PDZ : avx512_fma3p_rm<0xAE, "vfnmsub213pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fnmsub, v8f64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+}
+
+let Constraints = "$src1 = $dst" in {
+multiclass avx512_fma3p_m132<bits<8> opc, string OpcodeStr,
+ RegisterClass RC, X86MemOperand x86memop,
+ PatFrag mem_frag, X86MemOperand x86scalar_mop, PatFrag scalar_mfrag,
+ string BrdcstStr, SDNode OpNode, ValueType OpVT> {
+ let mayLoad = 1 in
+ def m: AVX512FMA3<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, RC:$src3, x86memop:$src2),
+ !strconcat(OpcodeStr, " \t{$src2, $src3, $dst|$dst, $src3, $src2}"),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3)))]>;
+ def mb: AVX512FMA3<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, RC:$src3, x86scalar_mop:$src2),
+ !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ ", $src3, $dst|$dst, $src3, ${src2}", BrdcstStr, "}"),
+ [(set RC:$dst, (OpNode RC:$src1,
+ (OpVT (X86VBroadcast (scalar_mfrag addr:$src2))), RC:$src3))]>, EVEX_B;
+}
+} // Constraints = "$src1 = $dst"
+
+
+let ExeDomain = SSEPackedSingle in {
+ defm VFMADD132PSZ : avx512_fma3p_m132<0x98, "vfmadd132ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fmadd, v16f32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+ defm VFMSUB132PSZ : avx512_fma3p_m132<0x9A, "vfmsub132ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fmsub, v16f32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+ defm VFMADDSUB132PSZ : avx512_fma3p_m132<0x96, "vfmaddsub132ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fmaddsub, v16f32>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+ defm VFMSUBADD132PSZ : avx512_fma3p_m132<0x97, "vfmsubadd132ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fmsubadd, v16f32>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+ defm VFNMADD132PSZ : avx512_fma3p_m132<0x9C, "vfnmadd132ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fnmadd, v16f32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+ defm VFNMSUB132PSZ : avx512_fma3p_m132<0x9E, "vfnmsub132ps", VR512, f512mem,
+ memopv16f32, f32mem, loadf32, "{1to16}",
+ X86Fnmsub, v16f32>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+}
+let ExeDomain = SSEPackedDouble in {
+ defm VFMADD132PDZ : avx512_fma3p_m132<0x98, "vfmadd132pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fmadd, v8f64>, EVEX_V512,
+ VEX_W, EVEX_CD8<64, CD8VF>;
+ defm VFMSUB132PDZ : avx512_fma3p_m132<0x9A, "vfmsub132pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fmsub, v8f64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+ defm VFMADDSUB132PDZ : avx512_fma3p_m132<0x96, "vfmaddsub132pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fmaddsub, v8f64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+ defm VFMSUBADD132PDZ : avx512_fma3p_m132<0x97, "vfmsubadd132pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fmsubadd, v8f64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+ defm VFNMADD132PDZ : avx512_fma3p_m132<0x9C, "vfnmadd132pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fnmadd, v8f64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+ defm VFNMSUB132PDZ : avx512_fma3p_m132<0x9E, "vfnmsub132pd", VR512, f512mem,
+ memopv8f64, f64mem, loadf64, "{1to8}",
+ X86Fnmsub, v8f64>, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+}
+
+// Scalar FMA
+let Constraints = "$src1 = $dst" in {
+multiclass avx512_fma3s_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ RegisterClass RC, ValueType OpVT,
+ X86MemOperand x86memop, Operand memop,
+ PatFrag mem_frag> {
+ let isCommutable = 1 in
+ def r : AVX512FMA3<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src2, RC:$src1, RC:$src3)))]>;
+ let mayLoad = 1 in
+ def m : AVX512FMA3<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, f128mem:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src2, RC:$src1,
+ (mem_frag addr:$src3))))]>;
+}
+
+} // Constraints = "$src1 = $dst"
+
+defm VFMADDSSZ : avx512_fma3s_rm<0xA9, "vfmadd213ss", X86Fmadd, FR32X,
+ f32, f32mem, ssmem, loadf32>, EVEX_CD8<32, CD8VT1>;
+defm VFMADDSDZ : avx512_fma3s_rm<0xA9, "vfmadd213sd", X86Fmadd, FR64X,
+ f64, f64mem, sdmem, loadf64>, VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VFMSUBSSZ : avx512_fma3s_rm<0xAB, "vfmsub213ss", X86Fmsub, FR32X,
+ f32, f32mem, ssmem, loadf32>, EVEX_CD8<32, CD8VT1>;
+defm VFMSUBSDZ : avx512_fma3s_rm<0xAB, "vfmsub213sd", X86Fmsub, FR64X,
+ f64, f64mem, sdmem, loadf64>, VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VFNMADDSSZ : avx512_fma3s_rm<0xAD, "vfnmadd213ss", X86Fnmadd, FR32X,
+ f32, f32mem, ssmem, loadf32>, EVEX_CD8<32, CD8VT1>;
+defm VFNMADDSDZ : avx512_fma3s_rm<0xAD, "vfnmadd213sd", X86Fnmadd, FR64X,
+ f64, f64mem, sdmem, loadf64>, VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VFNMSUBSSZ : avx512_fma3s_rm<0xAF, "vfnmsub213ss", X86Fnmsub, FR32X,
+ f32, f32mem, ssmem, loadf32>, EVEX_CD8<32, CD8VT1>;
+defm VFNMSUBSDZ : avx512_fma3s_rm<0xAF, "vfnmsub213sd", X86Fnmsub, FR64X,
+ f64, f64mem, sdmem, loadf64>, VEX_W, EVEX_CD8<64, CD8VT1>;
+
+//===----------------------------------------------------------------------===//
+// AVX-512 Scalar convert from sign integer to float/double
+//===----------------------------------------------------------------------===//
+
+multiclass avx512_vcvtsi<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
+ X86MemOperand x86memop, string asm> {
+let hasSideEffects = 0 in {
+ def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src),
+ !strconcat(asm," \t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
+ EVEX_4V;
+ let mayLoad = 1 in
+ def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
+ (ins DstRC:$src1, x86memop:$src),
+ !strconcat(asm," \t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
+ EVEX_4V;
+} // hasSideEffects = 0
+}
+let Predicates = [HasAVX512] in {
+defm VCVTSI2SSZ : avx512_vcvtsi<0x2A, GR32, FR32X, i32mem, "cvtsi2ss{l}">,
+ XS, VEX_LIG, EVEX_CD8<32, CD8VT1>;
+defm VCVTSI642SSZ : avx512_vcvtsi<0x2A, GR64, FR32X, i64mem, "cvtsi2ss{q}">,
+ XS, VEX_W, VEX_LIG, EVEX_CD8<64, CD8VT1>;
+defm VCVTSI2SDZ : avx512_vcvtsi<0x2A, GR32, FR64X, i32mem, "cvtsi2sd{l}">,
+ XD, VEX_LIG, EVEX_CD8<32, CD8VT1>;
+defm VCVTSI642SDZ : avx512_vcvtsi<0x2A, GR64, FR64X, i64mem, "cvtsi2sd{q}">,
+ XD, VEX_W, VEX_LIG, EVEX_CD8<64, CD8VT1>;
+
+def : Pat<(f32 (sint_to_fp (loadi32 addr:$src))),
+ (VCVTSI2SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>;
+def : Pat<(f32 (sint_to_fp (loadi64 addr:$src))),
+ (VCVTSI642SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>;
+def : Pat<(f64 (sint_to_fp (loadi32 addr:$src))),
+ (VCVTSI2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>;
+def : Pat<(f64 (sint_to_fp (loadi64 addr:$src))),
+ (VCVTSI642SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>;
+
+def : Pat<(f32 (sint_to_fp GR32:$src)),
+ (VCVTSI2SSZrr (f32 (IMPLICIT_DEF)), GR32:$src)>;
+def : Pat<(f32 (sint_to_fp GR64:$src)),
+ (VCVTSI642SSZrr (f32 (IMPLICIT_DEF)), GR64:$src)>;
+def : Pat<(f64 (sint_to_fp GR32:$src)),
+ (VCVTSI2SDZrr (f64 (IMPLICIT_DEF)), GR32:$src)>;
+def : Pat<(f64 (sint_to_fp GR64:$src)),
+ (VCVTSI642SDZrr (f64 (IMPLICIT_DEF)), GR64:$src)>;
+
+defm VCVTUSI2SSZ : avx512_vcvtsi<0x7B, GR32, FR32X, i32mem, "cvtusi2ss{l}">,
+ XS, VEX_LIG, EVEX_CD8<32, CD8VT1>;
+defm VCVTUSI642SSZ : avx512_vcvtsi<0x7B, GR64, FR32X, i64mem, "cvtusi2ss{q}">,
+ XS, VEX_W, VEX_LIG, EVEX_CD8<64, CD8VT1>;
+defm VCVTUSI2SDZ : avx512_vcvtsi<0x7B, GR32, FR64X, i32mem, "cvtusi2sd{l}">,
+ XD, VEX_LIG, EVEX_CD8<32, CD8VT1>;
+defm VCVTUSI642SDZ : avx512_vcvtsi<0x7B, GR64, FR64X, i64mem, "cvtusi2sd{q}">,
+ XD, VEX_W, VEX_LIG, EVEX_CD8<64, CD8VT1>;
+
+def : Pat<(f32 (uint_to_fp (loadi32 addr:$src))),
+ (VCVTUSI2SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>;
+def : Pat<(f32 (uint_to_fp (loadi64 addr:$src))),
+ (VCVTUSI642SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>;
+def : Pat<(f64 (uint_to_fp (loadi32 addr:$src))),
+ (VCVTUSI2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>;
+def : Pat<(f64 (uint_to_fp (loadi64 addr:$src))),
+ (VCVTUSI642SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>;
+
+def : Pat<(f32 (uint_to_fp GR32:$src)),
+ (VCVTUSI2SSZrr (f32 (IMPLICIT_DEF)), GR32:$src)>;
+def : Pat<(f32 (uint_to_fp GR64:$src)),
+ (VCVTUSI642SSZrr (f32 (IMPLICIT_DEF)), GR64:$src)>;
+def : Pat<(f64 (uint_to_fp GR32:$src)),
+ (VCVTUSI2SDZrr (f64 (IMPLICIT_DEF)), GR32:$src)>;
+def : Pat<(f64 (uint_to_fp GR64:$src)),
+ (VCVTUSI642SDZrr (f64 (IMPLICIT_DEF)), GR64:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// AVX-512 Scalar convert from float/double to integer
+//===----------------------------------------------------------------------===//
+multiclass avx512_cvt_s_int<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
+ Intrinsic Int, Operand memop, ComplexPattern mem_cpat,
+ string asm> {
+let hasSideEffects = 0 in {
+ def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
+ !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst, (Int SrcRC:$src))]>, EVEX, VEX_LIG,
+ Requires<[HasAVX512]>;
+ let mayLoad = 1 in
+ def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins memop:$src),
+ !strconcat(asm," \t{$src, $dst|$dst, $src}"), []>, EVEX, VEX_LIG,
+ Requires<[HasAVX512]>;
+} // hasSideEffects = 0
+}
+let Predicates = [HasAVX512] in {
+// Convert float/double to signed/unsigned int 32/64
+defm VCVTSS2SIZ: avx512_cvt_s_int<0x2D, VR128X, GR32, int_x86_sse_cvtss2si,
+ ssmem, sse_load_f32, "cvtss2si">,
+ XS, EVEX_CD8<32, CD8VT1>;
+defm VCVTSS2SI64Z: avx512_cvt_s_int<0x2D, VR128X, GR64, int_x86_sse_cvtss2si64,
+ ssmem, sse_load_f32, "cvtss2si">,
+ XS, VEX_W, EVEX_CD8<32, CD8VT1>;
+defm VCVTSS2USIZ: avx512_cvt_s_int<0x79, VR128X, GR32, int_x86_avx512_cvtss2usi,
+ ssmem, sse_load_f32, "cvtss2usi">,
+ XS, EVEX_CD8<32, CD8VT1>;
+defm VCVTSS2USI64Z: avx512_cvt_s_int<0x79, VR128X, GR64,
+ int_x86_avx512_cvtss2usi64, ssmem,
+ sse_load_f32, "cvtss2usi">, XS, VEX_W,
+ EVEX_CD8<32, CD8VT1>;
+defm VCVTSD2SIZ: avx512_cvt_s_int<0x2D, VR128X, GR32, int_x86_sse2_cvtsd2si,
+ sdmem, sse_load_f64, "cvtsd2si">,
+ XD, EVEX_CD8<64, CD8VT1>;
+defm VCVTSD2SI64Z: avx512_cvt_s_int<0x2D, VR128X, GR64, int_x86_sse2_cvtsd2si64,
+ sdmem, sse_load_f64, "cvtsd2si">,
+ XD, VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VCVTSD2USIZ: avx512_cvt_s_int<0x79, VR128X, GR32, int_x86_avx512_cvtsd2usi,
+ sdmem, sse_load_f64, "cvtsd2usi">,
+ XD, EVEX_CD8<64, CD8VT1>;
+defm VCVTSD2USI64Z: avx512_cvt_s_int<0x79, VR128X, GR64,
+ int_x86_avx512_cvtsd2usi64, sdmem,
+ sse_load_f64, "cvtsd2usi">, XD, VEX_W,
+ EVEX_CD8<64, CD8VT1>;
+
+let isCodeGenOnly = 1 in {
+ defm Int_VCVTSI2SSZ : sse12_cvt_sint_3addr<0x2A, GR32, VR128X,
+ int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss{l}",
+ SSE_CVT_Scalar, 0>, XS, EVEX_4V;
+ defm Int_VCVTSI2SS64Z : sse12_cvt_sint_3addr<0x2A, GR64, VR128X,
+ int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss{q}",
+ SSE_CVT_Scalar, 0>, XS, EVEX_4V, VEX_W;
+ defm Int_VCVTSI2SDZ : sse12_cvt_sint_3addr<0x2A, GR32, VR128X,
+ int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd{l}",
+ SSE_CVT_Scalar, 0>, XD, EVEX_4V;
+ defm Int_VCVTSI2SD64Z : sse12_cvt_sint_3addr<0x2A, GR64, VR128X,
+ int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd{q}",
+ SSE_CVT_Scalar, 0>, XD, EVEX_4V, VEX_W;
+
+ defm Int_VCVTUSI2SSZ : sse12_cvt_sint_3addr<0x2A, GR32, VR128X,
+ int_x86_avx512_cvtusi2ss, i32mem, loadi32, "cvtusi2ss{l}",
+ SSE_CVT_Scalar, 0>, XS, EVEX_4V;
+ defm Int_VCVTUSI2SS64Z : sse12_cvt_sint_3addr<0x2A, GR64, VR128X,
+ int_x86_avx512_cvtusi642ss, i64mem, loadi64, "cvtusi2ss{q}",
+ SSE_CVT_Scalar, 0>, XS, EVEX_4V, VEX_W;
+ defm Int_VCVTUSI2SDZ : sse12_cvt_sint_3addr<0x2A, GR32, VR128X,
+ int_x86_avx512_cvtusi2sd, i32mem, loadi32, "cvtusi2sd{l}",
+ SSE_CVT_Scalar, 0>, XD, EVEX_4V;
+ defm Int_VCVTUSI2SD64Z : sse12_cvt_sint_3addr<0x2A, GR64, VR128X,
+ int_x86_avx512_cvtusi642sd, i64mem, loadi64, "cvtusi2sd{q}",
+ SSE_CVT_Scalar, 0>, XD, EVEX_4V, VEX_W;
+} // isCodeGenOnly = 1
+
+// Convert float/double to signed/unsigned int 32/64 with truncation
+let isCodeGenOnly = 1 in {
+ defm Int_VCVTTSS2SIZ : avx512_cvt_s_int<0x2C, VR128X, GR32, int_x86_sse_cvttss2si,
+ ssmem, sse_load_f32, "cvttss2si">,
+ XS, EVEX_CD8<32, CD8VT1>;
+ defm Int_VCVTTSS2SI64Z : avx512_cvt_s_int<0x2C, VR128X, GR64,
+ int_x86_sse_cvttss2si64, ssmem, sse_load_f32,
+ "cvttss2si">, XS, VEX_W,
+ EVEX_CD8<32, CD8VT1>;
+ defm Int_VCVTTSD2SIZ : avx512_cvt_s_int<0x2C, VR128X, GR32, int_x86_sse2_cvttsd2si,
+ sdmem, sse_load_f64, "cvttsd2si">, XD,
+ EVEX_CD8<64, CD8VT1>;
+ defm Int_VCVTTSD2SI64Z : avx512_cvt_s_int<0x2C, VR128X, GR64,
+ int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64,
+ "cvttsd2si">, XD, VEX_W,
+ EVEX_CD8<64, CD8VT1>;
+ defm Int_VCVTTSS2USIZ : avx512_cvt_s_int<0x78, VR128X, GR32,
+ int_x86_avx512_cvttss2usi, ssmem, sse_load_f32,
+ "cvttss2usi">, XS, EVEX_CD8<32, CD8VT1>;
+ defm Int_VCVTTSS2USI64Z : avx512_cvt_s_int<0x78, VR128X, GR64,
+ int_x86_avx512_cvttss2usi64, ssmem,
+ sse_load_f32, "cvttss2usi">, XS, VEX_W,
+ EVEX_CD8<32, CD8VT1>;
+ defm Int_VCVTTSD2USIZ : avx512_cvt_s_int<0x78, VR128X, GR32,
+ int_x86_avx512_cvttsd2usi,
+ sdmem, sse_load_f64, "cvttsd2usi">, XD,
+ EVEX_CD8<64, CD8VT1>;
+ defm Int_VCVTTSD2USI64Z : avx512_cvt_s_int<0x78, VR128X, GR64,
+ int_x86_avx512_cvttsd2usi64, sdmem,
+ sse_load_f64, "cvttsd2usi">, XD, VEX_W,
+ EVEX_CD8<64, CD8VT1>;
+} // isCodeGenOnly = 1
+
+multiclass avx512_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
+ SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
+ string asm> {
+ def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
+ !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst, (OpNode SrcRC:$src))]>, EVEX;
+ def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src),
+ !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst, (OpNode (ld_frag addr:$src)))]>, EVEX;
+}
+
+defm VCVTTSS2SIZ : avx512_cvt_s<0x2C, FR32X, GR32, fp_to_sint, f32mem,
+ loadf32, "cvttss2si">, XS,
+ EVEX_CD8<32, CD8VT1>;
+defm VCVTTSS2USIZ : avx512_cvt_s<0x78, FR32X, GR32, fp_to_uint, f32mem,
+ loadf32, "cvttss2usi">, XS,
+ EVEX_CD8<32, CD8VT1>;
+defm VCVTTSS2SI64Z : avx512_cvt_s<0x2C, FR32X, GR64, fp_to_sint, f32mem,
+ loadf32, "cvttss2si">, XS, VEX_W,
+ EVEX_CD8<32, CD8VT1>;
+defm VCVTTSS2USI64Z : avx512_cvt_s<0x78, FR32X, GR64, fp_to_uint, f32mem,
+ loadf32, "cvttss2usi">, XS, VEX_W,
+ EVEX_CD8<32, CD8VT1>;
+defm VCVTTSD2SIZ : avx512_cvt_s<0x2C, FR64X, GR32, fp_to_sint, f64mem,
+ loadf64, "cvttsd2si">, XD,
+ EVEX_CD8<64, CD8VT1>;
+defm VCVTTSD2USIZ : avx512_cvt_s<0x78, FR64X, GR32, fp_to_uint, f64mem,
+ loadf64, "cvttsd2usi">, XD,
+ EVEX_CD8<64, CD8VT1>;
+defm VCVTTSD2SI64Z : avx512_cvt_s<0x2C, FR64X, GR64, fp_to_sint, f64mem,
+ loadf64, "cvttsd2si">, XD, VEX_W,
+ EVEX_CD8<64, CD8VT1>;
+defm VCVTTSD2USI64Z : avx512_cvt_s<0x78, FR64X, GR64, fp_to_uint, f64mem,
+ loadf64, "cvttsd2usi">, XD, VEX_W,
+ EVEX_CD8<64, CD8VT1>;
+} // HasAVX512
+//===----------------------------------------------------------------------===//
+// AVX-512 Convert form float to double and back
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in {
+def VCVTSS2SDZrr : AVX512XSI<0x5A, MRMSrcReg, (outs FR64X:$dst),
+ (ins FR32X:$src1, FR32X:$src2),
+ "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX_4V, VEX_LIG, Sched<[WriteCvtF2F]>;
+let mayLoad = 1 in
+def VCVTSS2SDZrm : AVX512XSI<0x5A, MRMSrcMem, (outs FR64X:$dst),
+ (ins FR32X:$src1, f32mem:$src2),
+ "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX_4V, VEX_LIG, Sched<[WriteCvtF2FLd, ReadAfterLd]>,
+ EVEX_CD8<32, CD8VT1>;
+
+// Convert scalar double to scalar single
+def VCVTSD2SSZrr : AVX512XDI<0x5A, MRMSrcReg, (outs FR32X:$dst),
+ (ins FR64X:$src1, FR64X:$src2),
+ "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX_4V, VEX_LIG, VEX_W, Sched<[WriteCvtF2F]>;
+let mayLoad = 1 in
+def VCVTSD2SSZrm : AVX512XDI<0x5A, MRMSrcMem, (outs FR32X:$dst),
+ (ins FR64X:$src1, f64mem:$src2),
+ "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX_4V, VEX_LIG, VEX_W,
+ Sched<[WriteCvtF2FLd, ReadAfterLd]>, EVEX_CD8<64, CD8VT1>;
+}
+
+def : Pat<(f64 (fextend FR32X:$src)), (VCVTSS2SDZrr FR32X:$src, FR32X:$src)>,
+ Requires<[HasAVX512]>;
+def : Pat<(fextend (loadf32 addr:$src)),
+ (VCVTSS2SDZrm (f32 (IMPLICIT_DEF)), addr:$src)>, Requires<[HasAVX512]>;
+
+def : Pat<(extloadf32 addr:$src),
+ (VCVTSS2SDZrm (f32 (IMPLICIT_DEF)), addr:$src)>,
+ Requires<[HasAVX512, OptForSize]>;
+
+def : Pat<(extloadf32 addr:$src),
+ (VCVTSS2SDZrr (f32 (IMPLICIT_DEF)), (VMOVSSZrm addr:$src))>,
+ Requires<[HasAVX512, OptForSpeed]>;
+
+def : Pat<(f32 (fround FR64X:$src)), (VCVTSD2SSZrr FR64X:$src, FR64X:$src)>,
+ Requires<[HasAVX512]>;
+
+multiclass avx512_vcvt_fp_with_rc<bits<8> opc, string asm, RegisterClass SrcRC,
+ RegisterClass DstRC, SDNode OpNode, PatFrag mem_frag,
+ X86MemOperand x86memop, ValueType OpVT, ValueType InVT,
+ Domain d> {
+let hasSideEffects = 0 in {
+ def rr : AVX512PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
+ !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst,
+ (OpVT (OpNode (InVT SrcRC:$src))))], d>, EVEX;
+ def rrb : AVX512PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src, AVX512RC:$rc),
+ !strconcat(asm," \t{$rc, $src, $dst|$dst, $src, $rc}"),
+ [], d>, EVEX, EVEX_B, EVEX_RC;
+ let mayLoad = 1 in
+ def rm : AVX512PI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src),
+ !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst,
+ (OpVT (OpNode (InVT (bitconvert (mem_frag addr:$src))))))], d>, EVEX;
+} // hasSideEffects = 0
+}
+
+multiclass avx512_vcvt_fp<bits<8> opc, string asm, RegisterClass SrcRC,
+ RegisterClass DstRC, SDNode OpNode, PatFrag mem_frag,
+ X86MemOperand x86memop, ValueType OpVT, ValueType InVT,
+ Domain d> {
+let hasSideEffects = 0 in {
+ def rr : AVX512PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
+ !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst,
+ (OpVT (OpNode (InVT SrcRC:$src))))], d>, EVEX;
+ let mayLoad = 1 in
+ def rm : AVX512PI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src),
+ !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst,
+ (OpVT (OpNode (InVT (bitconvert (mem_frag addr:$src))))))], d>, EVEX;
+} // hasSideEffects = 0
+}
+
+defm VCVTPD2PSZ : avx512_vcvt_fp_with_rc<0x5A, "vcvtpd2ps", VR512, VR256X, fround,
+ memopv8f64, f512mem, v8f32, v8f64,
+ SSEPackedSingle>, EVEX_V512, VEX_W, PD,
+ EVEX_CD8<64, CD8VF>;
+
+defm VCVTPS2PDZ : avx512_vcvt_fp<0x5A, "vcvtps2pd", VR256X, VR512, fextend,
+ memopv4f64, f256mem, v8f64, v8f32,
+ SSEPackedDouble>, EVEX_V512, PS,
+ EVEX_CD8<32, CD8VH>;
+def : Pat<(v8f64 (extloadv8f32 addr:$src)),
+ (VCVTPS2PDZrm addr:$src)>;
+
+def : Pat<(v8f32 (int_x86_avx512_mask_cvtpd2ps_512 (v8f64 VR512:$src),
+ (bc_v8f32(v8i32 immAllZerosV)), (i8 -1), (i32 FROUND_CURRENT))),
+ (VCVTPD2PSZrr VR512:$src)>;
+
+def : Pat<(v8f32 (int_x86_avx512_mask_cvtpd2ps_512 (v8f64 VR512:$src),
+ (bc_v8f32(v8i32 immAllZerosV)), (i8 -1), imm:$rc)),
+ (VCVTPD2PSZrrb VR512:$src, imm:$rc)>;
+
+//===----------------------------------------------------------------------===//
+// AVX-512 Vector convert from sign integer to float/double
+//===----------------------------------------------------------------------===//
+
+defm VCVTDQ2PSZ : avx512_vcvt_fp_with_rc<0x5B, "vcvtdq2ps", VR512, VR512, sint_to_fp,
+ memopv8i64, i512mem, v16f32, v16i32,
+ SSEPackedSingle>, EVEX_V512, PS,
+ EVEX_CD8<32, CD8VF>;
+
+defm VCVTDQ2PDZ : avx512_vcvt_fp<0xE6, "vcvtdq2pd", VR256X, VR512, sint_to_fp,
+ memopv4i64, i256mem, v8f64, v8i32,
+ SSEPackedDouble>, EVEX_V512, XS,
+ EVEX_CD8<32, CD8VH>;
+
+defm VCVTTPS2DQZ : avx512_vcvt_fp<0x5B, "vcvttps2dq", VR512, VR512, fp_to_sint,
+ memopv16f32, f512mem, v16i32, v16f32,
+ SSEPackedSingle>, EVEX_V512, XS,
+ EVEX_CD8<32, CD8VF>;
+
+defm VCVTTPD2DQZ : avx512_vcvt_fp<0xE6, "vcvttpd2dq", VR512, VR256X, fp_to_sint,
+ memopv8f64, f512mem, v8i32, v8f64,
+ SSEPackedDouble>, EVEX_V512, PD, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+
+defm VCVTTPS2UDQZ : avx512_vcvt_fp<0x78, "vcvttps2udq", VR512, VR512, fp_to_uint,
+ memopv16f32, f512mem, v16i32, v16f32,
+ SSEPackedSingle>, EVEX_V512, PS,
+ EVEX_CD8<32, CD8VF>;
+
+// cvttps2udq (src, 0, mask-all-ones, sae-current)
+def : Pat<(v16i32 (int_x86_avx512_mask_cvttps2udq_512 (v16f32 VR512:$src),
+ (v16i32 immAllZerosV), (i16 -1), FROUND_CURRENT)),
+ (VCVTTPS2UDQZrr VR512:$src)>;
+
+defm VCVTTPD2UDQZ : avx512_vcvt_fp<0x78, "vcvttpd2udq", VR512, VR256X, fp_to_uint,
+ memopv8f64, f512mem, v8i32, v8f64,
+ SSEPackedDouble>, EVEX_V512, PS, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+
+// cvttpd2udq (src, 0, mask-all-ones, sae-current)
+def : Pat<(v8i32 (int_x86_avx512_mask_cvttpd2udq_512 (v8f64 VR512:$src),
+ (v8i32 immAllZerosV), (i8 -1), FROUND_CURRENT)),
+ (VCVTTPD2UDQZrr VR512:$src)>;
+
+defm VCVTUDQ2PDZ : avx512_vcvt_fp<0x7A, "vcvtudq2pd", VR256X, VR512, uint_to_fp,
+ memopv4i64, f256mem, v8f64, v8i32,
+ SSEPackedDouble>, EVEX_V512, XS,
+ EVEX_CD8<32, CD8VH>;
+
+defm VCVTUDQ2PSZ : avx512_vcvt_fp_with_rc<0x7A, "vcvtudq2ps", VR512, VR512, uint_to_fp,
+ memopv16i32, f512mem, v16f32, v16i32,
+ SSEPackedSingle>, EVEX_V512, XD,
+ EVEX_CD8<32, CD8VF>;
+
+def : Pat<(v8i32 (fp_to_uint (v8f32 VR256X:$src1))),
+ (EXTRACT_SUBREG (v16i32 (VCVTTPS2UDQZrr
+ (v16f32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)))), sub_ymm)>;
+
+def : Pat<(v4i32 (fp_to_uint (v4f32 VR128X:$src1))),
+ (EXTRACT_SUBREG (v16i32 (VCVTTPS2UDQZrr
+ (v16f32 (SUBREG_TO_REG (i32 0), VR128X:$src1, sub_xmm)))), sub_xmm)>;
+
+def : Pat<(v8f32 (uint_to_fp (v8i32 VR256X:$src1))),
+ (EXTRACT_SUBREG (v16f32 (VCVTUDQ2PSZrr
+ (v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)))), sub_ymm)>;
+
+def : Pat<(v4f32 (uint_to_fp (v4i32 VR128X:$src1))),
+ (EXTRACT_SUBREG (v16f32 (VCVTUDQ2PSZrr
+ (v16i32 (SUBREG_TO_REG (i32 0), VR128X:$src1, sub_xmm)))), sub_xmm)>;
+
+def : Pat<(v4f64 (uint_to_fp (v4i32 VR128X:$src1))),
+ (EXTRACT_SUBREG (v8f64 (VCVTUDQ2PDZrr
+ (v8i32 (SUBREG_TO_REG (i32 0), VR128X:$src1, sub_xmm)))), sub_ymm)>;
+
+def : Pat<(v16f32 (int_x86_avx512_mask_cvtdq2ps_512 (v16i32 VR512:$src),
+ (bc_v16f32 (v16i32 immAllZerosV)), (i16 -1), imm:$rc)),
+ (VCVTDQ2PSZrrb VR512:$src, imm:$rc)>;
+def : Pat<(v8f64 (int_x86_avx512_mask_cvtdq2pd_512 (v8i32 VR256X:$src),
+ (bc_v8f64 (v16i32 immAllZerosV)), (i8 -1))),
+ (VCVTDQ2PDZrr VR256X:$src)>;
+def : Pat<(v16f32 (int_x86_avx512_mask_cvtudq2ps_512 (v16i32 VR512:$src),
+ (bc_v16f32 (v16i32 immAllZerosV)), (i16 -1), imm:$rc)),
+ (VCVTUDQ2PSZrrb VR512:$src, imm:$rc)>;
+def : Pat<(v8f64 (int_x86_avx512_mask_cvtudq2pd_512 (v8i32 VR256X:$src),
+ (bc_v8f64 (v16i32 immAllZerosV)), (i8 -1))),
+ (VCVTUDQ2PDZrr VR256X:$src)>;
+
+multiclass avx512_vcvt_fp2int<bits<8> opc, string asm, RegisterClass SrcRC,
+ RegisterClass DstRC, PatFrag mem_frag,
+ X86MemOperand x86memop, Domain d> {
+let hasSideEffects = 0 in {
+ def rr : AVX512PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
+ !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ [], d>, EVEX;
+ def rrb : AVX512PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src, AVX512RC:$rc),
+ !strconcat(asm," \t{$rc, $src, $dst|$dst, $src, $rc}"),
+ [], d>, EVEX, EVEX_B, EVEX_RC;
+ let mayLoad = 1 in
+ def rm : AVX512PI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src),
+ !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ [], d>, EVEX;
+} // hasSideEffects = 0
+}
+
+defm VCVTPS2DQZ : avx512_vcvt_fp2int<0x5B, "vcvtps2dq", VR512, VR512,
+ memopv16f32, f512mem, SSEPackedSingle>, PD,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VCVTPD2DQZ : avx512_vcvt_fp2int<0xE6, "vcvtpd2dq", VR512, VR256X,
+ memopv8f64, f512mem, SSEPackedDouble>, XD, VEX_W,
+ EVEX_V512, EVEX_CD8<64, CD8VF>;
+
+def : Pat <(v16i32 (int_x86_avx512_mask_cvtps2dq_512 (v16f32 VR512:$src),
+ (v16i32 immAllZerosV), (i16 -1), imm:$rc)),
+ (VCVTPS2DQZrrb VR512:$src, imm:$rc)>;
+
+def : Pat <(v8i32 (int_x86_avx512_mask_cvtpd2dq_512 (v8f64 VR512:$src),
+ (v8i32 immAllZerosV), (i8 -1), imm:$rc)),
+ (VCVTPD2DQZrrb VR512:$src, imm:$rc)>;
+
+defm VCVTPS2UDQZ : avx512_vcvt_fp2int<0x79, "vcvtps2udq", VR512, VR512,
+ memopv16f32, f512mem, SSEPackedSingle>,
+ PS, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VCVTPD2UDQZ : avx512_vcvt_fp2int<0x79, "vcvtpd2udq", VR512, VR256X,
+ memopv8f64, f512mem, SSEPackedDouble>, VEX_W,
+ PS, EVEX_V512, EVEX_CD8<64, CD8VF>;
+
+def : Pat <(v16i32 (int_x86_avx512_mask_cvtps2udq_512 (v16f32 VR512:$src),
+ (v16i32 immAllZerosV), (i16 -1), imm:$rc)),
+ (VCVTPS2UDQZrrb VR512:$src, imm:$rc)>;
+
+def : Pat <(v8i32 (int_x86_avx512_mask_cvtpd2udq_512 (v8f64 VR512:$src),
+ (v8i32 immAllZerosV), (i8 -1), imm:$rc)),
+ (VCVTPD2UDQZrrb VR512:$src, imm:$rc)>;
+
+let Predicates = [HasAVX512] in {
+ def : Pat<(v8f32 (fround (loadv8f64 addr:$src))),
+ (VCVTPD2PSZrm addr:$src)>;
+ def : Pat<(v8f64 (extloadv8f32 addr:$src)),
+ (VCVTPS2PDZrm addr:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// Half precision conversion instructions
+//===----------------------------------------------------------------------===//
+multiclass avx512_cvtph2ps<RegisterClass destRC, RegisterClass srcRC,
+ X86MemOperand x86memop> {
+ def rr : AVX5128I<0x13, MRMSrcReg, (outs destRC:$dst), (ins srcRC:$src),
+ "vcvtph2ps\t{$src, $dst|$dst, $src}",
+ []>, EVEX;
+ let hasSideEffects = 0, mayLoad = 1 in
+ def rm : AVX5128I<0x13, MRMSrcMem, (outs destRC:$dst), (ins x86memop:$src),
+ "vcvtph2ps\t{$src, $dst|$dst, $src}", []>, EVEX;
+}
+
+multiclass avx512_cvtps2ph<RegisterClass destRC, RegisterClass srcRC,
+ X86MemOperand x86memop> {
+ def rr : AVX512AIi8<0x1D, MRMDestReg, (outs destRC:$dst),
+ (ins srcRC:$src1, i32i8imm:$src2),
+ "vcvtps2ph \t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, EVEX;
+ let hasSideEffects = 0, mayStore = 1 in
+ def mr : AVX512AIi8<0x1D, MRMDestMem, (outs),
+ (ins x86memop:$dst, srcRC:$src1, i32i8imm:$src2),
+ "vcvtps2ph \t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, EVEX;
+}
+
+defm VCVTPH2PSZ : avx512_cvtph2ps<VR512, VR256X, f256mem>, EVEX_V512,
+ EVEX_CD8<32, CD8VH>;
+defm VCVTPS2PHZ : avx512_cvtps2ph<VR256X, VR512, f256mem>, EVEX_V512,
+ EVEX_CD8<32, CD8VH>;
+
+def : Pat<(v16i16 (int_x86_avx512_mask_vcvtps2ph_512 (v16f32 VR512:$src),
+ imm:$rc, (bc_v16i16(v8i32 immAllZerosV)), (i16 -1))),
+ (VCVTPS2PHZrr VR512:$src, imm:$rc)>;
+
+def : Pat<(v16f32 (int_x86_avx512_mask_vcvtph2ps_512 (v16i16 VR256X:$src),
+ (bc_v16f32(v16i32 immAllZerosV)), (i16 -1), (i32 FROUND_CURRENT))),
+ (VCVTPH2PSZrr VR256X:$src)>;
+
+let Defs = [EFLAGS], Predicates = [HasAVX512] in {
+ defm VUCOMISSZ : sse12_ord_cmp<0x2E, FR32X, X86cmp, f32, f32mem, loadf32,
+ "ucomiss">, PS, EVEX, VEX_LIG,
+ EVEX_CD8<32, CD8VT1>;
+ defm VUCOMISDZ : sse12_ord_cmp<0x2E, FR64X, X86cmp, f64, f64mem, loadf64,
+ "ucomisd">, PD, EVEX,
+ VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>;
+ let Pattern = []<dag> in {
+ defm VCOMISSZ : sse12_ord_cmp<0x2F, VR128X, undef, v4f32, f128mem, load,
+ "comiss">, PS, EVEX, VEX_LIG,
+ EVEX_CD8<32, CD8VT1>;
+ defm VCOMISDZ : sse12_ord_cmp<0x2F, VR128X, undef, v2f64, f128mem, load,
+ "comisd">, PD, EVEX,
+ VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>;
+ }
+ let isCodeGenOnly = 1 in {
+ defm Int_VUCOMISSZ : sse12_ord_cmp<0x2E, VR128X, X86ucomi, v4f32, f128mem,
+ load, "ucomiss">, PS, EVEX, VEX_LIG,
+ EVEX_CD8<32, CD8VT1>;
+ defm Int_VUCOMISDZ : sse12_ord_cmp<0x2E, VR128X, X86ucomi, v2f64, f128mem,
+ load, "ucomisd">, PD, EVEX,
+ VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>;
+
+ defm Int_VCOMISSZ : sse12_ord_cmp<0x2F, VR128X, X86comi, v4f32, f128mem,
+ load, "comiss">, PS, EVEX, VEX_LIG,
+ EVEX_CD8<32, CD8VT1>;
+ defm Int_VCOMISDZ : sse12_ord_cmp<0x2F, VR128X, X86comi, v2f64, f128mem,
+ load, "comisd">, PD, EVEX,
+ VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>;
+ }
+}
+
+/// avx512_fp14_s rcp14ss, rcp14sd, rsqrt14ss, rsqrt14sd
+multiclass avx512_fp14_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ X86MemOperand x86memop> {
+ let hasSideEffects = 0 in {
+ def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, EVEX_4V;
+ let mayLoad = 1 in {
+ def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, EVEX_4V;
+ }
+}
+}
+
+defm VRCP14SS : avx512_fp14_s<0x4D, "vrcp14ss", FR32X, f32mem>,
+ EVEX_CD8<32, CD8VT1>;
+defm VRCP14SD : avx512_fp14_s<0x4D, "vrcp14sd", FR64X, f64mem>,
+ VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VRSQRT14SS : avx512_fp14_s<0x4F, "vrsqrt14ss", FR32X, f32mem>,
+ EVEX_CD8<32, CD8VT1>;
+defm VRSQRT14SD : avx512_fp14_s<0x4F, "vrsqrt14sd", FR64X, f64mem>,
+ VEX_W, EVEX_CD8<64, CD8VT1>;
+
+def : Pat <(v4f32 (int_x86_avx512_rcp14_ss (v4f32 VR128X:$src1),
+ (v4f32 VR128X:$src2), (bc_v4f32 (v4i32 immAllZerosV)), (i8 -1))),
+ (COPY_TO_REGCLASS (VRCP14SSrr (COPY_TO_REGCLASS VR128X:$src1, FR32X),
+ (COPY_TO_REGCLASS VR128X:$src2, FR32X)), VR128X)>;
+
+def : Pat <(v2f64 (int_x86_avx512_rcp14_sd (v2f64 VR128X:$src1),
+ (v2f64 VR128X:$src2), (bc_v2f64 (v4i32 immAllZerosV)), (i8 -1))),
+ (COPY_TO_REGCLASS (VRCP14SDrr (COPY_TO_REGCLASS VR128X:$src1, FR64X),
+ (COPY_TO_REGCLASS VR128X:$src2, FR64X)), VR128X)>;
+
+def : Pat <(v4f32 (int_x86_avx512_rsqrt14_ss (v4f32 VR128X:$src1),
+ (v4f32 VR128X:$src2), (bc_v4f32 (v4i32 immAllZerosV)), (i8 -1))),
+ (COPY_TO_REGCLASS (VRSQRT14SSrr (COPY_TO_REGCLASS VR128X:$src1, FR32X),
+ (COPY_TO_REGCLASS VR128X:$src2, FR32X)), VR128X)>;
+
+def : Pat <(v2f64 (int_x86_avx512_rsqrt14_sd (v2f64 VR128X:$src1),
+ (v2f64 VR128X:$src2), (bc_v2f64 (v4i32 immAllZerosV)), (i8 -1))),
+ (COPY_TO_REGCLASS (VRSQRT14SDrr (COPY_TO_REGCLASS VR128X:$src1, FR64X),
+ (COPY_TO_REGCLASS VR128X:$src2, FR64X)), VR128X)>;
+
+/// avx512_fp14_p rcp14ps, rcp14pd, rsqrt14ps, rsqrt14pd
+multiclass avx512_fp14_p<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ RegisterClass RC, X86MemOperand x86memop,
+ PatFrag mem_frag, ValueType OpVt> {
+ def r : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (OpVt (OpNode RC:$src)))]>,
+ EVEX;
+ def m : AVX5128I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (OpVt (OpNode (mem_frag addr:$src))))]>,
+ EVEX;
+}
+defm VRSQRT14PSZ : avx512_fp14_p<0x4E, "vrsqrt14ps", X86frsqrt, VR512, f512mem,
+ memopv16f32, v16f32>, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VRSQRT14PDZ : avx512_fp14_p<0x4E, "vrsqrt14pd", X86frsqrt, VR512, f512mem,
+ memopv8f64, v8f64>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+defm VRCP14PSZ : avx512_fp14_p<0x4C, "vrcp14ps", X86frcp, VR512, f512mem,
+ memopv16f32, v16f32>, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VRCP14PDZ : avx512_fp14_p<0x4C, "vrcp14pd", X86frcp, VR512, f512mem,
+ memopv8f64, v8f64>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+
+def : Pat <(v16f32 (int_x86_avx512_rsqrt14_ps_512 (v16f32 VR512:$src),
+ (bc_v16f32 (v16i32 immAllZerosV)), (i16 -1))),
+ (VRSQRT14PSZr VR512:$src)>;
+def : Pat <(v8f64 (int_x86_avx512_rsqrt14_pd_512 (v8f64 VR512:$src),
+ (bc_v8f64 (v16i32 immAllZerosV)), (i8 -1))),
+ (VRSQRT14PDZr VR512:$src)>;
+
+def : Pat <(v16f32 (int_x86_avx512_rcp14_ps_512 (v16f32 VR512:$src),
+ (bc_v16f32 (v16i32 immAllZerosV)), (i16 -1))),
+ (VRCP14PSZr VR512:$src)>;
+def : Pat <(v8f64 (int_x86_avx512_rcp14_pd_512 (v8f64 VR512:$src),
+ (bc_v8f64 (v16i32 immAllZerosV)), (i8 -1))),
+ (VRCP14PDZr VR512:$src)>;
+
+/// avx512_fp28_s rcp28ss, rcp28sd, rsqrt28ss, rsqrt28sd
+multiclass avx512_fp28_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ X86MemOperand x86memop> {
+ let hasSideEffects = 0, Predicates = [HasERI] in {
+ def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, EVEX_4V;
+ def rrb : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{{sae}, $src2, $src1, $dst|$dst, $src1, $src2, {sae}}"),
+ []>, EVEX_4V, EVEX_B;
+ let mayLoad = 1 in {
+ def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, EVEX_4V;
+ }
+}
+}
+
+defm VRCP28SS : avx512_fp28_s<0xCB, "vrcp28ss", FR32X, f32mem>,
+ EVEX_CD8<32, CD8VT1>;
+defm VRCP28SD : avx512_fp28_s<0xCB, "vrcp28sd", FR64X, f64mem>,
+ VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VRSQRT28SS : avx512_fp28_s<0xCD, "vrsqrt28ss", FR32X, f32mem>,
+ EVEX_CD8<32, CD8VT1>;
+defm VRSQRT28SD : avx512_fp28_s<0xCD, "vrsqrt28sd", FR64X, f64mem>,
+ VEX_W, EVEX_CD8<64, CD8VT1>;
+
+def : Pat <(v4f32 (int_x86_avx512_rcp28_ss (v4f32 VR128X:$src1),
+ (v4f32 VR128X:$src2), (bc_v4f32 (v4i32 immAllZerosV)), (i8 -1),
+ FROUND_NO_EXC)),
+ (COPY_TO_REGCLASS (VRCP28SSrrb (COPY_TO_REGCLASS VR128X:$src1, FR32X),
+ (COPY_TO_REGCLASS VR128X:$src2, FR32X)), VR128X)>;
+
+def : Pat <(v2f64 (int_x86_avx512_rcp28_sd (v2f64 VR128X:$src1),
+ (v2f64 VR128X:$src2), (bc_v2f64 (v4i32 immAllZerosV)), (i8 -1),
+ FROUND_NO_EXC)),
+ (COPY_TO_REGCLASS (VRCP28SDrrb (COPY_TO_REGCLASS VR128X:$src1, FR64X),
+ (COPY_TO_REGCLASS VR128X:$src2, FR64X)), VR128X)>;
+
+def : Pat <(v4f32 (int_x86_avx512_rsqrt28_ss (v4f32 VR128X:$src1),
+ (v4f32 VR128X:$src2), (bc_v4f32 (v4i32 immAllZerosV)), (i8 -1),
+ FROUND_NO_EXC)),
+ (COPY_TO_REGCLASS (VRSQRT28SSrrb (COPY_TO_REGCLASS VR128X:$src1, FR32X),
+ (COPY_TO_REGCLASS VR128X:$src2, FR32X)), VR128X)>;
+
+def : Pat <(v2f64 (int_x86_avx512_rsqrt28_sd (v2f64 VR128X:$src1),
+ (v2f64 VR128X:$src2), (bc_v2f64 (v4i32 immAllZerosV)), (i8 -1),
+ FROUND_NO_EXC)),
+ (COPY_TO_REGCLASS (VRSQRT28SDrrb (COPY_TO_REGCLASS VR128X:$src1, FR64X),
+ (COPY_TO_REGCLASS VR128X:$src2, FR64X)), VR128X)>;
+
+/// avx512_fp28_p rcp28ps, rcp28pd, rsqrt28ps, rsqrt28pd
+multiclass avx512_fp28_p<bits<8> opc, string OpcodeStr,
+ RegisterClass RC, X86MemOperand x86memop> {
+ let hasSideEffects = 0, Predicates = [HasERI] in {
+ def r : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, $dst|$dst, $src}"),
+ []>, EVEX;
+ def rb : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(OpcodeStr,
+ " \t{{sae}, $src, $dst|$dst, $src, {sae}}"),
+ []>, EVEX, EVEX_B;
+ def m : AVX5128I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ []>, EVEX;
+ }
+}
+defm VRSQRT28PSZ : avx512_fp28_p<0xCC, "vrsqrt28ps", VR512, f512mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VRSQRT28PDZ : avx512_fp28_p<0xCC, "vrsqrt28pd", VR512, f512mem>,
+ VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+defm VRCP28PSZ : avx512_fp28_p<0xCA, "vrcp28ps", VR512, f512mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VRCP28PDZ : avx512_fp28_p<0xCA, "vrcp28pd", VR512, f512mem>,
+ VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+
+def : Pat <(v16f32 (int_x86_avx512_rsqrt28_ps (v16f32 VR512:$src),
+ (bc_v16f32 (v16i32 immAllZerosV)), (i16 -1), FROUND_NO_EXC)),
+ (VRSQRT28PSZrb VR512:$src)>;
+def : Pat <(v8f64 (int_x86_avx512_rsqrt28_pd (v8f64 VR512:$src),
+ (bc_v8f64 (v16i32 immAllZerosV)), (i8 -1), FROUND_NO_EXC)),
+ (VRSQRT28PDZrb VR512:$src)>;
+
+def : Pat <(v16f32 (int_x86_avx512_rcp28_ps (v16f32 VR512:$src),
+ (bc_v16f32 (v16i32 immAllZerosV)), (i16 -1), FROUND_NO_EXC)),
+ (VRCP28PSZrb VR512:$src)>;
+def : Pat <(v8f64 (int_x86_avx512_rcp28_pd (v8f64 VR512:$src),
+ (bc_v8f64 (v16i32 immAllZerosV)), (i8 -1), FROUND_NO_EXC)),
+ (VRCP28PDZrb VR512:$src)>;
+
+multiclass avx512_sqrt_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ Intrinsic V16F32Int, Intrinsic V8F64Int,
+ OpndItins itins_s, OpndItins itins_d> {
+ def PSZrr :AVX512PSI<opc, MRMSrcReg, (outs VR512:$dst), (ins VR512:$src),
+ !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR512:$dst, (v16f32 (OpNode VR512:$src)))], itins_s.rr>,
+ EVEX, EVEX_V512;
+
+ let mayLoad = 1 in
+ def PSZrm : AVX512PSI<opc, MRMSrcMem, (outs VR512:$dst), (ins f512mem:$src),
+ !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR512:$dst,
+ (OpNode (v16f32 (bitconvert (memopv16f32 addr:$src)))))],
+ itins_s.rm>, EVEX, EVEX_V512, EVEX_CD8<32, CD8VF>;
+
+ def PDZrr : AVX512PDI<opc, MRMSrcReg, (outs VR512:$dst), (ins VR512:$src),
+ !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR512:$dst, (v8f64 (OpNode VR512:$src)))], itins_d.rr>,
+ EVEX, EVEX_V512;
+
+ let mayLoad = 1 in
+ def PDZrm : AVX512PDI<opc, MRMSrcMem, (outs VR512:$dst), (ins f512mem:$src),
+ !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR512:$dst, (OpNode
+ (v8f64 (bitconvert (memopv16f32 addr:$src)))))],
+ itins_d.rm>, EVEX, EVEX_V512, EVEX_CD8<64, CD8VF>;
+
+let isCodeGenOnly = 1 in {
+ def PSZr_Int : AVX512PSI<opc, MRMSrcReg, (outs VR512:$dst), (ins VR512:$src),
+ !strconcat(OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR512:$dst, (V16F32Int VR512:$src))]>,
+ EVEX, EVEX_V512;
+ def PSZm_Int : AVX512PSI<opc, MRMSrcMem, (outs VR512:$dst), (ins f512mem:$src),
+ !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR512:$dst,
+ (V16F32Int (memopv16f32 addr:$src)))]>, EVEX,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+ def PDZr_Int : AVX512PDI<opc, MRMSrcReg, (outs VR512:$dst), (ins VR512:$src),
+ !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR512:$dst, (V8F64Int VR512:$src))]>,
+ EVEX, EVEX_V512, VEX_W;
+ def PDZm_Int : AVX512PDI<opc, MRMSrcMem, (outs VR512:$dst), (ins f512mem:$src),
+ !strconcat(OpcodeStr,
+ "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR512:$dst, (V8F64Int (memopv8f64 addr:$src)))]>,
+ EVEX, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+} // isCodeGenOnly = 1
+}
+
+multiclass avx512_sqrt_scalar<bits<8> opc, string OpcodeStr,
+ Intrinsic F32Int, Intrinsic F64Int,
+ OpndItins itins_s, OpndItins itins_d> {
+ def SSZr : SI<opc, MRMSrcReg, (outs FR32X:$dst),
+ (ins FR32X:$src1, FR32X:$src2),
+ !strconcat(OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [], itins_s.rr>, XS, EVEX_4V;
+ let isCodeGenOnly = 1 in
+ def SSZr_Int : SIi8<opc, MRMSrcReg, (outs VR128X:$dst),
+ (ins VR128X:$src1, VR128X:$src2),
+ !strconcat(OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128X:$dst,
+ (F32Int VR128X:$src1, VR128X:$src2))],
+ itins_s.rr>, XS, EVEX_4V;
+ let mayLoad = 1 in {
+ def SSZm : SI<opc, MRMSrcMem, (outs FR32X:$dst),
+ (ins FR32X:$src1, f32mem:$src2),
+ !strconcat(OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [], itins_s.rm>, XS, EVEX_4V, EVEX_CD8<32, CD8VT1>;
+ let isCodeGenOnly = 1 in
+ def SSZm_Int : SIi8<opc, MRMSrcMem, (outs VR128X:$dst),
+ (ins VR128X:$src1, ssmem:$src2),
+ !strconcat(OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128X:$dst,
+ (F32Int VR128X:$src1, sse_load_f32:$src2))],
+ itins_s.rm>, XS, EVEX_4V, EVEX_CD8<32, CD8VT1>;
+ }
+ def SDZr : SI<opc, MRMSrcReg, (outs FR64X:$dst),
+ (ins FR64X:$src1, FR64X:$src2),
+ !strconcat(OpcodeStr,
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>,
+ XD, EVEX_4V, VEX_W;
+ let isCodeGenOnly = 1 in
+ def SDZr_Int : SIi8<opc, MRMSrcReg, (outs VR128X:$dst),
+ (ins VR128X:$src1, VR128X:$src2),
+ !strconcat(OpcodeStr,
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128X:$dst,
+ (F64Int VR128X:$src1, VR128X:$src2))],
+ itins_s.rr>, XD, EVEX_4V, VEX_W;
+ let mayLoad = 1 in {
+ def SDZm : SI<opc, MRMSrcMem, (outs FR64X:$dst),
+ (ins FR64X:$src1, f64mem:$src2),
+ !strconcat(OpcodeStr,
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>,
+ XD, EVEX_4V, VEX_W, EVEX_CD8<64, CD8VT1>;
+ let isCodeGenOnly = 1 in
+ def SDZm_Int : SIi8<opc, MRMSrcMem, (outs VR128X:$dst),
+ (ins VR128X:$src1, sdmem:$src2),
+ !strconcat(OpcodeStr,
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128X:$dst,
+ (F64Int VR128X:$src1, sse_load_f64:$src2))]>,
+ XD, EVEX_4V, VEX_W, EVEX_CD8<64, CD8VT1>;
+ }
+}
+
+
+defm VSQRT : avx512_sqrt_scalar<0x51, "sqrt",
+ int_x86_avx512_sqrt_ss, int_x86_avx512_sqrt_sd,
+ SSE_SQRTSS, SSE_SQRTSD>,
+ avx512_sqrt_packed<0x51, "vsqrt", fsqrt,
+ int_x86_avx512_sqrt_ps_512, int_x86_avx512_sqrt_pd_512,
+ SSE_SQRTPS, SSE_SQRTPD>;
+
+let Predicates = [HasAVX512] in {
+ def : Pat<(f32 (fsqrt FR32X:$src)),
+ (VSQRTSSZr (f32 (IMPLICIT_DEF)), FR32X:$src)>;
+ def : Pat<(f32 (fsqrt (load addr:$src))),
+ (VSQRTSSZm (f32 (IMPLICIT_DEF)), addr:$src)>,
+ Requires<[OptForSize]>;
+ def : Pat<(f64 (fsqrt FR64X:$src)),
+ (VSQRTSDZr (f64 (IMPLICIT_DEF)), FR64X:$src)>;
+ def : Pat<(f64 (fsqrt (load addr:$src))),
+ (VSQRTSDZm (f64 (IMPLICIT_DEF)), addr:$src)>,
+ Requires<[OptForSize]>;
+
+ def : Pat<(f32 (X86frsqrt FR32X:$src)),
+ (VRSQRT14SSrr (f32 (IMPLICIT_DEF)), FR32X:$src)>;
+ def : Pat<(f32 (X86frsqrt (load addr:$src))),
+ (VRSQRT14SSrm (f32 (IMPLICIT_DEF)), addr:$src)>,
+ Requires<[OptForSize]>;
+
+ def : Pat<(f32 (X86frcp FR32X:$src)),
+ (VRCP14SSrr (f32 (IMPLICIT_DEF)), FR32X:$src)>;
+ def : Pat<(f32 (X86frcp (load addr:$src))),
+ (VRCP14SSrm (f32 (IMPLICIT_DEF)), addr:$src)>,
+ Requires<[OptForSize]>;
+
+ def : Pat<(int_x86_sse_sqrt_ss VR128X:$src),
+ (COPY_TO_REGCLASS (VSQRTSSZr (f32 (IMPLICIT_DEF)),
+ (COPY_TO_REGCLASS VR128X:$src, FR32)),
+ VR128X)>;
+ def : Pat<(int_x86_sse_sqrt_ss sse_load_f32:$src),
+ (VSQRTSSZm_Int (v4f32 (IMPLICIT_DEF)), sse_load_f32:$src)>;
+
+ def : Pat<(int_x86_sse2_sqrt_sd VR128X:$src),
+ (COPY_TO_REGCLASS (VSQRTSDZr (f64 (IMPLICIT_DEF)),
+ (COPY_TO_REGCLASS VR128X:$src, FR64)),
+ VR128X)>;
+ def : Pat<(int_x86_sse2_sqrt_sd sse_load_f64:$src),
+ (VSQRTSDZm_Int (v2f64 (IMPLICIT_DEF)), sse_load_f64:$src)>;
+}
+
+
+multiclass avx512_fp_unop_rm<bits<8> opcps, bits<8> opcpd, string OpcodeStr,
+ X86MemOperand x86memop, RegisterClass RC,
+ PatFrag mem_frag32, PatFrag mem_frag64,
+ Intrinsic V4F32Int, Intrinsic V2F64Int,
+ CD8VForm VForm> {
+let ExeDomain = SSEPackedSingle in {
+ // Intrinsic operation, reg.
+ // Vector intrinsic operation, reg
+ def PSr : AVX512AIi8<opcps, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (V4F32Int RC:$src1, imm:$src2))]>;
+
+ // Vector intrinsic operation, mem
+ def PSm : AVX512AIi8<opcps, MRMSrcMem,
+ (outs RC:$dst), (ins x86memop:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (V4F32Int (mem_frag32 addr:$src1),imm:$src2))]>,
+ EVEX_CD8<32, VForm>;
+} // ExeDomain = SSEPackedSingle
+
+let ExeDomain = SSEPackedDouble in {
+ // Vector intrinsic operation, reg
+ def PDr : AVX512AIi8<opcpd, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (V2F64Int RC:$src1, imm:$src2))]>;
+
+ // Vector intrinsic operation, mem
+ def PDm : AVX512AIi8<opcpd, MRMSrcMem,
+ (outs RC:$dst), (ins x86memop:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (V2F64Int (mem_frag64 addr:$src1),imm:$src2))]>,
+ EVEX_CD8<64, VForm>;
+} // ExeDomain = SSEPackedDouble
+}
+
+multiclass avx512_fp_binop_rm<bits<8> opcss, bits<8> opcsd,
+ string OpcodeStr,
+ Intrinsic F32Int,
+ Intrinsic F64Int> {
+let ExeDomain = GenericDomain in {
+ // Operation, reg.
+ let hasSideEffects = 0 in
+ def SSr : AVX512AIi8<opcss, MRMSrcReg,
+ (outs FR32X:$dst), (ins FR32X:$src1, FR32X:$src2, i32i8imm:$src3),
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>;
+
+ // Intrinsic operation, reg.
+ let isCodeGenOnly = 1 in
+ def SSr_Int : AVX512AIi8<opcss, MRMSrcReg,
+ (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2, i32i8imm:$src3),
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128X:$dst, (F32Int VR128X:$src1, VR128X:$src2, imm:$src3))]>;
+
+ // Intrinsic operation, mem.
+ def SSm : AVX512AIi8<opcss, MRMSrcMem, (outs VR128X:$dst),
+ (ins VR128X:$src1, ssmem:$src2, i32i8imm:$src3),
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128X:$dst, (F32Int VR128X:$src1,
+ sse_load_f32:$src2, imm:$src3))]>,
+ EVEX_CD8<32, CD8VT1>;
+
+ // Operation, reg.
+ let hasSideEffects = 0 in
+ def SDr : AVX512AIi8<opcsd, MRMSrcReg,
+ (outs FR64X:$dst), (ins FR64X:$src1, FR64X:$src2, i32i8imm:$src3),
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, VEX_W;
+
+ // Intrinsic operation, reg.
+ let isCodeGenOnly = 1 in
+ def SDr_Int : AVX512AIi8<opcsd, MRMSrcReg,
+ (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2, i32i8imm:$src3),
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128X:$dst, (F64Int VR128X:$src1, VR128X:$src2, imm:$src3))]>,
+ VEX_W;
+
+ // Intrinsic operation, mem.
+ def SDm : AVX512AIi8<opcsd, MRMSrcMem,
+ (outs VR128X:$dst), (ins VR128X:$src1, sdmem:$src2, i32i8imm:$src3),
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128X:$dst,
+ (F64Int VR128X:$src1, sse_load_f64:$src2, imm:$src3))]>,
+ VEX_W, EVEX_CD8<64, CD8VT1>;
+} // ExeDomain = GenericDomain
+}
+
+multiclass avx512_rndscale<bits<8> opc, string OpcodeStr,
+ X86MemOperand x86memop, RegisterClass RC,
+ PatFrag mem_frag, Domain d> {
+let ExeDomain = d in {
+ // Intrinsic operation, reg.
+ // Vector intrinsic operation, reg
+ def r : AVX512AIi8<opc, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, EVEX;
+
+ // Vector intrinsic operation, mem
+ def m : AVX512AIi8<opc, MRMSrcMem,
+ (outs RC:$dst), (ins x86memop:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, EVEX;
+} // ExeDomain
+}
+
+
+defm VRNDSCALEPSZ : avx512_rndscale<0x08, "vrndscaleps", f512mem, VR512,
+ memopv16f32, SSEPackedSingle>, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+
+def : Pat<(v16f32 (int_x86_avx512_mask_rndscale_ps_512 (v16f32 VR512:$src1),
+ imm:$src2, (v16f32 VR512:$src1), (i16 -1),
+ FROUND_CURRENT)),
+ (VRNDSCALEPSZr VR512:$src1, imm:$src2)>;
+
+
+defm VRNDSCALEPDZ : avx512_rndscale<0x09, "vrndscalepd", f512mem, VR512,
+ memopv8f64, SSEPackedDouble>, EVEX_V512,
+ VEX_W, EVEX_CD8<64, CD8VF>;
+
+def : Pat<(v8f64 (int_x86_avx512_mask_rndscale_pd_512 (v8f64 VR512:$src1),
+ imm:$src2, (v8f64 VR512:$src1), (i8 -1),
+ FROUND_CURRENT)),
+ (VRNDSCALEPDZr VR512:$src1, imm:$src2)>;
+
+multiclass avx512_rndscale_scalar<bits<8> opc, string OpcodeStr,
+ Operand x86memop, RegisterClass RC, Domain d> {
+let ExeDomain = d in {
+ def r : AVX512AIi8<opc, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2, i32i8imm:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, EVEX_4V;
+
+ def m : AVX512AIi8<opc, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2, i32i8imm:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, EVEX_4V;
+} // ExeDomain
+}
+
+defm VRNDSCALESS : avx512_rndscale_scalar<0x0A, "vrndscaless", ssmem, FR32X,
+ SSEPackedSingle>, EVEX_CD8<32, CD8VT1>;
+
+defm VRNDSCALESD : avx512_rndscale_scalar<0x0B, "vrndscalesd", sdmem, FR64X,
+ SSEPackedDouble>, EVEX_CD8<64, CD8VT1>;
+
+def : Pat<(ffloor FR32X:$src),
+ (VRNDSCALESSr (f32 (IMPLICIT_DEF)), FR32X:$src, (i32 0x1))>;
+def : Pat<(f64 (ffloor FR64X:$src)),
+ (VRNDSCALESDr (f64 (IMPLICIT_DEF)), FR64X:$src, (i32 0x1))>;
+def : Pat<(f32 (fnearbyint FR32X:$src)),
+ (VRNDSCALESSr (f32 (IMPLICIT_DEF)), FR32X:$src, (i32 0xC))>;
+def : Pat<(f64 (fnearbyint FR64X:$src)),
+ (VRNDSCALESDr (f64 (IMPLICIT_DEF)), FR64X:$src, (i32 0xC))>;
+def : Pat<(f32 (fceil FR32X:$src)),
+ (VRNDSCALESSr (f32 (IMPLICIT_DEF)), FR32X:$src, (i32 0x2))>;
+def : Pat<(f64 (fceil FR64X:$src)),
+ (VRNDSCALESDr (f64 (IMPLICIT_DEF)), FR64X:$src, (i32 0x2))>;
+def : Pat<(f32 (frint FR32X:$src)),
+ (VRNDSCALESSr (f32 (IMPLICIT_DEF)), FR32X:$src, (i32 0x4))>;
+def : Pat<(f64 (frint FR64X:$src)),
+ (VRNDSCALESDr (f64 (IMPLICIT_DEF)), FR64X:$src, (i32 0x4))>;
+def : Pat<(f32 (ftrunc FR32X:$src)),
+ (VRNDSCALESSr (f32 (IMPLICIT_DEF)), FR32X:$src, (i32 0x3))>;
+def : Pat<(f64 (ftrunc FR64X:$src)),
+ (VRNDSCALESDr (f64 (IMPLICIT_DEF)), FR64X:$src, (i32 0x3))>;
+
+def : Pat<(v16f32 (ffloor VR512:$src)),
+ (VRNDSCALEPSZr VR512:$src, (i32 0x1))>;
+def : Pat<(v16f32 (fnearbyint VR512:$src)),
+ (VRNDSCALEPSZr VR512:$src, (i32 0xC))>;
+def : Pat<(v16f32 (fceil VR512:$src)),
+ (VRNDSCALEPSZr VR512:$src, (i32 0x2))>;
+def : Pat<(v16f32 (frint VR512:$src)),
+ (VRNDSCALEPSZr VR512:$src, (i32 0x4))>;
+def : Pat<(v16f32 (ftrunc VR512:$src)),
+ (VRNDSCALEPSZr VR512:$src, (i32 0x3))>;
+
+def : Pat<(v8f64 (ffloor VR512:$src)),
+ (VRNDSCALEPDZr VR512:$src, (i32 0x1))>;
+def : Pat<(v8f64 (fnearbyint VR512:$src)),
+ (VRNDSCALEPDZr VR512:$src, (i32 0xC))>;
+def : Pat<(v8f64 (fceil VR512:$src)),
+ (VRNDSCALEPDZr VR512:$src, (i32 0x2))>;
+def : Pat<(v8f64 (frint VR512:$src)),
+ (VRNDSCALEPDZr VR512:$src, (i32 0x4))>;
+def : Pat<(v8f64 (ftrunc VR512:$src)),
+ (VRNDSCALEPDZr VR512:$src, (i32 0x3))>;
+
+//-------------------------------------------------
+// Integer truncate and extend operations
+//-------------------------------------------------
+
+multiclass avx512_trunc_sat<bits<8> opc, string OpcodeStr,
+ RegisterClass dstRC, RegisterClass srcRC,
+ RegisterClass KRC, X86MemOperand x86memop> {
+ def rr : AVX512XS8I<opc, MRMDestReg, (outs dstRC:$dst),
+ (ins srcRC:$src),
+ !strconcat(OpcodeStr," \t{$src, $dst|$dst, $src}"),
+ []>, EVEX;
+
+ def rrk : AVX512XS8I<opc, MRMDestReg, (outs dstRC:$dst),
+ (ins KRC:$mask, srcRC:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}"),
+ []>, EVEX, EVEX_K;
+
+ def rrkz : AVX512XS8I<opc, MRMDestReg, (outs dstRC:$dst),
+ (ins KRC:$mask, srcRC:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ []>, EVEX, EVEX_KZ;
+
+ def mr : AVX512XS8I<opc, MRMDestMem, (outs), (ins x86memop:$dst, srcRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ []>, EVEX;
+
+ def mrk : AVX512XS8I<opc, MRMDestMem, (outs),
+ (ins x86memop:$dst, KRC:$mask, srcRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst {${mask}}|${dst} {${mask}}, $src}"),
+ []>, EVEX, EVEX_K;
+
+}
+defm VPMOVQB : avx512_trunc_sat<0x32, "vpmovqb", VR128X, VR512, VK8WM,
+ i128mem>, EVEX_V512, EVEX_CD8<8, CD8VO>;
+defm VPMOVSQB : avx512_trunc_sat<0x22, "vpmovsqb", VR128X, VR512, VK8WM,
+ i128mem>, EVEX_V512, EVEX_CD8<8, CD8VO>;
+defm VPMOVUSQB : avx512_trunc_sat<0x12, "vpmovusqb", VR128X, VR512, VK8WM,
+ i128mem>, EVEX_V512, EVEX_CD8<8, CD8VO>;
+defm VPMOVQW : avx512_trunc_sat<0x34, "vpmovqw", VR128X, VR512, VK8WM,
+ i128mem>, EVEX_V512, EVEX_CD8<16, CD8VQ>;
+defm VPMOVSQW : avx512_trunc_sat<0x24, "vpmovsqw", VR128X, VR512, VK8WM,
+ i128mem>, EVEX_V512, EVEX_CD8<16, CD8VQ>;
+defm VPMOVUSQW : avx512_trunc_sat<0x14, "vpmovusqw", VR128X, VR512, VK8WM,
+ i128mem>, EVEX_V512, EVEX_CD8<16, CD8VQ>;
+defm VPMOVQD : avx512_trunc_sat<0x35, "vpmovqd", VR256X, VR512, VK8WM,
+ i256mem>, EVEX_V512, EVEX_CD8<32, CD8VH>;
+defm VPMOVSQD : avx512_trunc_sat<0x25, "vpmovsqd", VR256X, VR512, VK8WM,
+ i256mem>, EVEX_V512, EVEX_CD8<32, CD8VH>;
+defm VPMOVUSQD : avx512_trunc_sat<0x15, "vpmovusqd", VR256X, VR512, VK8WM,
+ i256mem>, EVEX_V512, EVEX_CD8<32, CD8VH>;
+defm VPMOVDW : avx512_trunc_sat<0x33, "vpmovdw", VR256X, VR512, VK16WM,
+ i256mem>, EVEX_V512, EVEX_CD8<16, CD8VH>;
+defm VPMOVSDW : avx512_trunc_sat<0x23, "vpmovsdw", VR256X, VR512, VK16WM,
+ i256mem>, EVEX_V512, EVEX_CD8<16, CD8VH>;
+defm VPMOVUSDW : avx512_trunc_sat<0x13, "vpmovusdw", VR256X, VR512, VK16WM,
+ i256mem>, EVEX_V512, EVEX_CD8<16, CD8VH>;
+defm VPMOVDB : avx512_trunc_sat<0x31, "vpmovdb", VR128X, VR512, VK16WM,
+ i128mem>, EVEX_V512, EVEX_CD8<8, CD8VQ>;
+defm VPMOVSDB : avx512_trunc_sat<0x21, "vpmovsdb", VR128X, VR512, VK16WM,
+ i128mem>, EVEX_V512, EVEX_CD8<8, CD8VQ>;
+defm VPMOVUSDB : avx512_trunc_sat<0x11, "vpmovusdb", VR128X, VR512, VK16WM,
+ i128mem>, EVEX_V512, EVEX_CD8<8, CD8VQ>;
+
+def : Pat<(v16i8 (X86vtrunc (v8i64 VR512:$src))), (VPMOVQBrr VR512:$src)>;
+def : Pat<(v8i16 (X86vtrunc (v8i64 VR512:$src))), (VPMOVQWrr VR512:$src)>;
+def : Pat<(v16i16 (X86vtrunc (v16i32 VR512:$src))), (VPMOVDWrr VR512:$src)>;
+def : Pat<(v16i8 (X86vtrunc (v16i32 VR512:$src))), (VPMOVDBrr VR512:$src)>;
+def : Pat<(v8i32 (X86vtrunc (v8i64 VR512:$src))), (VPMOVQDrr VR512:$src)>;
+
+def : Pat<(v16i8 (X86vtruncm VK16WM:$mask, (v16i32 VR512:$src))),
+ (VPMOVDBrrkz VK16WM:$mask, VR512:$src)>;
+def : Pat<(v16i16 (X86vtruncm VK16WM:$mask, (v16i32 VR512:$src))),
+ (VPMOVDWrrkz VK16WM:$mask, VR512:$src)>;
+def : Pat<(v8i16 (X86vtruncm VK8WM:$mask, (v8i64 VR512:$src))),
+ (VPMOVQWrrkz VK8WM:$mask, VR512:$src)>;
+def : Pat<(v8i32 (X86vtruncm VK8WM:$mask, (v8i64 VR512:$src))),
+ (VPMOVQDrrkz VK8WM:$mask, VR512:$src)>;
+
+
+multiclass avx512_extend<bits<8> opc, string OpcodeStr, RegisterClass KRC,
+ RegisterClass DstRC, RegisterClass SrcRC, SDNode OpNode,
+ PatFrag mem_frag, X86MemOperand x86memop,
+ ValueType OpVT, ValueType InVT> {
+
+ def rr : AVX5128I<opc, MRMSrcReg, (outs DstRC:$dst),
+ (ins SrcRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst, (OpVT (OpNode (InVT SrcRC:$src))))]>, EVEX;
+
+ def rrk : AVX5128I<opc, MRMSrcReg, (outs DstRC:$dst),
+ (ins KRC:$mask, SrcRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst {${mask}} |$dst {${mask}}, $src}"),
+ []>, EVEX, EVEX_K;
+
+ def rrkz : AVX5128I<opc, MRMSrcReg, (outs DstRC:$dst),
+ (ins KRC:$mask, SrcRC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
+ []>, EVEX, EVEX_KZ;
+
+ let mayLoad = 1 in {
+ def rm : AVX5128I<opc, MRMSrcMem, (outs DstRC:$dst),
+ (ins x86memop:$src),
+ !strconcat(OpcodeStr," \t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst,
+ (OpVT (OpNode (InVT (bitconvert (mem_frag addr:$src))))))]>,
+ EVEX;
+
+ def rmk : AVX5128I<opc, MRMSrcMem, (outs DstRC:$dst),
+ (ins KRC:$mask, x86memop:$src),
+ !strconcat(OpcodeStr," \t{$src, $dst {${mask}} |$dst {${mask}}, $src}"),
+ []>,
+ EVEX, EVEX_K;
+
+ def rmkz : AVX5128I<opc, MRMSrcMem, (outs DstRC:$dst),
+ (ins KRC:$mask, x86memop:$src),
+ !strconcat(OpcodeStr," \t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
+ []>,
+ EVEX, EVEX_KZ;
+ }
+}
+
+defm VPMOVZXBDZ: avx512_extend<0x31, "vpmovzxbd", VK16WM, VR512, VR128X, X86vzext,
+ memopv2i64, i128mem, v16i32, v16i8>, EVEX_V512,
+ EVEX_CD8<8, CD8VQ>;
+defm VPMOVZXBQZ: avx512_extend<0x32, "vpmovzxbq", VK8WM, VR512, VR128X, X86vzext,
+ memopv2i64, i128mem, v8i64, v16i8>, EVEX_V512,
+ EVEX_CD8<8, CD8VO>;
+defm VPMOVZXWDZ: avx512_extend<0x33, "vpmovzxwd", VK16WM, VR512, VR256X, X86vzext,
+ memopv4i64, i256mem, v16i32, v16i16>, EVEX_V512,
+ EVEX_CD8<16, CD8VH>;
+defm VPMOVZXWQZ: avx512_extend<0x34, "vpmovzxwq", VK8WM, VR512, VR128X, X86vzext,
+ memopv2i64, i128mem, v8i64, v8i16>, EVEX_V512,
+ EVEX_CD8<16, CD8VQ>;
+defm VPMOVZXDQZ: avx512_extend<0x35, "vpmovzxdq", VK8WM, VR512, VR256X, X86vzext,
+ memopv4i64, i256mem, v8i64, v8i32>, EVEX_V512,
+ EVEX_CD8<32, CD8VH>;
+
+defm VPMOVSXBDZ: avx512_extend<0x21, "vpmovsxbd", VK16WM, VR512, VR128X, X86vsext,
+ memopv2i64, i128mem, v16i32, v16i8>, EVEX_V512,
+ EVEX_CD8<8, CD8VQ>;
+defm VPMOVSXBQZ: avx512_extend<0x22, "vpmovsxbq", VK8WM, VR512, VR128X, X86vsext,
+ memopv2i64, i128mem, v8i64, v16i8>, EVEX_V512,
+ EVEX_CD8<8, CD8VO>;
+defm VPMOVSXWDZ: avx512_extend<0x23, "vpmovsxwd", VK16WM, VR512, VR256X, X86vsext,
+ memopv4i64, i256mem, v16i32, v16i16>, EVEX_V512,
+ EVEX_CD8<16, CD8VH>;
+defm VPMOVSXWQZ: avx512_extend<0x24, "vpmovsxwq", VK8WM, VR512, VR128X, X86vsext,
+ memopv2i64, i128mem, v8i64, v8i16>, EVEX_V512,
+ EVEX_CD8<16, CD8VQ>;
+defm VPMOVSXDQZ: avx512_extend<0x25, "vpmovsxdq", VK8WM, VR512, VR256X, X86vsext,
+ memopv4i64, i256mem, v8i64, v8i32>, EVEX_V512,
+ EVEX_CD8<32, CD8VH>;
+
+//===----------------------------------------------------------------------===//
+// GATHER - SCATTER Operations
+
+multiclass avx512_gather<bits<8> opc, string OpcodeStr, RegisterClass KRC,
+ RegisterClass RC, X86MemOperand memop> {
+let mayLoad = 1,
+ Constraints = "@earlyclobber $dst, $src1 = $dst, $mask = $mask_wb" in
+ def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst, KRC:$mask_wb),
+ (ins RC:$src1, KRC:$mask, memop:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
+ []>, EVEX, EVEX_K;
+}
+
+let ExeDomain = SSEPackedDouble in {
+defm VGATHERDPDZ : avx512_gather<0x92, "vgatherdpd", VK8WM, VR512, vy64xmem>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VGATHERQPDZ : avx512_gather<0x93, "vgatherqpd", VK8WM, VR512, vz64mem>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+}
+
+let ExeDomain = SSEPackedSingle in {
+defm VGATHERDPSZ : avx512_gather<0x92, "vgatherdps", VK16WM, VR512, vz32mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VT1>;
+defm VGATHERQPSZ : avx512_gather<0x93, "vgatherqps", VK8WM, VR256X, vz64mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VT1>;
+}
+
+defm VPGATHERDQZ : avx512_gather<0x90, "vpgatherdq", VK8WM, VR512, vy64xmem>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VPGATHERDDZ : avx512_gather<0x90, "vpgatherdd", VK16WM, VR512, vz32mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VT1>;
+
+defm VPGATHERQQZ : avx512_gather<0x91, "vpgatherqq", VK8WM, VR512, vz64mem>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VPGATHERQDZ : avx512_gather<0x91, "vpgatherqd", VK8WM, VR256X, vz64mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VT1>;
+
+multiclass avx512_scatter<bits<8> opc, string OpcodeStr, RegisterClass KRC,
+ RegisterClass RC, X86MemOperand memop> {
+let mayStore = 1, Constraints = "$mask = $mask_wb" in
+ def mr : AVX5128I<opc, MRMDestMem, (outs KRC:$mask_wb),
+ (ins memop:$dst, KRC:$mask, RC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
+ []>, EVEX, EVEX_K;
+}
+
+let ExeDomain = SSEPackedDouble in {
+defm VSCATTERDPDZ : avx512_scatter<0xA2, "vscatterdpd", VK8WM, VR512, vy64xmem>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VSCATTERQPDZ : avx512_scatter<0xA3, "vscatterqpd", VK8WM, VR512, vz64mem>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+}
+
+let ExeDomain = SSEPackedSingle in {
+defm VSCATTERDPSZ : avx512_scatter<0xA2, "vscatterdps", VK16WM, VR512, vz32mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VT1>;
+defm VSCATTERQPSZ : avx512_scatter<0xA3, "vscatterqps", VK8WM, VR256X, vz64mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VT1>;
+}
+
+defm VPSCATTERDQZ : avx512_scatter<0xA0, "vpscatterdq", VK8WM, VR512, vy64xmem>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VPSCATTERDDZ : avx512_scatter<0xA0, "vpscatterdd", VK16WM, VR512, vz32mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VT1>;
+
+defm VPSCATTERQQZ : avx512_scatter<0xA1, "vpscatterqq", VK8WM, VR512, vz64mem>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+defm VPSCATTERQDZ : avx512_scatter<0xA1, "vpscatterqd", VK8WM, VR256X, vz64mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VT1>;
+
+// prefetch
+multiclass avx512_gather_scatter_prefetch<bits<8> opc, Format F, string OpcodeStr,
+ RegisterClass KRC, X86MemOperand memop> {
+ let Predicates = [HasPFI], hasSideEffects = 1 in
+ def m : AVX5128I<opc, F, (outs), (ins KRC:$mask, memop:$src),
+ !strconcat(OpcodeStr, " \t{$src {${mask}}|{${mask}}, $src}"),
+ []>, EVEX, EVEX_K;
+}
+
+defm VGATHERPF0DPS: avx512_gather_scatter_prefetch<0xC6, MRM1m, "vgatherpf0dps",
+ VK16WM, vz32mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>;
+
+defm VGATHERPF0QPS: avx512_gather_scatter_prefetch<0xC7, MRM1m, "vgatherpf0qps",
+ VK8WM, vz64mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>;
+
+defm VGATHERPF0DPD: avx512_gather_scatter_prefetch<0xC6, MRM1m, "vgatherpf0dpd",
+ VK8WM, vy32mem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>;
+
+defm VGATHERPF0QPD: avx512_gather_scatter_prefetch<0xC7, MRM1m, "vgatherpf0qpd",
+ VK8WM, vz64mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+
+defm VGATHERPF1DPS: avx512_gather_scatter_prefetch<0xC6, MRM2m, "vgatherpf1dps",
+ VK16WM, vz32mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>;
+
+defm VGATHERPF1QPS: avx512_gather_scatter_prefetch<0xC7, MRM2m, "vgatherpf1qps",
+ VK8WM, vz64mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>;
+
+defm VGATHERPF1DPD: avx512_gather_scatter_prefetch<0xC6, MRM2m, "vgatherpf1dpd",
+ VK8WM, vy32mem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>;
+
+defm VGATHERPF1QPD: avx512_gather_scatter_prefetch<0xC7, MRM2m, "vgatherpf1qpd",
+ VK8WM, vz64mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+
+defm VSCATTERPF0DPS: avx512_gather_scatter_prefetch<0xC6, MRM5m, "vscatterpf0dps",
+ VK16WM, vz32mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>;
+
+defm VSCATTERPF0QPS: avx512_gather_scatter_prefetch<0xC7, MRM5m, "vscatterpf0qps",
+ VK8WM, vz64mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>;
+
+defm VSCATTERPF0DPD: avx512_gather_scatter_prefetch<0xC6, MRM5m, "vscatterpf0dpd",
+ VK8WM, vy32mem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>;
+
+defm VSCATTERPF0QPD: avx512_gather_scatter_prefetch<0xC7, MRM5m, "vscatterpf0qpd",
+ VK8WM, vz64mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+
+defm VSCATTERPF1DPS: avx512_gather_scatter_prefetch<0xC6, MRM6m, "vscatterpf1dps",
+ VK16WM, vz32mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>;
+
+defm VSCATTERPF1QPS: avx512_gather_scatter_prefetch<0xC7, MRM6m, "vscatterpf1qps",
+ VK8WM, vz64mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>;
+
+defm VSCATTERPF1DPD: avx512_gather_scatter_prefetch<0xC6, MRM6m, "vscatterpf1dpd",
+ VK8WM, vy32mem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>;
+
+defm VSCATTERPF1QPD: avx512_gather_scatter_prefetch<0xC7, MRM6m, "vscatterpf1qpd",
+ VK8WM, vz64mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+//===----------------------------------------------------------------------===//
+// VSHUFPS - VSHUFPD Operations
+
+multiclass avx512_shufp<RegisterClass RC, X86MemOperand x86memop,
+ ValueType vt, string OpcodeStr, PatFrag mem_frag,
+ Domain d> {
+ def rmi : AVX512PIi8<0xC6, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, i8imm:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst, (vt (X86Shufp RC:$src1, (mem_frag addr:$src2),
+ (i8 imm:$src3))))], d, IIC_SSE_SHUFP>,
+ EVEX_4V, Sched<[WriteShuffleLd, ReadAfterLd]>;
+ def rri : AVX512PIi8<0xC6, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, i8imm:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2,
+ (i8 imm:$src3))))], d, IIC_SSE_SHUFP>,
+ EVEX_4V, Sched<[WriteShuffle]>;
+}
+
+defm VSHUFPSZ : avx512_shufp<VR512, f512mem, v16f32, "vshufps", memopv16f32,
+ SSEPackedSingle>, PS, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VSHUFPDZ : avx512_shufp<VR512, f512mem, v8f64, "vshufpd", memopv8f64,
+ SSEPackedDouble>, PD, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+
+def : Pat<(v16i32 (X86Shufp VR512:$src1, VR512:$src2, (i8 imm:$imm))),
+ (VSHUFPSZrri VR512:$src1, VR512:$src2, imm:$imm)>;
+def : Pat<(v16i32 (X86Shufp VR512:$src1,
+ (memopv16i32 addr:$src2), (i8 imm:$imm))),
+ (VSHUFPSZrmi VR512:$src1, addr:$src2, imm:$imm)>;
+
+def : Pat<(v8i64 (X86Shufp VR512:$src1, VR512:$src2, (i8 imm:$imm))),
+ (VSHUFPDZrri VR512:$src1, VR512:$src2, imm:$imm)>;
+def : Pat<(v8i64 (X86Shufp VR512:$src1,
+ (memopv8i64 addr:$src2), (i8 imm:$imm))),
+ (VSHUFPDZrmi VR512:$src1, addr:$src2, imm:$imm)>;
+
+multiclass avx512_alignr<string OpcodeStr, RegisterClass RC,
+ X86MemOperand x86memop> {
+ def rri : AVX512AIi8<0x03, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, i8imm:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, EVEX_4V;
+ let mayLoad = 1 in
+ def rmi : AVX512AIi8<0x03, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, i8imm:$src3),
+ !strconcat(OpcodeStr,
+ " \t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, EVEX_4V;
+}
+defm VALIGND : avx512_alignr<"valignd", VR512, i512mem>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VALIGNQ : avx512_alignr<"valignq", VR512, i512mem>,
+ VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+
+def : Pat<(v16f32 (X86PAlignr VR512:$src1, VR512:$src2, (i8 imm:$imm))),
+ (VALIGNDrri VR512:$src2, VR512:$src1, imm:$imm)>;
+def : Pat<(v8f64 (X86PAlignr VR512:$src1, VR512:$src2, (i8 imm:$imm))),
+ (VALIGNQrri VR512:$src2, VR512:$src1, imm:$imm)>;
+def : Pat<(v16i32 (X86PAlignr VR512:$src1, VR512:$src2, (i8 imm:$imm))),
+ (VALIGNDrri VR512:$src2, VR512:$src1, imm:$imm)>;
+def : Pat<(v8i64 (X86PAlignr VR512:$src1, VR512:$src2, (i8 imm:$imm))),
+ (VALIGNQrri VR512:$src2, VR512:$src1, imm:$imm)>;
+
+// Helper fragments to match sext vXi1 to vXiY.
+def v16i1sextv16i32 : PatLeaf<(v16i32 (X86vsrai VR512:$src, (i8 31)))>;
+def v8i1sextv8i64 : PatLeaf<(v8i64 (X86vsrai VR512:$src, (i8 63)))>;
+
+multiclass avx512_vpabs<bits<8> opc, string OpcodeStr, ValueType OpVT,
+ RegisterClass KRC, RegisterClass RC,
+ X86MemOperand x86memop, X86MemOperand x86scalar_mop,
+ string BrdcstStr> {
+ def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ []>, EVEX;
+ def rrk : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins KRC:$mask, RC:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst {${mask}}|$dst {${mask}}, $src}"),
+ []>, EVEX, EVEX_K;
+ def rrkz : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins KRC:$mask, RC:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
+ []>, EVEX, EVEX_KZ;
+ let mayLoad = 1 in {
+ def rm : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
+ (ins x86memop:$src),
+ !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ []>, EVEX;
+ def rmk : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
+ (ins KRC:$mask, x86memop:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, $dst {${mask}}|$dst {${mask}}, $src}"),
+ []>, EVEX, EVEX_K;
+ def rmkz : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
+ (ins KRC:$mask, x86memop:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
+ []>, EVEX, EVEX_KZ;
+ def rmb : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
+ (ins x86scalar_mop:$src),
+ !strconcat(OpcodeStr, " \t{${src}", BrdcstStr,
+ ", $dst|$dst, ${src}", BrdcstStr, "}"),
+ []>, EVEX, EVEX_B;
+ def rmbk : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
+ (ins KRC:$mask, x86scalar_mop:$src),
+ !strconcat(OpcodeStr, " \t{${src}", BrdcstStr,
+ ", $dst {${mask}}|$dst {${mask}}, ${src}", BrdcstStr, "}"),
+ []>, EVEX, EVEX_B, EVEX_K;
+ def rmbkz : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
+ (ins KRC:$mask, x86scalar_mop:$src),
+ !strconcat(OpcodeStr, " \t{${src}", BrdcstStr,
+ ", $dst {${mask}} {z}|$dst {${mask}} {z}, ${src}",
+ BrdcstStr, "}"),
+ []>, EVEX, EVEX_B, EVEX_KZ;
+ }
+}
+
+defm VPABSDZ : avx512_vpabs<0x1E, "vpabsd", v16i32, VK16WM, VR512,
+ i512mem, i32mem, "{1to16}">, EVEX_V512,
+ EVEX_CD8<32, CD8VF>;
+defm VPABSQZ : avx512_vpabs<0x1F, "vpabsq", v8i64, VK8WM, VR512,
+ i512mem, i64mem, "{1to8}">, EVEX_V512, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+
+def : Pat<(xor
+ (bc_v16i32 (v16i1sextv16i32)),
+ (bc_v16i32 (add (v16i32 VR512:$src), (v16i1sextv16i32)))),
+ (VPABSDZrr VR512:$src)>;
+def : Pat<(xor
+ (bc_v8i64 (v8i1sextv8i64)),
+ (bc_v8i64 (add (v8i64 VR512:$src), (v8i1sextv8i64)))),
+ (VPABSQZrr VR512:$src)>;
+
+def : Pat<(v16i32 (int_x86_avx512_mask_pabs_d_512 (v16i32 VR512:$src),
+ (v16i32 immAllZerosV), (i16 -1))),
+ (VPABSDZrr VR512:$src)>;
+def : Pat<(v8i64 (int_x86_avx512_mask_pabs_q_512 (v8i64 VR512:$src),
+ (bc_v8i64 (v16i32 immAllZerosV)), (i8 -1))),
+ (VPABSQZrr VR512:$src)>;
+
+multiclass avx512_conflict<bits<8> opc, string OpcodeStr,
+ RegisterClass RC, RegisterClass KRC,
+ X86MemOperand x86memop,
+ X86MemOperand x86scalar_mop, string BrdcstStr> {
+ def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src),
+ !strconcat(OpcodeStr, " \t{$src, ${dst} |${dst}, $src}"),
+ []>, EVEX;
+ def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins x86memop:$src),
+ !strconcat(OpcodeStr, " \t{$src, ${dst}|${dst}, $src}"),
+ []>, EVEX;
+ def rmb : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins x86scalar_mop:$src),
+ !strconcat(OpcodeStr, " \t{${src}", BrdcstStr,
+ ", ${dst}|${dst}, ${src}", BrdcstStr, "}"),
+ []>, EVEX, EVEX_B;
+ def rrkz : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins KRC:$mask, RC:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ []>, EVEX, EVEX_KZ;
+ def rmkz : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, x86memop:$src),
+ !strconcat(OpcodeStr,
+ " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ []>, EVEX, EVEX_KZ;
+ def rmbkz : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, x86scalar_mop:$src),
+ !strconcat(OpcodeStr, " \t{${src}", BrdcstStr,
+ ", ${dst} {${mask}} {z}|${dst} {${mask}} {z}, ${src}",
+ BrdcstStr, "}"),
+ []>, EVEX, EVEX_KZ, EVEX_B;
+
+ let Constraints = "$src1 = $dst" in {
+ def rrk : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, KRC:$mask, RC:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
+ []>, EVEX, EVEX_K;
+ def rmk : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, KRC:$mask, x86memop:$src2),
+ !strconcat(OpcodeStr,
+ " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
+ []>, EVEX, EVEX_K;
+ def rmbk : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, KRC:$mask, x86scalar_mop:$src2),
+ !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ ", ${dst} {${mask}}|${dst} {${mask}}, ${src2}", BrdcstStr, "}"),
+ []>, EVEX, EVEX_K, EVEX_B;
+ }
+}
+
+let Predicates = [HasCDI] in {
+defm VPCONFLICTD : avx512_conflict<0xC4, "vpconflictd", VR512, VK16WM,
+ i512mem, i32mem, "{1to16}">,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+
+
+defm VPCONFLICTQ : avx512_conflict<0xC4, "vpconflictq", VR512, VK8WM,
+ i512mem, i64mem, "{1to8}">,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+}
+
+def : Pat<(int_x86_avx512_mask_conflict_d_512 VR512:$src2, VR512:$src1,
+ GR16:$mask),
+ (VPCONFLICTDrrk VR512:$src1,
+ (v16i1 (COPY_TO_REGCLASS GR16:$mask, VK16WM)), VR512:$src2)>;
+
+def : Pat<(int_x86_avx512_mask_conflict_q_512 VR512:$src2, VR512:$src1,
+ GR8:$mask),
+ (VPCONFLICTQrrk VR512:$src1,
+ (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)), VR512:$src2)>;
+
+let Predicates = [HasCDI] in {
+defm VPLZCNTD : avx512_conflict<0x44, "vplzcntd", VR512, VK16WM,
+ i512mem, i32mem, "{1to16}">,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+
+
+defm VPLZCNTQ : avx512_conflict<0x44, "vplzcntq", VR512, VK8WM,
+ i512mem, i64mem, "{1to8}">,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+}
+
+def : Pat<(int_x86_avx512_mask_lzcnt_d_512 VR512:$src2, VR512:$src1,
+ GR16:$mask),
+ (VPLZCNTDrrk VR512:$src1,
+ (v16i1 (COPY_TO_REGCLASS GR16:$mask, VK16WM)), VR512:$src2)>;
+
+def : Pat<(int_x86_avx512_mask_lzcnt_q_512 VR512:$src2, VR512:$src1,
+ GR8:$mask),
+ (VPLZCNTQrrk VR512:$src1,
+ (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)), VR512:$src2)>;
+
+def : Pat<(v16i32 (ctlz (memopv16i32 addr:$src))),
+ (VPLZCNTDrm addr:$src)>;
+def : Pat<(v16i32 (ctlz (v16i32 VR512:$src))),
+ (VPLZCNTDrr VR512:$src)>;
+def : Pat<(v8i64 (ctlz (memopv8i64 addr:$src))),
+ (VPLZCNTQrm addr:$src)>;
+def : Pat<(v8i64 (ctlz (v8i64 VR512:$src))),
+ (VPLZCNTQrr VR512:$src)>;
+
+def : Pat<(store (i1 -1), addr:$dst), (MOV8mi addr:$dst, (i8 1))>;
+def : Pat<(store (i1 1), addr:$dst), (MOV8mi addr:$dst, (i8 1))>;
+def : Pat<(store (i1 0), addr:$dst), (MOV8mi addr:$dst, (i8 0))>;
+
+def : Pat<(store VK1:$src, addr:$dst),
+ (KMOVWmk addr:$dst, (COPY_TO_REGCLASS VK1:$src, VK16))>;
+
+def truncstorei1 : PatFrag<(ops node:$val, node:$ptr),
+ (truncstore node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i1;
+}]>;
+
+def : Pat<(truncstorei1 GR8:$src, addr:$dst),
+ (MOV8mr addr:$dst, GR8:$src)>;
+
diff --git a/contrib/llvm/lib/Target/X86/X86InstrArithmetic.td b/contrib/llvm/lib/Target/X86/X86InstrArithmetic.td
new file mode 100644
index 0000000..f2574cc
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrArithmetic.td
@@ -0,0 +1,1403 @@
+//===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the integer arithmetic instructions in the X86
+// architecture.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// LEA - Load Effective Address
+let SchedRW = [WriteLEA] in {
+let neverHasSideEffects = 1 in
+def LEA16r : I<0x8D, MRMSrcMem,
+ (outs GR16:$dst), (ins i32mem:$src),
+ "lea{w}\t{$src|$dst}, {$dst|$src}", [], IIC_LEA_16>, OpSize16;
+let isReMaterializable = 1 in
+def LEA32r : I<0x8D, MRMSrcMem,
+ (outs GR32:$dst), (ins i32mem:$src),
+ "lea{l}\t{$src|$dst}, {$dst|$src}",
+ [(set GR32:$dst, lea32addr:$src)], IIC_LEA>,
+ OpSize32, Requires<[Not64BitMode]>;
+
+def LEA64_32r : I<0x8D, MRMSrcMem,
+ (outs GR32:$dst), (ins lea64_32mem:$src),
+ "lea{l}\t{$src|$dst}, {$dst|$src}",
+ [(set GR32:$dst, lea64_32addr:$src)], IIC_LEA>,
+ OpSize32, Requires<[In64BitMode]>;
+
+let isReMaterializable = 1 in
+def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
+ "lea{q}\t{$src|$dst}, {$dst|$src}",
+ [(set GR64:$dst, lea64addr:$src)], IIC_LEA>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Fixed-Register Multiplication and Division Instructions.
+//
+
+// SchedModel info for instruction that loads one value and gets the second
+// (and possibly third) value from a register.
+// This is used for instructions that put the memory operands before other
+// uses.
+class SchedLoadReg<SchedWrite SW> : Sched<[SW,
+ // Memory operand.
+ ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
+ // Register reads (implicit or explicit).
+ ReadAfterLd, ReadAfterLd]>;
+
+// Extra precision multiplication
+
+// AL is really implied by AX, but the registers in Defs must match the
+// SDNode results (i8, i32).
+// AL,AH = AL*GR8
+let Defs = [AL,EFLAGS,AX], Uses = [AL] in
+def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src",
+ // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
+ // This probably ought to be moved to a def : Pat<> if the
+ // syntax can be accepted.
+ [(set AL, (mul AL, GR8:$src)),
+ (implicit EFLAGS)], IIC_MUL8>, Sched<[WriteIMul]>;
+// AX,DX = AX*GR16
+let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in
+def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src),
+ "mul{w}\t$src",
+ [], IIC_MUL16_REG>, OpSize16, Sched<[WriteIMul]>;
+// EAX,EDX = EAX*GR32
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in
+def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src),
+ "mul{l}\t$src",
+ [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/],
+ IIC_MUL32_REG>, OpSize32, Sched<[WriteIMul]>;
+// RAX,RDX = RAX*GR64
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
+def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
+ "mul{q}\t$src",
+ [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/],
+ IIC_MUL64>, Sched<[WriteIMul]>;
+// AL,AH = AL*[mem8]
+let Defs = [AL,EFLAGS,AX], Uses = [AL] in
+def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
+ "mul{b}\t$src",
+ // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
+ // This probably ought to be moved to a def : Pat<> if the
+ // syntax can be accepted.
+ [(set AL, (mul AL, (loadi8 addr:$src))),
+ (implicit EFLAGS)], IIC_MUL8>, SchedLoadReg<WriteIMulLd>;
+// AX,DX = AX*[mem16]
+let mayLoad = 1, neverHasSideEffects = 1 in {
+let Defs = [AX,DX,EFLAGS], Uses = [AX] in
+def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
+ "mul{w}\t$src",
+ [], IIC_MUL16_MEM>, OpSize16, SchedLoadReg<WriteIMulLd>;
+// EAX,EDX = EAX*[mem32]
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
+def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
+ "mul{l}\t$src",
+ [], IIC_MUL32_MEM>, OpSize32, SchedLoadReg<WriteIMulLd>;
+// RAX,RDX = RAX*[mem64]
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
+def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
+ "mul{q}\t$src", [], IIC_MUL64>, SchedLoadReg<WriteIMulLd>;
+}
+
+let neverHasSideEffects = 1 in {
+// AL,AH = AL*GR8
+let Defs = [AL,EFLAGS,AX], Uses = [AL] in
+def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", [],
+ IIC_IMUL8>, Sched<[WriteIMul]>;
+// AX,DX = AX*GR16
+let Defs = [AX,DX,EFLAGS], Uses = [AX] in
+def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", [],
+ IIC_IMUL16_RR>, OpSize16, Sched<[WriteIMul]>;
+// EAX,EDX = EAX*GR32
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
+def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", [],
+ IIC_IMUL32_RR>, OpSize32, Sched<[WriteIMul]>;
+// RAX,RDX = RAX*GR64
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
+def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", [],
+ IIC_IMUL64_RR>, Sched<[WriteIMul]>;
+
+let mayLoad = 1 in {
+// AL,AH = AL*[mem8]
+let Defs = [AL,EFLAGS,AX], Uses = [AL] in
+def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
+ "imul{b}\t$src", [], IIC_IMUL8>, SchedLoadReg<WriteIMulLd>;
+// AX,DX = AX*[mem16]
+let Defs = [AX,DX,EFLAGS], Uses = [AX] in
+def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
+ "imul{w}\t$src", [], IIC_IMUL16_MEM>, OpSize16,
+ SchedLoadReg<WriteIMulLd>;
+// EAX,EDX = EAX*[mem32]
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
+def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
+ "imul{l}\t$src", [], IIC_IMUL32_MEM>, OpSize32,
+ SchedLoadReg<WriteIMulLd>;
+// RAX,RDX = RAX*[mem64]
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
+def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
+ "imul{q}\t$src", [], IIC_IMUL64>, SchedLoadReg<WriteIMulLd>;
+}
+} // neverHasSideEffects
+
+
+let Defs = [EFLAGS] in {
+let Constraints = "$src1 = $dst" in {
+
+let isCommutable = 1, SchedRW = [WriteIMul] in {
+// X = IMUL Y, Z --> X = IMUL Z, Y
+// Register-Register Signed Integer Multiply
+def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
+ "imul{w}\t{$src2, $dst|$dst, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag GR16:$src1, GR16:$src2))], IIC_IMUL16_RR>,
+ TB, OpSize16;
+def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
+ "imul{l}\t{$src2, $dst|$dst, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag GR32:$src1, GR32:$src2))], IIC_IMUL32_RR>,
+ TB, OpSize32;
+def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
+ (ins GR64:$src1, GR64:$src2),
+ "imul{q}\t{$src2, $dst|$dst, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag GR64:$src1, GR64:$src2))], IIC_IMUL64_RR>,
+ TB;
+} // isCommutable, SchedRW
+
+// Register-Memory Signed Integer Multiply
+let SchedRW = [WriteIMulLd, ReadAfterLd] in {
+def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
+ (ins GR16:$src1, i16mem:$src2),
+ "imul{w}\t{$src2, $dst|$dst, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag GR16:$src1, (load addr:$src2)))],
+ IIC_IMUL16_RM>,
+ TB, OpSize16;
+def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst),
+ (ins GR32:$src1, i32mem:$src2),
+ "imul{l}\t{$src2, $dst|$dst, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag GR32:$src1, (load addr:$src2)))],
+ IIC_IMUL32_RM>,
+ TB, OpSize32;
+def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
+ (ins GR64:$src1, i64mem:$src2),
+ "imul{q}\t{$src2, $dst|$dst, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag GR64:$src1, (load addr:$src2)))],
+ IIC_IMUL64_RM>,
+ TB;
+} // SchedRW
+} // Constraints = "$src1 = $dst"
+
+} // Defs = [EFLAGS]
+
+// Surprisingly enough, these are not two address instructions!
+let Defs = [EFLAGS] in {
+let SchedRW = [WriteIMul] in {
+// Register-Integer Signed Integer Multiply
+def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16
+ (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
+ "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag GR16:$src1, imm:$src2))],
+ IIC_IMUL16_RRI>, OpSize16;
+def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8
+ (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
+ "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag GR16:$src1, i16immSExt8:$src2))],
+ IIC_IMUL16_RRI>, OpSize16;
+def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32
+ (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag GR32:$src1, imm:$src2))],
+ IIC_IMUL32_RRI>, OpSize32;
+def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8
+ (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
+ "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag GR32:$src1, i32immSExt8:$src2))],
+ IIC_IMUL32_RRI>, OpSize32;
+def IMUL64rri32 : RIi32S<0x69, MRMSrcReg, // GR64 = GR64*I32
+ (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
+ "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag GR64:$src1, i64immSExt32:$src2))],
+ IIC_IMUL64_RRI>;
+def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8
+ (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
+ "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag GR64:$src1, i64immSExt8:$src2))],
+ IIC_IMUL64_RRI>;
+} // SchedRW
+
+// Memory-Integer Signed Integer Multiply
+let SchedRW = [WriteIMulLd] in {
+def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16
+ (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
+ "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1), imm:$src2))],
+ IIC_IMUL16_RMI>,
+ OpSize16;
+def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8
+ (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
+ "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1),
+ i16immSExt8:$src2))], IIC_IMUL16_RMI>,
+ OpSize16;
+def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32
+ (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
+ "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1), imm:$src2))],
+ IIC_IMUL32_RMI>, OpSize32;
+def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8
+ (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
+ "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1),
+ i32immSExt8:$src2))],
+ IIC_IMUL32_RMI>, OpSize32;
+def IMUL64rmi32 : RIi32S<0x69, MRMSrcMem, // GR64 = [mem64]*I32
+ (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
+ "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1),
+ i64immSExt32:$src2))],
+ IIC_IMUL64_RMI>;
+def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8
+ (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
+ "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1),
+ i64immSExt8:$src2))],
+ IIC_IMUL64_RMI>;
+} // SchedRW
+} // Defs = [EFLAGS]
+
+
+
+
+// unsigned division/remainder
+let hasSideEffects = 1 in { // so that we don't speculatively execute
+let SchedRW = [WriteIDiv] in {
+let Defs = [AL,AH,EFLAGS], Uses = [AX] in
+def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
+ "div{b}\t$src", [], IIC_DIV8_REG>;
+let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
+def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
+ "div{w}\t$src", [], IIC_DIV16>, OpSize16;
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
+def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
+ "div{l}\t$src", [], IIC_DIV32>, OpSize32;
+// RDX:RAX/r64 = RAX,RDX
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
+def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
+ "div{q}\t$src", [], IIC_DIV64>;
+} // SchedRW
+
+let mayLoad = 1 in {
+let Defs = [AL,AH,EFLAGS], Uses = [AX] in
+def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
+ "div{b}\t$src", [], IIC_DIV8_MEM>,
+ SchedLoadReg<WriteIDivLd>;
+let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
+def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
+ "div{w}\t$src", [], IIC_DIV16>, OpSize16,
+ SchedLoadReg<WriteIDivLd>;
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
+def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
+ "div{l}\t$src", [], IIC_DIV32>,
+ SchedLoadReg<WriteIDivLd>, OpSize32;
+// RDX:RAX/[mem64] = RAX,RDX
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
+def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
+ "div{q}\t$src", [], IIC_DIV64>,
+ SchedLoadReg<WriteIDivLd>;
+}
+
+// Signed division/remainder.
+let SchedRW = [WriteIDiv] in {
+let Defs = [AL,AH,EFLAGS], Uses = [AX] in
+def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
+ "idiv{b}\t$src", [], IIC_IDIV8>;
+let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
+def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
+ "idiv{w}\t$src", [], IIC_IDIV16>, OpSize16;
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
+def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
+ "idiv{l}\t$src", [], IIC_IDIV32>, OpSize32;
+// RDX:RAX/r64 = RAX,RDX
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
+def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
+ "idiv{q}\t$src", [], IIC_IDIV64>;
+} // SchedRW
+
+let mayLoad = 1 in {
+let Defs = [AL,AH,EFLAGS], Uses = [AX] in
+def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
+ "idiv{b}\t$src", [], IIC_IDIV8>,
+ SchedLoadReg<WriteIDivLd>;
+let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
+def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
+ "idiv{w}\t$src", [], IIC_IDIV16>, OpSize16,
+ SchedLoadReg<WriteIDivLd>;
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
+def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src),
+ "idiv{l}\t$src", [], IIC_IDIV32>, OpSize32,
+ SchedLoadReg<WriteIDivLd>;
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
+def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
+ "idiv{q}\t$src", [], IIC_IDIV64>,
+ SchedLoadReg<WriteIDivLd>;
+}
+} // hasSideEffects = 0
+
+//===----------------------------------------------------------------------===//
+// Two address Instructions.
+//
+
+// unary instructions
+let CodeSize = 2 in {
+let Defs = [EFLAGS] in {
+let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
+def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "neg{b}\t$dst",
+ [(set GR8:$dst, (ineg GR8:$src1)),
+ (implicit EFLAGS)], IIC_UNARY_REG>;
+def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
+ "neg{w}\t$dst",
+ [(set GR16:$dst, (ineg GR16:$src1)),
+ (implicit EFLAGS)], IIC_UNARY_REG>, OpSize16;
+def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
+ "neg{l}\t$dst",
+ [(set GR32:$dst, (ineg GR32:$src1)),
+ (implicit EFLAGS)], IIC_UNARY_REG>, OpSize32;
+def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst",
+ [(set GR64:$dst, (ineg GR64:$src1)),
+ (implicit EFLAGS)], IIC_UNARY_REG>;
+} // Constraints = "$src1 = $dst", SchedRW
+
+// Read-modify-write negate.
+let SchedRW = [WriteALULd, WriteRMW] in {
+def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst),
+ "neg{b}\t$dst",
+ [(store (ineg (loadi8 addr:$dst)), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>;
+def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst),
+ "neg{w}\t$dst",
+ [(store (ineg (loadi16 addr:$dst)), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize16;
+def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst),
+ "neg{l}\t$dst",
+ [(store (ineg (loadi32 addr:$dst)), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize32;
+def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
+ [(store (ineg (loadi64 addr:$dst)), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>;
+} // SchedRW
+} // Defs = [EFLAGS]
+
+
+// Note: NOT does not set EFLAGS!
+
+let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
+// Match xor -1 to not. Favors these over a move imm + xor to save code size.
+let AddedComplexity = 15 in {
+def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "not{b}\t$dst",
+ [(set GR8:$dst, (not GR8:$src1))], IIC_UNARY_REG>;
+def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
+ "not{w}\t$dst",
+ [(set GR16:$dst, (not GR16:$src1))], IIC_UNARY_REG>, OpSize16;
+def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
+ "not{l}\t$dst",
+ [(set GR32:$dst, (not GR32:$src1))], IIC_UNARY_REG>, OpSize32;
+def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst",
+ [(set GR64:$dst, (not GR64:$src1))], IIC_UNARY_REG>;
+}
+} // Constraints = "$src1 = $dst", SchedRW
+
+let SchedRW = [WriteALULd, WriteRMW] in {
+def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst),
+ "not{b}\t$dst",
+ [(store (not (loadi8 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
+def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst),
+ "not{w}\t$dst",
+ [(store (not (loadi16 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>,
+ OpSize16;
+def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst),
+ "not{l}\t$dst",
+ [(store (not (loadi32 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>,
+ OpSize32;
+def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
+ [(store (not (loadi64 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
+} // SchedRW
+} // CodeSize
+
+// TODO: inc/dec is slow for P4, but fast for Pentium-M.
+let Defs = [EFLAGS] in {
+let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
+let CodeSize = 2 in
+def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "inc{b}\t$dst",
+ [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))],
+ IIC_UNARY_REG>;
+
+let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA.
+def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
+ "inc{w}\t$dst",
+ [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], IIC_UNARY_REG>,
+ OpSize16, Requires<[Not64BitMode]>;
+def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
+ "inc{l}\t$dst",
+ [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))],
+ IIC_UNARY_REG>,
+ OpSize32, Requires<[Not64BitMode]>;
+def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
+ [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))],
+ IIC_UNARY_REG>;
+} // isConvertibleToThreeAddress = 1, CodeSize = 1
+
+
+// In 64-bit mode, single byte INC and DEC cannot be encoded.
+let isConvertibleToThreeAddress = 1, CodeSize = 2 in {
+// Can transform into LEA.
+def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
+ "inc{w}\t$dst",
+ [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))],
+ IIC_UNARY_REG>,
+ OpSize16, Requires<[In64BitMode]>;
+def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
+ "inc{l}\t$dst",
+ [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))],
+ IIC_UNARY_REG>,
+ OpSize32, Requires<[In64BitMode]>;
+def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
+ "dec{w}\t$dst",
+ [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))],
+ IIC_UNARY_REG>,
+ OpSize16, Requires<[In64BitMode]>;
+def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
+ "dec{l}\t$dst",
+ [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))],
+ IIC_UNARY_REG>,
+ OpSize32, Requires<[In64BitMode]>;
+} // isConvertibleToThreeAddress = 1, CodeSize = 2
+
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
+ CodeSize = 2 in {
+def INC32_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
+ "inc{w}\t$dst", [], IIC_UNARY_REG>,
+ OpSize16, Requires<[Not64BitMode]>;
+def INC32_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
+ "inc{l}\t$dst", [], IIC_UNARY_REG>,
+ OpSize32, Requires<[Not64BitMode]>;
+def DEC32_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
+ "dec{w}\t$dst", [], IIC_UNARY_REG>,
+ OpSize16, Requires<[Not64BitMode]>;
+def DEC32_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
+ "dec{l}\t$dst", [], IIC_UNARY_REG>,
+ OpSize32, Requires<[Not64BitMode]>;
+} // isCodeGenOnly = 1, ForceDisassemble = 1, HasSideEffects = 0, CodeSize = 2
+
+} // Constraints = "$src1 = $dst", SchedRW
+
+let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
+ def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
+ [(store (add (loadi8 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>;
+ def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
+ [(store (add (loadi16 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>,
+ OpSize16, Requires<[Not64BitMode]>;
+ def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
+ [(store (add (loadi32 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>,
+ OpSize32, Requires<[Not64BitMode]>;
+ def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
+ [(store (add (loadi64 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>;
+
+// These are duplicates of their 32-bit counterparts. Only needed so X86 knows
+// how to unfold them.
+// FIXME: What is this for??
+def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
+ [(store (add (loadi16 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>,
+ OpSize16, Requires<[In64BitMode]>;
+def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
+ [(store (add (loadi32 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>,
+ OpSize32, Requires<[In64BitMode]>;
+def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
+ [(store (add (loadi16 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>,
+ OpSize16, Requires<[In64BitMode]>;
+def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
+ [(store (add (loadi32 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>,
+ OpSize32, Requires<[In64BitMode]>;
+} // CodeSize = 2, SchedRW
+
+let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
+let CodeSize = 2 in
+def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "dec{b}\t$dst",
+ [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))],
+ IIC_UNARY_REG>;
+let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA.
+def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
+ "dec{w}\t$dst",
+ [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))],
+ IIC_UNARY_REG>,
+ OpSize16, Requires<[Not64BitMode]>;
+def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
+ "dec{l}\t$dst",
+ [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))],
+ IIC_UNARY_REG>,
+ OpSize32, Requires<[Not64BitMode]>;
+def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
+ [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))],
+ IIC_UNARY_REG>;
+} // CodeSize = 2
+} // Constraints = "$src1 = $dst", SchedRW
+
+
+let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
+ def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
+ [(store (add (loadi8 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>;
+ def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
+ [(store (add (loadi16 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>,
+ OpSize16, Requires<[Not64BitMode]>;
+ def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
+ [(store (add (loadi32 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>,
+ OpSize32, Requires<[Not64BitMode]>;
+ def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
+ [(store (add (loadi64 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)], IIC_UNARY_MEM>;
+} // CodeSize = 2, SchedRW
+} // Defs = [EFLAGS]
+
+/// X86TypeInfo - This is a bunch of information that describes relevant X86
+/// information about value types. For example, it can tell you what the
+/// register class and preferred load to use.
+class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
+ PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
+ Operand immoperand, SDPatternOperator immoperator,
+ Operand imm8operand, SDPatternOperator imm8operator,
+ bit hasOddOpcode, OperandSize opSize,
+ bit hasREX_WPrefix> {
+ /// VT - This is the value type itself.
+ ValueType VT = vt;
+
+ /// InstrSuffix - This is the suffix used on instructions with this type. For
+ /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
+ string InstrSuffix = instrsuffix;
+
+ /// RegClass - This is the register class associated with this type. For
+ /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
+ RegisterClass RegClass = regclass;
+
+ /// LoadNode - This is the load node associated with this type. For
+ /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
+ PatFrag LoadNode = loadnode;
+
+ /// MemOperand - This is the memory operand associated with this type. For
+ /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
+ X86MemOperand MemOperand = memoperand;
+
+ /// ImmEncoding - This is the encoding of an immediate of this type. For
+ /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32
+ /// since the immediate fields of i64 instructions is a 32-bit sign extended
+ /// value.
+ ImmType ImmEncoding = immkind;
+
+ /// ImmOperand - This is the operand kind of an immediate of this type. For
+ /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 ->
+ /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
+ /// extended value.
+ Operand ImmOperand = immoperand;
+
+ /// ImmOperator - This is the operator that should be used to match an
+ /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
+ SDPatternOperator ImmOperator = immoperator;
+
+ /// Imm8Operand - This is the operand kind to use for an imm8 of this type.
+ /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is
+ /// only used for instructions that have a sign-extended imm8 field form.
+ Operand Imm8Operand = imm8operand;
+
+ /// Imm8Operator - This is the operator that should be used to match an 8-bit
+ /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
+ SDPatternOperator Imm8Operator = imm8operator;
+
+ /// HasOddOpcode - This bit is true if the instruction should have an odd (as
+ /// opposed to even) opcode. Operations on i8 are usually even, operations on
+ /// other datatypes are odd.
+ bit HasOddOpcode = hasOddOpcode;
+
+ /// OpSize - Selects whether the instruction needs a 0x66 prefix based on
+ /// 16-bit vs 32-bit mode. i8/i64 set this to OpSizeFixed. i16 sets this
+ /// to Opsize16. i32 sets this to OpSize32.
+ OperandSize OpSize = opSize;
+
+ /// HasREX_WPrefix - This bit is set to true if the instruction should have
+ /// the 0x40 REX prefix. This is set for i64 types.
+ bit HasREX_WPrefix = hasREX_WPrefix;
+}
+
+def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
+
+
+def Xi8 : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem ,
+ Imm8 , i8imm , imm, i8imm , invalid_node,
+ 0, OpSizeFixed, 0>;
+def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem,
+ Imm16, i16imm, imm, i16i8imm, i16immSExt8,
+ 1, OpSize16, 0>;
+def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem,
+ Imm32, i32imm, imm, i32i8imm, i32immSExt8,
+ 1, OpSize32, 0>;
+def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem,
+ Imm32S, i64i32imm, i64immSExt32, i64i8imm, i64immSExt8,
+ 1, OpSizeFixed, 1>;
+
+/// ITy - This instruction base class takes the type info for the instruction.
+/// Using this, it:
+/// 1. Concatenates together the instruction mnemonic with the appropriate
+/// suffix letter, a tab, and the arguments.
+/// 2. Infers whether the instruction should have a 0x66 prefix byte.
+/// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
+/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
+/// or 1 (for i16,i32,i64 operations).
+class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
+ string mnemonic, string args, list<dag> pattern,
+ InstrItinClass itin = IIC_BIN_NONMEM>
+ : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
+ opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
+ f, outs, ins,
+ !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern,
+ itin> {
+
+ // Infer instruction prefixes from type info.
+ let OpSize = typeinfo.OpSize;
+ let hasREX_WPrefix = typeinfo.HasREX_WPrefix;
+}
+
+// BinOpRR - Instructions like "add reg, reg, reg".
+class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ dag outlist, list<dag> pattern, InstrItinClass itin,
+ Format f = MRMDestReg>
+ : ITy<opcode, f, typeinfo, outlist,
+ (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
+ mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
+ Sched<[WriteALU]>;
+
+// BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has
+// just a regclass (no eflags) as a result.
+class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst,
+ (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
+ IIC_BIN_NONMEM>;
+
+// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
+// just a EFLAGS as a result.
+class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDPatternOperator opnode, Format f = MRMDestReg>
+ : BinOpRR<opcode, mnemonic, typeinfo, (outs),
+ [(set EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
+ IIC_BIN_NONMEM, f>;
+
+// BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has
+// both a regclass and EFLAGS as a result.
+class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
+ IIC_BIN_NONMEM>;
+
+// BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has
+// both a regclass and EFLAGS as a result, and has EFLAGS as input.
+class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
+ EFLAGS))], IIC_BIN_CARRY_NONMEM>;
+
+// BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding).
+class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ InstrItinClass itin = IIC_BIN_NONMEM>
+ : ITy<opcode, MRMSrcReg, typeinfo,
+ (outs typeinfo.RegClass:$dst),
+ (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
+ mnemonic, "{$src2, $dst|$dst, $src2}", [], itin>,
+ Sched<[WriteALU]> {
+ // The disassembler should know about this, but not the asmparser.
+ let isCodeGenOnly = 1;
+ let ForceDisassemble = 1;
+ let hasSideEffects = 0;
+}
+
+// BinOpRR_RDD_Rev - Instructions like "adc reg, reg, reg" (reversed encoding).
+class BinOpRR_RFF_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
+ : BinOpRR_Rev<opcode, mnemonic, typeinfo, IIC_BIN_CARRY_NONMEM>;
+
+// BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding).
+class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
+ : ITy<opcode, MRMSrcReg, typeinfo, (outs),
+ (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
+ mnemonic, "{$src2, $src1|$src1, $src2}", [], IIC_BIN_NONMEM>,
+ Sched<[WriteALU]> {
+ // The disassembler should know about this, but not the asmparser.
+ let isCodeGenOnly = 1;
+ let ForceDisassemble = 1;
+ let hasSideEffects = 0;
+}
+
+// BinOpRM - Instructions like "add reg, reg, [mem]".
+class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ dag outlist, list<dag> pattern,
+ InstrItinClass itin = IIC_BIN_MEM>
+ : ITy<opcode, MRMSrcMem, typeinfo, outlist,
+ (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
+ mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
+ Sched<[WriteALULd, ReadAfterLd]>;
+
+// BinOpRM_R - Instructions like "add reg, reg, [mem]".
+class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst,
+ (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
+
+// BinOpRM_F - Instructions like "cmp reg, [mem]".
+class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDPatternOperator opnode>
+ : BinOpRM<opcode, mnemonic, typeinfo, (outs),
+ [(set EFLAGS,
+ (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
+
+// BinOpRM_RF - Instructions like "add reg, reg, [mem]".
+class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
+
+// BinOpRM_RFF - Instructions like "adc reg, reg, [mem]".
+class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2),
+ EFLAGS))], IIC_BIN_CARRY_MEM>;
+
+// BinOpRI - Instructions like "add reg, reg, imm".
+class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ Format f, dag outlist, list<dag> pattern,
+ InstrItinClass itin = IIC_BIN_NONMEM>
+ : ITy<opcode, f, typeinfo, outlist,
+ (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
+ mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
+ Sched<[WriteALU]> {
+ let ImmT = typeinfo.ImmEncoding;
+}
+
+// BinOpRI_R - Instructions like "add reg, reg, imm".
+class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst,
+ (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
+
+// BinOpRI_F - Instructions like "cmp reg, imm".
+class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDPatternOperator opnode, Format f>
+ : BinOpRI<opcode, mnemonic, typeinfo, f, (outs),
+ [(set EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
+
+// BinOpRI_RF - Instructions like "add reg, reg, imm".
+class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
+// BinOpRI_RFF - Instructions like "adc reg, reg, imm".
+class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
+ EFLAGS))], IIC_BIN_CARRY_NONMEM>;
+
+// BinOpRI8 - Instructions like "add reg, reg, imm8".
+class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ Format f, dag outlist, list<dag> pattern,
+ InstrItinClass itin = IIC_BIN_NONMEM>
+ : ITy<opcode, f, typeinfo, outlist,
+ (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
+ mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
+ Sched<[WriteALU]> {
+ let ImmT = Imm8; // Always 8-bit immediate.
+}
+
+// BinOpRI8_R - Instructions like "add reg, reg, imm8".
+class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst,
+ (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
+
+// BinOpRI8_F - Instructions like "cmp reg, imm8".
+class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs),
+ [(set EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
+
+// BinOpRI8_RF - Instructions like "add reg, reg, imm8".
+class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
+
+// BinOpRI8_RFF - Instructions like "adc reg, reg, imm8".
+class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2,
+ EFLAGS))], IIC_BIN_CARRY_NONMEM>;
+
+// BinOpMR - Instructions like "add [mem], reg".
+class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ list<dag> pattern, InstrItinClass itin = IIC_BIN_MEM>
+ : ITy<opcode, MRMDestMem, typeinfo,
+ (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
+ mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>,
+ Sched<[WriteALULd, WriteRMW]>;
+
+// BinOpMR_RMW - Instructions like "add [mem], reg".
+class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpMR<opcode, mnemonic, typeinfo,
+ [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
+ (implicit EFLAGS)]>;
+
+// BinOpMR_RMW_FF - Instructions like "adc [mem], reg".
+class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpMR<opcode, mnemonic, typeinfo,
+ [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
+ addr:$dst),
+ (implicit EFLAGS)], IIC_BIN_CARRY_MEM>;
+
+// BinOpMR_F - Instructions like "cmp [mem], reg".
+class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpMR<opcode, mnemonic, typeinfo,
+ [(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>;
+
+// BinOpMI - Instructions like "add [mem], imm".
+class BinOpMI<string mnemonic, X86TypeInfo typeinfo,
+ Format f, list<dag> pattern, bits<8> opcode = 0x80,
+ InstrItinClass itin = IIC_BIN_MEM>
+ : ITy<opcode, f, typeinfo,
+ (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
+ mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>,
+ Sched<[WriteALULd, WriteRMW]> {
+ let ImmT = typeinfo.ImmEncoding;
+}
+
+// BinOpMI_RMW - Instructions like "add [mem], imm".
+class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpMI<mnemonic, typeinfo, f,
+ [(store (opnode (typeinfo.VT (load addr:$dst)),
+ typeinfo.ImmOperator:$src), addr:$dst),
+ (implicit EFLAGS)]>;
+// BinOpMI_RMW_FF - Instructions like "adc [mem], imm".
+class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpMI<mnemonic, typeinfo, f,
+ [(store (opnode (typeinfo.VT (load addr:$dst)),
+ typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
+ (implicit EFLAGS)], 0x80, IIC_BIN_CARRY_MEM>;
+
+// BinOpMI_F - Instructions like "cmp [mem], imm".
+class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo,
+ SDPatternOperator opnode, Format f, bits<8> opcode = 0x80>
+ : BinOpMI<mnemonic, typeinfo, f,
+ [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)),
+ typeinfo.ImmOperator:$src))],
+ opcode>;
+
+// BinOpMI8 - Instructions like "add [mem], imm8".
+class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
+ Format f, list<dag> pattern,
+ InstrItinClass itin = IIC_BIN_MEM>
+ : ITy<0x82, f, typeinfo,
+ (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
+ mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>,
+ Sched<[WriteALULd, WriteRMW]> {
+ let ImmT = Imm8; // Always 8-bit immediate.
+}
+
+// BinOpMI8_RMW - Instructions like "add [mem], imm8".
+class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpMI8<mnemonic, typeinfo, f,
+ [(store (opnode (load addr:$dst),
+ typeinfo.Imm8Operator:$src), addr:$dst),
+ (implicit EFLAGS)]>;
+
+// BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8".
+class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpMI8<mnemonic, typeinfo, f,
+ [(store (opnode (load addr:$dst),
+ typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst),
+ (implicit EFLAGS)], IIC_BIN_CARRY_MEM>;
+
+// BinOpMI8_F - Instructions like "cmp [mem], imm8".
+class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpMI8<mnemonic, typeinfo, f,
+ [(set EFLAGS, (opnode (load addr:$dst),
+ typeinfo.Imm8Operator:$src))]>;
+
+// BinOpAI - Instructions like "add %eax, %eax, imm", that imp-def EFLAGS.
+class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ Register areg, string operands,
+ InstrItinClass itin = IIC_BIN_NONMEM>
+ : ITy<opcode, RawFrm, typeinfo,
+ (outs), (ins typeinfo.ImmOperand:$src),
+ mnemonic, operands, [], itin>, Sched<[WriteALU]> {
+ let ImmT = typeinfo.ImmEncoding;
+ let Uses = [areg];
+ let Defs = [areg, EFLAGS];
+ let hasSideEffects = 0;
+}
+
+// BinOpAI_FF - Instructions like "adc %eax, %eax, imm", that implicitly define
+// and use EFLAGS.
+class BinOpAI_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ Register areg, string operands>
+ : BinOpAI<opcode, mnemonic, typeinfo, areg, operands,
+ IIC_BIN_CARRY_NONMEM> {
+ let Uses = [areg, EFLAGS];
+}
+
+/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
+/// defined with "(set GPR:$dst, EFLAGS, (...".
+///
+/// It would be nice to get rid of the second and third argument here, but
+/// tblgen can't handle dependent type references aggressively enough: PR8330
+multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
+ string mnemonic, Format RegMRM, Format MemMRM,
+ SDNode opnodeflag, SDNode opnode,
+ bit CommutableRR, bit ConvertibleToThreeAddress> {
+ let Defs = [EFLAGS] in {
+ let Constraints = "$src1 = $dst" in {
+ let isCommutable = CommutableRR,
+ isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ def NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
+ def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
+ def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
+ def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
+ } // isCommutable
+
+ def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
+ def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
+ def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
+ def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
+
+ def NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
+ def NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
+ def NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
+ def NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
+
+ let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ // NOTE: These are order specific, we want the ri8 forms to be listed
+ // first so that they are slightly preferred to the ri forms.
+ def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>;
+ def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
+ def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
+
+ def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
+ def NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
+ def NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
+ def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
+ }
+ } // Constraints = "$src1 = $dst"
+
+ def NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
+ def NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
+ def NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
+ def NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
+
+ // NOTE: These are order specific, we want the mi8 forms to be listed
+ // first so that they are slightly preferred to the mi forms.
+ def NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
+ def NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
+ def NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
+
+ def NAME#8mi : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>;
+ def NAME#16mi : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>;
+ def NAME#32mi : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>;
+ def NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>;
+ } // Defs = [EFLAGS]
+
+ def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
+ "{$src, %al|al, $src}">;
+ def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
+ "{$src, %ax|ax, $src}">;
+ def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
+ "{$src, %eax|eax, $src}">;
+ def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
+ "{$src, %rax|rax, $src}">;
+}
+
+/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
+/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
+/// SBB.
+///
+/// It would be nice to get rid of the second and third argument here, but
+/// tblgen can't handle dependent type references aggressively enough: PR8330
+multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
+ string mnemonic, Format RegMRM, Format MemMRM,
+ SDNode opnode, bit CommutableRR,
+ bit ConvertibleToThreeAddress> {
+ let Uses = [EFLAGS], Defs = [EFLAGS] in {
+ let Constraints = "$src1 = $dst" in {
+ let isCommutable = CommutableRR,
+ isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ def NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
+ def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
+ def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
+ def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
+ } // isCommutable
+
+ def NAME#8rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi8>;
+ def NAME#16rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi16>;
+ def NAME#32rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi32>;
+ def NAME#64rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi64>;
+
+ def NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
+ def NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
+ def NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
+ def NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
+
+ let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ // NOTE: These are order specific, we want the ri8 forms to be listed
+ // first so that they are slightly preferred to the ri forms.
+ def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>;
+ def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>;
+ def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>;
+
+ def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
+ def NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
+ def NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
+ def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
+ }
+ } // Constraints = "$src1 = $dst"
+
+ def NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
+ def NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
+ def NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
+ def NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
+
+ // NOTE: These are order specific, we want the mi8 forms to be listed
+ // first so that they are slightly preferred to the mi forms.
+ def NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
+ def NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
+ def NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
+
+ def NAME#8mi : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>;
+ def NAME#16mi : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
+ def NAME#32mi : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
+ def NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
+ } // Uses = [EFLAGS], Defs = [EFLAGS]
+
+ def NAME#8i8 : BinOpAI_FF<BaseOpc4, mnemonic, Xi8 , AL,
+ "{$src, %al|al, $src}">;
+ def NAME#16i16 : BinOpAI_FF<BaseOpc4, mnemonic, Xi16, AX,
+ "{$src, %ax|ax, $src}">;
+ def NAME#32i32 : BinOpAI_FF<BaseOpc4, mnemonic, Xi32, EAX,
+ "{$src, %eax|eax, $src}">;
+ def NAME#64i32 : BinOpAI_FF<BaseOpc4, mnemonic, Xi64, RAX,
+ "{$src, %rax|rax, $src}">;
+}
+
+/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
+/// defined with "(set EFLAGS, (...". It would be really nice to find a way
+/// to factor this with the other ArithBinOp_*.
+///
+multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
+ string mnemonic, Format RegMRM, Format MemMRM,
+ SDNode opnode,
+ bit CommutableRR, bit ConvertibleToThreeAddress> {
+ let Defs = [EFLAGS] in {
+ let isCommutable = CommutableRR,
+ isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ def NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
+ def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
+ def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
+ def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
+ } // isCommutable
+
+ def NAME#8rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>;
+ def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>;
+ def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>;
+ def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>;
+
+ def NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
+ def NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
+ def NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
+ def NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
+
+ let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ // NOTE: These are order specific, we want the ri8 forms to be listed
+ // first so that they are slightly preferred to the ri forms.
+ def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>;
+ def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
+ def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
+
+ def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
+ def NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
+ def NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
+ def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
+ }
+
+ def NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
+ def NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
+ def NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
+ def NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
+
+ // NOTE: These are order specific, we want the mi8 forms to be listed
+ // first so that they are slightly preferred to the mi forms.
+ def NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>;
+ def NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
+ def NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
+
+ def NAME#8mi : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>;
+ def NAME#16mi : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>;
+ def NAME#32mi : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>;
+ def NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>;
+ } // Defs = [EFLAGS]
+
+ def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
+ "{$src, %al|al, $src}">;
+ def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
+ "{$src, %ax|ax, $src}">;
+ def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
+ "{$src, %eax|eax, $src}">;
+ def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
+ "{$src, %rax|rax, $src}">;
+}
+
+
+defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
+ X86and_flag, and, 1, 0>;
+defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
+ X86or_flag, or, 1, 0>;
+defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
+ X86xor_flag, xor, 1, 0>;
+defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
+ X86add_flag, add, 1, 1>;
+let isCompare = 1 in {
+defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
+ X86sub_flag, sub, 0, 0>;
+}
+
+// Arithmetic.
+defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
+ 1, 0>;
+defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
+ 0, 0>;
+
+let isCompare = 1 in {
+defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Semantically, test instructions are similar like AND, except they don't
+// generate a result. From an encoding perspective, they are very different:
+// they don't have all the usual imm8 and REV forms, and are encoded into a
+// different space.
+def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
+ (X86cmp (and_su node:$lhs, node:$rhs), 0)>;
+
+let isCompare = 1 in {
+ let Defs = [EFLAGS] in {
+ let isCommutable = 1 in {
+ def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , X86testpat, MRMSrcReg>;
+ def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat, MRMSrcReg>;
+ def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat, MRMSrcReg>;
+ def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat, MRMSrcReg>;
+ } // isCommutable
+
+ def TEST8rm : BinOpRM_F<0x84, "test", Xi8 , X86testpat>;
+ def TEST16rm : BinOpRM_F<0x84, "test", Xi16, X86testpat>;
+ def TEST32rm : BinOpRM_F<0x84, "test", Xi32, X86testpat>;
+ def TEST64rm : BinOpRM_F<0x84, "test", Xi64, X86testpat>;
+
+ def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
+ def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
+ def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
+ def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
+
+ def TEST8mi : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>;
+ def TEST16mi : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>;
+ def TEST32mi : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>;
+ def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>;
+
+ // When testing the result of EXTRACT_SUBREG sub_8bit_hi, make sure the
+ // register class is constrained to GR8_NOREX. This pseudo is explicitly
+ // marked side-effect free, since it doesn't have an isel pattern like
+ // other test instructions.
+ let isPseudo = 1, hasSideEffects = 0 in
+ def TEST8ri_NOREX : I<0, Pseudo, (outs), (ins GR8_NOREX:$src, i8imm:$mask),
+ "", [], IIC_BIN_NONMEM>, Sched<[WriteALU]>;
+ } // Defs = [EFLAGS]
+
+ def TEST8i8 : BinOpAI<0xA8, "test", Xi8 , AL,
+ "{$src, %al|al, $src}">;
+ def TEST16i16 : BinOpAI<0xA8, "test", Xi16, AX,
+ "{$src, %ax|ax, $src}">;
+ def TEST32i32 : BinOpAI<0xA8, "test", Xi32, EAX,
+ "{$src, %eax|eax, $src}">;
+ def TEST64i32 : BinOpAI<0xA8, "test", Xi64, RAX,
+ "{$src, %rax|rax, $src}">;
+} // isCompare
+
+//===----------------------------------------------------------------------===//
+// ANDN Instruction
+//
+multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
+ PatFrag ld_frag> {
+ def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))],
+ IIC_BIN_NONMEM>, Sched<[WriteALU]>;
+ def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, EFLAGS,
+ (X86and_flag (not RC:$src1), (ld_frag addr:$src2)))], IIC_BIN_MEM>,
+ Sched<[WriteALULd, ReadAfterLd]>;
+}
+
+let Predicates = [HasBMI], Defs = [EFLAGS] in {
+ defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8PS, VEX_4V;
+ defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8PS, VEX_4V, VEX_W;
+}
+
+let Predicates = [HasBMI] in {
+ def : Pat<(and (not GR32:$src1), GR32:$src2),
+ (ANDN32rr GR32:$src1, GR32:$src2)>;
+ def : Pat<(and (not GR64:$src1), GR64:$src2),
+ (ANDN64rr GR64:$src1, GR64:$src2)>;
+ def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)),
+ (ANDN32rm GR32:$src1, addr:$src2)>;
+ def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)),
+ (ANDN64rm GR64:$src1, addr:$src2)>;
+}
+
+//===----------------------------------------------------------------------===//
+// MULX Instruction
+//
+multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop> {
+let neverHasSideEffects = 1 in {
+ let isCommutable = 1 in
+ def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src),
+ !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
+ [], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMul, WriteIMulH]>;
+
+ let mayLoad = 1 in
+ def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src),
+ !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
+ [], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMulLd, WriteIMulH]>;
+}
+}
+
+let Predicates = [HasBMI2] in {
+ let Uses = [EDX] in
+ defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem>;
+ let Uses = [RDX] in
+ defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem>, VEX_W;
+}
+
+//===----------------------------------------------------------------------===//
+// ADCX Instruction
+//
+let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in {
+ let SchedRW = [WriteALU] in {
+ def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "adcx{l}\t{$src, $dst|$dst, $src}",
+ [], IIC_BIN_NONMEM>, T8PD;
+
+ def ADCX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
+ "adcx{q}\t{$src, $dst|$dst, $src}",
+ [], IIC_BIN_NONMEM>, T8PD, Requires<[In64BitMode]>;
+ } // SchedRW
+
+ let mayLoad = 1, SchedRW = [WriteALULd] in {
+ def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "adcx{l}\t{$src, $dst|$dst, $src}",
+ [], IIC_BIN_MEM>, T8PD;
+
+ def ADCX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "adcx{q}\t{$src, $dst|$dst, $src}",
+ [], IIC_BIN_MEM>, T8PD, Requires<[In64BitMode]>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ADOX Instruction
+//
+let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in {
+ let SchedRW = [WriteALU] in {
+ def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "adox{l}\t{$src, $dst|$dst, $src}",
+ [], IIC_BIN_NONMEM>, T8XS;
+
+ def ADOX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
+ "adox{q}\t{$src, $dst|$dst, $src}",
+ [], IIC_BIN_NONMEM>, T8XS, Requires<[In64BitMode]>;
+ } // SchedRW
+
+ let mayLoad = 1, SchedRW = [WriteALULd] in {
+ def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "adox{l}\t{$src, $dst|$dst, $src}",
+ [], IIC_BIN_MEM>, T8XS;
+
+ def ADOX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "adox{q}\t{$src, $dst|$dst, $src}",
+ [], IIC_BIN_MEM>, T8XS, Requires<[In64BitMode]>;
+ }
+}
diff --git a/contrib/llvm/lib/Target/X86/X86InstrBuilder.h b/contrib/llvm/lib/Target/X86/X86InstrBuilder.h
new file mode 100644
index 0000000..e421f8c
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrBuilder.h
@@ -0,0 +1,184 @@
+//===-- X86InstrBuilder.h - Functions to aid building x86 insts -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file exposes functions that may be used with BuildMI from the
+// MachineInstrBuilder.h file to handle X86'isms in a clean way.
+//
+// The BuildMem function may be used with the BuildMI function to add entire
+// memory references in a single, typed, function call. X86 memory references
+// can be very complex expressions (described in the README), so wrapping them
+// up behind an easier to use interface makes sense. Descriptions of the
+// functions are included below.
+//
+// For reference, the order of operands for memory references is:
+// (Operand), Base, Scale, Index, Displacement.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86INSTRBUILDER_H
+#define X86INSTRBUILDER_H
+
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+
+namespace llvm {
+
+/// X86AddressMode - This struct holds a generalized full x86 address mode.
+/// The base register can be a frame index, which will eventually be replaced
+/// with BP or SP and Disp being offsetted accordingly. The displacement may
+/// also include the offset of a global value.
+struct X86AddressMode {
+ enum {
+ RegBase,
+ FrameIndexBase
+ } BaseType;
+
+ union {
+ unsigned Reg;
+ int FrameIndex;
+ } Base;
+
+ unsigned Scale;
+ unsigned IndexReg;
+ int Disp;
+ const GlobalValue *GV;
+ unsigned GVOpFlags;
+
+ X86AddressMode()
+ : BaseType(RegBase), Scale(1), IndexReg(0), Disp(0), GV(nullptr),
+ GVOpFlags(0) {
+ Base.Reg = 0;
+ }
+
+
+ void getFullAddress(SmallVectorImpl<MachineOperand> &MO) {
+ assert(Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8);
+
+ if (BaseType == X86AddressMode::RegBase)
+ MO.push_back(MachineOperand::CreateReg(Base.Reg, false, false,
+ false, false, false, 0, false));
+ else {
+ assert(BaseType == X86AddressMode::FrameIndexBase);
+ MO.push_back(MachineOperand::CreateFI(Base.FrameIndex));
+ }
+
+ MO.push_back(MachineOperand::CreateImm(Scale));
+ MO.push_back(MachineOperand::CreateReg(IndexReg, false, false,
+ false, false, false, 0, false));
+
+ if (GV)
+ MO.push_back(MachineOperand::CreateGA(GV, Disp, GVOpFlags));
+ else
+ MO.push_back(MachineOperand::CreateImm(Disp));
+
+ MO.push_back(MachineOperand::CreateReg(0, false, false,
+ false, false, false, 0, false));
+ }
+};
+
+/// addDirectMem - This function is used to add a direct memory reference to the
+/// current instruction -- that is, a dereference of an address in a register,
+/// with no scale, index or displacement. An example is: DWORD PTR [EAX].
+///
+static inline const MachineInstrBuilder &
+addDirectMem(const MachineInstrBuilder &MIB, unsigned Reg) {
+ // Because memory references are always represented with five
+ // values, this adds: Reg, 1, NoReg, 0, NoReg to the instruction.
+ return MIB.addReg(Reg).addImm(1).addReg(0).addImm(0).addReg(0);
+}
+
+
+static inline const MachineInstrBuilder &
+addOffset(const MachineInstrBuilder &MIB, int Offset) {
+ return MIB.addImm(1).addReg(0).addImm(Offset).addReg(0);
+}
+
+/// addRegOffset - This function is used to add a memory reference of the form
+/// [Reg + Offset], i.e., one with no scale or index, but with a
+/// displacement. An example is: DWORD PTR [EAX + 4].
+///
+static inline const MachineInstrBuilder &
+addRegOffset(const MachineInstrBuilder &MIB,
+ unsigned Reg, bool isKill, int Offset) {
+ return addOffset(MIB.addReg(Reg, getKillRegState(isKill)), Offset);
+}
+
+/// addRegReg - This function is used to add a memory reference of the form:
+/// [Reg + Reg].
+static inline const MachineInstrBuilder &addRegReg(const MachineInstrBuilder &MIB,
+ unsigned Reg1, bool isKill1,
+ unsigned Reg2, bool isKill2) {
+ return MIB.addReg(Reg1, getKillRegState(isKill1)).addImm(1)
+ .addReg(Reg2, getKillRegState(isKill2)).addImm(0).addReg(0);
+}
+
+static inline const MachineInstrBuilder &
+addFullAddress(const MachineInstrBuilder &MIB,
+ const X86AddressMode &AM) {
+ assert(AM.Scale == 1 || AM.Scale == 2 || AM.Scale == 4 || AM.Scale == 8);
+
+ if (AM.BaseType == X86AddressMode::RegBase)
+ MIB.addReg(AM.Base.Reg);
+ else {
+ assert(AM.BaseType == X86AddressMode::FrameIndexBase);
+ MIB.addFrameIndex(AM.Base.FrameIndex);
+ }
+
+ MIB.addImm(AM.Scale).addReg(AM.IndexReg);
+ if (AM.GV)
+ MIB.addGlobalAddress(AM.GV, AM.Disp, AM.GVOpFlags);
+ else
+ MIB.addImm(AM.Disp);
+
+ return MIB.addReg(0);
+}
+
+/// addFrameReference - This function is used to add a reference to the base of
+/// an abstract object on the stack frame of the current function. This
+/// reference has base register as the FrameIndex offset until it is resolved.
+/// This allows a constant offset to be specified as well...
+///
+static inline const MachineInstrBuilder &
+addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset = 0) {
+ MachineInstr *MI = MIB;
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned Flags = 0;
+ if (MCID.mayLoad())
+ Flags |= MachineMemOperand::MOLoad;
+ if (MCID.mayStore())
+ Flags |= MachineMemOperand::MOStore;
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI, Offset),
+ Flags, MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+ return addOffset(MIB.addFrameIndex(FI), Offset)
+ .addMemOperand(MMO);
+}
+
+/// addConstantPoolReference - This function is used to add a reference to the
+/// base of a constant value spilled to the per-function constant pool. The
+/// reference uses the abstract ConstantPoolIndex which is retained until
+/// either machine code emission or assembly output. In PIC mode on x86-32,
+/// the GlobalBaseReg parameter can be used to make this a
+/// GlobalBaseReg-relative reference.
+///
+static inline const MachineInstrBuilder &
+addConstantPoolReference(const MachineInstrBuilder &MIB, unsigned CPI,
+ unsigned GlobalBaseReg, unsigned char OpFlags) {
+ //FIXME: factor this
+ return MIB.addReg(GlobalBaseReg).addImm(1).addReg(0)
+ .addConstantPoolIndex(CPI, 0, OpFlags).addReg(0);
+}
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86InstrCMovSetCC.td b/contrib/llvm/lib/Target/X86/X86InstrCMovSetCC.td
new file mode 100644
index 0000000..315f213
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrCMovSetCC.td
@@ -0,0 +1,112 @@
+//===-- X86InstrCMovSetCC.td - Conditional Move and SetCC --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the X86 conditional move and set on condition
+// instructions.
+//
+//===----------------------------------------------------------------------===//
+
+
+// SetCC instructions.
+multiclass CMOV<bits<8> opc, string Mnemonic, PatLeaf CondNode> {
+ let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst",
+ isCommutable = 1, SchedRW = [WriteALU] in {
+ def NAME#16rr
+ : I<opc, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
+ !strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"),
+ [(set GR16:$dst,
+ (X86cmov GR16:$src1, GR16:$src2, CondNode, EFLAGS))],
+ IIC_CMOV16_RR>, TB, OpSize16;
+ def NAME#32rr
+ : I<opc, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ !strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"),
+ [(set GR32:$dst,
+ (X86cmov GR32:$src1, GR32:$src2, CondNode, EFLAGS))],
+ IIC_CMOV32_RR>, TB, OpSize32;
+ def NAME#64rr
+ :RI<opc, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ !strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"),
+ [(set GR64:$dst,
+ (X86cmov GR64:$src1, GR64:$src2, CondNode, EFLAGS))],
+ IIC_CMOV32_RR>, TB;
+ }
+
+ let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst",
+ SchedRW = [WriteALULd, ReadAfterLd] in {
+ def NAME#16rm
+ : I<opc, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
+ !strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"),
+ [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
+ CondNode, EFLAGS))], IIC_CMOV16_RM>,
+ TB, OpSize16;
+ def NAME#32rm
+ : I<opc, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
+ !strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"),
+ [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
+ CondNode, EFLAGS))], IIC_CMOV32_RM>,
+ TB, OpSize32;
+ def NAME#64rm
+ :RI<opc, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
+ !strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"),
+ [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
+ CondNode, EFLAGS))], IIC_CMOV32_RM>, TB;
+ } // Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst"
+} // end multiclass
+
+
+// Conditional Moves.
+defm CMOVO : CMOV<0x40, "cmovo" , X86_COND_O>;
+defm CMOVNO : CMOV<0x41, "cmovno", X86_COND_NO>;
+defm CMOVB : CMOV<0x42, "cmovb" , X86_COND_B>;
+defm CMOVAE : CMOV<0x43, "cmovae", X86_COND_AE>;
+defm CMOVE : CMOV<0x44, "cmove" , X86_COND_E>;
+defm CMOVNE : CMOV<0x45, "cmovne", X86_COND_NE>;
+defm CMOVBE : CMOV<0x46, "cmovbe", X86_COND_BE>;
+defm CMOVA : CMOV<0x47, "cmova" , X86_COND_A>;
+defm CMOVS : CMOV<0x48, "cmovs" , X86_COND_S>;
+defm CMOVNS : CMOV<0x49, "cmovns", X86_COND_NS>;
+defm CMOVP : CMOV<0x4A, "cmovp" , X86_COND_P>;
+defm CMOVNP : CMOV<0x4B, "cmovnp", X86_COND_NP>;
+defm CMOVL : CMOV<0x4C, "cmovl" , X86_COND_L>;
+defm CMOVGE : CMOV<0x4D, "cmovge", X86_COND_GE>;
+defm CMOVLE : CMOV<0x4E, "cmovle", X86_COND_LE>;
+defm CMOVG : CMOV<0x4F, "cmovg" , X86_COND_G>;
+
+
+// SetCC instructions.
+multiclass SETCC<bits<8> opc, string Mnemonic, PatLeaf OpNode> {
+ let Uses = [EFLAGS] in {
+ def r : I<opc, MRMXr, (outs GR8:$dst), (ins),
+ !strconcat(Mnemonic, "\t$dst"),
+ [(set GR8:$dst, (X86setcc OpNode, EFLAGS))],
+ IIC_SET_R>, TB, Sched<[WriteALU]>;
+ def m : I<opc, MRMXm, (outs), (ins i8mem:$dst),
+ !strconcat(Mnemonic, "\t$dst"),
+ [(store (X86setcc OpNode, EFLAGS), addr:$dst)],
+ IIC_SET_M>, TB, Sched<[WriteALU, WriteStore]>;
+ } // Uses = [EFLAGS]
+}
+
+defm SETO : SETCC<0x90, "seto", X86_COND_O>; // is overflow bit set
+defm SETNO : SETCC<0x91, "setno", X86_COND_NO>; // is overflow bit not set
+defm SETB : SETCC<0x92, "setb", X86_COND_B>; // unsigned less than
+defm SETAE : SETCC<0x93, "setae", X86_COND_AE>; // unsigned greater or equal
+defm SETE : SETCC<0x94, "sete", X86_COND_E>; // equal to
+defm SETNE : SETCC<0x95, "setne", X86_COND_NE>; // not equal to
+defm SETBE : SETCC<0x96, "setbe", X86_COND_BE>; // unsigned less than or equal
+defm SETA : SETCC<0x97, "seta", X86_COND_A>; // unsigned greater than
+defm SETS : SETCC<0x98, "sets", X86_COND_S>; // is signed bit set
+defm SETNS : SETCC<0x99, "setns", X86_COND_NS>; // is not signed
+defm SETP : SETCC<0x9A, "setp", X86_COND_P>; // is parity bit set
+defm SETNP : SETCC<0x9B, "setnp", X86_COND_NP>; // is parity bit not set
+defm SETL : SETCC<0x9C, "setl", X86_COND_L>; // signed less than
+defm SETGE : SETCC<0x9D, "setge", X86_COND_GE>; // signed greater or equal
+defm SETLE : SETCC<0x9E, "setle", X86_COND_LE>; // signed less than or equal
+defm SETG : SETCC<0x9F, "setg", X86_COND_G>; // signed greater than
+
diff --git a/contrib/llvm/lib/Target/X86/X86InstrCompiler.td b/contrib/llvm/lib/Target/X86/X86InstrCompiler.td
new file mode 100644
index 0000000..ca4f608
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrCompiler.td
@@ -0,0 +1,1776 @@
+//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the various pseudo instructions used by the compiler,
+// as well as Pat patterns used during instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Pattern Matching Support
+
+def GetLo32XForm : SDNodeXForm<imm, [{
+ // Transformation function: get the low 32 bits.
+ return getI32Imm((unsigned)N->getZExtValue());
+}]>;
+
+def GetLo8XForm : SDNodeXForm<imm, [{
+ // Transformation function: get the low 8 bits.
+ return getI8Imm((uint8_t)N->getZExtValue());
+}]>;
+
+
+//===----------------------------------------------------------------------===//
+// Random Pseudo Instructions.
+
+// PIC base construction. This expands to code that looks like this:
+// call $next_inst
+// popl %destreg"
+let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
+ def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
+ "", []>;
+
+
+// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
+// a stack adjustment and the codegen must know that they may modify the stack
+// pointer before prolog-epilog rewriting occurs.
+// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
+// sub / add which can clobber EFLAGS.
+let Defs = [ESP, EFLAGS], Uses = [ESP] in {
+def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
+ "#ADJCALLSTACKDOWN",
+ [(X86callseq_start timm:$amt)]>,
+ Requires<[Not64BitMode]>;
+def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKUP",
+ [(X86callseq_end timm:$amt1, timm:$amt2)]>,
+ Requires<[Not64BitMode]>;
+}
+
+// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
+// a stack adjustment and the codegen must know that they may modify the stack
+// pointer before prolog-epilog rewriting occurs.
+// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
+// sub / add which can clobber EFLAGS.
+let Defs = [RSP, EFLAGS], Uses = [RSP] in {
+def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
+ "#ADJCALLSTACKDOWN",
+ [(X86callseq_start timm:$amt)]>,
+ Requires<[In64BitMode]>;
+def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKUP",
+ [(X86callseq_end timm:$amt1, timm:$amt2)]>,
+ Requires<[In64BitMode]>;
+}
+
+
+
+// x86-64 va_start lowering magic.
+let usesCustomInserter = 1, Defs = [EFLAGS] in {
+def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
+ (outs),
+ (ins GR8:$al,
+ i64imm:$regsavefi, i64imm:$offset,
+ variable_ops),
+ "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
+ [(X86vastart_save_xmm_regs GR8:$al,
+ imm:$regsavefi,
+ imm:$offset),
+ (implicit EFLAGS)]>;
+
+// The VAARG_64 pseudo-instruction takes the address of the va_list,
+// and places the address of the next argument into a register.
+let Defs = [EFLAGS] in
+def VAARG_64 : I<0, Pseudo,
+ (outs GR64:$dst),
+ (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
+ "#VAARG_64 $dst, $ap, $size, $mode, $align",
+ [(set GR64:$dst,
+ (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
+ (implicit EFLAGS)]>;
+
+// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
+// targets. These calls are needed to probe the stack when allocating more than
+// 4k bytes in one go. Touching the stack at 4K increments is necessary to
+// ensure that the guard pages used by the OS virtual memory manager are
+// allocated in correct sequence.
+// The main point of having separate instruction are extra unmodelled effects
+// (compared to ordinary calls) like stack pointer change.
+
+let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
+ def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
+ "# dynamic stack allocation",
+ [(X86WinAlloca)]>;
+
+// When using segmented stacks these are lowered into instructions which first
+// check if the current stacklet has enough free memory. If it does, memory is
+// allocated by bumping the stack pointer. Otherwise memory is allocated from
+// the heap.
+
+let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
+def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
+ "# variable sized alloca for segmented stacks",
+ [(set GR32:$dst,
+ (X86SegAlloca GR32:$size))]>,
+ Requires<[Not64BitMode]>;
+
+let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
+def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
+ "# variable sized alloca for segmented stacks",
+ [(set GR64:$dst,
+ (X86SegAlloca GR64:$size))]>,
+ Requires<[In64BitMode]>;
+}
+
+// The MSVC runtime contains an _ftol2 routine for converting floating-point
+// to integer values. It has a strange calling convention: the input is
+// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
+// used as a temporary register. No other registers (aside from flags) are
+// touched.
+// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
+// variant is unnecessary.
+
+let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
+ def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
+ "# win32 fptoui",
+ [(X86WinFTOL RFP32:$src)]>,
+ Requires<[Not64BitMode]>;
+
+ def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
+ "# win32 fptoui",
+ [(X86WinFTOL RFP64:$src)]>,
+ Requires<[Not64BitMode]>;
+}
+
+//===----------------------------------------------------------------------===//
+// EH Pseudo Instructions
+//
+let SchedRW = [WriteSystem] in {
+let isTerminator = 1, isReturn = 1, isBarrier = 1,
+ hasCtrlDep = 1, isCodeGenOnly = 1 in {
+def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
+ "ret\t#eh_return, addr: $addr",
+ [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
+
+}
+
+let isTerminator = 1, isReturn = 1, isBarrier = 1,
+ hasCtrlDep = 1, isCodeGenOnly = 1 in {
+def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
+ "ret\t#eh_return, addr: $addr",
+ [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
+
+}
+
+let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
+ usesCustomInserter = 1 in {
+ def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
+ "#EH_SJLJ_SETJMP32",
+ [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
+ Requires<[Not64BitMode]>;
+ def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
+ "#EH_SJLJ_SETJMP64",
+ [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
+ Requires<[In64BitMode]>;
+ let isTerminator = 1 in {
+ def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
+ "#EH_SJLJ_LONGJMP32",
+ [(X86eh_sjlj_longjmp addr:$buf)]>,
+ Requires<[Not64BitMode]>;
+ def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
+ "#EH_SJLJ_LONGJMP64",
+ [(X86eh_sjlj_longjmp addr:$buf)]>,
+ Requires<[In64BitMode]>;
+ }
+}
+} // SchedRW
+
+let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
+ def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
+ "#EH_SjLj_Setup\t$dst", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions used by unwind info.
+//
+let isPseudo = 1 in {
+ def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
+ "#SEH_PushReg $reg", []>;
+ def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
+ "#SEH_SaveReg $reg, $dst", []>;
+ def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
+ "#SEH_SaveXMM $reg, $dst", []>;
+ def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
+ "#SEH_StackAlloc $size", []>;
+ def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
+ "#SEH_SetFrame $reg, $offset", []>;
+ def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
+ "#SEH_PushFrame $mode", []>;
+ def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
+ "#SEH_EndPrologue", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions used by segmented stacks.
+//
+
+// This is lowered into a RET instruction by MCInstLower. We need
+// this so that we don't have to have a MachineBasicBlock which ends
+// with a RET and also has successors.
+let isPseudo = 1 in {
+def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
+ "", []>;
+
+// This instruction is lowered to a RET followed by a MOV. The two
+// instructions are not generated on a higher level since then the
+// verifier sees a MachineBasicBlock ending with a non-terminator.
+def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
+ "", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Alias Instructions
+//===----------------------------------------------------------------------===//
+
+// Alias instruction mapping movr0 to xor.
+// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
+let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
+ isPseudo = 1 in
+def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
+ [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
+
+// Other widths can also make use of the 32-bit xor, which may have a smaller
+// encoding and avoid partial register updates.
+def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
+def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
+def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
+ let AddedComplexity = 20;
+}
+
+// Materialize i64 constant where top 32-bits are zero. This could theoretically
+// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
+// that would make it more difficult to rematerialize.
+let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
+ isCodeGenOnly = 1, neverHasSideEffects = 1 in
+def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
+ "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
+
+// This 64-bit pseudo-move can be used for both a 64-bit constant that is
+// actually the zero-extension of a 32-bit constant, and for labels in the
+// x86-64 small code model.
+def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
+
+let AddedComplexity = 1 in
+def : Pat<(i64 mov64imm32:$src),
+ (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
+
+// Use sbb to materialize carry bit.
+let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
+// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
+// However, Pat<> can't replicate the destination reg into the inputs of the
+// result.
+def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
+ [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
+ [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
+ [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
+ [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+} // isCodeGenOnly
+
+
+def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C64r)>;
+
+def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C64r)>;
+
+// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
+// will be eliminated and that the sbb can be extended up to a wider type. When
+// this happens, it is great. However, if we are left with an 8-bit sbb and an
+// and, we might as well just match it as a setb.
+def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
+ (SETBr)>;
+
+// (add OP, SETB) -> (adc OP, 0)
+def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
+ (ADC8ri GR8:$op, 0)>;
+def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
+ (ADC32ri8 GR32:$op, 0)>;
+def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
+ (ADC64ri8 GR64:$op, 0)>;
+
+// (sub OP, SETB) -> (sbb OP, 0)
+def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB8ri GR8:$op, 0)>;
+def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB32ri8 GR32:$op, 0)>;
+def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB64ri8 GR64:$op, 0)>;
+
+// (sub OP, SETCC_CARRY) -> (adc OP, 0)
+def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC8ri GR8:$op, 0)>;
+def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC32ri8 GR32:$op, 0)>;
+def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC64ri8 GR64:$op, 0)>;
+
+//===----------------------------------------------------------------------===//
+// String Pseudo Instructions
+//
+let SchedRW = [WriteMicrocoded] in {
+let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
+def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
+ [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
+ Requires<[Not64BitMode]>;
+def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
+ [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
+ Requires<[Not64BitMode]>;
+def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
+ [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
+ Requires<[Not64BitMode]>;
+}
+
+let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
+def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
+ [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
+ Requires<[In64BitMode]>;
+def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
+ [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
+ Requires<[In64BitMode]>;
+def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
+ [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
+ Requires<[In64BitMode]>;
+def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
+ [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
+ Requires<[In64BitMode]>;
+}
+
+// FIXME: Should use "(X86rep_stos AL)" as the pattern.
+let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
+ let Uses = [AL,ECX,EDI] in
+ def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
+ [(X86rep_stos i8)], IIC_REP_STOS>, REP,
+ Requires<[Not64BitMode]>;
+ let Uses = [AX,ECX,EDI] in
+ def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
+ [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
+ Requires<[Not64BitMode]>;
+ let Uses = [EAX,ECX,EDI] in
+ def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
+ [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
+ Requires<[Not64BitMode]>;
+}
+
+let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
+ let Uses = [AL,RCX,RDI] in
+ def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
+ [(X86rep_stos i8)], IIC_REP_STOS>, REP,
+ Requires<[In64BitMode]>;
+ let Uses = [AX,RCX,RDI] in
+ def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
+ [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
+ Requires<[In64BitMode]>;
+ let Uses = [RAX,RCX,RDI] in
+ def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
+ [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
+ Requires<[In64BitMode]>;
+
+ let Uses = [RAX,RCX,RDI] in
+ def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
+ [(X86rep_stos i64)], IIC_REP_STOS>, REP,
+ Requires<[In64BitMode]>;
+}
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Thread Local Storage Instructions
+//
+
+// ELF TLS Support
+// All calls clobber the non-callee saved registers. ESP is marked as
+// a use to prevent stack-pointer assignments that appear immediately
+// before calls from potentially appearing dead.
+let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
+ MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
+ XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+ XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
+ Uses = [ESP] in {
+def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLS_addr32",
+ [(X86tlsaddr tls32addr:$sym)]>,
+ Requires<[Not64BitMode]>;
+def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLS_base_addr32",
+ [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
+ Requires<[Not64BitMode]>;
+}
+
+// All calls clobber the non-callee saved registers. RSP is marked as
+// a use to prevent stack-pointer assignments that appear immediately
+// before calls from potentially appearing dead.
+let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
+ FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
+ MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
+ XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+ XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
+ Uses = [RSP] in {
+def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLS_addr64",
+ [(X86tlsaddr tls64addr:$sym)]>,
+ Requires<[In64BitMode]>;
+def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLS_base_addr64",
+ [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
+ Requires<[In64BitMode]>;
+}
+
+// Darwin TLS Support
+// For i386, the address of the thunk is passed on the stack, on return the
+// address of the variable is in %eax. %ecx is trashed during the function
+// call. All other registers are preserved.
+let Defs = [EAX, ECX, EFLAGS],
+ Uses = [ESP],
+ usesCustomInserter = 1 in
+def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLSCall_32",
+ [(X86TLSCall addr:$sym)]>,
+ Requires<[Not64BitMode]>;
+
+// For x86_64, the address of the thunk is passed in %rdi, on return
+// the address of the variable is in %rax. All other registers are preserved.
+let Defs = [RAX, EFLAGS],
+ Uses = [RSP, RDI],
+ usesCustomInserter = 1 in
+def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLSCall_64",
+ [(X86TLSCall addr:$sym)]>,
+ Requires<[In64BitMode]>;
+
+
+//===----------------------------------------------------------------------===//
+// Conditional Move Pseudo Instructions
+
+// X86 doesn't have 8-bit conditional moves. Use a customInserter to
+// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
+// however that requires promoting the operands, and can induce additional
+// i8 register pressure.
+let usesCustomInserter = 1, Uses = [EFLAGS] in {
+def CMOV_GR8 : I<0, Pseudo,
+ (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
+ "#CMOV_GR8 PSEUDO!",
+ [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
+ imm:$cond, EFLAGS))]>;
+
+let Predicates = [NoCMov] in {
+def CMOV_GR32 : I<0, Pseudo,
+ (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
+ "#CMOV_GR32* PSEUDO!",
+ [(set GR32:$dst,
+ (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
+def CMOV_GR16 : I<0, Pseudo,
+ (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
+ "#CMOV_GR16* PSEUDO!",
+ [(set GR16:$dst,
+ (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
+} // Predicates = [NoCMov]
+
+// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
+// SSE1.
+let Predicates = [FPStackf32] in
+def CMOV_RFP32 : I<0, Pseudo,
+ (outs RFP32:$dst),
+ (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
+ "#CMOV_RFP32 PSEUDO!",
+ [(set RFP32:$dst,
+ (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
+ EFLAGS))]>;
+// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
+// SSE2.
+let Predicates = [FPStackf64] in
+def CMOV_RFP64 : I<0, Pseudo,
+ (outs RFP64:$dst),
+ (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
+ "#CMOV_RFP64 PSEUDO!",
+ [(set RFP64:$dst,
+ (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
+ EFLAGS))]>;
+def CMOV_RFP80 : I<0, Pseudo,
+ (outs RFP80:$dst),
+ (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
+ "#CMOV_RFP80 PSEUDO!",
+ [(set RFP80:$dst,
+ (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
+ EFLAGS))]>;
+} // UsesCustomInserter = 1, Uses = [EFLAGS]
+
+
+//===----------------------------------------------------------------------===//
+// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
+//===----------------------------------------------------------------------===//
+
+// FIXME: Use normal instructions and add lock prefix dynamically.
+
+// Memory barriers
+
+// TODO: Get this to fold the constant into the instruction.
+let isCodeGenOnly = 1, Defs = [EFLAGS] in
+def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
+ "or{l}\t{$zero, $dst|$dst, $zero}",
+ [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
+ Sched<[WriteALULd, WriteRMW]>;
+
+let hasSideEffects = 1 in
+def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
+ "#MEMBARRIER",
+ [(X86MemBarrier)]>, Sched<[WriteLoad]>;
+
+// RegOpc corresponds to the mr version of the instruction
+// ImmOpc corresponds to the mi version of the instruction
+// ImmOpc8 corresponds to the mi8 version of the instruction
+// ImmMod corresponds to the instruction format of the mi and mi8 versions
+multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
+ Format ImmMod, string mnemonic> {
+let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+
+def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
+ MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
+ !strconcat(mnemonic, "{b}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, LOCK;
+def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, OpSize16, LOCK;
+def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, OpSize32, LOCK;
+def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, LOCK;
+
+def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
+ ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
+ !strconcat(mnemonic, "{b}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
+
+def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, OpSize16, LOCK;
+
+def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, OpSize32, LOCK;
+
+def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
+
+def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, OpSize16, LOCK;
+def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, OpSize32, LOCK;
+def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
+
+}
+
+}
+
+defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
+defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
+defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
+defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
+defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
+
+// Optimized codegen when the non-memory output is not used.
+multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
+ string mnemonic> {
+let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+
+def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
+ !strconcat(mnemonic, "{b}\t$dst"),
+ [], IIC_UNARY_MEM>, LOCK;
+def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
+ !strconcat(mnemonic, "{w}\t$dst"),
+ [], IIC_UNARY_MEM>, OpSize16, LOCK;
+def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
+ !strconcat(mnemonic, "{l}\t$dst"),
+ [], IIC_UNARY_MEM>, OpSize32, LOCK;
+def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
+ !strconcat(mnemonic, "{q}\t$dst"),
+ [], IIC_UNARY_MEM>, LOCK;
+}
+}
+
+defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
+defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
+
+// Atomic compare and swap.
+multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
+ SDPatternOperator frag, X86MemOperand x86memop,
+ InstrItinClass itin> {
+let isCodeGenOnly = 1 in {
+ def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
+ !strconcat(mnemonic, "\t$ptr"),
+ [(frag addr:$ptr)], itin>, TB, LOCK;
+}
+}
+
+multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
+ string mnemonic, SDPatternOperator frag,
+ InstrItinClass itin8, InstrItinClass itin> {
+let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
+ let Defs = [AL, EFLAGS], Uses = [AL] in
+ def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
+ !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
+ let Defs = [AX, EFLAGS], Uses = [AX] in
+ def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
+ !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
+ let Defs = [EAX, EFLAGS], Uses = [EAX] in
+ def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
+ !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
+ let Defs = [RAX, EFLAGS], Uses = [RAX] in
+ def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
+ !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
+}
+}
+
+let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
+ SchedRW = [WriteALULd, WriteRMW] in {
+defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
+ X86cas8, i64mem,
+ IIC_CMPX_LOCK_8B>;
+}
+
+let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
+ Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
+defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
+ X86cas16, i128mem,
+ IIC_CMPX_LOCK_16B>, REX_W;
+}
+
+defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
+ X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
+
+// Atomic exchange and add
+multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
+ string frag,
+ InstrItinClass itin8, InstrItinClass itin> {
+ let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+ def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
+ (ins GR8:$val, i8mem:$ptr),
+ !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
+ [(set GR8:$dst,
+ (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
+ itin8>;
+ def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
+ (ins GR16:$val, i16mem:$ptr),
+ !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR16:$dst,
+ (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
+ itin>, OpSize16;
+ def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
+ (ins GR32:$val, i32mem:$ptr),
+ !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR32:$dst,
+ (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
+ itin>, OpSize32;
+ def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
+ (ins GR64:$val, i64mem:$ptr),
+ !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR64:$dst,
+ (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
+ itin>;
+ }
+}
+
+defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
+ IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
+ TB, LOCK;
+
+def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
+def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
+def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
+def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
+
+def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_8 addr:$dst, GR8 :$src)]>;
+def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_16 addr:$dst, GR16:$src)]>;
+def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_32 addr:$dst, GR32:$src)]>;
+def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_64 addr:$dst, GR64:$src)]>;
+
+//===----------------------------------------------------------------------===//
+// Conditional Move Pseudo Instructions.
+//===----------------------------------------------------------------------===//
+
+
+// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
+// instruction selection into a branch sequence.
+let Uses = [EFLAGS], usesCustomInserter = 1 in {
+ def CMOV_FR32 : I<0, Pseudo,
+ (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
+ "#CMOV_FR32 PSEUDO!",
+ [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
+ EFLAGS))]>;
+ def CMOV_FR64 : I<0, Pseudo,
+ (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
+ "#CMOV_FR64 PSEUDO!",
+ [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
+ EFLAGS))]>;
+ def CMOV_V4F32 : I<0, Pseudo,
+ (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
+ "#CMOV_V4F32 PSEUDO!",
+ [(set VR128:$dst,
+ (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V2F64 : I<0, Pseudo,
+ (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
+ "#CMOV_V2F64 PSEUDO!",
+ [(set VR128:$dst,
+ (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V2I64 : I<0, Pseudo,
+ (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
+ "#CMOV_V2I64 PSEUDO!",
+ [(set VR128:$dst,
+ (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V8F32 : I<0, Pseudo,
+ (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
+ "#CMOV_V8F32 PSEUDO!",
+ [(set VR256:$dst,
+ (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V4F64 : I<0, Pseudo,
+ (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
+ "#CMOV_V4F64 PSEUDO!",
+ [(set VR256:$dst,
+ (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V4I64 : I<0, Pseudo,
+ (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
+ "#CMOV_V4I64 PSEUDO!",
+ [(set VR256:$dst,
+ (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V8I64 : I<0, Pseudo,
+ (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
+ "#CMOV_V8I64 PSEUDO!",
+ [(set VR512:$dst,
+ (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V8F64 : I<0, Pseudo,
+ (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
+ "#CMOV_V8F64 PSEUDO!",
+ [(set VR512:$dst,
+ (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V16F32 : I<0, Pseudo,
+ (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
+ "#CMOV_V16F32 PSEUDO!",
+ [(set VR512:$dst,
+ (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond,
+ EFLAGS)))]>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// DAG Pattern Matching Rules
+//===----------------------------------------------------------------------===//
+
+// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
+def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
+def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
+def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
+def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
+def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
+def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
+
+def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
+ (ADD32ri GR32:$src1, tconstpool:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
+ (ADD32ri GR32:$src1, tjumptable:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
+ (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
+ (ADD32ri GR32:$src1, texternalsym:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
+ (ADD32ri GR32:$src1, tblockaddress:$src2)>;
+
+def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
+ (MOV32mi addr:$dst, tglobaladdr:$src)>;
+def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
+ (MOV32mi addr:$dst, texternalsym:$src)>;
+def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
+ (MOV32mi addr:$dst, tblockaddress:$src)>;
+
+// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
+// code model mode, should use 'movabs'. FIXME: This is really a hack, the
+// 'movabs' predicate should handle this sort of thing.
+def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
+ (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
+ (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
+ (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
+ (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
+ (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
+
+// In kernel code model, we can get the address of a label
+// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
+// the MOV64ri32 should accept these.
+def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
+ (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
+ (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
+ (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
+ (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
+ (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
+
+// If we have small model and -static mode, it is safe to store global addresses
+// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
+// for MOV64mi32 should handle this sort of thing.
+def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tconstpool:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tjumptable:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, texternalsym:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tblockaddress:$src)>,
+ Requires<[NearData, IsStatic]>;
+
+// Calls
+
+// tls has some funny stuff here...
+// This corresponds to movabs $foo@tpoff, %rax
+def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
+ (MOV64ri32 tglobaltlsaddr :$dst)>;
+// This corresponds to add $foo@tpoff, %rax
+def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
+ (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
+
+
+// Direct PC relative function call for small code model. 32-bit displacement
+// sign extended to 64-bit.
+def : Pat<(X86call (i64 tglobaladdr:$dst)),
+ (CALL64pcrel32 tglobaladdr:$dst)>;
+def : Pat<(X86call (i64 texternalsym:$dst)),
+ (CALL64pcrel32 texternalsym:$dst)>;
+
+// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
+// can never use callee-saved registers. That is the purpose of the GR64_TC
+// register classes.
+//
+// The only volatile register that is never used by the calling convention is
+// %r11. This happens when calling a vararg function with 6 arguments.
+//
+// Match an X86tcret that uses less than 7 volatile registers.
+def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
+ (X86tcret node:$ptr, node:$off), [{
+ // X86tcret args: (*chain, ptr, imm, regs..., glue)
+ unsigned NumRegs = 0;
+ for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
+ if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
+ return false;
+ return true;
+}]>;
+
+def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
+ (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
+ Requires<[Not64BitMode]>;
+
+// FIXME: This is disabled for 32-bit PIC mode because the global base
+// register which is part of the address mode may be assigned a
+// callee-saved register.
+def : Pat<(X86tcret (load addr:$dst), imm:$off),
+ (TCRETURNmi addr:$dst, imm:$off)>,
+ Requires<[Not64BitMode, IsNotPIC]>;
+
+def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
+ (TCRETURNdi texternalsym:$dst, imm:$off)>,
+ Requires<[Not64BitMode]>;
+
+def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
+ (TCRETURNdi texternalsym:$dst, imm:$off)>,
+ Requires<[Not64BitMode]>;
+
+def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
+ (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
+ Requires<[In64BitMode]>;
+
+// Don't fold loads into X86tcret requiring more than 6 regs.
+// There wouldn't be enough scratch registers for base+index.
+def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
+ (TCRETURNmi64 addr:$dst, imm:$off)>,
+ Requires<[In64BitMode]>;
+
+def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
+ (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
+ Requires<[In64BitMode]>;
+
+def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
+ (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
+ Requires<[In64BitMode]>;
+
+// Normal calls, with various flavors of addresses.
+def : Pat<(X86call (i32 tglobaladdr:$dst)),
+ (CALLpcrel32 tglobaladdr:$dst)>;
+def : Pat<(X86call (i32 texternalsym:$dst)),
+ (CALLpcrel32 texternalsym:$dst)>;
+def : Pat<(X86call (i32 imm:$dst)),
+ (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
+
+// Comparisons.
+
+// TEST R,R is smaller than CMP R,0
+def : Pat<(X86cmp GR8:$src1, 0),
+ (TEST8rr GR8:$src1, GR8:$src1)>;
+def : Pat<(X86cmp GR16:$src1, 0),
+ (TEST16rr GR16:$src1, GR16:$src1)>;
+def : Pat<(X86cmp GR32:$src1, 0),
+ (TEST32rr GR32:$src1, GR32:$src1)>;
+def : Pat<(X86cmp GR64:$src1, 0),
+ (TEST64rr GR64:$src1, GR64:$src1)>;
+
+// Conditional moves with folded loads with operands swapped and conditions
+// inverted.
+multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
+ Instruction Inst64> {
+ let Predicates = [HasCMov] in {
+ def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
+ (Inst16 GR16:$src2, addr:$src1)>;
+ def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
+ (Inst32 GR32:$src2, addr:$src1)>;
+ def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
+ (Inst64 GR64:$src2, addr:$src1)>;
+ }
+}
+
+defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
+defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
+defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
+defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
+defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
+defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
+defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
+defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
+defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
+defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
+defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
+defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
+defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
+defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
+defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
+defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
+
+// zextload bool -> zextload byte
+def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
+def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(zextloadi64i1 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+
+// extload bool -> extload byte
+// When extloading from 16-bit and smaller memory locations into 64-bit
+// registers, use zero-extending loads so that the entire 64-bit register is
+// defined, avoiding partial-register updates.
+
+def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
+def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
+
+// For other extloads, use subregs, since the high contents of the register are
+// defined after an extload.
+def : Pat<(extloadi64i1 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i8 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i16 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i32 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
+
+// anyext. Define these to do an explicit zero-extend to
+// avoid partial-register updates.
+def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
+ (MOVZX32rr8 GR8 :$src), sub_16bit)>;
+def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
+
+// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
+def : Pat<(i32 (anyext GR16:$src)),
+ (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
+
+def : Pat<(i64 (anyext GR8 :$src)),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
+def : Pat<(i64 (anyext GR16:$src)),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
+def : Pat<(i64 (anyext GR32:$src)),
+ (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
+
+
+// Any instruction that defines a 32-bit result leaves the high half of the
+// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
+// be copying from a truncate. And x86's cmov doesn't do anything if the
+// condition is false. But any other 32-bit operation will zero-extend
+// up to 64 bits.
+def def32 : PatLeaf<(i32 GR32:$src), [{
+ return N->getOpcode() != ISD::TRUNCATE &&
+ N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
+ N->getOpcode() != ISD::CopyFromReg &&
+ N->getOpcode() != X86ISD::CMOV;
+}]>;
+
+// In the case of a 32-bit def that is known to implicitly zero-extend,
+// we can use a SUBREG_TO_REG.
+def : Pat<(i64 (zext def32:$src)),
+ (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
+
+//===----------------------------------------------------------------------===//
+// Pattern match OR as ADD
+//===----------------------------------------------------------------------===//
+
+// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
+// 3-addressified into an LEA instruction to avoid copies. However, we also
+// want to finally emit these instructions as an or at the end of the code
+// generator to make the generated code easier to read. To do this, we select
+// into "disjoint bits" pseudo ops.
+
+// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
+def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
+ return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
+
+ APInt KnownZero0, KnownOne0;
+ CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
+ APInt KnownZero1, KnownOne1;
+ CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
+ return (~KnownZero0 & ~KnownZero1) == 0;
+}]>;
+
+
+// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
+// Try this before the selecting to OR.
+let AddedComplexity = 5, SchedRW = [WriteALU] in {
+
+let isConvertibleToThreeAddress = 1,
+ Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
+let isCommutable = 1 in {
+def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
+ "", // orw/addw REG, REG
+ [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
+def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "", // orl/addl REG, REG
+ [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
+def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "", // orq/addq REG, REG
+ [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
+} // isCommutable
+
+// NOTE: These are order specific, we want the ri8 forms to be listed
+// first so that they are slightly preferred to the ri forms.
+
+def ADD16ri8_DB : I<0, Pseudo,
+ (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
+ "", // orw/addw REG, imm8
+ [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
+def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
+ "", // orw/addw REG, imm
+ [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
+
+def ADD32ri8_DB : I<0, Pseudo,
+ (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
+ "", // orl/addl REG, imm8
+ [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
+def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "", // orl/addl REG, imm
+ [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
+
+
+def ADD64ri8_DB : I<0, Pseudo,
+ (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
+ "", // orq/addq REG, imm8
+ [(set GR64:$dst, (or_is_add GR64:$src1,
+ i64immSExt8:$src2))]>;
+def ADD64ri32_DB : I<0, Pseudo,
+ (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
+ "", // orq/addq REG, imm
+ [(set GR64:$dst, (or_is_add GR64:$src1,
+ i64immSExt32:$src2))]>;
+}
+} // AddedComplexity, SchedRW
+
+
+//===----------------------------------------------------------------------===//
+// Some peepholes
+//===----------------------------------------------------------------------===//
+
+// Odd encoding trick: -128 fits into an 8-bit immediate field while
+// +128 doesn't, so in this special case use a sub instead of an add.
+def : Pat<(add GR16:$src1, 128),
+ (SUB16ri8 GR16:$src1, -128)>;
+def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
+ (SUB16mi8 addr:$dst, -128)>;
+
+def : Pat<(add GR32:$src1, 128),
+ (SUB32ri8 GR32:$src1, -128)>;
+def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
+ (SUB32mi8 addr:$dst, -128)>;
+
+def : Pat<(add GR64:$src1, 128),
+ (SUB64ri8 GR64:$src1, -128)>;
+def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
+ (SUB64mi8 addr:$dst, -128)>;
+
+// The same trick applies for 32-bit immediate fields in 64-bit
+// instructions.
+def : Pat<(add GR64:$src1, 0x0000000080000000),
+ (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
+def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
+ (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
+
+// To avoid needing to materialize an immediate in a register, use a 32-bit and
+// with implicit zero-extension instead of a 64-bit and if the immediate has at
+// least 32 bits of leading zeros. If in addition the last 32 bits can be
+// represented with a sign extension of a 8 bit constant, use that.
+
+def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
+ (SUBREG_TO_REG
+ (i64 0),
+ (AND32ri8
+ (EXTRACT_SUBREG GR64:$src, sub_32bit),
+ (i32 (GetLo8XForm imm:$imm))),
+ sub_32bit)>;
+
+def : Pat<(and GR64:$src, i64immZExt32:$imm),
+ (SUBREG_TO_REG
+ (i64 0),
+ (AND32ri
+ (EXTRACT_SUBREG GR64:$src, sub_32bit),
+ (i32 (GetLo32XForm imm:$imm))),
+ sub_32bit)>;
+
+
+// r & (2^16-1) ==> movz
+def : Pat<(and GR32:$src1, 0xffff),
+ (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR32:$src1, 0xff),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
+ GR32_ABCD)),
+ sub_8bit))>,
+ Requires<[Not64BitMode]>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR16:$src1, 0xff),
+ (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
+ (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
+ sub_16bit)>,
+ Requires<[Not64BitMode]>;
+
+// r & (2^32-1) ==> movz
+def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
+ (SUBREG_TO_REG (i64 0),
+ (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
+ sub_32bit)>;
+// r & (2^16-1) ==> movz
+def : Pat<(and GR64:$src, 0xffff),
+ (SUBREG_TO_REG (i64 0),
+ (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
+ sub_32bit)>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR64:$src, 0xff),
+ (SUBREG_TO_REG (i64 0),
+ (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
+ sub_32bit)>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR32:$src1, 0xff),
+ (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
+ Requires<[In64BitMode]>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR16:$src1, 0xff),
+ (EXTRACT_SUBREG (MOVZX32rr8 (i8
+ (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
+ Requires<[In64BitMode]>;
+
+
+// sext_inreg patterns
+def : Pat<(sext_inreg GR32:$src, i16),
+ (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
+def : Pat<(sext_inreg GR32:$src, i8),
+ (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit))>,
+ Requires<[Not64BitMode]>;
+
+def : Pat<(sext_inreg GR16:$src, i8),
+ (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
+ (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
+ sub_16bit)>,
+ Requires<[Not64BitMode]>;
+
+def : Pat<(sext_inreg GR64:$src, i32),
+ (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
+def : Pat<(sext_inreg GR64:$src, i16),
+ (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
+def : Pat<(sext_inreg GR64:$src, i8),
+ (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
+def : Pat<(sext_inreg GR32:$src, i8),
+ (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
+ Requires<[In64BitMode]>;
+def : Pat<(sext_inreg GR16:$src, i8),
+ (EXTRACT_SUBREG (MOVSX32rr8
+ (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
+ Requires<[In64BitMode]>;
+
+// sext, sext_load, zext, zext_load
+def: Pat<(i16 (sext GR8:$src)),
+ (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
+def: Pat<(sextloadi16i8 addr:$src),
+ (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
+def: Pat<(i16 (zext GR8:$src)),
+ (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
+def: Pat<(zextloadi16i8 addr:$src),
+ (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
+
+// trunc patterns
+def : Pat<(i16 (trunc GR32:$src)),
+ (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
+def : Pat<(i8 (trunc GR32:$src)),
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i8 (trunc GR16:$src)),
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i32 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
+def : Pat<(i16 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
+def : Pat<(i8 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
+def : Pat<(i8 (trunc GR32:$src)),
+ (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
+ Requires<[In64BitMode]>;
+def : Pat<(i8 (trunc GR16:$src)),
+ (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
+ Requires<[In64BitMode]>;
+
+// h-register tricks
+def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(srl GR16:$src, (i8 8)),
+ (EXTRACT_SUBREG
+ (MOVZX32rr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_16bit)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
+ GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
+ GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
+def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
+def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[Not64BitMode]>;
+
+// h-register tricks.
+// For now, be conservative on x86-64 and use an h-register extract only if the
+// value is immediately zero-extended or stored, which are somewhat common
+// cases. This uses a bunch of code to prevent a register requiring a REX prefix
+// from being allocated in the same instruction as the h register, as there's
+// currently no way to describe this requirement to the register allocator.
+
+// h-register extract and zero-extend.
+def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
+ sub_8bit_hi)),
+ sub_32bit)>;
+def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
+ (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(srl GR16:$src, (i8 8)),
+ (EXTRACT_SUBREG
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_16bit)>,
+ Requires<[In64BitMode]>;
+def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_32bit)>;
+def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_32bit)>;
+
+// h-register extract and store.
+def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
+ sub_8bit_hi))>;
+def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+
+
+// (shl x, 1) ==> (add x, x)
+// Note that if x is undef (immediate or otherwise), we could theoretically
+// end up with the two uses of x getting different values, producing a result
+// where the least significant bit is not 0. However, the probability of this
+// happening is considered low enough that this is officially not a
+// "real problem".
+def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
+def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
+def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
+def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
+
+// Helper imms that check if a mask doesn't change significant shift bits.
+def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
+def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
+
+// Shift amount is implicitly masked.
+multiclass MaskedShiftAmountPats<SDNode frag, string name> {
+ // (shift x (and y, 31)) ==> (shift x, y)
+ def : Pat<(frag GR8:$src1, (and CL, immShift32)),
+ (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
+ def : Pat<(frag GR16:$src1, (and CL, immShift32)),
+ (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
+ def : Pat<(frag GR32:$src1, (and CL, immShift32)),
+ (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
+ def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (!cast<Instruction>(name # "8mCL") addr:$dst)>;
+ def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (!cast<Instruction>(name # "16mCL") addr:$dst)>;
+ def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (!cast<Instruction>(name # "32mCL") addr:$dst)>;
+
+ // (shift x (and y, 63)) ==> (shift x, y)
+ def : Pat<(frag GR64:$src1, (and CL, immShift64)),
+ (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
+ def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
+ (!cast<Instruction>(name # "64mCL") addr:$dst)>;
+}
+
+defm : MaskedShiftAmountPats<shl, "SHL">;
+defm : MaskedShiftAmountPats<srl, "SHR">;
+defm : MaskedShiftAmountPats<sra, "SAR">;
+defm : MaskedShiftAmountPats<rotl, "ROL">;
+defm : MaskedShiftAmountPats<rotr, "ROR">;
+
+// (anyext (setcc_carry)) -> (setcc_carry)
+def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+
+
+
+
+//===----------------------------------------------------------------------===//
+// EFLAGS-defining Patterns
+//===----------------------------------------------------------------------===//
+
+// add reg, reg
+def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
+
+// add reg, mem
+def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
+ (ADD8rm GR8:$src1, addr:$src2)>;
+def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
+ (ADD16rm GR16:$src1, addr:$src2)>;
+def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
+ (ADD32rm GR32:$src1, addr:$src2)>;
+
+// add reg, imm
+def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
+def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
+def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
+def : Pat<(add GR16:$src1, i16immSExt8:$src2),
+ (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(add GR32:$src1, i32immSExt8:$src2),
+ (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// sub reg, reg
+def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
+
+// sub reg, mem
+def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
+ (SUB8rm GR8:$src1, addr:$src2)>;
+def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
+ (SUB16rm GR16:$src1, addr:$src2)>;
+def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
+ (SUB32rm GR32:$src1, addr:$src2)>;
+
+// sub reg, imm
+def : Pat<(sub GR8:$src1, imm:$src2),
+ (SUB8ri GR8:$src1, imm:$src2)>;
+def : Pat<(sub GR16:$src1, imm:$src2),
+ (SUB16ri GR16:$src1, imm:$src2)>;
+def : Pat<(sub GR32:$src1, imm:$src2),
+ (SUB32ri GR32:$src1, imm:$src2)>;
+def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
+ (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
+ (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// sub 0, reg
+def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
+def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
+def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
+def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
+
+// mul reg, reg
+def : Pat<(mul GR16:$src1, GR16:$src2),
+ (IMUL16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(mul GR32:$src1, GR32:$src2),
+ (IMUL32rr GR32:$src1, GR32:$src2)>;
+
+// mul reg, mem
+def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
+ (IMUL16rm GR16:$src1, addr:$src2)>;
+def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
+ (IMUL32rm GR32:$src1, addr:$src2)>;
+
+// mul reg, imm
+def : Pat<(mul GR16:$src1, imm:$src2),
+ (IMUL16rri GR16:$src1, imm:$src2)>;
+def : Pat<(mul GR32:$src1, imm:$src2),
+ (IMUL32rri GR32:$src1, imm:$src2)>;
+def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
+ (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
+ (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// reg = mul mem, imm
+def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
+ (IMUL16rmi addr:$src1, imm:$src2)>;
+def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
+ (IMUL32rmi addr:$src1, imm:$src2)>;
+def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
+ (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
+def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
+ (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
+
+// Patterns for nodes that do not produce flags, for instructions that do.
+
+// addition
+def : Pat<(add GR64:$src1, GR64:$src2),
+ (ADD64rr GR64:$src1, GR64:$src2)>;
+def : Pat<(add GR64:$src1, i64immSExt8:$src2),
+ (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(add GR64:$src1, i64immSExt32:$src2),
+ (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
+def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
+ (ADD64rm GR64:$src1, addr:$src2)>;
+
+// subtraction
+def : Pat<(sub GR64:$src1, GR64:$src2),
+ (SUB64rr GR64:$src1, GR64:$src2)>;
+def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
+ (SUB64rm GR64:$src1, addr:$src2)>;
+def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
+ (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
+ (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// Multiply
+def : Pat<(mul GR64:$src1, GR64:$src2),
+ (IMUL64rr GR64:$src1, GR64:$src2)>;
+def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
+ (IMUL64rm GR64:$src1, addr:$src2)>;
+def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
+ (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
+ (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
+def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
+ (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
+def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
+ (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
+
+// Increment reg.
+// Do not make INC if it is slow
+def : Pat<(add GR8:$src, 1),
+ (INC8r GR8:$src)>, Requires<[NotSlowIncDec]>;
+def : Pat<(add GR16:$src, 1),
+ (INC16r GR16:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
+def : Pat<(add GR16:$src, 1),
+ (INC64_16r GR16:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
+def : Pat<(add GR32:$src, 1),
+ (INC32r GR32:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
+def : Pat<(add GR32:$src, 1),
+ (INC64_32r GR32:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
+def : Pat<(add GR64:$src, 1),
+ (INC64r GR64:$src)>, Requires<[NotSlowIncDec]>;
+
+// Decrement reg.
+// Do not make DEC if it is slow
+def : Pat<(add GR8:$src, -1),
+ (DEC8r GR8:$src)>, Requires<[NotSlowIncDec]>;
+def : Pat<(add GR16:$src, -1),
+ (DEC16r GR16:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
+def : Pat<(add GR16:$src, -1),
+ (DEC64_16r GR16:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
+def : Pat<(add GR32:$src, -1),
+ (DEC32r GR32:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
+def : Pat<(add GR32:$src, -1),
+ (DEC64_32r GR32:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
+def : Pat<(add GR64:$src, -1),
+ (DEC64r GR64:$src)>, Requires<[NotSlowIncDec]>;
+
+// or reg/reg.
+def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
+
+// or reg/mem
+def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
+ (OR8rm GR8:$src1, addr:$src2)>;
+def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
+ (OR16rm GR16:$src1, addr:$src2)>;
+def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
+ (OR32rm GR32:$src1, addr:$src2)>;
+def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
+ (OR64rm GR64:$src1, addr:$src2)>;
+
+// or reg/imm
+def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
+def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
+def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
+def : Pat<(or GR16:$src1, i16immSExt8:$src2),
+ (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(or GR32:$src1, i32immSExt8:$src2),
+ (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(or GR64:$src1, i64immSExt8:$src2),
+ (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(or GR64:$src1, i64immSExt32:$src2),
+ (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// xor reg/reg
+def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
+
+// xor reg/mem
+def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
+ (XOR8rm GR8:$src1, addr:$src2)>;
+def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
+ (XOR16rm GR16:$src1, addr:$src2)>;
+def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
+ (XOR32rm GR32:$src1, addr:$src2)>;
+def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
+ (XOR64rm GR64:$src1, addr:$src2)>;
+
+// xor reg/imm
+def : Pat<(xor GR8:$src1, imm:$src2),
+ (XOR8ri GR8:$src1, imm:$src2)>;
+def : Pat<(xor GR16:$src1, imm:$src2),
+ (XOR16ri GR16:$src1, imm:$src2)>;
+def : Pat<(xor GR32:$src1, imm:$src2),
+ (XOR32ri GR32:$src1, imm:$src2)>;
+def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
+ (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
+ (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
+ (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
+ (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// and reg/reg
+def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
+
+// and reg/mem
+def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
+ (AND8rm GR8:$src1, addr:$src2)>;
+def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
+ (AND16rm GR16:$src1, addr:$src2)>;
+def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
+ (AND32rm GR32:$src1, addr:$src2)>;
+def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
+ (AND64rm GR64:$src1, addr:$src2)>;
+
+// and reg/imm
+def : Pat<(and GR8:$src1, imm:$src2),
+ (AND8ri GR8:$src1, imm:$src2)>;
+def : Pat<(and GR16:$src1, imm:$src2),
+ (AND16ri GR16:$src1, imm:$src2)>;
+def : Pat<(and GR32:$src1, imm:$src2),
+ (AND32ri GR32:$src1, imm:$src2)>;
+def : Pat<(and GR16:$src1, i16immSExt8:$src2),
+ (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(and GR32:$src1, i32immSExt8:$src2),
+ (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(and GR64:$src1, i64immSExt8:$src2),
+ (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(and GR64:$src1, i64immSExt32:$src2),
+ (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// Bit scan instruction patterns to match explicit zero-undef behavior.
+def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
+def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
+def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
+def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
+def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
+def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
+
+// When HasMOVBE is enabled it is possible to get a non-legalized
+// register-register 16 bit bswap. This maps it to a ROL instruction.
+let Predicates = [HasMOVBE] in {
+ def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
+}
diff --git a/contrib/llvm/lib/Target/X86/X86InstrControl.td b/contrib/llvm/lib/Target/X86/X86InstrControl.td
new file mode 100644
index 0000000..39ad395
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrControl.td
@@ -0,0 +1,315 @@
+//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the X86 jump, return, call, and related instructions.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Control Flow Instructions.
+//
+
+// Return instructions.
+//
+// The X86retflag return instructions are variadic because we may add ST0 and
+// ST1 arguments when returning values on the x87 stack.
+let isTerminator = 1, isReturn = 1, isBarrier = 1,
+ hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
+ def RETL : I <0xC3, RawFrm, (outs), (ins variable_ops),
+ "ret{l}", [(X86retflag 0)], IIC_RET>, OpSize32,
+ Requires<[Not64BitMode]>;
+ def RETQ : I <0xC3, RawFrm, (outs), (ins variable_ops),
+ "ret{q}", [(X86retflag 0)], IIC_RET>, OpSize32,
+ Requires<[In64BitMode]>;
+ def RETW : I <0xC3, RawFrm, (outs), (ins),
+ "ret{w}",
+ [], IIC_RET>, OpSize16;
+ def RETIL : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
+ "ret{l}\t$amt",
+ [(X86retflag timm:$amt)], IIC_RET_IMM>, OpSize32,
+ Requires<[Not64BitMode]>;
+ def RETIQ : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
+ "ret{q}\t$amt",
+ [(X86retflag timm:$amt)], IIC_RET_IMM>, OpSize32,
+ Requires<[In64BitMode]>;
+ def RETIW : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
+ "ret{w}\t$amt",
+ [], IIC_RET_IMM>, OpSize16;
+ def LRETL : I <0xCB, RawFrm, (outs), (ins),
+ "{l}ret{l|f}", [], IIC_RET>, OpSize32;
+ def LRETQ : RI <0xCB, RawFrm, (outs), (ins),
+ "{l}ret{|f}q", [], IIC_RET>, Requires<[In64BitMode]>;
+ def LRETW : I <0xCB, RawFrm, (outs), (ins),
+ "{l}ret{w|f}", [], IIC_RET>, OpSize16;
+ def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
+ "{l}ret{l|f}\t$amt", [], IIC_RET>, OpSize32;
+ def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
+ "{l}ret{|f}q\t$amt", [], IIC_RET>, Requires<[In64BitMode]>;
+ def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
+ "{l}ret{w|f}\t$amt", [], IIC_RET>, OpSize16;
+}
+
+// Unconditional branches.
+let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
+ def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget:$dst),
+ "jmp\t$dst", [(br bb:$dst)], IIC_JMP_REL>, OpSize32;
+ def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget:$dst),
+ "jmp\t$dst", [(br bb:$dst)], IIC_JMP_REL>, OpSize16,
+ Requires<[In16BitMode]>;
+ let hasSideEffects = 0 in
+ def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
+ "jmp\t$dst", [], IIC_JMP_REL>;
+}
+
+// Conditional Branches.
+let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in {
+ multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> {
+ let hasSideEffects = 0 in
+ def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm, [],
+ IIC_Jcc>;
+ def _2 : Ii16PCRel<opc4, RawFrm, (outs), (ins brtarget:$dst), asm,
+ [(X86brcond bb:$dst, Cond, EFLAGS)], IIC_Jcc>, OpSize16,
+ TB, Requires<[In16BitMode]>;
+ def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget:$dst), asm,
+ [(X86brcond bb:$dst, Cond, EFLAGS)], IIC_Jcc>, TB,
+ OpSize32;
+ }
+}
+
+defm JO : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>;
+defm JNO : ICBr<0x71, 0x81, "jno\t$dst" , X86_COND_NO>;
+defm JB : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>;
+defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>;
+defm JE : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>;
+defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>;
+defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>;
+defm JA : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>;
+defm JS : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>;
+defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>;
+defm JP : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>;
+defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>;
+defm JL : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>;
+defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>;
+defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>;
+defm JG : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>;
+
+// jcx/jecx/jrcx instructions.
+let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
+ // These are the 32-bit versions of this instruction for the asmparser. In
+ // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
+ // jecxz.
+ let Uses = [CX] in
+ def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
+ "jcxz\t$dst", [], IIC_JCXZ>, AdSize, Requires<[Not64BitMode]>;
+ let Uses = [ECX] in
+ def JECXZ_32 : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
+ "jecxz\t$dst", [], IIC_JCXZ>, Requires<[Not64BitMode]>;
+
+ // J*CXZ instruction: 64-bit versions of this instruction for the asmparser.
+ // In 64-bit mode, the address size prefix is jecxz and the unprefixed version
+ // is jrcxz.
+ let Uses = [ECX] in
+ def JECXZ_64 : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
+ "jecxz\t$dst", [], IIC_JCXZ>, AdSize, Requires<[In64BitMode]>;
+ let Uses = [RCX] in
+ def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
+ "jrcxz\t$dst", [], IIC_JCXZ>, Requires<[In64BitMode]>;
+}
+
+// Indirect branches
+let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
+ def JMP16r : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
+ [(brind GR16:$dst)], IIC_JMP_REG>, Requires<[Not64BitMode]>,
+ OpSize16, Sched<[WriteJump]>;
+ def JMP16m : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
+ [(brind (loadi16 addr:$dst))], IIC_JMP_MEM>,
+ Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>;
+
+ def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
+ [(brind GR32:$dst)], IIC_JMP_REG>, Requires<[Not64BitMode]>,
+ OpSize32, Sched<[WriteJump]>;
+ def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
+ [(brind (loadi32 addr:$dst))], IIC_JMP_MEM>,
+ Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>;
+
+ def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
+ [(brind GR64:$dst)], IIC_JMP_REG>, Requires<[In64BitMode]>,
+ Sched<[WriteJump]>;
+ def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
+ [(brind (loadi64 addr:$dst))], IIC_JMP_MEM>,
+ Requires<[In64BitMode]>, Sched<[WriteJumpLd]>;
+
+ def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs),
+ (ins i16imm:$off, i16imm:$seg),
+ "ljmp{w}\t{$seg, $off|$off, $seg}", [],
+ IIC_JMP_FAR_PTR>, OpSize16, Sched<[WriteJump]>;
+ def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs),
+ (ins i32imm:$off, i16imm:$seg),
+ "ljmp{l}\t{$seg, $off|$off, $seg}", [],
+ IIC_JMP_FAR_PTR>, OpSize32, Sched<[WriteJump]>;
+ def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaque80mem:$dst),
+ "ljmp{q}\t{*}$dst", [], IIC_JMP_FAR_MEM>,
+ Sched<[WriteJump]>;
+
+ def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaque32mem:$dst),
+ "ljmp{w}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize16,
+ Sched<[WriteJumpLd]>;
+ def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaque48mem:$dst),
+ "ljmp{l}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize32,
+ Sched<[WriteJumpLd]>;
+}
+
+
+// Loop instructions
+let SchedRW = [WriteJump] in {
+def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", [], IIC_LOOP>;
+def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", [], IIC_LOOPE>;
+def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", [], IIC_LOOPNE>;
+}
+
+//===----------------------------------------------------------------------===//
+// Call Instructions...
+//
+let isCall = 1 in
+ // All calls clobber the non-callee saved registers. ESP is marked as
+ // a use to prevent stack-pointer assignments that appear immediately
+ // before calls from potentially appearing dead. Uses for argument
+ // registers are added manually.
+ let Uses = [ESP] in {
+ def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
+ (outs), (ins i32imm_pcrel:$dst),
+ "call{l}\t$dst", [], IIC_CALL_RI>, OpSize32,
+ Requires<[Not64BitMode]>, Sched<[WriteJump]>;
+ def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
+ (outs), (ins i16imm_pcrel:$dst),
+ "call{w}\t$dst", [], IIC_CALL_RI>, OpSize16,
+ Sched<[WriteJump]>;
+ def CALL16r : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
+ "call{w}\t{*}$dst", [(X86call GR16:$dst)], IIC_CALL_RI>,
+ OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
+ def CALL16m : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
+ "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))],
+ IIC_CALL_MEM>, OpSize16,
+ Requires<[Not64BitMode,FavorMemIndirectCall]>,
+ Sched<[WriteJumpLd]>;
+ def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
+ "call{l}\t{*}$dst", [(X86call GR32:$dst)], IIC_CALL_RI>,
+ OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
+ def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
+ "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))],
+ IIC_CALL_MEM>, OpSize32,
+ Requires<[Not64BitMode,FavorMemIndirectCall]>,
+ Sched<[WriteJumpLd]>;
+
+ def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs),
+ (ins i16imm:$off, i16imm:$seg),
+ "lcall{w}\t{$seg, $off|$off, $seg}", [],
+ IIC_CALL_FAR_PTR>, OpSize16, Sched<[WriteJump]>;
+ def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs),
+ (ins i32imm:$off, i16imm:$seg),
+ "lcall{l}\t{$seg, $off|$off, $seg}", [],
+ IIC_CALL_FAR_PTR>, OpSize32, Sched<[WriteJump]>;
+
+ def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaque32mem:$dst),
+ "lcall{w}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize16,
+ Sched<[WriteJumpLd]>;
+ def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaque48mem:$dst),
+ "lcall{l}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize32,
+ Sched<[WriteJumpLd]>;
+ }
+
+
+// Tail call stuff.
+
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
+ isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
+ let Uses = [ESP] in {
+ def TCRETURNdi : PseudoI<(outs),
+ (ins i32imm_pcrel:$dst, i32imm:$offset), []>;
+ def TCRETURNri : PseudoI<(outs),
+ (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>;
+ let mayLoad = 1 in
+ def TCRETURNmi : PseudoI<(outs),
+ (ins i32mem_TC:$dst, i32imm:$offset), []>;
+
+ // FIXME: The should be pseudo instructions that are lowered when going to
+ // mcinst.
+ def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs),
+ (ins i32imm_pcrel:$dst),
+ "jmp\t$dst # TAILCALL",
+ [], IIC_JMP_REL>;
+ def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
+ "", [], IIC_JMP_REG>; // FIXME: Remove encoding when JIT is dead.
+ let mayLoad = 1 in
+ def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst),
+ "jmp{l}\t{*}$dst # TAILCALL", [], IIC_JMP_MEM>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Call Instructions...
+//
+
+// RSP is marked as a use to prevent stack-pointer assignments that appear
+// immediately before calls from potentially appearing dead. Uses for argument
+// registers are added manually.
+let isCall = 1, Uses = [RSP], SchedRW = [WriteJump] in {
+ // NOTE: this pattern doesn't match "X86call imm", because we do not know
+ // that the offset between an arbitrary immediate and the call will fit in
+ // the 32-bit pcrel field that we have.
+ def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
+ (outs), (ins i64i32imm_pcrel:$dst),
+ "call{q}\t$dst", [], IIC_CALL_RI>, OpSize32,
+ Requires<[In64BitMode]>;
+ def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
+ "call{q}\t{*}$dst", [(X86call GR64:$dst)],
+ IIC_CALL_RI>,
+ Requires<[In64BitMode]>;
+ def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
+ "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))],
+ IIC_CALL_MEM>,
+ Requires<[In64BitMode,FavorMemIndirectCall]>;
+
+ def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaque80mem:$dst),
+ "lcall{q}\t{*}$dst", [], IIC_CALL_FAR_MEM>;
+}
+
+let isCall = 1, isCodeGenOnly = 1 in
+ // __chkstk(MSVC): clobber R10, R11 and EFLAGS.
+ // ___chkstk(Mingw64): clobber R10, R11, RAX and EFLAGS, and update RSP.
+ let Defs = [RAX, R10, R11, RSP, EFLAGS],
+ Uses = [RSP] in {
+ def W64ALLOCA : Ii32PCRel<0xE8, RawFrm,
+ (outs), (ins i64i32imm_pcrel:$dst),
+ "call{q}\t$dst", [], IIC_CALL_RI>,
+ Requires<[IsWin64]>, Sched<[WriteJump]>;
+ }
+
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
+ isCodeGenOnly = 1, Uses = [RSP], usesCustomInserter = 1,
+ SchedRW = [WriteJump] in {
+ def TCRETURNdi64 : PseudoI<(outs),
+ (ins i64i32imm_pcrel:$dst, i32imm:$offset),
+ []>;
+ def TCRETURNri64 : PseudoI<(outs),
+ (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>;
+ let mayLoad = 1 in
+ def TCRETURNmi64 : PseudoI<(outs),
+ (ins i64mem_TC:$dst, i32imm:$offset), []>;
+
+ def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs),
+ (ins i64i32imm_pcrel:$dst),
+ "jmp\t$dst # TAILCALL", [], IIC_JMP_REL>;
+ def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
+ "jmp{q}\t{*}$dst # TAILCALL", [], IIC_JMP_MEM>;
+
+ let mayLoad = 1 in
+ def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
+ "jmp{q}\t{*}$dst # TAILCALL", [], IIC_JMP_MEM>;
+}
diff --git a/contrib/llvm/lib/Target/X86/X86InstrExtension.td b/contrib/llvm/lib/Target/X86/X86InstrExtension.td
new file mode 100644
index 0000000..6be6a1f
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrExtension.td
@@ -0,0 +1,172 @@
+//===-- X86InstrExtension.td - Sign and Zero Extensions ----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the sign and zero extension operations.
+//
+//===----------------------------------------------------------------------===//
+
+let neverHasSideEffects = 1 in {
+ let Defs = [AX], Uses = [AL] in
+ def CBW : I<0x98, RawFrm, (outs), (ins),
+ "{cbtw|cbw}", [], IIC_CBW>, OpSize16; // AX = signext(AL)
+ let Defs = [EAX], Uses = [AX] in
+ def CWDE : I<0x98, RawFrm, (outs), (ins),
+ "{cwtl|cwde}", [], IIC_CBW>, OpSize32; // EAX = signext(AX)
+
+ let Defs = [AX,DX], Uses = [AX] in
+ def CWD : I<0x99, RawFrm, (outs), (ins),
+ "{cwtd|cwd}", [], IIC_CBW>, OpSize16; // DX:AX = signext(AX)
+ let Defs = [EAX,EDX], Uses = [EAX] in
+ def CDQ : I<0x99, RawFrm, (outs), (ins),
+ "{cltd|cdq}", [], IIC_CBW>, OpSize32; // EDX:EAX = signext(EAX)
+
+
+ let Defs = [RAX], Uses = [EAX] in
+ def CDQE : RI<0x98, RawFrm, (outs), (ins),
+ "{cltq|cdqe}", [], IIC_CBW>; // RAX = signext(EAX)
+
+ let Defs = [RAX,RDX], Uses = [RAX] in
+ def CQO : RI<0x99, RawFrm, (outs), (ins),
+ "{cqto|cqo}", [], IIC_CBW>; // RDX:RAX = signext(RAX)
+}
+
+
+
+// Sign/Zero extenders
+let neverHasSideEffects = 1 in {
+def MOVSX16rr8 : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
+ "movs{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVSX_R16_R8>,
+ TB, OpSize16, Sched<[WriteALU]>;
+let mayLoad = 1 in
+def MOVSX16rm8 : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
+ "movs{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVSX_R16_M8>,
+ TB, OpSize16, Sched<[WriteALULd]>;
+} // neverHasSideEffects = 1
+def MOVSX32rr8 : I<0xBE, MRMSrcReg, (outs GR32:$dst), (ins GR8:$src),
+ "movs{bl|x}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (sext GR8:$src))], IIC_MOVSX>, TB,
+ OpSize32, Sched<[WriteALU]>;
+def MOVSX32rm8 : I<0xBE, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
+ "movs{bl|x}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (sextloadi32i8 addr:$src))], IIC_MOVSX>, TB,
+ OpSize32, Sched<[WriteALULd]>;
+def MOVSX32rr16: I<0xBF, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
+ "movs{wl|x}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (sext GR16:$src))], IIC_MOVSX>, TB,
+ OpSize32, Sched<[WriteALU]>;
+def MOVSX32rm16: I<0xBF, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
+ "movs{wl|x}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (sextloadi32i16 addr:$src))], IIC_MOVSX>,
+ OpSize32, TB, Sched<[WriteALULd]>;
+
+let neverHasSideEffects = 1 in {
+def MOVZX16rr8 : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
+ "movz{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX_R16_R8>,
+ TB, OpSize16, Sched<[WriteALU]>;
+let mayLoad = 1 in
+def MOVZX16rm8 : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
+ "movz{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX_R16_M8>,
+ TB, OpSize16, Sched<[WriteALULd]>;
+} // neverHasSideEffects = 1
+def MOVZX32rr8 : I<0xB6, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src),
+ "movz{bl|x}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (zext GR8:$src))], IIC_MOVZX>, TB,
+ OpSize32, Sched<[WriteALU]>;
+def MOVZX32rm8 : I<0xB6, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
+ "movz{bl|x}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (zextloadi32i8 addr:$src))], IIC_MOVZX>, TB,
+ OpSize32, Sched<[WriteALULd]>;
+def MOVZX32rr16: I<0xB7, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
+ "movz{wl|x}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (zext GR16:$src))], IIC_MOVZX>, TB,
+ OpSize32, Sched<[WriteALU]>;
+def MOVZX32rm16: I<0xB7, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
+ "movz{wl|x}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (zextloadi32i16 addr:$src))], IIC_MOVZX>,
+ TB, OpSize32, Sched<[WriteALULd]>;
+
+// These are the same as the regular MOVZX32rr8 and MOVZX32rm8
+// except that they use GR32_NOREX for the output operand register class
+// instead of GR32. This allows them to operate on h registers on x86-64.
+let neverHasSideEffects = 1, isCodeGenOnly = 1 in {
+def MOVZX32_NOREXrr8 : I<0xB6, MRMSrcReg,
+ (outs GR32_NOREX:$dst), (ins GR8_NOREX:$src),
+ "movz{bl|x}\t{$src, $dst|$dst, $src}",
+ [], IIC_MOVZX>, TB, Sched<[WriteALU]>;
+let mayLoad = 1 in
+def MOVZX32_NOREXrm8 : I<0xB6, MRMSrcMem,
+ (outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src),
+ "movz{bl|x}\t{$src, $dst|$dst, $src}",
+ [], IIC_MOVZX>, TB, Sched<[WriteALULd]>;
+}
+
+// MOVSX64rr8 always has a REX prefix and it has an 8-bit register
+// operand, which makes it a rare instruction with an 8-bit register
+// operand that can never access an h register. If support for h registers
+// were generalized, this would require a special register class.
+def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
+ "movs{bq|x}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (sext GR8:$src))], IIC_MOVSX>, TB,
+ Sched<[WriteALU]>;
+def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
+ "movs{bq|x}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (sextloadi64i8 addr:$src))], IIC_MOVSX>,
+ TB, Sched<[WriteALULd]>;
+def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
+ "movs{wq|x}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (sext GR16:$src))], IIC_MOVSX>, TB,
+ Sched<[WriteALU]>;
+def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
+ "movs{wq|x}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (sextloadi64i16 addr:$src))], IIC_MOVSX>,
+ TB, Sched<[WriteALULd]>;
+def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
+ "movs{lq|xd}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (sext GR32:$src))], IIC_MOVSX>,
+ Sched<[WriteALU]>;
+def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
+ "movs{lq|xd}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (sextloadi64i32 addr:$src))], IIC_MOVSX>,
+ Sched<[WriteALULd]>;
+
+// movzbq and movzwq encodings for the disassembler
+def MOVZX64rr8_Q : RI<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8:$src),
+ "movz{bq|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX>,
+ TB, Sched<[WriteALU]>;
+def MOVZX64rm8_Q : RI<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem:$src),
+ "movz{bq|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX>,
+ TB, Sched<[WriteALULd]>;
+def MOVZX64rr16_Q : RI<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
+ "movz{wq|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX>,
+ TB, Sched<[WriteALU]>;
+def MOVZX64rm16_Q : RI<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
+ "movz{wq|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX>,
+ TB, Sched<[WriteALULd]>;
+
+// 64-bit zero-extension patterns use SUBREG_TO_REG and an operation writing a
+// 32-bit register.
+def : Pat<(i64 (zext GR8:$src)),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8:$src), sub_32bit)>;
+def : Pat<(zextloadi64i8 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+
+def : Pat<(i64 (zext GR16:$src)),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16:$src), sub_32bit)>;
+def : Pat<(zextloadi64i16 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
+
+// The preferred way to do 32-bit-to-64-bit zero extension on x86-64 is to use a
+// SUBREG_TO_REG to utilize implicit zero-extension, however this isn't possible
+// when the 32-bit value is defined by a truncate or is copied from something
+// where the high bits aren't necessarily all zero. In such cases, we fall back
+// to these explicit zext instructions.
+def : Pat<(i64 (zext GR32:$src)),
+ (SUBREG_TO_REG (i64 0), (MOV32rr GR32:$src), sub_32bit)>;
+def : Pat<(i64 (zextloadi64i32 addr:$src)),
+ (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
diff --git a/contrib/llvm/lib/Target/X86/X86InstrFMA.td b/contrib/llvm/lib/Target/X86/X86InstrFMA.td
new file mode 100644
index 0000000..c0a6864
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrFMA.td
@@ -0,0 +1,390 @@
+//===-- X86InstrFMA.td - FMA Instruction Set ---------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes FMA (Fused Multiply-Add) instructions.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// FMA3 - Intel 3 operand Fused Multiply-Add instructions
+//===----------------------------------------------------------------------===//
+
+let Constraints = "$src1 = $dst" in {
+multiclass fma3p_rm<bits<8> opc, string OpcodeStr,
+ PatFrag MemFrag128, PatFrag MemFrag256,
+ ValueType OpVT128, ValueType OpVT256,
+ bit IsRVariantCommutable = 0, bit IsMVariantCommutable = 0,
+ SDPatternOperator Op = null_frag> {
+ let usesCustomInserter = 1, isCommutable = IsRVariantCommutable in
+ def r : FMA3<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set VR128:$dst, (OpVT128 (Op VR128:$src2,
+ VR128:$src1, VR128:$src3)))]>;
+
+ let mayLoad = 1, isCommutable = IsMVariantCommutable in
+ def m : FMA3<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, f128mem:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set VR128:$dst, (OpVT128 (Op VR128:$src2, VR128:$src1,
+ (MemFrag128 addr:$src3))))]>;
+
+ let usesCustomInserter = 1, isCommutable = IsRVariantCommutable in
+ def rY : FMA3<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, VR256:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set VR256:$dst, (OpVT256 (Op VR256:$src2, VR256:$src1,
+ VR256:$src3)))]>, VEX_L;
+
+ let mayLoad = 1, isCommutable = IsMVariantCommutable in
+ def mY : FMA3<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, f256mem:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set VR256:$dst,
+ (OpVT256 (Op VR256:$src2, VR256:$src1,
+ (MemFrag256 addr:$src3))))]>, VEX_L;
+}
+} // Constraints = "$src1 = $dst"
+
+multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
+ string OpcodeStr, string PackTy,
+ PatFrag MemFrag128, PatFrag MemFrag256,
+ SDNode Op, ValueType OpTy128, ValueType OpTy256> {
+ // For 213, both the register and memory variant are commutable.
+ // Indeed, the commutable operands are 1 and 2 and both live in registers
+ // for both variants.
+ defm r213 : fma3p_rm<opc213,
+ !strconcat(OpcodeStr, "213", PackTy),
+ MemFrag128, MemFrag256, OpTy128, OpTy256,
+ /* IsRVariantCommutable */ 1,
+ /* IsMVariantCommutable */ 1,
+ Op>;
+let neverHasSideEffects = 1 in {
+ defm r132 : fma3p_rm<opc132,
+ !strconcat(OpcodeStr, "132", PackTy),
+ MemFrag128, MemFrag256, OpTy128, OpTy256>;
+ // For 231, only the register variant is commutable.
+ // For the memory variant the folded operand must be in 3. Thus,
+ // in that case, it cannot be swapped with 2.
+ defm r231 : fma3p_rm<opc231,
+ !strconcat(OpcodeStr, "231", PackTy),
+ MemFrag128, MemFrag256, OpTy128, OpTy256,
+ /* IsRVariantCommutable */ 1,
+ /* IsMVariantCommutable */ 0>;
+} // neverHasSideEffects = 1
+}
+
+// Fused Multiply-Add
+let ExeDomain = SSEPackedSingle in {
+ defm VFMADDPS : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "ps", loadv4f32,
+ loadv8f32, X86Fmadd, v4f32, v8f32>;
+ defm VFMSUBPS : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "ps", loadv4f32,
+ loadv8f32, X86Fmsub, v4f32, v8f32>;
+ defm VFMADDSUBPS : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "ps",
+ loadv4f32, loadv8f32, X86Fmaddsub,
+ v4f32, v8f32>;
+ defm VFMSUBADDPS : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "ps",
+ loadv4f32, loadv8f32, X86Fmsubadd,
+ v4f32, v8f32>;
+}
+
+let ExeDomain = SSEPackedDouble in {
+ defm VFMADDPD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "pd", loadv2f64,
+ loadv4f64, X86Fmadd, v2f64, v4f64>, VEX_W;
+ defm VFMSUBPD : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "pd", loadv2f64,
+ loadv4f64, X86Fmsub, v2f64, v4f64>, VEX_W;
+ defm VFMADDSUBPD : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "pd",
+ loadv2f64, loadv4f64, X86Fmaddsub,
+ v2f64, v4f64>, VEX_W;
+ defm VFMSUBADDPD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "pd",
+ loadv2f64, loadv4f64, X86Fmsubadd,
+ v2f64, v4f64>, VEX_W;
+}
+
+// Fused Negative Multiply-Add
+let ExeDomain = SSEPackedSingle in {
+ defm VFNMADDPS : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "ps", loadv4f32,
+ loadv8f32, X86Fnmadd, v4f32, v8f32>;
+ defm VFNMSUBPS : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps", loadv4f32,
+ loadv8f32, X86Fnmsub, v4f32, v8f32>;
+}
+let ExeDomain = SSEPackedDouble in {
+ defm VFNMADDPD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "pd", loadv2f64,
+ loadv4f64, X86Fnmadd, v2f64, v4f64>, VEX_W;
+ defm VFNMSUBPD : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd",
+ loadv2f64, loadv4f64, X86Fnmsub, v2f64,
+ v4f64>, VEX_W;
+}
+
+let Constraints = "$src1 = $dst" in {
+multiclass fma3s_rm<bits<8> opc, string OpcodeStr, X86MemOperand x86memop,
+ RegisterClass RC, ValueType OpVT, PatFrag mem_frag,
+ bit IsRVariantCommutable = 0, bit IsMVariantCommutable = 0,
+ SDPatternOperator OpNode = null_frag> {
+ let usesCustomInserter = 1, isCommutable = IsRVariantCommutable in
+ def r : FMA3<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src2, RC:$src1, RC:$src3)))]>;
+
+ let mayLoad = 1, isCommutable = IsMVariantCommutable in
+ def m : FMA3<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, x86memop:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src2, RC:$src1,
+ (mem_frag addr:$src3))))]>;
+}
+} // Constraints = "$src1 = $dst"
+
+multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
+ string OpStr, string PackTy, string PT2, Intrinsic Int,
+ SDNode OpNode, RegisterClass RC, ValueType OpVT,
+ X86MemOperand x86memop, Operand memop, PatFrag mem_frag,
+ ComplexPattern mem_cpat> {
+let neverHasSideEffects = 1 in {
+ defm r132 : fma3s_rm<opc132, !strconcat(OpStr, "132", PackTy),
+ x86memop, RC, OpVT, mem_frag>;
+ // See the other defm of r231 for the explanation regarding the
+ // commutable flags.
+ defm r231 : fma3s_rm<opc231, !strconcat(OpStr, "231", PackTy),
+ x86memop, RC, OpVT, mem_frag,
+ /* IsRVariantCommutable */ 1,
+ /* IsMVariantCommutable */ 0>;
+}
+
+// See the other defm of r213 for the explanation regarding the
+// commutable flags.
+defm r213 : fma3s_rm<opc213, !strconcat(OpStr, "213", PackTy),
+ x86memop, RC, OpVT, mem_frag,
+ /* IsRVariantCommutable */ 1,
+ /* IsMVariantCommutable */ 1,
+ OpNode>;
+}
+
+multiclass fma3s<bits<8> opc132, bits<8> opc213, bits<8> opc231,
+ string OpStr, Intrinsic IntF32, Intrinsic IntF64,
+ SDNode OpNode> {
+ defm SS : fma3s_forms<opc132, opc213, opc231, OpStr, "ss", "SS", IntF32, OpNode,
+ FR32, f32, f32mem, ssmem, loadf32, sse_load_f32>;
+ defm SD : fma3s_forms<opc132, opc213, opc231, OpStr, "sd", "PD", IntF64, OpNode,
+ FR64, f64, f64mem, sdmem, loadf64, sse_load_f64>, VEX_W;
+
+ def : Pat<(IntF32 VR128:$src1, VR128:$src2, VR128:$src3),
+ (COPY_TO_REGCLASS
+ (!cast<Instruction>(NAME#"SSr213r")
+ (COPY_TO_REGCLASS $src2, FR32),
+ (COPY_TO_REGCLASS $src1, FR32),
+ (COPY_TO_REGCLASS $src3, FR32)),
+ VR128)>;
+
+ def : Pat<(IntF64 VR128:$src1, VR128:$src2, VR128:$src3),
+ (COPY_TO_REGCLASS
+ (!cast<Instruction>(NAME#"SDr213r")
+ (COPY_TO_REGCLASS $src2, FR64),
+ (COPY_TO_REGCLASS $src1, FR64),
+ (COPY_TO_REGCLASS $src3, FR64)),
+ VR128)>;
+}
+
+defm VFMADD : fma3s<0x99, 0xA9, 0xB9, "vfmadd", int_x86_fma_vfmadd_ss,
+ int_x86_fma_vfmadd_sd, X86Fmadd>, VEX_LIG;
+defm VFMSUB : fma3s<0x9B, 0xAB, 0xBB, "vfmsub", int_x86_fma_vfmsub_ss,
+ int_x86_fma_vfmsub_sd, X86Fmsub>, VEX_LIG;
+
+defm VFNMADD : fma3s<0x9D, 0xAD, 0xBD, "vfnmadd", int_x86_fma_vfnmadd_ss,
+ int_x86_fma_vfnmadd_sd, X86Fnmadd>, VEX_LIG;
+defm VFNMSUB : fma3s<0x9F, 0xAF, 0xBF, "vfnmsub", int_x86_fma_vfnmsub_ss,
+ int_x86_fma_vfnmsub_sd, X86Fnmsub>, VEX_LIG;
+
+
+//===----------------------------------------------------------------------===//
+// FMA4 - AMD 4 operand Fused Multiply-Add instructions
+//===----------------------------------------------------------------------===//
+
+
+multiclass fma4s<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ X86MemOperand x86memop, ValueType OpVT, SDNode OpNode,
+ PatFrag mem_frag> {
+ let isCommutable = 1 in
+ def rr : FMA4<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>, VEX_W, VEX_LIG, MemOp4;
+ def rm : FMA4<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, x86memop:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst, (OpNode RC:$src1, RC:$src2,
+ (mem_frag addr:$src3)))]>, VEX_W, VEX_LIG, MemOp4;
+ def mr : FMA4<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst,
+ (OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3))]>, VEX_LIG;
+// For disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
+ def rr_REV : FMA4<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
+ VEX_LIG;
+}
+
+multiclass fma4s_int<bits<8> opc, string OpcodeStr, Operand memop,
+ ComplexPattern mem_cpat, Intrinsic Int> {
+let isCodeGenOnly = 1 in {
+ let isCommutable = 1 in
+ def rr_Int : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (Int VR128:$src1, VR128:$src2, VR128:$src3))]>, VEX_W, VEX_LIG, MemOp4;
+ def rm_Int : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, memop:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst, (Int VR128:$src1, VR128:$src2,
+ mem_cpat:$src3))]>, VEX_W, VEX_LIG, MemOp4;
+ def mr_Int : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, memop:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (Int VR128:$src1, mem_cpat:$src2, VR128:$src3))]>, VEX_LIG;
+} // isCodeGenOnly = 1
+}
+
+multiclass fma4p<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT128, ValueType OpVT256,
+ PatFrag ld_frag128, PatFrag ld_frag256> {
+ let isCommutable = 1 in
+ def rr : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (OpVT128 (OpNode VR128:$src1, VR128:$src2, VR128:$src3)))]>,
+ VEX_W, MemOp4;
+ def rm : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, f128mem:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst, (OpNode VR128:$src1, VR128:$src2,
+ (ld_frag128 addr:$src3)))]>, VEX_W, MemOp4;
+ def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f128mem:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (OpNode VR128:$src1, (ld_frag128 addr:$src2), VR128:$src3))]>;
+ let isCommutable = 1 in
+ def rrY : FMA4<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, VR256:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR256:$dst,
+ (OpVT256 (OpNode VR256:$src1, VR256:$src2, VR256:$src3)))]>,
+ VEX_W, MemOp4, VEX_L;
+ def rmY : FMA4<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, f256mem:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR256:$dst, (OpNode VR256:$src1, VR256:$src2,
+ (ld_frag256 addr:$src3)))]>, VEX_W, MemOp4, VEX_L;
+ def mrY : FMA4<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2, VR256:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR256:$dst, (OpNode VR256:$src1,
+ (ld_frag256 addr:$src2), VR256:$src3))]>, VEX_L;
+// For disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
+ def rr_REV : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>;
+ def rrY_REV : FMA4<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, VR256:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
+ VEX_L;
+} // isCodeGenOnly = 1
+}
+
+defm VFMADDSS4 : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, X86Fmadd, loadf32>,
+ fma4s_int<0x6A, "vfmaddss", ssmem, sse_load_f32,
+ int_x86_fma_vfmadd_ss>;
+defm VFMADDSD4 : fma4s<0x6B, "vfmaddsd", FR64, f64mem, f64, X86Fmadd, loadf64>,
+ fma4s_int<0x6B, "vfmaddsd", sdmem, sse_load_f64,
+ int_x86_fma_vfmadd_sd>;
+defm VFMSUBSS4 : fma4s<0x6E, "vfmsubss", FR32, f32mem, f32, X86Fmsub, loadf32>,
+ fma4s_int<0x6E, "vfmsubss", ssmem, sse_load_f32,
+ int_x86_fma_vfmsub_ss>;
+defm VFMSUBSD4 : fma4s<0x6F, "vfmsubsd", FR64, f64mem, f64, X86Fmsub, loadf64>,
+ fma4s_int<0x6F, "vfmsubsd", sdmem, sse_load_f64,
+ int_x86_fma_vfmsub_sd>;
+defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss", FR32, f32mem, f32,
+ X86Fnmadd, loadf32>,
+ fma4s_int<0x7A, "vfnmaddss", ssmem, sse_load_f32,
+ int_x86_fma_vfnmadd_ss>;
+defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd", FR64, f64mem, f64,
+ X86Fnmadd, loadf64>,
+ fma4s_int<0x7B, "vfnmaddsd", sdmem, sse_load_f64,
+ int_x86_fma_vfnmadd_sd>;
+defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss", FR32, f32mem, f32,
+ X86Fnmsub, loadf32>,
+ fma4s_int<0x7E, "vfnmsubss", ssmem, sse_load_f32,
+ int_x86_fma_vfnmsub_ss>;
+defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64,
+ X86Fnmsub, loadf64>,
+ fma4s_int<0x7F, "vfnmsubsd", sdmem, sse_load_f64,
+ int_x86_fma_vfnmsub_sd>;
+
+let ExeDomain = SSEPackedSingle in {
+ defm VFMADDPS4 : fma4p<0x68, "vfmaddps", X86Fmadd, v4f32, v8f32,
+ loadv4f32, loadv8f32>;
+ defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps", X86Fmsub, v4f32, v8f32,
+ loadv4f32, loadv8f32>;
+ defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps", X86Fnmadd, v4f32, v8f32,
+ loadv4f32, loadv8f32>;
+ defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps", X86Fnmsub, v4f32, v8f32,
+ loadv4f32, loadv8f32>;
+ defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32,
+ loadv4f32, loadv8f32>;
+ defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32,
+ loadv4f32, loadv8f32>;
+}
+
+let ExeDomain = SSEPackedDouble in {
+ defm VFMADDPD4 : fma4p<0x69, "vfmaddpd", X86Fmadd, v2f64, v4f64,
+ loadv2f64, loadv4f64>;
+ defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd", X86Fmsub, v2f64, v4f64,
+ loadv2f64, loadv4f64>;
+ defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd", X86Fnmadd, v2f64, v4f64,
+ loadv2f64, loadv4f64>;
+ defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd", X86Fnmsub, v2f64, v4f64,
+ loadv2f64, loadv4f64>;
+ defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64,
+ loadv2f64, loadv4f64>;
+ defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64,
+ loadv2f64, loadv4f64>;
+}
+
diff --git a/contrib/llvm/lib/Target/X86/X86InstrFPStack.td b/contrib/llvm/lib/Target/X86/X86InstrFPStack.td
new file mode 100644
index 0000000..4ad7b7e
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrFPStack.td
@@ -0,0 +1,700 @@
+//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the X86 x87 FPU instruction set, defining the
+// instructions, and properties of the instructions which are needed for code
+// generation, machine code emission, and analysis.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// FPStack specific DAG Nodes.
+//===----------------------------------------------------------------------===//
+
+def SDTX86FpGet2 : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
+ SDTCisVT<1, f80>]>;
+def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisFP<0>,
+ SDTCisPtrTy<1>,
+ SDTCisVT<2, OtherVT>]>;
+def SDTX86Fst : SDTypeProfile<0, 3, [SDTCisFP<0>,
+ SDTCisPtrTy<1>,
+ SDTCisVT<2, OtherVT>]>;
+def SDTX86Fild : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
+ SDTCisVT<2, OtherVT>]>;
+def SDTX86Fnstsw : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
+def SDTX86FpToIMem : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
+
+def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
+
+def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld,
+ [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
+def X86fst : SDNode<"X86ISD::FST", SDTX86Fst,
+ [SDNPHasChain, SDNPInGlue, SDNPMayStore,
+ SDNPMemOperand]>;
+def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild,
+ [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
+def X86fildflag : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
+ [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
+ SDNPMemOperand]>;
+def X86fp_stsw : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
+def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
+ [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
+def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
+ [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
+def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
+ [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
+def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore,
+ [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
+ SDNPMemOperand]>;
+
+//===----------------------------------------------------------------------===//
+// FPStack pattern fragments
+//===----------------------------------------------------------------------===//
+
+def fpimm0 : PatLeaf<(fpimm), [{
+ return N->isExactlyValue(+0.0);
+}]>;
+
+def fpimmneg0 : PatLeaf<(fpimm), [{
+ return N->isExactlyValue(-0.0);
+}]>;
+
+def fpimm1 : PatLeaf<(fpimm), [{
+ return N->isExactlyValue(+1.0);
+}]>;
+
+def fpimmneg1 : PatLeaf<(fpimm), [{
+ return N->isExactlyValue(-1.0);
+}]>;
+
+// Some 'special' instructions
+let usesCustomInserter = 1 in { // Expanded after instruction selection.
+ def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
+ [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
+ def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
+ [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
+ def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
+ [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
+ def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
+ [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
+ def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
+ [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
+ def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
+ [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
+ def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
+ [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
+ def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
+ [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
+ def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
+ [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
+}
+
+// All FP Stack operations are represented with four instructions here. The
+// first three instructions, generated by the instruction selector, use "RFP32"
+// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
+// 64-bit or 80-bit floating point values. These sizes apply to the values,
+// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
+// copied to each other without losing information. These instructions are all
+// pseudo instructions and use the "_Fp" suffix.
+// In some cases there are additional variants with a mixture of different
+// register sizes.
+// The second instruction is defined with FPI, which is the actual instruction
+// emitted by the assembler. These use "RST" registers, although frequently
+// the actual register(s) used are implicit. These are always 80 bits.
+// The FP stackifier pass converts one to the other after register allocation
+// occurs.
+//
+// Note that the FpI instruction should have instruction selection info (e.g.
+// a pattern) and the FPI instruction should have emission info (e.g. opcode
+// encoding and asm printing info).
+
+// Pseudo Instruction for FP stack return values.
+def FpPOP_RETVAL : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>;
+
+// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
+// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
+// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
+// f80 instructions cannot use SSE and use neither of these.
+class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
+ FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
+class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
+ FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
+
+// Factoring for arithmetic.
+multiclass FPBinary_rr<SDNode OpNode> {
+// Register op register -> register
+// These are separated out because they have no reversed form.
+def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
+ [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
+def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
+ [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
+def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
+ [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
+}
+// The FopST0 series are not included here because of the irregularities
+// in where the 'r' goes in assembly output.
+// These instructions cannot address 80-bit memory.
+multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
+// ST(0) = ST(0) + [mem]
+def _Fp32m : FpIf32<(outs RFP32:$dst),
+ (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
+ [(set RFP32:$dst,
+ (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
+def _Fp64m : FpIf64<(outs RFP64:$dst),
+ (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
+ [(set RFP64:$dst,
+ (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
+def _Fp64m32: FpIf64<(outs RFP64:$dst),
+ (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
+ [(set RFP64:$dst,
+ (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
+def _Fp80m32: FpI_<(outs RFP80:$dst),
+ (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
+ [(set RFP80:$dst,
+ (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
+def _Fp80m64: FpI_<(outs RFP80:$dst),
+ (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
+ [(set RFP80:$dst,
+ (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
+def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src),
+ !strconcat("f", asmstring, "{s}\t$src")> {
+ let mayLoad = 1;
+}
+def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src),
+ !strconcat("f", asmstring, "{l}\t$src")> {
+ let mayLoad = 1;
+}
+// ST(0) = ST(0) + [memint]
+def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
+ OneArgFPRW,
+ [(set RFP32:$dst, (OpNode RFP32:$src1,
+ (X86fild addr:$src2, i16)))]>;
+def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
+ OneArgFPRW,
+ [(set RFP32:$dst, (OpNode RFP32:$src1,
+ (X86fild addr:$src2, i32)))]>;
+def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
+ OneArgFPRW,
+ [(set RFP64:$dst, (OpNode RFP64:$src1,
+ (X86fild addr:$src2, i16)))]>;
+def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
+ OneArgFPRW,
+ [(set RFP64:$dst, (OpNode RFP64:$src1,
+ (X86fild addr:$src2, i32)))]>;
+def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
+ OneArgFPRW,
+ [(set RFP80:$dst, (OpNode RFP80:$src1,
+ (X86fild addr:$src2, i16)))]>;
+def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
+ OneArgFPRW,
+ [(set RFP80:$dst, (OpNode RFP80:$src1,
+ (X86fild addr:$src2, i32)))]>;
+def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src),
+ !strconcat("fi", asmstring, "{s}\t$src")> {
+ let mayLoad = 1;
+}
+def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src),
+ !strconcat("fi", asmstring, "{l}\t$src")> {
+ let mayLoad = 1;
+}
+}
+
+let Defs = [FPSW] in {
+// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
+// resources.
+defm ADD : FPBinary_rr<fadd>;
+defm SUB : FPBinary_rr<fsub>;
+defm MUL : FPBinary_rr<fmul>;
+defm DIV : FPBinary_rr<fdiv>;
+// Sets the scheduling resources for the actual NAME#_F<size>m defintions.
+let SchedRW = [WriteFAddLd] in {
+defm ADD : FPBinary<fadd, MRM0m, "add">;
+defm SUB : FPBinary<fsub, MRM4m, "sub">;
+defm SUBR: FPBinary<fsub ,MRM5m, "subr">;
+}
+let SchedRW = [WriteFMulLd] in {
+defm MUL : FPBinary<fmul, MRM1m, "mul">;
+}
+let SchedRW = [WriteFDivLd] in {
+defm DIV : FPBinary<fdiv, MRM6m, "div">;
+defm DIVR: FPBinary<fdiv, MRM7m, "divr">;
+}
+}
+
+class FPST0rInst<Format fp, string asm>
+ : FPI<0xD8, fp, (outs), (ins RST:$op), asm>;
+class FPrST0Inst<Format fp, string asm>
+ : FPI<0xDC, fp, (outs), (ins RST:$op), asm>;
+class FPrST0PInst<Format fp, string asm>
+ : FPI<0xDE, fp, (outs), (ins RST:$op), asm>;
+
+// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
+// of some of the 'reverse' forms of the fsub and fdiv instructions. As such,
+// we have to put some 'r's in and take them out of weird places.
+let SchedRW = [WriteFAdd] in {
+def ADD_FST0r : FPST0rInst <MRM0r, "fadd\t$op">;
+def ADD_FrST0 : FPrST0Inst <MRM0r, "fadd\t{%st(0), $op|$op, st(0)}">;
+def ADD_FPrST0 : FPrST0PInst<MRM0r, "faddp\t$op">;
+def SUBR_FST0r : FPST0rInst <MRM5r, "fsubr\t$op">;
+def SUB_FrST0 : FPrST0Inst <MRM5r, "fsub{r}\t{%st(0), $op|$op, st(0)}">;
+def SUB_FPrST0 : FPrST0PInst<MRM5r, "fsub{r}p\t$op">;
+def SUB_FST0r : FPST0rInst <MRM4r, "fsub\t$op">;
+def SUBR_FrST0 : FPrST0Inst <MRM4r, "fsub{|r}\t{%st(0), $op|$op, st(0)}">;
+def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t$op">;
+} // SchedRW
+let SchedRW = [WriteFMul] in {
+def MUL_FST0r : FPST0rInst <MRM1r, "fmul\t$op">;
+def MUL_FrST0 : FPrST0Inst <MRM1r, "fmul\t{%st(0), $op|$op, st(0)}">;
+def MUL_FPrST0 : FPrST0PInst<MRM1r, "fmulp\t$op">;
+} // SchedRW
+let SchedRW = [WriteFDiv] in {
+def DIVR_FST0r : FPST0rInst <MRM7r, "fdivr\t$op">;
+def DIV_FrST0 : FPrST0Inst <MRM7r, "fdiv{r}\t{%st(0), $op|$op, st(0)}">;
+def DIV_FPrST0 : FPrST0PInst<MRM7r, "fdiv{r}p\t$op">;
+def DIV_FST0r : FPST0rInst <MRM6r, "fdiv\t$op">;
+def DIVR_FrST0 : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st(0), $op|$op, st(0)}">;
+def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t$op">;
+} // SchedRW
+
+def COM_FST0r : FPST0rInst <MRM2r, "fcom\t$op">;
+def COMP_FST0r : FPST0rInst <MRM3r, "fcomp\t$op">;
+
+// Unary operations.
+multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> {
+def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
+ [(set RFP32:$dst, (OpNode RFP32:$src))]>;
+def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
+ [(set RFP64:$dst, (OpNode RFP64:$src))]>;
+def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
+ [(set RFP80:$dst, (OpNode RFP80:$src))]>;
+def _F : FPI<0xD9, fp, (outs), (ins), asmstring>;
+}
+
+let Defs = [FPSW] in {
+defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
+defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
+let SchedRW = [WriteFSqrt] in {
+defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">;
+}
+defm SIN : FPUnary<fsin, MRM_FE, "fsin">;
+defm COS : FPUnary<fcos, MRM_FF, "fcos">;
+
+let neverHasSideEffects = 1 in {
+def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
+def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
+def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
+}
+def TST_F : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
+} // Defs = [FPSW]
+
+// Versions of FP instructions that take a single memory operand. Added for the
+// disassembler; remove as they are included with patterns elsewhere.
+def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
+def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
+
+def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
+def FSTENVm : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fnstenv\t$dst">;
+
+def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
+def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
+
+def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
+def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
+
+def FRSTORm : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">;
+def FSAVEm : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fnsave\t$dst">;
+def FNSTSWm : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fnstsw\t$dst">;
+
+def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
+def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
+
+def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">;
+def FBSTPm : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">;
+
+// Floating point cmovs.
+class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
+ FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
+class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
+ FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
+
+multiclass FPCMov<PatLeaf cc> {
+ def _Fp32 : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
+ CondMovFP,
+ [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
+ cc, EFLAGS))]>;
+ def _Fp64 : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
+ CondMovFP,
+ [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
+ cc, EFLAGS))]>;
+ def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
+ CondMovFP,
+ [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
+ cc, EFLAGS))]>,
+ Requires<[HasCMov]>;
+}
+
+let Defs = [FPSW] in {
+let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
+defm CMOVB : FPCMov<X86_COND_B>;
+defm CMOVBE : FPCMov<X86_COND_BE>;
+defm CMOVE : FPCMov<X86_COND_E>;
+defm CMOVP : FPCMov<X86_COND_P>;
+defm CMOVNB : FPCMov<X86_COND_AE>;
+defm CMOVNBE: FPCMov<X86_COND_A>;
+defm CMOVNE : FPCMov<X86_COND_NE>;
+defm CMOVNP : FPCMov<X86_COND_NP>;
+} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
+
+let Predicates = [HasCMov] in {
+// These are not factored because there's no clean way to pass DA/DB.
+def CMOVB_F : FPI<0xDA, MRM0r, (outs RST:$op), (ins),
+ "fcmovb\t{$op, %st(0)|st(0), $op}">;
+def CMOVBE_F : FPI<0xDA, MRM2r, (outs RST:$op), (ins),
+ "fcmovbe\t{$op, %st(0)|st(0), $op}">;
+def CMOVE_F : FPI<0xDA, MRM1r, (outs RST:$op), (ins),
+ "fcmove\t{$op, %st(0)|st(0), $op}">;
+def CMOVP_F : FPI<0xDA, MRM3r, (outs RST:$op), (ins),
+ "fcmovu\t{$op, %st(0)|st(0), $op}">;
+def CMOVNB_F : FPI<0xDB, MRM0r, (outs RST:$op), (ins),
+ "fcmovnb\t{$op, %st(0)|st(0), $op}">;
+def CMOVNBE_F: FPI<0xDB, MRM2r, (outs RST:$op), (ins),
+ "fcmovnbe\t{$op, %st(0)|st(0), $op}">;
+def CMOVNE_F : FPI<0xDB, MRM1r, (outs RST:$op), (ins),
+ "fcmovne\t{$op, %st(0)|st(0), $op}">;
+def CMOVNP_F : FPI<0xDB, MRM3r, (outs RST:$op), (ins),
+ "fcmovnu\t{$op, %st(0)|st(0), $op}">;
+} // Predicates = [HasCMov]
+
+// Floating point loads & stores.
+let canFoldAsLoad = 1 in {
+def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
+ [(set RFP32:$dst, (loadf32 addr:$src))]>;
+let isReMaterializable = 1 in
+ def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
+ [(set RFP64:$dst, (loadf64 addr:$src))]>;
+def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
+ [(set RFP80:$dst, (loadf80 addr:$src))]>;
+}
+def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
+ [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
+def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
+ [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
+def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
+ [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
+def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
+ [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
+def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
+ [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
+def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
+ [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
+def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
+ [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
+def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
+ [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
+def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
+ [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
+def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
+ [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
+def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
+ [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
+def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
+ [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
+
+def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
+ [(store RFP32:$src, addr:$op)]>;
+def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
+ [(truncstoref32 RFP64:$src, addr:$op)]>;
+def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
+ [(store RFP64:$src, addr:$op)]>;
+def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
+ [(truncstoref32 RFP80:$src, addr:$op)]>;
+def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
+ [(truncstoref64 RFP80:$src, addr:$op)]>;
+// FST does not support 80-bit memory target; FSTP must be used.
+
+let mayStore = 1, neverHasSideEffects = 1 in {
+def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
+def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
+def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
+def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
+def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
+}
+def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
+ [(store RFP80:$src, addr:$op)]>;
+let mayStore = 1, neverHasSideEffects = 1 in {
+def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
+def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
+def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
+def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
+def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
+def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
+def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
+def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
+def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
+}
+
+let mayLoad = 1, SchedRW = [WriteLoad] in {
+def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src",
+ IIC_FLD>;
+def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src",
+ IIC_FLD>;
+def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src",
+ IIC_FLD80>;
+def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src",
+ IIC_FILD>;
+def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src",
+ IIC_FILD>;
+def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src",
+ IIC_FILD>;
+}
+let mayStore = 1, SchedRW = [WriteStore] in {
+def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst",
+ IIC_FST>;
+def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst",
+ IIC_FST>;
+def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst",
+ IIC_FST>;
+def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst",
+ IIC_FST>;
+def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst",
+ IIC_FST80>;
+def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst",
+ IIC_FIST>;
+def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst",
+ IIC_FIST>;
+def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst",
+ IIC_FIST>;
+def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst",
+ IIC_FIST>;
+def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst",
+ IIC_FIST>;
+}
+
+// FISTTP requires SSE3 even though it's a FPStack op.
+let Predicates = [HasSSE3] in {
+def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
+ [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
+def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
+ [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
+def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
+ [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
+def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
+ [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
+def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
+ [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
+def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
+ [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
+def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
+ [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
+def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
+ [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
+def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
+ [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
+} // Predicates = [HasSSE3]
+
+let mayStore = 1, SchedRW = [WriteStore] in {
+def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst",
+ IIC_FST>;
+def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst",
+ IIC_FST>;
+def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst),
+ "fisttp{ll}\t$dst", IIC_FST>;
+}
+
+// FP Stack manipulation instructions.
+let SchedRW = [WriteMove] in {
+def LD_Frr : FPI<0xD9, MRM0r, (outs), (ins RST:$op), "fld\t$op", IIC_FLD>;
+def ST_Frr : FPI<0xDD, MRM2r, (outs), (ins RST:$op), "fst\t$op", IIC_FST>;
+def ST_FPrr : FPI<0xDD, MRM3r, (outs), (ins RST:$op), "fstp\t$op", IIC_FST>;
+def XCH_F : FPI<0xD9, MRM1r, (outs), (ins RST:$op), "fxch\t$op", IIC_FXCH>;
+}
+
+// Floating point constant loads.
+let isReMaterializable = 1 in {
+def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
+ [(set RFP32:$dst, fpimm0)]>;
+def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
+ [(set RFP32:$dst, fpimm1)]>;
+def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
+ [(set RFP64:$dst, fpimm0)]>;
+def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
+ [(set RFP64:$dst, fpimm1)]>;
+def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
+ [(set RFP80:$dst, fpimm0)]>;
+def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
+ [(set RFP80:$dst, fpimm1)]>;
+}
+
+let SchedRW = [WriteZero] in {
+def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz", IIC_FLDZ>;
+def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1", IIC_FIST>;
+}
+
+// Floating point compares.
+let SchedRW = [WriteFAdd] in {
+def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
+ [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
+def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
+ [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
+def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
+ [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
+} // SchedRW
+} // Defs = [FPSW]
+
+let SchedRW = [WriteFAdd] in {
+// CC = ST(0) cmp ST(i)
+let Defs = [EFLAGS, FPSW] in {
+def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
+ [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>;
+def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
+ [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>;
+def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
+ [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
+}
+
+let Defs = [FPSW], Uses = [ST0] in {
+def UCOM_Fr : FPI<0xDD, MRM4r, // FPSW = cmp ST(0) with ST(i)
+ (outs), (ins RST:$reg), "fucom\t$reg", IIC_FUCOM>;
+def UCOM_FPr : FPI<0xDD, MRM5r, // FPSW = cmp ST(0) with ST(i), pop
+ (outs), (ins RST:$reg), "fucomp\t$reg", IIC_FUCOM>;
+def UCOM_FPPr : FPI<0xDA, MRM_E9, // cmp ST(0) with ST(1), pop, pop
+ (outs), (ins), "fucompp", IIC_FUCOM>;
+}
+
+let Defs = [EFLAGS, FPSW], Uses = [ST0] in {
+def UCOM_FIr : FPI<0xDB, MRM5r, // CC = cmp ST(0) with ST(i)
+ (outs), (ins RST:$reg), "fucomi\t$reg", IIC_FUCOMI>;
+def UCOM_FIPr : FPI<0xDF, MRM5r, // CC = cmp ST(0) with ST(i), pop
+ (outs), (ins RST:$reg), "fucompi\t$reg", IIC_FUCOMI>;
+}
+
+let Defs = [EFLAGS, FPSW] in {
+def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RST:$reg),
+ "fcomi\t$reg", IIC_FCOMI>;
+def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RST:$reg),
+ "fcompi\t$reg", IIC_FCOMI>;
+}
+} // SchedRW
+
+// Floating point flag ops.
+let SchedRW = [WriteALU] in {
+let Defs = [AX], Uses = [FPSW] in
+def FNSTSW16r : I<0xDF, MRM_E0, // AX = fp flags
+ (outs), (ins), "fnstsw\t{%ax|ax}",
+ [(set AX, (X86fp_stsw FPSW))], IIC_FNSTSW>;
+
+def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world
+ (outs), (ins i16mem:$dst), "fnstcw\t$dst",
+ [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>;
+} // SchedRW
+let mayLoad = 1 in
+def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16]
+ (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>,
+ Sched<[WriteLoad]>;
+
+// FPU control instructions
+let SchedRW = [WriteMicrocoded] in {
+let Defs = [FPSW] in
+def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", [], IIC_FNINIT>;
+def FFREE : FPI<0xDD, MRM0r, (outs), (ins RST:$reg),
+ "ffree\t$reg", IIC_FFREE>;
+// Clear exceptions
+
+let Defs = [FPSW] in
+def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", [], IIC_FNCLEX>;
+} // SchedRW
+
+// Operandless floating-point instructions for the disassembler.
+let SchedRW = [WriteMicrocoded] in {
+def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>;
+
+def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", [], IIC_FNOP>;
+def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", [], IIC_FXAM>;
+def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", [], IIC_FLDL>;
+def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", [], IIC_FLDL>;
+def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", [], IIC_FLDL>;
+def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", [], IIC_FLDL>;
+def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", [], IIC_FLDL>;
+def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", [], IIC_F2XM1>;
+def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", [], IIC_FYL2X>;
+def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", [], IIC_FPTAN>;
+def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", [], IIC_FPATAN>;
+def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", [], IIC_FXTRACT>;
+def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", [], IIC_FPREM1>;
+def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", [], IIC_FPSTP>;
+def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", [], IIC_FPSTP>;
+def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", [], IIC_FPREM>;
+def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", [], IIC_FYL2XP1>;
+def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", [], IIC_FSINCOS>;
+def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", [], IIC_FRNDINT>;
+def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", [], IIC_FSCALE>;
+def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", [], IIC_FCOMPP>;
+
+def FXSAVE : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
+ "fxsave\t$dst", [], IIC_FXSAVE>, TB;
+def FXSAVE64 : RI<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
+ "fxsave{q|64}\t$dst", [], IIC_FXSAVE>, TB,
+ Requires<[In64BitMode]>;
+def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
+ "fxrstor\t$src", [], IIC_FXRSTOR>, TB;
+def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
+ "fxrstor{q|64}\t$src", [], IIC_FXRSTOR>, TB,
+ Requires<[In64BitMode]>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//===----------------------------------------------------------------------===//
+
+// Required for RET of f32 / f64 / f80 values.
+def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
+def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
+def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
+
+// Required for CALL which return f32 / f64 / f80 values.
+def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
+def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op,
+ RFP64:$src)>;
+def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
+def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op,
+ RFP80:$src)>;
+def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op,
+ RFP80:$src)>;
+def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
+ RFP80:$src)>;
+
+// Floating point constant -0.0 and -1.0
+def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
+def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
+def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
+def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
+def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
+def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
+
+// Used to conv. i64 to f64 since there isn't a SSE version.
+def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
+
+// FP extensions map onto simple pseudo-value conversions if they are to/from
+// the FP stack.
+def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
+ Requires<[FPStackf32]>;
+def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
+ Requires<[FPStackf32]>;
+def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
+ Requires<[FPStackf64]>;
+
+// FP truncations map onto simple pseudo-value conversions if they are to/from
+// the FP stack. We have validated that only value-preserving truncations make
+// it through isel.
+def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
+ Requires<[FPStackf32]>;
+def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
+ Requires<[FPStackf32]>;
+def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
+ Requires<[FPStackf64]>;
diff --git a/contrib/llvm/lib/Target/X86/X86InstrFormats.td b/contrib/llvm/lib/Target/X86/X86InstrFormats.td
new file mode 100644
index 0000000..8ef5f90
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrFormats.td
@@ -0,0 +1,876 @@
+//===-- X86InstrFormats.td - X86 Instruction Formats -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// X86 Instruction Format Definitions.
+//
+
+// Format specifies the encoding used by the instruction. This is part of the
+// ad-hoc solution used to emit machine instruction encodings by our machine
+// code emitter.
+class Format<bits<7> val> {
+ bits<7> Value = val;
+}
+
+def Pseudo : Format<0>; def RawFrm : Format<1>;
+def AddRegFrm : Format<2>; def MRMDestReg : Format<3>;
+def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>;
+def MRMSrcMem : Format<6>; def RawFrmMemOffs : Format<7>;
+def RawFrmSrc : Format<8>; def RawFrmDst : Format<9>;
+def RawFrmDstSrc: Format<10>;
+def RawFrmImm8 : Format<11>;
+def RawFrmImm16 : Format<12>;
+def MRMXr : Format<14>; def MRMXm : Format<15>;
+def MRM0r : Format<16>; def MRM1r : Format<17>; def MRM2r : Format<18>;
+def MRM3r : Format<19>; def MRM4r : Format<20>; def MRM5r : Format<21>;
+def MRM6r : Format<22>; def MRM7r : Format<23>;
+def MRM0m : Format<24>; def MRM1m : Format<25>; def MRM2m : Format<26>;
+def MRM3m : Format<27>; def MRM4m : Format<28>; def MRM5m : Format<29>;
+def MRM6m : Format<30>; def MRM7m : Format<31>;
+def MRM_C0 : Format<32>; def MRM_C1 : Format<33>; def MRM_C2 : Format<34>;
+def MRM_C3 : Format<35>; def MRM_C4 : Format<36>; def MRM_C8 : Format<37>;
+def MRM_C9 : Format<38>; def MRM_CA : Format<39>; def MRM_CB : Format<40>;
+def MRM_D0 : Format<41>; def MRM_D1 : Format<42>; def MRM_D4 : Format<43>;
+def MRM_D5 : Format<44>; def MRM_D6 : Format<45>; def MRM_D8 : Format<46>;
+def MRM_D9 : Format<47>; def MRM_DA : Format<48>; def MRM_DB : Format<49>;
+def MRM_DC : Format<50>; def MRM_DD : Format<51>; def MRM_DE : Format<52>;
+def MRM_DF : Format<53>; def MRM_E0 : Format<54>; def MRM_E1 : Format<55>;
+def MRM_E2 : Format<56>; def MRM_E3 : Format<57>; def MRM_E4 : Format<58>;
+def MRM_E5 : Format<59>; def MRM_E8 : Format<60>; def MRM_E9 : Format<61>;
+def MRM_EA : Format<62>; def MRM_EB : Format<63>; def MRM_EC : Format<64>;
+def MRM_ED : Format<65>; def MRM_EE : Format<66>; def MRM_F0 : Format<67>;
+def MRM_F1 : Format<68>; def MRM_F2 : Format<69>; def MRM_F3 : Format<70>;
+def MRM_F4 : Format<71>; def MRM_F5 : Format<72>; def MRM_F6 : Format<73>;
+def MRM_F7 : Format<74>; def MRM_F8 : Format<75>; def MRM_F9 : Format<76>;
+def MRM_FA : Format<77>; def MRM_FB : Format<78>; def MRM_FC : Format<79>;
+def MRM_FD : Format<80>; def MRM_FE : Format<81>; def MRM_FF : Format<82>;
+
+// ImmType - This specifies the immediate type used by an instruction. This is
+// part of the ad-hoc solution used to emit machine instruction encodings by our
+// machine code emitter.
+class ImmType<bits<4> val> {
+ bits<4> Value = val;
+}
+def NoImm : ImmType<0>;
+def Imm8 : ImmType<1>;
+def Imm8PCRel : ImmType<2>;
+def Imm16 : ImmType<3>;
+def Imm16PCRel : ImmType<4>;
+def Imm32 : ImmType<5>;
+def Imm32PCRel : ImmType<6>;
+def Imm32S : ImmType<7>;
+def Imm64 : ImmType<8>;
+
+// FPFormat - This specifies what form this FP instruction has. This is used by
+// the Floating-Point stackifier pass.
+class FPFormat<bits<3> val> {
+ bits<3> Value = val;
+}
+def NotFP : FPFormat<0>;
+def ZeroArgFP : FPFormat<1>;
+def OneArgFP : FPFormat<2>;
+def OneArgFPRW : FPFormat<3>;
+def TwoArgFP : FPFormat<4>;
+def CompareFP : FPFormat<5>;
+def CondMovFP : FPFormat<6>;
+def SpecialFP : FPFormat<7>;
+
+// Class specifying the SSE execution domain, used by the SSEDomainFix pass.
+// Keep in sync with tables in X86InstrInfo.cpp.
+class Domain<bits<2> val> {
+ bits<2> Value = val;
+}
+def GenericDomain : Domain<0>;
+def SSEPackedSingle : Domain<1>;
+def SSEPackedDouble : Domain<2>;
+def SSEPackedInt : Domain<3>;
+
+// Class specifying the vector form of the decompressed
+// displacement of 8-bit.
+class CD8VForm<bits<3> val> {
+ bits<3> Value = val;
+}
+def CD8VF : CD8VForm<0>; // v := VL
+def CD8VH : CD8VForm<1>; // v := VL/2
+def CD8VQ : CD8VForm<2>; // v := VL/4
+def CD8VO : CD8VForm<3>; // v := VL/8
+def CD8VT1 : CD8VForm<4>; // v := 1
+def CD8VT2 : CD8VForm<5>; // v := 2
+def CD8VT4 : CD8VForm<6>; // v := 4
+def CD8VT8 : CD8VForm<7>; // v := 8
+
+// Class specifying the prefix used an opcode extension.
+class Prefix<bits<3> val> {
+ bits<3> Value = val;
+}
+def NoPrfx : Prefix<0>;
+def PS : Prefix<1>;
+def PD : Prefix<2>;
+def XS : Prefix<3>;
+def XD : Prefix<4>;
+
+// Class specifying the opcode map.
+class Map<bits<3> val> {
+ bits<3> Value = val;
+}
+def OB : Map<0>;
+def TB : Map<1>;
+def T8 : Map<2>;
+def TA : Map<3>;
+def XOP8 : Map<4>;
+def XOP9 : Map<5>;
+def XOPA : Map<6>;
+
+// Class specifying the encoding
+class Encoding<bits<2> val> {
+ bits<2> Value = val;
+}
+def EncNormal : Encoding<0>;
+def EncVEX : Encoding<1>;
+def EncXOP : Encoding<2>;
+def EncEVEX : Encoding<3>;
+
+// Operand size for encodings that change based on mode.
+class OperandSize<bits<2> val> {
+ bits<2> Value = val;
+}
+def OpSizeFixed : OperandSize<0>; // Never needs a 0x66 prefix.
+def OpSize16 : OperandSize<1>; // Needs 0x66 prefix in 32-bit mode.
+def OpSize32 : OperandSize<2>; // Needs 0x66 prefix in 16-bit mode.
+
+// Prefix byte classes which are used to indicate to the ad-hoc machine code
+// emitter that various prefix bytes are required.
+class OpSize16 { OperandSize OpSize = OpSize16; }
+class OpSize32 { OperandSize OpSize = OpSize32; }
+class AdSize { bit hasAdSizePrefix = 1; }
+class REX_W { bit hasREX_WPrefix = 1; }
+class LOCK { bit hasLockPrefix = 1; }
+class REP { bit hasREPPrefix = 1; }
+class TB { Map OpMap = TB; }
+class T8 { Map OpMap = T8; }
+class TA { Map OpMap = TA; }
+class XOP8 { Map OpMap = XOP8; Prefix OpPrefix = PS; }
+class XOP9 { Map OpMap = XOP9; Prefix OpPrefix = PS; }
+class XOPA { Map OpMap = XOPA; Prefix OpPrefix = PS; }
+class OBXS { Prefix OpPrefix = XS; }
+class PS : TB { Prefix OpPrefix = PS; }
+class PD : TB { Prefix OpPrefix = PD; }
+class XD : TB { Prefix OpPrefix = XD; }
+class XS : TB { Prefix OpPrefix = XS; }
+class T8PS : T8 { Prefix OpPrefix = PS; }
+class T8PD : T8 { Prefix OpPrefix = PD; }
+class T8XD : T8 { Prefix OpPrefix = XD; }
+class T8XS : T8 { Prefix OpPrefix = XS; }
+class TAPS : TA { Prefix OpPrefix = PS; }
+class TAPD : TA { Prefix OpPrefix = PD; }
+class TAXD : TA { Prefix OpPrefix = XD; }
+class VEX { Encoding OpEnc = EncVEX; }
+class VEX_W { bit hasVEX_WPrefix = 1; }
+class VEX_4V : VEX { bit hasVEX_4V = 1; }
+class VEX_4VOp3 : VEX { bit hasVEX_4VOp3 = 1; }
+class VEX_I8IMM { bit hasVEX_i8ImmReg = 1; }
+class VEX_L { bit hasVEX_L = 1; }
+class VEX_LIG { bit ignoresVEX_L = 1; }
+class EVEX : VEX { Encoding OpEnc = EncEVEX; }
+class EVEX_4V : VEX_4V { Encoding OpEnc = EncEVEX; }
+class EVEX_K { bit hasEVEX_K = 1; }
+class EVEX_KZ : EVEX_K { bit hasEVEX_Z = 1; }
+class EVEX_B { bit hasEVEX_B = 1; }
+class EVEX_RC { bit hasEVEX_RC = 1; }
+class EVEX_V512 { bit hasEVEX_L2 = 1; bit hasVEX_L = 0; }
+class EVEX_V256 { bit hasEVEX_L2 = 0; bit hasVEX_L = 1; }
+class EVEX_V128 { bit hasEVEX_L2 = 0; bit hasVEX_L = 0; }
+
+// Specify AVX512 8-bit compressed displacement encoding based on the vector
+// element size in bits (8, 16, 32, 64) and the CDisp8 form.
+class EVEX_CD8<int esize, CD8VForm form> {
+ int CD8_EltSize = !srl(esize, 3);
+ bits<3> CD8_Form = form.Value;
+}
+
+class Has3DNow0F0FOpcode { bit has3DNow0F0FOpcode = 1; }
+class MemOp4 { bit hasMemOp4Prefix = 1; }
+class XOP { Encoding OpEnc = EncXOP; }
+class XOP_4V : XOP { bit hasVEX_4V = 1; }
+class XOP_4VOp3 : XOP { bit hasVEX_4VOp3 = 1; }
+
+class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
+ string AsmStr,
+ InstrItinClass itin,
+ Domain d = GenericDomain>
+ : Instruction {
+ let Namespace = "X86";
+
+ bits<8> Opcode = opcod;
+ Format Form = f;
+ bits<7> FormBits = Form.Value;
+ ImmType ImmT = i;
+
+ dag OutOperandList = outs;
+ dag InOperandList = ins;
+ string AsmString = AsmStr;
+
+ // If this is a pseudo instruction, mark it isCodeGenOnly.
+ let isCodeGenOnly = !eq(!cast<string>(f), "Pseudo");
+
+ let Itinerary = itin;
+
+ //
+ // Attributes specific to X86 instructions...
+ //
+ bit ForceDisassemble = 0; // Force instruction to disassemble even though it's
+ // isCodeGenonly. Needed to hide an ambiguous
+ // AsmString from the parser, but still disassemble.
+
+ OperandSize OpSize = OpSizeFixed; // Does this instruction's encoding change
+ // based on operand size of the mode
+ bits<2> OpSizeBits = OpSize.Value;
+ bit hasAdSizePrefix = 0; // Does this inst have a 0x67 prefix?
+
+ Prefix OpPrefix = NoPrfx; // Which prefix byte does this inst have?
+ bits<3> OpPrefixBits = OpPrefix.Value;
+ Map OpMap = OB; // Which opcode map does this inst have?
+ bits<3> OpMapBits = OpMap.Value;
+ bit hasREX_WPrefix = 0; // Does this inst require the REX.W prefix?
+ FPFormat FPForm = NotFP; // What flavor of FP instruction is this?
+ bit hasLockPrefix = 0; // Does this inst have a 0xF0 prefix?
+ Domain ExeDomain = d;
+ bit hasREPPrefix = 0; // Does this inst have a REP prefix?
+ Encoding OpEnc = EncNormal; // Encoding used by this instruction
+ bits<2> OpEncBits = OpEnc.Value;
+ bit hasVEX_WPrefix = 0; // Does this inst set the VEX_W field?
+ bit hasVEX_4V = 0; // Does this inst require the VEX.VVVV field?
+ bit hasVEX_4VOp3 = 0; // Does this inst require the VEX.VVVV field to
+ // encode the third operand?
+ bit hasVEX_i8ImmReg = 0; // Does this inst require the last source register
+ // to be encoded in a immediate field?
+ bit hasVEX_L = 0; // Does this inst use large (256-bit) registers?
+ bit ignoresVEX_L = 0; // Does this instruction ignore the L-bit
+ bit hasEVEX_K = 0; // Does this inst require masking?
+ bit hasEVEX_Z = 0; // Does this inst set the EVEX_Z field?
+ bit hasEVEX_L2 = 0; // Does this inst set the EVEX_L2 field?
+ bit hasEVEX_B = 0; // Does this inst set the EVEX_B field?
+ bits<3> CD8_Form = 0; // Compressed disp8 form - vector-width.
+ // Declare it int rather than bits<4> so that all bits are defined when
+ // assigning to bits<7>.
+ int CD8_EltSize = 0; // Compressed disp8 form - element-size in bytes.
+ bit has3DNow0F0FOpcode =0;// Wacky 3dNow! encoding?
+ bit hasMemOp4Prefix = 0; // Same bit as VEX_W, but used for swapping operands
+ bit hasEVEX_RC = 0; // Explicitly specified rounding control in FP instruction.
+
+ bits<2> EVEX_LL;
+ let EVEX_LL{0} = hasVEX_L;
+ let EVEX_LL{1} = hasEVEX_L2;
+ // Vector size in bytes.
+ bits<7> VectSize = !shl(16, EVEX_LL);
+
+ // The scaling factor for AVX512's compressed displacement is either
+ // - the size of a power-of-two number of elements or
+ // - the size of a single element for broadcasts or
+ // - the total vector size divided by a power-of-two number.
+ // Possible values are: 0 (non-AVX512 inst), 1, 2, 4, 8, 16, 32 and 64.
+ bits<7> CD8_Scale = !if (!eq (OpEnc.Value, EncEVEX.Value),
+ !if (CD8_Form{2},
+ !shl(CD8_EltSize, CD8_Form{1-0}),
+ !if (hasEVEX_B,
+ CD8_EltSize,
+ !srl(VectSize, CD8_Form{1-0}))), 0);
+
+ // TSFlags layout should be kept in sync with X86InstrInfo.h.
+ let TSFlags{6-0} = FormBits;
+ let TSFlags{8-7} = OpSizeBits;
+ let TSFlags{9} = hasAdSizePrefix;
+ let TSFlags{12-10} = OpPrefixBits;
+ let TSFlags{15-13} = OpMapBits;
+ let TSFlags{16} = hasREX_WPrefix;
+ let TSFlags{20-17} = ImmT.Value;
+ let TSFlags{23-21} = FPForm.Value;
+ let TSFlags{24} = hasLockPrefix;
+ let TSFlags{25} = hasREPPrefix;
+ let TSFlags{27-26} = ExeDomain.Value;
+ let TSFlags{29-28} = OpEncBits;
+ let TSFlags{37-30} = Opcode;
+ let TSFlags{38} = hasVEX_WPrefix;
+ let TSFlags{39} = hasVEX_4V;
+ let TSFlags{40} = hasVEX_4VOp3;
+ let TSFlags{41} = hasVEX_i8ImmReg;
+ let TSFlags{42} = hasVEX_L;
+ let TSFlags{43} = ignoresVEX_L;
+ let TSFlags{44} = hasEVEX_K;
+ let TSFlags{45} = hasEVEX_Z;
+ let TSFlags{46} = hasEVEX_L2;
+ let TSFlags{47} = hasEVEX_B;
+ // If we run out of TSFlags bits, it's possible to encode this in 3 bits.
+ let TSFlags{54-48} = CD8_Scale;
+ let TSFlags{55} = has3DNow0F0FOpcode;
+ let TSFlags{56} = hasMemOp4Prefix;
+ let TSFlags{57} = hasEVEX_RC;
+}
+
+class PseudoI<dag oops, dag iops, list<dag> pattern>
+ : X86Inst<0, Pseudo, NoImm, oops, iops, "", NoItinerary> {
+ let Pattern = pattern;
+}
+
+class I<bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary,
+ Domain d = GenericDomain>
+ : X86Inst<o, f, NoImm, outs, ins, asm, itin, d> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+class Ii8 <bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary,
+ Domain d = GenericDomain>
+ : X86Inst<o, f, Imm8, outs, ins, asm, itin, d> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+class Ii8PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : X86Inst<o, f, Imm8PCRel, outs, ins, asm, itin> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+class Ii16<bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : X86Inst<o, f, Imm16, outs, ins, asm, itin> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+class Ii32<bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : X86Inst<o, f, Imm32, outs, ins, asm, itin> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+class Ii32S<bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : X86Inst<o, f, Imm32S, outs, ins, asm, itin> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+
+class Ii16PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : X86Inst<o, f, Imm16PCRel, outs, ins, asm, itin> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+
+class Ii32PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : X86Inst<o, f, Imm32PCRel, outs, ins, asm, itin> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+
+// FPStack Instruction Templates:
+// FPI - Floating Point Instruction template.
+class FPI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, [], itin> {}
+
+// FpI_ - Floating Point Pseudo Instruction template. Not Predicated.
+class FpI_<dag outs, dag ins, FPFormat fp, list<dag> pattern,
+ InstrItinClass itin = NoItinerary>
+ : X86Inst<0, Pseudo, NoImm, outs, ins, "", itin> {
+ let FPForm = fp;
+ let Pattern = pattern;
+}
+
+// Templates for instructions that use a 16- or 32-bit segmented address as
+// their only operand: lcall (FAR CALL) and ljmp (FAR JMP)
+//
+// Iseg16 - 16-bit segment selector, 16-bit offset
+// Iseg32 - 16-bit segment selector, 32-bit offset
+
+class Iseg16 <bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : X86Inst<o, f, Imm16, outs, ins, asm, itin> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+
+class Iseg32 <bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : X86Inst<o, f, Imm32, outs, ins, asm, itin> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+
+// SI - SSE 1 & 2 scalar instructions
+class SI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin> {
+ let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
+ !if(!eq(OpEnc.Value, EncVEX.Value), [UseAVX],
+ !if(!eq(OpPrefix.Value, XS.Value), [UseSSE1],
+ !if(!eq(OpPrefix.Value, XD.Value), [UseSSE2],
+ !if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
+ [UseSSE1])))));
+
+ // AVX instructions have a 'v' prefix in the mnemonic
+ let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
+ !if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
+ asm));
+}
+
+// SIi8 - SSE 1 & 2 scalar instructions
+class SIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin> {
+ let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
+ !if(!eq(OpEnc.Value, EncVEX.Value), [UseAVX],
+ !if(!eq(OpPrefix.Value, XS.Value), [UseSSE1],
+ [UseSSE2])));
+
+ // AVX instructions have a 'v' prefix in the mnemonic
+ let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
+ !if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
+ asm));
+}
+
+// PI - SSE 1 & 2 packed instructions
+class PI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern,
+ InstrItinClass itin, Domain d>
+ : I<o, F, outs, ins, asm, pattern, itin, d> {
+ let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
+ !if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX],
+ !if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
+ [UseSSE1])));
+
+ // AVX instructions have a 'v' prefix in the mnemonic
+ let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
+ !if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
+ asm));
+}
+
+// MMXPI - SSE 1 & 2 packed instructions with MMX operands
+class MMXPI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern,
+ InstrItinClass itin, Domain d>
+ : I<o, F, outs, ins, asm, pattern, itin, d> {
+ let Predicates = !if(!eq(OpPrefix.Value, PD.Value), [HasSSE2],
+ [HasSSE1]);
+}
+
+// PIi8 - SSE 1 & 2 packed instructions with immediate
+class PIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin, Domain d>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, d> {
+ let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
+ !if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX],
+ !if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
+ [UseSSE1])));
+
+ // AVX instructions have a 'v' prefix in the mnemonic
+ let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
+ !if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
+ asm));
+}
+
+// SSE1 Instruction Templates:
+//
+// SSI - SSE1 instructions with XS prefix.
+// PSI - SSE1 instructions with PS prefix.
+// PSIi8 - SSE1 instructions with ImmT == Imm8 and PS prefix.
+// VSSI - SSE1 instructions with XS prefix in AVX form.
+// VPSI - SSE1 instructions with PS prefix in AVX form, packed single.
+
+class SSI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, XS, Requires<[UseSSE1]>;
+class SSIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin>, XS, Requires<[UseSSE1]>;
+class PSI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedSingle>, PS,
+ Requires<[UseSSE1]>;
+class PSIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedSingle>, PS,
+ Requires<[UseSSE1]>;
+class VSSI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, !strconcat("v", asm), pattern, itin>, XS,
+ Requires<[HasAVX]>;
+class VPSI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, !strconcat("v", asm), pattern, itin, SSEPackedSingle>, PS,
+ Requires<[HasAVX]>;
+
+// SSE2 Instruction Templates:
+//
+// SDI - SSE2 instructions with XD prefix.
+// SDIi8 - SSE2 instructions with ImmT == Imm8 and XD prefix.
+// S2SI - SSE2 instructions with XS prefix.
+// SSDIi8 - SSE2 instructions with ImmT == Imm8 and XS prefix.
+// PDI - SSE2 instructions with PD prefix, packed double domain.
+// PDIi8 - SSE2 instructions with ImmT == Imm8 and PD prefix.
+// VSDI - SSE2 scalar instructions with XD prefix in AVX form.
+// VPDI - SSE2 vector instructions with PD prefix in AVX form,
+// packed double domain.
+// VS2I - SSE2 scalar instructions with PD prefix in AVX form.
+// S2I - SSE2 scalar instructions with PD prefix.
+// MMXSDIi8 - SSE2 instructions with ImmT == Imm8 and XD prefix as well as
+// MMX operands.
+// MMXSSDIi8 - SSE2 instructions with ImmT == Imm8 and XS prefix as well as
+// MMX operands.
+
+class SDI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, XD, Requires<[UseSSE2]>;
+class SDIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin>, XD, Requires<[UseSSE2]>;
+class S2SI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, XS, Requires<[UseSSE2]>;
+class S2SIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern>, XS, Requires<[UseSSE2]>;
+class PDI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, PD,
+ Requires<[UseSSE2]>;
+class PDIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, PD,
+ Requires<[UseSSE2]>;
+class VSDI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, !strconcat("v", asm), pattern, itin>, XD,
+ Requires<[UseAVX]>;
+class VS2SI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, !strconcat("v", asm), pattern, itin>, XS,
+ Requires<[HasAVX]>;
+class VPDI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, !strconcat("v", asm), pattern, itin, SSEPackedDouble>,
+ PD, Requires<[HasAVX]>;
+class VS2I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, !strconcat("v", asm), pattern, itin>, PD,
+ Requires<[UseAVX]>;
+class S2I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, PD, Requires<[UseSSE2]>;
+class MMXSDIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin>, XD, Requires<[HasSSE2]>;
+class MMXS2SIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern>, XS, Requires<[HasSSE2]>;
+
+// SSE3 Instruction Templates:
+//
+// S3I - SSE3 instructions with PD prefixes.
+// S3SI - SSE3 instructions with XS prefix.
+// S3DI - SSE3 instructions with XD prefix.
+
+class S3SI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedSingle>, XS,
+ Requires<[UseSSE3]>;
+class S3DI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, XD,
+ Requires<[UseSSE3]>;
+class S3I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, PD,
+ Requires<[UseSSE3]>;
+
+
+// SSSE3 Instruction Templates:
+//
+// SS38I - SSSE3 instructions with T8 prefix.
+// SS3AI - SSSE3 instructions with TA prefix.
+// MMXSS38I - SSSE3 instructions with T8 prefix and MMX operands.
+// MMXSS3AI - SSSE3 instructions with TA prefix and MMX operands.
+//
+// Note: SSSE3 instructions have 64-bit and 128-bit versions. The 64-bit version
+// uses the MMX registers. The 64-bit versions are grouped with the MMX
+// classes. They need to be enabled even if AVX is enabled.
+
+class SS38I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8PD,
+ Requires<[UseSSSE3]>;
+class SS3AI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPD,
+ Requires<[UseSSSE3]>;
+class MMXSS38I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8PS,
+ Requires<[HasSSSE3]>;
+class MMXSS3AI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPS,
+ Requires<[HasSSSE3]>;
+
+// SSE4.1 Instruction Templates:
+//
+// SS48I - SSE 4.1 instructions with T8 prefix.
+// SS41AIi8 - SSE 4.1 instructions with TA prefix and ImmT == Imm8.
+//
+class SS48I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8PD,
+ Requires<[UseSSE41]>;
+class SS4AIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPD,
+ Requires<[UseSSE41]>;
+
+// SSE4.2 Instruction Templates:
+//
+// SS428I - SSE 4.2 instructions with T8 prefix.
+class SS428I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8PD,
+ Requires<[UseSSE42]>;
+
+// SS42FI - SSE 4.2 instructions with T8XD prefix.
+// NOTE: 'HasSSE42' is used as SS42FI is only used for CRC32 insns.
+class SS42FI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, T8XD, Requires<[HasSSE42]>;
+
+// SS42AI = SSE 4.2 instructions with TA prefix
+class SS42AI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPD,
+ Requires<[UseSSE42]>;
+
+// AVX Instruction Templates:
+// Instructions introduced in AVX (no SSE equivalent forms)
+//
+// AVX8I - AVX instructions with T8PD prefix.
+// AVXAIi8 - AVX instructions with TAPD prefix and ImmT = Imm8.
+class AVX8I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8PD,
+ Requires<[HasAVX]>;
+class AVXAIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPD,
+ Requires<[HasAVX]>;
+
+// AVX2 Instruction Templates:
+// Instructions introduced in AVX2 (no SSE equivalent forms)
+//
+// AVX28I - AVX2 instructions with T8PD prefix.
+// AVX2AIi8 - AVX2 instructions with TAPD prefix and ImmT = Imm8.
+class AVX28I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8PD,
+ Requires<[HasAVX2]>;
+class AVX2AIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPD,
+ Requires<[HasAVX2]>;
+
+
+// AVX-512 Instruction Templates:
+// Instructions introduced in AVX-512 (no SSE equivalent forms)
+//
+// AVX5128I - AVX-512 instructions with T8PD prefix.
+// AVX512AIi8 - AVX-512 instructions with TAPD prefix and ImmT = Imm8.
+// AVX512PDI - AVX-512 instructions with PD, double packed.
+// AVX512PSI - AVX-512 instructions with PS, single packed.
+// AVX512XS8I - AVX-512 instructions with T8 and XS prefixes.
+// AVX512XSI - AVX-512 instructions with XS prefix, generic domain.
+// AVX512BI - AVX-512 instructions with PD, int packed domain.
+// AVX512SI - AVX-512 scalar instructions with PD prefix.
+
+class AVX5128I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8PD,
+ Requires<[HasAVX512]>;
+class AVX512XS8I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8XS,
+ Requires<[HasAVX512]>;
+class AVX512XSI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, XS,
+ Requires<[HasAVX512]>;
+class AVX512XDI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, XD,
+ Requires<[HasAVX512]>;
+class AVX512BI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, PD,
+ Requires<[HasAVX512]>;
+class AVX512BIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, PD,
+ Requires<[HasAVX512]>;
+class AVX512AIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPD,
+ Requires<[HasAVX512]>;
+class AVX512Ii8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>,
+ Requires<[HasAVX512]>;
+class AVX512PDI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, PD,
+ Requires<[HasAVX512]>;
+class AVX512PSI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedSingle>, PS,
+ Requires<[HasAVX512]>;
+class AVX512PIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, Domain d, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, d>, Requires<[HasAVX512]>;
+class AVX512PI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, Domain d, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, d>, Requires<[HasAVX512]>;
+class AVX512FMA3<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag>pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, T8PD,
+ EVEX_4V, Requires<[HasAVX512]>;
+
+// AES Instruction Templates:
+//
+// AES8I
+// These use the same encoding as the SSE4.2 T8 and TA encodings.
+class AES8I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag>pattern, InstrItinClass itin = IIC_AES>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8PD,
+ Requires<[HasAES]>;
+
+class AESAI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPD,
+ Requires<[HasAES]>;
+
+// PCLMUL Instruction Templates
+class PCLMULIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag>pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPD,
+ Requires<[HasPCLMUL]>;
+
+class AVXPCLMULIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag>pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPD,
+ VEX_4V, Requires<[HasAVX, HasPCLMUL]>;
+
+// FMA3 Instruction Templates
+class FMA3<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag>pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, T8PD,
+ VEX_4V, FMASC, Requires<[HasFMA]>;
+
+// FMA4 Instruction Templates
+class FMA4<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag>pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin>, TAPD,
+ VEX_4V, VEX_I8IMM, FMASC, Requires<[HasFMA4]>;
+
+// XOP 2, 3 and 4 Operand Instruction Template
+class IXOP<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>,
+ XOP9, Requires<[HasXOP]>;
+
+// XOP 2, 3 and 4 Operand Instruction Templates with imm byte
+class IXOPi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>,
+ XOP8, Requires<[HasXOP]>;
+
+// XOP 5 operand instruction (VEX encoding!)
+class IXOP5<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag>pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPD,
+ VEX_4V, VEX_I8IMM, Requires<[HasXOP]>;
+
+// X86-64 Instruction templates...
+//
+
+class RI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, REX_W;
+class RIi8 <bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin>, REX_W;
+class RIi16 <bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii16<o, F, outs, ins, asm, pattern, itin>, REX_W;
+class RIi32 <bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii32<o, F, outs, ins, asm, pattern, itin>, REX_W;
+class RIi32S <bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii32S<o, F, outs, ins, asm, pattern, itin>, REX_W;
+
+class RIi64<bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : X86Inst<o, f, Imm64, outs, ins, asm, itin>, REX_W {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+
+class RIi64_NOREX<bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : X86Inst<o, f, Imm64, outs, ins, asm, itin> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+
+class RS2I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : S2I<o, F, outs, ins, asm, pattern, itin>, REX_W;
+class VRS2I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : VS2I<o, F, outs, ins, asm, pattern, itin>, VEX_W;
+
+// MMX Instruction templates
+//
+
+// MMXI - MMX instructions with TB prefix.
+// MMXI32 - MMX instructions with TB prefix valid only in 32 bit mode.
+// MMXI64 - MMX instructions with TB prefix valid only in 64 bit mode.
+// MMX2I - MMX / SSE2 instructions with PD prefix.
+// MMXIi8 - MMX instructions with ImmT == Imm8 and PS prefix.
+// MMXIi8 - MMX instructions with ImmT == Imm8 and PS prefix.
+// MMXID - MMX instructions with XD prefix.
+// MMXIS - MMX instructions with XS prefix.
+class MMXI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, PS, Requires<[HasMMX]>;
+class MMXI32<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, PS, Requires<[HasMMX,Not64BitMode]>;
+class MMXI64<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, PS, Requires<[HasMMX,In64BitMode]>;
+class MMXRI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, PS, REX_W, Requires<[HasMMX]>;
+class MMX2I<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, PD, Requires<[HasMMX]>;
+class MMXIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin>, PS, Requires<[HasMMX]>;
+class MMXID<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin>, XD, Requires<[HasMMX]>;
+class MMXIS<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern, InstrItinClass itin = NoItinerary>
+ : Ii8<o, F, outs, ins, asm, pattern, itin>, XS, Requires<[HasMMX]>;
diff --git a/contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td b/contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td
new file mode 100644
index 0000000..6f0fa94
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td
@@ -0,0 +1,570 @@
+//===-- X86InstrFragmentsSIMD.td - x86 SIMD ISA ------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides pattern fragments useful for SIMD instructions.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MMX Pattern Fragments
+//===----------------------------------------------------------------------===//
+
+def load_mmx : PatFrag<(ops node:$ptr), (x86mmx (load node:$ptr))>;
+def bc_mmx : PatFrag<(ops node:$in), (x86mmx (bitconvert node:$in))>;
+
+//===----------------------------------------------------------------------===//
+// SSE specific DAG Nodes.
+//===----------------------------------------------------------------------===//
+
+def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>,
+ SDTCisFP<0>, SDTCisInt<2> ]>;
+def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>,
+ SDTCisFP<1>, SDTCisVT<3, i8>,
+ SDTCisVec<1>]>;
+
+def X86umin : SDNode<"X86ISD::UMIN", SDTIntBinOp>;
+def X86umax : SDNode<"X86ISD::UMAX", SDTIntBinOp>;
+def X86smin : SDNode<"X86ISD::SMIN", SDTIntBinOp>;
+def X86smax : SDNode<"X86ISD::SMAX", SDTIntBinOp>;
+
+def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>;
+def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>;
+
+// Commutative and Associative FMIN and FMAX.
+def X86fminc : SDNode<"X86ISD::FMINC", SDTFPBinOp,
+ [SDNPCommutative, SDNPAssociative]>;
+def X86fmaxc : SDNode<"X86ISD::FMAXC", SDTFPBinOp,
+ [SDNPCommutative, SDNPAssociative]>;
+
+def X86fand : SDNode<"X86ISD::FAND", SDTFPBinOp,
+ [SDNPCommutative, SDNPAssociative]>;
+def X86for : SDNode<"X86ISD::FOR", SDTFPBinOp,
+ [SDNPCommutative, SDNPAssociative]>;
+def X86fxor : SDNode<"X86ISD::FXOR", SDTFPBinOp,
+ [SDNPCommutative, SDNPAssociative]>;
+def X86fandn : SDNode<"X86ISD::FANDN", SDTFPBinOp,
+ [SDNPCommutative, SDNPAssociative]>;
+def X86frsqrt : SDNode<"X86ISD::FRSQRT", SDTFPUnaryOp>;
+def X86frcp : SDNode<"X86ISD::FRCP", SDTFPUnaryOp>;
+def X86fsrl : SDNode<"X86ISD::FSRL", SDTX86FPShiftOp>;
+def X86fgetsign: SDNode<"X86ISD::FGETSIGNx86",SDTFPToIntOp>;
+def X86fhadd : SDNode<"X86ISD::FHADD", SDTFPBinOp>;
+def X86fhsub : SDNode<"X86ISD::FHSUB", SDTFPBinOp>;
+def X86hadd : SDNode<"X86ISD::HADD", SDTIntBinOp>;
+def X86hsub : SDNode<"X86ISD::HSUB", SDTIntBinOp>;
+def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest>;
+def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest>;
+def X86cmps : SDNode<"X86ISD::FSETCC", SDTX86Cmps>;
+//def X86cmpsd : SDNode<"X86ISD::FSETCCsd", SDTX86Cmpsd>;
+def X86pshufb : SDNode<"X86ISD::PSHUFB",
+ SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisSameAs<0,2>]>>;
+def X86andnp : SDNode<"X86ISD::ANDNP",
+ SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisSameAs<0,2>]>>;
+def X86psign : SDNode<"X86ISD::PSIGN",
+ SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisSameAs<0,2>]>>;
+def X86pextrb : SDNode<"X86ISD::PEXTRB",
+ SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>;
+def X86pextrw : SDNode<"X86ISD::PEXTRW",
+ SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>;
+def X86pinsrb : SDNode<"X86ISD::PINSRB",
+ SDTypeProfile<1, 3, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>,
+ SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>;
+def X86pinsrw : SDNode<"X86ISD::PINSRW",
+ SDTypeProfile<1, 3, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>,
+ SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>;
+def X86insertps : SDNode<"X86ISD::INSERTPS",
+ SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>,
+ SDTCisVT<2, v4f32>, SDTCisPtrTy<3>]>>;
+def X86vzmovl : SDNode<"X86ISD::VZEXT_MOVL",
+ SDTypeProfile<1, 1, [SDTCisSameAs<0,1>]>>;
+
+def X86vzload : SDNode<"X86ISD::VZEXT_LOAD", SDTLoad,
+ [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
+
+def X86vzext : SDNode<"X86ISD::VZEXT",
+ SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>,
+ SDTCisInt<0>, SDTCisInt<1>,
+ SDTCisOpSmallerThanOp<1, 0>]>>;
+
+def X86vsext : SDNode<"X86ISD::VSEXT",
+ SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>,
+ SDTCisInt<0>, SDTCisInt<1>,
+ SDTCisOpSmallerThanOp<1, 0>]>>;
+
+def X86vtrunc : SDNode<"X86ISD::VTRUNC",
+ SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>,
+ SDTCisInt<0>, SDTCisInt<1>,
+ SDTCisOpSmallerThanOp<0, 1>]>>;
+def X86trunc : SDNode<"X86ISD::TRUNC",
+ SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>,
+ SDTCisOpSmallerThanOp<0, 1>]>>;
+
+def X86vtruncm : SDNode<"X86ISD::VTRUNCM",
+ SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
+ SDTCisInt<0>, SDTCisInt<1>,
+ SDTCisVec<2>, SDTCisInt<2>,
+ SDTCisOpSmallerThanOp<0, 2>]>>;
+def X86vfpext : SDNode<"X86ISD::VFPEXT",
+ SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>,
+ SDTCisFP<0>, SDTCisFP<1>,
+ SDTCisOpSmallerThanOp<1, 0>]>>;
+def X86vfpround: SDNode<"X86ISD::VFPROUND",
+ SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>,
+ SDTCisFP<0>, SDTCisFP<1>,
+ SDTCisOpSmallerThanOp<0, 1>]>>;
+
+def X86vshldq : SDNode<"X86ISD::VSHLDQ", SDTIntShiftOp>;
+def X86vshrdq : SDNode<"X86ISD::VSRLDQ", SDTIntShiftOp>;
+def X86cmpp : SDNode<"X86ISD::CMPP", SDTX86VFCMP>;
+def X86pcmpeq : SDNode<"X86ISD::PCMPEQ", SDTIntBinOp, [SDNPCommutative]>;
+def X86pcmpgt : SDNode<"X86ISD::PCMPGT", SDTIntBinOp>;
+
+def X86IntCmpMask : SDTypeProfile<1, 2,
+ [SDTCisVec<0>, SDTCisSameAs<1, 2>, SDTCisInt<1>]>;
+def X86pcmpeqm : SDNode<"X86ISD::PCMPEQM", X86IntCmpMask, [SDNPCommutative]>;
+def X86pcmpgtm : SDNode<"X86ISD::PCMPGTM", X86IntCmpMask>;
+
+def X86CmpMaskCC :
+ SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisInt<0>, SDTCisVec<1>,
+ SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;
+def X86CmpMaskCCScalar :
+ SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;
+
+def X86cmpm : SDNode<"X86ISD::CMPM", X86CmpMaskCC>;
+def X86cmpmu : SDNode<"X86ISD::CMPMU", X86CmpMaskCC>;
+def X86cmpms : SDNode<"X86ISD::FSETCC", X86CmpMaskCCScalar>;
+
+def X86vshl : SDNode<"X86ISD::VSHL",
+ SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisVec<2>]>>;
+def X86vsrl : SDNode<"X86ISD::VSRL",
+ SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisVec<2>]>>;
+def X86vsra : SDNode<"X86ISD::VSRA",
+ SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisVec<2>]>>;
+
+def X86vshli : SDNode<"X86ISD::VSHLI", SDTIntShiftOp>;
+def X86vsrli : SDNode<"X86ISD::VSRLI", SDTIntShiftOp>;
+def X86vsrai : SDNode<"X86ISD::VSRAI", SDTIntShiftOp>;
+
+def SDTX86CmpPTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
+ SDTCisVec<1>,
+ SDTCisSameAs<2, 1>]>;
+def X86subus : SDNode<"X86ISD::SUBUS", SDTIntBinOp>;
+def X86ptest : SDNode<"X86ISD::PTEST", SDTX86CmpPTest>;
+def X86testp : SDNode<"X86ISD::TESTP", SDTX86CmpPTest>;
+def X86kortest : SDNode<"X86ISD::KORTEST", SDTX86CmpPTest>;
+def X86testm : SDNode<"X86ISD::TESTM", SDTypeProfile<1, 2, [SDTCisVec<0>,
+ SDTCisVec<1>,
+ SDTCisSameAs<2, 1>]>>;
+def X86testnm : SDNode<"X86ISD::TESTNM", SDTypeProfile<1, 2, [SDTCisVec<0>,
+ SDTCisVec<1>,
+ SDTCisSameAs<2, 1>]>>;
+def X86select : SDNode<"X86ISD::SELECT" , SDTSelect>;
+
+def X86pmuludq : SDNode<"X86ISD::PMULUDQ",
+ SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
+ SDTCisSameAs<1,2>]>>;
+def X86pmuldq : SDNode<"X86ISD::PMULDQ",
+ SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
+ SDTCisSameAs<1,2>]>>;
+
+// Specific shuffle nodes - At some point ISD::VECTOR_SHUFFLE will always get
+// translated into one of the target nodes below during lowering.
+// Note: this is a work in progress...
+def SDTShuff1Op : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
+def SDTShuff2Op : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisSameAs<0,2>]>;
+def SDTShuff3Op : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisSameAs<0,2>, SDTCisSameAs<0,3>]>;
+
+def SDTShuff2OpI : SDTypeProfile<1, 2, [SDTCisVec<0>,
+ SDTCisSameAs<0,1>, SDTCisInt<2>]>;
+def SDTShuff3OpI : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisSameAs<0,2>, SDTCisInt<3>]>;
+
+def SDTVBroadcast : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
+def SDTVBroadcastm : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>]>;
+
+def SDTBlend : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisSameAs<1,2>, SDTCisVT<3, i32>]>;
+
+def SDTFma : SDTypeProfile<1, 3, [SDTCisSameAs<0,1>,
+ SDTCisSameAs<1,2>, SDTCisSameAs<1,3>]>;
+
+def X86PAlignr : SDNode<"X86ISD::PALIGNR", SDTShuff3OpI>;
+
+def X86PShufd : SDNode<"X86ISD::PSHUFD", SDTShuff2OpI>;
+def X86PShufhw : SDNode<"X86ISD::PSHUFHW", SDTShuff2OpI>;
+def X86PShuflw : SDNode<"X86ISD::PSHUFLW", SDTShuff2OpI>;
+
+def X86Shufp : SDNode<"X86ISD::SHUFP", SDTShuff3OpI>;
+
+def X86Movddup : SDNode<"X86ISD::MOVDDUP", SDTShuff1Op>;
+def X86Movshdup : SDNode<"X86ISD::MOVSHDUP", SDTShuff1Op>;
+def X86Movsldup : SDNode<"X86ISD::MOVSLDUP", SDTShuff1Op>;
+
+def X86Movsd : SDNode<"X86ISD::MOVSD", SDTShuff2Op>;
+def X86Movss : SDNode<"X86ISD::MOVSS", SDTShuff2Op>;
+
+def X86Movlhps : SDNode<"X86ISD::MOVLHPS", SDTShuff2Op>;
+def X86Movlhpd : SDNode<"X86ISD::MOVLHPD", SDTShuff2Op>;
+def X86Movhlps : SDNode<"X86ISD::MOVHLPS", SDTShuff2Op>;
+
+def X86Movlps : SDNode<"X86ISD::MOVLPS", SDTShuff2Op>;
+def X86Movlpd : SDNode<"X86ISD::MOVLPD", SDTShuff2Op>;
+
+def SDTPack : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<2, 1>]>;
+def X86Packss : SDNode<"X86ISD::PACKSS", SDTPack>;
+def X86Packus : SDNode<"X86ISD::PACKUS", SDTPack>;
+
+def X86Unpckl : SDNode<"X86ISD::UNPCKL", SDTShuff2Op>;
+def X86Unpckh : SDNode<"X86ISD::UNPCKH", SDTShuff2Op>;
+
+def X86VPermilp : SDNode<"X86ISD::VPERMILP", SDTShuff2OpI>;
+def X86VPermv : SDNode<"X86ISD::VPERMV", SDTShuff2Op>;
+def X86VPermi : SDNode<"X86ISD::VPERMI", SDTShuff2OpI>;
+def X86VPermv3 : SDNode<"X86ISD::VPERMV3", SDTShuff3Op>;
+def X86VPermiv3 : SDNode<"X86ISD::VPERMIV3", SDTShuff3Op>;
+
+def X86VPerm2x128 : SDNode<"X86ISD::VPERM2X128", SDTShuff3OpI>;
+
+def X86VBroadcast : SDNode<"X86ISD::VBROADCAST", SDTVBroadcast>;
+def X86VBroadcastm : SDNode<"X86ISD::VBROADCASTM", SDTVBroadcastm>;
+def X86Vinsert : SDNode<"X86ISD::VINSERT", SDTypeProfile<1, 3,
+ [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>;
+def X86Vextract : SDNode<"X86ISD::VEXTRACT", SDTypeProfile<1, 2,
+ [SDTCisVec<1>, SDTCisPtrTy<2>]>, []>;
+
+def X86Blendi : SDNode<"X86ISD::BLENDI", SDTBlend>;
+def X86Fmadd : SDNode<"X86ISD::FMADD", SDTFma>;
+def X86Fnmadd : SDNode<"X86ISD::FNMADD", SDTFma>;
+def X86Fmsub : SDNode<"X86ISD::FMSUB", SDTFma>;
+def X86Fnmsub : SDNode<"X86ISD::FNMSUB", SDTFma>;
+def X86Fmaddsub : SDNode<"X86ISD::FMADDSUB", SDTFma>;
+def X86Fmsubadd : SDNode<"X86ISD::FMSUBADD", SDTFma>;
+
+def SDT_PCMPISTRI : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
+ SDTCisVT<2, v16i8>, SDTCisVT<3, v16i8>,
+ SDTCisVT<4, i8>]>;
+def SDT_PCMPESTRI : SDTypeProfile<2, 5, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
+ SDTCisVT<2, v16i8>, SDTCisVT<3, i32>,
+ SDTCisVT<4, v16i8>, SDTCisVT<5, i32>,
+ SDTCisVT<6, i8>]>;
+
+def X86pcmpistri : SDNode<"X86ISD::PCMPISTRI", SDT_PCMPISTRI>;
+def X86pcmpestri : SDNode<"X86ISD::PCMPESTRI", SDT_PCMPESTRI>;
+
+//===----------------------------------------------------------------------===//
+// SSE Complex Patterns
+//===----------------------------------------------------------------------===//
+
+// These are 'extloads' from a scalar to the low element of a vector, zeroing
+// the top elements. These are used for the SSE 'ss' and 'sd' instruction
+// forms.
+def sse_load_f32 : ComplexPattern<v4f32, 5, "SelectScalarSSELoad", [],
+ [SDNPHasChain, SDNPMayLoad, SDNPMemOperand,
+ SDNPWantRoot]>;
+def sse_load_f64 : ComplexPattern<v2f64, 5, "SelectScalarSSELoad", [],
+ [SDNPHasChain, SDNPMayLoad, SDNPMemOperand,
+ SDNPWantRoot]>;
+
+def ssmem : Operand<v4f32> {
+ let PrintMethod = "printf32mem";
+ let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
+ let ParserMatchClass = X86Mem32AsmOperand;
+ let OperandType = "OPERAND_MEMORY";
+}
+def sdmem : Operand<v2f64> {
+ let PrintMethod = "printf64mem";
+ let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
+ let ParserMatchClass = X86Mem64AsmOperand;
+ let OperandType = "OPERAND_MEMORY";
+}
+
+//===----------------------------------------------------------------------===//
+// SSE pattern fragments
+//===----------------------------------------------------------------------===//
+
+// 128-bit load pattern fragments
+// NOTE: all 128-bit integer vector loads are promoted to v2i64
+def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>;
+def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>;
+def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>;
+
+// 256-bit load pattern fragments
+// NOTE: all 256-bit integer vector loads are promoted to v4i64
+def loadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (load node:$ptr))>;
+def loadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (load node:$ptr))>;
+def loadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (load node:$ptr))>;
+
+// 512-bit load pattern fragments
+def loadv16f32 : PatFrag<(ops node:$ptr), (v16f32 (load node:$ptr))>;
+def loadv8f64 : PatFrag<(ops node:$ptr), (v8f64 (load node:$ptr))>;
+def loadv16i32 : PatFrag<(ops node:$ptr), (v16i32 (load node:$ptr))>;
+def loadv8i64 : PatFrag<(ops node:$ptr), (v8i64 (load node:$ptr))>;
+
+// 128-/256-/512-bit extload pattern fragments
+def extloadv2f32 : PatFrag<(ops node:$ptr), (v2f64 (extloadvf32 node:$ptr))>;
+def extloadv4f32 : PatFrag<(ops node:$ptr), (v4f64 (extloadvf32 node:$ptr))>;
+def extloadv8f32 : PatFrag<(ops node:$ptr), (v8f64 (extloadvf32 node:$ptr))>;
+
+// Like 'store', but always requires 128-bit vector alignment.
+def alignedstore : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getAlignment() >= 16;
+}]>;
+
+// Like 'store', but always requires 256-bit vector alignment.
+def alignedstore256 : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getAlignment() >= 32;
+}]>;
+
+// Like 'store', but always requires 512-bit vector alignment.
+def alignedstore512 : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return cast<StoreSDNode>(N)->getAlignment() >= 64;
+}]>;
+
+// Like 'load', but always requires 128-bit vector alignment.
+def alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() >= 16;
+}]>;
+
+// Like 'X86vzload', but always requires 128-bit vector alignment.
+def alignedX86vzload : PatFrag<(ops node:$ptr), (X86vzload node:$ptr), [{
+ return cast<MemSDNode>(N)->getAlignment() >= 16;
+}]>;
+
+// Like 'load', but always requires 256-bit vector alignment.
+def alignedload256 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() >= 32;
+}]>;
+
+// Like 'load', but always requires 512-bit vector alignment.
+def alignedload512 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() >= 64;
+}]>;
+
+def alignedloadfsf32 : PatFrag<(ops node:$ptr),
+ (f32 (alignedload node:$ptr))>;
+def alignedloadfsf64 : PatFrag<(ops node:$ptr),
+ (f64 (alignedload node:$ptr))>;
+
+// 128-bit aligned load pattern fragments
+// NOTE: all 128-bit integer vector loads are promoted to v2i64
+def alignedloadv4f32 : PatFrag<(ops node:$ptr),
+ (v4f32 (alignedload node:$ptr))>;
+def alignedloadv2f64 : PatFrag<(ops node:$ptr),
+ (v2f64 (alignedload node:$ptr))>;
+def alignedloadv2i64 : PatFrag<(ops node:$ptr),
+ (v2i64 (alignedload node:$ptr))>;
+
+// 256-bit aligned load pattern fragments
+// NOTE: all 256-bit integer vector loads are promoted to v4i64
+def alignedloadv8f32 : PatFrag<(ops node:$ptr),
+ (v8f32 (alignedload256 node:$ptr))>;
+def alignedloadv4f64 : PatFrag<(ops node:$ptr),
+ (v4f64 (alignedload256 node:$ptr))>;
+def alignedloadv4i64 : PatFrag<(ops node:$ptr),
+ (v4i64 (alignedload256 node:$ptr))>;
+
+// 512-bit aligned load pattern fragments
+def alignedloadv16f32 : PatFrag<(ops node:$ptr),
+ (v16f32 (alignedload512 node:$ptr))>;
+def alignedloadv16i32 : PatFrag<(ops node:$ptr),
+ (v16i32 (alignedload512 node:$ptr))>;
+def alignedloadv8f64 : PatFrag<(ops node:$ptr),
+ (v8f64 (alignedload512 node:$ptr))>;
+def alignedloadv8i64 : PatFrag<(ops node:$ptr),
+ (v8i64 (alignedload512 node:$ptr))>;
+
+// Like 'load', but uses special alignment checks suitable for use in
+// memory operands in most SSE instructions, which are required to
+// be naturally aligned on some targets but not on others. If the subtarget
+// allows unaligned accesses, match any load, though this may require
+// setting a feature bit in the processor (on startup, for example).
+// Opteron 10h and later implement such a feature.
+def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return Subtarget->hasVectorUAMem()
+ || cast<LoadSDNode>(N)->getAlignment() >= 16;
+}]>;
+
+def memop4 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return Subtarget->hasVectorUAMem()
+ || cast<LoadSDNode>(N)->getAlignment() >= 4;
+}]>;
+
+def memop8 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return Subtarget->hasVectorUAMem()
+ || cast<LoadSDNode>(N)->getAlignment() >= 8;
+}]>;
+
+def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>;
+def memopfsf64 : PatFrag<(ops node:$ptr), (f64 (memop node:$ptr))>;
+
+// 128-bit memop pattern fragments
+// NOTE: all 128-bit integer vector loads are promoted to v2i64
+def memopv4f32 : PatFrag<(ops node:$ptr), (v4f32 (memop node:$ptr))>;
+def memopv2f64 : PatFrag<(ops node:$ptr), (v2f64 (memop node:$ptr))>;
+def memopv2i64 : PatFrag<(ops node:$ptr), (v2i64 (memop node:$ptr))>;
+
+// 256-bit memop pattern fragments
+// NOTE: all 256-bit integer vector loads are promoted to v4i64
+def memopv8f32 : PatFrag<(ops node:$ptr), (v8f32 (memop node:$ptr))>;
+def memopv4f64 : PatFrag<(ops node:$ptr), (v4f64 (memop node:$ptr))>;
+def memopv4i64 : PatFrag<(ops node:$ptr), (v4i64 (memop node:$ptr))>;
+
+// 512-bit memop pattern fragments
+def memopv16f32 : PatFrag<(ops node:$ptr), (v16f32 (memop4 node:$ptr))>;
+def memopv8f64 : PatFrag<(ops node:$ptr), (v8f64 (memop8 node:$ptr))>;
+def memopv16i32 : PatFrag<(ops node:$ptr), (v16i32 (memop4 node:$ptr))>;
+def memopv8i64 : PatFrag<(ops node:$ptr), (v8i64 (memop8 node:$ptr))>;
+
+// SSSE3 uses MMX registers for some instructions. They aren't aligned on a
+// 16-byte boundary.
+// FIXME: 8 byte alignment for mmx reads is not required
+def memop64 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return cast<LoadSDNode>(N)->getAlignment() >= 8;
+}]>;
+
+def memopmmx : PatFrag<(ops node:$ptr), (x86mmx (memop64 node:$ptr))>;
+
+// MOVNT Support
+// Like 'store', but requires the non-temporal bit to be set
+def nontemporalstore : PatFrag<(ops node:$val, node:$ptr),
+ (st node:$val, node:$ptr), [{
+ if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
+ return ST->isNonTemporal();
+ return false;
+}]>;
+
+def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr),
+ (st node:$val, node:$ptr), [{
+ if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
+ return ST->isNonTemporal() && !ST->isTruncatingStore() &&
+ ST->getAddressingMode() == ISD::UNINDEXED &&
+ ST->getAlignment() >= 16;
+ return false;
+}]>;
+
+def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr),
+ (st node:$val, node:$ptr), [{
+ if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
+ return ST->isNonTemporal() &&
+ ST->getAlignment() < 16;
+ return false;
+}]>;
+
+// 128-bit bitconvert pattern fragments
+def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>;
+def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>;
+def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>;
+def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>;
+def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>;
+def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>;
+
+// 256-bit bitconvert pattern fragments
+def bc_v32i8 : PatFrag<(ops node:$in), (v32i8 (bitconvert node:$in))>;
+def bc_v16i16 : PatFrag<(ops node:$in), (v16i16 (bitconvert node:$in))>;
+def bc_v8i32 : PatFrag<(ops node:$in), (v8i32 (bitconvert node:$in))>;
+def bc_v4i64 : PatFrag<(ops node:$in), (v4i64 (bitconvert node:$in))>;
+def bc_v8f32 : PatFrag<(ops node:$in), (v8f32 (bitconvert node:$in))>;
+
+// 512-bit bitconvert pattern fragments
+def bc_v16i32 : PatFrag<(ops node:$in), (v16i32 (bitconvert node:$in))>;
+def bc_v8i64 : PatFrag<(ops node:$in), (v8i64 (bitconvert node:$in))>;
+def bc_v8f64 : PatFrag<(ops node:$in), (v8f64 (bitconvert node:$in))>;
+def bc_v16f32 : PatFrag<(ops node:$in), (v16f32 (bitconvert node:$in))>;
+
+def vzmovl_v2i64 : PatFrag<(ops node:$src),
+ (bitconvert (v2i64 (X86vzmovl
+ (v2i64 (scalar_to_vector (loadi64 node:$src))))))>;
+def vzmovl_v4i32 : PatFrag<(ops node:$src),
+ (bitconvert (v4i32 (X86vzmovl
+ (v4i32 (scalar_to_vector (loadi32 node:$src))))))>;
+
+def vzload_v2i64 : PatFrag<(ops node:$src),
+ (bitconvert (v2i64 (X86vzload node:$src)))>;
+
+
+def fp32imm0 : PatLeaf<(f32 fpimm), [{
+ return N->isExactlyValue(+0.0);
+}]>;
+
+def I8Imm : SDNodeXForm<imm, [{
+ // Transformation function: get the low 8 bits.
+ return getI8Imm((uint8_t)N->getZExtValue());
+}]>;
+
+def FROUND_NO_EXC : ImmLeaf<i32, [{ return Imm == 8; }]>;
+def FROUND_CURRENT : ImmLeaf<i32, [{ return Imm == 4; }]>;
+
+// BYTE_imm - Transform bit immediates into byte immediates.
+def BYTE_imm : SDNodeXForm<imm, [{
+ // Transformation function: imm >> 3
+ return getI32Imm(N->getZExtValue() >> 3);
+}]>;
+
+// EXTRACT_get_vextract128_imm xform function: convert extract_subvector index
+// to VEXTRACTF128/VEXTRACTI128 imm.
+def EXTRACT_get_vextract128_imm : SDNodeXForm<extract_subvector, [{
+ return getI8Imm(X86::getExtractVEXTRACT128Immediate(N));
+}]>;
+
+// INSERT_get_vinsert128_imm xform function: convert insert_subvector index to
+// VINSERTF128/VINSERTI128 imm.
+def INSERT_get_vinsert128_imm : SDNodeXForm<insert_subvector, [{
+ return getI8Imm(X86::getInsertVINSERT128Immediate(N));
+}]>;
+
+// EXTRACT_get_vextract256_imm xform function: convert extract_subvector index
+// to VEXTRACTF64x4 imm.
+def EXTRACT_get_vextract256_imm : SDNodeXForm<extract_subvector, [{
+ return getI8Imm(X86::getExtractVEXTRACT256Immediate(N));
+}]>;
+
+// INSERT_get_vinsert256_imm xform function: convert insert_subvector index to
+// VINSERTF64x4 imm.
+def INSERT_get_vinsert256_imm : SDNodeXForm<insert_subvector, [{
+ return getI8Imm(X86::getInsertVINSERT256Immediate(N));
+}]>;
+
+def vextract128_extract : PatFrag<(ops node:$bigvec, node:$index),
+ (extract_subvector node:$bigvec,
+ node:$index), [{
+ return X86::isVEXTRACT128Index(N);
+}], EXTRACT_get_vextract128_imm>;
+
+def vinsert128_insert : PatFrag<(ops node:$bigvec, node:$smallvec,
+ node:$index),
+ (insert_subvector node:$bigvec, node:$smallvec,
+ node:$index), [{
+ return X86::isVINSERT128Index(N);
+}], INSERT_get_vinsert128_imm>;
+
+
+def vextract256_extract : PatFrag<(ops node:$bigvec, node:$index),
+ (extract_subvector node:$bigvec,
+ node:$index), [{
+ return X86::isVEXTRACT256Index(N);
+}], EXTRACT_get_vextract256_imm>;
+
+def vinsert256_insert : PatFrag<(ops node:$bigvec, node:$smallvec,
+ node:$index),
+ (insert_subvector node:$bigvec, node:$smallvec,
+ node:$index), [{
+ return X86::isVINSERT256Index(N);
+}], INSERT_get_vinsert256_imm>;
+
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp
new file mode 100644
index 0000000..0d3afc4
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp
@@ -0,0 +1,5580 @@
+//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86InstrInfo.h"
+#include "X86.h"
+#include "X86InstrBuilder.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+#include <limits>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-instr-info"
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "X86GenInstrInfo.inc"
+
+static cl::opt<bool>
+NoFusing("disable-spill-fusing",
+ cl::desc("Disable fusing of spill code into instructions"));
+static cl::opt<bool>
+PrintFailedFusing("print-failed-fuse-candidates",
+ cl::desc("Print instructions that the allocator wants to"
+ " fuse, but the X86 backend currently can't"),
+ cl::Hidden);
+static cl::opt<bool>
+ReMatPICStubLoad("remat-pic-stub-load",
+ cl::desc("Re-materialize load from stub in PIC mode"),
+ cl::init(false), cl::Hidden);
+
+enum {
+ // Select which memory operand is being unfolded.
+ // (stored in bits 0 - 3)
+ TB_INDEX_0 = 0,
+ TB_INDEX_1 = 1,
+ TB_INDEX_2 = 2,
+ TB_INDEX_3 = 3,
+ TB_INDEX_MASK = 0xf,
+
+ // Do not insert the reverse map (MemOp -> RegOp) into the table.
+ // This may be needed because there is a many -> one mapping.
+ TB_NO_REVERSE = 1 << 4,
+
+ // Do not insert the forward map (RegOp -> MemOp) into the table.
+ // This is needed for Native Client, which prohibits branch
+ // instructions from using a memory operand.
+ TB_NO_FORWARD = 1 << 5,
+
+ TB_FOLDED_LOAD = 1 << 6,
+ TB_FOLDED_STORE = 1 << 7,
+
+ // Minimum alignment required for load/store.
+ // Used for RegOp->MemOp conversion.
+ // (stored in bits 8 - 15)
+ TB_ALIGN_SHIFT = 8,
+ TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
+ TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
+ TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
+ TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT,
+ TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT
+};
+
+struct X86OpTblEntry {
+ uint16_t RegOp;
+ uint16_t MemOp;
+ uint16_t Flags;
+};
+
+// Pin the vtable to this file.
+void X86InstrInfo::anchor() {}
+
+X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
+ : X86GenInstrInfo(
+ (STI.is64Bit() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
+ (STI.is64Bit() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
+ Subtarget(STI), RI(STI) {
+
+ static const X86OpTblEntry OpTbl2Addr[] = {
+ { X86::ADC32ri, X86::ADC32mi, 0 },
+ { X86::ADC32ri8, X86::ADC32mi8, 0 },
+ { X86::ADC32rr, X86::ADC32mr, 0 },
+ { X86::ADC64ri32, X86::ADC64mi32, 0 },
+ { X86::ADC64ri8, X86::ADC64mi8, 0 },
+ { X86::ADC64rr, X86::ADC64mr, 0 },
+ { X86::ADD16ri, X86::ADD16mi, 0 },
+ { X86::ADD16ri8, X86::ADD16mi8, 0 },
+ { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
+ { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
+ { X86::ADD16rr, X86::ADD16mr, 0 },
+ { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
+ { X86::ADD32ri, X86::ADD32mi, 0 },
+ { X86::ADD32ri8, X86::ADD32mi8, 0 },
+ { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
+ { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
+ { X86::ADD32rr, X86::ADD32mr, 0 },
+ { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
+ { X86::ADD64ri32, X86::ADD64mi32, 0 },
+ { X86::ADD64ri8, X86::ADD64mi8, 0 },
+ { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
+ { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
+ { X86::ADD64rr, X86::ADD64mr, 0 },
+ { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
+ { X86::ADD8ri, X86::ADD8mi, 0 },
+ { X86::ADD8rr, X86::ADD8mr, 0 },
+ { X86::AND16ri, X86::AND16mi, 0 },
+ { X86::AND16ri8, X86::AND16mi8, 0 },
+ { X86::AND16rr, X86::AND16mr, 0 },
+ { X86::AND32ri, X86::AND32mi, 0 },
+ { X86::AND32ri8, X86::AND32mi8, 0 },
+ { X86::AND32rr, X86::AND32mr, 0 },
+ { X86::AND64ri32, X86::AND64mi32, 0 },
+ { X86::AND64ri8, X86::AND64mi8, 0 },
+ { X86::AND64rr, X86::AND64mr, 0 },
+ { X86::AND8ri, X86::AND8mi, 0 },
+ { X86::AND8rr, X86::AND8mr, 0 },
+ { X86::DEC16r, X86::DEC16m, 0 },
+ { X86::DEC32r, X86::DEC32m, 0 },
+ { X86::DEC64_16r, X86::DEC64_16m, 0 },
+ { X86::DEC64_32r, X86::DEC64_32m, 0 },
+ { X86::DEC64r, X86::DEC64m, 0 },
+ { X86::DEC8r, X86::DEC8m, 0 },
+ { X86::INC16r, X86::INC16m, 0 },
+ { X86::INC32r, X86::INC32m, 0 },
+ { X86::INC64_16r, X86::INC64_16m, 0 },
+ { X86::INC64_32r, X86::INC64_32m, 0 },
+ { X86::INC64r, X86::INC64m, 0 },
+ { X86::INC8r, X86::INC8m, 0 },
+ { X86::NEG16r, X86::NEG16m, 0 },
+ { X86::NEG32r, X86::NEG32m, 0 },
+ { X86::NEG64r, X86::NEG64m, 0 },
+ { X86::NEG8r, X86::NEG8m, 0 },
+ { X86::NOT16r, X86::NOT16m, 0 },
+ { X86::NOT32r, X86::NOT32m, 0 },
+ { X86::NOT64r, X86::NOT64m, 0 },
+ { X86::NOT8r, X86::NOT8m, 0 },
+ { X86::OR16ri, X86::OR16mi, 0 },
+ { X86::OR16ri8, X86::OR16mi8, 0 },
+ { X86::OR16rr, X86::OR16mr, 0 },
+ { X86::OR32ri, X86::OR32mi, 0 },
+ { X86::OR32ri8, X86::OR32mi8, 0 },
+ { X86::OR32rr, X86::OR32mr, 0 },
+ { X86::OR64ri32, X86::OR64mi32, 0 },
+ { X86::OR64ri8, X86::OR64mi8, 0 },
+ { X86::OR64rr, X86::OR64mr, 0 },
+ { X86::OR8ri, X86::OR8mi, 0 },
+ { X86::OR8rr, X86::OR8mr, 0 },
+ { X86::ROL16r1, X86::ROL16m1, 0 },
+ { X86::ROL16rCL, X86::ROL16mCL, 0 },
+ { X86::ROL16ri, X86::ROL16mi, 0 },
+ { X86::ROL32r1, X86::ROL32m1, 0 },
+ { X86::ROL32rCL, X86::ROL32mCL, 0 },
+ { X86::ROL32ri, X86::ROL32mi, 0 },
+ { X86::ROL64r1, X86::ROL64m1, 0 },
+ { X86::ROL64rCL, X86::ROL64mCL, 0 },
+ { X86::ROL64ri, X86::ROL64mi, 0 },
+ { X86::ROL8r1, X86::ROL8m1, 0 },
+ { X86::ROL8rCL, X86::ROL8mCL, 0 },
+ { X86::ROL8ri, X86::ROL8mi, 0 },
+ { X86::ROR16r1, X86::ROR16m1, 0 },
+ { X86::ROR16rCL, X86::ROR16mCL, 0 },
+ { X86::ROR16ri, X86::ROR16mi, 0 },
+ { X86::ROR32r1, X86::ROR32m1, 0 },
+ { X86::ROR32rCL, X86::ROR32mCL, 0 },
+ { X86::ROR32ri, X86::ROR32mi, 0 },
+ { X86::ROR64r1, X86::ROR64m1, 0 },
+ { X86::ROR64rCL, X86::ROR64mCL, 0 },
+ { X86::ROR64ri, X86::ROR64mi, 0 },
+ { X86::ROR8r1, X86::ROR8m1, 0 },
+ { X86::ROR8rCL, X86::ROR8mCL, 0 },
+ { X86::ROR8ri, X86::ROR8mi, 0 },
+ { X86::SAR16r1, X86::SAR16m1, 0 },
+ { X86::SAR16rCL, X86::SAR16mCL, 0 },
+ { X86::SAR16ri, X86::SAR16mi, 0 },
+ { X86::SAR32r1, X86::SAR32m1, 0 },
+ { X86::SAR32rCL, X86::SAR32mCL, 0 },
+ { X86::SAR32ri, X86::SAR32mi, 0 },
+ { X86::SAR64r1, X86::SAR64m1, 0 },
+ { X86::SAR64rCL, X86::SAR64mCL, 0 },
+ { X86::SAR64ri, X86::SAR64mi, 0 },
+ { X86::SAR8r1, X86::SAR8m1, 0 },
+ { X86::SAR8rCL, X86::SAR8mCL, 0 },
+ { X86::SAR8ri, X86::SAR8mi, 0 },
+ { X86::SBB32ri, X86::SBB32mi, 0 },
+ { X86::SBB32ri8, X86::SBB32mi8, 0 },
+ { X86::SBB32rr, X86::SBB32mr, 0 },
+ { X86::SBB64ri32, X86::SBB64mi32, 0 },
+ { X86::SBB64ri8, X86::SBB64mi8, 0 },
+ { X86::SBB64rr, X86::SBB64mr, 0 },
+ { X86::SHL16rCL, X86::SHL16mCL, 0 },
+ { X86::SHL16ri, X86::SHL16mi, 0 },
+ { X86::SHL32rCL, X86::SHL32mCL, 0 },
+ { X86::SHL32ri, X86::SHL32mi, 0 },
+ { X86::SHL64rCL, X86::SHL64mCL, 0 },
+ { X86::SHL64ri, X86::SHL64mi, 0 },
+ { X86::SHL8rCL, X86::SHL8mCL, 0 },
+ { X86::SHL8ri, X86::SHL8mi, 0 },
+ { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
+ { X86::SHLD16rri8, X86::SHLD16mri8, 0 },
+ { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
+ { X86::SHLD32rri8, X86::SHLD32mri8, 0 },
+ { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
+ { X86::SHLD64rri8, X86::SHLD64mri8, 0 },
+ { X86::SHR16r1, X86::SHR16m1, 0 },
+ { X86::SHR16rCL, X86::SHR16mCL, 0 },
+ { X86::SHR16ri, X86::SHR16mi, 0 },
+ { X86::SHR32r1, X86::SHR32m1, 0 },
+ { X86::SHR32rCL, X86::SHR32mCL, 0 },
+ { X86::SHR32ri, X86::SHR32mi, 0 },
+ { X86::SHR64r1, X86::SHR64m1, 0 },
+ { X86::SHR64rCL, X86::SHR64mCL, 0 },
+ { X86::SHR64ri, X86::SHR64mi, 0 },
+ { X86::SHR8r1, X86::SHR8m1, 0 },
+ { X86::SHR8rCL, X86::SHR8mCL, 0 },
+ { X86::SHR8ri, X86::SHR8mi, 0 },
+ { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
+ { X86::SHRD16rri8, X86::SHRD16mri8, 0 },
+ { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
+ { X86::SHRD32rri8, X86::SHRD32mri8, 0 },
+ { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
+ { X86::SHRD64rri8, X86::SHRD64mri8, 0 },
+ { X86::SUB16ri, X86::SUB16mi, 0 },
+ { X86::SUB16ri8, X86::SUB16mi8, 0 },
+ { X86::SUB16rr, X86::SUB16mr, 0 },
+ { X86::SUB32ri, X86::SUB32mi, 0 },
+ { X86::SUB32ri8, X86::SUB32mi8, 0 },
+ { X86::SUB32rr, X86::SUB32mr, 0 },
+ { X86::SUB64ri32, X86::SUB64mi32, 0 },
+ { X86::SUB64ri8, X86::SUB64mi8, 0 },
+ { X86::SUB64rr, X86::SUB64mr, 0 },
+ { X86::SUB8ri, X86::SUB8mi, 0 },
+ { X86::SUB8rr, X86::SUB8mr, 0 },
+ { X86::XOR16ri, X86::XOR16mi, 0 },
+ { X86::XOR16ri8, X86::XOR16mi8, 0 },
+ { X86::XOR16rr, X86::XOR16mr, 0 },
+ { X86::XOR32ri, X86::XOR32mi, 0 },
+ { X86::XOR32ri8, X86::XOR32mi8, 0 },
+ { X86::XOR32rr, X86::XOR32mr, 0 },
+ { X86::XOR64ri32, X86::XOR64mi32, 0 },
+ { X86::XOR64ri8, X86::XOR64mi8, 0 },
+ { X86::XOR64rr, X86::XOR64mr, 0 },
+ { X86::XOR8ri, X86::XOR8mi, 0 },
+ { X86::XOR8rr, X86::XOR8mr, 0 }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
+ unsigned RegOp = OpTbl2Addr[i].RegOp;
+ unsigned MemOp = OpTbl2Addr[i].MemOp;
+ unsigned Flags = OpTbl2Addr[i].Flags;
+ AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
+ RegOp, MemOp,
+ // Index 0, folded load and store, no alignment requirement.
+ Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
+ }
+
+ static const X86OpTblEntry OpTbl0[] = {
+ { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
+ { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
+ { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
+ { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
+ { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
+ { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
+ { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
+ { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
+ { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
+ { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
+ { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
+ { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
+ { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
+ { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
+ { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
+ { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
+ { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
+ { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
+ { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
+ { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
+ { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE },
+ { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
+ { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
+ { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
+ { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
+ { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
+ { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
+ { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
+ { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
+ { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
+ { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
+ { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
+ { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
+ { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
+ { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
+ { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
+ { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
+ { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
+ { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
+ { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
+ { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
+ { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
+ { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
+ { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
+ { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
+ { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
+ { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
+ { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
+ { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
+ { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
+ { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
+ { X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
+ { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
+ { X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
+ { X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
+ { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
+ { X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
+ { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
+ { X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
+ { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
+ { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
+ { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
+ { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
+ { X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
+ { X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
+ { X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
+ { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
+ { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
+ { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
+ { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
+ { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
+ { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
+ // AVX 128-bit versions of foldable instructions
+ { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE },
+ { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
+ { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
+ { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
+ { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
+ { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
+ { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
+ // AVX 256-bit foldable instructions
+ { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
+ { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE },
+ // AVX-512 foldable instructions
+ { X86::VMOVPDI2DIZrr,X86::VMOVPDI2DIZmr, TB_FOLDED_STORE }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
+ unsigned RegOp = OpTbl0[i].RegOp;
+ unsigned MemOp = OpTbl0[i].MemOp;
+ unsigned Flags = OpTbl0[i].Flags;
+ AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
+ RegOp, MemOp, TB_INDEX_0 | Flags);
+ }
+
+ static const X86OpTblEntry OpTbl1[] = {
+ { X86::CMP16rr, X86::CMP16rm, 0 },
+ { X86::CMP32rr, X86::CMP32rm, 0 },
+ { X86::CMP64rr, X86::CMP64rm, 0 },
+ { X86::CMP8rr, X86::CMP8rm, 0 },
+ { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
+ { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
+ { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
+ { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
+ { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
+ { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
+ { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
+ { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
+ { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
+ { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
+ { X86::IMUL16rri, X86::IMUL16rmi, 0 },
+ { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
+ { X86::IMUL32rri, X86::IMUL32rmi, 0 },
+ { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
+ { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
+ { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
+ { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
+ { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
+ { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
+ { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
+ { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 },
+ { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 },
+ { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
+ { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
+ { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
+ { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
+ { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
+ { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
+ { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
+ { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
+ { X86::MOV16rr, X86::MOV16rm, 0 },
+ { X86::MOV32rr, X86::MOV32rm, 0 },
+ { X86::MOV64rr, X86::MOV64rm, 0 },
+ { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
+ { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
+ { X86::MOV8rr, X86::MOV8rm, 0 },
+ { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
+ { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
+ { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
+ { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
+ { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
+ { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
+ { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
+ { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
+ { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
+ { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
+ { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
+ { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
+ { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
+ { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
+ { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
+ { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
+ { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
+ { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
+ { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
+ { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
+ { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
+ { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
+ { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
+ { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
+ { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
+ { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
+ { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
+ { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
+ { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
+ { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 },
+ { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
+ { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 },
+ { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
+ { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
+ { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
+ { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
+ { X86::SQRTSDr, X86::SQRTSDm, 0 },
+ { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
+ { X86::SQRTSSr, X86::SQRTSSm, 0 },
+ { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
+ { X86::TEST16rr, X86::TEST16rm, 0 },
+ { X86::TEST32rr, X86::TEST32rm, 0 },
+ { X86::TEST64rr, X86::TEST64rm, 0 },
+ { X86::TEST8rr, X86::TEST8rm, 0 },
+ // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
+ { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
+ { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
+ // AVX 128-bit versions of foldable instructions
+ { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
+ { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
+ { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
+ { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
+ { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
+ { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
+ { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
+ { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 },
+ { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
+ { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
+ { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
+ { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 },
+ { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
+ { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
+ { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 },
+ { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 },
+ { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
+ { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
+ { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
+ { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
+ { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
+ { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
+ { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
+ { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
+ { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 },
+ { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 },
+ { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 },
+ { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
+ { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
+ { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
+ { X86::VPABSBrr128, X86::VPABSBrm128, 0 },
+ { X86::VPABSDrr128, X86::VPABSDrm128, 0 },
+ { X86::VPABSWrr128, X86::VPABSWrm128, 0 },
+ { X86::VPERMILPDri, X86::VPERMILPDmi, 0 },
+ { X86::VPERMILPSri, X86::VPERMILPSmi, 0 },
+ { X86::VPSHUFDri, X86::VPSHUFDmi, 0 },
+ { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 },
+ { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 },
+ { X86::VRCPPSr, X86::VRCPPSm, 0 },
+ { X86::VRCPPSr_Int, X86::VRCPPSm_Int, 0 },
+ { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 },
+ { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, 0 },
+ { X86::VSQRTPDr, X86::VSQRTPDm, 0 },
+ { X86::VSQRTPSr, X86::VSQRTPSm, 0 },
+ { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
+ { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
+ { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
+
+ // AVX 256-bit foldable instructions
+ { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
+ { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
+ { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
+ { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
+ { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
+ { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 },
+ { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 },
+
+ // AVX2 foldable instructions
+ { X86::VPABSBrr256, X86::VPABSBrm256, 0 },
+ { X86::VPABSDrr256, X86::VPABSDrm256, 0 },
+ { X86::VPABSWrr256, X86::VPABSWrm256, 0 },
+ { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 },
+ { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 },
+ { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 },
+ { X86::VRCPPSYr, X86::VRCPPSYm, 0 },
+ { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 },
+ { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
+ { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
+ { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
+ { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
+ { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
+
+ // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
+ { X86::BEXTR32rr, X86::BEXTR32rm, 0 },
+ { X86::BEXTR64rr, X86::BEXTR64rm, 0 },
+ { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 },
+ { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 },
+ { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 },
+ { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 },
+ { X86::BLCI32rr, X86::BLCI32rm, 0 },
+ { X86::BLCI64rr, X86::BLCI64rm, 0 },
+ { X86::BLCIC32rr, X86::BLCIC32rm, 0 },
+ { X86::BLCIC64rr, X86::BLCIC64rm, 0 },
+ { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 },
+ { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 },
+ { X86::BLCS32rr, X86::BLCS32rm, 0 },
+ { X86::BLCS64rr, X86::BLCS64rm, 0 },
+ { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 },
+ { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 },
+ { X86::BLSI32rr, X86::BLSI32rm, 0 },
+ { X86::BLSI64rr, X86::BLSI64rm, 0 },
+ { X86::BLSIC32rr, X86::BLSIC32rm, 0 },
+ { X86::BLSIC64rr, X86::BLSIC64rm, 0 },
+ { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 },
+ { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 },
+ { X86::BLSR32rr, X86::BLSR32rm, 0 },
+ { X86::BLSR64rr, X86::BLSR64rm, 0 },
+ { X86::BZHI32rr, X86::BZHI32rm, 0 },
+ { X86::BZHI64rr, X86::BZHI64rm, 0 },
+ { X86::LZCNT16rr, X86::LZCNT16rm, 0 },
+ { X86::LZCNT32rr, X86::LZCNT32rm, 0 },
+ { X86::LZCNT64rr, X86::LZCNT64rm, 0 },
+ { X86::POPCNT16rr, X86::POPCNT16rm, 0 },
+ { X86::POPCNT32rr, X86::POPCNT32rm, 0 },
+ { X86::POPCNT64rr, X86::POPCNT64rm, 0 },
+ { X86::RORX32ri, X86::RORX32mi, 0 },
+ { X86::RORX64ri, X86::RORX64mi, 0 },
+ { X86::SARX32rr, X86::SARX32rm, 0 },
+ { X86::SARX64rr, X86::SARX64rm, 0 },
+ { X86::SHRX32rr, X86::SHRX32rm, 0 },
+ { X86::SHRX64rr, X86::SHRX64rm, 0 },
+ { X86::SHLX32rr, X86::SHLX32rm, 0 },
+ { X86::SHLX64rr, X86::SHLX64rm, 0 },
+ { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 },
+ { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 },
+ { X86::TZCNT16rr, X86::TZCNT16rm, 0 },
+ { X86::TZCNT32rr, X86::TZCNT32rm, 0 },
+ { X86::TZCNT64rr, X86::TZCNT64rm, 0 },
+ { X86::TZMSK32rr, X86::TZMSK32rm, 0 },
+ { X86::TZMSK64rr, X86::TZMSK64rm, 0 },
+
+ // AVX-512 foldable instructions
+ { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 },
+ { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 },
+ { X86::VMOVDQA32rr, X86::VMOVDQA32rm, TB_ALIGN_64 },
+ { X86::VMOVDQA64rr, X86::VMOVDQA64rm, TB_ALIGN_64 },
+ { X86::VMOVDQU32rr, X86::VMOVDQU32rm, 0 },
+ { X86::VMOVDQU64rr, X86::VMOVDQU64rm, 0 },
+ { X86::VPABSDZrr, X86::VPABSDZrm, 0 },
+ { X86::VPABSQZrr, X86::VPABSQZrm, 0 },
+
+ // AES foldable instructions
+ { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 },
+ { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 },
+ { X86::VAESIMCrr, X86::VAESIMCrm, TB_ALIGN_16 },
+ { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 },
+ };
+
+ for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
+ unsigned RegOp = OpTbl1[i].RegOp;
+ unsigned MemOp = OpTbl1[i].MemOp;
+ unsigned Flags = OpTbl1[i].Flags;
+ AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
+ RegOp, MemOp,
+ // Index 1, folded load
+ Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
+ }
+
+ static const X86OpTblEntry OpTbl2[] = {
+ { X86::ADC32rr, X86::ADC32rm, 0 },
+ { X86::ADC64rr, X86::ADC64rm, 0 },
+ { X86::ADD16rr, X86::ADD16rm, 0 },
+ { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
+ { X86::ADD32rr, X86::ADD32rm, 0 },
+ { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
+ { X86::ADD64rr, X86::ADD64rm, 0 },
+ { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
+ { X86::ADD8rr, X86::ADD8rm, 0 },
+ { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
+ { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
+ { X86::ADDSDrr, X86::ADDSDrm, 0 },
+ { X86::ADDSSrr, X86::ADDSSrm, 0 },
+ { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
+ { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
+ { X86::AND16rr, X86::AND16rm, 0 },
+ { X86::AND32rr, X86::AND32rm, 0 },
+ { X86::AND64rr, X86::AND64rm, 0 },
+ { X86::AND8rr, X86::AND8rm, 0 },
+ { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
+ { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
+ { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
+ { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
+ { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
+ { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
+ { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
+ { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
+ { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
+ { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
+ { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
+ { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
+ { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
+ { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
+ { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
+ { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
+ { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
+ { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
+ { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
+ { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
+ { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
+ { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
+ { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
+ { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
+ { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
+ { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
+ { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
+ { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
+ { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
+ { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
+ { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
+ { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
+ { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
+ { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
+ { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
+ { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
+ { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
+ { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
+ { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
+ { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
+ { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
+ { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
+ { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
+ { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
+ { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
+ { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
+ { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
+ { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
+ { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
+ { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
+ { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
+ { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
+ { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
+ { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
+ { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
+ { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
+ { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
+ { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
+ { X86::CMPSDrr, X86::CMPSDrm, 0 },
+ { X86::CMPSSrr, X86::CMPSSrm, 0 },
+ { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
+ { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
+ { X86::DIVSDrr, X86::DIVSDrm, 0 },
+ { X86::DIVSSrr, X86::DIVSSrm, 0 },
+ { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
+ { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
+ { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
+ { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
+ { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
+ { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
+ { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
+ { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
+ { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
+ { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
+ { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
+ { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
+ { X86::IMUL16rr, X86::IMUL16rm, 0 },
+ { X86::IMUL32rr, X86::IMUL32rm, 0 },
+ { X86::IMUL64rr, X86::IMUL64rm, 0 },
+ { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
+ { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
+ { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
+ { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
+ { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
+ { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
+ { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
+ { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
+ { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
+ { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
+ { X86::MAXSDrr, X86::MAXSDrm, 0 },
+ { X86::MAXSSrr, X86::MAXSSrm, 0 },
+ { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
+ { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
+ { X86::MINSDrr, X86::MINSDrm, 0 },
+ { X86::MINSSrr, X86::MINSSrm, 0 },
+ { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
+ { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
+ { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
+ { X86::MULSDrr, X86::MULSDrm, 0 },
+ { X86::MULSSrr, X86::MULSSrm, 0 },
+ { X86::OR16rr, X86::OR16rm, 0 },
+ { X86::OR32rr, X86::OR32rm, 0 },
+ { X86::OR64rr, X86::OR64rm, 0 },
+ { X86::OR8rr, X86::OR8rm, 0 },
+ { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
+ { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
+ { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
+ { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
+ { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
+ { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
+ { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
+ { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
+ { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
+ { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
+ { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
+ { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
+ { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
+ { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
+ { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
+ { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
+ { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
+ { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
+ { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
+ { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
+ { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
+ { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
+ { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
+ { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
+ { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
+ { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
+ { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
+ { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
+ { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
+ { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
+ { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
+ { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
+ { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
+ { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
+ { X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 },
+ { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
+ { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
+ { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
+ { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
+ { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
+ { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
+ { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 },
+ { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 },
+ { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 },
+ { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 },
+ { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 },
+ { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 },
+ { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 },
+ { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 },
+ { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
+ { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
+ { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
+ { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
+ { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
+ { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
+ { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
+ { X86::PORrr, X86::PORrm, TB_ALIGN_16 },
+ { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
+ { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
+ { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 },
+ { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 },
+ { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 },
+ { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
+ { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
+ { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
+ { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
+ { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
+ { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
+ { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
+ { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
+ { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
+ { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
+ { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
+ { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
+ { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
+ { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
+ { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
+ { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
+ { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
+ { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
+ { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
+ { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
+ { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
+ { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
+ { X86::SBB32rr, X86::SBB32rm, 0 },
+ { X86::SBB64rr, X86::SBB64rm, 0 },
+ { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
+ { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
+ { X86::SUB16rr, X86::SUB16rm, 0 },
+ { X86::SUB32rr, X86::SUB32rm, 0 },
+ { X86::SUB64rr, X86::SUB64rm, 0 },
+ { X86::SUB8rr, X86::SUB8rm, 0 },
+ { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
+ { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
+ { X86::SUBSDrr, X86::SUBSDrm, 0 },
+ { X86::SUBSSrr, X86::SUBSSrm, 0 },
+ // FIXME: TEST*rr -> swapped operand of TEST*mr.
+ { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
+ { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
+ { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
+ { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
+ { X86::XOR16rr, X86::XOR16rm, 0 },
+ { X86::XOR32rr, X86::XOR32rm, 0 },
+ { X86::XOR64rr, X86::XOR64rm, 0 },
+ { X86::XOR8rr, X86::XOR8rm, 0 },
+ { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
+ { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
+ // AVX 128-bit versions of foldable instructions
+ { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
+ { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
+ { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
+ { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
+ { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
+ { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
+ { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
+ { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
+ { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
+ { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
+ { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
+ { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
+ { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 },
+ { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
+ { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
+ { X86::VSQRTSDr, X86::VSQRTSDm, 0 },
+ { X86::VSQRTSSr, X86::VSQRTSSm, 0 },
+ { X86::VADDPDrr, X86::VADDPDrm, 0 },
+ { X86::VADDPSrr, X86::VADDPSrm, 0 },
+ { X86::VADDSDrr, X86::VADDSDrm, 0 },
+ { X86::VADDSSrr, X86::VADDSSrm, 0 },
+ { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 },
+ { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 },
+ { X86::VANDNPDrr, X86::VANDNPDrm, 0 },
+ { X86::VANDNPSrr, X86::VANDNPSrm, 0 },
+ { X86::VANDPDrr, X86::VANDPDrm, 0 },
+ { X86::VANDPSrr, X86::VANDPSrm, 0 },
+ { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 },
+ { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 },
+ { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 },
+ { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 },
+ { X86::VCMPPDrri, X86::VCMPPDrmi, 0 },
+ { X86::VCMPPSrri, X86::VCMPPSrmi, 0 },
+ { X86::VCMPSDrr, X86::VCMPSDrm, 0 },
+ { X86::VCMPSSrr, X86::VCMPSSrm, 0 },
+ { X86::VDIVPDrr, X86::VDIVPDrm, 0 },
+ { X86::VDIVPSrr, X86::VDIVPSrm, 0 },
+ { X86::VDIVSDrr, X86::VDIVSDrm, 0 },
+ { X86::VDIVSSrr, X86::VDIVSSrm, 0 },
+ { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 },
+ { X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 },
+ { X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 },
+ { X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 },
+ { X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 },
+ { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 },
+ { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 },
+ { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 },
+ { X86::VHADDPDrr, X86::VHADDPDrm, 0 },
+ { X86::VHADDPSrr, X86::VHADDPSrm, 0 },
+ { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 },
+ { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 },
+ { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
+ { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
+ { X86::VMAXPDrr, X86::VMAXPDrm, 0 },
+ { X86::VMAXPSrr, X86::VMAXPSrm, 0 },
+ { X86::VMAXSDrr, X86::VMAXSDrm, 0 },
+ { X86::VMAXSSrr, X86::VMAXSSrm, 0 },
+ { X86::VMINPDrr, X86::VMINPDrm, 0 },
+ { X86::VMINPSrr, X86::VMINPSrm, 0 },
+ { X86::VMINSDrr, X86::VMINSDrm, 0 },
+ { X86::VMINSSrr, X86::VMINSSrm, 0 },
+ { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 },
+ { X86::VMULPDrr, X86::VMULPDrm, 0 },
+ { X86::VMULPSrr, X86::VMULPSrm, 0 },
+ { X86::VMULSDrr, X86::VMULSDrm, 0 },
+ { X86::VMULSSrr, X86::VMULSSrm, 0 },
+ { X86::VORPDrr, X86::VORPDrm, 0 },
+ { X86::VORPSrr, X86::VORPSrm, 0 },
+ { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 },
+ { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 },
+ { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 },
+ { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 },
+ { X86::VPADDBrr, X86::VPADDBrm, 0 },
+ { X86::VPADDDrr, X86::VPADDDrm, 0 },
+ { X86::VPADDQrr, X86::VPADDQrm, 0 },
+ { X86::VPADDSBrr, X86::VPADDSBrm, 0 },
+ { X86::VPADDSWrr, X86::VPADDSWrm, 0 },
+ { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 },
+ { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 },
+ { X86::VPADDWrr, X86::VPADDWrm, 0 },
+ { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 },
+ { X86::VPANDNrr, X86::VPANDNrm, 0 },
+ { X86::VPANDrr, X86::VPANDrm, 0 },
+ { X86::VPAVGBrr, X86::VPAVGBrm, 0 },
+ { X86::VPAVGWrr, X86::VPAVGWrm, 0 },
+ { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 },
+ { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 },
+ { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 },
+ { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 },
+ { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 },
+ { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 },
+ { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 },
+ { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 },
+ { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 },
+ { X86::VPHADDDrr, X86::VPHADDDrm, 0 },
+ { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 },
+ { X86::VPHADDWrr, X86::VPHADDWrm, 0 },
+ { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 },
+ { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 },
+ { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 },
+ { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 },
+ { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 },
+ { X86::VPINSRWrri, X86::VPINSRWrmi, 0 },
+ { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 },
+ { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 },
+ { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 },
+ { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 },
+ { X86::VPMINSWrr, X86::VPMINSWrm, 0 },
+ { X86::VPMINUBrr, X86::VPMINUBrm, 0 },
+ { X86::VPMINSBrr, X86::VPMINSBrm, 0 },
+ { X86::VPMINSDrr, X86::VPMINSDrm, 0 },
+ { X86::VPMINUDrr, X86::VPMINUDrm, 0 },
+ { X86::VPMINUWrr, X86::VPMINUWrm, 0 },
+ { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 },
+ { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 },
+ { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 },
+ { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 },
+ { X86::VPMULDQrr, X86::VPMULDQrm, 0 },
+ { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 },
+ { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 },
+ { X86::VPMULHWrr, X86::VPMULHWrm, 0 },
+ { X86::VPMULLDrr, X86::VPMULLDrm, 0 },
+ { X86::VPMULLWrr, X86::VPMULLWrm, 0 },
+ { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 },
+ { X86::VPORrr, X86::VPORrm, 0 },
+ { X86::VPSADBWrr, X86::VPSADBWrm, 0 },
+ { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 },
+ { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 },
+ { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 },
+ { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 },
+ { X86::VPSLLDrr, X86::VPSLLDrm, 0 },
+ { X86::VPSLLQrr, X86::VPSLLQrm, 0 },
+ { X86::VPSLLWrr, X86::VPSLLWrm, 0 },
+ { X86::VPSRADrr, X86::VPSRADrm, 0 },
+ { X86::VPSRAWrr, X86::VPSRAWrm, 0 },
+ { X86::VPSRLDrr, X86::VPSRLDrm, 0 },
+ { X86::VPSRLQrr, X86::VPSRLQrm, 0 },
+ { X86::VPSRLWrr, X86::VPSRLWrm, 0 },
+ { X86::VPSUBBrr, X86::VPSUBBrm, 0 },
+ { X86::VPSUBDrr, X86::VPSUBDrm, 0 },
+ { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 },
+ { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 },
+ { X86::VPSUBWrr, X86::VPSUBWrm, 0 },
+ { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 },
+ { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 },
+ { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 },
+ { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 },
+ { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 },
+ { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 },
+ { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 },
+ { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 },
+ { X86::VPXORrr, X86::VPXORrm, 0 },
+ { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 },
+ { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 },
+ { X86::VSUBPDrr, X86::VSUBPDrm, 0 },
+ { X86::VSUBPSrr, X86::VSUBPSrm, 0 },
+ { X86::VSUBSDrr, X86::VSUBSDrm, 0 },
+ { X86::VSUBSSrr, X86::VSUBSSrm, 0 },
+ { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 },
+ { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 },
+ { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 },
+ { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 },
+ { X86::VXORPDrr, X86::VXORPDrm, 0 },
+ { X86::VXORPSrr, X86::VXORPSrm, 0 },
+ // AVX 256-bit foldable instructions
+ { X86::VADDPDYrr, X86::VADDPDYrm, 0 },
+ { X86::VADDPSYrr, X86::VADDPSYrm, 0 },
+ { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 },
+ { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 },
+ { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 },
+ { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 },
+ { X86::VANDPDYrr, X86::VANDPDYrm, 0 },
+ { X86::VANDPSYrr, X86::VANDPSYrm, 0 },
+ { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 },
+ { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 },
+ { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 },
+ { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 },
+ { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 },
+ { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 },
+ { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 },
+ { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 },
+ { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 },
+ { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 },
+ { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 },
+ { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 },
+ { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 },
+ { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 },
+ { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 },
+ { X86::VMINPDYrr, X86::VMINPDYrm, 0 },
+ { X86::VMINPSYrr, X86::VMINPSYrm, 0 },
+ { X86::VMULPDYrr, X86::VMULPDYrm, 0 },
+ { X86::VMULPSYrr, X86::VMULPSYrm, 0 },
+ { X86::VORPDYrr, X86::VORPDYrm, 0 },
+ { X86::VORPSYrr, X86::VORPSYrm, 0 },
+ { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 },
+ { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 },
+ { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 },
+ { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 },
+ { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 },
+ { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 },
+ { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 },
+ { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 },
+ { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 },
+ { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 },
+ { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 },
+ { X86::VXORPDYrr, X86::VXORPDYrm, 0 },
+ { X86::VXORPSYrr, X86::VXORPSYrm, 0 },
+ // AVX2 foldable instructions
+ { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 },
+ { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 },
+ { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 },
+ { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 },
+ { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 },
+ { X86::VPADDBYrr, X86::VPADDBYrm, 0 },
+ { X86::VPADDDYrr, X86::VPADDDYrm, 0 },
+ { X86::VPADDQYrr, X86::VPADDQYrm, 0 },
+ { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 },
+ { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 },
+ { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 },
+ { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 },
+ { X86::VPADDWYrr, X86::VPADDWYrm, 0 },
+ { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 },
+ { X86::VPANDNYrr, X86::VPANDNYrm, 0 },
+ { X86::VPANDYrr, X86::VPANDYrm, 0 },
+ { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 },
+ { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 },
+ { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 },
+ { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 },
+ { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 },
+ { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 },
+ { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 },
+ { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 },
+ { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 },
+ { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 },
+ { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 },
+ { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 },
+ { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 },
+ { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 },
+ { X86::VPERMDYrr, X86::VPERMDYrm, 0 },
+ { X86::VPERMPDYri, X86::VPERMPDYmi, 0 },
+ { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 },
+ { X86::VPERMQYri, X86::VPERMQYmi, 0 },
+ { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 },
+ { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 },
+ { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 },
+ { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 },
+ { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 },
+ { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 },
+ { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 },
+ { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 },
+ { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 },
+ { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 },
+ { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 },
+ { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 },
+ { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 },
+ { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 },
+ { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 },
+ { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 },
+ { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 },
+ { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 },
+ { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 },
+ { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 },
+ { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 },
+ { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 },
+ { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 },
+ { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 },
+ { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 },
+ { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 },
+ { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 },
+ { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 },
+ { X86::VPORYrr, X86::VPORYrm, 0 },
+ { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 },
+ { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 },
+ { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 },
+ { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 },
+ { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 },
+ { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 },
+ { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 },
+ { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 },
+ { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 },
+ { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 },
+ { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 },
+ { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 },
+ { X86::VPSRADYrr, X86::VPSRADYrm, 0 },
+ { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 },
+ { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 },
+ { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 },
+ { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 },
+ { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 },
+ { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 },
+ { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 },
+ { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 },
+ { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 },
+ { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 },
+ { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 },
+ { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 },
+ { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 },
+ { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 },
+ { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 },
+ { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 },
+ { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 },
+ { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 },
+ { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 },
+ { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 },
+ { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 },
+ { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 },
+ { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 },
+ { X86::VPXORYrr, X86::VPXORYrm, 0 },
+ // FIXME: add AVX 256-bit foldable instructions
+
+ // FMA4 foldable patterns
+ { X86::VFMADDSS4rr, X86::VFMADDSS4mr, 0 },
+ { X86::VFMADDSD4rr, X86::VFMADDSD4mr, 0 },
+ { X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_16 },
+ { X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_16 },
+ { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, TB_ALIGN_32 },
+ { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, TB_ALIGN_32 },
+ { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, 0 },
+ { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, 0 },
+ { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_16 },
+ { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_16 },
+ { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, TB_ALIGN_32 },
+ { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, TB_ALIGN_32 },
+ { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, 0 },
+ { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, 0 },
+ { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_16 },
+ { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_16 },
+ { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, TB_ALIGN_32 },
+ { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, TB_ALIGN_32 },
+ { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, 0 },
+ { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, 0 },
+ { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_16 },
+ { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_16 },
+ { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, TB_ALIGN_32 },
+ { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, TB_ALIGN_32 },
+ { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_16 },
+ { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_16 },
+ { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, TB_ALIGN_32 },
+ { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, TB_ALIGN_32 },
+ { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_16 },
+ { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_16 },
+ { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, TB_ALIGN_32 },
+ { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, TB_ALIGN_32 },
+
+ // BMI/BMI2 foldable instructions
+ { X86::ANDN32rr, X86::ANDN32rm, 0 },
+ { X86::ANDN64rr, X86::ANDN64rm, 0 },
+ { X86::MULX32rr, X86::MULX32rm, 0 },
+ { X86::MULX64rr, X86::MULX64rm, 0 },
+ { X86::PDEP32rr, X86::PDEP32rm, 0 },
+ { X86::PDEP64rr, X86::PDEP64rm, 0 },
+ { X86::PEXT32rr, X86::PEXT32rm, 0 },
+ { X86::PEXT64rr, X86::PEXT64rm, 0 },
+
+ // AVX-512 foldable instructions
+ { X86::VADDPSZrr, X86::VADDPSZrm, 0 },
+ { X86::VADDPDZrr, X86::VADDPDZrm, 0 },
+ { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 },
+ { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 },
+ { X86::VMULPSZrr, X86::VMULPSZrm, 0 },
+ { X86::VMULPDZrr, X86::VMULPDZrm, 0 },
+ { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 },
+ { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 },
+ { X86::VMINPSZrr, X86::VMINPSZrm, 0 },
+ { X86::VMINPDZrr, X86::VMINPDZrm, 0 },
+ { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 },
+ { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 },
+ { X86::VPADDDZrr, X86::VPADDDZrm, 0 },
+ { X86::VPADDQZrr, X86::VPADDQZrm, 0 },
+ { X86::VPERMPDZri, X86::VPERMPDZmi, 0 },
+ { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 },
+ { X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 },
+ { X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 },
+ { X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 },
+ { X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 },
+ { X86::VPMINSDZrr, X86::VPMINSDZrm, 0 },
+ { X86::VPMINSQZrr, X86::VPMINSQZrm, 0 },
+ { X86::VPMINUDZrr, X86::VPMINUDZrm, 0 },
+ { X86::VPMINUQZrr, X86::VPMINUQZrm, 0 },
+ { X86::VPMULDQZrr, X86::VPMULDQZrm, 0 },
+ { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 },
+ { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 },
+ { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 },
+ { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 },
+ { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 },
+ { X86::VPSUBDZrr, X86::VPSUBDZrm, 0 },
+ { X86::VPSUBQZrr, X86::VPSUBQZrm, 0 },
+ { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 },
+ { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 },
+ { X86::VALIGNQrri, X86::VALIGNQrmi, 0 },
+ { X86::VALIGNDrri, X86::VALIGNDrmi, 0 },
+ { X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 },
+
+ // AES foldable instructions
+ { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 },
+ { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 },
+ { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 },
+ { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 },
+ { X86::VAESDECLASTrr, X86::VAESDECLASTrm, TB_ALIGN_16 },
+ { X86::VAESDECrr, X86::VAESDECrm, TB_ALIGN_16 },
+ { X86::VAESENCLASTrr, X86::VAESENCLASTrm, TB_ALIGN_16 },
+ { X86::VAESENCrr, X86::VAESENCrm, TB_ALIGN_16 },
+
+ // SHA foldable instructions
+ { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 },
+ { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 },
+ { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 },
+ { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 },
+ { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 },
+ { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 },
+ { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 },
+ };
+
+ for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
+ unsigned RegOp = OpTbl2[i].RegOp;
+ unsigned MemOp = OpTbl2[i].MemOp;
+ unsigned Flags = OpTbl2[i].Flags;
+ AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
+ RegOp, MemOp,
+ // Index 2, folded load
+ Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
+ }
+
+ static const X86OpTblEntry OpTbl3[] = {
+ // FMA foldable instructions
+ { X86::VFMADDSSr231r, X86::VFMADDSSr231m, TB_ALIGN_NONE },
+ { X86::VFMADDSDr231r, X86::VFMADDSDr231m, TB_ALIGN_NONE },
+ { X86::VFMADDSSr132r, X86::VFMADDSSr132m, TB_ALIGN_NONE },
+ { X86::VFMADDSDr132r, X86::VFMADDSDr132m, TB_ALIGN_NONE },
+ { X86::VFMADDSSr213r, X86::VFMADDSSr213m, TB_ALIGN_NONE },
+ { X86::VFMADDSDr213r, X86::VFMADDSDr213m, TB_ALIGN_NONE },
+
+ { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_NONE },
+ { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_NONE },
+ { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_NONE },
+ { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_NONE },
+ { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_NONE },
+ { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_NONE },
+ { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_NONE },
+ { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_NONE },
+ { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_NONE },
+ { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_NONE },
+ { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_NONE },
+ { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_NONE },
+
+ { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, TB_ALIGN_NONE },
+ { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, TB_ALIGN_NONE },
+ { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, TB_ALIGN_NONE },
+ { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, TB_ALIGN_NONE },
+ { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, TB_ALIGN_NONE },
+ { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, TB_ALIGN_NONE },
+
+ { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_NONE },
+ { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_NONE },
+ { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_NONE },
+ { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_NONE },
+ { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_NONE },
+ { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_NONE },
+
+ { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, TB_ALIGN_NONE },
+ { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, TB_ALIGN_NONE },
+
+ { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_NONE },
+ { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_NONE },
+ { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_NONE },
+ { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_NONE },
+
+ { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, TB_ALIGN_NONE },
+ { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, TB_ALIGN_NONE },
+ { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, TB_ALIGN_NONE },
+ { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, TB_ALIGN_NONE },
+ { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, TB_ALIGN_NONE },
+ { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, TB_ALIGN_NONE },
+
+ { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_NONE },
+ { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_NONE },
+ { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_NONE },
+
+ { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_NONE },
+
+ { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_NONE },
+
+ // FMA4 foldable patterns
+ { X86::VFMADDSS4rr, X86::VFMADDSS4rm, 0 },
+ { X86::VFMADDSD4rr, X86::VFMADDSD4rm, 0 },
+ { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 },
+ { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 },
+ { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 },
+ { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 },
+ { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, 0 },
+ { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, 0 },
+ { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 },
+ { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 },
+ { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 },
+ { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 },
+ { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, 0 },
+ { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, 0 },
+ { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 },
+ { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 },
+ { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 },
+ { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 },
+ { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, 0 },
+ { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, 0 },
+ { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 },
+ { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 },
+ { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 },
+ { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 },
+ { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 },
+ { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 },
+ { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 },
+ { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 },
+ { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 },
+ { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 },
+ { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 },
+ { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 },
+ // AVX-512 VPERMI instructions with 3 source operands.
+ { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 },
+ { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 },
+ { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 },
+ { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 },
+ { X86::VBLENDMPDZrr, X86::VBLENDMPDZrm, 0 },
+ { X86::VBLENDMPSZrr, X86::VBLENDMPSZrm, 0 },
+ { X86::VPBLENDMDZrr, X86::VPBLENDMDZrm, 0 },
+ { X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
+ unsigned RegOp = OpTbl3[i].RegOp;
+ unsigned MemOp = OpTbl3[i].MemOp;
+ unsigned Flags = OpTbl3[i].Flags;
+ AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
+ RegOp, MemOp,
+ // Index 3, folded load
+ Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
+ }
+
+}
+
+void
+X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
+ MemOp2RegOpTableType &M2RTable,
+ unsigned RegOp, unsigned MemOp, unsigned Flags) {
+ if ((Flags & TB_NO_FORWARD) == 0) {
+ assert(!R2MTable.count(RegOp) && "Duplicate entry!");
+ R2MTable[RegOp] = std::make_pair(MemOp, Flags);
+ }
+ if ((Flags & TB_NO_REVERSE) == 0) {
+ assert(!M2RTable.count(MemOp) &&
+ "Duplicated entries in unfolding maps?");
+ M2RTable[MemOp] = std::make_pair(RegOp, Flags);
+ }
+}
+
+bool
+X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const {
+ switch (MI.getOpcode()) {
+ default: break;
+ case X86::MOVSX16rr8:
+ case X86::MOVZX16rr8:
+ case X86::MOVSX32rr8:
+ case X86::MOVZX32rr8:
+ case X86::MOVSX64rr8:
+ if (!Subtarget.is64Bit())
+ // It's not always legal to reference the low 8-bit of the larger
+ // register in 32-bit mode.
+ return false;
+ case X86::MOVSX32rr16:
+ case X86::MOVZX32rr16:
+ case X86::MOVSX64rr16:
+ case X86::MOVSX64rr32: {
+ if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
+ // Be conservative.
+ return false;
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ switch (MI.getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::MOVSX16rr8:
+ case X86::MOVZX16rr8:
+ case X86::MOVSX32rr8:
+ case X86::MOVZX32rr8:
+ case X86::MOVSX64rr8:
+ SubIdx = X86::sub_8bit;
+ break;
+ case X86::MOVSX32rr16:
+ case X86::MOVZX32rr16:
+ case X86::MOVSX64rr16:
+ SubIdx = X86::sub_16bit;
+ break;
+ case X86::MOVSX64rr32:
+ SubIdx = X86::sub_32bit;
+ break;
+ }
+ return true;
+ }
+ }
+ return false;
+}
+
+/// isFrameOperand - Return true and the FrameIndex if the specified
+/// operand and follow operands form a reference to the stack frame.
+bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
+ int &FrameIndex) const {
+ if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
+ MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
+ MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
+ MI->getOperand(Op+X86::AddrDisp).isImm() &&
+ MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
+ MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
+ MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
+ FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
+ return true;
+ }
+ return false;
+}
+
+static bool isFrameLoadOpcode(int Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp64m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::VMOVSSrm:
+ case X86::VMOVSDrm:
+ case X86::VMOVAPSrm:
+ case X86::VMOVAPDrm:
+ case X86::VMOVDQArm:
+ case X86::VMOVAPSYrm:
+ case X86::VMOVAPDYrm:
+ case X86::VMOVDQAYrm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ case X86::VMOVAPSZrm:
+ case X86::VMOVUPSZrm:
+ return true;
+ }
+}
+
+static bool isFrameStoreOpcode(int Opcode) {
+ switch (Opcode) {
+ default: break;
+ case X86::MOV8mr:
+ case X86::MOV16mr:
+ case X86::MOV32mr:
+ case X86::MOV64mr:
+ case X86::ST_FpP64m:
+ case X86::MOVSSmr:
+ case X86::MOVSDmr:
+ case X86::MOVAPSmr:
+ case X86::MOVAPDmr:
+ case X86::MOVDQAmr:
+ case X86::VMOVSSmr:
+ case X86::VMOVSDmr:
+ case X86::VMOVAPSmr:
+ case X86::VMOVAPDmr:
+ case X86::VMOVDQAmr:
+ case X86::VMOVAPSYmr:
+ case X86::VMOVAPDYmr:
+ case X86::VMOVDQAYmr:
+ case X86::VMOVUPSZmr:
+ case X86::VMOVAPSZmr:
+ case X86::MMX_MOVD64mr:
+ case X86::MMX_MOVQ64mr:
+ case X86::MMX_MOVNTQmr:
+ return true;
+ }
+ return false;
+}
+
+unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameLoadOpcode(MI->getOpcode()))
+ if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
+ return MI->getOperand(0).getReg();
+ return 0;
+}
+
+unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameLoadOpcode(MI->getOpcode())) {
+ unsigned Reg;
+ if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
+ return Reg;
+ // Check for post-frame index elimination operations
+ const MachineMemOperand *Dummy;
+ return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
+ }
+ return 0;
+}
+
+unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameStoreOpcode(MI->getOpcode()))
+ if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
+ isFrameOperand(MI, 0, FrameIndex))
+ return MI->getOperand(X86::AddrNumOperands).getReg();
+ return 0;
+}
+
+unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameStoreOpcode(MI->getOpcode())) {
+ unsigned Reg;
+ if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
+ return Reg;
+ // Check for post-frame index elimination operations
+ const MachineMemOperand *Dummy;
+ return hasStoreToStackSlot(MI, Dummy, FrameIndex);
+ }
+ return 0;
+}
+
+/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
+/// X86::MOVPC32r.
+static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
+ // Don't waste compile time scanning use-def chains of physregs.
+ if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
+ return false;
+ bool isPICBase = false;
+ for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
+ E = MRI.def_instr_end(); I != E; ++I) {
+ MachineInstr *DefMI = &*I;
+ if (DefMI->getOpcode() != X86::MOVPC32r)
+ return false;
+ assert(!isPICBase && "More than one PIC base?");
+ isPICBase = true;
+ }
+ return isPICBase;
+}
+
+bool
+X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
+ AliasAnalysis *AA) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp64m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVUPSrm:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::MOVDQUrm:
+ case X86::VMOVSSrm:
+ case X86::VMOVSDrm:
+ case X86::VMOVAPSrm:
+ case X86::VMOVUPSrm:
+ case X86::VMOVAPDrm:
+ case X86::VMOVDQArm:
+ case X86::VMOVDQUrm:
+ case X86::VMOVAPSYrm:
+ case X86::VMOVUPSYrm:
+ case X86::VMOVAPDYrm:
+ case X86::VMOVDQAYrm:
+ case X86::VMOVDQUYrm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ case X86::FsVMOVAPSrm:
+ case X86::FsVMOVAPDrm:
+ case X86::FsMOVAPSrm:
+ case X86::FsMOVAPDrm: {
+ // Loads from constant pools are trivially rematerializable.
+ if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
+ MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
+ MI->getOperand(1+X86::AddrIndexReg).isReg() &&
+ MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
+ MI->isInvariantLoad(AA)) {
+ unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
+ if (BaseReg == 0 || BaseReg == X86::RIP)
+ return true;
+ // Allow re-materialization of PIC load.
+ if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
+ return false;
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ return regIsPICBase(BaseReg, MRI);
+ }
+ return false;
+ }
+
+ case X86::LEA32r:
+ case X86::LEA64r: {
+ if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
+ MI->getOperand(1+X86::AddrIndexReg).isReg() &&
+ MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
+ !MI->getOperand(1+X86::AddrDisp).isReg()) {
+ // lea fi#, lea GV, etc. are all rematerializable.
+ if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
+ return true;
+ unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
+ if (BaseReg == 0)
+ return true;
+ // Allow re-materialization of lea PICBase + x.
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ return regIsPICBase(BaseReg, MRI);
+ }
+ return false;
+ }
+ }
+
+ // All other instructions marked M_REMATERIALIZABLE are always trivially
+ // rematerializable.
+ return true;
+}
+
+bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ MachineBasicBlock::iterator E = MBB.end();
+
+ // For compile time consideration, if we are not able to determine the
+ // safety after visiting 4 instructions in each direction, we will assume
+ // it's not safe.
+ MachineBasicBlock::iterator Iter = I;
+ for (unsigned i = 0; Iter != E && i < 4; ++i) {
+ bool SeenDef = false;
+ for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
+ MachineOperand &MO = Iter->getOperand(j);
+ if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
+ SeenDef = true;
+ if (!MO.isReg())
+ continue;
+ if (MO.getReg() == X86::EFLAGS) {
+ if (MO.isUse())
+ return false;
+ SeenDef = true;
+ }
+ }
+
+ if (SeenDef)
+ // This instruction defines EFLAGS, no need to look any further.
+ return true;
+ ++Iter;
+ // Skip over DBG_VALUE.
+ while (Iter != E && Iter->isDebugValue())
+ ++Iter;
+ }
+
+ // It is safe to clobber EFLAGS at the end of a block of no successor has it
+ // live in.
+ if (Iter == E) {
+ for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
+ SE = MBB.succ_end(); SI != SE; ++SI)
+ if ((*SI)->isLiveIn(X86::EFLAGS))
+ return false;
+ return true;
+ }
+
+ MachineBasicBlock::iterator B = MBB.begin();
+ Iter = I;
+ for (unsigned i = 0; i < 4; ++i) {
+ // If we make it to the beginning of the block, it's safe to clobber
+ // EFLAGS iff EFLAGS is not live-in.
+ if (Iter == B)
+ return !MBB.isLiveIn(X86::EFLAGS);
+
+ --Iter;
+ // Skip over DBG_VALUE.
+ while (Iter != B && Iter->isDebugValue())
+ --Iter;
+
+ bool SawKill = false;
+ for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
+ MachineOperand &MO = Iter->getOperand(j);
+ // A register mask may clobber EFLAGS, but we should still look for a
+ // live EFLAGS def.
+ if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
+ SawKill = true;
+ if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
+ if (MO.isDef()) return MO.isDead();
+ if (MO.isKill()) SawKill = true;
+ }
+ }
+
+ if (SawKill)
+ // This instruction kills EFLAGS and doesn't redefine it, so
+ // there's no need to look further.
+ return true;
+ }
+
+ // Conservative answer.
+ return false;
+}
+
+void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig,
+ const TargetRegisterInfo &TRI) const {
+ // MOV32r0 is implemented with a xor which clobbers condition code.
+ // Re-materialize it as movri instructions to avoid side effects.
+ unsigned Opc = Orig->getOpcode();
+ if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
+ DebugLoc DL = Orig->getDebugLoc();
+ BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
+ .addImm(0);
+ } else {
+ MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
+ MBB.insert(I, MI);
+ }
+
+ MachineInstr *NewMI = std::prev(I);
+ NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
+}
+
+/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
+/// is not marked dead.
+static bool hasLiveCondCodeDef(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef() &&
+ MO.getReg() == X86::EFLAGS && !MO.isDead()) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/// getTruncatedShiftCount - check whether the shift count for a machine operand
+/// is non-zero.
+inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
+ unsigned ShiftAmtOperandIdx) {
+ // The shift count is six bits with the REX.W prefix and five bits without.
+ unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
+ unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
+ return Imm & ShiftCountMask;
+}
+
+/// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate
+/// can be represented by a LEA instruction.
+inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
+ // Left shift instructions can be transformed into load-effective-address
+ // instructions if we can encode them appropriately.
+ // A LEA instruction utilizes a SIB byte to encode it's scale factor.
+ // The SIB.scale field is two bits wide which means that we can encode any
+ // shift amount less than 4.
+ return ShAmt < 4 && ShAmt > 0;
+}
+
+bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
+ unsigned Opc, bool AllowSP,
+ unsigned &NewSrc, bool &isKill, bool &isUndef,
+ MachineOperand &ImplicitOp) const {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ const TargetRegisterClass *RC;
+ if (AllowSP) {
+ RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
+ } else {
+ RC = Opc != X86::LEA32r ?
+ &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
+ }
+ unsigned SrcReg = Src.getReg();
+
+ // For both LEA64 and LEA32 the register already has essentially the right
+ // type (32-bit or 64-bit) we may just need to forbid SP.
+ if (Opc != X86::LEA64_32r) {
+ NewSrc = SrcReg;
+ isKill = Src.isKill();
+ isUndef = Src.isUndef();
+
+ if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
+ !MF.getRegInfo().constrainRegClass(NewSrc, RC))
+ return false;
+
+ return true;
+ }
+
+ // This is for an LEA64_32r and incoming registers are 32-bit. One way or
+ // another we need to add 64-bit registers to the final MI.
+ if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
+ ImplicitOp = Src;
+ ImplicitOp.setImplicit();
+
+ NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
+ MachineBasicBlock::LivenessQueryResult LQR =
+ MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
+
+ switch (LQR) {
+ case MachineBasicBlock::LQR_Unknown:
+ // We can't give sane liveness flags to the instruction, abandon LEA
+ // formation.
+ return false;
+ case MachineBasicBlock::LQR_Live:
+ isKill = MI->killsRegister(SrcReg);
+ isUndef = false;
+ break;
+ default:
+ // The physreg itself is dead, so we have to use it as an <undef>.
+ isKill = false;
+ isUndef = true;
+ break;
+ }
+ } else {
+ // Virtual register of the wrong class, we have to create a temporary 64-bit
+ // vreg to feed into the LEA.
+ NewSrc = MF.getRegInfo().createVirtualRegister(RC);
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ get(TargetOpcode::COPY))
+ .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
+ .addOperand(Src);
+
+ // Which is obviously going to be dead after we're done with it.
+ isKill = true;
+ isUndef = false;
+ }
+
+ // We've set all the parameters without issue.
+ return true;
+}
+
+/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
+/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
+/// to a 32-bit superregister and then truncating back down to a 16-bit
+/// subregister.
+MachineInstr *
+X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
+ MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ MachineInstr *MI = MBBI;
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Src = MI->getOperand(1).getReg();
+ bool isDead = MI->getOperand(0).isDead();
+ bool isKill = MI->getOperand(1).isKill();
+
+ MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
+ unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
+ unsigned Opc, leaInReg;
+ if (Subtarget.is64Bit()) {
+ Opc = X86::LEA64_32r;
+ leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
+ } else {
+ Opc = X86::LEA32r;
+ leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
+ }
+
+ // Build and insert into an implicit UNDEF value. This is OK because
+ // well be shifting and then extracting the lower 16-bits.
+ // This has the potential to cause partial register stall. e.g.
+ // movw (%rbp,%rcx,2), %dx
+ // leal -65(%rdx), %esi
+ // But testing has shown this *does* help performance in 64-bit mode (at
+ // least on modern x86 machines).
+ BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
+ MachineInstr *InsMI =
+ BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
+ .addReg(leaInReg, RegState::Define, X86::sub_16bit)
+ .addReg(Src, getKillRegState(isKill));
+
+ MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
+ get(Opc), leaOutReg);
+ switch (MIOpc) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::SHL16ri: {
+ unsigned ShAmt = MI->getOperand(2).getImm();
+ MIB.addReg(0).addImm(1 << ShAmt)
+ .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
+ break;
+ }
+ case X86::INC16r:
+ case X86::INC64_16r:
+ addRegOffset(MIB, leaInReg, true, 1);
+ break;
+ case X86::DEC16r:
+ case X86::DEC64_16r:
+ addRegOffset(MIB, leaInReg, true, -1);
+ break;
+ case X86::ADD16ri:
+ case X86::ADD16ri8:
+ case X86::ADD16ri_DB:
+ case X86::ADD16ri8_DB:
+ addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
+ break;
+ case X86::ADD16rr:
+ case X86::ADD16rr_DB: {
+ unsigned Src2 = MI->getOperand(2).getReg();
+ bool isKill2 = MI->getOperand(2).isKill();
+ unsigned leaInReg2 = 0;
+ MachineInstr *InsMI2 = nullptr;
+ if (Src == Src2) {
+ // ADD16rr %reg1028<kill>, %reg1028
+ // just a single insert_subreg.
+ addRegReg(MIB, leaInReg, true, leaInReg, false);
+ } else {
+ if (Subtarget.is64Bit())
+ leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
+ else
+ leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
+ // Build and insert into an implicit UNDEF value. This is OK because
+ // well be shifting and then extracting the lower 16-bits.
+ BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
+ InsMI2 =
+ BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
+ .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
+ .addReg(Src2, getKillRegState(isKill2));
+ addRegReg(MIB, leaInReg, true, leaInReg2, true);
+ }
+ if (LV && isKill2 && InsMI2)
+ LV->replaceKillInstruction(Src2, MI, InsMI2);
+ break;
+ }
+ }
+
+ MachineInstr *NewMI = MIB;
+ MachineInstr *ExtMI =
+ BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
+ .addReg(Dest, RegState::Define | getDeadRegState(isDead))
+ .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
+
+ if (LV) {
+ // Update live variables
+ LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
+ LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
+ if (isKill)
+ LV->replaceKillInstruction(Src, MI, InsMI);
+ if (isDead)
+ LV->replaceKillInstruction(Dest, MI, ExtMI);
+ }
+
+ return ExtMI;
+}
+
+/// convertToThreeAddress - This method must be implemented by targets that
+/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
+/// may be able to convert a two-address instruction into a true
+/// three-address instruction on demand. This allows the X86 target (for
+/// example) to convert ADD and SHL instructions into LEA instructions if they
+/// would require register copies due to two-addressness.
+///
+/// This method returns a null pointer if the transformation cannot be
+/// performed, otherwise it returns the new instruction.
+///
+MachineInstr *
+X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ MachineInstr *MI = MBBI;
+
+ // The following opcodes also sets the condition code register(s). Only
+ // convert them to equivalent lea if the condition code register def's
+ // are dead!
+ if (hasLiveCondCodeDef(MI))
+ return nullptr;
+
+ MachineFunction &MF = *MI->getParent()->getParent();
+ // All instructions input are two-addr instructions. Get the known operands.
+ const MachineOperand &Dest = MI->getOperand(0);
+ const MachineOperand &Src = MI->getOperand(1);
+
+ MachineInstr *NewMI = nullptr;
+ // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
+ // we have better subtarget support, enable the 16-bit LEA generation here.
+ // 16-bit LEA is also slow on Core2.
+ bool DisableLEA16 = true;
+ bool is64Bit = Subtarget.is64Bit();
+
+ unsigned MIOpc = MI->getOpcode();
+ switch (MIOpc) {
+ case X86::SHUFPSrri: {
+ assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
+ if (!Subtarget.hasSSE2()) return nullptr;
+
+ unsigned B = MI->getOperand(1).getReg();
+ unsigned C = MI->getOperand(2).getReg();
+ if (B != C) return nullptr;
+ unsigned M = MI->getOperand(3).getImm();
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
+ .addOperand(Dest).addOperand(Src).addImm(M);
+ break;
+ }
+ case X86::SHUFPDrri: {
+ assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
+ if (!Subtarget.hasSSE2()) return nullptr;
+
+ unsigned B = MI->getOperand(1).getReg();
+ unsigned C = MI->getOperand(2).getReg();
+ if (B != C) return nullptr;
+ unsigned M = MI->getOperand(3).getImm();
+
+ // Convert to PSHUFD mask.
+ M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
+
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
+ .addOperand(Dest).addOperand(Src).addImm(M);
+ break;
+ }
+ case X86::SHL64ri: {
+ assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
+ unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+ if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
+
+ // LEA can't handle RSP.
+ if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
+ !MF.getRegInfo().constrainRegClass(Src.getReg(),
+ &X86::GR64_NOSPRegClass))
+ return nullptr;
+
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
+ .addOperand(Dest)
+ .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
+ break;
+ }
+ case X86::SHL32ri: {
+ assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
+ unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+ if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
+
+ unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
+
+ // LEA can't handle ESP.
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
+
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest)
+ .addReg(0).addImm(1 << ShAmt)
+ .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
+ .addImm(0).addReg(0);
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
+ NewMI = MIB;
+
+ break;
+ }
+ case X86::SHL16ri: {
+ assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
+ unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+ if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
+
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest)
+ .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
+ break;
+ }
+ default: {
+
+ switch (MIOpc) {
+ default: return nullptr;
+ case X86::INC64r:
+ case X86::INC32r:
+ case X86::INC64_32r: {
+ assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
+ unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
+ : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
+
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest)
+ .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
+
+ NewMI = addOffset(MIB, 1);
+ break;
+ }
+ case X86::INC16r:
+ case X86::INC64_16r:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest).addOperand(Src), 1);
+ break;
+ case X86::DEC64r:
+ case X86::DEC32r:
+ case X86::DEC64_32r: {
+ assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
+ unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
+ : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
+
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
+
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest)
+ .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
+
+ NewMI = addOffset(MIB, -1);
+
+ break;
+ }
+ case X86::DEC16r:
+ case X86::DEC64_16r:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest).addOperand(Src), -1);
+ break;
+ case X86::ADD64rr:
+ case X86::ADD64rr_DB:
+ case X86::ADD32rr:
+ case X86::ADD32rr_DB: {
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Opc;
+ if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
+ Opc = X86::LEA64r;
+ else
+ Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
+
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
+
+ const MachineOperand &Src2 = MI->getOperand(2);
+ bool isKill2, isUndef2;
+ unsigned SrcReg2;
+ MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
+ SrcReg2, isKill2, isUndef2, ImplicitOp2))
+ return nullptr;
+
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest);
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
+ if (ImplicitOp2.getReg() != 0)
+ MIB.addOperand(ImplicitOp2);
+
+ NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
+
+ // Preserve undefness of the operands.
+ NewMI->getOperand(1).setIsUndef(isUndef);
+ NewMI->getOperand(3).setIsUndef(isUndef2);
+
+ if (LV && Src2.isKill())
+ LV->replaceKillInstruction(SrcReg2, MI, NewMI);
+ break;
+ }
+ case X86::ADD16rr:
+ case X86::ADD16rr_DB: {
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Src2 = MI->getOperand(2).getReg();
+ bool isKill2 = MI->getOperand(2).isKill();
+ NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest),
+ Src.getReg(), Src.isKill(), Src2, isKill2);
+
+ // Preserve undefness of the operands.
+ bool isUndef = MI->getOperand(1).isUndef();
+ bool isUndef2 = MI->getOperand(2).isUndef();
+ NewMI->getOperand(1).setIsUndef(isUndef);
+ NewMI->getOperand(3).setIsUndef(isUndef2);
+
+ if (LV && isKill2)
+ LV->replaceKillInstruction(Src2, MI, NewMI);
+ break;
+ }
+ case X86::ADD64ri32:
+ case X86::ADD64ri8:
+ case X86::ADD64ri32_DB:
+ case X86::ADD64ri8_DB:
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
+ .addOperand(Dest).addOperand(Src),
+ MI->getOperand(2).getImm());
+ break;
+ case X86::ADD32ri:
+ case X86::ADD32ri8:
+ case X86::ADD32ri_DB:
+ case X86::ADD32ri8_DB: {
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
+
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
+
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest)
+ .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
+
+ NewMI = addOffset(MIB, MI->getOperand(2).getImm());
+ break;
+ }
+ case X86::ADD16ri:
+ case X86::ADD16ri8:
+ case X86::ADD16ri_DB:
+ case X86::ADD16ri8_DB:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest).addOperand(Src),
+ MI->getOperand(2).getImm());
+ break;
+ }
+ }
+ }
+
+ if (!NewMI) return nullptr;
+
+ if (LV) { // Update live variables
+ if (Src.isKill())
+ LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
+ if (Dest.isDead())
+ LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
+ }
+
+ MFI->insert(MBBI, NewMI); // Insert the new inst
+ return NewMI;
+}
+
+/// commuteInstruction - We have a few instructions that must be hacked on to
+/// commute them.
+///
+MachineInstr *
+X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
+ switch (MI->getOpcode()) {
+ case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
+ case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
+ case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
+ case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
+ case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
+ case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
+ unsigned Opc;
+ unsigned Size;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
+ case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
+ case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
+ case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
+ case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
+ case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
+ }
+ unsigned Amt = MI->getOperand(3).getImm();
+ if (NewMI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ NewMI = false;
+ }
+ MI->setDesc(get(Opc));
+ MI->getOperand(3).setImm(Size-Amt);
+ return TargetInstrInfo::commuteInstruction(MI, NewMI);
+ }
+ case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
+ case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
+ case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
+ case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
+ case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
+ case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
+ case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
+ case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
+ case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
+ case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
+ case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
+ case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
+ case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
+ case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
+ case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
+ case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
+ unsigned Opc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
+ case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
+ case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
+ case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
+ case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
+ case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
+ case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
+ case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
+ case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
+ case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
+ case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
+ case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
+ case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
+ case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
+ case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
+ case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
+ case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
+ case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
+ case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
+ case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
+ case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
+ case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
+ case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
+ case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
+ case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
+ case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
+ case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
+ case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
+ case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
+ case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
+ case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
+ case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
+ case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
+ case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
+ case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
+ case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
+ case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
+ case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
+ case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
+ case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
+ case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
+ case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
+ case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
+ case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
+ case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
+ case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
+ case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
+ case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
+ }
+ if (NewMI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ NewMI = false;
+ }
+ MI->setDesc(get(Opc));
+ // Fallthrough intended.
+ }
+ default:
+ return TargetInstrInfo::commuteInstruction(MI, NewMI);
+ }
+}
+
+bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const {
+ switch (MI->getOpcode()) {
+ case X86::VFMADDPDr231r:
+ case X86::VFMADDPSr231r:
+ case X86::VFMADDSDr231r:
+ case X86::VFMADDSSr231r:
+ case X86::VFMSUBPDr231r:
+ case X86::VFMSUBPSr231r:
+ case X86::VFMSUBSDr231r:
+ case X86::VFMSUBSSr231r:
+ case X86::VFNMADDPDr231r:
+ case X86::VFNMADDPSr231r:
+ case X86::VFNMADDSDr231r:
+ case X86::VFNMADDSSr231r:
+ case X86::VFNMSUBPDr231r:
+ case X86::VFNMSUBPSr231r:
+ case X86::VFNMSUBSDr231r:
+ case X86::VFNMSUBSSr231r:
+ case X86::VFMADDPDr231rY:
+ case X86::VFMADDPSr231rY:
+ case X86::VFMSUBPDr231rY:
+ case X86::VFMSUBPSr231rY:
+ case X86::VFNMADDPDr231rY:
+ case X86::VFNMADDPSr231rY:
+ case X86::VFNMSUBPDr231rY:
+ case X86::VFNMSUBPSr231rY:
+ SrcOpIdx1 = 2;
+ SrcOpIdx2 = 3;
+ return true;
+ default:
+ return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
+ }
+}
+
+static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
+ switch (BrOpc) {
+ default: return X86::COND_INVALID;
+ case X86::JE_4: return X86::COND_E;
+ case X86::JNE_4: return X86::COND_NE;
+ case X86::JL_4: return X86::COND_L;
+ case X86::JLE_4: return X86::COND_LE;
+ case X86::JG_4: return X86::COND_G;
+ case X86::JGE_4: return X86::COND_GE;
+ case X86::JB_4: return X86::COND_B;
+ case X86::JBE_4: return X86::COND_BE;
+ case X86::JA_4: return X86::COND_A;
+ case X86::JAE_4: return X86::COND_AE;
+ case X86::JS_4: return X86::COND_S;
+ case X86::JNS_4: return X86::COND_NS;
+ case X86::JP_4: return X86::COND_P;
+ case X86::JNP_4: return X86::COND_NP;
+ case X86::JO_4: return X86::COND_O;
+ case X86::JNO_4: return X86::COND_NO;
+ }
+}
+
+/// getCondFromSETOpc - return condition code of a SET opcode.
+static X86::CondCode getCondFromSETOpc(unsigned Opc) {
+ switch (Opc) {
+ default: return X86::COND_INVALID;
+ case X86::SETAr: case X86::SETAm: return X86::COND_A;
+ case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
+ case X86::SETBr: case X86::SETBm: return X86::COND_B;
+ case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
+ case X86::SETEr: case X86::SETEm: return X86::COND_E;
+ case X86::SETGr: case X86::SETGm: return X86::COND_G;
+ case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
+ case X86::SETLr: case X86::SETLm: return X86::COND_L;
+ case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
+ case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
+ case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
+ case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
+ case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
+ case X86::SETOr: case X86::SETOm: return X86::COND_O;
+ case X86::SETPr: case X86::SETPm: return X86::COND_P;
+ case X86::SETSr: case X86::SETSm: return X86::COND_S;
+ }
+}
+
+/// getCondFromCmovOpc - return condition code of a CMov opcode.
+X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
+ switch (Opc) {
+ default: return X86::COND_INVALID;
+ case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
+ case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
+ return X86::COND_A;
+ case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
+ case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
+ return X86::COND_AE;
+ case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
+ case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
+ return X86::COND_B;
+ case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
+ case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
+ return X86::COND_BE;
+ case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
+ case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
+ return X86::COND_E;
+ case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
+ case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
+ return X86::COND_G;
+ case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
+ case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
+ return X86::COND_GE;
+ case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
+ case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
+ return X86::COND_L;
+ case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
+ case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
+ return X86::COND_LE;
+ case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
+ case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
+ return X86::COND_NE;
+ case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
+ case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
+ return X86::COND_NO;
+ case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
+ case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
+ return X86::COND_NP;
+ case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
+ case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
+ return X86::COND_NS;
+ case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
+ case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
+ return X86::COND_O;
+ case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
+ case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
+ return X86::COND_P;
+ case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
+ case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
+ return X86::COND_S;
+ }
+}
+
+unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Illegal condition code!");
+ case X86::COND_E: return X86::JE_4;
+ case X86::COND_NE: return X86::JNE_4;
+ case X86::COND_L: return X86::JL_4;
+ case X86::COND_LE: return X86::JLE_4;
+ case X86::COND_G: return X86::JG_4;
+ case X86::COND_GE: return X86::JGE_4;
+ case X86::COND_B: return X86::JB_4;
+ case X86::COND_BE: return X86::JBE_4;
+ case X86::COND_A: return X86::JA_4;
+ case X86::COND_AE: return X86::JAE_4;
+ case X86::COND_S: return X86::JS_4;
+ case X86::COND_NS: return X86::JNS_4;
+ case X86::COND_P: return X86::JP_4;
+ case X86::COND_NP: return X86::JNP_4;
+ case X86::COND_O: return X86::JO_4;
+ case X86::COND_NO: return X86::JNO_4;
+ }
+}
+
+/// GetOppositeBranchCondition - Return the inverse of the specified condition,
+/// e.g. turning COND_E to COND_NE.
+X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Illegal condition code!");
+ case X86::COND_E: return X86::COND_NE;
+ case X86::COND_NE: return X86::COND_E;
+ case X86::COND_L: return X86::COND_GE;
+ case X86::COND_LE: return X86::COND_G;
+ case X86::COND_G: return X86::COND_LE;
+ case X86::COND_GE: return X86::COND_L;
+ case X86::COND_B: return X86::COND_AE;
+ case X86::COND_BE: return X86::COND_A;
+ case X86::COND_A: return X86::COND_BE;
+ case X86::COND_AE: return X86::COND_B;
+ case X86::COND_S: return X86::COND_NS;
+ case X86::COND_NS: return X86::COND_S;
+ case X86::COND_P: return X86::COND_NP;
+ case X86::COND_NP: return X86::COND_P;
+ case X86::COND_O: return X86::COND_NO;
+ case X86::COND_NO: return X86::COND_O;
+ }
+}
+
+/// getSwappedCondition - assume the flags are set by MI(a,b), return
+/// the condition code if we modify the instructions such that flags are
+/// set by MI(b,a).
+static X86::CondCode getSwappedCondition(X86::CondCode CC) {
+ switch (CC) {
+ default: return X86::COND_INVALID;
+ case X86::COND_E: return X86::COND_E;
+ case X86::COND_NE: return X86::COND_NE;
+ case X86::COND_L: return X86::COND_G;
+ case X86::COND_LE: return X86::COND_GE;
+ case X86::COND_G: return X86::COND_L;
+ case X86::COND_GE: return X86::COND_LE;
+ case X86::COND_B: return X86::COND_A;
+ case X86::COND_BE: return X86::COND_AE;
+ case X86::COND_A: return X86::COND_B;
+ case X86::COND_AE: return X86::COND_BE;
+ }
+}
+
+/// getSETFromCond - Return a set opcode for the given condition and
+/// whether it has memory operand.
+unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
+ static const uint16_t Opc[16][2] = {
+ { X86::SETAr, X86::SETAm },
+ { X86::SETAEr, X86::SETAEm },
+ { X86::SETBr, X86::SETBm },
+ { X86::SETBEr, X86::SETBEm },
+ { X86::SETEr, X86::SETEm },
+ { X86::SETGr, X86::SETGm },
+ { X86::SETGEr, X86::SETGEm },
+ { X86::SETLr, X86::SETLm },
+ { X86::SETLEr, X86::SETLEm },
+ { X86::SETNEr, X86::SETNEm },
+ { X86::SETNOr, X86::SETNOm },
+ { X86::SETNPr, X86::SETNPm },
+ { X86::SETNSr, X86::SETNSm },
+ { X86::SETOr, X86::SETOm },
+ { X86::SETPr, X86::SETPm },
+ { X86::SETSr, X86::SETSm }
+ };
+
+ assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
+ return Opc[CC][HasMemoryOperand ? 1 : 0];
+}
+
+/// getCMovFromCond - Return a cmov opcode for the given condition,
+/// register size in bytes, and operand type.
+unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
+ bool HasMemoryOperand) {
+ static const uint16_t Opc[32][3] = {
+ { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
+ { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
+ { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
+ { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
+ { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
+ { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
+ { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
+ { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
+ { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
+ { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
+ { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
+ { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
+ { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
+ { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
+ { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
+ { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
+ { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
+ { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
+ { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
+ { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
+ { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
+ { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
+ { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
+ { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
+ { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
+ { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
+ { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
+ { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
+ { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
+ { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
+ { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
+ { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
+ };
+
+ assert(CC < 16 && "Can only handle standard cond codes");
+ unsigned Idx = HasMemoryOperand ? 16+CC : CC;
+ switch(RegBytes) {
+ default: llvm_unreachable("Illegal register size!");
+ case 2: return Opc[Idx][0];
+ case 4: return Opc[Idx][1];
+ case 8: return Opc[Idx][2];
+ }
+}
+
+bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
+ if (!MI->isTerminator()) return false;
+
+ // Conditional branch is a special case.
+ if (MI->isBranch() && !MI->isBarrier())
+ return true;
+ if (!MI->isPredicable())
+ return true;
+ return !isPredicated(MI);
+}
+
+bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // Start from the bottom of the block and work up, examining the
+ // terminator instructions.
+ MachineBasicBlock::iterator I = MBB.end();
+ MachineBasicBlock::iterator UnCondBrIter = MBB.end();
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+
+ // Working from the bottom, when we see a non-terminator instruction, we're
+ // done.
+ if (!isUnpredicatedTerminator(I))
+ break;
+
+ // A terminator that isn't a branch can't easily be handled by this
+ // analysis.
+ if (!I->isBranch())
+ return true;
+
+ // Handle unconditional branches.
+ if (I->getOpcode() == X86::JMP_4) {
+ UnCondBrIter = I;
+
+ if (!AllowModify) {
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ // If the block has any instructions after a JMP, delete them.
+ while (std::next(I) != MBB.end())
+ std::next(I)->eraseFromParent();
+
+ Cond.clear();
+ FBB = nullptr;
+
+ // Delete the JMP if it's equivalent to a fall-through.
+ if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
+ TBB = nullptr;
+ I->eraseFromParent();
+ I = MBB.end();
+ UnCondBrIter = MBB.end();
+ continue;
+ }
+
+ // TBB is used to indicate the unconditional destination.
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ // Handle conditional branches.
+ X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
+ if (BranchCode == X86::COND_INVALID)
+ return true; // Can't handle indirect branch.
+
+ // Working from the bottom, handle the first conditional branch.
+ if (Cond.empty()) {
+ MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
+ if (AllowModify && UnCondBrIter != MBB.end() &&
+ MBB.isLayoutSuccessor(TargetBB)) {
+ // If we can modify the code and it ends in something like:
+ //
+ // jCC L1
+ // jmp L2
+ // L1:
+ // ...
+ // L2:
+ //
+ // Then we can change this to:
+ //
+ // jnCC L2
+ // L1:
+ // ...
+ // L2:
+ //
+ // Which is a bit more efficient.
+ // We conditionally jump to the fall-through block.
+ BranchCode = GetOppositeBranchCondition(BranchCode);
+ unsigned JNCC = GetCondBranchFromCond(BranchCode);
+ MachineBasicBlock::iterator OldInst = I;
+
+ BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
+ .addMBB(UnCondBrIter->getOperand(0).getMBB());
+ BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
+ .addMBB(TargetBB);
+
+ OldInst->eraseFromParent();
+ UnCondBrIter->eraseFromParent();
+
+ // Restart the analysis.
+ UnCondBrIter = MBB.end();
+ I = MBB.end();
+ continue;
+ }
+
+ FBB = TBB;
+ TBB = I->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(BranchCode));
+ continue;
+ }
+
+ // Handle subsequent conditional branches. Only handle the case where all
+ // conditional branches branch to the same destination and their condition
+ // opcodes fit one of the special multi-branch idioms.
+ assert(Cond.size() == 1);
+ assert(TBB);
+
+ // Only handle the case where all conditional branches branch to the same
+ // destination.
+ if (TBB != I->getOperand(0).getMBB())
+ return true;
+
+ // If the conditions are the same, we can leave them alone.
+ X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
+ if (OldBranchCode == BranchCode)
+ continue;
+
+ // If they differ, see if they fit one of the known patterns. Theoretically,
+ // we could handle more patterns here, but we shouldn't expect to see them
+ // if instruction selection has done a reasonable job.
+ if ((OldBranchCode == X86::COND_NP &&
+ BranchCode == X86::COND_E) ||
+ (OldBranchCode == X86::COND_E &&
+ BranchCode == X86::COND_NP))
+ BranchCode = X86::COND_NP_OR_E;
+ else if ((OldBranchCode == X86::COND_P &&
+ BranchCode == X86::COND_NE) ||
+ (OldBranchCode == X86::COND_NE &&
+ BranchCode == X86::COND_P))
+ BranchCode = X86::COND_NE_OR_P;
+ else
+ return true;
+
+ // Update the MachineOperand.
+ Cond[0].setImm(BranchCode);
+ }
+
+ return false;
+}
+
+unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ unsigned Count = 0;
+
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+ if (I->getOpcode() != X86::JMP_4 &&
+ getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
+ break;
+ // Remove the branch.
+ I->eraseFromParent();
+ I = MBB.end();
+ ++Count;
+ }
+
+ return Count;
+}
+
+unsigned
+X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 1 || Cond.size() == 0) &&
+ "X86 branch conditions have one component!");
+
+ if (Cond.empty()) {
+ // Unconditional branch?
+ assert(!FBB && "Unconditional branch with multiple successors!");
+ BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
+ return 1;
+ }
+
+ // Conditional branch.
+ unsigned Count = 0;
+ X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
+ switch (CC) {
+ case X86::COND_NP_OR_E:
+ // Synthesize NP_OR_E with two branches.
+ BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
+ ++Count;
+ BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
+ ++Count;
+ break;
+ case X86::COND_NE_OR_P:
+ // Synthesize NE_OR_P with two branches.
+ BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
+ ++Count;
+ BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
+ ++Count;
+ break;
+ default: {
+ unsigned Opc = GetCondBranchFromCond(CC);
+ BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
+ ++Count;
+ }
+ }
+ if (FBB) {
+ // Two-way Conditional branch. Insert the second branch.
+ BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
+ ++Count;
+ }
+ return Count;
+}
+
+bool X86InstrInfo::
+canInsertSelect(const MachineBasicBlock &MBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned TrueReg, unsigned FalseReg,
+ int &CondCycles, int &TrueCycles, int &FalseCycles) const {
+ // Not all subtargets have cmov instructions.
+ if (!Subtarget.hasCMov())
+ return false;
+ if (Cond.size() != 1)
+ return false;
+ // We cannot do the composite conditions, at least not in SSA form.
+ if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
+ return false;
+
+ // Check register classes.
+ const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ const TargetRegisterClass *RC =
+ RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
+ if (!RC)
+ return false;
+
+ // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
+ if (X86::GR16RegClass.hasSubClassEq(RC) ||
+ X86::GR32RegClass.hasSubClassEq(RC) ||
+ X86::GR64RegClass.hasSubClassEq(RC)) {
+ // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
+ // Bridge. Probably Ivy Bridge as well.
+ CondCycles = 2;
+ TrueCycles = 2;
+ FalseCycles = 2;
+ return true;
+ }
+
+ // Can't do vectors.
+ return false;
+}
+
+void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DstReg,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned TrueReg, unsigned FalseReg) const {
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ assert(Cond.size() == 1 && "Invalid Cond array");
+ unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
+ MRI.getRegClass(DstReg)->getSize(),
+ false/*HasMemoryOperand*/);
+ BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
+}
+
+/// isHReg - Test if the given register is a physical h register.
+static bool isHReg(unsigned Reg) {
+ return X86::GR8_ABCD_HRegClass.contains(Reg);
+}
+
+// Try and copy between VR128/VR64 and GR64 registers.
+static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
+ const X86Subtarget &Subtarget) {
+
+ // SrcReg(VR128) -> DestReg(GR64)
+ // SrcReg(VR64) -> DestReg(GR64)
+ // SrcReg(GR64) -> DestReg(VR128)
+ // SrcReg(GR64) -> DestReg(VR64)
+
+ bool HasAVX = Subtarget.hasAVX();
+ bool HasAVX512 = Subtarget.hasAVX512();
+ if (X86::GR64RegClass.contains(DestReg)) {
+ if (X86::VR128XRegClass.contains(SrcReg))
+ // Copy from a VR128 register to a GR64 register.
+ return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
+ X86::MOVPQIto64rr);
+ if (X86::VR64RegClass.contains(SrcReg))
+ // Copy from a VR64 register to a GR64 register.
+ return X86::MOVSDto64rr;
+ } else if (X86::GR64RegClass.contains(SrcReg)) {
+ // Copy from a GR64 register to a VR128 register.
+ if (X86::VR128XRegClass.contains(DestReg))
+ return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
+ X86::MOV64toPQIrr);
+ // Copy from a GR64 register to a VR64 register.
+ if (X86::VR64RegClass.contains(DestReg))
+ return X86::MOV64toSDrr;
+ }
+
+ // SrcReg(FR32) -> DestReg(GR32)
+ // SrcReg(GR32) -> DestReg(FR32)
+
+ if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
+ // Copy from a FR32 register to a GR32 register.
+ return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
+
+ if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
+ // Copy from a GR32 register to a FR32 register.
+ return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
+ return 0;
+}
+
+inline static bool MaskRegClassContains(unsigned Reg) {
+ return X86::VK8RegClass.contains(Reg) ||
+ X86::VK16RegClass.contains(Reg) ||
+ X86::VK1RegClass.contains(Reg);
+}
+static
+unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
+ if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
+ X86::VR256XRegClass.contains(DestReg, SrcReg) ||
+ X86::VR512RegClass.contains(DestReg, SrcReg)) {
+ DestReg = get512BitSuperRegister(DestReg);
+ SrcReg = get512BitSuperRegister(SrcReg);
+ return X86::VMOVAPSZrr;
+ }
+ if (MaskRegClassContains(DestReg) &&
+ MaskRegClassContains(SrcReg))
+ return X86::KMOVWkk;
+ if (MaskRegClassContains(DestReg) &&
+ (X86::GR32RegClass.contains(SrcReg) ||
+ X86::GR16RegClass.contains(SrcReg) ||
+ X86::GR8RegClass.contains(SrcReg))) {
+ SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
+ return X86::KMOVWkr;
+ }
+ if ((X86::GR32RegClass.contains(DestReg) ||
+ X86::GR16RegClass.contains(DestReg) ||
+ X86::GR8RegClass.contains(DestReg)) &&
+ MaskRegClassContains(SrcReg)) {
+ DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
+ return X86::KMOVWrk;
+ }
+ return 0;
+}
+
+void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ // First deal with the normal symmetric copies.
+ bool HasAVX = Subtarget.hasAVX();
+ bool HasAVX512 = Subtarget.hasAVX512();
+ unsigned Opc = 0;
+ if (X86::GR64RegClass.contains(DestReg, SrcReg))
+ Opc = X86::MOV64rr;
+ else if (X86::GR32RegClass.contains(DestReg, SrcReg))
+ Opc = X86::MOV32rr;
+ else if (X86::GR16RegClass.contains(DestReg, SrcReg))
+ Opc = X86::MOV16rr;
+ else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
+ // Copying to or from a physical H register on x86-64 requires a NOREX
+ // move. Otherwise use a normal move.
+ if ((isHReg(DestReg) || isHReg(SrcReg)) &&
+ Subtarget.is64Bit()) {
+ Opc = X86::MOV8rr_NOREX;
+ // Both operands must be encodable without an REX prefix.
+ assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
+ "8-bit H register can not be copied outside GR8_NOREX");
+ } else
+ Opc = X86::MOV8rr;
+ }
+ else if (X86::VR64RegClass.contains(DestReg, SrcReg))
+ Opc = X86::MMX_MOVQ64rr;
+ else if (HasAVX512)
+ Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
+ else if (X86::VR128RegClass.contains(DestReg, SrcReg))
+ Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
+ else if (X86::VR256RegClass.contains(DestReg, SrcReg))
+ Opc = X86::VMOVAPSYrr;
+ if (!Opc)
+ Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
+
+ if (Opc) {
+ BuildMI(MBB, MI, DL, get(Opc), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+
+ // Moving EFLAGS to / from another register requires a push and a pop.
+ // Notice that we have to adjust the stack if we don't want to clobber the
+ // first frame index. See X86FrameLowering.cpp - colobbersTheStack.
+ if (SrcReg == X86::EFLAGS) {
+ if (X86::GR64RegClass.contains(DestReg)) {
+ BuildMI(MBB, MI, DL, get(X86::PUSHF64));
+ BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
+ return;
+ }
+ if (X86::GR32RegClass.contains(DestReg)) {
+ BuildMI(MBB, MI, DL, get(X86::PUSHF32));
+ BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
+ return;
+ }
+ }
+ if (DestReg == X86::EFLAGS) {
+ if (X86::GR64RegClass.contains(SrcReg)) {
+ BuildMI(MBB, MI, DL, get(X86::PUSH64r))
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ BuildMI(MBB, MI, DL, get(X86::POPF64));
+ return;
+ }
+ if (X86::GR32RegClass.contains(SrcReg)) {
+ BuildMI(MBB, MI, DL, get(X86::PUSH32r))
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ BuildMI(MBB, MI, DL, get(X86::POPF32));
+ return;
+ }
+ }
+
+ DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
+ << " to " << RI.getName(DestReg) << '\n');
+ llvm_unreachable("Cannot emit physreg copy instruction");
+}
+
+static unsigned getLoadStoreRegOpcode(unsigned Reg,
+ const TargetRegisterClass *RC,
+ bool isStackAligned,
+ const X86Subtarget &STI,
+ bool load) {
+ if (STI.hasAVX512()) {
+ if (X86::VK8RegClass.hasSubClassEq(RC) ||
+ X86::VK16RegClass.hasSubClassEq(RC))
+ return load ? X86::KMOVWkm : X86::KMOVWmk;
+ if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
+ return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
+ if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
+ return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
+ if (X86::VR512RegClass.hasSubClassEq(RC))
+ return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
+ }
+
+ bool HasAVX = STI.hasAVX();
+ switch (RC->getSize()) {
+ default:
+ llvm_unreachable("Unknown spill size");
+ case 1:
+ assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
+ if (STI.is64Bit())
+ // Copying to or from a physical H register on x86-64 requires a NOREX
+ // move. Otherwise use a normal move.
+ if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
+ return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
+ return load ? X86::MOV8rm : X86::MOV8mr;
+ case 2:
+ assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
+ return load ? X86::MOV16rm : X86::MOV16mr;
+ case 4:
+ if (X86::GR32RegClass.hasSubClassEq(RC))
+ return load ? X86::MOV32rm : X86::MOV32mr;
+ if (X86::FR32RegClass.hasSubClassEq(RC))
+ return load ?
+ (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
+ (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
+ if (X86::RFP32RegClass.hasSubClassEq(RC))
+ return load ? X86::LD_Fp32m : X86::ST_Fp32m;
+ llvm_unreachable("Unknown 4-byte regclass");
+ case 8:
+ if (X86::GR64RegClass.hasSubClassEq(RC))
+ return load ? X86::MOV64rm : X86::MOV64mr;
+ if (X86::FR64RegClass.hasSubClassEq(RC))
+ return load ?
+ (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
+ (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
+ if (X86::VR64RegClass.hasSubClassEq(RC))
+ return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
+ if (X86::RFP64RegClass.hasSubClassEq(RC))
+ return load ? X86::LD_Fp64m : X86::ST_Fp64m;
+ llvm_unreachable("Unknown 8-byte regclass");
+ case 10:
+ assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
+ return load ? X86::LD_Fp80m : X86::ST_FpP80m;
+ case 16: {
+ assert((X86::VR128RegClass.hasSubClassEq(RC) ||
+ X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
+ // If stack is realigned we can use aligned stores.
+ if (isStackAligned)
+ return load ?
+ (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
+ (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
+ else
+ return load ?
+ (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
+ (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
+ }
+ case 32:
+ assert((X86::VR256RegClass.hasSubClassEq(RC) ||
+ X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
+ // If stack is realigned we can use aligned stores.
+ if (isStackAligned)
+ return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
+ else
+ return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
+ case 64:
+ assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
+ if (isStackAligned)
+ return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
+ else
+ return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
+ }
+}
+
+static unsigned getStoreRegOpcode(unsigned SrcReg,
+ const TargetRegisterClass *RC,
+ bool isStackAligned,
+ const X86Subtarget &STI) {
+ return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
+}
+
+
+static unsigned getLoadRegOpcode(unsigned DestReg,
+ const TargetRegisterClass *RC,
+ bool isStackAligned,
+ const X86Subtarget &STI) {
+ return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
+}
+
+void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ const MachineFunction &MF = *MBB.getParent();
+ assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
+ "Stack slot too small for store");
+ unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
+ bool isAligned =
+ (MF.getTarget().getFrameLowering()->getStackAlignment() >= Alignment) ||
+ RI.canRealignStack(MF);
+ unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
+ DebugLoc DL = MBB.findDebugLoc(MI);
+ addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
+ .addReg(SrcReg, getKillRegState(isKill));
+}
+
+void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
+ bool isKill,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
+ bool isAligned = MMOBegin != MMOEnd &&
+ (*MMOBegin)->getAlignment() >= Alignment;
+ unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
+ DebugLoc DL;
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
+ for (unsigned i = 0, e = Addr.size(); i != e; ++i)
+ MIB.addOperand(Addr[i]);
+ MIB.addReg(SrcReg, getKillRegState(isKill));
+ (*MIB).setMemRefs(MMOBegin, MMOEnd);
+ NewMIs.push_back(MIB);
+}
+
+
+void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ const MachineFunction &MF = *MBB.getParent();
+ unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
+ bool isAligned =
+ (MF.getTarget().getFrameLowering()->getStackAlignment() >= Alignment) ||
+ RI.canRealignStack(MF);
+ unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
+ DebugLoc DL = MBB.findDebugLoc(MI);
+ addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
+}
+
+void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
+ bool isAligned = MMOBegin != MMOEnd &&
+ (*MMOBegin)->getAlignment() >= Alignment;
+ unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
+ DebugLoc DL;
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
+ for (unsigned i = 0, e = Addr.size(); i != e; ++i)
+ MIB.addOperand(Addr[i]);
+ (*MIB).setMemRefs(MMOBegin, MMOEnd);
+ NewMIs.push_back(MIB);
+}
+
+bool X86InstrInfo::
+analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
+ int &CmpMask, int &CmpValue) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case X86::CMP64ri32:
+ case X86::CMP64ri8:
+ case X86::CMP32ri:
+ case X86::CMP32ri8:
+ case X86::CMP16ri:
+ case X86::CMP16ri8:
+ case X86::CMP8ri:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = MI->getOperand(1).getImm();
+ return true;
+ // A SUB can be used to perform comparison.
+ case X86::SUB64rm:
+ case X86::SUB32rm:
+ case X86::SUB16rm:
+ case X86::SUB8rm:
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case X86::SUB64rr:
+ case X86::SUB32rr:
+ case X86::SUB16rr:
+ case X86::SUB8rr:
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = MI->getOperand(2).getReg();
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case X86::SUB64ri32:
+ case X86::SUB64ri8:
+ case X86::SUB32ri:
+ case X86::SUB32ri8:
+ case X86::SUB16ri:
+ case X86::SUB16ri8:
+ case X86::SUB8ri:
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = MI->getOperand(2).getImm();
+ return true;
+ case X86::CMP64rr:
+ case X86::CMP32rr:
+ case X86::CMP16rr:
+ case X86::CMP8rr:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = MI->getOperand(1).getReg();
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case X86::TEST8rr:
+ case X86::TEST16rr:
+ case X86::TEST32rr:
+ case X86::TEST64rr:
+ SrcReg = MI->getOperand(0).getReg();
+ if (MI->getOperand(1).getReg() != SrcReg) return false;
+ // Compare against zero.
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ }
+ return false;
+}
+
+/// isRedundantFlagInstr - check whether the first instruction, whose only
+/// purpose is to update flags, can be made redundant.
+/// CMPrr can be made redundant by SUBrr if the operands are the same.
+/// This function can be extended later on.
+/// SrcReg, SrcRegs: register operands for FlagI.
+/// ImmValue: immediate for FlagI if it takes an immediate.
+inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
+ unsigned SrcReg2, int ImmValue,
+ MachineInstr *OI) {
+ if (((FlagI->getOpcode() == X86::CMP64rr &&
+ OI->getOpcode() == X86::SUB64rr) ||
+ (FlagI->getOpcode() == X86::CMP32rr &&
+ OI->getOpcode() == X86::SUB32rr)||
+ (FlagI->getOpcode() == X86::CMP16rr &&
+ OI->getOpcode() == X86::SUB16rr)||
+ (FlagI->getOpcode() == X86::CMP8rr &&
+ OI->getOpcode() == X86::SUB8rr)) &&
+ ((OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getReg() == SrcReg2) ||
+ (OI->getOperand(1).getReg() == SrcReg2 &&
+ OI->getOperand(2).getReg() == SrcReg)))
+ return true;
+
+ if (((FlagI->getOpcode() == X86::CMP64ri32 &&
+ OI->getOpcode() == X86::SUB64ri32) ||
+ (FlagI->getOpcode() == X86::CMP64ri8 &&
+ OI->getOpcode() == X86::SUB64ri8) ||
+ (FlagI->getOpcode() == X86::CMP32ri &&
+ OI->getOpcode() == X86::SUB32ri) ||
+ (FlagI->getOpcode() == X86::CMP32ri8 &&
+ OI->getOpcode() == X86::SUB32ri8) ||
+ (FlagI->getOpcode() == X86::CMP16ri &&
+ OI->getOpcode() == X86::SUB16ri) ||
+ (FlagI->getOpcode() == X86::CMP16ri8 &&
+ OI->getOpcode() == X86::SUB16ri8) ||
+ (FlagI->getOpcode() == X86::CMP8ri &&
+ OI->getOpcode() == X86::SUB8ri)) &&
+ OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getImm() == ImmValue)
+ return true;
+ return false;
+}
+
+/// isDefConvertible - check whether the definition can be converted
+/// to remove a comparison against zero.
+inline static bool isDefConvertible(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default: return false;
+
+ // The shift instructions only modify ZF if their shift count is non-zero.
+ // N.B.: The processor truncates the shift count depending on the encoding.
+ case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
+ case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
+ return getTruncatedShiftCount(MI, 2) != 0;
+
+ // Some left shift instructions can be turned into LEA instructions but only
+ // if their flags aren't used. Avoid transforming such instructions.
+ case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
+ unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+ if (isTruncatedShiftCountForLEA(ShAmt)) return false;
+ return ShAmt != 0;
+ }
+
+ case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
+ case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
+ return getTruncatedShiftCount(MI, 3) != 0;
+
+ case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
+ case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
+ case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
+ case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
+ case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
+ case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
+ case X86::DEC64_32r: case X86::DEC64_16r:
+ case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
+ case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
+ case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
+ case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
+ case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
+ case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
+ case X86::INC64_32r: case X86::INC64_16r:
+ case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
+ case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
+ case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
+ case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
+ case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
+ case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
+ case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
+ case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
+ case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
+ case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
+ case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
+ case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
+ case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
+ case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
+ case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
+ case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
+ case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
+ case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
+ case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
+ case X86::ADC32ri: case X86::ADC32ri8:
+ case X86::ADC32rr: case X86::ADC64ri32:
+ case X86::ADC64ri8: case X86::ADC64rr:
+ case X86::SBB32ri: case X86::SBB32ri8:
+ case X86::SBB32rr: case X86::SBB64ri32:
+ case X86::SBB64ri8: case X86::SBB64rr:
+ case X86::ANDN32rr: case X86::ANDN32rm:
+ case X86::ANDN64rr: case X86::ANDN64rm:
+ case X86::BEXTR32rr: case X86::BEXTR64rr:
+ case X86::BEXTR32rm: case X86::BEXTR64rm:
+ case X86::BLSI32rr: case X86::BLSI32rm:
+ case X86::BLSI64rr: case X86::BLSI64rm:
+ case X86::BLSMSK32rr:case X86::BLSMSK32rm:
+ case X86::BLSMSK64rr:case X86::BLSMSK64rm:
+ case X86::BLSR32rr: case X86::BLSR32rm:
+ case X86::BLSR64rr: case X86::BLSR64rm:
+ case X86::BZHI32rr: case X86::BZHI32rm:
+ case X86::BZHI64rr: case X86::BZHI64rm:
+ case X86::LZCNT16rr: case X86::LZCNT16rm:
+ case X86::LZCNT32rr: case X86::LZCNT32rm:
+ case X86::LZCNT64rr: case X86::LZCNT64rm:
+ case X86::POPCNT16rr:case X86::POPCNT16rm:
+ case X86::POPCNT32rr:case X86::POPCNT32rm:
+ case X86::POPCNT64rr:case X86::POPCNT64rm:
+ case X86::TZCNT16rr: case X86::TZCNT16rm:
+ case X86::TZCNT32rr: case X86::TZCNT32rm:
+ case X86::TZCNT64rr: case X86::TZCNT64rm:
+ return true;
+ }
+}
+
+/// isUseDefConvertible - check whether the use can be converted
+/// to remove a comparison against zero.
+static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default: return X86::COND_INVALID;
+ case X86::LZCNT16rr: case X86::LZCNT16rm:
+ case X86::LZCNT32rr: case X86::LZCNT32rm:
+ case X86::LZCNT64rr: case X86::LZCNT64rm:
+ return X86::COND_B;
+ case X86::POPCNT16rr:case X86::POPCNT16rm:
+ case X86::POPCNT32rr:case X86::POPCNT32rm:
+ case X86::POPCNT64rr:case X86::POPCNT64rm:
+ return X86::COND_E;
+ case X86::TZCNT16rr: case X86::TZCNT16rm:
+ case X86::TZCNT32rr: case X86::TZCNT32rm:
+ case X86::TZCNT64rr: case X86::TZCNT64rm:
+ return X86::COND_B;
+ }
+}
+
+/// optimizeCompareInstr - Check if there exists an earlier instruction that
+/// operates on the same source operands and sets flags in the same way as
+/// Compare; remove Compare if possible.
+bool X86InstrInfo::
+optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
+ int CmpMask, int CmpValue,
+ const MachineRegisterInfo *MRI) const {
+ // Check whether we can replace SUB with CMP.
+ unsigned NewOpcode = 0;
+ switch (CmpInstr->getOpcode()) {
+ default: break;
+ case X86::SUB64ri32:
+ case X86::SUB64ri8:
+ case X86::SUB32ri:
+ case X86::SUB32ri8:
+ case X86::SUB16ri:
+ case X86::SUB16ri8:
+ case X86::SUB8ri:
+ case X86::SUB64rm:
+ case X86::SUB32rm:
+ case X86::SUB16rm:
+ case X86::SUB8rm:
+ case X86::SUB64rr:
+ case X86::SUB32rr:
+ case X86::SUB16rr:
+ case X86::SUB8rr: {
+ if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
+ return false;
+ // There is no use of the destination register, we can replace SUB with CMP.
+ switch (CmpInstr->getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
+ case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
+ case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
+ case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
+ case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
+ case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
+ case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
+ case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
+ case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
+ case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
+ case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
+ case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
+ case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
+ case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
+ case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
+ }
+ CmpInstr->setDesc(get(NewOpcode));
+ CmpInstr->RemoveOperand(0);
+ // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
+ if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
+ NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
+ return false;
+ }
+ }
+
+ // Get the unique definition of SrcReg.
+ MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
+ if (!MI) return false;
+
+ // CmpInstr is the first instruction of the BB.
+ MachineBasicBlock::iterator I = CmpInstr, Def = MI;
+
+ // If we are comparing against zero, check whether we can use MI to update
+ // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
+ bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
+ if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
+ return false;
+
+ // If we have a use of the source register between the def and our compare
+ // instruction we can eliminate the compare iff the use sets EFLAGS in the
+ // right way.
+ bool ShouldUpdateCC = false;
+ X86::CondCode NewCC = X86::COND_INVALID;
+ if (IsCmpZero && !isDefConvertible(MI)) {
+ // Scan forward from the use until we hit the use we're looking for or the
+ // compare instruction.
+ for (MachineBasicBlock::iterator J = MI;; ++J) {
+ // Do we have a convertible instruction?
+ NewCC = isUseDefConvertible(J);
+ if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
+ J->getOperand(1).getReg() == SrcReg) {
+ assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
+ ShouldUpdateCC = true; // Update CC later on.
+ // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
+ // with the new def.
+ MI = Def = J;
+ break;
+ }
+
+ if (J == I)
+ return false;
+ }
+ }
+
+ // We are searching for an earlier instruction that can make CmpInstr
+ // redundant and that instruction will be saved in Sub.
+ MachineInstr *Sub = nullptr;
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+
+ // We iterate backward, starting from the instruction before CmpInstr and
+ // stop when reaching the definition of a source register or done with the BB.
+ // RI points to the instruction before CmpInstr.
+ // If the definition is in this basic block, RE points to the definition;
+ // otherwise, RE is the rend of the basic block.
+ MachineBasicBlock::reverse_iterator
+ RI = MachineBasicBlock::reverse_iterator(I),
+ RE = CmpInstr->getParent() == MI->getParent() ?
+ MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
+ CmpInstr->getParent()->rend();
+ MachineInstr *Movr0Inst = nullptr;
+ for (; RI != RE; ++RI) {
+ MachineInstr *Instr = &*RI;
+ // Check whether CmpInstr can be made redundant by the current instruction.
+ if (!IsCmpZero &&
+ isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
+ Sub = Instr;
+ break;
+ }
+
+ if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
+ Instr->readsRegister(X86::EFLAGS, TRI)) {
+ // This instruction modifies or uses EFLAGS.
+
+ // MOV32r0 etc. are implemented with xor which clobbers condition code.
+ // They are safe to move up, if the definition to EFLAGS is dead and
+ // earlier instructions do not read or write EFLAGS.
+ if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
+ Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
+ Movr0Inst = Instr;
+ continue;
+ }
+
+ // We can't remove CmpInstr.
+ return false;
+ }
+ }
+
+ // Return false if no candidates exist.
+ if (!IsCmpZero && !Sub)
+ return false;
+
+ bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
+ Sub->getOperand(2).getReg() == SrcReg);
+
+ // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
+ // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
+ // If we are done with the basic block, we need to check whether EFLAGS is
+ // live-out.
+ bool IsSafe = false;
+ SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
+ MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
+ for (++I; I != E; ++I) {
+ const MachineInstr &Instr = *I;
+ bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
+ bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
+ // We should check the usage if this instruction uses and updates EFLAGS.
+ if (!UseEFLAGS && ModifyEFLAGS) {
+ // It is safe to remove CmpInstr if EFLAGS is updated again.
+ IsSafe = true;
+ break;
+ }
+ if (!UseEFLAGS && !ModifyEFLAGS)
+ continue;
+
+ // EFLAGS is used by this instruction.
+ X86::CondCode OldCC = X86::COND_INVALID;
+ bool OpcIsSET = false;
+ if (IsCmpZero || IsSwapped) {
+ // We decode the condition code from opcode.
+ if (Instr.isBranch())
+ OldCC = getCondFromBranchOpc(Instr.getOpcode());
+ else {
+ OldCC = getCondFromSETOpc(Instr.getOpcode());
+ if (OldCC != X86::COND_INVALID)
+ OpcIsSET = true;
+ else
+ OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
+ }
+ if (OldCC == X86::COND_INVALID) return false;
+ }
+ if (IsCmpZero) {
+ switch (OldCC) {
+ default: break;
+ case X86::COND_A: case X86::COND_AE:
+ case X86::COND_B: case X86::COND_BE:
+ case X86::COND_G: case X86::COND_GE:
+ case X86::COND_L: case X86::COND_LE:
+ case X86::COND_O: case X86::COND_NO:
+ // CF and OF are used, we can't perform this optimization.
+ return false;
+ }
+
+ // If we're updating the condition code check if we have to reverse the
+ // condition.
+ if (ShouldUpdateCC)
+ switch (OldCC) {
+ default:
+ return false;
+ case X86::COND_E:
+ break;
+ case X86::COND_NE:
+ NewCC = GetOppositeBranchCondition(NewCC);
+ break;
+ }
+ } else if (IsSwapped) {
+ // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
+ // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
+ // We swap the condition code and synthesize the new opcode.
+ NewCC = getSwappedCondition(OldCC);
+ if (NewCC == X86::COND_INVALID) return false;
+ }
+
+ if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
+ // Synthesize the new opcode.
+ bool HasMemoryOperand = Instr.hasOneMemOperand();
+ unsigned NewOpc;
+ if (Instr.isBranch())
+ NewOpc = GetCondBranchFromCond(NewCC);
+ else if(OpcIsSET)
+ NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
+ else {
+ unsigned DstReg = Instr.getOperand(0).getReg();
+ NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
+ HasMemoryOperand);
+ }
+
+ // Push the MachineInstr to OpsToUpdate.
+ // If it is safe to remove CmpInstr, the condition code of these
+ // instructions will be modified.
+ OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
+ }
+ if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
+ // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
+ IsSafe = true;
+ break;
+ }
+ }
+
+ // If EFLAGS is not killed nor re-defined, we should check whether it is
+ // live-out. If it is live-out, do not optimize.
+ if ((IsCmpZero || IsSwapped) && !IsSafe) {
+ MachineBasicBlock *MBB = CmpInstr->getParent();
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI)
+ if ((*SI)->isLiveIn(X86::EFLAGS))
+ return false;
+ }
+
+ // The instruction to be updated is either Sub or MI.
+ Sub = IsCmpZero ? MI : Sub;
+ // Move Movr0Inst to the appropriate place before Sub.
+ if (Movr0Inst) {
+ // Look backwards until we find a def that doesn't use the current EFLAGS.
+ Def = Sub;
+ MachineBasicBlock::reverse_iterator
+ InsertI = MachineBasicBlock::reverse_iterator(++Def),
+ InsertE = Sub->getParent()->rend();
+ for (; InsertI != InsertE; ++InsertI) {
+ MachineInstr *Instr = &*InsertI;
+ if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
+ Instr->modifiesRegister(X86::EFLAGS, TRI)) {
+ Sub->getParent()->remove(Movr0Inst);
+ Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
+ Movr0Inst);
+ break;
+ }
+ }
+ if (InsertI == InsertE)
+ return false;
+ }
+
+ // Make sure Sub instruction defines EFLAGS and mark the def live.
+ unsigned i = 0, e = Sub->getNumOperands();
+ for (; i != e; ++i) {
+ MachineOperand &MO = Sub->getOperand(i);
+ if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
+ MO.setIsDead(false);
+ break;
+ }
+ }
+ assert(i != e && "Unable to locate a def EFLAGS operand");
+
+ CmpInstr->eraseFromParent();
+
+ // Modify the condition code of instructions in OpsToUpdate.
+ for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
+ OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
+ return true;
+}
+
+/// optimizeLoadInstr - Try to remove the load by folding it to a register
+/// operand at the use. We fold the load instructions if load defines a virtual
+/// register, the virtual register is used once in the same BB, and the
+/// instructions in-between do not load or store, and have no side effects.
+MachineInstr* X86InstrInfo::
+optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
+ unsigned &FoldAsLoadDefReg,
+ MachineInstr *&DefMI) const {
+ if (FoldAsLoadDefReg == 0)
+ return nullptr;
+ // To be conservative, if there exists another load, clear the load candidate.
+ if (MI->mayLoad()) {
+ FoldAsLoadDefReg = 0;
+ return nullptr;
+ }
+
+ // Check whether we can move DefMI here.
+ DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
+ assert(DefMI);
+ bool SawStore = false;
+ if (!DefMI->isSafeToMove(this, nullptr, SawStore))
+ return nullptr;
+
+ // We try to commute MI if possible.
+ unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
+ for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
+ // Collect information about virtual register operands of MI.
+ unsigned SrcOperandId = 0;
+ bool FoundSrcOperand = false;
+ for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg != FoldAsLoadDefReg)
+ continue;
+ // Do not fold if we have a subreg use or a def or multiple uses.
+ if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
+ return nullptr;
+
+ SrcOperandId = i;
+ FoundSrcOperand = true;
+ }
+ if (!FoundSrcOperand) return nullptr;
+
+ // Check whether we can fold the def into SrcOperandId.
+ SmallVector<unsigned, 8> Ops;
+ Ops.push_back(SrcOperandId);
+ MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
+ if (FoldMI) {
+ FoldAsLoadDefReg = 0;
+ return FoldMI;
+ }
+
+ if (Idx == 1) {
+ // MI was changed but it didn't help, commute it back!
+ commuteInstruction(MI, false);
+ return nullptr;
+ }
+
+ // Check whether we can commute MI and enable folding.
+ if (MI->isCommutable()) {
+ MachineInstr *NewMI = commuteInstruction(MI, false);
+ // Unable to commute.
+ if (!NewMI) return nullptr;
+ if (NewMI != MI) {
+ // New instruction. It doesn't need to be kept.
+ NewMI->eraseFromParent();
+ return nullptr;
+ }
+ }
+ }
+ return nullptr;
+}
+
+/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
+/// instruction with two undef reads of the register being defined. This is
+/// used for mapping:
+/// %xmm4 = V_SET0
+/// to:
+/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
+///
+static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
+ const MCInstrDesc &Desc) {
+ assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
+ unsigned Reg = MIB->getOperand(0).getReg();
+ MIB->setDesc(Desc);
+
+ // MachineInstr::addOperand() will insert explicit operands before any
+ // implicit operands.
+ MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
+ // But we don't trust that.
+ assert(MIB->getOperand(1).getReg() == Reg &&
+ MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
+ return true;
+}
+
+bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ bool HasAVX = Subtarget.hasAVX();
+ MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
+ switch (MI->getOpcode()) {
+ case X86::MOV32r0:
+ return Expand2AddrUndef(MIB, get(X86::XOR32rr));
+ case X86::SETB_C8r:
+ return Expand2AddrUndef(MIB, get(X86::SBB8rr));
+ case X86::SETB_C16r:
+ return Expand2AddrUndef(MIB, get(X86::SBB16rr));
+ case X86::SETB_C32r:
+ return Expand2AddrUndef(MIB, get(X86::SBB32rr));
+ case X86::SETB_C64r:
+ return Expand2AddrUndef(MIB, get(X86::SBB64rr));
+ case X86::V_SET0:
+ case X86::FsFLD0SS:
+ case X86::FsFLD0SD:
+ return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
+ case X86::AVX_SET0:
+ assert(HasAVX && "AVX not supported");
+ return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
+ case X86::AVX512_512_SET0:
+ return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
+ case X86::V_SETALLONES:
+ return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
+ case X86::AVX2_SETALLONES:
+ return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
+ case X86::TEST8ri_NOREX:
+ MI->setDesc(get(X86::TEST8ri));
+ return true;
+ case X86::KSET0B:
+ case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
+ case X86::KSET1B:
+ case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
+ }
+ return false;
+}
+
+static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
+ const SmallVectorImpl<MachineOperand> &MOs,
+ MachineInstr *MI,
+ const TargetInstrInfo &TII) {
+ // Create the base instruction with the memory operand as the first part.
+ // Omit the implicit operands, something BuildMI can't do.
+ MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
+ MI->getDebugLoc(), true);
+ MachineInstrBuilder MIB(MF, NewMI);
+ unsigned NumAddrOps = MOs.size();
+ for (unsigned i = 0; i != NumAddrOps; ++i)
+ MIB.addOperand(MOs[i]);
+ if (NumAddrOps < 4) // FrameIndex only
+ addOffset(MIB, 0);
+
+ // Loop over the rest of the ri operands, converting them over.
+ unsigned NumOps = MI->getDesc().getNumOperands()-2;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ MachineOperand &MO = MI->getOperand(i+2);
+ MIB.addOperand(MO);
+ }
+ for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ MIB.addOperand(MO);
+ }
+ return MIB;
+}
+
+static MachineInstr *FuseInst(MachineFunction &MF,
+ unsigned Opcode, unsigned OpNo,
+ const SmallVectorImpl<MachineOperand> &MOs,
+ MachineInstr *MI, const TargetInstrInfo &TII) {
+ // Omit the implicit operands, something BuildMI can't do.
+ MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
+ MI->getDebugLoc(), true);
+ MachineInstrBuilder MIB(MF, NewMI);
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (i == OpNo) {
+ assert(MO.isReg() && "Expected to fold into reg operand!");
+ unsigned NumAddrOps = MOs.size();
+ for (unsigned i = 0; i != NumAddrOps; ++i)
+ MIB.addOperand(MOs[i]);
+ if (NumAddrOps < 4) // FrameIndex only
+ addOffset(MIB, 0);
+ } else {
+ MIB.addOperand(MO);
+ }
+ }
+ return MIB;
+}
+
+static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
+ const SmallVectorImpl<MachineOperand> &MOs,
+ MachineInstr *MI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
+
+ unsigned NumAddrOps = MOs.size();
+ for (unsigned i = 0; i != NumAddrOps; ++i)
+ MIB.addOperand(MOs[i]);
+ if (NumAddrOps < 4) // FrameIndex only
+ addOffset(MIB, 0);
+ return MIB.addImm(0);
+}
+
+MachineInstr*
+X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI, unsigned i,
+ const SmallVectorImpl<MachineOperand> &MOs,
+ unsigned Size, unsigned Align) const {
+ const DenseMap<unsigned,
+ std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
+ bool isCallRegIndirect = Subtarget.callRegIndirect();
+ bool isTwoAddrFold = false;
+
+ // Atom favors register form of call. So, we do not fold loads into calls
+ // when X86Subtarget is Atom.
+ if (isCallRegIndirect &&
+ (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) {
+ return nullptr;
+ }
+
+ unsigned NumOps = MI->getDesc().getNumOperands();
+ bool isTwoAddr = NumOps > 1 &&
+ MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
+
+ // FIXME: AsmPrinter doesn't know how to handle
+ // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
+ if (MI->getOpcode() == X86::ADD32ri &&
+ MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
+ return nullptr;
+
+ MachineInstr *NewMI = nullptr;
+ // Folding a memory location into the two-address part of a two-address
+ // instruction is different than folding it other places. It requires
+ // replacing the *two* registers with the memory location.
+ if (isTwoAddr && NumOps >= 2 && i < 2 &&
+ MI->getOperand(0).isReg() &&
+ MI->getOperand(1).isReg() &&
+ MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
+ OpcodeTablePtr = &RegOp2MemOpTable2Addr;
+ isTwoAddrFold = true;
+ } else if (i == 0) { // If operand 0
+ if (MI->getOpcode() == X86::MOV32r0) {
+ NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
+ if (NewMI)
+ return NewMI;
+ }
+
+ OpcodeTablePtr = &RegOp2MemOpTable0;
+ } else if (i == 1) {
+ OpcodeTablePtr = &RegOp2MemOpTable1;
+ } else if (i == 2) {
+ OpcodeTablePtr = &RegOp2MemOpTable2;
+ } else if (i == 3) {
+ OpcodeTablePtr = &RegOp2MemOpTable3;
+ }
+
+ // If table selected...
+ if (OpcodeTablePtr) {
+ // Find the Opcode to fuse
+ DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
+ OpcodeTablePtr->find(MI->getOpcode());
+ if (I != OpcodeTablePtr->end()) {
+ unsigned Opcode = I->second.first;
+ unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
+ if (Align < MinAlign)
+ return nullptr;
+ bool NarrowToMOV32rm = false;
+ if (Size) {
+ unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
+ if (Size < RCSize) {
+ // Check if it's safe to fold the load. If the size of the object is
+ // narrower than the load width, then it's not.
+ if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
+ return nullptr;
+ // If this is a 64-bit load, but the spill slot is 32, then we can do
+ // a 32-bit load which is implicitly zero-extended. This likely is due
+ // to liveintervalanalysis remat'ing a load from stack slot.
+ if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
+ return nullptr;
+ Opcode = X86::MOV32rm;
+ NarrowToMOV32rm = true;
+ }
+ }
+
+ if (isTwoAddrFold)
+ NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
+ else
+ NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
+
+ if (NarrowToMOV32rm) {
+ // If this is the special case where we use a MOV32rm to load a 32-bit
+ // value and zero-extend the top bits. Change the destination register
+ // to a 32-bit one.
+ unsigned DstReg = NewMI->getOperand(0).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg))
+ NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
+ X86::sub_32bit));
+ else
+ NewMI->getOperand(0).setSubReg(X86::sub_32bit);
+ }
+ return NewMI;
+ }
+ }
+
+ // No fusion
+ if (PrintFailedFusing && !MI->isCopy())
+ dbgs() << "We failed to fuse operand " << i << " in " << *MI;
+ return nullptr;
+}
+
+/// hasPartialRegUpdate - Return true for all instructions that only update
+/// the first 32 or 64-bits of the destination register and leave the rest
+/// unmodified. This can be used to avoid folding loads if the instructions
+/// only update part of the destination register, and the non-updated part is
+/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
+/// instructions breaks the partial register dependency and it can improve
+/// performance. e.g.:
+///
+/// movss (%rdi), %xmm0
+/// cvtss2sd %xmm0, %xmm0
+///
+/// Instead of
+/// cvtss2sd (%rdi), %xmm0
+///
+/// FIXME: This should be turned into a TSFlags.
+///
+static bool hasPartialRegUpdate(unsigned Opcode) {
+ switch (Opcode) {
+ case X86::CVTSI2SSrr:
+ case X86::CVTSI2SS64rr:
+ case X86::CVTSI2SDrr:
+ case X86::CVTSI2SD64rr:
+ case X86::CVTSD2SSrr:
+ case X86::Int_CVTSD2SSrr:
+ case X86::CVTSS2SDrr:
+ case X86::Int_CVTSS2SDrr:
+ case X86::RCPSSr:
+ case X86::RCPSSr_Int:
+ case X86::ROUNDSDr:
+ case X86::ROUNDSDr_Int:
+ case X86::ROUNDSSr:
+ case X86::ROUNDSSr_Int:
+ case X86::RSQRTSSr:
+ case X86::RSQRTSSr_Int:
+ case X86::SQRTSSr:
+ case X86::SQRTSSr_Int:
+ return true;
+ }
+
+ return false;
+}
+
+/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
+/// instructions we would like before a partial register update.
+unsigned X86InstrInfo::
+getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
+ const TargetRegisterInfo *TRI) const {
+ if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
+ return 0;
+
+ // If MI is marked as reading Reg, the partial register update is wanted.
+ const MachineOperand &MO = MI->getOperand(0);
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ if (MO.readsReg() || MI->readsVirtualRegister(Reg))
+ return 0;
+ } else {
+ if (MI->readsRegister(Reg, TRI))
+ return 0;
+ }
+
+ // If any of the preceding 16 instructions are reading Reg, insert a
+ // dependency breaking instruction. The magic number is based on a few
+ // Nehalem experiments.
+ return 16;
+}
+
+// Return true for any instruction the copies the high bits of the first source
+// operand into the unused high bits of the destination operand.
+static bool hasUndefRegUpdate(unsigned Opcode) {
+ switch (Opcode) {
+ case X86::VCVTSI2SSrr:
+ case X86::Int_VCVTSI2SSrr:
+ case X86::VCVTSI2SS64rr:
+ case X86::Int_VCVTSI2SS64rr:
+ case X86::VCVTSI2SDrr:
+ case X86::Int_VCVTSI2SDrr:
+ case X86::VCVTSI2SD64rr:
+ case X86::Int_VCVTSI2SD64rr:
+ case X86::VCVTSD2SSrr:
+ case X86::Int_VCVTSD2SSrr:
+ case X86::VCVTSS2SDrr:
+ case X86::Int_VCVTSS2SDrr:
+ case X86::VRCPSSr:
+ case X86::VROUNDSDr:
+ case X86::VROUNDSDr_Int:
+ case X86::VROUNDSSr:
+ case X86::VROUNDSSr_Int:
+ case X86::VRSQRTSSr:
+ case X86::VSQRTSSr:
+
+ // AVX-512
+ case X86::VCVTSD2SSZrr:
+ case X86::VCVTSS2SDZrr:
+ return true;
+ }
+
+ return false;
+}
+
+/// Inform the ExeDepsFix pass how many idle instructions we would like before
+/// certain undef register reads.
+///
+/// This catches the VCVTSI2SD family of instructions:
+///
+/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
+///
+/// We should to be careful *not* to catch VXOR idioms which are presumably
+/// handled specially in the pipeline:
+///
+/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
+///
+/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
+/// high bits that are passed-through are not live.
+unsigned X86InstrInfo::
+getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
+ const TargetRegisterInfo *TRI) const {
+ if (!hasUndefRegUpdate(MI->getOpcode()))
+ return 0;
+
+ // Set the OpNum parameter to the first source operand.
+ OpNum = 1;
+
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
+ // Use the same magic number as getPartialRegUpdateClearance.
+ return 16;
+ }
+ return 0;
+}
+
+void X86InstrInfo::
+breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
+ const TargetRegisterInfo *TRI) const {
+ unsigned Reg = MI->getOperand(OpNum).getReg();
+ // If MI kills this register, the false dependence is already broken.
+ if (MI->killsRegister(Reg, TRI))
+ return;
+ if (X86::VR128RegClass.contains(Reg)) {
+ // These instructions are all floating point domain, so xorps is the best
+ // choice.
+ bool HasAVX = Subtarget.hasAVX();
+ unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
+ .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
+ } else if (X86::VR256RegClass.contains(Reg)) {
+ // Use vxorps to clear the full ymm register.
+ // It wants to read and write the xmm sub-register.
+ unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
+ .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
+ .addReg(Reg, RegState::ImplicitDefine);
+ } else
+ return;
+ MI->addRegisterKilled(Reg, TRI, true);
+}
+
+MachineInstr*
+X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const {
+ // Check switch flag
+ if (NoFusing) return nullptr;
+
+ // Unless optimizing for size, don't fold to avoid partial
+ // register update stalls
+ if (!MF.getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
+ hasPartialRegUpdate(MI->getOpcode()))
+ return nullptr;
+
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ unsigned Size = MFI->getObjectSize(FrameIndex);
+ unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
+ // If the function stack isn't realigned we don't want to fold instructions
+ // that need increased alignment.
+ if (!RI.needsStackRealignment(MF))
+ Alignment = std::min(
+ Alignment, MF.getTarget().getFrameLowering()->getStackAlignment());
+ if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
+ unsigned NewOpc = 0;
+ unsigned RCSize = 0;
+ switch (MI->getOpcode()) {
+ default: return nullptr;
+ case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
+ case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
+ case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
+ case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
+ }
+ // Check if it's safe to fold the load. If the size of the object is
+ // narrower than the load width, then it's not.
+ if (Size < RCSize)
+ return nullptr;
+ // Change to CMPXXri r, 0 first.
+ MI->setDesc(get(NewOpc));
+ MI->getOperand(1).ChangeToImmediate(0);
+ } else if (Ops.size() != 1)
+ return nullptr;
+
+ SmallVector<MachineOperand,4> MOs;
+ MOs.push_back(MachineOperand::CreateFI(FrameIndex));
+ return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
+}
+
+MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr *LoadMI) const {
+ // If loading from a FrameIndex, fold directly from the FrameIndex.
+ unsigned NumOps = LoadMI->getDesc().getNumOperands();
+ int FrameIndex;
+ if (isLoadFromStackSlot(LoadMI, FrameIndex))
+ return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
+
+ // Check switch flag
+ if (NoFusing) return nullptr;
+
+ // Unless optimizing for size, don't fold to avoid partial
+ // register update stalls
+ if (!MF.getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
+ hasPartialRegUpdate(MI->getOpcode()))
+ return nullptr;
+
+ // Determine the alignment of the load.
+ unsigned Alignment = 0;
+ if (LoadMI->hasOneMemOperand())
+ Alignment = (*LoadMI->memoperands_begin())->getAlignment();
+ else
+ switch (LoadMI->getOpcode()) {
+ case X86::AVX2_SETALLONES:
+ case X86::AVX_SET0:
+ Alignment = 32;
+ break;
+ case X86::V_SET0:
+ case X86::V_SETALLONES:
+ Alignment = 16;
+ break;
+ case X86::FsFLD0SD:
+ Alignment = 8;
+ break;
+ case X86::FsFLD0SS:
+ Alignment = 4;
+ break;
+ default:
+ return nullptr;
+ }
+ if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
+ unsigned NewOpc = 0;
+ switch (MI->getOpcode()) {
+ default: return nullptr;
+ case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
+ case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
+ case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
+ case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
+ }
+ // Change to CMPXXri r, 0 first.
+ MI->setDesc(get(NewOpc));
+ MI->getOperand(1).ChangeToImmediate(0);
+ } else if (Ops.size() != 1)
+ return nullptr;
+
+ // Make sure the subregisters match.
+ // Otherwise we risk changing the size of the load.
+ if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
+ return nullptr;
+
+ SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
+ switch (LoadMI->getOpcode()) {
+ case X86::V_SET0:
+ case X86::V_SETALLONES:
+ case X86::AVX2_SETALLONES:
+ case X86::AVX_SET0:
+ case X86::FsFLD0SD:
+ case X86::FsFLD0SS: {
+ // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
+ // Create a constant-pool entry and operands to load from it.
+
+ // Medium and large mode can't fold loads this way.
+ if (MF.getTarget().getCodeModel() != CodeModel::Small &&
+ MF.getTarget().getCodeModel() != CodeModel::Kernel)
+ return nullptr;
+
+ // x86-32 PIC requires a PIC base register for constant pools.
+ unsigned PICBase = 0;
+ if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
+ if (Subtarget.is64Bit())
+ PICBase = X86::RIP;
+ else
+ // FIXME: PICBase = getGlobalBaseReg(&MF);
+ // This doesn't work for several reasons.
+ // 1. GlobalBaseReg may have been spilled.
+ // 2. It may not be live at MI.
+ return nullptr;
+ }
+
+ // Create a constant-pool entry.
+ MachineConstantPool &MCP = *MF.getConstantPool();
+ Type *Ty;
+ unsigned Opc = LoadMI->getOpcode();
+ if (Opc == X86::FsFLD0SS)
+ Ty = Type::getFloatTy(MF.getFunction()->getContext());
+ else if (Opc == X86::FsFLD0SD)
+ Ty = Type::getDoubleTy(MF.getFunction()->getContext());
+ else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
+ Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
+ else
+ Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
+
+ bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
+ const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
+ Constant::getNullValue(Ty);
+ unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
+
+ // Create operands to load from the constant pool entry.
+ MOs.push_back(MachineOperand::CreateReg(PICBase, false));
+ MOs.push_back(MachineOperand::CreateImm(1));
+ MOs.push_back(MachineOperand::CreateReg(0, false));
+ MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
+ MOs.push_back(MachineOperand::CreateReg(0, false));
+ break;
+ }
+ default: {
+ if ((LoadMI->getOpcode() == X86::MOVSSrm ||
+ LoadMI->getOpcode() == X86::VMOVSSrm) &&
+ MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
+ > 4)
+ // These instructions only load 32 bits, we can't fold them if the
+ // destination register is wider than 32 bits (4 bytes).
+ return nullptr;
+ if ((LoadMI->getOpcode() == X86::MOVSDrm ||
+ LoadMI->getOpcode() == X86::VMOVSDrm) &&
+ MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
+ > 8)
+ // These instructions only load 64 bits, we can't fold them if the
+ // destination register is wider than 64 bits (8 bytes).
+ return nullptr;
+
+ // Folding a normal load. Just copy the load's address operands.
+ for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
+ MOs.push_back(LoadMI->getOperand(i));
+ break;
+ }
+ }
+ return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
+}
+
+
+bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops) const {
+ // Check switch flag
+ if (NoFusing) return 0;
+
+ if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case X86::TEST8rr:
+ case X86::TEST16rr:
+ case X86::TEST32rr:
+ case X86::TEST64rr:
+ return true;
+ case X86::ADD32ri:
+ // FIXME: AsmPrinter doesn't know how to handle
+ // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
+ if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
+ return false;
+ break;
+ }
+ }
+
+ if (Ops.size() != 1)
+ return false;
+
+ unsigned OpNum = Ops[0];
+ unsigned Opc = MI->getOpcode();
+ unsigned NumOps = MI->getDesc().getNumOperands();
+ bool isTwoAddr = NumOps > 1 &&
+ MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
+
+ // Folding a memory location into the two-address part of a two-address
+ // instruction is different than folding it other places. It requires
+ // replacing the *two* registers with the memory location.
+ const DenseMap<unsigned,
+ std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
+ if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
+ OpcodeTablePtr = &RegOp2MemOpTable2Addr;
+ } else if (OpNum == 0) { // If operand 0
+ if (Opc == X86::MOV32r0)
+ return true;
+
+ OpcodeTablePtr = &RegOp2MemOpTable0;
+ } else if (OpNum == 1) {
+ OpcodeTablePtr = &RegOp2MemOpTable1;
+ } else if (OpNum == 2) {
+ OpcodeTablePtr = &RegOp2MemOpTable2;
+ } else if (OpNum == 3) {
+ OpcodeTablePtr = &RegOp2MemOpTable3;
+ }
+
+ if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
+ return true;
+ return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
+}
+
+bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
+ unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
+ MemOp2RegOpTable.find(MI->getOpcode());
+ if (I == MemOp2RegOpTable.end())
+ return false;
+ unsigned Opc = I->second.first;
+ unsigned Index = I->second.second & TB_INDEX_MASK;
+ bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
+ bool FoldedStore = I->second.second & TB_FOLDED_STORE;
+ if (UnfoldLoad && !FoldedLoad)
+ return false;
+ UnfoldLoad &= FoldedLoad;
+ if (UnfoldStore && !FoldedStore)
+ return false;
+ UnfoldStore &= FoldedStore;
+
+ const MCInstrDesc &MCID = get(Opc);
+ const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
+ if (!MI->hasOneMemOperand() &&
+ RC == &X86::VR128RegClass &&
+ !Subtarget.isUnalignedMemAccessFast())
+ // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
+ // conservatively assume the address is unaligned. That's bad for
+ // performance.
+ return false;
+ SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
+ SmallVector<MachineOperand,2> BeforeOps;
+ SmallVector<MachineOperand,2> AfterOps;
+ SmallVector<MachineOperand,4> ImpOps;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (i >= Index && i < Index + X86::AddrNumOperands)
+ AddrOps.push_back(Op);
+ else if (Op.isReg() && Op.isImplicit())
+ ImpOps.push_back(Op);
+ else if (i < Index)
+ BeforeOps.push_back(Op);
+ else if (i > Index)
+ AfterOps.push_back(Op);
+ }
+
+ // Emit the load instruction.
+ if (UnfoldLoad) {
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractLoadMemRefs(MI->memoperands_begin(),
+ MI->memoperands_end());
+ loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
+ if (UnfoldStore) {
+ // Address operands cannot be marked isKill.
+ for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
+ MachineOperand &MO = NewMIs[0]->getOperand(i);
+ if (MO.isReg())
+ MO.setIsKill(false);
+ }
+ }
+ }
+
+ // Emit the data processing instruction.
+ MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
+ MachineInstrBuilder MIB(MF, DataMI);
+
+ if (FoldedStore)
+ MIB.addReg(Reg, RegState::Define);
+ for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
+ MIB.addOperand(BeforeOps[i]);
+ if (FoldedLoad)
+ MIB.addReg(Reg);
+ for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
+ MIB.addOperand(AfterOps[i]);
+ for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
+ MachineOperand &MO = ImpOps[i];
+ MIB.addReg(MO.getReg(),
+ getDefRegState(MO.isDef()) |
+ RegState::Implicit |
+ getKillRegState(MO.isKill()) |
+ getDeadRegState(MO.isDead()) |
+ getUndefRegState(MO.isUndef()));
+ }
+ // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
+ switch (DataMI->getOpcode()) {
+ default: break;
+ case X86::CMP64ri32:
+ case X86::CMP64ri8:
+ case X86::CMP32ri:
+ case X86::CMP32ri8:
+ case X86::CMP16ri:
+ case X86::CMP16ri8:
+ case X86::CMP8ri: {
+ MachineOperand &MO0 = DataMI->getOperand(0);
+ MachineOperand &MO1 = DataMI->getOperand(1);
+ if (MO1.getImm() == 0) {
+ unsigned NewOpc;
+ switch (DataMI->getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::CMP64ri8:
+ case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
+ case X86::CMP32ri8:
+ case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
+ case X86::CMP16ri8:
+ case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
+ case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
+ }
+ DataMI->setDesc(get(NewOpc));
+ MO1.ChangeToRegister(MO0.getReg(), false);
+ }
+ }
+ }
+ NewMIs.push_back(DataMI);
+
+ // Emit the store instruction.
+ if (UnfoldStore) {
+ const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractStoreMemRefs(MI->memoperands_begin(),
+ MI->memoperands_end());
+ storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
+ }
+
+ return true;
+}
+
+bool
+X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
+ SmallVectorImpl<SDNode*> &NewNodes) const {
+ if (!N->isMachineOpcode())
+ return false;
+
+ DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
+ MemOp2RegOpTable.find(N->getMachineOpcode());
+ if (I == MemOp2RegOpTable.end())
+ return false;
+ unsigned Opc = I->second.first;
+ unsigned Index = I->second.second & TB_INDEX_MASK;
+ bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
+ bool FoldedStore = I->second.second & TB_FOLDED_STORE;
+ const MCInstrDesc &MCID = get(Opc);
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
+ unsigned NumDefs = MCID.NumDefs;
+ std::vector<SDValue> AddrOps;
+ std::vector<SDValue> BeforeOps;
+ std::vector<SDValue> AfterOps;
+ SDLoc dl(N);
+ unsigned NumOps = N->getNumOperands();
+ for (unsigned i = 0; i != NumOps-1; ++i) {
+ SDValue Op = N->getOperand(i);
+ if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
+ AddrOps.push_back(Op);
+ else if (i < Index-NumDefs)
+ BeforeOps.push_back(Op);
+ else if (i > Index-NumDefs)
+ AfterOps.push_back(Op);
+ }
+ SDValue Chain = N->getOperand(NumOps-1);
+ AddrOps.push_back(Chain);
+
+ // Emit the load instruction.
+ SDNode *Load = nullptr;
+ if (FoldedLoad) {
+ EVT VT = *RC->vt_begin();
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
+ cast<MachineSDNode>(N)->memoperands_end());
+ if (!(*MMOs.first) &&
+ RC == &X86::VR128RegClass &&
+ !Subtarget.isUnalignedMemAccessFast())
+ // Do not introduce a slow unaligned load.
+ return false;
+ unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
+ bool isAligned = (*MMOs.first) &&
+ (*MMOs.first)->getAlignment() >= Alignment;
+ Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
+ VT, MVT::Other, AddrOps);
+ NewNodes.push_back(Load);
+
+ // Preserve memory reference information.
+ cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
+ }
+
+ // Emit the data processing instruction.
+ std::vector<EVT> VTs;
+ const TargetRegisterClass *DstRC = nullptr;
+ if (MCID.getNumDefs() > 0) {
+ DstRC = getRegClass(MCID, 0, &RI, MF);
+ VTs.push_back(*DstRC->vt_begin());
+ }
+ for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
+ EVT VT = N->getValueType(i);
+ if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
+ VTs.push_back(VT);
+ }
+ if (Load)
+ BeforeOps.push_back(SDValue(Load, 0));
+ std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
+ SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
+ NewNodes.push_back(NewNode);
+
+ // Emit the store instruction.
+ if (FoldedStore) {
+ AddrOps.pop_back();
+ AddrOps.push_back(SDValue(NewNode, 0));
+ AddrOps.push_back(Chain);
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
+ cast<MachineSDNode>(N)->memoperands_end());
+ if (!(*MMOs.first) &&
+ RC == &X86::VR128RegClass &&
+ !Subtarget.isUnalignedMemAccessFast())
+ // Do not introduce a slow unaligned store.
+ return false;
+ unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
+ bool isAligned = (*MMOs.first) &&
+ (*MMOs.first)->getAlignment() >= Alignment;
+ SDNode *Store =
+ DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
+ dl, MVT::Other, AddrOps);
+ NewNodes.push_back(Store);
+
+ // Preserve memory reference information.
+ cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
+ }
+
+ return true;
+}
+
+unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
+ bool UnfoldLoad, bool UnfoldStore,
+ unsigned *LoadRegIndex) const {
+ DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
+ MemOp2RegOpTable.find(Opc);
+ if (I == MemOp2RegOpTable.end())
+ return 0;
+ bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
+ bool FoldedStore = I->second.second & TB_FOLDED_STORE;
+ if (UnfoldLoad && !FoldedLoad)
+ return 0;
+ if (UnfoldStore && !FoldedStore)
+ return 0;
+ if (LoadRegIndex)
+ *LoadRegIndex = I->second.second & TB_INDEX_MASK;
+ return I->second.first;
+}
+
+bool
+X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
+ int64_t &Offset1, int64_t &Offset2) const {
+ if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
+ return false;
+ unsigned Opc1 = Load1->getMachineOpcode();
+ unsigned Opc2 = Load2->getMachineOpcode();
+ switch (Opc1) {
+ default: return false;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp32m:
+ case X86::LD_Fp64m:
+ case X86::LD_Fp80m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ case X86::FsMOVAPSrm:
+ case X86::FsMOVAPDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVUPSrm:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::MOVDQUrm:
+ // AVX load instructions
+ case X86::VMOVSSrm:
+ case X86::VMOVSDrm:
+ case X86::FsVMOVAPSrm:
+ case X86::FsVMOVAPDrm:
+ case X86::VMOVAPSrm:
+ case X86::VMOVUPSrm:
+ case X86::VMOVAPDrm:
+ case X86::VMOVDQArm:
+ case X86::VMOVDQUrm:
+ case X86::VMOVAPSYrm:
+ case X86::VMOVUPSYrm:
+ case X86::VMOVAPDYrm:
+ case X86::VMOVDQAYrm:
+ case X86::VMOVDQUYrm:
+ break;
+ }
+ switch (Opc2) {
+ default: return false;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp32m:
+ case X86::LD_Fp64m:
+ case X86::LD_Fp80m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ case X86::FsMOVAPSrm:
+ case X86::FsMOVAPDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVUPSrm:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::MOVDQUrm:
+ // AVX load instructions
+ case X86::VMOVSSrm:
+ case X86::VMOVSDrm:
+ case X86::FsVMOVAPSrm:
+ case X86::FsVMOVAPDrm:
+ case X86::VMOVAPSrm:
+ case X86::VMOVUPSrm:
+ case X86::VMOVAPDrm:
+ case X86::VMOVDQArm:
+ case X86::VMOVDQUrm:
+ case X86::VMOVAPSYrm:
+ case X86::VMOVUPSYrm:
+ case X86::VMOVAPDYrm:
+ case X86::VMOVDQAYrm:
+ case X86::VMOVDQUYrm:
+ break;
+ }
+
+ // Check if chain operands and base addresses match.
+ if (Load1->getOperand(0) != Load2->getOperand(0) ||
+ Load1->getOperand(5) != Load2->getOperand(5))
+ return false;
+ // Segment operands should match as well.
+ if (Load1->getOperand(4) != Load2->getOperand(4))
+ return false;
+ // Scale should be 1, Index should be Reg0.
+ if (Load1->getOperand(1) == Load2->getOperand(1) &&
+ Load1->getOperand(2) == Load2->getOperand(2)) {
+ if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
+ return false;
+
+ // Now let's examine the displacements.
+ if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
+ isa<ConstantSDNode>(Load2->getOperand(3))) {
+ Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
+ Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
+ return true;
+ }
+ }
+ return false;
+}
+
+bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const {
+ assert(Offset2 > Offset1);
+ if ((Offset2 - Offset1) / 8 > 64)
+ return false;
+
+ unsigned Opc1 = Load1->getMachineOpcode();
+ unsigned Opc2 = Load2->getMachineOpcode();
+ if (Opc1 != Opc2)
+ return false; // FIXME: overly conservative?
+
+ switch (Opc1) {
+ default: break;
+ case X86::LD_Fp32m:
+ case X86::LD_Fp64m:
+ case X86::LD_Fp80m:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ return false;
+ }
+
+ EVT VT = Load1->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default:
+ // XMM registers. In 64-bit mode we can be a bit more aggressive since we
+ // have 16 of them to play with.
+ if (Subtarget.is64Bit()) {
+ if (NumLoads >= 3)
+ return false;
+ } else if (NumLoads) {
+ return false;
+ }
+ break;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ case MVT::f32:
+ case MVT::f64:
+ if (NumLoads)
+ return false;
+ break;
+ }
+
+ return true;
+}
+
+bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
+ MachineInstr *Second) const {
+ // Check if this processor supports macro-fusion. Since this is a minor
+ // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
+ // proxy for SandyBridge+.
+ if (!Subtarget.hasAVX())
+ return false;
+
+ enum {
+ FuseTest,
+ FuseCmp,
+ FuseInc
+ } FuseKind;
+
+ switch(Second->getOpcode()) {
+ default:
+ return false;
+ case X86::JE_4:
+ case X86::JNE_4:
+ case X86::JL_4:
+ case X86::JLE_4:
+ case X86::JG_4:
+ case X86::JGE_4:
+ FuseKind = FuseInc;
+ break;
+ case X86::JB_4:
+ case X86::JBE_4:
+ case X86::JA_4:
+ case X86::JAE_4:
+ FuseKind = FuseCmp;
+ break;
+ case X86::JS_4:
+ case X86::JNS_4:
+ case X86::JP_4:
+ case X86::JNP_4:
+ case X86::JO_4:
+ case X86::JNO_4:
+ FuseKind = FuseTest;
+ break;
+ }
+ switch (First->getOpcode()) {
+ default:
+ return false;
+ case X86::TEST8rr:
+ case X86::TEST16rr:
+ case X86::TEST32rr:
+ case X86::TEST64rr:
+ case X86::TEST8ri:
+ case X86::TEST16ri:
+ case X86::TEST32ri:
+ case X86::TEST32i32:
+ case X86::TEST64i32:
+ case X86::TEST64ri32:
+ case X86::TEST8rm:
+ case X86::TEST16rm:
+ case X86::TEST32rm:
+ case X86::TEST64rm:
+ case X86::TEST8ri_NOREX:
+ case X86::AND16i16:
+ case X86::AND16ri:
+ case X86::AND16ri8:
+ case X86::AND16rm:
+ case X86::AND16rr:
+ case X86::AND32i32:
+ case X86::AND32ri:
+ case X86::AND32ri8:
+ case X86::AND32rm:
+ case X86::AND32rr:
+ case X86::AND64i32:
+ case X86::AND64ri32:
+ case X86::AND64ri8:
+ case X86::AND64rm:
+ case X86::AND64rr:
+ case X86::AND8i8:
+ case X86::AND8ri:
+ case X86::AND8rm:
+ case X86::AND8rr:
+ return true;
+ case X86::CMP16i16:
+ case X86::CMP16ri:
+ case X86::CMP16ri8:
+ case X86::CMP16rm:
+ case X86::CMP16rr:
+ case X86::CMP32i32:
+ case X86::CMP32ri:
+ case X86::CMP32ri8:
+ case X86::CMP32rm:
+ case X86::CMP32rr:
+ case X86::CMP64i32:
+ case X86::CMP64ri32:
+ case X86::CMP64ri8:
+ case X86::CMP64rm:
+ case X86::CMP64rr:
+ case X86::CMP8i8:
+ case X86::CMP8ri:
+ case X86::CMP8rm:
+ case X86::CMP8rr:
+ case X86::ADD16i16:
+ case X86::ADD16ri:
+ case X86::ADD16ri8:
+ case X86::ADD16ri8_DB:
+ case X86::ADD16ri_DB:
+ case X86::ADD16rm:
+ case X86::ADD16rr:
+ case X86::ADD16rr_DB:
+ case X86::ADD32i32:
+ case X86::ADD32ri:
+ case X86::ADD32ri8:
+ case X86::ADD32ri8_DB:
+ case X86::ADD32ri_DB:
+ case X86::ADD32rm:
+ case X86::ADD32rr:
+ case X86::ADD32rr_DB:
+ case X86::ADD64i32:
+ case X86::ADD64ri32:
+ case X86::ADD64ri32_DB:
+ case X86::ADD64ri8:
+ case X86::ADD64ri8_DB:
+ case X86::ADD64rm:
+ case X86::ADD64rr:
+ case X86::ADD64rr_DB:
+ case X86::ADD8i8:
+ case X86::ADD8mi:
+ case X86::ADD8mr:
+ case X86::ADD8ri:
+ case X86::ADD8rm:
+ case X86::ADD8rr:
+ case X86::SUB16i16:
+ case X86::SUB16ri:
+ case X86::SUB16ri8:
+ case X86::SUB16rm:
+ case X86::SUB16rr:
+ case X86::SUB32i32:
+ case X86::SUB32ri:
+ case X86::SUB32ri8:
+ case X86::SUB32rm:
+ case X86::SUB32rr:
+ case X86::SUB64i32:
+ case X86::SUB64ri32:
+ case X86::SUB64ri8:
+ case X86::SUB64rm:
+ case X86::SUB64rr:
+ case X86::SUB8i8:
+ case X86::SUB8ri:
+ case X86::SUB8rm:
+ case X86::SUB8rr:
+ return FuseKind == FuseCmp || FuseKind == FuseInc;
+ case X86::INC16r:
+ case X86::INC32r:
+ case X86::INC64_16r:
+ case X86::INC64_32r:
+ case X86::INC64r:
+ case X86::INC8r:
+ case X86::DEC16r:
+ case X86::DEC32r:
+ case X86::DEC64_16r:
+ case X86::DEC64_32r:
+ case X86::DEC64r:
+ case X86::DEC8r:
+ return FuseKind == FuseInc;
+ }
+}
+
+bool X86InstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 1 && "Invalid X86 branch condition!");
+ X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
+ if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
+ return true;
+ Cond[0].setImm(GetOppositeBranchCondition(CC));
+ return false;
+}
+
+bool X86InstrInfo::
+isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
+ // FIXME: Return false for x87 stack register classes for now. We can't
+ // allow any loads of these registers before FpGet_ST0_80.
+ return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
+ RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
+}
+
+/// getGlobalBaseReg - Return a virtual register initialized with the
+/// the global base register value. Output instructions required to
+/// initialize the register in the function entry block, if necessary.
+///
+/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
+///
+unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
+ assert(!Subtarget.is64Bit() &&
+ "X86-64 PIC uses RIP relative addressing");
+
+ X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
+ unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
+ if (GlobalBaseReg != 0)
+ return GlobalBaseReg;
+
+ // Create the register. The code to initialize it is inserted
+ // later, by the CGBR pass (below).
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
+ X86FI->setGlobalBaseReg(GlobalBaseReg);
+ return GlobalBaseReg;
+}
+
+// These are the replaceable SSE instructions. Some of these have Int variants
+// that we don't include here. We don't want to replace instructions selected
+// by intrinsics.
+static const uint16_t ReplaceableInstrs[][3] = {
+ //PackedSingle PackedDouble PackedInt
+ { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
+ { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
+ { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
+ { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
+ { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
+ { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
+ { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
+ { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
+ { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
+ { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
+ { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
+ { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
+ { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
+ { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
+ // AVX 128-bit support
+ { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
+ { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
+ { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
+ { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
+ { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
+ { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
+ { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
+ { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
+ { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
+ { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
+ { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
+ { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
+ { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
+ { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
+ // AVX 256-bit support
+ { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
+ { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
+ { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
+ { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
+ { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
+ { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
+};
+
+static const uint16_t ReplaceableInstrsAVX2[][3] = {
+ //PackedSingle PackedDouble PackedInt
+ { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
+ { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
+ { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
+ { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
+ { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
+ { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
+ { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
+ { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
+ { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
+ { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
+ { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
+ { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
+ { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
+ { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
+ { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
+ { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
+ { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
+ { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
+ { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
+ { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
+};
+
+// FIXME: Some shuffle and unpack instructions have equivalents in different
+// domains, but they require a bit more work than just switching opcodes.
+
+static const uint16_t *lookup(unsigned opcode, unsigned domain) {
+ for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
+ if (ReplaceableInstrs[i][domain-1] == opcode)
+ return ReplaceableInstrs[i];
+ return nullptr;
+}
+
+static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
+ for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
+ if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
+ return ReplaceableInstrsAVX2[i];
+ return nullptr;
+}
+
+std::pair<uint16_t, uint16_t>
+X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
+ uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
+ bool hasAVX2 = Subtarget.hasAVX2();
+ uint16_t validDomains = 0;
+ if (domain && lookup(MI->getOpcode(), domain))
+ validDomains = 0xe;
+ else if (domain && lookupAVX2(MI->getOpcode(), domain))
+ validDomains = hasAVX2 ? 0xe : 0x6;
+ return std::make_pair(domain, validDomains);
+}
+
+void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
+ assert(Domain>0 && Domain<4 && "Invalid execution domain");
+ uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
+ assert(dom && "Not an SSE instruction");
+ const uint16_t *table = lookup(MI->getOpcode(), dom);
+ if (!table) { // try the other table
+ assert((Subtarget.hasAVX2() || Domain < 3) &&
+ "256-bit vector operations only available in AVX2");
+ table = lookupAVX2(MI->getOpcode(), dom);
+ }
+ assert(table && "Cannot change domain");
+ MI->setDesc(get(table[Domain-1]));
+}
+
+/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
+void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
+ NopInst.setOpcode(X86::NOOP);
+}
+
+void X86InstrInfo::getUnconditionalBranch(
+ MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
+ Branch.setOpcode(X86::JMP_4);
+ Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
+}
+
+void X86InstrInfo::getTrap(MCInst &MI) const {
+ MI.setOpcode(X86::TRAP);
+}
+
+bool X86InstrInfo::isHighLatencyDef(int opc) const {
+ switch (opc) {
+ default: return false;
+ case X86::DIVSDrm:
+ case X86::DIVSDrm_Int:
+ case X86::DIVSDrr:
+ case X86::DIVSDrr_Int:
+ case X86::DIVSSrm:
+ case X86::DIVSSrm_Int:
+ case X86::DIVSSrr:
+ case X86::DIVSSrr_Int:
+ case X86::SQRTPDm:
+ case X86::SQRTPDr:
+ case X86::SQRTPSm:
+ case X86::SQRTPSr:
+ case X86::SQRTSDm:
+ case X86::SQRTSDm_Int:
+ case X86::SQRTSDr:
+ case X86::SQRTSDr_Int:
+ case X86::SQRTSSm:
+ case X86::SQRTSSm_Int:
+ case X86::SQRTSSr:
+ case X86::SQRTSSr_Int:
+ // AVX instructions with high latency
+ case X86::VDIVSDrm:
+ case X86::VDIVSDrm_Int:
+ case X86::VDIVSDrr:
+ case X86::VDIVSDrr_Int:
+ case X86::VDIVSSrm:
+ case X86::VDIVSSrm_Int:
+ case X86::VDIVSSrr:
+ case X86::VDIVSSrr_Int:
+ case X86::VSQRTPDm:
+ case X86::VSQRTPDr:
+ case X86::VSQRTPSm:
+ case X86::VSQRTPSr:
+ case X86::VSQRTSDm:
+ case X86::VSQRTSDm_Int:
+ case X86::VSQRTSDr:
+ case X86::VSQRTSSm:
+ case X86::VSQRTSSm_Int:
+ case X86::VSQRTSSr:
+ case X86::VSQRTPDZrm:
+ case X86::VSQRTPDZrr:
+ case X86::VSQRTPSZrm:
+ case X86::VSQRTPSZrr:
+ case X86::VSQRTSDZm:
+ case X86::VSQRTSDZm_Int:
+ case X86::VSQRTSDZr:
+ case X86::VSQRTSSZm_Int:
+ case X86::VSQRTSSZr:
+ case X86::VSQRTSSZm:
+ case X86::VDIVSDZrm:
+ case X86::VDIVSDZrr:
+ case X86::VDIVSSZrm:
+ case X86::VDIVSSZrr:
+
+ case X86::VGATHERQPSZrm:
+ case X86::VGATHERQPDZrm:
+ case X86::VGATHERDPDZrm:
+ case X86::VGATHERDPSZrm:
+ case X86::VPGATHERQDZrm:
+ case X86::VPGATHERQQZrm:
+ case X86::VPGATHERDDZrm:
+ case X86::VPGATHERDQZrm:
+ case X86::VSCATTERQPDZmr:
+ case X86::VSCATTERQPSZmr:
+ case X86::VSCATTERDPDZmr:
+ case X86::VSCATTERDPSZmr:
+ case X86::VPSCATTERQDZmr:
+ case X86::VPSCATTERQQZmr:
+ case X86::VPSCATTERDDZmr:
+ case X86::VPSCATTERDQZmr:
+ return true;
+ }
+}
+
+bool X86InstrInfo::
+hasHighOperandLatency(const InstrItineraryData *ItinData,
+ const MachineRegisterInfo *MRI,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI, unsigned UseIdx) const {
+ return isHighLatencyDef(DefMI->getOpcode());
+}
+
+namespace {
+ /// CGBR - Create Global Base Reg pass. This initializes the PIC
+ /// global base register for x86-32.
+ struct CGBR : public MachineFunctionPass {
+ static char ID;
+ CGBR() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ const X86TargetMachine *TM =
+ static_cast<const X86TargetMachine *>(&MF.getTarget());
+
+ // Don't do anything if this is 64-bit as 64-bit PIC
+ // uses RIP relative addressing.
+ if (TM->getSubtarget<X86Subtarget>().is64Bit())
+ return false;
+
+ // Only emit a global base reg in PIC mode.
+ if (TM->getRelocationModel() != Reloc::PIC_)
+ return false;
+
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
+
+ // If we didn't need a GlobalBaseReg, don't insert code.
+ if (GlobalBaseReg == 0)
+ return false;
+
+ // Insert the set of GlobalBaseReg into the first MBB of the function
+ MachineBasicBlock &FirstMBB = MF.front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ const X86InstrInfo *TII = TM->getInstrInfo();
+
+ unsigned PC;
+ if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
+ PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
+ else
+ PC = GlobalBaseReg;
+
+ // Operand of MovePCtoStack is completely ignored by asm printer. It's
+ // only used in JIT code emission as displacement to pc.
+ BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
+
+ // If we're using vanilla 'GOT' PIC style, we should use relative addressing
+ // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
+ if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
+ // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
+ BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
+ .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
+ X86II::MO_GOT_ABSOLUTE_ADDRESS);
+ }
+
+ return true;
+ }
+
+ const char *getPassName() const override {
+ return "X86 PIC Global Base Reg Initialization";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ };
+}
+
+char CGBR::ID = 0;
+FunctionPass*
+llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
+
+namespace {
+ struct LDTLSCleanup : public MachineFunctionPass {
+ static char ID;
+ LDTLSCleanup() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
+ if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
+ // No point folding accesses if there isn't at least two.
+ return false;
+ }
+
+ MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
+ return VisitNode(DT->getRootNode(), 0);
+ }
+
+ // Visit the dominator subtree rooted at Node in pre-order.
+ // If TLSBaseAddrReg is non-null, then use that to replace any
+ // TLS_base_addr instructions. Otherwise, create the register
+ // when the first such instruction is seen, and then use it
+ // as we encounter more instructions.
+ bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
+ MachineBasicBlock *BB = Node->getBlock();
+ bool Changed = false;
+
+ // Traverse the current block.
+ for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
+ ++I) {
+ switch (I->getOpcode()) {
+ case X86::TLS_base_addr32:
+ case X86::TLS_base_addr64:
+ if (TLSBaseAddrReg)
+ I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
+ else
+ I = SetRegister(I, &TLSBaseAddrReg);
+ Changed = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ // Visit the children of this block in the dominator tree.
+ for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
+ I != E; ++I) {
+ Changed |= VisitNode(*I, TLSBaseAddrReg);
+ }
+
+ return Changed;
+ }
+
+ // Replace the TLS_base_addr instruction I with a copy from
+ // TLSBaseAddrReg, returning the new instruction.
+ MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
+ unsigned TLSBaseAddrReg) {
+ MachineFunction *MF = I->getParent()->getParent();
+ const X86TargetMachine *TM =
+ static_cast<const X86TargetMachine *>(&MF->getTarget());
+ const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
+ const X86InstrInfo *TII = TM->getInstrInfo();
+
+ // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
+ MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
+ TII->get(TargetOpcode::COPY),
+ is64Bit ? X86::RAX : X86::EAX)
+ .addReg(TLSBaseAddrReg);
+
+ // Erase the TLS_base_addr instruction.
+ I->eraseFromParent();
+
+ return Copy;
+ }
+
+ // Create a virtal register in *TLSBaseAddrReg, and populate it by
+ // inserting a copy instruction after I. Returns the new instruction.
+ MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
+ MachineFunction *MF = I->getParent()->getParent();
+ const X86TargetMachine *TM =
+ static_cast<const X86TargetMachine *>(&MF->getTarget());
+ const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
+ const X86InstrInfo *TII = TM->getInstrInfo();
+
+ // Create a virtual register for the TLS base address.
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
+ ? &X86::GR64RegClass
+ : &X86::GR32RegClass);
+
+ // Insert a copy from RAX/EAX to TLSBaseAddrReg.
+ MachineInstr *Next = I->getNextNode();
+ MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
+ TII->get(TargetOpcode::COPY),
+ *TLSBaseAddrReg)
+ .addReg(is64Bit ? X86::RAX : X86::EAX);
+
+ return Copy;
+ }
+
+ const char *getPassName() const override {
+ return "Local Dynamic TLS Access Clean-up";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ };
+}
+
+char LDTLSCleanup::ID = 0;
+FunctionPass*
+llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.h b/contrib/llvm/lib/Target/X86/X86InstrInfo.h
new file mode 100644
index 0000000..c177e3a
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.h
@@ -0,0 +1,464 @@
+//===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86INSTRUCTIONINFO_H
+#define X86INSTRUCTIONINFO_H
+
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "X86RegisterInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "X86GenInstrInfo.inc"
+
+namespace llvm {
+ class X86RegisterInfo;
+ class X86Subtarget;
+
+namespace X86 {
+ // X86 specific condition code. These correspond to X86_*_COND in
+ // X86InstrInfo.td. They must be kept in synch.
+ enum CondCode {
+ COND_A = 0,
+ COND_AE = 1,
+ COND_B = 2,
+ COND_BE = 3,
+ COND_E = 4,
+ COND_G = 5,
+ COND_GE = 6,
+ COND_L = 7,
+ COND_LE = 8,
+ COND_NE = 9,
+ COND_NO = 10,
+ COND_NP = 11,
+ COND_NS = 12,
+ COND_O = 13,
+ COND_P = 14,
+ COND_S = 15,
+ LAST_VALID_COND = COND_S,
+
+ // Artificial condition codes. These are used by AnalyzeBranch
+ // to indicate a block terminated with two conditional branches to
+ // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
+ // which can't be represented on x86 with a single condition. These
+ // are never used in MachineInstrs.
+ COND_NE_OR_P,
+ COND_NP_OR_E,
+
+ COND_INVALID
+ };
+
+ // Turn condition code into conditional branch opcode.
+ unsigned GetCondBranchFromCond(CondCode CC);
+
+ /// \brief Return a set opcode for the given condition and whether it has
+ /// a memory operand.
+ unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
+
+ /// \brief Return a cmov opcode for the given condition, register size in
+ /// bytes, and operand type.
+ unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
+ bool HasMemoryOperand = false);
+
+ // Turn CMov opcode into condition code.
+ CondCode getCondFromCMovOpc(unsigned Opc);
+
+ /// GetOppositeBranchCondition - Return the inverse of the specified cond,
+ /// e.g. turning COND_E to COND_NE.
+ CondCode GetOppositeBranchCondition(CondCode CC);
+} // end namespace X86;
+
+
+/// isGlobalStubReference - Return true if the specified TargetFlag operand is
+/// a reference to a stub for a global, not the global itself.
+inline static bool isGlobalStubReference(unsigned char TargetFlag) {
+ switch (TargetFlag) {
+ case X86II::MO_DLLIMPORT: // dllimport stub.
+ case X86II::MO_GOTPCREL: // rip-relative GOT reference.
+ case X86II::MO_GOT: // normal GOT reference.
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
+ case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// isGlobalRelativeToPICBase - Return true if the specified global value
+/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
+/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
+inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
+ switch (TargetFlag) {
+ case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
+ case X86II::MO_GOT: // isPICStyleGOT: other global.
+ case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
+ case X86II::MO_TLVP: // ??? Pretty sure..
+ return true;
+ default:
+ return false;
+ }
+}
+
+inline static bool isScale(const MachineOperand &MO) {
+ return MO.isImm() &&
+ (MO.getImm() == 1 || MO.getImm() == 2 ||
+ MO.getImm() == 4 || MO.getImm() == 8);
+}
+
+inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
+ if (MI->getOperand(Op).isFI()) return true;
+ return Op+X86::AddrSegmentReg <= MI->getNumOperands() &&
+ MI->getOperand(Op+X86::AddrBaseReg).isReg() &&
+ isScale(MI->getOperand(Op+X86::AddrScaleAmt)) &&
+ MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
+ (MI->getOperand(Op+X86::AddrDisp).isImm() ||
+ MI->getOperand(Op+X86::AddrDisp).isGlobal() ||
+ MI->getOperand(Op+X86::AddrDisp).isCPI() ||
+ MI->getOperand(Op+X86::AddrDisp).isJTI());
+}
+
+inline static bool isMem(const MachineInstr *MI, unsigned Op) {
+ if (MI->getOperand(Op).isFI()) return true;
+ return Op+X86::AddrNumOperands <= MI->getNumOperands() &&
+ MI->getOperand(Op+X86::AddrSegmentReg).isReg() &&
+ isLeaMem(MI, Op);
+}
+
+class X86InstrInfo final : public X86GenInstrInfo {
+ X86Subtarget &Subtarget;
+ const X86RegisterInfo RI;
+
+ /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
+ /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
+ ///
+ typedef DenseMap<unsigned,
+ std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
+ RegOp2MemOpTableType RegOp2MemOpTable2Addr;
+ RegOp2MemOpTableType RegOp2MemOpTable0;
+ RegOp2MemOpTableType RegOp2MemOpTable1;
+ RegOp2MemOpTableType RegOp2MemOpTable2;
+ RegOp2MemOpTableType RegOp2MemOpTable3;
+
+ /// MemOp2RegOpTable - Load / store unfolding opcode map.
+ ///
+ typedef DenseMap<unsigned,
+ std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
+ MemOp2RegOpTableType MemOp2RegOpTable;
+
+ static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
+ MemOp2RegOpTableType &M2RTable,
+ unsigned RegOp, unsigned MemOp, unsigned Flags);
+
+ virtual void anchor();
+
+public:
+ explicit X86InstrInfo(X86Subtarget &STI);
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ const X86RegisterInfo &getRegisterInfo() const { return RI; }
+
+ /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
+ /// extension instruction. That is, it's like a copy where it's legal for the
+ /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
+ /// true, then it's expected the pre-extension value is available as a subreg
+ /// of the result register. This also returns the sub-register index in
+ /// SubIdx.
+ bool isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const override;
+
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
+ /// stack locations as well. This uses a heuristic so it isn't
+ /// reliable for correctness.
+ unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
+ /// stack locations as well. This uses a heuristic so it isn't
+ /// reliable for correctness.
+ unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
+ AliasAnalysis *AA) const override;
+ void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig,
+ const TargetRegisterInfo &TRI) const override;
+
+ /// Given an operand within a MachineInstr, insert preceding code to put it
+ /// into the right format for a particular kind of LEA instruction. This may
+ /// involve using an appropriate super-register instead (with an implicit use
+ /// of the original) or creating a new virtual register and inserting COPY
+ /// instructions to get the data into the right class.
+ ///
+ /// Reference parameters are set to indicate how caller should add this
+ /// operand to the LEA instruction.
+ bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
+ unsigned LEAOpcode, bool AllowSP,
+ unsigned &NewSrc, bool &isKill,
+ bool &isUndef, MachineOperand &ImplicitOp) const;
+
+ /// convertToThreeAddress - This method must be implemented by targets that
+ /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
+ /// may be able to convert a two-address instruction into a true
+ /// three-address instruction on demand. This allows the X86 target (for
+ /// example) to convert ADD and SHL instructions into LEA instructions if they
+ /// would require register copies due to two-addressness.
+ ///
+ /// This method returns a null pointer if the transformation cannot be
+ /// performed, otherwise it returns the new instruction.
+ ///
+ MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const override;
+
+ /// commuteInstruction - We have a few instructions that must be hacked on to
+ /// commute them.
+ ///
+ MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const override;
+
+ bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const override;
+
+ // Branch analysis.
+ bool isUnpredicatedTerminator(const MachineInstr* MI) const override;
+ bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const override;
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const override;
+ bool canInsertSelect(const MachineBasicBlock&,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned, unsigned, int&, int&, int&) const override;
+ void insertSelect(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DstReg,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned TrueReg, unsigned FalseReg) const override;
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const;
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const;
+
+ bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
+
+ /// foldMemoryOperand - If this target supports it, fold a load or store of
+ /// the specified stack slot into the specified machine instruction for the
+ /// specified operand(s). If this is possible, the target should perform the
+ /// folding and return true, otherwise it should return false. If it folds
+ /// the instruction, it is likely that the MachineInstruction the iterator
+ /// references has been changed.
+ MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const override;
+
+ /// foldMemoryOperand - Same as the previous version except it allows folding
+ /// of any load and store from / to any address, not just from a specific
+ /// stack slot.
+ MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr* LoadMI) const override;
+
+ /// canFoldMemoryOperand - Returns true if the specified load / store is
+ /// folding is possible.
+ bool canFoldMemoryOperand(const MachineInstr*,
+ const SmallVectorImpl<unsigned> &) const override;
+
+ /// unfoldMemoryOperand - Separate a single instruction which folded a load or
+ /// a store or a load and a store into two or more instruction. If this is
+ /// possible, returns true as well as the new instructions by reference.
+ bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
+ unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const override;
+
+ bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
+ SmallVectorImpl<SDNode*> &NewNodes) const override;
+
+ /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
+ /// instruction after load / store are unfolded from an instruction of the
+ /// specified opcode. It returns zero if the specified unfolding is not
+ /// possible. If LoadRegIndex is non-null, it is filled in with the operand
+ /// index of the operand which will hold the register holding the loaded
+ /// value.
+ unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
+ bool UnfoldLoad, bool UnfoldStore,
+ unsigned *LoadRegIndex = nullptr) const override;
+
+ /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
+ /// to determine if two loads are loading from the same base address. It
+ /// should only return true if the base pointers are the same and the
+ /// only differences between the two addresses are the offset. It also returns
+ /// the offsets by reference.
+ bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
+ int64_t &Offset2) const override;
+
+ /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
+ /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
+ /// be scheduled togther. On some targets if two loads are loading from
+ /// addresses in the same cache line, it's better if they are scheduled
+ /// together. This function takes two integers that represent the load offsets
+ /// from the common base address. It returns true if it decides it's desirable
+ /// to schedule the two loads together. "NumLoads" is the number of loads that
+ /// have already been scheduled after Load1.
+ bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const override;
+
+ bool shouldScheduleAdjacent(MachineInstr* First,
+ MachineInstr *Second) const override;
+
+ void getNoopForMachoTarget(MCInst &NopInst) const override;
+
+ bool
+ ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
+
+ /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
+ /// instruction that defines the specified register class.
+ bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
+
+ /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
+ /// would clobber the EFLAGS condition register. Note the result may be
+ /// conservative. If it cannot definitely determine the safety after visiting
+ /// a few instructions in each direction it assumes it's not safe.
+ bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const;
+
+ static bool isX86_64ExtendedReg(const MachineOperand &MO) {
+ if (!MO.isReg()) return false;
+ return X86II::isX86_64ExtendedReg(MO.getReg());
+ }
+
+ /// getGlobalBaseReg - Return a virtual register initialized with the
+ /// the global base register value. Output instructions required to
+ /// initialize the register in the function entry block, if necessary.
+ ///
+ unsigned getGlobalBaseReg(MachineFunction *MF) const;
+
+ std::pair<uint16_t, uint16_t>
+ getExecutionDomain(const MachineInstr *MI) const override;
+
+ void setExecutionDomain(MachineInstr *MI, unsigned Domain) const override;
+
+ unsigned
+ getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
+ const TargetRegisterInfo *TRI) const override;
+ unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
+ const TargetRegisterInfo *TRI) const override;
+ void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
+ const TargetRegisterInfo *TRI) const override;
+
+ MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ unsigned OpNum,
+ const SmallVectorImpl<MachineOperand> &MOs,
+ unsigned Size, unsigned Alignment) const;
+
+ void
+ getUnconditionalBranch(MCInst &Branch,
+ const MCSymbolRefExpr *BranchTarget) const override;
+
+ void getTrap(MCInst &MI) const override;
+
+ bool isHighLatencyDef(int opc) const override;
+
+ bool hasHighOperandLatency(const InstrItineraryData *ItinData,
+ const MachineRegisterInfo *MRI,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI,
+ unsigned UseIdx) const override;
+
+ /// analyzeCompare - For a comparison instruction, return the source registers
+ /// in SrcReg and SrcReg2 if having two register operands, and the value it
+ /// compares against in CmpValue. Return true if the comparison instruction
+ /// can be analyzed.
+ bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
+ unsigned &SrcReg2, int &CmpMask,
+ int &CmpValue) const override;
+
+ /// optimizeCompareInstr - Check if there exists an earlier instruction that
+ /// operates on the same source operands and sets flags in the same way as
+ /// Compare; remove Compare if possible.
+ bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
+ unsigned SrcReg2, int CmpMask, int CmpValue,
+ const MachineRegisterInfo *MRI) const override;
+
+ /// optimizeLoadInstr - Try to remove the load by folding it to a register
+ /// operand at the use. We fold the load instructions if and only if the
+ /// def and use are in the same BB. We only look at one load and see
+ /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
+ /// defined by the load we are trying to fold. DefMI returns the machine
+ /// instruction that defines FoldAsLoadDefReg, and the function returns
+ /// the machine instruction generated due to folding.
+ MachineInstr* optimizeLoadInstr(MachineInstr *MI,
+ const MachineRegisterInfo *MRI,
+ unsigned &FoldAsLoadDefReg,
+ MachineInstr *&DefMI) const override;
+
+private:
+ MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
+ MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const;
+
+ /// isFrameOperand - Return true and the FrameIndex if the specified
+ /// operand and follow operands form a reference to the stack frame.
+ bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
+ int &FrameIndex) const;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.td b/contrib/llvm/lib/Target/X86/X86InstrInfo.td
new file mode 100644
index 0000000..0f872a6
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.td
@@ -0,0 +1,2867 @@
+//===-- X86InstrInfo.td - Main X86 Instruction Definition --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the X86 instruction set, defining the instructions, and
+// properties of the instructions which are needed for code generation, machine
+// code emission, and analysis.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// X86 specific DAG Nodes.
+//
+
+def SDTIntShiftDOp: SDTypeProfile<1, 3,
+ [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
+ SDTCisInt<0>, SDTCisInt<3>]>;
+
+def SDTX86CmpTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisSameAs<1, 2>]>;
+
+def SDTX86Cmps : SDTypeProfile<1, 3, [SDTCisFP<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;
+//def SDTX86Cmpss : SDTypeProfile<1, 3, [SDTCisVT<0, f32>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;
+
+def SDTX86Cmov : SDTypeProfile<1, 4,
+ [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
+ SDTCisVT<3, i8>, SDTCisVT<4, i32>]>;
+
+// Unary and binary operator instructions that set EFLAGS as a side-effect.
+def SDTUnaryArithWithFlags : SDTypeProfile<2, 1,
+ [SDTCisInt<0>, SDTCisVT<1, i32>]>;
+
+def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
+ [SDTCisSameAs<0, 2>,
+ SDTCisSameAs<0, 3>,
+ SDTCisInt<0>, SDTCisVT<1, i32>]>;
+
+// SDTBinaryArithWithFlagsInOut - RES1, EFLAGS = op LHS, RHS, EFLAGS
+def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
+ [SDTCisSameAs<0, 2>,
+ SDTCisSameAs<0, 3>,
+ SDTCisInt<0>,
+ SDTCisVT<1, i32>,
+ SDTCisVT<4, i32>]>;
+// RES1, RES2, FLAGS = op LHS, RHS
+def SDT2ResultBinaryArithWithFlags : SDTypeProfile<3, 2,
+ [SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>,
+ SDTCisSameAs<0, 3>,
+ SDTCisInt<0>, SDTCisVT<1, i32>]>;
+def SDTX86BrCond : SDTypeProfile<0, 3,
+ [SDTCisVT<0, OtherVT>,
+ SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
+
+def SDTX86SetCC : SDTypeProfile<1, 2,
+ [SDTCisVT<0, i8>,
+ SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
+def SDTX86SetCC_C : SDTypeProfile<1, 2,
+ [SDTCisInt<0>,
+ SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
+
+def SDTX86sahf : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i8>]>;
+
+def SDTX86rdrand : SDTypeProfile<2, 0, [SDTCisInt<0>, SDTCisVT<1, i32>]>;
+
+def SDTX86cas : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisInt<1>,
+ SDTCisVT<2, i8>]>;
+def SDTX86caspair : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
+
+def SDTX86atomicBinary : SDTypeProfile<2, 3, [SDTCisInt<0>, SDTCisInt<1>,
+ SDTCisPtrTy<2>, SDTCisInt<3>,SDTCisInt<4>]>;
+def SDTX86Ret : SDTypeProfile<0, -1, [SDTCisVT<0, i16>]>;
+
+def SDT_X86CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
+def SDT_X86CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>]>;
+
+def SDT_X86Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
+
+def SDT_X86VASTART_SAVE_XMM_REGS : SDTypeProfile<0, -1, [SDTCisVT<0, i8>,
+ SDTCisVT<1, iPTR>,
+ SDTCisVT<2, iPTR>]>;
+
+def SDT_X86VAARG_64 : SDTypeProfile<1, -1, [SDTCisPtrTy<0>,
+ SDTCisPtrTy<1>,
+ SDTCisVT<2, i32>,
+ SDTCisVT<3, i8>,
+ SDTCisVT<4, i32>]>;
+
+def SDTX86RepStr : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>;
+
+def SDTX86Void : SDTypeProfile<0, 0, []>;
+
+def SDTX86Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
+
+def SDT_X86TLSADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+
+def SDT_X86TLSBASEADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+
+def SDT_X86TLSCALL : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+
+def SDT_X86SEG_ALLOCA : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>;
+
+def SDT_X86WIN_FTOL : SDTypeProfile<0, 1, [SDTCisFP<0>]>;
+
+def SDT_X86EHRET : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+
+def SDT_X86TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
+
+def SDT_X86MEMBARRIER : SDTypeProfile<0, 0, []>;
+
+def X86MemBarrier : SDNode<"X86ISD::MEMBARRIER", SDT_X86MEMBARRIER,
+ [SDNPHasChain,SDNPSideEffect]>;
+def X86MFence : SDNode<"X86ISD::MFENCE", SDT_X86MEMBARRIER,
+ [SDNPHasChain]>;
+def X86SFence : SDNode<"X86ISD::SFENCE", SDT_X86MEMBARRIER,
+ [SDNPHasChain]>;
+def X86LFence : SDNode<"X86ISD::LFENCE", SDT_X86MEMBARRIER,
+ [SDNPHasChain]>;
+
+
+def X86bsf : SDNode<"X86ISD::BSF", SDTUnaryArithWithFlags>;
+def X86bsr : SDNode<"X86ISD::BSR", SDTUnaryArithWithFlags>;
+def X86shld : SDNode<"X86ISD::SHLD", SDTIntShiftDOp>;
+def X86shrd : SDNode<"X86ISD::SHRD", SDTIntShiftDOp>;
+
+def X86cmp : SDNode<"X86ISD::CMP" , SDTX86CmpTest>;
+def X86bt : SDNode<"X86ISD::BT", SDTX86CmpTest>;
+
+def X86cmov : SDNode<"X86ISD::CMOV", SDTX86Cmov>;
+def X86brcond : SDNode<"X86ISD::BRCOND", SDTX86BrCond,
+ [SDNPHasChain]>;
+def X86setcc : SDNode<"X86ISD::SETCC", SDTX86SetCC>;
+def X86setcc_c : SDNode<"X86ISD::SETCC_CARRY", SDTX86SetCC_C>;
+
+def X86sahf : SDNode<"X86ISD::SAHF", SDTX86sahf>;
+
+def X86rdrand : SDNode<"X86ISD::RDRAND", SDTX86rdrand,
+ [SDNPHasChain, SDNPSideEffect]>;
+
+def X86rdseed : SDNode<"X86ISD::RDSEED", SDTX86rdrand,
+ [SDNPHasChain, SDNPSideEffect]>;
+
+def X86cas : SDNode<"X86ISD::LCMPXCHG_DAG", SDTX86cas,
+ [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
+ SDNPMayLoad, SDNPMemOperand]>;
+def X86cas8 : SDNode<"X86ISD::LCMPXCHG8_DAG", SDTX86caspair,
+ [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
+ SDNPMayLoad, SDNPMemOperand]>;
+def X86cas16 : SDNode<"X86ISD::LCMPXCHG16_DAG", SDTX86caspair,
+ [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
+ SDNPMayLoad, SDNPMemOperand]>;
+
+def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+def X86vastart_save_xmm_regs :
+ SDNode<"X86ISD::VASTART_SAVE_XMM_REGS",
+ SDT_X86VASTART_SAVE_XMM_REGS,
+ [SDNPHasChain, SDNPVariadic]>;
+def X86vaarg64 :
+ SDNode<"X86ISD::VAARG_64", SDT_X86VAARG_64,
+ [SDNPHasChain, SDNPMayLoad, SDNPMayStore,
+ SDNPMemOperand]>;
+def X86callseq_start :
+ SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart,
+ [SDNPHasChain, SDNPOutGlue]>;
+def X86callseq_end :
+ SDNode<"ISD::CALLSEQ_END", SDT_X86CallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+def X86call : SDNode<"X86ISD::CALL", SDT_X86Call,
+ [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
+ SDNPVariadic]>;
+
+def X86rep_stos: SDNode<"X86ISD::REP_STOS", SDTX86RepStr,
+ [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore]>;
+def X86rep_movs: SDNode<"X86ISD::REP_MOVS", SDTX86RepStr,
+ [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
+ SDNPMayLoad]>;
+
+def X86rdtsc : SDNode<"X86ISD::RDTSC_DAG", SDTX86Void,
+ [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
+def X86rdtscp : SDNode<"X86ISD::RDTSCP_DAG", SDTX86Void,
+ [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
+def X86rdpmc : SDNode<"X86ISD::RDPMC_DAG", SDTX86Void,
+ [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
+
+def X86Wrapper : SDNode<"X86ISD::Wrapper", SDTX86Wrapper>;
+def X86WrapperRIP : SDNode<"X86ISD::WrapperRIP", SDTX86Wrapper>;
+
+def X86tlsaddr : SDNode<"X86ISD::TLSADDR", SDT_X86TLSADDR,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+def X86tlsbaseaddr : SDNode<"X86ISD::TLSBASEADDR", SDT_X86TLSBASEADDR,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+def X86ehret : SDNode<"X86ISD::EH_RETURN", SDT_X86EHRET,
+ [SDNPHasChain]>;
+
+def X86eh_sjlj_setjmp : SDNode<"X86ISD::EH_SJLJ_SETJMP",
+ SDTypeProfile<1, 1, [SDTCisInt<0>,
+ SDTCisPtrTy<1>]>,
+ [SDNPHasChain, SDNPSideEffect]>;
+def X86eh_sjlj_longjmp : SDNode<"X86ISD::EH_SJLJ_LONGJMP",
+ SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>,
+ [SDNPHasChain, SDNPSideEffect]>;
+
+def X86tcret : SDNode<"X86ISD::TC_RETURN", SDT_X86TCRET,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+def X86add_flag : SDNode<"X86ISD::ADD", SDTBinaryArithWithFlags,
+ [SDNPCommutative]>;
+def X86sub_flag : SDNode<"X86ISD::SUB", SDTBinaryArithWithFlags>;
+def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags,
+ [SDNPCommutative]>;
+def X86umul_flag : SDNode<"X86ISD::UMUL", SDT2ResultBinaryArithWithFlags,
+ [SDNPCommutative]>;
+def X86adc_flag : SDNode<"X86ISD::ADC", SDTBinaryArithWithFlagsInOut>;
+def X86sbb_flag : SDNode<"X86ISD::SBB", SDTBinaryArithWithFlagsInOut>;
+
+def X86inc_flag : SDNode<"X86ISD::INC", SDTUnaryArithWithFlags>;
+def X86dec_flag : SDNode<"X86ISD::DEC", SDTUnaryArithWithFlags>;
+def X86or_flag : SDNode<"X86ISD::OR", SDTBinaryArithWithFlags,
+ [SDNPCommutative]>;
+def X86xor_flag : SDNode<"X86ISD::XOR", SDTBinaryArithWithFlags,
+ [SDNPCommutative]>;
+def X86and_flag : SDNode<"X86ISD::AND", SDTBinaryArithWithFlags,
+ [SDNPCommutative]>;
+
+def X86bextr : SDNode<"X86ISD::BEXTR", SDTIntBinOp>;
+
+def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>;
+
+def X86WinAlloca : SDNode<"X86ISD::WIN_ALLOCA", SDTX86Void,
+ [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
+
+def X86SegAlloca : SDNode<"X86ISD::SEG_ALLOCA", SDT_X86SEG_ALLOCA,
+ [SDNPHasChain]>;
+
+def X86TLSCall : SDNode<"X86ISD::TLSCALL", SDT_X86TLSCALL,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+def X86WinFTOL : SDNode<"X86ISD::WIN_FTOL", SDT_X86WIN_FTOL,
+ [SDNPHasChain, SDNPOutGlue]>;
+
+//===----------------------------------------------------------------------===//
+// X86 Operand Definitions.
+//
+
+// A version of ptr_rc which excludes SP, ESP, and RSP. This is used for
+// the index operand of an address, to conform to x86 encoding restrictions.
+def ptr_rc_nosp : PointerLikeRegClass<1>;
+
+// *mem - Operand definitions for the funky X86 addressing mode operands.
+//
+def X86MemAsmOperand : AsmOperandClass {
+ let Name = "Mem";
+}
+def X86Mem8AsmOperand : AsmOperandClass {
+ let Name = "Mem8"; let RenderMethod = "addMemOperands";
+}
+def X86Mem16AsmOperand : AsmOperandClass {
+ let Name = "Mem16"; let RenderMethod = "addMemOperands";
+}
+def X86Mem32AsmOperand : AsmOperandClass {
+ let Name = "Mem32"; let RenderMethod = "addMemOperands";
+}
+def X86Mem64AsmOperand : AsmOperandClass {
+ let Name = "Mem64"; let RenderMethod = "addMemOperands";
+}
+def X86Mem80AsmOperand : AsmOperandClass {
+ let Name = "Mem80"; let RenderMethod = "addMemOperands";
+}
+def X86Mem128AsmOperand : AsmOperandClass {
+ let Name = "Mem128"; let RenderMethod = "addMemOperands";
+}
+def X86Mem256AsmOperand : AsmOperandClass {
+ let Name = "Mem256"; let RenderMethod = "addMemOperands";
+}
+def X86Mem512AsmOperand : AsmOperandClass {
+ let Name = "Mem512"; let RenderMethod = "addMemOperands";
+}
+
+// Gather mem operands
+def X86MemVX32Operand : AsmOperandClass {
+ let Name = "MemVX32"; let RenderMethod = "addMemOperands";
+}
+def X86MemVY32Operand : AsmOperandClass {
+ let Name = "MemVY32"; let RenderMethod = "addMemOperands";
+}
+def X86MemVZ32Operand : AsmOperandClass {
+ let Name = "MemVZ32"; let RenderMethod = "addMemOperands";
+}
+def X86MemVX64Operand : AsmOperandClass {
+ let Name = "MemVX64"; let RenderMethod = "addMemOperands";
+}
+def X86MemVY64Operand : AsmOperandClass {
+ let Name = "MemVY64"; let RenderMethod = "addMemOperands";
+}
+def X86MemVZ64Operand : AsmOperandClass {
+ let Name = "MemVZ64"; let RenderMethod = "addMemOperands";
+}
+
+def X86AbsMemAsmOperand : AsmOperandClass {
+ let Name = "AbsMem";
+ let SuperClasses = [X86MemAsmOperand];
+}
+class X86MemOperand<string printMethod> : Operand<iPTR> {
+ let PrintMethod = printMethod;
+ let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
+ let ParserMatchClass = X86MemAsmOperand;
+}
+
+let OperandType = "OPERAND_MEMORY" in {
+def opaque32mem : X86MemOperand<"printopaquemem">;
+def opaque48mem : X86MemOperand<"printopaquemem">;
+def opaque80mem : X86MemOperand<"printopaquemem">;
+def opaque512mem : X86MemOperand<"printopaquemem">;
+
+def i8mem : X86MemOperand<"printi8mem"> {
+ let ParserMatchClass = X86Mem8AsmOperand; }
+def i16mem : X86MemOperand<"printi16mem"> {
+ let ParserMatchClass = X86Mem16AsmOperand; }
+def i32mem : X86MemOperand<"printi32mem"> {
+ let ParserMatchClass = X86Mem32AsmOperand; }
+def i64mem : X86MemOperand<"printi64mem"> {
+ let ParserMatchClass = X86Mem64AsmOperand; }
+def i128mem : X86MemOperand<"printi128mem"> {
+ let ParserMatchClass = X86Mem128AsmOperand; }
+def i256mem : X86MemOperand<"printi256mem"> {
+ let ParserMatchClass = X86Mem256AsmOperand; }
+def i512mem : X86MemOperand<"printi512mem"> {
+ let ParserMatchClass = X86Mem512AsmOperand; }
+def f32mem : X86MemOperand<"printf32mem"> {
+ let ParserMatchClass = X86Mem32AsmOperand; }
+def f64mem : X86MemOperand<"printf64mem"> {
+ let ParserMatchClass = X86Mem64AsmOperand; }
+def f80mem : X86MemOperand<"printf80mem"> {
+ let ParserMatchClass = X86Mem80AsmOperand; }
+def f128mem : X86MemOperand<"printf128mem"> {
+ let ParserMatchClass = X86Mem128AsmOperand; }
+def f256mem : X86MemOperand<"printf256mem">{
+ let ParserMatchClass = X86Mem256AsmOperand; }
+def f512mem : X86MemOperand<"printf512mem">{
+ let ParserMatchClass = X86Mem512AsmOperand; }
+def v512mem : Operand<iPTR> {
+ let PrintMethod = "printf512mem";
+ let MIOperandInfo = (ops ptr_rc, i8imm, VR512, i32imm, i8imm);
+ let ParserMatchClass = X86Mem512AsmOperand; }
+
+// Gather mem operands
+def vx32mem : X86MemOperand<"printi32mem">{
+ let MIOperandInfo = (ops ptr_rc, i8imm, VR128, i32imm, i8imm);
+ let ParserMatchClass = X86MemVX32Operand; }
+def vy32mem : X86MemOperand<"printi32mem">{
+ let MIOperandInfo = (ops ptr_rc, i8imm, VR256, i32imm, i8imm);
+ let ParserMatchClass = X86MemVY32Operand; }
+def vx64mem : X86MemOperand<"printi64mem">{
+ let MIOperandInfo = (ops ptr_rc, i8imm, VR128, i32imm, i8imm);
+ let ParserMatchClass = X86MemVX64Operand; }
+def vy64mem : X86MemOperand<"printi64mem">{
+ let MIOperandInfo = (ops ptr_rc, i8imm, VR256, i32imm, i8imm);
+ let ParserMatchClass = X86MemVY64Operand; }
+def vy64xmem : X86MemOperand<"printi64mem">{
+ let MIOperandInfo = (ops ptr_rc, i8imm, VR256X, i32imm, i8imm);
+ let ParserMatchClass = X86MemVY64Operand; }
+def vz32mem : X86MemOperand<"printi32mem">{
+ let MIOperandInfo = (ops ptr_rc, i16imm, VR512, i32imm, i8imm);
+ let ParserMatchClass = X86MemVZ32Operand; }
+def vz64mem : X86MemOperand<"printi64mem">{
+ let MIOperandInfo = (ops ptr_rc, i8imm, VR512, i32imm, i8imm);
+ let ParserMatchClass = X86MemVZ64Operand; }
+}
+
+// A version of i8mem for use on x86-64 that uses GR64_NOREX instead of
+// plain GR64, so that it doesn't potentially require a REX prefix.
+def i8mem_NOREX : Operand<i64> {
+ let PrintMethod = "printi8mem";
+ let MIOperandInfo = (ops GR64_NOREX, i8imm, GR64_NOREX_NOSP, i32imm, i8imm);
+ let ParserMatchClass = X86Mem8AsmOperand;
+ let OperandType = "OPERAND_MEMORY";
+}
+
+// GPRs available for tailcall.
+// It represents GR32_TC, GR64_TC or GR64_TCW64.
+def ptr_rc_tailcall : PointerLikeRegClass<2>;
+
+// Special i32mem for addresses of load folding tail calls. These are not
+// allowed to use callee-saved registers since they must be scheduled
+// after callee-saved register are popped.
+def i32mem_TC : Operand<i32> {
+ let PrintMethod = "printi32mem";
+ let MIOperandInfo = (ops ptr_rc_tailcall, i8imm, ptr_rc_tailcall,
+ i32imm, i8imm);
+ let ParserMatchClass = X86Mem32AsmOperand;
+ let OperandType = "OPERAND_MEMORY";
+}
+
+// Special i64mem for addresses of load folding tail calls. These are not
+// allowed to use callee-saved registers since they must be scheduled
+// after callee-saved register are popped.
+def i64mem_TC : Operand<i64> {
+ let PrintMethod = "printi64mem";
+ let MIOperandInfo = (ops ptr_rc_tailcall, i8imm,
+ ptr_rc_tailcall, i32imm, i8imm);
+ let ParserMatchClass = X86Mem64AsmOperand;
+ let OperandType = "OPERAND_MEMORY";
+}
+
+let OperandType = "OPERAND_PCREL",
+ ParserMatchClass = X86AbsMemAsmOperand,
+ PrintMethod = "printPCRelImm" in {
+def i32imm_pcrel : Operand<i32>;
+def i16imm_pcrel : Operand<i16>;
+
+// Branch targets have OtherVT type and print as pc-relative values.
+def brtarget : Operand<OtherVT>;
+def brtarget8 : Operand<OtherVT>;
+
+}
+
+def X86SrcIdx8Operand : AsmOperandClass {
+ let Name = "SrcIdx8";
+ let RenderMethod = "addSrcIdxOperands";
+ let SuperClasses = [X86Mem8AsmOperand];
+}
+def X86SrcIdx16Operand : AsmOperandClass {
+ let Name = "SrcIdx16";
+ let RenderMethod = "addSrcIdxOperands";
+ let SuperClasses = [X86Mem16AsmOperand];
+}
+def X86SrcIdx32Operand : AsmOperandClass {
+ let Name = "SrcIdx32";
+ let RenderMethod = "addSrcIdxOperands";
+ let SuperClasses = [X86Mem32AsmOperand];
+}
+def X86SrcIdx64Operand : AsmOperandClass {
+ let Name = "SrcIdx64";
+ let RenderMethod = "addSrcIdxOperands";
+ let SuperClasses = [X86Mem64AsmOperand];
+}
+def X86DstIdx8Operand : AsmOperandClass {
+ let Name = "DstIdx8";
+ let RenderMethod = "addDstIdxOperands";
+ let SuperClasses = [X86Mem8AsmOperand];
+}
+def X86DstIdx16Operand : AsmOperandClass {
+ let Name = "DstIdx16";
+ let RenderMethod = "addDstIdxOperands";
+ let SuperClasses = [X86Mem16AsmOperand];
+}
+def X86DstIdx32Operand : AsmOperandClass {
+ let Name = "DstIdx32";
+ let RenderMethod = "addDstIdxOperands";
+ let SuperClasses = [X86Mem32AsmOperand];
+}
+def X86DstIdx64Operand : AsmOperandClass {
+ let Name = "DstIdx64";
+ let RenderMethod = "addDstIdxOperands";
+ let SuperClasses = [X86Mem64AsmOperand];
+}
+def X86MemOffs8AsmOperand : AsmOperandClass {
+ let Name = "MemOffs8";
+ let RenderMethod = "addMemOffsOperands";
+ let SuperClasses = [X86Mem8AsmOperand];
+}
+def X86MemOffs16AsmOperand : AsmOperandClass {
+ let Name = "MemOffs16";
+ let RenderMethod = "addMemOffsOperands";
+ let SuperClasses = [X86Mem16AsmOperand];
+}
+def X86MemOffs32AsmOperand : AsmOperandClass {
+ let Name = "MemOffs32";
+ let RenderMethod = "addMemOffsOperands";
+ let SuperClasses = [X86Mem32AsmOperand];
+}
+def X86MemOffs64AsmOperand : AsmOperandClass {
+ let Name = "MemOffs64";
+ let RenderMethod = "addMemOffsOperands";
+ let SuperClasses = [X86Mem64AsmOperand];
+}
+let OperandType = "OPERAND_MEMORY" in {
+def srcidx8 : Operand<iPTR> {
+ let ParserMatchClass = X86SrcIdx8Operand;
+ let MIOperandInfo = (ops ptr_rc, i8imm);
+ let PrintMethod = "printSrcIdx8"; }
+def srcidx16 : Operand<iPTR> {
+ let ParserMatchClass = X86SrcIdx16Operand;
+ let MIOperandInfo = (ops ptr_rc, i8imm);
+ let PrintMethod = "printSrcIdx16"; }
+def srcidx32 : Operand<iPTR> {
+ let ParserMatchClass = X86SrcIdx32Operand;
+ let MIOperandInfo = (ops ptr_rc, i8imm);
+ let PrintMethod = "printSrcIdx32"; }
+def srcidx64 : Operand<iPTR> {
+ let ParserMatchClass = X86SrcIdx64Operand;
+ let MIOperandInfo = (ops ptr_rc, i8imm);
+ let PrintMethod = "printSrcIdx64"; }
+def dstidx8 : Operand<iPTR> {
+ let ParserMatchClass = X86DstIdx8Operand;
+ let MIOperandInfo = (ops ptr_rc);
+ let PrintMethod = "printDstIdx8"; }
+def dstidx16 : Operand<iPTR> {
+ let ParserMatchClass = X86DstIdx16Operand;
+ let MIOperandInfo = (ops ptr_rc);
+ let PrintMethod = "printDstIdx16"; }
+def dstidx32 : Operand<iPTR> {
+ let ParserMatchClass = X86DstIdx32Operand;
+ let MIOperandInfo = (ops ptr_rc);
+ let PrintMethod = "printDstIdx32"; }
+def dstidx64 : Operand<iPTR> {
+ let ParserMatchClass = X86DstIdx64Operand;
+ let MIOperandInfo = (ops ptr_rc);
+ let PrintMethod = "printDstIdx64"; }
+def offset8 : Operand<iPTR> {
+ let ParserMatchClass = X86MemOffs8AsmOperand;
+ let MIOperandInfo = (ops i64imm, i8imm);
+ let PrintMethod = "printMemOffs8"; }
+def offset16 : Operand<iPTR> {
+ let ParserMatchClass = X86MemOffs16AsmOperand;
+ let MIOperandInfo = (ops i64imm, i8imm);
+ let PrintMethod = "printMemOffs16"; }
+def offset32 : Operand<iPTR> {
+ let ParserMatchClass = X86MemOffs32AsmOperand;
+ let MIOperandInfo = (ops i64imm, i8imm);
+ let PrintMethod = "printMemOffs32"; }
+def offset64 : Operand<iPTR> {
+ let ParserMatchClass = X86MemOffs64AsmOperand;
+ let MIOperandInfo = (ops i64imm, i8imm);
+ let PrintMethod = "printMemOffs64"; }
+}
+
+
+def SSECC : Operand<i8> {
+ let PrintMethod = "printSSECC";
+ let OperandType = "OPERAND_IMMEDIATE";
+}
+
+def AVXCC : Operand<i8> {
+ let PrintMethod = "printAVXCC";
+ let OperandType = "OPERAND_IMMEDIATE";
+}
+
+class ImmSExtAsmOperandClass : AsmOperandClass {
+ let SuperClasses = [ImmAsmOperand];
+ let RenderMethod = "addImmOperands";
+}
+
+class ImmZExtAsmOperandClass : AsmOperandClass {
+ let SuperClasses = [ImmAsmOperand];
+ let RenderMethod = "addImmOperands";
+}
+
+def X86GR32orGR64AsmOperand : AsmOperandClass {
+ let Name = "GR32orGR64";
+}
+
+def GR32orGR64 : RegisterOperand<GR32> {
+ let ParserMatchClass = X86GR32orGR64AsmOperand;
+}
+
+def AVX512RC : Operand<i32> {
+ let PrintMethod = "printRoundingControl";
+ let OperandType = "OPERAND_IMMEDIATE";
+}
+// Sign-extended immediate classes. We don't need to define the full lattice
+// here because there is no instruction with an ambiguity between ImmSExti64i32
+// and ImmSExti32i8.
+//
+// The strange ranges come from the fact that the assembler always works with
+// 64-bit immediates, but for a 16-bit target value we want to accept both "-1"
+// (which will be a -1ULL), and "0xFF" (-1 in 16-bits).
+
+// [0, 0x7FFFFFFF] |
+// [0xFFFFFFFF80000000, 0xFFFFFFFFFFFFFFFF]
+def ImmSExti64i32AsmOperand : ImmSExtAsmOperandClass {
+ let Name = "ImmSExti64i32";
+}
+
+// [0, 0x0000007F] | [0x000000000000FF80, 0x000000000000FFFF] |
+// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
+def ImmSExti16i8AsmOperand : ImmSExtAsmOperandClass {
+ let Name = "ImmSExti16i8";
+ let SuperClasses = [ImmSExti64i32AsmOperand];
+}
+
+// [0, 0x0000007F] | [0x00000000FFFFFF80, 0x00000000FFFFFFFF] |
+// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
+def ImmSExti32i8AsmOperand : ImmSExtAsmOperandClass {
+ let Name = "ImmSExti32i8";
+}
+
+// [0, 0x000000FF]
+def ImmZExtu32u8AsmOperand : ImmZExtAsmOperandClass {
+ let Name = "ImmZExtu32u8";
+}
+
+
+// [0, 0x0000007F] |
+// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
+def ImmSExti64i8AsmOperand : ImmSExtAsmOperandClass {
+ let Name = "ImmSExti64i8";
+ let SuperClasses = [ImmSExti16i8AsmOperand, ImmSExti32i8AsmOperand,
+ ImmSExti64i32AsmOperand];
+}
+
+// A couple of more descriptive operand definitions.
+// 16-bits but only 8 bits are significant.
+def i16i8imm : Operand<i16> {
+ let ParserMatchClass = ImmSExti16i8AsmOperand;
+ let OperandType = "OPERAND_IMMEDIATE";
+}
+// 32-bits but only 8 bits are significant.
+def i32i8imm : Operand<i32> {
+ let ParserMatchClass = ImmSExti32i8AsmOperand;
+ let OperandType = "OPERAND_IMMEDIATE";
+}
+// 32-bits but only 8 bits are significant, and those 8 bits are unsigned.
+def u32u8imm : Operand<i32> {
+ let ParserMatchClass = ImmZExtu32u8AsmOperand;
+ let OperandType = "OPERAND_IMMEDIATE";
+}
+
+// 64-bits but only 32 bits are significant.
+def i64i32imm : Operand<i64> {
+ let ParserMatchClass = ImmSExti64i32AsmOperand;
+ let OperandType = "OPERAND_IMMEDIATE";
+}
+
+// 64-bits but only 32 bits are significant, and those bits are treated as being
+// pc relative.
+def i64i32imm_pcrel : Operand<i64> {
+ let PrintMethod = "printPCRelImm";
+ let ParserMatchClass = X86AbsMemAsmOperand;
+ let OperandType = "OPERAND_PCREL";
+}
+
+// 64-bits but only 8 bits are significant.
+def i64i8imm : Operand<i64> {
+ let ParserMatchClass = ImmSExti64i8AsmOperand;
+ let OperandType = "OPERAND_IMMEDIATE";
+}
+
+def lea64_32mem : Operand<i32> {
+ let PrintMethod = "printi32mem";
+ let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, i8imm);
+ let ParserMatchClass = X86MemAsmOperand;
+}
+
+// Memory operands that use 64-bit pointers in both ILP32 and LP64.
+def lea64mem : Operand<i64> {
+ let PrintMethod = "printi64mem";
+ let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, i8imm);
+ let ParserMatchClass = X86MemAsmOperand;
+}
+
+
+//===----------------------------------------------------------------------===//
+// X86 Complex Pattern Definitions.
+//
+
+// Define X86 specific addressing mode.
+def addr : ComplexPattern<iPTR, 5, "SelectAddr", [], [SDNPWantParent]>;
+def lea32addr : ComplexPattern<i32, 5, "SelectLEAAddr",
+ [add, sub, mul, X86mul_imm, shl, or, frameindex],
+ []>;
+// In 64-bit mode 32-bit LEAs can use RIP-relative addressing.
+def lea64_32addr : ComplexPattern<i32, 5, "SelectLEA64_32Addr",
+ [add, sub, mul, X86mul_imm, shl, or,
+ frameindex, X86WrapperRIP],
+ []>;
+
+def tls32addr : ComplexPattern<i32, 5, "SelectTLSADDRAddr",
+ [tglobaltlsaddr], []>;
+
+def tls32baseaddr : ComplexPattern<i32, 5, "SelectTLSADDRAddr",
+ [tglobaltlsaddr], []>;
+
+def lea64addr : ComplexPattern<i64, 5, "SelectLEAAddr",
+ [add, sub, mul, X86mul_imm, shl, or, frameindex,
+ X86WrapperRIP], []>;
+
+def tls64addr : ComplexPattern<i64, 5, "SelectTLSADDRAddr",
+ [tglobaltlsaddr], []>;
+
+def tls64baseaddr : ComplexPattern<i64, 5, "SelectTLSADDRAddr",
+ [tglobaltlsaddr], []>;
+
+//===----------------------------------------------------------------------===//
+// X86 Instruction Predicate Definitions.
+def HasCMov : Predicate<"Subtarget->hasCMov()">;
+def NoCMov : Predicate<"!Subtarget->hasCMov()">;
+
+def HasMMX : Predicate<"Subtarget->hasMMX()">;
+def Has3DNow : Predicate<"Subtarget->has3DNow()">;
+def Has3DNowA : Predicate<"Subtarget->has3DNowA()">;
+def HasSSE1 : Predicate<"Subtarget->hasSSE1()">;
+def UseSSE1 : Predicate<"Subtarget->hasSSE1() && !Subtarget->hasAVX()">;
+def HasSSE2 : Predicate<"Subtarget->hasSSE2()">;
+def UseSSE2 : Predicate<"Subtarget->hasSSE2() && !Subtarget->hasAVX()">;
+def HasSSE3 : Predicate<"Subtarget->hasSSE3()">;
+def UseSSE3 : Predicate<"Subtarget->hasSSE3() && !Subtarget->hasAVX()">;
+def HasSSSE3 : Predicate<"Subtarget->hasSSSE3()">;
+def UseSSSE3 : Predicate<"Subtarget->hasSSSE3() && !Subtarget->hasAVX()">;
+def HasSSE41 : Predicate<"Subtarget->hasSSE41()">;
+def UseSSE41 : Predicate<"Subtarget->hasSSE41() && !Subtarget->hasAVX()">;
+def HasSSE42 : Predicate<"Subtarget->hasSSE42()">;
+def UseSSE42 : Predicate<"Subtarget->hasSSE42() && !Subtarget->hasAVX()">;
+def HasSSE4A : Predicate<"Subtarget->hasSSE4A()">;
+def HasAVX : Predicate<"Subtarget->hasAVX()">;
+def HasAVX2 : Predicate<"Subtarget->hasAVX2()">;
+def HasAVX1Only : Predicate<"Subtarget->hasAVX() && !Subtarget->hasAVX2()">;
+def HasAVX512 : Predicate<"Subtarget->hasAVX512()">,
+ AssemblerPredicate<"FeatureAVX512", "AVX-512 ISA">;
+def UseAVX : Predicate<"Subtarget->hasAVX() && !Subtarget->hasAVX512()">;
+def UseAVX2 : Predicate<"Subtarget->hasAVX2() && !Subtarget->hasAVX512()">;
+def NoAVX512 : Predicate<"!Subtarget->hasAVX512()">;
+def HasCDI : Predicate<"Subtarget->hasCDI()">;
+def HasPFI : Predicate<"Subtarget->hasPFI()">;
+def HasERI : Predicate<"Subtarget->hasERI()">;
+def HasDQI : Predicate<"Subtarget->hasDQI()">;
+def HasBWI : Predicate<"Subtarget->hasBWI()">;
+def HasVLX : Predicate<"Subtarget->hasVLX()">,
+ AssemblerPredicate<"FeatureVLX", "AVX-512 VLX ISA">;
+
+def HasPOPCNT : Predicate<"Subtarget->hasPOPCNT()">;
+def HasAES : Predicate<"Subtarget->hasAES()">;
+def HasPCLMUL : Predicate<"Subtarget->hasPCLMUL()">;
+def HasFMA : Predicate<"Subtarget->hasFMA()">;
+def UseFMAOnAVX : Predicate<"Subtarget->hasFMA() && !Subtarget->hasAVX512()">;
+def HasFMA4 : Predicate<"Subtarget->hasFMA4()">;
+def HasXOP : Predicate<"Subtarget->hasXOP()">;
+def HasTBM : Predicate<"Subtarget->hasTBM()">;
+def HasMOVBE : Predicate<"Subtarget->hasMOVBE()">;
+def HasRDRAND : Predicate<"Subtarget->hasRDRAND()">;
+def HasF16C : Predicate<"Subtarget->hasF16C()">;
+def HasFSGSBase : Predicate<"Subtarget->hasFSGSBase()">;
+def HasLZCNT : Predicate<"Subtarget->hasLZCNT()">;
+def HasBMI : Predicate<"Subtarget->hasBMI()">;
+def HasBMI2 : Predicate<"Subtarget->hasBMI2()">;
+def HasRTM : Predicate<"Subtarget->hasRTM()">;
+def HasHLE : Predicate<"Subtarget->hasHLE()">;
+def HasTSX : Predicate<"Subtarget->hasRTM() || Subtarget->hasHLE()">;
+def HasADX : Predicate<"Subtarget->hasADX()">;
+def HasSHA : Predicate<"Subtarget->hasSHA()">;
+def HasPRFCHW : Predicate<"Subtarget->hasPRFCHW()">;
+def HasRDSEED : Predicate<"Subtarget->hasRDSEED()">;
+def HasPrefetchW : Predicate<"Subtarget->hasPRFCHW()">;
+def FPStackf32 : Predicate<"!Subtarget->hasSSE1()">;
+def FPStackf64 : Predicate<"!Subtarget->hasSSE2()">;
+def HasCmpxchg16b: Predicate<"Subtarget->hasCmpxchg16b()">;
+def Not64BitMode : Predicate<"!Subtarget->is64Bit()">,
+ AssemblerPredicate<"!Mode64Bit", "Not 64-bit mode">;
+def In64BitMode : Predicate<"Subtarget->is64Bit()">,
+ AssemblerPredicate<"Mode64Bit", "64-bit mode">;
+def In16BitMode : Predicate<"Subtarget->is16Bit()">,
+ AssemblerPredicate<"Mode16Bit", "16-bit mode">;
+def Not16BitMode : Predicate<"!Subtarget->is16Bit()">,
+ AssemblerPredicate<"!Mode16Bit", "Not 16-bit mode">;
+def In32BitMode : Predicate<"Subtarget->is32Bit()">,
+ AssemblerPredicate<"Mode32Bit", "32-bit mode">;
+def IsWin64 : Predicate<"Subtarget->isTargetWin64()">;
+def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">;
+def NotNaCl : Predicate<"!Subtarget->isTargetNaCl()">;
+def SmallCode : Predicate<"TM.getCodeModel() == CodeModel::Small">;
+def KernelCode : Predicate<"TM.getCodeModel() == CodeModel::Kernel">;
+def FarData : Predicate<"TM.getCodeModel() != CodeModel::Small &&"
+ "TM.getCodeModel() != CodeModel::Kernel">;
+def NearData : Predicate<"TM.getCodeModel() == CodeModel::Small ||"
+ "TM.getCodeModel() == CodeModel::Kernel">;
+def IsStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">;
+def IsNotPIC : Predicate<"TM.getRelocationModel() != Reloc::PIC_">;
+def OptForSize : Predicate<"OptForSize">;
+def OptForSpeed : Predicate<"!OptForSize">;
+def FastBTMem : Predicate<"!Subtarget->isBTMemSlow()">;
+def CallImmAddr : Predicate<"Subtarget->IsLegalToCallImmediateAddr(TM)">;
+def FavorMemIndirectCall : Predicate<"!Subtarget->callRegIndirect()">;
+def NotSlowIncDec : Predicate<"!Subtarget->slowIncDec()">;
+
+//===----------------------------------------------------------------------===//
+// X86 Instruction Format Definitions.
+//
+
+include "X86InstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+// Pattern fragments.
+//
+
+// X86 specific condition code. These correspond to CondCode in
+// X86InstrInfo.h. They must be kept in synch.
+def X86_COND_A : PatLeaf<(i8 0)>; // alt. COND_NBE
+def X86_COND_AE : PatLeaf<(i8 1)>; // alt. COND_NC
+def X86_COND_B : PatLeaf<(i8 2)>; // alt. COND_C
+def X86_COND_BE : PatLeaf<(i8 3)>; // alt. COND_NA
+def X86_COND_E : PatLeaf<(i8 4)>; // alt. COND_Z
+def X86_COND_G : PatLeaf<(i8 5)>; // alt. COND_NLE
+def X86_COND_GE : PatLeaf<(i8 6)>; // alt. COND_NL
+def X86_COND_L : PatLeaf<(i8 7)>; // alt. COND_NGE
+def X86_COND_LE : PatLeaf<(i8 8)>; // alt. COND_NG
+def X86_COND_NE : PatLeaf<(i8 9)>; // alt. COND_NZ
+def X86_COND_NO : PatLeaf<(i8 10)>;
+def X86_COND_NP : PatLeaf<(i8 11)>; // alt. COND_PO
+def X86_COND_NS : PatLeaf<(i8 12)>;
+def X86_COND_O : PatLeaf<(i8 13)>;
+def X86_COND_P : PatLeaf<(i8 14)>; // alt. COND_PE
+def X86_COND_S : PatLeaf<(i8 15)>;
+
+let FastIselShouldIgnore = 1 in { // FastIsel should ignore all simm8 instrs.
+ def i16immSExt8 : ImmLeaf<i16, [{ return Imm == (int8_t)Imm; }]>;
+ def i32immSExt8 : ImmLeaf<i32, [{ return Imm == (int8_t)Imm; }]>;
+ def i64immSExt8 : ImmLeaf<i64, [{ return Imm == (int8_t)Imm; }]>;
+}
+
+def i64immSExt32 : ImmLeaf<i64, [{ return Imm == (int32_t)Imm; }]>;
+
+
+// i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
+// unsigned field.
+def i64immZExt32 : ImmLeaf<i64, [{ return (uint64_t)Imm == (uint32_t)Imm; }]>;
+
+def i64immZExt32SExt8 : ImmLeaf<i64, [{
+ return (uint64_t)Imm == (uint32_t)Imm && (int32_t)Imm == (int8_t)Imm;
+}]>;
+
+// Helper fragments for loads.
+// It's always safe to treat a anyext i16 load as a i32 load if the i16 is
+// known to be 32-bit aligned or better. Ditto for i8 to i16.
+def loadi16 : PatFrag<(ops node:$ptr), (i16 (unindexedload node:$ptr)), [{
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ if (ExtType == ISD::NON_EXTLOAD)
+ return true;
+ if (ExtType == ISD::EXTLOAD)
+ return LD->getAlignment() >= 2 && !LD->isVolatile();
+ return false;
+}]>;
+
+def loadi16_anyext : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)),[{
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ if (ExtType == ISD::EXTLOAD)
+ return LD->getAlignment() >= 2 && !LD->isVolatile();
+ return false;
+}]>;
+
+def loadi32 : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ if (ExtType == ISD::NON_EXTLOAD)
+ return true;
+ if (ExtType == ISD::EXTLOAD)
+ return LD->getAlignment() >= 4 && !LD->isVolatile();
+ return false;
+}]>;
+
+def loadi8 : PatFrag<(ops node:$ptr), (i8 (load node:$ptr))>;
+def loadi64 : PatFrag<(ops node:$ptr), (i64 (load node:$ptr))>;
+def loadf32 : PatFrag<(ops node:$ptr), (f32 (load node:$ptr))>;
+def loadf64 : PatFrag<(ops node:$ptr), (f64 (load node:$ptr))>;
+def loadf80 : PatFrag<(ops node:$ptr), (f80 (load node:$ptr))>;
+
+def sextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (sextloadi8 node:$ptr))>;
+def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>;
+def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
+def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
+def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
+def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
+
+def zextloadi8i1 : PatFrag<(ops node:$ptr), (i8 (zextloadi1 node:$ptr))>;
+def zextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (zextloadi1 node:$ptr))>;
+def zextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (zextloadi1 node:$ptr))>;
+def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>;
+def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>;
+def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
+def zextloadi64i1 : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>;
+def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
+def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
+def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
+
+def extloadi8i1 : PatFrag<(ops node:$ptr), (i8 (extloadi1 node:$ptr))>;
+def extloadi16i1 : PatFrag<(ops node:$ptr), (i16 (extloadi1 node:$ptr))>;
+def extloadi32i1 : PatFrag<(ops node:$ptr), (i32 (extloadi1 node:$ptr))>;
+def extloadi16i8 : PatFrag<(ops node:$ptr), (i16 (extloadi8 node:$ptr))>;
+def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>;
+def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
+def extloadi64i1 : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>;
+def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
+def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
+def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
+
+
+// An 'and' node with a single use.
+def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
+ return N->hasOneUse();
+}]>;
+// An 'srl' node with a single use.
+def srl_su : PatFrag<(ops node:$lhs, node:$rhs), (srl node:$lhs, node:$rhs), [{
+ return N->hasOneUse();
+}]>;
+// An 'trunc' node with a single use.
+def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{
+ return N->hasOneUse();
+}]>;
+
+//===----------------------------------------------------------------------===//
+// Instruction list.
+//
+
+// Nop
+let neverHasSideEffects = 1, SchedRW = [WriteZero] in {
+ def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", [], IIC_NOP>;
+ def NOOPW : I<0x1f, MRMXm, (outs), (ins i16mem:$zero),
+ "nop{w}\t$zero", [], IIC_NOP>, TB, OpSize16;
+ def NOOPL : I<0x1f, MRMXm, (outs), (ins i32mem:$zero),
+ "nop{l}\t$zero", [], IIC_NOP>, TB, OpSize32;
+}
+
+
+// Constructing a stack frame.
+def ENTER : Ii16<0xC8, RawFrmImm8, (outs), (ins i16imm:$len, i8imm:$lvl),
+ "enter\t$len, $lvl", [], IIC_ENTER>, Sched<[WriteMicrocoded]>;
+
+let SchedRW = [WriteALU] in {
+let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, neverHasSideEffects=1 in
+def LEAVE : I<0xC9, RawFrm,
+ (outs), (ins), "leave", [], IIC_LEAVE>,
+ Requires<[Not64BitMode]>;
+
+let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in
+def LEAVE64 : I<0xC9, RawFrm,
+ (outs), (ins), "leave", [], IIC_LEAVE>,
+ Requires<[In64BitMode]>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instructions.
+//
+
+let Defs = [ESP], Uses = [ESP], neverHasSideEffects=1 in {
+let mayLoad = 1, SchedRW = [WriteLoad] in {
+def POP16r : I<0x58, AddRegFrm, (outs GR16:$reg), (ins), "pop{w}\t$reg", [],
+ IIC_POP_REG16>, OpSize16;
+def POP32r : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", [],
+ IIC_POP_REG>, OpSize32, Requires<[Not64BitMode]>;
+def POP16rmr: I<0x8F, MRM0r, (outs GR16:$reg), (ins), "pop{w}\t$reg", [],
+ IIC_POP_REG>, OpSize16;
+def POP16rmm: I<0x8F, MRM0m, (outs), (ins i16mem:$dst), "pop{w}\t$dst", [],
+ IIC_POP_MEM>, OpSize16;
+def POP32rmr: I<0x8F, MRM0r, (outs GR32:$reg), (ins), "pop{l}\t$reg", [],
+ IIC_POP_REG>, OpSize32, Requires<[Not64BitMode]>;
+def POP32rmm: I<0x8F, MRM0m, (outs), (ins i32mem:$dst), "pop{l}\t$dst", [],
+ IIC_POP_MEM>, OpSize32, Requires<[Not64BitMode]>;
+
+def POPF16 : I<0x9D, RawFrm, (outs), (ins), "popf{w}", [], IIC_POP_F>,
+ OpSize16;
+def POPF32 : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", [], IIC_POP_FD>,
+ OpSize32, Requires<[Not64BitMode]>;
+} // mayLoad, SchedRW
+
+let mayStore = 1, SchedRW = [WriteStore] in {
+def PUSH16r : I<0x50, AddRegFrm, (outs), (ins GR16:$reg), "push{w}\t$reg",[],
+ IIC_PUSH_REG>, OpSize16;
+def PUSH32r : I<0x50, AddRegFrm, (outs), (ins GR32:$reg), "push{l}\t$reg",[],
+ IIC_PUSH_REG>, OpSize32, Requires<[Not64BitMode]>;
+def PUSH16rmr: I<0xFF, MRM6r, (outs), (ins GR16:$reg), "push{w}\t$reg",[],
+ IIC_PUSH_REG>, OpSize16;
+def PUSH16rmm: I<0xFF, MRM6m, (outs), (ins i16mem:$src), "push{w}\t$src",[],
+ IIC_PUSH_MEM>, OpSize16;
+def PUSH32rmr: I<0xFF, MRM6r, (outs), (ins GR32:$reg), "push{l}\t$reg",[],
+ IIC_PUSH_REG>, OpSize32, Requires<[Not64BitMode]>;
+def PUSH32rmm: I<0xFF, MRM6m, (outs), (ins i32mem:$src), "push{l}\t$src",[],
+ IIC_PUSH_MEM>, OpSize32, Requires<[Not64BitMode]>;
+
+def PUSH16i8 : Ii8<0x6a, RawFrm, (outs), (ins i16i8imm:$imm),
+ "push{w}\t$imm", [], IIC_PUSH_IMM>, OpSize16,
+ Requires<[Not64BitMode]>;
+def PUSH32i8 : Ii8<0x6a, RawFrm, (outs), (ins i32i8imm:$imm),
+ "push{l}\t$imm", [], IIC_PUSH_IMM>, OpSize32,
+ Requires<[Not64BitMode]>;
+def PUSHi16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm),
+ "push{w}\t$imm", [], IIC_PUSH_IMM>, OpSize16,
+ Requires<[Not64BitMode]>;
+def PUSHi32 : Ii32<0x68, RawFrm, (outs), (ins i32imm:$imm),
+ "push{l}\t$imm", [], IIC_PUSH_IMM>, OpSize32,
+ Requires<[Not64BitMode]>;
+
+def PUSHF16 : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", [], IIC_PUSH_F>,
+ OpSize16;
+def PUSHF32 : I<0x9C, RawFrm, (outs), (ins), "pushf{l|d}", [], IIC_PUSH_F>,
+ OpSize32, Requires<[Not64BitMode]>;
+
+} // mayStore, SchedRW
+}
+
+let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in {
+let mayLoad = 1, SchedRW = [WriteLoad] in {
+def POP64r : I<0x58, AddRegFrm, (outs GR64:$reg), (ins), "pop{q}\t$reg", [],
+ IIC_POP_REG>, OpSize32, Requires<[In64BitMode]>;
+def POP64rmr: I<0x8F, MRM0r, (outs GR64:$reg), (ins), "pop{q}\t$reg", [],
+ IIC_POP_REG>, OpSize32, Requires<[In64BitMode]>;
+def POP64rmm: I<0x8F, MRM0m, (outs), (ins i64mem:$dst), "pop{q}\t$dst", [],
+ IIC_POP_MEM>, OpSize32, Requires<[In64BitMode]>;
+} // mayLoad, SchedRW
+let mayStore = 1, SchedRW = [WriteStore] in {
+def PUSH64r : I<0x50, AddRegFrm, (outs), (ins GR64:$reg), "push{q}\t$reg", [],
+ IIC_PUSH_REG>, OpSize32, Requires<[In64BitMode]>;
+def PUSH64rmr: I<0xFF, MRM6r, (outs), (ins GR64:$reg), "push{q}\t$reg", [],
+ IIC_PUSH_REG>, OpSize32, Requires<[In64BitMode]>;
+def PUSH64rmm: I<0xFF, MRM6m, (outs), (ins i64mem:$src), "push{q}\t$src", [],
+ IIC_PUSH_MEM>, OpSize32, Requires<[In64BitMode]>;
+} // mayStore, SchedRW
+}
+
+let Defs = [RSP], Uses = [RSP], neverHasSideEffects = 1, mayStore = 1,
+ SchedRW = [WriteStore] in {
+def PUSH64i8 : Ii8<0x6a, RawFrm, (outs), (ins i64i8imm:$imm),
+ "push{q}\t$imm", [], IIC_PUSH_IMM>, Requires<[In64BitMode]>;
+def PUSH64i16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm),
+ "push{w}\t$imm", [], IIC_PUSH_IMM>, OpSize16,
+ Requires<[In64BitMode]>;
+def PUSH64i32 : Ii32S<0x68, RawFrm, (outs), (ins i64i32imm:$imm),
+ "push{q}\t$imm", [], IIC_PUSH_IMM>, OpSize32,
+ Requires<[In64BitMode]>;
+}
+
+let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1, neverHasSideEffects=1 in
+def POPF64 : I<0x9D, RawFrm, (outs), (ins), "popfq", [], IIC_POP_FD>,
+ OpSize32, Requires<[In64BitMode]>, Sched<[WriteLoad]>;
+let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1, neverHasSideEffects=1 in
+def PUSHF64 : I<0x9C, RawFrm, (outs), (ins), "pushfq", [], IIC_PUSH_F>,
+ OpSize32, Requires<[In64BitMode]>, Sched<[WriteStore]>;
+
+let Defs = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], Uses = [ESP],
+ mayLoad = 1, neverHasSideEffects = 1, SchedRW = [WriteLoad] in {
+def POPA32 : I<0x61, RawFrm, (outs), (ins), "popal", [], IIC_POP_A>,
+ OpSize32, Requires<[Not64BitMode]>;
+def POPA16 : I<0x61, RawFrm, (outs), (ins), "popaw", [], IIC_POP_A>,
+ OpSize16, Requires<[Not64BitMode]>;
+}
+let Defs = [ESP], Uses = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP],
+ mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in {
+def PUSHA32 : I<0x60, RawFrm, (outs), (ins), "pushal", [], IIC_PUSH_A>,
+ OpSize32, Requires<[Not64BitMode]>;
+def PUSHA16 : I<0x60, RawFrm, (outs), (ins), "pushaw", [], IIC_PUSH_A>,
+ OpSize16, Requires<[Not64BitMode]>;
+}
+
+let Constraints = "$src = $dst", SchedRW = [WriteALU] in {
+// GR32 = bswap GR32
+def BSWAP32r : I<0xC8, AddRegFrm,
+ (outs GR32:$dst), (ins GR32:$src),
+ "bswap{l}\t$dst",
+ [(set GR32:$dst, (bswap GR32:$src))], IIC_BSWAP>, OpSize32, TB;
+
+def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src),
+ "bswap{q}\t$dst",
+ [(set GR64:$dst, (bswap GR64:$src))], IIC_BSWAP>, TB;
+} // Constraints = "$src = $dst", SchedRW
+
+// Bit scan instructions.
+let Defs = [EFLAGS] in {
+def BSF16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
+ "bsf{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, EFLAGS, (X86bsf GR16:$src))],
+ IIC_BIT_SCAN_REG>, PS, OpSize16, Sched<[WriteShift]>;
+def BSF16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "bsf{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, EFLAGS, (X86bsf (loadi16 addr:$src)))],
+ IIC_BIT_SCAN_MEM>, PS, OpSize16, Sched<[WriteShiftLd]>;
+def BSF32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "bsf{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, EFLAGS, (X86bsf GR32:$src))],
+ IIC_BIT_SCAN_REG>, PS, OpSize32, Sched<[WriteShift]>;
+def BSF32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "bsf{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, EFLAGS, (X86bsf (loadi32 addr:$src)))],
+ IIC_BIT_SCAN_MEM>, PS, OpSize32, Sched<[WriteShiftLd]>;
+def BSF64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
+ "bsf{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, EFLAGS, (X86bsf GR64:$src))],
+ IIC_BIT_SCAN_REG>, PS, Sched<[WriteShift]>;
+def BSF64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "bsf{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, EFLAGS, (X86bsf (loadi64 addr:$src)))],
+ IIC_BIT_SCAN_MEM>, PS, Sched<[WriteShiftLd]>;
+
+def BSR16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
+ "bsr{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, EFLAGS, (X86bsr GR16:$src))],
+ IIC_BIT_SCAN_REG>, PS, OpSize16, Sched<[WriteShift]>;
+def BSR16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "bsr{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, EFLAGS, (X86bsr (loadi16 addr:$src)))],
+ IIC_BIT_SCAN_MEM>, PS, OpSize16, Sched<[WriteShiftLd]>;
+def BSR32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "bsr{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, EFLAGS, (X86bsr GR32:$src))],
+ IIC_BIT_SCAN_REG>, PS, OpSize32, Sched<[WriteShift]>;
+def BSR32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "bsr{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, EFLAGS, (X86bsr (loadi32 addr:$src)))],
+ IIC_BIT_SCAN_MEM>, PS, OpSize32, Sched<[WriteShiftLd]>;
+def BSR64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
+ "bsr{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, EFLAGS, (X86bsr GR64:$src))],
+ IIC_BIT_SCAN_REG>, PS, Sched<[WriteShift]>;
+def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "bsr{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, EFLAGS, (X86bsr (loadi64 addr:$src)))],
+ IIC_BIT_SCAN_MEM>, PS, Sched<[WriteShiftLd]>;
+} // Defs = [EFLAGS]
+
+let SchedRW = [WriteMicrocoded] in {
+// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
+let Defs = [EDI,ESI], Uses = [EDI,ESI,EFLAGS] in {
+def MOVSB : I<0xA4, RawFrmDstSrc, (outs dstidx8:$dst), (ins srcidx8:$src),
+ "movsb\t{$src, $dst|$dst, $src}", [], IIC_MOVS>;
+def MOVSW : I<0xA5, RawFrmDstSrc, (outs dstidx16:$dst), (ins srcidx16:$src),
+ "movsw\t{$src, $dst|$dst, $src}", [], IIC_MOVS>, OpSize16;
+def MOVSL : I<0xA5, RawFrmDstSrc, (outs dstidx32:$dst), (ins srcidx32:$src),
+ "movs{l|d}\t{$src, $dst|$dst, $src}", [], IIC_MOVS>, OpSize32;
+def MOVSQ : RI<0xA5, RawFrmDstSrc, (outs dstidx64:$dst), (ins srcidx64:$src),
+ "movsq\t{$src, $dst|$dst, $src}", [], IIC_MOVS>;
+}
+
+// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
+let Defs = [EDI], Uses = [AL,EDI,EFLAGS] in
+def STOSB : I<0xAA, RawFrmDst, (outs dstidx8:$dst), (ins),
+ "stosb\t{%al, $dst|$dst, al}", [], IIC_STOS>;
+let Defs = [EDI], Uses = [AX,EDI,EFLAGS] in
+def STOSW : I<0xAB, RawFrmDst, (outs dstidx16:$dst), (ins),
+ "stosw\t{%ax, $dst|$dst, ax}", [], IIC_STOS>, OpSize16;
+let Defs = [EDI], Uses = [EAX,EDI,EFLAGS] in
+def STOSL : I<0xAB, RawFrmDst, (outs dstidx32:$dst), (ins),
+ "stos{l|d}\t{%eax, $dst|$dst, eax}", [], IIC_STOS>, OpSize32;
+let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI,EFLAGS] in
+def STOSQ : RI<0xAB, RawFrmDst, (outs dstidx64:$dst), (ins),
+ "stosq\t{%rax, $dst|$dst, rax}", [], IIC_STOS>;
+
+// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
+let Defs = [EDI,EFLAGS], Uses = [AL,EDI,EFLAGS] in
+def SCASB : I<0xAE, RawFrmDst, (outs), (ins dstidx8:$dst),
+ "scasb\t{$dst, %al|al, $dst}", [], IIC_SCAS>;
+let Defs = [EDI,EFLAGS], Uses = [AX,EDI,EFLAGS] in
+def SCASW : I<0xAF, RawFrmDst, (outs), (ins dstidx16:$dst),
+ "scasw\t{$dst, %ax|ax, $dst}", [], IIC_SCAS>, OpSize16;
+let Defs = [EDI,EFLAGS], Uses = [EAX,EDI,EFLAGS] in
+def SCASL : I<0xAF, RawFrmDst, (outs), (ins dstidx32:$dst),
+ "scas{l|d}\t{$dst, %eax|eax, $dst}", [], IIC_SCAS>, OpSize32;
+let Defs = [EDI,EFLAGS], Uses = [RAX,EDI,EFLAGS] in
+def SCASQ : RI<0xAF, RawFrmDst, (outs), (ins dstidx64:$dst),
+ "scasq\t{$dst, %rax|rax, $dst}", [], IIC_SCAS>;
+
+// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
+let Defs = [EDI,ESI,EFLAGS], Uses = [EDI,ESI,EFLAGS] in {
+def CMPSB : I<0xA6, RawFrmDstSrc, (outs), (ins dstidx8:$dst, srcidx8:$src),
+ "cmpsb\t{$dst, $src|$src, $dst}", [], IIC_CMPS>;
+def CMPSW : I<0xA7, RawFrmDstSrc, (outs), (ins dstidx16:$dst, srcidx16:$src),
+ "cmpsw\t{$dst, $src|$src, $dst}", [], IIC_CMPS>, OpSize16;
+def CMPSL : I<0xA7, RawFrmDstSrc, (outs), (ins dstidx32:$dst, srcidx32:$src),
+ "cmps{l|d}\t{$dst, $src|$src, $dst}", [], IIC_CMPS>, OpSize32;
+def CMPSQ : RI<0xA7, RawFrmDstSrc, (outs), (ins dstidx64:$dst, srcidx64:$src),
+ "cmpsq\t{$dst, $src|$src, $dst}", [], IIC_CMPS>;
+}
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Move Instructions.
+//
+let SchedRW = [WriteMove] in {
+let neverHasSideEffects = 1 in {
+def MOV8rr : I<0x88, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src),
+ "mov{b}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
+def MOV16rr : I<0x89, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV>, OpSize16;
+def MOV32rr : I<0x89, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV>, OpSize32;
+def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
+}
+
+let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
+def MOV8ri : Ii8 <0xB0, AddRegFrm, (outs GR8 :$dst), (ins i8imm :$src),
+ "mov{b}\t{$src, $dst|$dst, $src}",
+ [(set GR8:$dst, imm:$src)], IIC_MOV>;
+def MOV16ri : Ii16<0xB8, AddRegFrm, (outs GR16:$dst), (ins i16imm:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, imm:$src)], IIC_MOV>, OpSize16;
+def MOV32ri : Ii32<0xB8, AddRegFrm, (outs GR32:$dst), (ins i32imm:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, imm:$src)], IIC_MOV>, OpSize32;
+def MOV64ri32 : RIi32S<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, i64immSExt32:$src)], IIC_MOV>;
+}
+let isReMaterializable = 1 in {
+def MOV64ri : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src),
+ "movabs{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, imm:$src)], IIC_MOV>;
+}
+
+// Longer forms that use a ModR/M byte. Needed for disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
+def MOV8ri_alt : Ii8 <0xC6, MRM0r, (outs GR8 :$dst), (ins i8imm :$src),
+ "mov{b}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
+def MOV16ri_alt : Ii16<0xC7, MRM0r, (outs GR16:$dst), (ins i16imm:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV>, OpSize16;
+def MOV32ri_alt : Ii32<0xC7, MRM0r, (outs GR32:$dst), (ins i32imm:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV>, OpSize32;
+}
+} // SchedRW
+
+let SchedRW = [WriteStore] in {
+def MOV8mi : Ii8 <0xC6, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src),
+ "mov{b}\t{$src, $dst|$dst, $src}",
+ [(store (i8 imm:$src), addr:$dst)], IIC_MOV_MEM>;
+def MOV16mi : Ii16<0xC7, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}",
+ [(store (i16 imm:$src), addr:$dst)], IIC_MOV_MEM>, OpSize16;
+def MOV32mi : Ii32<0xC7, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}",
+ [(store (i32 imm:$src), addr:$dst)], IIC_MOV_MEM>, OpSize32;
+def MOV64mi32 : RIi32S<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}",
+ [(store i64immSExt32:$src, addr:$dst)], IIC_MOV_MEM>;
+} // SchedRW
+
+let hasSideEffects = 0 in {
+
+/// moffs8, moffs16 and moffs32 versions of moves. The immediate is a
+/// 32-bit offset from the segment base. These are only valid in x86-32 mode.
+let SchedRW = [WriteALU] in {
+let mayLoad = 1 in {
+let Defs = [AL] in
+def MOV8o8a : Ii32 <0xA0, RawFrmMemOffs, (outs), (ins offset8:$src),
+ "mov{b}\t{$src, %al|al, $src}", [], IIC_MOV_MEM>,
+ Requires<[In32BitMode]>;
+let Defs = [AX] in
+def MOV16o16a : Ii32 <0xA1, RawFrmMemOffs, (outs), (ins offset16:$src),
+ "mov{w}\t{$src, %ax|ax, $src}", [], IIC_MOV_MEM>,
+ OpSize16, Requires<[In32BitMode]>;
+let Defs = [EAX] in
+def MOV32o32a : Ii32 <0xA1, RawFrmMemOffs, (outs), (ins offset32:$src),
+ "mov{l}\t{$src, %eax|eax, $src}", [], IIC_MOV_MEM>,
+ OpSize32, Requires<[In32BitMode]>;
+
+let Defs = [AL] in
+def MOV8o8a_16 : Ii16 <0xA0, RawFrmMemOffs, (outs), (ins offset8:$src),
+ "mov{b}\t{$src, %al|al, $src}", [], IIC_MOV_MEM>,
+ AdSize, Requires<[In16BitMode]>;
+let Defs = [AX] in
+def MOV16o16a_16 : Ii16 <0xA1, RawFrmMemOffs, (outs), (ins offset16:$src),
+ "mov{w}\t{$src, %ax|ax, $src}", [], IIC_MOV_MEM>,
+ OpSize16, AdSize, Requires<[In16BitMode]>;
+let Defs = [EAX] in
+def MOV32o32a_16 : Ii16 <0xA1, RawFrmMemOffs, (outs), (ins offset32:$src),
+ "mov{l}\t{$src, %eax|eax, $src}", [], IIC_MOV_MEM>,
+ AdSize, OpSize32, Requires<[In16BitMode]>;
+}
+let mayStore = 1 in {
+let Uses = [AL] in
+def MOV8ao8 : Ii32 <0xA2, RawFrmMemOffs, (outs offset8:$dst), (ins),
+ "mov{b}\t{%al, $dst|$dst, al}", [], IIC_MOV_MEM>,
+ Requires<[In32BitMode]>;
+let Uses = [AX] in
+def MOV16ao16 : Ii32 <0xA3, RawFrmMemOffs, (outs offset16:$dst), (ins),
+ "mov{w}\t{%ax, $dst|$dst, ax}", [], IIC_MOV_MEM>,
+ OpSize16, Requires<[In32BitMode]>;
+let Uses = [EAX] in
+def MOV32ao32 : Ii32 <0xA3, RawFrmMemOffs, (outs offset32:$dst), (ins),
+ "mov{l}\t{%eax, $dst|$dst, eax}", [], IIC_MOV_MEM>,
+ OpSize32, Requires<[In32BitMode]>;
+
+let Uses = [AL] in
+def MOV8ao8_16 : Ii16 <0xA2, RawFrmMemOffs, (outs offset8:$dst), (ins),
+ "mov{b}\t{%al, $dst|$dst, al}", [], IIC_MOV_MEM>,
+ AdSize, Requires<[In16BitMode]>;
+let Uses = [AX] in
+def MOV16ao16_16 : Ii16 <0xA3, RawFrmMemOffs, (outs offset16:$dst), (ins),
+ "mov{w}\t{%ax, $dst|$dst, ax}", [], IIC_MOV_MEM>,
+ OpSize16, AdSize, Requires<[In16BitMode]>;
+let Uses = [EAX] in
+def MOV32ao32_16 : Ii16 <0xA3, RawFrmMemOffs, (outs offset32:$dst), (ins),
+ "mov{l}\t{%eax, $dst|$dst, eax}", [], IIC_MOV_MEM>,
+ OpSize32, AdSize, Requires<[In16BitMode]>;
+}
+}
+
+// These forms all have full 64-bit absolute addresses in their instructions
+// and use the movabs mnemonic to indicate this specific form.
+let mayLoad = 1 in {
+let Defs = [AL] in
+def MOV64o8a : RIi64_NOREX<0xA0, RawFrmMemOffs, (outs), (ins offset8:$src),
+ "movabs{b}\t{$src, %al|al, $src}", []>,
+ Requires<[In64BitMode]>;
+let Defs = [AX] in
+def MOV64o16a : RIi64_NOREX<0xA1, RawFrmMemOffs, (outs), (ins offset16:$src),
+ "movabs{w}\t{$src, %ax|ax, $src}", []>, OpSize16,
+ Requires<[In64BitMode]>;
+let Defs = [EAX] in
+def MOV64o32a : RIi64_NOREX<0xA1, RawFrmMemOffs, (outs), (ins offset32:$src),
+ "movabs{l}\t{$src, %eax|eax, $src}", []>, OpSize32,
+ Requires<[In64BitMode]>;
+let Defs = [RAX] in
+def MOV64o64a : RIi64<0xA1, RawFrmMemOffs, (outs), (ins offset64:$src),
+ "movabs{q}\t{$src, %rax|rax, $src}", []>,
+ Requires<[In64BitMode]>;
+}
+
+let mayStore = 1 in {
+let Uses = [AL] in
+def MOV64ao8 : RIi64_NOREX<0xA2, RawFrmMemOffs, (outs offset8:$dst), (ins),
+ "movabs{b}\t{%al, $dst|$dst, al}", []>,
+ Requires<[In64BitMode]>;
+let Uses = [AX] in
+def MOV64ao16 : RIi64_NOREX<0xA3, RawFrmMemOffs, (outs offset16:$dst), (ins),
+ "movabs{w}\t{%ax, $dst|$dst, ax}", []>, OpSize16,
+ Requires<[In64BitMode]>;
+let Uses = [EAX] in
+def MOV64ao32 : RIi64_NOREX<0xA3, RawFrmMemOffs, (outs offset32:$dst), (ins),
+ "movabs{l}\t{%eax, $dst|$dst, eax}", []>, OpSize32,
+ Requires<[In64BitMode]>;
+let Uses = [RAX] in
+def MOV64ao64 : RIi64<0xA3, RawFrmMemOffs, (outs offset64:$dst), (ins),
+ "movabs{q}\t{%rax, $dst|$dst, rax}", []>,
+ Requires<[In64BitMode]>;
+}
+} // hasSideEffects = 0
+
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
+ SchedRW = [WriteMove] in {
+def MOV8rr_REV : I<0x8A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src),
+ "mov{b}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
+def MOV16rr_REV : I<0x8B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV>, OpSize16;
+def MOV32rr_REV : I<0x8B, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV>, OpSize32;
+def MOV64rr_REV : RI<0x8B, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
+}
+
+let canFoldAsLoad = 1, isReMaterializable = 1, SchedRW = [WriteLoad] in {
+def MOV8rm : I<0x8A, MRMSrcMem, (outs GR8 :$dst), (ins i8mem :$src),
+ "mov{b}\t{$src, $dst|$dst, $src}",
+ [(set GR8:$dst, (loadi8 addr:$src))], IIC_MOV_MEM>;
+def MOV16rm : I<0x8B, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, (loadi16 addr:$src))], IIC_MOV_MEM>, OpSize16;
+def MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (loadi32 addr:$src))], IIC_MOV_MEM>, OpSize32;
+def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (load addr:$src))], IIC_MOV_MEM>;
+}
+
+let SchedRW = [WriteStore] in {
+def MOV8mr : I<0x88, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src),
+ "mov{b}\t{$src, $dst|$dst, $src}",
+ [(store GR8:$src, addr:$dst)], IIC_MOV_MEM>;
+def MOV16mr : I<0x89, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}",
+ [(store GR16:$src, addr:$dst)], IIC_MOV_MEM>, OpSize16;
+def MOV32mr : I<0x89, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}",
+ [(store GR32:$src, addr:$dst)], IIC_MOV_MEM>, OpSize32;
+def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}",
+ [(store GR64:$src, addr:$dst)], IIC_MOV_MEM>;
+} // SchedRW
+
+// Versions of MOV8rr, MOV8mr, and MOV8rm that use i8mem_NOREX and GR8_NOREX so
+// that they can be used for copying and storing h registers, which can't be
+// encoded when a REX prefix is present.
+let isCodeGenOnly = 1 in {
+let neverHasSideEffects = 1 in
+def MOV8rr_NOREX : I<0x88, MRMDestReg,
+ (outs GR8_NOREX:$dst), (ins GR8_NOREX:$src),
+ "mov{b}\t{$src, $dst|$dst, $src} # NOREX", [], IIC_MOV>,
+ Sched<[WriteMove]>;
+let mayStore = 1, neverHasSideEffects = 1 in
+def MOV8mr_NOREX : I<0x88, MRMDestMem,
+ (outs), (ins i8mem_NOREX:$dst, GR8_NOREX:$src),
+ "mov{b}\t{$src, $dst|$dst, $src} # NOREX", [],
+ IIC_MOV_MEM>, Sched<[WriteStore]>;
+let mayLoad = 1, neverHasSideEffects = 1,
+ canFoldAsLoad = 1, isReMaterializable = 1 in
+def MOV8rm_NOREX : I<0x8A, MRMSrcMem,
+ (outs GR8_NOREX:$dst), (ins i8mem_NOREX:$src),
+ "mov{b}\t{$src, $dst|$dst, $src} # NOREX", [],
+ IIC_MOV_MEM>, Sched<[WriteLoad]>;
+}
+
+
+// Condition code ops, incl. set if equal/not equal/...
+let SchedRW = [WriteALU] in {
+let Defs = [EFLAGS], Uses = [AH] in
+def SAHF : I<0x9E, RawFrm, (outs), (ins), "sahf",
+ [(set EFLAGS, (X86sahf AH))], IIC_AHF>;
+let Defs = [AH], Uses = [EFLAGS], neverHasSideEffects = 1 in
+def LAHF : I<0x9F, RawFrm, (outs), (ins), "lahf", [],
+ IIC_AHF>; // AH = flags
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Bit tests instructions: BT, BTS, BTR, BTC.
+
+let Defs = [EFLAGS] in {
+let SchedRW = [WriteALU] in {
+def BT16rr : I<0xA3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
+ "bt{w}\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86bt GR16:$src1, GR16:$src2))], IIC_BT_RR>,
+ OpSize16, TB;
+def BT32rr : I<0xA3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
+ "bt{l}\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86bt GR32:$src1, GR32:$src2))], IIC_BT_RR>,
+ OpSize32, TB;
+def BT64rr : RI<0xA3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
+ "bt{q}\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86bt GR64:$src1, GR64:$src2))], IIC_BT_RR>, TB;
+} // SchedRW
+
+// Unlike with the register+register form, the memory+register form of the
+// bt instruction does not ignore the high bits of the index. From ISel's
+// perspective, this is pretty bizarre. Make these instructions disassembly
+// only for now.
+
+let mayLoad = 1, hasSideEffects = 0, SchedRW = [WriteALULd] in {
+ def BT16mr : I<0xA3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
+ "bt{w}\t{$src2, $src1|$src1, $src2}",
+ // [(X86bt (loadi16 addr:$src1), GR16:$src2),
+ // (implicit EFLAGS)]
+ [], IIC_BT_MR
+ >, OpSize16, TB, Requires<[FastBTMem]>;
+ def BT32mr : I<0xA3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
+ "bt{l}\t{$src2, $src1|$src1, $src2}",
+ // [(X86bt (loadi32 addr:$src1), GR32:$src2),
+ // (implicit EFLAGS)]
+ [], IIC_BT_MR
+ >, OpSize32, TB, Requires<[FastBTMem]>;
+ def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
+ "bt{q}\t{$src2, $src1|$src1, $src2}",
+ // [(X86bt (loadi64 addr:$src1), GR64:$src2),
+ // (implicit EFLAGS)]
+ [], IIC_BT_MR
+ >, TB;
+}
+
+let SchedRW = [WriteALU] in {
+def BT16ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR16:$src1, i16i8imm:$src2),
+ "bt{w}\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86bt GR16:$src1, i16immSExt8:$src2))],
+ IIC_BT_RI>, OpSize16, TB;
+def BT32ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR32:$src1, i32i8imm:$src2),
+ "bt{l}\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86bt GR32:$src1, i32immSExt8:$src2))],
+ IIC_BT_RI>, OpSize32, TB;
+def BT64ri8 : RIi8<0xBA, MRM4r, (outs), (ins GR64:$src1, i64i8imm:$src2),
+ "bt{q}\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86bt GR64:$src1, i64immSExt8:$src2))],
+ IIC_BT_RI>, TB;
+} // SchedRW
+
+// Note that these instructions don't need FastBTMem because that
+// only applies when the other operand is in a register. When it's
+// an immediate, bt is still fast.
+let SchedRW = [WriteALU] in {
+def BT16mi8 : Ii8<0xBA, MRM4m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
+ "bt{w}\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86bt (loadi16 addr:$src1), i16immSExt8:$src2))
+ ], IIC_BT_MI>, OpSize16, TB;
+def BT32mi8 : Ii8<0xBA, MRM4m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
+ "bt{l}\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86bt (loadi32 addr:$src1), i32immSExt8:$src2))
+ ], IIC_BT_MI>, OpSize32, TB;
+def BT64mi8 : RIi8<0xBA, MRM4m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
+ "bt{q}\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86bt (loadi64 addr:$src1),
+ i64immSExt8:$src2))], IIC_BT_MI>, TB;
+} // SchedRW
+
+let hasSideEffects = 0 in {
+let SchedRW = [WriteALU] in {
+def BTC16rr : I<0xBB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
+ "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>,
+ OpSize16, TB;
+def BTC32rr : I<0xBB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
+ "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>,
+ OpSize32, TB;
+def BTC64rr : RI<0xBB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
+ "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB;
+} // SchedRW
+
+let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
+def BTC16mr : I<0xBB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
+ "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>,
+ OpSize16, TB;
+def BTC32mr : I<0xBB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
+ "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>,
+ OpSize32, TB;
+def BTC64mr : RI<0xBB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
+ "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB;
+}
+
+let SchedRW = [WriteALU] in {
+def BTC16ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR16:$src1, i16i8imm:$src2),
+ "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>,
+ OpSize16, TB;
+def BTC32ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR32:$src1, i32i8imm:$src2),
+ "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>,
+ OpSize32, TB;
+def BTC64ri8 : RIi8<0xBA, MRM7r, (outs), (ins GR64:$src1, i64i8imm:$src2),
+ "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB;
+} // SchedRW
+
+let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
+def BTC16mi8 : Ii8<0xBA, MRM7m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
+ "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>,
+ OpSize16, TB;
+def BTC32mi8 : Ii8<0xBA, MRM7m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
+ "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>,
+ OpSize32, TB;
+def BTC64mi8 : RIi8<0xBA, MRM7m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
+ "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB;
+}
+
+let SchedRW = [WriteALU] in {
+def BTR16rr : I<0xB3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
+ "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>,
+ OpSize16, TB;
+def BTR32rr : I<0xB3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
+ "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>,
+ OpSize32, TB;
+def BTR64rr : RI<0xB3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
+ "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
+} // SchedRW
+
+let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
+def BTR16mr : I<0xB3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
+ "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>,
+ OpSize16, TB;
+def BTR32mr : I<0xB3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
+ "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>,
+ OpSize32, TB;
+def BTR64mr : RI<0xB3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
+ "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB;
+}
+
+let SchedRW = [WriteALU] in {
+def BTR16ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR16:$src1, i16i8imm:$src2),
+ "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>,
+ OpSize16, TB;
+def BTR32ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR32:$src1, i32i8imm:$src2),
+ "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>,
+ OpSize32, TB;
+def BTR64ri8 : RIi8<0xBA, MRM6r, (outs), (ins GR64:$src1, i64i8imm:$src2),
+ "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB;
+} // SchedRW
+
+let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
+def BTR16mi8 : Ii8<0xBA, MRM6m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
+ "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>,
+ OpSize16, TB;
+def BTR32mi8 : Ii8<0xBA, MRM6m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
+ "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>,
+ OpSize32, TB;
+def BTR64mi8 : RIi8<0xBA, MRM6m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
+ "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB;
+}
+
+let SchedRW = [WriteALU] in {
+def BTS16rr : I<0xAB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
+ "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>,
+ OpSize16, TB;
+def BTS32rr : I<0xAB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
+ "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>,
+ OpSize32, TB;
+def BTS64rr : RI<0xAB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
+ "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB;
+} // SchedRW
+
+let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
+def BTS16mr : I<0xAB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
+ "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>,
+ OpSize16, TB;
+def BTS32mr : I<0xAB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
+ "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>,
+ OpSize32, TB;
+def BTS64mr : RI<0xAB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
+ "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB;
+}
+
+let SchedRW = [WriteALU] in {
+def BTS16ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR16:$src1, i16i8imm:$src2),
+ "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>,
+ OpSize16, TB;
+def BTS32ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR32:$src1, i32i8imm:$src2),
+ "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>,
+ OpSize32, TB;
+def BTS64ri8 : RIi8<0xBA, MRM5r, (outs), (ins GR64:$src1, i64i8imm:$src2),
+ "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB;
+} // SchedRW
+
+let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
+def BTS16mi8 : Ii8<0xBA, MRM5m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
+ "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>,
+ OpSize16, TB;
+def BTS32mi8 : Ii8<0xBA, MRM5m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
+ "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>,
+ OpSize32, TB;
+def BTS64mi8 : RIi8<0xBA, MRM5m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
+ "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB;
+}
+} // hasSideEffects = 0
+} // Defs = [EFLAGS]
+
+
+//===----------------------------------------------------------------------===//
+// Atomic support
+//
+
+// Atomic swap. These are just normal xchg instructions. But since a memory
+// operand is referenced, the atomicity is ensured.
+multiclass ATOMIC_SWAP<bits<8> opc8, bits<8> opc, string mnemonic, string frag,
+ InstrItinClass itin> {
+ let Constraints = "$val = $dst", SchedRW = [WriteALULd, WriteRMW] in {
+ def NAME#8rm : I<opc8, MRMSrcMem, (outs GR8:$dst),
+ (ins GR8:$val, i8mem:$ptr),
+ !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR8:$dst,
+ (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
+ itin>;
+ def NAME#16rm : I<opc, MRMSrcMem, (outs GR16:$dst),
+ (ins GR16:$val, i16mem:$ptr),
+ !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR16:$dst,
+ (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
+ itin>, OpSize16;
+ def NAME#32rm : I<opc, MRMSrcMem, (outs GR32:$dst),
+ (ins GR32:$val, i32mem:$ptr),
+ !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR32:$dst,
+ (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
+ itin>, OpSize32;
+ def NAME#64rm : RI<opc, MRMSrcMem, (outs GR64:$dst),
+ (ins GR64:$val, i64mem:$ptr),
+ !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR64:$dst,
+ (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
+ itin>;
+ }
+}
+
+defm XCHG : ATOMIC_SWAP<0x86, 0x87, "xchg", "atomic_swap", IIC_XCHG_MEM>;
+
+// Swap between registers.
+let SchedRW = [WriteALU] in {
+let Constraints = "$val = $dst" in {
+def XCHG8rr : I<0x86, MRMSrcReg, (outs GR8:$dst), (ins GR8:$val, GR8:$src),
+ "xchg{b}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>;
+def XCHG16rr : I<0x87, MRMSrcReg, (outs GR16:$dst), (ins GR16:$val, GR16:$src),
+ "xchg{w}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>,
+ OpSize16;
+def XCHG32rr : I<0x87, MRMSrcReg, (outs GR32:$dst), (ins GR32:$val, GR32:$src),
+ "xchg{l}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>,
+ OpSize32;
+def XCHG64rr : RI<0x87, MRMSrcReg, (outs GR64:$dst), (ins GR64:$val,GR64:$src),
+ "xchg{q}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>;
+}
+
+// Swap between EAX and other registers.
+let Uses = [AX], Defs = [AX] in
+def XCHG16ar : I<0x90, AddRegFrm, (outs), (ins GR16:$src),
+ "xchg{w}\t{$src, %ax|ax, $src}", [], IIC_XCHG_REG>, OpSize16;
+let Uses = [EAX], Defs = [EAX] in
+def XCHG32ar : I<0x90, AddRegFrm, (outs), (ins GR32:$src),
+ "xchg{l}\t{$src, %eax|eax, $src}", [], IIC_XCHG_REG>,
+ OpSize32, Requires<[Not64BitMode]>;
+let Uses = [EAX], Defs = [EAX] in
+// Uses GR32_NOAX in 64-bit mode to prevent encoding using the 0x90 NOP encoding.
+// xchg %eax, %eax needs to clear upper 32-bits of RAX so is not a NOP.
+def XCHG32ar64 : I<0x90, AddRegFrm, (outs), (ins GR32_NOAX:$src),
+ "xchg{l}\t{$src, %eax|eax, $src}", [], IIC_XCHG_REG>,
+ OpSize32, Requires<[In64BitMode]>;
+let Uses = [RAX], Defs = [RAX] in
+def XCHG64ar : RI<0x90, AddRegFrm, (outs), (ins GR64:$src),
+ "xchg{q}\t{$src, %rax|rax, $src}", [], IIC_XCHG_REG>;
+} // SchedRW
+
+let SchedRW = [WriteALU] in {
+def XADD8rr : I<0xC0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src),
+ "xadd{b}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB;
+def XADD16rr : I<0xC1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
+ "xadd{w}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB,
+ OpSize16;
+def XADD32rr : I<0xC1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
+ "xadd{l}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB,
+ OpSize32;
+def XADD64rr : RI<0xC1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
+ "xadd{q}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB;
+} // SchedRW
+
+let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
+def XADD8rm : I<0xC0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src),
+ "xadd{b}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB;
+def XADD16rm : I<0xC1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
+ "xadd{w}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB,
+ OpSize16;
+def XADD32rm : I<0xC1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
+ "xadd{l}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB,
+ OpSize32;
+def XADD64rm : RI<0xC1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
+ "xadd{q}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB;
+
+}
+
+let SchedRW = [WriteALU] in {
+def CMPXCHG8rr : I<0xB0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src),
+ "cmpxchg{b}\t{$src, $dst|$dst, $src}", [],
+ IIC_CMPXCHG_REG8>, TB;
+def CMPXCHG16rr : I<0xB1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
+ "cmpxchg{w}\t{$src, $dst|$dst, $src}", [],
+ IIC_CMPXCHG_REG>, TB, OpSize16;
+def CMPXCHG32rr : I<0xB1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
+ "cmpxchg{l}\t{$src, $dst|$dst, $src}", [],
+ IIC_CMPXCHG_REG>, TB, OpSize32;
+def CMPXCHG64rr : RI<0xB1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
+ "cmpxchg{q}\t{$src, $dst|$dst, $src}", [],
+ IIC_CMPXCHG_REG>, TB;
+} // SchedRW
+
+let SchedRW = [WriteALULd, WriteRMW] in {
+let mayLoad = 1, mayStore = 1 in {
+def CMPXCHG8rm : I<0xB0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src),
+ "cmpxchg{b}\t{$src, $dst|$dst, $src}", [],
+ IIC_CMPXCHG_MEM8>, TB;
+def CMPXCHG16rm : I<0xB1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
+ "cmpxchg{w}\t{$src, $dst|$dst, $src}", [],
+ IIC_CMPXCHG_MEM>, TB, OpSize16;
+def CMPXCHG32rm : I<0xB1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
+ "cmpxchg{l}\t{$src, $dst|$dst, $src}", [],
+ IIC_CMPXCHG_MEM>, TB, OpSize32;
+def CMPXCHG64rm : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
+ "cmpxchg{q}\t{$src, $dst|$dst, $src}", [],
+ IIC_CMPXCHG_MEM>, TB;
+}
+
+let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in
+def CMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$dst),
+ "cmpxchg8b\t$dst", [], IIC_CMPXCHG_8B>, TB;
+
+let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX] in
+def CMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$dst),
+ "cmpxchg16b\t$dst", [], IIC_CMPXCHG_16B>,
+ TB, Requires<[HasCmpxchg16b]>;
+} // SchedRW
+
+
+// Lock instruction prefix
+def LOCK_PREFIX : I<0xF0, RawFrm, (outs), (ins), "lock", []>;
+
+// Rex64 instruction prefix
+def REX64_PREFIX : I<0x48, RawFrm, (outs), (ins), "rex64", []>,
+ Requires<[In64BitMode]>;
+
+// Data16 instruction prefix
+def DATA16_PREFIX : I<0x66, RawFrm, (outs), (ins), "data16", []>;
+
+// Repeat string operation instruction prefixes
+// These uses the DF flag in the EFLAGS register to inc or dec ECX
+let Defs = [ECX], Uses = [ECX,EFLAGS] in {
+// Repeat (used with INS, OUTS, MOVS, LODS and STOS)
+def REP_PREFIX : I<0xF3, RawFrm, (outs), (ins), "rep", []>;
+// Repeat while not equal (used with CMPS and SCAS)
+def REPNE_PREFIX : I<0xF2, RawFrm, (outs), (ins), "repne", []>;
+}
+
+
+// String manipulation instructions
+let SchedRW = [WriteMicrocoded] in {
+// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
+let Defs = [AL,ESI], Uses = [ESI,EFLAGS] in
+def LODSB : I<0xAC, RawFrmSrc, (outs), (ins srcidx8:$src),
+ "lodsb\t{$src, %al|al, $src}", [], IIC_LODS>;
+let Defs = [AX,ESI], Uses = [ESI,EFLAGS] in
+def LODSW : I<0xAD, RawFrmSrc, (outs), (ins srcidx16:$src),
+ "lodsw\t{$src, %ax|ax, $src}", [], IIC_LODS>, OpSize16;
+let Defs = [EAX,ESI], Uses = [ESI,EFLAGS] in
+def LODSL : I<0xAD, RawFrmSrc, (outs), (ins srcidx32:$src),
+ "lods{l|d}\t{$src, %eax|eax, $src}", [], IIC_LODS>, OpSize32;
+let Defs = [RAX,ESI], Uses = [ESI,EFLAGS] in
+def LODSQ : RI<0xAD, RawFrmSrc, (outs), (ins srcidx64:$src),
+ "lodsq\t{$src, %rax|rax, $src}", [], IIC_LODS>;
+}
+
+let SchedRW = [WriteSystem] in {
+// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
+let Defs = [ESI], Uses = [DX,ESI,EFLAGS] in {
+def OUTSB : I<0x6E, RawFrmSrc, (outs), (ins srcidx8:$src),
+ "outsb\t{$src, %dx|dx, $src}", [], IIC_OUTS>;
+def OUTSW : I<0x6F, RawFrmSrc, (outs), (ins srcidx16:$src),
+ "outsw\t{$src, %dx|dx, $src}", [], IIC_OUTS>, OpSize16;
+def OUTSL : I<0x6F, RawFrmSrc, (outs), (ins srcidx32:$src),
+ "outs{l|d}\t{$src, %dx|dx, $src}", [], IIC_OUTS>, OpSize32;
+}
+
+// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
+let Defs = [EDI], Uses = [DX,EDI,EFLAGS] in {
+def INSB : I<0x6C, RawFrmDst, (outs dstidx8:$dst), (ins),
+ "insb\t{%dx, $dst|$dst, dx}", [], IIC_INS>;
+def INSW : I<0x6D, RawFrmDst, (outs dstidx16:$dst), (ins),
+ "insw\t{%dx, $dst|$dst, dx}", [], IIC_INS>, OpSize16;
+def INSL : I<0x6D, RawFrmDst, (outs dstidx32:$dst), (ins),
+ "ins{l|d}\t{%dx, $dst|$dst, dx}", [], IIC_INS>, OpSize32;
+}
+}
+
+// Flag instructions
+let SchedRW = [WriteALU] in {
+def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", [], IIC_CLC>;
+def STC : I<0xF9, RawFrm, (outs), (ins), "stc", [], IIC_STC>;
+def CLI : I<0xFA, RawFrm, (outs), (ins), "cli", [], IIC_CLI>;
+def STI : I<0xFB, RawFrm, (outs), (ins), "sti", [], IIC_STI>;
+def CLD : I<0xFC, RawFrm, (outs), (ins), "cld", [], IIC_CLD>;
+def STD : I<0xFD, RawFrm, (outs), (ins), "std", [], IIC_STD>;
+def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", [], IIC_CMC>;
+
+def CLTS : I<0x06, RawFrm, (outs), (ins), "clts", [], IIC_CLTS>, TB;
+}
+
+// Table lookup instructions
+def XLAT : I<0xD7, RawFrm, (outs), (ins), "xlatb", [], IIC_XLAT>,
+ Sched<[WriteLoad]>;
+
+let SchedRW = [WriteMicrocoded] in {
+// ASCII Adjust After Addition
+// sets AL, AH and CF and AF of EFLAGS and uses AL and AF of EFLAGS
+def AAA : I<0x37, RawFrm, (outs), (ins), "aaa", [], IIC_AAA>,
+ Requires<[Not64BitMode]>;
+
+// ASCII Adjust AX Before Division
+// sets AL, AH and EFLAGS and uses AL and AH
+def AAD8i8 : Ii8<0xD5, RawFrm, (outs), (ins i8imm:$src),
+ "aad\t$src", [], IIC_AAD>, Requires<[Not64BitMode]>;
+
+// ASCII Adjust AX After Multiply
+// sets AL, AH and EFLAGS and uses AL
+def AAM8i8 : Ii8<0xD4, RawFrm, (outs), (ins i8imm:$src),
+ "aam\t$src", [], IIC_AAM>, Requires<[Not64BitMode]>;
+
+// ASCII Adjust AL After Subtraction - sets
+// sets AL, AH and CF and AF of EFLAGS and uses AL and AF of EFLAGS
+def AAS : I<0x3F, RawFrm, (outs), (ins), "aas", [], IIC_AAS>,
+ Requires<[Not64BitMode]>;
+
+// Decimal Adjust AL after Addition
+// sets AL, CF and AF of EFLAGS and uses AL, CF and AF of EFLAGS
+def DAA : I<0x27, RawFrm, (outs), (ins), "daa", [], IIC_DAA>,
+ Requires<[Not64BitMode]>;
+
+// Decimal Adjust AL after Subtraction
+// sets AL, CF and AF of EFLAGS and uses AL, CF and AF of EFLAGS
+def DAS : I<0x2F, RawFrm, (outs), (ins), "das", [], IIC_DAS>,
+ Requires<[Not64BitMode]>;
+} // SchedRW
+
+let SchedRW = [WriteSystem] in {
+// Check Array Index Against Bounds
+def BOUNDS16rm : I<0x62, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "bound\t{$src, $dst|$dst, $src}", [], IIC_BOUND>, OpSize16,
+ Requires<[Not64BitMode]>;
+def BOUNDS32rm : I<0x62, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "bound\t{$src, $dst|$dst, $src}", [], IIC_BOUND>, OpSize32,
+ Requires<[Not64BitMode]>;
+
+// Adjust RPL Field of Segment Selector
+def ARPL16rr : I<0x63, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
+ "arpl\t{$src, $dst|$dst, $src}", [], IIC_ARPL_REG>,
+ Requires<[Not64BitMode]>;
+def ARPL16mr : I<0x63, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
+ "arpl\t{$src, $dst|$dst, $src}", [], IIC_ARPL_MEM>,
+ Requires<[Not64BitMode]>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// MOVBE Instructions
+//
+let Predicates = [HasMOVBE] in {
+ let SchedRW = [WriteALULd] in {
+ def MOVBE16rm : I<0xF0, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "movbe{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, (bswap (loadi16 addr:$src)))], IIC_MOVBE>,
+ OpSize16, T8PS;
+ def MOVBE32rm : I<0xF0, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "movbe{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (bswap (loadi32 addr:$src)))], IIC_MOVBE>,
+ OpSize32, T8PS;
+ def MOVBE64rm : RI<0xF0, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "movbe{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (bswap (loadi64 addr:$src)))], IIC_MOVBE>,
+ T8PS;
+ }
+ let SchedRW = [WriteStore] in {
+ def MOVBE16mr : I<0xF1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
+ "movbe{w}\t{$src, $dst|$dst, $src}",
+ [(store (bswap GR16:$src), addr:$dst)], IIC_MOVBE>,
+ OpSize16, T8PS;
+ def MOVBE32mr : I<0xF1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
+ "movbe{l}\t{$src, $dst|$dst, $src}",
+ [(store (bswap GR32:$src), addr:$dst)], IIC_MOVBE>,
+ OpSize32, T8PS;
+ def MOVBE64mr : RI<0xF1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
+ "movbe{q}\t{$src, $dst|$dst, $src}",
+ [(store (bswap GR64:$src), addr:$dst)], IIC_MOVBE>,
+ T8PS;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// RDRAND Instruction
+//
+let Predicates = [HasRDRAND], Defs = [EFLAGS] in {
+ def RDRAND16r : I<0xC7, MRM6r, (outs GR16:$dst), (ins),
+ "rdrand{w}\t$dst",
+ [(set GR16:$dst, EFLAGS, (X86rdrand))]>, OpSize16, TB;
+ def RDRAND32r : I<0xC7, MRM6r, (outs GR32:$dst), (ins),
+ "rdrand{l}\t$dst",
+ [(set GR32:$dst, EFLAGS, (X86rdrand))]>, OpSize32, TB;
+ def RDRAND64r : RI<0xC7, MRM6r, (outs GR64:$dst), (ins),
+ "rdrand{q}\t$dst",
+ [(set GR64:$dst, EFLAGS, (X86rdrand))]>, TB;
+}
+
+//===----------------------------------------------------------------------===//
+// RDSEED Instruction
+//
+let Predicates = [HasRDSEED], Defs = [EFLAGS] in {
+ def RDSEED16r : I<0xC7, MRM7r, (outs GR16:$dst), (ins),
+ "rdseed{w}\t$dst",
+ [(set GR16:$dst, EFLAGS, (X86rdseed))]>, OpSize16, TB;
+ def RDSEED32r : I<0xC7, MRM7r, (outs GR32:$dst), (ins),
+ "rdseed{l}\t$dst",
+ [(set GR32:$dst, EFLAGS, (X86rdseed))]>, OpSize32, TB;
+ def RDSEED64r : RI<0xC7, MRM7r, (outs GR64:$dst), (ins),
+ "rdseed{q}\t$dst",
+ [(set GR64:$dst, EFLAGS, (X86rdseed))]>, TB;
+}
+
+//===----------------------------------------------------------------------===//
+// LZCNT Instruction
+//
+let Predicates = [HasLZCNT], Defs = [EFLAGS] in {
+ def LZCNT16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
+ "lzcnt{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, (ctlz GR16:$src)), (implicit EFLAGS)]>, XS,
+ OpSize16;
+ def LZCNT16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "lzcnt{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, (ctlz (loadi16 addr:$src))),
+ (implicit EFLAGS)]>, XS, OpSize16;
+
+ def LZCNT32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "lzcnt{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (ctlz GR32:$src)), (implicit EFLAGS)]>, XS,
+ OpSize32;
+ def LZCNT32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "lzcnt{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (ctlz (loadi32 addr:$src))),
+ (implicit EFLAGS)]>, XS, OpSize32;
+
+ def LZCNT64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
+ "lzcnt{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (ctlz GR64:$src)), (implicit EFLAGS)]>,
+ XS;
+ def LZCNT64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "lzcnt{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (ctlz (loadi64 addr:$src))),
+ (implicit EFLAGS)]>, XS;
+}
+
+let Predicates = [HasLZCNT] in {
+ def : Pat<(X86cmov (ctlz GR16:$src), (i16 16), (X86_COND_E),
+ (X86cmp GR16:$src, (i16 0))),
+ (LZCNT16rr GR16:$src)>;
+ def : Pat<(X86cmov (ctlz GR32:$src), (i32 32), (X86_COND_E),
+ (X86cmp GR32:$src, (i32 0))),
+ (LZCNT32rr GR32:$src)>;
+ def : Pat<(X86cmov (ctlz GR64:$src), (i64 64), (X86_COND_E),
+ (X86cmp GR64:$src, (i64 0))),
+ (LZCNT64rr GR64:$src)>;
+ def : Pat<(X86cmov (i16 16), (ctlz GR16:$src), (X86_COND_E),
+ (X86cmp GR16:$src, (i16 0))),
+ (LZCNT16rr GR16:$src)>;
+ def : Pat<(X86cmov (i32 32), (ctlz GR32:$src), (X86_COND_E),
+ (X86cmp GR32:$src, (i32 0))),
+ (LZCNT32rr GR32:$src)>;
+ def : Pat<(X86cmov (i64 64), (ctlz GR64:$src), (X86_COND_E),
+ (X86cmp GR64:$src, (i64 0))),
+ (LZCNT64rr GR64:$src)>;
+
+ def : Pat<(X86cmov (ctlz (loadi16 addr:$src)), (i16 16), (X86_COND_E),
+ (X86cmp (loadi16 addr:$src), (i16 0))),
+ (LZCNT16rm addr:$src)>;
+ def : Pat<(X86cmov (ctlz (loadi32 addr:$src)), (i32 32), (X86_COND_E),
+ (X86cmp (loadi32 addr:$src), (i32 0))),
+ (LZCNT32rm addr:$src)>;
+ def : Pat<(X86cmov (ctlz (loadi64 addr:$src)), (i64 64), (X86_COND_E),
+ (X86cmp (loadi64 addr:$src), (i64 0))),
+ (LZCNT64rm addr:$src)>;
+ def : Pat<(X86cmov (i16 16), (ctlz (loadi16 addr:$src)), (X86_COND_E),
+ (X86cmp (loadi16 addr:$src), (i16 0))),
+ (LZCNT16rm addr:$src)>;
+ def : Pat<(X86cmov (i32 32), (ctlz (loadi32 addr:$src)), (X86_COND_E),
+ (X86cmp (loadi32 addr:$src), (i32 0))),
+ (LZCNT32rm addr:$src)>;
+ def : Pat<(X86cmov (i64 64), (ctlz (loadi64 addr:$src)), (X86_COND_E),
+ (X86cmp (loadi64 addr:$src), (i64 0))),
+ (LZCNT64rm addr:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// BMI Instructions
+//
+let Predicates = [HasBMI], Defs = [EFLAGS] in {
+ def TZCNT16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
+ "tzcnt{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, (cttz GR16:$src)), (implicit EFLAGS)]>, XS,
+ OpSize16;
+ def TZCNT16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "tzcnt{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, (cttz (loadi16 addr:$src))),
+ (implicit EFLAGS)]>, XS, OpSize16;
+
+ def TZCNT32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "tzcnt{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (cttz GR32:$src)), (implicit EFLAGS)]>, XS,
+ OpSize32;
+ def TZCNT32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "tzcnt{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (cttz (loadi32 addr:$src))),
+ (implicit EFLAGS)]>, XS, OpSize32;
+
+ def TZCNT64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
+ "tzcnt{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (cttz GR64:$src)), (implicit EFLAGS)]>,
+ XS;
+ def TZCNT64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "tzcnt{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (cttz (loadi64 addr:$src))),
+ (implicit EFLAGS)]>, XS;
+}
+
+multiclass bmi_bls<string mnemonic, Format RegMRM, Format MemMRM,
+ RegisterClass RC, X86MemOperand x86memop> {
+let hasSideEffects = 0 in {
+ def rr : I<0xF3, RegMRM, (outs RC:$dst), (ins RC:$src),
+ !strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"),
+ []>, T8PS, VEX_4V;
+ let mayLoad = 1 in
+ def rm : I<0xF3, MemMRM, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"),
+ []>, T8PS, VEX_4V;
+}
+}
+
+let Predicates = [HasBMI], Defs = [EFLAGS] in {
+ defm BLSR32 : bmi_bls<"blsr{l}", MRM1r, MRM1m, GR32, i32mem>;
+ defm BLSR64 : bmi_bls<"blsr{q}", MRM1r, MRM1m, GR64, i64mem>, VEX_W;
+ defm BLSMSK32 : bmi_bls<"blsmsk{l}", MRM2r, MRM2m, GR32, i32mem>;
+ defm BLSMSK64 : bmi_bls<"blsmsk{q}", MRM2r, MRM2m, GR64, i64mem>, VEX_W;
+ defm BLSI32 : bmi_bls<"blsi{l}", MRM3r, MRM3m, GR32, i32mem>;
+ defm BLSI64 : bmi_bls<"blsi{q}", MRM3r, MRM3m, GR64, i64mem>, VEX_W;
+}
+
+//===----------------------------------------------------------------------===//
+// Pattern fragments to auto generate BMI instructions.
+//===----------------------------------------------------------------------===//
+
+let Predicates = [HasBMI] in {
+ // FIXME: patterns for the load versions are not implemented
+ def : Pat<(and GR32:$src, (add GR32:$src, -1)),
+ (BLSR32rr GR32:$src)>;
+ def : Pat<(and GR64:$src, (add GR64:$src, -1)),
+ (BLSR64rr GR64:$src)>;
+
+ def : Pat<(xor GR32:$src, (add GR32:$src, -1)),
+ (BLSMSK32rr GR32:$src)>;
+ def : Pat<(xor GR64:$src, (add GR64:$src, -1)),
+ (BLSMSK64rr GR64:$src)>;
+
+ def : Pat<(and GR32:$src, (ineg GR32:$src)),
+ (BLSI32rr GR32:$src)>;
+ def : Pat<(and GR64:$src, (ineg GR64:$src)),
+ (BLSI64rr GR64:$src)>;
+}
+
+let Predicates = [HasBMI] in {
+ def : Pat<(X86cmov (cttz GR16:$src), (i16 16), (X86_COND_E),
+ (X86cmp GR16:$src, (i16 0))),
+ (TZCNT16rr GR16:$src)>;
+ def : Pat<(X86cmov (cttz GR32:$src), (i32 32), (X86_COND_E),
+ (X86cmp GR32:$src, (i32 0))),
+ (TZCNT32rr GR32:$src)>;
+ def : Pat<(X86cmov (cttz GR64:$src), (i64 64), (X86_COND_E),
+ (X86cmp GR64:$src, (i64 0))),
+ (TZCNT64rr GR64:$src)>;
+ def : Pat<(X86cmov (i16 16), (cttz GR16:$src), (X86_COND_E),
+ (X86cmp GR16:$src, (i16 0))),
+ (TZCNT16rr GR16:$src)>;
+ def : Pat<(X86cmov (i32 32), (cttz GR32:$src), (X86_COND_E),
+ (X86cmp GR32:$src, (i32 0))),
+ (TZCNT32rr GR32:$src)>;
+ def : Pat<(X86cmov (i64 64), (cttz GR64:$src), (X86_COND_E),
+ (X86cmp GR64:$src, (i64 0))),
+ (TZCNT64rr GR64:$src)>;
+
+ def : Pat<(X86cmov (cttz (loadi16 addr:$src)), (i16 16), (X86_COND_E),
+ (X86cmp (loadi16 addr:$src), (i16 0))),
+ (TZCNT16rm addr:$src)>;
+ def : Pat<(X86cmov (cttz (loadi32 addr:$src)), (i32 32), (X86_COND_E),
+ (X86cmp (loadi32 addr:$src), (i32 0))),
+ (TZCNT32rm addr:$src)>;
+ def : Pat<(X86cmov (cttz (loadi64 addr:$src)), (i64 64), (X86_COND_E),
+ (X86cmp (loadi64 addr:$src), (i64 0))),
+ (TZCNT64rm addr:$src)>;
+ def : Pat<(X86cmov (i16 16), (cttz (loadi16 addr:$src)), (X86_COND_E),
+ (X86cmp (loadi16 addr:$src), (i16 0))),
+ (TZCNT16rm addr:$src)>;
+ def : Pat<(X86cmov (i32 32), (cttz (loadi32 addr:$src)), (X86_COND_E),
+ (X86cmp (loadi32 addr:$src), (i32 0))),
+ (TZCNT32rm addr:$src)>;
+ def : Pat<(X86cmov (i64 64), (cttz (loadi64 addr:$src)), (X86_COND_E),
+ (X86cmp (loadi64 addr:$src), (i64 0))),
+ (TZCNT64rm addr:$src)>;
+}
+
+
+multiclass bmi_bextr_bzhi<bits<8> opc, string mnemonic, RegisterClass RC,
+ X86MemOperand x86memop, Intrinsic Int,
+ PatFrag ld_frag> {
+ def rr : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (Int RC:$src1, RC:$src2)), (implicit EFLAGS)]>,
+ T8PS, VEX_4VOp3;
+ def rm : I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src1, RC:$src2),
+ !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (Int (ld_frag addr:$src1), RC:$src2)),
+ (implicit EFLAGS)]>, T8PS, VEX_4VOp3;
+}
+
+let Predicates = [HasBMI], Defs = [EFLAGS] in {
+ defm BEXTR32 : bmi_bextr_bzhi<0xF7, "bextr{l}", GR32, i32mem,
+ int_x86_bmi_bextr_32, loadi32>;
+ defm BEXTR64 : bmi_bextr_bzhi<0xF7, "bextr{q}", GR64, i64mem,
+ int_x86_bmi_bextr_64, loadi64>, VEX_W;
+}
+
+let Predicates = [HasBMI2], Defs = [EFLAGS] in {
+ defm BZHI32 : bmi_bextr_bzhi<0xF5, "bzhi{l}", GR32, i32mem,
+ int_x86_bmi_bzhi_32, loadi32>;
+ defm BZHI64 : bmi_bextr_bzhi<0xF5, "bzhi{q}", GR64, i64mem,
+ int_x86_bmi_bzhi_64, loadi64>, VEX_W;
+}
+
+
+def CountTrailingOnes : SDNodeXForm<imm, [{
+ // Count the trailing ones in the immediate.
+ return getI8Imm(CountTrailingOnes_64(N->getZExtValue()));
+}]>;
+
+def BZHIMask : ImmLeaf<i64, [{
+ return isMask_64(Imm) && (CountTrailingOnes_64(Imm) > 32);
+}]>;
+
+let Predicates = [HasBMI2] in {
+ def : Pat<(and GR64:$src, BZHIMask:$mask),
+ (BZHI64rr GR64:$src,
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
+ (MOV8ri (CountTrailingOnes imm:$mask)), sub_8bit))>;
+
+ def : Pat<(and GR32:$src, (add (shl 1, GR8:$lz), -1)),
+ (BZHI32rr GR32:$src,
+ (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$lz, sub_8bit))>;
+
+ def : Pat<(and (loadi32 addr:$src), (add (shl 1, GR8:$lz), -1)),
+ (BZHI32rm addr:$src,
+ (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$lz, sub_8bit))>;
+
+ def : Pat<(and GR64:$src, (add (shl 1, GR8:$lz), -1)),
+ (BZHI64rr GR64:$src,
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$lz, sub_8bit))>;
+
+ def : Pat<(and (loadi64 addr:$src), (add (shl 1, GR8:$lz), -1)),
+ (BZHI64rm addr:$src,
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$lz, sub_8bit))>;
+} // HasBMI2
+
+let Predicates = [HasBMI] in {
+ def : Pat<(X86bextr GR32:$src1, GR32:$src2),
+ (BEXTR32rr GR32:$src1, GR32:$src2)>;
+ def : Pat<(X86bextr (loadi32 addr:$src1), GR32:$src2),
+ (BEXTR32rm addr:$src1, GR32:$src2)>;
+ def : Pat<(X86bextr GR64:$src1, GR64:$src2),
+ (BEXTR64rr GR64:$src1, GR64:$src2)>;
+ def : Pat<(X86bextr (loadi64 addr:$src1), GR64:$src2),
+ (BEXTR64rm addr:$src1, GR64:$src2)>;
+} // HasBMI
+
+multiclass bmi_pdep_pext<string mnemonic, RegisterClass RC,
+ X86MemOperand x86memop, Intrinsic Int,
+ PatFrag ld_frag> {
+ def rr : I<0xF5, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (Int RC:$src1, RC:$src2))]>,
+ VEX_4V;
+ def rm : I<0xF5, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (Int RC:$src1, (ld_frag addr:$src2)))]>, VEX_4V;
+}
+
+let Predicates = [HasBMI2] in {
+ defm PDEP32 : bmi_pdep_pext<"pdep{l}", GR32, i32mem,
+ int_x86_bmi_pdep_32, loadi32>, T8XD;
+ defm PDEP64 : bmi_pdep_pext<"pdep{q}", GR64, i64mem,
+ int_x86_bmi_pdep_64, loadi64>, T8XD, VEX_W;
+ defm PEXT32 : bmi_pdep_pext<"pext{l}", GR32, i32mem,
+ int_x86_bmi_pext_32, loadi32>, T8XS;
+ defm PEXT64 : bmi_pdep_pext<"pext{q}", GR64, i64mem,
+ int_x86_bmi_pext_64, loadi64>, T8XS, VEX_W;
+}
+
+//===----------------------------------------------------------------------===//
+// TBM Instructions
+//
+let Predicates = [HasTBM], Defs = [EFLAGS] in {
+
+multiclass tbm_ternary_imm_intr<bits<8> opc, RegisterClass RC, string OpcodeStr,
+ X86MemOperand x86memop, PatFrag ld_frag,
+ Intrinsic Int, Operand immtype,
+ SDPatternOperator immoperator> {
+ def ri : Ii32<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, immtype:$cntl),
+ !strconcat(OpcodeStr,
+ "\t{$cntl, $src1, $dst|$dst, $src1, $cntl}"),
+ [(set RC:$dst, (Int RC:$src1, immoperator:$cntl))]>,
+ XOP, XOPA;
+ def mi : Ii32<opc, MRMSrcMem, (outs RC:$dst),
+ (ins x86memop:$src1, immtype:$cntl),
+ !strconcat(OpcodeStr,
+ "\t{$cntl, $src1, $dst|$dst, $src1, $cntl}"),
+ [(set RC:$dst, (Int (ld_frag addr:$src1), immoperator:$cntl))]>,
+ XOP, XOPA;
+}
+
+defm BEXTRI32 : tbm_ternary_imm_intr<0x10, GR32, "bextr", i32mem, loadi32,
+ int_x86_tbm_bextri_u32, i32imm, imm>;
+let ImmT = Imm32S in
+defm BEXTRI64 : tbm_ternary_imm_intr<0x10, GR64, "bextr", i64mem, loadi64,
+ int_x86_tbm_bextri_u64, i64i32imm,
+ i64immSExt32>, VEX_W;
+
+multiclass tbm_binary_rm<bits<8> opc, Format FormReg, Format FormMem,
+ RegisterClass RC, string OpcodeStr,
+ X86MemOperand x86memop, PatFrag ld_frag> {
+let hasSideEffects = 0 in {
+ def rr : I<opc, FormReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(OpcodeStr,"\t{$src, $dst|$dst, $src}"),
+ []>, XOP_4V, XOP9;
+ let mayLoad = 1 in
+ def rm : I<opc, FormMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr,"\t{$src, $dst|$dst, $src}"),
+ []>, XOP_4V, XOP9;
+}
+}
+
+multiclass tbm_binary_intr<bits<8> opc, string OpcodeStr,
+ Format FormReg, Format FormMem> {
+ defm NAME#32 : tbm_binary_rm<opc, FormReg, FormMem, GR32, OpcodeStr, i32mem,
+ loadi32>;
+ defm NAME#64 : tbm_binary_rm<opc, FormReg, FormMem, GR64, OpcodeStr, i64mem,
+ loadi64>, VEX_W;
+}
+
+defm BLCFILL : tbm_binary_intr<0x01, "blcfill", MRM1r, MRM1m>;
+defm BLCI : tbm_binary_intr<0x02, "blci", MRM6r, MRM6m>;
+defm BLCIC : tbm_binary_intr<0x01, "blcic", MRM5r, MRM5m>;
+defm BLCMSK : tbm_binary_intr<0x02, "blcmsk", MRM1r, MRM1m>;
+defm BLCS : tbm_binary_intr<0x01, "blcs", MRM3r, MRM3m>;
+defm BLSFILL : tbm_binary_intr<0x01, "blsfill", MRM2r, MRM2m>;
+defm BLSIC : tbm_binary_intr<0x01, "blsic", MRM6r, MRM6m>;
+defm T1MSKC : tbm_binary_intr<0x01, "t1mskc", MRM7r, MRM7m>;
+defm TZMSK : tbm_binary_intr<0x01, "tzmsk", MRM4r, MRM4m>;
+} // HasTBM, EFLAGS
+
+//===----------------------------------------------------------------------===//
+// Pattern fragments to auto generate TBM instructions.
+//===----------------------------------------------------------------------===//
+
+let Predicates = [HasTBM] in {
+ def : Pat<(X86bextr GR32:$src1, (i32 imm:$src2)),
+ (BEXTRI32ri GR32:$src1, imm:$src2)>;
+ def : Pat<(X86bextr (loadi32 addr:$src1), (i32 imm:$src2)),
+ (BEXTRI32mi addr:$src1, imm:$src2)>;
+ def : Pat<(X86bextr GR64:$src1, i64immSExt32:$src2),
+ (BEXTRI64ri GR64:$src1, i64immSExt32:$src2)>;
+ def : Pat<(X86bextr (loadi64 addr:$src1), i64immSExt32:$src2),
+ (BEXTRI64mi addr:$src1, i64immSExt32:$src2)>;
+
+ // FIXME: patterns for the load versions are not implemented
+ def : Pat<(and GR32:$src, (add GR32:$src, 1)),
+ (BLCFILL32rr GR32:$src)>;
+ def : Pat<(and GR64:$src, (add GR64:$src, 1)),
+ (BLCFILL64rr GR64:$src)>;
+
+ def : Pat<(or GR32:$src, (not (add GR32:$src, 1))),
+ (BLCI32rr GR32:$src)>;
+ def : Pat<(or GR64:$src, (not (add GR64:$src, 1))),
+ (BLCI64rr GR64:$src)>;
+
+ // Extra patterns because opt can optimize the above patterns to this.
+ def : Pat<(or GR32:$src, (sub -2, GR32:$src)),
+ (BLCI32rr GR32:$src)>;
+ def : Pat<(or GR64:$src, (sub -2, GR64:$src)),
+ (BLCI64rr GR64:$src)>;
+
+ def : Pat<(and (not GR32:$src), (add GR32:$src, 1)),
+ (BLCIC32rr GR32:$src)>;
+ def : Pat<(and (not GR64:$src), (add GR64:$src, 1)),
+ (BLCIC64rr GR64:$src)>;
+
+ def : Pat<(xor GR32:$src, (add GR32:$src, 1)),
+ (BLCMSK32rr GR32:$src)>;
+ def : Pat<(xor GR64:$src, (add GR64:$src, 1)),
+ (BLCMSK64rr GR64:$src)>;
+
+ def : Pat<(or GR32:$src, (add GR32:$src, 1)),
+ (BLCS32rr GR32:$src)>;
+ def : Pat<(or GR64:$src, (add GR64:$src, 1)),
+ (BLCS64rr GR64:$src)>;
+
+ def : Pat<(or GR32:$src, (add GR32:$src, -1)),
+ (BLSFILL32rr GR32:$src)>;
+ def : Pat<(or GR64:$src, (add GR64:$src, -1)),
+ (BLSFILL64rr GR64:$src)>;
+
+ def : Pat<(or (not GR32:$src), (add GR32:$src, -1)),
+ (BLSIC32rr GR32:$src)>;
+ def : Pat<(or (not GR64:$src), (add GR64:$src, -1)),
+ (BLSIC64rr GR64:$src)>;
+
+ def : Pat<(or (not GR32:$src), (add GR32:$src, 1)),
+ (T1MSKC32rr GR32:$src)>;
+ def : Pat<(or (not GR64:$src), (add GR64:$src, 1)),
+ (T1MSKC64rr GR64:$src)>;
+
+ def : Pat<(and (not GR32:$src), (add GR32:$src, -1)),
+ (TZMSK32rr GR32:$src)>;
+ def : Pat<(and (not GR64:$src), (add GR64:$src, -1)),
+ (TZMSK64rr GR64:$src)>;
+} // HasTBM
+
+//===----------------------------------------------------------------------===//
+// Subsystems.
+//===----------------------------------------------------------------------===//
+
+include "X86InstrArithmetic.td"
+include "X86InstrCMovSetCC.td"
+include "X86InstrExtension.td"
+include "X86InstrControl.td"
+include "X86InstrShiftRotate.td"
+
+// X87 Floating Point Stack.
+include "X86InstrFPStack.td"
+
+// SIMD support (SSE, MMX and AVX)
+include "X86InstrFragmentsSIMD.td"
+
+// FMA - Fused Multiply-Add support (requires FMA)
+include "X86InstrFMA.td"
+
+// XOP
+include "X86InstrXOP.td"
+
+// SSE, MMX and 3DNow! vector support.
+include "X86InstrSSE.td"
+include "X86InstrAVX512.td"
+include "X86InstrMMX.td"
+include "X86Instr3DNow.td"
+
+include "X86InstrVMX.td"
+include "X86InstrSVM.td"
+
+include "X86InstrTSX.td"
+
+// System instructions.
+include "X86InstrSystem.td"
+
+// Compiler Pseudo Instructions and Pat Patterns
+include "X86InstrCompiler.td"
+
+//===----------------------------------------------------------------------===//
+// Assembler Mnemonic Aliases
+//===----------------------------------------------------------------------===//
+
+def : MnemonicAlias<"call", "callw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"call", "calll", "att">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"call", "callq", "att">, Requires<[In64BitMode]>;
+
+def : MnemonicAlias<"cbw", "cbtw", "att">;
+def : MnemonicAlias<"cwde", "cwtl", "att">;
+def : MnemonicAlias<"cwd", "cwtd", "att">;
+def : MnemonicAlias<"cdq", "cltd", "att">;
+def : MnemonicAlias<"cdqe", "cltq", "att">;
+def : MnemonicAlias<"cqo", "cqto", "att">;
+
+// In 64-bit mode lret maps to lretl; it is not ambiguous with lretq.
+def : MnemonicAlias<"lret", "lretw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"lret", "lretl", "att">, Requires<[Not16BitMode]>;
+
+def : MnemonicAlias<"leavel", "leave", "att">, Requires<[Not64BitMode]>;
+def : MnemonicAlias<"leaveq", "leave", "att">, Requires<[In64BitMode]>;
+
+def : MnemonicAlias<"loopz", "loope", "att">;
+def : MnemonicAlias<"loopnz", "loopne", "att">;
+
+def : MnemonicAlias<"pop", "popw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"pop", "popl", "att">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"pop", "popq", "att">, Requires<[In64BitMode]>;
+def : MnemonicAlias<"popf", "popfw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"popf", "popfl", "att">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"popf", "popfq", "att">, Requires<[In64BitMode]>;
+def : MnemonicAlias<"popfd", "popfl", "att">;
+
+// FIXME: This is wrong for "push reg". "push %bx" should turn into pushw in
+// all modes. However: "push (addr)" and "push $42" should default to
+// pushl/pushq depending on the current mode. Similar for "pop %bx"
+def : MnemonicAlias<"push", "pushw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"push", "pushl", "att">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"push", "pushq", "att">, Requires<[In64BitMode]>;
+def : MnemonicAlias<"pushf", "pushfw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"pushf", "pushfl", "att">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
+def : MnemonicAlias<"pushfd", "pushfl", "att">;
+
+def : MnemonicAlias<"popad", "popal", "intel">, Requires<[Not64BitMode]>;
+def : MnemonicAlias<"pushad", "pushal", "intel">, Requires<[Not64BitMode]>;
+def : MnemonicAlias<"popa", "popaw", "intel">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"pusha", "pushaw", "intel">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"popa", "popal", "intel">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"pusha", "pushal", "intel">, Requires<[In32BitMode]>;
+
+def : MnemonicAlias<"popa", "popaw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"pusha", "pushaw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"popa", "popal", "att">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"pusha", "pushal", "att">, Requires<[In32BitMode]>;
+
+def : MnemonicAlias<"repe", "rep", "att">;
+def : MnemonicAlias<"repz", "rep", "att">;
+def : MnemonicAlias<"repnz", "repne", "att">;
+
+def : MnemonicAlias<"ret", "retw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"ret", "retl", "att">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"ret", "retq", "att">, Requires<[In64BitMode]>;
+
+def : MnemonicAlias<"salb", "shlb", "att">;
+def : MnemonicAlias<"salw", "shlw", "att">;
+def : MnemonicAlias<"sall", "shll", "att">;
+def : MnemonicAlias<"salq", "shlq", "att">;
+
+def : MnemonicAlias<"smovb", "movsb", "att">;
+def : MnemonicAlias<"smovw", "movsw", "att">;
+def : MnemonicAlias<"smovl", "movsl", "att">;
+def : MnemonicAlias<"smovq", "movsq", "att">;
+
+def : MnemonicAlias<"ud2a", "ud2", "att">;
+def : MnemonicAlias<"verrw", "verr", "att">;
+
+// System instruction aliases.
+def : MnemonicAlias<"iret", "iretw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"iret", "iretl", "att">, Requires<[Not16BitMode]>;
+def : MnemonicAlias<"sysret", "sysretl", "att">;
+def : MnemonicAlias<"sysexit", "sysexitl", "att">;
+
+def : MnemonicAlias<"lgdt", "lgdtw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"lgdt", "lgdtl", "att">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"lgdt", "lgdtq", "att">, Requires<[In64BitMode]>;
+def : MnemonicAlias<"lidt", "lidtw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"lidt", "lidtl", "att">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"lidt", "lidtq", "att">, Requires<[In64BitMode]>;
+def : MnemonicAlias<"sgdt", "sgdtw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"sgdt", "sgdtl", "att">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"sgdt", "sgdtq", "att">, Requires<[In64BitMode]>;
+def : MnemonicAlias<"sidt", "sidtw", "att">, Requires<[In16BitMode]>;
+def : MnemonicAlias<"sidt", "sidtl", "att">, Requires<[In32BitMode]>;
+def : MnemonicAlias<"sidt", "sidtq", "att">, Requires<[In64BitMode]>;
+
+
+// Floating point stack aliases.
+def : MnemonicAlias<"fcmovz", "fcmove", "att">;
+def : MnemonicAlias<"fcmova", "fcmovnbe", "att">;
+def : MnemonicAlias<"fcmovnae", "fcmovb", "att">;
+def : MnemonicAlias<"fcmovna", "fcmovbe", "att">;
+def : MnemonicAlias<"fcmovae", "fcmovnb", "att">;
+def : MnemonicAlias<"fcomip", "fcompi", "att">;
+def : MnemonicAlias<"fildq", "fildll", "att">;
+def : MnemonicAlias<"fistpq", "fistpll", "att">;
+def : MnemonicAlias<"fisttpq", "fisttpll", "att">;
+def : MnemonicAlias<"fldcww", "fldcw", "att">;
+def : MnemonicAlias<"fnstcww", "fnstcw", "att">;
+def : MnemonicAlias<"fnstsww", "fnstsw", "att">;
+def : MnemonicAlias<"fucomip", "fucompi", "att">;
+def : MnemonicAlias<"fwait", "wait", "att">;
+
+
+class CondCodeAlias<string Prefix,string Suffix, string OldCond, string NewCond,
+ string VariantName>
+ : MnemonicAlias<!strconcat(Prefix, OldCond, Suffix),
+ !strconcat(Prefix, NewCond, Suffix), VariantName>;
+
+/// IntegerCondCodeMnemonicAlias - This multiclass defines a bunch of
+/// MnemonicAlias's that canonicalize the condition code in a mnemonic, for
+/// example "setz" -> "sete".
+multiclass IntegerCondCodeMnemonicAlias<string Prefix, string Suffix,
+ string V = ""> {
+ def C : CondCodeAlias<Prefix, Suffix, "c", "b", V>; // setc -> setb
+ def Z : CondCodeAlias<Prefix, Suffix, "z" , "e", V>; // setz -> sete
+ def NA : CondCodeAlias<Prefix, Suffix, "na", "be", V>; // setna -> setbe
+ def NB : CondCodeAlias<Prefix, Suffix, "nb", "ae", V>; // setnb -> setae
+ def NC : CondCodeAlias<Prefix, Suffix, "nc", "ae", V>; // setnc -> setae
+ def NG : CondCodeAlias<Prefix, Suffix, "ng", "le", V>; // setng -> setle
+ def NL : CondCodeAlias<Prefix, Suffix, "nl", "ge", V>; // setnl -> setge
+ def NZ : CondCodeAlias<Prefix, Suffix, "nz", "ne", V>; // setnz -> setne
+ def PE : CondCodeAlias<Prefix, Suffix, "pe", "p", V>; // setpe -> setp
+ def PO : CondCodeAlias<Prefix, Suffix, "po", "np", V>; // setpo -> setnp
+
+ def NAE : CondCodeAlias<Prefix, Suffix, "nae", "b", V>; // setnae -> setb
+ def NBE : CondCodeAlias<Prefix, Suffix, "nbe", "a", V>; // setnbe -> seta
+ def NGE : CondCodeAlias<Prefix, Suffix, "nge", "l", V>; // setnge -> setl
+ def NLE : CondCodeAlias<Prefix, Suffix, "nle", "g", V>; // setnle -> setg
+}
+
+// Aliases for set<CC>
+defm : IntegerCondCodeMnemonicAlias<"set", "">;
+// Aliases for j<CC>
+defm : IntegerCondCodeMnemonicAlias<"j", "">;
+// Aliases for cmov<CC>{w,l,q}
+defm : IntegerCondCodeMnemonicAlias<"cmov", "w", "att">;
+defm : IntegerCondCodeMnemonicAlias<"cmov", "l", "att">;
+defm : IntegerCondCodeMnemonicAlias<"cmov", "q", "att">;
+// No size suffix for intel-style asm.
+defm : IntegerCondCodeMnemonicAlias<"cmov", "", "intel">;
+
+
+//===----------------------------------------------------------------------===//
+// Assembler Instruction Aliases
+//===----------------------------------------------------------------------===//
+
+// aad/aam default to base 10 if no operand is specified.
+def : InstAlias<"aad", (AAD8i8 10)>;
+def : InstAlias<"aam", (AAM8i8 10)>;
+
+// Disambiguate the mem/imm form of bt-without-a-suffix as btl.
+// Likewise for btc/btr/bts.
+def : InstAlias<"bt {$imm, $mem|$mem, $imm}",
+ (BT32mi8 i32mem:$mem, i32i8imm:$imm), 0>;
+def : InstAlias<"btc {$imm, $mem|$mem, $imm}",
+ (BTC32mi8 i32mem:$mem, i32i8imm:$imm), 0>;
+def : InstAlias<"btr {$imm, $mem|$mem, $imm}",
+ (BTR32mi8 i32mem:$mem, i32i8imm:$imm), 0>;
+def : InstAlias<"bts {$imm, $mem|$mem, $imm}",
+ (BTS32mi8 i32mem:$mem, i32i8imm:$imm), 0>;
+
+// clr aliases.
+def : InstAlias<"clrb $reg", (XOR8rr GR8 :$reg, GR8 :$reg), 0>;
+def : InstAlias<"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg), 0>;
+def : InstAlias<"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg), 0>;
+def : InstAlias<"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg), 0>;
+
+// lods aliases. Accept the destination being omitted because it's implicit
+// in the mnemonic, or the mnemonic suffix being omitted because it's implicit
+// in the destination.
+def : InstAlias<"lodsb $src", (LODSB srcidx8:$src), 0>;
+def : InstAlias<"lodsw $src", (LODSW srcidx16:$src), 0>;
+def : InstAlias<"lods{l|d} $src", (LODSL srcidx32:$src), 0>;
+def : InstAlias<"lodsq $src", (LODSQ srcidx64:$src), 0>, Requires<[In64BitMode]>;
+def : InstAlias<"lods {$src, %al|al, $src}", (LODSB srcidx8:$src), 0>;
+def : InstAlias<"lods {$src, %ax|ax, $src}", (LODSW srcidx16:$src), 0>;
+def : InstAlias<"lods {$src, %eax|eax, $src}", (LODSL srcidx32:$src), 0>;
+def : InstAlias<"lods {$src, %rax|rax, $src}", (LODSQ srcidx64:$src), 0>, Requires<[In64BitMode]>;
+
+// stos aliases. Accept the source being omitted because it's implicit in
+// the mnemonic, or the mnemonic suffix being omitted because it's implicit
+// in the source.
+def : InstAlias<"stosb $dst", (STOSB dstidx8:$dst), 0>;
+def : InstAlias<"stosw $dst", (STOSW dstidx16:$dst), 0>;
+def : InstAlias<"stos{l|d} $dst", (STOSL dstidx32:$dst), 0>;
+def : InstAlias<"stosq $dst", (STOSQ dstidx64:$dst), 0>, Requires<[In64BitMode]>;
+def : InstAlias<"stos {%al, $dst|$dst, al}", (STOSB dstidx8:$dst), 0>;
+def : InstAlias<"stos {%ax, $dst|$dst, ax}", (STOSW dstidx16:$dst), 0>;
+def : InstAlias<"stos {%eax, $dst|$dst, eax}", (STOSL dstidx32:$dst), 0>;
+def : InstAlias<"stos {%rax, $dst|$dst, rax}", (STOSQ dstidx64:$dst), 0>, Requires<[In64BitMode]>;
+
+// scas aliases. Accept the destination being omitted because it's implicit
+// in the mnemonic, or the mnemonic suffix being omitted because it's implicit
+// in the destination.
+def : InstAlias<"scasb $dst", (SCASB dstidx8:$dst), 0>;
+def : InstAlias<"scasw $dst", (SCASW dstidx16:$dst), 0>;
+def : InstAlias<"scas{l|d} $dst", (SCASL dstidx32:$dst), 0>;
+def : InstAlias<"scasq $dst", (SCASQ dstidx64:$dst), 0>, Requires<[In64BitMode]>;
+def : InstAlias<"scas {$dst, %al|al, $dst}", (SCASB dstidx8:$dst), 0>;
+def : InstAlias<"scas {$dst, %ax|ax, $dst}", (SCASW dstidx16:$dst), 0>;
+def : InstAlias<"scas {$dst, %eax|eax, $dst}", (SCASL dstidx32:$dst), 0>;
+def : InstAlias<"scas {$dst, %rax|rax, $dst}", (SCASQ dstidx64:$dst), 0>, Requires<[In64BitMode]>;
+
+// div and idiv aliases for explicit A register.
+def : InstAlias<"div{b}\t{$src, %al|al, $src}", (DIV8r GR8 :$src)>;
+def : InstAlias<"div{w}\t{$src, %ax|ax, $src}", (DIV16r GR16:$src)>;
+def : InstAlias<"div{l}\t{$src, %eax|eax, $src}", (DIV32r GR32:$src)>;
+def : InstAlias<"div{q}\t{$src, %rax|rax, $src}", (DIV64r GR64:$src)>;
+def : InstAlias<"div{b}\t{$src, %al|al, $src}", (DIV8m i8mem :$src)>;
+def : InstAlias<"div{w}\t{$src, %ax|ax, $src}", (DIV16m i16mem:$src)>;
+def : InstAlias<"div{l}\t{$src, %eax|eax, $src}", (DIV32m i32mem:$src)>;
+def : InstAlias<"div{q}\t{$src, %rax|rax, $src}", (DIV64m i64mem:$src)>;
+def : InstAlias<"idiv{b}\t{$src, %al|al, $src}", (IDIV8r GR8 :$src)>;
+def : InstAlias<"idiv{w}\t{$src, %ax|ax, $src}", (IDIV16r GR16:$src)>;
+def : InstAlias<"idiv{l}\t{$src, %eax|eax, $src}", (IDIV32r GR32:$src)>;
+def : InstAlias<"idiv{q}\t{$src, %rax|rax, $src}", (IDIV64r GR64:$src)>;
+def : InstAlias<"idiv{b}\t{$src, %al|al, $src}", (IDIV8m i8mem :$src)>;
+def : InstAlias<"idiv{w}\t{$src, %ax|ax, $src}", (IDIV16m i16mem:$src)>;
+def : InstAlias<"idiv{l}\t{$src, %eax|eax, $src}", (IDIV32m i32mem:$src)>;
+def : InstAlias<"idiv{q}\t{$src, %rax|rax, $src}", (IDIV64m i64mem:$src)>;
+
+
+
+// Various unary fpstack operations default to operating on on ST1.
+// For example, "fxch" -> "fxch %st(1)"
+def : InstAlias<"faddp", (ADD_FPrST0 ST1), 0>;
+def : InstAlias<"fsub{|r}p", (SUBR_FPrST0 ST1), 0>;
+def : InstAlias<"fsub{r|}p", (SUB_FPrST0 ST1), 0>;
+def : InstAlias<"fmulp", (MUL_FPrST0 ST1), 0>;
+def : InstAlias<"fdiv{|r}p", (DIVR_FPrST0 ST1), 0>;
+def : InstAlias<"fdiv{r|}p", (DIV_FPrST0 ST1), 0>;
+def : InstAlias<"fxch", (XCH_F ST1), 0>;
+def : InstAlias<"fcom", (COM_FST0r ST1), 0>;
+def : InstAlias<"fcomp", (COMP_FST0r ST1), 0>;
+def : InstAlias<"fcomi", (COM_FIr ST1), 0>;
+def : InstAlias<"fcompi", (COM_FIPr ST1), 0>;
+def : InstAlias<"fucom", (UCOM_Fr ST1), 0>;
+def : InstAlias<"fucomp", (UCOM_FPr ST1), 0>;
+def : InstAlias<"fucomi", (UCOM_FIr ST1), 0>;
+def : InstAlias<"fucompi", (UCOM_FIPr ST1), 0>;
+
+// Handle fmul/fadd/fsub/fdiv instructions with explicitly written st(0) op.
+// For example, "fadd %st(4), %st(0)" -> "fadd %st(4)". We also disambiguate
+// instructions like "fadd %st(0), %st(0)" as "fadd %st(0)" for consistency with
+// gas.
+multiclass FpUnaryAlias<string Mnemonic, Instruction Inst, bit EmitAlias = 1> {
+ def : InstAlias<!strconcat(Mnemonic, "\t{$op, %st(0)|st(0), $op}"),
+ (Inst RST:$op), EmitAlias>;
+ def : InstAlias<!strconcat(Mnemonic, "\t{%st(0), %st(0)|st(0), st(0)}"),
+ (Inst ST0), EmitAlias>;
+}
+
+defm : FpUnaryAlias<"fadd", ADD_FST0r>;
+defm : FpUnaryAlias<"faddp", ADD_FPrST0, 0>;
+defm : FpUnaryAlias<"fsub", SUB_FST0r>;
+defm : FpUnaryAlias<"fsub{|r}p", SUBR_FPrST0>;
+defm : FpUnaryAlias<"fsubr", SUBR_FST0r>;
+defm : FpUnaryAlias<"fsub{r|}p", SUB_FPrST0>;
+defm : FpUnaryAlias<"fmul", MUL_FST0r>;
+defm : FpUnaryAlias<"fmulp", MUL_FPrST0>;
+defm : FpUnaryAlias<"fdiv", DIV_FST0r>;
+defm : FpUnaryAlias<"fdiv{|r}p", DIVR_FPrST0>;
+defm : FpUnaryAlias<"fdivr", DIVR_FST0r>;
+defm : FpUnaryAlias<"fdiv{r|}p", DIV_FPrST0>;
+defm : FpUnaryAlias<"fcomi", COM_FIr, 0>;
+defm : FpUnaryAlias<"fucomi", UCOM_FIr, 0>;
+defm : FpUnaryAlias<"fcompi", COM_FIPr>;
+defm : FpUnaryAlias<"fucompi", UCOM_FIPr>;
+
+
+// Handle "f{mulp,addp} st(0), $op" the same as "f{mulp,addp} $op", since they
+// commute. We also allow fdiv[r]p/fsubrp even though they don't commute,
+// solely because gas supports it.
+def : InstAlias<"faddp\t{%st(0), $op|$op, st(0)}", (ADD_FPrST0 RST:$op), 0>;
+def : InstAlias<"fmulp\t{%st(0), $op|$op, st(0)}", (MUL_FPrST0 RST:$op)>;
+def : InstAlias<"fsub{|r}p\t{%st(0), $op|$op, st(0)}", (SUBR_FPrST0 RST:$op)>;
+def : InstAlias<"fsub{r|}p\t{%st(0), $op|$op, st(0)}", (SUB_FPrST0 RST:$op)>;
+def : InstAlias<"fdiv{|r}p\t{%st(0), $op|$op, st(0)}", (DIVR_FPrST0 RST:$op)>;
+def : InstAlias<"fdiv{r|}p\t{%st(0), $op|$op, st(0)}", (DIV_FPrST0 RST:$op)>;
+
+// We accept "fnstsw %eax" even though it only writes %ax.
+def : InstAlias<"fnstsw\t{%eax|eax}", (FNSTSW16r)>;
+def : InstAlias<"fnstsw\t{%al|al}" , (FNSTSW16r)>;
+def : InstAlias<"fnstsw" , (FNSTSW16r)>;
+
+// lcall and ljmp aliases. This seems to be an odd mapping in 64-bit mode, but
+// this is compatible with what GAS does.
+def : InstAlias<"lcall $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg), 0>, Requires<[Not16BitMode]>;
+def : InstAlias<"ljmp $seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg), 0>, Requires<[Not16BitMode]>;
+def : InstAlias<"lcall *$dst", (FARCALL32m opaque48mem:$dst), 0>, Requires<[Not16BitMode]>;
+def : InstAlias<"ljmp *$dst", (FARJMP32m opaque48mem:$dst), 0>, Requires<[Not16BitMode]>;
+def : InstAlias<"lcall $seg, $off", (FARCALL16i i16imm:$off, i16imm:$seg), 0>, Requires<[In16BitMode]>;
+def : InstAlias<"ljmp $seg, $off", (FARJMP16i i16imm:$off, i16imm:$seg), 0>, Requires<[In16BitMode]>;
+def : InstAlias<"lcall *$dst", (FARCALL16m opaque32mem:$dst), 0>, Requires<[In16BitMode]>;
+def : InstAlias<"ljmp *$dst", (FARJMP16m opaque32mem:$dst), 0>, Requires<[In16BitMode]>;
+
+def : InstAlias<"call *$dst", (CALL64m i16mem:$dst), 0>, Requires<[In64BitMode]>;
+def : InstAlias<"jmp *$dst", (JMP64m i16mem:$dst), 0>, Requires<[In64BitMode]>;
+def : InstAlias<"call *$dst", (CALL32m i16mem:$dst), 0>, Requires<[In32BitMode]>;
+def : InstAlias<"jmp *$dst", (JMP32m i16mem:$dst), 0>, Requires<[In32BitMode]>;
+def : InstAlias<"call *$dst", (CALL16m i16mem:$dst), 0>, Requires<[In16BitMode]>;
+def : InstAlias<"jmp *$dst", (JMP16m i16mem:$dst), 0>, Requires<[In16BitMode]>;
+
+
+// "imul <imm>, B" is an alias for "imul <imm>, B, B".
+def : InstAlias<"imulw $imm, $r", (IMUL16rri GR16:$r, GR16:$r, i16imm:$imm)>;
+def : InstAlias<"imulw $imm, $r", (IMUL16rri8 GR16:$r, GR16:$r, i16i8imm:$imm)>;
+def : InstAlias<"imull $imm, $r", (IMUL32rri GR32:$r, GR32:$r, i32imm:$imm)>;
+def : InstAlias<"imull $imm, $r", (IMUL32rri8 GR32:$r, GR32:$r, i32i8imm:$imm)>;
+def : InstAlias<"imulq $imm, $r",(IMUL64rri32 GR64:$r, GR64:$r,i64i32imm:$imm)>;
+def : InstAlias<"imulq $imm, $r", (IMUL64rri8 GR64:$r, GR64:$r, i64i8imm:$imm)>;
+
+// inb %dx -> inb %al, %dx
+def : InstAlias<"inb\t{%dx|dx}", (IN8rr), 0>;
+def : InstAlias<"inw\t{%dx|dx}", (IN16rr), 0>;
+def : InstAlias<"inl\t{%dx|dx}", (IN32rr), 0>;
+def : InstAlias<"inb\t$port", (IN8ri i8imm:$port), 0>;
+def : InstAlias<"inw\t$port", (IN16ri i8imm:$port), 0>;
+def : InstAlias<"inl\t$port", (IN32ri i8imm:$port), 0>;
+
+
+// jmp and call aliases for lcall and ljmp. jmp $42,$5 -> ljmp
+def : InstAlias<"call $seg, $off", (FARCALL16i i16imm:$off, i16imm:$seg)>, Requires<[In16BitMode]>;
+def : InstAlias<"jmp $seg, $off", (FARJMP16i i16imm:$off, i16imm:$seg)>, Requires<[In16BitMode]>;
+def : InstAlias<"call $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>, Requires<[Not16BitMode]>;
+def : InstAlias<"jmp $seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg)>, Requires<[Not16BitMode]>;
+def : InstAlias<"callw $seg, $off", (FARCALL16i i16imm:$off, i16imm:$seg)>;
+def : InstAlias<"jmpw $seg, $off", (FARJMP16i i16imm:$off, i16imm:$seg)>;
+def : InstAlias<"calll $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>;
+def : InstAlias<"jmpl $seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg)>;
+
+// Force mov without a suffix with a segment and mem to prefer the 'l' form of
+// the move. All segment/mem forms are equivalent, this has the shortest
+// encoding.
+def : InstAlias<"mov $mem, $seg", (MOV32sm SEGMENT_REG:$seg, i32mem:$mem), 0>;
+def : InstAlias<"mov $seg, $mem", (MOV32ms i32mem:$mem, SEGMENT_REG:$seg), 0>;
+
+// Match 'movq <largeimm>, <reg>' as an alias for movabsq.
+def : InstAlias<"movq $imm, $reg", (MOV64ri GR64:$reg, i64imm:$imm), 0>;
+
+// Match 'movq GR64, MMX' as an alias for movd.
+def : InstAlias<"movq $src, $dst",
+ (MMX_MOVD64to64rr VR64:$dst, GR64:$src), 0>;
+def : InstAlias<"movq $src, $dst",
+ (MMX_MOVD64from64rr GR64:$dst, VR64:$src), 0>;
+
+// movsx aliases
+def : InstAlias<"movsx $src, $dst", (MOVSX16rr8 GR16:$dst, GR8:$src), 0>;
+def : InstAlias<"movsx $src, $dst", (MOVSX16rm8 GR16:$dst, i8mem:$src), 0>;
+def : InstAlias<"movsx $src, $dst", (MOVSX32rr8 GR32:$dst, GR8:$src), 0>;
+def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16:$src), 0>;
+def : InstAlias<"movsx $src, $dst", (MOVSX64rr8 GR64:$dst, GR8:$src), 0>;
+def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16:$src), 0>;
+def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32:$src), 0>;
+
+// movzx aliases
+def : InstAlias<"movzx $src, $dst", (MOVZX16rr8 GR16:$dst, GR8:$src), 0>;
+def : InstAlias<"movzx $src, $dst", (MOVZX16rm8 GR16:$dst, i8mem:$src), 0>;
+def : InstAlias<"movzx $src, $dst", (MOVZX32rr8 GR32:$dst, GR8:$src), 0>;
+def : InstAlias<"movzx $src, $dst", (MOVZX32rr16 GR32:$dst, GR16:$src), 0>;
+def : InstAlias<"movzx $src, $dst", (MOVZX64rr8_Q GR64:$dst, GR8:$src), 0>;
+def : InstAlias<"movzx $src, $dst", (MOVZX64rr16_Q GR64:$dst, GR16:$src), 0>;
+// Note: No GR32->GR64 movzx form.
+
+// outb %dx -> outb %al, %dx
+def : InstAlias<"outb\t{%dx|dx}", (OUT8rr), 0>;
+def : InstAlias<"outw\t{%dx|dx}", (OUT16rr), 0>;
+def : InstAlias<"outl\t{%dx|dx}", (OUT32rr), 0>;
+def : InstAlias<"outb\t$port", (OUT8ir i8imm:$port), 0>;
+def : InstAlias<"outw\t$port", (OUT16ir i8imm:$port), 0>;
+def : InstAlias<"outl\t$port", (OUT32ir i8imm:$port), 0>;
+
+// 'sldt <mem>' can be encoded with either sldtw or sldtq with the same
+// effect (both store to a 16-bit mem). Force to sldtw to avoid ambiguity
+// errors, since its encoding is the most compact.
+def : InstAlias<"sldt $mem", (SLDT16m i16mem:$mem), 0>;
+
+// shld/shrd op,op -> shld op, op, CL
+def : InstAlias<"shld{w}\t{$r2, $r1|$r1, $r2}", (SHLD16rrCL GR16:$r1, GR16:$r2), 0>;
+def : InstAlias<"shld{l}\t{$r2, $r1|$r1, $r2}", (SHLD32rrCL GR32:$r1, GR32:$r2), 0>;
+def : InstAlias<"shld{q}\t{$r2, $r1|$r1, $r2}", (SHLD64rrCL GR64:$r1, GR64:$r2), 0>;
+def : InstAlias<"shrd{w}\t{$r2, $r1|$r1, $r2}", (SHRD16rrCL GR16:$r1, GR16:$r2), 0>;
+def : InstAlias<"shrd{l}\t{$r2, $r1|$r1, $r2}", (SHRD32rrCL GR32:$r1, GR32:$r2), 0>;
+def : InstAlias<"shrd{q}\t{$r2, $r1|$r1, $r2}", (SHRD64rrCL GR64:$r1, GR64:$r2), 0>;
+
+def : InstAlias<"shld{w}\t{$reg, $mem|$mem, $reg}", (SHLD16mrCL i16mem:$mem, GR16:$reg), 0>;
+def : InstAlias<"shld{l}\t{$reg, $mem|$mem, $reg}", (SHLD32mrCL i32mem:$mem, GR32:$reg), 0>;
+def : InstAlias<"shld{q}\t{$reg, $mem|$mem, $reg}", (SHLD64mrCL i64mem:$mem, GR64:$reg), 0>;
+def : InstAlias<"shrd{w}\t{$reg, $mem|$mem, $reg}", (SHRD16mrCL i16mem:$mem, GR16:$reg), 0>;
+def : InstAlias<"shrd{l}\t{$reg, $mem|$mem, $reg}", (SHRD32mrCL i32mem:$mem, GR32:$reg), 0>;
+def : InstAlias<"shrd{q}\t{$reg, $mem|$mem, $reg}", (SHRD64mrCL i64mem:$mem, GR64:$reg), 0>;
+
+/* FIXME: This is disabled because the asm matcher is currently incapable of
+ * matching a fixed immediate like $1.
+// "shl X, $1" is an alias for "shl X".
+multiclass ShiftRotateByOneAlias<string Mnemonic, string Opc> {
+ def : InstAlias<!strconcat(Mnemonic, "b $op, $$1"),
+ (!cast<Instruction>(!strconcat(Opc, "8r1")) GR8:$op)>;
+ def : InstAlias<!strconcat(Mnemonic, "w $op, $$1"),
+ (!cast<Instruction>(!strconcat(Opc, "16r1")) GR16:$op)>;
+ def : InstAlias<!strconcat(Mnemonic, "l $op, $$1"),
+ (!cast<Instruction>(!strconcat(Opc, "32r1")) GR32:$op)>;
+ def : InstAlias<!strconcat(Mnemonic, "q $op, $$1"),
+ (!cast<Instruction>(!strconcat(Opc, "64r1")) GR64:$op)>;
+ def : InstAlias<!strconcat(Mnemonic, "b $op, $$1"),
+ (!cast<Instruction>(!strconcat(Opc, "8m1")) i8mem:$op)>;
+ def : InstAlias<!strconcat(Mnemonic, "w $op, $$1"),
+ (!cast<Instruction>(!strconcat(Opc, "16m1")) i16mem:$op)>;
+ def : InstAlias<!strconcat(Mnemonic, "l $op, $$1"),
+ (!cast<Instruction>(!strconcat(Opc, "32m1")) i32mem:$op)>;
+ def : InstAlias<!strconcat(Mnemonic, "q $op, $$1"),
+ (!cast<Instruction>(!strconcat(Opc, "64m1")) i64mem:$op)>;
+}
+
+defm : ShiftRotateByOneAlias<"rcl", "RCL">;
+defm : ShiftRotateByOneAlias<"rcr", "RCR">;
+defm : ShiftRotateByOneAlias<"rol", "ROL">;
+defm : ShiftRotateByOneAlias<"ror", "ROR">;
+FIXME */
+
+// test: We accept "testX <reg>, <mem>" and "testX <mem>, <reg>" as synonyms.
+def : InstAlias<"test{b}\t{$val, $mem|$mem, $val}",
+ (TEST8rm GR8 :$val, i8mem :$mem), 0>;
+def : InstAlias<"test{w}\t{$val, $mem|$mem, $val}",
+ (TEST16rm GR16:$val, i16mem:$mem), 0>;
+def : InstAlias<"test{l}\t{$val, $mem|$mem, $val}",
+ (TEST32rm GR32:$val, i32mem:$mem), 0>;
+def : InstAlias<"test{q}\t{$val, $mem|$mem, $val}",
+ (TEST64rm GR64:$val, i64mem:$mem), 0>;
+
+// xchg: We accept "xchgX <reg>, <mem>" and "xchgX <mem>, <reg>" as synonyms.
+def : InstAlias<"xchg{b}\t{$mem, $val|$val, $mem}",
+ (XCHG8rm GR8 :$val, i8mem :$mem), 0>;
+def : InstAlias<"xchg{w}\t{$mem, $val|$val, $mem}",
+ (XCHG16rm GR16:$val, i16mem:$mem), 0>;
+def : InstAlias<"xchg{l}\t{$mem, $val|$val, $mem}",
+ (XCHG32rm GR32:$val, i32mem:$mem), 0>;
+def : InstAlias<"xchg{q}\t{$mem, $val|$val, $mem}",
+ (XCHG64rm GR64:$val, i64mem:$mem), 0>;
+
+// xchg: We accept "xchgX <reg>, %eax" and "xchgX %eax, <reg>" as synonyms.
+def : InstAlias<"xchg{w}\t{%ax, $src|$src, ax}", (XCHG16ar GR16:$src), 0>;
+def : InstAlias<"xchg{l}\t{%eax, $src|$src, eax}",
+ (XCHG32ar GR32:$src), 0>, Requires<[Not64BitMode]>;
+def : InstAlias<"xchg{l}\t{%eax, $src|$src, eax}",
+ (XCHG32ar64 GR32_NOAX:$src), 0>, Requires<[In64BitMode]>;
+def : InstAlias<"xchg{q}\t{%rax, $src|$src, rax}", (XCHG64ar GR64:$src), 0>;
diff --git a/contrib/llvm/lib/Target/X86/X86InstrMMX.td b/contrib/llvm/lib/Target/X86/X86InstrMMX.td
new file mode 100644
index 0000000..ecf80a1
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrMMX.td
@@ -0,0 +1,623 @@
+//===-- X86InstrMMX.td - Describe the MMX Instruction Set --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the X86 MMX instruction set, defining the instructions,
+// and properties of the instructions which are needed for code generation,
+// machine code emission, and analysis.
+//
+// All instructions that use MMX should be in this file, even if they also use
+// SSE.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MMX Multiclasses
+//===----------------------------------------------------------------------===//
+
+let Sched = WriteVecALU in {
+def MMX_INTALU_ITINS : OpndItins<
+ IIC_MMX_ALU_RR, IIC_MMX_ALU_RM
+>;
+
+def MMX_INTALUQ_ITINS : OpndItins<
+ IIC_MMX_ALUQ_RR, IIC_MMX_ALUQ_RM
+>;
+
+def MMX_PHADDSUBW : OpndItins<
+ IIC_MMX_PHADDSUBW_RR, IIC_MMX_PHADDSUBW_RM
+>;
+
+def MMX_PHADDSUBD : OpndItins<
+ IIC_MMX_PHADDSUBD_RR, IIC_MMX_PHADDSUBD_RM
+>;
+}
+
+let Sched = WriteVecIMul in
+def MMX_PMUL_ITINS : OpndItins<
+ IIC_MMX_PMUL, IIC_MMX_PMUL
+>;
+
+let Sched = WriteVecALU in {
+def MMX_PSADBW_ITINS : OpndItins<
+ IIC_MMX_PSADBW, IIC_MMX_PSADBW
+>;
+
+def MMX_MISC_FUNC_ITINS : OpndItins<
+ IIC_MMX_MISC_FUNC_MEM, IIC_MMX_MISC_FUNC_REG
+>;
+}
+
+def MMX_SHIFT_ITINS : ShiftOpndItins<
+ IIC_MMX_SHIFT_RR, IIC_MMX_SHIFT_RM, IIC_MMX_SHIFT_RI
+>;
+
+let Sched = WriteShuffle in {
+def MMX_UNPCK_H_ITINS : OpndItins<
+ IIC_MMX_UNPCK_H_RR, IIC_MMX_UNPCK_H_RM
+>;
+
+def MMX_UNPCK_L_ITINS : OpndItins<
+ IIC_MMX_UNPCK_L, IIC_MMX_UNPCK_L
+>;
+
+def MMX_PCK_ITINS : OpndItins<
+ IIC_MMX_PCK_RR, IIC_MMX_PCK_RM
+>;
+
+def MMX_PSHUF_ITINS : OpndItins<
+ IIC_MMX_PSHUF, IIC_MMX_PSHUF
+>;
+} // Sched
+
+let Sched = WriteCvtF2I in {
+def MMX_CVT_PD_ITINS : OpndItins<
+ IIC_MMX_CVT_PD_RR, IIC_MMX_CVT_PD_RM
+>;
+
+def MMX_CVT_PS_ITINS : OpndItins<
+ IIC_MMX_CVT_PS_RR, IIC_MMX_CVT_PS_RM
+>;
+}
+
+let Constraints = "$src1 = $dst" in {
+ // MMXI_binop_rm_int - Simple MMX binary operator based on intrinsic.
+ // When this is cleaned up, remove the FIXME from X86RecognizableInstr.cpp.
+ multiclass MMXI_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId,
+ OpndItins itins, bit Commutable = 0> {
+ def irr : MMXI<opc, MRMSrcReg, (outs VR64:$dst),
+ (ins VR64:$src1, VR64:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ [(set VR64:$dst, (IntId VR64:$src1, VR64:$src2))], itins.rr>,
+ Sched<[itins.Sched]> {
+ let isCommutable = Commutable;
+ }
+ def irm : MMXI<opc, MRMSrcMem, (outs VR64:$dst),
+ (ins VR64:$src1, i64mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ [(set VR64:$dst, (IntId VR64:$src1,
+ (bitconvert (load_mmx addr:$src2))))],
+ itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
+ }
+
+ multiclass MMXI_binop_rmi_int<bits<8> opc, bits<8> opc2, Format ImmForm,
+ string OpcodeStr, Intrinsic IntId,
+ Intrinsic IntId2, ShiftOpndItins itins> {
+ def rr : MMXI<opc, MRMSrcReg, (outs VR64:$dst),
+ (ins VR64:$src1, VR64:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ [(set VR64:$dst, (IntId VR64:$src1, VR64:$src2))], itins.rr>,
+ Sched<[WriteVecShift]>;
+ def rm : MMXI<opc, MRMSrcMem, (outs VR64:$dst),
+ (ins VR64:$src1, i64mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ [(set VR64:$dst, (IntId VR64:$src1,
+ (bitconvert (load_mmx addr:$src2))))],
+ itins.rm>, Sched<[WriteVecShiftLd, ReadAfterLd]>;
+ def ri : MMXIi8<opc2, ImmForm, (outs VR64:$dst),
+ (ins VR64:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ [(set VR64:$dst, (IntId2 VR64:$src1, (i32 imm:$src2)))], itins.ri>,
+ Sched<[WriteVecShift]>;
+ }
+}
+
+/// Unary MMX instructions requiring SSSE3.
+multiclass SS3I_unop_rm_int_mm<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId64, OpndItins itins> {
+ def rr64 : MMXSS38I<opc, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR64:$dst, (IntId64 VR64:$src))], itins.rr>,
+ Sched<[itins.Sched]>;
+
+ def rm64 : MMXSS38I<opc, MRMSrcMem, (outs VR64:$dst), (ins i64mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR64:$dst,
+ (IntId64 (bitconvert (memopmmx addr:$src))))],
+ itins.rm>, Sched<[itins.Sched.Folded]>;
+}
+
+/// Binary MMX instructions requiring SSSE3.
+let ImmT = NoImm, Constraints = "$src1 = $dst" in {
+multiclass SS3I_binop_rm_int_mm<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId64, OpndItins itins> {
+ let isCommutable = 0 in
+ def rr64 : MMXSS38I<opc, MRMSrcReg, (outs VR64:$dst),
+ (ins VR64:$src1, VR64:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ [(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def rm64 : MMXSS38I<opc, MRMSrcMem, (outs VR64:$dst),
+ (ins VR64:$src1, i64mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ [(set VR64:$dst,
+ (IntId64 VR64:$src1,
+ (bitconvert (memopmmx addr:$src2))))], itins.rm>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+}
+
+/// PALIGN MMX instructions (require SSSE3).
+multiclass ssse3_palign_mm<string asm, Intrinsic IntId> {
+ def R64irr : MMXSS3AI<0x0F, MRMSrcReg, (outs VR64:$dst),
+ (ins VR64:$src1, VR64:$src2, i8imm:$src3),
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set VR64:$dst, (IntId VR64:$src1, VR64:$src2, (i8 imm:$src3)))]>;
+ def R64irm : MMXSS3AI<0x0F, MRMSrcMem, (outs VR64:$dst),
+ (ins VR64:$src1, i64mem:$src2, i8imm:$src3),
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set VR64:$dst, (IntId VR64:$src1,
+ (bitconvert (load_mmx addr:$src2)), (i8 imm:$src3)))]>;
+}
+
+multiclass sse12_cvt_pint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
+ Intrinsic Int, X86MemOperand x86memop, PatFrag ld_frag,
+ string asm, OpndItins itins, Domain d> {
+ def irr : MMXPI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
+ [(set DstRC:$dst, (Int SrcRC:$src))], itins.rr, d>,
+ Sched<[itins.Sched]>;
+ def irm : MMXPI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
+ [(set DstRC:$dst, (Int (ld_frag addr:$src)))], itins.rm, d>,
+ Sched<[itins.Sched.Folded]>;
+}
+
+multiclass sse12_cvt_pint_3addr<bits<8> opc, RegisterClass SrcRC,
+ RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop,
+ PatFrag ld_frag, string asm, Domain d> {
+ def irr : MMXPI<opc, MRMSrcReg, (outs DstRC:$dst),
+ (ins DstRC:$src1, SrcRC:$src2), asm,
+ [(set DstRC:$dst, (Int DstRC:$src1, SrcRC:$src2))],
+ NoItinerary, d>;
+ def irm : MMXPI<opc, MRMSrcMem, (outs DstRC:$dst),
+ (ins DstRC:$src1, x86memop:$src2), asm,
+ [(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))],
+ NoItinerary, d>;
+}
+
+//===----------------------------------------------------------------------===//
+// MMX EMMS Instruction
+//===----------------------------------------------------------------------===//
+
+def MMX_EMMS : MMXI<0x77, RawFrm, (outs), (ins), "emms",
+ [(int_x86_mmx_emms)], IIC_MMX_EMMS>;
+
+//===----------------------------------------------------------------------===//
+// MMX Scalar Instructions
+//===----------------------------------------------------------------------===//
+
+// Data Transfer Instructions
+def MMX_MOVD64rr : MMXI<0x6E, MRMSrcReg, (outs VR64:$dst), (ins GR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR64:$dst,
+ (x86mmx (scalar_to_vector GR32:$src)))],
+ IIC_MMX_MOV_MM_RM>, Sched<[WriteMove]>;
+let canFoldAsLoad = 1 in
+def MMX_MOVD64rm : MMXI<0x6E, MRMSrcMem, (outs VR64:$dst), (ins i32mem:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR64:$dst,
+ (x86mmx (scalar_to_vector (loadi32 addr:$src))))],
+ IIC_MMX_MOV_MM_RM>, Sched<[WriteLoad]>;
+let mayStore = 1 in
+def MMX_MOVD64mr : MMXI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR64:$src),
+ "movd\t{$src, $dst|$dst, $src}", [], IIC_MMX_MOV_MM_RM>,
+ Sched<[WriteStore]>;
+
+// Low word of MMX to GPR.
+def MMX_X86movd2w : SDNode<"X86ISD::MMX_MOVD2W", SDTypeProfile<1, 1,
+ [SDTCisVT<0, i32>, SDTCisVT<1, x86mmx>]>>;
+def MMX_MOVD64grr : MMXI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR64:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst,
+ (MMX_X86movd2w (x86mmx VR64:$src)))],
+ IIC_MMX_MOV_REG_MM>, Sched<[WriteMove]>;
+
+def MMX_MOVD64to64rr : MMXRI<0x6E, MRMSrcReg, (outs VR64:$dst), (ins GR64:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR64:$dst, (bitconvert GR64:$src))],
+ IIC_MMX_MOV_MM_RM>, Sched<[WriteMove]>;
+
+// These are 64 bit moves, but since the OS X assembler doesn't
+// recognize a register-register movq, we write them as
+// movd.
+let SchedRW = [WriteMove] in {
+def MMX_MOVD64from64rr : MMXRI<0x7E, MRMDestReg,
+ (outs GR64:$dst), (ins VR64:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst,
+ (bitconvert VR64:$src))], IIC_MMX_MOV_REG_MM>;
+let neverHasSideEffects = 1 in
+def MMX_MOVQ64rr : MMXI<0x6F, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src),
+ "movq\t{$src, $dst|$dst, $src}", [],
+ IIC_MMX_MOVQ_RR>;
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
+def MMX_MOVQ64rr_REV : MMXI<0x7F, MRMDestReg, (outs VR64:$dst), (ins VR64:$src),
+ "movq\t{$src, $dst|$dst, $src}", [],
+ IIC_MMX_MOVQ_RR>;
+}
+} // SchedRW
+
+let SchedRW = [WriteLoad] in {
+let canFoldAsLoad = 1 in
+def MMX_MOVQ64rm : MMXI<0x6F, MRMSrcMem, (outs VR64:$dst), (ins i64mem:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set VR64:$dst, (load_mmx addr:$src))],
+ IIC_MMX_MOVQ_RM>;
+} // SchedRW
+let SchedRW = [WriteStore] in
+def MMX_MOVQ64mr : MMXI<0x7F, MRMDestMem, (outs), (ins i64mem:$dst, VR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(store (x86mmx VR64:$src), addr:$dst)],
+ IIC_MMX_MOVQ_RM>;
+
+let SchedRW = [WriteMove] in {
+def MMX_MOVDQ2Qrr : MMXSDIi8<0xD6, MRMSrcReg, (outs VR64:$dst),
+ (ins VR128:$src), "movdq2q\t{$src, $dst|$dst, $src}",
+ [(set VR64:$dst,
+ (x86mmx (bitconvert
+ (i64 (vector_extract (v2i64 VR128:$src),
+ (iPTR 0))))))],
+ IIC_MMX_MOVQ_RR>;
+
+def MMX_MOVQ2DQrr : MMXS2SIi8<0xD6, MRMSrcReg, (outs VR128:$dst),
+ (ins VR64:$src), "movq2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2i64
+ (scalar_to_vector
+ (i64 (bitconvert (x86mmx VR64:$src))))))],
+ IIC_MMX_MOVQ_RR>;
+
+let isCodeGenOnly = 1, hasSideEffects = 1 in {
+def MMX_MOVQ2FR64rr: MMXS2SIi8<0xD6, MRMSrcReg, (outs FR64:$dst),
+ (ins VR64:$src), "movq2dq\t{$src, $dst|$dst, $src}",
+ [], IIC_MMX_MOVQ_RR>;
+
+def MMX_MOVFR642Qrr: MMXSDIi8<0xD6, MRMSrcReg, (outs VR64:$dst),
+ (ins FR64:$src), "movdq2q\t{$src, $dst|$dst, $src}",
+ [], IIC_MMX_MOVQ_RR>;
+}
+} // SchedRW
+
+def MMX_MOVNTQmr : MMXI<0xE7, MRMDestMem, (outs), (ins i64mem:$dst, VR64:$src),
+ "movntq\t{$src, $dst|$dst, $src}",
+ [(int_x86_mmx_movnt_dq addr:$dst, VR64:$src)],
+ IIC_MMX_MOVQ_RM>, Sched<[WriteStore]>;
+
+let Predicates = [HasMMX] in {
+ let AddedComplexity = 15 in
+ // movd to MMX register zero-extends
+ def : Pat<(x86mmx (X86vzmovl (x86mmx (scalar_to_vector GR32:$src)))),
+ (MMX_MOVD64rr GR32:$src)>;
+ let AddedComplexity = 20 in
+ def : Pat<(x86mmx (X86vzmovl (x86mmx (scalar_to_vector (loadi32 addr:$src))))),
+ (MMX_MOVD64rm addr:$src)>;
+}
+
+// Arithmetic Instructions
+defm MMX_PABSB : SS3I_unop_rm_int_mm<0x1C, "pabsb", int_x86_ssse3_pabs_b,
+ MMX_INTALU_ITINS>;
+defm MMX_PABSW : SS3I_unop_rm_int_mm<0x1D, "pabsw", int_x86_ssse3_pabs_w,
+ MMX_INTALU_ITINS>;
+defm MMX_PABSD : SS3I_unop_rm_int_mm<0x1E, "pabsd", int_x86_ssse3_pabs_d,
+ MMX_INTALU_ITINS>;
+// -- Addition
+defm MMX_PADDB : MMXI_binop_rm_int<0xFC, "paddb", int_x86_mmx_padd_b,
+ MMX_INTALU_ITINS, 1>;
+defm MMX_PADDW : MMXI_binop_rm_int<0xFD, "paddw", int_x86_mmx_padd_w,
+ MMX_INTALU_ITINS, 1>;
+defm MMX_PADDD : MMXI_binop_rm_int<0xFE, "paddd", int_x86_mmx_padd_d,
+ MMX_INTALU_ITINS, 1>;
+defm MMX_PADDQ : MMXI_binop_rm_int<0xD4, "paddq", int_x86_mmx_padd_q,
+ MMX_INTALUQ_ITINS, 1>;
+defm MMX_PADDSB : MMXI_binop_rm_int<0xEC, "paddsb" , int_x86_mmx_padds_b,
+ MMX_INTALU_ITINS, 1>;
+defm MMX_PADDSW : MMXI_binop_rm_int<0xED, "paddsw" , int_x86_mmx_padds_w,
+ MMX_INTALU_ITINS, 1>;
+
+defm MMX_PADDUSB : MMXI_binop_rm_int<0xDC, "paddusb", int_x86_mmx_paddus_b,
+ MMX_INTALU_ITINS, 1>;
+defm MMX_PADDUSW : MMXI_binop_rm_int<0xDD, "paddusw", int_x86_mmx_paddus_w,
+ MMX_INTALU_ITINS, 1>;
+
+defm MMX_PHADDW : SS3I_binop_rm_int_mm<0x01, "phaddw", int_x86_ssse3_phadd_w,
+ MMX_PHADDSUBW>;
+defm MMX_PHADD : SS3I_binop_rm_int_mm<0x02, "phaddd", int_x86_ssse3_phadd_d,
+ MMX_PHADDSUBD>;
+defm MMX_PHADDSW : SS3I_binop_rm_int_mm<0x03, "phaddsw",int_x86_ssse3_phadd_sw,
+ MMX_PHADDSUBW>;
+
+
+// -- Subtraction
+defm MMX_PSUBB : MMXI_binop_rm_int<0xF8, "psubb", int_x86_mmx_psub_b,
+ MMX_INTALU_ITINS>;
+defm MMX_PSUBW : MMXI_binop_rm_int<0xF9, "psubw", int_x86_mmx_psub_w,
+ MMX_INTALU_ITINS>;
+defm MMX_PSUBD : MMXI_binop_rm_int<0xFA, "psubd", int_x86_mmx_psub_d,
+ MMX_INTALU_ITINS>;
+defm MMX_PSUBQ : MMXI_binop_rm_int<0xFB, "psubq", int_x86_mmx_psub_q,
+ MMX_INTALUQ_ITINS>;
+
+defm MMX_PSUBSB : MMXI_binop_rm_int<0xE8, "psubsb" , int_x86_mmx_psubs_b,
+ MMX_INTALU_ITINS>;
+defm MMX_PSUBSW : MMXI_binop_rm_int<0xE9, "psubsw" , int_x86_mmx_psubs_w,
+ MMX_INTALU_ITINS>;
+
+defm MMX_PSUBUSB : MMXI_binop_rm_int<0xD8, "psubusb", int_x86_mmx_psubus_b,
+ MMX_INTALU_ITINS>;
+defm MMX_PSUBUSW : MMXI_binop_rm_int<0xD9, "psubusw", int_x86_mmx_psubus_w,
+ MMX_INTALU_ITINS>;
+
+defm MMX_PHSUBW : SS3I_binop_rm_int_mm<0x05, "phsubw", int_x86_ssse3_phsub_w,
+ MMX_PHADDSUBW>;
+defm MMX_PHSUBD : SS3I_binop_rm_int_mm<0x06, "phsubd", int_x86_ssse3_phsub_d,
+ MMX_PHADDSUBD>;
+defm MMX_PHSUBSW : SS3I_binop_rm_int_mm<0x07, "phsubsw",int_x86_ssse3_phsub_sw,
+ MMX_PHADDSUBW>;
+
+// -- Multiplication
+defm MMX_PMULLW : MMXI_binop_rm_int<0xD5, "pmullw", int_x86_mmx_pmull_w,
+ MMX_PMUL_ITINS, 1>;
+
+defm MMX_PMULHW : MMXI_binop_rm_int<0xE5, "pmulhw", int_x86_mmx_pmulh_w,
+ MMX_PMUL_ITINS, 1>;
+defm MMX_PMULHUW : MMXI_binop_rm_int<0xE4, "pmulhuw", int_x86_mmx_pmulhu_w,
+ MMX_PMUL_ITINS, 1>;
+defm MMX_PMULUDQ : MMXI_binop_rm_int<0xF4, "pmuludq", int_x86_mmx_pmulu_dq,
+ MMX_PMUL_ITINS, 1>;
+let isCommutable = 1 in
+defm MMX_PMULHRSW : SS3I_binop_rm_int_mm<0x0B, "pmulhrsw",
+ int_x86_ssse3_pmul_hr_sw, MMX_PMUL_ITINS>;
+
+// -- Miscellanea
+defm MMX_PMADDWD : MMXI_binop_rm_int<0xF5, "pmaddwd", int_x86_mmx_pmadd_wd,
+ MMX_PMUL_ITINS, 1>;
+
+defm MMX_PMADDUBSW : SS3I_binop_rm_int_mm<0x04, "pmaddubsw",
+ int_x86_ssse3_pmadd_ub_sw, MMX_PMUL_ITINS>;
+defm MMX_PAVGB : MMXI_binop_rm_int<0xE0, "pavgb", int_x86_mmx_pavg_b,
+ MMX_MISC_FUNC_ITINS, 1>;
+defm MMX_PAVGW : MMXI_binop_rm_int<0xE3, "pavgw", int_x86_mmx_pavg_w,
+ MMX_MISC_FUNC_ITINS, 1>;
+
+defm MMX_PMINUB : MMXI_binop_rm_int<0xDA, "pminub", int_x86_mmx_pminu_b,
+ MMX_MISC_FUNC_ITINS, 1>;
+defm MMX_PMINSW : MMXI_binop_rm_int<0xEA, "pminsw", int_x86_mmx_pmins_w,
+ MMX_MISC_FUNC_ITINS, 1>;
+
+defm MMX_PMAXUB : MMXI_binop_rm_int<0xDE, "pmaxub", int_x86_mmx_pmaxu_b,
+ MMX_MISC_FUNC_ITINS, 1>;
+defm MMX_PMAXSW : MMXI_binop_rm_int<0xEE, "pmaxsw", int_x86_mmx_pmaxs_w,
+ MMX_MISC_FUNC_ITINS, 1>;
+
+defm MMX_PSADBW : MMXI_binop_rm_int<0xF6, "psadbw", int_x86_mmx_psad_bw,
+ MMX_PSADBW_ITINS, 1>;
+
+defm MMX_PSIGNB : SS3I_binop_rm_int_mm<0x08, "psignb", int_x86_ssse3_psign_b,
+ MMX_MISC_FUNC_ITINS>;
+defm MMX_PSIGNW : SS3I_binop_rm_int_mm<0x09, "psignw", int_x86_ssse3_psign_w,
+ MMX_MISC_FUNC_ITINS>;
+defm MMX_PSIGND : SS3I_binop_rm_int_mm<0x0A, "psignd", int_x86_ssse3_psign_d,
+ MMX_MISC_FUNC_ITINS>;
+let Constraints = "$src1 = $dst" in
+ defm MMX_PALIGN : ssse3_palign_mm<"palignr", int_x86_mmx_palignr_b>;
+
+// Logical Instructions
+defm MMX_PAND : MMXI_binop_rm_int<0xDB, "pand", int_x86_mmx_pand,
+ MMX_INTALU_ITINS, 1>;
+defm MMX_POR : MMXI_binop_rm_int<0xEB, "por" , int_x86_mmx_por,
+ MMX_INTALU_ITINS, 1>;
+defm MMX_PXOR : MMXI_binop_rm_int<0xEF, "pxor", int_x86_mmx_pxor,
+ MMX_INTALU_ITINS, 1>;
+defm MMX_PANDN : MMXI_binop_rm_int<0xDF, "pandn", int_x86_mmx_pandn,
+ MMX_INTALU_ITINS>;
+
+// Shift Instructions
+defm MMX_PSRLW : MMXI_binop_rmi_int<0xD1, 0x71, MRM2r, "psrlw",
+ int_x86_mmx_psrl_w, int_x86_mmx_psrli_w,
+ MMX_SHIFT_ITINS>;
+defm MMX_PSRLD : MMXI_binop_rmi_int<0xD2, 0x72, MRM2r, "psrld",
+ int_x86_mmx_psrl_d, int_x86_mmx_psrli_d,
+ MMX_SHIFT_ITINS>;
+defm MMX_PSRLQ : MMXI_binop_rmi_int<0xD3, 0x73, MRM2r, "psrlq",
+ int_x86_mmx_psrl_q, int_x86_mmx_psrli_q,
+ MMX_SHIFT_ITINS>;
+
+defm MMX_PSLLW : MMXI_binop_rmi_int<0xF1, 0x71, MRM6r, "psllw",
+ int_x86_mmx_psll_w, int_x86_mmx_pslli_w,
+ MMX_SHIFT_ITINS>;
+defm MMX_PSLLD : MMXI_binop_rmi_int<0xF2, 0x72, MRM6r, "pslld",
+ int_x86_mmx_psll_d, int_x86_mmx_pslli_d,
+ MMX_SHIFT_ITINS>;
+defm MMX_PSLLQ : MMXI_binop_rmi_int<0xF3, 0x73, MRM6r, "psllq",
+ int_x86_mmx_psll_q, int_x86_mmx_pslli_q,
+ MMX_SHIFT_ITINS>;
+
+defm MMX_PSRAW : MMXI_binop_rmi_int<0xE1, 0x71, MRM4r, "psraw",
+ int_x86_mmx_psra_w, int_x86_mmx_psrai_w,
+ MMX_SHIFT_ITINS>;
+defm MMX_PSRAD : MMXI_binop_rmi_int<0xE2, 0x72, MRM4r, "psrad",
+ int_x86_mmx_psra_d, int_x86_mmx_psrai_d,
+ MMX_SHIFT_ITINS>;
+
+// Comparison Instructions
+defm MMX_PCMPEQB : MMXI_binop_rm_int<0x74, "pcmpeqb", int_x86_mmx_pcmpeq_b,
+ MMX_INTALU_ITINS>;
+defm MMX_PCMPEQW : MMXI_binop_rm_int<0x75, "pcmpeqw", int_x86_mmx_pcmpeq_w,
+ MMX_INTALU_ITINS>;
+defm MMX_PCMPEQD : MMXI_binop_rm_int<0x76, "pcmpeqd", int_x86_mmx_pcmpeq_d,
+ MMX_INTALU_ITINS>;
+
+defm MMX_PCMPGTB : MMXI_binop_rm_int<0x64, "pcmpgtb", int_x86_mmx_pcmpgt_b,
+ MMX_INTALU_ITINS>;
+defm MMX_PCMPGTW : MMXI_binop_rm_int<0x65, "pcmpgtw", int_x86_mmx_pcmpgt_w,
+ MMX_INTALU_ITINS>;
+defm MMX_PCMPGTD : MMXI_binop_rm_int<0x66, "pcmpgtd", int_x86_mmx_pcmpgt_d,
+ MMX_INTALU_ITINS>;
+
+// -- Unpack Instructions
+defm MMX_PUNPCKHBW : MMXI_binop_rm_int<0x68, "punpckhbw",
+ int_x86_mmx_punpckhbw,
+ MMX_UNPCK_H_ITINS>;
+defm MMX_PUNPCKHWD : MMXI_binop_rm_int<0x69, "punpckhwd",
+ int_x86_mmx_punpckhwd,
+ MMX_UNPCK_H_ITINS>;
+defm MMX_PUNPCKHDQ : MMXI_binop_rm_int<0x6A, "punpckhdq",
+ int_x86_mmx_punpckhdq,
+ MMX_UNPCK_H_ITINS>;
+defm MMX_PUNPCKLBW : MMXI_binop_rm_int<0x60, "punpcklbw",
+ int_x86_mmx_punpcklbw,
+ MMX_UNPCK_L_ITINS>;
+defm MMX_PUNPCKLWD : MMXI_binop_rm_int<0x61, "punpcklwd",
+ int_x86_mmx_punpcklwd,
+ MMX_UNPCK_L_ITINS>;
+defm MMX_PUNPCKLDQ : MMXI_binop_rm_int<0x62, "punpckldq",
+ int_x86_mmx_punpckldq,
+ MMX_UNPCK_L_ITINS>;
+
+// -- Pack Instructions
+defm MMX_PACKSSWB : MMXI_binop_rm_int<0x63, "packsswb", int_x86_mmx_packsswb,
+ MMX_PCK_ITINS>;
+defm MMX_PACKSSDW : MMXI_binop_rm_int<0x6B, "packssdw", int_x86_mmx_packssdw,
+ MMX_PCK_ITINS>;
+defm MMX_PACKUSWB : MMXI_binop_rm_int<0x67, "packuswb", int_x86_mmx_packuswb,
+ MMX_PCK_ITINS>;
+
+// -- Shuffle Instructions
+defm MMX_PSHUFB : SS3I_binop_rm_int_mm<0x00, "pshufb", int_x86_ssse3_pshuf_b,
+ MMX_PSHUF_ITINS>;
+
+def MMX_PSHUFWri : MMXIi8<0x70, MRMSrcReg,
+ (outs VR64:$dst), (ins VR64:$src1, i8imm:$src2),
+ "pshufw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR64:$dst,
+ (int_x86_sse_pshuf_w VR64:$src1, imm:$src2))],
+ IIC_MMX_PSHUF>, Sched<[WriteShuffle]>;
+def MMX_PSHUFWmi : MMXIi8<0x70, MRMSrcMem,
+ (outs VR64:$dst), (ins i64mem:$src1, i8imm:$src2),
+ "pshufw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR64:$dst,
+ (int_x86_sse_pshuf_w (load_mmx addr:$src1),
+ imm:$src2))],
+ IIC_MMX_PSHUF>, Sched<[WriteShuffleLd]>;
+
+
+
+
+// -- Conversion Instructions
+defm MMX_CVTPS2PI : sse12_cvt_pint<0x2D, VR128, VR64, int_x86_sse_cvtps2pi,
+ f64mem, load, "cvtps2pi\t{$src, $dst|$dst, $src}",
+ MMX_CVT_PS_ITINS, SSEPackedSingle>, PS;
+defm MMX_CVTPD2PI : sse12_cvt_pint<0x2D, VR128, VR64, int_x86_sse_cvtpd2pi,
+ f128mem, memop, "cvtpd2pi\t{$src, $dst|$dst, $src}",
+ MMX_CVT_PD_ITINS, SSEPackedDouble>, PD;
+defm MMX_CVTTPS2PI : sse12_cvt_pint<0x2C, VR128, VR64, int_x86_sse_cvttps2pi,
+ f64mem, load, "cvttps2pi\t{$src, $dst|$dst, $src}",
+ MMX_CVT_PS_ITINS, SSEPackedSingle>, PS;
+defm MMX_CVTTPD2PI : sse12_cvt_pint<0x2C, VR128, VR64, int_x86_sse_cvttpd2pi,
+ f128mem, memop, "cvttpd2pi\t{$src, $dst|$dst, $src}",
+ MMX_CVT_PD_ITINS, SSEPackedDouble>, PD;
+defm MMX_CVTPI2PD : sse12_cvt_pint<0x2A, VR64, VR128, int_x86_sse_cvtpi2pd,
+ i64mem, load, "cvtpi2pd\t{$src, $dst|$dst, $src}",
+ MMX_CVT_PD_ITINS, SSEPackedDouble>, PD;
+let Constraints = "$src1 = $dst" in {
+ defm MMX_CVTPI2PS : sse12_cvt_pint_3addr<0x2A, VR64, VR128,
+ int_x86_sse_cvtpi2ps,
+ i64mem, load, "cvtpi2ps\t{$src2, $dst|$dst, $src2}",
+ SSEPackedSingle>, PS;
+}
+
+// Extract / Insert
+def MMX_PEXTRWirri: MMXIi8<0xC5, MRMSrcReg,
+ (outs GR32orGR64:$dst), (ins VR64:$src1, i32i8imm:$src2),
+ "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32orGR64:$dst, (int_x86_mmx_pextr_w VR64:$src1,
+ (iPTR imm:$src2)))],
+ IIC_MMX_PEXTR>, Sched<[WriteShuffle]>;
+let Constraints = "$src1 = $dst" in {
+ def MMX_PINSRWirri : MMXIi8<0xC4, MRMSrcReg,
+ (outs VR64:$dst),
+ (ins VR64:$src1, GR32orGR64:$src2, i32i8imm:$src3),
+ "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set VR64:$dst, (int_x86_mmx_pinsr_w VR64:$src1,
+ GR32orGR64:$src2, (iPTR imm:$src3)))],
+ IIC_MMX_PINSRW>, Sched<[WriteShuffle]>;
+
+ def MMX_PINSRWirmi : MMXIi8<0xC4, MRMSrcMem,
+ (outs VR64:$dst),
+ (ins VR64:$src1, i16mem:$src2, i32i8imm:$src3),
+ "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set VR64:$dst, (int_x86_mmx_pinsr_w VR64:$src1,
+ (i32 (anyext (loadi16 addr:$src2))),
+ (iPTR imm:$src3)))],
+ IIC_MMX_PINSRW>, Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+
+// Mask creation
+def MMX_PMOVMSKBrr : MMXI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst),
+ (ins VR64:$src),
+ "pmovmskb\t{$src, $dst|$dst, $src}",
+ [(set GR32orGR64:$dst,
+ (int_x86_mmx_pmovmskb VR64:$src))]>;
+
+
+// Low word of XMM to MMX.
+def MMX_X86movdq2q : SDNode<"X86ISD::MOVDQ2Q", SDTypeProfile<1, 1,
+ [SDTCisVT<0, x86mmx>, SDTCisVT<1, v2i64>]>>;
+
+def : Pat<(x86mmx (MMX_X86movdq2q VR128:$src)),
+ (x86mmx (MMX_MOVDQ2Qrr VR128:$src))>;
+
+def : Pat<(x86mmx (MMX_X86movdq2q (loadv2i64 addr:$src))),
+ (x86mmx (MMX_MOVQ64rm addr:$src))>;
+
+// Misc.
+let SchedRW = [WriteShuffle] in {
+let Uses = [EDI] in
+def MMX_MASKMOVQ : MMXI32<0xF7, MRMSrcReg, (outs), (ins VR64:$src, VR64:$mask),
+ "maskmovq\t{$mask, $src|$src, $mask}",
+ [(int_x86_mmx_maskmovq VR64:$src, VR64:$mask, EDI)],
+ IIC_MMX_MASKMOV>;
+let Uses = [RDI] in
+def MMX_MASKMOVQ64: MMXI64<0xF7, MRMSrcReg, (outs), (ins VR64:$src, VR64:$mask),
+ "maskmovq\t{$mask, $src|$src, $mask}",
+ [(int_x86_mmx_maskmovq VR64:$src, VR64:$mask, RDI)],
+ IIC_MMX_MASKMOV>;
+}
+
+// 64-bit bit convert.
+let Predicates = [HasSSE2] in {
+def : Pat<(x86mmx (bitconvert (i64 GR64:$src))),
+ (MMX_MOVD64to64rr GR64:$src)>;
+def : Pat<(i64 (bitconvert (x86mmx VR64:$src))),
+ (MMX_MOVD64from64rr VR64:$src)>;
+def : Pat<(f64 (bitconvert (x86mmx VR64:$src))),
+ (MMX_MOVQ2FR64rr VR64:$src)>;
+def : Pat<(x86mmx (bitconvert (f64 FR64:$src))),
+ (MMX_MOVFR642Qrr FR64:$src)>;
+}
+
+
diff --git a/contrib/llvm/lib/Target/X86/X86InstrSSE.td b/contrib/llvm/lib/Target/X86/X86InstrSSE.td
new file mode 100644
index 0000000..2bb898e
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrSSE.td
@@ -0,0 +1,9061 @@
+//===-- X86InstrSSE.td - SSE Instruction Set ---------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the X86 SSE instruction set, defining the instructions,
+// and properties of the instructions which are needed for code generation,
+// machine code emission, and analysis.
+//
+//===----------------------------------------------------------------------===//
+
+class OpndItins<InstrItinClass arg_rr, InstrItinClass arg_rm> {
+ InstrItinClass rr = arg_rr;
+ InstrItinClass rm = arg_rm;
+ // InstrSchedModel info.
+ X86FoldableSchedWrite Sched = WriteFAdd;
+}
+
+class SizeItins<OpndItins arg_s, OpndItins arg_d> {
+ OpndItins s = arg_s;
+ OpndItins d = arg_d;
+}
+
+
+class ShiftOpndItins<InstrItinClass arg_rr, InstrItinClass arg_rm,
+ InstrItinClass arg_ri> {
+ InstrItinClass rr = arg_rr;
+ InstrItinClass rm = arg_rm;
+ InstrItinClass ri = arg_ri;
+}
+
+
+// scalar
+let Sched = WriteFAdd in {
+def SSE_ALU_F32S : OpndItins<
+ IIC_SSE_ALU_F32S_RR, IIC_SSE_ALU_F32S_RM
+>;
+
+def SSE_ALU_F64S : OpndItins<
+ IIC_SSE_ALU_F64S_RR, IIC_SSE_ALU_F64S_RM
+>;
+}
+
+def SSE_ALU_ITINS_S : SizeItins<
+ SSE_ALU_F32S, SSE_ALU_F64S
+>;
+
+let Sched = WriteFMul in {
+def SSE_MUL_F32S : OpndItins<
+ IIC_SSE_MUL_F32S_RR, IIC_SSE_MUL_F64S_RM
+>;
+
+def SSE_MUL_F64S : OpndItins<
+ IIC_SSE_MUL_F64S_RR, IIC_SSE_MUL_F64S_RM
+>;
+}
+
+def SSE_MUL_ITINS_S : SizeItins<
+ SSE_MUL_F32S, SSE_MUL_F64S
+>;
+
+let Sched = WriteFDiv in {
+def SSE_DIV_F32S : OpndItins<
+ IIC_SSE_DIV_F32S_RR, IIC_SSE_DIV_F64S_RM
+>;
+
+def SSE_DIV_F64S : OpndItins<
+ IIC_SSE_DIV_F64S_RR, IIC_SSE_DIV_F64S_RM
+>;
+}
+
+def SSE_DIV_ITINS_S : SizeItins<
+ SSE_DIV_F32S, SSE_DIV_F64S
+>;
+
+// parallel
+let Sched = WriteFAdd in {
+def SSE_ALU_F32P : OpndItins<
+ IIC_SSE_ALU_F32P_RR, IIC_SSE_ALU_F32P_RM
+>;
+
+def SSE_ALU_F64P : OpndItins<
+ IIC_SSE_ALU_F64P_RR, IIC_SSE_ALU_F64P_RM
+>;
+}
+
+def SSE_ALU_ITINS_P : SizeItins<
+ SSE_ALU_F32P, SSE_ALU_F64P
+>;
+
+let Sched = WriteFMul in {
+def SSE_MUL_F32P : OpndItins<
+ IIC_SSE_MUL_F32P_RR, IIC_SSE_MUL_F64P_RM
+>;
+
+def SSE_MUL_F64P : OpndItins<
+ IIC_SSE_MUL_F64P_RR, IIC_SSE_MUL_F64P_RM
+>;
+}
+
+def SSE_MUL_ITINS_P : SizeItins<
+ SSE_MUL_F32P, SSE_MUL_F64P
+>;
+
+let Sched = WriteFDiv in {
+def SSE_DIV_F32P : OpndItins<
+ IIC_SSE_DIV_F32P_RR, IIC_SSE_DIV_F64P_RM
+>;
+
+def SSE_DIV_F64P : OpndItins<
+ IIC_SSE_DIV_F64P_RR, IIC_SSE_DIV_F64P_RM
+>;
+}
+
+def SSE_DIV_ITINS_P : SizeItins<
+ SSE_DIV_F32P, SSE_DIV_F64P
+>;
+
+let Sched = WriteVecLogic in
+def SSE_VEC_BIT_ITINS_P : OpndItins<
+ IIC_SSE_BIT_P_RR, IIC_SSE_BIT_P_RM
+>;
+
+def SSE_BIT_ITINS_P : OpndItins<
+ IIC_SSE_BIT_P_RR, IIC_SSE_BIT_P_RM
+>;
+
+let Sched = WriteVecALU in {
+def SSE_INTALU_ITINS_P : OpndItins<
+ IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
+>;
+
+def SSE_INTALUQ_ITINS_P : OpndItins<
+ IIC_SSE_INTALUQ_P_RR, IIC_SSE_INTALUQ_P_RM
+>;
+}
+
+let Sched = WriteVecIMul in
+def SSE_INTMUL_ITINS_P : OpndItins<
+ IIC_SSE_INTMUL_P_RR, IIC_SSE_INTMUL_P_RM
+>;
+
+def SSE_INTSHIFT_ITINS_P : ShiftOpndItins<
+ IIC_SSE_INTSH_P_RR, IIC_SSE_INTSH_P_RM, IIC_SSE_INTSH_P_RI
+>;
+
+def SSE_MOVA_ITINS : OpndItins<
+ IIC_SSE_MOVA_P_RR, IIC_SSE_MOVA_P_RM
+>;
+
+def SSE_MOVU_ITINS : OpndItins<
+ IIC_SSE_MOVU_P_RR, IIC_SSE_MOVU_P_RM
+>;
+
+def SSE_DPPD_ITINS : OpndItins<
+ IIC_SSE_DPPD_RR, IIC_SSE_DPPD_RM
+>;
+
+def SSE_DPPS_ITINS : OpndItins<
+ IIC_SSE_DPPS_RR, IIC_SSE_DPPD_RM
+>;
+
+def DEFAULT_ITINS : OpndItins<
+ IIC_ALU_NONMEM, IIC_ALU_MEM
+>;
+
+def SSE_EXTRACT_ITINS : OpndItins<
+ IIC_SSE_EXTRACTPS_RR, IIC_SSE_EXTRACTPS_RM
+>;
+
+def SSE_INSERT_ITINS : OpndItins<
+ IIC_SSE_INSERTPS_RR, IIC_SSE_INSERTPS_RM
+>;
+
+let Sched = WriteMPSAD in
+def SSE_MPSADBW_ITINS : OpndItins<
+ IIC_SSE_MPSADBW_RR, IIC_SSE_MPSADBW_RM
+>;
+
+def SSE_PMULLD_ITINS : OpndItins<
+ IIC_SSE_PMULLD_RR, IIC_SSE_PMULLD_RM
+>;
+
+// Definitions for backward compatibility.
+// The instructions mapped on these definitions uses a different itinerary
+// than the actual scheduling model.
+let Sched = WriteShuffle in
+def DEFAULT_ITINS_SHUFFLESCHED : OpndItins<
+ IIC_ALU_NONMEM, IIC_ALU_MEM
+>;
+
+let Sched = WriteVecIMul in
+def DEFAULT_ITINS_VECIMULSCHED : OpndItins<
+ IIC_ALU_NONMEM, IIC_ALU_MEM
+>;
+
+let Sched = WriteShuffle in
+def SSE_INTALU_ITINS_SHUFF_P : OpndItins<
+ IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
+>;
+
+let Sched = WriteMPSAD in
+def DEFAULT_ITINS_MPSADSCHED : OpndItins<
+ IIC_ALU_NONMEM, IIC_ALU_MEM
+>;
+
+let Sched = WriteFBlend in
+def DEFAULT_ITINS_FBLENDSCHED : OpndItins<
+ IIC_ALU_NONMEM, IIC_ALU_MEM
+>;
+
+let Sched = WriteBlend in
+def DEFAULT_ITINS_BLENDSCHED : OpndItins<
+ IIC_ALU_NONMEM, IIC_ALU_MEM
+>;
+
+let Sched = WriteFBlend in
+def SSE_INTALU_ITINS_FBLEND_P : OpndItins<
+ IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
+>;
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 Instructions Classes
+//===----------------------------------------------------------------------===//
+
+/// sse12_fp_scalar - SSE 1 & 2 scalar instructions class
+multiclass sse12_fp_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ RegisterClass RC, X86MemOperand x86memop,
+ OpndItins itins,
+ bit Is2Addr = 1> {
+ let isCommutable = 1 in {
+ def rr : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpNode RC:$src1, RC:$src2))], itins.rr>,
+ Sched<[itins.Sched]>;
+ }
+ def rm : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpNode RC:$src1, (load addr:$src2)))], itins.rm>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+/// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class
+multiclass sse12_fp_scalar_int<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ string asm, string SSEVer, string FPSizeStr,
+ Operand memopr, ComplexPattern mem_cpat,
+ OpndItins itins,
+ bit Is2Addr = 1> {
+let isCodeGenOnly = 1 in {
+ def rr_Int : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (!cast<Intrinsic>(
+ !strconcat("int_x86_sse", SSEVer, "_", OpcodeStr, FPSizeStr))
+ RC:$src1, RC:$src2))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def rm_Int : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, memopr:$src2),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (!cast<Intrinsic>(!strconcat("int_x86_sse",
+ SSEVer, "_", OpcodeStr, FPSizeStr))
+ RC:$src1, mem_cpat:$src2))], itins.rm>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+}
+
+/// sse12_fp_packed - SSE 1 & 2 packed instructions class
+multiclass sse12_fp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ RegisterClass RC, ValueType vt,
+ X86MemOperand x86memop, PatFrag mem_frag,
+ Domain d, OpndItins itins, bit Is2Addr = 1> {
+ let isCommutable = 1 in
+ def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], itins.rr, d>,
+ Sched<[itins.Sched]>;
+ let mayLoad = 1 in
+ def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2)))],
+ itins.rm, d>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+/// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class
+multiclass sse12_fp_packed_logical_rm<bits<8> opc, RegisterClass RC, Domain d,
+ string OpcodeStr, X86MemOperand x86memop,
+ list<dag> pat_rr, list<dag> pat_rm,
+ bit Is2Addr = 1> {
+ let isCommutable = 1, hasSideEffects = 0 in
+ def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ pat_rr, NoItinerary, d>,
+ Sched<[WriteVecLogic]>;
+ def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ pat_rm, NoItinerary, d>,
+ Sched<[WriteVecLogicLd, ReadAfterLd]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Non-instruction patterns
+//===----------------------------------------------------------------------===//
+
+// A vector extract of the first f32/f64 position is a subregister copy
+def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
+ (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32)>;
+def : Pat<(f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))),
+ (COPY_TO_REGCLASS (v2f64 VR128:$src), FR64)>;
+
+// A 128-bit subvector extract from the first 256-bit vector position
+// is a subregister copy that needs no instruction.
+def : Pat<(v4i32 (extract_subvector (v8i32 VR256:$src), (iPTR 0))),
+ (v4i32 (EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm))>;
+def : Pat<(v4f32 (extract_subvector (v8f32 VR256:$src), (iPTR 0))),
+ (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm))>;
+
+def : Pat<(v2i64 (extract_subvector (v4i64 VR256:$src), (iPTR 0))),
+ (v2i64 (EXTRACT_SUBREG (v4i64 VR256:$src), sub_xmm))>;
+def : Pat<(v2f64 (extract_subvector (v4f64 VR256:$src), (iPTR 0))),
+ (v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src), sub_xmm))>;
+
+def : Pat<(v8i16 (extract_subvector (v16i16 VR256:$src), (iPTR 0))),
+ (v8i16 (EXTRACT_SUBREG (v16i16 VR256:$src), sub_xmm))>;
+def : Pat<(v16i8 (extract_subvector (v32i8 VR256:$src), (iPTR 0))),
+ (v16i8 (EXTRACT_SUBREG (v32i8 VR256:$src), sub_xmm))>;
+
+// A 128-bit subvector insert to the first 256-bit vector position
+// is a subregister copy that needs no instruction.
+let AddedComplexity = 25 in { // to give priority over vinsertf128rm
+def : Pat<(insert_subvector undef, (v2i64 VR128:$src), (iPTR 0)),
+ (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
+def : Pat<(insert_subvector undef, (v2f64 VR128:$src), (iPTR 0)),
+ (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
+def : Pat<(insert_subvector undef, (v4i32 VR128:$src), (iPTR 0)),
+ (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
+def : Pat<(insert_subvector undef, (v4f32 VR128:$src), (iPTR 0)),
+ (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
+def : Pat<(insert_subvector undef, (v8i16 VR128:$src), (iPTR 0)),
+ (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
+def : Pat<(insert_subvector undef, (v16i8 VR128:$src), (iPTR 0)),
+ (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
+}
+
+// Implicitly promote a 32-bit scalar to a vector.
+def : Pat<(v4f32 (scalar_to_vector FR32:$src)),
+ (COPY_TO_REGCLASS FR32:$src, VR128)>;
+def : Pat<(v8f32 (scalar_to_vector FR32:$src)),
+ (COPY_TO_REGCLASS FR32:$src, VR128)>;
+// Implicitly promote a 64-bit scalar to a vector.
+def : Pat<(v2f64 (scalar_to_vector FR64:$src)),
+ (COPY_TO_REGCLASS FR64:$src, VR128)>;
+def : Pat<(v4f64 (scalar_to_vector FR64:$src)),
+ (COPY_TO_REGCLASS FR64:$src, VR128)>;
+
+// Bitcasts between 128-bit vector types. Return the original type since
+// no instruction is needed for the conversion
+let Predicates = [HasSSE2] in {
+ def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
+ def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
+ def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
+ def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
+ def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
+ def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
+ def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
+ def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
+ def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
+ def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
+ def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
+ def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
+ def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
+ def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
+ def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
+ def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
+ def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
+ def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
+ def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
+ def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
+ def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
+ def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
+ def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
+ def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
+ def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
+ def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
+ def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
+ def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
+ def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
+ def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
+}
+
+// Bitcasts between 256-bit vector types. Return the original type since
+// no instruction is needed for the conversion
+let Predicates = [HasAVX] in {
+ def : Pat<(v4f64 (bitconvert (v8f32 VR256:$src))), (v4f64 VR256:$src)>;
+ def : Pat<(v4f64 (bitconvert (v8i32 VR256:$src))), (v4f64 VR256:$src)>;
+ def : Pat<(v4f64 (bitconvert (v4i64 VR256:$src))), (v4f64 VR256:$src)>;
+ def : Pat<(v4f64 (bitconvert (v16i16 VR256:$src))), (v4f64 VR256:$src)>;
+ def : Pat<(v4f64 (bitconvert (v32i8 VR256:$src))), (v4f64 VR256:$src)>;
+ def : Pat<(v8f32 (bitconvert (v8i32 VR256:$src))), (v8f32 VR256:$src)>;
+ def : Pat<(v8f32 (bitconvert (v4i64 VR256:$src))), (v8f32 VR256:$src)>;
+ def : Pat<(v8f32 (bitconvert (v4f64 VR256:$src))), (v8f32 VR256:$src)>;
+ def : Pat<(v8f32 (bitconvert (v32i8 VR256:$src))), (v8f32 VR256:$src)>;
+ def : Pat<(v8f32 (bitconvert (v16i16 VR256:$src))), (v8f32 VR256:$src)>;
+ def : Pat<(v4i64 (bitconvert (v8f32 VR256:$src))), (v4i64 VR256:$src)>;
+ def : Pat<(v4i64 (bitconvert (v8i32 VR256:$src))), (v4i64 VR256:$src)>;
+ def : Pat<(v4i64 (bitconvert (v4f64 VR256:$src))), (v4i64 VR256:$src)>;
+ def : Pat<(v4i64 (bitconvert (v32i8 VR256:$src))), (v4i64 VR256:$src)>;
+ def : Pat<(v4i64 (bitconvert (v16i16 VR256:$src))), (v4i64 VR256:$src)>;
+ def : Pat<(v32i8 (bitconvert (v4f64 VR256:$src))), (v32i8 VR256:$src)>;
+ def : Pat<(v32i8 (bitconvert (v4i64 VR256:$src))), (v32i8 VR256:$src)>;
+ def : Pat<(v32i8 (bitconvert (v8f32 VR256:$src))), (v32i8 VR256:$src)>;
+ def : Pat<(v32i8 (bitconvert (v8i32 VR256:$src))), (v32i8 VR256:$src)>;
+ def : Pat<(v32i8 (bitconvert (v16i16 VR256:$src))), (v32i8 VR256:$src)>;
+ def : Pat<(v8i32 (bitconvert (v32i8 VR256:$src))), (v8i32 VR256:$src)>;
+ def : Pat<(v8i32 (bitconvert (v16i16 VR256:$src))), (v8i32 VR256:$src)>;
+ def : Pat<(v8i32 (bitconvert (v8f32 VR256:$src))), (v8i32 VR256:$src)>;
+ def : Pat<(v8i32 (bitconvert (v4i64 VR256:$src))), (v8i32 VR256:$src)>;
+ def : Pat<(v8i32 (bitconvert (v4f64 VR256:$src))), (v8i32 VR256:$src)>;
+ def : Pat<(v16i16 (bitconvert (v8f32 VR256:$src))), (v16i16 VR256:$src)>;
+ def : Pat<(v16i16 (bitconvert (v8i32 VR256:$src))), (v16i16 VR256:$src)>;
+ def : Pat<(v16i16 (bitconvert (v4i64 VR256:$src))), (v16i16 VR256:$src)>;
+ def : Pat<(v16i16 (bitconvert (v4f64 VR256:$src))), (v16i16 VR256:$src)>;
+ def : Pat<(v16i16 (bitconvert (v32i8 VR256:$src))), (v16i16 VR256:$src)>;
+}
+
+// Alias instructions that map fld0 to xorps for sse or vxorps for avx.
+// This is expanded by ExpandPostRAPseudos.
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isPseudo = 1, SchedRW = [WriteZero] in {
+ def FsFLD0SS : I<0, Pseudo, (outs FR32:$dst), (ins), "",
+ [(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1]>;
+ def FsFLD0SD : I<0, Pseudo, (outs FR64:$dst), (ins), "",
+ [(set FR64:$dst, fpimm0)]>, Requires<[HasSSE2]>;
+}
+
+//===----------------------------------------------------------------------===//
+// AVX & SSE - Zero/One Vectors
+//===----------------------------------------------------------------------===//
+
+// Alias instruction that maps zero vector to pxor / xorp* for sse.
+// This is expanded by ExpandPostRAPseudos to an xorps / vxorps, and then
+// swizzled by ExecutionDepsFix to pxor.
+// We set canFoldAsLoad because this can be converted to a constant-pool
+// load of an all-zeros value if folding it would be beneficial.
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isPseudo = 1, SchedRW = [WriteZero] in {
+def V_SET0 : I<0, Pseudo, (outs VR128:$dst), (ins), "",
+ [(set VR128:$dst, (v4f32 immAllZerosV))]>;
+}
+
+def : Pat<(v2f64 immAllZerosV), (V_SET0)>;
+def : Pat<(v4i32 immAllZerosV), (V_SET0)>;
+def : Pat<(v2i64 immAllZerosV), (V_SET0)>;
+def : Pat<(v8i16 immAllZerosV), (V_SET0)>;
+def : Pat<(v16i8 immAllZerosV), (V_SET0)>;
+
+
+// The same as done above but for AVX. The 256-bit AVX1 ISA doesn't support PI,
+// and doesn't need it because on sandy bridge the register is set to zero
+// at the rename stage without using any execution unit, so SET0PSY
+// and SET0PDY can be used for vector int instructions without penalty
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isPseudo = 1, Predicates = [HasAVX], SchedRW = [WriteZero] in {
+def AVX_SET0 : I<0, Pseudo, (outs VR256:$dst), (ins), "",
+ [(set VR256:$dst, (v8f32 immAllZerosV))]>;
+}
+
+let Predicates = [HasAVX] in
+ def : Pat<(v4f64 immAllZerosV), (AVX_SET0)>;
+
+let Predicates = [HasAVX2] in {
+ def : Pat<(v4i64 immAllZerosV), (AVX_SET0)>;
+ def : Pat<(v8i32 immAllZerosV), (AVX_SET0)>;
+ def : Pat<(v16i16 immAllZerosV), (AVX_SET0)>;
+ def : Pat<(v32i8 immAllZerosV), (AVX_SET0)>;
+}
+
+// AVX1 has no support for 256-bit integer instructions, but since the 128-bit
+// VPXOR instruction writes zero to its upper part, it's safe build zeros.
+let Predicates = [HasAVX1Only] in {
+def : Pat<(v32i8 immAllZerosV), (SUBREG_TO_REG (i8 0), (V_SET0), sub_xmm)>;
+def : Pat<(bc_v32i8 (v8f32 immAllZerosV)),
+ (SUBREG_TO_REG (i8 0), (V_SET0), sub_xmm)>;
+
+def : Pat<(v16i16 immAllZerosV), (SUBREG_TO_REG (i16 0), (V_SET0), sub_xmm)>;
+def : Pat<(bc_v16i16 (v8f32 immAllZerosV)),
+ (SUBREG_TO_REG (i16 0), (V_SET0), sub_xmm)>;
+
+def : Pat<(v8i32 immAllZerosV), (SUBREG_TO_REG (i32 0), (V_SET0), sub_xmm)>;
+def : Pat<(bc_v8i32 (v8f32 immAllZerosV)),
+ (SUBREG_TO_REG (i32 0), (V_SET0), sub_xmm)>;
+
+def : Pat<(v4i64 immAllZerosV), (SUBREG_TO_REG (i64 0), (V_SET0), sub_xmm)>;
+def : Pat<(bc_v4i64 (v8f32 immAllZerosV)),
+ (SUBREG_TO_REG (i64 0), (V_SET0), sub_xmm)>;
+}
+
+// We set canFoldAsLoad because this can be converted to a constant-pool
+// load of an all-ones value if folding it would be beneficial.
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isPseudo = 1, SchedRW = [WriteZero] in {
+ def V_SETALLONES : I<0, Pseudo, (outs VR128:$dst), (ins), "",
+ [(set VR128:$dst, (v4i32 immAllOnesV))]>;
+ let Predicates = [HasAVX2] in
+ def AVX2_SETALLONES : I<0, Pseudo, (outs VR256:$dst), (ins), "",
+ [(set VR256:$dst, (v8i32 immAllOnesV))]>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Move FP Scalar Instructions
+//
+// Move Instructions. Register-to-register movss/movsd is not used for FR32/64
+// register copies because it's a partial register update; Register-to-register
+// movss/movsd is not modeled as an INSERT_SUBREG because INSERT_SUBREG requires
+// that the insert be implementable in terms of a copy, and just mentioned, we
+// don't use movss/movsd for copies.
+//===----------------------------------------------------------------------===//
+
+multiclass sse12_move_rr<RegisterClass RC, SDNode OpNode, ValueType vt,
+ X86MemOperand x86memop, string base_opc,
+ string asm_opr> {
+ def rr : SI<0x10, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, RC:$src2),
+ !strconcat(base_opc, asm_opr),
+ [(set VR128:$dst, (vt (OpNode VR128:$src1,
+ (scalar_to_vector RC:$src2))))],
+ IIC_SSE_MOV_S_RR>, Sched<[WriteFShuffle]>;
+
+ // For the disassembler
+ let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
+ def rr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst),
+ (ins VR128:$src1, RC:$src2),
+ !strconcat(base_opc, asm_opr),
+ [], IIC_SSE_MOV_S_RR>, Sched<[WriteFShuffle]>;
+}
+
+multiclass sse12_move<RegisterClass RC, SDNode OpNode, ValueType vt,
+ X86MemOperand x86memop, string OpcodeStr> {
+ // AVX
+ defm V#NAME : sse12_move_rr<RC, OpNode, vt, x86memop, OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}">,
+ VEX_4V, VEX_LIG;
+
+ def V#NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(store RC:$src, addr:$dst)], IIC_SSE_MOV_S_MR>,
+ VEX, VEX_LIG, Sched<[WriteStore]>;
+ // SSE1 & 2
+ let Constraints = "$src1 = $dst" in {
+ defm NAME : sse12_move_rr<RC, OpNode, vt, x86memop, OpcodeStr,
+ "\t{$src2, $dst|$dst, $src2}">;
+ }
+
+ def NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(store RC:$src, addr:$dst)], IIC_SSE_MOV_S_MR>,
+ Sched<[WriteStore]>;
+}
+
+// Loading from memory automatically zeroing upper bits.
+multiclass sse12_move_rm<RegisterClass RC, X86MemOperand x86memop,
+ PatFrag mem_pat, string OpcodeStr> {
+ def V#NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (mem_pat addr:$src))],
+ IIC_SSE_MOV_S_RM>, VEX, VEX_LIG, Sched<[WriteLoad]>;
+ def NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (mem_pat addr:$src))],
+ IIC_SSE_MOV_S_RM>, Sched<[WriteLoad]>;
+}
+
+defm MOVSS : sse12_move<FR32, X86Movss, v4f32, f32mem, "movss">, XS;
+defm MOVSD : sse12_move<FR64, X86Movsd, v2f64, f64mem, "movsd">, XD;
+
+let canFoldAsLoad = 1, isReMaterializable = 1 in {
+ defm MOVSS : sse12_move_rm<FR32, f32mem, loadf32, "movss">, XS;
+
+ let AddedComplexity = 20 in
+ defm MOVSD : sse12_move_rm<FR64, f64mem, loadf64, "movsd">, XD;
+}
+
+// Patterns
+let Predicates = [UseAVX] in {
+ let AddedComplexity = 15 in {
+ // Move scalar to XMM zero-extended, zeroing a VR128 then do a
+ // MOVS{S,D} to the lower bits.
+ def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))),
+ (VMOVSSrr (v4f32 (V_SET0)), FR32:$src)>;
+ def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
+ (VMOVSSrr (v4f32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
+ (VMOVSSrr (v4i32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
+ def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
+ (VMOVSDrr (v2f64 (V_SET0)), FR64:$src)>;
+
+ // Move low f32 and clear high bits.
+ def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSrr (v4f32 (V_SET0)),
+ (EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm)), sub_xmm)>;
+ def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSrr (v4i32 (V_SET0)),
+ (EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm)), sub_xmm)>;
+ }
+
+ let AddedComplexity = 20 in {
+ // MOVSSrm zeros the high parts of the register; represent this
+ // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
+ def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
+ (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
+ def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))),
+ (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
+ def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
+ (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
+
+ // MOVSDrm zeros the high parts of the register; represent this
+ // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
+ def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
+ (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))),
+ (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
+ (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
+ (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzload addr:$src)),
+ (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
+
+ // Represent the same patterns above but in the form they appear for
+ // 256-bit types
+ def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>;
+ def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
+ (v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>;
+ def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
+ (v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVSDrm addr:$src), sub_xmm)>;
+ }
+ def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
+ (v4f32 (scalar_to_vector FR32:$src)), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0),
+ (v4f32 (VMOVSSrr (v4f32 (V_SET0)), FR32:$src)),
+ sub_xmm)>;
+ def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
+ (v2f64 (scalar_to_vector FR64:$src)), (iPTR 0)))),
+ (SUBREG_TO_REG (i64 0),
+ (v2f64 (VMOVSDrr (v2f64 (V_SET0)), FR64:$src)),
+ sub_xmm)>;
+ def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i64 0), (VMOVSDrm addr:$src), sub_xmm)>;
+
+ // Move low f64 and clear high bits.
+ def : Pat<(v4f64 (X86vzmovl (v4f64 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSDrr (v2f64 (V_SET0)),
+ (EXTRACT_SUBREG (v4f64 VR256:$src), sub_xmm)), sub_xmm)>;
+
+ def : Pat<(v4i64 (X86vzmovl (v4i64 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSDrr (v2i64 (V_SET0)),
+ (EXTRACT_SUBREG (v4i64 VR256:$src), sub_xmm)), sub_xmm)>;
+
+ // Extract and store.
+ def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
+ addr:$dst),
+ (VMOVSSmr addr:$dst, (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32))>;
+ def : Pat<(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))),
+ addr:$dst),
+ (VMOVSDmr addr:$dst, (COPY_TO_REGCLASS (v2f64 VR128:$src), FR64))>;
+
+ // Shuffle with VMOVSS
+ def : Pat<(v4i32 (X86Movss VR128:$src1, VR128:$src2)),
+ (VMOVSSrr (v4i32 VR128:$src1),
+ (COPY_TO_REGCLASS (v4i32 VR128:$src2), FR32))>;
+ def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)),
+ (VMOVSSrr (v4f32 VR128:$src1),
+ (COPY_TO_REGCLASS (v4f32 VR128:$src2), FR32))>;
+
+ // 256-bit variants
+ def : Pat<(v8i32 (X86Movss VR256:$src1, VR256:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSrr (EXTRACT_SUBREG (v8i32 VR256:$src1), sub_xmm),
+ (EXTRACT_SUBREG (v8i32 VR256:$src2), sub_xmm)),
+ sub_xmm)>;
+ def : Pat<(v8f32 (X86Movss VR256:$src1, VR256:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSSrr (EXTRACT_SUBREG (v8f32 VR256:$src1), sub_xmm),
+ (EXTRACT_SUBREG (v8f32 VR256:$src2), sub_xmm)),
+ sub_xmm)>;
+
+ // Shuffle with VMOVSD
+ def : Pat<(v2i64 (X86Movsd VR128:$src1, VR128:$src2)),
+ (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)),
+ (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v4f32 (X86Movsd VR128:$src1, VR128:$src2)),
+ (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v4i32 (X86Movsd VR128:$src1, VR128:$src2)),
+ (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+
+ // 256-bit variants
+ def : Pat<(v4i64 (X86Movsd VR256:$src1, VR256:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSDrr (EXTRACT_SUBREG (v4i64 VR256:$src1), sub_xmm),
+ (EXTRACT_SUBREG (v4i64 VR256:$src2), sub_xmm)),
+ sub_xmm)>;
+ def : Pat<(v4f64 (X86Movsd VR256:$src1, VR256:$src2)),
+ (SUBREG_TO_REG (i32 0),
+ (VMOVSDrr (EXTRACT_SUBREG (v4f64 VR256:$src1), sub_xmm),
+ (EXTRACT_SUBREG (v4f64 VR256:$src2), sub_xmm)),
+ sub_xmm)>;
+
+
+ // FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem
+ // is during lowering, where it's not possible to recognize the fold cause
+ // it has two uses through a bitcast. One use disappears at isel time and the
+ // fold opportunity reappears.
+ def : Pat<(v2f64 (X86Movlpd VR128:$src1, VR128:$src2)),
+ (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v2i64 (X86Movlpd VR128:$src1, VR128:$src2)),
+ (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v4f32 (X86Movlps VR128:$src1, VR128:$src2)),
+ (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v4i32 (X86Movlps VR128:$src1, VR128:$src2)),
+ (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+}
+
+let Predicates = [UseSSE1] in {
+ let AddedComplexity = 15 in {
+ // Move scalar to XMM zero-extended, zeroing a VR128 then do a
+ // MOVSS to the lower bits.
+ def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))),
+ (MOVSSrr (v4f32 (V_SET0)), FR32:$src)>;
+ def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
+ (MOVSSrr (v4f32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
+ (MOVSSrr (v4i32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
+ }
+
+ let AddedComplexity = 20 in {
+ // MOVSSrm already zeros the high parts of the register.
+ def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
+ (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
+ def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))),
+ (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
+ def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
+ (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
+ }
+
+ // Extract and store.
+ def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
+ addr:$dst),
+ (MOVSSmr addr:$dst, (COPY_TO_REGCLASS VR128:$src, FR32))>;
+
+ // Shuffle with MOVSS
+ def : Pat<(v4i32 (X86Movss VR128:$src1, VR128:$src2)),
+ (MOVSSrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR32))>;
+ def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)),
+ (MOVSSrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR32))>;
+}
+
+let Predicates = [UseSSE2] in {
+ let AddedComplexity = 15 in {
+ // Move scalar to XMM zero-extended, zeroing a VR128 then do a
+ // MOVSD to the lower bits.
+ def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
+ (MOVSDrr (v2f64 (V_SET0)), FR64:$src)>;
+ }
+
+ let AddedComplexity = 20 in {
+ // MOVSDrm already zeros the high parts of the register.
+ def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
+ (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))),
+ (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
+ (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
+ (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzload addr:$src)),
+ (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
+ }
+
+ // Extract and store.
+ def : Pat<(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))),
+ addr:$dst),
+ (MOVSDmr addr:$dst, (COPY_TO_REGCLASS VR128:$src, FR64))>;
+
+ // Shuffle with MOVSD
+ def : Pat<(v2i64 (X86Movsd VR128:$src1, VR128:$src2)),
+ (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)),
+ (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v4f32 (X86Movsd VR128:$src1, VR128:$src2)),
+ (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v4i32 (X86Movsd VR128:$src1, VR128:$src2)),
+ (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+
+ // FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem
+ // is during lowering, where it's not possible to recognize the fold cause
+ // it has two uses through a bitcast. One use disappears at isel time and the
+ // fold opportunity reappears.
+ def : Pat<(v2f64 (X86Movlpd VR128:$src1, VR128:$src2)),
+ (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v2i64 (X86Movlpd VR128:$src1, VR128:$src2)),
+ (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v4f32 (X86Movlps VR128:$src1, VR128:$src2)),
+ (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+ def : Pat<(v4i32 (X86Movlps VR128:$src1, VR128:$src2)),
+ (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Move Aligned/Unaligned FP Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass sse12_mov_packed<bits<8> opc, RegisterClass RC,
+ X86MemOperand x86memop, PatFrag ld_frag,
+ string asm, Domain d,
+ OpndItins itins,
+ bit IsReMaterializable = 1> {
+let neverHasSideEffects = 1 in
+ def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], itins.rr, d>,
+ Sched<[WriteFShuffle]>;
+let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in
+ def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (ld_frag addr:$src))], itins.rm, d>,
+ Sched<[WriteLoad]>;
+}
+
+defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
+ "movaps", SSEPackedSingle, SSE_MOVA_ITINS>,
+ PS, VEX;
+defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
+ "movapd", SSEPackedDouble, SSE_MOVA_ITINS>,
+ PD, VEX;
+defm VMOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32,
+ "movups", SSEPackedSingle, SSE_MOVU_ITINS>,
+ PS, VEX;
+defm VMOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64,
+ "movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>,
+ PD, VEX;
+
+defm VMOVAPSY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv8f32,
+ "movaps", SSEPackedSingle, SSE_MOVA_ITINS>,
+ PS, VEX, VEX_L;
+defm VMOVAPDY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv4f64,
+ "movapd", SSEPackedDouble, SSE_MOVA_ITINS>,
+ PD, VEX, VEX_L;
+defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32,
+ "movups", SSEPackedSingle, SSE_MOVU_ITINS>,
+ PS, VEX, VEX_L;
+defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64,
+ "movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>,
+ PD, VEX, VEX_L;
+defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
+ "movaps", SSEPackedSingle, SSE_MOVA_ITINS>,
+ PS;
+defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
+ "movapd", SSEPackedDouble, SSE_MOVA_ITINS>,
+ PD;
+defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32,
+ "movups", SSEPackedSingle, SSE_MOVU_ITINS>,
+ PS;
+defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64,
+ "movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>,
+ PD;
+
+let SchedRW = [WriteStore] in {
+def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movaps\t{$src, $dst|$dst, $src}",
+ [(alignedstore (v4f32 VR128:$src), addr:$dst)],
+ IIC_SSE_MOVA_P_MR>, VEX;
+def VMOVAPDmr : VPDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movapd\t{$src, $dst|$dst, $src}",
+ [(alignedstore (v2f64 VR128:$src), addr:$dst)],
+ IIC_SSE_MOVA_P_MR>, VEX;
+def VMOVUPSmr : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movups\t{$src, $dst|$dst, $src}",
+ [(store (v4f32 VR128:$src), addr:$dst)],
+ IIC_SSE_MOVU_P_MR>, VEX;
+def VMOVUPDmr : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movupd\t{$src, $dst|$dst, $src}",
+ [(store (v2f64 VR128:$src), addr:$dst)],
+ IIC_SSE_MOVU_P_MR>, VEX;
+def VMOVAPSYmr : VPSI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
+ "movaps\t{$src, $dst|$dst, $src}",
+ [(alignedstore256 (v8f32 VR256:$src), addr:$dst)],
+ IIC_SSE_MOVA_P_MR>, VEX, VEX_L;
+def VMOVAPDYmr : VPDI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
+ "movapd\t{$src, $dst|$dst, $src}",
+ [(alignedstore256 (v4f64 VR256:$src), addr:$dst)],
+ IIC_SSE_MOVA_P_MR>, VEX, VEX_L;
+def VMOVUPSYmr : VPSI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
+ "movups\t{$src, $dst|$dst, $src}",
+ [(store (v8f32 VR256:$src), addr:$dst)],
+ IIC_SSE_MOVU_P_MR>, VEX, VEX_L;
+def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
+ "movupd\t{$src, $dst|$dst, $src}",
+ [(store (v4f64 VR256:$src), addr:$dst)],
+ IIC_SSE_MOVU_P_MR>, VEX, VEX_L;
+} // SchedRW
+
+// For disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
+ SchedRW = [WriteFShuffle] in {
+ def VMOVAPSrr_REV : VPSI<0x29, MRMDestReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ "movaps\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVA_P_RR>, VEX;
+ def VMOVAPDrr_REV : VPDI<0x29, MRMDestReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ "movapd\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVA_P_RR>, VEX;
+ def VMOVUPSrr_REV : VPSI<0x11, MRMDestReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ "movups\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVU_P_RR>, VEX;
+ def VMOVUPDrr_REV : VPDI<0x11, MRMDestReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ "movupd\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVU_P_RR>, VEX;
+ def VMOVAPSYrr_REV : VPSI<0x29, MRMDestReg, (outs VR256:$dst),
+ (ins VR256:$src),
+ "movaps\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVA_P_RR>, VEX, VEX_L;
+ def VMOVAPDYrr_REV : VPDI<0x29, MRMDestReg, (outs VR256:$dst),
+ (ins VR256:$src),
+ "movapd\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVA_P_RR>, VEX, VEX_L;
+ def VMOVUPSYrr_REV : VPSI<0x11, MRMDestReg, (outs VR256:$dst),
+ (ins VR256:$src),
+ "movups\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVU_P_RR>, VEX, VEX_L;
+ def VMOVUPDYrr_REV : VPDI<0x11, MRMDestReg, (outs VR256:$dst),
+ (ins VR256:$src),
+ "movupd\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVU_P_RR>, VEX, VEX_L;
+}
+
+let Predicates = [HasAVX] in {
+def : Pat<(v8i32 (X86vzmovl
+ (insert_subvector undef, (v4i32 VR128:$src), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
+def : Pat<(v4i64 (X86vzmovl
+ (insert_subvector undef, (v2i64 VR128:$src), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
+def : Pat<(v8f32 (X86vzmovl
+ (insert_subvector undef, (v4f32 VR128:$src), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
+def : Pat<(v4f64 (X86vzmovl
+ (insert_subvector undef, (v2f64 VR128:$src), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
+}
+
+
+def : Pat<(int_x86_avx_storeu_ps_256 addr:$dst, VR256:$src),
+ (VMOVUPSYmr addr:$dst, VR256:$src)>;
+def : Pat<(int_x86_avx_storeu_pd_256 addr:$dst, VR256:$src),
+ (VMOVUPDYmr addr:$dst, VR256:$src)>;
+
+let SchedRW = [WriteStore] in {
+def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movaps\t{$src, $dst|$dst, $src}",
+ [(alignedstore (v4f32 VR128:$src), addr:$dst)],
+ IIC_SSE_MOVA_P_MR>;
+def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movapd\t{$src, $dst|$dst, $src}",
+ [(alignedstore (v2f64 VR128:$src), addr:$dst)],
+ IIC_SSE_MOVA_P_MR>;
+def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movups\t{$src, $dst|$dst, $src}",
+ [(store (v4f32 VR128:$src), addr:$dst)],
+ IIC_SSE_MOVU_P_MR>;
+def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movupd\t{$src, $dst|$dst, $src}",
+ [(store (v2f64 VR128:$src), addr:$dst)],
+ IIC_SSE_MOVU_P_MR>;
+} // SchedRW
+
+// For disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
+ SchedRW = [WriteMove] in {
+ def MOVAPSrr_REV : PSI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movaps\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVA_P_RR>;
+ def MOVAPDrr_REV : PDI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movapd\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVA_P_RR>;
+ def MOVUPSrr_REV : PSI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movups\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVU_P_RR>;
+ def MOVUPDrr_REV : PDI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movupd\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVU_P_RR>;
+}
+
+let Predicates = [HasAVX] in {
+ def : Pat<(int_x86_sse_storeu_ps addr:$dst, VR128:$src),
+ (VMOVUPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(int_x86_sse2_storeu_pd addr:$dst, VR128:$src),
+ (VMOVUPDmr addr:$dst, VR128:$src)>;
+}
+
+let Predicates = [UseSSE1] in
+ def : Pat<(int_x86_sse_storeu_ps addr:$dst, VR128:$src),
+ (MOVUPSmr addr:$dst, VR128:$src)>;
+let Predicates = [UseSSE2] in
+ def : Pat<(int_x86_sse2_storeu_pd addr:$dst, VR128:$src),
+ (MOVUPDmr addr:$dst, VR128:$src)>;
+
+// Use vmovaps/vmovups for AVX integer load/store.
+let Predicates = [HasAVX] in {
+ // 128-bit load/store
+ def : Pat<(alignedloadv2i64 addr:$src),
+ (VMOVAPSrm addr:$src)>;
+ def : Pat<(loadv2i64 addr:$src),
+ (VMOVUPSrm addr:$src)>;
+
+ def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
+ (VMOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
+ (VMOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
+ (VMOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
+ (VMOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v2i64 VR128:$src), addr:$dst),
+ (VMOVUPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v4i32 VR128:$src), addr:$dst),
+ (VMOVUPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v8i16 VR128:$src), addr:$dst),
+ (VMOVUPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v16i8 VR128:$src), addr:$dst),
+ (VMOVUPSmr addr:$dst, VR128:$src)>;
+
+ // 256-bit load/store
+ def : Pat<(alignedloadv4i64 addr:$src),
+ (VMOVAPSYrm addr:$src)>;
+ def : Pat<(loadv4i64 addr:$src),
+ (VMOVUPSYrm addr:$src)>;
+ def : Pat<(alignedstore256 (v4i64 VR256:$src), addr:$dst),
+ (VMOVAPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(alignedstore256 (v8i32 VR256:$src), addr:$dst),
+ (VMOVAPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(alignedstore256 (v16i16 VR256:$src), addr:$dst),
+ (VMOVAPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(alignedstore256 (v32i8 VR256:$src), addr:$dst),
+ (VMOVAPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(store (v4i64 VR256:$src), addr:$dst),
+ (VMOVUPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(store (v8i32 VR256:$src), addr:$dst),
+ (VMOVUPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(store (v16i16 VR256:$src), addr:$dst),
+ (VMOVUPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(store (v32i8 VR256:$src), addr:$dst),
+ (VMOVUPSYmr addr:$dst, VR256:$src)>;
+
+ // Special patterns for storing subvector extracts of lower 128-bits
+ // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr
+ def : Pat<(alignedstore (v2f64 (extract_subvector
+ (v4f64 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVAPDmr addr:$dst, (v2f64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+ def : Pat<(alignedstore (v4f32 (extract_subvector
+ (v8f32 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVAPSmr addr:$dst, (v4f32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+ def : Pat<(alignedstore (v2i64 (extract_subvector
+ (v4i64 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVAPDmr addr:$dst, (v2i64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+ def : Pat<(alignedstore (v4i32 (extract_subvector
+ (v8i32 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVAPSmr addr:$dst, (v4i32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+ def : Pat<(alignedstore (v8i16 (extract_subvector
+ (v16i16 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVAPSmr addr:$dst, (v8i16 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+ def : Pat<(alignedstore (v16i8 (extract_subvector
+ (v32i8 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVAPSmr addr:$dst, (v16i8 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+
+ def : Pat<(store (v2f64 (extract_subvector
+ (v4f64 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVUPDmr addr:$dst, (v2f64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+ def : Pat<(store (v4f32 (extract_subvector
+ (v8f32 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVUPSmr addr:$dst, (v4f32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+ def : Pat<(store (v2i64 (extract_subvector
+ (v4i64 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVUPDmr addr:$dst, (v2i64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+ def : Pat<(store (v4i32 (extract_subvector
+ (v8i32 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVUPSmr addr:$dst, (v4i32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+ def : Pat<(store (v8i16 (extract_subvector
+ (v16i16 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVUPSmr addr:$dst, (v8i16 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+ def : Pat<(store (v16i8 (extract_subvector
+ (v32i8 VR256:$src), (iPTR 0))), addr:$dst),
+ (VMOVUPSmr addr:$dst, (v16i8 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
+}
+
+// Use movaps / movups for SSE integer load / store (one byte shorter).
+// The instructions selected below are then converted to MOVDQA/MOVDQU
+// during the SSE domain pass.
+let Predicates = [UseSSE1] in {
+ def : Pat<(alignedloadv2i64 addr:$src),
+ (MOVAPSrm addr:$src)>;
+ def : Pat<(loadv2i64 addr:$src),
+ (MOVUPSrm addr:$src)>;
+
+ def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
+ (MOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
+ (MOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
+ (MOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
+ (MOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v2i64 VR128:$src), addr:$dst),
+ (MOVUPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v4i32 VR128:$src), addr:$dst),
+ (MOVUPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v8i16 VR128:$src), addr:$dst),
+ (MOVUPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v16i8 VR128:$src), addr:$dst),
+ (MOVUPSmr addr:$dst, VR128:$src)>;
+}
+
+// Alias instruction to load FR32 or FR64 from f128mem using movaps. Upper
+// bits are disregarded. FIXME: Set encoding to pseudo!
+let canFoldAsLoad = 1, isReMaterializable = 1, SchedRW = [WriteLoad] in {
+let isCodeGenOnly = 1 in {
+ def FsVMOVAPSrm : VPSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src),
+ "movaps\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (alignedloadfsf32 addr:$src))],
+ IIC_SSE_MOVA_P_RM>, VEX;
+ def FsVMOVAPDrm : VPDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src),
+ "movapd\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (alignedloadfsf64 addr:$src))],
+ IIC_SSE_MOVA_P_RM>, VEX;
+ def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src),
+ "movaps\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (alignedloadfsf32 addr:$src))],
+ IIC_SSE_MOVA_P_RM>;
+ def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src),
+ "movapd\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (alignedloadfsf64 addr:$src))],
+ IIC_SSE_MOVA_P_RM>;
+}
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Move Low packed FP Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass sse12_mov_hilo_packed_base<bits<8>opc, SDNode psnode, SDNode pdnode,
+ string base_opc, string asm_opr,
+ InstrItinClass itin> {
+ def PSrm : PI<opc, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
+ !strconcat(base_opc, "s", asm_opr),
+ [(set VR128:$dst,
+ (psnode VR128:$src1,
+ (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))],
+ itin, SSEPackedSingle>, PS,
+ Sched<[WriteFShuffleLd, ReadAfterLd]>;
+
+ def PDrm : PI<opc, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
+ !strconcat(base_opc, "d", asm_opr),
+ [(set VR128:$dst, (v2f64 (pdnode VR128:$src1,
+ (scalar_to_vector (loadf64 addr:$src2)))))],
+ itin, SSEPackedDouble>, PD,
+ Sched<[WriteFShuffleLd, ReadAfterLd]>;
+
+}
+
+multiclass sse12_mov_hilo_packed<bits<8>opc, SDNode psnode, SDNode pdnode,
+ string base_opc, InstrItinClass itin> {
+ defm V#NAME : sse12_mov_hilo_packed_base<opc, psnode, pdnode, base_opc,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ itin>, VEX_4V;
+
+let Constraints = "$src1 = $dst" in
+ defm NAME : sse12_mov_hilo_packed_base<opc, psnode, pdnode, base_opc,
+ "\t{$src2, $dst|$dst, $src2}",
+ itin>;
+}
+
+let AddedComplexity = 20 in {
+ defm MOVL : sse12_mov_hilo_packed<0x12, X86Movlps, X86Movlpd, "movlp",
+ IIC_SSE_MOV_LH>;
+}
+
+let SchedRW = [WriteStore] in {
+def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movlps\t{$src, $dst|$dst, $src}",
+ [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
+ (iPTR 0))), addr:$dst)],
+ IIC_SSE_MOV_LH>, VEX;
+def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movlpd\t{$src, $dst|$dst, $src}",
+ [(store (f64 (vector_extract (v2f64 VR128:$src),
+ (iPTR 0))), addr:$dst)],
+ IIC_SSE_MOV_LH>, VEX;
+def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movlps\t{$src, $dst|$dst, $src}",
+ [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
+ (iPTR 0))), addr:$dst)],
+ IIC_SSE_MOV_LH>;
+def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movlpd\t{$src, $dst|$dst, $src}",
+ [(store (f64 (vector_extract (v2f64 VR128:$src),
+ (iPTR 0))), addr:$dst)],
+ IIC_SSE_MOV_LH>;
+} // SchedRW
+
+let Predicates = [HasAVX] in {
+ // Shuffle with VMOVLPS
+ def : Pat<(v4f32 (X86Movlps VR128:$src1, (load addr:$src2))),
+ (VMOVLPSrm VR128:$src1, addr:$src2)>;
+ def : Pat<(v4i32 (X86Movlps VR128:$src1, (load addr:$src2))),
+ (VMOVLPSrm VR128:$src1, addr:$src2)>;
+
+ // Shuffle with VMOVLPD
+ def : Pat<(v2f64 (X86Movlpd VR128:$src1, (load addr:$src2))),
+ (VMOVLPDrm VR128:$src1, addr:$src2)>;
+ def : Pat<(v2i64 (X86Movlpd VR128:$src1, (load addr:$src2))),
+ (VMOVLPDrm VR128:$src1, addr:$src2)>;
+
+ // Store patterns
+ def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)),
+ addr:$src1),
+ (VMOVLPSmr addr:$src1, VR128:$src2)>;
+ def : Pat<(store (v4i32 (X86Movlps
+ (bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)), addr:$src1),
+ (VMOVLPSmr addr:$src1, VR128:$src2)>;
+ def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128:$src2)),
+ addr:$src1),
+ (VMOVLPDmr addr:$src1, VR128:$src2)>;
+ def : Pat<(store (v2i64 (X86Movlpd (load addr:$src1), VR128:$src2)),
+ addr:$src1),
+ (VMOVLPDmr addr:$src1, VR128:$src2)>;
+}
+
+let Predicates = [UseSSE1] in {
+ // (store (vector_shuffle (load addr), v2, <4, 5, 2, 3>), addr) using MOVLPS
+ def : Pat<(store (i64 (vector_extract (bc_v2i64 (v4f32 VR128:$src2)),
+ (iPTR 0))), addr:$src1),
+ (MOVLPSmr addr:$src1, VR128:$src2)>;
+
+ // Shuffle with MOVLPS
+ def : Pat<(v4f32 (X86Movlps VR128:$src1, (load addr:$src2))),
+ (MOVLPSrm VR128:$src1, addr:$src2)>;
+ def : Pat<(v4i32 (X86Movlps VR128:$src1, (load addr:$src2))),
+ (MOVLPSrm VR128:$src1, addr:$src2)>;
+ def : Pat<(X86Movlps VR128:$src1,
+ (bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
+ (MOVLPSrm VR128:$src1, addr:$src2)>;
+
+ // Store patterns
+ def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)),
+ addr:$src1),
+ (MOVLPSmr addr:$src1, VR128:$src2)>;
+ def : Pat<(store (v4i32 (X86Movlps
+ (bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)),
+ addr:$src1),
+ (MOVLPSmr addr:$src1, VR128:$src2)>;
+}
+
+let Predicates = [UseSSE2] in {
+ // Shuffle with MOVLPD
+ def : Pat<(v2f64 (X86Movlpd VR128:$src1, (load addr:$src2))),
+ (MOVLPDrm VR128:$src1, addr:$src2)>;
+ def : Pat<(v2i64 (X86Movlpd VR128:$src1, (load addr:$src2))),
+ (MOVLPDrm VR128:$src1, addr:$src2)>;
+
+ // Store patterns
+ def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128:$src2)),
+ addr:$src1),
+ (MOVLPDmr addr:$src1, VR128:$src2)>;
+ def : Pat<(store (v2i64 (X86Movlpd (load addr:$src1), VR128:$src2)),
+ addr:$src1),
+ (MOVLPDmr addr:$src1, VR128:$src2)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Move Hi packed FP Instructions
+//===----------------------------------------------------------------------===//
+
+let AddedComplexity = 20 in {
+ defm MOVH : sse12_mov_hilo_packed<0x16, X86Movlhps, X86Movlhpd, "movhp",
+ IIC_SSE_MOV_LH>;
+}
+
+let SchedRW = [WriteStore] in {
+// v2f64 extract element 1 is always custom lowered to unpack high to low
+// and extract element 0 so the non-store version isn't too horrible.
+def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movhps\t{$src, $dst|$dst, $src}",
+ [(store (f64 (vector_extract
+ (X86Unpckh (bc_v2f64 (v4f32 VR128:$src)),
+ (bc_v2f64 (v4f32 VR128:$src))),
+ (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>, VEX;
+def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movhpd\t{$src, $dst|$dst, $src}",
+ [(store (f64 (vector_extract
+ (v2f64 (X86Unpckh VR128:$src, VR128:$src)),
+ (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>, VEX;
+def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movhps\t{$src, $dst|$dst, $src}",
+ [(store (f64 (vector_extract
+ (X86Unpckh (bc_v2f64 (v4f32 VR128:$src)),
+ (bc_v2f64 (v4f32 VR128:$src))),
+ (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>;
+def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movhpd\t{$src, $dst|$dst, $src}",
+ [(store (f64 (vector_extract
+ (v2f64 (X86Unpckh VR128:$src, VR128:$src)),
+ (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>;
+} // SchedRW
+
+let Predicates = [HasAVX] in {
+ // VMOVHPS patterns
+ def : Pat<(X86Movlhps VR128:$src1,
+ (bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
+ (VMOVHPSrm VR128:$src1, addr:$src2)>;
+ def : Pat<(X86Movlhps VR128:$src1,
+ (bc_v4i32 (v2i64 (X86vzload addr:$src2)))),
+ (VMOVHPSrm VR128:$src1, addr:$src2)>;
+
+ // FIXME: Instead of X86Unpckl, there should be a X86Movlhpd here, the problem
+ // is during lowering, where it's not possible to recognize the load fold
+ // cause it has two uses through a bitcast. One use disappears at isel time
+ // and the fold opportunity reappears.
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1,
+ (scalar_to_vector (loadf64 addr:$src2)))),
+ (VMOVHPDrm VR128:$src1, addr:$src2)>;
+}
+
+let Predicates = [UseSSE1] in {
+ // MOVHPS patterns
+ def : Pat<(X86Movlhps VR128:$src1,
+ (bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
+ (MOVHPSrm VR128:$src1, addr:$src2)>;
+ def : Pat<(X86Movlhps VR128:$src1,
+ (bc_v4f32 (v2i64 (X86vzload addr:$src2)))),
+ (MOVHPSrm VR128:$src1, addr:$src2)>;
+}
+
+let Predicates = [UseSSE2] in {
+ // FIXME: Instead of X86Unpckl, there should be a X86Movlhpd here, the problem
+ // is during lowering, where it's not possible to recognize the load fold
+ // cause it has two uses through a bitcast. One use disappears at isel time
+ // and the fold opportunity reappears.
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1,
+ (scalar_to_vector (loadf64 addr:$src2)))),
+ (MOVHPDrm VR128:$src1, addr:$src2)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Move Low to High and High to Low packed FP Instructions
+//===----------------------------------------------------------------------===//
+
+let AddedComplexity = 20, Predicates = [UseAVX] in {
+ def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ "movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))],
+ IIC_SSE_MOV_LH>,
+ VEX_4V, Sched<[WriteFShuffle]>;
+ def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ "movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))],
+ IIC_SSE_MOV_LH>,
+ VEX_4V, Sched<[WriteFShuffle]>;
+}
+let Constraints = "$src1 = $dst", AddedComplexity = 20 in {
+ def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ "movlhps\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst,
+ (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))],
+ IIC_SSE_MOV_LH>, Sched<[WriteFShuffle]>;
+ def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ "movhlps\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst,
+ (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))],
+ IIC_SSE_MOV_LH>, Sched<[WriteFShuffle]>;
+}
+
+let Predicates = [UseAVX] in {
+ // MOVLHPS patterns
+ def : Pat<(v4i32 (X86Movlhps VR128:$src1, VR128:$src2)),
+ (VMOVLHPSrr VR128:$src1, VR128:$src2)>;
+ def : Pat<(v2i64 (X86Movlhps VR128:$src1, VR128:$src2)),
+ (VMOVLHPSrr (v2i64 VR128:$src1), VR128:$src2)>;
+
+ // MOVHLPS patterns
+ def : Pat<(v4i32 (X86Movhlps VR128:$src1, VR128:$src2)),
+ (VMOVHLPSrr VR128:$src1, VR128:$src2)>;
+}
+
+let Predicates = [UseSSE1] in {
+ // MOVLHPS patterns
+ def : Pat<(v4i32 (X86Movlhps VR128:$src1, VR128:$src2)),
+ (MOVLHPSrr VR128:$src1, VR128:$src2)>;
+ def : Pat<(v2i64 (X86Movlhps VR128:$src1, VR128:$src2)),
+ (MOVLHPSrr (v2i64 VR128:$src1), VR128:$src2)>;
+
+ // MOVHLPS patterns
+ def : Pat<(v4i32 (X86Movhlps VR128:$src1, VR128:$src2)),
+ (MOVHLPSrr VR128:$src1, VR128:$src2)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Conversion Instructions
+//===----------------------------------------------------------------------===//
+
+def SSE_CVT_PD : OpndItins<
+ IIC_SSE_CVT_PD_RR, IIC_SSE_CVT_PD_RM
+>;
+
+let Sched = WriteCvtI2F in
+def SSE_CVT_PS : OpndItins<
+ IIC_SSE_CVT_PS_RR, IIC_SSE_CVT_PS_RM
+>;
+
+let Sched = WriteCvtI2F in
+def SSE_CVT_Scalar : OpndItins<
+ IIC_SSE_CVT_Scalar_RR, IIC_SSE_CVT_Scalar_RM
+>;
+
+let Sched = WriteCvtF2I in
+def SSE_CVT_SS2SI_32 : OpndItins<
+ IIC_SSE_CVT_SS2SI32_RR, IIC_SSE_CVT_SS2SI32_RM
+>;
+
+let Sched = WriteCvtF2I in
+def SSE_CVT_SS2SI_64 : OpndItins<
+ IIC_SSE_CVT_SS2SI64_RR, IIC_SSE_CVT_SS2SI64_RM
+>;
+
+let Sched = WriteCvtF2I in
+def SSE_CVT_SD2SI : OpndItins<
+ IIC_SSE_CVT_SD2SI_RR, IIC_SSE_CVT_SD2SI_RM
+>;
+
+multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
+ SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
+ string asm, OpndItins itins> {
+ def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
+ [(set DstRC:$dst, (OpNode SrcRC:$src))],
+ itins.rr>, Sched<[itins.Sched]>;
+ def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
+ [(set DstRC:$dst, (OpNode (ld_frag addr:$src)))],
+ itins.rm>, Sched<[itins.Sched.Folded]>;
+}
+
+multiclass sse12_cvt_p<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
+ X86MemOperand x86memop, string asm, Domain d,
+ OpndItins itins> {
+let neverHasSideEffects = 1 in {
+ def rr : I<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
+ [], itins.rr, d>, Sched<[itins.Sched]>;
+ let mayLoad = 1 in
+ def rm : I<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
+ [], itins.rm, d>, Sched<[itins.Sched.Folded]>;
+}
+}
+
+multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
+ X86MemOperand x86memop, string asm> {
+let neverHasSideEffects = 1, Predicates = [UseAVX] in {
+ def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src),
+ !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
+ Sched<[WriteCvtI2F]>;
+ let mayLoad = 1 in
+ def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
+ (ins DstRC:$src1, x86memop:$src),
+ !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
+ Sched<[WriteCvtI2FLd, ReadAfterLd]>;
+} // neverHasSideEffects = 1
+}
+
+let Predicates = [UseAVX] in {
+defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
+ "cvttss2si\t{$src, $dst|$dst, $src}",
+ SSE_CVT_SS2SI_32>,
+ XS, VEX, VEX_LIG;
+defm VCVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
+ "cvttss2si\t{$src, $dst|$dst, $src}",
+ SSE_CVT_SS2SI_64>,
+ XS, VEX, VEX_W, VEX_LIG;
+defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
+ "cvttsd2si\t{$src, $dst|$dst, $src}",
+ SSE_CVT_SD2SI>,
+ XD, VEX, VEX_LIG;
+defm VCVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
+ "cvttsd2si\t{$src, $dst|$dst, $src}",
+ SSE_CVT_SD2SI>,
+ XD, VEX, VEX_W, VEX_LIG;
+
+def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}",
+ (VCVTTSS2SIrr GR32:$dst, FR32:$src), 0>;
+def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}",
+ (VCVTTSS2SIrm GR32:$dst, f32mem:$src), 0>;
+def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}",
+ (VCVTTSD2SIrr GR32:$dst, FR64:$src), 0>;
+def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}",
+ (VCVTTSD2SIrm GR32:$dst, f64mem:$src), 0>;
+def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}",
+ (VCVTTSS2SI64rr GR64:$dst, FR32:$src), 0>;
+def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}",
+ (VCVTTSS2SI64rm GR64:$dst, f32mem:$src), 0>;
+def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}",
+ (VCVTTSD2SI64rr GR64:$dst, FR64:$src), 0>;
+def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}",
+ (VCVTTSD2SI64rm GR64:$dst, f64mem:$src), 0>;
+}
+// The assembler can recognize rr 64-bit instructions by seeing a rxx
+// register, but the same isn't true when only using memory operands,
+// provide other assembly "l" and "q" forms to address this explicitly
+// where appropriate to do so.
+defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, i32mem, "cvtsi2ss{l}">,
+ XS, VEX_4V, VEX_LIG;
+defm VCVTSI2SS64 : sse12_vcvt_avx<0x2A, GR64, FR32, i64mem, "cvtsi2ss{q}">,
+ XS, VEX_4V, VEX_W, VEX_LIG;
+defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd{l}">,
+ XD, VEX_4V, VEX_LIG;
+defm VCVTSI2SD64 : sse12_vcvt_avx<0x2A, GR64, FR64, i64mem, "cvtsi2sd{q}">,
+ XD, VEX_4V, VEX_W, VEX_LIG;
+
+let Predicates = [UseAVX] in {
+ def : InstAlias<"vcvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}",
+ (VCVTSI2SSrm FR64:$dst, FR64:$src1, i32mem:$src), 0>;
+ def : InstAlias<"vcvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}",
+ (VCVTSI2SDrm FR64:$dst, FR64:$src1, i32mem:$src), 0>;
+
+ def : Pat<(f32 (sint_to_fp (loadi32 addr:$src))),
+ (VCVTSI2SSrm (f32 (IMPLICIT_DEF)), addr:$src)>;
+ def : Pat<(f32 (sint_to_fp (loadi64 addr:$src))),
+ (VCVTSI2SS64rm (f32 (IMPLICIT_DEF)), addr:$src)>;
+ def : Pat<(f64 (sint_to_fp (loadi32 addr:$src))),
+ (VCVTSI2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>;
+ def : Pat<(f64 (sint_to_fp (loadi64 addr:$src))),
+ (VCVTSI2SD64rm (f64 (IMPLICIT_DEF)), addr:$src)>;
+
+ def : Pat<(f32 (sint_to_fp GR32:$src)),
+ (VCVTSI2SSrr (f32 (IMPLICIT_DEF)), GR32:$src)>;
+ def : Pat<(f32 (sint_to_fp GR64:$src)),
+ (VCVTSI2SS64rr (f32 (IMPLICIT_DEF)), GR64:$src)>;
+ def : Pat<(f64 (sint_to_fp GR32:$src)),
+ (VCVTSI2SDrr (f64 (IMPLICIT_DEF)), GR32:$src)>;
+ def : Pat<(f64 (sint_to_fp GR64:$src)),
+ (VCVTSI2SD64rr (f64 (IMPLICIT_DEF)), GR64:$src)>;
+}
+
+defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
+ "cvttss2si\t{$src, $dst|$dst, $src}",
+ SSE_CVT_SS2SI_32>, XS;
+defm CVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
+ "cvttss2si\t{$src, $dst|$dst, $src}",
+ SSE_CVT_SS2SI_64>, XS, REX_W;
+defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
+ "cvttsd2si\t{$src, $dst|$dst, $src}",
+ SSE_CVT_SD2SI>, XD;
+defm CVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
+ "cvttsd2si\t{$src, $dst|$dst, $src}",
+ SSE_CVT_SD2SI>, XD, REX_W;
+defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32,
+ "cvtsi2ss{l}\t{$src, $dst|$dst, $src}",
+ SSE_CVT_Scalar>, XS;
+defm CVTSI2SS64 : sse12_cvt_s<0x2A, GR64, FR32, sint_to_fp, i64mem, loadi64,
+ "cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
+ SSE_CVT_Scalar>, XS, REX_W;
+defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32,
+ "cvtsi2sd{l}\t{$src, $dst|$dst, $src}",
+ SSE_CVT_Scalar>, XD;
+defm CVTSI2SD64 : sse12_cvt_s<0x2A, GR64, FR64, sint_to_fp, i64mem, loadi64,
+ "cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
+ SSE_CVT_Scalar>, XD, REX_W;
+
+def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}",
+ (CVTTSS2SIrr GR32:$dst, FR32:$src), 0>;
+def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}",
+ (CVTTSS2SIrm GR32:$dst, f32mem:$src), 0>;
+def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}",
+ (CVTTSD2SIrr GR32:$dst, FR64:$src), 0>;
+def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}",
+ (CVTTSD2SIrm GR32:$dst, f64mem:$src), 0>;
+def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}",
+ (CVTTSS2SI64rr GR64:$dst, FR32:$src), 0>;
+def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}",
+ (CVTTSS2SI64rm GR64:$dst, f32mem:$src), 0>;
+def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
+ (CVTTSD2SI64rr GR64:$dst, FR64:$src), 0>;
+def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
+ (CVTTSD2SI64rm GR64:$dst, f64mem:$src), 0>;
+
+def : InstAlias<"cvtsi2ss\t{$src, $dst|$dst, $src}",
+ (CVTSI2SSrm FR64:$dst, i32mem:$src), 0>;
+def : InstAlias<"cvtsi2sd\t{$src, $dst|$dst, $src}",
+ (CVTSI2SDrm FR64:$dst, i32mem:$src), 0>;
+
+// Conversion Instructions Intrinsics - Match intrinsics which expect MM
+// and/or XMM operand(s).
+
+multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
+ Intrinsic Int, Operand memop, ComplexPattern mem_cpat,
+ string asm, OpndItins itins> {
+ def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst, (Int SrcRC:$src))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins memop:$src),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst, (Int mem_cpat:$src))], itins.rm>,
+ Sched<[itins.Sched.Folded]>;
+}
+
+multiclass sse12_cvt_sint_3addr<bits<8> opc, RegisterClass SrcRC,
+ RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop,
+ PatFrag ld_frag, string asm, OpndItins itins,
+ bit Is2Addr = 1> {
+ def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src2),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set DstRC:$dst, (Int DstRC:$src1, SrcRC:$src2))],
+ itins.rr>, Sched<[itins.Sched]>;
+ def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
+ (ins DstRC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))],
+ itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [UseAVX] in {
+defm VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32,
+ int_x86_sse2_cvtsd2si, sdmem, sse_load_f64, "cvtsd2si",
+ SSE_CVT_SD2SI>, XD, VEX, VEX_LIG;
+defm VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64,
+ int_x86_sse2_cvtsd2si64, sdmem, sse_load_f64, "cvtsd2si",
+ SSE_CVT_SD2SI>, XD, VEX, VEX_W, VEX_LIG;
+}
+defm CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si,
+ sdmem, sse_load_f64, "cvtsd2si", SSE_CVT_SD2SI>, XD;
+defm CVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse2_cvtsd2si64,
+ sdmem, sse_load_f64, "cvtsd2si", SSE_CVT_SD2SI>, XD, REX_W;
+
+
+let isCodeGenOnly = 1 in {
+ let Predicates = [UseAVX] in {
+ defm Int_VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
+ int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss{l}",
+ SSE_CVT_Scalar, 0>, XS, VEX_4V;
+ defm Int_VCVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
+ int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss{q}",
+ SSE_CVT_Scalar, 0>, XS, VEX_4V,
+ VEX_W;
+ defm Int_VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
+ int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd{l}",
+ SSE_CVT_Scalar, 0>, XD, VEX_4V;
+ defm Int_VCVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
+ int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd{q}",
+ SSE_CVT_Scalar, 0>, XD,
+ VEX_4V, VEX_W;
+ }
+ let Constraints = "$src1 = $dst" in {
+ defm Int_CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
+ int_x86_sse_cvtsi2ss, i32mem, loadi32,
+ "cvtsi2ss{l}", SSE_CVT_Scalar>, XS;
+ defm Int_CVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
+ int_x86_sse_cvtsi642ss, i64mem, loadi64,
+ "cvtsi2ss{q}", SSE_CVT_Scalar>, XS, REX_W;
+ defm Int_CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
+ int_x86_sse2_cvtsi2sd, i32mem, loadi32,
+ "cvtsi2sd{l}", SSE_CVT_Scalar>, XD;
+ defm Int_CVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
+ int_x86_sse2_cvtsi642sd, i64mem, loadi64,
+ "cvtsi2sd{q}", SSE_CVT_Scalar>, XD, REX_W;
+ }
+} // isCodeGenOnly = 1
+
+/// SSE 1 Only
+
+// Aliases for intrinsics
+let isCodeGenOnly = 1 in {
+let Predicates = [UseAVX] in {
+defm Int_VCVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
+ ssmem, sse_load_f32, "cvttss2si",
+ SSE_CVT_SS2SI_32>, XS, VEX;
+defm Int_VCVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
+ int_x86_sse_cvttss2si64, ssmem, sse_load_f32,
+ "cvttss2si", SSE_CVT_SS2SI_64>,
+ XS, VEX, VEX_W;
+defm Int_VCVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
+ sdmem, sse_load_f64, "cvttsd2si",
+ SSE_CVT_SD2SI>, XD, VEX;
+defm Int_VCVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
+ int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64,
+ "cvttsd2si", SSE_CVT_SD2SI>,
+ XD, VEX, VEX_W;
+}
+defm Int_CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
+ ssmem, sse_load_f32, "cvttss2si",
+ SSE_CVT_SS2SI_32>, XS;
+defm Int_CVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
+ int_x86_sse_cvttss2si64, ssmem, sse_load_f32,
+ "cvttss2si", SSE_CVT_SS2SI_64>, XS, REX_W;
+defm Int_CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
+ sdmem, sse_load_f64, "cvttsd2si",
+ SSE_CVT_SD2SI>, XD;
+defm Int_CVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
+ int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64,
+ "cvttsd2si", SSE_CVT_SD2SI>, XD, REX_W;
+} // isCodeGenOnly = 1
+
+let Predicates = [UseAVX] in {
+defm VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
+ ssmem, sse_load_f32, "cvtss2si",
+ SSE_CVT_SS2SI_32>, XS, VEX, VEX_LIG;
+defm VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64,
+ ssmem, sse_load_f32, "cvtss2si",
+ SSE_CVT_SS2SI_64>, XS, VEX, VEX_W, VEX_LIG;
+}
+defm CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
+ ssmem, sse_load_f32, "cvtss2si",
+ SSE_CVT_SS2SI_32>, XS;
+defm CVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64,
+ ssmem, sse_load_f32, "cvtss2si",
+ SSE_CVT_SS2SI_64>, XS, REX_W;
+
+defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, i128mem,
+ "vcvtdq2ps\t{$src, $dst|$dst, $src}",
+ SSEPackedSingle, SSE_CVT_PS>,
+ PS, VEX, Requires<[HasAVX]>;
+defm VCVTDQ2PSY : sse12_cvt_p<0x5B, VR256, VR256, i256mem,
+ "vcvtdq2ps\t{$src, $dst|$dst, $src}",
+ SSEPackedSingle, SSE_CVT_PS>,
+ PS, VEX, VEX_L, Requires<[HasAVX]>;
+
+defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, i128mem,
+ "cvtdq2ps\t{$src, $dst|$dst, $src}",
+ SSEPackedSingle, SSE_CVT_PS>,
+ PS, Requires<[UseSSE2]>;
+
+let Predicates = [UseAVX] in {
+def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}",
+ (VCVTSS2SIrr GR32:$dst, VR128:$src), 0>;
+def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}",
+ (VCVTSS2SIrm GR32:$dst, ssmem:$src), 0>;
+def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}",
+ (VCVTSD2SIrr GR32:$dst, VR128:$src), 0>;
+def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}",
+ (VCVTSD2SIrm GR32:$dst, sdmem:$src), 0>;
+def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}",
+ (VCVTSS2SI64rr GR64:$dst, VR128:$src), 0>;
+def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}",
+ (VCVTSS2SI64rm GR64:$dst, ssmem:$src), 0>;
+def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}",
+ (VCVTSD2SI64rr GR64:$dst, VR128:$src), 0>;
+def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}",
+ (VCVTSD2SI64rm GR64:$dst, sdmem:$src), 0>;
+}
+
+def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}",
+ (CVTSS2SIrr GR32:$dst, VR128:$src), 0>;
+def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}",
+ (CVTSS2SIrm GR32:$dst, ssmem:$src), 0>;
+def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}",
+ (CVTSD2SIrr GR32:$dst, VR128:$src), 0>;
+def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}",
+ (CVTSD2SIrm GR32:$dst, sdmem:$src), 0>;
+def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}",
+ (CVTSS2SI64rr GR64:$dst, VR128:$src), 0>;
+def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}",
+ (CVTSS2SI64rm GR64:$dst, ssmem:$src), 0>;
+def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
+ (CVTSD2SI64rr GR64:$dst, VR128:$src), 0>;
+def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
+ (CVTSD2SI64rm GR64:$dst, sdmem:$src)>;
+
+/// SSE 2 Only
+
+// Convert scalar double to scalar single
+let neverHasSideEffects = 1, Predicates = [UseAVX] in {
+def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst),
+ (ins FR64:$src1, FR64:$src2),
+ "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [],
+ IIC_SSE_CVT_Scalar_RR>, VEX_4V, VEX_LIG,
+ Sched<[WriteCvtF2F]>;
+let mayLoad = 1 in
+def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst),
+ (ins FR64:$src1, f64mem:$src2),
+ "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [], IIC_SSE_CVT_Scalar_RM>,
+ XD, Requires<[HasAVX, OptForSize]>, VEX_4V, VEX_LIG,
+ Sched<[WriteCvtF2FLd, ReadAfterLd]>;
+}
+
+def : Pat<(f32 (fround FR64:$src)), (VCVTSD2SSrr FR64:$src, FR64:$src)>,
+ Requires<[UseAVX]>;
+
+def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src),
+ "cvtsd2ss\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (fround FR64:$src))],
+ IIC_SSE_CVT_Scalar_RR>, Sched<[WriteCvtF2F]>;
+def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src),
+ "cvtsd2ss\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (fround (loadf64 addr:$src)))],
+ IIC_SSE_CVT_Scalar_RM>,
+ XD,
+ Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtF2FLd]>;
+
+let isCodeGenOnly = 1 in {
+def Int_VCVTSD2SSrr: I<0x5A, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))],
+ IIC_SSE_CVT_Scalar_RR>, XD, VEX_4V, Requires<[UseAVX]>,
+ Sched<[WriteCvtF2F]>;
+def Int_VCVTSD2SSrm: I<0x5A, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
+ "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst, (int_x86_sse2_cvtsd2ss
+ VR128:$src1, sse_load_f64:$src2))],
+ IIC_SSE_CVT_Scalar_RM>, XD, VEX_4V, Requires<[UseAVX]>,
+ Sched<[WriteCvtF2FLd, ReadAfterLd]>;
+
+let Constraints = "$src1 = $dst" in {
+def Int_CVTSD2SSrr: I<0x5A, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ "cvtsd2ss\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))],
+ IIC_SSE_CVT_Scalar_RR>, XD, Requires<[UseSSE2]>,
+ Sched<[WriteCvtF2F]>;
+def Int_CVTSD2SSrm: I<0x5A, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
+ "cvtsd2ss\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst, (int_x86_sse2_cvtsd2ss
+ VR128:$src1, sse_load_f64:$src2))],
+ IIC_SSE_CVT_Scalar_RM>, XD, Requires<[UseSSE2]>,
+ Sched<[WriteCvtF2FLd, ReadAfterLd]>;
+}
+} // isCodeGenOnly = 1
+
+// Convert scalar single to scalar double
+// SSE2 instructions with XS prefix
+let neverHasSideEffects = 1, Predicates = [UseAVX] in {
+def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst),
+ (ins FR32:$src1, FR32:$src2),
+ "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [], IIC_SSE_CVT_Scalar_RR>,
+ XS, Requires<[HasAVX]>, VEX_4V, VEX_LIG,
+ Sched<[WriteCvtF2F]>;
+let mayLoad = 1 in
+def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst),
+ (ins FR32:$src1, f32mem:$src2),
+ "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [], IIC_SSE_CVT_Scalar_RM>,
+ XS, VEX_4V, VEX_LIG, Requires<[HasAVX, OptForSize]>,
+ Sched<[WriteCvtF2FLd, ReadAfterLd]>;
+}
+
+def : Pat<(f64 (fextend FR32:$src)),
+ (VCVTSS2SDrr FR32:$src, FR32:$src)>, Requires<[UseAVX]>;
+def : Pat<(fextend (loadf32 addr:$src)),
+ (VCVTSS2SDrm (f32 (IMPLICIT_DEF)), addr:$src)>, Requires<[UseAVX]>;
+
+def : Pat<(extloadf32 addr:$src),
+ (VCVTSS2SDrm (f32 (IMPLICIT_DEF)), addr:$src)>,
+ Requires<[UseAVX, OptForSize]>;
+def : Pat<(extloadf32 addr:$src),
+ (VCVTSS2SDrr (f32 (IMPLICIT_DEF)), (VMOVSSrm addr:$src))>,
+ Requires<[UseAVX, OptForSpeed]>;
+
+def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src),
+ "cvtss2sd\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (fextend FR32:$src))],
+ IIC_SSE_CVT_Scalar_RR>, XS,
+ Requires<[UseSSE2]>, Sched<[WriteCvtF2F]>;
+def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src),
+ "cvtss2sd\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (extloadf32 addr:$src))],
+ IIC_SSE_CVT_Scalar_RM>, XS,
+ Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtF2FLd]>;
+
+// extload f32 -> f64. This matches load+fextend because we have a hack in
+// the isel (PreprocessForFPConvert) that can introduce loads after dag
+// combine.
+// Since these loads aren't folded into the fextend, we have to match it
+// explicitly here.
+def : Pat<(fextend (loadf32 addr:$src)),
+ (CVTSS2SDrm addr:$src)>, Requires<[UseSSE2]>;
+def : Pat<(extloadf32 addr:$src),
+ (CVTSS2SDrr (MOVSSrm addr:$src))>, Requires<[UseSSE2, OptForSpeed]>;
+
+let isCodeGenOnly = 1 in {
+def Int_VCVTSS2SDrr: I<0x5A, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))],
+ IIC_SSE_CVT_Scalar_RR>, XS, VEX_4V, Requires<[UseAVX]>,
+ Sched<[WriteCvtF2F]>;
+def Int_VCVTSS2SDrm: I<0x5A, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
+ "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtss2sd VR128:$src1, sse_load_f32:$src2))],
+ IIC_SSE_CVT_Scalar_RM>, XS, VEX_4V, Requires<[UseAVX]>,
+ Sched<[WriteCvtF2FLd, ReadAfterLd]>;
+let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix
+def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ "cvtss2sd\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))],
+ IIC_SSE_CVT_Scalar_RR>, XS, Requires<[UseSSE2]>,
+ Sched<[WriteCvtF2F]>;
+def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
+ "cvtss2sd\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtss2sd VR128:$src1, sse_load_f32:$src2))],
+ IIC_SSE_CVT_Scalar_RM>, XS, Requires<[UseSSE2]>,
+ Sched<[WriteCvtF2FLd, ReadAfterLd]>;
+}
+} // isCodeGenOnly = 1
+
+// Convert packed single/double fp to doubleword
+def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))],
+ IIC_SSE_CVT_PS_RR>, VEX, Sched<[WriteCvtF2I]>;
+def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtps2dq (loadv4f32 addr:$src)))],
+ IIC_SSE_CVT_PS_RM>, VEX, Sched<[WriteCvtF2ILd]>;
+def VCVTPS2DQYrr : VPDI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (int_x86_avx_cvt_ps2dq_256 VR256:$src))],
+ IIC_SSE_CVT_PS_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>;
+def VCVTPS2DQYrm : VPDI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (int_x86_avx_cvt_ps2dq_256 (loadv8f32 addr:$src)))],
+ IIC_SSE_CVT_PS_RM>, VEX, VEX_L, Sched<[WriteCvtF2ILd]>;
+def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))],
+ IIC_SSE_CVT_PS_RR>, Sched<[WriteCvtF2I]>;
+def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtps2dq (memopv4f32 addr:$src)))],
+ IIC_SSE_CVT_PS_RM>, Sched<[WriteCvtF2ILd]>;
+
+
+// Convert Packed Double FP to Packed DW Integers
+let Predicates = [HasAVX] in {
+// The assembler can recognize rr 256-bit instructions by seeing a ymm
+// register, but the same isn't true when using memory operands instead.
+// Provide other assembly rr and rm forms to address this explicitly.
+def VCVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "vcvtpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>,
+ VEX, Sched<[WriteCvtF2I]>;
+
+// XMM only
+def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}",
+ (VCVTPD2DQrr VR128:$dst, VR128:$src), 0>;
+def VCVTPD2DQXrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "vcvtpd2dqx\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtpd2dq (loadv2f64 addr:$src)))]>, VEX,
+ Sched<[WriteCvtF2ILd]>;
+
+// YMM only
+def VCVTPD2DQYrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
+ "vcvtpd2dq{y}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_avx_cvt_pd2dq_256 VR256:$src))]>, VEX, VEX_L,
+ Sched<[WriteCvtF2I]>;
+def VCVTPD2DQYrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
+ "vcvtpd2dq{y}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_avx_cvt_pd2dq_256 (loadv4f64 addr:$src)))]>,
+ VEX, VEX_L, Sched<[WriteCvtF2ILd]>;
+def : InstAlias<"vcvtpd2dq\t{$src, $dst|$dst, $src}",
+ (VCVTPD2DQYrr VR128:$dst, VR256:$src), 0>;
+}
+
+def CVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtpd2dq (memopv2f64 addr:$src)))],
+ IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtF2ILd]>;
+def CVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))],
+ IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2I]>;
+
+// Convert with truncation packed single/double fp to doubleword
+// SSE2 packed instructions with XS prefix
+def VCVTTPS2DQrr : VS2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvttps2dq VR128:$src))],
+ IIC_SSE_CVT_PS_RR>, VEX, Sched<[WriteCvtF2I]>;
+def VCVTTPS2DQrm : VS2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvttps2dq
+ (loadv4f32 addr:$src)))],
+ IIC_SSE_CVT_PS_RM>, VEX, Sched<[WriteCvtF2ILd]>;
+def VCVTTPS2DQYrr : VS2SI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (int_x86_avx_cvtt_ps2dq_256 VR256:$src))],
+ IIC_SSE_CVT_PS_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>;
+def VCVTTPS2DQYrm : VS2SI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst, (int_x86_avx_cvtt_ps2dq_256
+ (loadv8f32 addr:$src)))],
+ IIC_SSE_CVT_PS_RM>, VEX, VEX_L,
+ Sched<[WriteCvtF2ILd]>;
+
+def CVTTPS2DQrr : S2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))],
+ IIC_SSE_CVT_PS_RR>, Sched<[WriteCvtF2I]>;
+def CVTTPS2DQrm : S2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvttps2dq (memopv4f32 addr:$src)))],
+ IIC_SSE_CVT_PS_RM>, Sched<[WriteCvtF2ILd]>;
+
+let Predicates = [HasAVX] in {
+ def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))),
+ (VCVTDQ2PSrr VR128:$src)>;
+ def : Pat<(v4f32 (sint_to_fp (bc_v4i32 (loadv2i64 addr:$src)))),
+ (VCVTDQ2PSrm addr:$src)>;
+
+ def : Pat<(int_x86_sse2_cvtdq2ps VR128:$src),
+ (VCVTDQ2PSrr VR128:$src)>;
+ def : Pat<(int_x86_sse2_cvtdq2ps (bc_v4i32 (loadv2i64 addr:$src))),
+ (VCVTDQ2PSrm addr:$src)>;
+
+ def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))),
+ (VCVTTPS2DQrr VR128:$src)>;
+ def : Pat<(v4i32 (fp_to_sint (loadv4f32 addr:$src))),
+ (VCVTTPS2DQrm addr:$src)>;
+
+ def : Pat<(v8f32 (sint_to_fp (v8i32 VR256:$src))),
+ (VCVTDQ2PSYrr VR256:$src)>;
+ def : Pat<(v8f32 (sint_to_fp (bc_v8i32 (loadv4i64 addr:$src)))),
+ (VCVTDQ2PSYrm addr:$src)>;
+
+ def : Pat<(v8i32 (fp_to_sint (v8f32 VR256:$src))),
+ (VCVTTPS2DQYrr VR256:$src)>;
+ def : Pat<(v8i32 (fp_to_sint (loadv8f32 addr:$src))),
+ (VCVTTPS2DQYrm addr:$src)>;
+}
+
+let Predicates = [UseSSE2] in {
+ def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))),
+ (CVTDQ2PSrr VR128:$src)>;
+ def : Pat<(v4f32 (sint_to_fp (bc_v4i32 (memopv2i64 addr:$src)))),
+ (CVTDQ2PSrm addr:$src)>;
+
+ def : Pat<(int_x86_sse2_cvtdq2ps VR128:$src),
+ (CVTDQ2PSrr VR128:$src)>;
+ def : Pat<(int_x86_sse2_cvtdq2ps (bc_v4i32 (memopv2i64 addr:$src))),
+ (CVTDQ2PSrm addr:$src)>;
+
+ def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))),
+ (CVTTPS2DQrr VR128:$src)>;
+ def : Pat<(v4i32 (fp_to_sint (memopv4f32 addr:$src))),
+ (CVTTPS2DQrm addr:$src)>;
+}
+
+def VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvttpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvttpd2dq VR128:$src))],
+ IIC_SSE_CVT_PD_RR>, VEX, Sched<[WriteCvtF2I]>;
+
+// The assembler can recognize rr 256-bit instructions by seeing a ymm
+// register, but the same isn't true when using memory operands instead.
+// Provide other assembly rr and rm forms to address this explicitly.
+
+// XMM only
+def : InstAlias<"vcvttpd2dqx\t{$src, $dst|$dst, $src}",
+ (VCVTTPD2DQrr VR128:$dst, VR128:$src), 0>;
+def VCVTTPD2DQXrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvttpd2dqx\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvttpd2dq
+ (loadv2f64 addr:$src)))],
+ IIC_SSE_CVT_PD_RM>, VEX, Sched<[WriteCvtF2ILd]>;
+
+// YMM only
+def VCVTTPD2DQYrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
+ "cvttpd2dq{y}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_avx_cvtt_pd2dq_256 VR256:$src))],
+ IIC_SSE_CVT_PD_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>;
+def VCVTTPD2DQYrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
+ "cvttpd2dq{y}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_avx_cvtt_pd2dq_256 (loadv4f64 addr:$src)))],
+ IIC_SSE_CVT_PD_RM>, VEX, VEX_L, Sched<[WriteCvtF2ILd]>;
+def : InstAlias<"vcvttpd2dq\t{$src, $dst|$dst, $src}",
+ (VCVTTPD2DQYrr VR128:$dst, VR256:$src), 0>;
+
+let Predicates = [HasAVX] in {
+ def : Pat<(v4i32 (fp_to_sint (v4f64 VR256:$src))),
+ (VCVTTPD2DQYrr VR256:$src)>;
+ def : Pat<(v4i32 (fp_to_sint (loadv4f64 addr:$src))),
+ (VCVTTPD2DQYrm addr:$src)>;
+} // Predicates = [HasAVX]
+
+def CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvttpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))],
+ IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2I]>;
+def CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src),
+ "cvttpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvttpd2dq
+ (memopv2f64 addr:$src)))],
+ IIC_SSE_CVT_PD_RM>,
+ Sched<[WriteCvtF2ILd]>;
+
+// Convert packed single to packed double
+let Predicates = [HasAVX] in {
+ // SSE2 instructions without OpSize prefix
+def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "vcvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))],
+ IIC_SSE_CVT_PD_RR>, PS, VEX, Sched<[WriteCvtF2F]>;
+def VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
+ "vcvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))],
+ IIC_SSE_CVT_PD_RM>, PS, VEX, Sched<[WriteCvtF2FLd]>;
+def VCVTPS2PDYrr : I<0x5A, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
+ "vcvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (int_x86_avx_cvt_ps2_pd_256 VR128:$src))],
+ IIC_SSE_CVT_PD_RR>, PS, VEX, VEX_L, Sched<[WriteCvtF2F]>;
+def VCVTPS2PDYrm : I<0x5A, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src),
+ "vcvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (int_x86_avx_cvt_ps2_pd_256 (loadv4f32 addr:$src)))],
+ IIC_SSE_CVT_PD_RM>, PS, VEX, VEX_L, Sched<[WriteCvtF2FLd]>;
+}
+
+let Predicates = [UseSSE2] in {
+def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))],
+ IIC_SSE_CVT_PD_RR>, PS, Sched<[WriteCvtF2F]>;
+def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
+ "cvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))],
+ IIC_SSE_CVT_PD_RM>, PS, Sched<[WriteCvtF2FLd]>;
+}
+
+// Convert Packed DW Integers to Packed Double FP
+let Predicates = [HasAVX] in {
+let neverHasSideEffects = 1, mayLoad = 1 in
+def VCVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "vcvtdq2pd\t{$src, $dst|$dst, $src}",
+ []>, VEX, Sched<[WriteCvtI2FLd]>;
+def VCVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "vcvtdq2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtdq2pd VR128:$src))]>, VEX,
+ Sched<[WriteCvtI2F]>;
+def VCVTDQ2PDYrm : S2SI<0xE6, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src),
+ "vcvtdq2pd\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (int_x86_avx_cvtdq2_pd_256
+ (bitconvert (loadv2i64 addr:$src))))]>, VEX, VEX_L,
+ Sched<[WriteCvtI2FLd]>;
+def VCVTDQ2PDYrr : S2SI<0xE6, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
+ "vcvtdq2pd\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (int_x86_avx_cvtdq2_pd_256 VR128:$src))]>, VEX, VEX_L,
+ Sched<[WriteCvtI2F]>;
+}
+
+let neverHasSideEffects = 1, mayLoad = 1 in
+def CVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "cvtdq2pd\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtI2FLd]>;
+def CVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtdq2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))],
+ IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtI2F]>;
+
+// AVX 256-bit register conversion intrinsics
+let Predicates = [HasAVX] in {
+ def : Pat<(v4f64 (sint_to_fp (v4i32 VR128:$src))),
+ (VCVTDQ2PDYrr VR128:$src)>;
+ def : Pat<(v4f64 (sint_to_fp (bc_v4i32 (loadv2i64 addr:$src)))),
+ (VCVTDQ2PDYrm addr:$src)>;
+} // Predicates = [HasAVX]
+
+// Convert packed double to packed single
+// The assembler can recognize rr 256-bit instructions by seeing a ymm
+// register, but the same isn't true when using memory operands instead.
+// Provide other assembly rr and rm forms to address this explicitly.
+def VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtpd2ps\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))],
+ IIC_SSE_CVT_PD_RR>, VEX, Sched<[WriteCvtF2F]>;
+
+// XMM only
+def : InstAlias<"vcvtpd2psx\t{$src, $dst|$dst, $src}",
+ (VCVTPD2PSrr VR128:$dst, VR128:$src), 0>;
+def VCVTPD2PSXrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtpd2psx\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtpd2ps (loadv2f64 addr:$src)))],
+ IIC_SSE_CVT_PD_RM>, VEX, Sched<[WriteCvtF2FLd]>;
+
+// YMM only
+def VCVTPD2PSYrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
+ "cvtpd2ps{y}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_avx_cvt_pd2_ps_256 VR256:$src))],
+ IIC_SSE_CVT_PD_RR>, VEX, VEX_L, Sched<[WriteCvtF2F]>;
+def VCVTPD2PSYrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
+ "cvtpd2ps{y}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_avx_cvt_pd2_ps_256 (loadv4f64 addr:$src)))],
+ IIC_SSE_CVT_PD_RM>, VEX, VEX_L, Sched<[WriteCvtF2FLd]>;
+def : InstAlias<"vcvtpd2ps\t{$src, $dst|$dst, $src}",
+ (VCVTPD2PSYrr VR128:$dst, VR256:$src), 0>;
+
+def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtpd2ps\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))],
+ IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2F]>;
+def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtpd2ps\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtpd2ps (memopv2f64 addr:$src)))],
+ IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtF2FLd]>;
+
+
+// AVX 256-bit register conversion intrinsics
+// FIXME: Migrate SSE conversion intrinsics matching to use patterns as below
+// whenever possible to avoid declaring two versions of each one.
+let Predicates = [HasAVX] in {
+ def : Pat<(int_x86_avx_cvtdq2_ps_256 VR256:$src),
+ (VCVTDQ2PSYrr VR256:$src)>;
+ def : Pat<(int_x86_avx_cvtdq2_ps_256 (bitconvert (loadv4i64 addr:$src))),
+ (VCVTDQ2PSYrm addr:$src)>;
+
+ // Match fround and fextend for 128/256-bit conversions
+ def : Pat<(v4f32 (X86vfpround (v2f64 VR128:$src))),
+ (VCVTPD2PSrr VR128:$src)>;
+ def : Pat<(v4f32 (X86vfpround (loadv2f64 addr:$src))),
+ (VCVTPD2PSXrm addr:$src)>;
+ def : Pat<(v4f32 (fround (v4f64 VR256:$src))),
+ (VCVTPD2PSYrr VR256:$src)>;
+ def : Pat<(v4f32 (fround (loadv4f64 addr:$src))),
+ (VCVTPD2PSYrm addr:$src)>;
+
+ def : Pat<(v2f64 (X86vfpext (v4f32 VR128:$src))),
+ (VCVTPS2PDrr VR128:$src)>;
+ def : Pat<(v4f64 (fextend (v4f32 VR128:$src))),
+ (VCVTPS2PDYrr VR128:$src)>;
+ def : Pat<(v4f64 (extloadv4f32 addr:$src)),
+ (VCVTPS2PDYrm addr:$src)>;
+}
+
+let Predicates = [UseSSE2] in {
+ // Match fround and fextend for 128 conversions
+ def : Pat<(v4f32 (X86vfpround (v2f64 VR128:$src))),
+ (CVTPD2PSrr VR128:$src)>;
+ def : Pat<(v4f32 (X86vfpround (memopv2f64 addr:$src))),
+ (CVTPD2PSrm addr:$src)>;
+
+ def : Pat<(v2f64 (X86vfpext (v4f32 VR128:$src))),
+ (CVTPS2PDrr VR128:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Compare Instructions
+//===----------------------------------------------------------------------===//
+
+// sse12_cmp_scalar - sse 1 & 2 compare scalar instructions
+multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop,
+ Operand CC, SDNode OpNode, ValueType VT,
+ PatFrag ld_frag, string asm, string asm_alt,
+ OpndItins itins> {
+ def rr : SIi8<0xC2, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
+ [(set RC:$dst, (OpNode (VT RC:$src1), RC:$src2, imm:$cc))],
+ itins.rr>, Sched<[itins.Sched]>;
+ def rm : SIi8<0xC2, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
+ [(set RC:$dst, (OpNode (VT RC:$src1),
+ (ld_frag addr:$src2), imm:$cc))],
+ itins.rm>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+
+ // Accept explicit immediate argument form instead of comparison code.
+ let isAsmParserOnly = 1, hasSideEffects = 0 in {
+ def rr_alt : SIi8<0xC2, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, i8imm:$cc), asm_alt, [],
+ IIC_SSE_ALU_F32S_RR>, Sched<[itins.Sched]>;
+ let mayLoad = 1 in
+ def rm_alt : SIi8<0xC2, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, i8imm:$cc), asm_alt, [],
+ IIC_SSE_ALU_F32S_RM>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+ }
+}
+
+defm VCMPSS : sse12_cmp_scalar<FR32, f32mem, AVXCC, X86cmps, f32, loadf32,
+ "cmp${cc}ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmpss\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SSE_ALU_F32S>,
+ XS, VEX_4V, VEX_LIG;
+defm VCMPSD : sse12_cmp_scalar<FR64, f64mem, AVXCC, X86cmps, f64, loadf64,
+ "cmp${cc}sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmpsd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SSE_ALU_F32S>, // same latency as 32 bit compare
+ XD, VEX_4V, VEX_LIG;
+
+let Constraints = "$src1 = $dst" in {
+ defm CMPSS : sse12_cmp_scalar<FR32, f32mem, SSECC, X86cmps, f32, loadf32,
+ "cmp${cc}ss\t{$src2, $dst|$dst, $src2}",
+ "cmpss\t{$cc, $src2, $dst|$dst, $src2, $cc}", SSE_ALU_F32S>,
+ XS;
+ defm CMPSD : sse12_cmp_scalar<FR64, f64mem, SSECC, X86cmps, f64, loadf64,
+ "cmp${cc}sd\t{$src2, $dst|$dst, $src2}",
+ "cmpsd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
+ SSE_ALU_F64S>,
+ XD;
+}
+
+multiclass sse12_cmp_scalar_int<X86MemOperand x86memop, Operand CC,
+ Intrinsic Int, string asm, OpndItins itins> {
+ def rr : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src, CC:$cc), asm,
+ [(set VR128:$dst, (Int VR128:$src1,
+ VR128:$src, imm:$cc))],
+ itins.rr>,
+ Sched<[itins.Sched]>;
+ def rm : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, x86memop:$src, CC:$cc), asm,
+ [(set VR128:$dst, (Int VR128:$src1,
+ (load addr:$src), imm:$cc))],
+ itins.rm>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+let isCodeGenOnly = 1 in {
+ // Aliases to match intrinsics which expect XMM operand(s).
+ defm Int_VCMPSS : sse12_cmp_scalar_int<f32mem, AVXCC, int_x86_sse_cmp_ss,
+ "cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}",
+ SSE_ALU_F32S>,
+ XS, VEX_4V;
+ defm Int_VCMPSD : sse12_cmp_scalar_int<f64mem, AVXCC, int_x86_sse2_cmp_sd,
+ "cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}",
+ SSE_ALU_F32S>, // same latency as f32
+ XD, VEX_4V;
+ let Constraints = "$src1 = $dst" in {
+ defm Int_CMPSS : sse12_cmp_scalar_int<f32mem, SSECC, int_x86_sse_cmp_ss,
+ "cmp${cc}ss\t{$src, $dst|$dst, $src}",
+ SSE_ALU_F32S>, XS;
+ defm Int_CMPSD : sse12_cmp_scalar_int<f64mem, SSECC, int_x86_sse2_cmp_sd,
+ "cmp${cc}sd\t{$src, $dst|$dst, $src}",
+ SSE_ALU_F64S>,
+ XD;
+}
+}
+
+
+// sse12_ord_cmp - Unordered/Ordered scalar fp compare and set EFLAGS
+multiclass sse12_ord_cmp<bits<8> opc, RegisterClass RC, SDNode OpNode,
+ ValueType vt, X86MemOperand x86memop,
+ PatFrag ld_frag, string OpcodeStr> {
+ def rr: SI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
+ [(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))],
+ IIC_SSE_COMIS_RR>,
+ Sched<[WriteFAdd]>;
+ def rm: SI<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
+ [(set EFLAGS, (OpNode (vt RC:$src1),
+ (ld_frag addr:$src2)))],
+ IIC_SSE_COMIS_RM>,
+ Sched<[WriteFAddLd, ReadAfterLd]>;
+}
+
+let Defs = [EFLAGS] in {
+ defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
+ "ucomiss">, PS, VEX, VEX_LIG;
+ defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
+ "ucomisd">, PD, VEX, VEX_LIG;
+ let Pattern = []<dag> in {
+ defm VCOMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load,
+ "comiss">, PS, VEX, VEX_LIG;
+ defm VCOMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load,
+ "comisd">, PD, VEX, VEX_LIG;
+ }
+
+ let isCodeGenOnly = 1 in {
+ defm Int_VUCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem,
+ load, "ucomiss">, PS, VEX;
+ defm Int_VUCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem,
+ load, "ucomisd">, PD, VEX;
+
+ defm Int_VCOMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem,
+ load, "comiss">, PS, VEX;
+ defm Int_VCOMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem,
+ load, "comisd">, PD, VEX;
+ }
+ defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
+ "ucomiss">, PS;
+ defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
+ "ucomisd">, PD;
+
+ let Pattern = []<dag> in {
+ defm COMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load,
+ "comiss">, PS;
+ defm COMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load,
+ "comisd">, PD;
+ }
+
+ let isCodeGenOnly = 1 in {
+ defm Int_UCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem,
+ load, "ucomiss">, PS;
+ defm Int_UCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem,
+ load, "ucomisd">, PD;
+
+ defm Int_COMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, load,
+ "comiss">, PS;
+ defm Int_COMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, load,
+ "comisd">, PD;
+ }
+} // Defs = [EFLAGS]
+
+// sse12_cmp_packed - sse 1 & 2 compare packed instructions
+multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop,
+ Operand CC, Intrinsic Int, string asm,
+ string asm_alt, Domain d,
+ OpndItins itins = SSE_ALU_F32P> {
+ def rri : PIi8<0xC2, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
+ [(set RC:$dst, (Int RC:$src1, RC:$src2, imm:$cc))],
+ itins.rr, d>,
+ Sched<[WriteFAdd]>;
+ def rmi : PIi8<0xC2, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
+ [(set RC:$dst, (Int RC:$src1, (memop addr:$src2), imm:$cc))],
+ itins.rm, d>,
+ Sched<[WriteFAddLd, ReadAfterLd]>;
+
+ // Accept explicit immediate argument form instead of comparison code.
+ let isAsmParserOnly = 1, hasSideEffects = 0 in {
+ def rri_alt : PIi8<0xC2, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2, i8imm:$cc),
+ asm_alt, [], itins.rr, d>, Sched<[WriteFAdd]>;
+ def rmi_alt : PIi8<0xC2, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2, i8imm:$cc),
+ asm_alt, [], itins.rm, d>,
+ Sched<[WriteFAddLd, ReadAfterLd]>;
+ }
+}
+
+defm VCMPPS : sse12_cmp_packed<VR128, f128mem, AVXCC, int_x86_sse_cmp_ps,
+ "cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SSEPackedSingle>, PS, VEX_4V;
+defm VCMPPD : sse12_cmp_packed<VR128, f128mem, AVXCC, int_x86_sse2_cmp_pd,
+ "cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SSEPackedDouble>, PD, VEX_4V;
+defm VCMPPSY : sse12_cmp_packed<VR256, f256mem, AVXCC, int_x86_avx_cmp_ps_256,
+ "cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SSEPackedSingle>, PS, VEX_4V, VEX_L;
+defm VCMPPDY : sse12_cmp_packed<VR256, f256mem, AVXCC, int_x86_avx_cmp_pd_256,
+ "cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SSEPackedDouble>, PD, VEX_4V, VEX_L;
+let Constraints = "$src1 = $dst" in {
+ defm CMPPS : sse12_cmp_packed<VR128, f128mem, SSECC, int_x86_sse_cmp_ps,
+ "cmp${cc}ps\t{$src2, $dst|$dst, $src2}",
+ "cmpps\t{$cc, $src2, $dst|$dst, $src2, $cc}",
+ SSEPackedSingle, SSE_ALU_F32P>, PS;
+ defm CMPPD : sse12_cmp_packed<VR128, f128mem, SSECC, int_x86_sse2_cmp_pd,
+ "cmp${cc}pd\t{$src2, $dst|$dst, $src2}",
+ "cmppd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
+ SSEPackedDouble, SSE_ALU_F64P>, PD;
+}
+
+let Predicates = [HasAVX] in {
+def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), VR128:$src2, imm:$cc)),
+ (VCMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>;
+def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), (memop addr:$src2), imm:$cc)),
+ (VCMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>;
+def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), VR128:$src2, imm:$cc)),
+ (VCMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>;
+def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)),
+ (VCMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
+
+def : Pat<(v8i32 (X86cmpp (v8f32 VR256:$src1), VR256:$src2, imm:$cc)),
+ (VCMPPSYrri (v8f32 VR256:$src1), (v8f32 VR256:$src2), imm:$cc)>;
+def : Pat<(v8i32 (X86cmpp (v8f32 VR256:$src1), (memop addr:$src2), imm:$cc)),
+ (VCMPPSYrmi (v8f32 VR256:$src1), addr:$src2, imm:$cc)>;
+def : Pat<(v4i64 (X86cmpp (v4f64 VR256:$src1), VR256:$src2, imm:$cc)),
+ (VCMPPDYrri VR256:$src1, VR256:$src2, imm:$cc)>;
+def : Pat<(v4i64 (X86cmpp (v4f64 VR256:$src1), (memop addr:$src2), imm:$cc)),
+ (VCMPPDYrmi VR256:$src1, addr:$src2, imm:$cc)>;
+}
+
+let Predicates = [UseSSE1] in {
+def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), VR128:$src2, imm:$cc)),
+ (CMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>;
+def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), (memop addr:$src2), imm:$cc)),
+ (CMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>;
+}
+
+let Predicates = [UseSSE2] in {
+def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), VR128:$src2, imm:$cc)),
+ (CMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>;
+def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)),
+ (CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Shuffle Instructions
+//===----------------------------------------------------------------------===//
+
+/// sse12_shuffle - sse 1 & 2 fp shuffle instructions
+multiclass sse12_shuffle<RegisterClass RC, X86MemOperand x86memop,
+ ValueType vt, string asm, PatFrag mem_frag,
+ Domain d, bit IsConvertibleToThreeAddress = 0> {
+ def rmi : PIi8<0xC6, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, i8imm:$src3), asm,
+ [(set RC:$dst, (vt (X86Shufp RC:$src1, (mem_frag addr:$src2),
+ (i8 imm:$src3))))], IIC_SSE_SHUFP, d>,
+ Sched<[WriteFShuffleLd, ReadAfterLd]>;
+ let isConvertibleToThreeAddress = IsConvertibleToThreeAddress in
+ def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, i8imm:$src3), asm,
+ [(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2,
+ (i8 imm:$src3))))], IIC_SSE_SHUFP, d>,
+ Sched<[WriteFShuffle]>;
+}
+
+defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
+ "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ loadv4f32, SSEPackedSingle>, PS, VEX_4V;
+defm VSHUFPSY : sse12_shuffle<VR256, f256mem, v8f32,
+ "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ loadv8f32, SSEPackedSingle>, PS, VEX_4V, VEX_L;
+defm VSHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
+ "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ loadv2f64, SSEPackedDouble>, PD, VEX_4V;
+defm VSHUFPDY : sse12_shuffle<VR256, f256mem, v4f64,
+ "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ loadv4f64, SSEPackedDouble>, PD, VEX_4V, VEX_L;
+
+let Constraints = "$src1 = $dst" in {
+ defm SHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
+ "shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ memopv4f32, SSEPackedSingle, 1 /* cvt to pshufd */>, PS;
+ defm SHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
+ "shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ memopv2f64, SSEPackedDouble, 1 /* cvt to pshufd */>, PD;
+}
+
+let Predicates = [HasAVX] in {
+ def : Pat<(v4i32 (X86Shufp VR128:$src1,
+ (bc_v4i32 (loadv2i64 addr:$src2)), (i8 imm:$imm))),
+ (VSHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>;
+ def : Pat<(v4i32 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (VSHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>;
+
+ def : Pat<(v2i64 (X86Shufp VR128:$src1,
+ (loadv2i64 addr:$src2), (i8 imm:$imm))),
+ (VSHUFPDrmi VR128:$src1, addr:$src2, imm:$imm)>;
+ def : Pat<(v2i64 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (VSHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>;
+
+ // 256-bit patterns
+ def : Pat<(v8i32 (X86Shufp VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VSHUFPSYrri VR256:$src1, VR256:$src2, imm:$imm)>;
+ def : Pat<(v8i32 (X86Shufp VR256:$src1,
+ (bc_v8i32 (loadv4i64 addr:$src2)), (i8 imm:$imm))),
+ (VSHUFPSYrmi VR256:$src1, addr:$src2, imm:$imm)>;
+
+ def : Pat<(v4i64 (X86Shufp VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VSHUFPDYrri VR256:$src1, VR256:$src2, imm:$imm)>;
+ def : Pat<(v4i64 (X86Shufp VR256:$src1,
+ (loadv4i64 addr:$src2), (i8 imm:$imm))),
+ (VSHUFPDYrmi VR256:$src1, addr:$src2, imm:$imm)>;
+}
+
+let Predicates = [UseSSE1] in {
+ def : Pat<(v4i32 (X86Shufp VR128:$src1,
+ (bc_v4i32 (memopv2i64 addr:$src2)), (i8 imm:$imm))),
+ (SHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>;
+ def : Pat<(v4i32 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (SHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>;
+}
+
+let Predicates = [UseSSE2] in {
+ // Generic SHUFPD patterns
+ def : Pat<(v2i64 (X86Shufp VR128:$src1,
+ (memopv2i64 addr:$src2), (i8 imm:$imm))),
+ (SHUFPDrmi VR128:$src1, addr:$src2, imm:$imm)>;
+ def : Pat<(v2i64 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (SHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Unpack FP Instructions
+//===----------------------------------------------------------------------===//
+
+/// sse12_unpack_interleave - sse 1 & 2 fp unpack and interleave
+multiclass sse12_unpack_interleave<bits<8> opc, SDNode OpNode, ValueType vt,
+ PatFrag mem_frag, RegisterClass RC,
+ X86MemOperand x86memop, string asm,
+ Domain d> {
+ def rr : PI<opc, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ asm, [(set RC:$dst,
+ (vt (OpNode RC:$src1, RC:$src2)))],
+ IIC_SSE_UNPCK, d>, Sched<[WriteFShuffle]>;
+ def rm : PI<opc, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ asm, [(set RC:$dst,
+ (vt (OpNode RC:$src1,
+ (mem_frag addr:$src2))))],
+ IIC_SSE_UNPCK, d>,
+ Sched<[WriteFShuffleLd, ReadAfterLd]>;
+}
+
+defm VUNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, loadv4f32,
+ VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedSingle>, PS, VEX_4V;
+defm VUNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, loadv2f64,
+ VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedDouble>, PD, VEX_4V;
+defm VUNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, loadv4f32,
+ VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedSingle>, PS, VEX_4V;
+defm VUNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, loadv2f64,
+ VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedDouble>, PD, VEX_4V;
+
+defm VUNPCKHPSY: sse12_unpack_interleave<0x15, X86Unpckh, v8f32, loadv8f32,
+ VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedSingle>, PS, VEX_4V, VEX_L;
+defm VUNPCKHPDY: sse12_unpack_interleave<0x15, X86Unpckh, v4f64, loadv4f64,
+ VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedDouble>, PD, VEX_4V, VEX_L;
+defm VUNPCKLPSY: sse12_unpack_interleave<0x14, X86Unpckl, v8f32, loadv8f32,
+ VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedSingle>, PS, VEX_4V, VEX_L;
+defm VUNPCKLPDY: sse12_unpack_interleave<0x14, X86Unpckl, v4f64, loadv4f64,
+ VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SSEPackedDouble>, PD, VEX_4V, VEX_L;
+
+let Constraints = "$src1 = $dst" in {
+ defm UNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, memopv4f32,
+ VR128, f128mem, "unpckhps\t{$src2, $dst|$dst, $src2}",
+ SSEPackedSingle>, PS;
+ defm UNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, memopv2f64,
+ VR128, f128mem, "unpckhpd\t{$src2, $dst|$dst, $src2}",
+ SSEPackedDouble>, PD;
+ defm UNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, memopv4f32,
+ VR128, f128mem, "unpcklps\t{$src2, $dst|$dst, $src2}",
+ SSEPackedSingle>, PS;
+ defm UNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, memopv2f64,
+ VR128, f128mem, "unpcklpd\t{$src2, $dst|$dst, $src2}",
+ SSEPackedDouble>, PD;
+} // Constraints = "$src1 = $dst"
+
+let Predicates = [HasAVX1Only] in {
+ def : Pat<(v8i32 (X86Unpckl VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))),
+ (VUNPCKLPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v8i32 (X86Unpckl VR256:$src1, VR256:$src2)),
+ (VUNPCKLPSYrr VR256:$src1, VR256:$src2)>;
+ def : Pat<(v8i32 (X86Unpckh VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))),
+ (VUNPCKHPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v8i32 (X86Unpckh VR256:$src1, VR256:$src2)),
+ (VUNPCKHPSYrr VR256:$src1, VR256:$src2)>;
+
+ def : Pat<(v4i64 (X86Unpckl VR256:$src1, (loadv4i64 addr:$src2))),
+ (VUNPCKLPDYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v4i64 (X86Unpckl VR256:$src1, VR256:$src2)),
+ (VUNPCKLPDYrr VR256:$src1, VR256:$src2)>;
+ def : Pat<(v4i64 (X86Unpckh VR256:$src1, (loadv4i64 addr:$src2))),
+ (VUNPCKHPDYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v4i64 (X86Unpckh VR256:$src1, VR256:$src2)),
+ (VUNPCKHPDYrr VR256:$src1, VR256:$src2)>;
+}
+
+let Predicates = [HasAVX] in {
+ // FIXME: Instead of X86Movddup, there should be a X86Unpckl here, the
+ // problem is during lowering, where it's not possible to recognize the load
+ // fold cause it has two uses through a bitcast. One use disappears at isel
+ // time and the fold opportunity reappears.
+ def : Pat<(v2f64 (X86Movddup VR128:$src)),
+ (VUNPCKLPDrr VR128:$src, VR128:$src)>;
+}
+
+let Predicates = [UseSSE2] in {
+ // FIXME: Instead of X86Movddup, there should be a X86Unpckl here, the
+ // problem is during lowering, where it's not possible to recognize the load
+ // fold cause it has two uses through a bitcast. One use disappears at isel
+ // time and the fold opportunity reappears.
+ def : Pat<(v2f64 (X86Movddup VR128:$src)),
+ (UNPCKLPDrr VR128:$src, VR128:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Extract Floating-Point Sign mask
+//===----------------------------------------------------------------------===//
+
+/// sse12_extr_sign_mask - sse 1 & 2 unpack and interleave
+multiclass sse12_extr_sign_mask<RegisterClass RC, Intrinsic Int, string asm,
+ Domain d> {
+ def rr : PI<0x50, MRMSrcReg, (outs GR32orGR64:$dst), (ins RC:$src),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
+ [(set GR32orGR64:$dst, (Int RC:$src))], IIC_SSE_MOVMSK, d>,
+ Sched<[WriteVecLogic]>;
+}
+
+let Predicates = [HasAVX] in {
+ defm VMOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps,
+ "movmskps", SSEPackedSingle>, PS, VEX;
+ defm VMOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd,
+ "movmskpd", SSEPackedDouble>, PD, VEX;
+ defm VMOVMSKPSY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_ps_256,
+ "movmskps", SSEPackedSingle>, PS,
+ VEX, VEX_L;
+ defm VMOVMSKPDY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_pd_256,
+ "movmskpd", SSEPackedDouble>, PD,
+ VEX, VEX_L;
+
+ def : Pat<(i32 (X86fgetsign FR32:$src)),
+ (VMOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(i64 (X86fgetsign FR32:$src)),
+ (SUBREG_TO_REG (i64 0),
+ (VMOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128)), sub_32bit)>;
+ def : Pat<(i32 (X86fgetsign FR64:$src)),
+ (VMOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(i64 (X86fgetsign FR64:$src)),
+ (SUBREG_TO_REG (i64 0),
+ (VMOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128)), sub_32bit)>;
+}
+
+defm MOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps, "movmskps",
+ SSEPackedSingle>, PS;
+defm MOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd, "movmskpd",
+ SSEPackedDouble>, PD;
+
+def : Pat<(i32 (X86fgetsign FR32:$src)),
+ (MOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128))>,
+ Requires<[UseSSE1]>;
+def : Pat<(i64 (X86fgetsign FR32:$src)),
+ (SUBREG_TO_REG (i64 0),
+ (MOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128)), sub_32bit)>,
+ Requires<[UseSSE1]>;
+def : Pat<(i32 (X86fgetsign FR64:$src)),
+ (MOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128))>,
+ Requires<[UseSSE2]>;
+def : Pat<(i64 (X86fgetsign FR64:$src)),
+ (SUBREG_TO_REG (i64 0),
+ (MOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128)), sub_32bit)>,
+ Requires<[UseSSE2]>;
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Logical Instructions
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in { // SSE integer instructions
+
+/// PDI_binop_rm - Simple SSE2 binary operator.
+multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, OpndItins itins,
+ bit IsCommutable, bit Is2Addr> {
+ let isCommutable = IsCommutable in
+ def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1,
+ (bitconvert (memop_frag addr:$src2)))))],
+ itins.rm>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+} // ExeDomain = SSEPackedInt
+
+multiclass PDI_binop_all<bits<8> opc, string OpcodeStr, SDNode Opcode,
+ ValueType OpVT128, ValueType OpVT256,
+ OpndItins itins, bit IsCommutable = 0> {
+let Predicates = [HasAVX] in
+ defm V#NAME : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode, OpVT128,
+ VR128, loadv2i64, i128mem, itins, IsCommutable, 0>, VEX_4V;
+
+let Constraints = "$src1 = $dst" in
+ defm NAME : PDI_binop_rm<opc, OpcodeStr, Opcode, OpVT128, VR128,
+ memopv2i64, i128mem, itins, IsCommutable, 1>;
+
+let Predicates = [HasAVX2] in
+ defm V#NAME#Y : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode,
+ OpVT256, VR256, loadv4i64, i256mem, itins,
+ IsCommutable, 0>, VEX_4V, VEX_L;
+}
+
+// These are ordered here for pattern ordering requirements with the fp versions
+
+defm PAND : PDI_binop_all<0xDB, "pand", and, v2i64, v4i64,
+ SSE_VEC_BIT_ITINS_P, 1>;
+defm POR : PDI_binop_all<0xEB, "por", or, v2i64, v4i64,
+ SSE_VEC_BIT_ITINS_P, 1>;
+defm PXOR : PDI_binop_all<0xEF, "pxor", xor, v2i64, v4i64,
+ SSE_VEC_BIT_ITINS_P, 1>;
+defm PANDN : PDI_binop_all<0xDF, "pandn", X86andnp, v2i64, v4i64,
+ SSE_VEC_BIT_ITINS_P, 0>;
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Logical Instructions
+//===----------------------------------------------------------------------===//
+
+/// sse12_fp_alias_pack_logical - SSE 1 & 2 aliased packed FP logical ops
+///
+multiclass sse12_fp_alias_pack_logical<bits<8> opc, string OpcodeStr,
+ SDNode OpNode, OpndItins itins> {
+ defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
+ FR32, f32, f128mem, memopfsf32, SSEPackedSingle, itins, 0>,
+ PS, VEX_4V;
+
+ defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
+ FR64, f64, f128mem, memopfsf64, SSEPackedDouble, itins, 0>,
+ PD, VEX_4V;
+
+ let Constraints = "$src1 = $dst" in {
+ defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, FR32,
+ f32, f128mem, memopfsf32, SSEPackedSingle, itins>,
+ PS;
+
+ defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, FR64,
+ f64, f128mem, memopfsf64, SSEPackedDouble, itins>,
+ PD;
+ }
+}
+
+// Alias bitwise logical operations using SSE logical ops on packed FP values.
+let isCodeGenOnly = 1 in {
+ defm FsAND : sse12_fp_alias_pack_logical<0x54, "and", X86fand,
+ SSE_BIT_ITINS_P>;
+ defm FsOR : sse12_fp_alias_pack_logical<0x56, "or", X86for,
+ SSE_BIT_ITINS_P>;
+ defm FsXOR : sse12_fp_alias_pack_logical<0x57, "xor", X86fxor,
+ SSE_BIT_ITINS_P>;
+
+ let isCommutable = 0 in
+ defm FsANDN : sse12_fp_alias_pack_logical<0x55, "andn", X86fandn,
+ SSE_BIT_ITINS_P>;
+}
+
+/// sse12_fp_packed_logical - SSE 1 & 2 packed FP logical ops
+///
+multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr,
+ SDNode OpNode> {
+ defm V#NAME#PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle,
+ !strconcat(OpcodeStr, "ps"), f256mem,
+ [(set VR256:$dst, (v4i64 (OpNode VR256:$src1, VR256:$src2)))],
+ [(set VR256:$dst, (OpNode (bc_v4i64 (v8f32 VR256:$src1)),
+ (loadv4i64 addr:$src2)))], 0>, PS, VEX_4V, VEX_L;
+
+ defm V#NAME#PDY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedDouble,
+ !strconcat(OpcodeStr, "pd"), f256mem,
+ [(set VR256:$dst, (OpNode (bc_v4i64 (v4f64 VR256:$src1)),
+ (bc_v4i64 (v4f64 VR256:$src2))))],
+ [(set VR256:$dst, (OpNode (bc_v4i64 (v4f64 VR256:$src1)),
+ (loadv4i64 addr:$src2)))], 0>,
+ PD, VEX_4V, VEX_L;
+
+ // In AVX no need to add a pattern for 128-bit logical rr ps, because they
+ // are all promoted to v2i64, and the patterns are covered by the int
+ // version. This is needed in SSE only, because v2i64 isn't supported on
+ // SSE1, but only on SSE2.
+ defm V#NAME#PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
+ !strconcat(OpcodeStr, "ps"), f128mem, [],
+ [(set VR128:$dst, (OpNode (bc_v2i64 (v4f32 VR128:$src1)),
+ (loadv2i64 addr:$src2)))], 0>, PS, VEX_4V;
+
+ defm V#NAME#PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
+ !strconcat(OpcodeStr, "pd"), f128mem,
+ [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
+ (bc_v2i64 (v2f64 VR128:$src2))))],
+ [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
+ (loadv2i64 addr:$src2)))], 0>,
+ PD, VEX_4V;
+
+ let Constraints = "$src1 = $dst" in {
+ defm PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
+ !strconcat(OpcodeStr, "ps"), f128mem,
+ [(set VR128:$dst, (v2i64 (OpNode VR128:$src1, VR128:$src2)))],
+ [(set VR128:$dst, (OpNode (bc_v2i64 (v4f32 VR128:$src1)),
+ (memopv2i64 addr:$src2)))]>, PS;
+
+ defm PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
+ !strconcat(OpcodeStr, "pd"), f128mem,
+ [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
+ (bc_v2i64 (v2f64 VR128:$src2))))],
+ [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
+ (memopv2i64 addr:$src2)))]>, PD;
+ }
+}
+
+defm AND : sse12_fp_packed_logical<0x54, "and", and>;
+defm OR : sse12_fp_packed_logical<0x56, "or", or>;
+defm XOR : sse12_fp_packed_logical<0x57, "xor", xor>;
+let isCommutable = 0 in
+ defm ANDN : sse12_fp_packed_logical<0x55, "andn", X86andnp>;
+
+// AVX1 requires type coercions in order to fold loads directly into logical
+// operations.
+let Predicates = [HasAVX1Only] in {
+ def : Pat<(bc_v8f32 (and VR256:$src1, (loadv4i64 addr:$src2))),
+ (VANDPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(bc_v8f32 (or VR256:$src1, (loadv4i64 addr:$src2))),
+ (VORPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(bc_v8f32 (xor VR256:$src1, (loadv4i64 addr:$src2))),
+ (VXORPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(bc_v8f32 (X86andnp VR256:$src1, (loadv4i64 addr:$src2))),
+ (VANDNPSYrm VR256:$src1, addr:$src2)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Arithmetic Instructions
+//===----------------------------------------------------------------------===//
+
+/// basic_sse12_fp_binop_xxx - SSE 1 & 2 binops come in both scalar and
+/// vector forms.
+///
+/// In addition, we also have a special variant of the scalar form here to
+/// represent the associated intrinsic operation. This form is unlike the
+/// plain scalar form, in that it takes an entire vector (instead of a scalar)
+/// and leaves the top elements unmodified (therefore these cannot be commuted).
+///
+/// These three forms can each be reg+reg or reg+mem.
+///
+
+/// FIXME: once all 256-bit intrinsics are matched, cleanup and refactor those
+/// classes below
+multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr,
+ SDNode OpNode, SizeItins itins> {
+ defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
+ VR128, v4f32, f128mem, loadv4f32,
+ SSEPackedSingle, itins.s, 0>, PS, VEX_4V;
+ defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
+ VR128, v2f64, f128mem, loadv2f64,
+ SSEPackedDouble, itins.d, 0>, PD, VEX_4V;
+
+ defm V#NAME#PSY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"),
+ OpNode, VR256, v8f32, f256mem, loadv8f32,
+ SSEPackedSingle, itins.s, 0>, PS, VEX_4V, VEX_L;
+ defm V#NAME#PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"),
+ OpNode, VR256, v4f64, f256mem, loadv4f64,
+ SSEPackedDouble, itins.d, 0>, PD, VEX_4V, VEX_L;
+
+ let Constraints = "$src1 = $dst" in {
+ defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR128,
+ v4f32, f128mem, memopv4f32, SSEPackedSingle,
+ itins.s>, PS;
+ defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR128,
+ v2f64, f128mem, memopv2f64, SSEPackedDouble,
+ itins.d>, PD;
+ }
+}
+
+multiclass basic_sse12_fp_binop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ SizeItins itins> {
+ defm V#NAME#SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"),
+ OpNode, FR32, f32mem, itins.s, 0>, XS, VEX_4V, VEX_LIG;
+ defm V#NAME#SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"),
+ OpNode, FR64, f64mem, itins.d, 0>, XD, VEX_4V, VEX_LIG;
+
+ let Constraints = "$src1 = $dst" in {
+ defm SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"),
+ OpNode, FR32, f32mem, itins.s>, XS;
+ defm SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"),
+ OpNode, FR64, f64mem, itins.d>, XD;
+ }
+}
+
+multiclass basic_sse12_fp_binop_s_int<bits<8> opc, string OpcodeStr,
+ SizeItins itins> {
+ defm V#NAME#SS : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
+ !strconcat(OpcodeStr, "ss"), "", "_ss", ssmem, sse_load_f32,
+ itins.s, 0>, XS, VEX_4V, VEX_LIG;
+ defm V#NAME#SD : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
+ !strconcat(OpcodeStr, "sd"), "2", "_sd", sdmem, sse_load_f64,
+ itins.d, 0>, XD, VEX_4V, VEX_LIG;
+
+ let Constraints = "$src1 = $dst" in {
+ defm SS : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
+ !strconcat(OpcodeStr, "ss"), "", "_ss", ssmem, sse_load_f32,
+ itins.s>, XS;
+ defm SD : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
+ !strconcat(OpcodeStr, "sd"), "2", "_sd", sdmem, sse_load_f64,
+ itins.d>, XD;
+ }
+}
+
+// Binary Arithmetic instructions
+defm ADD : basic_sse12_fp_binop_p<0x58, "add", fadd, SSE_ALU_ITINS_P>,
+ basic_sse12_fp_binop_s<0x58, "add", fadd, SSE_ALU_ITINS_S>,
+ basic_sse12_fp_binop_s_int<0x58, "add", SSE_ALU_ITINS_S>;
+defm MUL : basic_sse12_fp_binop_p<0x59, "mul", fmul, SSE_MUL_ITINS_P>,
+ basic_sse12_fp_binop_s<0x59, "mul", fmul, SSE_MUL_ITINS_S>,
+ basic_sse12_fp_binop_s_int<0x59, "mul", SSE_MUL_ITINS_S>;
+let isCommutable = 0 in {
+ defm SUB : basic_sse12_fp_binop_p<0x5C, "sub", fsub, SSE_ALU_ITINS_P>,
+ basic_sse12_fp_binop_s<0x5C, "sub", fsub, SSE_ALU_ITINS_S>,
+ basic_sse12_fp_binop_s_int<0x5C, "sub", SSE_ALU_ITINS_S>;
+ defm DIV : basic_sse12_fp_binop_p<0x5E, "div", fdiv, SSE_DIV_ITINS_P>,
+ basic_sse12_fp_binop_s<0x5E, "div", fdiv, SSE_DIV_ITINS_S>,
+ basic_sse12_fp_binop_s_int<0x5E, "div", SSE_DIV_ITINS_S>;
+ defm MAX : basic_sse12_fp_binop_p<0x5F, "max", X86fmax, SSE_ALU_ITINS_P>,
+ basic_sse12_fp_binop_s<0x5F, "max", X86fmax, SSE_ALU_ITINS_S>,
+ basic_sse12_fp_binop_s_int<0x5F, "max", SSE_ALU_ITINS_S>;
+ defm MIN : basic_sse12_fp_binop_p<0x5D, "min", X86fmin, SSE_ALU_ITINS_P>,
+ basic_sse12_fp_binop_s<0x5D, "min", X86fmin, SSE_ALU_ITINS_S>,
+ basic_sse12_fp_binop_s_int<0x5D, "min", SSE_ALU_ITINS_S>;
+}
+
+let isCodeGenOnly = 1 in {
+ defm MAXC: basic_sse12_fp_binop_p<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_P>,
+ basic_sse12_fp_binop_s<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_S>;
+ defm MINC: basic_sse12_fp_binop_p<0x5D, "min", X86fminc, SSE_ALU_ITINS_P>,
+ basic_sse12_fp_binop_s<0x5D, "min", X86fminc, SSE_ALU_ITINS_S>;
+}
+
+// Patterns used to select SSE scalar fp arithmetic instructions from
+// a scalar fp operation followed by a blend.
+//
+// These patterns know, for example, how to select an ADDSS from a
+// float add plus vector insert.
+//
+// The effect is that the backend no longer emits unnecessary vector
+// insert instructions immediately after SSE scalar fp instructions
+// like addss or mulss.
+//
+// For example, given the following code:
+// __m128 foo(__m128 A, __m128 B) {
+// A[0] += B[0];
+// return A;
+// }
+//
+// previously we generated:
+// addss %xmm0, %xmm1
+// movss %xmm1, %xmm0
+//
+// we now generate:
+// addss %xmm1, %xmm0
+
+let Predicates = [UseSSE1] in {
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fadd
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))))),
+ (ADDSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fsub
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))))),
+ (SUBSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fmul
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))))),
+ (MULSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fdiv
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))))),
+ (DIVSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+}
+
+let Predicates = [UseSSE2] in {
+ // SSE2 patterns to select scalar double-precision fp arithmetic instructions
+
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fadd
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))))),
+ (ADDSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fsub
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))))),
+ (SUBSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fmul
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))))),
+ (MULSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fdiv
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))))),
+ (DIVSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+}
+
+let Predicates = [UseSSE41] in {
+ // If the subtarget has SSE4.1 but not AVX, the vector insert
+ // instruction is lowered into a X86insertps rather than a X86Movss.
+ // When selecting SSE scalar single-precision fp arithmetic instructions,
+ // make sure that we correctly match the X86insertps.
+
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
+ (fadd (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (iPTR 0))),
+ (ADDSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
+ (fsub (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (iPTR 0))),
+ (SUBSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
+ (fmul (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (iPTR 0))),
+ (MULSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
+ (fdiv (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (iPTR 0))),
+ (DIVSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+}
+
+let Predicates = [HasAVX] in {
+ // The following patterns select AVX Scalar single/double precision fp
+ // arithmetic instructions.
+
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fadd
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))))),
+ (VADDSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fsub
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))))),
+ (VSUBSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fmul
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))))),
+ (VMULSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fdiv
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))))),
+ (VDIVSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
+ (fadd (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (iPTR 0))),
+ (VADDSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
+ (fsub (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (iPTR 0))),
+ (VSUBSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
+ (fmul (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (iPTR 0))),
+ (VMULSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
+ (fdiv (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (iPTR 0))),
+ (VDIVSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+}
+
+// Patterns used to select SSE scalar fp arithmetic instructions from
+// a vector packed single/double fp operation followed by a vector insert.
+//
+// The effect is that the backend converts the packed fp instruction
+// followed by a vector insert into a single SSE scalar fp instruction.
+//
+// For example, given the following code:
+// __m128 foo(__m128 A, __m128 B) {
+// __m128 C = A + B;
+// return (__m128) {c[0], a[1], a[2], a[3]};
+// }
+//
+// previously we generated:
+// addps %xmm0, %xmm1
+// movss %xmm1, %xmm0
+//
+// we now generate:
+// addss %xmm1, %xmm0
+
+let Predicates = [UseSSE1] in {
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
+ (fadd (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
+ (ADDSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
+ (fsub (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
+ (SUBSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
+ (fmul (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
+ (MULSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
+ (fdiv (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
+ (DIVSSrr_Int v4f32:$dst, v4f32:$src)>;
+}
+
+let Predicates = [UseSSE2] in {
+ // SSE2 patterns to select scalar double-precision fp arithmetic instructions
+ // from a packed double-precision fp instruction plus movsd.
+
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
+ (fadd (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
+ (ADDSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
+ (fsub (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
+ (SUBSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
+ (fmul (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
+ (MULSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
+ (fdiv (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
+ (DIVSDrr_Int v2f64:$dst, v2f64:$src)>;
+}
+
+let Predicates = [HasAVX] in {
+ // The following patterns select AVX Scalar single/double precision fp
+ // arithmetic instructions from a packed single precision fp instruction
+ // plus movss/movsd.
+
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
+ (fadd (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
+ (VADDSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
+ (fsub (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
+ (VSUBSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
+ (fmul (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
+ (VMULSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
+ (fdiv (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
+ (VDIVSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
+ (fadd (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
+ (VADDSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
+ (fsub (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
+ (VSUBSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
+ (fmul (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
+ (VMULSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
+ (fdiv (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
+ (VDIVSDrr_Int v2f64:$dst, v2f64:$src)>;
+}
+
+/// Unop Arithmetic
+/// In addition, we also have a special variant of the scalar form here to
+/// represent the associated intrinsic operation. This form is unlike the
+/// plain scalar form, in that it takes an entire vector (instead of a
+/// scalar) and leaves the top elements undefined.
+///
+/// And, we have a special variant form for a full-vector intrinsic form.
+
+let Sched = WriteFSqrt in {
+def SSE_SQRTPS : OpndItins<
+ IIC_SSE_SQRTPS_RR, IIC_SSE_SQRTPS_RM
+>;
+
+def SSE_SQRTSS : OpndItins<
+ IIC_SSE_SQRTSS_RR, IIC_SSE_SQRTSS_RM
+>;
+
+def SSE_SQRTPD : OpndItins<
+ IIC_SSE_SQRTPD_RR, IIC_SSE_SQRTPD_RM
+>;
+
+def SSE_SQRTSD : OpndItins<
+ IIC_SSE_SQRTSD_RR, IIC_SSE_SQRTSD_RM
+>;
+}
+
+let Sched = WriteFRcp in {
+def SSE_RCPP : OpndItins<
+ IIC_SSE_RCPP_RR, IIC_SSE_RCPP_RM
+>;
+
+def SSE_RCPS : OpndItins<
+ IIC_SSE_RCPS_RR, IIC_SSE_RCPS_RM
+>;
+}
+
+/// sse1_fp_unop_s - SSE1 unops in scalar form.
+multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr,
+ SDNode OpNode, Intrinsic F32Int, OpndItins itins> {
+let Predicates = [HasAVX], hasSideEffects = 0 in {
+ def V#NAME#SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst),
+ (ins FR32:$src1, FR32:$src2),
+ !strconcat("v", OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG, Sched<[itins.Sched]>;
+ let mayLoad = 1 in {
+ def V#NAME#SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst),
+ (ins FR32:$src1,f32mem:$src2),
+ !strconcat("v", OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+ let isCodeGenOnly = 1 in
+ def V#NAME#SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, ssmem:$src2),
+ !strconcat("v", OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+ }
+}
+
+ def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
+ !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
+ [(set FR32:$dst, (OpNode FR32:$src))]>, Sched<[itins.Sched]>;
+ // For scalar unary operations, fold a load into the operation
+ // only in OptForSize mode. It eliminates an instruction, but it also
+ // eliminates a whole-register clobber (the load), so it introduces a
+ // partial register update condition.
+ def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
+ !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
+ [(set FR32:$dst, (OpNode (load addr:$src)))], itins.rm>, XS,
+ Requires<[UseSSE1, OptForSize]>, Sched<[itins.Sched.Folded]>;
+let isCodeGenOnly = 1 in {
+ def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (F32Int VR128:$src))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins ssmem:$src),
+ !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (F32Int sse_load_f32:$src))], itins.rm>,
+ Sched<[itins.Sched.Folded]>;
+}
+}
+
+/// sse1_fp_unop_s_rw - SSE1 unops where vector form has a read-write operand.
+multiclass sse1_fp_unop_rw<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ OpndItins itins> {
+let Predicates = [HasAVX], hasSideEffects = 0 in {
+ def V#NAME#SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst),
+ (ins FR32:$src1, FR32:$src2),
+ !strconcat("v", OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG, Sched<[itins.Sched]>;
+ let mayLoad = 1 in {
+ def V#NAME#SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst),
+ (ins FR32:$src1,f32mem:$src2),
+ !strconcat("v", OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+ let isCodeGenOnly = 1 in
+ def V#NAME#SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, ssmem:$src2),
+ !strconcat("v", OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+ }
+}
+
+ def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
+ !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
+ [(set FR32:$dst, (OpNode FR32:$src))]>, Sched<[itins.Sched]>;
+ // For scalar unary operations, fold a load into the operation
+ // only in OptForSize mode. It eliminates an instruction, but it also
+ // eliminates a whole-register clobber (the load), so it introduces a
+ // partial register update condition.
+ def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
+ !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
+ [(set FR32:$dst, (OpNode (load addr:$src)))], itins.rm>, XS,
+ Requires<[UseSSE1, OptForSize]>, Sched<[itins.Sched.Folded]>;
+ let isCodeGenOnly = 1, Constraints = "$src1 = $dst" in {
+ def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
+ [], itins.rr>, Sched<[itins.Sched]>;
+ let mayLoad = 1, hasSideEffects = 0 in
+ def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, ssmem:$src2),
+ !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
+ [], itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
+ }
+}
+
+/// sse1_fp_unop_p - SSE1 unops in packed form.
+multiclass sse1_fp_unop_p<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ OpndItins itins> {
+let Predicates = [HasAVX] in {
+ def V#NAME#PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))],
+ itins.rr>, VEX, Sched<[itins.Sched]>;
+ def V#NAME#PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (OpNode (loadv4f32 addr:$src)))],
+ itins.rm>, VEX, Sched<[itins.Sched.Folded]>;
+ def V#NAME#PSYr : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (v8f32 (OpNode VR256:$src)))],
+ itins.rr>, VEX, VEX_L, Sched<[itins.Sched]>;
+ def V#NAME#PSYm : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (OpNode (loadv8f32 addr:$src)))],
+ itins.rm>, VEX, VEX_L, Sched<[itins.Sched.Folded]>;
+}
+
+ def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))], itins.rm>,
+ Sched<[itins.Sched.Folded]>;
+}
+
+/// sse1_fp_unop_p_int - SSE1 intrinsics unops in packed forms.
+multiclass sse1_fp_unop_p_int<bits<8> opc, string OpcodeStr,
+ Intrinsic V4F32Int, Intrinsic V8F32Int,
+ OpndItins itins> {
+let isCodeGenOnly = 1 in {
+let Predicates = [HasAVX] in {
+ def V#NAME#PSr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (V4F32Int VR128:$src))],
+ itins.rr>, VEX, Sched<[itins.Sched]>;
+ def V#NAME#PSm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (V4F32Int (loadv4f32 addr:$src)))],
+ itins.rm>, VEX, Sched<[itins.Sched.Folded]>;
+ def V#NAME#PSYr_Int : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (V8F32Int VR256:$src))],
+ itins.rr>, VEX, VEX_L, Sched<[itins.Sched]>;
+ def V#NAME#PSYm_Int : PSI<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins f256mem:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (V8F32Int (loadv8f32 addr:$src)))],
+ itins.rm>, VEX, VEX_L, Sched<[itins.Sched.Folded]>;
+}
+
+ def PSr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (V4F32Int VR128:$src))],
+ itins.rr>, Sched<[itins.Sched]>;
+ def PSm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (V4F32Int (memopv4f32 addr:$src)))],
+ itins.rm>, Sched<[itins.Sched.Folded]>;
+} // isCodeGenOnly = 1
+}
+
+/// sse2_fp_unop_s - SSE2 unops in scalar form.
+multiclass sse2_fp_unop_s<bits<8> opc, string OpcodeStr,
+ SDNode OpNode, Intrinsic F64Int, OpndItins itins> {
+let Predicates = [HasAVX], hasSideEffects = 0 in {
+ def V#NAME#SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst),
+ (ins FR64:$src1, FR64:$src2),
+ !strconcat("v", OpcodeStr,
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG, Sched<[itins.Sched]>;
+ let mayLoad = 1 in {
+ def V#NAME#SDm : SDI<opc, MRMSrcMem, (outs FR64:$dst),
+ (ins FR64:$src1,f64mem:$src2),
+ !strconcat("v", OpcodeStr,
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+ let isCodeGenOnly = 1 in
+ def V#NAME#SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, sdmem:$src2),
+ !strconcat("v", OpcodeStr,
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+ }
+}
+
+ def SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src),
+ !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
+ [(set FR64:$dst, (OpNode FR64:$src))], itins.rr>,
+ Sched<[itins.Sched]>;
+ // See the comments in sse1_fp_unop_s for why this is OptForSize.
+ def SDm : I<opc, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src),
+ !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
+ [(set FR64:$dst, (OpNode (load addr:$src)))], itins.rm>, XD,
+ Requires<[UseSSE2, OptForSize]>, Sched<[itins.Sched.Folded]>;
+let isCodeGenOnly = 1 in {
+ def SDr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (F64Int VR128:$src))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), (ins sdmem:$src),
+ !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (F64Int sse_load_f64:$src))], itins.rm>,
+ Sched<[itins.Sched.Folded]>;
+}
+}
+
+/// sse2_fp_unop_p - SSE2 unops in vector forms.
+multiclass sse2_fp_unop_p<bits<8> opc, string OpcodeStr,
+ SDNode OpNode, OpndItins itins> {
+let Predicates = [HasAVX] in {
+ def V#NAME#PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat("v", OpcodeStr,
+ "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))],
+ itins.rr>, VEX, Sched<[itins.Sched]>;
+ def V#NAME#PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ !strconcat("v", OpcodeStr,
+ "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (OpNode (loadv2f64 addr:$src)))],
+ itins.rm>, VEX, Sched<[itins.Sched.Folded]>;
+ def V#NAME#PDYr : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ !strconcat("v", OpcodeStr,
+ "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (v4f64 (OpNode VR256:$src)))],
+ itins.rr>, VEX, VEX_L, Sched<[itins.Sched]>;
+ def V#NAME#PDYm : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ !strconcat("v", OpcodeStr,
+ "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (OpNode (loadv4f64 addr:$src)))],
+ itins.rm>, VEX, VEX_L, Sched<[itins.Sched.Folded]>;
+}
+
+ def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))], itins.rm>,
+ Sched<[itins.Sched.Folded]>;
+}
+
+// Square root.
+defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss,
+ SSE_SQRTSS>,
+ sse1_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTPS>,
+ sse2_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd,
+ SSE_SQRTSD>,
+ sse2_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTPD>;
+
+// Reciprocal approximations. Note that these typically require refinement
+// in order to obtain suitable precision.
+defm RSQRT : sse1_fp_unop_rw<0x52, "rsqrt", X86frsqrt, SSE_SQRTSS>,
+ sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SSE_SQRTPS>,
+ sse1_fp_unop_p_int<0x52, "rsqrt", int_x86_sse_rsqrt_ps,
+ int_x86_avx_rsqrt_ps_256, SSE_SQRTPS>;
+defm RCP : sse1_fp_unop_rw<0x53, "rcp", X86frcp, SSE_RCPS>,
+ sse1_fp_unop_p<0x53, "rcp", X86frcp, SSE_RCPP>,
+ sse1_fp_unop_p_int<0x53, "rcp", int_x86_sse_rcp_ps,
+ int_x86_avx_rcp_ps_256, SSE_RCPP>;
+
+let Predicates = [UseAVX] in {
+ def : Pat<(f32 (fsqrt FR32:$src)),
+ (VSQRTSSr (f32 (IMPLICIT_DEF)), FR32:$src)>, Requires<[HasAVX]>;
+ def : Pat<(f32 (fsqrt (load addr:$src))),
+ (VSQRTSSm (f32 (IMPLICIT_DEF)), addr:$src)>,
+ Requires<[HasAVX, OptForSize]>;
+ def : Pat<(f64 (fsqrt FR64:$src)),
+ (VSQRTSDr (f64 (IMPLICIT_DEF)), FR64:$src)>, Requires<[HasAVX]>;
+ def : Pat<(f64 (fsqrt (load addr:$src))),
+ (VSQRTSDm (f64 (IMPLICIT_DEF)), addr:$src)>,
+ Requires<[HasAVX, OptForSize]>;
+
+ def : Pat<(f32 (X86frsqrt FR32:$src)),
+ (VRSQRTSSr (f32 (IMPLICIT_DEF)), FR32:$src)>, Requires<[HasAVX]>;
+ def : Pat<(f32 (X86frsqrt (load addr:$src))),
+ (VRSQRTSSm (f32 (IMPLICIT_DEF)), addr:$src)>,
+ Requires<[HasAVX, OptForSize]>;
+
+ def : Pat<(f32 (X86frcp FR32:$src)),
+ (VRCPSSr (f32 (IMPLICIT_DEF)), FR32:$src)>, Requires<[HasAVX]>;
+ def : Pat<(f32 (X86frcp (load addr:$src))),
+ (VRCPSSm (f32 (IMPLICIT_DEF)), addr:$src)>,
+ Requires<[HasAVX, OptForSize]>;
+}
+let Predicates = [UseAVX] in {
+ def : Pat<(int_x86_sse_sqrt_ss VR128:$src),
+ (COPY_TO_REGCLASS (VSQRTSSr (f32 (IMPLICIT_DEF)),
+ (COPY_TO_REGCLASS VR128:$src, FR32)),
+ VR128)>;
+ def : Pat<(int_x86_sse_sqrt_ss sse_load_f32:$src),
+ (VSQRTSSm_Int (v4f32 (IMPLICIT_DEF)), sse_load_f32:$src)>;
+
+ def : Pat<(int_x86_sse2_sqrt_sd VR128:$src),
+ (COPY_TO_REGCLASS (VSQRTSDr (f64 (IMPLICIT_DEF)),
+ (COPY_TO_REGCLASS VR128:$src, FR64)),
+ VR128)>;
+ def : Pat<(int_x86_sse2_sqrt_sd sse_load_f64:$src),
+ (VSQRTSDm_Int (v2f64 (IMPLICIT_DEF)), sse_load_f64:$src)>;
+}
+
+let Predicates = [HasAVX] in {
+ def : Pat<(int_x86_sse_rsqrt_ss VR128:$src),
+ (COPY_TO_REGCLASS (VRSQRTSSr (f32 (IMPLICIT_DEF)),
+ (COPY_TO_REGCLASS VR128:$src, FR32)),
+ VR128)>;
+ def : Pat<(int_x86_sse_rsqrt_ss sse_load_f32:$src),
+ (VRSQRTSSm_Int (v4f32 (IMPLICIT_DEF)), sse_load_f32:$src)>;
+
+ def : Pat<(int_x86_sse_rcp_ss VR128:$src),
+ (COPY_TO_REGCLASS (VRCPSSr (f32 (IMPLICIT_DEF)),
+ (COPY_TO_REGCLASS VR128:$src, FR32)),
+ VR128)>;
+ def : Pat<(int_x86_sse_rcp_ss sse_load_f32:$src),
+ (VRCPSSm_Int (v4f32 (IMPLICIT_DEF)), sse_load_f32:$src)>;
+}
+
+// Reciprocal approximations. Note that these typically require refinement
+// in order to obtain suitable precision.
+let Predicates = [UseSSE1] in {
+ def : Pat<(int_x86_sse_rsqrt_ss VR128:$src),
+ (RSQRTSSr_Int VR128:$src, VR128:$src)>;
+ def : Pat<(int_x86_sse_rcp_ss VR128:$src),
+ (RCPSSr_Int VR128:$src, VR128:$src)>;
+}
+
+// There is no f64 version of the reciprocal approximation instructions.
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Non-temporal stores
+//===----------------------------------------------------------------------===//
+
+let AddedComplexity = 400 in { // Prefer non-temporal versions
+let SchedRW = [WriteStore] in {
+def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs),
+ (ins f128mem:$dst, VR128:$src),
+ "movntps\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v4f32 VR128:$src),
+ addr:$dst)],
+ IIC_SSE_MOVNT>, VEX;
+def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs),
+ (ins f128mem:$dst, VR128:$src),
+ "movntpd\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v2f64 VR128:$src),
+ addr:$dst)],
+ IIC_SSE_MOVNT>, VEX;
+
+let ExeDomain = SSEPackedInt in
+def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs),
+ (ins f128mem:$dst, VR128:$src),
+ "movntdq\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v2i64 VR128:$src),
+ addr:$dst)],
+ IIC_SSE_MOVNT>, VEX;
+
+def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs),
+ (ins f256mem:$dst, VR256:$src),
+ "movntps\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v8f32 VR256:$src),
+ addr:$dst)],
+ IIC_SSE_MOVNT>, VEX, VEX_L;
+def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs),
+ (ins f256mem:$dst, VR256:$src),
+ "movntpd\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v4f64 VR256:$src),
+ addr:$dst)],
+ IIC_SSE_MOVNT>, VEX, VEX_L;
+let ExeDomain = SSEPackedInt in
+def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs),
+ (ins f256mem:$dst, VR256:$src),
+ "movntdq\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v4i64 VR256:$src),
+ addr:$dst)],
+ IIC_SSE_MOVNT>, VEX, VEX_L;
+
+def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movntps\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)],
+ IIC_SSE_MOVNT>;
+def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movntpd\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore(v2f64 VR128:$src), addr:$dst)],
+ IIC_SSE_MOVNT>;
+
+let ExeDomain = SSEPackedInt in
+def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movntdq\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v2i64 VR128:$src), addr:$dst)],
+ IIC_SSE_MOVNT>;
+
+// There is no AVX form for instructions below this point
+def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
+ "movnti{l}\t{$src, $dst|$dst, $src}",
+ [(nontemporalstore (i32 GR32:$src), addr:$dst)],
+ IIC_SSE_MOVNT>,
+ PS, Requires<[HasSSE2]>;
+def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
+ "movnti{q}\t{$src, $dst|$dst, $src}",
+ [(nontemporalstore (i64 GR64:$src), addr:$dst)],
+ IIC_SSE_MOVNT>,
+ PS, Requires<[HasSSE2]>;
+} // SchedRW = [WriteStore]
+
+} // AddedComplexity
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Prefetch and memory fence
+//===----------------------------------------------------------------------===//
+
+// Prefetch intrinsic.
+let Predicates = [HasSSE1], SchedRW = [WriteLoad] in {
+def PREFETCHT0 : I<0x18, MRM1m, (outs), (ins i8mem:$src),
+ "prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3), (i32 1))],
+ IIC_SSE_PREFETCH>, TB;
+def PREFETCHT1 : I<0x18, MRM2m, (outs), (ins i8mem:$src),
+ "prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2), (i32 1))],
+ IIC_SSE_PREFETCH>, TB;
+def PREFETCHT2 : I<0x18, MRM3m, (outs), (ins i8mem:$src),
+ "prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1), (i32 1))],
+ IIC_SSE_PREFETCH>, TB;
+def PREFETCHNTA : I<0x18, MRM0m, (outs), (ins i8mem:$src),
+ "prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0), (i32 1))],
+ IIC_SSE_PREFETCH>, TB;
+}
+
+// FIXME: How should flush instruction be modeled?
+let SchedRW = [WriteLoad] in {
+// Flush cache
+def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src),
+ "clflush\t$src", [(int_x86_sse2_clflush addr:$src)],
+ IIC_SSE_PREFETCH>, TB, Requires<[HasSSE2]>;
+}
+
+let SchedRW = [WriteNop] in {
+// Pause. This "instruction" is encoded as "rep; nop", so even though it
+// was introduced with SSE2, it's backward compatible.
+def PAUSE : I<0x90, RawFrm, (outs), (ins),
+ "pause", [(int_x86_sse2_pause)], IIC_SSE_PAUSE>,
+ OBXS, Requires<[HasSSE2]>;
+}
+
+let SchedRW = [WriteFence] in {
+// Load, store, and memory fence
+def SFENCE : I<0xAE, MRM_F8, (outs), (ins),
+ "sfence", [(int_x86_sse_sfence)], IIC_SSE_SFENCE>,
+ TB, Requires<[HasSSE1]>;
+def LFENCE : I<0xAE, MRM_E8, (outs), (ins),
+ "lfence", [(int_x86_sse2_lfence)], IIC_SSE_LFENCE>,
+ TB, Requires<[HasSSE2]>;
+def MFENCE : I<0xAE, MRM_F0, (outs), (ins),
+ "mfence", [(int_x86_sse2_mfence)], IIC_SSE_MFENCE>,
+ TB, Requires<[HasSSE2]>;
+} // SchedRW
+
+def : Pat<(X86SFence), (SFENCE)>;
+def : Pat<(X86LFence), (LFENCE)>;
+def : Pat<(X86MFence), (MFENCE)>;
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Load/Store XCSR register
+//===----------------------------------------------------------------------===//
+
+def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src),
+ "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)],
+ IIC_SSE_LDMXCSR>, VEX, Sched<[WriteLoad]>;
+def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
+ "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)],
+ IIC_SSE_STMXCSR>, VEX, Sched<[WriteStore]>;
+
+def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src),
+ "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)],
+ IIC_SSE_LDMXCSR>, Sched<[WriteLoad]>;
+def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
+ "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)],
+ IIC_SSE_STMXCSR>, Sched<[WriteStore]>;
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Move Aligned/Unaligned Packed Integer Instructions
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in { // SSE integer instructions
+
+let neverHasSideEffects = 1, SchedRW = [WriteMove] in {
+def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>,
+ VEX;
+def VMOVDQAYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>,
+ VEX, VEX_L;
+def VMOVDQUrr : VSSI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqu\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVU_P_RR>,
+ VEX;
+def VMOVDQUYrr : VSSI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ "movdqu\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVU_P_RR>,
+ VEX, VEX_L;
+}
+
+// For Disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
+ SchedRW = [WriteMove] in {
+def VMOVDQArr_REV : VPDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVA_P_RR>,
+ VEX;
+def VMOVDQAYrr_REV : VPDI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVA_P_RR>, VEX, VEX_L;
+def VMOVDQUrr_REV : VSSI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqu\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVU_P_RR>,
+ VEX;
+def VMOVDQUYrr_REV : VSSI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src),
+ "movdqu\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVU_P_RR>, VEX, VEX_L;
+}
+
+let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1,
+ neverHasSideEffects = 1, SchedRW = [WriteLoad] in {
+def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RM>,
+ VEX;
+def VMOVDQAYrm : VPDI<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RM>,
+ VEX, VEX_L;
+let Predicates = [HasAVX] in {
+ def VMOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "vmovdqu\t{$src, $dst|$dst, $src}",[], IIC_SSE_MOVU_P_RM>,
+ XS, VEX;
+ def VMOVDQUYrm : I<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
+ "vmovdqu\t{$src, $dst|$dst, $src}",[], IIC_SSE_MOVU_P_RM>,
+ XS, VEX, VEX_L;
+}
+}
+
+let mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in {
+def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs),
+ (ins i128mem:$dst, VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_MR>,
+ VEX;
+def VMOVDQAYmr : VPDI<0x7F, MRMDestMem, (outs),
+ (ins i256mem:$dst, VR256:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_MR>,
+ VEX, VEX_L;
+let Predicates = [HasAVX] in {
+def VMOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
+ "vmovdqu\t{$src, $dst|$dst, $src}",[], IIC_SSE_MOVU_P_MR>,
+ XS, VEX;
+def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src),
+ "vmovdqu\t{$src, $dst|$dst, $src}",[], IIC_SSE_MOVU_P_MR>,
+ XS, VEX, VEX_L;
+}
+}
+
+let SchedRW = [WriteMove] in {
+let neverHasSideEffects = 1 in
+def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>;
+
+def MOVDQUrr : I<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqu\t{$src, $dst|$dst, $src}",
+ [], IIC_SSE_MOVU_P_RR>, XS, Requires<[UseSSE2]>;
+
+// For Disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
+def MOVDQArr_REV : PDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", [],
+ IIC_SSE_MOVA_P_RR>;
+
+def MOVDQUrr_REV : I<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqu\t{$src, $dst|$dst, $src}",
+ [], IIC_SSE_MOVU_P_RR>, XS, Requires<[UseSSE2]>;
+}
+} // SchedRW
+
+let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1,
+ neverHasSideEffects = 1, SchedRW = [WriteLoad] in {
+def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "movdqa\t{$src, $dst|$dst, $src}",
+ [/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/],
+ IIC_SSE_MOVA_P_RM>;
+def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "movdqu\t{$src, $dst|$dst, $src}",
+ [/*(set VR128:$dst, (loadv2i64 addr:$src))*/],
+ IIC_SSE_MOVU_P_RM>,
+ XS, Requires<[UseSSE2]>;
+}
+
+let mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in {
+def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}",
+ [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/],
+ IIC_SSE_MOVA_P_MR>;
+def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
+ "movdqu\t{$src, $dst|$dst, $src}",
+ [/*(store (v2i64 VR128:$src), addr:$dst)*/],
+ IIC_SSE_MOVU_P_MR>,
+ XS, Requires<[UseSSE2]>;
+}
+
+} // ExeDomain = SSEPackedInt
+
+let Predicates = [HasAVX] in {
+ def : Pat<(int_x86_sse2_storeu_dq addr:$dst, VR128:$src),
+ (VMOVDQUmr addr:$dst, VR128:$src)>;
+ def : Pat<(int_x86_avx_storeu_dq_256 addr:$dst, VR256:$src),
+ (VMOVDQUYmr addr:$dst, VR256:$src)>;
+}
+let Predicates = [UseSSE2] in
+def : Pat<(int_x86_sse2_storeu_dq addr:$dst, VR128:$src),
+ (MOVDQUmr addr:$dst, VR128:$src)>;
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Arithmetic Instructions
+//===---------------------------------------------------------------------===//
+
+let Sched = WriteVecIMul in
+def SSE_PMADD : OpndItins<
+ IIC_SSE_PMADD, IIC_SSE_PMADD
+>;
+
+let ExeDomain = SSEPackedInt in { // SSE integer instructions
+
+multiclass PDI_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId,
+ RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop,
+ OpndItins itins,
+ bit IsCommutable = 0,
+ bit Is2Addr = 1> {
+ let isCommutable = IsCommutable in
+ def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (IntId RC:$src1, RC:$src2))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (IntId RC:$src1, (bitconvert (memop_frag addr:$src2))))],
+ itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+multiclass PDI_binop_all_int<bits<8> opc, string OpcodeStr, Intrinsic IntId128,
+ Intrinsic IntId256, OpndItins itins,
+ bit IsCommutable = 0> {
+let Predicates = [HasAVX] in
+ defm V#NAME : PDI_binop_rm_int<opc, !strconcat("v", OpcodeStr), IntId128,
+ VR128, loadv2i64, i128mem, itins,
+ IsCommutable, 0>, VEX_4V;
+
+let Constraints = "$src1 = $dst" in
+ defm NAME : PDI_binop_rm_int<opc, OpcodeStr, IntId128, VR128, memopv2i64,
+ i128mem, itins, IsCommutable, 1>;
+
+let Predicates = [HasAVX2] in
+ defm V#NAME#Y : PDI_binop_rm_int<opc, !strconcat("v", OpcodeStr), IntId256,
+ VR256, loadv4i64, i256mem, itins,
+ IsCommutable, 0>, VEX_4V, VEX_L;
+}
+
+multiclass PDI_binop_rmi<bits<8> opc, bits<8> opc2, Format ImmForm,
+ string OpcodeStr, SDNode OpNode,
+ SDNode OpNode2, RegisterClass RC,
+ ValueType DstVT, ValueType SrcVT, PatFrag bc_frag,
+ ShiftOpndItins itins,
+ bit Is2Addr = 1> {
+ // src2 is always 128-bit
+ def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, VR128:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode RC:$src1, (SrcVT VR128:$src2))))],
+ itins.rr>, Sched<[WriteVecShift]>;
+ def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, i128mem:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode RC:$src1,
+ (bc_frag (memopv2i64 addr:$src2)))))], itins.rm>,
+ Sched<[WriteVecShiftLd, ReadAfterLd]>;
+ def ri : PDIi8<opc2, ImmForm, (outs RC:$dst),
+ (ins RC:$src1, i8imm:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode2 RC:$src1, (i8 imm:$src2))))], itins.ri>,
+ Sched<[WriteVecShift]>;
+}
+
+/// PDI_binop_rm2 - Simple SSE2 binary operator with different src and dst types
+multiclass PDI_binop_rm2<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType DstVT, ValueType SrcVT, RegisterClass RC,
+ PatFrag memop_frag, X86MemOperand x86memop,
+ OpndItins itins,
+ bit IsCommutable = 0, bit Is2Addr = 1> {
+ let isCommutable = IsCommutable in
+ def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1), RC:$src2)))]>,
+ Sched<[itins.Sched]>;
+ def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1),
+ (bitconvert (memop_frag addr:$src2)))))]>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+} // ExeDomain = SSEPackedInt
+
+defm PADDB : PDI_binop_all<0xFC, "paddb", add, v16i8, v32i8,
+ SSE_INTALU_ITINS_P, 1>;
+defm PADDW : PDI_binop_all<0xFD, "paddw", add, v8i16, v16i16,
+ SSE_INTALU_ITINS_P, 1>;
+defm PADDD : PDI_binop_all<0xFE, "paddd", add, v4i32, v8i32,
+ SSE_INTALU_ITINS_P, 1>;
+defm PADDQ : PDI_binop_all<0xD4, "paddq", add, v2i64, v4i64,
+ SSE_INTALUQ_ITINS_P, 1>;
+defm PMULLW : PDI_binop_all<0xD5, "pmullw", mul, v8i16, v16i16,
+ SSE_INTMUL_ITINS_P, 1>;
+defm PMULHUW : PDI_binop_all<0xE4, "pmulhuw", mulhu, v8i16, v16i16,
+ SSE_INTMUL_ITINS_P, 1>;
+defm PMULHW : PDI_binop_all<0xE5, "pmulhw", mulhs, v8i16, v16i16,
+ SSE_INTMUL_ITINS_P, 1>;
+defm PSUBB : PDI_binop_all<0xF8, "psubb", sub, v16i8, v32i8,
+ SSE_INTALU_ITINS_P, 0>;
+defm PSUBW : PDI_binop_all<0xF9, "psubw", sub, v8i16, v16i16,
+ SSE_INTALU_ITINS_P, 0>;
+defm PSUBD : PDI_binop_all<0xFA, "psubd", sub, v4i32, v8i32,
+ SSE_INTALU_ITINS_P, 0>;
+defm PSUBQ : PDI_binop_all<0xFB, "psubq", sub, v2i64, v4i64,
+ SSE_INTALUQ_ITINS_P, 0>;
+defm PSUBUSB : PDI_binop_all<0xD8, "psubusb", X86subus, v16i8, v32i8,
+ SSE_INTALU_ITINS_P, 0>;
+defm PSUBUSW : PDI_binop_all<0xD9, "psubusw", X86subus, v8i16, v16i16,
+ SSE_INTALU_ITINS_P, 0>;
+defm PMINUB : PDI_binop_all<0xDA, "pminub", X86umin, v16i8, v32i8,
+ SSE_INTALU_ITINS_P, 1>;
+defm PMINSW : PDI_binop_all<0xEA, "pminsw", X86smin, v8i16, v16i16,
+ SSE_INTALU_ITINS_P, 1>;
+defm PMAXUB : PDI_binop_all<0xDE, "pmaxub", X86umax, v16i8, v32i8,
+ SSE_INTALU_ITINS_P, 1>;
+defm PMAXSW : PDI_binop_all<0xEE, "pmaxsw", X86smax, v8i16, v16i16,
+ SSE_INTALU_ITINS_P, 1>;
+
+// Intrinsic forms
+defm PSUBSB : PDI_binop_all_int<0xE8, "psubsb", int_x86_sse2_psubs_b,
+ int_x86_avx2_psubs_b, SSE_INTALU_ITINS_P, 0>;
+defm PSUBSW : PDI_binop_all_int<0xE9, "psubsw" , int_x86_sse2_psubs_w,
+ int_x86_avx2_psubs_w, SSE_INTALU_ITINS_P, 0>;
+defm PADDSB : PDI_binop_all_int<0xEC, "paddsb" , int_x86_sse2_padds_b,
+ int_x86_avx2_padds_b, SSE_INTALU_ITINS_P, 1>;
+defm PADDSW : PDI_binop_all_int<0xED, "paddsw" , int_x86_sse2_padds_w,
+ int_x86_avx2_padds_w, SSE_INTALU_ITINS_P, 1>;
+defm PADDUSB : PDI_binop_all_int<0xDC, "paddusb", int_x86_sse2_paddus_b,
+ int_x86_avx2_paddus_b, SSE_INTALU_ITINS_P, 1>;
+defm PADDUSW : PDI_binop_all_int<0xDD, "paddusw", int_x86_sse2_paddus_w,
+ int_x86_avx2_paddus_w, SSE_INTALU_ITINS_P, 1>;
+defm PMADDWD : PDI_binop_all_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd,
+ int_x86_avx2_pmadd_wd, SSE_PMADD, 1>;
+defm PAVGB : PDI_binop_all_int<0xE0, "pavgb", int_x86_sse2_pavg_b,
+ int_x86_avx2_pavg_b, SSE_INTALU_ITINS_P, 1>;
+defm PAVGW : PDI_binop_all_int<0xE3, "pavgw", int_x86_sse2_pavg_w,
+ int_x86_avx2_pavg_w, SSE_INTALU_ITINS_P, 1>;
+defm PSADBW : PDI_binop_all_int<0xF6, "psadbw", int_x86_sse2_psad_bw,
+ int_x86_avx2_psad_bw, SSE_PMADD, 1>;
+
+let Predicates = [HasAVX] in
+defm VPMULUDQ : PDI_binop_rm2<0xF4, "vpmuludq", X86pmuludq, v2i64, v4i32, VR128,
+ loadv2i64, i128mem, SSE_INTMUL_ITINS_P, 1, 0>,
+ VEX_4V;
+let Predicates = [HasAVX2] in
+defm VPMULUDQY : PDI_binop_rm2<0xF4, "vpmuludq", X86pmuludq, v4i64, v8i32,
+ VR256, loadv4i64, i256mem,
+ SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V, VEX_L;
+let Constraints = "$src1 = $dst" in
+defm PMULUDQ : PDI_binop_rm2<0xF4, "pmuludq", X86pmuludq, v2i64, v4i32, VR128,
+ memopv2i64, i128mem, SSE_INTMUL_ITINS_P, 1>;
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Logical Instructions
+//===---------------------------------------------------------------------===//
+
+let Predicates = [HasAVX] in {
+defm VPSLLW : PDI_binop_rmi<0xF1, 0x71, MRM6r, "vpsllw", X86vshl, X86vshli,
+ VR128, v8i16, v8i16, bc_v8i16,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
+defm VPSLLD : PDI_binop_rmi<0xF2, 0x72, MRM6r, "vpslld", X86vshl, X86vshli,
+ VR128, v4i32, v4i32, bc_v4i32,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
+defm VPSLLQ : PDI_binop_rmi<0xF3, 0x73, MRM6r, "vpsllq", X86vshl, X86vshli,
+ VR128, v2i64, v2i64, bc_v2i64,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
+
+defm VPSRLW : PDI_binop_rmi<0xD1, 0x71, MRM2r, "vpsrlw", X86vsrl, X86vsrli,
+ VR128, v8i16, v8i16, bc_v8i16,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
+defm VPSRLD : PDI_binop_rmi<0xD2, 0x72, MRM2r, "vpsrld", X86vsrl, X86vsrli,
+ VR128, v4i32, v4i32, bc_v4i32,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
+defm VPSRLQ : PDI_binop_rmi<0xD3, 0x73, MRM2r, "vpsrlq", X86vsrl, X86vsrli,
+ VR128, v2i64, v2i64, bc_v2i64,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
+
+defm VPSRAW : PDI_binop_rmi<0xE1, 0x71, MRM4r, "vpsraw", X86vsra, X86vsrai,
+ VR128, v8i16, v8i16, bc_v8i16,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
+defm VPSRAD : PDI_binop_rmi<0xE2, 0x72, MRM4r, "vpsrad", X86vsra, X86vsrai,
+ VR128, v4i32, v4i32, bc_v4i32,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
+
+let ExeDomain = SSEPackedInt, SchedRW = [WriteVecShift] in {
+ // 128-bit logical shifts.
+ def VPSLLDQri : PDIi8<0x73, MRM7r,
+ (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
+ "vpslldq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_psll_dq_bs VR128:$src1, imm:$src2))]>,
+ VEX_4V;
+ def VPSRLDQri : PDIi8<0x73, MRM3r,
+ (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
+ "vpsrldq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_psrl_dq_bs VR128:$src1, imm:$src2))]>,
+ VEX_4V;
+ // PSRADQri doesn't exist in SSE[1-3].
+}
+} // Predicates = [HasAVX]
+
+let Predicates = [HasAVX2] in {
+defm VPSLLWY : PDI_binop_rmi<0xF1, 0x71, MRM6r, "vpsllw", X86vshl, X86vshli,
+ VR256, v16i16, v8i16, bc_v8i16,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
+defm VPSLLDY : PDI_binop_rmi<0xF2, 0x72, MRM6r, "vpslld", X86vshl, X86vshli,
+ VR256, v8i32, v4i32, bc_v4i32,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
+defm VPSLLQY : PDI_binop_rmi<0xF3, 0x73, MRM6r, "vpsllq", X86vshl, X86vshli,
+ VR256, v4i64, v2i64, bc_v2i64,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
+
+defm VPSRLWY : PDI_binop_rmi<0xD1, 0x71, MRM2r, "vpsrlw", X86vsrl, X86vsrli,
+ VR256, v16i16, v8i16, bc_v8i16,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
+defm VPSRLDY : PDI_binop_rmi<0xD2, 0x72, MRM2r, "vpsrld", X86vsrl, X86vsrli,
+ VR256, v8i32, v4i32, bc_v4i32,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
+defm VPSRLQY : PDI_binop_rmi<0xD3, 0x73, MRM2r, "vpsrlq", X86vsrl, X86vsrli,
+ VR256, v4i64, v2i64, bc_v2i64,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
+
+defm VPSRAWY : PDI_binop_rmi<0xE1, 0x71, MRM4r, "vpsraw", X86vsra, X86vsrai,
+ VR256, v16i16, v8i16, bc_v8i16,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
+defm VPSRADY : PDI_binop_rmi<0xE2, 0x72, MRM4r, "vpsrad", X86vsra, X86vsrai,
+ VR256, v8i32, v4i32, bc_v4i32,
+ SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
+
+let ExeDomain = SSEPackedInt, SchedRW = [WriteVecShift] in {
+ // 256-bit logical shifts.
+ def VPSLLDQYri : PDIi8<0x73, MRM7r,
+ (outs VR256:$dst), (ins VR256:$src1, i32i8imm:$src2),
+ "vpslldq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR256:$dst,
+ (int_x86_avx2_psll_dq_bs VR256:$src1, imm:$src2))]>,
+ VEX_4V, VEX_L;
+ def VPSRLDQYri : PDIi8<0x73, MRM3r,
+ (outs VR256:$dst), (ins VR256:$src1, i32i8imm:$src2),
+ "vpsrldq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR256:$dst,
+ (int_x86_avx2_psrl_dq_bs VR256:$src1, imm:$src2))]>,
+ VEX_4V, VEX_L;
+ // PSRADQYri doesn't exist in SSE[1-3].
+}
+} // Predicates = [HasAVX2]
+
+let Constraints = "$src1 = $dst" in {
+defm PSLLW : PDI_binop_rmi<0xF1, 0x71, MRM6r, "psllw", X86vshl, X86vshli,
+ VR128, v8i16, v8i16, bc_v8i16,
+ SSE_INTSHIFT_ITINS_P>;
+defm PSLLD : PDI_binop_rmi<0xF2, 0x72, MRM6r, "pslld", X86vshl, X86vshli,
+ VR128, v4i32, v4i32, bc_v4i32,
+ SSE_INTSHIFT_ITINS_P>;
+defm PSLLQ : PDI_binop_rmi<0xF3, 0x73, MRM6r, "psllq", X86vshl, X86vshli,
+ VR128, v2i64, v2i64, bc_v2i64,
+ SSE_INTSHIFT_ITINS_P>;
+
+defm PSRLW : PDI_binop_rmi<0xD1, 0x71, MRM2r, "psrlw", X86vsrl, X86vsrli,
+ VR128, v8i16, v8i16, bc_v8i16,
+ SSE_INTSHIFT_ITINS_P>;
+defm PSRLD : PDI_binop_rmi<0xD2, 0x72, MRM2r, "psrld", X86vsrl, X86vsrli,
+ VR128, v4i32, v4i32, bc_v4i32,
+ SSE_INTSHIFT_ITINS_P>;
+defm PSRLQ : PDI_binop_rmi<0xD3, 0x73, MRM2r, "psrlq", X86vsrl, X86vsrli,
+ VR128, v2i64, v2i64, bc_v2i64,
+ SSE_INTSHIFT_ITINS_P>;
+
+defm PSRAW : PDI_binop_rmi<0xE1, 0x71, MRM4r, "psraw", X86vsra, X86vsrai,
+ VR128, v8i16, v8i16, bc_v8i16,
+ SSE_INTSHIFT_ITINS_P>;
+defm PSRAD : PDI_binop_rmi<0xE2, 0x72, MRM4r, "psrad", X86vsra, X86vsrai,
+ VR128, v4i32, v4i32, bc_v4i32,
+ SSE_INTSHIFT_ITINS_P>;
+
+let ExeDomain = SSEPackedInt, SchedRW = [WriteVecShift] in {
+ // 128-bit logical shifts.
+ def PSLLDQri : PDIi8<0x73, MRM7r,
+ (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
+ "pslldq\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_psll_dq_bs VR128:$src1, imm:$src2))],
+ IIC_SSE_INTSHDQ_P_RI>;
+ def PSRLDQri : PDIi8<0x73, MRM3r,
+ (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
+ "psrldq\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_psrl_dq_bs VR128:$src1, imm:$src2))],
+ IIC_SSE_INTSHDQ_P_RI>;
+ // PSRADQri doesn't exist in SSE[1-3].
+}
+} // Constraints = "$src1 = $dst"
+
+let Predicates = [HasAVX] in {
+ def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2),
+ (VPSLLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
+ def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2),
+ (VPSRLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
+ def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)),
+ (VPSRLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
+
+ // Shift up / down and insert zero's.
+ def : Pat<(v2i64 (X86vshldq VR128:$src, (i8 imm:$amt))),
+ (VPSLLDQri VR128:$src, (BYTE_imm imm:$amt))>;
+ def : Pat<(v2i64 (X86vshrdq VR128:$src, (i8 imm:$amt))),
+ (VPSRLDQri VR128:$src, (BYTE_imm imm:$amt))>;
+}
+
+let Predicates = [HasAVX2] in {
+ def : Pat<(int_x86_avx2_psll_dq VR256:$src1, imm:$src2),
+ (VPSLLDQYri VR256:$src1, (BYTE_imm imm:$src2))>;
+ def : Pat<(int_x86_avx2_psrl_dq VR256:$src1, imm:$src2),
+ (VPSRLDQYri VR256:$src1, (BYTE_imm imm:$src2))>;
+}
+
+let Predicates = [UseSSE2] in {
+ def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2),
+ (PSLLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
+ def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2),
+ (PSRLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
+ def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)),
+ (PSRLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
+
+ // Shift up / down and insert zero's.
+ def : Pat<(v2i64 (X86vshldq VR128:$src, (i8 imm:$amt))),
+ (PSLLDQri VR128:$src, (BYTE_imm imm:$amt))>;
+ def : Pat<(v2i64 (X86vshrdq VR128:$src, (i8 imm:$amt))),
+ (PSRLDQri VR128:$src, (BYTE_imm imm:$amt))>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Comparison Instructions
+//===---------------------------------------------------------------------===//
+
+defm PCMPEQB : PDI_binop_all<0x74, "pcmpeqb", X86pcmpeq, v16i8, v32i8,
+ SSE_INTALU_ITINS_P, 1>;
+defm PCMPEQW : PDI_binop_all<0x75, "pcmpeqw", X86pcmpeq, v8i16, v16i16,
+ SSE_INTALU_ITINS_P, 1>;
+defm PCMPEQD : PDI_binop_all<0x76, "pcmpeqd", X86pcmpeq, v4i32, v8i32,
+ SSE_INTALU_ITINS_P, 1>;
+defm PCMPGTB : PDI_binop_all<0x64, "pcmpgtb", X86pcmpgt, v16i8, v32i8,
+ SSE_INTALU_ITINS_P, 0>;
+defm PCMPGTW : PDI_binop_all<0x65, "pcmpgtw", X86pcmpgt, v8i16, v16i16,
+ SSE_INTALU_ITINS_P, 0>;
+defm PCMPGTD : PDI_binop_all<0x66, "pcmpgtd", X86pcmpgt, v4i32, v8i32,
+ SSE_INTALU_ITINS_P, 0>;
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Shuffle Instructions
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in {
+multiclass sse2_pshuffle<string OpcodeStr, ValueType vt128, ValueType vt256,
+ SDNode OpNode> {
+let Predicates = [HasAVX] in {
+ def V#NAME#ri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, i8imm:$src2),
+ !strconcat("v", OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode VR128:$src1, (i8 imm:$src2))))],
+ IIC_SSE_PSHUF_RI>, VEX, Sched<[WriteShuffle]>;
+ def V#NAME#mi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1, i8imm:$src2),
+ !strconcat("v", OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode (bitconvert (loadv2i64 addr:$src1)),
+ (i8 imm:$src2))))], IIC_SSE_PSHUF_MI>, VEX,
+ Sched<[WriteShuffleLd]>;
+}
+
+let Predicates = [HasAVX2] in {
+ def V#NAME#Yri : Ii8<0x70, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, i8imm:$src2),
+ !strconcat("v", OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (vt256 (OpNode VR256:$src1, (i8 imm:$src2))))],
+ IIC_SSE_PSHUF_RI>, VEX, VEX_L, Sched<[WriteShuffle]>;
+ def V#NAME#Ymi : Ii8<0x70, MRMSrcMem, (outs VR256:$dst),
+ (ins i256mem:$src1, i8imm:$src2),
+ !strconcat("v", OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (vt256 (OpNode (bitconvert (loadv4i64 addr:$src1)),
+ (i8 imm:$src2))))], IIC_SSE_PSHUF_MI>, VEX, VEX_L,
+ Sched<[WriteShuffleLd]>;
+}
+
+let Predicates = [UseSSE2] in {
+ def ri : Ii8<0x70, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode VR128:$src1, (i8 imm:$src2))))],
+ IIC_SSE_PSHUF_RI>, Sched<[WriteShuffle]>;
+ def mi : Ii8<0x70, MRMSrcMem,
+ (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode (bitconvert (memopv2i64 addr:$src1)),
+ (i8 imm:$src2))))], IIC_SSE_PSHUF_MI>,
+ Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+}
+} // ExeDomain = SSEPackedInt
+
+defm PSHUFD : sse2_pshuffle<"pshufd", v4i32, v8i32, X86PShufd>, PD;
+defm PSHUFHW : sse2_pshuffle<"pshufhw", v8i16, v16i16, X86PShufhw>, XS;
+defm PSHUFLW : sse2_pshuffle<"pshuflw", v8i16, v16i16, X86PShuflw>, XD;
+
+let Predicates = [HasAVX] in {
+ def : Pat<(v4f32 (X86PShufd (loadv4f32 addr:$src1), (i8 imm:$imm))),
+ (VPSHUFDmi addr:$src1, imm:$imm)>;
+ def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))),
+ (VPSHUFDri VR128:$src1, imm:$imm)>;
+}
+
+let Predicates = [UseSSE2] in {
+ def : Pat<(v4f32 (X86PShufd (memopv4f32 addr:$src1), (i8 imm:$imm))),
+ (PSHUFDmi addr:$src1, imm:$imm)>;
+ def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))),
+ (PSHUFDri VR128:$src1, imm:$imm)>;
+}
+
+//===---------------------------------------------------------------------===//
+// Packed Integer Pack Instructions (SSE & AVX)
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in {
+multiclass sse2_pack<bits<8> opc, string OpcodeStr, ValueType OutVT,
+ ValueType ArgVT, SDNode OpNode, PatFrag bc_frag,
+ bit Is2Addr = 1> {
+ def rr : PDI<opc, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst,
+ (OutVT (OpNode (ArgVT VR128:$src1), VR128:$src2)))]>,
+ Sched<[WriteShuffle]>;
+ def rm : PDI<opc, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst,
+ (OutVT (OpNode VR128:$src1,
+ (bc_frag (memopv2i64 addr:$src2)))))]>,
+ Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+
+multiclass sse2_pack_y<bits<8> opc, string OpcodeStr, ValueType OutVT,
+ ValueType ArgVT, SDNode OpNode, PatFrag bc_frag> {
+ def Yrr : PDI<opc, MRMSrcReg,
+ (outs VR256:$dst), (ins VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OutVT (OpNode (ArgVT VR256:$src1), VR256:$src2)))]>,
+ Sched<[WriteShuffle]>;
+ def Yrm : PDI<opc, MRMSrcMem,
+ (outs VR256:$dst), (ins VR256:$src1, i256mem:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OutVT (OpNode VR256:$src1,
+ (bc_frag (memopv4i64 addr:$src2)))))]>,
+ Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+
+multiclass sse4_pack<bits<8> opc, string OpcodeStr, ValueType OutVT,
+ ValueType ArgVT, SDNode OpNode, PatFrag bc_frag,
+ bit Is2Addr = 1> {
+ def rr : SS48I<opc, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst,
+ (OutVT (OpNode (ArgVT VR128:$src1), VR128:$src2)))]>,
+ Sched<[WriteShuffle]>;
+ def rm : SS48I<opc, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst,
+ (OutVT (OpNode VR128:$src1,
+ (bc_frag (memopv2i64 addr:$src2)))))]>,
+ Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+
+multiclass sse4_pack_y<bits<8> opc, string OpcodeStr, ValueType OutVT,
+ ValueType ArgVT, SDNode OpNode, PatFrag bc_frag> {
+ def Yrr : SS48I<opc, MRMSrcReg,
+ (outs VR256:$dst), (ins VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OutVT (OpNode (ArgVT VR256:$src1), VR256:$src2)))]>,
+ Sched<[WriteShuffle]>;
+ def Yrm : SS48I<opc, MRMSrcMem,
+ (outs VR256:$dst), (ins VR256:$src1, i256mem:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OutVT (OpNode VR256:$src1,
+ (bc_frag (memopv4i64 addr:$src2)))))]>,
+ Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in {
+ defm VPACKSSWB : sse2_pack<0x63, "vpacksswb", v16i8, v8i16, X86Packss,
+ bc_v8i16, 0>, VEX_4V;
+ defm VPACKSSDW : sse2_pack<0x6B, "vpackssdw", v8i16, v4i32, X86Packss,
+ bc_v4i32, 0>, VEX_4V;
+
+ defm VPACKUSWB : sse2_pack<0x67, "vpackuswb", v16i8, v8i16, X86Packus,
+ bc_v8i16, 0>, VEX_4V;
+ defm VPACKUSDW : sse4_pack<0x2B, "vpackusdw", v8i16, v4i32, X86Packus,
+ bc_v4i32, 0>, VEX_4V;
+}
+
+let Predicates = [HasAVX2] in {
+ defm VPACKSSWB : sse2_pack_y<0x63, "vpacksswb", v32i8, v16i16, X86Packss,
+ bc_v16i16>, VEX_4V, VEX_L;
+ defm VPACKSSDW : sse2_pack_y<0x6B, "vpackssdw", v16i16, v8i32, X86Packss,
+ bc_v8i32>, VEX_4V, VEX_L;
+
+ defm VPACKUSWB : sse2_pack_y<0x67, "vpackuswb", v32i8, v16i16, X86Packus,
+ bc_v16i16>, VEX_4V, VEX_L;
+ defm VPACKUSDW : sse4_pack_y<0x2B, "vpackusdw", v16i16, v8i32, X86Packus,
+ bc_v8i32>, VEX_4V, VEX_L;
+}
+
+let Constraints = "$src1 = $dst" in {
+ defm PACKSSWB : sse2_pack<0x63, "packsswb", v16i8, v8i16, X86Packss,
+ bc_v8i16>;
+ defm PACKSSDW : sse2_pack<0x6B, "packssdw", v8i16, v4i32, X86Packss,
+ bc_v4i32>;
+
+ defm PACKUSWB : sse2_pack<0x67, "packuswb", v16i8, v8i16, X86Packus,
+ bc_v8i16>;
+
+ let Predicates = [HasSSE41] in
+ defm PACKUSDW : sse4_pack<0x2B, "packusdw", v8i16, v4i32, X86Packus,
+ bc_v4i32>;
+}
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Unpack Instructions
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in {
+multiclass sse2_unpack<bits<8> opc, string OpcodeStr, ValueType vt,
+ SDNode OpNode, PatFrag bc_frag, bit Is2Addr = 1> {
+ def rr : PDI<opc, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst, (vt (OpNode VR128:$src1, VR128:$src2)))],
+ IIC_SSE_UNPCK>, Sched<[WriteShuffle]>;
+ def rm : PDI<opc, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst, (OpNode VR128:$src1,
+ (bc_frag (memopv2i64
+ addr:$src2))))],
+ IIC_SSE_UNPCK>,
+ Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+
+multiclass sse2_unpack_y<bits<8> opc, string OpcodeStr, ValueType vt,
+ SDNode OpNode, PatFrag bc_frag> {
+ def Yrr : PDI<opc, MRMSrcReg,
+ (outs VR256:$dst), (ins VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst, (vt (OpNode VR256:$src1, VR256:$src2)))]>,
+ Sched<[WriteShuffle]>;
+ def Yrm : PDI<opc, MRMSrcMem,
+ (outs VR256:$dst), (ins VR256:$src1, i256mem:$src2),
+ !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst, (OpNode VR256:$src1,
+ (bc_frag (memopv4i64 addr:$src2))))]>,
+ Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in {
+ defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, X86Unpckl,
+ bc_v16i8, 0>, VEX_4V;
+ defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, X86Unpckl,
+ bc_v8i16, 0>, VEX_4V;
+ defm VPUNPCKLDQ : sse2_unpack<0x62, "vpunpckldq", v4i32, X86Unpckl,
+ bc_v4i32, 0>, VEX_4V;
+ defm VPUNPCKLQDQ : sse2_unpack<0x6C, "vpunpcklqdq", v2i64, X86Unpckl,
+ bc_v2i64, 0>, VEX_4V;
+
+ defm VPUNPCKHBW : sse2_unpack<0x68, "vpunpckhbw", v16i8, X86Unpckh,
+ bc_v16i8, 0>, VEX_4V;
+ defm VPUNPCKHWD : sse2_unpack<0x69, "vpunpckhwd", v8i16, X86Unpckh,
+ bc_v8i16, 0>, VEX_4V;
+ defm VPUNPCKHDQ : sse2_unpack<0x6A, "vpunpckhdq", v4i32, X86Unpckh,
+ bc_v4i32, 0>, VEX_4V;
+ defm VPUNPCKHQDQ : sse2_unpack<0x6D, "vpunpckhqdq", v2i64, X86Unpckh,
+ bc_v2i64, 0>, VEX_4V;
+}
+
+let Predicates = [HasAVX2] in {
+ defm VPUNPCKLBW : sse2_unpack_y<0x60, "vpunpcklbw", v32i8, X86Unpckl,
+ bc_v32i8>, VEX_4V, VEX_L;
+ defm VPUNPCKLWD : sse2_unpack_y<0x61, "vpunpcklwd", v16i16, X86Unpckl,
+ bc_v16i16>, VEX_4V, VEX_L;
+ defm VPUNPCKLDQ : sse2_unpack_y<0x62, "vpunpckldq", v8i32, X86Unpckl,
+ bc_v8i32>, VEX_4V, VEX_L;
+ defm VPUNPCKLQDQ : sse2_unpack_y<0x6C, "vpunpcklqdq", v4i64, X86Unpckl,
+ bc_v4i64>, VEX_4V, VEX_L;
+
+ defm VPUNPCKHBW : sse2_unpack_y<0x68, "vpunpckhbw", v32i8, X86Unpckh,
+ bc_v32i8>, VEX_4V, VEX_L;
+ defm VPUNPCKHWD : sse2_unpack_y<0x69, "vpunpckhwd", v16i16, X86Unpckh,
+ bc_v16i16>, VEX_4V, VEX_L;
+ defm VPUNPCKHDQ : sse2_unpack_y<0x6A, "vpunpckhdq", v8i32, X86Unpckh,
+ bc_v8i32>, VEX_4V, VEX_L;
+ defm VPUNPCKHQDQ : sse2_unpack_y<0x6D, "vpunpckhqdq", v4i64, X86Unpckh,
+ bc_v4i64>, VEX_4V, VEX_L;
+}
+
+let Constraints = "$src1 = $dst" in {
+ defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, X86Unpckl,
+ bc_v16i8>;
+ defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, X86Unpckl,
+ bc_v8i16>;
+ defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, X86Unpckl,
+ bc_v4i32>;
+ defm PUNPCKLQDQ : sse2_unpack<0x6C, "punpcklqdq", v2i64, X86Unpckl,
+ bc_v2i64>;
+
+ defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, X86Unpckh,
+ bc_v16i8>;
+ defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, X86Unpckh,
+ bc_v8i16>;
+ defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, X86Unpckh,
+ bc_v4i32>;
+ defm PUNPCKHQDQ : sse2_unpack<0x6D, "punpckhqdq", v2i64, X86Unpckh,
+ bc_v2i64>;
+}
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Extract and Insert
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in {
+multiclass sse2_pinsrw<bit Is2Addr = 1> {
+ def rri : Ii8<0xC4, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1,
+ GR32orGR64:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (X86pinsrw VR128:$src1, GR32orGR64:$src2, imm:$src3))],
+ IIC_SSE_PINSRW>, Sched<[WriteShuffle]>;
+ def rmi : Ii8<0xC4, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1,
+ i16mem:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (X86pinsrw VR128:$src1, (extloadi16 addr:$src2),
+ imm:$src3))], IIC_SSE_PINSRW>,
+ Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+
+// Extract
+let Predicates = [HasAVX] in
+def VPEXTRWri : Ii8<0xC5, MRMSrcReg,
+ (outs GR32orGR64:$dst), (ins VR128:$src1, i32i8imm:$src2),
+ "vpextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1),
+ imm:$src2))]>, PD, VEX,
+ Sched<[WriteShuffle]>;
+def PEXTRWri : PDIi8<0xC5, MRMSrcReg,
+ (outs GR32orGR64:$dst), (ins VR128:$src1, i32i8imm:$src2),
+ "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1),
+ imm:$src2))], IIC_SSE_PEXTRW>,
+ Sched<[WriteShuffleLd, ReadAfterLd]>;
+
+// Insert
+let Predicates = [HasAVX] in
+defm VPINSRW : sse2_pinsrw<0>, PD, VEX_4V;
+
+let Predicates = [UseSSE2], Constraints = "$src1 = $dst" in
+defm PINSRW : sse2_pinsrw, PD;
+
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Mask Creation
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt, SchedRW = [WriteVecLogic] in {
+
+def VPMOVMSKBrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst),
+ (ins VR128:$src),
+ "pmovmskb\t{$src, $dst|$dst, $src}",
+ [(set GR32orGR64:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))],
+ IIC_SSE_MOVMSK>, VEX;
+
+let Predicates = [HasAVX2] in {
+def VPMOVMSKBYrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst),
+ (ins VR256:$src),
+ "pmovmskb\t{$src, $dst|$dst, $src}",
+ [(set GR32orGR64:$dst, (int_x86_avx2_pmovmskb VR256:$src))]>,
+ VEX, VEX_L;
+}
+
+def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst), (ins VR128:$src),
+ "pmovmskb\t{$src, $dst|$dst, $src}",
+ [(set GR32orGR64:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))],
+ IIC_SSE_MOVMSK>;
+
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Conditional Store
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt, SchedRW = [WriteStore] in {
+
+let Uses = [EDI], Predicates = [HasAVX,Not64BitMode] in
+def VMASKMOVDQU : VPDI<0xF7, MRMSrcReg, (outs),
+ (ins VR128:$src, VR128:$mask),
+ "maskmovdqu\t{$mask, $src|$src, $mask}",
+ [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)],
+ IIC_SSE_MASKMOV>, VEX;
+let Uses = [RDI], Predicates = [HasAVX,In64BitMode] in
+def VMASKMOVDQU64 : VPDI<0xF7, MRMSrcReg, (outs),
+ (ins VR128:$src, VR128:$mask),
+ "maskmovdqu\t{$mask, $src|$src, $mask}",
+ [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)],
+ IIC_SSE_MASKMOV>, VEX;
+
+let Uses = [EDI], Predicates = [UseSSE2,Not64BitMode] in
+def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
+ "maskmovdqu\t{$mask, $src|$src, $mask}",
+ [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)],
+ IIC_SSE_MASKMOV>;
+let Uses = [RDI], Predicates = [UseSSE2,In64BitMode] in
+def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
+ "maskmovdqu\t{$mask, $src|$src, $mask}",
+ [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)],
+ IIC_SSE_MASKMOV>;
+
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Move Doubleword
+//===---------------------------------------------------------------------===//
+
+//===---------------------------------------------------------------------===//
+// Move Int Doubleword to Packed Double Int
+//
+def VMOVDI2PDIrr : VS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (scalar_to_vector GR32:$src)))], IIC_SSE_MOVDQ>,
+ VEX, Sched<[WriteMove]>;
+def VMOVDI2PDIrm : VS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))))],
+ IIC_SSE_MOVDQ>,
+ VEX, Sched<[WriteLoad]>;
+def VMOV64toPQIrr : VRS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2i64 (scalar_to_vector GR64:$src)))],
+ IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>;
+let isCodeGenOnly = 1 in
+def VMOV64toSDrr : VRS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (bitconvert GR64:$src))],
+ IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>;
+
+def MOVDI2PDIrr : S2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (scalar_to_vector GR32:$src)))], IIC_SSE_MOVDQ>,
+ Sched<[WriteMove]>;
+def MOVDI2PDIrm : S2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))))],
+ IIC_SSE_MOVDQ>, Sched<[WriteLoad]>;
+def MOV64toPQIrr : RS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
+ "mov{d|q}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2i64 (scalar_to_vector GR64:$src)))],
+ IIC_SSE_MOVDQ>, Sched<[WriteMove]>;
+let isCodeGenOnly = 1 in
+def MOV64toSDrr : RS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
+ "mov{d|q}\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (bitconvert GR64:$src))],
+ IIC_SSE_MOVDQ>, Sched<[WriteMove]>;
+
+//===---------------------------------------------------------------------===//
+// Move Int Doubleword to Single Scalar
+//
+let isCodeGenOnly = 1 in {
+ def VMOVDI2SSrr : VS2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (bitconvert GR32:$src))],
+ IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>;
+
+ def VMOVDI2SSrm : VS2I<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))],
+ IIC_SSE_MOVDQ>,
+ VEX, Sched<[WriteLoad]>;
+ def MOVDI2SSrr : S2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (bitconvert GR32:$src))],
+ IIC_SSE_MOVDQ>, Sched<[WriteMove]>;
+
+ def MOVDI2SSrm : S2I<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))],
+ IIC_SSE_MOVDQ>, Sched<[WriteLoad]>;
+}
+
+//===---------------------------------------------------------------------===//
+// Move Packed Doubleword Int to Packed Double Int
+//
+def VMOVPDI2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (vector_extract (v4i32 VR128:$src),
+ (iPTR 0)))], IIC_SSE_MOVD_ToGP>, VEX,
+ Sched<[WriteMove]>;
+def VMOVPDI2DImr : VS2I<0x7E, MRMDestMem, (outs),
+ (ins i32mem:$dst, VR128:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(store (i32 (vector_extract (v4i32 VR128:$src),
+ (iPTR 0))), addr:$dst)], IIC_SSE_MOVDQ>,
+ VEX, Sched<[WriteStore]>;
+def MOVPDI2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (vector_extract (v4i32 VR128:$src),
+ (iPTR 0)))], IIC_SSE_MOVD_ToGP>,
+ Sched<[WriteMove]>;
+def MOVPDI2DImr : S2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(store (i32 (vector_extract (v4i32 VR128:$src),
+ (iPTR 0))), addr:$dst)],
+ IIC_SSE_MOVDQ>, Sched<[WriteStore]>;
+
+def : Pat<(v8i32 (X86Vinsert (v8i32 immAllZerosV), GR32:$src2, (iPTR 0))),
+ (SUBREG_TO_REG (i32 0), (VMOVDI2PDIrr GR32:$src2), sub_xmm)>;
+
+def : Pat<(v4i64 (X86Vinsert (bc_v4i64 (v8i32 immAllZerosV)), GR64:$src2, (iPTR 0))),
+ (SUBREG_TO_REG (i32 0), (VMOV64toPQIrr GR64:$src2), sub_xmm)>;
+
+def : Pat<(v8i32 (X86Vinsert undef, GR32:$src2, (iPTR 0))),
+ (SUBREG_TO_REG (i32 0), (VMOVDI2PDIrr GR32:$src2), sub_xmm)>;
+
+def : Pat<(v4i64 (X86Vinsert undef, GR64:$src2, (iPTR 0))),
+ (SUBREG_TO_REG (i32 0), (VMOV64toPQIrr GR64:$src2), sub_xmm)>;
+
+//===---------------------------------------------------------------------===//
+// Move Packed Doubleword Int first element to Doubleword Int
+//
+let SchedRW = [WriteMove] in {
+def VMOVPQIto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (vector_extract (v2i64 VR128:$src),
+ (iPTR 0)))],
+ IIC_SSE_MOVD_ToGP>,
+ VEX;
+
+def MOVPQIto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
+ "mov{d|q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (vector_extract (v2i64 VR128:$src),
+ (iPTR 0)))],
+ IIC_SSE_MOVD_ToGP>;
+} //SchedRW
+
+//===---------------------------------------------------------------------===//
+// Bitcast FR64 <-> GR64
+//
+let isCodeGenOnly = 1 in {
+ let Predicates = [UseAVX] in
+ def VMOV64toSDrm : VS2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>,
+ VEX, Sched<[WriteLoad]>;
+ def VMOVSDto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (bitconvert FR64:$src))],
+ IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>;
+ def VMOVSDto64mr : VRS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(store (i64 (bitconvert FR64:$src)), addr:$dst)],
+ IIC_SSE_MOVDQ>, VEX, Sched<[WriteStore]>;
+
+ def MOV64toSDrm : S2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))],
+ IIC_SSE_MOVDQ>, Sched<[WriteLoad]>;
+ def MOVSDto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
+ "mov{d|q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (bitconvert FR64:$src))],
+ IIC_SSE_MOVD_ToGP>, Sched<[WriteMove]>;
+ def MOVSDto64mr : RS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(store (i64 (bitconvert FR64:$src)), addr:$dst)],
+ IIC_SSE_MOVDQ>, Sched<[WriteStore]>;
+}
+
+//===---------------------------------------------------------------------===//
+// Move Scalar Single to Double Int
+//
+let isCodeGenOnly = 1 in {
+ def VMOVSS2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (bitconvert FR32:$src))],
+ IIC_SSE_MOVD_ToGP>, VEX, Sched<[WriteMove]>;
+ def VMOVSS2DImr : VS2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(store (i32 (bitconvert FR32:$src)), addr:$dst)],
+ IIC_SSE_MOVDQ>, VEX, Sched<[WriteStore]>;
+ def MOVSS2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (bitconvert FR32:$src))],
+ IIC_SSE_MOVD_ToGP>, Sched<[WriteMove]>;
+ def MOVSS2DImr : S2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(store (i32 (bitconvert FR32:$src)), addr:$dst)],
+ IIC_SSE_MOVDQ>, Sched<[WriteStore]>;
+}
+
+//===---------------------------------------------------------------------===//
+// Patterns and instructions to describe movd/movq to XMM register zero-extends
+//
+let isCodeGenOnly = 1, SchedRW = [WriteMove] in {
+let AddedComplexity = 15 in {
+def VMOVZQI2PQIrr : VS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
+ "movq\t{$src, $dst|$dst, $src}", // X86-64 only
+ [(set VR128:$dst, (v2i64 (X86vzmovl
+ (v2i64 (scalar_to_vector GR64:$src)))))],
+ IIC_SSE_MOVDQ>,
+ VEX, VEX_W;
+def MOVZQI2PQIrr : RS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
+ "mov{d|q}\t{$src, $dst|$dst, $src}", // X86-64 only
+ [(set VR128:$dst, (v2i64 (X86vzmovl
+ (v2i64 (scalar_to_vector GR64:$src)))))],
+ IIC_SSE_MOVDQ>;
+}
+} // isCodeGenOnly, SchedRW
+
+let Predicates = [UseAVX] in {
+ let AddedComplexity = 15 in
+ def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))),
+ (VMOVDI2PDIrr GR32:$src)>;
+
+ // AVX 128-bit movd/movq instruction write zeros in the high 128-bit part.
+ let AddedComplexity = 20 in {
+ def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
+ (VMOVDI2PDIrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))),
+ (VMOVDI2PDIrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
+ (VMOVDI2PDIrm addr:$src)>;
+ }
+ // Use regular 128-bit instructions to match 256-bit scalar_to_vec+zext.
+ def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
+ (v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVDI2PDIrr GR32:$src), sub_xmm)>;
+ def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
+ (v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))),
+ (SUBREG_TO_REG (i64 0), (VMOVZQI2PQIrr GR64:$src), sub_xmm)>;
+}
+
+let Predicates = [UseSSE2] in {
+ let AddedComplexity = 15 in
+ def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))),
+ (MOVDI2PDIrr GR32:$src)>;
+
+ let AddedComplexity = 20 in {
+ def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
+ (MOVDI2PDIrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))),
+ (MOVDI2PDIrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
+ (MOVDI2PDIrm addr:$src)>;
+ }
+}
+
+// These are the correct encodings of the instructions so that we know how to
+// read correct assembly, even though we continue to emit the wrong ones for
+// compatibility with Darwin's buggy assembler.
+def : InstAlias<"movq\t{$src, $dst|$dst, $src}",
+ (MOV64toPQIrr VR128:$dst, GR64:$src), 0>;
+def : InstAlias<"movq\t{$src, $dst|$dst, $src}",
+ (MOVPQIto64rr GR64:$dst, VR128:$src), 0>;
+// Allow "vmovd" but print "vmovq" since we don't need compatibility for AVX.
+def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}",
+ (VMOV64toPQIrr VR128:$dst, GR64:$src), 0>;
+def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}",
+ (VMOVPQIto64rr GR64:$dst, VR128:$src), 0>;
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Move Quadword
+//===---------------------------------------------------------------------===//
+
+//===---------------------------------------------------------------------===//
+// Move Quadword Int to Packed Quadword Int
+//
+
+let SchedRW = [WriteLoad] in {
+def VMOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS,
+ VEX, Requires<[UseAVX]>;
+def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))))],
+ IIC_SSE_MOVDQ>, XS,
+ Requires<[UseSSE2]>; // SSE2 instruction with XS Prefix
+} // SchedRW
+
+//===---------------------------------------------------------------------===//
+// Move Packed Quadword Int to Quadword Int
+//
+let SchedRW = [WriteStore] in {
+def VMOVPQI2QImr : VS2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(store (i64 (vector_extract (v2i64 VR128:$src),
+ (iPTR 0))), addr:$dst)],
+ IIC_SSE_MOVDQ>, VEX;
+def MOVPQI2QImr : S2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(store (i64 (vector_extract (v2i64 VR128:$src),
+ (iPTR 0))), addr:$dst)],
+ IIC_SSE_MOVDQ>;
+} // SchedRW
+
+// For disassembler only
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
+ SchedRW = [WriteVecLogic] in {
+def VMOVPQI2QIrr : VS2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVQ_RR>, VEX;
+def MOVPQI2QIrr : S2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVQ_RR>;
+}
+
+//===---------------------------------------------------------------------===//
+// Store / copy lower 64-bits of a XMM register.
+//
+let Predicates = [UseAVX] in
+def : Pat<(int_x86_sse2_storel_dq addr:$dst, VR128:$src),
+ (VMOVPQI2QImr addr:$dst, VR128:$src)>;
+let Predicates = [UseSSE2] in
+def : Pat<(int_x86_sse2_storel_dq addr:$dst, VR128:$src),
+ (MOVPQI2QImr addr:$dst, VR128:$src)>;
+
+let isCodeGenOnly = 1, AddedComplexity = 20 in {
+def VMOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2i64 (X86vzmovl (v2i64 (scalar_to_vector
+ (loadi64 addr:$src))))))],
+ IIC_SSE_MOVDQ>,
+ XS, VEX, Requires<[UseAVX]>, Sched<[WriteLoad]>;
+
+def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2i64 (X86vzmovl (v2i64 (scalar_to_vector
+ (loadi64 addr:$src))))))],
+ IIC_SSE_MOVDQ>,
+ XS, Requires<[UseSSE2]>, Sched<[WriteLoad]>;
+}
+
+let Predicates = [UseAVX], AddedComplexity = 20 in {
+ def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4f32 addr:$src)))),
+ (VMOVZQI2PQIrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzload addr:$src)),
+ (VMOVZQI2PQIrm addr:$src)>;
+}
+
+let Predicates = [UseSSE2], AddedComplexity = 20 in {
+ def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4f32 addr:$src)))),
+ (MOVZQI2PQIrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzload addr:$src)), (MOVZQI2PQIrm addr:$src)>;
+}
+
+let Predicates = [HasAVX] in {
+def : Pat<(v4i64 (alignedX86vzload addr:$src)),
+ (SUBREG_TO_REG (i32 0), (VMOVAPSrm addr:$src), sub_xmm)>;
+def : Pat<(v4i64 (X86vzload addr:$src)),
+ (SUBREG_TO_REG (i32 0), (VMOVUPSrm addr:$src), sub_xmm)>;
+}
+
+//===---------------------------------------------------------------------===//
+// Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in
+// IA32 document. movq xmm1, xmm2 does clear the high bits.
+//
+let SchedRW = [WriteVecLogic] in {
+let AddedComplexity = 15 in
+def VMOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))],
+ IIC_SSE_MOVQ_RR>,
+ XS, VEX, Requires<[UseAVX]>;
+let AddedComplexity = 15 in
+def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))],
+ IIC_SSE_MOVQ_RR>,
+ XS, Requires<[UseSSE2]>;
+} // SchedRW
+
+let isCodeGenOnly = 1, SchedRW = [WriteVecLogicLd] in {
+let AddedComplexity = 20 in
+def VMOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2i64 (X86vzmovl
+ (loadv2i64 addr:$src))))],
+ IIC_SSE_MOVDQ>,
+ XS, VEX, Requires<[UseAVX]>;
+let AddedComplexity = 20 in {
+def MOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2i64 (X86vzmovl
+ (loadv2i64 addr:$src))))],
+ IIC_SSE_MOVDQ>,
+ XS, Requires<[UseSSE2]>;
+}
+} // isCodeGenOnly, SchedRW
+
+let AddedComplexity = 20 in {
+ let Predicates = [UseAVX] in {
+ def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))),
+ (VMOVZPQILo2PQIrr VR128:$src)>;
+ }
+ let Predicates = [UseSSE2] in {
+ def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))),
+ (MOVZPQILo2PQIrr VR128:$src)>;
+ }
+}
+
+//===---------------------------------------------------------------------===//
+// SSE3 - Replicate Single FP - MOVSHDUP and MOVSLDUP
+//===---------------------------------------------------------------------===//
+multiclass sse3_replicate_sfp<bits<8> op, SDNode OpNode, string OpcodeStr,
+ ValueType vt, RegisterClass RC, PatFrag mem_frag,
+ X86MemOperand x86memop> {
+def rr : S3SI<op, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (vt (OpNode RC:$src)))],
+ IIC_SSE_MOV_LH>, Sched<[WriteFShuffle]>;
+def rm : S3SI<op, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (OpNode (mem_frag addr:$src)))],
+ IIC_SSE_MOV_LH>, Sched<[WriteLoad]>;
+}
+
+let Predicates = [HasAVX] in {
+ defm VMOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup",
+ v4f32, VR128, loadv4f32, f128mem>, VEX;
+ defm VMOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup",
+ v4f32, VR128, loadv4f32, f128mem>, VEX;
+ defm VMOVSHDUPY : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup",
+ v8f32, VR256, loadv8f32, f256mem>, VEX, VEX_L;
+ defm VMOVSLDUPY : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup",
+ v8f32, VR256, loadv8f32, f256mem>, VEX, VEX_L;
+}
+defm MOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "movshdup", v4f32, VR128,
+ memopv4f32, f128mem>;
+defm MOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "movsldup", v4f32, VR128,
+ memopv4f32, f128mem>;
+
+let Predicates = [HasAVX] in {
+ def : Pat<(v4i32 (X86Movshdup VR128:$src)),
+ (VMOVSHDUPrr VR128:$src)>;
+ def : Pat<(v4i32 (X86Movshdup (bc_v4i32 (loadv2i64 addr:$src)))),
+ (VMOVSHDUPrm addr:$src)>;
+ def : Pat<(v4i32 (X86Movsldup VR128:$src)),
+ (VMOVSLDUPrr VR128:$src)>;
+ def : Pat<(v4i32 (X86Movsldup (bc_v4i32 (loadv2i64 addr:$src)))),
+ (VMOVSLDUPrm addr:$src)>;
+ def : Pat<(v8i32 (X86Movshdup VR256:$src)),
+ (VMOVSHDUPYrr VR256:$src)>;
+ def : Pat<(v8i32 (X86Movshdup (bc_v8i32 (loadv4i64 addr:$src)))),
+ (VMOVSHDUPYrm addr:$src)>;
+ def : Pat<(v8i32 (X86Movsldup VR256:$src)),
+ (VMOVSLDUPYrr VR256:$src)>;
+ def : Pat<(v8i32 (X86Movsldup (bc_v8i32 (loadv4i64 addr:$src)))),
+ (VMOVSLDUPYrm addr:$src)>;
+}
+
+let Predicates = [UseSSE3] in {
+ def : Pat<(v4i32 (X86Movshdup VR128:$src)),
+ (MOVSHDUPrr VR128:$src)>;
+ def : Pat<(v4i32 (X86Movshdup (bc_v4i32 (memopv2i64 addr:$src)))),
+ (MOVSHDUPrm addr:$src)>;
+ def : Pat<(v4i32 (X86Movsldup VR128:$src)),
+ (MOVSLDUPrr VR128:$src)>;
+ def : Pat<(v4i32 (X86Movsldup (bc_v4i32 (memopv2i64 addr:$src)))),
+ (MOVSLDUPrm addr:$src)>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSE3 - Replicate Double FP - MOVDDUP
+//===---------------------------------------------------------------------===//
+
+multiclass sse3_replicate_dfp<string OpcodeStr> {
+let neverHasSideEffects = 1 in
+def rr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [], IIC_SSE_MOV_LH>, Sched<[WriteFShuffle]>;
+def rm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst,
+ (v2f64 (X86Movddup
+ (scalar_to_vector (loadf64 addr:$src)))))],
+ IIC_SSE_MOV_LH>, Sched<[WriteLoad]>;
+}
+
+// FIXME: Merge with above classe when there're patterns for the ymm version
+multiclass sse3_replicate_dfp_y<string OpcodeStr> {
+def rr : S3DI<0x12, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (v4f64 (X86Movddup VR256:$src)))]>,
+ Sched<[WriteFShuffle]>;
+def rm : S3DI<0x12, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst,
+ (v4f64 (X86Movddup
+ (scalar_to_vector (loadf64 addr:$src)))))]>,
+ Sched<[WriteLoad]>;
+}
+
+let Predicates = [HasAVX] in {
+ defm VMOVDDUP : sse3_replicate_dfp<"vmovddup">, VEX;
+ defm VMOVDDUPY : sse3_replicate_dfp_y<"vmovddup">, VEX, VEX_L;
+}
+
+defm MOVDDUP : sse3_replicate_dfp<"movddup">;
+
+let Predicates = [HasAVX] in {
+ def : Pat<(X86Movddup (loadv2f64 addr:$src)),
+ (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
+ def : Pat<(X86Movddup (bc_v2f64 (loadv4f32 addr:$src))),
+ (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
+ def : Pat<(X86Movddup (bc_v2f64 (loadv2i64 addr:$src))),
+ (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
+ def : Pat<(X86Movddup (bc_v2f64
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))))),
+ (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
+
+ // 256-bit version
+ def : Pat<(X86Movddup (loadv4f64 addr:$src)),
+ (VMOVDDUPYrm addr:$src)>;
+ def : Pat<(X86Movddup (loadv4i64 addr:$src)),
+ (VMOVDDUPYrm addr:$src)>;
+ def : Pat<(X86Movddup (v4i64 (scalar_to_vector (loadi64 addr:$src)))),
+ (VMOVDDUPYrm addr:$src)>;
+ def : Pat<(X86Movddup (v4i64 VR256:$src)),
+ (VMOVDDUPYrr VR256:$src)>;
+}
+
+let Predicates = [UseSSE3] in {
+ def : Pat<(X86Movddup (memopv2f64 addr:$src)),
+ (MOVDDUPrm addr:$src)>;
+ def : Pat<(X86Movddup (bc_v2f64 (memopv4f32 addr:$src))),
+ (MOVDDUPrm addr:$src)>;
+ def : Pat<(X86Movddup (bc_v2f64 (memopv2i64 addr:$src))),
+ (MOVDDUPrm addr:$src)>;
+ def : Pat<(X86Movddup (bc_v2f64
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))))),
+ (MOVDDUPrm addr:$src)>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSE3 - Move Unaligned Integer
+//===---------------------------------------------------------------------===//
+
+let SchedRW = [WriteLoad] in {
+let Predicates = [HasAVX] in {
+ def VLDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "vlddqu\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>, VEX;
+ def VLDDQUYrm : S3DI<0xF0, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
+ "vlddqu\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst, (int_x86_avx_ldu_dq_256 addr:$src))]>,
+ VEX, VEX_L;
+}
+def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "lddqu\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))],
+ IIC_SSE_LDDQU>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSE3 - Arithmetic
+//===---------------------------------------------------------------------===//
+
+multiclass sse3_addsub<Intrinsic Int, string OpcodeStr, RegisterClass RC,
+ X86MemOperand x86memop, OpndItins itins,
+ bit Is2Addr = 1> {
+ def rr : I<0xD0, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (Int RC:$src1, RC:$src2))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def rm : I<0xD0, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (Int RC:$src1, (memop addr:$src2)))], itins.rr>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in {
+ let ExeDomain = SSEPackedSingle in {
+ defm VADDSUBPS : sse3_addsub<int_x86_sse3_addsub_ps, "vaddsubps", VR128,
+ f128mem, SSE_ALU_F32P, 0>, XD, VEX_4V;
+ defm VADDSUBPSY : sse3_addsub<int_x86_avx_addsub_ps_256, "vaddsubps", VR256,
+ f256mem, SSE_ALU_F32P, 0>, XD, VEX_4V, VEX_L;
+ }
+ let ExeDomain = SSEPackedDouble in {
+ defm VADDSUBPD : sse3_addsub<int_x86_sse3_addsub_pd, "vaddsubpd", VR128,
+ f128mem, SSE_ALU_F64P, 0>, PD, VEX_4V;
+ defm VADDSUBPDY : sse3_addsub<int_x86_avx_addsub_pd_256, "vaddsubpd", VR256,
+ f256mem, SSE_ALU_F64P, 0>, PD, VEX_4V, VEX_L;
+ }
+}
+let Constraints = "$src1 = $dst", Predicates = [UseSSE3] in {
+ let ExeDomain = SSEPackedSingle in
+ defm ADDSUBPS : sse3_addsub<int_x86_sse3_addsub_ps, "addsubps", VR128,
+ f128mem, SSE_ALU_F32P>, XD;
+ let ExeDomain = SSEPackedDouble in
+ defm ADDSUBPD : sse3_addsub<int_x86_sse3_addsub_pd, "addsubpd", VR128,
+ f128mem, SSE_ALU_F64P>, PD;
+}
+
+// Patterns used to select 'addsub' instructions.
+let Predicates = [HasAVX] in {
+ // Constant 170 corresponds to the binary mask '10101010'.
+ // When used as a blend mask, it allows selecting eight elements from two
+ // input vectors as follow:
+ // - Even-numbered values in the destination are copied from
+ // the corresponding elements in the first input vector;
+ // - Odd-numbered values in the destination are copied from
+ // the corresponding elements in the second input vector.
+
+ def : Pat<(v8f32 (X86Blendi (v8f32 (fsub VR256:$lhs, VR256:$rhs)),
+ (v8f32 (fadd VR256:$lhs, VR256:$rhs)), (i32 170))),
+ (VADDSUBPSYrr VR256:$lhs, VR256:$rhs)>;
+
+ // Constant 10 corresponds to the binary mask '1010'.
+ // In the two pattens below, constant 10 is used as a blend mask to select
+ // - the 1st and 3rd element from the first input vector (the 'fsub' node);
+ // - the 2nd and 4th element from the second input vector (the 'fadd' node).
+
+ def : Pat<(v4f64 (X86Blendi (v4f64 (fsub VR256:$lhs, VR256:$rhs)),
+ (v4f64 (fadd VR256:$lhs, VR256:$rhs)), (i32 10))),
+ (VADDSUBPDYrr VR256:$lhs, VR256:$rhs)>;
+ def : Pat<(v4f64 (X86Blendi (v4f64 (fsub VR256:$lhs, VR256:$rhs)),
+ (v4f64 (fadd VR256:$lhs, VR256:$rhs)), (i32 10))),
+ (VADDSUBPDYrr VR256:$lhs, VR256:$rhs)>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 (fsub VR128:$lhs, VR128:$rhs)),
+ (v4f32 (fadd VR128:$lhs, VR128:$rhs)), (i32 10))),
+ (VADDSUBPSrr VR128:$lhs, VR128:$rhs)>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 (fsub VR128:$lhs, VR128:$rhs)),
+ (v2f64 (fadd VR128:$lhs, VR128:$rhs)), (i32 2))),
+ (VADDSUBPDrr VR128:$lhs, VR128:$rhs)>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 (fadd VR128:$lhs, VR128:$rhs)),
+ (v2f64 (fsub VR128:$lhs, VR128:$rhs)))),
+ (VADDSUBPDrr VR128:$lhs, VR128:$rhs)>;
+}
+
+let Predicates = [UseSSE3] in {
+ // Constant 10 corresponds to the binary mask '1010'.
+ // In the pattern below, it is used as a blend mask to select:
+ // - the 1st and 3rd element from the first input vector (the fsub node);
+ // - the 2nd and 4th element from the second input vector (the fadd node).
+
+ def : Pat<(v4f32 (X86Blendi (v4f32 (fsub VR128:$lhs, VR128:$rhs)),
+ (v4f32 (fadd VR128:$lhs, VR128:$rhs)), (i32 10))),
+ (ADDSUBPSrr VR128:$lhs, VR128:$rhs)>;
+
+ def : Pat<(v2f64 (X86Blendi (v2f64 (fsub VR128:$lhs, VR128:$rhs)),
+ (v2f64 (fadd VR128:$lhs, VR128:$rhs)), (i32 2))),
+ (ADDSUBPDrr VR128:$lhs, VR128:$rhs)>;
+ def : Pat<(v2f64 (X86Movsd (v2f64 (fadd VR128:$lhs, VR128:$rhs)),
+ (v2f64 (fsub VR128:$lhs, VR128:$rhs)))),
+ (ADDSUBPDrr VR128:$lhs, VR128:$rhs)>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSE3 Instructions
+//===---------------------------------------------------------------------===//
+
+// Horizontal ops
+multiclass S3D_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC,
+ X86MemOperand x86memop, SDNode OpNode, bit Is2Addr = 1> {
+ def rr : S3DI<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], IIC_SSE_HADDSUB_RR>,
+ Sched<[WriteFAdd]>;
+
+ def rm : S3DI<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1, (memop addr:$src2))))],
+ IIC_SSE_HADDSUB_RM>, Sched<[WriteFAddLd, ReadAfterLd]>;
+}
+multiclass S3_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC,
+ X86MemOperand x86memop, SDNode OpNode, bit Is2Addr = 1> {
+ def rr : S3I<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], IIC_SSE_HADDSUB_RR>,
+ Sched<[WriteFAdd]>;
+
+ def rm : S3I<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1, (memop addr:$src2))))],
+ IIC_SSE_HADDSUB_RM>, Sched<[WriteFAddLd, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in {
+ let ExeDomain = SSEPackedSingle in {
+ defm VHADDPS : S3D_Int<0x7C, "vhaddps", v4f32, VR128, f128mem,
+ X86fhadd, 0>, VEX_4V;
+ defm VHSUBPS : S3D_Int<0x7D, "vhsubps", v4f32, VR128, f128mem,
+ X86fhsub, 0>, VEX_4V;
+ defm VHADDPSY : S3D_Int<0x7C, "vhaddps", v8f32, VR256, f256mem,
+ X86fhadd, 0>, VEX_4V, VEX_L;
+ defm VHSUBPSY : S3D_Int<0x7D, "vhsubps", v8f32, VR256, f256mem,
+ X86fhsub, 0>, VEX_4V, VEX_L;
+ }
+ let ExeDomain = SSEPackedDouble in {
+ defm VHADDPD : S3_Int <0x7C, "vhaddpd", v2f64, VR128, f128mem,
+ X86fhadd, 0>, VEX_4V;
+ defm VHSUBPD : S3_Int <0x7D, "vhsubpd", v2f64, VR128, f128mem,
+ X86fhsub, 0>, VEX_4V;
+ defm VHADDPDY : S3_Int <0x7C, "vhaddpd", v4f64, VR256, f256mem,
+ X86fhadd, 0>, VEX_4V, VEX_L;
+ defm VHSUBPDY : S3_Int <0x7D, "vhsubpd", v4f64, VR256, f256mem,
+ X86fhsub, 0>, VEX_4V, VEX_L;
+ }
+}
+
+let Constraints = "$src1 = $dst" in {
+ let ExeDomain = SSEPackedSingle in {
+ defm HADDPS : S3D_Int<0x7C, "haddps", v4f32, VR128, f128mem, X86fhadd>;
+ defm HSUBPS : S3D_Int<0x7D, "hsubps", v4f32, VR128, f128mem, X86fhsub>;
+ }
+ let ExeDomain = SSEPackedDouble in {
+ defm HADDPD : S3_Int<0x7C, "haddpd", v2f64, VR128, f128mem, X86fhadd>;
+ defm HSUBPD : S3_Int<0x7D, "hsubpd", v2f64, VR128, f128mem, X86fhsub>;
+ }
+}
+
+//===---------------------------------------------------------------------===//
+// SSSE3 - Packed Absolute Instructions
+//===---------------------------------------------------------------------===//
+
+
+/// SS3I_unop_rm_int - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}.
+multiclass SS3I_unop_rm_int<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId128> {
+ def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (IntId128 VR128:$src))], IIC_SSE_PABS_RR>,
+ Sched<[WriteVecALU]>;
+
+ def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst,
+ (IntId128
+ (bitconvert (memopv2i64 addr:$src))))], IIC_SSE_PABS_RM>,
+ Sched<[WriteVecALULd]>;
+}
+
+/// SS3I_unop_rm_int_y - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}.
+multiclass SS3I_unop_rm_int_y<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId256> {
+ def rr256 : SS38I<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (IntId256 VR256:$src))]>,
+ Sched<[WriteVecALU]>;
+
+ def rm256 : SS38I<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins i256mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst,
+ (IntId256
+ (bitconvert (memopv4i64 addr:$src))))]>,
+ Sched<[WriteVecALULd]>;
+}
+
+// Helper fragments to match sext vXi1 to vXiY.
+def v16i1sextv16i8 : PatLeaf<(v16i8 (X86pcmpgt (bc_v16i8 (v4i32 immAllZerosV)),
+ VR128:$src))>;
+def v8i1sextv8i16 : PatLeaf<(v8i16 (X86vsrai VR128:$src, (i8 15)))>;
+def v4i1sextv4i32 : PatLeaf<(v4i32 (X86vsrai VR128:$src, (i8 31)))>;
+def v32i1sextv32i8 : PatLeaf<(v32i8 (X86pcmpgt (bc_v32i8 (v8i32 immAllZerosV)),
+ VR256:$src))>;
+def v16i1sextv16i16: PatLeaf<(v16i16 (X86vsrai VR256:$src, (i8 15)))>;
+def v8i1sextv8i32 : PatLeaf<(v8i32 (X86vsrai VR256:$src, (i8 31)))>;
+
+let Predicates = [HasAVX] in {
+ defm VPABSB : SS3I_unop_rm_int<0x1C, "vpabsb",
+ int_x86_ssse3_pabs_b_128>, VEX;
+ defm VPABSW : SS3I_unop_rm_int<0x1D, "vpabsw",
+ int_x86_ssse3_pabs_w_128>, VEX;
+ defm VPABSD : SS3I_unop_rm_int<0x1E, "vpabsd",
+ int_x86_ssse3_pabs_d_128>, VEX;
+
+ def : Pat<(xor
+ (bc_v2i64 (v16i1sextv16i8)),
+ (bc_v2i64 (add (v16i8 VR128:$src), (v16i1sextv16i8)))),
+ (VPABSBrr128 VR128:$src)>;
+ def : Pat<(xor
+ (bc_v2i64 (v8i1sextv8i16)),
+ (bc_v2i64 (add (v8i16 VR128:$src), (v8i1sextv8i16)))),
+ (VPABSWrr128 VR128:$src)>;
+ def : Pat<(xor
+ (bc_v2i64 (v4i1sextv4i32)),
+ (bc_v2i64 (add (v4i32 VR128:$src), (v4i1sextv4i32)))),
+ (VPABSDrr128 VR128:$src)>;
+}
+
+let Predicates = [HasAVX2] in {
+ defm VPABSB : SS3I_unop_rm_int_y<0x1C, "vpabsb",
+ int_x86_avx2_pabs_b>, VEX, VEX_L;
+ defm VPABSW : SS3I_unop_rm_int_y<0x1D, "vpabsw",
+ int_x86_avx2_pabs_w>, VEX, VEX_L;
+ defm VPABSD : SS3I_unop_rm_int_y<0x1E, "vpabsd",
+ int_x86_avx2_pabs_d>, VEX, VEX_L;
+
+ def : Pat<(xor
+ (bc_v4i64 (v32i1sextv32i8)),
+ (bc_v4i64 (add (v32i8 VR256:$src), (v32i1sextv32i8)))),
+ (VPABSBrr256 VR256:$src)>;
+ def : Pat<(xor
+ (bc_v4i64 (v16i1sextv16i16)),
+ (bc_v4i64 (add (v16i16 VR256:$src), (v16i1sextv16i16)))),
+ (VPABSWrr256 VR256:$src)>;
+ def : Pat<(xor
+ (bc_v4i64 (v8i1sextv8i32)),
+ (bc_v4i64 (add (v8i32 VR256:$src), (v8i1sextv8i32)))),
+ (VPABSDrr256 VR256:$src)>;
+}
+
+defm PABSB : SS3I_unop_rm_int<0x1C, "pabsb",
+ int_x86_ssse3_pabs_b_128>;
+defm PABSW : SS3I_unop_rm_int<0x1D, "pabsw",
+ int_x86_ssse3_pabs_w_128>;
+defm PABSD : SS3I_unop_rm_int<0x1E, "pabsd",
+ int_x86_ssse3_pabs_d_128>;
+
+let Predicates = [HasSSSE3] in {
+ def : Pat<(xor
+ (bc_v2i64 (v16i1sextv16i8)),
+ (bc_v2i64 (add (v16i8 VR128:$src), (v16i1sextv16i8)))),
+ (PABSBrr128 VR128:$src)>;
+ def : Pat<(xor
+ (bc_v2i64 (v8i1sextv8i16)),
+ (bc_v2i64 (add (v8i16 VR128:$src), (v8i1sextv8i16)))),
+ (PABSWrr128 VR128:$src)>;
+ def : Pat<(xor
+ (bc_v2i64 (v4i1sextv4i32)),
+ (bc_v2i64 (add (v4i32 VR128:$src), (v4i1sextv4i32)))),
+ (PABSDrr128 VR128:$src)>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSSE3 - Packed Binary Operator Instructions
+//===---------------------------------------------------------------------===//
+
+let Sched = WriteVecALU in {
+def SSE_PHADDSUBD : OpndItins<
+ IIC_SSE_PHADDSUBD_RR, IIC_SSE_PHADDSUBD_RM
+>;
+def SSE_PHADDSUBSW : OpndItins<
+ IIC_SSE_PHADDSUBSW_RR, IIC_SSE_PHADDSUBSW_RM
+>;
+def SSE_PHADDSUBW : OpndItins<
+ IIC_SSE_PHADDSUBW_RR, IIC_SSE_PHADDSUBW_RM
+>;
+}
+let Sched = WriteShuffle in
+def SSE_PSHUFB : OpndItins<
+ IIC_SSE_PSHUFB_RR, IIC_SSE_PSHUFB_RM
+>;
+let Sched = WriteVecALU in
+def SSE_PSIGN : OpndItins<
+ IIC_SSE_PSIGN_RR, IIC_SSE_PSIGN_RM
+>;
+let Sched = WriteVecIMul in
+def SSE_PMULHRSW : OpndItins<
+ IIC_SSE_PMULHRSW, IIC_SSE_PMULHRSW
+>;
+
+/// SS3I_binop_rm - Simple SSSE3 bin op
+multiclass SS3I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, OpndItins itins,
+ bit Is2Addr = 1> {
+ let isCommutable = 1 in
+ def rr : SS38I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def rm : SS38I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1,
+ (bitconvert (memop_frag addr:$src2)))))], itins.rm>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+/// SS3I_binop_rm_int - Simple SSSE3 bin op whose type can be v*{i8,i16,i32}.
+multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId128, OpndItins itins,
+ bit Is2Addr = 1> {
+ let isCommutable = 1 in
+ def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
+ Sched<[itins.Sched]>;
+ def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst,
+ (IntId128 VR128:$src1,
+ (bitconvert (memopv2i64 addr:$src2))))]>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+multiclass SS3I_binop_rm_int_y<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId256,
+ X86FoldableSchedWrite Sched> {
+ let isCommutable = 1 in
+ def rr256 : SS38I<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst, (IntId256 VR256:$src1, VR256:$src2))]>,
+ Sched<[Sched]>;
+ def rm256 : SS38I<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, i256mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (IntId256 VR256:$src1, (bitconvert (loadv4i64 addr:$src2))))]>,
+ Sched<[Sched.Folded, ReadAfterLd]>;
+}
+
+let ImmT = NoImm, Predicates = [HasAVX] in {
+let isCommutable = 0 in {
+ defm VPHADDW : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v8i16, VR128,
+ loadv2i64, i128mem,
+ SSE_PHADDSUBW, 0>, VEX_4V;
+ defm VPHADDD : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v4i32, VR128,
+ loadv2i64, i128mem,
+ SSE_PHADDSUBD, 0>, VEX_4V;
+ defm VPHSUBW : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v8i16, VR128,
+ loadv2i64, i128mem,
+ SSE_PHADDSUBW, 0>, VEX_4V;
+ defm VPHSUBD : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v4i32, VR128,
+ loadv2i64, i128mem,
+ SSE_PHADDSUBD, 0>, VEX_4V;
+ defm VPSIGNB : SS3I_binop_rm<0x08, "vpsignb", X86psign, v16i8, VR128,
+ loadv2i64, i128mem,
+ SSE_PSIGN, 0>, VEX_4V;
+ defm VPSIGNW : SS3I_binop_rm<0x09, "vpsignw", X86psign, v8i16, VR128,
+ loadv2i64, i128mem,
+ SSE_PSIGN, 0>, VEX_4V;
+ defm VPSIGND : SS3I_binop_rm<0x0A, "vpsignd", X86psign, v4i32, VR128,
+ loadv2i64, i128mem,
+ SSE_PSIGN, 0>, VEX_4V;
+ defm VPSHUFB : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v16i8, VR128,
+ loadv2i64, i128mem,
+ SSE_PSHUFB, 0>, VEX_4V;
+ defm VPHADDSW : SS3I_binop_rm_int<0x03, "vphaddsw",
+ int_x86_ssse3_phadd_sw_128,
+ SSE_PHADDSUBSW, 0>, VEX_4V;
+ defm VPHSUBSW : SS3I_binop_rm_int<0x07, "vphsubsw",
+ int_x86_ssse3_phsub_sw_128,
+ SSE_PHADDSUBSW, 0>, VEX_4V;
+ defm VPMADDUBSW : SS3I_binop_rm_int<0x04, "vpmaddubsw",
+ int_x86_ssse3_pmadd_ub_sw_128,
+ SSE_PMADD, 0>, VEX_4V;
+}
+defm VPMULHRSW : SS3I_binop_rm_int<0x0B, "vpmulhrsw",
+ int_x86_ssse3_pmul_hr_sw_128,
+ SSE_PMULHRSW, 0>, VEX_4V;
+}
+
+let ImmT = NoImm, Predicates = [HasAVX2] in {
+let isCommutable = 0 in {
+ defm VPHADDWY : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v16i16, VR256,
+ loadv4i64, i256mem,
+ SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
+ defm VPHADDDY : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v8i32, VR256,
+ loadv4i64, i256mem,
+ SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
+ defm VPHSUBWY : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v16i16, VR256,
+ loadv4i64, i256mem,
+ SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
+ defm VPHSUBDY : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v8i32, VR256,
+ loadv4i64, i256mem,
+ SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
+ defm VPSIGNBY : SS3I_binop_rm<0x08, "vpsignb", X86psign, v32i8, VR256,
+ loadv4i64, i256mem,
+ SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
+ defm VPSIGNWY : SS3I_binop_rm<0x09, "vpsignw", X86psign, v16i16, VR256,
+ loadv4i64, i256mem,
+ SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
+ defm VPSIGNDY : SS3I_binop_rm<0x0A, "vpsignd", X86psign, v8i32, VR256,
+ loadv4i64, i256mem,
+ SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
+ defm VPSHUFBY : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v32i8, VR256,
+ loadv4i64, i256mem,
+ SSE_PSHUFB, 0>, VEX_4V, VEX_L;
+ defm VPHADDSW : SS3I_binop_rm_int_y<0x03, "vphaddsw",
+ int_x86_avx2_phadd_sw,
+ WriteVecALU>, VEX_4V, VEX_L;
+ defm VPHSUBSW : SS3I_binop_rm_int_y<0x07, "vphsubsw",
+ int_x86_avx2_phsub_sw,
+ WriteVecALU>, VEX_4V, VEX_L;
+ defm VPMADDUBSW : SS3I_binop_rm_int_y<0x04, "vpmaddubsw",
+ int_x86_avx2_pmadd_ub_sw,
+ WriteVecIMul>, VEX_4V, VEX_L;
+}
+defm VPMULHRSW : SS3I_binop_rm_int_y<0x0B, "vpmulhrsw",
+ int_x86_avx2_pmul_hr_sw,
+ WriteVecIMul>, VEX_4V, VEX_L;
+}
+
+// None of these have i8 immediate fields.
+let ImmT = NoImm, Constraints = "$src1 = $dst" in {
+let isCommutable = 0 in {
+ defm PHADDW : SS3I_binop_rm<0x01, "phaddw", X86hadd, v8i16, VR128,
+ memopv2i64, i128mem, SSE_PHADDSUBW>;
+ defm PHADDD : SS3I_binop_rm<0x02, "phaddd", X86hadd, v4i32, VR128,
+ memopv2i64, i128mem, SSE_PHADDSUBD>;
+ defm PHSUBW : SS3I_binop_rm<0x05, "phsubw", X86hsub, v8i16, VR128,
+ memopv2i64, i128mem, SSE_PHADDSUBW>;
+ defm PHSUBD : SS3I_binop_rm<0x06, "phsubd", X86hsub, v4i32, VR128,
+ memopv2i64, i128mem, SSE_PHADDSUBD>;
+ defm PSIGNB : SS3I_binop_rm<0x08, "psignb", X86psign, v16i8, VR128,
+ memopv2i64, i128mem, SSE_PSIGN>;
+ defm PSIGNW : SS3I_binop_rm<0x09, "psignw", X86psign, v8i16, VR128,
+ memopv2i64, i128mem, SSE_PSIGN>;
+ defm PSIGND : SS3I_binop_rm<0x0A, "psignd", X86psign, v4i32, VR128,
+ memopv2i64, i128mem, SSE_PSIGN>;
+ defm PSHUFB : SS3I_binop_rm<0x00, "pshufb", X86pshufb, v16i8, VR128,
+ memopv2i64, i128mem, SSE_PSHUFB>;
+ defm PHADDSW : SS3I_binop_rm_int<0x03, "phaddsw",
+ int_x86_ssse3_phadd_sw_128,
+ SSE_PHADDSUBSW>;
+ defm PHSUBSW : SS3I_binop_rm_int<0x07, "phsubsw",
+ int_x86_ssse3_phsub_sw_128,
+ SSE_PHADDSUBSW>;
+ defm PMADDUBSW : SS3I_binop_rm_int<0x04, "pmaddubsw",
+ int_x86_ssse3_pmadd_ub_sw_128, SSE_PMADD>;
+}
+defm PMULHRSW : SS3I_binop_rm_int<0x0B, "pmulhrsw",
+ int_x86_ssse3_pmul_hr_sw_128,
+ SSE_PMULHRSW>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSSE3 - Packed Align Instruction Patterns
+//===---------------------------------------------------------------------===//
+
+multiclass ssse3_palignr<string asm, bit Is2Addr = 1> {
+ let neverHasSideEffects = 1 in {
+ def R128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [], IIC_SSE_PALIGNRR>, Sched<[WriteShuffle]>;
+ let mayLoad = 1 in
+ def R128rm : SS3AI<0x0F, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [], IIC_SSE_PALIGNRM>, Sched<[WriteShuffleLd, ReadAfterLd]>;
+ }
+}
+
+multiclass ssse3_palignr_y<string asm, bit Is2Addr = 1> {
+ let neverHasSideEffects = 1 in {
+ def R256rr : SS3AI<0x0F, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, i8imm:$src3),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, Sched<[WriteShuffle]>;
+ let mayLoad = 1 in
+ def R256rm : SS3AI<0x0F, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, i256mem:$src2, i8imm:$src3),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, Sched<[WriteShuffleLd, ReadAfterLd]>;
+ }
+}
+
+let Predicates = [HasAVX] in
+ defm VPALIGN : ssse3_palignr<"vpalignr", 0>, VEX_4V;
+let Predicates = [HasAVX2] in
+ defm VPALIGN : ssse3_palignr_y<"vpalignr", 0>, VEX_4V, VEX_L;
+let Constraints = "$src1 = $dst", Predicates = [UseSSSE3] in
+ defm PALIGN : ssse3_palignr<"palignr">;
+
+let Predicates = [HasAVX2] in {
+def : Pat<(v8i32 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>;
+def : Pat<(v8f32 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>;
+def : Pat<(v16i16 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>;
+def : Pat<(v32i8 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>;
+}
+
+let Predicates = [HasAVX] in {
+def : Pat<(v4i32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
+def : Pat<(v4f32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
+def : Pat<(v8i16 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
+def : Pat<(v16i8 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
+}
+
+let Predicates = [UseSSSE3] in {
+def : Pat<(v4i32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
+def : Pat<(v4f32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
+def : Pat<(v8i16 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
+def : Pat<(v16i8 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
+ (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSSE3 - Thread synchronization
+//===---------------------------------------------------------------------===//
+
+let SchedRW = [WriteSystem] in {
+let usesCustomInserter = 1 in {
+def MONITOR : PseudoI<(outs), (ins i32mem:$src1, GR32:$src2, GR32:$src3),
+ [(int_x86_sse3_monitor addr:$src1, GR32:$src2, GR32:$src3)]>,
+ Requires<[HasSSE3]>;
+}
+
+let Uses = [EAX, ECX, EDX] in
+def MONITORrrr : I<0x01, MRM_C8, (outs), (ins), "monitor", [], IIC_SSE_MONITOR>,
+ TB, Requires<[HasSSE3]>;
+let Uses = [ECX, EAX] in
+def MWAITrr : I<0x01, MRM_C9, (outs), (ins), "mwait",
+ [(int_x86_sse3_mwait ECX, EAX)], IIC_SSE_MWAIT>,
+ TB, Requires<[HasSSE3]>;
+} // SchedRW
+
+def : InstAlias<"mwait\t{%eax, %ecx|ecx, eax}", (MWAITrr)>, Requires<[Not64BitMode]>;
+def : InstAlias<"mwait\t{%rax, %rcx|rcx, rax}", (MWAITrr)>, Requires<[In64BitMode]>;
+
+def : InstAlias<"monitor\t{%eax, %ecx, %edx|edx, ecx, eax}", (MONITORrrr)>,
+ Requires<[Not64BitMode]>;
+def : InstAlias<"monitor\t{%rax, %rcx, %rdx|rdx, rcx, rax}", (MONITORrrr)>,
+ Requires<[In64BitMode]>;
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Packed Move with Sign/Zero Extend
+//===----------------------------------------------------------------------===//
+
+multiclass SS41I_binop_rm_int8<bits<8> opc, string OpcodeStr, Intrinsic IntId,
+ OpndItins itins = DEFAULT_ITINS> {
+ def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (IntId VR128:$src))], itins.rr>,
+ Sched<[itins.Sched]>;
+
+ def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst,
+ (IntId (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))],
+ itins.rm>, Sched<[itins.Sched.Folded]>;
+}
+
+multiclass SS41I_binop_rm_int16_y<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId, X86FoldableSchedWrite Sched> {
+ def Yrr : SS48I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
+
+ def Yrm : SS48I<opc, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (IntId (load addr:$src)))]>,
+ Sched<[Sched.Folded]>;
+}
+
+let Predicates = [HasAVX] in {
+defm VPMOVSXBW : SS41I_binop_rm_int8<0x20, "vpmovsxbw",
+ int_x86_sse41_pmovsxbw,
+ DEFAULT_ITINS_SHUFFLESCHED>, VEX;
+defm VPMOVSXWD : SS41I_binop_rm_int8<0x23, "vpmovsxwd",
+ int_x86_sse41_pmovsxwd,
+ DEFAULT_ITINS_SHUFFLESCHED>, VEX;
+defm VPMOVSXDQ : SS41I_binop_rm_int8<0x25, "vpmovsxdq",
+ int_x86_sse41_pmovsxdq,
+ DEFAULT_ITINS_SHUFFLESCHED>, VEX;
+defm VPMOVZXBW : SS41I_binop_rm_int8<0x30, "vpmovzxbw",
+ int_x86_sse41_pmovzxbw,
+ DEFAULT_ITINS_SHUFFLESCHED>, VEX;
+defm VPMOVZXWD : SS41I_binop_rm_int8<0x33, "vpmovzxwd",
+ int_x86_sse41_pmovzxwd,
+ DEFAULT_ITINS_SHUFFLESCHED>, VEX;
+defm VPMOVZXDQ : SS41I_binop_rm_int8<0x35, "vpmovzxdq",
+ int_x86_sse41_pmovzxdq,
+ DEFAULT_ITINS_SHUFFLESCHED>, VEX;
+}
+
+let Predicates = [HasAVX2] in {
+defm VPMOVSXBW : SS41I_binop_rm_int16_y<0x20, "vpmovsxbw",
+ int_x86_avx2_pmovsxbw,
+ WriteShuffle>, VEX, VEX_L;
+defm VPMOVSXWD : SS41I_binop_rm_int16_y<0x23, "vpmovsxwd",
+ int_x86_avx2_pmovsxwd,
+ WriteShuffle>, VEX, VEX_L;
+defm VPMOVSXDQ : SS41I_binop_rm_int16_y<0x25, "vpmovsxdq",
+ int_x86_avx2_pmovsxdq,
+ WriteShuffle>, VEX, VEX_L;
+defm VPMOVZXBW : SS41I_binop_rm_int16_y<0x30, "vpmovzxbw",
+ int_x86_avx2_pmovzxbw,
+ WriteShuffle>, VEX, VEX_L;
+defm VPMOVZXWD : SS41I_binop_rm_int16_y<0x33, "vpmovzxwd",
+ int_x86_avx2_pmovzxwd,
+ WriteShuffle>, VEX, VEX_L;
+defm VPMOVZXDQ : SS41I_binop_rm_int16_y<0x35, "vpmovzxdq",
+ int_x86_avx2_pmovzxdq,
+ WriteShuffle>, VEX, VEX_L;
+}
+
+defm PMOVSXBW : SS41I_binop_rm_int8<0x20, "pmovsxbw", int_x86_sse41_pmovsxbw,
+ SSE_INTALU_ITINS_SHUFF_P>;
+defm PMOVSXWD : SS41I_binop_rm_int8<0x23, "pmovsxwd", int_x86_sse41_pmovsxwd,
+ SSE_INTALU_ITINS_SHUFF_P>;
+defm PMOVSXDQ : SS41I_binop_rm_int8<0x25, "pmovsxdq", int_x86_sse41_pmovsxdq,
+ SSE_INTALU_ITINS_SHUFF_P>;
+defm PMOVZXBW : SS41I_binop_rm_int8<0x30, "pmovzxbw", int_x86_sse41_pmovzxbw,
+ SSE_INTALU_ITINS_SHUFF_P>;
+defm PMOVZXWD : SS41I_binop_rm_int8<0x33, "pmovzxwd", int_x86_sse41_pmovzxwd,
+ SSE_INTALU_ITINS_SHUFF_P>;
+defm PMOVZXDQ : SS41I_binop_rm_int8<0x35, "pmovzxdq", int_x86_sse41_pmovzxdq,
+ SSE_INTALU_ITINS_SHUFF_P>;
+
+let Predicates = [HasAVX] in {
+ // Common patterns involving scalar load.
+ def : Pat<(int_x86_sse41_pmovsxbw (vzmovl_v2i64 addr:$src)),
+ (VPMOVSXBWrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxbw (vzload_v2i64 addr:$src)),
+ (VPMOVSXBWrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxbw (bc_v16i8 (loadv2i64 addr:$src))),
+ (VPMOVSXBWrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovsxwd (vzmovl_v2i64 addr:$src)),
+ (VPMOVSXWDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxwd (vzload_v2i64 addr:$src)),
+ (VPMOVSXWDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxwd (bc_v8i16 (loadv2i64 addr:$src))),
+ (VPMOVSXWDrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovsxdq (vzmovl_v2i64 addr:$src)),
+ (VPMOVSXDQrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxdq (vzload_v2i64 addr:$src)),
+ (VPMOVSXDQrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxdq (bc_v4i32 (loadv2i64 addr:$src))),
+ (VPMOVSXDQrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovzxbw (vzmovl_v2i64 addr:$src)),
+ (VPMOVZXBWrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxbw (vzload_v2i64 addr:$src)),
+ (VPMOVZXBWrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxbw (bc_v16i8 (loadv2i64 addr:$src))),
+ (VPMOVZXBWrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovzxwd (vzmovl_v2i64 addr:$src)),
+ (VPMOVZXWDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxwd (vzload_v2i64 addr:$src)),
+ (VPMOVZXWDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxwd (bc_v8i16 (loadv2i64 addr:$src))),
+ (VPMOVZXWDrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovzxdq (vzmovl_v2i64 addr:$src)),
+ (VPMOVZXDQrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxdq (vzload_v2i64 addr:$src)),
+ (VPMOVZXDQrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxdq (bc_v4i32 (loadv2i64 addr:$src))),
+ (VPMOVZXDQrm addr:$src)>;
+}
+
+let Predicates = [UseSSE41] in {
+ // Common patterns involving scalar load.
+ def : Pat<(int_x86_sse41_pmovsxbw (vzmovl_v2i64 addr:$src)),
+ (PMOVSXBWrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxbw (vzload_v2i64 addr:$src)),
+ (PMOVSXBWrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxbw (bc_v16i8 (loadv2i64 addr:$src))),
+ (PMOVSXBWrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovsxwd (vzmovl_v2i64 addr:$src)),
+ (PMOVSXWDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxwd (vzload_v2i64 addr:$src)),
+ (PMOVSXWDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxwd (bc_v8i16 (loadv2i64 addr:$src))),
+ (PMOVSXWDrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovsxdq (vzmovl_v2i64 addr:$src)),
+ (PMOVSXDQrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxdq (vzload_v2i64 addr:$src)),
+ (PMOVSXDQrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxdq (bc_v4i32 (loadv2i64 addr:$src))),
+ (PMOVSXDQrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovzxbw (vzmovl_v2i64 addr:$src)),
+ (PMOVZXBWrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxbw (vzload_v2i64 addr:$src)),
+ (PMOVZXBWrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxbw (bc_v16i8 (loadv2i64 addr:$src))),
+ (PMOVZXBWrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovzxwd (vzmovl_v2i64 addr:$src)),
+ (PMOVZXWDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxwd (vzload_v2i64 addr:$src)),
+ (PMOVZXWDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxwd (bc_v8i16 (loadv2i64 addr:$src))),
+ (PMOVZXWDrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovzxdq (vzmovl_v2i64 addr:$src)),
+ (PMOVZXDQrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxdq (vzload_v2i64 addr:$src)),
+ (PMOVZXDQrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxdq (bc_v4i32 (loadv2i64 addr:$src))),
+ (PMOVZXDQrm addr:$src)>;
+}
+
+multiclass SS41I_binop_rm_int4<bits<8> opc, string OpcodeStr, Intrinsic IntId,
+ OpndItins itins = DEFAULT_ITINS> {
+ def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (IntId VR128:$src))], itins.rr>,
+ Sched<[itins.Sched]>;
+
+ def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst,
+ (IntId (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))],
+ itins.rm>, Sched<[itins.Sched.Folded]>;
+}
+
+multiclass SS41I_binop_rm_int8_y<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId, X86FoldableSchedWrite Sched> {
+ def Yrr : SS48I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
+
+ def Yrm : SS48I<opc, MRMSrcMem, (outs VR256:$dst), (ins i32mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst,
+ (IntId (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))]>,
+ Sched<[Sched.Folded]>;
+}
+
+let Predicates = [HasAVX] in {
+defm VPMOVSXBD : SS41I_binop_rm_int4<0x21, "vpmovsxbd", int_x86_sse41_pmovsxbd,
+ DEFAULT_ITINS_SHUFFLESCHED>, VEX;
+defm VPMOVSXWQ : SS41I_binop_rm_int4<0x24, "vpmovsxwq", int_x86_sse41_pmovsxwq,
+ DEFAULT_ITINS_SHUFFLESCHED>, VEX;
+defm VPMOVZXBD : SS41I_binop_rm_int4<0x31, "vpmovzxbd", int_x86_sse41_pmovzxbd,
+ DEFAULT_ITINS_SHUFFLESCHED>, VEX;
+defm VPMOVZXWQ : SS41I_binop_rm_int4<0x34, "vpmovzxwq", int_x86_sse41_pmovzxwq,
+ DEFAULT_ITINS_SHUFFLESCHED>, VEX;
+}
+
+let Predicates = [HasAVX2] in {
+defm VPMOVSXBD : SS41I_binop_rm_int8_y<0x21, "vpmovsxbd",
+ int_x86_avx2_pmovsxbd, WriteShuffle>,
+ VEX, VEX_L;
+defm VPMOVSXWQ : SS41I_binop_rm_int8_y<0x24, "vpmovsxwq",
+ int_x86_avx2_pmovsxwq, WriteShuffle>,
+ VEX, VEX_L;
+defm VPMOVZXBD : SS41I_binop_rm_int8_y<0x31, "vpmovzxbd",
+ int_x86_avx2_pmovzxbd, WriteShuffle>,
+ VEX, VEX_L;
+defm VPMOVZXWQ : SS41I_binop_rm_int8_y<0x34, "vpmovzxwq",
+ int_x86_avx2_pmovzxwq, WriteShuffle>,
+ VEX, VEX_L;
+}
+
+defm PMOVSXBD : SS41I_binop_rm_int4<0x21, "pmovsxbd", int_x86_sse41_pmovsxbd,
+ SSE_INTALU_ITINS_SHUFF_P>;
+defm PMOVSXWQ : SS41I_binop_rm_int4<0x24, "pmovsxwq", int_x86_sse41_pmovsxwq,
+ SSE_INTALU_ITINS_SHUFF_P>;
+defm PMOVZXBD : SS41I_binop_rm_int4<0x31, "pmovzxbd", int_x86_sse41_pmovzxbd,
+ SSE_INTALU_ITINS_SHUFF_P>;
+defm PMOVZXWQ : SS41I_binop_rm_int4<0x34, "pmovzxwq", int_x86_sse41_pmovzxwq,
+ SSE_INTALU_ITINS_SHUFF_P>;
+
+let Predicates = [HasAVX] in {
+ // Common patterns involving scalar load
+ def : Pat<(int_x86_sse41_pmovsxbd (vzmovl_v4i32 addr:$src)),
+ (VPMOVSXBDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxwq (vzmovl_v4i32 addr:$src)),
+ (VPMOVSXWQrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovzxbd (vzmovl_v4i32 addr:$src)),
+ (VPMOVZXBDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxwq (vzmovl_v4i32 addr:$src)),
+ (VPMOVZXWQrm addr:$src)>;
+}
+
+let Predicates = [UseSSE41] in {
+ // Common patterns involving scalar load
+ def : Pat<(int_x86_sse41_pmovsxbd (vzmovl_v4i32 addr:$src)),
+ (PMOVSXBDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovsxwq (vzmovl_v4i32 addr:$src)),
+ (PMOVSXWQrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovzxbd (vzmovl_v4i32 addr:$src)),
+ (PMOVZXBDrm addr:$src)>;
+ def : Pat<(int_x86_sse41_pmovzxwq (vzmovl_v4i32 addr:$src)),
+ (PMOVZXWQrm addr:$src)>;
+}
+
+multiclass SS41I_binop_rm_int2<bits<8> opc, string OpcodeStr, Intrinsic IntId,
+ X86FoldableSchedWrite Sched> {
+ def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
+
+ // Expecting a i16 load any extended to i32 value.
+ def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i16mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (IntId (bitconvert
+ (v4i32 (scalar_to_vector (loadi16_anyext addr:$src))))))]>,
+ Sched<[Sched.Folded]>;
+}
+
+multiclass SS41I_binop_rm_int4_y<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId, X86FoldableSchedWrite Sched> {
+ def Yrr : SS48I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
+
+ // Expecting a i16 load any extended to i32 value.
+ def Yrm : SS48I<opc, MRMSrcMem, (outs VR256:$dst), (ins i16mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (IntId (bitconvert
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))))))]>,
+ Sched<[Sched.Folded]>;
+}
+
+let Predicates = [HasAVX] in {
+defm VPMOVSXBQ : SS41I_binop_rm_int2<0x22, "vpmovsxbq", int_x86_sse41_pmovsxbq,
+ WriteShuffle>, VEX;
+defm VPMOVZXBQ : SS41I_binop_rm_int2<0x32, "vpmovzxbq", int_x86_sse41_pmovzxbq,
+ WriteShuffle>, VEX;
+}
+let Predicates = [HasAVX2] in {
+defm VPMOVSXBQ : SS41I_binop_rm_int4_y<0x22, "vpmovsxbq", int_x86_avx2_pmovsxbq,
+ WriteShuffle>, VEX, VEX_L;
+defm VPMOVZXBQ : SS41I_binop_rm_int4_y<0x32, "vpmovzxbq", int_x86_avx2_pmovzxbq,
+ WriteShuffle>, VEX, VEX_L;
+}
+defm PMOVSXBQ : SS41I_binop_rm_int2<0x22, "pmovsxbq", int_x86_sse41_pmovsxbq,
+ WriteShuffle>;
+defm PMOVZXBQ : SS41I_binop_rm_int2<0x32, "pmovzxbq", int_x86_sse41_pmovzxbq,
+ WriteShuffle>;
+
+let Predicates = [HasAVX2] in {
+ def : Pat<(v16i16 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBWYrr VR128:$src)>;
+ def : Pat<(v8i32 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBDYrr VR128:$src)>;
+ def : Pat<(v4i64 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBQYrr VR128:$src)>;
+
+ def : Pat<(v8i32 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWDYrr VR128:$src)>;
+ def : Pat<(v4i64 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWQYrr VR128:$src)>;
+
+ def : Pat<(v4i64 (X86vsext (v4i32 VR128:$src))), (VPMOVSXDQYrr VR128:$src)>;
+
+ def : Pat<(v16i16 (X86vsext (v32i8 VR256:$src))),
+ (VPMOVSXBWYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+ def : Pat<(v8i32 (X86vsext (v32i8 VR256:$src))),
+ (VPMOVSXBDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+ def : Pat<(v4i64 (X86vsext (v32i8 VR256:$src))),
+ (VPMOVSXBQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+
+ def : Pat<(v8i32 (X86vsext (v16i16 VR256:$src))),
+ (VPMOVSXWDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+ def : Pat<(v4i64 (X86vsext (v16i16 VR256:$src))),
+ (VPMOVSXWQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+
+ def : Pat<(v4i64 (X86vsext (v8i32 VR256:$src))),
+ (VPMOVSXDQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+
+ def : Pat<(v8i32 (X86vsext (v8i16 (bitconvert (v2i64 (load addr:$src)))))),
+ (VPMOVSXWDYrm addr:$src)>;
+ def : Pat<(v4i64 (X86vsext (v4i32 (bitconvert (v2i64 (load addr:$src)))))),
+ (VPMOVSXDQYrm addr:$src)>;
+
+ def : Pat<(v8i32 (X86vsext (v16i8 (bitconvert (v2i64
+ (scalar_to_vector (loadi64 addr:$src))))))),
+ (VPMOVSXBDYrm addr:$src)>;
+ def : Pat<(v8i32 (X86vsext (v16i8 (bitconvert (v2f64
+ (scalar_to_vector (loadf64 addr:$src))))))),
+ (VPMOVSXBDYrm addr:$src)>;
+
+ def : Pat<(v4i64 (X86vsext (v8i16 (bitconvert (v2i64
+ (scalar_to_vector (loadi64 addr:$src))))))),
+ (VPMOVSXWQYrm addr:$src)>;
+ def : Pat<(v4i64 (X86vsext (v8i16 (bitconvert (v2f64
+ (scalar_to_vector (loadf64 addr:$src))))))),
+ (VPMOVSXWQYrm addr:$src)>;
+
+ def : Pat<(v4i64 (X86vsext (v16i8 (bitconvert (v4i32
+ (scalar_to_vector (loadi32 addr:$src))))))),
+ (VPMOVSXBQYrm addr:$src)>;
+}
+
+let Predicates = [HasAVX] in {
+ // Common patterns involving scalar load
+ def : Pat<(int_x86_sse41_pmovsxbq
+ (bitconvert (v4i32 (X86vzmovl
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
+ (VPMOVSXBQrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovzxbq
+ (bitconvert (v4i32 (X86vzmovl
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
+ (VPMOVZXBQrm addr:$src)>;
+}
+
+let Predicates = [UseSSE41] in {
+ def : Pat<(v8i16 (X86vsext (v16i8 VR128:$src))), (PMOVSXBWrr VR128:$src)>;
+ def : Pat<(v4i32 (X86vsext (v16i8 VR128:$src))), (PMOVSXBDrr VR128:$src)>;
+ def : Pat<(v2i64 (X86vsext (v16i8 VR128:$src))), (PMOVSXBQrr VR128:$src)>;
+
+ def : Pat<(v4i32 (X86vsext (v8i16 VR128:$src))), (PMOVSXWDrr VR128:$src)>;
+ def : Pat<(v2i64 (X86vsext (v8i16 VR128:$src))), (PMOVSXWQrr VR128:$src)>;
+
+ def : Pat<(v2i64 (X86vsext (v4i32 VR128:$src))), (PMOVSXDQrr VR128:$src)>;
+
+ // Common patterns involving scalar load
+ def : Pat<(int_x86_sse41_pmovsxbq
+ (bitconvert (v4i32 (X86vzmovl
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
+ (PMOVSXBQrm addr:$src)>;
+
+ def : Pat<(int_x86_sse41_pmovzxbq
+ (bitconvert (v4i32 (X86vzmovl
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
+ (PMOVZXBQrm addr:$src)>;
+
+ def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2i64
+ (scalar_to_vector (loadi64 addr:$src))))))),
+ (PMOVSXWDrm addr:$src)>;
+ def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2f64
+ (scalar_to_vector (loadf64 addr:$src))))))),
+ (PMOVSXWDrm addr:$src)>;
+ def : Pat<(v4i32 (X86vsext (v16i8 (bitconvert (v4i32
+ (scalar_to_vector (loadi32 addr:$src))))))),
+ (PMOVSXBDrm addr:$src)>;
+ def : Pat<(v2i64 (X86vsext (v8i16 (bitconvert (v4i32
+ (scalar_to_vector (loadi32 addr:$src))))))),
+ (PMOVSXWQrm addr:$src)>;
+ def : Pat<(v2i64 (X86vsext (v16i8 (bitconvert (v4i32
+ (scalar_to_vector (extloadi32i16 addr:$src))))))),
+ (PMOVSXBQrm addr:$src)>;
+ def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2i64
+ (scalar_to_vector (loadi64 addr:$src))))))),
+ (PMOVSXDQrm addr:$src)>;
+ def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2f64
+ (scalar_to_vector (loadf64 addr:$src))))))),
+ (PMOVSXDQrm addr:$src)>;
+ def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2i64
+ (scalar_to_vector (loadi64 addr:$src))))))),
+ (PMOVSXBWrm addr:$src)>;
+ def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2f64
+ (scalar_to_vector (loadf64 addr:$src))))))),
+ (PMOVSXBWrm addr:$src)>;
+}
+
+let Predicates = [HasAVX2] in {
+ def : Pat<(v16i16 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBWYrr VR128:$src)>;
+ def : Pat<(v8i32 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBDYrr VR128:$src)>;
+ def : Pat<(v4i64 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBQYrr VR128:$src)>;
+
+ def : Pat<(v8i32 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWDYrr VR128:$src)>;
+ def : Pat<(v4i64 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWQYrr VR128:$src)>;
+
+ def : Pat<(v4i64 (X86vzext (v4i32 VR128:$src))), (VPMOVZXDQYrr VR128:$src)>;
+
+ def : Pat<(v16i16 (X86vzext (v32i8 VR256:$src))),
+ (VPMOVZXBWYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+ def : Pat<(v8i32 (X86vzext (v32i8 VR256:$src))),
+ (VPMOVZXBDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+ def : Pat<(v4i64 (X86vzext (v32i8 VR256:$src))),
+ (VPMOVZXBQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+
+ def : Pat<(v8i32 (X86vzext (v16i16 VR256:$src))),
+ (VPMOVZXWDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+ def : Pat<(v4i64 (X86vzext (v16i16 VR256:$src))),
+ (VPMOVZXWQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+
+ def : Pat<(v4i64 (X86vzext (v8i32 VR256:$src))),
+ (VPMOVZXDQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+}
+
+let Predicates = [HasAVX] in {
+ def : Pat<(v8i16 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBWrr VR128:$src)>;
+ def : Pat<(v4i32 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBDrr VR128:$src)>;
+ def : Pat<(v2i64 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBQrr VR128:$src)>;
+
+ def : Pat<(v4i32 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWDrr VR128:$src)>;
+ def : Pat<(v2i64 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWQrr VR128:$src)>;
+
+ def : Pat<(v2i64 (X86vzext (v4i32 VR128:$src))), (VPMOVZXDQrr VR128:$src)>;
+
+ def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
+ (VPMOVZXBWrm addr:$src)>;
+ def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
+ (VPMOVZXBWrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
+ (VPMOVZXBDrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi16_anyext addr:$src))))))),
+ (VPMOVZXBQrm addr:$src)>;
+
+ def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
+ (VPMOVZXWDrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
+ (VPMOVZXWDrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzext (v8i16 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
+ (VPMOVZXWQrm addr:$src)>;
+
+ def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
+ (VPMOVZXDQrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
+ (VPMOVZXDQrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (X86vzload addr:$src)))))),
+ (VPMOVZXDQrm addr:$src)>;
+
+ def : Pat<(v8i16 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBWrr VR128:$src)>;
+ def : Pat<(v4i32 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBDrr VR128:$src)>;
+ def : Pat<(v2i64 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBQrr VR128:$src)>;
+
+ def : Pat<(v4i32 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWDrr VR128:$src)>;
+ def : Pat<(v2i64 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWQrr VR128:$src)>;
+
+ def : Pat<(v2i64 (X86vsext (v4i32 VR128:$src))), (VPMOVSXDQrr VR128:$src)>;
+
+ def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2i64
+ (scalar_to_vector (loadi64 addr:$src))))))),
+ (VPMOVSXWDrm addr:$src)>;
+ def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2i64
+ (scalar_to_vector (loadi64 addr:$src))))))),
+ (VPMOVSXDQrm addr:$src)>;
+ def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2f64
+ (scalar_to_vector (loadf64 addr:$src))))))),
+ (VPMOVSXWDrm addr:$src)>;
+ def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2f64
+ (scalar_to_vector (loadf64 addr:$src))))))),
+ (VPMOVSXDQrm addr:$src)>;
+ def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2i64
+ (scalar_to_vector (loadi64 addr:$src))))))),
+ (VPMOVSXBWrm addr:$src)>;
+ def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2f64
+ (scalar_to_vector (loadf64 addr:$src))))))),
+ (VPMOVSXBWrm addr:$src)>;
+
+ def : Pat<(v4i32 (X86vsext (v16i8 (bitconvert (v4i32
+ (scalar_to_vector (loadi32 addr:$src))))))),
+ (VPMOVSXBDrm addr:$src)>;
+ def : Pat<(v2i64 (X86vsext (v8i16 (bitconvert (v4i32
+ (scalar_to_vector (loadi32 addr:$src))))))),
+ (VPMOVSXWQrm addr:$src)>;
+ def : Pat<(v2i64 (X86vsext (v16i8 (bitconvert (v4i32
+ (scalar_to_vector (extloadi32i16 addr:$src))))))),
+ (VPMOVSXBQrm addr:$src)>;
+}
+
+let Predicates = [UseSSE41] in {
+ def : Pat<(v8i16 (X86vzext (v16i8 VR128:$src))), (PMOVZXBWrr VR128:$src)>;
+ def : Pat<(v4i32 (X86vzext (v16i8 VR128:$src))), (PMOVZXBDrr VR128:$src)>;
+ def : Pat<(v2i64 (X86vzext (v16i8 VR128:$src))), (PMOVZXBQrr VR128:$src)>;
+
+ def : Pat<(v4i32 (X86vzext (v8i16 VR128:$src))), (PMOVZXWDrr VR128:$src)>;
+ def : Pat<(v2i64 (X86vzext (v8i16 VR128:$src))), (PMOVZXWQrr VR128:$src)>;
+
+ def : Pat<(v2i64 (X86vzext (v4i32 VR128:$src))), (PMOVZXDQrr VR128:$src)>;
+
+ def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
+ (PMOVZXBWrm addr:$src)>;
+ def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
+ (PMOVZXBWrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
+ (PMOVZXBDrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi16_anyext addr:$src))))))),
+ (PMOVZXBQrm addr:$src)>;
+
+ def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
+ (PMOVZXWDrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
+ (PMOVZXWDrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzext (v8i16 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
+ (PMOVZXWQrm addr:$src)>;
+
+ def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
+ (PMOVZXDQrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
+ (PMOVZXDQrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (X86vzload addr:$src)))))),
+ (PMOVZXDQrm addr:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Extract Instructions
+//===----------------------------------------------------------------------===//
+
+/// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem
+multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> {
+ def rr : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
+ (ins VR128:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set GR32orGR64:$dst, (X86pextrb (v16i8 VR128:$src1),
+ imm:$src2))]>,
+ Sched<[WriteShuffle]>;
+ let neverHasSideEffects = 1, mayStore = 1,
+ SchedRW = [WriteShuffleLd, WriteRMW] in
+ def mr : SS4AIi8<opc, MRMDestMem, (outs),
+ (ins i8mem:$dst, VR128:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(store (i8 (trunc (assertzext (X86pextrb (v16i8 VR128:$src1),
+ imm:$src2)))), addr:$dst)]>;
+}
+
+let Predicates = [HasAVX] in
+ defm VPEXTRB : SS41I_extract8<0x14, "vpextrb">, VEX;
+
+defm PEXTRB : SS41I_extract8<0x14, "pextrb">;
+
+
+/// SS41I_extract16 - SSE 4.1 extract 16 bits to memory destination
+multiclass SS41I_extract16<bits<8> opc, string OpcodeStr> {
+ let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
+ def rr_REV : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
+ (ins VR128:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, Sched<[WriteShuffle]>;
+
+ let neverHasSideEffects = 1, mayStore = 1,
+ SchedRW = [WriteShuffleLd, WriteRMW] in
+ def mr : SS4AIi8<opc, MRMDestMem, (outs),
+ (ins i16mem:$dst, VR128:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(store (i16 (trunc (assertzext (X86pextrw (v8i16 VR128:$src1),
+ imm:$src2)))), addr:$dst)]>;
+}
+
+let Predicates = [HasAVX] in
+ defm VPEXTRW : SS41I_extract16<0x15, "vpextrw">, VEX;
+
+defm PEXTRW : SS41I_extract16<0x15, "pextrw">;
+
+
+/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
+multiclass SS41I_extract32<bits<8> opc, string OpcodeStr> {
+ def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
+ (ins VR128:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set GR32:$dst,
+ (extractelt (v4i32 VR128:$src1), imm:$src2))]>,
+ Sched<[WriteShuffle]>;
+ let SchedRW = [WriteShuffleLd, WriteRMW] in
+ def mr : SS4AIi8<opc, MRMDestMem, (outs),
+ (ins i32mem:$dst, VR128:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(store (extractelt (v4i32 VR128:$src1), imm:$src2),
+ addr:$dst)]>;
+}
+
+let Predicates = [HasAVX] in
+ defm VPEXTRD : SS41I_extract32<0x16, "vpextrd">, VEX;
+
+defm PEXTRD : SS41I_extract32<0x16, "pextrd">;
+
+/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
+multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> {
+ def rr : SS4AIi8<opc, MRMDestReg, (outs GR64:$dst),
+ (ins VR128:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set GR64:$dst,
+ (extractelt (v2i64 VR128:$src1), imm:$src2))]>,
+ Sched<[WriteShuffle]>, REX_W;
+ let SchedRW = [WriteShuffleLd, WriteRMW] in
+ def mr : SS4AIi8<opc, MRMDestMem, (outs),
+ (ins i64mem:$dst, VR128:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(store (extractelt (v2i64 VR128:$src1), imm:$src2),
+ addr:$dst)]>, REX_W;
+}
+
+let Predicates = [HasAVX] in
+ defm VPEXTRQ : SS41I_extract64<0x16, "vpextrq">, VEX, VEX_W;
+
+defm PEXTRQ : SS41I_extract64<0x16, "pextrq">;
+
+/// SS41I_extractf32 - SSE 4.1 extract 32 bits fp value to int reg or memory
+/// destination
+multiclass SS41I_extractf32<bits<8> opc, string OpcodeStr,
+ OpndItins itins = DEFAULT_ITINS> {
+ def rr : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
+ (ins VR128:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set GR32orGR64:$dst,
+ (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2))],
+ itins.rr>, Sched<[WriteFBlend]>;
+ let SchedRW = [WriteFBlendLd, WriteRMW] in
+ def mr : SS4AIi8<opc, MRMDestMem, (outs),
+ (ins f32mem:$dst, VR128:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(store (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2),
+ addr:$dst)], itins.rm>;
+}
+
+let ExeDomain = SSEPackedSingle in {
+ let Predicates = [UseAVX] in
+ defm VEXTRACTPS : SS41I_extractf32<0x17, "vextractps">, VEX;
+ defm EXTRACTPS : SS41I_extractf32<0x17, "extractps", SSE_EXTRACT_ITINS>;
+}
+
+// Also match an EXTRACTPS store when the store is done as f32 instead of i32.
+def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)),
+ imm:$src2))),
+ addr:$dst),
+ (VEXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>,
+ Requires<[HasAVX]>;
+def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)),
+ imm:$src2))),
+ addr:$dst),
+ (EXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>,
+ Requires<[UseSSE41]>;
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Insert Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass SS41I_insert8<bits<8> opc, string asm, bit Is2Addr = 1> {
+ def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, GR32orGR64:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (X86pinsrb VR128:$src1, GR32orGR64:$src2, imm:$src3))]>,
+ Sched<[WriteShuffle]>;
+ def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i8mem:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (X86pinsrb VR128:$src1, (extloadi8 addr:$src2),
+ imm:$src3))]>, Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in
+ defm VPINSRB : SS41I_insert8<0x20, "vpinsrb", 0>, VEX_4V;
+let Constraints = "$src1 = $dst" in
+ defm PINSRB : SS41I_insert8<0x20, "pinsrb">;
+
+multiclass SS41I_insert32<bits<8> opc, string asm, bit Is2Addr = 1> {
+ def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, GR32:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (v4i32 (insertelt VR128:$src1, GR32:$src2, imm:$src3)))]>,
+ Sched<[WriteShuffle]>;
+ def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i32mem:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (v4i32 (insertelt VR128:$src1, (loadi32 addr:$src2),
+ imm:$src3)))]>, Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in
+ defm VPINSRD : SS41I_insert32<0x22, "vpinsrd", 0>, VEX_4V;
+let Constraints = "$src1 = $dst" in
+ defm PINSRD : SS41I_insert32<0x22, "pinsrd">;
+
+multiclass SS41I_insert64<bits<8> opc, string asm, bit Is2Addr = 1> {
+ def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, GR64:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>,
+ Sched<[WriteShuffle]>;
+ def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i64mem:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2),
+ imm:$src3)))]>, Sched<[WriteShuffleLd, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in
+ defm VPINSRQ : SS41I_insert64<0x22, "vpinsrq", 0>, VEX_4V, VEX_W;
+let Constraints = "$src1 = $dst" in
+ defm PINSRQ : SS41I_insert64<0x22, "pinsrq">, REX_W;
+
+// insertps has a few different modes, there's the first two here below which
+// are optimized inserts that won't zero arbitrary elements in the destination
+// vector. The next one matches the intrinsic and could zero arbitrary elements
+// in the target vector.
+multiclass SS41I_insertf32<bits<8> opc, string asm, bit Is2Addr = 1,
+ OpndItins itins = DEFAULT_ITINS> {
+ def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, u32u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (X86insertps VR128:$src1, VR128:$src2, imm:$src3))], itins.rr>,
+ Sched<[WriteFShuffle]>;
+ def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f32mem:$src2, u32u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (X86insertps VR128:$src1,
+ (v4f32 (scalar_to_vector (loadf32 addr:$src2))),
+ imm:$src3))], itins.rm>,
+ Sched<[WriteFShuffleLd, ReadAfterLd]>;
+}
+
+let ExeDomain = SSEPackedSingle in {
+ let Predicates = [UseAVX] in
+ defm VINSERTPS : SS41I_insertf32<0x21, "vinsertps", 0>, VEX_4V;
+ let Constraints = "$src1 = $dst" in
+ defm INSERTPS : SS41I_insertf32<0x21, "insertps", 1, SSE_INSERT_ITINS>;
+}
+
+let Predicates = [UseSSE41] in {
+ // If we're inserting an element from a load or a null pshuf of a load,
+ // fold the load into the insertps instruction.
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1), (X86PShufd (v4f32
+ (scalar_to_vector (loadf32 addr:$src2))), (i8 0)),
+ imm:$src3)),
+ (INSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1), (X86PShufd
+ (loadv4f32 addr:$src2), (i8 0)), imm:$src3)),
+ (INSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
+}
+
+let Predicates = [UseAVX] in {
+ // If we're inserting an element from a vbroadcast of a load, fold the
+ // load into the X86insertps instruction.
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1),
+ (X86VBroadcast (loadf32 addr:$src2)), imm:$src3)),
+ (VINSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1),
+ (X86VBroadcast (loadv4f32 addr:$src2)), imm:$src3)),
+ (VINSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Round Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass sse41_fp_unop_rm<bits<8> opcps, bits<8> opcpd, string OpcodeStr,
+ X86MemOperand x86memop, RegisterClass RC,
+ PatFrag mem_frag32, PatFrag mem_frag64,
+ Intrinsic V4F32Int, Intrinsic V2F64Int> {
+let ExeDomain = SSEPackedSingle in {
+ // Intrinsic operation, reg.
+ // Vector intrinsic operation, reg
+ def PSr : SS4AIi8<opcps, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (V4F32Int RC:$src1, imm:$src2))],
+ IIC_SSE_ROUNDPS_REG>, Sched<[WriteFAdd]>;
+
+ // Vector intrinsic operation, mem
+ def PSm : SS4AIi8<opcps, MRMSrcMem,
+ (outs RC:$dst), (ins x86memop:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (V4F32Int (mem_frag32 addr:$src1),imm:$src2))],
+ IIC_SSE_ROUNDPS_MEM>, Sched<[WriteFAddLd]>;
+} // ExeDomain = SSEPackedSingle
+
+let ExeDomain = SSEPackedDouble in {
+ // Vector intrinsic operation, reg
+ def PDr : SS4AIi8<opcpd, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (V2F64Int RC:$src1, imm:$src2))],
+ IIC_SSE_ROUNDPS_REG>, Sched<[WriteFAdd]>;
+
+ // Vector intrinsic operation, mem
+ def PDm : SS4AIi8<opcpd, MRMSrcMem,
+ (outs RC:$dst), (ins x86memop:$src1, i32i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (V2F64Int (mem_frag64 addr:$src1),imm:$src2))],
+ IIC_SSE_ROUNDPS_REG>, Sched<[WriteFAddLd]>;
+} // ExeDomain = SSEPackedDouble
+}
+
+multiclass sse41_fp_binop_rm<bits<8> opcss, bits<8> opcsd,
+ string OpcodeStr,
+ Intrinsic F32Int,
+ Intrinsic F64Int, bit Is2Addr = 1> {
+let ExeDomain = GenericDomain in {
+ // Operation, reg.
+ let hasSideEffects = 0 in
+ def SSr : SS4AIi8<opcss, MRMSrcReg,
+ (outs FR32:$dst), (ins FR32:$src1, FR32:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ []>, Sched<[WriteFAdd]>;
+
+ // Intrinsic operation, reg.
+ let isCodeGenOnly = 1 in
+ def SSr_Int : SS4AIi8<opcss, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2, imm:$src3))]>,
+ Sched<[WriteFAdd]>;
+
+ // Intrinsic operation, mem.
+ def SSm : SS4AIi8<opcss, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (F32Int VR128:$src1, sse_load_f32:$src2, imm:$src3))]>,
+ Sched<[WriteFAddLd, ReadAfterLd]>;
+
+ // Operation, reg.
+ let hasSideEffects = 0 in
+ def SDr : SS4AIi8<opcsd, MRMSrcReg,
+ (outs FR64:$dst), (ins FR64:$src1, FR64:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ []>, Sched<[WriteFAdd]>;
+
+ // Intrinsic operation, reg.
+ let isCodeGenOnly = 1 in
+ def SDr_Int : SS4AIi8<opcsd, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst, (F64Int VR128:$src1, VR128:$src2, imm:$src3))]>,
+ Sched<[WriteFAdd]>;
+
+ // Intrinsic operation, mem.
+ def SDm : SS4AIi8<opcsd, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2, i32i8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (F64Int VR128:$src1, sse_load_f64:$src2, imm:$src3))]>,
+ Sched<[WriteFAddLd, ReadAfterLd]>;
+} // ExeDomain = GenericDomain
+}
+
+// FP round - roundss, roundps, roundsd, roundpd
+let Predicates = [HasAVX] in {
+ // Intrinsic form
+ defm VROUND : sse41_fp_unop_rm<0x08, 0x09, "vround", f128mem, VR128,
+ loadv4f32, loadv2f64,
+ int_x86_sse41_round_ps,
+ int_x86_sse41_round_pd>, VEX;
+ defm VROUNDY : sse41_fp_unop_rm<0x08, 0x09, "vround", f256mem, VR256,
+ loadv8f32, loadv4f64,
+ int_x86_avx_round_ps_256,
+ int_x86_avx_round_pd_256>, VEX, VEX_L;
+ defm VROUND : sse41_fp_binop_rm<0x0A, 0x0B, "vround",
+ int_x86_sse41_round_ss,
+ int_x86_sse41_round_sd, 0>, VEX_4V, VEX_LIG;
+
+ def : Pat<(ffloor FR32:$src),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x1))>;
+ def : Pat<(f64 (ffloor FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x1))>;
+ def : Pat<(f32 (fnearbyint FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xC))>;
+ def : Pat<(f64 (fnearbyint FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xC))>;
+ def : Pat<(f32 (fceil FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x2))>;
+ def : Pat<(f64 (fceil FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x2))>;
+ def : Pat<(f32 (frint FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x4))>;
+ def : Pat<(f64 (frint FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x4))>;
+ def : Pat<(f32 (ftrunc FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x3))>;
+ def : Pat<(f64 (ftrunc FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x3))>;
+
+ def : Pat<(v4f32 (ffloor VR128:$src)),
+ (VROUNDPSr VR128:$src, (i32 0x1))>;
+ def : Pat<(v4f32 (fnearbyint VR128:$src)),
+ (VROUNDPSr VR128:$src, (i32 0xC))>;
+ def : Pat<(v4f32 (fceil VR128:$src)),
+ (VROUNDPSr VR128:$src, (i32 0x2))>;
+ def : Pat<(v4f32 (frint VR128:$src)),
+ (VROUNDPSr VR128:$src, (i32 0x4))>;
+ def : Pat<(v4f32 (ftrunc VR128:$src)),
+ (VROUNDPSr VR128:$src, (i32 0x3))>;
+
+ def : Pat<(v2f64 (ffloor VR128:$src)),
+ (VROUNDPDr VR128:$src, (i32 0x1))>;
+ def : Pat<(v2f64 (fnearbyint VR128:$src)),
+ (VROUNDPDr VR128:$src, (i32 0xC))>;
+ def : Pat<(v2f64 (fceil VR128:$src)),
+ (VROUNDPDr VR128:$src, (i32 0x2))>;
+ def : Pat<(v2f64 (frint VR128:$src)),
+ (VROUNDPDr VR128:$src, (i32 0x4))>;
+ def : Pat<(v2f64 (ftrunc VR128:$src)),
+ (VROUNDPDr VR128:$src, (i32 0x3))>;
+
+ def : Pat<(v8f32 (ffloor VR256:$src)),
+ (VROUNDYPSr VR256:$src, (i32 0x1))>;
+ def : Pat<(v8f32 (fnearbyint VR256:$src)),
+ (VROUNDYPSr VR256:$src, (i32 0xC))>;
+ def : Pat<(v8f32 (fceil VR256:$src)),
+ (VROUNDYPSr VR256:$src, (i32 0x2))>;
+ def : Pat<(v8f32 (frint VR256:$src)),
+ (VROUNDYPSr VR256:$src, (i32 0x4))>;
+ def : Pat<(v8f32 (ftrunc VR256:$src)),
+ (VROUNDYPSr VR256:$src, (i32 0x3))>;
+
+ def : Pat<(v4f64 (ffloor VR256:$src)),
+ (VROUNDYPDr VR256:$src, (i32 0x1))>;
+ def : Pat<(v4f64 (fnearbyint VR256:$src)),
+ (VROUNDYPDr VR256:$src, (i32 0xC))>;
+ def : Pat<(v4f64 (fceil VR256:$src)),
+ (VROUNDYPDr VR256:$src, (i32 0x2))>;
+ def : Pat<(v4f64 (frint VR256:$src)),
+ (VROUNDYPDr VR256:$src, (i32 0x4))>;
+ def : Pat<(v4f64 (ftrunc VR256:$src)),
+ (VROUNDYPDr VR256:$src, (i32 0x3))>;
+}
+
+defm ROUND : sse41_fp_unop_rm<0x08, 0x09, "round", f128mem, VR128,
+ memopv4f32, memopv2f64,
+ int_x86_sse41_round_ps, int_x86_sse41_round_pd>;
+let Constraints = "$src1 = $dst" in
+defm ROUND : sse41_fp_binop_rm<0x0A, 0x0B, "round",
+ int_x86_sse41_round_ss, int_x86_sse41_round_sd>;
+
+let Predicates = [UseSSE41] in {
+ def : Pat<(ffloor FR32:$src),
+ (ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x1))>;
+ def : Pat<(f64 (ffloor FR64:$src)),
+ (ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x1))>;
+ def : Pat<(f32 (fnearbyint FR32:$src)),
+ (ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xC))>;
+ def : Pat<(f64 (fnearbyint FR64:$src)),
+ (ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xC))>;
+ def : Pat<(f32 (fceil FR32:$src)),
+ (ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x2))>;
+ def : Pat<(f64 (fceil FR64:$src)),
+ (ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x2))>;
+ def : Pat<(f32 (frint FR32:$src)),
+ (ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x4))>;
+ def : Pat<(f64 (frint FR64:$src)),
+ (ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x4))>;
+ def : Pat<(f32 (ftrunc FR32:$src)),
+ (ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x3))>;
+ def : Pat<(f64 (ftrunc FR64:$src)),
+ (ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x3))>;
+
+ def : Pat<(v4f32 (ffloor VR128:$src)),
+ (ROUNDPSr VR128:$src, (i32 0x1))>;
+ def : Pat<(v4f32 (fnearbyint VR128:$src)),
+ (ROUNDPSr VR128:$src, (i32 0xC))>;
+ def : Pat<(v4f32 (fceil VR128:$src)),
+ (ROUNDPSr VR128:$src, (i32 0x2))>;
+ def : Pat<(v4f32 (frint VR128:$src)),
+ (ROUNDPSr VR128:$src, (i32 0x4))>;
+ def : Pat<(v4f32 (ftrunc VR128:$src)),
+ (ROUNDPSr VR128:$src, (i32 0x3))>;
+
+ def : Pat<(v2f64 (ffloor VR128:$src)),
+ (ROUNDPDr VR128:$src, (i32 0x1))>;
+ def : Pat<(v2f64 (fnearbyint VR128:$src)),
+ (ROUNDPDr VR128:$src, (i32 0xC))>;
+ def : Pat<(v2f64 (fceil VR128:$src)),
+ (ROUNDPDr VR128:$src, (i32 0x2))>;
+ def : Pat<(v2f64 (frint VR128:$src)),
+ (ROUNDPDr VR128:$src, (i32 0x4))>;
+ def : Pat<(v2f64 (ftrunc VR128:$src)),
+ (ROUNDPDr VR128:$src, (i32 0x3))>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Packed Bit Test
+//===----------------------------------------------------------------------===//
+
+// ptest instruction we'll lower to this in X86ISelLowering primarily from
+// the intel intrinsic that corresponds to this.
+let Defs = [EFLAGS], Predicates = [HasAVX] in {
+def VPTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
+ "vptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>,
+ Sched<[WriteVecLogic]>, VEX;
+def VPTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
+ "vptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS,(X86ptest VR128:$src1, (loadv2i64 addr:$src2)))]>,
+ Sched<[WriteVecLogicLd, ReadAfterLd]>, VEX;
+
+def VPTESTYrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR256:$src1, VR256:$src2),
+ "vptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86ptest VR256:$src1, (v4i64 VR256:$src2)))]>,
+ Sched<[WriteVecLogic]>, VEX, VEX_L;
+def VPTESTYrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR256:$src1, i256mem:$src2),
+ "vptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS,(X86ptest VR256:$src1, (loadv4i64 addr:$src2)))]>,
+ Sched<[WriteVecLogicLd, ReadAfterLd]>, VEX, VEX_L;
+}
+
+let Defs = [EFLAGS] in {
+def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
+ "ptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>,
+ Sched<[WriteVecLogic]>;
+def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
+ "ptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86ptest VR128:$src1, (memopv2i64 addr:$src2)))]>,
+ Sched<[WriteVecLogicLd, ReadAfterLd]>;
+}
+
+// The bit test instructions below are AVX only
+multiclass avx_bittest<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ X86MemOperand x86memop, PatFrag mem_frag, ValueType vt> {
+ def rr : SS48I<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
+ [(set EFLAGS, (X86testp RC:$src1, (vt RC:$src2)))]>,
+ Sched<[WriteVecLogic]>, VEX;
+ def rm : SS48I<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
+ [(set EFLAGS, (X86testp RC:$src1, (mem_frag addr:$src2)))]>,
+ Sched<[WriteVecLogicLd, ReadAfterLd]>, VEX;
+}
+
+let Defs = [EFLAGS], Predicates = [HasAVX] in {
+let ExeDomain = SSEPackedSingle in {
+defm VTESTPS : avx_bittest<0x0E, "vtestps", VR128, f128mem, loadv4f32, v4f32>;
+defm VTESTPSY : avx_bittest<0x0E, "vtestps", VR256, f256mem, loadv8f32, v8f32>,
+ VEX_L;
+}
+let ExeDomain = SSEPackedDouble in {
+defm VTESTPD : avx_bittest<0x0F, "vtestpd", VR128, f128mem, loadv2f64, v2f64>;
+defm VTESTPDY : avx_bittest<0x0F, "vtestpd", VR256, f256mem, loadv4f64, v4f64>,
+ VEX_L;
+}
+}
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Misc Instructions
+//===----------------------------------------------------------------------===//
+
+let Defs = [EFLAGS], Predicates = [HasPOPCNT] in {
+ def POPCNT16rr : I<0xB8, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
+ "popcnt{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, (ctpop GR16:$src)), (implicit EFLAGS)],
+ IIC_SSE_POPCNT_RR>, Sched<[WriteFAdd]>,
+ OpSize16, XS;
+ def POPCNT16rm : I<0xB8, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "popcnt{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, (ctpop (loadi16 addr:$src))),
+ (implicit EFLAGS)], IIC_SSE_POPCNT_RM>,
+ Sched<[WriteFAddLd]>, OpSize16, XS;
+
+ def POPCNT32rr : I<0xB8, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "popcnt{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (ctpop GR32:$src)), (implicit EFLAGS)],
+ IIC_SSE_POPCNT_RR>, Sched<[WriteFAdd]>,
+ OpSize32, XS;
+
+ def POPCNT32rm : I<0xB8, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "popcnt{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (ctpop (loadi32 addr:$src))),
+ (implicit EFLAGS)], IIC_SSE_POPCNT_RM>,
+ Sched<[WriteFAddLd]>, OpSize32, XS;
+
+ def POPCNT64rr : RI<0xB8, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
+ "popcnt{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (ctpop GR64:$src)), (implicit EFLAGS)],
+ IIC_SSE_POPCNT_RR>, Sched<[WriteFAdd]>, XS;
+ def POPCNT64rm : RI<0xB8, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "popcnt{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (ctpop (loadi64 addr:$src))),
+ (implicit EFLAGS)], IIC_SSE_POPCNT_RM>,
+ Sched<[WriteFAddLd]>, XS;
+}
+
+
+
+// SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16.
+multiclass SS41I_unop_rm_int_v16<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId128,
+ X86FoldableSchedWrite Sched> {
+ def rr128 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (IntId128 VR128:$src))]>,
+ Sched<[Sched]>;
+ def rm128 : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst,
+ (IntId128 (bitconvert (memopv2i64 addr:$src))))]>,
+ Sched<[Sched.Folded]>;
+}
+
+// PHMIN has the same profile as PSAD, thus we use the same scheduling
+// model, although the naming is misleading.
+let Predicates = [HasAVX] in
+defm VPHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "vphminposuw",
+ int_x86_sse41_phminposuw,
+ WriteVecIMul>, VEX;
+defm PHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "phminposuw",
+ int_x86_sse41_phminposuw,
+ WriteVecIMul>;
+
+/// SS41I_binop_rm_int - Simple SSE 4.1 binary operator
+multiclass SS41I_binop_rm_int<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId128, bit Is2Addr = 1,
+ OpndItins itins = DEFAULT_ITINS> {
+ let isCommutable = 1 in
+ def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))],
+ itins.rr>, Sched<[itins.Sched]>;
+ def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst,
+ (IntId128 VR128:$src1, (bitconvert (memopv2i64 addr:$src2))))],
+ itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+/// SS41I_binop_rm_int_y - Simple SSE 4.1 binary operator
+multiclass SS41I_binop_rm_int_y<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId256,
+ X86FoldableSchedWrite Sched> {
+ let isCommutable = 1 in
+ def Yrr : SS48I<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst, (IntId256 VR256:$src1, VR256:$src2))]>,
+ Sched<[Sched]>;
+ def Yrm : SS48I<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, i256mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (IntId256 VR256:$src1, (bitconvert (loadv4i64 addr:$src2))))]>,
+ Sched<[Sched.Folded, ReadAfterLd]>;
+}
+
+
+/// SS48I_binop_rm - Simple SSE41 binary operator.
+multiclass SS48I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, bit Is2Addr = 1,
+ OpndItins itins = SSE_INTALU_ITINS_P> {
+ let isCommutable = 1 in
+ def rr : SS48I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>,
+ Sched<[itins.Sched]>;
+ def rm : SS48I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1, (bitconvert (memop_frag addr:$src2)))))]>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+/// SS48I_binop_rm2 - Simple SSE41 binary operator with different src and dst
+/// types.
+multiclass SS48I_binop_rm2<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType DstVT, ValueType SrcVT, RegisterClass RC,
+ PatFrag memop_frag, X86MemOperand x86memop,
+ OpndItins itins,
+ bit IsCommutable = 0, bit Is2Addr = 1> {
+ let isCommutable = IsCommutable in
+ def rr : SS48I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1), RC:$src2)))]>,
+ Sched<[itins.Sched]>;
+ def rm : SS48I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1),
+ (bitconvert (memop_frag addr:$src2)))))]>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in {
+ let isCommutable = 0 in
+ defm VPMINSB : SS48I_binop_rm<0x38, "vpminsb", X86smin, v16i8, VR128,
+ loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V;
+ defm VPMINSD : SS48I_binop_rm<0x39, "vpminsd", X86smin, v4i32, VR128,
+ loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V;
+ defm VPMINUD : SS48I_binop_rm<0x3B, "vpminud", X86umin, v4i32, VR128,
+ loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V;
+ defm VPMINUW : SS48I_binop_rm<0x3A, "vpminuw", X86umin, v8i16, VR128,
+ loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V;
+ defm VPMAXSB : SS48I_binop_rm<0x3C, "vpmaxsb", X86smax, v16i8, VR128,
+ loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V;
+ defm VPMAXSD : SS48I_binop_rm<0x3D, "vpmaxsd", X86smax, v4i32, VR128,
+ loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V;
+ defm VPMAXUD : SS48I_binop_rm<0x3F, "vpmaxud", X86umax, v4i32, VR128,
+ loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V;
+ defm VPMAXUW : SS48I_binop_rm<0x3E, "vpmaxuw", X86umax, v8i16, VR128,
+ loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V;
+ defm VPMULDQ : SS48I_binop_rm2<0x28, "vpmuldq", X86pmuldq, v2i64, v4i32,
+ VR128, loadv2i64, i128mem,
+ SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V;
+}
+
+let Predicates = [HasAVX2] in {
+ let isCommutable = 0 in
+ defm VPMINSBY : SS48I_binop_rm<0x38, "vpminsb", X86smin, v32i8, VR256,
+ loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V, VEX_L;
+ defm VPMINSDY : SS48I_binop_rm<0x39, "vpminsd", X86smin, v8i32, VR256,
+ loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V, VEX_L;
+ defm VPMINUDY : SS48I_binop_rm<0x3B, "vpminud", X86umin, v8i32, VR256,
+ loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V, VEX_L;
+ defm VPMINUWY : SS48I_binop_rm<0x3A, "vpminuw", X86umin, v16i16, VR256,
+ loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V, VEX_L;
+ defm VPMAXSBY : SS48I_binop_rm<0x3C, "vpmaxsb", X86smax, v32i8, VR256,
+ loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V, VEX_L;
+ defm VPMAXSDY : SS48I_binop_rm<0x3D, "vpmaxsd", X86smax, v8i32, VR256,
+ loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V, VEX_L;
+ defm VPMAXUDY : SS48I_binop_rm<0x3F, "vpmaxud", X86umax, v8i32, VR256,
+ loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V, VEX_L;
+ defm VPMAXUWY : SS48I_binop_rm<0x3E, "vpmaxuw", X86umax, v16i16, VR256,
+ loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V, VEX_L;
+ defm VPMULDQY : SS48I_binop_rm2<0x28, "vpmuldq", X86pmuldq, v4i64, v8i32,
+ VR256, loadv4i64, i256mem,
+ SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V, VEX_L;
+}
+
+let Constraints = "$src1 = $dst" in {
+ let isCommutable = 0 in
+ defm PMINSB : SS48I_binop_rm<0x38, "pminsb", X86smin, v16i8, VR128,
+ memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
+ defm PMINSD : SS48I_binop_rm<0x39, "pminsd", X86smin, v4i32, VR128,
+ memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
+ defm PMINUD : SS48I_binop_rm<0x3B, "pminud", X86umin, v4i32, VR128,
+ memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
+ defm PMINUW : SS48I_binop_rm<0x3A, "pminuw", X86umin, v8i16, VR128,
+ memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
+ defm PMAXSB : SS48I_binop_rm<0x3C, "pmaxsb", X86smax, v16i8, VR128,
+ memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
+ defm PMAXSD : SS48I_binop_rm<0x3D, "pmaxsd", X86smax, v4i32, VR128,
+ memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
+ defm PMAXUD : SS48I_binop_rm<0x3F, "pmaxud", X86umax, v4i32, VR128,
+ memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
+ defm PMAXUW : SS48I_binop_rm<0x3E, "pmaxuw", X86umax, v8i16, VR128,
+ memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
+ defm PMULDQ : SS48I_binop_rm2<0x28, "pmuldq", X86pmuldq, v2i64, v4i32,
+ VR128, memopv2i64, i128mem,
+ SSE_INTMUL_ITINS_P, 1>;
+}
+
+let Predicates = [HasAVX] in {
+ defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, VR128,
+ memopv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V;
+ defm VPCMPEQQ : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v2i64, VR128,
+ memopv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V;
+}
+let Predicates = [HasAVX2] in {
+ defm VPMULLDY : SS48I_binop_rm<0x40, "vpmulld", mul, v8i32, VR256,
+ memopv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V, VEX_L;
+ defm VPCMPEQQY : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v4i64, VR256,
+ memopv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
+ VEX_4V, VEX_L;
+}
+
+let Constraints = "$src1 = $dst" in {
+ defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32, VR128,
+ memopv2i64, i128mem, 1, SSE_PMULLD_ITINS>;
+ defm PCMPEQQ : SS48I_binop_rm<0x29, "pcmpeqq", X86pcmpeq, v2i64, VR128,
+ memopv2i64, i128mem, 1, SSE_INTALUQ_ITINS_P>;
+}
+
+/// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate
+multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, bit Is2Addr = 1,
+ OpndItins itins = DEFAULT_ITINS> {
+ let isCommutable = 1 in
+ def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, u32u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set RC:$dst, (IntId RC:$src1, RC:$src2, imm:$src3))], itins.rr>,
+ Sched<[itins.Sched]>;
+ def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, u32u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set RC:$dst,
+ (IntId RC:$src1,
+ (bitconvert (memop_frag addr:$src2)), imm:$src3))], itins.rm>,
+ Sched<[itins.Sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in {
+ let isCommutable = 0 in {
+ let ExeDomain = SSEPackedSingle in {
+ defm VBLENDPS : SS41I_binop_rmi_int<0x0C, "vblendps", int_x86_sse41_blendps,
+ VR128, loadv4f32, f128mem, 0,
+ DEFAULT_ITINS_FBLENDSCHED>, VEX_4V;
+ defm VBLENDPSY : SS41I_binop_rmi_int<0x0C, "vblendps",
+ int_x86_avx_blend_ps_256, VR256, loadv8f32,
+ f256mem, 0, DEFAULT_ITINS_FBLENDSCHED>,
+ VEX_4V, VEX_L;
+ }
+ let ExeDomain = SSEPackedDouble in {
+ defm VBLENDPD : SS41I_binop_rmi_int<0x0D, "vblendpd", int_x86_sse41_blendpd,
+ VR128, loadv2f64, f128mem, 0,
+ DEFAULT_ITINS_FBLENDSCHED>, VEX_4V;
+ defm VBLENDPDY : SS41I_binop_rmi_int<0x0D, "vblendpd",
+ int_x86_avx_blend_pd_256,VR256, loadv4f64,
+ f256mem, 0, DEFAULT_ITINS_FBLENDSCHED>,
+ VEX_4V, VEX_L;
+ }
+ defm VPBLENDW : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_sse41_pblendw,
+ VR128, loadv2i64, i128mem, 0,
+ DEFAULT_ITINS_BLENDSCHED>, VEX_4V;
+ defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw,
+ VR128, loadv2i64, i128mem, 0,
+ DEFAULT_ITINS_MPSADSCHED>, VEX_4V;
+ }
+ let ExeDomain = SSEPackedSingle in
+ defm VDPPS : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_sse41_dpps,
+ VR128, loadv4f32, f128mem, 0,
+ SSE_DPPS_ITINS>, VEX_4V;
+ let ExeDomain = SSEPackedDouble in
+ defm VDPPD : SS41I_binop_rmi_int<0x41, "vdppd", int_x86_sse41_dppd,
+ VR128, loadv2f64, f128mem, 0,
+ SSE_DPPS_ITINS>, VEX_4V;
+ let ExeDomain = SSEPackedSingle in
+ defm VDPPSY : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_avx_dp_ps_256,
+ VR256, loadv8f32, i256mem, 0,
+ SSE_DPPS_ITINS>, VEX_4V, VEX_L;
+}
+
+let Predicates = [HasAVX2] in {
+ let isCommutable = 0 in {
+ defm VPBLENDWY : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_avx2_pblendw,
+ VR256, loadv4i64, i256mem, 0,
+ DEFAULT_ITINS_BLENDSCHED>, VEX_4V, VEX_L;
+ defm VMPSADBWY : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_avx2_mpsadbw,
+ VR256, loadv4i64, i256mem, 0,
+ DEFAULT_ITINS_MPSADSCHED>, VEX_4V, VEX_L;
+ }
+}
+
+let Constraints = "$src1 = $dst" in {
+ let isCommutable = 0 in {
+ let ExeDomain = SSEPackedSingle in
+ defm BLENDPS : SS41I_binop_rmi_int<0x0C, "blendps", int_x86_sse41_blendps,
+ VR128, memopv4f32, f128mem,
+ 1, SSE_INTALU_ITINS_FBLEND_P>;
+ let ExeDomain = SSEPackedDouble in
+ defm BLENDPD : SS41I_binop_rmi_int<0x0D, "blendpd", int_x86_sse41_blendpd,
+ VR128, memopv2f64, f128mem,
+ 1, SSE_INTALU_ITINS_FBLEND_P>;
+ defm PBLENDW : SS41I_binop_rmi_int<0x0E, "pblendw", int_x86_sse41_pblendw,
+ VR128, memopv2i64, i128mem,
+ 1, SSE_INTALU_ITINS_FBLEND_P>;
+ defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw,
+ VR128, memopv2i64, i128mem,
+ 1, SSE_MPSADBW_ITINS>;
+ }
+ let ExeDomain = SSEPackedSingle in
+ defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps,
+ VR128, memopv4f32, f128mem, 1,
+ SSE_DPPS_ITINS>;
+ let ExeDomain = SSEPackedDouble in
+ defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd,
+ VR128, memopv2f64, f128mem, 1,
+ SSE_DPPD_ITINS>;
+}
+
+/// SS41I_quaternary_int_avx - AVX SSE 4.1 with 4 operators
+multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr,
+ RegisterClass RC, X86MemOperand x86memop,
+ PatFrag mem_frag, Intrinsic IntId,
+ X86FoldableSchedWrite Sched> {
+ def rr : Ii8<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst, (IntId RC:$src1, RC:$src2, RC:$src3))],
+ NoItinerary, SSEPackedInt>, TAPD, VEX_4V, VEX_I8IMM,
+ Sched<[Sched]>;
+
+ def rm : Ii8<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst,
+ (IntId RC:$src1, (bitconvert (mem_frag addr:$src2)),
+ RC:$src3))],
+ NoItinerary, SSEPackedInt>, TAPD, VEX_4V, VEX_I8IMM,
+ Sched<[Sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in {
+let ExeDomain = SSEPackedDouble in {
+defm VBLENDVPD : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR128, f128mem,
+ loadv2f64, int_x86_sse41_blendvpd,
+ WriteFVarBlend>;
+defm VBLENDVPDY : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR256, f256mem,
+ loadv4f64, int_x86_avx_blendv_pd_256,
+ WriteFVarBlend>, VEX_L;
+} // ExeDomain = SSEPackedDouble
+let ExeDomain = SSEPackedSingle in {
+defm VBLENDVPS : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR128, f128mem,
+ loadv4f32, int_x86_sse41_blendvps,
+ WriteFVarBlend>;
+defm VBLENDVPSY : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR256, f256mem,
+ loadv8f32, int_x86_avx_blendv_ps_256,
+ WriteFVarBlend>, VEX_L;
+} // ExeDomain = SSEPackedSingle
+defm VPBLENDVB : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR128, i128mem,
+ loadv2i64, int_x86_sse41_pblendvb,
+ WriteVarBlend>;
+}
+
+let Predicates = [HasAVX2] in {
+defm VPBLENDVBY : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR256, i256mem,
+ loadv4i64, int_x86_avx2_pblendvb,
+ WriteVarBlend>, VEX_L;
+}
+
+let Predicates = [HasAVX] in {
+ def : Pat<(v16i8 (vselect (v16i8 VR128:$mask), (v16i8 VR128:$src1),
+ (v16i8 VR128:$src2))),
+ (VPBLENDVBrr VR128:$src2, VR128:$src1, VR128:$mask)>;
+ def : Pat<(v4i32 (vselect (v4i32 VR128:$mask), (v4i32 VR128:$src1),
+ (v4i32 VR128:$src2))),
+ (VBLENDVPSrr VR128:$src2, VR128:$src1, VR128:$mask)>;
+ def : Pat<(v4f32 (vselect (v4i32 VR128:$mask), (v4f32 VR128:$src1),
+ (v4f32 VR128:$src2))),
+ (VBLENDVPSrr VR128:$src2, VR128:$src1, VR128:$mask)>;
+ def : Pat<(v2i64 (vselect (v2i64 VR128:$mask), (v2i64 VR128:$src1),
+ (v2i64 VR128:$src2))),
+ (VBLENDVPDrr VR128:$src2, VR128:$src1, VR128:$mask)>;
+ def : Pat<(v2f64 (vselect (v2i64 VR128:$mask), (v2f64 VR128:$src1),
+ (v2f64 VR128:$src2))),
+ (VBLENDVPDrr VR128:$src2, VR128:$src1, VR128:$mask)>;
+ def : Pat<(v8i32 (vselect (v8i32 VR256:$mask), (v8i32 VR256:$src1),
+ (v8i32 VR256:$src2))),
+ (VBLENDVPSYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
+ def : Pat<(v8f32 (vselect (v8i32 VR256:$mask), (v8f32 VR256:$src1),
+ (v8f32 VR256:$src2))),
+ (VBLENDVPSYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
+ def : Pat<(v4i64 (vselect (v4i64 VR256:$mask), (v4i64 VR256:$src1),
+ (v4i64 VR256:$src2))),
+ (VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
+ def : Pat<(v4f64 (vselect (v4i64 VR256:$mask), (v4f64 VR256:$src1),
+ (v4f64 VR256:$src2))),
+ (VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
+
+ def : Pat<(v8f32 (X86Blendi (v8f32 VR256:$src1), (v8f32 VR256:$src2),
+ (imm:$mask))),
+ (VBLENDPSYrri VR256:$src1, VR256:$src2, imm:$mask)>;
+ def : Pat<(v4f64 (X86Blendi (v4f64 VR256:$src1), (v4f64 VR256:$src2),
+ (imm:$mask))),
+ (VBLENDPDYrri VR256:$src1, VR256:$src2, imm:$mask)>;
+
+ def : Pat<(v8i16 (X86Blendi (v8i16 VR128:$src1), (v8i16 VR128:$src2),
+ (imm:$mask))),
+ (VPBLENDWrri VR128:$src1, VR128:$src2, imm:$mask)>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$src1), (v4f32 VR128:$src2),
+ (imm:$mask))),
+ (VBLENDPSrri VR128:$src1, VR128:$src2, imm:$mask)>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$src1), (v2f64 VR128:$src2),
+ (imm:$mask))),
+ (VBLENDPDrri VR128:$src1, VR128:$src2, imm:$mask)>;
+}
+
+let Predicates = [HasAVX2] in {
+ def : Pat<(v32i8 (vselect (v32i8 VR256:$mask), (v32i8 VR256:$src1),
+ (v32i8 VR256:$src2))),
+ (VPBLENDVBYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
+ def : Pat<(v16i16 (X86Blendi (v16i16 VR256:$src1), (v16i16 VR256:$src2),
+ (imm:$mask))),
+ (VPBLENDWYrri VR256:$src1, VR256:$src2, imm:$mask)>;
+}
+
+/// SS41I_ternary_int - SSE 4.1 ternary operator
+let Uses = [XMM0], Constraints = "$src1 = $dst" in {
+ multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
+ X86MemOperand x86memop, Intrinsic IntId,
+ OpndItins itins = DEFAULT_ITINS> {
+ def rr0 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $dst|$dst, $src2}"),
+ [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0))],
+ itins.rr>;
+
+ def rm0 : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $dst|$dst, $src2}"),
+ [(set VR128:$dst,
+ (IntId VR128:$src1,
+ (bitconvert (mem_frag addr:$src2)), XMM0))],
+ itins.rm>;
+ }
+}
+
+let ExeDomain = SSEPackedDouble in
+defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", memopv2f64, f128mem,
+ int_x86_sse41_blendvpd>;
+let ExeDomain = SSEPackedSingle in
+defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", memopv4f32, f128mem,
+ int_x86_sse41_blendvps>;
+defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", memopv2i64, i128mem,
+ int_x86_sse41_pblendvb>;
+
+// Aliases with the implicit xmm0 argument
+def : InstAlias<"blendvpd\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
+ (BLENDVPDrr0 VR128:$dst, VR128:$src2)>;
+def : InstAlias<"blendvpd\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
+ (BLENDVPDrm0 VR128:$dst, f128mem:$src2)>;
+def : InstAlias<"blendvps\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
+ (BLENDVPSrr0 VR128:$dst, VR128:$src2)>;
+def : InstAlias<"blendvps\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
+ (BLENDVPSrm0 VR128:$dst, f128mem:$src2)>;
+def : InstAlias<"pblendvb\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
+ (PBLENDVBrr0 VR128:$dst, VR128:$src2)>;
+def : InstAlias<"pblendvb\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
+ (PBLENDVBrm0 VR128:$dst, i128mem:$src2)>;
+
+let Predicates = [UseSSE41] in {
+ def : Pat<(v16i8 (vselect (v16i8 XMM0), (v16i8 VR128:$src1),
+ (v16i8 VR128:$src2))),
+ (PBLENDVBrr0 VR128:$src2, VR128:$src1)>;
+ def : Pat<(v4i32 (vselect (v4i32 XMM0), (v4i32 VR128:$src1),
+ (v4i32 VR128:$src2))),
+ (BLENDVPSrr0 VR128:$src2, VR128:$src1)>;
+ def : Pat<(v4f32 (vselect (v4i32 XMM0), (v4f32 VR128:$src1),
+ (v4f32 VR128:$src2))),
+ (BLENDVPSrr0 VR128:$src2, VR128:$src1)>;
+ def : Pat<(v2i64 (vselect (v2i64 XMM0), (v2i64 VR128:$src1),
+ (v2i64 VR128:$src2))),
+ (BLENDVPDrr0 VR128:$src2, VR128:$src1)>;
+ def : Pat<(v2f64 (vselect (v2i64 XMM0), (v2f64 VR128:$src1),
+ (v2f64 VR128:$src2))),
+ (BLENDVPDrr0 VR128:$src2, VR128:$src1)>;
+
+ def : Pat<(v8i16 (X86Blendi (v8i16 VR128:$src1), (v8i16 VR128:$src2),
+ (imm:$mask))),
+ (PBLENDWrri VR128:$src1, VR128:$src2, imm:$mask)>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$src1), (v4f32 VR128:$src2),
+ (imm:$mask))),
+ (BLENDPSrri VR128:$src1, VR128:$src2, imm:$mask)>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$src1), (v2f64 VR128:$src2),
+ (imm:$mask))),
+ (BLENDPDrri VR128:$src1, VR128:$src2, imm:$mask)>;
+
+}
+
+let SchedRW = [WriteLoad] in {
+let Predicates = [HasAVX] in
+def VMOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "vmovntdqa\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>,
+ VEX;
+let Predicates = [HasAVX2] in
+def VMOVNTDQAYrm : SS48I<0x2A, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
+ "vmovntdqa\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst, (int_x86_avx2_movntdqa addr:$src))]>,
+ VEX, VEX_L;
+def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "movntdqa\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// SSE4.2 - Compare Instructions
+//===----------------------------------------------------------------------===//
+
+/// SS42I_binop_rm - Simple SSE 4.2 binary operator
+multiclass SS42I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, bit Is2Addr = 1> {
+ def rr : SS428I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>;
+ def rm : SS428I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1, (memop_frag addr:$src2))))]>;
+}
+
+let Predicates = [HasAVX] in
+ defm VPCMPGTQ : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v2i64, VR128,
+ loadv2i64, i128mem, 0>, VEX_4V;
+
+let Predicates = [HasAVX2] in
+ defm VPCMPGTQY : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v4i64, VR256,
+ loadv4i64, i256mem, 0>, VEX_4V, VEX_L;
+
+let Constraints = "$src1 = $dst" in
+ defm PCMPGTQ : SS42I_binop_rm<0x37, "pcmpgtq", X86pcmpgt, v2i64, VR128,
+ memopv2i64, i128mem>;
+
+//===----------------------------------------------------------------------===//
+// SSE4.2 - String/text Processing Instructions
+//===----------------------------------------------------------------------===//
+
+// Packed Compare Implicit Length Strings, Return Mask
+multiclass pseudo_pcmpistrm<string asm> {
+ def REG : PseudoI<(outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ [(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1, VR128:$src2,
+ imm:$src3))]>;
+ def MEM : PseudoI<(outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ [(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1,
+ (bc_v16i8 (memopv2i64 addr:$src2)), imm:$src3))]>;
+}
+
+let Defs = [EFLAGS], usesCustomInserter = 1 in {
+ defm VPCMPISTRM128 : pseudo_pcmpistrm<"#VPCMPISTRM128">, Requires<[HasAVX]>;
+ defm PCMPISTRM128 : pseudo_pcmpistrm<"#PCMPISTRM128">, Requires<[UseSSE42]>;
+}
+
+multiclass pcmpistrm_SS42AI<string asm> {
+ def rr : SS42AI<0x62, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
+ []>, Sched<[WritePCmpIStrM]>;
+ let mayLoad = 1 in
+ def rm :SS42AI<0x62, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
+ []>, Sched<[WritePCmpIStrMLd, ReadAfterLd]>;
+}
+
+let Defs = [XMM0, EFLAGS], neverHasSideEffects = 1 in {
+ let Predicates = [HasAVX] in
+ defm VPCMPISTRM128 : pcmpistrm_SS42AI<"vpcmpistrm">, VEX;
+ defm PCMPISTRM128 : pcmpistrm_SS42AI<"pcmpistrm"> ;
+}
+
+// Packed Compare Explicit Length Strings, Return Mask
+multiclass pseudo_pcmpestrm<string asm> {
+ def REG : PseudoI<(outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src3, i8imm:$src5),
+ [(set VR128:$dst, (int_x86_sse42_pcmpestrm128
+ VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5))]>;
+ def MEM : PseudoI<(outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src3, i8imm:$src5),
+ [(set VR128:$dst, (int_x86_sse42_pcmpestrm128 VR128:$src1, EAX,
+ (bc_v16i8 (memopv2i64 addr:$src3)), EDX, imm:$src5))]>;
+}
+
+let Defs = [EFLAGS], Uses = [EAX, EDX], usesCustomInserter = 1 in {
+ defm VPCMPESTRM128 : pseudo_pcmpestrm<"#VPCMPESTRM128">, Requires<[HasAVX]>;
+ defm PCMPESTRM128 : pseudo_pcmpestrm<"#PCMPESTRM128">, Requires<[UseSSE42]>;
+}
+
+multiclass SS42AI_pcmpestrm<string asm> {
+ def rr : SS42AI<0x60, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src3, i8imm:$src5),
+ !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
+ []>, Sched<[WritePCmpEStrM]>;
+ let mayLoad = 1 in
+ def rm : SS42AI<0x60, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src3, i8imm:$src5),
+ !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
+ []>, Sched<[WritePCmpEStrMLd, ReadAfterLd]>;
+}
+
+let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX], neverHasSideEffects = 1 in {
+ let Predicates = [HasAVX] in
+ defm VPCMPESTRM128 : SS42AI_pcmpestrm<"vpcmpestrm">, VEX;
+ defm PCMPESTRM128 : SS42AI_pcmpestrm<"pcmpestrm">;
+}
+
+// Packed Compare Implicit Length Strings, Return Index
+multiclass pseudo_pcmpistri<string asm> {
+ def REG : PseudoI<(outs GR32:$dst),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ [(set GR32:$dst, EFLAGS,
+ (X86pcmpistri VR128:$src1, VR128:$src2, imm:$src3))]>;
+ def MEM : PseudoI<(outs GR32:$dst),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ [(set GR32:$dst, EFLAGS, (X86pcmpistri VR128:$src1,
+ (bc_v16i8 (memopv2i64 addr:$src2)), imm:$src3))]>;
+}
+
+let Defs = [EFLAGS], usesCustomInserter = 1 in {
+ defm VPCMPISTRI : pseudo_pcmpistri<"#VPCMPISTRI">, Requires<[HasAVX]>;
+ defm PCMPISTRI : pseudo_pcmpistri<"#PCMPISTRI">, Requires<[UseSSE42]>;
+}
+
+multiclass SS42AI_pcmpistri<string asm> {
+ def rr : SS42AI<0x63, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
+ []>, Sched<[WritePCmpIStrI]>;
+ let mayLoad = 1 in
+ def rm : SS42AI<0x63, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
+ []>, Sched<[WritePCmpIStrILd, ReadAfterLd]>;
+}
+
+let Defs = [ECX, EFLAGS], neverHasSideEffects = 1 in {
+ let Predicates = [HasAVX] in
+ defm VPCMPISTRI : SS42AI_pcmpistri<"vpcmpistri">, VEX;
+ defm PCMPISTRI : SS42AI_pcmpistri<"pcmpistri">;
+}
+
+// Packed Compare Explicit Length Strings, Return Index
+multiclass pseudo_pcmpestri<string asm> {
+ def REG : PseudoI<(outs GR32:$dst),
+ (ins VR128:$src1, VR128:$src3, i8imm:$src5),
+ [(set GR32:$dst, EFLAGS,
+ (X86pcmpestri VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5))]>;
+ def MEM : PseudoI<(outs GR32:$dst),
+ (ins VR128:$src1, i128mem:$src3, i8imm:$src5),
+ [(set GR32:$dst, EFLAGS,
+ (X86pcmpestri VR128:$src1, EAX, (bc_v16i8 (memopv2i64 addr:$src3)), EDX,
+ imm:$src5))]>;
+}
+
+let Defs = [EFLAGS], Uses = [EAX, EDX], usesCustomInserter = 1 in {
+ defm VPCMPESTRI : pseudo_pcmpestri<"#VPCMPESTRI">, Requires<[HasAVX]>;
+ defm PCMPESTRI : pseudo_pcmpestri<"#PCMPESTRI">, Requires<[UseSSE42]>;
+}
+
+multiclass SS42AI_pcmpestri<string asm> {
+ def rr : SS42AI<0x61, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src3, i8imm:$src5),
+ !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
+ []>, Sched<[WritePCmpEStrI]>;
+ let mayLoad = 1 in
+ def rm : SS42AI<0x61, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src3, i8imm:$src5),
+ !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
+ []>, Sched<[WritePCmpEStrILd, ReadAfterLd]>;
+}
+
+let Defs = [ECX, EFLAGS], Uses = [EAX, EDX], neverHasSideEffects = 1 in {
+ let Predicates = [HasAVX] in
+ defm VPCMPESTRI : SS42AI_pcmpestri<"vpcmpestri">, VEX;
+ defm PCMPESTRI : SS42AI_pcmpestri<"pcmpestri">;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE4.2 - CRC Instructions
+//===----------------------------------------------------------------------===//
+
+// No CRC instructions have AVX equivalents
+
+// crc intrinsic instruction
+// This set of instructions are only rm, the only difference is the size
+// of r and m.
+class SS42I_crc32r<bits<8> opc, string asm, RegisterClass RCOut,
+ RegisterClass RCIn, SDPatternOperator Int> :
+ SS42FI<opc, MRMSrcReg, (outs RCOut:$dst), (ins RCOut:$src1, RCIn:$src2),
+ !strconcat(asm, "\t{$src2, $src1|$src1, $src2}"),
+ [(set RCOut:$dst, (Int RCOut:$src1, RCIn:$src2))], IIC_CRC32_REG>,
+ Sched<[WriteFAdd]>;
+
+class SS42I_crc32m<bits<8> opc, string asm, RegisterClass RCOut,
+ X86MemOperand x86memop, SDPatternOperator Int> :
+ SS42FI<opc, MRMSrcMem, (outs RCOut:$dst), (ins RCOut:$src1, x86memop:$src2),
+ !strconcat(asm, "\t{$src2, $src1|$src1, $src2}"),
+ [(set RCOut:$dst, (Int RCOut:$src1, (load addr:$src2)))],
+ IIC_CRC32_MEM>, Sched<[WriteFAddLd, ReadAfterLd]>;
+
+let Constraints = "$src1 = $dst" in {
+ def CRC32r32m8 : SS42I_crc32m<0xF0, "crc32{b}", GR32, i8mem,
+ int_x86_sse42_crc32_32_8>;
+ def CRC32r32r8 : SS42I_crc32r<0xF0, "crc32{b}", GR32, GR8,
+ int_x86_sse42_crc32_32_8>;
+ def CRC32r32m16 : SS42I_crc32m<0xF1, "crc32{w}", GR32, i16mem,
+ int_x86_sse42_crc32_32_16>, OpSize16;
+ def CRC32r32r16 : SS42I_crc32r<0xF1, "crc32{w}", GR32, GR16,
+ int_x86_sse42_crc32_32_16>, OpSize16;
+ def CRC32r32m32 : SS42I_crc32m<0xF1, "crc32{l}", GR32, i32mem,
+ int_x86_sse42_crc32_32_32>, OpSize32;
+ def CRC32r32r32 : SS42I_crc32r<0xF1, "crc32{l}", GR32, GR32,
+ int_x86_sse42_crc32_32_32>, OpSize32;
+ def CRC32r64m64 : SS42I_crc32m<0xF1, "crc32{q}", GR64, i64mem,
+ int_x86_sse42_crc32_64_64>, REX_W;
+ def CRC32r64r64 : SS42I_crc32r<0xF1, "crc32{q}", GR64, GR64,
+ int_x86_sse42_crc32_64_64>, REX_W;
+ let hasSideEffects = 0 in {
+ let mayLoad = 1 in
+ def CRC32r64m8 : SS42I_crc32m<0xF0, "crc32{b}", GR64, i8mem,
+ null_frag>, REX_W;
+ def CRC32r64r8 : SS42I_crc32r<0xF0, "crc32{b}", GR64, GR8,
+ null_frag>, REX_W;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// SHA-NI Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass SHAI_binop<bits<8> Opc, string OpcodeStr, Intrinsic IntId,
+ bit UsesXMM0 = 0> {
+ def rr : I<Opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ [!if(UsesXMM0,
+ (set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0)),
+ (set VR128:$dst, (IntId VR128:$src1, VR128:$src2)))]>, T8;
+
+ def rm : I<Opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ [!if(UsesXMM0,
+ (set VR128:$dst, (IntId VR128:$src1,
+ (bc_v4i32 (memopv2i64 addr:$src2)), XMM0)),
+ (set VR128:$dst, (IntId VR128:$src1,
+ (bc_v4i32 (memopv2i64 addr:$src2)))))]>, T8;
+}
+
+let Constraints = "$src1 = $dst", Predicates = [HasSHA] in {
+ def SHA1RNDS4rri : Ii8<0xCC, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ "sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set VR128:$dst,
+ (int_x86_sha1rnds4 VR128:$src1, VR128:$src2,
+ (i8 imm:$src3)))]>, TA;
+ def SHA1RNDS4rmi : Ii8<0xCC, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ "sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set VR128:$dst,
+ (int_x86_sha1rnds4 VR128:$src1,
+ (bc_v4i32 (memopv2i64 addr:$src2)),
+ (i8 imm:$src3)))]>, TA;
+
+ defm SHA1NEXTE : SHAI_binop<0xC8, "sha1nexte", int_x86_sha1nexte>;
+ defm SHA1MSG1 : SHAI_binop<0xC9, "sha1msg1", int_x86_sha1msg1>;
+ defm SHA1MSG2 : SHAI_binop<0xCA, "sha1msg2", int_x86_sha1msg2>;
+
+ let Uses=[XMM0] in
+ defm SHA256RNDS2 : SHAI_binop<0xCB, "sha256rnds2", int_x86_sha256rnds2, 1>;
+
+ defm SHA256MSG1 : SHAI_binop<0xCC, "sha256msg1", int_x86_sha256msg1>;
+ defm SHA256MSG2 : SHAI_binop<0xCD, "sha256msg2", int_x86_sha256msg2>;
+}
+
+// Aliases with explicit %xmm0
+def : InstAlias<"sha256rnds2\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
+ (SHA256RNDS2rr VR128:$dst, VR128:$src2)>;
+def : InstAlias<"sha256rnds2\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
+ (SHA256RNDS2rm VR128:$dst, i128mem:$src2)>;
+
+//===----------------------------------------------------------------------===//
+// AES-NI Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass AESI_binop_rm_int<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId128, bit Is2Addr = 1> {
+ def rr : AES8I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
+ Sched<[WriteAESDecEnc]>;
+ def rm : AES8I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst,
+ (IntId128 VR128:$src1, (memopv2i64 addr:$src2)))]>,
+ Sched<[WriteAESDecEncLd, ReadAfterLd]>;
+}
+
+// Perform One Round of an AES Encryption/Decryption Flow
+let Predicates = [HasAVX, HasAES] in {
+ defm VAESENC : AESI_binop_rm_int<0xDC, "vaesenc",
+ int_x86_aesni_aesenc, 0>, VEX_4V;
+ defm VAESENCLAST : AESI_binop_rm_int<0xDD, "vaesenclast",
+ int_x86_aesni_aesenclast, 0>, VEX_4V;
+ defm VAESDEC : AESI_binop_rm_int<0xDE, "vaesdec",
+ int_x86_aesni_aesdec, 0>, VEX_4V;
+ defm VAESDECLAST : AESI_binop_rm_int<0xDF, "vaesdeclast",
+ int_x86_aesni_aesdeclast, 0>, VEX_4V;
+}
+
+let Constraints = "$src1 = $dst" in {
+ defm AESENC : AESI_binop_rm_int<0xDC, "aesenc",
+ int_x86_aesni_aesenc>;
+ defm AESENCLAST : AESI_binop_rm_int<0xDD, "aesenclast",
+ int_x86_aesni_aesenclast>;
+ defm AESDEC : AESI_binop_rm_int<0xDE, "aesdec",
+ int_x86_aesni_aesdec>;
+ defm AESDECLAST : AESI_binop_rm_int<0xDF, "aesdeclast",
+ int_x86_aesni_aesdeclast>;
+}
+
+// Perform the AES InvMixColumn Transformation
+let Predicates = [HasAVX, HasAES] in {
+ def VAESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1),
+ "vaesimc\t{$src1, $dst|$dst, $src1}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>,
+ VEX;
+ def VAESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1),
+ "vaesimc\t{$src1, $dst|$dst, $src1}",
+ [(set VR128:$dst, (int_x86_aesni_aesimc (loadv2i64 addr:$src1)))]>,
+ Sched<[WriteAESIMCLd]>, VEX;
+}
+def AESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1),
+ "aesimc\t{$src1, $dst|$dst, $src1}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>;
+def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1),
+ "aesimc\t{$src1, $dst|$dst, $src1}",
+ [(set VR128:$dst, (int_x86_aesni_aesimc (memopv2i64 addr:$src1)))]>,
+ Sched<[WriteAESIMCLd]>;
+
+// AES Round Key Generation Assist
+let Predicates = [HasAVX, HasAES] in {
+ def VAESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, i8imm:$src2),
+ "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>,
+ Sched<[WriteAESKeyGen]>, VEX;
+ def VAESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1, i8imm:$src2),
+ "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aeskeygenassist (loadv2i64 addr:$src1), imm:$src2))]>,
+ Sched<[WriteAESKeyGenLd]>, VEX;
+}
+def AESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, i8imm:$src2),
+ "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>,
+ Sched<[WriteAESKeyGen]>;
+def AESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1, i8imm:$src2),
+ "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aeskeygenassist (memopv2i64 addr:$src1), imm:$src2))]>,
+ Sched<[WriteAESKeyGenLd]>;
+
+//===----------------------------------------------------------------------===//
+// PCLMUL Instructions
+//===----------------------------------------------------------------------===//
+
+// AVX carry-less Multiplication instructions
+def VPCLMULQDQrr : AVXPCLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ "vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR128:$dst,
+ (int_x86_pclmulqdq VR128:$src1, VR128:$src2, imm:$src3))]>,
+ Sched<[WriteCLMul]>;
+
+def VPCLMULQDQrm : AVXPCLMULIi8<0x44, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ "vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR128:$dst, (int_x86_pclmulqdq VR128:$src1,
+ (loadv2i64 addr:$src2), imm:$src3))]>,
+ Sched<[WriteCLMulLd, ReadAfterLd]>;
+
+// Carry-less Multiplication instructions
+let Constraints = "$src1 = $dst" in {
+def PCLMULQDQrr : PCLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ "pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set VR128:$dst,
+ (int_x86_pclmulqdq VR128:$src1, VR128:$src2, imm:$src3))],
+ IIC_SSE_PCLMULQDQ_RR>, Sched<[WriteCLMul]>;
+
+def PCLMULQDQrm : PCLMULIi8<0x44, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ "pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set VR128:$dst, (int_x86_pclmulqdq VR128:$src1,
+ (memopv2i64 addr:$src2), imm:$src3))],
+ IIC_SSE_PCLMULQDQ_RM>,
+ Sched<[WriteCLMulLd, ReadAfterLd]>;
+} // Constraints = "$src1 = $dst"
+
+
+multiclass pclmul_alias<string asm, int immop> {
+ def : InstAlias<!strconcat("pclmul", asm, "dq {$src, $dst|$dst, $src}"),
+ (PCLMULQDQrr VR128:$dst, VR128:$src, immop), 0>;
+
+ def : InstAlias<!strconcat("pclmul", asm, "dq {$src, $dst|$dst, $src}"),
+ (PCLMULQDQrm VR128:$dst, i128mem:$src, immop), 0>;
+
+ def : InstAlias<!strconcat("vpclmul", asm,
+ "dq {$src2, $src1, $dst|$dst, $src1, $src2}"),
+ (VPCLMULQDQrr VR128:$dst, VR128:$src1, VR128:$src2, immop),
+ 0>;
+
+ def : InstAlias<!strconcat("vpclmul", asm,
+ "dq {$src2, $src1, $dst|$dst, $src1, $src2}"),
+ (VPCLMULQDQrm VR128:$dst, VR128:$src1, i128mem:$src2, immop),
+ 0>;
+}
+defm : pclmul_alias<"hqhq", 0x11>;
+defm : pclmul_alias<"hqlq", 0x01>;
+defm : pclmul_alias<"lqhq", 0x10>;
+defm : pclmul_alias<"lqlq", 0x00>;
+
+//===----------------------------------------------------------------------===//
+// SSE4A Instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [HasSSE4A] in {
+
+let Constraints = "$src = $dst" in {
+def EXTRQI : Ii8<0x78, MRMXr, (outs VR128:$dst),
+ (ins VR128:$src, i8imm:$len, i8imm:$idx),
+ "extrq\t{$idx, $len, $src|$src, $len, $idx}",
+ [(set VR128:$dst, (int_x86_sse4a_extrqi VR128:$src, imm:$len,
+ imm:$idx))]>, PD;
+def EXTRQ : I<0x79, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src, VR128:$mask),
+ "extrq\t{$mask, $src|$src, $mask}",
+ [(set VR128:$dst, (int_x86_sse4a_extrq VR128:$src,
+ VR128:$mask))]>, PD;
+
+def INSERTQI : Ii8<0x78, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src, VR128:$src2, i8imm:$len, i8imm:$idx),
+ "insertq\t{$idx, $len, $src2, $src|$src, $src2, $len, $idx}",
+ [(set VR128:$dst, (int_x86_sse4a_insertqi VR128:$src,
+ VR128:$src2, imm:$len, imm:$idx))]>, XD;
+def INSERTQ : I<0x79, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src, VR128:$mask),
+ "insertq\t{$mask, $src|$src, $mask}",
+ [(set VR128:$dst, (int_x86_sse4a_insertq VR128:$src,
+ VR128:$mask))]>, XD;
+}
+
+def MOVNTSS : I<0x2B, MRMDestMem, (outs), (ins f32mem:$dst, VR128:$src),
+ "movntss\t{$src, $dst|$dst, $src}",
+ [(int_x86_sse4a_movnt_ss addr:$dst, VR128:$src)]>, XS;
+
+def MOVNTSD : I<0x2B, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movntsd\t{$src, $dst|$dst, $src}",
+ [(int_x86_sse4a_movnt_sd addr:$dst, VR128:$src)]>, XD;
+}
+
+//===----------------------------------------------------------------------===//
+// AVX Instructions
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// VBROADCAST - Load from memory and broadcast to all elements of the
+// destination operand
+//
+class avx_broadcast<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ X86MemOperand x86memop, Intrinsic Int, SchedWrite Sched> :
+ AVX8I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (Int addr:$src))]>, Sched<[Sched]>, VEX;
+
+class avx_broadcast_no_int<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ X86MemOperand x86memop, ValueType VT,
+ PatFrag ld_frag, SchedWrite Sched> :
+ AVX8I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (VT (X86VBroadcast (ld_frag addr:$src))))]>,
+ Sched<[Sched]>, VEX {
+ let mayLoad = 1;
+}
+
+// AVX2 adds register forms
+class avx2_broadcast_reg<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ Intrinsic Int, SchedWrite Sched> :
+ AVX28I<opc, MRMSrcReg, (outs RC:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (Int VR128:$src))]>, Sched<[Sched]>, VEX;
+
+let ExeDomain = SSEPackedSingle in {
+ def VBROADCASTSSrm : avx_broadcast_no_int<0x18, "vbroadcastss", VR128,
+ f32mem, v4f32, loadf32, WriteLoad>;
+ def VBROADCASTSSYrm : avx_broadcast_no_int<0x18, "vbroadcastss", VR256,
+ f32mem, v8f32, loadf32,
+ WriteFShuffleLd>, VEX_L;
+}
+let ExeDomain = SSEPackedDouble in
+def VBROADCASTSDYrm : avx_broadcast_no_int<0x19, "vbroadcastsd", VR256, f64mem,
+ v4f64, loadf64, WriteFShuffleLd>, VEX_L;
+def VBROADCASTF128 : avx_broadcast<0x1A, "vbroadcastf128", VR256, f128mem,
+ int_x86_avx_vbroadcastf128_pd_256,
+ WriteFShuffleLd>, VEX_L;
+
+let ExeDomain = SSEPackedSingle in {
+ def VBROADCASTSSrr : avx2_broadcast_reg<0x18, "vbroadcastss", VR128,
+ int_x86_avx2_vbroadcast_ss_ps,
+ WriteFShuffle>;
+ def VBROADCASTSSYrr : avx2_broadcast_reg<0x18, "vbroadcastss", VR256,
+ int_x86_avx2_vbroadcast_ss_ps_256,
+ WriteFShuffle256>, VEX_L;
+}
+let ExeDomain = SSEPackedDouble in
+def VBROADCASTSDYrr : avx2_broadcast_reg<0x19, "vbroadcastsd", VR256,
+ int_x86_avx2_vbroadcast_sd_pd_256,
+ WriteFShuffle256>, VEX_L;
+
+let Predicates = [HasAVX2] in
+def VBROADCASTI128 : avx_broadcast<0x5A, "vbroadcasti128", VR256, i128mem,
+ int_x86_avx2_vbroadcasti128, WriteLoad>,
+ VEX_L;
+
+let Predicates = [HasAVX] in
+def : Pat<(int_x86_avx_vbroadcastf128_ps_256 addr:$src),
+ (VBROADCASTF128 addr:$src)>;
+
+
+//===----------------------------------------------------------------------===//
+// VINSERTF128 - Insert packed floating-point values
+//
+let neverHasSideEffects = 1, ExeDomain = SSEPackedSingle in {
+def VINSERTF128rr : AVXAIi8<0x18, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR128:$src2, i8imm:$src3),
+ "vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, Sched<[WriteFShuffle]>, VEX_4V, VEX_L;
+let mayLoad = 1 in
+def VINSERTF128rm : AVXAIi8<0x18, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f128mem:$src2, i8imm:$src3),
+ "vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, Sched<[WriteFShuffleLd, ReadAfterLd]>, VEX_4V, VEX_L;
+}
+
+let Predicates = [HasAVX] in {
+def : Pat<(vinsert128_insert:$ins (v8f32 VR256:$src1), (v4f32 VR128:$src2),
+ (iPTR imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v4f64 VR256:$src1), (v2f64 VR128:$src2),
+ (iPTR imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+
+def : Pat<(vinsert128_insert:$ins (v8f32 VR256:$src1), (loadv4f32 addr:$src2),
+ (iPTR imm)),
+ (VINSERTF128rm VR256:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v4f64 VR256:$src1), (loadv2f64 addr:$src2),
+ (iPTR imm)),
+ (VINSERTF128rm VR256:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+}
+
+let Predicates = [HasAVX1Only] in {
+def : Pat<(vinsert128_insert:$ins (v4i64 VR256:$src1), (v2i64 VR128:$src2),
+ (iPTR imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v8i32 VR256:$src1), (v4i32 VR128:$src2),
+ (iPTR imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v32i8 VR256:$src1), (v16i8 VR128:$src2),
+ (iPTR imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v16i16 VR256:$src1), (v8i16 VR128:$src2),
+ (iPTR imm)),
+ (VINSERTF128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+
+def : Pat<(vinsert128_insert:$ins (v4i64 VR256:$src1), (loadv2i64 addr:$src2),
+ (iPTR imm)),
+ (VINSERTF128rm VR256:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v8i32 VR256:$src1),
+ (bc_v4i32 (loadv2i64 addr:$src2)),
+ (iPTR imm)),
+ (VINSERTF128rm VR256:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v32i8 VR256:$src1),
+ (bc_v16i8 (loadv2i64 addr:$src2)),
+ (iPTR imm)),
+ (VINSERTF128rm VR256:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v16i16 VR256:$src1),
+ (bc_v8i16 (loadv2i64 addr:$src2)),
+ (iPTR imm)),
+ (VINSERTF128rm VR256:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+}
+
+//===----------------------------------------------------------------------===//
+// VEXTRACTF128 - Extract packed floating-point values
+//
+let neverHasSideEffects = 1, ExeDomain = SSEPackedSingle in {
+def VEXTRACTF128rr : AVXAIi8<0x19, MRMDestReg, (outs VR128:$dst),
+ (ins VR256:$src1, i8imm:$src2),
+ "vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, Sched<[WriteFShuffle]>, VEX, VEX_L;
+let mayStore = 1 in
+def VEXTRACTF128mr : AVXAIi8<0x19, MRMDestMem, (outs),
+ (ins f128mem:$dst, VR256:$src1, i8imm:$src2),
+ "vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, Sched<[WriteStore]>, VEX, VEX_L;
+}
+
+// AVX1 patterns
+let Predicates = [HasAVX] in {
+def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
+ (v4f32 (VEXTRACTF128rr
+ (v8f32 VR256:$src1),
+ (EXTRACT_get_vextract128_imm VR128:$ext)))>;
+def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
+ (v2f64 (VEXTRACTF128rr
+ (v4f64 VR256:$src1),
+ (EXTRACT_get_vextract128_imm VR128:$ext)))>;
+
+def : Pat<(store (v4f32 (vextract128_extract:$ext (v8f32 VR256:$src1),
+ (iPTR imm))), addr:$dst),
+ (VEXTRACTF128mr addr:$dst, VR256:$src1,
+ (EXTRACT_get_vextract128_imm VR128:$ext))>;
+def : Pat<(store (v2f64 (vextract128_extract:$ext (v4f64 VR256:$src1),
+ (iPTR imm))), addr:$dst),
+ (VEXTRACTF128mr addr:$dst, VR256:$src1,
+ (EXTRACT_get_vextract128_imm VR128:$ext))>;
+}
+
+let Predicates = [HasAVX1Only] in {
+def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
+ (v2i64 (VEXTRACTF128rr
+ (v4i64 VR256:$src1),
+ (EXTRACT_get_vextract128_imm VR128:$ext)))>;
+def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
+ (v4i32 (VEXTRACTF128rr
+ (v8i32 VR256:$src1),
+ (EXTRACT_get_vextract128_imm VR128:$ext)))>;
+def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
+ (v8i16 (VEXTRACTF128rr
+ (v16i16 VR256:$src1),
+ (EXTRACT_get_vextract128_imm VR128:$ext)))>;
+def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
+ (v16i8 (VEXTRACTF128rr
+ (v32i8 VR256:$src1),
+ (EXTRACT_get_vextract128_imm VR128:$ext)))>;
+
+def : Pat<(alignedstore (v2i64 (vextract128_extract:$ext (v4i64 VR256:$src1),
+ (iPTR imm))), addr:$dst),
+ (VEXTRACTF128mr addr:$dst, VR256:$src1,
+ (EXTRACT_get_vextract128_imm VR128:$ext))>;
+def : Pat<(alignedstore (v4i32 (vextract128_extract:$ext (v8i32 VR256:$src1),
+ (iPTR imm))), addr:$dst),
+ (VEXTRACTF128mr addr:$dst, VR256:$src1,
+ (EXTRACT_get_vextract128_imm VR128:$ext))>;
+def : Pat<(alignedstore (v8i16 (vextract128_extract:$ext (v16i16 VR256:$src1),
+ (iPTR imm))), addr:$dst),
+ (VEXTRACTF128mr addr:$dst, VR256:$src1,
+ (EXTRACT_get_vextract128_imm VR128:$ext))>;
+def : Pat<(alignedstore (v16i8 (vextract128_extract:$ext (v32i8 VR256:$src1),
+ (iPTR imm))), addr:$dst),
+ (VEXTRACTF128mr addr:$dst, VR256:$src1,
+ (EXTRACT_get_vextract128_imm VR128:$ext))>;
+}
+
+//===----------------------------------------------------------------------===//
+// VMASKMOV - Conditional SIMD Packed Loads and Stores
+//
+multiclass avx_movmask_rm<bits<8> opc_rm, bits<8> opc_mr, string OpcodeStr,
+ Intrinsic IntLd, Intrinsic IntLd256,
+ Intrinsic IntSt, Intrinsic IntSt256> {
+ def rm : AVX8I<opc_rm, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f128mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst, (IntLd addr:$src2, VR128:$src1))]>,
+ VEX_4V;
+ def Yrm : AVX8I<opc_rm, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>,
+ VEX_4V, VEX_L;
+ def mr : AVX8I<opc_mr, MRMDestMem, (outs),
+ (ins f128mem:$dst, VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(IntSt addr:$dst, VR128:$src1, VR128:$src2)]>, VEX_4V;
+ def Ymr : AVX8I<opc_mr, MRMDestMem, (outs),
+ (ins f256mem:$dst, VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>, VEX_4V, VEX_L;
+}
+
+let ExeDomain = SSEPackedSingle in
+defm VMASKMOVPS : avx_movmask_rm<0x2C, 0x2E, "vmaskmovps",
+ int_x86_avx_maskload_ps,
+ int_x86_avx_maskload_ps_256,
+ int_x86_avx_maskstore_ps,
+ int_x86_avx_maskstore_ps_256>;
+let ExeDomain = SSEPackedDouble in
+defm VMASKMOVPD : avx_movmask_rm<0x2D, 0x2F, "vmaskmovpd",
+ int_x86_avx_maskload_pd,
+ int_x86_avx_maskload_pd_256,
+ int_x86_avx_maskstore_pd,
+ int_x86_avx_maskstore_pd_256>;
+
+//===----------------------------------------------------------------------===//
+// VPERMIL - Permute Single and Double Floating-Point Values
+//
+multiclass avx_permil<bits<8> opc_rm, bits<8> opc_rmi, string OpcodeStr,
+ RegisterClass RC, X86MemOperand x86memop_f,
+ X86MemOperand x86memop_i, PatFrag i_frag,
+ Intrinsic IntVar, ValueType vt> {
+ def rr : AVX8I<opc_rm, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (IntVar RC:$src1, RC:$src2))]>, VEX_4V,
+ Sched<[WriteFShuffle]>;
+ def rm : AVX8I<opc_rm, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop_i:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (IntVar RC:$src1,
+ (bitconvert (i_frag addr:$src2))))]>, VEX_4V,
+ Sched<[WriteFShuffleLd, ReadAfterLd]>;
+
+ def ri : AVXAIi8<opc_rmi, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (vt (X86VPermilp RC:$src1, (i8 imm:$src2))))]>, VEX,
+ Sched<[WriteFShuffle]>;
+ def mi : AVXAIi8<opc_rmi, MRMSrcMem, (outs RC:$dst),
+ (ins x86memop_f:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (vt (X86VPermilp (memop addr:$src1), (i8 imm:$src2))))]>, VEX,
+ Sched<[WriteFShuffleLd]>;
+}
+
+let ExeDomain = SSEPackedSingle in {
+ defm VPERMILPS : avx_permil<0x0C, 0x04, "vpermilps", VR128, f128mem, i128mem,
+ loadv2i64, int_x86_avx_vpermilvar_ps, v4f32>;
+ defm VPERMILPSY : avx_permil<0x0C, 0x04, "vpermilps", VR256, f256mem, i256mem,
+ loadv4i64, int_x86_avx_vpermilvar_ps_256, v8f32>, VEX_L;
+}
+let ExeDomain = SSEPackedDouble in {
+ defm VPERMILPD : avx_permil<0x0D, 0x05, "vpermilpd", VR128, f128mem, i128mem,
+ loadv2i64, int_x86_avx_vpermilvar_pd, v2f64>;
+ defm VPERMILPDY : avx_permil<0x0D, 0x05, "vpermilpd", VR256, f256mem, i256mem,
+ loadv4i64, int_x86_avx_vpermilvar_pd_256, v4f64>, VEX_L;
+}
+
+let Predicates = [HasAVX] in {
+def : Pat<(v8i32 (X86VPermilp VR256:$src1, (i8 imm:$imm))),
+ (VPERMILPSYri VR256:$src1, imm:$imm)>;
+def : Pat<(v4i64 (X86VPermilp VR256:$src1, (i8 imm:$imm))),
+ (VPERMILPDYri VR256:$src1, imm:$imm)>;
+def : Pat<(v8i32 (X86VPermilp (bc_v8i32 (loadv4i64 addr:$src1)),
+ (i8 imm:$imm))),
+ (VPERMILPSYmi addr:$src1, imm:$imm)>;
+def : Pat<(v4i64 (X86VPermilp (loadv4i64 addr:$src1), (i8 imm:$imm))),
+ (VPERMILPDYmi addr:$src1, imm:$imm)>;
+
+def : Pat<(v2i64 (X86VPermilp VR128:$src1, (i8 imm:$imm))),
+ (VPERMILPDri VR128:$src1, imm:$imm)>;
+def : Pat<(v2i64 (X86VPermilp (loadv2i64 addr:$src1), (i8 imm:$imm))),
+ (VPERMILPDmi addr:$src1, imm:$imm)>;
+}
+
+//===----------------------------------------------------------------------===//
+// VPERM2F128 - Permute Floating-Point Values in 128-bit chunks
+//
+let ExeDomain = SSEPackedSingle in {
+def VPERM2F128rr : AVXAIi8<0x06, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, i8imm:$src3),
+ "vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR256:$dst, (v8f32 (X86VPerm2x128 VR256:$src1, VR256:$src2,
+ (i8 imm:$src3))))]>, VEX_4V, VEX_L,
+ Sched<[WriteFShuffle]>;
+def VPERM2F128rm : AVXAIi8<0x06, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2, i8imm:$src3),
+ "vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv8f32 addr:$src2),
+ (i8 imm:$src3)))]>, VEX_4V, VEX_L,
+ Sched<[WriteFShuffleLd, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in {
+def : Pat<(v4f64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v4f64 (X86VPerm2x128 VR256:$src1,
+ (loadv4f64 addr:$src2), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+}
+
+let Predicates = [HasAVX1Only] in {
+def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+
+def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1,
+ (bc_v8i32 (loadv4i64 addr:$src2)), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1,
+ (loadv4i64 addr:$src2), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1,
+ (bc_v32i8 (loadv4i64 addr:$src2)), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1,
+ (bc_v16i16 (loadv4i64 addr:$src2)), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+}
+
+//===----------------------------------------------------------------------===//
+// VZERO - Zero YMM registers
+//
+let Defs = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
+ YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15] in {
+ // Zero All YMM registers
+ def VZEROALL : I<0x77, RawFrm, (outs), (ins), "vzeroall",
+ [(int_x86_avx_vzeroall)]>, PS, VEX, VEX_L, Requires<[HasAVX]>;
+
+ // Zero Upper bits of YMM registers
+ def VZEROUPPER : I<0x77, RawFrm, (outs), (ins), "vzeroupper",
+ [(int_x86_avx_vzeroupper)]>, PS, VEX, Requires<[HasAVX]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Half precision conversion instructions
+//===----------------------------------------------------------------------===//
+multiclass f16c_ph2ps<RegisterClass RC, X86MemOperand x86memop, Intrinsic Int> {
+ def rr : I<0x13, MRMSrcReg, (outs RC:$dst), (ins VR128:$src),
+ "vcvtph2ps\t{$src, $dst|$dst, $src}",
+ [(set RC:$dst, (Int VR128:$src))]>,
+ T8PD, VEX, Sched<[WriteCvtF2F]>;
+ let neverHasSideEffects = 1, mayLoad = 1 in
+ def rm : I<0x13, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ "vcvtph2ps\t{$src, $dst|$dst, $src}", []>, T8PD, VEX,
+ Sched<[WriteCvtF2FLd]>;
+}
+
+multiclass f16c_ps2ph<RegisterClass RC, X86MemOperand x86memop, Intrinsic Int> {
+ def rr : Ii8<0x1D, MRMDestReg, (outs VR128:$dst),
+ (ins RC:$src1, i32i8imm:$src2),
+ "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst, (Int RC:$src1, imm:$src2))]>,
+ TAPD, VEX, Sched<[WriteCvtF2F]>;
+ let neverHasSideEffects = 1, mayStore = 1,
+ SchedRW = [WriteCvtF2FLd, WriteRMW] in
+ def mr : Ii8<0x1D, MRMDestMem, (outs),
+ (ins x86memop:$dst, RC:$src1, i32i8imm:$src2),
+ "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
+ TAPD, VEX;
+}
+
+let Predicates = [HasF16C] in {
+ defm VCVTPH2PS : f16c_ph2ps<VR128, f64mem, int_x86_vcvtph2ps_128>;
+ defm VCVTPH2PSY : f16c_ph2ps<VR256, f128mem, int_x86_vcvtph2ps_256>, VEX_L;
+ defm VCVTPS2PH : f16c_ps2ph<VR128, f64mem, int_x86_vcvtps2ph_128>;
+ defm VCVTPS2PHY : f16c_ps2ph<VR256, f128mem, int_x86_vcvtps2ph_256>, VEX_L;
+
+ // Pattern match vcvtph2ps of a scalar i64 load.
+ def : Pat<(int_x86_vcvtph2ps_128 (vzmovl_v2i64 addr:$src)),
+ (VCVTPH2PSrm addr:$src)>;
+ def : Pat<(int_x86_vcvtph2ps_128 (vzload_v2i64 addr:$src)),
+ (VCVTPH2PSrm addr:$src)>;
+}
+
+// Patterns for matching conversions from float to half-float and vice versa.
+let Predicates = [HasF16C] in {
+ def : Pat<(fp_to_f16 FR32:$src),
+ (i16 (EXTRACT_SUBREG (VMOVPDI2DIrr (VCVTPS2PHrr
+ (COPY_TO_REGCLASS FR32:$src, VR128), 0)), sub_16bit))>;
+
+ def : Pat<(f16_to_fp GR16:$src),
+ (f32 (COPY_TO_REGCLASS (VCVTPH2PSrr
+ (COPY_TO_REGCLASS (MOVSX32rr16 GR16:$src), VR128)), FR32)) >;
+
+ def : Pat<(f16_to_fp (i16 (fp_to_f16 FR32:$src))),
+ (f32 (COPY_TO_REGCLASS (VCVTPH2PSrr
+ (VCVTPS2PHrr (COPY_TO_REGCLASS FR32:$src, VR128), 0)), FR32)) >;
+}
+
+//===----------------------------------------------------------------------===//
+// AVX2 Instructions
+//===----------------------------------------------------------------------===//
+
+/// AVX2_binop_rmi_int - AVX2 binary operator with 8-bit immediate
+multiclass AVX2_binop_rmi_int<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop> {
+ let isCommutable = 1 in
+ def rri : AVX2AIi8<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, u32u8imm:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst, (IntId RC:$src1, RC:$src2, imm:$src3))]>,
+ Sched<[WriteBlend]>, VEX_4V;
+ def rmi : AVX2AIi8<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, u32u8imm:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst,
+ (IntId RC:$src1,
+ (bitconvert (memop_frag addr:$src2)), imm:$src3))]>,
+ Sched<[WriteBlendLd, ReadAfterLd]>, VEX_4V;
+}
+
+let isCommutable = 0 in {
+defm VPBLENDD : AVX2_binop_rmi_int<0x02, "vpblendd", int_x86_avx2_pblendd_128,
+ VR128, loadv2i64, i128mem>;
+defm VPBLENDDY : AVX2_binop_rmi_int<0x02, "vpblendd", int_x86_avx2_pblendd_256,
+ VR256, loadv4i64, i256mem>, VEX_L;
+}
+
+def : Pat<(v4i32 (X86Blendi (v4i32 VR128:$src1), (v4i32 VR128:$src2),
+ imm:$mask)),
+ (VPBLENDDrri VR128:$src1, VR128:$src2, imm:$mask)>;
+def : Pat<(v8i32 (X86Blendi (v8i32 VR256:$src1), (v8i32 VR256:$src2),
+ imm:$mask)),
+ (VPBLENDDYrri VR256:$src1, VR256:$src2, imm:$mask)>;
+
+//===----------------------------------------------------------------------===//
+// VPBROADCAST - Load from memory and broadcast to all elements of the
+// destination operand
+//
+multiclass avx2_broadcast<bits<8> opc, string OpcodeStr,
+ X86MemOperand x86memop, PatFrag ld_frag,
+ Intrinsic Int128, Intrinsic Int256> {
+ def rr : AVX28I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (Int128 VR128:$src))]>,
+ Sched<[WriteShuffle]>, VEX;
+ def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst,
+ (Int128 (scalar_to_vector (ld_frag addr:$src))))]>,
+ Sched<[WriteLoad]>, VEX;
+ def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (Int256 VR128:$src))]>,
+ Sched<[WriteShuffle256]>, VEX, VEX_L;
+ def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst,
+ (Int256 (scalar_to_vector (ld_frag addr:$src))))]>,
+ Sched<[WriteLoad]>, VEX, VEX_L;
+}
+
+defm VPBROADCASTB : avx2_broadcast<0x78, "vpbroadcastb", i8mem, loadi8,
+ int_x86_avx2_pbroadcastb_128,
+ int_x86_avx2_pbroadcastb_256>;
+defm VPBROADCASTW : avx2_broadcast<0x79, "vpbroadcastw", i16mem, loadi16,
+ int_x86_avx2_pbroadcastw_128,
+ int_x86_avx2_pbroadcastw_256>;
+defm VPBROADCASTD : avx2_broadcast<0x58, "vpbroadcastd", i32mem, loadi32,
+ int_x86_avx2_pbroadcastd_128,
+ int_x86_avx2_pbroadcastd_256>;
+defm VPBROADCASTQ : avx2_broadcast<0x59, "vpbroadcastq", i64mem, loadi64,
+ int_x86_avx2_pbroadcastq_128,
+ int_x86_avx2_pbroadcastq_256>;
+
+let Predicates = [HasAVX2] in {
+ def : Pat<(v16i8 (X86VBroadcast (loadi8 addr:$src))),
+ (VPBROADCASTBrm addr:$src)>;
+ def : Pat<(v32i8 (X86VBroadcast (loadi8 addr:$src))),
+ (VPBROADCASTBYrm addr:$src)>;
+ def : Pat<(v8i16 (X86VBroadcast (loadi16 addr:$src))),
+ (VPBROADCASTWrm addr:$src)>;
+ def : Pat<(v16i16 (X86VBroadcast (loadi16 addr:$src))),
+ (VPBROADCASTWYrm addr:$src)>;
+ def : Pat<(v4i32 (X86VBroadcast (loadi32 addr:$src))),
+ (VPBROADCASTDrm addr:$src)>;
+ def : Pat<(v8i32 (X86VBroadcast (loadi32 addr:$src))),
+ (VPBROADCASTDYrm addr:$src)>;
+ def : Pat<(v2i64 (X86VBroadcast (loadi64 addr:$src))),
+ (VPBROADCASTQrm addr:$src)>;
+ def : Pat<(v4i64 (X86VBroadcast (loadi64 addr:$src))),
+ (VPBROADCASTQYrm addr:$src)>;
+
+ def : Pat<(v16i8 (X86VBroadcast (v16i8 VR128:$src))),
+ (VPBROADCASTBrr VR128:$src)>;
+ def : Pat<(v32i8 (X86VBroadcast (v16i8 VR128:$src))),
+ (VPBROADCASTBYrr VR128:$src)>;
+ def : Pat<(v8i16 (X86VBroadcast (v8i16 VR128:$src))),
+ (VPBROADCASTWrr VR128:$src)>;
+ def : Pat<(v16i16 (X86VBroadcast (v8i16 VR128:$src))),
+ (VPBROADCASTWYrr VR128:$src)>;
+ def : Pat<(v4i32 (X86VBroadcast (v4i32 VR128:$src))),
+ (VPBROADCASTDrr VR128:$src)>;
+ def : Pat<(v8i32 (X86VBroadcast (v4i32 VR128:$src))),
+ (VPBROADCASTDYrr VR128:$src)>;
+ def : Pat<(v2i64 (X86VBroadcast (v2i64 VR128:$src))),
+ (VPBROADCASTQrr VR128:$src)>;
+ def : Pat<(v4i64 (X86VBroadcast (v2i64 VR128:$src))),
+ (VPBROADCASTQYrr VR128:$src)>;
+ def : Pat<(v4f32 (X86VBroadcast (v4f32 VR128:$src))),
+ (VBROADCASTSSrr VR128:$src)>;
+ def : Pat<(v8f32 (X86VBroadcast (v4f32 VR128:$src))),
+ (VBROADCASTSSYrr VR128:$src)>;
+ def : Pat<(v2f64 (X86VBroadcast (v2f64 VR128:$src))),
+ (VPBROADCASTQrr VR128:$src)>;
+ def : Pat<(v4f64 (X86VBroadcast (v2f64 VR128:$src))),
+ (VBROADCASTSDYrr VR128:$src)>;
+
+ // Provide fallback in case the load node that is used in the patterns above
+ // is used by additional users, which prevents the pattern selection.
+ let AddedComplexity = 20 in {
+ def : Pat<(v4f32 (X86VBroadcast FR32:$src)),
+ (VBROADCASTSSrr (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v8f32 (X86VBroadcast FR32:$src)),
+ (VBROADCASTSSYrr (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f64 (X86VBroadcast FR64:$src)),
+ (VBROADCASTSDYrr (COPY_TO_REGCLASS FR64:$src, VR128))>;
+
+ def : Pat<(v4i32 (X86VBroadcast GR32:$src)),
+ (VBROADCASTSSrr (COPY_TO_REGCLASS GR32:$src, VR128))>;
+ def : Pat<(v8i32 (X86VBroadcast GR32:$src)),
+ (VBROADCASTSSYrr (COPY_TO_REGCLASS GR32:$src, VR128))>;
+ def : Pat<(v4i64 (X86VBroadcast GR64:$src)),
+ (VBROADCASTSDYrr (COPY_TO_REGCLASS GR64:$src, VR128))>;
+
+ def : Pat<(v16i8 (X86VBroadcast GR8:$src)),
+ (VPBROADCASTBrr (COPY_TO_REGCLASS
+ (i32 (SUBREG_TO_REG (i32 0), GR8:$src, sub_8bit)),
+ VR128))>;
+ def : Pat<(v32i8 (X86VBroadcast GR8:$src)),
+ (VPBROADCASTBYrr (COPY_TO_REGCLASS
+ (i32 (SUBREG_TO_REG (i32 0), GR8:$src, sub_8bit)),
+ VR128))>;
+
+ def : Pat<(v8i16 (X86VBroadcast GR16:$src)),
+ (VPBROADCASTWrr (COPY_TO_REGCLASS
+ (i32 (SUBREG_TO_REG (i32 0), GR16:$src, sub_16bit)),
+ VR128))>;
+ def : Pat<(v16i16 (X86VBroadcast GR16:$src)),
+ (VPBROADCASTWYrr (COPY_TO_REGCLASS
+ (i32 (SUBREG_TO_REG (i32 0), GR16:$src, sub_16bit)),
+ VR128))>;
+
+ // The patterns for VPBROADCASTD are not needed because they would match
+ // the exact same thing as VBROADCASTSS patterns.
+
+ def : Pat<(v2i64 (X86VBroadcast GR64:$src)),
+ (VPBROADCASTQrr (COPY_TO_REGCLASS GR64:$src, VR128))>;
+ // The v4i64 pattern is not needed because VBROADCASTSDYrr already match.
+ }
+}
+
+// AVX1 broadcast patterns
+let Predicates = [HasAVX1Only] in {
+def : Pat<(v8i32 (X86VBroadcast (loadi32 addr:$src))),
+ (VBROADCASTSSYrm addr:$src)>;
+def : Pat<(v4i64 (X86VBroadcast (loadi64 addr:$src))),
+ (VBROADCASTSDYrm addr:$src)>;
+def : Pat<(v4i32 (X86VBroadcast (loadi32 addr:$src))),
+ (VBROADCASTSSrm addr:$src)>;
+}
+
+let Predicates = [HasAVX] in {
+ // Provide fallback in case the load node that is used in the patterns above
+ // is used by additional users, which prevents the pattern selection.
+ let AddedComplexity = 20 in {
+ // 128bit broadcasts:
+ def : Pat<(v4f32 (X86VBroadcast FR32:$src)),
+ (VPSHUFDri (COPY_TO_REGCLASS FR32:$src, VR128), 0)>;
+ def : Pat<(v8f32 (X86VBroadcast FR32:$src)),
+ (VINSERTF128rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)),
+ (VPSHUFDri (COPY_TO_REGCLASS FR32:$src, VR128), 0), sub_xmm),
+ (VPSHUFDri (COPY_TO_REGCLASS FR32:$src, VR128), 0), 1)>;
+ def : Pat<(v4f64 (X86VBroadcast FR64:$src)),
+ (VINSERTF128rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)),
+ (VPSHUFDri (COPY_TO_REGCLASS FR64:$src, VR128), 0x44), sub_xmm),
+ (VPSHUFDri (COPY_TO_REGCLASS FR64:$src, VR128), 0x44), 1)>;
+
+ def : Pat<(v4i32 (X86VBroadcast GR32:$src)),
+ (VPSHUFDri (COPY_TO_REGCLASS GR32:$src, VR128), 0)>;
+ def : Pat<(v8i32 (X86VBroadcast GR32:$src)),
+ (VINSERTF128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
+ (VPSHUFDri (COPY_TO_REGCLASS GR32:$src, VR128), 0), sub_xmm),
+ (VPSHUFDri (COPY_TO_REGCLASS GR32:$src, VR128), 0), 1)>;
+ def : Pat<(v4i64 (X86VBroadcast GR64:$src)),
+ (VINSERTF128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)),
+ (VPSHUFDri (COPY_TO_REGCLASS GR64:$src, VR128), 0x44), sub_xmm),
+ (VPSHUFDri (COPY_TO_REGCLASS GR64:$src, VR128), 0x44), 1)>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// VPERM - Permute instructions
+//
+
+multiclass avx2_perm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
+ ValueType OpVT> {
+ def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OpVT (X86VPermv VR256:$src1, VR256:$src2)))]>,
+ Sched<[WriteFShuffle256]>, VEX_4V, VEX_L;
+ def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, i256mem:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OpVT (X86VPermv VR256:$src1,
+ (bitconvert (mem_frag addr:$src2)))))]>,
+ Sched<[WriteFShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
+}
+
+defm VPERMD : avx2_perm<0x36, "vpermd", loadv4i64, v8i32>;
+let ExeDomain = SSEPackedSingle in
+defm VPERMPS : avx2_perm<0x16, "vpermps", loadv8f32, v8f32>;
+
+multiclass avx2_perm_imm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
+ ValueType OpVT> {
+ def Yri : AVX2AIi8<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OpVT (X86VPermi VR256:$src1, (i8 imm:$src2))))]>,
+ Sched<[WriteShuffle256]>, VEX, VEX_L;
+ def Ymi : AVX2AIi8<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins i256mem:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OpVT (X86VPermi (mem_frag addr:$src1),
+ (i8 imm:$src2))))]>,
+ Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX, VEX_L;
+}
+
+defm VPERMQ : avx2_perm_imm<0x00, "vpermq", loadv4i64, v4i64>, VEX_W;
+let ExeDomain = SSEPackedDouble in
+defm VPERMPD : avx2_perm_imm<0x01, "vpermpd", loadv4f64, v4f64>, VEX_W;
+
+//===----------------------------------------------------------------------===//
+// VPERM2I128 - Permute Floating-Point Values in 128-bit chunks
+//
+def VPERM2I128rr : AVX2AIi8<0x46, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, i8imm:$src3),
+ "vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR256:$dst, (v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2,
+ (i8 imm:$src3))))]>, Sched<[WriteShuffle256]>,
+ VEX_4V, VEX_L;
+def VPERM2I128rm : AVX2AIi8<0x46, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2, i8imm:$src3),
+ "vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv4i64 addr:$src2),
+ (i8 imm:$src3)))]>,
+ Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
+
+let Predicates = [HasAVX2] in {
+def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2I128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2I128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2I128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+
+def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1, (bc_v32i8 (loadv4i64 addr:$src2)),
+ (i8 imm:$imm))),
+ (VPERM2I128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1,
+ (bc_v16i16 (loadv4i64 addr:$src2)), (i8 imm:$imm))),
+ (VPERM2I128rm VR256:$src1, addr:$src2, imm:$imm)>;
+def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)),
+ (i8 imm:$imm))),
+ (VPERM2I128rm VR256:$src1, addr:$src2, imm:$imm)>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// VINSERTI128 - Insert packed integer values
+//
+let neverHasSideEffects = 1 in {
+def VINSERTI128rr : AVX2AIi8<0x38, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR128:$src2, i8imm:$src3),
+ "vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, Sched<[WriteShuffle256]>, VEX_4V, VEX_L;
+let mayLoad = 1 in
+def VINSERTI128rm : AVX2AIi8<0x38, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, i128mem:$src2, i8imm:$src3),
+ "vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
+}
+
+let Predicates = [HasAVX2] in {
+def : Pat<(vinsert128_insert:$ins (v4i64 VR256:$src1), (v2i64 VR128:$src2),
+ (iPTR imm)),
+ (VINSERTI128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v8i32 VR256:$src1), (v4i32 VR128:$src2),
+ (iPTR imm)),
+ (VINSERTI128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v32i8 VR256:$src1), (v16i8 VR128:$src2),
+ (iPTR imm)),
+ (VINSERTI128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v16i16 VR256:$src1), (v8i16 VR128:$src2),
+ (iPTR imm)),
+ (VINSERTI128rr VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+
+def : Pat<(vinsert128_insert:$ins (v4i64 VR256:$src1), (loadv2i64 addr:$src2),
+ (iPTR imm)),
+ (VINSERTI128rm VR256:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v8i32 VR256:$src1),
+ (bc_v4i32 (loadv2i64 addr:$src2)),
+ (iPTR imm)),
+ (VINSERTI128rm VR256:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v32i8 VR256:$src1),
+ (bc_v16i8 (loadv2i64 addr:$src2)),
+ (iPTR imm)),
+ (VINSERTI128rm VR256:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+def : Pat<(vinsert128_insert:$ins (v16i16 VR256:$src1),
+ (bc_v8i16 (loadv2i64 addr:$src2)),
+ (iPTR imm)),
+ (VINSERTI128rm VR256:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+}
+
+//===----------------------------------------------------------------------===//
+// VEXTRACTI128 - Extract packed integer values
+//
+def VEXTRACTI128rr : AVX2AIi8<0x39, MRMDestReg, (outs VR128:$dst),
+ (ins VR256:$src1, i8imm:$src2),
+ "vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_avx2_vextracti128 VR256:$src1, imm:$src2))]>,
+ Sched<[WriteShuffle256]>, VEX, VEX_L;
+let neverHasSideEffects = 1, mayStore = 1 in
+def VEXTRACTI128mr : AVX2AIi8<0x39, MRMDestMem, (outs),
+ (ins i128mem:$dst, VR256:$src1, i8imm:$src2),
+ "vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
+ Sched<[WriteStore]>, VEX, VEX_L;
+
+let Predicates = [HasAVX2] in {
+def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
+ (v2i64 (VEXTRACTI128rr
+ (v4i64 VR256:$src1),
+ (EXTRACT_get_vextract128_imm VR128:$ext)))>;
+def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
+ (v4i32 (VEXTRACTI128rr
+ (v8i32 VR256:$src1),
+ (EXTRACT_get_vextract128_imm VR128:$ext)))>;
+def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
+ (v8i16 (VEXTRACTI128rr
+ (v16i16 VR256:$src1),
+ (EXTRACT_get_vextract128_imm VR128:$ext)))>;
+def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
+ (v16i8 (VEXTRACTI128rr
+ (v32i8 VR256:$src1),
+ (EXTRACT_get_vextract128_imm VR128:$ext)))>;
+
+def : Pat<(store (v2i64 (vextract128_extract:$ext (v4i64 VR256:$src1),
+ (iPTR imm))), addr:$dst),
+ (VEXTRACTI128mr addr:$dst, VR256:$src1,
+ (EXTRACT_get_vextract128_imm VR128:$ext))>;
+def : Pat<(store (v4i32 (vextract128_extract:$ext (v8i32 VR256:$src1),
+ (iPTR imm))), addr:$dst),
+ (VEXTRACTI128mr addr:$dst, VR256:$src1,
+ (EXTRACT_get_vextract128_imm VR128:$ext))>;
+def : Pat<(store (v8i16 (vextract128_extract:$ext (v16i16 VR256:$src1),
+ (iPTR imm))), addr:$dst),
+ (VEXTRACTI128mr addr:$dst, VR256:$src1,
+ (EXTRACT_get_vextract128_imm VR128:$ext))>;
+def : Pat<(store (v16i8 (vextract128_extract:$ext (v32i8 VR256:$src1),
+ (iPTR imm))), addr:$dst),
+ (VEXTRACTI128mr addr:$dst, VR256:$src1,
+ (EXTRACT_get_vextract128_imm VR128:$ext))>;
+}
+
+//===----------------------------------------------------------------------===//
+// VPMASKMOV - Conditional SIMD Integer Packed Loads and Stores
+//
+multiclass avx2_pmovmask<string OpcodeStr,
+ Intrinsic IntLd128, Intrinsic IntLd256,
+ Intrinsic IntSt128, Intrinsic IntSt256> {
+ def rm : AVX28I<0x8c, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst, (IntLd128 addr:$src2, VR128:$src1))]>, VEX_4V;
+ def Yrm : AVX28I<0x8c, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, i256mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>,
+ VEX_4V, VEX_L;
+ def mr : AVX28I<0x8e, MRMDestMem, (outs),
+ (ins i128mem:$dst, VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(IntSt128 addr:$dst, VR128:$src1, VR128:$src2)]>, VEX_4V;
+ def Ymr : AVX28I<0x8e, MRMDestMem, (outs),
+ (ins i256mem:$dst, VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>, VEX_4V, VEX_L;
+}
+
+defm VPMASKMOVD : avx2_pmovmask<"vpmaskmovd",
+ int_x86_avx2_maskload_d,
+ int_x86_avx2_maskload_d_256,
+ int_x86_avx2_maskstore_d,
+ int_x86_avx2_maskstore_d_256>;
+defm VPMASKMOVQ : avx2_pmovmask<"vpmaskmovq",
+ int_x86_avx2_maskload_q,
+ int_x86_avx2_maskload_q_256,
+ int_x86_avx2_maskstore_q,
+ int_x86_avx2_maskstore_q_256>, VEX_W;
+
+
+//===----------------------------------------------------------------------===//
+// Variable Bit Shifts
+//
+multiclass avx2_var_shift<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType vt128, ValueType vt256> {
+ def rr : AVX28I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode VR128:$src1, (vt128 VR128:$src2))))]>,
+ VEX_4V, Sched<[WriteVarVecShift]>;
+ def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode VR128:$src1,
+ (vt128 (bitconvert (loadv2i64 addr:$src2))))))]>,
+ VEX_4V, Sched<[WriteVarVecShiftLd, ReadAfterLd]>;
+ def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (vt256 (OpNode VR256:$src1, (vt256 VR256:$src2))))]>,
+ VEX_4V, VEX_L, Sched<[WriteVarVecShift]>;
+ def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, i256mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (vt256 (OpNode VR256:$src1,
+ (vt256 (bitconvert (loadv4i64 addr:$src2))))))]>,
+ VEX_4V, VEX_L, Sched<[WriteVarVecShiftLd, ReadAfterLd]>;
+}
+
+defm VPSLLVD : avx2_var_shift<0x47, "vpsllvd", shl, v4i32, v8i32>;
+defm VPSLLVQ : avx2_var_shift<0x47, "vpsllvq", shl, v2i64, v4i64>, VEX_W;
+defm VPSRLVD : avx2_var_shift<0x45, "vpsrlvd", srl, v4i32, v8i32>;
+defm VPSRLVQ : avx2_var_shift<0x45, "vpsrlvq", srl, v2i64, v4i64>, VEX_W;
+defm VPSRAVD : avx2_var_shift<0x46, "vpsravd", sra, v4i32, v8i32>;
+
+//===----------------------------------------------------------------------===//
+// VGATHER - GATHER Operations
+multiclass avx2_gather<bits<8> opc, string OpcodeStr, RegisterClass RC256,
+ X86MemOperand memop128, X86MemOperand memop256> {
+ def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst, VR128:$mask_wb),
+ (ins VR128:$src1, memop128:$src2, VR128:$mask),
+ !strconcat(OpcodeStr,
+ "\t{$mask, $src2, $dst|$dst, $src2, $mask}"),
+ []>, VEX_4VOp3;
+ def Yrm : AVX28I<opc, MRMSrcMem, (outs RC256:$dst, RC256:$mask_wb),
+ (ins RC256:$src1, memop256:$src2, RC256:$mask),
+ !strconcat(OpcodeStr,
+ "\t{$mask, $src2, $dst|$dst, $src2, $mask}"),
+ []>, VEX_4VOp3, VEX_L;
+}
+
+let mayLoad = 1, Constraints
+ = "@earlyclobber $dst,@earlyclobber $mask_wb, $src1 = $dst, $mask = $mask_wb"
+ in {
+ defm VPGATHERDQ : avx2_gather<0x90, "vpgatherdq", VR256, vx64mem, vx64mem>, VEX_W;
+ defm VPGATHERQQ : avx2_gather<0x91, "vpgatherqq", VR256, vx64mem, vy64mem>, VEX_W;
+ defm VPGATHERDD : avx2_gather<0x90, "vpgatherdd", VR256, vx32mem, vy32mem>;
+ defm VPGATHERQD : avx2_gather<0x91, "vpgatherqd", VR128, vx32mem, vy32mem>;
+
+ let ExeDomain = SSEPackedDouble in {
+ defm VGATHERDPD : avx2_gather<0x92, "vgatherdpd", VR256, vx64mem, vx64mem>, VEX_W;
+ defm VGATHERQPD : avx2_gather<0x93, "vgatherqpd", VR256, vx64mem, vy64mem>, VEX_W;
+ }
+
+ let ExeDomain = SSEPackedSingle in {
+ defm VGATHERDPS : avx2_gather<0x92, "vgatherdps", VR256, vx32mem, vy32mem>;
+ defm VGATHERQPS : avx2_gather<0x93, "vgatherqps", VR128, vx32mem, vy32mem>;
+ }
+}
diff --git a/contrib/llvm/lib/Target/X86/X86InstrSVM.td b/contrib/llvm/lib/Target/X86/X86InstrSVM.td
new file mode 100644
index 0000000..c847be7e
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrSVM.td
@@ -0,0 +1,62 @@
+//===-- X86InstrSVM.td - SVM Instruction Set Extension -----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the instructions that make up the AMD SVM instruction
+// set.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// SVM instructions
+
+// 0F 01 D9
+def VMMCALL : I<0x01, MRM_D9, (outs), (ins), "vmmcall", []>, TB;
+
+// 0F 01 DC
+def STGI : I<0x01, MRM_DC, (outs), (ins), "stgi", []>, TB;
+
+// 0F 01 DD
+def CLGI : I<0x01, MRM_DD, (outs), (ins), "clgi", []>, TB;
+
+// 0F 01 DE
+let Uses = [EAX] in
+def SKINIT : I<0x01, MRM_DE, (outs), (ins), "skinit\t{%eax|eax}", []>, TB;
+
+// 0F 01 D8
+let Uses = [EAX] in
+def VMRUN32 : I<0x01, MRM_D8, (outs), (ins),
+ "vmrun\t{%eax|eax}", []>, TB, Requires<[Not64BitMode]>;
+let Uses = [RAX] in
+def VMRUN64 : I<0x01, MRM_D8, (outs), (ins),
+ "vmrun\t{%rax|rax}", []>, TB, Requires<[In64BitMode]>;
+
+// 0F 01 DA
+let Uses = [EAX] in
+def VMLOAD32 : I<0x01, MRM_DA, (outs), (ins),
+ "vmload\t{%eax|eax}", []>, TB, Requires<[Not64BitMode]>;
+let Uses = [RAX] in
+def VMLOAD64 : I<0x01, MRM_DA, (outs), (ins),
+ "vmload\t{%rax|rax}", []>, TB, Requires<[In64BitMode]>;
+
+// 0F 01 DB
+let Uses = [EAX] in
+def VMSAVE32 : I<0x01, MRM_DB, (outs), (ins),
+ "vmsave\t{%eax|eax}", []>, TB, Requires<[Not64BitMode]>;
+let Uses = [RAX] in
+def VMSAVE64 : I<0x01, MRM_DB, (outs), (ins),
+ "vmsave\t{%rax|rax}", []>, TB, Requires<[In64BitMode]>;
+
+// 0F 01 DF
+let Uses = [EAX, ECX] in
+def INVLPGA32 : I<0x01, MRM_DF, (outs), (ins),
+ "invlpga\t{%ecx, %eax|eax, ecx}", []>, TB, Requires<[Not64BitMode]>;
+let Uses = [RAX, ECX] in
+def INVLPGA64 : I<0x01, MRM_DF, (outs), (ins),
+ "invlpga\t{%ecx, %rax|rax, ecx}", []>, TB, Requires<[In64BitMode]>;
+
diff --git a/contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td b/contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td
new file mode 100644
index 0000000..d0bb523
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td
@@ -0,0 +1,969 @@
+//===-- X86InstrShiftRotate.td - Shift and Rotate Instrs ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the shift and rotate instructions.
+//
+//===----------------------------------------------------------------------===//
+
+// FIXME: Someone needs to smear multipattern goodness all over this file.
+
+let Defs = [EFLAGS] in {
+
+let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in {
+let Uses = [CL] in {
+def SHL8rCL : I<0xD2, MRM4r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "shl{b}\t{%cl, $dst|$dst, cl}",
+ [(set GR8:$dst, (shl GR8:$src1, CL))], IIC_SR>;
+def SHL16rCL : I<0xD3, MRM4r, (outs GR16:$dst), (ins GR16:$src1),
+ "shl{w}\t{%cl, $dst|$dst, cl}",
+ [(set GR16:$dst, (shl GR16:$src1, CL))], IIC_SR>, OpSize16;
+def SHL32rCL : I<0xD3, MRM4r, (outs GR32:$dst), (ins GR32:$src1),
+ "shl{l}\t{%cl, $dst|$dst, cl}",
+ [(set GR32:$dst, (shl GR32:$src1, CL))], IIC_SR>, OpSize32;
+def SHL64rCL : RI<0xD3, MRM4r, (outs GR64:$dst), (ins GR64:$src1),
+ "shl{q}\t{%cl, $dst|$dst, cl}",
+ [(set GR64:$dst, (shl GR64:$src1, CL))], IIC_SR>;
+} // Uses = [CL]
+
+def SHL8ri : Ii8<0xC0, MRM4r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2),
+ "shl{b}\t{$src2, $dst|$dst, $src2}",
+ [(set GR8:$dst, (shl GR8:$src1, (i8 imm:$src2)))], IIC_SR>;
+
+let isConvertibleToThreeAddress = 1 in { // Can transform into LEA.
+def SHL16ri : Ii8<0xC1, MRM4r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2),
+ "shl{w}\t{$src2, $dst|$dst, $src2}",
+ [(set GR16:$dst, (shl GR16:$src1, (i8 imm:$src2)))], IIC_SR>,
+ OpSize16;
+def SHL32ri : Ii8<0xC1, MRM4r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
+ "shl{l}\t{$src2, $dst|$dst, $src2}",
+ [(set GR32:$dst, (shl GR32:$src1, (i8 imm:$src2)))], IIC_SR>,
+ OpSize32;
+def SHL64ri : RIi8<0xC1, MRM4r, (outs GR64:$dst),
+ (ins GR64:$src1, i8imm:$src2),
+ "shl{q}\t{$src2, $dst|$dst, $src2}",
+ [(set GR64:$dst, (shl GR64:$src1, (i8 imm:$src2)))],
+ IIC_SR>;
+
+// NOTE: We don't include patterns for shifts of a register by one, because
+// 'add reg,reg' is cheaper (and we have a Pat pattern for shift-by-one).
+let hasSideEffects = 0 in {
+def SHL8r1 : I<0xD0, MRM4r, (outs GR8:$dst), (ins GR8:$src1),
+ "shl{b}\t$dst", [], IIC_SR>;
+def SHL16r1 : I<0xD1, MRM4r, (outs GR16:$dst), (ins GR16:$src1),
+ "shl{w}\t$dst", [], IIC_SR>, OpSize16;
+def SHL32r1 : I<0xD1, MRM4r, (outs GR32:$dst), (ins GR32:$src1),
+ "shl{l}\t$dst", [], IIC_SR>, OpSize32;
+def SHL64r1 : RI<0xD1, MRM4r, (outs GR64:$dst), (ins GR64:$src1),
+ "shl{q}\t$dst", [], IIC_SR>;
+} // hasSideEffects = 0
+} // isConvertibleToThreeAddress = 1
+} // Constraints = "$src = $dst", SchedRW
+
+
+let SchedRW = [WriteShiftLd, WriteRMW] in {
+// FIXME: Why do we need an explicit "Uses = [CL]" when the instr has a pattern
+// using CL?
+let Uses = [CL] in {
+def SHL8mCL : I<0xD2, MRM4m, (outs), (ins i8mem :$dst),
+ "shl{b}\t{%cl, $dst|$dst, cl}",
+ [(store (shl (loadi8 addr:$dst), CL), addr:$dst)], IIC_SR>;
+def SHL16mCL : I<0xD3, MRM4m, (outs), (ins i16mem:$dst),
+ "shl{w}\t{%cl, $dst|$dst, cl}",
+ [(store (shl (loadi16 addr:$dst), CL), addr:$dst)], IIC_SR>,
+ OpSize16;
+def SHL32mCL : I<0xD3, MRM4m, (outs), (ins i32mem:$dst),
+ "shl{l}\t{%cl, $dst|$dst, cl}",
+ [(store (shl (loadi32 addr:$dst), CL), addr:$dst)], IIC_SR>,
+ OpSize32;
+def SHL64mCL : RI<0xD3, MRM4m, (outs), (ins i64mem:$dst),
+ "shl{q}\t{%cl, $dst|$dst, cl}",
+ [(store (shl (loadi64 addr:$dst), CL), addr:$dst)], IIC_SR>;
+}
+def SHL8mi : Ii8<0xC0, MRM4m, (outs), (ins i8mem :$dst, i8imm:$src),
+ "shl{b}\t{$src, $dst|$dst, $src}",
+ [(store (shl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>;
+def SHL16mi : Ii8<0xC1, MRM4m, (outs), (ins i16mem:$dst, i8imm:$src),
+ "shl{w}\t{$src, $dst|$dst, $src}",
+ [(store (shl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>, OpSize16;
+def SHL32mi : Ii8<0xC1, MRM4m, (outs), (ins i32mem:$dst, i8imm:$src),
+ "shl{l}\t{$src, $dst|$dst, $src}",
+ [(store (shl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>, OpSize32;
+def SHL64mi : RIi8<0xC1, MRM4m, (outs), (ins i64mem:$dst, i8imm:$src),
+ "shl{q}\t{$src, $dst|$dst, $src}",
+ [(store (shl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>;
+
+// Shift by 1
+def SHL8m1 : I<0xD0, MRM4m, (outs), (ins i8mem :$dst),
+ "shl{b}\t$dst",
+ [(store (shl (loadi8 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>;
+def SHL16m1 : I<0xD1, MRM4m, (outs), (ins i16mem:$dst),
+ "shl{w}\t$dst",
+ [(store (shl (loadi16 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>, OpSize16;
+def SHL32m1 : I<0xD1, MRM4m, (outs), (ins i32mem:$dst),
+ "shl{l}\t$dst",
+ [(store (shl (loadi32 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>, OpSize32;
+def SHL64m1 : RI<0xD1, MRM4m, (outs), (ins i64mem:$dst),
+ "shl{q}\t$dst",
+ [(store (shl (loadi64 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>;
+} // SchedRW
+
+let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in {
+let Uses = [CL] in {
+def SHR8rCL : I<0xD2, MRM5r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "shr{b}\t{%cl, $dst|$dst, cl}",
+ [(set GR8:$dst, (srl GR8:$src1, CL))], IIC_SR>;
+def SHR16rCL : I<0xD3, MRM5r, (outs GR16:$dst), (ins GR16:$src1),
+ "shr{w}\t{%cl, $dst|$dst, cl}",
+ [(set GR16:$dst, (srl GR16:$src1, CL))], IIC_SR>, OpSize16;
+def SHR32rCL : I<0xD3, MRM5r, (outs GR32:$dst), (ins GR32:$src1),
+ "shr{l}\t{%cl, $dst|$dst, cl}",
+ [(set GR32:$dst, (srl GR32:$src1, CL))], IIC_SR>, OpSize32;
+def SHR64rCL : RI<0xD3, MRM5r, (outs GR64:$dst), (ins GR64:$src1),
+ "shr{q}\t{%cl, $dst|$dst, cl}",
+ [(set GR64:$dst, (srl GR64:$src1, CL))], IIC_SR>;
+}
+
+def SHR8ri : Ii8<0xC0, MRM5r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
+ "shr{b}\t{$src2, $dst|$dst, $src2}",
+ [(set GR8:$dst, (srl GR8:$src1, (i8 imm:$src2)))], IIC_SR>;
+def SHR16ri : Ii8<0xC1, MRM5r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2),
+ "shr{w}\t{$src2, $dst|$dst, $src2}",
+ [(set GR16:$dst, (srl GR16:$src1, (i8 imm:$src2)))],
+ IIC_SR>, OpSize16;
+def SHR32ri : Ii8<0xC1, MRM5r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
+ "shr{l}\t{$src2, $dst|$dst, $src2}",
+ [(set GR32:$dst, (srl GR32:$src1, (i8 imm:$src2)))],
+ IIC_SR>, OpSize32;
+def SHR64ri : RIi8<0xC1, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
+ "shr{q}\t{$src2, $dst|$dst, $src2}",
+ [(set GR64:$dst, (srl GR64:$src1, (i8 imm:$src2)))], IIC_SR>;
+
+// Shift right by 1
+def SHR8r1 : I<0xD0, MRM5r, (outs GR8:$dst), (ins GR8:$src1),
+ "shr{b}\t$dst",
+ [(set GR8:$dst, (srl GR8:$src1, (i8 1)))], IIC_SR>;
+def SHR16r1 : I<0xD1, MRM5r, (outs GR16:$dst), (ins GR16:$src1),
+ "shr{w}\t$dst",
+ [(set GR16:$dst, (srl GR16:$src1, (i8 1)))], IIC_SR>, OpSize16;
+def SHR32r1 : I<0xD1, MRM5r, (outs GR32:$dst), (ins GR32:$src1),
+ "shr{l}\t$dst",
+ [(set GR32:$dst, (srl GR32:$src1, (i8 1)))], IIC_SR>, OpSize32;
+def SHR64r1 : RI<0xD1, MRM5r, (outs GR64:$dst), (ins GR64:$src1),
+ "shr{q}\t$dst",
+ [(set GR64:$dst, (srl GR64:$src1, (i8 1)))], IIC_SR>;
+} // Constraints = "$src = $dst", SchedRW
+
+
+let SchedRW = [WriteShiftLd, WriteRMW] in {
+let Uses = [CL] in {
+def SHR8mCL : I<0xD2, MRM5m, (outs), (ins i8mem :$dst),
+ "shr{b}\t{%cl, $dst|$dst, cl}",
+ [(store (srl (loadi8 addr:$dst), CL), addr:$dst)], IIC_SR>;
+def SHR16mCL : I<0xD3, MRM5m, (outs), (ins i16mem:$dst),
+ "shr{w}\t{%cl, $dst|$dst, cl}",
+ [(store (srl (loadi16 addr:$dst), CL), addr:$dst)], IIC_SR>,
+ OpSize16;
+def SHR32mCL : I<0xD3, MRM5m, (outs), (ins i32mem:$dst),
+ "shr{l}\t{%cl, $dst|$dst, cl}",
+ [(store (srl (loadi32 addr:$dst), CL), addr:$dst)], IIC_SR>,
+ OpSize32;
+def SHR64mCL : RI<0xD3, MRM5m, (outs), (ins i64mem:$dst),
+ "shr{q}\t{%cl, $dst|$dst, cl}",
+ [(store (srl (loadi64 addr:$dst), CL), addr:$dst)], IIC_SR>;
+}
+def SHR8mi : Ii8<0xC0, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src),
+ "shr{b}\t{$src, $dst|$dst, $src}",
+ [(store (srl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>;
+def SHR16mi : Ii8<0xC1, MRM5m, (outs), (ins i16mem:$dst, i8imm:$src),
+ "shr{w}\t{$src, $dst|$dst, $src}",
+ [(store (srl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>, OpSize16;
+def SHR32mi : Ii8<0xC1, MRM5m, (outs), (ins i32mem:$dst, i8imm:$src),
+ "shr{l}\t{$src, $dst|$dst, $src}",
+ [(store (srl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>, OpSize32;
+def SHR64mi : RIi8<0xC1, MRM5m, (outs), (ins i64mem:$dst, i8imm:$src),
+ "shr{q}\t{$src, $dst|$dst, $src}",
+ [(store (srl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>;
+
+// Shift by 1
+def SHR8m1 : I<0xD0, MRM5m, (outs), (ins i8mem :$dst),
+ "shr{b}\t$dst",
+ [(store (srl (loadi8 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>;
+def SHR16m1 : I<0xD1, MRM5m, (outs), (ins i16mem:$dst),
+ "shr{w}\t$dst",
+ [(store (srl (loadi16 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>, OpSize16;
+def SHR32m1 : I<0xD1, MRM5m, (outs), (ins i32mem:$dst),
+ "shr{l}\t$dst",
+ [(store (srl (loadi32 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>, OpSize32;
+def SHR64m1 : RI<0xD1, MRM5m, (outs), (ins i64mem:$dst),
+ "shr{q}\t$dst",
+ [(store (srl (loadi64 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>;
+} // SchedRW
+
+let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in {
+let Uses = [CL] in {
+def SAR8rCL : I<0xD2, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "sar{b}\t{%cl, $dst|$dst, cl}",
+ [(set GR8:$dst, (sra GR8:$src1, CL))],
+ IIC_SR>;
+def SAR16rCL : I<0xD3, MRM7r, (outs GR16:$dst), (ins GR16:$src1),
+ "sar{w}\t{%cl, $dst|$dst, cl}",
+ [(set GR16:$dst, (sra GR16:$src1, CL))],
+ IIC_SR>, OpSize16;
+def SAR32rCL : I<0xD3, MRM7r, (outs GR32:$dst), (ins GR32:$src1),
+ "sar{l}\t{%cl, $dst|$dst, cl}",
+ [(set GR32:$dst, (sra GR32:$src1, CL))],
+ IIC_SR>, OpSize32;
+def SAR64rCL : RI<0xD3, MRM7r, (outs GR64:$dst), (ins GR64:$src1),
+ "sar{q}\t{%cl, $dst|$dst, cl}",
+ [(set GR64:$dst, (sra GR64:$src1, CL))],
+ IIC_SR>;
+}
+
+def SAR8ri : Ii8<0xC0, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2),
+ "sar{b}\t{$src2, $dst|$dst, $src2}",
+ [(set GR8:$dst, (sra GR8:$src1, (i8 imm:$src2)))],
+ IIC_SR>;
+def SAR16ri : Ii8<0xC1, MRM7r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2),
+ "sar{w}\t{$src2, $dst|$dst, $src2}",
+ [(set GR16:$dst, (sra GR16:$src1, (i8 imm:$src2)))],
+ IIC_SR>, OpSize16;
+def SAR32ri : Ii8<0xC1, MRM7r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
+ "sar{l}\t{$src2, $dst|$dst, $src2}",
+ [(set GR32:$dst, (sra GR32:$src1, (i8 imm:$src2)))],
+ IIC_SR>, OpSize32;
+def SAR64ri : RIi8<0xC1, MRM7r, (outs GR64:$dst),
+ (ins GR64:$src1, i8imm:$src2),
+ "sar{q}\t{$src2, $dst|$dst, $src2}",
+ [(set GR64:$dst, (sra GR64:$src1, (i8 imm:$src2)))],
+ IIC_SR>;
+
+// Shift by 1
+def SAR8r1 : I<0xD0, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "sar{b}\t$dst",
+ [(set GR8:$dst, (sra GR8:$src1, (i8 1)))],
+ IIC_SR>;
+def SAR16r1 : I<0xD1, MRM7r, (outs GR16:$dst), (ins GR16:$src1),
+ "sar{w}\t$dst",
+ [(set GR16:$dst, (sra GR16:$src1, (i8 1)))],
+ IIC_SR>, OpSize16;
+def SAR32r1 : I<0xD1, MRM7r, (outs GR32:$dst), (ins GR32:$src1),
+ "sar{l}\t$dst",
+ [(set GR32:$dst, (sra GR32:$src1, (i8 1)))],
+ IIC_SR>, OpSize32;
+def SAR64r1 : RI<0xD1, MRM7r, (outs GR64:$dst), (ins GR64:$src1),
+ "sar{q}\t$dst",
+ [(set GR64:$dst, (sra GR64:$src1, (i8 1)))],
+ IIC_SR>;
+} // Constraints = "$src = $dst", SchedRW
+
+
+let SchedRW = [WriteShiftLd, WriteRMW] in {
+let Uses = [CL] in {
+def SAR8mCL : I<0xD2, MRM7m, (outs), (ins i8mem :$dst),
+ "sar{b}\t{%cl, $dst|$dst, cl}",
+ [(store (sra (loadi8 addr:$dst), CL), addr:$dst)],
+ IIC_SR>;
+def SAR16mCL : I<0xD3, MRM7m, (outs), (ins i16mem:$dst),
+ "sar{w}\t{%cl, $dst|$dst, cl}",
+ [(store (sra (loadi16 addr:$dst), CL), addr:$dst)],
+ IIC_SR>, OpSize16;
+def SAR32mCL : I<0xD3, MRM7m, (outs), (ins i32mem:$dst),
+ "sar{l}\t{%cl, $dst|$dst, cl}",
+ [(store (sra (loadi32 addr:$dst), CL), addr:$dst)],
+ IIC_SR>, OpSize32;
+def SAR64mCL : RI<0xD3, MRM7m, (outs), (ins i64mem:$dst),
+ "sar{q}\t{%cl, $dst|$dst, cl}",
+ [(store (sra (loadi64 addr:$dst), CL), addr:$dst)],
+ IIC_SR>;
+}
+def SAR8mi : Ii8<0xC0, MRM7m, (outs), (ins i8mem :$dst, i8imm:$src),
+ "sar{b}\t{$src, $dst|$dst, $src}",
+ [(store (sra (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>;
+def SAR16mi : Ii8<0xC1, MRM7m, (outs), (ins i16mem:$dst, i8imm:$src),
+ "sar{w}\t{$src, $dst|$dst, $src}",
+ [(store (sra (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>, OpSize16;
+def SAR32mi : Ii8<0xC1, MRM7m, (outs), (ins i32mem:$dst, i8imm:$src),
+ "sar{l}\t{$src, $dst|$dst, $src}",
+ [(store (sra (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>, OpSize32;
+def SAR64mi : RIi8<0xC1, MRM7m, (outs), (ins i64mem:$dst, i8imm:$src),
+ "sar{q}\t{$src, $dst|$dst, $src}",
+ [(store (sra (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>;
+
+// Shift by 1
+def SAR8m1 : I<0xD0, MRM7m, (outs), (ins i8mem :$dst),
+ "sar{b}\t$dst",
+ [(store (sra (loadi8 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>;
+def SAR16m1 : I<0xD1, MRM7m, (outs), (ins i16mem:$dst),
+ "sar{w}\t$dst",
+ [(store (sra (loadi16 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>, OpSize16;
+def SAR32m1 : I<0xD1, MRM7m, (outs), (ins i32mem:$dst),
+ "sar{l}\t$dst",
+ [(store (sra (loadi32 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>, OpSize32;
+def SAR64m1 : RI<0xD1, MRM7m, (outs), (ins i64mem:$dst),
+ "sar{q}\t$dst",
+ [(store (sra (loadi64 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Rotate instructions
+//===----------------------------------------------------------------------===//
+
+let hasSideEffects = 0 in {
+let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in {
+def RCL8r1 : I<0xD0, MRM2r, (outs GR8:$dst), (ins GR8:$src1),
+ "rcl{b}\t$dst", [], IIC_SR>;
+def RCL8ri : Ii8<0xC0, MRM2r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$cnt),
+ "rcl{b}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>;
+let Uses = [CL] in
+def RCL8rCL : I<0xD2, MRM2r, (outs GR8:$dst), (ins GR8:$src1),
+ "rcl{b}\t{%cl, $dst|$dst, cl}", [], IIC_SR>;
+
+def RCL16r1 : I<0xD1, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
+ "rcl{w}\t$dst", [], IIC_SR>, OpSize16;
+def RCL16ri : Ii8<0xC1, MRM2r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$cnt),
+ "rcl{w}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>, OpSize16;
+let Uses = [CL] in
+def RCL16rCL : I<0xD3, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
+ "rcl{w}\t{%cl, $dst|$dst, cl}", [], IIC_SR>, OpSize16;
+
+def RCL32r1 : I<0xD1, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
+ "rcl{l}\t$dst", [], IIC_SR>, OpSize32;
+def RCL32ri : Ii8<0xC1, MRM2r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$cnt),
+ "rcl{l}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>, OpSize32;
+let Uses = [CL] in
+def RCL32rCL : I<0xD3, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
+ "rcl{l}\t{%cl, $dst|$dst, cl}", [], IIC_SR>, OpSize32;
+
+
+def RCL64r1 : RI<0xD1, MRM2r, (outs GR64:$dst), (ins GR64:$src1),
+ "rcl{q}\t$dst", [], IIC_SR>;
+def RCL64ri : RIi8<0xC1, MRM2r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$cnt),
+ "rcl{q}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>;
+let Uses = [CL] in
+def RCL64rCL : RI<0xD3, MRM2r, (outs GR64:$dst), (ins GR64:$src1),
+ "rcl{q}\t{%cl, $dst|$dst, cl}", [], IIC_SR>;
+
+
+def RCR8r1 : I<0xD0, MRM3r, (outs GR8:$dst), (ins GR8:$src1),
+ "rcr{b}\t$dst", [], IIC_SR>;
+def RCR8ri : Ii8<0xC0, MRM3r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$cnt),
+ "rcr{b}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>;
+let Uses = [CL] in
+def RCR8rCL : I<0xD2, MRM3r, (outs GR8:$dst), (ins GR8:$src1),
+ "rcr{b}\t{%cl, $dst|$dst, cl}", [], IIC_SR>;
+
+def RCR16r1 : I<0xD1, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
+ "rcr{w}\t$dst", [], IIC_SR>, OpSize16;
+def RCR16ri : Ii8<0xC1, MRM3r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$cnt),
+ "rcr{w}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>, OpSize16;
+let Uses = [CL] in
+def RCR16rCL : I<0xD3, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
+ "rcr{w}\t{%cl, $dst|$dst, cl}", [], IIC_SR>, OpSize16;
+
+def RCR32r1 : I<0xD1, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
+ "rcr{l}\t$dst", [], IIC_SR>, OpSize32;
+def RCR32ri : Ii8<0xC1, MRM3r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$cnt),
+ "rcr{l}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>, OpSize32;
+let Uses = [CL] in
+def RCR32rCL : I<0xD3, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
+ "rcr{l}\t{%cl, $dst|$dst, cl}", [], IIC_SR>, OpSize32;
+
+def RCR64r1 : RI<0xD1, MRM3r, (outs GR64:$dst), (ins GR64:$src1),
+ "rcr{q}\t$dst", [], IIC_SR>;
+def RCR64ri : RIi8<0xC1, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$cnt),
+ "rcr{q}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>;
+let Uses = [CL] in
+def RCR64rCL : RI<0xD3, MRM3r, (outs GR64:$dst), (ins GR64:$src1),
+ "rcr{q}\t{%cl, $dst|$dst, cl}", [], IIC_SR>;
+
+} // Constraints = "$src = $dst"
+
+let SchedRW = [WriteShiftLd, WriteRMW] in {
+def RCL8m1 : I<0xD0, MRM2m, (outs), (ins i8mem:$dst),
+ "rcl{b}\t$dst", [], IIC_SR>;
+def RCL8mi : Ii8<0xC0, MRM2m, (outs), (ins i8mem:$dst, i8imm:$cnt),
+ "rcl{b}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>;
+def RCL16m1 : I<0xD1, MRM2m, (outs), (ins i16mem:$dst),
+ "rcl{w}\t$dst", [], IIC_SR>, OpSize16;
+def RCL16mi : Ii8<0xC1, MRM2m, (outs), (ins i16mem:$dst, i8imm:$cnt),
+ "rcl{w}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>, OpSize16;
+def RCL32m1 : I<0xD1, MRM2m, (outs), (ins i32mem:$dst),
+ "rcl{l}\t$dst", [], IIC_SR>, OpSize32;
+def RCL32mi : Ii8<0xC1, MRM2m, (outs), (ins i32mem:$dst, i8imm:$cnt),
+ "rcl{l}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>, OpSize32;
+def RCL64m1 : RI<0xD1, MRM2m, (outs), (ins i64mem:$dst),
+ "rcl{q}\t$dst", [], IIC_SR>;
+def RCL64mi : RIi8<0xC1, MRM2m, (outs), (ins i64mem:$dst, i8imm:$cnt),
+ "rcl{q}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>;
+
+def RCR8m1 : I<0xD0, MRM3m, (outs), (ins i8mem:$dst),
+ "rcr{b}\t$dst", [], IIC_SR>;
+def RCR8mi : Ii8<0xC0, MRM3m, (outs), (ins i8mem:$dst, i8imm:$cnt),
+ "rcr{b}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>;
+def RCR16m1 : I<0xD1, MRM3m, (outs), (ins i16mem:$dst),
+ "rcr{w}\t$dst", [], IIC_SR>, OpSize16;
+def RCR16mi : Ii8<0xC1, MRM3m, (outs), (ins i16mem:$dst, i8imm:$cnt),
+ "rcr{w}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>, OpSize16;
+def RCR32m1 : I<0xD1, MRM3m, (outs), (ins i32mem:$dst),
+ "rcr{l}\t$dst", [], IIC_SR>, OpSize32;
+def RCR32mi : Ii8<0xC1, MRM3m, (outs), (ins i32mem:$dst, i8imm:$cnt),
+ "rcr{l}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>, OpSize32;
+def RCR64m1 : RI<0xD1, MRM3m, (outs), (ins i64mem:$dst),
+ "rcr{q}\t$dst", [], IIC_SR>;
+def RCR64mi : RIi8<0xC1, MRM3m, (outs), (ins i64mem:$dst, i8imm:$cnt),
+ "rcr{q}\t{$cnt, $dst|$dst, $cnt}", [], IIC_SR>;
+
+let Uses = [CL] in {
+def RCL8mCL : I<0xD2, MRM2m, (outs), (ins i8mem:$dst),
+ "rcl{b}\t{%cl, $dst|$dst, cl}", [], IIC_SR>;
+def RCL16mCL : I<0xD3, MRM2m, (outs), (ins i16mem:$dst),
+ "rcl{w}\t{%cl, $dst|$dst, cl}", [], IIC_SR>, OpSize16;
+def RCL32mCL : I<0xD3, MRM2m, (outs), (ins i32mem:$dst),
+ "rcl{l}\t{%cl, $dst|$dst, cl}", [], IIC_SR>, OpSize32;
+def RCL64mCL : RI<0xD3, MRM2m, (outs), (ins i64mem:$dst),
+ "rcl{q}\t{%cl, $dst|$dst, cl}", [], IIC_SR>;
+
+def RCR8mCL : I<0xD2, MRM3m, (outs), (ins i8mem:$dst),
+ "rcr{b}\t{%cl, $dst|$dst, cl}", [], IIC_SR>;
+def RCR16mCL : I<0xD3, MRM3m, (outs), (ins i16mem:$dst),
+ "rcr{w}\t{%cl, $dst|$dst, cl}", [], IIC_SR>, OpSize16;
+def RCR32mCL : I<0xD3, MRM3m, (outs), (ins i32mem:$dst),
+ "rcr{l}\t{%cl, $dst|$dst, cl}", [], IIC_SR>, OpSize32;
+def RCR64mCL : RI<0xD3, MRM3m, (outs), (ins i64mem:$dst),
+ "rcr{q}\t{%cl, $dst|$dst, cl}", [], IIC_SR>;
+}
+} // SchedRW
+} // hasSideEffects = 0
+
+let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in {
+// FIXME: provide shorter instructions when imm8 == 1
+let Uses = [CL] in {
+def ROL8rCL : I<0xD2, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "rol{b}\t{%cl, $dst|$dst, cl}",
+ [(set GR8:$dst, (rotl GR8:$src1, CL))], IIC_SR>;
+def ROL16rCL : I<0xD3, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
+ "rol{w}\t{%cl, $dst|$dst, cl}",
+ [(set GR16:$dst, (rotl GR16:$src1, CL))], IIC_SR>, OpSize16;
+def ROL32rCL : I<0xD3, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
+ "rol{l}\t{%cl, $dst|$dst, cl}",
+ [(set GR32:$dst, (rotl GR32:$src1, CL))], IIC_SR>, OpSize32;
+def ROL64rCL : RI<0xD3, MRM0r, (outs GR64:$dst), (ins GR64:$src1),
+ "rol{q}\t{%cl, $dst|$dst, cl}",
+ [(set GR64:$dst, (rotl GR64:$src1, CL))], IIC_SR>;
+}
+
+def ROL8ri : Ii8<0xC0, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2),
+ "rol{b}\t{$src2, $dst|$dst, $src2}",
+ [(set GR8:$dst, (rotl GR8:$src1, (i8 imm:$src2)))], IIC_SR>;
+def ROL16ri : Ii8<0xC1, MRM0r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2),
+ "rol{w}\t{$src2, $dst|$dst, $src2}",
+ [(set GR16:$dst, (rotl GR16:$src1, (i8 imm:$src2)))],
+ IIC_SR>, OpSize16;
+def ROL32ri : Ii8<0xC1, MRM0r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
+ "rol{l}\t{$src2, $dst|$dst, $src2}",
+ [(set GR32:$dst, (rotl GR32:$src1, (i8 imm:$src2)))],
+ IIC_SR>, OpSize32;
+def ROL64ri : RIi8<0xC1, MRM0r, (outs GR64:$dst),
+ (ins GR64:$src1, i8imm:$src2),
+ "rol{q}\t{$src2, $dst|$dst, $src2}",
+ [(set GR64:$dst, (rotl GR64:$src1, (i8 imm:$src2)))],
+ IIC_SR>;
+
+// Rotate by 1
+def ROL8r1 : I<0xD0, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "rol{b}\t$dst",
+ [(set GR8:$dst, (rotl GR8:$src1, (i8 1)))],
+ IIC_SR>;
+def ROL16r1 : I<0xD1, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
+ "rol{w}\t$dst",
+ [(set GR16:$dst, (rotl GR16:$src1, (i8 1)))],
+ IIC_SR>, OpSize16;
+def ROL32r1 : I<0xD1, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
+ "rol{l}\t$dst",
+ [(set GR32:$dst, (rotl GR32:$src1, (i8 1)))],
+ IIC_SR>, OpSize32;
+def ROL64r1 : RI<0xD1, MRM0r, (outs GR64:$dst), (ins GR64:$src1),
+ "rol{q}\t$dst",
+ [(set GR64:$dst, (rotl GR64:$src1, (i8 1)))],
+ IIC_SR>;
+} // Constraints = "$src = $dst", SchedRW
+
+let SchedRW = [WriteShiftLd, WriteRMW] in {
+let Uses = [CL] in {
+def ROL8mCL : I<0xD2, MRM0m, (outs), (ins i8mem :$dst),
+ "rol{b}\t{%cl, $dst|$dst, cl}",
+ [(store (rotl (loadi8 addr:$dst), CL), addr:$dst)],
+ IIC_SR>;
+def ROL16mCL : I<0xD3, MRM0m, (outs), (ins i16mem:$dst),
+ "rol{w}\t{%cl, $dst|$dst, cl}",
+ [(store (rotl (loadi16 addr:$dst), CL), addr:$dst)],
+ IIC_SR>, OpSize16;
+def ROL32mCL : I<0xD3, MRM0m, (outs), (ins i32mem:$dst),
+ "rol{l}\t{%cl, $dst|$dst, cl}",
+ [(store (rotl (loadi32 addr:$dst), CL), addr:$dst)],
+ IIC_SR>, OpSize32;
+def ROL64mCL : RI<0xD3, MRM0m, (outs), (ins i64mem:$dst),
+ "rol{q}\t{%cl, $dst|$dst, cl}",
+ [(store (rotl (loadi64 addr:$dst), CL), addr:$dst)],
+ IIC_SR>;
+}
+def ROL8mi : Ii8<0xC0, MRM0m, (outs), (ins i8mem :$dst, i8imm:$src1),
+ "rol{b}\t{$src1, $dst|$dst, $src1}",
+ [(store (rotl (loadi8 addr:$dst), (i8 imm:$src1)), addr:$dst)],
+ IIC_SR>;
+def ROL16mi : Ii8<0xC1, MRM0m, (outs), (ins i16mem:$dst, i8imm:$src1),
+ "rol{w}\t{$src1, $dst|$dst, $src1}",
+ [(store (rotl (loadi16 addr:$dst), (i8 imm:$src1)), addr:$dst)],
+ IIC_SR>, OpSize16;
+def ROL32mi : Ii8<0xC1, MRM0m, (outs), (ins i32mem:$dst, i8imm:$src1),
+ "rol{l}\t{$src1, $dst|$dst, $src1}",
+ [(store (rotl (loadi32 addr:$dst), (i8 imm:$src1)), addr:$dst)],
+ IIC_SR>, OpSize32;
+def ROL64mi : RIi8<0xC1, MRM0m, (outs), (ins i64mem:$dst, i8imm:$src1),
+ "rol{q}\t{$src1, $dst|$dst, $src1}",
+ [(store (rotl (loadi64 addr:$dst), (i8 imm:$src1)), addr:$dst)],
+ IIC_SR>;
+
+// Rotate by 1
+def ROL8m1 : I<0xD0, MRM0m, (outs), (ins i8mem :$dst),
+ "rol{b}\t$dst",
+ [(store (rotl (loadi8 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>;
+def ROL16m1 : I<0xD1, MRM0m, (outs), (ins i16mem:$dst),
+ "rol{w}\t$dst",
+ [(store (rotl (loadi16 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>, OpSize16;
+def ROL32m1 : I<0xD1, MRM0m, (outs), (ins i32mem:$dst),
+ "rol{l}\t$dst",
+ [(store (rotl (loadi32 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>, OpSize32;
+def ROL64m1 : RI<0xD1, MRM0m, (outs), (ins i64mem:$dst),
+ "rol{q}\t$dst",
+ [(store (rotl (loadi64 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>;
+} // SchedRW
+
+let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in {
+let Uses = [CL] in {
+def ROR8rCL : I<0xD2, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "ror{b}\t{%cl, $dst|$dst, cl}",
+ [(set GR8:$dst, (rotr GR8:$src1, CL))], IIC_SR>;
+def ROR16rCL : I<0xD3, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
+ "ror{w}\t{%cl, $dst|$dst, cl}",
+ [(set GR16:$dst, (rotr GR16:$src1, CL))], IIC_SR>, OpSize16;
+def ROR32rCL : I<0xD3, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
+ "ror{l}\t{%cl, $dst|$dst, cl}",
+ [(set GR32:$dst, (rotr GR32:$src1, CL))], IIC_SR>, OpSize32;
+def ROR64rCL : RI<0xD3, MRM1r, (outs GR64:$dst), (ins GR64:$src1),
+ "ror{q}\t{%cl, $dst|$dst, cl}",
+ [(set GR64:$dst, (rotr GR64:$src1, CL))], IIC_SR>;
+}
+
+def ROR8ri : Ii8<0xC0, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2),
+ "ror{b}\t{$src2, $dst|$dst, $src2}",
+ [(set GR8:$dst, (rotr GR8:$src1, (i8 imm:$src2)))], IIC_SR>;
+def ROR16ri : Ii8<0xC1, MRM1r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2),
+ "ror{w}\t{$src2, $dst|$dst, $src2}",
+ [(set GR16:$dst, (rotr GR16:$src1, (i8 imm:$src2)))],
+ IIC_SR>, OpSize16;
+def ROR32ri : Ii8<0xC1, MRM1r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
+ "ror{l}\t{$src2, $dst|$dst, $src2}",
+ [(set GR32:$dst, (rotr GR32:$src1, (i8 imm:$src2)))],
+ IIC_SR>, OpSize32;
+def ROR64ri : RIi8<0xC1, MRM1r, (outs GR64:$dst),
+ (ins GR64:$src1, i8imm:$src2),
+ "ror{q}\t{$src2, $dst|$dst, $src2}",
+ [(set GR64:$dst, (rotr GR64:$src1, (i8 imm:$src2)))],
+ IIC_SR>;
+
+// Rotate by 1
+def ROR8r1 : I<0xD0, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "ror{b}\t$dst",
+ [(set GR8:$dst, (rotr GR8:$src1, (i8 1)))],
+ IIC_SR>;
+def ROR16r1 : I<0xD1, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
+ "ror{w}\t$dst",
+ [(set GR16:$dst, (rotr GR16:$src1, (i8 1)))],
+ IIC_SR>, OpSize16;
+def ROR32r1 : I<0xD1, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
+ "ror{l}\t$dst",
+ [(set GR32:$dst, (rotr GR32:$src1, (i8 1)))],
+ IIC_SR>, OpSize32;
+def ROR64r1 : RI<0xD1, MRM1r, (outs GR64:$dst), (ins GR64:$src1),
+ "ror{q}\t$dst",
+ [(set GR64:$dst, (rotr GR64:$src1, (i8 1)))],
+ IIC_SR>;
+} // Constraints = "$src = $dst", SchedRW
+
+let SchedRW = [WriteShiftLd, WriteRMW] in {
+let Uses = [CL] in {
+def ROR8mCL : I<0xD2, MRM1m, (outs), (ins i8mem :$dst),
+ "ror{b}\t{%cl, $dst|$dst, cl}",
+ [(store (rotr (loadi8 addr:$dst), CL), addr:$dst)],
+ IIC_SR>;
+def ROR16mCL : I<0xD3, MRM1m, (outs), (ins i16mem:$dst),
+ "ror{w}\t{%cl, $dst|$dst, cl}",
+ [(store (rotr (loadi16 addr:$dst), CL), addr:$dst)],
+ IIC_SR>, OpSize16;
+def ROR32mCL : I<0xD3, MRM1m, (outs), (ins i32mem:$dst),
+ "ror{l}\t{%cl, $dst|$dst, cl}",
+ [(store (rotr (loadi32 addr:$dst), CL), addr:$dst)],
+ IIC_SR>, OpSize32;
+def ROR64mCL : RI<0xD3, MRM1m, (outs), (ins i64mem:$dst),
+ "ror{q}\t{%cl, $dst|$dst, cl}",
+ [(store (rotr (loadi64 addr:$dst), CL), addr:$dst)],
+ IIC_SR>;
+}
+def ROR8mi : Ii8<0xC0, MRM1m, (outs), (ins i8mem :$dst, i8imm:$src),
+ "ror{b}\t{$src, $dst|$dst, $src}",
+ [(store (rotr (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>;
+def ROR16mi : Ii8<0xC1, MRM1m, (outs), (ins i16mem:$dst, i8imm:$src),
+ "ror{w}\t{$src, $dst|$dst, $src}",
+ [(store (rotr (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>, OpSize16;
+def ROR32mi : Ii8<0xC1, MRM1m, (outs), (ins i32mem:$dst, i8imm:$src),
+ "ror{l}\t{$src, $dst|$dst, $src}",
+ [(store (rotr (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>, OpSize32;
+def ROR64mi : RIi8<0xC1, MRM1m, (outs), (ins i64mem:$dst, i8imm:$src),
+ "ror{q}\t{$src, $dst|$dst, $src}",
+ [(store (rotr (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)],
+ IIC_SR>;
+
+// Rotate by 1
+def ROR8m1 : I<0xD0, MRM1m, (outs), (ins i8mem :$dst),
+ "ror{b}\t$dst",
+ [(store (rotr (loadi8 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>;
+def ROR16m1 : I<0xD1, MRM1m, (outs), (ins i16mem:$dst),
+ "ror{w}\t$dst",
+ [(store (rotr (loadi16 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>, OpSize16;
+def ROR32m1 : I<0xD1, MRM1m, (outs), (ins i32mem:$dst),
+ "ror{l}\t$dst",
+ [(store (rotr (loadi32 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>, OpSize32;
+def ROR64m1 : RI<0xD1, MRM1m, (outs), (ins i64mem:$dst),
+ "ror{q}\t$dst",
+ [(store (rotr (loadi64 addr:$dst), (i8 1)), addr:$dst)],
+ IIC_SR>;
+} // SchedRW
+
+
+//===----------------------------------------------------------------------===//
+// Double shift instructions (generalizations of rotate)
+//===----------------------------------------------------------------------===//
+
+let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in {
+
+let Uses = [CL] in {
+def SHLD16rrCL : I<0xA5, MRMDestReg, (outs GR16:$dst),
+ (ins GR16:$src1, GR16:$src2),
+ "shld{w}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(set GR16:$dst, (X86shld GR16:$src1, GR16:$src2, CL))],
+ IIC_SHD16_REG_CL>,
+ TB, OpSize16;
+def SHRD16rrCL : I<0xAD, MRMDestReg, (outs GR16:$dst),
+ (ins GR16:$src1, GR16:$src2),
+ "shrd{w}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(set GR16:$dst, (X86shrd GR16:$src1, GR16:$src2, CL))],
+ IIC_SHD16_REG_CL>,
+ TB, OpSize16;
+def SHLD32rrCL : I<0xA5, MRMDestReg, (outs GR32:$dst),
+ (ins GR32:$src1, GR32:$src2),
+ "shld{l}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(set GR32:$dst, (X86shld GR32:$src1, GR32:$src2, CL))],
+ IIC_SHD32_REG_CL>, TB, OpSize32;
+def SHRD32rrCL : I<0xAD, MRMDestReg, (outs GR32:$dst),
+ (ins GR32:$src1, GR32:$src2),
+ "shrd{l}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(set GR32:$dst, (X86shrd GR32:$src1, GR32:$src2, CL))],
+ IIC_SHD32_REG_CL>, TB, OpSize32;
+def SHLD64rrCL : RI<0xA5, MRMDestReg, (outs GR64:$dst),
+ (ins GR64:$src1, GR64:$src2),
+ "shld{q}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2, CL))],
+ IIC_SHD64_REG_CL>,
+ TB;
+def SHRD64rrCL : RI<0xAD, MRMDestReg, (outs GR64:$dst),
+ (ins GR64:$src1, GR64:$src2),
+ "shrd{q}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2, CL))],
+ IIC_SHD64_REG_CL>,
+ TB;
+}
+
+let isCommutable = 1 in { // These instructions commute to each other.
+def SHLD16rri8 : Ii8<0xA4, MRMDestReg,
+ (outs GR16:$dst),
+ (ins GR16:$src1, GR16:$src2, i8imm:$src3),
+ "shld{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set GR16:$dst, (X86shld GR16:$src1, GR16:$src2,
+ (i8 imm:$src3)))], IIC_SHD16_REG_IM>,
+ TB, OpSize16;
+def SHRD16rri8 : Ii8<0xAC, MRMDestReg,
+ (outs GR16:$dst),
+ (ins GR16:$src1, GR16:$src2, i8imm:$src3),
+ "shrd{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set GR16:$dst, (X86shrd GR16:$src1, GR16:$src2,
+ (i8 imm:$src3)))], IIC_SHD16_REG_IM>,
+ TB, OpSize16;
+def SHLD32rri8 : Ii8<0xA4, MRMDestReg,
+ (outs GR32:$dst),
+ (ins GR32:$src1, GR32:$src2, i8imm:$src3),
+ "shld{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set GR32:$dst, (X86shld GR32:$src1, GR32:$src2,
+ (i8 imm:$src3)))], IIC_SHD32_REG_IM>,
+ TB, OpSize32;
+def SHRD32rri8 : Ii8<0xAC, MRMDestReg,
+ (outs GR32:$dst),
+ (ins GR32:$src1, GR32:$src2, i8imm:$src3),
+ "shrd{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set GR32:$dst, (X86shrd GR32:$src1, GR32:$src2,
+ (i8 imm:$src3)))], IIC_SHD32_REG_IM>,
+ TB, OpSize32;
+def SHLD64rri8 : RIi8<0xA4, MRMDestReg,
+ (outs GR64:$dst),
+ (ins GR64:$src1, GR64:$src2, i8imm:$src3),
+ "shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2,
+ (i8 imm:$src3)))], IIC_SHD64_REG_IM>,
+ TB;
+def SHRD64rri8 : RIi8<0xAC, MRMDestReg,
+ (outs GR64:$dst),
+ (ins GR64:$src1, GR64:$src2, i8imm:$src3),
+ "shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2,
+ (i8 imm:$src3)))], IIC_SHD64_REG_IM>,
+ TB;
+}
+} // Constraints = "$src = $dst", SchedRW
+
+let SchedRW = [WriteShiftLd, WriteRMW] in {
+let Uses = [CL] in {
+def SHLD16mrCL : I<0xA5, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
+ "shld{w}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(store (X86shld (loadi16 addr:$dst), GR16:$src2, CL),
+ addr:$dst)], IIC_SHD16_MEM_CL>, TB, OpSize16;
+def SHRD16mrCL : I<0xAD, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
+ "shrd{w}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(store (X86shrd (loadi16 addr:$dst), GR16:$src2, CL),
+ addr:$dst)], IIC_SHD16_MEM_CL>, TB, OpSize16;
+
+def SHLD32mrCL : I<0xA5, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
+ "shld{l}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(store (X86shld (loadi32 addr:$dst), GR32:$src2, CL),
+ addr:$dst)], IIC_SHD32_MEM_CL>, TB, OpSize32;
+def SHRD32mrCL : I<0xAD, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
+ "shrd{l}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(store (X86shrd (loadi32 addr:$dst), GR32:$src2, CL),
+ addr:$dst)], IIC_SHD32_MEM_CL>, TB, OpSize32;
+
+def SHLD64mrCL : RI<0xA5, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
+ "shld{q}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(store (X86shld (loadi64 addr:$dst), GR64:$src2, CL),
+ addr:$dst)], IIC_SHD64_MEM_CL>, TB;
+def SHRD64mrCL : RI<0xAD, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
+ "shrd{q}\t{%cl, $src2, $dst|$dst, $src2, cl}",
+ [(store (X86shrd (loadi64 addr:$dst), GR64:$src2, CL),
+ addr:$dst)], IIC_SHD64_MEM_CL>, TB;
+}
+
+def SHLD16mri8 : Ii8<0xA4, MRMDestMem,
+ (outs), (ins i16mem:$dst, GR16:$src2, i8imm:$src3),
+ "shld{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(store (X86shld (loadi16 addr:$dst), GR16:$src2,
+ (i8 imm:$src3)), addr:$dst)],
+ IIC_SHD16_MEM_IM>,
+ TB, OpSize16;
+def SHRD16mri8 : Ii8<0xAC, MRMDestMem,
+ (outs), (ins i16mem:$dst, GR16:$src2, i8imm:$src3),
+ "shrd{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(store (X86shrd (loadi16 addr:$dst), GR16:$src2,
+ (i8 imm:$src3)), addr:$dst)],
+ IIC_SHD16_MEM_IM>,
+ TB, OpSize16;
+
+def SHLD32mri8 : Ii8<0xA4, MRMDestMem,
+ (outs), (ins i32mem:$dst, GR32:$src2, i8imm:$src3),
+ "shld{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(store (X86shld (loadi32 addr:$dst), GR32:$src2,
+ (i8 imm:$src3)), addr:$dst)],
+ IIC_SHD32_MEM_IM>,
+ TB, OpSize32;
+def SHRD32mri8 : Ii8<0xAC, MRMDestMem,
+ (outs), (ins i32mem:$dst, GR32:$src2, i8imm:$src3),
+ "shrd{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(store (X86shrd (loadi32 addr:$dst), GR32:$src2,
+ (i8 imm:$src3)), addr:$dst)],
+ IIC_SHD32_MEM_IM>,
+ TB, OpSize32;
+
+def SHLD64mri8 : RIi8<0xA4, MRMDestMem,
+ (outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3),
+ "shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(store (X86shld (loadi64 addr:$dst), GR64:$src2,
+ (i8 imm:$src3)), addr:$dst)],
+ IIC_SHD64_MEM_IM>,
+ TB;
+def SHRD64mri8 : RIi8<0xAC, MRMDestMem,
+ (outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3),
+ "shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(store (X86shrd (loadi64 addr:$dst), GR64:$src2,
+ (i8 imm:$src3)), addr:$dst)],
+ IIC_SHD64_MEM_IM>,
+ TB;
+} // SchedRW
+
+} // Defs = [EFLAGS]
+
+def ROT32L2R_imm8 : SDNodeXForm<imm, [{
+ // Convert a ROTL shamt to a ROTR shamt on 32-bit integer.
+ return getI8Imm(32 - N->getZExtValue());
+}]>;
+
+def ROT64L2R_imm8 : SDNodeXForm<imm, [{
+ // Convert a ROTL shamt to a ROTR shamt on 64-bit integer.
+ return getI8Imm(64 - N->getZExtValue());
+}]>;
+
+multiclass bmi_rotate<string asm, RegisterClass RC, X86MemOperand x86memop> {
+let neverHasSideEffects = 1 in {
+ def ri : Ii8<0xF0, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, i8imm:$src2),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, TAXD, VEX, Sched<[WriteShift]>;
+ let mayLoad = 1 in
+ def mi : Ii8<0xF0, MRMSrcMem, (outs RC:$dst),
+ (ins x86memop:$src1, i8imm:$src2),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, TAXD, VEX, Sched<[WriteShiftLd]>;
+}
+}
+
+multiclass bmi_shift<string asm, RegisterClass RC, X86MemOperand x86memop> {
+let neverHasSideEffects = 1 in {
+ def rr : I<0xF7, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>,
+ VEX_4VOp3, Sched<[WriteShift]>;
+ let mayLoad = 1 in
+ def rm : I<0xF7, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src1, RC:$src2),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>,
+ VEX_4VOp3,
+ Sched<[WriteShiftLd,
+ // x86memop:$src1
+ ReadDefault, ReadDefault, ReadDefault, ReadDefault,
+ ReadDefault,
+ // RC:$src1
+ ReadAfterLd]>;
+}
+}
+
+let Predicates = [HasBMI2] in {
+ defm RORX32 : bmi_rotate<"rorx{l}", GR32, i32mem>;
+ defm RORX64 : bmi_rotate<"rorx{q}", GR64, i64mem>, VEX_W;
+ defm SARX32 : bmi_shift<"sarx{l}", GR32, i32mem>, T8XS;
+ defm SARX64 : bmi_shift<"sarx{q}", GR64, i64mem>, T8XS, VEX_W;
+ defm SHRX32 : bmi_shift<"shrx{l}", GR32, i32mem>, T8XD;
+ defm SHRX64 : bmi_shift<"shrx{q}", GR64, i64mem>, T8XD, VEX_W;
+ defm SHLX32 : bmi_shift<"shlx{l}", GR32, i32mem>, T8PD;
+ defm SHLX64 : bmi_shift<"shlx{q}", GR64, i64mem>, T8PD, VEX_W;
+
+ // Prefer RORX which is non-destructive and doesn't update EFLAGS.
+ let AddedComplexity = 10 in {
+ def : Pat<(rotl GR32:$src, (i8 imm:$shamt)),
+ (RORX32ri GR32:$src, (ROT32L2R_imm8 imm:$shamt))>;
+ def : Pat<(rotl GR64:$src, (i8 imm:$shamt)),
+ (RORX64ri GR64:$src, (ROT64L2R_imm8 imm:$shamt))>;
+ }
+
+ def : Pat<(rotl (loadi32 addr:$src), (i8 imm:$shamt)),
+ (RORX32mi addr:$src, (ROT32L2R_imm8 imm:$shamt))>;
+ def : Pat<(rotl (loadi64 addr:$src), (i8 imm:$shamt)),
+ (RORX64mi addr:$src, (ROT64L2R_imm8 imm:$shamt))>;
+
+ // Prefer SARX/SHRX/SHLX over SAR/SHR/SHL with variable shift BUT not
+ // immedidate shift, i.e. the following code is considered better
+ //
+ // mov %edi, %esi
+ // shl $imm, %esi
+ // ... %edi, ...
+ //
+ // than
+ //
+ // movb $imm, %sil
+ // shlx %sil, %edi, %esi
+ // ... %edi, ...
+ //
+ let AddedComplexity = 1 in {
+ def : Pat<(sra GR32:$src1, GR8:$src2),
+ (SARX32rr GR32:$src1,
+ (INSERT_SUBREG
+ (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(sra GR64:$src1, GR8:$src2),
+ (SARX64rr GR64:$src1,
+ (INSERT_SUBREG
+ (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+
+ def : Pat<(srl GR32:$src1, GR8:$src2),
+ (SHRX32rr GR32:$src1,
+ (INSERT_SUBREG
+ (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(srl GR64:$src1, GR8:$src2),
+ (SHRX64rr GR64:$src1,
+ (INSERT_SUBREG
+ (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+
+ def : Pat<(shl GR32:$src1, GR8:$src2),
+ (SHLX32rr GR32:$src1,
+ (INSERT_SUBREG
+ (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(shl GR64:$src1, GR8:$src2),
+ (SHLX64rr GR64:$src1,
+ (INSERT_SUBREG
+ (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ }
+
+ // Patterns on SARXrm/SHRXrm/SHLXrm are explicitly omitted to favor
+ //
+ // mov (%ecx), %esi
+ // shl $imm, $esi
+ //
+ // over
+ //
+ // movb $imm %al
+ // shlx %al, (%ecx), %esi
+ //
+ // As SARXrr/SHRXrr/SHLXrr is favored on variable shift, the peephole
+ // optimization will fold them into SARXrm/SHRXrm/SHLXrm if possible.
+}
diff --git a/contrib/llvm/lib/Target/X86/X86InstrSystem.td b/contrib/llvm/lib/Target/X86/X86InstrSystem.td
new file mode 100644
index 0000000..5402780
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrSystem.td
@@ -0,0 +1,569 @@
+//===-- X86InstrSystem.td - System Instructions ------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the X86 instructions that are generally used in
+// privileged modes. These are not typically used by the compiler, but are
+// supported for the assembler and disassembler.
+//
+//===----------------------------------------------------------------------===//
+
+let SchedRW = [WriteSystem] in {
+let Defs = [RAX, RDX] in
+ def RDTSC : I<0x31, RawFrm, (outs), (ins), "rdtsc", [(X86rdtsc)], IIC_RDTSC>,
+ TB;
+
+let Defs = [RAX, RCX, RDX] in
+ def RDTSCP : I<0x01, MRM_F9, (outs), (ins), "rdtscp", [(X86rdtscp)]>, TB;
+
+// CPU flow control instructions
+
+let isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in {
+ def TRAP : I<0x0B, RawFrm, (outs), (ins), "ud2", [(trap)]>, TB;
+ def UD2B : I<0xB9, RawFrm, (outs), (ins), "ud2b", []>, TB;
+}
+
+def HLT : I<0xF4, RawFrm, (outs), (ins), "hlt", [], IIC_HLT>;
+def RSM : I<0xAA, RawFrm, (outs), (ins), "rsm", [], IIC_RSM>, TB;
+
+// Interrupt and SysCall Instructions.
+let Uses = [EFLAGS] in
+ def INTO : I<0xce, RawFrm, (outs), (ins), "into", []>;
+def INT3 : I<0xcc, RawFrm, (outs), (ins), "int3",
+ [(int_x86_int (i8 3))], IIC_INT3>;
+} // SchedRW
+
+def : Pat<(debugtrap),
+ (INT3)>;
+
+// The long form of "int $3" turns into int3 as a size optimization.
+// FIXME: This doesn't work because InstAlias can't match immediate constants.
+//def : InstAlias<"int\t$3", (INT3)>;
+
+let SchedRW = [WriteSystem] in {
+
+def INT : Ii8<0xcd, RawFrm, (outs), (ins i8imm:$trap), "int\t$trap",
+ [(int_x86_int imm:$trap)], IIC_INT>;
+
+
+def SYSCALL : I<0x05, RawFrm, (outs), (ins), "syscall", [], IIC_SYSCALL>, TB;
+def SYSRET : I<0x07, RawFrm, (outs), (ins), "sysret{l}", [], IIC_SYSCALL>, TB;
+def SYSRET64 :RI<0x07, RawFrm, (outs), (ins), "sysret{q}", [], IIC_SYSCALL>, TB,
+ Requires<[In64BitMode]>;
+
+def SYSENTER : I<0x34, RawFrm, (outs), (ins), "sysenter", [],
+ IIC_SYS_ENTER_EXIT>, TB;
+
+def SYSEXIT : I<0x35, RawFrm, (outs), (ins), "sysexit{l}", [],
+ IIC_SYS_ENTER_EXIT>, TB;
+def SYSEXIT64 :RI<0x35, RawFrm, (outs), (ins), "sysexit{q}", [],
+ IIC_SYS_ENTER_EXIT>, TB, Requires<[In64BitMode]>;
+
+def IRET16 : I<0xcf, RawFrm, (outs), (ins), "iret{w}", [], IIC_IRET>, OpSize16;
+def IRET32 : I<0xcf, RawFrm, (outs), (ins), "iret{l|d}", [], IIC_IRET>,
+ OpSize32;
+def IRET64 : RI<0xcf, RawFrm, (outs), (ins), "iretq", [], IIC_IRET>,
+ Requires<[In64BitMode]>;
+} // SchedRW
+
+
+//===----------------------------------------------------------------------===//
+// Input/Output Instructions.
+//
+let SchedRW = [WriteSystem] in {
+let Defs = [AL], Uses = [DX] in
+def IN8rr : I<0xEC, RawFrm, (outs), (ins),
+ "in{b}\t{%dx, %al|al, dx}", [], IIC_IN_RR>;
+let Defs = [AX], Uses = [DX] in
+def IN16rr : I<0xED, RawFrm, (outs), (ins),
+ "in{w}\t{%dx, %ax|ax, dx}", [], IIC_IN_RR>, OpSize16;
+let Defs = [EAX], Uses = [DX] in
+def IN32rr : I<0xED, RawFrm, (outs), (ins),
+ "in{l}\t{%dx, %eax|eax, dx}", [], IIC_IN_RR>, OpSize32;
+
+let Defs = [AL] in
+def IN8ri : Ii8<0xE4, RawFrm, (outs), (ins i8imm:$port),
+ "in{b}\t{$port, %al|al, $port}", [], IIC_IN_RI>;
+let Defs = [AX] in
+def IN16ri : Ii8<0xE5, RawFrm, (outs), (ins i8imm:$port),
+ "in{w}\t{$port, %ax|ax, $port}", [], IIC_IN_RI>, OpSize16;
+let Defs = [EAX] in
+def IN32ri : Ii8<0xE5, RawFrm, (outs), (ins i8imm:$port),
+ "in{l}\t{$port, %eax|eax, $port}", [], IIC_IN_RI>, OpSize32;
+
+let Uses = [DX, AL] in
+def OUT8rr : I<0xEE, RawFrm, (outs), (ins),
+ "out{b}\t{%al, %dx|dx, al}", [], IIC_OUT_RR>;
+let Uses = [DX, AX] in
+def OUT16rr : I<0xEF, RawFrm, (outs), (ins),
+ "out{w}\t{%ax, %dx|dx, ax}", [], IIC_OUT_RR>, OpSize16;
+let Uses = [DX, EAX] in
+def OUT32rr : I<0xEF, RawFrm, (outs), (ins),
+ "out{l}\t{%eax, %dx|dx, eax}", [], IIC_OUT_RR>, OpSize32;
+
+let Uses = [AL] in
+def OUT8ir : Ii8<0xE6, RawFrm, (outs), (ins i8imm:$port),
+ "out{b}\t{%al, $port|$port, al}", [], IIC_OUT_IR>;
+let Uses = [AX] in
+def OUT16ir : Ii8<0xE7, RawFrm, (outs), (ins i8imm:$port),
+ "out{w}\t{%ax, $port|$port, ax}", [], IIC_OUT_IR>, OpSize16;
+let Uses = [EAX] in
+def OUT32ir : Ii8<0xE7, RawFrm, (outs), (ins i8imm:$port),
+ "out{l}\t{%eax, $port|$port, eax}", [], IIC_OUT_IR>, OpSize32;
+
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Moves to and from debug registers
+
+let SchedRW = [WriteSystem] in {
+def MOV32rd : I<0x21, MRMDestReg, (outs GR32:$dst), (ins DEBUG_REG:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_REG_DR>, TB,
+ Requires<[Not64BitMode]>;
+def MOV64rd : I<0x21, MRMDestReg, (outs GR64:$dst), (ins DEBUG_REG:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV_REG_DR>, TB,
+ Requires<[In64BitMode]>;
+
+def MOV32dr : I<0x23, MRMSrcReg, (outs DEBUG_REG:$dst), (ins GR32:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_DR_REG>, TB,
+ Requires<[Not64BitMode]>;
+def MOV64dr : I<0x23, MRMSrcReg, (outs DEBUG_REG:$dst), (ins GR64:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV_DR_REG>, TB,
+ Requires<[In64BitMode]>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Moves to and from control registers
+
+let SchedRW = [WriteSystem] in {
+def MOV32rc : I<0x20, MRMDestReg, (outs GR32:$dst), (ins CONTROL_REG:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_REG_CR>, TB,
+ Requires<[Not64BitMode]>;
+def MOV64rc : I<0x20, MRMDestReg, (outs GR64:$dst), (ins CONTROL_REG:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV_REG_CR>, TB,
+ Requires<[In64BitMode]>;
+
+def MOV32cr : I<0x22, MRMSrcReg, (outs CONTROL_REG:$dst), (ins GR32:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_CR_REG>, TB,
+ Requires<[Not64BitMode]>;
+def MOV64cr : I<0x22, MRMSrcReg, (outs CONTROL_REG:$dst), (ins GR64:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV_CR_REG>, TB,
+ Requires<[In64BitMode]>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Segment override instruction prefixes
+
+def CS_PREFIX : I<0x2E, RawFrm, (outs), (ins), "cs", []>;
+def SS_PREFIX : I<0x36, RawFrm, (outs), (ins), "ss", []>;
+def DS_PREFIX : I<0x3E, RawFrm, (outs), (ins), "ds", []>;
+def ES_PREFIX : I<0x26, RawFrm, (outs), (ins), "es", []>;
+def FS_PREFIX : I<0x64, RawFrm, (outs), (ins), "fs", []>;
+def GS_PREFIX : I<0x65, RawFrm, (outs), (ins), "gs", []>;
+
+
+//===----------------------------------------------------------------------===//
+// Moves to and from segment registers.
+//
+
+let SchedRW = [WriteMove] in {
+def MOV16rs : I<0x8C, MRMDestReg, (outs GR16:$dst), (ins SEGMENT_REG:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV_REG_SR>, OpSize16;
+def MOV32rs : I<0x8C, MRMDestReg, (outs GR32:$dst), (ins SEGMENT_REG:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_REG_SR>, OpSize32;
+def MOV64rs : RI<0x8C, MRMDestReg, (outs GR64:$dst), (ins SEGMENT_REG:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV_REG_SR>;
+
+def MOV16ms : I<0x8C, MRMDestMem, (outs i16mem:$dst), (ins SEGMENT_REG:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV_MEM_SR>, OpSize16;
+def MOV32ms : I<0x8C, MRMDestMem, (outs i32mem:$dst), (ins SEGMENT_REG:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_MEM_SR>, OpSize32;
+def MOV64ms : RI<0x8C, MRMDestMem, (outs i64mem:$dst), (ins SEGMENT_REG:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV_MEM_SR>;
+
+def MOV16sr : I<0x8E, MRMSrcReg, (outs SEGMENT_REG:$dst), (ins GR16:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV_SR_REG>, OpSize16;
+def MOV32sr : I<0x8E, MRMSrcReg, (outs SEGMENT_REG:$dst), (ins GR32:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_SR_REG>, OpSize32;
+def MOV64sr : RI<0x8E, MRMSrcReg, (outs SEGMENT_REG:$dst), (ins GR64:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV_SR_REG>;
+
+def MOV16sm : I<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i16mem:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV_SR_MEM>, OpSize16;
+def MOV32sm : I<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i32mem:$src),
+ "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_SR_MEM>, OpSize32;
+def MOV64sm : RI<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i64mem:$src),
+ "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV_SR_MEM>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Segmentation support instructions.
+
+let SchedRW = [WriteSystem] in {
+def SWAPGS : I<0x01, MRM_F8, (outs), (ins), "swapgs", [], IIC_SWAPGS>, TB;
+
+def LAR16rm : I<0x02, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "lar{w}\t{$src, $dst|$dst, $src}", [], IIC_LAR_RM>, TB,
+ OpSize16;
+def LAR16rr : I<0x02, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
+ "lar{w}\t{$src, $dst|$dst, $src}", [], IIC_LAR_RR>, TB,
+ OpSize16;
+
+// i16mem operand in LAR32rm and GR32 operand in LAR32rr is not a typo.
+def LAR32rm : I<0x02, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
+ "lar{l}\t{$src, $dst|$dst, $src}", [], IIC_LAR_RM>, TB,
+ OpSize32;
+def LAR32rr : I<0x02, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "lar{l}\t{$src, $dst|$dst, $src}", [], IIC_LAR_RR>, TB,
+ OpSize32;
+// i16mem operand in LAR64rm and GR32 operand in LAR32rr is not a typo.
+def LAR64rm : RI<0x02, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
+ "lar{q}\t{$src, $dst|$dst, $src}", [], IIC_LAR_RM>, TB;
+def LAR64rr : RI<0x02, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
+ "lar{q}\t{$src, $dst|$dst, $src}", [], IIC_LAR_RR>, TB;
+
+def LSL16rm : I<0x03, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "lsl{w}\t{$src, $dst|$dst, $src}", [], IIC_LSL_RM>, TB,
+ OpSize16;
+def LSL16rr : I<0x03, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
+ "lsl{w}\t{$src, $dst|$dst, $src}", [], IIC_LSL_RR>, TB,
+ OpSize16;
+def LSL32rm : I<0x03, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "lsl{l}\t{$src, $dst|$dst, $src}", [], IIC_LSL_RM>, TB,
+ OpSize32;
+def LSL32rr : I<0x03, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "lsl{l}\t{$src, $dst|$dst, $src}", [], IIC_LSL_RR>, TB,
+ OpSize32;
+def LSL64rm : RI<0x03, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "lsl{q}\t{$src, $dst|$dst, $src}", [], IIC_LSL_RM>, TB;
+def LSL64rr : RI<0x03, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
+ "lsl{q}\t{$src, $dst|$dst, $src}", [], IIC_LSL_RR>, TB;
+
+def INVLPG : I<0x01, MRM7m, (outs), (ins i8mem:$addr), "invlpg\t$addr",
+ [], IIC_INVLPG>, TB;
+
+def STR16r : I<0x00, MRM1r, (outs GR16:$dst), (ins),
+ "str{w}\t$dst", [], IIC_STR>, TB, OpSize16;
+def STR32r : I<0x00, MRM1r, (outs GR32:$dst), (ins),
+ "str{l}\t$dst", [], IIC_STR>, TB, OpSize32;
+def STR64r : RI<0x00, MRM1r, (outs GR64:$dst), (ins),
+ "str{q}\t$dst", [], IIC_STR>, TB;
+def STRm : I<0x00, MRM1m, (outs i16mem:$dst), (ins),
+ "str{w}\t$dst", [], IIC_STR>, TB;
+
+def LTRr : I<0x00, MRM3r, (outs), (ins GR16:$src),
+ "ltr{w}\t$src", [], IIC_LTR>, TB;
+def LTRm : I<0x00, MRM3m, (outs), (ins i16mem:$src),
+ "ltr{w}\t$src", [], IIC_LTR>, TB;
+
+def PUSHCS16 : I<0x0E, RawFrm, (outs), (ins),
+ "push{w}\t{%cs|cs}", [], IIC_PUSH_SR>,
+ OpSize16, Requires<[Not64BitMode]>;
+def PUSHCS32 : I<0x0E, RawFrm, (outs), (ins),
+ "push{l}\t{%cs|cs}", [], IIC_PUSH_CS>,
+ OpSize32, Requires<[Not64BitMode]>;
+def PUSHSS16 : I<0x16, RawFrm, (outs), (ins),
+ "push{w}\t{%ss|ss}", [], IIC_PUSH_SR>,
+ OpSize16, Requires<[Not64BitMode]>;
+def PUSHSS32 : I<0x16, RawFrm, (outs), (ins),
+ "push{l}\t{%ss|ss}", [], IIC_PUSH_SR>,
+ OpSize32, Requires<[Not64BitMode]>;
+def PUSHDS16 : I<0x1E, RawFrm, (outs), (ins),
+ "push{w}\t{%ds|ds}", [], IIC_PUSH_SR>,
+ OpSize16, Requires<[Not64BitMode]>;
+def PUSHDS32 : I<0x1E, RawFrm, (outs), (ins),
+ "push{l}\t{%ds|ds}", [], IIC_PUSH_SR>,
+ OpSize32, Requires<[Not64BitMode]>;
+def PUSHES16 : I<0x06, RawFrm, (outs), (ins),
+ "push{w}\t{%es|es}", [], IIC_PUSH_SR>,
+ OpSize16, Requires<[Not64BitMode]>;
+def PUSHES32 : I<0x06, RawFrm, (outs), (ins),
+ "push{l}\t{%es|es}", [], IIC_PUSH_SR>,
+ OpSize32, Requires<[Not64BitMode]>;
+def PUSHFS16 : I<0xa0, RawFrm, (outs), (ins),
+ "push{w}\t{%fs|fs}", [], IIC_PUSH_SR>, OpSize16, TB;
+def PUSHFS32 : I<0xa0, RawFrm, (outs), (ins),
+ "push{l}\t{%fs|fs}", [], IIC_PUSH_SR>, TB,
+ OpSize32, Requires<[Not64BitMode]>;
+def PUSHGS16 : I<0xa8, RawFrm, (outs), (ins),
+ "push{w}\t{%gs|gs}", [], IIC_PUSH_SR>, OpSize16, TB;
+def PUSHGS32 : I<0xa8, RawFrm, (outs), (ins),
+ "push{l}\t{%gs|gs}", [], IIC_PUSH_SR>, TB,
+ OpSize32, Requires<[Not64BitMode]>;
+def PUSHFS64 : I<0xa0, RawFrm, (outs), (ins),
+ "push{q}\t{%fs|fs}", [], IIC_PUSH_SR>, TB,
+ OpSize32, Requires<[In64BitMode]>;
+def PUSHGS64 : I<0xa8, RawFrm, (outs), (ins),
+ "push{q}\t{%gs|gs}", [], IIC_PUSH_SR>, TB,
+ OpSize32, Requires<[In64BitMode]>;
+
+// No "pop cs" instruction.
+def POPSS16 : I<0x17, RawFrm, (outs), (ins),
+ "pop{w}\t{%ss|ss}", [], IIC_POP_SR_SS>,
+ OpSize16, Requires<[Not64BitMode]>;
+def POPSS32 : I<0x17, RawFrm, (outs), (ins),
+ "pop{l}\t{%ss|ss}", [], IIC_POP_SR_SS>,
+ OpSize32, Requires<[Not64BitMode]>;
+
+def POPDS16 : I<0x1F, RawFrm, (outs), (ins),
+ "pop{w}\t{%ds|ds}", [], IIC_POP_SR>,
+ OpSize16, Requires<[Not64BitMode]>;
+def POPDS32 : I<0x1F, RawFrm, (outs), (ins),
+ "pop{l}\t{%ds|ds}", [], IIC_POP_SR>,
+ OpSize32, Requires<[Not64BitMode]>;
+
+def POPES16 : I<0x07, RawFrm, (outs), (ins),
+ "pop{w}\t{%es|es}", [], IIC_POP_SR>,
+ OpSize16, Requires<[Not64BitMode]>;
+def POPES32 : I<0x07, RawFrm, (outs), (ins),
+ "pop{l}\t{%es|es}", [], IIC_POP_SR>,
+ OpSize32, Requires<[Not64BitMode]>;
+
+def POPFS16 : I<0xa1, RawFrm, (outs), (ins),
+ "pop{w}\t{%fs|fs}", [], IIC_POP_SR>, OpSize16, TB;
+def POPFS32 : I<0xa1, RawFrm, (outs), (ins),
+ "pop{l}\t{%fs|fs}", [], IIC_POP_SR>, TB,
+ OpSize32, Requires<[Not64BitMode]>;
+def POPFS64 : I<0xa1, RawFrm, (outs), (ins),
+ "pop{q}\t{%fs|fs}", [], IIC_POP_SR>, TB,
+ OpSize32, Requires<[In64BitMode]>;
+
+def POPGS16 : I<0xa9, RawFrm, (outs), (ins),
+ "pop{w}\t{%gs|gs}", [], IIC_POP_SR>, OpSize16, TB;
+def POPGS32 : I<0xa9, RawFrm, (outs), (ins),
+ "pop{l}\t{%gs|gs}", [], IIC_POP_SR>, TB,
+ OpSize32, Requires<[Not64BitMode]>;
+def POPGS64 : I<0xa9, RawFrm, (outs), (ins),
+ "pop{q}\t{%gs|gs}", [], IIC_POP_SR>, TB,
+ OpSize32, Requires<[In64BitMode]>;
+
+
+def LDS16rm : I<0xc5, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
+ "lds{w}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, OpSize16;
+def LDS32rm : I<0xc5, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
+ "lds{l}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, OpSize32;
+
+def LSS16rm : I<0xb2, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
+ "lss{w}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize16;
+def LSS32rm : I<0xb2, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
+ "lss{l}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize32;
+def LSS64rm : RI<0xb2, MRMSrcMem, (outs GR64:$dst), (ins opaque80mem:$src),
+ "lss{q}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB;
+
+def LES16rm : I<0xc4, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
+ "les{w}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, OpSize16;
+def LES32rm : I<0xc4, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
+ "les{l}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, OpSize32;
+
+def LFS16rm : I<0xb4, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
+ "lfs{w}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize16;
+def LFS32rm : I<0xb4, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
+ "lfs{l}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize32;
+def LFS64rm : RI<0xb4, MRMSrcMem, (outs GR64:$dst), (ins opaque80mem:$src),
+ "lfs{q}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB;
+
+def LGS16rm : I<0xb5, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
+ "lgs{w}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize16;
+def LGS32rm : I<0xb5, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
+ "lgs{l}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize32;
+
+def LGS64rm : RI<0xb5, MRMSrcMem, (outs GR64:$dst), (ins opaque80mem:$src),
+ "lgs{q}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB;
+
+
+def VERRr : I<0x00, MRM4r, (outs), (ins GR16:$seg),
+ "verr\t$seg", [], IIC_VERR>, TB;
+def VERRm : I<0x00, MRM4m, (outs), (ins i16mem:$seg),
+ "verr\t$seg", [], IIC_VERR>, TB;
+def VERWr : I<0x00, MRM5r, (outs), (ins GR16:$seg),
+ "verw\t$seg", [], IIC_VERW_MEM>, TB;
+def VERWm : I<0x00, MRM5m, (outs), (ins i16mem:$seg),
+ "verw\t$seg", [], IIC_VERW_REG>, TB;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Descriptor-table support instructions
+
+let SchedRW = [WriteSystem] in {
+def SGDT16m : I<0x01, MRM0m, (outs opaque48mem:$dst), (ins),
+ "sgdt{w}\t$dst", [], IIC_SGDT>, TB, OpSize16, Requires<[Not64BitMode]>;
+def SGDT32m : I<0x01, MRM0m, (outs opaque48mem:$dst), (ins),
+ "sgdt{l}\t$dst", [], IIC_SGDT>, OpSize32, TB, Requires <[Not64BitMode]>;
+def SGDT64m : I<0x01, MRM0m, (outs opaque80mem:$dst), (ins),
+ "sgdt{q}\t$dst", [], IIC_SGDT>, TB, Requires <[In64BitMode]>;
+def SIDT16m : I<0x01, MRM1m, (outs opaque48mem:$dst), (ins),
+ "sidt{w}\t$dst", [], IIC_SIDT>, TB, OpSize16, Requires<[Not64BitMode]>;
+def SIDT32m : I<0x01, MRM1m, (outs opaque48mem:$dst), (ins),
+ "sidt{l}\t$dst", []>, OpSize32, TB, Requires <[Not64BitMode]>;
+def SIDT64m : I<0x01, MRM1m, (outs opaque80mem:$dst), (ins),
+ "sidt{q}\t$dst", []>, TB, Requires <[In64BitMode]>;
+def SLDT16r : I<0x00, MRM0r, (outs GR16:$dst), (ins),
+ "sldt{w}\t$dst", [], IIC_SLDT>, TB, OpSize16;
+def SLDT16m : I<0x00, MRM0m, (outs i16mem:$dst), (ins),
+ "sldt{w}\t$dst", [], IIC_SLDT>, TB;
+def SLDT32r : I<0x00, MRM0r, (outs GR32:$dst), (ins),
+ "sldt{l}\t$dst", [], IIC_SLDT>, OpSize32, TB;
+
+// LLDT is not interpreted specially in 64-bit mode because there is no sign
+// extension.
+def SLDT64r : RI<0x00, MRM0r, (outs GR64:$dst), (ins),
+ "sldt{q}\t$dst", [], IIC_SLDT>, TB;
+def SLDT64m : RI<0x00, MRM0m, (outs i16mem:$dst), (ins),
+ "sldt{q}\t$dst", [], IIC_SLDT>, TB;
+
+def LGDT16m : I<0x01, MRM2m, (outs), (ins opaque48mem:$src),
+ "lgdt{w}\t$src", [], IIC_LGDT>, TB, OpSize16, Requires<[Not64BitMode]>;
+def LGDT32m : I<0x01, MRM2m, (outs), (ins opaque48mem:$src),
+ "lgdt{l}\t$src", [], IIC_LGDT>, OpSize32, TB, Requires<[Not64BitMode]>;
+def LGDT64m : I<0x01, MRM2m, (outs), (ins opaque80mem:$src),
+ "lgdt{q}\t$src", [], IIC_LGDT>, TB, Requires<[In64BitMode]>;
+def LIDT16m : I<0x01, MRM3m, (outs), (ins opaque48mem:$src),
+ "lidt{w}\t$src", [], IIC_LIDT>, TB, OpSize16, Requires<[Not64BitMode]>;
+def LIDT32m : I<0x01, MRM3m, (outs), (ins opaque48mem:$src),
+ "lidt{l}\t$src", [], IIC_LIDT>, OpSize32, TB, Requires<[Not64BitMode]>;
+def LIDT64m : I<0x01, MRM3m, (outs), (ins opaque80mem:$src),
+ "lidt{q}\t$src", [], IIC_LIDT>, TB, Requires<[In64BitMode]>;
+def LLDT16r : I<0x00, MRM2r, (outs), (ins GR16:$src),
+ "lldt{w}\t$src", [], IIC_LLDT_REG>, TB;
+def LLDT16m : I<0x00, MRM2m, (outs), (ins i16mem:$src),
+ "lldt{w}\t$src", [], IIC_LLDT_MEM>, TB;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Specialized register support
+let SchedRW = [WriteSystem] in {
+def WRMSR : I<0x30, RawFrm, (outs), (ins), "wrmsr", [], IIC_WRMSR>, TB;
+def RDMSR : I<0x32, RawFrm, (outs), (ins), "rdmsr", [], IIC_RDMSR>, TB;
+
+let Defs = [RAX, RDX], Uses = [ECX] in
+ def RDPMC : I<0x33, RawFrm, (outs), (ins), "rdpmc", [(X86rdpmc)], IIC_RDPMC>,
+ TB;
+
+def SMSW16r : I<0x01, MRM4r, (outs GR16:$dst), (ins),
+ "smsw{w}\t$dst", [], IIC_SMSW>, OpSize16, TB;
+def SMSW32r : I<0x01, MRM4r, (outs GR32:$dst), (ins),
+ "smsw{l}\t$dst", [], IIC_SMSW>, OpSize32, TB;
+// no m form encodable; use SMSW16m
+def SMSW64r : RI<0x01, MRM4r, (outs GR64:$dst), (ins),
+ "smsw{q}\t$dst", [], IIC_SMSW>, TB;
+
+// For memory operands, there is only a 16-bit form
+def SMSW16m : I<0x01, MRM4m, (outs i16mem:$dst), (ins),
+ "smsw{w}\t$dst", [], IIC_SMSW>, TB;
+
+def LMSW16r : I<0x01, MRM6r, (outs), (ins GR16:$src),
+ "lmsw{w}\t$src", [], IIC_LMSW_MEM>, TB;
+def LMSW16m : I<0x01, MRM6m, (outs), (ins i16mem:$src),
+ "lmsw{w}\t$src", [], IIC_LMSW_REG>, TB;
+
+let Defs = [EAX, EBX, ECX, EDX], Uses = [EAX, ECX] in
+ def CPUID32 : I<0xA2, RawFrm, (outs), (ins), "cpuid", [], IIC_CPUID>, TB,
+ Requires<[Not64BitMode]>;
+let Defs = [RAX, RBX, RCX, RDX], Uses = [RAX, RCX] in
+ def CPUID64 : I<0xA2, RawFrm, (outs), (ins), "cpuid", [], IIC_CPUID>, TB,
+ Requires<[In64BitMode]>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Cache instructions
+let SchedRW = [WriteSystem] in {
+def INVD : I<0x08, RawFrm, (outs), (ins), "invd", [], IIC_INVD>, TB;
+def WBINVD : I<0x09, RawFrm, (outs), (ins), "wbinvd", [], IIC_INVD>, TB;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// XSAVE instructions
+let SchedRW = [WriteSystem] in {
+let Defs = [RDX, RAX], Uses = [RCX] in
+ def XGETBV : I<0x01, MRM_D0, (outs), (ins), "xgetbv", []>, TB;
+
+let Uses = [RDX, RAX, RCX] in
+ def XSETBV : I<0x01, MRM_D1, (outs), (ins), "xsetbv", []>, TB;
+
+let Uses = [RDX, RAX] in {
+ def XSAVE : I<0xAE, MRM4m, (outs opaque512mem:$dst), (ins),
+ "xsave\t$dst", []>, TB;
+ def XSAVE64 : RI<0xAE, MRM4m, (outs opaque512mem:$dst), (ins),
+ "xsave{q|64}\t$dst", []>, TB, Requires<[In64BitMode]>;
+ def XRSTOR : I<0xAE, MRM5m, (outs), (ins opaque512mem:$dst),
+ "xrstor\t$dst", []>, TB;
+ def XRSTOR64 : RI<0xAE, MRM5m, (outs), (ins opaque512mem:$dst),
+ "xrstor{q|64}\t$dst", []>, TB, Requires<[In64BitMode]>;
+ def XSAVEOPT : I<0xAE, MRM6m, (outs opaque512mem:$dst), (ins),
+ "xsaveopt\t$dst", []>, TB;
+ def XSAVEOPT64 : RI<0xAE, MRM6m, (outs opaque512mem:$dst), (ins),
+ "xsaveopt{q|64}\t$dst", []>, TB, Requires<[In64BitMode]>;
+}
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// VIA PadLock crypto instructions
+let Defs = [RAX, RDI], Uses = [RDX, RDI] in
+ def XSTORE : I<0xa7, MRM_C0, (outs), (ins), "xstore", []>, TB;
+
+def : InstAlias<"xstorerng", (XSTORE)>;
+
+let Defs = [RSI, RDI], Uses = [RBX, RDX, RSI, RDI] in {
+ def XCRYPTECB : I<0xa7, MRM_C8, (outs), (ins), "xcryptecb", []>, TB;
+ def XCRYPTCBC : I<0xa7, MRM_D0, (outs), (ins), "xcryptcbc", []>, TB;
+ def XCRYPTCTR : I<0xa7, MRM_D8, (outs), (ins), "xcryptctr", []>, TB;
+ def XCRYPTCFB : I<0xa7, MRM_E0, (outs), (ins), "xcryptcfb", []>, TB;
+ def XCRYPTOFB : I<0xa7, MRM_E8, (outs), (ins), "xcryptofb", []>, TB;
+}
+
+let Defs = [RAX, RSI, RDI], Uses = [RAX, RSI, RDI] in {
+ def XSHA1 : I<0xa6, MRM_C8, (outs), (ins), "xsha1", []>, TB;
+ def XSHA256 : I<0xa6, MRM_D0, (outs), (ins), "xsha256", []>, TB;
+}
+let Defs = [RAX, RDX, RSI], Uses = [RAX, RSI] in
+ def MONTMUL : I<0xa6, MRM_C0, (outs), (ins), "montmul", []>, TB;
+
+//===----------------------------------------------------------------------===//
+// FS/GS Base Instructions
+let Predicates = [HasFSGSBase, In64BitMode] in {
+ def RDFSBASE : I<0xAE, MRM0r, (outs GR32:$dst), (ins),
+ "rdfsbase{l}\t$dst",
+ [(set GR32:$dst, (int_x86_rdfsbase_32))]>, XS;
+ def RDFSBASE64 : RI<0xAE, MRM0r, (outs GR64:$dst), (ins),
+ "rdfsbase{q}\t$dst",
+ [(set GR64:$dst, (int_x86_rdfsbase_64))]>, XS;
+ def RDGSBASE : I<0xAE, MRM1r, (outs GR32:$dst), (ins),
+ "rdgsbase{l}\t$dst",
+ [(set GR32:$dst, (int_x86_rdgsbase_32))]>, XS;
+ def RDGSBASE64 : RI<0xAE, MRM1r, (outs GR64:$dst), (ins),
+ "rdgsbase{q}\t$dst",
+ [(set GR64:$dst, (int_x86_rdgsbase_64))]>, XS;
+ def WRFSBASE : I<0xAE, MRM2r, (outs), (ins GR32:$src),
+ "wrfsbase{l}\t$src",
+ [(int_x86_wrfsbase_32 GR32:$src)]>, XS;
+ def WRFSBASE64 : RI<0xAE, MRM2r, (outs), (ins GR64:$src),
+ "wrfsbase{q}\t$src",
+ [(int_x86_wrfsbase_64 GR64:$src)]>, XS;
+ def WRGSBASE : I<0xAE, MRM3r, (outs), (ins GR32:$src),
+ "wrgsbase{l}\t$src",
+ [(int_x86_wrgsbase_32 GR32:$src)]>, XS;
+ def WRGSBASE64 : RI<0xAE, MRM3r, (outs), (ins GR64:$src),
+ "wrgsbase{q}\t$src",
+ [(int_x86_wrgsbase_64 GR64:$src)]>, XS;
+}
+
+//===----------------------------------------------------------------------===//
+// INVPCID Instruction
+def INVPCID32 : I<0x82, MRMSrcMem, (outs), (ins GR32:$src1, i128mem:$src2),
+ "invpcid\t{$src2, $src1|$src1, $src2}", []>, T8PD,
+ Requires<[Not64BitMode]>;
+def INVPCID64 : I<0x82, MRMSrcMem, (outs), (ins GR64:$src1, i128mem:$src2),
+ "invpcid\t{$src2, $src1|$src1, $src2}", []>, T8PD,
+ Requires<[In64BitMode]>;
+
+//===----------------------------------------------------------------------===//
+// SMAP Instruction
+let Defs = [EFLAGS], Uses = [EFLAGS] in {
+ def CLAC : I<0x01, MRM_CA, (outs), (ins), "clac", []>, TB;
+ def STAC : I<0x01, MRM_CB, (outs), (ins), "stac", []>, TB;
+}
diff --git a/contrib/llvm/lib/Target/X86/X86InstrTSX.td b/contrib/llvm/lib/Target/X86/X86InstrTSX.td
new file mode 100644
index 0000000..4940efc
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrTSX.td
@@ -0,0 +1,47 @@
+//===-- X86InstrVMX.td - TSX Instruction Set Extension -----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the instructions that make up the Intel TSX instruction
+// set.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// TSX instructions
+
+def X86xtest: SDNode<"X86ISD::XTEST", SDTypeProfile<1, 0, [SDTCisVT<0, i32>]>,
+ [SDNPHasChain, SDNPSideEffect]>;
+
+let usesCustomInserter = 1 in
+def XBEGIN : I<0, Pseudo, (outs GR32:$dst), (ins),
+ "# XBEGIN", [(set GR32:$dst, (int_x86_xbegin))]>,
+ Requires<[HasRTM]>;
+
+let isBranch = 1, isTerminator = 1, Defs = [EAX] in
+def XBEGIN_4 : Ii32PCRel<0xc7, MRM_F8, (outs), (ins brtarget:$dst),
+ "xbegin\t$dst", []>, Requires<[HasRTM]>;
+
+def XEND : I<0x01, MRM_D5, (outs), (ins),
+ "xend", [(int_x86_xend)]>, TB, Requires<[HasRTM]>;
+
+let Defs = [EFLAGS] in
+def XTEST : I<0x01, MRM_D6, (outs), (ins),
+ "xtest", [(set EFLAGS, (X86xtest))]>, TB, Requires<[HasTSX]>;
+
+def XABORT : Ii8<0xc6, MRM_F8, (outs), (ins i8imm:$imm),
+ "xabort\t$imm",
+ [(int_x86_xabort imm:$imm)]>, Requires<[HasRTM]>;
+
+// HLE prefixes
+
+let isAsmParserOnly = 1 in {
+def XACQUIRE_PREFIX : I<0xF2, RawFrm, (outs), (ins), "xacquire", []>, Requires<[HasHLE]>;
+def XRELEASE_PREFIX : I<0xF3, RawFrm, (outs), (ins), "xrelease", []>, Requires<[HasHLE]>;
+}
+
diff --git a/contrib/llvm/lib/Target/X86/X86InstrVMX.td b/contrib/llvm/lib/Target/X86/X86InstrVMX.td
new file mode 100644
index 0000000..79afe9a
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrVMX.td
@@ -0,0 +1,66 @@
+//===-- X86InstrVMX.td - VMX Instruction Set Extension -----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the instructions that make up the Intel VMX instruction
+// set.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// VMX instructions
+
+// 66 0F 38 80
+def INVEPT32 : I<0x80, MRMSrcMem, (outs), (ins GR32:$src1, i128mem:$src2),
+ "invept\t{$src2, $src1|$src1, $src2}", []>, T8PD,
+ Requires<[Not64BitMode]>;
+def INVEPT64 : I<0x80, MRMSrcMem, (outs), (ins GR64:$src1, i128mem:$src2),
+ "invept\t{$src2, $src1|$src1, $src2}", []>, T8PD,
+ Requires<[In64BitMode]>;
+// 66 0F 38 81
+def INVVPID32 : I<0x81, MRMSrcMem, (outs), (ins GR32:$src1, i128mem:$src2),
+ "invvpid\t{$src2, $src1|$src1, $src2}", []>, T8PD,
+ Requires<[Not64BitMode]>;
+def INVVPID64 : I<0x81, MRMSrcMem, (outs), (ins GR64:$src1, i128mem:$src2),
+ "invvpid\t{$src2, $src1|$src1, $src2}", []>, T8PD,
+ Requires<[In64BitMode]>;
+// 0F 01 C1
+def VMCALL : I<0x01, MRM_C1, (outs), (ins), "vmcall", []>, TB;
+def VMCLEARm : I<0xC7, MRM6m, (outs), (ins i64mem:$vmcs),
+ "vmclear\t$vmcs", []>, PD;
+// OF 01 D4
+def VMFUNC : I<0x01, MRM_D4, (outs), (ins), "vmfunc", []>, TB;
+// 0F 01 C2
+def VMLAUNCH : I<0x01, MRM_C2, (outs), (ins), "vmlaunch", []>, TB;
+// 0F 01 C3
+def VMRESUME : I<0x01, MRM_C3, (outs), (ins), "vmresume", []>, TB;
+def VMPTRLDm : I<0xC7, MRM6m, (outs), (ins i64mem:$vmcs),
+ "vmptrld\t$vmcs", []>, PS;
+def VMPTRSTm : I<0xC7, MRM7m, (outs i64mem:$vmcs), (ins),
+ "vmptrst\t$vmcs", []>, TB;
+def VMREAD64rm : I<0x78, MRMDestMem, (outs i64mem:$dst), (ins GR64:$src),
+ "vmread{q}\t{$src, $dst|$dst, $src}", []>, PS, Requires<[In64BitMode]>;
+def VMREAD64rr : I<0x78, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
+ "vmread{q}\t{$src, $dst|$dst, $src}", []>, PS, Requires<[In64BitMode]>;
+def VMREAD32rm : I<0x78, MRMDestMem, (outs i32mem:$dst), (ins GR32:$src),
+ "vmread{l}\t{$src, $dst|$dst, $src}", []>, PS, Requires<[Not64BitMode]>;
+def VMREAD32rr : I<0x78, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
+ "vmread{l}\t{$src, $dst|$dst, $src}", []>, PS, Requires<[Not64BitMode]>;
+def VMWRITE64rm : I<0x79, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "vmwrite{q}\t{$src, $dst|$dst, $src}", []>, PS, Requires<[In64BitMode]>;
+def VMWRITE64rr : I<0x79, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
+ "vmwrite{q}\t{$src, $dst|$dst, $src}", []>, PS, Requires<[In64BitMode]>;
+def VMWRITE32rm : I<0x79, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "vmwrite{l}\t{$src, $dst|$dst, $src}", []>, PS, Requires<[Not64BitMode]>;
+def VMWRITE32rr : I<0x79, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "vmwrite{l}\t{$src, $dst|$dst, $src}", []>, PS, Requires<[Not64BitMode]>;
+// 0F 01 C4
+def VMXOFF : I<0x01, MRM_C4, (outs), (ins), "vmxoff", []>, TB;
+def VMXON : I<0xC7, MRM6m, (outs), (ins i64mem:$vmxon),
+ "vmxon\t$vmxon", []>, XS;
+
diff --git a/contrib/llvm/lib/Target/X86/X86InstrXOP.td b/contrib/llvm/lib/Target/X86/X86InstrXOP.td
new file mode 100644
index 0000000..45e2ff0
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrXOP.td
@@ -0,0 +1,289 @@
+//===-- X86InstrXOP.td - XOP Instruction Set ---------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes XOP (eXtended OPerations)
+//
+//===----------------------------------------------------------------------===//
+
+multiclass xop2op<bits<8> opc, string OpcodeStr, Intrinsic Int, PatFrag memop> {
+ def rr : IXOP<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (Int VR128:$src))]>, XOP;
+ def rm : IXOP<opc, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (Int (bitconvert (memop addr:$src))))]>, XOP;
+}
+
+defm VPHSUBWD : xop2op<0xE2, "vphsubwd", int_x86_xop_vphsubwd, memopv2i64>;
+defm VPHSUBDQ : xop2op<0xE3, "vphsubdq", int_x86_xop_vphsubdq, memopv2i64>;
+defm VPHSUBBW : xop2op<0xE1, "vphsubbw", int_x86_xop_vphsubbw, memopv2i64>;
+defm VPHADDWQ : xop2op<0xC7, "vphaddwq", int_x86_xop_vphaddwq, memopv2i64>;
+defm VPHADDWD : xop2op<0xC6, "vphaddwd", int_x86_xop_vphaddwd, memopv2i64>;
+defm VPHADDUWQ : xop2op<0xD7, "vphadduwq", int_x86_xop_vphadduwq, memopv2i64>;
+defm VPHADDUWD : xop2op<0xD6, "vphadduwd", int_x86_xop_vphadduwd, memopv2i64>;
+defm VPHADDUDQ : xop2op<0xDB, "vphaddudq", int_x86_xop_vphaddudq, memopv2i64>;
+defm VPHADDUBW : xop2op<0xD1, "vphaddubw", int_x86_xop_vphaddubw, memopv2i64>;
+defm VPHADDUBQ : xop2op<0xD3, "vphaddubq", int_x86_xop_vphaddubq, memopv2i64>;
+defm VPHADDUBD : xop2op<0xD2, "vphaddubd", int_x86_xop_vphaddubd, memopv2i64>;
+defm VPHADDDQ : xop2op<0xCB, "vphadddq", int_x86_xop_vphadddq, memopv2i64>;
+defm VPHADDBW : xop2op<0xC1, "vphaddbw", int_x86_xop_vphaddbw, memopv2i64>;
+defm VPHADDBQ : xop2op<0xC3, "vphaddbq", int_x86_xop_vphaddbq, memopv2i64>;
+defm VPHADDBD : xop2op<0xC2, "vphaddbd", int_x86_xop_vphaddbd, memopv2i64>;
+
+// Scalar load 2 addr operand instructions
+multiclass xop2opsld<bits<8> opc, string OpcodeStr, Intrinsic Int,
+ Operand memop, ComplexPattern mem_cpat> {
+ def rr : IXOP<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (Int VR128:$src))]>, XOP;
+ def rm : IXOP<opc, MRMSrcMem, (outs VR128:$dst), (ins memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (Int (bitconvert mem_cpat:$src)))]>, XOP;
+}
+
+defm VFRCZSS : xop2opsld<0x82, "vfrczss", int_x86_xop_vfrcz_ss,
+ ssmem, sse_load_f32>;
+defm VFRCZSD : xop2opsld<0x83, "vfrczsd", int_x86_xop_vfrcz_sd,
+ sdmem, sse_load_f64>;
+
+multiclass xop2op128<bits<8> opc, string OpcodeStr, Intrinsic Int,
+ PatFrag memop> {
+ def rr : IXOP<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (Int VR128:$src))]>, XOP;
+ def rm : IXOP<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (Int (bitconvert (memop addr:$src))))]>, XOP;
+}
+
+defm VFRCZPS : xop2op128<0x80, "vfrczps", int_x86_xop_vfrcz_ps, memopv4f32>;
+defm VFRCZPD : xop2op128<0x81, "vfrczpd", int_x86_xop_vfrcz_pd, memopv2f64>;
+
+multiclass xop2op256<bits<8> opc, string OpcodeStr, Intrinsic Int,
+ PatFrag memop> {
+ def rrY : IXOP<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (Int VR256:$src))]>, XOP, VEX_L;
+ def rmY : IXOP<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (Int (bitconvert (memop addr:$src))))]>, XOP, VEX_L;
+}
+
+defm VFRCZPS : xop2op256<0x80, "vfrczps", int_x86_xop_vfrcz_ps_256, memopv8f32>;
+defm VFRCZPD : xop2op256<0x81, "vfrczpd", int_x86_xop_vfrcz_pd_256, memopv4f64>;
+
+multiclass xop3op<bits<8> opc, string OpcodeStr, Intrinsic Int> {
+ def rr : IXOP<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst, (Int VR128:$src1, VR128:$src2))]>, XOP_4VOp3;
+ def rm : IXOP<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (Int VR128:$src1, (bitconvert (memopv2i64 addr:$src2))))]>,
+ XOP_4V, VEX_W;
+ def mr : IXOP<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (Int (bitconvert (memopv2i64 addr:$src1)), VR128:$src2))]>,
+ XOP_4VOp3;
+}
+
+defm VPSHLW : xop3op<0x95, "vpshlw", int_x86_xop_vpshlw>;
+defm VPSHLQ : xop3op<0x97, "vpshlq", int_x86_xop_vpshlq>;
+defm VPSHLD : xop3op<0x96, "vpshld", int_x86_xop_vpshld>;
+defm VPSHLB : xop3op<0x94, "vpshlb", int_x86_xop_vpshlb>;
+defm VPSHAW : xop3op<0x99, "vpshaw", int_x86_xop_vpshaw>;
+defm VPSHAQ : xop3op<0x9B, "vpshaq", int_x86_xop_vpshaq>;
+defm VPSHAD : xop3op<0x9A, "vpshad", int_x86_xop_vpshad>;
+defm VPSHAB : xop3op<0x98, "vpshab", int_x86_xop_vpshab>;
+defm VPROTW : xop3op<0x91, "vprotw", int_x86_xop_vprotw>;
+defm VPROTQ : xop3op<0x93, "vprotq", int_x86_xop_vprotq>;
+defm VPROTD : xop3op<0x92, "vprotd", int_x86_xop_vprotd>;
+defm VPROTB : xop3op<0x90, "vprotb", int_x86_xop_vprotb>;
+
+multiclass xop3opimm<bits<8> opc, string OpcodeStr, Intrinsic Int> {
+ def ri : IXOPi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst, (Int VR128:$src1, imm:$src2))]>, XOP;
+ def mi : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1, i8imm:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (Int (bitconvert (memopv2i64 addr:$src1)), imm:$src2))]>, XOP;
+}
+
+defm VPROTW : xop3opimm<0xC1, "vprotw", int_x86_xop_vprotwi>;
+defm VPROTQ : xop3opimm<0xC3, "vprotq", int_x86_xop_vprotqi>;
+defm VPROTD : xop3opimm<0xC2, "vprotd", int_x86_xop_vprotdi>;
+defm VPROTB : xop3opimm<0xC0, "vprotb", int_x86_xop_vprotbi>;
+
+// Instruction where second source can be memory, but third must be register
+multiclass xop4opm2<bits<8> opc, string OpcodeStr, Intrinsic Int> {
+ def rr : IXOPi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (Int VR128:$src1, VR128:$src2, VR128:$src3))]>, XOP_4V, VEX_I8IMM;
+ def rm : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (Int VR128:$src1, (bitconvert (memopv2i64 addr:$src2)),
+ VR128:$src3))]>, XOP_4V, VEX_I8IMM;
+}
+
+defm VPMADCSWD : xop4opm2<0xB6, "vpmadcswd", int_x86_xop_vpmadcswd>;
+defm VPMADCSSWD : xop4opm2<0xA6, "vpmadcsswd", int_x86_xop_vpmadcsswd>;
+defm VPMACSWW : xop4opm2<0x95, "vpmacsww", int_x86_xop_vpmacsww>;
+defm VPMACSWD : xop4opm2<0x96, "vpmacswd", int_x86_xop_vpmacswd>;
+defm VPMACSSWW : xop4opm2<0x85, "vpmacssww", int_x86_xop_vpmacssww>;
+defm VPMACSSWD : xop4opm2<0x86, "vpmacsswd", int_x86_xop_vpmacsswd>;
+defm VPMACSSDQL : xop4opm2<0x87, "vpmacssdql", int_x86_xop_vpmacssdql>;
+defm VPMACSSDQH : xop4opm2<0x8F, "vpmacssdqh", int_x86_xop_vpmacssdqh>;
+defm VPMACSSDD : xop4opm2<0x8E, "vpmacssdd", int_x86_xop_vpmacssdd>;
+defm VPMACSDQL : xop4opm2<0x97, "vpmacsdql", int_x86_xop_vpmacsdql>;
+defm VPMACSDQH : xop4opm2<0x9F, "vpmacsdqh", int_x86_xop_vpmacsdqh>;
+defm VPMACSDD : xop4opm2<0x9E, "vpmacsdd", int_x86_xop_vpmacsdd>;
+
+// Instruction where second source can be memory, third must be imm8
+multiclass xop4opimm<bits<8> opc, string OpcodeStr, Intrinsic Int> {
+ def ri : IXOPi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst, (Int VR128:$src1, VR128:$src2, imm:$src3))]>,
+ XOP_4V;
+ def mi : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (Int VR128:$src1, (bitconvert (memopv2i64 addr:$src2)),
+ imm:$src3))]>, XOP_4V;
+}
+
+defm VPCOMB : xop4opimm<0xCC, "vpcomb", int_x86_xop_vpcomb>;
+defm VPCOMW : xop4opimm<0xCD, "vpcomw", int_x86_xop_vpcomw>;
+defm VPCOMD : xop4opimm<0xCE, "vpcomd", int_x86_xop_vpcomd>;
+defm VPCOMQ : xop4opimm<0xCF, "vpcomq", int_x86_xop_vpcomq>;
+defm VPCOMUB : xop4opimm<0xEC, "vpcomub", int_x86_xop_vpcomub>;
+defm VPCOMUW : xop4opimm<0xED, "vpcomuw", int_x86_xop_vpcomuw>;
+defm VPCOMUD : xop4opimm<0xEE, "vpcomud", int_x86_xop_vpcomud>;
+defm VPCOMUQ : xop4opimm<0xEF, "vpcomuq", int_x86_xop_vpcomuq>;
+
+// Instruction where either second or third source can be memory
+multiclass xop4op<bits<8> opc, string OpcodeStr, Intrinsic Int> {
+ def rr : IXOPi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst, (Int VR128:$src1, VR128:$src2, VR128:$src3))]>,
+ XOP_4V, VEX_I8IMM;
+ def rm : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, i128mem:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (Int VR128:$src1, VR128:$src2,
+ (bitconvert (memopv2i64 addr:$src3))))]>,
+ XOP_4V, VEX_I8IMM, VEX_W, MemOp4;
+ def mr : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2, VR128:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (Int VR128:$src1, (bitconvert (memopv2i64 addr:$src2)),
+ VR128:$src3))]>,
+ XOP_4V, VEX_I8IMM;
+}
+
+defm VPPERM : xop4op<0xA3, "vpperm", int_x86_xop_vpperm>;
+defm VPCMOV : xop4op<0xA2, "vpcmov", int_x86_xop_vpcmov>;
+
+multiclass xop4op256<bits<8> opc, string OpcodeStr, Intrinsic Int> {
+ def rrY : IXOPi8<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, VR256:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR256:$dst, (Int VR256:$src1, VR256:$src2, VR256:$src3))]>,
+ XOP_4V, VEX_I8IMM, VEX_L;
+ def rmY : IXOPi8<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, i256mem:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR256:$dst,
+ (Int VR256:$src1, VR256:$src2,
+ (bitconvert (memopv4i64 addr:$src3))))]>,
+ XOP_4V, VEX_I8IMM, VEX_W, MemOp4, VEX_L;
+ def mrY : IXOPi8<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2, VR256:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR256:$dst,
+ (Int VR256:$src1, (bitconvert (memopv4i64 addr:$src2)),
+ VR256:$src3))]>,
+ XOP_4V, VEX_I8IMM, VEX_L;
+}
+
+defm VPCMOV : xop4op256<0xA2, "vpcmov", int_x86_xop_vpcmov_256>;
+
+multiclass xop5op<bits<8> opc, string OpcodeStr, Intrinsic Int128,
+ Intrinsic Int256, PatFrag ld_128, PatFrag ld_256> {
+ def rr : IXOP5<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, VR128:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ [(set VR128:$dst,
+ (Int128 VR128:$src1, VR128:$src2, VR128:$src3, imm:$src4))]>;
+ def rm : IXOP5<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, f128mem:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ [(set VR128:$dst,
+ (Int128 VR128:$src1, VR128:$src2, (ld_128 addr:$src3), imm:$src4))]>,
+ VEX_W, MemOp4;
+ def mr : IXOP5<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f128mem:$src2, VR128:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ [(set VR128:$dst,
+ (Int128 VR128:$src1, (ld_128 addr:$src2), VR128:$src3, imm:$src4))]>;
+ def rrY : IXOP5<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, VR256:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ [(set VR256:$dst,
+ (Int256 VR256:$src1, VR256:$src2, VR256:$src3, imm:$src4))]>, VEX_L;
+ def rmY : IXOP5<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, f256mem:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ [(set VR256:$dst,
+ (Int256 VR256:$src1, VR256:$src2, (ld_256 addr:$src3), imm:$src4))]>,
+ VEX_W, MemOp4, VEX_L;
+ def mrY : IXOP5<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2, VR256:$src3, i8imm:$src4),
+ !strconcat(OpcodeStr,
+ "\t{$src4, $src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3, $src4}"),
+ [(set VR256:$dst,
+ (Int256 VR256:$src1, (ld_256 addr:$src2), VR256:$src3, imm:$src4))]>,
+ VEX_L;
+}
+
+defm VPERMIL2PD : xop5op<0x49, "vpermil2pd", int_x86_xop_vpermil2pd,
+ int_x86_xop_vpermil2pd_256, memopv2f64, memopv4f64>;
+defm VPERMIL2PS : xop5op<0x48, "vpermil2ps", int_x86_xop_vpermil2ps,
+ int_x86_xop_vpermil2ps_256, memopv4f32, memopv8f32>;
+
diff --git a/contrib/llvm/lib/Target/X86/X86JITInfo.cpp b/contrib/llvm/lib/Target/X86/X86JITInfo.cpp
new file mode 100644
index 0000000..a082c4f
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86JITInfo.cpp
@@ -0,0 +1,588 @@
+//===-- X86JITInfo.cpp - Implement the JIT interfaces for the X86 target --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the JIT interfaces for the X86 target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86JITInfo.h"
+#include "X86Relocations.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Valgrind.h"
+#include <cstdlib>
+#include <cstring>
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+// Determine the platform we're running on
+#if defined (__x86_64__) || defined (_M_AMD64) || defined (_M_X64)
+# define X86_64_JIT
+#elif defined(__i386__) || defined(i386) || defined(_M_IX86)
+# define X86_32_JIT
+#endif
+
+void X86JITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
+ unsigned char *OldByte = (unsigned char *)Old;
+ *OldByte++ = 0xE9; // Emit JMP opcode.
+ unsigned *OldWord = (unsigned *)OldByte;
+ unsigned NewAddr = (intptr_t)New;
+ unsigned OldAddr = (intptr_t)OldWord;
+ *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
+
+ // X86 doesn't need to invalidate the processor cache, so just invalidate
+ // Valgrind's cache directly.
+ sys::ValgrindDiscardTranslations(Old, 5);
+}
+
+
+/// JITCompilerFunction - This contains the address of the JIT function used to
+/// compile a function lazily.
+static TargetJITInfo::JITCompilerFn JITCompilerFunction;
+
+// Get the ASMPREFIX for the current host. This is often '_'.
+#ifndef __USER_LABEL_PREFIX__
+#define __USER_LABEL_PREFIX__
+#endif
+#define GETASMPREFIX2(X) #X
+#define GETASMPREFIX(X) GETASMPREFIX2(X)
+#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
+
+// For ELF targets, use a .size and .type directive, to let tools
+// know the extent of functions defined in assembler.
+#if defined(__ELF__)
+# define SIZE(sym) ".size " #sym ", . - " #sym "\n"
+# define TYPE_FUNCTION(sym) ".type " #sym ", @function\n"
+#else
+# define SIZE(sym)
+# define TYPE_FUNCTION(sym)
+#endif
+
+// Provide a convenient way for disabling usage of CFI directives.
+// This is needed for old/broken assemblers (for example, gas on
+// Darwin is pretty old and doesn't support these directives)
+#if defined(__APPLE__)
+# define CFI(x)
+#else
+// FIXME: Disable this until we really want to use it. Also, we will
+// need to add some workarounds for compilers, which support
+// only subset of these directives.
+# define CFI(x)
+#endif
+
+// Provide a wrapper for LLVMX86CompilationCallback2 that saves non-traditional
+// callee saved registers, for the fastcc calling convention.
+extern "C" {
+#if defined(X86_64_JIT)
+# ifndef _MSC_VER
+ // No need to save EAX/EDX for X86-64.
+ void X86CompilationCallback(void);
+ asm(
+ ".text\n"
+ ".align 8\n"
+ ".globl " ASMPREFIX "X86CompilationCallback\n"
+ TYPE_FUNCTION(X86CompilationCallback)
+ ASMPREFIX "X86CompilationCallback:\n"
+ CFI(".cfi_startproc\n")
+ // Save RBP
+ "pushq %rbp\n"
+ CFI(".cfi_def_cfa_offset 16\n")
+ CFI(".cfi_offset %rbp, -16\n")
+ // Save RSP
+ "movq %rsp, %rbp\n"
+ CFI(".cfi_def_cfa_register %rbp\n")
+ // Save all int arg registers
+ "pushq %rdi\n"
+ CFI(".cfi_rel_offset %rdi, 0\n")
+ "pushq %rsi\n"
+ CFI(".cfi_rel_offset %rsi, 8\n")
+ "pushq %rdx\n"
+ CFI(".cfi_rel_offset %rdx, 16\n")
+ "pushq %rcx\n"
+ CFI(".cfi_rel_offset %rcx, 24\n")
+ "pushq %r8\n"
+ CFI(".cfi_rel_offset %r8, 32\n")
+ "pushq %r9\n"
+ CFI(".cfi_rel_offset %r9, 40\n")
+ // Align stack on 16-byte boundary. ESP might not be properly aligned
+ // (8 byte) if this is called from an indirect stub.
+ "andq $-16, %rsp\n"
+ // Save all XMM arg registers
+ "subq $128, %rsp\n"
+ "movaps %xmm0, (%rsp)\n"
+ "movaps %xmm1, 16(%rsp)\n"
+ "movaps %xmm2, 32(%rsp)\n"
+ "movaps %xmm3, 48(%rsp)\n"
+ "movaps %xmm4, 64(%rsp)\n"
+ "movaps %xmm5, 80(%rsp)\n"
+ "movaps %xmm6, 96(%rsp)\n"
+ "movaps %xmm7, 112(%rsp)\n"
+ // JIT callee
+#if defined(_WIN64) || defined(__CYGWIN__)
+ "subq $32, %rsp\n"
+ "movq %rbp, %rcx\n" // Pass prev frame and return address
+ "movq 8(%rbp), %rdx\n"
+ "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
+ "addq $32, %rsp\n"
+#else
+ "movq %rbp, %rdi\n" // Pass prev frame and return address
+ "movq 8(%rbp), %rsi\n"
+ "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
+#endif
+ // Restore all XMM arg registers
+ "movaps 112(%rsp), %xmm7\n"
+ "movaps 96(%rsp), %xmm6\n"
+ "movaps 80(%rsp), %xmm5\n"
+ "movaps 64(%rsp), %xmm4\n"
+ "movaps 48(%rsp), %xmm3\n"
+ "movaps 32(%rsp), %xmm2\n"
+ "movaps 16(%rsp), %xmm1\n"
+ "movaps (%rsp), %xmm0\n"
+ // Restore RSP
+ "movq %rbp, %rsp\n"
+ CFI(".cfi_def_cfa_register %rsp\n")
+ // Restore all int arg registers
+ "subq $48, %rsp\n"
+ CFI(".cfi_adjust_cfa_offset 48\n")
+ "popq %r9\n"
+ CFI(".cfi_adjust_cfa_offset -8\n")
+ CFI(".cfi_restore %r9\n")
+ "popq %r8\n"
+ CFI(".cfi_adjust_cfa_offset -8\n")
+ CFI(".cfi_restore %r8\n")
+ "popq %rcx\n"
+ CFI(".cfi_adjust_cfa_offset -8\n")
+ CFI(".cfi_restore %rcx\n")
+ "popq %rdx\n"
+ CFI(".cfi_adjust_cfa_offset -8\n")
+ CFI(".cfi_restore %rdx\n")
+ "popq %rsi\n"
+ CFI(".cfi_adjust_cfa_offset -8\n")
+ CFI(".cfi_restore %rsi\n")
+ "popq %rdi\n"
+ CFI(".cfi_adjust_cfa_offset -8\n")
+ CFI(".cfi_restore %rdi\n")
+ // Restore RBP
+ "popq %rbp\n"
+ CFI(".cfi_adjust_cfa_offset -8\n")
+ CFI(".cfi_restore %rbp\n")
+ "ret\n"
+ CFI(".cfi_endproc\n")
+ SIZE(X86CompilationCallback)
+ );
+# else
+ // No inline assembler support on this platform. The routine is in external
+ // file.
+ void X86CompilationCallback();
+
+# endif
+#elif defined (X86_32_JIT)
+# ifndef _MSC_VER
+ void X86CompilationCallback(void);
+ asm(
+ ".text\n"
+ ".align 8\n"
+ ".globl " ASMPREFIX "X86CompilationCallback\n"
+ TYPE_FUNCTION(X86CompilationCallback)
+ ASMPREFIX "X86CompilationCallback:\n"
+ CFI(".cfi_startproc\n")
+ "pushl %ebp\n"
+ CFI(".cfi_def_cfa_offset 8\n")
+ CFI(".cfi_offset %ebp, -8\n")
+ "movl %esp, %ebp\n" // Standard prologue
+ CFI(".cfi_def_cfa_register %ebp\n")
+ "pushl %eax\n"
+ CFI(".cfi_rel_offset %eax, 0\n")
+ "pushl %edx\n" // Save EAX/EDX/ECX
+ CFI(".cfi_rel_offset %edx, 4\n")
+ "pushl %ecx\n"
+ CFI(".cfi_rel_offset %ecx, 8\n")
+# if defined(__APPLE__)
+ "andl $-16, %esp\n" // Align ESP on 16-byte boundary
+# endif
+ "subl $16, %esp\n"
+ "movl 4(%ebp), %eax\n" // Pass prev frame and return address
+ "movl %eax, 4(%esp)\n"
+ "movl %ebp, (%esp)\n"
+ "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
+ "movl %ebp, %esp\n" // Restore ESP
+ CFI(".cfi_def_cfa_register %esp\n")
+ "subl $12, %esp\n"
+ CFI(".cfi_adjust_cfa_offset 12\n")
+ "popl %ecx\n"
+ CFI(".cfi_adjust_cfa_offset -4\n")
+ CFI(".cfi_restore %ecx\n")
+ "popl %edx\n"
+ CFI(".cfi_adjust_cfa_offset -4\n")
+ CFI(".cfi_restore %edx\n")
+ "popl %eax\n"
+ CFI(".cfi_adjust_cfa_offset -4\n")
+ CFI(".cfi_restore %eax\n")
+ "popl %ebp\n"
+ CFI(".cfi_adjust_cfa_offset -4\n")
+ CFI(".cfi_restore %ebp\n")
+ "ret\n"
+ CFI(".cfi_endproc\n")
+ SIZE(X86CompilationCallback)
+ );
+
+ // Same as X86CompilationCallback but also saves XMM argument registers.
+ void X86CompilationCallback_SSE(void);
+ asm(
+ ".text\n"
+ ".align 8\n"
+ ".globl " ASMPREFIX "X86CompilationCallback_SSE\n"
+ TYPE_FUNCTION(X86CompilationCallback_SSE)
+ ASMPREFIX "X86CompilationCallback_SSE:\n"
+ CFI(".cfi_startproc\n")
+ "pushl %ebp\n"
+ CFI(".cfi_def_cfa_offset 8\n")
+ CFI(".cfi_offset %ebp, -8\n")
+ "movl %esp, %ebp\n" // Standard prologue
+ CFI(".cfi_def_cfa_register %ebp\n")
+ "pushl %eax\n"
+ CFI(".cfi_rel_offset %eax, 0\n")
+ "pushl %edx\n" // Save EAX/EDX/ECX
+ CFI(".cfi_rel_offset %edx, 4\n")
+ "pushl %ecx\n"
+ CFI(".cfi_rel_offset %ecx, 8\n")
+ "andl $-16, %esp\n" // Align ESP on 16-byte boundary
+ // Save all XMM arg registers
+ "subl $64, %esp\n"
+ // FIXME: provide frame move information for xmm registers.
+ // This can be tricky, because CFA register is ebp (unaligned)
+ // and we need to produce offsets relative to it.
+ "movaps %xmm0, (%esp)\n"
+ "movaps %xmm1, 16(%esp)\n"
+ "movaps %xmm2, 32(%esp)\n"
+ "movaps %xmm3, 48(%esp)\n"
+ "subl $16, %esp\n"
+ "movl 4(%ebp), %eax\n" // Pass prev frame and return address
+ "movl %eax, 4(%esp)\n"
+ "movl %ebp, (%esp)\n"
+ "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
+ "addl $16, %esp\n"
+ "movaps 48(%esp), %xmm3\n"
+ CFI(".cfi_restore %xmm3\n")
+ "movaps 32(%esp), %xmm2\n"
+ CFI(".cfi_restore %xmm2\n")
+ "movaps 16(%esp), %xmm1\n"
+ CFI(".cfi_restore %xmm1\n")
+ "movaps (%esp), %xmm0\n"
+ CFI(".cfi_restore %xmm0\n")
+ "movl %ebp, %esp\n" // Restore ESP
+ CFI(".cfi_def_cfa_register esp\n")
+ "subl $12, %esp\n"
+ CFI(".cfi_adjust_cfa_offset 12\n")
+ "popl %ecx\n"
+ CFI(".cfi_adjust_cfa_offset -4\n")
+ CFI(".cfi_restore %ecx\n")
+ "popl %edx\n"
+ CFI(".cfi_adjust_cfa_offset -4\n")
+ CFI(".cfi_restore %edx\n")
+ "popl %eax\n"
+ CFI(".cfi_adjust_cfa_offset -4\n")
+ CFI(".cfi_restore %eax\n")
+ "popl %ebp\n"
+ CFI(".cfi_adjust_cfa_offset -4\n")
+ CFI(".cfi_restore %ebp\n")
+ "ret\n"
+ CFI(".cfi_endproc\n")
+ SIZE(X86CompilationCallback_SSE)
+ );
+# else
+ void LLVMX86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr);
+
+ _declspec(naked) void X86CompilationCallback(void) {
+ __asm {
+ push ebp
+ mov ebp, esp
+ push eax
+ push edx
+ push ecx
+ and esp, -16
+ sub esp, 16
+ mov eax, dword ptr [ebp+4]
+ mov dword ptr [esp+4], eax
+ mov dword ptr [esp], ebp
+ call LLVMX86CompilationCallback2
+ mov esp, ebp
+ sub esp, 12
+ pop ecx
+ pop edx
+ pop eax
+ pop ebp
+ ret
+ }
+ }
+
+# endif // _MSC_VER
+
+#else // Not an i386 host
+ void X86CompilationCallback() {
+ llvm_unreachable("Cannot call X86CompilationCallback() on a non-x86 arch!");
+ }
+#endif
+}
+
+/// This is the target-specific function invoked by the
+/// function stub when we did not know the real target of a call. This function
+/// must locate the start of the stub or call site and pass it into the JIT
+/// compiler function.
+extern "C" {
+LLVM_ATTRIBUTE_USED // Referenced from inline asm.
+LLVM_LIBRARY_VISIBILITY void LLVMX86CompilationCallback2(intptr_t *StackPtr,
+ intptr_t RetAddr) {
+ intptr_t *RetAddrLoc = &StackPtr[1];
+ // We are reading raw stack data here. Tell MemorySanitizer that it is
+ // sufficiently initialized.
+ __msan_unpoison(RetAddrLoc, sizeof(*RetAddrLoc));
+ assert(*RetAddrLoc == RetAddr &&
+ "Could not find return address on the stack!");
+
+ // It's a stub if there is an interrupt marker after the call.
+ bool isStub = ((unsigned char*)RetAddr)[0] == 0xCE;
+
+ // The call instruction should have pushed the return value onto the stack...
+#if defined (X86_64_JIT)
+ RetAddr--; // Backtrack to the reference itself...
+#else
+ RetAddr -= 4; // Backtrack to the reference itself...
+#endif
+
+#if 0
+ DEBUG(dbgs() << "In callback! Addr=" << (void*)RetAddr
+ << " ESP=" << (void*)StackPtr
+ << ": Resolving call to function: "
+ << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
+#endif
+
+ // Sanity check to make sure this really is a call instruction.
+#if defined (X86_64_JIT)
+ assert(((unsigned char*)RetAddr)[-2] == 0x41 &&"Not a call instr!");
+ assert(((unsigned char*)RetAddr)[-1] == 0xFF &&"Not a call instr!");
+#else
+ assert(((unsigned char*)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
+#endif
+
+ intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)RetAddr);
+
+ // Rewrite the call target... so that we don't end up here every time we
+ // execute the call.
+#if defined (X86_64_JIT)
+ assert(isStub &&
+ "X86-64 doesn't support rewriting non-stub lazy compilation calls:"
+ " the call instruction varies too much.");
+#else
+ *(intptr_t *)RetAddr = (intptr_t)(NewVal-RetAddr-4);
+#endif
+
+ if (isStub) {
+ // If this is a stub, rewrite the call into an unconditional branch
+ // instruction so that two return addresses are not pushed onto the stack
+ // when the requested function finally gets called. This also makes the
+ // 0xCE byte (interrupt) dead, so the marker doesn't effect anything.
+#if defined (X86_64_JIT)
+ // If the target address is within 32-bit range of the stub, use a
+ // PC-relative branch instead of loading the actual address. (This is
+ // considerably shorter than the 64-bit immediate load already there.)
+ // We assume here intptr_t is 64 bits.
+ intptr_t diff = NewVal-RetAddr+7;
+ if (diff >= -2147483648LL && diff <= 2147483647LL) {
+ *(unsigned char*)(RetAddr-0xc) = 0xE9;
+ *(intptr_t *)(RetAddr-0xb) = diff & 0xffffffff;
+ } else {
+ *(intptr_t *)(RetAddr - 0xa) = NewVal;
+ ((unsigned char*)RetAddr)[0] = (2 | (4 << 3) | (3 << 6));
+ }
+ sys::ValgrindDiscardTranslations((void*)(RetAddr-0xc), 0xd);
+#else
+ ((unsigned char*)RetAddr)[-1] = 0xE9;
+ sys::ValgrindDiscardTranslations((void*)(RetAddr-1), 5);
+#endif
+ }
+
+ // Change the return address to reexecute the call instruction...
+#if defined (X86_64_JIT)
+ *RetAddrLoc -= 0xd;
+#else
+ *RetAddrLoc -= 5;
+#endif
+}
+}
+
+TargetJITInfo::LazyResolverFn
+X86JITInfo::getLazyResolverFunction(JITCompilerFn F) {
+ TsanIgnoreWritesBegin();
+ JITCompilerFunction = F;
+ TsanIgnoreWritesEnd();
+
+#if defined (X86_32_JIT) && !defined (_MSC_VER)
+#if defined(__SSE__)
+ // SSE Callback should be called for SSE-enabled LLVM.
+ return X86CompilationCallback_SSE;
+#else
+ if (useSSE)
+ return X86CompilationCallback_SSE;
+#endif
+#endif
+
+ return X86CompilationCallback;
+}
+
+X86JITInfo::X86JITInfo(bool UseSSE) {
+ useSSE = UseSSE;
+ useGOT = 0;
+ TLSOffset = nullptr;
+}
+
+void *X86JITInfo::emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr,
+ JITCodeEmitter &JCE) {
+#if defined (X86_64_JIT)
+ const unsigned Alignment = 8;
+ uint8_t Buffer[8];
+ uint8_t *Cur = Buffer;
+ MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(intptr_t)ptr);
+ MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(((intptr_t)ptr) >> 32));
+#else
+ const unsigned Alignment = 4;
+ uint8_t Buffer[4];
+ uint8_t *Cur = Buffer;
+ MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)ptr);
+#endif
+ return JCE.allocIndirectGV(GV, Buffer, sizeof(Buffer), Alignment);
+}
+
+TargetJITInfo::StubLayout X86JITInfo::getStubLayout() {
+ // The 64-bit stub contains:
+ // movabs r10 <- 8-byte-target-address # 10 bytes
+ // call|jmp *r10 # 3 bytes
+ // The 32-bit stub contains a 5-byte call|jmp.
+ // If the stub is a call to the compilation callback, an extra byte is added
+ // to mark it as a stub.
+ StubLayout Result = {14, 4};
+ return Result;
+}
+
+void *X86JITInfo::emitFunctionStub(const Function* F, void *Target,
+ JITCodeEmitter &JCE) {
+ // Note, we cast to intptr_t here to silence a -pedantic warning that
+ // complains about casting a function pointer to a normal pointer.
+#if defined (X86_32_JIT) && !defined (_MSC_VER)
+ bool NotCC = (Target != (void*)(intptr_t)X86CompilationCallback &&
+ Target != (void*)(intptr_t)X86CompilationCallback_SSE);
+#else
+ bool NotCC = Target != (void*)(intptr_t)X86CompilationCallback;
+#endif
+ JCE.emitAlignment(4);
+ void *Result = (void*)JCE.getCurrentPCValue();
+ if (NotCC) {
+#if defined (X86_64_JIT)
+ JCE.emitByte(0x49); // REX prefix
+ JCE.emitByte(0xB8+2); // movabsq r10
+ JCE.emitWordLE((unsigned)(intptr_t)Target);
+ JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32));
+ JCE.emitByte(0x41); // REX prefix
+ JCE.emitByte(0xFF); // jmpq *r10
+ JCE.emitByte(2 | (4 << 3) | (3 << 6));
+#else
+ JCE.emitByte(0xE9);
+ JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4);
+#endif
+ return Result;
+ }
+
+#if defined (X86_64_JIT)
+ JCE.emitByte(0x49); // REX prefix
+ JCE.emitByte(0xB8+2); // movabsq r10
+ JCE.emitWordLE((unsigned)(intptr_t)Target);
+ JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32));
+ JCE.emitByte(0x41); // REX prefix
+ JCE.emitByte(0xFF); // callq *r10
+ JCE.emitByte(2 | (2 << 3) | (3 << 6));
+#else
+ JCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
+
+ JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4);
+#endif
+
+ // This used to use 0xCD, but that value is used by JITMemoryManager to
+ // initialize the buffer with garbage, which means it may follow a
+ // noreturn function call, confusing LLVMX86CompilationCallback2. PR 4929.
+ JCE.emitByte(0xCE); // Interrupt - Just a marker identifying the stub!
+ return Result;
+}
+
+/// getPICJumpTableEntry - Returns the value of the jumptable entry for the
+/// specific basic block.
+uintptr_t X86JITInfo::getPICJumpTableEntry(uintptr_t BB, uintptr_t Entry) {
+#if defined(X86_64_JIT)
+ return BB - Entry;
+#else
+ return BB - PICBase;
+#endif
+}
+
+template<typename T> static void addUnaligned(void *Pos, T Delta) {
+ T Value;
+ std::memcpy(reinterpret_cast<char*>(&Value), reinterpret_cast<char*>(Pos),
+ sizeof(T));
+ Value += Delta;
+ std::memcpy(reinterpret_cast<char*>(Pos), reinterpret_cast<char*>(&Value),
+ sizeof(T));
+}
+
+/// relocate - Before the JIT can run a block of code that has been emitted,
+/// it must rewrite the code to contain the actual addresses of any
+/// referenced global symbols.
+void X86JITInfo::relocate(void *Function, MachineRelocation *MR,
+ unsigned NumRelocs, unsigned char* GOTBase) {
+ for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
+ void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
+ intptr_t ResultPtr = (intptr_t)MR->getResultPointer();
+ switch ((X86::RelocationType)MR->getRelocationType()) {
+ case X86::reloc_pcrel_word: {
+ // PC relative relocation, add the relocated value to the value already in
+ // memory, after we adjust it for where the PC is.
+ ResultPtr = ResultPtr -(intptr_t)RelocPos - 4 - MR->getConstantVal();
+ addUnaligned<unsigned>(RelocPos, ResultPtr);
+ break;
+ }
+ case X86::reloc_picrel_word: {
+ // PIC base relative relocation, add the relocated value to the value
+ // already in memory, after we adjust it for where the PIC base is.
+ ResultPtr = ResultPtr - ((intptr_t)Function + MR->getConstantVal());
+ addUnaligned<unsigned>(RelocPos, ResultPtr);
+ break;
+ }
+ case X86::reloc_absolute_word:
+ case X86::reloc_absolute_word_sext:
+ // Absolute relocation, just add the relocated value to the value already
+ // in memory.
+ addUnaligned<unsigned>(RelocPos, ResultPtr);
+ break;
+ case X86::reloc_absolute_dword:
+ addUnaligned<intptr_t>(RelocPos, ResultPtr);
+ break;
+ }
+ }
+}
+
+char* X86JITInfo::allocateThreadLocalMemory(size_t size) {
+#if defined(X86_32_JIT) && !defined(__APPLE__) && !defined(_MSC_VER)
+ TLSOffset -= size;
+ return TLSOffset;
+#else
+ llvm_unreachable("Cannot allocate thread local storage on this arch!");
+#endif
+}
diff --git a/contrib/llvm/lib/Target/X86/X86JITInfo.h b/contrib/llvm/lib/Target/X86/X86JITInfo.h
new file mode 100644
index 0000000..564343f
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86JITInfo.h
@@ -0,0 +1,79 @@
+//===-- X86JITInfo.h - X86 implementation of the JIT interface --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of the TargetJITInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86JITINFO_H
+#define X86JITINFO_H
+
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Target/TargetJITInfo.h"
+
+namespace llvm {
+ class X86Subtarget;
+
+ class X86JITInfo : public TargetJITInfo {
+ uintptr_t PICBase;
+ char *TLSOffset;
+ bool useSSE;
+ public:
+ explicit X86JITInfo(bool UseSSE);
+
+ /// replaceMachineCodeForFunction - Make it so that calling the function
+ /// whose machine code is at OLD turns into a call to NEW, perhaps by
+ /// overwriting OLD with a branch to NEW. This is used for self-modifying
+ /// code.
+ ///
+ void replaceMachineCodeForFunction(void *Old, void *New) override;
+
+ /// emitGlobalValueIndirectSym - Use the specified JITCodeEmitter object
+ /// to emit an indirect symbol which contains the address of the specified
+ /// ptr.
+ void *emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr,
+ JITCodeEmitter &JCE) override;
+
+ // getStubLayout - Returns the size and alignment of the largest call stub
+ // on X86.
+ StubLayout getStubLayout() override;
+
+ /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a
+ /// small native function that simply calls the function at the specified
+ /// address.
+ void *emitFunctionStub(const Function* F, void *Target,
+ JITCodeEmitter &JCE) override;
+
+ /// getPICJumpTableEntry - Returns the value of the jumptable entry for the
+ /// specific basic block.
+ uintptr_t getPICJumpTableEntry(uintptr_t BB, uintptr_t JTBase) override;
+
+ /// getLazyResolverFunction - Expose the lazy resolver to the JIT.
+ LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
+
+ /// relocate - Before the JIT can run a block of code that has been emitted,
+ /// it must rewrite the code to contain the actual addresses of any
+ /// referenced global symbols.
+ void relocate(void *Function, MachineRelocation *MR,
+ unsigned NumRelocs, unsigned char* GOTBase) override;
+
+ /// allocateThreadLocalMemory - Each target has its own way of
+ /// handling thread local variables. This method returns a value only
+ /// meaningful to the target.
+ char* allocateThreadLocalMemory(size_t size) override;
+
+ /// setPICBase / getPICBase - Getter / setter of PICBase, used to compute
+ /// PIC jumptable entry.
+ void setPICBase(uintptr_t Base) { PICBase = Base; }
+ uintptr_t getPICBase() const { return PICBase; }
+ };
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp b/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp
new file mode 100644
index 0000000..2bd70a9
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp
@@ -0,0 +1,926 @@
+//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code to lower X86 MachineInstrs to their corresponding
+// MCInst records.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86AsmPrinter.h"
+#include "X86RegisterInfo.h"
+#include "InstPrinter/X86ATTInstPrinter.h"
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstBuilder.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+using namespace llvm;
+
+namespace {
+
+/// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
+class X86MCInstLower {
+ MCContext &Ctx;
+ const MachineFunction &MF;
+ const TargetMachine &TM;
+ const MCAsmInfo &MAI;
+ X86AsmPrinter &AsmPrinter;
+public:
+ X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
+
+ void Lower(const MachineInstr *MI, MCInst &OutMI) const;
+
+ MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
+ MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
+
+private:
+ MachineModuleInfoMachO &getMachOMMI() const;
+ Mangler *getMang() const {
+ return AsmPrinter.Mang;
+ }
+};
+
+} // end anonymous namespace
+
+X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
+ X86AsmPrinter &asmprinter)
+: Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()),
+ MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {}
+
+MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
+ return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
+}
+
+
+/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
+/// operand to an MCSymbol.
+MCSymbol *X86MCInstLower::
+GetSymbolFromOperand(const MachineOperand &MO) const {
+ const DataLayout *DL = TM.getDataLayout();
+ assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference");
+
+ SmallString<128> Name;
+ StringRef Suffix;
+
+ switch (MO.getTargetFlags()) {
+ case X86II::MO_DLLIMPORT:
+ // Handle dllimport linkage.
+ Name += "__imp_";
+ break;
+ case X86II::MO_DARWIN_STUB:
+ Suffix = "$stub";
+ break;
+ case X86II::MO_DARWIN_NONLAZY:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
+ Suffix = "$non_lazy_ptr";
+ break;
+ }
+
+ if (!Suffix.empty())
+ Name += DL->getPrivateGlobalPrefix();
+
+ unsigned PrefixLen = Name.size();
+
+ if (MO.isGlobal()) {
+ const GlobalValue *GV = MO.getGlobal();
+ AsmPrinter.getNameWithPrefix(Name, GV);
+ } else if (MO.isSymbol()) {
+ getMang()->getNameWithPrefix(Name, MO.getSymbolName());
+ } else if (MO.isMBB()) {
+ Name += MO.getMBB()->getSymbol()->getName();
+ }
+ unsigned OrigLen = Name.size() - PrefixLen;
+
+ Name += Suffix;
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name);
+
+ StringRef OrigName = StringRef(Name).substr(PrefixLen, OrigLen);
+
+ // If the target flags on the operand changes the name of the symbol, do that
+ // before we return the symbol.
+ switch (MO.getTargetFlags()) {
+ default: break;
+ case X86II::MO_DARWIN_NONLAZY:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ getMachOMMI().getGVStubEntry(Sym);
+ if (!StubSym.getPointer()) {
+ assert(MO.isGlobal() && "Extern symbol not handled yet");
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
+ !MO.getGlobal()->hasInternalLinkage());
+ }
+ break;
+ }
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ getMachOMMI().getHiddenGVStubEntry(Sym);
+ if (!StubSym.getPointer()) {
+ assert(MO.isGlobal() && "Extern symbol not handled yet");
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
+ !MO.getGlobal()->hasInternalLinkage());
+ }
+ break;
+ }
+ case X86II::MO_DARWIN_STUB: {
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ getMachOMMI().getFnStubEntry(Sym);
+ if (StubSym.getPointer())
+ return Sym;
+
+ if (MO.isGlobal()) {
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
+ !MO.getGlobal()->hasInternalLinkage());
+ } else {
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(Ctx.GetOrCreateSymbol(OrigName), false);
+ }
+ break;
+ }
+ }
+
+ return Sym;
+}
+
+MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
+ MCSymbol *Sym) const {
+ // FIXME: We would like an efficient form for this, so we don't have to do a
+ // lot of extra uniquing.
+ const MCExpr *Expr = nullptr;
+ MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
+
+ switch (MO.getTargetFlags()) {
+ default: llvm_unreachable("Unknown target flag on GV operand");
+ case X86II::MO_NO_FLAG: // No flag.
+ // These affect the name of the symbol, not any suffix.
+ case X86II::MO_DARWIN_NONLAZY:
+ case X86II::MO_DLLIMPORT:
+ case X86II::MO_DARWIN_STUB:
+ break;
+
+ case X86II::MO_TLVP: RefKind = MCSymbolRefExpr::VK_TLVP; break;
+ case X86II::MO_TLVP_PIC_BASE:
+ Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
+ // Subtract the pic base.
+ Expr = MCBinaryExpr::CreateSub(Expr,
+ MCSymbolRefExpr::Create(MF.getPICBaseSymbol(),
+ Ctx),
+ Ctx);
+ break;
+ case X86II::MO_SECREL: RefKind = MCSymbolRefExpr::VK_SECREL; break;
+ case X86II::MO_TLSGD: RefKind = MCSymbolRefExpr::VK_TLSGD; break;
+ case X86II::MO_TLSLD: RefKind = MCSymbolRefExpr::VK_TLSLD; break;
+ case X86II::MO_TLSLDM: RefKind = MCSymbolRefExpr::VK_TLSLDM; break;
+ case X86II::MO_GOTTPOFF: RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
+ case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
+ case X86II::MO_TPOFF: RefKind = MCSymbolRefExpr::VK_TPOFF; break;
+ case X86II::MO_DTPOFF: RefKind = MCSymbolRefExpr::VK_DTPOFF; break;
+ case X86II::MO_NTPOFF: RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
+ case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break;
+ case X86II::MO_GOTPCREL: RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
+ case X86II::MO_GOT: RefKind = MCSymbolRefExpr::VK_GOT; break;
+ case X86II::MO_GOTOFF: RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
+ case X86II::MO_PLT: RefKind = MCSymbolRefExpr::VK_PLT; break;
+ case X86II::MO_PIC_BASE_OFFSET:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
+ Expr = MCSymbolRefExpr::Create(Sym, Ctx);
+ // Subtract the pic base.
+ Expr = MCBinaryExpr::CreateSub(Expr,
+ MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx),
+ Ctx);
+ if (MO.isJTI() && MAI.hasSetDirective()) {
+ // If .set directive is supported, use it to reduce the number of
+ // relocations the assembler will generate for differences between
+ // local labels. This is only safe when the symbols are in the same
+ // section so we are restricting it to jumptable references.
+ MCSymbol *Label = Ctx.CreateTempSymbol();
+ AsmPrinter.OutStreamer.EmitAssignment(Label, Expr);
+ Expr = MCSymbolRefExpr::Create(Label, Ctx);
+ }
+ break;
+ }
+
+ if (!Expr)
+ Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx);
+
+ if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
+ Expr = MCBinaryExpr::CreateAdd(Expr,
+ MCConstantExpr::Create(MO.getOffset(), Ctx),
+ Ctx);
+ return MCOperand::CreateExpr(Expr);
+}
+
+
+/// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
+/// a short fixed-register form.
+static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
+ unsigned ImmOp = Inst.getNumOperands() - 1;
+ assert(Inst.getOperand(0).isReg() &&
+ (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
+ ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
+ Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
+ Inst.getNumOperands() == 2) && "Unexpected instruction!");
+
+ // Check whether the destination register can be fixed.
+ unsigned Reg = Inst.getOperand(0).getReg();
+ if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
+ return;
+
+ // If so, rewrite the instruction.
+ MCOperand Saved = Inst.getOperand(ImmOp);
+ Inst = MCInst();
+ Inst.setOpcode(Opcode);
+ Inst.addOperand(Saved);
+}
+
+/// \brief If a movsx instruction has a shorter encoding for the used register
+/// simplify the instruction to use it instead.
+static void SimplifyMOVSX(MCInst &Inst) {
+ unsigned NewOpcode = 0;
+ unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
+ switch (Inst.getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected instruction!");
+ case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw
+ if (Op0 == X86::AX && Op1 == X86::AL)
+ NewOpcode = X86::CBW;
+ break;
+ case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl
+ if (Op0 == X86::EAX && Op1 == X86::AX)
+ NewOpcode = X86::CWDE;
+ break;
+ case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
+ if (Op0 == X86::RAX && Op1 == X86::EAX)
+ NewOpcode = X86::CDQE;
+ break;
+ }
+
+ if (NewOpcode != 0) {
+ Inst = MCInst();
+ Inst.setOpcode(NewOpcode);
+ }
+}
+
+/// \brief Simplify things like MOV32rm to MOV32o32a.
+static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
+ unsigned Opcode) {
+ // Don't make these simplifications in 64-bit mode; other assemblers don't
+ // perform them because they make the code larger.
+ if (Printer.getSubtarget().is64Bit())
+ return;
+
+ bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
+ unsigned AddrBase = IsStore;
+ unsigned RegOp = IsStore ? 0 : 5;
+ unsigned AddrOp = AddrBase + 3;
+ assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
+ Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
+ Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
+ Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
+ Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
+ (Inst.getOperand(AddrOp).isExpr() ||
+ Inst.getOperand(AddrOp).isImm()) &&
+ "Unexpected instruction!");
+
+ // Check whether the destination register can be fixed.
+ unsigned Reg = Inst.getOperand(RegOp).getReg();
+ if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
+ return;
+
+ // Check whether this is an absolute address.
+ // FIXME: We know TLVP symbol refs aren't, but there should be a better way
+ // to do this here.
+ bool Absolute = true;
+ if (Inst.getOperand(AddrOp).isExpr()) {
+ const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
+ if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
+ if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
+ Absolute = false;
+ }
+
+ if (Absolute &&
+ (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
+ Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
+ Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
+ return;
+
+ // If so, rewrite the instruction.
+ MCOperand Saved = Inst.getOperand(AddrOp);
+ MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
+ Inst = MCInst();
+ Inst.setOpcode(Opcode);
+ Inst.addOperand(Saved);
+ Inst.addOperand(Seg);
+}
+
+static unsigned getRetOpcode(const X86Subtarget &Subtarget)
+{
+ return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
+}
+
+void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
+ OutMI.setOpcode(MI->getOpcode());
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+
+ MCOperand MCOp;
+ switch (MO.getType()) {
+ default:
+ MI->dump();
+ llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ // Ignore all implicit register operands.
+ if (MO.isImplicit()) continue;
+ MCOp = MCOperand::CreateReg(MO.getReg());
+ break;
+ case MachineOperand::MO_Immediate:
+ MCOp = MCOperand::CreateImm(MO.getImm());
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
+ break;
+ case MachineOperand::MO_BlockAddress:
+ MCOp = LowerSymbolOperand(MO,
+ AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
+ break;
+ case MachineOperand::MO_RegisterMask:
+ // Ignore call clobbers.
+ continue;
+ }
+
+ OutMI.addOperand(MCOp);
+ }
+
+ // Handle a few special cases to eliminate operand modifiers.
+ReSimplify:
+ switch (OutMI.getOpcode()) {
+ case X86::LEA64_32r:
+ case X86::LEA64r:
+ case X86::LEA16r:
+ case X86::LEA32r:
+ // LEA should have a segment register, but it must be empty.
+ assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
+ "Unexpected # of LEA operands");
+ assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
+ "LEA has segment specified!");
+ break;
+
+ case X86::MOV32ri64:
+ OutMI.setOpcode(X86::MOV32ri);
+ break;
+
+ // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
+ // if one of the registers is extended, but other isn't.
+ case X86::VMOVAPDrr:
+ case X86::VMOVAPDYrr:
+ case X86::VMOVAPSrr:
+ case X86::VMOVAPSYrr:
+ case X86::VMOVDQArr:
+ case X86::VMOVDQAYrr:
+ case X86::VMOVDQUrr:
+ case X86::VMOVDQUYrr:
+ case X86::VMOVUPDrr:
+ case X86::VMOVUPDYrr:
+ case X86::VMOVUPSrr:
+ case X86::VMOVUPSYrr: {
+ if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
+ X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
+ unsigned NewOpc;
+ switch (OutMI.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
+ case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
+ case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
+ case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
+ case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
+ case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
+ case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
+ case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
+ case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
+ case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
+ case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
+ case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
+ }
+ OutMI.setOpcode(NewOpc);
+ }
+ break;
+ }
+ case X86::VMOVSDrr:
+ case X86::VMOVSSrr: {
+ if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
+ X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
+ unsigned NewOpc;
+ switch (OutMI.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
+ case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
+ }
+ OutMI.setOpcode(NewOpc);
+ }
+ break;
+ }
+
+ // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
+ // inputs modeled as normal uses instead of implicit uses. As such, truncate
+ // off all but the first operand (the callee). FIXME: Change isel.
+ case X86::TAILJMPr64:
+ case X86::CALL64r:
+ case X86::CALL64pcrel32: {
+ unsigned Opcode = OutMI.getOpcode();
+ MCOperand Saved = OutMI.getOperand(0);
+ OutMI = MCInst();
+ OutMI.setOpcode(Opcode);
+ OutMI.addOperand(Saved);
+ break;
+ }
+
+ case X86::EH_RETURN:
+ case X86::EH_RETURN64: {
+ OutMI = MCInst();
+ OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
+ break;
+ }
+
+ // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
+ case X86::TAILJMPr:
+ case X86::TAILJMPd:
+ case X86::TAILJMPd64: {
+ unsigned Opcode;
+ switch (OutMI.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::TAILJMPr: Opcode = X86::JMP32r; break;
+ case X86::TAILJMPd:
+ case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
+ }
+
+ MCOperand Saved = OutMI.getOperand(0);
+ OutMI = MCInst();
+ OutMI.setOpcode(Opcode);
+ OutMI.addOperand(Saved);
+ break;
+ }
+
+ // These are pseudo-ops for OR to help with the OR->ADD transformation. We do
+ // this with an ugly goto in case the resultant OR uses EAX and needs the
+ // short form.
+ case X86::ADD16rr_DB: OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
+ case X86::ADD32rr_DB: OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
+ case X86::ADD64rr_DB: OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
+ case X86::ADD16ri_DB: OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
+ case X86::ADD32ri_DB: OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
+ case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
+ case X86::ADD16ri8_DB: OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
+ case X86::ADD32ri8_DB: OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
+ case X86::ADD64ri8_DB: OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
+
+ // The assembler backend wants to see branches in their small form and relax
+ // them to their large form. The JIT can only handle the large form because
+ // it does not do relaxation. For now, translate the large form to the
+ // small one here.
+ case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
+ case X86::JO_4: OutMI.setOpcode(X86::JO_1); break;
+ case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
+ case X86::JB_4: OutMI.setOpcode(X86::JB_1); break;
+ case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
+ case X86::JE_4: OutMI.setOpcode(X86::JE_1); break;
+ case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
+ case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
+ case X86::JA_4: OutMI.setOpcode(X86::JA_1); break;
+ case X86::JS_4: OutMI.setOpcode(X86::JS_1); break;
+ case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
+ case X86::JP_4: OutMI.setOpcode(X86::JP_1); break;
+ case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
+ case X86::JL_4: OutMI.setOpcode(X86::JL_1); break;
+ case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
+ case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
+ case X86::JG_4: OutMI.setOpcode(X86::JG_1); break;
+
+ // Atomic load and store require a separate pseudo-inst because Acquire
+ // implies mayStore and Release implies mayLoad; fix these to regular MOV
+ // instructions here
+ case X86::ACQUIRE_MOV8rm: OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
+ case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
+ case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
+ case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
+ case X86::RELEASE_MOV8mr: OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
+ case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
+ case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
+ case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
+
+ // We don't currently select the correct instruction form for instructions
+ // which have a short %eax, etc. form. Handle this by custom lowering, for
+ // now.
+ //
+ // Note, we are currently not handling the following instructions:
+ // MOV64ao8, MOV64o8a
+ // XCHG16ar, XCHG32ar, XCHG64ar
+ case X86::MOV8mr_NOREX:
+ case X86::MOV8mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
+ case X86::MOV8rm_NOREX:
+ case X86::MOV8rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
+ case X86::MOV16mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
+ case X86::MOV16rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
+ case X86::MOV32mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
+ case X86::MOV32rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
+
+ case X86::ADC8ri: SimplifyShortImmForm(OutMI, X86::ADC8i8); break;
+ case X86::ADC16ri: SimplifyShortImmForm(OutMI, X86::ADC16i16); break;
+ case X86::ADC32ri: SimplifyShortImmForm(OutMI, X86::ADC32i32); break;
+ case X86::ADC64ri32: SimplifyShortImmForm(OutMI, X86::ADC64i32); break;
+ case X86::ADD8ri: SimplifyShortImmForm(OutMI, X86::ADD8i8); break;
+ case X86::ADD16ri: SimplifyShortImmForm(OutMI, X86::ADD16i16); break;
+ case X86::ADD32ri: SimplifyShortImmForm(OutMI, X86::ADD32i32); break;
+ case X86::ADD64ri32: SimplifyShortImmForm(OutMI, X86::ADD64i32); break;
+ case X86::AND8ri: SimplifyShortImmForm(OutMI, X86::AND8i8); break;
+ case X86::AND16ri: SimplifyShortImmForm(OutMI, X86::AND16i16); break;
+ case X86::AND32ri: SimplifyShortImmForm(OutMI, X86::AND32i32); break;
+ case X86::AND64ri32: SimplifyShortImmForm(OutMI, X86::AND64i32); break;
+ case X86::CMP8ri: SimplifyShortImmForm(OutMI, X86::CMP8i8); break;
+ case X86::CMP16ri: SimplifyShortImmForm(OutMI, X86::CMP16i16); break;
+ case X86::CMP32ri: SimplifyShortImmForm(OutMI, X86::CMP32i32); break;
+ case X86::CMP64ri32: SimplifyShortImmForm(OutMI, X86::CMP64i32); break;
+ case X86::OR8ri: SimplifyShortImmForm(OutMI, X86::OR8i8); break;
+ case X86::OR16ri: SimplifyShortImmForm(OutMI, X86::OR16i16); break;
+ case X86::OR32ri: SimplifyShortImmForm(OutMI, X86::OR32i32); break;
+ case X86::OR64ri32: SimplifyShortImmForm(OutMI, X86::OR64i32); break;
+ case X86::SBB8ri: SimplifyShortImmForm(OutMI, X86::SBB8i8); break;
+ case X86::SBB16ri: SimplifyShortImmForm(OutMI, X86::SBB16i16); break;
+ case X86::SBB32ri: SimplifyShortImmForm(OutMI, X86::SBB32i32); break;
+ case X86::SBB64ri32: SimplifyShortImmForm(OutMI, X86::SBB64i32); break;
+ case X86::SUB8ri: SimplifyShortImmForm(OutMI, X86::SUB8i8); break;
+ case X86::SUB16ri: SimplifyShortImmForm(OutMI, X86::SUB16i16); break;
+ case X86::SUB32ri: SimplifyShortImmForm(OutMI, X86::SUB32i32); break;
+ case X86::SUB64ri32: SimplifyShortImmForm(OutMI, X86::SUB64i32); break;
+ case X86::TEST8ri: SimplifyShortImmForm(OutMI, X86::TEST8i8); break;
+ case X86::TEST16ri: SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
+ case X86::TEST32ri: SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
+ case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
+ case X86::XOR8ri: SimplifyShortImmForm(OutMI, X86::XOR8i8); break;
+ case X86::XOR16ri: SimplifyShortImmForm(OutMI, X86::XOR16i16); break;
+ case X86::XOR32ri: SimplifyShortImmForm(OutMI, X86::XOR32i32); break;
+ case X86::XOR64ri32: SimplifyShortImmForm(OutMI, X86::XOR64i32); break;
+
+ // Try to shrink some forms of movsx.
+ case X86::MOVSX16rr8:
+ case X86::MOVSX32rr16:
+ case X86::MOVSX64rr32:
+ SimplifyMOVSX(OutMI);
+ break;
+ }
+}
+
+static void LowerTlsAddr(MCStreamer &OutStreamer,
+ X86MCInstLower &MCInstLowering,
+ const MachineInstr &MI,
+ const MCSubtargetInfo& STI) {
+
+ bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
+ MI.getOpcode() == X86::TLS_base_addr64;
+
+ bool needsPadding = MI.getOpcode() == X86::TLS_addr64;
+
+ MCContext &context = OutStreamer.getContext();
+
+ if (needsPadding)
+ OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);
+
+ MCSymbolRefExpr::VariantKind SRVK;
+ switch (MI.getOpcode()) {
+ case X86::TLS_addr32:
+ case X86::TLS_addr64:
+ SRVK = MCSymbolRefExpr::VK_TLSGD;
+ break;
+ case X86::TLS_base_addr32:
+ SRVK = MCSymbolRefExpr::VK_TLSLDM;
+ break;
+ case X86::TLS_base_addr64:
+ SRVK = MCSymbolRefExpr::VK_TLSLD;
+ break;
+ default:
+ llvm_unreachable("unexpected opcode");
+ }
+
+ MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
+ const MCSymbolRefExpr *symRef = MCSymbolRefExpr::Create(sym, SRVK, context);
+
+ MCInst LEA;
+ if (is64Bits) {
+ LEA.setOpcode(X86::LEA64r);
+ LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest
+ LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base
+ LEA.addOperand(MCOperand::CreateImm(1)); // scale
+ LEA.addOperand(MCOperand::CreateReg(0)); // index
+ LEA.addOperand(MCOperand::CreateExpr(symRef)); // disp
+ LEA.addOperand(MCOperand::CreateReg(0)); // seg
+ } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
+ LEA.setOpcode(X86::LEA32r);
+ LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
+ LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // base
+ LEA.addOperand(MCOperand::CreateImm(1)); // scale
+ LEA.addOperand(MCOperand::CreateReg(0)); // index
+ LEA.addOperand(MCOperand::CreateExpr(symRef)); // disp
+ LEA.addOperand(MCOperand::CreateReg(0)); // seg
+ } else {
+ LEA.setOpcode(X86::LEA32r);
+ LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
+ LEA.addOperand(MCOperand::CreateReg(0)); // base
+ LEA.addOperand(MCOperand::CreateImm(1)); // scale
+ LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index
+ LEA.addOperand(MCOperand::CreateExpr(symRef)); // disp
+ LEA.addOperand(MCOperand::CreateReg(0)); // seg
+ }
+ OutStreamer.EmitInstruction(LEA, STI);
+
+ if (needsPadding) {
+ OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);
+ OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);
+ OutStreamer.EmitInstruction(MCInstBuilder(X86::REX64_PREFIX), STI);
+ }
+
+ StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
+ MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name);
+ const MCSymbolRefExpr *tlsRef =
+ MCSymbolRefExpr::Create(tlsGetAddr,
+ MCSymbolRefExpr::VK_PLT,
+ context);
+
+ OutStreamer.EmitInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
+ : X86::CALLpcrel32)
+ .addExpr(tlsRef), STI);
+}
+
+/// \brief Emit the optimal amount of multi-byte nops on X86.
+static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, const MCSubtargetInfo &STI) {
+ // This works only for 64bit. For 32bit we have to do additional checking if
+ // the CPU supports multi-byte nops.
+ assert(Is64Bit && "EmitNops only supports X86-64");
+ while (NumBytes) {
+ unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
+ Opc = IndexReg = Displacement = SegmentReg = 0;
+ BaseReg = X86::RAX; ScaleVal = 1;
+ switch (NumBytes) {
+ case 0: llvm_unreachable("Zero nops?"); break;
+ case 1: NumBytes -= 1; Opc = X86::NOOP; break;
+ case 2: NumBytes -= 2; Opc = X86::XCHG16ar; break;
+ case 3: NumBytes -= 3; Opc = X86::NOOPL; break;
+ case 4: NumBytes -= 4; Opc = X86::NOOPL; Displacement = 8; break;
+ case 5: NumBytes -= 5; Opc = X86::NOOPL; Displacement = 8;
+ IndexReg = X86::RAX; break;
+ case 6: NumBytes -= 6; Opc = X86::NOOPW; Displacement = 8;
+ IndexReg = X86::RAX; break;
+ case 7: NumBytes -= 7; Opc = X86::NOOPL; Displacement = 512; break;
+ case 8: NumBytes -= 8; Opc = X86::NOOPL; Displacement = 512;
+ IndexReg = X86::RAX; break;
+ case 9: NumBytes -= 9; Opc = X86::NOOPW; Displacement = 512;
+ IndexReg = X86::RAX; break;
+ default: NumBytes -= 10; Opc = X86::NOOPW; Displacement = 512;
+ IndexReg = X86::RAX; SegmentReg = X86::CS; break;
+ }
+
+ unsigned NumPrefixes = std::min(NumBytes, 5U);
+ NumBytes -= NumPrefixes;
+ for (unsigned i = 0; i != NumPrefixes; ++i)
+ OS.EmitBytes("\x66");
+
+ switch (Opc) {
+ default: llvm_unreachable("Unexpected opcode"); break;
+ case X86::NOOP:
+ OS.EmitInstruction(MCInstBuilder(Opc), STI);
+ break;
+ case X86::XCHG16ar:
+ OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX), STI);
+ break;
+ case X86::NOOPL:
+ case X86::NOOPW:
+ OS.EmitInstruction(MCInstBuilder(Opc).addReg(BaseReg).addImm(ScaleVal)
+ .addReg(IndexReg)
+ .addImm(Displacement)
+ .addReg(SegmentReg), STI);
+ break;
+ }
+ } // while (NumBytes)
+}
+
+// Lower a stackmap of the form:
+// <id>, <shadowBytes>, ...
+static void LowerSTACKMAP(MCStreamer &OS, StackMaps &SM,
+ const MachineInstr &MI, bool Is64Bit, const MCSubtargetInfo& STI) {
+ unsigned NumBytes = MI.getOperand(1).getImm();
+ SM.recordStackMap(MI);
+ // Emit padding.
+ // FIXME: These nops ensure that the stackmap's shadow is covered by
+ // instructions from the same basic block, but the nops should not be
+ // necessary if instructions from the same block follow the stackmap.
+ EmitNops(OS, NumBytes, Is64Bit, STI);
+}
+
+// Lower a patchpoint of the form:
+// [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
+static void LowerPATCHPOINT(MCStreamer &OS, StackMaps &SM,
+ const MachineInstr &MI, bool Is64Bit, const MCSubtargetInfo& STI) {
+ assert(Is64Bit && "Patchpoint currently only supports X86-64");
+ SM.recordPatchPoint(MI);
+
+ PatchPointOpers opers(&MI);
+ unsigned ScratchIdx = opers.getNextScratchIdx();
+ unsigned EncodedBytes = 0;
+ int64_t CallTarget = opers.getMetaOper(PatchPointOpers::TargetPos).getImm();
+ if (CallTarget) {
+ // Emit MOV to materialize the target address and the CALL to target.
+ // This is encoded with 12-13 bytes, depending on which register is used.
+ unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg();
+ if (X86II::isX86_64ExtendedReg(ScratchReg))
+ EncodedBytes = 13;
+ else
+ EncodedBytes = 12;
+ OS.EmitInstruction(MCInstBuilder(X86::MOV64ri).addReg(ScratchReg)
+ .addImm(CallTarget), STI);
+ OS.EmitInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg), STI);
+ }
+ // Emit padding.
+ unsigned NumBytes = opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
+ assert(NumBytes >= EncodedBytes &&
+ "Patchpoint can't request size less than the length of a call.");
+
+ EmitNops(OS, NumBytes - EncodedBytes, Is64Bit, STI);
+}
+
+void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ X86MCInstLower MCInstLowering(*MF, *this);
+ const X86RegisterInfo *RI =
+ static_cast<const X86RegisterInfo *>(TM.getRegisterInfo());
+
+ switch (MI->getOpcode()) {
+ case TargetOpcode::DBG_VALUE:
+ llvm_unreachable("Should be handled target independently");
+
+ // Emit nothing here but a comment if we can.
+ case X86::Int_MemBarrier:
+ OutStreamer.emitRawComment("MEMBARRIER");
+ return;
+
+
+ case X86::EH_RETURN:
+ case X86::EH_RETURN64: {
+ // Lower these as normal, but add some comments.
+ unsigned Reg = MI->getOperand(0).getReg();
+ OutStreamer.AddComment(StringRef("eh_return, addr: %") +
+ X86ATTInstPrinter::getRegisterName(Reg));
+ break;
+ }
+ case X86::TAILJMPr:
+ case X86::TAILJMPd:
+ case X86::TAILJMPd64:
+ // Lower these as normal, but add some comments.
+ OutStreamer.AddComment("TAILCALL");
+ break;
+
+ case X86::TLS_addr32:
+ case X86::TLS_addr64:
+ case X86::TLS_base_addr32:
+ case X86::TLS_base_addr64:
+ return LowerTlsAddr(OutStreamer, MCInstLowering, *MI, getSubtargetInfo());
+
+ case X86::MOVPC32r: {
+ // This is a pseudo op for a two instruction sequence with a label, which
+ // looks like:
+ // call "L1$pb"
+ // "L1$pb":
+ // popl %esi
+
+ // Emit the call.
+ MCSymbol *PICBase = MF->getPICBaseSymbol();
+ // FIXME: We would like an efficient form for this, so we don't have to do a
+ // lot of extra uniquing.
+ EmitToStreamer(OutStreamer, MCInstBuilder(X86::CALLpcrel32)
+ .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext)));
+
+ // Emit the label.
+ OutStreamer.EmitLabel(PICBase);
+
+ // popl $reg
+ EmitToStreamer(OutStreamer, MCInstBuilder(X86::POP32r)
+ .addReg(MI->getOperand(0).getReg()));
+ return;
+ }
+
+ case X86::ADD32ri: {
+ // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
+ if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
+ break;
+
+ // Okay, we have something like:
+ // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
+
+ // For this, we want to print something like:
+ // MYGLOBAL + (. - PICBASE)
+ // However, we can't generate a ".", so just emit a new label here and refer
+ // to it.
+ MCSymbol *DotSym = OutContext.CreateTempSymbol();
+ OutStreamer.EmitLabel(DotSym);
+
+ // Now that we have emitted the label, lower the complex operand expression.
+ MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
+
+ const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
+ const MCExpr *PICBase =
+ MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext);
+ DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);
+
+ DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
+ DotExpr, OutContext);
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(X86::ADD32ri)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg())
+ .addExpr(DotExpr));
+ return;
+ }
+
+ case TargetOpcode::STACKMAP:
+ return LowerSTACKMAP(OutStreamer, SM, *MI, Subtarget->is64Bit(), getSubtargetInfo());
+
+ case TargetOpcode::PATCHPOINT:
+ return LowerPATCHPOINT(OutStreamer, SM, *MI, Subtarget->is64Bit(), getSubtargetInfo());
+
+ case X86::MORESTACK_RET:
+ EmitToStreamer(OutStreamer, MCInstBuilder(getRetOpcode(*Subtarget)));
+ return;
+
+ case X86::MORESTACK_RET_RESTORE_R10:
+ // Return, then restore R10.
+ EmitToStreamer(OutStreamer, MCInstBuilder(getRetOpcode(*Subtarget)));
+ EmitToStreamer(OutStreamer, MCInstBuilder(X86::MOV64rr)
+ .addReg(X86::R10)
+ .addReg(X86::RAX));
+ return;
+
+ case X86::SEH_PushReg:
+ OutStreamer.EmitWinCFIPushReg(RI->getSEHRegNum(MI->getOperand(0).getImm()));
+ return;
+
+ case X86::SEH_SaveReg:
+ OutStreamer.EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()),
+ MI->getOperand(1).getImm());
+ return;
+
+ case X86::SEH_SaveXMM:
+ OutStreamer.EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()),
+ MI->getOperand(1).getImm());
+ return;
+
+ case X86::SEH_StackAlloc:
+ OutStreamer.EmitWinCFIAllocStack(MI->getOperand(0).getImm());
+ return;
+
+ case X86::SEH_SetFrame:
+ OutStreamer.EmitWinCFISetFrame(RI->getSEHRegNum(MI->getOperand(0).getImm()),
+ MI->getOperand(1).getImm());
+ return;
+
+ case X86::SEH_PushFrame:
+ OutStreamer.EmitWinCFIPushFrame(MI->getOperand(0).getImm());
+ return;
+
+ case X86::SEH_EndPrologue:
+ OutStreamer.EmitWinCFIEndProlog();
+ return;
+ }
+
+ MCInst TmpInst;
+ MCInstLowering.Lower(MI, TmpInst);
+ EmitToStreamer(OutStreamer, TmpInst);
+}
diff --git a/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.cpp b/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.cpp
new file mode 100644
index 0000000..568dc22
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.cpp
@@ -0,0 +1,14 @@
+//===-- X86MachineFuctionInfo.cpp - X86 machine function info -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86MachineFunctionInfo.h"
+
+using namespace llvm;
+
+void X86MachineFunctionInfo::anchor() { }
diff --git a/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.h b/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.h
new file mode 100644
index 0000000..78d20ce
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.h
@@ -0,0 +1,145 @@
+//===-- X86MachineFuctionInfo.h - X86 machine function info -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares X86-specific per-machine-function information.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86MACHINEFUNCTIONINFO_H
+#define X86MACHINEFUNCTIONINFO_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+
+namespace llvm {
+
+/// X86MachineFunctionInfo - This class is derived from MachineFunction and
+/// contains private X86 target-specific information for each MachineFunction.
+class X86MachineFunctionInfo : public MachineFunctionInfo {
+ virtual void anchor();
+
+ /// ForceFramePointer - True if the function is required to use of frame
+ /// pointer for reasons other than it containing dynamic allocation or
+ /// that FP eliminatation is turned off. For example, Cygwin main function
+ /// contains stack pointer re-alignment code which requires FP.
+ bool ForceFramePointer;
+
+ /// CalleeSavedFrameSize - Size of the callee-saved register portion of the
+ /// stack frame in bytes.
+ unsigned CalleeSavedFrameSize;
+
+ /// BytesToPopOnReturn - Number of bytes function pops on return (in addition
+ /// to the space used by the return address).
+ /// Used on windows platform for stdcall & fastcall name decoration
+ unsigned BytesToPopOnReturn;
+
+ /// ReturnAddrIndex - FrameIndex for return slot.
+ int ReturnAddrIndex;
+
+ /// TailCallReturnAddrDelta - The number of bytes by which return address
+ /// stack slot is moved as the result of tail call optimization.
+ int TailCallReturnAddrDelta;
+
+ /// SRetReturnReg - Some subtargets require that sret lowering includes
+ /// returning the value of the returned struct in a register. This field
+ /// holds the virtual register into which the sret argument is passed.
+ unsigned SRetReturnReg;
+
+ /// GlobalBaseReg - keeps track of the virtual register initialized for
+ /// use as the global base register. This is used for PIC in some PIC
+ /// relocation models.
+ unsigned GlobalBaseReg;
+
+ /// VarArgsFrameIndex - FrameIndex for start of varargs area.
+ int VarArgsFrameIndex;
+ /// RegSaveFrameIndex - X86-64 vararg func register save area.
+ int RegSaveFrameIndex;
+ /// VarArgsGPOffset - X86-64 vararg func int reg offset.
+ unsigned VarArgsGPOffset;
+ /// VarArgsFPOffset - X86-64 vararg func fp reg offset.
+ unsigned VarArgsFPOffset;
+ /// ArgumentStackSize - The number of bytes on stack consumed by the arguments
+ /// being passed on the stack.
+ unsigned ArgumentStackSize;
+ /// NumLocalDynamics - Number of local-dynamic TLS accesses.
+ unsigned NumLocalDynamics;
+
+public:
+ X86MachineFunctionInfo() : ForceFramePointer(false),
+ CalleeSavedFrameSize(0),
+ BytesToPopOnReturn(0),
+ ReturnAddrIndex(0),
+ TailCallReturnAddrDelta(0),
+ SRetReturnReg(0),
+ GlobalBaseReg(0),
+ VarArgsFrameIndex(0),
+ RegSaveFrameIndex(0),
+ VarArgsGPOffset(0),
+ VarArgsFPOffset(0),
+ ArgumentStackSize(0),
+ NumLocalDynamics(0) {}
+
+ explicit X86MachineFunctionInfo(MachineFunction &MF)
+ : ForceFramePointer(false),
+ CalleeSavedFrameSize(0),
+ BytesToPopOnReturn(0),
+ ReturnAddrIndex(0),
+ TailCallReturnAddrDelta(0),
+ SRetReturnReg(0),
+ GlobalBaseReg(0),
+ VarArgsFrameIndex(0),
+ RegSaveFrameIndex(0),
+ VarArgsGPOffset(0),
+ VarArgsFPOffset(0),
+ ArgumentStackSize(0),
+ NumLocalDynamics(0) {}
+
+ bool getForceFramePointer() const { return ForceFramePointer;}
+ void setForceFramePointer(bool forceFP) { ForceFramePointer = forceFP; }
+
+ unsigned getCalleeSavedFrameSize() const { return CalleeSavedFrameSize; }
+ void setCalleeSavedFrameSize(unsigned bytes) { CalleeSavedFrameSize = bytes; }
+
+ unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
+ void setBytesToPopOnReturn (unsigned bytes) { BytesToPopOnReturn = bytes;}
+
+ int getRAIndex() const { return ReturnAddrIndex; }
+ void setRAIndex(int Index) { ReturnAddrIndex = Index; }
+
+ int getTCReturnAddrDelta() const { return TailCallReturnAddrDelta; }
+ void setTCReturnAddrDelta(int delta) {TailCallReturnAddrDelta = delta;}
+
+ unsigned getSRetReturnReg() const { return SRetReturnReg; }
+ void setSRetReturnReg(unsigned Reg) { SRetReturnReg = Reg; }
+
+ unsigned getGlobalBaseReg() const { return GlobalBaseReg; }
+ void setGlobalBaseReg(unsigned Reg) { GlobalBaseReg = Reg; }
+
+ int getVarArgsFrameIndex() const { return VarArgsFrameIndex; }
+ void setVarArgsFrameIndex(int Idx) { VarArgsFrameIndex = Idx; }
+
+ int getRegSaveFrameIndex() const { return RegSaveFrameIndex; }
+ void setRegSaveFrameIndex(int Idx) { RegSaveFrameIndex = Idx; }
+
+ unsigned getVarArgsGPOffset() const { return VarArgsGPOffset; }
+ void setVarArgsGPOffset(unsigned Offset) { VarArgsGPOffset = Offset; }
+
+ unsigned getVarArgsFPOffset() const { return VarArgsFPOffset; }
+ void setVarArgsFPOffset(unsigned Offset) { VarArgsFPOffset = Offset; }
+
+ unsigned getArgumentStackSize() const { return ArgumentStackSize; }
+ void setArgumentStackSize(unsigned size) { ArgumentStackSize = size; }
+
+ unsigned getNumLocalDynamicTLSAccesses() const { return NumLocalDynamics; }
+ void incNumLocalDynamicTLSAccesses() { ++NumLocalDynamics; }
+
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp b/contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp
new file mode 100644
index 0000000..6639875
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp
@@ -0,0 +1,217 @@
+//===-------- X86PadShortFunction.cpp - pad short functions -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the pass which will pad short functions to prevent
+// a stall if a function returns before the return address is ready. This
+// is needed for some Intel Atom processors.
+//
+//===----------------------------------------------------------------------===//
+
+#include <algorithm>
+
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "X86Subtarget.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-pad-short-functions"
+
+STATISTIC(NumBBsPadded, "Number of basic blocks padded");
+
+namespace {
+ struct VisitedBBInfo {
+ // HasReturn - Whether the BB contains a return instruction
+ bool HasReturn;
+
+ // Cycles - Number of cycles until return if HasReturn is true, otherwise
+ // number of cycles until end of the BB
+ unsigned int Cycles;
+
+ VisitedBBInfo() : HasReturn(false), Cycles(0) {}
+ VisitedBBInfo(bool HasReturn, unsigned int Cycles)
+ : HasReturn(HasReturn), Cycles(Cycles) {}
+ };
+
+ struct PadShortFunc : public MachineFunctionPass {
+ static char ID;
+ PadShortFunc() : MachineFunctionPass(ID)
+ , Threshold(4), TM(nullptr), TII(nullptr) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "X86 Atom pad short functions";
+ }
+
+ private:
+ void findReturns(MachineBasicBlock *MBB,
+ unsigned int Cycles = 0);
+
+ bool cyclesUntilReturn(MachineBasicBlock *MBB,
+ unsigned int &Cycles);
+
+ void addPadding(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator &MBBI,
+ unsigned int NOOPsToAdd);
+
+ const unsigned int Threshold;
+
+ // ReturnBBs - Maps basic blocks that return to the minimum number of
+ // cycles until the return, starting from the entry block.
+ DenseMap<MachineBasicBlock*, unsigned int> ReturnBBs;
+
+ // VisitedBBs - Cache of previously visited BBs.
+ DenseMap<MachineBasicBlock*, VisitedBBInfo> VisitedBBs;
+
+ const TargetMachine *TM;
+ const TargetInstrInfo *TII;
+ };
+
+ char PadShortFunc::ID = 0;
+}
+
+FunctionPass *llvm::createX86PadShortFunctions() {
+ return new PadShortFunc();
+}
+
+/// runOnMachineFunction - Loop over all of the basic blocks, inserting
+/// NOOP instructions before early exits.
+bool PadShortFunc::runOnMachineFunction(MachineFunction &MF) {
+ const AttributeSet &FnAttrs = MF.getFunction()->getAttributes();
+ if (FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize) ||
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::MinSize)) {
+ return false;
+ }
+
+ TM = &MF.getTarget();
+ if (!TM->getSubtarget<X86Subtarget>().padShortFunctions())
+ return false;
+
+ TII = TM->getInstrInfo();
+
+ // Search through basic blocks and mark the ones that have early returns
+ ReturnBBs.clear();
+ VisitedBBs.clear();
+ findReturns(MF.begin());
+
+ bool MadeChange = false;
+
+ MachineBasicBlock *MBB;
+ unsigned int Cycles = 0;
+
+ // Pad the identified basic blocks with NOOPs
+ for (DenseMap<MachineBasicBlock*, unsigned int>::iterator I = ReturnBBs.begin();
+ I != ReturnBBs.end(); ++I) {
+ MBB = I->first;
+ Cycles = I->second;
+
+ if (Cycles < Threshold) {
+ // BB ends in a return. Skip over any DBG_VALUE instructions
+ // trailing the terminator.
+ assert(MBB->size() > 0 &&
+ "Basic block should contain at least a RET but is empty");
+ MachineBasicBlock::iterator ReturnLoc = --MBB->end();
+
+ while (ReturnLoc->isDebugValue())
+ --ReturnLoc;
+ assert(ReturnLoc->isReturn() && !ReturnLoc->isCall() &&
+ "Basic block does not end with RET");
+
+ addPadding(MBB, ReturnLoc, Threshold - Cycles);
+ NumBBsPadded++;
+ MadeChange = true;
+ }
+ }
+
+ return MadeChange;
+}
+
+/// findReturn - Starting at MBB, follow control flow and add all
+/// basic blocks that contain a return to ReturnBBs.
+void PadShortFunc::findReturns(MachineBasicBlock *MBB, unsigned int Cycles) {
+ // If this BB has a return, note how many cycles it takes to get there.
+ bool hasReturn = cyclesUntilReturn(MBB, Cycles);
+ if (Cycles >= Threshold)
+ return;
+
+ if (hasReturn) {
+ ReturnBBs[MBB] = std::max(ReturnBBs[MBB], Cycles);
+ return;
+ }
+
+ // Follow branches in BB and look for returns
+ for (MachineBasicBlock::succ_iterator I = MBB->succ_begin();
+ I != MBB->succ_end(); ++I) {
+ if (*I == MBB)
+ continue;
+ findReturns(*I, Cycles);
+ }
+}
+
+/// cyclesUntilReturn - return true if the MBB has a return instruction,
+/// and return false otherwise.
+/// Cycles will be incremented by the number of cycles taken to reach the
+/// return or the end of the BB, whichever occurs first.
+bool PadShortFunc::cyclesUntilReturn(MachineBasicBlock *MBB,
+ unsigned int &Cycles) {
+ // Return cached result if BB was previously visited
+ DenseMap<MachineBasicBlock*, VisitedBBInfo>::iterator it
+ = VisitedBBs.find(MBB);
+ if (it != VisitedBBs.end()) {
+ VisitedBBInfo BBInfo = it->second;
+ Cycles += BBInfo.Cycles;
+ return BBInfo.HasReturn;
+ }
+
+ unsigned int CyclesToEnd = 0;
+
+ for (MachineBasicBlock::iterator MBBI = MBB->begin();
+ MBBI != MBB->end(); ++MBBI) {
+ MachineInstr *MI = MBBI;
+ // Mark basic blocks with a return instruction. Calls to other
+ // functions do not count because the called function will be padded,
+ // if necessary.
+ if (MI->isReturn() && !MI->isCall()) {
+ VisitedBBs[MBB] = VisitedBBInfo(true, CyclesToEnd);
+ Cycles += CyclesToEnd;
+ return true;
+ }
+
+ CyclesToEnd += TII->getInstrLatency(TM->getInstrItineraryData(), MI);
+ }
+
+ VisitedBBs[MBB] = VisitedBBInfo(false, CyclesToEnd);
+ Cycles += CyclesToEnd;
+ return false;
+}
+
+/// addPadding - Add the given number of NOOP instructions to the function
+/// just prior to the return at MBBI
+void PadShortFunc::addPadding(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator &MBBI,
+ unsigned int NOOPsToAdd) {
+ DebugLoc DL = MBBI->getDebugLoc();
+
+ while (NOOPsToAdd-- > 0) {
+ BuildMI(*MBB, MBBI, DL, TII->get(X86::NOOP));
+ BuildMI(*MBB, MBBI, DL, TII->get(X86::NOOP));
+ }
+}
diff --git a/contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp b/contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp
new file mode 100644
index 0000000..e8a7e84
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp
@@ -0,0 +1,717 @@
+//===-- X86RegisterInfo.cpp - X86 Register Information --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of the TargetRegisterInfo class.
+// This file is responsible for the frame pointer elimination optimization
+// on X86.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86RegisterInfo.h"
+#include "X86InstrBuilder.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineValueType.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+#define GET_REGINFO_TARGET_DESC
+#include "X86GenRegisterInfo.inc"
+
+cl::opt<bool>
+ForceStackAlign("force-align-stack",
+ cl::desc("Force align the stack to the minimum alignment"
+ " needed for the function."),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+EnableBasePointer("x86-use-base-pointer", cl::Hidden, cl::init(true),
+ cl::desc("Enable use of a base pointer for complex stack frames"));
+
+X86RegisterInfo::X86RegisterInfo(const X86Subtarget &STI)
+ : X86GenRegisterInfo(
+ (STI.is64Bit() ? X86::RIP : X86::EIP),
+ X86_MC::getDwarfRegFlavour(STI.getTargetTriple(), false),
+ X86_MC::getDwarfRegFlavour(STI.getTargetTriple(), true),
+ (STI.is64Bit() ? X86::RIP : X86::EIP)),
+ Subtarget(STI) {
+ X86_MC::InitLLVM2SEHRegisterMapping(this);
+
+ // Cache some information.
+ Is64Bit = Subtarget.is64Bit();
+ IsWin64 = Subtarget.isTargetWin64();
+
+ if (Is64Bit) {
+ SlotSize = 8;
+ StackPtr = X86::RSP;
+ FramePtr = X86::RBP;
+ } else {
+ SlotSize = 4;
+ StackPtr = X86::ESP;
+ FramePtr = X86::EBP;
+ }
+ // Use a callee-saved register as the base pointer. These registers must
+ // not conflict with any ABI requirements. For example, in 32-bit mode PIC
+ // requires GOT in the EBX register before function calls via PLT GOT pointer.
+ BasePtr = Is64Bit ? X86::RBX : X86::ESI;
+}
+
+bool
+X86RegisterInfo::trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
+ // ExeDepsFixer and PostRAScheduler require liveness.
+ return true;
+}
+
+int
+X86RegisterInfo::getSEHRegNum(unsigned i) const {
+ return getEncodingValue(i);
+}
+
+const TargetRegisterClass *
+X86RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
+ unsigned Idx) const {
+ // The sub_8bit sub-register index is more constrained in 32-bit mode.
+ // It behaves just like the sub_8bit_hi index.
+ if (!Is64Bit && Idx == X86::sub_8bit)
+ Idx = X86::sub_8bit_hi;
+
+ // Forward to TableGen's default version.
+ return X86GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
+}
+
+const TargetRegisterClass *
+X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
+ const TargetRegisterClass *B,
+ unsigned SubIdx) const {
+ // The sub_8bit sub-register index is more constrained in 32-bit mode.
+ if (!Is64Bit && SubIdx == X86::sub_8bit) {
+ A = X86GenRegisterInfo::getSubClassWithSubReg(A, X86::sub_8bit_hi);
+ if (!A)
+ return nullptr;
+ }
+ return X86GenRegisterInfo::getMatchingSuperRegClass(A, B, SubIdx);
+}
+
+const TargetRegisterClass*
+X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC) const{
+ // Don't allow super-classes of GR8_NOREX. This class is only used after
+ // extrating sub_8bit_hi sub-registers. The H sub-registers cannot be copied
+ // to the full GR8 register class in 64-bit mode, so we cannot allow the
+ // reigster class inflation.
+ //
+ // The GR8_NOREX class is always used in a way that won't be constrained to a
+ // sub-class, so sub-classes like GR8_ABCD_L are allowed to expand to the
+ // full GR8 class.
+ if (RC == &X86::GR8_NOREXRegClass)
+ return RC;
+
+ const TargetRegisterClass *Super = RC;
+ TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
+ do {
+ switch (Super->getID()) {
+ case X86::GR8RegClassID:
+ case X86::GR16RegClassID:
+ case X86::GR32RegClassID:
+ case X86::GR64RegClassID:
+ case X86::FR32RegClassID:
+ case X86::FR64RegClassID:
+ case X86::RFP32RegClassID:
+ case X86::RFP64RegClassID:
+ case X86::RFP80RegClassID:
+ case X86::VR128RegClassID:
+ case X86::VR256RegClassID:
+ // Don't return a super-class that would shrink the spill size.
+ // That can happen with the vector and float classes.
+ if (Super->getSize() == RC->getSize())
+ return Super;
+ }
+ Super = *I++;
+ } while (Super);
+ return RC;
+}
+
+const TargetRegisterClass *
+X86RegisterInfo::getPointerRegClass(const MachineFunction &MF,
+ unsigned Kind) const {
+ switch (Kind) {
+ default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
+ case 0: // Normal GPRs.
+ if (Subtarget.isTarget64BitLP64())
+ return &X86::GR64RegClass;
+ return &X86::GR32RegClass;
+ case 1: // Normal GPRs except the stack pointer (for encoding reasons).
+ if (Subtarget.isTarget64BitLP64())
+ return &X86::GR64_NOSPRegClass;
+ return &X86::GR32_NOSPRegClass;
+ case 2: // Available for tailcall (not callee-saved GPRs).
+ if (Subtarget.isTargetWin64())
+ return &X86::GR64_TCW64RegClass;
+ else if (Subtarget.is64Bit())
+ return &X86::GR64_TCRegClass;
+
+ const Function *F = MF.getFunction();
+ bool hasHipeCC = (F ? F->getCallingConv() == CallingConv::HiPE : false);
+ if (hasHipeCC)
+ return &X86::GR32RegClass;
+ return &X86::GR32_TCRegClass;
+ }
+}
+
+const TargetRegisterClass *
+X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
+ if (RC == &X86::CCRRegClass) {
+ if (Is64Bit)
+ return &X86::GR64RegClass;
+ else
+ return &X86::GR32RegClass;
+ }
+ return RC;
+}
+
+unsigned
+X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
+ switch (RC->getID()) {
+ default:
+ return 0;
+ case X86::GR32RegClassID:
+ return 4 - FPDiff;
+ case X86::GR64RegClassID:
+ return 12 - FPDiff;
+ case X86::VR128RegClassID:
+ return Subtarget.is64Bit() ? 10 : 4;
+ case X86::VR64RegClassID:
+ return 4;
+ }
+}
+
+const MCPhysReg *
+X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ bool HasAVX = Subtarget.hasAVX();
+ bool HasAVX512 = Subtarget.hasAVX512();
+
+ assert(MF && "MachineFunction required");
+ switch (MF->getFunction()->getCallingConv()) {
+ case CallingConv::GHC:
+ case CallingConv::HiPE:
+ return CSR_NoRegs_SaveList;
+ case CallingConv::AnyReg:
+ if (HasAVX)
+ return CSR_64_AllRegs_AVX_SaveList;
+ return CSR_64_AllRegs_SaveList;
+ case CallingConv::PreserveMost:
+ return CSR_64_RT_MostRegs_SaveList;
+ case CallingConv::PreserveAll:
+ if (HasAVX)
+ return CSR_64_RT_AllRegs_AVX_SaveList;
+ return CSR_64_RT_AllRegs_SaveList;
+ case CallingConv::Intel_OCL_BI: {
+ if (HasAVX512 && IsWin64)
+ return CSR_Win64_Intel_OCL_BI_AVX512_SaveList;
+ if (HasAVX512 && Is64Bit)
+ return CSR_64_Intel_OCL_BI_AVX512_SaveList;
+ if (HasAVX && IsWin64)
+ return CSR_Win64_Intel_OCL_BI_AVX_SaveList;
+ if (HasAVX && Is64Bit)
+ return CSR_64_Intel_OCL_BI_AVX_SaveList;
+ if (!HasAVX && !IsWin64 && Is64Bit)
+ return CSR_64_Intel_OCL_BI_SaveList;
+ break;
+ }
+ case CallingConv::Cold:
+ if (Is64Bit)
+ return CSR_64_MostRegs_SaveList;
+ break;
+ default:
+ break;
+ }
+
+ bool CallsEHReturn = MF->getMMI().callsEHReturn();
+ if (Is64Bit) {
+ if (IsWin64)
+ return CSR_Win64_SaveList;
+ if (CallsEHReturn)
+ return CSR_64EHRet_SaveList;
+ return CSR_64_SaveList;
+ }
+ if (CallsEHReturn)
+ return CSR_32EHRet_SaveList;
+ return CSR_32_SaveList;
+}
+
+const uint32_t*
+X86RegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
+ bool HasAVX = Subtarget.hasAVX();
+ bool HasAVX512 = Subtarget.hasAVX512();
+
+ switch (CC) {
+ case CallingConv::GHC:
+ case CallingConv::HiPE:
+ return CSR_NoRegs_RegMask;
+ case CallingConv::AnyReg:
+ if (HasAVX)
+ return CSR_64_AllRegs_AVX_RegMask;
+ return CSR_64_AllRegs_RegMask;
+ case CallingConv::PreserveMost:
+ return CSR_64_RT_MostRegs_RegMask;
+ case CallingConv::PreserveAll:
+ if (HasAVX)
+ return CSR_64_RT_AllRegs_AVX_RegMask;
+ return CSR_64_RT_AllRegs_RegMask;
+ case CallingConv::Intel_OCL_BI: {
+ if (HasAVX512 && IsWin64)
+ return CSR_Win64_Intel_OCL_BI_AVX512_RegMask;
+ if (HasAVX512 && Is64Bit)
+ return CSR_64_Intel_OCL_BI_AVX512_RegMask;
+ if (HasAVX && IsWin64)
+ return CSR_Win64_Intel_OCL_BI_AVX_RegMask;
+ if (HasAVX && Is64Bit)
+ return CSR_64_Intel_OCL_BI_AVX_RegMask;
+ if (!HasAVX && !IsWin64 && Is64Bit)
+ return CSR_64_Intel_OCL_BI_RegMask;
+ break;
+ }
+ case CallingConv::Cold:
+ if (Is64Bit)
+ return CSR_64_MostRegs_RegMask;
+ break;
+ default:
+ break;
+ }
+
+ // Unlike getCalleeSavedRegs(), we don't have MMI so we can't check
+ // callsEHReturn().
+ if (Is64Bit) {
+ if (IsWin64)
+ return CSR_Win64_RegMask;
+ return CSR_64_RegMask;
+ }
+ return CSR_32_RegMask;
+}
+
+const uint32_t*
+X86RegisterInfo::getNoPreservedMask() const {
+ return CSR_NoRegs_RegMask;
+}
+
+BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ BitVector Reserved(getNumRegs());
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ // Set the stack-pointer register and its aliases as reserved.
+ for (MCSubRegIterator I(X86::RSP, this, /*IncludeSelf=*/true); I.isValid();
+ ++I)
+ Reserved.set(*I);
+
+ // Set the instruction pointer register and its aliases as reserved.
+ for (MCSubRegIterator I(X86::RIP, this, /*IncludeSelf=*/true); I.isValid();
+ ++I)
+ Reserved.set(*I);
+
+ // Set the frame-pointer register and its aliases as reserved if needed.
+ if (TFI->hasFP(MF)) {
+ for (MCSubRegIterator I(X86::RBP, this, /*IncludeSelf=*/true); I.isValid();
+ ++I)
+ Reserved.set(*I);
+ }
+
+ // Set the base-pointer register and its aliases as reserved if needed.
+ if (hasBasePointer(MF)) {
+ CallingConv::ID CC = MF.getFunction()->getCallingConv();
+ const uint32_t* RegMask = getCallPreservedMask(CC);
+ if (MachineOperand::clobbersPhysReg(RegMask, getBaseRegister()))
+ report_fatal_error(
+ "Stack realignment in presence of dynamic allocas is not supported with"
+ "this calling convention.");
+
+ for (MCSubRegIterator I(getBaseRegister(), this, /*IncludeSelf=*/true);
+ I.isValid(); ++I)
+ Reserved.set(*I);
+ }
+
+ // Mark the segment registers as reserved.
+ Reserved.set(X86::CS);
+ Reserved.set(X86::SS);
+ Reserved.set(X86::DS);
+ Reserved.set(X86::ES);
+ Reserved.set(X86::FS);
+ Reserved.set(X86::GS);
+
+ // Mark the floating point stack registers as reserved.
+ for (unsigned n = 0; n != 8; ++n)
+ Reserved.set(X86::ST0 + n);
+
+ // Reserve the registers that only exist in 64-bit mode.
+ if (!Is64Bit) {
+ // These 8-bit registers are part of the x86-64 extension even though their
+ // super-registers are old 32-bits.
+ Reserved.set(X86::SIL);
+ Reserved.set(X86::DIL);
+ Reserved.set(X86::BPL);
+ Reserved.set(X86::SPL);
+
+ for (unsigned n = 0; n != 8; ++n) {
+ // R8, R9, ...
+ for (MCRegAliasIterator AI(X86::R8 + n, this, true); AI.isValid(); ++AI)
+ Reserved.set(*AI);
+
+ // XMM8, XMM9, ...
+ for (MCRegAliasIterator AI(X86::XMM8 + n, this, true); AI.isValid(); ++AI)
+ Reserved.set(*AI);
+ }
+ }
+ if (!Is64Bit || !Subtarget.hasAVX512()) {
+ for (unsigned n = 16; n != 32; ++n) {
+ for (MCRegAliasIterator AI(X86::XMM0 + n, this, true); AI.isValid(); ++AI)
+ Reserved.set(*AI);
+ }
+ }
+
+ return Reserved;
+}
+
+//===----------------------------------------------------------------------===//
+// Stack Frame Processing methods
+//===----------------------------------------------------------------------===//
+
+bool X86RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ if (!EnableBasePointer)
+ return false;
+
+ // When we need stack realignment, we can't address the stack from the frame
+ // pointer. When we have dynamic allocas or stack-adjusting inline asm, we
+ // can't address variables from the stack pointer. MS inline asm can
+ // reference locals while also adjusting the stack pointer. When we can't
+ // use both the SP and the FP, we need a separate base pointer register.
+ bool CantUseFP = needsStackRealignment(MF);
+ bool CantUseSP =
+ MFI->hasVarSizedObjects() || MFI->hasInlineAsmWithSPAdjust();
+ return CantUseFP && CantUseSP;
+}
+
+bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
+ if (MF.getFunction()->hasFnAttribute("no-realign-stack"))
+ return false;
+
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineRegisterInfo *MRI = &MF.getRegInfo();
+
+ // Stack realignment requires a frame pointer. If we already started
+ // register allocation with frame pointer elimination, it is too late now.
+ if (!MRI->canReserveReg(FramePtr))
+ return false;
+
+ // If a base pointer is necessary. Check that it isn't too late to reserve
+ // it.
+ if (MFI->hasVarSizedObjects())
+ return MRI->canReserveReg(BasePtr);
+ return true;
+}
+
+bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const Function *F = MF.getFunction();
+ unsigned StackAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
+ bool requiresRealignment =
+ ((MFI->getMaxAlignment() > StackAlign) ||
+ F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::StackAlignment));
+
+ // If we've requested that we force align the stack do so now.
+ if (ForceStackAlign)
+ return canRealignStack(MF);
+
+ return requiresRealignment && canRealignStack(MF);
+}
+
+bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
+ unsigned Reg, int &FrameIdx) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ if (Reg == FramePtr && TFI->hasFP(MF)) {
+ FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
+ return true;
+ }
+ return false;
+}
+
+void
+X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ assert(SPAdj == 0 && "Unexpected");
+
+ MachineInstr &MI = *II;
+ MachineFunction &MF = *MI.getParent()->getParent();
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
+ unsigned BasePtr;
+
+ unsigned Opc = MI.getOpcode();
+ bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm;
+ if (hasBasePointer(MF))
+ BasePtr = (FrameIndex < 0 ? FramePtr : getBaseRegister());
+ else if (needsStackRealignment(MF))
+ BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
+ else if (AfterFPPop)
+ BasePtr = StackPtr;
+ else
+ BasePtr = (TFI->hasFP(MF) ? FramePtr : StackPtr);
+
+ // This must be part of a four operand memory reference. Replace the
+ // FrameIndex with base register with EBP. Add an offset to the offset.
+ MI.getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
+
+ // Now add the frame object offset to the offset from EBP.
+ int FIOffset;
+ if (AfterFPPop) {
+ // Tail call jmp happens after FP is popped.
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ FIOffset = MFI->getObjectOffset(FrameIndex) - TFI->getOffsetOfLocalArea();
+ } else
+ FIOffset = TFI->getFrameIndexOffset(MF, FrameIndex);
+
+ // The frame index format for stackmaps and patchpoints is different from the
+ // X86 format. It only has a FI and an offset.
+ if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
+ assert(BasePtr == FramePtr && "Expected the FP as base register");
+ int64_t Offset = MI.getOperand(FIOperandNum + 1).getImm() + FIOffset;
+ MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
+ return;
+ }
+
+ if (MI.getOperand(FIOperandNum+3).isImm()) {
+ // Offset is a 32-bit integer.
+ int Imm = (int)(MI.getOperand(FIOperandNum + 3).getImm());
+ int Offset = FIOffset + Imm;
+ assert((!Is64Bit || isInt<32>((long long)FIOffset + Imm)) &&
+ "Requesting 64-bit offset in 32-bit immediate!");
+ MI.getOperand(FIOperandNum + 3).ChangeToImmediate(Offset);
+ } else {
+ // Offset is symbolic. This is extremely rare.
+ uint64_t Offset = FIOffset +
+ (uint64_t)MI.getOperand(FIOperandNum+3).getOffset();
+ MI.getOperand(FIOperandNum + 3).setOffset(Offset);
+ }
+}
+
+unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ return TFI->hasFP(MF) ? FramePtr : StackPtr;
+}
+
+namespace llvm {
+unsigned getX86SubSuperRegister(unsigned Reg, MVT::SimpleValueType VT,
+ bool High) {
+ switch (VT) {
+ default: llvm_unreachable("Unexpected VT");
+ case MVT::i8:
+ if (High) {
+ switch (Reg) {
+ default: return getX86SubSuperRegister(Reg, MVT::i64);
+ case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
+ return X86::SI;
+ case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
+ return X86::DI;
+ case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
+ return X86::BP;
+ case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
+ return X86::SP;
+ case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
+ return X86::AH;
+ case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
+ return X86::DH;
+ case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
+ return X86::CH;
+ case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
+ return X86::BH;
+ }
+ } else {
+ switch (Reg) {
+ default: llvm_unreachable("Unexpected register");
+ case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
+ return X86::AL;
+ case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
+ return X86::DL;
+ case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
+ return X86::CL;
+ case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
+ return X86::BL;
+ case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
+ return X86::SIL;
+ case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
+ return X86::DIL;
+ case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
+ return X86::BPL;
+ case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
+ return X86::SPL;
+ case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
+ return X86::R8B;
+ case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
+ return X86::R9B;
+ case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
+ return X86::R10B;
+ case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
+ return X86::R11B;
+ case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
+ return X86::R12B;
+ case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
+ return X86::R13B;
+ case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
+ return X86::R14B;
+ case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
+ return X86::R15B;
+ }
+ }
+ case MVT::i16:
+ switch (Reg) {
+ default: llvm_unreachable("Unexpected register");
+ case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
+ return X86::AX;
+ case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
+ return X86::DX;
+ case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
+ return X86::CX;
+ case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
+ return X86::BX;
+ case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
+ return X86::SI;
+ case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
+ return X86::DI;
+ case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
+ return X86::BP;
+ case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
+ return X86::SP;
+ case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
+ return X86::R8W;
+ case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
+ return X86::R9W;
+ case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
+ return X86::R10W;
+ case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
+ return X86::R11W;
+ case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
+ return X86::R12W;
+ case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
+ return X86::R13W;
+ case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
+ return X86::R14W;
+ case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
+ return X86::R15W;
+ }
+ case MVT::i32:
+ switch (Reg) {
+ default: llvm_unreachable("Unexpected register");
+ case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
+ return X86::EAX;
+ case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
+ return X86::EDX;
+ case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
+ return X86::ECX;
+ case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
+ return X86::EBX;
+ case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
+ return X86::ESI;
+ case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
+ return X86::EDI;
+ case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
+ return X86::EBP;
+ case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
+ return X86::ESP;
+ case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
+ return X86::R8D;
+ case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
+ return X86::R9D;
+ case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
+ return X86::R10D;
+ case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
+ return X86::R11D;
+ case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
+ return X86::R12D;
+ case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
+ return X86::R13D;
+ case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
+ return X86::R14D;
+ case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
+ return X86::R15D;
+ }
+ case MVT::i64:
+ switch (Reg) {
+ default: llvm_unreachable("Unexpected register");
+ case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
+ return X86::RAX;
+ case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
+ return X86::RDX;
+ case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
+ return X86::RCX;
+ case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
+ return X86::RBX;
+ case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
+ return X86::RSI;
+ case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
+ return X86::RDI;
+ case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
+ return X86::RBP;
+ case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
+ return X86::RSP;
+ case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
+ return X86::R8;
+ case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
+ return X86::R9;
+ case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
+ return X86::R10;
+ case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
+ return X86::R11;
+ case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
+ return X86::R12;
+ case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
+ return X86::R13;
+ case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
+ return X86::R14;
+ case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
+ return X86::R15;
+ }
+ }
+}
+
+unsigned get512BitSuperRegister(unsigned Reg) {
+ if (Reg >= X86::XMM0 && Reg <= X86::XMM31)
+ return X86::ZMM0 + (Reg - X86::XMM0);
+ if (Reg >= X86::YMM0 && Reg <= X86::YMM31)
+ return X86::ZMM0 + (Reg - X86::YMM0);
+ if (Reg >= X86::ZMM0 && Reg <= X86::ZMM31)
+ return Reg;
+ llvm_unreachable("Unexpected SIMD register");
+}
+
+}
diff --git a/contrib/llvm/lib/Target/X86/X86RegisterInfo.h b/contrib/llvm/lib/Target/X86/X86RegisterInfo.h
new file mode 100644
index 0000000..74efd1f
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86RegisterInfo.h
@@ -0,0 +1,141 @@
+//===-- X86RegisterInfo.h - X86 Register Information Impl -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86REGISTERINFO_H
+#define X86REGISTERINFO_H
+
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define GET_REGINFO_HEADER
+#include "X86GenRegisterInfo.inc"
+
+namespace llvm {
+ class Type;
+ class TargetInstrInfo;
+ class X86Subtarget;
+
+class X86RegisterInfo final : public X86GenRegisterInfo {
+public:
+ const X86Subtarget &Subtarget;
+
+private:
+ /// Is64Bit - Is the target 64-bits.
+ ///
+ bool Is64Bit;
+
+ /// IsWin64 - Is the target on of win64 flavours
+ ///
+ bool IsWin64;
+
+ /// SlotSize - Stack slot size in bytes.
+ ///
+ unsigned SlotSize;
+
+ /// StackPtr - X86 physical register used as stack ptr.
+ ///
+ unsigned StackPtr;
+
+ /// FramePtr - X86 physical register used as frame ptr.
+ ///
+ unsigned FramePtr;
+
+ /// BasePtr - X86 physical register used as a base ptr in complex stack
+ /// frames. I.e., when we need a 3rd base, not just SP and FP, due to
+ /// variable size stack objects.
+ unsigned BasePtr;
+
+public:
+ X86RegisterInfo(const X86Subtarget &STI);
+
+ // FIXME: This should be tablegen'd like getDwarfRegNum is
+ int getSEHRegNum(unsigned i) const;
+
+ /// Code Generation virtual methods...
+ ///
+ bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const override;
+
+ /// getMatchingSuperRegClass - Return a subclass of the specified register
+ /// class A so that each register in it has a sub-register of the
+ /// specified sub-register index which is in the specified register class B.
+ const TargetRegisterClass *
+ getMatchingSuperRegClass(const TargetRegisterClass *A,
+ const TargetRegisterClass *B,
+ unsigned Idx) const override;
+
+ const TargetRegisterClass *
+ getSubClassWithSubReg(const TargetRegisterClass *RC,
+ unsigned Idx) const override;
+
+ const TargetRegisterClass*
+ getLargestLegalSuperClass(const TargetRegisterClass *RC) const override;
+
+ /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
+ /// values.
+ const TargetRegisterClass *
+ getPointerRegClass(const MachineFunction &MF,
+ unsigned Kind = 0) const override;
+
+ /// getCrossCopyRegClass - Returns a legal register class to copy a register
+ /// in the specified class to or from. Returns NULL if it is possible to copy
+ /// between a two registers of the specified class.
+ const TargetRegisterClass *
+ getCrossCopyRegClass(const TargetRegisterClass *RC) const override;
+
+ unsigned getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const override;
+
+ /// getCalleeSavedRegs - Return a null-terminated list of all of the
+ /// callee-save registers on this target.
+ const MCPhysReg *
+ getCalleeSavedRegs(const MachineFunction* MF) const override;
+ const uint32_t *getCallPreservedMask(CallingConv::ID) const override;
+ const uint32_t *getNoPreservedMask() const;
+
+ /// getReservedRegs - Returns a bitset indexed by physical register number
+ /// indicating if a register is a special register that has particular uses and
+ /// should be considered unavailable at all times, e.g. SP, RA. This is used by
+ /// register scavenger to determine what registers are free.
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+
+ bool hasBasePointer(const MachineFunction &MF) const;
+
+ bool canRealignStack(const MachineFunction &MF) const;
+
+ bool needsStackRealignment(const MachineFunction &MF) const override;
+
+ bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
+ int &FrameIdx) const override;
+
+ void eliminateFrameIndex(MachineBasicBlock::iterator MI,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const override;
+
+ // Debug information queries.
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+ unsigned getStackRegister() const { return StackPtr; }
+ unsigned getBaseRegister() const { return BasePtr; }
+ // FIXME: Move to FrameInfok
+ unsigned getSlotSize() const { return SlotSize; }
+};
+
+// getX86SubSuperRegister - X86 utility function. It returns the sub or super
+// register of a specific X86 register.
+// e.g. getX86SubSuperRegister(X86::EAX, MVT::i16) return X86:AX
+unsigned getX86SubSuperRegister(unsigned, MVT::SimpleValueType, bool High=false);
+
+//get512BitRegister - X86 utility - returns 512-bit super register
+unsigned get512BitSuperRegister(unsigned Reg);
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86RegisterInfo.td b/contrib/llvm/lib/Target/X86/X86RegisterInfo.td
new file mode 100644
index 0000000..0da9863
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86RegisterInfo.td
@@ -0,0 +1,481 @@
+//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the X86 Register file, defining the registers themselves,
+// aliases between the registers, and the register classes built out of the
+// registers.
+//
+//===----------------------------------------------------------------------===//
+
+class X86Reg<string n, bits<16> Enc, list<Register> subregs = []> : Register<n> {
+ let Namespace = "X86";
+ let HWEncoding = Enc;
+ let SubRegs = subregs;
+}
+
+// Subregister indices.
+let Namespace = "X86" in {
+ def sub_8bit : SubRegIndex<8>;
+ def sub_8bit_hi : SubRegIndex<8, 8>;
+ def sub_16bit : SubRegIndex<16>;
+ def sub_32bit : SubRegIndex<32>;
+ def sub_xmm : SubRegIndex<128>;
+ def sub_ymm : SubRegIndex<256>;
+}
+
+//===----------------------------------------------------------------------===//
+// Register definitions...
+//
+
+// In the register alias definitions below, we define which registers alias
+// which others. We only specify which registers the small registers alias,
+// because the register file generator is smart enough to figure out that
+// AL aliases AX if we tell it that AX aliased AL (for example).
+
+// Dwarf numbering is different for 32-bit and 64-bit, and there are
+// variations by target as well. Currently the first entry is for X86-64,
+// second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux
+// and debug information on X86-32/Darwin)
+
+// 8-bit registers
+// Low registers
+def AL : X86Reg<"al", 0>;
+def DL : X86Reg<"dl", 2>;
+def CL : X86Reg<"cl", 1>;
+def BL : X86Reg<"bl", 3>;
+
+// High registers. On x86-64, these cannot be used in any instruction
+// with a REX prefix.
+def AH : X86Reg<"ah", 4>;
+def DH : X86Reg<"dh", 6>;
+def CH : X86Reg<"ch", 5>;
+def BH : X86Reg<"bh", 7>;
+
+// X86-64 only, requires REX.
+let CostPerUse = 1 in {
+def SIL : X86Reg<"sil", 6>;
+def DIL : X86Reg<"dil", 7>;
+def BPL : X86Reg<"bpl", 5>;
+def SPL : X86Reg<"spl", 4>;
+def R8B : X86Reg<"r8b", 8>;
+def R9B : X86Reg<"r9b", 9>;
+def R10B : X86Reg<"r10b", 10>;
+def R11B : X86Reg<"r11b", 11>;
+def R12B : X86Reg<"r12b", 12>;
+def R13B : X86Reg<"r13b", 13>;
+def R14B : X86Reg<"r14b", 14>;
+def R15B : X86Reg<"r15b", 15>;
+}
+
+// 16-bit registers
+let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in {
+def AX : X86Reg<"ax", 0, [AL,AH]>;
+def DX : X86Reg<"dx", 2, [DL,DH]>;
+def CX : X86Reg<"cx", 1, [CL,CH]>;
+def BX : X86Reg<"bx", 3, [BL,BH]>;
+}
+let SubRegIndices = [sub_8bit] in {
+def SI : X86Reg<"si", 6, [SIL]>;
+def DI : X86Reg<"di", 7, [DIL]>;
+def BP : X86Reg<"bp", 5, [BPL]>;
+def SP : X86Reg<"sp", 4, [SPL]>;
+}
+def IP : X86Reg<"ip", 0>;
+
+// X86-64 only, requires REX.
+let SubRegIndices = [sub_8bit], CostPerUse = 1 in {
+def R8W : X86Reg<"r8w", 8, [R8B]>;
+def R9W : X86Reg<"r9w", 9, [R9B]>;
+def R10W : X86Reg<"r10w", 10, [R10B]>;
+def R11W : X86Reg<"r11w", 11, [R11B]>;
+def R12W : X86Reg<"r12w", 12, [R12B]>;
+def R13W : X86Reg<"r13w", 13, [R13B]>;
+def R14W : X86Reg<"r14w", 14, [R14B]>;
+def R15W : X86Reg<"r15w", 15, [R15B]>;
+}
+
+// 32-bit registers
+let SubRegIndices = [sub_16bit] in {
+def EAX : X86Reg<"eax", 0, [AX]>, DwarfRegNum<[-2, 0, 0]>;
+def EDX : X86Reg<"edx", 2, [DX]>, DwarfRegNum<[-2, 2, 2]>;
+def ECX : X86Reg<"ecx", 1, [CX]>, DwarfRegNum<[-2, 1, 1]>;
+def EBX : X86Reg<"ebx", 3, [BX]>, DwarfRegNum<[-2, 3, 3]>;
+def ESI : X86Reg<"esi", 6, [SI]>, DwarfRegNum<[-2, 6, 6]>;
+def EDI : X86Reg<"edi", 7, [DI]>, DwarfRegNum<[-2, 7, 7]>;
+def EBP : X86Reg<"ebp", 5, [BP]>, DwarfRegNum<[-2, 4, 5]>;
+def ESP : X86Reg<"esp", 4, [SP]>, DwarfRegNum<[-2, 5, 4]>;
+def EIP : X86Reg<"eip", 0, [IP]>, DwarfRegNum<[-2, 8, 8]>;
+
+// X86-64 only, requires REX
+let CostPerUse = 1 in {
+def R8D : X86Reg<"r8d", 8, [R8W]>;
+def R9D : X86Reg<"r9d", 9, [R9W]>;
+def R10D : X86Reg<"r10d", 10, [R10W]>;
+def R11D : X86Reg<"r11d", 11, [R11W]>;
+def R12D : X86Reg<"r12d", 12, [R12W]>;
+def R13D : X86Reg<"r13d", 13, [R13W]>;
+def R14D : X86Reg<"r14d", 14, [R14W]>;
+def R15D : X86Reg<"r15d", 15, [R15W]>;
+}}
+
+// 64-bit registers, X86-64 only
+let SubRegIndices = [sub_32bit] in {
+def RAX : X86Reg<"rax", 0, [EAX]>, DwarfRegNum<[0, -2, -2]>;
+def RDX : X86Reg<"rdx", 2, [EDX]>, DwarfRegNum<[1, -2, -2]>;
+def RCX : X86Reg<"rcx", 1, [ECX]>, DwarfRegNum<[2, -2, -2]>;
+def RBX : X86Reg<"rbx", 3, [EBX]>, DwarfRegNum<[3, -2, -2]>;
+def RSI : X86Reg<"rsi", 6, [ESI]>, DwarfRegNum<[4, -2, -2]>;
+def RDI : X86Reg<"rdi", 7, [EDI]>, DwarfRegNum<[5, -2, -2]>;
+def RBP : X86Reg<"rbp", 5, [EBP]>, DwarfRegNum<[6, -2, -2]>;
+def RSP : X86Reg<"rsp", 4, [ESP]>, DwarfRegNum<[7, -2, -2]>;
+
+// These also require REX.
+let CostPerUse = 1 in {
+def R8 : X86Reg<"r8", 8, [R8D]>, DwarfRegNum<[ 8, -2, -2]>;
+def R9 : X86Reg<"r9", 9, [R9D]>, DwarfRegNum<[ 9, -2, -2]>;
+def R10 : X86Reg<"r10", 10, [R10D]>, DwarfRegNum<[10, -2, -2]>;
+def R11 : X86Reg<"r11", 11, [R11D]>, DwarfRegNum<[11, -2, -2]>;
+def R12 : X86Reg<"r12", 12, [R12D]>, DwarfRegNum<[12, -2, -2]>;
+def R13 : X86Reg<"r13", 13, [R13D]>, DwarfRegNum<[13, -2, -2]>;
+def R14 : X86Reg<"r14", 14, [R14D]>, DwarfRegNum<[14, -2, -2]>;
+def R15 : X86Reg<"r15", 15, [R15D]>, DwarfRegNum<[15, -2, -2]>;
+def RIP : X86Reg<"rip", 0, [EIP]>, DwarfRegNum<[16, -2, -2]>;
+}}
+
+// MMX Registers. These are actually aliased to ST0 .. ST7
+def MM0 : X86Reg<"mm0", 0>, DwarfRegNum<[41, 29, 29]>;
+def MM1 : X86Reg<"mm1", 1>, DwarfRegNum<[42, 30, 30]>;
+def MM2 : X86Reg<"mm2", 2>, DwarfRegNum<[43, 31, 31]>;
+def MM3 : X86Reg<"mm3", 3>, DwarfRegNum<[44, 32, 32]>;
+def MM4 : X86Reg<"mm4", 4>, DwarfRegNum<[45, 33, 33]>;
+def MM5 : X86Reg<"mm5", 5>, DwarfRegNum<[46, 34, 34]>;
+def MM6 : X86Reg<"mm6", 6>, DwarfRegNum<[47, 35, 35]>;
+def MM7 : X86Reg<"mm7", 7>, DwarfRegNum<[48, 36, 36]>;
+
+// Pseudo Floating Point registers
+def FP0 : X86Reg<"fp0", 0>;
+def FP1 : X86Reg<"fp1", 0>;
+def FP2 : X86Reg<"fp2", 0>;
+def FP3 : X86Reg<"fp3", 0>;
+def FP4 : X86Reg<"fp4", 0>;
+def FP5 : X86Reg<"fp5", 0>;
+def FP6 : X86Reg<"fp6", 0>;
+
+// XMM Registers, used by the various SSE instruction set extensions.
+def XMM0: X86Reg<"xmm0", 0>, DwarfRegNum<[17, 21, 21]>;
+def XMM1: X86Reg<"xmm1", 1>, DwarfRegNum<[18, 22, 22]>;
+def XMM2: X86Reg<"xmm2", 2>, DwarfRegNum<[19, 23, 23]>;
+def XMM3: X86Reg<"xmm3", 3>, DwarfRegNum<[20, 24, 24]>;
+def XMM4: X86Reg<"xmm4", 4>, DwarfRegNum<[21, 25, 25]>;
+def XMM5: X86Reg<"xmm5", 5>, DwarfRegNum<[22, 26, 26]>;
+def XMM6: X86Reg<"xmm6", 6>, DwarfRegNum<[23, 27, 27]>;
+def XMM7: X86Reg<"xmm7", 7>, DwarfRegNum<[24, 28, 28]>;
+
+// X86-64 only
+let CostPerUse = 1 in {
+def XMM8: X86Reg<"xmm8", 8>, DwarfRegNum<[25, -2, -2]>;
+def XMM9: X86Reg<"xmm9", 9>, DwarfRegNum<[26, -2, -2]>;
+def XMM10: X86Reg<"xmm10", 10>, DwarfRegNum<[27, -2, -2]>;
+def XMM11: X86Reg<"xmm11", 11>, DwarfRegNum<[28, -2, -2]>;
+def XMM12: X86Reg<"xmm12", 12>, DwarfRegNum<[29, -2, -2]>;
+def XMM13: X86Reg<"xmm13", 13>, DwarfRegNum<[30, -2, -2]>;
+def XMM14: X86Reg<"xmm14", 14>, DwarfRegNum<[31, -2, -2]>;
+def XMM15: X86Reg<"xmm15", 15>, DwarfRegNum<[32, -2, -2]>;
+
+def XMM16: X86Reg<"xmm16", 16>, DwarfRegNum<[60, -2, -2]>;
+def XMM17: X86Reg<"xmm17", 17>, DwarfRegNum<[61, -2, -2]>;
+def XMM18: X86Reg<"xmm18", 18>, DwarfRegNum<[62, -2, -2]>;
+def XMM19: X86Reg<"xmm19", 19>, DwarfRegNum<[63, -2, -2]>;
+def XMM20: X86Reg<"xmm20", 20>, DwarfRegNum<[64, -2, -2]>;
+def XMM21: X86Reg<"xmm21", 21>, DwarfRegNum<[65, -2, -2]>;
+def XMM22: X86Reg<"xmm22", 22>, DwarfRegNum<[66, -2, -2]>;
+def XMM23: X86Reg<"xmm23", 23>, DwarfRegNum<[67, -2, -2]>;
+def XMM24: X86Reg<"xmm24", 24>, DwarfRegNum<[68, -2, -2]>;
+def XMM25: X86Reg<"xmm25", 25>, DwarfRegNum<[69, -2, -2]>;
+def XMM26: X86Reg<"xmm26", 26>, DwarfRegNum<[70, -2, -2]>;
+def XMM27: X86Reg<"xmm27", 27>, DwarfRegNum<[71, -2, -2]>;
+def XMM28: X86Reg<"xmm28", 28>, DwarfRegNum<[72, -2, -2]>;
+def XMM29: X86Reg<"xmm29", 29>, DwarfRegNum<[73, -2, -2]>;
+def XMM30: X86Reg<"xmm30", 30>, DwarfRegNum<[74, -2, -2]>;
+def XMM31: X86Reg<"xmm31", 31>, DwarfRegNum<[75, -2, -2]>;
+
+} // CostPerUse
+
+// YMM0-15 registers, used by AVX instructions and
+// YMM16-31 registers, used by AVX-512 instructions.
+let SubRegIndices = [sub_xmm] in {
+ foreach Index = 0-31 in {
+ def YMM#Index : X86Reg<"ymm"#Index, Index, [!cast<X86Reg>("XMM"#Index)]>,
+ DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
+ }
+}
+
+// ZMM Registers, used by AVX-512 instructions.
+let SubRegIndices = [sub_ymm] in {
+ foreach Index = 0-31 in {
+ def ZMM#Index : X86Reg<"zmm"#Index, Index, [!cast<X86Reg>("YMM"#Index)]>,
+ DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
+ }
+}
+
+ // Mask Registers, used by AVX-512 instructions.
+ def K0 : X86Reg<"k0", 0>, DwarfRegNum<[118, -2, -2]>;
+ def K1 : X86Reg<"k1", 1>, DwarfRegNum<[119, -2, -2]>;
+ def K2 : X86Reg<"k2", 2>, DwarfRegNum<[120, -2, -2]>;
+ def K3 : X86Reg<"k3", 3>, DwarfRegNum<[121, -2, -2]>;
+ def K4 : X86Reg<"k4", 4>, DwarfRegNum<[122, -2, -2]>;
+ def K5 : X86Reg<"k5", 5>, DwarfRegNum<[123, -2, -2]>;
+ def K6 : X86Reg<"k6", 6>, DwarfRegNum<[124, -2, -2]>;
+ def K7 : X86Reg<"k7", 7>, DwarfRegNum<[125, -2, -2]>;
+
+class STRegister<string n, bits<16> Enc, list<Register> A> : X86Reg<n, Enc> {
+ let Aliases = A;
+}
+
+// Floating point stack registers. These don't map one-to-one to the FP
+// pseudo registers, but we still mark them as aliasing FP registers. That
+// way both kinds can be live without exceeding the stack depth. ST registers
+// are only live around inline assembly.
+def ST0 : STRegister<"st(0)", 0, []>, DwarfRegNum<[33, 12, 11]>;
+def ST1 : STRegister<"st(1)", 1, [FP6]>, DwarfRegNum<[34, 13, 12]>;
+def ST2 : STRegister<"st(2)", 2, [FP5]>, DwarfRegNum<[35, 14, 13]>;
+def ST3 : STRegister<"st(3)", 3, [FP4]>, DwarfRegNum<[36, 15, 14]>;
+def ST4 : STRegister<"st(4)", 4, [FP3]>, DwarfRegNum<[37, 16, 15]>;
+def ST5 : STRegister<"st(5)", 5, [FP2]>, DwarfRegNum<[38, 17, 16]>;
+def ST6 : STRegister<"st(6)", 6, [FP1]>, DwarfRegNum<[39, 18, 17]>;
+def ST7 : STRegister<"st(7)", 7, [FP0]>, DwarfRegNum<[40, 19, 18]>;
+
+// Floating-point status word
+def FPSW : X86Reg<"fpsw", 0>;
+
+// Status flags register
+def EFLAGS : X86Reg<"flags", 0>;
+
+// Segment registers
+def CS : X86Reg<"cs", 1>;
+def DS : X86Reg<"ds", 3>;
+def SS : X86Reg<"ss", 2>;
+def ES : X86Reg<"es", 0>;
+def FS : X86Reg<"fs", 4>;
+def GS : X86Reg<"gs", 5>;
+
+// Debug registers
+def DR0 : X86Reg<"dr0", 0>;
+def DR1 : X86Reg<"dr1", 1>;
+def DR2 : X86Reg<"dr2", 2>;
+def DR3 : X86Reg<"dr3", 3>;
+def DR4 : X86Reg<"dr4", 4>;
+def DR5 : X86Reg<"dr5", 5>;
+def DR6 : X86Reg<"dr6", 6>;
+def DR7 : X86Reg<"dr7", 7>;
+
+// Control registers
+def CR0 : X86Reg<"cr0", 0>;
+def CR1 : X86Reg<"cr1", 1>;
+def CR2 : X86Reg<"cr2", 2>;
+def CR3 : X86Reg<"cr3", 3>;
+def CR4 : X86Reg<"cr4", 4>;
+def CR5 : X86Reg<"cr5", 5>;
+def CR6 : X86Reg<"cr6", 6>;
+def CR7 : X86Reg<"cr7", 7>;
+def CR8 : X86Reg<"cr8", 8>;
+def CR9 : X86Reg<"cr9", 9>;
+def CR10 : X86Reg<"cr10", 10>;
+def CR11 : X86Reg<"cr11", 11>;
+def CR12 : X86Reg<"cr12", 12>;
+def CR13 : X86Reg<"cr13", 13>;
+def CR14 : X86Reg<"cr14", 14>;
+def CR15 : X86Reg<"cr15", 15>;
+
+// Pseudo index registers
+def EIZ : X86Reg<"eiz", 4>;
+def RIZ : X86Reg<"riz", 4>;
+
+
+//===----------------------------------------------------------------------===//
+// Register Class Definitions... now that we have all of the pieces, define the
+// top-level register classes. The order specified in the register list is
+// implicitly defined to be the register allocation order.
+//
+
+// List call-clobbered registers before callee-save registers. RBX, RBP, (and
+// R12, R13, R14, and R15 for X86-64) are callee-save registers.
+// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
+// R8B, ... R15B.
+// Allocate R12 and R13 last, as these require an extra byte when
+// encoded in x86_64 instructions.
+// FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in
+// 64-bit mode. The main complication is that they cannot be encoded in an
+// instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc.
+// require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
+// cannot be encoded.
+def GR8 : RegisterClass<"X86", [i8], 8,
+ (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
+ R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> {
+ let AltOrders = [(sub GR8, AH, BH, CH, DH)];
+ let AltOrderSelect = [{
+ return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit();
+ }];
+}
+
+def GR16 : RegisterClass<"X86", [i16], 16,
+ (add AX, CX, DX, SI, DI, BX, BP, SP,
+ R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)>;
+
+def GR32 : RegisterClass<"X86", [i32], 32,
+ (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
+ R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)>;
+
+// GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
+// RIP isn't really a register and it can't be used anywhere except in an
+// address, but it doesn't cause trouble.
+def GR64 : RegisterClass<"X86", [i64], 64,
+ (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
+ RBX, R14, R15, R12, R13, RBP, RSP, RIP)>;
+
+// Segment registers for use by MOV instructions (and others) that have a
+// segment register as one operand. Always contain a 16-bit segment
+// descriptor.
+def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>;
+
+// Debug registers.
+def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 7)>;
+
+// Control registers.
+def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>;
+
+// GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
+// GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
+// registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers
+// that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD,
+// and GR64_ABCD are classes for registers that support 8-bit h-register
+// operations.
+def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>;
+def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>;
+def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)>;
+def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)>;
+def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)>;
+def GR32_TC : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX)>;
+def GR64_TC : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI,
+ R8, R9, R11, RIP)>;
+def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX,
+ R8, R9, R11)>;
+
+// GR8_NOREX - GR8 registers which do not require a REX prefix.
+def GR8_NOREX : RegisterClass<"X86", [i8], 8,
+ (add AL, CL, DL, AH, CH, DH, BL, BH)> {
+ let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)];
+ let AltOrderSelect = [{
+ return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit();
+ }];
+}
+// GR16_NOREX - GR16 registers which do not require a REX prefix.
+def GR16_NOREX : RegisterClass<"X86", [i16], 16,
+ (add AX, CX, DX, SI, DI, BX, BP, SP)>;
+// GR32_NOREX - GR32 registers which do not require a REX prefix.
+def GR32_NOREX : RegisterClass<"X86", [i32], 32,
+ (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)>;
+// GR64_NOREX - GR64 registers which do not require a REX prefix.
+def GR64_NOREX : RegisterClass<"X86", [i64], 64,
+ (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)>;
+
+// GR32_NOAX - GR32 registers except EAX. Used by AddRegFrm of XCHG32 in 64-bit
+// mode to prevent encoding using the 0x90 NOP encoding. xchg %eax, %eax needs
+// to clear upper 32-bits of RAX so is not a NOP.
+def GR32_NOAX : RegisterClass<"X86", [i32], 32, (sub GR32, EAX)>;
+
+// GR32_NOSP - GR32 registers except ESP.
+def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;
+
+// GR64_NOSP - GR64 registers except RSP (and RIP).
+def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)>;
+
+// GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except
+// ESP.
+def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32,
+ (and GR32_NOREX, GR32_NOSP)>;
+
+// GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
+def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
+ (and GR64_NOREX, GR64_NOSP)>;
+
+// A class to support the 'A' assembler constraint: EAX then EDX.
+def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)>;
+
+// Scalar SSE2 floating point registers.
+def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>;
+
+def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>;
+
+
+// FIXME: This sets up the floating point register files as though they are f64
+// values, though they really are f80 values. This will cause us to spill
+// values as 64-bit quantities instead of 80-bit quantities, which is much much
+// faster on common hardware. In reality, this should be controlled by a
+// command line option or something.
+
+def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>;
+def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>;
+def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>;
+
+// Floating point stack registers (these are not allocatable by the
+// register allocator - the floating point stackifier is responsible
+// for transforming FPn allocations to STn registers)
+def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> {
+ let isAllocatable = 0;
+}
+
+// Generic vector registers: VR64 and VR128.
+def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>;
+def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ 128, (add FR32)>;
+def VR256 : RegisterClass<"X86", [v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ 256, (sequence "YMM%u", 0, 15)>;
+
+// Status flags registers.
+def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> {
+ let CopyCost = -1; // Don't allow copying of status registers.
+ let isAllocatable = 0;
+}
+def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> {
+ let CopyCost = -1; // Don't allow copying of status registers.
+ let isAllocatable = 0;
+}
+
+// AVX-512 vector/mask registers.
+def VR512 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64], 512,
+ (sequence "ZMM%u", 0, 31)>;
+
+// Scalar AVX-512 floating point registers.
+def FR32X : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 31)>;
+
+def FR64X : RegisterClass<"X86", [f64], 64, (add FR32X)>;
+
+// Extended VR128 and VR256 for AVX-512 instructions
+def VR128X : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ 128, (add FR32X)>;
+def VR256X : RegisterClass<"X86", [v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ 256, (sequence "YMM%u", 0, 31)>;
+
+// Mask registers
+def VK1 : RegisterClass<"X86", [i1], 16, (sequence "K%u", 0, 7)> {let Size = 16;}
+def VK2 : RegisterClass<"X86", [v2i1], 16, (add VK1)> {let Size = 16;}
+def VK4 : RegisterClass<"X86", [v4i1], 16, (add VK2)> {let Size = 16;}
+def VK8 : RegisterClass<"X86", [v8i1], 16, (add VK4)> {let Size = 16;}
+def VK16 : RegisterClass<"X86", [v16i1], 16, (add VK8)> {let Size = 16;}
+def VK32 : RegisterClass<"X86", [v32i1], 32, (add VK16)> {let Size = 32;}
+def VK64 : RegisterClass<"X86", [v64i1], 64, (add VK32)> {let Size = 64;}
+
+def VK1WM : RegisterClass<"X86", [i1], 16, (sub VK1, K0)> {let Size = 16;}
+def VK2WM : RegisterClass<"X86", [v2i1], 16, (sub VK2, K0)> {let Size = 16;}
+def VK4WM : RegisterClass<"X86", [v4i1], 16, (sub VK4, K0)> {let Size = 16;}
+def VK8WM : RegisterClass<"X86", [v8i1], 16, (sub VK8, K0)> {let Size = 16;}
+def VK16WM : RegisterClass<"X86", [v16i1], 16, (add VK8WM)> {let Size = 16;}
+def VK32WM : RegisterClass<"X86", [v32i1], 32, (add VK16WM)> {let Size = 32;}
+def VK64WM : RegisterClass<"X86", [v64i1], 64, (add VK32WM)> {let Size = 64;}
diff --git a/contrib/llvm/lib/Target/X86/X86Relocations.h b/contrib/llvm/lib/Target/X86/X86Relocations.h
new file mode 100644
index 0000000..0333056
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86Relocations.h
@@ -0,0 +1,52 @@
+//===-- X86Relocations.h - X86 Code Relocations -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the X86 target-specific relocation types.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86RELOCATIONS_H
+#define X86RELOCATIONS_H
+
+#include "llvm/CodeGen/MachineRelocation.h"
+
+namespace llvm {
+ namespace X86 {
+ /// RelocationType - An enum for the x86 relocation codes. Note that
+ /// the terminology here doesn't follow x86 convention - word means
+ /// 32-bit and dword means 64-bit. The relocations will be treated
+ /// by JIT or ObjectCode emitters, this is transparent to the x86 code
+ /// emitter but JIT and ObjectCode will treat them differently
+ enum RelocationType {
+ /// reloc_pcrel_word - PC relative relocation, add the relocated value to
+ /// the value already in memory, after we adjust it for where the PC is.
+ reloc_pcrel_word = 0,
+
+ /// reloc_picrel_word - PIC base relative relocation, add the relocated
+ /// value to the value already in memory, after we adjust it for where the
+ /// PIC base is.
+ reloc_picrel_word = 1,
+
+ /// reloc_absolute_word - absolute relocation, just add the relocated
+ /// value to the value already in memory.
+ reloc_absolute_word = 2,
+
+ /// reloc_absolute_word_sext - absolute relocation, just add the relocated
+ /// value to the value already in memory. In object files, it represents a
+ /// value which must be sign-extended when resolving the relocation.
+ reloc_absolute_word_sext = 3,
+
+ /// reloc_absolute_dword - absolute relocation, just add the relocated
+ /// value to the value already in memory.
+ reloc_absolute_dword = 4
+ };
+ }
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86SchedHaswell.td b/contrib/llvm/lib/Target/X86/X86SchedHaswell.td
new file mode 100644
index 0000000..6966d61
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86SchedHaswell.td
@@ -0,0 +1,264 @@
+//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the machine model for Haswell to support instruction
+// scheduling and other instruction cost heuristics.
+//
+//===----------------------------------------------------------------------===//
+
+def HaswellModel : SchedMachineModel {
+ // All x86 instructions are modeled as a single micro-op, and HW can decode 4
+ // instructions per cycle.
+ let IssueWidth = 4;
+ let MicroOpBufferSize = 192; // Based on the reorder buffer.
+ let LoadLatency = 4;
+ let MispredictPenalty = 16;
+
+ // Based on the LSD (loop-stream detector) queue size and benchmarking data.
+ let LoopMicroOpBufferSize = 50;
+
+ // FIXME: SSE4 and AVX are unimplemented. This flag is set to allow
+ // the scheduler to assign a default model to unrecognized opcodes.
+ let CompleteModel = 0;
+}
+
+let SchedModel = HaswellModel in {
+
+// Haswell can issue micro-ops to 8 different ports in one cycle.
+
+// Ports 0, 1, 5, and 6 handle all computation.
+// Port 4 gets the data half of stores. Store data can be available later than
+// the store address, but since we don't model the latency of stores, we can
+// ignore that.
+// Ports 2 and 3 are identical. They handle loads and the address half of
+// stores. Port 7 can handle address calculations.
+def HWPort0 : ProcResource<1>;
+def HWPort1 : ProcResource<1>;
+def HWPort2 : ProcResource<1>;
+def HWPort3 : ProcResource<1>;
+def HWPort4 : ProcResource<1>;
+def HWPort5 : ProcResource<1>;
+def HWPort6 : ProcResource<1>;
+def HWPort7 : ProcResource<1>;
+
+// Many micro-ops are capable of issuing on multiple ports.
+def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>;
+def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
+def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>;
+def HWPort06 : ProcResGroup<[HWPort0, HWPort6]>;
+def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>;
+def HWPort16 : ProcResGroup<[HWPort1, HWPort6]>;
+def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
+def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
+
+// 60 Entry Unified Scheduler
+def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4,
+ HWPort5, HWPort6, HWPort7]> {
+ let BufferSize=60;
+}
+
+// Integer division issued on port 0.
+def HWDivider : ProcResource<1>;
+
+// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
+// cycles after the memory operand.
+def : ReadAdvance<ReadAfterLd, 4>;
+
+// Many SchedWrites are defined in pairs with and without a folded load.
+// Instructions with folded loads are usually micro-fused, so they only appear
+// as two micro-ops when queued in the reservation station.
+// This multiclass defines the resource usage for variants with and without
+// folded loads.
+multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
+ ProcResourceKind ExePort,
+ int Lat> {
+ // Register variant is using a single cycle on ExePort.
+ def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
+
+ // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
+ // latency.
+ def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
+ let Latency = !add(Lat, 4);
+ }
+}
+
+// A folded store needs a cycle on port 4 for the store data, but it does not
+// need an extra port 2/3 cycle to recompute the address.
+def : WriteRes<WriteRMW, [HWPort4]>;
+
+// Store_addr on 237.
+// Store_data on 4.
+def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
+def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; }
+def : WriteRes<WriteMove, [HWPort0156]>;
+def : WriteRes<WriteZero, []>;
+
+defm : HWWriteResPair<WriteALU, HWPort0156, 1>;
+defm : HWWriteResPair<WriteIMul, HWPort1, 3>;
+def : WriteRes<WriteIMulH, []> { let Latency = 3; }
+defm : HWWriteResPair<WriteShift, HWPort06, 1>;
+defm : HWWriteResPair<WriteJump, HWPort06, 1>;
+
+// This is for simple LEAs with one or two input operands.
+// The complex ones can only execute on port 1, and they require two cycles on
+// the port to read all inputs. We don't model that.
+def : WriteRes<WriteLEA, [HWPort15]>;
+
+// This is quite rough, latency depends on the dividend.
+def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
+ let Latency = 25;
+ let ResourceCycles = [1, 10];
+}
+def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
+ let Latency = 29;
+ let ResourceCycles = [1, 1, 10];
+}
+
+// Scalar and vector floating point.
+defm : HWWriteResPair<WriteFAdd, HWPort1, 3>;
+defm : HWWriteResPair<WriteFMul, HWPort0, 5>;
+defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles.
+defm : HWWriteResPair<WriteFRcp, HWPort0, 5>;
+defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>;
+defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
+defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
+defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
+defm : HWWriteResPair<WriteFShuffle, HWPort5, 1>;
+defm : HWWriteResPair<WriteFBlend, HWPort015, 1>;
+defm : HWWriteResPair<WriteFShuffle256, HWPort5, 3>;
+
+def : WriteRes<WriteFVarBlend, [HWPort5]> {
+ let Latency = 2;
+ let ResourceCycles = [2];
+}
+def : WriteRes<WriteFVarBlendLd, [HWPort5, HWPort23]> {
+ let Latency = 6;
+ let ResourceCycles = [2, 1];
+}
+
+// Vector integer operations.
+defm : HWWriteResPair<WriteVecShift, HWPort0, 1>;
+defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
+defm : HWWriteResPair<WriteVecALU, HWPort15, 1>;
+defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>;
+defm : HWWriteResPair<WriteShuffle, HWPort5, 1>;
+defm : HWWriteResPair<WriteBlend, HWPort15, 1>;
+defm : HWWriteResPair<WriteShuffle256, HWPort5, 3>;
+
+def : WriteRes<WriteVarBlend, [HWPort5]> {
+ let Latency = 2;
+ let ResourceCycles = [2];
+}
+def : WriteRes<WriteVarBlendLd, [HWPort5, HWPort23]> {
+ let Latency = 6;
+ let ResourceCycles = [2, 1];
+}
+
+def : WriteRes<WriteVarVecShift, [HWPort0, HWPort5]> {
+ let Latency = 2;
+ let ResourceCycles = [2, 1];
+}
+def : WriteRes<WriteVarVecShiftLd, [HWPort0, HWPort5, HWPort23]> {
+ let Latency = 6;
+ let ResourceCycles = [2, 1, 1];
+}
+
+def : WriteRes<WriteMPSAD, [HWPort0, HWPort5]> {
+ let Latency = 6;
+ let ResourceCycles = [1, 2];
+}
+def : WriteRes<WriteMPSADLd, [HWPort23, HWPort0, HWPort5]> {
+ let Latency = 6;
+ let ResourceCycles = [1, 1, 2];
+}
+
+// String instructions.
+// Packed Compare Implicit Length Strings, Return Mask
+def : WriteRes<WritePCmpIStrM, [HWPort0]> {
+ let Latency = 10;
+ let ResourceCycles = [3];
+}
+def : WriteRes<WritePCmpIStrMLd, [HWPort0, HWPort23]> {
+ let Latency = 10;
+ let ResourceCycles = [3, 1];
+}
+
+// Packed Compare Explicit Length Strings, Return Mask
+def : WriteRes<WritePCmpEStrM, [HWPort0, HWPort16, HWPort5]> {
+ let Latency = 10;
+ let ResourceCycles = [3, 2, 4];
+}
+def : WriteRes<WritePCmpEStrMLd, [HWPort05, HWPort16, HWPort23]> {
+ let Latency = 10;
+ let ResourceCycles = [6, 2, 1];
+}
+
+// Packed Compare Implicit Length Strings, Return Index
+def : WriteRes<WritePCmpIStrI, [HWPort0]> {
+ let Latency = 11;
+ let ResourceCycles = [3];
+}
+def : WriteRes<WritePCmpIStrILd, [HWPort0, HWPort23]> {
+ let Latency = 11;
+ let ResourceCycles = [3, 1];
+}
+
+// Packed Compare Explicit Length Strings, Return Index
+def : WriteRes<WritePCmpEStrI, [HWPort05, HWPort16]> {
+ let Latency = 11;
+ let ResourceCycles = [6, 2];
+}
+def : WriteRes<WritePCmpEStrILd, [HWPort0, HWPort16, HWPort5, HWPort23]> {
+ let Latency = 11;
+ let ResourceCycles = [3, 2, 2, 1];
+}
+
+// AES Instructions.
+def : WriteRes<WriteAESDecEnc, [HWPort5]> {
+ let Latency = 7;
+ let ResourceCycles = [1];
+}
+def : WriteRes<WriteAESDecEncLd, [HWPort5, HWPort23]> {
+ let Latency = 7;
+ let ResourceCycles = [1, 1];
+}
+
+def : WriteRes<WriteAESIMC, [HWPort5]> {
+ let Latency = 14;
+ let ResourceCycles = [2];
+}
+def : WriteRes<WriteAESIMCLd, [HWPort5, HWPort23]> {
+ let Latency = 14;
+ let ResourceCycles = [2, 1];
+}
+
+def : WriteRes<WriteAESKeyGen, [HWPort0, HWPort5]> {
+ let Latency = 10;
+ let ResourceCycles = [2, 8];
+}
+def : WriteRes<WriteAESKeyGenLd, [HWPort0, HWPort5, HWPort23]> {
+ let Latency = 10;
+ let ResourceCycles = [2, 7, 1];
+}
+
+// Carry-less multiplication instructions.
+def : WriteRes<WriteCLMul, [HWPort0, HWPort5]> {
+ let Latency = 7;
+ let ResourceCycles = [2, 1];
+}
+def : WriteRes<WriteCLMulLd, [HWPort0, HWPort5, HWPort23]> {
+ let Latency = 7;
+ let ResourceCycles = [2, 1, 1];
+}
+
+def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; }
+def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
+def : WriteRes<WriteFence, [HWPort23, HWPort4]>;
+def : WriteRes<WriteNop, []>;
+} // SchedModel
diff --git a/contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td b/contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td
new file mode 100644
index 0000000..83f0534
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td
@@ -0,0 +1,249 @@
+//=- X86SchedSandyBridge.td - X86 Sandy Bridge Scheduling ----*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the machine model for Sandy Bridge to support instruction
+// scheduling and other instruction cost heuristics.
+//
+//===----------------------------------------------------------------------===//
+
+def SandyBridgeModel : SchedMachineModel {
+ // All x86 instructions are modeled as a single micro-op, and SB can decode 4
+ // instructions per cycle.
+ // FIXME: Identify instructions that aren't a single fused micro-op.
+ let IssueWidth = 4;
+ let MicroOpBufferSize = 168; // Based on the reorder buffer.
+ let LoadLatency = 4;
+ let MispredictPenalty = 16;
+
+ // Based on the LSD (loop-stream detector) queue size.
+ let LoopMicroOpBufferSize = 28;
+
+ // FIXME: SSE4 and AVX are unimplemented. This flag is set to allow
+ // the scheduler to assign a default model to unrecognized opcodes.
+ let CompleteModel = 0;
+}
+
+let SchedModel = SandyBridgeModel in {
+
+// Sandy Bridge can issue micro-ops to 6 different ports in one cycle.
+
+// Ports 0, 1, and 5 handle all computation.
+def SBPort0 : ProcResource<1>;
+def SBPort1 : ProcResource<1>;
+def SBPort5 : ProcResource<1>;
+
+// Ports 2 and 3 are identical. They handle loads and the address half of
+// stores.
+def SBPort23 : ProcResource<2>;
+
+// Port 4 gets the data half of stores. Store data can be available later than
+// the store address, but since we don't model the latency of stores, we can
+// ignore that.
+def SBPort4 : ProcResource<1>;
+
+// Many micro-ops are capable of issuing on multiple ports.
+def SBPort05 : ProcResGroup<[SBPort0, SBPort5]>;
+def SBPort15 : ProcResGroup<[SBPort1, SBPort5]>;
+def SBPort015 : ProcResGroup<[SBPort0, SBPort1, SBPort5]>;
+
+// 54 Entry Unified Scheduler
+def SBPortAny : ProcResGroup<[SBPort0, SBPort1, SBPort23, SBPort4, SBPort5]> {
+ let BufferSize=54;
+}
+
+// Integer division issued on port 0.
+def SBDivider : ProcResource<1>;
+
+// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
+// cycles after the memory operand.
+def : ReadAdvance<ReadAfterLd, 4>;
+
+// Many SchedWrites are defined in pairs with and without a folded load.
+// Instructions with folded loads are usually micro-fused, so they only appear
+// as two micro-ops when queued in the reservation station.
+// This multiclass defines the resource usage for variants with and without
+// folded loads.
+multiclass SBWriteResPair<X86FoldableSchedWrite SchedRW,
+ ProcResourceKind ExePort,
+ int Lat> {
+ // Register variant is using a single cycle on ExePort.
+ def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
+
+ // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
+ // latency.
+ def : WriteRes<SchedRW.Folded, [SBPort23, ExePort]> {
+ let Latency = !add(Lat, 4);
+ }
+}
+
+// A folded store needs a cycle on port 4 for the store data, but it does not
+// need an extra port 2/3 cycle to recompute the address.
+def : WriteRes<WriteRMW, [SBPort4]>;
+
+def : WriteRes<WriteStore, [SBPort23, SBPort4]>;
+def : WriteRes<WriteLoad, [SBPort23]> { let Latency = 4; }
+def : WriteRes<WriteMove, [SBPort015]>;
+def : WriteRes<WriteZero, []>;
+
+defm : SBWriteResPair<WriteALU, SBPort015, 1>;
+defm : SBWriteResPair<WriteIMul, SBPort1, 3>;
+def : WriteRes<WriteIMulH, []> { let Latency = 3; }
+defm : SBWriteResPair<WriteShift, SBPort05, 1>;
+defm : SBWriteResPair<WriteJump, SBPort5, 1>;
+
+// This is for simple LEAs with one or two input operands.
+// The complex ones can only execute on port 1, and they require two cycles on
+// the port to read all inputs. We don't model that.
+def : WriteRes<WriteLEA, [SBPort15]>;
+
+// This is quite rough, latency depends on the dividend.
+def : WriteRes<WriteIDiv, [SBPort0, SBDivider]> {
+ let Latency = 25;
+ let ResourceCycles = [1, 10];
+}
+def : WriteRes<WriteIDivLd, [SBPort23, SBPort0, SBDivider]> {
+ let Latency = 29;
+ let ResourceCycles = [1, 1, 10];
+}
+
+// Scalar and vector floating point.
+defm : SBWriteResPair<WriteFAdd, SBPort1, 3>;
+defm : SBWriteResPair<WriteFMul, SBPort0, 5>;
+defm : SBWriteResPair<WriteFDiv, SBPort0, 12>; // 10-14 cycles.
+defm : SBWriteResPair<WriteFRcp, SBPort0, 5>;
+defm : SBWriteResPair<WriteFSqrt, SBPort0, 15>;
+defm : SBWriteResPair<WriteCvtF2I, SBPort1, 3>;
+defm : SBWriteResPair<WriteCvtI2F, SBPort1, 4>;
+defm : SBWriteResPair<WriteCvtF2F, SBPort1, 3>;
+defm : SBWriteResPair<WriteFShuffle, SBPort5, 1>;
+defm : SBWriteResPair<WriteFBlend, SBPort05, 1>;
+def : WriteRes<WriteFVarBlend, [SBPort0, SBPort5]> {
+ let Latency = 2;
+ let ResourceCycles = [1, 1];
+}
+def : WriteRes<WriteFVarBlendLd, [SBPort0, SBPort5, SBPort23]> {
+ let Latency = 6;
+ let ResourceCycles = [1, 1, 1];
+}
+
+// Vector integer operations.
+defm : SBWriteResPair<WriteVecShift, SBPort05, 1>;
+defm : SBWriteResPair<WriteVecLogic, SBPort015, 1>;
+defm : SBWriteResPair<WriteVecALU, SBPort15, 1>;
+defm : SBWriteResPair<WriteVecIMul, SBPort0, 5>;
+defm : SBWriteResPair<WriteShuffle, SBPort15, 1>;
+defm : SBWriteResPair<WriteBlend, SBPort15, 1>;
+def : WriteRes<WriteVarBlend, [SBPort1, SBPort5]> {
+ let Latency = 2;
+ let ResourceCycles = [1, 1];
+}
+def : WriteRes<WriteVarBlendLd, [SBPort1, SBPort5, SBPort23]> {
+ let Latency = 6;
+ let ResourceCycles = [1, 1, 1];
+}
+def : WriteRes<WriteMPSAD, [SBPort0, SBPort1, SBPort5]> {
+ let Latency = 6;
+ let ResourceCycles = [1, 1, 1];
+}
+def : WriteRes<WriteMPSADLd, [SBPort0, SBPort1, SBPort5, SBPort23]> {
+ let Latency = 6;
+ let ResourceCycles = [1, 1, 1, 1];
+}
+
+// String instructions.
+// Packed Compare Implicit Length Strings, Return Mask
+def : WriteRes<WritePCmpIStrM, [SBPort015]> {
+ let Latency = 11;
+ let ResourceCycles = [3];
+}
+def : WriteRes<WritePCmpIStrMLd, [SBPort015, SBPort23]> {
+ let Latency = 11;
+ let ResourceCycles = [3, 1];
+}
+
+// Packed Compare Explicit Length Strings, Return Mask
+def : WriteRes<WritePCmpEStrM, [SBPort015]> {
+ let Latency = 11;
+ let ResourceCycles = [8];
+}
+def : WriteRes<WritePCmpEStrMLd, [SBPort015, SBPort23]> {
+ let Latency = 11;
+ let ResourceCycles = [7, 1];
+}
+
+// Packed Compare Implicit Length Strings, Return Index
+def : WriteRes<WritePCmpIStrI, [SBPort015]> {
+ let Latency = 3;
+ let ResourceCycles = [3];
+}
+def : WriteRes<WritePCmpIStrILd, [SBPort015, SBPort23]> {
+ let Latency = 3;
+ let ResourceCycles = [3, 1];
+}
+
+// Packed Compare Explicit Length Strings, Return Index
+def : WriteRes<WritePCmpEStrI, [SBPort015]> {
+ let Latency = 4;
+ let ResourceCycles = [8];
+}
+def : WriteRes<WritePCmpEStrILd, [SBPort015, SBPort23]> {
+ let Latency = 4;
+ let ResourceCycles = [7, 1];
+}
+
+// AES Instructions.
+def : WriteRes<WriteAESDecEnc, [SBPort015]> {
+ let Latency = 8;
+ let ResourceCycles = [2];
+}
+def : WriteRes<WriteAESDecEncLd, [SBPort015, SBPort23]> {
+ let Latency = 8;
+ let ResourceCycles = [2, 1];
+}
+
+def : WriteRes<WriteAESIMC, [SBPort015]> {
+ let Latency = 8;
+ let ResourceCycles = [2];
+}
+def : WriteRes<WriteAESIMCLd, [SBPort015, SBPort23]> {
+ let Latency = 8;
+ let ResourceCycles = [2, 1];
+}
+
+def : WriteRes<WriteAESKeyGen, [SBPort015]> {
+ let Latency = 8;
+ let ResourceCycles = [11];
+}
+def : WriteRes<WriteAESKeyGenLd, [SBPort015, SBPort23]> {
+ let Latency = 8;
+ let ResourceCycles = [10, 1];
+}
+
+// Carry-less multiplication instructions.
+def : WriteRes<WriteCLMul, [SBPort015]> {
+ let Latency = 14;
+ let ResourceCycles = [18];
+}
+def : WriteRes<WriteCLMulLd, [SBPort015, SBPort23]> {
+ let Latency = 14;
+ let ResourceCycles = [17, 1];
+}
+
+
+def : WriteRes<WriteSystem, [SBPort015]> { let Latency = 100; }
+def : WriteRes<WriteMicrocoded, [SBPort015]> { let Latency = 100; }
+def : WriteRes<WriteFence, [SBPort23, SBPort4]>;
+def : WriteRes<WriteNop, []>;
+
+// AVX2 is not supported on that architecture, but we should define the basic
+// scheduling resources anyway.
+defm : SBWriteResPair<WriteFShuffle256, SBPort0, 1>;
+defm : SBWriteResPair<WriteShuffle256, SBPort0, 1>;
+defm : SBWriteResPair<WriteVarVecShift, SBPort0, 1>;
+} // SchedModel
diff --git a/contrib/llvm/lib/Target/X86/X86Schedule.td b/contrib/llvm/lib/Target/X86/X86Schedule.td
new file mode 100644
index 0000000..b76850a
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86Schedule.td
@@ -0,0 +1,642 @@
+//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// InstrSchedModel annotations for out-of-order CPUs.
+//
+// These annotations are independent of the itinerary classes defined below.
+
+// Instructions with folded loads need to read the memory operand immediately,
+// but other register operands don't have to be read until the load is ready.
+// These operands are marked with ReadAfterLd.
+def ReadAfterLd : SchedRead;
+
+// Instructions with both a load and a store folded are modeled as a folded
+// load + WriteRMW.
+def WriteRMW : SchedWrite;
+
+// Most instructions can fold loads, so almost every SchedWrite comes in two
+// variants: With and without a folded load.
+// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite
+// with a folded load.
+class X86FoldableSchedWrite : SchedWrite {
+ // The SchedWrite to use when a load is folded into the instruction.
+ SchedWrite Folded;
+}
+
+// Multiclass that produces a linked pair of SchedWrites.
+multiclass X86SchedWritePair {
+ // Register-Memory operation.
+ def Ld : SchedWrite;
+ // Register-Register operation.
+ def NAME : X86FoldableSchedWrite {
+ let Folded = !cast<SchedWrite>(NAME#"Ld");
+ }
+}
+
+// Arithmetic.
+defm WriteALU : X86SchedWritePair; // Simple integer ALU op.
+defm WriteIMul : X86SchedWritePair; // Integer multiplication.
+def WriteIMulH : SchedWrite; // Integer multiplication, high part.
+defm WriteIDiv : X86SchedWritePair; // Integer division.
+def WriteLEA : SchedWrite; // LEA instructions can't fold loads.
+
+// Integer shifts and rotates.
+defm WriteShift : X86SchedWritePair;
+
+// Loads, stores, and moves, not folded with other operations.
+def WriteLoad : SchedWrite;
+def WriteStore : SchedWrite;
+def WriteMove : SchedWrite;
+
+// Idioms that clear a register, like xorps %xmm0, %xmm0.
+// These can often bypass execution ports completely.
+def WriteZero : SchedWrite;
+
+// Branches don't produce values, so they have no latency, but they still
+// consume resources. Indirect branches can fold loads.
+defm WriteJump : X86SchedWritePair;
+
+// Floating point. This covers both scalar and vector operations.
+defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare.
+defm WriteFMul : X86SchedWritePair; // Floating point multiplication.
+defm WriteFDiv : X86SchedWritePair; // Floating point division.
+defm WriteFSqrt : X86SchedWritePair; // Floating point square root.
+defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal.
+defm WriteFMA : X86SchedWritePair; // Fused Multiply Add.
+defm WriteFShuffle : X86SchedWritePair; // Floating point vector shuffles.
+defm WriteFBlend : X86SchedWritePair; // Floating point vector blends.
+defm WriteFVarBlend : X86SchedWritePair; // Fp vector variable blends.
+
+// FMA Scheduling helper class.
+class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; }
+
+// Vector integer operations.
+defm WriteVecALU : X86SchedWritePair; // Vector integer ALU op, no logicals.
+defm WriteVecShift : X86SchedWritePair; // Vector integer shifts.
+defm WriteVecIMul : X86SchedWritePair; // Vector integer multiply.
+defm WriteShuffle : X86SchedWritePair; // Vector shuffles.
+defm WriteBlend : X86SchedWritePair; // Vector blends.
+defm WriteVarBlend : X86SchedWritePair; // Vector variable blends.
+defm WriteMPSAD : X86SchedWritePair; // Vector MPSAD.
+
+// Vector bitwise operations.
+// These are often used on both floating point and integer vectors.
+defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor.
+
+// Conversion between integer and float.
+defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer.
+defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float.
+defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion.
+
+// Strings instructions.
+// Packed Compare Implicit Length Strings, Return Mask
+defm WritePCmpIStrM : X86SchedWritePair;
+// Packed Compare Explicit Length Strings, Return Mask
+defm WritePCmpEStrM : X86SchedWritePair;
+// Packed Compare Implicit Length Strings, Return Index
+defm WritePCmpIStrI : X86SchedWritePair;
+// Packed Compare Explicit Length Strings, Return Index
+defm WritePCmpEStrI : X86SchedWritePair;
+
+// AES instructions.
+defm WriteAESDecEnc : X86SchedWritePair; // Decryption, encryption.
+defm WriteAESIMC : X86SchedWritePair; // InvMixColumn.
+defm WriteAESKeyGen : X86SchedWritePair; // Key Generation.
+
+// Carry-less multiplication instructions.
+defm WriteCLMul : X86SchedWritePair;
+
+// Catch-all for expensive system instructions.
+def WriteSystem : SchedWrite;
+
+// AVX2.
+defm WriteFShuffle256 : X86SchedWritePair; // Fp 256-bit width vector shuffles.
+defm WriteShuffle256 : X86SchedWritePair; // 256-bit width vector shuffles.
+defm WriteVarVecShift : X86SchedWritePair; // Variable vector shifts.
+
+// Old microcoded instructions that nobody use.
+def WriteMicrocoded : SchedWrite;
+
+// Fence instructions.
+def WriteFence : SchedWrite;
+
+// Nop, not very useful expect it provides a model for nops!
+def WriteNop : SchedWrite;
+
+//===----------------------------------------------------------------------===//
+// Instruction Itinerary classes used for X86
+def IIC_ALU_MEM : InstrItinClass;
+def IIC_ALU_NONMEM : InstrItinClass;
+def IIC_LEA : InstrItinClass;
+def IIC_LEA_16 : InstrItinClass;
+def IIC_MUL8 : InstrItinClass;
+def IIC_MUL16_MEM : InstrItinClass;
+def IIC_MUL16_REG : InstrItinClass;
+def IIC_MUL32_MEM : InstrItinClass;
+def IIC_MUL32_REG : InstrItinClass;
+def IIC_MUL64 : InstrItinClass;
+// imul by al, ax, eax, tax
+def IIC_IMUL8 : InstrItinClass;
+def IIC_IMUL16_MEM : InstrItinClass;
+def IIC_IMUL16_REG : InstrItinClass;
+def IIC_IMUL32_MEM : InstrItinClass;
+def IIC_IMUL32_REG : InstrItinClass;
+def IIC_IMUL64 : InstrItinClass;
+// imul reg by reg|mem
+def IIC_IMUL16_RM : InstrItinClass;
+def IIC_IMUL16_RR : InstrItinClass;
+def IIC_IMUL32_RM : InstrItinClass;
+def IIC_IMUL32_RR : InstrItinClass;
+def IIC_IMUL64_RM : InstrItinClass;
+def IIC_IMUL64_RR : InstrItinClass;
+// imul reg = reg/mem * imm
+def IIC_IMUL16_RMI : InstrItinClass;
+def IIC_IMUL16_RRI : InstrItinClass;
+def IIC_IMUL32_RMI : InstrItinClass;
+def IIC_IMUL32_RRI : InstrItinClass;
+def IIC_IMUL64_RMI : InstrItinClass;
+def IIC_IMUL64_RRI : InstrItinClass;
+// div
+def IIC_DIV8_MEM : InstrItinClass;
+def IIC_DIV8_REG : InstrItinClass;
+def IIC_DIV16 : InstrItinClass;
+def IIC_DIV32 : InstrItinClass;
+def IIC_DIV64 : InstrItinClass;
+// idiv
+def IIC_IDIV8 : InstrItinClass;
+def IIC_IDIV16 : InstrItinClass;
+def IIC_IDIV32 : InstrItinClass;
+def IIC_IDIV64 : InstrItinClass;
+// neg/not/inc/dec
+def IIC_UNARY_REG : InstrItinClass;
+def IIC_UNARY_MEM : InstrItinClass;
+// add/sub/and/or/xor/sbc/cmp/test
+def IIC_BIN_MEM : InstrItinClass;
+def IIC_BIN_NONMEM : InstrItinClass;
+// adc/sbc
+def IIC_BIN_CARRY_MEM : InstrItinClass;
+def IIC_BIN_CARRY_NONMEM : InstrItinClass;
+// shift/rotate
+def IIC_SR : InstrItinClass;
+// shift double
+def IIC_SHD16_REG_IM : InstrItinClass;
+def IIC_SHD16_REG_CL : InstrItinClass;
+def IIC_SHD16_MEM_IM : InstrItinClass;
+def IIC_SHD16_MEM_CL : InstrItinClass;
+def IIC_SHD32_REG_IM : InstrItinClass;
+def IIC_SHD32_REG_CL : InstrItinClass;
+def IIC_SHD32_MEM_IM : InstrItinClass;
+def IIC_SHD32_MEM_CL : InstrItinClass;
+def IIC_SHD64_REG_IM : InstrItinClass;
+def IIC_SHD64_REG_CL : InstrItinClass;
+def IIC_SHD64_MEM_IM : InstrItinClass;
+def IIC_SHD64_MEM_CL : InstrItinClass;
+// cmov
+def IIC_CMOV16_RM : InstrItinClass;
+def IIC_CMOV16_RR : InstrItinClass;
+def IIC_CMOV32_RM : InstrItinClass;
+def IIC_CMOV32_RR : InstrItinClass;
+def IIC_CMOV64_RM : InstrItinClass;
+def IIC_CMOV64_RR : InstrItinClass;
+// set
+def IIC_SET_R : InstrItinClass;
+def IIC_SET_M : InstrItinClass;
+// jmp/jcc/jcxz
+def IIC_Jcc : InstrItinClass;
+def IIC_JCXZ : InstrItinClass;
+def IIC_JMP_REL : InstrItinClass;
+def IIC_JMP_REG : InstrItinClass;
+def IIC_JMP_MEM : InstrItinClass;
+def IIC_JMP_FAR_MEM : InstrItinClass;
+def IIC_JMP_FAR_PTR : InstrItinClass;
+// loop
+def IIC_LOOP : InstrItinClass;
+def IIC_LOOPE : InstrItinClass;
+def IIC_LOOPNE : InstrItinClass;
+// call
+def IIC_CALL_RI : InstrItinClass;
+def IIC_CALL_MEM : InstrItinClass;
+def IIC_CALL_FAR_MEM : InstrItinClass;
+def IIC_CALL_FAR_PTR : InstrItinClass;
+// ret
+def IIC_RET : InstrItinClass;
+def IIC_RET_IMM : InstrItinClass;
+//sign extension movs
+def IIC_MOVSX : InstrItinClass;
+def IIC_MOVSX_R16_R8 : InstrItinClass;
+def IIC_MOVSX_R16_M8 : InstrItinClass;
+def IIC_MOVSX_R16_R16 : InstrItinClass;
+def IIC_MOVSX_R32_R32 : InstrItinClass;
+//zero extension movs
+def IIC_MOVZX : InstrItinClass;
+def IIC_MOVZX_R16_R8 : InstrItinClass;
+def IIC_MOVZX_R16_M8 : InstrItinClass;
+
+def IIC_REP_MOVS : InstrItinClass;
+def IIC_REP_STOS : InstrItinClass;
+
+// SSE scalar/parallel binary operations
+def IIC_SSE_ALU_F32S_RR : InstrItinClass;
+def IIC_SSE_ALU_F32S_RM : InstrItinClass;
+def IIC_SSE_ALU_F64S_RR : InstrItinClass;
+def IIC_SSE_ALU_F64S_RM : InstrItinClass;
+def IIC_SSE_MUL_F32S_RR : InstrItinClass;
+def IIC_SSE_MUL_F32S_RM : InstrItinClass;
+def IIC_SSE_MUL_F64S_RR : InstrItinClass;
+def IIC_SSE_MUL_F64S_RM : InstrItinClass;
+def IIC_SSE_DIV_F32S_RR : InstrItinClass;
+def IIC_SSE_DIV_F32S_RM : InstrItinClass;
+def IIC_SSE_DIV_F64S_RR : InstrItinClass;
+def IIC_SSE_DIV_F64S_RM : InstrItinClass;
+def IIC_SSE_ALU_F32P_RR : InstrItinClass;
+def IIC_SSE_ALU_F32P_RM : InstrItinClass;
+def IIC_SSE_ALU_F64P_RR : InstrItinClass;
+def IIC_SSE_ALU_F64P_RM : InstrItinClass;
+def IIC_SSE_MUL_F32P_RR : InstrItinClass;
+def IIC_SSE_MUL_F32P_RM : InstrItinClass;
+def IIC_SSE_MUL_F64P_RR : InstrItinClass;
+def IIC_SSE_MUL_F64P_RM : InstrItinClass;
+def IIC_SSE_DIV_F32P_RR : InstrItinClass;
+def IIC_SSE_DIV_F32P_RM : InstrItinClass;
+def IIC_SSE_DIV_F64P_RR : InstrItinClass;
+def IIC_SSE_DIV_F64P_RM : InstrItinClass;
+
+def IIC_SSE_COMIS_RR : InstrItinClass;
+def IIC_SSE_COMIS_RM : InstrItinClass;
+
+def IIC_SSE_HADDSUB_RR : InstrItinClass;
+def IIC_SSE_HADDSUB_RM : InstrItinClass;
+
+def IIC_SSE_BIT_P_RR : InstrItinClass;
+def IIC_SSE_BIT_P_RM : InstrItinClass;
+
+def IIC_SSE_INTALU_P_RR : InstrItinClass;
+def IIC_SSE_INTALU_P_RM : InstrItinClass;
+def IIC_SSE_INTALUQ_P_RR : InstrItinClass;
+def IIC_SSE_INTALUQ_P_RM : InstrItinClass;
+
+def IIC_SSE_INTMUL_P_RR : InstrItinClass;
+def IIC_SSE_INTMUL_P_RM : InstrItinClass;
+
+def IIC_SSE_INTSH_P_RR : InstrItinClass;
+def IIC_SSE_INTSH_P_RM : InstrItinClass;
+def IIC_SSE_INTSH_P_RI : InstrItinClass;
+
+def IIC_SSE_INTSHDQ_P_RI : InstrItinClass;
+
+def IIC_SSE_SHUFP : InstrItinClass;
+def IIC_SSE_PSHUF_RI : InstrItinClass;
+def IIC_SSE_PSHUF_MI : InstrItinClass;
+
+def IIC_SSE_UNPCK : InstrItinClass;
+
+def IIC_SSE_MOVMSK : InstrItinClass;
+def IIC_SSE_MASKMOV : InstrItinClass;
+
+def IIC_SSE_PEXTRW : InstrItinClass;
+def IIC_SSE_PINSRW : InstrItinClass;
+
+def IIC_SSE_PABS_RR : InstrItinClass;
+def IIC_SSE_PABS_RM : InstrItinClass;
+
+def IIC_SSE_SQRTPS_RR : InstrItinClass;
+def IIC_SSE_SQRTPS_RM : InstrItinClass;
+def IIC_SSE_SQRTSS_RR : InstrItinClass;
+def IIC_SSE_SQRTSS_RM : InstrItinClass;
+def IIC_SSE_SQRTPD_RR : InstrItinClass;
+def IIC_SSE_SQRTPD_RM : InstrItinClass;
+def IIC_SSE_SQRTSD_RR : InstrItinClass;
+def IIC_SSE_SQRTSD_RM : InstrItinClass;
+
+def IIC_SSE_RCPP_RR : InstrItinClass;
+def IIC_SSE_RCPP_RM : InstrItinClass;
+def IIC_SSE_RCPS_RR : InstrItinClass;
+def IIC_SSE_RCPS_RM : InstrItinClass;
+
+def IIC_SSE_MOV_S_RR : InstrItinClass;
+def IIC_SSE_MOV_S_RM : InstrItinClass;
+def IIC_SSE_MOV_S_MR : InstrItinClass;
+
+def IIC_SSE_MOVA_P_RR : InstrItinClass;
+def IIC_SSE_MOVA_P_RM : InstrItinClass;
+def IIC_SSE_MOVA_P_MR : InstrItinClass;
+
+def IIC_SSE_MOVU_P_RR : InstrItinClass;
+def IIC_SSE_MOVU_P_RM : InstrItinClass;
+def IIC_SSE_MOVU_P_MR : InstrItinClass;
+
+def IIC_SSE_MOVDQ : InstrItinClass;
+def IIC_SSE_MOVD_ToGP : InstrItinClass;
+def IIC_SSE_MOVQ_RR : InstrItinClass;
+
+def IIC_SSE_MOV_LH : InstrItinClass;
+
+def IIC_SSE_LDDQU : InstrItinClass;
+
+def IIC_SSE_MOVNT : InstrItinClass;
+
+def IIC_SSE_PHADDSUBD_RR : InstrItinClass;
+def IIC_SSE_PHADDSUBD_RM : InstrItinClass;
+def IIC_SSE_PHADDSUBSW_RR : InstrItinClass;
+def IIC_SSE_PHADDSUBSW_RM : InstrItinClass;
+def IIC_SSE_PHADDSUBW_RR : InstrItinClass;
+def IIC_SSE_PHADDSUBW_RM : InstrItinClass;
+def IIC_SSE_PSHUFB_RR : InstrItinClass;
+def IIC_SSE_PSHUFB_RM : InstrItinClass;
+def IIC_SSE_PSIGN_RR : InstrItinClass;
+def IIC_SSE_PSIGN_RM : InstrItinClass;
+
+def IIC_SSE_PMADD : InstrItinClass;
+def IIC_SSE_PMULHRSW : InstrItinClass;
+def IIC_SSE_PALIGNRR : InstrItinClass;
+def IIC_SSE_PALIGNRM : InstrItinClass;
+def IIC_SSE_MWAIT : InstrItinClass;
+def IIC_SSE_MONITOR : InstrItinClass;
+
+def IIC_SSE_PREFETCH : InstrItinClass;
+def IIC_SSE_PAUSE : InstrItinClass;
+def IIC_SSE_LFENCE : InstrItinClass;
+def IIC_SSE_MFENCE : InstrItinClass;
+def IIC_SSE_SFENCE : InstrItinClass;
+def IIC_SSE_LDMXCSR : InstrItinClass;
+def IIC_SSE_STMXCSR : InstrItinClass;
+
+def IIC_SSE_CVT_PD_RR : InstrItinClass;
+def IIC_SSE_CVT_PD_RM : InstrItinClass;
+def IIC_SSE_CVT_PS_RR : InstrItinClass;
+def IIC_SSE_CVT_PS_RM : InstrItinClass;
+def IIC_SSE_CVT_PI2PS_RR : InstrItinClass;
+def IIC_SSE_CVT_PI2PS_RM : InstrItinClass;
+def IIC_SSE_CVT_Scalar_RR : InstrItinClass;
+def IIC_SSE_CVT_Scalar_RM : InstrItinClass;
+def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass;
+def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass;
+def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass;
+def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass;
+def IIC_SSE_CVT_SD2SI_RM : InstrItinClass;
+def IIC_SSE_CVT_SD2SI_RR : InstrItinClass;
+
+// MMX
+def IIC_MMX_MOV_MM_RM : InstrItinClass;
+def IIC_MMX_MOV_REG_MM : InstrItinClass;
+def IIC_MMX_MOVQ_RM : InstrItinClass;
+def IIC_MMX_MOVQ_RR : InstrItinClass;
+
+def IIC_MMX_ALU_RM : InstrItinClass;
+def IIC_MMX_ALU_RR : InstrItinClass;
+def IIC_MMX_ALUQ_RM : InstrItinClass;
+def IIC_MMX_ALUQ_RR : InstrItinClass;
+def IIC_MMX_PHADDSUBW_RM : InstrItinClass;
+def IIC_MMX_PHADDSUBW_RR : InstrItinClass;
+def IIC_MMX_PHADDSUBD_RM : InstrItinClass;
+def IIC_MMX_PHADDSUBD_RR : InstrItinClass;
+def IIC_MMX_PMUL : InstrItinClass;
+def IIC_MMX_MISC_FUNC_MEM : InstrItinClass;
+def IIC_MMX_MISC_FUNC_REG : InstrItinClass;
+def IIC_MMX_PSADBW : InstrItinClass;
+def IIC_MMX_SHIFT_RI : InstrItinClass;
+def IIC_MMX_SHIFT_RM : InstrItinClass;
+def IIC_MMX_SHIFT_RR : InstrItinClass;
+def IIC_MMX_UNPCK_H_RM : InstrItinClass;
+def IIC_MMX_UNPCK_H_RR : InstrItinClass;
+def IIC_MMX_UNPCK_L : InstrItinClass;
+def IIC_MMX_PCK_RM : InstrItinClass;
+def IIC_MMX_PCK_RR : InstrItinClass;
+def IIC_MMX_PSHUF : InstrItinClass;
+def IIC_MMX_PEXTR : InstrItinClass;
+def IIC_MMX_PINSRW : InstrItinClass;
+def IIC_MMX_MASKMOV : InstrItinClass;
+
+def IIC_MMX_CVT_PD_RR : InstrItinClass;
+def IIC_MMX_CVT_PD_RM : InstrItinClass;
+def IIC_MMX_CVT_PS_RR : InstrItinClass;
+def IIC_MMX_CVT_PS_RM : InstrItinClass;
+
+def IIC_CMPX_LOCK : InstrItinClass;
+def IIC_CMPX_LOCK_8 : InstrItinClass;
+def IIC_CMPX_LOCK_8B : InstrItinClass;
+def IIC_CMPX_LOCK_16B : InstrItinClass;
+
+def IIC_XADD_LOCK_MEM : InstrItinClass;
+def IIC_XADD_LOCK_MEM8 : InstrItinClass;
+
+def IIC_FILD : InstrItinClass;
+def IIC_FLD : InstrItinClass;
+def IIC_FLD80 : InstrItinClass;
+def IIC_FST : InstrItinClass;
+def IIC_FST80 : InstrItinClass;
+def IIC_FIST : InstrItinClass;
+def IIC_FLDZ : InstrItinClass;
+def IIC_FUCOM : InstrItinClass;
+def IIC_FUCOMI : InstrItinClass;
+def IIC_FCOMI : InstrItinClass;
+def IIC_FNSTSW : InstrItinClass;
+def IIC_FNSTCW : InstrItinClass;
+def IIC_FLDCW : InstrItinClass;
+def IIC_FNINIT : InstrItinClass;
+def IIC_FFREE : InstrItinClass;
+def IIC_FNCLEX : InstrItinClass;
+def IIC_WAIT : InstrItinClass;
+def IIC_FXAM : InstrItinClass;
+def IIC_FNOP : InstrItinClass;
+def IIC_FLDL : InstrItinClass;
+def IIC_F2XM1 : InstrItinClass;
+def IIC_FYL2X : InstrItinClass;
+def IIC_FPTAN : InstrItinClass;
+def IIC_FPATAN : InstrItinClass;
+def IIC_FXTRACT : InstrItinClass;
+def IIC_FPREM1 : InstrItinClass;
+def IIC_FPSTP : InstrItinClass;
+def IIC_FPREM : InstrItinClass;
+def IIC_FYL2XP1 : InstrItinClass;
+def IIC_FSINCOS : InstrItinClass;
+def IIC_FRNDINT : InstrItinClass;
+def IIC_FSCALE : InstrItinClass;
+def IIC_FCOMPP : InstrItinClass;
+def IIC_FXSAVE : InstrItinClass;
+def IIC_FXRSTOR : InstrItinClass;
+
+def IIC_FXCH : InstrItinClass;
+
+// System instructions
+def IIC_CPUID : InstrItinClass;
+def IIC_INT : InstrItinClass;
+def IIC_INT3 : InstrItinClass;
+def IIC_INVD : InstrItinClass;
+def IIC_INVLPG : InstrItinClass;
+def IIC_IRET : InstrItinClass;
+def IIC_HLT : InstrItinClass;
+def IIC_LXS : InstrItinClass;
+def IIC_LTR : InstrItinClass;
+def IIC_RDTSC : InstrItinClass;
+def IIC_RSM : InstrItinClass;
+def IIC_SIDT : InstrItinClass;
+def IIC_SGDT : InstrItinClass;
+def IIC_SLDT : InstrItinClass;
+def IIC_STR : InstrItinClass;
+def IIC_SWAPGS : InstrItinClass;
+def IIC_SYSCALL : InstrItinClass;
+def IIC_SYS_ENTER_EXIT : InstrItinClass;
+def IIC_IN_RR : InstrItinClass;
+def IIC_IN_RI : InstrItinClass;
+def IIC_OUT_RR : InstrItinClass;
+def IIC_OUT_IR : InstrItinClass;
+def IIC_INS : InstrItinClass;
+def IIC_MOV_REG_DR : InstrItinClass;
+def IIC_MOV_DR_REG : InstrItinClass;
+def IIC_MOV_REG_CR : InstrItinClass;
+def IIC_MOV_CR_REG : InstrItinClass;
+def IIC_MOV_REG_SR : InstrItinClass;
+def IIC_MOV_MEM_SR : InstrItinClass;
+def IIC_MOV_SR_REG : InstrItinClass;
+def IIC_MOV_SR_MEM : InstrItinClass;
+def IIC_LAR_RM : InstrItinClass;
+def IIC_LAR_RR : InstrItinClass;
+def IIC_LSL_RM : InstrItinClass;
+def IIC_LSL_RR : InstrItinClass;
+def IIC_LGDT : InstrItinClass;
+def IIC_LIDT : InstrItinClass;
+def IIC_LLDT_REG : InstrItinClass;
+def IIC_LLDT_MEM : InstrItinClass;
+def IIC_PUSH_CS : InstrItinClass;
+def IIC_PUSH_SR : InstrItinClass;
+def IIC_POP_SR : InstrItinClass;
+def IIC_POP_SR_SS : InstrItinClass;
+def IIC_VERR : InstrItinClass;
+def IIC_VERW_REG : InstrItinClass;
+def IIC_VERW_MEM : InstrItinClass;
+def IIC_WRMSR : InstrItinClass;
+def IIC_RDMSR : InstrItinClass;
+def IIC_RDPMC : InstrItinClass;
+def IIC_SMSW : InstrItinClass;
+def IIC_LMSW_REG : InstrItinClass;
+def IIC_LMSW_MEM : InstrItinClass;
+def IIC_ENTER : InstrItinClass;
+def IIC_LEAVE : InstrItinClass;
+def IIC_POP_MEM : InstrItinClass;
+def IIC_POP_REG16 : InstrItinClass;
+def IIC_POP_REG : InstrItinClass;
+def IIC_POP_F : InstrItinClass;
+def IIC_POP_FD : InstrItinClass;
+def IIC_POP_A : InstrItinClass;
+def IIC_PUSH_IMM : InstrItinClass;
+def IIC_PUSH_MEM : InstrItinClass;
+def IIC_PUSH_REG : InstrItinClass;
+def IIC_PUSH_F : InstrItinClass;
+def IIC_PUSH_A : InstrItinClass;
+def IIC_BSWAP : InstrItinClass;
+def IIC_BIT_SCAN_MEM : InstrItinClass;
+def IIC_BIT_SCAN_REG : InstrItinClass;
+def IIC_MOVS : InstrItinClass;
+def IIC_STOS : InstrItinClass;
+def IIC_SCAS : InstrItinClass;
+def IIC_CMPS : InstrItinClass;
+def IIC_MOV : InstrItinClass;
+def IIC_MOV_MEM : InstrItinClass;
+def IIC_AHF : InstrItinClass;
+def IIC_BT_MI : InstrItinClass;
+def IIC_BT_MR : InstrItinClass;
+def IIC_BT_RI : InstrItinClass;
+def IIC_BT_RR : InstrItinClass;
+def IIC_BTX_MI : InstrItinClass;
+def IIC_BTX_MR : InstrItinClass;
+def IIC_BTX_RI : InstrItinClass;
+def IIC_BTX_RR : InstrItinClass;
+def IIC_XCHG_REG : InstrItinClass;
+def IIC_XCHG_MEM : InstrItinClass;
+def IIC_XADD_REG : InstrItinClass;
+def IIC_XADD_MEM : InstrItinClass;
+def IIC_CMPXCHG_MEM : InstrItinClass;
+def IIC_CMPXCHG_REG : InstrItinClass;
+def IIC_CMPXCHG_MEM8 : InstrItinClass;
+def IIC_CMPXCHG_REG8 : InstrItinClass;
+def IIC_CMPXCHG_8B : InstrItinClass;
+def IIC_CMPXCHG_16B : InstrItinClass;
+def IIC_LODS : InstrItinClass;
+def IIC_OUTS : InstrItinClass;
+def IIC_CLC : InstrItinClass;
+def IIC_CLD : InstrItinClass;
+def IIC_CLI : InstrItinClass;
+def IIC_CMC : InstrItinClass;
+def IIC_CLTS : InstrItinClass;
+def IIC_STC : InstrItinClass;
+def IIC_STI : InstrItinClass;
+def IIC_STD : InstrItinClass;
+def IIC_XLAT : InstrItinClass;
+def IIC_AAA : InstrItinClass;
+def IIC_AAD : InstrItinClass;
+def IIC_AAM : InstrItinClass;
+def IIC_AAS : InstrItinClass;
+def IIC_DAA : InstrItinClass;
+def IIC_DAS : InstrItinClass;
+def IIC_BOUND : InstrItinClass;
+def IIC_ARPL_REG : InstrItinClass;
+def IIC_ARPL_MEM : InstrItinClass;
+def IIC_MOVBE : InstrItinClass;
+def IIC_AES : InstrItinClass;
+def IIC_BLEND_MEM : InstrItinClass;
+def IIC_BLEND_NOMEM : InstrItinClass;
+def IIC_CBW : InstrItinClass;
+def IIC_CRC32_REG : InstrItinClass;
+def IIC_CRC32_MEM : InstrItinClass;
+def IIC_SSE_DPPD_RR : InstrItinClass;
+def IIC_SSE_DPPD_RM : InstrItinClass;
+def IIC_SSE_DPPS_RR : InstrItinClass;
+def IIC_SSE_DPPS_RM : InstrItinClass;
+def IIC_MMX_EMMS : InstrItinClass;
+def IIC_SSE_EXTRACTPS_RR : InstrItinClass;
+def IIC_SSE_EXTRACTPS_RM : InstrItinClass;
+def IIC_SSE_INSERTPS_RR : InstrItinClass;
+def IIC_SSE_INSERTPS_RM : InstrItinClass;
+def IIC_SSE_MPSADBW_RR : InstrItinClass;
+def IIC_SSE_MPSADBW_RM : InstrItinClass;
+def IIC_SSE_PMULLD_RR : InstrItinClass;
+def IIC_SSE_PMULLD_RM : InstrItinClass;
+def IIC_SSE_ROUNDPS_REG : InstrItinClass;
+def IIC_SSE_ROUNDPS_MEM : InstrItinClass;
+def IIC_SSE_ROUNDPD_REG : InstrItinClass;
+def IIC_SSE_ROUNDPD_MEM : InstrItinClass;
+def IIC_SSE_POPCNT_RR : InstrItinClass;
+def IIC_SSE_POPCNT_RM : InstrItinClass;
+def IIC_SSE_PCLMULQDQ_RR : InstrItinClass;
+def IIC_SSE_PCLMULQDQ_RM : InstrItinClass;
+
+def IIC_NOP : InstrItinClass;
+
+//===----------------------------------------------------------------------===//
+// Processor instruction itineraries.
+
+// IssueWidth is analogous to the number of decode units. Core and its
+// descendents, including Nehalem and SandyBridge have 4 decoders.
+// Resources beyond the decoder operate on micro-ops and are bufferred
+// so adjacent micro-ops don't directly compete.
+//
+// MicroOpBufferSize > 1 indicates that RAW dependencies can be
+// decoded in the same cycle. The value 32 is a reasonably arbitrary
+// number of in-flight instructions.
+//
+// HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef
+// indicates high latency opcodes. Alternatively, InstrItinData
+// entries may be included here to define specific operand
+// latencies. Since these latencies are not used for pipeline hazards,
+// they do not need to be exact.
+//
+// The GenericModel contains no instruction itineraries.
+def GenericModel : SchedMachineModel {
+ let IssueWidth = 4;
+ let MicroOpBufferSize = 32;
+ let LoadLatency = 4;
+ let HighLatency = 10;
+ let PostRAScheduler = 0;
+}
+
+include "X86ScheduleAtom.td"
+include "X86SchedSandyBridge.td"
+include "X86SchedHaswell.td"
+include "X86ScheduleSLM.td"
diff --git a/contrib/llvm/lib/Target/X86/X86ScheduleAtom.td b/contrib/llvm/lib/Target/X86/X86ScheduleAtom.td
new file mode 100644
index 0000000..c8820aa
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86ScheduleAtom.td
@@ -0,0 +1,544 @@
+//===- X86ScheduleAtom.td - X86 Atom Scheduling Definitions -*- tablegen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the Intel Atom
+// in order (Saltwell-32nm/Bonnell-45nm) processors.
+//
+//===----------------------------------------------------------------------===//
+
+//
+// Scheduling information derived from the "Intel 64 and IA32 Architectures
+// Optimization Reference Manual", Chapter 13, Section 4.
+// Functional Units
+// Port 0
+def Port0 : FuncUnit; // ALU: ALU0, shift/rotate, load/store
+ // SIMD/FP: SIMD ALU, Shuffle,SIMD/FP multiply, divide
+def Port1 : FuncUnit; // ALU: ALU1, bit processing, jump, and LEA
+ // SIMD/FP: SIMD ALU, FP Adder
+
+def AtomItineraries : ProcessorItineraries<
+ [ Port0, Port1 ],
+ [], [
+ // P0 only
+ // InstrItinData<class, [InstrStage<N, [P0]>] >,
+ // P0 or P1
+ // InstrItinData<class, [InstrStage<N, [P0, P1]>] >,
+ // P0 and P1
+ // InstrItinData<class, [InstrStage<N, [P0], 0>, InstrStage<N, [P1]>] >,
+ //
+ // Default is 1 cycle, port0 or port1
+ InstrItinData<IIC_ALU_MEM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_ALU_NONMEM, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_LEA, [InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_LEA_16, [InstrStage<2, [Port0, Port1]>] >,
+ // mul
+ InstrItinData<IIC_MUL8, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_MUL16_MEM, [InstrStage<8, [Port0, Port1]>] >,
+ InstrItinData<IIC_MUL16_REG, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_MUL32_MEM, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_MUL32_REG, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_MUL64, [InstrStage<12, [Port0, Port1]>] >,
+ // imul by al, ax, eax, rax
+ InstrItinData<IIC_IMUL8, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_IMUL16_MEM, [InstrStage<8, [Port0, Port1]>] >,
+ InstrItinData<IIC_IMUL16_REG, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_IMUL32_MEM, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_IMUL32_REG, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_IMUL64, [InstrStage<12, [Port0, Port1]>] >,
+ // imul reg by reg|mem
+ InstrItinData<IIC_IMUL16_RM, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_IMUL16_RR, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_IMUL32_RM, [InstrStage<5, [Port0]>] >,
+ InstrItinData<IIC_IMUL32_RR, [InstrStage<5, [Port0]>] >,
+ InstrItinData<IIC_IMUL64_RM, [InstrStage<12, [Port0, Port1]>] >,
+ InstrItinData<IIC_IMUL64_RR, [InstrStage<12, [Port0, Port1]>] >,
+ // imul reg = reg/mem * imm
+ InstrItinData<IIC_IMUL16_RRI, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_IMUL32_RRI, [InstrStage<5, [Port0]>] >,
+ InstrItinData<IIC_IMUL64_RRI, [InstrStage<14, [Port0, Port1]>] >,
+ InstrItinData<IIC_IMUL16_RMI, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_IMUL32_RMI, [InstrStage<5, [Port0]>] >,
+ InstrItinData<IIC_IMUL64_RMI, [InstrStage<14, [Port0, Port1]>] >,
+ // idiv
+ InstrItinData<IIC_IDIV8, [InstrStage<62, [Port0, Port1]>] >,
+ InstrItinData<IIC_IDIV16, [InstrStage<62, [Port0, Port1]>] >,
+ InstrItinData<IIC_IDIV32, [InstrStage<62, [Port0, Port1]>] >,
+ InstrItinData<IIC_IDIV64, [InstrStage<130, [Port0, Port1]>] >,
+ // div
+ InstrItinData<IIC_DIV8_REG, [InstrStage<50, [Port0, Port1]>] >,
+ InstrItinData<IIC_DIV8_MEM, [InstrStage<68, [Port0, Port1]>] >,
+ InstrItinData<IIC_DIV16, [InstrStage<50, [Port0, Port1]>] >,
+ InstrItinData<IIC_DIV32, [InstrStage<50, [Port0, Port1]>] >,
+ InstrItinData<IIC_DIV64, [InstrStage<130, [Port0, Port1]>] >,
+ // neg/not/inc/dec
+ InstrItinData<IIC_UNARY_REG, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_UNARY_MEM, [InstrStage<1, [Port0]>] >,
+ // add/sub/and/or/xor/cmp/test
+ InstrItinData<IIC_BIN_NONMEM, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_BIN_MEM, [InstrStage<1, [Port0]>] >,
+ // adc/sbc
+ InstrItinData<IIC_BIN_CARRY_NONMEM, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_BIN_CARRY_MEM, [InstrStage<1, [Port0]>] >,
+ // shift/rotate
+ InstrItinData<IIC_SR, [InstrStage<1, [Port0]>] >,
+ // shift double
+ InstrItinData<IIC_SHD16_REG_IM, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_SHD16_REG_CL, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_SHD16_MEM_IM, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_SHD16_MEM_CL, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_SHD32_REG_IM, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_SHD32_REG_CL, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_SHD32_MEM_IM, [InstrStage<4, [Port0, Port1]>] >,
+ InstrItinData<IIC_SHD32_MEM_CL, [InstrStage<4, [Port0, Port1]>] >,
+ InstrItinData<IIC_SHD64_REG_IM, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_SHD64_REG_CL, [InstrStage<8, [Port0, Port1]>] >,
+ InstrItinData<IIC_SHD64_MEM_IM, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_SHD64_MEM_CL, [InstrStage<9, [Port0, Port1]>] >,
+ // cmov
+ InstrItinData<IIC_CMOV16_RM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_CMOV16_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMOV32_RM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_CMOV32_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMOV64_RM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_CMOV64_RR, [InstrStage<1, [Port0, Port1]>] >,
+ // set
+ InstrItinData<IIC_SET_M, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_SET_R, [InstrStage<1, [Port0, Port1]>] >,
+ // jcc
+ InstrItinData<IIC_Jcc, [InstrStage<1, [Port1]>] >,
+ // jcxz/jecxz/jrcxz
+ InstrItinData<IIC_JCXZ, [InstrStage<4, [Port0, Port1]>] >,
+ // jmp rel
+ InstrItinData<IIC_JMP_REL, [InstrStage<1, [Port1]>] >,
+ // jmp indirect
+ InstrItinData<IIC_JMP_REG, [InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_JMP_MEM, [InstrStage<2, [Port0, Port1]>] >,
+ // jmp far
+ InstrItinData<IIC_JMP_FAR_MEM, [InstrStage<32, [Port0, Port1]>] >,
+ InstrItinData<IIC_JMP_FAR_PTR, [InstrStage<31, [Port0, Port1]>] >,
+ // loop/loope/loopne
+ InstrItinData<IIC_LOOP, [InstrStage<18, [Port0, Port1]>] >,
+ InstrItinData<IIC_LOOPE, [InstrStage<8, [Port0, Port1]>] >,
+ InstrItinData<IIC_LOOPNE, [InstrStage<17, [Port0, Port1]>] >,
+ // call - all but reg/imm
+ InstrItinData<IIC_CALL_RI, [InstrStage<1, [Port0], 0>,
+ InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_CALL_MEM, [InstrStage<15, [Port0, Port1]>] >,
+ InstrItinData<IIC_CALL_FAR_MEM, [InstrStage<40, [Port0, Port1]>] >,
+ InstrItinData<IIC_CALL_FAR_PTR, [InstrStage<39, [Port0, Port1]>] >,
+ //ret
+ InstrItinData<IIC_RET, [InstrStage<79, [Port0, Port1]>] >,
+ InstrItinData<IIC_RET_IMM, [InstrStage<1, [Port0], 0>, InstrStage<1, [Port1]>] >,
+ //sign extension movs
+ InstrItinData<IIC_MOVSX,[InstrStage<1, [Port0] >] >,
+ InstrItinData<IIC_MOVSX_R16_R8, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOVSX_R16_M8, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOVSX_R16_R16, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOVSX_R32_R32, [InstrStage<1, [Port0, Port1]>] >,
+ //zero extension movs
+ InstrItinData<IIC_MOVZX,[InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_MOVZX_R16_R8, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOVZX_R16_M8, [InstrStage<3, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_REP_MOVS, [InstrStage<75, [Port0, Port1]>] >,
+ InstrItinData<IIC_REP_STOS, [InstrStage<74, [Port0, Port1]>] >,
+
+ // SSE binary operations
+ // arithmetic fp scalar
+ InstrItinData<IIC_SSE_ALU_F32S_RR, [InstrStage<5, [Port1]>] >,
+ InstrItinData<IIC_SSE_ALU_F32S_RM, [InstrStage<5, [Port0], 0>,
+ InstrStage<5, [Port1]>] >,
+ InstrItinData<IIC_SSE_ALU_F64S_RR, [InstrStage<5, [Port1]>] >,
+ InstrItinData<IIC_SSE_ALU_F64S_RM, [InstrStage<5, [Port0], 0>,
+ InstrStage<5, [Port1]>] >,
+ InstrItinData<IIC_SSE_MUL_F32S_RR, [InstrStage<4, [Port0]>] >,
+ InstrItinData<IIC_SSE_MUL_F32S_RM, [InstrStage<4, [Port0]>] >,
+ InstrItinData<IIC_SSE_MUL_F64S_RR, [InstrStage<5, [Port0]>] >,
+ InstrItinData<IIC_SSE_MUL_F64S_RM, [InstrStage<5, [Port0]>] >,
+ InstrItinData<IIC_SSE_DIV_F32S_RR, [InstrStage<34, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_DIV_F32S_RM, [InstrStage<34, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_DIV_F64S_RR, [InstrStage<62, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_DIV_F64S_RM, [InstrStage<62, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_SSE_COMIS_RR, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_COMIS_RM, [InstrStage<10, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_SSE_HADDSUB_RR, [InstrStage<8, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_HADDSUB_RM, [InstrStage<9, [Port0, Port1]>] >,
+
+ // arithmetic fp parallel
+ InstrItinData<IIC_SSE_ALU_F32P_RR, [InstrStage<5, [Port1]>] >,
+ InstrItinData<IIC_SSE_ALU_F32P_RM, [InstrStage<5, [Port0], 0>,
+ InstrStage<5, [Port1]>] >,
+ InstrItinData<IIC_SSE_ALU_F64P_RR, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_ALU_F64P_RM, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_MUL_F32P_RR, [InstrStage<5, [Port0]>] >,
+ InstrItinData<IIC_SSE_MUL_F32P_RM, [InstrStage<5, [Port0]>] >,
+ InstrItinData<IIC_SSE_MUL_F64P_RR, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_MUL_F64P_RM, [InstrStage<10, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_DIV_F32P_RR, [InstrStage<70, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_DIV_F32P_RM, [InstrStage<70, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_DIV_F64P_RR, [InstrStage<125, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_DIV_F64P_RM, [InstrStage<125, [Port0, Port1]>] >,
+
+ // bitwise parallel
+ InstrItinData<IIC_SSE_BIT_P_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_BIT_P_RM, [InstrStage<1, [Port0]>] >,
+
+ // arithmetic int parallel
+ InstrItinData<IIC_SSE_INTALU_P_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_INTALU_P_RM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_SSE_INTALUQ_P_RR, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_INTALUQ_P_RM, [InstrStage<3, [Port0, Port1]>] >,
+
+ // multiply int parallel
+ InstrItinData<IIC_SSE_INTMUL_P_RR, [InstrStage<5, [Port0]>] >,
+ InstrItinData<IIC_SSE_INTMUL_P_RM, [InstrStage<5, [Port0]>] >,
+
+ // shift parallel
+ InstrItinData<IIC_SSE_INTSH_P_RR, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_INTSH_P_RM, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_INTSH_P_RI, [InstrStage<1, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_SSE_INTSHDQ_P_RI, [InstrStage<1, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_SSE_SHUFP, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_SSE_PSHUF_RI, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_SSE_PSHUF_MI, [InstrStage<1, [Port0]>] >,
+
+ InstrItinData<IIC_SSE_UNPCK, [InstrStage<1, [Port0]>] >,
+
+ InstrItinData<IIC_SSE_SQRTPS_RR, [InstrStage<70, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_SQRTPS_RM, [InstrStage<70, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_SQRTSS_RR, [InstrStage<34, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_SQRTSS_RM, [InstrStage<34, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_SSE_SQRTPD_RR, [InstrStage<125, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_SQRTPD_RM, [InstrStage<125, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_SQRTSD_RR, [InstrStage<62, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_SQRTSD_RM, [InstrStage<62, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_SSE_RCPP_RR, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_RCPP_RM, [InstrStage<10, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_RCPS_RR, [InstrStage<4, [Port0]>] >,
+ InstrItinData<IIC_SSE_RCPS_RM, [InstrStage<4, [Port0]>] >,
+
+ InstrItinData<IIC_SSE_MOVMSK, [InstrStage<3, [Port0]>] >,
+ InstrItinData<IIC_SSE_MASKMOV, [InstrStage<2, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_SSE_PEXTRW, [InstrStage<4, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_PINSRW, [InstrStage<1, [Port0]>] >,
+
+ InstrItinData<IIC_SSE_PABS_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_PABS_RM, [InstrStage<1, [Port0]>] >,
+
+ InstrItinData<IIC_SSE_MOV_S_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_MOV_S_RM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_SSE_MOV_S_MR, [InstrStage<1, [Port0]>] >,
+
+ InstrItinData<IIC_SSE_MOVA_P_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_MOVA_P_RM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_SSE_MOVA_P_MR, [InstrStage<1, [Port0]>] >,
+
+ InstrItinData<IIC_SSE_MOVU_P_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_MOVU_P_RM, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_MOVU_P_MR, [InstrStage<2, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_SSE_MOV_LH, [InstrStage<1, [Port0]>] >,
+
+ InstrItinData<IIC_SSE_LDDQU, [InstrStage<3, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_SSE_MOVDQ, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_SSE_MOVD_ToGP, [InstrStage<3, [Port0]>] >,
+ InstrItinData<IIC_SSE_MOVQ_RR, [InstrStage<1, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_SSE_MOVNT, [InstrStage<1, [Port0]>] >,
+
+ InstrItinData<IIC_SSE_PREFETCH, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_SSE_PAUSE, [InstrStage<17, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_LFENCE, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_MFENCE, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_SSE_SFENCE, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_SSE_LDMXCSR, [InstrStage<5, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_STMXCSR, [InstrStage<15, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_SSE_PHADDSUBD_RR, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_PHADDSUBD_RM, [InstrStage<4, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_PHADDSUBSW_RR, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_PHADDSUBSW_RM, [InstrStage<8, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_PHADDSUBW_RR, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_PHADDSUBW_RM, [InstrStage<8, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_PSHUFB_RR, [InstrStage<4, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_PSHUFB_RM, [InstrStage<5, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_PSIGN_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_PSIGN_RM, [InstrStage<1, [Port0]>] >,
+
+ InstrItinData<IIC_SSE_PMADD, [InstrStage<5, [Port0]>] >,
+ InstrItinData<IIC_SSE_PMULHRSW, [InstrStage<5, [Port0]>] >,
+ InstrItinData<IIC_SSE_PALIGNRR, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_SSE_PALIGNRM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_SSE_MWAIT, [InstrStage<46, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_MONITOR, [InstrStage<45, [Port0, Port1]>] >,
+
+ // conversions
+ // to/from PD ...
+ InstrItinData<IIC_SSE_CVT_PD_RR, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_CVT_PD_RM, [InstrStage<8, [Port0, Port1]>] >,
+ // to/from PS except to/from PD and PS2PI
+ InstrItinData<IIC_SSE_CVT_PS_RR, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_CVT_PS_RM, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_CVT_Scalar_RR, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_CVT_Scalar_RM, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_CVT_SS2SI32_RR, [InstrStage<8, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_CVT_SS2SI32_RM, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_CVT_SS2SI64_RR, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_CVT_SS2SI64_RM, [InstrStage<10, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_CVT_SD2SI_RR, [InstrStage<8, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_CVT_SD2SI_RM, [InstrStage<9, [Port0, Port1]>] >,
+
+ // MMX MOVs
+ InstrItinData<IIC_MMX_MOV_MM_RM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_MMX_MOV_REG_MM, [InstrStage<3, [Port0]>] >,
+ InstrItinData<IIC_MMX_MOVQ_RM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_MMX_MOVQ_RR, [InstrStage<1, [Port0, Port1]>] >,
+ // other MMX
+ InstrItinData<IIC_MMX_ALU_RM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_MMX_ALU_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_ALUQ_RM, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_ALUQ_RR, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_PHADDSUBW_RM, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_PHADDSUBW_RR, [InstrStage<5, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_PHADDSUBD_RM, [InstrStage<4, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_PHADDSUBD_RR, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_PMUL, [InstrStage<4, [Port0]>] >,
+ InstrItinData<IIC_MMX_MISC_FUNC_MEM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_MMX_MISC_FUNC_REG, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_PSADBW, [InstrStage<4, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_SHIFT_RI, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_SHIFT_RM, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_SHIFT_RR, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_UNPCK_H_RM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_MMX_UNPCK_H_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_UNPCK_L, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_MMX_PCK_RM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_MMX_PCK_RR, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_PSHUF, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_MMX_PEXTR, [InstrStage<4, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_PINSRW, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_MMX_MASKMOV, [InstrStage<1, [Port0]>] >,
+ // conversions
+ // from/to PD
+ InstrItinData<IIC_MMX_CVT_PD_RR, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_CVT_PD_RM, [InstrStage<8, [Port0, Port1]>] >,
+ // from/to PI
+ InstrItinData<IIC_MMX_CVT_PS_RR, [InstrStage<5, [Port1]>] >,
+ InstrItinData<IIC_MMX_CVT_PS_RM, [InstrStage<5, [Port0], 0>,
+ InstrStage<5, [Port1]>]>,
+
+ InstrItinData<IIC_CMPX_LOCK, [InstrStage<14, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMPX_LOCK_8, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMPX_LOCK_8B, [InstrStage<18, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMPX_LOCK_16B, [InstrStage<22, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_XADD_LOCK_MEM, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_XADD_LOCK_MEM, [InstrStage<3, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_FILD, [InstrStage<5, [Port0], 0>, InstrStage<5, [Port1]>] >,
+ InstrItinData<IIC_FLD, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_FLD80, [InstrStage<4, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_FST, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_FST80, [InstrStage<5, [Port0, Port1]>] >,
+ InstrItinData<IIC_FIST, [InstrStage<6, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_FLDZ, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_FUCOM, [InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_FUCOMI, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_FCOMI, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_FNSTSW, [InstrStage<10, [Port0, Port1]>] >,
+ InstrItinData<IIC_FNSTCW, [InstrStage<8, [Port0, Port1]>] >,
+ InstrItinData<IIC_FLDCW, [InstrStage<5, [Port0, Port1]>] >,
+ InstrItinData<IIC_FNINIT, [InstrStage<63, [Port0, Port1]>] >,
+ InstrItinData<IIC_FFREE, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_FNCLEX, [InstrStage<25, [Port0, Port1]>] >,
+ InstrItinData<IIC_WAIT, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_FXAM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_FNOP, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_FLDL, [InstrStage<10, [Port0, Port1]>] >,
+ InstrItinData<IIC_F2XM1, [InstrStage<99, [Port0, Port1]>] >,
+ InstrItinData<IIC_FYL2X, [InstrStage<146, [Port0, Port1]>] >,
+ InstrItinData<IIC_FPTAN, [InstrStage<168, [Port0, Port1]>] >,
+ InstrItinData<IIC_FPATAN, [InstrStage<183, [Port0, Port1]>] >,
+ InstrItinData<IIC_FXTRACT, [InstrStage<25, [Port0, Port1]>] >,
+ InstrItinData<IIC_FPREM1, [InstrStage<71, [Port0, Port1]>] >,
+ InstrItinData<IIC_FPSTP, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_FPREM, [InstrStage<55, [Port0, Port1]>] >,
+ InstrItinData<IIC_FYL2XP1, [InstrStage<147, [Port0, Port1]>] >,
+ InstrItinData<IIC_FSINCOS, [InstrStage<174, [Port0, Port1]>] >,
+ InstrItinData<IIC_FRNDINT, [InstrStage<46, [Port0, Port1]>] >,
+ InstrItinData<IIC_FSCALE, [InstrStage<77, [Port0, Port1]>] >,
+ InstrItinData<IIC_FCOMPP, [InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_FXSAVE, [InstrStage<140, [Port0, Port1]>] >,
+ InstrItinData<IIC_FXRSTOR, [InstrStage<141, [Port0, Port1]>] >,
+ InstrItinData<IIC_FXCH, [InstrStage<1, [Port0], 0>, InstrStage<1, [Port1]>] >,
+
+ // System instructions
+ InstrItinData<IIC_CPUID, [InstrStage<121, [Port0, Port1]>] >,
+ InstrItinData<IIC_INT, [InstrStage<127, [Port0, Port1]>] >,
+ InstrItinData<IIC_INT3, [InstrStage<130, [Port0, Port1]>] >,
+ InstrItinData<IIC_INVD, [InstrStage<1003, [Port0, Port1]>] >,
+ InstrItinData<IIC_INVLPG, [InstrStage<71, [Port0, Port1]>] >,
+ InstrItinData<IIC_IRET, [InstrStage<109, [Port0, Port1]>] >,
+ InstrItinData<IIC_HLT, [InstrStage<121, [Port0, Port1]>] >,
+ InstrItinData<IIC_LXS, [InstrStage<10, [Port0, Port1]>] >,
+ InstrItinData<IIC_LTR, [InstrStage<83, [Port0, Port1]>] >,
+ InstrItinData<IIC_RDTSC, [InstrStage<30, [Port0, Port1]>] >,
+ InstrItinData<IIC_RSM, [InstrStage<741, [Port0, Port1]>] >,
+ InstrItinData<IIC_SIDT, [InstrStage<4, [Port0, Port1]>] >,
+ InstrItinData<IIC_SGDT, [InstrStage<4, [Port0, Port1]>] >,
+ InstrItinData<IIC_SLDT, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_STR, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_SWAPGS, [InstrStage<22, [Port0, Port1]>] >,
+ InstrItinData<IIC_SYSCALL, [InstrStage<96, [Port0, Port1]>] >,
+ InstrItinData<IIC_SYS_ENTER_EXIT, [InstrStage<88, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_IN_RR, [InstrStage<94, [Port0, Port1]>] >,
+ InstrItinData<IIC_IN_RI, [InstrStage<92, [Port0, Port1]>] >,
+ InstrItinData<IIC_OUT_RR, [InstrStage<68, [Port0, Port1]>] >,
+ InstrItinData<IIC_OUT_IR, [InstrStage<72, [Port0, Port1]>] >,
+ InstrItinData<IIC_INS, [InstrStage<59, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_MOV_REG_DR, [InstrStage<88, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOV_DR_REG, [InstrStage<123, [Port0, Port1]>] >,
+ // worst case for mov REG_CRx
+ InstrItinData<IIC_MOV_REG_CR, [InstrStage<12, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOV_CR_REG, [InstrStage<136, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_MOV_REG_SR, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_MOV_MEM_SR, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOV_SR_REG, [InstrStage<21, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOV_SR_MEM, [InstrStage<26, [Port0, Port1]>] >,
+ // LAR
+ InstrItinData<IIC_LAR_RM, [InstrStage<50, [Port0, Port1]>] >,
+ InstrItinData<IIC_LAR_RR, [InstrStage<54, [Port0, Port1]>] >,
+ // LSL
+ InstrItinData<IIC_LSL_RM, [InstrStage<46, [Port0, Port1]>] >,
+ InstrItinData<IIC_LSL_RR, [InstrStage<49, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_LGDT, [InstrStage<44, [Port0, Port1]>] >,
+ InstrItinData<IIC_LIDT, [InstrStage<44, [Port0, Port1]>] >,
+ InstrItinData<IIC_LLDT_REG, [InstrStage<60, [Port0, Port1]>] >,
+ InstrItinData<IIC_LLDT_MEM, [InstrStage<64, [Port0, Port1]>] >,
+ // push control register, segment registers
+ InstrItinData<IIC_PUSH_CS, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_PUSH_SR, [InstrStage<2, [Port0, Port1]>] >,
+ // pop control register, segment registers
+ InstrItinData<IIC_POP_SR, [InstrStage<29, [Port0, Port1]>] >,
+ InstrItinData<IIC_POP_SR_SS, [InstrStage<48, [Port0, Port1]>] >,
+ // VERR, VERW
+ InstrItinData<IIC_VERR, [InstrStage<41, [Port0, Port1]>] >,
+ InstrItinData<IIC_VERW_REG, [InstrStage<51, [Port0, Port1]>] >,
+ InstrItinData<IIC_VERW_MEM, [InstrStage<50, [Port0, Port1]>] >,
+ // WRMSR, RDMSR
+ InstrItinData<IIC_WRMSR, [InstrStage<202, [Port0, Port1]>] >,
+ InstrItinData<IIC_RDMSR, [InstrStage<78, [Port0, Port1]>] >,
+ InstrItinData<IIC_RDPMC, [InstrStage<46, [Port0, Port1]>] >,
+ // SMSW, LMSW
+ InstrItinData<IIC_SMSW, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_LMSW_REG, [InstrStage<69, [Port0, Port1]>] >,
+ InstrItinData<IIC_LMSW_MEM, [InstrStage<67, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_ENTER, [InstrStage<32, [Port0, Port1]>] >,
+ InstrItinData<IIC_LEAVE, [InstrStage<2, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_POP_MEM, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_POP_REG16, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_POP_REG, [InstrStage<1, [Port0], 0>,
+ InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_POP_F, [InstrStage<32, [Port0, Port1]>] >,
+ InstrItinData<IIC_POP_FD, [InstrStage<26, [Port0, Port1]>] >,
+ InstrItinData<IIC_POP_A, [InstrStage<9, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_PUSH_IMM, [InstrStage<1, [Port0], 0>,
+ InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_PUSH_MEM, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_PUSH_REG, [InstrStage<1, [Port0], 0>,
+ InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_PUSH_F, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_PUSH_A, [InstrStage<8, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_BSWAP, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_BIT_SCAN_MEM, [InstrStage<16, [Port0, Port1]>] >,
+ InstrItinData<IIC_BIT_SCAN_REG, [InstrStage<16, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOVS, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_STOS, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_SCAS, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMPS, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOV, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOV_MEM, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_AHF, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_BT_MI, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_BT_MR, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_BT_RI, [InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_BT_RR, [InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_BTX_MI, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_BTX_MR, [InstrStage<11, [Port0, Port1]>] >,
+ InstrItinData<IIC_BTX_RI, [InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_BTX_RR, [InstrStage<1, [Port1]>] >,
+ InstrItinData<IIC_XCHG_REG, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_XCHG_MEM, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_XADD_REG, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_XADD_MEM, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMPXCHG_MEM, [InstrStage<14, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMPXCHG_REG, [InstrStage<15, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMPXCHG_MEM8, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMPXCHG_REG8, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMPXCHG_8B, [InstrStage<18, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMPXCHG_16B, [InstrStage<22, [Port0, Port1]>] >,
+ InstrItinData<IIC_LODS, [InstrStage<2, [Port0, Port1]>] >,
+ InstrItinData<IIC_OUTS, [InstrStage<74, [Port0, Port1]>] >,
+ InstrItinData<IIC_CLC, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_CLD, [InstrStage<3, [Port0, Port1]>] >,
+ InstrItinData<IIC_CLI, [InstrStage<14, [Port0, Port1]>] >,
+ InstrItinData<IIC_CMC, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_CLTS, [InstrStage<33, [Port0, Port1]>] >,
+ InstrItinData<IIC_STC, [InstrStage<1, [Port0, Port1]>] >,
+ InstrItinData<IIC_STI, [InstrStage<17, [Port0, Port1]>] >,
+ InstrItinData<IIC_STD, [InstrStage<21, [Port0, Port1]>] >,
+ InstrItinData<IIC_XLAT, [InstrStage<6, [Port0, Port1]>] >,
+ InstrItinData<IIC_AAA, [InstrStage<13, [Port0, Port1]>] >,
+ InstrItinData<IIC_AAD, [InstrStage<7, [Port0, Port1]>] >,
+ InstrItinData<IIC_AAM, [InstrStage<21, [Port0, Port1]>] >,
+ InstrItinData<IIC_AAS, [InstrStage<13, [Port0, Port1]>] >,
+ InstrItinData<IIC_DAA, [InstrStage<18, [Port0, Port1]>] >,
+ InstrItinData<IIC_DAS, [InstrStage<20, [Port0, Port1]>] >,
+ InstrItinData<IIC_BOUND, [InstrStage<11, [Port0, Port1]>] >,
+ InstrItinData<IIC_ARPL_REG, [InstrStage<24, [Port0, Port1]>] >,
+ InstrItinData<IIC_ARPL_MEM, [InstrStage<23, [Port0, Port1]>] >,
+ InstrItinData<IIC_MOVBE, [InstrStage<1, [Port0]>] >,
+ InstrItinData<IIC_CBW, [InstrStage<4, [Port0, Port1]>] >,
+ InstrItinData<IIC_MMX_EMMS, [InstrStage<5, [Port0, Port1]>] >,
+
+ InstrItinData<IIC_NOP, [InstrStage<1, [Port0, Port1]>] >
+ ]>;
+
+// Atom machine model.
+def AtomModel : SchedMachineModel {
+ let IssueWidth = 2; // Allows 2 instructions per scheduling group.
+ let MicroOpBufferSize = 0; // In-order execution, always hide latency.
+ let LoadLatency = 3; // Expected cycles, may be overriden by OperandCycles.
+ let HighLatency = 30;// Expected, may be overriden by OperandCycles.
+
+ // On the Atom, the throughput for taken branches is 2 cycles. For small
+ // simple loops, expand by a small factor to hide the backedge cost.
+ let LoopMicroOpBufferSize = 10;
+ let PostRAScheduler = 1;
+
+ let Itineraries = AtomItineraries;
+}
diff --git a/contrib/llvm/lib/Target/X86/X86ScheduleSLM.td b/contrib/llvm/lib/Target/X86/X86ScheduleSLM.td
new file mode 100644
index 0000000..90d8587
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86ScheduleSLM.td
@@ -0,0 +1,232 @@
+//=- X86ScheduleSLM.td - X86 Silvermont Scheduling -----------*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the machine model for Intel Silvermont to support
+// instruction scheduling and other instruction cost heuristics.
+//
+//===----------------------------------------------------------------------===//
+
+def SLMModel : SchedMachineModel {
+ // All x86 instructions are modeled as a single micro-op, and SLM can decode 2
+ // instructions per cycle.
+ let IssueWidth = 2;
+ let MicroOpBufferSize = 32; // Based on the reorder buffer.
+ let LoadLatency = 3;
+ let MispredictPenalty = 10;
+ let PostRAScheduler = 1;
+
+ // For small loops, expand by a small factor to hide the backedge cost.
+ let LoopMicroOpBufferSize = 10;
+
+ // FIXME: SSE4 is unimplemented. This flag is set to allow
+ // the scheduler to assign a default model to unrecognized opcodes.
+ let CompleteModel = 0;
+}
+
+let SchedModel = SLMModel in {
+
+// Silvermont has 5 reservation stations for micro-ops
+
+def IEC_RSV0 : ProcResource<1>;
+def IEC_RSV1 : ProcResource<1>;
+def FPC_RSV0 : ProcResource<1> { let BufferSize = 1; }
+def FPC_RSV1 : ProcResource<1> { let BufferSize = 1; }
+def MEC_RSV : ProcResource<1>;
+
+// Many micro-ops are capable of issuing on multiple ports.
+def IEC_RSV01 : ProcResGroup<[IEC_RSV0, IEC_RSV1]>;
+def FPC_RSV01 : ProcResGroup<[FPC_RSV0, FPC_RSV1]>;
+
+def SMDivider : ProcResource<1>;
+def SMFPMultiplier : ProcResource<1>;
+def SMFPDivider : ProcResource<1>;
+
+// Loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
+// cycles after the memory operand.
+def : ReadAdvance<ReadAfterLd, 3>;
+
+// Many SchedWrites are defined in pairs with and without a folded load.
+// Instructions with folded loads are usually micro-fused, so they only appear
+// as two micro-ops when queued in the reservation station.
+// This multiclass defines the resource usage for variants with and without
+// folded loads.
+multiclass SMWriteResPair<X86FoldableSchedWrite SchedRW,
+ ProcResourceKind ExePort,
+ int Lat> {
+ // Register variant is using a single cycle on ExePort.
+ def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
+
+ // Memory variant also uses a cycle on MEC_RSV and adds 3 cycles to the
+ // latency.
+ def : WriteRes<SchedRW.Folded, [MEC_RSV, ExePort]> {
+ let Latency = !add(Lat, 3);
+ }
+}
+
+// A folded store needs a cycle on MEC_RSV for the store data, but it does not
+// need an extra port cycle to recompute the address.
+def : WriteRes<WriteRMW, [MEC_RSV]>;
+
+def : WriteRes<WriteStore, [IEC_RSV01, MEC_RSV]>;
+def : WriteRes<WriteLoad, [MEC_RSV]> { let Latency = 3; }
+def : WriteRes<WriteMove, [IEC_RSV01]>;
+def : WriteRes<WriteZero, []>;
+
+defm : SMWriteResPair<WriteALU, IEC_RSV01, 1>;
+defm : SMWriteResPair<WriteIMul, IEC_RSV1, 3>;
+defm : SMWriteResPair<WriteShift, IEC_RSV0, 1>;
+defm : SMWriteResPair<WriteJump, IEC_RSV1, 1>;
+
+// This is for simple LEAs with one or two input operands.
+// The complex ones can only execute on port 1, and they require two cycles on
+// the port to read all inputs. We don't model that.
+def : WriteRes<WriteLEA, [IEC_RSV1]>;
+
+// This is quite rough, latency depends on the dividend.
+def : WriteRes<WriteIDiv, [IEC_RSV01, SMDivider]> {
+ let Latency = 25;
+ let ResourceCycles = [1, 25];
+}
+def : WriteRes<WriteIDivLd, [MEC_RSV, IEC_RSV01, SMDivider]> {
+ let Latency = 29;
+ let ResourceCycles = [1, 1, 25];
+}
+
+// Scalar and vector floating point.
+defm : SMWriteResPair<WriteFAdd, FPC_RSV1, 3>;
+defm : SMWriteResPair<WriteFRcp, FPC_RSV0, 5>;
+defm : SMWriteResPair<WriteFSqrt, FPC_RSV0, 15>;
+defm : SMWriteResPair<WriteCvtF2I, FPC_RSV01, 4>;
+defm : SMWriteResPair<WriteCvtI2F, FPC_RSV01, 4>;
+defm : SMWriteResPair<WriteCvtF2F, FPC_RSV01, 4>;
+defm : SMWriteResPair<WriteFShuffle, FPC_RSV0, 1>;
+defm : SMWriteResPair<WriteFBlend, FPC_RSV0, 1>;
+
+// This is quite rough, latency depends on precision
+def : WriteRes<WriteFMul, [FPC_RSV0, SMFPMultiplier]> {
+ let Latency = 5;
+ let ResourceCycles = [1, 2];
+}
+def : WriteRes<WriteFMulLd, [MEC_RSV, FPC_RSV0, SMFPMultiplier]> {
+ let Latency = 8;
+ let ResourceCycles = [1, 1, 2];
+}
+
+def : WriteRes<WriteFDiv, [FPC_RSV0, SMFPDivider]> {
+ let Latency = 34;
+ let ResourceCycles = [1, 34];
+}
+def : WriteRes<WriteFDivLd, [MEC_RSV, FPC_RSV0, SMFPDivider]> {
+ let Latency = 37;
+ let ResourceCycles = [1, 1, 34];
+}
+
+// Vector integer operations.
+defm : SMWriteResPair<WriteVecShift, FPC_RSV0, 1>;
+defm : SMWriteResPair<WriteVecLogic, FPC_RSV01, 1>;
+defm : SMWriteResPair<WriteVecALU, FPC_RSV01, 1>;
+defm : SMWriteResPair<WriteVecIMul, FPC_RSV0, 4>;
+defm : SMWriteResPair<WriteShuffle, FPC_RSV0, 1>;
+defm : SMWriteResPair<WriteBlend, FPC_RSV0, 1>;
+defm : SMWriteResPair<WriteMPSAD, FPC_RSV0, 7>;
+
+// String instructions.
+// Packed Compare Implicit Length Strings, Return Mask
+def : WriteRes<WritePCmpIStrM, [FPC_RSV0]> {
+ let Latency = 13;
+ let ResourceCycles = [13];
+}
+def : WriteRes<WritePCmpIStrMLd, [FPC_RSV0, MEC_RSV]> {
+ let Latency = 13;
+ let ResourceCycles = [13, 1];
+}
+
+// Packed Compare Explicit Length Strings, Return Mask
+def : WriteRes<WritePCmpEStrM, [FPC_RSV0]> {
+ let Latency = 17;
+ let ResourceCycles = [17];
+}
+def : WriteRes<WritePCmpEStrMLd, [FPC_RSV0, MEC_RSV]> {
+ let Latency = 17;
+ let ResourceCycles = [17, 1];
+}
+
+// Packed Compare Implicit Length Strings, Return Index
+def : WriteRes<WritePCmpIStrI, [FPC_RSV0]> {
+ let Latency = 17;
+ let ResourceCycles = [17];
+}
+def : WriteRes<WritePCmpIStrILd, [FPC_RSV0, MEC_RSV]> {
+ let Latency = 17;
+ let ResourceCycles = [17, 1];
+}
+
+// Packed Compare Explicit Length Strings, Return Index
+def : WriteRes<WritePCmpEStrI, [FPC_RSV0]> {
+ let Latency = 21;
+ let ResourceCycles = [21];
+}
+def : WriteRes<WritePCmpEStrILd, [FPC_RSV0, MEC_RSV]> {
+ let Latency = 21;
+ let ResourceCycles = [21, 1];
+}
+
+// AES Instructions.
+def : WriteRes<WriteAESDecEnc, [FPC_RSV0]> {
+ let Latency = 8;
+ let ResourceCycles = [5];
+}
+def : WriteRes<WriteAESDecEncLd, [FPC_RSV0, MEC_RSV]> {
+ let Latency = 8;
+ let ResourceCycles = [5, 1];
+}
+
+def : WriteRes<WriteAESIMC, [FPC_RSV0]> {
+ let Latency = 8;
+ let ResourceCycles = [5];
+}
+def : WriteRes<WriteAESIMCLd, [FPC_RSV0, MEC_RSV]> {
+ let Latency = 8;
+ let ResourceCycles = [5, 1];
+}
+
+def : WriteRes<WriteAESKeyGen, [FPC_RSV0]> {
+ let Latency = 8;
+ let ResourceCycles = [5];
+}
+def : WriteRes<WriteAESKeyGenLd, [FPC_RSV0, MEC_RSV]> {
+ let Latency = 8;
+ let ResourceCycles = [5, 1];
+}
+
+// Carry-less multiplication instructions.
+def : WriteRes<WriteCLMul, [FPC_RSV0]> {
+ let Latency = 10;
+ let ResourceCycles = [10];
+}
+def : WriteRes<WriteCLMulLd, [FPC_RSV0, MEC_RSV]> {
+ let Latency = 10;
+ let ResourceCycles = [10, 1];
+}
+
+
+def : WriteRes<WriteSystem, [FPC_RSV0]> { let Latency = 100; }
+def : WriteRes<WriteMicrocoded, [FPC_RSV0]> { let Latency = 100; }
+def : WriteRes<WriteFence, [MEC_RSV]>;
+def : WriteRes<WriteNop, []>;
+
+// AVX is not supported on that architecture, but we should define the basic
+// scheduling resources anyway.
+def : WriteRes<WriteIMulH, [FPC_RSV0]>;
+defm : SMWriteResPair<WriteVarBlend, FPC_RSV0, 1>;
+defm : SMWriteResPair<WriteFVarBlend, FPC_RSV0, 1>;
+defm : SMWriteResPair<WriteFShuffle256, FPC_RSV0, 1>;
+defm : SMWriteResPair<WriteShuffle256, FPC_RSV0, 1>;
+defm : SMWriteResPair<WriteVarVecShift, FPC_RSV0, 1>;
+} // SchedModel
diff --git a/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
new file mode 100644
index 0000000..a83dd9b
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
@@ -0,0 +1,267 @@
+//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the X86SelectionDAGInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86InstrInfo.h"
+#include "X86ISelLowering.h"
+#include "X86RegisterInfo.h"
+#include "X86Subtarget.h"
+#include "X86SelectionDAGInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/Target/TargetLowering.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-selectiondag-info"
+
+X86SelectionDAGInfo::X86SelectionDAGInfo(const DataLayout &DL)
+ : TargetSelectionDAGInfo(&DL) {}
+
+X86SelectionDAGInfo::~X86SelectionDAGInfo() {}
+
+SDValue
+X86SelectionDAGInfo::EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
+ SDValue Chain,
+ SDValue Dst, SDValue Src,
+ SDValue Size, unsigned Align,
+ bool isVolatile,
+ MachinePointerInfo DstPtrInfo) const {
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ const X86Subtarget &Subtarget = DAG.getTarget().getSubtarget<X86Subtarget>();
+
+ // If to a segment-relative address space, use the default lowering.
+ if (DstPtrInfo.getAddrSpace() >= 256)
+ return SDValue();
+
+ // If not DWORD aligned or size is more than the threshold, call the library.
+ // The libc version is likely to be faster for these cases. It can use the
+ // address value and run time information about the CPU.
+ if ((Align & 3) != 0 || !ConstantSize ||
+ ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
+ // Check to see if there is a specialized entry-point for memory zeroing.
+ ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
+
+ if (const char *bzeroEntry = V &&
+ V->isNullValue() ? Subtarget.getBZeroEntry() : nullptr) {
+ EVT IntPtr = DAG.getTargetLoweringInfo().getPointerTy();
+ Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Node = Dst;
+ Entry.Ty = IntPtrTy;
+ Args.push_back(Entry);
+ Entry.Node = Size;
+ Args.push_back(Entry);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(Chain)
+ .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
+ DAG.getExternalSymbol(bzeroEntry, IntPtr), std::move(Args),
+ 0)
+ .setDiscardResult();
+
+ std::pair<SDValue,SDValue> CallResult = DAG.getTargetLoweringInfo().LowerCallTo(CLI);
+ return CallResult.second;
+ }
+
+ // Otherwise have the target-independent code call memset.
+ return SDValue();
+ }
+
+ uint64_t SizeVal = ConstantSize->getZExtValue();
+ SDValue InFlag;
+ EVT AVT;
+ SDValue Count;
+ ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
+ unsigned BytesLeft = 0;
+ bool TwoRepStos = false;
+ if (ValC) {
+ unsigned ValReg;
+ uint64_t Val = ValC->getZExtValue() & 255;
+
+ // If the value is a constant, then we can potentially use larger sets.
+ switch (Align & 3) {
+ case 2: // WORD aligned
+ AVT = MVT::i16;
+ ValReg = X86::AX;
+ Val = (Val << 8) | Val;
+ break;
+ case 0: // DWORD aligned
+ AVT = MVT::i32;
+ ValReg = X86::EAX;
+ Val = (Val << 8) | Val;
+ Val = (Val << 16) | Val;
+ if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
+ AVT = MVT::i64;
+ ValReg = X86::RAX;
+ Val = (Val << 32) | Val;
+ }
+ break;
+ default: // Byte aligned
+ AVT = MVT::i8;
+ ValReg = X86::AL;
+ Count = DAG.getIntPtrConstant(SizeVal);
+ break;
+ }
+
+ if (AVT.bitsGT(MVT::i8)) {
+ unsigned UBytes = AVT.getSizeInBits() / 8;
+ Count = DAG.getIntPtrConstant(SizeVal / UBytes);
+ BytesLeft = SizeVal % UBytes;
+ }
+
+ Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
+ InFlag);
+ InFlag = Chain.getValue(1);
+ } else {
+ AVT = MVT::i8;
+ Count = DAG.getIntPtrConstant(SizeVal);
+ Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RCX : X86::ECX,
+ Count, InFlag);
+ InFlag = Chain.getValue(1);
+ Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RDI : X86::EDI,
+ Dst, InFlag);
+ InFlag = Chain.getValue(1);
+
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
+ Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
+
+ if (TwoRepStos) {
+ InFlag = Chain.getValue(1);
+ Count = Size;
+ EVT CVT = Count.getValueType();
+ SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
+ DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
+ Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
+ X86::ECX,
+ Left, InFlag);
+ InFlag = Chain.getValue(1);
+ Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
+ Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
+ } else if (BytesLeft) {
+ // Handle the last 1 - 7 bytes.
+ unsigned Offset = SizeVal - BytesLeft;
+ EVT AddrVT = Dst.getValueType();
+ EVT SizeVT = Size.getValueType();
+
+ Chain = DAG.getMemset(Chain, dl,
+ DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
+ DAG.getConstant(Offset, AddrVT)),
+ Src,
+ DAG.getConstant(BytesLeft, SizeVT),
+ Align, isVolatile, DstPtrInfo.getWithOffset(Offset));
+ }
+
+ // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
+ return Chain;
+}
+
+SDValue
+X86SelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
+ SDValue Chain, SDValue Dst, SDValue Src,
+ SDValue Size, unsigned Align,
+ bool isVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) const {
+ // This requires the copy size to be a constant, preferably
+ // within a subtarget-specific limit.
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ const X86Subtarget &Subtarget = DAG.getTarget().getSubtarget<X86Subtarget>();
+ if (!ConstantSize)
+ return SDValue();
+ uint64_t SizeVal = ConstantSize->getZExtValue();
+ if (!AlwaysInline && SizeVal > Subtarget.getMaxInlineSizeThreshold())
+ return SDValue();
+
+ /// If not DWORD aligned, it is more efficient to call the library. However
+ /// if calling the library is not allowed (AlwaysInline), then soldier on as
+ /// the code generated here is better than the long load-store sequence we
+ /// would otherwise get.
+ if (!AlwaysInline && (Align & 3) != 0)
+ return SDValue();
+
+ // If to a segment-relative address space, use the default lowering.
+ if (DstPtrInfo.getAddrSpace() >= 256 ||
+ SrcPtrInfo.getAddrSpace() >= 256)
+ return SDValue();
+
+ // ESI might be used as a base pointer, in that case we can't simply overwrite
+ // the register. Fall back to generic code.
+ const X86RegisterInfo *TRI =
+ static_cast<const X86RegisterInfo *>(DAG.getTarget().getRegisterInfo());
+ if (TRI->hasBasePointer(DAG.getMachineFunction()) &&
+ TRI->getBaseRegister() == X86::ESI)
+ return SDValue();
+
+ MVT AVT;
+ if (Align & 1)
+ AVT = MVT::i8;
+ else if (Align & 2)
+ AVT = MVT::i16;
+ else if (Align & 4)
+ // DWORD aligned
+ AVT = MVT::i32;
+ else
+ // QWORD aligned
+ AVT = Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
+
+ unsigned UBytes = AVT.getSizeInBits() / 8;
+ unsigned CountVal = SizeVal / UBytes;
+ SDValue Count = DAG.getIntPtrConstant(CountVal);
+ unsigned BytesLeft = SizeVal % UBytes;
+
+ SDValue InFlag;
+ Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RCX :
+ X86::ECX,
+ Count, InFlag);
+ InFlag = Chain.getValue(1);
+ Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RDI :
+ X86::EDI,
+ Dst, InFlag);
+ InFlag = Chain.getValue(1);
+ Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RSI :
+ X86::ESI,
+ Src, InFlag);
+ InFlag = Chain.getValue(1);
+
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
+ SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
+
+ SmallVector<SDValue, 4> Results;
+ Results.push_back(RepMovs);
+ if (BytesLeft) {
+ // Handle the last 1 - 7 bytes.
+ unsigned Offset = SizeVal - BytesLeft;
+ EVT DstVT = Dst.getValueType();
+ EVT SrcVT = Src.getValueType();
+ EVT SizeVT = Size.getValueType();
+ Results.push_back(DAG.getMemcpy(Chain, dl,
+ DAG.getNode(ISD::ADD, dl, DstVT, Dst,
+ DAG.getConstant(Offset, DstVT)),
+ DAG.getNode(ISD::ADD, dl, SrcVT, Src,
+ DAG.getConstant(Offset, SrcVT)),
+ DAG.getConstant(BytesLeft, SizeVT),
+ Align, isVolatile, AlwaysInline,
+ DstPtrInfo.getWithOffset(Offset),
+ SrcPtrInfo.getWithOffset(Offset)));
+ }
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
+}
diff --git a/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.h b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.h
new file mode 100644
index 0000000..c12555a
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.h
@@ -0,0 +1,48 @@
+//===-- X86SelectionDAGInfo.h - X86 SelectionDAG Info -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the X86 subclass for TargetSelectionDAGInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86SELECTIONDAGINFO_H
+#define X86SELECTIONDAGINFO_H
+
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+class X86TargetLowering;
+class X86TargetMachine;
+class X86Subtarget;
+
+class X86SelectionDAGInfo : public TargetSelectionDAGInfo {
+public:
+ explicit X86SelectionDAGInfo(const DataLayout &DL);
+ ~X86SelectionDAGInfo();
+
+ SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
+ SDValue Chain,
+ SDValue Dst, SDValue Src,
+ SDValue Size, unsigned Align,
+ bool isVolatile,
+ MachinePointerInfo DstPtrInfo) const override;
+
+ SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
+ SDValue Chain,
+ SDValue Dst, SDValue Src,
+ SDValue Size, unsigned Align,
+ bool isVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) const override;
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86Subtarget.cpp b/contrib/llvm/lib/Target/X86/X86Subtarget.cpp
new file mode 100644
index 0000000..41551a1
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86Subtarget.cpp
@@ -0,0 +1,364 @@
+//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the X86 specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86Subtarget.h"
+#include "X86InstrInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+
+#if defined(_MSC_VER)
+#include <intrin.h>
+#endif
+
+using namespace llvm;
+
+#define DEBUG_TYPE "subtarget"
+
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#include "X86GenSubtargetInfo.inc"
+
+// Temporary option to control early if-conversion for x86 while adding machine
+// models.
+static cl::opt<bool>
+X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
+ cl::desc("Enable early if-conversion on X86"));
+
+
+/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
+/// current subtarget according to how we should reference it in a non-pcrel
+/// context.
+unsigned char X86Subtarget::ClassifyBlockAddressReference() const {
+ if (isPICStyleGOT()) // 32-bit ELF targets.
+ return X86II::MO_GOTOFF;
+
+ if (isPICStyleStubPIC()) // Darwin/32 in PIC mode.
+ return X86II::MO_PIC_BASE_OFFSET;
+
+ // Direct static reference to label.
+ return X86II::MO_NO_FLAG;
+}
+
+/// ClassifyGlobalReference - Classify a global variable reference for the
+/// current subtarget according to how we should reference it in a non-pcrel
+/// context.
+unsigned char X86Subtarget::
+ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
+ // DLLImport only exists on windows, it is implemented as a load from a
+ // DLLIMPORT stub.
+ if (GV->hasDLLImportStorageClass())
+ return X86II::MO_DLLIMPORT;
+
+ // Determine whether this is a reference to a definition or a declaration.
+ // Materializable GVs (in JIT lazy compilation mode) do not require an extra
+ // load from stub.
+ bool isDecl = GV->hasAvailableExternallyLinkage();
+ if (GV->isDeclaration() && !GV->isMaterializable())
+ isDecl = true;
+
+ // X86-64 in PIC mode.
+ if (isPICStyleRIPRel()) {
+ // Large model never uses stubs.
+ if (TM.getCodeModel() == CodeModel::Large)
+ return X86II::MO_NO_FLAG;
+
+ if (isTargetDarwin()) {
+ // If symbol visibility is hidden, the extra load is not needed if
+ // target is x86-64 or the symbol is definitely defined in the current
+ // translation unit.
+ if (GV->hasDefaultVisibility() &&
+ (isDecl || GV->isWeakForLinker()))
+ return X86II::MO_GOTPCREL;
+ } else if (!isTargetWin64()) {
+ assert(isTargetELF() && "Unknown rip-relative target");
+
+ // Extra load is needed for all externally visible.
+ if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
+ return X86II::MO_GOTPCREL;
+ }
+
+ return X86II::MO_NO_FLAG;
+ }
+
+ if (isPICStyleGOT()) { // 32-bit ELF targets.
+ // Extra load is needed for all externally visible.
+ if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
+ return X86II::MO_GOTOFF;
+ return X86II::MO_GOT;
+ }
+
+ if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode.
+ // Determine whether we have a stub reference and/or whether the reference
+ // is relative to the PIC base or not.
+
+ // If this is a strong reference to a definition, it is definitely not
+ // through a stub.
+ if (!isDecl && !GV->isWeakForLinker())
+ return X86II::MO_PIC_BASE_OFFSET;
+
+ // Unless we have a symbol with hidden visibility, we have to go through a
+ // normal $non_lazy_ptr stub because this symbol might be resolved late.
+ if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
+ return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
+
+ // If symbol visibility is hidden, we have a stub for common symbol
+ // references and external declarations.
+ if (isDecl || GV->hasCommonLinkage()) {
+ // Hidden $non_lazy_ptr reference.
+ return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
+ }
+
+ // Otherwise, no stub.
+ return X86II::MO_PIC_BASE_OFFSET;
+ }
+
+ if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode.
+ // Determine whether we have a stub reference.
+
+ // If this is a strong reference to a definition, it is definitely not
+ // through a stub.
+ if (!isDecl && !GV->isWeakForLinker())
+ return X86II::MO_NO_FLAG;
+
+ // Unless we have a symbol with hidden visibility, we have to go through a
+ // normal $non_lazy_ptr stub because this symbol might be resolved late.
+ if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
+ return X86II::MO_DARWIN_NONLAZY;
+
+ // Otherwise, no stub.
+ return X86II::MO_NO_FLAG;
+ }
+
+ // Direct static reference to global.
+ return X86II::MO_NO_FLAG;
+}
+
+
+/// getBZeroEntry - This function returns the name of a function which has an
+/// interface like the non-standard bzero function, if such a function exists on
+/// the current subtarget and it is considered prefereable over memset with zero
+/// passed as the second argument. Otherwise it returns null.
+const char *X86Subtarget::getBZeroEntry() const {
+ // Darwin 10 has a __bzero entry point for this purpose.
+ if (getTargetTriple().isMacOSX() &&
+ !getTargetTriple().isMacOSXVersionLT(10, 6))
+ return "__bzero";
+
+ return nullptr;
+}
+
+bool X86Subtarget::hasSinCos() const {
+ return getTargetTriple().isMacOSX() &&
+ !getTargetTriple().isMacOSXVersionLT(10, 9) &&
+ is64Bit();
+}
+
+/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
+/// to immediate address.
+bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
+ // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
+ // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
+ // the following check for Win32 should be removed.
+ if (In64BitMode || isTargetWin32())
+ return false;
+ return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
+}
+
+void X86Subtarget::resetSubtargetFeatures(const MachineFunction *MF) {
+ AttributeSet FnAttrs = MF->getFunction()->getAttributes();
+ Attribute CPUAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
+ Attribute FSAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
+ std::string CPU =
+ !CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString() : "";
+ std::string FS =
+ !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
+ if (!FS.empty()) {
+ initializeEnvironment();
+ resetSubtargetFeatures(CPU, FS);
+ }
+}
+
+void X86Subtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
+ std::string CPUName = CPU;
+ if (CPUName.empty())
+ CPUName = "generic";
+
+ // Make sure 64-bit features are available in 64-bit mode. (But make sure
+ // SSE2 can be turned off explicitly.)
+ std::string FullFS = FS;
+ if (In64BitMode) {
+ if (!FullFS.empty())
+ FullFS = "+64bit,+sse2," + FullFS;
+ else
+ FullFS = "+64bit,+sse2";
+ }
+
+ // If feature string is not empty, parse features string.
+ ParseSubtargetFeatures(CPUName, FullFS);
+
+ // Make sure the right MCSchedModel is used.
+ InitCPUSchedModel(CPUName);
+
+ InstrItins = getInstrItineraryForCPU(CPUName);
+
+ // It's important to keep the MCSubtargetInfo feature bits in sync with
+ // target data structure which is shared with MC code emitter, etc.
+ if (In64BitMode)
+ ToggleFeature(X86::Mode64Bit);
+ else if (In32BitMode)
+ ToggleFeature(X86::Mode32Bit);
+ else if (In16BitMode)
+ ToggleFeature(X86::Mode16Bit);
+ else
+ llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
+
+ DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
+ << ", 3DNowLevel " << X863DNowLevel
+ << ", 64bit " << HasX86_64 << "\n");
+ assert((!In64BitMode || HasX86_64) &&
+ "64-bit code requested on a subtarget that doesn't support it!");
+
+ // Stack alignment is 16 bytes on Darwin, Linux and Solaris (both
+ // 32 and 64 bit) and for all 64-bit targets.
+ if (StackAlignOverride)
+ stackAlignment = StackAlignOverride;
+ else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
+ In64BitMode)
+ stackAlignment = 16;
+}
+
+void X86Subtarget::initializeEnvironment() {
+ X86SSELevel = NoMMXSSE;
+ X863DNowLevel = NoThreeDNow;
+ HasCMov = false;
+ HasX86_64 = false;
+ HasPOPCNT = false;
+ HasSSE4A = false;
+ HasAES = false;
+ HasPCLMUL = false;
+ HasFMA = false;
+ HasFMA4 = false;
+ HasXOP = false;
+ HasTBM = false;
+ HasMOVBE = false;
+ HasRDRAND = false;
+ HasF16C = false;
+ HasFSGSBase = false;
+ HasLZCNT = false;
+ HasBMI = false;
+ HasBMI2 = false;
+ HasRTM = false;
+ HasHLE = false;
+ HasERI = false;
+ HasCDI = false;
+ HasPFI = false;
+ HasDQI = false;
+ HasBWI = false;
+ HasVLX = false;
+ HasADX = false;
+ HasSHA = false;
+ HasPRFCHW = false;
+ HasRDSEED = false;
+ IsBTMemSlow = false;
+ IsSHLDSlow = false;
+ IsUAMemFast = false;
+ HasVectorUAMem = false;
+ HasCmpxchg16b = false;
+ UseLeaForSP = false;
+ HasSlowDivide = false;
+ PadShortFunctions = false;
+ CallRegIndirect = false;
+ LEAUsesAG = false;
+ SlowLEA = false;
+ SlowIncDec = false;
+ stackAlignment = 4;
+ // FIXME: this is a known good value for Yonah. How about others?
+ MaxInlineSizeThreshold = 128;
+}
+
+static std::string computeDataLayout(const X86Subtarget &ST) {
+ // X86 is little endian
+ std::string Ret = "e";
+
+ Ret += DataLayout::getManglingComponent(ST.getTargetTriple());
+ // X86 and x32 have 32 bit pointers.
+ if (ST.isTarget64BitILP32() || !ST.is64Bit())
+ Ret += "-p:32:32";
+
+ // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
+ if (ST.is64Bit() || ST.isOSWindows() || ST.isTargetNaCl())
+ Ret += "-i64:64";
+ else
+ Ret += "-f64:32:64";
+
+ // Some ABIs align long double to 128 bits, others to 32.
+ if (ST.isTargetNaCl())
+ ; // No f80
+ else if (ST.is64Bit() || ST.isTargetDarwin())
+ Ret += "-f80:128";
+ else
+ Ret += "-f80:32";
+
+ // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
+ if (ST.is64Bit())
+ Ret += "-n8:16:32:64";
+ else
+ Ret += "-n8:16:32";
+
+ // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
+ if (!ST.is64Bit() && ST.isOSWindows())
+ Ret += "-S32";
+ else
+ Ret += "-S128";
+
+ return Ret;
+}
+
+X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
+ StringRef FS) {
+ initializeEnvironment();
+ resetSubtargetFeatures(CPU, FS);
+ return *this;
+}
+
+X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, X86TargetMachine &TM,
+ unsigned StackAlignOverride)
+ : X86GenSubtargetInfo(TT, CPU, FS), X86ProcFamily(Others),
+ PICStyle(PICStyles::None), TargetTriple(TT),
+ StackAlignOverride(StackAlignOverride),
+ In64BitMode(TargetTriple.getArch() == Triple::x86_64),
+ In32BitMode(TargetTriple.getArch() == Triple::x86 &&
+ TargetTriple.getEnvironment() != Triple::CODE16),
+ In16BitMode(TargetTriple.getArch() == Triple::x86 &&
+ TargetTriple.getEnvironment() == Triple::CODE16),
+ DL(computeDataLayout(*this)), TSInfo(DL),
+ InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM),
+ FrameLowering(TargetFrameLowering::StackGrowsDown, getStackAlignment(),
+ is64Bit() ? -8 : -4),
+ JITInfo(hasSSE1()) {}
+
+bool X86Subtarget::enableEarlyIfConversion() const {
+ return hasCMov() && X86EarlyIfConv;
+}
+
diff --git a/contrib/llvm/lib/Target/X86/X86Subtarget.h b/contrib/llvm/lib/Target/X86/X86Subtarget.h
new file mode 100644
index 0000000..5f5df5e
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86Subtarget.h
@@ -0,0 +1,478 @@
+//===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the X86 specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86SUBTARGET_H
+#define X86SUBTARGET_H
+
+#include "X86FrameLowering.h"
+#include "X86ISelLowering.h"
+#include "X86InstrInfo.h"
+#include "X86JITInfo.h"
+#include "X86SelectionDAGInfo.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "X86GenSubtargetInfo.inc"
+
+namespace llvm {
+class GlobalValue;
+class StringRef;
+class TargetMachine;
+
+/// PICStyles - The X86 backend supports a number of different styles of PIC.
+///
+namespace PICStyles {
+enum Style {
+ StubPIC, // Used on i386-darwin in -fPIC mode.
+ StubDynamicNoPIC, // Used on i386-darwin in -mdynamic-no-pic mode.
+ GOT, // Used on many 32-bit unices in -fPIC mode.
+ RIPRel, // Used on X86-64 when not in -static mode.
+ None // Set when in -static mode (not PIC or DynamicNoPIC mode).
+};
+}
+
+class X86Subtarget final : public X86GenSubtargetInfo {
+
+protected:
+ enum X86SSEEnum {
+ NoMMXSSE, MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
+ };
+
+ enum X863DNowEnum {
+ NoThreeDNow, ThreeDNow, ThreeDNowA
+ };
+
+ enum X86ProcFamilyEnum {
+ Others, IntelAtom, IntelSLM
+ };
+
+ /// X86ProcFamily - X86 processor family: Intel Atom, and others
+ X86ProcFamilyEnum X86ProcFamily;
+
+ /// PICStyle - Which PIC style to use
+ ///
+ PICStyles::Style PICStyle;
+
+ /// X86SSELevel - MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or
+ /// none supported.
+ X86SSEEnum X86SSELevel;
+
+ /// X863DNowLevel - 3DNow or 3DNow Athlon, or none supported.
+ ///
+ X863DNowEnum X863DNowLevel;
+
+ /// HasCMov - True if this processor has conditional move instructions
+ /// (generally pentium pro+).
+ bool HasCMov;
+
+ /// HasX86_64 - True if the processor supports X86-64 instructions.
+ ///
+ bool HasX86_64;
+
+ /// HasPOPCNT - True if the processor supports POPCNT.
+ bool HasPOPCNT;
+
+ /// HasSSE4A - True if the processor supports SSE4A instructions.
+ bool HasSSE4A;
+
+ /// HasAES - Target has AES instructions
+ bool HasAES;
+
+ /// HasPCLMUL - Target has carry-less multiplication
+ bool HasPCLMUL;
+
+ /// HasFMA - Target has 3-operand fused multiply-add
+ bool HasFMA;
+
+ /// HasFMA4 - Target has 4-operand fused multiply-add
+ bool HasFMA4;
+
+ /// HasXOP - Target has XOP instructions
+ bool HasXOP;
+
+ /// HasTBM - Target has TBM instructions.
+ bool HasTBM;
+
+ /// HasMOVBE - True if the processor has the MOVBE instruction.
+ bool HasMOVBE;
+
+ /// HasRDRAND - True if the processor has the RDRAND instruction.
+ bool HasRDRAND;
+
+ /// HasF16C - Processor has 16-bit floating point conversion instructions.
+ bool HasF16C;
+
+ /// HasFSGSBase - Processor has FS/GS base insturctions.
+ bool HasFSGSBase;
+
+ /// HasLZCNT - Processor has LZCNT instruction.
+ bool HasLZCNT;
+
+ /// HasBMI - Processor has BMI1 instructions.
+ bool HasBMI;
+
+ /// HasBMI2 - Processor has BMI2 instructions.
+ bool HasBMI2;
+
+ /// HasRTM - Processor has RTM instructions.
+ bool HasRTM;
+
+ /// HasHLE - Processor has HLE.
+ bool HasHLE;
+
+ /// HasADX - Processor has ADX instructions.
+ bool HasADX;
+
+ /// HasSHA - Processor has SHA instructions.
+ bool HasSHA;
+
+ /// HasPRFCHW - Processor has PRFCHW instructions.
+ bool HasPRFCHW;
+
+ /// HasRDSEED - Processor has RDSEED instructions.
+ bool HasRDSEED;
+
+ /// IsBTMemSlow - True if BT (bit test) of memory instructions are slow.
+ bool IsBTMemSlow;
+
+ /// IsSHLDSlow - True if SHLD instructions are slow.
+ bool IsSHLDSlow;
+
+ /// IsUAMemFast - True if unaligned memory access is fast.
+ bool IsUAMemFast;
+
+ /// HasVectorUAMem - True if SIMD operations can have unaligned memory
+ /// operands. This may require setting a feature bit in the processor.
+ bool HasVectorUAMem;
+
+ /// HasCmpxchg16b - True if this processor has the CMPXCHG16B instruction;
+ /// this is true for most x86-64 chips, but not the first AMD chips.
+ bool HasCmpxchg16b;
+
+ /// UseLeaForSP - True if the LEA instruction should be used for adjusting
+ /// the stack pointer. This is an optimization for Intel Atom processors.
+ bool UseLeaForSP;
+
+ /// HasSlowDivide - True if smaller divides are significantly faster than
+ /// full divides and should be used when possible.
+ bool HasSlowDivide;
+
+ /// PadShortFunctions - True if the short functions should be padded to prevent
+ /// a stall when returning too early.
+ bool PadShortFunctions;
+
+ /// CallRegIndirect - True if the Calls with memory reference should be converted
+ /// to a register-based indirect call.
+ bool CallRegIndirect;
+ /// LEAUsesAG - True if the LEA instruction inputs have to be ready at
+ /// address generation (AG) time.
+ bool LEAUsesAG;
+
+ /// SlowLEA - True if the LEA instruction with certain arguments is slow
+ bool SlowLEA;
+
+ /// SlowIncDec - True if INC and DEC instructions are slow when writing to flags
+ bool SlowIncDec;
+
+ /// Processor has AVX-512 PreFetch Instructions
+ bool HasPFI;
+
+ /// Processor has AVX-512 Exponential and Reciprocal Instructions
+ bool HasERI;
+
+ /// Processor has AVX-512 Conflict Detection Instructions
+ bool HasCDI;
+
+ /// Processor has AVX-512 Doubleword and Quadword instructions
+ bool HasDQI;
+
+ /// Processor has AVX-512 Byte and Word instructions
+ bool HasBWI;
+
+ /// Processor has AVX-512 Vector Length eXtenstions
+ bool HasVLX;
+
+ /// stackAlignment - The minimum alignment known to hold of the stack frame on
+ /// entry to the function and which must be maintained by every function.
+ unsigned stackAlignment;
+
+ /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
+ ///
+ unsigned MaxInlineSizeThreshold;
+
+ /// TargetTriple - What processor and OS we're targeting.
+ Triple TargetTriple;
+
+ /// Instruction itineraries for scheduling
+ InstrItineraryData InstrItins;
+
+private:
+ /// StackAlignOverride - Override the stack alignment.
+ unsigned StackAlignOverride;
+
+ /// In64BitMode - True if compiling for 64-bit, false for 16-bit or 32-bit.
+ bool In64BitMode;
+
+ /// In32BitMode - True if compiling for 32-bit, false for 16-bit or 64-bit.
+ bool In32BitMode;
+
+ /// In16BitMode - True if compiling for 16-bit, false for 32-bit or 64-bit.
+ bool In16BitMode;
+
+ // Calculates type size & alignment
+ const DataLayout DL;
+ X86SelectionDAGInfo TSInfo;
+ // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
+ // X86TargetLowering needs.
+ X86InstrInfo InstrInfo;
+ X86TargetLowering TLInfo;
+ X86FrameLowering FrameLowering;
+ X86JITInfo JITInfo;
+
+public:
+ /// This constructor initializes the data members to match that
+ /// of the specified triple.
+ ///
+ X86Subtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, X86TargetMachine &TM,
+ unsigned StackAlignOverride);
+
+ const X86TargetLowering *getTargetLowering() const { return &TLInfo; }
+ const X86InstrInfo *getInstrInfo() const { return &InstrInfo; }
+ const DataLayout *getDataLayout() const { return &DL; }
+ const X86FrameLowering *getFrameLowering() const { return &FrameLowering; }
+ const X86SelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+ X86JITInfo *getJITInfo() { return &JITInfo; }
+
+ /// getStackAlignment - Returns the minimum alignment known to hold of the
+ /// stack frame on entry to the function and which must be maintained by every
+ /// function for this subtarget.
+ unsigned getStackAlignment() const { return stackAlignment; }
+
+ /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
+ /// that still makes it profitable to inline the call.
+ unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
+
+ /// ParseSubtargetFeatures - Parses features string setting specified
+ /// subtarget options. Definition of function is auto generated by tblgen.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+
+ /// \brief Reset the features for the X86 target.
+ void resetSubtargetFeatures(const MachineFunction *MF) override;
+private:
+ /// \brief Initialize the full set of dependencies so we can use an initializer
+ /// list for X86Subtarget.
+ X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
+ void initializeEnvironment();
+ void resetSubtargetFeatures(StringRef CPU, StringRef FS);
+public:
+ /// Is this x86_64? (disregarding specific ABI / programming model)
+ bool is64Bit() const {
+ return In64BitMode;
+ }
+
+ bool is32Bit() const {
+ return In32BitMode;
+ }
+
+ bool is16Bit() const {
+ return In16BitMode;
+ }
+
+ /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
+ bool isTarget64BitILP32() const {
+ return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
+ TargetTriple.getOS() == Triple::NaCl);
+ }
+
+ /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
+ bool isTarget64BitLP64() const {
+ return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32);
+ }
+
+ PICStyles::Style getPICStyle() const { return PICStyle; }
+ void setPICStyle(PICStyles::Style Style) { PICStyle = Style; }
+
+ bool hasCMov() const { return HasCMov; }
+ bool hasMMX() const { return X86SSELevel >= MMX; }
+ bool hasSSE1() const { return X86SSELevel >= SSE1; }
+ bool hasSSE2() const { return X86SSELevel >= SSE2; }
+ bool hasSSE3() const { return X86SSELevel >= SSE3; }
+ bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
+ bool hasSSE41() const { return X86SSELevel >= SSE41; }
+ bool hasSSE42() const { return X86SSELevel >= SSE42; }
+ bool hasAVX() const { return X86SSELevel >= AVX; }
+ bool hasAVX2() const { return X86SSELevel >= AVX2; }
+ bool hasAVX512() const { return X86SSELevel >= AVX512F; }
+ bool hasFp256() const { return hasAVX(); }
+ bool hasInt256() const { return hasAVX2(); }
+ bool hasSSE4A() const { return HasSSE4A; }
+ bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
+ bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
+ bool hasPOPCNT() const { return HasPOPCNT; }
+ bool hasAES() const { return HasAES; }
+ bool hasPCLMUL() const { return HasPCLMUL; }
+ bool hasFMA() const { return HasFMA; }
+ // FIXME: Favor FMA when both are enabled. Is this the right thing to do?
+ bool hasFMA4() const { return HasFMA4 && !HasFMA; }
+ bool hasXOP() const { return HasXOP; }
+ bool hasTBM() const { return HasTBM; }
+ bool hasMOVBE() const { return HasMOVBE; }
+ bool hasRDRAND() const { return HasRDRAND; }
+ bool hasF16C() const { return HasF16C; }
+ bool hasFSGSBase() const { return HasFSGSBase; }
+ bool hasLZCNT() const { return HasLZCNT; }
+ bool hasBMI() const { return HasBMI; }
+ bool hasBMI2() const { return HasBMI2; }
+ bool hasRTM() const { return HasRTM; }
+ bool hasHLE() const { return HasHLE; }
+ bool hasADX() const { return HasADX; }
+ bool hasSHA() const { return HasSHA; }
+ bool hasPRFCHW() const { return HasPRFCHW; }
+ bool hasRDSEED() const { return HasRDSEED; }
+ bool isBTMemSlow() const { return IsBTMemSlow; }
+ bool isSHLDSlow() const { return IsSHLDSlow; }
+ bool isUnalignedMemAccessFast() const { return IsUAMemFast; }
+ bool hasVectorUAMem() const { return HasVectorUAMem; }
+ bool hasCmpxchg16b() const { return HasCmpxchg16b; }
+ bool useLeaForSP() const { return UseLeaForSP; }
+ bool hasSlowDivide() const { return HasSlowDivide; }
+ bool padShortFunctions() const { return PadShortFunctions; }
+ bool callRegIndirect() const { return CallRegIndirect; }
+ bool LEAusesAG() const { return LEAUsesAG; }
+ bool slowLEA() const { return SlowLEA; }
+ bool slowIncDec() const { return SlowIncDec; }
+ bool hasCDI() const { return HasCDI; }
+ bool hasPFI() const { return HasPFI; }
+ bool hasERI() const { return HasERI; }
+ bool hasDQI() const { return HasDQI; }
+ bool hasBWI() const { return HasBWI; }
+ bool hasVLX() const { return HasVLX; }
+
+ bool isAtom() const { return X86ProcFamily == IntelAtom; }
+ bool isSLM() const { return X86ProcFamily == IntelSLM; }
+
+ const Triple &getTargetTriple() const { return TargetTriple; }
+
+ bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
+ bool isTargetFreeBSD() const {
+ return TargetTriple.getOS() == Triple::FreeBSD;
+ }
+ bool isTargetSolaris() const {
+ return TargetTriple.getOS() == Triple::Solaris;
+ }
+
+ bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
+ bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
+ bool isTargetMacho() const { return TargetTriple.isOSBinFormatMachO(); }
+
+ bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
+ bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
+ bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
+ bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
+
+ bool isTargetWindowsMSVC() const {
+ return TargetTriple.isWindowsMSVCEnvironment();
+ }
+
+ bool isTargetKnownWindowsMSVC() const {
+ return TargetTriple.isKnownWindowsMSVCEnvironment();
+ }
+
+ bool isTargetWindowsCygwin() const {
+ return TargetTriple.isWindowsCygwinEnvironment();
+ }
+
+ bool isTargetWindowsGNU() const {
+ return TargetTriple.isWindowsGNUEnvironment();
+ }
+
+ bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
+
+ bool isOSWindows() const { return TargetTriple.isOSWindows(); }
+
+ bool isTargetWin64() const {
+ return In64BitMode && TargetTriple.isOSWindows();
+ }
+
+ bool isTargetWin32() const {
+ return !In64BitMode && (isTargetCygMing() || isTargetKnownWindowsMSVC());
+ }
+
+ bool isPICStyleSet() const { return PICStyle != PICStyles::None; }
+ bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
+ bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
+
+ bool isPICStyleStubPIC() const {
+ return PICStyle == PICStyles::StubPIC;
+ }
+
+ bool isPICStyleStubNoDynamic() const {
+ return PICStyle == PICStyles::StubDynamicNoPIC;
+ }
+ bool isPICStyleStubAny() const {
+ return PICStyle == PICStyles::StubDynamicNoPIC ||
+ PICStyle == PICStyles::StubPIC;
+ }
+
+ bool isCallingConvWin64(CallingConv::ID CC) const {
+ return (isTargetWin64() && CC != CallingConv::X86_64_SysV) ||
+ CC == CallingConv::X86_64_Win64;
+ }
+
+ /// ClassifyGlobalReference - Classify a global variable reference for the
+ /// current subtarget according to how we should reference it in a non-pcrel
+ /// context.
+ unsigned char ClassifyGlobalReference(const GlobalValue *GV,
+ const TargetMachine &TM)const;
+
+ /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
+ /// current subtarget according to how we should reference it in a non-pcrel
+ /// context.
+ unsigned char ClassifyBlockAddressReference() const;
+
+ /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
+ /// to immediate address.
+ bool IsLegalToCallImmediateAddr(const TargetMachine &TM) const;
+
+ /// This function returns the name of a function which has an interface
+ /// like the non-standard bzero function, if such a function exists on
+ /// the current subtarget and it is considered prefereable over
+ /// memset with zero passed as the second argument. Otherwise it
+ /// returns null.
+ const char *getBZeroEntry() const;
+
+ /// This function returns true if the target has sincos() routine in its
+ /// compiler runtime or math libraries.
+ bool hasSinCos() const;
+
+ /// Enable the MachineScheduler pass for all X86 subtargets.
+ bool enableMachineScheduler() const override { return true; }
+
+ bool enableEarlyIfConversion() const override;
+
+ /// getInstrItins = Return the instruction itineraries based on the
+ /// subtarget selection.
+ const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
+
+ AntiDepBreakMode getAntiDepBreakMode() const override {
+ return TargetSubtargetInfo::ANTIDEP_CRITICAL;
+ }
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86TargetMachine.cpp b/contrib/llvm/lib/Target/X86/X86TargetMachine.cpp
new file mode 100644
index 0000000..f12140f
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86TargetMachine.cpp
@@ -0,0 +1,186 @@
+//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the X86 specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86TargetMachine.h"
+#include "X86.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+extern "C" void LLVMInitializeX86Target() {
+ // Register the target.
+ RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target);
+ RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
+}
+
+void X86TargetMachine::anchor() { }
+
+/// X86TargetMachine ctor - Create an X86 target.
+///
+X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) {
+ // Determine the PICStyle based on the target selected.
+ if (getRelocationModel() == Reloc::Static) {
+ // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
+ Subtarget.setPICStyle(PICStyles::None);
+ } else if (Subtarget.is64Bit()) {
+ // PIC in 64 bit mode is always rip-rel.
+ Subtarget.setPICStyle(PICStyles::RIPRel);
+ } else if (Subtarget.isTargetCOFF()) {
+ Subtarget.setPICStyle(PICStyles::None);
+ } else if (Subtarget.isTargetDarwin()) {
+ if (getRelocationModel() == Reloc::PIC_)
+ Subtarget.setPICStyle(PICStyles::StubPIC);
+ else {
+ assert(getRelocationModel() == Reloc::DynamicNoPIC);
+ Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC);
+ }
+ } else if (Subtarget.isTargetELF()) {
+ Subtarget.setPICStyle(PICStyles::GOT);
+ }
+
+ // default to hard float ABI
+ if (Options.FloatABIType == FloatABI::Default)
+ this->Options.FloatABIType = FloatABI::Hard;
+
+ // Windows stack unwinder gets confused when execution flow "falls through"
+ // after a call to 'noreturn' function.
+ // To prevent that, we emit a trap for 'unreachable' IR instructions.
+ // (which on X86, happens to be the 'ud2' instruction)
+ if (Subtarget.isTargetWin64())
+ this->Options.TrapUnreachable = true;
+
+ initAsmInfo();
+}
+
+//===----------------------------------------------------------------------===//
+// Command line options for x86
+//===----------------------------------------------------------------------===//
+static cl::opt<bool>
+UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
+ cl::desc("Minimize AVX to SSE transition penalty"),
+ cl::init(true));
+
+//===----------------------------------------------------------------------===//
+// X86 Analysis Pass Setup
+//===----------------------------------------------------------------------===//
+
+void X86TargetMachine::addAnalysisPasses(PassManagerBase &PM) {
+ // Add first the target-independent BasicTTI pass, then our X86 pass. This
+ // allows the X86 pass to delegate to the target independent layer when
+ // appropriate.
+ PM.add(createBasicTargetTransformInfoPass(this));
+ PM.add(createX86TargetTransformInfoPass(this));
+}
+
+
+//===----------------------------------------------------------------------===//
+// Pass Pipeline Configuration
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// X86 Code Generator Pass Configuration Options.
+class X86PassConfig : public TargetPassConfig {
+public:
+ X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ X86TargetMachine &getX86TargetMachine() const {
+ return getTM<X86TargetMachine>();
+ }
+
+ const X86Subtarget &getX86Subtarget() const {
+ return *getX86TargetMachine().getSubtargetImpl();
+ }
+
+ void addIRPasses() override;
+ bool addInstSelector() override;
+ bool addILPOpts() override;
+ bool addPreRegAlloc() override;
+ bool addPostRegAlloc() override;
+ bool addPreEmitPass() override;
+};
+} // namespace
+
+TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new X86PassConfig(this, PM);
+}
+
+void X86PassConfig::addIRPasses() {
+ addPass(createX86AtomicExpandPass(&getX86TargetMachine()));
+
+ TargetPassConfig::addIRPasses();
+}
+
+bool X86PassConfig::addInstSelector() {
+ // Install an instruction selector.
+ addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
+
+ // For ELF, cleanup any local-dynamic TLS accesses.
+ if (getX86Subtarget().isTargetELF() && getOptLevel() != CodeGenOpt::None)
+ addPass(createCleanupLocalDynamicTLSPass());
+
+ addPass(createX86GlobalBaseRegPass());
+
+ return false;
+}
+
+bool X86PassConfig::addILPOpts() {
+ addPass(&EarlyIfConverterID);
+ return true;
+}
+
+bool X86PassConfig::addPreRegAlloc() {
+ return false; // -print-machineinstr shouldn't print after this.
+}
+
+bool X86PassConfig::addPostRegAlloc() {
+ addPass(createX86FloatingPointStackifierPass());
+ return true; // -print-machineinstr should print after this.
+}
+
+bool X86PassConfig::addPreEmitPass() {
+ bool ShouldPrint = false;
+ if (getOptLevel() != CodeGenOpt::None && getX86Subtarget().hasSSE2()) {
+ addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
+ ShouldPrint = true;
+ }
+
+ if (UseVZeroUpper) {
+ addPass(createX86IssueVZeroUpperPass());
+ ShouldPrint = true;
+ }
+
+ if (getOptLevel() != CodeGenOpt::None) {
+ addPass(createX86PadShortFunctions());
+ addPass(createX86FixupLEAs());
+ ShouldPrint = true;
+ }
+
+ return ShouldPrint;
+}
+
+bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
+ JITCodeEmitter &JCE) {
+ PM.add(createX86JITCodeEmitterPass(*this, JCE));
+
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/X86/X86TargetMachine.h b/contrib/llvm/lib/Target/X86/X86TargetMachine.h
new file mode 100644
index 0000000..41d5157
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86TargetMachine.h
@@ -0,0 +1,70 @@
+//===-- X86TargetMachine.h - Define TargetMachine for the X86 ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the X86 specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86TARGETMACHINE_H
+#define X86TARGETMACHINE_H
+#include "X86InstrInfo.h"
+#include "X86Subtarget.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+class StringRef;
+
+class X86TargetMachine final : public LLVMTargetMachine {
+ virtual void anchor();
+ X86Subtarget Subtarget;
+
+public:
+ X86TargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+
+ const DataLayout *getDataLayout() const override {
+ return getSubtargetImpl()->getDataLayout();
+ }
+ const X86InstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const TargetFrameLowering *getFrameLowering() const override {
+ return getSubtargetImpl()->getFrameLowering();
+ }
+ X86JITInfo *getJITInfo() override { return Subtarget.getJITInfo(); }
+ const X86Subtarget *getSubtargetImpl() const override { return &Subtarget; }
+ const X86TargetLowering *getTargetLowering() const override {
+ return getSubtargetImpl()->getTargetLowering();
+ }
+ const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
+ return getSubtargetImpl()->getSelectionDAGInfo();
+ }
+ const X86RegisterInfo *getRegisterInfo() const override {
+ return &getInstrInfo()->getRegisterInfo();
+ }
+ const InstrItineraryData *getInstrItineraryData() const override {
+ return &getSubtargetImpl()->getInstrItineraryData();
+ }
+
+ /// \brief Register X86 analysis passes with a pass manager.
+ void addAnalysisPasses(PassManagerBase &PM) override;
+
+ // Set up the pass pipeline.
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+
+ bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &JCE) override;
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86TargetObjectFile.cpp b/contrib/llvm/lib/Target/X86/X86TargetObjectFile.cpp
new file mode 100644
index 0000000..f8bcd61
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86TargetObjectFile.cpp
@@ -0,0 +1,171 @@
+//===-- X86TargetObjectFile.cpp - X86 Object Info -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86TargetObjectFile.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSectionCOFF.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Target/TargetLowering.h"
+
+using namespace llvm;
+using namespace dwarf;
+
+const MCExpr *X86_64MachoTargetObjectFile::getTTypeGlobalReference(
+ const GlobalValue *GV, unsigned Encoding, Mangler &Mang,
+ const TargetMachine &TM, MachineModuleInfo *MMI,
+ MCStreamer &Streamer) const {
+
+ // On Darwin/X86-64, we can reference dwarf symbols with foo@GOTPCREL+4, which
+ // is an indirect pc-relative reference.
+ if ((Encoding & DW_EH_PE_indirect) && (Encoding & DW_EH_PE_pcrel)) {
+ const MCSymbol *Sym = TM.getSymbol(GV, Mang);
+ const MCExpr *Res =
+ MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_GOTPCREL, getContext());
+ const MCExpr *Four = MCConstantExpr::Create(4, getContext());
+ return MCBinaryExpr::CreateAdd(Res, Four, getContext());
+ }
+
+ return TargetLoweringObjectFileMachO::getTTypeGlobalReference(
+ GV, Encoding, Mang, TM, MMI, Streamer);
+}
+
+MCSymbol *X86_64MachoTargetObjectFile::getCFIPersonalitySymbol(
+ const GlobalValue *GV, Mangler &Mang, const TargetMachine &TM,
+ MachineModuleInfo *MMI) const {
+ return TM.getSymbol(GV, Mang);
+}
+
+void
+X86LinuxTargetObjectFile::Initialize(MCContext &Ctx, const TargetMachine &TM) {
+ TargetLoweringObjectFileELF::Initialize(Ctx, TM);
+ InitializeELF(TM.Options.UseInitArray);
+}
+
+const MCExpr *
+X86LinuxTargetObjectFile::getDebugThreadLocalSymbol(
+ const MCSymbol *Sym) const {
+ return MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_DTPOFF, getContext());
+}
+
+const MCExpr *X86WindowsTargetObjectFile::getExecutableRelativeSymbol(
+ const ConstantExpr *CE, Mangler &Mang, const TargetMachine &TM) const {
+ // We are looking for the difference of two symbols, need a subtraction
+ // operation.
+ const SubOperator *Sub = dyn_cast<SubOperator>(CE);
+ if (!Sub)
+ return nullptr;
+
+ // Symbols must first be numbers before we can subtract them, we need to see a
+ // ptrtoint on both subtraction operands.
+ const PtrToIntOperator *SubLHS =
+ dyn_cast<PtrToIntOperator>(Sub->getOperand(0));
+ const PtrToIntOperator *SubRHS =
+ dyn_cast<PtrToIntOperator>(Sub->getOperand(1));
+ if (!SubLHS || !SubRHS)
+ return nullptr;
+
+ // Our symbols should exist in address space zero, cowardly no-op if
+ // otherwise.
+ if (SubLHS->getPointerAddressSpace() != 0 ||
+ SubRHS->getPointerAddressSpace() != 0)
+ return nullptr;
+
+ // Both ptrtoint instructions must wrap global variables:
+ // - Only global variables are eligible for image relative relocations.
+ // - The subtrahend refers to the special symbol __ImageBase, a global.
+ const GlobalVariable *GVLHS =
+ dyn_cast<GlobalVariable>(SubLHS->getPointerOperand());
+ const GlobalVariable *GVRHS =
+ dyn_cast<GlobalVariable>(SubRHS->getPointerOperand());
+ if (!GVLHS || !GVRHS)
+ return nullptr;
+
+ // We expect __ImageBase to be a global variable without a section, externally
+ // defined.
+ //
+ // It should look something like this: @__ImageBase = external constant i8
+ if (GVRHS->isThreadLocal() || GVRHS->getName() != "__ImageBase" ||
+ !GVRHS->hasExternalLinkage() || GVRHS->hasInitializer() ||
+ GVRHS->hasSection())
+ return nullptr;
+
+ // An image-relative, thread-local, symbol makes no sense.
+ if (GVLHS->isThreadLocal())
+ return nullptr;
+
+ return MCSymbolRefExpr::Create(TM.getSymbol(GVLHS, Mang),
+ MCSymbolRefExpr::VK_COFF_IMGREL32,
+ getContext());
+}
+
+static std::string APIntToHexString(const APInt &AI) {
+ unsigned Width = (AI.getBitWidth() / 8) * 2;
+ std::string HexString = utohexstr(AI.getLimitedValue(), /*LowerCase=*/true);
+ unsigned Size = HexString.size();
+ assert(Width >= Size && "hex string is too large!");
+ HexString.insert(HexString.begin(), Width - Size, '0');
+
+ return HexString;
+}
+
+
+static std::string scalarConstantToHexString(const Constant *C) {
+ Type *Ty = C->getType();
+ APInt AI;
+ if (isa<UndefValue>(C)) {
+ AI = APInt(Ty->getPrimitiveSizeInBits(), /*val=*/0);
+ } else if (Ty->isFloatTy() || Ty->isDoubleTy()) {
+ const auto *CFP = cast<ConstantFP>(C);
+ AI = CFP->getValueAPF().bitcastToAPInt();
+ } else if (Ty->isIntegerTy()) {
+ const auto *CI = cast<ConstantInt>(C);
+ AI = CI->getValue();
+ } else {
+ llvm_unreachable("unexpected constant pool element type!");
+ }
+ return APIntToHexString(AI);
+}
+
+const MCSection *
+X86WindowsTargetObjectFile::getSectionForConstant(SectionKind Kind,
+ const Constant *C) const {
+ if (Kind.isReadOnly()) {
+ if (C) {
+ Type *Ty = C->getType();
+ SmallString<32> COMDATSymName;
+ if (Ty->isFloatTy() || Ty->isDoubleTy()) {
+ COMDATSymName = "__real@";
+ COMDATSymName += scalarConstantToHexString(C);
+ } else if (const auto *VTy = dyn_cast<VectorType>(Ty)) {
+ uint64_t NumBits = VTy->getBitWidth();
+ if (NumBits == 128 || NumBits == 256) {
+ COMDATSymName = NumBits == 128 ? "__xmm@" : "__ymm@";
+ for (int I = VTy->getNumElements() - 1, E = -1; I != E; --I)
+ COMDATSymName +=
+ scalarConstantToHexString(C->getAggregateElement(I));
+ }
+ }
+ if (!COMDATSymName.empty()) {
+ unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
+ COFF::IMAGE_SCN_MEM_READ |
+ COFF::IMAGE_SCN_LNK_COMDAT;
+ return getContext().getCOFFSection(".rdata", Characteristics, Kind,
+ COMDATSymName,
+ COFF::IMAGE_COMDAT_SELECT_ANY);
+ }
+ }
+ }
+
+ return TargetLoweringObjectFile::getSectionForConstant(Kind, C);
+}
diff --git a/contrib/llvm/lib/Target/X86/X86TargetObjectFile.h b/contrib/llvm/lib/Target/X86/X86TargetObjectFile.h
new file mode 100644
index 0000000..4a10b7e
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86TargetObjectFile.h
@@ -0,0 +1,58 @@
+//===-- X86TargetObjectFile.h - X86 Object Info -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_X86_TARGETOBJECTFILE_H
+#define LLVM_TARGET_X86_TARGETOBJECTFILE_H
+
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+
+namespace llvm {
+
+ /// X86_64MachoTargetObjectFile - This TLOF implementation is used for Darwin
+ /// x86-64.
+ class X86_64MachoTargetObjectFile : public TargetLoweringObjectFileMachO {
+ public:
+ const MCExpr *
+ getTTypeGlobalReference(const GlobalValue *GV, unsigned Encoding,
+ Mangler &Mang, const TargetMachine &TM,
+ MachineModuleInfo *MMI,
+ MCStreamer &Streamer) const override;
+
+ // getCFIPersonalitySymbol - The symbol that gets passed to
+ // .cfi_personality.
+ MCSymbol *getCFIPersonalitySymbol(const GlobalValue *GV, Mangler &Mang,
+ const TargetMachine &TM,
+ MachineModuleInfo *MMI) const override;
+ };
+
+ /// X86LinuxTargetObjectFile - This implementation is used for linux x86
+ /// and x86-64.
+ class X86LinuxTargetObjectFile : public TargetLoweringObjectFileELF {
+ void Initialize(MCContext &Ctx, const TargetMachine &TM) override;
+
+ /// \brief Describe a TLS variable address within debug info.
+ const MCExpr *getDebugThreadLocalSymbol(const MCSymbol *Sym) const override;
+ };
+
+ /// \brief This implementation is used for Windows targets on x86 and x86-64.
+ class X86WindowsTargetObjectFile : public TargetLoweringObjectFileCOFF {
+ const MCExpr *
+ getExecutableRelativeSymbol(const ConstantExpr *CE, Mangler &Mang,
+ const TargetMachine &TM) const override;
+
+ /// \brief Given a mergeable constant with the specified size and relocation
+ /// information, return a section that it should be placed in.
+ const MCSection *getSectionForConstant(SectionKind Kind,
+ const Constant *C) const override;
+ };
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
new file mode 100644
index 0000000..c961e2f
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
@@ -0,0 +1,1064 @@
+//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements a TargetTransformInfo analysis pass specific to the
+/// X86 target machine. It uses the target's detailed information to provide
+/// more precise answers to certain TTI queries, while letting the target
+/// independent and default TTI implementations handle the rest.
+///
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86TargetMachine.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/CostTable.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "x86tti"
+
+// Declare the pass initialization routine locally as target-specific passes
+// don't have a target-wide initialization entry point, and so we rely on the
+// pass constructor initialization.
+namespace llvm {
+void initializeX86TTIPass(PassRegistry &);
+}
+
+namespace {
+
+class X86TTI final : public ImmutablePass, public TargetTransformInfo {
+ const X86Subtarget *ST;
+ const X86TargetLowering *TLI;
+
+ /// Estimate the overhead of scalarizing an instruction. Insert and Extract
+ /// are set if the result needs to be inserted and/or extracted from vectors.
+ unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
+
+public:
+ X86TTI() : ImmutablePass(ID), ST(nullptr), TLI(nullptr) {
+ llvm_unreachable("This pass cannot be directly constructed");
+ }
+
+ X86TTI(const X86TargetMachine *TM)
+ : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
+ TLI(TM->getTargetLowering()) {
+ initializeX86TTIPass(*PassRegistry::getPassRegistry());
+ }
+
+ void initializePass() override {
+ pushTTIStack(this);
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ TargetTransformInfo::getAnalysisUsage(AU);
+ }
+
+ /// Pass identification.
+ static char ID;
+
+ /// Provide necessary pointer adjustments for the two base classes.
+ void *getAdjustedAnalysisPointer(const void *ID) override {
+ if (ID == &TargetTransformInfo::ID)
+ return (TargetTransformInfo*)this;
+ return this;
+ }
+
+ /// \name Scalar TTI Implementations
+ /// @{
+ PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
+
+ /// @}
+
+ /// \name Vector TTI Implementations
+ /// @{
+
+ unsigned getNumberOfRegisters(bool Vector) const override;
+ unsigned getRegisterBitWidth(bool Vector) const override;
+ unsigned getMaximumUnrollFactor() const override;
+ unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
+ OperandValueKind) const override;
+ unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
+ int Index, Type *SubTp) const override;
+ unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
+ Type *Src) const override;
+ unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) const override;
+ unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) const override;
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const override;
+
+ unsigned getAddressComputationCost(Type *PtrTy,
+ bool IsComplex) const override;
+
+ unsigned getReductionCost(unsigned Opcode, Type *Ty,
+ bool IsPairwiseForm) const override;
+
+ unsigned getIntImmCost(int64_t) const;
+
+ unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
+
+ unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty) const override;
+ unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+ Type *Ty) const override;
+
+ /// @}
+};
+
+} // end anonymous namespace
+
+INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
+ "X86 Target Transform Info", true, true, false)
+char X86TTI::ID = 0;
+
+ImmutablePass *
+llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
+ return new X86TTI(TM);
+}
+
+
+//===----------------------------------------------------------------------===//
+//
+// X86 cost model.
+//
+//===----------------------------------------------------------------------===//
+
+X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
+ assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
+ // TODO: Currently the __builtin_popcount() implementation using SSE3
+ // instructions is inefficient. Once the problem is fixed, we should
+ // call ST->hasSSE3() instead of ST->hasPOPCNT().
+ return ST->hasPOPCNT() ? PSK_FastHardware : PSK_Software;
+}
+
+unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
+ if (Vector && !ST->hasSSE1())
+ return 0;
+
+ if (ST->is64Bit()) {
+ if (Vector && ST->hasAVX512())
+ return 32;
+ return 16;
+ }
+ return 8;
+}
+
+unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
+ if (Vector) {
+ if (ST->hasAVX512()) return 512;
+ if (ST->hasAVX()) return 256;
+ if (ST->hasSSE1()) return 128;
+ return 0;
+ }
+
+ if (ST->is64Bit())
+ return 64;
+ return 32;
+
+}
+
+unsigned X86TTI::getMaximumUnrollFactor() const {
+ if (ST->isAtom())
+ return 1;
+
+ // Sandybridge and Haswell have multiple execution ports and pipelined
+ // vector units.
+ if (ST->hasAVX())
+ return 4;
+
+ return 2;
+}
+
+unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ OperandValueKind Op1Info,
+ OperandValueKind Op2Info) const {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ static const CostTblEntry<MVT::SimpleValueType>
+ AVX2UniformConstCostTable[] = {
+ { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
+ { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
+ { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
+ { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
+ };
+
+ if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ ST->hasAVX2()) {
+ int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * AVX2UniformConstCostTable[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
+ // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
+ // customize them to detect the cases where shift amount is a scalar one.
+ { ISD::SHL, MVT::v4i32, 1 },
+ { ISD::SRL, MVT::v4i32, 1 },
+ { ISD::SRA, MVT::v4i32, 1 },
+ { ISD::SHL, MVT::v8i32, 1 },
+ { ISD::SRL, MVT::v8i32, 1 },
+ { ISD::SRA, MVT::v8i32, 1 },
+ { ISD::SHL, MVT::v2i64, 1 },
+ { ISD::SRL, MVT::v2i64, 1 },
+ { ISD::SHL, MVT::v4i64, 1 },
+ { ISD::SRL, MVT::v4i64, 1 },
+
+ { ISD::SHL, MVT::v32i8, 42 }, // cmpeqb sequence.
+ { ISD::SHL, MVT::v16i16, 16*10 }, // Scalarized.
+
+ { ISD::SRL, MVT::v32i8, 32*10 }, // Scalarized.
+ { ISD::SRL, MVT::v16i16, 8*10 }, // Scalarized.
+
+ { ISD::SRA, MVT::v32i8, 32*10 }, // Scalarized.
+ { ISD::SRA, MVT::v16i16, 16*10 }, // Scalarized.
+ { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized.
+
+ // Vectorizing division is a bad idea. See the SSE2 table for more comments.
+ { ISD::SDIV, MVT::v32i8, 32*20 },
+ { ISD::SDIV, MVT::v16i16, 16*20 },
+ { ISD::SDIV, MVT::v8i32, 8*20 },
+ { ISD::SDIV, MVT::v4i64, 4*20 },
+ { ISD::UDIV, MVT::v32i8, 32*20 },
+ { ISD::UDIV, MVT::v16i16, 16*20 },
+ { ISD::UDIV, MVT::v8i32, 8*20 },
+ { ISD::UDIV, MVT::v4i64, 4*20 },
+ };
+
+ // Look for AVX2 lowering tricks.
+ if (ST->hasAVX2()) {
+ if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
+ (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
+ // On AVX2, a packed v16i16 shift left by a constant build_vector
+ // is lowered into a vector multiply (vpmullw).
+ return LT.first;
+
+ int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * AVX2CostTable[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType>
+ SSE2UniformConstCostTable[] = {
+ // We don't correctly identify costs of casts because they are marked as
+ // custom.
+ // Constant splats are cheaper for the following instructions.
+ { ISD::SHL, MVT::v16i8, 1 }, // psllw.
+ { ISD::SHL, MVT::v8i16, 1 }, // psllw.
+ { ISD::SHL, MVT::v4i32, 1 }, // pslld
+ { ISD::SHL, MVT::v2i64, 1 }, // psllq.
+
+ { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
+ { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
+ { ISD::SRL, MVT::v4i32, 1 }, // psrld.
+ { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
+
+ { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
+ { ISD::SRA, MVT::v8i16, 1 }, // psraw.
+ { ISD::SRA, MVT::v4i32, 1 }, // psrad.
+
+ { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
+ { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
+ { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
+ { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
+ };
+
+ if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ ST->hasSSE2()) {
+ // pmuldq sequence.
+ if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
+ return LT.first * 15;
+
+ int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * SSE2UniformConstCostTable[Idx].Cost;
+ }
+
+ if (ISD == ISD::SHL &&
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
+ EVT VT = LT.second;
+ if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
+ (VT == MVT::v4i32 && ST->hasSSE41()))
+ // Vector shift left by non uniform constant can be lowered
+ // into vector multiply (pmullw/pmulld).
+ return LT.first;
+ if (VT == MVT::v4i32 && ST->hasSSE2())
+ // A vector shift left by non uniform constant is converted
+ // into a vector multiply; the new multiply is eventually
+ // lowered into a sequence of shuffles and 2 x pmuludq.
+ ISD = ISD::MUL;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
+ // We don't correctly identify costs of casts because they are marked as
+ // custom.
+ // For some cases, where the shift amount is a scalar we would be able
+ // to generate better code. Unfortunately, when this is the case the value
+ // (the splat) will get hoisted out of the loop, thereby making it invisible
+ // to ISel. The cost model must return worst case assumptions because it is
+ // used for vectorization and we don't want to make vectorized code worse
+ // than scalar code.
+ { ISD::SHL, MVT::v16i8, 30 }, // cmpeqb sequence.
+ { ISD::SHL, MVT::v8i16, 8*10 }, // Scalarized.
+ { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
+ { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized.
+ { ISD::SHL, MVT::v4i64, 4*10 }, // Scalarized.
+
+ { ISD::SRL, MVT::v16i8, 16*10 }, // Scalarized.
+ { ISD::SRL, MVT::v8i16, 8*10 }, // Scalarized.
+ { ISD::SRL, MVT::v4i32, 4*10 }, // Scalarized.
+ { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized.
+
+ { ISD::SRA, MVT::v16i8, 16*10 }, // Scalarized.
+ { ISD::SRA, MVT::v8i16, 8*10 }, // Scalarized.
+ { ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized.
+ { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized.
+
+ // It is not a good idea to vectorize division. We have to scalarize it and
+ // in the process we will often end up having to spilling regular
+ // registers. The overhead of division is going to dominate most kernels
+ // anyways so try hard to prevent vectorization of division - it is
+ // generally a bad idea. Assume somewhat arbitrarily that we have to be able
+ // to hide "20 cycles" for each lane.
+ { ISD::SDIV, MVT::v16i8, 16*20 },
+ { ISD::SDIV, MVT::v8i16, 8*20 },
+ { ISD::SDIV, MVT::v4i32, 4*20 },
+ { ISD::SDIV, MVT::v2i64, 2*20 },
+ { ISD::UDIV, MVT::v16i8, 16*20 },
+ { ISD::UDIV, MVT::v8i16, 8*20 },
+ { ISD::UDIV, MVT::v4i32, 4*20 },
+ { ISD::UDIV, MVT::v2i64, 2*20 },
+ };
+
+ if (ST->hasSSE2()) {
+ int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * SSE2CostTable[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
+ // We don't have to scalarize unsupported ops. We can issue two half-sized
+ // operations and we only need to extract the upper YMM half.
+ // Two ops + 1 extract + 1 insert = 4.
+ { ISD::MUL, MVT::v16i16, 4 },
+ { ISD::MUL, MVT::v8i32, 4 },
+ { ISD::SUB, MVT::v8i32, 4 },
+ { ISD::ADD, MVT::v8i32, 4 },
+ { ISD::SUB, MVT::v4i64, 4 },
+ { ISD::ADD, MVT::v4i64, 4 },
+ // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
+ // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
+ // Because we believe v4i64 to be a legal type, we must also include the
+ // split factor of two in the cost table. Therefore, the cost here is 18
+ // instead of 9.
+ { ISD::MUL, MVT::v4i64, 18 },
+ };
+
+ // Look for AVX1 lowering tricks.
+ if (ST->hasAVX() && !ST->hasAVX2()) {
+ EVT VT = LT.second;
+
+ // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
+ // sequence of extract + two vector multiply + insert.
+ if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
+ ISD = ISD::MUL;
+
+ int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
+ if (Idx != -1)
+ return LT.first * AVX1CostTable[Idx].Cost;
+ }
+
+ // Custom lowering of vectors.
+ static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
+ // A v2i64/v4i64 and multiply is custom lowered as a series of long
+ // multiplies(3), shifts(4) and adds(2).
+ { ISD::MUL, MVT::v2i64, 9 },
+ { ISD::MUL, MVT::v4i64, 9 },
+ };
+ int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * CustomLowered[Idx].Cost;
+
+ // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
+ // 2x pmuludq, 2x shuffle.
+ if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
+ !ST->hasSSE41())
+ return LT.first * 6;
+
+ // Fallback to the default implementation.
+ return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
+ Op2Info);
+}
+
+unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) const {
+ // We only estimate the cost of reverse and alternate shuffles.
+ if (Kind != SK_Reverse && Kind != SK_Alternate)
+ return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
+
+ if (Kind == SK_Reverse) {
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
+ unsigned Cost = 1;
+ if (LT.second.getSizeInBits() > 128)
+ Cost = 3; // Extract + insert + copy.
+
+ // Multiple by the number of parts.
+ return Cost * LT.first;
+ }
+
+ if (Kind == SK_Alternate) {
+ // 64-bit packed float vectors (v2f32) are widened to type v4f32.
+ // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
+
+ // The backend knows how to generate a single VEX.256 version of
+ // instruction VPBLENDW if the target supports AVX2.
+ if (ST->hasAVX2() && LT.second == MVT::v16i16)
+ return LT.first;
+
+ static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = {
+ {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vblendpd
+ {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vblendpd
+
+ {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1}, // vblendps
+ {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1}, // vblendps
+
+ // This shuffle is custom lowered into a sequence of:
+ // 2x vextractf128 , 2x vpblendw , 1x vinsertf128
+ {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
+
+ // This shuffle is custom lowered into a long sequence of:
+ // 2x vextractf128 , 4x vpshufb , 2x vpor , 1x vinsertf128
+ {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
+ };
+
+ if (ST->hasAVX()) {
+ int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
+ if (Idx != -1)
+ return LT.first * AVXAltShuffleTbl[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = {
+ // These are lowered into movsd.
+ {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
+
+ // packed float vectors with four elements are lowered into BLENDI dag
+ // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
+ {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
+
+ // This shuffle generates a single pshufw.
+ {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
+
+ // There is no instruction that matches a v16i8 alternate shuffle.
+ // The backend will expand it into the sequence 'pshufb + pshufb + or'.
+ {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
+ };
+
+ if (ST->hasSSE41()) {
+ int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
+ if (Idx != -1)
+ return LT.first * SSE41AltShuffleTbl[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = {
+ {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
+ {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
+
+ // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
+ // the sequence 'shufps + pshufd'
+ {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
+
+ {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
+ {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // pshufb + pshufb + or
+ };
+
+ if (ST->hasSSSE3()) {
+ int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
+ if (Idx != -1)
+ return LT.first * SSSE3AltShuffleTbl[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = {
+ {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
+ {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
+
+ {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
+ {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
+
+ // This is expanded into a long sequence of four extract + four insert.
+ {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
+
+ // 8 x (pinsrw + pextrw + and + movb + movzb + or)
+ {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
+ };
+
+ // Fall-back (SSE3 and SSE2).
+ int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
+ if (Idx != -1)
+ return LT.first * SSEAltShuffleTbl[Idx].Cost;
+ return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
+ }
+
+ return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
+}
+
+unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
+ std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
+
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ SSE2ConvTbl[] = {
+ // These are somewhat magic numbers justified by looking at the output of
+ // Intel's IACA, running some kernels and making sure when we take
+ // legalization into account the throughput will be overestimated.
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
+ // There are faster sequences for float conversions.
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
+ };
+
+ if (ST->hasSSE2() && !ST->hasAVX()) {
+ int Idx =
+ ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
+ if (Idx != -1)
+ return LTSrc.first * SSE2ConvTbl[Idx].Cost;
+ }
+
+ EVT SrcTy = TLI->getValueType(Src);
+ EVT DstTy = TLI->getValueType(Dst);
+
+ // The function getSimpleVT only handles simple value types.
+ if (!SrcTy.isSimple() || !DstTy.isSimple())
+ return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
+
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ AVX2ConversionTbl[] = {
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
+
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
+ { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
+ };
+
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ AVXConversionTbl[] = {
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
+
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
+ { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
+
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
+
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
+ // The generic code to compute the scalar overhead is currently broken.
+ // Workaround this limitation by estimating the scalarization overhead
+ // here. We have roughly 10 instructions per scalar element.
+ // Multiply that by the vector width.
+ // FIXME: remove that when PR19268 is fixed.
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 4*10 },
+
+ { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
+ { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
+ // This node is expanded into scalarized operations but BasicTTI is overly
+ // optimistic estimating its cost. It computes 3 per element (one
+ // vector-extract, one scalar conversion and one vector-insert). The
+ // problem is that the inserts form a read-modify-write chain so latency
+ // should be factored in too. Inflating the cost per element by 1.
+ { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
+ };
+
+ if (ST->hasAVX2()) {
+ int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
+ DstTy.getSimpleVT(), SrcTy.getSimpleVT());
+ if (Idx != -1)
+ return AVX2ConversionTbl[Idx].Cost;
+ }
+
+ if (ST->hasAVX()) {
+ int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT());
+ if (Idx != -1)
+ return AVXConversionTbl[Idx].Cost;
+ }
+
+ return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
+}
+
+unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) const {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
+
+ MVT MTy = LT.second;
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
+ { ISD::SETCC, MVT::v2f64, 1 },
+ { ISD::SETCC, MVT::v4f32, 1 },
+ { ISD::SETCC, MVT::v2i64, 1 },
+ { ISD::SETCC, MVT::v4i32, 1 },
+ { ISD::SETCC, MVT::v8i16, 1 },
+ { ISD::SETCC, MVT::v16i8, 1 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
+ { ISD::SETCC, MVT::v4f64, 1 },
+ { ISD::SETCC, MVT::v8f32, 1 },
+ // AVX1 does not support 8-wide integer compare.
+ { ISD::SETCC, MVT::v4i64, 4 },
+ { ISD::SETCC, MVT::v8i32, 4 },
+ { ISD::SETCC, MVT::v16i16, 4 },
+ { ISD::SETCC, MVT::v32i8, 4 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
+ { ISD::SETCC, MVT::v4i64, 1 },
+ { ISD::SETCC, MVT::v8i32, 1 },
+ { ISD::SETCC, MVT::v16i16, 1 },
+ { ISD::SETCC, MVT::v32i8, 1 },
+ };
+
+ if (ST->hasAVX2()) {
+ int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX2CostTbl[Idx].Cost;
+ }
+
+ if (ST->hasAVX()) {
+ int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX1CostTbl[Idx].Cost;
+ }
+
+ if (ST->hasSSE42()) {
+ int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * SSE42CostTbl[Idx].Cost;
+ }
+
+ return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
+}
+
+unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) const {
+ assert(Val->isVectorTy() && "This must be a vector type");
+
+ if (Index != -1U) {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
+
+ // This type is legalized to a scalar type.
+ if (!LT.second.isVector())
+ return 0;
+
+ // The type may be split. Normalize the index to the new type.
+ unsigned Width = LT.second.getVectorNumElements();
+ Index = Index % Width;
+
+ // Floating point scalars are already located in index #0.
+ if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
+ return 0;
+ }
+
+ return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
+}
+
+unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
+ bool Extract) const {
+ assert (Ty->isVectorTy() && "Can only scalarize vectors");
+ unsigned Cost = 0;
+
+ for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
+ if (Insert)
+ Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+ if (Extract)
+ Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+ }
+
+ return Cost;
+}
+
+unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const {
+ // Handle non-power-of-two vectors such as <3 x float>
+ if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
+ unsigned NumElem = VTy->getVectorNumElements();
+
+ // Handle a few common cases:
+ // <3 x float>
+ if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
+ // Cost = 64 bit store + extract + 32 bit store.
+ return 3;
+
+ // <3 x double>
+ if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
+ // Cost = 128 bit store + unpack + 64 bit store.
+ return 3;
+
+ // Assume that all other non-power-of-two numbers are scalarized.
+ if (!isPowerOf2_32(NumElem)) {
+ unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
+ VTy->getScalarType(),
+ Alignment,
+ AddressSpace);
+ unsigned SplitCost = getScalarizationOverhead(Src,
+ Opcode == Instruction::Load,
+ Opcode==Instruction::Store);
+ return NumElem * Cost + SplitCost;
+ }
+ }
+
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
+ assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
+ "Invalid Opcode");
+
+ // Each load/store unit costs 1.
+ unsigned Cost = LT.first * 1;
+
+ // On Sandybridge 256bit load/stores are double pumped
+ // (but not on Haswell).
+ if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
+ Cost*=2;
+
+ return Cost;
+}
+
+unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
+ // Address computations in vectorized code with non-consecutive addresses will
+ // likely result in more instructions compared to scalar code where the
+ // computation can more often be merged into the index mode. The resulting
+ // extra micro-ops can significantly decrease throughput.
+ unsigned NumVectorInstToHideOverhead = 10;
+
+ if (Ty->isVectorTy() && IsComplex)
+ return NumVectorInstToHideOverhead;
+
+ return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
+}
+
+unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
+ bool IsPairwise) const {
+
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
+
+ MVT MTy = LT.second;
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
+ // and make it as the cost.
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
+ { ISD::FADD, MVT::v2f64, 2 },
+ { ISD::FADD, MVT::v4f32, 4 },
+ { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
+ { ISD::ADD, MVT::v8i16, 5 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
+ { ISD::FADD, MVT::v4f32, 4 },
+ { ISD::FADD, MVT::v4f64, 5 },
+ { ISD::FADD, MVT::v8f32, 7 },
+ { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
+ { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
+ { ISD::ADD, MVT::v8i16, 5 },
+ { ISD::ADD, MVT::v8i32, 5 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
+ { ISD::FADD, MVT::v2f64, 2 },
+ { ISD::FADD, MVT::v4f32, 4 },
+ { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
+ { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
+ { ISD::FADD, MVT::v4f32, 3 },
+ { ISD::FADD, MVT::v4f64, 3 },
+ { ISD::FADD, MVT::v8f32, 4 },
+ { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
+ { ISD::ADD, MVT::v4i64, 3 },
+ { ISD::ADD, MVT::v8i16, 4 },
+ { ISD::ADD, MVT::v8i32, 5 },
+ };
+
+ if (IsPairwise) {
+ if (ST->hasAVX()) {
+ int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX1CostTblPairWise[Idx].Cost;
+ }
+
+ if (ST->hasSSE42()) {
+ int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * SSE42CostTblPairWise[Idx].Cost;
+ }
+ } else {
+ if (ST->hasAVX()) {
+ int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
+ }
+
+ if (ST->hasSSE42()) {
+ int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
+ }
+ }
+
+ return TargetTransformInfo::getReductionCost(Opcode, ValTy, IsPairwise);
+}
+
+/// \brief Calculate the cost of materializing a 64-bit value. This helper
+/// method might only calculate a fraction of a larger immediate. Therefore it
+/// is valid to return a cost of ZERO.
+unsigned X86TTI::getIntImmCost(int64_t Val) const {
+ if (Val == 0)
+ return TCC_Free;
+
+ if (isInt<32>(Val))
+ return TCC_Basic;
+
+ return 2 * TCC_Basic;
+}
+
+unsigned X86TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ // Never hoist constants larger than 128bit, because this might lead to
+ // incorrect code generation or assertions in codegen.
+ // Fixme: Create a cost model for types larger than i128 once the codegen
+ // issues have been fixed.
+ if (BitSize > 128)
+ return TCC_Free;
+
+ if (Imm == 0)
+ return TCC_Free;
+
+ // Sign-extend all constants to a multiple of 64-bit.
+ APInt ImmVal = Imm;
+ if (BitSize & 0x3f)
+ ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
+
+ // Split the constant into 64-bit chunks and calculate the cost for each
+ // chunk.
+ unsigned Cost = 0;
+ for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
+ APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
+ int64_t Val = Tmp.getSExtValue();
+ Cost += getIntImmCost(Val);
+ }
+ // We need at least one instruction to materialze the constant.
+ return std::max(1U, Cost);
+}
+
+unsigned X86TTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TCC_Free;
+
+ unsigned ImmIdx = ~0U;
+ switch (Opcode) {
+ default: return TCC_Free;
+ case Instruction::GetElementPtr:
+ // Always hoist the base address of a GetElementPtr. This prevents the
+ // creation of new constants for every base constant that gets constant
+ // folded with the offset.
+ if (Idx == 0)
+ return 2 * TCC_Basic;
+ return TCC_Free;
+ case Instruction::Store:
+ ImmIdx = 0;
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::ICmp:
+ ImmIdx = 1;
+ break;
+ // Always return TCC_Free for the shift value of a shift instruction.
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ if (Idx == 1)
+ return TCC_Free;
+ break;
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::IntToPtr:
+ case Instruction::PtrToInt:
+ case Instruction::BitCast:
+ case Instruction::PHI:
+ case Instruction::Call:
+ case Instruction::Select:
+ case Instruction::Ret:
+ case Instruction::Load:
+ break;
+ }
+
+ if (Idx == ImmIdx) {
+ unsigned NumConstants = (BitSize + 63) / 64;
+ unsigned Cost = X86TTI::getIntImmCost(Imm, Ty);
+ return (Cost <= NumConstants * TCC_Basic)
+ ? static_cast<unsigned>(TCC_Free)
+ : Cost;
+ }
+
+ return X86TTI::getIntImmCost(Imm, Ty);
+}
+
+unsigned X86TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
+ const APInt &Imm, Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TCC_Free;
+
+ switch (IID) {
+ default: return TCC_Free;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
+ return TCC_Free;
+ break;
+ case Intrinsic::experimental_stackmap:
+ if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TCC_Free;
+ break;
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64:
+ if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TCC_Free;
+ break;
+ }
+ return X86TTI::getIntImmCost(Imm, Ty);
+}
diff --git a/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp
new file mode 100644
index 0000000..0bb5f99
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp
@@ -0,0 +1,316 @@
+//===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the pass which inserts x86 AVX vzeroupper instructions
+// before calls to SSE encoded functions. This avoids transition latency
+// penalty when tranfering control between AVX encoded instructions and old
+// SSE encoding mode.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "X86Subtarget.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-vzeroupper"
+
+STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
+
+namespace {
+
+ class VZeroUpperInserter : public MachineFunctionPass {
+ public:
+
+ VZeroUpperInserter() : MachineFunctionPass(ID) {}
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ const char *getPassName() const override {return "X86 vzeroupper inserter";}
+
+ private:
+
+ void processBasicBlock(MachineBasicBlock &MBB);
+ void insertVZeroUpper(MachineBasicBlock::iterator I,
+ MachineBasicBlock &MBB);
+ void addDirtySuccessor(MachineBasicBlock &MBB);
+
+ typedef enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY } BlockExitState;
+ static const char* getBlockExitStateName(BlockExitState ST);
+
+ // Core algorithm state:
+ // BlockState - Each block is either:
+ // - PASS_THROUGH: There are neither YMM dirtying instructions nor
+ // vzeroupper instructions in this block.
+ // - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
+ // block that will ensure that YMM is clean on exit.
+ // - EXITS_DIRTY: An instruction in the block dirties YMM and no
+ // subsequent vzeroupper in the block clears it.
+ //
+ // AddedToDirtySuccessors - This flag is raised when a block is added to the
+ // DirtySuccessors list to ensure that it's not
+ // added multiple times.
+ //
+ // FirstUnguardedCall - Records the location of the first unguarded call in
+ // each basic block that may need to be guarded by a
+ // vzeroupper. We won't know whether it actually needs
+ // to be guarded until we discover a predecessor that
+ // is DIRTY_OUT.
+ struct BlockState {
+ BlockState() : ExitState(PASS_THROUGH), AddedToDirtySuccessors(false) {}
+ BlockExitState ExitState;
+ bool AddedToDirtySuccessors;
+ MachineBasicBlock::iterator FirstUnguardedCall;
+ };
+ typedef SmallVector<BlockState, 8> BlockStateMap;
+ typedef SmallVector<MachineBasicBlock*, 8> DirtySuccessorsWorkList;
+
+ BlockStateMap BlockStates;
+ DirtySuccessorsWorkList DirtySuccessors;
+ bool EverMadeChange;
+ const TargetInstrInfo *TII;
+
+ static char ID;
+ };
+
+ char VZeroUpperInserter::ID = 0;
+}
+
+FunctionPass *llvm::createX86IssueVZeroUpperPass() {
+ return new VZeroUpperInserter();
+}
+
+const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
+ switch (ST) {
+ case PASS_THROUGH: return "Pass-through";
+ case EXITS_DIRTY: return "Exits-dirty";
+ case EXITS_CLEAN: return "Exits-clean";
+ }
+ llvm_unreachable("Invalid block exit state.");
+}
+
+static bool isYmmReg(unsigned Reg) {
+ return (Reg >= X86::YMM0 && Reg <= X86::YMM15);
+}
+
+static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
+ for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
+ E = MRI.livein_end(); I != E; ++I)
+ if (isYmmReg(I->first))
+ return true;
+
+ return false;
+}
+
+static bool clobbersAllYmmRegs(const MachineOperand &MO) {
+ for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
+ if (!MO.clobbersPhysReg(reg))
+ return false;
+ }
+ return true;
+}
+
+static bool hasYmmReg(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO))
+ return true;
+ if (!MO.isReg())
+ continue;
+ if (MO.isDebug())
+ continue;
+ if (isYmmReg(MO.getReg()))
+ return true;
+ }
+ return false;
+}
+
+/// clobbersAnyYmmReg() - Check if any YMM register will be clobbered by this
+/// instruction.
+static bool callClobbersAnyYmmReg(MachineInstr *MI) {
+ assert(MI->isCall() && "Can only be called on call instructions.");
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isRegMask())
+ continue;
+ for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
+ if (MO.clobbersPhysReg(reg))
+ return true;
+ }
+ }
+ return false;
+}
+
+// Insert a vzeroupper instruction before I.
+void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
+ MachineBasicBlock &MBB) {
+ DebugLoc dl = I->getDebugLoc();
+ BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
+ ++NumVZU;
+ EverMadeChange = true;
+}
+
+// Add MBB to the DirtySuccessors list if it hasn't already been added.
+void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
+ if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
+ DirtySuccessors.push_back(&MBB);
+ BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
+ }
+}
+
+/// processBasicBlock - Loop over all of the instructions in the basic block,
+/// inserting vzero upper instructions before function calls.
+void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
+
+ // Start by assuming that the block PASS_THROUGH, which implies no unguarded
+ // calls.
+ BlockExitState CurState = PASS_THROUGH;
+ BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
+
+ for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
+ MachineInstr *MI = I;
+ bool isControlFlow = MI->isCall() || MI->isReturn();
+
+ // Shortcut: don't need to check regular instructions in dirty state.
+ if (!isControlFlow && CurState == EXITS_DIRTY)
+ continue;
+
+ if (hasYmmReg(MI)) {
+ // We found a ymm-using instruction; this could be an AVX instruction,
+ // or it could be control flow.
+ CurState = EXITS_DIRTY;
+ continue;
+ }
+
+ // Check for control-flow out of the current function (which might
+ // indirectly execute SSE instructions).
+ if (!isControlFlow)
+ continue;
+
+ // If the call won't clobber any YMM register, skip it as well. It usually
+ // happens on helper function calls (such as '_chkstk', '_ftol2') where
+ // standard calling convention is not used (RegMask is not used to mark
+ // register clobbered and register usage (def/imp-def/use) is well-dfined
+ // and explicitly specified.
+ if (MI->isCall() && !callClobbersAnyYmmReg(MI))
+ continue;
+
+ // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
+ // registers. This instruction has zero latency. In addition, the processor
+ // changes back to Clean state, after which execution of Intel SSE
+ // instructions or Intel AVX instructions has no transition penalty. Add
+ // the VZEROUPPER instruction before any function call/return that might
+ // execute SSE code.
+ // FIXME: In some cases, we may want to move the VZEROUPPER into a
+ // predecessor block.
+ if (CurState == EXITS_DIRTY) {
+ // After the inserted VZEROUPPER the state becomes clean again, but
+ // other YMM may appear before other subsequent calls or even before
+ // the end of the BB.
+ insertVZeroUpper(I, MBB);
+ CurState = EXITS_CLEAN;
+ } else if (CurState == PASS_THROUGH) {
+ // If this block is currently in pass-through state and we encounter a
+ // call then whether we need a vzeroupper or not depends on whether this
+ // block has successors that exit dirty. Record the location of the call,
+ // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
+ // It will be inserted later if necessary.
+ BlockStates[MBB.getNumber()].FirstUnguardedCall = I;
+ CurState = EXITS_CLEAN;
+ }
+ }
+
+ DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
+ << getBlockExitStateName(CurState) << '\n');
+
+ if (CurState == EXITS_DIRTY)
+ for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
+ SE = MBB.succ_end();
+ SI != SE; ++SI)
+ addDirtySuccessor(**SI);
+
+ BlockStates[MBB.getNumber()].ExitState = CurState;
+}
+
+/// runOnMachineFunction - Loop over all of the basic blocks, inserting
+/// vzero upper instructions before function calls.
+bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
+ const X86Subtarget &ST = MF.getTarget().getSubtarget<X86Subtarget>();
+ if (!ST.hasAVX() || ST.hasAVX512())
+ return false;
+ TII = MF.getTarget().getInstrInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ EverMadeChange = false;
+
+ // Fast check: if the function doesn't use any ymm registers, we don't need
+ // to insert any VZEROUPPER instructions. This is constant-time, so it is
+ // cheap in the common case of no ymm use.
+ bool YMMUsed = false;
+ const TargetRegisterClass *RC = &X86::VR256RegClass;
+ for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
+ i != e; i++) {
+ if (!MRI.reg_nodbg_empty(*i)) {
+ YMMUsed = true;
+ break;
+ }
+ }
+ if (!YMMUsed) {
+ return false;
+ }
+
+ assert(BlockStates.empty() && DirtySuccessors.empty() &&
+ "X86VZeroUpper state should be clear");
+ BlockStates.resize(MF.getNumBlockIDs());
+
+ // Process all blocks. This will compute block exit states, record the first
+ // unguarded call in each block, and add successors of dirty blocks to the
+ // DirtySuccessors list.
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ processBasicBlock(*I);
+
+ // If any YMM regs are live in to this function, add the entry block to the
+ // DirtySuccessors list
+ if (checkFnHasLiveInYmm(MRI))
+ addDirtySuccessor(MF.front());
+
+ // Re-visit all blocks that are successors of EXITS_DIRTY bsocks. Add
+ // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
+ // through PASS_THROUGH blocks.
+ while (!DirtySuccessors.empty()) {
+ MachineBasicBlock &MBB = *DirtySuccessors.back();
+ DirtySuccessors.pop_back();
+ BlockState &BBState = BlockStates[MBB.getNumber()];
+
+ // MBB is a successor of a dirty block, so its first call needs to be
+ // guarded.
+ if (BBState.FirstUnguardedCall != MBB.end())
+ insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
+
+ // If this successor was a pass-through block then it is now dirty, and its
+ // successors need to be added to the worklist (if they haven't been
+ // already).
+ if (BBState.ExitState == PASS_THROUGH) {
+ DEBUG(dbgs() << "MBB #" << MBB.getNumber()
+ << " was Pass-through, is now Dirty-out.\n");
+ for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
+ SE = MBB.succ_end();
+ SI != SE; ++SI)
+ addDirtySuccessor(**SI);
+ }
+ }
+
+ BlockStates.clear();
+ return EverMadeChange;
+}
diff --git a/contrib/llvm/lib/Target/XCore/Disassembler/XCoreDisassembler.cpp b/contrib/llvm/lib/Target/XCore/Disassembler/XCoreDisassembler.cpp
new file mode 100644
index 0000000..7fef796
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/Disassembler/XCoreDisassembler.cpp
@@ -0,0 +1,802 @@
+//===- XCoreDisassembler.cpp - Disassembler for XCore -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file is part of the XCore Disassembler.
+///
+//===----------------------------------------------------------------------===//
+
+#include "XCore.h"
+#include "XCoreRegisterInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDisassembler.h"
+#include "llvm/MC/MCFixedLenDisassembler.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/MemoryObject.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "xcore-disassembler"
+
+typedef MCDisassembler::DecodeStatus DecodeStatus;
+
+namespace {
+
+/// \brief A disassembler class for XCore.
+class XCoreDisassembler : public MCDisassembler {
+public:
+ XCoreDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) :
+ MCDisassembler(STI, Ctx) {}
+
+ /// \brief See MCDisassembler.
+ virtual DecodeStatus getInstruction(MCInst &instr,
+ uint64_t &size,
+ const MemoryObject &region,
+ uint64_t address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const override;
+
+};
+}
+
+static bool readInstruction16(const MemoryObject &region,
+ uint64_t address,
+ uint64_t &size,
+ uint16_t &insn) {
+ uint8_t Bytes[4];
+
+ // We want to read exactly 2 Bytes of data.
+ if (region.readBytes(address, 2, Bytes) == -1) {
+ size = 0;
+ return false;
+ }
+ // Encoded as a little-endian 16-bit word in the stream.
+ insn = (Bytes[0] << 0) | (Bytes[1] << 8);
+ return true;
+}
+
+static bool readInstruction32(const MemoryObject &region,
+ uint64_t address,
+ uint64_t &size,
+ uint32_t &insn) {
+ uint8_t Bytes[4];
+
+ // We want to read exactly 4 Bytes of data.
+ if (region.readBytes(address, 4, Bytes) == -1) {
+ size = 0;
+ return false;
+ }
+ // Encoded as a little-endian 32-bit word in the stream.
+ insn = (Bytes[0] << 0) | (Bytes[1] << 8) | (Bytes[2] << 16) |
+ (Bytes[3] << 24);
+ return true;
+}
+
+static unsigned getReg(const void *D, unsigned RC, unsigned RegNo) {
+ const XCoreDisassembler *Dis = static_cast<const XCoreDisassembler*>(D);
+ const MCRegisterInfo *RegInfo = Dis->getContext().getRegisterInfo();
+ return *(RegInfo->getRegClass(RC).begin() + RegNo);
+}
+
+static DecodeStatus DecodeGRRegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeRRegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeBitpOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+
+static DecodeStatus DecodeNegImmOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+
+static DecodeStatus Decode2RInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus Decode2RImmInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeR2RInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus Decode2RSrcDstInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeRUSInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeRUSBitpInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeRUSSrcDstBitpInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeL2RInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeLR2RInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus Decode3RInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus Decode3RImmInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus Decode2RUSInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus Decode2RUSBitpInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeL3RInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeL3RSrcDstInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeL2RUSInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeL2RUSBitpInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeL6RInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeL5RInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeL4RSrcDstInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeL4RSrcDstSrcDstInstruction(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+#include "XCoreGenDisassemblerTables.inc"
+
+static DecodeStatus DecodeGRRegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder)
+{
+ if (RegNo > 11)
+ return MCDisassembler::Fail;
+ unsigned Reg = getReg(Decoder, XCore::GRRegsRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeRRegsRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder)
+{
+ if (RegNo > 15)
+ return MCDisassembler::Fail;
+ unsigned Reg = getReg(Decoder, XCore::RRegsRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeBitpOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ if (Val > 11)
+ return MCDisassembler::Fail;
+ static unsigned Values[] = {
+ 32 /*bpw*/, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32
+ };
+ Inst.addOperand(MCOperand::CreateImm(Values[Val]));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeNegImmOperand(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(-(int64_t)Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus
+Decode2OpInstruction(unsigned Insn, unsigned &Op1, unsigned &Op2) {
+ unsigned Combined = fieldFromInstruction(Insn, 6, 5);
+ if (Combined < 27)
+ return MCDisassembler::Fail;
+ if (fieldFromInstruction(Insn, 5, 1)) {
+ if (Combined == 31)
+ return MCDisassembler::Fail;
+ Combined += 5;
+ }
+ Combined -= 27;
+ unsigned Op1High = Combined % 3;
+ unsigned Op2High = Combined / 3;
+ Op1 = (Op1High << 2) | fieldFromInstruction(Insn, 2, 2);
+ Op2 = (Op2High << 2) | fieldFromInstruction(Insn, 0, 2);
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus
+Decode3OpInstruction(unsigned Insn, unsigned &Op1, unsigned &Op2,
+ unsigned &Op3) {
+ unsigned Combined = fieldFromInstruction(Insn, 6, 5);
+ if (Combined >= 27)
+ return MCDisassembler::Fail;
+
+ unsigned Op1High = Combined % 3;
+ unsigned Op2High = (Combined / 3) % 3;
+ unsigned Op3High = Combined / 9;
+ Op1 = (Op1High << 2) | fieldFromInstruction(Insn, 4, 2);
+ Op2 = (Op2High << 2) | fieldFromInstruction(Insn, 2, 2);
+ Op3 = (Op3High << 2) | fieldFromInstruction(Insn, 0, 2);
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus
+Decode2OpInstructionFail(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ // Try and decode as a 3R instruction.
+ unsigned Opcode = fieldFromInstruction(Insn, 11, 5);
+ switch (Opcode) {
+ case 0x0:
+ Inst.setOpcode(XCore::STW_2rus);
+ return Decode2RUSInstruction(Inst, Insn, Address, Decoder);
+ case 0x1:
+ Inst.setOpcode(XCore::LDW_2rus);
+ return Decode2RUSInstruction(Inst, Insn, Address, Decoder);
+ case 0x2:
+ Inst.setOpcode(XCore::ADD_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x3:
+ Inst.setOpcode(XCore::SUB_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x4:
+ Inst.setOpcode(XCore::SHL_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x5:
+ Inst.setOpcode(XCore::SHR_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x6:
+ Inst.setOpcode(XCore::EQ_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x7:
+ Inst.setOpcode(XCore::AND_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x8:
+ Inst.setOpcode(XCore::OR_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x9:
+ Inst.setOpcode(XCore::LDW_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x10:
+ Inst.setOpcode(XCore::LD16S_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x11:
+ Inst.setOpcode(XCore::LD8U_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x12:
+ Inst.setOpcode(XCore::ADD_2rus);
+ return Decode2RUSInstruction(Inst, Insn, Address, Decoder);
+ case 0x13:
+ Inst.setOpcode(XCore::SUB_2rus);
+ return Decode2RUSInstruction(Inst, Insn, Address, Decoder);
+ case 0x14:
+ Inst.setOpcode(XCore::SHL_2rus);
+ return Decode2RUSBitpInstruction(Inst, Insn, Address, Decoder);
+ case 0x15:
+ Inst.setOpcode(XCore::SHR_2rus);
+ return Decode2RUSBitpInstruction(Inst, Insn, Address, Decoder);
+ case 0x16:
+ Inst.setOpcode(XCore::EQ_2rus);
+ return Decode2RUSInstruction(Inst, Insn, Address, Decoder);
+ case 0x17:
+ Inst.setOpcode(XCore::TSETR_3r);
+ return Decode3RImmInstruction(Inst, Insn, Address, Decoder);
+ case 0x18:
+ Inst.setOpcode(XCore::LSS_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x19:
+ Inst.setOpcode(XCore::LSU_3r);
+ return Decode3RInstruction(Inst, Insn, Address, Decoder);
+ }
+ return MCDisassembler::Fail;
+}
+
+static DecodeStatus
+Decode2RInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2;
+ DecodeStatus S = Decode2OpInstruction(Insn, Op1, Op2);
+ if (S != MCDisassembler::Success)
+ return Decode2OpInstructionFail(Inst, Insn, Address, Decoder);
+
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ return S;
+}
+
+static DecodeStatus
+Decode2RImmInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2;
+ DecodeStatus S = Decode2OpInstruction(Insn, Op1, Op2);
+ if (S != MCDisassembler::Success)
+ return Decode2OpInstructionFail(Inst, Insn, Address, Decoder);
+
+ Inst.addOperand(MCOperand::CreateImm(Op1));
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ return S;
+}
+
+static DecodeStatus
+DecodeR2RInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2;
+ DecodeStatus S = Decode2OpInstruction(Insn, Op2, Op1);
+ if (S != MCDisassembler::Success)
+ return Decode2OpInstructionFail(Inst, Insn, Address, Decoder);
+
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ return S;
+}
+
+static DecodeStatus
+Decode2RSrcDstInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2;
+ DecodeStatus S = Decode2OpInstruction(Insn, Op1, Op2);
+ if (S != MCDisassembler::Success)
+ return Decode2OpInstructionFail(Inst, Insn, Address, Decoder);
+
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ return S;
+}
+
+static DecodeStatus
+DecodeRUSInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2;
+ DecodeStatus S = Decode2OpInstruction(Insn, Op1, Op2);
+ if (S != MCDisassembler::Success)
+ return Decode2OpInstructionFail(Inst, Insn, Address, Decoder);
+
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ Inst.addOperand(MCOperand::CreateImm(Op2));
+ return S;
+}
+
+static DecodeStatus
+DecodeRUSBitpInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2;
+ DecodeStatus S = Decode2OpInstruction(Insn, Op1, Op2);
+ if (S != MCDisassembler::Success)
+ return Decode2OpInstructionFail(Inst, Insn, Address, Decoder);
+
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeBitpOperand(Inst, Op2, Address, Decoder);
+ return S;
+}
+
+static DecodeStatus
+DecodeRUSSrcDstBitpInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2;
+ DecodeStatus S = Decode2OpInstruction(Insn, Op1, Op2);
+ if (S != MCDisassembler::Success)
+ return Decode2OpInstructionFail(Inst, Insn, Address, Decoder);
+
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeBitpOperand(Inst, Op2, Address, Decoder);
+ return S;
+}
+
+static DecodeStatus
+DecodeL2OpInstructionFail(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ // Try and decode as a L3R / L2RUS instruction.
+ unsigned Opcode = fieldFromInstruction(Insn, 16, 4) |
+ fieldFromInstruction(Insn, 27, 5) << 4;
+ switch (Opcode) {
+ case 0x0c:
+ Inst.setOpcode(XCore::STW_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x1c:
+ Inst.setOpcode(XCore::XOR_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x2c:
+ Inst.setOpcode(XCore::ASHR_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x3c:
+ Inst.setOpcode(XCore::LDAWF_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x4c:
+ Inst.setOpcode(XCore::LDAWB_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x5c:
+ Inst.setOpcode(XCore::LDA16F_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x6c:
+ Inst.setOpcode(XCore::LDA16B_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x7c:
+ Inst.setOpcode(XCore::MUL_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x8c:
+ Inst.setOpcode(XCore::DIVS_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x9c:
+ Inst.setOpcode(XCore::DIVU_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x10c:
+ Inst.setOpcode(XCore::ST16_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x11c:
+ Inst.setOpcode(XCore::ST8_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x12c:
+ Inst.setOpcode(XCore::ASHR_l2rus);
+ return DecodeL2RUSBitpInstruction(Inst, Insn, Address, Decoder);
+ case 0x12d:
+ Inst.setOpcode(XCore::OUTPW_l2rus);
+ return DecodeL2RUSBitpInstruction(Inst, Insn, Address, Decoder);
+ case 0x12e:
+ Inst.setOpcode(XCore::INPW_l2rus);
+ return DecodeL2RUSBitpInstruction(Inst, Insn, Address, Decoder);
+ case 0x13c:
+ Inst.setOpcode(XCore::LDAWF_l2rus);
+ return DecodeL2RUSInstruction(Inst, Insn, Address, Decoder);
+ case 0x14c:
+ Inst.setOpcode(XCore::LDAWB_l2rus);
+ return DecodeL2RUSInstruction(Inst, Insn, Address, Decoder);
+ case 0x15c:
+ Inst.setOpcode(XCore::CRC_l3r);
+ return DecodeL3RSrcDstInstruction(Inst, Insn, Address, Decoder);
+ case 0x18c:
+ Inst.setOpcode(XCore::REMS_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ case 0x19c:
+ Inst.setOpcode(XCore::REMU_l3r);
+ return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
+ }
+ return MCDisassembler::Fail;
+}
+
+static DecodeStatus
+DecodeL2RInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2;
+ DecodeStatus S = Decode2OpInstruction(fieldFromInstruction(Insn, 0, 16),
+ Op1, Op2);
+ if (S != MCDisassembler::Success)
+ return DecodeL2OpInstructionFail(Inst, Insn, Address, Decoder);
+
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ return S;
+}
+
+static DecodeStatus
+DecodeLR2RInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2;
+ DecodeStatus S = Decode2OpInstruction(fieldFromInstruction(Insn, 0, 16),
+ Op1, Op2);
+ if (S != MCDisassembler::Success)
+ return DecodeL2OpInstructionFail(Inst, Insn, Address, Decoder);
+
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ return S;
+}
+
+static DecodeStatus
+Decode3RInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3;
+ DecodeStatus S = Decode3OpInstruction(Insn, Op1, Op2, Op3);
+ if (S == MCDisassembler::Success) {
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op3, Address, Decoder);
+ }
+ return S;
+}
+
+static DecodeStatus
+Decode3RImmInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3;
+ DecodeStatus S = Decode3OpInstruction(Insn, Op1, Op2, Op3);
+ if (S == MCDisassembler::Success) {
+ Inst.addOperand(MCOperand::CreateImm(Op1));
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op3, Address, Decoder);
+ }
+ return S;
+}
+
+static DecodeStatus
+Decode2RUSInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3;
+ DecodeStatus S = Decode3OpInstruction(Insn, Op1, Op2, Op3);
+ if (S == MCDisassembler::Success) {
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ Inst.addOperand(MCOperand::CreateImm(Op3));
+ }
+ return S;
+}
+
+static DecodeStatus
+Decode2RUSBitpInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3;
+ DecodeStatus S = Decode3OpInstruction(Insn, Op1, Op2, Op3);
+ if (S == MCDisassembler::Success) {
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ DecodeBitpOperand(Inst, Op3, Address, Decoder);
+ }
+ return S;
+}
+
+static DecodeStatus
+DecodeL3RInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3;
+ DecodeStatus S =
+ Decode3OpInstruction(fieldFromInstruction(Insn, 0, 16), Op1, Op2, Op3);
+ if (S == MCDisassembler::Success) {
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op3, Address, Decoder);
+ }
+ return S;
+}
+
+static DecodeStatus
+DecodeL3RSrcDstInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3;
+ DecodeStatus S =
+ Decode3OpInstruction(fieldFromInstruction(Insn, 0, 16), Op1, Op2, Op3);
+ if (S == MCDisassembler::Success) {
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op3, Address, Decoder);
+ }
+ return S;
+}
+
+static DecodeStatus
+DecodeL2RUSInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3;
+ DecodeStatus S =
+ Decode3OpInstruction(fieldFromInstruction(Insn, 0, 16), Op1, Op2, Op3);
+ if (S == MCDisassembler::Success) {
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ Inst.addOperand(MCOperand::CreateImm(Op3));
+ }
+ return S;
+}
+
+static DecodeStatus
+DecodeL2RUSBitpInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3;
+ DecodeStatus S =
+ Decode3OpInstruction(fieldFromInstruction(Insn, 0, 16), Op1, Op2, Op3);
+ if (S == MCDisassembler::Success) {
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ DecodeBitpOperand(Inst, Op3, Address, Decoder);
+ }
+ return S;
+}
+
+static DecodeStatus
+DecodeL6RInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3, Op4, Op5, Op6;
+ DecodeStatus S =
+ Decode3OpInstruction(fieldFromInstruction(Insn, 0, 16), Op1, Op2, Op3);
+ if (S != MCDisassembler::Success)
+ return S;
+ S = Decode3OpInstruction(fieldFromInstruction(Insn, 16, 16), Op4, Op5, Op6);
+ if (S != MCDisassembler::Success)
+ return S;
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op4, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op3, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op5, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op6, Address, Decoder);
+ return S;
+}
+
+static DecodeStatus
+DecodeL5RInstructionFail(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ // Try and decode as a L6R instruction.
+ Inst.clear();
+ unsigned Opcode = fieldFromInstruction(Insn, 27, 5);
+ switch (Opcode) {
+ case 0x00:
+ Inst.setOpcode(XCore::LMUL_l6r);
+ return DecodeL6RInstruction(Inst, Insn, Address, Decoder);
+ }
+ return MCDisassembler::Fail;
+}
+
+static DecodeStatus
+DecodeL5RInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3, Op4, Op5;
+ DecodeStatus S =
+ Decode3OpInstruction(fieldFromInstruction(Insn, 0, 16), Op1, Op2, Op3);
+ if (S != MCDisassembler::Success)
+ return DecodeL5RInstructionFail(Inst, Insn, Address, Decoder);
+ S = Decode2OpInstruction(fieldFromInstruction(Insn, 16, 16), Op4, Op5);
+ if (S != MCDisassembler::Success)
+ return DecodeL5RInstructionFail(Inst, Insn, Address, Decoder);
+
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op4, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op3, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op5, Address, Decoder);
+ return S;
+}
+
+static DecodeStatus
+DecodeL4RSrcDstInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3;
+ unsigned Op4 = fieldFromInstruction(Insn, 16, 4);
+ DecodeStatus S =
+ Decode3OpInstruction(fieldFromInstruction(Insn, 0, 16), Op1, Op2, Op3);
+ if (S == MCDisassembler::Success) {
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ S = DecodeGRRegsRegisterClass(Inst, Op4, Address, Decoder);
+ }
+ if (S == MCDisassembler::Success) {
+ DecodeGRRegsRegisterClass(Inst, Op4, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op3, Address, Decoder);
+ }
+ return S;
+}
+
+static DecodeStatus
+DecodeL4RSrcDstSrcDstInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
+ const void *Decoder) {
+ unsigned Op1, Op2, Op3;
+ unsigned Op4 = fieldFromInstruction(Insn, 16, 4);
+ DecodeStatus S =
+ Decode3OpInstruction(fieldFromInstruction(Insn, 0, 16), Op1, Op2, Op3);
+ if (S == MCDisassembler::Success) {
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ S = DecodeGRRegsRegisterClass(Inst, Op4, Address, Decoder);
+ }
+ if (S == MCDisassembler::Success) {
+ DecodeGRRegsRegisterClass(Inst, Op1, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op4, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op2, Address, Decoder);
+ DecodeGRRegsRegisterClass(Inst, Op3, Address, Decoder);
+ }
+ return S;
+}
+
+MCDisassembler::DecodeStatus
+XCoreDisassembler::getInstruction(MCInst &instr,
+ uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &vStream,
+ raw_ostream &cStream) const {
+ uint16_t insn16;
+
+ if (!readInstruction16(Region, Address, Size, insn16)) {
+ return Fail;
+ }
+
+ // Calling the auto-generated decoder function.
+ DecodeStatus Result = decodeInstruction(DecoderTable16, instr, insn16,
+ Address, this, STI);
+ if (Result != Fail) {
+ Size = 2;
+ return Result;
+ }
+
+ uint32_t insn32;
+
+ if (!readInstruction32(Region, Address, Size, insn32)) {
+ return Fail;
+ }
+
+ // Calling the auto-generated decoder function.
+ Result = decodeInstruction(DecoderTable32, instr, insn32, Address, this, STI);
+ if (Result != Fail) {
+ Size = 4;
+ return Result;
+ }
+
+ return Fail;
+}
+
+namespace llvm {
+ extern Target TheXCoreTarget;
+}
+
+static MCDisassembler *createXCoreDisassembler(const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new XCoreDisassembler(STI, Ctx);
+}
+
+extern "C" void LLVMInitializeXCoreDisassembler() {
+ // Register the disassembler.
+ TargetRegistry::RegisterMCDisassembler(TheXCoreTarget,
+ createXCoreDisassembler);
+}
diff --git a/contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.cpp b/contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.cpp
new file mode 100644
index 0000000..215fe89
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.cpp
@@ -0,0 +1,87 @@
+//===-- XCoreInstPrinter.cpp - Convert XCore MCInst to assembly syntax ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an XCore MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreInstPrinter.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+#include "XCoreGenAsmWriter.inc"
+
+void XCoreInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
+ OS << StringRef(getRegisterName(RegNo)).lower();
+}
+
+void XCoreInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
+ StringRef Annot) {
+ printInstruction(MI, O);
+ printAnnotation(O, Annot);
+}
+
+void XCoreInstPrinter::
+printInlineJT(const MCInst *MI, int opNum, raw_ostream &O) {
+ report_fatal_error("can't handle InlineJT");
+}
+
+void XCoreInstPrinter::
+printInlineJT32(const MCInst *MI, int opNum, raw_ostream &O) {
+ report_fatal_error("can't handle InlineJT32");
+}
+
+static void printExpr(const MCExpr *Expr, raw_ostream &OS) {
+ int Offset = 0;
+ const MCSymbolRefExpr *SRE;
+
+ if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
+ SRE = dyn_cast<MCSymbolRefExpr>(BE->getLHS());
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(BE->getRHS());
+ assert(SRE && CE && "Binary expression must be sym+const.");
+ Offset = CE->getValue();
+ } else {
+ SRE = dyn_cast<MCSymbolRefExpr>(Expr);
+ assert(SRE && "Unexpected MCExpr type.");
+ }
+ assert(SRE->getKind() == MCSymbolRefExpr::VK_None);
+
+ OS << SRE->getSymbol();
+
+ if (Offset) {
+ if (Offset > 0)
+ OS << '+';
+ OS << Offset;
+ }
+}
+
+void XCoreInstPrinter::
+printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ printRegName(O, Op.getReg());
+ return;
+ }
+
+ if (Op.isImm()) {
+ O << Op.getImm();
+ return;
+ }
+
+ assert(Op.isExpr() && "unknown operand kind in printOperand");
+ printExpr(Op.getExpr(), O);
+}
diff --git a/contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.h b/contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.h
new file mode 100644
index 0000000..98e7c98
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.h
@@ -0,0 +1,44 @@
+//== XCoreInstPrinter.h - Convert XCore MCInst to assembly syntax -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file contains the declaration of the XCoreInstPrinter class,
+/// which is used to print XCore MCInst to a .s file.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef XCOREINSTPRINTER_H
+#define XCOREINSTPRINTER_H
+#include "llvm/MC/MCInstPrinter.h"
+
+namespace llvm {
+
+class TargetMachine;
+
+class XCoreInstPrinter : public MCInstPrinter {
+public:
+ XCoreInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI)
+ : MCInstPrinter(MAI, MII, MRI) {}
+
+ // Autogenerated by tblgen.
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ static const char *getRegisterName(unsigned RegNo);
+
+ void printRegName(raw_ostream &OS, unsigned RegNo) const override;
+ void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot) override;
+private:
+ void printInlineJT(const MCInst *MI, int opNum, raw_ostream &O);
+ void printInlineJT32(const MCInst *MI, int opNum, raw_ostream &O);
+ void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printMemOperand(const MCInst *MI, int opNum, raw_ostream &O);
+};
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.cpp b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.cpp
new file mode 100644
index 0000000..5665911
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.cpp
@@ -0,0 +1,35 @@
+//===-- XCoreMCAsmInfo.cpp - XCore asm properties -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreMCAsmInfo.h"
+#include "llvm/ADT/StringRef.h"
+using namespace llvm;
+
+void XCoreMCAsmInfo::anchor() { }
+
+XCoreMCAsmInfo::XCoreMCAsmInfo(StringRef TT) {
+ SupportsDebugInformation = true;
+ Data16bitsDirective = "\t.short\t";
+ Data32bitsDirective = "\t.long\t";
+ Data64bitsDirective = nullptr;
+ ZeroDirective = "\t.space\t";
+ CommentString = "#";
+
+ AscizDirective = ".asciiz";
+
+ HiddenVisibilityAttr = MCSA_Invalid;
+ HiddenDeclarationVisibilityAttr = MCSA_Invalid;
+ ProtectedVisibilityAttr = MCSA_Invalid;
+
+ // Debug
+ HasLEB128 = true;
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+ DwarfRegNumForCFI = true;
+}
+
diff --git a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.h b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.h
new file mode 100644
index 0000000..da2689a
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.h
@@ -0,0 +1,31 @@
+//===-- XCoreMCAsmInfo.h - XCore asm properties ----------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the XCoreMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCORETARGETASMINFO_H
+#define XCORETARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfoELF.h"
+
+namespace llvm {
+ class StringRef;
+ class Target;
+
+ class XCoreMCAsmInfo : public MCAsmInfoELF {
+ void anchor() override;
+ public:
+ explicit XCoreMCAsmInfo(StringRef TT);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.cpp b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.cpp
new file mode 100644
index 0000000..d54e94f
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.cpp
@@ -0,0 +1,164 @@
+//===-- XCoreMCTargetDesc.cpp - XCore Target Descriptions -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides XCore specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreMCTargetDesc.h"
+#include "InstPrinter/XCoreInstPrinter.h"
+#include "XCoreMCAsmInfo.h"
+#include "XCoreTargetStreamer.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_MC_DESC
+#include "XCoreGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "XCoreGenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "XCoreGenRegisterInfo.inc"
+
+static MCInstrInfo *createXCoreMCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitXCoreMCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createXCoreMCRegisterInfo(StringRef TT) {
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitXCoreMCRegisterInfo(X, XCore::LR);
+ return X;
+}
+
+static MCSubtargetInfo *createXCoreMCSubtargetInfo(StringRef TT, StringRef CPU,
+ StringRef FS) {
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+ InitXCoreMCSubtargetInfo(X, TT, CPU, FS);
+ return X;
+}
+
+static MCAsmInfo *createXCoreMCAsmInfo(const MCRegisterInfo &MRI,
+ StringRef TT) {
+ MCAsmInfo *MAI = new XCoreMCAsmInfo(TT);
+
+ // Initial state of the frame pointer is SP.
+ MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(nullptr, XCore::SP, 0);
+ MAI->addInitialFrameState(Inst);
+
+ return MAI;
+}
+
+static MCCodeGenInfo *createXCoreMCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+ if (RM == Reloc::Default) {
+ RM = Reloc::Static;
+ }
+ if (CM == CodeModel::Default) {
+ CM = CodeModel::Small;
+ }
+ if (CM != CodeModel::Small && CM != CodeModel::Large)
+ report_fatal_error("Target only supports CodeModel Small or Large");
+
+ X->InitMCCodeGenInfo(RM, CM, OL);
+ return X;
+}
+
+static MCInstPrinter *createXCoreMCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ return new XCoreInstPrinter(MAI, MII, MRI);
+}
+
+XCoreTargetStreamer::XCoreTargetStreamer(MCStreamer &S) : MCTargetStreamer(S) {}
+XCoreTargetStreamer::~XCoreTargetStreamer() {}
+
+namespace {
+
+class XCoreTargetAsmStreamer : public XCoreTargetStreamer {
+ formatted_raw_ostream &OS;
+public:
+ XCoreTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS);
+ virtual void emitCCTopData(StringRef Name) override;
+ virtual void emitCCTopFunction(StringRef Name) override;
+ virtual void emitCCBottomData(StringRef Name) override;
+ virtual void emitCCBottomFunction(StringRef Name) override;
+};
+
+XCoreTargetAsmStreamer::XCoreTargetAsmStreamer(MCStreamer &S,
+ formatted_raw_ostream &OS)
+ : XCoreTargetStreamer(S), OS(OS) {}
+
+void XCoreTargetAsmStreamer::emitCCTopData(StringRef Name) {
+ OS << "\t.cc_top " << Name << ".data," << Name << '\n';
+}
+
+void XCoreTargetAsmStreamer::emitCCTopFunction(StringRef Name) {
+ OS << "\t.cc_top " << Name << ".function," << Name << '\n';
+}
+
+void XCoreTargetAsmStreamer::emitCCBottomData(StringRef Name) {
+ OS << "\t.cc_bottom " << Name << ".data\n";
+}
+
+void XCoreTargetAsmStreamer::emitCCBottomFunction(StringRef Name) {
+ OS << "\t.cc_bottom " << Name << ".function\n";
+}
+}
+
+static MCStreamer *
+createXCoreMCAsmStreamer(MCContext &Ctx, formatted_raw_ostream &OS,
+ bool isVerboseAsm, bool useDwarfDirectory,
+ MCInstPrinter *InstPrint, MCCodeEmitter *CE,
+ MCAsmBackend *TAB, bool ShowInst) {
+ MCStreamer *S = llvm::createAsmStreamer(
+ Ctx, OS, isVerboseAsm, useDwarfDirectory, InstPrint, CE, TAB, ShowInst);
+ new XCoreTargetAsmStreamer(*S, OS);
+ return S;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeXCoreTargetMC() {
+ // Register the MC asm info.
+ RegisterMCAsmInfoFn X(TheXCoreTarget, createXCoreMCAsmInfo);
+
+ // Register the MC codegen info.
+ TargetRegistry::RegisterMCCodeGenInfo(TheXCoreTarget,
+ createXCoreMCCodeGenInfo);
+
+ // Register the MC instruction info.
+ TargetRegistry::RegisterMCInstrInfo(TheXCoreTarget, createXCoreMCInstrInfo);
+
+ // Register the MC register info.
+ TargetRegistry::RegisterMCRegInfo(TheXCoreTarget, createXCoreMCRegisterInfo);
+
+ // Register the MC subtarget info.
+ TargetRegistry::RegisterMCSubtargetInfo(TheXCoreTarget,
+ createXCoreMCSubtargetInfo);
+
+ // Register the MCInstPrinter
+ TargetRegistry::RegisterMCInstPrinter(TheXCoreTarget,
+ createXCoreMCInstPrinter);
+
+ TargetRegistry::RegisterAsmStreamer(TheXCoreTarget, createXCoreMCAsmStreamer);
+}
diff --git a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.h b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.h
new file mode 100644
index 0000000..a255adb
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.h
@@ -0,0 +1,38 @@
+//===-- XCoreMCTargetDesc.h - XCore Target Descriptions ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides XCore specific target descriptions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCOREMCTARGETDESC_H
+#define XCOREMCTARGETDESC_H
+
+namespace llvm {
+class Target;
+
+extern Target TheXCoreTarget;
+
+} // End llvm namespace
+
+// Defines symbolic names for XCore registers. This defines a mapping from
+// register name to register number.
+//
+#define GET_REGINFO_ENUM
+#include "XCoreGenRegisterInfo.inc"
+
+// Defines symbolic names for the XCore instructions.
+//
+#define GET_INSTRINFO_ENUM
+#include "XCoreGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "XCoreGenSubtargetInfo.inc"
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/TargetInfo/XCoreTargetInfo.cpp b/contrib/llvm/lib/Target/XCore/TargetInfo/XCoreTargetInfo.cpp
new file mode 100644
index 0000000..00e34e0
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/TargetInfo/XCoreTargetInfo.cpp
@@ -0,0 +1,19 @@
+//===-- XCoreTargetInfo.cpp - XCore Target Implementation -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCore.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheXCoreTarget;
+
+extern "C" void LLVMInitializeXCoreTargetInfo() {
+ RegisterTarget<Triple::xcore> X(TheXCoreTarget, "xcore", "XCore");
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCore.h b/contrib/llvm/lib/Target/XCore/XCore.h
new file mode 100644
index 0000000..d707edc
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCore.h
@@ -0,0 +1,39 @@
+//===-- XCore.h - Top-level interface for XCore representation --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in the LLVM
+// XCore back-end.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef TARGET_XCORE_H
+#define TARGET_XCORE_H
+
+#include "MCTargetDesc/XCoreMCTargetDesc.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+ class FunctionPass;
+ class ModulePass;
+ class TargetMachine;
+ class XCoreTargetMachine;
+ class formatted_raw_ostream;
+
+ void initializeXCoreLowerThreadLocalPass(PassRegistry &p);
+
+ FunctionPass *createXCoreFrameToArgsOffsetEliminationPass();
+ FunctionPass *createXCoreISelDag(XCoreTargetMachine &TM,
+ CodeGenOpt::Level OptLevel);
+ ModulePass *createXCoreLowerThreadLocalPass();
+
+ ImmutablePass *createXCoreTargetTransformInfoPass(const XCoreTargetMachine *TM);
+
+} // end namespace llvm;
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCore.td b/contrib/llvm/lib/Target/XCore/XCore.td
new file mode 100644
index 0000000..04a1dd5
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCore.td
@@ -0,0 +1,47 @@
+//===-- XCore.td - Describe the XCore Target Machine -------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the top level entry point for the XCore target.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces which we are implementing
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// Descriptions
+//===----------------------------------------------------------------------===//
+
+include "XCoreRegisterInfo.td"
+include "XCoreInstrInfo.td"
+include "XCoreCallingConv.td"
+
+def XCoreInstrInfo : InstrInfo;
+
+//===----------------------------------------------------------------------===//
+// XCore processors supported.
+//===----------------------------------------------------------------------===//
+
+class Proc<string Name, list<SubtargetFeature> Features>
+ : Processor<Name, NoItineraries, Features>;
+
+def : Proc<"generic", []>;
+def : Proc<"xs1b-generic", []>;
+
+//===----------------------------------------------------------------------===//
+// Declare the target which we are implementing
+//===----------------------------------------------------------------------===//
+
+def XCore : Target {
+ // Pull in Instruction Info:
+ let InstructionSet = XCoreInstrInfo;
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreAsmPrinter.cpp b/contrib/llvm/lib/Target/XCore/XCoreAsmPrinter.cpp
new file mode 100644
index 0000000..e98d4f9
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreAsmPrinter.cpp
@@ -0,0 +1,307 @@
+//===-- XCoreAsmPrinter.cpp - XCore LLVM assembly writer ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to the XAS-format XCore assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCore.h"
+#include "InstPrinter/XCoreInstPrinter.h"
+#include "XCoreInstrInfo.h"
+#include "XCoreMCInstLower.h"
+#include "XCoreSubtarget.h"
+#include "XCoreTargetMachine.h"
+#include "XCoreTargetStreamer.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include <algorithm>
+#include <cctype>
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+namespace {
+ class XCoreAsmPrinter : public AsmPrinter {
+ const XCoreSubtarget &Subtarget;
+ XCoreMCInstLower MCInstLowering;
+ XCoreTargetStreamer &getTargetStreamer();
+
+ public:
+ explicit XCoreAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer), Subtarget(TM.getSubtarget<XCoreSubtarget>()),
+ MCInstLowering(*this) {}
+
+ const char *getPassName() const override {
+ return "XCore Assembly Printer";
+ }
+
+ void printInlineJT(const MachineInstr *MI, int opNum, raw_ostream &O,
+ const std::string &directive = ".jmptable");
+ void printInlineJT32(const MachineInstr *MI, int opNum, raw_ostream &O) {
+ printInlineJT(MI, opNum, O, ".jmptable32");
+ }
+ void printOperand(const MachineInstr *MI, int opNum, raw_ostream &O);
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) override;
+
+ void emitArrayBound(MCSymbol *Sym, const GlobalVariable *GV);
+ void EmitGlobalVariable(const GlobalVariable *GV) override;
+
+ void EmitFunctionEntryLabel() override;
+ void EmitInstruction(const MachineInstr *MI) override;
+ void EmitFunctionBodyStart() override;
+ void EmitFunctionBodyEnd() override;
+ };
+} // end of anonymous namespace
+
+XCoreTargetStreamer &XCoreAsmPrinter::getTargetStreamer() {
+ return static_cast<XCoreTargetStreamer&>(*OutStreamer.getTargetStreamer());
+}
+
+void XCoreAsmPrinter::emitArrayBound(MCSymbol *Sym, const GlobalVariable *GV) {
+ assert( ( GV->hasExternalLinkage() || GV->hasWeakLinkage() ||
+ GV->hasLinkOnceLinkage() || GV->hasCommonLinkage() ) &&
+ "Unexpected linkage");
+ if (ArrayType *ATy = dyn_cast<ArrayType>(
+ cast<PointerType>(GV->getType())->getElementType())) {
+
+ MCSymbol *SymGlob = OutContext.GetOrCreateSymbol(
+ Twine(Sym->getName() + StringRef(".globound")));
+ OutStreamer.EmitSymbolAttribute(SymGlob, MCSA_Global);
+ OutStreamer.EmitAssignment(SymGlob,
+ MCConstantExpr::Create(ATy->getNumElements(),
+ OutContext));
+ if (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
+ GV->hasCommonLinkage()) {
+ // TODO Use COMDAT groups for LinkOnceLinkage
+ OutStreamer.EmitSymbolAttribute(SymGlob, MCSA_Weak);
+ }
+ }
+}
+
+void XCoreAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
+ // Check to see if this is a special global used by LLVM, if so, emit it.
+ if (!GV->hasInitializer() ||
+ EmitSpecialLLVMGlobal(GV))
+ return;
+
+ const DataLayout *TD = TM.getDataLayout();
+ OutStreamer.SwitchSection(
+ getObjFileLowering().SectionForGlobal(GV, *Mang, TM));
+
+ MCSymbol *GVSym = getSymbol(GV);
+ const Constant *C = GV->getInitializer();
+ unsigned Align = (unsigned)TD->getPreferredTypeAlignmentShift(C->getType());
+
+ // Mark the start of the global
+ getTargetStreamer().emitCCTopData(GVSym->getName());
+
+ switch (GV->getLinkage()) {
+ case GlobalValue::AppendingLinkage:
+ report_fatal_error("AppendingLinkage is not supported by this target!");
+ case GlobalValue::LinkOnceAnyLinkage:
+ case GlobalValue::LinkOnceODRLinkage:
+ case GlobalValue::WeakAnyLinkage:
+ case GlobalValue::WeakODRLinkage:
+ case GlobalValue::ExternalLinkage:
+ case GlobalValue::CommonLinkage:
+ emitArrayBound(GVSym, GV);
+ OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
+
+ // TODO Use COMDAT groups for LinkOnceLinkage
+ if (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
+ GV->hasCommonLinkage())
+ OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
+ // FALL THROUGH
+ case GlobalValue::InternalLinkage:
+ case GlobalValue::PrivateLinkage:
+ break;
+ default:
+ llvm_unreachable("Unknown linkage type!");
+ }
+
+ EmitAlignment(Align > 2 ? Align : 2, GV);
+
+ if (GV->isThreadLocal()) {
+ report_fatal_error("TLS is not supported by this target!");
+ }
+ unsigned Size = TD->getTypeAllocSize(C->getType());
+ if (MAI->hasDotTypeDotSizeDirective()) {
+ OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
+ OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
+ }
+ OutStreamer.EmitLabel(GVSym);
+
+ EmitGlobalConstant(C);
+ // The ABI requires that unsigned scalar types smaller than 32 bits
+ // are padded to 32 bits.
+ if (Size < 4)
+ OutStreamer.EmitZeros(4 - Size);
+
+ // Mark the end of the global
+ getTargetStreamer().emitCCBottomData(GVSym->getName());
+}
+
+void XCoreAsmPrinter::EmitFunctionBodyStart() {
+ MCInstLowering.Initialize(Mang, &MF->getContext());
+}
+
+/// EmitFunctionBodyEnd - Targets can override this to emit stuff after
+/// the last basic block in the function.
+void XCoreAsmPrinter::EmitFunctionBodyEnd() {
+ // Emit function end directives
+ getTargetStreamer().emitCCBottomFunction(CurrentFnSym->getName());
+}
+
+void XCoreAsmPrinter::EmitFunctionEntryLabel() {
+ // Mark the start of the function
+ getTargetStreamer().emitCCTopFunction(CurrentFnSym->getName());
+ OutStreamer.EmitLabel(CurrentFnSym);
+}
+
+void XCoreAsmPrinter::
+printInlineJT(const MachineInstr *MI, int opNum, raw_ostream &O,
+ const std::string &directive) {
+ unsigned JTI = MI->getOperand(opNum).getIndex();
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
+ O << "\t" << directive << " ";
+ for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = JTBBs[i];
+ if (i > 0)
+ O << ",";
+ O << *MBB->getSymbol();
+ }
+}
+
+void XCoreAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
+ raw_ostream &O) {
+ const DataLayout *DL = TM.getDataLayout();
+ const MachineOperand &MO = MI->getOperand(opNum);
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register:
+ O << XCoreInstPrinter::getRegisterName(MO.getReg());
+ break;
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ O << *MO.getMBB()->getSymbol();
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ O << *getSymbol(MO.getGlobal());
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << DL->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
+ << '_' << MO.getIndex();
+ break;
+ case MachineOperand::MO_BlockAddress:
+ O << *GetBlockAddressSymbol(MO.getBlockAddress());
+ break;
+ default:
+ llvm_unreachable("not implemented");
+ }
+}
+
+/// PrintAsmOperand - Print out an operand for an inline asm expression.
+///
+bool XCoreAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,const char *ExtraCode,
+ raw_ostream &O) {
+ // Print the operand if there is no operand modifier.
+ if (!ExtraCode || !ExtraCode[0]) {
+ printOperand(MI, OpNo, O);
+ return false;
+ }
+
+ // Otherwise fallback on the default implementation.
+ return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
+}
+
+bool XCoreAsmPrinter::
+PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &O) {
+ if (ExtraCode && ExtraCode[0]) {
+ return true; // Unknown modifier.
+ }
+ printOperand(MI, OpNum, O);
+ O << '[';
+ printOperand(MI, OpNum + 1, O);
+ O << ']';
+ return false;
+}
+
+void XCoreAsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ SmallString<128> Str;
+ raw_svector_ostream O(Str);
+
+ switch (MI->getOpcode()) {
+ case XCore::DBG_VALUE:
+ llvm_unreachable("Should be handled target independently");
+ case XCore::ADD_2rus:
+ if (MI->getOperand(2).getImm() == 0) {
+ O << "\tmov "
+ << XCoreInstPrinter::getRegisterName(MI->getOperand(0).getReg()) << ", "
+ << XCoreInstPrinter::getRegisterName(MI->getOperand(1).getReg());
+ OutStreamer.EmitRawText(O.str());
+ return;
+ }
+ break;
+ case XCore::BR_JT:
+ case XCore::BR_JT32:
+ O << "\tbru "
+ << XCoreInstPrinter::getRegisterName(MI->getOperand(1).getReg()) << '\n';
+ if (MI->getOpcode() == XCore::BR_JT)
+ printInlineJT(MI, 0, O);
+ else
+ printInlineJT32(MI, 0, O);
+ O << '\n';
+ OutStreamer.EmitRawText(O.str());
+ return;
+ }
+
+ MCInst TmpInst;
+ MCInstLowering.Lower(MI, TmpInst);
+
+ EmitToStreamer(OutStreamer, TmpInst);
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeXCoreAsmPrinter() {
+ RegisterAsmPrinter<XCoreAsmPrinter> X(TheXCoreTarget);
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreCallingConv.td b/contrib/llvm/lib/Target/XCore/XCoreCallingConv.td
new file mode 100644
index 0000000..e149e6d
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreCallingConv.td
@@ -0,0 +1,40 @@
+//===- XCoreCallingConv.td - Calling Conventions for XCore -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This describes the calling conventions for XCore architecture.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// XCore Return Value Calling Convention
+//===----------------------------------------------------------------------===//
+def RetCC_XCore : CallingConv<[
+ // i32 are returned in registers R0, R1, R2, R3
+ CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>,
+
+ // Integer values get stored in stack slots that are 4 bytes in
+ // size and 4-byte aligned.
+ CCIfType<[i32], CCAssignToStack<4, 4>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// XCore Argument Calling Conventions
+//===----------------------------------------------------------------------===//
+def CC_XCore : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in R11.
+ CCIfNest<CCAssignToReg<[R11]>>,
+
+ // The first 4 integer arguments are passed in integer registers.
+ CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>,
+
+ // Integer values get stored in stack slots that are 4 bytes in
+ // size and 4-byte aligned.
+ CCIfType<[i32], CCAssignToStack<4, 4>>
+]>;
diff --git a/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.cpp b/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.cpp
new file mode 100644
index 0000000..e694736
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.cpp
@@ -0,0 +1,582 @@
+//===-- XCoreFrameLowering.cpp - Frame info for XCore Target --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains XCore frame information that doesn't fit anywhere else
+// cleanly...
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreFrameLowering.h"
+#include "XCore.h"
+#include "XCoreInstrInfo.h"
+#include "XCoreMachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include <algorithm> // std::sort
+
+using namespace llvm;
+
+static const unsigned FramePtr = XCore::R10;
+static const int MaxImmU16 = (1<<16) - 1;
+
+// helper functions. FIXME: Eliminate.
+static inline bool isImmU6(unsigned val) {
+ return val < (1 << 6);
+}
+
+static inline bool isImmU16(unsigned val) {
+ return val < (1 << 16);
+}
+
+// Helper structure with compare function for handling stack slots.
+namespace {
+struct StackSlotInfo {
+ int FI;
+ int Offset;
+ unsigned Reg;
+ StackSlotInfo(int f, int o, int r) : FI(f), Offset(o), Reg(r){};
+};
+} // end anonymous namespace
+
+static bool CompareSSIOffset(const StackSlotInfo& a, const StackSlotInfo& b) {
+ return a.Offset < b.Offset;
+}
+
+
+static void EmitDefCfaRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, DebugLoc dl,
+ const TargetInstrInfo &TII,
+ MachineModuleInfo *MMI, unsigned DRegNum) {
+ unsigned CFIIndex = MMI->addFrameInst(
+ MCCFIInstruction::createDefCfaRegister(nullptr, DRegNum));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+}
+
+static void EmitDefCfaOffset(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, DebugLoc dl,
+ const TargetInstrInfo &TII,
+ MachineModuleInfo *MMI, int Offset) {
+ unsigned CFIIndex =
+ MMI->addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+}
+
+static void EmitCfiOffset(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, DebugLoc dl,
+ const TargetInstrInfo &TII, MachineModuleInfo *MMI,
+ unsigned DRegNum, int Offset) {
+ unsigned CFIIndex = MMI->addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, DRegNum, Offset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+}
+
+/// The SP register is moved in steps of 'MaxImmU16' towards the bottom of the
+/// frame. During these steps, it may be necessary to spill registers.
+/// IfNeededExtSP emits the necessary EXTSP instructions to move the SP only
+/// as far as to make 'OffsetFromBottom' reachable using an STWSP_lru6.
+/// \param OffsetFromTop the spill offset from the top of the frame.
+/// \param [in,out] Adjusted the current SP offset from the top of the frame.
+static void IfNeededExtSP(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, DebugLoc dl,
+ const TargetInstrInfo &TII, MachineModuleInfo *MMI,
+ int OffsetFromTop, int &Adjusted, int FrameSize,
+ bool emitFrameMoves) {
+ while (OffsetFromTop > Adjusted) {
+ assert(Adjusted < FrameSize && "OffsetFromTop is beyond FrameSize");
+ int remaining = FrameSize - Adjusted;
+ int OpImm = (remaining > MaxImmU16) ? MaxImmU16 : remaining;
+ int Opcode = isImmU6(OpImm) ? XCore::EXTSP_u6 : XCore::EXTSP_lu6;
+ BuildMI(MBB, MBBI, dl, TII.get(Opcode)).addImm(OpImm);
+ Adjusted += OpImm;
+ if (emitFrameMoves)
+ EmitDefCfaOffset(MBB, MBBI, dl, TII, MMI, Adjusted*4);
+ }
+}
+
+/// The SP register is moved in steps of 'MaxImmU16' towards the top of the
+/// frame. During these steps, it may be necessary to re-load registers.
+/// IfNeededLDAWSP emits the necessary LDAWSP instructions to move the SP only
+/// as far as to make 'OffsetFromTop' reachable using an LDAWSP_lru6.
+/// \param OffsetFromTop the spill offset from the top of the frame.
+/// \param [in,out] RemainingAdj the current SP offset from the top of the
+/// frame.
+static void IfNeededLDAWSP(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, DebugLoc dl,
+ const TargetInstrInfo &TII, int OffsetFromTop,
+ int &RemainingAdj) {
+ while (OffsetFromTop < RemainingAdj - MaxImmU16) {
+ assert(RemainingAdj && "OffsetFromTop is beyond FrameSize");
+ int OpImm = (RemainingAdj > MaxImmU16) ? MaxImmU16 : RemainingAdj;
+ int Opcode = isImmU6(OpImm) ? XCore::LDAWSP_ru6 : XCore::LDAWSP_lru6;
+ BuildMI(MBB, MBBI, dl, TII.get(Opcode), XCore::SP).addImm(OpImm);
+ RemainingAdj -= OpImm;
+ }
+}
+
+/// Creates an ordered list of registers that are spilled
+/// during the emitPrologue/emitEpilogue.
+/// Registers are ordered according to their frame offset.
+/// As offsets are negative, the largest offsets will be first.
+static void GetSpillList(SmallVectorImpl<StackSlotInfo> &SpillList,
+ MachineFrameInfo *MFI, XCoreFunctionInfo *XFI,
+ bool fetchLR, bool fetchFP) {
+ if (fetchLR) {
+ int Offset = MFI->getObjectOffset(XFI->getLRSpillSlot());
+ SpillList.push_back(StackSlotInfo(XFI->getLRSpillSlot(),
+ Offset,
+ XCore::LR));
+ }
+ if (fetchFP) {
+ int Offset = MFI->getObjectOffset(XFI->getFPSpillSlot());
+ SpillList.push_back(StackSlotInfo(XFI->getFPSpillSlot(),
+ Offset,
+ FramePtr));
+ }
+ std::sort(SpillList.begin(), SpillList.end(), CompareSSIOffset);
+}
+
+/// Creates an ordered list of EH info register 'spills'.
+/// These slots are only used by the unwinder and calls to llvm.eh.return().
+/// Registers are ordered according to their frame offset.
+/// As offsets are negative, the largest offsets will be first.
+static void GetEHSpillList(SmallVectorImpl<StackSlotInfo> &SpillList,
+ MachineFrameInfo *MFI, XCoreFunctionInfo *XFI,
+ const TargetLowering *TL) {
+ assert(XFI->hasEHSpillSlot() && "There are no EH register spill slots");
+ const int* EHSlot = XFI->getEHSpillSlot();
+ SpillList.push_back(StackSlotInfo(EHSlot[0],
+ MFI->getObjectOffset(EHSlot[0]),
+ TL->getExceptionPointerRegister()));
+ SpillList.push_back(StackSlotInfo(EHSlot[0],
+ MFI->getObjectOffset(EHSlot[1]),
+ TL->getExceptionSelectorRegister()));
+ std::sort(SpillList.begin(), SpillList.end(), CompareSSIOffset);
+}
+
+
+static MachineMemOperand *
+getFrameIndexMMO(MachineBasicBlock &MBB, int FrameIndex, unsigned flags) {
+ MachineFunction *MF = MBB.getParent();
+ const MachineFrameInfo &MFI = *MF->getFrameInfo();
+ MachineMemOperand *MMO =
+ MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIndex),
+ flags, MFI.getObjectSize(FrameIndex),
+ MFI.getObjectAlignment(FrameIndex));
+ return MMO;
+}
+
+
+/// Restore clobbered registers with their spill slot value.
+/// The SP will be adjusted at the same time, thus the SpillList must be ordered
+/// with the largest (negative) offsets first.
+static void
+RestoreSpillList(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ DebugLoc dl, const TargetInstrInfo &TII, int &RemainingAdj,
+ SmallVectorImpl<StackSlotInfo> &SpillList) {
+ for (unsigned i = 0, e = SpillList.size(); i != e; ++i) {
+ assert(SpillList[i].Offset % 4 == 0 && "Misaligned stack offset");
+ assert(SpillList[i].Offset <= 0 && "Unexpected positive stack offset");
+ int OffsetFromTop = - SpillList[i].Offset/4;
+ IfNeededLDAWSP(MBB, MBBI, dl, TII, OffsetFromTop, RemainingAdj);
+ int Offset = RemainingAdj - OffsetFromTop;
+ int Opcode = isImmU6(Offset) ? XCore::LDWSP_ru6 : XCore::LDWSP_lru6;
+ BuildMI(MBB, MBBI, dl, TII.get(Opcode), SpillList[i].Reg)
+ .addImm(Offset)
+ .addMemOperand(getFrameIndexMMO(MBB, SpillList[i].FI,
+ MachineMemOperand::MOLoad));
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// XCoreFrameLowering:
+//===----------------------------------------------------------------------===//
+
+XCoreFrameLowering::XCoreFrameLowering(const XCoreSubtarget &sti)
+ : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 4, 0) {
+ // Do nothing
+}
+
+bool XCoreFrameLowering::hasFP(const MachineFunction &MF) const {
+ return MF.getTarget().Options.DisableFramePointerElim(MF) ||
+ MF.getFrameInfo()->hasVarSizedObjects();
+}
+
+void XCoreFrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineModuleInfo *MMI = &MF.getMMI();
+ const MCRegisterInfo *MRI = MMI->getContext().getRegisterInfo();
+ const XCoreInstrInfo &TII =
+ *static_cast<const XCoreInstrInfo*>(MF.getTarget().getInstrInfo());
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+ // Debug location must be unknown since the first debug location is used
+ // to determine the end of the prologue.
+ DebugLoc dl;
+
+ if (MFI->getMaxAlignment() > getStackAlignment())
+ report_fatal_error("emitPrologue unsupported alignment: "
+ + Twine(MFI->getMaxAlignment()));
+
+ const AttributeSet &PAL = MF.getFunction()->getAttributes();
+ if (PAL.hasAttrSomewhere(Attribute::Nest))
+ BuildMI(MBB, MBBI, dl, TII.get(XCore::LDWSP_ru6), XCore::R11).addImm(0);
+ // FIX: Needs addMemOperand() but can't use getFixedStack() or getStack().
+
+ // Work out frame sizes.
+ // We will adjust the SP in stages towards the final FrameSize.
+ assert(MFI->getStackSize()%4 == 0 && "Misaligned frame size");
+ const int FrameSize = MFI->getStackSize() / 4;
+ int Adjusted = 0;
+
+ bool saveLR = XFI->hasLRSpillSlot();
+ bool UseENTSP = saveLR && FrameSize
+ && (MFI->getObjectOffset(XFI->getLRSpillSlot()) == 0);
+ if (UseENTSP)
+ saveLR = false;
+ bool FP = hasFP(MF);
+ bool emitFrameMoves = XCoreRegisterInfo::needsFrameMoves(MF);
+
+ if (UseENTSP) {
+ // Allocate space on the stack at the same time as saving LR.
+ Adjusted = (FrameSize > MaxImmU16) ? MaxImmU16 : FrameSize;
+ int Opcode = isImmU6(Adjusted) ? XCore::ENTSP_u6 : XCore::ENTSP_lu6;
+ MBB.addLiveIn(XCore::LR);
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(Opcode));
+ MIB.addImm(Adjusted);
+ MIB->addRegisterKilled(XCore::LR, MF.getTarget().getRegisterInfo(), true);
+ if (emitFrameMoves) {
+ EmitDefCfaOffset(MBB, MBBI, dl, TII, MMI, Adjusted*4);
+ unsigned DRegNum = MRI->getDwarfRegNum(XCore::LR, true);
+ EmitCfiOffset(MBB, MBBI, dl, TII, MMI, DRegNum, 0);
+ }
+ }
+
+ // If necessary, save LR and FP to the stack, as we EXTSP.
+ SmallVector<StackSlotInfo,2> SpillList;
+ GetSpillList(SpillList, MFI, XFI, saveLR, FP);
+ // We want the nearest (negative) offsets first, so reverse list.
+ std::reverse(SpillList.begin(), SpillList.end());
+ for (unsigned i = 0, e = SpillList.size(); i != e; ++i) {
+ assert(SpillList[i].Offset % 4 == 0 && "Misaligned stack offset");
+ assert(SpillList[i].Offset <= 0 && "Unexpected positive stack offset");
+ int OffsetFromTop = - SpillList[i].Offset/4;
+ IfNeededExtSP(MBB, MBBI, dl, TII, MMI, OffsetFromTop, Adjusted, FrameSize,
+ emitFrameMoves);
+ int Offset = Adjusted - OffsetFromTop;
+ int Opcode = isImmU6(Offset) ? XCore::STWSP_ru6 : XCore::STWSP_lru6;
+ MBB.addLiveIn(SpillList[i].Reg);
+ BuildMI(MBB, MBBI, dl, TII.get(Opcode))
+ .addReg(SpillList[i].Reg, RegState::Kill)
+ .addImm(Offset)
+ .addMemOperand(getFrameIndexMMO(MBB, SpillList[i].FI,
+ MachineMemOperand::MOStore));
+ if (emitFrameMoves) {
+ unsigned DRegNum = MRI->getDwarfRegNum(SpillList[i].Reg, true);
+ EmitCfiOffset(MBB, MBBI, dl, TII, MMI, DRegNum, SpillList[i].Offset);
+ }
+ }
+
+ // Complete any remaining Stack adjustment.
+ IfNeededExtSP(MBB, MBBI, dl, TII, MMI, FrameSize, Adjusted, FrameSize,
+ emitFrameMoves);
+ assert(Adjusted==FrameSize && "IfNeededExtSP has not completed adjustment");
+
+ if (FP) {
+ // Set the FP from the SP.
+ BuildMI(MBB, MBBI, dl, TII.get(XCore::LDAWSP_ru6), FramePtr).addImm(0);
+ if (emitFrameMoves)
+ EmitDefCfaRegister(MBB, MBBI, dl, TII, MMI,
+ MRI->getDwarfRegNum(FramePtr, true));
+ }
+
+ if (emitFrameMoves) {
+ // Frame moves for callee saved.
+ auto SpillLabels = XFI->getSpillLabels();
+ for (unsigned I = 0, E = SpillLabels.size(); I != E; ++I) {
+ MachineBasicBlock::iterator Pos = SpillLabels[I].first;
+ ++Pos;
+ CalleeSavedInfo &CSI = SpillLabels[I].second;
+ int Offset = MFI->getObjectOffset(CSI.getFrameIdx());
+ unsigned DRegNum = MRI->getDwarfRegNum(CSI.getReg(), true);
+ EmitCfiOffset(MBB, Pos, dl, TII, MMI, DRegNum, Offset);
+ }
+ if (XFI->hasEHSpillSlot()) {
+ // The unwinder requires stack slot & CFI offsets for the exception info.
+ // We do not save/spill these registers.
+ SmallVector<StackSlotInfo,2> SpillList;
+ GetEHSpillList(SpillList, MFI, XFI, MF.getTarget().getTargetLowering());
+ assert(SpillList.size()==2 && "Unexpected SpillList size");
+ EmitCfiOffset(MBB, MBBI, dl, TII, MMI,
+ MRI->getDwarfRegNum(SpillList[0].Reg, true),
+ SpillList[0].Offset);
+ EmitCfiOffset(MBB, MBBI, dl, TII, MMI,
+ MRI->getDwarfRegNum(SpillList[1].Reg, true),
+ SpillList[1].Offset);
+ }
+ }
+}
+
+void XCoreFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ const XCoreInstrInfo &TII =
+ *static_cast<const XCoreInstrInfo*>(MF.getTarget().getInstrInfo());
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+ DebugLoc dl = MBBI->getDebugLoc();
+ unsigned RetOpcode = MBBI->getOpcode();
+
+ // Work out frame sizes.
+ // We will adjust the SP in stages towards the final FrameSize.
+ int RemainingAdj = MFI->getStackSize();
+ assert(RemainingAdj%4 == 0 && "Misaligned frame size");
+ RemainingAdj /= 4;
+
+ if (RetOpcode == XCore::EH_RETURN) {
+ // 'Restore' the exception info the unwinder has placed into the stack
+ // slots.
+ SmallVector<StackSlotInfo,2> SpillList;
+ GetEHSpillList(SpillList, MFI, XFI, MF.getTarget().getTargetLowering());
+ RestoreSpillList(MBB, MBBI, dl, TII, RemainingAdj, SpillList);
+
+ // Return to the landing pad.
+ unsigned EhStackReg = MBBI->getOperand(0).getReg();
+ unsigned EhHandlerReg = MBBI->getOperand(1).getReg();
+ BuildMI(MBB, MBBI, dl, TII.get(XCore::SETSP_1r)).addReg(EhStackReg);
+ BuildMI(MBB, MBBI, dl, TII.get(XCore::BAU_1r)).addReg(EhHandlerReg);
+ MBB.erase(MBBI); // Erase the previous return instruction.
+ return;
+ }
+
+ bool restoreLR = XFI->hasLRSpillSlot();
+ bool UseRETSP = restoreLR && RemainingAdj
+ && (MFI->getObjectOffset(XFI->getLRSpillSlot()) == 0);
+ if (UseRETSP)
+ restoreLR = false;
+ bool FP = hasFP(MF);
+
+ if (FP) // Restore the stack pointer.
+ BuildMI(MBB, MBBI, dl, TII.get(XCore::SETSP_1r)).addReg(FramePtr);
+
+ // If necessary, restore LR and FP from the stack, as we EXTSP.
+ SmallVector<StackSlotInfo,2> SpillList;
+ GetSpillList(SpillList, MFI, XFI, restoreLR, FP);
+ RestoreSpillList(MBB, MBBI, dl, TII, RemainingAdj, SpillList);
+
+ if (RemainingAdj) {
+ // Complete all but one of the remaining Stack adjustments.
+ IfNeededLDAWSP(MBB, MBBI, dl, TII, 0, RemainingAdj);
+ if (UseRETSP) {
+ // Fold prologue into return instruction
+ assert(RetOpcode == XCore::RETSP_u6
+ || RetOpcode == XCore::RETSP_lu6);
+ int Opcode = isImmU6(RemainingAdj) ? XCore::RETSP_u6 : XCore::RETSP_lu6;
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(Opcode))
+ .addImm(RemainingAdj);
+ for (unsigned i = 3, e = MBBI->getNumOperands(); i < e; ++i)
+ MIB->addOperand(MBBI->getOperand(i)); // copy any variadic operands
+ MBB.erase(MBBI); // Erase the previous return instruction.
+ } else {
+ int Opcode = isImmU6(RemainingAdj) ? XCore::LDAWSP_ru6 :
+ XCore::LDAWSP_lru6;
+ BuildMI(MBB, MBBI, dl, TII.get(Opcode), XCore::SP).addImm(RemainingAdj);
+ // Don't erase the return instruction.
+ }
+ } // else Don't erase the return instruction.
+}
+
+bool XCoreFrameLowering::
+spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return true;
+
+ MachineFunction *MF = MBB.getParent();
+ const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ XCoreFunctionInfo *XFI = MF->getInfo<XCoreFunctionInfo>();
+ bool emitFrameMoves = XCoreRegisterInfo::needsFrameMoves(*MF);
+
+ DebugLoc DL;
+ if (MI != MBB.end() && !MI->isDebugValue())
+ DL = MI->getDebugLoc();
+
+ for (std::vector<CalleeSavedInfo>::const_iterator it = CSI.begin();
+ it != CSI.end(); ++it) {
+ unsigned Reg = it->getReg();
+ assert(Reg != XCore::LR && !(Reg == XCore::R10 && hasFP(*MF)) &&
+ "LR & FP are always handled in emitPrologue");
+
+ // Add the callee-saved register as live-in. It's killed at the spill.
+ MBB.addLiveIn(Reg);
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ TII.storeRegToStackSlot(MBB, MI, Reg, true, it->getFrameIdx(), RC, TRI);
+ if (emitFrameMoves) {
+ auto Store = MI;
+ --Store;
+ XFI->getSpillLabels().push_back(std::make_pair(Store, *it));
+ }
+ }
+ return true;
+}
+
+bool XCoreFrameLowering::
+restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const{
+ MachineFunction *MF = MBB.getParent();
+ const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ bool AtStart = MI == MBB.begin();
+ MachineBasicBlock::iterator BeforeI = MI;
+ if (!AtStart)
+ --BeforeI;
+ for (std::vector<CalleeSavedInfo>::const_iterator it = CSI.begin();
+ it != CSI.end(); ++it) {
+ unsigned Reg = it->getReg();
+ assert(Reg != XCore::LR && !(Reg == XCore::R10 && hasFP(*MF)) &&
+ "LR & FP are always handled in emitEpilogue");
+
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ TII.loadRegFromStackSlot(MBB, MI, Reg, it->getFrameIdx(), RC, TRI);
+ assert(MI != MBB.begin() &&
+ "loadRegFromStackSlot didn't insert any code!");
+ // Insert in reverse order. loadRegFromStackSlot can insert multiple
+ // instructions.
+ if (AtStart)
+ MI = MBB.begin();
+ else {
+ MI = BeforeI;
+ ++MI;
+ }
+ }
+ return true;
+}
+
+// This function eliminates ADJCALLSTACKDOWN,
+// ADJCALLSTACKUP pseudo instructions
+void XCoreFrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const XCoreInstrInfo &TII =
+ *static_cast<const XCoreInstrInfo*>(MF.getTarget().getInstrInfo());
+ if (!hasReservedCallFrame(MF)) {
+ // Turn the adjcallstackdown instruction into 'extsp <amt>' and the
+ // adjcallstackup instruction into 'ldaw sp, sp[<amt>]'
+ MachineInstr *Old = I;
+ uint64_t Amount = Old->getOperand(0).getImm();
+ if (Amount != 0) {
+ // We need to keep the stack aligned properly. To do this, we round the
+ // amount of space needed for the outgoing arguments up to the next
+ // alignment boundary.
+ unsigned Align = getStackAlignment();
+ Amount = (Amount+Align-1)/Align*Align;
+
+ assert(Amount%4 == 0);
+ Amount /= 4;
+
+ bool isU6 = isImmU6(Amount);
+ if (!isU6 && !isImmU16(Amount)) {
+ // FIX could emit multiple instructions in this case.
+#ifndef NDEBUG
+ errs() << "eliminateCallFramePseudoInstr size too big: "
+ << Amount << "\n";
+#endif
+ llvm_unreachable(nullptr);
+ }
+
+ MachineInstr *New;
+ if (Old->getOpcode() == XCore::ADJCALLSTACKDOWN) {
+ int Opcode = isU6 ? XCore::EXTSP_u6 : XCore::EXTSP_lu6;
+ New=BuildMI(MF, Old->getDebugLoc(), TII.get(Opcode))
+ .addImm(Amount);
+ } else {
+ assert(Old->getOpcode() == XCore::ADJCALLSTACKUP);
+ int Opcode = isU6 ? XCore::LDAWSP_ru6 : XCore::LDAWSP_lru6;
+ New=BuildMI(MF, Old->getDebugLoc(), TII.get(Opcode), XCore::SP)
+ .addImm(Amount);
+ }
+
+ // Replace the pseudo instruction with a new instruction...
+ MBB.insert(I, New);
+ }
+ }
+
+ MBB.erase(I);
+}
+
+void XCoreFrameLowering::
+processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const {
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+
+ bool LRUsed = MF.getRegInfo().isPhysRegUsed(XCore::LR);
+
+ if (!LRUsed && !MF.getFunction()->isVarArg() &&
+ MF.getFrameInfo()->estimateStackSize(MF))
+ // If we need to extend the stack it is more efficient to use entsp / retsp.
+ // We force the LR to be saved so these instructions are used.
+ LRUsed = true;
+
+ if (MF.getMMI().callsUnwindInit() || MF.getMMI().callsEHReturn()) {
+ // The unwinder expects to find spill slots for the exception info regs R0
+ // & R1. These are used during llvm.eh.return() to 'restore' the exception
+ // info. N.B. we do not spill or restore R0, R1 during normal operation.
+ XFI->createEHSpillSlot(MF);
+ // As we will have a stack, we force the LR to be saved.
+ LRUsed = true;
+ }
+
+ if (LRUsed) {
+ // We will handle the LR in the prologue/epilogue
+ // and allocate space on the stack ourselves.
+ MF.getRegInfo().setPhysRegUnused(XCore::LR);
+ XFI->createLRSpillSlot(MF);
+ }
+
+ if (hasFP(MF))
+ // A callee save register is used to hold the FP.
+ // This needs saving / restoring in the epilogue / prologue.
+ XFI->createFPSpillSlot(MF);
+}
+
+void XCoreFrameLowering::
+processFunctionBeforeFrameFinalized(MachineFunction &MF,
+ RegScavenger *RS) const {
+ assert(RS && "requiresRegisterScavenging failed");
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const TargetRegisterClass *RC = &XCore::GRRegsRegClass;
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+ // Reserve slots close to SP or frame pointer for Scavenging spills.
+ // When using SP for small frames, we don't need any scratch registers.
+ // When using SP for large frames, we may need 2 scratch registers.
+ // When using FP, for large or small frames, we may need 1 scratch register.
+ if (XFI->isLargeFrame(MF) || hasFP(MF))
+ RS->addScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
+ RC->getAlignment(),
+ false));
+ if (XFI->isLargeFrame(MF) && !hasFP(MF))
+ RS->addScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
+ RC->getAlignment(),
+ false));
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.h b/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.h
new file mode 100644
index 0000000..e4f806a
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.h
@@ -0,0 +1,62 @@
+//===-- XCoreFrameLowering.h - Frame info for XCore Target ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains XCore frame information that doesn't fit anywhere else
+// cleanly...
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCOREFRAMEINFO_H
+#define XCOREFRAMEINFO_H
+
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+ class XCoreSubtarget;
+
+ class XCoreFrameLowering: public TargetFrameLowering {
+ public:
+ XCoreFrameLowering(const XCoreSubtarget &STI);
+
+ /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
+ /// the function.
+ void emitPrologue(MachineFunction &MF) const override;
+ void emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const override;
+
+ bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+ bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const override;
+
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const override;
+
+ bool hasFP(const MachineFunction &MF) const override;
+
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS = nullptr) const override;
+
+ void processFunctionBeforeFrameFinalized(MachineFunction &MF,
+ RegScavenger *RS = nullptr) const override;
+
+ //! Stack slot size (4 bytes)
+ static int stackSlotSize() {
+ return 4;
+ }
+ };
+}
+
+#endif // XCOREFRAMEINFO_H
diff --git a/contrib/llvm/lib/Target/XCore/XCoreFrameToArgsOffsetElim.cpp b/contrib/llvm/lib/Target/XCore/XCoreFrameToArgsOffsetElim.cpp
new file mode 100644
index 0000000..30c7b59
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreFrameToArgsOffsetElim.cpp
@@ -0,0 +1,62 @@
+//===-- XCoreFrameToArgsOffsetElim.cpp ----------------------------*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Replace Pseudo FRAME_TO_ARGS_OFFSET with the appropriate real offset.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCore.h"
+#include "XCoreInstrInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+namespace {
+ struct XCoreFTAOElim : public MachineFunctionPass {
+ static char ID;
+ XCoreFTAOElim() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ const char *getPassName() const override {
+ return "XCore FRAME_TO_ARGS_OFFSET Elimination";
+ }
+ };
+ char XCoreFTAOElim::ID = 0;
+}
+
+/// createXCoreFrameToArgsOffsetEliminationPass - returns an instance of the
+/// Frame to args offset elimination pass
+FunctionPass *llvm::createXCoreFrameToArgsOffsetEliminationPass() {
+ return new XCoreFTAOElim();
+}
+
+bool XCoreFTAOElim::runOnMachineFunction(MachineFunction &MF) {
+ const XCoreInstrInfo &TII =
+ *static_cast<const XCoreInstrInfo*>(MF.getTarget().getInstrInfo());
+ unsigned StackSize = MF.getFrameInfo()->getStackSize();
+ for (MachineFunction::iterator MFI = MF.begin(), E = MF.end(); MFI != E;
+ ++MFI) {
+ MachineBasicBlock &MBB = *MFI;
+ for (MachineBasicBlock::iterator MBBI = MBB.begin(), EE = MBB.end();
+ MBBI != EE; ++MBBI) {
+ if (MBBI->getOpcode() == XCore::FRAME_TO_ARGS_OFFSET) {
+ MachineInstr *OldInst = MBBI;
+ unsigned Reg = OldInst->getOperand(0).getReg();
+ MBBI = TII.loadImmediate(MBB, MBBI, Reg, StackSize);
+ OldInst->eraseFromParent();
+ }
+ }
+ }
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreISelDAGToDAG.cpp b/contrib/llvm/lib/Target/XCore/XCoreISelDAGToDAG.cpp
new file mode 100644
index 0000000..86bc6f2
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreISelDAGToDAG.cpp
@@ -0,0 +1,274 @@
+//===-- XCoreISelDAGToDAG.cpp - A dag to dag inst selector for XCore ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the XCore target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCore.h"
+#include "XCoreTargetMachine.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+/// XCoreDAGToDAGISel - XCore specific code to select XCore machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+ class XCoreDAGToDAGISel : public SelectionDAGISel {
+ const XCoreSubtarget &Subtarget;
+
+ public:
+ XCoreDAGToDAGISel(XCoreTargetMachine &TM, CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(TM, OptLevel),
+ Subtarget(*TM.getSubtargetImpl()) { }
+
+ SDNode *Select(SDNode *N) override;
+ SDNode *SelectBRIND(SDNode *N);
+
+ /// getI32Imm - Return a target constant with the specified value, of type
+ /// i32.
+ inline SDValue getI32Imm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ }
+
+ inline bool immMskBitp(SDNode *inN) const {
+ ConstantSDNode *N = cast<ConstantSDNode>(inN);
+ uint32_t value = (uint32_t)N->getZExtValue();
+ if (!isMask_32(value)) {
+ return false;
+ }
+ int msksize = 32 - countLeadingZeros(value);
+ return (msksize >= 1 && msksize <= 8) ||
+ msksize == 16 || msksize == 24 || msksize == 32;
+ }
+
+ // Complex Pattern Selectors.
+ bool SelectADDRspii(SDValue Addr, SDValue &Base, SDValue &Offset);
+
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) override;
+
+ const char *getPassName() const override {
+ return "XCore DAG->DAG Pattern Instruction Selection";
+ }
+
+ // Include the pieces autogenerated from the target description.
+ #include "XCoreGenDAGISel.inc"
+ };
+} // end anonymous namespace
+
+/// createXCoreISelDag - This pass converts a legalized DAG into a
+/// XCore-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createXCoreISelDag(XCoreTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new XCoreDAGToDAGISel(TM, OptLevel);
+}
+
+bool XCoreDAGToDAGISel::SelectADDRspii(SDValue Addr, SDValue &Base,
+ SDValue &Offset) {
+ FrameIndexSDNode *FIN = nullptr;
+ if ((FIN = dyn_cast<FrameIndexSDNode>(Addr))) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+ if (Addr.getOpcode() == ISD::ADD) {
+ ConstantSDNode *CN = nullptr;
+ if ((FIN = dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
+ && (CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
+ && (CN->getSExtValue() % 4 == 0 && CN->getSExtValue() >= 0)) {
+ // Constant positive word offset from frame index
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(CN->getSExtValue(), MVT::i32);
+ return true;
+ }
+ }
+ return false;
+}
+
+bool XCoreDAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ SDValue Reg;
+ switch (ConstraintCode) {
+ default: return true;
+ case 'm': // Memory.
+ switch (Op.getOpcode()) {
+ default: return true;
+ case XCoreISD::CPRelativeWrapper:
+ Reg = CurDAG->getRegister(XCore::CP, MVT::i32);
+ break;
+ case XCoreISD::DPRelativeWrapper:
+ Reg = CurDAG->getRegister(XCore::DP, MVT::i32);
+ break;
+ }
+ }
+ OutOps.push_back(Reg);
+ OutOps.push_back(Op.getOperand(0));
+ return false;
+}
+
+SDNode *XCoreDAGToDAGISel::Select(SDNode *N) {
+ SDLoc dl(N);
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::Constant: {
+ uint64_t Val = cast<ConstantSDNode>(N)->getZExtValue();
+ if (immMskBitp(N)) {
+ // Transformation function: get the size of a mask
+ // Look for the first non-zero bit
+ SDValue MskSize = getI32Imm(32 - countLeadingZeros((uint32_t)Val));
+ return CurDAG->getMachineNode(XCore::MKMSK_rus, dl,
+ MVT::i32, MskSize);
+ }
+ else if (!isUInt<16>(Val)) {
+ SDValue CPIdx =
+ CurDAG->getTargetConstantPool(ConstantInt::get(
+ Type::getInt32Ty(*CurDAG->getContext()), Val),
+ getTargetLowering()->getPointerTy());
+ SDNode *node = CurDAG->getMachineNode(XCore::LDWCP_lru6, dl, MVT::i32,
+ MVT::Other, CPIdx,
+ CurDAG->getEntryNode());
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = MF->getMachineMemOperand(
+ MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 4, 4);
+ cast<MachineSDNode>(node)->setMemRefs(MemOp, MemOp + 1);
+ return node;
+ }
+ break;
+ }
+ case XCoreISD::LADD: {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ N->getOperand(2) };
+ return CurDAG->getMachineNode(XCore::LADD_l5r, dl, MVT::i32, MVT::i32,
+ Ops);
+ }
+ case XCoreISD::LSUB: {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ N->getOperand(2) };
+ return CurDAG->getMachineNode(XCore::LSUB_l5r, dl, MVT::i32, MVT::i32,
+ Ops);
+ }
+ case XCoreISD::MACCU: {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ N->getOperand(2), N->getOperand(3) };
+ return CurDAG->getMachineNode(XCore::MACCU_l4r, dl, MVT::i32, MVT::i32,
+ Ops);
+ }
+ case XCoreISD::MACCS: {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ N->getOperand(2), N->getOperand(3) };
+ return CurDAG->getMachineNode(XCore::MACCS_l4r, dl, MVT::i32, MVT::i32,
+ Ops);
+ }
+ case XCoreISD::LMUL: {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ N->getOperand(2), N->getOperand(3) };
+ return CurDAG->getMachineNode(XCore::LMUL_l6r, dl, MVT::i32, MVT::i32,
+ Ops);
+ }
+ case XCoreISD::CRC8: {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
+ return CurDAG->getMachineNode(XCore::CRC8_l4r, dl, MVT::i32, MVT::i32,
+ Ops);
+ }
+ case ISD::BRIND:
+ if (SDNode *ResNode = SelectBRIND(N))
+ return ResNode;
+ break;
+ // Other cases are autogenerated.
+ }
+ return SelectCode(N);
+}
+
+/// Given a chain return a new chain where any appearance of Old is replaced
+/// by New. There must be at most one instruction between Old and Chain and
+/// this instruction must be a TokenFactor. Returns an empty SDValue if
+/// these conditions don't hold.
+static SDValue
+replaceInChain(SelectionDAG *CurDAG, SDValue Chain, SDValue Old, SDValue New)
+{
+ if (Chain == Old)
+ return New;
+ if (Chain->getOpcode() != ISD::TokenFactor)
+ return SDValue();
+ SmallVector<SDValue, 8> Ops;
+ bool found = false;
+ for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i) {
+ if (Chain->getOperand(i) == Old) {
+ Ops.push_back(New);
+ found = true;
+ } else {
+ Ops.push_back(Chain->getOperand(i));
+ }
+ }
+ if (!found)
+ return SDValue();
+ return CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, Ops);
+}
+
+SDNode *XCoreDAGToDAGISel::SelectBRIND(SDNode *N) {
+ SDLoc dl(N);
+ // (brind (int_xcore_checkevent (addr)))
+ SDValue Chain = N->getOperand(0);
+ SDValue Addr = N->getOperand(1);
+ if (Addr->getOpcode() != ISD::INTRINSIC_W_CHAIN)
+ return nullptr;
+ unsigned IntNo = cast<ConstantSDNode>(Addr->getOperand(1))->getZExtValue();
+ if (IntNo != Intrinsic::xcore_checkevent)
+ return nullptr;
+ SDValue nextAddr = Addr->getOperand(2);
+ SDValue CheckEventChainOut(Addr.getNode(), 1);
+ if (!CheckEventChainOut.use_empty()) {
+ // If the chain out of the checkevent intrinsic is an operand of the
+ // indirect branch or used in a TokenFactor which is the operand of the
+ // indirect branch then build a new chain which uses the chain coming into
+ // the checkevent intrinsic instead.
+ SDValue CheckEventChainIn = Addr->getOperand(0);
+ SDValue NewChain = replaceInChain(CurDAG, Chain, CheckEventChainOut,
+ CheckEventChainIn);
+ if (!NewChain.getNode())
+ return nullptr;
+ Chain = NewChain;
+ }
+ // Enable events on the thread using setsr 1 and then disable them immediately
+ // after with clrsr 1. If any resources owned by the thread are ready an event
+ // will be taken. If no resource is ready we branch to the address which was
+ // the operand to the checkevent intrinsic.
+ SDValue constOne = getI32Imm(1);
+ SDValue Glue =
+ SDValue(CurDAG->getMachineNode(XCore::SETSR_branch_u6, dl, MVT::Glue,
+ constOne, Chain), 0);
+ Glue =
+ SDValue(CurDAG->getMachineNode(XCore::CLRSR_branch_u6, dl, MVT::Glue,
+ constOne, Glue), 0);
+ if (nextAddr->getOpcode() == XCoreISD::PCRelativeWrapper &&
+ nextAddr->getOperand(0)->getOpcode() == ISD::TargetBlockAddress) {
+ return CurDAG->SelectNodeTo(N, XCore::BRFU_lu6, MVT::Other,
+ nextAddr->getOperand(0), Glue);
+ }
+ return CurDAG->SelectNodeTo(N, XCore::BAU_1r, MVT::Other, nextAddr, Glue);
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreISelLowering.cpp b/contrib/llvm/lib/Target/XCore/XCoreISelLowering.cpp
new file mode 100644
index 0000000..be7ef64
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreISelLowering.cpp
@@ -0,0 +1,1966 @@
+//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the XCoreTargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreISelLowering.h"
+#include "XCore.h"
+#include "XCoreMachineFunctionInfo.h"
+#include "XCoreSubtarget.h"
+#include "XCoreTargetMachine.h"
+#include "XCoreTargetObjectFile.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "xcore-lower"
+
+const char *XCoreTargetLowering::
+getTargetNodeName(unsigned Opcode) const
+{
+ switch (Opcode)
+ {
+ case XCoreISD::BL : return "XCoreISD::BL";
+ case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
+ case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
+ case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
+ case XCoreISD::LDWSP : return "XCoreISD::LDWSP";
+ case XCoreISD::STWSP : return "XCoreISD::STWSP";
+ case XCoreISD::RETSP : return "XCoreISD::RETSP";
+ case XCoreISD::LADD : return "XCoreISD::LADD";
+ case XCoreISD::LSUB : return "XCoreISD::LSUB";
+ case XCoreISD::LMUL : return "XCoreISD::LMUL";
+ case XCoreISD::MACCU : return "XCoreISD::MACCU";
+ case XCoreISD::MACCS : return "XCoreISD::MACCS";
+ case XCoreISD::CRC8 : return "XCoreISD::CRC8";
+ case XCoreISD::BR_JT : return "XCoreISD::BR_JT";
+ case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32";
+ case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
+ case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN";
+ case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER";
+ default : return nullptr;
+ }
+}
+
+XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM)
+ : TargetLowering(TM, new XCoreTargetObjectFile()), TM(TM),
+ Subtarget(TM.getSubtarget<XCoreSubtarget>()) {
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
+
+ // Compute derived properties from the register classes
+ computeRegisterProperties();
+
+ // Division is expensive
+ setIntDivIsCheap(false);
+
+ setStackPointerRegisterToSaveRestore(XCore::SP);
+
+ setSchedulingPreference(Sched::Source);
+
+ // Use i32 for setcc operations results (slt, sgt, ...).
+ setBooleanContents(ZeroOrOneBooleanContent);
+ setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
+
+ // XCore does not have the NodeTypes below.
+ setOperationAction(ISD::BR_CC, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
+ setOperationAction(ISD::ADDC, MVT::i32, Expand);
+ setOperationAction(ISD::ADDE, MVT::i32, Expand);
+ setOperationAction(ISD::SUBC, MVT::i32, Expand);
+ setOperationAction(ISD::SUBE, MVT::i32, Expand);
+
+ // 64bit
+ setOperationAction(ISD::ADD, MVT::i64, Custom);
+ setOperationAction(ISD::SUB, MVT::i64, Custom);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
+ setOperationAction(ISD::MULHS, MVT::i32, Expand);
+ setOperationAction(ISD::MULHU, MVT::i32, Expand);
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
+
+ // Bit Manipulation
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL , MVT::i32, Expand);
+ setOperationAction(ISD::ROTR , MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ // Jump tables.
+ setOperationAction(ISD::BR_JT, MVT::Other, Custom);
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
+
+ // Conversion of i64 -> double produces constantpool nodes
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+
+ // Loads
+ setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand);
+
+ // Custom expand misaligned loads / stores.
+ setOperationAction(ISD::LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::STORE, MVT::i32, Custom);
+
+ // Varargs
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::VAARG, MVT::Other, Custom);
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+
+ // Dynamic stack
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
+
+ // Exception handling
+ setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
+ setExceptionPointerRegister(XCore::R0);
+ setExceptionSelectorRegister(XCore::R1);
+ setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
+
+ // Atomic operations
+ // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
+ // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
+ setInsertFencesForAtomic(true);
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
+
+ // TRAMPOLINE is custom lowered.
+ setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
+ setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+
+ MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
+ MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
+ = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
+
+ // We have target-specific dag combine patterns for the following nodes:
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::INTRINSIC_VOID);
+ setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
+
+ setMinFunctionAlignment(1);
+ setPrefFunctionAlignment(2);
+}
+
+bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ if (Val.getOpcode() != ISD::LOAD)
+ return false;
+
+ EVT VT1 = Val.getValueType();
+ if (!VT1.isSimple() || !VT1.isInteger() ||
+ !VT2.isSimple() || !VT2.isInteger())
+ return false;
+
+ switch (VT1.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::i8:
+ return true;
+ }
+
+ return false;
+}
+
+SDValue XCoreTargetLowering::
+LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode())
+ {
+ case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::BR_JT: return LowerBR_JT(Op, DAG);
+ case ISD::LOAD: return LowerLOAD(Op, DAG);
+ case ISD::STORE: return LowerSTORE(Op, DAG);
+ case ISD::VAARG: return LowerVAARG(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG);
+ case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG);
+ // FIXME: Remove these when LegalizeDAGTypes lands.
+ case ISD::ADD:
+ case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
+ case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
+ case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
+ case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG);
+ case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
+ default:
+ llvm_unreachable("unimplemented operand");
+ }
+}
+
+/// ReplaceNodeResults - Replace the results of node with an illegal result
+/// type with new values built out of custom code.
+void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const {
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Don't know how to custom expand this!");
+ case ISD::ADD:
+ case ISD::SUB:
+ Results.push_back(ExpandADDSUB(N, DAG));
+ return;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Misc Lower Operation implementation
+//===----------------------------------------------------------------------===//
+
+SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
+ const GlobalValue *GV,
+ SelectionDAG &DAG) const {
+ // FIXME there is no actual debug info here
+ SDLoc dl(GA);
+
+ if (GV->getType()->getElementType()->isFunctionTy())
+ return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
+
+ const auto *GVar = dyn_cast<GlobalVariable>(GV);
+ if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) ||
+ (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
+ return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
+
+ return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
+}
+
+static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
+ if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
+ return true;
+
+ Type *ObjType = GV->getType()->getPointerElementType();
+ if (!ObjType->isSized())
+ return false;
+
+ unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType);
+ return ObjSize < CodeModelLargeSize && ObjSize != 0;
+}
+
+SDValue XCoreTargetLowering::
+LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
+{
+ const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = GN->getGlobal();
+ SDLoc DL(GN);
+ int64_t Offset = GN->getOffset();
+ if (IsSmallObject(GV, *this)) {
+ // We can only fold positive offsets that are a multiple of the word size.
+ int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
+ SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
+ GA = getGlobalAddressWrapper(GA, GV, DAG);
+ // Handle the rest of the offset.
+ if (Offset != FoldedOffset) {
+ SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32);
+ GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
+ }
+ return GA;
+ } else {
+ // Ideally we would not fold in offset with an index <= 11.
+ Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
+ Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
+ Ty = Type::getInt32Ty(*DAG.getContext());
+ Constant *Idx = ConstantInt::get(Ty, Offset);
+ Constant *GAI = ConstantExpr::getGetElementPtr(GA, Idx);
+ SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
+ return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP,
+ MachinePointerInfo(), false, false, false, 0);
+ }
+}
+
+SDValue XCoreTargetLowering::
+LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
+{
+ SDLoc DL(Op);
+
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
+
+ return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result);
+}
+
+SDValue XCoreTargetLowering::
+LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
+{
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ // FIXME there isn't really debug info here
+ SDLoc dl(CP);
+ EVT PtrVT = Op.getValueType();
+ SDValue Res;
+ if (CP->isMachineConstantPoolEntry()) {
+ Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
+ CP->getAlignment(), CP->getOffset());
+ } else {
+ Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
+ CP->getAlignment(), CP->getOffset());
+ }
+ return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
+}
+
+unsigned XCoreTargetLowering::getJumpTableEncoding() const {
+ return MachineJumpTableInfo::EK_Inline;
+}
+
+SDValue XCoreTargetLowering::
+LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
+{
+ SDValue Chain = Op.getOperand(0);
+ SDValue Table = Op.getOperand(1);
+ SDValue Index = Op.getOperand(2);
+ SDLoc dl(Op);
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
+ unsigned JTI = JT->getIndex();
+ MachineFunction &MF = DAG.getMachineFunction();
+ const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
+ SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
+
+ unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
+ if (NumEntries <= 32) {
+ return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
+ }
+ assert((NumEntries >> 31) == 0);
+ SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
+ DAG.getConstant(1, MVT::i32));
+ return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
+ ScaledIndex);
+}
+
+SDValue XCoreTargetLowering::
+lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
+ int64_t Offset, SelectionDAG &DAG) const
+{
+ if ((Offset & 0x3) == 0) {
+ return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(),
+ false, false, false, 0);
+ }
+ // Lower to pair of consecutive word aligned loads plus some bit shifting.
+ int32_t HighOffset = RoundUpToAlignment(Offset, 4);
+ int32_t LowOffset = HighOffset - 4;
+ SDValue LowAddr, HighAddr;
+ if (GlobalAddressSDNode *GASD =
+ dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
+ LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
+ LowOffset);
+ HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
+ HighOffset);
+ } else {
+ LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
+ DAG.getConstant(LowOffset, MVT::i32));
+ HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
+ DAG.getConstant(HighOffset, MVT::i32));
+ }
+ SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32);
+ SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32);
+
+ SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain,
+ LowAddr, MachinePointerInfo(),
+ false, false, false, 0);
+ SDValue High = DAG.getLoad(getPointerTy(), DL, Chain,
+ HighAddr, MachinePointerInfo(),
+ false, false, false, 0);
+ SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
+ SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
+ SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
+ High.getValue(1));
+ SDValue Ops[] = { Result, Chain };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
+{
+ APInt KnownZero, KnownOne;
+ DAG.computeKnownBits(Value, KnownZero, KnownOne);
+ return KnownZero.countTrailingOnes() >= 2;
+}
+
+SDValue XCoreTargetLowering::
+LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
+ "Unexpected extension type");
+ assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
+ if (allowsUnalignedMemoryAccesses(LD->getMemoryVT()))
+ return SDValue();
+
+ unsigned ABIAlignment = getDataLayout()->
+ getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
+ // Leave aligned load alone.
+ if (LD->getAlignment() >= ABIAlignment)
+ return SDValue();
+
+ SDValue Chain = LD->getChain();
+ SDValue BasePtr = LD->getBasePtr();
+ SDLoc DL(Op);
+
+ if (!LD->isVolatile()) {
+ const GlobalValue *GV;
+ int64_t Offset = 0;
+ if (DAG.isBaseWithConstantOffset(BasePtr) &&
+ isWordAligned(BasePtr->getOperand(0), DAG)) {
+ SDValue NewBasePtr = BasePtr->getOperand(0);
+ Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
+ return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
+ Offset, DAG);
+ }
+ if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
+ MinAlign(GV->getAlignment(), 4) == 4) {
+ SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
+ BasePtr->getValueType(0));
+ return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
+ Offset, DAG);
+ }
+ }
+
+ if (LD->getAlignment() == 2) {
+ SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
+ BasePtr, LD->getPointerInfo(), MVT::i16,
+ LD->isVolatile(), LD->isNonTemporal(), 2);
+ SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
+ DAG.getConstant(2, MVT::i32));
+ SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
+ HighAddr,
+ LD->getPointerInfo().getWithOffset(2),
+ MVT::i16, LD->isVolatile(),
+ LD->isNonTemporal(), 2);
+ SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
+ DAG.getConstant(16, MVT::i32));
+ SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
+ High.getValue(1));
+ SDValue Ops[] = { Result, Chain };
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ // Lower to a call to __misaligned_load(BasePtr).
+ Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ Entry.Ty = IntPtrTy;
+ Entry.Node = BasePtr;
+ Args.push_back(Entry);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(DL).setChain(Chain)
+ .setCallee(CallingConv::C, IntPtrTy,
+ DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
+ std::move(Args), 0);
+
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+ SDValue Ops[] = { CallResult.first, CallResult.second };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue XCoreTargetLowering::
+LowerSTORE(SDValue Op, SelectionDAG &DAG) const
+{
+ StoreSDNode *ST = cast<StoreSDNode>(Op);
+ assert(!ST->isTruncatingStore() && "Unexpected store type");
+ assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
+ if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
+ return SDValue();
+ }
+ unsigned ABIAlignment = getDataLayout()->
+ getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
+ // Leave aligned store alone.
+ if (ST->getAlignment() >= ABIAlignment) {
+ return SDValue();
+ }
+ SDValue Chain = ST->getChain();
+ SDValue BasePtr = ST->getBasePtr();
+ SDValue Value = ST->getValue();
+ SDLoc dl(Op);
+
+ if (ST->getAlignment() == 2) {
+ SDValue Low = Value;
+ SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
+ DAG.getConstant(16, MVT::i32));
+ SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
+ ST->getPointerInfo(), MVT::i16,
+ ST->isVolatile(), ST->isNonTemporal(),
+ 2);
+ SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
+ DAG.getConstant(2, MVT::i32));
+ SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
+ ST->getPointerInfo().getWithOffset(2),
+ MVT::i16, ST->isVolatile(),
+ ST->isNonTemporal(), 2);
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
+ }
+
+ // Lower to a call to __misaligned_store(BasePtr, Value).
+ Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ Entry.Ty = IntPtrTy;
+ Entry.Node = BasePtr;
+ Args.push_back(Entry);
+
+ Entry.Node = Value;
+ Args.push_back(Entry);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(Chain)
+ .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
+ DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
+ std::move(Args), 0);
+
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+ return CallResult.second;
+}
+
+SDValue XCoreTargetLowering::
+LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
+{
+ assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
+ "Unexpected operand to lower!");
+ SDLoc dl(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue Zero = DAG.getConstant(0, MVT::i32);
+ SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
+ LHS, RHS);
+ SDValue Lo(Hi.getNode(), 1);
+ SDValue Ops[] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue XCoreTargetLowering::
+LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
+{
+ assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
+ "Unexpected operand to lower!");
+ SDLoc dl(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue Zero = DAG.getConstant(0, MVT::i32);
+ SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
+ Zero, Zero);
+ SDValue Lo(Hi.getNode(), 1);
+ SDValue Ops[] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+/// isADDADDMUL - Return whether Op is in a form that is equivalent to
+/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
+/// each intermediate result in the calculation must also have a single use.
+/// If the Op is in the correct form the constituent parts are written to Mul0,
+/// Mul1, Addend0 and Addend1.
+static bool
+isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
+ SDValue &Addend1, bool requireIntermediatesHaveOneUse)
+{
+ if (Op.getOpcode() != ISD::ADD)
+ return false;
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue AddOp;
+ SDValue OtherOp;
+ if (N0.getOpcode() == ISD::ADD) {
+ AddOp = N0;
+ OtherOp = N1;
+ } else if (N1.getOpcode() == ISD::ADD) {
+ AddOp = N1;
+ OtherOp = N0;
+ } else {
+ return false;
+ }
+ if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
+ return false;
+ if (OtherOp.getOpcode() == ISD::MUL) {
+ // add(add(a,b),mul(x,y))
+ if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
+ return false;
+ Mul0 = OtherOp.getOperand(0);
+ Mul1 = OtherOp.getOperand(1);
+ Addend0 = AddOp.getOperand(0);
+ Addend1 = AddOp.getOperand(1);
+ return true;
+ }
+ if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
+ // add(add(mul(x,y),a),b)
+ if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
+ return false;
+ Mul0 = AddOp.getOperand(0).getOperand(0);
+ Mul1 = AddOp.getOperand(0).getOperand(1);
+ Addend0 = AddOp.getOperand(1);
+ Addend1 = OtherOp;
+ return true;
+ }
+ if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
+ // add(add(a,mul(x,y)),b)
+ if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
+ return false;
+ Mul0 = AddOp.getOperand(1).getOperand(0);
+ Mul1 = AddOp.getOperand(1).getOperand(1);
+ Addend0 = AddOp.getOperand(0);
+ Addend1 = OtherOp;
+ return true;
+ }
+ return false;
+}
+
+SDValue XCoreTargetLowering::
+TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
+{
+ SDValue Mul;
+ SDValue Other;
+ if (N->getOperand(0).getOpcode() == ISD::MUL) {
+ Mul = N->getOperand(0);
+ Other = N->getOperand(1);
+ } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
+ Mul = N->getOperand(1);
+ Other = N->getOperand(0);
+ } else {
+ return SDValue();
+ }
+ SDLoc dl(N);
+ SDValue LL, RL, AddendL, AddendH;
+ LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul.getOperand(0), DAG.getConstant(0, MVT::i32));
+ RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul.getOperand(1), DAG.getConstant(0, MVT::i32));
+ AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Other, DAG.getConstant(0, MVT::i32));
+ AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Other, DAG.getConstant(1, MVT::i32));
+ APInt HighMask = APInt::getHighBitsSet(64, 32);
+ unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
+ unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
+ if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
+ DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
+ // The inputs are both zero-extended.
+ SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), AddendH,
+ AddendL, LL, RL);
+ SDValue Lo(Hi.getNode(), 1);
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+ }
+ if (LHSSB > 32 && RHSSB > 32) {
+ // The inputs are both sign-extended.
+ SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), AddendH,
+ AddendL, LL, RL);
+ SDValue Lo(Hi.getNode(), 1);
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+ }
+ SDValue LH, RH;
+ LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul.getOperand(0), DAG.getConstant(1, MVT::i32));
+ RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul.getOperand(1), DAG.getConstant(1, MVT::i32));
+ SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), AddendH,
+ AddendL, LL, RL);
+ SDValue Lo(Hi.getNode(), 1);
+ RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
+ LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
+ Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
+ Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+}
+
+SDValue XCoreTargetLowering::
+ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
+{
+ assert(N->getValueType(0) == MVT::i64 &&
+ (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
+ "Unknown operand to lower!");
+
+ if (N->getOpcode() == ISD::ADD) {
+ SDValue Result = TryExpandADDWithMul(N, DAG);
+ if (Result.getNode())
+ return Result;
+ }
+
+ SDLoc dl(N);
+
+ // Extract components
+ SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ N->getOperand(0), DAG.getConstant(0, MVT::i32));
+ SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ N->getOperand(0), DAG.getConstant(1, MVT::i32));
+ SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ N->getOperand(1), DAG.getConstant(0, MVT::i32));
+ SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ N->getOperand(1), DAG.getConstant(1, MVT::i32));
+
+ // Expand
+ unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
+ XCoreISD::LSUB;
+ SDValue Zero = DAG.getConstant(0, MVT::i32);
+ SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ LHSL, RHSL, Zero);
+ SDValue Carry(Lo.getNode(), 1);
+
+ SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ LHSH, RHSH, Carry);
+ SDValue Ignored(Hi.getNode(), 1);
+ // Merge the pieces
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+}
+
+SDValue XCoreTargetLowering::
+LowerVAARG(SDValue Op, SelectionDAG &DAG) const
+{
+ // Whist llvm does not support aggregate varargs we can ignore
+ // the possibility of the ValueType being an implicit byVal vararg.
+ SDNode *Node = Op.getNode();
+ EVT VT = Node->getValueType(0); // not an aggregate
+ SDValue InChain = Node->getOperand(0);
+ SDValue VAListPtr = Node->getOperand(1);
+ EVT PtrVT = VAListPtr.getValueType();
+ const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
+ SDLoc dl(Node);
+ SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
+ VAListPtr, MachinePointerInfo(SV),
+ false, false, false, 0);
+ // Increment the pointer, VAList, to the next vararg
+ SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
+ DAG.getIntPtrConstant(VT.getSizeInBits() / 8));
+ // Store the incremented VAList to the legalized pointer
+ InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
+ MachinePointerInfo(SV), false, false, 0);
+ // Load the actual argument out of the pointer VAList
+ return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
+ false, false, false, 0);
+}
+
+SDValue XCoreTargetLowering::
+LowerVASTART(SDValue Op, SelectionDAG &DAG) const
+{
+ SDLoc dl(Op);
+ // vastart stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument
+ MachineFunction &MF = DAG.getMachineFunction();
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+ SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
+ return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
+ MachinePointerInfo(), false, false, 0);
+}
+
+SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ // This nodes represent llvm.frameaddress on the DAG.
+ // It takes one operand, the index of the frame address to return.
+ // An index of zero corresponds to the current function's frame address.
+ // An index of one to the parent's frame address, and so on.
+ // Depths > 0 not supported yet!
+ if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
+ return SDValue();
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
+ return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
+ RegInfo->getFrameRegister(MF), MVT::i32);
+}
+
+SDValue XCoreTargetLowering::
+LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
+ // This nodes represent llvm.returnaddress on the DAG.
+ // It takes one operand, the index of the return address to return.
+ // An index of zero corresponds to the current function's return address.
+ // An index of one to the parent's return address, and so on.
+ // Depths > 0 not supported yet!
+ if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
+ return SDValue();
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+ int FI = XFI->createLRSpillSlot(MF);
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN,
+ MachinePointerInfo::getFixedStack(FI), false, false,
+ false, 0);
+}
+
+SDValue XCoreTargetLowering::
+LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
+ // This node represents offset from frame pointer to first on-stack argument.
+ // This is needed for correct stack adjustment during unwind.
+ // However, we don't know the offset until after the frame has be finalised.
+ // This is done during the XCoreFTAOElim pass.
+ return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
+}
+
+SDValue XCoreTargetLowering::
+LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
+ // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
+ // This node represents 'eh_return' gcc dwarf builtin, which is used to
+ // return from exception. The general meaning is: adjust stack by OFFSET and
+ // pass execution to HANDLER.
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDValue Chain = Op.getOperand(0);
+ SDValue Offset = Op.getOperand(1);
+ SDValue Handler = Op.getOperand(2);
+ SDLoc dl(Op);
+
+ // Absolute SP = (FP + FrameToArgs) + Offset
+ const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
+ SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
+ RegInfo->getFrameRegister(MF), MVT::i32);
+ SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
+ MVT::i32);
+ Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
+ Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
+
+ // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
+ // which leaves 2 caller saved registers, R2 & R3 for us to use.
+ unsigned StackReg = XCore::R2;
+ unsigned HandlerReg = XCore::R3;
+
+ SDValue OutChains[] = {
+ DAG.getCopyToReg(Chain, dl, StackReg, Stack),
+ DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
+ };
+
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+
+ return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
+ DAG.getRegister(StackReg, MVT::i32),
+ DAG.getRegister(HandlerReg, MVT::i32));
+
+}
+
+SDValue XCoreTargetLowering::
+LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
+ return Op.getOperand(0);
+}
+
+SDValue XCoreTargetLowering::
+LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Trmp = Op.getOperand(1); // trampoline
+ SDValue FPtr = Op.getOperand(2); // nested function
+ SDValue Nest = Op.getOperand(3); // 'nest' parameter value
+
+ const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+
+ // .align 4
+ // LDAPF_u10 r11, nest
+ // LDW_2rus r11, r11[0]
+ // STWSP_ru6 r11, sp[0]
+ // LDAPF_u10 r11, fptr
+ // LDW_2rus r11, r11[0]
+ // BAU_1r r11
+ // nest:
+ // .word nest
+ // fptr:
+ // .word fptr
+ SDValue OutChains[5];
+
+ SDValue Addr = Trmp;
+
+ SDLoc dl(Op);
+ OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32),
+ Addr, MachinePointerInfo(TrmpAddr), false, false,
+ 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(4, MVT::i32));
+ OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32),
+ Addr, MachinePointerInfo(TrmpAddr, 4), false,
+ false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(8, MVT::i32));
+ OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32),
+ Addr, MachinePointerInfo(TrmpAddr, 8), false,
+ false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(12, MVT::i32));
+ OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
+ MachinePointerInfo(TrmpAddr, 12), false, false,
+ 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(16, MVT::i32));
+ OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
+ MachinePointerInfo(TrmpAddr, 16), false, false,
+ 0);
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+}
+
+SDValue XCoreTargetLowering::
+LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ case Intrinsic::xcore_crc8:
+ EVT VT = Op.getValueType();
+ SDValue Data =
+ DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
+ Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
+ SDValue Crc(Data.getNode(), 1);
+ SDValue Results[] = { Crc, Data };
+ return DAG.getMergeValues(Results, DL);
+ }
+ return SDValue();
+}
+
+SDValue XCoreTargetLowering::
+LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
+}
+
+SDValue XCoreTargetLowering::
+LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
+ AtomicSDNode *N = cast<AtomicSDNode>(Op);
+ assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
+ assert(N->getOrdering() <= Monotonic &&
+ "setInsertFencesForAtomic(true) and yet greater than Monotonic");
+ if (N->getMemoryVT() == MVT::i32) {
+ if (N->getAlignment() < 4)
+ report_fatal_error("atomic load must be aligned");
+ return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(),
+ N->getBasePtr(), N->getPointerInfo(),
+ N->isVolatile(), N->isNonTemporal(),
+ N->isInvariant(), N->getAlignment(),
+ N->getTBAAInfo(), N->getRanges());
+ }
+ if (N->getMemoryVT() == MVT::i16) {
+ if (N->getAlignment() < 2)
+ report_fatal_error("atomic load must be aligned");
+ return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
+ N->getBasePtr(), N->getPointerInfo(), MVT::i16,
+ N->isVolatile(), N->isNonTemporal(),
+ N->getAlignment(), N->getTBAAInfo());
+ }
+ if (N->getMemoryVT() == MVT::i8)
+ return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
+ N->getBasePtr(), N->getPointerInfo(), MVT::i8,
+ N->isVolatile(), N->isNonTemporal(),
+ N->getAlignment(), N->getTBAAInfo());
+ return SDValue();
+}
+
+SDValue XCoreTargetLowering::
+LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
+ AtomicSDNode *N = cast<AtomicSDNode>(Op);
+ assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
+ assert(N->getOrdering() <= Monotonic &&
+ "setInsertFencesForAtomic(true) and yet greater than Monotonic");
+ if (N->getMemoryVT() == MVT::i32) {
+ if (N->getAlignment() < 4)
+ report_fatal_error("atomic store must be aligned");
+ return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
+ N->getBasePtr(), N->getPointerInfo(),
+ N->isVolatile(), N->isNonTemporal(),
+ N->getAlignment(), N->getTBAAInfo());
+ }
+ if (N->getMemoryVT() == MVT::i16) {
+ if (N->getAlignment() < 2)
+ report_fatal_error("atomic store must be aligned");
+ return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
+ N->getBasePtr(), N->getPointerInfo(), MVT::i16,
+ N->isVolatile(), N->isNonTemporal(),
+ N->getAlignment(), N->getTBAAInfo());
+ }
+ if (N->getMemoryVT() == MVT::i8)
+ return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
+ N->getBasePtr(), N->getPointerInfo(), MVT::i8,
+ N->isVolatile(), N->isNonTemporal(),
+ N->getAlignment(), N->getTBAAInfo());
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "XCoreGenCallingConv.inc"
+
+//===----------------------------------------------------------------------===//
+// Call Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+/// XCore call implementation
+SDValue
+XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool isVarArg = CLI.IsVarArg;
+
+ // XCore target does not yet support tail call optimization.
+ isTailCall = false;
+
+ // For now, only CallingConv::C implemented
+ switch (CallConv)
+ {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::Fast:
+ case CallingConv::C:
+ return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
+ Outs, OutVals, Ins, dl, DAG, InVals);
+ }
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers / memory locations.
+static SDValue
+LowerCallResult(SDValue Chain, SDValue InFlag,
+ const SmallVectorImpl<CCValAssign> &RVLocs,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+ SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
+ // Copy results out of physical registers.
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ const CCValAssign &VA = RVLocs[i];
+ if (VA.isRegLoc()) {
+ Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
+ InFlag).getValue(1);
+ InFlag = Chain.getValue(2);
+ InVals.push_back(Chain.getValue(0));
+ } else {
+ assert(VA.isMemLoc());
+ ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
+ InVals.size()));
+ // Reserve space for this result.
+ InVals.push_back(SDValue());
+ }
+ }
+
+ // Copy results out of memory.
+ SmallVector<SDValue, 4> MemOpChains;
+ for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
+ int offset = ResultMemLocs[i].first;
+ unsigned index = ResultMemLocs[i].second;
+ SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
+ SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) };
+ SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
+ InVals[index] = load;
+ MemOpChains.push_back(load.getValue(1));
+ }
+
+ // Transform all loads nodes into one single node because
+ // all load nodes are independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ return Chain;
+}
+
+/// LowerCCCCallTo - functions arguments are copied from virtual
+/// regs to (physical regs)/(stack frame), CALLSEQ_START and
+/// CALLSEQ_END are emitted.
+/// TODO: isTailCall, sret.
+SDValue
+XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ // The ABI dictates there should be one stack slot available to the callee
+ // on function entry (for saving lr).
+ CCInfo.AllocateStack(4, 4);
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
+
+ SmallVector<CCValAssign, 16> RVLocs;
+ // Analyze return values to determine the number of bytes of stack required.
+ CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+ RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
+ RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = RetCCInfo.getNextStackOffset();
+
+ Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes,
+ getPointerTy(), true), dl);
+
+ SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
+ SmallVector<SDValue, 12> MemOpChains;
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[i];
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ // Arguments that can be passed on register must be kept at
+ // RegsToPass vector
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ assert(VA.isMemLoc());
+
+ int Offset = VA.getLocMemOffset();
+
+ MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
+ Chain, Arg,
+ DAG.getConstant(Offset/4, MVT::i32)));
+ }
+ }
+
+ // Transform all store nodes into one single node because
+ // all store nodes are independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // Build a sequence of copy-to-reg nodes chained together with token
+ // chain and flag operands which copy the outgoing args into registers.
+ // The InFlag in necessary since all emitted instructions must be
+ // stuck together.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress node (quite common, every direct call is)
+ // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+ // Likewise ExternalSymbol -> TargetExternalSymbol.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
+ else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
+ Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
+
+ // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
+ // = Chain, Callee, Reg#1, Reg#2, ...
+ //
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getConstant(NumBytes, getPointerTy(), true),
+ DAG.getConstant(0, getPointerTy(), true),
+ InFlag, dl);
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
+}
+
+//===----------------------------------------------------------------------===//
+// Formal Arguments Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
+}
+
+/// XCore formal arguments implementation
+SDValue
+XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+ switch (CallConv)
+ {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::C:
+ case CallingConv::Fast:
+ return LowerCCCArguments(Chain, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
+ }
+}
+
+/// LowerCCCArguments - transform physical registers into
+/// virtual registers and generate load operations for
+/// arguments places on the stack.
+/// TODO: sret
+SDValue
+XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
+
+ unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
+
+ unsigned LRSaveSize = StackSlotSize;
+
+ if (!isVarArg)
+ XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
+
+ // All getCopyFromReg ops must precede any getMemcpys to prevent the
+ // scheduler clobbering a register before it has been copied.
+ // The stages are:
+ // 1. CopyFromReg (and load) arg & vararg registers.
+ // 2. Chain CopyFromReg nodes into a TokenFactor.
+ // 3. Memcpy 'byVal' args & push final InVals.
+ // 4. Chain mem ops nodes into a TokenFactor.
+ SmallVector<SDValue, 4> CFRegNode;
+ SmallVector<ArgDataPair, 4> ArgData;
+ SmallVector<SDValue, 4> MemOps;
+
+ // 1a. CopyFromReg (and load) arg registers.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+
+ CCValAssign &VA = ArgLocs[i];
+ SDValue ArgIn;
+
+ if (VA.isRegLoc()) {
+ // Arguments passed in registers
+ EVT RegVT = VA.getLocVT();
+ switch (RegVT.getSimpleVT().SimpleTy) {
+ default:
+ {
+#ifndef NDEBUG
+ errs() << "LowerFormalArguments Unhandled argument type: "
+ << RegVT.getSimpleVT().SimpleTy << "\n";
+#endif
+ llvm_unreachable(nullptr);
+ }
+ case MVT::i32:
+ unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
+ CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
+ }
+ } else {
+ // sanity check
+ assert(VA.isMemLoc());
+ // Load the argument to a virtual register
+ unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
+ if (ObjSize > StackSlotSize) {
+ errs() << "LowerFormalArguments Unhandled argument type: "
+ << EVT(VA.getLocVT()).getEVTString()
+ << "\n";
+ }
+ // Create the frame index object for this incoming parameter...
+ int FI = MFI->CreateFixedObject(ObjSize,
+ LRSaveSize + VA.getLocMemOffset(),
+ true);
+
+ // Create the SelectionDAG nodes corresponding to a load
+ //from this parameter
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0);
+ }
+ const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
+ ArgData.push_back(ADP);
+ }
+
+ // 1b. CopyFromReg vararg registers.
+ if (isVarArg) {
+ // Argument registers
+ static const MCPhysReg ArgRegs[] = {
+ XCore::R0, XCore::R1, XCore::R2, XCore::R3
+ };
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+ unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs,
+ array_lengthof(ArgRegs));
+ if (FirstVAReg < array_lengthof(ArgRegs)) {
+ int offset = 0;
+ // Save remaining registers, storing higher register numbers at a higher
+ // address
+ for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
+ // Create a stack slot
+ int FI = MFI->CreateFixedObject(4, offset, true);
+ if (i == (int)FirstVAReg) {
+ XFI->setVarArgsFrameIndex(FI);
+ }
+ offset -= StackSlotSize;
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ // Move argument from phys reg -> virt reg
+ unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
+ RegInfo.addLiveIn(ArgRegs[i], VReg);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
+ CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
+ // Move argument from virt reg -> stack
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(), false, false, 0);
+ MemOps.push_back(Store);
+ }
+ } else {
+ // This will point to the next argument passed via stack.
+ XFI->setVarArgsFrameIndex(
+ MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
+ true));
+ }
+ }
+
+ // 2. chain CopyFromReg nodes into a TokenFactor.
+ if (!CFRegNode.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
+
+ // 3. Memcpy 'byVal' args & push final InVals.
+ // Aggregates passed "byVal" need to be copied by the callee.
+ // The callee will use a pointer to this copy, rather than the original
+ // pointer.
+ for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
+ ArgDE = ArgData.end();
+ ArgDI != ArgDE; ++ArgDI) {
+ if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
+ unsigned Size = ArgDI->Flags.getByValSize();
+ unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
+ // Create a new object on the stack and copy the pointee into it.
+ int FI = MFI->CreateStackObject(Size, Align, false);
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ InVals.push_back(FIN);
+ MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
+ DAG.getConstant(Size, MVT::i32),
+ Align, false, false,
+ MachinePointerInfo(),
+ MachinePointerInfo()));
+ } else {
+ InVals.push_back(ArgDI->SDV);
+ }
+ }
+
+ // 4, chain mem ops nodes into a TokenFactor.
+ if (!MemOps.empty()) {
+ MemOps.push_back(Chain);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+bool XCoreTargetLowering::
+CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
+ if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
+ return false;
+ if (CCInfo.getNextStackOffset() != 0 && isVarArg)
+ return false;
+ return true;
+}
+
+SDValue
+XCoreTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+
+ XCoreFunctionInfo *XFI =
+ DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+
+ // CCValAssign - represent the assignment of
+ // the return value to a location
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+
+ // Analyze return values.
+ if (!isVarArg)
+ CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
+
+ CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // Return on XCore is always a "retsp 0"
+ RetOps.push_back(DAG.getConstant(0, MVT::i32));
+
+ SmallVector<SDValue, 4> MemOpChains;
+ // Handle return values that must be copied to memory.
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ if (VA.isRegLoc())
+ continue;
+ assert(VA.isMemLoc());
+ if (isVarArg) {
+ report_fatal_error("Can't return value from vararg function in memory");
+ }
+
+ int Offset = VA.getLocMemOffset();
+ unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
+ // Create the frame index object for the memory location.
+ int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
+
+ // Create a SelectionDAG node corresponding to a store
+ // to this memory location.
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN,
+ MachinePointerInfo::getFixedStack(FI), false, false,
+ 0));
+ }
+
+ // Transform all store nodes into one single node because
+ // all stores are independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // Now handle return values copied to registers.
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ if (!VA.isRegLoc())
+ continue;
+ // Copy the result values into the output registers.
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
+
+ // guarantee that all emitted copies are
+ // stuck together, avoiding something bad
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
+}
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Code
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock *
+XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ assert((MI->getOpcode() == XCore::SELECT_CC) &&
+ "Unexpected instr type to insert");
+
+ // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
+ // control-flow pattern. The incoming instruction knows the destination vreg
+ // to set, the condition code register to branch on, the true/false values to
+ // select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
+ .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(*BB, BB->begin(), dl,
+ TII.get(XCore::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+//===----------------------------------------------------------------------===//
+// Target Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(N);
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::INTRINSIC_VOID:
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ case Intrinsic::xcore_outt:
+ case Intrinsic::xcore_outct:
+ case Intrinsic::xcore_chkct: {
+ SDValue OutVal = N->getOperand(3);
+ // These instructions ignore the high bits.
+ if (OutVal.hasOneUse()) {
+ unsigned BitWidth = OutVal.getValueSizeInBits();
+ APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
+ TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
+ TLO))
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ break;
+ }
+ case Intrinsic::xcore_setpt: {
+ SDValue Time = N->getOperand(3);
+ // This instruction ignores the high bits.
+ if (Time.hasOneUse()) {
+ unsigned BitWidth = Time.getValueSizeInBits();
+ APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
+ TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
+ TLO))
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ break;
+ }
+ }
+ break;
+ case XCoreISD::LADD: {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ EVT VT = N0.getValueType();
+
+ // canonicalize constant to RHS
+ if (N0C && !N1C)
+ return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
+
+ // fold (ladd 0, 0, x) -> 0, x & 1
+ if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
+ SDValue Carry = DAG.getConstant(0, VT);
+ SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
+ DAG.getConstant(1, VT));
+ SDValue Ops[] = { Result, Carry };
+ return DAG.getMergeValues(Ops, dl);
+ }
+
+ // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
+ // low bit set
+ if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
+ APInt KnownZero, KnownOne;
+ APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
+ VT.getSizeInBits() - 1);
+ DAG.computeKnownBits(N2, KnownZero, KnownOne);
+ if ((KnownZero & Mask) == Mask) {
+ SDValue Carry = DAG.getConstant(0, VT);
+ SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
+ SDValue Ops[] = { Result, Carry };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ }
+ }
+ break;
+ case XCoreISD::LSUB: {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ EVT VT = N0.getValueType();
+
+ // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
+ if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
+ APInt KnownZero, KnownOne;
+ APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
+ VT.getSizeInBits() - 1);
+ DAG.computeKnownBits(N2, KnownZero, KnownOne);
+ if ((KnownZero & Mask) == Mask) {
+ SDValue Borrow = N2;
+ SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
+ DAG.getConstant(0, VT), N2);
+ SDValue Ops[] = { Result, Borrow };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ }
+
+ // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
+ // low bit set
+ if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
+ APInt KnownZero, KnownOne;
+ APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
+ VT.getSizeInBits() - 1);
+ DAG.computeKnownBits(N2, KnownZero, KnownOne);
+ if ((KnownZero & Mask) == Mask) {
+ SDValue Borrow = DAG.getConstant(0, VT);
+ SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
+ SDValue Ops[] = { Result, Borrow };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ }
+ }
+ break;
+ case XCoreISD::LMUL: {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ SDValue N3 = N->getOperand(3);
+ ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ EVT VT = N0.getValueType();
+ // Canonicalize multiplicative constant to RHS. If both multiplicative
+ // operands are constant canonicalize smallest to RHS.
+ if ((N0C && !N1C) ||
+ (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
+ return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
+ N1, N0, N2, N3);
+
+ // lmul(x, 0, a, b)
+ if (N1C && N1C->isNullValue()) {
+ // If the high result is unused fold to add(a, b)
+ if (N->hasNUsesOfValue(0, 0)) {
+ SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
+ SDValue Ops[] = { Lo, Lo };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ // Otherwise fold to ladd(a, b, 0)
+ SDValue Result =
+ DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
+ SDValue Carry(Result.getNode(), 1);
+ SDValue Ops[] = { Carry, Result };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ }
+ break;
+ case ISD::ADD: {
+ // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
+ // lmul(x, y, a, b). The high result of lmul will be ignored.
+ // This is only profitable if the intermediate results are unused
+ // elsewhere.
+ SDValue Mul0, Mul1, Addend0, Addend1;
+ if (N->getValueType(0) == MVT::i32 &&
+ isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
+ SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Mul0,
+ Mul1, Addend0, Addend1);
+ SDValue Result(Ignored.getNode(), 1);
+ return Result;
+ }
+ APInt HighMask = APInt::getHighBitsSet(64, 32);
+ // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
+ // lmul(x, y, a, b) if all operands are zero-extended. We do this
+ // before type legalization as it is messy to match the operands after
+ // that.
+ if (N->getValueType(0) == MVT::i64 &&
+ isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
+ DAG.MaskedValueIsZero(Mul0, HighMask) &&
+ DAG.MaskedValueIsZero(Mul1, HighMask) &&
+ DAG.MaskedValueIsZero(Addend0, HighMask) &&
+ DAG.MaskedValueIsZero(Addend1, HighMask)) {
+ SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul0, DAG.getConstant(0, MVT::i32));
+ SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul1, DAG.getConstant(0, MVT::i32));
+ SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Addend0, DAG.getConstant(0, MVT::i32));
+ SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Addend1, DAG.getConstant(0, MVT::i32));
+ SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
+ Addend0L, Addend1L);
+ SDValue Lo(Hi.getNode(), 1);
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+ }
+ }
+ break;
+ case ISD::STORE: {
+ // Replace unaligned store of unaligned load with memmove.
+ StoreSDNode *ST = cast<StoreSDNode>(N);
+ if (!DCI.isBeforeLegalize() ||
+ allowsUnalignedMemoryAccesses(ST->getMemoryVT()) ||
+ ST->isVolatile() || ST->isIndexed()) {
+ break;
+ }
+ SDValue Chain = ST->getChain();
+
+ unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
+ if (StoreBits % 8) {
+ break;
+ }
+ unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(
+ ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
+ unsigned Alignment = ST->getAlignment();
+ if (Alignment >= ABIAlignment) {
+ break;
+ }
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
+ if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
+ LD->getAlignment() == Alignment &&
+ !LD->isVolatile() && !LD->isIndexed() &&
+ Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
+ return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
+ LD->getBasePtr(),
+ DAG.getConstant(StoreBits/8, MVT::i32),
+ Alignment, false, ST->getPointerInfo(),
+ LD->getPointerInfo());
+ }
+ }
+ break;
+ }
+ }
+ return SDValue();
+}
+
+void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
+ switch (Op.getOpcode()) {
+ default: break;
+ case XCoreISD::LADD:
+ case XCoreISD::LSUB:
+ if (Op.getResNo() == 1) {
+ // Top bits of carry / borrow are clear.
+ KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
+ KnownZero.getBitWidth() - 1);
+ }
+ break;
+ case ISD::INTRINSIC_W_CHAIN:
+ {
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ case Intrinsic::xcore_getts:
+ // High bits are known to be zero.
+ KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
+ KnownZero.getBitWidth() - 16);
+ break;
+ case Intrinsic::xcore_int:
+ case Intrinsic::xcore_inct:
+ // High bits are known to be zero.
+ KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
+ KnownZero.getBitWidth() - 8);
+ break;
+ case Intrinsic::xcore_testct:
+ // Result is either 0 or 1.
+ KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
+ KnownZero.getBitWidth() - 1);
+ break;
+ case Intrinsic::xcore_testwct:
+ // Result is in the range 0 - 4.
+ KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
+ KnownZero.getBitWidth() - 3);
+ break;
+ }
+ }
+ break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Addressing mode description hooks
+//===----------------------------------------------------------------------===//
+
+static inline bool isImmUs(int64_t val)
+{
+ return (val >= 0 && val <= 11);
+}
+
+static inline bool isImmUs2(int64_t val)
+{
+ return (val%2 == 0 && isImmUs(val/2));
+}
+
+static inline bool isImmUs4(int64_t val)
+{
+ return (val%4 == 0 && isImmUs(val/4));
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool
+XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ if (Ty->getTypeID() == Type::VoidTyID)
+ return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
+
+ const DataLayout *TD = TM.getDataLayout();
+ unsigned Size = TD->getTypeAllocSize(Ty);
+ if (AM.BaseGV) {
+ return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
+ AM.BaseOffs%4 == 0;
+ }
+
+ switch (Size) {
+ case 1:
+ // reg + imm
+ if (AM.Scale == 0) {
+ return isImmUs(AM.BaseOffs);
+ }
+ // reg + reg
+ return AM.Scale == 1 && AM.BaseOffs == 0;
+ case 2:
+ case 3:
+ // reg + imm
+ if (AM.Scale == 0) {
+ return isImmUs2(AM.BaseOffs);
+ }
+ // reg + reg<<1
+ return AM.Scale == 2 && AM.BaseOffs == 0;
+ default:
+ // reg + imm
+ if (AM.Scale == 0) {
+ return isImmUs4(AM.BaseOffs);
+ }
+ // reg + reg<<2
+ return AM.Scale == 4 && AM.BaseOffs == 0;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// XCore Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+std::pair<unsigned, const TargetRegisterClass*>
+XCoreTargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default : break;
+ case 'r':
+ return std::make_pair(0U, &XCore::GRRegsRegClass);
+ }
+ }
+ // Use the default implementation in TargetLowering to convert the register
+ // constraint into a member of a register class.
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreISelLowering.h b/contrib/llvm/lib/Target/XCore/XCoreISelLowering.h
new file mode 100644
index 0000000..62b89c3
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreISelLowering.h
@@ -0,0 +1,218 @@
+//===-- XCoreISelLowering.h - XCore DAG Lowering Interface ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that XCore uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCOREISELLOWERING_H
+#define XCOREISELLOWERING_H
+
+#include "XCore.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLowering.h"
+
+namespace llvm {
+
+ // Forward delcarations
+ class XCoreSubtarget;
+ class XCoreTargetMachine;
+
+ namespace XCoreISD {
+ enum NodeType {
+ // Start the numbering where the builtin ops and target ops leave off.
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ // Branch and link (call)
+ BL,
+
+ // pc relative address
+ PCRelativeWrapper,
+
+ // dp relative address
+ DPRelativeWrapper,
+
+ // cp relative address
+ CPRelativeWrapper,
+
+ // Load word from stack
+ LDWSP,
+
+ // Store word to stack
+ STWSP,
+
+ // Corresponds to retsp instruction
+ RETSP,
+
+ // Corresponds to LADD instruction
+ LADD,
+
+ // Corresponds to LSUB instruction
+ LSUB,
+
+ // Corresponds to LMUL instruction
+ LMUL,
+
+ // Corresponds to MACCU instruction
+ MACCU,
+
+ // Corresponds to MACCS instruction
+ MACCS,
+
+ // Corresponds to CRC8 instruction
+ CRC8,
+
+ // Jumptable branch.
+ BR_JT,
+
+ // Jumptable branch using long branches for each entry.
+ BR_JT32,
+
+ // Offset from frame pointer to the first (possible) on-stack argument
+ FRAME_TO_ARGS_OFFSET,
+
+ // Exception handler return. The stack is restored to the first
+ // followed by a jump to the second argument.
+ EH_RETURN,
+
+ // Memory barrier.
+ MEMBARRIER
+ };
+ }
+
+ //===--------------------------------------------------------------------===//
+ // TargetLowering Implementation
+ //===--------------------------------------------------------------------===//
+ class XCoreTargetLowering : public TargetLowering
+ {
+ public:
+
+ explicit XCoreTargetLowering(const TargetMachine &TM);
+
+ using TargetLowering::isZExtFree;
+ bool isZExtFree(SDValue Val, EVT VT2) const override;
+
+
+ unsigned getJumpTableEncoding() const override;
+ MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
+
+ /// LowerOperation - Provide custom lowering hooks for some operations.
+ SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
+
+ /// ReplaceNodeResults - Replace the results of node with an illegal result
+ /// type with new values built out of custom code.
+ ///
+ void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const override;
+
+ /// getTargetNodeName - This method returns the name of a target specific
+ // DAG node.
+ const char *getTargetNodeName(unsigned Opcode) const override;
+
+ MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const override;
+
+ bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
+
+ private:
+ const TargetMachine &TM;
+ const XCoreSubtarget &Subtarget;
+
+ // Lower Operand helpers
+ SDValue LowerCCCArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+ SDValue LowerCCCCallTo(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+ SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
+ SDValue getGlobalAddressWrapper(SDValue GA, const GlobalValue *GV,
+ SelectionDAG &DAG) const;
+ SDValue lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain,
+ SDValue Base, int64_t Offset,
+ SelectionDAG &DAG) const;
+
+ // Lower Operand specifics
+ SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
+
+ // Inline asm support
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const override;
+
+ // Expand specifics
+ SDValue TryExpandADDWithMul(SDNode *Op, SelectionDAG &DAG) const;
+ SDValue ExpandADDSUB(SDNode *Op, SelectionDAG &DAG) const;
+
+ SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+
+ void computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth = 0) const override;
+
+ SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue
+ LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const override;
+
+ SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const override;
+
+ bool
+ CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &ArgsFlags,
+ LLVMContext &Context) const override;
+ };
+}
+
+#endif // XCOREISELLOWERING_H
diff --git a/contrib/llvm/lib/Target/XCore/XCoreInstrFormats.td b/contrib/llvm/lib/Target/XCore/XCoreInstrFormats.td
new file mode 100644
index 0000000..379cc39
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreInstrFormats.td
@@ -0,0 +1,277 @@
+//===-- XCoreInstrFormats.td - XCore Instruction Formats ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Instruction format superclass
+//===----------------------------------------------------------------------===//
+class InstXCore<int sz, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : Instruction {
+ field bits<32> Inst;
+
+ let Namespace = "XCore";
+ dag OutOperandList = outs;
+ dag InOperandList = ins;
+ let AsmString = asmstr;
+ let Pattern = pattern;
+ let Size = sz;
+ field bits<32> SoftFail = 0;
+}
+
+// XCore pseudo instructions format
+class PseudoInstXCore<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<0, outs, ins, asmstr, pattern> {
+ let isPseudo = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction formats
+//===----------------------------------------------------------------------===//
+
+class _F3R<bits<5> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<2, outs, ins, asmstr, pattern> {
+ let Inst{15-11} = opc;
+ let DecoderMethod = "Decode3RInstruction";
+}
+
+// 3R with first operand as an immediate. Used for TSETR where the first
+// operand is treated as an immediate since it refers to a register number in
+// another thread.
+class _F3RImm<bits<5> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : _F3R<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "Decode3RImmInstruction";
+}
+
+class _FL3R<bits<9> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<4, outs, ins, asmstr, pattern> {
+ let Inst{31-27} = opc{8-4};
+ let Inst{26-20} = 0b1111110;
+ let Inst{19-16} = opc{3-0};
+
+ let Inst{15-11} = 0b11111;
+ let DecoderMethod = "DecodeL3RInstruction";
+}
+
+// L3R with first operand as both a source and a destination.
+class _FL3RSrcDst<bits<9> opc, dag outs, dag ins, string asmstr,
+ list<dag> pattern> : _FL3R<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "DecodeL3RSrcDstInstruction";
+}
+
+class _F2RUS<bits<5> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<2, outs, ins, asmstr, pattern> {
+ let Inst{15-11} = opc;
+ let DecoderMethod = "Decode2RUSInstruction";
+}
+
+// 2RUS with bitp operand
+class _F2RUSBitp<bits<5> opc, dag outs, dag ins, string asmstr,
+ list<dag> pattern>
+ : _F2RUS<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "Decode2RUSBitpInstruction";
+}
+
+class _FL2RUS<bits<9> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<4, outs, ins, asmstr, pattern> {
+ let Inst{31-27} = opc{8-4};
+ let Inst{26-20} = 0b1111110;
+ let Inst{19-16} = opc{3-0};
+
+ let Inst{15-11} = 0b11111;
+ let DecoderMethod = "DecodeL2RUSInstruction";
+}
+
+// L2RUS with bitp operand
+class _FL2RUSBitp<bits<9> opc, dag outs, dag ins, string asmstr,
+ list<dag> pattern>
+ : _FL2RUS<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "DecodeL2RUSBitpInstruction";
+}
+
+class _FRU6<bits<6> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<2, outs, ins, asmstr, pattern> {
+ bits<4> a;
+ bits<6> b;
+
+ let Inst{15-10} = opc;
+ let Inst{9-6} = a;
+ let Inst{5-0} = b;
+}
+
+class _FLRU6<bits<6> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<4, outs, ins, asmstr, pattern> {
+ bits<4> a;
+ bits<16> b;
+
+ let Inst{31-26} = opc;
+ let Inst{25-22} = a;
+ let Inst{21-16} = b{5-0};
+ let Inst{15-10} = 0b111100;
+ let Inst{9-0} = b{15-6};
+}
+
+class _FU6<bits<10> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<2, outs, ins, asmstr, pattern> {
+ bits<6> a;
+
+ let Inst{15-6} = opc;
+ let Inst{5-0} = a;
+}
+
+class _FLU6<bits<10> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<4, outs, ins, asmstr, pattern> {
+ bits<16> a;
+
+ let Inst{31-22} = opc;
+ let Inst{21-16} = a{5-0};
+ let Inst{15-10} = 0b111100;
+ let Inst{9-0} = a{15-6};
+}
+
+class _FU10<bits<6> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<2, outs, ins, asmstr, pattern> {
+ bits<10> a;
+
+ let Inst{15-10} = opc;
+ let Inst{9-0} = a;
+}
+
+class _FLU10<bits<6> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<4, outs, ins, asmstr, pattern> {
+ bits<20> a;
+
+ let Inst{31-26} = opc;
+ let Inst{25-16} = a{9-0};
+ let Inst{15-10} = 0b111100;
+ let Inst{9-0} = a{19-10};
+}
+
+class _F2R<bits<6> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<2, outs, ins, asmstr, pattern> {
+ let Inst{15-11} = opc{5-1};
+ let Inst{4} = opc{0};
+ let DecoderMethod = "Decode2RInstruction";
+}
+
+// 2R with first operand as an immediate. Used for TSETMR where the first
+// operand is treated as an immediate since it refers to a register number in
+// another thread.
+class _F2RImm<bits<6> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : _F2R<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "Decode2RImmInstruction";
+}
+
+// 2R with first operand as both a source and a destination.
+class _F2RSrcDst<bits<6> opc, dag outs, dag ins, string asmstr,
+ list<dag> pattern> : _F2R<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "Decode2RSrcDstInstruction";
+}
+
+// Same as 2R with last two operands swapped
+class _FR2R<bits<6> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : _F2R<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "DecodeR2RInstruction";
+}
+
+class _FRUS<bits<6> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<2, outs, ins, asmstr, pattern> {
+ let Inst{15-11} = opc{5-1};
+ let Inst{4} = opc{0};
+ let DecoderMethod = "DecodeRUSInstruction";
+}
+
+// RUS with bitp operand
+class _FRUSBitp<bits<6> opc, dag outs, dag ins, string asmstr,
+ list<dag> pattern>
+ : _FRUS<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "DecodeRUSBitpInstruction";
+}
+
+// RUS with first operand as both a source and a destination and a bitp second
+// operand
+class _FRUSSrcDstBitp<bits<6> opc, dag outs, dag ins, string asmstr,
+ list<dag> pattern>
+ : _FRUS<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "DecodeRUSSrcDstBitpInstruction";
+}
+
+class _FL2R<bits<10> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<4, outs, ins, asmstr, pattern> {
+ let Inst{31-27} = opc{9-5};
+ let Inst{26-20} = 0b1111110;
+ let Inst{19-16} = opc{4-1};
+
+ let Inst{15-11} = 0b11111;
+ let Inst{4} = opc{0};
+ let DecoderMethod = "DecodeL2RInstruction";
+}
+
+// Same as L2R with last two operands swapped
+class _FLR2R<bits<10> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : _FL2R<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "DecodeLR2RInstruction";
+}
+
+class _F1R<bits<6> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<2, outs, ins, asmstr, pattern> {
+ bits<4> a;
+
+ let Inst{15-11} = opc{5-1};
+ let Inst{10-5} = 0b111111;
+ let Inst{4} = opc{0};
+ let Inst{3-0} = a;
+}
+
+class _F0R<bits<10> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<2, outs, ins, asmstr, pattern> {
+ let Inst{15-11} = opc{9-5};
+ let Inst{10-5} = 0b111111;
+ let Inst{4-0} = opc{4-0};
+}
+
+class _FL4R<bits<6> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<4, outs, ins, asmstr, pattern> {
+ bits<4> d;
+
+ let Inst{31-27} = opc{5-1};
+ let Inst{26-21} = 0b111111;
+ let Inst{20} = opc{0};
+ let Inst{19-16} = d;
+ let Inst{15-11} = 0b11111;
+}
+
+// L4R with 4th operand as both a source and a destination.
+class _FL4RSrcDst<bits<6> opc, dag outs, dag ins, string asmstr,
+ list<dag> pattern>
+ : _FL4R<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "DecodeL4RSrcDstInstruction";
+}
+
+// L4R with 1st and 4th operand as both a source and a destination.
+class _FL4RSrcDstSrcDst<bits<6> opc, dag outs, dag ins, string asmstr,
+ list<dag> pattern>
+ : _FL4R<opc, outs, ins, asmstr, pattern> {
+ let DecoderMethod = "DecodeL4RSrcDstSrcDstInstruction";
+}
+
+class _FL5R<bits<6> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<4, outs, ins, asmstr, pattern> {
+ let Inst{31-27} = opc{5-1};
+ let Inst{20} = opc{0};
+ let Inst{15-11} = 0b11111;
+
+ let DecoderMethod = "DecodeL5RInstruction";
+}
+
+class _FL6R<bits<5> opc, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstXCore<4, outs, ins, asmstr, pattern> {
+ let Inst{31-27} = opc;
+ let Inst{15-11} = 0b11111;
+
+ let DecoderMethod = "DecodeL6RInstruction";
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.cpp b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.cpp
new file mode 100644
index 0000000..36ea9a0
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.cpp
@@ -0,0 +1,461 @@
+//===-- XCoreInstrInfo.cpp - XCore Instruction Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the XCore implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreInstrInfo.h"
+#include "XCore.h"
+#include "XCoreMachineFunctionInfo.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "XCoreGenInstrInfo.inc"
+
+namespace llvm {
+namespace XCore {
+
+ // XCore Condition Codes
+ enum CondCode {
+ COND_TRUE,
+ COND_FALSE,
+ COND_INVALID
+ };
+}
+}
+
+// Pin the vtable to this file.
+void XCoreInstrInfo::anchor() {}
+
+XCoreInstrInfo::XCoreInstrInfo()
+ : XCoreGenInstrInfo(XCore::ADJCALLSTACKDOWN, XCore::ADJCALLSTACKUP),
+ RI() {
+}
+
+static bool isZeroImm(const MachineOperand &op) {
+ return op.isImm() && op.getImm() == 0;
+}
+
+/// isLoadFromStackSlot - If the specified machine instruction is a direct
+/// load from a stack slot, return the virtual or physical register number of
+/// the destination along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than loading from the stack slot.
+unsigned
+XCoreInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const{
+ int Opcode = MI->getOpcode();
+ if (Opcode == XCore::LDWFI)
+ {
+ if ((MI->getOperand(1).isFI()) && // is a stack slot
+ (MI->getOperand(2).isImm()) && // the imm is zero
+ (isZeroImm(MI->getOperand(2))))
+ {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ }
+ return 0;
+}
+
+ /// isStoreToStackSlot - If the specified machine instruction is a direct
+ /// store to a stack slot, return the virtual or physical register number of
+ /// the source reg along with the FrameIndex of the loaded stack slot. If
+ /// not, return 0. This predicate must return 0 if the instruction has
+ /// any side effects other than storing to the stack slot.
+unsigned
+XCoreInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ int Opcode = MI->getOpcode();
+ if (Opcode == XCore::STWFI)
+ {
+ if ((MI->getOperand(1).isFI()) && // is a stack slot
+ (MI->getOperand(2).isImm()) && // the imm is zero
+ (isZeroImm(MI->getOperand(2))))
+ {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ }
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Branch Analysis
+//===----------------------------------------------------------------------===//
+
+static inline bool IsBRU(unsigned BrOpc) {
+ return BrOpc == XCore::BRFU_u6
+ || BrOpc == XCore::BRFU_lu6
+ || BrOpc == XCore::BRBU_u6
+ || BrOpc == XCore::BRBU_lu6;
+}
+
+static inline bool IsBRT(unsigned BrOpc) {
+ return BrOpc == XCore::BRFT_ru6
+ || BrOpc == XCore::BRFT_lru6
+ || BrOpc == XCore::BRBT_ru6
+ || BrOpc == XCore::BRBT_lru6;
+}
+
+static inline bool IsBRF(unsigned BrOpc) {
+ return BrOpc == XCore::BRFF_ru6
+ || BrOpc == XCore::BRFF_lru6
+ || BrOpc == XCore::BRBF_ru6
+ || BrOpc == XCore::BRBF_lru6;
+}
+
+static inline bool IsCondBranch(unsigned BrOpc) {
+ return IsBRF(BrOpc) || IsBRT(BrOpc);
+}
+
+static inline bool IsBR_JT(unsigned BrOpc) {
+ return BrOpc == XCore::BR_JT
+ || BrOpc == XCore::BR_JT32;
+}
+
+/// GetCondFromBranchOpc - Return the XCore CC that matches
+/// the correspondent Branch instruction opcode.
+static XCore::CondCode GetCondFromBranchOpc(unsigned BrOpc)
+{
+ if (IsBRT(BrOpc)) {
+ return XCore::COND_TRUE;
+ } else if (IsBRF(BrOpc)) {
+ return XCore::COND_FALSE;
+ } else {
+ return XCore::COND_INVALID;
+ }
+}
+
+/// GetCondBranchFromCond - Return the Branch instruction
+/// opcode that matches the cc.
+static inline unsigned GetCondBranchFromCond(XCore::CondCode CC)
+{
+ switch (CC) {
+ default: llvm_unreachable("Illegal condition code!");
+ case XCore::COND_TRUE : return XCore::BRFT_lru6;
+ case XCore::COND_FALSE : return XCore::BRFF_lru6;
+ }
+}
+
+/// GetOppositeBranchCondition - Return the inverse of the specified
+/// condition, e.g. turning COND_E to COND_NE.
+static inline XCore::CondCode GetOppositeBranchCondition(XCore::CondCode CC)
+{
+ switch (CC) {
+ default: llvm_unreachable("Illegal condition code!");
+ case XCore::COND_TRUE : return XCore::COND_FALSE;
+ case XCore::COND_FALSE : return XCore::COND_TRUE;
+ }
+}
+
+/// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
+/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
+/// implemented for a target). Upon success, this returns false and returns
+/// with the following information in various cases:
+///
+/// 1. If this block ends with no branches (it just falls through to its succ)
+/// just return false, leaving TBB/FBB null.
+/// 2. If this block ends with only an unconditional branch, it sets TBB to be
+/// the destination block.
+/// 3. If this block ends with an conditional branch and it falls through to
+/// an successor block, it sets TBB to be the branch destination block and a
+/// list of operands that evaluate the condition. These
+/// operands can be passed to other TargetInstrInfo methods to create new
+/// branches.
+/// 4. If this block ends with an conditional branch and an unconditional
+/// block, it returns the 'true' destination in TBB, the 'false' destination
+/// in FBB, and a list of operands that evaluate the condition. These
+/// operands can be passed to other TargetInstrInfo methods to create new
+/// branches.
+///
+/// Note that RemoveBranch and InsertBranch must be implemented to support
+/// cases where this method returns success.
+///
+bool
+XCoreInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return false;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return false;
+ --I;
+ }
+ if (!isUnpredicatedTerminator(I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ if (IsBRU(LastInst->getOpcode())) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ XCore::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
+ if (BranchCode == XCore::COND_INVALID)
+ return true; // Can't handle indirect branch.
+
+ // Conditional branch
+ // Block ends with fall-through condbranch.
+
+ TBB = LastInst->getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(BranchCode));
+ Cond.push_back(LastInst->getOperand(0));
+ return false;
+ }
+
+ // Get the instruction before it if it's a terminator.
+ MachineInstr *SecondLastInst = I;
+
+ // If there are three terminators, we don't know what sort of block this is.
+ if (SecondLastInst && I != MBB.begin() &&
+ isUnpredicatedTerminator(--I))
+ return true;
+
+ unsigned SecondLastOpc = SecondLastInst->getOpcode();
+ XCore::CondCode BranchCode = GetCondFromBranchOpc(SecondLastOpc);
+
+ // If the block ends with conditional branch followed by unconditional,
+ // handle it.
+ if (BranchCode != XCore::COND_INVALID
+ && IsBRU(LastInst->getOpcode())) {
+
+ TBB = SecondLastInst->getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(BranchCode));
+ Cond.push_back(SecondLastInst->getOperand(0));
+
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two unconditional branches, handle it. The second
+ // one is not executed, so remove it.
+ if (IsBRU(SecondLastInst->getOpcode()) &&
+ IsBRU(LastInst->getOpcode())) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // Likewise if it ends with a branch table followed by an unconditional branch.
+ if (IsBR_JT(SecondLastInst->getOpcode()) && IsBRU(LastInst->getOpcode())) {
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return true;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+unsigned
+XCoreInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL)const{
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0) &&
+ "Unexpected number of components!");
+
+ if (!FBB) { // One way branch.
+ if (Cond.empty()) {
+ // Unconditional branch
+ BuildMI(&MBB, DL, get(XCore::BRFU_lu6)).addMBB(TBB);
+ } else {
+ // Conditional branch.
+ unsigned Opc = GetCondBranchFromCond((XCore::CondCode)Cond[0].getImm());
+ BuildMI(&MBB, DL, get(Opc)).addReg(Cond[1].getReg())
+ .addMBB(TBB);
+ }
+ return 1;
+ }
+
+ // Two-way Conditional branch.
+ assert(Cond.size() == 2 && "Unexpected number of components!");
+ unsigned Opc = GetCondBranchFromCond((XCore::CondCode)Cond[0].getImm());
+ BuildMI(&MBB, DL, get(Opc)).addReg(Cond[1].getReg())
+ .addMBB(TBB);
+ BuildMI(&MBB, DL, get(XCore::BRFU_lu6)).addMBB(FBB);
+ return 2;
+}
+
+unsigned
+XCoreInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin()) return 0;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return 0;
+ --I;
+ }
+ if (!IsBRU(I->getOpcode()) && !IsCondBranch(I->getOpcode()))
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (!IsCondBranch(I->getOpcode()))
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+void XCoreInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ bool GRDest = XCore::GRRegsRegClass.contains(DestReg);
+ bool GRSrc = XCore::GRRegsRegClass.contains(SrcReg);
+
+ if (GRDest && GRSrc) {
+ BuildMI(MBB, I, DL, get(XCore::ADD_2rus), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .addImm(0);
+ return;
+ }
+
+ if (GRDest && SrcReg == XCore::SP) {
+ BuildMI(MBB, I, DL, get(XCore::LDAWSP_ru6), DestReg).addImm(0);
+ return;
+ }
+
+ if (DestReg == XCore::SP && GRSrc) {
+ BuildMI(MBB, I, DL, get(XCore::SETSP_1r))
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ llvm_unreachable("Impossible reg-to-reg copy");
+}
+
+void XCoreInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill,
+ int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const
+{
+ DebugLoc DL;
+ if (I != MBB.end() && !I->isDebugValue())
+ DL = I->getDebugLoc();
+ MachineFunction *MF = MBB.getParent();
+ const MachineFrameInfo &MFI = *MF->getFrameInfo();
+ MachineMemOperand *MMO =
+ MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIndex),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FrameIndex),
+ MFI.getObjectAlignment(FrameIndex));
+ BuildMI(MBB, I, DL, get(XCore::STWFI))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FrameIndex)
+ .addImm(0)
+ .addMemOperand(MMO);
+}
+
+void XCoreInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const
+{
+ DebugLoc DL;
+ if (I != MBB.end() && !I->isDebugValue())
+ DL = I->getDebugLoc();
+ MachineFunction *MF = MBB.getParent();
+ const MachineFrameInfo &MFI = *MF->getFrameInfo();
+ MachineMemOperand *MMO =
+ MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIndex),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FrameIndex),
+ MFI.getObjectAlignment(FrameIndex));
+ BuildMI(MBB, I, DL, get(XCore::LDWFI), DestReg)
+ .addFrameIndex(FrameIndex)
+ .addImm(0)
+ .addMemOperand(MMO);
+}
+
+/// ReverseBranchCondition - Return the inverse opcode of the
+/// specified Branch instruction.
+bool XCoreInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert((Cond.size() == 2) &&
+ "Invalid XCore branch condition!");
+ Cond[0].setImm(GetOppositeBranchCondition((XCore::CondCode)Cond[0].getImm()));
+ return false;
+}
+
+static inline bool isImmU6(unsigned val) {
+ return val < (1 << 6);
+}
+
+static inline bool isImmU16(unsigned val) {
+ return val < (1 << 16);
+}
+
+static bool isImmMskBitp(unsigned val) {
+ if (!isMask_32(val)) {
+ return false;
+ }
+ int N = Log2_32(val) + 1;
+ return (N >= 1 && N <= 8) || N == 16 || N == 24 || N == 32;
+}
+
+MachineBasicBlock::iterator XCoreInstrInfo::loadImmediate(
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned Reg, uint64_t Value) const {
+ DebugLoc dl;
+ if (MI != MBB.end() && !MI->isDebugValue())
+ dl = MI->getDebugLoc();
+ if (isImmMskBitp(Value)) {
+ int N = Log2_32(Value) + 1;
+ return BuildMI(MBB, MI, dl, get(XCore::MKMSK_rus), Reg).addImm(N);
+ }
+ if (isImmU16(Value)) {
+ int Opcode = isImmU6(Value) ? XCore::LDC_ru6 : XCore::LDC_lru6;
+ return BuildMI(MBB, MI, dl, get(Opcode), Reg).addImm(Value);
+ }
+ MachineConstantPool *ConstantPool = MBB.getParent()->getConstantPool();
+ const Constant *C = ConstantInt::get(
+ Type::getInt32Ty(MBB.getParent()->getFunction()->getContext()), Value);
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
+ return BuildMI(MBB, MI, dl, get(XCore::LDWCP_lru6), Reg)
+ .addConstantPoolIndex(Idx);
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.h b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.h
new file mode 100644
index 0000000..e0be96b
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.h
@@ -0,0 +1,94 @@
+//===-- XCoreInstrInfo.h - XCore Instruction Information --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the XCore implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCOREINSTRUCTIONINFO_H
+#define XCOREINSTRUCTIONINFO_H
+
+#include "XCoreRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "XCoreGenInstrInfo.inc"
+
+namespace llvm {
+
+class XCoreInstrInfo : public XCoreGenInstrInfo {
+ const XCoreRegisterInfo RI;
+ virtual void anchor();
+public:
+ XCoreInstrInfo();
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ const TargetRegisterInfo &getRegisterInfo() const { return RI; }
+
+ /// isLoadFromStackSlot - If the specified machine instruction is a direct
+ /// load from a stack slot, return the virtual or physical register number of
+ /// the destination along with the FrameIndex of the loaded stack slot. If
+ /// not, return 0. This predicate must return 0 if the instruction has
+ /// any side effects other than loading from the stack slot.
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ /// isStoreToStackSlot - If the specified machine instruction is a direct
+ /// store to a stack slot, return the virtual or physical register number of
+ /// the source reg along with the FrameIndex of the loaded stack slot. If
+ /// not, return 0. This predicate must return 0 if the instruction has
+ /// any side effects other than storing to the stack slot.
+ unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const override;
+
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const override;
+
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ bool ReverseBranchCondition(
+ SmallVectorImpl<MachineOperand> &Cond) const override;
+
+ // Emit code before MBBI to load immediate value into physical register Reg.
+ // Returns an iterator to the new instruction.
+ MachineBasicBlock::iterator loadImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned Reg, uint64_t Value) const;
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.td b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.td
new file mode 100644
index 0000000..00cb705
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.td
@@ -0,0 +1,1319 @@
+//===-- XCoreInstrInfo.td - Target Description for XCore ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the XCore instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+// Uses of CP, DP are not currently reflected in the patterns, since
+// having a physical register as an operand prevents loop hoisting and
+// since the value of these registers never changes during the life of the
+// function.
+
+//===----------------------------------------------------------------------===//
+// Instruction format superclass.
+//===----------------------------------------------------------------------===//
+
+include "XCoreInstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+// XCore specific DAG Nodes.
+//
+
+// Call
+def SDT_XCoreBranchLink : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
+def XCoreBranchLink : SDNode<"XCoreISD::BL",SDT_XCoreBranchLink,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+
+def XCoreRetsp : SDNode<"XCoreISD::RETSP", SDTBrind,
+ [SDNPHasChain, SDNPOptInGlue, SDNPMayLoad, SDNPVariadic]>;
+
+def SDT_XCoreEhRet : SDTypeProfile<0, 2,
+ [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
+def XCoreEhRet : SDNode<"XCoreISD::EH_RETURN", SDT_XCoreEhRet,
+ [SDNPHasChain, SDNPOptInGlue]>;
+
+def SDT_XCoreBR_JT : SDTypeProfile<0, 2,
+ [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
+
+def XCoreBR_JT : SDNode<"XCoreISD::BR_JT", SDT_XCoreBR_JT,
+ [SDNPHasChain]>;
+
+def XCoreBR_JT32 : SDNode<"XCoreISD::BR_JT32", SDT_XCoreBR_JT,
+ [SDNPHasChain]>;
+
+def SDT_XCoreAddress : SDTypeProfile<1, 1,
+ [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
+
+def pcrelwrapper : SDNode<"XCoreISD::PCRelativeWrapper", SDT_XCoreAddress,
+ []>;
+
+def dprelwrapper : SDNode<"XCoreISD::DPRelativeWrapper", SDT_XCoreAddress,
+ []>;
+
+def cprelwrapper : SDNode<"XCoreISD::CPRelativeWrapper", SDT_XCoreAddress,
+ []>;
+
+def frametoargsoffset : SDNode<"XCoreISD::FRAME_TO_ARGS_OFFSET", SDTIntLeaf,
+ []>;
+
+def SDT_XCoreStwsp : SDTypeProfile<0, 2, [SDTCisInt<1>]>;
+def XCoreStwsp : SDNode<"XCoreISD::STWSP", SDT_XCoreStwsp,
+ [SDNPHasChain, SDNPMayStore]>;
+
+def SDT_XCoreLdwsp : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
+def XCoreLdwsp : SDNode<"XCoreISD::LDWSP", SDT_XCoreLdwsp,
+ [SDNPHasChain, SDNPMayLoad]>;
+
+// These are target-independent nodes, but have target-specific formats.
+def SDT_XCoreCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
+def SDT_XCoreCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32> ]>;
+
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_XCoreCallSeqStart,
+ [SDNPHasChain, SDNPOutGlue]>;
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_XCoreCallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+def SDT_XCoreMEMBARRIER : SDTypeProfile<0, 0, []>;
+
+def XCoreMemBarrier : SDNode<"XCoreISD::MEMBARRIER", SDT_XCoreMEMBARRIER,
+ [SDNPHasChain]>;
+
+//===----------------------------------------------------------------------===//
+// Instruction Pattern Stuff
+//===----------------------------------------------------------------------===//
+
+def div4_xform : SDNodeXForm<imm, [{
+ // Transformation function: imm/4
+ assert(N->getZExtValue() % 4 == 0);
+ return getI32Imm(N->getZExtValue()/4);
+}]>;
+
+def msksize_xform : SDNodeXForm<imm, [{
+ // Transformation function: get the size of a mask
+ assert(isMask_32(N->getZExtValue()));
+ // look for the first non-zero bit
+ return getI32Imm(32 - countLeadingZeros((uint32_t)N->getZExtValue()));
+}]>;
+
+def neg_xform : SDNodeXForm<imm, [{
+ // Transformation function: -imm
+ uint32_t value = N->getZExtValue();
+ return getI32Imm(-value);
+}]>;
+
+def bpwsub_xform : SDNodeXForm<imm, [{
+ // Transformation function: 32-imm
+ uint32_t value = N->getZExtValue();
+ return getI32Imm(32-value);
+}]>;
+
+def div4neg_xform : SDNodeXForm<imm, [{
+ // Transformation function: -imm/4
+ uint32_t value = N->getZExtValue();
+ assert(-value % 4 == 0);
+ return getI32Imm(-value/4);
+}]>;
+
+def immUs4Neg : PatLeaf<(imm), [{
+ uint32_t value = (uint32_t)N->getZExtValue();
+ return (-value)%4 == 0 && (-value)/4 <= 11;
+}]>;
+
+def immUs4 : PatLeaf<(imm), [{
+ uint32_t value = (uint32_t)N->getZExtValue();
+ return value%4 == 0 && value/4 <= 11;
+}]>;
+
+def immUsNeg : PatLeaf<(imm), [{
+ return -((uint32_t)N->getZExtValue()) <= 11;
+}]>;
+
+def immUs : PatLeaf<(imm), [{
+ return (uint32_t)N->getZExtValue() <= 11;
+}]>;
+
+def immU6 : PatLeaf<(imm), [{
+ return (uint32_t)N->getZExtValue() < (1 << 6);
+}]>;
+
+def immU10 : PatLeaf<(imm), [{
+ return (uint32_t)N->getZExtValue() < (1 << 10);
+}]>;
+
+def immU16 : PatLeaf<(imm), [{
+ return (uint32_t)N->getZExtValue() < (1 << 16);
+}]>;
+
+def immU20 : PatLeaf<(imm), [{
+ return (uint32_t)N->getZExtValue() < (1 << 20);
+}]>;
+
+def immMskBitp : PatLeaf<(imm), [{ return immMskBitp(N); }]>;
+
+def immBitp : PatLeaf<(imm), [{
+ uint32_t value = (uint32_t)N->getZExtValue();
+ return (value >= 1 && value <= 8)
+ || value == 16
+ || value == 24
+ || value == 32;
+}]>;
+
+def immBpwSubBitp : PatLeaf<(imm), [{
+ uint32_t value = (uint32_t)N->getZExtValue();
+ return (value >= 24 && value <= 31)
+ || value == 16
+ || value == 8
+ || value == 0;
+}]>;
+
+def lda16f : PatFrag<(ops node:$addr, node:$offset),
+ (add node:$addr, (shl node:$offset, 1))>;
+def lda16b : PatFrag<(ops node:$addr, node:$offset),
+ (sub node:$addr, (shl node:$offset, 1))>;
+def ldawf : PatFrag<(ops node:$addr, node:$offset),
+ (add node:$addr, (shl node:$offset, 2))>;
+def ldawb : PatFrag<(ops node:$addr, node:$offset),
+ (sub node:$addr, (shl node:$offset, 2))>;
+
+// Instruction operand types
+def pcrel_imm : Operand<i32>;
+def pcrel_imm_neg : Operand<i32> {
+ let DecoderMethod = "DecodeNegImmOperand";
+}
+def brtarget : Operand<OtherVT>;
+def brtarget_neg : Operand<OtherVT> {
+ let DecoderMethod = "DecodeNegImmOperand";
+}
+
+// Addressing modes
+def ADDRspii : ComplexPattern<i32, 2, "SelectADDRspii", [add, frameindex], []>;
+
+// Address operands
+def MEMii : Operand<i32> {
+ let MIOperandInfo = (ops i32imm, i32imm);
+}
+
+// Jump tables.
+def InlineJT : Operand<i32> {
+ let PrintMethod = "printInlineJT";
+}
+
+def InlineJT32 : Operand<i32> {
+ let PrintMethod = "printInlineJT32";
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction Class Templates
+//===----------------------------------------------------------------------===//
+
+// Three operand short
+
+multiclass F3R_2RUS<bits<5> opc1, bits<5> opc2, string OpcStr, SDNode OpNode> {
+ def _3r: _F3R<opc1, (outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"),
+ [(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
+ def _2rus : _F2RUS<opc2, (outs GRRegs:$dst), (ins GRRegs:$b, i32imm:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"),
+ [(set GRRegs:$dst, (OpNode GRRegs:$b, immUs:$c))]>;
+}
+
+multiclass F3R_2RUS_np<bits<5> opc1, bits<5> opc2, string OpcStr> {
+ def _3r: _F3R<opc1, (outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"), []>;
+ def _2rus : _F2RUS<opc2, (outs GRRegs:$dst), (ins GRRegs:$b, i32imm:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"), []>;
+}
+
+multiclass F3R_2RBITP<bits<5> opc1, bits<5> opc2, string OpcStr,
+ SDNode OpNode> {
+ def _3r: _F3R<opc1, (outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"),
+ [(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
+ def _2rus : _F2RUSBitp<opc2, (outs GRRegs:$dst), (ins GRRegs:$b, i32imm:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"),
+ [(set GRRegs:$dst, (OpNode GRRegs:$b, immBitp:$c))]>;
+}
+
+class F3R<bits<5> opc, string OpcStr, SDNode OpNode> :
+ _F3R<opc, (outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"),
+ [(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
+
+class F3R_np<bits<5> opc, string OpcStr> :
+ _F3R<opc, (outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"), []>;
+// Three operand long
+
+/// FL3R_L2RUS multiclass - Define a normal FL3R/FL2RUS pattern in one shot.
+multiclass FL3R_L2RUS<bits<9> opc1, bits<9> opc2, string OpcStr,
+ SDNode OpNode> {
+ def _l3r: _FL3R<opc1, (outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"),
+ [(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
+ def _l2rus : _FL2RUS<opc2, (outs GRRegs:$dst), (ins GRRegs:$b, i32imm:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"),
+ [(set GRRegs:$dst, (OpNode GRRegs:$b, immUs:$c))]>;
+}
+
+/// FL3R_L2RUS multiclass - Define a normal FL3R/FL2RUS pattern in one shot.
+multiclass FL3R_L2RBITP<bits<9> opc1, bits<9> opc2, string OpcStr,
+ SDNode OpNode> {
+ def _l3r: _FL3R<opc1, (outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"),
+ [(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
+ def _l2rus : _FL2RUSBitp<opc2, (outs GRRegs:$dst), (ins GRRegs:$b, i32imm:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"),
+ [(set GRRegs:$dst, (OpNode GRRegs:$b, immBitp:$c))]>;
+}
+
+class FL3R<bits<9> opc, string OpcStr, SDNode OpNode> :
+ _FL3R<opc, (outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
+ !strconcat(OpcStr, " $dst, $b, $c"),
+ [(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
+
+// Register - U6
+// Operand register - U6
+multiclass FRU6_LRU6_branch<bits<6> opc, string OpcStr> {
+ def _ru6: _FRU6<opc, (outs), (ins GRRegs:$a, brtarget:$b),
+ !strconcat(OpcStr, " $a, $b"), []>;
+ def _lru6: _FLRU6<opc, (outs), (ins GRRegs:$a, brtarget:$b),
+ !strconcat(OpcStr, " $a, $b"), []>;
+}
+
+multiclass FRU6_LRU6_backwards_branch<bits<6> opc, string OpcStr> {
+ def _ru6: _FRU6<opc, (outs), (ins GRRegs:$a, brtarget_neg:$b),
+ !strconcat(OpcStr, " $a, $b"), []>;
+ def _lru6: _FLRU6<opc, (outs), (ins GRRegs:$a, brtarget_neg:$b),
+ !strconcat(OpcStr, " $a, $b"), []>;
+}
+
+
+// U6
+multiclass FU6_LU6<bits<10> opc, string OpcStr, SDNode OpNode> {
+ def _u6: _FU6<opc, (outs), (ins i32imm:$a), !strconcat(OpcStr, " $a"),
+ [(OpNode immU6:$a)]>;
+ def _lu6: _FLU6<opc, (outs), (ins i32imm:$a), !strconcat(OpcStr, " $a"),
+ [(OpNode immU16:$a)]>;
+}
+
+multiclass FU6_LU6_int<bits<10> opc, string OpcStr, Intrinsic Int> {
+ def _u6: _FU6<opc, (outs), (ins i32imm:$a), !strconcat(OpcStr, " $a"),
+ [(Int immU6:$a)]>;
+ def _lu6: _FLU6<opc, (outs), (ins i32imm:$a), !strconcat(OpcStr, " $a"),
+ [(Int immU16:$a)]>;
+}
+
+multiclass FU6_LU6_np<bits<10> opc, string OpcStr> {
+ def _u6: _FU6<opc, (outs), (ins i32imm:$a), !strconcat(OpcStr, " $a"), []>;
+ def _lu6: _FLU6<opc, (outs), (ins i32imm:$a), !strconcat(OpcStr, " $a"), []>;
+}
+
+// Two operand short
+
+class F2R_np<bits<6> opc, string OpcStr> :
+ _F2R<opc, (outs GRRegs:$dst), (ins GRRegs:$b),
+ !strconcat(OpcStr, " $dst, $b"), []>;
+
+// Two operand long
+
+//===----------------------------------------------------------------------===//
+// Pseudo Instructions
+//===----------------------------------------------------------------------===//
+
+let Defs = [SP], Uses = [SP] in {
+def ADJCALLSTACKDOWN : PseudoInstXCore<(outs), (ins i32imm:$amt),
+ "# ADJCALLSTACKDOWN $amt",
+ [(callseq_start timm:$amt)]>;
+def ADJCALLSTACKUP : PseudoInstXCore<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "# ADJCALLSTACKUP $amt1",
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+}
+
+let isReMaterializable = 1 in
+def FRAME_TO_ARGS_OFFSET : PseudoInstXCore<(outs GRRegs:$dst), (ins),
+ "# FRAME_TO_ARGS_OFFSET $dst",
+ [(set GRRegs:$dst, (frametoargsoffset))]>;
+
+let isReturn = 1, isTerminator = 1, isBarrier = 1 in
+def EH_RETURN : PseudoInstXCore<(outs), (ins GRRegs:$s, GRRegs:$handler),
+ "# EH_RETURN $s, $handler",
+ [(XCoreEhRet GRRegs:$s, GRRegs:$handler)]>;
+
+def LDWFI : PseudoInstXCore<(outs GRRegs:$dst), (ins MEMii:$addr),
+ "# LDWFI $dst, $addr",
+ [(set GRRegs:$dst, (load ADDRspii:$addr))]>;
+
+def LDAWFI : PseudoInstXCore<(outs GRRegs:$dst), (ins MEMii:$addr),
+ "# LDAWFI $dst, $addr",
+ [(set GRRegs:$dst, ADDRspii:$addr)]>;
+
+def STWFI : PseudoInstXCore<(outs), (ins GRRegs:$src, MEMii:$addr),
+ "# STWFI $src, $addr",
+ [(store GRRegs:$src, ADDRspii:$addr)]>;
+
+// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
+// instruction selection into a branch sequence.
+let usesCustomInserter = 1 in {
+ def SELECT_CC : PseudoInstXCore<(outs GRRegs:$dst),
+ (ins GRRegs:$cond, GRRegs:$T, GRRegs:$F),
+ "# SELECT_CC PSEUDO!",
+ [(set GRRegs:$dst,
+ (select GRRegs:$cond, GRRegs:$T, GRRegs:$F))]>;
+}
+
+let hasSideEffects = 1 in
+def Int_MemBarrier : PseudoInstXCore<(outs), (ins), "#MEMBARRIER",
+ [(XCoreMemBarrier)]>;
+
+//===----------------------------------------------------------------------===//
+// Instructions
+//===----------------------------------------------------------------------===//
+
+// Three operand short
+defm ADD : F3R_2RUS<0b00010, 0b10010, "add", add>;
+defm SUB : F3R_2RUS<0b00011, 0b10011, "sub", sub>;
+let neverHasSideEffects = 1 in {
+defm EQ : F3R_2RUS_np<0b00110, 0b10110, "eq">;
+def LSS_3r : F3R_np<0b11000, "lss">;
+def LSU_3r : F3R_np<0b11001, "lsu">;
+}
+def AND_3r : F3R<0b00111, "and", and>;
+def OR_3r : F3R<0b01000, "or", or>;
+
+let mayLoad=1 in {
+def LDW_3r : _F3R<0b01001, (outs GRRegs:$dst),
+ (ins GRRegs:$addr, GRRegs:$offset),
+ "ldw $dst, $addr[$offset]", []>;
+
+def LDW_2rus : _F2RUS<0b00001, (outs GRRegs:$dst),
+ (ins GRRegs:$addr, i32imm:$offset),
+ "ldw $dst, $addr[$offset]", []>;
+
+def LD16S_3r : _F3R<0b10000, (outs GRRegs:$dst),
+ (ins GRRegs:$addr, GRRegs:$offset),
+ "ld16s $dst, $addr[$offset]", []>;
+
+def LD8U_3r : _F3R<0b10001, (outs GRRegs:$dst),
+ (ins GRRegs:$addr, GRRegs:$offset),
+ "ld8u $dst, $addr[$offset]", []>;
+}
+
+let mayStore=1 in {
+def STW_l3r : _FL3R<0b000001100, (outs),
+ (ins GRRegs:$val, GRRegs:$addr, GRRegs:$offset),
+ "stw $val, $addr[$offset]", []>;
+
+def STW_2rus : _F2RUS<0b0000, (outs),
+ (ins GRRegs:$val, GRRegs:$addr, i32imm:$offset),
+ "stw $val, $addr[$offset]", []>;
+}
+
+defm SHL : F3R_2RBITP<0b00100, 0b10100, "shl", shl>;
+defm SHR : F3R_2RBITP<0b00101, 0b10101, "shr", srl>;
+
+// The first operand is treated as an immediate since it refers to a register
+// number in another thread.
+def TSETR_3r : _F3RImm<0b10111, (outs), (ins i32imm:$a, GRRegs:$b, GRRegs:$c),
+ "set t[$c]:r$a, $b", []>;
+
+// Three operand long
+def LDAWF_l3r : _FL3R<0b000111100, (outs GRRegs:$dst),
+ (ins GRRegs:$addr, GRRegs:$offset),
+ "ldaw $dst, $addr[$offset]",
+ [(set GRRegs:$dst,
+ (ldawf GRRegs:$addr, GRRegs:$offset))]>;
+
+let neverHasSideEffects = 1 in
+def LDAWF_l2rus : _FL2RUS<0b100111100, (outs GRRegs:$dst),
+ (ins GRRegs:$addr, i32imm:$offset),
+ "ldaw $dst, $addr[$offset]", []>;
+
+def LDAWB_l3r : _FL3R<0b001001100, (outs GRRegs:$dst),
+ (ins GRRegs:$addr, GRRegs:$offset),
+ "ldaw $dst, $addr[-$offset]",
+ [(set GRRegs:$dst,
+ (ldawb GRRegs:$addr, GRRegs:$offset))]>;
+
+let neverHasSideEffects = 1 in
+def LDAWB_l2rus : _FL2RUS<0b101001100, (outs GRRegs:$dst),
+ (ins GRRegs:$addr, i32imm:$offset),
+ "ldaw $dst, $addr[-$offset]", []>;
+
+def LDA16F_l3r : _FL3R<0b001011100, (outs GRRegs:$dst),
+ (ins GRRegs:$addr, GRRegs:$offset),
+ "lda16 $dst, $addr[$offset]",
+ [(set GRRegs:$dst,
+ (lda16f GRRegs:$addr, GRRegs:$offset))]>;
+
+def LDA16B_l3r : _FL3R<0b001101100, (outs GRRegs:$dst),
+ (ins GRRegs:$addr, GRRegs:$offset),
+ "lda16 $dst, $addr[-$offset]",
+ [(set GRRegs:$dst,
+ (lda16b GRRegs:$addr, GRRegs:$offset))]>;
+
+def MUL_l3r : FL3R<0b001111100, "mul", mul>;
+// Instructions which may trap are marked as side effecting.
+let hasSideEffects = 1 in {
+def DIVS_l3r : FL3R<0b010001100, "divs", sdiv>;
+def DIVU_l3r : FL3R<0b010011100, "divu", udiv>;
+def REMS_l3r : FL3R<0b110001100, "rems", srem>;
+def REMU_l3r : FL3R<0b110011100, "remu", urem>;
+}
+def XOR_l3r : FL3R<0b000011100, "xor", xor>;
+defm ASHR : FL3R_L2RBITP<0b000101100, 0b100101100, "ashr", sra>;
+
+let Constraints = "$src1 = $dst" in
+def CRC_l3r : _FL3RSrcDst<0b101011100, (outs GRRegs:$dst),
+ (ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3),
+ "crc32 $dst, $src2, $src3",
+ [(set GRRegs:$dst,
+ (int_xcore_crc32 GRRegs:$src1, GRRegs:$src2,
+ GRRegs:$src3))]>;
+
+let mayStore=1 in {
+def ST16_l3r : _FL3R<0b100001100, (outs),
+ (ins GRRegs:$val, GRRegs:$addr, GRRegs:$offset),
+ "st16 $val, $addr[$offset]", []>;
+
+def ST8_l3r : _FL3R<0b100011100, (outs),
+ (ins GRRegs:$val, GRRegs:$addr, GRRegs:$offset),
+ "st8 $val, $addr[$offset]", []>;
+}
+
+def INPW_l2rus : _FL2RUSBitp<0b100101110, (outs GRRegs:$a),
+ (ins GRRegs:$b, i32imm:$c), "inpw $a, res[$b], $c",
+ []>;
+
+def OUTPW_l2rus : _FL2RUSBitp<0b100101101, (outs),
+ (ins GRRegs:$a, GRRegs:$b, i32imm:$c),
+ "outpw res[$b], $a, $c", []>;
+
+// Four operand long
+let Constraints = "$e = $a,$f = $b" in {
+def MACCU_l4r : _FL4RSrcDstSrcDst<
+ 0b000001, (outs GRRegs:$a, GRRegs:$b),
+ (ins GRRegs:$e, GRRegs:$f, GRRegs:$c, GRRegs:$d), "maccu $a, $b, $c, $d", []>;
+
+def MACCS_l4r : _FL4RSrcDstSrcDst<
+ 0b000010, (outs GRRegs:$a, GRRegs:$b),
+ (ins GRRegs:$e, GRRegs:$f, GRRegs:$c, GRRegs:$d), "maccs $a, $b, $c, $d", []>;
+}
+
+let Constraints = "$e = $b" in
+def CRC8_l4r : _FL4RSrcDst<0b000000, (outs GRRegs:$a, GRRegs:$b),
+ (ins GRRegs:$e, GRRegs:$c, GRRegs:$d),
+ "crc8 $b, $a, $c, $d", []>;
+
+// Five operand long
+
+def LADD_l5r : _FL5R<0b000001, (outs GRRegs:$dst1, GRRegs:$dst2),
+ (ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3),
+ "ladd $dst2, $dst1, $src1, $src2, $src3",
+ []>;
+
+def LSUB_l5r : _FL5R<0b000010, (outs GRRegs:$dst1, GRRegs:$dst2),
+ (ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3),
+ "lsub $dst2, $dst1, $src1, $src2, $src3", []>;
+
+def LDIVU_l5r : _FL5R<0b000000, (outs GRRegs:$dst1, GRRegs:$dst2),
+ (ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3),
+ "ldivu $dst1, $dst2, $src3, $src1, $src2", []>;
+
+// Six operand long
+
+def LMUL_l6r : _FL6R<
+ 0b00000, (outs GRRegs:$dst1, GRRegs:$dst2),
+ (ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3, GRRegs:$src4),
+ "lmul $dst1, $dst2, $src1, $src2, $src3, $src4", []>;
+
+// Register - U6
+
+//let Uses = [DP] in ...
+let neverHasSideEffects = 1, isReMaterializable = 1 in
+def LDAWDP_ru6: _FRU6<0b011000, (outs RRegs:$a), (ins i32imm:$b),
+ "ldaw $a, dp[$b]", []>;
+
+let isReMaterializable = 1 in
+def LDAWDP_lru6: _FLRU6<0b011000, (outs RRegs:$a), (ins i32imm:$b),
+ "ldaw $a, dp[$b]",
+ [(set RRegs:$a, (dprelwrapper tglobaladdr:$b))]>;
+
+let mayLoad=1 in
+def LDWDP_ru6: _FRU6<0b010110, (outs RRegs:$a), (ins i32imm:$b),
+ "ldw $a, dp[$b]", []>;
+
+def LDWDP_lru6: _FLRU6<0b010110, (outs RRegs:$a), (ins i32imm:$b),
+ "ldw $a, dp[$b]",
+ [(set RRegs:$a, (load (dprelwrapper tglobaladdr:$b)))]>;
+
+let mayStore=1 in
+def STWDP_ru6 : _FRU6<0b010100, (outs), (ins RRegs:$a, i32imm:$b),
+ "stw $a, dp[$b]", []>;
+
+def STWDP_lru6 : _FLRU6<0b010100, (outs), (ins RRegs:$a, i32imm:$b),
+ "stw $a, dp[$b]",
+ [(store RRegs:$a, (dprelwrapper tglobaladdr:$b))]>;
+
+//let Uses = [CP] in ..
+let mayLoad = 1, isReMaterializable = 1, neverHasSideEffects = 1 in {
+def LDWCP_ru6 : _FRU6<0b011011, (outs RRegs:$a), (ins i32imm:$b),
+ "ldw $a, cp[$b]", []>;
+def LDWCP_lru6: _FLRU6<0b011011, (outs RRegs:$a), (ins i32imm:$b),
+ "ldw $a, cp[$b]",
+ [(set RRegs:$a, (load (cprelwrapper tglobaladdr:$b)))]>;
+}
+
+let Uses = [SP] in {
+let mayStore=1 in {
+def STWSP_ru6 : _FRU6<0b010101, (outs), (ins RRegs:$a, i32imm:$b),
+ "stw $a, sp[$b]",
+ [(XCoreStwsp RRegs:$a, immU6:$b)]>;
+
+def STWSP_lru6 : _FLRU6<0b010101, (outs), (ins RRegs:$a, i32imm:$b),
+ "stw $a, sp[$b]",
+ [(XCoreStwsp RRegs:$a, immU16:$b)]>;
+}
+
+let mayLoad=1 in {
+def LDWSP_ru6 : _FRU6<0b010111, (outs RRegs:$a), (ins i32imm:$b),
+ "ldw $a, sp[$b]",
+ [(set RRegs:$a, (XCoreLdwsp immU6:$b))]>;
+
+def LDWSP_lru6 : _FLRU6<0b010111, (outs RRegs:$a), (ins i32imm:$b),
+ "ldw $a, sp[$b]",
+ [(set RRegs:$a, (XCoreLdwsp immU16:$b))]>;
+}
+
+let neverHasSideEffects = 1 in {
+def LDAWSP_ru6 : _FRU6<0b011001, (outs RRegs:$a), (ins i32imm:$b),
+ "ldaw $a, sp[$b]", []>;
+
+def LDAWSP_lru6 : _FLRU6<0b011001, (outs RRegs:$a), (ins i32imm:$b),
+ "ldaw $a, sp[$b]", []>;
+}
+}
+
+let isReMaterializable = 1 in {
+def LDC_ru6 : _FRU6<0b011010, (outs RRegs:$a), (ins i32imm:$b),
+ "ldc $a, $b", [(set RRegs:$a, immU6:$b)]>;
+
+def LDC_lru6 : _FLRU6<0b011010, (outs RRegs:$a), (ins i32imm:$b),
+ "ldc $a, $b", [(set RRegs:$a, immU16:$b)]>;
+}
+
+def SETC_ru6 : _FRU6<0b111010, (outs), (ins GRRegs:$a, i32imm:$b),
+ "setc res[$a], $b",
+ [(int_xcore_setc GRRegs:$a, immU6:$b)]>;
+
+def SETC_lru6 : _FLRU6<0b111010, (outs), (ins GRRegs:$a, i32imm:$b),
+ "setc res[$a], $b",
+ [(int_xcore_setc GRRegs:$a, immU16:$b)]>;
+
+// Operand register - U6
+let isBranch = 1, isTerminator = 1 in {
+defm BRFT: FRU6_LRU6_branch<0b011100, "bt">;
+defm BRBT: FRU6_LRU6_backwards_branch<0b011101, "bt">;
+defm BRFF: FRU6_LRU6_branch<0b011110, "bf">;
+defm BRBF: FRU6_LRU6_backwards_branch<0b011111, "bf">;
+}
+
+// U6
+let Defs = [SP], Uses = [SP] in {
+let neverHasSideEffects = 1 in
+defm EXTSP : FU6_LU6_np<0b0111011110, "extsp">;
+
+let mayStore = 1 in
+defm ENTSP : FU6_LU6_np<0b0111011101, "entsp">;
+
+let isReturn = 1, isTerminator = 1, mayLoad = 1, isBarrier = 1 in {
+defm RETSP : FU6_LU6<0b0111011111, "retsp", XCoreRetsp>;
+}
+}
+
+let neverHasSideEffects = 1 in
+defm EXTDP : FU6_LU6_np<0b0111001110, "extdp">;
+
+let Uses = [R11], isCall=1 in
+defm BLAT : FU6_LU6_np<0b0111001101, "blat">;
+
+let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
+def BRBU_u6 : _FU6<0b0111011100, (outs), (ins brtarget_neg:$a), "bu $a", []>;
+
+def BRBU_lu6 : _FLU6<0b0111011100, (outs), (ins brtarget_neg:$a), "bu $a", []>;
+
+def BRFU_u6 : _FU6<0b0111001100, (outs), (ins brtarget:$a), "bu $a", []>;
+
+def BRFU_lu6 : _FLU6<0b0111001100, (outs), (ins brtarget:$a), "bu $a", []>;
+}
+
+//let Uses = [CP] in ...
+let Defs = [R11], neverHasSideEffects = 1, isReMaterializable = 1 in
+def LDAWCP_u6: _FU6<0b0111111101, (outs), (ins i32imm:$a), "ldaw r11, cp[$a]",
+ []>;
+
+let Defs = [R11], isReMaterializable = 1 in
+def LDAWCP_lu6: _FLU6<0b0111111101, (outs), (ins i32imm:$a), "ldaw r11, cp[$a]",
+ [(set R11, (cprelwrapper tglobaladdr:$a))]>;
+
+let Defs = [R11] in
+defm GETSR : FU6_LU6_np<0b0111111100, "getsr r11,">;
+
+defm SETSR : FU6_LU6_int<0b0111101101, "setsr", int_xcore_setsr>;
+
+defm CLRSR : FU6_LU6_int<0b0111101100, "clrsr", int_xcore_clrsr>;
+
+// setsr may cause a branch if it is used to enable events. clrsr may
+// branch if it is executed while events are enabled.
+let isBranch=1, isIndirectBranch=1, isTerminator=1, isBarrier = 1,
+ isCodeGenOnly = 1 in {
+defm SETSR_branch : FU6_LU6_np<0b0111101101, "setsr">;
+defm CLRSR_branch : FU6_LU6_np<0b0111101100, "clrsr">;
+}
+
+defm KCALL : FU6_LU6_np<0b0111001111, "kcall">;
+
+let Uses = [SP], Defs = [SP], mayStore = 1 in
+defm KENTSP : FU6_LU6_np<0b0111101110, "kentsp">;
+
+let Uses = [SP], Defs = [SP], mayLoad = 1 in
+defm KRESTSP : FU6_LU6_np<0b0111101111, "krestsp">;
+
+// U10
+
+let Defs = [R11], isReMaterializable = 1 in {
+let neverHasSideEffects = 1 in
+def LDAPF_u10 : _FU10<0b110110, (outs), (ins pcrel_imm:$a), "ldap r11, $a", []>;
+
+def LDAPF_lu10 : _FLU10<0b110110, (outs), (ins pcrel_imm:$a), "ldap r11, $a",
+ [(set R11, (pcrelwrapper tglobaladdr:$a))]>;
+
+let neverHasSideEffects = 1 in
+def LDAPB_u10 : _FU10<0b110111, (outs), (ins pcrel_imm_neg:$a), "ldap r11, $a",
+ []>;
+
+let neverHasSideEffects = 1 in
+def LDAPB_lu10 : _FLU10<0b110111, (outs), (ins pcrel_imm_neg:$a),
+ "ldap r11, $a",
+ [(set R11, (pcrelwrapper tglobaladdr:$a))]>;
+
+let isCodeGenOnly = 1 in
+def LDAPF_lu10_ba : _FLU10<0b110110, (outs), (ins pcrel_imm:$a), "ldap r11, $a",
+ [(set R11, (pcrelwrapper tblockaddress:$a))]>;
+}
+
+let isCall=1,
+// All calls clobber the link register and the non-callee-saved registers:
+Defs = [R0, R1, R2, R3, R11, LR], Uses = [SP] in {
+def BLACP_u10 : _FU10<0b111000, (outs), (ins i32imm:$a), "bla cp[$a]", []>;
+
+def BLACP_lu10 : _FLU10<0b111000, (outs), (ins i32imm:$a), "bla cp[$a]", []>;
+
+def BLRF_u10 : _FU10<0b110100, (outs), (ins pcrel_imm:$a), "bl $a",
+ []>;
+
+def BLRF_lu10 : _FLU10<0b110100, (outs), (ins pcrel_imm:$a), "bl $a",
+ [(XCoreBranchLink tglobaladdr:$a)]>;
+
+def BLRB_u10 : _FU10<0b110101, (outs), (ins pcrel_imm_neg:$a), "bl $a", []>;
+
+def BLRB_lu10 : _FLU10<0b110101, (outs), (ins pcrel_imm_neg:$a), "bl $a", []>;
+}
+
+let Defs = [R11], mayLoad = 1, isReMaterializable = 1,
+ neverHasSideEffects = 1 in {
+def LDWCP_u10 : _FU10<0b111001, (outs), (ins i32imm:$a), "ldw r11, cp[$a]", []>;
+
+def LDWCP_lu10 : _FLU10<0b111001, (outs), (ins i32imm:$a), "ldw r11, cp[$a]",
+ []>;
+}
+
+// Two operand short
+def NOT : _F2R<0b100010, (outs GRRegs:$dst), (ins GRRegs:$b),
+ "not $dst, $b", [(set GRRegs:$dst, (not GRRegs:$b))]>;
+
+def NEG : _F2R<0b100100, (outs GRRegs:$dst), (ins GRRegs:$b),
+ "neg $dst, $b", [(set GRRegs:$dst, (ineg GRRegs:$b))]>;
+
+let Constraints = "$src1 = $dst" in {
+def SEXT_rus :
+ _FRUSSrcDstBitp<0b001101, (outs GRRegs:$dst), (ins GRRegs:$src1, i32imm:$src2),
+ "sext $dst, $src2",
+ [(set GRRegs:$dst, (int_xcore_sext GRRegs:$src1,
+ immBitp:$src2))]>;
+
+def SEXT_2r :
+ _F2RSrcDst<0b001100, (outs GRRegs:$dst), (ins GRRegs:$src1, GRRegs:$src2),
+ "sext $dst, $src2",
+ [(set GRRegs:$dst, (int_xcore_sext GRRegs:$src1, GRRegs:$src2))]>;
+
+def ZEXT_rus :
+ _FRUSSrcDstBitp<0b010001, (outs GRRegs:$dst), (ins GRRegs:$src1, i32imm:$src2),
+ "zext $dst, $src2",
+ [(set GRRegs:$dst, (int_xcore_zext GRRegs:$src1,
+ immBitp:$src2))]>;
+
+def ZEXT_2r :
+ _F2RSrcDst<0b010000, (outs GRRegs:$dst), (ins GRRegs:$src1, GRRegs:$src2),
+ "zext $dst, $src2",
+ [(set GRRegs:$dst, (int_xcore_zext GRRegs:$src1, GRRegs:$src2))]>;
+
+def ANDNOT_2r :
+ _F2RSrcDst<0b001010, (outs GRRegs:$dst), (ins GRRegs:$src1, GRRegs:$src2),
+ "andnot $dst, $src2",
+ [(set GRRegs:$dst, (and GRRegs:$src1, (not GRRegs:$src2)))]>;
+}
+
+let isReMaterializable = 1, neverHasSideEffects = 1 in
+def MKMSK_rus : _FRUSBitp<0b101001, (outs GRRegs:$dst), (ins i32imm:$size),
+ "mkmsk $dst, $size", []>;
+
+def MKMSK_2r : _F2R<0b101000, (outs GRRegs:$dst), (ins GRRegs:$size),
+ "mkmsk $dst, $size",
+ [(set GRRegs:$dst, (add (shl 1, GRRegs:$size), -1))]>;
+
+def GETR_rus : _FRUS<0b100000, (outs GRRegs:$dst), (ins i32imm:$type),
+ "getr $dst, $type",
+ [(set GRRegs:$dst, (int_xcore_getr immUs:$type))]>;
+
+def GETTS_2r : _F2R<0b001110, (outs GRRegs:$dst), (ins GRRegs:$r),
+ "getts $dst, res[$r]",
+ [(set GRRegs:$dst, (int_xcore_getts GRRegs:$r))]>;
+
+def SETPT_2r : _FR2R<0b001111, (outs), (ins GRRegs:$r, GRRegs:$val),
+ "setpt res[$r], $val",
+ [(int_xcore_setpt GRRegs:$r, GRRegs:$val)]>;
+
+def OUTCT_2r : _F2R<0b010010, (outs), (ins GRRegs:$r, GRRegs:$val),
+ "outct res[$r], $val",
+ [(int_xcore_outct GRRegs:$r, GRRegs:$val)]>;
+
+def OUTCT_rus : _FRUS<0b010011, (outs), (ins GRRegs:$r, i32imm:$val),
+ "outct res[$r], $val",
+ [(int_xcore_outct GRRegs:$r, immUs:$val)]>;
+
+def OUTT_2r : _FR2R<0b000011, (outs), (ins GRRegs:$r, GRRegs:$val),
+ "outt res[$r], $val",
+ [(int_xcore_outt GRRegs:$r, GRRegs:$val)]>;
+
+def OUT_2r : _FR2R<0b101010, (outs), (ins GRRegs:$r, GRRegs:$val),
+ "out res[$r], $val",
+ [(int_xcore_out GRRegs:$r, GRRegs:$val)]>;
+
+let Constraints = "$src = $dst" in
+def OUTSHR_2r :
+ _F2RSrcDst<0b101011, (outs GRRegs:$dst), (ins GRRegs:$src, GRRegs:$r),
+ "outshr res[$r], $src",
+ [(set GRRegs:$dst, (int_xcore_outshr GRRegs:$r, GRRegs:$src))]>;
+
+def INCT_2r : _F2R<0b100001, (outs GRRegs:$dst), (ins GRRegs:$r),
+ "inct $dst, res[$r]",
+ [(set GRRegs:$dst, (int_xcore_inct GRRegs:$r))]>;
+
+def INT_2r : _F2R<0b100011, (outs GRRegs:$dst), (ins GRRegs:$r),
+ "int $dst, res[$r]",
+ [(set GRRegs:$dst, (int_xcore_int GRRegs:$r))]>;
+
+def IN_2r : _F2R<0b101100, (outs GRRegs:$dst), (ins GRRegs:$r),
+ "in $dst, res[$r]",
+ [(set GRRegs:$dst, (int_xcore_in GRRegs:$r))]>;
+
+let Constraints = "$src = $dst" in
+def INSHR_2r :
+ _F2RSrcDst<0b101101, (outs GRRegs:$dst), (ins GRRegs:$src, GRRegs:$r),
+ "inshr $dst, res[$r]",
+ [(set GRRegs:$dst, (int_xcore_inshr GRRegs:$r, GRRegs:$src))]>;
+
+def CHKCT_2r : _F2R<0b110010, (outs), (ins GRRegs:$r, GRRegs:$val),
+ "chkct res[$r], $val",
+ [(int_xcore_chkct GRRegs:$r, GRRegs:$val)]>;
+
+def CHKCT_rus : _FRUSBitp<0b110011, (outs), (ins GRRegs:$r, i32imm:$val),
+ "chkct res[$r], $val",
+ [(int_xcore_chkct GRRegs:$r, immUs:$val)]>;
+
+def TESTCT_2r : _F2R<0b101111, (outs GRRegs:$dst), (ins GRRegs:$src),
+ "testct $dst, res[$src]",
+ [(set GRRegs:$dst, (int_xcore_testct GRRegs:$src))]>;
+
+def TESTWCT_2r : _F2R<0b110001, (outs GRRegs:$dst), (ins GRRegs:$src),
+ "testwct $dst, res[$src]",
+ [(set GRRegs:$dst, (int_xcore_testwct GRRegs:$src))]>;
+
+def SETD_2r : _FR2R<0b000101, (outs), (ins GRRegs:$r, GRRegs:$val),
+ "setd res[$r], $val",
+ [(int_xcore_setd GRRegs:$r, GRRegs:$val)]>;
+
+def SETPSC_2r : _FR2R<0b110000, (outs), (ins GRRegs:$src1, GRRegs:$src2),
+ "setpsc res[$src1], $src2",
+ [(int_xcore_setpsc GRRegs:$src1, GRRegs:$src2)]>;
+
+def GETST_2r : _F2R<0b000001, (outs GRRegs:$dst), (ins GRRegs:$r),
+ "getst $dst, res[$r]",
+ [(set GRRegs:$dst, (int_xcore_getst GRRegs:$r))]>;
+
+def INITSP_2r : _F2R<0b000100, (outs), (ins GRRegs:$src, GRRegs:$t),
+ "init t[$t]:sp, $src",
+ [(int_xcore_initsp GRRegs:$t, GRRegs:$src)]>;
+
+def INITPC_2r : _F2R<0b000000, (outs), (ins GRRegs:$src, GRRegs:$t),
+ "init t[$t]:pc, $src",
+ [(int_xcore_initpc GRRegs:$t, GRRegs:$src)]>;
+
+def INITCP_2r : _F2R<0b000110, (outs), (ins GRRegs:$src, GRRegs:$t),
+ "init t[$t]:cp, $src",
+ [(int_xcore_initcp GRRegs:$t, GRRegs:$src)]>;
+
+def INITDP_2r : _F2R<0b000010, (outs), (ins GRRegs:$src, GRRegs:$t),
+ "init t[$t]:dp, $src",
+ [(int_xcore_initdp GRRegs:$t, GRRegs:$src)]>;
+
+def PEEK_2r : _F2R<0b101110, (outs GRRegs:$dst), (ins GRRegs:$src),
+ "peek $dst, res[$src]",
+ [(set GRRegs:$dst, (int_xcore_peek GRRegs:$src))]>;
+
+def ENDIN_2r : _F2R<0b100101, (outs GRRegs:$dst), (ins GRRegs:$src),
+ "endin $dst, res[$src]",
+ [(set GRRegs:$dst, (int_xcore_endin GRRegs:$src))]>;
+
+def EEF_2r : _F2R<0b001011, (outs), (ins GRRegs:$a, GRRegs:$b),
+ "eef $a, res[$b]", []>;
+
+def EET_2r : _F2R<0b001001, (outs), (ins GRRegs:$a, GRRegs:$b),
+ "eet $a, res[$b]", []>;
+
+def TSETMR_2r : _F2RImm<0b000111, (outs), (ins i32imm:$a, GRRegs:$b),
+ "tsetmr r$a, $b", []>;
+
+// Two operand long
+def BITREV_l2r : _FL2R<0b0000011000, (outs GRRegs:$dst), (ins GRRegs:$src),
+ "bitrev $dst, $src",
+ [(set GRRegs:$dst, (int_xcore_bitrev GRRegs:$src))]>;
+
+def BYTEREV_l2r : _FL2R<0b0000011001, (outs GRRegs:$dst), (ins GRRegs:$src),
+ "byterev $dst, $src",
+ [(set GRRegs:$dst, (bswap GRRegs:$src))]>;
+
+def CLZ_l2r : _FL2R<0b000111000, (outs GRRegs:$dst), (ins GRRegs:$src),
+ "clz $dst, $src",
+ [(set GRRegs:$dst, (ctlz GRRegs:$src))]>;
+
+def GETD_l2r : _FL2R<0b0001111001, (outs GRRegs:$dst), (ins GRRegs:$src),
+ "getd $dst, res[$src]", []>;
+
+def GETN_l2r : _FL2R<0b0011011001, (outs GRRegs:$dst), (ins GRRegs:$src),
+ "getn $dst, res[$src]", []>;
+
+def SETC_l2r : _FL2R<0b0010111001, (outs), (ins GRRegs:$r, GRRegs:$val),
+ "setc res[$r], $val",
+ [(int_xcore_setc GRRegs:$r, GRRegs:$val)]>;
+
+def SETTW_l2r : _FLR2R<0b0010011001, (outs), (ins GRRegs:$r, GRRegs:$val),
+ "settw res[$r], $val",
+ [(int_xcore_settw GRRegs:$r, GRRegs:$val)]>;
+
+def GETPS_l2r : _FL2R<0b0001011001, (outs GRRegs:$dst), (ins GRRegs:$src),
+ "get $dst, ps[$src]",
+ [(set GRRegs:$dst, (int_xcore_getps GRRegs:$src))]>;
+
+def SETPS_l2r : _FLR2R<0b0001111000, (outs), (ins GRRegs:$src1, GRRegs:$src2),
+ "set ps[$src1], $src2",
+ [(int_xcore_setps GRRegs:$src1, GRRegs:$src2)]>;
+
+def INITLR_l2r : _FL2R<0b0001011000, (outs), (ins GRRegs:$src, GRRegs:$t),
+ "init t[$t]:lr, $src",
+ [(int_xcore_initlr GRRegs:$t, GRRegs:$src)]>;
+
+def SETCLK_l2r : _FLR2R<0b0000111001, (outs), (ins GRRegs:$src1, GRRegs:$src2),
+ "setclk res[$src1], $src2",
+ [(int_xcore_setclk GRRegs:$src1, GRRegs:$src2)]>;
+
+def SETN_l2r : _FLR2R<0b0011011000, (outs), (ins GRRegs:$src1, GRRegs:$src2),
+ "setn res[$src1], $src2", []>;
+
+def SETRDY_l2r : _FLR2R<0b0010111000, (outs), (ins GRRegs:$src1, GRRegs:$src2),
+ "setrdy res[$src1], $src2",
+ [(int_xcore_setrdy GRRegs:$src1, GRRegs:$src2)]>;
+
+def TESTLCL_l2r : _FL2R<0b0010011000, (outs GRRegs:$dst), (ins GRRegs:$src),
+ "testlcl $dst, res[$src]", []>;
+
+// One operand short
+def MSYNC_1r : _F1R<0b000111, (outs), (ins GRRegs:$a),
+ "msync res[$a]",
+ [(int_xcore_msync GRRegs:$a)]>;
+def MJOIN_1r : _F1R<0b000101, (outs), (ins GRRegs:$a),
+ "mjoin res[$a]",
+ [(int_xcore_mjoin GRRegs:$a)]>;
+
+let isBranch=1, isIndirectBranch=1, isTerminator=1, isBarrier = 1 in
+def BAU_1r : _F1R<0b001001, (outs), (ins GRRegs:$a),
+ "bau $a",
+ [(brind GRRegs:$a)]>;
+
+let isBranch=1, isIndirectBranch=1, isTerminator=1, isBarrier = 1 in
+def BR_JT : PseudoInstXCore<(outs), (ins InlineJT:$t, GRRegs:$i),
+ "bru $i\n$t",
+ [(XCoreBR_JT tjumptable:$t, GRRegs:$i)]>;
+
+let isBranch=1, isIndirectBranch=1, isTerminator=1, isBarrier = 1 in
+def BR_JT32 : PseudoInstXCore<(outs), (ins InlineJT32:$t, GRRegs:$i),
+ "bru $i\n$t",
+ [(XCoreBR_JT32 tjumptable:$t, GRRegs:$i)]>;
+
+let isBranch=1, isIndirectBranch=1, isTerminator=1, isBarrier = 1 in
+def BRU_1r : _F1R<0b001010, (outs), (ins GRRegs:$a), "bru $a", []>;
+
+let Defs=[SP], neverHasSideEffects=1 in
+def SETSP_1r : _F1R<0b001011, (outs), (ins GRRegs:$a), "set sp, $a", []>;
+
+let neverHasSideEffects=1 in
+def SETDP_1r : _F1R<0b001100, (outs), (ins GRRegs:$a), "set dp, $a", []>;
+
+let neverHasSideEffects=1 in
+def SETCP_1r : _F1R<0b001101, (outs), (ins GRRegs:$a), "set cp, $a", []>;
+
+let hasCtrlDep = 1 in
+def ECALLT_1r : _F1R<0b010011, (outs), (ins GRRegs:$a),
+ "ecallt $a",
+ []>;
+
+let hasCtrlDep = 1 in
+def ECALLF_1r : _F1R<0b010010, (outs), (ins GRRegs:$a),
+ "ecallf $a",
+ []>;
+
+let isCall=1,
+// All calls clobber the link register and the non-callee-saved registers:
+Defs = [R0, R1, R2, R3, R11, LR], Uses = [SP] in {
+def BLA_1r : _F1R<0b001000, (outs), (ins GRRegs:$a),
+ "bla $a",
+ [(XCoreBranchLink GRRegs:$a)]>;
+}
+
+def SYNCR_1r : _F1R<0b100001, (outs), (ins GRRegs:$a),
+ "syncr res[$a]",
+ [(int_xcore_syncr GRRegs:$a)]>;
+
+def FREER_1r : _F1R<0b000100, (outs), (ins GRRegs:$a),
+ "freer res[$a]",
+ [(int_xcore_freer GRRegs:$a)]>;
+
+let Uses=[R11] in {
+def SETV_1r : _F1R<0b010001, (outs), (ins GRRegs:$a),
+ "setv res[$a], r11",
+ [(int_xcore_setv GRRegs:$a, R11)]>;
+
+def SETEV_1r : _F1R<0b001111, (outs), (ins GRRegs:$a),
+ "setev res[$a], r11",
+ [(int_xcore_setev GRRegs:$a, R11)]>;
+}
+
+def DGETREG_1r : _F1R<0b001110, (outs GRRegs:$a), (ins), "dgetreg $a", []>;
+
+def EDU_1r : _F1R<0b000000, (outs), (ins GRRegs:$a), "edu res[$a]",
+ [(int_xcore_edu GRRegs:$a)]>;
+
+def EEU_1r : _F1R<0b000001, (outs), (ins GRRegs:$a),
+ "eeu res[$a]",
+ [(int_xcore_eeu GRRegs:$a)]>;
+
+def KCALL_1r : _F1R<0b010000, (outs), (ins GRRegs:$a), "kcall $a", []>;
+
+def WAITEF_1R : _F1R<0b000011, (outs), (ins GRRegs:$a), "waitef $a", []>;
+
+def WAITET_1R : _F1R<0b000010, (outs), (ins GRRegs:$a), "waitet $a", []>;
+
+def TSTART_1R : _F1R<0b000110, (outs), (ins GRRegs:$a), "start t[$a]", []>;
+
+def CLRPT_1R : _F1R<0b100000, (outs), (ins GRRegs:$a), "clrpt res[$a]",
+ [(int_xcore_clrpt GRRegs:$a)]>;
+
+// Zero operand short
+
+def CLRE_0R : _F0R<0b0000001101, (outs), (ins), "clre", [(int_xcore_clre)]>;
+
+def DCALL_0R : _F0R<0b0000011100, (outs), (ins), "dcall", []>;
+
+let Defs = [SP], Uses = [SP] in
+def DENTSP_0R : _F0R<0b0001001100, (outs), (ins), "dentsp", []>;
+
+let Defs = [SP] in
+def DRESTSP_0R : _F0R<0b0001001101, (outs), (ins), "drestsp", []>;
+
+def DRET_0R : _F0R<0b0000011110, (outs), (ins), "dret", []>;
+
+def FREET_0R : _F0R<0b0000001111, (outs), (ins), "freet", []>;
+
+let Defs = [R11] in {
+def GETID_0R : _F0R<0b0001001110, (outs), (ins),
+ "get r11, id",
+ [(set R11, (int_xcore_getid))]>;
+
+def GETED_0R : _F0R<0b0000111110, (outs), (ins),
+ "get r11, ed",
+ [(set R11, (int_xcore_geted))]>;
+
+def GETET_0R : _F0R<0b0000111111, (outs), (ins),
+ "get r11, et",
+ [(set R11, (int_xcore_getet))]>;
+
+def GETKEP_0R : _F0R<0b0001001111, (outs), (ins),
+ "get r11, kep", []>;
+
+def GETKSP_0R : _F0R<0b0001011100, (outs), (ins),
+ "get r11, ksp", []>;
+}
+
+let Defs = [SP] in
+def KRET_0R : _F0R<0b0000011101, (outs), (ins), "kret", []>;
+
+let Uses = [SP], mayLoad = 1 in {
+def LDET_0R : _F0R<0b0001011110, (outs), (ins), "ldw et, sp[4]", []>;
+
+def LDSED_0R : _F0R<0b0001011101, (outs), (ins), "ldw sed, sp[3]", []>;
+
+def LDSPC_0R : _F0R<0b0000101100, (outs), (ins), "ldw spc, sp[1]", []>;
+
+def LDSSR_0R : _F0R<0b0000101110, (outs), (ins), "ldw ssr, sp[2]", []>;
+}
+
+let Uses=[R11] in
+def SETKEP_0R : _F0R<0b0000011111, (outs), (ins), "set kep, r11", []>;
+
+def SSYNC_0r : _F0R<0b0000001110, (outs), (ins),
+ "ssync",
+ [(int_xcore_ssync)]>;
+
+let Uses = [SP], mayStore = 1 in {
+def STET_0R : _F0R<0b0000111101, (outs), (ins), "stw et, sp[4]", []>;
+
+def STSED_0R : _F0R<0b0000111100, (outs), (ins), "stw sed, sp[3]", []>;
+
+def STSPC_0R : _F0R<0b0000101101, (outs), (ins), "stw spc, sp[1]", []>;
+
+def STSSR_0R : _F0R<0b0000101111, (outs), (ins), "stw ssr, sp[2]", []>;
+}
+
+let isBranch=1, isIndirectBranch=1, isTerminator=1, isBarrier = 1,
+ hasSideEffects = 1 in
+def WAITEU_0R : _F0R<0b0000001100, (outs), (ins),
+ "waiteu",
+ [(brind (int_xcore_waitevent))]>;
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//===----------------------------------------------------------------------===//
+
+def : Pat<(XCoreBranchLink texternalsym:$addr), (BLRF_lu10 texternalsym:$addr)>;
+
+/// sext_inreg
+def : Pat<(sext_inreg GRRegs:$b, i1), (SEXT_rus GRRegs:$b, 1)>;
+def : Pat<(sext_inreg GRRegs:$b, i8), (SEXT_rus GRRegs:$b, 8)>;
+def : Pat<(sext_inreg GRRegs:$b, i16), (SEXT_rus GRRegs:$b, 16)>;
+
+/// loads
+def : Pat<(zextloadi8 (add GRRegs:$addr, GRRegs:$offset)),
+ (LD8U_3r GRRegs:$addr, GRRegs:$offset)>;
+def : Pat<(zextloadi8 GRRegs:$addr), (LD8U_3r GRRegs:$addr, (LDC_ru6 0))>;
+
+def : Pat<(sextloadi16 (lda16f GRRegs:$addr, GRRegs:$offset)),
+ (LD16S_3r GRRegs:$addr, GRRegs:$offset)>;
+def : Pat<(sextloadi16 GRRegs:$addr), (LD16S_3r GRRegs:$addr, (LDC_ru6 0))>;
+
+def : Pat<(load (ldawf GRRegs:$addr, GRRegs:$offset)),
+ (LDW_3r GRRegs:$addr, GRRegs:$offset)>;
+def : Pat<(load (add GRRegs:$addr, immUs4:$offset)),
+ (LDW_2rus GRRegs:$addr, (div4_xform immUs4:$offset))>;
+def : Pat<(load GRRegs:$addr), (LDW_2rus GRRegs:$addr, 0)>;
+
+/// anyext
+def : Pat<(extloadi8 (add GRRegs:$addr, GRRegs:$offset)),
+ (LD8U_3r GRRegs:$addr, GRRegs:$offset)>;
+def : Pat<(extloadi8 GRRegs:$addr), (LD8U_3r GRRegs:$addr, (LDC_ru6 0))>;
+def : Pat<(extloadi16 (lda16f GRRegs:$addr, GRRegs:$offset)),
+ (LD16S_3r GRRegs:$addr, GRRegs:$offset)>;
+def : Pat<(extloadi16 GRRegs:$addr), (LD16S_3r GRRegs:$addr, (LDC_ru6 0))>;
+
+/// stores
+def : Pat<(truncstorei8 GRRegs:$val, (add GRRegs:$addr, GRRegs:$offset)),
+ (ST8_l3r GRRegs:$val, GRRegs:$addr, GRRegs:$offset)>;
+def : Pat<(truncstorei8 GRRegs:$val, GRRegs:$addr),
+ (ST8_l3r GRRegs:$val, GRRegs:$addr, (LDC_ru6 0))>;
+
+def : Pat<(truncstorei16 GRRegs:$val, (lda16f GRRegs:$addr, GRRegs:$offset)),
+ (ST16_l3r GRRegs:$val, GRRegs:$addr, GRRegs:$offset)>;
+def : Pat<(truncstorei16 GRRegs:$val, GRRegs:$addr),
+ (ST16_l3r GRRegs:$val, GRRegs:$addr, (LDC_ru6 0))>;
+
+def : Pat<(store GRRegs:$val, (ldawf GRRegs:$addr, GRRegs:$offset)),
+ (STW_l3r GRRegs:$val, GRRegs:$addr, GRRegs:$offset)>;
+def : Pat<(store GRRegs:$val, (add GRRegs:$addr, immUs4:$offset)),
+ (STW_2rus GRRegs:$val, GRRegs:$addr, (div4_xform immUs4:$offset))>;
+def : Pat<(store GRRegs:$val, GRRegs:$addr),
+ (STW_2rus GRRegs:$val, GRRegs:$addr, 0)>;
+
+/// cttz
+def : Pat<(cttz GRRegs:$src), (CLZ_l2r (BITREV_l2r GRRegs:$src))>;
+
+/// trap
+def : Pat<(trap), (ECALLF_1r (LDC_ru6 0))>;
+
+///
+/// branch patterns
+///
+
+// unconditional branch
+def : Pat<(br bb:$addr), (BRFU_lu6 bb:$addr)>;
+
+// direct match equal/notequal zero brcond
+def : Pat<(brcond (setne GRRegs:$lhs, 0), bb:$dst),
+ (BRFT_lru6 GRRegs:$lhs, bb:$dst)>;
+def : Pat<(brcond (seteq GRRegs:$lhs, 0), bb:$dst),
+ (BRFF_lru6 GRRegs:$lhs, bb:$dst)>;
+
+def : Pat<(brcond (setle GRRegs:$lhs, GRRegs:$rhs), bb:$dst),
+ (BRFF_lru6 (LSS_3r GRRegs:$rhs, GRRegs:$lhs), bb:$dst)>;
+def : Pat<(brcond (setule GRRegs:$lhs, GRRegs:$rhs), bb:$dst),
+ (BRFF_lru6 (LSU_3r GRRegs:$rhs, GRRegs:$lhs), bb:$dst)>;
+def : Pat<(brcond (setge GRRegs:$lhs, GRRegs:$rhs), bb:$dst),
+ (BRFF_lru6 (LSS_3r GRRegs:$lhs, GRRegs:$rhs), bb:$dst)>;
+def : Pat<(brcond (setuge GRRegs:$lhs, GRRegs:$rhs), bb:$dst),
+ (BRFF_lru6 (LSU_3r GRRegs:$lhs, GRRegs:$rhs), bb:$dst)>;
+def : Pat<(brcond (setne GRRegs:$lhs, GRRegs:$rhs), bb:$dst),
+ (BRFF_lru6 (EQ_3r GRRegs:$lhs, GRRegs:$rhs), bb:$dst)>;
+def : Pat<(brcond (setne GRRegs:$lhs, immUs:$rhs), bb:$dst),
+ (BRFF_lru6 (EQ_2rus GRRegs:$lhs, immUs:$rhs), bb:$dst)>;
+
+// generic brcond pattern
+def : Pat<(brcond GRRegs:$cond, bb:$addr), (BRFT_lru6 GRRegs:$cond, bb:$addr)>;
+
+
+///
+/// Select patterns
+///
+
+// direct match equal/notequal zero select
+def : Pat<(select (setne GRRegs:$lhs, 0), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC GRRegs:$lhs, GRRegs:$T, GRRegs:$F)>;
+
+def : Pat<(select (seteq GRRegs:$lhs, 0), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC GRRegs:$lhs, GRRegs:$F, GRRegs:$T)>;
+
+def : Pat<(select (setle GRRegs:$lhs, GRRegs:$rhs), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC (LSS_3r GRRegs:$rhs, GRRegs:$lhs), GRRegs:$F, GRRegs:$T)>;
+def : Pat<(select (setule GRRegs:$lhs, GRRegs:$rhs), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC (LSU_3r GRRegs:$rhs, GRRegs:$lhs), GRRegs:$F, GRRegs:$T)>;
+def : Pat<(select (setge GRRegs:$lhs, GRRegs:$rhs), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC (LSS_3r GRRegs:$lhs, GRRegs:$rhs), GRRegs:$F, GRRegs:$T)>;
+def : Pat<(select (setuge GRRegs:$lhs, GRRegs:$rhs), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC (LSU_3r GRRegs:$lhs, GRRegs:$rhs), GRRegs:$F, GRRegs:$T)>;
+def : Pat<(select (setne GRRegs:$lhs, GRRegs:$rhs), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC (EQ_3r GRRegs:$lhs, GRRegs:$rhs), GRRegs:$F, GRRegs:$T)>;
+def : Pat<(select (setne GRRegs:$lhs, immUs:$rhs), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC (EQ_2rus GRRegs:$lhs, immUs:$rhs), GRRegs:$F, GRRegs:$T)>;
+
+///
+/// setcc patterns, only matched when none of the above brcond
+/// patterns match
+///
+
+// setcc 2 register operands
+def : Pat<(setle GRRegs:$lhs, GRRegs:$rhs),
+ (EQ_2rus (LSS_3r GRRegs:$rhs, GRRegs:$lhs), 0)>;
+def : Pat<(setule GRRegs:$lhs, GRRegs:$rhs),
+ (EQ_2rus (LSU_3r GRRegs:$rhs, GRRegs:$lhs), 0)>;
+
+def : Pat<(setgt GRRegs:$lhs, GRRegs:$rhs),
+ (LSS_3r GRRegs:$rhs, GRRegs:$lhs)>;
+def : Pat<(setugt GRRegs:$lhs, GRRegs:$rhs),
+ (LSU_3r GRRegs:$rhs, GRRegs:$lhs)>;
+
+def : Pat<(setge GRRegs:$lhs, GRRegs:$rhs),
+ (EQ_2rus (LSS_3r GRRegs:$lhs, GRRegs:$rhs), 0)>;
+def : Pat<(setuge GRRegs:$lhs, GRRegs:$rhs),
+ (EQ_2rus (LSU_3r GRRegs:$lhs, GRRegs:$rhs), 0)>;
+
+def : Pat<(setlt GRRegs:$lhs, GRRegs:$rhs),
+ (LSS_3r GRRegs:$lhs, GRRegs:$rhs)>;
+def : Pat<(setult GRRegs:$lhs, GRRegs:$rhs),
+ (LSU_3r GRRegs:$lhs, GRRegs:$rhs)>;
+
+def : Pat<(setne GRRegs:$lhs, GRRegs:$rhs),
+ (EQ_2rus (EQ_3r GRRegs:$lhs, GRRegs:$rhs), 0)>;
+
+def : Pat<(seteq GRRegs:$lhs, GRRegs:$rhs),
+ (EQ_3r GRRegs:$lhs, GRRegs:$rhs)>;
+
+// setcc reg/imm operands
+def : Pat<(seteq GRRegs:$lhs, immUs:$rhs),
+ (EQ_2rus GRRegs:$lhs, immUs:$rhs)>;
+def : Pat<(setne GRRegs:$lhs, immUs:$rhs),
+ (EQ_2rus (EQ_2rus GRRegs:$lhs, immUs:$rhs), 0)>;
+
+// misc
+def : Pat<(add GRRegs:$addr, immUs4:$offset),
+ (LDAWF_l2rus GRRegs:$addr, (div4_xform immUs4:$offset))>;
+
+def : Pat<(sub GRRegs:$addr, immUs4:$offset),
+ (LDAWB_l2rus GRRegs:$addr, (div4_xform immUs4:$offset))>;
+
+def : Pat<(and GRRegs:$val, immMskBitp:$mask),
+ (ZEXT_rus GRRegs:$val, (msksize_xform immMskBitp:$mask))>;
+
+// (sub X, imm) gets canonicalized to (add X, -imm). Match this form.
+def : Pat<(add GRRegs:$src1, immUsNeg:$src2),
+ (SUB_2rus GRRegs:$src1, (neg_xform immUsNeg:$src2))>;
+
+def : Pat<(add GRRegs:$src1, immUs4Neg:$src2),
+ (LDAWB_l2rus GRRegs:$src1, (div4neg_xform immUs4Neg:$src2))>;
+
+///
+/// Some peepholes
+///
+
+def : Pat<(mul GRRegs:$src, 3),
+ (LDA16F_l3r GRRegs:$src, GRRegs:$src)>;
+
+def : Pat<(mul GRRegs:$src, 5),
+ (LDAWF_l3r GRRegs:$src, GRRegs:$src)>;
+
+def : Pat<(mul GRRegs:$src, -3),
+ (LDAWB_l3r GRRegs:$src, GRRegs:$src)>;
+
+// ashr X, 32 is equivalent to ashr X, 31 on the XCore.
+def : Pat<(sra GRRegs:$src, 31),
+ (ASHR_l2rus GRRegs:$src, 32)>;
+
+def : Pat<(brcond (setlt GRRegs:$lhs, 0), bb:$dst),
+ (BRFT_lru6 (ASHR_l2rus GRRegs:$lhs, 32), bb:$dst)>;
+
+// setge X, 0 is canonicalized to setgt X, -1
+def : Pat<(brcond (setgt GRRegs:$lhs, -1), bb:$dst),
+ (BRFF_lru6 (ASHR_l2rus GRRegs:$lhs, 32), bb:$dst)>;
+
+def : Pat<(select (setlt GRRegs:$lhs, 0), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC (ASHR_l2rus GRRegs:$lhs, 32), GRRegs:$T, GRRegs:$F)>;
+
+def : Pat<(select (setgt GRRegs:$lhs, -1), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC (ASHR_l2rus GRRegs:$lhs, 32), GRRegs:$F, GRRegs:$T)>;
+
+def : Pat<(setgt GRRegs:$lhs, -1),
+ (EQ_2rus (ASHR_l2rus GRRegs:$lhs, 32), 0)>;
+
+def : Pat<(sra (shl GRRegs:$src, immBpwSubBitp:$imm), immBpwSubBitp:$imm),
+ (SEXT_rus GRRegs:$src, (bpwsub_xform immBpwSubBitp:$imm))>;
+
+def : Pat<(load (cprelwrapper tconstpool:$b)),
+ (LDWCP_lru6 tconstpool:$b)>;
+
+def : Pat<(cprelwrapper tconstpool:$b),
+ (LDAWCP_lu6 tconstpool:$b)>;
diff --git a/contrib/llvm/lib/Target/XCore/XCoreLowerThreadLocal.cpp b/contrib/llvm/lib/Target/XCore/XCoreLowerThreadLocal.cpp
new file mode 100644
index 0000000..ac3bae5
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreLowerThreadLocal.cpp
@@ -0,0 +1,239 @@
+//===-- XCoreLowerThreadLocal - Lower thread local variables --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file contains a pass that lowers thread local variables on the
+/// XCore.
+///
+//===----------------------------------------------------------------------===//
+
+#include "XCore.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/NoFolder.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+
+#define DEBUG_TYPE "xcore-lower-thread-local"
+
+using namespace llvm;
+
+static cl::opt<unsigned> MaxThreads(
+ "xcore-max-threads", cl::Optional,
+ cl::desc("Maximum number of threads (for emulation thread-local storage)"),
+ cl::Hidden, cl::value_desc("number"), cl::init(8));
+
+namespace {
+ /// Lowers thread local variables on the XCore. Each thread local variable is
+ /// expanded to an array of n elements indexed by the thread ID where n is the
+ /// fixed number hardware threads supported by the device.
+ struct XCoreLowerThreadLocal : public ModulePass {
+ static char ID;
+
+ XCoreLowerThreadLocal() : ModulePass(ID) {
+ initializeXCoreLowerThreadLocalPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool lowerGlobal(GlobalVariable *GV);
+
+ bool runOnModule(Module &M) override;
+ };
+}
+
+char XCoreLowerThreadLocal::ID = 0;
+
+INITIALIZE_PASS(XCoreLowerThreadLocal, "xcore-lower-thread-local",
+ "Lower thread local variables", false, false)
+
+ModulePass *llvm::createXCoreLowerThreadLocalPass() {
+ return new XCoreLowerThreadLocal();
+}
+
+static ArrayType *createLoweredType(Type *OriginalType) {
+ return ArrayType::get(OriginalType, MaxThreads);
+}
+
+static Constant *
+createLoweredInitializer(ArrayType *NewType, Constant *OriginalInitializer) {
+ SmallVector<Constant *, 8> Elements(MaxThreads);
+ for (unsigned i = 0; i != MaxThreads; ++i) {
+ Elements[i] = OriginalInitializer;
+ }
+ return ConstantArray::get(NewType, Elements);
+}
+
+static Instruction *
+createReplacementInstr(ConstantExpr *CE, Instruction *Instr) {
+ IRBuilder<true,NoFolder> Builder(Instr);
+ unsigned OpCode = CE->getOpcode();
+ switch (OpCode) {
+ case Instruction::GetElementPtr: {
+ SmallVector<Value *,4> CEOpVec(CE->op_begin(), CE->op_end());
+ ArrayRef<Value *> CEOps(CEOpVec);
+ return dyn_cast<Instruction>(Builder.CreateInBoundsGEP(CEOps[0],
+ CEOps.slice(1)));
+ }
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ return dyn_cast<Instruction>(
+ Builder.CreateBinOp((Instruction::BinaryOps)OpCode,
+ CE->getOperand(0), CE->getOperand(1),
+ CE->getName()));
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ return dyn_cast<Instruction>(
+ Builder.CreateCast((Instruction::CastOps)OpCode,
+ CE->getOperand(0), CE->getType(),
+ CE->getName()));
+ default:
+ llvm_unreachable("Unhandled constant expression!\n");
+ }
+}
+
+static bool replaceConstantExprOp(ConstantExpr *CE, Pass *P) {
+ do {
+ SmallVector<WeakVH,8> WUsers(CE->user_begin(), CE->user_end());
+ std::sort(WUsers.begin(), WUsers.end());
+ WUsers.erase(std::unique(WUsers.begin(), WUsers.end()), WUsers.end());
+ while (!WUsers.empty())
+ if (WeakVH WU = WUsers.pop_back_val()) {
+ if (PHINode *PN = dyn_cast<PHINode>(WU)) {
+ for (int I = 0, E = PN->getNumIncomingValues(); I < E; ++I)
+ if (PN->getIncomingValue(I) == CE) {
+ BasicBlock *PredBB = PN->getIncomingBlock(I);
+ if (PredBB->getTerminator()->getNumSuccessors() > 1)
+ PredBB = SplitEdge(PredBB, PN->getParent(), P);
+ Instruction *InsertPos = PredBB->getTerminator();
+ Instruction *NewInst = createReplacementInstr(CE, InsertPos);
+ PN->setOperand(I, NewInst);
+ }
+ } else if (Instruction *Instr = dyn_cast<Instruction>(WU)) {
+ Instruction *NewInst = createReplacementInstr(CE, Instr);
+ Instr->replaceUsesOfWith(CE, NewInst);
+ } else {
+ ConstantExpr *CExpr = dyn_cast<ConstantExpr>(WU);
+ if (!CExpr || !replaceConstantExprOp(CExpr, P))
+ return false;
+ }
+ }
+ } while (CE->hasNUsesOrMore(1)); // We need to check because a recursive
+ // sibling may have used 'CE' when createReplacementInstr was called.
+ CE->destroyConstant();
+ return true;
+}
+
+static bool rewriteNonInstructionUses(GlobalVariable *GV, Pass *P) {
+ SmallVector<WeakVH,8> WUsers;
+ for (User *U : GV->users())
+ if (!isa<Instruction>(U))
+ WUsers.push_back(WeakVH(U));
+ while (!WUsers.empty())
+ if (WeakVH WU = WUsers.pop_back_val()) {
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(WU);
+ if (!CE || !replaceConstantExprOp(CE, P))
+ return false;
+ }
+ return true;
+}
+
+static bool isZeroLengthArray(Type *Ty) {
+ ArrayType *AT = dyn_cast<ArrayType>(Ty);
+ return AT && (AT->getNumElements() == 0);
+}
+
+bool XCoreLowerThreadLocal::lowerGlobal(GlobalVariable *GV) {
+ Module *M = GV->getParent();
+ LLVMContext &Ctx = M->getContext();
+ if (!GV->isThreadLocal())
+ return false;
+
+ // Skip globals that we can't lower and leave it for the backend to error.
+ if (!rewriteNonInstructionUses(GV, this) ||
+ !GV->getType()->isSized() || isZeroLengthArray(GV->getType()))
+ return false;
+
+ // Create replacement global.
+ ArrayType *NewType = createLoweredType(GV->getType()->getElementType());
+ Constant *NewInitializer = nullptr;
+ if (GV->hasInitializer())
+ NewInitializer = createLoweredInitializer(NewType,
+ GV->getInitializer());
+ GlobalVariable *NewGV =
+ new GlobalVariable(*M, NewType, GV->isConstant(), GV->getLinkage(),
+ NewInitializer, "", nullptr,
+ GlobalVariable::NotThreadLocal,
+ GV->getType()->getAddressSpace(),
+ GV->isExternallyInitialized());
+
+ // Update uses.
+ SmallVector<User *, 16> Users(GV->user_begin(), GV->user_end());
+ for (unsigned I = 0, E = Users.size(); I != E; ++I) {
+ User *U = Users[I];
+ Instruction *Inst = cast<Instruction>(U);
+ IRBuilder<> Builder(Inst);
+ Function *GetID = Intrinsic::getDeclaration(GV->getParent(),
+ Intrinsic::xcore_getid);
+ Value *ThreadID = Builder.CreateCall(GetID);
+ SmallVector<Value *, 2> Indices;
+ Indices.push_back(Constant::getNullValue(Type::getInt64Ty(Ctx)));
+ Indices.push_back(ThreadID);
+ Value *Addr = Builder.CreateInBoundsGEP(NewGV, Indices);
+ U->replaceUsesOfWith(GV, Addr);
+ }
+
+ // Remove old global.
+ NewGV->takeName(GV);
+ GV->eraseFromParent();
+ return true;
+}
+
+bool XCoreLowerThreadLocal::runOnModule(Module &M) {
+ // Find thread local globals.
+ bool MadeChange = false;
+ SmallVector<GlobalVariable *, 16> ThreadLocalGlobals;
+ for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
+ GVI != E; ++GVI) {
+ GlobalVariable *GV = GVI;
+ if (GV->isThreadLocal())
+ ThreadLocalGlobals.push_back(GV);
+ }
+ for (unsigned I = 0, E = ThreadLocalGlobals.size(); I != E; ++I) {
+ MadeChange |= lowerGlobal(ThreadLocalGlobals[I]);
+ }
+ return MadeChange;
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreMCInstLower.cpp b/contrib/llvm/lib/Target/XCore/XCoreMCInstLower.cpp
new file mode 100644
index 0000000..dfdadcf
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreMCInstLower.cpp
@@ -0,0 +1,117 @@
+//===-- XCoreMCInstLower.cpp - Convert XCore MachineInstr to MCInst -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file contains code to lower XCore MachineInstrs to their
+/// corresponding MCInst records.
+///
+//===----------------------------------------------------------------------===//
+#include "XCoreMCInstLower.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+
+using namespace llvm;
+
+XCoreMCInstLower::XCoreMCInstLower(class AsmPrinter &asmprinter)
+: Printer(asmprinter) {}
+
+void XCoreMCInstLower::Initialize(Mangler *M, MCContext *C) {
+ Mang = M;
+ Ctx = C;
+}
+
+MCOperand XCoreMCInstLower::LowerSymbolOperand(const MachineOperand &MO,
+ MachineOperandType MOTy,
+ unsigned Offset) const {
+ MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
+ const MCSymbol *Symbol;
+
+ switch (MOTy) {
+ case MachineOperand::MO_MachineBasicBlock:
+ Symbol = MO.getMBB()->getSymbol();
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ Symbol = Printer.getSymbol(MO.getGlobal());
+ Offset += MO.getOffset();
+ break;
+ case MachineOperand::MO_BlockAddress:
+ Symbol = Printer.GetBlockAddressSymbol(MO.getBlockAddress());
+ Offset += MO.getOffset();
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ Symbol = Printer.GetExternalSymbolSymbol(MO.getSymbolName());
+ Offset += MO.getOffset();
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ Symbol = Printer.GetJTISymbol(MO.getIndex());
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ Symbol = Printer.GetCPISymbol(MO.getIndex());
+ Offset += MO.getOffset();
+ break;
+ default:
+ llvm_unreachable("<unknown operand type>");
+ }
+
+ const MCSymbolRefExpr *MCSym = MCSymbolRefExpr::Create(Symbol, Kind, *Ctx);
+
+ if (!Offset)
+ return MCOperand::CreateExpr(MCSym);
+
+ // Assume offset is never negative.
+ assert(Offset > 0);
+
+ const MCConstantExpr *OffsetExpr = MCConstantExpr::Create(Offset, *Ctx);
+ const MCBinaryExpr *Add = MCBinaryExpr::CreateAdd(MCSym, OffsetExpr, *Ctx);
+ return MCOperand::CreateExpr(Add);
+}
+
+MCOperand XCoreMCInstLower::LowerOperand(const MachineOperand &MO,
+ unsigned offset) const {
+ MachineOperandType MOTy = MO.getType();
+
+ switch (MOTy) {
+ default: llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ // Ignore all implicit register operands.
+ if (MO.isImplicit()) break;
+ return MCOperand::CreateReg(MO.getReg());
+ case MachineOperand::MO_Immediate:
+ return MCOperand::CreateImm(MO.getImm() + offset);
+ case MachineOperand::MO_MachineBasicBlock:
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ case MachineOperand::MO_JumpTableIndex:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_BlockAddress:
+ return LowerSymbolOperand(MO, MOTy, offset);
+ case MachineOperand::MO_RegisterMask:
+ break;
+ }
+
+ return MCOperand();
+}
+
+void XCoreMCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
+ OutMI.setOpcode(MI->getOpcode());
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ MCOperand MCOp = LowerOperand(MO);
+
+ if (MCOp.isValid())
+ OutMI.addOperand(MCOp);
+ }
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreMCInstLower.h b/contrib/llvm/lib/Target/XCore/XCoreMCInstLower.h
new file mode 100644
index 0000000..28e702b
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreMCInstLower.h
@@ -0,0 +1,42 @@
+//===-- XCoreMCInstLower.h - Lower MachineInstr to MCInst ------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCOREMCINSTLOWER_H
+#define XCOREMCINSTLOWER_H
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+ class MCContext;
+ class MCInst;
+ class MCOperand;
+ class MachineInstr;
+ class MachineFunction;
+ class Mangler;
+ class AsmPrinter;
+
+/// \brief This class is used to lower an MachineInstr into an MCInst.
+class LLVM_LIBRARY_VISIBILITY XCoreMCInstLower {
+ typedef MachineOperand::MachineOperandType MachineOperandType;
+ MCContext *Ctx;
+ Mangler *Mang;
+ AsmPrinter &Printer;
+public:
+ XCoreMCInstLower(class AsmPrinter &asmprinter);
+ void Initialize(Mangler *mang, MCContext *C);
+ void Lower(const MachineInstr *MI, MCInst &OutMI) const;
+ MCOperand LowerOperand(const MachineOperand& MO, unsigned offset = 0) const;
+
+private:
+ MCOperand LowerSymbolOperand(const MachineOperand &MO,
+ MachineOperandType MOTy, unsigned Offset) const;
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.cpp b/contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.cpp
new file mode 100644
index 0000000..9ef9752
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.cpp
@@ -0,0 +1,72 @@
+//===-- XCoreMachineFuctionInfo.cpp - XCore machine function info ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreMachineFunctionInfo.h"
+#include "XCoreInstrInfo.h"
+#include "llvm/IR/Function.h"
+
+using namespace llvm;
+
+void XCoreFunctionInfo::anchor() { }
+
+bool XCoreFunctionInfo::isLargeFrame(const MachineFunction &MF) const {
+ if (CachedEStackSize == -1) {
+ CachedEStackSize = MF.getFrameInfo()->estimateStackSize(MF);
+ }
+ // isLargeFrame() is used when deciding if spill slots should be added to
+ // allow eliminateFrameIndex() to scavenge registers.
+ // This is only required when there is no FP and offsets are greater than
+ // ~256KB (~64Kwords). Thus only for code run on the emulator!
+ //
+ // The arbitrary value of 0xf000 allows frames of up to ~240KB before spill
+ // slots are added for the use of eliminateFrameIndex() register scavenging.
+ // For frames less than 240KB, it is assumed that there will be less than
+ // 16KB of function arguments.
+ return CachedEStackSize > 0xf000;
+}
+
+int XCoreFunctionInfo::createLRSpillSlot(MachineFunction &MF) {
+ if (LRSpillSlotSet) {
+ return LRSpillSlot;
+ }
+ const TargetRegisterClass *RC = &XCore::GRRegsRegClass;
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ if (! MF.getFunction()->isVarArg()) {
+ // A fixed offset of 0 allows us to save / restore LR using entsp / retsp.
+ LRSpillSlot = MFI->CreateFixedObject(RC->getSize(), 0, true);
+ } else {
+ LRSpillSlot = MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), true);
+ }
+ LRSpillSlotSet = true;
+ return LRSpillSlot;
+}
+
+int XCoreFunctionInfo::createFPSpillSlot(MachineFunction &MF) {
+ if (FPSpillSlotSet) {
+ return FPSpillSlot;
+ }
+ const TargetRegisterClass *RC = &XCore::GRRegsRegClass;
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ FPSpillSlot = MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), true);
+ FPSpillSlotSet = true;
+ return FPSpillSlot;
+}
+
+const int* XCoreFunctionInfo::createEHSpillSlot(MachineFunction &MF) {
+ if (EHSpillSlotSet) {
+ return EHSpillSlot;
+ }
+ const TargetRegisterClass *RC = &XCore::GRRegsRegClass;
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ EHSpillSlot[0] = MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), true);
+ EHSpillSlot[1] = MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), true);
+ EHSpillSlotSet = true;
+ return EHSpillSlot;
+}
+
diff --git a/contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.h b/contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.h
new file mode 100644
index 0000000..212a5cf
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.h
@@ -0,0 +1,106 @@
+//===-- XCoreMachineFuctionInfo.h - XCore machine function info -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares XCore-specific per-machine-function information.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCOREMACHINEFUNCTIONINFO_H
+#define XCOREMACHINEFUNCTIONINFO_H
+
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include <vector>
+
+namespace llvm {
+
+// Forward declarations
+class Function;
+
+/// XCoreFunctionInfo - This class is derived from MachineFunction private
+/// XCore target-specific information for each MachineFunction.
+class XCoreFunctionInfo : public MachineFunctionInfo {
+ virtual void anchor();
+ bool LRSpillSlotSet;
+ int LRSpillSlot;
+ bool FPSpillSlotSet;
+ int FPSpillSlot;
+ bool EHSpillSlotSet;
+ int EHSpillSlot[2];
+ unsigned ReturnStackOffset;
+ bool ReturnStackOffsetSet;
+ int VarArgsFrameIndex;
+ mutable int CachedEStackSize;
+ std::vector<std::pair<MachineBasicBlock::iterator, CalleeSavedInfo>>
+ SpillLabels;
+
+public:
+ XCoreFunctionInfo() :
+ LRSpillSlotSet(false),
+ FPSpillSlotSet(false),
+ EHSpillSlotSet(false),
+ ReturnStackOffsetSet(false),
+ VarArgsFrameIndex(0),
+ CachedEStackSize(-1) {}
+
+ explicit XCoreFunctionInfo(MachineFunction &MF) :
+ LRSpillSlotSet(false),
+ FPSpillSlotSet(false),
+ EHSpillSlotSet(false),
+ ReturnStackOffsetSet(false),
+ VarArgsFrameIndex(0),
+ CachedEStackSize(-1) {}
+
+ ~XCoreFunctionInfo() {}
+
+ void setVarArgsFrameIndex(int off) { VarArgsFrameIndex = off; }
+ int getVarArgsFrameIndex() const { return VarArgsFrameIndex; }
+
+ int createLRSpillSlot(MachineFunction &MF);
+ bool hasLRSpillSlot() { return LRSpillSlotSet; }
+ int getLRSpillSlot() const {
+ assert(LRSpillSlotSet && "LR Spill slot not set");
+ return LRSpillSlot;
+ }
+
+ int createFPSpillSlot(MachineFunction &MF);
+ bool hasFPSpillSlot() { return FPSpillSlotSet; }
+ int getFPSpillSlot() const {
+ assert(FPSpillSlotSet && "FP Spill slot not set");
+ return FPSpillSlot;
+ }
+
+ const int* createEHSpillSlot(MachineFunction &MF);
+ bool hasEHSpillSlot() { return EHSpillSlotSet; }
+ const int* getEHSpillSlot() const {
+ assert(EHSpillSlotSet && "EH Spill slot not set");
+ return EHSpillSlot;
+ }
+
+ void setReturnStackOffset(unsigned value) {
+ assert(!ReturnStackOffsetSet && "Return stack offset set twice");
+ ReturnStackOffset = value;
+ ReturnStackOffsetSet = true;
+ }
+
+ unsigned getReturnStackOffset() const {
+ assert(ReturnStackOffsetSet && "Return stack offset not set");
+ return ReturnStackOffset;
+ }
+
+ bool isLargeFrame(const MachineFunction &MF) const;
+
+ std::vector<std::pair<MachineBasicBlock::iterator, CalleeSavedInfo>> &
+ getSpillLabels() {
+ return SpillLabels;
+ }
+};
+} // End llvm namespace
+
+#endif // XCOREMACHINEFUNCTIONINFO_H
diff --git a/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.cpp b/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.cpp
new file mode 100644
index 0000000..316c82c
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.cpp
@@ -0,0 +1,329 @@
+//===-- XCoreRegisterInfo.cpp - XCore Register Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the XCore implementation of the MRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreRegisterInfo.h"
+#include "XCore.h"
+#include "XCoreInstrInfo.h"
+#include "XCoreMachineFunctionInfo.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "xcore-reg-info"
+
+#define GET_REGINFO_TARGET_DESC
+#include "XCoreGenRegisterInfo.inc"
+
+XCoreRegisterInfo::XCoreRegisterInfo()
+ : XCoreGenRegisterInfo(XCore::LR) {
+}
+
+// helper functions
+static inline bool isImmUs(unsigned val) {
+ return val <= 11;
+}
+
+static inline bool isImmU6(unsigned val) {
+ return val < (1 << 6);
+}
+
+static inline bool isImmU16(unsigned val) {
+ return val < (1 << 16);
+}
+
+
+static void InsertFPImmInst(MachineBasicBlock::iterator II,
+ const XCoreInstrInfo &TII,
+ unsigned Reg, unsigned FrameReg, int Offset ) {
+ MachineInstr &MI = *II;
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc dl = MI.getDebugLoc();
+
+ switch (MI.getOpcode()) {
+ case XCore::LDWFI:
+ BuildMI(MBB, II, dl, TII.get(XCore::LDW_2rus), Reg)
+ .addReg(FrameReg)
+ .addImm(Offset)
+ .addMemOperand(*MI.memoperands_begin());
+ break;
+ case XCore::STWFI:
+ BuildMI(MBB, II, dl, TII.get(XCore::STW_2rus))
+ .addReg(Reg, getKillRegState(MI.getOperand(0).isKill()))
+ .addReg(FrameReg)
+ .addImm(Offset)
+ .addMemOperand(*MI.memoperands_begin());
+ break;
+ case XCore::LDAWFI:
+ BuildMI(MBB, II, dl, TII.get(XCore::LDAWF_l2rus), Reg)
+ .addReg(FrameReg)
+ .addImm(Offset);
+ break;
+ default:
+ llvm_unreachable("Unexpected Opcode");
+ }
+}
+
+static void InsertFPConstInst(MachineBasicBlock::iterator II,
+ const XCoreInstrInfo &TII,
+ unsigned Reg, unsigned FrameReg,
+ int Offset, RegScavenger *RS ) {
+ assert(RS && "requiresRegisterScavenging failed");
+ MachineInstr &MI = *II;
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc dl = MI.getDebugLoc();
+ unsigned ScratchOffset = RS->scavengeRegister(&XCore::GRRegsRegClass, II, 0);
+ RS->setUsed(ScratchOffset);
+ TII.loadImmediate(MBB, II, ScratchOffset, Offset);
+
+ switch (MI.getOpcode()) {
+ case XCore::LDWFI:
+ BuildMI(MBB, II, dl, TII.get(XCore::LDW_3r), Reg)
+ .addReg(FrameReg)
+ .addReg(ScratchOffset, RegState::Kill)
+ .addMemOperand(*MI.memoperands_begin());
+ break;
+ case XCore::STWFI:
+ BuildMI(MBB, II, dl, TII.get(XCore::STW_l3r))
+ .addReg(Reg, getKillRegState(MI.getOperand(0).isKill()))
+ .addReg(FrameReg)
+ .addReg(ScratchOffset, RegState::Kill)
+ .addMemOperand(*MI.memoperands_begin());
+ break;
+ case XCore::LDAWFI:
+ BuildMI(MBB, II, dl, TII.get(XCore::LDAWF_l3r), Reg)
+ .addReg(FrameReg)
+ .addReg(ScratchOffset, RegState::Kill);
+ break;
+ default:
+ llvm_unreachable("Unexpected Opcode");
+ }
+}
+
+static void InsertSPImmInst(MachineBasicBlock::iterator II,
+ const XCoreInstrInfo &TII,
+ unsigned Reg, int Offset) {
+ MachineInstr &MI = *II;
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc dl = MI.getDebugLoc();
+ bool isU6 = isImmU6(Offset);
+
+ switch (MI.getOpcode()) {
+ int NewOpcode;
+ case XCore::LDWFI:
+ NewOpcode = (isU6) ? XCore::LDWSP_ru6 : XCore::LDWSP_lru6;
+ BuildMI(MBB, II, dl, TII.get(NewOpcode), Reg)
+ .addImm(Offset)
+ .addMemOperand(*MI.memoperands_begin());
+ break;
+ case XCore::STWFI:
+ NewOpcode = (isU6) ? XCore::STWSP_ru6 : XCore::STWSP_lru6;
+ BuildMI(MBB, II, dl, TII.get(NewOpcode))
+ .addReg(Reg, getKillRegState(MI.getOperand(0).isKill()))
+ .addImm(Offset)
+ .addMemOperand(*MI.memoperands_begin());
+ break;
+ case XCore::LDAWFI:
+ NewOpcode = (isU6) ? XCore::LDAWSP_ru6 : XCore::LDAWSP_lru6;
+ BuildMI(MBB, II, dl, TII.get(NewOpcode), Reg)
+ .addImm(Offset);
+ break;
+ default:
+ llvm_unreachable("Unexpected Opcode");
+ }
+}
+
+static void InsertSPConstInst(MachineBasicBlock::iterator II,
+ const XCoreInstrInfo &TII,
+ unsigned Reg, int Offset, RegScavenger *RS ) {
+ assert(RS && "requiresRegisterScavenging failed");
+ MachineInstr &MI = *II;
+ MachineBasicBlock &MBB = *MI.getParent();
+ DebugLoc dl = MI.getDebugLoc();
+ unsigned OpCode = MI.getOpcode();
+
+ unsigned ScratchBase;
+ if (OpCode==XCore::STWFI) {
+ ScratchBase = RS->scavengeRegister(&XCore::GRRegsRegClass, II, 0);
+ RS->setUsed(ScratchBase);
+ } else
+ ScratchBase = Reg;
+ BuildMI(MBB, II, dl, TII.get(XCore::LDAWSP_ru6), ScratchBase).addImm(0);
+ unsigned ScratchOffset = RS->scavengeRegister(&XCore::GRRegsRegClass, II, 0);
+ RS->setUsed(ScratchOffset);
+ TII.loadImmediate(MBB, II, ScratchOffset, Offset);
+
+ switch (OpCode) {
+ case XCore::LDWFI:
+ BuildMI(MBB, II, dl, TII.get(XCore::LDW_3r), Reg)
+ .addReg(ScratchBase, RegState::Kill)
+ .addReg(ScratchOffset, RegState::Kill)
+ .addMemOperand(*MI.memoperands_begin());
+ break;
+ case XCore::STWFI:
+ BuildMI(MBB, II, dl, TII.get(XCore::STW_l3r))
+ .addReg(Reg, getKillRegState(MI.getOperand(0).isKill()))
+ .addReg(ScratchBase, RegState::Kill)
+ .addReg(ScratchOffset, RegState::Kill)
+ .addMemOperand(*MI.memoperands_begin());
+ break;
+ case XCore::LDAWFI:
+ BuildMI(MBB, II, dl, TII.get(XCore::LDAWF_l3r), Reg)
+ .addReg(ScratchBase, RegState::Kill)
+ .addReg(ScratchOffset, RegState::Kill);
+ break;
+ default:
+ llvm_unreachable("Unexpected Opcode");
+ }
+}
+
+bool XCoreRegisterInfo::needsFrameMoves(const MachineFunction &MF) {
+ return MF.getMMI().hasDebugInfo() ||
+ MF.getFunction()->needsUnwindTableEntry();
+}
+
+const MCPhysReg* XCoreRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF)
+ const {
+ // The callee saved registers LR & FP are explicitly handled during
+ // emitPrologue & emitEpilogue and related functions.
+ static const MCPhysReg CalleeSavedRegs[] = {
+ XCore::R4, XCore::R5, XCore::R6, XCore::R7,
+ XCore::R8, XCore::R9, XCore::R10,
+ 0
+ };
+ static const MCPhysReg CalleeSavedRegsFP[] = {
+ XCore::R4, XCore::R5, XCore::R6, XCore::R7,
+ XCore::R8, XCore::R9,
+ 0
+ };
+ const TargetFrameLowering *TFI = MF->getTarget().getFrameLowering();
+ if (TFI->hasFP(*MF))
+ return CalleeSavedRegsFP;
+ return CalleeSavedRegs;
+}
+
+BitVector XCoreRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ BitVector Reserved(getNumRegs());
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ Reserved.set(XCore::CP);
+ Reserved.set(XCore::DP);
+ Reserved.set(XCore::SP);
+ Reserved.set(XCore::LR);
+ if (TFI->hasFP(MF)) {
+ Reserved.set(XCore::R10);
+ }
+ return Reserved;
+}
+
+bool
+XCoreRegisterInfo::requiresRegisterScavenging(const MachineFunction &MF) const {
+ return true;
+}
+
+bool
+XCoreRegisterInfo::trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
+ return true;
+}
+
+bool
+XCoreRegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
+ return false;
+}
+
+void
+XCoreRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ assert(SPAdj == 0 && "Unexpected");
+ MachineInstr &MI = *II;
+ MachineOperand &FrameOp = MI.getOperand(FIOperandNum);
+ int FrameIndex = FrameOp.getIndex();
+
+ MachineFunction &MF = *MI.getParent()->getParent();
+ const XCoreInstrInfo &TII =
+ *static_cast<const XCoreInstrInfo*>(MF.getTarget().getInstrInfo());
+
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex);
+ int StackSize = MF.getFrameInfo()->getStackSize();
+
+ #ifndef NDEBUG
+ DEBUG(errs() << "\nFunction : "
+ << MF.getName() << "\n");
+ DEBUG(errs() << "<--------->\n");
+ DEBUG(MI.print(errs()));
+ DEBUG(errs() << "FrameIndex : " << FrameIndex << "\n");
+ DEBUG(errs() << "FrameOffset : " << Offset << "\n");
+ DEBUG(errs() << "StackSize : " << StackSize << "\n");
+ #endif
+
+ Offset += StackSize;
+
+ unsigned FrameReg = getFrameRegister(MF);
+
+ // Special handling of DBG_VALUE instructions.
+ if (MI.isDebugValue()) {
+ MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
+ MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
+ return;
+ }
+
+ // fold constant into offset.
+ Offset += MI.getOperand(FIOperandNum + 1).getImm();
+ MI.getOperand(FIOperandNum + 1).ChangeToImmediate(0);
+
+ assert(Offset%4 == 0 && "Misaligned stack offset");
+ DEBUG(errs() << "Offset : " << Offset << "\n" << "<--------->\n");
+ Offset/=4;
+
+ unsigned Reg = MI.getOperand(0).getReg();
+ assert(XCore::GRRegsRegClass.contains(Reg) && "Unexpected register operand");
+
+ if (TFI->hasFP(MF)) {
+ if (isImmUs(Offset))
+ InsertFPImmInst(II, TII, Reg, FrameReg, Offset);
+ else
+ InsertFPConstInst(II, TII, Reg, FrameReg, Offset, RS);
+ } else {
+ if (isImmU16(Offset))
+ InsertSPImmInst(II, TII, Reg, Offset);
+ else
+ InsertSPConstInst(II, TII, Reg, Offset, RS);
+ }
+ // Erase old instruction.
+ MachineBasicBlock &MBB = *MI.getParent();
+ MBB.erase(II);
+}
+
+
+unsigned XCoreRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ return TFI->hasFP(MF) ? XCore::R10 : XCore::SP;
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.h b/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.h
new file mode 100644
index 0000000..aa617a0
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.h
@@ -0,0 +1,56 @@
+//===-- XCoreRegisterInfo.h - XCore Register Information Impl ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the XCore implementation of the MRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCOREREGISTERINFO_H
+#define XCOREREGISTERINFO_H
+
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define GET_REGINFO_HEADER
+#include "XCoreGenRegisterInfo.inc"
+
+namespace llvm {
+
+class TargetInstrInfo;
+
+struct XCoreRegisterInfo : public XCoreGenRegisterInfo {
+public:
+ XCoreRegisterInfo();
+
+ /// Code Generation virtual methods...
+
+ const MCPhysReg *
+ getCalleeSavedRegs(const MachineFunction *MF =nullptr) const override;
+
+ BitVector getReservedRegs(const MachineFunction &MF) const override;
+
+ bool requiresRegisterScavenging(const MachineFunction &MF) const override;
+
+ bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const override;
+
+ bool useFPForScavengingIndex(const MachineFunction &MF) const override;
+
+ void eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const override;
+
+ // Debug information queries.
+ unsigned getFrameRegister(const MachineFunction &MF) const override;
+
+ //! Return whether to emit frame moves
+ static bool needsFrameMoves(const MachineFunction &MF);
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.td b/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.td
new file mode 100644
index 0000000..6694b28
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.td
@@ -0,0 +1,59 @@
+//===-- XCoreRegisterInfo.td - XCore Register defs ---------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Declarations that describe the XCore register file
+//===----------------------------------------------------------------------===//
+
+class XCoreReg<string n> : Register<n> {
+ field bits<4> Num;
+ let Namespace = "XCore";
+}
+
+// Registers are identified with 4-bit ID numbers.
+// Ri - 32-bit integer registers
+class Ri<bits<4> num, string n> : XCoreReg<n> {
+ let Num = num;
+}
+
+// CPU registers
+def R0 : Ri< 0, "r0">, DwarfRegNum<[0]>;
+def R1 : Ri< 1, "r1">, DwarfRegNum<[1]>;
+def R2 : Ri< 2, "r2">, DwarfRegNum<[2]>;
+def R3 : Ri< 3, "r3">, DwarfRegNum<[3]>;
+def R4 : Ri< 4, "r4">, DwarfRegNum<[4]>;
+def R5 : Ri< 5, "r5">, DwarfRegNum<[5]>;
+def R6 : Ri< 6, "r6">, DwarfRegNum<[6]>;
+def R7 : Ri< 7, "r7">, DwarfRegNum<[7]>;
+def R8 : Ri< 8, "r8">, DwarfRegNum<[8]>;
+def R9 : Ri< 9, "r9">, DwarfRegNum<[9]>;
+def R10 : Ri<10, "r10">, DwarfRegNum<[10]>;
+def R11 : Ri<11, "r11">, DwarfRegNum<[11]>;
+def CP : Ri<12, "cp">, DwarfRegNum<[12]>;
+def DP : Ri<13, "dp">, DwarfRegNum<[13]>;
+def SP : Ri<14, "sp">, DwarfRegNum<[14]>;
+def LR : Ri<15, "lr">, DwarfRegNum<[15]>;
+
+// Register classes.
+//
+def GRRegs : RegisterClass<"XCore", [i32], 32,
+ // Return values and arguments
+ (add R0, R1, R2, R3,
+ // Callee save
+ R4, R5, R6, R7, R8, R9, R10,
+ // Not preserved across procedure calls
+ R11)>;
+
+// Reserved
+def RRegs : RegisterClass<"XCore", [i32], 32,
+ (add R0, R1, R2, R3,
+ R4, R5, R6, R7, R8, R9, R10,
+ R11, CP, DP, SP, LR)> {
+ let isAllocatable = 0;
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.cpp b/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.cpp
new file mode 100644
index 0000000..91b33fd
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.cpp
@@ -0,0 +1,58 @@
+//===-- XCoreSelectionDAGInfo.cpp - XCore SelectionDAG Info ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the XCoreSelectionDAGInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreTargetMachine.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "xcore-selectiondag-info"
+
+XCoreSelectionDAGInfo::XCoreSelectionDAGInfo(const DataLayout &DL)
+ : TargetSelectionDAGInfo(&DL) {}
+
+XCoreSelectionDAGInfo::~XCoreSelectionDAGInfo() {
+}
+
+SDValue XCoreSelectionDAGInfo::
+EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl, SDValue Chain,
+ SDValue Dst, SDValue Src, SDValue Size, unsigned Align,
+ bool isVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) const
+{
+ unsigned SizeBitWidth = Size.getValueType().getSizeInBits();
+ // Call __memcpy_4 if the src, dst and size are all 4 byte aligned.
+ if (!AlwaysInline && (Align & 3) == 0 &&
+ DAG.MaskedValueIsZero(Size, APInt(SizeBitWidth, 3))) {
+ const TargetLowering &TLI = *DAG.getTarget().getTargetLowering();
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Ty = TLI.getDataLayout()->getIntPtrType(*DAG.getContext());
+ Entry.Node = Dst; Args.push_back(Entry);
+ Entry.Node = Src; Args.push_back(Entry);
+ Entry.Node = Size; Args.push_back(Entry);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(Chain)
+ .setCallee(TLI.getLibcallCallingConv(RTLIB::MEMCPY),
+ Type::getVoidTy(*DAG.getContext()),
+ DAG.getExternalSymbol("__memcpy_4", TLI.getPointerTy()),
+ std::move(Args), 0)
+ .setDiscardResult();
+
+ std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
+ return CallResult.second;
+ }
+
+ // Otherwise have the target-independent code call memcpy.
+ return SDValue();
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.h b/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.h
new file mode 100644
index 0000000..0079de1
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.h
@@ -0,0 +1,40 @@
+//===-- XCoreSelectionDAGInfo.h - XCore SelectionDAG Info -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the XCore subclass for TargetSelectionDAGInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCORESELECTIONDAGINFO_H
+#define XCORESELECTIONDAGINFO_H
+
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+class XCoreTargetMachine;
+
+class XCoreSelectionDAGInfo : public TargetSelectionDAGInfo {
+public:
+ explicit XCoreSelectionDAGInfo(const DataLayout &DL);
+ ~XCoreSelectionDAGInfo();
+
+ SDValue
+ EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
+ SDValue Chain,
+ SDValue Op1, SDValue Op2,
+ SDValue Op3, unsigned Align, bool isVolatile,
+ bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) const override;
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCoreSubtarget.cpp b/contrib/llvm/lib/Target/XCore/XCoreSubtarget.cpp
new file mode 100644
index 0000000..7227411
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreSubtarget.cpp
@@ -0,0 +1,32 @@
+//===-- XCoreSubtarget.cpp - XCore Subtarget Information ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the XCore specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreSubtarget.h"
+#include "XCore.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "xcore-subtarget"
+
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#include "XCoreGenSubtargetInfo.inc"
+
+void XCoreSubtarget::anchor() { }
+
+XCoreSubtarget::XCoreSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, const TargetMachine &TM)
+ : XCoreGenSubtargetInfo(TT, CPU, FS),
+ DL("e-m:e-p:32:32-i1:8:32-i8:8:32-i16:16:32-i64:32-f64:32-a:0:32-n32"),
+ InstrInfo(), FrameLowering(*this), TLInfo(TM), TSInfo(DL) {}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreSubtarget.h b/contrib/llvm/lib/Target/XCore/XCoreSubtarget.h
new file mode 100644
index 0000000..1e9810b
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreSubtarget.h
@@ -0,0 +1,62 @@
+//===-- XCoreSubtarget.h - Define Subtarget for the XCore -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the XCore specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCORESUBTARGET_H
+#define XCORESUBTARGET_H
+
+#include "XCoreFrameLowering.h"
+#include "XCoreISelLowering.h"
+#include "XCoreInstrInfo.h"
+#include "XCoreSelectionDAGInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "XCoreGenSubtargetInfo.inc"
+
+namespace llvm {
+class StringRef;
+
+class XCoreSubtarget : public XCoreGenSubtargetInfo {
+ virtual void anchor();
+ const DataLayout DL; // Calculates type size & alignment
+ XCoreInstrInfo InstrInfo;
+ XCoreFrameLowering FrameLowering;
+ XCoreTargetLowering TLInfo;
+ XCoreSelectionDAGInfo TSInfo;
+
+public:
+ /// This constructor initializes the data members to match that
+ /// of the specified triple.
+ ///
+ XCoreSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS, const TargetMachine &TM);
+
+ /// ParseSubtargetFeatures - Parses features string setting specified
+ /// subtarget options. Definition of function is auto generated by tblgen.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+
+ const XCoreInstrInfo *getInstrInfo() const { return &InstrInfo; }
+ const XCoreFrameLowering *getFrameLowering() const { return &FrameLowering; }
+ const XCoreTargetLowering *getTargetLowering() const { return &TLInfo; }
+ const XCoreSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+ const TargetRegisterInfo *getRegisterInfo() const {
+ return &InstrInfo.getRegisterInfo();
+ }
+ const DataLayout *getDataLayout() const { return &DL; }
+};
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.cpp b/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.cpp
new file mode 100644
index 0000000..8d8bb38
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.cpp
@@ -0,0 +1,80 @@
+//===-- XCoreTargetMachine.cpp - Define TargetMachine for XCore -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreTargetMachine.h"
+#include "XCore.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+/// XCoreTargetMachine ctor - Create an ILP32 architecture model
+///
+XCoreTargetMachine::XCoreTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS, *this) {
+ initAsmInfo();
+}
+
+namespace {
+/// XCore Code Generator Pass Configuration Options.
+class XCorePassConfig : public TargetPassConfig {
+public:
+ XCorePassConfig(XCoreTargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ XCoreTargetMachine &getXCoreTargetMachine() const {
+ return getTM<XCoreTargetMachine>();
+ }
+
+ bool addPreISel() override;
+ bool addInstSelector() override;
+ bool addPreEmitPass() override;
+};
+} // namespace
+
+TargetPassConfig *XCoreTargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new XCorePassConfig(this, PM);
+}
+
+bool XCorePassConfig::addPreISel() {
+ addPass(createXCoreLowerThreadLocalPass());
+ return false;
+}
+
+bool XCorePassConfig::addInstSelector() {
+ addPass(createXCoreISelDag(getXCoreTargetMachine(), getOptLevel()));
+ return false;
+}
+
+bool XCorePassConfig::addPreEmitPass() {
+ addPass(createXCoreFrameToArgsOffsetEliminationPass());
+ return false;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeXCoreTarget() {
+ RegisterTargetMachine<XCoreTargetMachine> X(TheXCoreTarget);
+}
+
+void XCoreTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
+ // Add first the target-independent BasicTTI pass, then our XCore pass. This
+ // allows the XCore pass to delegate to the target independent layer when
+ // appropriate.
+ PM.add(createBasicTargetTransformInfoPass(this));
+ PM.add(createXCoreTargetTransformInfoPass(this));
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.h b/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.h
new file mode 100644
index 0000000..14c43bf
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.h
@@ -0,0 +1,58 @@
+//===-- XCoreTargetMachine.h - Define TargetMachine for XCore ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the XCore specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCORETARGETMACHINE_H
+#define XCORETARGETMACHINE_H
+
+#include "XCoreSubtarget.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+class XCoreTargetMachine : public LLVMTargetMachine {
+ XCoreSubtarget Subtarget;
+public:
+ XCoreTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+
+ const XCoreInstrInfo *getInstrInfo() const override {
+ return getSubtargetImpl()->getInstrInfo();
+ }
+ const XCoreFrameLowering *getFrameLowering() const override {
+ return getSubtargetImpl()->getFrameLowering();
+ }
+ const XCoreSubtarget *getSubtargetImpl() const override { return &Subtarget; }
+ const XCoreTargetLowering *getTargetLowering() const override {
+ return getSubtargetImpl()->getTargetLowering();
+ }
+ const XCoreSelectionDAGInfo* getSelectionDAGInfo() const override {
+ return getSubtargetImpl()->getSelectionDAGInfo();
+ }
+ const TargetRegisterInfo *getRegisterInfo() const override {
+ return getSubtargetImpl()->getRegisterInfo();
+ }
+ const DataLayout *getDataLayout() const override {
+ return getSubtargetImpl()->getDataLayout();
+ }
+
+ // Pass Pipeline Configuration
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+
+ void addAnalysisPasses(PassManagerBase &PM) override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.cpp b/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.cpp
new file mode 100644
index 0000000..cfd3302
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.cpp
@@ -0,0 +1,179 @@
+//===-- XCoreTargetObjectFile.cpp - XCore object files --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreTargetObjectFile.h"
+#include "XCoreSubtarget.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+
+void XCoreTargetObjectFile::Initialize(MCContext &Ctx, const TargetMachine &TM){
+ TargetLoweringObjectFileELF::Initialize(Ctx, TM);
+
+ BSSSection =
+ Ctx.getELFSection(".dp.bss", ELF::SHT_NOBITS,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE |
+ ELF::XCORE_SHF_DP_SECTION,
+ SectionKind::getBSS());
+ BSSSectionLarge =
+ Ctx.getELFSection(".dp.bss.large", ELF::SHT_NOBITS,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE |
+ ELF::XCORE_SHF_DP_SECTION,
+ SectionKind::getBSS());
+ DataSection =
+ Ctx.getELFSection(".dp.data", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE |
+ ELF::XCORE_SHF_DP_SECTION,
+ SectionKind::getDataRel());
+ DataSectionLarge =
+ Ctx.getELFSection(".dp.data.large", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE |
+ ELF::XCORE_SHF_DP_SECTION,
+ SectionKind::getDataRel());
+ DataRelROSection =
+ Ctx.getELFSection(".dp.rodata", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE |
+ ELF::XCORE_SHF_DP_SECTION,
+ SectionKind::getReadOnlyWithRel());
+ DataRelROSectionLarge =
+ Ctx.getELFSection(".dp.rodata.large", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE |
+ ELF::XCORE_SHF_DP_SECTION,
+ SectionKind::getReadOnlyWithRel());
+ ReadOnlySection =
+ Ctx.getELFSection(".cp.rodata", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC |
+ ELF::XCORE_SHF_CP_SECTION,
+ SectionKind::getReadOnlyWithRel());
+ ReadOnlySectionLarge =
+ Ctx.getELFSection(".cp.rodata.large", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC |
+ ELF::XCORE_SHF_CP_SECTION,
+ SectionKind::getReadOnlyWithRel());
+ MergeableConst4Section =
+ Ctx.getELFSection(".cp.rodata.cst4", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_MERGE |
+ ELF::XCORE_SHF_CP_SECTION,
+ SectionKind::getMergeableConst4());
+ MergeableConst8Section =
+ Ctx.getELFSection(".cp.rodata.cst8", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_MERGE |
+ ELF::XCORE_SHF_CP_SECTION,
+ SectionKind::getMergeableConst8());
+ MergeableConst16Section =
+ Ctx.getELFSection(".cp.rodata.cst16", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_MERGE |
+ ELF::XCORE_SHF_CP_SECTION,
+ SectionKind::getMergeableConst16());
+ CStringSection =
+ Ctx.getELFSection(".cp.rodata.string", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS |
+ ELF::XCORE_SHF_CP_SECTION,
+ SectionKind::getReadOnlyWithRel());
+ // TextSection - see MObjectFileInfo.cpp
+ // StaticCtorSection - see MObjectFileInfo.cpp
+ // StaticDtorSection - see MObjectFileInfo.cpp
+ }
+
+static unsigned getXCoreSectionType(SectionKind K) {
+ if (K.isBSS())
+ return ELF::SHT_NOBITS;
+ return ELF::SHT_PROGBITS;
+}
+
+static unsigned getXCoreSectionFlags(SectionKind K, bool IsCPRel) {
+ unsigned Flags = 0;
+
+ if (!K.isMetadata())
+ Flags |= ELF::SHF_ALLOC;
+
+ if (K.isText())
+ Flags |= ELF::SHF_EXECINSTR;
+ else if (IsCPRel)
+ Flags |= ELF::XCORE_SHF_CP_SECTION;
+ else
+ Flags |= ELF::XCORE_SHF_DP_SECTION;
+
+ if (K.isWriteable())
+ Flags |= ELF::SHF_WRITE;
+
+ if (K.isMergeableCString() || K.isMergeableConst4() ||
+ K.isMergeableConst8() || K.isMergeableConst16())
+ Flags |= ELF::SHF_MERGE;
+
+ if (K.isMergeableCString())
+ Flags |= ELF::SHF_STRINGS;
+
+ return Flags;
+}
+
+const MCSection *
+XCoreTargetObjectFile::getExplicitSectionGlobal(const GlobalValue *GV,
+ SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const {
+ StringRef SectionName = GV->getSection();
+ // Infer section flags from the section name if we can.
+ bool IsCPRel = SectionName.startswith(".cp.");
+ if (IsCPRel && !Kind.isReadOnly())
+ report_fatal_error("Using .cp. section for writeable object.");
+ return getContext().getELFSection(SectionName, getXCoreSectionType(Kind),
+ getXCoreSectionFlags(Kind, IsCPRel), Kind);
+}
+
+const MCSection *XCoreTargetObjectFile::
+SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const{
+
+ bool UseCPRel = GV->isLocalLinkage(GV->getLinkage());
+
+ if (Kind.isText()) return TextSection;
+ if (UseCPRel) {
+ if (Kind.isMergeable1ByteCString()) return CStringSection;
+ if (Kind.isMergeableConst4()) return MergeableConst4Section;
+ if (Kind.isMergeableConst8()) return MergeableConst8Section;
+ if (Kind.isMergeableConst16()) return MergeableConst16Section;
+ }
+ Type *ObjType = GV->getType()->getPointerElementType();
+ if (TM.getCodeModel() == CodeModel::Small ||
+ !ObjType->isSized() ||
+ TM.getDataLayout()->getTypeAllocSize(ObjType) < CodeModelLargeSize) {
+ if (Kind.isReadOnly()) return UseCPRel? ReadOnlySection
+ : DataRelROSection;
+ if (Kind.isBSS() || Kind.isCommon())return BSSSection;
+ if (Kind.isDataRel()) return DataSection;
+ if (Kind.isReadOnlyWithRel()) return DataRelROSection;
+ } else {
+ if (Kind.isReadOnly()) return UseCPRel? ReadOnlySectionLarge
+ : DataRelROSectionLarge;
+ if (Kind.isBSS() || Kind.isCommon())return BSSSectionLarge;
+ if (Kind.isDataRel()) return DataSectionLarge;
+ if (Kind.isReadOnlyWithRel()) return DataRelROSectionLarge;
+ }
+
+ assert((Kind.isThreadLocal() || Kind.isCommon()) && "Unknown section kind");
+ report_fatal_error("Target does not support TLS or Common sections");
+}
+
+const MCSection *
+XCoreTargetObjectFile::getSectionForConstant(SectionKind Kind,
+ const Constant *C) const {
+ if (Kind.isMergeableConst4()) return MergeableConst4Section;
+ if (Kind.isMergeableConst8()) return MergeableConst8Section;
+ if (Kind.isMergeableConst16()) return MergeableConst16Section;
+ assert((Kind.isReadOnly() || Kind.isReadOnlyWithRel()) &&
+ "Unknown section kind");
+ // We assume the size of the object is never greater than CodeModelLargeSize.
+ // To handle CodeModelLargeSize changes to AsmPrinter would be required.
+ return ReadOnlySection;
+}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.h b/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.h
new file mode 100644
index 0000000..d389e55
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.h
@@ -0,0 +1,42 @@
+//===-- XCoreTargetObjectFile.h - XCore Object Info -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_XCORE_TARGETOBJECTFILE_H
+#define LLVM_TARGET_XCORE_TARGETOBJECTFILE_H
+
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+
+namespace llvm {
+
+static const unsigned CodeModelLargeSize = 256;
+
+ class XCoreTargetObjectFile : public TargetLoweringObjectFileELF {
+ const MCSection *BSSSectionLarge;
+ const MCSection *DataSectionLarge;
+ const MCSection *ReadOnlySectionLarge;
+ const MCSection *DataRelROSectionLarge;
+ public:
+ void Initialize(MCContext &Ctx, const TargetMachine &TM) override;
+
+ const MCSection *
+ getExplicitSectionGlobal(const GlobalValue *GV,
+ SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const override;
+
+ const MCSection *
+ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
+ Mangler &Mang,
+ const TargetMachine &TM) const override;
+
+ const MCSection *getSectionForConstant(SectionKind Kind,
+ const Constant *C) const override;
+ };
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetStreamer.h b/contrib/llvm/lib/Target/XCore/XCoreTargetStreamer.h
new file mode 100644
index 0000000..0a394da
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetStreamer.h
@@ -0,0 +1,27 @@
+//===-- XCoreTargetStreamer.h - XCore Target Streamer ----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCORETARGETSTREAMER_H
+#define XCORETARGETSTREAMER_H
+
+#include "llvm/MC/MCStreamer.h"
+
+namespace llvm {
+class XCoreTargetStreamer : public MCTargetStreamer {
+public:
+ XCoreTargetStreamer(MCStreamer &S);
+ virtual ~XCoreTargetStreamer();
+ virtual void emitCCTopData(StringRef Name) = 0;
+ virtual void emitCCTopFunction(StringRef Name) = 0;
+ virtual void emitCCBottomData(StringRef Name) = 0;
+ virtual void emitCCBottomFunction(StringRef Name) = 0;
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetTransformInfo.cpp b/contrib/llvm/lib/Target/XCore/XCoreTargetTransformInfo.cpp
new file mode 100644
index 0000000..80d193d
--- /dev/null
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetTransformInfo.cpp
@@ -0,0 +1,80 @@
+//===-- XCoreTargetTransformInfo.cpp - XCore specific TTI pass ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements a TargetTransformInfo analysis pass specific to the
+/// XCore target machine. It uses the target's detailed information to provide
+/// more precise answers to certain TTI queries, while letting the target
+/// independent and default TTI implementations handle the rest.
+///
+//===----------------------------------------------------------------------===//
+
+#include "XCore.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/CostTable.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "xcoretti"
+
+// Declare the pass initialization routine locally as target-specific passes
+// don't have a target-wide initialization entry point, and so we rely on the
+// pass constructor initialization.
+namespace llvm {
+void initializeXCoreTTIPass(PassRegistry &);
+}
+
+namespace {
+
+class XCoreTTI final : public ImmutablePass, public TargetTransformInfo {
+public:
+ XCoreTTI() : ImmutablePass(ID) {
+ llvm_unreachable("This pass cannot be directly constructed");
+ }
+
+ XCoreTTI(const XCoreTargetMachine *TM)
+ : ImmutablePass(ID) {
+ initializeXCoreTTIPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual void initializePass() override {
+ pushTTIStack(this);
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ TargetTransformInfo::getAnalysisUsage(AU);
+ }
+
+ static char ID;
+
+ virtual void *getAdjustedAnalysisPointer(const void *ID) override {
+ if (ID == &TargetTransformInfo::ID)
+ return (TargetTransformInfo*)this;
+ return this;
+ }
+
+ unsigned getNumberOfRegisters(bool Vector) const override {
+ if (Vector) {
+ return 0;
+ }
+ return 12;
+ }
+};
+
+} // end anonymous namespace
+
+INITIALIZE_AG_PASS(XCoreTTI, TargetTransformInfo, "xcoretti",
+ "XCore Target Transform Info", true, true, false)
+char XCoreTTI::ID = 0;
+
+
+ImmutablePass *
+llvm::createXCoreTargetTransformInfoPass(const XCoreTargetMachine *TM) {
+ return new XCoreTTI(TM);
+}
OpenPOWER on IntegriCloud